1980_Unitrode_Semiconductor_Databook 1980 Unitrode Semiconductor Databook

User Manual: 1980_Unitrode_Semiconductor_Databook

Open the PDF directly: View PDF PDF.
Page Count: 840

Download1980_Unitrode_Semiconductor_Databook 1980 Unitrode Semiconductor Databook
Open PDF In BrowserView PDF
UNITRODE
SEMICONDUCTOR
DATABOOK

1980

© Copyright 1980 Unitrode Corporation,

Lexington, MA. All rights reserved.

PRINTED IN U.S.A.

INTRODUCTION
From its inception 20 years ago, Unitrode has acquired a
reputation for maintaining an unusually high level of quality,
performance, and reliability in its entire line of silicon
semiconductor devices. Excellence was first established with
Unitrode's uniquely controlled avalanche, hard-glass passivated
Rectifiers and Zener Diodes, and later expanded, through
corporate acquisition, to include planar passivated low-power,
high-speed SCRs, PUTs and high-speed Power Transistors and
Darlingtons.
Unitrode has been at the forefront in meeting the fast changing
needs of industry. The Company has also developed:
1) very high speed rectifiers designed to optimize the
performance of switching power supplies,
2) the first Hybrid Power Switching Circuits for Switching
Regulator applications in the industry,
3)

Power Transistors that significantly improve turnoff and
Eslb characteristics by utilizing a new transistor design
concept,

4) State-of-the-art Schottky rectifiers that offer higher current ratings and better performance characteristics than
conventional Schottkys,
5) SCRs fast enough for laser pulse modulators,
6)

High Voltage stacks and Multipliers,

7)

Doorbell® Rectifier Modules to provide reliable, economic
solid-state rectifier tube replacements in high-voltage
power supplies,

8) Axial leaded, glass encapsulated, taped and reeled
switching diodes.
Unitrode also manufactures monolithic ceramic capacitors
available in axial lead and dual-in-line packages, and as chips.
The capacitors are available in NPO, X7R and Z5U dielectric
formulations.
Doorbell@ is a registered trademark of Unitrode Corporation.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

2

PRINTED IN U.S.A.

TABLE OF CONTENTS
Section

Page

SALES OFFICES
II

PART NUMBER INDEX

III

DESIGNERS' GUIDES

9
19

Power Supply Designers' Guide
Military Designers' Guide . . .

IV

POWER TRANSISTORS & DARLINGTONS
Product Selection Guide . . . . . . .
Data Sheets
........... .
Transistor & Darlington Part Number Index

V

49

54
· 194

SWITCHING REGULATOR POWER CIRCUITS
Product Selection Guide . . . .
Data Sheets
.........
Power Circuit Part Number Index

VI

35
41

. 199
. 200
. 220

RECTIFIERS
(Standard & Fast Recovery, High Efficiency & Schottky)
Product Selection Guide . .
Data Sheets
...........
Rectifier Part Number Index

. 223
. 229
. 346

VII HIGH VOLTAGE RECTIFIERS, RECTIFIER
MODULES & MULTIPLIERS
Product Selection Guide . . . . . .
Data Sheets
...........
High Voltage Rectifier Part Number Index

. 351
. 357
. 421

VIII RECTIFIER BRIDGE ASSEMBLIES
Product Selection Guide . . . . .
Data Sheets
..........
Rectifier Bridge Part Number Index

IX

POWER ZENERS & TRANSIENT VOLTAGE SUPPRESSORS
Product Selection Guide . . . . . . . . . . . . . .
Data Sheets
...................
Zener & Transient Voltage Suppressor Part Number Index

X

. 427
. 431
. 479

. 483
. 486
. 509

THYRISTORS (SCRs, Triacs, PUTs)
Product Selection Guide . .
Data Sheets
...... .
Thyristor Part Number Index

UNITRooE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

· 513
· 518
· 614

3

PRINTED IN U.S.A

TABLE OF CONTENTS
Section

XI

Page

SWITCHING &GENERAL PURPOSE DIODES

619
620
648

Product Selection Guide
Data Sheets
.....
Diode Part Number Index

XII PIN DIODES

651
653
687

Product Selection Guide
Data Sheets
.....
PIN Diode Part Number Index

XIII CAPACITORS

691

Product Selection Guide

XIV APPLICATION NOTES & DESIGN NOTES

704

XV MECHANICAL SPECIFICATIONS

829

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

4

PRINTED IN U.S.A

SALES OFFICES
PART NUMBER INDEX
DESIGNERS' GUIDES
POWER TRANSISTORS & DARLINGTONS
SWITCHING REGULATOR POWER CIRCUITS
RECTIFIERS
HIGH VOLTAGE RECTIFIERS, RECTIFIER
MODULES & MULTIPLIERS
RECTIFIER BRIDGE ASSEMBLIES
POWER ZENERS & TRANSIENT VOLTAGE SUPPRESSORS
THYRISTORS (SCRs, Triacs, PUTs)
SWITCHING & GENERAL PURPOSE DIODES
PIN DIODES

E

IIJ

II
APPLICATION NOTES & DESIGN NOTES
II
MECHANICAL SPECIFICATIONS
E
CAPACITORS

5

~UNITRDDE

6

SALES OFFICES
PART NUMBER IN-DEX

II

DESIGNERS' GUIDES

III

POWER TRANSISTORS & DARLINGTONS

IV

SWITCHING REGULATOR POWER CIRCUITS

V

RECTIFIERS

VI

HIGH VOLTAGE RECTIFIERS, RECTIFIER
MODULES & MULTIPLIERS

VII

RECTIFIER BRIDGE ASSEMBLIES

VIII

POWER ZENERS & TRANSIENT VOLTAGE SUPPRESSORS

IX

THYRISTORS (SCRs, Triacs, PUTs)

X

SWITCHING & GENERAL PURPOSE DIODES

XI

PIN DIODES

XII

CAPACITORS

XIII

APPLICATION NOTES & DESIGN NOTES

XIV

MECHANICAL SPECIFICATIONS

XV

7

8

[ill]

SALES OFFICES

_UNITRDDE
UNITRODE REGIONAL OFFICES
Northeast Office, Door 8 - Lakeside Office Park, North Avenue, Wakefield, MA 01880, Tel. (617)245-3010, TWX 710-348-1733
So. California Office, 15300 Ventura Boulevard, Suite 200, Sherman Oaks, CA 91403, Tel. (213)783-1301, TWX 910-495-1769
Northwest Office, 2444 Moorpark Avenue, Suite 314, San Jose, CA 95128, Tel. (408)294-4210, TWX 910-338-0126
Midamerica Office, 121 South Wilke Road, Arlington Heights, IL 60005, (312)394-5240, TWX 910-233-0168
Mid-Atlantic and Southeast Office, 13975 Connecticut Avenue, Citizens Bank Building, Suite 214, Silver Spring, MD 20906,
Tel. (301)460-8700, TWX 710-828-0081
North Central Office, 1500 E. 79th Street, Suite 109, P.O.B. 1779, Bloomington, MN 55420, Tel. (612)854-0555, TWX 910-576-2406
Southwest Office, 13999 Goldmark, Suite 434, Dallas, TX 75240 Tel. (214)231-8700, TWX 910-867-4738
Metropolitan New York, 150 Broadhollow Road, Suite 210A, Melville, NY 11747, Tel. 516-271-3110, 11
DOMESTIC REPRESENTATIVES
ALABAMA
Conley & Associates, Inc.
3322 Memorial Parkway S.W.
Suite 17
Huntsville - 35801
205-882-0316

ARIZONA
Fred Board Associates, Inc.
P.O. Box 1906
Scottsdale - 85252
602-994-9388
ARKANSAS
See Texas
CALIFORNIA - NORTHERN
12 Inc.
3350 Scott Blvd. No. 10
Santa Clara - 95051

408-988-3400

Conley & Associates, Inc.
1612 N.W. 2nd Avenue
Boca Raton - 33432
305-395-6108
Conley & Associates, Inc.
4021 W. Waters Avenue
Suite 2
Tampa - 33614
813-885-7658
GEORGIA
See Florida

COLORADO
Simpson Associates, Inc.
2552 Ridge Road
Littleton - 80120
303-794-8381
CONNECTICUT
Kanan Associates
1 Padanaram Road
Danbury - 06810
203-743-1812

NORTHERN

Carlson Electronic Sales Co.
600 East Higgins Road
Elk Grove Village - 60007
312-956-8240
ILLINOIS -

SOUTHERN

DIST~ICT OF COLUMBIA
See Maryland

See Massachusetts
MARYLAND
New Era Sales, Inc.
7300 Ritchie Highway
Suite 407
Glen Burnie - 21061
301-768-6666
MASSACHUSETTS
Kanan Associates
100 Main Street
Reading- 01867
617-944-8484

Miltimore Sales, Inc.
3501 Lake Eastbrook S. E.
Suite 127
Grand Rapids - 49506
616-942-9721
MINNESOTA

See Missouri
INDIANA
Carlson Electronic Sales Co.
7202 N. Shadeland Avenue
Indianapolis - 46250
317-842-3740

Electronic Innovators
7625 Bush Lake Road
Suite 16
Minneapolis - 55435
612-835-0303
MISSISSIPPI
See Florida

IOWA
Carlson Electronic Sales Co.
204 Collins Road, N.E.
Cedar Rapids - 52402
319-377-6341
KANSAS

Eastern

MAINE

Miltimore Sales, Inc.
22765 Heslip Drive
Novi - 48050
313-349-0260

See Washington
ILLINOIS -

LOUISIANA
See Texas

MICHIGAN

IDAHO

CALIFORNIA - SOUTHERN
Great American Rep Company
17742 Irvine Boulevard, Suite 102
Tustin - 92680
714-832-8113
Great American Rep Company
15300 Ventura Boulevard, Suite 405
Sherman Oaks - 91403
213-990-4870
S. R. Electronics
4617 Ruffner Street
Suite 206
San Diego - 92111
714-560-8330

DELAWARE
See Pennsylvania -

FLORIDA
Conley & Associates, Inc.
P.O. Box 309
235 S. Central Avenue
Oviedo - 32765
305-365-3283

MISSOURI
Rush & West Associates
481 Melanie Meadows Lane
Ballwin - 63011
314-394-7271
MONTANA

Rush & West Associates
107 N. Chester Street
Olathe - 66061
913-764-2700

See Washington
NEBRASKA
See Missouri

KENTUCKY
See Ohio

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

9

PRINTED IN U.S.A.

SALES OFFICES

o! 0UNITROOE
DOMESTIC REPRESENTATIVES (Continued)
NEVADA- NORTHERN

NORTH DAKOTA

TEXAS

See California - Northern

See Minnesota

NEVADA - SOUTHERN

OHIO

See Arizona

Baehr, Greenleaf &
Associates. Inc.
9505 Montgomery Road
Cincinnati - 45242
513-891-3826

Sundance Sales. Inc.
9230 Markville Street
Dallas - 75243
214-699-0451
Sundance Sales, Inc.
10237 Missel Thrush
Austin - 78750
512-250-0320

NEW HAMPSHIRE
See Massach usetts

NEW JERSEY - NORTHERN
Lorac Sales, Inc.
1200 Route 23, North
Butler - 07405
201-492-1050

NEW JERSEY - SOUTHERN
See Pennsylvania - Eastern
NEW MEXICO
Reptronix
237C Eubank N.E.
Albuquerque - 87123
505-881-8001

NEW YORK - METROPOLITAN
AND LONG ISLAND
Lorac Sales, Inc.
550 Old Country Road, Room 410
Hicksville - 11801
516-681-8746

Baehr, Greenleaf &
Associates. Inc.
3300 So. Dixie Drive
Suite 215
Dayton - 45439
513-293-11 02

UTAH
Simpson Associates. Inc.
P.O. Box 151430
7424 S. 1300th East
Midvale - 84047
801-566-3691

Baehr. Greenleaf &
Associates. Inc.
14700 Detroit Avenue
Cleveland - 44107
216-221-9030

VERMONT
See Massachusetts

VIRGINIA
See Maryland

Baehr, Greenleaf &
Associates. Inc.
P.O. Box 5702
Columbus - 43221
614-486-4046

WASHINGTON
Vantage Corporation

300 - 120th Avenue N.E.
Building No. 7
Suite 207
Bellevue - 98005
206-455-3460

OKLAHOMA
See Texas

NEW YORK - UPSTATE

OREGON

WEST VIRGINIA

Reagan/Cornpar Albany,
6 Highland Avenue
P.O. Box 5208
Albany - 12205
518-489-7408
Reagan/Compar Albany,
41 Woodberry Road
New Hartford - 13413
315-732-3775
Reagan/Compar Albany,
42 Winding Brook Drive
Fairport - 14450
716-271-2230
Reagan/Compar Albany,
3737 Pheasant Lane
P.O. Box 135
Endwell - 13760
607-723-8743
Reagan/Compar Albany,
Castle Creek Road
P.O. Box 453
Binghamton - 13901
607-648-8838

Vantage Corporation
6415 S.W. Canyon Ct.
Suite 220
Portland - 97221
503-297-1714

See Pennsylvania - Western

Inc.

Inc.

Inc.

PENNSYLVANIA - EASTERN
GCM Associates
1014 Bethlehem Pike
Erdenheim - 19118
215-233-4600

Bacon Electronic Sales
115 South High Street
Waterford - 16441
814-796-2381

NORTH CAROLINA
Electronic Marketing Associates
955 Burke Street, Suite 2
Winston-Salem - 27101
919-722-5151
Electronic Marketing Associates
6717 Woodstock Drive
P.O. Box 15316
Charlotte - 28210
704-523-3327

UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

See Colorado

CANADA

See Minnesota

Kaytronics Limited
375 Rue Norman Street
Ville St. Pierre
Quebec H8R 1A3
514-487-3434
Kaytronics Limited
Unit #1
331 Bowes Road
Concord. Ontario L4K 1B1
416-669-2262
Kaytronics Limited
2003 McKnight Blvd .• N.E.
Suite 209
Calgary, Alberta T2E 6L2
403-276-9844

TENNESSEE

BRITISH COLUMBIA

See Florida

See Washington

RHODE ISLAND
Inc.

Carlson Electronic Sales Co.
Northbrook Executive Center
10701 West North Avenue
Suite 209
Milwaukee - 53226
414-476-2790

WYOMING

PENNSYLVANIA - WESTERN
Inc.

WISCONSIN

See Massachusetts

SOUTH CAROLINA
Electronic Marketing Associates
210 W. Stone Avenue
Greenville - 29609
803-233-4637

SOUTH DAKOTA

10

PRINTED IN U.S.A.

SALES OFFICES

o! 0UNITRDDE
DOMESTIC DISTRIBUTORS
ALABAMA
Hall-Mark / Huntsville
4739 Commercial Drive
Huntsville - 35805
205-837 -8700
ARIZONA
K ierulff Electronics
4134 East Wood Street
Phoenix - 85040
602-243-4101
Wyle Distribution Group
8155 North 24th Avenue
Phoenix - 85021
602-249-2232
CALIFORNIA - NORTHERN
Wyle Distribution Group
3000 Bowers Avenue
Santa Clara - 95051
408-727-2500
Kierulff Electronics
3969 E. Bayshore Road
Palo Alto - 94303
415-968-6292
Capacitor Sales
253 Polaris Avenue
Mountain View - 94043
415-964-8880
Components Plus
491 Macara Drive
Sunnyvale - 94086
408-732-0990
CALIFORNIA - SOUTHERN
Components Plus
17811 Skypark Circle
Irvine - 92714
714-754-0471
Kierulff Electronics
2585 Commerce Way
Los Angeles - 90040
213-725-0325
K ierulff Electronics
8797 Balboa Avenue
San Diego - 92123
714-278-2112
Wyle Distribution Group
124 Maryland Street
EI Segundo - 90245
213-322-8100
Kierulff Electronics
14101 Franklin Avenue
Tustin - 92680
714-731-5711
Wyle Distribution Group
17872 Cowan Avenue
Irvine - 92714
714-641-1600
Wyle Distribution Group
9525 Chesapeake Drive
San Diego - 92123
714-565-9171

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173· TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

COLORADO
Wyle Distribution Group
6777 East 50th Avenue
Commerce City - 80022
303-287-9611
Kierulff Electronics
10890 East 47th Street
Denver - 80239
303-371-6500
Bell Industries. Elec.
Dis!. Div.
8155 West 48th Avenue
Wheat ridge - 80033
303-424-1985
CONNECTICUT
Lionex Corp.
1 North Avenue
Burlington. MA 01803
617-272-9400
FLORIDA
Hall-Mark/Orlando
7233 Lake Ellenor Drive
Orlando - 32809
305-855-4020
Pioneer / Florida
6220 S. Orange Trail
Orlando - 32809
305-859-3600
K ierulff Electronics
3247 Tech Drive
St. Petersbu rg - 33702
813-576-1966
Hall-Mark/Miami
1671 West McNab Road
Fort Lauderdale - 33309
305-971-9280
ILLINOIS
Kierulff Electronics
1536 Landmeier Road
Elk Grove Village - 60007
312-860-3807
R M Electronics
47 Chestnut
Westmont - 60059
312-323-9670
Hall-Mark / Chicago
1177 Industrial Drive
Bensenville - 60106
312-860-3823
INDIANA
Pioneer / Indiana
6408 Castleplace Drive
Indianapolis - 46250
317-849-7300

11

RM Electronics
5545 W. Raymond Street
Suite K
Indianapolis - 46241
317-247-9701
KANSAS
Hall-Mark/Kansas City
11870 West 91st Street
Congleton Industrial Park
Shawnee Mission - 66214
913-888-4747
MARYLAND
Hall-Mark/Baltimore
6655 Amberton Drive
Baltimore - 21227
301-796-9300
MASSACHUSETTS
Lionex Corporation
1 North Avenue
Burlington - 01803
617-272-9400
Kierulff Electronics
13 Fortune Drive
Billerica - 01821
617-667-8331
MICHIGAN
Pioneer / Michigan
13485 Stanford
Livonia - 48150
313-525-1800
R M Electronics
4310 Roger B. Chaffee
Memorial Drive
Grand Rapids - 49508
616-531-9300
MINNESOTA
Hall-Mark / Minneapolis
9201 Penn Avenue South
Suite 10
81oomington - 55431
612-884-9056
I.C.1.
Industrial Components, Inc.
5280 W. 74th Street
Minneapolis - 55435
612-831-2666
Kierulff Electronics
5280 West 74th Street
Edina - 55435
612 -835-4388
MISSOURI
Hall-Mark/ S!. Louis
13789 Rider Trail
Earth City - 63045
314-291-5350

PRINTED IN U.S.A.

[ill]

SALES OFFICES

_UNITRDDE
DOMESTIC DISTRIBUTORS (Continued)

NEW JERSEY
Wilshire Electronics
1111 Paulison Avenue
Clifton - 07015
201-340-1900
Kierulff Electronics
3 Edison Place
Fairfield - 07006
201-575-6750
NEW MEXICO
Bell Industries
Elec. Dist. Div.
11728 Linn, N.E.
Albuquerque - 87123
505-292-2700
NEW YORK
Components Plus
40 Oser Avenue
Hauppauge - 11787
516-231-9200
Lionex Corporation
415 Crossways Park Drive
Woodbury - 11797
516-921-4414
NORTH CAROLINA
Hammond Electronics, Inc.
2923 Pacific Avenue
P.O. Box 21728
Greensboro - 27406
919-275-6391
Hall-Mark/Raleigh
1208 Front St. Bldg. K
Raleigh - 27609
919-832-4465
OHIO
Pioneer / Cleveland
4800 East 131st Street
Cleveland - 44105
216-587-3600
Hall-Mark/Columbus
6969 Worthington-Galena
Worthington - 43085
614-846-1882
Pioneer / Dayton
1900 Troy Street
Dayton - 45404
513-236-9900
OKLAHOMA
Hall-Mark/Tulsa
5460 S. 103rd E. Avenue
Tulsa - 74145
405-835-8458

TEXAS
Hall-Mark/Dallas
11333 Page Mill Road
Dallas - 75243
214-234-7300
Components Plus
13777 N. Central Expressway
Suite 210
Dallas - 75243
214-783-6060
Hall-Mark/Houston
8000 Westglen
Houston - 77063
713-781-6100
TEXAS
Lenert Co., Inc.
1420 Hutchins
P.O. Box 2184
Houston - 77001
713-225-1465
Hall-Mark/ Austin
10109 McKalia Place
Suite F
Austin - 78758
512-837-2814
UTAH
Bell Industries
Elec. Dist. Div.
3639 West 2150 South
Salt Lake City - 84120
BOl-972-6969
Kierulff Electronics
3695W 1987S
Salt Lake City - 84104
801-973-6913

WISCONSIN
Taylor Electric Co.
1000 W. Donges Bay Road
Mequon - 53092
414-241-4321
Hall-Mark/Milwaukee
9657 So. 20th Street
Oak Creek - 53154
414-761-3000
Kierulff Electronics
2212 East Moreland Avenue
Waukesha - 53186
414-784-8160
CANADA
Future Electronics, Inc. - Montreal
5647 Ferrier Street
Montreal. Quebec H4P 2K5
514-735-5775
Future Electronics, Inc. - Toronto
4800 Dufferin Street
Downsview, Ontario M3H 5S9
416-663-5563
Future Electronics, Inc.
1050 Baxter Road
Ottawa, Ontario K2C 3P2
613-820-9471
Future Electronics, Inc.
3070 Kingsway
Vancouver, B.C. V5R 5J7
604-438-5545

WASHINGTON
Kierulff Electronics
1005 Andover Park East
Tukwila - 98188
206-575-4420
Shannon, Ltd.
7030 South 188th Street
Kent - 98031
206-763-0545
503-643-5754
Wyle Distribution Group
1750 132nd Avenue N.E.
Bellevue - 9B005
206-453-8300

PENNSYLVANIA
Pioneer / Pittsburgh
560 Alpha Drive
Pittsburgh - 15238
412-782-2300
Hall-Mark/ Philadelphia
458 Pike Road
Huntingdon Valley - 19006
215-355-7300

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

12

PRiNTED IN U.S.A.

[ill]

SALES OFFICES

_UNITRODE

ADDENDUM TO DISTRIBUTOR LISTING
CALIFORNIA (San Francisco)
Arrow Electronics, Inc.
720 Palomar Avenue
Sunnyvale 94086
408-739-3011
General Dynamics (Pomonal
c/o Arrow Electronics, Inc.
1802 West 2nd Street
Pomona 91766
714-622-1271
General Dynamics (San Diego)
c/o Arrow Electronics, Inc.
9511 Ridgehaven Court
San Diego 92123
714-565-2925
CONNECTICUT
Arrow Electronics, Inc.
12 Beaumont Road
Wallingford 06492
203-265-7741
FLORIDA (North)
Arrow Electronics, Inc.
115 Palm Bay Road, N.W.
Bldg. 200
Palm Bay 32905
305-725-1480
FLORIDA (South)
Arrow Electronics, Inc.
1001 N.W. 62nd Street
Suite 108
Ft. Lauderdale 33309
305-776-7790
GEORGIA
Arrow Electronics, Inc.
2979 Pacific Drive
Norcross 30071
404-449-8252
MARYLAND
Arrow Electronics, Inc.
4801 Benson Avenue
Baltimore 21227
301-247-5200

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

MASSACHUSETTS
Arrow Electronics, Inc.
96D Commerce Way
Woburn 01801
617-933-8130
NEW HAMPSHIRE
Arrow Electronics, Inc.
1 Perimeter Drive
Manchester 03103
603-668-6968
NEW JERSEY (North)
Arrow Electronics, Inc.
285 Midland Avenue
Saddle Brook 07662
201-797-5800
NEW JERSEY (South)
Arrow Electronics, Inc.
Pleasant Valley Avenue
Moorestown 08057
215-928-1800
609-235-1900
NEW YORK (Metropolitan)
Arrow Electronics, Inc.
20 Oser Avenue
Hauppauge 11787
516-231-1000

NORTH CAROLINA
Arrow Electronics, Inc.
938 Burke Street
Winston-Salem 27102
919-721-1661
800-334-0421
919-725-8711
800-334-0422
PENNSYLVANIA
Arrow Electronics, Inc.
4297 Greensburg Pike
Suite 3114
Pittsburgh 15221
412-351-4000
TEXAS (Houston)
Arrow Electronics, Inc.
10700 Corporate Drive
Stafford 77477
713-491-4100
TEXAS (Dallas)
Arrow Electronics, Inc.
13715 Gamma Road
Dallas 75234
214-386-7500

NEW YORK (Syracuse)
Arrow Electronics, Inc.
7705 Maltlage Drive
Liverpool 13088
315-652-1000
NEW YORK (Rochester)
Arrow Electronics, Inc.
3000 South Winton Road
Rochester 14623
716-275-0300

13

PRINTED IN U.S.A.

SALES OFFICES

o! 0UNITRDDE
UNITRODE SALES OFFICES

Corporate International Sales Office, 5 Forbes Road, Lexington, MA 02173, Tel. (617) 861-6540, Telex 95-1064
Asian Regional Office, 15300 Ventura Boulevard, Suite 200, Sherman Oaks, CA 91403, Tel. (213) 783-1301,
TWX/Telex 910-495-1769
Unitrode Electronics GmbH, Haupstrasse 68, 8025 Unterhaching, W. Germany, Tel. 089/6190 04,
Telex 841-05-22-109
Unitrode (U.K.) limited, Deepdene House, Bellegrove Road, Welling, Kent DA163PY England, Tel. 01-301-2022,
Telex 896270
Unitrode (SARL pending) 76/78 Avenue Des Champs 75008 Paris, France Tel: 3596804 TELEX: 660364F

INTt:RNATIONAL AGENTS - DISTRIBUTORS
AUSTRIA
Rieger GmbH
Marxergasse 10
A-l030 Wien 3
Tel: (02221 73.46.84
TELEX: 847-131087
AUSTRALIA
Cema Electronics Pty. Ltd.
P.O. Box 578
Crows Nest, N.S.W. 2065
Tel: 419-2397
TELEX: 790-22846
BELGI!JM
J.P. LeMaire
Rampe Gauloise 1A
1020 Brussels
Tel: 02-478-48-47
TELEX: 846-24610
BRAZIL
Cosele Ltda.
Rua Da Consolacao, 867-Cj.31
01301 Sao Paulo
Tel: 257-3535, 258-4325
TELEX: 011-30869, CSEL BR
PEOPLES' REPUBLIC OF CHINA
Rikei H.K. Ltd.
14th Floor - Aurora House
57-59 Connaught Rd. C.
Hong Kong
Tel: 5-450511-4
TELEX: 780-86256
DENMARK
Ditz Schweitzer AI S
Vallensbaekvej 41
DK-2600 Glostrup
Tel: 45-2-453-044
TELEX: 855-33257
EASTERN EUROPE
Dahms Elektronik
A-8020 Graz
Viktor Franz Strasse 9
Austria
Tel: (03161 64.0.30
TELEX: 031099
FINLAND
Nores Oy
P.O. Box 889
SF-00101 Helsinki 10
Tel: 520-311
TELEX: 857-121676

UNITROOE CORPORATION' 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064

FRANCE
C.C.1.
(Comptoir Commercial D'importationi
42 Rue Etienne - Marcel
75081 Paris Cedex 02
Tel: 261-55-49
TELEX: 240835
Spetelec
Tour Europa Belle Epine
Europa III
94532 Rungis Cedex
Tel: 686.56.65
TELEX: 842-250801
GERMANY
Unitrode Electronics GmbH
Haupstrasse 68
8025 Unterhaching
Tel: 089/6190 04
TELEX: 841-0522109
EBV Elektronik GmbH
Oberweg 6
8025 Unterhaching/Munich
Tel. 011-49-611-05234
TELEX: 841-5212995
EBV Elektronik GmbH
Oststrasse 129
4 Duesseldorf
Tel: 211-84-84-6/7
TELEX: 841-8587267
EBV Elektronik GmbH
Myliustrasse 54
6 Frankfurtl Main 1
Tel: 611-72-04-16/18
TELEX: 841-413590
EBV Elektronik GmbH
Kiebitzrain 18
3006 Burgwedel 1
Tel: 05139/5038
TELEX: 841-0923694
EBV Elektronik GmbH
Alexanderstrasse 42
D-7 Stuttgart 1
Tel: 711/247481
TELEX: 841-0722271
Metronik GmbH
Kapellenstrasse 9
8025 Unterhaching
Tel: 089-6114063
TELEX: 841-0529524

14

Metronik GmbH
Am Oberen Luisenpark 2
6800 Mannheim 1
Tel: 0621-443067/68
TELEX: 841-0463654
Metronik GmbH
Vogelsgarten 1
8500 Nuremberg
Tel: 0911/468066-67
Frehsdorf KG
P.O. Box 1244
Rotdornweg 42
2085 Quickborn
Tel: 04106 - 71058
Telex: 841-213693
HONG KONG
Karin Electronic Supplies Co., Ltd.
Room 1319 Ocean Centre
Canton Road
Kowloon
Tel: 3-695321
TELEX: 85322
INDIA
Sujata Sales and Exports Ltd.
11-2 Bajaj Bhawan
Nariman Point
Bombay 400 021
Tel: 367001
TELEX: 011-3855
ISRAEL
S.T.G. International
10 Huberman Street
P.O. Box 1276
Tel-Aviv
Tel: 03-248231
TELEX: 922-32229
ITALY
Microelit,s.r.I.
Via P. Uccello, 8
20148 Milano
Tel: (021 46.90.444
TELEX: 334-284 MICROIT
JAPAN
Rikei Corporation
Shinjuku Nomura Bldg.
1-26-2 Nishi-Shinjuku, Shinjuku-Ku
Tokyo 160
Tel: Tokyo (031345-1411
TELEX: J24208, J23772
Cable Address: "RIKEIGOOD" Tokyo

PRINTeD IN U.S.A.

SALES OFFICES

o! 0UNITRDDE
INTERNATIONAL AGENTS - DISTRIBUTORS (Continued)
KOREA IR.O.K.I
Duksung Trading Co.
RM508 Sindo Bldg,
65-4 2KA Chungmuro
Seoul
Tel: 777-2325
TELEX: K26453 NAMSTRA

NORWAY
Neco A/S
Stanseveien 4
P.O. Box 81, Ovre Grorud
Oslo
Tel: 25-93-10
TELEX: 856-19247

NETHERLANDS
SINGAPORE
Koning en Hartman Elektrotechniek B,V, Technics
P.O. Box 43220
Unit 1033 Blk 1
2504 AE The Hague
10th Floor- PSA Multi-Storey Complex
Tel: 21-01-01
Pasir Panjang Road
Tel: 372-454
TELEX: 844-31528
TELEX: RS22047
NEW ZEALAND
SOUTH AFRICA
Professional Electronics, ltd,
Electrolink (Pty.1 ltd.
22 A Milford
P.O. Box 1020
Auckland
Cape Town 8000
Tel: 493-029, 499-448
Tel: 45-7656/7
TELEX: NZ21084
TELEX: 960-577320
Electrolink (Pty.1 Ltd.
P.O. Box 33533
Jeppestown
Transvaal
2043
Tel: 618-1027

UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

15

SWEDEN
AB Betoma
Box 3005
S-171 03 Solna
Tel: 08-82-0280
TELEX: 854-19389
SWITZERLAND
Stolz AG
8ellikronerstrasse 218
8968 Mutschellen
Tel: 05754655
TELEX: 845-54070
TAIWAN
Headtrade International Inc.
Division of Pacific Hermes
5th Floor No. 820
Ming-Sheng East Road, Taipei
Tel: (021721-8355
TELEX: 785-21795
UNITED KINGDOM
Unitrode (U.K.I Limited
Deepdene House, Bellegrove Road
Welling, Kent
DA163PY England
Tel: 01-301-2022
TELEX: 896270

PRINTED IN U.S.A.

16

SALES OFFICES
PART NUMBER INDEX

DESIGNERS' GUIDES

-

POWER TRANSISTORS & DARLINGTONS

III
IV .

SWITCHING REGULATOR POWER CIRCUITS

V

RECTIFIERS

VI

HIGH VOLTAGE RECTIFIERS, RECTIFIER
MODULES & MULTIPLIERS

VII

RECTIFIER BRIDGE ASSEMBLIES

VIII'

POWER ZENERS & TRANSIENT VOLTAGE SUPPRESSORS

IX

THYRISTORS (SCRs, Triacs, PUTs)

X,

SWITCHING & GENERAL PURPOSE DIODES

XI'

PIN DIODES

XIII

CAPACITORS

xliii

APPLICATION NOTES & DESIGN NOTES

XI~

MECHANICAL SPECIFICATIONS

X~

17

i

i

18

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

PART NUMBER INDEX

PAGE

DESCRIPTION

PART NUMBER

PAGE

PART NUMBER

RECTIFIER

DIODE

622

IN456
IN456A
IN457,J
IN457A
IN458, J
IN458A
IN459, J
IN459A
IN483
IN483A
IN4838, J, JTX
IN483C
IN485
I N485B, J, JTX

90mA; 25V
75mA; 60V
55mA; 125V; 00-7
40mA; 175V
55mA; 150V; 00-7
100mA; 150V
40mA; 200V; 00-7
100mA; 200V
100mA; 70V
100mA; 70V
200mA; 80V; 00-7
100mA; 70V
100mA; 180V
200mA; 200V; 00-7

624
624

IN645J, JTX
IN645-lJ, JTX, JTXV

400mA; 270V
400mA; 270V

620

·•

620
620

*

620

*

•
*

622

•
•

·
*

628
630
632
634

IN4245,
IN4246,
IN4247,
IN4248,
1N4249,

638

IN4305

J,
J,
J,
J,
J,

JTX,
JTX,
JTX,
JTX,
JTX,

JTXV
JTXV
JTXV
JTXV
JTXV

•

IN4321

75mA; 100V
75mA; 100V
75mA; 100V
75mA; 75V; 00-7
200mA; 200V; 00-35
150mA; 150V; 00-7
200mA; 75V; 00-7

*

*
*

IN3611, J, JTX
IN3612, J, JTX
IN3613, J, JTX
IN3614, J, JTX
IN3643 (HVDO)
IN3644 (HVE15)
IN3645 (HVE20)
IN3646 (HVE25)
IN3647 (HVE30)
IN3656
IN3657
IN3658
IN3764

231
231
231
231
231

IN3909,
IN391O,
IN3911,
1N3912,
IN3913,
IN3957
IN3981
IN3982
IN3983

*
*

·
*

l.OA; 200V
l.OA; 400V
l.OA; 600V
l.OA; 800V
l.OkV
l.5kV
2.0kV
2.5kV
3.0kV
0.75A; 200V
0.75A; 400V
0.75A; 600V

638
636
636
636
636
642
642
644
642
628
628

IN4444
IN4446
IN4447
IN4448
IN4449
IN4450
IN4451
IN4452
IN4453
IN4454,J, JTX,JTXV
IN4454-1,J,JTX,JTXV

486

IN4461-1N4496, J,
JTX, JTXV

626
626
636
634
634
636
638
640

IN4148, J, JTX, JTXV
IN4148-lJ, JTX, JTXV
IN4149
IN4150, J, JTX, JTXV
IN4150-lJ, JTX, JTXV
IN4151
IN4152
IN4153, J, JTX, JTXV
IN4153-1, J, JTX, JTXV
IN4154

•

IN4500, J, JTX
IN4607

499

1N4883-1 N4884

235
235
235

IN4942,J,JTX,JTXV
IN4944, J, JTX, JTXV
IN4946, J, JTX, JTXV

488

IN4954-1N4995, J,
JTX, JTXV
IN4996
IN5063-1N5117
IN5118-1N5134

5.0W;
5.0W;
3.0W;
5.0W;

IN5180
IN5181 (HVE40l
IN5182 (HVE50)
IN5183 (HVE75)
IN5184 (HVEIOO)
IN5185
IN5186, J, JTX
IN5187, J, JTX
IN5188, J, JTX
IN5190, J, JTX
IN5207
IN5320
IN5330
IN5415, J, JTX, JTXV
IN5416, J, JTX, JTXV
IN5417, J, JTX, JTXV
IN5418, J, JTX, JTXV
IN5419,J,JTX,JTXV
IN5420,J, JTX, JTXV
IN5433
IN5434
IN5435

4.0A; 100V
4.0kV
5.0kV
7.5kV
IOkV
3.0A; 60V
3.0A; 100V
3.0A; 200V
3.0A; 400V
3.0A; 600V
4.0A; 400V
l.OA; 120V
0.5A; 1500V
3A; 50V
3A; 100V
3A;200V
3A;400V
3A; 500V
3A;600V
2.0A; 700V
2.0A; 700V
12.0A; 700V

•
366
366
366
366

*

237
237
237
237

*
*
*

COMPUTER DIODE

636

l.5W; 5%

646
644

488
499
503

3.0W; 5%
200mA;
150mA;
200mA;
200mA;
200mA;
200mA;
200mA;
150mA;
150mA;
200mA;

00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35

300mA; 80V; 00-35
400mA; 85V; 00-35
3.0W; 5%
l.OA; 200V
l.OA; 400V
l.OA; 600V

ZENER

ZENER
IN4096-IN4098

70V;
75V;
75V;
75V;
75V;
40V;
40V;
40V;
30V;
75V;
75V;

RECTIFIER

30A; 50V; 00-5
30A; 100V; 00-5
30A; 200V; 00-5
30A; 300V; 00-5
30A; 400V; 00-5
l.OA; 1000V
2.0A; 200V
2.0A; 400V
2.0A; 600V

499

200mA;
200mA;
200mA;
200mA;
200mA;
200mA;
200mA;
400mA;
200mA;
200mA;
200mA;

ZENER

3kV
JTX
JTX
JTX
JTX
JTX

l.OW; 10%

COMPUTER DIODE

RECTIFIER
J,
J,
J,
J,
J,

200mA; 75V; 00-35

ZENER

RECTIFIER MODULE

*

200V
400V
600V
800V
1000V

COMPUTER DIODE

RECTIFIER
229
229
229
229
366
366
366
366
366

l.OA;
l.OA;
l.OA;
l.OA;
l.OA;

ZENER

COMPUTER DIODE
IN914, J, JTX
IN914-1, A, B
IN916, B
IN3064J, JTX
IN3070
IN3595, J, JTX, JTXV
I N3600J, JTX, JTXV

233
233
233
233
233

COMPUTER DIODE

RECTIFIER

626

DESCRIPTION

100V; 00-35
100V; 00-35
75V; 00-35
75V; 00-35
75V; 00-35
75V; 00-35
40V; 00-35
75V; 00-35
75V; 00-35
35V; 00-35

239
239
239
239
239
239

*
*

•

5%
5%
5%
5%

RECTIFIER

·Contact Unit rode for specifications and ratings.
Legend, J -

JAN

JTX -

JANTX

JTXV -

JANTXV

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

19

PRINTED IN U.S.A

PART NUMBER INDEX

PART NUMBER

PAGE

DESCRIPTION

PAGE

1N5550, J,
1N5551, J,
1N5552, J,
1N5553, J,

357
357
357

1N5597, J
1N5600, J
1N5603, J

JTX,JTXV
JTX, JTXV
JTX, JTXV
JTX, JTXV

•

5.0A;200V
5.0A; 400V
5.0A; 600V
5.0A; 800V

*
*
*
*
*

RECTIFIER MODULE
lOkV

*

5kV
5kV

*
*
*
*
*

TRANSIENT VOLTAGE
SUPPRESSOR
490
490
490
490

IN561O,
1N5611,
IN5612,
1N5613,

J,
J,
J,
J,

JTX
JTX
JTX
JTX

33V
43.7V
54V
191V

•
•
*

*
*

RECTIFIER
243
245
243
245
243
245
243

lN56l4,
lN56l5,
lN5616,
IN5617,
IN5618,
IN5619,
IN5620,

653

IN5767

J,
J,
J,
J,
J,
J,
J,

JTX, JTXV
JTX, JTXV
JTX, JTXV
JTX,JTXV
JTX, JTXV
JTX, )TXV
JTX, JTXV

l.OA;
l.OA;
l.OA;
l.OA;
1.0A;
1.0A;
l.OA;

200V
200V
400V
400V
600V
600V
800V

•*
*

•
*
•

PIN DIODE
247
251
247
247
251
247
247
251
247
251
247
247
251
247
247
251
247
254
247
247
254
247
247
254

IN5802
IN5802,
IN5803
IN5804
lN5804,
IN5805
IN5806
IN5806,
IN5807
IN5807,
IN5808
IN5809
lN5809,
IN5810
lN5811
IN5811,
IN5812
lN5812,
IN5813
lN5814
IN58l4,
IN5815
IN5816
lN5816,

653

IN5957

J, JTX, JTXV
J, JTX, JTXV
J, JTX, JTXV
J, JTX, JTXV
J, JTX, JTXV
J, JTX, JTXV
J, JTX, JTXV
J, JTX, JTXV

•
•
•
•

*

2NI720

NPN; O.75A;60V; TO-5;

•

2NI721

NPN; O.75A; lOOV; TO-5

*

•*

30V;
40V;
30V;
40V;

Stud Mount
Stud Mount
Stud Mount
Stud Mount

SCR

*

518
518
518
518
518
522
522
522
522
522
522
524
524
524
524
524

Low Distortion, AGe Diode

2N876
2N877
2N878
2N879
2N880

NPN; O.75A; 100V; TO-5;

•

00-4
00-4
00-5
00-5

•
*

*

SCR

*

2NI719

2.5A; 50V
2.5A; 50V
2.5A; 75V
2.5A; IOOV
2.5A; IOOV
2.5A; 125V
2.5A; 150V
2.5A; 150V
6.0A; 50Y
6.0A; 50V
6.0A; 75V
6.0A; 100V
6.0A; 100V
6.0A; 125V
6.0A; 150V
6.0A; 150V
20.0A; 50V; 00-4
20.0A; 50V; 00-4
20.0A; 75V; 00-4
20.0A; lOOV; 00-4
20.0A; lOOV; 00-4
20.0A; 125V; 00-4
20.0A; 150V; 00-4
20.0A; I50V: 00-4

25A;
25A;
50A;
50A;

POWER TRANSISTOR

*

*

SCHOTTKY RECTIFIER
IN6095
IN6096
lN6097
IN6098

.35A 100·e 300V;TO-18
.35A@lOO·C 400V;TO-18
.35A@100·e 15V; TO-I8
.35A@100·e 30V; TO-18
.35A@100·e 60V; TO-18
.35A@IOO·e 100V;lO-18
.35A@100·e 150V;TO-18
.35A~100·e 200V;lO-18
.35A 100·C 300V;TO-18
.35A@100oe400V;TO-18
.26A@125°e 30V;TO-18
.26A@125·C 60V;TO-18
.26A@125·e lOOV;lO-18
.26A@125°e 200V;TO-18
1.0A@80·C 50V; TO-39
l.OA@80·e IOOV; TO-39
l.OA@80·C 200V; TO-39
1.0A@80·C 300V; TO-39
l.OA@80·e400V; TO-39
NPN; 3.0A; 60V; TO-59
NPN; 3.0A; 80V; TO-59
NPN; 3.0A; 60V; TO-59
NPN; 3.0A; 80V; TO-59
NPN; O.75A; 60V; TO-5
NPN; O.75A; 100V; TO-5
NPN; 0.75A; 60V; TO-5
NPN; 0.75A; 100V; TO-5
NPN; 0.75A; 60V; TO-5

RECTIFIER

PIN DIODE
256
256
258
258

.35A~100·C 200V; TOcl8

2N881
2N882
2N883
2N884
2N885
2N886
2N887
2N888
2N889
2N890
2N89I
2N948
2N949
2N950
2N95I
2N1595
2Nl596
2N1597
2Nl598
2Nl599
2NI647
2Nl648
2Nl649
2Nl650
2NI714
2NI715
2Nl716
2Nl717
2Nl718

*

General Purpose, PIN
J, JTX, JTXV

DESCRIPTION
SCR

RECTIFIER
241
241
241
241

PART NUMBER

.35A@100·e 15V; TO-18
.35A~100·e 30V; TO-18
.35A 100·e 60V; TO-18
.35A@100·e 100V; TO-18
.35A@100·C 150V; TO-18

*

•

*

2N1869
2N1870A,
2N1871A,
2N1872A,
2Nl873A
2N1874A,
2Nl875
2N1876
2Nl877
2N1878
2N1879
2N1880
2Nl881
2N1882
2N1883
2N1884
2N1885
2N2009
2N2010
2N2011
2N2012
2N2013
2N2014

J
J
J
J

• 2N2l50
54 2N2151, J, JTX

1.25A@100·C 15V; TO-9
1.25A@100·C 30V; TO-9
1.25A@100·C 60V; TO-9
1.25A@100·C 100V; TO-9
1.25A@100'C 150V; TO-9
1.25A@100'C 200V; TO-9
1.25A@lOO·C 15V; TO-9
1.25A@100'C 30V; TO-9
1.25A@100'C60V; TO-9
1.25A@100'C 100V; TO-9
1.25A@lOO·C 150V; TO-9
1.25A@lOO·C 200V; TO-9
1.0A@100·C30V; TO-9
l.OA@100'C60V; TO-9
l.OA@100'C lOOV; TO-9
l.OA@100'C 150V; TO-9
1.0A@100·C 200V; TO-9
1.3A@80·C 25V; TO-39
1.3A@80'C 50V; TO-39
1.3A@80·C 100V; TO-39
l.3A@80'C 200V; TO-39
l.3A@80'C 300V; TO-39
'l.3A@80·C 400V; TO-39

POWER TRANSISTOR
NPN; 2.0A; 80V; TO-59
NPN; 2.0A; 80V; TO-59

'Contact Unitrode for specifications and ratings.
legend, J -

JAN

JTX - JANTX

JTXV -

JANTXV

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

20

PRINTED IN U.S.A.

PART NUMBER INDEX

PAGE

DESCRI PTiON

PART NUMBER

PAGE
526
526
526
526
526
526
526
526
526
526
526
526
526
526

*
*

*
*
*
*
*

*
*

*
*
*
*
*
*
*
*
*
*

*
*
*
*

58

*
*
*
*
*
*

*
*
*
*

*
*
*
*
*
*
*
*

*
*

*

*

2N2322
2N2323, J, JTX, JTXV
2N2323A, J, JTX, JTXV
2N2324, J, JTX, JTXV
2N2324A, J, JTX, JTXV
2N2325
2N2325A
2N2326, J, JTX, JTXV
2N2326A, J,JTX, JTXV
2N2327
2N2327A
2N232S, J, JTX, JTXV
2N232SA, J, JTX, JTXV
2N2329, J, JTX, JTXV
2N2344
2N2345
2N2346
2N2347
2N2348

SCR

l.6A@85OC
l.6A@S5°C
l.6A@S5°C
l.6A@S5°C
l.6A@S5°C
l.6A@S5°C
l.6A@85°C
l.6A@S5°C
l.6A@S5°C
l.6A@85°C
l.6A@85°C
l.6A@85°C
l.6A@85°C
l.6A@85°C
l.6A@55°C
l.6A@55°C
l.6A@55°C
l.6A@55°C
l.6A@55°C

529
529
529
529
529
529

25V; TO-39
50V; TO-5
50V; TO-5
lOOV; TO-5
lOOV; TO-5
150V; TO-39
150V; TO-39.
200V; TO-5
200V; TO-5
250V; TO-39
250V; TO-39
300V; TO-5
300V; TO-5
400V; TO-5
25V; TO-39
50V; TO-39
lOOV; TO-39
150V; TO-39
200V; TO-39

*
*
*
*

62
62
62
62

*

*
*
*
*

POWER TRANSISTOR
NPN; 5.0A; 60V; TO-5
NPN; 5.0A; 80V; TO-5

2N2657
2N265S

*
*

SCR
.35A@55°C30V; TO-18
.35A@55°C 60V; TO-IS
.35A@55°C 100V; TO-IS
.35A@55°C 200V; TO-IS
.2SA@55°C 30V; TO-IS
.28A@55°C60V; TO-18
.2SA@55°C 100V; TO-IS
.2SA@55°C 200V; TO-IS
.28A@55°C 30V; TO-IS
.28A@55°C 60V; TO-IS
.2SA@55°C lOOV; TO-IS
2SA@55°C 200V; TO-IS

2N2679
2N2680
2N26S1
2N26S2
2N2683
2N26S4
2N26S5
2N2686
2N2687
2N26SS
2N26S9
2N2690

*

*
*
*
*

*
*
*
*
*
*

POWER TRANSISTOR
2N2S5S
2N2859
2N2S77,2N2S7S
2N2879
2N2SS0, J, JTX, JTXV
2N2890,2N2S91
2N2892,2N2893
2N29S3
2N29S4
2N29S5
2N2986
2N29S7
2N29SS
2N29S9
2N2990
2N2991
2N2992
2N2993
2N2994, 2N2995

NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;

5S

3A; 80V; TO-5
3A; lOOV; TO-5
5A;80V;TO-lll
5A; lOOV; TO-Ill
5.0A; SOY; TO-59
5A; SOY; TO-5
5A; SOY; TO-59
3A; SOY; TO-5
3A; 120V; TO-5
3A; 80V; TO-5
3A; 120V; TO-5
lA; SOY; TO-5
lA; 100V; TO-5
lA; 80V; TO-5
lA; lOOV; TO-5
1A; SOY; TO-5 Stud
lA; lOOV; TO-5 Stud
1A; 80V; TO-5 Stud
lA; lOOV; TO-5 Stud

*
*
*
*
*
*
*

66
66
66
66

*
*
*
*
*
*

*
*
*
*

SCR
.25A@55°C 30V; TO-IS
.25A@55°C60V; TO-IS
.25A@55°C 100V; TO-IS
.25A@55°C 200V; TO-IS
.25A@55°C 30V; TO-IS
.25A@55°C 60V; TO-IS
.25A@55°C 100V; TO-IS
.25A@55'C 200V; TO-IS

2N3001
2N3002
2N3003
2N3004
2N3005
2N3006
2N3007
2N300S

DESCRIPTION

PART NUMBER

SCR

*

*
*

*

2N3027,
2N302S,
2N3029,
2N3030,
2N3031,
2N3032,
2N3273
2N3274
2N3275
2N3276

J,
J,
J,
J,
J,
J,

JTX
JTX
JTX
JTX
JTX
JTX

2N341S,
2N3419,
2N3420,
2N3421,
2N3445
2N3446
2N3447
2N344S
2N3469

J,
J,
J,
J,

JTX,
JTX,
JTX,
JTX,

500mA@100'C 30V; TO-IS
500mA@100°C 60V; TO-IS
500mA@100°C 100V;TO·lS
.5A@100°C 30V; TO·lS
.5A@100°C 60V; TO-IS
.5A@100°C 100V; TO-IS
2.2A@S5°C 100V; TO-39
2.2A@S5°C 200V; TO-39
2.2A@S5°C 300V; TO-39
2.2A@S5°C 400V; TO-39

POWER TRANSISTOR
JTXV
JTXV
JTXV
JTXV

NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;

3.0A;
3.0A;
3.0A;
3.0A;
7.5A;
7.5A;
7.5A;
7.5A;
5.0A;

60V;
SOY;
60V;
SOY;
60V;
SOY;
60V;
SOY;
25V;

TO-5
TO-5
TO-5
TO-5
TO-3
TO-3
TO-3
TO-3
TO-5

SCR
l.6A;
l.6A;
l.6A;
1.6A;
l.6A;
1.6A;
1.6A;
l.6A;

2N3555
2N3556
2N3557
2N355S
2N3559
2N3560
2N3561
2N3562

30V; TO-39
60V; TO-39
100V; TO-39
200V; TO-39
30V; TO-39
60V; TO-39
100V; TO-39
200V; TO-39

POWER TRANSISTOR
2N3744
2N3745
2N3746
2N3747
2N374S
2N3749,
2N3750
2N3751
2N3752
2N3S50
2N3S51
2N3S52
2N3S53
2N3996,
2N3997,
2N399S,
2N3999,
2N4000
2N4001
2N4070
2N4075
2N4076

J, JTX, JTXV

J,
J,
J,
J,

JTX,
JTX,
JTX,
JTX,

JTXV
JTXV
JTXV
JTXV

NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;

5.0A; 40V; TO-Ill
5.0A; 60V; TO-Ill
5.0A; SOY; TO-Ill
5.0A; 40V; TO-Ill
5.0A; 60V; TO-Ill
5.0A; SOY; TO-Ill
5.0A; 40V; TO-Ill
5.0A; 60V; TO-Ill
5.0A; SOY; TO-Ill
5.0A; SOY; TO-59
5.0A; SOY; TO-59
5.0A; 40V; TO-59
5.0A; 40V; TO-59
5.0A; SOY; TO-Ill
5.0A; SOY; TO-111
5.0A; SOY; TO-59
5.0A; SOY; TO-59
l.OA; SOY; TO-5
l. OA; 100V; TO-5
10.0A; lOOV; TO-3
3.0A; SOY; TO-Ill
3.0A; SOY; TO-111

SCR
2N41OS
2N4109
2N411O
2N4144
2N4145
2N4146
2N4147
2N4148
2N4149

lS0mA@25°C 50V; TO-18
lSOmA@25°C lOOV; TO-IS
lS0mA@25°C 200V; TO-IS
250mA@75°C 15V; TO-IS
250mA@75°C 30V; TO-IS
250mA@75°C 60V; TO-IS
250mA@75°C 100V; TO-IS
250mA@75°C 150V; TO-IS
250mA@75°C 200V; TO-IS

·Contact Unitrode for specifications and ratings.
Legend: J -

JAN

JTX -

JANTX

JTXV -

JANTXV

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

21

PRINTED IN

u.s

A.

PART NUMBER INDEX

' PART NUMBER

PAGE

DESCRIPTION

PAGE

PART NUMBER

POWER TRANSISTOR
70

PUT

NPN; 1O.OA; 70V; TO-5

2N4l50, J, JTX, JTXV

543

SCR

*
*

•
*
*
*

*

*
*
*

74
74

2N42l2
2N42l3
2N42l4
2N42l5
2N42l6
2N42l7
2N42l8
.2N42l9

•
•

1.0A@85'C25V; TO-39
1.0A@85'C 50V; TO-39
1.0A@85'C 100V; TO-39
1.0A@85'C l50V; TO-39
l.OA@85'C200V; TO-39
1.0A@85'C 250V; TO-39
1.0A@85'C300V; TO-39
1.OA@85'C400V; TO-39
NPN;
NPN;
NPN;
NPN;

l.OA
2.0A
20.0A;150V; TO-3
20.0A; l20V; TO-3

2N5060
2N506l
2N5062
2N5063
2N5064

0.8A@70'C 30V; TO-92
0.8A@70'C 60V; TO-92
0,8A@70'C 100V; TO-92
0.8A@70'C l50V; TO-92
0.8A@70'C 200V; TO-92

78

2N5074-2N5075
2N5076-2N5077
2N5334
2N5335
2N5336-2N5337
2N5338,2N5339
2N5346, 2N5347
2N5348, 2N5349
2N5477,2N5478
2N5479, 2N5480
2N5487

78
78
78

2N5487-l
2N5487-3
2N5488

78
78
81
81
83
83
85
85
85
85
90
90
90
90
95
95

2N5488-l
2N5488-3
2N5552
2N5552-4
2N5658
2N5659
2N5660, J,
2N566l, J,
2N5662, J,
2N5663, J,
2N5664, J,
2N5665, J,
2N5666, J,
2N5667, J,
2N567l
2N5672

•
•
•

•
•*
•
•*

2N5838
2N5839
2N5840

103
103

2N6232
2N6232-4
2N6233
2N6234
2N6235
2N6249
2N6250
2N625l
2N6306
2N6307
2N6308

•
•
•

PUT

NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;

IDA; 100V;TO-5
IDA; 100V; TO-5 Stud
5A; 225V; TO-66
5A; 275V; TO-66
5A; 325V; TO-66
IDA; 300V; TO-3
lOA; 375V; TO-3
lOA; 450V; TO-3
8.0A; 500V; TO-3
8.0A; 600V; TO-3
8.0A; 700V; TO-3

2N6332
2N6333
2N6334
2N6335
2N6336
2N6337

2,OA@80'C30V; TO-39
2.0A@80'C 50V; TO-39
2.0A@80'C 100V; TO-39
2.0A@80'C 200V; TO-39
2.0A@80'C 300V; TO-39
2.0A@80'C400V; TO-39

POWER DARLINGTON

113
113
113
113
118
118
122
122
122
122
122
126
126
130
130
134
134
555
555

2N6350, J, JTX
2N635l, J, JTX
2N6352, J, JTX
2N6353,J, JTX
2N6354
2N6496
2N65l0
2N6511
2N6512
2N65l3
2N6514
2N6542
2N6543
2N6544
2N6545
2N6546
2N6547
2N6564
2N6565

557
557
557
557
557

2N668l (IP200)
2N6682 (lP202)
2N6683 (lP204)
2N6684 (IP206)
2N6685 (lP208)
3L10l5
3L1030
3L1060
3L1100
3L20l5
3L2030
3L2060
3L2l00

NPN; 1O.OA; 80V; TO-33
NPN; 1O.OA; l50V; TO-33
NPN; 1O.OA; 80V; TO-66
NPN; 10.OA; l50V; TO-66
NPN; 1O.OA; l50V; TO-3
NPN; l5.0A; l50V; TO-3
NPN; 7.0A; 250V; TO-3
NPN; 7.0A; 300V; TO-3
NPN; 7.0A; 350V; TO-3
NPN; 7.0A; 400V; TO-3
NPN; 7.0A; 350V; TO-3
NPN; 5A; 650V; TO-3
NPN; 5A; 850V; TO-3
NPN; 8.0A; 650V; TO-3
NPN; 8.0A; 850V; TO-3
NPN; 15A; 650V; TO-3
NPN; l5A; 850V; TO-3
0.8A@70'C 300V; TO-92
0.8A@70'C 400V; TO-92

SCR

•
•
•*
•
•
•

POWER TRANSISTOR
99
99
99

400mW@25'C40V; TO-18
400mW@25'C40V; TO-18
400mW@25'C 40V; TO-18

SCR

1.6A@85'C 60V; TO-39
1.6A@85'C 100V; TO-39
1.6A@85'C 200V; TO-39
1.6A@85'C 300V; TO-39
l.6A@85'C400V; TO-39

2N5724
2N5725
2N5726
2N5727
2N5728

2N6119
2N6120
2N6l37, 2N6l38, J, JTX

*
*
*

SCR
539
539
539
539
539

547
547
551

•
•

NPN;3A;200V;TO-59
NPN; 3A; 250V; TO-59
NPN; 3A; 60V; TO-39
NPN; 3A; 80V; TO-39
NPN; 5A; 80V; TO-39
NPN; 5A; 100V; TO-39
NPN;7A;80V;TO-59
NPN; 7A; 100V; TO-59
NPN; 7A; 80V; TO-59
NPN; 7A; 100V; TO-59
NPN; 5A; 80V; TO-5
Low Profile
NPN; 5A; 80V; TO-5
NPN; 5A; 80V; TO-5 Stud
NPN; 5A; 100V;
TO-5 Low Profile
NPN; 5A; 100V; TO-5
NPN; 5A; 100V; TO-5 Stud
NPN; IDA; 80V; TO-5
NPN; lOA; 80V; TO-5 Stud
NPN; 20A; 80V; TO-59
NPN; 20A; 80V; TO-lll
NPN; 3A; 200V;JO-66
NPN; 3A;. 300V; TO-66
NPN; 3A; 200V; TO-5
NPN; 3A; 300V; TO-5
NPN; 5A; 200V; TO-66
NPN; 5A; 300V; TO-66
NPN; 5A; 200V; TO-5
NPN; 5A;300V;TO-5
NPN; 30A; l20V; TO-3
NPN; 30A; 150V; TO-3

JTX, JTXV
JTX, JTXV
JTX, JTXV
JTX, JTXV
JTX, JTXV
JTX, JTXV
JTX, JTXV
JTX, JTXV

POWER TRANSISTOR
NPN; 7A;300V;TO-66
NPN; 7A; 275V; TO-66

105
105
105
109
109
109

POWER TRANSISTOR

*

375mW@25'C 40V; TO-92

2N6077
2N6078

*

SCR
535
535
535
535
535

2N6027,2N6028

POWER TRANSISTOR

POWER TRANSISTOR
2N4237-2N4239
2N4300
2N5038, J, JTX, JTXV
2N5039, J, JTX, JTXV

DESCRIPTION

*

NPN; 3A; 275V; TO-3
NPN; 3A; 300V; TO-3
NPN; 3A; 375V; TO-3

lA; 100V; TO-92
lA; 200V; TO-92
lA; 400V; TO-92
lA; 600V; TO-92
lA;800V;TO-92
0.5A@75'C 15V; TO-18
0,5A@75'C 30V; TO-18
0.5A@75'C 60V; TO-18
0.5A@75'C 100V; TO-18
0.5A@100'C l5V; TO-18
0.5A@100'C30V; TO-18
0.5A@100'C 60V; TO-18
0.5A@100'C 100V; TO-18

·Contact Unitrode for specifications and ratings.
Legend: J -

JAN

JTX -

JANTX

JTXV -

JANTXV

UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326'6509 • TELEX 95-1064

22

PRINTED IN U.S.A.

PART NUMBER INDEX

PART NUMBER

PAGE

DESCRIPTION

PAGE

PART NUMBER

FULL WAVE BRIDGE
431
431
431
433
433
433
435
435
435
435
435
435
437
437
437
437
437
437
437
437
435
435
435
435
435
435
437
437
437
437
437
437
437
437
440
440
440
440
440
440
443
443
443
443
443
443
443
443
443
443
443
443

469-1, J, JTX
469-2, J, JTX
469-3, J, JTX
483-IJTX
483-2JTX
483-3JTX
673-1
673-2
673-3
673-4
673-5
673-6
673-7
673-7.5
673-8
673-8.5
673-9
673-10
673-11
673-12
676-1
676-2
676-3
676-4
676-5
676-6
676-12
676-18
676-24
676-30
676-36
676-42
676-48
676-50
678-1
678-2
678-3
678-4
678-5
678-6
679-1
679-2
679-3
679-4
679-5
679-6
680-1
680-2
680-3
680-4
680-5
680-6

FULL WAVE BRIDGE

1 ph; lOA; 200V
1 ph; lOA; 400V
1 ph; lOA; 600V
3 ph; 25.0A; 200V
3 ph; 25.0A; 400V
3 ph; 25.0A; 600V
1 ph; 1.5A; 100V
1 ph; 1.5A; 200V
1 ph; 1. 5A; 300V
1 ph; 1.5A; 400V
1 ph; 1.5A; 500V
1 ph; 1.5A; 600V
1 ph; H.V.; 1200V
1 ph; H.V.; 1800V
1 ph; H.V.; 2400V
1 ph; H.V.; 3000V
1 ph; H.V.; 3600V
1 ph; H.V.; 4200V
1 ph; H.V.; 4800V
1 ph; H.V.; 5000V
1 ph; LOA; 100V
1 ph; LOA; 200V
1 ph; LOA; 300V
1 ph; l.OA; 400V
1 ph; l.OA; 500V
1 ph; l.OA; 600V
1 ph; H.V.; 1200V
1 ph; H.V.; 1800V
1 ph; H.V.; 2400V
1 ph; H.V.; 3000V
1 ph; H.V.; 3600V
1 ph; H.V.; 4200V
1 ph; H.V.; 4800V
1 ph; H.V.; 5000V
3 ph; 25A; 100V
3 ph; 25A; 200V
3 ph; 25A; 300V
3 ph; 25A; 400V
3 ph; 25A; 500V
3 ph; 25A; 600V
1 ph; 25A; 100V
1 ph; 25A; 200V
1 ph; 25A; 300V
1 ph; 25A; 400V
1 ph; 25A; 500V
1 ph; 25A; 600V
1 ph; lOA; 100V
1 ph; lOA; 200V
1 ph; lOA; 300V
1 ph; lOA; 400V
1 ph; lOA; 500V
1 ph; lOA; 600V

440
440
440
440

682-1
682-2
682-3
682-4

FULL WAVE BRIDGE
20A;
20A;
20A;
20A;

360
360
360
360
360
360

688-10
688-12
688-15
688-18
688-20
688-25

3 ph;
3 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;

20A; 500V
20A; 600V
20A; lOOV
20A; 200V
20A; 300V
20A; 400V
20A; 500V
20A; 600V
lOA; 100V
lOA; 200V
lOA; 300V
lOA; 400V
lOA; 500V
lOA; 600V

lOkV
12kV
15kV
18kV
20kV
25kV

446
446
446
446
446
446

689-1
689-2
689-3
689-4
689-5
689-6

440
440
440
440
440
440
440
440
440
440
440
440
448
448
448
448
448
448
448
448
448
448
448
448
450
450
450
450
450
450
450
450
450
450

695-1
695-2
695-3
695-4
695-5
695-6
696-1
696-2
696-3
696-4
696-5
696-6
697-1
697-2
697-3
697-4
697-5
697-6
698-1
698-2
698-3
698-4
698-5
698-6
700-1
700-2
700-3
700-4
700-5
700-6
701-1
701-2
701-3
701-4

15A; 100V
15A; 200V
15A; 300V
15A;400V
15A; 500V
15A; 600V

FULL WAVE BRIDGE

15A; 100V
15A; 200V
15A; 300V
15A;400V
15A; 500V
15A; 600V
3 ph;
3 ph;
3 ph;
3 ph;

682-5
682-6
683-1
683-2
683-3
683-4
683-5
683-6
684-1
684-2
684-3
684-4
684-5
684-6

DOUBLER OR
CENTER-TAP

DOUBLER OR
681-1
681-2
681-3
681-4
681-5
681-6

440
440
443
443
443
443
443
443
443
443
443
443
443
443

RECTIFIER MODULE

CENTER-TAP
446
446
446
446
446
446

DESCRIPTION

100V
200V
300V
400V

3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;

15A; lOOV
15A; 200V
15A; 300V
15A; 400V
15A; 500V
15A; 600V
15A; lOOV
15A; 200V
15A; 300V
15A; 400V
15A; 500V
15A; 600V
2.5A; lOOV
2.5A; 200V
2.5A; 300V
2.5A; 400V
2.5A; 500V
2.5A; 600V
2.25A; 100V
2.25A; 200V
2.25A; 300V
2.25A; 400V
2.25A; 500V
2.25A; 600V
2.5A; 100V
2.5A; 200V
2.5A; 300V
2.5A; 400V
2.5A; 500V
2.5A; 600V
2.25A; 100V
2.25A; 200V
2.25A; 300V
2.25A; 400V

'Contact Unitrode for specifications and ratings.
Legend: J -

JAN

JTX -

JANTX

JTXV - JANTXV

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

23

PRINTED IN U.S.A.

PART NUMBER INDEX

PART NUMBER

PAGE

PAGE

DESCRIPTION

PART NUMBER

FULL WAVE BRIDGE
450
450
452
452
452
452
452
452
452
452
455
455
455
455
455
455
455
455

701-5
701-6
BOO-l
. BOO-2
BOO-3
BOO-4
BOl-l
BOl-2
BOl-3
BOl-4
B02-1
B02-2
B02-3
B02-4
B03-1
B03-2
B03-3
B03-4

3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;

SCR

2.25A; 500V
2.25A; 600V
40A; 50V
40A; 100V
40A; 125V
40A; 150V
20A; 50V
20A; 100V
20A; 125V
20A; 150V
35A; 50V
35A; 100V
35A; 125V
35A; 150V
20A; 50V
20A; 100V
20A; 125V
20A; 150V

B04-1
B04-2
B04-3
B04-4

20A;
20A;
20A;
20A;

559
559
559
559
559
559
559
559
559
559
559
559
559
559
559
562
562
562
562
562
562
562
562
562
562
562
562
562
562
562

•

AAI00
AAI0l
AA102
AA103
AAI04
AAI07
AAI0B
AA109
AAllO
AAlll
AA1l4
AA1l5
AA1l6
AA1l7
AAllB
ADlOO
ADlOl
ADI02
ADI03
AD104
ADI07
ADI0B
ADI09
ADllO
ADlll
AD1l4
AD1l5
ADl16
AD1l7
ADIIB
BA150
BA151
BA152

0.5A@100·C 60V; TO-IB
0.5A@100·C 100V; TO-IB
0.5A@100·C200V; TO-IB
0.5A@100·C300V; TO-IB
0.5A@100·C400V; TO-IB
0.5A@100·C60V; TO-IB
0.5A@100·C 100V; TO-IB
0.5A@100·C 200V; TO-IB
0.5A@100·C300V;TO-IB
0.5A@100·C400V; TO-IB
0.5A@100·C60V; TO-IB
0.5A@100·C 100V; TO-IB
0.5A@100·C 200V; TO-IB
0.5A@100·C300V; TO-IB
0.5A@100·C400V; TO-IB
l.6A@B5·C60V; TO-39
l.6A@B5·C 100V; TO-39
l.6A@B5·C 200V; TO-39
l.6A@B5·C300V; TO-39
l.6A@B5·C 400V; TO-39
l.6A@B5·C 60V; TO-39
l.6A@B5·C 100V; TO-39
l.6A@B5·C 200V; TO-39
l.6A@B5·C 300V; TO-39
l.6A@B5·C400V; TO-39
l.6A@B5·C 60V; TO-39
l.6A@B5·C 100V; TO-39
l.6A@B5·C 200V; TO-39
l.6A@B5·C 300V; TO-39
l.6A@B5·C 400V; TO-39
0.5A@100·C 30V; TO-IB
0.5@1000C 60V; TO-IB
0.5@100·C 100V; TO-IB

362
362
362
362

CAX15
CAX20
CAX25
CAX30

*

CB200
CB201
CB202
CB203
CD200
CD201
CD202
CD203

565
565
565

CSB20
CSB40
CSB60

25A; 200V
25A;400V
25A;600V

567
567
567
571
571
574
574
571
571
574
574

GAlOO
GAlOl
GA102
GA200-GA200A
GA20 I-GA20 lA
GA300-GA300A
GA301-GA301A
GB200-GB200A
GB201-GB201A
GB300-GB300A
GB301-GB301A

400mA@100·C30V; TO-18
400mA@100·C60V; TO-18
400mA@100·C80V; TO-IB
60V; TO-18
100V; TO-18
60V; TO-18
100V; TO-18
60V;TO-59
100V; TO-59
60V; TO-59
100V; TO-59

*
*
*

•*
•*

TRIAC

50V
100V
125V
150V

SCR

•
•

0.5@100·C30V; TO-IB
0.5@100·C60V; TO-IB
0.5@100·C 100V; TO-IB
0.5@100·C200V;TO-18
l.6A@85·C 30V; TO-39
l.6A@85·C 60V; TO-39
l.6A@85·C 100V; TO-39
l.6A@85·C 200V; TO-39

SCR

DOUBLER OR
CENTER-TAP
45B
45B
45B
45B

DESCRIPTION

HIGH VOLTAGE
RECTIFIER
364
364
364
364
364
364
364
364
364
366
366
366
366
366
366
366
366
366
366
366
366
366
366
366
366
366
366
368
368
36B
368
368
368
368
368
370
370
370

RECTIFIER MODULE
15kV
20kV
25kV
30kV

HAlO
HA15
HA20
HA25
HA30
HA40
HA50
HA75
HAlOO
HSlO
HS15
HS20
HS25
HS30
HS40
HS50
HS75
HSI00
HVElO (lN3643)
HVEl5 (lN3644)
HVE20 (lN3645)
HVE25 (l N3646)
HVE30 (1 N364 7)
HVE40 (lN51Bl)
HVE50 (lN51B2)
HVE75 (lN51B3)
HVElOO (lN51B4)
HVF2500
HVF5000
HVF7500
HVFlOOOO
HVFl2500
HVFl5000
HVF20000
HVF25000
HVFS2500
HVFS5000
HVFS7500

l.OkV
l.5kV
2kV
2.5kV
3.0kV
4.0kV
5.0kV
7.5kV
lOkV
l.OkV
l.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
7.5kV
lOkV
l.OkV
l.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
7.5kV
lOkV
2.5kV
5.0kV
7.5kV
lOkV
12.5kV
15kV
20kV
25kV
2.5kV
5.0kV
7.5kV

'Contact Unitrode for specifications and ratings.
Legend: J -

JAN

JTX -

JANTX

JTXV -

JANTXV

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

24

PRINTED IN U.S.A.

PART NUMBER INDEX

PART NUMBER

PAGE

DESCRIPTION

PAGE

HIGH VOLTAGE
RECTIFIER
370
370
370
370
370
372
372
372
372
372
372
372
374
374
374
374
374
374
374
376
376
376
376
376
376
376
376
376
378
378
378
378
378
378
378
378
380
380
380
380
380
380
380
380
380
364
364
364
364
364
364
364
364
364

IB202
IB204
IB206
10100
10101
10102
10103
10104
10105

10106
10200
10201
10202
10203
10300
10301
IPlOO
IP101
IP102
IP103
IPl04
IP105
IP106
IP200 (2N668l)
IP202 (2N6682)
IP204 (2N6683)
IP206 (2N6684)
IP208 (2N6685)

0.5A@100·C400Y; TO-IS
l.6A@70·C 50Y; TO-39
l.6A@70·C 100Y; TO-39
l.6A@70·C 150Y; TO-39
l.6A@70·C 200Y; TO-39
l.6A@70·C 300Y; TO-39
1.6A@70·C 400Y; TO-39
0.8A@70·C 30Y; TO-92
0.8A@70·C 60Y; TO-92
0.8A@70·C 100Y; TO-92
0.8A@70·C l50Y; TO-92
0.8A@70·C 200Y; TO-92
0.8A@70·C 300Y; TO-92
0.8A@70·C 400Y; TO-92
lAo 100Y; TO-92
lAo 200Y; TO-92
lAo 400Y; TO-92
lAo 600Y; TO-92
lAo 800Y; TO-92

HIGH VOLTAGE
RECTIFIER
382
382
382
382
382
382
382
382
382
382
382
382
382
382
382
382
382
382

KX15
KX20
KX25
KX30
KX40
KX50
KX60
KX80
KXlOO
KXS15
KXS20
KXS25
KXS30
KXS40
KXS50
KXS60
KXS80
KXS100

l.5kY
2.0kY
2.5kY
3.0kY
4.0kY
5.0kY
6.0kY
8.0kY
lOkY
l.5kY
2.0kY
2.5kY
3.0kY
4.0kY
5.0kY
6.0kY
8.0kY
10kY

590
590
590
590
592
592
592
592
594
594
594
594

LlB04302F
LlB04304F
LlB04306F
LlB04308F
LlB05402F
LlB05404F
LlB05406F
LlB05408F
L2B06202F
L2B06204F
L2B06206F
L2B06208F

30A;200Y
30A;400Y
30A;600Y
30A;800Y
40A;200Y
40A;400Y
40A;600Y
40A;800Y
20A;200Y
20A;400Y
20A;600Y
20A;800Y

596
596
596
596
599
599
599
599

L2R06l02FG
L2R06104FG
L2R06106FG
L2R0610SFG
L2R06252F
L2R06254F
L2R06256F
L2R06258F

601
601

L7B08102S
L7B08l04S

TRIAC

SCR

TRIAC
577
577
577
579
579
579
579
579
579

DESCRIPTION
TRIAC

579
582
582
582
582
582
582
584
584
584
584
584
588
588
557
557
557
557
557

10kY
12.5kY
15kY
17.5kY
20kY
5.0kY
7.5kY
10kY
12.5kY
15kY
20kY
25kY
5.0kY
7.5kY
10kY
12.5kY
15kY
20kY
25kY
15kY
20kY
22.5kY
25kY
30kY
35kY
37.5kY
40kY
45kY
2.5kY
5.0kY
7.5kY
lOkY
12.5kY
15kY
17.5kY
20kY
15kY
20kY
22.5kY
25kY
30kY
35kY
37.5kY
40kY
45kY
l.OkY
l.5kY
2.0kY
2.5kY
3.0kY
4.0kY
5.0kY
7.5kY
10kY

HYFS10000
HYFS12500
HYFS15000
HYFS17500
HYFS20000
HYH5000
HYH7500
HYHlOOOO
HYH12500
HYH15000
HYH20000
HYH25000
HYHF5000
HYHF7500
HYHFlOOOO
HYHFl2500
HYHFl5000
HYHF20000
HYHF25000
HYHJ15K
HYHJ20K
HYHJ22.5K
HYHJ25K
HYHJ30K
HYHJ35K
HYHJ37.5K
HYHJ40K
HYHJ45K
HYHS2500
HYHS5000
HYHS7500
HYHSlOOOO
HYHS12500
HYHS15000
HYHS17500
HYHS20000
HYJX15K
HYJX20K
HYJX22.5K
HYJX25K
HYJX30K
HYJX35K
HYJX37.5K
HYJX40K
HYJX45K
HYX10
HVX15
HYX20
HYX25
HYX30
HYX40
HVX50
HYX75
HYX100

PART NUMBER

.8A; 200Y; TO-92
.8A; 400Y; TO-92
.8A; 600Y; TO-92
0.5A@100·C 30Y; TO-18
0.5A@100·C 60Y; TO-18
0.5A@100·C 100Y; TO-18
0.5A@100·C l50Y; TO-18
0.5A@100·C200Y; TO-18
0.5A@100·C300Y; TO-18

lOA; 200Y;
lOA; 400Y;
lOA; 600Y;
lOA; 800Y;
25A;200Y
25A;400Y
25A;600Y
25A;800Y

Fast Turn-off
Fast Turn-off
Fast Turn-off
Fast Turn-off

TRIAC
10A;200Y
lOA;400Y

'Contact Unitrode for specifications and ratings.
Legend, J -

JAN

JTX -

JANTX

JTXV -

JANTXV

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

25

PRINTED IN U.S.A.

PART NUMBER INDEX

PART NUMBER

PAGE

DESCRIPTION

PAGE

PART NUMBER

TRIAC
601
601

L7B08l06S
L7BOBlOBS

10A;600V
lOA; BOOV

SCR
603
603
603
603
606
606
606
606

5A; 200V; Fast Turn-off
5A; 400V; Fast Turn-off
5A; 600V; Fast Turn-off
5A; BOOV; Fast Turn-off
l5A;200V
l5A;400V
l5A; 600V
l5A;800V

L7ROB052SG
L7ROB054SG
L7ROB056SG
L7ROB05BSG
L7ROB152S
L7R08l54S
L7R08l56S
L7R08l58S

HIGH VOLTAGE
RECTIFIER
384
384
384
3B4
384
384
3B4
384
384
384
386
386
386
386
388
388
3!l8
388
384
384
384
384
384
384
384
384
384
384
3B4
384
390
390
390
390
390
390
390
390
390
390
390
390
390
390
390
390
390
390
390
390
390

LA15
LA20
LA25
LA30
LA40
LA50
"LA60
LA80
LAlOO
LA120
LC15
LC20
LC25
LC30
LCSl5
LCS20
LCS25
LCS30
LMl5
LM20
LM25
LM30
LM40
LM50
LM60
LMBO
LMlOO
LM120
LM150
LMlBO
LMS15
LMS20
LMS25
LMS30
LMS40
LMS50
LMS60
LMS80
LMSlOO
LMSl20
LMS150
LMSl80
LS15
LS20
LS25
LS30
LS40
LS50
LS60
LS80
LSlOO

DESCRIPTION
HIGH VOLTAGE
RECTIFIER

1.5kV
2.0kV
2.5kV
3.0kV
4.0kV

5.0kV
6.0kV
8.0kV
10kV
l2kV
15kV

20kV
25kV
30kV
l5kV
20kV
25kV
30kV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
B.OkV
10kV
l2kV
l5kV
l8kV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV

390
392
392
392
392
392
392
392
392
392
392
394
394
394
394
394
394
394
394
394
394
392
392
392
392
392
392
392
392
392
392
392
392
394
394
394
394
394
394
394
394
394
394
394
394

LSl20
MAl5
MA20
MA25
MA30
MA40
MA50
MA60
MABO
MAlOO
MAl20
MSl5
MS20
MS25
MS30
MS40
MS50
MS60
MSBO
MSlOO
MSl20
MXl5
MX20
MX25
MX30
MX40
MX50
MX60
MX80
MXIOO
MXl20
MXl50
MX200
MXSl5
MXS20
MXS25
MXS30
MXS40
MXS50
MXS60
MXSBO
MXSlOO
MXSl20
MXS150
MXS200

608
608

P13T1
Pl3T2

12kV
1.5kV
2.0kV
2.5kV

3.0kV
4.0kV

5.0kV
6.0kV
8.0kV
10kV
12kV
1.5kV

2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
B.OkV
10kV
12kV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
lOkV
12kV
15kV
20kV
1.5kV
2.0kV
2.5kV
3.0kV

4.0kV
5.0kV
6.0kV

8.0kV
lOkV
12kV
15kV
20kV

PUT

5.0kV

375mW@25°C 40V; TO-92
375mW@25°C 40V; TO-92

SWITCHING REGULATOR
POWER CIRCUIT

6.0kV
8.0kV
10kV
12kV
15kV
IBkV
1.5kV
2.0kV

200
200
200
200
200
200
204
204
204
204
204
204
208
20B

2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
B.OkV
10kV

PIC600
PIC601
PIC602
PIC610
PIC611
PIC612
PIC625
PIC626
PIC627
PIC635
PIC636
PIC637
PIC645
PIC646

5.0A; 60V (Pas.!; TO-66
5.0A; 80V (Pas.); T0-66
5.0A; 100V (Pas.); TO-66
5.0A; 60V (Neg.); TO-66
5.0A; 80V (Neg.!; TO-66
5.0A; 100V (Neg.); T0-66
15.0A; 60V (Pas.!; T0-66
15.0A; 80V (Pas.); TO-66
15.0A; 100V (Pas.!; TO-66
15.0A; 60V (Neg.); TO-66
15.0A; BOV (Neg.); TO-66
15.0A; 100V (Neg.!; T0-66
15.0A; 60V (Pas.); TO-3
15.0A; 80V (Pas.!; TO-3

'Contact Unitrode for specifications and ratings.
Legend, J -

JAN

JTX -

JANTX

JTXV -

JANTXV

UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

26

PRINTED IN U.S.A.

PART NUMBER INDEX

PAGE

DESCRIPTION

PART NUMBER

PAGE

PART NUMBER

DOUBLER OR
CENTER-TAP

SWITCHING REGULATOR
POWER CIRCUIT
208
208
208
208
212
212
216
216
216
216

PIC647
PIC655
PIC656
PIC657
PIC730
PIC740
PIC800
PIC801
PIC810
PIC811

396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396

PMAlOl
PMA102
PMA103
PMA104
PMA105
PMAI06
PMAI07
PMA108
PMAI09
PMAllO
PMAlll
PMAlOIX
PMA102X
PMA103X
PMA104X
PMA105X
PMA106X
PMA107X
PMA108X
PMA109X
PMAllOX
PMAl11X
PMA201
PMA202
PMA203
PMA204
PMA205
PMA206
PMA207
PMA208
PMA201X
PMA202X
PMA203X
PMA204X
PMA205X
PMA206X
PMA207X
PMA208X

15.0A; 100V (Pos.); TO-66
15.0A; 60V (Neg.); TO-3
15.0A; 80V (Neg.); TO-3
15.0A; 100V (Neg.); TO-66
30A; 30V; (P05); TO-3
30A; 30V; (P05); TO-3
8A; 350V; (P05); TO-66
8A; 400V; (P05); TO-66
8A; 350V; (NEG); TO-66
8A; 400V; (NEG); TO-66

RECTIFIER MODULE
5.0kV
7.5kV
lOkV
15kV
20kV
25kV
30kV
35kV
40kV
50kV
60kV
5.0kV
7.5kV
10kV
15kV
20kV
25kV
30kV
35kV
40kV
50kV
60kV
2.5kV
5.0kV
7.5kV
lOkV
15kV
20kV
25kV
30kV
2.5kV
5.0kV
7.5kV
lOkV
15kV
20kV
25kV
30kV

PMBI01
PMBI02
PMB103
PMB104
PMBI05
PMBI06
PMBI07
PMBI0IX
PMBI02X
PMBI03X
PMB104X
PMBI05X

461
461
461
461
461
461
461
461
461
461
461
461

PMBI06X
PMBI07X
PMB201
PMB202
PMB203
PMB204
PMB205
PMB201X
PMB202X
PMB203X
PMB204X
PMB205X

20kV
30kV
2.5kV
5.0kV
7.5kV
10kV
15kV
2.5kV
5.0kV
7.5kV
10kV
15kV

463
463
463
463
463
463
463
463
463
463
463
463
463
463
463
463
465
465
465
465
465
465
465
465
465
465
465
465

PMCI01
PMCI02
PMCI03
PMCI04
PMCI05
PMCI01X
PMCI02X
PMCI03X
PMCI04X
PMC105X
PMC201
PMC202
PMC203
PMC201X
PMC202X
PMC203X
PMDI0l
PMDI02
PMD103
PMDI04
PMDI01X
PMDI02X
PMDI03X
PMDI04X
PMD201
PMD202
PMD201X
PMD202X

2.5kV
5.0kV
7.5kV
10kV
15kV
2.5kV
5.0kV
7.5kV
lOkV
15kV
2.5kV
5.0kV
7.5kV
2.5kV
5.0kV
7.5kV
3 ph; 3A;
3 ph; 3A;
3 ph; 3A;
3 ph; 3A;
3 ph; 3A;
3 ph; 3A;
3 ph; 3A;
3 ph; 3A;
3 ph; 6A;
3 ph; 6A;
3 ph; 6A;
3 ph; 6A;

398
398
398
398
398
398

PMElOI
PMEI02
PMEI03
PMElOIX
PMEl02X
PMEI03X

FULL WAVE BRIDGE

2.5kV
5.0kV
7.5kV
10kV
2.5kV
5.0kV
7.5kV
lOkV
2.5kV
5.0kV
2.5kV
5.0kV

RECTIFIER MODULE
2.5kV
4.0kV
8.0kV
2.5kV
4.0kV
8.0kV

SCHOTTKY
RECTIFIER

DOUBLER OR
CENTER-TAP
461
461
461
461
461
461
461
461
461
461
461
461

DESCRIPTION

2.5kV
5.0kV
7.5kV
lOkV
15kV
20kV
30kV
2.5kV
5.0kV
7.5kV
lOkV
15kV

260
262
264

5D41
5D51
5D241

266
266
266
268
268
268
270
270
270

5E55001
5E55002
5E55003
5E55301
5E55302
SES5303
SES5401
SES5402
SES5403

30A; 45V; DO-5
60A; 45V; DO-5
60A; 45V; TO-3

RECTIFIER
2.0A;
2.0A;
2.0A;
5.0A;
5.0A;
5.0A;
8.0A;
8.0A;
8.0A;

50V
100V
150V
50V
100V
150V
50V; sim to'1O-220
100V; sim to TO-220
150V; sim to TO-220

'Contact Unitrode for specifications and ratings.
Legend, J -

JAN

JTX -

JANTX

JTXV -

JANTXV

UNITRODE CORPORATION· 5 FORBES ROAD
'LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

27

PRINTED IN U.S.A.

PART NUMBER INDEX

PART NUMBER

PAGE

DESCRIPTION

PAGE

RECTIFIER,
CENTER-TAP
272
272
272
274
274
274

SES5401C
SES5402C
SES5403C
SES5601C
SES5602C
SES5603C

276
276
276
278
278
278

SES5701
SES5702
SES5703
SES5801
SES5802
SES5803

20A;
20A;
20A;
60A;
60A;
60A;

471
471
471
471

SPA25, J
SPB25, J
SPC25, J
SPD25, J

1 ph;
1 ph;
1 ph;
1 ph;

16A;
16A;
16A;
25A;
25A;
25A;

RECTIFIER
50V; DO-4
100V; DO-4
150V; DO-4
50V; DO-5
100V; DO-5
150V; DO-5

FULL WAVE BRIDGE
100V
200V
400V
600V

SXlO
SX15
SX20
SX25
SX30
SX40
SX50
SX60
SX80
SXlOO
SXSlO
SXS15
SXS20
SXS25
SXS30
SXS40
SXS50
SXS60
SXS80
SXS100

l.OkV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
10.OkV
l.OkV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
lOkV

TVS305-TVS360
TVS41O-TVS430
TVS505-TVS528

138
138
138
138
140
140
140
140
144
144
144

U2Tl01
U2Tl05
U2T201
U2T205
U2T301
U2T305
U2T401
U2T405
U2TA506
U2TA508
U2TA510

NPN;
NPN;
N.PN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;

612
612

U13Tl
U13T2

400mW@25'C 40V; TO-18
400mW@25°C40V; TO-18

402

UDA5

UDA7.5
UDAlO
UDA15
UDB2.5
UDB5
UDB7.5
UDC5
UDC7.5
UDC10
UDC15
UDD2.5
UDD5
UDD7.5
UDE2.5
UDE5
UDF2.5
UDF5

496
496
496
496
496
496
496
496

UDZ210·UDZ240
UDZ707-UDZ790
UDZ807-UDZ890
UDZ5707-UDZ5790
UDZ5807-UDZ5890
UDZ8210·UDZ8220
UDZ8707-UDZ8791
UDZ8807-UDZ8891

7.5kV
1O.OkV
15.0kV
2.5kV
5.0kV
7.5kV
5.0kV
7.5kV
1O.OkV
15.0kV
2.5kV
5.0kV
7.5kV
2.5kV
5.0kV
2.5kV
5.0kV
Bidirectional;
Bidirectional;
Bidirectional;
Bidirectional;
Bidirectional;
Bidirectional;
Bidirectional;
Bidirectional;

3W;
3W;
3W;
5W;
5W;
1W;
1W;
1W;

10%
5%
10%
5%
10%
10%
5%
10%

RECTIFIER
247
247
247
247
247
247
247
247

*
*
*
*

280
280
280
280
280
283
283
283
285
285
285
287
287
287
289
289
289
292
292
292
294
294
294
296
296
296

TRANSIENT VOLTAGE
SUPPRESSOR
492
492
492

402
402
402
402
402
402
402
402
402
402
402
402
402
402
402
402
402

ZENER

HIGH VOLTAGE
RECTIFIER
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400

DESCRIPTION
RECTIFIER MODULE

50V; TO-220
100V; 10-2,20
150V; TO-220
50V; TO-3
100V; TO-3
150V; TO-3

25A;
25A;
25A;
25A;

PART NUMBER

150W
150W
500W

POWER DARLINGTON
10.0A; 80V; TO-33
1O.OA; 150V; TO-33
1O.OA; 80V; TO-66
10.0A; 150V; TO-66
5.0A; 60V; TO-33
5.0A; 150V; TO-33
5.0A; 60V; TO-66
5.0A; 150V; TO-66
3.0A; 60V; TO-92
3.0A; 80V; TO-92
3.0A; 100V; TO-92

PUT
RECTIFIER MODULE
5.0kV

UES101 (lN5802)
UES102 (lN5803)
UES103 (lN5804)
UES104 (lN5805)
UES201 (lN5807)
UES202 (l N 5808)
UES203 (lN5809)
UES204 (lN5810)
UES301
UES302
UES303
UES304
UES501
UES502
,UES503
UES504
UES505
UES601
UES602
UES603
UES701
UES702
UES703
UES704
UES705
UES706
UES801
UES802
UES803
UES804
UES805
UES806
UES1001
UES1002
UES1003
UES1101
UESll02
UESll03

2.5A; 50V
2.5A; 75V
2.5A; 100V
2.5A; 125V
6.0A; 50V
6.0A; 75V
6.0A; 100V
6.0A; 125V
20.0A; 50V
20.0A; 75V
20.0A; 100V
20.0A; 125V
50.0A; 50V; DO-5
50.0A; 75V; DO-5
50.0A; 100V; DO-5
50.0A; 125V; DO-5
50.0A; 150V; DO-5
30A; 50V; TO-3
30A; 100V; TO-3
30A; 150V; TO-3
25A; 50V; DO-4
25A; 100V; DO-4
25A; 150V; DO-4
20A; 200V; DO-4
20A; 300V; DO-4
20A; 400V; DO-4
70A; 50V; DO-5
70A; 100V; DO-5
70A; 150V; DO-5
50A; 200V; DO-5
50A; 300V; DO-5
50A; 400V; DO-5
1A; 50V
lA; 100V
1A; 150V
2.5A; 50V
2.5A; 100V
2.5A; 150V

·Contact Unitrode for specifications and ratings.
Legend, J -

JAN

JTX -

JANTX

JTXV -

JANTXV

UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

28

PRINTED IN U.S.A.

PART NUMBER INDEX

PAGE

DESCRIPTION

PART NUMBER

PAGE

PART NUMBER

POWER TRANSISTOR

RECTIFIER
298
298
298
300
300
300
302
302
302
304
304
304

2.0A; 200V
2.0A; 300V
2.0A; 400V
6A; 50V
6A; 100V
6A; 150V
5.0A; 200V
5.0A; 300V
5.0A; 400V
8.0A; 50V; TO-220
8.0A; 100V; TO-220
8.0A; 150V; TO-220

UESll04
UES1105
UESll06
UES1301
UES1302
UES1303
UES1304
UES1305
UES1306
UES1401
UES1402
UES1403

RECTIFIER,
CENTER-TAP
16A;
16A;
16A;
30A;
30A;
30A;
30A;
30A;
30A;

50V; sim to TO-220
100V; sim to TO-220
150V; sim to TO-220
50V; TO-3
100V; TO-3
150V; TO-3
200V; TO-3
300V; TO-3
400V; TO-3

306
306
306
308
308
308
310
310
310

UES2401
UES2402
UES2403
UES2601
UES2602
UES2603
UES2604
UES2605
UES2606

406
406
406
406
406
406
409
409
409
409
409
409
409
409
409
409
409
409

UFB2.5
UFB5
UFB7.5
UFS5
UFS7.5
UFSlO
UGB5
UGB7.5
UGB10
UGD5
UGD7.5
UGD10
UGE2.5
UGE5
UGE7.5
UGF2.5
UGF5
UGF7.5

2.5kV
5.0kV
7.5kV
5.0kV
7.5kV
1O.OkV
5.0kV
7.5kV
1O.OkV
5.0kV
7.5kV
10.0kV
2.5kV
5.0kV
7.5kV
2.5kV
5.0kV
7.5kV

656
661
656
667
667
667
672
672
672
661

UM4000 series
UM4300 series
UM4900 series
UM6000 series
UM6200 series
UM6600 series
UM7000 series
UM7100 series
UM7200 series
UM7300 series

0.5n,3.0pF,25W,100-1200V
1. 5n, 2. 2pF,18W, 100-1000V
0.5n,3.0pF, 37W, 100-600V
l.7n,0.5pF, 6W,100-1000V
O.4n, l.lpF, 6W, 100-400V
2.5n,0.4pF,4W,100-1000V
1.0n;0.9pF,lOW,l00-1600V
0.6n,l.2pF,10W,100-800V
0.25n,2.2pF,10W,100-400V
3.5 n , 0.7 P F, 7.5 W,
100-1000V
CATV Attenuator Diodes
2-Way Radio Switch Diodes
2-Way Radio Switch Diodes
Radiation Detector

RECTIFIER MODULE

PIN DIODE

677
680
680
685

UM9301 series
UM9401 series
UM9415
UM9441

146
146
150
150
154

UMTlO06
UMTlO07
UMTlO08
UMTlO09
UMTl011

154
158
158
162
162
166
166
170
170
174
174
178
178
178
178
178
180
180
180
180
180
182
182
182
182
182
182
182
182
182
182
184
184
184
184
184
186
186
186
186
186
1B8
188
188
188
188
190
190
190
192
192
192
192

UMTlO12
UMTl203
UMTl204
UMT3584
UMT3585
UMTl3004
UMTl3005
UMTl3006
UMTl3007
UMTl3008
UMTl3009
UPTlll
UPTl12
UPTl13
UPTl14
UPTl15
UPT211
UPT212
UPT213
UPT214
UPT215
UPT311
UPT312
UPT313
UPT314
UPT315
UPT321
UPT322
UPT323
UPT324
UPT325
UPT521
UPT522
UPT523
UPT524
UPT525
UPT611
UPT612
UPT613
UPT614
UPT615
UPT721
UPT722
UPT723
UPT724
UPT725
UPTA510
UPTA520
UPTA530
UPTB520
UPTB530
UPTB540
UPTB550

312
312
312
312
312
312
312
312
312
312

UR105
URll0
UR1l5
UR120
UR125
UR205
UR210
UR215
UR220
UR225
UR710
UR720

NPN; 15A; 500V; TO-3
NPN; 3.0A; 300V; TO-220
NPN; 3.0A; 400V; TO-220
NPN; 2.0A; 250V; TO-220
NPN; 2.0A; 300V; TO-220
NPN; 4A; 600V; TO-220
NPN; 4A; 700V; TO-220
NPN; 8A; 600V; TO-220
NPN; 8A; 700V; TO-220
NPN; 12A; 600V; TO·220
NPN; 12A; 700V; TO·220
NPN; l.OA; 40V; TO-5
NPN; l.OA; 60V; TO-5
NPN; l.OA; 80V; TO-5
NPN; l.OA; 100V; TO-5
NPN; l.OA; 100V; TO-5
NPN; 2.0A; 40V; TO-5
NPN; 2.0A; 60V; TO-5
NPN; 2.0A; 80V; TO-5
NPN; 2.0A; 100V; TO-5
NPN; 2.0A; 100V; TO-5
NPN; 2.0A; 150V; TO-5
NPN; 2.0A; 200V; TO-5
NPN; 2.0A; 250V; TO-5
NPN; 2.0A; 300V; TO-5
NPN; 2.0A; 300V; TO-5
NPN; 2.0A; 150V; TO-66
NPN; 2.0A; 200V; TO-66
NPN; 2.0A; 250V; TO-66
NPN; 2.0A; 300V; TO-66
NPN; 2.0A; 300V; TO-66
NPN; 3.5A; 150V; TO-66
NPN; 3.5A; 200V; TO-66
NPN; 3.5A; 250V; TO-66
NPN; 3.5A; 300V; TO-66
NPN; 3.5A; 300V; TO-66
NPN; 5.0A; 40V; TO-5
NPN; 5.0A; 60V; TO-5
NPN; 5.0A; 80V; TO·5
NPN; 5.0A; 100V; TO-5
NPN; 5.0A; 100V; TO-5
NPN; 5.0A; 150V; TO-66
NPN; 5.0A; 200V; TO-66
NPN; 5.0A; 250V; TO-66
NPN; 5.0A; 300V; TO-66
NPN; 5.0A; 300V; TO-66
NPN; 0.5A; 100V; TO-92
NPN; 0.5A; 200V; TO-92
NPN; 0.5A; 300V; TO-92
NPN; O.lA; 200V; TO-92
NPN; O.lA; 300V; TO-92
NPN; O.lA; 400V; TO-92
NPN; O.lA; 500V; TO-92

RECTIFIER

POWER TRANSISTOR
NPN;
NPN;
NPN;
NPN;
NPN;

DESCRIPTION

5A; 400V; TO-3
5A; 500V; TO-3
8A; 300V; TO-3
8A; 400V; TO-3
15A; 400V; TO-3

*
*

2.0A;
l.OA;
l.OA;
l.OA;
l.OA;
2.0A;
2.0A;
2.0A;
2.0A;
2.0A;
l.OA;
l.OA;

50V
100V
150V
200V
250V
50V
100V
150V
200V
250V
100V
200V

'Contact Unitrode for specifications and ratings.
Legend, J -

JAN

JTX -

JANTX

JTXV -

JANTXV

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95·1064

29

PRINTED IN U S.A.

PART NUMBER INDEX

PAGE

PART NUMBER

PAGE

DESCRIPTION

PART NUMBER

413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
406
406
406
406

l.2kV
l.5kV
l.8kV
2.0kV
2.5kV
3.0kV
3.5kV
4.0kV
4.5kV
5.0kV
6.0kV
7.0kV
8.0kV
10kV
l2kV
15kV
18kV
20kV
2.5kV
5.0kV
7.5kV
lOkV

US12
US15
US18
US20
US25
US30
US35
US40
US45A
US50A
US60A
US70A
US80A
US100A
US120A
US150A
US180A
US200A
USB2.5
USB5
USB7.5
USB10

*

*
*
*

*
*
*
*
*
*
*

318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
322
322
322
322
322

SCHOTTKY
RECTIFIER
315
315
315

US0520
US0535
US0545

413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
406
406
406
406

USR12
USR15
USR18
USR20
USR25
USR30
USR35
USR40A
USR45A
USR50A
USR60A
USR70A
USR80A
USRlOOA
USR120A
USR150A
USR180A
USS5
USS7.5
USS10
USS15

l.2kV
l.5kV
l.8kV
2.0kV
2.5kV
3.0kV
3.5kV
4.0kV
4.5kV
5.0kV
6.0kV
7.0kV
8.0kV
lOkV
12kV
15kV
l8kV
5.0kV
7.5kV
10kV
15kV

UTl11
UTl12
UTl13
UTl14
UTl15
UTl17
UTl18
UTl19
UTl20
UT211
UT212
UT213
UT214
UT215
UT221

0.75A; 50V
0.75A; 100V
0.75A; 200V
0.75A; 300V
0.75A; 400V
0.75A; 500V
0.75A; 600V
0.75A; 800V
0.75A; 1000V
0.75A; 225V
0.75A; 300V
0.75A; 400V
0.75A; 500V
0.75A; 600V
0.5A; 100V

75A; 20V; 00-5
75A; 35V; 00-5
75A; 45V; 00-5

RECTIFIER MODULE

*

322
322
322
322
322

*

RECTIFIER

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

(lN536)
(1N537)
(lN3656)
(1N539)
(lN3657)
(1N547)
(lN3658)
(1N645)
(lN646)
(lN647)
(lN648)
(1N649)
(lN676)

DESCRIPTION
RECTIFIER

RECTIFIER MODULE

322
322
322
322
322

*
*

326
326
326

*

326

*

326
326
326

UT222 (lN677)
UT223 (lN678)
UT224 (lN679)
UT225 (lN681)
UT226 (1N682)
UT227 (1N683)
UT228 (1 N684)
UT229 (1 N685)
UT231 (1 N686)
UT232 (1 N687)
UT233 (l N689)
UT234
UT235
UT236
UT237
UT238
UT242
UT244
UT245
UT247
UT249
UT251
UT252
UT254
UT255
UT257
UT258
UT261
UT262 (1N398l)
UT264 (1 N3982)
UT265
UT267 (lN3983)
UT268
UT347
UT361
UT362
UT363
UT364
UT2005
UT2010
UT2020
UT2040
UT2060
UT2080
UT3005
UT3010
UT3020
UT3040
UT3060
UT3080
UT4005
UT4010 (lN5180)
UT4020
UT4040 (lN5207)
UT4060
UT4080
UT4100
UT5105
UT5ll0
UT5l20
UT5130
UT5140
UT5l50
UT5160
UT6105
UT6110

0.75A; 100V
0.5A; 200V
0.75A; 200V
0.5A; 300V
0.75A; 300V
0.5A; 400V
0.75A; 400V
O.5A; 500V
0.75A; 500V
0.5A; 600V
0.75A; 600V
l.OA; 200V
l.OA; 400V
l.OA; 100V
l.OA; 500V
1.0A; 600V
1.25A; 200V
1.25A; 400V
1.25A; 500V
1.25A; 600V
1.25A; 100V
1.5A; 100V
1.5A; 200V
1.5A; 400V
1.5A; 500V
1.5A; 600V
l.5A; 800V
2.0A; 100V
2.0A; 200V
2.0A; 400V
2.0A; 500V
2.0A; 600V
2.0A; 800V
1.0A; 1000V
1.0A; 800V
1.2A; 800V
1.2A; 1000V
1.5A; 1000V
2.0A; 50V
2.0A; 100V
2.0A; 200V
2.0A; 400V
2.0A; 600V
2.0A; 800V
3.0A; 50V
3.0A; 100V
3.0A; 200V
3.0A; 400V
3.0A; 600V
3.0A; 800V
4.0A; 50V
4.0A; 100V
4.0A; 200V
4.0A; 400V
4.0A; 600V
4.0A; 800V
4.0A; 1000V
7.5A; 50V
7.5A; 100V
7.5A; 200V
7.5A; 300V
7.5A; 400V
7.5A; 500V
7.5A; 600V
9.0A; 50V
9.0A; 100V

'Contact Unitrode for specifications and ratings.
Legend, J -

JAN

JTX -

JANTX

JTXV -

JANTXV

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

30

PRINTED IN U,S.A.

PART NUMBER INDEX

PAGE

DESCRIPTION

PART NUMBER

PAGE

RECTIFIER
326

*

326
326
326
326
326

*

326
326
329
329
329
329
329
329
329
329
329
329
329
329
329
329
329
329
329
329
329
329

*
*

333
333
333
333
333
333
333
333
333
333
333
333
333
333
333
333
333
333
337
337
337

*

337
337
337
337

*

337
337
337
337

*

337
340

UT6120
UT6130
UT6140
UT6160
UT8105
UT8110
UT8120
UT8l30
UT8l40
UT8l60
UTROI
UTR02
UTRlO
UTR11
UTR12
UTR20
UTR2l
UTR22
UTR30
UTR3l
UTR32
UTR40
UTR4l
UTR42 (lN5206)
UTR50
UTR5l
UTR52
UTR60
UTR6l
UTR62
UTR70
UTR71
UTR2305
UTR2310
UTR2320
UTR2340
UTR2350
UTR2360
UTR3305
UTR3310
UTR3320
UTR3340
UTR3350
UTR3360
UTR4305
UTR4310
UTR4320
UTR4340
UTR4350
UTR4360
UTR4405
UTR44 10
UTR4420
UTR4430
UTR4440
UTR5405
UTR5410
UTR5420
UTR5430
UTR5440
UTR6405
UTR6410
UTR6420
UTR6430
UTR6440
UTXI05

DESCRIPTION

PART NUMBER

RECTIFIER

9.0A; 200V
9.0A; 300V
9.0A; 400V
9.0A; 600V
12.0A; 50V
12.0A; 100V
12.0A; 200V
l2.0A; 300V
l2.0A; 400V
l2.0A; 600V
l.OA; 50V
·2.0A; 50V
0.5A; 100V
l.OA; 100V
2.0A; 100V
0.5A; 200V
l.OA; 200V
2.0A; 200V
0.5A; 300V
l.OA; 300V
2.0A; 300V
0.5A; 400V
l.OA; 400V
2.0A; 400V
0.5A; 500V
l.OA; 500V
2.0A; 500V
0.5A; 600V
l.OA; 600V
2.0A; 600V
0.5A; 700V
l.OA; 700V
2.0A; 50V
2.0A; 100V
2.0A; 200V
2.0A; 400V
2.0A; 500V
2.0A; 600V
3.0A; 50V
3.0A; 100V
3.0A; 200V
3.0A; 400V
3.0A; 500V
3.0A; 600V
4.0A; 50V
4.0A; 100V
4.0A; 200V
4.0A; 400V
4.0A; 500V
4.0A; 600V
6.0A; 50V
6.0A; 100V
6.0A; 200V
6.0A; 300V
6.0A; 400V
7.5A; 50V
7.5A; 100V
7.5A; 200V
7.5A; 300V
7.5A; 400V
9.0A; 50V
9.0A; 100V
9.0A; 200V
9.0A; 300V
9.0A; 400V
l.OA; 50V

340
340
340
340
340
340
340
340
340
343
343
343
343

*

343
343
343
343

*
499
499
499
499
499
499
499
499
501
501
501
501
503
503
503
503
503
503
503
503
505
505
505
505
505
505
505
505
505
505
505
505
507
507
507
507

*
*
417
417
417
417
417

UTX110
UTX115
UTX120
UTX125
UTX205
UTX2l0
UTX2l5
UTX220
UTX225
UTX3l05
UTX3 11 0
UTX3115
UTX3120
UTX3125
UTX4105
UTX4110
UTX4115
UTX4120
UTX4125

lOA;
l.OA;
l.OA;
l.OA;
2.0A;
2.0A;
2.0A;
2.0A;
2.0A;
3.0A;
3.0A;
3.0A;
3.0A;
3.0A;
4.0A;
4.0A;
4.0A;
4.0A;
4.0A;

100V
l50V
200V
250V
50V
100V
l50V
200V
250V
50V
100V
15@V
200V
250V
50V
100V
l50V
200V
250V

ZENER
UZllO-UZl19
UZl20-UZl40
UZ21O-UZ219
UZ220-UZ240
UZ706-UZ760
UZ770-UZ790
UZ806-UZ860
UZ870-UZ890
UZ41l0-UZ4l20
UZ421O-UZ4220
UZ4706-UZ4791
UZ4806-UZ4891
UZ5110-UZ5119
UZ5120
UZ52l0-UZ5240
UZ53l0-UZ5340
UZ5706-UZ5760
UZ5770-UZ5790
UZ5806-UZ5860
UZ5870-UZ5890
UZ71lO
UZ7110L
UZ7210
UZ72l0L
UZ7706L-UZ7750L
UZ77 56-UZ7790
UZ7706-UZ7750
UZ7756L-UZ7790L
UZ7806-UZ7850
UZ7806L-UZ7850L
UZ7856 -UZ7890
UZ7856L -UZ7890L
UZ8llO-UZ8l20
UZ82l0-UZ8220
UZ8706-UZ8790
UZ8806-UZ8890
UZS306-UZS440
UZS506-UZS640

3W; 5%
3W; 5%
3W; 10%
3W; 10%
3W; 5%
3W; 5%
3W; 10%
3W; 10%
5W; 5%
5W; 10%
5W; 5%
5W; 10%
5W; 5%
5W; 5%
5W; 10%
5W; 20%
5W; 5%
5W; 5%
5W; 10%
5W; 10%
lOW; 5%
6W; 5%
lOW; 10%
6W; 10%
6W; 5%
lOW; 5%
lOW; 5%
6W; 5%
lOW; 10%
6W; 10%
lOW; 10%
6W; 10%
lW; 5%
lW; 10%
lW; 5%
lW; 10%
3W; 5%
3W; 10%

HIGH VOLTAGE
RECTIFIER
VXl§
VX20
VX25
VX30
VX40

l5kV
20kV
25kV
30kV
40kV

'Contact Unitrode for specifications and ratings.
Legend, J -

JAN

JTX -

JANTX

JTXV -

JANTXV

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

31

PRINTED IN U.S.A

PART NUMBER INDEX

PART NUMBER

PAGE

417
419
419
419
419
419
419

DESCRIPTION
HIGH VOLTAGE
RECTIFIER
50kV
15kV
20kV
25kV
30kV
40kV
50kV

VX50
VXS15
VXS20
VXS25
VXS30
VXS40
VXS50

'Contact Unitrode for specifications and ratings.
Legend, J -

JAN

JTX -

JANTX

JTXV -

JANTXV

UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

32

PRINTED IN U.S.A

SALES OFFICES
PART NUMBER INDEX
DESIGNERS' GUIDES
POWER TRANSISTORS & DARLINGtONS

II

•

IV

SWITCHING REGULATOR POWER CIRCUITS

V

RECTIFIERS

VI

HIGH VOLTAGE RECTIFIERS, RECTIFIER
MODULES & MULTIPLIERS

VII

RECTIFIER BRIDGE ASSEMBLIES

VIII

POWER ZENERS & TRANSIENT VOLTAGE SUPPRESSORS

IX

THYRISTORS (SCRs, Triacs, PUTs)

X

SWITCHING & GENERAL PURPOSE DIODES

XI

PIN DIODES

XII

CAPACITORS

XII

APPLICATION NOTES & DESIGN NOTES

X"

MECHANICAL SPECIFICATIONS

X'

33

34

POWER SUPPLY DESIGNERS' GUIDE
FAST RECOVERY SILICON POWER RECTIFIERS
Schottky

30V
40V

20V
35V
45V

I
I
I
I
I
I

Surge Current, IF8M ...................•...•......................
Maximum Junction Temperature, TJ ..................... .
Forward Voltage, VF .•............•........•......•.•.•.••••••.•.
Reverse Current, IR ............................................. .
Package: 00-4

400A
150°C
O.86V
250mA

600A
Surge Current, IF8M .•.•.•.•.•.••••.•.•.•.•.•.•.•••.
175°C
Maximum Junction Temperature, TJ ....... .
Forward Voltage, VF ....•.•.•••.•....•.•.•.•.•••..•••.•••••.•..•.• O.50V
100mA
~~~~~~~~~~:~t, IR .....•.................................•......

Surge Current, I F8M .•...•.•.•.•.•.•.•...•.•••.•••.••••••••••.•••• 600A
150°C
Maximum Junction Temperature, TJ ............. .
Forward Voltage, VF •••••.•...•.•.•••..•...•..•.•..•.•.•.•••..•.• O.55V
Reverse Current, IR ......................•...............
I25mA
00-4

30V
40V

Surge Current, I F8M .•.•.•.••••.•••••••.••••••.•.•.•
800A
Maximum Junction Temperature, TJ ...................... . 175°C
.86 @ I57A
~~:~~~ ~~;~eg~', y=@·Rai~d·v~~~;·i·25~C·············· 250mA
Package: 00-5

Surge Current, IF8M •..•.•.•........•.••..•.•.•.•........•.•...... 800A
Maximum Junction Temperature, TJ ..................... .. 150°C
Forward Voltage, V, ............................................ .. .6V@60A
Reverse Current, I R @35V, 125°C ......... .
200mA
Package: 00-5

20V
35V
45V

Surge Current, 1'8M .......................................... ..
Maximum Junction Temperature, TJ ...................... .
Forward Voltage, VF ............................................. .
Reverse Current, I R @ VRWM , 125°C ...................... .
·00-5

lOOOA
175°C
.6V@60A
50mA

Average Forward Current .......... .............................
Surge Current, I F8M ........................ .......................
Maximum Junction Temperature, TJ .......................
Forward Voltage, V, ..............................................
Reverse Current, IR ..............................................
Package: TO-3 Center-Tap

30A
600A
175°C
.47V @ 20A
lOOmA

Average Forward Current .... .......... .........................
Surge Current, I '8M .................... ...........................
Maximum Junction Temperature, TJ .......................
Forward Voltage, V, ..............................................
Reverse
I" ..............................................
Package

30A
400A
150°C
.47V @ 20A
100mA

Schottky Center-Tap Rectifiers

20V
35V
45V

45V

35

~
_UNITRDDE

POWER SUPPLY DESIGNERS' GUIDE
PIN JUNCTION RECTIFIERS
Low Voltage, Ultra-Fast Recovery (trr ,,;;;;50nS)
50V
lOOV
l50V

Surge Current, IFSM ............................................... 30A
Forward Voltage, VF .............................................. .895V@lA
Reverse Recovery Ti me, t" .................................... 25nS
Package: Axial Leaded Glass

{

50V
lOOV
l50V

Surge Current, IFSM ••••••••••••••••••••••••••••••••••••••••••••••• 35A
Forward Voltage, VF .............................................. .895V@2A
Reverse Recovery Time, t" .................................... 25nS
Axial Leaded Glass

50V
lOOV
l50V

Surge Current, IFsM ••••••••••.•••••••••••••••••••••••••••••••.•••• l25A
Forward Voltage, VF .............................................. .850V@6A
Reverse Recovery Time, t" .................................... 30nS
Package: Axial Leaded Glass

50V
lOOV
l50V
50V
lOOV
l50V
50V
lOOV
l50V

{

Surge Current, IFSM ••••.••••••••••••••••••.•.•.•.•••••••••.••••.•• 80A
Forward Voltage, VF .............................................. .895V@8A
Recovery Time, t" .................................... 35nS
Sim. to T0-220

{

Surge Current, IFsM ............................................... 400A
Forward Voltage, VF .............................................. .825V@25A
Reverse Recovery Time, t" .................................... 35nS
Package: 00-4

{

Surge Current, IFSM ............................................... 800A
Forward Voltage, VF .............................................. .840V@70A
Reverse Recovery Time, t" .................................... 50nS
Package: 00-5

{

High Voltage, Ultra-Fast Recovery (trr

200V
300V
400V

200V
300V
400V

200V
300V
400V

200V
300V
400V

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

,,;;;;

SOnS)

Surge Current, IFSM ............................................... 20A
Forward Voltage, VF .............................................. 1.15V @ lA
Reverse Recovery Time, t" ..................... ............... 50nS
. Axial Leaded Glass
Surge Current, I FSM ••••••••••••••••••••••••••••••••••••••••••••••• 70A
{ Forwaro Voltage, VF ••••••••••••••••••••••••••.•••••.•••.•••..•••• l.lV@3A
Reverse Recovery Time, t" ................................... . 50nS
Package: Axial Leaded Glass
Surge Current, IFSM ................................................ 400A
Forward Voltage, VF •••.•••••••••..••••••.••.•.••.•••••••••.••.••• 1.15V @20A
Reverse Recovery Time, trr .................................... 50nS

{

00-4

Surge Current, IFSM ............................................... 800A
Forward Voltage, VF .............................................. 1.15V @ 50A
Reverse Recovery Time, t" .................................... 50nS
Package: 00-5

36

PRINTED IN U.S.A.

POWER SUPPLY DESIGNERS' GUIDE
PIN JUNCTION RECTIFIERS (continued)
Ultra-Fast Recovery Center-Tap Rectifiers (t" :;;;; 50nS)
50V
lOOV
l50V

Surge Current, IFSM •••.•.• ....... ............... •••••••. ......... 80A
Forward Voltage, VF .•...•.....•••••.........•.•.•••••••.••••••••• .895V @ 8A
Reverse Recovery Time, t" ................................... 35nS
Package: T0-220

50V
lOOV
l50V

Surge Current, I FSM .............................................. 400A
Forward Voltage, VF .............................................. .825V @ l5A
Reverse Recovery Time, t" .................................... 35nS
TO-3

200V
300V
400V

Surge Current, I FSM •• •••••.•• •••••••••••• ••••••••••• ••••••••••••• 400A
Forward Voltage, VF ••••••••••••••••••••••••••••••••••••••••••••.• l.l5V @ l5A
Reverse Recovery Time, t" .................................... 50nS
T0-3

Super-Fast Recovery Rectifiers (t"

= lOOnS)

50V
lOOV
l50V

Surge Current, IFS .. ..•••••...•......•••••••••••••••••...•••...•••. 35A
Forward Voltage, VF ••••••••••••.•.••••••••••••••••••••••••••••••• .895V @ lA
Reverse Recovery Time, t"..... ..................... ........... lOOnS
Package: Axial Leaded Glass

50V
lOOV
l50V

Surge Current, IFsM ............................................... llOA
Forward Voltage, VF .............................................. .895V @ 5A
Reverse Recovery Time, t" ..................................... lOOnS
Axial Leaded Glass

50V
lOOV
l50V

Surge Current, I FSM ••••••.•.•••• •••••••••••••••••••• ••••••• ....... 70A
Forward Voltage, VF .............................................. .945V @8A
Reverse Recovery Time, t"..................................... lOOnS
Sim. to TO-220

50V
lOOV
l50V

Surge Current, I FsM •••••••••.•••••.••••••••••••••••••••••••••••••• 400A
Forward Voltage, VF .............................................. .830V @ 20A
Reverse Recovery Time, t" ..................................... lOOnS
: 00-4

50V

Surge Current, IFsM •••••••••••••••••••••••••••••••••••••••••••••• , 800A
Forward Voltage, VF .............................................. .850V @ 60A
Reverse Recovery Time, t" ... ................ ..... ............. lOOnS
00-5

lOOV
l50V

Super-Fast Recovery Center-Tap Rectifiers (t" = lOOnS)
50V

lOOV
l50V
50V
lOOV
l50V

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064

{

Surge Current, I FSM • •••••••••••••• ••• .................... ••••••••• 70A
Forward Voltage, VF .............................................. .945V @ 8A
Reverse Recovery Time, t" ..................................... lOOnS
Package: TO-220

{

Surge Current, I FSM ............................................... 400A
Forward Voltage, VF .............................................. .830V @ l2.5A
Reverse Recovery Time, t" ..................................... lOOnS
T0-3

37

PRINTED IN U.S.A.

POWER SUPPLY DESIGNERS' GUIDE

NPN POWER SWITCHING TRANSISTORS

Plastic Packaging
250
300

8@ 1.0
8@ 1.0

0.75 @ 1.0
0.75@ 1.0

3.0 ~ 1/.11.1
3.0
11.11.1

300
400

8

8~2.0

2.0

0.6 @2.0
0.6 @2.0

0.9 ~ 2/.4/.4
0.9 2/.4/.4

TO-220
TO-220

300
400

6

6~5.0

5.0

1.5 @5.0
1.5 @5.0

0.7
0.7

5/111
5/1/1

TO-220
TO-220

300
400

6
6

8.0
8.0

1.5
1.5

8/1.6/1.6
8/1.6/1.6

TO-220
T0-220

200
200

TO-220
T0-220

Metal Can Packaging
250
275
350

10@2.0
1O@2.0
10@2.0

300
350
400
400

7@3.0
7@3.0
7@3.0
7@3.0

1.0
1.0
1.0
1.0

@3.0
@3.0
@3.0
@3.0

250
300
300
300
350
400
400

15@3.0
15 @3.0
7@5.0
7@5.0
12 @3.0
7@5.0
7@5.0

0.8
0.8
1.5
1.5
1.5
1.5
1.5

@3.0
@3.0
@5.0
@5.0
@3.0
@5.0
@5.0

120
200
275
350

1O@
1O@
8~
6

10.0
10.0
10.0
10.0

1.0
1.5
1.5
1.5

100
300
350
400
400

12 ~8.0
6
10.0
6@ 10.0
6@ 10.0
6@ 10.0

1.0
1.5
1.0
1.0
1.5

75
90

20@ 10.0
20@ 12.0

1.0 @10.0
1.2 @ 12.0

90
120

20@ 15.0
20@ 15.0

0.75@ 15.0
0.75@ 15.0

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

1.0 @3.0
1.5 @2.0
1.5 @2.0

450
450
450

TO-3
TO-3
TO-3

0.8 @ 3/.6/.6
0.4 ~ 3/.6/.6
0.4 3/.6/.6
0.8 @3/.6/.6

180
540
540
180

T0-3
TO-3
TO-3
T0-3

0.4 @ 3/.6/1.5
0.4 @ 3/.6/1.5
1.0@5/1/1
0.4 @5/1I1
0.4 @ 3/.6/1.5
1.0 @ 5/1/1
0.4@ 5/111

180
180
500
1500
180
500
1500

T0-3
TO-3
T0-3
T0-3
TO-3
TO-3
TO-3

300
2500
2500
2500

TO-3
TO-3
TO-3
TO-3

5700
2000
6000
6000
2000

T0-3
TO-3
TO-3
TO-3
TO-3

0.5@ 10/111
0.5 @ 12/1.2/1.2

13000
13000

T0-3
TO-3

0.5 @ 15/1.2/1.2
0.5 @ 15/1.2/1.2

20000
20000

TO-3
T0-3

1.5
1.5
1.5

3/.375/.375
2/.21.2
2/.2/.2

5/.5/.5
10/111
1011. 2 511. 2 5
10/1.67/1.67
8.0
10.0
10.0
10.0
10.0

38

0.3 ~ 8/.81.8
0.7
10/2/2
0.4@ 10/2/2
0.4 @ 10/2/2
0.7 @ 10/2/2

PRINTED IN U.S.A.

POWER SUPPLY DESIGNERS' GUIDE

SWITCHING REGULATOR POWER OUTPUT CIRCUITS
The PIC600 through PIC657 series of devices consist of a driver
transistor, a fast switching output transistor, a suitably matched
fast recovery catch diode and thick film resistors in a hybrid
circuit, designed, constructed and specified for use in high
current switching regulator applications. Specific ratings for
each type is summarized in this table.

Pos.
Pos.
Pos.
Neg.
Neg.
Neg.

5A

15A

20A

60
80
100
60
80
100

Pos.
Pos.
Pos.
Neg.
Neg.
Neg.

60
80
100
60
80
100

Pos.
Pos.
Pos.
Neg.
Neg.
Neg.

75

150

1.5@2

4PIN
T0-66

(Isolated)

175

300
1.5@7

300

300

150

300

(Isolated)

1.5@7
300

4PIN
T0-66

3 PIN
TO-3

300

The PIC730 and 740 series offer a Schottky diode in place of
the fast recovery PN catch diode, to permit higher operating
efficiencies in switching regulator designs.
30A

3 PIN

30
40

TO-3

The PIC800 through 811 series are high voltage (up to 400V)
versions of the PIC600 series. Applications include high voltage
buck or flyback regulators, and, in combination, half bridge or
full bridges, as well as deflection circuits and DC motor drives.
8A

350
400

Pos.

200

200

1.5@5

8A

350
400

Neg.

200

200

1.5@5

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

39

4PIN
T0-66

(Isolated)
4PIN
T0-66

(Isolated)

PRINTED IN U.S.A.

D

POWER SUPPLY DESIGNERS' GUIDE
TRANSIENT VOLTAGE SUPPRESSORS
5V
10
12
15
18
24
28
48
60
100
200
300

6V

11.1
13.8
16.7
20.4
28.4
30.7
54
67

Peak Pulse Power (lmS duration) .............................. 150W
Continuous Power ....... ................. .......... ................... 3W
1 Picosecond Transient Response lime
Package: Axial Leaded Glass
Additional Voltages Available

111

234
342

5V
10
12
15
18
24
28

6V

11.1
13.8
16.7
20.4
28.4
30.7

Peak Pulse Power (lmS duration) .............................. 500W
Continuous Power ........... ... ......................... ........ ...... 5W
1 Picosecond Transient Response lime
Package: Axial Leaded Glass
Additional Voltages Available

THYRISTORS - SCRs
Crowbars

200V
400V
600V
800V

Surge Current, ITSM ..•••••••••••••..••.••.•••.•.•••••..•..••..•..•••
On-State Voltage, VTM •.••••••••••••••••••••••••••••••.••.•••••.••••••
dildt ......................................................................
dv/dt ......................................................................
Package: Metalized ceramic substrate on TO-3 Flange
Other SCRs available with current ratings up to 55A

250A
2.1V @ 50A
150A//LS
200V//LS

Surge Current, ITSM .•. •••• .••••••••••••••••.••.•••••••• •••••••. .....
On-State Voltage, VTM ••••••.•••.•••••••..••••.•.•••••..••..••..••.••
di/dt . ............. .................. .....................................
dv/dt .....................................................................
Circuit Com mutated Turn-Off lime, TQ ••••••••••••••••••••••
Package: Metalized ceramic substrate on TO-3 Flange
5A Version also available

120A
10V @ 100A
150Al/LS
400V//LS
6/LS

Inverter Power Switches

200V
400V
600V
800V

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

40

PRINTED IN U.S.A.

MILITARY DESIGNERS' GUIDE

SILICON POWER RECTIFIERS
Schottky

60A

45V

0.6V
@60A

75A

20V
35V
45V

0.6V
@60A

@V RWM
Tc= 125°C

800A

00-5

1000A

00-5

High Efficiency, Fast Switching

30n5

Axial
Axial
Axial

1477 •
1477
1477

.900V
@
lOA

35n5

00-4
00-4
00-4

1478.
1478
1478

.95V
@
50A

50n5

00-5
00-5
00-5

N/A

6.0A

20A

50A

50V
lOOV
l50V

"'Series available as JAN, JANTX and JANTXV

General Purpose, Fast Recovery

lA
lA
lA

3A
3A
3A

Axial
Axial
Axial

1429.
1429
1429

Axial
Axial
Axial
Axial

1424 ••

3A
3A
3A
3A

100V
200V
400V
600V

1.5V@
1.5V@
1.5V@
1.5V@

9A
9A
9A
9A

3A
3A
3A
3A
3A
3A

50V
100V
200V
400V
500V
600V

1.5V@
1.5V@
1.5V@
1.5V@
1.5V@
1.5V@

9A
9A
9A
9A
9A
9A

l50n5
l50n5
l50n5
l50n5
250n5
400n5

Axial
Axial
Axial
Axial
Axial
Axial

30A
30A
30A
30A
30A

50V
100V
200V
300V
400V

1.4V@95A
1.4V@95A
1.4V@95A
1.4V@95A
1.4V@95A

200n5
200n5
200n5
200n5
200n5

00-5
00-5
00-5
00-5
00-5

1424
1424
1424
1411.
1411
1411
1411
1411
1411
1308 ..
1308
1308
1308
1308

• Series available at JAN, JANTX and JANTXV
•• Series available as JAN and JANTX

-

[lliJ

41

UNITRODE

•

MILITARY DESIGNERS' GUIDE

SILICON POWER RECTIFIERS (continued)
General Purpose, Standard Recovery

lA
lA
lA
lA

200V
400V
600V
800V

l.3V@3A
l.3V@3A
l.3V@3A
1.3V@3A

30A
30A
30A
30A

Axial
Axial
Axial
Axial

2A
2A
2A
2A

200V
400V
600V
800V

l.lV@lA
l.lV@lA
l.lV@lA
l.lV@lA

20A
20A
20A
20A

Axial
Axial
Axial
Axial

1427 •
1427
1427
1427
1228 ••
1228
1228
1228

3A
3A
3A
3A

200V
400V
600V
800V

1.2V@9A
1.2V@9A
1.2V@9A
1.2V@9A

100A
100A
100A
100A

Axial
Axial
Axial
Axial

1420.
1420
1420
1420

• Series available as JAN and JANTX and JANTXV
... Series available as JAN and JANTX
..... Senes available as JAN only

High Efficiency, Center-Tap Rectifiers and Doublers

SWITCHING DIODES
Low Current

75mA
75mA
150mA
l50mA
200mA
200mA
200mA
300mA

1.0V@lOmA
1.0V@ 10 mA
1.0V@lOmA
.88V@20mA
.74V@10mA
l.OV@lOmA
.74V@lOmA
.77V@20mA

5nS
4nS
5nS
4nS
4nS
4nS
4nS
6nS

• Available as JAN, JANTX and JANTXV
•• Available as JAN and JANTX

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173. TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

42

PRINTED IN U.S.A.

MILITARY DESIGNERS' GUIDE
NPN POWER SWITCHING TRANSISTORS

@IA
@IA
@IA
@IA
3A
3A
3A
3A
5A
5A
5A
5A
5A
5A
5A
5A
5A
5A
5A

60V
BOV
60V
BOV

20@
20@
40@
40@

lA
IA
IA
IA

40@
40@
40@
40@
BO@
40@
BO@
40@
25@
40@
25@

IA
IA
IA
IA
IA
IA
IA
IA
IA
IA
IA

.5V
.5V
.5V
.5V

@2A
@2A
@2A
@2A

1.0V@ IA
.25V@ IA
.25V@ IA
.25V@ IA
.25V@IA
.25V@ IA
.25V@ IA
.4V @3A
.4V @3A
.4V @3A
AV @3A

1.21J,S
1.21J,S
1.21J,S
1.2

TO-5
TO-5
TO-5
TO-5

0.31J,S
0.31J,S
O.BIJ,S
1.0 IJ,S
O.BIJ,S
1.0 IJ,S
O.BIJ,S
1.0 IJ,S
O.BIJ,S
1.0 IJ,S

TO-59
TO-59
TO-111
TO-11 I
TO-III
TO-59
TO-59
TO-66
TO-66
TO-5
TO-5

1393 •
1393
1393
1393
1277 ••
1315 •

1315

1374 •
1374
1374
1374
1455 •
1455
1455
1455
N/A
N/A
N/A
N/A

"Series available as JAN. JANTX. and JANTXV
Series available as JAN and JANTX

"'*

POWER DARLINGTONS

** Series available as JAN, JANTX

POWER ZENERS AND TRANSIENT SUPPRESSORS

.. Series available asJAN, JANTX and JANTXV

,., * Series available as JAN and JANTX

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064

43

PRINTED IN U.S.A.

III

MILITARY DESIGNERS' GUIDE

SWITCHING REGULATOR POWER OUTPUT CIRCUITS

5A

15A

20A

60
80
100
60
80
100

Pos.
Pos.
Pos.
Neg.
Neg.
Neg.

60
80
100
60

Pos.
Pes.
Pes.
Neg.
Neg.
Neg.

80
100

75

150

175

300

300

300

150

300

300

1.5@2

4PIN
TO-66
(Isolated)

1.5@7

4PIN
TO-66
(Isolated)

1.5@7

3PIN
T0-3

300

BRIDGE RECTIFIERS
40 Hz- 5KHz

1469*

lOA

lOOV
200V

Singie Phase

AC~

25A

400V

v, @39A, 1.4V Max
IR@VR, 2iJ.A Max
ISURGE,150A

1446*

V,@39A, 1.3 V Max
iR@VR, 3iJ.A Max
iSURGE' 150A

1483**

600V

Three Phase

200V
400V
600V

25A

• Series available as JAN and JANTX
•• Series available as JANTX only

HIGH VOLTAGE DOORBELL® MODULES
40 Hz-5KHz

• Series available as JAN only

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

44

PRINTED IN U.S.A.

MILITARY DESIGNERS' GUIDE

THYRISTORS
Silicon Control Rectifiers
D.C.
ON STATE
TYPE

MAXIMUM.

MAXIMUM

v'"

PACKAGE

30V
60V
100V
30V
60V
lOOV

20ILA
20ILA
20ILA
20ILA
20ILA
20ILA

. 6V
.6V
.6V
.6V
.6V
.6V

TO-1B
TO-1B
TO-1B
TO-1B
TO-1B
TO-1B

1419 ••
1419
1419
1419
1419
1419

1.25A
1.25A
1.25A
1.25A
1.25A

30V
60V
lOOV
150V
200V

200",A
200ILA
200ILA
200ILA
200",A

.BV
.BV
.BV
.BV
.BV

TO-9
TO-9
TO-9
TO-9
TO-9

/19B •••

1.6A
1.6A
1.6A
1.6A
1.6A
1.6A
1.6A

50V
lOOV
150V
200V
250V
300V
400V

20ILA

.6V
.6V
.6V
.6V
.6V
.6V
.6V

TO-5
TO-5
TO-5
TO-5
TO-5
TO-5
TO-5

1276 •
1276

5A
5A
5A
5A
5A

60V
lOOV
200V
300V
400V

.BV
.BV
.BV
.BV
.BV

TO-59
TO-59
TO-59
TO-59
TO-59

CURRENT

VDflM

.5A
.5A
.5A
.5A
.5A
.5A

2N3027
2N3028
2N3029
2N3030
2N3031

2N3032
2N1870A
.2N1871A

2Nll!72A

.,

. ~Nli!?:3A
'2:N~74~

2N2323A
2N2324A·
2N2325A
2N2326A
2N2327A
2N2328A
2N2329A

F·'.·.CIVI1OO
/.CM1Ot·
"CtV\I02
•. CMI03
¢MI04

':<

....

o·

....

I.,

20ILA

20JLA
20ILA
20ILA

20ILA
20ILA

200ILA
200ILA
200",A
200",A
200ILA

MIL·5-19500

119B
/19B

N/A
/19B

N/A

1276
N/A
1276
1276
N/A

N/A
N/A
N/A

N/A

'" Series available as JAN and JANTX and JANTXV

.. * Series available as JAN and JANTX
•• '" Series available as JAN only

Ultra Fast Switching

PROGRAMMABLE UNIJUNCTION TRANSISTORS

2",A @ RG= 1 MEGl1
'" Series available as JAN, JANTX and JANTXV

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

45

PRINTED IN U.S.A.

•

:
••

46

SALES OFFICES
PART NUMBER INDEX

II

DESIGNERS' GUIDES

III

POWER TRANSISTORS & DARLINGTONS

III

SWITCHING REGULATOR POWER CIRCUITS

V

RECTI FI ERS

VI

HIGH VOLTAGE RECTIFIERS, RECTIFIER
MODULES & MULTIPLIERS

VII

RECTIFIER BRIDGE ASSEMBLIES

VIII

POWER ZENERS & TRANSIENT VOLTAGE SUPPRESSORS

IX

THYRISTORS (SCRs, Triacs, PUTs)

X

SWITCHING & GENERAL PURPOSE DIODES

XI

PIN DIODES

XII

CAPACITORS

XIII

APPLICATION NOTES & DESIGN NOTES

XIV

MECHANICAL SPECIFICATIONS

XV

47

48

POWER DARLINGTONS

PRODUCT SELECTION GUIDE

External bias types - for fast switching
or other special purpose applications

~

~(3-Pin)

NPN Power Darlingtons

•

U2T401
2N6352*
U2T201

2N6350*
U2T101
U2T305

U2T405

2N6351·
U2T105

·Available as JAN and JANTX types.

Plastic NPN Power Darlingtons

Plastic Package and multiple types with
integral bias resistance and shunt diode
for maximum economy in standard
applications

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

49

PRINTED IN U.S.A.

NPN POWER SWITCHING TRANSISTORS
.5-30A, 60-500V

TIt
TO-5

III

"',~k.
TO-5

LOW VOLTAGE

UPT213

2N3419*

2N3421 *

UPT214
UPT215

2N2850

2N5487

2N5488

HIGH VOLTAGE

UPTB520

UPTA520

UPT312

2N5662*

UPT313

UPTB530

UPTA530

UPT314
UPT315

2N5663*

* Ava,lable as JAN, JANTX, JANTXV.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

50

PRINTED IN U S,A

PRODUCT SELECTION GUIDE

i ~220

J~
1i'TO-59

LOW VOLTAGE

2N3999*

2N3749*
2N3996*

~

~0-3

•

2N3997*

HIGH VOLTAGE

UPT522

2N5660'

2N5661*

UMT3584

UPT523

UMT3585

UPT524
UPT525

2N5838

UMTl203

'Available as JAN, JANTX, JANTXV.
"Available as JAN, JANTX.
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

51

PRINTED IN U.S.A.

NPN POWER SWITCHING TRANSISTORS
.5-30A,60-500V

LOW VOLTAGE

HIGH VOLTAGE

2N5667*

2N5665*

UPT724
UPT725

2N6542

'Available as JAN, JANTX, JANTXV.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

52

PRINTED IN U.S.A.

PRODUCT SELECTION GUIDE

;

~

~J0

11

I!

!I

TO-59

TO-220

LOW VOLTAGE

•
'Available as JAN, JANTX, JANTXV.

HIGH VOLTAGE

2N6546

UMTl008
2N6544

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL, (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

53

PRINTED IN U,S.A

POWER TRANSISTORS

JAN &JANTX 2N2151

2 Amp, 80V, Planar NPN

FEATURES

DESCRIPTION

•
•
•
•
•

Unitrode power transistors provide a unique
combination of low saturation voltage, high
gain and fast switching. They are ideally
suited for power supply pulse amplifier and
similar high efficiency power switching
applications.

Meets MIL-S-19S00/277
Collector-Base Voltage: up to lSOV
D.C. Collector Current: 2A
Beta Guaranteed at 3 Current Levels
Characterized for Safe Operating Area

ABSOLUTE MAXIMUM RATINGS

JAN & JANTX
2N2151

....... lSOV
Collector-Base Voltage, VCBO .................. ..
.... .. . . ............................... lOOV
Collector-Emitter Voltage, VCEO .
8V
Emitter-Base Voltage, VEBO
2A
D.C. Collector Current, Ic ...................................................................... .
2A
Base Current, IB ........... .
Power Dissipation
... 30W
lOO'C Case.
Operating Temperature Range .
............. -SS'C to 17S'C
...... -6S'C to 200'C
Storage Temperature Range ...... .

MECHANICAL SPECIFICATIONS
JAN & JANTX2N2151

TO-59

.763
,570
.468
.320

.055 =:gi~
DIA. HOLE

.215
.185

Dimensions in inches.

54

O!O
_UNITRODE

JAN & JANTX 2N2151

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)

Test

25'C
Collector-Base Breakdown Voltage
Collector-Emitter Breakdown Voltage
(Note 1)
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current
Collector-Base Cutoff Current
Emitter-Base Cutoff Current
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
Collector Saturation Voltage (Note 1)
Base Saturation Voltage (Note 1)
Base-Emitter Voltage (Note 1)
A.C. Current Gain
Gain-Bandwidth Product
Output Capacitance
Thermal Resistance

MIL-STD-750

Symbol

Min.

Max.

Units

/277C
Subgroup

Method

BVcBO

Vdc

A-2

3001

Ic

Ic
VCE
VCE
VCE
Vcs
VES
Ic
Ic
Ic
Ic
Ic
Ic
Ic
Ic
Vcs

oc/w

A-2
A-2
A-2
A-2
A-2
A-2
A-3
A-3
A-3
A-3
A-3
A-3
A-5
A-5
A-5
C-1

3011
3041
3041
3041
3036
3061
3076
3076
3076
3071
3066
3066
3206
3306
3236
31S1

150

-

BVcEO
ICES
ICEX
ICEO
Icso
IESO
hFE
hFE
hFE
VCE (sat)
VSE (sat)
VSE
hie
fr
Cob
e J_C

100

-

-

1.0
1.2
1.2
160
70
160
2.S

100'C
Forward-Biased Second Breakdown
Forward-Biased Second Breakdown
Forward-Biased Second Breakdown
Unclamped Inductive Sweep
Clamped Inductive Sweep

Isis
Is/B
Isis
Es/s
Es/s

2
200
25
20
80

.-

Adc
mAdc
mAde
mj
mj

B-9
B-9
B-9
B-S
B-6

-

150'C
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current
Emitter-Base Cutoff Current

ICES
ICEX
IESO

-

100
100
20

uAdc
uAdc
uAdc

A-4
A-4
A-4

3041
3041
3061

-55'C
D.C. Current Gain (Note 1)

hFE

20

-

-

A-4

3076

Nate: 1. Pulse length

=

-

40
40
40
0.1

-

40
10

5
5
10
5
2
120
120

-

Vdc
uAdc
uAdc
uAdc
uAdc
uAdc

-

Vdc
Vdc
Vdc

-

MHz
pf

-

Test Conditions

=100uAdc, Condo D
=50mAdc, Condo D
=120Vdc, VSE =0, Condo C
=120Vdc, VEB =1Vdc, Condo A
=80Vdc, Condo D
=120Vdc, Condo D
=8Vdc, Condo D
=lAde, VCE =5Vdc
=O.5Adc, VCE =5Vdc
=O.lAdc, VCE =5Vdc
=lAde, IB =O.lAdc
=1Adc, Is =O.lAdc, Condo A
=lAde, VCE =5Vdc, Condo B
=O.lAdc, VCE =30Vdc, f =1kHz
=O.lAdc, VCE =30Vdc, f =10M Hz
=20Vdc, IE =0, f =1MHz

=
=
=
=
=
=
=
=
=
=
=
VCE =120Vdc, VSE =0, Condo C
VCE =120Vdc, VEB =1Vdc
VES =8Vdc, Condo D
Ic =O.SAdc, VCE =SVdc

VC[ 15Vdc, t
60 sec, see curve
VC[ 57Vdc, t 60 sec, see curve
VCE 100Vdc, t
60 sec, see curve
Ic 2Adc, L 10mh
Ic 2Adc, L 40mh, Vel,mp 150V

300 #S; duty cycle ";2%.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEl. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

55

PRINTED IN U.S.A.

-

JAN & JANTX 2N21S1
Unclamped Reverse Bias
Second Breakdown

ForWard Bias
Safe Operating Area
10
Tc

........

:5:
....z

Dt

'"a:a:
::>
CJ

~lmS/

\).
= 10% \ . \
t,,=sms/
Duty cycle = 50% \

0

....

CJ

'"
0

CJ

,,~

,,,,,,- '}.
~ --\"

.5

a:
...J
...J

= 100'C

t
Outy CYClj

.2
.1

I .05
_u

\

...J

.05

I----I~---+----""k:::

.02
.01 '---_.....l._ _"-_-'---_---'_ _...L_---'

.01
2

10
50
80
100
200
Vee - COLLECTOR TO EMITTER VOLTAGE (V)

Ie - COLLECTOR CURRENT

Reverse Bias
Safe Operating Area
Clamped Inductive Switching

D.C. Current Gain

10

200
100

:5:
....
z

;;:

::>

....
z

"'a:a:

TJ

~

'"

200°C

"'a:::>a:

a:
0

....CJ

'"
...J
...J

0

I
Ve • = SV

,..-

--

Z

CJ

(A)

50

V

.......

150'C

I---"

--

2S'C

.-

-55'C

20

CJ

"
ci

.5

~
..............

~

"\

10

I

CJ

I

r.~

_u

.2

.1
2

100 150 200
10
20
50
Vee - COLLECTOR TO EMITTER VOLTAGE (V)

.05

=25'C
T," = 10

G
~
;- +1.5 1 - - - + - - 1 - - - + - - - \ - T,'" = 10
::;;
~ +1.0.f--+--+---+--+--+----li

Ie

"''"
~
0

>
Z

.

0

;:::
a:

.
::>

....

I

~
/

V" (sat)

.5

z

~ +.51---+--1---~
u:
t:.V e•

~ °1==::t:==t=::::~~:;;:c=t1-1

/

.2
Ve• (sat)

.1

~ -0.51---+--1---+----I--+------i

V

::>

....

ili

. i:i"'"-

en .05

....
I
~

.02
.01
.05

.1

.2
.5
I
Ie - COLLECTOR CURRENT (A)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

.5

Saturation Voltage
Temperature Coefficients
+2.0 ,---,------,-----,-----,---.-----,

TJ

~

.2

Ie - COLLECTOR CURRENT (A)

Saturation Voltages
10

.1

56

-1.0 f - - + - - f - - - + - - - :

-1.5 I - - - + - - I - - - : : ;......'-::::.....~,
-2.0 f--=,j.....-~--If---+--+------l
-2.5 '---_-"--_...L _ _...L_ _-'-_--'-_ _- '
.05
.1
.2
.5
Ie - COLLECTOR CURRENT (A)

PRINTED IN U.S.A.

JAN & JANTX 2N2151

Switching Speed
Characteristics

Switching Speed
Characteristics

1.0 r - - - - - - ; , - - - - - - - , - - - - r - - - r r - - ,

10

1

-----------

.1

Vee =20V

.5

IBI

=

Ie -

-182

1SO'

{l
c::
8

.2

E!

.1

5!

I"
'";::

::.

.05

Siorage lime

"'"0c::

~---_+--,,_==--

"3l

F==~;4=-----l---1-----l-_1

2S'C-

E!

I"
::.'"
;::

r-----r-----""....

f--.
.5

Fall lime
.2

r-----r-----t---+~

.01~

____

~

_ _ _--'_ __ L_

_ L_

_"

.1

.5

COLLECTOR CURRENT (A)

·5

....

Zz

~~
....on.
'"
"'::.
N_
::;..J

««

.2
.1

Irlr

0",
ZJ:

I ....

......

.1

I-

1-.02

.02

Y

.01

- ~ -~
0.5

~

I - ......- ....-: ~

~
.2

.05

::.::.

"V

'/"
~
/"

.........

.,..- ~ ~
/'

Switching Speed Circuit

-- .....
~?

Vee = 40VDC

".,-

~~

24V

OJ-eft}

Single Pulse

= r{tJ

R.=--181 +1 82

• HJ-C

IlJ _e = 3.3'C/W
.005

Pulse widlh = 2ps
Duly cycle = "';2%
Source Impedance

.002

=500

....E

.001
.01

V

X

Ie - COLLECTOR CURRENT (A)

Thermal Response
Duly cycle

'"
cn~

V

.5
Ie -

Z

-.........
I--..

1SO'C

25'C
.02

= 10

V.. =-4VDC
.02 .05

.1

.2

.5

1

2

10 20

SO 100 200 SOO 1000

TIME (milliseconds)

UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861-6540
TWX (710) 326-6S09 • TELEX 95-1064

57

PRINTED IN U.S.A.

•

POWER TRANSISTORS

JAN, JANTX, & JANTXV 2N2880
JAN, JANTX, & JANTXV 2N3749

5 Amp, 80V, Planar, NPN

DESCRIPTION
Unitrode power transistors provide a unique
combination of low saturation voltage, high
gain and fast switching. They are ideally
suited for power supply, pulse amplifier and
similar high effICiency power switching
applications.

FEATURES
• Meets MIL-S-19500/3IS
• Collector-Base Voltage: 110V
• Fast Switching: t r • t f 300nSec max
• Low Saturation Voltage: O.2SV max @ lA

=

ABSOLUTE MAXIMUM RATINGS
JAN, JANTX, JANTXV

aNU8.
2N3748

Collector-Base Voltage, Vcso .
............................... 11OV
Collector-Emitter Voltage, VCEO ... ..... ... .........
...... .... ...... ....... ............
........... SOV
Emitter-Base Voltage, VESO .......................................
. ................... .... BV
D.C. Collector Current, Ic ... .
............. SA
Power Dissipation
25·C Ambient ....................................................
.................... 'RI
IOO·C Case ....................... .
.............................. 30W
Operating and Storage Temperature Range.
....................... -6S·C to +200·C

MECHANICAL SPECIFICATIONS
JAN, JANTlC, & JANTXV 2N288D

TO·58

.055 :::81g r:~!HEXJ
DIA'~OLE

.380

.318

EMITTER

_

.215

1"

.185

BASE

COLLECTOR

Dimensions in inches.

JAN, JANTX, & JANTXV 2N3748

TO-111

Dimensions in inches.

[ill]
58

_UNITRODE

JAN, JANTX, & JANTXV 2N2880
JAN, JANTX, & JANTXV 2N3749

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
MIL· STD· 750
TEST CONDITIONS

1315

TEST

SYMBOL

MIN.

MAX.

-

Visual and Mechanical

-

-

Collector-Base Voltage
Collector-Emitter Voltage (1.)
Emitter-Base Voltage
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current

BVcBO
BVcEO
BVEBO
ICEO
ICEX

110

-

Collector-Base Cutoff Current
Emitter·Base Cutoff Current

Icso
IESO

D,C. Current Gain (1.)
D.C. Current Gain (1.)
D.C. Current Gain (1.)
Collector Saturation Voltage (1.)
Collector Saturation Voltage (1.)
Base Saturation Voltage (1.)
Base On-Voltage (1.)

hFE
hFE
hFE
VCE ,,,!}

UNITS

Sub
group

METHOD

A-1

2071

See Mechanical Data

100
10

Vdc
Vdc
Vdc
!LAdc
!lAdc

A-2
A·2
A-2
A-2
A·2

3001
3011
3026
3041
3041

-

0.4
0.4

/LAdc
!LAdc

A·2
A-2

3036
3061

Ic lO/LAdc, Cond, D
Ic O.1Adc, Condo D
IE 10!LAdc, Condo D
VCE 6OVdc, Condo D
VCE llOVdc, VEB
0.5Vdc,
Cond.A
VCB 8OVdc, Condo D
VEB 6Vdc, Condo D

40
40
lS

120

-

-

3076
3076
3076
3071
3071
3066
3066

80
8

-

Vee Ion}

-

0.2S
2
1.2
1.2

Vdc
Vdc
Vdc
Vdc

A-3
A·3
A-3
A-3
A-3
A-3
A·3

A.C, Current Gain

hFE

40

120

-

A-4

3206

Gain-Bandwidth Product
Output Capacitance
Switching Parameters
Delay Time
Rise Time
Storage Time
Fall Time

fr
Cob

20

120
1SO

MHz
pf

A-4
A-4

3306
3236

td

60

Thermal Resistance

VCEfsatl
VBEhatl

=
===

=
=
=
=
Ic = SOmAdc, VCE =5Vdc
Ic =1Adc, VCE =SVdc
Ic = 5Adc, VCE = 5Vdc
Ic = 1Adc, Is =O.1Adc
Ic = SAdc, Is =O,SAdc
Ic =1Adc, IB =O.1Adc

=1Adc, VCE =2Vdc
Ic =SOmAdc, VCE =SVdc,
f = 1KHz
Ic

Ic = 1Adc, VCE = 10Vdc, f = 10MHz
VCB 10Vdc, IE = 0, f = 1M Hz

=

300
1.7
300

ns
ns
/LS
ns

A-4
A-4
A-4
A-4

-

eJC

-

3.33

'C/W

C-1

31S1

IsiB

5

-

Adc

B-S

30S1

Is/B

80

mAdc

B-5

3051

EsiB

12.5

-

mj

B-7

-

Es/s

12.5

mj

B-6

3053

Es/B

12.S

-

mj

B-6

3053

Ic = SA, L = 1mH
Base Open
Ic 1.6A, L = 10mH
Base Open

lSO'C
Collector-Emitter Cutoff Current

ICEX

-

50

/LA

A·S

3041

VCE = 8OVdc, Ves = O.5Vdc
Condo A, TA = 1SO'C

-6S'C
D.C. Current Gain (1.)

hFE

15

-

-

A-5

3076

Ic = 1Adc, VCE
TA
-6S'C

1OO'C
Forward-Biased Second
Breakdown
Forward-Biased Second
Breakdown
Clamped Reverse·Biased
Second Breakdown
Unclamped Revers. -Biased
Second Breakdown
Unclamped Reverse-Biased
Second Breakdown

Note I. Pulse Width

=

tr
t,
tf

}

See Switching Speed Circuit

VCE = 6Vdc, t= 60Sec,
Tc = 100'C
VCE = SOVdc, t = 6OSec,
Tc = 100'C
Ic 5A, L 1mH, VC1 •mp = 110V,
Tc 100'C

=

=

=

=

=

=5Vdc

3OOI'SIC, duly cycle';; 2%

UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

59

PRINTED IN U.S.A.

•

JAN, JANTX, & JANTXV 2N2880
JAN, JANTX, & JANTXV 2N3749

Forward Bias
Safe Operating Area
10
5

g:
I-

"

2

""0::0::

:::J

u

f - - - f- t. = l m s /
.50% Duty cycle

..J
..J

5

'.ii

"c i
~"
g .5
u
""z

.;:

1\

r-.. \

'\~ ~
V
\
1.=0.5 Im s/

.5

0::

0

~
8

10

= loo'C

\

t--.... ~

V

Z

""zc

r-....

"'" "

D.C.

Unclamped Reverse Bias
Second Breakdown

.2

1\

.10% Duty cycle

1\

.1

~

.2

:::J
0

.1

u

1:

I
_u .05

..J

.02

\\ '\

\'

Te= 1OO'C

~

S"..

\1\

Jill

=-1

0=10Ie

'OK

1\'" I;;~~v~<::'"

---

'0.$"

'~v"""-...

~r--...

r---......

r---- r---

........

---

.05
.02

.01

1

4

20
50 80 100
2
10
Vc,-COLLECTOR TO EMITTER VOLTAGE (V)

Ie - COLLECTOR CURRENT (Al

Reverse Bias
Safe Operating Area
Clamped Inductive Switching

D.C. Current Gain
2N288D-2N3749
SOO

I
Ve.=5V

20
SOV

g:

10

Z

""0::0::

z

I

I-

5

~

TJ

';;

I-

z

""0::0::

200'C

:::J

U

2

u
c

..J
..J

I

8

~

.c

I
.!'

1SO'C

(!>

:::J

U
0::

200

«

110V

.5

100

V

........

25'C

V V
so
V
V
V

r---..

k'-

r.....::

~C

20

~

"

10

5
.01

.2
10

20

50

80100

.02

200

~

.05.1
.2
.5
1
2
Ie - COLLECTOR CURRENT (A)

10

Ve,-COLLECTOR TO EMITTER VOLTAGE

Saturation Voltage
Temperature Coefficients

Saturation Voltages
10

2

~

..!:i""
(!>

0

2

/

I

1.0

V" (sat)

~

.5

>

z

0

~
0::

..
:::J

I-

'V'

,c,\o'"
><'/.<:i

1>"" /

Il.

i:l-1.5

~~

p- - -

~

?

'l.o-..<§l

V"1
~"

2.5'C
<,5'C \~

•• -_

V

~I--I--I-"

'~
---V~~

--~

Ie - COLLECTOR CURRENT (A)

0.5

Ti~e

V~

:::::-- r-...

.1

10

Duly cycle

-

l~'C

g
UJ

I

2S'C

u

::;;

~ r--

Ie
181 =-111 =10

.2

.5

1

2

10 20

so 100 200 SOD 1000

TIME (milliseconds)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064

61

NOTES:
1. Ie ~ lA, 'B. ~ -182 ~ 'lOOmA
2, The values of collector current and base
current are nominal. The actual values will
vary slightly with transistor parameters.

PRINTED IN U.S.A.

JAN, JANTX, &JANTXV 2N3418
JAN, JANTX, & JANTXV 2N3419
JAN, JANTX, & JANTXV 2N3420
JAN, JANTX, &JANTXV 2N3421

POWER TRANSISTORS
3 Amp, 80V, Planar NPN

FEATURES

OESCRIPTION

•
•
•
•

Unitrode power transistors provide a unique
combination of low saturation voltage, high
gain, and fast switching. They are ideally
suited for power supply, pulse amplifier and
similar high frequency power switching
applications.

Meets MIL-S-19500/393
Collector-Base Voltage: up to 125V
Peak Collector Current: 5A
High Power Dissipation in TO-5:
15W@Te = lOO'C
• Fast Switching·

ABSOLUTE MAXIMUM RATINGS
JAN, JANTX, & JANTXV

JAN, JANTX, & JANTXV

2N3418
2N3420

2N3419
2N3421

Collector-Base Voltage, VeBo .
Collector-Emitter Voltage, VeEO
Emitter-Base Voltage, VEBO
D.C. Collector Current, Ie .
Peak Collector Current, Ie .
Power Dissipation
25'C Ambient .
l00'C Case
O~rating and Storage Temperature Range

85V ..

125V

GOV.

80V
8V

8V .....
3A
.. SA ....

. .. 3A
SA

1.0w..
15W

1.0W
15W

-WC to +200'C ..

MECHANICAL SPECIFICATIONS
JAN, JANTX, & JANTXV 2N3418-2N3421

~

TO-5

.2601BL5MIN·l
.240
.030

eg-·..
""'I

.010

T ---- -- --- .
T33.5

.370

.305
_1_

. - ...

.017:!::gg~

Dimensions in inches.

62

lliD

_UNITRODE

JAN, JANTX, & JANTXV 2N3418-2N3421

ELECTRICAL SPECIFICATIONS (at 25·C unless noted)
TEST

SYMBOL

Visual and Mechanical

-

Collector-Emitter Breakdown Voltage (1.)
2N3418, 2N3420
2N3419, 2N3421
Collector-Emitter Cutoff Current
2N3418, 2N3420
2N3419, 2N3421
Collector-Emitter Cutoff Current
2N3418, 2N3420
2N3419, 2N3421
Emitter-Base Cutoff Current
Emitter-Base Cutoff Current

BVCEO

D.C. Current Gain (1.)
2N3418, 2N3419
2N3420, 2N3421
D.C. Current Gain (1.)
2N3418, 2N3419
2N3420, 2N3421
D.C. Current Gain (1.)
2N3418, 2N3419
2N3420, 2N3421
D.C. Current Gain (1.)
2N3418, 2N3419
2N3420, 2N3421
Collector-Emitter Saturation Voltage (1.)
Collector-Emitter Saturation Voltage (1.)
Base-Emitter Saturation Voltage (1.)
Base-Emitter Saturation Voltage (1.)
Gain Bandwidth Product
Output Capacitance
Switching Parameters
Turn-on Time
Turn-off Time
100·C
Forward Biased Second
Forward Biased Second
Forward Biased Second
Forward Biased Second
2N3418, 2N3420
2N3419, 2N3421

Breakdown
Breakdown
Breakdown
Breakdown

Unclamped Reverse Biased
Second Breakdown
Clamped Reverse Biased Second
Breakdown
lS0·C
Collector-Emitter Cutoff Current
2N3418, 2N3420
2N3419, 2N3421
-SS·C
D.C. Current Gain (1.)
Note: 1.

MIN.

-

-

60
80

-

Vdc
Vdc

-

0.5
0.5

/LAde
/LAdc

-

5.0
5.0
0.5
10

/LAdc
/LAde
/LAdc
... Adc

20
40

-

-

20
40

60
120

15
30

-

-

10
15

-

-

-

lEBO
IE,o
hFE
hFE
hFE
hFE

UNITS

-

ICEX
ICEO

MAX.

-

-

-

/393
Sub-

METHOD

A-I

2071

See Mechanical Data

A-2

3011

Ic

A-2

3041

A-2

3041

A-2
A-2

3061
3061

VEB 0.5Vdc, Condo A
VCE 80Vdc
VCE 120Vdc
Cond.D
VCE 45Vdc
VCE 60Vdc
VEB = 6Vdc, Condo D
VEB 8Vdc, Condo D

A-3

3076

=
=
=
=
=
=
Ic = lOOmAdc, VCE =2Vdc

A-3

3076

Ic

=1Adc, VCE =2Vdc

A-3

3076

Ic

=2Adc, VCE =2Vdc

A-3

3076

Ic

=5Adc, VCE =5Vdc

3071
3071
3066
3066

0.25
0.5
1.2
1.4

Vdc
Vdc
Vdc
Vdc

A-3
A-3
A-3
A-3

160
150

MHz
pf

A-4
A-4

0.3
1.2

... S
... S

A-4
A-4

Adc
Adc
Adc

B-6
B-6
B-6
B-6

18S
120

-

mAdc
mAde

Es/b

4S

-

mj

B-7

Eslb

180

-

mj

B-8

-

SO
50

... Ade
... Ade

10

-

VCE!"'I
VCE!"'I
V" 1"'1
VBE!"'I
fr
Cob
too
toff

Islb
Islb
Islb
Islb

ICEX

hFE

-

-

0.6
0.7
40

-

3
1
0.4

A-5

-

MIL - STD - 750

group

TEST CONDITIONS

=50mAdc, Condo D

•

1Adc, IB =O.lAdc
=2Adc,I B=O.2Adc
=1Adc, IB =O.lAdc
=2Adc, I, =0.2Adc
3306 Ic =O.1Adc, VCE = lOVdc, f =20MHz
3236 VCB = lOVdc, IE = 0, f =1MHz
- { Ic = 1Adc, I" = -IB2 =O.1Adc
Ic =
Ic
Ic
Ic

-

See Switching Speed Circuit

=
=
=

=
=

3005
3005
300S
300S

VCE 5Vdc, t
60sec, TC = 1OO·C
VCE 15Vdc, t = 60sec, TC 100·C
VCE 37Vdc, t 60sec, TC 100·C
t 60sec, TC = 100·C
VCE = 60Vde
VCE 80Vdc

3041

VEB = O.SVde, Condo A, TA
VCE = 80Vdc,
VCE 120Vde,

=
=

=
=
- Ic =3Adc, L =10mH,
Base Open
- Ic =3Adc, L =40mH,
V clamp = Rated VCBO

=150·C

=

A-S

3076

Ic

=1Adc, VCE =2Vdc, TA =-SS·C

Pulse width = 300/LSec, duty cycle,;; 2%.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

63

PRINTED IN U.S.A.

JAN, JANTX, & JANTXV 2N3418-2N3421

Forward Bias
Safe Operating Area

Unclamped Reverse Bias
Second Breakdown

10

~

....
z

10

~

2

UJ

'"'"
~

tl

....'"
tl

UJ

0

I'-..

~" k-

Te

=1OO'C

Z

;:

1"-

~

I

.05
2N3418,20-1-I

= F!!

.02

2
Ve • -

181-82-10

;q;~ ~

"'-

"

.1
.05

..J

I

.01

~

\

.2

TC=lOO'C
_ _ Ie

<$'.,
"$0

tl

0

2N3419,21

.5

tl

!:
.02

\

UJ

.1

.2

1

~"

:g

tl

I

\

2

r::

~'"""\1\1\
1"\

.5
.2

"

.~

/

M

\

5

=

D.C.

0

...I
...I

=1

PUlsl Width
1mS Duty cycle
50%

~~.:::::-

~
"
~
-410'

-

;---

.01

5
1020
506080
COLLECTOR TO EMITTER VOLTAGE

1

2
Ie -

Reverse Bias
Safe Operating Area
Clamped Inductive Switching

3

4

5

COLLECTOR CURRENT (AI

D.C. Current Gain Vs. Collector Current
180

10

VeE =2V

160
TJ ';; 2OO'C

~

....Z
~

2.0

'"

~~

1.0

UJ
De
De

100

tl

80

cj

ci

0.5
2N3418,20

I

I

-I--

2N3419,210.2

f-'

I

60

r:

40

.....
V

~

.05

Q:
:>

25'C
Ie

UJ

0

t--5~~
-1 __

.5

COLLECTOR CURRENT (Al

r--I--L

o

tl
W

~ -.5

/V
.1

.01
.005 .01

\

-- ~
.

UJ

/

>

.02

"

UJ

.2

.05

-

I- -

25'C

1.5

..!::! +.5

.5

«

...I

-

~

z

l..----'

V" (sat)

'"

150'C \ -

~
~ 1.0 f--f---+--f--+-+-

1'=10

I-

~

Saturation Voltage
Temperature Coefficients

10

~

"

r ......

~5;-

.2

.1
Ie -

Saturation Voltage

=

2N3418, 19

25'C

f--

o
51020
506080
Ve,-COLLECTOR TO EMITTER VOLTAGE (V)

TJ

--r-

20

o. 1
1

-- -

2N3420, 21

~

f-

I~

J.---

V

~

tl

.2

'z"

120

I-

tl

o

140

:.:

~

De

z

.... y

\,at)

0.

i:i -1.5 f----t-..4..

H:=r
.02
Ie -

.05

.1

.2

f--f-+-+-t--+-+-tr-

~
w

'" -.1

l-

I
~

-.2

f-""i"==-f--t--+-+-p,,"

.5
Ie -

COLLECTOR CURRENT (A)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

64

COLLECTOR CURRENT (AI

PRINTED IN U.S.A.

JAN, JANTX, & JANTXV 2N3418-2N3421

Switchi ng Speed
Characteristics

Switching Speed
Characteristics
10
Vee

= 2QV

""'u
~

~

.2

"u

t rise lS0"C

0

~

W

:;:

8to,
;'''e t·

0

~

eu
g

eu
g

t rise 250C

'":;:;:::

.05

;:::

.I

~
~- k

~

.1

I

=1 20V
Ie 1"=1 182 =10
Vee

.5

f--

.5

'"-

Fall lime If 150'

'[
.02

.2

Fall time t f 25°
.5

.5
Ie -

01

.5

6.5
0.2

'"u;~

~~

~fa
"0.
w:;:

....
!::!.,J.,J

:;::;:

C:c:
Ow

ZJ:

.2

~

0;1.-

~~ '--.1
.05

-

t;; ;? ~

:-20.3Vdc

r::::: ~

20!1

~

.02 / ' /

; 16V

./

IV

.01
9 J -C[t)

1>-

...=-

-

Switching Speed Circuit

.-

-::r- ~ingle pUI~e
o.~

1
Ie - COLLECTOR CURRENT (A)

COLLECTOR CURRENT (A)

Thermal Response

>Z

I

.1

.01

•

.005

= r!il • ~J-C

Pulse width
Duty cycle

11 I

=-'

2115
2(1/0

Source Impedance

fl J •c - 6.7'C/W

.002

I I D---4I..--.llJv\,.--+--I
L

J

50~~

I

6.4Vdc

.001

.01 .02 .05.1

.2

.5
1 2
5 10 20
TIME (milliseconds)

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

50 100 200 500 1000

65

PRINTED IN U.S.A.

POWER TRANSISTORS

JAN,
JAN,
JAN,
JAN,

5 Amp, 80V, Planar NPN

JANTX,
JANTX,
JANTX,
JANTX,

& JANTXV 2N3996
& JANTXV 2N3997
& JANTXV 2N3998
& JANTXV 2N3999

FEATURES

DESCRIPTION

•
•
•
•
•

Unitrode power transistors provide a
unique combination of low saturation
voltage, high gain and fast switching. They
are ideally suited for power supply pulse
amplifier and similar high efficiency power
switching applications.

Meets MIL-S-19S00/374'
Collector-Base Voltage: Up to lOOV
D.C. Collector Current: SA
Fast Switching
Beta Guaranteed at 3 Current Levels

ABSOLUTE MAXIMUM RATINGS
JAN,
JAN,
JAN,
JAN,

Collector-Base Voltage, VCBO .
Collector-Emitter Voltage, VeER
Emitter-Base Voltage, VEBO .
D.C. Collector Current, Ie .
Power Dissipation
25°C Ambient .
100°C Case.... . ......................... ..
Operating and Storage Temperature Range .. .

JANTX,
JANTX,
JANTX,
JANTX,

& JANTXV 2N3996
& JANTXV 2N3997
& JANTXV 2N3998
& JANTXV 2N3999

... 100V
.. ....................................... 80V
.... 8V
.... ......
......
5V
.......... 2W
..... 30W
.. ......... -65°C to 200"C

MECHANICAL SPECIFICATIONS
JAN, JANTX, & JANTXV 2N3996, 2N3997

TO·111

JAN, JANTX, & JANTXV 2N3998, 2N3999

TO-59

Dimensions in inches.

ass

'010

[:~~ HEX

J

.fI .- - 1=: : O_.~ ,::,~ I"'
.318

--.,..--,........"

.185

BASE

COLLECTOR-

Dimensions in inches.

[ill]
66

_UNITRDDE

JAN, JANTX, & JANTXV 2N3996, 2N3997, 2N3998, 2N3999

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)t
2N3996 *
2N3998*
Test

Symbol

Min.

2N3997*
2N3999*

Max.

Min.

Max.

Test Conditions

Units

hfE

30

-

60

-

D.C. Current Gain (Note 1)

hfE

40

120

80

240

D.C. Current Gain (Note 1)

hfE

15

-

20

D.C. Current Gain, -55'C (Note 1)

hfE

10

-

20

-

Collector Saturation Voltage (Note 1)

Ve, (sat)

Collector Saturation Voltage (Note 1)

Ve, (sat)

2

V

Ic=5A, 1.=500 mA

Base Saturation Voltage (Note 1)

V" (sat)

0.6

1.2

0.6

1.2

V

1c=IA, 1.=100 mA

Base Saturation Voltage (Note 1)

V" (sat)

-

1.6

-

1.6

V

le=5A, 1,=500 mA

Collector-Emitter Breakdown Voltage
(Note 1)

BVe,o

80

-

80

-

V

Ic=5O mA, 1.=0

0.5

I'A

V,,=5V,le=0

10

I'A

V,,=8V, 10=0
Ve,=90V, R,,=O

D.C. Current Gain

-

0.25

-

-

2

-

Emitter-Base Cutoff Current

leBO

-

0.5

Emitter-Base Cutoff Current

lEBO

-

10

Collector Cutoff Current

ICES

-

5

Collector Cutoff Current

IeEO

-

10

Collector Cutoff Current, 150'C

ICES

-

50

Collector Capacitance

C,b

-

150

A.C. Current Gain (High Frequency)

h,.

Switching Speeds

Turn-on Time
Turn-off Time

to,
toff

-

4

-

0.3
1.5

0.25

-

4

-

-

10=50 mA, Ve,=2V
le=IA, Vc,=2V
1c=5A, Ve,=5V

-

Ic=IA, Ve,=2V

V

lc=lA, 1.=100 mA

5

I'A

10

I'A

Ve,=60V, 1.=0

50

~

Vc,=90, R,,=O

150

pf

Ve.=10V, 1,=0, f=1 MHz

-

-

le=IA, Ve,=5V, f=lO MHz

0.3
2

1'5
1'5

le=IA
,=100mA, , b2 = -100 mA

,b

Notes:
*Also applicable to
JAN and JANTX versions

1. Pulse Length=300.u5jduty cycle ~2%
t All Values in This Table are JEDEC Registered

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

67

PRINTED IN U.S.A.

D

JAN, JANTX, & JANTXV 2N3996, 2N3997, 2N3993, 2N3999

Forward Bias
Safe Operating Area
10

~

2

I-

Z

OJ

'"'":::>
u
'"0
~

....l
....l

r

'"

" " Te100'C

i'-........... I>-.
V

.5

t. = Ims
ty Cyr
- f - - SO%

.2

- I - - t. =

..

\

.~

)< r\.\ ~
\(\

J. /

0.5 ms
10% Duty Cycle

.1 _ . '

0

10

..........
D.C.

Unclamped Reverse .Bias
Second Breakdown

_u

.5

\ 1'\

\

t:

~"

\

g

V" ~

z
i:!:

u
:::>
0

I

Te = l00'C
Ie
I" =-1"=10

"t::-,.

.2

I

~~

~alOe"

~~

1":'91-

.1

:!:

.05

1

1"\ !\~~,~ t

OJ

u

u

I

2

'\ \
\ 1\

I.........

.05

....l

.02

..tv

i"---

~ ......... r--,
.........

i"---

.02

.01
1

2

.01

5
10
20
SO 80
COLLECTOR TO EMITTER VOLTAGE (V)

VeE -

o

1

2

3

4

Ie - COLLECTOR CURRENT (A)

Reverse Bias
Safe Operating Area
Clamped Inductive Switching

D.C. Current Gain
2N3996-2N3998
SOO

20

I
200

~
I-

Z

OJ

'"'"
u
'"~

z

;;:

5
TJ

"

CI
I-

200'C

:::>

V

OJ

'"u'":::>

2

50

u

OJ

....l
....l

I

l

.5

20

I'"I'- ~ ~

T =ISO'C
J I

1
LV ~2S'CI

~

0

0

..!'

V

100

Z

u

I

_l

Ve .=5V

10

r- r----

TJ~-55lc

V

~~

r\

10

.2
1

.01

2
5
10
20
5080
Ve • - COLLECTOR TO EMITTER VOLTAGE

.02

.05
Ie -

D.C. Current Gain
2N3997·2N3999
500

z
;;:
CI
I-

100

V
./

SO

./

Z

OJ

'"':::>"
u
~

I

~

J Jso.c
I
1'-TJ =2S'C

V

I1J =

,..,-

10

Saturation Voltage

I

I-"'T

,/"

S

10

l

200

.1
.2
.5
1
2
COLLECTOR CURRENT (A)

~SS'C1'--

TJ =2S'C

5

1"---

OJ

r-. ............ '\

""

20

.s:;

10

/

1·=To

2

"'"C\

J

Ie

Vce=5V

CI

1.0

g

.5

~

.JV

VIE (sat)

L

z

o

~
1,,\

~:::>
~

.2
Ve • (sat)
1

/

./

...... /

.05

.02

,/

V

~

.01
.01

.02

.05 .1
.2
.5
1
2
Ie - COLLECTOR CURRENT (A)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173. TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

5

10

.01

68

.02

.0S.1
.2
.S
1
2
Ie-COLLECTOR CURRENT (A)

10

PRINTED IN U.S.A.

JAN, JANTX, & JANTXV 2N3996, 2N3997, 2N3998, 2N3999

Saturation Voltage
Temperature Coefficients

Switching Speed
Characteristics

2

P

;-

1.5

en

1.0

~
I-

~=10
I,
.p.e

Z

'"ti

\0 "\:

.5

~

ii:

t>'lo' 'j;

u.

'"U

0

'"0:

-.5

~

I-

-1

'":;:
'"l-

-1.5

I

-2.0

'"c

"C

I---? ~

---

I

.2

0

u

'"

:;:

a-

.1 I - - - 2S'C I

:g

.OS

;::

'/.s'CV
ss'C\OV
{),'1,.-

~

F1

r--

.02

-2.5
.02

.05 .1
.2
.5
Ie - COLLECTOR CURRENT (Al

5

10
-

I

.5

r-r

-I---

~'C
I I
10

=

150'C

ill

~
.5

f.-.--

(flu
Zz

~C3

V
l~~ ~ xV

2S'C

-I---. I'-.

Fall Time 2S'C

;::

'"

.2

---~

1-",

"':;:
N_

::;..J .02
««
:;::;:
0:0:

0",
ZJ:
II-

"

--n;:-

r--

V

?

~

I--- f.-::

~ /"" ~ ~

.05 _.02

On.

..... ~

V

.1

-- -- ~-~fa~
I-"'

.1

-",

--Storage Time ............ ~

:g

IZ

0.5

r-- r-- L

.2

"C
C
0

.2

2S'C

Delay Time

Thermal Response
Duty cycle

Ie

I" = 1182

'":;:

V-

~~

Ie - COLLECTOR CURRENT (Al

I

Vee=20V

~

r--

~

~

1

10

Switching Speed
Characteristics

u

---

--

./

.01
.01

'"

I

Rise'Time, tr

~
u

x'2-"AJ

~

Ie
181=182=10

ill

I
!>~

n.

>


Vee =20V

:;

/"

~ t:::: V

/

0J-e/fl

Single Pulse

==

'It} • 0J-C

.01
eJ_e = 3.3'C/W
.005
.002

.1
.001
.01

10
Ie - COLLECTOR CURRENT (Al

.02 .05

.1

.2

.5

1

2

10 20

50 100 200 500 1000

TIME (milliseconds)

Switching Speed Circuit
+20.3Vde

20!1

+16Vno-~~JV\I\r-__~__~
-IV
Pulse width = 2f1s
Duty cycle := ~ 2%
Source Impedance

=

50~?

-6.4Vde
NOTES:
1. Ie -= lA, IBI :;:::: -182 -= IOOmA
2. The values of collector current and base
current are nominal. The actual values wUl
vary slightly with transistor parameters.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

69

PRINTED IN U.S.A.

•

POWER TRANSISTORS

JAN, JANTX & JANTXV 2N4150

10 Amp, 70V, Planar NPN

FEATURES
• Meets MIL-5-19500/394
• Collector-Base Voltage: up to lOOV
• Peak Collector Current: lOA
• Fast Switching
• Low Saturation Voltage

DESCRIPTION
Unitrode power transistors provide a
unique combination of low saturation
voltage, high gain and fast switching. They
are ideally suited for power supply pulse
amplifier and similar high efficiency power
switching applications.

JAN & JANTX
2N4150

ABSOLUTE MAXIMUM RATINGS
Collector-Base Voltage, VCBO
. . . ............ 100V
Collector-Emitter Voltage, VCER .
. . . . . . ............ 70V
Emitter-Base Voltage, VEBO ................................... .
................................. SV
Peak Collector Current, Ic .
....... ........
. ........ lOA
Power Dissipation
2S'C Ambient
.......... ... 1.SW
lOO'C Case
.. ...... ............... ... ....... ......... ............ .......... .... ............ 5W
Operating and Storage Temperature Range. ......... ............................ -6S'C to 200'C

MECHANICAL SPECIFICATIONS
JAN, JANTX " JANTXV 2N4150

TO-5

.370
.335
BASE

............,---- COLLECTOR

.335
.305

Dimensions in inches.

70

OJIJ
_UNITRDDE

JAN, JANTX & JANTXV 2N4150
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)

Test

Symbol

Min.

Max.

MIL·STD·750

/394
Sub
Units group Method

Visual and Mechanical

Test conditions

A·1

2071

Vdc

A·2

3001

Ic = 10uAdc; Condo D

Vdc

A·2

3011

Ic = O.1Adc; Condo D
IE = lOuAdc; Condo D

See Mechanical Data

25'C
Coliector·Base Breakdown Voltage

BVcBO

100

Coliector·Emitter Breakdown Voltage (Note 1)

BVCEO

70

-

Emitter·Base Breakdown Voltage

BV EBO

7

-

Vdc

A-2

3026

Collector-Emitter Cutoff Current

ICEO

"Adc

A-2

3041

VCE = 60Vdc; Condo D

I CEX

-

10

Collector-Emitter Cutoff Current

10

ItAdc

A-2

3041

VCE = 100Vdc, VEB = 0.5Vdc; Condo A

Collector-Base Cutoff Current

leBo

-

0.1

!lAde

A-2

3036

Vcs = 80Vde; Condo D

Emitter·Base Cutoff Current

lEBO

-

0.1

ItAde

A-2

3061

VEB = 5Vde; Condo D

D.C. Current Gain (Note 1)

hH

40

120

A-3

3076

Ie = 5Ade, VCE = 5Vde

D.C. Current Gain (Note 1)

h"

10

-

A-3

3076

Ie = lOAde, VCE = 5Vde

D.C. Current Gain (Note 1)

Ic = lAdc, VCE = 5Vdc

hFE

50

-

-

A-3

3076

Collector Saturation Voltage (Note 1)

VCE (sat)

-

0.6

Vdc

A-4

3071

Ic = 5Adc, IB = O.5Adc

Collector Saturation Voltage (Note 1)

VCE (sat)

-

2.5

Vdc

A-4

3071

Ic = lOAdc, I, = lAdc

Base Saturation Voltage (Note 1)

VBE (sat)

Vdc

A-4

3066

Ie = 5Adc, IB = O.5Adc; Condo A

VBE (sat)

-

1.5

Base Saturation Voltage (Note 1)

2.5

Vdc

A-4

3066

Ic = lOAdc, Is = lAdc; Condo A

A.C. Current Gain

h,.

40

160

-

A-4

3206

Ie = 50mAdc, VCE = 5Vdc, f = 1KHz

Gain-Bandwidth Product

f,

15

75

MHz

A-4

3306

Ie = O.2Adc, VCE = lOVdc, f =lOMHz

Output Capacitance

Cob

-

350

pf

A-4

3236

VCB = lOVdc, IE = 0, f = IMHz

Thermal Resistance

°J_e

-

20

°elw

C-l

3151

Delay Time

td

-

50

ns

A-4

Rise Time

t,

500

ns

A-4

Storage Time

t,

-

1.5

p's

A-4

Fall Time

t,

-

500

ns

A-4

-

Switching
Speeds

Vee = 20V

(

le=5A
I" = I", I" = O.5A

100'C
Forward-Biased Second Breakdown

IslB

5

-

Adc

B-6

3005

VeE -lVdc, t = 60Sec,

Forward-Biased Second Breakdown

IslB

70

-

mAdc B-6

3005

VeE - 70Vdc, t

Unclamped Reverse Biased Second Breakdown

Esl,

12.5

-

mj

B-7

-

Ic = 5Adc, L = 1mh

Clamped Reverse Biased Second Breakdown

EslB

200

-

mj

B-8

-

Ic = 5Adc, L = 40mh, V,',mp = 70V

I CEX

-

100

p.Adc

A-5

3041

VCE = 80Vdc, VEB = 0.5Vdc, Condo A

hFE

20

-

-

A-5

3076

Ic = 5Adc, VeE = 5Vdc

=

60Sec,

15O"C
Collector-Emitter Cutoff Current
-55'C
D.C. Current Gain (Note 1)

Note: I. Pulse length

= 300!,s, duty

cycle «2%.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

71

PRINTED IN U.S.A.

JAN, JANTX & JANTXV 2N4150
Unclamped Reverse Bias
Second Breakdown

Forward Bias
Safe 0 perati ng Area
10

10

I

~"" ~ ./~o~Sec,
~
~
2

~
I-

z

"'"

DCI

'"

II:
II:

:::>

u .s

g

~"

I A'" t'-..

8

.1

I

_0. 05

.02 - l e =100·C

.S

w

...... r---..

"'"

lOOJ.(Sec, 10% Duty Cycle /

g

1\

.~

i"-

.2

:::>
o

.1

I

.05

Z

1

\

I"-

I

"'- "-.!!ase op~n

I-+-

""

I I J
V,,=-O.5V

I'k

r-...... V,,~~4;- r--......

r--... .........

.02
.01

2
5
10
20
SO 70
VeE-COLLECTOR TO EMITTER VOLTAGE (V)

Reverse Bias
Safe Operating Area
Clamped Inductive Switching

o

1

2 3 4 S 6 7 8 9 10
Ie - COLLECTOR CURRENT (A)

SOO
L=st

10r---+-----t_--+---_r----~_r~

~

200

z
;;:
~

!zw
II:
II:

100

z

:::>
u

~

r-

D.C. Current Gain

~r-~~--~r---'---'-----'-'-,

II:

I _

'11-- 1B2-'c/'o

..J

I

.01

~

'"

z

ti

1~~l~C

1\

r'\.

u

.2

..J
..J

"

\\ 1\

"

~~

Ims~c, 10% D~tY CYCI~

II:

~

~

1\

r-

~DutYCYCle

W
II:

'"u:::>

2r---~----~--_t----t_----t_~

50

I

8

~

I

20

--",

~J=2~3-I -

~~

ti
ci

..J
..J

IJ~ I -

-........

1\
r--

r-

.c:

_u.sr---~----4---_t----t_----t_+_~

10

S

.01

.02

Saturation Voltage
Temperature Coefficients

Saturation Voltages
10
5

r- ~ j-- 2slc
18=IC/lO

-

V1E(SAT)

~

w .5

~ .2
g

.1

-~

.os
.02

.01
.01

.02

L

/'"

~

2

~

1.S

I~/I.do

~S·C lo 1SOlC/ /

I!!z

o

E
W
8

/

W
II:

:::>

/

!;;:

II:
W
0.

- --- - - -

.S

S

10

72

V

~·C to ISO·C

-1

l:1.V BE

-2
-2.S
.01

....t

SS·C to 2S·C

-.s

~-l.S

I
~

V

0 -!;Ve ,

l-

/

//

w

.-

.0S.1
.2
.S
1
2
Ie - COLLECTOR CURRENT (A)

UNITRODE CORPORATION. S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 9S·1064

10

5

.OS .1
.2.S
2
Ie - COLLECTOR CURRENT (A)

VeE - COLLECTOR TO EMITTER VOLTAGE (V)

.02

-

V

/.

~~ r-I-'

-il

.0S.1
.2
.S
I
2
Ie - COLLECTOR CURRENT (A)

10

PRINTED IN U.S.A.

JAN, JANTX & JANTXV 2N4150
Switching Speed
Characteristics

Switching Speed
Characteristics
Vcc

.5

8

1

-g'"

.2

20V

5

='1' '

~ .05

;:

~elay Time,

2S'C

l

~ .5

td

~~ t:--

;:

I= 20VJ

I" = -I"

~ ~
g1

2S'C

.02

f--

'"

;:t: ~ :::::

I

.1

(J

Vcc

'C
C

RiS~ Time, tt

8

~
l

10

J

f

IC/"

~rage

-

Time, ts

I--r-...

I---r--.. r--..... ::::: K vJ..-

Fall Time, t f

2S'C

.2 f-2S'C

I--1,'C

.01

Duly Cycle
.5
I-

.2

ZU

~~

.1

faN:;;~

.05

:ij
'"
",:;;

.02

1-0

~:;

oei
z J:

~F::

.01

II-

.2

~

-

.5

-:::: --;:;~ ~
k

~
.oyV ./
.0

Switching Speed Circuit

+20V

e- e- ~ §§ ~ ~

I-

.,..- /

10

5

Ic - COLLECTOR CURRENT (A)

Thermal Response

UJ

~

2

1

Ic - COLLECTOR CURRENT (A)

iii ...

-'"
?

.1
10

2

1

Z

V

~ f---~ ~

::::::
~

411
SOV

~V

=

5011

9 J _c (l)
r(l) • 8 J _C
8 J _C 20'C/w

=

~pulse

_

10 ~s

1211

+> .005
r::
.002

-SV

.001
_01 .02 .05 .1 .2

.5 1 2
5 10 20
TIME (milliseconds)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

SO 100 200 SOO 1000

73

PRINTED IN U.S.A.

a

JAN, JANTX, JANTXV 2N5038
JAN, JANTX, JANTXV 2N5039

POWER TRANSISTORS
20 Amp, 150V, Double Diffused
NPN Mesa
FEATURES
• Collector-Base Voltage: up to 150V
• Peak Collector Current: 30A
• ton Time ~SOO nS
• toff Time ~2 ..S
• Qualified to MIL-S-19500/439

DESCRIPTION
These MIL approved double diffused
glass passivated mesa power transistors
combine fast-switching, low saturation
voltage and rugged Es/b capability. They
are designed for use in switching
regulators, converters, inverters and
switching-control amplifiers.

ABSOLUTE MAXIMUM RATINGS

JAN, JANTX
.JANTXV
2NS038

JAN, JANTX
• JANTXV
2NS039

125V
Collector-Base Voltage, Vao ........................................................
..................................... .1S0V
......... 9SV
Collector-Emitter Sustaining Voltage, VCER (SUSI (1) ................... ..... ................
nov
........................... .7SV
VCEO (SUSI ............................. ..................
. ......... 90V ..
Emitter-Base Voltage, Vuo .
.............. ............
7V .... ............ .
7V
............... 20A
Collector Current, Ic continuous ...............................................
.................... 2OA ... .
........ 3OA
Collector Current, ICM peak ............................................................
... 30A.
....... ............. SA
Base Current, 18 continuous ...........................
. ............... SA
... 140W
Power Dissipation, 2S'C Case ... ........................
..140W..
.. -65 to 200'C .....
Operating and Storage Temperature Range .................. .
(1) With R8E ~ 500

MECHANICAL SPECIFICATIONS
NOTE:

JAN, JANTX, JANTXV 2N5038, 2N5039

..... d. may be soldered to within
1/1&" of base provided temperaturetime expo.ure is less than 260'C
for 10 .econd ••

·fthp
~oo
C 0

9/79

~~/J
I,~

1

1,\
j

N

M
j

~,
I
0

E~
F

,-

ins.
BASE
EMITTER

A

.875 MAX.

B

.135 MAX.

C

.250-.450

0
E

.312 MIN.

0.79 MIN .

.205--.225
.420-.440
. 151 .1610IA .

0.52-0.57

,188 MAX. RAD.
.525 MAX. RAD.

0.48 MAX. RAD.
1.33 MAX. RAD.

F

L

mm
2.22 MAX .
0.34 MAX.
0.64-1.14

J
K
~

M
N

P

.6S5-.675
1.177 1.197
.038 .043 orA.

TO-3

1.07 1.12
0.38-0.41

).6!;-I.7I
2.99-3.04

0.10 0.11 OIA .

[ill]
74

_UNITRODE

JAN, JANTX & JANTXV 2N5038
JAN, JANTX & JANTXV 2NS039
Electrical Specifications (at 25'C unless noted)
2N5038
Test

D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)

Symbol

hFE
hFE

D.C. Current Gain -65'C

hFE

Collector Saturation Voltage
(Note 1)

VCE! ..I)

Collector Saturation Voltage
(Note 1)

VCE! ••I)

Base-Emitter Voltage (Note 1)

VIE

Collector-Emitter Sustaining
Voltage (Notes 2, 3)

2N5039

MIN.

MAX.

MIN.

MAX.

-

-

30

150

SO

200

-

-

-

-

20

-

20

10

-

2.S
1.8

-

VCEO!su.)

90

-

Collector-Emitter Sustaining
Voltage (Notes 2, 3)

VCEX!su.)

ISO

Collector-Emitter Sustaining
Voltage (Notes 2, 3)

VCER!su.)

110

Emitter-Base Voltage

VEIO

Collector Cutoff Current
Collector Cutoff Current
Collector Cutoff Current

Iclo
'CEO
IcEX

10

1.0

-

Units

Test Conditions

-

Ic = O.S, VCE = SV

-

Ic = lOA, VCE = SV

-

Ic = lOA, VCE = SV

1.0

V

Ic = lOA, II = LOA

-

V

2.S

I c =2A,VcE =SV
Ic = 12A, VCE = SV
Ic = 12A, VCE = SV

Ic = 12A, II = 1.2A

a

I c =20A,I.=SA

1.8

V
V

Ic = 10A"Vcc =SV
Ic = 12A, Vcc=SV

7S

-

V

Ic = O.2A, L = lSmH

-

12S

-

V

Ic = 0.2A, L = 2mH
VIE = -1.SV
11 =0
RIE = loon

9S

RaE = SOn,Ic =0.2A,L = lSmH

7.0

-

V

7.0

-

-

-

-

2S

-

2S

-

S.O

-

10

S.O

-

Collector Cutoff Current, lS0'C

'CEX

Emitter Cutoff Current

lEBO

Magnitude of Small Signal
Forward - Current Transfer
Ratio

Ihi. I

12

48

Collector Capacitance

Cob
R6JC

-

SOO

Thermal Resistance:
Junction-to-Case

10

1.25

10

S.O

10

V
mA
mA
mA

IE=2SmA
Vea = 12SV
VCI = lS0V
VCE=SSV
VCE = 70V
VCE = 8SV, VIE = -1.SV
VCE = 100V, VIE = -l.SV
VCE = 8SV, VIE = -1.SV

-

mA

S.O

mA

VIE = -SV

12

48

-

VCE = 10V, 'c

-

SOO

pF

VcB =10V,f=lMHz

1.2S

'C/W

VCE = 100V, VIE = -l.SV

=2A, f = SMHz

VCE = 10V,I c = lOA

Note.
1. Pulse length = 250 #S; duty cycle <;;1%.
2. Sustaining Voltage. Measured at a high current point where
Voltage clamped at maximum collector-emitter voltage.
3. Unclamped Inductive Load.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

collector~emltter

75

voltage is lowest. CUrrent pulse length === 50 J,tS; duty cycle

~1%.

PRINTED IN U.S.A.

JAN, JANTX & JANTXV 2N5038
JAN, JANTX & JANTXV 2N5039

Electrical Specifications (at 25'C unless noted)
Symbol

Test

MIN.

2N5038
MAX.

MIN.

2N5039
MAX.

Test Conditions

Units

-;::;-;;-:;;:;--

Es/b
clamped

Second Breakdown Energy

14

-

14

5.06

-

5.06

5.0

-

5.0

0.9

0.9

-

mJ

Es/b
unclamped

-

Forward Bias
Second Breakdown
Collector Current

I sib

Switching Speeds
Turn-on Time

t.",

-

0.5

-

-

"S

Turn-on Time

ton

-

-

-

0.5

"S

Turn-off Time

toll

-

-

-

2.0

",S

Turn-off Time

toll

-

2.0

-

-

",S

-

A

Ie - 20Adc, L _ 70,uH, O.W
Vee 75V, 90V
RL 3.75n, 4.50

=
=
Ie =4.5Adc, L =500",H, O.W
Vce =10Vdc
VCE =28V, t =15, non-rep.
VeE =45V, t _ 15, non-rep.
Ic_12Adc
IBI
IB2 1.2Adc
Vce 30Vdc ±2V

= =
=
Ic- lOAdc
IBI = IB2 =1Adc
Vec =30Vdc ±2V
Ie =10Adc
IBI = IB2 =1.0Adc
Vce =30Vdc ±2V
Ie =12Adc
lSI = 182 =l.2Adc
Vce =30Vdc ±2V

Switching Time Test Circuit

-4±lV

3.31l (2N5038)
4.0D (2N5039)
lW

Vee = +30V ±2V

3.3D (2N5038)
4.01l (2N5039)
lW
Scope
(Note 2)

Pulse In
(Note 1)

9±lV
Input Waveform
10%
OV - - - - I

10%

. Output Waveform

Notes
1. The rise time (t,) and fall time (tf ) of the applied pulse shall be each :S:;;20 nanosecondsj duty cycle ~2%j generator source impedance shall be

50 ohms; Pulse width = 20 ILS
2.

Output sampling OSCilloscope:

Zin

~l00K

ohms; Cin ':::;;;50pfj rise time ~20 nanoseconds.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

76

PRINTED IN U.S.A.

JAN, JANTX & JANTXV 2N5038
JAN, JANTX & JANTXV 2N5039

Forward Bias Safe Operating Area
for 2N5038 and 2N5039

Power Derating
100

""
t-....

~

1"\

80

a:
0

I0

«

"-

";::Z

60

'\.

I

~(/~

~"'.s'", -...:."~o
r-...

~J

~«
~~

«
a:
w

c

40

I-

Z

~ESIRED

W

a:
a:
::>

2!5'C SOAR CURVE
DASH LINES ON SOAR CURVES ARE EXTENSIONS OF

'\

1,\

DISSIPATION LIMITS FOR T£MPERATURE DERATING

0.3

'----'-'--Iw.I--'-'Iu.JII'---'-I---'-------'------'I-'--'-~__'
10

2
Vc. -

20

50

PURPOSES.

o

100 200

o

40
Te -

COLLECTOR VOLTAGE (V)

Saturation Voltages

"

OISSI~A''''\

AT
OPERATING VOLTAGE, DERATE
TIOH CURRENT LIMIT AND II • CURRENT LIMIT FROM

20

<)

~

120
160
CASE TEMPERATURE ('C)

200

80

DC Current Gain
500

II
200

z
;;:

150'C

" 100

I-

2S'C

Z

W

g:

50

_SS'C

::>

I-- r-

<)

0.2

/v

g
~...

20

VeE
10

0.2

0.5
Ie -

10

~

-I-

VCE[SAT)

I-+-H-t++tt-Hr7"17"rl/¥f-+t-i+-+--j

20

0.2

\

0.5

COLLECTOR CURRENT (A)

Ie -

~

= 2V
10

20

COLLECTOR CURRENT (A)

Turn-Off Time

Turn-On Time
1000

500

200

'"
oS
w 100

::;:

"

r/

"I,

"

-

Vee = lOV

-

........

I B1 =I B2 =-'C/IO
T J = 25'C

t:' r--.

r-.....

'"
.3

t,

......

w 0.5
::;:

;::

;::

50
I
20 10
0.2

"

0.2

N

I");-..

Vee=30V
0.1

'Bj=l c/IO
T J = 25'C

I I I III
0.5
Ie -

.05
10

20

0.2

COLLECTOR CURRENT (A)

UNITRODE CORPORATION. 5 FORBES ROAD.
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

",

77

0.5
Ie -

1
2
5
10
COLLECTOR CURRENT (A)

20

PRINTEO'"'IN U.S.A.

•

2N5487
2N5488

POWER TRANSISTORS
5 Amp, 150V, Planar NPN

5487·1
5487·3
5488·1
5488·3

FEATURES

DESCRIPTION

•
•
•
•
•
•

Unitrode power transistors provide a
unique combination of low saturation
voltage, high gain and fast switching. They
are ideally suited for power supply pulse
amplifier and similar high efficiency power
switching applications.

Collector-Base Voltage: up to 150V
D.C. Collector Current: SA
Peak Collector Current: lOA
Fast Switching
Low Saturation Voltage
High Gain

ABSOLUTE MAXIMUM RATINGS
2N5487
5487-1
5487-3

Collector-Base Voltage, Veso .
Collector-Emitter Voltage, VeER.
Emitter-Base Voltage, VESO .
D.C. Collector Current, Ie .
Peak Collector Current, Ie .
Power Dissipation
2S·C Ambient . .
lOO·C Case ..
Operating and Storage Temperature Range .

2N5488
5488-1
5488-3

...... 120V................ 150V
...... 120V...
.... 150V

.. av... .. .............. av

........ SA..
........ lOA...

...... lOA
.. ......... lOA

.... 1.2SW...
.............. ISW...

.. 1.2SW
ISW
to 200·C

...... -wc

MECHANICAL SPECIFICATIONS

2N5487 2N5488

Pancake TO·5

.185
.165

,
.370'.335 1

BASE

rm~~
Dimensions in inches.

5487-1 5488-1

TO-5

.370
.335

.335
.305

Dimensions in inches.

[ill]
78

_UNITRODE

2N 5487 2N 5488 5487-1 5487-3 5488-1 5488-3
MECHANICAL SPECIFICATIONS
Low Profile
7/16 Hex

5487-3 5488·3

r--

I

360
340

-..r

225+1.500

.205

1- 110

MIN

1

• 002
017 - 001

jo- 200

I~=d'=~.. .~EMITTER

1IIIIIIIIIIIIIIIIIIIIo::E'::!lr

1O.32'NF~
THREAD

!.. _

DE

'

BASE

COLLECTOR

Dimensions in inches.

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)t
Test
D.C. Current Gain (Note 3)
D.C. Current Gain
D.C. Current Gain (Note 3)
Collector Saturation Voltage (Note 3)
Collector Saturation Voltage (Note 3)
Base Saturation Voltage (Note 3)
Base Saturation Voltage (Note 3)
Coliector·Emitter Breakdown Voltage
(Note 3)
Coliector·Emitter Breakdown Voltage
(Note 3)
Emitter-Base Breakdown Voltage
Collector Cutoff Current
Collector Cutoff Current
Collector Cutoff Current
Collector Cutoff Current
Collector Cutoff Current, 150'C
Collector Cutoff Current, 150'C
C·ollector Capacitance
A.C. Current Gain
Switching
Speeds

Turn-on Time
Turn-off Time

2N5487
Max.
300

2N5488

Symbol
hFE
hFE
hFF
VCE (sat)
VCE (sat)
V'E (sat)
V'E (sat)
BVCER

Min.

Min.

Max.

100
80
25

40
35
15

120

120

BVcEO

80

BVE,o
ICES
ICES
ICES
ICES
ICES
ICES
Cob
h'e

8

8

V
V
V
V

150

V

Ic :::: 10mA, R'E :::: 10 ohms

100

V

Ic :::: 100mA, I, :::: 0

50
75

V
I'A
/LA
/LA
/LA
/LA
/LA
pf

IE:::: lO/LA, Ic :::: 0
VCE :::: 80V, R'E:::: 0
VCE :::: 100V, R'E:::: 0
VCE :::: 120V, R'E:::: 0
VCE :::: 150V, R'E:::: 0
VCE :::: 80V, ROE:::: 0
VCE :::: 100V, R'E:::: 0
Vc, :::: 1OV, IE :::: 0
Ic:::: 200mA, Vc ,:::: 5V, f:::: 10MHz

125
550

ns
ns

0.25
1.0
1.2
1.8

0.1
0.1
10
10
50
75

too
toff

-

Ic _lA, VCE - 2V
Ic:::: SOmA, VCE :::: 2V
Ic :::: 5A, VCE :::: 5V
Ic :::: lA, I, :::: 100mA
Ic :::: 5A, I, :::: 500mA
Ic:::: lA, I, :::: 100mA
Ic :::: 5A, l, :::: 500mA

0.25
1.0
1.2
1.8

4

-

4
125
450

Test Conditions

Units

Ic:::: lA

2N5487 See Fig. 1
2N5488 See Fig. 2

Nates:
1. The device may be switched between maximum rated collector current and maximum rated collector--emitter voltage along a resistive
load line provided the switching time is less than 10 microseconds. Switching at low speed through regions of high instantaneous power
dissipation may cause second breakdown to occur. with consequent damage to the device.
2. Steady state limits based on a maximum junction temperature of 200°C. High pulse power dissipation may cause second breakCllown.

Consult the factory on high power, law duty cycle application.
3. Pulse length = 300 #5; duty cycle ';2%.
tAli values in this table are JEDEC registered.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064

79

PRINTED IN U.S.A.

•

2N5487 2N5488 5487-1 5487-3 5488-1 5488-3

Maximum Safe Operating Area
10

~te=lo~.b

'"

3
....z

'''"""

.5
.37

::>
0

i:!'"

pu\seWid~

'"

1= 100P!-\
Duty Cycle

"

= 10%

"'",-1\
"

!il....
....

0

0

I

.1

:\

\

_u

1\

.025

.01
1

3
10 15
40
80100 150
Vee-COLLECTOR-EMITTER VOLTAGE (V)

Switching Speed Circuit
+30V

Tektronix

541A or
Equivalent

-20V

Figure 1

+30V

25V

3011

-D- ~"
10#5

Tektronix

54IA or
Equivalent

SOil

-20V

Figure 2

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

80

PRINTED IN U.S.A.

POWER TRANSISTORS

2N5552

5552·4

10 Amp, 120V, Planar NPN

FEATURES
• Collector-Base Voltage: up to 120V
• Peak Collector Current: lOA
• Fast Switching
• Beta Guaranteed at 3 Current Levels

DESCRIPTION
Unitrode power transistors provide a
unique combination of low saturation
voltage, high gain and fast switching. They
are ideally suited for power supply pulse
amplifier and similar high efficiency power
switching applications.

II

ABSOLUTE MAXIMUM RATINGS
2N5552
5552-4

Collector-Base Voltage, VCBO
Collector-Emitter Voltage, VCEO .
Emitter-Base Voltage, VEBO
D.C. Collector Current, Ie
Power Dissipation
25°C Ambient
100°C Case
Operating and Storage Temperature Range.

... 120V
...... 80V

..7V
. lOA
1.2SW
SW
...... -WC to 200°C

MECHANICAL SPECIFICATIONS
2N5552

TO·5

Dimensions in inches.

5552-4

TO·5 (Stud)

Dimensions in inches.

[ill]
81

_UNITRODE

2N5552 5552·4
ELECTRICAL SPECIFICATIONS (at 2S·C unless noted)t
Test

Symbol

Min.

Max.

Units

Test Conditions

== 0.5A,

== 2V
== SV

D.C. Current Gain

h"

40

250

-

I,e

D.C. Current Gain (Note 2)

h,[

50

ISO

-

l,e=SA, V"f

D.C. Current Gain (Note 2)

h"

30

-

-

1.,0= lOA, V",::: SV

0.5

V

I,: = SA, I, =0.5A

1.0

V

1,:= lOA, I,. = lA

1.3

V

I,,=SA, I, =O,.SA

Collector Saturation Yoltage (Note 2)

Vee

VCE (sat)

-

Collector Saturation Voltage (Note 2)

VCE (sat)

Base Saturation Yoltage (Note 2)

V'E (sat)

-

Base Saturation Voltage (Note 2)

V" (sat)

-

1.8

V

1,- = lOA, I" = lA

Coliector·Emitter Sustaining Yoltage (Note 2)

BVe"

120

-

V

Ie = lOOmA, RAE = Ion

80

-

V

1,- = 100mA, I,; = 0

V

Ie = 0.2"A, R,o, =

V

If = 101,A, Ie =

itA

Collector-Emitter Sustaining Yoltage (Note 2)

VCi0 (sus)

Collector-Emitter Voltage (Note 2)

BVcES

120

Emitter-Base Breakdown Yoltage

BV[P.Q

7

Collector Cutoff Current

ICES

Collector Cutoff Current, l50·C
Collector Capacitance
A.C. Current Gain
Switching Speeds

Turn-on Time
Turn-off Time

°
°
== °

0.2

ICES

-

0.1

mA

Vcr = l20V, Rei
VCE = 80, R", =0, T = l50'C

Cob"

-

150

pf

VCo = 10, I, =0, f = lMHz

h r,_

3

-

-

Ie = O.5A, Vc:[ = SV f = 10MHz

to"
t, ..

-

100
700

ns
ns

Ie =5A
Ih' = 250ma I,., = - 2S0ma

-

Notes:
1. The device may be switched between maximum rated collector current and maximum rated collector - emitter voltage along a resistive
load line provided the switching time is less than 10 microseconds. Switching at low speed through regions of high instantaneous power
dissipation may cause second breakdown to occur, with consequent damage to the device.
2. Pulse length = 300 I'S; duty cycle <:;2%.
t All values in this table are JEDEC registered.

Switching Speed Circuit
+25V

50V

.051'1

5!l

11
H
lOpS

-25V

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-65-10
TWX (710) 326·6509 • TELEX 95-1064

82

PRINTED IN U.S.A.

2N5658
2N5659

POWER TRANSISTORS
20 Amp, BOV, Planar NPN

FEATURES

DESCRIPTION

•
•
•
•

Unitrode power transistors provide a
unique combination of low saturation
voltage, high gain and fast switching. They
are ideally suited for power supply pulse
amplifier and similar high efficiency power
switching applications .

Collector-Base Voltage: up to 120V
Peak Collector Current: 20A
High Gain
Fast Switching

•

ABSOLUTE MAXIMUM RATINGS
2N5658
2N5659

Collector-Base Voltage, VCBO
Collector-Emitter Voltage, VCEO
Emitter-Base Voltage, VEBO
Peak Collector Current, Ic ...
Power Dissipation
lOO'C Case.
Operating and Storage Temperature Range

... 120V
..... 80V

..... 7V
• ••••••

H.H

•••••••••••••••••••

•••••••

H

•••••

20A

30W

............ -65'C to 200'C

MECHANICAL SPECIFICATIONS

.oss ~:glg

2N5658

TO-59

2N5659

TO-111

I:::! 1
HEX

DIA.~OlEI_
.I
.380

.318

EMITTER

_

~

T

.215

.185

BASE
COLLECTOR

Dimensions in inches.

Dimensions in inches.

Collector Isolated from Case.

[ill]
83

_UNITRODE

2N5658 2N5659

Electrical Specifications (at 25°C unless noted)t
Test

Symbol

Min.

Max.

D.C. Current Gain

hEE

40

250

-

Ic = 0.5A,

VCE

D.C. Current Gain

hFE

50

150

-

Ic = 5A,

VCE = 5V

(Note 1)

D.C. Current Gain

hFE

30

-

Ic = lOA,

VCE = 5V

(Note 1)

Test Conditions

Units

=

=

2V

Collector Saturation Voltage

VCE (sat)

.5

V

Ie = 5A,

I,

Collector Saturation Voltage

VCE (sat)

1.0

V

Ic = lOA,

I, = lA

(Note 1)

Base Saturation Voltage

VBE (sat)

1.3

V

Ic = SA,

I, = O.5A

(Note 1)

Base Saturation Voltage

1.8

V

Ic = lOA,

I, = lA

(Note 1)

120

V

Ic = 100mA,

RBE = IOn

Collector-Emitter Breakdown Voltage

VBE (sat)
BV CE •
BVCES

120

V

Ic = 0.2/LA,

Coliector·Emitter Breakdown Voltage

BVcEO

80

V

Ic = 100mA,

R'E = 0
1,=0

Emitter-Base Breakdown Voltage

BV EBO

7

V

IE = 10!,A,

Ic = 0
RBE = 0

Collector-Emitter Breakdown Voltage

(Note 1)

O.5A

(Note 1)

Collector Cutoff Current

ICES

0.2

ICES

0.1

!'A
mA

VCE = 120V,

Collector Cutoff Current, 150°C

VCE = 80V,

RBE = 0,

T = 150°C

Collector Capacitance

Cobo

150

pf

Vc , = lOV,
Ic == 0.5A,

IE=O,

f = IMHz

A.C. Current Gain

Switching Speeds

hi,

3

Turn-on Time

to,

150

ns

Ic = 5A

Turn-off Time

toE

800

ns

Ibl = 250mA
Note 2.

VCE

=

f = 10MHz

5V,

Ib2 = -250mA

Notes:
1. Pulse length = 300 J.l.S; duty cycle ~2%
2. Measured in saturated switching speed circuit.
t All Values in This Table are JEDEC Registered.

Switching Speed Circuit
+25Y

sov

n

.05~f

50

H

-2SY

UNITRODE CORPORATION. 5 FORBES ROAD
LEX I NGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

84

PRINTED IN U.S.A.

POWER TRANSISTORS

JAN,
JAN,
JAN,
JAN,

2 Amp, 300V, Planar NPN

JANTX,
JANTX,
JANTX,
JANTX,

& JANTXV 2N5660
& JANTXV 2N5661
& JANTXV 2N5662
& JANTXV 2N5663

FEATURES

OESCRIPTION

•
•
•
•
•

Unitrode high voltage transistors provide
a unique combination of low saturation
voltage, fast switching, and excellent gain.
They are ideally suited for off-line power
supply designs and other applications
where the increased voltage rating adds
to system reliability.

Meets MIL-S-19500/454
Collector-Base Voltage: up to 400V
D.C. Collector Current: 5A
Peak Collector Current: lOA
Fast Switching

ABSOLUTE MAXIMUM RATINGS

JAN, JANTX,
& JANTXV

JAN, JANTX,
& JANTXV

JAN, JANTX,
& JANTXV

2N5660

2N5&61

2N56&2

.... 250V.. .
Collector-Base Voltage, VCBO .
. ...... 200V ... .
Collector-Emitter Voltage, VCEO
.. ......... 6V .. .
Emitter-Base Voltage, VEBO ...
........... 2A ...
D.C. Collector Current, Ic .
........ SA.
Peak Collector Current, Ic
Power Dissipation
25'C Ambient ... ............... ..
... 2.0W. ... .
lOO'C Case ............. .
...................... 20W. ... ..
Operating and Storage Temperature Range

.... 250V.

... 400V .....
........ 300V ..

... 200V
.... 6V ....

........ 6V .. .

.......... 2A ... . ................ 2A ..
.... 5A ..... .

............. 5A .

.............

2~~~

.. ......... 300V

..... 6V
. ... 2A
.. .... 5A

.. 2JNI.... .

.. 1.2W.....

.... 20W. .. .

.. .. 15W.....
....... 15W
......................... -65'C to 200'C

... 1.2W

MECHANICAL SPECIFICATIONS
JAN, JANTX, & JANTXV 2N5660 JAN, JANTX, & JANTXV 2N5661

TO-66

:~:~ DIA.

E~~

BASE
EMITTER

.350
MAX.

g~~id
.250

RAD .

.360
MIN.

Dimensions in inches.

JAN, JANTX, & JANTXV 2N5662 JAN, JANTX, & JANTXV 2N5663

TO-5

.370
.335

.335
.305

.100

Dimensions in inches.

[ill]
85

.i

JAN, JANTX,
& JANTXV

_UNITRDDE

'

ELECTRICAL SPECIFICATIONS (at 25'C ·unless noted)

JAN, JANTX, & JANTXV 2N5660

JAN, JANTX, & JANTXV 2N5661

JAN, JANTX, & JANTXV 2N5662

JAN, JANTX, & JANTXV 2N5663

2N5660, 2N5662
Test

Symbol

Min.

Max.

Units

Visual and mechanical

/454
Sub

MIL-STD-75O

group Method

A-I

2071

Test conditions

See Mechanical Data

25'C
Collector-Emitter Breakdown Voltage (Note 1)

BVe.. *

250

A-2

3011

Ie = 10mAdc; R.. = lOOn; Condo B

BVeEO*

200

-

Vdc

Collector-Emitter Breakdown Voltage (Note 1)

Vdc

A-2

3011

Ie = 10mAdc; Condo D

Emitter-Base Breakdown Voltage

BV"o*

6

-

Vdc

A-2

3026

I. = 10,uAdc; Condo D

Collector-Emitter Cutoff Current

ICEs *

-

0.2

,uAdc

A-2

3041

VeE = 200Vdc; Condo C

Collector-aase Cutoff Current

IcBO

-

0.1

,uAdc

A-2

3036

Ve• = 200Vdc; Condo D

Collector-Base Cutoff Current

'CBO

-

1.0

mAdc

A-2

3036

Ve• = 250Vdc; Condo D

D.C. Current Gain (Note 1)

hFE*

40

-

-

A-3

3076

Ie = 50mAdc, Ve• = 2Vdc

D.C. Current Gain (Note 1)

hFE*

40

120

-

A-3

3076

Ie = 0.5Adc, VeE = 5Vdc

D.C. Current Gain (Note 1)

hFE*

15

-

-

A-3

3076

Ie = 1Adc, Ve• = 5Vdc

D.C. Current Gain (Note 1)

h"

-

A-3

3076

Ie = 2Adc, Ve• = 5Vdc

Collector Saturation Voltage (Note 1)

Ve.(sat)*

-

0.4

Vdc

A-3

3071

Ie = 1Adc, I. = O.lAdc

Collector Saturation Voltage (Note 1)

Ve.(sat)

-

0.8

Vdc

A-3

3071

Ie = 2Adc, I. = 0.4Adc

5

-

Base Saturation Voltage (Note 1)

V..(sat)*

-

1.2

Vdc

A-3

3066

Ie = 1Adc, I. = O.1Adc; Condo A

Base Saturation Voltage (Note 1)

V"(sat}

-

1.5

Vdc

A-3

3066

Ie = 2Adc, I. = O.4Ade; Condo A

Gain-Bandwidth Product

f r*

20

70

MHz

A-4

3306

Ie = O.lAdc, Ve• = 5Vdc, f = lOMHz

Output Capacitance

C'b

-

45

pf

A-4

3236

Ve• = lOVdc, I. = 0, f = 1MHz

Thermal Resistance

e J_ C

C-1

3151

-

5.0

'C/W

2N5660
2N5662
Switching Speeds

-

6.7

Turn-on time

t on*

-

0.25

,us

A-4

-

Turn-off time

tOff*

-

0.85

,us

A-4

-

'C/W
Ie = 0.5Adc

100'C
Forward Biased Second Breakdown
2N5660

2N5662

Unclamped Reverse Biased Second Breakdown
Clamped Reverse Biased Second Breakdown

1,/.

2

-

Adc

B-6

3051

VeE = lOVdc, t = 1Sec

I,i.

0.5

Adc

B-6

3051

Ve• = 40Vdc, t = 1Sec

1,/.
1,/.
1,/.
1,1.
E,I.

36

-

mAdc

B-6

3051

Ve• = 200Vdc, t = 1Sec

Adc

B-7

3051

VeE = 7.5 Vdc, t = 1Sec

0.6

-

Adc

B-7

3051

VeE = 25Vdc, t = 1Sec

27

-

mAdc

B-7

3051

Ve• = 200Vdc, t = 1Sec

0.2

-

mj

B-8

3053

Ie = 2Adc, L = 0.1 mh

E".

80

-

mj

B-9

3053

Ie = 2Adc, L·= 40mh, V,'.m, = 200V

ICES*

-

100

,uAdc

A-5

3041

Ve• = 200Vdc, Condo C

15

-

-

A-6

3076

Ie = O.5Adc, Ve• = 5Vdc

2

150'C
Collctor-Emitter Cutoff Current
-65'C
D.C. Current Gain (Note I)

h"

Notes

1. Pulse length = 300 #s; duty cycle :;;;2%.
* Those parameters marked with a * are JEDEC registered and devices meeting these speCifications are available as commercial 2N devices,

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064

86

PRINTED IN U.S.A.

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)

JAN, JANTX, & JANTXV 2N5660

JAN, JANTX, & JANTXV 2N5661

JAN, JANTX, & JANTXV 2N5662

JAN, JANTX, & JANTXV 2N5663

2N5661, 2N5663
Test

Symbol

Min.

Max.

Units

Visual and mechanical

/454
Sub
group ~ethod

A-I

2071

MIL-STD-750

Test conditions

See Mechanical Data

25'C

-

Vdc

A-2

3011

Ie::: 10mAdc; R" ::: lOOn; Condo B

Vdc

A-2

3011

Ie ::: 10mAdc; Condo D

Vdc

A-2

3026

I. ::: lO~Adc; Condo D

-

0.2

~Adc

A-2

3041

Ve• ::: 300Vdc; Condo C

-

0.1

/,Adc

A-2

3036

Ve• ::: 300Vdc; Condo D

'CIO

1.0

mAdc

A-2

3036

Ve• ::: 400Vdc; Condo D

D.C. Current Gain (Note 1)

hFt

25

-

A-3

3076

Ie ::: 50mAdc, Ve• ::: 2Vdc

D.C. Current Gain (Note 1)

hfE*

25

75

A-3

3076

Ie ::: 0.5Adc, Ve• ::: 5Vdc

D.C. Current Gain (Note 1)

hF/

15

-

A-3

3076

Ie::: lAdc, Ve• ::: 5Vdc

5

-

-

A-3

3076

Ie::: 2Adc, Ve• ::: 5Vdc
Ie ::: 1Adc, I. ::: O.lAdc

Collector-Emitter Breakdown Voltage (Note 1)

BV e," *

400

Collector-Emitter Breakdown Voltage (Note 1)

BVe•o *

300

Emitter-Base Breakdown Voltage

BV no *

6

Collector-Emitter Cutoff Current

ICEs *

Collector-Base Cutoff Current

I clo

Collector-Base Cutoff Current

D.C. Current Gain (Note 1)

h"

Collector Saturation Voltage (Note 1)

Ve.(sat)*

-

004

Vdc

A-3

3071

Collector Saturation Voltage (Note 1)

Ve.(sat)

-

0.8

Vdc

A-3

3071

Ie ::: 2Adc, I, ::: Oo4Adc

Base Saturation Voltage (Note 1)

V,,(sat)*

-

1.2

Vdc

A-3

3066

Ie ::: 1Adc, I, ::: O.lAdc; Condo A

=

Base Saturation Voltage (Note 1)

V..(sat)

-

1.5

Vdc

A-3

3066

Ie ::: 2Adc, I.

Gain-Bandwith Product

f,*

20

70

MHz

A-4

3306

Ie::: 0.2Adc, Ve• ::: 10Vdc, f ::: lOMHz

Output Capacitance

C,b

-

45

pf

A-4

3236

Ve• ::: 10Vdc, I. ::: 0, f ::: lMHz

Thermal Resistance

9 J_ c

C-1

3151

2N5661

-

5.0

2N5663

-

6.7

Switching Speeds

Turn-on time

t on *

Turn-off time

toff *

Oo4Adc; Condo A

'C/W
'C/W

0.25

/,S

A-4

-

1.2

/,s

A-4

-

Adc

B-6

3051

Ve• ::: 10Vdc, t ::: lSec

Adc

B-6

3051

VeE::: 40Vdc, t ::: 1Sec

mAdc

B-6

3051

VeE::: 300Vdc, t ::: 1Sec

Adc

B-7

3051

Ve• ::: 7.5 Vdc, t ::: 1Sec

Ie::: 0.5Adc

100'C
Forward Biased Second Breakdown
2N5661

2N5663

Unclamped Reverse Biased Second Breakdown
Clamped Reverse Biased Second Breakdown

IS/I

2

IS/8

0.5

IS/ 8

19

ISIB

2

ISIB

0.6

-

Adc

B-7

3051

VeE::: 25Vdc, t ::: 1Sec

ISII

14

-

mAdc

B-7

3051

VeE::: 300Vdc, t ::: 1Sec

ES/ 8

0.2

-

mj

B-8

3053

Ie ::: 2Adc, L

E5"

80

-

mj

B-9

3053

Ie ::: 2Adc, L ::: 40mh, V".mp ::: 300V

100

/'Adc

A-5

3041

VeE::: 300Vdc, Cond_ C

-

-

A-6

3076

Ie ::: 0.5Adc, VeE::: 5Vdc

=0.1 mh

150'C
Collector-Emitter Cutoff Current

ICES*

-

-65'C
D.C. Current Gain (Note 1)

h"

10

Notes
1. Pulse length
300 P.s; duty cycle ~2%.
* Those parameters marked with a . . . are JEOEC registered and devices meeting these specifications are available as commercial 2N devices.

=

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

87

PRINTED IN U.S.A.

•

JAN, JANTX, & JANTXV 2N5660

JAN, JANTX, & JANTXV 2N5661

JAN, JANTX, & JANTXV 2N5662

JAN, JANTX, & JANTXV 2N5663

Forward Bias
Safe Operating Area

Forward Bias
Safe Operating Area

2N5660, 2N5661

2N5662, 2N5663

=

Pul~e Wldih = ,lms

~

Duty Cycle

= 10%-

';
-------0

I-

Z

""'"

'"0:0:

:J

()

.5

0:

~

D.C.-

'"

.2

8

.1

..J
..J

1

::::: lOOps

r\

'" = 10%-

a

.5
D.C.-

o

tJ

.2

c5

.1

---\

OJ
..J

\

"-

1\

\

'\.

0:

"i\

1\ \

()

I

\

.05

\

.02

\

.02

2N5660

2N5662

2N5661

.01

I

10 20
50 100 200 300
COLLECTOR·EMITTER VOLTAGE (V)

Vee -

50 100 200 300
10 20
COLLECTOR·EMITTER VOLTAGE (V)

Reverse Bias
Safe Operating Area
Clamped Inductive Switching

Unclamped Reverse Bias
Second Breakdown
10

10

T = l00'C

T, = 25'C

0

-;;;

"
""

.;:

.5

I

'\

()

~

~ .2

g

'BI=-I B2 =IC/IO

r--..~
~
\.

~

z

.1

~

I-

.5
Ie -

:J .5
()

~

""------v,,

.02

o

'"0:0:

~'--0.5V

1 .05

.01

~
Z

..J

0:

0

I-

--

0

.2

..J
..J

.1

'"
0

= -4V

.01

1

2
Ve , -

10

2N5661, 2N5663

sv

Vc,=SV

z

200

f.-- -ISO'C
2S'C

so

I

:J

""" "

SS'C
20

;;:

'"z 100

~ so

~

0:

:J
()

<5 20
ci

\,

10

200

I-

\~

ci

1

100 200 300

SOD

~ 100

~

so

D.C. Current Gain
Ve , =

0:

20

COLLECTOR·EMITTER VOLTAGE (V)

1000

500

~

!-- .....

.02

2N5660,2N5662

z

I---'

1 .OS

1.5
COLLECTOR CURRENT (A)

1000

;;:

2~5660'1622N5661,63

()

D.C. Current Gain

z

2N5663

.01
V." -

g
'"z

= 100"5
= 10%

'\r -Duty Cycle

"-

OJ

0:
0:

\

.05

_c'

I-

Z

I"

\

Duty Cycle' ::::: 10%-

~

Pulse Width

= 100"5 ~

Pulse Width

~ _Duty Cycle

\

= 100'C

Tc

Tc
100"C
Pulse Width_

1 10

--

........

IS0'C

"" l'\
--....:

-

2S'C

-

-SS'C

i

"'" ~

~

\

2

1
.01

.02

.OS .1
.2
.S
1
2
Ie-COLLECTOR CURRENT (A)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

.01

10

.02

.OS
Ic -

88

.1

.2

.S

2

10

COLLECTOR CURRENT (A)

PRINTED IN U.S.A.

JAN, JANTX, & JANTXV 2N5660 JAN, JANTX, & JANTXV 2N5661
JAN, JANTX, & JANTXV 2N5662 JAN, JANTX, & JANTXV 2N5663

Saturation Voltage
Temperature Coefficients

Saturation Voltages
JJ

_+2
P

=2slc

g

2

~ +1

-

VIEt '.-'ClS

.2
VeE' I, = 'CliO

.1

le/l,..: 10

>+1.5

'"
u:...
8'"

j

~ ......

I

/

/

/

V/

-1

'"
:;: -1.5
'"l-

1/ V

25'C to 150'V

11.

I

l- I--- ~I"I'lle"l
.02

1

~ -.5

::>

·IL.--/" V

.05
.01

~ -:2
sr'c to 2S' C
/

AVe,

~

-2 ~ AV"

~

I---"

.05 .1
.2
.5
1
2
Ie - COLLECTOR CURRENT (A)

.01

10

.02

.05 .1
.2
.5
1
2
Ie-COLLECTOR CURRENT (A)

Switching Speed
Characteristics

/

',= 'ClIO

..,

'in

8 .2

~
gu

'"~

.1

Rise Time, tr V

~ r--

~ r-..
.05

_I--"

5

V/

~

8

2

~

/25'C

.!!

-

'"~

.5

~ t-- l - t -

25'C

t-t--

1SO'C

.02

1SO'C

~r-r-Storage Timtt:

g

1-1t~ j::::l-

.............

Delay Time,

10

10

Vee = 100V

.5

V

.... ~ I-:::"ss'c to 25'C

-2.5

Switching Speed
Characteristics
1.0

/'"

25'C to 1SO'C

+.5

U

lS0'C
Fall Time, tt
.2 t--..
2S'C

r-=:

.01

-

r-1-1-

t:::--.,
l"-

~

t<~
~

.1
.2

.5
1
Ie - COLLECTOR CURRENT (A)

.5

.2

2

Ie-COLLECTOR CURRENT (A)

Switching Speed Circuits

Thermal Response
DUty Cycle
.5

Tektronix
541Aor
Equivalent

I-

Z

'"
iii'"
ZU
",Z

c::'"
1-0

.2
.1

o ~ .05

-4V

"':;:
!::!-'-,

:;::;:
"''''
C::c::

+lOGY

Tektronix
541Aor
Equivalent

0",
ZJ:

.02
.01

II-

~

l

0.5

I-- I--

I-- I-- ~ I::::.;;

-

d-- ..- I-- t::-:: ~~
~ v: ~

y

V
~
.01/

"'L

~

~

...
=
=

ElJ.e(t) r(l)-aJ_e
ElJ.e 5.0·C/~r
f~r 2NI566f' 2rS66~
6.7 C/w <~
for 2N5662, 2N5663

fl J •e

Single Pulse

.005

.002
.001
.01 .02 .05 .1 .2

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

89

.5 1 2
5 10 20
TIME (milliseconds)

50 100200 SOO 1000

PRINTED IN U.S,A.

•

POWER TRANSISTORS

JAN,
JAN,
JAN,
JAN,

5 Amp, 300V, Planar NPN

JANTX,
JANTX,
JANTX,
JANTX,

& JANTXV 2N5664
& JANTXV 2N5665
& JANTXV 2N5666
& JANTXV 2N5667

F£ATURES

DESCRIPTION

•
•
•
•
•

Unitrode high voltage transistors provide
a unique combination of low saturation
voltage, fast switching, and excellent gain.
They are ideally suited for off-line power
supply designs and other applications
where the increased voltage rati ng adds
to system reliability.

Meets MIL-S-19500/455
COllector-Base Voltage: up to 400V
D.C. Collector Current: 5A
Peak Collector Current: lOA
Fast Switching

A9S9LUTE MAXIMUM RATINGS

JAN, JANTX,
& JANTXV

JAN, JANTX,
& JANTXV

JAN, JANTX,
& JANTXV

JAN, JANTX,
& JANTXV

2N5664

2NS665

2N56&&

2N56&7

Collector-Base Voltage, VeBo ........
....................................... 250V. ........................... 400V
............... 250V..
.. ................ 400V
Collector-Emitter Voltage, VeEO
..... .......................
... 200V..
.. .... 300V .. .
..... 20OV
.. ..... 300V
Emitter-Base Voltage, VEBO ...................... ...... ................ .. ........... 6V......
.. ...... 6V
............. 6V...
....... 6V
D.C. Collector Current, Ie
..... 5A....
.. .......... 5A.
................. 5A
....... 5A
Peak Collector Current, Ie
.......................
.. ............ lOA.
.. ...... lOA.
. lOA ......
.. lOA
Power Dissipation
25°C Ambient
.................. 2.5W.
... 2.5W.
............. 1.2W
.... 1.2W
100°C Case .................... .
....... 30W .............................. 30W.............................. 15W ......... . .................. 15W
Operating and Storage Temperature Range
. ................................................................... -65°C to 200°C

MECHANICAL SPECIFICATIONS
JAN, JANTX, & JANTXV 2N5664 JAN, JANTX, & JANTXV 2N5665

TO-66

EM~
:~;g-hd~
.250

.360

MIN.

,210
.190

Dimensions in ·inches.

JAN, JANTX, & JANTXV 2N5666 JAN, JANTX, & JANTXV 2N5667

TO-5

.370
.335

.335
.305

.100

Dimensions in inches.

OJJ]
90

_UNITRODE

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
2N5664 2N5666

Test

Symbol

Min.

JAN, JANTX, & JANTXV 2N5664

JAN, JANTX, & JANTXV 2N5666

JAN, JANTX, & JANTXV 2N5665

JAN, JANTX, & JANTXV 2N5667

Max.

Units

Visual and mechanical

/4SS
Sub

MIL-STD-7S0
Test conditions

group Method

A-I

2071

See Mechanical Data

25'C
Collector-Emitter Breakdown Voltage (Note 1)

BV CER *

250

-

Vdc

A-2

3011

Ie = 10mAdc; R" = 100 [!, Cond_ B

Collector-Emitter Breakdown Voltage (Note 1)

BV CEO *

200

-

Vdc

A-2

3011

Ie = 10mAdc; Condo D

Emitter-Base Breakdown Voltage

BVno ,

6.0

-

Vdc

A-2

3026

IE = 10."Adc; Condo D

Collector-Emitter Cutoff Current

ICEs *

-

0.2

I,Adc

A-2

3041

VeE = 200Vdc; Condo C

Collector-Base Cutoff Current

I cBo

-

0.1

I,Adc

A-2

3036

Collector-Base Cutoff Current

Icao

-

1.0

mAdc A-2

3036

D.C. Current Gain (Note 1)

hFE *
h FE '

40

-

-

A-3

3076

Ve, = 200Vdc; Condo D
Ve, = 2S0Vdc; Condo D
Ie = O.SAdc. VeE = 2Vdc

40

120

-

A-3

3076

Ie = 1Adc, VeE = 5Vdc

D.C. CUrrent Gain (Note 1)

hFE *

15

-

A-3

3076

Ie = 3Adc, VeE = SVdc

D.C. Current Gain (Note 1)

hFE

-

-

A-3

3076

Ie = SAdc, VeE = SVdc

0.4

Vdc

A-3

3071

Ie = 3Adc, I, = 0.3Adc

Vdc

A-3

3071

Ie = SAdc, I, = 1Adc

D.C. Current Gain (Note 1)

S

Collector Saturation Voltage (Note 1)

VeE (sat)'

-

Collector Saturation Voltage (Note 1)

VeE (sat)

-

1.0

Base Saturation Voltage (Note 1)
Base Saturation Voltage (Note 1)
Gain-Bandwith Product
Output Capacitance
Thermal Resistance

V" (sat)'

-

1.2

Vdc

A-3

3066

Ie = 3Adc, I, = 0.3Adc; Condo A

V" (sat)
f T*

-

1.S

Vdc

A-3

3066

Ie

20

70

MHz

A-4

3306

Ie = O.5Adc, VeE

C'b

-

90

pf

A-4

3236

Ve,

C-1

31S1

-

3.3

'C/W

()

J-e

2NS664
2NS666
Switching Speeds

-

6.7

Turn-on Time

t on *

-

0.2S

Turn-off Time

tOil *

-

=- SAdc, I, =

1Adc; Condo A

= SVdc, f = 10MHz

= 10Vdc, IE =0, f = 1MHz

'C/W
1'5

A-4

-

1.5

I'S

A-4

-

Adc

B-6

30S1

Adc

B-6

30S1

Adc

mAdc B-6
B-7

30S1
30S1

Ie = 1Adc

100'C
Forward Biased Second Breakdown
2NS664

2NS666

= Isec
=40Vdc, t = 1sec
VeE = 200Vdc, t = 1sec
VeE = 3Vdc, t = lsec
VeE = 6Vdc, t

I SIB

S

I SIB

0.7S

I SIB
I SIB

43

-

S

-

ISIB

0.4

-

Adc

B-7

30S1

VeE

ISIB

27

mAdc B-7

30S1

VeE

mj

B-8

30S3

Ie

mj

B-9

30S3

Ie

I,Adc A-S

3041

VeE

-

3076

Ie

Unclamped Reverse Biased Second Breakdown E

1.25

-

Clamped Reverse Biased Second Breakdown

500

-

I CES *

-

100

h

IS

-

SIB

E

SIB

VeE

= 37.5Vdc, t = lsec
= 200Vdc, t = 1sec

=SAdc, L =O.lmh
= SAdc, L == 40mh, V".mp = 200V

lS0'C
Collector-Emitter Cutoff Current

= 200Vdc, Condo C

-6S'C
D.C. Current Gain (Note 1)

"

A-6

-= 1Adc, VeE = SVdc

Notes
1. Pulse length :.= 300 tIS; duty cycle -S;;;2%.
* Those parameters marked with a * are JEDEC registered and devices meeting these specifications are available as commercial 2N devices.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064

91

PRINTED IN U.S.A.

JAN, JANTX, & JANTXV 2N5664 JAN, JANTX, & JANTXV 2N5666
JAN, JANTX, & JANTXV 2N5665 JAN, JANTX, & JANTXV 2.1'!5667

ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
2N5665, 2N5667
Test

Symbol

Min.

Max.

Units

Visual and mechanical
25'C

Collector-Emitter Cutoff Current

,
,
BVe,o
,
BV"o
,

Collector-Base Cutoff Current

IcBO

Collector-Emitter Breakdown Voltage (Note 1)
Collector-Emitte: Breakdown Voltage (Note 1)
Emitter-Base Breakdown Voltage

BV CER

ICES

/455
Sub
group Method

MIL·STD·750
Test conditions

A-1

2071

See Mechanical Data

Ie = lOmAdc; R" = 100 n, Cond. B

400

-

Vdc

A-2

3011

300

-

Vdc

A-2

3011

Ie = 10mAdc; Cond. D

6

-

Vdc

A-2

3026

I, = lOI'Adc; Condo D

-

0.2

I,Adc

A-2

3041

0.1

I,Adc

A-2

3036

Ve, = 300Vdc; Condo C
Ve, = 300Vdc; Condo D

Collector-Base Cutoff Current

IcBO

-

1.0

mAdc A-2

3036

Ve, = 400Vdc; Condo D

D.C. Current Gain (Note 1)

hft

25

-

-

A-3

3076

Ie = 0.5Adc, Ve, = 2Vdc

D.C. Current Gain (Note 1)

hFE*

25

75

-

A-3

3076

Ie = 1Adc, VeE = 5Vdc

D.C. Current Gain (Note 1)

hFE*

10

-

-

A-3

3076

Ie = 3Adc, VeE = 5Vdc

-

A-3

3076

Ie = 5Adc, VeE = 5Vdc

-

0.4

Vdc

A-3

3071

Ie = 3Adc, I, = 0.6Adc

1.0

Vdc

A-3

3071

Ie = 5Adc, I, = lAde

1.2

Vdc

A-3

3066

Ie = 3Adc, I, = 0.6Ade; Condo A
Ie = 5Adc, I, = 1Adc; Condo A

D.C. Current Gain (Note 1)

h"

Collector Saturation Voltage (Note 1)

VeE (sat)'

Collector Saturation Voltage (Note 1)

VeE (sat)

Base Saturation Voltage (Note 1)

V" (sat)'

Base Saturation Voltage (Note 1)

V" (sat)
fT'

-

1.5

Vdc

A-3

3066

20

70

MHz

A-4

3306

Ie = O.5Adc, VeE = 5Vdc, f = 10MHz

C'b

-

90

pf

A-4

3236

Ve,=10Vdc, IE=O, f=lMHz

C-1

3151

-

3.3

'C/W

Gain-Bandwith Product
Output Capacitance
Thermal Resistance

5

°J_C

2N5665
2N5667
Switching Speeds

-

6.7

Turn-on time

tQn*

-

0.25

I'S

A-4

Turn-off time

tOft

-

2.0

I'S

A-4

-

,

'C/W
Ie = 1Adc

100'C
Forward Biased Second Breakdown
2N5665

2N5667

15/ 8

5

-

Ade

B-6

3051

VeE = 6Vdc, t = 1see

ISIB

0.75

-

Adc

B-6

3051

VeE = 40Vdc, t = 1 sec

IS/B

21

mAde B-6

3051

VeE = 300Vdc, t = 1sec

IS/ 8

5

-

Adc

B-7

3051

VeE = 3Vdc, t = 1see

'5/8

0.4

-

Ade

B-7

3051

VeE = 37.5Vdc, t = 1see

IS/B

14

nAde B-7

3051

VeE = 300Vde, t

Unclamped Reverse Biased Second Breakdown

ES/8

1.25

mj

B-8

3053

Ie = 5Adc, L = O.1mh

Clamped Reverse Biased Second Breakdown

ES/8

500

-

mj

B-9

3053

Ie = 5Adc, L = 40mh, V",,,, = 300V

-

100

"Ade

A-5

3041

VeE

-

A-6

3076

Ie = lAde, VeE

150'C
Collector-Emitter Cutoff Current

,
ICES

= 1sec

=300Vdc, Condo C

-65'C
D.C. Current Gain (Note 1)

h"

10

-

= 5Vdc

Notes
1. Pulse length = 300 .us; duty cycle ~2%.
11 Those parameters marked with a 11 are JEDEC registered and devices meeting these specifications are aVi;lilable as commercial 2N ,devices.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

92

PRINTED IN U.S.A.

*

JAN, JANTX, & JANTXV 2N5664

JAN, JANTX, & JANTXV 2N5666

JAN, JANTX, & JANTXV 2N5665

JAN, JANTX, & JANTXV 2N5667

Forward Bias
Safe Operating Area

Forward Bias
Safe Operating Area

2N5666, 2N5667

2N5664, 2N5665
10

Pulse Width
100.sI
",,-Duty Cycle

~
....
z

"

=10%

UJ
0:
0:

::>

1-.

....
II

.2

UJ

...J
...J

I

.5

II
0:

D.C.

....0
II

.2

UJ

...J
...J

II

I

-""'

1\

.02

2
VCE -

.05

\

1

2
VeE -

lSI

'"

C

~

"

l:

.5

~

UJ

II

Z

~

II

.1

~
~

10

TA = 25°C
=-1 82
I C/IO

=

I

~

---... "-......... V

2N5664,66
.5

.1
.05

~=-4V

.02

o

1
Ie -

I -----

.01

1

COLLECTOR CURRENT (A)

VeE -

D.C. Current Gain

50 100 200 300
10
20
COLLECTOR VOLTAGE (V)

D.C. Current Gain

2N5664, 2N5666

2N5665, 2N5667

1000

1000
VCE = 5V

VeE = 5V

SOO

500
~ 200



II

t.i

20

~

z 200

.---

P-- .---

~7

~....

i'..
I"-

ci

I

~

=-2V

IE

.02
.01

-

~N5665,167 - -

.2

!--

~

...J

5
10 20
50 100 200 300
COLLECTOR-EMITTER VOLTAGE (V)

Reverse Bias
Safe Operating Area
Clamped Inductive Switching

I

.!!!

.05

..

\
1\

5
10
20
50 100 200300
COLLECTOR-EMITTER VOLTAGE (V)

10

I

"--\ \ "\

Unclamped Reverse Bias
Second Breakdown

.2

= 100.s
Duty Cycle
= 10%-

.01
1

~
::>
o
~

~ i'-.
I-

.02

.01

g

Te =lOO°C
Pulse Width_

.1

0

\

.05

_u

-10%_

l"-

::>

1\

.1

0

II

"

UJ
0:
0:

\

\

0

PUIS:~~!h ~

- 1'\ Dut~ CY~le ~

~
....
z

"- = 10%

D{~

.5

II
0:

10

Tc = 100°C
- Pulse Width
= 100.s
~puty Cycle.

z

~

.05 .1
.2
.5
1
2
Ie - COLLECTOR CURRENT (A)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

50

II

t.i 20
ci

I

'\

.02

100

::>

~

10

1
.01

UJ
0:
0:

5

10

-~
150°C

.------

1
.01

10

.02

.05
Ie -

93

-

r----."

25!C

.-----

~

r--

.1

.2

~

.5

......

~

'\
10

COLLECTOR CURRENT (A)

PRINTED IN U.S.A.

JAN, JANTX, & JANTXV 2N5664

JAN, JANTX, & JANTXV 2N5666

JAN, JANTX, & JANTXV 2N5665

JAN, JANTX, & JANTXV 2N5667

Saturation Voltalle
Temperature Coefficients

Saturation Voltages
T;

_ +2

=25 JC

P

i+

Ie/I. :E;; 10

l .5

~ +1
~

~
0

I-- ~

VI~.II= 'CIS

UJ

CI

f-""'"

.5

ld:

UJ

U

...ii:

II

UJ
Q:

:>

VeE

.1
~

.05
.01

.02

,'.= 'eM

~

y~
Vcr:

~

/
25'C to 150IY

~ -1.5

I -2

~

1

.05
.1
.2
.5
1
Ie - COLLECTOR CURRENT (A)

-2.5

10

~

.01

,/

V

V

~to25'C

....

'.= Icls

1/

-55;C to 25'C

-1

UJ
0.

V

-'1

f-.5

....

J

.2

Vl

t----t:::t:=- f.--t7'

:NCE

UJ

o

u

IV

>

25°C to 150°CY

+.5

r-

.05
.1
.2
.5
Ie - COLLECTOR CURRENT (A)

.02

Switching Speed
Characteristics

10

Switching Speed
Characteristics
10
Vee

.5r-~-+~----+-~r---+---~--1

= 100V

= 'CliO

'B2=-I St

"
,.2
'iii'

" 2
~

--

8

'""e

! .1~E*~~~~~~--t---~1

....... 1-

150°C

::;:

..............

'-I-r-

~"

UJ

0

Storage Time,

25°C

I--

UJ

;:: .05 f-+-+-H-T'~_;:!--+--+--+----1

::;: .5

;::

V

f-f-+....

.02 t--+-t-H--t------j--t---t---

m. Tj'l'

.2

f.--

T

r----...

r-- k
~

~

f.--

V

<

;>

25°C

.1
.5
Ie -

COLLECTOR CURRENT (A)

Ie -

Switching Speed Circuits

Thermal Response
Duty Cyele

+lDOV

I"

.5

= -I" = 30rnA
lOO~~

Tektronix
541A or
Equivalent

!z
~

~fi:I

NO.

:J~

~:;t

:s~

+l00V

.2
.2

ZUJ

~~
......

-4V

ZUJ

.1
.05

2SV

Tektronix
541A or
Equivalent

?

~ I--

~ I--

~V

~
I-- l- IJ.....8:::
l- f- ..... ~ ;.-

--

...- l:::

/'

,,/

.005

I::::: ~ ~

SJ_e (t) =. ret) • B J_e
SJ-C = 3.3°C/w for 2N5664,65
0J_e = 6.7'C/w for -

~ngle Pulse

I
.001
.01 .02

I:;:::; !iii JIll""

f'"

...V
..... V ---:::: V

.002

-4V

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

0.5

"'" / ' . /
~ ./"
.01

.02

Ii!'

Jl<>+"V~"V'N'--'---;

COLLECTOR CURRENT (A)

.05 .1.2

.5

1

2

5

-

I 2N~66~, 671

10 20

SO 100 200 SOO 1000

TIME (milliseconds)

94

PRINTED IN U.S.A.

2N5671
2N5672

POWER TRANSISTORS
30A, 150V, Fast Switching,
Silicon NPN Mesa

DESCRIPTION
These glass passivated power transistors
combine fast-switching, low saturation
voltage and rugged Es/b capability.
They are designed for use in switching
regulators, converters, inverters and
switching-control amplifiers.

FEATURES
• Collector-Base Voltage: up to 150V
• DC Collector Current 30A
• Low VCE ISAT)
0.75V Max.
• ton = 0.5I'S} @ Ic = 15A
• t'all 0.51'S

=

=

=

•
ABSOLUTE MAXIMUM RATINGS •
tNIS71

*

tN5672

Collector-to-Base Voltage, VCIO ........ ......................
. .................................................................. 120V..............
.. ... lSOV
Collector-Emitter Sustaining Voltage, VCEX ISUS)
......................
. ............................................ .120V..............
.. ....... lSOV
VCER (SUS) ......
. ............................................................................................
140V
VCEO ISUS}............ ....................... .............................................
.. .. 90V ................................ .120V
* Emitter-Base Voltage, VEIO ....................
...............................
...................................
.. ............. .7V .....................................7V
* Collector Current, Ic continuous.
.................... ....................
........... 30A ..................................30A
* Base Current, II continuous.
.........................
.. ........ .lOA....................
.. ..... .lOA
* Power Dissipation, 25'C Case ............ .......................
.. ........ 140W............................... .l40W
* Operating and Storage Temperature Range ........
.. ............ -65 to 200'C.......... .

nov .................................

*

JEDEC registered values.

MECHANICAL SPECIFICATIONS
NOTE:

2N5671-2N5672

Leads may be soldered to within
1/16" of base provided temperaturetime exposure is less than 260'C
for 10 seconds.

K

Ins.

J
BASE

EMITTER

TO·3

mm

•

.875 MAX .
. 135 MAX.

3.43 MAX .

C

.250-.450

6.35~11.43

22.23 MAX .

7.92 MIN .

.312 MIN.
0
i-=+=='----+=='-------l
5.21-5.72
.205-.225

.420-.440

10.67-11.18

. 151-.161 DIA.

3.84-4.09 DIA .

. 188 MAX. RAO. 4.78 MAX. RAC .

-L

L

.525 MAX. RAO.

13.34 MAX. RAD .

M

.655-.675

16.64-17.15

N

1.177-1.197

29.90-30.40

P

.038-.043 CIA.

9.65-10.92DIA .

[1ill
6-79

95

_UNITRODE

2NS671 2NS672
ELECTRICAL SPECIFICATIONS Cat 25'C unless noted)

*

Test
D.C. Current Gain (Note 1)

Symbol
hFE

D.C. Current Gain (Note 1)

hFE

Collector Saturation Voltage
(Note 1)

VCEI,.t(

Base Saturation Voltage (Note 1)

VSEI..t(

2N5671
MIN.
MAX.
20
100

2N5672
MAX.
MIN.
20
100

Units

Test Conditions
Ic = lSA,VCE = 2V

20

-

20

-

0.7S

0.75

V

Ic = lSA, IB = 1.2A

1.S

V

Ic = 15A, Is = 1.2A

1.6

-

1.6

V
V

Ic = lSA, VCE = SV

Ic = 2OA, VCE = SV

Base to Emitter Voltage (Note 1)

VBE

-

Collector-Emitter Sustaining
Voltage (Note 2)

VCEOI.us(

90

-

120

-

V

Ic = O.2A, IB = 0

VCElCI ...(

120

-

ISO

-

V

VBE=-I.SV

1.5

Ic=0.2A
Collector-Emitter Sustaining
Voltage (Note 2)

IB=O
Collector-Emitter Sustaining
Voltage (Note 2)
Emitter-Cutoff Current

*

*

*

VCERI,..(

Collector Cutoff Current

lEBO
I CEO

Collector Cutoff Current

I CEV

110
10

-

-

140
10

-

mA

VEB =7.OV

10

mA

VCE=SOV
VCE = nov, VBE = -1.SV

mA

VCE = 13SV, VBE = -1.5V

-

15

-

10
12

-

10
10

V

VCE = 100V, VBE = -l.SV,
Tc =150'C

Magnitude of Small
Signal Forward Current Transfer
Ratio

h,.

10

-

10

-

Collector Capacitance

Cab

-

900

-

900

pF

Second Breakdown Energy

EsIb

20

-

20

-

mJ

Forward Bias
Second Breakdown
Collector Current

IsIb

S.8
0.9

-

5.S
0.9

-

A

Switching Speeds:
Turn-on Time
(Delay + Rise)

t..n

-

0.5

0.5

I'S

-

1.5

-

1.5

I'S

0.5

0.5

I'S

1.25

-

1.25

-

'C/W

Storage Time

t,

Fall Time

t,

Thermal Resistance:
Junction-to-Case

RsJC

~

RBE = son, Ic = 0.2A

VCE = 10V, Ic = 2A, f = 5MHz
VCB = 10V, f = 1 MHz
VBE = 4V, Ic = 15A
RBE = 2On, L = IS0l'H
VCE = 24V, t = Is, non-rep.
VCE = 45V, t = Is, non-rep.

Ic =15A
IB' = IB2 = 1.2A
VCC= 30V

VCE = 40V,I c = 0.5A

Not••

1. Pulse length = 250,,5, duty cycle ';;1%.
2. Sustaining Voltage. Measured at a hlSh current point where collector-emitter voltage Is lowest. Current pulse length"" 50,,5, duty cycle ';;1%.
Voltage clamped at maximum collector-emitter voltage.
• JEDEC registered values.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710( 326·6509 • TELEX 95·1064

96

PRINTED IN U.S.A.

2N5671 2N5672

Power Derating

Forward Bias Safe Operating Area
30

NJ

20

~
z>-

I

"!\.

D,C,

UJ
0:
0:

=

\

U
0:

o
>-

IS8

u

Limited~

UJ

..J
..J

2N5671
2N5672

o

u

I

1

I

:-......

~

'\.

80

0:

0

>u

~

\

::J

'" ,'\.

25°C

100"S

"

~ r\

10

Te

1mS

"-10mS

100

60

"'
"

\

I

i\-'

I

~.l'.l'

~J

z
;::

\

40

0

I

>-

Z

UJ

\

0:
0:

.... T DESIRED OPERATING VOLTAGE,

20

::J

_u

I"~O
r-...

"'-

'N-~

0:

UJ

I

~1./~

;~?CN S~~~R~~;V~O'!IT "NO

I"

~"

O[RAT~ OISSI~A.~

CURRENT LI""IT FROM

u

DASH LINES ON SOAR CURVES ARE EXTENSIONS OF

DISSIPATION LlMITj FOR
PU_"jPOSES

0,5

o
0,3
20

10

2
Ve, -

100

50

TMPERrURE IO'ATING

40
Tc -

200

'\

'\

1

l

o

.........

80
120
160
CASE TEMPERATURE ("C)

200

COLLECTOR VOLTAGE (V)

DC Current Gain
500

I

-- -

200

z

;;'

'"z>-

100'C

I
25 JC

100

VeE - 5V

-

W

0:

0:

50

r-..

::J

'-'
'-'
0
.r;;."

20

/1--'

-55'C

/

10

5
0,2

0,5
Ie -

Transistor -

10

Resistive -

Saturation Voltages

3,0

~
UJ

C-

::::--

r---- 1OO ' C

"'oS

010'

,1

">-

,05

~5~
V

~

0:

-

Ie -

10
COLLECTOR CURRENT (A)

UNITRODE CORPORATION" 5 FORBES ROAD
LEXINGTON, MA 02173 " TEL. (617) 861-6540
TWX (710) 326-6509 " TELEX 95-1064

t::'

100'C

..-r

i2r,c

.-

/
t,

r-

t,

r-

25'C

50

I'-...

~

100'C"

~

20

~

Vee = 30V

,04

,5

100



::J

500

/.

25°C

..J

Z
0

---~
1%

(Ial)

5l.c

,5

"'">0

Turn-On Time

1000
V B(;

LO

20

COLLECTOR CURRENT (A)

10
0,2

20 30

lell'f~
0,5
Ie -

97

10

2

20

COLLECTOR CURRENT (A)

PR I NTED IN U,S.A,

2N5671 2N5672

Resistive Turn-Off Time
5

!-r--r-

r-ts

"'"-

---

Vee

--

""

OJ

;::

0.5

...
U

~

25'q,

y

r-....

I

30V

100'C

:E

z'"

=

le/lB~ 8

I'-0.2

100't

r-tj
O•1

.05
0.2

I

r---

I

0.5
Ie -

1

25'c;.....

2

5

10

20

COLLECTOR CURRENT (A)

Switching Time Test Circuit

R"

P.W. :::: 25.us

UNITRODE CORPORATION - 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064

98

PRINTED IN U.S.A.

2N5838
2N5839
2N5840

POWER TRANSISTORS
3A,375V
Silicon NPN Mesa

FEATURES
• Collector-Base Voltage: up to 37SV
• Peak Collector Current: SA
• Low Saturation Voltage
• High Second Breakdown Energy

DESCRIPTION
These high voltage glass passivated power
transistors combine fast switching, low
saturation voltage and rugged Esfb capability.
They are designed for use in off-line power
supplies, high voltage inverters, switching
regulators, ignition systems and deflection
circuits.

•

ABSOLUTE MAXIMUM RATINGS *
2N5838

2N583.

2N584G

Collector-Base Voltage, VCIO .................................... ....................................................... ...... 275V
3OOV...........
.. ....... 37SV
Collector-Emitter Voltage, VCEO ... ................................ .........................................
..... 2S0V ............................... 27SV...................... .. ... 3S0V
Emitter-Base Voltage, VEIO .............................................................................................
.6V......................................6V..................
. 6V
Collector Current, Ic continuous .............................................................................................. 3A ................................... 3A.................................... 3A
Collector Current, ICM, peak ..................................................................................................
SA .........................
... SA..................
. ....... SA
Base Current, II continuous ..................................................................................................... I.SA...........
..... .. 1.SA...............
.. ...... I.SA
Power Dissipation, Pr 2S'C Case ............................................................................................. lOOW........................... IOOW.................................IOOW
Operating and Storage Temperature Range ............................................................................................-6S to +200·C............................................ ..
• JEDEC registered values.

MECHANICAL SPECIFICATIONS
NOTE:
leads may be soldered to within
1!t6" of base provided temperature-

2N5838 2N5839 2N5840

time exposure is less than 260'C
for 10 seconds.

Ins.
A

K

J
BASE
EMITTER

TO-3

mm

.875 MAX.

22.23 MAX.

.135 MAX.

3.43 MAX.

C

.250-.450

8.35-11.43

0

.312 MIN.

7.92 MIN.

E

.205-.225

5.21-5.72

F

.420-.440

10.67-11.18

.151-.1610IA.

3.84-4.09 CIA .

.188 MAX. RAO. ·U8 MAX. RAC .

L
F

..
L

.525 MAX. RAD.

13.~

.655-.675

16.64-17.15

MAX. RAD .

N

1.177-1.197

29.90-30.40

P

.038-.0430IA.

9.65-10.92 CIA .

[ill]
6-79

99

_UNITRDDE

2N5838 2N5839 2N5840

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
D.C. Current Gain (Note 1)

Symbol
hFE

2N5840
2N5838
2N5839
MIN. MAX. MIN. MAX. MIN. MAX.
20
20
20

-

-

-

D.C. Current Gain (Note 1)

hFE

D.C. Current Gain (Note 1)

hFE

Collector Saturation Voltage
(Note 1)

VCE 1••11

-

-

Collector Saturation Voltage
(Note 1)

VCEls.11

-

1.0

-

2.0

-

8

40

-

10

50

10

50

-

-

V

Ie = 3A, VCE = 2V

1.5

-

1.5

V

Ie = 2A,IB = 0.2A

-

-

-

V

Ic = 3A,I B= 0.375A

2.0

-

2.0

V

Ic = 2A, IB = 0.2A

-

V

Ie = 3A, IB = 0.375A

350

-

V

Ic = 200mA,I a = 0

-

V

Ic = O.lA, VaE = -1.5V,
L= lOmH

Base Saturation Voltage (Note 1)

VBEI ..II
VaE 1••11

Collector-Emitter Sustaining
Voltage (Note 2)

VCEO ISUSI

250

-

275

-

Collector-Emitter Sustaining
Voltage

VCEX

275

-

300

-

375

Emitter-Base Cutoff Current

lEBO

Collector Cutoff Current

Collector Cutoff Current

ICEO

leEv

Test Conditions

Ie = 0.5A, VeE = 5V

-

Base Saturation Voltage (Note 1)

-

Units

-

Ie = 2A, VCE =3V

1.0

-

1.0

rnA

VEB = 6V

-

-

-

1.0

2.0

-

-

VCE - 200V

-

2.0

-

2.0

rnA

VCE = 250V

-

-

-

-

2.0

-

-

rnA

-

-

-

8.0

-

-

-

-

-

5.0

-

-

-

-

5.0

5.0

VCE = 265V

2.0

VCE =290V

VaE = -1.5V

VCE = 360V

Forward Bias Second Breakdown

Islb

-

2.5A

-

2.5A

-

2.5A

Second Breakdown Energy

Eslb

0.45

-

0.45

-

0.45

-

mJ

RaE = 50rl, L = 100pH

Collector Capacitance

Cob

-

150

-

150

-

150

pF

Vea = lOV, IE = 0, f = 1 MHz

Small Signal High Frequency
Gain

h,.

-

MHz

Collector Cutoff Current, 150'C

I cEv

5

-

5

5

-

VCE = 265V
rnA

VCE = 290V

VaE = -1.5V

VCE = 360V
VCE = 40V, tp = 1 Sec.

Ie = .2A, VCE = lOV, f = 1 MHz

Switching Speeds:
td

-

-

-

0.7

-

Ic = 2A, VCE = 200V,

0.7

Delay Time

pS
td
t,

-

0.6

-

-

1.5

-

-

-

lSi = 182 = (.375M
Ic = 2A, VCE = 200V,

1.75

Rise Time

pS
t,

-

1.5

-

-

-

-

t,

-

-

-

3.75

-

3.75

Storage Time

-

3.0

-

-

-

-

tf

-

-

-

1.5

-

1.5

Fall Time

Ic = 3A, VeE = 200V,
Ic = 2A, VCE = 200V:

Thermal Resistance

-

1.5

-

-

-

-

R9JC

-

1.75

-

1.75

-

1.75

lSI = 182 = (0.2A)
Ie = 3A, VCE = 200V,
lSi = la2 = (.375M
Ie = 2A, VCE = 200V,

pS
tf

lSi = 182 = (0.2A)
lal = IS2 = (.375M

pS
t.

lSi = la2 = CO.2M
Ic = 3A, VCE = 200V,

lSi = IB2 = (0.2A)
Ic = 3A, VCE = 200V,
lSI = IS2 = (.375M

'C/W

Notes
1. Pulse length 250,,5; duty cycle ,,1%.
2. Sustaining Voltage. Measured at a high current point where collector-emitter voltage is lowest. Current pulse length"" 50,,5; duty cycle ,,1%.

=

Voltage clamped at maximum collector-emitter voltage.
'It

JEDEC registered values.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (6171 861·6540
TWX (710) 326-6509 • TELEX 95·1064

100

PRINTED IN U.S.A.

2N5838 2N5839 2N5840

Forward Bias Safe Operating Area

Power Derating
100

10
D.C.

~

I,

~

....z

Power Dissip.tio~_
Limited

OJ

a:
a:

i!'I

0

...

ImS.,;

">=

'~(/",

a:

<
a:

Is. Limited

OJ
0
t-

2~5838~ ,.......

.5

0
0

U'U'/,ci

60

~1
/0

I

Te= 2S'C
ffies Apply Below
Rated VCEO

.2

II

.1
5

20

40

50

20

O[AA~

o

500

200

o

40
80
120
160
Tc - CASE TEMPERATURE ('C)

S

I I

I

veE = 5V

lel1, = 5

100

2

OJ

a:
a:

100'C

-

SO

....

Z

::l
0

20

I

~

2s'C

~

1

:--

::::

!:i

10

0
> O.S

z

~"

~
::l
....
00:
a:

S

5'

0.2
Ie -

O.S

1

2

0.2

-

/ V
~ /2s'C

/'

~

VeEls.t,

.05

S

.05

COLLECTOR CURRENT (A)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

1---.,.

/ 0 C/

....

0.1

0.1

~

/

55'
100'C

Ul

2

-

t,

0

.elf.

.05

V BE I..

-Ss'C

'"

e.>
Q:

0
le.>

w

oJ
oJ

0
e.>

son

400

.1

UTX

I

1056

-

-20V
.01
.1

10

100

VeE - COLLECTOR·EMITTER VOLTAGE (V)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

104

PRINTED IN U.S.A.

2N6249
2N6250
2N6251

POWER TRANSISTORS
IOA,450V, Fast Switching,
Silicon NPN Mesa

FEATURES

DESCRIPTION

•
•
•
•

These high voltage glass passivated power
transistors combine fast switching, low
saturation voltage and rugged Es/b capability.
They are designed for use in off-line power
supplies, high voltage inverters, switching
regulators, ignition systems and deflection
circuits.

Collector-Base Voltage: up to 450V
Peak Collector Current: 30A
Low Saturation Voltage
Maximum Safe Area of Operation

-

ABSOLUTE MAXIMUM RATINGS
2N6249

* Collector-Base Voltage, VCRO .

2N6250

............. 300V...
.......... ..375V ....
.. 200V..
. ............ 275V ......
6 V . . . . .... 6V
....... .10A..
. ........ lOA......
... 30A...
.... ..30A
...... .lOA..
..... .lOA...
.. ........ .l75W...
.. l75W... .
............... -65 to +20Q'C ...

*

Collector-Emitter Voltage, VCEO
Emitter-Base Voltage, VERO .
* Collector Current, Ic continuous.
Collector Current, ICM peak.
* Base Current, IR continuous.
* Power Dissipation, Pr 25'C Case.
* Operating and Storage Temperature Range

2N8251

.. ......... 450V
.............. 350V
................... 6V
...lOA
... 20A
............... .10A
..... 175W

* JEOEC registered values.

MECHANICAL SPECIFICATIONS
NOTE:
L.eads may be soldered to within
1/16" of base provided temperature·
time exposure is less than 260°C

2N6249-2N6251
ins.

for 10 seconds.

1 " - - ~p
A
~~
Be---

C

6-79

r
D

1
N

I
K~,

I ~-rT'
;1 ~ft
7

BASE

EMITTER

-

L

mm

A

.875 MAX.

B

.135 MAX

3.43 MAX.

C

.250-.450

6.35-11.43

22.23 MAX

o

312 MIN.

7.92 MIN.

E

.205-.225

5.21-5.72

F

.420-.440

10.67-11.18

J

.151-.161 CIA.

3.84-4.090IA.

K

.188 MAX. RAD

4.78 MAX. RAD.

L

.525 MAX. RAO. 13.34 MAX. RAD.

M

.655-.675

16.64-17.15

N

1.177-1.197

29.90-30.40

P

.038-.0430IA

9.65-10.920IA

105

TO-3

om

_UNITRDDE

I

2N6249 2N62S0 2N62S1

ELECTRICAL SPECIFICATIONS (at 25"C unless noted)
Test
D.C. Current Gain (Note 1)
Collector Saturation Voltage
(Note 1)

Symbol
hFE

2N6250
2N6251
2N6249
MIN. MAX. MIN. MAX. MIN. MAX.
6
50
10
50
8
50

Units

VCEI"'I

-

1.5

-

1.5

-

1.5

V

-

2.25

-

2.25

-

2.25

V

Test Conditions
Ic = lOA, VCE = 3.0V
Ic= lOA
IB = LOA (2N6249)
I. = 1.25A (2N6250)
I. = 1.67A (2N6251)

Base Saturation Voltage (Note 1)

VBEI ••'I

Collector-Emitter Sustaining
Voltage (Note 2)

VCEO I·usl

200

-

275

-

350

-

V

Ic = 200mA

Collector-Emitter Sustaining
Voltage (Note 2)

VC""I,u.1

225

-

300

-

375

-

V

Ic = 2oomA, RBE = SOn
L= 14mH

Emitter Base Cutoff Current

lEBO

1.0

mA

ICEO

5.0

mA

5.0

mA

10

mA

2.5

2.5

-

1.0

Collector Cutoff Current

-

2.5

mJ

Ic = lOA, L = 50"H
R. E= 50n, V. Eloff} = -4V

5.8
0.3

-

5.8
0.3

-

A

VCE = 30V
VCE = 100V

1.0

"C/W

Collector Cutoff Current, 125"

ICEY
I CEY

Second Breakdown Energy

Eslb

-

Forward Bias Second Breakdown

Islb

5.8
0.3

-

Thermal Resistance

R9JC

-

1.0

-

1.0

-

2.5

-

2.5

-

2.5

Collector Cutoff Current

High Frequency Gain
Switching Speeds:
Rise Time
Storage Time
~al1 lime

I hFEI
t
t
tf

0.8
1.8
0.5

5.0
5.0
10

2.0
3.5
1.0

0.8
1.8
0.5

1.0
5.0
5.0
10

2.0
3.5
1.0

0.8
1.8
0.5

VE.=6V
VCE = SOV less than rated
VCEO ISUSI
VBE = -1.5V
VCE = rated VCER ISUS}

VCE = lOV, Ic = SA

= 1 MHz

-

Ic = lA, VCE = 10V, f

2.0
3.5
l.0-

Ic=10A
IBI = 1.2 = 1.0A (2N6249)
IBI = 1.2= 1.25A (2N62S0)
1. , = IB2 = 1.67A (2N6251)

"S

Notes

1. Pulse length", 250"S, duty cycle ,,1%.
2. Sustaining Voltage. Measured at a high current point where
Voltage clamped at maximum collector~mitter voltage.
* JEDEC registered values.

UNITROOE CORPORATION· 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (nO) 326·6509 • TELEX 95-1064

collector~emitter

106

voltage is lowest. Current pulse length:::::: 50,uSj duty cycle

~1%.

PRINTED IN U.S.A.

2N6249 2N6250 2N6251

Forward Bias Safe Operating Area

Power Derating
100

"'\I'\.

4O~~~~I~~I~I~~~~~Tn

20~~~~:t~~~+t~~~n~~:I"I.....
P.W.
P.W.

~

~

f".-

80

a:

....0
t)

...<

.1\:-fI\t+ttI-t--H-HrH

200

.041:=:±=t=t::1:±±lt:tt=±~ct±t:i:±±±±J::j

TC - CASE TEMPERATURE (·C)

10

20

50

100

200

SOO

1000

VeE - COLLECTOR VOLTAGE (V)

Reverse Biased Safe Operating Area

Saturation Voltages

40

'c/s=I"=-'B2
VIE (off) ~ -5V
Te == 100°C

$
....
z

10

'"0::0::

4.0

u

2.0

OJ

....
u

m1
250

u
1

_u

0.4

0.5

~

t--

=--

l00'C

f-

0::

~/~

OJ

~ 0.2

2N6251

II)

Clf..f)

0.1

~;..-'

~V

0.2
.1

~ iJ

f-- VIE 1"'1

5S C
2S'C

>
Z
0

J

-

!:i
c

L

'"

"/

'"«CI

27ft9 rr

1.0

I

~

1/

...I
...I

0

~,..

!

0::

0

11111
le/l.=5

r- lOO•C

25'C

.04
10

20

r--i"""'f"

.05
0.2
50

100

200

2
0.5
5
Ie - COLLECTOR CURRENT (A)

1000

500

5S'C
10

20

Ve", In'I-COLLECTOR VOLTAGE (V)

DC Current Gain
500

Typical
Inductive Load
Switching Performance

200

z
;;:

100

'"0::
II:

50

CI
IZ

OJ

U

c
1
~

..... 1'-..

25°C
20

::::-:!"ssJc

.c

..... ~

--==~

nS

ns

3

25
100

.8
1.10

.14
.18

.025
.035

5

25
100

.9
1.2

.14
.16

.025
.030

10

25
100

1.2
1.5

.05
.12

.050
.100

t fj

~

10

0.2

I,.

p.S

r--- -100·C

U

t,

TJ
·C

Ie
Amps

VeE == 5V

20

...l.

5

10
0.5
2
Ie - COLLECTOR CURRENT (A)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95.1064

107

PRINTED IN U.S.A.

-

2N6249 2N6250 2N6251

Resistive Turn-Off Time

Resistive Turn·On Time
1000

10
100'C

500

l00'C

I"

~ ~

200

'iii

...::IioS

'\ t\,.1"

t,

I'r"o

I

fT

roo-

5.0

l-

2.0

.3 1.0

...::e

25'C

t.

l00"C

50

1;;iIIIIIIIIf""

i=

.5

.... ~

./

....

l00'C

1,\-

I

.2

·';"1
.5

tf

t-

Vcc = 250V
8,-5

2

,[\

~

91

i=

10
.2

i"'"
i""'t'-o

~,.=;,.5_rI,,=-I"r-

'U

100

20

vep ...25OV~

........~.=

;r.c !'-o..

25'C-

...... ~

I

5

10

.1
.2

20

Ie - COLLECTOR CURRENT (A)

I'"

;,+;4-

J..'

I""""

'1

.5

1

2

10

20

Ie - COLLECTOR CURRENT (A)

Switching Time Test Circuit
200V

P.W.

UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064

=25~S

108

PRINTED IN U.S.A.

2N6306
2N6307
2N6308

POWER TRANSISTORS
8 Amp, 700V, Triple Diffused NPN Mesa

FEATURES
• Collector-Base Voltage: up to 700V
• Peak Collector Current: 16A
• Rise Time: :;;:; 600 ns t
• Fall Time: :;;:; 400 ns ~ @ Ic = 3A

DESCRIFTION
These high voltage triple diffused glass
passivated power transistors combine fast
switching, low saturation voltage and rugged
Es/b capability. They are designed for use in
off-line power supplies, high voltage inverters,
switching regulators, ignition systems and
deflection circuits .

•
ABSOLUTE MAXIMUM RATINGS·
2N6306

Collector-Base Voltage, Vc.o ....
Collector-Emitter Voltage, VCEO .
Emitter-Base Voltage, VE• O .
Collector Current, Ic continuous .
Collector Current, ICM, peak .
Base Current, I. continuous.
Power Dissipation, Pr 25'C Case .
Operating and Storage Temperature Range .

* JEOEC

2N6307

.. 500V...
.... 6OOV.
........................ 250V.... ...... 300V.....

ZHI_

........... 700V
.. ... 350V

. ... W . . . . W ................................. ~
....................... 8 A . . . . .. 8A.............................. 8A
............... 16A...
.. 16A.
... .. 16A
....................... ~...~

....... ........................... 125W...
..... 125W....
............ -65 to +200·C.... .

..... ~
125W

registered values.

MECHANICAL SPECIFICATIONS

2N6306 2N6307 2N6308

TOol

.188

1t1h~~:.

BASE

EMITTER

~LlliJ. 135
MAX.

.525
MAX.
RAO .

.205
.450
.250

.312
MIN.

.440
.420

Dimensions in inches.

109

om

_UNITRDDE

2N6306

2N6307

2N630S

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)"
2N6306
Symbol

Test

2N6307

2N6308

MIN.

MAX.

MIN.

MAX.

MIN.

MAX.

75

15

75

12

60

Ie = 3A, VeE = 5V

-

4

3

-

Ie = SA, VeE =5V

Units

Test Conditions

D.C. Current Gain (Note 1)

h"

15

D.C. Current Gain (Note 1)

h"

4

Collector Saturation Voltage
(Note 1)

VeE

(sat)

-

O.S

-

1.0

-

1.5

V

Ic = 3A, IB = 0.6A

Collector Saturation Voltage
(Note 1)

VeE

(sat)

-

5.0

-

5.0

-

-

V

Ie = SA, IB=2A

Collector Saturation Voltage
(Note 1)

VeE

(sat)

-

-

-

-

5.0

V

IC = SA, IB = 2.67A

Base Saturation Voltage (Note 1)

VSE(sat)

2.3

-

V

Ic=SA,IB=2A

VSE(Sd t }

-

-

2.3

Base Saturation Voltage (Note 1)

-

-

2.5

V

Ic = SA, IB = 2.67A

Base-Emitter Voltage (Note 1)

VSE (O'll

-

1.3

-

1.3

-

1.5

V

Ic = 3A, VCE = 5V

Collector-Emitter Sustaining
Voltage (Note 2)

VCEO (SUS}

250

-

300

-

350

-

V

Ic = 100mA, IB = 0

Emitter·Base Cutoff Current

lEBO

-

1.0

-

1.0

rnA

-

-

-

-

-

0.5

-

-

-

1.0

0.5

-

-

-

0.5

-

-

-

-

-

0.5

-

2.5

-

Collector Cutoff Current

Collector Cutoff Current

Collector Cutoff Current, 150'C

ICEO

I CEV

I CEV

-

-

-

-

-

0.5

-

-

-

-

2.5

-

-

-

-

-

-

-

2.5

ISO

-

ISO

-

ISO

250

-

250

-

ES/b

-

Collector Capacitance

Cob

5

fT

-

5

-

rnA

5

VCE = 300V
VCE = 350V

-

-

VES = SV
VcE =250V

0.5

-

Second Breakdown Energy

Gain-Bandwidth Product

-

VCE = 500V
rnA

l

VCE = 600V \ VBE = -1.5V
VCE = 700V,
VCE = 500V}

rnA

VCE = 600V

VBE = -1.5V

VCE = 700V
mJ

Ic = 3.0A, L = 40 mH
RBE = 3Krz, VBB2 = 1.5V

250

pF

VCB = lOY, IE = 0, f = 1 MHz

-

MHz

Ic = .3A, VCE = lOY, f = 1 MHz

Switching Speeds:
Rise Time

t,

-

0.6

-

0.6

-

0.6

!'s

Vcc = l25V, Ic = 3A
I" =0.6A

Storage Time

t,

-

1.6

-

1.6

-

1.6

pS

Vcc = l25V, Ic = 3A
I" = 0.6A, I" = 1.5A
Pulse Width = 25 ItS

Storage Time

t,

-

O.S

-

O.S

-

O.S

pS

Vce = l25V, Ic = 3A
IB' = 0.6A, I" = 1.5A
Pulse Width = 5.0!,s

Fall Time

t,

-

0.4

-

0.4

-

0.4

ItS

Vec = 125V, Ic = 3A
I" = 0.6A, I" = 1.5A

ReJC

-

1.0

-

1.0

-

1.0

'C/W

Thermal Resistance

Notes
1. pulse length = 250 ~s; duty cycle ';:;1%.
2. Sustaining Voltage. Measured at a high current point where collector-emitter voltage is lowest. Current pulse length
Voltage clamped at maximum collector-emitter voltage.
* JEOEC registered values.

UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064

110

== 50

,us; duty cycle ~1 %.

PRINTED IN USA.

2N6306

2N6307

Power Derati ng

Forward Bias Safe Operating Area
100

~

~

0

IU

«
....

'" r--....

'"

80

0:

~

60

t"l

I

~{/4,.

~"'",

-...:."~o
t....:

~J

Z

;::
«
0:

~

w

"

40

W
0:
0:

AT DESIRED OPERATING VOLTAGE, DERATE

20

OISSI~A:'\

!~?: Sc;!~R~~:v~MIT AND J, .. CURRENT LIMIT FROM

"\

0

DASH LINES ON SOAR CURVES ARE EXTENSIONS OF

DISSIPATION liMITS FOR TEMPERATURE DERATING
PURioSESOt

o

"'"

~~

I-

::>

~

N'' -t.

Z

VCE -

2N6308

1

o

1

1

1

1

I\:

40
80
120
160
Te - CASE TEMPERATURE ('C)

COLLECTOR VOLTAGE (V)

200

Saturation Voltages

D.C. Current Gain
200
le l1,-5
100

z

~

t"l
I-

150'C
50

25'C

0:

f---I

W

-,

Z

, ,

a:
::> 20
u
-55'C

t.i

ci 10

I

.r::"

-- - ' •.>

--

,

W

t"l

«
I-

=-25'C
0.5

...J

0

'~l'

>

0.1

VcE ........:I0V

VCE

. / """'VVCEISATl

4-

= 3V

0.2
0.5
Ie - COLLECTOR CURRENT (A)

UNITRODE CORPORATION, 5 FORBES ROAD
LEXINGTON, MA 02173, TEL. (617) 861·6540
TWX (710) 326·6509 ' TELEX 95·1064

17 7
///

~
'i
IJ,C

---

0.1

VBE~~ ~!l'
55'C

~

0.2

2

~

...- ..... I-"1-"

-

"/

55'C
.05
0.1

10

0.2
Ie -

111

0.5
COLLECTOR CURRENT (A)

10

PRINTED IN U.S.A.

•

2N6306 2N6307

2N6308

Switching Time Test Circuit
R _ 125V
l-

RS2

Ie

125V

= 5V
I"

RBI

= Sv -RB2
I"

INSB02

Turn-On Time

Turn-Off Time

1000
Vee = 125V
Ie/I" =5
lei 1,,=2
TJ = 2S"C

SOO

"" '"
w 100

l"-

'"

td

::;;

>=

t,

-~

r..!:.

"

so
0.2
20

Vee _125V
le ll,=5
5V
T J =25"C

i'.. ,
t,

0.1

I"-

,.,..

VilE (olf) ::::

10
0.1

0.2
0.5
le"'-- COLLECTOR CURRENT (A)

UNITRODE CORPORATION" 5 FORBES ROAD
LEXINGTON, MA 02173 " TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

.os
10

0.1

0.2
Ie -

112

0.5
COLLECTOR CURRENT (A)

10

PRINTED IN U,S.A.

JAN
JAN
JAN
JAN

POWER DARLINGTONS
5 Amp, 150V, NPN

FEATURES
•
•
•
•

& JANTX
& JANTX
& JANTX
& JANTX

2N6350
2N6351
2N6352
2N6353

DESCRIPTION

High Current Gain: up to 2000 min. @ Ie = 5A
Low Saturation Voltage: as low as 1.5V max. @ Ie
Peak Current: to lOA
JANiJANTX versions meet MIL-S-19500/472

Unitrode NPN Darlingtons consist of a
two transistor circuit on a single
monolithic planar chip. The 2N6350
series is characterized for fast switching applications.

=2A

ABSOLUTE MAXIMUM RATINGS
3 PIN TO-66
JAN & JANTX

TO-33
JAN & JANTX
2N6350

Collector - Emitter Voltage
Emitter - Base Voltages

SOY. .

VEB2

...... 6V......
12V

VES1
D.C. Collector Current
Peak Collector Current
Base I Current
Power Dissipation
25·C Ambient
100·C Case
Thermal Resistance
Junction-to-Case
Operating and Storage Temperature Range

......... 5A.....
lOA...
0.5A
lW..... .
5W...... .

JAN & JANTX
2N6352

JAN & JANTX
2N6351

150V ..

................... SOV ..

6V .. .
12V .. .

......................... 6V ..

.... 2N6353
150V

... 6V
12V
................. 5A .... . ....... 5A
....... lOA ... .
.... lOA
.0.5A
................ O.5A.

. 12V ... .

5A ..
lOA.
O.5A ....

.... IW ..

. 2W
25W

... 2W ...
.. 25W

5W.

4·C/W

20·C/W
-wC to 200·C

.. -wC to 200·C

MECHANICAL SPECIFICATIONS
JAN & JANTX 2N6350

JAN & JANTX 2N6351

TO-33

JAN & JANTX 2N6353

3 PIN TO-66

COLLECTOR CONNECTED TO CASE

Dimensions in inches.

JAN & JANTX 2N6352

1t]
.075
.050

-<;

25% ImSec
Duty Cycle

o

I-

~

.2

8-'

.1

1mselc,

10"Sec, 1%

5:
I-

2

Z

\

UJ

0::
0:

\

:>
(J

~ '\

K\

100~

""D~

Te = 100'C
1

~~ ['\\

1

.5

0:

I

.~ ~ '\.

DC ""-

Z

0:
0:

_u

"- '\

10

I-

0

.2

1\ l\

.1

!\

1 .05
_0

2N6350-.

0--

.02
1
Vcr. -

10

[\\ l'\,

5

1\\

."~c:

""'- ~,"-

"

~

Valid for

r\

\

J
i'

I-

.2

:>
0

.1

(J

~

.02

UJ
0::
0::

:>

.......

(J

1

...

6
Ie -

I-

(J

UJ

..J
..J

0

(J

.2
.1
.05

2N6350,
2N6352

_0

,

I I

.01

.5

0::

0

1000 "

"'~1./00~J,

-'
1

I-

Z

1

~,~ ,." ~

MIL·S·19500/472
@V",=-4V,
R",=lK_ r .05 f1

5:

r--..
" "t~l
...... hlr

" I'~"I

r

RBU ~ 1000

VilE

"';:"'''00

,
" 1/,
limit per

(J

+c=100'C -

le/loo-

from 0 to -5V

.,

,-......: ~ "

.5

10

TA = 25'C

= -182 =

I,.

10 20
50 80 150
COLLECTOR TO EMITTER VOLTAGE (V)

Reverse Bias
Safe Operating Area
Clamped Inductive Switching

Unclamped Reverse Bias
Second Breakdown

"=

.01

8

10

COLLECTOR CURRENT (A)

Ve , -

10 20
50 80 90 150
5
COLLECTOR TO EMITTER VOLTAGE (V)

D.C. Current Gain

2N6351, 2N6353

2N635O, 2N6352

50,000

10,000

V r---,-.;:".,.,

5,000

~

W

20,000
10,000

"

5,000

I-

I,v
..,

UJ

0::
0::

2,000

(J

1,000

/

V 1/

:>

c.i
0
1

500

~

.r

200
100
50

r;v

",q

Z

L LV
/

/

V

/""

~

","

y

./

i\

~~/

z
;;:

2,000

I-

"

1,000

UJ
0:

500

V",,- ",q,

'j;

V k(

0

0::

:>

(J

c.i
0
1
.r~

veE = SV
R", = 1000

".., I?v

Z

~

I

/
.01

"- ~

fJ'c,

/

2N6351,
2N6353

.02

D.C. Current Gain

z
;;:

1\
1\

.01
10 20
50 80 150
COLLECTOR TO EMITTER VOLTAGE (V)

Ve , -

z
«

100#5ec
10%

1\

2N6351

.01

UJ

100#Sec
1% -

\

(J

\

f-10"Sec
1%

l\ If

\

1mSec, 10% \

UJ

-'
-'

.02

~

~~

0

(J

\

.05

""

Te = 100'C

I"C\' f\
1

.5

0::

lOO,uSec,
1%

\

100"Sec, 10%"

lmSec, 25%
-·Duty CYre

1\

-

200
100
50

V

V 'V,/ V
v/

V

~
.........

~,c,

~",_Ei

VeE = 5V
RIZE = 1000-

I I

20
10

.02

.05.1
.2
.5 1
2
Ie - COLLECTOR CURRENT (A)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

5

10

.01

115

.02

.05.1
.2.5
2
Ie - COLLECTOR CURRENT (A)

5

10

PRINTED IN U.S.A.

JAN & JANTX 2N6350

JAN & JANTX 2N6351

JAN & JANTX 2N6352

JAN & JANTX 2N6353

Saturation Voltalle
Temperature Coefficients

Saturation Voltages

+4

\("' ''''"..
I

-

,I

;-

E

IJ)

la=lc/looo

\

v..

- f-'\
"'-

-- -..-<

I

.S

.2

.5
Ie -

z

f-

+2

'"0

...ii:
'"0

+1

'"0:

/
./

::>

-6S'C~02~
-1

~

f--- ",ve.

~

0: -2

...:::;'"
'"1
~

-3

Vee

.1

10

.S
2
5
COLLECTOR CURRENT (A)

.2

COLLECTOR CURRENT (A)

Ie -

~ '3riV

ill

e

.2

vee = 30V
'.1 =-IBZ= IC/25G
2S'C

VI

:::: ....... 1.......

,.;...-

.,/

Z~'C

150·C............

.1 '-2S'C

-,.....
~
1

.S
Ie -

~

~D~'.y Time, td

I

O.S

.2

2

S

.S

COLLECTOR CURRENT (A)

Ie -

Thermal Response

--"'$'''1''-:1-;..
I-lo,.~

_.

_~

""'-~-

Duty Cycle

• _INPUTWAVEnmM
I 5I!£ r«fr£S 1 AND~)

10'.. _ -

-

:

.S
f-

OUTPUT W...VEroflM

(SEE NOTE

Z

~J

'"

SCOPE
(SEE

NOTE1}

iii'"
ztJ

(J

U
ci

I

100

10

L -_ _ _ _---L_ _ _ _---'_ _ _ _-----'

.01

1.0

.1
Ie -

10

COLLECTOR CURRENT (A)

2N6351 & 3 Switching Speed Circuit

2N6350 & 52 Switching Speed Circuit

+30Vdc

+30Vdc

60

60
SCOPE
(SEE
NOTE 2)

SCOPE
(SEE
NOTE 2)

B,

sOOt!
lOO!!
-lOVdc

-lOVdc

NOTES,

1. The input waveform is supplied by a pulse
generator with the following characteristics:
tr ~ 15 ns, t f :s;; 15 nSf ZO'Jt = son, PW
10 #5,
Outy cycle,,:; 2%.
2. Output waveforms are monitored on an
oscilloscope with the following characteristics:
tr ~ 15 n5, lin ~ 10 MO, C in ~ 11.5 pF.

=

3, Resistors shall be noninductive types.
4. The DC power supplies may require additional
by~passing in order to minimize ringing.

UNITROOE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

117

PRINTED IN U.S,A.

2N6354
2N6496

POWER TRANSISTORS
20 Amp, 150 V, Double Diffused NPN Mesa

FEATURES
• Collector-Base Voltage: up to lS0V
• Peak Collector Current: 30A
• Rise Time: ,,;; SOOns t
• Fall Time: ,,;; SOOns \ @ Ic up to 12A

DESCRIPTION
These double diffused glass passivated
mesa power transistors combine fastswitching, low saturation voltage and
rugged Eslb capability. They are designed for use in switching regulators,
converters, inverters and switchingcontrol amplifiers.

ABSOLUTE MAXIMUM RATINGS·
2N6354

2N6496

Collector-Base Voltage, VCBO ............................................................................................................. lS0V .. .
lS0V
Collector-Emitter Sustaining Voltage, VCER (SUS) (1) ............................................................. - .. .
..130V
nov
120V
. VCEO (SUS)
Emitter-Base Voltage, VEBO .................................................................................................................. 6.SV ... .
..... 7V
Collector Current, Ic continuous .......................................................................................................lOA ..
lSA
Collector Current, ICM peak ...................................................................................................................12A
Base Current, IB continuous ...................................................................................................................SA .
. .... SA
Power Dissipation, 2S'C Case ............................................................................................................ 140W...
. .. 140W
Operating and Storage Temperature Range ........................................................................................-6S to 200'C
With R" ~ SOn
* JEDEC registered values.

(1)

MECHANICAL SPECIFICATIONS
2N6354, 2N6496

TO·3

."3
.038
OIA .
.875
MAX.

1.135
MAX.

fo---+---I
.450
.312
.250

MIN.

Dimensions in inches.

118

lliD
_UNITRODE

2N6354 2N6496

Electrical Specifications (at 25°C unless noted)
2N6354
Test
D.C. Current Gain
(Note 1)

hFE

D.C. Current Gain
(Note 1)

hFE

D.C. Current Gain
(Note 1)
Collector Saturation
Voltage (Note 1)
Collector Saturation
Voltage (Note 1)

*

Symbol

10

-

hFE

-

VCE I"t)
VCE I"t)
VCE I"t)

Base Saturation
Voltage (Note 1)

V'E I"t)

- - - 12 100
100 - -

VBE1"tl
VCEO 1,",1

-

0.5

-

-

-

1.0

- - - - - - - - 1.3" - 2.0
- 2.0 - - - 120 100 1.0

Collector-Emitter
Sustaining Voltage
(Note 2)

VCEX

(sus)

-

- - -

Collector-Emitter
Sustaining Voltage
(Note 2)

VeER

(sus)

130

Emitter-Base Voltage

VEBO

Collector Cutoff
Current

Ic•o

Collector Cutoff
Current

ICEO

Collector Cutoff
Current

ICEV

Collector Cutoff
Current, 125°C

ICEV

-

Collector Cutoff
Current, 150°C

ICEV

-

Emitter Cutoff
Current

lEBO

- 130 - - - 7.0 5 - - - - 20 - - - - 20
- 10 20 - - - - - - 25
5.0 - - 50
12 - - 300 - 300
- - 1.25
1.25 -

Magnitude of Small
Signal ForwardCurrent Transfer
Ratio
Collector Capacitance
Thermal Resistance:
Junction-to-Case

6.5

-

-

Ihr. I

Units

20 150

Collector Saturation
Voltage (Note 1)

Base Saturation
Voltage (Note 1)
Collector-Emitter
Sustaining Voltage
(Note 2)

2N6496

MIN. MAX. MIN. MAX.

-

8.0

Cob

-

R0JC

-

V
V

Test Conditions

Ic =
Ic =
Ic Ic =
Ic =
Ic Ic =
Ic Ic

2A, VCE = 5V
5A, VCE = 2V
SA, VCE _ 2V
lOA, VCE = 2V
lOA, VCE = 5V
12A, VCE _ 5V
5A, I, = .5A
SA, IB - .SA

=

lOA, IB

=

LOA

l2A, I. = 1.2A
20A, I. = 5A
5A, I. = O.5A
SA, I, = O.SA
lOA, I. = lA
20A, IB = 5A

V
V

Ic Ic =
Ic =
Ic =
Ic =
Ic =

V

Ic=0.2A

V

Ic = 0.2A
VB' = -1.5V
1,=0
RBE = 100 n

V

RBE = 50 n, Ic = 0.2A
R. E= 100 n, Ic = 0.2A

V

I, = 5mA
IE = 50mA

rnA

VCB = l50V

V
V

rnA

rnA

rnA
rnA

rnA

VCE =
VCE VCE =
Vc , =
VCE =
VCE =
VCE -

II

55V
70V
100V

nov, VBE = -1.5V

l30V,
l40V,
l40V,

V'E = 0
V. E= -1.5V
VBE _ 0

VCE = l40V
VCE = S5V, V. E= -1.5V
VCE = 100V, VBE = -1.5V
VCE - l30V, VBE _ OV
VBE - -5V
V. E= -6.5V
VBE = -7V
VCE = 10V, Ic

=

2A, f = 5 MHz

VCE = 10V, Ic = lA, f = 10 MHz
pF
°C/W

VCB = lOV, f = 1 MHz
VCE - lOV, Ic _ lOA
VCE = 20V, Ic = lA

Notes

1. Pulse length = 250 ~s; duty cycle <;;1%.
2. Sustaining Voltage. Measured at a high current point where collector·emitter voltage is lowest. Current pulse
length =:: 50 .uSj duty cycle ~1%. Voltage clamped at maximum collector·emitter voltage.
* JEDEC registered values.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

119

PRINTED IN U.S.A.

2N6354

2N6496

Electrical Specifications (at 25'C unless noted)

Second Breakdown
Energy

0.3

-

-

-

- S.7 -

-

-

-

-

-

-

S.O
0.9

-

Es/b

S.S

Forward Bias
Second Breakdown
Collector Current

- - - 0.3
- 1.0
- 0.2
- - - - -

'sib

Switching Speeds
Rise Time
Storage Time
Fall Time
Rise Time
Storage Time
Fall Time
Rise Time
Storage Time
Fall Time
Rise Time
Storage Time
Fall Time
*

2N6354
2N6496
MIN. MAX. MIN. MAX.

Symbol

Test

t,
t,
tf
t,
t,
tf
t,

t,
tf
t,

t,
tf

-

Units

Test Conditions

Ie = SA, VBE = -1.0V
RBE = 51 n, L = 2SI'H
'e = 8A, V" = -4.0V
RBE = 20 n, L = 180l'H
Ie = 13A, V" = -4.0V
RBE = 20 n, L = 180,uH
VeE - 2SV, t _ Is, non-rep.
VeE - 28V, t _Is, non-rep.
VeE - 45V, t _ Is, non-rep.

mJ

-

A

-

-

1,5

0.5
1.5
0.3

1'5

Ie = SA
'BI='B2=·5A
Vee = 30V
Ie - 8A
'BI='B2=·8A
Vee = 30V
Ie - lOA
'BI = 'B2 = 1.0A
Vee = 30V
'e _12A
'BI = 'B2 = 1.2A
Vee = 30V

-

-

1'5

1'5

-

JEDEC registered values.

Forward Bias Safe Operating Area
for 2N6354

30

Z

UJ

'"'"
'"0....
u

:: ~"-"'-rI"T"I"'Ir"1'T"~-'-"---l'-.."T""

u

~

2N6496

1N-.

./~,,>~I.t~

-.. = F=
%>-= f=

LIMITED

,

u

\

'"

~

UJ

\

..J
..J

..J
..J

I
_0

o

\

To; = 25'C

0

u

T -25'C

u

0.5

,I

2

1
100
10
20
50
VCE ~ COLLECTOR VOLTAGE (VI

UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

[C~'C~~~R~V~E~S~A1p~P~LY~B~E~LO~W~~~~~~~

f--

IU

IS/b LIMITED
0.5
0.3

_

~~
=~i ~: > 10~~D~IIS-~S~'-IP~AIT~Jllol*!N,~~~"~r~~~"f~~\~~~~
,

~I

0.3

IS/b LI MIT ED

L--'---'---ll--ll-L-'.J111'I-,--,--I-,---,---,--,-",,-,~
-1-2

200

120

RATED Vew

10
20
50
100 200
VCE - COLLECTOR VOLTAGE (V)

PRINTED IN U.S.A.

2N6354

Power Derating
100

'" '\:""-'\.

2N6496

DC Current Gain
500

:--....

~

80

0::

0

>-

u
<:
"-

"

60

~oS'oS'1<>

.

0::
W

AT DESIRED OPERATING VOLTAGE. DERATE

20

;~?CN S~~~R~~:V~M'T ANO '\, CURRENT LIMIT FROM
DASH LINES ON SOAR CURVES ARE EXTENSIONS Of
DISSIPATION LIMITS FOR TEMPERATURE DERATING

PURrOSES.

o

~ 50

--

55'C

:::J
U
U

o
£

~r--

~

20
VeE

"-1,\

40
80
120
160
T, - CASE TEMPERATURE ('C)

25'C

w

OISSI~A"

U

o

z>-

""- .......

~"'0

>-

Z

:::J

" 100

.......

N~

40

150'C

<

'''''0

UJ

0::
0::

z

~J~

z
;:::
0

200

.... ~{/~

=

~

1'\

V

10

200

0.2

0.5
Ie -

Saturation Voltages

10

20

COLLECTOR CURRENT (A)

Switching Time Test Circuit

v"

RL==~

I II

".>- 0.5

~

II

5~'C

~

Ve<.
5V

I,ll, = 10

V BE

k::::i!iii'J
r;;-rLL

(SAT)

150'C

UJ

...J

0

>

I/v

0.2

\~~ Vv

0.1

VCE

P.W. = 25115

(SAT)

V

"",r,

+-

.05
0.2

0.5
Ie -

10

20

COLLECTOR CURRENT (A)

Turn-Off Time

Turn-On Time
1000

-

Vee = 30V
500

200

" I'

~

'"co
UJ

:;;

t-r-

100

r---

/

'"

\'-..

=182=lc/I0 T J = 25'C
101

rt:" .....

'"
.3
w 0.5
:;;

t.

;:::

;:::

"

50

r-

0.2

N

Vee = 30V
20 I-- lei == 'CliO
r- TJ =25'C

10
0.2

~

0.1

I I I III
0.5
Ie -

i'

10

.05
0.2

20

COLLECTOR CURRENT (A)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON,. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

121

0.5
Ie -

."

10

20

COLLECTOR CURRENT (A)

PRINTED IN U.S.A.

POWER TRANSISTORS

2N6510
2N6511
2N6512
2N6513
2N6514

7 Amp, 400V, Triple Diffused NPN Mesa
FEATURES
• Collector-Base Voltage: up to 400V
• Peak Collector Current: lOA
• Rise Time: :;;;; 1.5.us l
• Fall Time: :;;;; 1.5.us f @ Ic 4A

DESCRIPTION
These high voltage triple diffused glass
passivated power transistors combine fast
switching, low saturation voltage and rugged
Eslb capability. They are designed for use in
off-line power supplies, high voltage inverters,
switching regulators, ignition systems and
deflection circuits.

=

ABSOLUTE MAXIMUM RATINGS
2N6510

'Collector Base Voltage, Vcpo
Collector-Emitter Sustaining Voltage, VeER (suo) (Il ..
'Collector-Emitter Sustaining Voltage, VeEO (sus) .... ..
'Emitter-Base Voltage, VEao
'Collector Current, Ie continuous
'Base Current, la ..
'Emitter Current, IE ........
'Power Dissipation, Pr 25'C Case.
'Operating and Storage Temperature Range
(1)

R"

.. 2S0V.
... 250V.
200V.

.

2N6511

2N6512

2N&513

2N6514

300V...
350V...
. .400V..... ... 350V
.... 300V .............. 350V. ... .... ...400V ......... ' ..... J50V
. .... 2S0V .... ......... JOOV ...............350V .. ...
.... 300V

D M ............... m.... ...... m ............ m
.. n
....... ~....n... .............. M

~...

.. lOA.....

... 10A.

. .. 10k..

.... 10A... .

M ..................M . ....•................. ~
..... .120W. . ... ...... .120W...

...... 120W ..
. ..... .120W ....
-65 to +200·C .... .

...lOA

....... ~
....... 120W

=501l

*JEDEC registered values

MECHANICAL SPECIFICATIONS

2N6510 2N6511

2N6512 2N6513 2N6514

TD-3

~llil-E!
13S-HJ I
MAX.

.450
.250

.312
M!N.

.440
.420

Dimensions in inches.

[ill]
122

_UNITRDDE

2N6510 2N6511 2N6512 2N6513 2N6514
ELECTRICAL SPECIFICATIONS (at 25"C unless noted)
2N6514

2N6510
Test

"D.C. Current Gain (Note 1)
"Collector Saturation Voltage
(Note 1)

Symbol

Max.

Min.

10

50
1.5

-

-

10

50
1.5
2.5
1.7

hFE

-

VCEI"t)

"Base Saturation Voltage (Note 1)

V'EI"t)

Collector-Emitter Sustaining
Voltage (Note 2)

VCEO I'u,)
VeER

"Collector Cutoff Current

ICEV

"Collector Cutoff Current 100"C

IcEv

"Switching Speeds
Delay Time
Rise Time
Storage Time
Fall Time
Delay Time
Rise Time
Storage Time
Fall Time

td
t,
t,
t
td
t,
t,

Max.

Min.

-

-

2.5
1.7

-

-

200'
250
-

(sus)

300 "
350
-

5.0

-

-

-

-

-

0.2
1.5
5.0
1.5
-

-

10

-

-

-

V
V

Ic =0.2A

-

V

Ic = 0.2A, R'E = 50n
VCE = 250V, V'E == -1.5V
VCE = 350V, V'E == -1.5V
VCE == 250V, V'E = -1.5V
VCE := 35OV, V'E = -1.5V

0.2
1.5
5.0
1.5

-

-

Test Conditions

Ic=3A, VcE =3V
Ic =5A,VCE =3V
Ic = 3A, I, = 0.6A
Ic = 5A, I, = 1A
Ic= 7A, I, =3A
Ic = 3A, I, = 0.6A
Ic =5A,I,=lA

-

-

-

-

-

tf

V

5.0
10

-

Units

mA
mA

p'S

Vcc =200V
Ic =3A
IB' = I" = 0.6A

"s

Vcc:=200V
Ic ==5A
I" == 1,,=lA

ELECTRICAL SPECIFICATIONS (at 25"C unless noted)'

Test

Symbol

"D.C. Current Gain (Note 1)

hFE

"Collector Saturation Voltage
(Note 1)

VCEI"t)

"Base Saturation Voltage (Note 1)
Collector-Emitter Sustaining
Voltage (Note 2)

2N6511
Min.
Max.

10

V'EI"t)
VCEO(,U')

-

50
1.5
2.5
1.7

250

VeER

300

(sus)

-

-

-

300

-

350

5.0

350
-

-

400

-

5.0

-

-

-

5.0

-

-

-

"Collector Cutoff Current, 100"C

-

-

-

-

-

-

"Switching Speeds
Delay Time
Rise Time
Storage Time
Fall Time

-

0.2
1.5
5.0
1.5

-

0.2
1.5
5.0
1.5

-

0.2
1.5
5.0
1.5

ICEv

-

IcEv

-

td
t,
t,
tf

10

2N6513
Max.

Min.

50
1.5
2.5
1.7

"Collector Cutoff Current

2N6512
Max.

Min.

10

-

10

10

-

-

-

50
1.5
2.5
1.7

Units

V
V
V
V
mA

Test Conditions

Ic ==4A,VcE =3V
Ic = 4A, 1,:= O.SA
Ic =7A,I,=3A
Ic = 4A, I, = O.SA
Ic = 0.2A
Ic = 0.2A, R'E = 50n
VCE = 3OOV, V'E = -1.5V
VCE = 35OV, VBE -1.5V
VCE - 400V, V'E -1.5V
VCE 3OOV, V'E -1.5V
VCE = 300V, V'E = -1.5V
VCE 400V, V'E = -1.5V

=

mA

=
=
=

=

10

p's

Vcc=200V
Ic=4A
I" = 1,,:= O.SA

Notes
1. Pulse length = 250 ps; duty cycle <;;1%.
2. Sustaining Voltage. Measured at a high current point where collector-emitter Yoltage is lowest. Current pulse length", 50 pS; duty cycle <;;1%.
Voltage clamped at maximum collector-emitter Yoltage.
* JEDEC registered values.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

123

PRINTED IN U.S.A.

•

2N6510 2N6511

2N6512

2N6513

2N6514

ELECTRICAL SPECIFICATIONS (at 25°C unless noted)"
All Types
Test

Symbol

Emitter-Base Cutoff Current
Magnitude of
Common Emitter
Small-Signal
Short Circuit
Forward Current
Transfer Ratio

Min.

-

lEBO

Forward-Bias
Second Breakdown

Units

3.0

mA

Test Conditions

VEB =6V

Ic=lA
VCE = 10V
f=lMHz

9

3

I hie I

Max.

Collector Current
Collector Capacitance

Islb

3.16
0.1

-

Cob

100

200

A
A
pF

Thermal Resistance,
Junction-to-Case

R9JC

-

1.46

°C/W

VCE = 35V, t = 1s, non-rep.
VCE = 200V, t 1s, non-rep.
VCB = 10V, f = 1M Hz

=

VCE = 20V, Ic

=5A

., All values in this table are JEDEC registered.

Power Derating

Forward Bias Safe Operating Area
100

20

"'\
:--...

10

~
>z

w

""

DISSIPATIO~"'~I'\

'"'"
u
0'"
>-

:>

LIMITED

~

u

'"

\f\

0

u

25'C
Tc
CURVES APPLY BELOW
RATED Vow

0.5

I III

I III

0.2

5

10

I

ISIb LIMITE D

fill Ll

'"....

tt-

.
u

',I'

1\
,,

u.

(.'J

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

~
I

f\. ~ ~(/4,~,.~O
~

~J'Ii

~

a:

OJ

'.

0

i'o..

d'd'

60

z

~."

40

~<"0

....Z

,

""

DISSI~A"

OJ

a:
a:
u

:>

AT DESIRED OPERATING VOLTAGE. OERATIE
nON CURRENT LIMIT AND I,. CURRENT UMIT fROM

20

2S"C SOAR CURVE
DASH LINES ON SOAR CURVES ARE EXTENSIONS OF
DISSIPATION LtMITS fOR TEMPERATURE DERATING

l\ 1\

20
50
100
200
VeE - COLLECTOR VOLTAGE (V)

80

0

\ , '.

~

W
...J
...J

I

~~<

'

%"

~

~\t

'\

PURPOSES.

o
500

124

I

o

40
Tc -

I

I

I

I

80
120
160
CASE TEMPERATURE (oC)

1,\
200

PRINTED IN U.S.A.

2N6510 2N6511

2N6512

2N6513

2N6514

Saturation Voltages

D.C. Current Gain
200
lell,-S
100

z
:;:

"

-

12S"C

so

I-

Z

"'
0:
0:

:>

u
ti

VIE

--"

2S"C

_I20

ci 10

I--

,

~

- - ''': 1\

_~;"C

""'"
0
I..J

'~l~

1--1-"

O.S

~C

0.2

-- -

2

0.1

0.1

Vc~=10V

VeE

=

V

"I

.It

r-

t:;::1'

I"-2S"C

>

I

~b:::;

SS"C

~

/V

V VVCE(S ....

lS~"C

4

3V

1717

~-

T)

"/

SS"C

0.2
O.S
Ie - COLLECTOR CURRENT (A)

.OS
0.1

10

0.2

O.S
Ie - COLLECTOR CURRENT (A)

10

Switching Time Test Circuit
R _ 200V
lIe

200V

R,= SV

I;

R,

P,W.:=: 25)IS

Turn-Off Time

Turn-On Time
10

1000

Vee
lell ,

SOO

.....

181=182

T J = 2S"C

........

"\

..

200V
S

t,

r-

~

I,

t--.

.....
Id

I:

;;;"100

"'
.3
"'
:;;

I'-.

:;;

1

;::

;:

O.S 1'-

so

t,"r-..

Vee - 200V

20

0.2

1011,= S

I

V BE (Qff)=5V

---

T J =2S"C
10
0.1

0.1
0.2
Ie -

O.S
COLLECTOR CURRENT (A)

UNITRODE CORPORATION. S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 9S-1064

0.1

10

0.2
Ie -

125

O.S
COLLECTOR CURRENT (A)

10

PRINTED IN U.S.A.

•

2N6542
2N6543

POWER TRANSISTORS
5A,850V, Fast Switching,
Silicon NPN Mesa

DESCRIPTION
These high voltage glass passivated power
transistors combine fast switching, low
saturation voltage and rugged Es/b capability.
They are designed for use in off-line power
supplies, high voltage inverters, switching
regulators, ignition systems and deflection
circuits.

FEATURES
• Collector-Base Voltage: up to 850V
• Peak Collector Current: lOA
• Rise Time: ';;;0.7.u S} @ I - 3A
• Fall Time: ';;;0.81'5
c• Key Parameters characterized at 100'C

ABSOLUTE MAXIMUM RATINGS •
2N6542

2N6543

Collector-Base Voltage, VCBO ............
.. ........................................................................... 650V............. ..........................
...850V
Collector-Emitter Voltage, VCEO ISUSI ..............
.. ..................................... ........... 300V....................................
..400V
Emitter-Base Voltage, VEBO ..............................
......................
.......................................
.......... 9V....................................................... 9V
Collector Current, Ic. continuous ......................
.. ................................................... 5A ..................................................... SA
Collector Current, Ic peak ........................ ....................
.. ............ .10A.....................................
.. .. lOA
Base Current, lB. continuous ... .......................
.......................
...............................
...SA..............
.. .... SA
Power Dissipation, 2S'C Case ............................
.. .......................................................... 100W............................................... lOOW
Derating Factor ..................................................................................................................................................S71W/'C............................
.S71W/'C
Operating and Storage Temperature Range
....................................................................................................................-65 to 200'C ................... ..
• JEDEC registered values.

MECHANICAL SPECIFICATIONS
NOTE:

2N6542 2N6543

Leads may be soldered to within

111," of base provided

time exposure is less than 260'C
for 10 seconds.

ins.

J

K

~E!bP
C 0

TO-3

temperature~

BASE

1
N

/'''''-'>::
I

1~ 0E

~
F

EMITTER

-L

A

.875 MAX.

mm
22.23 MAX .

B

.135 MAX.

3.43 MAX.

C

.250-.450

6.35-11.43

D

.312 MIN.

7.92 MIN.

E

.205-.225

5.21-5.72

F

.420-.440

10.67-11.18

J

.1S1-.1610IA.

3.84-4.09DIA .

K

. 188 MAX, RAO. 4.78 MAX. RAD .

L

.525 MAX. RAO. 13.34 MAX. RAO .

M

.655-.675

16.64-17.15

N

1.177-1.197

29.90-30.40

P

.038-.043 OIA.

9.65-10.920IA .

(ill]
6-79

126

_UNITRDDE

2N6542

2N6543

ELECTRICAL SPECIFICATIONS (at 25·C unless noted)"

Test
D.C. Current Gain (Note 1)

hFE

Symbol

2N6542
MIN.
MAX.
12
60

2N6543
MIN.
MAX.
12
60

Units

Test Conditions

Ic = 1.5A, ~=2V

D.C. Current Gain (Note 1)

hFE

Collector Saturation Voltage
(Note 1)

VCEls.'1

-

1.0

-

1.0

V

Ic = 3.0A, I. = 0.6A

Collector Saturation Voltage,
Tc = 100·C (Note 1)

VCEls.'1

-

2.0

-

2.0

V

Ic = 3.0A, I. = 0.6A

Collector Saturation Voltage
(Note 1)

VCEls.'1

-

5.0

-

5.0

V

Ic = 5.0A, I.

1.4

-

1.4

V

1.4

-

1.4

V

=3.0A, I. = 0.6A
Ic = 3.0A, I. = 0.6A

7

35

7

35

Ic = 3.0A, VCE = 2V

= LOA

Base Saturation Voltage (Note 1)

V'Els.'1

Base Saturation Voltage,
TC = 100· C (Note 1)

V.Els.tl

Collector-Emitter Sustaining
Voltage (Note 2)

VCEol,"sl

300

-

400

-

V

Ic = O.lA, I. = 0

Collector-Emitter Sustaining
Voltage
TC 100·C (Note 2)

VCEXI,"sl

350

-

450

-

V

L = 1801'H, Ic = 2.6A
V. E= -5V
VCE clamped to rated VCEX Isusl

Collector-Emitter Sustaining
Voltage
Tc = 100·C (Note 2)

VCEXlsusl

200

-

300

-

V

L = 180I'H, Ic = SA
V.Eloffl = -5V
Vc, clamp to VCEO -100V

Emitter-Base Cutoff Current

I E30

=

Collector Cutoff Current
Collector Cutoff Current,
Tc = 100·C

IcEV
IcEV

Collector Cutoff Current,
Tc = 100·C

ICER

Output Capacitance,
Common Base

Cobo

Gain-Bandwidth Product

Fr

Ic

-

1

-

-

0.5

-

-

2.5

3.0

-

-

-

-

3.0

50

150

SO

150

pF

6

24

6

24

MHz

VCE = 10V, Ic

2.S

1

0.5

-

mA
mA

VE.=9V
VCE = 650V, V.E= -1.SV
VCE = 850V, V.E= -1.SV

mA
mA

VCE = 6S0V, V.E= -1.SV
VCE = 850V, V.E= -l.SV
VCE = 650V, R = SOn
VCE = 850V, R = SOn
Vc.=10V,f=lMHz

=0.2A, f = 1 MHz

Forward Bias Second Breakdown

Islb

200

-

200

-

mA

P.W. = 1 sec. single shot
VCE = 100V

Energy Second Breakdown
(unciamped)

Eslb

180

-

180

-

I'J

Ic =3.0A
L = 401'H, VaUof~ = 4.0 Vdc

Resistive Switching Speeds
Delay Time
Rise Time
Storage Time
Fall Time

td
t,
ts
tf

-

O.OS
0.7
4.0
0.8

-

O.OS
0.7
4.0
0.8

"S

Ic = 3.0A, tp 100l'sec
Vcc=25OV
lal = I., 0.6A
VaE loffl = SV

Inductive Switching Speeds
Tc 100·C
Storage Time
Fall Time

=

Thermal Resistance,
Junction-to-Case

tf
t,
ReJc

-

4.0
0.8
US

-

=

4.0
0.8

I'S

1.75

·C/W

=

Ic=3.0A
la = 0.6A, VaE lof~ 5.0 Vdc
VaElofij 5V
VCE clamp rated VCElUs'!!l.

=

Notes
1. Pulse length = 250,,5; duty cycle ';;;1%.
2. Sustaining Voltage. Measured at a high current point where collector-emitter voltage is lowest. Current pulse length
Voltage clamped at maximum collector-emitter voltage.
* JEOEC registered values.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. 1617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

127

=

=

==

50,"S; duty cycle ~1%.

PRINTED IN U.S.A.

•

2N6542

Forward Bias Safe Operating Area

Power Derating

10

100

2OpS-p.,.

"'\ "
:-....

.C.

...z~
....
'"'"
0
0'"
t;

",lmS

~

0

u

.....
z'"
..;:
t-

o

~

.2

a:

2N6543

I

::J

\.

DASH LINES ON SOAR CURVES ARE EXTENSIONS OF

Rated V CEO

II

20

10

"
100

50

DISSIPATION LIMITj FOR TrMPEfljTURE

\

lEItAT'NG

o

500

200

o

40
TC -

.......
Z

«

'....z..."

::J

'"'"
::J

0.5

0

....
..J

100'C
50

25'C

I

20

0

""f:::::

...... ~

SS'C

0

~,

ci 10

..J

I

I
VeE = 5V

100

2N6542--i

'"U'"

0

200

2

w

...u'"

1,\

D.C. Current Gain
200

0

..........

80
120
160
CASE TEMPERATURE ('Cl

Reverse Biased Safe Operating Area

...

'\

PU"POSES.!

VeE - COLLECTOR VOLTAGE (V)

~
z

"-

D£RAT~ DISSI~A.'\

AT DESIRED OPERATING VOLTAGE,
lION CURRENT LIMIT AND 'I ~ CURRENT LIMIT !"ADM
25"C SOAR CURVE

20

0

Curves Apply Below

.1 II
5

'''~o
i'..::

~~
~"'0

....a:

2N6542

Te=25'~

~J

...z

'\

I
_0

60

?
~(/4t.

~;$'",

a:
w 40
c

Limited

lSI

.5

'\.

0

10mS

......J

80

a:

\(

~

::J

..J

~

1"Power Dissipation
Limited

2N6543

I

2N6543 -

.r:.~

0.2

_0

V BE IQIfI ~5V

0.1

=

Te';; 100'C
2

.05
10

50

20

100

500

200

.OS

1000

0.1
Ie -

VeEX 1"'1- COLLECTOR VOLTAGE (V)

0.2
6.5
COLLECTOR CURRENT (AI

5

Saturation Voltages
5

Typical
Inductive Load
Switch ing Performance

I
lell, =5
2

~

-55'C

w

'"~

0

> 0.5

100'C

z

0

~

'"~
::J

"

0.2

/



Attain Specified Peak Iv
PW Varied to Attain

Duty Cycle'; 3%
f = 1kHz

Ie = 100mA
Leo;! ;::: 80mH

Vee

Leo,

== IOV

I

-

(Unclamped)

INDUCTIVE TEST CIRCUIT

...'"

:;

u

II:

:~"~
1

<>

See Above For Input

...'"w

Detailed Conditions

...

2

. or
)Equivalent

V'ii!lmP.T

~

r l
I I Reell
I I
I

JLeoi'

T

Vee

1 R, 1

Rated

Vr"EX

Vcl"mp

OUTPUT WAVEFORMS
t f Clamped

'-jleE.?t<:' lunClamped

Ve'l velY,ramp
or ~n
Time

i--t,..i

Vee;::: IOV

(Unclamped)

t, Adjusted to

= I,

t """

t2 ='

129

--llV _ _ 2

tf~

SOns

Duty Cycle'; 2%

Vee - 250V
Rl =83!l
01 = IN5820 or Equiv.
R,=200
RESISTIVE TEST CIRCUIT

Leoll (lCpk)

Vee

Cl cp...}

----v::;LCQiI

I

OIU-

Obtain Ie

1

10--1,--11,1--

O.W

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173. TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

Leod ;::: 40p.H
Reo . , ;::: 0.20

__ 1

le=3A
PW'; 100~s
t f ~ 5ns

PW Varied to Attain Ie

Value

_+13V

4Vfl

5V

Q1 2N6408 Q32NS87S
Q2 2N6406 Q42N5877
Diodes 1N4933

VC1d"'P ;:::

1

l

O~

180.uH

Reo.! == 0.050
Vee;::: 20V
fo == 500kHz

RWd =0.7P.
VClamp

lSQ 1
IB.=lA~
+22.SV
500

pwA,~~

~

:!:

RESISTIVE SWITCHING

ES/b

+Vo

.1.
-4V O.Dl.F Q2"
1 1
Sel +V,o 10 Oblaln a Forced
20
K4 2
h" = 5 and Adjusl PW 10
10'~fFl 100 ~ ~

~1

u

AND INDUCTIVE SWITCHING

Drivec"e~1
+4V
1k
Ql 20 ~
100 Q3

..-2
200

o...IL..

0

[SUS}

Test Equipment
Tektronix Scope
475 or Equivalent

1

~

RL
.:. Vee

2~ 01

-5V

"

-

PRINTED IN U.S.A.

2N6544
2N6545

POWER TRANSISTORS
8 Amp, 850V, Triple Diffused, NPN, Mesa

FEATURES
• Collector-Base Voltage: up to 850V
• Peak Collector Current: 16A
• Rise Time: :;;;; 1.0ps l
• Fall Time: :;;;; 1.0ps f @ Ie
5A
• Key Parameters characterized at 100'C

DESCRIPTION
These high voltage triple diffused glass
passivated power transistors combine fast
switching, low saturation voltage and rugged
Es/b capability. They are designed for use in
off-line power supplies, high voltage inverters,
switching regulators, ignition systems and
deflection circuits.

=

ABSOLUTE MAXIMUM RATINGS'
2N6544

Collector-Base Voltage, VeBo
Collector-Emitter Voltage, VeEO ISUS}
Emitter-Base Voltage, VEBO
Collector Current, Ie. continuous .
Base Current, lB. continuous
Emitter Current, IE. continuous.
Power Dissipation, 25'C Case .
Derating Factor
Operating and Storage Temperature Range

650V .. .
....... 300V.... .

.. 9V ... .
...... 8A.
. 8A .... .

2N8545

.......... 850V
...... 400V

... 9V

....... 8A
.. ..... 8A
.............. 16A.... .
. 16A
125W
125W.... .
........714W/'C ..
. .714W/'C
...... -65 to 200'C ....

* JEDEC registered values.

MECHANICAL SPECIFICATIONS
2N6544 2N6545

TO-3

.188

£&lliJJ~

BASE
EMITTER

lJ-iJl

.525
MAX.

RAO.

MAX .

. 450
.250

.312
MIN.

.440

.420

Dimensions in inches.

[ill]
130

_UNITRDDE

2N6544 2N6545

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)'
Test

Symbol

D.C. Current Gain (Note 1)

hFE

2N6544
MAX.
MIN.
12
60
3S

D.C. Current Gain (Note 1)

hFE

Collector Saturation Voltage
(Note 1)

VCEI"'I

-

1.S

Collector Saturation Voltage,
Te = lOO'C (Note 1)

VeEI"!1

-

2.S

Collector Saturation Voltage
(Note 1)

VCE{satl

-

Base Saturation Voltage (Note 1)

VSEI"!I

7

2N6545
MAX.
MIN.
12
60

7

S.O

-

-

1.6

VCEO{SUS)

Collector-Emitter Sustaining
Voltage
Te = 100'C (Note 2)

VCEX (sus)

Emitter-Base Cutoff Current

'ESO

Collector Cutoff Current

, cEv

Collector Cutoff Current,
Tc=lOO'C

,CEV

Base Saturation Voltage,
Te = 100'C (Note 1)
Collector-Emitter Sustaining
Voltage (Note 2)

VSEI ,,!)

Ie = 2.5A, VeE - 3V

3S

Ie = S.OA, VeE = 3V

1.S

V

Ie = S.OA, Is = LOA

2.S

V

Ie = S.OA, Is = LOA

S.O

V

Ie = 8.0A, Is = 2.0A

-

1.6

V

Ie = S.OA, Is = LOA

1.6

-

1.6

V

Ie = S.OA, Is = LOA

300

-

400

-

V

Ie =O.lA

3S0

-

4S0

-

V

L = 180l'H,Ie =4.SA
VSE=-SV
VeE clamped to rated VCEX 1'"'1

-

1
O.S

-

-

2.5

-

-

-

1

O.S

2.S

rnA
rnA
rnA

Collector Cutoff Current,
Tc=lOO'C
Output Capacitance,
Common Base

-

3.0

ICER

-

-

-

-

-

3.0

Cobo

100

200

100

200

pF

Gain-Bandwidth Product

Fr

6

24

6

24

MHz

Energy Second Breakdown
(unclamped)

Es/b

Resistive Switching SPeeds
Delay Time
Rise Time
Storage Time
Fall Time

rnA

Thermal Resistance,
Junction-to-Case

VES = 9V
VCE = 6S0V, VSE = -1.SV
VCE = 8S0V, VSE = -1.SV
VCE = 6S0V, VSE = -l.SV
VCE = 8S0V, VSE -l.SV

=
VCE = 6S0V, R =SOn
VCE = 8S0V, R = son

Ves :..=10V,f=lMHz
VCE = 10V, Ic = 0.3A, f = 1 MHz

SOO

-

SOD

-

I'J

Ic=S.OA
IS = 1.0A
L =4OI'H

Id
Ie
t,
If

-

O.OS
1.0
4.0
1.0

-

0.05
1.0
4.0
1.0

I'S

Ie = 5.0A
Vec=12SV
lSI = IS2 = 1.0A
VSEloff) = SV

t,
If

-

-

4.0
0.9

-

-

4.0
0.9

1,5

ReJc

-

1.4

-

1.4

'C/W

-

-

-

Inductive Switching Speeds
Tc=lOO'C
Storage Time
Fall Time

Test Conditions

Units

'c =5.0A
Is = 1.0A
VSEIOff)=5V
VCE clamp = rated VCEX 1'"'1

Notes
1. Pulse length = 250 #s, duty cycle ~1 %.
2. Sustaining Voltage. Measured at a high current pOint where collector-emitter voltage is lowest. Current pulse length

== 50

.us; duty cycle

~l%.

Voltage clamped at maximum collector·emitter voltaa-e.

*

JEOEC registered values.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 - TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064

131

PRINTED IN U.S.A.

•

2N6544 2N6545
Forward Bias Safe Operating Area
20

Power Derating
100

II

~
~~ ~~
'l' ~'?'l'
~'l'

10

~

....
Z

'":JDe

DiSSiPATiO~~ r\ ,

()

LiMiTED

De

~

,

'"

I I

~

"

...u0

"I'\.

it

",

'\

,

is/b LI M iTED·'"

..J
..J

[\ i'-

80

De

,

6"
'C'

UJ

~

~ t'-..

"

z"

.'"
UJ

C

...Z

Te 25'C
CURVES APPLY BELOW
RATED VeEO

I III

0.2
5

10

I

'"'"

:J

60

I~,

\

~~
~"'0

40

I

AT DESIREO OPERATING VOLTAGE, OERATE

20

o

500

o

;(

I
I

'"
:J
De

"....

I

I
~150'C

50

tt-

Z

25,b

UJ

()

De
De

I
I

De

20

....

:J

UJ

U
ci 10

0

U

()

0.5

2N6545
2N6544

I

0.2

V Be IOFF, == ::;;;:SV
Tc
:::;100°C

I
I

0.1

IIIII

t-

--

()

I

_v

10

t:11
t-

I
I
I
I

-- -

2

0.1

2S'C

.

0.5

V

'i

0

>
0.2

156'c

0.1

4-

S5'C
.05
0.1

-

0.2

VeE _10V
VeE

== 3V
10

I,

If.

tfi

~s

~s

~s

25
100

.90
1.40

.07
.12

.07
.15

5.0

25
100

.98
1.52

.10
.15

.11

8.0

25
100

1.10
1.70

.14
.20

.11

ie
Amps

TJ
'c

3.0

.20
.18

./

/V

I" = vollage fall lime; 10-90%
current fall time; 10·90%
tf,

=

/ / VVCE(SAT)
~

,~[~

0.2
0.5
Ie - COLLECTOR CUI/RENT (A)

VBE~~ ~I'

450'c

..J

,~

Inductive Load
Switching Performance

ie/i,- 5

"'

-- -

f- r-

Saturation Voltages

SS'C

, ,~
~

~~

~

s:t

20
100
50
200
500
VeEXISU" - COLLECTOR VOLTAGE (V)

~

-

I

I

=

200

100

z

I

UJ

1'\

40
80
160
120
Te - CASE TEMPERATURE ('C)

D.C. Current Gain

-- '"'"

....

'\

PURPOSES.

200

Z

"

DISSI~A-'

liON CURRENT LIMIT ANO Is. CURRENT LIMIT fROM
2S"C SOAR CURVE

Reverse Biased Safe Operating Area

~

~

DASH LINES ON SOAR CURVES ARE EXTENSIONS Of
DISSIPATION LIMITS FOR TEMPERATURE DERATING

\

20
50
100
200
VeE - COLLECTOR VOLTAGE (V)

~O

~

~J

()

10

"....

'4,'1-.

UJ

I

...:...J 0.5

0

~{I

'l'~...

;:

"

8

..J
..J

......

~

/'

-~

0.5
ie - COLLECTOR CURRENT (A)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

10

132

PRINTED IN U.S.A.

2N6544 2N6545

TEST CONDITIONS FOR DYNAMIC PERFORMANCE
VeE<

VeEO[SUSJ

iSu', AND INDUCTIVE SWITCHING

RESISTIVE SWITCHING

Drive Circuit

U)

Z

15Q

+4V

o
;::
C
z
o(J

5
0-

PW Varied to Attain

:<:

Ie = 100mA

aOmH Vee = lOV
Reo,1 ::;:;:0.7P.
Vc.lamp (Unclamped)
Ltoi !

::;:;:

-4V O.OI#F
Set +Vm to Obtain a Forced
hFE ::;:;: 5 and Adjust PW to
Attain Specified Peak IeQI 2N640B Q3 2N5B75
Duty Cycle ~ 3%
Q2 2N6406 Q4 2N5B77
f=lkHz
Diodes IN4933
LtOil ::;:;: 180JLH
Rtotl =D.05U
Vel amp = Rated VCEX Value
Vee

= 20V

fa::;:;:

500kHz

O~ 4Vfi

PW Varied to Attain Ie
Leoti ::;:;: 40,uH

~

:;

t =

...

...t!l

=

'~

Vee =250V
R L =B3!l
01 = IN5B20 or Equiv.
R,=2oo

j,

,

BTUT

~

Vel amp

~ Vee

-5V

Test Equipment
Tektronix Scope
475 or Equivalent

Turn-Off Time

RL

2~ 01

leo;, (lep,)

2

..

--llV 0---02
I c =3A
PW':; 100~s
tf~ 5ns
tf~ 50ns
Duty Cycle':; 2%

I

Vee

t

See Above For
Detailed Conditions

0---0 I

OIU-

lcod (lePk)

1

0:

- +13V

RESISTIVE TEST CIRCUIT

tl Adjusted to
Obtain Ie

~'-:..--":'-;-"'-t

(J

Vee::::: lOV

Reo,1 ::;:;: O.2n
VCI~mp (Unclamped)

OUTPUT WAVEFORMS
t f Clamped
,.."tf Unclamped = I,

INDUCTIVE TEST CIRCUIT

U

I

I,,=IA~
f.22.5V
{SOO

pw-il-

~

Turn-On Time

10
Vee
'e/l,

1000

125V

5
500

IBI-IIZ

TJ =2S'C

I'

r-r---

"' .....

'"

I,

f'

1'-

on

S
w 100

td

Ie

~ I--'

I"

::;:

;::
0.5

"

50

tf

0.2

f'..

1

0.1
0.1

1'--

V

./

0.5

0.2
Ie -

Vee _125V

20

10
0.1

10

COLLECTOR CURRENT (A)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) B61-6540
TWX (710) 326·6509 • TELEX 95-1064

133

'e/l, = 5
VIE loll) ::;:;: 5V
T J =2S'C
0.2
Ie -

10

0.5
COLLECTOR CURRENT (A)

PRINTED IN U.S.A.

POWER TRANSISTORS

2N6546
2N6547

15A,850V, Fast Switching,
Silicon NPN Mesa

FEATURES
• Collector-Base Voltage: up to 850V
• Peak Collector Current: 30A

DESCRIPTION
These high voltage glass passivated power
transistors combine fast switching, low
saturation voltage and rugged ES!b capability.
They are designed for use in off-line power
supplies, high voltage inverters, switching
regulators, ignition systems and deflection
circuits.

• Rise Time: ~O.7I'S} @ I -lOA
• Fall Time: ~O.7I'S
c• Key Parameters characterized at lOO'C

ABSOLUTE MAXIMUM RATINGS

*
2N6546

Collector-Base Voltage, VCBO .. " ..
Collector-Emitter Voltage, VCEO'sus,
Emitter-Base Voltage, VEBO .
Collector Current, Ic, continuous
Collector Current, Ic peak.
Base Current, IB continuous.
Emitter Current; IE continuous
Power Dissipation, '25'C Case .
Derating Factor ",,",,"
Operating and Storage Temperature Range.

2N6547

850V
400V

.... 650V"
" .. 300V."""

.... " ........ 9V

'.'"."."""""" ....... """""" .. " ... "" .. 9V .. .
""""""""""" ".""" .... ,, .. ,,""

15A
30A
.. lOA
25A
175W
lW/'C

.15A
.30A"

IDA:.
."" ...... 25A"
175W" .. ".
lW/'C
..-65 to 200'C ..

• JEDEC registered values.

MECHANICAL SPECIFICATIONS
NOTE:
Leads may be soldered to within
1116" of base provided temperature·
time exposure is less than 260'C
for 10 seconds.

2N6546 2N6547
ins.

J

K

~Bbp
C

6-79

D

BASE

I1~
~ i'E

~
.

F

EMITTER

.L

A

.875 MAX.

mm
22.23 MAX .

B

.135 MAX.

3.43 MAX.

C

.250-.450

5.35-11.43

0

.312 MIN.

7.92 MIN.

E

.205-.225

5.21-5.72

F

.420-.440

10.67-11.18

J

.151-.161 D1A.

3.84-4.09 DIA
4.78 MAX. RAD.

K

188 MAX. RAD.

L

. 525 MAX. RAD.

M

.655-.675

16.64-17.15

N

1.177-1.197

29.90-30.40

P

.038-.043 DIA.

9.65-10.92 DIA

134

TOol

13.34 MAX. RAD .

llilJ
_UNITRODE

2N6546 2N6547
ELECTRICAL SPECIFICATIONS (at 25·C unless noted)"

Test
D.C. Current Gain (Note 1)

Symbol
hFE

2N6546
MIN.
MAX.
12
60

2N6547
MIN.
MAX.
12
60

Units

Test Conditions

Ic = 5.DA, VCE = 2.0V

D.C. Current Gain (Note 1)

hFE

Collector Saturation Voltage
(Note 1)

VCEI,,')

-

1.5

-

1.5

V

Ic = lOA, I. = 2.0A

Collector Saturation Voltage,
Te = 100"C (Note 1)

VCEI,,')

-

2.5

-

2.5

V

Ic = lOA, I. = 2.0A

Collector Saturation Voltage
(Note 1)

VCEI ••,)

-

5.0

-

5.0

V

Ic = 15A, I. = 3.0A

Base Saturation Voltage (Note 1)

V.EI •• ,)

-

1.6

V

Ic = lOA, 10 = 2.0A

VOE 1••1)

-

1.6

Base Saturation Voltage,
Te = 100"C (Note 1)

1.6

-

1.6

V

Ic = lOA, 10 = 2.0A

COllector-Emitter Sustaining
Voltage (Note 2)

VCEO I••• )

300

-

400

-

V

Ic=O.1A,lo=O

Collector-Emitter Sustaining
Voltage
Te = 100"C (Note 2)

VCEXI ••• )

350

-

450

-

Collector-Emitter Sustaining
Voltage
Tc=lOO"C

VCEX I··s)

200

-

300

-

Emitter-Base Cutoff Current

I EOO

-

-

-

Collector Cutoff Current

ICEV

Collector Cutoff Current,
Te= lOO·C

ICEV

Collector Cutoff Current,
Te =100"C

ICER

Output Capacitance,
Common Base

Cobo

Gain-Bandwidth Product

Fr

6

6

30

1
1

-

-

4

-

30

L = 180",H, Ic = 8.0A
VSE = 5V, 10 = 2.0A
VCE clamped to rated VCEX I•• ')
V
1
1

-

Ic = lOA, VCE = 2.0V

4

mA
mA
mA

-

-

-

180

360

180

360

pF

6

24

6

24

MHz

5

5

mA

Energy Second Breakdown
(unclamped)

Es/b

Resistive Switching Speeds
Delay Time
Rise Time
Storage Ti me
Fall Time

td
t,
t.
t,

-

0.05
0.7
4.0
0.7

-

0.05
0.7
4.0
0.7

",S

Inductive Switching Speeds
Tc= lOQ"C
Storage Time
Fall Time

t.
t,

-

S.O
loS

-

S.O
1.S

"S

Inductive Switching Speeds
Te = 2S"C
Storage Ti me
Fall Time

t.
tf

Thermal Resistance,
Junction-to-Case

R8JC

2

-

2

-

mJ

L = l80",H, Ic = l5A
VSE = -5V, Is = 3.0A
VCE clamp to VCEO -lOOV
VE.=9V
VCE = 650V, V. E= -1.5V

=850V, VSE = -1.5V
=650V, VSE = -1.5V
VCE = 850V, VSE = -1.5V
VCE = 650V, R = 50n
VCE = 850V, R = 50n
VCE

VCE

Vcs = lOV, f = 1 MHz
VCE

= lOV, Ic = 0.5A, f =

1 MHz

Ic= lOA
V.Elolf) = 4.0V
L=40",H
Ic=10A
Vcc = 250V
101 = 1.2 = 2.0A
VaE 10") SV
Ic- 1DA
10 = 2.0A
VOElolf) = SV
VCE clamp = rated VCEX Is.s)
Ic _10A(pk)
VCE clamp rated VCEX
101 = 2.0A
V.Elolfl = 5.0 Vdc
Tc = 25"C

=

=

2.0 typical
0.09 typical

-

1.0

-

",S

1.0

"C/W

Notes

1. Pulse length = 2501'S; duty cycle <;;1 'Yo.
2. Sustaining Voltage. Measured at a high current point where collector-emitter voltage is lowest. Current pulse length
Voltage clamped at maximum collector-emitter voltage.

==

SO,uSj duty cycle ~1%.

• JEDEC registered values.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

135

PRINTED IN U.S.A.

•

2N6546 2N6547

Forward Bias Safe Operating Area

Power Derating
100

~

'"

80

a:
0

..

:--....

.'\ '-.

"- ~

t-

U

"-

";:::z

d'd'

60

UJ

0

~

t-

Z

a:
a:

UJ

a:
a:
:::>
u

'-.

a:

"

~

-'
-'

o

DERAT~ OISSI~A'"

UJ

:::>
u

J

t-

Z

r-...

~~
~"'0

40

5

~,.~O

~O

.
a:

I

~(/~

AT DESIRED OPERATING VOLTAGE,
TION CURRENT LIMIT AND Is b CURRENT LIMIT fROM
ZS·C SOAR CURVE

20

o

o

40
TC -

I

'\

DASH LINES ON SOAR CURVES ARE EXTENSIONS Of

DISSIPATION lIMITj FDA
PURPOSES.

u

YMPERrURE rAATING

80
120
160
CASE TEMPERATURE ('C)

-"

"-

20D

.04~:±=f.~i::c~t±±t~~~~f::t~±±~
10
20
50
100
200
500
1000
VeE -

Saturation Voltages

Reverse Biased Safe Operating Area
40

5
!ZUJ
a:
a:

:::>
u

II'ff~ ~~!~

~-'
u

I

-"

LI II

L
'1
~7

le/ l,=5

10

I

2N6546

~

.4

.
.

.2

~

4.0

I--

'"

CI

2.0

!:i

"'"

a:

o-'

5

V..
Te';;; 100'C
__
2N6547

20

COLLECTOR VOLTAGE (Vl

1.0

0

>

SS'~

I-- V.. (A'I

25'
0.5

z
;:::

i=- f--

lOO'C

0

~:'-I

a: 0.2

::>

veeillt) ~ ~

~ ;.-'

0.1 t-lOO'C
I

25'C •

r-r==t-.

.05
0.2

.04
10

20

50

200

100

500

SS'C

5

2

0.5

1000

10

Ie-COLLECTOR CURRENT CAl

VeEX I'.') - COLLECTOR VOLTAGE (V)

DC Current Gain

Typical
Inductive Load
Switching Performance

SOD

TJ
'C

t,

tfy

1'5

nS

t ff
nS

3

25
100

.8
1.10

.14
.18

.025
.030

5

25
100

.90
1.20

.14
.16

.025
.030

10

25
100

1.20
1.50

.05
.12

.050
.10

Ie
Amps

200

z

:;;:

VeE =5V

CI

t- 100

Z

'"::>

II:
II:

u
u
Q

50

t-lOO'C

t-.....

25'C

I

1

-

20

::::"I!!~

~~

,..

~

10

5
0.2

10
5
2
0.5
Ie-COLLECTOR CURRENT CAl

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

20

136

PR(NTED IN U.S.A.

20

2N6546 2N6547

Resistive Turn-Off Time

Resistive Turn-On Time
10

1000

100'C

500

"

I-f-f-

l00'C

~ ~

.,

oS

"'::;;i=

t-...~

t,

1"\1\

1"

"

200

100

250V

'"

112

"

2.0

'U

:"...
"'.1\

9l

.3 1.0

2S'C

UJ

50

::;;

i...- ~

t.

lOO'C

i=

.s

"'~.....

./
l00'C

.2

B,_ S [

.5

10

Ie -

W

~

.2

COLLECTOR CURRENT (A)

J.;

"""

'1

.1

20

lo-

-;~

11,--1121
10
.2

tf

1--..

Vee = 250V
20

r--...

vee

Ii,: ::s_

r- :.-

2I-C

2S'C-

L,...I.--

~-

r-.

S.O

Ie -

20

COLLECTOR CURRENT (A)

TEST CONDITIONS FOR DYNAMIC PERFORMANCE
Ve"

VCEOISUS)

en

Z

o

+10V

i=

___ 2

0.I1..

is

~

+V,

IB'=IA~IS!l1
+ 38.5V

-4V 0.0 ~F
Set +V," to Obtain a Forced

z

II.

RESISTIVE SWITCHING

AND INDUCTIVE SWITCHING

pwA

2011

8
~

[SU')

Drive Circuit
+4V

0..f"L

2

4V

hfE = 5 and Adjust PW to

Atta," Specified Peak Iv
Duty Cycle" 3%
1= 1kHz

PW Vlried to Attain
Ie = 100mA

L.a."

= 80mH

Vee

=

~

Q3 2N5875
Q4 2N5877
Diodes lN4933

=

Leod
180,u.H
Reo, I = O.OSH
Vee = 20V
I. = 500kHz

lOY

Reod =0.70
Vcl • fIIP (Unclamped)

=

Rated V,,£x Value

OUTPUT WAVEFORMS
t f Clamped
Unclamped = t;>

INDUCTIVE TEST CIRCUIT

/t,

,
I Reotl
I

See Above For

VC1
u

.5

'"~
fJ

.2

8

.1

...J
...J

I

_u

l\.
~
~~

Duty Cycle - 2.5%
~ 1 ms

r'\.

~

"\

10%
pul~e, W,idth ::::: 1 ms
Duty Cycle
25%
Pulse Width=1 ms

" I'

I"

a'"

.5

'"
~

u

.2

5"'

.1

I

.05

1

2
VeE -

\\\

1\

\ \

Pulse Width::::: Ims
Duty Cycle = 10%

I\t---U2T205
1\ r---U2T201

u

_u

1\ !---U2n05
'--U2nOl

.02

1"-

.01

~

Pulse Width = Ims
Duty Cycle = 25%

...J

1'\ I'

I""

D.C.-

"''"

=

"

Tc _100·C

1"\ "~

5:

....
z

I, Duty Cycle

'"'" '" .""'"

.02

'", '\

TA _ 25·C

~ r--rull}Wjdth

'" " "'

D.C.-

.05

1

10

.01
2
VCE -

1

5 10
20
50 80100150
COLLECTOR -EMITTER VOLTAGE (V)

5 10
20
50 80100150
COLLECTOR- EMITTER VOLTAGE (V)

D.C. Current Gain VS. Collector Current
U2Tl0l, U2T105, UmOl, U2T205
10,000 , - - - - - , - - - - -....- - - - - - ,

z

<
~

1000

r----7'I'-7,L----j:::::=::::=--1

100

~~~--+-----~---~

z

"''"
'"

::>
u

<.i
ci

I

10 L-_ _ _
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

.01

139

~

_____

.1
Ie -

~

_ _ _ _- - - '

1.0

COLLECTOR CURRENT (A)

10

-

U2T301
U2T305

POWER DARLINGTONS

U2T401
U2T405

5 Amp, 150V, Planar NPN
FEATURES
• High Current Gain: 1000 min. @ Ic = 2A
• Low Saturation Voltage: as low as 1.5V max. @ Ic = 2A
• High Voltage: up to 150V min. VCER
• Monolithic Design Incorporating Multiple-Emitter Techniques
• Triple-Diffused Planar Construction

OESCRIPTION
Unitrode NPN Darlingtons consist of a two
transistor circuit on a single monolithic
planar chip.

ABSOLUTE MAXIMUM RATINGS
3 PIN TO-I&
U2T401
U2T405

TO-33
U2T301

U2T305

... GOV........... 150V
................ 60V.......... 150V ... .
Collector-Emitter Voltage
Emitter Base Voltages,
............. 6V.................. 6V
VEB> ......................
.. ......................... 6V.
.. ... 6V.
..... 12V................ 12V
VEBI
......................... ..............
. ..... 12V ........... 12V.
........ 2A.................. 2A
D.C. Collector Current
................. 2A. ................ 2A
....... 5A
.... SA
Peak Collector Current
......... SA..
.. ..... 5A ..
.. .... O.SA............... O.SA
Base 1 Current ....
........ ........ ....
... O.SA ............ O.SA .. .
Power Dissipation
................. .lW. .
.. lW .......................................... ................2W................. 2W
2S'C Ambient ... ......... ..
.... 4W ........... 4W
.... 16W .............. 16W
100'C Case .................................. .
Thermal Resistance
.................. 6'C/W ..
Junction to Case ...................... .
... 2S'C/W
.
.. ...............................................-6S'C to 200'C
Operating and Storage Temperature Range
............ -6S'C to 200'C .....
MECHANICAL SPECIFICATIONS

.;~]~

.017
1.5 MIN

:~~

.031
±.OO3 45 0

U2T301 U2T305

TO-33

U2T401 U2T405

3 Pin TO-66

>:

:3351f:t'01B MA~ ~~~.
370

.335
,305

I__~=:r
];iE',
~LLECT~--

BASE2

BASE 1

__

.100
COLLECTOR CONNECTED TO CASE

Dimensions in inches.

.075

tH
:.l!t
.050

'1l""

.250

.03'

MIN.

.145

MAX.

COLLECTOR CONNECTED TO CASE

RAO.

Dimensions in inches.

[ill]
140

_UNITRODE

U2T301

U2T30S U2T401 U2T4OS

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test

U2T301 & U2T401
Min.
Max.

Symbol

D.C. Current Gain
(Note 1)
D.C. Current Gain
(Note 1)
Collector Saturation Voltage
(Note 1)
Collector-Emitter
Breakdown Voltage
(Note 1)

h'E

1000

-

1000

h'E

1000

-

VCE (sat)
BVCER

Collector Cutoff
Current

ICER

Collector Cutoff
Current

ICER

Collector Capacitance
A.C. Current Gain
Delay Time
Rise Time
Switching
Speeds
Storage Time
Fall Time
Note: 1. Pulse width = 300

~s;

U2T30S & U2T40S
Min.
Max.

Cobo

-

1000

-

1.S

-

2.S

V

= lA, VCE = 2V, RB2E = 1K
Ic = 2A, VCE = SV, Rm = 100
Ic = 2A, Rm:::;: 100, IBI = 4mA

60

-

lS0

-

V

Ic

-

1.0

-

1.0

I'A

-

1.0

-

1.0

mA

60

pf

60

-

S
100 Typ.
200 Typ.
800 Typ.
300 Typ.

hfe
td
t,
t,
tf

Test Conditions

Units

-

Ic

-

S
100 Typ.
300 Typ.
800 Typ.
300 Typ.

= 2SmA, RBIE = 2.2K, Rm = 100
RBIE = 2.2K, RB2E = 100
U2T301, 401: VCE = 60V
U2T30S, 4OS: VCE = lS0V'
RBIE - 2.2K, Rm - 100, T _ 150'C
U2T301, 401: VCE = GOV

=

U2T30S, 4OS: VCE
lS0V
VC•, - 10V, IE - 0, f _ 1M Hz
Ic - O.5A, VCE - lOV, f _ 10MHz, Rm _100

ns
ns
ns
ns

Vcc

= 3OV, Ic = 2A, I. (on) = I. (off) = 4mA

R82E

= 100

duty cycle ";2%.

Maximum Safe Operating Area

Maximum Safe Operating Area
U2T401 & 405

U2T301 & 305

~

...~
z
~

1
.5

0::

::>
u

.2

0::

o

t;

.1

"'

.os

..J
..J

8

I""

'
"
""
""
'" '" ""

I

.01

1"(

/
~ f"\. ~
I'" I\.

f-Dt

!'xV

Pulse Width = 1ms
Duty Cycle - 2S%

_u .02

.!

j

S

T,=2S'C
Pulse Width
Ims
Duty Cycle = 2.S%

=

...z~
"'

Pulse Width = 1ms
Duty Cycle = 10%

~

f\-

r'\

~

.S

9

I'

I

.2

U

\

I I

1\

Pulse Width = 1ms
Duty Cycle = 10%

.1

l\

8 .os
D.C.--

I

U2T301

_u

~I\

.02

I'-- U2T30S

I<-

t--U2T401

.01

I"

.005

Duty Cycle = 2S%

..J
..J

I"

l"-

l'. 1\\
Pulse Width = Ims

::>
u
0::

Tc = 100'C

l'Sr--.

2

..-U2T40S
.005

10 20
SO 100 1SO
VcE-COLLECTOR-EMITTER VOLTAGE (V)

10

1
VCE -

20

SO

100 1SO

COLLECTOR- EMITTER VOLTAGE (V)

D.C. Current Gain vs. Collector Current
10,000

U2T301, U2T305, U2T401, U2T405
,-----,.------,-------"1
T = 12S'C

z

;;:

~ 1000

f------rt--r'---"--r---'---'.--i

z

"'
0::
0::

::>

U

cJ
ci

I

100

f#$"''----t-----+-----i

,r:;"

10
.01
UNITRODE CORPORATION· S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6S09 • TELEX 95·1064

1.0

.1
Ic -

10

COLLECTOR CURRENT (A)

141

PRINTED IN U.S.A.

•

U2T712
U2T713
U2T722
U2T723

POWER DARLINGTONS
2 Amp, 300V, Planar NPN

DESCRIPTION
Unitrode NPN Darlingtons consist of a two
transistor circuit on a single monolithic
planar chip.

FEATURES
• High Current Gain: up to 1000 min. @ Ic = lA
• Low Saturation Voltage: as low as l.SV max. @ Ic = 2A
• High Voltage: up to 300V. min. VCEO
• Peak Current: to SA
• Monolithic Planar Chip Construction

ABSOLUTE MAXIMUM RATINGS
3 PIN TO-BI
U2T722
U2T723

TO-33
U2T712

Collector-Emitter Voltage ....
Emitter - Base Voltages

U2T713

. ....................... 200V... .......... 30OV

. 200V............... 300V

.. .

.w.

~.~

VEBI
........ 12V..
. 12V..... .
D.C. Collector Current
. 2A .................. 2A ... .
Peak Collector Current
SA .. ..
SA.... .
Base 1 Current
. ......... ......... ..... ....................................... O.SA.. .
O.SA ... .
Power Dissipation
25'C Ambient .
lW ...... .
lW .... .
100'C Case
5W ... .
SW .. .
Thermal Resistance
Junction-to-Case
........ 20'C/W...
Operating and Storage Temperature Range.
........... -WC to 2OO'C ......

.. 6V.
... 12V.
2A ..
. SA ..
.... O.SA ..

6V
12V
2A
........ 5A
O.SA

2W ..

2W
20W

... 20W ..

........ S'C/W
........ -65'C to 200'C

MECHANICAL SPECIFICATIONS

U2T712

U2T713

TO-33

U2T723

3 PIN TO-66

BASE2

BASE 1

COLLECTOR CONNECTED TO CASE

Dimensions in inches.

U2T722
.075

.oso

tH

""41'""" .03'
.028

~

.620
MAX.

.340
.250

-

--

.360
MIN.

.145

~AX.

COLLECTOR CONNECTED TO CASE

RAO.

Dimensions in inches.

[1W
142

_UNITRODE

U2T712

U2T713

U2T722

U2T723

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
U2T712 & 722
Test
D.C. Current Gain
(Note 1)
Collector Saturation
Voltage (Note 1)
Collector-Emitter
Breakdown Voltage
(Note 1)
Collector Cutoff
Current

Symbol

Min.

hFE

1000

-

VCE (sat)

-

1.S

BV cEO

200

BVc ,.

2S0
Typ.

ICE.

-

10.0

Cabo

-

A.C. Current Gain

h fe

4.0
Typ.

Rise Time
Storage Time
Fall Time

t,
t,
tf

Collector Capacitance

U2T713 & 723

Max.

Min.

Max.

-

-

-

1.5

V

-

300

-

V

-

350
Typ.

-

V

-

10.0

p.A

100

-

100

pf

-

4.0
Typ.

1000

0.6 Typ.
1.5 Typ.
1.0 Typ.

Test Conditions

Units

-

-

0.6 Typ.
1.5 Typ.
1.0 Typ.

"S
"S
I'S

= lA, Ve, = SV, RB2E = lK
Ie = 2A, RB2E = laO, lal = 20mA
Ic = lOmA
Ic = lOmA, RalE = 2.2K, RB2E = 100

Ic

RalE - 2.2K, RB2E - 100
U2T712 & 722: VCE
U2T713 & 723: VCE
Vcal
lOV, I, 0, f
lmHz

=200

= 300
= =
Ic = 0.5A, VCE = 10V, f = 20mHz, RB2E = 100
Vcc = 100V, la (on) = la (off) =2SmA,
Ie = 2A, RB2E = 100
=

Note 1. Pulse width = 300 p.S; duty cycle'; 2%

Maximum Safe Operating Area
U2T722 & 723
10.0 ,------,------,---.-..----,

Maximum Safe Operating Area
U2T712 & 713
lOA

,---------r----,------,:,~_::_:::::-::-1

$

$

...

~

z

~ 1.0A

'"0:0:

r-------"k---"""":--f---++----1

0:

'"
0
...

'"

u

'"a

I-

u
UJ
-'

a-'

u

I

_u

~

~~

~

~
UJ

"'-

.5

"" ''""

05

TA

02

Duty Cycle
Dry

cYr

~25'C.

2

5

VCE =
VCE =
VEa =
Vca =

rating, R = 1000
rating, R = lOOn, T = 12S'C
5Vdc
10Vdc, IE = 0, f = 1MHz

-

Ic = 1Adc, VCE = 5Vdc, f = 10MHz

ns
ns
ns

Ic- 2A
Vcc= rating, la

(00'

= la

(off)

= 4mA

VS.

Collector Current

=

z
;;:

U lK ~--------~----~~?---~~~
VCE =

I-

zUJ

'"'"::>

I

VeE = 5V
@ 25'C

u

"- 'X.

sv

@ 125'C

U

o 100 1-----------1---------1----------1

Y

I

-U2TA506

= 10% I

-U2TA508

e = /25'1

_I-- U2TA510
10L---------L---------L-------~

.005
1

Ic = 10mAdc

D.C. Current Gain

~

Pulse Width:::: Ims

.01

Vdc

10K

~ )"

Pulse Width = Ims

lA, VCE = SVdc
3A, 'ICE = SVdc
SA, VCE = SVdc
3A, la = 30mA

Pulse Width
Ims'
uty Cycle = 2.5%

""

. 2 D.C .
.1

d JJ
/0

~

=
=
=
=

2%.

Maximum Safe Operating Area
U2TA506, 508 & 510

I"

Vdc

/LAdc
mAdc
/LAdc
pf

50

-

Test Conditions

Ic
Ic
Ic
Ic

10

20

5C

100 150

.01

VeE-COLLECTOR TO EM lITER VOLTAGE (V)

UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064

.1

lA

lOA

Ie - COLLECTOR CURRENT (A)

145

PRINTED IN U.S.A.

•

POWER TRANSISTORS

UMTI006
UMTI007

5A, 500V, Fast Switching, High ES/b
Silicon NPN Mesa

DESCRIPTION
These high voltage glass passivated
power transistors combine fast
switching, low saturation voltage and
rugged Es/b capability. They are
designed for use in off-line power supplies, high voltage inverters, switching
regulators, ignition systems and
deflection circuits.

FEATURES
• Rise Time: 0.4I'S}
Ic 3A
• Fall Time: 0.41'S
• High Second Breakdown Energy: 540I'J
• Collector Emitter Voltage: up to SOOV
• Peak Collector Current: lOA
• Key Parameters characterized at lOO·C

=

ABSOLUTE MAXIMUM RATINGS
UMT100&

UMT1OG7

Collector Emitter Voltage, VCEV .......................... ........................... ....................................
..... 400V.....
.... SOOV
Collector Emitter Voltage, VCEO (SUS) .
........................... " ..... ,..... ,. .......... "."........
. ............... 300V .................... " ....... ,400V
Emitter Base Voltage, VEBO .................
.........................
... ... .. .......... .7v.........
.......... .7V
Collector Current, Ic continuous
.. ...................
... SA.
............ SA
Collector Current, Ic peak .....................
.................... .lOA...
...................... .lOA
Base Current, 'B continuous ........
... SA...
........... SA
Power Dissipation, 2S·C Case..................
............................
. ......................... 100W ...
... 100W
Derating Factor ........
..................... ...... .......................................................................................S71W/·C...
..... .571W/·C
Operating and Storage Temperature Range.
............................
..................... -6S to 200·C ... .

MECHANICAL SPECIFICATIONS
NOTE:
Leads may be soldered to within

UMT100& UMT1007

TO-3

liI&" of base provided temperature-

time exposure is less than 260°C

In8.

for 10 seconds.

K

J

.875 MAX.

B

.135 MAX.

3.43 MAX.

C

.250-.450

6.35-11.43

.312 MIN.

7.92 MIN .

BASE

EMITTER

5.21-5.72
.205-.225
1-"+,::o:..::::O---+"=~:----l
F

L
F

mm
22.23 MAX.

A

.420-.440

10.67-11.18

. 151-.1610IA.

3.84-4.09 DIA .

K

.186 MAX. RAO. 4.78 MAX. RAD .

L

.525 MAX. RAD.

13.34 MAX. RAO.

M

.655-.675

16.64-17.15

N

1.177-1.197

29.90-30.40

P

.038-.0430IA.

9.65-10.920IA.

[ill]
6-79

146

_UNITRDDE

UMTl006 UMTl007
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test

Symbol

UMTlO06
MIN.
MAX.

UMTlO07
MAX.
MIN.

Test Conditions

Units

D.C. Current Gain (Note 1)

hFE

12

60

12

60

Ic = 1.SA, VCE = 2V

7

3S

7

3S

Ic = 3.0A, VCE = 2V

D.C. Current Gain (Note 1)

hFE

Collector Saturation Voltage
(Note 1)

VCEI ••"

-

1.0

-

1.0

V

Ic = 3.0A, la = 0.6A

Collector Saturation Voltage,
TC = 1000C (Note 1)

VCE,I ••"

-

2.0

-

2.0

V

Ic = 3.0A, la = 0.6A

Collector Saturation Voltage
(Note 1)

VCEI ••"

-

5.0

V

Ic = 5.0A, la = LOA

VIE 1'.'1

-

1.4

1.4

V

Ic = 3.0A, la = 0.6A

1.4

-

5.0

Base Saturation Voltage (Note 1)

1.4

V

Ic = 3.0A, la = 0.6A

Base Saturation Voltage,
TC = 100'C (Note 1)

VIE 1"'1

Collector-Emitter Sustaining
Voltage (Note 2)

VCEO I·usl

300

-

400

-

V

Ic = OolA, la = 0

Collector-Emitter Sustaining
Voltage
Tc = 100'C (Note 2)

VCElCI •••,

350

-

450

-

V

Ic = 3.0A, L = 180,uH
lal = 182 = 0.6A
VCE clamp = rated VCEX I.usl

Emitter-Base Cutoff Current

lEBO

Collector Cutoff Current
Collector Cutoff Current,
Tc=lOO'C

, CEV
I CEV

Collector Cutoff Current,
Tc= 100'C

ICER

Output Capacitance,
Common Base

Cobo

Gain-Bandwidth Product

Fy

Energy Second Breakdown
(unclamped)

Es/b

Resistive Switching Speeds
Delay Time
Rise Time
Storage Time
Fall Time

-

2.S

-

-

-

2.5

3.0

-

-

-

3.0

50

150

50

150

pF

6

24

6

24

MHz

1
0.5

-

1

O.S

-

rnA
rnA
rnA
rnA

VEB = 9V
VCE = 400V, VaE = -1.5V
VCE = 500V, VaE = -l.SV
VCE = 400V, VaE = -1.SV
VCE = 500V, VaE = -l.SV
VCE = 400V, RaE = 500
VCE = SOOV, RaE = SOO
Vca =10V,f=lMHz
VCE = 10V, Ic = 0.2A, f = 1 MHz

540

-

540

-

pJ

Ic = 3.0A, VaE loftl = 4V
L = 120,uH unclamped

td
t,
t.
t,

-

.05
0.4
4.0
0.4

-

.05
0.4
4.0
0.4

,uS

Ic =3.0A
Vcc=200V
lal = IB2 = 0.6A
VBE (offl = SV

Inductive Switching Speeds
Tc= 100'C
Storage Time
Fall Time

t.
t,

-

4.0
0.4

4.0
0.4

,uS

Thermal Resistance,
Junction-to-Case

RsJC

-

1.75

-

1.75

'C/W

-

Ic = 3.0A, L = 180,uH
IBI = IB2 = 0.6A
VCE clamp = rated VCElC (•••,

Nates
1. Pulse length = 2SOpS; duty cycle ';;1%.
2. Sustaining Voltage. Measured at a high current point where collector-em iller voltage is lowest. Current pulse length", SOpS; duty cycle ';;1%.
Voltage clamped at maximum collector-emitter voltage.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. 16171 861·6540
TWX (7101 326·6509 • TELEX 95·1064

147

PRINTED IN U.S.A.

iii

UMTl006 UMTl007

Power Derating

Forward Bias Safe Operating Area
100

10

is

"V

I

....z

Power Dissipation

W
0:
0:

Limited

:l

0

0:

"

10mS

'"

~

....
0
0

........
."

~ 1mS

1\

;::

I
..!'

UMTlO06'"

T e = 25'C
Curves Apply Below

.2

1li ~ate~

.1
5

I1111

VeE -

50

,

I"

I III

VfEO
20

10

UMTlOO7

W
0:
0:

:l

'I'

........

'N'~

40

~~()

DISSI~A:\

AT DESIRED OPERATtNG VOLTAGE, OERATE
flON CURRENT LIMIT AND 1\. CURRENT LIMIT FADM
25'C SOAR CURVE

20

U

'\

DASH LINES ON SOAR CURVES AAE EXTENSIONS OF

DISSIPATION liP/UTi FDA rfMPEAjTUAE ,ERATING
PURPOSES

\1\

100

t'-...

~~O

z

r\ f-

'''~o
1'0.:

~J

....

'\

I

60

z

0:
W

.5

"

"'~ (,4,

~d'd'

u

0

0

80

0

lSI Limited

W

1,\J".-

0:

0

..J
..J

"

i'...

20#SJI!s

f-D.C.

o
500

200

o

COLLECTDR VOLTAGE (V)

1,\

80
120
160
CASE TEMPERATURE ('C)

40
TC -

200

Reverse Biased Safe Operating Area

r-- f- v BE loffl ::::;5V
Te" 100'C

f--

is

r--

....
z

I

I

I

I

..!£=II,=llz
5
UMTlO06 - - - l

W
0:
0:

1

:l
0
0:

~

0.5

l;l

1

..J
..J

UMTlOO7 -

0
0

I

0.2

..!'
0.1

.05
10

20
VeE.

50

''''1 -

100

200

500

1000

COLLECTOR VOLTAGE (V)

Saturation Voltages

D.C. Current Gain
200

I I
veE

= 5V

100

le/l,

<

"....

100'C

:l
0

<3
ci

I

~

50

-5S'C

W

Z

W
0:
0:

=

5

2

z

"~

25'C

I

20

I-'"

...... j:::::

r-- ~

5S'C

10

0

>

~~

55'

~0:
til

2
0.2
Ie -

0.5

.05
.05

5

COLLECTOR CURRENT (A)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

0.2

0.1
Ie -

148

~ V1s'c

f .- J..--

0.1

0.1

1./1'/

-

:l 0.2

l;:

5

.05

/ Dlrc7V

100'C

0

z:;~

-I--: l-

VIE \lltJ

S
0.5

z

/

VeE!slt,

0.5

COLLECTOR CURRENT (A)

PRINTED IN U.S.A.

UMTl006 UMTl007
Resistive Turn·On Time

Resistive Turn·Off Time

1000

10

V

~

2S'C

V

./

5

t.

..,.:;

"'
oS
UJ

:0

-

V

i',
100

2

:--

100'C

I'---J::' ~

UJ

;::

td

so

5

I--

:0

;::

ts

2S'C
O.S

2S:C

20

~

100'C

" b:;

0.2

Vee = 12SV
le tl , = S

10
0.1

f..-'r"""

I-""

~tf

k

2S'C

1

0.1
0.2

O.S

1

2

S

0.1

10

0.2
Ie -

Ie-COLLECTOR CURRENT (A)

0.5
1
2
COLLECTOR CURRENT IA)

Switching Time, VCEX 1'"'1
Test Circuit

+10V

R _ 200V
lIe

R8

.

=T·

120,H
1BI=l u

0.20

FOR RESISTIVE SWITCHING.
L = O. UNCLAMPEO

nLJ_

10

Es/b Test Circuit

200V

:6V

12SV

Vee
le tl ,

100'C
SOO

.....-111--

VeE clamp

+17V

R,

0

- - 4V

nL

.J

lS0

ADJUST P.W.
TO OBTAIN
3A PEAK Ie

P.W. =25,S

SOil

-4V

UNITRODE CORPORATION· S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6S40
TWX (710) 326-6509 • TELEX 95-1064

149

PRINTED IN U.S.A.

•

POWER TRANSISTORS

UMTI008
UMTI009

8 Amp, 500V Fast Switching, High ES/b
Silicon NPN Mesa

FEATURES
•
•
•
•
•
•

DESCRIPTION

t

These high voltage triple diffused glass
passivated power transistors combine
fast switching, low saturation voltage
and rugged Es/b capability. They are
designed for use in off-line power supplies, high voltage inverters, switching
regulators, ignition systems and
deflection circuits.

Rise Time: O.4I'S I - 5A
Fall Time: 0.41's ~ c High Second Breakdown Energy: 15001'J
Collector Emitter Voltage: up to 500V
Peak Collector Current: 16A
Key Parameters characterized at l00'C

ABSOLUTE MAXIMUM RATINGS
U MTl 008

Collector Emitter Voltage, VCEV .
Collector Emitter Voltage, VCEO(SUS) ....
Emitter Base Voltage, VEBO ..........
Collector Current, Ic continuous.
Collector Current, Ic peak.
Base Current, 18 continuous.
Power Dissipation, 25'C Case.
Derating Factor ...
Operating and Storage Temperature Range

..

.. 400V.. ..

......... 300V....
...... 7V.
............... SA......
16A.....

. SA...

U MTl 009

.......... 500V
400V

..... 7V
. SA
.......... 16A

.................... SA

... 125W..
............ 125W
.714W/'C...
.714W/'C
.. -65 to 200'C

MECHANICAL SPECIFICATIONS
NOTE:

TO-3

Loads may be soldered to within
1116" of base provided temperature ..
time exposure is less than 260°C
for 10 seconds.

J

K

~f1tJ'
C

D

i
I

~-

-

0

J

E

.ft1
~

EMITTER

-

i"

M

ins.

~BASE

.

F

L

A
B
C
0
E
F
J
K
L
M
N
P

mm

.875 MAX.

2.22 MAX.

.135 MAX.

0.34 MAX •

.250-.450

0.64 1.14
0.79 MIN .
0.52 0.57
1.07 1.12

.312 MIN.

.205-.225
.420-,440
. 151

.1610IA .

•188 MAX. RAD.
,525 MAX. RAD,

.655--.675
1.177-1.197
.038

.0430IA.

0.38-0.41
0.48 MAX. RAD •
1.33 MAX. RAC.

1.66-1.71
2.99-3.04
0.10-0.11 OIA .

[ill]
4/77A

150

_UNITRODE

UMTlOO8 UMTl009
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Test

Symbol

D.C. Current Gain (Note 1)

hFE

UMTlO08
MAX.
MIN.
12
60

UMTlO09
MAX.
MIN.
12
60

7

Test Conditions

Units

Ic = 2.SA, VCE = 3V

D.C. Current Gain (Note 1)

h'E

Collector Saturation Voltage
(Note 1)

VCEls.')

-

1.5

-

1.5

V

Ic = S.OA,la = LOA

Collector Saturation Voltage,
TC = 100°C (Note 1)

VCEls.')

-

2.S

-

2.5

V

Ic = S.OA,la = LOA

Collector Saturation Voltage
(Note 1)

VCEI"')

-

5.0

-

S.O

V

Ic = 8.0A,la = 2.0A

1.6

1.6

V

Ic = S.OA, la = 1.0A

1.6

-

1.6

V

Ic = S.OA, I. = LOA

Base Saturation Voltage (Note 1)

VaE Isat)

Base Saturation Voltage,
Tc = 100°C (Note 1)

VaEI"')

7

35

35

Ic = 5.0A, VCE = 3V

Collector-Emitter Sustaining
Voltage. (Note 2)
Collector-Emitter Sustaining
Voltage
Tc = 100°C (Note 2)

VCE~ Isus)

300

-

400

-

V

'c=O.lA

VCEX lsus)

3S0

-

4SO

-

V

1., = la,=lA

Emitter-Base Cutoff Current

I Eao

Collector Cutoff Current

, CEV

Collector Cutoff Current,
Tc= 100°C

•

)c = S.OA,!. = 180,aH

ICEV

Collector Cutoff Current,
Tc = 100°C

ICER

Output Capacitance,
Common Base

Cobo

Gain-Bandwidth Product

FT

Energy Second Breakdown
(unclamped)

Es/b

Resistive Switching Speeds
Delay Time
Rise Time
Storage Ti me
Fall Time

1

-

1

-

-

O.S

-

-

2.5

-

-

mA

-

0.5

mA

-

-

mA

VCE clamp = rated VCEX ISUS)
VEa =9V
VCE =4oov, VaE = -l.5V
VCE = SOOV, V.E= -1.SV
VCE =4ooV, V.E= -1.SV

-

2.5

-

-

3.0

-

mA

100

200

100

200

pF

Vca = 10V, f = 1 MHz

6

30

6

30

MHz

VCE = lOV, Ic = 0.3A, f = 1 MHz
Ic =5.0A
lal =lA
L = 120,aH unclamped

3.0

lSoo

-

1S00

-

,aJ

td
t,
t,
tf

-

0.1
0.4
4.0
0.4

-

0.1
0.4
4.0
0.4

,as

Inductive Switching Speeds
Tc= 100°C
Storage Time
Fall Time

t,
tf

4.0
0.4

,as

RSJC

-

4.0
0.4

Thermal Resistance,
Junction-to-Case

-

1.4

°C/W

-

1.4

-

VCE = SOOV, VaE = -1.5V
VCE =.4ooV, RaE = SOn
VCE =SOOV, RaE = SOn

I c =5.0A
Vcc = 200V
1., = la, = 1.0A
VBE loff) = 5V
Ic = S.OA, L = 180,aH
=lA
VCE clamp = rated VCEX ISUS)

1., =

',2

Notes
1. Pulse length = 250 I'S; duty cycle ';1%.
2. Sustaining Voltage. Measured at a high current point where collector-emitter voltage is lowest. Current pulse length === 50
Voltage Clamped at maximum collector-emitter voltage.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. 1617) 861-6540
TWX 1710) 326·6509 • TELEX 95·1064

151

flSj

duty cycle

~1%.

PRINTED IN U.S.A.

UMTl008 UMTl009

Forward Bias Safe Operating Area
20

10

5:
....

i"

80

0

0'

"'

!" ,

U
0:

....
U

'" " "-

.~

0:
0:

::>

<

,

,

"-

CJ

'" ~ '"
,
,
"

~

-'

_u

~

~~

0:

Z

o-'
u
I

Power Derating
100

ill
J'~ ./~ ~~
~&
"'-~&

'-...

\.

~J

60

Z

;::

~~
~"'0

<
0:

'"....
Q

40

Z

'"0:0:

Te 25'C
CURVES APPLY BELOW
RATED Vew

0.5

II II

0.2

S

10

::>

r--....

"\

n'C SOAR CURVE

PURPOSES

o

500

o

40
Tc -

"

OERAT~ OISSI~A-'

TlON CURRENT LIMIT AND 1\. CURRENT LIMIT FADM
DASH LINES ON SOAR CURVES ARE EXTENSIONS OF
OISSIPATlON LIMITS FDA TEMPERATURE DERATING

\

20
so
100
200
VeE - COLLECTOR VOLTAGE (V)

AT OESIRED OPERATING VOLTAGE,

20

u

~,

\

I

I

~i.1'ft/~
~;\'.s~O

I
I
160
80
120
CASE TEMPERATURE ('C)

1,\
200

Reverse Biased Safe Operating Area
10

--

5:
....Z

I
I
I

"'0:0:

I

::>

U
0:

I
I

....0

U

"'-'-'0

,

I

0.5

t-

--

u

I

UMTlO09
UMTlO08

Vee

_0

0.2

Tc

(OFF

10

I

= ::;;SV

= :;;;:10Q C
o

I III

0.1

I

I
I
I
I
I
I

100
SOO
20
50
200
VeEXlSus,-COLLECTOR VOLTAGE (V)

Saturation Voltages

D.C. Current Gain
200
lell, - 5
100

z

;;:
CJ

....Z

r-12S'C
50

0:
0:

u

VBE~~ ;::::~
-,

" ,

,...-!-"

"'

::>

-

2S'C

20

I-

'~~

I

0.2

.c."

156'c

r2
0.1

---

0.2
Ie -

VeE

= IOV

VeE

=

0.1

~

3V

0.5
COLLECTOR CURRENT (A)

UNITRODE CORPORATION· S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6S09 • TELEX 9S·1064

5S'C
.OS
0.1

10

152

.,r,/
" /V

..... V~eEISATI

-

,....

0.2

./

I-

0.5
Ie - COLLECTOR CURRENT (A)

10

PRINTED IN U.S,A.

UMTl008 UMTlOO9

Switching Time, VCEX Isus)
Test Circuit

Esfb Test Circuit
+~ov

200V
R _ 200V
lIe

,

Ra=¥,III=112
FOR RESISTIVE SWITCHI NG.
L = 0, UNCLAMPED

.....-111--

VeE clamp

+17TI

:6Jl _
- - 4V

LJ

1511

ADJUST P.W.
TO OBTAIN
3A PEAK Ie

P.W. =25#5

-

5011

-4V

Turn·Off Ti me

Turn·On Time
1000

t-;.....

500

"200

"-

t,

"-

"'

.....
I.,

"' 0.5
:;:

"':;:

;::

;::

I"

50

0.2

20

Vee - 200V
lell, =5

VBe

(011)

200V

Vee

td

.s 100

t,

1"-

........

"

t,

O. 1

= SV

I"
TJ

leiS

= 25 c C

i--"

T J =25°C

10
0.1

0.2
Ie -

0.5
1
2
5
COLLECTOR CURRENT (AI

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

.0 5

10

0.1

0.2
Ie -

153

10

0.5
COLLECTOR CURRENT (AI

PRINTED IN U.S.A.

UMTIOll
UMTI012

POWER TRANSISTORS
15A,500V, Fast Switching, High ES/b
Silicon NPN Mesa

FEATURES

DESCRIPTION

•
•
•
•
•
•
•

These high voltage glass passivated
power transistors combine fast
switching, low saturation voltage and
rugged Eslb capability. They are
designed for use in off-line power supplies, high voltage inverters, switching
regulators, ignition systems and
deflection circuits.

Rise Time: 0.4I'S}
Fall Time: 0.41'S
Ic lOA
High Second Breakdown Energy: 6000l'J
Low Saturation Voltage
Collector Emitter Voltage: up to SOOV
Peak Collector Current: 30A
Key Parameters characterized at 100·C

=

ABSOLUTE MAXIMUM RATINGS
UMT1011

........ 400V..
... 300V..

Collector Emitter Voltage, VCEV
Collector Emitter Voltage, VCEO (SUS) ...•
Emitter Base Voltage, VEIO ................... .
Collector Current, Ic continuous
Collector Current, Ic peak.
Base Current, I. continuous
Power Dissipation, 2S·C Case
Derating Factor ................
. ................... .
Operating and Storage Temperature Range.

UMT1012

...... 500V
............. 400V

9V.....
..1SA......
...............30A...

..lOA

9V
15A
................30A

..... .lOA

... 175W..
..... 175W
.......... 1.0W,·C.................. 1.0W,·C
......... -65 to 200·C ... .

MECHANICAL SPECIFICATIONS
NOTE:
Leads may be soldered to within
111&" of base provided temperature-

UMT1011

time exposure is less than 260°C

Ins.

for 10 seconds.

J

K

'~P

~oo
C

0

I
N

j

-

/' >.:: -

~\ G-I
E

It'
F

UMT1012

mm

A

.875 MAX.

22.23 MAX.

B

.135 MAX.

3.43 MAX .

6.35-11.43

C

.250-.450

BASE

0

.312 MIN.

7.92 MIN.

EMITTER

E

.205-.225

5.21-5.72

F

.420-.440

10.67-11.18

J

,151-.161 CIA.

3.84-4.09 DIA.

·L

TO-3

K

.188 MAX. RAO. 4.78 MAX. RAO .

L

.525 MAX. RAD. 13.34 MAX. RAO .

M

.655-.675

16.64-17.15

N

1.177-1.197

29.90-30.40

P

.038-.043 CIA.

9.65-10.920IA

[lli]
6-79

154

_UNITRDDE

UMTlOll UMTl012
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
D.C. Current Gain (Note 1)

Symbol
hFE

UMTlOll
MIN.
MAX.
12
60
6

UMTlO12
MAX.
MIN.
60
12
6

30

Units

Test Conditions

Ic - 5.0A, VCE - 2.0V
Ic = lOA, VCE = 2.0V

30

D.C. Current Gain (Note 1)

hFE

Collector Saturation Voltage
(Note 1)

VCE (..,)

-

1.0

-

1.0

V

Ic = lOA, IB = 2.0A

Collector Saturation Voltage,
TC = 100'C (Note 1)

VCEI..,)

-

2.0

-

2.0

V

Ic = lOA, IB = 2.0A

Collector Saturation Voltage
(Note 1)

VCE (sat)

-

5.0

5.0

V

Ic = 15A, IB = 3.0A

1.6

V

Ic = lOA, la = 2.0A

1.6

-

1.6

V

Ic = lOA, I, = 2.0A

1.6

Base Saturation Voltage (Note 1)

VaE(s.')

Base Saturation Voltage,
TC = 100'C (Note 1)

VaE (..,)

Collector-Emitter Sustaining
Voltage (Note 2)

VCEO (.us)

300

-

400

-

V

Ic = O.1A, I, = 0

Collector-Emitter Sustaining
Voltage
TC::: 100'C (Note 2)

VCEX (sus)

350

-

450

-

V

Ic::: 8.0A, L ::: 180l'H
IBI = IB2 = 2.0A
VCE clamp::: rated VCEX (sus)

Emitter-Base Cutoff Current

lEBO

1

-

1

rnA

Collector Cutoff Current

ICEV

-

1.0

-

-

3.0

180

360

180

360

pF

6

24

6

24

MHz

Collector Cutoff Current,
Tc =100'C

ICEV

Collector Cutoff Current,
Tc = 100'C

ICER

Output Capacitance,
Common Base

Cabo

Gain-Bandwidth Product

Fr

Energy Second Breakdown
(unclamped)

Es/b

Resistive Switching Speeds
Delay Time
Rise Time
Storage Time
Fall Time

td
t,
ts
tf

Inductive Switching Speeds
Tc :::100'C
Storage Time
Fall Time

t.
tf

Thermal Resistance,
Junction-to-Case

ReJc

3.0

3.0

1.0

3.0

-

rnA
rnA
rnA

VEl = 'iN
VCE ::: 400V, VBE = -l.SV
VCE = 500V, VaE = -1.5V
VCE ::: 4OOV, VaE = -1.5V
VCE = 500V, VaE = -l.SV
VCE = 400V, RaE = 50!"!
VCE = SOOV, RaE = 500
Vca = 10V, f = 1 MHz
VCE = 10V, Ic = O.SA, f = 1 MHz

6000

-

GOOO

-

I'J

Ic ::: lOA, VaE loff) = -4V
L = 120I'H unclamped

-

.05
0.4
4.0
0.4

-

.05
0.4
4.0
0.4

I'S

Ic=10A
VCC = 200V
IBI ::: IB2 = 2.0A
VBE(ofij = SV

-

4.0
0.4

-

4.0
0.4

I'S

1.0

'C/W

1.0

Ic = lOA, L = 18Ol'H
lal ::: IB2 ::: 2.0A
VCE clamp = rated VCEX Isus)

Nat••
1. Pulse length 2501'S; duty cycle ,,1%.
2. Sustaining Voltage. Measured at a high current point where collector-emitter voltage is lowest. Current pulse length", SOl'S; duty cycle ,,1%.
Voltage clamped at maximum collector-emitler voltage.

=

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173· TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

155

PRINTEO IN U.S.A.

-

UMTlOll UMTl012

Forward Bias Safe Operating Area

Power Derating
100

""r\.

:~~~~~~~~~~I~I~I

t'-....

~
0:

0

.
".
...
I-

<.>

"-

_ r.....

f'.,

80

-....~{/~

~

;::

~~
~"'0

0:

0

40

I-

...
Z

II:
II:

::>

§

r-...

\I'll'

'" '"

20

<.>

DASH LINES ON SOAR CURVU ARE EXTENSIONS

o

Power

P.W.
ImS

~

\

\--1-++++++-1

DISSlpatlon_Hrtctttt_fIH
L'mIited

I

UM.TI012

~

LI~'fted

UMTI011

1 \

8 .4~~ltm~I~\~~m

PURPOSES"

o

4.0

1\
1\

~ 1.0 t--+-I-+-+-+-l~I+If--+.;~-t--trr:::;::!::i:~t-Jt-_t-II_.lH

'\

or

DISSIPATION LIMITj fQ't JMPE~rUItE rRATING

P.W.
10mS

I>

U
~

DE""'T~ OISSl~-'\

AT DESIREP OPERATING VOLTAGE,
TIOH CURRENT LIMIT AND Ii b CURRENT LIMIT fROM
ZS"C SOAR CURVE

~ 2OI'S

"10....

!!E 2.0

P.W.

~

"D.C.

5

~,.~O

~J

60

z

10

120
160
40
80
TC - CASE TEMPERATURE ('C)

I

.2

f--+-+-t-+-++++Hl~
\~~H-tt++-l

.1

f---1=-t1--+-+-+++-tt1I--+\~1--+-++-t-t-t-H

1\' \

Tc ,d25·h

"

200

.04

o::±:±±:::±:ti:tt:l::=±lct:±::t:ttttl

10

20

50

100

200

500

1000

V.,.-COLLECTORVOLTAGE (V)

Reverse Biased Safe Operating Area
40
20
10

5

IZ

...

4.0

/

II:
II:

::> 2.0
u

II:

UMTlOll

~
......0

0.4

I

0.2

u

~

/

I

1.0

II

/

.1

.04

10

20

50
500
200
100
VCEl( ''''1 - COLLECTOR VOLTAGE (V)

1000

Saturation Voltages

DC Current Gain
500

IIIII

II

Ic/l,=5

~

2

...

-

~

!:i

g
Z
0

rJ

J

55 C

=-

"...

100

I-

Z

lOO'C

f-

II:
II:

-

50

::>
u

~II

::>

0.1 -loo'C

--r==r.

~5jC
.... f-

0

I

20

f

10

25'C

-IOO'C
25'C

U

/~ V
~

0.2

.05
0.2

V.,.=sy

Z

;;:

25'

0.5

~

til

-IJrJ

r-- VIt''''1

II:

tc

200

""

~ ...

~

SS'C

0.5
2
5
Ic - COLLECTOR CURRENT (A)

UNITRODE CORPORATION,S FORBES ROAD
LEXINGTON, MA 02173· TEL (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

10

5

20

0.2

156

5
10
2
0.5
Ie - COLLECTOR CURRENT (A)

"

20

PRINTED IN U.S.A.

UMTlOll UMTl012

Resistive Turn-Off Time

Resistive Turn-On Time
10

1000

500

200

'iii

...S.
:Ii

lOO'C

"~
~

100

"

2f.C

2S'C-

l\. 1',...

t,

j"..ol--

.3 1.0

'"j::

:Ii

~~

t.

lOO'C

50

.5

Vee = 250V

.2

'"'-..'"

3!

j::

10

I--

'U

i'

SF -' 5

r-.....

2.0

I"~

2S'C

20

~ ~ f;;;..100'C

5.0

I

7

Vee -25OV
.2

I

III-ill"l
.5
Ie -

,

~

10

.1
.2

20

COLLECTOR CURRENT (A)

I

B,=S

III~-:h

-~
2S'C

10t,

io-""

.f

.5
Ie -

Switching Time, VeEX /'"'1
Test Circuit

lOO'C

100..

10

5

""
20

COLLECTOR CURRENT (A)

Eslb Test Circuit
+lOV

200V

0.211
FOR RESISTIVE SWITCHING,
L=O

~"'I-- VeE clamp

R,

+:~ o-~~~~r-~~
ADJUST P.W.
TO OBTAIN
lOA PEAK Ie

-4V

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 - TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

157

5011

-

PRINTED IN U.S.A.

..

POWER TRANSISTORS

UMT1203
UMT1204

3Amp, 500V, Fast Switching
Silicon NPN Mesa

FEATURES
•
•
•
•
•
•

DESCRIPTION

soov

These high voltage triple diffused glass
passivated power transistors, in a
plastic T0-220 package, combine
fast switching, low saturation voltage
and rugged Es/b capability. They are
designed for use in off-line power supplies, high voltage inverters, switching
regulators, deflection circuits, motor
controls and solenoid/relay drivers.

Collector Emitter Voltage: up to
Peak Collector Current: 5A
Rise Time: .;:;; 1.0,us t t l - 2A
Fall Time: .;:;; O.7,us f a cKey Parameters characterized at 100'C
Economical Plastic Molded Construction

ABSOLUTE MAXIMUM RATINGS
UMT1203

Collector Emitter Voltage, VCEV ...
Collector Emitter Voltage, VCEO {SUS} ...
Emitter Base Voltage, VEBO ................ .
Collector Current, Ic continuous .
Collector Current, ICM peak.
Base Current, IB continuous .
.. ....................................... .
.. ....................................................... .
Power Dissipation, 25'C Case.
.... ..... ..... .... . ..... .... .... ........................................... ..
Derating Factor .
Operating and Storage Temperature Range .
.. ................................. .

UMT1204

........ ..400V...... .. 500V
...... 300V........
........ ..400V

. .......7V....
..............3A......

....... .7V
........ 3A

.................... .5A..

.. ........... 5A

... IA...

............ .1A

...... .40W.....
...... 40W
... O.32W/'C..
....0.32W/·C
........ -65 to 150'C ........

MECHANICAL SPECIFICATIONS
UMT1203, UMT1204

SEATING
PLANE

.'M
A

I

G

- 1I

~-

~l-:

MAX

MIN

MAX

14.23

15.87

0.560

0.625

B

9.66

10.66

0.380

0.420

C
D

3.56
0.51

4.82

0.140

0.190

1.14

0.020

0.045

3.531

3.733

0.139

0.147

2.29

2.79

0.090

0.110
0.250

J

0.38

O.ol5

0.025

K

0.500

0·562

L

12.70
1.14

6.35
0.64
14.27

N

4.83

Q

G
H

A

SE(;fAA

.J~[

PIN 1. BASE
2. COLLECTOR
J. EMITTER

4. COLLECTOR

INCHES

MIN

A

,

I

MILLIMETERS

TO-220

1.77

0.045

0,070

0.190

0.210

•

2.54

5.33
3.04

0.100

0.120

2.04

2.92

0.080

0.115

S

1.14

1.39

0.045

0.055

T

5.85

6.85

0.230

0.270

[ill]
158

_UNITRDDE

UMTl203 UMTl204

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Symbol

Test
D.C. Current Gain (Note 1)

hFE

D.C. Current Gain (Note 1)

hFE

UMT1203
MIN.
MAX.
12
60
7

35

Collector Saturation Voltage
(Note 1)

VCEI"II

-

1.2

Collector Saturation Voltage,
TC 100'C (Note 1)

VCEI,.I)

-

Collector Saturation Voltage
(Note 1)

VCE I,al)

=

UMT1204
MIN.
MAX.
12
60
7

Units

35

-

1.2

V

1.5

-

1.S

V

-

3.0

-

3.0

V

l.3

V

1.S

V

Base Saturation Voltage (Note 1)

VaE ,.11

-

1.3

Base Saturation Voltage,
TC 100'C (Note 1)

VaEI"I)

-

1.S

-

Collector-Emitter Sustaining
Voltage (Note 2)

VCEO lsu,)

300

-

400

-

V

Collector-Emitter Sustaining
Voltage
TC 100'C (Note 2)

VCEXlsus)

350

-

450

-

V

=

=

Emitter-Base Cutoff Current

IEao

Collector Cutoff Current

ICEV

Collector Cutoff Current,
Tc 100'C

ICEV

Collector Cutoff Current,
Tc 100'C

ICER

Output Capacitance,
Common Base

Cabo

Gain-Bandwidth Product

FT

Energy Second Breakdown
(unclamped)

Es/b

Resistive Switching Speeds
Delay Time
Rise Time
Storage Time
Fall Time

=

-

-

-

1
0.5

2.5

1

0.5

2.5

rnA
rnA
rnA

-

3.0

-

-

-

-

-

3.0

3S

100

35

100

pF

6

30

6

30

MHz

80

-

80

-

I'J

td
t,
t,
t,

-

0.1
1.0
4.0
0.7

-

-

0.1
1.0
4.0
0.7

I'S

Inductive Switching Speeds
Tc 100'C
Storage Time
Fall Time

t,
t,

4.0
0.9

-

-

4.0
0.9

/'s

Thermal Resistance,
Junction-to-Case

ReJC

-

3.12

-

3.12

'C/W

=

=

Test Conditions

=1.0A, VCE =3V
Ic =2.0A, VCE =3V
Ic =2.0A, la =OAA
Ic =2.0A, la = 0.4A
Ic = 3.0A, 18 = 0.7SA
Ic =2.0A, la = 0.4A
Ic =2.0A, la = 0.4A
Ic =O.lA
Ic =2.0A, L =500l'H
IBI = la2 = 0.4A
VCE clamp = rated VCEX I'u')
Vel =7V
VCE =400V, VBE = -1.SV
VCE = SOOV, VIE = -1.SV
VCE =400V, VaE = -1.5V
VCE = SOOV, VIE = -1.SV
VCE =400V, R = son
VCE = 500V, R = SOn
VCB = lOV, f = 1 MHz
VCE =10V, Ic = 0.3A, f =1 MHz
Ic = 2.0A
IBI =0.4A
L =40l'H unclamped
Ic

rnA

Ic = 2.0A
Vcc = 200V
IBI = la2 = 0.4A
VaElo'ij
5V

=

Ic = 2.0A, L = SOOI'H
IBI = la2 = 0.4A
VCE clamp = rated VCEX Isus)

Notes
1. Pulse length = 250 P.Sj duty cycle ~1 %.
2. Sustaining Voltage. Measured at a high current point where collector·emitter voltage is lowest. Current pulse length", 50 ps; duty cycle <;;1%.
Voltage clamped at maximum collector·emitter voltage.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95·1064

159

PRINTED IN U.S.A.

-

UMTl203 UMTl204

Forward Bias Safe Operating Area

Power Derating
100

1"'1. II

r'\

~
....
z

"'-

W
0:
0:

DISSIPATION
LIMITED

:::>

r'\

~~.I'\~
$

..

0:

,
III

w

-'
-'
0

t)

1\
\

0.2
CURVES APPLY BELOW
RATED Vew

1

_u

0.1
'SIb

l-

«

"-

,,

CJ

1\

~

0

10

ILl
0:
0:

:::>

......

I

~'b LIMITED

1\

\

40

\\

20
AT DESIRED OPERA.TING VOLTAGE,
DERATE DISSIPATION CURRENT I
'--LIMIT AND 11/1. CURRENT LIMIT FROM

t)

LIMITED

o

500

I

,,

PURPOSES.

....
Z

~,

20
50
100
200
V e , - COLLECTOR VOLTAGE (V)

~~~E;:~~~!::U~~~::!~~:GL~

"\

~

0:
UJ

.05
5

60

DASH LINES ON SOAR CURVES ARE

z

I,

'\. ,\'"
\

\

0

t)

I',

"

Te =25'C

\.

80

0:

I~,

""-

0.5

~

'\

'>.>..

>.0"

t)

....0
t)

~ "-

.1 1 ;N,;?... I

"'-

"ro,or'"

o

1

'I I

\;

ISSIPATION
LIMITED

\

40
80
120
160
T c - CASE TEMPERATURE ('C)

200

Reverse Biased Safe Operating Area

~

f-

--

I-

Z

UJ
0:
0:

,,
,, \

UMT1204
-UMT1203

,,

:::>

,

t)

0:

0

0.5

t;

w
-'
-'
0

t)

I
I
I
I

1,,=0.4A
0.2 - Te =100'C

I

1

I
I

-" 0.1

,
.05
10

200
500
50
100
20
VeEX ,.. ,,- COLLECTOR VOLTAGE (V)

1000

Saturation Voltages

D.C. Current Gain

'el', =

5

I
~
VIE filtl

55'C

~

25'

w

CJ

«
I-

0.5

lSO'C

..J

0

-

>
0.2
'il'C

0.1

.05
.05

'0 - COLLECTOR CURRENT (A)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 86H540
TWX (710) 326·6509 • TELEX 95·1064

160

"

~ ...... /

~ ~'/
'/ih

... v

'l
VeE [Sltl

......

~

0.2
0.5
0.1
Ie - COLLECTOR CURRENT (A)

PRINTED IN U.S.A.

UMT1203

Switching Time
Test Circuit

UMT1204

Eslb Test Circuit
+10V

125V
125V

RL=~

R.

L

= ~V ,III = '.2

•

0.20

FOR RESISTIVE SWITCHING,
L=O

+6Jl_
0-_

4v

t---I*--VCE clamp

7JL

R,

Lf

D--'\30I\N'Il.,............--<>--l

ADJUST·P.W.
TO OBTAIN
2A PEAK

'c

P.W.=25jLS

-

SOil

-4V

Resistive Turn·On Time

Resistive Turn·Off Time

2000
Vee; 200V
1000

lSI

==
TJ

182

= 'c/5

= 25°C

-

r- r-

=

=

500

'"
~

"':>

200

;::

I,

....... ~

"-

100

f'..

.,
.:;

i--" i--"

"':;;;::

0.5

~

td

0.2

V

Vee = 200V

50
0.1

I"

I"
TJ

20
.05

0.1
Ie -

.05
.05

0.2
0.5
I
2
COLLECTOR CURRENT (Al

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064

....... t, I-- l-

.......-

'c /5
25°C

0.1

0.2
'c -

161

r-

0.5

COLLECTOR CURRENT (A)

PRINTED IN U.S.A.

POWER TRANSISTORS

UMT3584
UMT3585

2 Amp, 500V, Fast Switching
Silicon NPN Mesa

FEATURES
• Collector Base Voltage: up to 500V
• Peak Collector Current: SA
• Rise Time:;;;: 3.I'S t I - lA
• Fall Time :;;;: 31'S \ c• Economical Plastic Molded Construction

DESCRIPTION
These high voltage triple diffused glass passivated power transistors in a plastic TO-220
package combine fast switching, low saturation voltage and rugged Eslb capability. They
are designed for use in off-line switching
regulators, converters, inverters and deflection
circuitry.

ABSOLUTE MAXIMUM RATINGS
UMT3584

UMT3585

Collector Base Voltage, Veso .................
.. ................................................................................................... 37SV ............................................ SOOV
Collector Emitter Voltage, VCEO (SUS) ................................................................................................................ 250V ............................................ 300V
Emitter Base Voltage, VEiO .... . ............................................................................................... &I ................................................ 6V
Collector Current, Ic continuous ................................................................................................................................ 2A ................................................ 2A
ICM peak .......................................................................................................................................... SA ................................................ SA
D.C. Base Current, continuous ..............................
.............................................................................................. IA ................................................ 1A
Power Dissipation, PT 2S'C Case ..............................
.. .................................................................... 35W ............................................. 35W
Operating and Storage Temperature Range ..............................................
.. ..................................................... -65 to +l50'C ............. ..

MECHANICAL SPECIFICATIONS
UMT3584, UMT3585

SEATING
PLANE

DIM

2. COLL.ECTOR
3. EMITTER
4. COLLECTOR

INCHES

D

0.51

1.14

F
G
H

3.531

3.733

2..79

0.090

B
C

PIN 1. BASE

MILLIMETERS
MAX
M'N
15.87
14.23
9.66
10.66
3.56
4.82

MIN
0.560
0.380
0.140
0.020
0.139

A

2.29

6.35

MAX
0.625
0.420

0.190
0.045

0.147
0.110
0.250

,

0.38

0.64

oms

K

0.025
0.562
0.070
0.210

12.70

14.27

0.500

L

1.14
4.83

1.77
5,33

0.045

N
Q

2.54
2.04

2.92

o.oBO

0.115

1.14

1.39

0.045

0.055

5.85

6.85

0.230

0.210

R
S
T

3.04

TO-220

0.190
0.100

0.120

[ill]
4177A

162

_UNITRDDE

UMT3584 UMT3585
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)

Test

Symbol

UMT3584
MAX.
MIN.
40
8
80
25
100

UMT3585
MIN.
MAX.

Units

Test Conditions

-

40
8
25

-

0.75

0.75

V

Ic = lA, Is = 125mA

1.4

-

1.4

V

Ic = lA, Is = 100mA

-

Ic = 100mA, VCE = 10V
Ic -' lA, VCE ""; ZV
Ic = lA, VCE _lOV

D.C. Current Gain (Note 1)

hFE

Collector Saturation Voltage
(Note 1)

VCE( ••II

Base Saturation Voltage (Note 1)

VIE (••11

Collector-Emitter Sustaining
Voltage (Note 2)

VCEO (' ••1

250

-

300

-

V

Ic=200mA

Collector-Emitter Sustaining
Voltage (See Note 2)

VCER (•••1

300

-

400

-

V

'c=200mA
RIE = 2OO!l

0.5

-

0.5

mA

VSE = -6V

5.0

mA

VCE = 150V

Emitter Cutoff Current

-

Collector-Cutoff Current

'ESO
ICEO

Collector-Cutoff Current

,CEV

Collector Cutoff Current, l50'C

, CEV

Small Signal Forward
Transfer Ratio

hie

Collector Capacitance

Cob

-

120

Second Breakdown
Collector Current

Islb

350

Second Breakdown
Energy

Eslb

Switching Speeds
Rise Time
Storage Time
Fall Time

t,
t,
tf

Thermal Resistance:
Junction-to-Case

REIJC

Junction-to-Ambient

RaJA

5.0
1.0

-

1.0

mA

VCE = 340V, VIE = -1.5V
VCE = 450V, VIE = -1.5V

3.0

mA

VCE = 300V, VSE = -1.5V

-

-

Ic = 200mA, VCE = 10V
f=5MHz

-

120

pF

Vcs=lOV,f=lMHz

-

350

-

mA

VCE = loov

200

-

200

-

"J

'c=2A
RIE = 2O!l
L=loo"H

-

3.0
4.0
3.0

-

3.0
4.0
3.0

"s

Ic=lA
lSI = 112 = loomA
Vcc=200V

3.57

'C/W

70

'C/W

3

3.0

80
100

-

3.57
70

3

Notes
1. Pulse length = 250 !,s, duty cycle ';;1%.
2. Sustaining Voltage. Measured at a high current point where collector·emitter voltage is lowest. Current pulse length
Voltage clamped at maximum collector-emitter voltage.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

163

~

50 I'S;

duty cycle

';;1%.

PRINTED IN U.S.A.

UMT3584 UMT3585

Power Derating

Forward Bias Safe Operating Area

"1'\ "

100

1~-<'t,T~ '<'.s--jff-

I"

i'\. ).<:. . . ~K

5

r'\,.£

....z

I

W
0:
0:

'\

A;.

~

.s-

"-

0

\

t;

1\1

W

1\ iW\1

....z

\

w 0.3

..J
..J

0

1 = 25'C
CURVES APPLY BELOW
RATED VeEOI
I

u

I

u

0.1

<.!l
z
;:
«
0:

.~

0.5

c

\ \

W
0:
0:

:J

60

\
AT DESIRED OPERATING VOLTAGE.
DERATE DISSIPATION CURRENT I
_Ll .... !T AND Is{lo CURRENT LiMIT FR[M

25'1 SOAR fURVE !

1\
10
20
50
100
VeE-COLLECTOR VOLTAGE (V)

o

200 300

'-..

ISlb LIMITED

\

ISSIPATION
LIMITED'

\

20

U

3

1'-.....

I

\

40

H'

.05

I

PURPOSES.

1\

U

«

~OAR CURVES ARE

;~!~:~~~!~:U~~~::!~~~Gl~

""1\

....0

'\,

DASH LINES ON

1\

80

0:

:J

U
0:

~ i'-...

o

\
200

160
80
120
CASE TEMPERATURE ('C)

40
Te -

Saturation Voltages

D.C. Current Gain

I

I

If!

le/l,=10

7

I
~
w
<.!l
«

0.5

=

15d,C

-

1SO'C

I:::l~

VIIEISAT)

25'

".

~

0

>

./

0.2

;'/
ISO'

0.1

V f..-' /

VCE{SAT)

'--: 55'C
.05
.02
Ie-COLLECTOR CURRENT (A)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

.05
Ie -

164

0.1

0.2

0.5

COLLECTOR CURRENT (A)

PRINTED IN U.S.A.

UMT3584 UMT3585

Switching Time Test Circuit
200V

•

P.W. = 25,15

Turn-Off Time

Turn-On Time
Vee _200V

I"

= le/1O

i;"- l-

T _2S'C

'\.

'\.

'\
~

;

,~

on

0.5

'-

:;

;::

i'.

';::"

w 0.5

:;;

-

-..!:.

0.2

,

"",7

0.2
Vee

' " td

0.1

t,

........

0.1

I" '
- TJ

= 200V

1~2' 'lellO

2S'C

.05

.05
.02

.05
Ie -

0.1

0.2

0.5

.02

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

.05
Ie -

COLLECTOR CURRENT (A)

165

0.1

0.2

0.5

COLLECTOR CURRENT (A)

PRINTED IN U.S.A.

POWER TRANSISTORS

UMT13004
UMT13005

4A, 700V, Fast Switching,
Silicon NPN Mesa

FEATURES
• Collector Emitter Voltage: up to 700V
• Peak Collector Current: SA
• Rise Time: ~.7PS} t I - 2A
• Fall Time: ~O.9pS
a c• Key Parameters characterized at lOO'C
• Economical Plastic Molded Construction

DESCRIPTION
These high voltage glass passivated
power transistors, in a plastic TO-220
package, combine fast switching, low
saturation voltage and rugged Eslb
capability. They are designed for use in
off-line power supplies, high voltage
inverters, switching regulators, deflection circuits, motor controls and
solenoid/ relay drivers.

ABSOLUTE MAXIMUM RATINGS
UMTI3D04

Collector Emitter Voltage, VCfN ................................................................................. ..
Collector Emitter Voltage, VCEO (SUSI
Emitter Base Voltage, VERO
Collector Current, Ic continuous
................................ .
Collector Current, ICM peak ........
. .................. .
Base Current, I, continuous. . ........................... .
Power Dissipation, 25'C Case
Derating Factor ............... .
Operating and Storage Temperature Range

UMT13UD5

... 600V..
........ ..... 700V
....... 300V............................ 400V
... 9V....
. .............. 9V

........ .. 4A .............................. ..4A
. SA...
. ....... SA
........... 2A...
.2A
...... .75W...
...75W
... O.59W/'C..
... O.59W/'C
. -65 to 150'C ..

MECHANICAL SPECIFICATIONS
UMT13004, UMT13005

SEATING
PLANE

MILLIMETERS
MIN
MAX

MAX

14.23

15.87

0.560

0.625

B

9.66

10.66

0.380

0.420

C
D

3.56

1.14

0.140
0.020

0.190

0.51

F

3.531

3.733

0.139

0.147

G

2.29

2.79

0.090

0.110

J

0."

6.35
0.64

0.015

0.250
0.025

K

12.70

H

PIN 1. BASE
2. COLLECTOR
3. EMITTER

4. COLLECTOR

INCHES

MIN

A

DIM

4.82

0.045

14.27

0.500

L

1.I4

1.77

0.045

0.070

N

4.83

5.33

0.190

0.210

Q

2.54

3.04

0.100

0.120

2.04
1.14

2.92

0.080

0.115

S
T

1.3,

0.045

0.055

5.85

6.85

G.2JO

0.270

•

10·220

0.562

[ill]
6·79

166

_UNITRDDE

UMT13004 UMT13005
ELECTRICAL SPECIFICATIONS (at 25·C unless noted)

Test
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
Collector Saturation Voltage
(Note 1)
Collector
} T - 2S.C
Saturation Tc ;;;; 100.C
Voltage
C
(Note 1)
Collector Saturation Voltage
(Note 1)
Base Saturation Voltage (Note 1)
Base
} T - 2S.C
Saturation TC ;;;; 100'C
Voltage
C
(Note 1)

Symbol
hFE

VCE( ••f)
VCE( ••f)

VCE(••f)
V1EjsaiJ
VIE (••f)

VCEO (.u.)

Emitter-Base Cutoff Current

lEBO

Collector Cutoff Current

IcEv

Collector Cutoff Current,
Tc = 100'C

IcEv

UMTl3005
MIN.
MAX.
10
60

40

8

hFE

Collector-Emitter Sustaining
Voltage (Note 2)

Output Capacitance,
Common Base
Gain-Bandwidth Product
Resistive Switching Speeds
Delay Time
Rise Time
Storage Time
Fall Time
Inductive Switching Speeds
Tc = 100'C
Storage Time
Fall Time (t,; + ttv)
Thermal Resistance,
Junction-to-Case
Thermal Resistance,
Junction-to-Ambient

UMTl3004
MIN.
MAX.
10
60

-

Ic - 2.0A, VCE - SV

.5

-

.5

0.6
1.0

-

0.6

-

1.0

1.0

V

1.2

V

=LOA
Ic = LOA, Is =0.2A

1.6
1.5

V

Ic = 2.0A, II = O.SA

-

V

Ic=lmA

V

Ic = LOA, I. = 0.2A

V

Ic = 2.0A, I. = O.SA

-

1.5

-

300

-

400

-

1

-

1

mA

1

-

-

mA

-

mA

1.0
1.2
1.6

-

5

-

-

4

1

5

6Styp.

65 typo

Cabo
FT

Ic _LOA, VCE - SV

40

8

Test Conditions

Units

-

4

pF

-

MHz

td
t,
t.
t,

-

0.1
0.7
3.5
0.9

-

0.1
0.7
3.5
0.9

t,
t,

4.0
0.9

"S

1.67

-

4.0
0.9

R8JC

-

1.67

'C/W

RaJA

-

62.5

-

62.5

'C/W

"S

Ic = 4.0A, I.

=
=
=-1.SV
VCE =700V, VSE = - 1.SV
VCE =600V, VSE = -l.SV
VCE =700V, VSE = - 1.5V

VEl 9V
VCE 600V, VSE

VCI = 10V, f = 1 MHz
VCE

=10V, Ic = .SA, f =1 MHz

Ic=2.0A
Vcc= 12SV
I" = IS2 0.4A
VSE (off) SV, P.W.

=
=

=

=2S"S

=
=
=

Ic 2.0A, L SOO"H
lSI = 0.4A, VIE (ofij SV
VCE clamp rated VCEl( (.u.)

Nate.

1. Pulse length = 250"S, duty cycle ';;;1%.
2. Sustaining Voltage. Measured at a high current point where collector-emitter voltage is lowest. Current pulse length", SOIlS, duty cycle ';;;1%.
Voltage clamped at maximum collector-emitter voltage.
Typical
Inductive Load
Switching Performance
(e

Amps
0.5
1.0
2.0

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6S09 • TELEX 95-1064

TJ
'c
25
100
25
100
25
100

t.

t,.

til

I'S

nS

nS

I.B
1.2

180
240

1.0
1.5
1.2
1.7

160
220

20
30
21

167

180
230

30

25
35

PR(NTED IN U.S.A.

UMT13004 UMT13005

Forward Bias Safe Operating Area

Power Derating
100

10

~ "-

20"S

5.0

D.C.

5:

'\.

~

...

z

r\

'"

r\

:;:)
()

DISSIPATION
LIMITED-i+

0

1.0

'"

.5

t;

..J
..J

0

~S

'\
\

80

c:

...

0

1\.'\

4-

"-

iWi

60

"z>=

"'-

OJ

\

40

...0

ISIb
LIMITED
.2
Te

= 25'C

r\

\

.1
10

20

50

100

\

\

,

'"a:a:

\

.....

,

1\

«
a:

z

I

~~~E::~~~!~:U~~~:!~~~GL~

\

AT OESIRED OPERATING VOLTAGE.

DERATE OISSIPATION CURRENT I
_LIMIT AND 1S CURRENT LIMIT FROM

t-

o

~

200

500

"'1'0" 1""" I I I

o

"'"

IS/b LIMITED

~

ISSIPATION
LIMITED

\

40
80
120
160
Te - CASE TEMPERATURE ('C)

1000

I

\

20

:;:)
()

!

PURPOSES.

\

()

«

MTl300

()

_u

~

i'..

a: 2.0
a:
a:

....'\.

1mS

OASH LINES ON SOAR CURVES ARE

200

VeE - COLLECTOR VOLTAGE (V)

Reverse Biased Safe Operating Area

,

I

...5:z

1\

~

Te -100'C
VIE

I~

loff} - -5V

'"a:a:

:;:)
()

a: 0.5
0

t;

UMTl3004

'"

..J
..J

0

()

0.2

UMTl3005-

I

_u

0.1

.05
20

10

so

100

SOO

200

1000

VeE. 1'''1- COLLECTOR VOLTAGE (V)

Saturation Voltages

D.C. Current Gain
200 r1lrTT1
I: 1...--'-'---'-'-"'--rTTT---'-'--'---'-'

z

illIHm

I

""

I\.

,
,',
'"

I--

~

~~

~

.05

0.1

1SO'C

0

,/

0.2

,/

150'
:-2¥
_.SS'C

,......... 1--'::,....-

VeE (SAT)

.05

__L-L--L-LJ

2
0.2
0.5
Ie - COLLECTOR CURRENT (A)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064

k:::. ~

VBE(SAT)

1551,C

>

0.1

2~LU~-L-L--'--'-L~LU

I '1/

-- ~25'

"'"«S 0.5 I--

,"
r'\.~

III

I

1001Wml'd
f-'25'C

~50

I

lell, = 10

.02

.05
Ie -

168

0.1

0.2

0.5

COLLECTOR CURRENT (Al

PRINTED IN U.S.A.

UMT13004 UMT13005

Resistive Turn-On Time

Resistive Turn-Off Time

2000
Vee
1000

I"

~

200V
leiS

I"
TJ

-

=

t-I-

........ I,l--l-

2S'C

1'"

500

!'...

~
~

OJ
:;; 200

;::

100

."'-

~~

"'

t.,.....- V

~
OJ

:;;

r-..

0.5

;::

Id

K

0.2

Vee =:: 200V

50

0.1

I"

.05
.OS

0.1
0.2
O.S
1
2
Ie - COLLECTOR CURRENT (AI

leiS

I"

25°C

TJ

20
.OS

/
t-

1""-

0.2

0.1
Ie -

0.5

COLLECTOR CURRENT (A)

Switching Time
Test Circuit
125V
R _125V
L-

Ie

,

R.=¥,I B1 =1 82
FOR RESISTIVE SWITCHING,

L=O

+--1111--

VeE clamp

R,

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6S09 • TELEX 95·1064

169

PRINTED IN U.S.A.

UMT13006
UMT13007

POWER TRANSISTORS
8A,700V, Fast Switching,
Silicon NPN Mesa
FEATURES

DESCRIPTION

• Collector Emitter Voltage: up to 700V
• Peak Collector Current: 16A

These high voltage glass passivated
power transistors, in a plastic TO·220
package, combine fast switching, low
saturation voltage and rugged Es/b
capability. They are designed for use in
off·line power supplies, high voltage
inverters, switching regulators, deflection circuits, motor controls and
solenoid/relay drivers.

•
•
•
•

Rise Time: 0::;; l.OI'S} at I - SA
Fall Time: 0::;; 0.71'S
cKey Parameters characterized at lOO'C
Economica I Plastic Molded Construction

ABSOLUTE MAXIMUM RATINGS
UMT1300a

Collector Emitter Voltage, VCEV
Collector Emitter Voltage, VCEO (SUS) .
Emitter Base Voltage, Eao
.................. .
Collector Current, Ic continuous
Collector Current, ICM peak.... .................... .. ........................ ..
Base Current, la continuous ........................................................ ..
Power Dissipation, 2S'C Case.
.. .................................. .
Derating Factor
.......................................... ..
Operating and Storage Temperature Range.
.. .................... ..

UMT13007

.600V.... ................... .700V
............ 300V......
... 400V

v

.. ..SV..................
......... SV
..... SA.....................
....... SA
.. 16A ................................. .16A
.4A.

...... 4A

.. ... SOW ................. .... BOW
.O.64IW/'C....
..O.64IW/·C
................... -65 to ISO·C ...

MECHANICAL SPECIFICATIONS
UMT13006, UMT13007

SEATING
PLANE

MILL! ITERI
DIM
A

MAX

MI.

MAX

• ....
'.56

15.87
10.66

0.560

0.625

0.380

0.420

0.190
0.045
0.147

C

G

0.51
3.531
2.29

H
J

0.38

0
F

L
N

12.70
1.14
4.83

Q

2.54

R
S
T

2."
1.14
5.85

K

PIN 1. BASE

2. COLLECTOR
3. EMITTER
4, COLLECTOR

IHCHIS

MI.
14.23

4.82

0.140

1.14

0.020

3.733

0.139

2.19
6.35
0.64
14.27
1.77
5.33
3.04
2.92
1.39

6.15

TO-220

0.090

0.110
0.250

0.015

0.025
0.562
0.070
o.z10
0.120
0.115
0.055
0,270

0.500
0.045
0.190

0.100
0.010
0.045
0.230

[ill]
6-79

170

_UNITRDDE

UMT13006 UMT13007
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Symbol

Test

UMT13006
MIN.
MAX.

UMT 3007
MIN.
MAX.

Units

Test Conditions

D.C. Current Gain (Note 1)

hfE

8

40

8

40

Ic = 2.0A, VCE = SV

D.C. Current Gain (Note 1)

hFE

6

30

6

30

Ic=S.OA,VCE=SV

Collector Saturation Voltage
(Note 1)

VCE!.atl

Collector
Saturation
Voltage
(Note 1)

VCE!.atl

Tc =2S'C
Tc =100'C

Collector Saturation Voltage
(Note 1)

VCE!.atl

Base Saturation Voltage (Note 1)

VaEI.atl

Base
Saturation
Voltage
(Note 1)

VaE I.atl

Tc =2S'C
Tc =100'C

Collector-Emitter Sustaining
Voltage (Note 2)

VCEO 1•••1

Emitter-Base Cutoff Current

I Eao

Collector Cutoff Current

ICEV

-

1.0

-

1.0

1.5

-

2.0

-

3.0

2.0

V

Ic = 2.0A, la = 0.4A

V

Ic = S.OA,la = 1.0A

3.0

V

Ic = 8.0A, la = 2.0A

1.2

V

Ic = 2.0A, la = 0.4A

V

Ic = S.OA, la = LOA

Ic=10mA

1.5

1.5

-

300

-

400

-

V

-

1

-

1

mA

-

mA

1.2
1.6

1.0

5

1.6
1.5

1.0

-

Collector Cutoff Current,
Tc = 100'C

ICEV

Output Capacitance,
Common Base

Cobo

1l0typ.

Gai n-Bandwidth Product

FT

4

Resistive Switching Speeds
Delay Time
Rise Time
Storage Time
Fall Time

td
t,
t,
tf

-

0.1
1.0
3.0
0.7

-

Inductive Switching Speeds
Tc =l00'C
Storage Ti me
Fall Time (tfl + tfv)

t.
tf

2.3
0.7

I'S

RaJC

1.56

-

2.3
0.7

Thermal Resistance,
Junction-to-Case

-

1.56

'C/W

Thermal Resistance,
Junction-to-Ambient

RaJA

-

62.5

-

62.5

'C/W

-

5
110 typo

-

4

-

mA
pF
MHz

0.1

1.0
3.0
0.7

I'S

VEB = 9V
VCE = 600V, VaE = -1.SV
VCE = 700V, VaE = -1.SV
VCE = 600V, VaE = -l.SV
VCE = 700V, VaE = -l.SV
Vca =10V,f=lMHz
VCE = 10V,Ic = O.SA, f = 1 MHz
Ic=S.OA
Vcc=12SV
lal = 18z= 1A
VaElofij =SV
Ic = S.OA, VaE lof~ = 5V
lal =lA
VCE clamp = rated VCEX ('.'1

Nates
1. Pulse length = 25O#SI duty cycle ';1%.
2. Sustaining Voltage. Measured at a high current point where collector-emitter voltage is lowest. Current pulse length '"
Voltage clamped at maximum collector-emitter voltage.

5O~SI

duty cycle ';1%.

Typical
Inductive Load
Switching Performance
conditions:

V clamp at rated VCEX

{sus}

(refer to RBSOA curve)
VaE

{off}

=

-5V

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

TJ

t,.

'c

t,
p.S

nS

tIl
nS

3.0

25
100

.45
.575

70
100

10
20

5.0

25
100

.475
.60

25
45

4
10

8.0

25
100

.525
.625

20
45

10
15

Ic
Amps

171

PRINTED IN U.S.A.

•

UMT13006 UMT13007

Power Derating

Forward Bias Safe Operating Area
100

20~~~~~~~HI=J=~
,,"10mS
~mS
~OI'S

I

1°§1~~"i§~'ml~!~~

~

D.C.

I'

5

80

't;"
"...
"Zj:
"'"

DiSSi Pation,,,,,-r-!>o..-+-fI.:t++tf--.3k:I\.-+-t-t--i
2~~+TL~im~it~ed;'---_'~~~-PrrH-~I~
~r-~~~

I

\

\

0

UMT130Q60
"-

Power'-

~ ........

i\

~~!E::~~~!~:U~~~::!~~~Gl~

'"

......

\

40

I-

Z

'"

II:
II:

0.2!-'-'-.u,'1,=-,
I-:!:---,-.L.+.-'~b-'~\~y'
10

20

VeE -

so

100

o

500

200

"'1'0'" 1"'" II

o

40
Te -

COLLECTOR VOLTAGE (V)

I"--.

J

.

IS,b LIMITED

1\\

AT DESIFIED OPERATING VOLTAGE.
DERATE DISSIPATION CURRENT I
'-LIMIT AND I'ib CURRENT LIMIT FROM

u

5.

I'-.

20

:>

!

PURPOSES

1\

60

'"c

DASH LINES ON SOAR CURVES ARE

1-

~ISSIPATION
LIMITED

1\

80
120
160
CASE TEMPERATURE ('C)

200

Reverse Biased Safe Operating Area
40

I (off)I :;;;;-5V
L1ll.

V 8E

20

5
l-

Z

'"

II:
II:

Tc

10
SA

~

~

S
4

~

a

~

II:

0

t;

'"0

UMT13006r-

..J
..J

u

I
,lJ

lOO"C

.4
UMt13&07
.2
.1
.04

20

10

so

100

200

SOD

1000

Ve", I"'I-COLLECTOR VOLTAGE (V)

D.C. Current Gain

Saturation Voltages

200
VeE
100

z
;;:
CJ

....

'"
'"u

le/l
2

100'C

50

Z

20

U
ci 10

~

55'C

iii
CJ

25'C

-

II:

:>

I

= 5V

1

~

"'t';:

0
> 0,5

..... R.:

55'C

z

~"

I

i-'"

'"

:> 0.2

~

!;:

5

III

I--'

0.1
2

0.2
Ie -

0.5

.05

2

.05

COLLECTOR CURRENT (A)

UNITRODE CORPORATION, 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

172

V

/V

0

Ie

0.1

55'
/0

100'C

II

-I--

(uti

5'

;::
«

J:

.05

VBE

,=5

0.1
Ie -

0.2

of-'

....-

~ /25'C
VeE, ..

0.5

t,
2

5

COLLECTOR CURRENT (A)

PRINTED IN U.S.A.

UMT13006 UMT13007

Resistive Turn-Off Time

Resistive Turn-On Time
1000

10
Vee
lefl ,

100'C
500

~

1/

..."
r-...

~

V

VJ5'C

t.
2

.,

'in

.s
UJ

:;:

125V
5

5

t--r-.
t--

UJ

,

100'C

1'-

~

100

ts

:;:

;::

;::

t.

25'C
0.5

50

~
20
10
0.1

0.2

Vee = 125V
lefl, = 5

0.2

"~

1

2

5

0.1

10

0.2
Ie -

COLLECTOR CURRENT (A)

1--'1;"

---

0.1
0.5

Ie -

100'C

Vt.,

.J.
25'C

I

0.5
1
COLLECTOR CURRENT (A)

10

Switching Time
Test Circuit
125V
R _ 125V
L-

Ie

,

R.=¥,II,=111
FOR RESISTIVE SWITCHING,

L=O

t-....~-

VeE clamp

P.W. =25#5

UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

173

PRINTED IN U.S.A.

POWER TRANSISTORS

UMT13008
UMT13009

12A, 700V, Fast Switching,
Silicon NPN Mesa

FEATURES

DESCRIPTION

• Collector Emitter Voltage: up to 700V
• Peak Collector Current: 24A
• Rise Time: ~ 1.0I'S} t I - SA
• Fall Time: ~ 0.71'S a c• Key Parameters characterized at 100'C
• Economical Plastic Molded Construction

These high voltage glass passivated
power transistors, in a plastic TO-220
package, combine fast switching, low
saturation voltage and rugged Es/b
capability. They are designed for use in
off-I ine power supplies, high voltage
inverters, switching regulators, deflection circuits, motor controls and
solenoid/ relay drivers.

ABSOLUTE MAXIMUM RATINGS
U MT1300S

Collector Emitter Voltage, VCEV .
Collector Emitter Voltage, VCEO (SUS) .
Emitter Base Voltage, VEIO .
Collector Current, Ic continuous ..
Collector Current, ICM peak.
Base Current,
continuous.
Power Dissipation, 25'C Case ..
Derating Factor
Operating and Storage Temperature Range.

........... 600V....
.. ..... 300V...

. . . . . 9V..

U MT1300S

............... .700V
............ ... 400V

.... 9V

... 1 2 A . .. .12A

... 24A..

'I

... 24A

6A.
............ 6A
... lOOW..
... lOOW
..................... O.80W/'C.....
...... O.80W/'C
.... -65 to 150'C .

MECHANICAL SPECIFICATIONS
UMT13008 UMT13009

SEATING
PLANE

.,M

•

B
C
0
F

G

H
J
K

PIN 1. BASE
2. COLLECTOR
3. EMITTER

4. COLLECTOR

L
N

MILUMITI. .
MI.
MAX
14,23 15.87
g... 10.66

,...

0.51
3."1
2.2.

1.14
l.733
2.79
6.35

0.31
12.70
1.14

...,

Q

2."
2."

S
T

1.14

•

'.12

5.'5

0.64
14.27

l.n
5.33
3.04

2.92
...g
US

TO-220

INCHII
MI.
MAX
....0
0.625
0....,
0.310
0.140
0.190
0.020
0.045
0.139
0.147
0.0..
0.110
0.250
0.015

0.025

0.500
0.045
0.190
0.100
0.010
0.045

0.562
0.070
0.210
0.120

0.230

0.270

0.115
0.055

[ill]
6-79

174

_UNITRDDE

UMT13008 UMT13009
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)

Test
D.C. Current Gam (Note 1)

Symbol
hFE

D.C. Current Gain (Note 1)

hFE

Collector Saturation Voltage
(Note 1)

VCElsa'!

Collector
Saturation
Voltage
(Note 1)

VeE I..'!

Te = 25'C
Te = 100'C

Collector Saturation Voltage
(Note 1)

VCElsa'!

Base Saturation Voltage (Note 1)

VaElsal)

Base
Saturation
Voltage
(Note 1)

Te = 25'C
Te =100'C

VaE Isal)

Collector-Emitter Sustaining
Voltage (Note 2)

VeEo Isus)

Emitter-Base Cutoff Current

'Eao

Collector Cutoff Current

ICEV

Collector Cutoff Current,
Te= lOO'C

ICEV

Output Capacitance,
Common Base

Cobo

UMT13008
MIN.
MAX.
8
40
6

-

30

UMT13009
MIN.
MAX.
8
40
6
30

1.0

-

1.0

1.5

-

2.0

2.0

Ic = 8.0A, VCE = 5V

1.5

V

Ic = S.OA, la = LOA

V

Ie = 8.0A, la = 1.6A

3.0

V

Ie = 12.0A, la = 3A

1.2

V

Ie = 5.0A, la = 1.0A

1.5

V

Ie = 8.0A, la = 1.6A

-

400

-

V

le= 10mA

1

-

1

mA

-

rnA

3.0

300

1.2
1.6

1.0

5.0

-

1.6
1.5

1.0

5.0
l80typ.

l80typ.

-

-

mA
pF

FT

Resistive Switching Speeds
Delay Time
Rise Time
Storage Time
Fall Time

td
t,
t,
t,

-

0.1
1.0
3.0
0.7

-

0.1
1.0
3.0
0.7

I'S

t,
t,

2.3
0.7

1'5

1.25

-

2.3
0.7

RaJc

-

1.25

'C/W

RaJA

-

62.5

-

62.5

'C/W

Inductive Switching Speeds
Tc=lOO'C
Storage Time
Fall Time (t'l + t,v)
Thermal Resistance,
Junction-to-Case
Thermal Resistance,
Junction-to-Ambient

4

MHz

VEa =9V
VeE = 600V, VaE = -1.5V
VCE = 700V, VaE = -1.5V
VCE = 600V, VaE = -1.5V
VCE = 700V, VaE = -1.5V
Vca= 10V, f= 1 MHz
VCE = 10V,I e = 0.5A, f = 1 MHz
Ic =8.0
Vcc = 125V
lal = la2 = 1.6A
VaElolf) =5V
Ic = SA, VaE lolij = 5V
lal 1.6A
Vee clamp rated VCEX Isu,)

=

=

Notes
1. Pulse length = 250#S; duty cycle <:;1%.
2. Sustaining Voltage. Measured at a high current point where collector-emitter voltage is lowest. Current pulse length", 5O#S; duty cycle <:;1%.
Voltage clamped at maximum collector-emitter voltage.

Typical
I nductive Load
Switching Performance

Conditions:

I"

3.0

25
100

t,
#S
0.5
0.85

V clamp at rated VCEX 'JUI)

5.0

~5

0.65

40

12.0

100

0.90
0.72
.092
.70
.78

50

8.0

100
25
100

Ie
Amps

TJ
·C

)e

-

=5

Irefer to RBSOA curve)

VBE (offl

= -SV

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064

25

175

II,
••••

Gain-Bandwidth Product

4

Test Conditions

Ic - 5.0A, VCE _ 5V

-

-

Units

t,v
nS
100
130

60
65
70
70

t,;

nS
10
14
10
12
12
28
25
110

PRINTED IN U.S.A.

UMTl300B UMTl3009

Forward Bias Safe Operating Area

Power Derating

40

100

20
10

g

...
"'

4.0

u

2.0

,

~s
D.C.

r--.....

Z

ImS

r~

~

1.0

0

.40

u
1

_u

.10

50

20

100

20

:>
u

AT DEStRED OPERATING VOLTAGE.
DERATE DISSIPiHION CURRENT I

I--lIMIT AND II~ CURRENT LiMIT FArM

2S'lS0ARrRVE

a

~

200

f"".-

I

Is,b LIMITED

1\

Z

'"0:0:

I

\

40

I-

~ t- I'

.04

I'-.

1\

60

"'0

~~~E~:~~~!~:U~~~::!~~~Gl~
PURPOSES

\

z
;::
«
0:

~

lytH3OO91- ~

VeE -

0

IU

'\ 1'\
UMTl3008

10

0::

"

OA511 LINES ON SOAR CURVES ARE

" ['-..
'\

80

"-

"oJ",.

.20

~

«

"""

~

Te _2S'C

5

r--

~

I;, LIMITED

..J
..J

~

'\~

"r-

0::

0

r--. ......

r-....

DISSIPATION,
LIMITED-[::::< ~

0::
0::

:>

r"-

20p

o

40
T -

' ISSIPATION
LIMITED

1\
200

80
120
160
CASE TEMPERATURE ('C)

e

500

l

\

COLLECTOR VOLTAGE (V)

Reverse Biased Safe Operating Area
15
12
10

3:
I-

Z

~

'"0:0::

:>

u

2.0

VIE loffl ~-5V
Tc:S;;; lOOoe
1'1 =2.SA

0::

g
'"

u

..J
..J

1.0

0

u
.5

1

_u

UMTlJOOB
UMTlJOOS

.2
.15
10

1

20

50

100

200

500

1000

VeEX 1"'1- COLLECTOR VOLTAGE (V)

Saturation Voltages

D.C. Current Gain
200

100

50

I-

"'
0::

:>

a

I.W

-......

----

--

m
-SS'C

U

g
1

I

kI:

S'C

Z

a:

lell, _5

VeE - 5V

fJJ

lOO'C

z

~

LUl

1III

0

r.~

1

V 8E

($at]

~

25'C

5

i"o.i"!o

"

~

./. ~'/

o.2
~

25'C
.1

2

0,1

0,2

0,5
Ie -

10

.05
.05

20

COLLECTOR CURRENT CA)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

YL

lOO'C

5

,as

.- j--, ~r.=

-55'C

0.1

-

",

fsat]

/:WC

!"'"
0.2

10

0.5
Ie -

176

lru~

VeE

,/

20

COLLECTOR CURRENT (A)

PRINTED IN U.S.A.

UMT13008 UMT13009

Resistive Turn-Off Time

Resistive Turn-On Time
2000
~

1000

c--

r

~

Ve• = 125V
I

111111

1- 1" = 1,,=

/

%

500

on

oS 200
::;:

j::

100

~ I:'~

~I"

V lA
V

100'C ""

~

..:;
'"

25'C

aoy

LI
20
.20

II
.5
Ie -

[

2~

.....

.1%

I"

0.5

::;:

0.2

~
O'e/

N.::...: ,

OJ

;:

50

t.

VeE:::: 125~

It....~~0

~

OJ

l~'cl

1""-1-

~ r--

100'C

V

.... 1..;':"tlJ,..oo

-rs;c

100'C
0.1
25'C

II

10

.05
.2

20

COLLECTOR CURRENT (A)

.5
Ie -

10

20

COLLECTOR CURRENT (A)

Switching Time
Test Circuit
125V
125V

RL===Ic~

,

R.=¥,I.I::::I B2
FOR RESISTIVE SWITCHING.

L=O
R,

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

177

PRINTED IN U.S.A.

POWER TRANSISTORS

UPTl11
UPTl12
UPTl13
UPTl14
UPTl15

1 Amp, 150V, Planar NPN

FEATURES
• Collector-Base Voltage: up to lSOV
• Peak Collector Current: 2A
• Tum-on Time: lOOns
• Turn-off Time: 250n5

DESCRIPTION
Unitrode power transistors provide a
unique combination of low saturation
voltage, high gain and fast switching. They
are ideally suited for power supply pulse
amplifier and similar high efficiency power
switching applications.

ABSOLUTE MAXIMUM RATINGS
UPT111

UPT112

UPT113

UPT114

UPT115

Collector-Base Voltage, VCBO .
............. 60V.... ................... BOV . ................. 100V ...... ... ....... .. l20V....................... lSOV
Collector-Emitter Voltage, VCEO "
40V ...
60V..
BOV..
.... 100V .................... lOOV
Emitter-Base Voltage, VEBO .
. .... SV............................ 5V............................ SV............................ SV ... .. ................... SV
D.C. Collector Current, Ic ..
.. ..... lA..................... lA ............................ lA............................ lA .. ..
........... lA
Peak Collector Current, Ic ........................................... 2 A . . . . . . ... 2A..
. .............. 2A.. ..
. .... 2A .. .
. ...... 2A
Base Current, IB
.................. O.SA.....
O.SA................... O.SA .....
. . O.SA .... .
......... O.SA
UPTlll-115
UPT121·125
Power Dissipation
........... .. B5W.. .
............ .1.6W ....... .
25'C Ambient .
. ........ 4W..................................... .16W ..
lOO'C Case
................................ 25'C/W .........
..... 6.7'C/W....
Thermal Resistance, 6J _ C .
Operating and Storage Temperature Range ..
. ................ -65'C to 200'C...
........ -65'C to 200'C

MECHANICAL SPECIFICATIONS
UPT111

UPT112 UPT113 UPT114

UPTl15

TO·5

.370
.335

.335
,305

Dimensions in inches.

178

O:W
_UNITRODE

UPTlll UPTl12 UPTl13 UPTl14 UPTl15
ELECTRICAL SPECIFICATIONS. (at 2S·C unless noted)
Test

D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
Collector Saturation Voltage (Note 1)
Base Saturation Voltage (Note 1)
Collector-Emitter Breakdown Voltage
(Note 1)
UPTlll
UPT1l2
UPTl13
UPTl14
UPTl15
Collector-Emitter Breakdown Voltage
(Note 1)
UPTlll
UPTl12
UPT1l3
UPTl14-5
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current, l50·C
Emitter-Base Cutoff Current
Output Capacitance
Gain-Bandwidth Product
Turn-on Time
Switching Speeds
Turn-off Time
Note: 1. Pulse WIdth _ 300

~s;

Symbol

Min.

Max.

Units

hFE
hFE
hFE
VCE (sat)
V'E (sat)
BVCER

30
20

-

-

1.0
1.2

Vdc
Vdc

Vdc

Ic

-

60
80
100
120
150

BVCEO

= 10mAdc

-

40
60
80
100
ICER
ICER
IE,o
Cb
fT
ton
toff

Vdc

15 Typ.

-

Test Conditions

= O.5A, VeE = 5Vdc
= lA, VCE = 5Vdc
= 2A, VCE = 5Vdc
= lA, I, = O.lA
= lA, I, = O.lA
Ic = 10mAdc; R'E = 1001l

Ie
Ic
Ie
Ic
Ic

-

10
1.0
50
40

-

-

/lAdc
mAdc
/lAdc
pf
MHz
ns
ns

50 Typ.
100 Typ.
250 Typ.

VCE - rated BVCEO' R'E _ lOOn
VCE
rated BVcEO , R'E 100ll, T l50·C
VE,
5Vdc
Ve,
lOVdc, IE 0, f
lMHz
Ic a.1Adc, VeE
5Vdc, f
10M Hz
Ic _lA

=
=
=
=

=
= =
=
=

=

duty cycle ";;2%.

Maximum Safe Operating Area

D.C. Current Gain vs. Collector Current

UPT111 ·11S

1J
2

...5:z

~

1

.5

0::

:>

o

.2

o
t;

.1

5'"

.05

0::

i\..

""
r'\.

~

D,C

..J

o
I

_v· 02

~
j

r'\.
L\.

IX

~.1

i\..

SOO

T, =2~·C
Pulse Width = 1 'ms

D~~Cle

= 2.5%,-

TJ=Lc

z

200



SO

I-

A.

~

VeE::::: sV

'"0::0::

UPT111
UPT112
UPT113
-UPT114
-UPT115

TJJ5~ r'\.

f,---

0

T J = -5S'C

U

~

ci

I
it

Pulse widlh
ms " ' Dutr CYClj = 2i%

M

~

20

r-- ~

'\

10

.01
.005
VCE -

10 20
COLLECTOR -

50
100
EMITTER VOLTAGE (V)

.02

Switching Speed Circuit

.05
IC -

.2
.5
.1
COLLECTOR CURRENT (A)

+60V

6O1l
25V

.05~f

Jl
o-+-+"""""""'~_ _~
H
10~s

-4V
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

179

PRINTED IN U.S.A.

•

POWER TRANSISTORS

UPT211
UPT212
UPT213
UPT214
UPT215

2 Amp, 150V, Planar NPN
FEATURES
• Collector-Base Voltage: up to 150V
• Peak Collector Current: 5A
• Turn-on Time: 130ns
• Turn-off Time: 300ns

DESCRIPTION
Unitrode power transistors provide a
unique combination of low saturation
voltage, high gain and fast switching. They
are ideally suited for power supply, pulse
amplifier and similar high efficiency power
switching applications.

ABSOLUTE MAXIMUM RATINGS
UPT211

UPT212

UPT213

UPT214

UPT215

Collector-Base Voltage, VeBo ................................... GOV.......................... SOV .................... 100V......................... l20V.... .
....... l50V
Collector-Emitter Voltage, VCEO" .
40V.....
GOV ..
80V ...................... 100V ....................... 100V
Emitter-Base Voltage, VEBO .
.. ................... 5V ............................. 5V........................... 5V...
. ....... 5V.
.. ............ 5V
D.C. Collector Current, Ic .
.. ............... 2A...
. ....... 2A............................. 2A... ..
. ........ 2A......................... 2A
Peak Collector Current, Ie . .... ................................. 5A......
.. .... 5A.. . ............... SA.. .. .................. 5A.
.. ..... 5A
Base Current, IB ...... .
... ..... ... ... .... .. .. ..... ..... lA ...
.. ............... lA .......................... lA...
......... lA.... .................. lA
Power Dissipation
UPT211-215
..... . .... ......
.. .........85W ............................................................................
25"C Ambient .
lOO"C Case
........ 4W ...............................................................................
Thermal Resistance, 9J _ e .................. ..
..............................................25"C/W ...........................................................................
Operating and Storage Temperature Range ...
........ -G5"C to 200"C ..................................................................

MECHANICAL SPECIFICATIONS
UPT211

UPT212 UPT213 UPT214 UPT215

TO-5

.370
.335

,335
.305

Dimensions in inches.

[ill]
180

_UNITRDDE

UPT211 UPT212 UPT213 UPT214 UPT215
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test

D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
Collector Saturation Voltage (Note 1)
Base Saturation Voltage (Note 1)
Coliector·Emitter Breakdown Voltage
(Note 1)
UPT211
UPT212
UPT213
UPT214
UPT215
Collector-Emitter Breakdown Voltage
(Note 1)
UPT211
UPT212
UPT213
UPT214-5
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current, 150'C
Emitter-Base Cutoff Current
Output Capacitance
Gain-Bandwidth Product
Turn-on Time
Switching Speeds
Turn-off Time
Nate: 1. Pulse width

Symbol

Min.

Max.

hFE
hFE
hFE
VcE/sat)
VBE/sat)
BVCER

30
20

-

Units

Vdc

Vdc

Ic

-

-

1.0
1.2

Vdc
Vdc

60
80
100
120
150

-

Ic
Ic
Ic
Ic
Ic

-

10 Typ.

BVcEO

= 10mAdc

-

40
60
80
100

-

ICER
ICER
lEBO
Cob
fT
ton
toll

Test Conditions

= 0.5A, VCE = 5Vdc
= 2A, VeE = 5Vdc
= 5A, VCE = 5Vdc
= 2A, IB = 0.2A
= 2A, IB = 0.2A
Ie = lOmAdc; RBE = loon

-

10
1.0
50
40

-

-

=
=
=
=

/LAdc
mAdc
/LAdc
pf
MHz
ns
ns

70 Typ.
130 Typ.
300 Typ.

=
.=

VCE rated BVCEO' RBE 1000
VCE rated BVcEO, RBE 1000, T 150'C
VEB
5Vdc
VCB
10Vdc, IE 0, f 1M Hz
Ic - O.1Adc, VCE - 5Vdc, f _ 10MHz
Ic - 2A

= =

= 300 I'S; duty cycle ,,2%.

D.C. Current Gain

Maximum Safe Operating Area
UPT211-215

YS.

500

~

5:
I-

Z

'"~

""
~

=

1
.5

~ ~

~

.2
.1

8

.05

"-

1>-Dr-

I-

~

'"

~

K

l',. V

"~

/

~

Pulse Width = Ims

_°. 02

z

;;:
"'100

~

T,.,

I-

= 25°C

~

a:
~ 50

~

"c

t'\. k'""

.;

I

UPT211

-UPT212
-UPT213

20

VC~

:::; sV

I

T, = 25.d - "r-TT,-----sJc ~ :\

-- -

r\

\

10

UPT214

.01
.005

-

200

IOuty Cycle:::: 10%

pu,lse Width = t.s~
DUjY CYClle :::: r% I

I

T,_lJ

,6~~~e C~~~!h~~2~~oS

Callectar Current

'--UPT215
1

2

5

10

20

5

50 100

.05

.2

.1
Ie. -

Vu-COlLECTOR- EMITTER VOLTAGE {V)

.5

COLLECTOR CURRENT (A)

Switching Speed Circuit

HoV

n . . . . .____~. . . . . . .
25V

.05.u f

_I

H

10,,5

-4Y

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

181

PRINTED IN U.S.A.

•

POWER TRANSISTORS

UPT311
UPT312
UPT313
UPT314
UPT315

2 Amp, 400V, Planar NPN

UPT321
UPT322
UPT323
UPT324
UPT325

DESCRIPTION
Unitrode high voltage transistors provide
a unique combination of low saturation
voltage, fast switching, and excellent gain.
They are ideally suited for off-line power
supply designs and other applications
where the increased voltage rating adds
to system reliability.

I'EATURES
• Collector-Base Voltage: up to 400V
• Peak Collector Current: 3A
• Turn-on Ti me: 200 ns
• Turn-off Time: 800 ns

ABSOLUTE MAXIMUM RATINGS
UPT311
U PT321

UPT312
U PT322

UPT313
UPT323

UPT314
UPT324

UPT315
UPT325

300V......
.... 350V...
.. ...... 400V
Collector-Base Voltage, Vcso'
........................... 200V....
. ........... 250V ..... .
... 250V ................... ..... 300V....... ................ 300V
Collector-Emitter Voltage, VCEO "
.................. 150V....
............. 200V ... .
Emitter-Base Voltage, VESO .
. ................... 5V ........................... 5V ..
............. 5V.................... 5V.
.. .. 5V
................ 2A
................... 2A.......
.... 2A
D.C. Collector Current, Ic .
.. ................................. 2A.
.. ............ 2A.
......... 3A ........................ 3A
........... 3A
Peak Collector Current, Ic .......................................... 3A...
. ... 3A...... ..
Base Current, Is.
.. ............................................... lA .....
.. ......... lA
........... lA
.......... lA ............................ IA
UPT311-315
UPT321-325
Power Dissipation
25·C Ambient .
............. .lW......
............ 2W .... .
.......... .lOW .................................... .l6W.. .
lOO·C Case
.. . l O " C / W 6 . 7 · C / W... ..
Thermal Resistance, 9 J _ C
................................................... .
.............. -65"C to 200·C .. ..
.. .......... -65"C to 200·C
Operating and 'Storage Temperature Range .

MECHANICAL SPECIFICATIONS
UPT311

UPT312

UPT313

UPT314

UPT315

TO-5

UPT321

UPT322

UPT323

UPT324

UPT325

T0-66

Dimensions in inches.

:~~ DIA.
BASE
EMITTER

.35<>
MAX.
RAO.

Dimensions in inches.

[ill]
182

_UNITRDDE

UPT311
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test

D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
Collector Saturation Voltage (Note 1)
Base Saturation Voltage (Note 1)
Collector-Emitter Breakdown Voltage
(Note 1)
UPT31l, UPT321
UPT312, UPT322
UPT313, UPT321
UPT314, UPT324
UPT31S, UPT325
Collector-Emitter Breakdown Voltage
(Note 1)
UPT31l, UPT321
UPT312, UPT322
UPT313, UPT323
UPT314-S, UPT324-S
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current, lS0'C
Emitter-Base Cutoff Current
Output Capacitance
Gain-Bandwidth Product
Turn-on Time
Switching Speeds
Turn-off Time
Note: 1. Pulse width

= 300 pS;

Symbol

Min.

Max.

Units

hFE
hFE
hFE
VCE (sat)
VBE (sat:

30

-

-

10

3S0
400
BVCEO

ISO

-

-

10
1.0

SO
SO

~

.5

0:

:>
u

~

I'"

I",
Duty Cycle::;: 25%
Pulse Width

==

1

0:

D.C .. /

o

t

.1

p)!ISe Width

=

1 ms

>[\
!'\
\

I

~

~ 1

~

I-

Z

~

.5 Duty Cycle = 2 5 % / \

u

.2

D.C.

0:

t;

.1

~

I-

...z

~

UPT311UPT312
UPT313
UPT314/315

.01

~
u
..;

I\.

.005

5
VeE -

10

20

COLLECTOR -

SO

100 200 300

EMITTER VOLTAGE (V)

1.

02

.oos
1
VeE -

10 20
5
COLLECTOR -

I--

r--

100

I--

-LJc

50

I

VeE::::

I-- r-- +,

r-

- 5~·C - - ~

-~~

20

"'~

10

.03
(V)

\

I

5

50 100 200 300
EMlnER VOLTAGE

5V

~~,=250

f0-

ci

PT321
UPT322UPT323
UPT324/325

.01

200

0:

\

~

z

~

U

~v .02

500

~ l00'C

10%
Pulse Width::;: 1 ms

5.05

u

fe

OU~y Cycle =

Pulse Width::;: 1 ms

0:

:>

o

\

~

D.C. Current Glin vs. Collector Current

UPT321- 325

DU~Y CY~le = 10%

5.05

=

= =
=
=

Maximum Safe Operating Area

ms~

.2

=
=

VCE
rated BVCEO ' RBE
lOOn
VCE
rated BVcEO , RBE
lOOn, T lS0'C
SVdc
VES
VCB
lOVdc, IE 0, f
1M Hz
Ic
O.SAdc, VCE
SVdc, f
10M Hz
Ic _lA

duty cycle ';;;2%.

Tc::;: lOODC

1

•

= lOmAdc

=
=
=
=
=

/lAdc
mAdc
/lAdc
pf
MHz
ns
ns

40 Typ.
200 Typ.
800 Typ.

UPT311-315

~

Ic

-

200
2S0
300

Maximum Safe Operating Area

IZ

Vdc

Vdc
Vdc

-

300

to"

Vdc

-

-

200
250

taff

Test Conditions

= O.SA, VCE = SVdc
= 2A, VCE = 5Vdc
= 3A, VCE = 5Vdc
= 2A, 'B = 0.4A
= 2A, IB = 0.4A
Ic = 10mAdc; RSE = lOOn

Ic
Ic
Ic
Ic
Ic

-

10 Typ.
1.0
1.S
-

BVCEP.

ICER
ICER
lEBO
Cob
fT

UPT312 UPT313 UPT314 UPT31S

UPT321 UPT322 UPT323 UPT324 UPT32S

.05

.1
Ie -

.2

.5

1

2

3

COLLECTOR CURRENT (A)

Switching Speed Circuit

+100V

1_
25V

Jl
............-..-~...--.--i
H
lOps

-5V

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

183

PRINTED IN U.S.A.

UPT521
UPT522
UPT523
UPT524
UPT525

POWER TRANSISTORS
3 Amp, 400V, Planar NPN
FEATURES

DESCRIPTION

•
•
•
•

Unitrode high voltage transistors provide
a unique combination of low saturation
voltage, fast switching, and excellent gain.
They are ideally suited for off-line power
supply designs and other applications
where the increased voltage rating adds
to system reliability.

Collector-Base Voltage: up to400V
Peilk Collector Current: 5A
Turn-on Time: 200ns
Turn-off Time: 900ns

ABSOLUTE MAXIMUM RATINGS
UPT521

..... 2S0V .. .
.. ...... 200V ...... .
........ 5V
......... 3A.......... .
.......... SA.
............... 2A ........

UPT524

UPT523

UPT522

Collector-Base Voltage, VCBO .
2OOV ...
Collector-Emitter Voltage, VCEO ....
.... 150V ..
Emitter-Base Voltage, VEBO ............................................... 5V
D.C. Collector Current, Ie ...... .....................
. 3A.... ..
Peak Collector Current, Ie .
.. ....... 5A ..
Base Current, IB ... ........................
.. ..................... 2A.
Power Dissipation
25'C Ambient .......
l00'C Case
Thermal Resistance, 9 J _ C ....
Operating and Storage Temperature Range .

.... 3OOV....

UPT525

.... 250V ..
....... 5V .. .

....... 350V ......................... 400V
... 300V..
.. ...... JOOV
.. ............. 5V ............................. 5V

3A .. ..

.... 3A ............................. 3A

.. SA..

............. SA ........ .
....... 2A.

..... 2W

.. 2A.. .....

...5A
2A

.

................................ 25W.
.......... 4'CIW.
.. -65'C to 200'C

MECHANICAL SPECIFICATIONS
UPT521

UPT522 UPT523 UPT524 UPT525

TO·66

:~:~ DIA.
BASE
/ , .. - - - - - EMITTER

.350

MAX.
RAD .

. 210

.190

Dimensions in. inches.

184

ru1J
_UNITRaCE

UPT521 UPT522 UPT523 UPT524 UPT525
ELECTRICAL SPECIFICATIONS (at 25·C unless noted)
Symbol

Min.

Max.

hFE
hFE
hFE
VCE (sat)
VBE (sat)

25

-

Test

D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
Collector Saturation Voltage (Note 1)
Base Saturation Voltage (Note 1)
Collector-Emitter Breakdown Voltage
(Note 1)
UPTS21
UPTS22
UPT523
UPT524
UPTS2S
Collector-Emitter Breakdown Voltage
(Note 1)
UPT521
UPTS22
UPTS23
UPTS24-S
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current, 150·C
Emitter-Base Cutoff Current
Output Capacitance
Gain-Bandwidth Product
Turn-on Time
Switching Speeds
Turn-off Time

-

Vdc
Vdc

Ic =
Ic =
Ic =
Ic =
Ic =

Vdc

Ie = 10mAdc; RBE = lOaf!

Vdc

Ie = 10mAdc

-

~Adc

-

mAdc

VCE = rated BVCEO ' RBE = lOaf!
VCE = rated BVcEO , RBE = lOaf!, T = lS0·C
VEB = SVdc
VCB = lOVdc, IE = 0, f = 1MHz
Ic - O.SAdc, VCE _ SVdc, f _ 10M Hz

10

-

10 Typ.
1.U

-

1.S

BV CER

LOA, VCE = SVdc
3A, VCE = SVdc
SA, VCE = 5Vdc
3A, IB = 0.6A
3A, IB = 0.6A

-

200
2S0
300
350
400

-

BVcEO

-

ISO
200
250
300

-

-

-

10
1.0
50
120
30 Typ.
200 Typ.
900 Typ.

ICER
ICER
lEBO
Cob
fr
too
toff

Test Conditions

Units

~Adc

-

pf
MHz
ns
ns

Ic=3A

= 300 pS: duty cycle ';;;2%.

Note: 1. Pulse width

Maximum Safe Operating Area

).." ~ lPuls~

I

.

1

~

.5

~

T

=

I.D.C.

0:

::J
U
0:

g
~
o
u

1

_~

'"

Pulse Width _ 1 ms
Duty Cycle
10%

z

.2

D.C. Current Gain ¥s. CoUector Current
500

= lOOGe

m~_

Width:::: 1
~~utY/Cle:::: 25%

200

z

[~

---'"1\.\

!5u

1\

C

~

.. 100

~

0:

\

.1
.05

50

o

Ve , = SV;

---

TJ

-;:

TJ _

25°C

J-

-............

120
UPT523UPTS24 52

.01

~ \..

~

tl~Hn-

.02

"

T--~ "-

!---:"'
f...--

10

5

.005

1

5
Vr.(

-

10

20

COLLECTOR -

50

.05

100 200300

.1

EMITTER VOLTAGE (V)

.2

.5

'I, - COLLECTOR CURRENT (A)

"

Switching Speld Circuit
+100v

330
25V

.05J.1'

n . . . . . .__~. . . . . . -;
1~ ~o

-5V
UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

185

PRINTED IN U.S.A.

..

POWER TRANSISTORS

UPT611
UPT612
UPT613
UPT614
UPT615

5 Amp, 150V, Planar NPN

FEATURES

DESCRIPTION

•
•
•
•

Unitrode power transistors provide a
unique combination of low saturation
voltage, high gain and fast switChing. They
are idearly suited for power supply, pulse
amplifier and similar high efficiency power
switching applications.

Collector-Base Voltage: up to l50V
Peak Collector Current: lOA
Turn-on Time: 250ns
Turn-off Time: S50ns

ABSOLUTE MAXIMUM RATINGS
UPT611

UPT612

UPTII13

UPTII14

Collector-Base Voltage, Vceo ...... .
................ 60V........................... SOV...
.. ........... lOOV
........ l20V.
Col/ector-Emitter. Voltage, VCEO
40V
60V.....
BOV
lOOV
Emitter-Base Voltage, VEeo .
.... ...... SV ............................. SV............................. SV.........
.. ........ SV
D.C. Col/ector Current, Ic ............................................. SA...
. ............. SA ............................ SA...
.. .................. SA ...
Peak Col/ector Current, Ic ................................... .. .. lOA..
.. ................ lOA....................... lOA..
.. ........... lOA.
Base Current, Ie ............................. .............
................. 2A.
................... 2A....
. 2A...
.. ... 2A ..
Power Dissipation
2S'C Ambient ...
.................. .1w... .
lOO'C Case
................... 5W ... .
Thermal Resistance, e J _ C .
.................................. ......... 20'C/W.
Operating and Storage Temperature Range .
........ .................................. -65'C to 200'C.

UPTII15

...... l50V
........ lOOV
.............. SV
.... SA
.. ......... lOA
... 2A

MECHANICAL SPECIFICATIONS
UPT611

UPT612 UPT613 UPT614 UPT615

TO·5

.370
.335

.335
.305

Dimensions in inches.

186

om

_UNITRODE

UPT611 UPT612 UPT613 UPT614 UPT615
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Test

D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
Collector Saturation Voltage (Note 1)
UPT611-3
UPT614-S
Base Saturation Voltage (Note 1)
Collector-Emitter Breakdown Voltage
(Note 1)
UPT611
UPT612
UPT613
UPT614
UPT61S
Collector-Emitter Breakdown Voltage
(Note 1)
UPT611
UPT612
UPT613
UPT614-S
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current, 150°C
Emitter-Base Cutoff Current
Output Capacitance
Gain-Bandwidth Product
Tum-on Time
Switching Speeds
Tum-off Time

= 300 .us; duty cycle

Note: 1. Pulse width

Symbol

Min.

hFE
hFE
hFE

30
IS

--

-

1..0
1.S

Vdc
Vdc

1.S

Vdc

-

Vdc

12 Typ.

-

VCE (sat)

VBE (sat)
BVCER

~
~

~
~

W

0:
0:

" .s I"
U

0:

g
~

.2

o

.1

I

.OS

u

u

60
80
100
120
ISO

-

40
60
80
100

-

BVCEO

Vdc

-

ICER
ICER
lEBO
Cob
fT
ton
torr

10
1.0
SO
120

Ic

= SA, IB = O.SA
= 10mAdc; RBE = lOOn

Ic

= 10mAdc

'VCE = rated BVCEO' RBE = lOOn

"Adc
mAdc

=
=
=
=

"-

~

V

~

2.5%,

200

z

;;
~ 100

1m.

"

'" "'-

VeE
5V
TJ = IS0·C

Duty Cycle ::::

~ Pulse Width ::::

~

Duty Cycle __

~

Pulse Width ::::

1 ms
Duty Cycle _
25%,_
Pulse Width ::::

""-

V

Z

10%.-----,---,---

~ '\

1""-

= =
=
=

J

T A = 25 G C

I"'"
"'- "'-

~
u
r..i

50

I

20

o

Ims_
D.C.

I...----

~

-

f..---"

,~

-......... ~

--- ~

---

T J ::;:;-55°C

10

r-- UPT612
UPT613
UPT614/15

.01

1

5

10

=

D.C. Current Gain VS. Collector Current
500

"-

=

-

VCE
rated BVCEO ' RBE
lOon, T 150°C
VEB
SVdc
VCB
10Vdc, IE 0, f
IMHz
Ic
O.SAdc, VCE SVdc, f
10MHz
Ic - SA

"Adc
pf
MHz
ns
ns

40 Typ.
2S0 Typ.
SOO Typ.

= lA, Vc:.E = SVdc
= SA, VCE = SVdc
= lOA, VeE = SVdc
= SA, IB = O.5A

~2%.

UPT611

.02

Ic
Ic
Ic
Ic

Ie

Maximum Sate Operating Area
10

Test Conditions

Units

Max.

20

Vet-COLLECTOR -

50

100

.1

.s

.2

EMITTER VOLTAGE (V)

Ie -

I'\.

~

\

10

COLLECTOR CURRENT (A)

Switching Speed Circuit
+60V

n

sov
son

W

10,us

lOP.

-4V

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

187

PRINTED IN U.S.A.

POWER TRANSISTORS

UPT721
UPT722
UPT723
UPT724
UPT725

5 Amp, 400V, Planar NPN

FEATURES

DESCRIPTION

•
•
•
•

Unitrode high voltage transistors provide
a unique combination of low saturation
voltage, fast switching, and excellent gain.
They are ideally suited for off-line power
supply designs and other appl ications
where the increased voltage rating adds
to system reliability.

Collector-Base Voltage: up to 400V
Peak Collector Current: lOA
Turn-on Time: 250ns
Turn-off Time: 800ns

ABSOLUTE MAXIMUM RATINGS
UPT721

UPT722

UPT723

UPT724

UPT725

Collector-Base Voltage, VC80 .
.... 200V...
. 250V....
. ..... 300V...
... .......... 350V...
......... 400V
..... l50V
.... . 200V
..... 250V ...........
300V ......................... 300V
Collector-Emitter Voltage, VCEO"
Emitter-Base Voltage, VE80 .
.......... w...
.... W ....................... W...
....... W ....................... W
...~
.................. ~..
. .. ~....... . . ~..
..~
D.C. Collector Current, Ic .
Peak Collector Current, Ic .
...... ........... lOA .......................... lOA.....
.. lOA.....
............. lOA......
..... lOA
....... ~..
.••....•... ~..
.......... ~ ....................... ~
....... ~
Base Current, 18 .
Power Dissipation
............2W .....
25°C Ambient .
.... 2SW ..
100°C Case
Thermal Resistance, 8 J _ C .
..............4°C/W ..
.......... _65°C to 200°C ..
Operating and Storage Temperature Range ...

MECHANICAL

SPECIFIC~TIONS

UPT721

UPT722 UPT723 UPT724 UPT725

TO·66

~i!; DIA.
BASE

EMITTER

.350
MAX.
RAO.

Dimensions in inches.

[JJJ]
188

_UNITRDDE

UPT721 UPT722 UPT723 UPT724 UPT725
ELECTRICAL SPECIFICATIONS (at 25·C unless noted)
Test

D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
Collector Saturation V.oltage (Note 1)
Base Saturation Voltage (Note 1)
Collector-Emitter Breakdown Voltage
(Note 1)
UPT721
UPT722
UPT723
UPT724
UPT725
Collector-Emitter Breakdown Voltage
(Note 1)
UPT721
UPT722
UPT723
UPT724-5
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current, 150·C
Emitter-Base Cutoff Current
Output Capacitance
Gain-Bandwidth Product
Turn-on Time
Switching Speeds
Turn-off Time
Nate: 1.

Pulse width =: 300

J,tSj

Symbol

Min.

Max.

Units

hFE
hFE
hf ,

25
10

-

-

-

1.0
1.8

Vdc
Vdc

200
250

-

Vdc

= lA, VCE = 5Vdc
= 5A, VCE = 5Vdc
= lOA, VCE = 5Vdc
= 5A, Is = 1A
= 5A, Is = 1A
Ic = lOmAdc; RSE = lOOn

Vdc

Ic

!lAdc
mAdc
!lAdc
pf
MHz
ns
ns

VCE
rated BVcEO , RSE = lOOn
VCE
rated BVcEO , RSE
lOOn, T 15O·C
VES
5Vdc
Vcs
10Vdc, IE 0, f = 1M Hz
Ic - O.5Adc, VCE _ 5Vdc, f _ 10MHz

-

-

-

300
350
400

-

BVcEO

-

-

toff

-

-

10
1.0
50
120
30 Typ.
250 Typ.
800 Typ.

0:

.5

Pulse Width= 1
I
I
I

~

.2

g
8

I

I

.05

= 5A

~~~eC!7~~h==2~O/~~

TJ = 150°C--+--+--+---1

200

m~~

z
;;:

~
~

~

z

100

"'0:

l\

~

50

"---.--+-.N~
H
10 t.tS

*Note: For UPTA 410/510, Yee
UNITROOE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

191

= lOOY, R, = 200!)
PRINTED IN U.S.A.

-

POWER TRANSISTORS

UPTB520
UPTB530
UPTB540
UPTB550

0.1 Amp, 500V, Planar NPN, Plastic

FEATURES
• Designed for High Speed Switching Applications
• Collector-Emitter Voltage: up to 500V
• Peak Collector Current: to .2A
• Economical Plastic Molded Construction

DESCRIPTION
Unitrode high voltage power transistors
provide a unique combination of low
saturation voltage, high gain and fast
switching. They are ideally suited for
pulse power applications in power
supplies, thermal printers, solid state
relays and pulse amplifiers.

ABSOLUTE MAXIMUM RATINGS
UPTB520

UPTB530

UPTB540

UPTB550

Collector-Base Voltage, VCBO
. 250V.... ................. 350V......
.. ...... 450V...
. 550V
Collector-Emitter Voltage, VCEO
. 200V ...................... 300V.. . . . ...... 400V...
. 500V
Emitter-Base Voltage, VEBO
.. W...
... ~....
.W .......................... ~
D.C. Collector Current, Ic
.....lA....
... lA.... ....................lA
........lA
Peak Collector Current, Ic
..............2A....
.. ........lA .........................2A
.2A
Base Current, IB .
.............................. .lA. ............... .lA..
.............lA ...........................lA
Power Dissipation
25'C Case
.... 2.4W ...... ..
25'C Ambient .
... 750mW ..
Thermal Resistance, e J _ C
.. 62.5'C/W ..
Thermal Resistance, eJ _ A ................................................................................ .
.... 200'C/W
Storage Temperature Range ............... ..
.................... -55'C to +l50'C
Maximum Junction Temperature
........................................................." ..
... +175'C .......

MECHANICAL SPECIFICATIONS
UPTB520 UPTB530 UPTB540 UPTB550

TO-92

.019

T

T~~ .205~:="
MIN.

-.L

=

.175

J

.105

.095

EO-'

~g:~_500 MIN~ -I~:~~g
.165
.125

Dimensions in inches.

3/78

192

O:W
_UNITRDDE

UPTB520 UPTB530

UPTB540 UPTB550

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test

D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
Collector Saturation Voltage (Note 1)
Base Saturation Voltage (Note 1)
Collector-Base Breakdown Voltage
(Note 1)
UPTB520
UPTB530
UPTB540
UPTB550
COllector-Emitter Breakdown Voltage
(Note 1)
UPTB520
UPTB530
UPTB540
UPTB550
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current
Emitter-Base Cutoff Current
Output Capacitance
Gain-Bandwidth Product
Rise Time
Delay Time
Storage Ti me
Fall Time
NDte: 1. Pulse width

Symbol

Min.

Max.

hFE
hFE
VCE (sat)
VCE (sat)
VSE (sat)
BV cso

20
5

-

250
350
450
550

-

ICES
'CES
IESO
Cob
fr
t,
td
t,
tf

-

-

10
1
50
50

-

Vdc
Vdc
Vdc
Vdc

Ic
Ic
Ic
Ic =
Ic
Ic

Vdc

Ic _lmAdc

-

BVCEO
200
300
400
500

= 25mA, VCE = 5Vdc
= 100mA, VCE = 5Vdc
= 50mA, Is = lOrnA
20mA, Is = 2mA
= 50mA, Is = lOrnA
= lO!lAdc

-

-

-

1.2
.5
i.5

Test Conditions

Units

-

15
100 Typ.
50 Typ.
200 Typ.
1000 Typ.

=

VCE = rated BVCEO ' VBE 0
VCE rated BVCEO ' T = 125'C, VBE = 0
VES
5Vdc
Vce
lOVdc, IE
0, f = 1MHz
Ic _lAdc, VCE - 5Vdc, f _10MHz

/LAdc
mAdc
!lAdc
pf
MHz
ns
ns
ns
ns

=

=
=

Ic

=

= 100mA

= 300 ,uS; duty cycle ~ 2%.

D.C. Current Gain VS. Collector Current

Switching Speeds

500 , - - - - , - - - , - - , - - _ , - - - _ , - - ,

10

=

Vcr_
lOOV
t,j1.=10

z
;;:

,~ ~I

200~---t~~~~~-~~-+-~

'''".

to

.... 100

z

,t.~$o

''' 100kHz) results in smaller inductor-capacitor filter
and improved power supply response time
• High operating efficiency: Typical 2A circuit performanceRise and Fall time <75ns
Efficiency >85%
• No reverse recovery spike generated by commutating diode (See note 4. and Fig. 2.)
• Electrically isolated, 4-Pin, TO-66 hermetic case
.

DESCRIPTION
The Unitrode ESP Switching Regulator is a unique hybrid
transistor circuit, specifically designed, constructed and specified for use in high current switching regulator applications.
the designer is thus relieved of one of the most time consuming, tedious and critical aspects of switching regulator
design: choosing the appropriate switching transistors and
tommutating diode, and empirically determining the optimum
drive and bias conditions.
Switching regulators, when compared to conventional regulators, result in significant reductions in size, weight, and internal
power losses and a major decrease in overall cost. Using the
Unitrode PIC600 series, the designer can achieve further
improvements in size, weight, efficiency, and costs. At the
same time, because of the PIC600 series design and packaging,
the designer is aided in overcoming two of the most significant

The PIC600 series switching regulators are designed and characterized to be driven with standard integrated circuit voltage
regulators. They are completely characterized over their entire
operating range of -55°C to +125°C. The devices are enclosed
in a special 4-pin TO-66 package, hermetically sealed for high
reliability. The hybrid circuit construction utilizes thick film
resistors on a beryllia substrate for maximum thermal conductivity and resultant low thermal impedance. All of the
active elements in the hybrid are fully passivated.
Application Notes U-68 and U-76 provide a detailed description of the hybrid circuit and design guidance for specific
circuit applications.

SCHEMATIC

PIC600
PIC601
PIC602

POS.
INPUT

drawbacks to switching regulators: noise generation and slow
response time; there is, in fact, no diode reverse recovery
spike (see note 4.).

,-----~~

PIC610
PIC611
PIC612

NEG. 4
INPUT 0-.....----""""'-

POS.
OUTPUT

2
COMMON

r-'_~~

DRIVE

NEG.
OUTPUT

2
COMMON

MECHANICAL SPECIFICATIONS
PIC6DD PIC6D1 PIC6D2 PIC61D PIC611 PIC612

.075
.050

~~~

:mMIN'

4/79

4-Pin TO-66

.210
.190

.350

MAX

RAD.

NOTES:
1. Case is electrically isolated.
2. Loads may be soldered to within
1/16" of base provided temperaturetime exposure is Jess than 260"C
for 10 seconds.

OUTPUT(l)

200

lliD

_UNITRDDE

PIC600 PIC601 PIC602 PIC610 PIC611 PIC612
ABSOLUTE MAXIMUM RATINGS
PICGOO
PICG01
PICG02
PICG10
PICG11
PICG12
Input Voltage, V._ 2 ...
. .......... 6OV......
.... 80V........
100V......
-60V................ -SOV .............. -lOOV
Output Voltage, V,_2 ..... . ............................................ 60V .................... 80V .................. 10OV' ............... -60V................ -80V.............. -lOOV
Drive-Input Reverse Voltage, V3-4 ................................. 5V ...................... 5V...................... 5V.................. -5V .................. -5V.................. -5V
Output Current, I,
............................. 5A ...................... 5A ...................... 5A.................. -5A .................. -5A .................. -5A
Drive Current, 13 ......... ........................
.............. -0.2A ................ -0.2A. ............... -0.2A.................... 0.2A.................... 0.2A.................... 0.2A
Thermal Resistance
Junction to Case, 9 J_C
Power Switch

4.0°C/W

Commutating Diode

4.0°C/W

Case to Ambient, 9 c _1I

60.0°C/W
-SSoC to +12SoC

Operating Temperature Range, Tc ....
Maximum Junction Temperature, Tj

+lS0°C

Storage Temperature Range

----65°C to +lS0°C

ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
PIC600, 601, 602
Test
Symbol
Min. Typ. Max.
Current Delay Time
20
40
tdl
Current Rise Time

PIC610, 611, 612
Typ. Max.

Min.

20

ns
75

ns

See Fi gu re 2.

150

ns

See notes I., 2., 4.

ns

50

75

SO

75

ns

Voltage Rise Time

t"

30

SO

30

50

ns

Voltage Storage Time

t"

Voltage Fall Time

75

700
50

Current Fall Time

t"
t'l

700
50
70

150

70

Efficiency (Notes 2. & 4.)

'1

tri

8S

8S

%

On·State Voltage (Note 3.)

V._ 11ool

1.0

I.S

-1.0 -1.5

V

On-State Voltage (Note 3.)

V4_I (on)

3.5

-2.S -3.S

V

Diode Forward Voltage (Note 3.)

V'_'lo'l

2.5
.8

1.0

-.8 -1.0

V

1.0

1.5

-1.0 -1.S

V

0_1

10

-0.1 -10

p.A

-10

p.A

10

-1.0 -10

p.A

500

p.A

Diode Forward Voltage (Note 3.)

V2_llon)

1.-,
1.-,
1,_,
1,_,

Off-State Current
Off-State Current
Diode Reverse Current
Diode Reverse Current

10
1.0
500

Conditions

Units

= 2SV(-2SV)
Voo ' = SV(-5V)
1 = 2A(-2Al
I = -20mA(20mA)

40

V"

00 ,

J

= 2A(-2Al, I = -.02A(.02A)
= SA(-5A), I = -.02A(.02A)
I, = 2A(-2Al
I, = 5A(-5A)
V. = Rated input voltage
V, = Rated input voltage, TA = 100°C
V, = Rated output voltage
V, = Rated output voltage, T A = 100·C
I,

J

I,

J

Notes:
1. In switching an inductive load, the current will lead the voltage on turn·on and lag the voltage on turn-off (see Figure 2). Therefore, Voltage
Delay Time" (tov ) == tdi
tri and Current storage Time (t~.> == tsv + t f ."
.
2. The efficiency is a measure of internal power losses and is equal to Output Power divided by Input Power. The switching speed circuit of
Figure I, in which the efficiency is measured, is representative of typical operating conditions for the PIC600 series switching regulators.
3. Pulse test: Duration = 3OOms, Duty Cycle ~2%.
4. As can be seen from the switching waveforms shown in Figure 2, no reverse or forward recovery spike is generated by the commutating
diode during switching! This reduces self-generated noise, since no current spike is fed through the switching regulator. It also improves
efficiency and reliability, since the power switch only carries current during turn-on.

+

POWER DISSIPATION CONSIDERATIONS
The total power losses in the switching regulator is the sum of the switching losses, and the power switch and diode D.C. losses. Once total
power dissipation has been determined, the Power Dissipation curve, or thermal resistance data may be used to deterrnind the allowable case
or ambient temperature for any operating condition.
The switching losses curve presents data for a frequency of 20KHz. To find losses at any other frequency, multiply by f/20KHz.

The D.C. losses curves present data for a duty cycle of .2_ To find D.C. losses at any other duty cycle, multiply by 0/.2 for the power switch
and by (1-0)/.8 for the diode.
At frequencies much below 10KHz the above method for determining the allowable case or ambient temperature becomes invelid and a detailed
transient thermal analysis must be performed. Please request Design Note 6 (DN-6) for further information.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

201

PRINTED IN U.S.A.

PIC600 PIC601 PIC602 PIC610 PIC611 PIC612

Efficiency

Power Dissipation

~

z

40

100

3S

90

•

0

>=

'"

en
en

25

a:
w

20

~

w

"'"a:w

z

w

U

r\

0

0-

>u

i\

0

;:

f

_\

'!:

15

\

Maximum allowable average
power dissipation each, for the
power switch and for the diode.
Maximum allowable case
temperature .--: 125°C

10

>

'"I

rf'

i

o
·50

·25

I

I

I

itw
1\

'"

\

As measured in circuit shown in
Figure l.
v,.
2SV

30

=
V'" X (Duty Cycle)
= 20mA
= 2S'C

Voul

I,
T,

::::=

.6 .7.8.91
I, - OUTPUT CURRENT (A)

Power Switch D.C. Losses

Diode D.C. Losses
10

Duty Cycle::.: .2,

/'
MAXIMUM .......-::::

~

en

0

-'

~~

~

.2

U
c::i

T,

,::;:; V

1_1

~

.1
.05

f-- f-f-

=

w

25'C

IJ

= 20mA

multiply by D/.2 where D
Cycle.

~

en

I

Power Switch Duty Cycle::::: 0.2
Diode Duty Cycle ::= 0.8

T,

= 25'C

To obtain the Power Switch
losses at any other duty cycle,

~TYPICAL
.5

(J)
(J)

...........

50

.5

10

w

---

= 5V

40

o

150

o .,

Ts;

60

10

I

= 50kHz, V

70

20

a
25
50
75
100 125
T, - CASE TEMPERATURE ('C)

0"1

-,--

80
30

20V

20kHz, V()U t

f

f 120kHZ Iv

I III

.5

M~xiML~

(J)
(J)

0

-

To obtain diode losses at any
other duty cycle, multiply by
(1-0)/.8 where D";: Power Switch-

...I

.2

U
c::i

.1
.05

= Duty

~

V/

'l

/

VTYPICAL

I-- I--'

IDlty Cycle.
.02
.01
.5

I

I

I

.02
.01

.6 .7 .8.9 1
2
I, - OUTPUT CURRENT (A)

.5

.6 .7 .8.9 1
I, - OUTPUT CURRENT (A)

Switching Losses
.5

~
(J)

w

(J)
(J)

0
-'

Voo = 25V, I, _.. 20mA
f = 20kHz
T, = 25'C

.2
MAXIMUM .1

Power Switch

.05

.002

f-+-+-CJ,..14--~'£'+

.001 '--'----'---'---J-.J<=--_ _ _--L-._ _-'---_'------'
.5 .6 .7.8:9 1
I, - OUTPUT CURRENT (A)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

202

PRINTED IN U.S.A.

PIC600 PIC601 PIC602 PIC610 PIC611 PIC612

300,uH

v

+25V'---UVVVL-~

/

POWER SWITCH

:
-T",!::: 40,u.s

~

-20mA
Pulse Width::: 10,us
Rep. Rate::: 20kHz
IE'PIII

Note: No Diode Reverse or Forward Recovery Spike (See note 4.)!

\,.

! . . ;:'}. . ~~:.~~;~~~~~. ~~.~.~~. . . . . . . '\

I

\

Figure 2. PIC600, PIC601, PIC602 Switching Waveforms

Figure 1. PIC600, 601, 602 Switching Speed Circuit

Note: PIC610, PIC611, PIC612 Test Circuit and waveforms are identical but of opposite polarity (V"

On-State Characteristics

...Z~
0:
0:

::>
u

"

II

w

...
'..."

u

j.XIMUM

0:
0:

I
I II

"'

TYPICAl

"'

0:

'"

;;
0:

o

/

U.

T
I,

c
~.

25'C

/1
JJ

"'o

"Ci

20mA

I

o
o

V. (on) -

DRIVE

ON-STATE VOLTAGE (VI

.S
V, '

M

-

I I III

I

g
"':;

100

-

50
40
30

-

-

-

-

-

-

'"
E.

r--..

t"

---------

tp,
20

>=

V V

t"

MAXIMUM

2S-C

T

1

I.S

2

J

15 ~e~sJre!d

in circuit

2.S

Sh~wn in

SOO f- Figure 1.
400 I- V" C 2SV
I- V,,,, o. SV
300
I):.:: 20mA
200 I- T, - 25"C

"':;0

!

>=

/

Fall Time
1000

I

As measured in circuit shown in
500 f- Figure 1.
400 I- V, = 25V
300 r- VO ,! .::: SV
I].::: 20mA
200 I- Tj = 25'C

/

OIODE FORWARD VOLTAGE (V)

Turn-On Time
1000

= +20mA),

Diode Forward Characteristics

IJ;/

~
...z

=-2SV, V~t =-SV, I

..J
..J

'"u.I

,.-

-'

(..-- I-""

100

c-

~

t"

t--

t--

so

l/

7

t"

40
30
20

10

10

.5

,6 .7.8.9 1
I, -

.S
OUTPUT CURRENT (A)

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

,6

.7.8 ,9 1
I, -

203

OUTPUT CURRENT (AI

PRINTED IN U.S.A.

POWER INTEGRATED CIRCUIT

PIC625
PIC626
PIC627
PIC635
PIC636
PIC637

Switching Regulator 15 Amp Positive and Negative
Power Output Stages
FEATURES
• Designed and characterized for switching regulator applications
• Cost saving design reduces size, improves efficiency, reduces noise and RFI (See note 4.)
• High operating frequency (to >100kHz) results in smaller inductor-capacitor filter
and improved power supply response time
• High operating efficiency: Typical 7A circuit performanceRise and Fall time <300 ns
Efficiency >85%
• No reverse recovery spike generated by commutating diode (See note 4. and Fig. 2.)
• Electrically isolated, 4-Pin, T066 hermetic case
DESCRIPTION
The Unitrode ESP Switching Regulator is a unique hybrid
transistor circuit, specifically designed, constructed and
specified for use in high current switching regulator applications. The designer is thus relieved of one of the most time
consuming, tedious and critical aspects of switching regulator
design: choosing the appropriate switching transistors and
commutating diode, and empirically determining the optimum
drive and bias conditions.

significant drawbacks to switching regulators: noise generation
and slow response time; there is, in fact, no diode reverse
recovery spike (See note 4.).
The PIC600 series switching regulators are designed and
characterized to be driven wih standard integrated circuit
voltage regulators. They are completely characterized over
their entire operating range of _55°C to +125°C. The devices
are enclosed in a special 4-pin T066 package, hermetically
sealed for high reliability. The hybrid circuit construction
utilizes thick film resistors on a beryllia substrate for maximum
thermal conductivity and resultant low thermal impedance. All
of the active elements in the hybrid are fully passivated.

Switching regulators, when compared to conventional regulators, result in significant reductions in size, weight, and
internal power losses and a major decrease in overall cost.
Using the Unitrode PIC600 series the designer can achieve
further improvements in size, weight, efficiency, and costs. At
the same time, because of the PIC600 series design and
packaging, the designer is aided in overcoming two of the most

SCHEMATIC

PIC625
PIC626
PIC627

pas.

Application Notes U-68 and U-76 provide a detailed description of the hybrid circuit and design guidance for specific
circuit applications.

pas.

NEG. 4
INPUT

0---.---..

OUTPUT

INPUT

PIC635
PIC636
PIC637

2
COMMON

NEG.

,r-:

""'«
"''">
«

f = 50KHz,V o .' =

'\

25

~

>
u

z

"" '"

20

0

0-

15

I

-

Maximum allowable average
power dissipation each, for the
power switch and for the diode.
Maximum allowable case
temperature =: 12S a C

50

Uj

40

-50 -25
Tc -

I

I\.

"

'\

30
20

As measured in the circuit shown---j---1
in Figure 1.
Vi, =25V
V O.Jf

10

25
50
75
100 125
CASE TEMPERATURE (OC)

50

T, 25°C
To obtain diode losses at any
o~her duty cycle, multiply by
(I-Dl/.8 where 0 = Power

20

!
"'0en

10

6 7 8 9 10
- OUTPUT CURRENT (A)

50

I

20

V

!
"'

In

..J

./

U

k r:::- j....--

0 1.0
.5

20

0.2,1 3 30mA
T, 25°C
To obtain power switch losses at
Duty Cycle

-- t--

any other duty cycle, multiply by
0/.2, where 0 is the duty cycle.

10

(J)

.....

I--MAXIMUM

In

15

Power Switch D.C. Losses
100

Switch Duty Cycle.

V,n X Duty Cycle

150

0.2

Power Switch Duty Cycle
Diode Duty Cycle
0.8

:::::

13 = 30m A
T, = 25°C

Diode D.C. Losses
100

5V~

60

"'

...ii:

5V

70

U

'\

10

O-C

20KHZ,Vout

80

0

TYPICAL- I - -

(J)
(J)

MAXIMUM

0

..J

k.....- f:;::v

U

0

f--

L
~ TYPICAL

.5

.2

.2

.10
2

.1

20

5678910
I, - OUTPUT CURRENT (A)

6 7 8 910
I, - OUTPUT CURRENT (A)

20

Switching Losses.
10

!
In

1.0

"'In
g

.5

"

.2

(J)

z
I

MAXIMUM -

~ .10

V

.....

Power Switch~

TYPICAL

......

./
V ...........

Power Switch

To determine switching losses at any other
frequency, multiply by f/20KHz where f is the
frequency at which the losses are to be

determined.

~

(J)

V" = 25V, I, = 30mA
f = 20KHz
Tc = 25°C

.05 I-- I-- MAXIMUM

Diode

%

u-11 M

.02
.01
2

Tr~ICAL- Fiode

7 8 910
I, - OUTPUT CURRENT (A)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

20

206

PRINTED IN U.S.A.

PIC625 PIC626 PIC627 PIC635 PIC636 PIC637

V"' :;;:::.

/ ..·;7....

+25V --"vV'v"---'~

=

Rl
. 71SQ
IDRI'IL
-30mA
Pulse Width.:::: 10)!S
Rep. Rate = 20k Hz

t--------<>--~

V~_I

.

V0IJ1
= SV

!

i

POWER SWITCH

j
Ton~10JLS

-Toll ==40ttS

Note: No Diode Reverse or Forward Recovery Spike (See note 4.)!

-----------

j ....

\.

;.)1................................................ '.

.f

'

,

COMMUTATING DIODE

\

f

\.

Figure 2. PIC625, 626, 627 Switching Waveforms
== -2SV, Voot == -SV, IDRIVE == +3OrnA.)

Figure 1. PIC625, 626, 627 Switching Speed Circuit

Note: PIC63S, PIC636, PIC637 Circuit and waveforms are identical but of oppOSite polarity (V"

On·State Characteristics

Diode Forward Characteristics

20

20

18

18

$
$

16

z

14

...
"'

/'
TYPICAL

'"'"
"'......

12

:::J

U

10

'"

'"
Z
a
I

l
6

/

"'

'"'"

16
14

/

:::J

/MAXIMUM

u

/ /
i .i

12

Cl

';:'""

TYPICAL
10

"-

"'aCl
a
I

I

-'

/1

o

o

V._,(on) -

ON·STATE VOLTAGE (V)

.5
V,_,(on) -

Fall Time
1000

As measured in the circuit shown
in Figure 1.
V"
25V
v out SV
I,
30mA
T,
2S'C

500
400
300

V"

400

V out

300

I,
T,

2SV
SV
30mA
2S'C

200

~

;::

As measured in the circuit shown
in Figure 1.

SOO

200

.s
"'::;;

"'::;;;::

100

teo
50
40

I

t"

,
tfi

~

.s

I

T, = 2S'C

2.5
1.5
DIODE FORWARD VOLTAGE (V)

Turn·on Time
1000

VMAXIMUM

/
/ V
II /
/ /
l?-V

'"
a

T, = 2S'C
1,=30mA- -

II

-'

...z

V

.1

100

>--

-

t f,

so
40

30

30

20

20

10

10
2
I, -

6 7 8 9 10
OUTPUT CURRENT (A)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

20

4

2

I, -

207

6 7 8 9 10
OUTPUT CURRENT (A)

20

PRINTED IN U.S.A.

PIC645
PIC646
PIC647
PIC655
PIC656
PIC657

POWER INTEGRATED CIRCUIT
Switching Regulator 15 Amp Positive and Negative
Power Output Stages
FEATURES
• Designed and characterized for switching regulator applications
• Cost saving design reduces size, improves efficiency, reduces noise and RFI (See note 4.)
• High operating frequency (to >100kHz) results in smaller inductor-capacitor filter
and improved power supply response time
• High operating efficiency: Typical 7A circuit performanceRise and Fall time <300 ns
Efficiency >85%
• No reverse recovery spike generated by commutating diode (See note 4. and Fig. 2.)

DESCRIPTION
The Unitrode ESP Switching Regulator is a unique hybrid
transistor circuit, specifically designed, constructed and
specified for use in high current switching regulator applications. The designer is thus relieved of one of the most time
consuming, tedious and critical aspects of switching regulator
design: choosing the appropriate switching transistors and
commutating diode, and empirically determining the optimum
drive and bias conditions.
Switching regulators, when compared to conventional regulators, result in significant reductions in size, weight, and
internal power losses and a major decrease in overall cost.
Using the Unitrode PIC600 series the designer can achieve
further improvements in size, weight, efficiency, and costs. At
the same time, because of the PIC600 series design and
packaging, the designer is aided in overcoming two of the most

The PIC600 series switching regulators are designed and
characterized to be driven with standard integrated circuit
voltage regul~tors. They are completely characterized over
their entire operating range of -55'C to +125'C. The devices
are enclosed in a special 3 pin TO-3 package, hermetically
sealed for high reliability. The hybrid circuit construction
utilizes thick film resistors on a beryllia substrate for maximum
thermal conductivity and resultant low thermal impedance. All
of the active elements in the hybrid are fully passivated.
Application Notes U-68 and U-76 provide a detailed description of the hybrid circuit and design guidance for specific
circuit applications.

SCHEMATIC

PIC645
PIC646
PIC647

pos.

significant drawbacks to switching regulators: noise generation
and slow response time; there is, in fact, no diode reverse
recovery spike (See note 4.).

pos.

NEG. 4
INPUT 0---+-----..

OUTPUT

INPUT

PIC655
PIC656
PIC657

2
COMMON

NEG.

~,.....--+-<) OUTPUT

DRIVE

COMMON

MECHANICAL SPECIFICATIONS
PIC645 PIC646 PIC647 PIC655 PIC656 PIC657

;ij{~~

.440
.420

4
1
3

2

.875

MAX.

L

3 Pin TO-3

:g~
DIA.

NOTE:

Loads may be soldered to within
1!t6" of base provided temperature~
time exposure is Jess than 260°C
for 10 seconds.

-'---7'---'t~,..,---,~

.525
MAX.
RAD.

[ill]
4/79

208

_UNITRDDE

PIC645 PIC646 PIC647 PIC655 PIC656 PIC657
ABSOLUTE MAXIMUM RATINGS
PIC64S

Input Voltage, V4_2 .
Output Voltage, V'_2
Drive-Input Reverse Voltage, V'_4 .
Continuous Output Current, I,
Peak Output Current.
Drive Current, I,
Thermal Resistance

PIC647

PIC646

.... 60V .. .
60V ... .
H . . • • • • H ••• 5V
15A ..
.. 20A
. ...... ... -O.4A.

.H'H.

Plcess

PIC656

PICBS7

100V
-60VH..
-80VHH.H.H .. H -100V
80V .... H
10DV.H.
-60VH.HHH.H
-80V .......... H.. -100V
80V.
5V................. -5V................. -5V.................. -5V
5V ....... .
15A.......... H.... -15A ........ H...... -15A ................ -15A
15A............ .
20A ................ -20A.... H....... H. -20A ................ -20A
20AHHH.
.. -O.4A.................... 0.4A................ H.. O.4A. ............. H.... 0.4A
-0.4A. .

Junction to Case, f)J_C
Power Switch

2'C/W
2'C/W
30.0·C/W

Commutating Diode
Case to Ambient, HCA
Operating Temperature Range, TC
Maximum Junction Temperature, Tj

-55'C to +125'C
+150'C
-65'C to +150'C

Storage Temperature Range
ELECTRICAL SPECIFICATIONS (at 2S'C unless noted)
PIC645{646/647

Test
Current Delay Time

I

Min.

Typ.

Max.

td;

-

35

60

-

35

60

65
40

150

-

65
40

175
60

900
70
175

-

-

900
100
175
85
-1.0

Current Rise Time

tri

Voltage Rise Time
Voltage Storage Time

t"

Voltage Fall Time
Current Fall Time
Efficiency (Notes 2 and 4)

t"

-

tr;

-

On-State Voltage (Note 3)
On-State Voltage (Note 3)

V'_'(onl
V4- lfon)

Diode Fwd. Voltage (Note 3)
Diede FWd. Voltage (Note 3)

V2- I (onl

Off-State Current
Off-State Current
Diode Reverse Current
Diode Reverse Current

PIC655/6S6/857
Typ.
Max.

Symbol

t"

~

V2- I (on}

1._,
1._,
1,_,
1,_,

-

85
1.0

60

175
300

1.5
3.5

Min.

-

-

2.5
.85

1.25

.95
0_1

1.75
10

-

-

-

10
1.0

10

-

500

-

-

-

-

You! = 5V(-5V)

-

ns
ns

lout = 7A(-7A)
I, = -30mA(30mA)

300
300

ns
ns

See Figure 2
See notes 1, 2, 4

-

%

-1.5

V
V

-3.5
-.85 -1.25
-.95 -1.75
-0.1 -10

-

-

SOD

Conditions

ns
ns

-2.5

-10
-1.0

Units

V
V

V;, = 25V(-25V)

I. = 7A(-7A), I, = -.03A(.03A)
I. = 15A(-15AJ, I, = -.03A(.03A)
1,=7A(-7A)
I, = 15A(-15AJ
V. = Rated input voltage

-10

p.A
p.A
p.A

V. = Rated input voltage, TA = 100'C
V, = Rated output voltage

-

p.A

V, = Rated output voltage, TA = 100'C

-

Notes:
1. In switching an inductive load, the current will lead the voltage on turn-on and lag the voltage on turn-off (see Figure 2.). Therefore, Voltage
Delay Time (tov) =::: tdl + tei and Current Storage Time (ts) == tSi + t,.
2. The efficiency is a measure of internal power losses and is equal to Output Power divided by Input Power. The switching speed circuit of
Figure 1., in which the efficiency is measured, is representative of typical operating conditions for the PIC600 series switching regulators.
3. Pulse test: Duration == 300ms, Duty Cycle ~2%.
4. As can be seen from the switching waveforms shown in Figure 2., no reverse or forward recovery spike is generated by the commutating
diode during switching! This reduces self~generated noise, since no current spike is fed through the switching regulator. It also improves
efficiency and reliability, since the power switch only carries current during turn~on.

POWER DISSIPATION CONSIDERATIONS
The total power losses in the switching regulator is the sum of the switching losses, and the power switch and diode D.C. losses. Once total
power dissipation has been determined, the Power Dissipation curve, or thermal resistance data may be used to determine the allowable case
or ambient temperature for any operating condition.
The switching losses curve presents data for a frequency of 20KHz. To find losses at any other frequency, multiply by f/20KHz.
The D.C. losses curves present data for a duty cycle of .2. To find D.C. losses at any other duty cycle, multiply by 0/.2 for the power switch
and by (I-Ol/.8 for the diode.
At frequencies much below 10KHz the above method for determining the allowable case or ambient temperature becomes Invalid and a detailed
transient thermal analysis must be performed. Please request Design Note 6 (ON-6) for further information.

UN'TROOE CORPORATION· 5 FORBES ROAD
LEX I NGTON. MA 02173 • TEL. (6171 861-6540
TWX (710l 326-6509 • TELEX 95-1064

209

PRINTED IN U.S.A

PIC645 PIC646 PIC647 PIC655 PIC656 PIC657

Power Dissipation

Efficiency

80

~

z
0
;::
.«
a.
iii

'"0
0:
OJ

~

100

OJ

20

~

I'"

40

0:
OJ

"«

f

'\

so

30

20KHZ, YO"' j20V
f

80
60

0

a.

1.- f

90

70

>0

zOJ
ti

1\

Maximum allowable average
>
power dissipation each, for the
«
I 10 - power switch and for the diode.
Maximum allowable case
0.0
temperature
125°C

i.::
"OJ

..I

"\
["-

70

o _' '"

20K Hz, Voc'

5V

5V~

60

SO
40

As measured in the circuit shown--+-..,

30

in Figure 1.
V;, =25V
YOu! = V ,n X Duty Cycle
I,
30mA
T, = 25'C

20

=

10

=

= 50KHz,V

0
-50 -25

25
50
75
100 125
CASE TEMPERATURE ('C)

Tc -

ISO

2
I -

Diode D.C. Losses
100

~

50

Power Switch Duty Cycle
Diode Duty Cycle
0.8
25'C
T,

20

To obtain diode losses at any
other duty cycle, multiply by
(1-0)/.8 where 0 = Power

10

Switch Duty Cycle.

'"
'"'"0

OJ

..J

c.i

ci

V
1.0

t:-

50

.....

c---MAXIMUM

15

20

Power Switch D.C. Losses
100

0.2

I

6 7 8 9 10
OUTPUT CURRENT (A)

20

V

~

TYPICAL-

Duty Cycle
30mA
0.2, 13
25'C
T,
To obtain power switch losses at
any other duty cycle, multiply b y - - r-0/.2, where 0 is the duty cycle.

10

I/l
OJ
I/l
I/l

r--

0

/'

..J

V

L
MAXIMUM

2

c.i

V

ci

.5

.5

.2

.2

.10

TYPICAL

I:;::V

.1
-

20

5 6 7 8 9 10
OUTPUT CURRENT (A)

I, -

6 7 8 910
OUTPUT CURRENT (A)

20

Switching Losses
10

L

~
if>
OJ
if>
if>

1.0

MAXIMUM -

"Iz

.2

I-

.10

-

.05

-

S
u

~

if>

.5

.02
.01

.-

-

Power SwitChp..

TYPICAL

,.....

MAXIMUM

I

V..,...........
Power Sw itch

Diode

11.%

I

U11 .Yt4 Tr~'CAL
I, -

UNITROOE CORPORATION, 5 FORBES ROAD
LEXINGTON, MA 02173 ' TEL. (617) 861-6540
TWX (710) 326-6509 ' TELEX 95-1064

Yin :.::::: 25V, I] =: 30m A
f = 20KHz
Tc '" 25'C
To determine switching losses at any other
frequency, multiply by f/20KHz where f is the
frequency at which the losses are to be
determined.

-

Fiode
20

5 6 7 8 9 10
OUTPUT CURRENT (A)

210

PRINTED IN U.S.A.

PIC645 PIC646 PIC647 PIC655 PIC656 PIC657

fVYVY'L----._~ - - -

-I-

RL

=

.71SI)

I.

V o ,,!

= SV

-30mA
Pulse Width.:::: 10tt5
Rep. Rale = 20kHz
IlJRIVl ::::

Figure 1. PIC645, 646, 647 Switching Speed Circuit

Figure 2. PIC645, 646, 647 Switching Waveforms

Note: PIC655, PIC656, Ple6S7 Circuit and waveforms are identical but of opposite polarity (V i l!=-25V, Vout=-SV, 'DRIVE=+3DmA.)

On·State Characteristics

Diode Forward Characteristics

20

20

18

18

$:

...$:Z

w
0:
0:

16

.,.- ,/"

14
TYPICAL
12

:>

()

........

w

...Z

10

/

z'"0

:/

I

11/

-'

V

w
rr
rr
:>

I/MAXIMUM

()

.

V/

16
14

/

12

0

a:
:;t
rr

/

TYPICAL

I /
/ V
II .!.

0
u.

T, = 2S'C
I, =30mA- I---

w
0

0

i5

I

I
/1

It- v
.S
V",(on) -

ON·STATE VOLTAGE (V)

Fall Time
1000

in Figure 1.
V" =25V

SOO

Vo'A:::: 5V

400

I) :::30mA
T, = 2S'C

300

200

As measured in the circuit shown
in Figure 1.
25V
5V
Vout
30mA
I,
T, _25'C
ViI!

200

~

10
w
:;
;::

30

~ t---

If.

;::
I

-

SO
40

.... f-

.1

:; 100

100

,
tfi

~

10
w

I

2.5

I.S
DIODE FORWARD VOLTAGE (V)

Turn·on Time
1000 rA-s~m-e-as-u-re-d~in-I-h-e-c-ir-c-ui-1-sh-o~w-n-----Tt----'
SOO
400
300

T, = 25°C

I

-'

V,.,(on) -

I/MA,XIMUM

I

10

50
40

30

20

20

10

10
2

4
S 6 7 8 9 10
I, - OUTPUT CURRENT (A)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6S09 • TELEX 95·1064

20

2
I, -

211

5 6 7 8 9 10
OUTPUT CURRENT (A)

20

PRINTED IN U.S.A.

POWER INTEGRATED CIRCUIT

PIC730
PIC740

Schottky Switching Regulator 30A, 40V
Power Output Stages
APPLICATIONS:

FEATURES
• Designed and characterized for switching regulator applications
• Cost saving design reduces size, improves efficiency, reduces noise and RFI
• High operating frequency (to 100kHz) results in smaller inductor-capacitor filter
and improved power supply response time
• Low forward drop of Schottky Rectifier:
VF
.6V at 20A
• High Efficiency: 90% typo @ 15A (see last page)

High efficiency and high current
Buck or Flyback type switching
regulator.

=

DESCRIPTION
significant drawbacks to switching regulators: noise generation
and slow response time.

The Unitrode PIC700 series are unique hybrid circuits, specifically designed, constructed and specified for use in high
current switching regulator applications. The designer is thus
relieved of one of the most time consuming, tedious and
critical aspects of switching regulator design: choosing the
appropriate switching transistors and commutating diode.

The PIC700 series switching regulators are completely characterized over their entire operating range of -55°C to +125°C.
The devices are enclosed in a special 3 pin TO-3 package,
hermetically sealed for high reliability. The hybrid circuit
construction utilizes a beryllia substrate for maximum thermal
conductivity and resultant low thermal impedance. All of the
active elements in the hybrid are fully passivated.

Switching regulators, when compared to conventional regulators, result in significant reductions in size, weight, and
internal power losses and a major decrease in overall cost.
Using the Unitrode PIC700 series the designer can achieve
further improvements in size, weight, efficiency, and costs. At
the same time, because of the PIC700 series design and
packaging, the designer is aided in overcoming two of the most

SCHEMATIC
PIC730
PIC740

POS. 4
INPUT

POS.
OUTPUT

cr---....

DRiVE

COMMON

MECHANICAL SPECIFICATIONS
PIC730 PIC740

NOTE:

3 Pin TO-3

Leads may be soldered to within
1!t6" Of base provided temperaturetime exposure is less than 260°C
for 10 seconds.

mm

ins.

C

.875 MAX.

22.23 MAX.

.135

3.43

.250-.4~

6.35-11.43

E ~;'
D

4
1
3

5.21-5.72

.420-440

10.67-11.18

G

.145-.165

3.68-4.19

.395-.405

10.03-10.29

J

.151-.1610IA.

3.84-4.090106,.

K

.188 MAX. RAO. 4.78 MAX. RAD.

H

L

5-79

7.92 MIN.

F

.525 MAX. RAO. 13.34 MAX. RAD.

M

.706-.728

17.98-18.49

N

1.tn-t.t97

29.90-30.40

P

.038-.043 DtA.

.97-1.09 OIA

212

lli1J
_UNITRDDE

PIC730 PIC740
ABSOLUTE MAXIMUM RATINGS
PIC730

PIC740

Input Voltage
.....................
... 30V......... .............................
....... 40V
Output Voltage
.................................................................................30V............. .........................
...................... 40V
Drive-Input Reverse Voltage
................................................ 8V ..................................................................................... 8V
Continuous Output Current ............................................................................................20A ........................................................................................20A
Peak Output Current ........
......................
..................................................30A......... ...........................................
................30A
Drive Current ..................................
......................
......................................... SA...........
... SA
Thermal Resistance
Junction to Case, eJ •c
Power Switch ............................ .
Commutating Diode
Case to Ambient, eC •A ....... .
Operating Temperature Range, Tc..... .
Maximum Junction Temperature, TJ .
Storage Temperature Range ..

........................................... 1.0'C/W
. ...................................................
.............2.0'C/W......... .
................................................................................................................ 30'C/W ..................... .
......................................................................................................-55'C to +125'C........... .
.............................. .............................. ............................. ........... +l50'C.......................... .
. ....................................................-65'C to +l50'C........... .

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
SCHOTTKY RECTIFIER

Test

Symbol

PIC730
. Max.

Min.

PIC740

Min.

Max.

Unit

Test Conditions

V. _ ratea,
Te = 12S'C
Pulse Width = 300,,5,
Duty Cyele = 1 percent

Maximum Instantaneous
Reverse Current

i.

-

50

-

50

mA

Maximum Instantaneous
Forward Voltage

VF

-

0.6

-

0.6

V

iF == 20A
Tc == 12S'C,

Collector Saturation
Voltage (Note 1)

VeE1,a'i

-

1.0

-

1.0

V

Ic =20A

I,

== 2.SA

Base Saturation
Voltage (Note 1)

V'E 1"'1

-

1.5

-

1.5

V

Ic

== 20A

I,

= 2.SA

V CEO (susl

30

-

40

-

V

Ie = 100mA

Collector Cut-off
Current

ICEO

-

10

-

10

mA

VCE == 40V
P.W.= 3001>5

Emitter Cut·off
Current

IEao

-

10

-

10

mA

VEa = 8V
P.W.= 3001>5

td
t,
t,
tf

-

20
SOO
1.5
2S0

-

20
SOO
1.S
2S0

nS
nS
I>S
nS

Vcc = 30V
Ic = 20A
la, = 182 = 2.SA
VaE loffl = -4V

t fj

-

300

-

300

nS

-

3S0

-

3S0

nS

TRANSISTOR

Collector-Emitter Sustaining
Voltage (Note 2)

Resistive
Switching
Speed

Delay
Rise
Storage
Fall

Inductive
Switching
Speed

Current
Fall
Voltage
Fall

tlv

TJ = 100'C
Vec =30V Ic
20A
V clamp = 40V L
1751>H
la,
la,
2.5A

=

= =

=

Notes
1. Pulse length=250 ~s; duty cycle =fi 1%.
2. Sustaining VOltage. Measured at a high current point where collector-emitter voltage is lowest. Current pulse length a! 50 ",s; duty cycle 'lEi 1%.
Voltage clamped at maximum collector-emitter voltage.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

213

PRINTED IN U.S.A.

PIC730 PIC740
Power Dissipation

DC Current Gain

160

SOO

I

140

~

Transistor

200

c: 120

~

'"

0.
.~

\

100

C

:;;

;:

80

0

ll.

ili
~

">
""I

Schottky Rectifier

60

"

40

u

t'....

o

-25

25

"'0:0:

SO

0
0
0

r;~

\

"

75

lao

::>

"\

SO

20

f/

Transistor -

1.0 I--

10

.........
S

100

125

0.2

150

0.5

~

"'«

r-- lOO°C

Cl

~

25°C

0:

0:

..J

~

.1

I---

0:

I-

«
(J)

::>

.....-: j::7/

0

:VV:/

>

::>

Te =2SoC

"'

I-

Z
0

Jill

~~.'b
I~ r-

10

Z

IP7

bblldo "S

r"""

UL"\

I-

./

~

~

20

t%:

.5

20

Forward Bias Safe Operating Area
30

..,.. ~

BE ,,,tj

10

Ie - COLLECTOR CURRENT (Al

Saturation Voltages

J

sk.c

"

-S5°C

~

Tc - Case Temperature (OC)

3.0

-

I
25!C

Z

"\

20

o

Cl
I-

I"'" I\.

ll.

-SO

,....-

z

;j'

Sv

VeE

lOOOC

~

.05

r-=:

I--""

V

0

~\ ~

0:

0

VcEfsetl

I0

"'

V

2

..J
..J

k::: ~5°C

r-I-

I"
Limited

\

V

~

0
0

I

100°C

_u

leJli=a- t-

O.S

.04

0.3

.5

.3

10
Ie - COLLECTOR CURRENT (A)

10

2

20 30

20

SO

200

100

VeE - COLLECTOR VOLTAGE (V)

Resistive -

Resistive - Turn-On Time

Turn-Off Time

1000

SOD

g 200
"'2
;: 100

100°C

H

':::: ..... I--fir°c

t::'"'"

./

on

t, l-

"';:2

Cl

l:!

25°C

50

~

O.S

Vee = 30V
leJl,'n
10
2
0.5
Ie - COLLECTOR CURRENT (A)

0.2

;--t-

100°C

~

~

i"--

100°C

r-t,

.0 5
0.2

20

Vee _30V
leJl,~ 8

2S°
UJ

I

I

.1

:J
<..l

0::

,I

.5

.20
.50
1.0
2.0
5.0
10
20

I-

~-55'C

'/
h
V V
100'C

.10

~

50

~

f--

~I-'

50

ro

50

~

50

-

~

f-

~

125'C

10

~

V,-REVERSE VOLTAGE (% of V,w)

Possible Circuit Configurations

15 AMP

SWITCHING REGULATOR

15 AMP

Pass Transistor - Unsaturated-Mode
T,

PIC74Q

EIN

=~2-5.....-

r-------,
..........---1"--"

SWITCHING REGULATOR

Pass Transistor -

Eo=5Y

,

I

100
500
,I

SOY

EU
u

'"

20

Maximum allowable average"

10

power dissipation each, for the
transistor and for the rectifier.
Maximum allowable case
temperature = 12S"C

I"\.

2

W
oJ
oJ

!\.

j' ,

./a

~~

~

1
Te= 2S'C

~~s Apply Belr

.2

I\,

I I '1

.1
10

5

~

\.
\

Rated V CEO

150

,-C

\~
1,\ ~

..!'

25
50
75
100 125
Te - CASE TEMPERATURE (OC)

'\.+-

~~
~ l
u

g

~

PIC
801

'"i'!:

w

VV

0

;::

'"::>'"
'"

0.2

V
I-- :--

I-

I

(/I

0.1

0.1

.05

' - f--:; 6; ...
55'C
./ OO'C./

1.00'c

z

0.2

10

VSE \SlIt}

25'

0

> 0.5

PIC
811

oJ
oJ

u

-5S'C

w

..J

0.5

(J

a

PIC811

~ Vh,c
VeE (~a'J

.05
20

50

100

200

500

1000

.05

Ie -

Rectifier - Forward Current
vs
Forward Voltage

D.C. Current Gain
200

0.5
0.2
COLLECTOR CURRENT (A)

0.1

VeEX 1'"'1- COLLECTOR VOLTAGE (V)

I I

10

VeE = 5V
100

./

z

;;:

'"

100"C
50

I-

Z
w

IZ
W

'"c:
::>

u

25'C

--

20

t.i

ci 10

I
-5S'C

V/

5

f::::
.....

100'C/, ; / 2S'C

2

//

''""

II

::>
u

~

o
c:

~~

~ .5
c:

I

...a

=-~
5

.1

2

.05

0.1

0.2
0.5
Ie - COLLECTOR CURRENT (A)

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

5

.7

218

.9

1.r
1.3
1.5
1.7
1.9
V,- FORWARD VOLTAGE (V)

2.1

2.3

PRINTED IN U.S.A.

PIC800 PIC801 PIC810
Resistive - Turn-On Time

Resistive -

1000

Turn-Off Time

10
Vee
'ell ,

100'C
500

--

5

2S'C

V

1/
;/

~

,/

t.

r-...
.s'"
"'
:.

PIC81l

....

.....

2

..3

100

;::

100'C

l' ........

:.
;::

t,

125V
5

ts

25'C
0.5

50

~

100'C

...... ~

0.2

0.5
Ie -

2

2S'C

I

0.1
0.1

10

J.-

V

Vee = 125V
'ell,=S
10
0.1

/~

V

0.2

20

0.2
Ie -

COLLECTOR CURRENT {Al

2
0.5
COLLECTOR CURRENT (Al

10

Typical Inductive Switching Times

+
I

=

IB'

=

-I B2 • V(clamp)

=

350V

Vee = 125V
t,

t"

tfi

#S

nS

nS

1.2

1.76

120
140

160
185

2S'C
lOO'C

.8
1.1

100
170

100
130

25'C
100'C

.9
1.0

80
190

100
140

Current

Temp.

'e=IA

25'C
100'C

'e=3A
le=SA

APPLICATIONS:
BUCK REGULATOR

FULL BRIDGE

PUSH-PULL
-

rt"----~_...---<> E'N

,

1

i PIC 810

PIC 810

_J

PIC 810

SINGLE ENDED

HALF BRIDGE

ii~.h=r
,

i,PIC 811

-

E'N

DEFLECTION CIRCUIT

0--..--------.-,

- -,,
FLYBACK TRANSFORMER

,

: PIC 810
__ J

II ~

-,,

-

,: PIC 810

--,

PIC 810

Yoke

_J

'--_ _ _ _ _.......Eout

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (7l0) 326-6509 • TELEX 95-1064

219

PRINTED IN U.S.A.

SWITCHING REGULATOR POWER CIRCUITS

200
200
200
200
200
200
204
204
204
204
204
204
208
208
208
208
208
208
212
212
216
216
216
216

DESCRIPTION

PART NUMBER

PAGE

PIC600
PIC601
PIC602
PIC610
PIC611
PIC612
PIC625
PIC626
PIC627
PIC635
PIC636
PIC637
PIC645
PIC646
PIC647
PIC655
PIC656
PIC657
PIC730
PIC740
PIC800
PIC801
PIC810
PIC811

PART NUMBER INDEX

5.0A; 60V (Pas.); TO-66
5.0A; 80V (Pas.); TO-66
5.0A; 100V (Pas.); TO-66
5.0A; 60V (Neg.); TO-66
5.0A; 80V (Neg.); TO-66
5.0A; 100 V (Neg.); TO-66
15.0A; 60V (Pas.); TO-66
15.0A; 80V (Pas.); TO-66
15.0A; 100V (Pas.); TO-66
15.0A; 60V (Neg.); TO-66
15.0A; 80V (Neg.); TO-66
15.0A; 100V (Neg.); TO-66
15.0A; 60V (Pas.); TO-3
15.0A; 80V (Pas.); TO-3
15.0A; 100V (Pas.); TO-66
15.0A; 60V (Neg.); TO-3
15.0A; 80V (Neg.); TO-3
15.0A; 100V (Neg.); TO-66
30A; 30V; (Pas.); TO-3
30A; 30V; (Pas.); TO-3
8A; 350V; (Pas.); TO-66
8A; 400V; (Pas.); TO-66
8A; 350V; (Neg.); TO-66
SA; 400V; (Neg.); TO-66

·Contact Unitrode far specificatians and ratings.
Legend, J -

JAN

JTX -

JANTX

JTXV -

JANTXV

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (7l0) 326·6509 • TELEX 95·1064

220

PRINTED IN

u.s A

SALES OFFICES
PART NUMBER INDEX

II

DESIGNERS' GUIDES

III

POWER TRANSISTORS & DARLINGTONS

IV

SWITCHING REGULATOR POWER CIRCUITS

V

RECTIFIERS
HIGH VOLTAGE RECTIFIERS, RECTIFIER
MODULES & MULTIPLIERS

VII

RECTIFIER BRIDGE ASSEMBLIES

VIII

POWER ZENERS & TRANSIENT VOLTAGE SUPPRESSORS

IX

THYRISTORS (SCRs, Triacs, PUTs)

X

SWITCHING & GENERAL PURPOSE DIODES

XI

PIN DIODES

XII

CAPACITORS

XIII

APPLICATION NOTES & DESIGN NOTES

XIV

MECHANICAL SPECIFICATIONS

XV

221

222

SCHOTTKY RECTIFIERS

PRODUCT SELECTION GUIDE

~L?ZZZ~
DO-SF

'Center-tap 15A per leg
• 'V R at 25°C is 45V. VR at 150°C is 35V.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

223

PRINTED IN U.b.l\.

RECTIFIERS

A
ULTRA-FAST RECOVERY (trr -

B

~

Sim, to 11>-220

25 to SOnS)

IN5802*
UE51101
.975@2A
25n5

IN5807*
UE51301
.925@6A
30n5

IN5803
.875 @ lA
25n5

IN5808
.925@6A
30n5

IN5804*
UE51102
.975@2A
25n5

IN5809*
UE51302
.925@6A
30n5

IN5805
.875 @ lA
25nS

IN5810
.925@6A
30nS

IN5806*
UESl103
.975@2A
25nS

IN5811*
UES1303
.925@6A
30nS

UE51401
.975@8A
35n5

UE51402
.975@8A
35n5

UES1403
.975@8A
35n5

UES1304
1.25 @3A
50n5

UESll04
1.25 @ lA
50nS
UESll05
1.25 @ lA
50nS

UE51305
1.25 @3A
50nS

UE51106
1.25 @ lA
50nS

UES1306
1.25 @3A
50nS

* Available as JAN, TANTX, JANTXV

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

224

Printed in U.S.A.

PRODUCT SELECTION GUIDE

ULTRA·FAST RECOVERY (t" - 25 to SOnS)

UE52402
.975@8A
35n5

UES2403
.975@8A
35nS

IN5812*
UES701
.825@25A
35n5

UES501
.9@ 50A
50n5

IN5813
.825@25A
30nS

UE5502
.9@ 50A
50n5

IN5814*
UE5702
UES2602
.825@25A .825@ 15A
35n5
35n5

UE5503
.9@50A
50nS

IN5815
.825@25A
35n5

UE5504
.9 @50A
50n5

IN5816*
UES703
UES2603
.825@25A .825 @ 15A
35nS
35n5

UE5505
.9@50A
50nS

UE5704
1.15 @ 20A
50nS

UE5804
UE52604
1.15 @ 15A 1.15 @ 50A
50n5
50n5

UE5705
1.15 @ 20A
50n5

UE52605
UE5805
1.15 @ 15A 1.15 @ 50A
50n5
50n5

UE5706
1.15 @ 20A
50n5

UE52606
UE5806
1.15 @ 15A 1.15 @ 50A
50nS
50nS

UES801
.84@70A
50n5

•

UE5802
.84@70A
50nS

UE5803
.84 @70A
50n5

Center-tap, SA per leg
Center-tap, 15A per leg
'Available as JAN, JANTX, JANTXV

(11
(21

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

225

Printed in U.S.A.

RECTIFIERS

UTX3l05
lV@2A
lOOnS

UTXl05
LOO@.5A
75nS

UTX205
l.OV@ lA
75nS

UTX110
l.OV @ .5A
75nS

UTX2l0
l.OV@ lA
75nS

SES5002
.975 @ lA
lOOnS

UTX3ll0
l.OV@ 2A
lOOnS

UTX4110
l.OV@3A
lOOnS

UTX115
l.00 @ .5A
75nS

UTX2l5
l.OV @ lA
75nS

SES5003
.975@ lA
lOOnS

UTX3115
l.OV @ 2A
lOOnS

UTX4ll5
l.OV@3A
lOOnS

UTX120
1.00@ lA
75nS

UTX220
l.OV@ lA
75nS

UTX3l20
1.0V@ 2A
lOOnS

UTX4l20
1.0V@3A
lOOnS

UTX125
l.00 @ .5A
75nS

UTX225
l.OV@ lA
75nS

SES5301
.975@5A
lOOnS

SES5401
l.025 @SA
lOOnS

SES540lC
l.025 @SA
lOOnS

SES5701
.S3@20A
lOOnS

SES560lC
.S3 @ l2.5A
lOOnS

SES5S0l
.S5@60A
lOOnS

SES5302
.975@5A
lOOnS

SES5402
1.025@SA
lOOnS

SES5402C
1.025@SA
lOOnS

SES5702C
.S3@20A
lOOnS

SES5602C
.S3 @ l2.5A
lOOnS

SES5S02
.S5@60A
lOOnS

SES5303
.975@5A
lOOnS

SES5403
1.025 @SA
lOOnS

SES5403C
1.025@SA
lOOnS

SES5703
.S3@20A
lOOnS

SES5603C
.S3 @ l2.5A
lOOnS

SES5S03
.S5@60A
lOOnS

"'Center·tap. 8A per leg
(2ICenter·tap, 12.5A per leg

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064

226

PRINTED IN U.S.A.

PRODUCT SELECTION GUIDE

9~5

ic

B

A
FAST RECOVERY (t" - 150 to 500nS)
..
, .., ~,~

30A

00-5
IN5415*

IN3909"

l.lV@ .5A
250nS

l.lV@ lA
250nS

l.lV @3A
250nS

1.5V@ 9A
150nS

l.lV@4A
250nS

UTRll

UTR12

UTR3310

IN5416'
IN5186*'

UTR4310

l.lV @ .5A
250nS

l.lV @ lA
250nS

l.1V@3A
250nS

1.5V@9A
150nS

l.1V@4A
250nS

UTR21

IN4942*
IN5615*

UTR22

UTR3320

IN5417*
IN5187*'

UTR4320

l.1V @ .5A
250nS
UTR31
l.1V @ .5A
300nS

l.3V@ lA
150ns

l.1V@lA
250nS
UTR32
l.1V@ lA
300nS

l.1V@ 3A
250nS

1.5V@ 9A
150nS

l.1V@4A
250nS

UTR41

IN4944*
IN5617*

UTR42

UTR3340

IN5418'
IN5188**

UTR4340

l.1V @ .5A
350nS

1.3V @ lA
150nS

l.1V@ lA
350nS

l.1V @ 3A
300nS

1.5V@ 9A
150nS

l.lV @4A
400nS

UTR52
l.1V @ lA
400nS

UTR3350
l.1V@3A
350nS

IN5419*
1.5V @ 9A
250nS

UTR4350
l.1V @4A
400nS

UTR62

UTR3360

l.1V@ lA
400nS

l.1V@3A
400nS

IN5420'
IN5190**
1.5V @ 9A
400nS

l.lV@4A
400nS

UTR51
l.1V @ .5A
400nS
UTR61
l.1V @ .5A
400nS

IN4946*
IN5619*
1.3V @ lA
250nS

1.4V@95A
200nS
UTR4410
UTR5410
UTR6410
l.1V @6A
300nS
UTR4420
UTR5420
UTR6420
l.1V@6A
400nS

IN3910"
1.4V@95A
200nS
IN3911'*
1.4V@95A
300nS
IN3912**
1.4V@95A
200nS

UTR4440
IN3913*
UTR5400
UTR6440
l.1V@ 6A 1.4V@95A
500nS
200nS

UTR4360

"Available as JAN, JANTX, JANTXV
"Available as JAN, JANTX

UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL, (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

227

PRINTED IN U.S.A.

B:

RECTIFIERS

PRODUCT SELECTION GUIDE

A
STANDARD RECOVERY

UT236
URllOt

UT235
IN4246*
IN5616*
UT238
IN4247*
IN5618*
UT361
IN424S*
IN5620*
UT347
IN4249*

UT261
UR210t

UT267
IN3613**

\.

UT3010

UT4010

UT5110

UT6110

UT8110

UT3020

T4020
IN5550*

UT5120

UT6120

UT8120

, UT3040

UT4040
IN5551*

UT5140

UT6140

UT8140

UT3060

UT4060
IN5552*

UT5160

UT6160

UT8160

IN5553*

UT268
IN3614**
UT364

'Available as JAN, JANTX, JANTXV,

"Available as JAN, JANTX,
tRadia!ion Toleran!

UNITRODE CORPORATION. 5 FORBES ROAD
~EXINGTON. MA 02173 • TE~, (617) 861-6540
TWX (710) 326-6509 • TE~EX 95-1064

228

PRINTED IN U.S.A.

RECTIFIERS

JAN &JANTX IN3611-IN3614

Military Approved, 1 Amp,
General Purpose
FEATURES

DESCRIPTION

•
•
•
•

This series of MIL approved JAN and
JANTX general purpose tamp rectifiers are
useful in many high rei applications.

Qualified to MIL-S-19500/228
Continuous Rating: lA
Surge Rating: 30A
PIV: to 800V

ABSOLUTE MAXIMUM RATINGS
Peak Reverse Voltage Min.

Reverse Working Voltage

240V
480V
720V
920V

200V
400V
600V
800V

Type

JAN
JAN
JAN
JAN

& JANTX IN3611
& JANTX IN3612
& JANTX IN3613
& JANTX IN3614

•

Maximum Average D.C. Output Current
....... l.OA
@ TA = lOO'C .
. ................... O.3A
@ TA = 150'.C .
Non-Repetitive Sinusoidal
Surge Current (8.3ms) . . ...... 30A
Operating Temperature Range.
.... -65'C to +175'C
Storage Temperature Range .
......................... -65'C to +200'C
Thermal Resistance ................................................ See Lead Temperature Derating Curve

MECHANICAL SPECIFICATIONS
JAN & JANTX1N3611-1N3614

~
.OSS" TVP.

Band IndicateJ"
cathode end

0

11.

'j"

r

I

1SS " TYP,
. 3.9mm ....

J1

028" -<'-001
O:71mm'1:.03

t

n~ 0

BODY A

f
.085" MAX.

~
TYP.

2.2mm

1+--.700" M1N ...... !-_.250 .. MAX

17.8mm

6.3Smm

1.625" MIN

41.3mm

229

lliD
_UNITRODE

JAN & JANTX 1N3611-1N3614

ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Maximum D.C.

Minimum
Reverse
Type

JAN
JAN
JAN
JAN

Peak
Reverse
D.C. Voltage

Breakdown
Voltage
@ 100"A

200V
400V
600V
800V

240V
480V
720V
920V

& JANTX 11113611
& JANTX 1N3612
& JANTX 1N3613
& JANTX '1N3614

Reverse

Forward Voltage
Min.
Max.

I

L

...

~ 3

a

";::

'"

"'"«

3

II:

~ 1

«
I

2.5

'"'"" ""
~

50

T, -

!:l~
eel

1.5

~
'"'~
~

75
100
125
150
LEAD TEMPERATURE ('C)

~
".l

(")

~

25

«
II:

3.5

~ r-....

II:

lum

Z

L-~

'"u:t= 2

u

"'":::>
II:

80

60

III

r---!-+-t+t+1fHS~::;:-...;::~k:~-+-I Tur~~:n~~~ C;i~~~~-

---

a

'"u:(j

40

'"

II.
III

...

20

o

'If.
10
100
CYCLES AT 60 Hz HALF SINE WAVE

.5

1,000

175

Typical Reverse Current vs PIV

10

.001
.002

:;;-

;;
3

/

~ ,5

'"~

I

IIIIII
I
I I
Turret 1" centers-

Typical Forward Current
vs Forward Voltage

...Z

300,uA

Allowable FDrward Surge vs Number of Cycles

I
= Va"

"j~

II:

150°C

1,uA

@1.0A

100

"'l

:::>
u

I

25°C

l.lV(pk)

O.6V

Maximum Current
vs Lead Temperature

~
z

Current
at D.C. Voltage

Peak

.1

:::>
u .05

I
_".02

1/

.01
.005

II

.002
.001
.2

II

.4
V, -

II

.05
.1
.2

:::>
u

'"II:'"
'">
'"

-----

50'C

./
-+2S'C

...... ~

.5

---

II:

5

+75'C

10
20

~25'C

50
100

II

.6
.8
1
VOLTAGE (V)

'"

II:
II:

lV/I'I
/

...

.02

Z

~u.<" u u
$.? ;/&-- c-

.2

.005
.01

150
1.2

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064

1.4

100

50

% OF PIV

230

PRINTED IN U.S.A.

JAN, JANTX
JAN, JANTX
JAN, JANTX
JAN, JANTX
JAN, JANTX

RECTIFIERS
Military Approved,
Fast Recovery, 30A
FEATURES
• Qualified to MIL-S-19500/308
• High Mechanical Integrity
• Low Thermal Resistance
• JAN and JANTX Avai lable

IN3909
IN3910
IN3911
IN3912
IN3913

DESCRIPTION
These devices feature unique mechanical
ruggedness combined with fast switching
electrical characteristics. Devices may be
used in many power switching circuits.

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage

Type

SOV
lOOV
200V
300V
400V

JAN, JANTX lN3909
JAN, JANTX lN39l0
JAN, JANTX lN3911
JAN, JANTX lN39l2
JAN, JANTX lN3913

Maximum Average D.C. Output Current
@ Tc = lOO'C ...
Non Repetitive Sinusoidal Surge Current
@ Tc = lOO'C
Thermal Resistance, Junction-to-Case ...
Operating Temperature
Storage Temperature

30A
300A
............................................ L2'C/W
Tc = -65'C to +lSO'C
Tc = -65'C to +175'C

MECHANICAL SPECIFICATIONS

JAN, JANTX lN39D9, lN391D, lN3911, lN3912, lN3913

00-5

.156

l.J---: __

pr(A,NT_!~ .~ ~L'j~!~'
MAX.

lf4-28

UNF-2A
140 MIN. DIA.

~~6ro

Dimensions in inches.

Notes:
1. Polarity is cathode-ta-stud.
2. All metal surfaces tin plated.
3. Maximum unlubricated stud torque: 30 inch pounds.
4. Angular orientation of terminal is undefined.

[ill]
1/79

231

_UNITRDDE

JAN, JANTX IN3909, IN3910, IN3911, IN3912, IN3913
ELECTRICAL SPECIFI.CATIONS (at 25"C unless notedlt
Maximum
Leakage
Current
@PIV

Type

Peak
Inverse
Voltage

Maximum
Forward
Voltage

J, JTX IN3909
J, JTX IN3910
J, JTX IN3911
J, JTX IN3912
J, JTX IN3913

SOV
100V
200V
300V
400V

l.4V(pk)
@
9SApk
tp';;; 8.3rns
de ';;;2%

1,=

Output Current vs.
Case Temperature

~

...

...z

II:
II:

:::J

20

<)

...
;;)

...n.:::J
0

1\\

...z~

1

.2

Tc -

200nsec

:::J

_'\

<)

1

~

./.JCJ/o
.. !oJ

II

175

.2

CASE TEMPERATURE ('C)

1

.1
.2

/

.4

~

...

10

...

20

z

II:
II:

V, -

2slc _ .../

:::J

<)

I.

0

100
200

\OO'C

,/

\SO'C

'/

/'"

II

.6

....--

2

~llll~o/
~

1

.5

150

.1
.2

Vl II I
:/11 !/
r-

II:
II:

=

Typical Reverse Current
vs. Voltage

I

V

10

...

125

100

10rnA

=

VV IV

20

\

80llA

~~/

50

10

1OO'C

Typical Forward Current
vs. Forward Voltage
100

30

25'C

Maximum
Reverse
Recovery Time
IF
lA, V.
30V

1K
2K

1('.8

1.0

1.2

140

1.4

VOLTAGE (V)

75

100

50

25

VOLTAGE IN % OF PIV

Reverse-Recovery Circuit

Jon

NON·I NDUCTIVE
RESISTOR

OUTPUT FOR
MONITORING
OSCILLOSCOPE
SEE NOTE 1.

+
REGULATED
VOLTAGE
SOURCE
SEE NOTE 3

SEE NOTE 2

D.U.T.
30·VOLT
REGULATED
POWER SUPPLY

1. pi
300V

1.0i!
NON· I NDUCTIVE
SHUNT

1. .,
300V

+

NOTES:
1. Monitoring oscilloscope requirements: t, ~14 nsec, Rin;a: 9Mn,
C jn :::;;;12 pF, Ljn (series) ~O.5 pH.
2. SW characteristiCS: Mercury-wetted make-before-break relay
switches at a 60 Hz rate. The relay should conduct for
approximately 640 J,tsec and be open for approximately
7.7 msec. (C.P. Clare HGP 1004 or equivalent).
3. Voltage source characteristics: Output, impedance ~O.5~!
from 0 to 2 Hz.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON; MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064

232

PRINTED IN U.S.A.

RECTIFIERS

1N4245·1 N4249
JAN, JANTX & JANTXV

Military Approved, 1 Amp,
General Purpose
FEATURE~
•
•
•
•
•

DESCRIPTION
This series of general purpose power
rectifiers are available as JAN, JANTX or
JANTXV for many power supply applicatons.

Qualified to MIL-S-19500/286
Surge Rating: 25A
PIV: to lOOOV
Controlled Avalanche
No Plastic, Epoxy, Silicone, Oxides, Gases or Solder are used

ABSOLUTE MAXIMUM RATINGS
Maximum Reverse Voltage

Type

200V

JAN, JANTX, JANTXV IN4245

400V

JAN, JANTX, JANTXV lN4246

600V

JAN, JANTX, JANTXV lN4247

800V
lOOOV

JAN, JANTX, JANTXV lN4248
JAN, JANTX, JANTXV lN4249

Maximum Average D.C. Output Current

@ TA
@ TA

= lOO·C ..

=

.. ....................... l.OA

l50·C ..

'" O.333A

Non-Repetitive Sinusoidal
Surge Current .

............................................. ......... 25A

Operating Temperature Range .
Storage Temperature Range.
Thermal Resistance.

..... -65·C to +175·C
................................. -65·C to +175·C
.. ..... See Lead Temperature Derating Curve

MECHANICAL SPECIFICATIONS

J,

JT)(,

JTXV 1N4245·1 N4249

1179

233

BOOYA

lliJJ
_UNITRODE

JAN, JANTl<, JANTXV IN4245·1N4249
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)

J,
J,
J,
J,
J,

JTX, JTXV
JTX, JTXV
JTX, JTXV
JTX, JTXV
JTX, JTXV

Minimum
Reverse
Breakdown
Voltage
@ lOO~A

PIV

Type

IN4245
IN4246
IN4247
IN4248
IN4249

Typical Forward Current
vs Forward Voltage

.005
.01

.2

"'

,0

/i- i- i- I

U.05

."..02

/

.01
.005

II

II

.002

.2

"'

.5

'"~

~

./

::>
u

"'a:

80

~

::>

60

VI

0

W

u:

40

"'0.
...
0

;:: 2

"'
a:

--r

10
20
50
100
150

20

150'C

Time*

1.01'A

15Ol'A

5.01'5

+75'C

"'~

~25;C

~
I

100

=t."

4

.""l

3.5

,,=~~

",1> ""
r--....

"" """"

~

a:

1

1.2

~~

~

(>

.5

'"

50
75
100
125
ISO
T, - LEAD TEMPERATURE ('C)

Reverse-Recovery Circuit
SO

175

10 \I

Q

ALL SERIES

I"" .......
~

-....:::

11111
I I
~~r;~: I" c~nte~s

~::-:::::

+

Turret 1/2" centers
Printed Circuit

_

-=-

--:::::::

NOTE3

10
100
CYCLES AT 60 Hz HALF SINE WAVE

osc I LlOSCOPE
NOTE I

~fl

if.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6S09 • TELEX 95-1064

2SVdc
(APPROX.)
1U

I--

1,000

234

II

t:

"l

'~ ~

25

1ft

1.5

50

1.4

~
'"
Cil

2.5

% OF PIV

.4
.6
.8
I
V, -- VOLTAGE IV)

U
VI

It

u:

Allowable Forward Surge vs Number of Cycles

z
;::
«a:

25'C

L

U

100
~

~
tZ

ow

1
5

II

::: 3

~25'C

"'

I
/

.001

.2

It

I

/

::>
u

>

1,1 /

I

.05

It
It

~ko
$ ~ K; ~-i:- i:-

Ill'

.1

::>

tZ

Maximum
Reverse
Recovery

Maximum Current
vs Lead Temperature

-

5 0'C

1 .02

I

.S

"'~

1.3V(pk)
0.6V
@3.0A(pk)

.001
.002

....-::

5

Max.

Typical Reverse Current vs PIV

10

...Z

Min.

240V
480V
720V
960V
1150V

200V
400V
600V
800V
1000V

Maximum
Reverse
Current

Forward
Voltage

NOTES:
1. Oscilloscope: Rise time ...- 3n5; input impedance = sou.
2. Pulse Generator: Rise time' - 8ns; source impedance IOU.
3. Current Viewing resistor, non-inductive, coaxial recommended.

PRINTED IN U.S.A.

JAN, JANTX, & JANTXV IN4942
JAN, JANTX, & JANTXV IN4944
JAN, JANTX, & JANTXV IN4946

RECTIFIERS
Military Approved, 1 Amp,
Fast Recovery
FEATURES

DESCRIPTION

•
•
•
•

These fast recovery rectifiers are suitable
for use as power devices for many applications. Devices are available as
JAN, JANTX or JANTXV.

Qualified to MIL-S-19S00/3S9
Surge Rating: lSA
PIV: to 600V
Controlled Avalanche

ABSOLUTE MAXIMUM RATINGS
Maximum Reverse Voltage

Type

JAN, JANTX, & JANTXV IN4942
JAN, JANTX, & JANTXV IN4944
JAN, JANTX, & JANTXV IN4946

200V
400V
600V

•

Maximum Average D.C. Output Current
@~=~C........................

. .. _._.~

=

@ TA
lOO'C .................... _.............
................ O.7SA
Non-Repetitive Sinusoidal
.................. 15A
Surge Current (8.3ms) _....................
Operating Temperature Range .............. _...........................
....... -65'C to +175'C
Storage Temperature Range.
........... _ ................... -65'C to +17S'C
Thermal Resistance .. .... ................
. ........... See Lead Temperature Derating Curve

MECHANICAL SPECIFICATIONS
JAN, JANTX, & JANTXV lN4942, lN4944, lN4946

j
'OI~;'rJ~P.

1

Band indicate~",,\
cathode end

[J 6.

BODY A

1,155"

TyP· .....1 .028" "!..OOl
3.9rnm
O.71mm =:.03

1 c:::::6 0

J11
~.O85"
TYP.

.o~~;~:::~x.
I

2.2mm

r-.7f~~~~~N.-+-.2~;5~~ ~
1.625" MIN.

41.3mm

[ill]
1/79

235

_UNITRDDE

JAN, JANTX, & JANTXV IN4942, IN4944, IN4946
ELECTRICAL SPECIFICATIONS (at 2S'C unless noted)

Type

J, JTX, JTXV IN4942
J, JTX, JTXV IN4944
J, JTX, JTXV IN4946

Peak

Minimum
Reverse
Breakdown

Inverse

Voltage

Voltage

@ 5O~A

200V
400V
600V

220V
440V
660V

I

O.6V

1.3Vdc

@lAdc

Maximum Current
Lead Temperature

25'C

150'C

Time*

1.OI'A

200l'A

150ns
150ns
250ns

Q

L = '18'

w
0:

L=~

u

L~

;::

w
a:

w

~

~ I

"D

0

::<

''""

""

Ie>
~,..

i'---r--... """- 0

II

.2

..."l
~

I'--- ~ ~r'>.

«
I

............

25

;;

v:;
/1/

.5

~

50
75
100
125
150
175
T, - LEAD TEMPERATURE ('C)

n

~

.5

z

.2

...

""a:a:

3

/VV

VV/V

1/"'
,CJ CJ ,CJ
~&;'Iil

.1

J J 'I /

::J

U.05

I

/

/

-,".02

.005

/

/

.002

/

.001
.2

/
II

/

.01

45pf
35pf
25pf

/

.02

""a:a:

.05
.1
.2

I-

::J

I-

'"""a:
>
"'a:

u

,.,
50'C

--

./

+ 25'C

.5

OJ

f

~5'C

10
20

--:;r25'~

50
100

f

150

.4

.6.8

V, -

VOLTAGE (V)

1.2

100

50
% OF PIV

1.4

Characteristic Waveform.

10 !l

+0.5A

+
_
-=-

f

.005
.01

...

Z

Reverse·Recovery Circuit

soo

= 12V
= IMHz

@ V,

.001
.002

...

t'....

Capacitance

Typical Reverse Current vs PIV

10

1.5 AMP SERIES

zw

a:
a:
:::>
u

Maximum
Reverse
Recovery

Typical Forward Current
vs Forward Voltage

YS

~

Maximum
Reverse
Current

Forward
Voltage
Min.
Max.

25Vde
(APPROX.)

'\

OA

III
NOTE 3

V

-0.25A

/

1\
-1.01\

NOTES:

1. Oscilloscope: Rise time ~ 3n5; input impedance = SOH.
2. Pulse Generator: Rise time C 8ns; source impedance IOU.
3. Current viewing resistor, non-inductive, coaxial recommended.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

\/
·H-,cm
FOR

236

SET TIME BASE

so TO 100 ns/em

PRINTED IN U.S.A.

IN5186-1N5190
JAN &JANTX

RECTIFIERS
Military Approved, 3 Amp,
Fast Recovery
FEATURES

DESCRIPTION

•
•
•
•
•
•

These miniature fast recovery rectifiers
permit operation at full power at frequencies as high as 100kHz sine wave.
They are qualified to military specification
and available as JAN, JANTX or JANTXV.

Continuous Rating: 3A
Qualified to MIL-S-19S00/424
PIV: to 600V
Recovery Time: 150ns
Miniature Size
Controlled Avalanche

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage

Type

100V

JAN & JANTX 1NS186

200V

JAN & JANTX 1NS187
JAN & JANTX 1NS188
JAN & JANTX 1NS190

400V

600V

Maximum Average D.C. Output Current

@ TA = 2S'C .
@ TA = lS0'C
Non-Repetitive Sinusoidal
Surge Current (8.3ms)
Operating Temperature Range ..
Storage Temperature Range.
Thermal Resistance.

.. ...... 3.0A

.............. O.7A

.... BOA
.................. -65'C to +175'C
. ................ -65'C to +200'C
.. See Lead Temperature Derating Curve

MECHANICAL SPECIFICATIONS
JAN & JANTX lN5186-1N5190

BODY B

[JJJ]
237

_UNITRDDE

JAN, JANTX lNSl86-lNSl90
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)

Voltage

Minimum
Reverse
Breakdown
Voltage @ 100#A

lOOV
200V
400V
600V

l20V
240V
4BOV
660V

Peak

Inverse
Type

J, JTX
J, JTX
J, JTX
J, JTX

lNSl86
IN5I87
lN5l88
lN5l90

J, JTX
J, JTX
J, JTX
J, JTX

lN51B6
lN51B7
lN5lBB
lN5l90

"'Recovery time measured from IF

T

Mm.

Current
@PIV
~

Max.

25'C

lOO'C

2MA

100MA

I.SV

0.9V
@9A(pk)
(B.3ms)

Time'"

Capacitance
@v,=ov
f = 1M Hz

Capacitance
@V,=4V
f = IMHz

l50ns
200ns
250ns
400ns

300pf
300pf
230pf
lBOpf

200pf
170pf
l20pf
90pf

Reverse
Recovery
Type

Maximum
Reverse D.C.

Peak
Forward
Voltage

= O.SA to IR = I.OA, 'REe = O.2SA

Reverse·Recovery Circuit
Maximum Current vs. Lead Temperature

;::
u

"'0:

=

L

0

"'ii:

~~~

5:

....Z

"'" "'
'" "
"'

L:;;-

0:
0:

~=

.125 "-

"

~

r--......

0: U

50

Lel'd Lelngth
from BOdY-

'"'"

+

===

-.....",

'- ....... -....."

(A~Sp~~'i<.) ~--~
III

"-

'"

35

55
T, -

75

95

115

135

155

175

NOTES:
1. Oscilloscope: Rise time ~ 3n5; input impedance .~-: 5011.
2. Pulse Generator: Rise time :-: 8ns; source impedance 1m2.
3. Current viewing resistor, non-inductive, coaxial recommended.

LEAD TEMPERATURE ('C)

Typical Forward Current
vs Forward Voltage
10

1/'1

:<

...z
"'
"

$§K)5f
14°
V~·0

Z .2

.1

II

_~.02

I II

/I
.2

.4
V, -

~+2S'C

0:
W

10
20

~+7S'C

0:

so
100
200

>
W

/

I

I

II

.6
.8
1
VOLTAGE (V)

UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064

-"

.5

If)

:

.2

U
W

I/

.01
.005

_-SO'C

.05
.1

0:
0:

1-1-+1

"I

u.05

.001

/

II

>-

.002

.01
.02

/
.3

~ .5

"'~

Typical Reverse Current vs PIV

/ / VV

:/

OSCILLOSCOPE
NOTE!

NOTE3

--.......::: ~
'~

>

10 \l

Q

I ....

./

l.,...4i2S'C

500
1,000
1.2

ISO

1.4

238

100
so
% OF PIV

PRINTED IN U.S.A.

RECTIFIERS
Military Approved, Fast Recovery, 3 Amp

FEATURES
• Qualified to MIL-S-19500/411

IN5415-1N5420
JAN, JANTX &JANTXV

DESCRIPTION
This series of devices as designed to meet
the need for high speed, power rectifiers
in military high-rei power supplies.

• PIV: to 600V
• Controlled Avalanche

ABSOLUTE MAXIMUM RATINGS
Type

Peak Inverse Voltage

50V
lOOV
200V
400V
500V
600V
Maximum Average D.C. Output Current
@ TA = 55'C .
@ TA = 100'C
Non-Repetitive Sinusoidal
Surge Current (8.3msl ....
Operating Temperature Range.
Storage Temperature Range.
Thermal Resistance 9 JL @ L = %" ..

JAN,
JAN,
JAN,
JAN,
JAN,
JAN,

JANTX,
JANTX,
JANTX,
JANTX,
JANTX,
JANTX,

JANTXV IN5415
JANTXV IN5416
JANTXV IN5417
JANTXV IN5418
JANTXV IN5419
JANTXV IN5420

•

................. 3.0A
.......................... 2.0A
..... 80A
. .................. -65'C to +175'C
.. ....... ~5'C to +200'C
......................... 20'C/W
See Lead Temperature
Derating Curve

MECHANICAL SPECIFIC~TlONS
J, JTX, JTXV lN5415-1N5420

BODY B

Dimensions in inches.

[ill]
239

_UNITRDDE

JAN, JANTX, JANTXV IN5415 -lN5420
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Minimum

Type

Reverse
Breakdown
Voltage
@ 501LA

PIV

50V
lOOV
200V
400V
SOOV
600V

J, JTX, JTXV IN5415
J, JTX, JTXV IN5416
J, JTX, JTXV 1N5417
J, JTX, JTXV IN5418
J, JTX, JTXV 1N5419
J, JTX, JTXV 1N5420

== lA,

'Measured In circuit IF=O.5 A, I.

Min.

Max.

1

55V

nov

1.0l'A

@9Adc
tp 300,,5

Time*

20l'A

150
1SO
150
150
250
400

I.EC =0.25A.

....r

Typical Forward Current
vs. Forward Voltage
20K
10K
5K

I

t;;!o

~

2K
;: lK
Z 500

+25'~

...

w

~ 200

I-

I

+100'C ~

III'

~

III

1/

.,

50
20

_u..

'J

/

i3 100

,0,U ,U

i-~ -o/.f/- ~
.;cf--i-

10

II
.2

Ii II

/ II
.4

+150'C

.6.8
1.2
V, 7" VOLTAGE(V)

1.4

1.6

I
100

50
~o

PIV

VS,

~

~ 20
~ 18
Q 16

...g:

14

~ 12

o 10

""w>:
a

a.
:;;

Maximum Current vs. Lead Temperature

~~{ma~)

11--

I I

l~~

55
Tl -

"'

.........

Y: . . .
r-L = .750 ............

'" "'"

"'"' ........~"

............

75

95

X 0
~

-

Tj

-

TL

0

\('

\\



( = Le~d

L = .125"

35

100'C

=

~oJC li-

'"'"

Reverse
Recovery

25'C

Typical Reverse Current vs. PIV
.0001
.0002
.0005
.001
.002
.005
.01
~
.3 .02
.05
Z
.1
w
.2
.5
:::>
u
1
2
I
-'!"
5
10
20
50
100
200
500
1000
150

Maximum

Reverse
Current

1.5V(pk)

0.6V

220V
440V
5SOV
660V

Maximum
Forward
Voltage

1"%, I\

"r.....
t--.

l-

.\

.500
IL
25
50
75 100 125 150
Tl - LEAO TEMPERATURE ('C)

175

Reverse-Recovery Circuit
SOil

10 II

........ i'..

['--.: ~

115

135

..... ~
155

+

175

_
-=-

LEAD TEMPERATURE ('C)

25Vdc
(APPRO X.)
III
NOTE3

OSCILLOSCOPE
NOTEI

N'OTES:
1. Oscilloscope: Rise time ~ 3nsi input impedance == SOU.
2. Pulse Generator: Rise time :s:;; anSi source impedance IOU.
3. Current viewing resistor, non-inductive, coaxial recommended.

UNITRODE CORPORATION, 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

240

PRINTED IN U.S.A.

1N5550-1 N5553

RECTIFIERS

JAN, JANTX & JANTXV

Military Approved, 5 Amp,
General Purpose
FEATURES

DESCRIPTION

•
•
•
•
•
•

This series of military approved rectifiers
is useful in many military applications.
The 100% screening requirements in the
"TX" version combined with the unique
Unitrode construction assures the highest
degree of reliability.

Qualified to MIL-S-19500/420A
Continuous Rating: 5A
PIV: to 800V
TX Parts 100% Screened
Miniature Size
Controlled Avalanche

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltal'e

Type

200V

JAN, JANTX & JANTXV 1N5550
JAN, JANTX & JANTXV 1N5551

400V

JAN, JANTX & JANTXV 1N5552
JAN, JANTX & JANTXV 1N5553

600V
800V

Maximum Average D.C. Output Current
.. 3.0A
@ TA = 55'C .
@TL
55'C .................................... .
............. 5.0A
. Non-Repetitive Sinusoidal
....... ........................ 100A
Surge Current (8.3ms) .
Operating Temperature Range .
. .................... -65'C to +175'C

=

Storage Temperature Range.
................................ -65'C to +200'C
Thermal Resistance ............................................. See Lead Temperature Derating Curve

MECHANICAL SPECIFICATIONS

J,

me, JTXV 1N5550-1 N5553

BODY B

[ill]
241

_UNITRaCE

JAN, JANTX, )ANTXV lN5550-lN5553
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Maximum
Leakage
CUrrent
@PIV
100'C
25'C

Minimum

Type

Peak
Inverse
Voltage

J, JTX, JTXV lN5550

200V

240V

J, JTX, JTXV lN555l

400V

460V

Voltage @

J, JTX, JTXV 1N5552

600V

660V

J, JTX, JTXV lN5553

800V

880V

= LOA,

*Measured in a test circuit IF =O.5A, IR

Peak Forward

Reverse
Breakdown

'REG

=

Voltage
Min.

50~A

Max.

I

0.6V

l.O"A

= 9A(pk)
(8.3ms)

L=

.12~

1~75

y .......
I-L = .750

"

"""
r----.

.......
..........

from Body-

"-

I"-..

"'-

1"1'-. f'\

-

Xen
<-

....... ~

L

....z

'"'"0:

10,000

:>

-

10
20

~

-

50
100
200

500
1000

J
150

100

....

200

'"'"
:>
'"
u

100

z

75'C

0

~

1

25'C

I

/

-"

+0.5A

t"

/

o

I

I
I

0.25
V, -

0.5 0.75
1.0 1.25
FORWARD VOLTAGE (V)

1.5

Reverse-Recovery Circuit

~

so

10

Po

\I

'\

OA

+

I--~

-0.25A

_

-=-

/

25Vdc
(APPROX.)
III

NOTE3
-1.0A

II

I

I

Characteristic Wave Form

/

25'C
-SO'C

/ 1/ I

I I
I 1/

10

SO

/L

1//

1/ / /

SO

%OF PIV

-1

/

20

'"~
0'"
...

/

/1/ / 1/

g

J...-".

t-'"

100'C

<,500

u

'"'"
I

l'l',LV

1,000

.L

25'C

I

'"0:en
>
'"

175

b~

5,000
2,000

-I--"'"

.37~-:i=

L=
"-./.( L = .500-

::-.::: ~"-J.

175'C

.5

.......

Forward Current vs.
Forward Voltage

=
50'C

.05
.1
.2

~

7'

25
SO
75
100
125
150
TL - LEAD TEMPERATURE ('C)

Reverse Current vs. PIV
.01
.02

I

L = .2SO

.750

175

T,

-

Rf)Jl

I"-..

t-- K
I--- ::::::-- y..

l-

::;iC

55
75
95 115 135 155
TL - LEAD TEMPERATURE ('C)

P(max) = Tj

.........

::;i_en

j"-.: ~"

35

2.0,,5

75"A

Maximum Power Dissipation
vs. Lead Temperature
20
18 f--L = .000
16
"';:
;:- 14
oz 12
J"..
Q.o
::;ii= 10
:>~

Le~d Le~gth

( =

Time*

O.2SA

Maximum Current vs. Lead Temperature

~

Reverse
Recovery

l.2V

@

IF

Maximum

\ lL

H-'cm
SET TI ME BASE

NOTES:

FOR SOOns/em

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

OSCILLOSCOPE
NOTEI

1. Oscilloscope: Rise time -c;; 3n5; input impedance = sou.
2. Pulse Generator: Rise time C 8nsi source impedance 1m2.
3. Current viewing resistor, non-inductive, coaxial recommended.

242

PRINTED IN U.S.A.

RECTIFIERS

IN5614, IN5616, IN5618,
IN5620,

Standard Recovery, 1 Amp
Military Approved

JAN, JANTX & JANTXV

FEATURES

DESCRIPTION

• Qualified to MIL·S·l9500/427
• PIV: to lOOOV
• Controlled Avalanche

This series of medium power general
purpose rectifiers can be used in the
most demanding military supplies.
Rugged mechanical integrity and tight
electrical parameters make them
particularly useful.

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage

Type

200V
400V
600V
BOOV

JAN,
JAN,
JAN,
JAN,

JANTX &
JANTX &
JANTX &
JANTX &

JANTXV
JANTXV
JANTXV
JAI'-I.TXV

lN56l4
lN5616
lN5618
IN5620

•

Maximum Average D.C. Output Current
@~=~C..

=

... _.......

~

@ TA lOO'C. . . . ........................... _. O.75A
Non·Repetitive Sinusoidal
Surge Current (8.3ms)
.. ... ..............
.............. 30A
Operating Temperature Range
..................... _..
........ -65'C to +175'C
Storage Temperature Range.
. ........................ -65'C to +200'C
Thermal Resistance e JL @ L %" ..
. .............................. 38'C/W
See Lead Temperature
Derating Curve

=

MECHANICAL SPECIFICATIONS

J, JTX, JTXV lN5614, lN5616, lN5618, lN5620

BODY A

[ill]
1/79

243

_UNITRODE

JAN, JANTX, JANTXV IN5614, IN5616, IN5618, IN5620

ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Minimum
Reverse
Breakdown
PIV

Voltage
@ 50pA

J, JTX, JTXV IN5614

200V

220V

J, JTX, JTXV IN5616

400V

440V

J, JTX, JTXV IN5618
J, JTX, JTXV 1N5620

600V
800V

660V
880V

Type

*Measured in Circuit IF

=

1/2A, IR :::: 1.0A,

'REC::::

Maximum
Reverse
Current
25°C

100°C

Maximum
Reverse
Recovery
Time*

0.51'A

251'A

2.01'5

Forward
Voltage

Min.

0.8

Max.

1.3V(pk)
@3.0A
tp = 3001'5

¥4A

Typical Reverse Current
.0001
.0002

Forward Voltage
Forward Current

VS.
10K
5K

~~

2K

;r:

1K

!zw 200
'" 100
50

,,&iO~/

II
.2

u

I

2

:::>

r-(/ :"r:1 (1

20
10

-"

II 1

II I
II

.4

.8

1

1.2

+100°C

1.4

v. -VOLTAGE{V)

17

H-r

5
10
20

d:::::(

50
100
200
500
1000

II
.6

r-

.1
.2
.5
1

0:
0:

I

+25°C

.01

I- ,05

:;i

,~1.,9 ~(; ,r;.;

'":::>
u

......
l-

..3 ,02

1/1/11
1
Villi

.s 500
I

;r:

I/V

PIV

10°C j,L

.0005
.001
.002
.005

booo'~

VS.

;·150°C

I
100

150

o

50
°0 PIV

Maximum Current
vs Lead Temperature

~

Maximum Power Dissipation
vs. Lead Temperature

10

'-""-.--.-...,--r--,--r~--.--'---,---,

5

Z

o

i=
~
iii
~

c

'"~

8

....
z

r-+-+-+-+-++-+-+-

w

0:
0:

I'.

u

Q

w

ii:
i= 2
u
w

4

&: 3i"'-+-';f"'"'I--d""l'rl--"t-d---l-l-H

~l~tr~~~~~
"

0:

w

""

x
:i'

L = Ifo"

:::>

6r-+--1'-<::+-+--+--+--+--t-t--t-"lH

50
75
100
125
150
T, - LEAD TEMPERATURE (OC)

~
I

175

L~ ~
......................

II:

244

"'- ~

r----... ...........

1

2S

UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (6l7) 861·6540
TWX (710) 326-6509 • TELEX 95·1064

0"
::E
'"@:0

L=~

50
T, -

7S

100

"'"II

.n
~
~

l',.
~
...........
~

125

150

.5

o

175

LEAD TEMPERATURE (OC)

PRINTED IN U.S.A.

RECTIFIERS
Military Approved, Fast Recovery, 1 Amp

FEATURES
• Qualified to MIL-S-19500/429
• PIV: to 600V
• Controlled Avalanche

IN5615,lN5617,lN5619
JAN, JANTX & JANTXV

DESCRIPTION
This series of military approved rectifiers is
useful in many military applications where
fast recovery and medium power are
required. The 100% screening requirements
in the "TX" version combined with the
unique Unitrode construction assures the
highest degree of reliabi lity.

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage

Type

200V
400V
600V

JAN, JANTX, JANTXV 1N5615
JAN, JANTX, JANTXV IN5617
JAN, JANTX, JANTXV 1N5619

Maximum Average D.C. Output Current
@ TA =55'C
@ TA =l00'C
Non-Repetitive Sinusoidal
Surge Current (8.3ms)
Operating Temperature Range
Storage Temperature Range .
Thermal Resistance 9 Jl .

....... · · · · · · H .

. ..

.'

.......... 1.0A
0.75A

. ...........

..... 25A
. -65'C to +175'C
. -65'C to +200'C
. . H . H .......... 38'C/W
See Lead Temperature
Derating Curve

MECHANICAL SPECIFICATIONS

J, JTX, JTXV 1N5615, 1N5617, 1N5619

BODY A

h

,DBS"
TYP.

2.2mm

j.-

7p?'~~:nN

+--- 2~~~5~~ ~
-----./

f-----1·~1~;~~N

[ill]
245

_UNITRDDE

JAN, JANTX, JANTXV 1N5615, 1N5617, 1N5619
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Minimum

Type

PIV

Reverse
Breakdown
Voltage
@ 501'1\

J, JTX, JTXV 1N5615

200V

220V

J, JTX, JTXV 1N5617

400V

440V

J, JTX, JTXV 1N5619

600V

660V

*Measured in Circuit IF

=

112A, 'R

= lA,

'REe

Maximum

Maximum

Reverse
Current

Reverse
Recovery

Forward
Voltage
Min.

Max.

1.6V(pk)
@3.0Adc
tp =300/L5

0.8V

25'C

100'C

0.5/LA

25/LA

~

'"ii:

;:

L = Vs"

,

1

L=~

i5<

'"
"«'"a:
'">«

........................

.2

25

~

10

""

~ 8

"-

Vi

!!! 6
o
a:
-;; 4

'"

~.,

~"
~

';])5"-:--'

"1-

'" /,

~

J....; 150'C

I
100

Forward Voltage
vs. Forward Current
10K
5K

,;;;j;II

2K
~ lK
5. 500
>~ 200

from Bod~

rL - ,500"

1

-¥liOO'j

0

50
°0 PtV

=

~L=I.750"

:;;

25

1~.L

v:~

:0

u

r- -

50

V

/1/ I
V /
II

I

20
.: 10

'IV

1/

I

~ 100

«

:;;

V

2
5
10
20
50
100
200
500
1000
ISO

.5

TI-T~_
I
°Jl
1- ,I. I I 1L = Lead Length

-l. :t-+.:::: ::'i Z- .......

::>

X

~
\..
...........

p{"'~'

3

:;;

I
+25'C

50
75
100
125
150
175
T, - LEAD TEMPERATURE ('C)

I I
I I

Z

~

I
-"

Maximum Power
VS. Lead Temperature

o

50'8-

V

U -" I

""'" 0

I'---

I

2Spf

Il::":: .2
~ I .5

L~ ~

u
a:

250ns

Typical Reverse Current vs. PIV

z

o

45pf
35pf

.0001
.0002
.0005
.001
.002
.005
_
.01
.02
~
.05
.1

~
~ 3

150ns
150ns

= lAA

Maximum Current vs Lead Temperature

a:
::>
u

Capacitance
@V,=12V
f=IMHz

Time*

rt~l

_$
~~h
'~"
.,. iii
IJ

==- :::3 ~ t;:;: I:::-

50
75
100
125
150
T, - LEAD TEMPERATURE ('C)

.2

175

.4

.6.8
1.2
V, - VOLTAGE(V)

1.4

1.6

Reverse-Recovery Circuit

son

10

!~

+
_

-=-

25Vdc
(APPROX.)
1n
NOTE3

OSCILLOSCOPE
NOTEI

NOTES:
1. Oscilloscope: Rise time::;;;; 3n5; input impedance =: son.
2. Pulse Generator: Rise time::;; 8ns; source impedance lOP..
3. Current viewing resistor, non~inductive, coaxial recommended.
UNITRODE CORPORATION, 5 FORBES ROAD
LEXINGTON, MA 02173 ' TEl. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064

246

PRINTED IN U.S.A.

RECTIFIERS

1N5802·1 N5806
IN5807·1N5811
IN5812·1N5816

High Efficiency, ESP, 2.5 Amp to 20 Amp
FEATURES
• Exceptional Efficiency
• Low Forward Voltage
• Extremely Fast Reverse Recovery Time
• Extremely Fast Forward Recovery Time
• High Surge
• Small Size
• Rugged, High Current Termination
• Radiation Tolerant

OESCRIPTION
This series of High Efficiency Power
Rectifiers allows circuit designers to
design high current, high frequency sup·
plies to 500 kHz with very low diode losses.
The high forward surge capability makes
these devices useful in protective circuits.

ABSOLUTE MAXIMUM RATINGS
2.5 Amp

6 Amp

Peak Inverse Voltage

Series

Series

20 Amp
Series

50V
75V
lOOV
l25V
l50V

lN5802
lN5803
lN5804
lN5805
lN5806

lN5807
lN5808
lN5809
lN5810
lN5811

lN58l2
lN5813
lN58l4
lN58l5
lN58l6

Maximum Average D.C. Output Current
@ TL
75'C, L %" ....
@ Tc = lOO'C ..
Non·Repetitive Sinusoidal
Surge Current (8.3ms) .. .
Operating and Storage Temperature Range ... .
Thermal Resistance 2.5A and 6A Series ...
20A Series ..

=

=

2.5 AMP
SERIES

6.0 AMP
SERIES

......... 2.SA .. .

20 AMP
SERIES

............ 6.0A ..... .
................ 20.0A

... ................ 3SA..

................................ l25A..
. 250A
...... --65'C to +l75'C ..
. .... ... See Lead Temperature Derating Curve ... .

..... ... 3.0'C/W

MECHANICAL SPECIFICATIONS

Typical Weight -

1N5802·1N5806

BODY A

lN5807·1N5811

BODY B

0.22 grams

Typical Weight - 0.75 grams

[ill]
247

_UNITRODE

1NS802-1N5806 1NS807-1NS811 1N5812-1N5816
MECHANICAL SPECIFICATIONS
DO-4

1N5812-1N5816

~ OO~
Max.
.405 .•

["'.OIOl
.430

·.:~i!ij~kk~.250
±.015

#10-~

Max

UNF.2A .066 M,n D!3

•

Part Identification: Type number printed on metal case.
Polarity: Cathode to stud end
Max. Weight: 7.0 Grams
Installation Precautions: Maximum unlubricated stud torque:
10 inch pounds
Thermal Resistance: 3.0·C/W

Dimensions in inches.

ELECTRICAL SPECIFICATIONS Cat 25°C unless noted)
Leakage
Current
@PIV
25·C
100°C

Maximum
Type

PIV

1N5802
1N5803
1N5804
1NS80S
INS806
1N5807
1N5808
IN5809
1N5810
IN5811
1NS812
1NS813
1NS814
1N5815
INS816

50V
7SV
100V
12SV
lS0V
SOV
7SV
100V
12SV
lS0V
SOV
7SV
100V
125V
lS0V

Forward
Voltage
Drop*

Typical Forward
Recovery Time
@ 1A Recover to 1V

Maximum Reverse
Recovery Time
IFI IRI

I REC

Typical Forward
Recovery
Typical Junction
Voltage
Capacitance
@lAtr=8ns
@-10V

.87S@lA

11'A

SOI'A

2Sn5, 0.5A-0.5A-0.05A

lSns

1.SV

lSpf

.87S@4A

51'A

1SOl'A

30n5, 1.0-tO-OolA

lSn5

1.5V

4Spf

.900@ lOA

1OI'A

7SOp.A

35n5, 1.0-1.0-0olA

lSns

tSV

200pf

'Pulse width = 250ms

Output Current vs. Case Temp.

Output Current vs. Lead Temp.
20

Z

!oJ
II<
II<

!oJ

;;:

;::

U
!oJ
II<
!oJ

"«
II<
!oJ

....

from Body

::>
u 4

""'.~

,-l=

--

"-.....

Z

5

.:0-

4

I
l=";~

~

-

~

'\.
"~

>
«
I

'"
ri

\
."'- f\

75

100

125

15

::>
u

;;:
;::

10

u

150

II<
!oJ

"«

175

LEAD TEMPERATURE (·C)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

"'J

5

""

'i-..
L_~~

[\

10

150

CASE TEMPERATURE (OC)

"

0

'"'" '\.

'"'"

6

\

®

~'"'

\

!::i

d

\

""-

\
248

12

:E

1'\

l= .. ··........,

o
125

L~nllh

from Body

'\.

..9
100

L = lead

l= .. -:\

>
«
I

o
Tl -

~ 6 AMP SERIES

20 AMP SERIES

\\

0

!oJ

II<
!oJ

""""' ~

So
50

'"'"
®

!oJ
II<
II<

II
...... '"

'\.

~\

25

":E0

3 _'"'

~

1\

~

L = Lead Length

5

0

I

2.5 AMP SERIES

,..~

Output Current vs. Lead Temp_
12

.""-

2

""~\

'\

o
25

50

75

100

125

150

0

175

175
TL -

LEAD TEMPERATURE (·C)

PRINTED IN U.S.A.

IN5802-1N5806

Typical Forward Current
vs. Forward Voltage
10

5

Typical Forward Current
vs. Forward Voltage
100

~ ~I/

2.5 AMP SERIES

/ / VI

.5

/

." ~

0:
0:

::J

o

t/fj

r-

.05

I

-'"

.02

/

01

.005

I

.002

J

II

~

I

g
...

2

z

t~

W

1

0:
0:

--

& i(}

I
-'" .2

II

10

...

I

Z

W
0:
0:

::J
0

l-'
iii

I

.1

.2

5

r-r
.2

I

.3

II

.05

il II

01

1 .2 .3 .4 5 .6 7 8 .9 1.0 1112 13
Vr - VOLTAGE (V)

r-r-

I

I I II

I

.02

001

V/ /

2

-"

:;:-

.05

IVI

g

r-l i" ."
-- r;~ "~I

a .5

i-~11

V/~

20

'/1//
II

I /
/ I

.02
.4

..-:;:;::;::::

20 AMP SERIES

50

~~ ~/

10

1IIIil

~ .2
w

100

20

IN5812-1N5816

Typical Forward Current
vs. Forward Voltage

6AMP SERIES

50

II/II
g

IN5807-1N5811

I

"'lJrl ~
~
:;:.

II

II

<&

5?

tfJ

-f.-~ I

:;:.

I

I

I

II

I

'1'2.34.5'6'7'8'91.0111t13141~.'

01

.5 .6 7 .8 .9 1.0 1.1 1.2 13
VI - VOLTAGE (V)

I

V F -VOLTAGE (V)

Typica I Reverse Current
vs. Voltage
.001

1"

-;ill

Typical Reverse Current
vs. Voltage

Typical Reverse Current
vs. Voltage
01

2.S,AMP SERIES

IA 1
T'l-~b
vV

02

01

20 AMP SERIES

.02

6 AMP SERIES

/'

.01
.2

~

...Z

,_f-

W

0:
0:

::J

u

~

.05

.5

1-1- f-f--

1
...

I-

1'5

''';''=25'C

f-f-

;;.'l

...

T=25°C
2

.... f- f-f10

50

~

100

::J
U

I

-

.2 20

Tn "!

10

I---..-

20

75

",.., T-+75"C

4 _,lJJc

T= +25'C

0:

0:

0:
0:

::J

1-1-1-

100

200

I-~~

130 120 1 \0 100 90 80 70 60 50 40 30 20 10
VOLTAGE IN % OF PIV

UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 86J.6540
TWX (710) 326-6509 • TELEX 95-1064

1DOC

a

/'

.-

I

1'5

'[ 10

I

.:

A-soc

I(

T _ +75 C

....

TTyr
130 120 lID 100 90 80 70 60 50 40 30 20 10 0
VOLTAGE IN % OF PIV

249

100

L

200

r1+125
1000
125

100

75

C

.-....--50

25

VOLTAGE IN % OF PIV

PRINTED IN U.S.A.

IN5802·1N5806

Reverse·Recovery Time Circuit

IN5807·1N5811

IN5812·1N5816

Characteristic Waveform
-<

t"

>-

D. U. T.
tREe

1

~!

1\
1\

N.I.
(coaxial)

100

5.000

~
~

500

'"

"z
;::

80

"~

'"

"'50

"'

"::>'"

::>

u

<1)40

"'~

100

::>
..

50

I.

Multiple Sur.. Current vs, Duration

Forward Pulse Current vs. Duration
10,000

1,000

1

SET TIME BASE
FOR 5 NSICM

NOTES:
1. Oscilloscope: Rise time ~ 3 ns; input impedance = 50 U.
2. Pulse Generator: Rise time ~ 8 ns; source impedance 10 t!.

!Z

l

I

...o

""

1'00

~

"20

T. MOUNT
@length =~

..

'fi::::=rJ~ri"led CircuIt

10

l,us

.5

lps

50

lOps
1001's
PULSE DURATION

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

1m,

lOms

I

2

51020

50

loo211
--' II

h.

oBs"

j

TYP.
2.2mm

j.-.7f~:~~~N'--or--.2~;5~~·_
fo-------1.~~~;mMr:,N·----~1

Dimensions in inches.

J, JTX, JTXV 'N5807-1N5811

BODY B

Dimensions in inches.

251

O!D
_UNITRODE

J, JTX & JTXV IN5802·1NS806

J, JTX & JT)N INS807·1N5811

ELECTRICAL SPECIFICATIONS (at 25°C unless noted)

Type

J, JTX, JTXV
1NS807
J, JTX, JTXV
IN5809
J, JTX,JTXV
IN5811
J, JTX, JTXV
IN5802
J, JTX, JTXV
INS804
J, JTX, JTXV
INS806

PIV

Minimum
Breakdown
Voltage
@ 100#A

SOV

60V

lOOV

nov

150V

160V

50V

60V

lOOV

nov

lSOV

160V

.875V Max.
@4A(pk)
.925V Max.
@6A(pk)

.8V Max.
@4A(pk)

SItA

lS0ltA

.875V Max.
@lA(pk)
.975V Max.
@2.SA(pk)

.8VMax.
@lA(pk)

1l'A

SOItA

Output CUrrent vs. Lead Temperature

1N5802-5806

10

l_lfa"

l

Lead L.~"h_

I
I
=;~~~~~;gth_

L=
from Body

\.

""'"
...........

l=%"

L

r\

"'" ""-

I"'---.

r--..

.........

L=~ ........ ~

I'-..

25

\

Tl -

75

100

"

"o

"

l _ ¥e"

1'.\

'~""........ ~\
:i
125

ISO

..
:;;

~

I - - ~ ..........

\.

\

""
..........

~

50

"'!Q

175

LEAD TEMPERATURE (CC)

o

25

12

\

4

~

2

""'"

m ••

= .000 7

~

I

............ 1 /

K
L = .250]'

~

"........

LL

..:....::: ~ ~ ~

"""---1--.1

6

:t--- ::::-- ::---...

= .750

1 L

0

4 .•

......

.500-' L

........

.375

25
50
75
100
125
150
*MAX. LEAD TEMPERATURE (0C)

3.6

2.'
1.2

175

*Maximum lead temperature in °C (Tt) at point ilL" from
body', (For maximum operating junction temperature of
175°C with equal two-lead conditions.)

~

-"'" ~

50
7S
100
125
ISO
Tl - LEAD TEMPERATURE ("C)

6

::l

~

\.

L

.

" 10

0:
UI

;~~:~~~

IN5809
IN5811

1

Z 18

14

= =
=
di/dt =6SA/l's min.
IF
IR
O.5A
, REC
O.OSA

'N5.07

20

o

"~
'10" ' "

\

!

rl

i= 16

r--...

f\

= =
=
di/dt =100A/lts min.
'F
'R
1.0A
, REC
O.lA

25ns

lN5801·5811

"'\

Maximum
Reverse
Recovery Time

30ns

Output Current vs. lead Temperature
12

o

Maximum
Reverse Current
@PIV
2S'C
100°C

Forward Voltage
@2S'C
@ 100'C

~
175

Characteristic Waveform

Reverse-Recovery Circuit

-0

t"

~

'REC

~

T

~
I,

SET TIME BASE
FOR 5 NS{CM
NOTES:
1. Oscilloscope: Rise time ~ 3nsi input impedance = son.
2. Pulse Generator: Rise time ~ 8nsi source impedance Ion.
3. Current viewing resistor, non-inductive, coaxial recommended.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
rwx (110) 326-6509 • TELEX 9S-1064

252

PRINTED IN U.S.A.

JAN & JANTX IN5802-1N5806

Typical Forward Current vs. Forward Voltage
JAN & JANTX lN5807-S811
.01

50

.02

.0 V; ~

5
...

/

2

Z

V

"'

0:
0:

,5

-f-

.2

II

.1
.05

.01

'I

I

/
.3

;;

.3

1

/ /
50

"'

~

2

(jf

y

I

100

10

.0 ~ =j:

V'/Y

120

.1

'I

.05

j

-~

.02

/,V

.002

I

/

/ /

.001
.1

.2

I

+12S'C

~

V

.

II II1/50

~so,lc

_.05
T

..5 .1
...
z
41
0:
0:

-+

,....V

B .5
I

-

= +2S'C

,.- r--- f-

'/

1

II

T

= +7S'C

T

= +12S'C

-~I-!-"
~,.-

10

1/

I

50

.3 .4 .5 .6 .7 .8 .9 1 1.1 1.2 1.3
V, -VOLTAGE (V)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

-

.01

I

/

/

.01
.005

-f-

=

100 90 80 70 60 50 40 30 20 ·10. 0
VOLTAGE IN % OF PIV

.001

'"

h~0'~
,~ f
~1Kl-

j-f-!$

::J

T

....- , /

Typical Reverse Current YS. Voltage
JAN & JANTX 1N5802-5806

I II II I
.2

i.-'

./

1000

1.1 1.2 1.3

1/

~

+7S'C

.....

Typical Forward Current vs. Forward Voltage
JAN & JANTX 1N5802-5806

"'~

=

II

I

/
II j

T
10

200

.6 .7 .8 .9 1
V. -VOLTAGE (V)

.5

= + 2S'C f-- f-

-" 20

.5

5

I--

T

I-- --I--~

::J

'I

/

I
.4

TrTT

0:
0:

.1

/

j

/ II

.1 .2

.2

-f-

/

A

.1

J j

. . . . . ., -/.i
I #:~ftI

::J

.02

/

VV
/'

"/

/ / ./V
/ / I I

10

'I

Typical Reverse Current vs. Voltage
JAN & JANTX 1NS807-5811

100

20

JAN & JANTX IN5807-1N5811

100

r

I

120

253

",

Y

-

I-'

Y

,.- V

I-'V

100 90 80 70 60 50 40 30 20 10 0
VOLTAGE IN % OF PIV

PRINTED IN U.S.A.

•

IN5812,lN5814,lN5816
JAN, JANTX & JANTXV

RECTIFIERS
Military Approved
High Efficiency, 20 Amp

FEATURES
• Qualified to Mll-S-19500/478
• Exceptional Efficiency
• Mechanically Rugged
• low Thermal Resistance
• JAN, JANTX and JANTXV Available

DESCRIPTION
This series is suited for use as a power
rectifier in switching regulator and high
frequency inverter/converter and other
appropriate equipment circuits where low
voltage drop and fast recovery times are
important.

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage

Type

50V
lOOV

JAN, JANTX, JANTXV IN5812
JAN, JANTX, JANTXV, IN5814
JAN, JANTX, JANTXV IN5816

150V
Maximum Average D.C. Output Current

@ Tc=lOO'C
@ TA=55'C
Non-Repetitive Sinusoidal
Surge Current @ 8.3mSec .

.20A
•••••••

H . . ••

5A

..400A

Thermal Resistance, Junction to Case .

• •••••••

Operating Junction Temperature .
Storage Ambient Temperature .

HH.HH.HH.

..H • • • • • • •

H

H

••• H

•• H

•••••

1.5'C/W

. -65'C to +175'C
-WC to +200'C

••••

MECHANICAL SPECIFICATIONS
J, JTX, JTXV lN5812, lN5814, lN581G

",015
.078

Max.
(unthreaded)

.437

r

.4oSl.BOO

Max.

Max .

00-4

~+'O!O1
.430

Notes:
1. Polarity Is cathode-to-stud.
2. All metal surfaces tin plated.
3. Maximum unlubricated stud torque: 15 inch pounds.
4. Angular orientation of terminal is undefined.

254

lliJJ
_UNITRDDE

JAN, JANTX, JANTXV lN58l2, lN58l4, lN58l6
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Minimum
Reverse
Breakdown
Voltage @ 100,..4

Peak
Inverse
Voltage

Type

J, JTX, JTXV lN58l2

SOV

60V

J, JTX, JTXV lN58l4

lOOV

nov

J, JTX, JTXV lN58l6

lSOV

l60V

Maximum Reverse
Recovery Time @
IF, h, bEe

35nsec 1.OA

-1.0A

.....

g
z

0:
0:

:>
(J

~

10

:>

~

;(

<

~

t

.:: 5

l00'C

.86V
MAX.

.95V
MAX.

lOIlA

750llA

l5nsec

2.2V

300pf

Maximum
Junction

Typical Reverse Current
VS. Reverse Voltage

Typical Forward Current
vs. Forward Voltage

// f/

~ 10

\

1\

...l;:

5

~

2

II III

~

:>

I

r--r-- rk~
'I-

~ 0.5
~

:\

II

02

.::: 0.1

\

0.05

0.02

:/

II

CJ

/

>-

z

"':i

I

I

a

.1
.2

~

.5

0:

If

-

0:

t
_01.

10

,I

20
50

I
--

r Pi
V

~TJ=+l2S'C

~

K=+IS0'C

:1
II

--

+100'C

I

.......
I

J
I--

I I

~

~

V, -

In 1.1 1.2 1.3 lA 1.5

REVERSE VOLTAGE 1% OF PIV)

VOLTAGE IV)

Reverse-Recovery Time Test Circuit

Characteristic Waveform
t"

~

~
D.U.T.

~

1,= 1A

I REC

N.I.
(coaxial)

=

.1A

1

'To

III

1

1

\

I,

= 1A

IJ
NOTES:
1. Oscilloscope: Rise time :0:;;; 3 ns; input impedance::: 50 U.
2. Pulse Generator: Rise time ~ 8 ns; source impedance 10 1L

UNITRODE ,CORPORATION· S FORBES ROAD
LEXI NGTON, MA 02173 ' TEL. (617) 861·6S40
TWX (710) 326-6509 • TELEX 95·1064

/

130 120 110 100 90 80 70 60 50 40 30 20 10 0

Ql .2 .3 A .5 .6 .7
Vf

T J -+2S'C

.OS

"'~

II

II

0.01
175

.OOS

~ p
7- KJ-.}J
"I-

,/

,..l.-t

;;' .01
oS .02

I

V

0:

(J

.001
.002

v. ~~

50

100
125
150
CASE TEMPERATURE I'C)

2S'C

Capacitance
@-10V

lOG

\

@ 20Apk

Maximum
Forward
Recovery
Voltage
@ lA tr = 8nsec

-O.1A

20

\

@ 10Apk

Maximum
Forward
Recovery
Time
@ lA Recovery to IV

Output Current
vs. Case Temperature

15

Maximum
Leakage
Current
@PIV

Peak Forward
Voltage

255

SET TIME BASE
FOR S NS/CM

T

PRINTED IN U.S.A.

IN6095
IN6096

POWER SCHOTTKY RECTIFIERS
25A, 30 and 40V

FEATURES
• Very Low Forward Drop
• Low Recovered Charge
• Rugged Package Design (DO-4)
• High Efficiency for Low Voltage Supplies

DESCRIPTION
Unitrode's series of Schottky barrier power rectifiers is ideally suited for output
rectifiers and catch diodes in low voltage power supplies. The Unitrode high
conductivity design, using a heavy copper top post and 4 point crimp, ensures cool
thermal operation and low dynamic impedance. Rugged design absorbs stress that
can damage glass-to-metal seal during installation and use.

ABSOLUTE MAXIMUM RATINGS (TCASE = 25·C)
lN6095
IN6096
Working Peak Reverse Voltage, VRWM . . . . . . . . . . . . . . . . . . . . • . . • . . • . . . . • . . . . . . . . • . • 30V .............................. 40V
DC Blocking Voltage, VR • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 30V .............................. 40V
Repetitive Peak Reverse Voltage, VRRM • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 30V .............................. 40V
Non-repetitive Peak Reverse Voltage, VRSM •.••••••• , • • • • • • • • • • • • • • • • • • • • • • • • • • • • 36V .............................. 48V
Average Rectified Forward Current, 10 . . .... .. . . . . . .... . . . . . ...... . . . .. . . . . . . ... ....... ... 25A (T, = 70·C) ........... .
lOA (T, = 105·C)
Non-repetitive Peak Surge Current (8.3 mS), IFSM • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
400A
Operating and Storage Temperature Range, Tio Ts '" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65 to + 165·C ........... .
Peak Operating Junction Temperature, TjcPk ) •••••••••••••••••••••••••••••••••••••••••••••••
+150·C
Thermal Resistance Junction to Case, R. JC • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • . • •
2·C/W Max.

MECHANICAL SPECIFICATIONS

IN6095, IN6096

A~Qi~
~~~.~~

--- H---'

G·

A
B

C
0

-F

G
H

.078
.437
.405
.800
.430
.250
.424
.066

ins.
MAX.
± .015
MAX.
MAX.
± .010
MAX.
MAX.
MIN. DIA.

00-4

mm
1.98 MAX.
11.10 ±0.38
10.29 MAX.
20.32 MAX.
10.92 ± 0.25
6.35 MAX.
10.77 MAX.
1.68 MIN. DIA.

Notes:
1. cathode is stud.
2. Maximum unlubricated stud torque: 10 inch pounds.
3. Angular Orientation of terminal is undefined.

2/80

256

llilJ
_UNITRDDE

lN6095

lN6096

ELECTRICAL CHARACTERISTICS (TeAsE=25°C)
Characteristic

Maximum Instantaneous
Reverse Current

Maximum Reverse Current
Maximum Instantaneous
Forward Voltage

Capacitance

Symbol

Both Types

Units

iR

250

mA

IR
VFM

250
0.86

mA
V

VFM

0.60

V

Ct

6000

pF

Conditions

VR= Rated
Te = 125°C
Pulse Width = 300ILS
Duty Cycle'" 2 percent
VR= Rated, Te = 125°C
IF = 78.5A
Te = 70°C
IF = lOA
Pulse Width 300ILS
Duty Cycle'" 2 percent
VR= l.OV

Typical Instantaneous IF vs VF
100

I
I
T,I~ +!2S'C

90
80

""-

+j' ~ ;2S'C
1"-...,

so

~ so

I
-'" 40
30
20

/

10

,.,

./

V
o

0.2

/

20

~

I

T,- +125°C

S

/

T, ~ +2S'C

1.0
O.S

0.2

0.8

IN6096

~

II'

0.1

1.0

VF - VOLTS

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

+12S'C

IN6095

I
1/
0.6

IN6095

~7'

10

./

0.4

_T,

"'/ I

~,~ _16S'C

60

=

100

II
I

I II I
J't. L
I
"""f,'J
I I 1/
I II
I
I
I I
I I I
1/ I

70

o

Typical Instantaneous I. vs V.
200

I

I

257

,

10

VV
IN6096

/

T,

lj'

o

~

/

./

IS

+25°C

20 2S 30
Vf!, - VOLTS

35

40

45

so

PRINTED IN U.S.A.

IN6097
IN6098

POWER SCHOTTKY RECTIFIERS
50 Amp, 30 and 40 Volts
FEATURES
• Very Low Forward Drop
• Low Recovered Charge
• Rugged Package Design (00-5)
• Low Thermal Resistance
• High Surge Current

DESCRIPTION
Unitrode's series of Schottky barrier power rectifiers is ideally suited for output
rectifiers and catch diodes in low voltage power supplies. The Unitrode high
conductivity design, using a heavy copper top post and 4 point crimp, ensures cool
thermal operation and low dynamic impedance. Rugged design absorbs stress that
can damage glass-to-metal seal during installation and use.

ABSOLUTE MAXIMUM RATINGS
1 NS09S

lN6097

... 30V ..
... 30V ..
.... 30V ..
... 36V ..

Working Peak Reverse Voltage, VRWM .
DC Blocking Voltage, VR
Repetitive Peak Reverse Voltage, VRRM .
Non-repetitive Peak Reverse Voltage, VRSM
Average Rectified Forward Current, 10 .....

.......... 50A (TC = 70'C) .
20A(Tc =105'C)
SOOA
-65 to +175'C ..
+175'C
................... I'C/WMax...

Non-repetitive Peak Surge Current (8.3 mS), I.SM .
Operating and Storage Temperature Range, Tio T"9 .... ..
Peak Operating Junction Temperature, Tj(pkl ............ .
Thermal Resistance Junction to Case, RSJC .
ELECTRICAL CHARACTERISTICS
Characteristic

Maximum Instantaneous
Reverse Current

Maximum Reverse Current
Maximum Instantaneous
Forward Voltage

Capacitance

(T CASE

. ........ 40V
..40V
..40V
..... 48V

= 25'C)
Symbol

Both Types

Units

Conditions

IROM

250

rnA

Vo = Rated,
Tc = 125'C
Pulse Width = 3OOI'S,
Duty Cycle:;;; 2 percent

VR = Rated, TC .:= 105'C

10

250

rnA

V. M

0.86

V

I. = 157A
Tc =70'C

V. M

0.60

V

I. = lOA
Pulse Width 3OOI(s
Duty Cycle:;;; 2 percent

C,

7000

pF

VR = l.OV

MECHANICAL SPECIFICATIONS
1N6097. 1N6098

0

1'4·28

"'~

ins.
225' .005
060 MIN

C

396 MIN FLAT

6670lA MAX
090 MAX

677' 010
375 MAX

140 MIN DIA

"
N

16.94 CIA. MAX
2.29 MAX

1720' 025
953 MAX

3.56 MIN OIA

1000 MAX

2540 MAX

450 MAX

1143 MAX

438' 015

1113·038

078 MAX

Nole..
1. Cathode Is stud.
2. Maximum un lubricated stud torque: 30 inch pounds.
3. Angular orientation of terminal is undefined.
4. Maximum tension (90') anode terminal 15 pounds for 30 seconds.

3/79

1 52MIN

396·051

156 MIN FLAT

F

UNF·2A

'572-013

156' 020

G

DO.5

198 MAX

[ill]
258

_UNITRDDE

1N6097, 1N6098

Typical Forward Current
vs Forward Voltage

Typical Reverse Current
vs Reverse Voltage

om

)JJ,,~I.,J

:;'1')'\"1i''''7'

200

ISO

// /

100

0.02

f- f-f-

::c

0.1

....

0.2

.§.

g

Z

50

w

....

a:
a:

Z

w
Q;
Q;

II I II

I

~

10

V

/

a:

I

-"'
1

lA
0.2

II

J

I II

I

I
0.3

0.4

0.5

10
20

I

V

IJ)

/

/ /

V/

,/

,/'

/'

/

.......

/
./

125C

/'

./

0.5

"'a:
iii"'

I

25C

/'"

:J
0

/

20

:J
0

./

0.05

II

/"

--

150C

/

V"

V

50
100

0.6

0.7

0.8

0.9

1.0

100 90

1.1

80 70

V. -

V,-VOLTAGE (V)

60 50

40 30

20

10

REVERSE VOLTAGE (% OF V.WM)

MECHANICAL SPECIFICATIONS
1N6097,1N6098

FLEXIBLE TOP LEAD (OPTIONAL)
Add an "F" Suffix to Part Number.

Standard JEDEC

I

N

~, ~ 11:C1=M1:::izz~:[1
--1'1
\
l~
T

D0-5 with Flexible Lead

..

F.....
/
Cable7~95/36

......

T

~I

...-

P

M

N

1.500;!: 100

38.10:!: 2.54

475:!: 250

12.07:!: 6.35

425:t 025
678:!: 320

R
S

,205:t .005 OIA.
075:!: 010

5.21:!: 0.13 DIA.
1.91 ~ 0,25

.1 MIN

2.54 MIN

""'"
IN<

Note: Consult Factory for Non-standard Lead Lengths.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

259

PRINTED IN U.S.A.

•

POWER SCHOTTKY RECTIFIERS

8D41

60A Pk, 45V

FEATURES
• Very Low Forward Drop
• Low Recovered Charge
• Rugged Package Design (00-4)
• High Efficiency for Low Voltage Supplies

DESCRIPTION
The SD41 has a Schottky barrier junction
and is ideally suited for output rectifiers
and catch diodes in low voltage power
supplies. The Unitrode high conductivity
design, using a heavy copper top post and
a 4 point crimp, ensures cool terminal
operation and low dynamic impedance.
Rugged design absorbs stress that can
damage glass-to-metal seal during installation and use.

ABSOLUTE MAXIMUM RATINGS (TCASE = 25°C)
Working Peak Reverse Voltage VAWM ........................................................... 45V·
DC Blocking Voltage, VA .......................................................................... 45V*
Average Rectified Forward Current, 10 ......................................................... 30A
Peak Repetitive Forward
Current (Rated VA, Square Wave, 20 KHz,
50 percent Duty cycle), IFAM .............................................................. 60A
Non-repetitive Peak
Surge current (8.3 mS), IFSM ........................................................... 600 A
Storage Temperature Range, Tst ............................................. - 55°C to + 165°C
Junction Operating Temperature Range, Tj ................................ -55°C to + 150°C
Thermal Resistance, Junction to Case, RO JC ........................................... 2.0°C/W
"'See curve of

VRCMAX)

Rating vs Case Temperature

MECHANICAL SPECIFICATIONS
SD41

A~Q!~
-

t!~g~

--- ---.
H'

G·

_.

F

mm

ins.
A

.078 MAX.
.437, .015

1.98 MAX.
IUO ±0.38

8
C .405 MAX.
o .800 MAX.
E .430 ± .010
F .250 MAX.
G

.424 MAX.

H

.066 MIN. OIA.

00-4

10.29 MAX.
20.32 MAX.

10.92' 0.25
6.35 MAX.
10.77 MAX.
1.68 MIN. OIA.

Notes:
!. Cathode is stud.
2. All metal surfaces tin plated.
3. Maximum unlubricated stud torque, 10 inch pounds.
4. Angular orientation of terminal is undefined.

2/80

260

ruJJ
_UNITRDDE

SD41

ELECTRICAL CHARACTERISTICS

(TeAsE

Characteristic

= 25°C)
limit

Symbol

Maximum Instantaneous
Reverse Current

iR

Maximum Instantaneous
Forward Voltage

VF

Capacitance
Voltage Rate of Change

TJUNCTION

/;
20

0/

V

pF

2000
700

V/I- -

VOLTS

\.0

o

\.2

~

/

/

/

•

)~

V

V

tV

II

V' /
,'l:
0'0 V
V'
)(
./
I

V
20

tr

1/

,':i

«

V

V ....

lOO

I

IJJ

35V
T, = 125°C
Pulse Width = 400l-

IIV"

5 10 l5 20 25 30 35 40 45
V, - VOLTS

VA (MAX) Rating versus
Case Temperature

45

.........

40

I'-...
r---....

~

r---....

30

I

~
20

10

o
-50

25

75

125

150

TEMPERATURE (OC)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

261

Printed in U.S.A.

POWER SCHOTTKY RECTIFIERS

8D51

120 Amp Pk, 45V

FEATURES

DESCRIPTION

•
•
•
•
•

The SD51 has a Schottky barrier
junction and is ideally suited for output rectifiers and catch diodes in low
voltage power supplies. The Unitrode
high conductivity design, using a heavy
copper top post and a 4 point crimp,
ensures cool terminal operation and
low dynamic impedance. Rugged
design absorbs stress that can damage
glass-to-metal seal during installation
and use.

Very Low Forward Drop
Low Recovered Charge
Rugged Package Design (00-5)
High Efficiency for Low Voltage Supplies
Available with Flexible Top Lead

ABSOLUTE MAXIMUM RATINGS

(TCASE

=25'C)

....... 45V*
Working Peak Reverse Voltage, VRWM
DC Blocking Voltage, VR ...... .
............ 45V·
Peak Repetitive Forward
Current (Rated VR, Square Wave; 20 KHz,
........ 120A
50 percent Duty Cycle), IFRM ........ .
Non-repetitive Peak
. ..... BOOA
Surge Current (8.3 mS), I FSM •..•...
Storage Temperature Range, T. tg ....
. ................................ -5S'C to +16S'C
Junction Operating Temperature Range, Tj ................................................ -5S'C to +lS0'C
Thermal Resistance, Junction·to-Case, RSJC ..................
.......... 1.0'C/W
·See curve of

VR{MAX)

Rating vs case Temperature

MECHANICAL SPECIFICATIONS
SD51

00-5

in••

.225:.005
C

o
E
F
G
H

11.·28
UNF·2A

K
l

.060 MIN.
.156:!: .020
.156 MIN. FLAT
.667 alA. MAX.
.090 MAX.
.677:!: .010
.375 MAX.
. 140 MiN. OIA.
1.000 MAX.
.450 MAX.
.438:!: .015
.078 MAX.

S.72:!:O.13
1.52 MIN.
3.96:!: 0.51
3.96 MIN. FLAT
16.94 OtA. MAX.
2.29 MAX.
17.20:!: 0.25
9.53 MAX .
3.56 MIN. OIA.
25.40 MAX.
11.43 MAX .
1 US + 0.38
1.98 MAlt

Nat•• :

1.
2.
3.
4.

Cathode is stUd.
All metal surfaces tin plated.
Maximum unlubricated stud torque: 30 Inch pounds (35 kg. cm).
Angular orientation of terminal is undefined.

2/80

262

OJJJ
_UNITRDDE

5051
ELECTRICAL CHARACTERISTICS (T CASE

=

Characteristic

25'C)

Symbol

Limit

Units

200

mA

Maximum Instantaneous
Reverse Current

iR

Maximum Instantaneous
Forward Voltage

vF

0.60

V

Flexible Top lead Option

vF

0.65

V

Maximum Capacitance

C,

Maximum Voltage
Rate of Change

dvldt

4000
700

200
150

~

......

40

r-.... r-...

....

"13

§?

'"
::>

"...,.I

u

20

vR

= 35V

10

10

'"
0:
0:

::>

'"'"
'"~
0:

~

II

I

-"

0.3

10
20

0.4

0.5

0.6

0.7

0.8

0.9

1.0

V,-VOLTAGE (V)

150

. /~ V

./ ./

./

/'

/'

./

12S¢

1.1

200

J /
45

40

30

20

10

Vp.-VOLTAGE (V)

CASE TEMPERATURE I"C)

MECHANICAL SPECIFICATIONS
SD51F

FLEXIBLE TOP LEAD (OPTIONAL)
Add an "F" Suffix to Part Number.

Standard
JEOEC
00-5 Package

r-----N-----I

(vIK=rMl~z[j
fW \=,/
Sleevj~

DO-5 with Flexible Lead

ins.

M

R
S

1.500'" .100
.475'" .250
.425'" .025
.678'" .320
.205 ± .0050IA.
.075'" .0lD
.1 MIN.

38.10'" 2.54
12.07'" 6.35
10.80'" 0.64
17.22'" 8.13
5.21 ± 0.13 OIA.
1.91 ... 0.25
2.54 MIN.

"""
LMd

Note: Consult Factory for Non-standard lead lengths.

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON" MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
.

263

:-

TJ=lSO°C

50
100

I
0.2

55"~-

25°C f---

0:

I

II

1

o

...z
u

= iJ1 '"Pr-fr'"
'"
II

125

Typical Reverse Current
vsVoltage

VII
- ....'

75

VII'S

II J II

20

,:

25

= 5.0V

g

-II

-50

VR

= 3001'5
= 1 percent

:<

0:
0:

;;:

'"

pF

50

$
....
z

30

~

g

=
=

1/

/1/

100

........

= 4001'5
= 1 percent

iF
60A
Tc
125'C
Pulse Width
Duty Cycle

Typical Forward Current
vs Forward Voltage

VRIMAXI Rating vs
Case Temperature

45

Conditions

=
=

vR
35V
Tc
125'C
Pulse Width
Duty Cycle

PRINTED IN U.S.A.

DUAL POWER SCHOTTKY RECTIFIERS

80241

30 Amp Pk per diode, 45V

FEATURES
• Very Low Forward Drop
• Low Recovered Charge
• Rugged Package Design CTO-3J
• High Efficiency for Low Voltage Supplies
• Dual Schottky Rectifiers in a Single Package

DESCRIPTION
The SD241 has two Schottky barrier
juntions arranged in a common cathode configuration and is ideally suited
for output rectifiers and catch diodes
in low voltage supplies.

ABSOLUTE MAXIMUM RATINGS (TCASE = 2S·C) Per Diode
Working Peak Reverse Voltage VRWM ........................................................... 45V
DC Blocking Voltage, VR •••• , ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 45V
Average Rectified Forward Current, 10 ......................................................... 30A
Non-repetitive Peak
Surge current (8.3 mS), I FsM ............................................................ 400A
Storage Temperature Range, T" ............................................... -55·C to + 175·C
Junction Operating Terrrperature Range, Tj •••••••••••••••••••••••••••••••• -55·C to + 150·C
Package Thermal Resistance, Junction to Case, RIIJC ............................... 1.4·C/W

MECHANICAL SPECIFICATIONS
NOTE:
Leads may be soldered to within
1111" of base provided temperature·
time exposure is less than 260'C
for 10 seconds.

SD241

ANODE 2 .o____
~+-I-'1-11144--'0 ANODE!

T0-3

CASE (CATHODE)

J

K

ins .

A

ANODE 2

•
C

F

L
F

.875
.135 MAX.

.350'j: .100
.312 MIN.
. 215 ..... 010
.430 ± .010
.156:!:: .005
.18S MAX RAO.
. 525 MAX. RAD.
. 665 ± .010

M
N 1.187:t' .010
P .0405'" .0025

22.23
3.43 MAX .
8.89 .... 2.54
7.92 MIN .

546'" .254
10.92 ± .254
3.96:t .127
4.78 MAX. RAO .

13.34 MAX. RAO .
16.89 ± .254
30.15 ± .254
1.03 ± .064

Noles: All metal surfaces tin plated.

2/80

264

[ill}
_UNITRaCE

ELECTRICAL CHARACTERISTICS (T CASE

5D241

= 25°C) Per Diode

Characteristic
Maximum Instantaneous
Reverse Current

Maximum Instantaneous
Forward Voltage

Symbol
iR

VF

Limit

Units

100

mA

V.
35V
Tc =125'C
Pulse Width = 4001'5
Duty Cycle = 1 percent

.47

V

iF
IDA
Pulse Width = 300l'S
Duty Cycle = 1 percent
Tc = 12S'C

.60

V

iF = 20A
Pulse Width = 300I'S
Duty Cycle = 1 percent
Tc = 12S'C

Conditions

=

=

Maximum Capacitance

C,

2000

pF

V. = S.OV

Maximum Voltage Rate of Change

dvldt

1000

viI'S

v. = 35V

•
Typical Forward Current
YS Forward Voltage

Typical Reverse Current
vs Reverse Voltage

300
200
100

:<

.s

50

r-'\' ~

"'
'"'"

20

"'rn

10

:l
U

-~

12S'C

"'>'"
"''"

2S'C

V
~

o5

~

~ IJ

",'3

V

1I Ii

;,
~ {>~~
J'i

II

lL

tI1

10 15 20 25 30 35 40 45
VF - REVERSE VOLTAGE (V)

V,- FORWARD VOLTAGE (V)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

~V V
II

~

I

~

~

'\.');

V'

~

0.1 .2 .3 .4 .5 .6 .7 .8 .9 1.01.11.21.31.4

V

VII

~

z

V

c§S) I '

~V

265

PRINTED IN U.S.A

SES5001-SES5003

RECTIFIERS
High Efficiency, 2A

FEATURES
Fast Recovery Times
o Low Forward Voltage
o Small Size
o Convenient Package

DESCRIPTION
An axial leaded power rectifier useful
in many switching applications.
Particularly suited where very fast
recovery and low forward voltage are
required.

o

ABSOLUTE MAXIMUM RATINGS
Peak I nverse Voltage, SES5001 ...................................................................................50V
Peak Inverse Voltage, SES5002 .................................................................................. 100V
Peak Inverse Voltage, SES5003 .................................................................................. 150V
Maximum Average D.C. Output Current at TL = 75·C, L=3/8" .......................................................... 2A
Non-Repetitive Surge Current at 8.3mS ............................................................................ 35A
Thermal Resistance, @ L=3J8" .............................................................................. . 38·C/W
Operating and Storage Temperature Range .............................................................. - 55·C + 175·C

ELECTRICAL SPECIFICATIONS
Type

PIV

SES5001
SES5002
SES5003

50V
100V
150V

"Measured in circuit iF

Maximum
Forward Voltage (VF)
@
TJ =2S·C
TJ =100·C
.975V
@
lA

.895V
@
lA

Maximum
Reverse Current (lR)
@PIV
@TJ =2S·C @ TJ =100·C
2"A

50"A

Maximum
Reverse
Recovery
Time"
100nS

= .5A,IR = 1.0A, IREC = .25A

MECHANICAL SPECIFICAtiONS
SES5001-SE$S003

.7W~~~'

BODY A

-+- .2~~~~X._

r-____

1.~~~:~N.

_ _ _ _-I

[ill]

_UNITRODE

1/10

266

SES5001-SES5003

Output Current
vs. Lead Temperature

1
L

~

'"

L=Vo"

............

""-

L _ 3/8"

""-t-L=14"

Typical Forward Current
vs, Forward Voltage

//. V./

1,-

[LV

T,

"

~

.............

vl/

.2

VII

1/.0

~ .1
0:

~,

I

_"'" .02

'\.

""'" ...........

~
....

z

II

UJ

(J

:J

0:
0:

0

J{f

0

175

100

0:
0:

r--

:J

o

UJ

~
:J

..

--r--

100

so
10
.Ips

.5

;::
«
0:

w

T

H- j.-- ....

+7S'C

.....
~:>--.....
T
+12S'C

rt

J

100

80

60

40

20

VOLTAGE IN % OF PIV

":J
...0

I"

BO

60

'"""'"

~

0:

-----

II
=

Multiple Surge Current
vs, Duration
100

z'-'
SOO

[ [

120

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.11.21.3
Vf. - VOLTAGE (Vj

~
~ 1,000
UJ

=2S'C

.5

so

Dura~~~a:~r ~~~~R~a:::~ri~~Spu,se

5,000

j.--e-e-

10

Forward Pulse Current
VS. Duration
10,000

.1

I
-"

fI

I

.001

i-"

.05

TJ

1

/ II

.002

v£

.01

1'-' ....'

I

.005

50
75
100
125
150
Tl -LEAD TEMPERATURE {'C}

/1
1-....

/

.01

,\

1.)

$ ~/°(J
~:: ~ j

a.05

~
25

.5

~
....
z

'" ""-

~:tJ.d

k.~

~) i -

~

.001

10

1,,-

Ir

Typical Reverse Current
vs. Voltage

Ul

r---

t-

----

so

lO~s
lOOJl-s
PULSE DURATION

1m.

40

~

~

TlMOUNT
@ Length

...........

20

t--

= lffl"

==+===tp'1"ted Circut --

5

1

lOms

10 20

2

50

100 200

500

1000

CYCLES AT 60 Hz SINE WAVE

Reverse-Recovery Circuit

+
_

-=-

25Vdc
(APPROX.)

In

NOTE 3

OSCILLOSCOPE
NOTE!

NOTES:

1. Oscilloscope: Rise tlme<3n5; input Impedance = 502.
2. Pulse Generator: Rise time<8nS; source Impedance 10Q.
3. Current viewing resistor, non-Inductive, coaxial recommended.

UNITROOE CORPORATION, 5 FORBES ROAD
LEXINGTON, MA 02173 ' TEL (617) 861-6540
TWX (710) 326-6509 ' TELEX 95-1064

267

PAINTED IN U.S.A.

SES5301-SES5303

RECTIFIERS
High Efficiency, 5A

DESCRIPTION
An axial leaded power ractifier useful
in many switching applications.
Particularly suited where very fast
recovery and low forward voltage are
required.

FEATURES
• Low Forward Voltage
• Fast Recovery Times
• Small Size
• High Surge

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, SES5301 ...................................................................................50V
Peak Inverse Voltage, SES5302 .................................................................................. 100V
Peak Inverse Voltage, SES5303 .................................................................................. 150V
Maximum Average D.C. Output Current at TL = 75·C, L = 3/8" ........ .................................................. 5A
Non·Repetitive Sinusoidal Surge Current at 8.3mS .................................................................. 110A
Thermal Resistance at L =3/8" .............................................................................. . 20·C/W
Operating and Storage Temperature Range ............................................................ - 55·C to + 170·C

ELECTRICAL SPECIFICATIONS

Type

PIV

SES5301
SES5302
SES5303

50V
100V
150V

Maximum
Reverse Current (lR)
@PIV

Maximum
Forward Vollaga (V F)
@
TJ =2S·C

TJ =100·C

@T J =2S·C

@TJ =100·C

0.975V
@
5A

0.895V
@
5A

5JAA

150JAA

Maximum
Reverse
Recovery
Time"

100ns

MECHANICAL SPECIFICATIONS
SESS301-SES5303

BODYB

[ill]

1/80

268

_UNITRaCE

SES5301-SES5303

Output Current
vs. Lead Temperature
10

,I

Typical Forward Current
vs. Forward Voltage

'" I/o"\. Hr
1

'\

~/

L

~

5:

!z
"'0:0:

L_

~'''''

4

50
TL -

.02

J---

//; V'j

...

2

/

0:
0:

a

r\

I

\

~

.5

r-'-'i "

'" .2

,

1..'

,

II

1-'

.02

lJj

01

175

~

...z

I I

I

r--- r--. ..........

200

/.

,..'

1000

..

100
50

10

1,£

i'

n

-- -50

100,£

= +lOO·C

I I I L

T = +12S'C

---

I' 1 1 I I
100
aD
60
40
20
VOLTAGE IN % OF PIV

Multiple Surge Current vs. Duration
100

Dura~f1o~a{~r ~U~~~R~~:~~j~~SpUlse

10,£

T

'"

VOLTAGE (V)

1 1

.5

.1,£

~J 'I ~7iC

120

I"

"'so
z

'" ,
.......,

.
...

;:

0: 60

-....

::>

""'~
::>

I-

--

-

100

1-1

Forward Pulse Current vs. Duration
5,000

10
20

-"

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.01.11.21.3

vr -

--

+25·C

::>

"I

10,000

5:
!Z 1,000
::!0: 500

:1, =

'--

::!0:

'I

~tJ/~
.r'/- ~iil

.05

~~

100
125
150
75
LEAO TEMPERATURE (OC)

.1

VI j f

/ II

-so·e

.2

'/ /'j

5:

Vf 1 1
T;::::

10

...z

L="'~

25

50

1,-

\

"":""""

.01

'r--

"\

" i'-..

::>

"I

T,

Typical Reverse Current
vs. Voltage

100

'::>"

I"

0:

r--.. r--

...o

'" '0

=

80

"''"a:

60

z

DUration for Non-Repetitive Pulse

"'
u

100

I I

I I

Peak Half Sine Current

"::>

40

"0
;f'.

20



..........

50

.5

I'

.........

1 2

10"S
100"S
PULSE DURATION

ImS

"'

..J

"'...'"J:

.25

I

e:

...................

---

so 100 200

I-

SOO 1000

CYCLES AT 60 Hz SINE WAVE

Reverse-Recovery Circuit

son

.... ~ 1---

1.0
.5

«
:;:

r---.....

10 \l

2.5

<5

"'"-~

100
80
60
40
20
VOLTAGE IN % OF PIV

10 20

10mS

Thermal Impedance
vs. Pulse Width

zu

125°C

ill I I

~

«

r-...

=:".

--

Multiple Surge Current vs. Duration

Forward Pulse Current vs. Duration
10,000

TJ

120

.1 .2 .3 .4 .S .6 .7 .8 .9 1.0 1.11.21.3
TEMPERATURE ('C)

~=±

::J

I

u

L,
II
111 ,-' ,-'

.05

.01

y.
II

ia:'5

f-I-

J , .

r-

>-

fi"
...

~

I' I

.1
.2

I/. V,
~~

V'f
T J =:::-50·C

IJ.V

~
z

"'

~

......... ~

2SVdc
(APPROX.)
1

,;'

~?

NOTE3

V~

.1

rue: .05

+
_
-=-

NOTES:

/

.01.02 .OS.I.2
tp -

.S 1 2

S 10 20

so 100200

1. Oscil/oscope: Rise time ~ 3nS; input impedance = 50n .
2. Pulse Generator: Rise time ~ 8nS; source impedance lO!!.
3. Current viewing resistor, non-inductive, coaxial recommended.

1000

PULSE WIDTH (mS)

UNITRODE CORPORATION. S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6S40
TWX (710) 326-6509 • TELEX 95-1064

271

PRINTED IN U.i;.A.

SES5401C-SES5403C

RECTIFIERS
High Efficiency, 16A Center-Tap

DESCRIPTION
The SES5401C Series, in the economical,
convenient TO·220 package, is specifically
designed for operation in power switching
circuits to frequencies in excess of
100KHz. The series combines two high
efficiency devices Into one package,
simplifying installation, reducing heatslnk
requirements and the need to purchase
matched components.

FEATURES
• Low Forward Voltage
• Fast Recovery Times
• Economical, Convenient TO·220 Package
• Low Thermal Resistance
• Mechanically Rugged

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, SES5401C ..................................................................................50V
Peak Inverse Voltage, SES5402C ................................................................................. 100V
Peak Inverse Voltage, SES5403C ................................................................................. 150V
Maximum Average D.C. Output Current
@Tc
125·C ............................................................... 16A
@TA = 25·C .....................................•........................... 3A
@TA = 25'C(Note 1) ......................................................... 10A
Non·Repetitive Sinusoidal Surge Current, 8.3mS .................................................................... 70A
Thermal Resistance, Junction toCase,9J .c ................................................................... . 1.75·CIW
Thermal Resistance, Junction to Ambient, 9 J .A .•..••••.•.••.•.••......•.....•....•...•...•.•••.•.•.•••••••.•.•• •60·C/W
Operating and Storage Temperature Range ............................................................ - 55·C to + 150'C

=

NOTE 1.

Using Wakefield Type 295 heatsink with convection cooling. For more
definitive data refer to the Output Current vs. Temperature Curves on this datasheet.

ELECTRICAL SPECIFICATIONS

Type

PIV

SES5401C
SES5402C
SES5403C

50V
100V
150V

Maximum
Forward Voltage (VF)
@
TJ =2S'C

Maximum
Reverse Current (I R)
@PIV

TJ =100'C

@ TJ =2S'C

@ TJ =100'C

5""

150""

0.945V @ 8A

1.025V @ 8A

Maximum
Reverse
Recovery
Time"

Typical
Forward
Recovery
Voltage
@1A
t r =8nS

100nS

1.4V

"Measured In circuit IF=O.5A,IR=1.0A,I REC=O.25A

MECHANICAL SPECIFICATIONS
SES5401C-SES5403C

SEATING
PLANE

.,"·• ",..... "... ..........",. .........
MILLI ITE••

A

j

'/ ~U

SECTA.A

--J

. ! ...
~

Pin 1

Pin 3

14.23

II. .
15.17

c

'.50

0

0.51
3.531
2.29

....

•
G

H

Pin2

J

&
Tab

K
L
N
Q

•

5
T

1.1-4
3.733

IMeMU

0.U5

....

0.140

.....
,.31
.....
•.'.54" ....•.»
,... ,..,.... .....
5.1. .... oa
'.n
6.3.
0.&4

12.10

14.21

1.14

1.77

0.119

0.015
0.045

0.110
0.100

1.14

TO·220

0.045

0.110

a.IM5
0.147

.....
.....
.....

0.110

..........
0.070

0.110
0.115
0.270

[lliJ
1/80

272

_UNITRDDE

SES5401C-SES5403C

Output Current
vs. Temperature

Typical Forward Current
vs. Forward Voltage

18

100

Z

12

x
x

10

.

:J

TJ

I..iI ~~j::.

20
14

.2

.IV.

l/,V.

~

I

.2

e-~fil/

-"

.1

l'l/

t-

Z

I

a:
a:
:0
u

UJ

-"

1

.5

.05
.02
.01

f-+--;.
II

"'
0:
0:

11f--

I

KJ~O

--

In

/;

'- ...'

I

5.000
1.000

~

-........

500

TJ

......

100
50

= -,

1-1-

75°C

, III

1000

r

~J i-+; 10

H

TJ

==

I-f-

C

I

..L.125~C

DB

1 I I I I

120

100

80

60

40

20

VOLTAGE IN % OF PIV

VOLTAGE (V)

Multiple Surge Current VS. Duration

J.J.

-.........

i"r'"

25"C
••

10
20

~
200

1/11

100

Peak Half SIne Current vs.
Duration for Non-Repetitive Pulse

t--

=

I-

100

Forward Pulse Current vs. Duration
10.000

J

j/

U

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.01.11.21.3
V, -

f-±:t-+- r-'-:'

i-;.

:J

8!J u

/1:;: ....-

I1I1

t-

Z

== -SO"C

j

.1

~V

10

C>

IA

.02

50

16

~

Typical Reverse Current
vs. Voltage
.01

-- --

"

80

a:

60

z
>=
«
UJ

"

I. . .

~

if)

r--....

'~

IX

:0

.......

40

"-

o

o~

20

-r--

~

10
.5

50
10~S

1
lOOpS

1mS

2

10mS

10 20

SO 100 200

500 1000

CYCLES AT 60 Hz SINE WAVE

PULSE DURATION

Thermal Impedance
vs. Pulse Width

Reverse-Recovery Circuit

son

2.0

~l

~I-

1.0

./

.4

1--'1-"

j.-""

+
:::::::

Vi-'"

.2

(A~~~~~) 0-----,
1U
NOTE]

~

.1
.04

10

OSCILLOSCOPE

NOTEI

/

g

.02
,.01.02 .05.1 .2
tp -

.5 1 2

5 10 20 50 100 200

NOTES:
1. Oscilloscope: Rise time ~ 3nS; input impedance = 500.
2. Pulse Generator: Rise time ~ 8nS; source impedance lOn.
3. Current Viewing resistor, non-inductive, coaxial recommended.

1000

PULSE WIDTH (mS)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

273

PRINTED IN U.S.A.

SES5601C
SES5602C
SES5603C

RECTIFIERS
High Efficiency, 25A Center-Tap
FEATURES
• Low Forward Voltage Drop
• Fast Switching Speed
• Convenient Package
• High Surge Capability
• Low Thermal Resistance
• Mechanically Rugged T0-3 Package
• Available as Posillve or Negative Center·Tap

DESCRIPTION
The SES, super·fast recovery, rectifiers are
specifically designed for operation in
power switching circuits. Their super·fast
recovery lime and very low forward
voltage drop make them particularly
efficient in most switching applications.

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, SES5601C .................................................................................. 50V
Peak Inverse Voltage, SES5602C ................................................................................. 100V
Peak Inverse Voltage, SES5603C ................................................................................. 150V
Maximum Average D.C. Output Current at Tc = 100°C ................................................................ 25A
Non·Repetitive Sinusoidal Surge Current 8.3 mS ................................................................... 400A
Thermal Resistance, Junction to Case .......................................................................... . 1'C/W
Operallng and Storage Temperature Range ............................................................ - 55 'C to + 175 'C

ELECTRICAL SPECIFICATIONS PER DIODE

Type

PIV

SES5601C
SES5602C
SES5603C

50V
l00V
150V

Maximum
Forward Voltage (VF )
@

Maximum
Reverse Current (I R)
@PIV

Tc=2SoC

Tc=12SoC

@Tc=2S oC

@Tc=12S oC

Maximum
Reverse
Recovery
Time"

0.990V
@
12.5A
tp=300,.s

0.830V
@
12.5A
tp=300,.s

20~

4mA

lOOnS

MECHANICAL SPECIFICATIONS
SES5601C-SESS603C

POSITIVE OUTPUT

•

~

I

14

•

CASE

~Bb'
C

Ins.
F

M

J~l

G

j

,

H

0

..~..:::

I

J~
.......,
K

A

.875 MAX .

e

.135 MAX.

3.43 MAX.

C

.250-.450

6.35-11.43

D

.312 MIN.

E

.038-.043 DIA.

22.23 MAX.

7.92 MIN.

0.97-1.09 OIA.

4.18 MAX. RAO.

F

.188 MAX. RAD.

G

1.117-1.197

29.00-30.40

H

.655-.675

16.64-17.15

J

.205-.225

5.21-5.72

K

.420-.440

10.67-11.18

L

.525 MAX. RAD. 13.34 MAX. RAO.

.0

.151-.161

L

TO·3

mm

3.84-4.09 CIA.

NOTES:
1. Standard polarity is positive output.
For reverse polarity (negative output) add suffix "RIO, ie, SES5601CR.
2. All metal surfaces tin plated.

[ill]
1/80

274

_UNITRODE

SES5601C-SES5603C
Typical Forward Current
VS. Forwerd Voltage

Typical Reverse Current
vs. Reverse Voltage
.001

I

.002

--+-h
T -+2S'C

.005
;( .01
.02

SO

V

J

oS

0:

:>

.2

\oJ
II>

.S

0:
\oJ

>
\oJ
0:

1
2

I
-~

10
20
50

10

Z

OJ
0:
0:

.05
\oJ
0:
.1

f- -r i:=T;-

V

I-

--

I-"TJ = +12S·C·

.L

:>

V

<>

/
.j

0

0:

'"

;:

V
1
_--V

+100'C

II I

0:

...0
-"

.S

'7 F== ~=+IS0'C
II
II

_\

20

~
I-

...z

<>

TJ = +IS0'C

30

.2

I I

130 120 110 100 90 80 70 60 50 40 30 20 10
V, - REVERSE VOLTAGE (% OF PI V)

Maximum Forward Surge
vs. Number of Cycles
400

...Z~ 300
\oJ

0:
0:

""

o

~

>

-" 100 f\J\..

~ICYC~E

Q.

V

:;;
.1

.J

«
~

.05

OJ

J:

l-

-

i'--.

r-+-

.2

OJ

'" '"

1.0
.6
.8
FORWARD VOLTAGE (V)

~V

«

I

/

vI--

.5

L>
Z

13200

-TJ = +7S'C

Thermal Impedance
vs. Pulse Width
OJ

I""

t-

I
V, -

0

/

lL

i

V

/

~V

""L
,/ ,/

V
V

.02

I

..g

.01
.01.02 .05.1 .2

.S 1 2

5 10 20 50 100 200

1000

t, - PULSE WIDTH (mS)
N-

10
20
SO
100
CYCLES OF 60 Hz SINEWAVE

200

Reverse·Recovery Circuit

Output Current vs.
Case Temperature

SOP.

100

30

~

-

I-

Z

\oJ

0:
0:

:>

...<>
:>
...:>

20

~

.
0

10

I
_0

100
To -

+
_
=-

"~

25Vdc
(APPROX.)

10

NOTE 3

~

12S
ISO
CASE TEMPERATURE ('C)

UNITRODE CORPORATION. S FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6S09 • TELEX 9S·1064

OSCI LLOSCOPE
NOTE!

NOTES:
1. Oscilloscope: Rise time ~ 3nSj input impedance = son.
2. Pulse Generator: Rise time ~8nSj source i"mpedance 100.
3. Current viewing resistor, non-inductive, coaxial recommended.

17S

275

PRINTED IN U.S.A.

SES5701
SES5702
SES5703

RECTIFIERS
High Efficiency, 20A

DESCRIPTION
The SES, super·fast recovery, rectifiers are
specifically designed for operation in
power switching .clrcuits. Their super·fast
recovery time and very low forward
voltage drop make them particularly
efficient in most switching a'pplications.

FEATURES
• Low Forward Voltage Drop
• Fast Switching
• Low Thermal Resistance
• High Surge Capability
• Mechanically Rugged 00·4 Package
• Reverse Polarity Available

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, SES5701 ................ , .................................................................. 50V
Peak Inverse Voltage, SES5702 ................................ , ................................................. 100V
Peak Inverse Voltage, SES5703 .................................................................................. 150V
Maximum Average D.C. Output Current at Tc = 100°C ................................................................ 20A
Non·Repetitive Sinusoidal Surge Current 8.3 mS .............. , .............. , ..................................... 400A
Thermal Resistance, Junction to Case ......................................................................... 1.5 ·CIW
Operating and Storage Temperature Range ............................................................ - 55·C to + 175·C

ELECTRICAL SPECIFICATIOMS
Type

SES5701
SES5702
SES5703

Maximum
Forward Voltage (VF)
@

PIV

50V
100V
150V

Maximum
Reverse Current (lR)
@PIV

Tc=25°C

Tc=125°C

.990V
@
20A
tp =300!'5

.830
@
20A
t p = 3OOIlS

@ Tc=25°C

@Tc =125°C

20,..A

4mA

Maximum
Reverse
Recovery
Time'

100nS

·Measured In circuit IF = .5A,IR = 1.0A, IREC = .25A

M.ECHANICAL SPECIFICATiONS
SES5701-SES5703

Af:-161 r:l

·.#~l·~
UNF-2A

F

H

mm

ins.
A

00·4

.Q78 MAX.

1.98 MAX .

B

±.437 ±.O15

11.10 ±0.38

C

.405 MAX.

10.29 MAX.

0

.800 MAX.

20.32 MAX•

E

.424 MAX.

F

.088 MIN. DIA.

G

.430 ±.010

10.92 ",0.25

H

.250 MAX.

6.35 MAX.

10.77 MAX.
1.88 MIN. DIA.

NOTES:

1. Standard polarity 15 cathode-to-stud.
For reverse Polarity (anode-ta-stud) add suffix "R", ie. SES5701R.

2. All metal surfaces tin plated,
3. Maximum unlubrlcated stud torque: 10 inch pounds.
4, Angular orlentat/on of terminal is undeflned.

[ill]
1/80

276

_UNITRODE

SES5701 - SES5703

Typical Reverse Current
vs. Reverse Voltage
.001
.002

I

Typical Forward Current
vs. Forward Voltage
80

./

TJ =+150'C/

J-+-

.005
;{ .01
oS .02

TJ

-

50

+ 25'C

"'

1 '--

OJ

a:

T ~f
V

I
-~

10
20
50

OJ

20

/ /

II

II

--

+100'C

u

10

c

a:

r-- /
V
1

":;:a:

...c

f--V

TJ = +125'C

"'"

::J

/

/

II

V

/

/

/

II

/

-"

II

::::r:-= +150'C
J

/

1
.4

I

TJ =1+75•C

V V

a:
a:

.05
a: .1
a:
:> .2
u
OJ
.5
OJ

>
OJ

30

....z

....z

a:

!!:

VA'

L V~

.6

v, -

.8
1.0
FORWARD VOLTAGE (V)

..

130 120 110100 90 80 70 60 50 40 30 20 10 0
v, - REVERSE VOLTAGE ('Yo OF PIV)

Maximum Forward Surge
vs. Number of Cycles
400

!!: 300
....
z
OJ

a:
a:

""

I~

OJ
U

.5

"'"

.2

Thermal Impedance
vs. Pulse Width

f--' f---

Z

""

I
100

1.0

~

i3200
>
-~

;:

f\.JL

~ICYC~E

..

OJ

Vy
/

::;

~

.1

oJ

""

'~"

.05

OJ

J:

"I'---

....

-

1/
/

.02

I

~

.01
.01.02 .05.1 .2

rW

tp -

N

~

10
20
50
100
CYCLES OF 60 Hz SINEWAVE

V

.5 1 2 5 10 20 50100 200
PULSE WIDTH (mS)

1000

200

Reverse·Recovery Circuit

o

utp ut Cu rre nt vs.
·Case Temperature

10 Q

50 P.

25

!!:
....z

20

OJ

a:
a:

:>

u

..
....
....
::J

15

+

~

:>

10

0

I
_0

5

100
Tc -

_
-=-

25Vdc

(APPROX.)
1{)

~

NOTE 3

'"

'"~

OSCILLOSCOPE
NOTE 1

NOTES:
1. Oscilloscope: Rise time ~ 3nS j input impedance = 500.
2. Pulse Generator: Rise time ~8n5i source impedance 100.
3. Current viewing resistor, non-inductive, coaxial recommended.

125
150
175
CASE TEMPERATURE ('C)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

277

PAINTED IN U.S.A.

SES5801
SES5802
SES5803

RECTIFIERS
High Efficiency, 60A

DESCRIPTION
The SES, super·fast recovery, rectifiers are
specifically designed for operation in
power switching circuits. Their super·fast
recovery time and very low forward
voltage drop make them particularly
efficient in most switching applications.

FEATURES
Low Forward Voltage Drop
o Fast Switching Speeds
o High Surge Capability
o Low Thermal Resistance
o Mechanically Rugged 00·5 Package
o Reverse Polarity Available
o

ABSOLUTE MAXIMUM RATINGS

i

I

Peak Inverse Voltage, SES5B01 ................................................................................... 50V
Peak Inverse Voltage, SES5B02 .................................................................................. 100V
Peak Inverse Voltage, SES5B03 .................................................................................. 150V
Maximum Average D.C. Output Current at Te = 100 oC ................................................................ BOA
Non·Repetitive Sinusoidal Surge Current B.3 mS ................................................................... BOOA
Thermal Resistance, Junction to Case ......................................................................... O.B 'C/W
Operating and Storage Temperature Range ............................................................ - 55'C to + 175'C

ELECTRICAL SPECIFICATIONS

Type

SES5801
SES5802
SES5803

PIV

50V
100V
150V

Maximum
Reverse Current (IR)
@PIV

Maximum
Forward Voltage (VF)
@
Tc=2SoC

Tc=1SOoC

@Tc =2S oC

@Tc =1S0°C

0.990V
@
BOA
tp=300,..S

0.850V
@
BOA
tp=300,..s

25"A

30mA

Maximum
Reverse
Recovery
Time'

100nS

'Measured in circuit IF=O.5A, IR=1.0A, IREC=O.25A

MECHANICAL SPECIFICATIONS
SESS801-SESS803

In8.
A

1/4·28
UNF·2A

.225:1:.005

B

.Q6OMIN.
.156:t .020

0

.156 MIN. FLAT

3.96 MIN. FLAT

E

.667 OIA. MAX.

16.94 OIA. MAX.

F

.090 MAX.

.867:t. .010

H

.375

1.S2MIN.
3.96

::I:

0.51

2.29 MAX.

16.94:2:0.25
9.53

J

.140 MIN. DIA.

K

1.000 MAX.

L

3.56 MIN. OIA.

25.40 MAX.

.450 MAX.

1'.43 MAX.

M

.438 :t,01S

11.13:1:0.38

N

.078 MAX

Notes:
1. Standard polarity Is cathode-ta-stud.
For reverse polarity (anode-ta-stud) add suffix "A", ie. SES5801 R.
2. All metal surfaces tin plated.
3. Maximum un lubricated stud torque: 20 Inch pounds.
4. An angular orientation of terminal is undefined.

1180

mm
5.72.:1: 0.13

e

G

DO·S

1.98 MAX.

lliD
278

_UNITRODE

SES5801·SES5803

Forward Current

Typical Reverse Current
vs. Reverse Voltage

.01

<
S .05

~

....- f -

.005
.02

vs. Forward Voltage
200

.001
.002

c- ' -

TJ

~

TJ = +ISO'C

_V

g

...z

2S'C

z

'"
0:

~

.2

~

1

-"

r- .t.
-

10
20
50

r1

TJ

30

u

20

p- ~12~'C
J-

V

~

/

10

a:

...

/

= +IOO'C

/

/

-"

,

f""' ~Isb·c

I

"

1

/

1

1

/

5:
....
z

600

'"0:0:

'"I'"

~

V
1.0
.8
FORWARD VOLTAGE (V)

~

~

!\.JL
~ICYCIE

,.....

N-

""

-'

'"

::;

~

0:

.............

'"l:...

-

I

10
20
so
100
CYCLES OF 60 Hz SINEWAVE

V

.1

V

.05

/
.02

~ .01

"'

.01.02 .05.1 .2

r-so

....:>
....
:>

.5 I 2 5 10 20 so 100 200
PULSE WIDTH (mS)

1000

200

Reverse-Recovery Circuit

soo

Ion

70

:>
u
Go

f-f-f-

","'"

::;

Output Current vs.
Case Temperature

5:

1.2

./

.2

tp -

...z
'"0:0:

J

I

.5

i3

I
200

+75'C

Thermal Impedance
vs. Pulse Width

z

400

-~

-

VOLTAGE IN % OF PIV

:>

u

TJ

.6

v, -

Maximum Forward Surge
vs. Number of Cycles
800

.A- r

/

.4

130 120 110100 90 80 70 60 SO 40 30 20 10 0

/

rY
I

/

I

Q

/

/'
~

Q
0:

J

.5

1'-.

70
50

'"a:a:

:>

..... 1

100

30

0

I

+

'"""

_0

10
100
Tc -

_

-=....

~

25Vdc
(APPROX.)

10
NOTEl

'" '"

ascI LLOSCOPE
NOTE I

NOTES:
1. Oscilloscope: Rise time ~ 3nS; input impedance
500.
2. Pulse Generator: Rise time ~ anSi source" impedance 100.
3. Current viewing reSistor, non-inductive, coaxial recommended.

=

'"

ISO
175
125
CASE TEMPERATURE ('C)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

279

PRINTED IN U.S.A.

UES50 1-UES505

RECTIFIERS
High Efficiency 50 Amp
I

FEATURES

DESCRIPTION:

•
•
•
•
•
•
•
•

This series of High Efficiency Power
Rectifiers allows circuit designers to design
high current, high frequency supplies with
very low diode losses. Reverse recovery
time is typically 1/10 -1/100th of equivalent
power rectifiers, with even lower forward
voltage.

50A Continuous Rating at Case Temperature of l25'C
Exceptional Efficiency
Low Forward Voltage
Extremely Fast Reverse Recovery Time
Extremely Fast Forward Recovery Time
High Surge
Radiation Tolerant
Rugged, High Current Termination

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage

Type

50V
75V
lOOV
l25V
l50V

UES50l
UES502
UES503
UES504
UES505

Maximum Average D.C. Output Current

@ Te = l25'C
Non-Repetitive Sinusoidal
Surge Current (8.3ms)
Operating Temperature Range
Storage Temperature Range
Thermal Resistance

50A
.. 600A
-WC to +l75'C
-WC to +l75'C

1'C/W

MECHANICAL SPECIFICATIONS
UES501-UES505

00-5

156

~~~T

SEE NOTE 1

ogo
MAX

Dimensions in inches.

Notes:
1. Angular orientation of terminal is undefined.

2. All metal surfaces tin plated.
3. Maximum unlubricated stud torque: 30 inch pounds.
4. All dimensions in inches.
5. Polarity is cathode to stud; for anode to stud add suffix "R".

280

ruJJ
_UNITRDDE

UES50l-UESSOS
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Maximum
Forward

Peak

Type

Inverse
Voltage

UES501
UES502
UES503
UES504
UES50S

SOV
7SV
lOOV
l2SV
150V

Output Current

vs.

Maximum
Maximum Reverse
Recovery Time

Leakage
Current

Voltage
Drop

.9SV@SOA
(pw=250ms)

2S'C

12S'C

trr@IF-IR-IREC

2Sp.A

lOrnA

SOns. lA-lA-O.SA

Pulse Thermal Impedance
vs. Pulse Width

Case Temp.
~

50

3:
....Z
....0:

40

0:

::>

u 30

....::>
....0.
::>
0

"" ""

0.8

'\.

'"Z

'\

'a"

~ 0.5
oJ

'"
0:

w

0.3

:I:

....
....

10

\
155

0.4

:>

\.

\
145

165

Z
~

0.2

z

01

Vl

"....

SK

u

2K

w

~

Vl

1K

::>

500

Z
w

::>
u

r- l--

50 100}IS

500

""-

300

..............

I

t---Ims

_£

5

lOms

200

1

10

-- 20

50

100

200

HALF CYCLES OF 60Hz SINE WAVE

PULSE DURATION

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

25

I'\.

100

lOttS

15

\.

400

200
5

500
t(m5)

\.

0:
0:

TVPICAl

oJ

0.

200

1\

500

....

r-_

100

Multiple Surge Current vs. Duration
600

r--- r-...

•

PULSE WIDTH -

20K

0:
0:

::>

50

20

CASE TEMPERATURE ('C)

50K

10K

/

V

0:

lOOK

w

V

175

Square Pulse Current vs. Duration
for Non-Repetition Square Wave

~

/

0.

I

135

/V

0.6

w

\.

/

0.7

u

_0

....Z

... v

I

\

Tc -

0.9

C

u

20

125

e

281

PRINTED IN U,S.A.

UES50l-UES505

Typical Forward Current
VS. Forward Voltage

Typical Reverse Current vs. Voltage
.001

~~ ~P:

200
~

:5z

...
"'
0::
0::

20
10

u

.2

"'0::0::

yl

:;)

'"0::
'">
'"0::

If II

III

1/ /

rf'f~"
t-Ift- ~Vli ,\
175°

.5

z

u

v
T,

0

"-

5

1-1-1'-

~

,&...,

.2

Xl ~

~"":I

.3

.02

1/

.05
.1
.2

lill~

.5

T

.5
.7
.9
1.1
Vf-VOLTAGE (V)

1.3

1.5

TJ

d-

120 100
80
60
40
20
VOLTAGE -IN % P.I.V.

Characteristic Waveform
~

u.

150 o

1:1

I I I I
140

Reverse·Recovery Circuit

D.

-ll!D°ci V

'I.J.....I-t'

T j -s.125~

1-110
20
50
100

1--'

.1
.1

.01

I-

I/V 1/1/

C
0::

~0::

~

Vl/V

50

rr, 2~oc!

.005

V:;rA/

100

:;)

~

.002

500

t"

I-

T.

IREe .. 112A

lA

~---L
tn
NOTE 3

IJ
NOTES:
1. Oscilloscope: Rise time ~ 3 ns; input impedance ~ 50 n.
2. Pulse Generator: Rise time ~ 8 nSi source impedance 10 t2,
3. Current viewing resistor, non-inductive, coaxial recommended.

UNITRDDE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

282

r

1A

SET TIME BASE
FOR 10 NS/CM

PRINTED IN U.S.A.

UES60 1- UES603

RECTIFIERS
High Efficiency, 30A

FEATURES
• Very Low Forward Voltage
• Very Fast Switching Speeds
• High Surge Capability
• Low Thermal Resistance
• Mechanically Rugged
• Both Polarities Available

OESCRIPTION
This series consists of a power switching
rectifier in a convenient TO-3 package.
Although designed as a component for
switching type power supplies, these
devices can be used in any circuit in
which fast switching and/or high efficiency is required.

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, UES601 .
Peak Inverse Voltage, UES602 .
Peak Inverse Voltage, UES603 .
Maximum Average D.C. Output Current at Tc = 100'C
Non-Repetitive Sinusoidal Surge Current 8.3 ms .
Thermal Resistance, Junction to Case.
Operating and Storage Temperature Range.

..... 50V
.100V
... 150V
.... 30A
...... 80OA

.......... PC/W
.... _55°C to +175°C

POWER CYCLING
These devices possess the unique ability to pass many
thousands of cycles of a stress test designed to evaluate the
integrity of the bonding systems used in the construction of
power rectifiers.
In this stress test, the case of the device is not heat sunk.
Full rated forward current is supplied to force a case temperature increase at least 75°C, at which time, the current is
removed and the case allowed to cool. The cycle is repeated a
minimum of 5,000 times to simulate equipment being turned
on and off. Extended power cycling tests demonstrate a product
capability in excess of 25,000 cycles.

SWITCHING CHARACTERISTICS
The switching times of these ultra-fast rectifiers increase
relatively little, with temperature or at different currents. Even
in severe applications, such as catch diodes for switching
regulators and output rectifiers for high frequency square
wave inverters, these devices switch many times faster than
the fastest associated transistors. Thus, the stresses on and
powers dissipated in the switching transistors are substantially
less than when using other rectifiers.

MECHANICAL SPECIFICATIONS
UES601-UES603

TO-3

.161

I~J~:.

} TERMINAL PINS
ELECTRICALLY COMMON

~LOO

.525
MAX.
RAD .

. 135
MAX .

.450

.312

.250

MIN.

.440
.420

Dimensions in inches.

Note:
Standard polarity is cathode-to-case.
For reverse polarity (anode-ta-case) add suffix URn, ie. UES601R.

283

om

_UNITRODE

-

UES601- UES603

ELECTRICAL SPECIFICATIONS

Type

PIV

50V
lOOV
150V

UES601
UES602
UES603
* Measured In Circuit 'F -

Maximum

Maximum
Forward Voltage

Reverse Current

@

@

Te = 12S'C

Tc =2S'C

Te= 12S'C

Time·

.915V
@
30A
t p =300"S

.SOOV
@
30A
t p =300"S

25"A

10mA

50nS

a.SA, 'R _lA, 'REe - O.2SA

.001
.002

Forward Current
Forward Voltage

.02

~

VS.
100
70

_v
~

.01

r-- r--

~

c.--

30

II:
II:

20

w

TJ = 2S'C

;:

.1

0:

~

.2

c

0:

u

~"

,

v

::J
U

2

10
20
50

r-- ~ :J-=+100'C
- P =T,--'-l~'C
,

~
/I

I--<

I

10

...

1/ //

-"

\.TJ '= +i25'C

/
V

I.

I //

0

- - =TYPICAL V
---- = MAXIMUM V
F

F

/ /11/

)

,6

.4

VF -

:::::t;;:r+15h,c

I

/

./ ~TJ=+75'C

\

V, b"

~
II:

)

.5
1

......-~~

T = +lS0'C

50

...z

.05

~

Reverse
Recovery

Tc =2S'C

Typical Reverse Current
vs. Reverse Voltage

.005

Maximum

.8
1.0
FORWARD VOLTAGE (V)

1.2

I I
I

130 120 110 100 90 80 70 60 50 40 30 20 10 0
VOLTAGE IN % OF PIV

Maximum Forward Surge
vs. Number of Cycles
800

::J

400

,/

z

8'"
:;;;

t'-,.

'":;;;
~

~lCYC1E

*

r---- r--

5
10
20
50
100
CYCLES OF 60 Hz SINEWAVE

l- e--

/

V

l:

'I

.....

,/

.05

0:

w

f\.JL
N-

.1

...J

""-

I,

2

vy

.2

Q.

"'"

W

200

.5

u

~

0:
0:

-~

e
w

~
... 600
z
U

Thermal Impedance
vs. Pulse Width

~

.02

N .01.01.02 .05.1 ,2 .5 1 2 5 10 20 SO 100 200
tp - PULSE WIDTH (mS)

1000

200

Reverse·Recovery Circuit

Output Current vs.
Case Temperature

SOP.

10 P.

'0 greater
than lSA, both terminal pins
For operation at

~ 30

must be connected together.

...

+

zW

-=_

0:

~

u

...::J
...::J

20

r-~----r~--~--~

25Vdc
IAPPROX.)

10

NOTE 3

OSCILLOSCOPE
NOTE 1

Q.

o

10 r--t------+------+~--~

I

NOTES:
1. Oscilloscope: Rise time ~ 3n5; input impedance = SOO.
2. Pulse Generator: Rise time :s;;; 8ns; source impedance 100.
3. Current viewing resistor, non~inductjve, coaxial recommended.

_0

100
Te -

12S
150
17S
CASE TEMPERATURE ('C)

284

PRINTED IN U.S.A.

RECTIFIERS

UES701-UES703

High Efficiency, 25 A

FEATURES
• Low Forward Voltage
• Very Fast Switching
• Low Thermal Resistance
• High Surge Capability
• Mechanically Rugged
• Both Polarities Available

DESCRIPTION
Designed to meet the efficiency"demand
of switching type power supplies, these
devices are useful in many switching
applications.
The low thermal resistance and forward
voltage drop of this series allows the
user to replace DO-5 size devices in
many applications.

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, UES701
Peak Inverse Voltage, UES702
Peak Inverse Voltage, UES703
Maximum Average D.C. Output Current at Tc = 100'C
Non-Repetitive Sinusoidal Surge Current at B.3ms
Thermal Resistance, Junction to Case
Operating and Storage Temperature Range

.. 50V
100V
....... 150V
.. 25A
400A

lSC/W
-55'C to +175'C

SWITCHING CHARACTERISTICS
The switching times of these ultra-fast rectifiers increase
relatively little, with temperature or at different currents. Even
in severe applications, such as catch diodes for switching
regulators and output rectifiers for high frequency square
wave inverters, these devices switch many times faster than
the fastest associated transistors. Thus, the stresses on and
powers dissipated in the switching transistors are substantially
less than when using other rectifiers.

POWER CYCLING
These devices possess the unique abi lity to pass many
thousands of cycles of a stress test designed to evaluate the
integrity of the bonding systems used in the construction of
power rectifiers.
In this stress test, the case of the device is not heat sunk.
Full rated forward current is supplied to force a case temperature increase at least 75'C, at which time, the current is
removed and the case allowed to cool. The cycle is repeated a
minimum of 5,000 times to simulate equipment being turned
on and off. Extended power cycling tests demonstrate a product
capability in excess of 25,000 cycles.

MECHANICAL SPECIFICATIONS
UES701-UES703

00-4

Dimension in inches.

Notes:
1. Standard polarity is cathode-ta-stud.
For reverse Polarity (anode-to-stud) add suffix "R", ie. UES701R.
2. All metal surfaces tin plated.
3. Maximum unlubricated stud torque: 15 inch pounds.
4. Angular orientation of terminal is undefined.

285

lliD

_UNITRDDE

UES701-UES703

ELECTRICAL SPECIFICATIONS
Type

PIV

UES701
UES702
UES703

SOV
lOOV
150V

'* Measured in circuit I,. = O.SA, IR = lA,

'R.EC

Maximum
Forward Voltage

Maximum
Reverse Current

@

@

Tc =2S'C

Tc = 12S'C

.950

.825

@

@

25A
t p =3OO#S

25A
t p =3OO#S

Tc= 12S'C

Time·

20#A

4mA

35nS

= O.2SA
Forward Current
vs. Forward Voltage
80

V

J L

J...+T - +25'C

.005
;;' .01
S .02

J

....

.1
.2

~

.5

II:

20
50

20

"'

I--

-r ~f!
V-

-~ 10

V /'--

I

+IOO'C

TJ = +125'C

~=+150'C I

~

---

::>

u

J

10

C

~
II:

...0

J

j

-~

I

I

V

/ II

.4

I

.6

V, -

130 120 110 100 90 80 70 60 so 40 30 20 10 0
VR - REVERSE VOLTAGE (% OF PIV)

Maximum Forward Surge
vs. Number of Cycles
400

~

....z

~

300

I~

-~
100

z

'"

C

fVL
~ICYC~E
N-

"-

""

.1

..J

'~"

~

.05

w

J:

"i'--

....

-

10
20
50
lOa
CYCLES OF 60 Hz SINEWAVE

25

....Z

"'II:II:

::>

u

....
"....
::>

20

r--...

'"

tp -

I
_0

100
T" -

.5 I 2 5 10 20 50100200
PULSE WIDTH ImS)

1000

200

Reverse-Recovery Circuit
10 n

50 !!

+
_
-=-

~

10

0

/

V

.01
.01.02 .05.1 .2

N

"",IS

V

.02

I


r-r-

V

:;;

Output Current vs.
Case Temperature
~

VV

.2

w

~

2

....--1----"

.5

u

I

1.0

.8

FORWARD VOLTAGE (V)

Thermal Impedance
vs. Pulse Width
w

"'II:II:
i:l 200

- - = TYPICAL VF
- - - - = MAXIMUM V,

[/, /1

~

I

~J=L5'C
TJ = -t-12S'C

/V

/ 1//j

II:

/
V

/§/

/ /1

II:
II:

-

UJ

i:iII:

/ /~

~ 30

....Z

Z .05
~

TJ=+150'~

SO

UJ

~

Reverse
Recovery

Tc =2S'C

Typical Reverse Current
vs. Reverse Voltage
.001
.002

Maximum

25Vdc
IAPPROX.)

In

NOTE3

~

OSCillOSCOPE
NOTE I

NOTES:
1. Oscilloscope: Rise time ~ 3ns; input impedance = son.
2. Pulse Generator: Rise time ~ 8nsi source impedance 100.
3. Current viewing resistor, non-inductive, coaxial recommended.

'\

125
ISO
175
CASE TEMPERATURE ('C)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 9S-1064

286

PRINTED IN U.S.A.

UES704--UES706

RECTIFIERS
High Efficiency, 20A
FEATURES
• Very Low Forward Voltage (1.l5V)
• Very Fast Recovery Ti mes (50nSec)
• Low Thermal Resistance
• High Surge Capability
• Mechanically Rugged
• Both Polarities Available

DESCRIPTION
The UES704 series is specifically
designed for operation in power switching
circuits operating at frequencies of at
least 20 KHz.
The low thermal resistance and forward
voltage drop of this series allows the
user to replace 00-5 size devices in
many applications.

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, UES704 .
Peak I nverse Voltage, UES705 .
Peak Inverse Voltage, UES706 .
Ave. D.C. Output Current, 10 @ Tc 100'C ..
Surge Current, 8.3mSec
Thermal Resistance, Junction to Case.
Operating and Storage Temperature Range.

....... 200V
..300V
.. .. 400V
...... 20A
...........30OA
......... 1.5'C/W
................. -55'C to +150'C

=

SWITCHING CHARACTERISTICS
The switching times of these ultra-fast rectifiers increase
relatively little, with temperature or at different currents. Even
in severe applications, such as catch diodes for switching
regulators and output rectifiers for high frequency square
wave inverters, these devices switch many times faster than
the fastest associated transistors. Thus, the stresses on and
powers dissipated in the switching transistors are substantially
less than when using other rectifiers.

POWER CYCLING
These devices possess the unique ability to pass many
thousands of cycles of a stress test designed to evaluate the
integrity of the bonding systems used in the construction of
power rectifiers.
In this stress test, the case of the device is not heat sunk.
Full rated forward current is supplied to force a case tem·
perature increase at least 75'C, at which time, the current is
removed and the case allowed to cool. The cycle is repeated a
minimum of 5,000 times to simulate equipment being turned
on and off. Extended power cycling tests demonstrate a product
capability in excess of 25,000 cycles.

MECHANICAL SPECIFICATIONS
UES704·U ES706

00-4

~
+'OI0

.430

.424

Max:
.066 Min Dia

--

.250

Max.

Dimension in inches.

Note.,
1. Standard polarity is cathode·to-stud.
For reverse Polarity (anode-ta-stud) add suffix IIR", ie. UES704R.

2. All metal surfaces tin plated.
3. Maximum unlubricated stud torque: 15 inch pounds.
4. Angular orientation of terminal is undefined.

4/79 (Rev. 1)

287

lliJJ
_UNITRDDE

ELECTRICAL SPECIFICATIONS

UES704-UES706
Maximum
Forward Voltage

Type

PIV

UES704
UES705
UES706

200V
300V
400V

Maximum

Maximum
Reverse Current

Reverse
Recovery

Tc =2S'C

Tc = 12S'C

Tc =2S'C

T c =12S'C

Time*

1.25V
@ 20A
t. =3OO"S

1.l5V
@20A
t. =300"S

5O"A

lOrnA

50nS

* Measured In circuit IF == O.SA, III = lA, 'REe = O.25A

Typical Reverse Current
vs. Reverse Voltage

Forward Current
vs. Forward Voltage

lOOK

!

If

Z

II:
II:

Ul

I

V

'/

10

'"

0::
0::

::>
0::

/ /

.5

0::

-- -

1
10

II/"

.2

.1

-~

.05

~

'i- 'iII II

'-'11-1/ "y

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.11.2 1.3 1.4 1.5
V, - FORWARD VOLTAGE IV)

REVERSE VOLTAGE (% OF PIV)

Thermal Impedance
vs. Pulse Width

300

ii)

'"z

.5

'"

.2

u

' ' ' r--..

l-

200

II:
II:

::>

r---

(,J

1
~

_l:! 100

v
,,/"

g
Q.

"'"

~

....."

«

r-f\J'L

~

~

JICiCLE

.05

'"J:

l-

~

r--

...... 1- t-

/

V

.02

I

'-.....

",,-

-

V

.1

..J

~

'i,
" ' - ' ;#,
/

1l 11
.01 1.11

Maximum Forward Surge
vs. Number of Cycles

~

I

II

f- ciL
~tf!l ~

.02

10 20 30 405060708090100110120130140150

V, -

II

,CJ ,CJ

...0

/
2:;-

II

v/

(,J

c

100

o

~~~

20

~
Iz

«
;:

II:
-~

12S'C

k:::= ~P"

50

/l

I-ido'c

If

(,J

II:

-

1/
I'

IK

::>

...
...i:;

,/

f-j1""~

I-

...

-

10K

100

l'

.01
.01.02 .05.1 .2

N

.5 I 2

5 10 20 50 100 200

1000

t, - PULSE WIDTH (mS)

o
12

N-

5102050
100200
CYCLES OF 60 Hz SINEWAVE

Output Current vs.
Case Temperature

Reverse-Recovery Circuit

soo
~
I-

+

Z

'"
0::
0::

::>

lOll

30

20

(,J

I-

::>

t---

..........

_
-=-

'-...,

10

NOTE 3

Q.

I-

::> 10
0

I
_0

0

25Vdc
(APPROX.)

"'" ""~

=
NOTES:
1. Oscilloscope; Rise time ~ 3nsj input impedance = SOU.
2. Pulse Generator: Rise time ~ 8nsi source impedance 100.
3. Current viewing resistor, non-inductive r coaxial recommended.

100
110
120
130
140
150
Tc - CASE TEMPERATURE ('C)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 86].6540
TWX. (710) 326·6509 • TELEX 95-l064

OSCILLOSCOPE
NOTE I

288

PRINTED IN U.S.A.

RECTIFIERS

UES801-UES803

High Efficiency, 70 Amp

FEATURES
• High Continuous Current Rating
• Very Low Forward Voltage
• Very Fast Switching Speeds
• High Surge Capability
• Low Thermal Resistance
• Mechanically Rugged
• Both Polarities Avai lable
• Available with Flexible Top Lead

DESCRIPTION
The UES80l Series is specifically designed
for operation in power switching circuits
operating at frequencies of at least
20 KHz. The very low forward voltage and
very fast recovery time make them particularly suited for switching type power
supplies.

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, UESBOl
Peak Inverse Voltage, UES802 ..
Peak Inverse Voltage, UES803 .
Maximum Average D.C. Output Current at Tc = 100"C
Non-Repetitive Sinusoidal Surge Current B.3 ms
Thermal Resistance, Junction to Case .
Operating and Storage Temperature Range.

. SOV

looV
........... 150V
...... 70A

............. BOOA
0.8"C/W
-55"C to +175"C

POWER CYCLING
These devices possess the unique abi lity to pass many
thousands of cycles of a stress test designed to evaluate the
integrity of the bonding systems used in the construction of
power rectifiers.
In this stress test, the case of the device is not heat sunk.
Full rated forward current is supplied to force a case temperature increase at least 75"C, at which time, the current is
removed and the case allowed to cool. The cycle is repeated a
minimum of 5,000 times to simulate equipment being turned
on and off. Extended power cycling tests demonstrate a product
capability in excess of 25,000 cycles.

SWITCHING CHARACTERISTICS
The switching times of these ultra-fast rectifiers increase
relatively little, with temperature or at different currents. Even
in severe applications, such as catch diodes for switching
regulators and output rectifiers for high frequency square
wave inverters, these devices switch many times faster than
the fastest associated transistors. Thus, the stresses on and
powers dissipated in the switching transistors are substantially
less than when using other rectifiers.

MECHANICAL SPECIFICATIONS
UES801-UES803

00-5

ins.

0

"'~

A

0
E
F
G

060 MIN

5 72·013
152 M!N

156

396·051

225· 005
-<;

020

156 MIN FLAT
.66701A MAX.
090 MAX

677

~

010

375 MAX

1'4·28
UNF·2A

140MIN. DlA

396 MIN. FLAT
16.94 DIA. MAX
2.29 MAX

1720' 025
9.53 MAX

3.56 MIN OIA

1.000 MAX

25.40 MAX

.450 MAX

1143 MAX

438' 015
078 MAX

II 13 • 0.38
198 MAX

Notes:
1. Standard polarity is cathode-to·stud.
For reverse polarity (anode-te-stud) add suffix IIR", ie. UESBOIR.
2. All metal surfaces tin plated.
3. Maximum un lubricated stud torque: 20 inch pounds (20 kg. em).

4. Angular orientation of terminal is undefined.

[ill]
9/79

289

_UNITRDDE

•

UES801-U ES803
ELECTRICAL SPECIFICATIONS

Type

PIV

UES801
UES802
UES803

50V
lOGV
lSOV

Maximum
Forward Voltage

Maximum
Reverse Current

@

@

Tc =2S'C

Tc = l50'C

.975V

.840V

@

@

70A
t.=300p.S

70A
t.= 3001'5

Maximum
Reverse
Recovery

Tc =2S'C

Tc = lSO'C

Time·

25p.A

30mA

SOnS

Note: Add 0.03 Volts to Max Forward Voltage for Flexible Top Lead Option .• Measured in circuit I, = O.SA, I. = lA, IREC = 0.2SA

Forward Current
vs. Forward Voltage

Typical Reverse Current
vs. Reverse Voltage
200

.001
.002

f--/

.005
.01

::(

g

.02

r - e-

~

.5

~"

""
:;)

0

f- -I-

f--- j?
10
20 H I--<
50

IA

III

I- TJ

=+IOO'C

"~

I

1

I

...z~
w
"

600

I

.6
.8
1.0
FORWARD VOLTAGE (V)

.4

VF -

1.2

Thermal Impedance
vs. Pulse Width

IL

I'--.

400

I

fV'L

~

..J

.1

"::;;

,05

0:

w

...

l:

I'- r--

I

.02

~ .01

~lCYCIE

N

VV

j..X

['.,.

200

--=TYPICALV F
- - - - = MAXIMUM VF

I~

0:

-~

+7S'C
+ISO'C

r-f--t-

:;)

0

-

j/ II

I' 1

Maximum Forward Surge
vs. Number of Cycles

~

-

1/

II> !

-"

130 120 110 100 90 80 70 60 50 40 30 20 10 0
VOLTAGE IN % OF PIV

800

TJ

I'-- TJ

;: 1/

10

~=~ls6,c

i

~

V //

"...0

V
J

~J::·t~,c
J- ,

L /1

30

20

<>

J

:

/

...

.05

.2

0:

/.

70

~
50
z
w

TJ = 2S'C

.... 1

~

TJ~+I:W'

100

I-- I-- r--

V

V

.01.02 ,05.1 .2

.5 I

2

5 10 20 50100200

t. - PULSE WIDTH
10
20
~o
100
N - CYCLES OF 60 Hz SINEWAVE

UNITRODE CORPORATION, 5 FORBES ROAD
LEXINGTON. MA 02173 ' TEL, (617) 861·6540
TWX (710) 326-6509 • TELEX 95·1064

1000

(mS)

200

290

PRINTED IN U.S.A.

UESSOI-UES803

Reverse-Recovery Circuit

Output Current vs.
Case Temperature

~

70

r--....

....
zOJ

-

z

'"
0: 40
30

_0

10

o
I

10 Q

r--..

"""

"-

"-

20

1000

Reverse-Recovery Circuit
5OP.

:::J

5

.5 1 2 5 10 20 50 100200
PULSE WIDTH (mS)

200

60

$ so

/'

,/y

"::;;a: .05

100

>-

'l-r--l
1/

E

ilCiCLE

0:
:::J
U

'I-

V, - FORWARD VOLTAGE IV)

600

SOO

~!

~w "I·
'I-

REVERSE VOLTAGE (% OF PIV)

Maximum Forward Surge
vs. Number of Cycles

>z

",/'

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 loS 1.6

10 20 30 40 50 60 70 80 90 100 110 120 130140
V, -

V

./ ./

~ V/
II
II

20

:J

u
Cl

lL

$

~V

"' SO

1~

o

....-:::: ?

;: 100

Ll

I

200

"z

./

'25'C l -

100

0:

-"

SOO
~

1 O'C

'"

III
0:

SOnS

lK

fo"':
VJ
V

-I"""
C

If
lK

Time*

Forward Current
vs. Forward Voltage

I

lr

:;( 10K /"

'"0:0:

Reverse
Recovery

Tc _ 2SoC

=O.SA, 'R = lA, 'REe = O.2SA

Measured in circuit 'F-

..!
z>-

Maximum

100

110

+

"

-=_

'"

'\

120

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617).861-6540
TWX (710) 326-6509 • TELEX 95-1064

25Vdc
(APPROX.)
111
NOTE 3

'\

130

\

OSCILLOSCOPE
NOTE!

=
140

\

NOTES:
1. Oscilloscope: Rise time:::;;; 3n5, input impedance = 500'.
2. Pulse Generator: Rise time S;; 8ns; source impedance 100.
3. Current viewing resistor, non-inductive, coaxial recommended.

ISO

293

PRINTED IN U.S.A.

..

UES1001-UES1003

RECTIFIERS
High Efficiency, 1A
FEATURES
• Very Fast Recovery Times
• Very Low Forward Voltage
• Small Size
• Convenient Package

DESCRIPTION
An axial leaded power rectifier useful
in many switching applications.
Particularly suited where very fast
recovery and low forward voltage are
required.

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, UES1001 ...................................................................................SOV
Peak Inverse Voltage, UES1002 .................................................................................. 100V
Peak Inverse Voltage, UES1003 .................................................................................. 1SOV
Maximum Average D.C. Output Current atT L = 75'C, L=3/S" .......................................................... 1A
Non·Repetitive Surge Current at S.3mS ............................................................................ 30A
Thermal Resistance at L=3/S" ................................................................................75'C/W
Operating and Storage Temperature Range .............................................................. - 55'C + 175 'C

ELECTRICAL SPECIFICATIONS
Type

PIV

UES1001
UES1002
UES1003

50V
100V
150V

"Measured in circuit IF

TJ ,"25°C

TJ =100°C

@ TJ=25°C

@ TJ =100·C

Maximum
Reverse
Recovery
Time"

.975V
@
1A

.S95V
@
1A

2,.,A

50,.,A

25nS

Maximum
Reverse Current (I R)
@PIV

Maximum
Forward Voltage (VF)
@

= .SA, IA = 1.0A, IREC = .25A

MECHANICAL SPECIFICATIONS
UES1001·UES1003

.700"
MIN.
17.8mm

~~:
L .2~~::.
~

6.35mm'

1-------l·fI~;~N.

1/80

BODY A

---_--/

294

l1W
_UNITRDDE

UES1001-UES1003

L

...z~
0:
0:

.............

:::>
:;;

~

:;;

""

L=V8"

:::>

u
:;;

~

T-...
l ==¥4"

'"

50
Tl -

a

II.,"

0:

""

-

.05

I

t\.

,..,...II

_- .02

"-

"'" r-....

~ f\

75
100
125
LEAD TEMPERATURE

!I

.01

.005

.\

~
150

7

.002

.1

rtft

0:
0:

:::>

u

,:

-r

50
100

Square Pulse Current vs.
Duration for Non-Repetitive Pulse

";::z

!z 1,000
-l-

:::>

u

w

~
:::>

..

"
":::>
0:

500

100

w

i-- l- t--

rt-±it":TJ

t-t
120

100

+12S·C

80

60

l.,..of..- V

40

20

VOLTAGE IN % OF PIV

i"1'--.

80

'"f"-.. r--.

60

0:

..."'0

r--

50

I--"

Multiple Surge Current
vs. Duration
100

~

w
a::

f..-i-"'"

T = +7S·C

VOLTAGE (V)

Forward Pulse Current
vs. Duration

a:

LL

-"
10

10,000
5,000

f..-f..-

~J =2S·C

iJ

il

IT

VI -

.1

.5

.2 .3 .4 .5 .6 .7 .8 .9 1.0 1.11.21.3

(~C)

V
.05

~

/1-' ....'

.001

175

1
...

!J

/1:~~

J,il.J

.01

V- I/ /
flll II I

.5
.... 2
Z
~ .1

........... .......

1

2S

~-

~

\="'. ~

I

~b:-

?-

T,

~

1

r

I

r-u;

............

W

.001

10

I~-

I

Typical Reverse Current
vs. Voltage

Typical Forward Current
vs. Forward Voltage

Output Current
vs. Lead Temperature

I-

~

40

TL MOUNT

~

@ Length::::

f'-..

20

3!a"

R=::t1
PTted c; rc t-

10
.5
.1P.5

10P.5

50

1m.

lOO,us

5

1

IOms

2

10 20

SO

100 200

SOO

1000

CYCLES AT 60 Hz SINE WAVE

PULSE DURATION

Reverse-Recovery Circuit
10 n

50 !!

+

-=_

25Vdc
(APPROX.)

III
NOTE 3

OSCILLOSCOPE

NOTE I

NOTES:
1. Oscilloscope: Rise tlmB<3nS; Input impedance = 50Q,
2. Pulse Generator: Rise tlme<8nS; source Impedance 102.
3. Current viewing resistor, non-Inductive, coaxial recommended.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6S09 • TELEX 95-1064

295

PRINTED IN U.S.A.

UESllOl- UESl103

RECTIFIERS
High Efficiency, 2.5A

FEATURES
•
•
•
•

DESCRIPTION
An axial leaded power rectifier useful
in many switching applications.
Particularly suited where very fast
recovery and low forward voltage are
required.

Very Fast Recovery Times
Very Low Forward Voltage
Small Size
Convenient Package

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, UESllOl .
50V
lOOV
Peak Inverse Voltage, UESl102 ..
Peak Inverse Voltage, UESl103 .
l50V
Maximum Average D.C. Output Current at TL = 75°C, L = 'lil"
... 2.SA
Non-Repetitive Surge Current at 8.3 ms .
3M
......................................... 38°C/W
Thermal Resistance at L = 'lil" .
Operating and Storage Temperature Range.
..... -55°C +175°C
u u

• •••••••

uu

.u ..... uu •..

.....

MECHANICAL SPECIFICATIONS
UES11D1-UES1103

BODY A

.OB5"
~2.2mm
TYP.
.700" MIN.
17.Smm

I--

.2~~~~X.--<

i'-----1,1~~;~~N.

_ _ _ _--

<>

Ul

II"

10

~

V;
/ I I

'"

i:
a:

100'C

...o

'",
-'"

& '/ :/'

IZ
U1

U1

U1

~ ~~

~

lK

Z

'"
'"

c~t·

-

~
1--,<.

-

-

1.0

f-

V

o. 1

20

.2,5·C

40

V. -

60

80

II

II II

.001

100

120

140

160

...

z

U1

~

a: 1.5
a::

:0

...u::>
...::>a.
0
,

............

"'- '\

r-.....

_0

o

25

50
T, -

...
U1
0:
0:

::>

'\.LJ, ..

80

a. .4
::>

...

"""

'" 60

w

"~'"
...o

40

"#

20

V

'""'"

'"

\

f\

\

I .2

~

\

_0

o

25

75
100
125
150
LEAO TEMPERATURE ('C)

~

1-"'/

0

1\

50
75
100
125
150
TA - AMBIENT TEMPERATURE ('C)

Reverse-Recovery Circuit
50 !!

"~

0:

.6

...u::>

Multiple Surge Current
vs. Duration

"
z
;::

II

.~//

j...,"

II

~
~ .8
z

T,

" "'"

.5

1/

Output Current vs.
Ambient Temperature

~

"'
\
L=3f4~

I I

V, - FORWARD VOLTAGE (VI

REVERSE VOLTAGE (% OF PIV)

............

ij/ /

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.11.2 1.31.41.5

180

2.5

~

/(Jf-~,
-t-

;'

II

,,-, J...'"

Output Current vs.
Lead Temperature

100

SOnS

Forward Current
vs. Forward Voltage

10K

...

Time*

O.25A

Typical Reverse Current
vs. Reverse Voltage

~

Reverse
Recovery

@ PIV, T J = 25'C

1.15V
@lA

1.25V
@lA

tp

Maximum

Maximum
Reverse Current

Forward Voltage

PIV

10 !l

+

i"

_

~

-=-

TlMOUNT
@ Length::::

I'---

:va"

2SVdc

(APPROX.)
li!

R=::t---

NOTE 3

OSCILLOSCOPE

NOTEl

...

printed clrCullt

1

2

10 20
50
100 200
CYCLES AT 60 Hz SINE WAVE

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

SOD

NOTES:
1. Oscilloscope: Rise time:::;; 3nsi input impedance = 500.
2. Pulse Generator: Rise time ~ 8nsi source impedance 100.
3. Current viewing resistor, non-inductive, coaxial recommended.

1000

299

PRINTED IN U.S.A.

UES1301-UES1303

RECTIFIERS
High Efficiency, 6A

DESCRIPTION
Now power rectifiers in axial leaded
package to meet the most demanding
switching applications. An industrial
product with military reliability.

FEATURES
• Very LQw Forward Voltage
• Very Fast Recovery Times
• Small Size
• High Surge

ABSOLUTE MAXIMUM RATINGS
.................................... 50V
Peak Inverse Voltage, UESl30l ...
.... lOOV
Peak Inverse Voltage, UESl302
............ l50V
Peak Inverse Voltage, UESl303
......... 6.0A
Maximum Average D.C. Output Current at TL 75'C, L '%" ..
............ l25A
Non-Repetitive Sinusoidal Surge Current at 8.3ms
. .................... 20'C/W
Thermal Resistance at L = '%" .
Operating and Storage Temperature Range
... -55'C to +l75'C

=

=

MECHANICAL SPECIFICATIONS
UES1301-1303

BODYB

[ill]
300

_UNITRDDE

UES1301-UES1303

ELECTRICAL SPECIFICATIONS

Type

PIV

UES1301
UES1302
UES1303

50V
lOOV
150V

'* Measured in circuit IF = O.SA,

It = lA, fREe

Reverse Current

@

@

TJ = lOO'C

.925V
@6A
tp =300",S

.850V
@6A
tp = 300",S

Hr

"L=Ifa':\
"- \

........,

I-

Z

'"~

'i--.

"I
OJ

L_=¥4"

50

SO

(-

20

JI-

10

!z 1,000

'"'"

"'"
'"~

500

'"~

1

-"""" r--..\\
"'-

-""

z

Typical Reverse Current
VS. Voltage

r-

,2

r--

........, \

,05

"f..

......

11'

" ...

Xl

..,...

-!1/ ,,..""

,-'

---

r---.

175

-- ----

1

~

"u'"

I
-"

,

,5

.I.us

l.us

TJ

-

+75'C

,/"

''I' = +100'C

100

( lj J L

200

I

1000

~

T

b-"

= +125'C

( 11 11

120

100

80

60

40

20

VOLTAGE IN % OF PIV

,2.3.45.6.7.8.91.0111213
V,-VOlTAGE (V)

Multiple Surge Current VS. Duration

I"

,,80

z

i'-.

"'"'"
"...

I'--~

50
laps

.... ,/"
....
f--

' I i ..1

"""-

1""-0

",40

~

o

"'20

10

"

10
20

~

'" 60

----

= 25'C

Z

""

50

J

'"'"

I

Square Pulse Current vs.
Duration for Non-Repetitive Pulse

100

-

___ 1------T

t--

I-

100

.......

,2

/~J

il /

,01

= -50°C

,1

$ 8
i
7-~Od
i~ 11~

I

,02

"

TJ

111/

II

.5

I

IA 1 1

,02

a --

,"" ~\

125
150
75
100
LEAD TEMPERATURE (OC)

u

"..

30nS

~~ B~
"/ / rJ

Forward Pulse Current VS. Duration
5,000

150.uA

5",A

1/

\

10,000

g

Time*

,01

g
2

......

TL -

(--

T'l_

...... ........,

25

TJ _lOO'C

Typical Forward Current
VS. Forward Voltage

I-

L=r·'''-.".

6

2S'C

100

I\.

g

-

Maximum
Reverse
Recovery

= O.2SA

Output Current

10

TJ

TJ =2S'C

VS. Lead Temperature
12

Maximum

Maximum
Forward Voltage

T, MOUNT
@Length =~"

t~
IPrlni
ed Circuit

5
lOOps

1ms

lOms

1 2

5

10 20

50

100 200

500 1000

CYCLES AT 60 Hz SINE WAVE

PULSE ,DURATION

Reverse-Recovery Circuit
10 U

500

+
_

-=-

25Vdc
(APPROX,)
111

NOTE]

NOTES:
1. Oscilloscope: Rise time ~ 3nsj input impedance = 500.
2. Pulse Generator: Rise time ~ 8nsj source impedance Ion.
3. Current viewing resistor, non-inductive, coaxial recommended.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

301

PRINTED IN U.S.A.

•

RECTIFIERS

UES1304-U ES1306

High Efficiency, 5A

FEATURES
• Very Low Forward Voltage (1.15V)
• Very Fast Recovery Times (50nSec)
• Small Size
• High Surge

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, UES1304
Peak Inverse Voltage, UESl305
Peak Inverse Voltage, UES1306
Maximum Average D.C. Output Current, 10
@ TA
25"C (Free Air) .
@T l
50"C, L
%" ....
Surge Current, 8.3mSec .
Thermal Resistance @ L - %" .
Operating and Storage Temperature Range ...

=
=

=

DESCRIPTION
The UES1304 series is specifica lIy
designed for operation in power switching
circuits operating at frequencies of at
least 20 KHz.

..........200V

........ ..JOOV
....... .400V
...................................3A
...5A
.. .......... .70A
...... 20"C/W
........................ -55"C to +150°C

MECHANICAL SPECIFICATIONS
UES13D4·1306

BODYB

[ill]
4/79 (Rev. 1)

302

_UNITRDDE

UES1304·U ES1306

ELECTRICAL SPECIFICATIONS

PIV

UES1304
UES1305
UES1306

200V
300V
400V

* Measured in circuit If = O.SA, IR =

lA, I IEe

Reverse Current

T J = 25'C

TJ =100'C

@ PIV, TJ = 25'C

TJ =100'C

Time'"

1.25V
@3A
tp = 300l'S

1.15V
@3A
tp = 300l'S

2OI'A

5OOI'A

SOnS

= O.25A

Typical Reverse Current
vs. Reverse Voltage
10K

~

!z
~

100

'"

:>

o

Forward Current
Forward Voltage

VS.
100

1/
~
I

.....

1K

I

I

~

l.(~

Cl
0:

~
...o

Ul

10

I

.0 1

_L

-~

1.0

lO. 1

20

40

V. -

I-"

60

n

J

80

,

V
.00 1
0.0 0.2
100 120

140

160

180

~

\

~

~ 2.5

...
z
~

T,

I
L= 3,8"

2

'"~ 1.5

""'" '"

0: 60

<.'I

~

:>

o
I

_0

\

~
#20

'\

1.6

1.8

2

I'.

\

o
25

\

50
75
100
125
150
TA - AMBIENT TEMPERATURE C'C)

Reverse·Recovery Circuit

son

""" ""-

iil4Q

1.4

~

.5

50
75
100
125
150
T, - LEAD TEMPERATURE C'C)

"

0:

1.2

\

:>

Multiple Surge Current vs. Duration

.....

1.0

r-.....

:>

~

o

<.'180
Z

0.8

Output Current vs
Ambient Temperature

1\

;::

0.6

V, - FORWARD VOLTAGE IV)

Output Current
Lead Temperature

r---...,

100

I
0.4

REVERSE VOLTAGE (% OF PlY)

V5.

25

"

¥~~kJl-'
I III rv f?

O. 1

'"

~

'"I

:;..1

:>
u

100"C

II!!!

~

UJ

0:
0:

j...o

I

'"ffi

0

...
z

/

1f5"f

""

Maximum
Reverse
Recovery

Maximum

Maximum
Forward Voltage

Type

10 II

+

I"'"

~

-=-=-

T. MOUNT

@L"'... = ..··

'fi:::
I

25 Vdc
(APPROX.)
In

l-

NOTEJ

OSCILLOSCOPE
NOTEI

Pllnred ClfCuit

I 2

5
to 20
50
100 200
CYCLES AT 60 Hz SINE WAVE

NOTES:
1. Oscilloscope: Rise time ~ 3nSj input impedance = 500.
2. Pulse Generator: Rise time ~ 8nsj source impedance 100.

500 1000

3. Current viewing resistor, non"inductive, coaxial recommended.
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

303

PRINTED IN U.S.A.

RECTIFIERS

UES1401·UES1403

High Efficiency, 8A

FEATURES

DESCRIPTION

•
•
•
•
•

The UES1401 Series, in a plastic package
similar to the TO·220, is specifically de·
signed for operation in power switching cir·
cuits to frequencies in excess of 100KHz.
The very low forward voltage and very fast
recovery time make them particularly suited
for switching type power supplies.

Very Low Forward Voltage
Very Fast Recovery Times
Economical, Convenient Plastic Package
Low Thermal Resistance
Mechanically Rugged

ABSOLUTE MAXIMUM RATINGS

........ SOV
lOOV

Peak Inverse Voltage, UES1401 .
Peak Inverse Voltage, UES1402 .
Peak Inverse Voltage, UES1403 .
Maximum Average D.C. Output Current

lS0V

. ... B.OA

@T c =125°C (Note 1) ..
@TA = 25°C.
@TA = 25·C (Note 2) ...
Non·Repetitive Sinusoidal Surge Current, B.3mS
Thermal Resistance, Junction to Case, 0J •c .
Thermal Resistance, Junction to Ambient, 0J.A .
Operating and Storage Temperature Range.

3.0A

.. B.OA
BOA
... 2.S'C/W
60'C/W
-SS'C to +lS0'C

Note 1. Above lOO·C use the tab for electrical connection.
Note 2. Using Wakefield Type 295 heatsink with convection cooling. For more definitive
data refer to the Output Current vs. Temperature Curves on this datasheet.

MECHANICAL SPECIFICATIONS
UES1401·1403

SEATING
PLANE

MILLIMI1'IRS

DIM

g...

M. .
15.87
10.66

C

'.56

'.R

D
F

0.51
3.531

G

'.29

\.14
3.133
2.19

A

•

H
A

J

A

H
J

I

K

I~[L
.

J

D

G

L
N

PIN 1. Cathode

2. Anode

MI.
14.23

INC II
0.560

MI.

M. .
0,625

0....
0.140
0....

0....
0.190
0.045

0.139

0,147
0.110

O.ota

0.210

6.35

0.34
12.10

1.14
4.13

0."

0.015

14.27
1.11
5.33

0....
0.045

0.562

0.190

0.210
0.120
0.115

Q

'.56
'.0<

3.04

0.100

2.92

S

1.14
5.85

0.010
0.045

6.15

Tab is connected

•

to Cathode.

T

I."

SIMILAR TO TO·220

o.z30

0.025
0,070

0....
0.270

N

[ill]
304

_UNITRDDE

UES140l-UES1403
ELECTRICAL SPECIFICATIONS

Type

UES140l
UES1402
UES1403

50V
100V
l50V

'Measured in circuit I,

~

Maximum
Reverse Current

Maximum
Forward Voltage

PIV

TJ =2S·C

TJ = lOO·C

T J = 25°C

0.9V@4A
0.975V@8A
tp = 300,,5

0.8V@4A
O.895V@BA

5pA

Reverse
Recovery

TJ = 100·C

-

l50"A

Typical Forward Current
vs. Forward Voltage
50

f---+--+-

10

5:

l4

5:

I-

Z

'"

I-

'"0:0:

:>
C,)

:>

I

C,)

.5

I

.2

..'!'

.1
.05
,02
.01

.01

VI'
T J =-50·C

~I//
#1 I

':-=!~o+
II

rio..'

.1
.2

~

""f

i50:

2

0:

,-

"~

10

I-

_" 20

f5

~JlrIC

I

/1

:11/ /-.'

r-;. J = 25'C
"

I-

P

;:

J,.....

1/

100

1--'

II

TEMPERATURE (·C)

1111

1000

1
120

'"0:

~

C,)

'"

I I

I

I

I

----

Z

100
50

I

1 1 1 1

100
80
60
40
20
VOLTAGE IN % OF PIV

Multiple Surge Current vs. Ouration
100
C!J
Z

Peak Half Sine Current vs.
Duration for Non-Repetitive Pulse

I-

( II 11
T = +125'C
J

V,-VOLTAGE(V}

I

500

........... r-..

~
0:
w

I'

80

~
.........

60

0:

:>

............

(fJ

~

--

"~

C!J

40

"0

'if.

(fJ

20

..J

:>

..
... lOA
Non-Repetitive Sinusoidal Surge Current, 8.3mS
80A
. .... 1.75'C/W
Thermal Resistance, Junction to Case, 6 J •c ................................ ..
Thermal Resistance, Junction to Ambient, 6 J •A
60'C/W
Operating and Storage Temperature Range ..
.. ...... -55'C to +150'C

Note 1. Above 8A use the tab for electrical connection.
Note 2. Using Wakefield Type 295 heatsink with convection cooling. For more definitive
data refer to the Output Current vs. Temperature Curves on this datasheet.

MECHANICAL SPECIFICATIONS
UES2401·2403

SEATING
PLANE

DIM
A

•

,

I .

II
U
---1

C

•

~-

SECT A.'

~

Pin 1

!
Pin2
&
Tab

14.
Pin 3

D

F
G

H
J

•
L
N

••

S
T

MILLlMDIR,
MI.
MAX
14.23 15.17
10.66

....3."

4.8'
0.51
1.14
3.531 3.733
2.29
2.79
US
0.38
0."
12.ro
14.27
1.14
1.77
4.83

........
1.14

5.85

'.33

0.310
0.140
0.0:10
0.139

.....-

0.015
0.5..
0-045

3."
2.9'

...10
D.045

0.230

0....
0.110
0.04&
0.147
0.110
0.110

0.025
0.562
0.070
0.210

0.1"
0.115
0,055
0.270

[ill]

6-79
(Revised)

....

INCHU
MI.
MAX

MeD

0.190
Q.1oo

I."
6.15

TO·220

306

_UNITRODE

UES2401-UES2403
ELECTRICAL SPECIFICATIONS
Maximum
Reverse Current
@PIV

Maximum
Type

Forward Voltage

PIV

UES2401
UES2402
UES2403

50V
lOOV
150V

·Measured in drcuit IF

TJ =2S'C

TJ = 100'C

TJ =2S'C

T J = lODGe

0.9V@4A
0.975V@8A
tp = 300l'S

0.8V@4A
0.895V@8A

5,uA

150,uA

Typical Forward Current
vs. Forward Voltage
100
50

16~--~~+---+----r---t

20
10

S
zw

12

a:
a:

14

S

10

~

Forward
Recovery'

Time*

Voltage
@IA
t, = 8nS

35nS

1.4V

= O.5A, IR = l.OA, tREe = O.25A

Output Current
vs. Temperature

I-

Typical

Ma'ximum
Reverse
Recovery

I-

r---

Z

w
a:
a:

U

I
-~

~

u

I

-~

H-

.1 I-e.05
.02

.....

.01

~

l..dj~ ~~
JI/ [I
JIJ

/5

,....'"

::;::

-SOOC

.2

l-

i- f= 2'C

1

T

IZ

j .,



'I

0

;:!Q

TJ

.1

1~f
A.~

Vf

.02

_~~II

.5 1-- -"f..2

I

Typical Reverse Current
vs. Voltage

p

10

_" 20

I!
....'

f-

I-

~jlr~C
r

100

( 1 I I I

200

VI

1

II I

T

= -'-12S'C

I' 1 1 1 1

1000

.01
.1 .2 .3 .4 .5 .6 .7 .8 .9 1.01.11.21.3

_ ..... f-"

= +IOO'C'

120

100
80
60
40
20
VOLTAGE IN % OF PIV

V, - VOLTAGE (V)

Multiple Surge Current vs. Duration

Forward Pulse Current ys. Duration
10.000
5.000
1.000

S

I

i'-.....

I I

I

............ ~

Z

100
50

"'

(!l

z
;::

I'"

80

«
a:
w

............

500

"'a:
~

I
.1

Peak Half Sine cu~re~t VS.
~ Duration for Non-Repetitive Pulse

I

I-

u

100

~

"- .........

60

-... ..............

(!l

a:

iil

............

40

u.

c

'#

(/)

20

..J
~
Q.

10

.5

I

50

ImS

2

lamS

-- -

50 IDa 200
10 20
CYCLES AT 60 Hz SINE WAVE

500 1000

PULSE DURATION

3'

~

Thermal Impedance
vs. Pulse Width
2.0

"'

1.0

"'~

.4

u

z
«
c

..J

,,"

.2

a:

.1

I

.04

"'l-:I:
~

",-

10 H

I.o-I-~

Q.

«
:;;

Reverse-Recovery Circuit
SOil

//

:..,...-

~~

i-"'"'

+
_
~

1 ~2
NOTE]

"

.02

.01.02 .05.1.2
I, -

.5 I

2

2SVdc
(APPRDX.)

5 10 20 50 lOa 200

NOTEI

NOTES:
1. Oscil/oscope: Rise time ~ 3nS; input impedance = 50n.
2. Pulse Generator: Rise time ~ 8nS; source impedance IOn.
3. Current viewing resistor, non-inductive, coaxial recommended.

1000

PULSE WIDTH (mS)

UNITRODE CORPORATION· S FORBES ROAD
LEXINGTON, MA 02173. TEL. (617) 861·6040
TWX (710) 326-6509 • TELEX 95-1064

OSCILLOSCOPE

307

PRINTED IN U.S.A.

RECTIFIERS

UES-2601-UES2603

High Efficiency, 30A Center-Tap

FEATURES
• Very Low Forward Voltage
• Very Fast Switching Speed
• Convenient Package
• High Surge
• Low Thermal Resistance
• Mechanically Rugged
• Both Polarities Available

DESCRIPTION
This series combines two high efficiency
devices into one package, simplifying
installation, reducing heat sink requirements and the need to purchase
matched components.

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, UES2601 .
. ..................................................... 50V
Peak Inverse Voltage, UES2602. .
................. lOOV
Peak Inverse Voltage, UES2603
........................................................................ 150V
Maximum Average D.C. Output Current at Tc
100'C .
....... 30A
Non-Repetitive Sinusoidal Surge Current 8.3 ms
.... 400A
Thermal Resistance, Junction to Case .
..... ..... .......
........ 1'C/W
Operating and Storage Temperature Range ...
. .............. -55'C to +175'C

=

POWER CYCLING
These devices possess the unique ability to pass many
thousands of cycles of a stress test designed to evaluate the
integrity of the bonding systems used in the construction of
power rectifiers.
In this stress test, the case of the device is not heat sunk.
Full rated forward current is supplied to force a case temperature increase at least 75'C, at which time, the current is
removed and the case allowed to cool. The cycle is repeated a
minimum of 5,000 times to simulate equipment being turned
on and off. Extended power cycling tests demonstrate a product
capability in excess of 25,000 cycles.

SWITCHING CHARACTERISTICS
The switching times of these ultra-fast rectifiers increase
relatively little, with temperature or at different currents. Even
in severe applications, such as catch diodes for switching
regulators and output rectifiers for high frequency square
wave inverters, these devices switch many ·times faster than
the fastest associated transistors. Thus, the stresses on and
powers dissipated in the switching transistors are substantially
less than when using other rectifiers.

MECHANICAL SPECIFICATIONS
UES2601-UES2603

•

~

I

14

•

CASE

•

NEGATIVE OUTPUT

14

1.1

CASE

•

[.7.Ji1~
MAXtdlJ
.450
.250

TO-3

.161
.151

.188
MAX.

POSITIVE OUTPUT

.525
MAX.
RAO.

.440
.420

.312
M!N.

Dimensions in inches.

Nate:
Standard polarity is positive output.
For reverse polarity (negative output) add suffix "R", ie. UES2601R.

308

~
_UNITRDDE

UES2601- UES2603

ELECTRICAL SPECIFICATIONS
Type

PIV

UES260l
UES2602
UES2603
* Measured

SOV
lOOV
150V

Maximum
Forward Voltage

Maximum
Reverse Current

Maximum

@

@

Recovery

Tc =2S'C

Tc = 12S'C

.930V

.825V

@

@

l5A
t p = 300I'S

l5A
t p = 300I'S

Tc=2S'C

Tc= 12S'C

Time·

2Op,A

4mA

35nS

in circuit IF = O.SA, IR = lA, 'REC = O.2SA

Typical Reverse Current
vs. Reverse Voltage
.001
.002

.OS

~

.1
.2

~

.5

0:

T J _+2S'C

~

....

z

1

2

50

I

---

TJ = +12S'C

"'" f::i- +IS0'C- j
J-

II

/

"a:
~
a:
...

V

--

I--"

-~ 10

20

r

+100'C

-- /

/

0

~

I
-"

.S

.2

II

/

/

0:
OJ
U

}

::::TJ

/

10

"'a:

~

\, V

20

~

>--

~

TJ = +ISO'C
30

.02

z

"'

50

V

J-+-

;;C .01

"'~

Forward Current
vs. Forward Voltage

I

.OOS

S
....

Reverse

,/

V

/

lZ

".

/
_ TYPICAL V,

/I

/

/

W/

".

f-T J = +7S'C
f-T J = +12S'C

- - - - = MAXIMUM V,

I

/1
.4

I

V, -

1.0
.6
.8
FORWARD VOLTAGE (V)

1.2

130 120 110 100 90 80 70 60 SO 40 30 20 10
V, - REVERSE VOLTAGE (% OF PIV)

Maximum Forward Surge
vs. Number of Cycles
400

~

....z

~

300

~

200

I
100

f\JL

'" '"

~lCYC~E

"'zu

.5

OJ

.2

'o"
'"

~

""

.os

OJ

I

....

-

I'--.-

"'0:0:
OJ

20

i--

~~

u

....
OJ
"....
OJ
0

10

:/

V

.02

I

.01
.01.02 .05.1 .2 .S I 2 S 10 20 50100200
tp - PULSE WIDTH (mS)

1000

200

Reverse-Recovery Circuit
SOP.

100

+
_

-=-

I

NOTE 3

~

12S
150
CASE TEMPERATURE ('C)

UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064

25Vdc
(APPROX.)

In

~

_0

100
Tc -

~

......

/

.1

.J

Output Current vs.
Case Temperature
30

v/

"-

:2'

10
20
50
100
CYCLES OF 60 Hz SINEWAVE

N-

~
...
z

-

.-e-

"'0:0:

a

Thermal Impedance
vs. Pulse Width

OSCILLOSCOPE
NOTE!

NOTES:
1. Oscilloscope: Rise time ~ 3ns; input impedance = 50n.
2. Pulse Generator: Rise time :E;; 8ns; source impedance 100.
l. Current viewing resistor, non-inductive, coaxial recommended.

175

309

PRINTED IN U.S.A.

UES260~UES2606

RECTIFIERS
High Efficiency, 30A Center-Tap

FEATURES
• Very Low Forward Voltage (1.l5V)
• Very Fast Recovery Times (SOn Sec)
• Low Profile Package
• High Surge Capability
• Low Thermal Resistance
• Mechanically Rugged
• Both Polarities Available

DESCRIPTION
The UES2604 series is specifically
designed for operation in power switching
circuits operating at frequencies of at
least 20 KHz.
This series combines two high efficiency
devices into one package, simplifying
installation, reducing heat sink requirements and the need to purchase
matched components.

ABSOLUTE MAXIMUM RATINGS
.......... 200V
Peak Inverse Voltage, UES2604 .......................................................................... .
Peak I nverse Voltage, U ES260S .................................
...........300V
Peak Inverse Voltage, UES2606 ..... .
...400V
. ..... 30A
Maximum Average D.C. Output Current @ Tc 100·C ................ .
Surge Current, 8.3mSec ....................................... .
. ........ 300A
Thermal Resistance, Junction to Case ........... .
.1·C/W
.......... -S5·C to +150·C
Operating and Storage Temperature Range ....................... .

=

POWER CYCLING
These devices possess the unique ability to pass many
thousands of cycles of a stress test designed to evaluate the
integrity of the bonding systems used in the construction of
power rectifiers.
In this stress test, the case of the device is not heat sunk.
Full rated forward current is supplied to force a case temperature increase at least 75·C, at which time, the current is
removed and the case allowed to cool. The cycle is repeated a
minimum of 5,000 times to simulate equipment being turned
on and off. Extended power cycling tests demonstrate a product
capability in excess of 25,000 cycles.

SWITCHING CHARACTERISTICS
The switching times of these ultra-fast rectifiers increase
relatively little, with temperature or at different currents. Even
in severe applications, such as catch diodes for switching
regulators and output rectifiers for high frequency square
wave inverters, these devices switch many times faster than
the fastest associated transistors. Thus, the stresses on and
powers dissipated in the switching transistors are substantially
less than when using other rectifiers.

MECHANICAL SPECIFICATIONS
UES2604-UES2606

•

~

I

l1l/I

•

CASE

•

NEGATIVE OUTPUT

TO-3

.188

POSITIVE OUTPUT

141 ~I •

£~oo~~:

.525
MAX.

135-HJ I

RAO.

MAX

CASE

.450

.312

.250

MiN

.440
.420

Dimensions in inches.

Nole:
Standard polarity is positive output.
For reverse polarity (negative output) add suffix "R", ie. UES2604R.

4/79 (Rev. 1)

310

OJJJ
_UNITRDDE

UES2604-UES2606
ELECTRICAL SPECIFICATIONS, PER LEG
Maximum
Forward Voltage

Type

PIV

UES2604
UES260S
UES2606

200V
300V
400V

Tc

*Measured in circuit If = .5A.

IR

=25°C

Tc

1.2SV
@ lSA
tp =3001'S

=125°C

=25°C

Tc

1.lSV
@15A
tp = 300l'S

....

z

'"c::c::

lK If'

o

I{

:::>

'"

(/)

:5

-

,-

I

fJ"1'~
125°C

i-- I-'loo°c

100
50

i..--' I/.
:/

5:

-- -

10

« .5
~

-f-

...0

-

2~

/

I
-~

.2
.1
.05

f-""

.02
.01

oV

REVERSE VOLTAGE (% OF PIV)

~

II

II

7r II

w

.2

~

.1

:::>
0

"'"

-f\J'L

100

,ICiCLE

2
N-

""

-'
«
~
w

.05

J:

....

.-i-P

V

vV'" V

"'" -

10
20
so 100
CYCLES OF 60 Hz SINEWAVE

/

V

/

.02

I

~

"-....

'"

.01
.01.02 .05.1 .2

5:

....z
w

c::
0:

:::>
u

20

....:::>
Q.

....

:::>
0

10

I
_0

5 10 20 50100200

1000

(mS)

200

Reverse-Recovery Circuit
50

r-...

"'"~

.5 1 2

t, - PULSE WIDTH

Output Current vs_
Case Temperature
30

-

Thermal Impedance
vs. Pulse Width

Z

«
Q

""'r--.

II

Y II V Y
/ I

Q.

I

II

-"'J ,,> "'If-"'I

.5

o

I"'"
200

lL~/

J

Q? ~ J!~l- it
:;::;:
I

1.0

tw

....

v

oV

V

/

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.11.2 1.3 1.4'1.5
V, - FORWARD VOLTAGE IV)

20 30 40 50 60 70 80 90100110 120130140150

300

5:

VV

1/ II

c::

100

Maximum Forward Surge
vs. Number of Cycles

-~

5

:::>

c::

V, -

'"c::c::

10

0

11'
o 10

z

....

'"c::c::

z

V

~ ~ ~ t7
/1/ /
1/ / / V

20

0

iiic::
_~

50nS

Forward Current
vs. Forward Voltage

V-

If

10mA

=lA, IREe = .25A

100 K

10K

=125°C

Tc

5OI'A

Typical Reverse Current
vs. Reverse Voltage

~

Maximum
Reverse
Recovery
Time*

Maximum
Reverse Current

Ion

Q

+
_

'"

0

-=-

10

~'\

NOTE 3

OSCILLOSCOPE

NOTEl

-=

1\

NOTES:
1. Oscilloscope: Rise time ~ 3nsj input impedance = 500.
2. Pulse Generator: Rise time ~ 8nsi source impedance 100.

100
110
120
130
140
ISO
Tc - CASE TEMPERATURE (OC)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

25Vdc
(APPROX.)

3. Current viewing resistor, non-inductive, coaxial recommended.

311

PRINTED IN U.S.A.

•

RECTIFIERS

URI05-UR125
UR205-UR225

Radiation Tolerant, 1 Amp-2 Amp

FEATURES
• Radiation Tolerant: to 10" NVT
• Continuous Rating: to 2A
• Controlled Avalanche
• Surge Rating: to 25A
• Miniature Package

DESCRIPTION
These devices are particularly suited to
applications where radiation is present.
These units have unique ability to withstand high levels of neutron, gamma and
electron radiation.

ABSOLUTE MAXIMUM RATINGS
1 Amp
Series

2 Amp

Peak Inverse Voltage

50V
100V
150V
200V
250V

URI05
URllO
URn5
URl20
URl25

UR205
UR210
UR215
UR220
UR225

Series

1 AMP
SERIES

2 AMP
SERIES

Maximum Average D.C. Output Current
........ 2A
... IA ..
@ TA = 25°C.
... IA
........... O.5A ..
@ TA =IOO°C .
Non-Repetitive Sinusoidal
. 20A...
.. 25A
Surge Current (8.3ms) .
.. -195°C to +175°C
Operating Temperature Range.
Storage Temperature Range .
-195°C to +200°C
. See ~ad Temperature Derating Curve
Thermal Resistance
H

MECHANICAL SPECIFICATIONS
UR105-UR125 UR205-UR225

BODY A

Part Identification: White band indicates "UR." Part number printed on body.
Polarity: Denoted by white band.
Weight: 0.26 grams, typical.

[ill]
312

_UNITRDDE

UR105-UR205 URllO-UR210 UR1l5-UR215 UR120-UR220 UR125-UR225
ELECTRICAL SPECIFICATIONS (at 25"C unless noted)
Maximum

Type

PIV

UR205
UR210
UR215
UR220
UR225
UR105
URllO
URll5
UR120
UR125

leakage

Maximum
Forward
Voltage
Drop

50V
100V
l50V
200V
250V
50V
100V
l50V
200V
250V

CUrrent
@PIV

25'C

1.0V@lA

3"A

50"A

1.0V@ O.5A

3"A

50"A

Maximum Current
vs Lead Temperature
I~

w
cr
cr
:::>
u

I.!:..= 3fe""-

~
.............

25

"-

~
:----.....

L

ow

;::

u
w
cr
w

~
~
~~
~

= Va"

~

ii:

.'"""

•

1 AMP SERIES

~
....
z

'i.
~3,4"

10" NVT
10 '0
10 '5
10 '4
10 '4
10 '0
10 '0
10 '5
10 '4
10 '4

Maximum Current
vs Lead Temperature

2 AMP SERIES

= Va"

Maximum
Radiation
Tolerance

100'C

~ 1

cr
w
>

«
I

t;:: ~
L

= ¥4"

~
~ -.......
~~

~

_0

25

50
75
100
125
ISO
175
T, - LEAD TEMPERATURE ('C)

50
T, -

~

75
100
125
ISO
175
LEAD TEMPERATURE ('C)

Allowable Forward Surge vs Number of Cycles
100

"z«;::
a:

I~

80

I III

........

w

":::>a:

60

ii:

40

en
0
w
U
w
a.
III

u.

i:::::,.

-..;:::

~::'

"

20

ALL SERIES

Turret 1" centers
Turret l/Z" centers
Printed Circuit

r--

~

::J.

0

#10
100
CYCLES AT 60 Hz HALF SINE WAVE

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

313

1,000

PRINTED IN U.S.A.

UR105-UR205 URllO-UR21O UR1l5-UR215

Typical Reverse Current vs PIV
ALL SERIES

.01
.02
~

.3

....

zw

a:
a:
:;,
u

w
a:
w
>
UJ
a:

Typical Forward Current
vs Forward Voltage
10

~"C

.2

~C

.5

5:f-

zUJ

a

V

10
20

75"C

----

~

....

~ .05

~

a: .2
a:

C\I

/

.005

1/ i
II

.001
.2

.4
VF

-

"- .01
.005

Forward Pulse Current vs Pulse Duration

5:
1,000

2

0

.4
V, -

-

I

•
~
1
VOLTAGE (V)

12

1.4

Reverse Pulse Power vs Pulse Duration
ALL SERIES •

Square Pulse current vs
Duration for Non·Repetitive Pu loe
(8.3 ms sine wave equivalent
to 3 ms square wave)

r--...

~

w

w

:;:
0

Il.

Square Pulse Current vs
Duration for Non-Repetitive Pulse
(8.3 ms sine wave equivalent
to 3 ms square wave)

10,000

a:

a:
a:
u

w

1.4

Q

100,000

:;,

'"

111

.001
1.2

0

ill
11

1 111

.002

.I

.6
.8
1
VOLTAGE (V)

10,000
ALL SERIES

j
11

~

a: .02

o

II

M~
ILl 1
~

1~
~ /Cli? -f- -f- -/- I

~ .05

/ I
II

IL: '//

1/ I

.5

a .1

1I"j-1-/--/--!-I

.1

.002

100
50
% OF PIV

z
w

L

"- .01

125"C

5:f-

//)
"'-' ~/I'-'
~ 0':' 0

a: .02

V

~ -;p-

I1I1 'III

.5

o

50
100
2QO

150

...J

1 AMP SERIES

VI

a: .2
a:

500
1.000

....

10

/v'rl

.05
.1

VI

Z

Typical Forward Current
. vs Forward Voltage

v,

2 AMP SERIES

UR120-UR220 UR125-UR225

......

1,000

W

'"

100

...J

:J

:;,

Il.

0.

10
.1.us

10
l.us

lOpS

100,u.5

Ims

lOms

PULSe: DURATION (SECONDS)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710\ 326-6509 • TELEX 95-1064

314

1---

100

lOOns

1111
IJ.ls

lOti 5
lOO.us
Ims
PULSE DURATION (SECONDS)

lOms

PRINTED IN U.S.A.

USD520
USD535
USD545

POWER SCHOTTKY RECTIFIERS
150 Amp Pk, Up to 45V

FEATURES

DESCRIPTION

•
•
•
•
•
•
•
•

This series of Schottky barrier power
rectifiers is ideally suited for output
rectifiers and catch diodes in low
voltage power supplies. The Unitrode
high conductivity design, using a heavy
copper top post and 4 point crimp,
ensures cool thermal operation and low
dynamic impedance. Rugged design
absorbs stress that can damage glass-tometal seal during installation and use.

Very Low Forward Drop (O.6V at 60A, 125°C)
Low Recovered Charge
Rugged Package Design (00-5)
High Efficiency for Low Voltage Supplies
Low Thermal Resistance (0.8° C/W)
High Surge Current (lOOOA)
Low Reverse Current «SO rnA at rated vR at 125°C)
Available with Flexible Top Lead

•

ABSOLUTE MAXIMUM RATINGS
USD535

USD520

........... 35V.
.... 3SV.....

Working Peak Reverse Voltage, VRWM ' ........... 2OV ... ..
DC Blocking Voltage, VR .
....... 20V ... .
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 KHz,
50 percent Duty Cycle), IFRM ..
Average Rectified Forward Current, IFIAVI .
Non-repetitive Peak Surge Current (8.3 mS), I FSM ... .
Operating an.d Storage. Temperature Range, lj, Tstg ........ .
Peak Operat~ng Junction .Temperature, ljlplcl ............ ..
Thermal ReSistance .JunctlOn-to-Case,R SJc ...... ..

USD545

.......... ..45V
........... 4SV

=

......... lS0A (at T c
115°C)
.......... 75A (at T c = l1S0C)
. ........... l000A
....... -SSoC to +lWC

. .. +175°C
............................... O.8°C/W

MECHANICAL SPECIFICATIONS
USD520
USD535
USD545

00-5

,...
e

A

"'~

•e
0
E

H

J
K
L
M

N

. 225 ± .005

5.72 ± 0.13

.060 MIN.

1.52 MIN .

.156

3.96.:!: 0.51

+

.020

.156 MIN. FLAT
.667 OIA. MAX .

3.96 MIN. FLAT

.090 MAX.

16.94 DIA. MAX.
2.29 MAX .

.677

17.20

+

.010

.375 MAX.
. 140 MIN. DIA.
1.000 MAX.
.450 MAX.
.438 ± .015
.078 MAX.

±

0.25

9.53 MAX .
3.56 MIN. OIA.
25.40 MAX.

11.43 MAX.

11.13'" 0.38
1.98 MAX.

Notes:
1. Cathode is stud.
2. All metal surfaces tin plated.
3. Maximum un lubricated stud torque: 30 inch pounds (35 kg. em).
4. Angular orientation of terminal is undefined.

[ill]
2/80

315

_UNITRDDE

'

USD520
ELECTRICAL CHARACTERISTICS (TeAsE

=

Symbol

All

Units

50

mA

Maximum Instantaneous
Reverse Current

i.

Maximum Instantaneous
Forward Voltage

vF

0.60

V

Flexible Top Lead Option

vF

0.63

V

Maximum Capacitance

C,

Maximum Voltage
Rate of Change

dv/dt

Conditions
v. = rated,
Te = 125'C
Pulse Width
300pS
Duty Cycle
1 percent

=
=

4000
700

pF

=60A
= 125'C
V. = S.OV

VII'S

v.

iF
Te

Vii

1/

=

rated

Typical Reverse Current
vs Reverse Voltage

Typical Forward Current
vs Forward Voltage

100

0.01

1/

0.02

II

/"

0.05
50

fZ

UJ

'"'"
::>
u

',Lv/t vVf:Q
~
oV

~

10

0.1

f-

0.2

0

/'

'"

::>
u

/

UJ

I

If)

~

UJ

'">
II
1
0.2

'"I

I
I

-"

I II

I
0.3

0.4

0.5

0.6

0.8

0.9

1.0

50

1.1

V,-VOLTAGE (V)

J /

10
20

0.7

VV

:/ ./v

UJ

11

,\,

./

0.5

'"

V"

~ ,>,0

." ",'I'

zUJ

fj ~ 4710

20

"

;;(

.s

I

is

USD545

25'C)

Characteristic

200
150

USD535

7,

."

./
/"

10-""

125'C

--

~'c

/"

'/

//

Y

100
~

~

00

vR -

ro

~

W

~

m

~

w

REVERSE VOLTAGE (% OF VRWM )

Maximum Current
vs Case Temperature
1W

"\

UJ_

>
" 120
i= ;:-

\

;:: z
UJ

UJ

a. '"
UJ '"

~

a

~ 0

a. ~

I, ~

_::: 2

\.
VR

~

i\.

=

RATED
80 f-V R
50% DUTY
f - SQUARE WAVE
f
20 KHz
40

\

'\
1\

=

\
100
Tc -

=0

125

\
\
150

f\
175

CASE TEMPERATURE (OC)

UNITRODE CORPORATION. 5 FORBES ROAD
LEX I NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

PRINTED IN U.S.A.

316

. USD520

USD535

USD545

VRIMAX) Rating vs
Case Temperature

50
45
USi545
40
35

~

USD535

30

en
~

0

.

>
I
>

25
20

USD520

15
10

-so

-25

25

50

75

100

125

150

175

CASE TEMPERATURE C'C)

MECHANICAL SPECIFICATIONS
FLEXIBLE TOP LEAD (OPTIONAL)
Add an "F" Suffix to Part Number.

Standard JEDEC
DO·5 Package

@

I

I

I

rM-l

N

~"F_ )
~I -":136

....""'.'"

USD52DF
USD535F
USD545F

/
:JtJl
~

T

ins.

p

(L4/l-bJ 15

1.500:t .100
.475:t .250
.425:t .025

M
N
P
Q
R

.678:!:: .320
. 205:t .005 OIA.

s

.075:!: ,010

T

1 MIN.

DO-5 with Flexible Lead

mm
38.1O:!: 2.54

12.07:t 6.35
10.80 ± 0.64
17.2210 8.13
5.21 ± 0.13 DIA .
1.91::!:. 0.25
2.54 MIN.

lud

Note: Consult Factory for Non-standard Lead Lengths.

UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6S09 • TELEX 95-1064

PRINTED IN U.S.A.

317

RECTIFIERS

UT236-UT347
UT249-UT363
UT251-UT364
UT261-UT268

Standard Recovery, 1 Amp to 2 Amp

FEATURES
• Continuous Rating: to 2A
• Controlled Avalanche
• Surge Rating: to 30A
• PIV: to lOOOV
• Miniature Package

DESCRIPTIDN
These miniature power rectifiers offer the
user extreme reliability for high-rei
military supplies.

ABSDLUTE MAXIMUM RATINGS
1 Amp
Series

1.25 Amp

1.5 Amp

Peak Inverse Voltage

Series

Series

Series

lOOV
200V
400V
500V
600V
800V
lOOOV

UT236
UT234
UT235
UT237
UT238
UT361
UT347

UT249
UT242
UT244
UT245
UT247
UT362
UT363

UT251
UT252
UT254
UT255
UT257
UT258
UT364

UT261
UT262
UT264
UT265
UT267
UT268

Maximum Average D.C. Output Current
@ TA = 25'C ..
@ T. = lOO'C ...
Non-Repetitive Sinuosoidal
Surge (8.3ms)
Operating Temperature Range
Storage Temperature Range
Thermal Resistance ............................................. .

1 AMP
SERIES

...... 1.0A ..
... O.5A.....
..... 20A ...

2Amp

1.25 AMP

1.5 AMP

SERIES

SERIES

... 1.25A .....
.. ........ O.65A ..

1.5A.
... O.75A ....

.... .... 20A....... 25A ....
.......... -195'C to +175'C
-195'C to +175'C
See lead temperature derating curve .....

2AMP
SERIES

........... 2.0A
.... 1.OA
.. 30A

MECHANICAL SPECIFICATIO.NS
UT236-UT347 UT249-UT363 UT251-UT364 UT261-UT268

Part Identific.tion:

Orang~

BODY A

band indicates "UT." Part

number printed on body.

Polarity: Denoted by orange band.

Weilht: 0.26 grams, typica:.

318

[lliJ

_UNITRaDE

UT236-UT347 UT249-UT363 UT251-UT364 UT261-UT268

ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Type

PIV

UT261
UT262
UT264
UT265
UT267
UT268
UT251
UT252
UT254
UT255
UT257
UT258
UT364
UT249
UT242
UT244
UT245
UT247
UT362
UT363
UT236
UT234
UT235
UT237
UT238
UT361
UT347

lOOV
200V
400V
500V
600V
800V
lOOV
200V
400V
SOOV
600V
800V
lOOOV
lOOV
200V
400V
500V
600V
800V
lOOOV
lOOV
200V
400V
500V
600V
800V
lOOOV

Maximum Leakage
Current (ii) PIV

Maximum Forward
Voltage Drop

2S'C

100'C

lV@900mA

2pA

75pA

lV@750mA

2pA

75p.A

lV@500mA

2p.A

75p.A

lV@400mA

2p.A

751'A

Maximum Current
vs Lead Temperature

Maximum Current
vs Lead Temperature

t AMP SERIES

~
>z

'"a:

2

L

= V,"

'"
~
a:

2

;;:

.'"
.'"
"

a:

::: 3

a:

o

>= 2

()

~

'"a:
"'"

.

Ul

~
I

I

.2

_0

T, -

75

100

125

ISO

175

UNITRODE CORPORATION, 5 FORBES ROAD
LEXINGTON, MA 02173 ' TEL. (617) 861-6540
TWX (710) 326-6509 ' TELEX 95-1064

L~ ~

I

SO

75

3

~

2

(e)

100

'"'"

c'II"'

0

-...........

T, -

319

.............

I'-- I'--.... ~ !'\..

1

25

LEAD TEMPERATURE ('C)

-0

L=~

1--:---..,

a:

>

so

.......

'";;:

(e)

o

1

L = Va"

:J

()

~'"'
1.5

25

1.5 AMP SERIES

~
>z

~
2.5 !:l

a:

ao

..

125

.5

~

ISO

o

175

LEAD TEMPERATURE ('C)

PRINTED IN U.S.A.

UT236-UT347 UT249-UT363 UT2S1-UT364 UT261-UT268

Maximum Current
vs Lead Temperature

Maximum Current
Lead Temperature

VI

1.25AMP SERIES

~

I-

L

==

Z

\40"

-""~0

'"-"
"""
-....
r-..

"" ""-"
"

75

100

125

...Z~
::::.

.1
.2

w

.5

~

u

'">

d
.5

.............
I

'-...,

.2

o
SO

25
Tt

-

2 AMP SERIES

VV/'

IV
z

'"~

I/~O:'" !J
/

I

I

~'C

.002

II

'I

.001

ISO

100

50

.2

% OF PIV

Typical Forward Current
vs Forward Voltage

I

/

.01

.005

I1I1

II

_-.02

~75'C

ifJf--

~ -1'-1'
~

.1

;:)

./

50
100

.2

U.05

I

10
20

111/

~ .5

-;;;'C
~

5

II

I

.4
V, -

I

II

.6
.8
1
VOLTAGE (V)

1.25 AMP SERIES

;::::; I?""

~

'// //
~

II

/

l& !oJ

.2

~ .1
U.05

;:)

U.05

II

/

.001
~

I
A
V, -

/

.01

.005

•
~
1
VOLTAGE (V)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (ijI7) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

II

.002

II

.001
1~

lA

.2

320

I-~

III I

I
-"".02

II

/

.002

k...~O
fjh~O
;:&v,~
1! /-

w
~ .1

I-

1/

.005

I

,5

Z .2

IIi! /

/

.01

o-

;:-1'1

I
~.02

0

5
I-

r-

~ 8X;~

/

;:)

1.4

10

1.5 AMP SERIES

~ .5

!.2

Typical Forward Current
vs Forward Voltage

10

...

o

10

I-

W

.5

75
100
125
150
175
LEAD TEMPERATURE ('C)

SO'C

It:

~~
I~

Typical Forward Current
vs Forward Voltage

-

ALL SERIES

"
"'" .'"
'---- " ~

I

PIV

VS.

It:

'"

1--"':::

175

.02

.05

'"
«
"'"'"
'"
>
«

LEAD TEMPERATURE ('C)

-

.005
.01

w

L -W'

It:

t--.\.

ISO

~

2

U

t:

"'" ""'" ,

I.!;..=%'~

a

'"
;::
ii:

~~

Typical Leakage Current

.001
.002

U

@

...........

Tt

::e
,.,

3

::::.

:v

~34"

so

It:

0

"-

25

'"'"

'11

2 AMP SERIES

~=W'

~

/

.4
V, -

II

I
I

.6
.8
1
VOLTAGE (V)

1.2

1.4

PRINTED IN U.S.A.

UT236-UT347 UT249-UT363 UT2S1-UT364 UT261-UT268

Typical Forward Current
vs Forward Voltage
10

1 AMP SERIES

Vl/ '/

VV/

~ .5
0-

z

I I VI/

.2

w

1//'0.'
() ()
$~ki?

~ .1

I-t-

1- 1- 1- /

::>

U.05

'/

I

1/ / / III-

-" .02

.01
.005

II

.002

/

.001

.2

I
/

.4
VF

I
.6.8
VOLTAGE (V)

-

1.2

Allowable Forward Surge vs Number of Cycles
100

";::z
'"
"::>
0:
W
0:

I~

80

IIIII

0

ii:

40

"'
...0

i::>
::>w
0"

...05'"

I---

----::::: r:-L

0..

If)

If)

t=~
::>0

Turret 1/2 " centers
Printed Circuit

"" ~

If)

ALL SERIES

I I
;~r~~: I" c~nte~s

~

60

w
c::;

Efficiency vs Frequency at Rated Current (Sine Wave) •
100

i'.

20

70

50
40

w -.

30

':!o

20

~~

10

1,000

100

"" "
lK

2

~
0-

z

SERIES

ALL S

Duratici~af':r ~'::~~R~~~Tti~:~~
(8.3 ms sine wave equivalent
to 3 ms square wave)

..........
1,000

1M

Square Pulse

uration for

!

curren~,~vsp-=

Non~Repetitive

Pu se

(8.3 msec sine wave equivalent
to 3 ms square wave) ~

10,000

0:

W

~

::>

0

r--.

(J

"'

ES

I

"'
..J

lOOK

100,000

0:
0:

If)

6 810K

Reverse Pulse Power vs Pulse Duration

Forward Pulse Current vs Pulse Duration

F= ALL

3 4

FREQUENCY (H,) - HALF WAVE RESISTIVE LOAD NO FILTER

CYCLES AT 60 Hz HALF SINE WAVE

10,000

SERIES

60

~~
-I

r-- ALL

80

>0
ZO

oe

90

U·

... 0

10

1.4

0..
W

1,000

~

100

::>

::>

"-

0..

100

!O

10

l,uS

10,u5

lOOJ,LS

Ims

lOms

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

lOOns

l,us

IO,us

Ims

100.u5

PULSE DURATION (SECONDS)

PULSE DURATION (SECONDS)

321

PRINTED IN U.S.A.

IOms

RECTIFIERS

UT2005-UT2060
UT3005-UT3060
UT4005-UT4060

Standard Recovery, 2 Amp to 4 Amp

FEATURES

DESCRIPTION

•
•
•
•
•

High average power and surge capability
make these series of devices attractive
in many high-rei applications.

Continuous Rating:t04A
Controlled Avalanche
Surge Rating:to 100A
PIV: to 600 V
Miniature Package

All Unitrode rectifiers have a sleeve of
pure hard glass fused to the si licon junction. Since the silicon sees only this glass,
electrical characteristics are permanently
stable. This void less, monolithic package
is totally unaffected by the most severe
moisture or temperature testing.

ABSOLUTE MAXIMUM RATINGS
2Amp
Seri8$

3Amp

Peak Inverse Voltage

Series

Series

SOV
lOOV
200V
400V
600V

UT200S
UT20l0
UT2020
UT2040
UT2060

UT300S
UT3010
UT3020
UT3040
UT3060

UT400S
UT40l0
UT4020
UT4040
UT4060

2AMP
SERIES

Maximum Average D.C. Output Current

4Amp

3AMP
SERIEs

4AMP
SERIES

._.___. 3.0A..
.... 4.0A
@~=~C.·UA_
...... l.SA .... _._ .. _.. _
@ TA
lOO'C .. _..... _.. _....... _...... _................... 1.0A.
..... 2.0A
Non-Repetitive Sinusoidal
_.. _._._. __ . lOOA
Surge Current (8.3ms). . . _.... _. 60A...
._ .... _... 8OA.
Operating Temperature Range ......... _._._ .. _............. _..
.... _.......... -19S'C to +l7S'C .. .
Storage Temperature Range ... _._ .. _.... _.. __ ... _._..
....... _........
..... _._-l9S'C to +200'C .. .
Thermal Resistance .. _....... _..... __ .. _.. _ .. _.... __ .. _._ .. _._ ... _ ..... _...... __ .. _.... __ ._ .......... See lead temperature derating curve .. .

=

MECHANICAL SPECIFICATIONS
UT200S-IIT2060 UT300S-UT3060 UT4005·UT4060

BODY B

Part Identification: Orange band indicates "UT." Part
number printed on body.
Polarity: Denoted by orange band.
Weight: 0.75 grams. typical.

322

lliD
_UNITRDDE

UT2005-UT2060

UT300S-UT3060

UT400S-UT4060

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Maximum Leakage
Current @ PIV
Maximum Forward
Type

PIV

Voltage Drop

25'C

100"C

UT400S
UT4010
UT4020
UT4040
UT4060

SOV
lOOV
200V
400V
600V

lV@3A

51'A

lOOIlA

UT300S
UT3010
UT3020
UT3040
UT3060

SOV
lOOV
200V
400V
600V

lV@2A

SI'A

lOOIlA

UT200S
UT2010
UT2020
UT2040
UT2060

SOV
100V
200V
400V
600V

lV@lA

51'A

lOOIlA

Maximum Current
Lead Temperature

Maxi mum Current
Lead Temperature

YS

:!:
I-

Z

:;: 3
0:

=>

U

"
i;:
UJ

i= 2
~

0:
UJ

L '"

,~."

2 AMP SERIES

L

= ¥a'~

KJ;4"~ I""

'" '"

"'"

2

@

-'"

:::

l'---- "- ~

" 5

0

i;: 4

i=
u

UJ

0:
UJ

~~¥a:I\
1--.

'\

I~~~"'" .'"

~

'\

"" -'"

1'--..,..

"


u .05

I

I
'" .02
.01

/

.005
.002
.001

0:
0:

oU oU CJ U

I/h
~/!i,
..... ....,
tv

II
.2

V

/
.4
V, -

0

I

0:

UJ

>
w

0:

II

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064

.05
.1

--

.2
.5
1

J.--""

10
20

so

/
2S'C

V

7S'C

/'

100
200

I

.6
.8
I
VOLTAGE (V)

1.4

VsooC

w

u

5$

II

I

~.

.4
V, -

ALL SERIES

.01
.02

UJ

~ .1

II

Typical Reverse Current vs PIV

/V

....

Z .2

I

II

1.4

/1/ III
II

I

1/

.001

4 AMP SERIES

UJ

II

.002

.6
.8
1
VOLTAGE (V)

~ .5

II

.01

.005

Typical Forward Current
vs Forward Voltage
10

/

I
."..02

I
.4
V, -

lit ou u u
S -I-~ll5?
-I-I- I

;:>
U.05

I

I

j

.2

~ .1

II')

1/ /

I
_".02

.001

0
0

;:; +/1

::>
u.05

.002

....Z

Il-' o~r ~u

~ .1

II II LI

~ ,5

....

UJ

//

3 AMP SERIES

'j

/

UT4005·UT4060

Typical Forward Current
vs Forward Voltage

//.

2 AMP SERIES

Un005·Un060

-J.--""

12S'C

500
1,000
1.2

150

1.4

100

so

0/0 OF PIV

324

PRINTED IN U.S.A.

UT2005-UT2060

UT3005-UT3060

UT4005-UT4060

Allowable Forward Surge vs Number of Cycles
100
,,",

Z

;::

~

80

<{

a:

UJ

'"'

a:

III

"
&-...;:::;

60

:::l
If)

0

UJ

u:

40

;:;

~t-~

Turret 1/2" centers
Printed Circuit

t--

~ ~~

a.

If)

I I

~Jr~i~ 1" celnte~s

UJ

...0

ALL SERIES

20

if
10
100
CYCLES AT 60 Hz HALF SINE WAVE

1,000

Forward Pulse Current vs Pulse Duration
10,000
Square Pulse Current vs_~
Duration for Non·Repetitive Pulse

LL SERIES

~
zw
>-

(8.3 msec sine wave equilialent
to 3 ms square wave)

1,000

a:
a:

:::l
U

w
If)

-'

100

------

:::l

a.

10
l~s

lOllS

100#5

10ms

Ims

PULSE DURATION (SECONDS)

Reverse Pulse Power vs Pulse Duration
100,000
FALL SERIES

~

Square Pulse Power ys ~
DUration .for Non-Repetitiv,e Pulse
(8.3 msec sine wave equivalent
to 3 ms square wave)
-

10,000

a:

UJ

;:
0

0..

1,000

w

If)

-'

:::l
0..

H

100

IIII

10

lOOns

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL, (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

IpS

11111

11111

lOps
lOOpS
Ims
PULSE DURATION (SECONDS)

325

lOms

PRINTED IN U.S.A.

UT5105-UT5160
UT6105-UT6160
UT8105-UT8160

RECTIFIERS
Standard Recovery, 7.5 Amp to 12 Amp

DESCRIPTION
These series of high current rectifiers
offers opportunity for size and weight
reduction in high power supplies.

FEATURES
• Rating: 12A
• Controlled Avalanche
• Miniature Package
• Surge Rating: 200A

ABSOLUTE MAXIMUM RATINGS
12 Amp

9 Amp

Peak Inverse Voltage

Series

Series

Series

50V
100V
200V
400V
600V

UT8105
UT8110
UT8120
UT8140
UT8160

UT6105
UT6110
UT6120
UT6140
UT6160

UT5105
UT5110
UT5120
UT5140
UT5160

12 AMP
SERIES

9AMP
SERIES

7.5 AMP
SERIES

................. 12.0A ..

............. 9.0A..

. .......... 7.5A

Maximum Average D.C. Output Current

@ Tc == 100°C.
Non-Repetitive Sinusoidal
Surge Current (8.3ms)
Operating and Storage Temperature Range.
Thermal Resistance, Junction to Case.
Current Derating .

7.5 Amp

... 200A ...

175A....
. ...... 150A
. .. -wC to +175°C ...
... 7.5°C/Watt ..
. ..... See current vs. case temperature curve ...

MECHANICAL SPECIFICATIONS
UT510S-UTS160
.lB7" MAX.
.005 MAx'
Radius

(4~:mm\

UT610S-UT6160

UT810S-UT8160

BODY C -

Stud Mount

.045" TYP .

(oTmJ

::~;~~~

z~"'···'~:::'0
.460"MA~~

#4·40 )( .250" (6.34mm) LONG THREAD

(3.0Smm)

Part Identification:' Numerals and polarity letter indicate
uUT" type number; e.g., 810SR.
Palarity: CathQc;te to Stud is standard. Reverse polarity
denoted by uR" Suffix.

Finish: Metal parts gold plated per MIL·G-45204. Type II.
Max. Weight: 1.5 grams.

Also available with insulated stud.
Installation
Maximum un lubricated stud torque: 28 inch-ounces.
Insulating hardware supplied.
Do not use a screwdriver in the turret slot for installation purposes, or damage may result.

[1W
326

_UNITRDDE

UT5l05-UT5l60

UT6105-UT6l60 UT8l0S-UT8l60

ELECTRICAL SPECIFICATIONS (at 2f; C unless noted)

Type

Peak I "verse
Voltage

UT8l05
UT8110
UT8l20
UT8l40
UT8l60
UT6105
UT6110
UT6l20
UT6l40
UT6l60
UTSlO5
UT5110
UT5l20
UT5l40
UT5l60

SOV
lOOV
200V
400V
600V
SOV
lOOV
200V
400V
600V
50V
lOOV
200V
400V
600V

Max. Reverse
Current at PIV

Maximum Forward
Voltage

2S'C

1OO'C

lV@8A

lO"A

300"A

lV@6A

lO"A

300"A

lV@5A

lO"A

300ilA

Typical Forward Voltage
vs Forward Current
10,000

<"

.5

2,000

!z

1,000

~

500

::>
o

200

iii:

~_

50

f--

20

kk
~ou
~+
1/ ~

10

K:

!z

1,000

~

500

:>
o

200

iii:

'/~tfI
...

'j

iii:

100

iii:

50

~

I

~

I I

1// /
rr-

20
10

1.2

o

VI Volts

Typical ForwardVoltage
vs Forward Current
10,000
7.5 Amp
5,000

<"
oS
....Z

2,000

..,

1,000

iii:
iii:

500

0

200

Q

iii:

~

iii:

~

100
50

-

20
10

V/V/
/, V/y
'/ /
// /

<"

..:;
....

..,Z
iii:
iii:

:>

..,c..>
..,
..,>

1'1/:(

(I)

iii:

iii:

.2

.4

.6
.8
VI Volts

UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6S09 • TELEX 95-1064

IS

.,t,

.,t

...

·1

lL .11 1
.2

.4

.6
.8
VF Volts

1.2

J_

.05
.1

50'C

I..,

.S
1

j25"C
5
10

50

~C

100

k

SOO
1000

II A I I
o

FIll,"~ ~r"

Typical PJ_V_ vs
Reverse Current

1// /

::>

/

/ VI 1/

Q

~

0.2.4.6.8

/ ~

l2.000

/ I
II / I
f--

•

1//VI

9Amp

5,000

[/ /

100

~

10,000

11/ rl/

Q

iii:

WI r;

12 Amp

5,000

Typical Forward Voltage
vs Forward Current

150

1.2

327

+f5'C
100
so
% 01 P.I.V.

PRINTED IN U.S.A.

UT5105-UT5160

UT6105-UT6160

UT8105-UT8160

Current Rating vs Case Temperature
100

I\-

"c

~

\

50

o

1,\

o

200

100
Temperature 'C

Forward Pulse Current vs. Pulse Duration
10KEtIB
. . .

~
e
lK _ , , _
~

:;

u

~

~

100

IIIIIIII
lmS

1"5

lOmS

Pulse DUration (Seconds)

Reverse Pulse Power vs. Pulse Duration
lOOK

~

10K

~
~

a

,

1K

"~

:;
"-

100

~

Square Pulse Power vs
Duration for Non-Repetitive Pulse
(8.3 ms sine wave equivalent

. I I i I iW!13

10
.1.uS

,

1"5

7) li~~iire iiiii""

.

I [

III
lmS

10"5

10mS

Pulse DUration (Seconds)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

328

PRINTED IN U.S.A.

RECTIFIERS

UTRIO-UTR60
UTROI-UTR61
UTR02-UTR62

Fast Recovery, 0.5 Amp to 2 Amp
FEATURES
• Continuous Rating:t02A
• Controlled Avalanche
• Surge Rating: to 25A
• Fast Recovery 40kHz Operation
• PIV: to 600V
• Miniature Package

DESCRIPTION
These miniature fast recovery rectifiers
permit operation at full frequencies as
high as 40kHz square wave. They have
the unique Unitrode Fused in Glass construction.

ABSOLUTE MAXIMUM RATINGS
V. Amp

1 Amp

Series

Series

Series

UTRIO
UTR20
UTR30
UTR40
UTRSO
UTR60

UTROI
UTRll
UTR21
UTR31
UTR41
UTR51
UTR61

UTR02
UTR12
UTR22
UTR32
UTR42
UTR52
UTR62

Peak Inverse Voltaee

50V
lOOV
200V
300V
400V
500V
600V

'!:lAMP
SERIES

Maximum Average D.C. Output Current
@ TA = 2S·C ....
@ TA = lOO·C .
Non-Repetitive Sinusoidal
Surge Current (8.3ms) ...
Operating Temperature Range
Storage Temperature Range ....
Thermal Resistance

2 Amp

1 AMP
SERIES

2 AMP
SERIES

....... 2.0A
O.SA..
. .......... 1.0A.... .
.. O.2SA............ . ........ O.SA...... ..... . .. .... 1.0A

.................... 2OA ..

................... 25A
. ..... -195·C to +175·C .
. ..... -195·C to +200·C
.......... See lead temperature derating curves ..

.. ...... lSA ..

MECHANICAL SPECIFICATIONS
UTR10-UTR60

1

1-,155" TYP.-J
3.9mm.

Ba~~t~~~'~~t;~""\.1

.055" TYP. ,..." ('"
1.4mm LJ Q..

'f

UTR02-UTR62

BODY A

.028" :-!:.O()l
O.71mm :=.03

I

J1

UTR01-UTR61

,...-

""10
.oes" MAX.
~
2.16t m
I

.08S··
TVP

2.2mm

.7f~"~~~N. t--.2~~;5~~·----1

1--____ l·~~~;m~N.----_.j
Part Identification: Green band indicates "UTR." Part
number printed on body.
Polarity: Oenoted by Green band.
Weight: 0.26 grams, typical.

[ill]
329

_UNITRDDE

UTRlO-UTR60

UTROI-UTR61

UTR02-UTR62

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)

Type

PIV

UTR02
UTRl2
UTR22
UTR32
UTR42
UTR52
UTR62
UTROI
UTRll
UTR21
UTR31
UTR41
UTR51
UTR61
UTRIO
UTR20
UTR30
UTR40
UTR50
UTR60

50V
100V
200V
300V
400V
500V
600V
50V
100V
200V
300V
400V
500V
600V
100V
200V
300V
400V
500V
600V

Maximum

Maximum
Leakage
Current
@PIV

Maximum
Forward
Voltage
Drop

l.lV@ 1000mA

3p,A

100p,A

l.lV@ 500mA

3p,A

lOOp,A

1.IV@200mA

3p.A

100p.A

Junction

Reverse
Recovery

Capacitance
@2S'C

Time*

100"(;

2S'C

Maximum
OV

25On5
250ns
250n5
300n5
350n5
400n5
400n5
250n5
250n5
250n5
300n5
350n5
400n5
400n5
250n5
250ns
300ns
350n5
400n5
400ns

10V

60pf
40pf
32pf
2Spf
24pf
20pf
16pf
60pf
40pf
32pf
28pf
24pf
20pf
16pf
40pf
32pf
2Spf
24pf
20pf
16pf

150pf
100pf
SOpf
70pf
60pf
50pf
40pf
150pf
lOOpf
SOpf
70pf
60pf
50pf
40pf
100pf
SOpf
70pf
60pf
50pf
40pf

*Recovery time is measured from lO.OmA to lO.OmA recovery to S.OmA

Maximum Current

Maximum Current
vs lead Temperature

vs Lead Temperature

Maximum Current
1.5

2 AMP SERIES

L = lfa"

"l

I.!::.=¥a·~

~
l_~J/4"

............

"''"" ."'""-

...........

............

25

50
T, -

75

100

3.5
3

"0

...z

::;:

0:
0:

0

'"

!:l

il

@

;;:

2.5 ~

~

-

2

-

15 II

-'"

.~

150

...

2.5
2

L:::; ]/e"

2

;:

.5

'"'"

u

~
1

UJ

1

.5

0

0

UJ

;;:

....

@

0

.75 @

II

'"~

.5

U(

'"I

UJ
0:

0:
:;)

~

1.5 -

_0

175

(g
::;:

"

;:
UJ
0:

,5

25

50
TL -

UJ

>

.25

'"

75

100

125

150

175

LEAD TEMPERATURE (OC)

....
II
U(

0:

.2

LEAD TEMPERATURE ('e)

1.75

I--I--+--+---.----,--~ 1.5

Z

0
UJ

:::''""

V2 AMP SERIES

5

>

~ ~.~

125

1 AMP SERIES

5

-

vs Lead Temperature
r - - - r - - - - r - - , - - - - - - r - 2.5

25

50
TL -

75

100

125

"

150

LEAD TEMPERATURE ( C)

Reverse-Recovery Circuit

,..--------00
_

99011

D.C.

0----------,
+

D.U.T.

'--------+-0
UNITRODE CORPORATION. S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 86J.6540
TWX (710) 326-6S09 • TELEX 9S-1064

10V

101!

~~6. 0---------'
330

PRINTED IN U.S.A.

UTRlO·UTR60

Typical Forward Current
vs Forward Voltage
10

10
1 AMP SERIES

b--:.

/,

~

z>-

'"~

'l:

/1/

/. '/

.2

:::>

/

u .05

I
-"".02

I

.01

.005

-t-

.2

"'v

>-

.01

I

'"'"
':::>"

.2

1.4

(V)

.05

I

.02

...~
'"cr:

i/l/ /1/

.01

VI

'"'"

'II

I

.002

V

10
20

75'C

50
100
200

V
V

500
1.000
ISO

.001
.2

.6
.8
V, - VOLTAGE

1.2

.4

1.4

-- ~C

.5

'"

'"cr:
>
'"

J

1/

1.2

~O'C

.05
.1
.2

u

f:.> ~I/L

~ ~i ~I

.005

I

.4
.6
.8
I
V, - VOLTAGE (V)

:::>

::;:; +

-"

II

ALL SERIES

.01
.02

Z

~CJ

I

Typical Reverse Current vs PIV

/ / VV
/

u

II

.001
1.2

I

I

.002

tJ~~

.1

II

.005

0.5 AMP SERIES

.2

1/ /

I
.:.02

Typical Forward Current
vs Forward Voltage

~
z>-

:;: :;!f! l- i-r---

:::>
U.05

.4

.5

k~'~ ~ ~
~ & ~ $;

~ .1

V)

-I- I

.6.8
V, - VOLTAGE

/VV

VV IV

.5

Z .2
w

0

/ II
I /

I /

.001

II)

I II I I

I / II

.002

5

I /
r;:r
...
~~~/ijt
~ ~

.1

UTR02·UTR62

Typical Forward Current
vs Forward Voltage

2 AMP SERIES

~ .5

UTR01·UTR61

12S'C

50

100
% OF PIV

1.4

(V)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. ·MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064

331

PRINTED IN U.S.A.

UTRI0-UTR60

Efficiency vs Frequency at Rated Current (Sine Wave)
-

-~

90
80

Allowable Forward Surge vs Number Of Cycles

..'"

ALL. SERIES

z
;::

.... -J

\:>
:::OUJ

c::

"

70

.....
offi

'"c::en

e:~

50

0

>-0
U·

40

!!;

UJN

30

5,!o

20

...
0

10

#

zO

-J:

t!:§
UJ@

80

UJ

60

0'"

:::0

60

"'"

.......

I ~Jr~i~ 1" c~nle~s ~

r---+-+-++++ttI~p<:'~::+-I Turret 1/2" cenlers"""'~t-

f:::

UJ

40

UJ

en

20

10
100
HALF CYCLES OF 60 Hz SINE WAVE

Forward Pulse Current vs Pulse Duration
ALL SERIES

Reverse Pulse Power vs Pulse Duration
ALL SERIES

Square Pu Ise Current V5

Duration for Non-Repetitive Pulse
(8.3 ms sine wave equivalent
to 3 ms square wave)

..........

~

(8.3 ms sine wave equivalent
to 3 ms square wave)

10,000

UJ

UJ

0

UJ

en

...l

Square Pulse CUrrent vs
DUration for Non-Repetitive Pulse

c::

c::
c::
:::0
u

'":::0

1,000

100,000

10,000

1,000

r--

Q.

2 3 4 6 810K
lOOK
1M
FREQUENCY (Hz) - HALF WAVE RESISTIVE LOAD NO FILTER

~
z

Prinled Circuil-

u

1K

....

UTR02-UTR62

lOa

100

:::00

UTROl-UTR61

~

Q.

1,000

UJ

...l

100

:::0
Q.

Q.

100

10

10

IpS

lOps

lOO,u:s

Ims

lOms

PULSE DURATION (SECONDS)

lOOns

I,us

10lts
lOOps
1ms
PULSE DURATION (SECONDS)

10ms

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540

twx (710) 326-6509 • TELEX 95·1064

332

PRINTED IN U.S.A.

RECTIFIERS

UTR2305-UTR2360
UTR3305-UTR3360
UTR4305- UTR4360

Fast Recovery, 2Amp to 4Amp

FEATURES
• Continuous Rating: to 4A
• Controlled Ava lanche
• Surge Rating:tolOOA
• PIV: to 600V
• Miniature Package

DESCRIPTION
Small size and high surge capability
make this series of power switching
rectifiers desirable for power supplies
where size, weight and reliability are
important.

ABSOLUTE MAXIMUM RATINGS

Peak Inverse Voltage

2Amp

Series

3Amp
Series

4Amp
Series

SOV
lOOV
200V
400V
500V
600V

UTR2305
UTR23lO
UTR2320
UTR2340
UTR2350
UTR2360

UTR3305
UTR3310
UTR3320
UTR3340
UTR3350
UTR3360

UTR4305
UTR43lO
UTR4320
UTR4340
UTR4350
UTR4360

2 AMP
SERIES

Maximum Average D.C. Output Current
@ TA =25'C
@ TA = lOO'C
Non-Repetitive Sinusoidal
Surge Current (8.3ms) ..
Operating Temperature Range
Storage Temperature Range
Thermal Resistance.

••••••••

2.0A
.. 1.0A.

" ' P .

3AMP
SERIES

........ 3.0A....
...... 1.5Ap

4AMP
SERIES

.. 4.0A
........ 2.0A

..... lOOA
'pp
60A... . . . . 80A .....
......................................... -195'C to +175'C ..
........... -195'C to +200'C
.............. See lead temperature derating curve .. .

MECHANICAL SPECIFICATIONS
UTR4305-UTR4360

UTR3305-UTR3360

UTR2305-UTR2360

BODYB

Part Identification: Green band indicates HUTR." Part
number printed on body.

Polarity: Denoted by Green band.
Weight: 0.75 grams, typical.

[ill]
333

_UNITRDDE

•

UTR2305-UTR2360 UTR3305-UTR3360 UTR4305-UTR4360
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Maximum
Junction
Capacitance

Maximum
Leakage
CUrrent
@PIV

Maximum
Forward
Voltage
Drop

Type

PIV

UTR4305
UTR4310
UTR4320
UTR4340
UTR4350
UTR4360
UTR3305
UTR3310
UTR3320
UTR3340
UTR3350
UTR3360
UTR2305
UTR2310
UTR2320
UTR2340
UTR2350
UTR2360

SOV
l00V
200V
400V
500V
600V
50V
l00V
200V
400V
500V
600V
50V
l00V
200V
400V
SOOV
600V

Maximum
Reverse

@25'C

Recovery

25'C

100'C

1.lV@4A

5p.A

100p.A

l.lV@3A

5p.A

100p.A

1.1V@2A

5p.A

100p.A

Time""

OV

-10V

250n5
250n5
2SOn5
400n5
4OOn5
4OOn5
250n5
250n5
250n5
300n5
35On5
400n5
250n5
250n5
250n5
300n5
350n5
400ns

600pf
400pf
320pf
240pf
200pf
160pf
600pf
400pf
320pf
240pf
200pf
160pf
600pf
400pf
320pf
240pf
200pf
160pf

240pf
160pf
12Spf
96pf
SOpf
64pf
240pf
160pf
12Spf
96pf
SOpf
64pf
240pf
160pf
128pf
96pf
SOpf
64pf

*Recovery time is measured from lA to lA recovering to O.SA.

Maximum Current
vs Lead Temperature

Maximum Current
vs Lead Temperature

:(

\.L _ 'Is"
\l

"'0:

~5

~=W'

Q

"'-

"'iL 4

g
0:

-~=

.
.

...'

I\.

'\.

""-

\.

'\.

0:

~2

""-

~

"""

'" '"

I

';·1

25

4

~

2

\

"-....

(J

0:

!::

""'

u:
n

1"--,

'"

II

.
.I

""-[\

~

,.,

""'----- ""

2 @
'"

~

-'"

1.5 II

~""

1

'~ ~

~

50
75
100 125
ISO
175
T, - LEAD TEMPERATURE ('e)

25

;g
:E

"'-

0:

~ 1

"---., ~\
25

2.5

Q

3 _'"

\.
I"-. \.

~

'\.1\
1\\
r--...\\

,.,~ " ~r~
'" '"iL;:: 2 L~1>@
0:

(J

"l
L-~4~
t"--.-

\
""'- "'-. ""- 1\.\

"' 3

"

~ 3

L _ ¥II" "-

3.5

"{

0Z

."

2 AMP SERIES

l == Vs"

5:

"'- I"-.

I\.

(J

I

3 AMP SERIES

L:::::;. lis"

1"-

;:6
z

4 AMP SERIES

Maximum Current
vs Lead Temperature

"nu:

.5

~

50
75
100
125
ISO
T - LEAD TEMPERATURE ('e)

175

50
75
100
125
150
175
T, - LEAD TEMPERATURE ('e)

Reverse Recovery Circuit
_

5V
D.C.

+
SCOPE

4U

D.U.T.

lP.

~--------------+-o~6.o---------------~
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

334

PRINTED IN U.S.A.

UTR2305-UTR2360 UTR3305-UTR3360 UTR4305-UTR4360

Typical Forward Current
vs Forward Voltage
10

Typical Forward Current
vs Forward Voltage
10

L'- V/J

4 AMP SERIES

111/ IIV
ilil 1/11

/ 1

II / II

~ .5
I-

zOJ

_".02
.01
.005

.001

I-

Z .2

II

'/

.2

.4
V, -

u.os
I
.01

.2

1.4

!if{)
...., .....
1-~ 1-

::>
U.05

111/

I
_".02

.002
.001

1/
lJ

II
.2

.4
V, -

I

!/

OJ

U tJ

::>

1.2

1.4

1..-

.05
.1

.2
.5

I-----'

w

VI
0::
OJ

0::

J

U

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

.6
.8
1
VOLTAGE (VI

L
25'C

u

rv""

-I- I

.6.8
VOLTAGE (VI

II

_~-50-C

0::
0::

>
OJ

II

II
II

.01

Z

;/fr
Q(,)

~ .1

.005

<
.:;
I-

Z .2

.4
VF -

j

I

.01
.02

1/
1/
1/11 /1/
.5

V

Typical Reverse Current vs PIV

VV' Vv

2 AMP SERIES

OJ

I

V

.001
1.2

•

I

.002

.6
.8
1
VOLTAGE (VI

f

I

.005

10

I-

11[/

..,..02

Typical Forward Current
vs Forward Voltage

5

...~ -I-..,8 -I-'"tiS?I

.1

::>

I

I

00 QU CJ <.J

OJ

:i

[/ I I II
/ J
/ I
/ :1 I

I

.002

~

jl:;

::>
u.05

III

~ .5

~k I
tflit

.2

~ .1

VV:V

3 AMP SERIES

/ 1/

L

10
20

----

50
100
200

./
V125'C

500
1.000

150
1.2

1.4

335

75'C

100
50
% OF PIV

PRINTED IN U.S.A.

UTR2305-UTR2360 UTR3305-UTR3360 UTR4305 -UTR4360

Efficiency vs Frequency at Rated Current (Sine Wave)
100

-'"
....
.... ..J

:::>0

::>
:::>uJ
0"
...offi'"
~~

>-u

U'

ZC

uJ N
-:to

~g
...

~

"'@J

Allowable Forward Surge vs Number of Cycles
100

r--.....

ALL SERIES

90

"-

80
70

";:z
'"

0:
W

"'

":::>
'"0
w
0:

60
50

""

I III ttr'n

i"~

60

;;:

40

80

""" ~::--

40

W

Q.

...'"0

10

20

~

~

....

ALL SERIES

ALL SERIES

Square Pulse CUrrent vs
DUration for Non-Repetitive Pulse
(8.3 ms sine wave equivalent
to 3 ms square wave)

!

1.000

~

Square Pulse Power V5
DUration for Non-Repetitive Pulse
!

10.000

il

(8.3 ms sine wave equivalent
to 3 ms square wave)

0:

uJ

;:

0

U

uJ

w

1.000

Reverse Pulse Power vs Pulse Duration

:::>



:::>

Q.

Il.

100

11111

10

10
.1#5

l#s

10#s

lOO#s

1ms

10ms

PULSE DURATION (SECONOS)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064

336

lOOns

1/15

IIIUIi

I

lO,lS
100,u5
Ims
PULSE DURATION (SECONDS)

lOms

PRINTED IN U.S.A.

UTR4405-UTR4440
UTR5405-UTR5440
UTR6405- UTR6440

RECTIFIERS
Fast Recovery, 6 Amp to 9 Amp
FEATURES

DESCRIPTION

•
•
•
•
•
•

The same basic construction as all
Unitrode diodes, but using a miniature
stud mounting and larger junction area,
provides a 9 Amp continuous and 150
Amp surge rating in a package only one
fifth the weight and one quarter the
volume of conventional types.

Continuous Rating: to 9A
Controlled Avalanche
Surge Rating: to 150A
Fast Recovery, 40kHz Operation
PIV: to 400V
Miniature Package

ABSOLUTE MAXIMUM RATINGS

Peak Inverse Voltage

50V
lOOV
200V
400V

9 Amp

6 Amp

7.5 Amp

Series

Series

Series

UTR5405
UTR54lO
UTR5420
UTR5440

UTR6405
UTR64lO
UTR6420
UTR6440

UTR4405
UTR44lO
UTR4420
UTR4440
6 AMP
SERIES

Maximum Average D.C. Output Current
@ Tc :=: 100·C .
Non-Repetitive Sinusoidal
Surge Current (8.3ms) ...
Operating Temperature Range .
Storage Temperature Range
Thermal Resistance

6.0A..

7.5 AMP
SERIES

.... 7.5A ...

1 2 0 A . . . . d . . . 135A ...
........ -195·C to +175·C .... .
....... -195·C to +200·C ..

9.0 AMP
SERIES

......... 9.0A
.d. 150A

.................. 7.5"C/W ...

MECHANICAL SPECIFICATIONS
UTR6405-UTR6440

#4-40 x

UTR5405-UTR5440

UTR4405-UTR4440

BODY C - Stud Mount

:~~:: ~~:~!~~~ LONG THREAD

Part Identification: Numerals and polarity letter indicate
UTR type number, e.g., UTR 4405.
Polarity: Cathode to Stud is standard. Reverse polarity
denoled by UR" suffix.
Finish: Metal parts gold plated per MIL-G-45204, Type II.
Weight: 1.5 grams, typical.
Also available with insulated stUd.
Installation
Maximum unlubricaled stud torque: 28 inch~ounces.
Insulating hardware supplied.
Do not use a screwdriver in the turret slot for installation purposes, or damage may result.

[ill]
337

_UNITRDDE

•

UTR4405-UTR4440

UTR5405-UTR5440

UTR640S-UTR6440

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)

Type

PIV

UTR6405
UTR6410
UTR6420
UTR6440
UTR5405
UTR5410
UTR5420
UTR5440
UTR4405
UTR4410
UTR4420
UTR4440

SOV
100V
200V
400V
SOV
100V
200V
400V
SOV
looV
200V
400V

Maximum
Forward
Voltage
Drop

Maximum
Reverse
Current @ PIV
2S'C

Maximum Reverse
Recovery Time*

l00"C

1.IV@6.0A

10ILA

300ilA

l.lV@S.OA

10!,A

300!,A

1.IV@4.0A

10ilA

300ilA

300ns
300ns
400ns
500ns
300ns
300ns
400ns
500ns
300ns
300ns
400ns
SOOns

*ReCDvery time is measured from lA to lA, recovering to a.SA.

Typical Forward Voltage
vs Forward Current

Typical Forward Voltage
vs Forward Current
30,000
20,000

I

I

I

l0r;

9 AMP SERIES
10,000
S,OOO

'"0:0:

I

....z

SOO

-"

200
100
50

I

30

.2

II

.4
If -

:>

SOO

-"

200

:;;
E.
....z

SOO

:>

200

I

100

()

-"

20

,4--50'C

10
20

--

50
a: 100
200

-

500
1.000
2.000
150

100

,,/

2S'C

,/
75'C

,./
125'C

50

% OF PIV

II

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

5

'"lQ

'"~

I

.4
.6
.8
1
If - VOLTAGE (V)

-

.5

:>
()

I I
.2

.2

'"
0:
0:

/ I/ I I
I

1.4

I

.1

:<
..3
....
z

I/

10

1.2

lso:c

.05

I

50

.6.8
VOLTAGE (V)

ALL SERIES

.02

/ /1

'"0:0:

I

.4
If -

Typical Reverse Current vs PIV

+175'~~ ~25'C

1,000

I

/11
.2

~/

I, V/
/ /

II

20

+100'C-

2,000

!(J
'i- I

/

1.4

Typical Forward Voltage
vs Forward Current

5,000

Po

J.f

so
1.2

r;

Ir!i?
St
f
l!f~~

100

J

6 AMP SERIES

VI /
II! VI

1,000

0:
0:

()

.6
.8
VOLTAGE (V)

10,000

/ VI

2,000

'"

III /
:11 /11
/I
/II I

:>

()

:;;
E.

-SO'C

1,000

~ /~

S,OOO

+2S'C

+100'C

2,000

// ~

7.5 AMP SERIES
10,000

!I;VI
+l7S'~:Z: Vi II
VI II ~

:;;

E.
....z

20,000

////

L2

1.4

338

PRINTED IN U.S.A.

UTR4405·UTR4440

100
If)

-+-

t:'S
::J
o

::>

SCOPE

4~~

D.U.T.

80

::J"'
Ot!l

60

~~

50

>-0
zO

40

'::'0
...
0
... 0

20

"'@';

10

"'- I'.

I"

70

.....
0::J
U·

H!

ALL SERIES

90

30

2 3 4 6 B 10K
1M
lOOK
FREQUENCY (H,) -HALF WAVE RESISTIVE LOAD NO FILTER

IK

L-----------------40 10V
D.C.

Current Rating vs Case Temperature
100

ALL SERIES

Square Pulse CUrrent liS
Duration for Non-Repetitive Pulse

5:

....

\

t!l

~

Forward Pulse Current vs Pulse Duration
10.000

"- '\.

Z

z

"'

...J

I

100

::J

\

a.

\
100
120
140
TEMPERATURE ( C)

'\.

10

ISO

160

.1115

200

l,uS

lOps

100.u.5

Ims

IOms

PULSE DURATION (SECONDS)

Reverse Pulse Power vs Pulse Duration
100,000
Square Pulse Current vs
Duration for Non-Repetitive Pu Ise

~

11111I1r"-

10.000

ALL SERIES

0:

"'0:
0

a.

(8.3 msec sine wave equivalent
to 3 ms square wave)

:---..,

1.000

"'

If)

...J

::J

a.

100

10
lOOns

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064

•

......

::J

u

If)

80

1.000

0:
0:

'\.

60

(8.3 msec sine wave equivalent
to 3 ms square wave)

I'""

ALL SERIES

"'

'\

50

0:

,o

40

UTR6405·UTR6440

Efficiency vs Frequency at Rated Current (Sine Wave)

Reverse Recovery Circuit
5V
D.C.

UTR5405·UTR5440

1115

10~!s
100115
Ims
PULSE DURATION (SECONDS)

339

lOms

PRINTED IN U.S.A.

RECTIFIERS

UTX 105-UTX125
UTX205-UTX225

Ultra-Fast Recovery, 1 Amp and 2 Amp
FEATURES

DESCRIPTION

•
•
•
•
•

These miniature ultra-fast recovery
rectifiers permit operation at full power at
frequencies as high as 100kHz square"
wave. They may be used as half wave
rectifiers or as legs of a bridge.

Continuous Rating: to 2A
Controlled Avalanche
Surge: to 25A
Recovery Time less than 75ns
Miniature Package

ABSOLUTE MAXIMUM RATINGS
1 Amp
Peak Inverse Voltage

Series

2 Amp
Series

50V
100V
150V
200V
250V

UTX105
UTX110
UTX1l5
UTXl20
UTX125

UTX205
UTX210
UTX215
UTX220
UTX225

Maximum Average D.C. Output Current

1 AMP
SERIES

2AMP
SERIES

@ TA == 25"C .
...... 1.0A ... .
..2.0A
@ TA == lOO"C .. .............. . .... O.5A.. .. ................. 1.0A
Non-Repetitive Sinusoidal
........... 2OA.. .......... ............. 25A
Surge Current (8.3ms)
Operating Temperature Range
... -195"C to +175"C ..
Storage Temperature Range
.... -195"C to +200"C ....
Thermal Resistance.
............................... See Lead Temperature Derating Curve ...

MECHANICAL SPECIFICATIONS
UTX105-UTX125

UTX205-UTX225

BODY A

O·085"MAX .

. 700" MIN
17.8mm

Part Identification: Green band indicates "UTX." Part
number printed on body.
Polarity: Denoted by green band.
Weight: 0.26 grams, typical.

340

lliD
_UNITRDDE

UTX105-UTX125

UTX205-UTX225

ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Type

PIV

UTX 205
UTX 210
UTX 215
UTX 220
UTX 225
UTX 105
UTX 110
UTX ll5
UTX 120
UTX 125

SOY
100Y
l50Y
200Y
250V
50Y
100V
l50V
200Y
250V

*Recovery time

IS

leakage Current
@ PIV

Maximum
Voltage
Forward Drop

25'C

100'C

Max. Reverse
Recovery
Time*

1.0V@lAdc

31'A

5Ol'A

75ns

1.OY @ 0.5 Adc

31'A

5Ol'A

75ns

measured from lO.OmA to 1O.OmA recovery to S.OrnA.

Maximum Current
vs Lead Temperature

Maximum Current
vs Lead Temperature

1 AMP SERIES

"l
.!;,= 'Is"'"

UJ

L

IX
IX

2.5 <

~

:>
u

®

;;:

'".,

= V,"

o

UJ

;:: 2

~:-t---j---j---j----::! 1.5-:-'

&l

II

..'"
.

Ul
n

I.

L -

UJ

IX

~

.5

I

"IJ

o

3

"" ""'" ."'-

I~

IX

~

•

2 AMP SERIES

L = Va"

~
z
>-

®
~,..

2

~4"

~

'-......

II

....
"l
o

~

""~~

............

.,~

.5

1'\

25

50
Tl -

75

100

125

150

175

25

LEAD TEMPERATURE ('C)

Reverse Recovery Circuit

T, -

100

'"

->>--J

:>0
~>
:>UJ
0'"

9900

10V D.C.

20V D.C.

+
lOll

Scope

75

100

125

150

175

LEAD TEMPERATURE ('C)

Efficiency vs Frequency· at Rated Current (Sine Wave)

UZ 840

IKI!

+

50

90

70

~g

60

~~

50

~c
UJ'
-r

30

>u

"0
,,-0
,,-0
UJ@

r-- ALL SERIES

80

40

20
10
IK

2

3 4

6 SIOK

lOOK

1M

FREQUENCY (H,) -- HALF WAVE RESISTIVE LOAD NO FIL fER

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

341

PRINTED IN U.S.A.

UTX105·UT~125

Typical Forward Current
vs Forward Voltage

Typical Leakage Current VS. PIV

.:l

zUJ
u

UJ
III

.5

UJ

1

a:

>
UJ

-

I

z

--t;c

f--

UJ

I
_".02

.005

I

~'C

50
100

II

.01

I

10
20

.002

~

% OF PIV

A
V, -

:::J

U.05

1K

.005

lL

.002
.001

~

I~

1
VOLTAGE (V)

.2

IA

II

11

(:)

~

0

/ I
II IL

~

[

.4

.6

V, -

VOLTAGE (V)

.8

I

1.2

1.4

Reverse Pulse Power vs Pulse Duration
lOOK
ALL SERIES

Square Pulse Current vs
Duration for Non·Repetitive Pu Ise

(8.3ms sine wave equivalent
to 3 ms square wave)

r--..

~

Square Pulse Current vs
Duration for Non-Repetitive Pu Ise

(8.3 ms sine wave equivalent
to 3 ms square wave)

10K

a:

w

UJ

a:
a:
u

~

:::J
UJ
til
...J

~

.01

Forward Pulse Current vs Pulse Duration
ALL SERIES

~
z

11/

I
."..02

I

10K

....

U

U)

~ .1

1

~

k ,uu u - 1; ~ 7-r-

UJ

ilL
I /

I II

so

100

I~ j.ijJU;!~=
/1/ / /

/ / II

.001
150

~5
Z .2

i-i-i-I

u .05

LlLlL

....

-

.2

:::J

I
I ./
~5'C

a:

II I

,

~ .1

i

VI

lL': LL:

~.

....

I

.1
.2

/j

VVj

/'/ ~

I

.05

II:
II:
:::J

2 AMP SERIES

SO'C

.02

....

10

1 AMP SERIES

I ..-

.005
.01

:<

Typical Forward Current
vs Forward Voltage

10

I
I

ALL SERIES

.001
.002

UTX205·UTX225

0

a.

1--.

.......
1K

w

III
...J

100

:::J

a.

:::J

a.

.,...,., JII

III

II

10
.lps

l.us

I linn

1111111
lOps

.......
100

lOO)J:s

Ims

10

lOms

I}IS

lOOns

PULSE DURATION (SECONDS)

lOlls
lOO,uS
Ims
PULSE DURATION (SECONDS)

lOms

Allowable Forward Surge vs Number of Cycles
100

"

Z
~

z
UJ

I~_'ls"

0:

!5u

1,,\
"\

5

o

UJ

;;: 4

;::

u

UJ

0:

~

UJ

2

-

I

UJ

I'\.

4

"\

f'-....

0:

3 AMP SERIES

~
z>-

k=w'"" 1"'-

'-'

'"
>
'"I

4 AMP SERIES

~

'"

.
0

""

1'\.\

;::

U

3

UJ

0:
\oJ

....;....

'-'

'"
'"I

50

50
T, -

'\

"'- 1\
\
""" L"\.~

75
100
125
150
175
LEAD TEMPERATURE (OC)

75
100
125
ISO
175
LEAD TEMPERATURE (OC)

Efficiency vs Frequency at Rated Current (Sine Wave)

Reverse Recovery Circuit
100
5V
D.C.

+

'"
::lo

90

::l'"

70

~g

60

-,>
~«

50

>-0

40

-I1--,

SCOPE

~>

0'-'

U'
4~!

"\
f'-.. 1"\

--..........

25

~
T, -

I'\.

'-......

l'-.. 1\\
r--...\\
25

"" ""

f'--,.

2

0:

"\.

K=3/."

"'>

"\ 1\

l'-..

"l

;;:

~

2

4

\oJ

~,..

\

~_3",""

0

'"'"
Ie)

"\

""" J"-,.

0:
0:
::l
U

~

1'\

L::=. Ve"

D.U.T.

ZO

1~!

30

~o

20

UJ@

10

-1:

+

1M
lOOK
2 3 4 6 810K
IK
FREQUENCY (Hz) -HALF WAVE RESISTIVE LOAD NO FILTER

IOV o-----------.J
D.C.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

ALL SERIES

80

",N

... 0
... 0

-

344

PRINTED IN U.S.A.

UTX 3105-UTX 3120

Typical Leakage Current
.01
.02

:<
.3

...z
'"'"
:>

uJ

'"

10

50'C

.5

I---'

10
20
50

-

100
200
500
1,000

?

...Z
w

V

u .05
'" .02

~

.01

125'C

1
150

.002

.001

50

100

1/

.005

I

% OF PIV

II
.2

.4
VF -

Forward Pulse Current

YS

.01

II

.005

II

II

.002
.001

.6
.8
1
VOLTAGE (V)

1.2

1.4

~

.4

V, -

Pulse Duration

1
~

:J
•

VOLTAGE

1

1~

1.4

(V)

Reverse Pulse Power vs Pulse Duration
100,000

"""

ALL SERIES
(S.) ms sine wave equivalent
to 3 ms square wave)

5

~ 10,000

1,000

0:

w

W

~

'"'"

:>

0..
W

u
w

~

_".02

lL

10,000

!z

II /

I

II
I

-I- -I- -I- f

0.05

/

II

~~~~~

.2

w
~ .1
:>

II

II /

I

1/ II III

~ .5

...
Z

!
~ &
j/J
'~r~ 00
(i: :;: +(?

:>

I

~

I I

.2

V

3 AMP SERIES

lLlL lLV

I IU

.5

~ .1

75'C

10

1/ !/ ,f

-f-

1/
I----'"" 25'C
!
1

.2

Typical Forward Current
vs Forward Voltage

4 AMP SERIES

I

.05
.1

uJ
VI

'"uJ

Typical Forward Current
vs Forward Voltage

./

0

>
w

PIV

YS

ALL SERIES

UTX 4105-UTX 4120

1,000

VI
..J

100

:>

:>

0..

0..

10

100

10
l.u S

lOp 5

100/es

1 ms

lOOns

lOms

1#5

PULSE DURATION (SECONOS)

Allowable Forward Surge
100

"
Z

~

80

"~

60

0:
W

I~

YS

10tt5
100.u:5
Ims
PULSE DURATION (SECONOS)

IOms

Number of Cycles
ALL SERIES

111111

I I

VI

o

'"

ii:

40

8
0..

~

o

20

10
100
CYCLES AT 60 Hz HALF SINE WAVE

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

345

1.000

PRINT[O IN U.S.A.

RECTIFIERS

PAGE

PART NUMBER INDEX

PAGE

DESCRIPTION

PART NUMBER

RECTIFIER
229
229
229
229

*
*
*

231
231
231
231
231

*

•
•
•

233
233
233
233
233
235
235
235

*
*

237
237
237
237

•
•
*

239
239
239
239
239
239

•
*
*

241
241
241
241
243
245
243
245
243
245
243
247
251
247
247
251
247
247
251
247
251
247
247
251

1N3611, J, JTX
1N3612, J, JTX
1N3613, J, JTX
1N3614, J, JTX
1N3656
1N3657
1N3658
1N3909, J, JTX
1N3910, J; JTX
1N3911, J, JTX
1N3912, J, JTX
1N3913, J, JTX
1N3957
1N3981
1N3982
1N3983
1N4245,J,JTX,JTXV
1N4246, J, JTX, JTXV
1N4247, J, JTX, JTXV
1N4248,J,JTX,JTXV
1N4249,J,JTX,JTXV
1N4942, J, JTX,JTXV
1N4944,J,JTX,JTXV
1N4946, J, JTX, JTXV
1N5180
1N5185
1N5186, J, JTX
1N5187, J, JTX
1N5188, J, JTX
1N5190, J, JTX
1N5207
IN5320
1N5330
1N5415, J, JTX, JTXV
1N5416, J, JTX, JTXV
IN5417, J, JTX, JTXV
1N5418, J, JTX, JTXV
IN5419, J, JTX, JTXV
1N5420, J, JTX, JTXV
1N5433
1N5434
1N5435
1N5550, J, JTX, JTXV
1N5551, J, JTX, JTXV
1N5552, J,JTX,JTXV
1N5553,J,JTX,JTXV
1N5614, J, JTX, JTXV
1N5615, J, JTX, JTXV
1N5616, J, JTX, JTXV
1N5617,J,JTX,JTXV
1N5618,J,JTX,JTXV
1N5619, J, JTX, JTXV
1N5620, J, JTX, JTXV
1N5802
1N5802, J, JTX, JTXV
1N5803
1N5804
1N5804, J, JTX, JTXV
1N5805
1N5806
1N5806, J, JTX, JTXV
1N5807
1N5807, J, JTX, JTXV
1N5808
1N5809
1N5809, J, JTX, JTXV

DESCRIPTION

PART NUMBER

RECTIFIER

l.OA; 200V
l.OA; 400V
l.OA; 600V
l.OA; 800V
0.75A; 200V
0.75A; 400V
0.75A; 600V
30A; 50V; 00-5
30A; 100V; 00-5
30A; 200V; 00-5
30A; 300V; 00-5
30A; 400V; 00-5
l.OA; 1000V
2.0A; 200V
2.0A; 400V
2.0A; 600V
l.OA; 200V
l.OA; 400V
l.OA; 600V
l.OA; 800V
l.OA; 1000V
l.OA; 200V
l.OA; 400V
l.OA; 600V
4.0A; 100V
3.0A; 60V
3.0A; 100V
3.0A; 200V
3.0A; 400V
3.0A; 600V
4.0A; 400V
l.OA; 120V
0.5A; 1500V
3A; 50V
3A; 100V
3A;200V
3A;400V
3A; 500V
3A; 600V
2.0A; 700V
2.0A; 700V
12.0A; 700V
5.0A; 200V
5.0A; 400V
5.0A; 600V
5.0A; 800V
l.OA; 200V
l.OA; 200V
l.OA; 400V
l.OA; 400V
l.OA; 600V
l.OA; 600V
l.OA; 800V
2.5A; 50V
2.5A; 50V
2.5A; 75V
2.5A; 100V
2.5A; 100V
2.5A; 125V
2.5A; 150V
2.5A; 150V
6.0A; 50V
6.0A; 50V
6.0A; 75V
6.0A; 100V
6.0A; 100V

247
247
251
247
254
247
247
254
247
247
254

1N5810
1N5811
1N5811,
1N5812
1N5812,
1N5813
1N5814
1N5814,
1N5815
1N5816
1N5816,

256
256
258
258
260
262
264

1N6095
1N6096
1N6097
1N6098
S041
S051
S0241

25A;
25A;
50A;
50A;
30A;
60A;
60A;

266
266
266
268
268
268
270
270
270

SES5001
SES5002
SES5003
SES5301
SES5302
SES5303
SES5401
SES5402
SES5403

2.0A;
2.0A;
2.0A;
5.0A;
5.0A;
5.0A;
8.0A;
8.0A;
8.0A;

J, JTX, JTXV
J, JTX, JTXV
J, JTX, JTXV
J, JTX, JTXV

6.0A; 125V
6.0A; 150V
6.0A; 150V
20.0A; 50V
20.0A; 50V; 00-4
20.0A; 75V
20.0A; 100V
20.0A; 100V; 00-4
20.0A; 125V
20.0A; 150V
20.0A; 150V; 00-4

SCHOTIKY RECTIFIER
30V;
40V;
30V;
40V;
45V;
45V;
45V;

00-4
00-4
00-5
00-5
00-5
00-5
TO-3

RECTIFIER
50V
100V
150V
50V
100V
150V
50V; sim to TO-220
100V; sim to TO-220
150V; sim to TO-220

RECTIFIER,
CENTER-TAP
272
272
272
274
274
274

SES5401C
SES5402C
SES5403C
SES5601C
SES5602C
SES5603C

276
276
276
278
278
278
247
247
247
247
247
247
247
247

SES5701
SES5702
SES5703
SES5801
SES5802
SES5803
UESlOl (lN5802)
UES102 (lN5803)
UES103 (lN5804)
UES104 (lN5805)
UES201 (lN5807)
UES202 (lN5808)
UES203 (l N5809)
UES204 (lN581O)
UES301
UES302
UES303
UES304
UES501
UES502
UES503
UES504
UES505
UES601
UES602
UES603
UES701

16A;
16A;
16A;
25A;
25A;
25A;

50V; TO-220
100V; TO-220
150V; TO-220
50V; TO-3
100V; TO-3
150V; TO-3

RECTIFIER

*

*

•
•

280
280
280
280
280
283
283
283
285

20A; 50V; 00-4
20A; 100V; 00-4
20A; 150V; 00-4
60A; 50V; 00-5
60A; 100V; 00-5
60A; 150V; 00-5
2.5A; 50V
2.5A; 75V
2.5A; 100V
2.5A; 125V
6.0A; 50V
6.0A; 75V
6.0A; 100V
6.0A; 125V
20.0A; 50V
20.0A; 75V
20.0A; 100V
20.0A; 125V
50.0A; 50V; 00-5
50.0A; 75V; 00-5
50.0A; 100V; 00-5
50.0A; 125V; 00-5
50.0A; 150V; 00-5
30A; 50V; TO-3
30A; 100V; TO-3
30A; 150V; TO-3
25A; 50V; 00-4

'Contact Unitrode for specifications and ratings.
Legend, J -

JAN

JTX -

JANTX

JTXV -

JANTXV

UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

346

PRINTED IN U.S.A.

PART NUMBER INDEX

PAGE

DESCRIPTION

PART NUMBER

PAGE

RECTIFIER
285
285
287
287
287
289
289
289
292
292
292
294
294
294
296
296
296
298
298
298
300
300
300
302
302
302
304
304
304

UES702
UES703
UES704
UES705
UES706
UES801
UES802
UES803
UES804
UES805
UES806
UES1001
UESlO02
UESlO03
UESllOl
UESll02
UESll03
UESll04
UESll05
UESll06
UES1301
UES1302
UES1303
UES1304
UES1305
0E;S1306
UES1401
UES1402
UES1403

•
•

25A; 100V; 00-4
25A; 150V; 00-4
20A; 200V; 00-4
20A; 300V; 00-4
20A; 400V; 00-4
70A; 50V; 00-5
70A; 100V; 00-5
70A; 150V; DO-5
50A; 200V; 00-5
50A; 300V; 00-5
50A; 400V; 00-5
1A; 50V
1A; 100V
1A; 150V
2.5A; 50V
2.5A; 100V
2.5A; 150V
2.0A; 200V
2.0A; 300V
2.0A; 400V
6A; 50V
6A; 100V
6A; 150V
5.0A; 200V
5.0A; 300V
5.0A; 400V
8.0A; 50V; TO-220
8.0A; 100V; TO-220
8.0A; 150V; TO-220

•*

•
•
•
•
*
*

•

•
•
•

*
*

•
•
*

31B
31B
31B
31B
31B
31B
31B
31B
31B
31B
318

RECTIFIER,
CENTER-TAP
306
306
306
308
308
308
310
310
310

UES2401
UES2402
UES2403
UES2601
UES2602
UES2603
UES2604
UES2605
UES2606

16A; 50V; sim to TO-220
16A; 100V; sim to TO-220
16A; 150V; sim to TO-220
30A; 50V; TO-3
30A; 100V; TO-3
30A; 150V; TO-3
30A; 200V; TO-3
30A; 300V; TO-3
30A; 400V; TO-3

312
312
312
312
312
312
312
312
312
312

UR105
URllO
UR1l5
UR120
UR125
UR205
UR210
UR215
UR220
UR225
UR710
UR720

2.0A;
l.OA;
l.OA;
l.OA;
l.OA;
2.0A;
2.0A;
2.0A;
2.0A;
2.0A;
l.OA;
l.OA;

31B
318
318
318

31B
31B
31B
318
318
318
318
318

RECTIFIER

•

·

315
315
315

50V
100V
150V
200V
250V
50V
100V
150V
200V
250V
100V
200V

31B
31B
318

31B
322
322
322
322
322

•

322
322
322
322
322

SCHOTIKY RECTIFIER
US0520
US0535
US0545

75A; 20V; 00-5
75A; 35V; 00-5
75A; 45V; 00-5

*

RECTIFIER

•*
•
•

*

*
*

UTl11(1N536)
UTl12(lN537)
UTl13(l N3656)
UTl14(lN539)
UTl15(l N3657)
UTl17(lN547)
UTl18(lN3658)

0.75A;
0.75A;
0.75A;
0.75A;
0.75A;
0.75A;
0.75A;

322
322
322
322
322

50V
100V
200V
300V
400V
500V
600V

*
*

326

PART NUMBER

DESCRIPTION
RECTIFIER

UTl19
UTl20
UT211(lN645)
UT212(lN646)
UT213(lN647)
UT214(lN648)
UT215(lN649)
UT221(1 N676)
UT222(lN677)
UT223(lN678)
UT224(lN679)
UT225(lN681)
UT226(lN682)
UT227(lN683)
UT228(lN684)
UT229(1 N685)
UT231(1N6B6)
UT232(lN6B7)
UT233(1 N689)
UT234
UT235
UT236
UT237
UT238
UT242
UT244
UT245
UT247
UT249
UT251
UT252
UT254
UT255
UT257
UT25B
UT261
UT262(lN39B1)
UT264(1 N39B2)
UT265
UT267(lN39B3)
UT26B
UT347
UT361
UT362
UT363
UT364
UT2005
UT2010
UT2020
UT2040
UT2060
UT2080
UT3005
UT3010
UT3020
UT3040
UT3060
UT30BO
UT4005
UT401O(1N5180)
UT4020
UT4040(1 N5207)
UT4060
UT4080
UT4100
UT5105

0.75A; 800V
0.75A; 1000V
0.75A; 225V
0.75A; 300V
0.75A; 400V
0.75A; 500V
. 0.75A; 600V
0.5A; 100V
0.]5A; 100V
0.5A; 200V
0.75A; 200V
0.5A; 300V
0.75A; 300V
0.5A; 400V
0.75A; 400V
0.5A; 500V
0.75A; 500V
0.5A; 600V
0.75A; 600V
l.OA; 200V
l.OA; 400V
l.OA; 100V
l.OA; 500V
l.OA; 600V
l.25A; 200V
l.25A; 400V
l.25A; 500V
l.25A; 600V
l.25A; lOOV
l.5A; 100V
l.5A; 200V
l.5A; 400V
l.5A; 500V
l.5A; 600V
l.5A; BOOV
2.0A; 100V
2.0A; 200V
2.0A; 400V
2.0A; 500V
2.0A; 600V
2.0A; BOOV
l.OA; 1000V
l.OA; BOOV
l.2A; BOOV
l.2A; 1000V
l.5A; 1000V
2.0A; 50V
2.0A; 100V
2.0A; 200V
2.0A; 400V
2.0A; 600V
2.0A; BOOV
3.0A; 50V
3.0A; 100V
3.0A; 200V
3.0A; 400V
3.0A; 600V
3.0A; BOOV
4.0A; 50V
4.0A; 100V
4.0A; 200V
4.0A; 400V
4.0A; 600V
4.0A; BOOV
4.0A; 1000V
7.5A; 50V

·Contact Unitrode for specifications and ratings.
Legend, J -

JAN

JTX -

JANTX

JTXV -

JANTXV

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

347

PRINTED IN U.S.A.

PART NUMBER INDEX

PAGE

DESCRIPTION

PART NUMBER

PAGE

PART NUMBER

•
•

326
326
326
326
326

*

326
326
326
326
326

•

326
326
329
329
329
329
329
329
329
329
329
329
329
329
329
329
329
329
329
329
329
329

•

*

333
333
333
333
333
333
333
333
333
333
333
333
333
333
333
333
333
333
337
337
337

•

337
337
337
337

UT5110
UT5l20
UT5l30
UT5l40
UT5l50
UT5l60
UT6l05
UT6110
UT6l20
UT6l30
UT6l40
UT6l60
UT8l05
UT8llO
UT8l20
UT8l30
UT8l40
UT8l60
UTROl
UTR02
UTRlO
UTRll
UTRl2
UTR20
UTR2l
UTR22
UTR30
UTR3l
UTR32
UTR40
UTR4l
UTR42(1 N5206)
UTR50
UTR5l
UTR52
UTR60
UTR6l
UTR62
UTR70
UTR71
UTR2305
UTR23l0
UTR2320
UTR2340
UTR2350
UTR2360
UTR3305
UTR33l0
UTR3320
UTR3340
UTR3350
UTR3360
UTR4305
UTR4310
UTR4320
UTR4340
UTR4350
UTR4360
UTR4405
UTR4410
UTR4420,
UTR4430
UTR4440
UTR5405
UTR5410
UTR5420

"

RECTIFIER

RECTIFIER
326
326

DESCRIPTION

7.5A; lOOV
7.5A; 200V
7.5A; 300V
7.5A; 400V
7.5A; 500V
7.5A; 600V
9.0A; 50V
9.0A; lOOV
9.0A; 200"
9.0A; 300V
9.0A; 400V
9.0A; 600V
l2.0A; 50V
l2.0A; 100V
l2.0A; 200V
l2.0A; 300V
l2.0A; 400V
l2.0A; 600V
l.OA; 50V
2.0A; 50V
0.5A; lOOV
l.OA; lOOV
2.0A; lOOV
0.5A; 200V
l.OA; 200V
2.0A; 200V
0.5A; 300V
l.OA; 300V
2.0A; 300V
0.5A; 400V
1.0A; 400V
2.0A; 400V
0.5A; 500V
l.OA; 500V
2.0A; 500V
0.5A; 600V
l.OA; 600V
2.0A; 600V
0.5A; 700V
l.OA; 700V
2.0A; 50V
2.0A; 100V
2.0A; 200V
2.0A; 400V
2.0A; 500V
2.0A; 600V
3.0A; 50V
3.0A; lOOV
3.0A; 200V
3.0A; 400V
3.0A; 500V
3.0A; 600V
4.0A; 50V
4.0A; 100V
4.0A; 200V
4.0A; 400V
4.0A; 500V
4.0A; 600V
6.0A; 50V
6.0A; 100V
6.0A;200V
6.0A; 300V
6.0A; 400V
7.5A; 50V
7.5A; 100V
7.5A; 200V

*

337
337
337
337

*

337
340
340
340
340
340
340
340
340
340
340
343
343
343
343

•

343
343
343
343

•

UTR5430
UTR5440
UTR6405
UTR6410
UTR6420
UTR6430
UTR6440
UTXl05
UTX110
UTX115
UTXl20
UTXl25
UTX205
UTX210
UTX2l5
UTX220
UTX225
UTX3105
UTX3110
UTX3115
UTX3l20
UTX3l25
UTX4105
UTX4110
UTX4115
UTX4l20
UTX4l25

7.5A;
7.5A;
9.0A;
9.0A;
9.0A;
9.0A;
9.0A;
l.OA;
1.0A;
1.0A;
1.0A;
l.OA;
2.0A;
2.0A;
2.0A;
2.0A;
2.0A;
3.0A;
3_0A;
3.0A;
3.0A;
3.0A;
4.0A;
4.0A;
4.0A;
4.0A;
4.0A;

300V
400V
50V
lOOV
200V
300V
400V
50V
lOOV
l50V
200V
250V
50V
100V
l50V
200V
250V
50V
lOOV
l50V
200V
250V
50V
100V
l50V
200V
250V

·Contact Unitrode for specifications and ratings.
Legend: J -

JAN

JTX -

JANTX

JTXV -

JANTXV

UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX 1710) 326-6509 • TELEX 95-1064

348

PRINTED IN U.S.A.

SALES OFFICES
PART NUMBER INDEX

II

DESIGNERS' GUIDES

III

POWER TRANSISTORS & DARLINGTONS

IV

SWITCHING REGULATOR POWER CIRCUITS

V

RECTIFIERS

VI

HIGH VOLTAGE RECTIFIERS, RECTIFIER
MODULES & MULTIPLIERS
RECTIFIER BRIDGE ASSEMBLIES

VIII

POWER ZENERS & TRANSIENT VOLTAGE SUPPRESSORS

IX

THYRISTORS (SCRs, Triacs, PUTs)

X

SWITCHING & GENERAL PURPOSE DIODES

XI

PIN DIODES

XII

CAPACITORS

XIII

APPLICATION NOTES & DESIGN NOTES

XIV

MECHANICAL SPECIFICATIONS

XV

349

350

HIGH VOLTAGE RECTIFIERS
& RECTIFIER MODULES
~
SA-SM

s~
g

----~
PC

PRODUCT SELECTION GUIDE

OG

PME

STANDARD RECOVERY

,.,,:."

l.OkV

HVElO
SJ
HSlO

SXSlO

SL

SK

\:

IN3643
SJ

'.>,

.".

(USI2)
SA
LSI5

HSI5

SXSI5

SH

SK

SL

HVEl5

(USI5)
SA

LMSI5

SG

SJ

MSI5

IN3644

SH

SJ

KXSI5
SM

MXSI5

SG

:.•·.:. l,ak~,.

(USI8)
SA
LS20

HS20

SH

SK

LMS20

HVE20

SG

SJ

MS20

IN3645

SH

SJ

(US20)
SA

SXS20

(US25)
S8

SXS25

(USB2.5)

PMA20I

SL

OH

PMA

KXS20
SM

SL

MXS20

SG
LS25

HS25

SH

SK

LMS25

HVE25

PMElOl

SG

SJ

PME

MS25

IN3646

SH

SJ

HVHS
2500

PC

KXS25
(UDE2.5) (UGE2.5)
SM
DO
DG
(UDB2.5)
DO

MXS25

SG
LS30

HS30

SXS30

SH

SK

SL

LMS30

HVE30

SG

SJ

(US30)
S8

MS30

IN3647

SH

SJ

KXS30
SM

MXS30

SG
(US35)
SC
LS40

HS40

(US40)

SXS40

SH

SK

SC

SL

LMS40

HVE40
SJ
IN5I8I
SJ

SG
MS40

SH

KXS40
SM

PMEI02

PME

MXS40

SG
(US45A)
SO
Parentheses ( ) designates product using
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

351

fused~in-glass

single chip rectifiers; all others use stacked chips.
Printed in U.S.A.

HIGH VOLTAGE RECTIFIERS
& RECTIFIER MODULES
STANDARD RECOVERY

HVH
5000

LS50

SH
LMS50

PB

SG

HVHF
5000

MS50

SH

PB

MXS50

(US50A)

SO

SG

SXS60

KXS60

SL

SM

(US60A)

SO

(US70A)

SO
HS75

USB7.5) PMA102 (UDA7.5)

PMA203

PMA

PMA

SK

HVH
7500

HVF75

PB

(UDB7.5)

SJ

HVHF
7500

DO

1N5183

SJ

OH

DO

HVHS
7500

DG

DG

PC

PB
USS7.5)

OH
(uS80A)

SXS80

KXS80

SE

SL

SM

PMEl03

PME

HS100

SK

SE

HVH
10000

(UDA10)

BE

DO *

HVE100

PB

1N5597

SJ

DE

1N5184

HVHF
10000

PMA103

SJ

PB

PMA

KXS100

PMA204

SM

PMA

HVHS
10000

PC
GBlO)

DG

SXS100

SL
(USBlO)

DH
(USS10)

OH
SE

BE

HVH
12500

HVHS
12500

PB

PC

HVHF
12500

PB
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TE~EX 95·1064

Parentheses ( ) designates product using fused-in-glass single chip rectifiers; all others use stacked chips.
*Avallable as JAN

352

PRINTED IN U S.A.

PMA

PME

DD,DE

DF,DG

iTANDARD RECOVERY

HVHJ
15K

HVH
15000

PA

PB
HVHF
15000

PB
(688-15)

BE
HVHS
17500

PC
(US 180A) (688-18)
HVHJ
20K

SF

BE

(US200A)

HVH
20000

SF

PA

PB

PMAI05

PMA206

PMA

PMA

HVHS
20000

PC

HVHF
20000

PB
(688-20)

BE
HVHJ
22.5K

PA
SN

HVHJ
25K

VXS25

PA

LCS25

(688-25)

SP

BE

HVH
25000

PMAI06

PMA207

PMA

PMA

PMAI07

PMA208

PMA

PMA

PB
HVHF
25000

PB
HVHJ
30K

PA
HVHJ
35K

PMAI08

PMA

PA
HVHJ
37.5K

PA
HVHJ
40K

PMA109

PMA

PA
HVHJ
45K

PA

~ ITROOE CORPORATION. 5 FORBES ROAO
:XI NGTON, MA 02173 • TEL. (617) 861·6540
VX (710) 326·6509 • TELEX 95·1064

PMAllO

PMA
PMA111

PMA
Parentheses (

) designates product using fused-in-glass single chip rectifiers; all others use stacked chips.

353

PRINTED IN U.S.A.

HIGH VOLTAGE RECTIFIERS
& RECTIFIER MODULES
/

/

~,,~
~
~~~
PA- PC

SA-SN

FAST RECOVERY

PMA

p?9

0/
PME

(USR12)

SA
LA15

HA15'

(USR15)

SX15'

KX15*

SH

SK

SA

SL

SM

LM15'

HVX15

SG

SJ

MA15"

SH
MX15

SG
(USR18)

SA
HA20'

(USR20)

SX20'

KX20'

SH

SK

S8

SL

SM

LM20

HVX20'

SG

SJ

LA20

MA20'

SH
MX20'

SG
HVF
2500t

SX25'

PMA201X

SL

PMA

HVX25*

P8

(UFB2.5)

SJ

(USR25)

OH

HVFS
2500t
PC
(UDD2.5)

S8

PMEIOIX'

DO

LA25

HA25*

SH

SK

·LM25

SG
MA25*

SH

KX25*

SM

(UDF2.5)

DO
(UGF2.5)
DG

PME

MX25'

SG
LA30

HA30'

(USR30)

SX30'

KX30'

SH

SK

SC

SL

SM

LM30

HVX30'

SG

SJ

MA30'

SH
MX30'

SG
(USR35)

SC
LA40

HA40'

(USR40A)

SX40'

KX40'

SH

SK

SO

SL

SM

LM40

HVX40'

PME102X'

SJ

PME

SG
MA40'

SH
MX40'

SG

Parentheses ( ) designates product using fused-in-glass single chip rectifiers; all others use stacked chips.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

354

PRINTED IN U.S.A.

~
BE

PRODUCT SELECTION GUIDE

UDH

DG

FAST RECOVERY

LA50

SH
LM50

SG
MA50'

SH
MX50'

SG
(USR60A)

SX60'

KX60'

SD

SL

SM

(USR70A)

SE
HVF
7500t

(UDC7.5)

PMA203X'

DD

PMA

HVX75

PB

(UDD7.5)

PC

SJ

(UFB7.5)

DD

(UGD7.5)
DG
(UGF7.5)
DG

HA75

SK

DH

PMAI02X'

(UFS7.5)

PMA

DH
LA80

(USR80A)

SH

SE

SX8O'

KX8O'

SL

SM

LM80

PMElO3X'

SG

PME

HVFS
7500t

MA8O'

SH
MX8O'

SG
HAlOO

(USRIOOA)

SK

SE

HVF
lOOOOt

(UDCIO)

PMAI03X'

KXlOO'

PB

DD

PMA

SM

(688-lOR)

(UGDIO)
DG
PMA204X'

BE

PMA

HVXlOO

SJ

SXIOO'

HVFS
lOooot

PC

SL
(UFSIO)

DH
(USR120A) (688-12R)
SF

Parentheses (
UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

BE

) designates product using fused-in-glass single chip rectifiers; all others use stacked chips.

355

PRINTED IN U.S.A.

HIGH VOLTAGE RECTIFIERS
& RECTIFIER MODULES FAST RECOVERY

~.. ~
~

;i. 8

~

'<-SN

Q

PRODUCT SELECTION GUIDE

#/

DD

k

P.. ~ 4 ..."

HVF
15000t
PB
(UDC15)
DO
(688-15R)
BE

HVFS
17500
PC
LM180
SG
MX200
SG
VX20·
SP
LC20
SN
CAX20
CAX

HVJX
20K
PA

(USR180A)
SF

(688-18R)
BE

(688-20R)
BE

HVF
20000t
PB

PMA105X
PMA

PMA206X
PMA

(688-25R)
BE

HVF
25000t
PB

PMA106X
PMA

PMA207X
PMA

PMA208X
PMA

HVFS
20000
PC

HVJX
22.5K
PA
VX25·
SP
LC25
SN
CAX25
CAX

HVJX
25K
PA

VX30'
SP
LC30
SN
CAX30
CAX

HVJX
30K
PA

PMA107X
PMA

HVJX
35K
PA

PMA108X
PMA

HVJX
37.5K
PA
VX40'
SP

HVJX
40K
PA

PMA109X
PMA

HVJX
45K
PA
VX50·
SP

UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

PMA110X
PMA

Parentheses (

) designates product using fused·'in-glass single chip rectifiers; all others use stacked chips.

356

PRINTED IN U.S.A.

RECTIFIER ASSEMBLIES

JAN IN5597
JAN IN5600
JAN IN5603

High Voltage Stacks, 1Amp to 5 Amp,
Military Approved
FEATURES

DESCRIPTION

•
•
•
•
•
•
•

This series of military high-voltage highcurrent stacks offers the utmost in
reliability as required in military system
designs. The rectifiers are assembled with
diodes which have been subjected to TX
type screening tests.

Qua I i fied to MIL -S-19500 / 404A
PIV: to lOkV
Surge Ratings: to 200A
Current Ratings: to 5A
Only Fused-in-Glass Diodes Used
Controlled Avalanche Characteristics
Modular Package For Easy Stacking

ABSOLUTE MAXIMUM RATINGS
JAN lN5597

Peak Inverse Voltage
Maximum Average D.C. Output Current
@ Tc = 75°C
Non-Repetitive Sinusoidal Surge (8.3ms)
@Tc = 75°C ...
Operating and Storage Temperature Range

JAN lN5600

10kV..
1A..
.. .......... 30A..

. ....

H

JAN lN5603

. SkV ...

........ SkV

2A ...

............. SA

••

aOA
............. _65°C to +150°C ...

. 200A

MECHANICAL SPECIFICATIONS
JAN 1N5597 , JAN 1N5600

THREAD
RELIEF TO

?-

A .012 OUT TO OIA

=MAX ",0,

MINOR DIA

FROM 1 TO 3
THOS

.020 MIN x 45
CHAM

JAN lN5603
JAN 1N5597
Ltr

A
B
C

C,

.0
00'

JAN 1N5600

Dimensions in inches with metric
eQuivalents mm) in Darentheses
Minimum
Maximum
.73 (18.54)
.83 (21.08
.OBO (2.03)
.240 (6.10)
.26' (6.71)
.265 (6.73)
.400 (10.16)
1.85 (46.99)
1.95 (49.53)
.57 (14.48)
.67 (l7.02)

JAN lN5603
NOTES

1. All marking shall be on cathode side of
module.
2. Threaded stud 1f4-28UNF-2A.
3. Threaded stud %-24UNF-2A.
4. Threaded insert 1f4-28UNF'-2B.

Ltr
A

• ;6

C
C,

.0
00,

Dimensions in inches with metric
equivalents Imm) ;n parentheses
Minimum
Maximum
,970 (24.64)
1.020 (25.91)
)
(2.03)
.307 (7.80)
.317 (8.05)
.318 (8.OB)
.400 (10.16)
3.450 (87.631
3.650 (92.71)
.95 124.13)
1.250 (31.75)

....

NOTES

8
3
5.7

5. Threaded insert %-24UNF-2B.
6. Cathode connected to terminal 2.
7. Cathode connected to terminal 1.
S. Module contour within dimenSion A is not
specified.

357

[ill]

_UNITRODE

JAN 1N5597 JAN 1N5600 JAN 1N5603
Electrical Specifications (at 25'C unless noted)
Maximum leakage
Current
@PIV

Forward
Voltage Drop

Type

PIV

JAN 1N5597
JAN 1N5600
JAN 1N5603

lO

Min.

Max.

13V@lA
6V@2A
6V@5A

19V@lA
10V@2A
lOV@5A

kV

5
5

TA

= 25'C

TA

=

= 100°C

#A

#A

1
5
5

75
100
100

5
7
15

Typical Forward Voltage
VS. Forward Current
10K

JAN1N5597

5K

//

- 500

I II

Z

~ 200

'"~
"u.

E SOD

Z

~ 200
0:

:J 100

'ViI '~f~I
I
I.;

20

u

:;: Jj-:;; "'I

"

50

'"~

20

I I

"

0:

II

10

I

II /
I 0

/

u.

.5

.75

1.25

1.5

MULTIPLY V, BY,

E

-

IZ

50

"~

20

u.

10

o

I-

zw

V)

I

I

1.25

I

W

..J

PIV
./
50'C

____ +25'C

.5

-

w

"'"
""

VS.

JAN1~5600

:J

I

1.5

MULTIPLY VF BY,

u

I I

I

.75

0:
0:

:;: .; '" I

0:

.5

-"

£~~u
J:,J[!
8
Ii?u

:J 100

I I

.25

.05
.1
;;(
.2

I

/

~ 200

u
"0:

.01
.02

/1 II

500

o

/

Typical Leakage Current

L V/;

;;( IK

I
I

FORWARD VOLTAGE -

//, '/

JAN1N56D3

2K

I
I I

10

I

Typical Forward Voltage
VS. Forward Current
10K

~o/lt
if $L7,~

/ II I I

FORWARD VOLTAGE -

5K

r--

I

I I

.25

v/ I /
/ II / J

I-

~8

50

/ //
/1 II

;; lK

I

j j jl

0:

:J 100

//;V

2K

/; '//

:;{ lK
E

u
"
0:

JAN1N5600

5K

W/-/

I-

2
6
12

30
30
40

Typical Forward Voltage
VS. Forward Current
10K

2K

Maximum
Reverse
Transient
Energy
Absorption
joules

Capacitance
@ V,
100V
Max.
Min.
pI
pI

10
20
50
100
200

i----"

L
+75"C

V
125'C

SOD
I

o

.25

.5

.75

FORWARD VOLTAGE -

1.25

IK

1.5

125

MULTIPLY VF BY,

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6S09 • TELEX 95-1064

lao

75

50

25

% OF PIV

358

PRINTED IN U.S.A.

JAN IN5597 JAN IN5600 JAN IN5603

Typical Leakage Current vs. PlY
.001
.002

Ty·pical.eakage Current vs. PlY

f-- JAN1 N5597·

.01
.02

--

.005
.01
<' .02

50-C

~

...""

.05
.1
:> .2

z

"'0:0:
u

"'"«
"«

t

25° C

10
20
50
100

""

«
....

"'

I

~-C
'I
125

100

75

10
20

.,./
+25°C

....t..--:::

_ _ +75°C

50
100
200

~5OC

500
1K

25

50

5

"'
«

..,,-

"'

-

.5

:>
u

!-----+75-C

..J

50°C

"'0:0:

V

.5

~

.05
.1
.2

I-

z

JAN1~56D3

125

100

% OF PIV

75
50
% OF PIV

25

Current Derating Curve
100

\

"
«
z
;::

\

\

50

\

0:

"#
~

\

o

o

150
50
100
CASE TEMPERATURE ('C)

200

Discrete diode inspection lot.

•

100%

3. Reverse-recovery time

I

3. Measurement of specified parameters to
determine delta

f--t

4. Lot rejection criteria based on rejects
from burn-in test

Preparation for delivery

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064

of discrete diodes

2. Reverse bias burn·in

1. High-temperature storage

2. Thermal Shock (temperature cycling)

Burn~ln

1. Measurement of specified parameters

100% process conditioning of discrete diodes

Review of groups A.
B. and C data for lot
accept or reject.

359

H

Assembly and encapsulation of
discrete diodes into bridge assembly

r

1
Inspection test to verify LTPD
Group A
Group B
Group C

PR;INTED IN U.S.A.

RECTIFIER ASSEMBLIES

688 SERIES

High Voltage Stacks,
Standard and fast Recovery
FEATURES

DESCRIPTION

•
•
•
•
•
•
•

This series of high power stacks has a
unique packaging design that provides
characteristics not obtainable in conventional molded epoxy packages. This series,
therefore, is ideally suited for high-voltage,
high-power applications.

PIV: from lOkV to 2SkV
Surge Rating: to 20A
Recovery Time Available: to 500ns
Current Ratings: to 0.6A
Bonded Platefor,Maximum Heat Transfer
Controlled Avalanche Characteri'stics
Only Fused-in-Glass Diodes Used

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage,
Maximum Average D.C. Output Current,
Non-repetitive Sinusoidal Surge (8.3ms)
Operating and Storage Temperature Range,
Thermal Resistance Junction to Ambient '
Junction to Case ,

""""",,1OkV to 2SkV
." See Electrical Specifications
, 20A
" , -6S'C to +lSO'C
,,2S'C/W
"lO'C/W

688 SERIES

-'----0

.770

.740

r---,
.... .,

-4.-'

I

1,75<) I

~".-~
-~ :'f'==t
/

r

.720

-t

Add suffix R to denote Fast
Recovery version. For example,

for recovery time, trr ::::: Soons;
order 6SS-l0R.

. TAPPED.IO-32 THREAD

Dimensions in inches.

Typical Weight - 2.5 ounces
70 grams

MARKING
Cathode - Positive Output
Anode - Negative
Part number is printed on the body.

360

O:W
_UNITRODE

688 SERIES
Electrical Specifications (at 25°C unless noted)
Maximum
Forward

Type

Standard
And Fast
Recovery"

Voltage
Drop

PIV
kV
10
12
15
18

688-10
688-12
688-15
688-18
688-20
688-25

20

Maximum

Leakage
Current
@PIV

D.C. Output

Average

Current

TA _ 25°C
#A

T. _100°C
#A

2

100

17V@0.4A
20V@0.4A
25V@0.4A
30V@0.4A
34V@0.4A
42V@0.4A

25

Maximum Ratings
Maximum

Tc _100°C
Amps
0.60
0.50
0.40
0.35

0.30
0.20

*Add suffix R to denote Fast Recovery version.

Typical Forward Voltage Per leg
vs. Forward Current

Typical leakage Current VS. PIV

10
.01
.02

I"VI/

~
z

OJ
0:
0:

a

V

.2

.1

.02

I.L.

.01

o

zOJ
I-

II

.002

I
o

.2

:J

II

Y

10
20

"
"'"
OJ
..J

+75°C

50
100

I
I

.4

+25'C

<.J
OJ

"

II

V

.5

0:
0:

II / /

.005

.001

I-

;: :;:: "I- /

if

.2

'"

IV

k(;
,(; .~"
~ & lO t?-f-

~ .05

"~

:<

/VV

.5

I-

~O'c

.05
.1

I
.6

V

200

.8

~125'C

500
1

1.2

lK

1.4

125

FORWARD VOLTAGE- MULTIPLY V, BY,

100
75
50
% OF PIV

25

Current Derating Curve
100
\

\

"
z

~

0:

50

\

if.

\

\
I

il

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (no) 326-6509 • TELEX 95-1064

I

o

50
100
lSO
CASE TEMPERATURE (OC)

361

200

PRINTED IN U.S.A.

CAX1S-30

HIGH VOLTAGE
RECTIFIER ASSEMBLY
10mA
WITN J 1-21 Anode Cap

DESCRIPTION
The CAX anode assembly combines a fast
recovery high voltage silicon rectifier
molded void free into a UL approved wire
and terminated with a Jl-21 anode cap. The
high reliability & economy designed into the
assembly makes it ideally suited for both
commercial and industrial video monitors.

FEATURES
• PI v: From 15kV to 30kV
• 300nS Recovery
• High Surge Current Ratings
• Low Reverse Leakage
• UL Rated Materials
• Corona Free
• LowCost

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage .•....•...•.......................•.........•....... 15kV to 30kV
Maximum Average Rectified Current ...................... See Electrical Specificatiom
Maximum One Cycle Surge 8.3mS ............•.•......•.. See Electrical Specifications
Operating and Storage Temperature Range •.•......................... -55°C to +90°C

MECHANICAL SPECIFICATIONS
CAX15-30

3.00 ± .015

.40
(10.16)

(7B.2) ± (.38)

HIGH VOLTAGE WIRE
STYLE 3238 FR·l
40K VDC TYPE 2 PL
UL RATED

-----1-----

FLAME RET ARDENT
POLYPROPYLENE
V-O RATED

CAX

B ± .25

(B.35) ---~

~l

CONNECTOR
J1-21 TVPE

CAX

-T f
xx

-

]

1.50/1.7501A

(38.13)/(44.45)

-fM "A"

DIM "B"
VOLTAGE

Dimensions in inches and (millimeters)

Reformatted 12179

362

~ HiGH"'vOLTAGE DEVICES

CAX1S-30

ELECTRICAL SPECIFICATIONS (at 25° C unless noted)
Peak
Type

Maximum
Reverse
Current

Inverse

Voltage*

Maximum

Forward
Voltage
@Io
VF

@PIV
PIV

IR

CAX30

Junction

Maximum
Average

Maximum

One Cycle
Surge
8.3rnS

@100V

Rectified
Currentt

TRR

CJ

10

IF(surge)

V

nS

pF

rnA

A

Capacitance

25°C

85°C

IlA

IlA

15000

.25

10

40

300

1.0

.25

10
10

40

300
300

1.0
1.0

10
10
10

2

20000
25000
30000

300

1.0

10

2

V
CAX15
CAX20
CAX25

MAXIMUM RATINGS
Maximum

Maximum
Reverse
Recovery
Time

.25
.25

40
40

10

2
2

*Operation and testing of devices over 10,000 V/inch may require re-encapsulation or immersion in a suitable dielectric material.
t The stated, AVERAGE RECTI FlED CURRENT ratings require no heat sinking, special mounting or forced air across the body of the
device.
NOTE: Maximum lead temperature for soldering is 250°C 3/8" (9.5mm) from case for 5 seconds.

MAXIMUM FORWARD CURRENT VS AMBIENT TEMPERATURE

fZ
UJ
a: '00
a:
::J
u..U
00 75
f-a:

~

ru~

Ua:
a:o
UJu..
Q.UJ
(!)

21

-<:
a:
UJ
>
-<:

'"'" \\
1'0...

10

o

21

10

75

'00

'25

AMBIENT TEMPERATURE (OC)

REVERSE RECOVERY TEST CONDITIONS: I F = 5 rnA. I R = 10 rnA. I RR = 2.5 rnA

REVERSE RECOVERY WAVE FORM
REVERSE RECOVERY TEST CIRCUIT
I.U.T.

I

TAR "300nS

r---- rll

~

't

..

........ ~ '
~

'.

i

---<0

~

I(

r

.01

,.

---t>I--

5111
SCOff

PULSE
GENERATOR
HEWLErT

ranl_x

PACKARD

EQUIVAIINT

7403 01

214A 01
EQUIVALENT

5011

3411

120

j

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

363

PRINTED IN U.S.A.

HIGH VOLTAGE
SILICON RECTIFIERS

HA1 0-1 00
HVX10-100

100-250mA
Fast Recovery, Miniature
FEATURES
• PIV: From 1.0kVto 10kV
• 250nS Reverse Recovery
• High Surge Current Ratings
• Low Reverse Leakage
• Corona Free

DESCRIPTION
The HVX/HA silicon rectifier series combine
a medium rectified current capability and
high reliability in a miniature package for
commercial, industrial and military applications. The use of cylindrical die construction and metallurgical bonds minimize
electrical and mechanical stress, contributing to long life. The fast reverse recovery
characteristics enhance applications in high
frequency power conversion and control
circuits.

ABSOLUTE MAXIMUM RATINGS
Peak I nverse Voltage
................................................ 1.0 kV to 10kV
Maximum Average Rectified Current ....................•. See Electrical Specifications
Maximum One Cycle Surge 8.3mS ......................•. See Electrical Specifications
Maximum Recurrent Peak Current Surge ...•.............. See Electrical Specifications
Operating and Storage Temperature Ranges ...............•.......... -65°C to +150°C

MECHANICAL SPECIFICATIONS
HVX10-l00

.031

j;

SJ

.002" OIA.

(0.79) ± (0.05)
99.9% SILVER

.140

± .005" DIA.

(3.57) ± (0.13)

°o

Dimensions in inches and (millimeters)

HA10-100

.031 ± .002" OIA.

j

(0.79) ± (0.05)
99.9% SILVER

II

.200 ± .005"

(5.08) ± (0.13)

&~====lDF==.1=00=±
1.12 Min.
(28.4)

-1I

SK

.005 .. DIA.

0°1

(2.54) ± (0.13)

Dimensions in inches and (millimeters)

Reformatted 12/79

364

~ HiGH"'VOLTAGE DEVICES

HA10-100
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Peak
Type

Type

Maximum
Forward

Maximum
Reverse
Current

Inverse

Voltage *

@PIV

Voltage
@100rnA

IR

V,

PIV
V

25°C

100°C
"A
20
20
20
20
20
20
20
20
20

HVX10
HVX15
HVX20
HVX25
HVX30

HA10
HA15
HA20
HA25
HA30

1000
1500
2000
2500
3000

"A
1
1
1
1
1

HVX40
HVX50
HVX75
HVX100

HA40
HA50
HA75
HA100

4000
5000
7500
10000

1
1
1
1

MAXIMUM RATINGS

Maximum
Reverse
Recovery

Time

Maximum
Average

Maximum
Recurrent

Rectified
Currentt

Peak

TRR

V

nS

5
5
5

250
250
250
250
250
250
250
250
250

250
250
250
250
250
100
100
100
100

5

Current

I,

10

50°C
rnA

5
12
12
12
12

HVX10-100

100°C
rnA

125°C
mA

125
125
125
125
125
50
50
50
50

62.5
62.5
62.5
62.5
62.5
25
25
25
25

Maximum

One Cycle
Surge
B.3rnS
Surge
',(surge)

A

A

14
14
14
14
14

2.5
2.5
2.5
2.5
2.5
1.0
1.0
1.0
1.0

4
4
4
4

*Operation and testing of devices over 10,000 V/inch may require re-encapsulation or immersion in a suitable dielectric material.
t The stated, AVERAGE RECTIFIED CURRENT ratings require no heat sinking, special mounting or forced air across the body of the
device.
NOTE: Maximum lead temperature for soldering is 250° C, 3/8" (9.5mm) from case for 5 seconds maximum.

MAXIMUM FORWARD CURRENT VS. AMBIENT TEMPERATURE
(!)

z

;::
..:

tr 100

i\

fZ

UJ

u.
o

tr
a::

75

!z:G
UJO

~~

50

UJ3:

i\

o..tr

o
u.

UJ
(!)

25

..:
tr

UJ

>

«

-55

25

so

"i\

100

125

150

175

AMBIENT TEMPERATURE (OC)

REVERSE RECOVERY TEST CONDITIONS: I F = 50 mA. I R =100 mAo I RR = 25 mA

REVERSE RECOVERY WAVE FORM

,

TRR = 2S0nS

REVERSE RECOVERY TEST CIRCUIT

R.U.T.
-----{>I--

I-- T.. -i-

"

t
'.

1

~

I

/

UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

~

..

.

'

.01

PULSE
GENERATOR
HEWLETT
PACKARD
214A OR

"

5111

SCOPE
TEKTRONIX
7403 OR
EQUIVALENT

EQUIVALENT

5011

365

3411

120

5011

PRINTED IN U.S.A.

HS 10-100
HVE10-30 (1 N3643-47)
HVE40-100 (1 N5181-84)

HIGH VOLTAGE
SILICON RECTIFIERS
100-2S0mA
Standard Recovery, Minature

DESCRIPTION
The HVElHS silicon rectifier series combine a medium average rectified current
capability and high reliability in a miniature
package for commercial, industrial and
military applications. The use of cylindrical
die construction and metallurgical bonds
minimize electrical and mechanical stress,
contributing to long life. A 2 microsecond
reverse recovery characteristic improves
the circuit efficiency of power conversion
and control systems.

FEATURES
• PIV: From 1.0kV to 10kV
• JEDEC Types
• High Surge Current Ratings
• Low Reverse Leakage
• Corona Free

ABSOLUTE MAXIMUM RATINGS
HS
HVE
Peak Inverse Voltage •.......••...•.•.•...•.....•.•.•................... 1.0kV ...................•.. 10kV ...•....•.•...
Maximum Average Rectified Current .....................................•.. See Electrical Specifications ...•.......•......
Maximum One Cycle Surge 8.3mS .....................•......•.•........... See Electrical Specifications .................•
Maximum Recurrent Peak Current Surge ........•......•.........•.......... See Electrical Specifications ................. .
Operating and Storage Temperature Ranges: ...•....•.•......•.........•.•....... -65°C to +175°C ..•........... , .•.•.....

MECHANICAL SPECIFICATIONS

.031 ± .002 DIA.
(0.79) ± (0.05)
99.9% SILVER

rl

HVE10-30 (1N3643-47)
HVE40-100 (1N5181-84)

SJ

.410 ± .005
(10.41) ± (0.13)

!

~==9CJF===

~ 1(~~.~~~~

.140 ± .005 DIA.
(3.56) ± (0.13)

Dimensions in inches and (millimeters)

HS10-100

r

.031 ± .002 DIA.
(0.79) ± (0.05)
99.9% SILV

11
1.0-

I

.200 ± .005
(5.08) ± (0.13)

~====~DF======

II-- \~~~~~ ~

SK

Q

.100 ± ,005 DIA.
(2.54) ± (0.13)

D

Dimensions in inr-hes and (millimeters)

Reformatted 12/79

366

~ HioH"'vOLTAGE DEVICES

HS10-100

HVE10-30 (1N3643)

ELECTRICAL SPECIFICATIONS (at 25·C unless noted)
Maximum
Reverse
Recovery
Time

Maximum

Inverse

Reverse
Current

Voltage'

Type

MAXIMUM RATINGS
Maximum
Forward

Maximum
Average

Maximum
Recurrent

Rectified
Currentt

Peak

@PIV

Voltage@
100rnA Max.

IR

VF

10

Maximum

One Cycle
Surge
B.3rnS

Current

Surge
PIV

2~S

21'S

HS10
HS15
HS20
HS25
HS30
HS40
HS50
HS75
HS100

Peak

HVE40-100 (1N5181-84)

Type
HVE10
HVE15
HVE20
HVE25
HVE30
HVE40

V

(1N3643)
(1N3644)
(1N3645)
(1N3646)
(1N3647)
(1 N5181)

25·C
p.A

100·C
p.A

1
1
1
1
1

20
20
20
20
20
20
20
20
20

1000
1500
2000
2500
3000
4000
5000
7500
10000

HVE50 (1N5182)
HVE75 (1N5183)
HVE100 (1N5184)

1
1
1
1

25'C
V

50'C
rnA

100'C
rnA

150'C
rnA

3.5

250

50

3.5
3.5
3.5
3.5
10.0
10.0
10.0
10.0

250
250
250
250
100
100
100
100

150
150

50
50
50
50
20
20
20
20

150
150
150
60
60
60
60

IF(surge)

IF
A

A

2.5
2.5
2.5
2.5
2.5
1.0

14
14
14
14
14
4
4
4
4

1.0
1.0
1.0

'Operation and testing of devices over 10,000 V/inch may require re-encapsulation or immersion in a suitable dielectric material.
t The stated, AVERAGE RECTIFIED CURRENT ratings require no heat sinking, special mounting or forced air across the body of the
device.
NOTE: Maximum lead temperature for soldering is 250'C 3/8" (9.5mm) from case for 5 seconds maximum.

HVE/HVE10-30/1N3643-47

<"

300

I-

2SO

UJ

a:
a:
~

200

()

0

a: ISO

«

~

a:

f2

100

UJ

(!l

«

a:
w
>
«

SO

o

-65

25

50

IZI00
UJ

""

75

i"

1'"

""

~

Z

HVE/HVE40-100 11N5181-84)

a:
a:
~

()o 7'
a:

~ SO
a:

"

100

125

AMBIENT TEMPERATURE ('C)

UJ

~17.

~
a:

2.

UJ

:;(

ISO

" " ""
'-

f2
o

--6,

o

2.

SO

100

~

"~

125

150

17.

AMBIENT TEMPERATURE ('C)

REVERSE RECOVERY TEST CONDITIONS: I F =50 rnA, I R =100 rnA, I RR =25 rnA

REVERSE RECOVERY WAVE FORM

,fF

I--- T•• ~

~-

t

..

/

'.

1

REVERSE RECOVERY TEST CIRCUIT
R.U.T.

1/~ '

I(

T

.01

PIlLS<
GENHATOR
HEWLETT
PACKARD
21404 01

.

,

-i*--

sin
SCOPE

T&CT.ONIX
7403 01
EOU'VA1lNT

EQUIVAlENT

son

34n

120

j

UN'TRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

367

PRINTED IN U.S.A.

HIGH VOLTAGE
SILICON RECTIFIERS

HVF2500-25000

MULTISTAC
Fast Recovery, High Current

FEATURES
• PIV: From 2.5kV to 25kV
• 150nS Reverse Recovery
• High Surge Current Ratings
• Low Reverse Leakage
• Corona Free

DESCRIPTION
The HVF MULTISTAC high current, high
voltage silicon rectifier's convenient size
and high power capability meets the reliability requirements of commercial, industrial
and military applications. Reliability with
economy are obtained through the use of
proprietary innovations in manufacturing
technique. Cylindrical die construction and
metallurgical bonds minimize electrical and
mechanical stress, contributing to long life .

. ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage ................. , ................................ 2.5kV to 25kV
Maximum Average Rectified Current ...................... See Electrical Specifications
Maximum One Cycle Surge 8.3mS ........................ See Electrical Specifications
Operating and Storage Temperature Range ........................... -55°C to +150°C

MECHANICAL SPECIFICATIONS
HVF2S00-2S000
1..- CASE LENGTH--!

==============«

PB

.250 ± .01"

•

F=!'bI6.35mm) , 1.254mm)

T

50 t .02"
r--_ _ _ _ _--,I(12.70mm) t (.50Bmm)

~====TI=N=N=EO=C=0=P=P=E=R=LE=A=D=S~j====9L_ _ _ _ _~~~
.051 ± .001" OIA.
(1.30mm) ± (.254mm)

!

~

- - - - - 2" Min.
(50.80mm)

PART
NUMBER

CASE LENGTH
INCHES
MILLIMETERS

HVF2500

1.125 ± .02

HVF5000

2.000 ± .02

50.80 ± .508

HVF7500

2.750 ± .02

69.85 ± .508

HVF10000

3.500 ± .02

88.90 ± .508

HVF12500

4.250 ± .02

107.95 ± .508

HVF15000

4.250 ± .02

107.95 ± .508

HVF20000

4.250 ± .02

107.95 ± .508

HVF25000

4.250 ± .02

107.95 ± .508

28.58 ± .508

Dimensions In inches and (m1Ilimeters)

Reformatted 12/79

368

~ H'iGH"'yil"LTAGE DEVICES

HVF2500 - 25000
ELECTRICAL SPECIFICATIONS (aI25°C unless noled)
Peak

Maximum
Reverse
Current

Inverse

Type

Voltage*

@PIV
PIV

HVF2500

IR

V

25·C
p.A

lDD·C

2500

0.1

Maximum
Forward

MAXIMUM RATINGS

Maximum
Reverse
Recovery

Voltage
@ 10 Max.
VF

One Cycle
Surge
8.3mS

Rectified
Currentt

Time
TRR

V

nS

15

5.5

150

.5

Case

Length

IF(surge)

10

55·C
A

p.A

Maximum

Maximum
Average

laaoC

lDa·C

A

25°C
A

A

Ins.

.33

40

20

1.125

28.58
50.80

MM

HVF5000

5000

0.1

15

11.0

150

.5

.33

40

20

2.000

HVF7500
HVF10000

7500
10000

0.1

15

16.5

150

.33

2.750

69.85

22.0
27.5

150

.33

40
40

20

15
15

.5
.5

3.500
4.250

8S.90
107.95

HVF12500

12500

0.1
0.1

150

.5

.33

40

20
20

HVF15000

15000

0.1

15

33.0

150

.5

.33

40

20

4.250

107.95

HVF20000
HVF25000

20000

0.1

15

·0.1

15

150
150

.5
.5

.33
.33

40
40

20

25000

38.5
44.0

4.250
4.250

107.95
107.95

20

*Operation and testing of devices over 10,000 v/inch may require re-encapsulation or immersion in a suitable dielectric material.
t The stated, AVERAGE RECTIFIED CURRENT ratings require no heat sinking, special mounting or forced air across the body of the
device.
NOTE: Maximum lead temperature for soldering is 250°C 3/S" (9.5mm) from case for 5 seconds.

MAXIMUM FORWARD CURRENT VS. AMBIENT TEMPERATURE
700r---~----'----'----

Envlronmenl

Multiply by

OIL.
Cl

w

600 I---;oo~

---jf---

::

FORCED AIR 200 CFM .

--'

ffi

~g:g~g ~:: ~~~ g~~

1.0
1.5
1.75

2.0

~~"-+~~~~-1----

0-

w

~

a:
w
~

«
E
o
a:
«

~~---+--~~~~'---~----~---1

XO~"~~~~--~~~~~--r----1
200

:0:

a:

ou..

FORWARD CURRENT PER LEG VS. AMBIENT TEMPERATURE (.C)

REVERSE RECOVERY TEST CONDITIONS: IF

= O.IA. IR = O.2A.

IRR

= O.OSA
REVERSE RECOVERY TEST CIRCUIT
R.U.T.

REVERSE RECOVERY WAVE FORM

-i>I--

T RR

~

150nS

I! ----

·tI.

1

Tn I---

.01

IK

5111

GENERATOR

SCOPE
fEKTIONIX

HEWlE'n
PACKARD

7403 01
EQUIVALENT

PULSE

/~

214A OR

EQUIVALENT

~~

SOil

3411

120

f
u

Reverse recovery is measured on each rectifier stack prior to manufacture of the assembly.

UNITRODE CORPORATION· 5 FORBES ROAD

LEXINGTON, MA 02173 • TEL. (617) 86J.6540
TWX (710) 326-6509 • TELEX 95-1064

369

PRINTED IN U.S.A.

HIGH VOLTAGE
SILICON RECTIFIERS

HVFS2500-20000

MULTISTAC
Fast Recovery, High Current

DESCRIPTION
The HVFS MUL TISTAC high current, high
voltage silicon rectifier's convenient size and
high power capability meets the reliability
requirements of commercial, industrial and
military applications. Reliability with
economy are obtained through the use of
proprietary innovations in manufacturing
technique. Cylindrical die construction and
metallurgical bonds minimize electrical and
mechanical stress, contributing to long life.

FEATURES
• PIV: From 2.5 kV to 20 kV
• 150 nS Reverse Recovery
• High Surge Curren.t Ratings
• Low Reverse Leakage
• Corona Free

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage ......... , ......................................... 2.5kV to 20kV
Maximum Average Rectified Current ...................... See Electrical Specifications
Maximum One Cycle Surge 8.3 mS ........................ See Electrical Specifications
Operating and Storage Temperature Ranges ........................... -55°C to 150° C

MECHANICAL SPECIFICATIONS
HVFS2500-20000

PC

.38 ± .01

.051 ± .003 OIA.
(1.30) ± (0.08)

(9.65) ± (2.54)

I

====~~C~__~)F======

1--.69 ± .02
(17.53) ± (0.51)

CASE LENGTH

--I
_

2.0M;n.J
(50.8)

CASE LENGTH

PART
NUMBER

INCHES

HVFS2500

1.5 ± .03

HVFS5000

2.5 ± .03

63.5 ± 0,76

HVFS7500

3.5 ± .03

88.9 ± 0.76

MILLIMETERS

38.1 ± 0.76

HVFS10000

4.5 ± .03

1143±D.76

HVFS 12500

5.5 ± .03

139.7 ± 0.76

HVFS 15000

6.5 ± .03

165.1 ± 0.76

HVFS 17500

6.5 ± .03

165.1 ± 0.76

HVFS20000

6.5 ± .03

165.1 ± 0.76

Dimensions in inches and (millimeters)

Reformatted 12/79

370

~ tiio"li"'vOLTAGE DEVICES

HVFS2500-20000
ELECTRICAL SPECIFICATIONS (at 25° C unless noted)
Peak

Maximum
Reverse
Current

Inverse

Type

Voltage*

Maximum
Forward

Voltage
@Io
VF

@PIV
PIV

IR

V

25°C

100°C
IJ.A
120

MAXIMUM RATINGS

Maximum
Reverse
Recovery
Time

Maximum

Maximum

Average

One Cycle
Surge
8.3mS

Rectified
Currentt

TRR

Case

Length

IF(surge)

10

100'C

25'C
A

100'C
A

Ins.

MM

200

100

1.5

38.1

2.5

63.5

3.5
4.5

88.9

V

nS

55'C
A

150

2.2

A
1.3

150

2.2

1.3

200

HVFS2500

2500

IJ.A
10

HVFS5000

5000

10

120

8
16

HVFS7500

7500

10

120

21

150

2.2

1.3

200

100
100

HVFS10000

10000
12500

10
10

120

HVFS12500

120

29
36

150
150

2.2
2.2

1.3
1.3

200
200

100
100

HVFS15000

15000

10

120

44

150

2.2

1.3

200

165.1

17500

10

120

51

150

2.2

1.3

200

100
100

6.5

HVFS17500

6.5

165.1

HVFS20000

20000

10

120

58

150

2.2

1.3

200

100

6.5

165.1

5.5

114.9
139.7

*Operation and testing of devices over 10,000 V/inch may require re-encapsulation or immersion in a suitable dielectric material.
tThe stated, AVERAGE RECTIFIED CURRENT ratings require no heat sinking, special mounting or forced air across the body of the
device.
NOTE: Maximum lead temperature for soldering is 250°C 3/8" (9.5mm) from case for 5 seconds.

MAXIMUM FORWARD CURRENT VS AMBIENT TEMPERATURE

:<

~ 25

!Z...

••
U

~

a

•

i...

I" ~

20

15

"" \
~

10

•~...
~

o

o

-55

so

2S

\

7S

100

125

AMBIENT TEMPERATURE (OC I

REVERSE RECOVERY TEST CONDITIONS: IF =12.5A. I R=25A. IRR =6.25A

REVERSE RECOVERY WAVE FORM

I

T AA ~ 1S0nS

t

--

1

---t>I---

Tn ~

~

'0

REVERSE RECOVERY TEST CIRCUIT
R.U.T.

~

.01

....... ~

..

'

IK

5W

PUlSE

SCOPE

GENEIATOI
HEWLETT

TEKTIIONIX
7403 01
EQUIVALENT

PACKAiD

214A 01
EQUIVALENT

son

34n

120

If
J

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

371

PRINTED IN U.S.A.

HVHSOOO-2S000

HIGH VOLTAGE
SILICON RECTIFIERS
MULTISTAC
Standard Recovery

DESCRIPTION
The HVH MULTISTAC silicon rectifier
assemblies meet the stringent reliability
requirements of commercial, industrial and
military users through the use of proprietary
innovations in manufacturing technique.
Cylindrical die construction and metallurgical bonds minimize electrical and mechanical stress, contributing to long life. The
2 microsecond reverse recovery time improves the circuit efficiency of power
conversion and control systems.

FEATURES
• PI v: From 5kV to 25kV
• 21'S Reverse Recovery
• High Surge Current Ratings
• Low Reverse Leakage
• Corona Free

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage .................................................... 5kVto 25kV
Maximum Average Rectified Current ..•. '.................. See Electrical Specifications
Maximum One Cycle Surge 8.3mS ........................ See Electrical Specifications
Operating and Storage Temperaiure Range ........•................... -55°C to +150°C

MECHANICAL SPECIFICATIONS
\..- CASE LENGTH

==============«

HVHSOOO-2S000

--I ~

H

PB

.250 ± .01"
lp=IS.35mm l ± (.254mml

T
.50 ± .02"
t(12.70mm) ± (.508mm)

~===~TI~N=NE=D=C=O=P=PE=R~L=E=AD=s==~====~1

r~'.f===

~.

.051 ± .001" DIA.
(1.30mml ± 1.254_m_m_I_ _ _ _ _
- - - - - 2" Min.

!-I-------' 1

(SO.80mm)

PART
NUMBER

CASE LENGTH
INCHES

MILLIMETERS

HVH5000

1.125 ± .02

28.58 ± .50B

HVH7500

1.625 ± .02

41.28 ± .50B

HVH10000

2.000 ± .02

50.80 ± .508

HVH1250Q

2.375 ± .02

60.33 ± .SOB

HVH15000

2.750 ± .02

69.85 ± .508

HVH20000

3.500 ± .02

88.90 ± .508

HVH2500Q

4.250 ± .02

107.95 ± .508

Dimensions in inches and (millimeters)

Reformatted 12/79

372

~ iiioH""VOLTAGE DEVICES

HVH5000 - 25000
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Maximum
Reverse
Recovery
Time

MAXIMUM RATINGS

Peak

Maximum

Maximum

Inverse

Reverse
Current
@PIV

Forward

Voltage*
PIV

2~S

Voltage
@Io
VF

IR
25°C

100°C

25°C

5000

J.lA
0.1

J.lA
15

HVH 7500

7500

0.1

HVH10000
HVH12500

10000
12500

0.1
0.1

HVH15000

15000

HVH20000

20000

HVH25000

25000

Type

V

HVH 5000

Maximum
Average

Maximum

One Cycle
Surge

Rectified
Currentt

Case
Length

IF(surge)

10

100°C
A

25°C

V

55°C
A

A

100°C
A

Ins.

7

.5

.33

60

30

1.125

15

10

.33
.33
.33

60
60

1.625

41.28

14
17

.5
.5
.5

30

15
15

30

2.000

50.80

60

30

2.375

0.1

15

20

.5

.33

60

30

2.750

60.33
69.85

0.1
0.1

15

27

.5

.33

60

30

3.500

88.90

15

33

.5

.33

60

30

4.250

107.95

MM
28.58

*Operation and testing of devices over 10,000 V/inch may require re-encapsulation or immersion in a suitable dielectric material.
t The stated, AVERAGE RECTIFIED CURRENT ratings require no heat sinking, special mounting or forced air across the body of the
device.
NOTE: Maximum lead temperature for soldering is 250°C 3/8" (9.5mm) from case for 5 seconds.

MAXIMUM RATINGS FOR CAPACITY LOADS

MAXIMUM FORWARD CURRENT VS. AMBIENT TEMPERATURE
700

Environment

600

...J

II:

FORCED AIR 200 CFM

1.5

FORCED AIR 400 OM

.175

W

a.

2.0

500

20

100~

W
C)

-0:

II:

-0:

.00

w
>

w

C)

II:

-0:

«

300

II:

200

:::J

(f)

E
0

~

-0:
~

~' -

.O~

.2.0

Oil ..

C)
W

•

Multl,I,.,

so

'"

•

~

INSURGE

/

lOOoC

........

"-

r--:::::

0
0.1

0.2

O..c

0.6

.-

~~

20

FORWARD CURRENT PER LEG VS. AMBIENT TEMPERATURE (0C)

---

L

100

0

= E IN PEAK

•

,,"~
"-~~

40

II:

Ie

fiN

1.0

2.0

~

".0

b.O

10

RC TIME CONSTANT (mS)

"

~

......

.~

.

--TIUl-

'r -

..........

~

I

............ ~

,

REVERSE RECOVERY TEST C'RCUIT

REVERSE RECOVERY WAVE FORM

NON-RECURRENT FORWARD CURRENT SURGE CURVE

"·C
.......... ~

.

1007;:- fo-

/

'1

~

NUMBER OF CYCLES AT 60 CPS

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

""

1

'I

J

373

i..--'

'11

PULSE
GENHATOIT
HEWLETT
I'AOCAtlD
214" 011
EQUIVALENt

T
Reverse recovery is measured on each rectifier
stack prior to manufacture of the assembly.

PRINTED IN U.S.A.

HVH FSOOO-2S000

HIGH VOLTAGE
SiliCON RECTIFIERS
MULTISTAC
Standard Recovery, High Current

FEATURES
• PI v: From 5kV to 25kV
• 11'S Reverse Recovery
• High Surge Current Ratings
• Low Reverse Leakage
• Corona Free

DESCRIPTION
The HVHF MULTISTAC high current, high
voltage silicon rectifer's convenient size and
high power capability meets the reliability
requirements of commercial, industrial and
military applications. Reliability with
economy are obtained through the use of
proprietary innovations in manufacturing
technique. Cylindrical die construction and
metallurgical bonds minimize electrical and
mechanical stress, contributing to long life.

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage ..................•.................................. 5kV to 25kV
Maximum Average Rectified Current ...................... See Electrical Specifications
Maximum One Cycle Surge 8.3mS ........................ See Electrical Specifications
Operating and Storage Temperature Range ............................ -55°C to +150°C

MECHANICAL SPECIFICATIONS

1===============«

CASE LENGTH

HVHFSOOO-2S000

-\.-L

PB

.250 ± 01"

~ ~(6.35mml

± (.254mml

T
50 ± .02"

{1.30~~~ ~ .(~g~;~~~.

!(12.70mm) ± (.508mm)

~======W='=~%==SI=LV=E=A===~=+==~L-________~~l===
- - - - - - - - 2" Min.
(50.80mm)

PART
NUMBER
HVHF5000

CASE LENGTH
INCHES
MILLIMETERS
1.125 ± .02
28.58 ± .soa

HVHF7500

1.625 ± .02

41.28 ± .508

HVHF10000

2.000 ± .02

50.80 ± .508

HVHF12500

2.375 ± .02

60.33 ± .508

HVHF15000

2.750 ± .02

69.85 ± .508

HVHF20000

3.500 ± .02

88.90 ± .508

HVHF25QOO

4.250 ± .02

107.95 ± .508

DImensions in inches and (millimeters)

Reformatted 12179

374

~ H'iGH""Voi~iAGE DEVICES

HVHFSOOO-2S000
ELECTRICAL SPECIFICATIONS (aI25°C unless noted)
Peak

Maximum
Reverse
Current

Inverse

Voltage*

Type

Maximum
Reverse
Recovery

MAXIMUM RATINGS
Maximum
Average

Maximum

One Cycle
Surge
B.3mS

Rectified
Currentt

@PIV

Voltage
@Io

'A

VF

TAR

V

/1S

55°C
A

100°C

PIV
V

Maximum
Forward

25°C

100°C

/lA

/lA

Time

'F(surge)

10

A

HVHF5000

5000

0.1

15

7

1

.5

.33

HVHF7500
HVHF10000
HVHF12500

7500
10000
12500

0.1
0.1
0.1

15
15
15

10
14
17

1
1

.5
.5

.33
.33

1

15000

0.1

15

0.1
0.1

15
15

1
1
1

.33
.33

20000
25000

20
27
33

.5
.5
.5
.5

.33
.33

HVHF15000
HVHF20000
HVHF25000

Case

Length

25°C
A

100°C
A

Ins.

60
60

30

1.125

30
40

1.625
2.000
2.375

60
60
60
60
60

40
40
40
40

2.750
3.500
4.250

MM
28.58
41.28
50.80
60.33
69.85
88.90
107.95

*Operation and testing of devices over 10,000 V/inch may require re-encapsulation or immersion in a suitable dielectric material.
t The stated, AVERAGE RECTIFIED CURRENT ratings require no heatsinking, special mounting or forced air across the body of the
device.
NOTE: Maximum lead temperature for soldering is 250° C 3/8" (9.5mm) from case for 5 seconds.

MAXIMUM FORWARD CURRENT VS. AMBIENT TEMPERATURE
7 0 0 , - - - - , - - . . . , - - - , - - - EnvlronrMnt

§ 600~-~"",­
rr
w
~

w

Multtpl, By

~l..

2.0

--+---- FOItCED Alit 200 CFM . .

I.S

FORCEDAIft400CFM.

. .. 1.75

.2.0

~~---;~--~~-i--­

C)

~ M»~--i-~~~~,"-~~~~~~~

w
>

~ ~~--~~~t---~~~Q7~~r---~
E

o
«

200

~

lOO~--i-~~~~~~~~~-a. .~~

rr

;;:
I.L

FORWARD CURRENT PER LEG VS. AMBIENT TEMPERATURE (OC)

REVERSE RECOVERY TEST CONDITIONS: ' F"100mA, ' R=200mA, ' RR =50mA

REVERSE RECOVERY TEST CIRCUIT
R.U.T.

REVERSE RECOVERY WAVE FORM

---i>I--

,f.

_ T •• ~

t

/

/

'.

1

.01

I{

J

UNITRODE CORPORATION· 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

I ••

---- T

IK

Sill

PULSE
GENERATOI

. SCOPE
TB

..

\..

\

25

0

o

-55

25

so

75

100

\

125

ISO

175

AMBIENT TEMPERATURE (OC)

REVERSE RECOVERY TEST CONDITIONS: IF =50mA, IR =100mA, IAA =25mA

REVERSE RECOVERY WAVE FORM

REVERSE RECOVERY TEST CIRCUIT
R.U.T.

.

~

Ii,
TRR~2uS

o

_TRO-

t
'.

1

.01

I

/

1/~

~
'.1

PULSE
GENERATOR

,

Sin
seOPE

TEKTRONIX
7403 OR

HEWlETT
PACKARD
214A OR
EQUIVALENT

EQUIVALENT

son

T

34n

120

J

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064

377

PRINTED IN U.S.A.

HVHS2500-20000

HIGH VOLTAGE
SILICON RECTIFIERS
MULTISTAC
Medium Recovery, High Current

FEATURES
• PIV: From 2.SkV to 20kV
• 2 uS Reverse Recovery
• High Surge Current Ratings
• Low Reverse Leakage
• Corona Free

DESCRIPTION
The HVHS MULTISTAC high current, high
voltage silicon rectifier's convenient size and
high power capability meets the reliability
requirements of commercial, industrial and
military applications. Reliability with
economy are obtained through the use of
proprietary innovations in manufacturing
technique. Cylindrical die construction and
metallurgical bonds minimize electrical and
mechanical stress, contributing to long li'fe.

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage .............................•..................... 2.5kV to 20kV
Maximum Average Rectified Current ...................... See Electrical Specifications
Maximum One Cycle Surge 8.3mS ........................ See Electrical Specifications
Operating and Storage Temperature Range .......•................... -SS·C to +150·C

MECHANICAL SPECIFICATIONS
HVHS2500-20000
.051 :J: .003 DIA.
(1.30) ± (O.OS)

_____)~===l====

====~l==~c~
_1__ 1--.S9 ± .02
(17.53) ± (0.51)

DimenSions in inches and (millimeters)

Reformatted 12/79

PC

,38 ± .01
(9.6S) ± (2.S4)

CASE LENGTH

--I

\- - - - -

2.0 Min .
(50.S) - - - I

CASE LENGTH

PART
NUMBER

INCHES

HVHS2500

1.5 ± .03

HVHSSOOO

2.5 ± .03

63.5 ± 0.76

HVHS7500

3.5 ± .03

88.9 ± 0.76

MILLIMETERS

38.1 ± 0.76

HVHS1QOOQ

4.5 ± .03

114.3 ± 0.76

HVHS12500

5.5 + .03

139.7 ± 0.76

HVHS15000

6.5 ± .03

165.1 ± 0.76

HVHS17500

6.5 + .03

165.1 ± 0.76

HVHS20000

6.5 ± .03

165.1 ± 0.76

378

~ i~l'iiiH"'VoiTAGE DEVICES

HVHS2500-20000
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Peak

Maximum
Reverse
Current

Inverse

Type

Voltage*

Forward
Voltage
@Io
VF

@PIV
PIV

IA

V

MAXIMUM RATINGS

Maximum
Reverse
Recovery
Time

Maximum

Maximum
Average

Rectified
Currentt

TAR
pS

100'C

!LA
120

55'C
A

5

2

100'C

Case
Length

'Ftsurge)

10

V

25°C

Maximum

One Cycle
Surge
B.3mS
100'C

A

25'C
A

A

Ins.

MM

2.2

1.3

200

100

1.5

38.1

HVHS2500

2500

!LA
10

HVHS5000

5000

10

120

10

2

2.2

1.3

200

100

2.5

63.5

HVHS7500
HVHS10000

7500

10
10

120
120

15

2

2.2

1.3

200

100

3.5

88.9

10

120

20
25

2.2
2.2

1.3
1.3

200
200

100
100

4.5
5.5

114.9
139.7

10000
12500

HVHS15000

15000

10

120

30

2
2
2

2.2

1.3

200

100

17500

10

120

35

2

2.2

1.3

200

100

6.5
6.5

165.1

HVHS17500
HVHS20000

20000

10

120

40

2

2.2

1.3

200

100

6.5

165.1

HVHS12500

165.1

*Operation and testing of devices over 10,000 V/inch may require re-encapsulation or immersion in a suitable dielectric material.
t The stated, AVERAGE RECTIFIED CURRENT ratings require no heat sinking, special mounting or forced air across the body of the
device.
NOTE: Maximum lead temperature for soldering is 250°C 3/8" (9.5mm) from case for 5 seconds.

MAXIMUM FORWARD CURRENT VS AMBIENT TEMPERATURE
(!)

z

f=
~

100

" "\

t-

Z

W

~~

75

wO
a!~

50

~G

wS:

'-

I\.

Q.a::

a

~

2S

\

(!)
<{

a::
w
>

«

-55

~

~

~

100

125

,so

175

AMBIENT TEMPERATURE ('C)

REVERSE RECOVERY TEST CONDITIONS: IF =OAmA, IA =O.BmA, IAA =O.2mA

REVERSE RECOVERY WAVE FORM

,fF

I--t .. -

t

I

'.

i

REVERSE RECOVERY TEST CIRCUIT
R.U.T.
.0'

./

~
"",..,.

I

'

..

---f>I--

511l

PULSE
GENERATOR
HEWLETT
PACKARD
214A OR

SCOI'E
TEKTRONIX

7403 01
EQUIVALENT

EQUIVALENT

T

5011

j

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

,.

lOll

'20

Reverse recovery is measured on each rectifier stack
prior to manufacture of the assembly.

379

PRINTED IN U.S.A.

HVJX15K-45K

HIGH VOLTAGE
SILICON RECTIFIERS
MULTISTAC
Fast Recovery, Medium Current

FEATURES
• PIV: From 15kV to 45kV
• 200nS Reverse Recovery
• High Surge Current Ratings
• Low Reverse Leakage
• Corona Free

DESCRIPTION
The HVJX MULTISTAC medium current
high voltage silicon rectifier assembly's
small size and high power capability meets
the stringent reliability requirements of
commercial, industrial and military applications. Reliability with economy are obtained through the use of proprietary innovations in manufacturing technique. Cylindrical die construction and metallurgical
bonds minimize electrical and mechanical
stress, contributing to long life.

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage ........................•.•.....•................•. 15kVt045kV
Maximum Average Rectified Current .....................• See Electrical Specifications
Maximum One Cycle Surge 8.3mS ........................ See Electrical Specifications
Operating and Storage Temperature Range ...•...........•..........• -55 0 C to +150°C

MECHANICAL SPECIFICATIONS
HVJX15K-45K

PA

.250 ± .01

.40 ± .001 OIA.
(10.16) ± (.0254)

(6.35) ± (.254)

I

====~l~(~~---------------~~~)~~~===
- - - - C A S E LENGTH - - - -

I---

I

.250 ± .01

I

2.0 Min. _ _
(SO.8)

(6.35) ± (.254)
CASE LENGTH

PART

NUMBER

INCHES

HVJX15K

1.5 ± .02

38.1 ± .508

HVJX20K

2.0 ± .02

50.8 ± .508

HVJX22.5K

2.0

63.5 ± .508

HVJX30K

± .02
± .02
2.5 ± .02

50.8

2.5

HVJX35K

3.0 ± .02

76.2 ± .508

HVJX37.5K

3.0 ± .02

76.2 ± .508

HVJX40K

3.5

.02

88.9 ± .508

HVJX45K

3.5 ± .02

88.9 ± .508

HVJX25K

Reformatted 12/79

±

380

MILLIMETERS

±

.508

63.5 ± .508

~ iiioH""voiTAGE DEVICES

HVJX15K-45K
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Peak

Maximum
Reverse
Current

Inverse

Type

Voltage*

@PIV
PIV

IR

V

Maximum
Forward

Voltage
@Io
VF

MAXIMUM RATINGS

Maximum
Reverse
Recovery
Time

Maximum
Average

TRR

25°C

100°C

V

nS

Jl.A
25

24

Maximum

One Cycle
Surge
B.3rnS

Rectified
Currentt

Case

Length

IF{surge)

10
55°C
rnA

100°C
rnA

25°C
A

100°C
A

Ins.

MM

50

5
5

2.5

1.5

38.1
50.8

HVJX 15K

15000

Jl.A
0.1

HVJK 20K

20000

0.1

25

36

200
200

50

30
30

2.5

2.0

HVJX 22.5K
HVJX 25K

22500
25000

0.1
0.1

25

36

200

50

30

5

2.5

2.0

50.8

48
48

200
200

50

30

5

2.5

HVJX 30K

30000

0.1

25
25

50

30

5

2.5
2.5

2.5

63.5
63.5

HVJX 35K

35000

0.1

25

60

200

50

30

5

2.5

3.0

76.2

HVJX 37.5K

37500
40000
45000

0.1

25
25

60
72
72

200

50

30

5

3.0

76.2

200
200

50
50

30
30

5
5

2.5
2.5
2.5

3.5
3.5

88.9
88.9

HVJX 40K
HVJX 45K

0.1
0.1

25

*Operation and testing of devices over 10,000 Vlinch may require re-encapsulation or immersion in a suitable dielectric material.
t The stated, AVERAGE RECTIFIED CURRENT ratings require no heat sinking, special mounting or forced air across the body of the
device.
NOTE: Maximum lead temperature for soldering is 250°C 3/8" (9.5mm) from case for 5 seconds.

MAXIMUM FORWARD CURRENT VS AMBIENT TEMPERATURE
(')

z

;::
«
a::

>-

100

f"

Z

UJ

LLa::

o a::

>-'"

75

ZO

UJO

oa::«
a::

UJ5:

"'\

50

\.

\

"-a::
0
LL
ill

(')

25

\

«
a::
UJ
>
«

-55

25

50

75

,.5

100

150

175

AMBIENT TEMPERATURE 1°C)

REVERSE RECOVERY TEST CONDITIONS: I, =50mA. IR = 100mA. IRR =25rnA

REVERSE RECOVERY WAVE FORM

REVERSE RECOVERY TEST CIRCUIT
R.U.T.

.

~

f

I--

.01

Tn

'F
TRR =200n8

t

~I-

if'

'.

1

..

'

PULSE
GENERATOR
HEWLETT
PACKARD
214A 01
EQUIVALENT

.oil

,

5111
SCOPE
JIKTIONJX
740:1 01
EQUIYALENT

3411

170

I(
J

UNITRODE CORPORATION. 5 FORBES ROAD
·LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

381

PRINTED IN U.S.A.

HIGH VOLTAGE
SILICON RECTIFIERS

KX1S-100
KXS1S-100

POWERSTACK
1.5 to 3.0A
Very High Current, Miniature

FEATURES
• PIV: From 1.5kVto 10kV
• 1.5to 3.0A
• 250nS Reverse Recovery
• High Surge Ratings
• Low Reverse Leakage
• Corona Free

DESCRIPTION
The KX/KXS silicon rectifier series is a
unique concept for high current high voltage
applications. Matched junction characteristics and low stray capacitance due to
metallurgically bonded junctions eliminates
the need for external compensation networks. These rectifiers utilize HVD's cylindrical die construction, which minimizes electrical and mechanical stress, insuring long
life for commercial, military and industrial
appl ications.

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage .....•.........•.............•........•.•.•......... 1.5kV to 10kV
Maximum Average Rectified Current ...................... See Electrical Specifications
Maximum One Cycle Surge 8.3mS ...•..•................. See Electrical Specifications
Operating Temperature Range .•...................................... -55°C to +150°C
Storage Temperature Range •.....•.................•................. -55° C to +175°C

MECHANICAL SPECIFICATIONS
KX1S-100
KXS1S-100

SM

.093 ± .003 DIA.

(2.36) ± (.076)

~
.40 Min.
(10.16)

II
~

G

l

.375 ± .015
(9.52) ± (.381)

.500 ± .015 DIA.
(12.7) ± (.381)

Dimensions in inches and (millimeters)

Reformatted 12/79

382

WlJ H'iG"'H""YO'LTAGE DEVICES

KX1S-100

ELECTRICAL SPECIFICATIONS (aI25°C unless noled)
Maximum

Peak

Reverse
Recovery
Time

Voltage*

Inverse

2uS

PIV

Type

Type

V

KX15

KXS15

KX20
KX25
KX30
KX40

KXS20
KXS25
KXS30
KXS40
KXS50
KXS60

1500
2000
2500
3000
4000
5000
6000

KXSSO
KXS100

SOOO
10000

KX50
KX60
KX80
KX100

IA
25"C
uA
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0

Maximum

Maximum

Average
Rectified
Currentt

One Cycle
Surge
8.3mS

Voltage
@Io
VF

@PIV

250nS

MAXIMUM RATINGS

Maximum
Forward

Maximum
Reverse
Current

100"C
uA
100
100
100
100
100
100
100
100
100

KXS1S-100

10

V
5.0
5.0
5.0
7.0
7.0
7.0
11.0
11.0
11.0

50"C
A
3.00

100"C
A
1.50

120"C
A
.75

3.00
3.00
2.20
2.20
2.20
1.50

1.50
1.50
1.10
1.10
1.10

.75
.75
.55
.55
.55
.37

.75
.75
.75

1.50
1.50

.37
.37

Typical
Thermal
Impedancett

IF(surge)

Bj-L

A
200

"CIWatt

200
200
150
150
150
100
100
100

2.0
2.0
2.0
2.5
2.5
2.5
3.0
3.0
3.0

*Operation and testing of devices over 10,000 Vlinch may require re-encapsulation or immersion in a suitable dielectric material.
t The stated, AVERAGE RECTI FlED CURRENT ratings require no heat sinking, special mounting or forced air across the body of the
device.
ttTypical thermal impedance determined with rectifier mounted on infinite heat sinks 0.10" from device body using temperature of
center junction and lead temperature adjacent to body.
NOTE: Maximum lead temperature for soldering is 250"C 3/S" (9.5mm) from case for 5 seconds.

MAXIMUM FORWARD CURRENT VS. AMBIENT TEMPERATURE
!

II)

100mA

II

I I

::J

25',lOO'C

I I

LM I LAl2D-l80

lOO'C

w

INSTANTANEOUS FORWARO CURRENT (mA)
REVERSE RECOVERY TEST CONDITIONS

.... .. l-

o

II

1mA

S5'C

o~
It

-55'C

LM I LA1S-2S\

~20

>

_ In'c

0

TEST

100

10

INSTANTANEOUS REVERSE CURRENT (~A)

Z

~

V

w

lI-

III

I-

't;;"

75

TYPICAL FORWARD CHARACTERISTICS AT VARIOUS JUNCTION TEMPERATURES

----::::

::J

o
w

Q.

:;

AMBIENT TEMPERATURE ('C)

!:i

o
> •

50

,,~

It
W

,
25

100

'"

,

-ss

'"

t'.

1

g

REVERSE 'lCOVEIY rEST CIICUIT
I.U.T.

--i>t--

'II

-.l

.......

~

'/

'"

'II

T

se,,"

PULSE

'_00
"'""""-

GENu...rO!
HEWlETT
..... OC .... D

EQUIVAUN"J

21."'01
EQUIVALENT

34f,

"CO

son

J
385

PRINTED IN U.S.A.

LC15-30

HIGH VOLTAGE
SILICON RECTIFIERS
MULTISTAC
Fast Recovery

FEATURES
• PI v: From 15kVt030kV
• 300nS Reverse Recovery
• High Surge Current Ratings
• Low Reverse Leakage
• Corona Free

DESCRIPTION
The LC MULTISTAC silicon rectifiers
combine high reliability and economy to
meet the requirements of commercial and
industrial applications. Proprietary innovations in manufacturing technique, cylindrical
die construction and metallurgical bonds
are used to minimize electrical and mechanical stress, contributing to long life. The
fast reverse recovery characteristics enhance their use in high frequency power
conversion and control circuits.

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage ................................................... 15kVt030 kV
Maximum Average Rectified Current •..•....•............. See Electrical Specifications
Maximum One Cycle Surge 8.3mS ........................ See Electrical Specifications
Operating Temperature Range ................•.................•...... -55°C to +90°C
Storage Temperature Range ......................................... -65°C to +150°C

MECHANICAL SPECIFICATIONS
LC15-30

SN

.020 ± .001" DJA.
(0.51 mm) ± (O.03mm)
99.9% SILVER

i

1

If----

1.500 ± .015"
(38.1mm) ± (O.38mm)

I

~

.60 min
(lS.24mml

L

.235 ± .005" 01A.
(S.97mm) ± (O.13mm)

Dimensions in inches and (millimeters)

Reformatted 12/79

386

~ tiio'li"YOiTAGE DEVICES

LC1S-30
i

MAXIMUM RATINGS

ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Peak
Type

Maximum

Inverse

Reverse

Voitage*

Current

@PIV
PIV

'R

V

25'C
p.A

LC15

15000

.25

10

LC20
LC25

20000

.25

10

25000
30000

.25

10

.25

10

LC30

85'C
p.A

Maximum
Forward

Reverse
Recovery

Voltage
@Io
VF

Time

Maximum
Junction
Capacitance

@100V

Maximum

Maximum

Average
Rectified
Currentt

One Cycle
Surge
8.3mS

10

'F(surge)

CJ

TRR

25'C

85'C

rnA

rnA

nS

pF

36

300

1

25

10

2

36

1

25

10

2

36

300
300

1

25

10

2

36

300

1

25

10

2

25'C

A

*Operation and testing of devices over 10,000 Vlinch may require re-encapsulation or immersion in a suitable dielectric material.
t The stated AVERAGE RECTIFIED CURRENT ratings require no heat sinking, special mounting or forced dir across the body of the
device.
NOTE: Maximum lead temperature for soldering is 250'C 3/8" (9.5 mm) from case for 5 seconds.

MAXIMUM FORWARD CURRENT VS AMBIENT TEMPERATURE
~

§.
f-z

25

g;;

20

"

W

~,

::J

o

o
a:

..:

15

;;:
a:

~
w

"'-

10

~



()

15

o

a:
..:
;;:
a:

~

10

o

u.
UJ

CJ

..:
a:
w
>

..:

o

o

-55

2$

50

75

100

125

150

175

AMBIENT TEMPERATURE 1°C)

REVERSE RECOVERY TEST CONDITIONS: IF= 12.5mA, IR= 25mA, IRR= 6.25mA

REVERSE RECOVERY TEST CIRCUIT

REVERSE RECOVERY WAVE FOIIM

I.U.T.

J

't

'.
I
.L

--

TU

f---.

.01

~
....... 1~

{

"

\oJ

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

'..

,.

--i:*-5lS1

PULSE

SCOP!!

GENEItATOI
HEWLETT

ramtONIX
7_ 01
EQUIVALENT

PACKARD
214A 01
EQUIVALENT

son

l

34n

'20

Reverse recovery is measured on each rectifier stack prior to manufacture of the assembly .

389

PRINTED IN U.S.A.

LS15-120
LMS 15-180

HIGH VOLTAGE
SILICON RECTIFIERS
10-80mA
Standard Recovery, Miniature
FEATURES

DESCRIPTION

•
•
•
•
•

The LMSILS silicon rectifier series are designed
to meet the economical needs of commercial
and industrial requirements. Cylindrical die
construction and metallurgical bonds minimize
electrical and mechanical stress, contributing to
long life.

PIV:From1.5kVt018kV
2"S Reverse Recovery
High Surge Current Ratings
Low Reverse Leakage
Corona Free

ABSOLUTE MAXIMUM RATINGS
LS
LMS
Peak Inverse Voltage .................................................. 1.5kVto 12kV ................... 1.5kVto 18kV ........... ..
Maximum Average Rectified Current ...................................•........ See Electrical Specifications ..................... .
Maximum One Cycle Surge 8.3mS .............................................. See Electrical Specifications ..................... .
Maximum Recurrent Peak Current Surge ........................................ See Electrical Specifications .•......•..•..........
Operating Temperature Range ........................................................ -550 C to + 90 0 C .......................... .
Storage Temperature Range .......................................................... -65 0 C to +175 0 C .•....................•....

MECHANICAL SPECIFICATIONS

rl

.020"±.001"OIA
(0.51mm) ±0.03mm)
99.9% SILVER

j

LMS15-180
400"
(10.16mm)
±
.005"
(0.13mm)

8

F===~c=J

~

73"
(1B.54mm
TYPICAL

SG

~

.125" ±.OO2"OIA
(3.1Bmm) ± (0.05mm)

0

Dimensions in inches and (millimeters)

LS15-120

SH

H

.225"

(5.7~mm)

.020" ±.OO1"OIA
(0.51 mm) ± 0.03mm)
99.9% SILVER

OF===

j

~

.005"
(0.13mm)

~

73"
(1B.54mm
TYPICAL

8

.090±.002"OIA
(2.29mm) t. (0.05mm)

0

Dimensions in inches and (millimeters)

Reformatted 12/79

390

~ tiio"li"'voiTAGE DEVICES

LS15-120

Type

ELECTRICAL SPECIFICATIONS (@ 25° C unless noled)
Peak
Maximum
Maximum
Maximum
Maximum
Reverse
Forward
Reverse
Junction
Voltage*
Current
Voltage
Recovery
Capacitance
@PIV
@100Volts
Time §
@IO

Type

Pkg.
Style
SG
lMS15
LMS20
LMS25
lMS30
LMS40
LMS50
lMS60
LMS80
LMS100
LMS120
lMS150
LMS180

MAXIMUM RATINGS
Max.

Inverse

Pkg.
Style
SH

PIV

lS15
lS20
lS25
LS30
LS40
LS50
LS60
LS80
LS100
lS120

VF

IR

V

25'C
/lA

85"C
/lA

25'C
V

nS

pF

1500
2000
2500
3000
4000
5000
6000
8000
10000
12000
15000
18000

.25
.25
.25
.25
.25
.25
.25
.25
.25
.25
.25
.25

10
10
10
10
10
10
10
10
10
10
10
10

5
5
5
8
8
8
12
12
12
24
24
24

2(A)
2(A)
2(A)
2(8)
2(8)
2(8)
2(C)
2(C)
2(C)
2(0)
2(0)
2(0)

2.0
2.0
2.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

Surge

Max.
One
Cycle
Surge
8.3mS

Maximum
Average
Rectified

Recurrent

Currentt

Current

CJ

TRR

LMS15-180

Peak

IF

IF (surge)

50"C
mA

85°C
mA

A

A

80
80

40
40
40
20
20
20
12.5
12.5
12.5
5
5
5

0.8
0.8
0.8
0.4
0.4
0.4
0.2
0.2
0.2
0.1
0.1
0.1

8
8
8
4
4
4
2
2
2
1
1
1

10

80
40
40
40
25
25
25
10
10
10

*Operation and testing of devices over 10,000 Vlinch may require re-encapsulation or immersion in a suitable dielectric material.
t The stated, AVERAGE RECTIFIED CURRENT ratings require no heat sinking, special mounting or forced air across the body
of the device.
NOTE: Maximum lead temperature for soldering is 250°C, 3/8 inch (9.5 mm) from case for 5 seconds maximum.
TYPICAL DYNAMIC REVERSE CHARACTERISTICS AT UTED PIV

MAXIMUM FORWARD CURRENT VS AMBIENT TEMPERATURE

~

"i\.1

€

/

0.1
1.0
.01
so
75
100
AMBIENT TEMPERATURE (OC)
INSTANTANEOUS REVERSE CURRENT (~A)
TYPICAL FORWARD CHARACTERISTICS AT VARIOUS JUNCTION TEMPERATURES
€ 20
55'C

8

III

III

!:i
§!

6

a:

o

I""""
4

"-

~I"""

o

~

III
::J

w

Z

~

-_.

-

-_

--"'"-

_

b

fr

III
::J

~

10mA

IRmA

I RRmA

I

A

40

80

20

"

40

10

C

12.5

25

6.25

D

5

10

2.5

UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

-t'l
lMS / LS60- I 00

~
4

I I
I I
10mA

1mA

REVERSE RECOVERY WAVE FORM

I FmA

20

I I

I

I
100mA

INSTANTANEOUS FORWARD CURRENT (mA)

TEST

B

I

lMS / lSI20-IBO

I I

"
~

10

.... -S5'C
2S'C

.......

INSTANTANEOUS FORWARD CURRENT (mA)

§

l00'C

IIII

100mA

REVERSE RECOVERY TEST CONDITIONS

_...1-1-

~ I""""

Z

II

:;; 0
~
1mA

•

ow

25',lMS / lS15-25\ l00'C

"

I I

25'C

;a: " k-""'" I""'"

1~'~

Z

16

>
C
a:

25'C

-5S'C

-I-

--

~

IJ~

lMS / lS30-SO

C

;a:

~~

/

1

----::--25

-::-:----

~ ....

/

t
"

1

1---

.

'

$I"

~

/

If
391

--

REVERSf RECOVERY TEST CIRCUIT
I.U.T.

..

PULU
GENHAtOI

I..

Hfwun

'ACICAID

214A 01
feUIVALENT

Y
'C<'"
".3 ""

TEKTIONIX

fOUrvA1lNl'

son

PRINTED IN U.S.A.

HIGH VOLTAGE
SILICON RECTIFIERS

MA15-120
MX15-200

1S-200mA
Fast Recovery, Miniature
FEATURES
• PIV: From 1.SkV to 20kV
• 2S0nS Reverse Recovery
• High Surge Current Ratings
• Low Reverse Leakage
• Corona Free

DESCRIPTION
The MX/MA silicon rectifier series utilizes
manufacturing techniques that meet the
reliability standards of commercial, industrial and military users. Cylindrical die
construction and metallurgical bonds
minimize electrical and mechanical stress,
contributing to long life. The fast reverse
recovery characteristics enhance applications in high frequency power supply
circuits and voltage multipliers for television,
CRT displays and instruments.

ABSOLUTE MAXIMUM RATINGS
MA
MX
Peak Inverse Voltage
............................................ 1.SkV to 12kV ................................ 1.5kV to 20kV
Maximum Average Rectified Current ..... '" ..................... " .................. See Electrical Specifications ... , ........... .
Maximum One Cycle Surge 8.3mS ................................................... See Electrical Specifications .......... " .. "
Maximum Recurrent Peak Current Surge ............................................. See Electrical Specifications .............. ..
Operating Temperature Range ............................................................. -55°C to +150°C .................... .
Storage Temperature Range ............................................................... -65°C to +17SoC .................... .

MECHANICAL SPECIFICATIONS

~

.020" ± .001" OIA.
(0.51 mm) ± (0.03mm)
99.9% SILVER

i

~

l

73"

SG

MA1S-120

SH

400"
(1O.16.mm)
.005"
(0.13mm)

c::::J1===

(1B.S4mm)

MX1S-200

~

0)

.125" ,,002" OIA
(3.1Bmm) t (O.OSmm)

0

TYPICAL

Oimensions in Inches and (millimeters)

H.

.22S"
(S.72mm)

.020" ± .001" OIA.
(0.51 mm) ± (0.03mm)
99.9% SILVER

~I

n
(1B.S4mm)

.OOS"
(0.13mm)

~DF==='090=t

.002" DIA

(2.29mm) t (0.05mm)

TYPICAL

Dimensions in Inches and (millimeters)

Reformatted 12179

392

~ tiIOH"'VoiTAGE DEVICES

MA1S-120

ELECTRICAL SPECIFICATIONS (@25'Cunlessnoted)
Maximum
Reverse
Current
@PIV

Peak

Type

Type

Inverse
Voltage'

PIV

Pkg.
Style
SG

Pkg.
Style
SH

MX15
MX20
MX25
MX30
MX40
MX50
MX60
MX80
MX100
MX120
MX150
MX200

MA15
MA20
MA25
MA30
MA40
MA50
MA60
MA80
MA100
MA120

MAXIMUM RATINGS

Maximum
Forward
Voltage
@IO

Maximum
Recovery
Tirne§

Maximum
Junction
Capacitance
@100Volts

VF

T RR

CJ

IR
25°C

100°C

V

"A

"A

25'C
V

1500
2000
2500
3000
4000
5000
6000
8000
10000
12000
15000
20000

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

10
10
10
10
10
10
10
10
10
10
10
10

5
5
5
8
8
8
12
12
12
24
24
24

Reverse

Maximum
Average
Rectified
Current t

Max,
Recurrent
Peak
Current
Surge

Max.
One
Cycle
Surge
8.3rnS

IF

I F(surge)

10
tOO°C
rnA

125°C

pF

50°C
rnA

rnA

A

A

2.0
2.0
2.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

80
80
80
40
40
40
25
25
25
10
10
10

40
40
80
20
20
20
12.5
12.5
12.5
5
5
5

20
20
20
10
10
10
6.25
6.25
6.25
2.5
2.5
2.5

0.8
0.8
0.8
0.4
0.4
0.4
0.2
0.2
0.2
0.1
0.1
0.1

8
8
8
4
4
4
2
2
2
1
1
1

nS

250(A)
250(A)
250(A)
250(B)
250(B).
250(B)
250(C)
250(C)
250(C)
250(0)
250(0)
250(0)

MX1S-200

'Operation and testing of devices over 10,000 Vlinch may require re-encapsulation or immersion in a suitable dielectric material.
t The stated, AVERAGE RECTI FlED CURRENT ratings require no heat sinking, special mounting or forced air across the body olthe
device.
NOTE: Maximum lead temperature for soldering is 250'C 3/8" (9.5mm) from case for 5 seconds.
MAXIMUM FORWARD CURRENT VS AMBIENT TEMPERATURE

TYPICAL DYNAMIC REVEISE CHARACTERISTICS AT RATED PlY

~

I ..

U

-

.. 100

z

01
,... u

r'\

15

lio
u"

85;

..

~

50

r:

-"

25

:::l
I-

1\

"

50

125

~~

iii

II:

'"

100

:Ii

75

II:

iii
D.
iii

""
125

AMBtENT TEMPERATURE

~~

lIZ
iii

iii

50

'"

25

~

:Ii

150

115

ee)

.01

0.1

1.0

'0

'00

INSTANTANEOUS REVERSE CURRENT (I'A)

TYPICAL FORWARD CHARACTERISTICS AT YARIOUS JUNCTION TEMPERATURES

;;;20

III

_

-~J.~
25·C

I- _

lM·C

MAl MX30·5O

!--""

~
~

1-0"

~-

l - f-"

~

~16

i

MA I MXI5·25 \

I

25·C
100·C

REYERSE RECOVERY TEST CONDITIONS

§

IFmA

IRmA

A

40

80

20

B

20

40

10

C

12.5

25

6.25

0

5

10

2.5

TEST

100mA

lOrnA
INSTANTANEOUS FORWARD CURRENT (mA)

I

MA I MXI2O·200

I

l00·C

'i

I I

~

.---"""

-55·C
25·C

100.,

MA I MX60·100

I--"

I I
I I
1mA

I
I

10mA
INSTANTANEOUS FORWARD CURRENT (mA)

IEVEISE IKOVElY WAVE FORM

100mA

----

lEV ElSE IECOVO' TEST CIRCUIT

IRRmA

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

25·C

fo--"""

12

~

II
1mA

-

o

-55·C

I I

-55·C

!
"

TR R "250nS 0

t

-

I.U.T.

'II

~

~i" '"

/

"

I

>1n

"'".

GlNHATOI
MIWLITI
'AOCAlO
214A 01
IOUIVAUNT

l4n

120

1
393

PRINTED IN U.S.A.

HIGH VOLTAGE
SILICON RECTIFIERS

MS15-120
MXS15-200

10-80mA
Standard Recovery, Miniature
DESCRIPTION
The MXS/MS silicon rectifier series utilizes
manufacturing techniques that meet the
reliability standards of commercial, industrial and military users. Cylindrical die
construction and metallurgical bonds
minimize electrical and mechanical stress,
contributing to long life. The medium
reverse recovery characteristics improve the
circuit efficiency of power conversion and
control systems.

FEATURES:
• PIV: From 1.5kV to 20kV
• 2j.LS Reverse Recovery
• High Surge Current Ratings
• Low Reverse Leakage
• Corona Free

ABSOLUTE MAXIMUM RATINGS
MS
MXS
PeaklnverseVoltage ..................................... , ....... 1.5kVt012kV ................................ 1.5kVt020kV
Maximum Average Rectified Current ................................................. See Electrical Specifications ............... .
Maximum One Cycle Surge 8.3mS .................................................. See Electrical Specifications ............... .
Maximum Recurrent Peak Current Surge .............. , '" .............. , ............ See Electrical Specifications ............... .
Operating Temperature Range ............................................................. -55"Cto +150"C .................... .
Storage Temperature Range ............................................................... _65" C to +175" C .................... .

MECHANICAL SPECIFICATIONS

r1

MXS1S-200

SG

MS1S-120

SH

400"

.020"t.001"DIA
(0.S1mm)±0.03mm)
99.9%SILVER

(10.1Smm)
±
.00S"
(0.13mm)

i

~====~c==J

~

73"
(1B.54mm)
TYPICAL

~

.12S"±.002"DIA
(3.1Bmm) t (O.OSmm)

0
I~I
I-.J

Dimensions in inches and (millimeters)

.22S"
.020" t..001" DIA
(0.51mm) ±0.03m.m)
99.9% SILVER

i

~

73"
(1B.S4mm)
TYPICAL

Ii
'-

(S.7~mm)

I
OF===

~

.OOS"
(0.13mm)

o

.090 ± .002" DIA
(2.29mm) ± (0.05mm)

Q

DimenSions in inches and (millimeters)

Reformatted 12/79

394

~ H'iGH"'VoiTAGE DEVICES

MXS15-200

MS15-120

ELECTRICAL SPECIFICATIONS (a125°C unless noled)
Peak
Type

Type

Maximum

Inverse

Reverse

Voltage*

Current

Maximum
Forward

@PIV

Voltage
@loMax.

IR

VF

25°C 100°C

25°C
V

Maximum
Reverse
Recovery

MAXIMUM RATINGS
Maximum
Average

Maximum
Recurrent

Peak

@100V

Rectified
Currentt

CJ

10

IF

IF(surge)

~S

pF

50°C 100°C 125°C
mA
mA
mA

A

A

Maximum
Junction
Capacitance

Time§

Maximum

One Cycle
Surge
8.3mS

Current

Surge
PIV

Pkg
Style
SG

Pkg
Style
SH

MXS15
MXS20
MXS25

MS15
MS20
MS25

MXS30
MXS40
MXS50

V

TRR

/-I A

/-I A

1500
2000
2500

0.1
0.1
0.1

10
10
10

5
5
5

2(A)
2(A)
2(A)

2.0
2.0
2.0

80
80
80

40
40
40

20
20
20

0.8
0.8
0.8

8
8
8

MS30
MS40
MS50

3000
4000
5000

0.1
0.1
0.1

10
10
10

8
8
8

2(9)
2(9)
2(9)

1.0
1.0
1.0

40
40
40

20
20
20

10
10
10

0.4
0.4
0.4

4
4
4

MXS60
MXS80
MXS100

MS60
MS80
MS100

6000
8000
10000

0.1
0.1
0.1

10
10
10

12
12
12

2(C)
2(C)
2(C)

1.0
1.0
1.0

25
25
25

12.5
12.5
12.5

6.25
6.25
6.25

0.2
0.2
0.2

2
2
2

MXS120
MXS150
MXS200

MS120

12000
15000
20000

0.1
0.1
0.1

10
10
10

24
24
24

2(0)
2(0)
2(0)

1.0
1.0
1.0

10
10
10

5
5
5

2.5
2.5
2.5

0.1
0.1
0.1

1
1
1

'Operation and testing of devices over 10,000 V/inch may require re-encapsulation or immersion in a suitable dielectric material.
tThe stated, AVERAGE RECTlFIEOCURRENT ratings require no heatsinking, special mounting or forced air across the body olthe
device.
NOTE: Maximum lead temperature for soldering is 250°C 3/8" (9.5mm) from case for 5 seconds.

MAXIMUM FORWARD CURRENT vs AMBIENT TEMPERATURE

~
.....i

TYPICAL DYNAMIC REVERSE CHARACTERISTICS AT RATED PIV
150

.'"1,\

O! 75

.. u

ilia
u"

ei

50

~

;;

"

..

0

~

/ ~ '1

U

. . . 00

.

"

55

75

~12S
W

a:

I

i..

100

~

75

V

W

IE

...

""

100

125

/~

iii

..
iii
IE

150

.0

" .0'

175

0.'

AMBIENT TEMPERATURE 'C

~

•

~

~

--- ....
..,.......-::

ow

!

~

1111

>
aa:

~

'0

TYPICAL FORWARD CHARACTERISTICS AT VARIOUS JUNCTION TEMPERATURES
8

~
o

i!l

1.0

INSTANTANEOUS REVERSE CURRENT (,.A)

2

MS I MXS30-SO

......
~

~

...

....

-

.~
>
a

2S'C

I- 11~'C

MS I MXS15-25 \

-SS'C

~

25'C
lOO'C

~

~Z

~

III

0

1mA

10mA
INSTANTANEOUS FORWARD CURRENT (mA)

REVERSE RECOVERY TEST CONDITIONS

§

---"'"

§ ••

I ~~,~

-i

20

lDOmA

12

~

I I Ll

-S5'C

I I

2S'C

.-

lOO'C

I I
... -5S'C
_ ... 2S'C

t'f

.

~

MS I MXS60-IOO

I"'""'

I I

I FmA

IRmA

I RRmA

1 mA

10mA
INSTANTANEOUS FORWARD CURRENT (mA)

IIVEISf RKOVERY WAVE FORM

A

40

80

20

B

20

40

10

C

12.5

25

6.25

D

5

10

2.5

UNITRODE CORPORATION, 5 FORBES ROAO
LEX I NGTON, MA 02173 ' TEL. (617) 861-6540
TWX (710) 326-6509 ' TELEX 95-1064

,I,

t
I

'.

.. n

,.,.. ~
'"

395

100mA

REVERSE RKOVERY TEST CIKUIT
I.U.T.

_ l..

/

I

I I I

0

---ot---

TEST

II

I/IS I MXSI20-200

T

PULSE
GENEtAlla-

HEWLIn
'AtkAn)
2'4A 01
EQUIVALENT

Y
..

' S

0:
0:

:::l

~cs

:::l

u

U

~ 100

~100

..J

oJ
Q.

Q.

10
.l,u:S

10
1.S
1O.S
100.S
1mS
PULSE DURATION (SECONDS)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

10mS

.l,u:S

403

/JOO ii;!ilJI.

SC~/cS:

PC Se
WCS

:::l

:::l

(8.3 ms sine wave equivalent
to 3 ms square wave)

1111

1.S
10.S
lOOpS
1mS
PULSE DURATION [SECONDS)

10mS

PRINTED IN U.S.A.

UDA, UDB, UDC, UDD, UDE, UDF SERIES

Multiple Surge Rating VS. Duration

";:::z

~ 100

........... 1'--

UJ

~

80

::>

r-...

III

~ 60

~

40

UJ

g;

20

o

o

...

~

1

10
100
CYCLES AT 60 Hz. HALF SINE WAVE

Typical Forward Voltage
vs. Forward Current
10K

Typical Leakage Current VS. PIV

UDA, UDC SERIES

O"/,v
h 'II
II /

2K

E

1K

a:
a:
::>
u

II / /

a:

::> 100
u
o 50

~ 20
a:

~

/

10

/

1~~foU
:q~

Vi I

;...

a:

~

=<
.:>
z>UJ

/ VI

- 500
>Z
~ 200

...

~

UJ

+- I

I /

.05
.1
.2

5K

1K

oS
z>-

SOO

l:!

./'

~7S"C

so
100

1.25
1.5
MULTIPLY V, BY,

a:
u

o so f---

~ 20
a:
~

.01
.02

I/j
II II
VII /
I II I I

a:

I

.05
.1
.2

Z

.5

>-

"

-

UJ

"«
«
'"

UJ

..J

10
20

so
100
200

1.25
1.5
MULTIPLY V, BY,

UNITRODE CORPORATION,S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6S09 • TELEX 95-1064

125

404

./'
+7S"C

V

+12S"C

500
1K

I I

./'
SO"C

....--- +2S"C

::>
u

I
I

o .25 .5 .75
FORWARD VOLTAGE -

=<
.:>
a:
a:

/ :f / I

1

50

UDB, UDD SERIES

UJ

i1l~u
§! $/7~

I
I I

10

'I

100

Typical Leakage Current YS. PIV

//;V

::>100

---t;'S"C
1SO

% OF PIV

UDB, UDD SERIES

200

I'

10
20

I I

2K

=<

-~"C

.5

Typical Forward Voltage
VS. Forward Current
10K

SO"C

UJ
..J

I I

.25
.5
.75
FORWARD VOLTAGE -

L

.005
.01
.02

"«
«
'"

II / / II
10

UDA, UDC SERIES

.001
.002

5K

=<

1,000

100

75
50
% OF PIV

25

PRINTED IN U.S.A.

UDA, UDB, UDC, UDD, UDE, UDF SERIES

Typical Forward Voltage
VS. Forward Current
10K

UDE, UDF SERIES /

5K
2K

E

SOD

....
z

~ 200 f - -

cr
OJ 100
u

o

"

~
o
u.

~

/

I

&

~0,0
fi?

1
....
z

/

/

.25

50'C

.2

-

.5

0:
0:

OJ

I

U

/ I

UJ

Cl

"'"
"....

--

10
20

UJ

50
100
200

!I
.5

.75
FORWARD VOLTAGE -

1K

1.25
1.5
MULTIPLY V, BY,

,./
+25'C

IL
+75'C

~5'C

500

I

j
a

..J..-

.05
.1

UJ

I I
I I J

10

1

.01
.02

:;:;~I

/

20

j

-/tVl

50

0:

'/

I I II

:;( lK
-

/.

/ ;1:

Typical Leakage Current VS. PIV
UDE, UDF SERIES

125

Output Current Ratio
vs. Velocity of Air Flow

100

75
% OF PIV

50

25

Current Derating Curve

~ 1.75

100 ~"""''-,--r--r-'---'--'--'----'

~

cr 1.50

/'

OJ

en
51.25

u
~ 1.00

./

....

"- .75

>=

:> .50
::;:

I

'"

~ 50~-+--~--~-'~'+'.'-,~---+--~~

:/

OJ

...J

Cl
Z

/'

V

o

.25
100
V-

200

300

400

500

bOO

VELOCITY OF AIR (LFM)

Current Derating Curve

Current Derating Curve

100

100

'.
Cl

>=

"
Cl

"

Z

"

Z

i=

50

"

0:

50

?P

,,
0

50
100
150
CASE TEMPERATURE ('C)

*

,
I
I

0

200

0

50
100
150
CASE TEMPERATURE I'C)

200

Oil Immersed

Air Cooled

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

.'.

,

"

0:

a

__L--L__L--L__L--L~
50
100
150
200
AMBIENT TEMPERATURE ('C)

O~-L

405

PRINTED IN U.S.A.

RECTIFIER ASSEMBLIES

UFB, UFS, USB, USS SERIES

High Voltage Stacks,
Standard and Fast Recovery
FEATURES
• Controlled Avalanche Characteristics
• Only Fused-in-Glass Diodes Used
• High Forward and Reverse Surge Capability
• Transfer Molded for Void less Construction
• Modular for Easy Stacking
• PIV: from 2.5 kV to 15kV
• Recovery Times: to 500ns
• Continuous Ratings: to 2.3A

DESCRIPTION
These assemblies uniquely combine a
versatile stackable design with all the
requirements for reliable high voltage
operation. All modules are suitable for
bridge or series operations.

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, USS Series .
. 5.0 kV to 15kV
Peak Inverse Voltage, USB Series .
.. 2.5 kV to lOkV
. ................... 5.0kV to lOkV
Peak Inverse Voltage, UFS Series .
. 2.5 kV to 7.5 kV
Peak Inverse Voltage, UFB Series.
Maximum Average D.C. Output Current ........................... See Electrical Specifications
Non-Repetitive Sinusoidal Surge (8.3ms)
.. See Electrical Specifications
........ -65°C to +l50°C
Operating and Storage Temperature Range

MECHANICAL SPECIFICATIONS
UFB, UFS, USB, USS SERIES

I
~
Il
j

235-r---1

--

10-32

THRO

UNF·2A

Ol!

I-

040 TYPICAL
020

---

110
980

10·32

THRO
UNF-2B

Typical Weight: USS & UFS Series -

Dimensions in inches.

1.0 ounce
28 grams

use & UFe Series -1.1 ounce
31 grams

MARKING
Type number marked on unit.

Polarity -

Cathode connected to stud.

406

om

_UNITRDDE

UFB, UFS, USB, USS SERIES

Electrical Specifications (at 25'C unless noted)

Maximum Ratings
Maximum
Maximum
Reverse
Transient

Maximum
Maximum
Type

Standard
Recovery

PIV
kV

USS5
USS 7.5
USS10
USS 15
USB 2.5
USB5
USB 7.5
USB 10

Standard
Recovery

Forward
Voltage Drop

Fast
Recovery

UFS5
UFS 7.5
UFS 10

Fast
Recovery

UFB2.5
UFB5
UFB 7.5

5.0
7.5

Leakage
Current
@ PIV

Reverse
Recovery
Time

Energy
Absorr. .ion

ILA

ns

joules

9V@0.6A
13V@0.5A
17V@0.3A
25V@0.2A
5V@ l.lA
9V@0.7A
13V@0.5A
17V@O.4A
12V@0.5A
18V@OAA
23V@0.3A
6V@O.9A
12V@0.6A
18V@0.4A

10
15
2.5
5.0
7.5
10
5.0
7.5
10
2.5
5.0
7.5

5

-

10

-

5

500'
350t

10

500'
350t

Average

D.C. Output
Current
TA _ 25 C
T, = 5O'C
AIR
OIL
Amps
Amps

Non~Repetitiye

Sinusoidal
Surge
(8.3ms)

G

Amps

1.5
2.5
3.0
5.0
3.0
6.0
9.0
12

0.60
0.45
0.35
0.25

1.1
0.91
0.71
0.51

25

1.1
0.68
0.53
0.43

2.3
1.5
1.2
1.0

80

l.5
2.5
3.0
3.0
6.0
9.0

0.50
0.38
0.30

0.90
0.75
0.58

20

0.90
0.58
0.45

2.0
1.3
1.0

70

*Measured in a reverse recovery circuit switching from lA forward to lA reverse current recovering to a.SA.
tMeasured in a reverse recovery circuit switching from .SA toward current to lA reverse current, recovery to .25A.

Output Current Ratio
vs. Velocity of Air Flow

_

~ 100

" 2.50
Z

~ 2.25
~ 2.00
~ 1,75

;::: 1.50

'" 1.00

0:
0:

:J

'u 60
I-

:J

0.
I-

'"

~ 80

...o

80 100 120 140 160 180

if.

w 20
«

...0

FIG. I

if.

FIG.2
0
20 40 60

~

""- ,

I-

100 200 300 400 500 600
V - VELOCITY OF AIR (LFM)

I'\.

0:

:J

~

0

/

""

I-

Z

0

0:

Output Current
vs. Ambient (Oil) Temperature

...J

2. 100

:J 40

V

...J

I

Z

w 80

/

0.

Output Current
Ambient (Air) Temperature

""'-

I-

V

...o

:J
~ 1.25

....-

V

a:

VS.

60

:J

1\

0.
I-

:J 40

o

ow

\

~ 20

0:

1

FIG. 3

20 40 60 80 100 120 140 160 180
TEMPERATURE ('C)

TEMPERATURE ('C)

Application example: The rectifier is to be used in a cabinet at 6O'C with ambient
air moving at 400 LFM. The rating is reduced (Fig. 2) by a factor of 0.81 due to the
elevated temperature, but it is enhanced by 2 X (Fig. 1) due to the air flow. Hence
the DC output current is 0.81 x 2, or 1.6 times the 25'C air rating.
Multiple Surge Current vs. Duration

Forward Pulse Current vs. Duration
10K
5K

$

l!:

w

2K
IK
500

200
~ 100
U 50
0:

20
10
.Ills

100

SQUARE PULSE

I

t:::::::
t'~

!""=I::::-

$

I

_ w 80
I-Z
Z -

w'"

i'~ USB

I'P:::: t::,. UFB'" ~
~~

I

lOpS

I

lOOtis

0: ...
0: ...J

..........

u J:

F=::t-.
p:::~

I

40

«

20

w

UFB

r-1--1-

USS & UFS

1--.

0.

r-;:

1m.

...
0

_t~

........
~SB &

:J«

o

IOms

DURATION

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

..........

60

407

I

10 20
SO 100 200
CYCLES OF 60Hz SINEWAVE

500 1000

PRINTED IN U.S.A.

UFB, UFS, USB, USS SERIES

Typical Forward Voltage
YS. Forward Current
10
USB SERIES

II
III 1/'

~

!;:
~

II

.2

::>
()

o

~

~ .02

+175'~i

.01
.005
.002

II
+toi~ r-~

I

V

.001

~

1

~

.5

V '/

~

.2

~

.1

::>

~ .05

0:

1+ 7S'C

~ .02

.01

,J

I

l

UFS SERIES

5:

.002

.5

Z

OJ

~
::>
()
o

.2

.1

:t .02

/ II
1// I I

.... 05

I /

0:

~ .02

.01
.005
.002
.001

I

+1 S'C

rrv-

./

A 'I

/ I

i:i.J

I

I

---

.5
1

2

f ~S
II

10
'C

o
.2
.4
.6
.8
1.0 1.2 1.4
FORWARD VOLTAGE - MULTIPLY Vf BY,

UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON. MA 02173 ' TEL. (617) 861·6540
TWX (710) 326-6509 ' TELEX 95-1064

Typical Leakage Current YS. PIV
.005
.01

20
50
100

C
125

100

75
50
% OF PIV

408

fZ

~~,L I-

---

+2r~- l -

.3 0.1

"'0:0:

0.2
0.5

::>

7S'C

I

USS AND UFS SERlE

:t

I,...-

-sO'C

o
.2
.4
.6
.8
1.0 1.2 1.4
FORWARD VOLTAGE - MULTIPLY V, BY,

.002

--

.2

>- +2S'C

I

II
V

.mil

2S'C

+25'C

It
II

Lh

.05

()

"~

+100'C

.02

~ .1

~I

I

/

iT 1/

.002

-~sd'c

z

OJ

~ .05

.005

USB AND UFB SERIES

.3

gj

+17S'C

.02
.01

.01

j/

0:

~

II

.005

...

~ .05

0:

Typical Leakage Current YS. PIV
.001

10

II !I II

0:

.2
.4
.6
.8
1.0 1.2 1.4
FORWARD VOLTAGE- MULTIPLY V, BY,

Typical Forward Voltage
YS. Forward Current

/lI:jI

.2

.1

o

II I1I1
II
r.- II +2S'C

I

.001

o
.2
.4
.6
.8
1.0 1.2 1.4
FORWARO VOLTAGE- MULTIPLY V, BY,

~
::>
()

itrV- II If-I-rf

.002

III 1/11

.5

OJ

I

.005

II

...

i/

Z

/ I

0:

+2S'C

~

1/1/,/
1/ III

OJ

II

/

V

~rJrl

I

I
II J

.05

UFB S'ERIES

USS SERIES

II/II

.1

Typical Forward Voltage
YS. Forward Current
10

10

II

.5

OJ

0::

Typical Forward Voltage
YS. Forward Current

'-""

()

.."
OJ

"

I,...+12~'C

I I
25

~- I..... ./

OJ

.J

I

10

-1o-"+12S'C

20
50
100
200
125

100

75
50
%OF PIV

25

o

PRINTED IN U.S.A.

RECTIFIER ASSEMBLIES

UG8, UGO, UGE, UGF SERIES

High Voltage Doorbell® Modules
Standard and Fast Recovery
FEATURES

DESCRIPTION

•
•
•
•
•
•
•

This series of high-voltage, high-current
stacks that incorporate a unique modular
design makes it·particularly well-suited for
high power applications such a5 in radar
systems as charge, hold-off and clipper
diodes.

Current Ratings: to lOA
PIV: 2.5 kV to lOkV
Recovery Times: to SOOns
Only Fused-in-Glass Diodes Used
Controlled Avalanche Characteristics
Stackable to 600IW
Modular Package for Easy Stacking

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage
UGB, UGD Series.
UGS, UGF Series .
Maximum Average D.C. Output Current.
Non-repetitive Sinusoidal Surge (8.3ms)
Operating and Storage Temperature Range .

........ SkVto 10kV

..... ... ..2.5 kV to 7.5 kV
................. See Electrical Specifications
... See Electrical Specifications
to +1SO"C

. -wc

MECHANICAL SPECIFICATIONS
UGB, UGD, UGE, UGF SERIES
3.487" OIA. MAX.

87.Smm

3it~_
2s:m
38"-24
1-;::

(

"\
~30"D~
MAX.
25.Smm

1.02J MAX.
2S.42mm

I

Polarity - Cathode connected to base.
Part Number - On base of unit.
Typic.1 Weight -

1.0 ounces
200 grams

EXTENDER PLATE G

_________ . " o ; . m · - - - - - - - - - - 1
-r
(
:t:
r
I
~II--

.0620 Radius

1/1" ±.OlO

.380 Diam. ±.005 :

Dimensions in inches.

Ooorbell@ is a registered trademark of Unitrode Corporation

Typical Weight -

409

9.25 ounces
265 grams

lliD
_UNITRDDE

UGB. UGO. UGE. UGF SERIES

Electrical Specifications (at 25'C unless noted)

Maximum Ratings
Maximum Avera"ge D.C. Output
Current

Type

PIV

Maximum
Forward
Voltage
Drop

Maximum
Leakage
Current
@PIV

Maximum
Reverse
Recovery
Time

#A

ns

kV

Standard
Recovery

Fast
Recovery

UGE-2.5
UGE-S
UGB-5
UGE-7.5
UG8-7.S
UGB-10
UGF-2.5
UGF-5
UGO-5
UGF-7.S
UGO-7.5
UGO-10

2.5
5
5
7.S
7.5
10
2.5
S
S
7.5
7.5
10

SV@3.30A
lOV@2.50A
9V@2.20A
13V@1.60A
13V@1.50A
17V@1.10A
6V@2.50A
llV@1.80A
llV@ 1.60A
17V@1.20A
17V@1.l0A
22V@0.8SA

10
15
S
10
5
5
10
10
5
10
5
5

Amps

Tc - 60°C
Air
with Extender
Plate"'*
Amps

6.60
5.00
4.40
3.30
3.00
2.30
S.OO
3.75
3.30
2.S0
2.25
1.75

8.25
6.25
5.50
4.10
3.75
2.8S
6.25
4.70
4.10
3.10
2.80
2.20

Tc

-

SOO'
350t

= 75'C
Air

Non-repetitive
Sinusoidal
Surge
(8.3ms)

Maximum
Reverse

Amps

Tc _100'C
Amps

Absorption
joules

10.00
7.S0
6.60
5.00
5.00
3.S0
8.00
6.00
4.80
4.00
3.50
2.S0

200
200
100
200
100
100
150
lS0
80
150
80
80

8
14
7
20
10
14
8
14

Tc

= SO°C
Oil

Transient
Energy

Y
20
10
14

*Measured in a reverse recovery circuit switching from 1.OA forward to 1.0A reverse current recovering to O.SA.

tMeasured in a reverse recovery circuit switching from O.SA forward to 1.0A reverse current recovering to O.25A.
*"'These ratings are based on using "extender plates" that provide additional surface area to radiate heat. Because of possible corona effects
caused by scratches on these plates, extreme care is necessary in their handling and they are not recommended where the working voltage
exceeds 7.5KV/module. They should be carefully polished prior to installation.

Forward Pulse Current VS. Pulse Duration

Forward Pulse Current VS. Pulse Duration
10K

~

~

...

Z

 100

c

50

'"~

20

cr

a

u.

r/

.01
.02

1

/

1J;41it~
:;: fj: '" /'

u

I

I-

z

w

I

.5

J...-

.05
.1
.2

50"C

.5

,/"
+25"C

W

'"
"''""
W

..J

I I I
1/
I :I
.25

.1
.1

UGE. UGF SERIES

U

I I

o

25

:::J

II

1

50

cr
cr

/I I

10

75

Typical Leakage Current VS. PIV

I, II I

lK

100

% OF PIV

/ Vi,

2K

V
+125"C

lK

Typical Forward Voltage
VS. Forward Current
10K

~

r--

L
+75"C

500

.25
.5
.75
1
1.25
1.5
FORWARD VOLTAGE- MULTIPLY V, BY:

5K

-

cr
cr

:::J
U

/ II I I

I

L.

---+25"C

z .5
w

I
I

II

,/
50"C

I-

~~"~~U
K' 8 v, IS?~
:r.:;:.:;-.
I

/
/ /

10

UGB. UGD SERIES

.05
.1
.2

;;:

/ II III

cr
:::J 100
u
Cl

.01
.02

V/; tI

2K

cr

Typical Leakage Current vs. PIV

UGB. UGD SERIES

5K

1,000

10
20

L

___ +75"C

50
100
200
500

.75

FORWARD VOLTAGE -

1

1.25

125

100

75

50

~5"C
25

% OF PIV

MULTIPLY V, BY:

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

-r-

lK

1.5

411

PRINTED IN U.S.A.

UGB. UGD. UGE. UGF SERIES

Output Current Ratio
vs. Velocity of Air Flow

Current Derating Curve

~ 1.75

~ 1.50

w

/'

13'" 1.25
u

~ 1.00
w
....
0..

.75

;::

....

:> .50
::;:

V

V

L

"

'"z
~

I'"

50

0:

~-+---r--~-'~'~--~-t---r~
'.

#.

oL--L~L--L~L-~~=-~-7

o

I

SO
100
150
AMBIENT TEMPERATURE ('C)

200

>c: .25
100
V-

200

300

400

500

600

VELOCITY OF AIR (LFM)

Current Derating Curve

Current Derating Curve

100

100

\

'"z;::
'"

'";::z

"
50

"

0:

" " ,,
,,

50

0:

#.

#.

\

,
I
I

0

0

50
100
150
CASE TEMPERATURE ('C)
Air Cooled

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064

0

200

412

0

SO
100
150
CASE TEMPERATURE ('C)
Oil Immersed

200

PRINTED IN U.S.A.

RECTIFIER ASSEMBLIES

US12-US200A
USR12-USR180A

High Voltage Stacks, .125 Amp to 1 Amp,
Standard and Fast Recovery

FEATURES
• Controlled Avalanche Characteristics
• Recovery Times: to SOOns
• Transfer Molded for Voidless Encapsulation
• High Forward and Reverse Surge Capability
• PIV: from 1200 to 20, OOOV
• Only Fused-in-Glass Diodes Used

DESCRIPTION
This series of High Voltage, Medium
Current Stacks are assembled from
hermetically sealed, controlled avalanche
individual diodes. Therefore, they offer
the ultimate in reliability for such applications as clipper diodes, back swing
diodes and hold-off diodes in pulse
modulators.

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage.
Maximum Average D,C, Output Current . , . , .
Non-Repetitive Sinusoidal Surge (S.3ms)
Operating and Storage Temperature Range.

Output Current Ratio vs
Velocity of Air Flow
2.50

Output Current vs
Ambient (Air) Temperature

~~-""""-.----r--'-----,

"~ 2.25 I--+-+-f--+--b~
«
II:

!!:
«

2.00

~ 1.75 1--+-+~f-'7i-++-1

~100
::>
">-

z

'"
II:
II:

1.25

1--.4''''-+-1--+-''''-+-1

I

~ 20

200

300

400

500

V - VELOCITY OF AIR (LFMi

600

z>~

I"'.

if.

80

I"-

0::

:>
u 60

1"-

""

«
II:

:5
100

40

Output Current vs
Ambient (Oil) Temperature

:J

§loo

I"-

>-

:> 40

\

o
o

20 40 60 80 100 120 140 160 180
AMBIENT (AIR) TEMPERATURE ('C)

1

«
II:

...o

if.

20 40

60 80 100 120 140 160 180

AMBIENT (OIL) TEMPERATURE ('C)

[ill]
413

f\

1\

~ 20

1\

0

1""-

50..

0..

o
o

51.50

80

:>
u 60
>:>

5

'"-'0..

i

.........,,' 1200 to 20,000V
. ........ See Electrical Specifications
. 20A
.. ". , ... ,',., .. , -6S'C to +150'C

_UNITRDDE

US12·US200AUSR12·USR180A

Electrical Specifications (at 25'C unless noted)
Maximum Leakage

Type

PIV

Current at PIV
TA -100'C

Maximum Reverse

Maximum Forward

Recovery

Body

Voltage Drop

Timet

Size

TA _ 25°C

V

pA

pA

1200
1500
1800
2000
2S00
3000
3S00
4000
4500
5000
6000
7000
8000
10000
12000
15000
18000
20000

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

2.0V@ 400mA
3.0V@ 400mA
3.0V@ 400mA
4.0V@ 400mA
5.0V@ 400mA
6.0V@400mA
7.0V@ 200mA
7.0V@200mA
S.OV@ 200mA
9.0V@ 200mA
1O.OV @ 200mA
12.0V @ 200mA
14.0V @ 100mA
17.0V @ 100mA
21.0V @ 100mA
26.0V @ 100mA
31.0V·@ 100mA
34.0V @ lOOmA

1200
1500
2000
2500
3000
3500
4000
4500
5000
6000
7000
8000
10000
12000
15000
18000

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

150
150
150
150
150
150
150
150
150
ISO
150
150
ISO
ISO
ISO
ISO

3.3V@400mA
4.0V@400mA
5.5V@400mA
6.6V@400mA
7.7V@400mA
8.8V@200mA
9.9V@200mA
11.0V @ 100mA
13.0V @ 100mA
15.4V @ 100mA
17.6V@ 100mA
2O.0V @ 100mA
24.0V @ 100mA
31.0V @ 100mA
33.0V @ lOOmA
35.0V @ 100mA

Maximum Ratings
Max, Avg. D.C.
Output Current
T, _ 25'C
T, _ SO'C
(Air)
(Oil)

ns

mA

mA

SA
SA
SA
SA
S8
S8
SC
SC
SO
SO
SO
SO
SE
SE
SE
SF
SF
SF

1000
SOO
700
600
600
SOO
400
350
330
330
300
300
2SO
250
200
200
ISO
180

2500

SA
SA
S8
S8
SC
SC
SO
SO
SO
SO
SE
SE
SE
SF
SF
SF

7SO
600
500
400
400
350
300
2SO
250
220
220

1850
1S00
12SO
1000
1000
850
750
625
625
500
500
400
400
300
300
250

Standard Recovery
US 12
US 15
US IS
US 20
US 25
US 30
US 35
US 40
US45A
US 50A
US 60A
US 70A
US 80A
US 100A
US 120A
US 1SOA
US 180A
US 200A

-----

---

2000
1750
1500
1500
12SO
1000
8SO
750
750
620
620
500
500
400
400

360
360

Fast Recovery
USR 12
USR 15
USR 20
USR 25
USR 30
USR 35
USR 40A
USR 45A
USR SOA
USR 60A
USR 70A
USR 80A
USR 100A
USR 120A
USR 150A
USR lSOA

500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500

200
200
150
150
125

tMeasured in a reverse recovery circuit switching from lOrnA forward to IOmA reverse current recovering to 5mA.

Reverse Recovery Circuit
1KU

+
20V D.C.

9900
D.U.T.

lOll

=
UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

414

PRINTED IN U.S.A.

US12-US200A USR12-USR180A

Typical Forward Current
vs. Forward Voltage

Typical Forwarll Current
vs. Forward Voltage
10

Typical Leakage Current vs. Voltage
.01

10

f-

.02

-- -10'~

r-

.05

~ VI/

i?

II I

.5

w

0::

.2

0::

G .1
o

0::

~

/

.05

~02

~

/ / /,1
II I /

!;:

I

.005

/

I II

.00 1
,2

.4

(,)

~
0::

.8

FORWARD VOLTAGE -

1.0

+lOrct

1.2

.002

i?
I-

Z

UJ

0::
0::
:;)
(,)

MULTIPLY V, BY:

.4

.6

~

'"""'"'

l.us

1.0

-

UJ

Ii:

8a.

I

I I

US AND USR SERIES

120 110 100 90 80 70 60 50 40 30 20 10 0
%OF P.I.V.

60

G

~

~

40

en

~

... 20

Ims

l

Multiple Forward Surge Rating

~ 100

-....

100,u5

--

(

M

+12S'C

~
0::

o

lOms

10

DURATION

UNITRODE CORPORATION· S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

500

1.2

"

~
10,u5

50
100

z

US

~

20

200

0::

I
O.l,us

,8

o

J

10

-'

+2S'C

~ 80

200
100
50 r--USR/
20

w

+~S'~-r-

I -I

10

1,4
FORWARD VOLTAGE- MULTIPLY V, BY:
.2

f- DUR~Wi:rN;:H6~ER~~~~IWJEV~uLSE

2000
1000
~
500
-.....:::

I

II

r,
1 II I -5O~C

Forward Pulse Current YS Duration
10000
SOOO

w

«
""«

..-

-- ~CI-

:;)
(,)

I USR SERIES

I

,001
1.4

I

/

.005

/ us SERIES

W
0::
0::

/

II /

/ /

+l7S'C

.01

j

I

/

...0,02

+2S'C

-SO'C

.6

.05

0:::

I-

Z

III1//

.1

o

/

7/

+IOi'C /
.002

:;)

/

I. i

.2

--

.2

.3- ,5

I VI II

w
~

~

/; VL

.5

Z

//I

-tS'C /

.0 I

,1

~ '/

'---100

1,000

CYCLES AT 60Hz HALF SINE WAVE

415

PRINTED IN U.S.A.

US12-US200A USR12-USR180A

MECHANICAL SPECIFICATIONS

r~
t --l
.75
MIN ·

.50 MAX .
12.70 mm

===C:J1====

.028 DIA
TIN'D CU.

}

BODY SA

@

---110.187" MAX.
4.75 mm

======~C====O========

BODY SB

~~}~~
. -01

1.125" MAX.
28.60 mm

L

~~

BODY SC

.187" MAX.
4.75 mm

.250
MAX.

l~l~'-T~~i'l
======~~F=======t
.032 DIA
TlN'D. CU.

1,rJ
._Qt_
LJ

.375
MAX.

, -r-

BODY SO

.250
MAX.

I~~~:-I-W:~'-I

===11

()

@
.032 DIA
TIN'D CU.

==1

1=1

.032 DIA
TIN'D. CU.

1,~

-.rh: ..MAX.
375

W
j,-r-

(

\>
BDDY SE

.078 R TYP.

.400
MAX.

r~~~'I~~5X'~

====91

===+

1=1

.032 DIA.
TIN'D. CU.

l,W rl

_rt"i-:AOo
MAX.

i'l

BODY SF

.078 R TYP.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

416

PRINTED IN U.S.A.

HIGH VOLTAGE
SILICON RECTIFIERS

VX1S-S0

MULTISTAC
Fast Recovery

FEATURES
•
•
•
•
•

DESCRIPTION
The VX MUL TISTAC silicon rectifier
assemblies meet the stringent reliability
requirements of commercial, industrial and
military users through the use of proprietary
innovations in manufacturing technique.
Cylindrical die construction and metallurgical bonds minimize electrical and mechanical stress, contributing to long life. The
fast reverse recovery characteristics enhance applications in high frequency power
conversion and control circuits.

PIV: From 15kVto 50kV
250nS Reverse Recovery
High Surge Current Ratings
Low Reverse Leakage
Corona Free

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage. . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 15kV to 50kV
Maximum Average Rectified Current ...................... See Electrical Specifications
Maximum One Cycle Surge 8.3 mS ........................ See Electrical Specifications
Operating Temperature Range ....•......•............................-55°C to +150°C
Storage Temperature Range .............................•...... , ..... -65°C to +150°C

MECHANICAL SPECIFICATIONS

(O.79mm) ~(O.05mm)
TINNED COPPER LEADS
LENGTH 1.500" (38.1 mm) MINIMUM

PART
NUMBER
. VX1S

VX20.25
VX30. 40. 50

CASE LENGTH
INCHES

1.50

+

03

200· 03
250-03

MILLIMETERS
3810:<:0.76

50 80

+

a 76

63.50 + 0 76

Dimensions in inches and (millimeters)

Reformatted 12179

417

~

tiio'ti"'voiTAGE DEVICES

VX1S-S0

ELECTRICAL SPECIFICATIONS (@25'Cunlessnoted)
Maximum

Peak

Maximum

Reverse

Inverse
Voltage*

Reverse

Recovery
Time

Current

@PIV
I R
25'C
100'C
/1A
/1A

250nS

PIV

Type

V

VX15

15000

0.1

Maximum
Forward

Voltage
@Io
VF

MAXIMUM RATINGS
Maximum
Average
Rectified
Currentt

Maximum
Junction
Capacitance

@100V

Maximum
Case

Surge

Length

8.3mS
I F (surge)

I 0

CJ

One Cycle

V

pF

50'C
mA

100'C
mA

A

Ins

MM

10

24

1.0

25

10

2

1.50

38.10

VX20

20000

0.1

10

36

1.0

25

10

2

2.00

50.80

VX25

25000

0.1

10

36

1.0

25

10

2

2.00

50.80

VX30

30000

0.1

10

48

1.0

25

10

2

2.50

63.50

VX40

40000

0.1

10

48

1.0

25

10

2

2.50

63.50

VX50

50000

0.1

10

60

1.0

25

10

2

2.50

63.50

* Operation and testing of devices over 10,000 V/inch may require re-encapsulation or immersion

in a suitable dielectric material.

t The stated AVERAGE RECTIFIED CURRENT ratings require no heat sinking, special mounting or forced air across the body of the
device.

NOTE: Maximum lead temperature for soldering is 250' C 3/8" (9.5 mm) from case for 5 seconds.

MAXIMUM FORWARD CURRENT VS. AMBIENT TEMPERATURE

«

E

I

25

i\.,

fZ

W

II:
II:

20

:J

r\.

()

~

15

\

~

@5

10

\

u..
W

"«w

II:

>
«

0
-55

25

so

75

100

\

125

ISO

AMBIENT TEMPERATURE ('C)

REVERSE RECOVERY TEST CONDITIONS: IF = 12.5mA, IA= 25mA, IRA= 6.25mA

REVERSE RECOVERY WAVE FORM

,

I.

TAR = 250nS

-i*--

I--

.01

TRI- -

lK

51n
SCOPE

PULSE
GENERATOR

·t

....... ~

TEKTRONIX
7403 OR
EQUIVALENT

HEWLETT
PACkARD
I ..

214A OR
EQUIVALENT

/~

I.

l

REVERSE RECOVERY TEST CIRCUIT
R.U.T.

son

34n

120

f
J

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173. TEL. (617) 861'6540
TWX (710) 326-6509 • TELEX 95-1064

418

PRINTED IN U.S.A.

HIGH VOLTAGE
SILICON RECTIFIERS

VXS1S-S0

MULTISTAC
Standard Recovery

FEATURES
• PIV: From 15kV-50kV
• 2"S Reverse Recovery
• High Surge Current Ratings
• Low Reverse Leakage
• Corona Free

DESCRIPTION
The VXS MUL TlSTAC silicon rectifier
assemblies meet the stringent reliability
requirements of commercial, industrial and
military users through the use of proprietary
innovations in manufacturing technique.
Cylindrical die construction and metallurgical bonds minimize electrical and mechanical stress, contributing to long life. The
2 microsecond reverse recovery time improves the circuit efficiency of power
conversion and control systems.

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Vollage ..•..................•.•.....•................ " ... 15 kV to 50 kV
Maximum Average Rectified Current ...................... See Electrical Specifications
Maximum One Cycle Surge 8.3 mS ........................ See Electrical Specifications
Operating Temperature Range .•.. " ..•........•..................... -55°C to +150°C
Storage Temperature Range ................•........................ -65°C to +150°C

MECHANICAL SPECIFICATIONS
30

r--- ,~~" ---l

~

I

.031 < 002
(0.79mm) < (0.05 mmJ
TINNED COPPER LEADS
LENGTH 1 500" (38.1 mm) MINIMUM

VXS1S-S0

t .. 02

~·~~ll-

SP

~62mm~G
PART
NUMBER

CASE LENGTH
INCHES

MILLIMETERS

VXS15

1.50±-.03

36.10±-0.76

VXS20.25

2.00 ± .03

50.80 iO.7S

VXS30, 40. 50

2.50 ± .03

63.50 ±.0.76

DimenSIons In inches and (miJjJmeters)

Reformatted 12/79

419

~ H'io"ti""YOiTAGE DEVICES

YXS15-50

ELECTRICAL SPECIFICATIONS (@25°Cunlessnoted)
Type

Peak

Maximum

Inverse
Voltage*

Reverse

10

Reverse

Maximum
Junction
Capacitance

100°C
/lA

V

/lS

pF

50°C
rnA

100°C

/lA

15000

0.1

10

24

2

1

25

12.5

V
VXS15

C J

Recovery
Time

I R

2SoC

@100V

T RR

Voltage
@IO

@PIV
PIV

VF

Maximum

Current

MAXIMUM RATINGS
Maximum
Average
Rectified
Currentt

Maximum
Forward

Maximum

One Cycle

Case

Surge

Length

8.3mS
I F (surge)
A

rnA

Ins

MM

2

1.50

38.10

VXS20

20000

0.1

10

36

2

1

25

12.5

2

2.00

50.80

VXS25

25000

0.1

10

36

2

1

25

12.5

2

2.00

50.80

VXS30

30000

0.1

10

48

2

1

25

12.5

2

2.50

63.50

VXS40

40000

0.1

10

48

2

1

25

12.5

2

2.50

63.50

VXS50

50000

0.1

10

60

2

1

25

12.5

2

2.50

63.50

*Operation and testing of devices over 10.000 V/inch may require re-encapsulation or immersion in a suitable dielectric material.
t The stated AVERAGE RECTIFIED CURRENT ratings require no heat sinking. special mounting or forced dir across the body of the
device.
NOTE: Maximum lead temperature for soldering is 250° C 3/8" (9.5 mm) from case for 5 seconds.

MAXIMUM FORWARD CURRENT VS. AMBIENT TEMPERATURE

<

E

I
fZ
UJ

a:
cr:

25

~

20

'"'-

:::>

()

0

a:

15

<
;:
a:

0

10

u.
UJ

\..

Cl

<
a:
UJ

>

<

0
-55

25

50

75

100

"

"

REVERSE RECOVERY TEST CONDITIONS: I. = 12.SmA. I R= 2SmA. IRR= 6.2SmA

REVERSE RECOVERY WAVE FORM

,f.

I

'.

i

REVERSE RECOVERY TEST CIRCUIT
R.U.T.
.01

-TIR--

t

I

1/i--""'

150

125

AMBIENT TEMPERATURE (OC)

~
I RR

,.

---i>I--

51ll
SCOPE
TEICIIlONX

PULSE
GENERATOR

7_ 01

HEWLETT

EQUIVALENT

PACKARD
214A OR
EQUIYAlENT

T

son

34n

120

J

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861.6540
TWX (710) 326·6509 • TELEX 95-1064

420

PRINTED IN U.S.A.

HIGH VOLTAGE RECTIFIERS, RECTIFIER
MODULES & MULTIPLIERS
PAGE

PART NUMBER

DESCRIPTION

PAGE

PART NUMBER

366
366
366
366

lN3643 (HVE10)
lN3644 (HVE15)
lN3645 (HVE20)
lN3646 (HVE25)
lN3647 (HVE30)
lN3764
lN5181 (HVE40)
lN5l82 (HVE50)
lN5l83 (HVE75)
lN5184 (HVElOO)

357
357
357
360
360
360
360
360
360
362
362
362
362

lN5597, J
lN5600, J
IN5603, J
688-10
688-12
688-15
688-18
688-20
688-25
CAX15
CAX20
CAX25
CAX30

*

l.OkV
l.5kV
2.0kV
2.5kV
3.0kV
3.0kV
4.0kV
5.0kV
7.5kV
10kV

370
370
370
370
370
370
372
372
372
372
372
372
372
374
374
374
374
374
374
374
376
376
376
376
376
376
376
376
376
378
378
378
378
378
378
378
378
380
380
380
380
380
380
380
380
380
364
364
364
364
364
364
364
364
364
382
382
382
382
382
382
382
382
382

RECTIFIER MODULE
10kV
5.0kV
5.0kV
10kV
12kV
l5kV
l8kV
20kV
25kV
l5kV
2.0kV
25kV
30kV

HIGH VOLTAGE
RECTIFIER
364
364
364
364
364
364
364
364
364
366
366
366
366
366
366
366
366
366
366
366
366
366
366
366
366
366
366
368
368
368
368
368
368
368
368
370
370

l.OkV
l.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
7.5kV
lOkV
l.OkV
l.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
7.5kV
10kV
l.OkV
l.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
7.5kV
10kV
2.5kV
5.0kV
7.5kV
10kV
12.5kV
15kV
20kV
25kV
2.5kV
5.0kV

HAlO
HA15
HA20
HA25
HA30
HA40
HA50
HA75
HAIOO
HSlO
HSl5
HS20
HS25
HS30
HS40
HS50
HS75
HSIOO
HVElO(lN3643)
HVE15(lN3644)
HVE20(1 N3645)
HVE25(1 N3646)
HVE30(lN3647)
HVE40(lN5l8l)
HVE50(lN5182)
HVE75(lN5183)
HVElOO(IN5l84)
HVF2500
HVF5000
HVF7500
HVFlOOOO
HVFl2500
HVFl5000
HVF20000
HVF25000
HVFS2500
HVFS5000

DESCRIPTION
HIGH VOLTAGE
RECTIFIER

HIGH VOLTAGE
RECTIFIER
366
366
366
366
366

PART NUMBER INDEX

HVFS7500
HVFSIOOOO
HVFSl2500
HVFSl5000
HVFSl7500
HVFS20000
HVH5000
HVH7500
HVHIOOOO
HVH12500
HVHl5000
HVH20000
HVH25000
HVHF5000
HVHF7500
HVHFIOOOO
HVHF12500
HVHFl5000
HVHF20000
HVHF25000
HVHJl5K
HVHJ20K
HVHJ22.5K
HVHJ25K
HVHJ30K
HVHJ35K
HVHJ37.5K
HVHJ40K
HVHJ45K
HVHS2500
HVHS5000
HVHS7500
HVHSIOOOO
HVHSl2500
HVHSl5000
HVHSl7500
HVHS20000
HVJXl5K
HVJX20K
HVJX22.5K
HVJX25K
HVJX30K
HVJX35K
HVJX37.5
HVJX40K
HVJX45K
HVXIO
HVX15
HVX20
HVX25
HVX30
HVX40
HVX50
HVX75
HVXIOO
KXl5
KX20
KX25
KX30
KX40
KX50
KX60
KX80
KXIOO

7.5kV
10kV
12.5kV
15kV
17.5kV
20kV
5.0kV
7.5kV
10kV
12.5kV
15kV
20kV
25kV
5.0kV
7.5kV
10kV
12.5kV
15kV
20kV
25kV
15kV
20kV
22.5kV
25kV
30kV
35kV
37.5kV
40kV
45kV
2.5kV
5.0kV
7.5kV
10kV
l2.5kV
15kV
l7.5kV
20kV
l5kV
20kV
22.5kV
25kV
30kV
35kV
37.5kV
40kV
45kV
l.OkV
l.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
7.5kV
10kV
l.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
10kV

·Contact Unitrode for specifications and ratings.
Legend, J -

JAN

JTX -

JANTX

JTXV -

JANTXV

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

421

PRINTED IN U.S.A.

PART NUMBER INDEX

PAGE

DESCRIPTION

PART NUMBER

PAGE

PART NUMBER

HIGH VOLTAGE
RECTIFIER
382
382
382
382
382
382
382
382
382
384
384
384
384
384
384
384
384
384
384
386
386
386
386
388
388
388
388
384
384
384
384
384
384
384
384
384
384
384
384
390
390
390
390
390
390
390
390
390
390
390
390
390
390
390
390
390
390
390
390'
390
390
392
392
392
392

KXSl5
KXS20
KXS25
KXS30
KXS40
KXS50
KXS60
KXS80
KXSlOO
LAl5
LA20
LA25
LA30
LA40
LA50
LA60
LA80
LAIOO
LAl20
LCl5
LC20
LC25
LC30
LCSl5
LCS20
LCS25
LCS30
LMl5
LM20
LM25
LM30
LM40
LM50
LM60
LM80
LMIOO
LMl20
LMl50
LMl80
LMSl5
LMS20
LMS25
LMS30
LMS40
LMS50
LMS60
LMS80
LMSIOO
LMSl20
LMSl50
LMSl80
LSl5
LS20
LS25
LS30
LS40
LS50
LS60
LS80
LSIOO
LSl20
MAl5
MA20
MA25
MA30

DESCRIPTION
HIGH VOLTAGE
RECTIFIER

1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
10kV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
10kV
12kV
15kV
20kV
25kV
30kV
15kV
20kV
25kV
30kV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
lOkV
12kV
15kV
18kV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
10kV
12kV
15kV
18kV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
lOkV
12kV
1.5kV
2.0kV
2.5kV
3.0kV

392
392
392
392
392
392
394
394
394
394
394
394
394
394
394
394
392
392
392
392
392
392
392
392
392
392
392
392
394
394
394
394
394
394
394
394
394
394
394
394

MA40
MA50
MA60
MA80
MAIOO
MAl20
MS15
MS20
MS25
MS30
MS40
MS50
MS60
MS80
MSIOO
MSl20
MXl5
MX20
MX25
MX30
MX40
MX50
MX60
MX80
MXIOO
MXl20
MXl50
MX200
MXSl5
MXS20
MXS25
MXS30
MXS40
MXS50
MXS60
MXS80
MXSIOO
MXSl20
MXSl50
MXS200

396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396

PMAIOI
PMAI02
PMAI03
PMAI04
PMAI05
PMAI06
PMA107
PMAI08
PMAI09
PMAllO
PMAlll
PMAIOIX
PMA102X
PMAI03X
PMAI04X
PMA105X
PMAI06X
PMAI07X
PMA108X
PMAI09X
PMAllOX
PMAlllX
PMA201
PMA202

4.0kV
5.0kV
6.0kV
8.0kV
lOkV
12kV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
lOkV
12kV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
10kV
12kV
15kV
20kV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
lOkV
12kV
15kV
20kV

RECTIFIER MODULE
5.0kV
7.5kV
10kV
15kV
20kV
25kV
30kV
35kV
40kV
50kV
60kV
5.0kV
7.5kV
10kV
15kV
20kV
25kV
30kV
35kV
40kV
50kV
60kV
2.5kV
5.0kV

'Contact Unitrode for specifications and ratings.
Legend, J -

JAN

JTX -

JANTX

JTXV -

JANTXV

UNITROOE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064

422

PRINTED IN U.S.A.

PART NUMBER INDEX

PAGE

PART NUMBER

DESCRIPTION

PAGE

PART NUMBER

RECTIFIER MODULE
396
396
396
396
396
396
396
396
396
396
396
396
396
396

39B
398

39B
39B
39B
39B

PMA203
PMA204
PMA205
PMA206
PMA201
PMA208
PMA20lX
PMA202X
PMA203X
PMA204X
PMA205X
PMA206X
PMA201X
PMA208X
PMEIOI
PMEl02
PMEl03
PMElOIX
PMEl02X
PMEI03X

RECTIFIER MODULE
406
406
409
409
409
409
409
409
409
409
409
409
409
409
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
406
406
406
406
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
406
406
406
406

1.5kV
lOkV
15kV
20kV
25kV
30kV
2.5kV
5.0kV
1.5kV
lOkV
15kV
20kV
25kV
30kV
2.5kV
4.0kV
B.OkV
2.5kV
4.0kV
B.OkV

HIGH VOLTAGE
RECTIFIER
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400

SXIO
SXI5
SX20
SX25
SX30
SX40
SX50
SX60
SXBO
SXlOO
SXSIO
SXSI5
SXS20
SXS25
SXS30
SXS40
SXS50
SXS60
SXSBO
SXSlOO

402
402
402
402
402
402
402
402
402
402
402
402
402
402
402
402
402
402
406
406
406
406

UDA5
UDA1.5
UDAlO
UDAI5
UDB2.5
UDB5
UDB7.5
UDC5
UDC7.5
UDClO
UDCI5
UDD2.5
UDD5
UDD7.5
UDE2.5
UDE5
UDF2.5
UDF5
UFB2.5
UFB5
UFB1.5
UFS5

DESCRIPTION

l.OkV
l.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
B.OkV
lOkV
l.OkY
l.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
B.OkV
10kV

RECTIFIER MODULE
5.0kV
1.5kV
10kV
15.0kV
2.5kV
5.0kV
1.5kV
5.0kV
1.5kV
10kV
15kV
2.5kV
5.0kV
7.5kV
2.5kV
5.0kV
2.5kV
5.0kV
2.5kV
5.0kV
1.5kV
5.0kV

UFS1.5
UFSlO
UGB5
UGB1.5
UGBIO
UGD5
UGD1.5
UGDlO
UGE2.5
UGE5
UGE1.5
UGF2.5
UGF5
UGF1.5
USI2
USI5
USIB
US20
US25
US30
US35
US40
US45A
US50A
US60A
US70A
USBOA
USlOOA
USI20A
USI50A
USI80A
US200A
USB2.5
USB5
USB7.5
USBIO
USRI2
USRI5
USRI8
USR20
USR25
USR30
USR35
USR40A
USR45A
USR50A
USR60A
USR10A
USR80A
USRIOOA
USRI20A
USRI50A
USRI80A
USS5
USS7.5
USSIO
USSI5

1.5kV
10kV
5.0kV
1.5kV
10kV
5.0kV
7.5kV
10kV
2.5kV
5.0kV
7.5kV
2.5kV
5.0kV
1.5kV
l.2kV
l.5kV
l.BkV
2.0kV
2.5kV
3.0kV
3.5kV
4.0kV
4.5kV
5.0kV
6.0kV
7.0kV
8.0kV
lOkV
12kV
15kV
IBkV
20kV
2.5kV
5.0kV
7.5kV
lOkV
l.2kV
l.5kV
l.8kV
2.0kV
2.5kV
3.0kV
3.5kV
4.0kV
4.5kV
5.0kV
6.0kV
1.OkV
8.0kV
10kV
12kV
15kV
18kV
5.0kV
7.5kV
10kV
15kV

·Contact Unitrode for specifications and ratings.
Legend, J -

JAN

JTX -

JANTX

JTXV -

JANTXV

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

423

PRINTED IN U.S.A.

PART NUMBER INDEX

PAGE

DESCRIPTION

PART NUMBER

HIGH VOLTAGE
RECTIFIER
417
417
417
417
417
417
419
419
419
419
419
419

15kV
20kV
25kV
30kV
40kV
50kV
15kV
20kV
25kV
30kV
40kV
50kV

VX15
VX20
VX25
VX30
VX40
VX50
VXS15
VXS20
VXS25
VXS30
VXS40
VXS50

'Contact Unitrode for specifications and ratings.
Legend, J -

JAN

JTX -

JANTX

JTXV -

JANTXV

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEl. (617) 861·6540
TWX (710) 326·6509 • TElEX 95·1064

424

PRINTED IN U.5 A

SALES OFFICES
PART NUMBER INDEX

II

DESIGNERS' GUIDES

III

POWER TRANSISTORS & DARLINGTONS

IV

SWITCHING REGULATOR POWER CIRCUITS

V

RECTIFIERS

VI

HIGH VOLTAGE RECTIFIERS, RECTIFIER
MODULES & MULTIPLIERS

VII

RECTIFIER BRIDGE ASSEMBLIES
POWER ZENERS & TRANSIENT VOLTAGE SUPPRESSORS

•

IX

THYRISTORS (SCRs, Triacs, PUTs)

X

SWITCHING & GENERAL PURPOSE DIODES

XI

PI N DIODES

XII

CAPACITORS

XIII

APPLICATION NOTES & DESIGN NOTES

XIV

MECHANICAL SPECIFICATIONS

XV

425

426

RECTIFIER BRIDGES
Single Phase Full-Wave Bridges

~
t1f

~

--;

HJ, HK, HL, HM,
HN,HO,HP

G, GA, GH

STANDARD RECOVERY

lOOV

673-1
G or S

680-1
NA

697-1
GA

679-1

NB

SPA-25*
MC
673-2
G or S

697-2
GA

680-2
NA
469-1 **
MD

679-2

NB

SPB-25*
MC

673-3
GorS

697-3
GA

680-3
NA

679-3

673-4
G or S

697-4
GA

680-4
NA
469-2**
MD

679-4

NB

NB

SPC-25*
MC

673-5
GorS

697-5
GA

680-5
NA

679-5

673-6
G or S

697-6
GA

680-6
NA
469-3**
MD

679-6

NB
NB

SPD-25*
MC

III

673-7
GH
673-75
HJ
673-8
HK
(PMC101) (PMC201)
PMA

PMA

673-85
HL
673-9
HM

•,~,~______+-______~____-r(_P_~_~_~0_4_)~
'"

____-+____

~

(PMC105)
PMA

*Available as JAN
**Available as JAN, JANTX

Parentheses (

) designates product using stacked chips

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064

427

PRINTED IN U.S.A.

RECTIFIER BRIDGES

PRODUCT SELECTION GUIDE

Single Phase Full-Wave Bridges
NA,NB

.

~

~:~

~ MA, MB, MC, MD ~

PMA

FAST RECOVERY

676-1

Gor S

698-1

GA

684-1

NA

683-1

NB

803-2

MB

803-3

MB

803-4

MB

676-2

698-2

684-2

683-2

676-3

698-3

684-3

683-3

676,4

698-4

684-4

683-4

676-5

698-5

684-5

683-5

676-6

698-6

684-6

683-6

Gor S

Gor S
Gor S
GorS

Gor S

GA
GA

GA
GA

GA

NA
NA

NA
NA
NA

802-4

MA

NB

NB

NB
NB
NB

676-12

HJ

676-18

HK

676-24

Hl

(PMC201X)

PMA
676-30

HM

Parentheses (

) designates product using stacked chips

428

PRINTED IN U.S,A

RECTIFIER BRIDGES

PRODUCT SELECTION GUIDE

Three Phase Full-Wave Bridge

" ,
~
"

-

,,

NC

Q

IDARD RECOVERY

~
~ME

FAST RECOVERY

695-1

NC

701-1

678-1

NC

F

696-1

NC

682-1

NC

801-2

800-2

801-3

800-3

801-4

800-4

ME
ME
ME

695-2

678-2

695-3

678-3

695-4

678-4

NC

tIC

NC

NC

NC

678-5

695-6

678-6

NC

ME

ME

682-2

701-3

696-3

682-3

701-4

696-4

682-4

701-5

696-5

682-5

701-6

696-6

682-6

F
F

483-3'

ME

F

(PMD101) (PMD201)

PMA

696-2

F

483-2"

NC
NC

701-2

F

NC

695-5

NC

483-1'

NC
NC

NC
NC
NC

ME

ME

ME

NC

NC

NC

III

NC
NC

(PMD101X) (PMD201X)

PMA

PMA

(PMD202)

PMA

(PMD102X) (PMD202X)

PMA

PMA

PMA

(PMD103X)

PMA

(PMD104)

PMA

.ble as JANTX
heses ( ) designates product using stacked chips
Parentheses (

UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX mO} 326-6509 • TELEX 95-1064

429

) designates product using stacked chips

PRINTED IN U.S.A.

RECTIFIER BRIDGES

PRODUCT SELECTION GUIDE

Doublers and Center-Tap Rectifiers

~

~TO-3

r ~220 Q

~A

US0335C*
TO-3
US0345C*
S0241 *
TO-3

681-1
NO

689-1
NO

SES5401C* SES5601C' UES2401C*
TO-220
TO-3
TO-220

804-1

SES5402C* SES5602C'
TO-220
TO-3

804-2

UES2402*
TO-220

MF
MF

UES2601
TO-3
UES2602
TO-3

804·3
MF

SES5403C* SES5603C*
TO-220
T0-3
681-2

689-2

NO

NO

681-3

689-3

NO

NO

681-4

689-4

NO

NO

681-5

689-5

NO

NO

681-6

689-6

NO

804-4
MF

UES2603
TO-3
UES2604
TO-3
UES2605
TO-3
UES2606
TO-3

NO

(PMB101)
(PMB201)

(PMB101X)
(PMB201X)

PMA

PMA

(PMB102)
(PMB202)

(PMB102X)
(PMB202X)

PMA

PMA

(PMB103)
(PMB203)

(PMB103X)
(PMB203X)

PMA

PMA

(PMB104)
(PMB204)

(PMB104X)
(PMB204X)

PMA

PMA

(PMB105)
(PMB205)

(PMB105X)
(PMB205X)

PMA

PMA

(PMB106)

(PMB106X)

PMA

PMA

*Center-tap only
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

UES2403*
TO-220

Parentheses (

430

) designates product using stacked chips

PRINTED IN U.S.A.

JAN & JANTX 469-1
JAN & JANTX 469-2
JAN & JANTX 469-3

RECTIFIER ASSEMBLIES
Single Phase Bridges, 10 Amp,
Military Approved
FEATURES

DESCRIPTION

•
•
•
•
•
•
•

This series of military high-current
single-phase bridge offer the utmost in
reliability as required in military system
designs. The TX series is assembled
with diodes which have been subjected
to 100% screening tests.

Qualified to MIL-S-19500/469
Current Rating: to lOA
PIV: from 200 to 600V
Surge Ratings: to 100A
Only Fused-in-Glass Diodes Used
Controlled Avalanche Characteristics
Aluminum Heat Sink Case, Electrically Insulated

Dimensions
INCHES

ABSOLUTE MAXIMUM RATINGS

Ltr

Peak Inverse Voltage.
. ......... 200 to 600V
Maximum Average D.C. Output Current
. ........... lOA
@Tc=+55°C.
...... 6A
@Tc=+lOO°C
Non-Repetitive Sinusoidal Surge (8.3ms)
@Tc = +55°C ............................................................................... IOOA
Operating and Storage Temperature Range. ...................................... -65°C to +150°C
. .......... 25°C/W
Thermal Resistance Junction to Ambient .
Junction to Case. .
......... 5°C/W

MILLIMETERS

MIN.

MAX.

MIN.

C,

.367

C,

¢O,

.350
.175
.139
.091

¢O,

.066

.375
.450
.225
.149
.101
.076
.570
.370
.098
.030
.750

9.32
8.89
4.45
3.53
2.31
1.68

C,

¢O,

H,
H,
L,
L,

W

.088
.020
.735

2.24
.51
18.67

MAX.

9.53
11.43
5.72
3.78
2.57
1.93
14.48
9.40
2.49
.76
19.05

MECHANICAL SPECIFICATIONS
JAN & JANTX 469-1, JAN & JANTX 469-2, JAN & JANTX 469-3
ENCAPSULATION

TERMINAL DETAILS

C,

c"!

METAL AREA
SHAPE OPTIONAL
TERMINAL POLARITY

~~~

~'I'DDIA
I

I

,---rH

3:AC
4

See table above

=+

I

I
SEE NOTE 4 '

---1

r-".DI

;-1 tr.J."

L~T

r-

II

HI
005

Typical Weight _ 0.35 ounces
10 grams

NOTES:
1. Metric equivalents (to the nearest .01 mm) are given for general information only and are based upon 1 inch = 25.4 mm.
2. Terminals shall be tinned.
3. Polarity shall be marked on the bridge body adjacent to terminals. Terminal numbers are for reference and do not have to be marked on
the bridgej however, terminal (1) shall be indicated by a mechanical index such as a line, flattened corner, etc., visible from the top (terminal surface) of the device.
4. Point at which Tc is read shall be in metal part of a case as shown on drawing.

431

ruJJ
_UNITRDDE

JAN & JANTX 469-1 JAN & JANTX 469-2

JAN & JANTX 469-3

Electrical Specification (at 25"C unless noted)
Minimum
Reverse
Breakdown
Voltage

PIV
Per
Leg

Type

JAN & JANTX 469-1
JAN & JANTX 469-2
JAN & JANTX 469-3

Per Leg
@ 50,A

Volts

Volts

200
400
600

240
460
660

Maximum
Leakage
Current
Per Leg@ PIV

Maximum

Maximum

Forward
Voltage Drop

Reverse
Recovery
Timet

~_25'C

~_l00'C

JlS

JlA

JlA

2

2

125

Per leg*

l.35V @ 15.7A(pk)

oJ- Maximum forward voltage drop is measured at a pulse width of S.3ms.
tMeasured in a reverse-recovery circuit switching from O.SA forward to l.OA reverse current recovering to O.2SA.

Typical Forward Voltage Per Leg
vs. Forward Current
20

1/1/ 1/

C

'"~

'""-

:;:.

.1
. 05

I

.02

ifl

11./"1-"1'

....Z

...

0:
0:

.005

II
.2

Production
Process
(Discrete
diodes
processing)

~

I

~

oJ

I

1/

.002 0

...
"
"...

(J

II

I-t

___ +25'C
(.--

_\.

o

--

10
20

L

175

L
V+125'C
125

100

75

50

25

% OF PIV

Lots Proposed
for JAN
Types

(Non-TX)

Inspection Tests
to verify LTPD
Group A
Group B
Group C

Review of
Groups A, B,
and C Data
for accept

Preparation
for
Delivery

JAN

or reject

1

Reverse-R ecovery Circuit
SO

High temperature storage
Thermal shock
Acceleration
Hermetic seal tests

•

1

l

100 Percent Power Conditioning

1. Measurement of specified parameters
2. Burn~in
3. Measurement of specified parameters
to determine delta and other rejects

~!

25 Vdc

(APPROX.)
1 ~!
NOTE3

o

OSCILLOSCOPE
NOTE!

NOTES:
1. Oscilloscope: Rise time' 3n5; input impedance ::= 50!!.
2. Pulse Generator: Rise ti me .. 8ns; source impedance lOr..

4. Scope display evaluation
5. Lot rejection criteria based on rejects
from burn·in test

3. Current viewing reSistor. non-inductive, coaxial recommended.

1
Inspection Lots
Formed after Final
Assembly Operation

50
100
150
CASE TEMPERATURE ('C)

75'C

100 Percent Process Conditioning

1.
2.
3.
4.

a

--I--

50
100

1.4

Inspection Lots
Formed after Final
Assembly Operation

_\.

...

/"

.5
1

SOD
1K

.4
.6.8
1.2
FORWARD VOLTAGE (V)

~

50

0:

200

II

"-

z"
~

.05
.1

::J
0

:1

II

.01

I"

_----SO'C

.3 .2

141ik
~ ~

.2

0

..:

:;c

1/ /
.5

-'"

.01
.02

VI vI

$
....
z

Current Derating Curve
100

~'" VV'

10

...
'"0:>'"

Typical Leakage Current VS. PIV

Lots Proposed

forJANTX
Types

UNITRDDE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173.' TEL. (617) 861-6540
TWX (710) 326-6S09 ' TELEX 95-1064

~

Inspection Tests
to verify LTPD
Group A
Group B
GroupC

Review of
Groups A, B,
and C Data
for accept
or reject

432

Preparation

for

H

Delivery

JANTX

PRINTED IN U.S.A.

RECTIFIER ASSEMBLIES

JANTX483-1
JANTX483-2
JANTX483-3

Three Phase Bridges, 25 Amp,
Military Approved
FEATURES

DESCRIPTION

•
•
•
•
•
•
•

This military high-current three phase
bridge series is assembled with diodes
which have been subjected to TX type
screening tests. This series of bridges offers the utmost in high reliability as normally required in military system design.

Qualified to MIL-S-19500/483
Current Rating: 25A
PIV: from 200 to 600V
Surge Ratings: 150A
Only Fused-in-Glass Diodes Used
Controlled Avalanche Characteristics
Aluminum Heat Sink Case, Electrically Insulated

DIMENSIONS
LTR

ABSOLUTE MAXIMUM RATINGS
..... 200 to 600V

Peak Inverse Voltage .
Maximum Average D.C. Output Current

..25A

@Tc = Ss'C.

=

@ Tc
100'C .
Non-Repetitive Sinusoidal Surge (8.3ms)
@ Tc
55'C .
Operating and Storage Temperature Range ..
Thermal Resistance Junction to Ambient
Junction to Case

=

..... 18.5A
......... 150A
..... -65'C to +l50'C

... 20'C/W
. ....... 2.5'C/W

A
B
C
D,
D,

INCH
MAX

MIN

MAX

.730
.355
.355
.141
.108

.770
.395
.395
.151
.11B
.395
.270
.189
.395
.B2
.51
.320
.030
.125
.0bU
.7B
1.90
2.2B
.15
.20B
1.53

18.54
9.02
9.02
3.58
2.74
9.02
5.84
3.7B
9.02

19.56
10.03
10.03
3.B4
3.00
10.03
6.86
4.BO
10.03
20.B3
12.95
B.13
.76
3.1B
1.'<
19.Bl
4B.26
57.91
3.Bl
5.2B
3B.B6

~

.,,,

F
G
H

.230
.149
.355

J
K

L,
L,
L,
M

N
0

P
R

S
T

MILLIMETERS

MIN

.39
.240
.015
.100
.U4U

.72
l.B4
2.22
.09
.16B
1.47

9.91
6.10
.38
2.54
LU<
18.29
46.74
56.39
2.29
4.27
37.34

MECHANICAL SPECIFICATIONS
JANTX 483-1 JANTX 483-2 JANTX 483-3

See Table Above

Typical Weight - 1.0 ounces
30 grams

NOTES:

1. Terminals shaJi be tinned.
2. Polarity shall be marked as shown on drawing.
3. Point at which T c is read (shall be in metal part of case).

UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064

433

PRINTED IN U.S.A.

III

JANTX 483·1 JANTX 483·2· JANTX 483·3

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)

PIV
Per
Leg

Type

Volts

JAN 483-1
JAN 483-2
JAN 483-3

* Maximum forward

/, V;j

10

...'0"

100

j j

'"'"
u

:;:./:;:

"
"'""'-'

-I-

.05
.2

.4

200

~

'\

50

'\

'";11.

I
/'

\.

o

+75'C

o

50
100
150
CASE TEMPERATURE ('C)

175

1/
_-+125'C

200

/ / II
II I

.1

I--'

10
20
50
100

//

.2

___ +25'C

.5

~

Ik~~8K:~
~Ao/tI

.5

./

"'

2

'-

OJ
Z

OJ

I'A

'-

,/
50'C

.01
.02

z

Tc _IOO'C

I'A

Current Derating Curve

Typical Leakage Current vs. PIV

"'

Tc _2S'C

~20/0.

~

1//

Curren1:
Per Leg@ PIV

Per Leg*

.05
.1
>- .2

I (/V
II I.

5

c

Maximum
Forward

voltage drop is measured at a pulse width of 8.3ms, duty cycle

1--1 ~

'"~"

1.3V @ 39A (pk)

400

20

~

240
480
660

600

50

...z
"'
''""
u

Voltage Drop

200

Typical Forward Voltage Per Leg
vs. Forward Current

Maximum
Leakage

Breakdown
Voltage
Per Leg
@ SOI'A
Volts

500
IK
125

.6.8

1.2

50
100
75
% OF PIV

25

1.4

FORWARD VOLTAGE (V)

I

diode.~

Discrete
inspection lot

100 Percent process conditioning
of discrete diodes

~

1. High-temperature storage

100 Percent burn-in of discrete

diodes
1. Measurement of specified
parameters

2. Thermal shock (temperature
cycling)

2. Reverse bias burn-in

3. Reverse-recovery time

3. Measurement of specified
parameters to determine
delta
4. lot rejection criteria
based on rejects from
burn-in test

.-----.

Assembly and
encapsulation of
discrete diodes
into bridge

assembly

l
Inspection tests
to verify LTPD
Group A
Group B
Group C

1
Review of groups
A, 9, and C data
for lot accept or
reject

1
Preparation for
delivery
UNITRDDE CORPORATION 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95·1064

434

J

PRINTED IN U.s.A.

RECTIFIER ASSEMBLIES

673,676 SERIES

Single Phase Bridges, 1.5Amp,
Standard and Fast Recovery
FEATURES

DESCRIPTION

•
•
•
•
•
•

These miniature transfer-molded singlephase power bridges are designed for
universal application in power supplies.
One basic bridge assembly comes in a
choice of lead configurations for mounting
in wired chassis or on printed boards.

Miniature Package
Surge Ratings: to 25A
PIV's: from 100 to 600V
Recovery Times: to 500ns
Controlled Avalanche Characteristics
Only Fused-in-Glass Diodes Used

ABSOLUTE MAXIMUM RATINGS

Peak I nverse Voltage .
Maximum Average D.C. Output Current
Non-Repetitive Sinusoidal Surge (8.3mS)
Operating and Storage Temperature Range.
Thermal Resistance Junction to Ambient

... 100 to 600V
.................. See Electrical Specifications
See Electrical Specifications
.......................... -WC to +150'C
........ 50'C/W

MECHANICAL SPECIFICATIONS
673,676 SERIES

.028" Dia.

O.71mn

0.32~ +

G BODY

_~

1.25" Min. long
31.8mm
Tinned Copper
Lead

-l

1-°.15" Max.
I 3.81mm

AC

B.13mm

~~
1

f----

---0

L~

.125" ±.030
3.18mm ±.76

0.32" Max.

Typical Weight G:

B.13mm

0.05 ounces
1.4 grams

673,676 SERIES
440" Max.
11.17mm

S BODY

.187" Max.
4.7Smm

M

r------1rrrr:J
---.l.

Mo>.
1l.17mm

AC-A'C+

.100·· Typ .
2.54mm

....! I.-

~

.028" 0;,. 0.50·' 100.
O.71mm 12.1mrn
Tinned Copper Lead

When specifying S body. add suffix S i.e., 673-15

Typical Weight s: 0.11 ounces
3.1 grams

MARKING

Alternating Current Input
Cathode - Positive Output
Anode - Negative
Part number is printed on the body,

435

~UNITRDDE

III

.673. 676 SER I ES

Maximum Ratings

Electrical Specifications (at 25°C unless noted)
Maximum
Forward
Drop
Per Leg

PIV
Per
Leg

Type

Leakage
Current
Per Leg
T, _ lOO'C
T, _ 25'C

Volts

Standard
Recovery

673-1
673-2
673-3
673-4
673-5
673-6
676-1
676-2
676-3
676-4
676-5
676-6

Fast
Recovery

"A

100
200
300
400
500
600
100
200
300
400
500
600

Maximum
Average
D.C. Output
Current
T, = 25'C

Maximum
Reverse
Recovery

Timet

"A

ns

Non·Repetilive
Sinusoidal
Surge
(8.3mS)

Amps

Amps

l.lV @ LOA

2

100

-

1.5

25

l.lV@0.5A

3

150

500

1.0

20

tMeasured in a reverse recovery Circuit sWitching from lOrnA forward to lOrnA reverse current recovering to SmA.

Typical Forward Voltage Per Leg
vs. Forward Current
10

t;::

,///

~5

~ .2

0:

.1

/

.~ 05

02

12

01

...Z

vv !II

Z

«
~

~

II

Il'
'0,
~coO(J
... ~ /{J~--f. -f. '

.002

/

.001
.2

il

;(

.;!

.2

...
'::>"

V

.5

zUJ

+ 25'C

.05

.1
.2

UJ

UJ

.5

...I-10
20

,/

V

500
1.000
1.4

--: I-"'"
25'C

r-

UJ
oJ

50
100
200

I

"«
'"«

+ 75'C

50'C

.02

0

10
20

100

150

PIV

"

.005
.01

0:

UJ
oJ

VS.

673 SERIES

.001
.002

.05
.1

'"

'"

.4
.6
.8
I
1.2
FORWARD VOLTAGE (V)

Typical Leakage Current

::>
u

"««

I
/

II

I

~

PIV

5O'C

0:

J/

1/

.005

w

VS.

676 SERIES

.01
.02

//

a

Typical Leakage Current

ALL SERIES

125'C

k-+~'c
'1

50
100

50

75'C

150

100

% OF PIV

50

% OF PIV

Reverse Recovery Circuit
lKIl

--

100

+

99011

' ...

";:::z
''""

20V D.C.

if-

50

1'...

...

CONVECTION
COOLED

-

...

......

+

I

Scope

1011

Current Derating Curve

... ,

o

o

50
100
ISO
AMBIENT TEMPERATURE ('C)

=
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

436

PRINTED IN U.S.A.

RECTIFIER ASSEMBLIES

673,676 SERIES
( 1200-5000V)

Single Phase Bridges, High Voltage
0.125-0.6 Amp, Standard and Fast Recovery
FEATURES
• Miniature High Voltage Bridges
• Continuous Ratings: to 0.6A
• Surge Ratings: to 15A
• PIV's: from 1200 to 5000V
• Recovery Times: to 500ns
• Controlled Avalanche Characteristics
• Only Fused in Glass Diodes Used

DESCRIPTION
These miniature molded high-voltage single
phase bridges are designed for universal
application in power supplies. The miniature package is shatterproof and is capable
of handling extremes in temperature, vibration and shock. These bridges, therefore
are ideally suited for miniaturized, tightly
packaged equipment operating in extreme
environments.

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage .
. ... 1200 to 5000V
Maximum Average D.C. Output Current ...
.. See Electrical Specifications
Non-repetitive Sinusoidal Surge (8.3ms)
.................. See Electrical Specifications
Operating and Storage Temperature Range .
.. -65·C to +lS0·C
Thermal Resistance Junction-to-Ambient .
....... SO·C/W

MECHANICAL SPECIFICATIONS
673-7

(6.35mm::::'.76)
.250"± .030

c~
--+I

I

Ael ~2;;~3:) C
Lij
t-

Body H

III

1.-. 188"
I (4.78mm)

.~ MAX.

lAC

(6.3Smm ±.76)

lr:~I

.032" DIA.
(O.S1mm)

.688" MAX.
(17.4Bmml
Tinned Copper leads

673, 678 SERIES

--

-·.!-AC.,.--.,.,.

BODY J through P

'i~:~o~~'

-..300 .. :::t .030

7.62mm:::':: .76

MAX. LENGTHS

MARKING
Alternating Current Input
Cathode - Positive Output
Anode - Negative Output

A.C.
+

[ill]

Part number is printed on the body.

437

_UNITRDDE

673,676 SERIES
Electrical Specifications at 2S'C

Maximum Ratings
Maximum
Average

Type

Leakage

Maximum
Forward
Voltage Drop
Per Leg

PIV
Per
Leg

T A -25'C

TA _100'C

Maximum
Reverse
Recovery
Time*

p.A

p.A

ns

Current
Per Leg @ PIV

Volts

Standard
Recovery

673-7
673-75
673-8
673-85
673-9
673-10
673-11
673-12
675-12
675-18
676-24
676-30
676-36
676-42
676-48
676-50

Fast
Recovery

2.2V@0.4A
33V@0.4A
4.4V@0.4A
5.5V@0.3A
6.6V@0.2A
7.7V@0.2A
8.BV@0.15A
9.0V@0.15A
3.3V@0.3A
4.4V@0.2A
5.5V@0.2A
7.7V@0.2A
8.SV@0.15A
9.9V@0.15A
llV@0.15A
11V@0.15A

1200
1800
2400
3000
3600
4200
4800
5000
1200
1800
2400
3000
3600
4200
4S00
5000

2

D.C. Output
Current
TA _25°C TA = 50°C
Air
Oil

Body
Size

H
J
K
L
M

100

N

0
0

5

500

150

J
K
L
M
N

0
p
p

Amps

Amps

0.6
0.5
0.4
0.3
0.2
O.1S
0.16
0.16
0.4
0.35
0.325
0.25
0.175
0.15
0.135
0.125

1.5
1.25
1.0
0.75
0.5
0.45
0.4
0.4
1.0
0.S5
0.8
0.625
0.425
0.375
0.325
0.3

Non~repetitive

Sinusoidal
Surge
(8.3ms)

Amps

15

10

tMeasured in a "reverse recovery circuit switching from lOrnA forward to lOrnA reverse current recovering to SmA.

Output Current Ratio vs
Velocity of Air Flow

g 100

2.50

~

"z;::: a5

'""' 2.00

BODY

~

...'o" 1.75
!!: 1.50
~

I
'" 1.00

ty'

~

V

"'"':>
u

.,/" f.--

V

a

l?<
100

v-

"B~DY J IthroulBh P

200 300

400

500

60

I;

40

o
o
~

"-

80

...:>

.

// V

"'....

:>
::; 1.25

H"

...

Output Current vs
Ambient (Air) Temperature

§100

~

~

"" '\

80

"'
u

60

:>

40

.....
I;
o
o

1\
40 60 80 100 120 140 160 180

AMBIENT (AIR) TEMPERATURE (OC)

VELOCITY OF AIR (LFMJ

l:!
:>

\

20

"' a
15
t- 20

600

Output Current vs
Ambient (Oil) Temperature

:J

~ 20

;ii
15

'JI.

'"

1"-I\.
'\

'\.

1\

1

20 40 60 80 100 120 140 160 180
AMBIENT (OIL) TEMPERATURE ('C)

Application example: The rectifier is to be used in a cabinet at 60·C with ambient
air moving at 400 LFM. The rating is reduced (Fig. 2) by a factor of 0.B1 due to the
elevated temperature, but is enhanced by 2.X (Fig. 1) due to the air flow. Hence
the DC output current is O.Bl x 2, or 1.6 times the 2S'C air rating.
Reverse·Recovery Circuit
lKt!

+
20V D.C.

990n

D.U.T.

lOll

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

438

PRINTED IN U.S.A.

673, 676 SER I ES

Typical Forward Voltage vs
Forward Current

Typical Forward Voltage vs
Forward Current

10

10

673 SERIES

676 SERIES

/, 'if

S
...

.5

~

.2

II '/

/ // /

Z

0:
OJ

u

D

0:

'"

;:
0:

...o

II

.1

/

.0

5 _+17S'C /

02

.0 I

I

/

.005

+IJO'Cj
.002
.00 I

!I I

.2

0:
0:
OJ
U
D
0:

/ I

/

I

If II

.1

.05

'"

...0

.01
.005

+17S'C

t1

+IO~Ct

-5!"C
.002

I

.001

.8
1.0 1.2
1.4
MULTIPLY VF BY:

~~

VI
/Il II
~

;: .02
0:

L1-!-2s'c

I~

I I

UJ

z>-

/ /

.2
.4
.6
FORWARD VOLTAGE -

5:

.5

°

/

/

/

/

II

/

I~

/

II /

IJ

I

.2
.4
.6
FORWARD VOLTAGE -

/

+2S'C

I -SO~C

I
.8
1.0
1.2 I.'
MULTIPLY VF BY:

Typical Leakage Current vs. Voltage
.01

•

-'-" r-150'~

.02

,os
.1

<
,:;

.2

>Z

.5

-I-- I-

+~5'~-'-

UJ

0:
0:

::>
u

I- ~C>--

UJ

"'"
'"'"
UJ

II

10
20

V

..J

50
100
200
500

1-1-" +12S'C

(

I
I

120 110 100 90 80 70 60 50 40 30 20 10

a

% OF P.I.V.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

439

PRINTED IN U.S.A.

678,682,695
696 SERIES

RECTIFIER ASSEMBLIES
Three Phase Bridges, 15-25 Amp,
Standard and Fast Recovery Magnum®
FEATURES
• Current Rating: to 2SA
• PIVs: from 100 to 600V
• Only Fused-in-Glass Diodes Used
• Recovery Times: to SOOns
• Controlled Avalanche Characteristics
• Surge Ratings: to 150A
• Aluminum Heat Sink Case, Electrically Insulated

DESCRIPTION
This series of three phase MAGNUM ®
bridges offer the ultimate in high current
power supply applications. The fast
recovery series allows operation at full
power at high frequencies (up to 40KHz
squarewave), often used in choppers,
inverters and converters in aircraft,
missiles, etc., equipment.

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage.
......... ....... ........... ..........
.. ................. 100 to 600V
Maximum Average D.C. Output Current. . ................ See Electrical Specifications
Non-Repetitive Sinusoidal Surge (8.3ms) . ...................... See Electrical Specifications
Operating and Storage Temperature Range.
. ........... -6S·C to +lS0·C
Thermal Resistance Junction to Ambient, All Series . ..
. . 20·C/W
Junction to Case, 678, 682 Series .....
. ... .... .. l.5·C/W
Junction to Case, 695, 696 Series ..
. ... 3.0·C/W

MECHANICAL SPECIFICATIONS
678,682,695,696 SERIES

:~~!DIA.
(2 PLACES)

Dimensions in inches.

Typical Weight -

30 grams

MARKING
Alternating Current Input
Cathode - Positive Output
Anode - Negative
Part number is printed on the body.

MagnUm@ is a registered trademark of Unitrode Corporation

440

[ill]

_UNITRDDE

678,682,695,696 SERIES

Electrical Specifications (at 25'C unless noted)

Maximum Ratings
Maximum

Maximum
PIV
Per
Leg
Volts

Type

Standard
Recovery

678·1
678·2
678·3
678·4
678·5
678·6
695·1
695·2
695·3
695-4
695-5
695-6
682·1
682·2
682·3
682-4
682·5
682·6
696·1
696·2
696·3
696·4
696·5
696-6

Standard
Recovery

Fast
Recovery

Fast
Recovery

100
200
300
400
500
600
100
200
300
400

Maximum
Forward

Leakage

Voltage Drop
Per Leg

Per Leg@ PIV
T, ~ 25'(;
T, _1OO'C
"A

Average

Maximum
Reverse

Current

D.C. Output
Current
Tc _ 100°C
Tc - 55'C
Amps
Amps

Recovery

Time"
ns

"A

Non-Repetitive
Sinusoidal
Surge (8.3ms)
100'C
T,
Amps

1.2V@10A

10

200

-

25

18.5

150

1.2V@2A

5

150

-

15

9

80

1.2V@6A

10

200

500

20

14

150

1.2V@2A

5

150

500

15

9

60

SOO
600
100
200
300
400
500
600
100
200
300
400
500
600

*Measured in a reverse recovery circuit switching from 1.0A forward to I.OA reverse current recovering to O.SA.

Typical Forward Voltage Per Leg
YS. Forward Current
30

678 SERIES

0V
Ii il

10

~

+175'~t.
I
I

Z

100'C

OJ

0

a:



fi .05

a:
u

fi

.2



;:

10

/v../;'

20

I-

Typical Forward Voltage Per Leg
YS. Forward Current

Typical Forward Voltage Per Leg
YS. Forward Current

I
II
.2

I

I

I

I

I

II

.4
.6
.B
1.2 1.4
FORWARD VOLTAGE IV)

1.4

FORWARD VOLTAGE IV)

441

PRINTED IN U.S.A.

•

678, 682, 695, 696 SER IES

Typical leakage Current

Typical Leakage Current vs. PIV
.05
.1

.,

~6781682 S~RIES

I

I
/

.5

....
z
UJ
0:
0:

:J

u

I-

zOJ

~125"e

u

OJ

./'

UJ

"i:l'" 100

---

500
1K

125

100

75

50

.P5°C

10
20

OJ

1

..J

I

..J

/'

to

"'"
"

------I we

50

-

:J

I

CJ

/

_____ +25°C

.5

0:
0:

I

5
10

.05
.1
.2

~

50
100
200

Y
1 125"C

I

PIV
/'
50°C

.01 _ 695,696 SERIES
.02

.J;;e

.5

VS.

/'

_

+125°e

500
lK

25

125

% OF PIV

100
75
50
% OF PIV

25

Reverse Recovery Circuit
UZ 840
51l

5V D.C.

10V D.C.

=

Current Derating Curve

Current Derating Curve

100

100
55°C

682 SERIES

55°C

..... ;."i..

"'.' ,

to
Z

~

~;

"

~

~

'#

a:

o

150
100
50
CASE TEMPERATURE (OC)

,

... ["I.,

~

a

175

Fast Recovery Series

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6040
TWX (710) 326-6509 • TELEX 95-1064

695 SERIES

50

'#

I....

o

1'.'

Z

696 SERIES

50

0:

678 SERIES

" '':'~

a

50
100
150
CASE TEMPERATURE ee)

175

Standard Recovery Series

442

PRINTED IN U.S.A.

RECTIFIER ASSEMBLIES

679, 680, 683, 684 SERIES

Single Phase Bridges, 10·25 Amp,
Standard and Fast Recovery Magnum™
FEATURES

DESCRIPTION

•
•
•
•
•
•
•

This series of single phase MAGNUMTM
bridge offers the designer the ultimate in
high current power supply applications.
The fast recovery series allows operation
at full power at high frequencies, up to
40kHz square wave, which is often used
in chopper, inverters and converters in
aircraft, missiles, etc., equipment.

Current Ratings: to 25A
Recovery Time: to 500ns
PIVs: from 100 to 600V
Surge Ratings: to 150A
Only Fused-in-Glass Diodes Used
Controlled Avalanche Characteristics
Aluminum Heat Sink Case, Electrically Insulated

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage.
. ......... 100 to GOOV
Maximum Average D.C. Output Current .............................. See Electrical Specifications
Non-Repetitive Sinusoidal Surge (8.3ms)
........... See Electrical Specifications
Operating and Storage Temperature Range ...
. ............ -65°C to +l50°C
Thermal Resistance Junction to Ambient, 679, 683 Series ...
.... 20°C/W
Junction to Ambient, 680, 684 Series .
.. 25°C/W
Junction to Case, 679, 683 Series .
.... 2.0°C/W
Junction to Case, 680, 684 Series .
.... 4.0°C/W

MECHANICAL SPECIFICATIONS
680, 684 SERIES

-;-JO
rl.'t!x(.1

.140 OIA .

. 750

MAX .

---'&f

...L
TINNED CU •
. 040 TYP.

,

,------.57

MAX.

.09 DIA. TYP.

...L

~'
.240 MAX.

Typical Weight
10 grams

Typical Weight - 0.3S ounces
10 grams

Dimensions in inches.

~~~2:
.562-1

T

;U~

1.125
MAX.

__

bl u

l Iu L ~·L

r-qq
7+'

T~~4~~~;U1r-

I

Dimensions in inches.

.328
MAX.

679, 683 SERIES

rr-·193 CIA.

,. lh

...L

T..J..

~-.09 OIA. TYP.
r.062

-1f2:-

.062

Typical Weight -

0.7 ounces
20 grams

[ill]
443

_UNITRODE

679, 680, 683, 684 SER IES

Electrical Specifications (at 25'C unless noted)
Maximum
Forward
Voltage Drop
Per Leg

PIV
Per
Leg
Type

679-1
679-2
679-3
679-4
679-5
679-6
680-1
680-2
680-3
680-4
680-5
680-6
683-1
683-2
683-3
683-4
683-5
683-6
684-1
684-2
684-3
684-4
684-5
684-6

Standard
Recovery

Fast
Recovery

Fast
Recovery

100
200
300
400
500
600
100
200
300
400
500
600
100
200
300
400
500
600
100
200
300
400

Maximum
Average
D.C. Output

Maximum

Reverse

Non~Repetitive

Sinusoidal
Surge (8.3ms)
TA _l00'C

Current

TA - 2S'C

T, _ l00'C

I'A

I'A

Recovery
Time*
ns

1.2V@10A

10

200

-

25

18.5

ISO

1.2V@2A

2

SO

-

10

6

50

1.2V@6A

10

200

500

20

14

150

1.2V@2A

5

100

500

10

6

50

Volts

Standard
Recovery

Maximum Ratings

Maximum
Leakage
Current
Per Leg @ PIV

Tc _ 55°C

Tc - l00'C
Amps

Amps

Amps

SOO
600

*Measured in a reverse recovery circuit switching from t.OA forward to 1.0A reverse current recovering to O.5A.

Typical Forward Voltage Per Leg
VS. Forward Current
30
20

10

////

679 SERIES

680,684 SERIES

~ 'I

10

I

UJ
0:
0:

VI lit r---~O'C
III I

U
0
0:

« .5
~

III

0:

0

.2

....~

25'C

:J

I II

.05
.02

I
.2

I

~-+---t---n~~~~~L-~

I-

.5

0:

.2

3

:J

~ .05

0:

~ .2 ~-+---h~fr~~--~~L--+

~

/I

~
zUJ

~
"-

j

IIV

II/ u
~~l''?
;;~r
J

0:

.1

II

«
~ .02

I

"- .01

I

.005
.05 ~-+-I-+f-+-f+---~~f--+

I

.002

.02 r--++--+-,I+~+---~---lr--+

I

.4
.6.8
1.2
FORWARD VOLTAGE (V)

1.4

UNITRODE CORPORATION,S FORBES ROAD
LEXINGTON, MA 02173 'TEL. (617) 861·6540
TWX (710) 326-6509 ' TELEX 95·1064

II
I

.001

f

JJ

I

o

.1

1/

i/II I

z
~ .5 ~-+---+-,~~R-f-~~t---+
U

/ I

.1

/V VV
1/

IIIVI
V
+175'~i
lOO"b VL f-+

~

....
z

...

Typical Forward Voltage Per Leg
VS. Forward Current

Typical Forward Voltage Per Leg
VS. Forward Current

.2

II

.4
.6
.8
1.2 1.4
FORWARD VOLTAGE (V)

.01 '---' __...L1..--'--'--L--'--__.L...---''--'

.2

.4
.6.8
1.2
FORWARD VOLTAGE (V)

444

1.4

·PRINTED IN U,S.A.

679,680,683,684 SERIES

Typical Leakage Current vs. PlY
.05
.1

=<

I

.5

u

zOJ

-+25'C

"'"'L5" 100so

"'"

I

SOO
1K

125

100

+125'C

50
100
200

I

500
lK

Y

~

50
75
% OF PIV

f.-'

10
20

OJ
..J

I

.05

OJ

.1
.2

0:

""

---+75'C

..J

....

z

OJ

0:
OJ

./

u

+75'C

OJ

100

75

50

I"

""
'"

"

...-

i.--+75'C

W
..J

./

125

-~5'C

r-

.5

I
I

10
20
50
100

_f.--"'+125'C

25

50'C

.3

u

1/

OJ

./

____ +25'C

::>

I

10

.....

.005
.01
=< .02

.5

0::
0::

1

680 SERIES

.001
.002

=<

I~

...

Typical Leakage Current vs. PlY

./
50'C

.05
.3 .1
.... .2

I

zOJ

684 SERIES

.01
.02

);;;:C

.3
0:
0:
OJ

Typical Leakage Current vs. PlY

678,683 SERIES

~'C
125

25

lao

75

50

25

% OF PIV

% OF PIV

Reverse Recovery Circuit

uz 840
51)

10V D.C.

5V D.C.

III

=
Current Derating Curve

Current Derating Curve
100
55'C

"z~
0:

!

50

#

"-

100

"

I

"" .....

I
a

~

1,

,
'~

#

'\

so
100
150
CASE TEMPERATURE ('C)

a

175

Standard Recovery Series

UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509' TELEX 95·1064

683 SERIES

684 SERIES

50

0:

I
o

...
l"l..

"z

1'.'
680 SERIES

~

55'C

679 SERIES
:.~

o

"

U

10

'''"""

"''"

-+75"C

50
100

..J

y

500

~

lK

J

125

I

•

./

"'

/ II
/I I

~

.05

-SO"C_

II

II

::>

u

:<
....-"

1ttt-2S"~

··17S"C.• IOO;C

.v

.05
.1

100

75
50
% OF PIV

+125"C

25

.4
.6
.8
1.0
1.2
FORWARD VOLTAGE (V)

Reverse-Recovery Circuit
UZ840

Current Derating Curve
100
55-C

"

'"

z

~

a:

'-,

10V D,V.

5V D.C.

50

'.,
a

a

1',

50
100
150
CASE TEMPERATURE ( C)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

175

447

PRINTED IN U.S.A.

RECTIFIER ASSEMBLIES

697,698 SERIES

Single Phase Bridges, 7.5 Amp, Standard
and Fast Recovery
FEATURES

DESCRIPTION

•
•
•
•
•
•
•

These miniature molded high-current
single-phase bridges are designed for universal application in power supplies. One
basic bridge fills current requirements up
to 7.5A, with PIV's from 100 to 600 volts and
recovery times of standard, and 500ns max.

Miniature High Current Assemblies
Continuous Ratings: to 7.SA
Surge Ratings: to 80A
PIV's: from 100V to 600V
Recovery Times: to 500ns
Only Fused-in-Glass Diodes Used
Controlled Avalanche Characteristics

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage.
Maximum Average D.C. Output Current
Non-Repetitive Sinusoidal Surge (8.3ms)
Operating and Storage Temperature Range.
Thermal Resistance Junction to Ambient
Junction to Case

100 to 600V
See Electrical Specifications
See Electrical Specifications
.. -WC to +lSO'C
32'C/W
... 1O'C/W

MECHANICAL SPECIFICATIONS
697,698 SERIES

1.0·:0~~n~i~Ong -<
o~ + ~

.250 M".-i
Tinnt~a~oppef

r

',01

-*-~
-<

1- .150 Typ,

~
',01

TYpical Weight Dimensions in inches.

0.14 ounces
4.0 grams

MARKING
Alternating Current Input
Cathode - Positive Output
Anode - Negative
Part number is printed on the body.

[ill]
448

_UNITRDDE

697,698 SERIES
Electrical Specifications (at 25'C unless noted)

Maximum Ratings
Maximum

Type

Leakage
Current
Per Leg @ PIV

Maximum
Forward
Voltage Drop

PIV
Per
Leg

Per Leg

T,

=, 2S'C

697-1
697-2
697-3
697-4
697-5
697-6
698-1
698-2
698-3
698-4
698-5
698-6

Standard
Recovery

Fast
Recovery

Timet

pA

100
200
300
400
500
600
100
200
300
400
500
600

ns

1.0V@2A

5

200

1.lV@2A

5

200

Non-Repetitive
Sinusoidal
Surge
(8.3ms)

D.C. Output
Current
T, = 2S'C
Tc - SS'C

Reverse
Recovery

TA -- 100'C

pA

Volts

Average

Maximum

Amps

500

Amps

Amps

2.5

7.5

80

2.25

7.0

70

tMeasured in a reverse recovery circuit switching from lA forward to lA reverse current recovering to .SA.

Typical Forward Voltage Per Leg
vs. Forward Current

Typical Forward Voltage Per Leg
VS. Forward Current
10

III

5:

!z
....
(J

V

II

I/lJ

0

"So

~ .05

~02
"-

(J

~.02

/

.005
.002
.2

/
/

il

.001

"-

I

II

I
j II

-

.002

II

.001

.4
.6
.8
1
1.2
FORWARD VOLTAGE (V)

1.4

.2

50'C

./

.2

-----+2S'C

.5

0:

:>

(J

....

/

I

.01

.oos
1--

....0:

,<.Ji.<.J

II /

So

I

.01

;C

...
Z

K'8~~
:;::;: i- I

,./

.05
.1

.3

Ilj.<.J

.1

ALL SERIES

.01
.02

II I/V
I

"~.os

II

/

1

.5

~ .2
:>

U U

:;:~ :;:~lk
-F/I~

.1

5:
!;:
....

Typical Leakage Current VS. PIV

VV' /.~
/1/ I/V

698 SERIES

tLIl III

.5

~ .2

:>

10

V,

697 SERIES

"'"
'"'"....

/

..J

L
/

I

---

10
20

50
100
200

-

_

V
+7S'C

V

+12S'C

500
1.000

.4
.6
.8
1
1.2
FORWARD VOLTAGE (V)

100
50
% OF PIV

150

1.4

Reverse Recovery Circuit
Current Derating Curve

UZ 840
51)

100

-

,, ,

55'(;

,

41)

"

10V D.C.

D.U.T.

" ,"

,
FREE AIR

Z

SV D.C.

,

;:

"'so
0:
'#

"CASE TEMP.

"
",

,
"",

l!l

I

o

o

so

100

150

200

TEMPERATURE ('C)

=

UNITRODE CORPORATION· S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326~6S09 • TELEX 9S-1064

449

PRINTED IN U.S.A.

RECTIFIER ASSEMBLIES

700, 701 SERIES

Three Phase Bridges, 2.5 Amp, Standard
and Fast Recovery
FEATURES

DESCRIPTION

•
•
•
•
•
•

These miniature transfer-molded highvoltage three-phase power bridges are
designed for universal application in power
supplies. One basic bridge fills current
requirements up to 2.5A, with PIV's from
100 to 600 volts and recovery times of
standard and 500ns.

Miniature Package
Recovery Time: to 500ns
Surge Ratings: to 25A
PIV: from 100 to 600V
Controlled Avalanche Characteristics
Only Fused-in-Glass Diodes Used

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage .
.. ...................................
.. ............. 100 to 600V
Maximum Average D.C. Output Current ............................... See Electrical Specifications
Non-Repetitive Sinusoidal Surge (8.3ms) .......................... See Electrical Specifications
Operating and Storage Temperature Range .
.. .......................... -65'C to +150'C
Thermal Resistance Junction-to-Ambient
....................................... 25'C/W

MECHANICAL SPECIFICATIONS

700, 701 SERIES

1

.028 DIA .

.31 0 ..)-.621

r-

I:c ~c

Dimensions in inches.

AC

-Il--- Tinned Copper

I
512 REF

1

-r
.460 MAX.

l~..'.:::r

.B75

.220

I ~

MAX.-I

Typical Weight - 0.12 ounces
3.5 grams

450

lliIJ

_UNITRDDE

700,701 SERIES
Electrical Specifications (at 25'C unless noted)

Type

Leakage
Current
Per Leg @ PIV

Maximum
Forward
Voltage Drop
Per Leg

PIV
Per
Leg

TA - 100'C

Maximum
Reverse
Recovery
Timet

I/A

I,A

ns

1.0V@0.SA

2

100

l.lV@O.SA

2

100

TA - 25'C

Volts

Standard
Recovery

700-1
700-2
700-3
700-4
700-5
700-6
701-1
701-2
701-3
701-4
701-5
701-6

Fast
Recovery

100
200
300
400
500
600
100
200
300
400
500
600

Maximum Ratings
Maximum
Average
D.C. Output
Current

Non-Repetitive
Sinusoidal
Surge
(8.3ms)

TA - SS'C

Amps

Amps

500

2.5

25

2.25

20

tMeasured in a reverse recovery circuit switching from lOmA forward to lOrnA reverse current recovering to SmA.

Typical Forward Voltage Per Leg
vs. Forward Current

Typical Forward Voltage Per Leg
VS. Forward Current

10
700 SE!lIES

701 SERIES

w

VI/:

::>

.2

0

.1

0

0:

«

~

UJ

110.

0:
0:

L

Y')

.05
.02

il

.01
.005

if

.002
.001
.2

/

(;)

~

.,

~

/li/t
f-J 5.>
'~;cJ?

.1

II

0:

~

I

.02

/

.01
.005

/ I
j

/

.002

1.4

2

.05
.1

UJ

.5

...z
0:
0:

I
I

L
/+2S'C
I

rs'c III

1

w

'"

«

"«w

II

..J

../

10
20
50

I
/

100

/

200

-------+125'C

,L

500
1.000

I

.4
.6
.8
1
1.2
FORWARD VOLTAGE (V)

PIV

~'C

::>
u

c-

I /

I

.001

.4
.6
.8
1
1.2
FORWARD VOLTAGE (V)

II

<'

.0;

c-

.... 'I- 'I- I

~05

III I
I

.5

G2

:;'J.fh.~/l
~ :q fif(1.'1- 'I- I r--

0:

0

...
z

.5

0:
0:

/v V
/V/
VI/ IV

~

VS.

ALL SERIES

.01
.02

l.--

...~

Z

Typical Leakage Current

10

100

150

1.4

50
°'0 OF PIV

Reverse Recovery Circuit
Current Derating Curve

1Ka
100 r - - - -

+

,,

I

,

99011

'"

CONVECTION
COOLED

Z

20V D.C.

;::
«
0:

D.U.T.

"-

50

~

"

-

,
"

loa

o

o

50

100

ISO

200

AMBIENT TEMPERATURE ('C)

UNITRODE CORPORATION· 5 FORBES ROAD
.LEXINGTON. MA 02173 • TEL, (617) 861-6540
TWX (710) 326-6S09 • TELEX 95-1064

451

PRINTED IN U.S.A.

800,801 SERIES

RECTIFIER ASSEMBLIES
Three Phase Bridges, 20-40 Amp,
High Efficiency, ESP

DESCRIPTION
This series of three phase bridges
offers the highest efficiency possible
for appl ications where nothing else
will do. The series allows operation at full
power at high frequencies.

FEATURES
• Current Ratings: to 40A
• Recovery Time: SOns
• Surge Ratings: to 250A
• PIVs: from 50 to 150V
• Only Fused-in-Glass Diodes Used
• Exceptionally High Efficiency
• Aluminum Heat Sink Case, Electrically Insulated

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltages.
.. .. 50 to 150V
Maximum Average D.C. Output Current.
...... See Electrical Specifications
Non-Repetitive Sinusoidal Surge (8.3ms)
.... . . . . See Electrical Specifications
Operating and Storage Temperature Range.
. ............... -65'C to +150'C
Thermal Resistance Junction to Ambient, All Series . ... .
. ....... 20'C/W
Junction to Case, 800 Series .
. ................................ 2.5'C/W
Junction to Case, 801 Series .
.. 3.0'C/W

MECHANICAL SPECIFICATIONS
800, 801 SERIES

11r===:::=;rl~r..JBS
.365

4-.l!::=====-1='-h.J~90I-

, e" a. a. a

.820 MAX,

I I AC

Lc±:

AC

AC

-l-

.370

.sk

I

~~86

1----1.880
.I
1.870----'

Dimensions in inches.

:~~: OIA.
(2 PLACES)

.135
.115

Typical Weight -1.0 ounce
30 grams

[ill]
452

_UNITRDDE

800, 801 SER IES
Maximum Ratings

Electrical Specifications (at 25'C unless noted)
Maximum
Reverse

Type

TA - 25'C

TA - 100'C

I'A

I'A

Time*
ns

Tc - 55'C
Amps

Tc _IOO'C
Amps

.95V@lOA

20

1000

50

40

25

250

.95V@6A

10

300

50

20

16

125

Voltage Drop
Per Leg

Volts

ESP
Recovery

800-1
800-2
800-3
800-4
801-1
801-2
801-3
801-4

ESP
Recovery

50
100
125
150
50
100
125
150

Maximum

leakage Current
Per Leg@ PIV

Forward

PIV
Per
Leg

Maximum
Average

Non-Repetitive
Sinusoidal
Surge (8.3ms)
TA - lOO'C
Amps

Maximum

D.C. Output
Current

Reverse
Recovery

*Measured in a reverse recovery circuit switching from lA forward to lA reverse current recovering to O.SA.

Forward Surge Current VS. Duration

Forward Surge Current VS. Duration
;:;

;:;

~ 160

~ 320

;:: 280

t:i
~

240

~

,

200

..!..

:l

u 160
~ 120
"-

I-

80

o

40

:l

I-

Z

.02

.05

.1

"BOI SERIES

..t

~ 80

r--

.2

............

~ 100
~ 60

-

o
.01

140

~ 120

00 SERIES

.5

1

5

.....

40
20

o

o
10

20

.01

.02

.05

DURATION (SEC.)

.1.2

.5

10

20

DURATION (SEC.)

Current Derating Curve
'0 40

~

...
Z
LU

0:
0:

"- V- -

35
30
25

801 SERIES

:l 20

h

u

I-

:l

"
I--

15

"- 10

-

800 SERIES

I"-,

I--

"'"

...... t'--

I-

r--...

:l
0

o

o

55

100

150

CASE TEMPERATURE ('C)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

453

PRINTED IN U.S.A.

III

800,801 SERIES

Typical Forward Voltage Per Leg
vs. Forward Current

Typical Forward Voltage Per Leg
vs. Forward Current
100

100

~ ~~

800 SERIES

50

50

VV ~

20

/1/ II

I-

1[1 I /
- - Il"CJ II
Iq
I
-'-/7
il

Z

W

a:
a:
::J
u

Z

.2

a:
a:

::J

u

I

.5

I
1/

.01

.1

I

[I

.5

0:

"

.2

"- .1
.05

.01

I

.5
.7
.9
1.1
1.3
FORWARD VOLTAGE (V)

801 SERIES

/VV
.1
.2

~

J-J-f-I-

~
IZ

1

a:

a:

2

w

w

0:

0:

T -

/
1.3

I

8 0 SERI S

AJ-25'L
-5JC

/"

I

.-/

::J

,/

U

I

II

/

.2

Z

::J

if:;:~r~"Ii.+kjt7

II !/

.1

,--

I-

w 10

I

Vt,CJ

r--

Typical Leakage Current vs. PIV
.01
.02

iitolc
+2;:'I cI

T _

r--I-

I

!II

.1 .2 .3 .4 .5 .6 .7 .8.9
1.1
FORWARD VOLTAGE (V)

1.5

Typical Leakage Current VS. PIV
.01
.02

r--I-

0

.02

I
.3

"
"a:

I

/

"- .1

/ /

W

:;:~,.,
'f-J !;J

~ .05

U
W

+75"C

"":.:

~ 20
:.:

"

L;'j
..1

1// /V

10

~

I-

o

....;~ ;:;:V

20

10

~

"~

801 SERIES

10
20

T _ - 75-;;'-'--

W

.......

..J

100
T _ +125"C

200

,-

100
200
T~'12~ ~

lK

125

100

75
50
% OF PIV

25

IK
125

Reverse-Recovery Circuit

75
50
% OF PIV

100

25

Characteristic Waveform
--<

~

t"

tREe

\

,

LI

,

l

~

I

I.

SET TIME BASt
FOR 5 NS/CM

NOTES:

1. Oscilloscope: Rise time ~ 3n5; input impedance ::: 5m~.
2. Pulse Generator: Rise time :s;; 8ns; source impedance lOt?,
3. Current viewing resistor, non-inductive, coaxial recommended.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEl. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

,

454

PRINTED IN U.S.A.

802,803 SERIES

RECTIFIER ASSEMBLIES
Single Phase Bridges, 20-35 Amp,
High Efficiency ESP Series

DESCRIPTION
This series of single phase bridges
offer the highest efficiency possible
for applications where nothing else
will do. The series allow operation at
full power at very high frequency.

FEATURES
• Current Ratings: to 35A
• Recovery Time: 50ns
• Surge Ratings: to 250A
• PIVs: from 50 to 150V
• Only Fused-in-Glass Diodes Used
• Exceptional High Efficiency
• Aluminum Heat Sink Case, Electrically Insulated

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage .
... 50 to 150V
Maximum Average D.C. Output Current.
.... See Electrical Specifications
Non-Repetitive Sinusoidal Surge (8.3ms)
See Electrical Specifications
Operating and Storage Temperature Range.
.. -65'C to +150'C
Thermal Resistance Junction to Ambient, 802 Series
20'C/W
803 Series
......... 25'C/W
Junction to Case, 802 Series.
. ........ 2.0'C/W
4.0'C/W
803 Series.
HHH

MECHANICAL SPECIFICATIONS

"Tjf--

:~i~;.
-L

n

-rr
1.-.755 ...J
l
.735 I

803 SERIES

:l;g

OlA.

+

Q

~¥

.570

--L-

'

MAX.

,

I

~
.226

Typical Weight -

Dimensions in inches.

,itt

802 SERIES

r- m
1135
1.1~.572

.552

~

@2@

.572
.552

.:A
t-- :~~g
'~~
@-@
C

1.l15

L!;

.302

0.35 ounces
10 grams

DIA.

~

,.--

m-l-

u
c

0

;,
~

I
.5 t - - ~(,)
r- ...~ &oJ;.o{,)
.2
-

Ul

II

0

"""I

-f.

~ .05
0:

/lo{,)&

/

1.1

.9

1.3

I

II

II

/ V
.1

.7

;;::v-

I I III
/ /

~
....
z

III J I

0:
0:

::>

,...:;:t;::::
'/1/ V

20
10

.3

.5

.7

.9

1.1

1.3

FORWARD VOLTAGE (V)

1.5

FORWARD VOLTAGE (V)

Typical Leakage Current VS. PIV
.01
.02

~

....z

Ul

802

I

SERIES

Typical Leakage Current VS. PIV
.01

I

.02

~=-5atI
./"

.1
.2
1

,....V

"'"

lito~c
I I

.2

./"

TI=+25t_

T _ +25"C 1--

1-1-1-1-;"'"

....
z

Ul

0:
0:

Ul

SERIES

.1

0:
0:

::>
u

""

803

.... ""

:0

~

10
20

T_+75'~

Ul
.J

T

10

.-

'"

;::l
.J

100
200

100

T _ +125°C

200

T = +125.:,s-- ......----

lK
125

100

75
~'O

50

+75°C

~ 20

I-

lK
125

100

75

50

25

% OF PIV

25

OF PIV

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

456

PRINTED IN U.S.A.

802, 803 SER I ES

Current Derating Curve
0' 40
"C

:::. 35

....z

W
0::
0::
:;J

30
25

1-··

a02 SERIES

:;J

15

....

10

a.

g

.......

I
I r- h"-

u 20

....

.-

.......,

803 SERIES

f'.

I'-

r- t--... I'-

r--r--.

I I
I I
55

150

100

CASE TEMPERATURE ('C)

Forward Surge Current vs. Duration

Forward Surge Current vs. Duration

u

u

~ 160
.... 140

;:- 2ao

::! 120 :---......
!5100

~ 240
~ 200

u

u 160

~ 320

z

~

t--...

60

I

~ 40

o

I La03 SERIES

20

I II

o
.01

_02

............,

I'-

:;J

80

.05

.1

.2

--

.5

j

120

....

80

o

40

a.

:;J

I
LiJ02 SERIES

20

-r-.

I IIIII

o
10

.01

.02

.05

.1

.2

.5

10

20

DURATION (SEC.)

DURATION (SEC.)

Characteristic Waveform

Reverse·Recovery Circuit

--<

0-

t"

\

I REe

l

I

1\
./

l

"

SET TIME BASE
FOR 5 NS/CM

NOTES:
1. Oscilloscope: Rise time:';;; 3ns; input impedance ::= sou.
2. Pulse Generator: Rise time ~ 8ns; source impedance lO!2.
3. Current viewing resistor, non-inductive, coaxial recommended.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

II

........

457

PRINTED IN U.S.A.

804 SERIES

RECTIFIER ASSEMBLIES
Doublers and Center Tap, 20 Amp,
High Efficiency, ESP
FEATURES

DESCRIPTION

•
•
•
•
•
•
•

This series of doublers and center tap
rectifiers offer the ultimate in high
efficiency application. The rectifiers are
particularly suited to switching regulator
supplies where very fast recovery time
and low forward drop are of prime
importance.

Current Rati ng: to 20A
Aluminum Heat Sink Case, Electrically Insulated
Recovery Time: SOns
Surge Rating: to 250A
PIVs: from 50 to 150V
Only Fused-in-Glass Diodes Used
Exceptional High Efficiency

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage .
..... 50 to 150V
Maximum Average D.C. Output Current
@ Tc = +55·C .
......................... 20A
@ Tc = +lOO·C ..................................................................... 14A
Non-Repetitive Sinusoidal Surge (8.3ms)
@ TA
+l00"C .
................................................................ 250A
Operating and Storage Temperature Range ....................................... -65·C to +15O·C
Thermal Resistance Junction to Ambient.
... 20·C/W
Junction to Case..................................
.. ....... 6.0·C/W

=

MECHANICAL SPECIFICATIONS
804 SERIES
AC

:~~~ OIA.
(2 PLACES)

"D"

.

"P"

.

~

"N"

.

l1li

~I

~

+

AC

I

AC

Dimensions in inches.

+

AC

loiii

~I

AC

Typical Weight - 0.35 ounces
10 grams

MARKING
Alternating Current Input
Cathode - Positive Output
Anode - Negative
Part number is printed on the body.

t Add suffix P, N. or 0 for terminal
configuration P, N, or D.
For example, for center tap
configuration, P, order 804·IP

[ill]
458

_UNITRDDE

804 SERIES

Electrical Specifications (at 25'C unless noted)
Maximum
Type

Maximum
Forward
Voltage Drop

Leg

Per Leg

TA - 2S'C
pA

TA - IOO'C
pA

Time*

.95V@10A

10

500

50

Volts

804-1
804-2
804-3
804-4

ESP
Recovery

Maximum
Reverse
Recovery

Leakage
Current (pA)
Per Leg @ PIV

PIV
Per

50
100
125
150

ns

*Measured in a reverse recovery circuit switching from lA forward to lA reverse current recovering to O.SA.

Typical Forward Voltage Per Leg
VS. Forward Current
100
50

/-j r:I

20
10

g

...

5

~

2
-f-

1

.

~

1
...

II III I

~ .05

~

.1

I

V

Z

3'"

Typical Leakage Current

II

.2
.1

/

.5

1

~.

... 1 h

/

V

.01

.1

1/"'
()
." /5 ()

.3

II
I

~

",-

.2

~J

TL+251_

I

,/

:J
U

iJ

uJ
~

-1-1"1
II

'"

~

10
20

T_+75';"'-

...J

100
200

T
75

:= +12S:.s..--

I

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95·1064

PIV

lA=-5JcJ

'"'"

I

.5
.7
.9
1.1
1.3
FORWARD VOLTAGE (V)

VS.

.01
.02

f.-:: ::::=t::::

lK
125

1.5

459

100

50
% OF PIV

•

f-"""""

V

25

PRINTED IN U.S.A.

804 SERIES

Forward Surge Current vs. Duration

Current Derating Curve
U 40
35

U

'0

$160
I- 140

:::.
I-

z

zw

~ 120

g; 100 i'---...
~ 80

(J

o

IL

.01

Q,

I-

804 SERIES

I

o
.02

25
20

I"t-

:> 15

I

40
20

30

I-

b-.

~ 60

5

''""
:>
:>
0

l-

804 SERIES

10

I I II
.5

10

....... ;-...

I I
I I

20

55
100
CASE TEMPERATURE ('C)

DURATION (SEC.)

........

150

Reverse·Recovery Circuit

NOTES:
1. Oscilloscope: Rise time ~ 3nsi input impedance = 50~~.
2. Pulse Generator: Rise time::;; 8nsi source impedance lOn.
3. Current viewing reSistor, non~inductive, coaxial recommended.

Characteristic Waveform
~

t"

r-

1\

I REe

1\

l

l

I

I.

SET TIME BASE
FOR 5 NS/CM

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 86J.6540
TWX (710) 326-6509 • TELEX 95-1064

460

PRINTED IN U.S.A.

PMB101-PMB107
PMB101X-PMB107X
PMB201-PMB205
PMB201X-PMB205X

RECTIFIER ASSEMBLIES
Doubler and Center-Tap
PMB Power Modules
High Voltage, High Current

FEATURES
• PIV: From 2.5kV to 30kV
• 6A in Oil
• 300A Surge Current
• Dense Packaging
• Convenient Mounting

DESCRIPTION
The PMB POWER MODULE is available as

a high voltage doubler or center tap with
either a positive or negative tap. The high
current capabilities suggest such applications as high power TWT amplifiers, power
supplies and precipitators, The molded
heat sunk configuration allows operation in
oil and air.

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage ................................................. 2.5kV to 30kV
Maximum Average Rectified Current ..................... See Electrical Specifications
Maximum One Cycle Surge 8.3mS ...................... See Electrical Specifications
Operating and Storage Temperature Range ......................... -65°C to +150'C

MECHANICAL SPECIFICATIONS

_I 1-

~CASE

LENGTH ± .030

PMB101-PMB107
PMB101X-PMB107X
PMB201 -PMB205
PMB201 X -PMB205X

(.762)~

.55 (13.97) TYP.

.37 (9.398) R TYP

1=~~

+

~;::-

~

~ f:5
~,-'

~

~~

,


u

,2

/.'/.
12
.CJ

w

a:
a:

I
-"

::>
u

I

,2

-"

.1

75

"'
0:
0:

::>
u

100

III

1000

1,000

~

500

~

Z

w

a:
~

...uen

.

--

I I

iJirI

C

~

i II

120

V, -

I

100

I I

"z>=

"-........

60

UJ

"::>a:

40

en

...........

:'

80

«
a:

r--

II
60

40

" "'~

r-

"-

0

20

;f

..J

::>

10

.5

50
lOpS

1 2
lOOpS

ImS

20

Multiple Surge Current VS. Duration
100

............

100
50

80

VOLTAGE IN % OF PIV

VOLTAGE (V)

Peak Half Sme Current vs.
Duration for Non-Repetitive Pulse

-........... r--.

I-

TI'l ~101\
T= +125'C

(

,1 .2 ,3 ,4 ,5 ,6 .7 _8 .9 1.01.11.21.3

Forward Pulse Current vs. Duration
5,000

i-

20 t-

200

TEMPERATURE ('C)

10,000

10

I
~

A, 1/ II
III ',-,

,01

100

I

1-.;:0 '&$J u

,02
50

'/

~~
J"

I-

....
z

;t,}Ei~
.~

,5

,05

25

~

1'/

~
~
z

10

-50"e

_

I

,1

~V

10

TJ

::-

1.",jI~

20

~

I/f

.02

50
16

10mS

10 20

---

50 100 200

500 1000

CYCLES AT 60 Hz SINE WAVE

PULSE DURATION

~

2,0

...uE 1.0
./

.4

Q.

;§
-'
«

1--'' ' '

,2

::;:
a:

:x:
....
I

,04

+

"

_
-=-

25Vdc
(APPROX.)
III
NOTE)

I--'

.1

UJ

10 II

.... :.- ....

«
0

son

."

z

UJ

Reverse-Recovery Circuit

Thermal Impedance
vs ..Pulse Width

V
NOTES:

~ ,02

rjJ

,01.02 ,05.1.2
I, -

.5 1 2

5 10 20 50 100 200

1. Oscilloscope: Rise lime'" 3nS: input impedance = 500.
2. Pulse Generator: Rise time s;; BnS; source impedance IOn.
3. Current viewing resistor, nonMinductive, coaxial recommended.

1000

PULSE WIDTH (mS)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 ' TEL. (617) 861-6540
TWX (710) 326-6509 ' TELEX 95-1064

468

PRINTED IN U.S.A.

RECTIFIERS

SES5601C
SES5602C
SES5603C

High Efficiency, 25A Center-Tap
FEATURES
• Low Forward Voltage Drop
• Fast Switching Speed
• Convenient Package
• High Surge Capability
• Low Thermal Resistance
• Mechanically Rugged TO-3 Package
• Available as Positive or Negative Center-Tap

DESCRIPTION
The SES, super-fast recovery, rectifiers are
specifically designed for operation in
power switching circuits. Their super-fast
recovery time and very low forward
voltage drop make them particularly
efficient in most switching applications.

ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, SES5601C ..................................................................................50V
Peak Inverse Voltage, SES5602C ................................................................................. 100V
Peak Inverse Voltage, SES5603C ................................................................................. 150V
Maximum Average D.C. Output Current at Tc = 100°C ................................................................ 25A
Non-Repetitive Sinusoidal Surge Current 8.3 mS ................................................................... 400A
Thermal ReSistance, Junction to Case ........................................................................... 1 ·C/W
Operating and Storage Temperature Range ............................................................ - 55·C to + 175·C

ELECTRICAL SPECIFICATIONS PER DIODE

Type

PIV

SES5601C
SES5602C
SES5603C

50V
100V
150V

Maximum
Forward Voltage (VF )
@

Maximum
Reverse Current (lR)
@PIV

Tc =2SoC

Tc =12SoC

@Tc=2SoC

@Tc=12SoC

Maximum
Reverse
Recovery
Time·

0.990V
@
12.5A
tp=300,..s

0.830V
@
12.5A
tp=300,..s

20"A

4mA

100nS

'Measured in circuili F =O.5A, iR=1.0A, i REC=O.25A

MECHANICAL SPECIFICATIONS

•

SESS601C-SESS603C

POSITIVE OUTPUT

~

1

14

•

CASE

-l
'~'
-~

BlliJ
C

0

Ins.
F

I
G

i

M

~,L
~"
I
j

G>
J~~

.875 MAX.

B

.135 MAX.

3.43 MAX .

C

.250-.450

6.35-11.43

.312 MIN.

E

.038-.043 DIA.

22.23 MAX.

7.92 MIN.

0.97-1.09 OIA.

F

. 188 MAX. RAD.

G

1.177-1.197

29.00-30.40

H

.855-.675

16.64-17.15

J

.205-.225

5.21-5.72

K

.420-.440

10.67-11.18

L

.525 MAX. RAO. 13.34 MAX, RAO.

M

.151-.161

.

H

A

0

L

~

K

TO-3

mm

4.78 MAX. RAD.

3.84-4.09 DIA.

NOTES:
1. Standard polarity Is positive output.
For reyerse polarity (negative output) add Bufflx "A", Ie, SES5801CR.
2. All metal surfaces tin platad.

[ill]
1180

469

_UNITRODE

III

SES5601C-SES5603C
Typical Forward Current
VI. Forward Voltage

Typical Revene Current
vs. Reverse Voltage
.001
.002

I

J-+

.005
.01

50

V

20

TJ -+2S'C

<
oS .02

~
z 10

\oJ

II:
II:

:>

'"

:>

0

'"

en

II:

iiiII:'"

II:
II:

.1
.2
.5
1 f02

50

,I

+lOO'C
r ~+t
v T = +12S'C

~H

J

,/
II

II:

I

~
II:

/

V

...
0

f--

J

10
20

0

..... ~

-"

.5

= +ISO'C
.2

I

I

V

V
j

V, -

400

-~
100

1\ '"
V V
L

~ -T

J

=+7S'C

V
.6
.8
1.0
FORWARD VOLTAGE (V)

1.2

REVERSE VOLTAGE ('Yo OF PIV)

Maximum Forward Surge
VS. Number of Cycles

I"'"

~

II

.4

I

130 120 110 100 90 80 70 60 50 40 30 20 10 0

V. -

V

/

0

I
-"

L

I-

IZ .OS

0

TJ = +IS0'C

30

~

1.0

UJ
U

.5

Thermal Impedance
vs. Pulse Width

~

I""

~

Z

VV

-<

'" '"

."

.2

UJ

:!i

-<

~

~

.05

UJ

. . . 1"--.

I

-

10
20
50
100
CYCLES OF 60 Hz SINEWAVE

l-

1-1- c-

V

V-

.1

-'

~ICYC~E

N-

i---'f--

I/

V

.02

I

~

...

.01
.01.02 .05.1 .2
I, -

.5 I 2
5 10 20 50 100 200
PULSE WIDTH (mS)

1000

200

Output Current vs.
Case Temperature

Reverse-Recovery Circuit
Ion

SOP.

30

~

-

I-

Z

'"
II:
II:

:>

20

0
I-

~ ......

:>
Q.

I-

:>
0

+

10

I
_0

100
Tc -

_
-=-

25Vdc
(APPROX.)

In

""

NOTE 3

OSCI LLOSCOPE

NOTE I

=

~

NOTES:
1. Oscilloscope: Rise time ~ 3nSj input impedance = son.
2. Pulse Generator: Rise time ~ anSj source impedance 100.
3. Current viewing resistor, non~inductive. coaxial recommended.

12S
150
17S
CASE TEMPERATURE ('C)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02113 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

470

PRINTED IN U.S.A.

RECTIFIER ASSEMBLIES

JAN
JAN
JAN
JAN

Single Phase Bridges, 25 Amp,
Military Approved

SPA25
SPB25
SPC25
SPD25

FEATURES

DESCRIPTION

•
•
•
•
•
•
•

This series of mi I itary high-current
single-phase bridges offer the utmost in
reliability as required in military system
designs, This series is assembled with
diodes which have been subjected to
100% screening tests.

Qualified to MIL-S-19500/446
Current Rating: to 25A
PIV: from 100 to 600V
Surge Ratings: to 150A
Only Fused-in-Glass Diodes Used
Controlled Avalanche Characteristics
Aluminum Heat Sink Case, Electrically Insulated

ABSOLUTE MAXIMUM RATINGS

Dimensions

Peak Inverse Voltage .
Maximum Average D.C. Output Current
@ Tc = 55"C ...
@ Tc
100"C .
Non-Repetitive Sinusoidal Surge (8.3ms)
@ Tc = 55"C .
Operating and Storage Temperature Range ....
Thermal Resistance Junction to Ambient .
Junction to Case

100 to 600V

INCHES

Ltr

MIN,

.... 25A
. 15A

=

............ 150A
.. ........ -65"C to +150"C
........... 20"C/W
.... 2.5"C/W

C,
C,
C,
C.
dO,
¢D2
~1Dl
~'!D4

~'iD~

H,
H,
Hl
H.
L,
L,
L,
L.
Ls
W

.552
.624
.312
.495
.189
.057
.108
.141
.225
.669
.300
.040
.042
.370
.307
.089
.132
.026
1.104

MAX.

,572
,760
,380
.512
.195
.067
.118
.151
.235
1.060
.500
.060
.062
.560
.365
.099
.142
.036
1.144

MILLIMETERS
MIN.

MAX.

14.02
15.85
7.92
12.57
4.80
1.45
2.74
3.58
5.72
17.53
7.62
1.02
1.07
9.40
7,80
2.26
3.35
.66
28.04

14.53
19,30
9.65
l3.00
4.95
1.70
3.00
3.84
5.97
26,92
12.70
1.52
1.57
14.22
9,27
2.49
3.61
.91
29.06

MECHANICAL SPECIFICATIONS
SPA25 SPB25 SPC25 SPD25
ENCAPSULATION

[ ~c
...

C'1?

METAL

__ I

I

HI
B'

"

4

VIEW

'~D,
a-a

SEE

I

r~'DETAIL
H : :;:: 'I' ::',
I, '::' , H,f
#1...

jo-C

SEE NOTE 2

w-

~H

L~~~ ~gi~ ~

l'

B

t _ _ _ _ _ ..J

,0,1:=:;1. 0
L-cr
SEE - _
NOTE 1

1[005J
SEE
NOTE 5

flL

erL

~.l(REFl
: ~Lj

,', D!,
DETAIL

-

NOTES:

1.
2~

3.
4.
5.

Terminals shall be hot tin dipped or silver plated.
Polarity shall be marked on terminal side of device.
Point at which Tc is read (must be in metal part of case).
locating pin shall be adjacent to positive terminal.
Insulating sleeve shall be alumina (AL 2 0 3 ) or equivalent.

[ill]
471

_UNITRODE

III

JAN SPA25 JAN SPB25 JAN SPC25

JAN SPD25

Electrical Specifications (at 25°C unless noted)
Peak
Forward
Voltage

PIV
Per
Leg

Type

Drop*

100
200
400

SPA25
SPB25
SPC25
SPD25

I

Minimum

Volts

JAN
JAN
JAN
JAN

Maximum
Reverse
Recovery
Timet
Maximum

0.9V

Maximum Leakage
Current
Per Leg~@ PIV
Tc _l50'C
Tc - 25'C

"S

lAV

2

"A

"A

2

250

@39A(pk)

600

*Peak forward voltage drop is measured at a pulse width of B.3ms.
tMeasured in a reverse recovery circuit switching from O.SA forward to 1.0A reverse current recovery to a.SA.

Typical Forward Voltage Per Leg
vs. Forward Current
50

// ~
~ III

20
10

/ Ij
II L /1

VI

~
z>UJ

0:
0:

I II

:0

<)

Cl

Ih~
:;./~

'">=
0:

...

Cl

.2

.4

.6

I
I
_

UJ

1- (

Current Derating Curve
100

'\.

1./
+75'C

"z~

'\.
\.

50

\.

0:

if.

I\,

o

o

L

50
100
200

"

50
100
150
CASE TEMPERATURE ('C)

175

1./
-

+125'C

500
1K

I

/11

.05

./

_ _ +25'C

10
20

..J

I I '/ I

.1

1
UJ

/ /

.2

.05
.1
>- .2
Z
UJ
.5

"
"''""

PIV
50'C

<)

~ g

.5

.01
.02

:0

II /

VS.

I~/

0:
0:

fo 0
'~h1t

0:

Typical Leakage Current

125

.8

1.2

100

75
50
% OF PIV

25

1.4

FORWARD VOLTAGE (V)

100 Percent process conditioning
of discrete diodes

100 Percent burn-in of discrete
diodes

1. High·temperature storage

1. Measurement of specified
parameters

2. Thermal shock (temperature
cycling)

2. Reverse bias burn·in

3. Reverse-recovery time

3. Measurement of specified
parameters to determine

delta
4. Lot rejection criteria
based on rejects from
burn-in test

Reverse·Recovery Circuit
SOH

to verify LTPD
Group A
Group B
Group C

Review of groups
At B, and C data
for lot accept or
reject

25Vdc
(APPROX.)
II!
NOTE3

I nspection tests

10 !!

+
_
-=-

Assembly and
encapsulation of
discrete diodes
into bridge
assembly

OSCILLOSCOPE
NOTE1

NOTES:
1. Oscilloscope: Rise time :G: 3n5; input impedance:.:: SOQ.
2. Pulse Generator: Rise time ~ 8nsi source impedance lOP..
3. Current viewing resistor, non~inductivet coaxial recommended.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

472

PRINTED IN U.S.A.

RECTIFIERS

UES2401-UES2403

High Efficiency, 16A Center-Tap

FEATURES

DESCRIPTION

•
•
•
•
•

The UES2401 Series in the economical,
convenient T0-22O package, is specifically
designed for operation in power switching
circuits to frequencies in excess of 100KHz.
The series combines two high efficiency
devices into one package, simplifying
installation, reducing heatsink requirements and the need to purchase matched
components.

Very Low Forward Voltage
Very Fast Recovery Times
Economical, Convenient TO-22O Package
Low Thermal Resistance
Mechanically Rugged

ABSOLUTE MAXIMUM RATINGS
Peak I nverse Voltage, U ES2401 .
Peak Inverse Voltage, UES2402 ...
Peak Inverse Voltage, UES2403 .
Maximum Average D.C. Output Current

SOV
100V
150V

................ .16A
@ Tc = 125°C (Note 1)
@T. = 25°C.
. ........... ....... 3A
@T. = 25°C (Note 2) .................................... lOA
Non-Repetitive Sinusoidal Surge Current, 8.3mS
80A
Thermal Resistance, Junction to Case, 9 J _C . ...
. . . . 1.75'C/W
60'C/W
Thermal Resistance, Junction to Ambient, 9J _A . ..
Operating and Storage Temperature Range.
-55'C to +150'C

l1li

Note 1. Above 8A use the tab for electrical connection.
Note 2. Using Wakefield Type 295 heatsink with convection cooling. For more definitive
data refer to the Output Current vs. Temperature Curves on this datasheet.

MECHANICAL SPECIFICATIONS
UES2401-2403

SEATING
PLANE

A

~rFc
(~

J

r·-I~

F

f;

10

"'a:c::

1
-~

.5

:>

'f-

.2

1
-~

.1
.05

1-- '"

L..L.--L7~7

.02

I

.01

III

~

.....

;:!l

t-.'

It

t-.'

II

2

0:

1---1--

II

u

i50:

lw~
If J
1--1-/is () 1-+-+-+-H-1

--

r=2~
' ..

I-

....

0Z

u

= -SOOC

.2

~

5:

Vf
TJ

.1

~//

10

14

z

1.4V

Typical Reverse Current
VS. Voltage
.01
.02

50
16~--r-~r---r---+---\

'"a:a:

t, =8n5

35nS

Typical Forward Current
VS. Forward Voltage
100

0-

V~trr'

Time*

O.2SA

Output Current
vs. Temperature

g

Typical
Forward
Recovery

Maximum
Reverse
Recovary

Reverse Current
@PIV

I"

0

1--'110

_" 20

5? +-+-+-+-H
I
~~~;;~;;~~

T

= +7S'C
1.1 l= +100'C

1'1

t

100

I'll I I

200

I

1000

~

120

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.01.11.21.3

T

= -l-12S'C

( II ' I
100
80
60
40
20
VOLTAGE IN % OF PIV

V,-VOLTAGE (V)

Multiple Surge Current

Forward Pulse Current VS. Duration
10,000
5,000
1,000

g

~ r-..

I
I
~

I

r Peak

Half Sine cu;re~t vs.

Duration for Non-Repetitive Pulse

..............

UJ

c::

100
50

"'

"z;:

80

c::

60

"c::

r.... ~

OJ

"' " "~

40

U)

u.

0

20

#

U)

VS.

Duration

'"" i'..

«

UJ

Z

~

I
.1

r-..

500

0-

u

100

-r----

..J

:>
Q,

10

.5

1

50
ImS

2

10mS

10 20
50 100 200
CYCLES AT 60 Hz SINE WAVE

500 1000

PULSE DURATION

~

,.,

z"'

u

'";!

.4

i'~

Q,

..J

«
::;:
a:

.2
.1

UJ

J:

0-

1 .04

N

~

SOil

10 it

2.0

E 1.0
«
0

Reverse-Recovery Circuit

Thermal Impedance
VS. Pu Ise Wi dth

./

.... ~f-

+

".'"

_
-=-

25Vdc
(APPROX.)
III
NOTE3

i'

V

OSCILLOSCOPE
NOTEI

-=

.02
.01.02 .05.1 .2

t, -

.5 1 2

NOTES:
1. Oscilloscope: Rise time'" 3nS; input impedance = 50n.
2. Pulse Generator: Rise time'" 8nS; source impedance lOll.
3. Current viewing resistor, non·inductive, coaxial recommended.

5 10 20 50 100200 1000

PULSE WIDTH (mS)

UNITRODE CORPORATION, 5 FORBES ROAD
LEXINGTON, MA 02173 ' TEL. (617) 861-6540
TWX (710) 326-6509 ' TE LEX 95-1064

474

PRINTED IN U.S.A.

RECTIFIERS

UES·2601-UES2603

High Efficiency, 30A Center-Tap

FEATURES

DESCRIPTION

•
•
•
•
•
•
•

This series combines two high efficiency
devices into one package, simplifying
installation, reducing heat sink requirements and the need to purchase
matched components.

Very Low Forward Voltage
Very Fast Switching Speed
Convenient Package
High Surge
Low Thermal Resistance
Mechanically Rugged
Both Polarities Available

ABSOLUTE MAXIMUM RATINGS

Peak Inverse Voltage, UES2601 .
Peak Inverse Voltage, UES2602 .
Peak Inverse Voltage, UES2603
Maximum Average D.C. Output Current at Tc == 100°C
Non-Repetitive Sinusoidal Surge Current 8.3 ms
Thermal Resistance, Junction to Case
Operating and Storage Temperature Range

... 50V
100V
150V
30A
400A

.... PC/W
_55°C to +175°C

POWER CYCLING

SWITCHING CHARACTERISTICS

These devices possess the unique ability to pass many
thousands of cycles of a stress test designed to evaluate the
integrity of the bonding systems used in the construction of
power rectifiers.
In this stress test, the case of the device is not heat sunk.
Full rated forward current is supplied to force a case temperature increase at least 75°C, at which time, the current is
removed and the case allowed to cool. The cycle is repeated a
minimum of 5,000 times to simUlate equipment being turned
on and off. Extended power cycling tests demonstrate a product
capability in excess of 25,000 cycles.

The switching times of these ultra·fast rectifiers increase
relatively little, with temperature or at different currents. Even
in severe applications, such as catch diodes for switching
regulators and output rectifiers for high frequency square
wave inverters, these devices switch many times faster than
the fastest associated transistors. Thus, the stresses on and
powers dissipated in the switching transistors are substantially
less than when using other rectifiers.

MECHANICAL SPECIFICATIONS
UES2601-UES2603

TO-3

.161

POSITIVE OUTPUT

• ~

I

14

•

CASE
NEGATIVE OUTPUT

•

14

I .1

•

[dl,;oo~~~:
135FlJ-i

MAX

CASE

.450

312

.250

M!N

.440
.420

DimensIons in inches.

Not.:
Standard polarity is positive output.
For reverse polarity (negative output) add suffix "R", ie. UES2601R.

475

O:W
_UNITRDDE

III

UES260l- UES2603

ELECTRICAL SPECIFICATIONS
Maximum
Reverse Current
@

Maximum
Type

Forward Voltage
@

PIV

UES260l
UES2602
UES2603

SOV
lOOV
l50V

Tc = 2S'C

Tc = 12S'C

.930V

.825V

@

@

l5A
t. 300I'S

l5A
t. 300p.S

=

Maximum
Reverse
Recovery

Tc =2S'C

Tc = 12S'C

Time·

2Op.A

4mA

35nS

=

* Measured in circuit IF = O.SA, IR = lA, I REe = O.2SA

Typical Reverse Current
vs. Reverse Voltage
.001
.002

I

Forward Current
vs. Forward Voltage
50

V

I

...-H-l
T -+2S'C

.005

J

;( .01
.02

IUJ

UJ

a:
a:
u

.2

~
a:

.5

r---

UJ

i:ia:

r e:=T!
~

I
10
20
50

+l00'C

a:

~

/

0:

...0

___ v1

TJ = +12S'C

'7 "'"

/

0

--- ---V

-"

.5

HJ = +lS0'C

[I
U

/

/

::>

.1

a

_tfJ£.

10

Z

.05

Z

:i

20

:!

.s
I-

TJ = +lSO'C
30

.2

/

,I

.l

!

/

/

\.- V

,-

r.t=
f/
/

~
,-

•

r-TJ - +7S'C
r-TJ = +125'C

/
- - _ TYPICAL V,
MAXIMUM V,

---- =

I

/j
.4

J

V, -

1.0
.6
.8
FORWARD VOLTAGE (V)

1.2

130 120 110 100 90 80 70 60 50 40 30 20 10

V, -

REVERSE VOLTAGE (% OF PIV)

Maximum Forward Surge
vs. Number of Cycles
400

:! 300
I-

Z

UJ

a:
a:

a

"'" "'"

200

100

~

1.0

w

.5

Thermal Impedance
VS. Pulse Width

~

u

... v

'"

""

.2

W

Q.

::<

""

'"
::<

~

.05

0:

w

r

....

"-...

~lCYC~E

-

/

.1

...J

/
/

.02

I

g

.01
.01.02 .05.1 .2

,.....

Ip -

10
20
50
100
CYCLES OF 60 Hz SINEWAVE

N-

30

....

Z

UJ

0:
0:

::>

20

-

::>

Q.

....::>
0

10

I
_0

100

Tc -

10

Q

+
_

-=-

~

....

1000

Reverse·Recovery Circuit
50 f!

~

u

.5 1 2 5 10 20 50100200
PULSE WIDTH (mS)

200

Output Current vs.
Case Temperature

:!

i-i-

vV' V

z

o

I

-~

ii'

25Vdc
(APPROX.)

In

NQTE3

"\

OSCILLOSCOPE

NOTEl

NOTES:
1. Oscilloscope: Rise time ~ 3n5; input impedance = 500.
2. Pulse Generator: Rise time ~ 8ns; source impedance 100.
3. Current viewing resistor, non-inductive, coaxial recommended.

125
150
175
CASE TEMPERATURE ('C)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

476

PRINTED IN U.S.A.

UES2604-U ES2606

RECTIFIERS
High Efficiency, 30A Center-Tap

FEATURES
• Very Low Forward Voltage (l.lSV)
• Very Fast Recovery Times (SOnSec)
• Low Profile Package
• High Surge Capability
• Low Thermal Resistance
• Mechanically Rugged
• Both Polarities Available

DESCRIPTION
The UES2604 series is specifically
designed for operation in power switching
circuits operating at frequencies of at
least 20 KHz.
This series combines two high efficiency
devices into one package, simplifying
installation, reducing heat sink requirements and the need to purchase
matched components.

ABSOLUTE MAXIMUM RATINGS
Peak I nverse Voltage, U ES2604 ....
.. .................................... .
Peak Inverse Voltage, UES260S ............................................... ..
Peak Inverse Voltage, UES2606 ........
.. .............................
Maximum Average D,C. Output Current @ Tc 100'C ............ ..
Surge Current, 8.3mSec .......................................... .
Thermal Resistance, Junction to Case .......... ..
Operating and Storage Temperature Range ...................... ..

................... 200v
.. ... 300V
.. ......... 400V
.... 30A
.. ....................... 300A

=

.. ....................... l·C/W
.... -5S·C to +ISO'C

POWER CYCLING
These devices possess the unique ability to pass many
thousands of cycles of a stress test designed to evaluate the
integrity of the bonding systems used in the construction of
power rectifiers.
In this stress test, the case of the device is not heat sunk.
Full rated forward current is supplied to force a case temperature increase at least 7S'C, at which time, the current is
removed and the case allowed to cool. The cycle is repeated a
minimum of 5,000 times to simulate equipment being turned
on and off. Extended power cycling tests demonstrate a product
capability in excess of 25,000 cycles.

SWITCHING CHARACTERISTICS
The switching times of th'ese ultra·fast rectifiers increase
relatively little, with temperature or at different currents. Even
in severe applications, such as catch diodes for switching
regulators and output rectifiers for high frequency square
wave inverters, these devices switch many times faster than
the fastest associated transistors. Thus, the stresses on and
powers disSipated in the switching transistors are substantially
less than when using other rectifiers.

MECHANICAL SPECIFICATIONS
UES2604·UES2606

•

~

I

14

•

CASE

•

I ~I

NEGATIVE OUTPUT

14

•

£~oo~~:
135-HJr-

MAX.

CASE

.450

.312

.250

MIN

TO·3

.161
.151

.188
MAX.

POSITIVE OUTPUT

I

.525
MAX.
RAO.

.20S
.440
.420

DImensions in inches.

Nat.:
Standard polarity is positive output.
For reverse polarity (nelllltive output) add suffix "R", ie. UES2604R.

[1W
1,/79 (Rev. 1)

477

_UNITRODE

III

UES2604-U ES2606
ELECTRICAL SPECIFICATIONS, PER LEG
Maximum
Forward Voltage

Type

PIV

UES2604
UES2605
UES2606

200V
300V
400V

"'Measured in circuit

IF

= .5A,

lR

=lA, I REC

=

Tc=2SoC

Tc = 125'C

T c =2S'C

Tc =12S'C

Time*

1.25V
@ l5A
tp =300"S

1.l5V
@15A
tp -;; 3OO"S

SO"A

lOrnA

50nS

.25A

Typical Reverse Current
vs. Reverse Voltage

Forward Current
Forward Voltage

VS.

lOOK

=<
.:;

'"

1/
IK

::J

if

Ir
Ir
(J

'"en
'"iii

100

-"

10

Ir

-

-

If

I-

Z

100

IT

10K

50

....- I/,
~
fz

I-i"j/

-

125'C

V

'"

:J

'"
'"u.0

/

-~

I""

-.

1.0

u
z'"

.5

.'"

II

II

L-.!\JL

II II

/

1--'''''-

i1CyLE

~--

V

.2

V

.1

..J

'" ~

1/

",t--,,'1

'f II Y Y

:;;

"-.

(J

:>

II

/V'

o

::J

I

1/- 'il

«

""r--.

/

Thermal Impedance
vs. Pulse Width

~

t

Ir
Ir

-"'j '"

REVERSE VOLTAGE (o". OF PIV)

300

200

.1

j

/

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.11.21.31.41.5
V, - FORWARD VOLTAGE IV)

Maximum Forward Surge
vs. Number of Cycles

I-

I

V

;,tJ

-f-;:';:'

.01

/

/'

-l
l f--~tJ
~jV

.2

.02

1£
o 10 20 30 40 50 60 70 80 90 100110 120130140 ISO

-~ 100

/ /
V/

.05

-I-""

V

/

2

u

-I-"

~

lO

« .5
::
~
2:;-

Z

LI/' L

0

Ir

Ul

~~?

20

'"'"

t-ioO"c

VR -

Maximum
Reverse
Recovery

Maximum
Reverse Current

«
~

.05

'"f-J:

1/

V

I .02
~ .01

i'--. t---

'"

.01.02 .05.1 .2
tp -

.5 1 2 5 10 20 50 100 200
PULSE WIDTH (mS)

1000

o
1

10
20
50
100
N - CYCLES OF 60 Hz SINEWAVE

200

Output Current vs.
Case Temperature

~

30

I-

Z

'"'"

'"

:J

20

U
I-

.

:J

I-

:J

0

10

I
_0

-.....

Reverse-Recovery Circuit
Ion

SOP.

~

'" '""-

0

+
_

-=-

III

NOTE 3

\

ascI LLOSCOPE
NOTE 1

NOTES:

1. Oscilloscope: Rise time::::; 3"s; input impedance = 500.
2. Pulse Generator: Rise time :s;; 8nsj source impedance 100.
3. Current viewing resistor, non~inductive. coaxial recommended.

100
110
120
130
140
150
Tc - CASE TEMPERATURE ('C)
UNITRODE CORPORATION, 5 FORBES ROAD
LEXINGTON. MA 02173 ' TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

25Vdc
(APPROX.)

478

PRINTED IN U.S.A.

PART NUMBER INDEX

RECTIFIER BRIDGE ASSEMBLIES
PAGE

DESCRIPTION

PART NUMBER

PAGE

PART NUMBER

FULL WAVE BRIDGE
431
431
431
433
433
433
435
435
435
435
435
435
437
437
437
437
437
437
437
437
435
435
435
435
435
435
437
437
437
437
437
437
437
437
440
440
440
440
440
440
443
443
443
443
443
443
443
443
443
443
443
443

469-1, J, JTX
469-2, J, JTX
469-3, J, JTX
483-IJTX
483-2JTX
483-3JTX
673-1
673-2
673-3
673-4
673-5
673-6
673-7
673-7.5
673-8
673-8.5
673-9
673-10
673-11
673-12
676-1
676-2
676-3
676-4
676-5
676-6
676-12
676-18
676-24
676-30
676-36
676-42
676-48
676-50
678-1
678-2
678-3
678-4
678-5
678-6
679-1
679-2
679-3
679-4
679-5
679-6
680-1
680-2
680-3
680-4
680-5
680-6

FULL WAVE BRIDGE

I ph; lOA; 200V
1 ph; lOA; 400V
1 ph; lOA; 600V
3 ph; 25A; 200V
3 ph; 25A; 400V
3 ph; 25A; 600V
1 ph; 1.5A; 100V
1 ph; 1.5A; 200V
1 ph; 1. 5A; 300V
1 ph; 1. 5A; 400V
I ph; 1.5A; 500V
I ph; 1. 5A; 600V
1 ph; H.V.; 1200V
1 ph; H.V.; 1800V
1 ph; H.V.; 2400V
1 ph; H.V.; 3000V
1 ph; H.V.; 3600V
I ph; H.V.; 4200V
I ph; H.V.; 4800V
I ph; H.V.; 5000V
I ph; LOA; 100V
1 ph; I.OA; 200V
1 ph; 1. OA; 300V
1 ph; 1. OA; 400V
I ph; LOA; 500V
I ph; LOA; 600V
1 ph; H.V.; 1200V
I ph; H.V.; 1800V
I ph; H.V.; 2400V
1 ph; H.V.; 3000V
I ph; H.V.; 3600V
I ph; H.V.; 4200V
I ph; H.V.; 4800V
I ph; H.V.; 5000V
3 ph; 25A; 100V
3 ph; 25A; 200V
3 ph; 25A; 300V
3 ph; 25A; 400V
3 ph; 25A; 500V
3 ph; 25A; 600V
I ph; 25A; 100V
I ph; 25A; 200V
1 ph; 25A; 300V
I ph; 25A; 400V
I ph; 25A; 500V
I ph; 25A; 600V
I ph; lOA; 100V
I ph; lOA; 200V
1 ph; lOA; 300V
1 ph; lOA; 400V
I ph; lOA; 500V
I ph; lOA; 600V

440
440
443
443
443
443
443
443
443
443
443
443
443
443

681-1
681-2
681-3
681-4
681-5
681-6

440
440
440
440

682-1
682-2
682-3
682-4

15.0A;
15.0A;
15.0A;
15.0A;
15.0A;
15.0A;

100V
200V
300V
400V
500V
600V

20A;
20A;
20A;
20A;

3
3
I
I
I
I
I
I
I
I
I
I
I
I

ph;
ph;
ph;
ph;
ph;
ph;
ph;
ph;
ph;
ph;
ph;
ph;
ph;
ph;

20A;
20A;
20A;
20A;
20A;
20A;
20A;
20A;
lOA;
lOA;
lOA;
lOA;
lOA;
lOA;

500V
600V
100V
200V
300V
400V
500V
600V
100V
200V
300V
400V
500V
600V

446
446
446
446
446
446

689-1
689-2
689-3
689-4
689-5
689-6

15A;400V
15A; 500V
15A; 600V

440
440
440
440
440
440
440
440
440
440
440
440
448
448
448
448
448
448
448
448
448
448
448
448
450
450
450
450
450
450
450
450
450
450
450
450
452
452
452
452
452
452

695-1
695-2
695-3
695-4
695-5
695-6
696-1
696-2
696-3
696-4
696-5
696-6
697-1
697-2
697-3
697-4
697-5
697-6
698-1
698-2
698-3
698-4
698-5
698-6
700-1
700-2
700-3
700-4
700-5
700-6
701-1
701-2
701-3
701-4
701-5
701-6
800-1
800-2
800-3
800-4
801-1
801-2

3 ph; 15A; 100V
3 ph; 15A; 200V
3 ph; 15A; 300V
3 ph; 15A; 400V
3 ph; 15A; 500V
3 ph; 15A; 600V
3 ph; 15A; 100V
3 ph; 15A; 200V
3 ph; 15A; 300V
3 ph; 15A; 400V
3 ph; 15A; 500V
3 ph; 15A; 600V
1 ph; 2.5A; 100V
1 ph; 2.5A; 200V
1 ph; 2.5A; 300V
I ph; 2.5A; 400V
1 ph; 2.5A; 500V
I ph; 2.5A; 600V
1 ph; 2.25A; 100V
1 ph; 2.25A; 200V
1 ph; 2.25A; 300V
1 ph; 2.25A; 400V
1 ph; 2.25A; 500V
1 ph; 2.25A; 600V
3 ph; 2.5A; 100V
3 ph; 2.5A; 200V
3 ph; 2.5A; 300V
3 ph; 2.5A; 400V
3 ph; 2.5A; 500V
3 ph; 2.5A; 600V
3 ph; 2.25A; 100V
3 ph; 2.25A; 200V
3 ph; 2.25A; 300V
3 ph; 2.25A; 400V
3 ph; 2.25A; 500V
3 ph; 2.25A; 600V
3 ph; 40A; 50V
3 ph; 40A; 100V
3 ph; 40A; 125V
3 ph; 40A; 150V
3 ph; 20A; 50V
3 ph; 20A; 100V

15A; 100V
15A;200V
15A;300V

FULL WAVE BRIDGE

FULL WAVE BRIDGE
3 ph;
3 ph;
3 ph;
3 ph;

682-5
682-6
683-1
683-2
683-3
683-4
683-5
683-6
684-1
684-2
684-3
684-4
684-5
684-6

DOUBLE OR
CENTER-TAP

DOUBLER OR
CENTER-TAP
446
446
446
446
446
446

DESCRIPTION

100V
200V
300V
400V

·Contact Unitrode for specifications and ratings.
Legend, J -

JAN

JTX -

JANTX

JTXV -

JANTXV

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064

479

PRINTED IN U.S.A.

•

PART NUMBER INDEX

PAGE

DESCRIPTION

PART NUMBER

PAGE

PART NUMBER

FULL WAVE BRIDGE

FULL WAVE BRIDGE
452
452
455
455
455
455
455
455
455
455

3 ph;
3 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;

801-3
801-4
802-1
802-2
802-3
802-4
803-1
803-2
803-3
803-4

20A; 125V
20A; 150V
35A; 50V
35A;'100V
35A; 125V
35A; 150V
20A; 50V
20A; 100V
20A; 125V
20A; 150V

465
465
465
465
465

804-1
804-2
804-3
804-4
PMB101
PMB102
PMB103
PMB104
PMB105
PMB106
PMB107
PMB101X
PMB102X
PMB103X
PMB104X
PMB105X
PMB106X
PMB107X
PMB201
PMB202
PMB203
PMB204
PMB205
PMB201X
PMB202X
PMB203X
PMB204X
PMB205X

463
463
463
463
463
463
463
463
463
463
463
463
463
463
463
463
463
465
465
465
465
465
465
465

PMClOl
PMC102
PMC103
PMC104
PMC104
PMC105
PMC101X
PMC102X
PMC103X
PMC104X
PMC105X
PMC201
PMC202
PMC203
PMC201X
PMC202X
PMC203X
PMDlOl
PMD102
PMD103
PMD104
PMD101X
PMD102X
PMD103X

PMD104X
PMD201
PMD202
PMD201X
PMD202X

3
3
3
3
3

ph;
ph;
ph;
ph;
ph;

6A;
6A;
3A;
6A;
6A;

2.5kV
5.0kV
lOkV
2.5kV
5.0kV

DOUBLER OR
CENTER-TAP

DOUBLER OR
CENTER-TAP
458
458
458
458
461
461
461
461
461
461
461
461
461
461
461
461
461
461
461
461
461
461
461
461
461
461
461
461

DESCRIPTION

20A;50V
20A; 100V
20A; 125V
20A; 150V
l.OA; 2.5kV
l.OA; 5.0kV
l.OA; 7.5kV
l.OA; lOkV
l.OA; 15kV
l.OA; 20kV
l.OA; 30kV
l.OA; 2.5kV
l.OA; 5.0kV
l.OA; 7.5kV
l.OA; 10kV
l.OA; 15kV
l.OA; 20kV
l.OA; 30kV
2.0A; 2.5kV
2.0A; 5.0kV
2.0A; 7.5kV
2.0A; lOkV
2.0A; 15kV
2.0A; 2.5kV
2.0A; 5.0kV
2.0A; 7.5kV
2.0A; lOkV
2.0A; 15kV

467
467
467
469
469
469

SES5401C
SES5402C
SES5403C
SES5601C
SES5602C
SES5603C

471
471
471
471

SPA25, J
SPB25,J
SPC25, J
SPD25, J

16A:
16A:
16A:
25A;
25A;
25A:

50V: TO-220
100V; TO-220
150V; TO-220
50V; TO-220
100V; TO-220
150V; TO-220

FULL WAVE BRIDGE
1 ph;
1 ph;
1 ph;
1 ph;

25A;
25A;
25A;
25A;

100V
200V
400V
600V

DOUBLER OR
CENTER-TAP
473
473
473
475
475
475
477
477
477

UES2401
UES2402
UES2403
UES2601
UES2602
UES2603
UES2604
UES2605
UES2606

16A,
16A;
16A,
30A;
30A;
30A;
30A;
30A;
30A:

50V; TO-220
100V; TO-220
150V; TO-220
50V; TO-3
100V: TO-3
150V; TO-3
200V; TO-3
300V: TO-3
400V; TO-3

FULL WAVE BRIDGE
1 ph;
1 ph;
1 ph;
1 ph;
I ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;

2A;
2A;
2A;
2A;
2A;
2A;
2A;
2A;
2A;
2A;
2A;
4A;
4A;
4A;
4A;
4A;
4A;
3A;
3A;
3A;
3A;
3A;
3A;
3A;

2.5kV
5.0kV
7.5kV
15kV
10kV
15kV
2.5kV
5.0kV
7.5kV
10kV
15kV
2.5kV
5.0kV
7.5kV
2.5kV
5.0kV
7.5kV
2.5kV
5.0kV
7.5kV
lOkV
2.5kV
5.0kV
7.5kV

·Contact Unitrode for specifications and ratings.
Legend: J -

JAN

JTX -

JANTX

JTXV -

JANTXV

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

480

PRINTED IN U.S.A.

SALES OFFICES
PART NUMBER INDEX

II

DESIGNERS' GUIDES

III

POWER TRANSISTORS & DARLINGTONS

IV

SWITCHING REGULATOR POWER CIRCUITS

V

RECTIFIERS

VI

HIGH VOLTAGE RECTIFIERS, RECTIFIER
MODULES & MULTIPLIERS

VII

RECTIFIER BRIDGE ASSEMBLIES

VIII

POWER ZENERS & TRANSIENT VOLTAGE SUPPRESSORS

III

THYRISTORS (SCRs, Triacs, PUTs)

X

SWITCHING & GENERAL PURPOSE DIODES

XI

PIN DIODES

Xli

CAPACITORS

XIII

APPLICATION NOTES & DESIGN NOTES

XIV

MECHANICAL SPECIFICATIONS

XV

481

482

POWER ZENERS AND TRANSIENT
VOLTAGE SUPPRESSORS

PRODUCT SELECTION GUIDE

A

Transient Voltage Suppressors

5.0
10.0
12.0
15.0
18.0
24.0
28.0
48.0
60.0
100.0
200.0
300.0

6.0
11.1
13.8
16.7
20.4
28.4
30.7
54
67
111
234
342

17
8.9
7.1
5.9
4.9
3.6
3.2
1.7
1.4
.91
.42
.28

5.0
10.0
12.0
15.0
18.0
24.0
28.0

6.0
11.1
13.8
16.7
20.4
28.4
30.7

53.7
30.3
23.8
19.8
16.3
11.9
10.7

9.3
16.5
21.0
25.2
30.5
42.0
46.5

33.0
43.7
54.0
191.0

32.0
24.0
19.0
5.7

47.5
63.5
79.5
265.0

I. f

eel

8.7
16.8
21.0
25
31
42
46
82
105
160
360
520

lEI

'Available," JAN & JANTX

Bi-directional Zeners

AA

UDZ5815
UDZ5818
UDZ5820
UDZ5824
UDZ5827
UDZ5830
UDZ5833
UDZ5836
UDZ5840
UDZ5845
UDZ860
UDZ230
UDZ222
UDZ210
UNITRODE CORPORATION, 5 FORBES ROAD
LEXINGTON, MA 02173 ' TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

483

UDZ5860
UDZ5230
UDZ5222
UDZ5210

PRINTED IN U.S.A.

POWER ZENERS AND TRANSIENT
.VOLTAGE SUPPRESSORS

A

UZ8711
UZ8712
UZ8713
UZ8714
UZ8715

IN4466*
IN4467*
IN4468*
IN4469*

IN5068
IN4883
IN5069
IN5070
IN5071

UZ8716
UZ8718
UZ8720
UZ8722
UZ8724

IN4470*
IN4471 *
IN4472*
IN4473*
IN4474*

UZ8727
UZ8730
UZ8733
UZ8736

IN4475*
IN4476*
IN4477*
IN4478*
IN4479*

UZ8740
IN4480*
UZ8745
IN4481 *
UZ8750

UZ8756
UZ8760

B

UZ4715

IN4959*
IN4960*
IN4961*
IN5118
IN4962*

UZ771IL
UZ771.2L
UZ7713L
UZ7714L
UZ7715L

UZ7711
UZ7712
UZ7713
UZ7714
UZ7715

IN5072
IN5073
IN4884
IN5074
IN5075

UZ4716
UZ4718
UZ4720
UZ4722
UZ4724

IN4963*
IN4964*
IN4965*
IN4966*
IN4967*

UZ7716L
UZ7718L
UZ7720L
UZ7722L
UZ7724L

UZ7716
UZ7718
UZ7720
UZ7722
UZ7724

IN5076
IN5077
IN5078
IN5079
IN5080

UZ4727
UZ4730
UZ4733
UZ4736
UZ4739

IN4968*
IN4969*
I N4970*
1N4971*
IN4972*

UZ7727L
UZ7730L
UZ7733L
UZ7736L

UZ7727
UZ7730
UZ7733
UZ7736

IN5119
IN4973*
IN5120
IN4974*
IN5121

UZ7740L

UZ7740

UZ7745L

UZ7745

UZ7750L

UZ7750

UZ7756L
UZ7760L

UZ7756
UZ7760

IN5081
IN5082
IN5083
IN5084
IN5085

IN4482*
IN4483*

UZ4712
UZ4713

UZ4743
UZ4747

UZ4751
UZ4756

*.Available as JAN, JANTX, & JANTXV
For 100 ,usee pulse width
fused~in-glass construction
t 10% and 20% tolerance also available.

**

:t: Unitrode

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

484

PRINTED IN U.S.A.

PRODUCT SELECTION GUIDE

CL

C

IN4486

UZ4775

IN4487

UZ4782

IN4488
lN4489

IN4095
IN4097
IN5096
IN5097
IN5098
IN5099
IN4098
IN5100
IN5101
IN5102
IN5l03
IN5l04
IN5105
IN5l06
IN5l07

UZ4791
UZ4110
UZ411 I
UZ4112
UZ4113

IN498l*
lN4982*
IN4983*
IN4984*
lN4985*

UZ4115
UZ4116

IN4986*
lN4987*
IN5127
lN4988*

UZ4118
UZ4120

UZ7790L

UZ7790

UZ71l0L

UZ71l0

•

IN5l28
lN4989*
IN4990*
lN499l'
lN5l29
lN4992IN5l30
lN4993'
IN5l3l
lN4994'

IN5l08
IN5109
IN5110
IN5111
lN51l2

• Available as JAN, JANTX, & JANTXV

** For 100 p'sec pulse width
:; Unitrode fused-in-glass construction
10% and 20% tolerance also available.

t

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA ·02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

485

PRINTED IN U.S.A.

POWERZENERS

1N4461·1 N4496
JAN, JANTX & JANTXV

1.5 Watt, Military

FEATURES
• 5 Times Greater Surge Rating than
JANIN3016 Series
• Low Reverse Current: to 50nA
• 14 Size of Conventional 1 Watt Zeners

DESCRIPTION
Fused-in-glass, metallurgically bonded
1.5 watt zeners, qualified to MIL-S-19500/406.

ABSOLUTE MAXIMUM RATINGS
Zener Voltage, Vz .
. ........ 6.8 to 200V
Continuous Current
.......... See Table
Surge Current (8.3ms)
...................... See Table
Surge Power...
......................................... See Graph
Power .......................................................................... See Lead Temperature Derating Curve
Storage and Operating Temperature ............. "...
............. -65°C to +175°C

MECHANICAL SPECIFICATIONS
JAN, JANTX & JANTXV lN4461-1N4496

1

8and jndjcate~....
cathOde end '\

r

,155" TVP .....l
3.9mm

I

.028"

BODY A

~.OOl

O.71mm :t.Ol

111

Max. Surge Power
vs. Surge Duration

Power Dissipation
vs. Lead Temperature Oerating Curve

~

z

o

10K
2.5 1--+--+--+--1r--+-+~

'"

~
iii

'"
~

;;:
0

1.5

f---+-+--'!,'

x

S~UARE PUiLSE_

2K
IK

"- 500

UJ
.",

0:

200



uJ

«
::;:

IKr----~---~--~

I

5K

UJ

II)

o

~

Typical Zener Impedance
VS. Zener Current

lOOj

=1mA

Maximum Reverse
leakage Current
Voltage
Regulation
l>BV §§

Ohms

Volts

1000
800
600
400
125

125
100
100
75
75

1.0
1.5
1.5
2.0
2.0
2.5
2.5
3.0
3.5
3.5

0.7
0.7
0.7
0.7
0.8
0.8
0.8
0.8
1.0

18
20
22
24
27

65
65
50
50
50

4.0
4.5
5.0
5.0
6.0

160
165
170
175
180

30
33
36
39
43

40
40
30
30
30

8
10
11
14
20

47
51
56
62
68

25
25
20
20
20

1N4979*
1N4980*
1N4981*
1N4982*
1N4983*

75
82
91
100
110

1N4984*
1N4985'
1N4986*
1N4987*
1N4988'

Tolerance

1N4954*
1N4955*
1N4956*
1N4957*
IN4958*
1N4959*
1N4960*
1N4961*
1N4962*
1N4963*

Maximum Ratings

I, tt

I,

pA

150 300
100 200
50 100
25 50
25 25

Maximum
Maximum
Temperature Continuous

V,

Coell.
Tc@I ZT

Current
I'M

Volts

%!'C

mA

*

Maximum
Surge

Currenti
I,
Amps

5.2
5.7
6.2
6.9
7.6

.05
.06
.06
.06
.07

700
630
580
520
475

40
32
24
22
20

19
18
16
12
10

1.1

10
10
10
5
5

15
10
10
5
5

8.4
9.1
9.9
11.4
12.2

.07
.07
.08
.08
.08

430
395
365
315
294

1.2
1.5
1.8
2.0
2.0

5
2
2
2
2

5
2
2
2
2

13.7
15.2
16.7
18.2
20.6

.085
.085
.085
.090
.090

264
237
216
198
176

9.0
8.0
7.0
6.5
6.0

190
200
220
230
240

2.5
2.8
3.0
3.0
3.3

2
2
2
2
2

2
2
2
2
2

22.8
25.1
27.4
29.7
32.7

.090
.095
.095
.095
.095

158
144
132
122
110

5.5
5.0
4.5
4.0
3.5

25
27
35
42
50

250
270
320
400
500

3.5
4.0
4.4
5.0
5.5

2
2
2
2
2

2
2
2
2
2

35.8
38.8
42.6
47.1
51.7

.095
.095
.095
.100
.100

100
92
84
76
70

3.2
3.0
2.8
2.5
2.2

20
15
15
12
12

55
80
90
110
125

620
720
760
800
1000

6.0
6.6
7.5
8.0
9.0

2
2
2
2
2

2
2
2
2
2

56.0
62.2
69.2
76.0
83.6

.100
.100
.100
.100
.100

63.0
58.0
52.5
47.5
43.0

2.0
1.8
1.6
1.4
1.2

120
130
150
160
180

10
10
8
8
5

170
190
330
350
450

1150
1250
1500
1650
1750

10
11
13
14
16

2
2
2
2
2

2
2
2
2
2

91.2
98.8
114.0
121.6
136.8

.100
.105
.105
.105
.110

39.5
36.6
31.6
29.4
26.4

1N4989'
1N4990'
1N4991'
1N4992'
1N4993'

200
220
240
270
300

5
5
5
5
4

500
550
650
800
950

1850
2000
2050
2100
2150

18
19
22
25
28

2
2
2
2
2

2
2
2
2
2

152
167
182
206
228

.110
.115
.115
.120
.120

23.6
21.6
19.8
17.5
15.6

1.00
0.80
0.75
0.70
0.60
0.50
0.50
0.40
0.35
0.30

1N4994'
1N4995'
1N4996

330
360
390

4
3
3

1175
1400
1800

2200
2300
2500

32
35
40

2
2
2

2
2
2

251
274
297

.120
.120
.120

14.4
13.0
12.0

0.25
0.22
0.20

130
140
145
150
155

• Available as JAN, JANTX & JANTXV.
t All zener Yoltages are measured with an automated test set using a 35 msec test time. Longer or shorter test times will have a corresponding effect on the measured value due to heating effects.
§ Zener impedance is derived from the 6D-cycle Yoltage created when AC current with RMS value of 10% of DC zener test current is super~
imposed on the test current.
!t§~BV is obtained by measuring the voltage change when the test current is changed from 10% to 50% of Iz max under DC conditions. Dur~
ing this measurement the leads are heat sunk .375 inch from the body and maintained at 25°C.
Maximum CUrrent based on 5 Watt Rating. See lead temperature derating curves for proper mounting methods.
i Figures shown are for peak sinusoidal surge current of 8.3 msec duration, non·repetitive. The 8.3 ms square pulse rating is 71% of the value
shown.
t t These specifications apply only to JAN and JANTX

*

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064

489

PRINTED IN U.S.A.

.POWER ZENERS

JAN &JANTX IN5610-1N5613

Transient Suppressor Diodes

FEATURES
• 1500 Watts for 1ms Pulse Power Capabifity
• Small Physical Size
• Designed to be Used in Mil-Std-704A Applications

DESCRIPTION
Zener diodes with high surge capability
qualified to MIL-S-19500/434. 1N5555 series
in 00-13 package and 1N5610 series on
double C body for ultimate reliability in
repetitive surge applications.

ABSOLUTE MAXIMUM RATINGS (at 25'C except where otherwise noted)
lN5611

lN5610

Zener Voltage ..
Forward Surge Current

200A ....

Zener Surge Current, at 25°C
Surge Current, at 150°C
Surge Power .

lN5&12

See Electrical Specifications
.... . 200A
...... 200A .... .
19.0A ..
24.0A .

... 32.0A
......... 5.5A

.. 4.8A
See Graph.

Storage and Operating Temperature ...

... 3.2A ....

lN5613

............ 200A
5.7A
... 1.0A

-WC to +175°C .

JAN & JANTX lN5810-1N5613

Double C BODY

f

185"
0 .MAX.

i

Polarity: Cathode indicated by band.
Weight: 1.5 gram (approximate).
Mounting Position: Any. Leads: Tinned Copper.
Marking: Type number marked on unit.

[lliJ
1179

490

_UNITRODE

JAN & JANTX lN56l0-lN56l3

ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Max.
Reverse
Min. Zener
Voltage §
Vz@ ImA

Type

Max. Zener
Voltaget
Vz @ Is
"A

Volts

Volts

Typical
Temperature
Coefficient
%/oC

5.0
5.0
5.0
5.0

30.5
40.3
49.0
175.0

4.B
4.B
4.B
4.B

.093
.094
.096
.100

I,@V,

Volts

Volts

Amps

lN561O*
lN56U*
lN5612*

33.0
43.7
54.0

47.5

IN5613*

191.0

32.0
24.0
19.0
5.7

63.5
79.5
265.0

Max.
Forward
Voltage*
@ 100 Amps

Leakage
Current

Notes, * Available as JAN and JANTX.
§ Duration of applied current :s;; 300ms, duty cycle:;;;; 2%.
t Utilizing a pulse which decays exponentially to 50% of the peak value in Ims. See graph en titled "Pulse Waveform."
Peak Sinusoidal surge current of 8.3ms duration, non-repetitive.

*

Peak Power Rating vs. Pulse Width"

APPLICATIONS
Voltage transients can be suppressed with series elements, shunt elements, or a
combination of both. These elements may be passive or active. For low and
medium power applications, a series resistor and zener clamp offer several
attractive features:
1. Simplicity of design
2. High reliability
3. Fast response time
The IN5610 series of surge suppressors will suppress the following transients
defined by MIL-S-704A without the use of any series limiting resistance beyond
that provided by the source:
1. All 600V transients (category # 1 on chart below)
2. All BOV transients except those generated by the main voltage regulator
(category #2 on chart below)
3. The overvoltage transients generated by the main voltage regulator (category
#3 on chart below) will also be suppressed by the IN5610 series if:
a. A 20 ohm series limiting resistor is used, or
b. No series resistance is used but the zener is protected within 500 I'S by
using, for example, an SCR crowbar
The above statements are based on the source impedances and dv / dt characteristics as given in ARINC* Specification #413. This report entitled "Guidance for
Aircraft Electrical Power Utilization and Transient Protection" serves to further
define MIL-STD-704A for large aircraft electrical sYstems.

lOOK

l
SOK f- 'Pulse Wi~th is defined as that _
point at which pulse power
decays to 50% of peak

20K
10K

!

c:
UI
!:

..........
.............

5K

0

0.

~

2K
IK

'"
«
UI

............

200
100
.01

Source of
Transient

Maximum
Amplitude

Duration

Min. Source
Impedance

dv/dt

10

.1
TIME (ms)

Pulse Waveform

g
i;!

it:

!:1

100%

~
z
~
~
~

50

I~

u

Category

r-...

500

0.

ir
~

l"-I'-- -

4

TIME (ms)

~ 10"s

50 ohms

80 V

~

IOms

15 ohms

BOV

;;;, 10 ms

0.2 ohms

1.

Inductive
Switching

600 V

2.

BUS
Switching

3.

Main Voltage
Regulator

Peak Power Rating"
vs. Ambient Temperature
!1

These Surge Suppressors are useful in a variety of other applications where semiconductor devices must function reliably in an environment subject to extremely
high but short term surges.

* ARINC stands for Aeronautical

2000

5OV/ms

1500

~
0::

UI

1000

~
0.

Radio, Inc. (Annapolis, Maryland 21401)

~

500

o

-~

Millisec~nd PUIS~

~

~

n

~

m

ill

AMBIENT TEMPERATURE (OC)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

491

PRINTED IN U.S.A.

TRANSIENT VOLTAGE SUPPRESSORS

TVS305·TVS430
TVS505·TVS528

FEATURES

DESCRIPTION

• Up to 500W for ImS Pulse Power
Capability
• Clamping Time in Picoseconds
• Direct Applicability for all popular
Microprocessors and IC families
• Metallurgically bonded assembly system
to assure long term reliability
• Miniature glass encased hermetically
sealed package

Unitrode's TVS series of transient
voltage suppressors feature oxide
passivated zener type chips with fullfaced metallurgical bonds on both sides to
achieve high surge capability and negligible electrical degradation under repeated
surge conditions. The series is especially
useful in protecting microprocessor, MOS,
CMOS, TTL, Schottky TTL, ECl, J2l and
linear integrated circuits from spurious
transient disturbances.

ABSOLUTE MAXIMUM RATINGS @ 25'C
TVS5D5-TVS528

TVS3D5-TVS43D

Stand-off Voltage, VA ..................................................................... 5 to 300V ................................. 5.0V to 28.0V
Peak Pulse Power (lmS)" ...................................................................... 150W ............................................ 500W
Forward Surge Current (8.3mS half sinewave) .............................................. 15A ""'''''''''''''''''''''''''''''''''''''''''' 50A
Peak Pulse Current ......................................................................... See Table ....................................... See Table
Breakdown Voltage .......................................................................... See Table ........................................ See Table
Power, Continuous "",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 3W ............................................... 5W
Storage and Operating Temperature ............................................ -65 to + 175'C ............................... -65to + 175'C
"See Figures 3 and 4 for Peak Pulse Power vs Pulse Duration.

MECHANICAL SPECIFICATIONS

1
.•55" TYP.
1.4mm

Indicate~_ II

Band
cathode end"

0'I CLr

.155" TYP.
J.9mm

Nil'
. III

TVS305 Series

BODY A

TVS505 Series

BODY B

.028" ..... 001
O.71mm !::.03

j
I

I

T

~O .085" MAX.
..JJ
2.16tm

.a85"
~2.2mm
TYP.

1-.7f~.·~~~N'_1--.2~~~5~~ _

1--____ 1.~~~;:~N.-----.j

MECHANICAL SPECIFICATIONS

.040":!: .001

l.02mm =:.03

.975" MIN.
24.8mm

2/80

492

[ill]

_UNITRaCE

TVS 305-TVS 430
TVS 505-TVS 528

ELECTRICAL SPECIFICATIONS @ 25'C

TVS

Part No.

TVS305
TVS310
TVS312
TVS315
TVS318
TVS324
TVS328
TVS348
TVS360
TVS410
TVS420
TVS430
TVS505
TVS510
TVS512
TVS515
TVS518
TVS524
TVS528

Stand
·Off
Voltage
V,

Min.
Breakdown
Voltage
BVlml'l @ 1mA

Max.
Leakage
Current
I.@V,

V

V
6.0
11.1
13.8
16.7
20.4
28.4
30.7
54
67

p.A

5.0
10.0
12
15
18
24
28
48
60
100
200
300
5.0
10.0
12.0
15.0
18.0
24.0
28.0

Peak
Pulse Current""
Ipp

Max.
Clamping
Voltage'
Vc @ Ip.

Max.
Clamping
Voltage'
Vc@lA

Max.
Clamping
Voltage*
Vc @
5A
lOA

A
17
8.9
7.1
5.9
4.9
3.6
3.2
1.7
1.4
.91
.42
.28
53.7
30.3
23.8
19.8
16.3
11.9
10.7

V
8.7
16.8
21.0
25
31
42
46
82
105
160
360
520
9.3
16.5
21.0
25.2
30.5
42.0
46.5

V

V

Max.

50
2
1
1
1
1
1
1
1
1
1
1
300
5
5
5
5
5
5

111

234
342
6.0
11.1
13.8
16.7
20.4
28.4
30.7

-

-

7.4
13.2
16.5
19.7
23.8
32.4
35.9

-

26.0
37.0
41.0

-

-

7.9
14.4
18.5
22.2

-

-

-

·For ImS pulse: see Figure 1.

Pulse Waveform

1.

j
"0
~
>z

Derating Curve

2.
100

\

75

\

=

PULSE TIME DURATION (tp)
POINT
WHERE I. DECAYS TO 50% OF Ipp

UJ

~100

:::>

u

UJ

en

...J

:::>
0..

I 50
~

~

50

25

.~

----------

o

t-TIME (ms)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064

493

•

i\.

1\

\

o

50

1\

100
150
TEMPERATURE ('C)

200

PRINTED IN U.S.A.

TVS305-TVS430
TVSS05-TVS528

3.
10

Peak Pulse Power vs. Pulse Duration

""-

Peak Pulse Power vs. Pulse Duration
(WAVE FORM - SEE FIGURE 1)

EXPONENTIAL
PULSE

'" ""-

~

10

"-

" , 0 5 series

~

~

::>

"'~""-

",05s.n.s

,

"-

"-

100,,5
PULSE TIME

MAX. DUTY CYCLE •. 0.1 %

!<'"
0

.01

5.

4.
100

'"~
"-

"

"

I

a:
.1

IOmS

ImS

"

ImS

(t,>

PULSE TiME (t,>

lamS

6. Clamping Voltage vs. Pulse Current

Capacitance YS. Stand·Off Voltage
100

10,000

SEE FIGURE 1 FOR WAVEFORM

<:.
UI

t'l

MEASURED
@ZEROBIAS-

'"

o
z
;!:

~1000

5

MEASURED @ V,

~

IN-

""'\

--t-

r--

528
525
518
515

----

20

0

>
t'l

z

a:::;;

~MEASURED @ ZERO BI~S
1...1

I

ct'

«

IoJ

50
40
30

10

~!2
,510
05

«
oJ

TVS

0

505

I

'"

>"

M~dukJJ@~ I'} TVS
305

100

1
V, -

10
STAND·OFF VOLTAGE -

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

1

100

10

1

(V)

I, -

494

20

50

100

PULSE CURRENT (AI

PRINTED IN U.S.A.

TVS305·TVS430
TVS505·TVS528

CHOOSING AND SPECIFYING THE PROPER TVS

The following terms are generally used in specifying Transient Voltage Suppressors (TVS):

1.
2.

Stand·off Voltage (VR) is the highest reverse voltage at which the TVS will be non·conducting.
Minimum Breakdown Voltage (BV min) is the reverse voltage at which the TVS conducts

1 milli·amp. This is the point where the TVS begins to limit the transient.

3. Maximum Clamping Voltage (V c max) is the maximum voltage the TVS will allow during a
transient "spike."
Figure 7 graphically shows all three terms.

lmA--------

II
+
Figure 7

The three most important factors in choosing the appropriate TVS for an application in their order
of importa'nce are:

1.

Pulse power (Pp) - Choose the TVS series that will handle the Transient Pulse Power.
Transient Pulse Power is equal to the clamping voltage (Vel times the peak pulse current
(ipp). The pulse duration vs. pulse power graph on the TVS data sheet can then be used to
determine the maximum allowable pulse duration. (Figure 3 or 4).

2.

Standoff voltage (VR) - From the TVS series selected, choose the device with the stand-off
voltage equal to or greater than the normal circuit operating voltage.

3.

Maximum Clamping Voltage (V CMAX ) - Determine the clamping voltage of the device chosen for the
transient given and be sure it is below the voltage that might damage any components.

For further information see Unitrode Application Note U-79, "Guidelines for Using Transient Voltage
Suppressors. "

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

495

PRINTED IN U.S.A.

UDZ807 SERIES
UDZ5807 SERIES
UDZ7807 SERIES
UDZ8807 SERIES

AC POWER ZENERS
1, 3, 5, and 6 Watt Types

FEATURES
• Zener Characteristics in Both Directions
• 7.5 to 300V
• High Surge Ratings
• Small Physical Size

DESCRIPTION
These devices consist of two fused-in-glass
zeners brazed anode-to-anode to provide
zener action in both directions.

.

ABSOLUTE MAXIMUM RATINGS
Zener Voltage .
Continuous Current.
Surge Current (8.3ms)
Surge Power .

. ............................ .7.5 to 300V
................ See Tables
.................................... See Tables
.. See Graph

Power.

............................................... See Data Sheets for Related Series
(UZ8807, UZ807, UZ5807, and UZ7807)
Storage and Operating Temperature
.......-65·C to +175'C

MECHANiCAL SPECIFICATIONS
UOZ807 SERIES

UDZ5B07 SERIES

UDZ7807 SERIES

UDZ8B07 SERIES

1 & 3 WATT 5 WATT 6 WATT
~

MARKING: "0," followed by last 3 to 4
digi.ts and part number.
Example: 7.5 volt :t10%,
1 watt type would be

marked: "D8807".

Dimensions
1 Watt UDZ8807 Series
A•. 475" max.
B •. 104" max.
C•. 300" typical
D•• 028" ± .001"
E.•975" min.

3 Watt UDZ807 Series
A. .450" max.
B•. 085" max.
C.. 275" typical
D.. 028" ± .001"
E•.700" min.

5 Watt UDZ5807 Series

6 Watt UDZ7807 Series

A•. 500" max.

A.. 600" max.

B.. 145" max.
C. .325" typica I
D.. 040" ± .001"
E.. 975" min.

B •• 185" max.
C.•430" typical
D.• 040" ± .001"
E..925" min.

OJ-l]
496

_UNITRODE

UDZ807 SERIES UDZ5807 SERIES UDZ7807 SERIES UDZ8807 SERIES

Electrical Specifications at 25'C
Type

±10%

Tolerance *

Nominal
Zener
Voltaget
Vz @ lIT
Volts

Test
Current
lIT

Max. Zener Imped §
Zz
@

lIT

mA

Maximum Ratin,s··

Maximum
Leakage @ Reverse Voltage
±10%
Current

Ohms

"A

1 WATT ZENERS - Specifications apply for both directions.
7.5
34
UDZ8807
6
50
8.2
31
UDZ8808
7
30
9.1
28
8
UDZ8809
10
10
25
UDZ8810
8.5
3
12
23
UDZ8812
9
1
15
17
14
UDZ8815
0.5
18
14
20
0.5
UDZ8818
20
UDZ8820
12.5
23
0.5
24
10.5
25
UDZ8824
0.5
27
9.5
UDZ8827
35
0.5
30
8.5
40
0.5
UDZ8830
33
7.5
45
0.5
UDZ8833
36
7.0
50
0.5
UDZ8836
40
UDZ8840
6.5
62
0.5
45
6
75
0.5
UDZ8845
60
4
125
UDZ8860
0.5

±5%

Maximum

Maximum

Cont.
Current
IZII

Surlll'
Current;
Is

Volts

Volts

mA

4.9
5.4
5.9
6.6
8.6
10.8
12.9
14.4
17.3
19.4
21.6
23.7
25.9
28.8
32.4
43.2

5.2
5.7
6.2
6.9
9.1
11.4
13.7
15.2
18.2
20.6
22.8
25.1
27.4
30.4
34.2
45.6

125
115
105
95
85
63
52
47
40
35
31
28
26
24
22
15

5
4.5
3.9
3.37
2.25
1.65
1.12
1.12
0.825
0.825
0.825
0.675
0.562
0.562
0.450
0.337

4.9
5.4
5.9
6.6
8.6
10.8
12.9
14.4
17.3
19.4
21.6
23.7
25.9
28.8
32.4
43.2

5.2
5.7
6.2
6.9
9.1
11.4
13.7
15.2
18.2
20.6
22.8
25.1
27.4
30.4
34.7
45.6
76
167.2
228

400
360
330
300
250
200
170
150
125
110
100
90
85
75
65
50
30
15
10

10
8
7
5
4
3
2
2
1.5
1.5
1.5
1.2
1
1
0.8
0.6
0.4
0.1
0,07

Amps

3 WATT ZENERS - Specifications apply for both directions.

UDZ807
UDZ808
UDZ809
UDZ810
UDZ812
UDZ815
UDZ818
UDZ820
UDZ824
UDZ827
UDZ830
UDZ833
UDZ836
UDZ840
UDZ845
UDZ860
UDZ210
UDZ222
UDZ230

7.5
8.2
9.1
10
12
15
18
20
24
27
30
33
36
40
45
60
100
220
300

75
75
75
75
65
50
40
40
30
25
25
20
20
20
15
10
5
3
3

500
300
200
100
10
10
5
5
5
1
1
1
1
1
1
1
1
1
1

3
4
4
5
5
6
8
9
10
12
15
21
21
27
37
70
175
325
1900

72

158.4
216

.~F>-~-----1i-------1i-----1

:;:

20 P""""-"1~------1P"""'-"1~

::l

50

I---,i----""-....:Ip""<;:--~I::_---"',

S

20

I-------,i----II-"'-....:,.-i'-

~ lK I--~~-">.~i--~~
~

100
50

1-------,i-------1i--~~

1-------1i-------1i-------1'---"""'!!

20 1-------1i-------1i-------1--~f___'''"'"''c--4
10 '--_------.JL-_------.JL-_------.J_ _------.JL-_--'"
lOOns

1.u.s

10.u.s

100.u.5

1ms

lOms

PULSE DURATION (S)
For Sinusoidal Pulse, Peak Value

is 1.4 Times Value Shown

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064

497

PRINTED IN '-'.S.A.

..

UDZSO",SERIES UDZ5807 SERIES UDZ7807 SERIES UDZ8807 SERIES

Maximum Ratings··

Electrical Specifications at 25'C
Type

:±:lO%

Tolerance"

Nominal
Zener
Voltaget
Vz @ IZT
Volts

Test

Max. Zener Imped §
Z,

Maximum
Leakage @ Reverse Voltage
Current
:!::lO%

@

Current
lIT

IZT

mA

Ohms

pA

Maximum

:±:5%

Maximum
Cont.
Current
In<

Volts

Volts

mA

Amps

4.9
5.4
5.9
6.6
8.6
10.8
12.9
14.4
17.3
19.4
21.6
23.7
25.9
28.8
32.4
43.2

5.2
5.7
6.2
6.9
9.1
11.4
13.7
15.2
18.2
20.6
22.8
25.1
27.4
30.4
34.2
45.6
76
167.2
228

620
570
510
470
385
300
255
220
180
155
140
130
120
105
95
75
45
20
15

40
32
24
22
18
12
9
8
6.5
6
5.5
5
4.5
4
3.5
2.5
1.4
0.5
0.25

5.2
5.7
6.2
6.9
9.1
11.4
13.7
15.2
18.2
20.6
22.8
25.1
27.4
30.4
34.2
45.6
76

1250
1150
1020
950
770
600
500
440
360
310
280
260
240
210
180
150
90

50
41
31
29
17
17
13
12
10
9
8.5
7.5
7
6.4
5.5
3.7
2.3

Surge
Current
Is

*

5 WATT ZENERS - Specifications apply for both directions.
UDZ5807
UDZ5808
UDZ5809
UDZ5810
UDZ5812
UDZ5815
UDZ5818
UDZ5820
UOZ5824
UDZ5827
UDZ5830
UDZ5833
UDZ5836
UDZ5840
UDZ5845
UDZ5860
UDZ5210
UDZ5222
UDZ5230

7.5
8.2
9.1
10
12
15
18
20
24
27
30
33
36
40
45
60
100
220
300

175
150
150
125
100
75
65
65
50
50
40
40
30
30
30
20
10
5
5

1.8
1.8
2.5
2.5
2.5
3.5
4
4.5
5
6
8
10

500
400
200
100
50
15
10
10
10
10
10
5
5
5
5
5
5
5
5

11
14
20
40
100
550
950

72

158.4
216

6 WATT ZENERS - Specifications apply for both directions.

UDZ7807
UDZ7808
UDZ7809
UDZ7810
UDZ7812
UDZ7815
UDZ7818
UDZ7820
UDZ7824
UDZ7827
UDZ7830
UDZ7833
UDZ7836
UDZ7840
UDZ7845
UDZ7860
UDZ7210

7.5
8.2
9.1
10
12
15
18
20
24
27
30
33
36
40
45
60
100

325
300
275
250
200
150
130
120
100
90
80
70
60
60
50
40
20

0.9
1.0
1.2
1.2
1.3
2.0
3.5
4.0
5.0
6.0
8.0
10
12
15
20
35
90

1000
800
200
150
75
30
20
20
20
20
20
10
10
10
10
10
10

4.9
5.4
5.9
6.6
8.6
10.8
12.9
14.4
17.3
19.4
21.6
23.9
25.9
28.8
32.4
43.2

72

*For ±S% voltage tolerance chanee the 3rd number from the right from 8 to 7 or from 2 to 1. i.e, UDZ8807 to UDZ8707, UDZ210 to UOZllO, etc.

tAli zener voltages are measured with an automated test set using a 35ms test time. Longer or shorter test times will have a corresponding
effect on the measured value due to heating effects.
§Zener impedance is derived from the 50-cycle voltage created when AC current with RMS value of 10% of DC zener test current is superimposed on the test current.

**O.C. Ratings are based on the lead temperature conditions shown in the data sheets oovering the UDZ8807, UOZ807, UDZ5807. and UDZ7807
series devices. Other conditions will affect the power ratings of all the families except the 1 watt zener family. However, the surge values
given apply for any mounting conditions including printed circuit board mounting.
tFigures shown are for peak sinusoidal surge current of 8.3ms duration using 60 cycle AC. The 8.3ms square pulse rating is 71% of the value
shown.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

498

PRINTED IN l,I.S.A.

POWER ZENERS

UZ706 SERIES
UZ806 SERIES

3 Watt

FEATURES

DESCRIPTION

• 10 Times Greater Surge Rating than Conventional
1 Watt Types
• Small Physical Size

Fused-in-glass metallurgically bonded
3 watt zener diodes.

ABSOLUTE MAXIMUM RATINGS
........ 6.8 to 400V
.......... See Table
See Table
See Graph
See Lead Temperature Derating Curve
. . -65'C to +175'C

Zener Voltage, V, .
Continuous Current
Surge Current (B.3ms)
Surge Power
Power .....
Storage and Operating Temperature

MECHI\.NICAL SPECIFICATIONS
UZ706 SERIES

UZ806SERIES

BODY A

.7f~"~~:"'N'-r-.2~;5~~·

__ 1.~1~~:~N. ____~

UZ Prefix is identified by a Blue or Red Cathode Band

10K
5K

o

~ 2K

"
'"

ffi

lK

~

500

>=

"-

iii
i5

"UJ

0:

"-....

200

~

"~ 100

"-

'"

UJ

o

X

SQUARE PULSE

""

"

50

75

100

125

150

LEAD TEMPERATURE ('C)

IJls

1K

~-~~~~~~~~-~

Cl

"-

"" '"
10,u5

100 ~----"~"""-...::-po..=--+--~

UJ

..........

50

lOOns

Z

r--.,

10
25

S
UJ
U

20

:;;

10K , - - ; ; ; : - - , - - - , - - - , - - - - - ,

I

~
z

Typical Zener Impedance
vs. Zener Current

Surge Power
vs. Surge Duration

Power Dissipation
vs. Lead Temperature Derating Curve

100#5

Ims

~

10

0:

f---f---">..;::R~~t-=---j

UJ

Z

..........

UJ
N

.1
lOms

L-_ _L-_ _

.1

SURGE DURATION (5)

499

1

~

10

___

~~~

100

1A

ZENER CURRENT (rnA)

lliD

_UNITRDDE

UZ706 SERIES UZ806 SER.IE$

Electrical Specifications at 2S'C
Nominal
Zener
Voltage t
Vz@ln

Type*

Max. Zener
Impedance§
Test
Current

±5%

'ZT

Z,@I"

Maximum Ratings

Maximum Reverse
Leakage Current

I,@V,

Typ.

± 10%

V.

V.

Temp.

Coefficient

Tc @

'ZJ

Maximum
Continuous

Maximum
Surge

1'M

Is

Current *

Current:l;

Tolerance

±S%

Jedec**
Registration

Volts

rnA

Ohms

pA

Volts

Volts

%/CC

rnA

Amps

UZ706
UZ707
UZ708
UZ709
UZ710
UZ712
UZ713
UZ714
UZ715
UZ716
UZ718
UZ720
UZ722
UZ724
UZ727
UZ730
UZ733
UZ736
UZ740
UZ745
UZ750
UZ756
UZ760
UZ770
UZ775
UZ780
UZ790
UZll0
UZ111
UZ112
UZ1l3
UZ114
UZll5
UZ116
UZll7
UZ118
UZ119
UZ120
UZ122
UZ124
UZ126
UZ128
UZ130
UZ132
UZ134
UZ136
UZ138
UZ140

1N5063
1N5064
1N5065
1N5066
1N5067
1N4883
1N5069
1N5070
1N5071
1N5072
1N5073
1N4884
1N5074
1N5075
1N5076
1N5077
1N5078
1N5079
1N5081
1N5083
1N5085
1N5087
1N5088
1N5091
1N5092
1N5093
1N4096
1N4097
1N5096
1N5097
1N5098
1N5099
'lN4098
1N5100
1N5101
1N5102
1N5103
1N5104
1N5105
1N5106
1N5107
1N5109
1N5110
1N5111
1N5113
1N5114
1N5115
1N5117

6.8
7.5
8.2
9.1
10.0
12
13
14
15
16
18
20
22
24
27
30
33
36
40
45
50
56
60
70
75
80
90
100
110
120
130
140
150
160
170
180
190
200
220
240
260
280
300
320
340
360
380
400

75
75
75
75
75
65
50
50
50
50
40
40
30
30
25
25
20
20
20
15
15
10
10
10
10
10
8.0
5.0
5.0
5.0
5.0
5.0
5.0
4.0
4.0
4.0
4.0
4.0
3.0
3.0
3.0
3.0
3.0
2.0
2.0
2.0
2.0
2.0

2
2
3
3
4
5
6
6
6
7
8
9
10
10
12
15
21
21
27
37
50
70
70
90
100
115
150
175
250
325
375
550
650
700
750
850
900
950
1100
1300
1500
1700
1900
2100
2400
2700
3000
3500

500
300
200
100
40
10
10
10
10
5
5
5
5
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

5.2
5.7
6.2
6.9
7.6
9.1
9.9
10.6
11.4
12.2
13.7
15.2
16.7
18.2
20.6
22.8
25.1
27.4
30.4
34.2
38.0
42.6
45.7
53.3
56.0
60.8
68.5
76.0
83.6
91.2
98.8
106
114
122
129

4.9
5.4
5.9
6.6
7.2
8.6
9.3
10.1
10.8
11.5
12.9
14.4
15.8
17.3
19.4
21.6
23.7
25.9
28.8
32.4
36.0
40.3
43.2
50.5
54.0
57.7
64.8
72.0
79.2
86.4
93.6
101
108
115
122
129
137
144
158
173
187
202
216
230
245
259
274
288

.04
.04
.05
.05
.06
.07
.07
.07
.07
.07
.08
.08
.08
.08
.09
.090
.090
.090
.095
.095
.095
.095
.095
.095
.095
.095
.095
.100
.100
.100
.100
.100
.100
.100
.100
.100
.100
.100
.100
.105
.105
.105
.105
.105
.110
.110
.110
.110

440
400
360
330
300
250
230
210
200
185
170
150
135
125
110
100
90
85
75
65
60
55
50
45
40
35
30
30
25
25
20
20
20
20
18
18
15
15
15
12
12
10

10.0
8.0
7:0
6.0
5.0
4.0
4.0
4.0
3.0
3.0
2.0
2.0
2.0
1.5
1.5
1.5
1.2
1.0
1.0
0.8
0.8
0.7
0.6
0.6
0.5
0.4
0.4
0.4
0.3
0.2
0.20
0.20
0.20
0.15
0.15
0.10
0.10
0.10
0.09
0.09
0.08
0.08
0.07
0.07
0.06
0.06
0.06
0.06

1

1
1
1
1
1
1
1
1
1

1

1
1
1
1
1
1
1
1

137

144
152
167
182
198
213
228
243
258
274
289
304

10

9
9
8
8
7

... Specify 20% voltage tolerance by changing first numeral ·of type number trom 7 to 9. (UZ709 becomes UZ909) or from 1 to .3 (UZ1l1 be~
comes UZ311).
Specify 10% voltage tolerance by changing first numeral of type number from 7 to 8. (UZ709 becomes UZ809) or from 1 to ? (UZlll becomes
UZ21l).
** Jedec registration applies to ±5% tolerance,zeners only.
t All zener voltages' are measured with an automated test set using, ,a 35 'ms test time. Longer or shorter test times will' have a corresponding
effect on the measured value due to heating effec;ts.
§ Zener impedance is derived from the 60-cyc'le AC Yoltage created when AC current with RMS value of 10% of DC zener ,test' current is super. . '
imposed ,c)O the test current.
Maximu,,;' current based on 3 watt rating. See lead temperature derating curves for proper mounting methods.
i Figures: shown are for a peak sinusoidal ~urge current of 8.3ms duration using 60 cycle AC. The 8.3ms square pulse rating is 71% of
the value shown.

*

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509' •.TELEX 95-10.64 .

500

PRINTED IN U.S.A.

UZ4706 SERIES
UZ4806 SERIES

POWER ZENERS
5 Watt, Industrial

FEATURES

DESCRIPTION

• 2 Times Greater Surge
Rati ng than Plastic Types
• Small Physical Size
• Impervious to Moistllre

Fused-in-glass 5 watt zener5 with the same
electrical specs as the lN5342-1N5388
series.

ABSOLUTE MAXIMUM RATINGS
. 6.8 to 200V
See Table
.... See Table
See Graph
. Sep 1 ead Temperature Derating Curve
... -65'C to +175'C

Zener Voltage, Vz .
Continuous Current
Surge Current (8.3ms)
Surge Power ..
Power.
Storage and Operating Temperature ...

MECHANICAL SPECIFICATIONS
UZ4706 SERIES

UZ4806 SERIES

BODY B

UZ Prefix is identified by a Blue or Red Cathode Band

10K
5K

~ 2K - a: 1K
UJ

~

o

500

~ 200

~

100

en

50

:::>

1

L

"

"'" ""

SQUARE PULSE

-

25

50

75

LEAD TEMPERATURE ('C)

10
lOOns

IJls

lOJ,ls

§
UJ



.5r-+---+-r----I--+~~~~~

.1

L-L----'----L_--c'c--:-:',--_L-J
.5

1

[ill]
503

5 10
50 100
ZENER CURRENT (rnA)

_UNITRDDE

UZ5706 SERIES

Maximum Ratings

Electrical Specifications at 2S"C
Type *

Max. Zener
Impedance§

Nominal
Zener
Voltage t
V,@ I"

Test
Current
I"

Z,@ I"

Maximum Reverse
Leakage Current

I,

±5%
Tolerance

±10%
Tolerance

Volts

mA

Ohms

pA

UZ5706
UZ5707
UZ5708
UZ5709
UZ5710
UZ5712
UZ5713
UZ5714
UZ5715
UZ5716
UZ5718
UZ5720
UZ5722
UZ5724
UZ5727
UZ5730
UZ5733
UZ5736
UZ5740
UZ5745
UZ5750
UZ5755
UZ5760
UZ5770
UZ5775
UZ5780
UZ5790
UZ5110
UZ5111
UZ5112
UZ5113
UZ5114
UZ5115
UZ5116
UZ5117
UZ5118
UZ5119
UZ5120
UZ5122
UZ5!24
UZ5126
UZ5128
UZ5130
UZ5132
UZ5134
UZ5136
UZ5138
UZ5140

UZ5806
UZ5807
UZ5808
UZ5809
UZ5810
UZ5812
UZ5813
UZ5814
UZ5815
UZ5816
UZ5818
UZ5820
UZ5822
UZ5824
UZ5827
UZ5830
UZ5833
UZ5836
UZ5840
UZ5845
UZ5850
UZ5856
UZ5860
UZ5870
UZ5875
UZ5880
UZ5890
UZ5210
UZ5211
UZ5212
UZ5213
UZ5214
UZ5215
UZ5216
UZ5217
UZ5218
UZ5219
UZ5220
UZ5222
UZ5224
UZ5226
UZ5228
UZ5230
UZ5232
UZ5234
UZ5236
UZ5238
UZ5240

6.8
7.5
8.2
9.1
10.0
12
13
14
15
16
18
20
22
24
27
30
33
36
40
45
50
56
60
70
75
80
90
100
110
120
130
140
150
160
170
180
190
200
220
240
260
280
300
320
340
360
380
400

175
175
150
150
125
100
100
100
75
75
65
65
50
50
50
40
40
30
30
30
25
20
20
20
15
15
15
10
10
10
10
8
8
8
8
5
5
5
5
5
5
4
4
4
4
3
3
3

1.0
1.5
1.5
2.0
2.0
2.5
3.0
3.0
3.5
3.5
4.0
4.5
5.0
5.0
6.0
8
10
11
14
20
25
35
40
50
55
80
90
100
125
170
190
230
330
350
380
450
470
500
550
650
750
850
950
1100
1200
1400
1500
1800

500
400
200
100
75
50
25
20
15
10
10
10
10
10
10
10
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

V,

Typ.
Temp.
Coefl.
Tc@ I"

Continuous
Current

Volts

%'"C

mA

.05
.06

675
620
570
510
470
385
350
320
300
275
255
220
195
180
155
140
130
120
105
95
85
80
75
65
60
55
50
45
40
38
35
33
31

±5%
V,

± 10%

Volts

5.2
5.7
6.2
6.9
7.6
9.1
9.9
10.6
11.4
12.2
13.7
15.2
16.7
18.2
20.6
22.8
25.1
27.4
30.4
34.2
38.0
42.6
45.7
53.3
56.0
60.8
68.5
76.0
83.6
91.2
98.8
106.0
114.0
122.0
129.0
137
144
152
167
182
198
213
228
243
258
274
289
304

~
5
5
5
5
5
5
5
5
5
5
5
5
5

UZ5806 SERIES

4.9
5.4
5.9
6.6
7.2
8.6
9.3
10.1
10.8
11.5
12.9
14.4
15.8
17.3
19.4
21.6
23.7
25.9
28.8
32.4
36.0
40.3
43.2
50.5
54.0
57.7
64.8
72.0
79.2
86.4
93.6
101.0
108.0

m:~

129
137
144
158
173
187
202
216
230
245
259
274
288

.06

.06
.07
.07
.08
.08
.08
.08
.085
.085
.085
.090
.090
.09
.09
.095
.095
.095
.095
.095
.100
.100
.100
.100
.100
.100
.100
.100
.105
.105
.105
.105
.105
.110
.110
.110
.115
.115
.120
.120
.120
.120
.120
.120
.120
.120

Maximum
I,..

*

Maximum
Surge
Current
Is

*

Amps

40
32
24
22
20
18
16
14
12
10
9.0
8.0
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.8
2.5
2.3
2.0
1.8
1.6
1.4
1.2
1.0
0.80
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.24
0.23
0.22
0.21
0.20

30

27
25
24
22
20
18
17
16
15
14
13
12
12
11

Temperature Range: Operating and Storage _65°C to +17S C .
0

• Specify 20% tolerance by changing the second numeral of type number from 8
UZ5311).

to

9 (UZ5809 becomes UZ5909) or from 2 to 3 (UZ5211 becomes

t All zener voltages are measured with an automat.ed test set using a 35 millisecond test time. Longer or shorter test times will have a
corresponding effect on the measured value due to heating effects.

§ Zener impedance is derived from the 60-cycle AC voltage created when AC current with RMS value of 10% of DC zener test current is

superimposed on the test current .
Maximum current based on 5 watt rating. See lead temperature derating curves for proper m0l.lnting methods.
*• Figures
shown are for a peak sinusoidal surge current of 8.3ms duration USing 60 cycle' AC. The 8.3ms square pulse rating is 710/0 of the
value shown.

Several of the above types now have JEDEC IN type numbers. The following cross-reference table lists the appropriate 1N
numbers; specifications are same as above.
JEDEC #

UNITRODE TYPE

JEDEC #

UNITRODE TYPE

JEDEC #

UNITRODE TYPE

1N51l8
1N5119
1N5120
1N5121
1N5122
1N5123

UZ5714
UZ5740
UZ5745
UZ5750
UZ5760
UZ5770

1N5124
1N5125
1N5126
IN5127
1N5128
1N5129

UZ5780
UZ5790
UZ5114
UZ5117
UZ5119
UZ5126

1N5130
1N5131
1N5132
1N5133
1N5134

UZ5128
UZ5132
UZ5134
UZ5138
UZ5140

UNITRODE CORPORATION· 5 FORBES ROAO
LEXINGTON •.MA,02173. TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95·1064

504

PRINTED IN U.S.A.

POWER ZENERS

UZ7706L and UZ7806L SERIES
UZ7706 and UZ7806 SERIES

6 Watt, Military, 10 Watt Military

FEATURES

OESCRIPTION

• High Surge Rating
• Small Physical Size
• Leaded and Stud Packages Available

Fused-in-glass, metallurgically bonded
6 watt leaded zeners and 10 watt
stud-type zeners.

ABSOLUTE MAXIMUM RATINGS
Zener Voltage, VZ .
Continuous Current
Surge Current (8.3ms)
Surge Power .
Power .

.. ......... 6.8 to lOOV
............. See Table
... See Table
.............. ............. ............ ..... ....... ................... .......
See Graph
... Ul7706L & Ul7806L See Lead Temperature Derating Curve
Ul7706 & UZ7806 @lOO'C Case ....
... lOW
Storage and Operating Temperature ....
..
.. .....................-65'C to +175'C

MECHANICAL SPECIFICATIONS
UZ7706L and UZ7806L SERIES

BOOYCLead Mount

•

UZ Prefix is identified by a Blue or Red Cathode Band

UZ7706 and UZ7806 SERIES
.187" MAX.

C4.75m=llml
~(ollmml

,005 MAX.
Radius
. 112 MAX .

r

BOOY C - Stud Mount

.045" TVP.

,!:~;~~~.

.460" MAX .

Cll .68m":',

..

,/

'-==r~;/\
,

#4-40

x

:~~:: ~~:~:~~~ LONG THREAD

.120" TYP,
(3.05mm)

POLARITY: Cathode to Stud is standard. Re·
verse polarity denoted by "R" suffix.
FINISH: Metal parts gold plated per MIL·G·
45204, Type II.
WEIGHT: 1.5 grams (max.1
INSTALLATION PRECAUTIONS: Maximum unlubricated stud torque: 28 inCh-ounces. Do
not use a screwdriver in the turret slot for
installation purposes, or damage may result.
UZ Prefix is identified by a Blue or Red Cathode Band

[ill]
505

_UNITRDDE

UZ7706L and UZ7806L SERIES
UZ7706 and UZ7806 SERIES
Electric" Specifications at 25·C

Type-

Nominal
Zener
Voltage t
Vz @ I"

Maximum Reverse
Leakage Current

Max. Zener
Impedance §

Test
Current

Maximum Ratings

I.@V.

Typ.
Temp.
Coeff.

±5%
V.

±10%
V.

Tc@ IZT

Maximum
Continuous

Maximum
Surge
Current t
Is
Amps

CurrenH
I",

!zT

Zz@lzT

Volts

mA

Ohms

~A

Volts

Volts

%/·C

mA

6.8
7.5
8.2
9.1
10.0

350
325
300
275
250

0.6
0.7
0.8
1.0
1.0

1000
800
200
150
100

5.2
5.7
6.2
6.9
7.6

4.9
5.4
5.9
6.6
7.2

.04
.04
.05
.05
.06

1350
1250
1150
1020
950

50
41
31
29
26

UZ7812
UZ7813
UZ7814
UZ7815
UZ7816

12
13
14
15
16

200
200
175
150
150

1.3
1.5
1.5
2.0
2.5

75
50
40
30
20

9.1
9.9
10.6
11.4
12.2

8.6
9.3
10.1
10.8
11.5

.07
.07
.07
.07
.07

770
700
640
600
550

23
21
20
17
15

UZ7718
UZ7720
UZ7722
UZ7724
UZ7727

UZ7818
UZ7820
UZ7822
UZ7824
UZ7827

18
20
22
24
27

130
120
100
100
90

3.5
4.0
4.5
5.0
6.0

20
20
20
20
20

13.7
15.2
16.7
18.2
20.6

12.9
14.4
15.8
17.3
19.4

.08
.08
.08
.08
.09

500
440
390
360
310

13
12
11
10
9

UZ7730
UZ7733
UZ7736
UZ7740
UZ7745

UZ7830
UZ7833
UZ7836
UZ7840
UZ7845

30
33
36
40
45

80
70
60
60
50

8
10
12
15
20

20
10
10

22.8
25.1
27.4
30.4
34.2

21.6
23.7
25.9
28.8
32.4

.090
.090
.090
.095
.095

280
260
240
210
180

8.5
7.5
7.0
6.4
5.5

UZ77S0
UZ77S6
UZ7760
UZ7770
UZ7775

UZ7850
UZ7856
UZ7860
UZ7870
UZ7875

50
56
60
70
75

50
40
40
35
30

22
30
35
40
45

10
10
10
10
10

38.0
42.6
45.6
53.2
56.0

36.0
40.3
43.2
50.4
54.0

.095
.095
.095
.095
.095

170
160
150
130
120

4.6
4.1
3.7
3.3
3.1

UZ7780
UZ7790
UZ7l10

UZ7880
UZ7890
UZ7210

80
90
100

30
25
20

60
75
90

10

60.8
68.4
76.0

57.6
64.8
72.0

.095
.095
.100

110
100
90

2.9
2.6
2.3

±5%

±10%

Tolerance

Tolerance

UZ7706
UZ7707
UZ7708
UZ7709
UZ7710

UZ7806
UZ7807
UZ7808
UZ7809
UZ7810

UZ7712
UZ7713
UZ7714
UZ7715
UZ7716

10
10

10

10

Power Rating: Stud Mounted: 10 watts at 100°C Case derate linerally to zero at 175°C Case.
Lead Mounted: See lead temperature derating curve.
Temperature Range: Operating and storage _65°C to 175°C .
• Specify 20% tolerance by changing the second numeral of type number from 8 to 9 (UZ7809 becomes UZ7909) or from 2 to 3 (UZ7210 be~
comes UZ7310). Specify leaded version by adding an L suffix (UZ7809 becomes UZ7809L).
t All zener voltages are measured with an automated test set using a 35 msec test time, longer or shorter test times will have a corresponding effect on the measured value due to heating effects.
§ Zener impedance is derived from the 60-cycle voltage created when AC current with RMS value of 10% of DC zener test current is superimposed on the test current.
Ratings Based on 100°C Case temperature.
i Figures shown are for a peak sinusoidal surge current of 8.3ms duration, non·repetitive. The 8.3ms square pulse rating is 71% of the value
shown.

*

Power Dissipation
vs. Lead Temperature Derating Curve

VS.

Surge Power
Surge Duration

lOOK
SOK

l: 20K

I

I"'"

;;:- 10K
w
~

5K

~w

2K

U)

SQUARE PULS[;

500

w
~

'"
Cl

""" """

200
lOa

25

50
75
lOa 125 ISO
LEAD TEMPERATURE (OC)

175

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064

lOOns

§

........

"""

~ IK

:0

Typical Zener Impedance
vs. Zener Current

~
~

5 r-~~~~~'~~-T----~

1 r-+---~~~~~~~~~

.5r-i-·--~~~~~~~

0:

"

w

~

.:::::-".

l#s
10#s 1oo#s
1ms
SURGE DURATION (S)

506

10~~~~~~~~-t----~

N

.1r-+---~--r_--~~~~~

.05 r-+---~--r_--_t_-'t'...,_"""'t='_I

10ms
ZENER CURRENT (mA)

PRINTED IN U.S.A.

UZ8706 SERIES
UZ8806 SERIES

POWER ZENERS
1 Watt, Industrial

FEATURES

DESCRIPTION

• High Surge Ratings
• A Quarter the Size of Conventional 1 Watt Zeners
• Impervious to Moisture

One watt zener diodes, hermetically
sealed in glass.

ABSOLUTE MAXIMUM RATINGS
Zener Voltage, VZ .
Continuous Current
Surge Current (8.3ms)
Surge Power
Power .. '
Storage and Operating Temperature

.. 6.8 to 200V
See Table
See Table
.............................................See Graph
.......... See Lead Temperature Derating Curve
.... ~5'C to +175'C

MECHANICAL SPECIFICATIONS
UZ8706 SERIES UZ8806 SERIES

°r5~,,;~P

111

0 (

II

I c::::A Oo~}~:;:~

~.O.5"
TYP.

T

BODY A

j

2.2mm

~.7f~.·~~:nN.-+jt-.2~~~5~';;·~.._____ 1.~1~;mM~N ----~I

UZ Prefix is identified by a Blue or Red Cathode Band

1.5

,---".-----.----.,~-,-__r--.-_______,

10K

~

z
;::
«
a.

~ 2K

ffi

lK

iii

~

500

Q

w 200
to
~ 100

(",';'i~!';':':'
,~,~,::.

.'.':":';'.'

~:~':.:)(i:<;

'.;;', .:

<; ,"

'-;·'.T:·

'.j': ,

PACKAGE L7

,.

,SG

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

513

PRINTED IN U.S.A.

THYRISTORS (SCRs, TRIACs & PUTs)

PRODUCT SELECTION GUIDE

PACKAGE L7

PACKAGE L2

~

M

A PART NUMBER SUFFIX MUST BE SPECIFIED WHEN ORDERING
SUFFIX
S, SG B, BG F, FG M, MG -

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

DESCRIPTION
SOLDERABLE BACK, STRAIGHT LEADS
SOLDERABLE BACK, PREBENT LEADS
FLANGE MOUNTED, STRAIGHT LEADS
FLANGE MOUNTED, PREBENT LEADS

514

PRINTED IN U.S.A.

THYRISTORS (SCRs, TRIACs & PUTs)

PRODUCT SELECTION GUIDE

TO·18

TO·92

TO·9

TO·39

TO·92
'Available as JAN and JANTX types .
• 'Available as JAN type .
••• Available as JAN, JANTX, JANTXV types.
t3mA available from factory
·UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

515

PRINTED IN U.S.A.

THYRISTORS (SCRs, TRIACs& PUTs)

PRODUCT SELECTION GUIDE

ULTRAFAS.T SWITCHING

TO·lI'

TO·59

RADIATION HARDENED SCRs

TO·18

PUTs - PROGRAMMABLE
UNIJUNCTION TRANSISTORS

TO·18

* Available 8$ JAN and JANTX types.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

516

PRINTED IN U.S.A.

THYRISTORS (SCRs, TRIACs & PUTs)

PRODUCT SELECTION GUIDE

GLASS PASSIVATED
SOLDERABLE CHIPS

(Only Available Through Factory)

100mA
120mA
150mA

80620··
80430··
80540··

*Current ratings are at operating temperature of 65<1C as measured on the substrate Immediately adjacent to the
chip. (Equivalent to case temperature in a packaged unit.) Current rating at 65°C derates linearly to zero at a
operating temperature of 110°C .

•• Add suffix 20, 40, 60 to depict voltages 200V, 400V, 600V respectively.

Design Comments
1. Chips available in 5/95 solder or 60/40 solder. Call factory for additional information.
2. Chips are supplied with metal contact cliPS (unattached),

[ill]
517

_UNITRDDE

SCRs

2N1870A·2N1874A

1.25 Amp, Planar
FEATURES

DESCRIPTION

• Available as Either "JAN" or
Standard Types
• Operating D.C. Current Range:
5 to I250mA
• Pulse Currents: to 30A
• Voltage Ratings: to 200V
• Maximum Trigger Current: O.2mA
• Maximum Trigger Voltage: O.BV
• All Leads Isolated from Case
• Maximum 6 J _ c : 20'C/W

These are premium PNPN controlled switches intended for use in applications
requiring a high degree of reliability assurance. The JAN types are specified under
MIL-S-19500/I9B, and are included in MIL-STD-70I as recommended types for
military usage.
This series is useful in a wide variety of applications including: safety, arming
and detonating circuits; timing and programming circuits; protective and warning
circuits; driving relays; driving indicator lamps, encoding and decoding circuits;
replacing relays, thyratrons, and magamps; servo motor control; pulse generation;
plus many others.

ABSOLUTE MAXIMUM RATINGS
2N1870A
JAN2N1870A

Repetitive Peak Off-State Voltage, VORM .
........... 30V.
Repetitive Peak Reverse Voltage, VRRM .
. . 30V....... .
D.C. On-State Current, IT
IOO'C Ambient .
IOO'C Case
Repetitive Peak On-State Current, ITRM .
Peak One Cycle Surge (Non-Rep.) On-State Current, I TSM
Peak Gate Current, IGM
Average Gate Current, IG(AV)
Reverse Gate Voltage, VGR .
Thermal Resistance, Junction to Case, R6J _ C
Operating and Storage Temperature Range.

2N1872A
JAN2N1872A

2NI871A
JAN2NI871A

. ....... 60V ..
............. 60V ..

.. lOOV.....

.......... 1ODV..... ..

2N1873A

. ....

l50V.....

2N1874A
JAN2NI874A

.. 200V

......... l50V........................ 200V

......... 250mA .. .
....... J.2SA.......
................ .
.......... up to 30A..
......................... ..
... .lSA...
..... ...... .............. .
.......... .2S0mA.... . ...................................................... .
.. 2SmA....
. ................ ..
.. ........ SV...
.......................................... .
............ 20'C/W................................. .
...................... -65'C to +150'C..
...................... ..

MECHANICAL SPECt:FICATIONS
2N1870A-2N1874A

.370
.290

l

1 MIN'l
1 ·~~~1f!'5

TO-9

CATHODE

.030
.010

,.---=:--

GATE

--

.335
.275

~017+·002
-.001

ANODE

-1.100-

Dimensions in inches.

518

lliD

_UNITRDDE

2N1870A-2N1874A
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)t
Test

Symbol

Subgroup 1 (Visual and Mechanical)
Subgroup 2 (25°C Tests)
Off-State Current
Reverse Current
Gate Trigger Voltage
Gate Trigger Current
On-State Voltage
Off-State Voltage - Critical of Rise
Reverse Gate Current
Holding Current
Subgroup 3 (l25°C Tests)
High Temp. Off-State Current
High Temp. Reverse Current
High Temp. Gate Non-Trigger Voltage
High Temp. Holding Current
Subgroup 4 (-65°C Tests)
low Temp. Gate Trigger Voltage
low Temp. Gate Trigger Current
low Temp. Holding Current

IORM
IRRM
VGT
IGT
VTM
dVc/dt
IGR
IH

Min.

-

0.4

100
-

Typical

Max.

Units

Test Conditions

0.5
0.5
0.55
30
l.8

10
10
0.8
200
2.5

,..A
,..A
V
,..A
V
V/,..s
,..A
mA

RGK = 1K, VORM
Rating
RGK = 1K, VRRM = - Rating
RGS = 100 ohms, Vo
5V
RGs> 10K ohms, Vo
5V
ITM = 2A (pulse test)
Specified test circuit
VGRM = 5V, anode open
IG = - 1SO,..A, Vo = 5V

-

=+
=
=

0.5

0.3

-

10
5.0

-

15
15

100
100

-

/LA
,..A
V
mA

RGK = 1K, VORM
Rating
RGK = 1K, VRRM = - Rating
RGS = 100 ohms, Vo
5V
IG = - 1SO,..A, Vo
5V

1.0
500
15

V
,..A
mA

RGK = 100 ohms, Vo = 5V
RGK > 10K ohms, Vo
5V
IG = -150,..A, VAA
5V

IORM
IRRM
VGO
IH

0.2
0.2

VGT
IGT
IH

-

-

=+
=
=

=
=

tAli values in this table are JEDEC registered.
Not.: Voltage ratings apply over the full operating temperature range, provided the gate is connected to the cathode through a reSistor, 1 K
or smaller, or other adequate gate bias is used.

Triggering and Bias Stabilization
Gate Trigger Voltage

2.

Gate Trigger Current
800
~

1600

....
z
OJ

~ 400
u

:>

P>..
Y/7>

~
to
to

//// Y/ //~

~

:L/~ ~ V#n~ 'i/ V/ Y/

OJ

!;(

I----I---t-_+_-+--I---+-_+_---I

~"
g

ALL UNITS FIRE

'"~ 200 //~ -'/; ~JGTmax.

"ii:....

1.2

OJ

'GT

"I

"

.4

1----I--~~~~*7-;,~71Lf7H~

I

NO UNITS FIRE

~

_~-200

>

.2 1----+--1

o L-_-L_i-~_-L~L--L~~~

-400

-65

.6 ~Lf~~~~~~~~~~~~~

OJ

!;(

~

min.

.8 ~Lf~~ff~~~+-~~~-~--4

-25
TJ

-

25

50

75

100

125

-65

150

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

-25
TJ

JUNCTION TEMPERATURE (OC)

519

-

0

25

50

75

100

125

150

JUNCTION TEMPERATURE (OC)

PRINTED IN U.S.A.

2N1870A-2N1874A

Holding Current
1. Max. Holding Current (Current Bias)

2. Max. Holding Current (Resistor Bias)
50

50

:<

:<

oS

20

...
z
"'::>'"'"

10

"15z

2

oS

~ r-- r-- r-- r-

IG =-1.5mA

~ ~ I-- r~

u

~

~ :--:-t;

N-

..J

0
:t

><

'"
u
"z

10

IG =-.05mA

><

:1
I

~I

.2

_I.

.1

:1><

--65

3K~~

-25
0
25
50
75
100 125
T J - JUNCTION TEMPERATURE ('C)

5

...~

15
'"'"
::>
u

r-- r---+=-~A
1.5

.2
.1

o

I
_I

Z

:ij

-25
0
25
50
75
100 125
TJ - JUNCTION TEMPERATURE ('C)

150

.5

.5
.2

I
.15

.1
IG =-.05mA
.05

--65

-

RGK = 100Q-

z

300-"

..J

I-F-==.1~,\

:t

Z

:1
I

r----

_I.

.5
.2

Z

:ij

r-- t--....

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

10

o

-

-25
25
50
75
100 125
T J - JUNCTION TEMPERATURE ('C)

20

"15

-f""'oo ~

:t

:1

~

.5

50

..J

Z

~~

4. Min. Holding Current (Resistor Bias)

50

'~"
u
"15z

~

r--- r-- t:::::::",
.......

--65

150

:<
10

r-- r--r-- I--

RGK=10~ ~

3. Min. Holding Current (Current Bias)

20

~
lK·

~~

.05

.05

oS

~oon

9

.5

15

~

--

~

><

;::

~II

"OJ

r "it
,..,If..... ,,.)
I ...~

.1
.05
.05

.1

0:

,

1

.5
10
V,- ON VOLTAGE (V)

.2

~ ~\
.3~ ",,'
DUTY CYCLE:I .............

.5

;::
OJ

20

I----. "",-\

.1

OJ

I

0

-- -...... ."
---'"\.\"

50

...«
z'"0
"«"-

d

«
0

u

POWER DISSIPATION (W)'
2
1.5
1
.5

OJ

0:
0:

'"

:>

1. 1

:>
u

Z

0:
0:

ql

OJ

Peak Current vs. Case Temperature

.2

\

.1

.: .05

100

90

110

120

130

140

150

T•. ' .. - MAX. CASE TEMPERATURE ('C)

3. Peak Current vs. Ambient Temperature

3:

...z

OJ

0:
0:

:>
u

PA
.625

-

20

-

10

...
...
z0'"
OJ

--

«

OJ

"-

>
;::

.5

;::
OJ

"OJ
0:

,

1

.2

.003-

I---..

.01-

~

.03"-

~
...
zOJ

"'-

""

.1 ......

a

25
TA

. ., -

10

:>

~ ~\

:>
OJ

"-

1~

:>

3<6

10-' 10 '. 10-' 10- 2 10- 1 1
10
SURGE DURATION (5)

PA
.625

.5

0:
0:

:>
u

Z

.6 ~==~~~~~~

~

.4

...
;:
z'"0
g
OJ

__~~._4--~

~--_+----~----4_~~~~~r---~

1

J

90

100
T e ." -

____- L_ _ _ _L -_ _

110
120
130
140
MAX, CASE TEMPERATURE ('C)

UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710)326·6509 • TELEX 95·1064

-q"

-"
102

10'

POWER DISSIPATION (W)
.5
.375
.25
.125

."."" '"
"'"1""-"-

~~

.2

~"-

~

~ ~\
I'-..~ ~

"~\~~

.1

o

150

o

25
TA

521

,

~

~

__

~

____

~

__

~

~

f----+----+-----+-----+-----Ni~_i

o

.3

3
\
\\

"«
OJ

50

50
.001

Surge Current vs. Time

4.

POWER DISSIPATION (W)
.5
.375
.25
.125

50

75

100

125

150

m,,- MAX. AMBIENT TEMPERATURE ('C)

PRINTED IN U.S.A.

SCRs'

2N 1875-2N 1880

1.25 Amp, Planar
FEATURES
• Operating D.C. Current Range: 1O-12S0mA
• Peak Pulse Current: to 30A
• Maximum Gate Current to Fire: 20l'A
• Firing Voltage: .S2±.08V
• Voltage Ratings: to 200V
• "Turn-on" Time: Typically O.ll's
• Low On Voltage: 2.5V Maximum at 2A

DESCRIPTION
This high sensitivity series, featuring very precise control of triggering
characteristics, is particularly useful for timing and time delay circuits, voltage
limit detectors, high gain static switching, logic circuits, pulse and sweep
generators, and related applications.
This series is available in a TO-9 package. with all leads isolated from the case,
providing a maximum thermal resistance of 20'CIWatt between junction and case.

ABSOLUTE MAXIMUM RATINGS
2N1875

2N1877

2N1876

2N1878

2Nl879

2N1880

60V. ................. 10OV.. ....•............ ISOV...
Repetitive Peak Off-State Voltage. VDRM
.......... lSV ..
....... 3OV ...
.." . 200V
Repetitive Peak Reverse Voltage, VRRM .
..... 60V ...
10OV........
ISV ...
........... 30V.
150V... .. ......... 200V
D.C. On-State Current, IT
. ..............250mA ............................................... .
100'C Ambient .
....... USA.......................................................
100'C Case
.. ... upto 30A ...................................................... ..
Repetitive Peak On-State Current, ITRM ...
Peak One Cycle Surge (Non-Rep.) On-State Current, ITSM ...
....... .lSA
..............
.................... .
. ...................................250mA
Peak Gate Current, IGM .
. ..................... 25mA ... .
Average Gate Current, IG(Av) ..... .
.............5V ... ..
Reverse Gate Voltage, VGR .... .
......20'CIW......................... .
Thermal Resistance, Junction to Case, R9 J _ C .
Operating and Storage Temperature Range .
......... -65"C to +150'C

MECHANICAL SPECIFICATIONS

.
.37()

[

.200
.
.
.260-;-,
5 MIN

1

.030

l

2N1875·2N1880

TO·9

CATHODE

'290L~.01O

~ =_ -=:=
1L __-----.335
.275

~0l7
;.002
.
-.001

-1.100-

Dimensions in inches.

[ill]
522

_UNITRODE

2N1875-2N1880
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)t
Test

Symbol

Subgroup 1 (Visual and Mechanical)
Subgroup 2 (2S0C Tests)
Off-State Current
Reverse Current
Reverse Gate Current
Gate Trigger Current
Gate Trigger Voltage
Anode Trigger Current (Note 2)
On-State Voltage
Holding Current
Subgroup 3 (25°C Tests)
Turn-on Time
Turn-off Time
Gate Trigger - on Pulse Width
Circuit Commutated Turn-off Time
Subgroup 4 (125°C Tests)
High Temp. Off-State Current
High Temp. Reverse Current

IORM
IRRM
IGR
IGT
VGT
IAT
VT
IH

Min.

Typical

Max.

Units

.44
-

o.s

5
10
10

VORM
Rating, RGK
1K
VRRM
Rating
VG• = 2V
Vo = SV, RGS = 10K
Vo = 5V, RGS = lOOn
Vo = SV
IT
2A (Pulse Test)
IG = - 150I'A,VAA = 5V

0.8
0.3

-

ton
toll
tpglonl
tq
IORM
IRRM

Test Conditions

=
=

=

0.5
0.5
5
.S2
100
1.8
1.0

2.5
3

p.A
p.A
p.A
p.A
V
p.A
V
rnA

0.1
0.5
O.S
10

-

p's
p's
p's
p's

~ IT = .5A

5
15

20
100

p.A
p.A

Vo
Rating, RGK
V. RM
Rating

20
.60

-

=

IG =20mA
Vo = 30V
IT = .5A, i. = .5A, RGK

=
=

= 1K

=1K

Note: 1. Voltage ratings apply over the operating temperature range, provided the gate is connected to the cathode through an appropriate re·
sistor, or adequate gate bias is used.
2. For a maximum limit of SO.uA, use suffix "-1" and drop "2N". Example: 1877-!.

t All values in this table are JEDEC registered.

TRIGGERING AND BIAS STABILIZATION

1. Gate Trigger CUrrent

2. Gate Trigger Voltage

BOr----,---,--,---r--,--,---,--,

f----f-----t--+--ALL UNITS FIRE

w

!;<
" -40

I

-~ -GO f--------t---t--+-+-f--t---t---'/
~O~--L--J--L--L-_L--L-~-~

-65

-25

25

50

75

100

125

-25

150

TJ - JUNCTION TEMPERATURE ("C)

UNITRODE CORPORATION' 5 FORBES ROAD
LEXI NGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

TJ

523

-

0

25

50

75

100

125

150

JUNCTION TEMPERATURE (OC)

PRINTED IN U.S.A.

2N 1881-2N 1885

SCRs
1 Amp, Planar
FEATURES
• One Cycle Surge Current: 15A
• Voltage Rati ngs: to 200V
• Low "On-Voltage": 2V Max. at lA
• Operation: to lSO'C Junction
Temperature
• All Leads Isolated for Design
Flexibility

DESCRIPTION
These types are useful in AC and DC static switching, proportioning control, relay
and thyratron replacement, DC to AC converters, servo motor driving, protective
circuits, and related applications.
This series is available in a TO-9 package, with all leads isolated from the case,
providing a maximum thermal resistance of 2O'C/Watt between junction and case.

ABSOLUTE MAXIMUM RATINGS
2Nl881

2N1882

2N1884

2Nl883

2N1885

.... 200V
Repetitive Peak Off-State Voltage, VORM .................. 30V
lSOV ..... .
... 60V.
......... lOOV... .
..... 200V
Repetitive Peak Reverse Voltage, VRRM
. 3OV.
.... 150V..
............. 60V.
.... lOOV.. .
D.C. On-State Current, IT
lOO'C Ambient ........................................................................................2SOmA.
lOO'C Case
.. .l.OA ..
Repetitive Peak On-State Current, ITRM .
........ up to 30A .. .
Peak One Cycle Surge (Non-Rep.) On-State Current, ITSM
.... . ..... ..................
....... 1SA..... .
Peak Gate Current, IGM
..................................................... 2S0mA.
Average Gate Current IGIAV) .....
. ...... 2SmA
............................. .
Reverse Gate Voltage, VGR ...
.... ...... .... .. ...
.. .. .......... ... .............. .. ....... 3V...
... ............ .
Thermal Resistance, Junction to Case, R8J _ C
.... .....................
. ...... 2O'C/W ........................... .
Operating and Storage Temperature Range ................... ... ............. ..
.......... -6S'C to +150'C..
.................................... .

MECHANICAL SPECIFICATIONS
2N1881-2N1885

1 :~~~1F!'5 MIN·l

.370

TO·9

CATHODE

030

.290~ll
1 :010
---

---

--'

- -.335.

.275

----

GATE

------~

.017

~:~~~

-1..00-

Dimensions in inches.

524

lli:O
_UNITRODE

2N1881·2N1885

ELECTRICAL SPECIFICATIONS (at 25°C unless notedlt
Test

Subgroup 1 (Visual and Mechanical)
Subgroup 2 (25°C Tests)
Off·State Current
Reverse Current
Reverse Gate Current
Gate Trigger Current
Gate Trigger Voltage
On·State Voltage
Holding Current
Anode Trigger Current
Subgroup 3 (25°C Tests)
Turn·on Time
Gate Trigger - on Pulse Width
Turn-off Time
Circuit Commutated Turn·off Time
Subgroup 3 (l25°C Tests)
High Temp. Off·State Current
High Temp. Reverse Current

Symbol

IDRM
IRRM
IGR
IGT
VGT
VT
IH
IAT
too
tpg (on)

Min.

Typical

Max.

Units

0.5
0.5
0.5
0.2
1
1.5
2
0.5

10

"A
I'A
"A
mA
V
V
mA
mA

-

-

0.40

-

-

toff

-

tq

-

IDRM
IRRM

-

-

10
10
2
2
2

0.2
1
1
10

-

15
15

200
200

Test Conditions

RGK == 1K, VDRM == Rating
RGK == 1K, VRRM == Rating
VGRM == 2V
RGS == 10K, VD == 5V
RGS == lOOn, VD == 5V
IT == 1A (pulse test)
IG == -lS0I'A, VD == SV
RGS == 10K, VD == 5V

"S
"S

IG == 20mA, IT ==
IG == 20mA, IT ==
IT == lA, IR == lA,
IT == lA, IR == lA,

"A
"A

RGK
RGK

"s
"s

O.SA, VD == 30V
O.SA, VD== 30V
RGK == IK
RGK == IK

== 1K, VDRM == Rating
== 1K, VRRM == Rating

t All values in this table are JEDEC registered.
Note: Voltage ratings apply over the operating temperature range, provided the gate is connected to the cathode through an appropriate resistor, or adequate gate bias is used.

UNITRDDE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

525

PRINTED IN U.S.A.

SCRs

2N2322-2N2329
2N2323A-2N2328A

1.6 Amp, Planar
FEATURES
•
•
•
•
•
•

DESCRIPTION

Available as JAN & JANTX Types
1.6A D.C. Current
Peak Currents: to 30A
Voltage Ratings: to 400V
20l'A Max. Trigger Current ("A" types)
O.6V Max. Trigger Voltage ("A" types)

These are premium thyristor switches intended for use in high performance
industrial, military and space applications requiring a high degree of reliability
assurance. This series is useful in a wide variety of applications including timing
and programming circuits, protective and warning circuits, driving relays,
driving indicator lamps, encoding and decoding circuits, replacing relays,
thyratrons, and magamps, servo motor control, pulse generation, plus many others.
The high surge current rating (15A -1 cycle) makes this series particularly
useful for squib firing.
The following JAN and JANTX types are specified under Mil-S-19500/276A and are
included in Mil-STD-701 as recommended types for military usage:

ABSOLUTE MAXIMUM RATINGS
2N2323
JAN2N2323
JANTX2N2323

2N2324
JAN2N2324
JANTX2N2324

2N2326
JAN2N2326
JANTX2N2326

2N2323A
2N2324A
2N2326A
JAN2N2323A
JAN2N2324A
2N2325
JAN2N2326A
2N2322 JANTX2N2323A JANTX2N2324A 2N2325A JANTX2N2326A

2N2328
JAN2N2328
JANTX2N2328
2N2328A
2N2329
2N2327
JAN2N2328A
JAN2N2329
2N2327A JANTX2N2328A JANTX2N2329

Repetitive Peak Off-State Voltage, VDRM 2SV ............. SOV...
........ 100V ............ lS0V ........... 200V ............ 250V ........... 300V
........ 400V
Repetitive Peak Reverse
Voltage, VRRM
........ 25V.... ....... 50V ................ 100V ...... 150V ..
. 200V ............. 250V ......... .300V ............... 400V
Non-Repetitive Peak Reverse
Voltage, VRSM « Sms)
................. 40V... ....... 75V ............. 150V ............ 225V ......... 300V .. ....... 350V ......... 400V ................ 500V
D.C. On-State Current, IT
80'C Ambient .
....... 300mA .. .
............. 1.6A .... .
85'C Case
One Cycle Surge (Non-Rep.) On-State Current, I TSM .
... 15A .. .
Repetitive Peak On-State Current, ITM .
... 30A ... .
Gate Power Dissipation, PGM
.. O.lW ..
................. O.OlW ... .
Gate Power Dissipation, PGM[AVI .
. ..... 100mA .. .
Peak Gate Current, IGM .
Peak Gate Voltage, Forward and Reverse
................ 6V ...
Reverse Gate Current, IGR .
. 3mA ..
Storage Temperature Range
-65'C to +150'C ..
Operating Temperature Range
...... -65'C to +125'C .

MECHANICAL SPECIFICATIONS
2N2322-2N2329 2N2323A-2N2328A

1B'

TO-5

TO-39

I

;;:rrag1:::
T __~= : :
.260
.240

[

. 5 M'N

I

11- --- - -

.335J
305

Dimensions in inches.

.017

-~"66~

Non JAN types available in TO-39 package

TO-39 has .5" lead length

526

lliJJ
_UNITRDDE

2N2322-2N2329

2N2323A-2N232BA

ELECTRICAL SPECIFICATIONS
Symbol

Test

Visual and Mechanical
25'C
Off-State Current
Reverse Current
Gate Trigger Current
"A" Types
non-"A" Types
Gate Trigger Voltage
"A" Types
non_"A" Types
On-State Voltage
Holding Current
Reverse Gate Current
Delay Time
Rise Time
Circuit Commutated Turn-Off Time
l25'C
Off-State Current
Reverse Current
Gate Trigger Voltage
Holding Current
"A" Types
non-"A" Types
Off-State Voltage - Critical Rate of Rise
"A" Types
non-"A" Types
-65'C
Off-State Current
Reverse Current
Gate Trigger Current
"An Types
non-"A" Types
Gate Trigger Voltage
"A" Types
non_"A" Types
Holding Current

Min.

Typical

Max.

Test Conditions

Units

MIL-STD-750, Method 2071

-

0.1
0_1

10
10

p.A
p.A

VDRM
VRRM

2
50

20
200

p.A
p.A

VD == 6V, RL
VD == 6V, RL

0_35
0_35

0.52
0.55
2_0
0_3
1
0_6
0_4
20

0_60

V
V
V
rnA
p.A
p.S
p.S
p.S

Vo == 6V, RGK == 2K, RL == lOOn
Vo == 6V, RGK == lK, RL == lOOn
ITM == 4A (pulse test)
Vo == 6V, RGK == lK (2K for "A" Types)
VGR == 6V
IG == lOrnA, IT == lA, Vo == 30V
IG == lOrnA, IT == lA, Vo == 30V
IT == lA, IR == lA, RGK == lK
VDRM == Rating, RGK
VRRM == Rating, RGK
Vo == Rated VD, RGK

IORM
IRRM
IGT

VGT

-

VTM
IH
IGR
td
tr
tq

O_BO
2_2
2_0
200'

-

== Rating, RGK == lK (2K for "A" Types)
== Rating, RGK == lK (2K for "A" Types)
== lOon
== lOon

100
100

0_1

1
1
0_3

-

p.A
p.A
V

O.1t
0_15t

-

-

rnA
rnA

Vo
Vo

VII's
VII's

Vo == Rating, RGK
VD== Rating, RGK

IORM
IRRM
VGT
IH
dvldt

0.7'

1.8'
IDRM
IRRM
IGT
VGT

IH

== lK (2K for "A" Types)

== lK (2K for "A" Types)
== lK (2K for "A" Types)

== 6V, RGK == 2K
== 6V, RGK == lK
== 2K
== lK

-

_05
_05

5_0'
5_0'

p.A
p.A

VORM
VRRM

-

50
100

75
350

I'A
p.A

Vo == 6V, RL
VD == 6V, RL

0_7

O_B'

-

0.75

0_9t
1.0
3_0t

V
V
V
rnA

V0 == 6V, RGK == 2K, RL == 1000
VD== 6V, RGK == 2K, RL == lOOn
VD== 6V, RGK == lK, RL == lOOn
VD == 6V, RGK == 1K (2K for "A" Types)

-

-

-

== Rating, RGK == lK (2K for "An Types)
== Rating, RGK == lK (2K for "A" Types)
== lOOn
== lOOn

• JAN and JANTX Types only_
t Industrial Types only_

JAN and JANTX Acceptance Tests
100% Screening TX-Types

Group B Tests

Group C Tests

High Temperature Storage
Temperature Cycling
Constant Acceleration
Fi ne & Gross Hermetic Sea I
Electrical Test
Burn-in
Electrica I Test

Subgroup 1- Reverse Gate Current
Surge Current
Non-Repetitive Reverse Voltage

Subgroup 1- Physical Dimensions

Subgroup 2- Low Temp_
Low Temp_
Low Temp_
Low Temp_

Reverse Blocking Current
Forward Blocking Current
Gate Trigger Voltage
Gate Trigger Current

Subgroup 3- Temperature Cycling
Thermal Shock
Moisture Resistance
Solderability

Subgroup 2 - Shock
Constant Acceleration
Vibration, Variable Frequency
Subgroup 3 - Barometric Pressure, Reduced
Subgroup 4 - Salt Atmosphere
Subgroup 5 - Terminal Strength
Subgroup 6 - Intermittent Operating Life Test

Subgroup 4 - Blocking Life Test

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL_ (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

527

PRINTED IN U.S.A.

2N2322-2N2329

Gate Trigger Current

~400

...~
~

o

...~

~~--+---+---+---+---+---+-~
200

~~~~~~~'7Z7im7im:;j;,"73

!:i
0
>

8

Cl
Cl

...

...a:

0:

.......
j

0:

200

.8

~

a:

!i:

...........

.6

.4

<
Cl

r----jf---+--+-+-f--I------1

/

_li

>~. .2

-400

~----'---'----'--'----'----'----I

-65
TJ

-25
0
25
50
75
100
- JUNCTION TEMPERATURE C'C)

125

o 25 50 75 100
-25
T J - JUNCTION TEMPERATURE C'C)

PD -

POWER DISSIPATION CW)

20

1.5
R""

10

= 2K -

1-----+--+ RGI( = lK -

g
....

I

...a:z

~

...a:

~

a:

...0

o

~

Cl

Z

z
...'"

§
J:

D:C •
1.6

:::>

a:

:::>

o

CO~duction ~

1.2

An~e = 180'C

0

.5

Cl

12O;C

.8

...

22

25

50

/2:

J~

~~
~

75

100

16

\.

14

'\

12

'\..

10

6

"'-..

~
..............

4

o

125

528

Tc = 85'C

T,=~

2

T, .,,- MAXIMUM AMBIENT TEMPERATURE C'C)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064

18

.1

1

10
20
CYCLES AT 60Hz

50

100

PRINTED IN U.S.A.

JAN & JANTX 2N3027·2N3032

SCRs
0.5 Amp, Planar
FEATURES

DESCRIPTION

• JAN and JANTX Types Avai lable
• Fully Characterized for "Worst Case" Design
• Passivated Planar Construction for Maximum
Reliabilityand Parameter Uniformity
• low On-State Voltage and Fast Switching
at High Current levels
• Typical Turn-On Time: 0.121's
• Typical Recovery Time: 0.71's
• Pulse Currents: to 30A

The 2N3027 series of planar SCRs (controlled switches) are intended for use in
military and space applications requiring a high degree of reliability. They offer a
unique combination of extremely fast switching, precise triggering, high pulse
power, small size, intrinsic parameter stability, and high radiation tolerance.
The JAN and JANTX types are specified under Mll-S-19S00/419, and are included
in Mll-STD-70l as recommended types for military usage.

ABSOLUTE MAXIMUM RATINGS
JAN & JANTX 2N3027
JAN & JANTX 2N3030

Repetitive Peak Off-State Voltage, VORM
Repetitive Peak Reverse Voltage, VRRM ..
D.C. On-State Current, IT
100'C Case
75'C Ambient
Repetitive Peak On-State Current, ITRM .
Surge (Non-Rep.) On-State Current, I TSM
SOms
Sms
Peak Gate Current, IGM .
Average Gate Current, IGIAVI .
Reverse Gate Voltage
Reverse Gate Current
Storage Temperature Range .
Operating Temperature Range

. 30V .. .
.. .................... 30V .. .

JAN & JANTX 2N3028
JAN & JANTX 2N3031

................... 60V.......
........ 60V.........

JAN & JANTX 2N3029
JAN & JANTX 2N3032

... 100V
....... 100V

............ SOOmA .. ..
............... 2S0mA .... .
.................. 30A ..
............SA .. .
............ SA ... .
. ............. 2SOmA .... .
...... 2SmA ... .
.... SV .. .
............3mA ... ..
.......................... -6S'C to +200'C .. .
.... -6S'C to +lS0'C.

Nate: Blocking voltage ratings apply over the operating temperature range, provided the gate is connected to the cathode through an
appropriate resistor, or adequate gate bias is used. (See section on bias stabilization.)

MECHANICAL SPECIFICATIONS
JAN & JANTX 2N3027-2N3032

T018

r::::t·SM1Nj
r-a=~

.195
.178 DIA.

---'--

c::::::::::;:)

11

.230
.209 DIA.

."X.

---1I'-MAX.

Ol7 +.002 0IA .
-.001

Dimensions in inches.

[ill]
529

_UNITRDDE

JAN & JANTX 2N3027-2N3032

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
2N3027 - 2N3028 - 2N3029
Parameter

Symbol

SUBGROUP 1
Visual and Mechanical
SUBGROUP 2 (2S'C Tests)
Off-State Current
Reverse Current
Reverse Gate Voltage
Gate Trigger Current
Gate Trigger Voltage
On-State Voltage
Holding Current
SUBGROUP 3 (2S'C Tests)
Off-State Voltage -Critical Rate of Rise
Gate Trigger-on Pulse Width
Delay Time
Rise Time
Circuit Commutated Turn-off Time
SUBGROUP 4 (1S0'C Tests)
High Temp. Off-State Current
High Temp. Reverse Current
High Temp. Gate Trigger Voltage
High Temp. Holding Current
SUBGROUP S ( 6S'C Tests)
Low Temp. Gate Trigger Voltage
Low Temp. Gate Trigger Current
Low Temp. Holding Current

Min.

Typical

Max.

-

-

-

-

-

IORM

-

.002
.002
8
8
.55
1.2
0.7

0.1
0.1

pA
pA
V
"A
V
V
mA

IRRM

VG,
IGT
VGT
VT
IH

5
-5

.40
0.8
0.3

dv,ldt

30

tpg (onl

-

td
t,
tq

-

IDRM

-

60
.07
.08
.04
0.7

-

200
.80
loS
5.0

0.2

-

Test Conditions

Units

vl"s
"s
ps

2.0

"s
"s

20
50
0.6
1.0

"A
pA
V
mA

IRRM

-

VGT
IH

.10
.OS

2
20
.15
.20

VGT
IGT
IH

0.6
0
O.S

O.7S
150
3.S

1.1
1.2
10

V
mA
mA

MIL-STD-750
Method 2071

=
=
=
=
=
=
=
=
=
=
=
=
RGK = lK, Vo = 30V
IG = IOmA, IT = lA, YOM = 30V
IG = 10mA, IT = lA, Vo = 30V
IG = 10mA, IT = lA, Vo = 30V
IT = lA, i, = lA, RGK = lK
RGK = lK, VO'M = Rating
= lK, V
Rating
RGS = lOOn, Vo = SV
RGK = IK, Vo = SV
RGS = lOOn, Vo = SV
RGS = 10K, Vo = SV
RGK = lK, Vo = SV
RGK
lK, VORM
Rating
RGK lK, VRRM
Rating
IGR
O.1mA
RGS
10K, Vo
SV
RGS
lOOn, Vo
SV
iT
lA (pulse test)
RGK
lK, Vo
SV

RGK

RRM :=

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
2N3030 - 2N3031- 2N3032
Parameter

SUBGROUP 1
Visual and Mechanical
SUBGROUP 2 (2S'C Tests)
Off-State Current
Reverse Current
Reverse Gate Voltage
Gate Trigger Current
Gate Trigger Voltage
On-State Voltage
Holding Current
SUBGROUP 3 (2S'C Tests)
Off·State Voltage - Critical Rate of Rise
Gate Trigger-on Pulse Width
Delay Time
Rise Time
Circuit Commutated Turn·off Time
SUBGROUP 4 (150'C Tests)
High Temp. Off·State Current
High Temp. Reverse Current
High Temp. Gate Trigger Voltage
High Temp. Holding Current
SUBGROUP S (-6S'C Tests)
Low Temp. Gate Trigger Voltage
Low Temp. Gate Trigger Current
Low Temp. Holding Current

Symbol

Min.

Typical

Max.

Units

-

-

-

-

-

MIL-STD-750
Method 2071

-

.002
.002
8

0.1
0.1

"A
"A
V
"A
V
V
mA

RGK
IK, VORM
Rating
RGK
IK, VRRM
Rating
IGR
O.lmA
RGS
10K, Vo
SV
RGS
lOOn, Vo
SV
iT
lA (pulse test)
RGK
IK, Vo
SV

IORM

'RRM

VGR
IGT
VGT
VT
IH

-

5
-5
0.44
0.8
0.3

-

1.2
1.0

20
0.6
loS
4.0

30

60

-

-

.OS
0.1
.OS
0.7

0.1

-

2.0

vl"s
"s
ps
"s
"s

VGT
IH

.10
.05

2
20
.IS
.30

20
50
0.4
2.0

"A
"A
V
mA

VGT
IGT
IH

0.44
0
O.S

0.8
0.4
5.0

0.9S
0.5
8

V
mA
mA

dv,ldt
tpg (on)
td
t,
tq

-

IORM

-

IRRM

-

Test Conditions

=
=
=
=
=
=
=
=
=
=
=
=
RGK = lK, Vo = 30V
IG = 10mA, IT = lA, Vo = 30V
IG = 10mA, IT = lA, Vo = 30V
IG = 10mA, IT = lA, Vo = 30V
IT = lA, i, = lA, RGK = IK
RGK = IK, VORM = Rating
RGK = lK, VRRM = Rating
RGS = lOOn, Vo = SV
RGK = IK, Vo = SV
RGS = lOOn, Vo = SV
RGS = 10K, Vo = 5V
RGK = lK, Vo = SV

High Raliabilily Processing
The 2N3027·2N3032 series provides a complete range of high reliability processing
from the standard devices that undergo extensive electrical testing, through JAN
and JANTX levels. 100% processing, Group B, and Group C tests for JAN and JANTX
devices is shown below. For further details, see MIL·S·19S0014l9(EL).
100% Screening TX·Types
High Temperature Storage
Temperature CYCling
Constant Acceleration
Fine & Gross Hermetic Seal
Electrical Test
Burn·jn
Electrical Test

Group B Tests
Subgroup 1- Physical Dimensions
Subgroup 2 - Solderability
Temperature Cycling
Thermal Shock
Constant Acceleration
Moisture Resistance

Subgroup 3 Subgroup 4 Subgroup SSubgroup 6 -

UNITROOE CORPORATION' 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

Surge Current
Blocking Life Test
Storage Life Test
Operating Life Test

530

Group C Tests
Subgroup 1- Shock
Vibration, Variable Frequency
Subgroup 2 - Salt Atmosphere
Subgroup 3 - Terminal Strength
Subgroup 4 - High Temp. Anode Voltage - Critical

rate or rise
Subgroup S- Storage Life Test
Subgroup 6 - Operating Life Test

PRINTED IN U.S.A.

JAN & JANTX 2N3027-2N3032
TYPICAL CHARACTERISTICS

2N3027 - 2N3028 - 2N3029
Gate Trigger Current
1400 ,..---r---,---,--.,---,--,---,--,

1.4

<1200r---r--t-~-+-~--t-~~

~ 1.2

.3
~100C~-~r--+-~-+-~~-+-~~

....

CI


u

0:

w

0:

!!!

CI

0:

.6

CI

,4

.......

a

.2

o
TJ

3

-

25
so 75 100 125
JUNCTION TEMPERATURE (oC)

200

~

">-

"

...J



:

lK

,

~

z:

\

3K

\

10K

"-

RGK - 30K

I

I

I

1\

20

U

10

\

;::

><'Oo,f

:E

:::>

:E

~

:E

I

.5 I-DASH LINES SHOW .0011'fd CAPACITORADDlED BETfEEN FATE fND CATHOD~
.2
10
20
1
2
so 100 200

Max. Holding Current (Resistor Bias)

so
20

z
....
0:

10

...

CI

z

i5

0


u
CI

z

~~~K

...J

:z:
X

{K

SO

,.-.-

0:

:::>
u

3000

.2

<

g

I'
I

BIASED AS SHOWN IN FIG. 1
.5

Vo-APPLIED OFF·STATE VOLTAGE (V)

5

iJ = 12S'C

"
\~~II0K- ~~..:001

0:

u

........

'\

",\

-

'-

ISO

Min. Critical dv/dt (125°C - R Bias)

200

I

"

20

L-~_~_~~L--J_~_~

-25
25
so 75 100 125
TJ - JUNCTION TEMPERATURE (oC)

:\ \j(

,\ ........... 3000 l\~

100

:E

4

__

SOO

,\

'iii

NO UNITS FIRE

~

-65

150

Min. Critical dv/dt (25°C - R Bias)

500

i

Gate Trigger Voltage

2

:z:

Z

-~

.2

iii
I

:li

.1

Z

I

-~

x

iii
-25
0
25
so 75 100 125
TJ - JUNCTION TEMPERATURE (OC)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6S09 • TELEX 95-1064

t:::---

0

.5

.05
-65

2

i5

...J

t=:::tr::-..:::: t:::::
r--r--- r-r- """':'!'<-""
II/go ::::::: t'-.....
r--r-.. ~p.
R

.S

.2
.1

150

531

~ ........ ~ ........ ~
""\"" 10

.05
-65

111Q , -

~'

"

25
50
75 100 125
-25
TJ - JUNCTION TEMPERATURE (oC)

150

PRINTED IN U.S.A.

JAN & JANTX 2N3027·2N3032
TYPICAL CHARACTERISTICS

2N3030 - 2N3031 - 2N3032
Gate Trigger Current

Gate Trigger Voltage

2

600

1.4

;(
"-

;:: 500
Z

"'~

400

::l
U

a: 300

"''"~

200

"'~

100

...a:

'"I
3

0

~

A

~
~

...'"
..I

0

>
a:

.8

UJ

'"
~

....a:
"'«...

~ ~ ~II1AX.

'"I

..........

IGT ~IN.

.6

.4

G
> .2

-100
NO UNITS FIRE
I
I
I
-25
25
50
75 100 125
T J - JUNCTION TEMPERATURE ('C)

150

-25
0
25
50
75
100 125
TJ:- JUNCTION TEMPERATURE ('C)

Min. Critical dv/dt (25'C - R Bias)
500

",--~on

1\

100

1"'-

11<

>-

!'...

3K_

'"
..I

20

T J = 25'C 1\ .

~ 10

E

a:

u
::;;

'r--.,

::l

::;;

z

:E

BIASEO AS

I

t-\~

.....

-

I

20

;::

10

..I

.\
\

u
::;;

~

~

:E

I

.2

5

20

50

100

1

200

VD -

APPLIED DFF·STATE VOLTAGE (V)

6

Max. Holding Current (Resistor Bias)

Z

"'a:a:

50
100
10
20
APPLIED OFF·STATE VOLTAGE (V)

200

Min. Holding Current (Resistor Bias)

;(

.s...

20

Z

10

UJ

I=-

--,-. -

'0"

~ ..:::: ::::: ::::::::~O!!
~ ::::
...............

:I:

...........

::l
U

Z

....0

r--......

><
«

.5

I

.2

'0Z"

t--.~

....

:I:

-~
R

Z

:E

31{

I

-'
Z

:E

-25
TJ -

25
50
75
100 125
JUNCTION TEMPERATURE ('C)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064

~

0

.05

-65

10

a:
a:

R

-----

20

::l
U

G'~

::;;

-'

101{'

= 10K~_.:!;. .00] r----

50

50

;(

.s...

I

I

r----

DASH LINES SHOW .001 ~fd CAPACITOR
ADDED BETWEEN GATE AND CATHODE

ADpED BETWEEN GATE AND CATHODE

VD -

~K

·001

BIASED AS SHOWN IN FIG. 1
.5

.2
10

I 1',11{-!-

RGK

= 125'C
,

I'

iK

z

.5 !-DASH LINES SHOW .001 "fd CAPACITOR1

!I
300U

!'...

~

::l

SHOW~IN FIG. 1

I

'"«

TJ

P

II "r:-"
\..

50

<;:

......

RG, - 30K

100

u

\~

10K

'"
~
;:;

>-

-\-

f'....

5

1\

200

I \

.::.. 50

;:;

500

118,...

150

Min, Critical dv/dt (125'C- R Bias)

4

:\~

\\

200

~

ALL UNITS FIRE

«

r----

ALL UNITS FIRE-

%

-200
-65

1.2

UJ

.5
.2

::-::::t=:::::: ::::=::::
~

.1
.05
-65

150

532

r-- r-.....

-~

.............

--1/

-:---GK '" 1000 -

~~b :---...

h;--::-... .Ji?"::::...... -....~
' - 101{...............

I

""'-

"'"

__ ~

-25
0
25
50
75
100 125
T J - JUNCTION TEMPERATURE ('C)

150

PRINTED .IN. U.S.A.

JAN & JANTX 2N3027-2N3032
CURRENT RATINGS
C2

50

PA -

5:

%~J.,"

>-

10

a:
a:
OJ
u

>«
>if)

Z

o
I

>«
>en

Z

0

7/

OJ

I

.5
.2

OJ

>
;:
;:
OJ

::,

a.

'" '" 'f
// if

a:

M

OJ

~

.1

1--' 1--'

.05
.05

.1

-

'a."

«
OJ
TypicalCilaracteristics

u

I

...."

.2
.5
10
Vj -ON-STATE VOLTAGE (V)

.5

~\

-r--. b,

~

'"1'--\

~

~

r-'

.1

""\

~ t"---..

~~ '""'"' ~

,2

3. 05

so

20

r--

,001

-:00;-. r---.... ~
~ r--

OJ

J

~

2

OJ

If!

zOJ

J

50

a: 20
a:
OJ
u 10

."

....

POWER DISSIPATION (W)

A

~

z

oV

20

g

Peak Current vs. Case Temperature

Forward on Current vs. Voltage

Cl

90

120

110

100

130

..'i'

~

140

150

Te ... -MAX, CASE TEMPERATURE (OC)

C3 Peak Current vs. Ambient Temperature
TO·18 Ratings (see note)
PA -

$

::!a:

a

5:

50 , -__-".4____,-.,3__,--,.2__. -__.,1,-__-.

z>-

z>-

f----+-=4:=:::::t--------=r-~

a:
a: 20

10

r---+---~=~+-----~~~.~~

<)

OJ

~

>en

o

'a.~"

0.:
a:

~

.5 >----__+----_+-----+--""_t----c--1'~--\'I

~

.2 ~--__+----_+----4-.~~

"'
Z

,5

OJ

"''"a:

,2

:::l

a:

(/)

I,

I

,1

.: .05 ' -__-'-____....L____-'---_ _' - ' -_ _- ' - - ' - - ' - '
25
o
50
100
75
125
150
TA~" - MAX. AMBIENT TEMPERATURE (OC)

C5

.5

>zOJ

a:
a:
OJ
u

DC

'"

.3

>«
>if)

Z

.2

I

~

.1

J
100
Te .,' -

"-

~
f
~ ~

J)

10-'

10-'

10-'

1

10

100°C

10'

10'

PA -

POWER DISSIPATION (W)

.3

A

.1

.2

1,;

l""
~'\
~
""~"~

5:
~

.3

~~6=9~--~~~--r----t-----r---~

a:

:::l
<)

"'~

~

o

<3

~
I

~

"

.1

r-----+-----t-----r----t-~~r---~

25

110
130
120
140
150
MAX. CASE TEMPERATURE (OC)

UNITRODE CORPORATION, 5 FORBES ROAD
LEXINGTON, MA 02173 ' TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064

.2

Z

~

o
90

'

~

DASH LINE BLOCKING VOLTAGE MAY
NOT BE SUSTAINED FOR 0,1
SECONDS AFTER SURGE

~

2

""

0

<3
>
«

A

3';~"'"

6,;~

OJ

J

L

I

,

C6 Average Current vs. Ambient Temperature
TO·1S Ratings (see note)

~ "",'\

.4

1

POWER DISSIPATION (W)

.5

"-

SURGE DURATION (Sec)

Average Current vs. Case Temperature
PA -

""RAT~

1

10-'

=0

"-

SOLID LINE
BLOCKING VOLTAGE ~
MAY BE APPLIED AFTER
SUR E

0

~

IF BEFORE SURGE

"'"

10

Z

0

$

~ " "-

....OJ
«

Z

;:
;:

so

OJ

20

OJ

Surge Current vs. Time

C4

POWER DISSIPATION (W)

TA _,. -

533

50

75

100

125

ISO

MAX. AMBIENT TEMPERATURE (OC)

PRINTED IN U.S.A.

JAN & JANTX 2N3027-2N3032
SWITCHING SPEEDS
Sl Maximum Delay Time td' Rise Time t r•
and Gate Trigger Pulse Width tpg (on)
10

I\.

"

Ui'

.5

TJ
IF

"- ~

.3
OJ

:;;

;:::

S2 Maximum Delay Time td' Rise Time t r •
and Gate Trigger Pulse Width tpg (on)
10

L

= lA

I

'=~

I~r
iI1~

.1

:;:
;:::

I.

MAX. I,

.2

1:::::::--1-

MAX. Id (lG - lOrnA)
1

.05

MAX. I,

.02

.02

I

.05 .1.2
.5
5 10
IG - PULSE GATE CURRENT (rnA)

10

.01
-65

20

m 100
""-

1

on

MAX. Ip, (lG _ O.SmA)

.5

w
:;:

I
.2

0.5mA,-==

I

-

:::>

=

~

w

r------

MAX. I" (IG

.05

-

lOrnA)

MAX. t

I

'

:::>

-::::: ~ r-~ (..-- V
R G\( - 10K

R

~

'\1,--

GK

0

< 10l<. i. -

11\

-

:::>

~

.5

(3
1

~~

.5
I
2
5
10
I; - ON-STATE CURRENT (A)

20

S5

.2

.1
-65

.01
.2

2

o
()

.02
.1

~ L
........- V ~ ' /

. _ 0

ll<.

:;;
:;:

r--

/

20

S

>---MAX. Id (I G = lOrnA)

.1

J

50 - I F I I A

10

150

Maximum Circuit Commutated
Turn-off Time tq

.3

o
Z
0::

_I

25
50
75
100 125
-25
TJ - JUNCTION TEMPERATURE ('C)

S4

T~ = 25'~MAX. I, (IG

0.5r~

f--

F'"""-

. p, (IG -lOrnA)

53 Maximum Delay Time td' Rise Time t r •
and Gate Trigger Pulse Width tpg (on)

;:::

'G

.05

.01 .02

0.5~A) -

rI
(

MAX I

.1

,.........;

.01

3

MAX. Id (lG MAX I

,5

OJ

~

'1:!,,~

.2

'~=Il-

2J.C-

-25
0
25
50
75
100 125
TJ - JUNCTION TEMPERATURE ('C)

ISO

Maximum Circuit Commutated
Turn-off Time tq

100

I . Jo

50

~
J

f.---

IJ-

20

r-

10

--

on

.3
OJ

:;:

;:::

~",25'C,I'-

--

!---

Rr=li-

.1

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

~-\f

L
.1

~

~",o~

-

.5
.2

l!.o·C,~f

.2

.5
10
IT - ON-STATE CURRENT (A) .

534

20

PRINTED IN U.S.A.

SCRs

2N5060·2N5064

.8 Amp RMS, Plastic
FEATURES

DESCRIPTION

•
•
•
•
•
•

This plastic series features very fast switching performance, low forward voltage
drop and a high degree of reliability and parameter stability. All units are fully planar
passivated and are packaged in a rugged TO-92 case, constructed from a special
epoxy compound that features excellent moisture resistance providing stable performance under high humidity conditions and good thermal transfer characteristics.

Voltage Ratings: to 200V
Forward Current: O.SA RMS
Surge Current: GA, Sms
Gate Sensitivity: 200!,a max.
Planar Passivated Process
TO-92 Plastic Package

TYPICAL APPLICATIONS
Lamp Driving
Relay Driving
Relay Replacement
Alarm Systems
Counters

Process Controls
Remote Controls
Pressure Controls
High Current SCR Driving
Display Systems
Timers
Touch Switches
Temperature Controls
and many other current sensing and control applications.

ABSOLUTE MAXIMUM RATINGS
2N5060

Repetitive Peak Off-State Voltage, VORM .
. ..... 30V.... .
Repetitive Peak Reverse Voltage, VRRM ...................... 3OV .. .
On-State Current, ITIRMS) ....
Peak One Cycle Surge (Non-Rep.) On-State Current, ITSM .
Peak Gate Current, IGM .
Peak Gate Power, PGM .
Average Gate Power PGIAV) .
Reverse Gate Voltage, VGR .
Storage Temperature Range ...
Operating Temperature Range .

2N5061

.... GOV ..

2N5063

2N5062

.... ...... GOV ...

..... IOOV .. .
. ... IOOV ... .

.. ....... 150V ..
.. 150V ....

2N5064

.... 200V
.. ........ 200V

............. O.SA ... .

. ........6A .. .
............ l.OA .. .

...... lW ... .
...O.OIW ..
........ 6V .. .
............ -G5'C to +150'C
........... -G5'C to +125'C .. .

MECHANICAL SPECIFICATIONS

2NS060-2NS064

T092

.019

T~ ~J
!

,135
MIN.

_1-

c:::=:=:J .175
.205

Ao-G

:g::

o--~1'05
.095

=_l-v'
I II

Ir.17ol-·SOD
.210
I
MIN._

105
- - :080

I-m.125

Dimensions in inches.

535

lliD
_UNITRDDE

2N5060-2N5064
ELECTRICAL SPECIFICATIONS (at 25"C unless noted
Test

Min.

Symbol

Off-State Current

0.1
-

IORM

Reverse Current

IRRM

Gate Trigger Current

IGT

Gate Trigger Voltage

VGT

Peak On-State Voltage

VTM

Holding Current

IH

Critical Rate of RiseOff-State Voltage
Turn-on Time
Circuit Commutated Turn-off Time

dv/dt

ton
tq

Typical

0.1

0.6
-

0.1

Max.

Units

Test Conditions

1.0
50
1.0
50
200
350
0.8
1.2

p.A
p.A
p.A
p.A
p.A
p.A
V
V
V
V
mA
mA

VORM = Rating
RGK = 1K!l
VORM = Rating, T = 125"C
VRRM = Rating
RGK = 1K!l
VRRM = Rating, T = 125"C
Vo = 7V, RL = 100 ohms RGS = lOK!l
Vo = 7V, RL = 100 ohms, T = -65"C
Vo = 7V, RL = 100 ohms RGS = 10K!l·
Vo = 7V, RL = 100 ohms, T = -65"C
Vo
Rating, RL = 100 ohms, T = 125"C
ITM = 1 Amp Pulse
Vo = 7V, T 25"C
Vo
7V, T = -65"C

-

1.2
0.7

1.7
5.0
10.0

75

-

-

0.1
8

V/p.s
I'S

p.S

=

=
Vo = Rated

=

IG = lOmA, IT
I, = IR
1A

Note: Blockmg voltage ratings apply over the full operatmg temperature range, provided the gate
sistor, 1000 ohms or smaller, or other adequate bias is used.

=

IS

=

lA, Vo

= 30V

connected to the cathode through a re-

DESIGN CONSIDERATIONS
1. The 2N5060 Series SCRs are guaranteed to block their rated voltage over the
rated operating temperature when a resistance of 1000 ohms or less is connected
from gate to cathode as shown.

d

ANODE

GATE
RGK

=c

1K or less

CATHODE

2. In cases where the SCR may be subjected to fast rising anode voltages a
capacitor can be connected between anode or gate and cathode as shown, to
serve as protection against dv/dt firing.

ANOiJE
GATE
CAK

GATE

CGK
CATHODE

UNITRODE CORPORATION· S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX'(nO) ·326-6509 • TELEX 95-1064

d

ANODE

CATHODE

536

PRINTED IN U.S.A.

2N5060-2N5064
Gate Trigger Current VS. Junction Temp.

Gate Trigger Voltage vs. Junction Temp.
_ 1.4
~

"'~

1.2

I..J

0

>

"''"

~v"" :::::--1?%Cl

'"
~

.8

'"
"'
'""
"u0:

~

II-

DR.,

.6

~ t:::::::....

..::::::

..J

Rated V ORM

.4

~ ~,,~6V
1'-,

>l-

I

.2

;,
>

o

--25

0
Tj

-

25
50
75
100
JUNCTION TEMP. (OC)

125

150

-65

-25
T, -

Holding Current VS. Junction Temp.
1000

..s

20

I- 10

z

"'
0:
0:

--I--

- --

~1~P.

r--

:J
U
(!l

Z

~K=lKP.

0

..J

0

..

r--

r

..J

.5

u

0:
>l- .2

I
~

.05

-25

""

~

r---..

"r--..

1---

r-----

"'- ~

1

0
25
50
75
100
Tj -JUNCTION TEMP. (OC)

125

150

-65

=

1\

-25

0
Tj

-

l

i

RGK _lKP.

r-:::.r-.-

i'-.... RGK = 10Kn

Vi 100
.3

Rated VORM

I

"' 50
::;;

It

I'"

o
~

20

-

10

I-

o

"'

~

.5

.

...,:~ ~ -

'l/

\ ~

\i"\'...........

~r--

8

::;;
::;;

..........

'0 - PULSE GATE CURRENT (mA)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064

150

:J

----.1.2

125

\",~"""
~
V

:J

"""-

I

l

25
50
75
100
JUNCTION TEMP. (OC)

;:

.05

!.GK = lOOn

Forward Blooki-ng Recovery. Time
vs. Junction Temp.

2. T, '= 25°C

.01 .02

r----..

Rated VORM

N

1. IT = .lA, Vo

.01

~" . . . r--

r\.

Gate Pulse For Turn·On
vs. Pulse Gate Current

'"

=

"-.

"\

-........... I--...
-65

150

,
Vo

'\

l -I---

~g

.1

,,"''\

........

125

dv/dt vs. Junction Temp.

50

:?

25
50
75
100
JUNCTION TEMP. (OC)

o
~
S

.5

0:

.2

I

.1

u

U
10 20

.$

537

-65

-25 0
25
50
75 100
T j - JUNCTION TEMP. (OC)

125

150

PRINTED IN U.S.A.

.t,

2N 5060-2N 5064
Current vs. on-Sf~te Voltage'

10

1

I

5

T J =1 25'C

5:
!z
'"
.5

'"~

.2

Iii
~

~~J~125,J

.5

l

'::>'""

u

CUrrent vs. Power Dissipation'

,/

'"~

1/

/

.1

-'" .05

I

.01

I
.2

.1

VT -

.05 1----1-'-'-~~~'-t-_+--+_-+___I

0:

"';;:

.02

I

I

.02

1--+---+---,>iI~7'f:""--+--ir--1

~

I

I

.1

z~

.01
.005

10
.5
TYPICAL ON-STATE VOLTAGE (V)

20

.01

.02

W-

MAXIMUM ON-STATE POWER DISSIPATION (W)

C~rrent ~s. Ambient Temp.

I-

.7

'"'"

'"

.6

'"

.5

Z

::>
u

I-

~

.2

.5

1

2

Current lis. Case Temp.

Unit mounted with leads
vertical in free air',

Case Temperature measured at
ce~"ter of flat side of device body.

5:I- 1.2
z

I---+---+--+~onduction

'"'"'"::>
u
'"

..., ...... angle

I

.2

'"'"
u
"'

I
(J

(J

......0

10

'"a:
"zi5

10

'"'"

....
i!V>

20

OJ

:>
OJ

;C

S
....
z

1.0

2

oJ

0
I

X

...

.1

:;

.5

1

1

-'

_0

...X
:;

.01

.2

----

----

25

50
TJ

....z

100

75

125

150

-65

TJ

50

20

20

10

10

~
....

-

"zi5

R...

~ 10011

oJ

0

I

.5

r--

I

.2

i

.1

101(

r--

t:-------....

r-----

0

-

I
,I
R"~lOI(

-25
TJ

-

0

50

75

100

125

150

!
I

...........

~

V>

Z

0
1

MAX.

/ II

w

..........

~

I /

u

.5

T J = 25'C

.:-

............

.2

'-..,.

.1

100

.05

125

150

.05

0.1

0.5

0.2

v, -

JUNCTION TEMPERATURE ('C)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

75

V/

:>

~ j"---....,

25

50

Mil. /

0:
0:

-

-f-r-- ---

.05

-65

-r--

25

JUNCTION TEMPERATURE ('C)

OJ

(J

i.

r-- I---R.. '"

Z

:>

-'

I--

On-State Current
VS. Voltage

50

OJ

i

II(

-25

JUNCTION TEMPERATURE ('C)

-

a:
a:

i.

-

f--

.1

Min. Holding Current

S

r--:.::r--

.05

.001

;C

---

R

--!!!: '" lOOQ

541

1.0

2.0

5.0

10

20

50

ON-STATE VOLTAGE (V)

PRINTED IN U.S.A.

2N5724·2N5728

Avg. Current
vs. Ambient Temperature

Avg. Current
vs. Case Temperature
PD 2.0

2.0

Po -

POWER DISSIPATION (W)
1.5
1.0
.5

1.

.8

r---oc ~

.7

5:

DC

1.6

a:
a:

:>

'-'

""

1¢

'"

I-

"'-

m

Z

3¢

.8

>

'"I

~

'~

ci

-

I-

1.2

UJ
I-

0

5:

"-

I-

..,z

f-6¢

r--..

.4

Tc

90
m.. -

:>

.5

a:
a:

r-

"'"
l"-.............

;:

m

39

~ ~'\ t--.
~ ~~
~ ,,~ ~

I""
0"'"

ci

110

120

6¢
.3

>

'"I

"i"..

--- --- ~ ~"'"'
100

.4

Z

0

-

130

~

140

~

~ I~

19

UJ
I-

-..;

80

.6

'-'

I--.

70

..,z

POWER DISSIPATION (W)
8
6
4
.2

.2

""~~

.1

~~

o

1SO

o

MAX. CASE TEMPERATURE (OC)

SO
100
75
125
MAX. AMBIENT TEMPERATURE (OC)

25
T,

m" -

ISO

Surge Current

5:

SO

I-

..,Z
~
:>

..,'-'

20

r--. ~

10

~

~

"'"

z
..,a:
o

a:

Z

o

..,~
'-'
a:

.5

'"

Tc =85°C-

...........

:>

m

'""-

~

I

1"'-

T~ =

75°'(:-

.2
.1

]. .05
10-'

10"

10-'

10-'

10"

10

10'

10'

SURGE DURATION (.)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6S09 • TELEX 95-1064

542

PRINTED IN U.S.A.

PUTs

2N6027 -2N6028

Planar, TO-92, Plastic
FEATURES

DESCRIPTION

•
•
•
•
•
•

The Unitrode Programmable Unijunction Transistor is today's preferred device for low
cost timing circuits, oscillators, sensing circuits and a wide range of other applications
where a variable voltage level threshold is desired_ Functionally equivalent to standard
unijunction transistors, the Unitrode PUT offers the distinct advantage of versatile programming. External resistors can be added to meet the designer's needs in programming the Eta, Raa, Ip, and Iv functions. For additional information see Unitrode
Application Note U-66.

TO-92 Plastic Package
Maximum Peak Current: lS0nA
Minimum Valley Current: l_SmA
Peak Forward Current: SA
Programmable Eta, Raa, Ip and Iv
Planar Passivated Construction for Maximum
Reliability and Parameter Uniformity

TYPICAL FEATURES

TYPICAL APPLICATIONS

Programmable Turn-on
Programmable Turn-off
Low Leakage Current
High Output Pulse

SCR Triggers
Timing Circuits
Oscillators
Sweep Circuits

Delay Circuits
Sampling Circuits
Relay Drivers
Smoke Detectors

ABSOLUTE MAXIMUM RATINGS
Anode-to-Cathode Voltage, VAK ..
. .... ±40V
Gate-to-Cathode Forward Voltage, VGK .
.. ............................... 40V
Gate-to-Anode Reverse Voltage, VGAR .
. .40V
Gate-to-Cathode Reverse Voltage, VGKR
....... -SV
Peak Recurrent Forward Current
201's, 1% Duty Cycle ...
..2A
1001'S, 1% Duty Cycle.
..1A
Peak Non-recurrent Forward Current, 10"s ..
. ...... ....... ... .. ........... . . . . . . ... SA
Power Dissipation
2S'C Ambient.
........................................ 37SmW
Derating Factor .
............ SmW('C
Storage Temperature ..
..................... -SS'C to +12S'C
Operating Temperature Range.
. ....... ......... -SS'C to +100'C

MECHANICAL SPECIFICATIONS
2N6027-2N6028

TO-92

.019

.016

1

.055

-r~==r J I =--EI·I05
...L
=J y '
.04'

c:::::::::J

.135
M1N.

.205
.175

:

I 1_ _I -[I
.210

500 MIN

r-.170~··

.
Dimensions

.095

-}

.10'

r--.080

~
.125

'jn inches.

543

llilJ UNITRaCE
IIIIIiIIII

2N6027-2N6028

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
2N6027

Test

Symbol

Fig.

Peak Current

Ip

1

Valley Current

Iv.

1

Offset Voltage

VT

1

Gate-to-Anode Leakage

IGAO

2

Gate-to-Cathode Leakage
Forward Voltage
Pulse Output Voltage
Pulse Output Rise Time

IGKS

3
4
5
5

VF
Vo
t

2N6028
Max.

Min.

Max.

Min.

-

2

-

0.15
1.0
25

-

0.6
0.6
10
100
100
1.5

5
SO

70
1.5

-

O.~

0.6
1.6
10
100
100
1.5

.0:2

6

-

80

25
1.0
0.2
0.2

6

-

Test Conditions

Units

p.A
p.A
p.A
p.A
mA
V
V
nA
nA
·nA·
V
V
ns

-

80

RG = IMn, Vs = lOY
RG = 10kn, Vs = 10V
RG - lMn, Vs _ lOY
RE, = lOkn, Vs = lOY
RG = 200n, Vs = lOY
RG - 10kn, Vs"':' 10V
&z. = lMn,. Ys. = 10V
T =.25'C, Vs = 40V
T =.75'C, Vs = 40V
Vs _ 40V

IF - SOmA

NEGATIVE
RESISTANCE
,/REGION

Ip

SWITCH~

Iv

POINT~

VA~LEY

Vs Vp

CURRENT

a) Typical Circuit

VT = Vp -v~

Vv
VALLEY VOLTAGE PEAK VOLTAGE

b) Equivalent Test Circuit

Figure 1

T~I'
V,

...L

Figure 2

Figure 4

Figure 3

V..

Note: Con~itions for oscillation

16k!!

R

Vas-V,

--->

Ip

R

Vaa-V"

---<

Iv

C

27k!!

R

Figure 5

UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON. MA 02173.. TEL. (611) 86H540
TWX (710) 326-6509 • TELEX. 95-1064

54:4

PRINTED IN U.S.A.

2N6027-2N6028

VS.

Valley Current vs. Gate Current

Peak Point Current
Gate Source Resistance

10

1000

2N6027
OOlir,c, ~,~f'
TI'IIII

;(

..3

1,\ ,

tZ

III 111111111

J~ 2N6028,111

"'0:0:

005

tCi!l!!t

2N'602~~

Sp~c

;(

IW-

c Max.

~~~~
-t:Ji

Max.

t- 100

z

"'

U

~

"1l!!
~">

'\,

"'I

.1

Q,

-"

FVS

2N6028
-Spec Max.

"1
I

lK
R" -

II

III

111111111

II
lOOK

10K

·2N60~~.ijt
Spec Min.

/'

10

1
.001

1M

III

II
.01
I" -

GATE SOURCE RESISTANCE (Il)

VS.

•

Spec Max.

~

f-- ---Max.
f-- _ _ _ Typ .
.01
lOa

Rf:;~:~2~i~

2N60281~

~

-'
-'

00.

2N6027
OOSpec Max?

f=

0::
0:
OJ
U

tZ

"<

unll

..3

::I

Offset Voltage
Ambient Temperature

I

1111
.1

1

GATE CURRENT ""

VS.

V

10

R:

(MA)

Peak Point Current
Ambient Temperature

10

3.0

10V::::

Vs

2.5

;(

..3

~

"'<

CJ

I'..

t-

~

2N6027
R
OOspec Max. "

0

> 1.5
t;

UJ
0:
0:

If)

IL
IL

0

I

:>
.!>

= 1M

~G "'1M

o
-60.

f

t-

-25.
TA -

"<

• spec Min.

=

G -

...........
.1

Q,

-~

-

I

IJ"i

O.
25.
50.
75.
100
AMBIENT TEMPERATURE ('C)

UNITRODE CORPORATION. 5 FORBES ROAD
. LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

---

........

..2'

RI -

= IK

UJ

2N6028
R
1M
Max. F I

~2N6027

R"

U

0
Q,

f-. 00 Spec

t---

.63=

::I
Z

~
~

-

..........

t'-..

Z

2.0

•

.01

-60

125

-25
TA -

545

o

25

~ lOOK
R" I IM-

60

75

lOa

125

AMBIENT TEMPERATURE ('C)

PRINTED IN U.S,A.

2N6027-2N6028

Valley Current

Forward Current

vs. Ambient Temperature

vs. Forward Voltage

1000

10
V,

~

.63-

"1"--

1 ~
li:
w

I

=>

Is;;:::::

U

~

..J
..J

~

-r-.-

2N6027
~pec Min. RG - 10~

10

-

2N6028
•
Spec Min. R"

Z

OJ

0::
0::

10K

Rs

-

5....

~

100

0::
0::

lOY:::

=>
o

10K

U

•

0::

R,,!. lOOK

!5u.

1M::;

R"

I

~

I

.1

/

I

I

1
"::50

I

.01
-25
75
100
25
50
T, -AMBIENT TEMPERATURE ('C)

.6

125

.8

1.2

1.4

1.6

1.8

V,- FORWARD VOLTAGE (V)

Typical Pulse Output

vs. Circuit Supply Voltage
40

~

w

36

r--

i!..J

32

r-r--

CJ

0

>

....
=>
....0.
=>

28

tEO'
'"

"

c

21k!"l

201l '00

24

0

w 20

'"=>

~

..J

..
0.

16

u 12
0:

C,r

./

~

I
~ 4
0
> 0

Iy.

l/::V

8

V-

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

~
,,!)'>~

..J

~

L

~

V

V

<:J§>.9Y

......::'\:

~

~

~

u

~

36

~

CIRCUIT SUPPLY VOLTAGE (V)

546

PRINTED IN U.S,A.

2N6119-2N6120

PUTs
Planar, TO-18, Hermetic
FEATURES
• Hermetically Sealed TO-18 Metal Can
• Programmable Eta, RBB , I, and Iv
• Maximum Peak Point Current: 150nA
• Minimum Valley Current to 1.5mA
• Nano-Amp Leakage
• Passivated Planar Construction for Maximum
Reliability and Parameter Uniformity

ABSOLUTE MAXIMUM RATINGS
Anode-to-Cathode Voltage, VAK
Gate-to-Cathode Forward Voltage, VGK .
Gate-to-Anode Reverse Voltage, VGAR .
Gate-to-Cathode Reverse Voltage, VGKR .
Peak Recurrent Forward Current
1OI's, 1% Duty Cycle .
1001's, 1% Duty Cycle .
Power Dissipation
2S'C Ambient
Derating Factor
Storage Temperature
Operating Temperature Range.

DESCRIPTION
Functionally equivalent to standard unijunction transistors, Unitrode's Programmable
Unijunction Transistors offer the distinct advantage of versatile programming. External
resistors can be added to meet the designer's needs in programming Eta, RBB , I, and Iv
functions. This series also features a hermetically sealed TO-18 package for optimum
reliability in all environmental conditions. Applications include pulse and timing
circuits, SCR trigger circuits, relaxation oscillators and sensing circuits. For additional
information see Unitrode Application Note U-66.

±40V
..... 40V
... 40V
-5V
.. 8A
. ... 5A
....... 400mW
...... 3.2mW/'C
.............. -55'C to +12S'C
............ -55'C to +12S'C

MECHANICAL SPECIFICATIONS
2N6119-2N6120

-r-a=-r
rii~t5MINj

.195

e

.230

,l7aDIA.

..L..

TO-18

c=::::)

II

-tj

.2090IA .

"T""~

.020

I-MAX.

.017

.~ .D02 DIA .
-.001

GATE CONNECTED TO CASE

Dimensions in inches.

547

OJD
_UNITRODE

2N6119-2N6120
ELECTRICAL SPECIFICATIONS

(at 25'C unless noted)
2N6120

2N61l9
Symbol

Test

Fig.

Peak Current

Ip

1

Valley Current

Iv

1

Vr

1

Gate-to-Anode Leakage

IGAO

2

Gate-to-Cathode Leakage
Forward Voltage
Pulse Output Voltage
Pulse Output Rate of Rise

IGKS

3
4
5
5

Offset Voltage

VF
Vo
tr

Min.

Max.

70
-

5
2

Min.

-

25
-

50
-

1.5
0.2
0.2

1.0
0.2
0.2

0.6
1.6
10
100
100
1.0

-

-

.~

-

-

9

-

80

Max.

Units

1.0
0.15

/LA
/LA
/LA
/LA
mA
V

-

25
0.6
0.6
10
100
100
1.0

9

-

-

80

vp

"(iT fT
v

A G

C

:l

RjXR2

v,

a) Typical Circuit

b)

Eq~iv~lent

nA
nA
nA
V
V
ns

:;:::

10V
lOV

lOV
40V

vp -vs

v,

"='Vs=~
R +R

R2

V

vr

+v

Test Conditions

RG = 10k, Vs =
RG = 1 Meg.
RG = 10k, Vs =
RG = 1 Meg.
RG = 20012
RG = 10k, Vs =
RG= 1 Meg.
T = 25'C, Vs=
T = 75'C
Vs = 40V
IF - 50mA

1

Vr
2

Vv
Ip

Iv

IF

c) Characteristic Curve

Test Circuit

Figure 1

Figure 2

Figure 4

Figure 3

+20V

R,
16K
-"L"--""Vs

6V

R,
27K
.6V

L..-LL-"-_ _ _ _ _ _ _....

Figure 5

UN ITROOE CORPORATION. 5 FORB ES ROAD
\.EXINGTQN, MA 02173·· TE~. (617) 861-6540
TWX (710) 326-~509 • TELEX 95-106~.
.

548

PRINTED IN U.S.A.

2N6119-2N6120

:t
-"
l-

Typical Peak Point Current
vs. Gate Source Voltage
10

I

z
U!
0:
0:

I

::J

I
lOK~2

10K~!
IM~!

"'"

U!

"

.1

u
n:
>I-

RG=lM~?

I

_.

z

200R

0:

2000

~loo0

::J

u

>-

U!

100

10KIl

>

...J

>-

10Kn
10

1Mn

I
~

RG=lMIl

..?

I

1f~g~
I

I-

6
Q.

'"

;;)
Q.

...J

"u0::

'"

.........

_.

.........

",, '"r"
r--.... ,

,

~
I

---

J. .l

v"~ = 10V
- - - 2N6119
- - - - 2N6120
r---.

,

,1

r---..

r---r-.

....

...

....

,
\

,

'" "

,

-

....
r---.

r-

"

,01
-80 -60 -40 -20 0 20 40 60 80 100 120 140 160
TA -AMBIENT TEMPERATURE ('C)

Typical Valley Current

Typical Valley Current

VS. Gate Source Voltage

VS. Ambient Temperature

10.000

------- ------ --- ------ --- ---

20~_ t- t- r--

~
I-

z

r-

20rll-

~lOO0
cr
::J

u

I

~

...J
...J

~

I
10KIl ...

100

lOKI),

...J

"

u

0::
>-

l-

10

..?

-80

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX,(7l0) 326-6509 • TELEX 95-1064

549

~O

-

I--

.... 1', ....

J

t- r-

t- r-

RG=lMIl

= 10vi

-- - - - -

1~1l'r---. r- r-- ...

I
§

10
15
20
GATE SOURCE VOLTAGE (V)

r- r-

Vi

---2N6119
- - - - 2N6120

r-

1
V, -

=

RG
1Mn,

Z

---2N6119
- - - - 2N6120

-"
...

l-

.....

10Kn,

cr
::J
u

10
15
20
Vs -GATE SOURCE VOLTAGE (V)

10.000

"
"u0::

.... .....

,01

:t

...J
...J

....

10

0:

K ---

Q.

...J

z

Typical Peak Point Current
VS. Ambient Temperature

U!

.--

I-

Z

I-

I

- - - 2N6119
- - - - 2N6120

u

6
Q.

1

-

t-- ,....

--r-- I-

-1"'"

-

-40 -20 0 20 40 60 80 100 120 140 160
TA - AMBIENT TEMPERATURE ('C)

PRINTED IN U.S.A.

2N6119·2N6120

Typical Offset Voltage

Typical Pulse Output

VS. Ambient Temperature

VS. Circuit Supply Voltage

1.4

""
!:i
0

...~

I

1.3

v, _ 10V

~
w 1.2

g

~

1.0
.9

..

g

.8

III

.7

0

..J

.6

"0::
,.
u

.5

l-

.4

I

.3

!

.2

.;-

:
32

w 28

"

"_"\

~

.

..J

~

fB.f""N.

'i>

13

~

.fo~

I"~ I'{J.?

.1

.......

.......

2OI!Vo

'"

Note: A mUll becllosen so thai
the eurrent Ivailabl. at tile
lirin.painleIiCilIlc!II,ilnd
steady-sllteOllcurrantil
'.sslhanl,..etllNldlllired
V,klrthecil'(;lIittooscUlale

24

I I I I e....e~
I I l\o~~1 V

20
16

I~
Co""
~9\1

12

I

8

>0

0

~Co"'11 I
I~

I I I I I I

048121620242832364044485256
V-CIRCUIT SUPPLY VOLTAGE (V)

-80 ~O -40 -20 0 20 40 60 80 100 120.140 160
T, -AMBIENT TEMPERATURE ('C)

~

tiJ"'

~

!:i

1.1

>
Iw

v,

Typical On.State. Current VS. Voltage

Gate.Anocie Blocking Current
VS. Ambient Temperature

10

IZ
W

5

'"'"

;:,

IZ

u

~

W

.1 ~--t------r-----+----~t-~--~

'";:,'"

;;:

g

U

W
l-

III
W

i!:

o

'1

z

~ .01 I--I---t-~=--+--T-+---I

0

"

.1

I

~I

-~

JO~8LO--_-SO'-----"'0L-----.J.SO-----I0LO-----l..JSO
T, -

.01
.1

AMBIENT TEMP'ERATURE ('C)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173. TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064

550

1
10
V, - ON·STATE VOLTAGE (V)

100

PRINTED IN U·.s ....

PUTs

2N6137-2N6138

Military, Planar, TO-18, Hermetic

FEATURES
• Avai lable as JAN and JAN TX types
• -55°C to +125°C Temperature Range
for Timing and Oscillator Circuits
• I, ,,;;; lOILA at T = -5SoC
Iv ;;;, 40ILA at T = +12SoC
• Programmable n, RBB , I, and Iv
• Peak Recurrent Current: of SA
• Low On-State Voltage Drop
• Hermetically Sealed Metal Case and
Planar Passivated Construction for
Maximum Reliability and Parameter Stability.

DESCRIPTION
The Programmable Unijunction Transistor is functionally equivalent to a standard
unijunction transistor with the advantage that external resistors can be used to
program n, Raa , I" and lv, depending upon the designer's needs. The Unitrode
device, in addition to allowing programmable versatility, is completely planar
passivated and packaged in a TO-18 hermetically sealed package, which offers an
order of magnitude improvement in inherent reliability over many similar devices.
Applications include pulse and timing circuits, SCR trigger circuits, relaxation
oscillators, and sensing circuits. For further application information see Unitrode
Appl ication Note U-66.

ABSOLUTE MAXIMUM RATINGS
2N6137

2N6138

Anode-to-Cathode Forward Voltage, VAK
.......... 40V..
............... lOOV
Anode-to-Cathode Reverse Voltage, VAKR ..
... 40V ......................... lOOV
Gate-to-Cathode Forward Voltage, VGK .
. .... 4OV...
.. lOOV
Gate-to-Anode Reverse Voltage, VGAR ...
. ........ 40V.....
.. ..... lOOV
Gate-to-Cathode Reverse Voltage, VGKR .
.. .. SV....
. .... SV
Peak Recurrent Forward Current, 10l's 1% Duty Cycle ................. SA..
.. ........ SA
Peak Gate Current, IGM
.... 250mA.... . ........ 250mA
Average Gate Current, IGIAVI .
...... SOmA...
. SOmA
Power Dissipation
2SoC Ambient.
.. 300mW...
. .... 300mW
..... 2.4mW/oC...
.. .... 2.4mW/oC
Derating Factor
Storage Temperature Range
...... -5SoC to +125°C
-SsoC to +12SoC
Operating Temperature Range

MECHANICAL SPECIFICATIONS

2N6137-2N6138

5MIN
IL.21Ot·
.170
.

TO·18

j

--r-G=""T

195
~178 DIA.

--L-

.230

c:::::::::» .209 DIA.

II

----1

.02X.

r-MAX.

017 4.002 oIA .
-.001

GATE CONNECTED TO CASE

Dimensions in inches.

[ill]
551

_UNITRODE

2N6137-2N6138

ELECTRICAL SPECIFICATIONS (at 25°C unless noted}t
Symbol

Figure

Minimum

Typical

Maximum

Units

SUBGROUP 1 Visual and Mechanical

-

-

-

-

-

-

SUBGROUP 2
Gate-anode blocking current
Gate-cathode blocking current

IGAO
IGKS

2
3

-

-

2
5

10
100

SUBGROUP3
Peak-point anode current

Ip

1

Peak-point offset voltage

VT

1

Va lIey-poi nt anode current

Iv

1

Test

SUBGROUP 4
Forward on-state voltage
Peak pulse voltage
Peak pulse voltage rise time

0.2
0.2

-

70
1.5

-

t,

4
5
5

-

IGAO
Iv
Ip

2
1
1

40
-

V,
Vo

SUBGROUP 5
Gate-anode blocking current (125°C Test)
Valley-point anode current (125°C Test)
Peak-point anode current (-55°C Test)

-

1
2.5
0.26
0.35
15
200
2

--

1.0

-

80
500

150
100
7.5

10

Cc;mditions

-

nA
nA

2
5
1.6
0.6
50

0.85
12
50

9

TE~st

VG•

I,A
I'A
V

= Rating

== Rating

VG ,

== 1 Meg I V - 10V
== 10K ( , RG == 1 Meg ( V - lOV .
RG == 10K
,RG == 1 Meg (
RG == 10K . V, = 10V
RG
RG

V
I,A
I,A
mA

RG

V

I,

= 200!!

= SOmA

V
ns

=
=

nA
I'A
I'A

VG• Rating
RG == 10K, V, == 10V
RG 10K, V, =:: 10V

t All values in table are JEOEC registered

Iv

NEGATIVE
RESISTANCE
I,
..... REGION
SWITCH~
POINT

===t=+-

VALLEY
CURRENT

Vs Vp

Vr =Vp -Vs

a) Typical Circuit

Vv
VALLEY VOLTAGE

b) Equivalent Test Circuit

PEAK VOLTAGE

Figure 1

T~

ctJ

1:.f

=-Vs

Figure 2

Figure 4

Figure 3

+ 20V

Note: Conditions for oscillation

Vo

VII-VP >1,
___

R,
510K

16K

Vs

R

6V

C,

VBB-V v

---<

Iv

.2.1

27K

R

.6V

Figure S
UNITRODE CORPORATION. 5 FORBES ROAD
4.EXINGTON. MA 02173 • TEL. (617) 861-6540
twx (710) 326-6509 • TELEX 95-1064

552

PRINTED IN U.S.A.

2N6137-2N6138

Peak Point Current vs. Ambient Temperature

Peak Point Current vs. Gate Source Resistance
10
V.

10

10V

V

SPEC.
MAX.

...........

II~PEC.

"

;,

;,

..'0

.3

f-

I-

Z

Z

'"0:0:

UJ

0:
0:

:>

::>

()

()

f0.

0.

I

fZ

"

0

".
'"

""

MAX.

Z

10V

"~

'.1

Q.

1

~

""

"

~G

"" ~

o0.

.1

~~IKO

10KO

...............

"

~=IMO

~

.01
100
RG -

lK
10K
lOOK
GATE SOURCE RESISTANCE (n)

.01
-50

1M

-25
TA -

100
50
75
25
AMBIENT TEMPERATURE ('C)

Valley Current vs. Ambient Temperature

Valley Current vs. 'Gate Current
1000

1000

- -----

150

=

V.

10V

RG

10KO

,

r'

----

V
;,

;,

..'0 100

..'0 100

SPEC.
MIN.

fZ

'"0:0:

SPEC.
MAX.

:>

fZ

UJ

0:
0:

:>

()

()

>

.

..J
..J

>

..
UJ
..J
..J

/

>

I

>

~

'"

I

1
,DOl

>

~1

IG-

~

GATE CURRENT

1

~ (*!J (MA)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

10

1
-50

10

- --'--

>

10

-25
TA -

553

---_

RG= lMO

25
50
75
100
AMBIENT TEMPERATURE ('C)

125

PRINTED IN U.S.A.

2N6137-2N6138

Offset Voltage vs.
Ambient Temperat~re

Typical Pulse Output Voltage vs.
Circuit Supply Voltage

3.0

'~'"

100

~

2.5

2.0

"'"'"...
0
...>

""

80

Note:

:>

60

0

SPEC. MAX.
@ RG =·lMP.

1.5

R must be chosen so that the

current available at the firing point
exceeds III and steady state on current
is less than Iv at the desired level
of V, for the circuit to oscillate.

0..
I-

..J

27K

20

..J

?:

"0

C

UJ

"'>-"
0
>
...
:>

I.~>,t~~

UJ

'"
..J

......'"
0

:>

VI

I

,;-

~
~
I?

-50

,..'"
l-

-25

v';''':;/

I

b-J

SPEC. MA)(.@ RG = 10KII

50
75
100
25
TA - AMBIENT TEMPERATURE ('C)

1U- V = 40 V max.

20

~

-

V = 100V
max for
2N6138

",i ... ~Cf""

11:

'./

~ll\ln

q}e ~ Q
0"'- .(.,....; ~ ,,"

40

(,l

o "-

ROlf!]'

.5

0..
..J

0

>

o

o

~

~

20
V-

fori 2N6137. I.

40
60
80
100
CIRCUIT SUPPLY VOLTAGE (V)

125

Typical Current vs. O.n·State Voltage

Gate-Anode Blocking Current vs.
Ambient Temperature

10
,{,_ 25'C

Raling=

V

T . 12S'C

GAO

~
J
>-

zUJ

IX
IX

:>

(,l

/

"

''""

u

(,l

0

Ul

/

..J

S
'1

'"0

V 1

UJ

z

I

I

.1

z
;;:

:>

0

il

UJ

£'

~

J

I-

Z

I

/ /

0

z

'"

.1

UJ
I-

.:

"'"I

.01

-

-Maximum

0

-~
I

I

.01

.1
V, -

10
ON-STATE VOLTAGE (V)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064

.001
-100

100.

554

/

TypyL

-50
0
50
100
T, -:-- AMBIENT TEMPERATURE ('C)

150

PRINTED IN U.S.A.

SCRs

2N6564-2N6565

.8 Amp RMS, Plastic
FEATURES

DESCRIPTION

•
•
•
•
•
•

This plastic series features very fast switching performance, low forward voltage
drop and a high degree of reliability and parameter stability. All units are fully planar
passivated and are packaged in a rugged TO-92 case, constructed from a special
epoxy compound that features excellent moisture resistance providing stable performance under high humidity conditions and good thermal transfer characteristics.

Voltage Ratings: to 400V
Forward Current: O.SA RMS
Surge Current: 6A, 8ms
Gate Sensitivity: 200!,a max.
Planar Passivated Process
TO-92 Plastic Package

TYPICAL APPLICATIONS
Lamp Driving
Relay Driving
Relay Replacement
Alarm Systems
Counters

Process Control's
Remote Controls
Pressure Controls
High Current SCR Driving
Display Systems
Timers
Touch Switches
Temperature Controls
and many other current sensing and control applications.

ABSOLUTE MAXIMUM RATINGS
2N6584

Repetitive Peak Off-State Voltage, VDRM .
Repetitive Peak Reverse Voltage, VRRM .
On-State Current, IT(RMSt @ Tc = 70'C ...
Peak One Cycle Surge (Non-Rep.) On-State Current, I TSM .
Peak Gate Current, IGM .. ' .
.
Peak Gate Power, PGM .
Average Gate Power PGIAVI .
Reverse Gate Voltage, VGR
Storage Temperature Range .
Operating Temperature Range .

2N6585

. .. 300V ... .

.400V
... 300V .. .
...... 400V
. ..... O.8A ..
..............6A

....... I.OA ..
................ lW.
...... O.OlW ...
..............6V ..
........ -65'C to + 150'C ..
-65'C to +125'C ...

MECHANICAL SPECIFICATIONS
2N&5&4-2N&5&5

T092

.019

.016

1
-)~=
1
~
.135

.205
.175

MIN.

_I

.045

Go----ITT.105

1,- 1.095
=l~
500 MIN
I I
.1OS

I _.210 I
I , °1-"17

.055

Ao--

j-.OBO

--:m-.125

Dimensions in inches.

[1W
555

_UNITRDDE

2N6564C2N6565

ELECTRICAL SPECIFICATIONS (at 25°C unless noted, RGK := 1000 ohms)
Test

Symbol

Off-State Current

,

-

IORM

Reverse Current

IRRM
,~

Gate Trigger Current.

VGT

Peak On-State Voltage

VTM

Holding Current
Critical Rate ot RiseOff-State Voltage

Units

0.1

1.0
100

p-A
p-A

0.1

1.0
100'

pA
pA

0.6
-

200
350

p-A
p-A

0.8

1.2
-

V
V
V

Vo := 6V, Rl := 100 ohms
Vo := 6V, Rl := 100 ohms, T := --'65°C'
Vo:= Rating, Rl := 100 ohms, T
125°C'

1.0
0.7

1.7

V

-

5.0
10.0

mA
mA

:= 1.2 Amp Pulse"
Vp _ 6V, T _ 25°C
Vo := 6V, T := -65°C'

-

0.1
-

IH

Max.

-

-

IGT

Gate Trigger Voltage

Typical

Min.

Test Conditions

=
=
=
=
=

VORM
Rati ng
VORM := Rating, T
125°C'
VRRM
Rating
VRRM
Rating, T := 125°C'
Vo
6V, Rl
100 ohms
Vo
6V, Rl
100 ohms, T

=

=
=

= -65°C'
==

ITM

dvldt

-

75

-

VII'S

Turn-on Time

to,

0.5

1.5

p-S

Circuit Commutated Turn-off Time

tq

-

15

-

= Rating
IG = lamA, IT = lA, Vo =Rating"

p-S

IT -IR _lA

Vo

Note: Blocking volta,ee ratings apply over the full operating temperature range, provided the gate

IS

connected to the cathode through, a

re~

sistor, 1000 ohms or smaller, or other adequate bias is used.

'Indicates JEOEC Registered data.

DESIGN CONSIDERATIONS
1. The 2N6564 Series SCRs are guaranteed to block their rated voltage over the
rated operating temoerature when a resistance of 1000 ohms or less is connected
from gate to cathode as shown.

d

ANODE

GATE
RGK

:=

lK or less

CATHODE

2. In cases where the SCR may be subjected to fast rising anode voltages a
capacitor can be connected between anode or gate and cathode as shown, to
serve as protection against dv/dt firing.

AN0:IJE
GATE
CAK

GATE

CGK
CATHODE

UNITROOE CORPORATION· 5 FORBES ROAD
LEXlNGTON; MA 02173 ..• TEL. (617) 861-6540
TWX (710)'326-6509 • TELEX 95'1064.
.

d

ANODE

CATHODE

556

PRINTED IN U.S.A.

SCRs

2N6681
2N6682
2N6683
2N6684
2N6685

1.0 Amp RMS, Plastic
800V
FEATURES:

DESCRIPTION:

•
•
•
•
•
•

This plastic PNPN device is rated at
1.0 Amp RMS maximum on-state current,
with rated voltages up to 800 volts. All
units in this series offer full hard glass
passivation with sensitivity especially
targeted for good transient immunity.
Supplied in an economical TO-92 package,
this device is well suited for many high
volume applications.

Forward Current: LOA RMS
Voltage Ratings: to 800V
High Surge Current: l5A, 8mS
Gate Sensitivity: 30llA Typical
Hard Glass Passivated Junction
Economical TO-92 Package

TYPICAL APPLICATIONS:
Ground fault interrupters
Photo flash circuits
Ignition/Ignitor ci rcuits
Relay drivers
Relay replacement
Gate drivers for high current SCRs
Lamp driving
Off-line appliance controls

MAXIMUM RATINGS
2NBB81

Repetitive Peak Off-State Voltage, VORM
Repetitive Peak Reverse Voltage, VRRM
On-State Current, 'T RMS At 60'C Case, 180' Conduction Sinewave
Surge (Non-Rep.) On-State Current, ' TSM
Peak Gate Current, IGM
Peak Gate Power, PGM
Average Gate Power PG (AV.)
Reverse Gate Voltage, VGR
Storage Temperature Range

... 100V.

lOOV ...

2N6682

2N6683

2N6684

2N6B8S

200V ....... AOOV..
..600V.... ..... 800V
..200V..... .. 400V ............. 600V....... . .. 800V
1.0A
...... 15A

.1.0A
......... 1W
O.OlW

..........6V
.-55'C to +150'C
-55°C to +llO'C
- 55°C to + 85'C

Operating Temperature Range (2N6681-2N6683)
Operating Temperature Range (2N6684-2N6685)

MECHANICAL SPECIFICATIONS
2N6681·5 SERIES
B

-~
11 AC>--E[(
!
==r
=
F

A

-.L

E

~D~-

GO---

=l~'
c

~-~"

G

A

B
D
C
E
F
G
H

inches
.135 MIN.
.019 - .016
.210 - .170
.500 MIN.
.205 - .175
.165 - .125
.055· .045
.105 - .095
.105 - .OBO

TO·92

millimeters
3.43 MIN.
.4B - .41
5.33 - 4.32
12.7 MIN.
5.21- 4.45
4.19 - 3.18
1.40 - 1.14
2.67 - 2.41
2.67 - 2.03

[ill]
12/79 (Formerly IP200 Series)

557

_UNITRODE

2N6681 2N6682 2N6683 2N6684 2N6685

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test

IORM
IRRM
IGT

Gate Trigger Voltage

Typical

Max.

Units

-

-

-

30
0.6

100
100
200
0.8
1.2

ItA
p.A
ItA

Min.

Symbol

Off-State Current
Reverse Current
Gate Trigger Current

VGT

-

-

0.1
Peak On-State Voltage

VTM

Holding Current

IHX

Critical Rate of RiseOff-State Voltage

dvldt

-

0.7

-

-

V
V
V
V

-

Test Conditions

VORM
VRRM
Vo Vo
Vo
Vo
ITM
RGK
RGK

-

1.5
5.0
10.0

rnA
rnA

20

-

VII's

= Rating, RGK = lK, T*- llO'C
= Rating, RGK = lK, 1* = llO'C
6V, RGS _10K

=6V, RGS =lOOn
=6V, RGS =loon, T = - 55'C
=6V, RGS =lOon, T =125'C
=1 Amp Pulse
=1K, T =25'C
=1K, T =-55'C
Vo = Rating, RGK =1K, T =100'C

'For 2N6684, 2N6685 T = 90'C

Maximum Allowable Non-Repetitive Peak
On-State Current Following Rated
'
Load Conditions

Maximum On-State
Characteristics

$

!Z

10

18

'"0:0:

;)

U

'"...
~
'"
Z

L

I

o

'"
S

TJ =125'/

;)

~ .1

~
~

I

'"

>

.01

16

-

t: :;(
'"e;... iii...
0:0:
~ g;

~,,,.,

14

"-

12

~

10

z u

8

~~

6

I Z

4

"'~

II

z

..:-

~

10

I

$

"'z

::;; 0:

.2

I00
~

1

Q,Q,

.

!t

~ ~.6
~

/

g.5

Z U

0

/'

.3

.9

~ ~.7

./

~; .4
",0

0:

,/

'"'"~ t:"~ .7.6

UJ

'"
0:: >

u

20

'"'"
'"
~

0

ALL

~

NITS FIRE

'Go MAX.

IGT MIN.

"~-20
~

~

NO UNITS FIRE

~

ALL UNITS FIRE

to,.

IGT MAX.

~

IGT MIN.

I

NO UNITS FIRE

Cl_40

"

I

- --<;0

-80
-65

-25
-

25

50

75

100

125

150

-65

JUNCTION TEMPERATURE (Oel

-25

TJ

25

'--,-,.--,-..,.--,--r-,.-.

1.4

~.OOr--_+-~-+-+--+-4_~r-~

~
OJ

"~

\oJ

:>

400 Vf1'lr-t-+--+-+--+-+-Ir--4
ALL UNITS FIRE

II!

~

200

g

IWfflnft~rn.,.,f,'7T.rtrm17771n77l~.,..j

~

~

0

150

,.---,-,---,-..,.--r--r-,--,

1.2 f----+-+-~-,4_-I-_+-+-_l
li---+-+--t-+-r--t-+--1
.8~~_+--+-~~~~--~--1-~

.6~~~~m9~~+--I--~--1-~

"~

.41----t--t-~~~~~~~~~

"

.2r----t--+--+--+--I--~~~~

-25

JUNCTION TEMPERATURE (Oe)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173'.' TEL. (617) 86!,6540
TWX (710) 326·6509 • TELEX 95·1064

125

(OC)

""
~
>

-400 ~--=-~----,":---L--:":__...L..J.--'
-65
-25
0
ISO
-

100

ffi

I

I

~-200r----t--+--+--+--+--+-I~&f

TJ

75

Gate Trigger Voltage

!i;
~

50

JUNCTION TEMPERATURE

-

Gate Trigger Current
AA114 Series

(J

'\';

-400
TJ

8DO

"'«G If//;
'VI;

TJ

560

-

25

50

75

100

125

ISO

JUNCTION TEMPERATURE (Oe)

PRINTED IN U.S.A.

AAlOO-AAI04

Max. Holding Current
50

20

r-- r-

"' 10
0:
0:
::J
U

2

~

I

x

;j
I

_'I.

--

IK

l - t--

':::-

Rj' ~ I~K

.2

x
;

~

l - I--- I--.

-

.5

".s...

RGK :::: lOOt!

S

§"

20
10

~

::J
U

"

RGK

Z

-

~

I--- I -

I

-2S
-

25

50

75

100

125

- l -I -

.2

_'I.

~=lOK

:1
-25
TJ

JUNCTION TEMPERATURE (OC)

DC

5

~

.."' ...6..4

0:

::J

u
~

.3

~

5
!z"'

I

...

",-"- .'\.

~ ~'\

"'~

,,~

.2

~~
~

.1

100
Tc m., -

110

120

~

a;;-.3

130

25

50

75

~I

125

150

POWER DISSIPATION (W)
3
2
1

~

",\,

~~

.2

~

.1

~~

~~

~

140

100

JUNCTION TEMPERATURE (DC)

'"'"~"""

6"

Z
o

o
90

DC

::J
U

,,~ ~

~

-

Po 4

.4

[\.
,,'\

~

-

t--...

Avg. Current vs. Ambient Temperature

AVI. Current VS. Case Temperature
5 PII - 'j>WER D~SSIPATJON (Wl1
.5

-

--r--.....

-;--

.OS
..... S

ISO

1----1-

IK

.5

i

.OS
TJ

-

~

~

~5

100!!

::::::

9

t--- I--

.1

~

AA1l4-AA1l8

Min. Holding CUrrent

50

"!zg

AAI07-AAlll

"'

o

150

o

25
TA .. u

MAX. CASE TEMPERATURE COC)

-

SO

75

100

"

125

150

MAX. AMBIENT TEMPERATURE (OC)

Surge Current

5

§

..

50

::J

20

"'

10

u

~

~1',

"'-

Z
o

.

Z
o
.S

"~

.2

I

j

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509· TELEX 95-1064

,

'"f\

,

f\. ,

~::;;:::g~

1

i'...' ...

0:

.'"i5

,

SOLtD
LINE:
RATED
BLOCKING
VOLTAGE MAY
BE APPLIED
AFTER SURGE
DASH LINE:
BLOCKING VOLTAGE MAY
NOT BE SUSTAI NED FOR 0.1
SECONDS AFTER SURGE

W
0:

~

If BEFORE SURGE:::: 0

.1
.05

10

~

10 • 10 l

10- 2 10- 1

1

~
10

102

10l

SURGE DURATION (5)

561

PRINTED IN U.S.A.

ADI00-ADI04
ADI07-ADll1
ADl14-ADl18

SCRs

1.6 Amp, Planar

FEATURES
•
•
•
•

OESCRIPTION

Maximum Gate Trigger Current: 2,20 or 200~A
Tight Gate Trigger Voltage Range: .44 to .6V
Voltage Ratings: to 400V
Specified for dv/dt and Switching Time

This data sheet describes Unitrode'sAD Series 1.6A SCRs designed for medium. current control and sensing applications. Units are available in a complete range
of blocking voltages from 60 to 400 volts;
The AD100 series offers a maximum gate trigger current of 2.0 microamps making
it the most sensitive device of its type. TheAD107 series has a maximum IGT of
20~A while this parameter is specified at 200~A for the AD114 series.

ABSOLUTE MAXIMUM RATINGS
AD1DD
AD1D7
AD114

AD1Dl
AD1D8
AD115

AD1D2
AD1D9
AD116

AD1D3
AD110
ADl17

Repetitive Peak Off-State Voltage, VORM .
. .. GOV."
..... lOOV.
,,",," 200V"
"",." ..... " 300V."".
" 200V,
Repetitive Peak Reverse Voltage, VRRM ................ ," 60V.""."
". lOOV""""
.. """""",300V"".
Non·Repetitive Peak Reverse Voltage, VR5M . """"""" 80V.
.,,""" 150V"
300V"."."
.. """.400V"
." ..... " .. "SOOV
Non·Repetitive Peak Off·State Voltage, V05M '
"""". """""" ... """"".,,",,.
D.C. On·State Current, IT
. 7S'C Ambient .".
"". """""""""
"450mA.""".,,
"."""""".,,,," "
....... "."",,.. """""'" """.1.6A:"
8S'C Case ""
Repetitive Peak On·State Current, ITRM .
". ". """"".
... "." .. " ... up to 30A.
" ...... "" ... "........
" ..... " .. .15A .. ,,,.
Peak One Cycle Surge (Non·Rep.) On·State Current, IT5M .
"."" ... ".2S0mA.
Peak Gate Current, IGM
" """""""". """"""""" "
Average Gate Current, IG{Av) .
""""" """""" """""""""""".
""""" """ """" .... ".25mA."."
........ 6V.
Reverse Gate Voltage, VGR .
""""""""" """"""""
... -65'C to +150'C
Operating and Storage Temperature' Range .

AD104
ADlll
AD118

." 400V
.."",,. 400V
"" ... " 500V

MECHANICAL SPECIFICATIONS

AD100·AD104 AD107-ADll1

ADl14-ADllB

T0-39

[ :;:~--t-;;;5 MlNl

:ii~[Iag1i~;~

T- ....•

,33SJ
.305

.017' .002
.001

,
--;.100

Dimensions in inches.

[ill]
562

_UNITRODE

AD100-AD104

ADl07-AD111 AD114-AD118

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Parameter

SUBGROUP 1
Visual & Mechanical
SUBGROUP 2 (25'C TESTS)
Off-State Current
Reverse Current
Reverse Gate Current
Gate Trigger Current
ADlOO-104
AD107-111
AD114-U8
Gate Trigger Voltage
On-State Voltage
Holding Current
SUBGROUP 3 (25'C TESTS)
On-State Voltage-Critical Rate of Rise
Gate Trigger-on Pulse Width
Delay Time
Rise Time
Circuit Commutated Turn-off Time
SUBGROUP 4 (125'C TESTS)
Off-State Current
Reverse Current
Gate Trigger Voltage
Holding Current

Symbol

Min.

Typical

Max,

Units

-

-

-

-

-

0.44
-

.01
.01
0.1

0.1
0.1
0.2

I'A
I'A
I'A

0.2
2.0
20
0.52
1.1
0.5

2.0
20
200
0.60
1.5
2.0

I'A
I'A
I'A
V
V
mA

IORM
IRRM
IGR
IGT

VGT
VT

0.3

'H
dvldt

50

tpg (on)
td
tr
tg
IORM
'RRM
VGT

0.15
0.2

'H

-

100
0.5
0.6
0.4
20

-

RGK == 1K, VORM = Rating
RGK = 1K, VRRM = Rating
VGR =2V
RGS == 10K, Vo == 5V

=

RGS == lOOn, VD 5V
'T == 1.0 Amp (pulse)
RGK == 1K

=

I'S
I'S

RGK == 1K, Vo
30V
IG == 10mA, IT = lA, Vo = 30V
IG == 10mA, 'T = lA, Vo
30V
IG == 10mA, 'T = lA, Vo
30V
'T == lA, 'R == lA, RGK = 1K

I'A
I'A
V
mA

RGK == 1K, VORM
Rating
RGK == 1K, VRRM = Rating
RGS == lOOn, Vo = 5V
RGK == 1K

VII's

2.0

I'S
I'S

50

10
30
0.2
0.4

Test Conditions

100
100

-

1.5

=
=

=

Note: Blocking voltage ratings apply over the full operating temperature range, provided the gate is connected to the cathode through a resistor, 1000 ohms or smaller, or other adequate bias is used.

Gate Trigger Current
AD107 Series

Gate Trigger Current
AD100 Series
80

..~

~ 60
~

~600

0:
0:

40

'"

~400

ALL UNITS FIRE

20

ffi

"'"

~

"''"

IGo MAX.

""l.o\

I GT MIN.

~

-20

NO UNITS FIRE

'"~ -40

"'

~ 200

'"

'III!!.

5I

I

~
~

-65

-25

0

25

50

75

100

125

150

T J -JUNCTION TEMPERATURE (OC)

Gate Trigger Voltage

..

r----r~r-1-~r-1-~--~-i

~ 600

ir---+---1f----t---,f----t----1--+-----1

:>

r«l !fIlA

I

-400

Gate Trigger Current
AD114 Series

ffi400

_'G,- 

0:

§:

o

BOO

~~-r~r--r--r-1-~--~-i

g
~200

5'"I

0

-400 ' -__-'-~'---L__'---'---'__..L..-I

-65

-25
TJ -

0

25

50

75

100 125

150

JUNCTION TEMPERATURE fOe)

UN'TROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

563

PRINTED IN U.S.A.

ADIOO-AD104

Max. HDlding Current

Min. Holding Current

.,g

50

.,g

20

...z
"'

10

-r- --

r--

0:
0:

:J

o
z

2

Ii!

I

~

.5

~z
x

.2

"9
:;

~

RG,

...

",1~00"

--..::..

1---

-25
TJ

~

25

50

7S

125

S

Ii!
i

i

I

.5

I
.: .2

1

.OS
-65

ISO

-25
TJ

ffi0:
cr::

:J

1<1>

"'

3<1>

S
'"
z

.8

o
I
.!.

.7

.4

6<1>

0:

~

"" '" "-

i'-..
i'--.. ~
.........

----

"- ~

~ .4

~

-..:::

g

...

~50

0:
0:

~ 20

"'~ 10
~ 5
o

'~"

--

.1

I

,

UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

150

]

.2

.6

.4

.2

'":'"

~
~ ~

"'"

~

~'"
~~
..........

~

ma. -

50

75

100

,

125

150

MAX. AMBIENT TEMPERATURE C°C)

Surge Current
............

""

"""'-

TC

10

-.

10

-,

-,

-,

10
10
1
10
SURGE DURATION (5)

564

8S'C_

""""-J.
.,,~
'>.t'(oo

],05 10-

.3

TA

1

.2

125

~

25

~ .5
:J

Z
o
I

-

150

~ 2



.8

.1

80
90
100
110 120
130
140
T c .... - MAX. CASE TEMPERATURE (Oe)

~

.5

o

~

75

"-

1<1>

~ .6

r-- -....... t-70

7

g

"-

o

50

POWER DISSIPATION (W)

1

"-

1.'

25

JUNCTION TEMPERATURE COC)

-

PD -

.5

DC
1.6

-

Avg. Current vs. Ambient Temperature

.8

g

r--

.1

PI)- POWER DISSIPATION (W)

1.5

-I--.

_RGI<-lOI{

i
i

Ava. Current vs. Case Temperatura
2

-lGof!

r!-'!- r-- r--

C~C)

JUNCTION TEMPERATURE

RG,

~

9

r--

100

10

:J

!;1

.1
.OS
-6S

20

r5

o

r- -r-.
I--

50

0:
0:

~/(

_~~~o/(

AD107-AD111 AD114-AD118

=

102

103

PRINTED IN U.S.A.

CSB20
CSB40
CSB60

TRIACs
25 Amp RMS, 600V, ChipStrate®
Quick Connect Terminals
FEATURES
• Voltage Ratings: 200V-600V
• Hard-Glass Passivated Junction
• Isolated Case
• Quick Connect Terminals

OESCRIPTION
The Unitrode ChipStrate CSB20 series
Triac has been designed specifically for
the appliance and industrial controls
market. Standard quick connect terminals
allow for simple solderless connections,
ideally suited to production line techniques. The heart of this device is the
exclusive ChipStrate assembly with
proven reliability, incorporating a copper
heat spreader, a BeO substrate for
lowest thermal resistance, and a one
piece lead frame construction for
mechanical strength and optimum
power handling capability. All Unitrode
ChipStrate Triacs are isolated from the
mounting flange.

ABSOLUTE MAXIMUM RATINGS

CSB2D

CSB40

Repetitive Peak Off-State Voltage, VORM .
........... 200V .
....... 400V .
On-State Current ITIRMSI (at Tc = 6S·C and conduction angle of 360·) . . .
.................. 2SA .
. ............................................... 2S0A .. .
Peak One Cycle Surge (Non-Rep.) On-State Current, I TSM .
. ........... 16W ... .
Peak Gate Power, PSM ..
Average Gate Power, PSIAVI ......................................... .. .........................
. ......... O.SW ..
Rate of On-State Current, di/dt (at VOM = VORM' 1ST = 175mA, t, = O.1/,s) .
....... 125A/p.s ..
Storage Temperature Range.
...... -40·C to +150·C ... .
-40·C to +110·C .. .
Operating Temperature Range.
Isolation Voltage, Flange to Terminal.
..................................... 2500V RmS ..

CSB60

n~'
-~
III
l~ n
+
J

I

'"

H

~

'" -9

OEF

Tj j

A

B

finches)

Metric

1.395

35.4lmm

1.181

1---'-

G

.675

11.15mm

0

,

.156 (TYP.)

3.96 mm (TYP.)

.615

17.15mm

F

.700

G

.187 WIDE X .032

H

I-M--I

Q

I

~

~

-r

•

~

.-

17.78rnm
4.75 mrn WIDE X 0.81 mm
THICK (GATE)

.250 WIDE X .032

6.35 mm WIDE X 0.81

THICK (MTl)

-,
N

........L

I

1

THICK (MTl)

J

.290

7.37mm

,

.442

1l.2lmrn

.580

14.73mm

.290

7.l7mm

K

1

L3

lO.lSmm

C

THICK (GATE)

H

CSB20

..600V

DIMENSIONS

B

r-c----l

CSB40

CSBGD

M

N

.218

S.54rnm

p

.360

9.14mm

Q

.156 (2 PLACES)

3.96 mm (2 PLACES)

R

.oso

1.27mm

s

17S(TVP.)

22.23mm

[1ill
ChipStrat... is • registered trademark of Unitrode Corporation.

565

_UNITRDDE

CSB20

CSB40

CSB60

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
Off-State Current

Typical

Test Conditions

Symbol

Min.

Max.

Units

IDRM

-

-

2.0

mA

-

-

50
80

mA

2.5

V

VD

-

1.9

V

ITM -

mA

V DRM ~ Rating, Te _lOO'C
VD - 12V Quadrants 1,.:! (+ +,
VD == 12V Quadrants 2, 4 (+ -,

Gate Trigger Current

IGr

Gate Trigger Voltage

VGT

Peak On·State Voltage

VrM

-

IH

-

-

50

20

50

V/~S

3

10

-

VII'S

IT

-

-

1.1

'C/W

Steady State

Holding Current
Critical Rate of RiseOff·State Voltage

dv/dt

Critical Rate of RiseCommutated Off-State Voltage

dv/dtl<1

Steady State Thermal Resistance'

R9JC

-

-)

- +)

=12V

28A Peak

VD - 12V
VDRM

=Rating, Te = 100'C

= Rating, VDRM =Rating, Te = 65°C

• Junction-ta-Case

On-State Characteristics
100

...i?
~
"'"'

I

80

I
I

U

w

/

'"

::J

60

TYPICAL

40

II

~

z

in'"

"~ .- 240
"- ::!.
~ ~ 200
i= '"

/

0

8z

280

L

::J

~:i:

Maximum Allowable Non-Repetitive Peak
On-State Current FOllowing Rated
L~d Conditions

/

/

5

~
"- :::J
"'u
0:: UJ

MAXIMU~

J

V
.5

vT -

120

0

40

o

2.5
1.5
INSTANTANEOUS ON STATE VOL TAGE (V)

I

MA~MUM

"'iii
<[Ill

0:",0
>0:
<[",

13:

G

~

V

'"t- 110

"'u 100
"' 90

III

<[

a..Q~

V
IT ••• -

/

.....J

--........ r-.....

oJ

III
<[

~

..1,•. \

...

80

"I

60

<[

• eN.

9,+9111

'~

~

<[
:; 70

CONDUCTION ANGLE

9 , +9'11

lID'

CONDUCTION ANOLE

0

oJ
oJ

i'iir \

.9,,,

:;:

/'/
10

:~

120

:;

/

15

60 80100

Maximum Allowable Case Temp,

/

o!;< 20
","-

40

VS, On-State Current (50 or 60HZ)

/

"'~
t-:;:
< [ - 25
t-z
~o
z-

6 8 10
20
CYCLES AT 60 Hz

1

Maximum Conduction Power Dissipation
vs, On-State Current (50 or 60HZ)
30

I-

\2

V

I
.t

160

~ S 80
z",

/

20

;!:

""-

l~

u

t-

10
20
FULL CYCLE ON-STATE CURRENT (A)
(360' CONDUCTION)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710)326·6509 • TELEX 95·1064

10
I; ••• -

566

20

FULL CYCLE ON·STATE CURRENT(A)
(360' CONDUCTION)

PRINTED IN U,S,A,

GAIOO
GAIOI
GAI02

SCRs
Nuclear Radiation Resistant, Planar

FEATURES

DESCRIPTION

• Optimized for Radiation Resistance
• Fully Characterized for "Worst Case"
Design
• Post Radiation Design Limits Specified
• Passivated Planar Construction for
Maximum Reliability and Parameter
Uniformity
• Pulse Currents: to 30A
• Max. Trigger Current 20mA after
3 X 10" NVT
• Max. Holding Current 30mA after
3 X 10 NVT

The GA100 Series of Radiation Hard SCRs have been designed to provide
significantly greater radiation tolerance than conventional SCRs or Transistors with
the same current handling ability. This Series is capable of operation after exposure
to 10 '5 NVT.
The radiation resistant characteristics of the GAIOO series devices make them
particularly desirable for use under radiation environments in squib firing circuits;
inverters and converters; pulse generators; relay drivers; and modulator discharge
switches.

'4

ABSOLUTE MAXIMUM RATINGS
GAIOI

GAlOO

... 30V.....

Repetitive Peak Off-State Voltage, VORM .
D.C. On-State Current, IT
75'C Ambient ...
1OO'C Case .
Repetitive Peak On-State Current, ITRM
Surge (non-rep.) On-State Current, I TSM (Sq. Pulse-50ms) .
Peak Gate Current, IGM . .
................. .
Average Gate Current, IG1AV) .
Reverse Gate Voltage, VGR .......................................... .
Reverse Gate Current,IGR.
Storage Temperature Range .
Operating Temperature Range .....

60V.......

GAI02

.. 80V

. .... 200mA ....
..... ..400mA
............. up to 30A ..... .
....... 5A .... .
.. ... 250mA ..
. ........ 25mA ... .
.... 5V .. .
........ 3mA .... .
... -65'C to +200'C ... .
....... _65'C to +150'C ..... .

MECHANICAL SPECIFICATIONS
GA100

GA101

GA102

TO-18

~.210--ol.-.5MIN~

I

I

.~

r-[l=--r
.170

.195
.1780IA.

c:::::::::)

-L-

.230
.209 DIA.

c:;;=~
.020
.011 -! .002 0IA .
r-MAX.
-.001

II

--tj

Dimensions in inches,

lliJ]
567

_UNITRODE

GAlOO

GAlOl

GAl02

ELECTRICAL SPECIFICATIONS (at 25°C unless noted)

Test

Preradiation
Limits

Symbol

IDRM
IGR
1ST
VGT
VT
I
dvc/ dt
tpg (on)
td
t,
tq
IDR"
VGT

Units

Test Conditions

Typ.

Max.

-

-

-

-

-

-

MIL-STD-7S0
Method 2071

-

.005
.01
2.3
0.5
1.1
OJ

0.1
0.1
3.5
OJ
1.5
10

-

1.0
1.0
20
1.5
3.0
30

I"A
I"A
mAo
V
V
mA

RGK = 220f!, VD"" = Rating
VGR = 2V
RGK = 220f!, VD = SV
RGK = 220f!, VD = SV
iT =,lA (pulse test)
RGK = 220f!

-

V/I"S
I"S
I"S
I"S

Min.

SUBGROUP 1
Visual and Mechanical
SUBGROUP 2 (25°C Tests)
Off-State Current
Reverse Gate Current
Input Trigger Current (Note 2)
Gate Trigger Voltage
On-State Voltage
Holding Current
SUBGROUP 3 (25°C Tests)
Off-State Voltage-Critical Rate of Rise
Gate Trigger-on Pulse Width
Delay Time
Rise Time
Circuit Commutated Turn-off Time
SUBGROUP 4 (l2SoC Tests)
High Temp Off-State Current
High Temp Gate Trigger Voltage

Post 3 )( 1014
NVT Design
Limits
Max.
Min.

1.8
0.4
0.8
0.3
20

-

-

0.1

-

40
.02
.02
.05
1.5

2.5

10

100

.17

.05

-

0.1

"

1.0

I'S

RGK == 220f!, VD ::: 30V '
IG = 2SmA, IT = lA, VD:::: 30V
IG = 2SmA, IT == lA, VD ::: 30V
IG = 2SmA, IT = lA; VD ::: 30V
IT ::: lA, iR = lA, RGK ::: 220f!

100

I"A
V

RGK ::: 220f!, VDR " ::: Rating
RGK = 220f!, VD = SV

0.1

-

Notes: 1. Off-State voltage ratings apply over the operating temperature range provided the gate is connected to the cathode through an
appropriate resistor, or other adequate bias is used.
2. Total Input Trigger Current, including current required by 2200 gate bias resistance.

DESIGN CONSIDERATIONS
1. Curve 1 shows the off-state current, IDR" of the SCR as a function of temperature. IDR" is increased by radiation damage,
but is not a design consideration at the recommended gate bias levels.
In order to optimize for radiation tolerance, reverse blocking capability has not been retained as a design feature. Devices
with reverse blocking capability can be provided.
2. Minimum critical dv/dt levels are defined in Curve 2. The dv/dt capability is improved after radiation because of reduced
triggering sensitivity. dv/dt is therefore a design consideration only prior to radiation.
3. Curves 3 and 4 show the limits of Gate Trigger Voltage and Total Input Trigger Current prior to radiation. 'Maximum design
limits after a total radiation dosage of 3 x 10'4 NVT is also shown. Curves 5 and 6 show the maximum limits of Gate
Trigger Voltage and Total Input Trigger Currents as a junction of neutron dosage. The minimum level of Tril;lger currenI'
prior to radiation is established by the shunting effect of a 220 ohm resistor between gate and cathode. After radiation
the device is less sensitive and Total Trigger Current will increase to a level relatively independent of the bias resistance.
The 220 ohm resistor is recommended since it raises the minimum preradiation trigger current to a level that is closer to
the past radiation limit and minimizes the percentage change in this parameter.
4. Current ratings shown in Curves 10, 11, and 12 apply after the device has been subjected to 3 x 10'4 NVT. Current ratings
prior to radiation are greater than the values indicated.
5. Gamma radiation produces a reversible ionization (leakage) current within the device which is directly proportional to the
Gamma flux level. When the Gamma flux level is in the range of 10 to 100 Roentgens per microsecond for burst durations
greater than 1 microsecond, the device will self trigger ON. For the radiation bursts associated with nuclear explosions,
the Gamma flux level will invariably cause device triggering at radiation levels significantly below the levels that would
produce detectable permanent device damage due to cumulative neutron dosage. In applications where the burst effect
triggering cannot be tolerated, it is necessary to reset the device after the radiation burst. Special circuit approaches such
as additional SCRs to c,owbar or otherwise cancel the output function may be used.

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
• TELEX 95-1064'

twx (7111)' 326-6509

568

PRINTED IN U.S.A.

GAlOO
1.

2.

Off·State Current

1000 ,----..,---....,------,...----.---,.-,

100

~

10

~

500

~"

....e

f---+-

~

0:

..

::>

o

III

~
~

..J

1.0 .......c..-1-----:

u

;:

"'

//

.001 ' -_ _..L_ _ _ _--'-_ _--'_ _----'
25
50
75
125
100
150
~

2.0

~
0:

III

":=
~

f-----+--I---

= 5V

z

'"0:0:

f---+--f--I---+-+-+-+---1

2.0

RG:
VO

1.0

~""",--+-

SO

"'....

20

::>

10

""

= 2JOQ
= 5V

5

Sr 3 x 1014 NVT

....

25

50

75

100

125

ISO

-65

JUNCTION TEMPERATURE C'C)

-

5.

Max. Gate Trigger Voltage
vs. Neutron Dosage

3.5

6.

3.0

:(

E-

III

..J

/

0

2.0
1.5
-65'C
1.0
25'C

X

0.5
+125'C

1011

~~
l~

~~

-25
0
25
50
75 100 125
TJ
JUNCTION TEMPERATURE ('C)

=

150

Max. Input Trigger Current
vs. Neutron Dosage

....

100
SO

0:
III

""
....

VI

"'....

10 14

UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6S09 • TELEX 95·1064

LL

20
10 -_6S'C

~

===.1 25,C

::>
Q.

..

""X

V

10 13
NVT

/

::>

---- V

--

=' 2200
=5V

0

VI
.--/

10 12

RGK
200 I-Vo

'"0:0:

z

2.5

10 10

P~ERAO/AT/ON

500

I

=22011
f--- Vo = 5V
RGK

::;;

10 16

~

. ~OIAr/ION
b
~ ~~
Q.

..J

TJ

.."
.

10 15

200

0:

""'"
....

1.5 f---+--f-=''''-t~

-25

"''"........

10 14

Input Trigger Current

MIN.

'"
""

10 13
NVT

u

"'""',..---+--1---1--1--+-+-+----1

~

0:

10 12

1011

E-

....

> 0.5 F==-"'""'~~~~~~'R~~t....d=-4

>

./

1000

I

."....

.,../

V

:( 500

= 22011--+--+--1

RGK

L

::> 100

....

~

~

+l~5'C

4.

III

C3

10

0.5
10 10

,-----,r--r-,----,--,------,----,-----,

Vo
3.5

l

25 C

20

Gate Trigger Voltage

III

~

SO

~

JUNCTION TEMPERATURE C'C)

-

3.
3.5

-

I
-6~'C

100

i

.,.."

TJ

= 220Q
= 30V

Z

-~ .01 f-----,7'-!---+----+---I---I

~

I

u
::;;
::>
::;;

0.1 ~"""'-+--//

I

GAl02

Minimum Critical DV/DT
vs. Neutron Dosage

RGK
iii' 200 r-vo

1

GAlOl

+125'C
2

::;;

1015

0.5
10 10

10 16

569

1011

1012

L LL
,/ /

-V
1013
NVT

10 14

10 15

10 16

PRINTED IN U.S,A.

GAlOO
Holding Current

7.

GA101

GA102

8. Max. Holding Current vs. Neutron Dosage
500

;:.§.

;:-

200

I-

Z

.§.

w

100

::J
U

50

c:
c:

I-

..,
Z

c:
c:

Cl

z
0

20

Z

0
:I:

10

..J

X
«

::J
U

-65°C

/

+2S o C

V

..J

Cl

o

o

:I:

::;;

I

I

_Ie

_Ie

/

VI
V

/

V

+12S o C

RGK = 2201l

X
«

1.0

::;;

0.5 '-_--'-_ _.L-_....L_ _. L . . . _ . . . . L _ - - '
-25
0
25
50
75 100 125
TJ - JUNCTION TEMPERATURE (OC)

ISO

1012

1011

10 10

PA 50

Cl

o~

>
w

20

5.0 ~ I- If = S.OA

0.3
0.2
0.1
50 , - - - - , - - - r - - - , - - - , - - - , - - - ,

I-I f

LOA

1.0

~ ro f=::=t::=~===~~~

/

~

----- ~
/'"

::;;

10

~::=t::=~::::t=r'

S5.0 ~==+==t=:-I=r"

-

If - O.IA

~ 0.5

U)

z

~
i:'i

1.0

~

0.5

2.0

D..

;::

I 0.2

~==t=::+::::l--i"""
I----+---!---+--=.....::- ;-4.,....--\-'1
I----+---!---==+-=--+----'......--'.........

E 0.2 I-~::=+::=:~~~~

.}

D..

w

O.i

i

.05
1010

1011

10 12

1013
NVT

10 14

10 15

0.1

J

10 16

i----f---+---+--+-"".;:'

.05 oL--.....I.---...L--.L...--'--....L:'-~
25
50
75
100
125
ISO
TA

P A ,.- POWER DISSIPATION (W)

50

0.5
0.4
0.3
0.2
0.1
50,---,---,.----.....- - , - - - , - - - - ,

Z

~
z 10

~ 20~::=t::::4:::::t:--~~'~:::1
~ lO~==~~=:~::==t--=~~

I-

w

c: 5.0
c:

S 5.0 f--+_=+---.....JI-=".,."-.

::J
U

w
Cl 2.0
c:

U)

~
~

;::

2.0

I--+-'=t:::::----+---==~

::J
U)

1.0
0.5

f=::=I===t=:::-i-"'1'

i-----f-----+---P_d-

I

J

,-~,.-......_1

D..

I

1

.05

.05 '-_.....L._ _-'-_ _L....._....J._ _......,~.L..I
100
110
120
130
140
ISO
90
m.. -

0.2

,,

,

IT

"

'" '"

BE~ORE kURGk =

0

"

"

~'

',-

SOLID LINE: RATED ~ ,
BLOCKING VOLTAGE
MAY BE APPLI ED AFTER
SURGE

~'-

,,-

1"--.''-

DASH LINE: BLOCKING VOLTAGE TC~lIOO°C
MAY NOT BE SUSTAINED
FOR ~,I S~CON~S AFjER SYRGE

TA=~

0.1

0.1i-----f-----+----1---+-~~~~

TC

1.0

x:
« 0.5
w

E
D..
0.2 i----f-----+---t-='.......:::
w
c:

Surge Current vs. Time

~
20

I-

Z
x:

MAX. AMBIENT TEMPERATURE (OC)

m.. -

12.

11. Peak Current vs. Case Temperature

o

POWER DISSIPATION (W)

z

10

"I

~

10 16

I-

S 2.0 I---~

1015

0.4

~
~

10 14

10. Peak Current vs. Ambient Temperature

9. Max. On-State Voltage vs. Neutron Dosage

w

1013
NVT

10-5

10"

10-'

10-' 10-'

10

10'

10'

SURGE DURATION (5)

MAX. CASE TEMPERATURE (OC)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173. TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

570

PRINTED IN U.S,A.

GA200
GA200A
GA201
GA201A

SCRs
Nanosecond Switching, Planar

GB200
GB200A
GB201
GB201A

FEATURES

DESCRIPTION

•
•
•
•
•

The Unitrode Nanosecond Thyristor Switch combines the turn-on speed of logic
level transistors with the high current switching capability inherent in SCRs. With
this device engineers can now design circuits capable of switching pulse currents of
lA in less than IOns or up to 30A in less than 20ns.

Rise Time: lOns
Delay Time: IOns
Recovery Time: 0.5 I's
Pulse Current: to 100A
Turn-on with 20ns, 10 mA Gate Pulse

The GA/GB200 series is specifically designed for use as switching elements in high
speed, low-to-medium power radar pulse modulators. Other applications include
switching elements for phased array radars, laser pulse drivers, harmonic wave-form
generators, line drivers and high current replacements for avalanche transistors.
For applications requiring higher voltage levels, Unitrode has developed several
"series string" circuits which allow the series connection of virtually an unlimited
number of devices for voltages as high as 2000V with no significant decrease in
speed. These circuits are described in Unitrode Design Nole #14.

ABSOLUTE MAXIMUM RATINGS
GA200
GA200A

Repetitive Peak Off-State Voltage, VDRM .
Repetitive Peak On-State Current, ITRM .
D.C. On-State Current, IT
70·C Ambient .
70·C Case.
Peak Gate Current, IGM
Average Gate Current, IGIAVj
Reverse Gate Current, IGR .
Reverse Gate Voltage, VGR .
Storage Temperature Range .
Operating Temperature Range

GA201
GA201A

.... 60V ..

GB200
GB200A

GB201B

lOW ........................... 6OV ..... .

.. lOOV
.. .. up to 100A .

... up to 100A ...
........ 200mA ... .
. . . ..... 400mA .. .
... 250mA .. .
... 25mA ... .
... 3mA ..
. ...... 5V .. ..

.. .6A
... 250mA .. .
............................. 50mA .. .
. ............................ 3mA. ..
.................................
........ 5V ...
.......... -WC to +200·C.
. .. -65·C to +150·C ..

MECHANICAL SPECIFICATIONS
GA200 GA200A GA201

GA201A

TO-18

GB2DO GB200A GB201

GB201A

TO-59

~
IL.21Ot
.170
.5MIN·_

r-G=----r
1

.195

.~

.230

~.209DIA.

II ."nZ!.017
-----11'-MAX.

+.002 D1A .

-.001

Dimensions in inches.

055 +.010

I'::~ HEX

J

..-~IA.-::.g~t~
.
CATHODE

:~~~

•

GATE
ANODE

Dimensions in inches.

NOTE: Anode connected to case.

571

lli1J
_UNITRaDE

GA200 GA200A GA201 C;A201A
GB200 GB200A GB201GB201A

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test

Symbol

Delay Time

td

Rise Time GA200, 200A, GB200, 200A

t,

Rise Time GA201, 201A, GB201, 201A

t,

Gate Trigger on Pulse Width
Circuit com mutated Turn-off Time
GA200,'201, GB200, 201
GA200A, 201A, GB200A, 201A

Typ.

Min.

,

Units

30

ns
ns

IG == 20mA, IT == lA
IG == 30mA, IT == 1A

ns
ns

Vo == 60V, IT == lA (1)
Vo == 60V, IT == 30A (1)

-

20
10

-

-

15
25

-

25

10
20

20

-

ns
ns

Vo == 100V, IT == 1A (1)
Vo == 100V, IT == 30A (1)

tpg{on}

-

.02

.05

p'S

IG

== lOmA, IT == 1A

tq

-

0.8

2.0

p'S

-

IT
0.3

0.5

== lA, IR == lA, RGK == lK

tq

I'S

-

.01

0.1

I'A

VORM == Rating, RGK

-

20

100

I,A

VORM == Rating, RGK == lK,
150'C

-

1.0

10

mA

.01

0.1

mA

== 30V, RGK == 1K (2)
VGRM == 5V
Vo == 5V, RGS == 10K
Vo == 5V, RGS == lOOn, T == 25'C
T == +150'C

Off-State Current

IORM

Reverse Current

IRRM

Reverse Gate Current

IGR

-

Gate Trigger Current

IGT

-

10

200

I,A

0.4

.06

0.75

V

0.10

0.2

-

V

Gate Trigger Voltage

VGT

On-State Voltage

V,

Holding Current

IH

Off-State Voltage-Critical Rate of Rise
Notes: 1. IG

==

Test Conditions

Max.

dvldt

== lK

VRRM

-

1.1

1.5

V

0.3

2.0

5.0

mA

Vo

0.05

0.2

-

mA

T == +150'C

20

40

-

VII's

IT==2A

== 5V, RGS == lOOn, T == 25'C

VD == 30V,R GK

== lK

lOmA; Pulse Test, Duty Cycle <1%.

2. Pulse test intended to guarantee reverse anode voltage capability for pulse commutation. Device should not be operated in the
Reverse blocking mode on a continuous basis.

1000

...s

Switching Speed (Typical)
GAIGB200 Series
,----.,--,-------y-----,

Peak Current vs. Pulse Width
GA200 Series

DUTY CYCLE

100

DUT

=.005%

DUTY CYCLE
.0001 %
y CYCLE:~
OR LESS

-. l%---=--.,. ~

w

::;;

j:

g~~~ g~gt~ =.~;;;,----.I

I

--=:::::

10
DUTY CYCLE - .5~2
DUTY CYCLE
1%

=

DUTY CYCLE _ 5%-"
DUTY CYCLE
l L -______- L______

.1

~

______

10
IT - ANODE CURRENT (A)

100
tp -

NOTES: 1. v. = Rated V.RM
2. TA = 25'C
3. I. 20mA
4. td 20ns TYPICALLY FOR ALL
TYPES INDEPENDENT OF ANODE
CURRENT

100

10
PULSE WIDTH (~s)

NOTES: 1. DATA BASED ON ON-STATE
lSOoC.
VOLTAGE GRAPH AT Ti
BLOCKING VOLTAGE MAY BE
APPLIED IMMEDIATELY AFTER
TERMINATION OF CURRENT
PULSE.
2. TA
75°C

=

=
=

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617)'861-6540
TWX (710, 326·6509 • TELEX 95·1064

T 10%--"

~

=

572

PRINTED IN U.S.A.

GA200 GA200A GA20l GA201A
GB200 GB200A GB201 GB201A

~1000
....
zUJ

Peak CUrrent vs. Pulse Width
GB200 Series

~1000
....
zUJ

0:
0:

0:
0:

'"

U
UJ

~

~TY

S

CYCLE .1% OR LESS
DUTY CYCLE .. 5%

DUTY CYCLE '"
OUTY CYCLE
5%
OUTY CYCLE
10%-'

"a.~
i=

UJ

DUTY CYCLE=l%
100

Z
o

Eia.

'"
U

en

~

Peak Current vs. Pulse Width
GB200 Series

DUTY CYCLE= .05%

100

Vl

Z
o

~

UJ

~

10 OUTY CYCLE _ 200~:::J
DUTY CYCLE = 50%

g~:::~ g~m = i~;:--Y

10

i=
i=
UJ

a.

UJ

.1%

DUTY CYCLE

"«a.

--.;;;:

DUTY CYCLE

DUTY CYCLE _

5%~

DUTY CYCLE

10%--"

.001%

OR LESS
DUTY CYCLE

~
=::::::::::::::

T

UJ

0:

0:

I

I
to -

DUTY CYCLE

50%

1

10

100

.1

PULSE WIDTH (.5)

10
to -

NOTES: 1. DATA BASED ON ON-STATE
1SO·C.
VOLTAGE GRAPH AT T,
BLOCKING VOLTAGE MAY BE
APPLIED IMMEDIATELY AFTER
TERMINATION OF CURRENT
PULSE.
2. Tc = 75'C

100

PULSE WIDTH (.5)

NOTES: 1. DATA BASEO ON ON-STATE
VOLTAGE GRAPH AT T, = 1SO·C.
BLOCKING VOLTAGE MAY BE.
APPLIED IMMEDIATELY AFTER
TERMINATION OF CURRENT
PULSE.
2. TA = 75'C

=

On-State Current VS. Voltage
GA/GB200 Series

Surge Rating Maximum
GA/GB200 Series

~
z

....

100

UJ

0:

a:

'"

= 25'C

~
....
zUJ
a:

u

....UJ

«
....
II!

10

Z
0

0:

'"

100

"«a.

u

OJ

OJ

....

«
....

OJ

Z

0

>
i=
i=

I

a.

In

10

OJ
OJ

...:-

0:

Z

0

z
I

.1
.1

10

J

100

VrM-'---ON-STATE VOLTAGE (V)

tp -

10
PULSE WIOTH (.5)

100

NOTES: 1. BLOCKING VOLTAGE MAY NOT BE
APPLIED FOR .001 SEC. AFTER
TERMINATION OF SURGE PULSE
AS JUNCTION TEMPERATURE
WILL EXCEED 1SO·C.
2. Tc 75'C

=

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 3~6'6S09 •. TElEX 95.~0~4
' ,.• '

573

PRINTED IN U.S.A.

SCRs

GA300
GA300A
GA301
GA301A

Commercial Nanosecond SWitching,
Planar
FEATURES
• Rise Time: 10ns
• Delay Time: 10ns
• Recovery Time: 0.51's
• Pulse Current: to 100A
• Turn-on with ~Ons, 10mA gate pulse

GB300
GB300A
GB301
GB301A

DESCRIPTION
Unitrode's Nanosecond Thyristor Switch combines the turn-on speed of logic level
transistors with the high current switching capability inherent in SCRs. With this
device, engineers can now design circuits capable of switching pulse currents Clf
1A in less than 10ns or up to 30A in less than 20ns.
The GA300, GB300 Series is specifically designed for ~s~a~ the switching element
in high speed laser diode pulse drivers. Other application.sJnclude electronic
crowbars, harmonic wave-form generators;. line drivers'and general purpose replacements for avalanche transistors. For applications requiring higher. voltage levels,
Unitrode has developed several "series string" circuits which allow' the series connection of an unlimited number of devices for voltages as high as.2000V with no
. significant decrease in speed. These circuits are described in Unitrode's
Design Note #14.

ABSOLUTE MAXIMUM RATINGS
GA300
GA300A

Repetitive Peak Off-State Voltage, VORM
Repetitive Peak On-State Current, IrRM,.
Peak Gate Current, IGM ........................ .
Average Gate Current, IG(lIv) .................... .
Reverse Gate Current, IGR .... .
Reverse Gate Voltage, VGR .
Storage Temperature Range ................... .
Operating Temperature Range .

GA301
GA301A

HH .. HH .... 60V

GB300
GB300A

GB3D1A
GB3Dl

100V............ .
.. H.HH 60V ...... H
.. ... 100V
........ up to 100A
H.·.'·'H ..... H........... up to 100A
. .......................... 250mA
250mA .... .
..........25mA ..
. .... 50mA .... .
.......................... 3mA .................. ,
3mA ........ .
..H ...... H....... HH ..H .. H..... H.. H5V.H .. HHHH .. ..
.. ........ 5V ....... ..
........ -65·C to +150·C
.. ................... O·C to +125·C.
•

••••• H

•••

H

. . . . . . . . . . . . .· . , . . . . . . . . . . . . . . . . . . . .

MECHANICAL SPECIFICATIONS
GA300 GA300A GA301

GA301A

TO-18

GB300 GB300A GB301

GB301A

TO-59

-r-a=-r
r:;i:t'M1Nl

.195

.178 CIA.,

....1.....J

.230
c:::::::::t '.209 CIA .

c:;:= 1

II .02~.017
-! jt-MAX.

+.002 01A .
-.001

Dimensions in inches.

'I':~~ 1

~IA'H~gt~
.
055 +.010

HEX

CATHODE

.215

1. 18 '
GATE
ANODE

Dimensions in inches.

1/79

NOTE: Anode connected to case.

574

ruJJ
_uNiTRODE

GA300, GA300A, GA30l, GA30lA
G8300, G8300A, G830l, G830lA

ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Symbol

Test

Min.

Typical

t,

-

20
10
15
25
10
20

tq

-

tpg (on)

-

Delay Time

td

Rise Time (Note 1)
GA300, 300A, G8300, 300A

t,

Rise Time (Note 1)
GA30l, 30lA, G8301, 30lA
Circuit Commutated Turn-off Time
GA300, 301, G8300, 301
GA300A, 30lA, G8300A, 30lA
Gate Trigger-on Pulse Width

-

Off-state Current

IORM

Reverse Current (Note 2)

IRRM

-

Gate Trigger Voltage

VGT

0.4
0.10

Gate Trigger Current
On-state Voltage
Off-state Voltage - Critical Rate of Rise
Reverse Gate Current
Holding Current

-

IGT
VT
dv/dt

-

IG'

-

IH

0.3
0.05

15

Max.

Test Conditions

Units

30

= 20mA, IT = lA
= 30mA, IT = lA
= GOV, IT = lA
= GOV, IT = 30A
100V, IT - lA
= 100V, IT = 30A
IT = lA, I, = lA, RGK = lK

IG
IG
VD
VD
VD VD

ns

25

ns

20

-

ns

0.8

2.0

pS

0.3

0.5

1'5

0.02
0.01
20
1.0
O.G
0.2
10
1.1
30
0.01
2.0
0.4

0.05
0.1
100
10
0.75

1'5

-

0.1
S.O

-

(Note 1)

IT - lA, I, _ lA, RGK _ lK

=

IG =: 10m A, IT
lA
VDRM - Rating, RGK - lK, T _ 25'C
VO'M
Rating, RGK
lK, T l25'C
(Note 2)
VRRM
30V, RGK - lK
Vo - 5V, RGS _ lOOn, T _ 25°C
Vo
SV, RGS
loon, T
l2SoC
VD 5V, RGS
10K
IT - 2A
Vo - 30V, RGK - lK
VG, - SV
Vo - SV, RGK - lK, T _ 25°C
Vo
5V, RGK
lK, T 125°C

"A
"A
mA
V
V
}1A
V
V/}1S
mA
mA
mA

200
1.S

(Note 1)

=
=
=
=

=

=
=

=

=

=

=

=

=

Notes: 1. I.
lOrnA; Pulse Test, Duty Cycle < 1%.
2. Pulse test intended to guarantee reverse anode voltage capability for pulse commutation. Device should not be operated in the reverse blocking mode on a continuous basis.

Switching Speed vs. Current
GAl GB300 Series

Peak Current vs. Pulse Width
GA3DO Series

1000 , - - - - - , Notes:

'"

'"'"
;:

1.
2.
3.
4.

$1000

Vr = Rated V DR ,)
TA = 25"C
I. =, 20mA
t;) ::::: 20ns typically for all types
independent of anode current.

I-

Z

"'

'"'"

::>
u

"'~

I-

:;; 100 r - - - - - - t - - - - - t - - - - - - - - - - - j

en
Z

"'en

'.«"

..J

()
~

.05Z9"

"'

."'
IT -

______

10
ANODE CURRENT (A)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064

.......::::

5%. .

'"I

10%. .

~

~

_

_

_

_

_

_

_

_

-

L

w

L -_ _ _ _ _ _ _ _

~~

.1%

;:

I

.1

rDuty Cycle = ,0001% or less

~ 10 .5%-"
;:
1%~

10 t:~~~--~~~~~t---------l

1

t---__

.01 % - L,005%

o

iX

Ii:

100

Notes: 1. Data based on On-State Voltage
graph at T, = 12S"C.
B!ocking Voltage may be applied
immediately after current pulse
termination.
2. TA = 75"C.

..:."

100

1

.1
Tp -

575

10
PULSE WIDTH (~s)

100

PRINTED IN U.S.A.

GA300, GA300A, GA301, GA301A
GB300, GB300A, GB301, GB301A

Peak Current vs. Pulse Width
GB300 Series

Peak Current VS. purse Width
GB300 Series

gI000,----------,----------,----------,
Notes: 1. Based on On-State Voltage
z
graph at T;
125·C.
0:
Blocking Voltage may be applied
0:
immediately after current pulse
::>
()
termination.

g1000

...

Notes: 1. Based on On-State Voltage
graph"at T; = 125·C.
Blocking Voltage may be applied
immediately after cUlent pulse
1o/~~: termination.
.5%, 2. T c = 75·C.

!ZUJ
0:
0:

::>
()

UJ

!:c 100

'"!:c 100

~ !r-Duty Cycle = .1% or less

~
Z

~.

o

'i5"

O%~

Q.

UJ

20%-:"

;::

50%-'

> 10

2. TA = 75·C ....,....--=--:---I-:-:-:-:c-:--:-__..,
Duty Cycle == .001 % or less

~
Z

o

---.

5%

=

'"

'"i5
Q.

--=:

'">
;::

10

5%

;::

E

}O%

'"0.
'"0:

Q.

UJ
0:

I

I

J

.1
Tp -

10
PULSE WIDTH (#5)

50%

J

1
100

1
.1
Tp -

On-State Voltage VS. Current
GA/GB300 Series

Surge Rating
GA/GB300 Series

g
!Z 1000

100

Notes:

'"0:0:
()

g

UJ
0:
0:

'"

~

10

I-100

o

::>

UJ

'i5"

~

'"
>

I

E
'"Z

.....

of surge pulse as junction
temperature will ereed 125·C.
2. TA = 75·C.

--r---

Non~Repetitlive Peak curre~

Z

<.)

1. Blocking Voltage may not be
applied for O.ls after terminatioh

::>

...z

100

10
PULSE WIDTH (#s)

0.

z0

;::

10

0.

..:

0:

o
z

I

.1
.1
V'M -

10
DN.STATE VOLTAGE (V)

UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

1

.1

100

Tp -

576

10
PULSE WIDTH (#5)

100

PRINTED IN U.S.A.

TRIAC

18202
18204
18206

.8 Amp. RMS, Plastic TO-92
600V
FEATURES:
• Forward Current: .SA RMS
• Voltage Ratings: to 600V
• High Surge Current: SA
• Gate Sensitivity: 2mA Typical, 1st & 3rd Quad
• Hard Glass Passivated Junction
• Economical TO-92 Package

DESCRIPTION:
This series of low current triacs is
designed specifically for high volume,
low cost AC switching applications.
Supplied in the economical TO-92
package, these devices feature fu II
hard glass passivated junctions and
rugged mesa construction.

TYPICAL APPLICATIONS:
• Appliance Control Circuitry
• Speed Controls
• AC Switches
• Logic to A.C. Interface

MAXIMUM RATINGS
18202

18204

18206

Repetitive Peak Off·State Voltage, VCRM ................... 200V...
.......... 400V.................... 600V
Repetitive Peak Reverse Voltage, VRRM .
.......... 200V.
............. 400V... .. . .......... 600V
On-State Current, IT RMS At 6S·C Case, 180· Conduction Sinewave .SA
Surge (Non-Rep.) On-State Current, ITSM " ..
SA
Peak Gate Current, IGM ..
............. .............. ............ .l.OA
Peak Gate Power, PGM
........ .lW
Average Gate Power PG (AV.)..
...........................1W
Reverse Gate Voltage, VGR .. .
.................... 6V
Storage Temperature Range, TISTGI ..
.............................. -SS·C to +lSO·C
Operating Temperature Range, TIOP1 ................................................... -55·C to +110·C
Circuit Fusing Consideration, 12t@ -40 to 100·C, 1.0 to 8.3ms.. .......2SA2S

MECHANICAL SPECIFICATIONS
IB202, IB204, IB206 SERIES

TO-92

inches
millimeters
.135 MIN. 3.43 MIN.
8 .019-.016
.48- .41
C .SOO MIN. 12.7 MIN.
D .210-.170
5.33-4.32
.20!;-.175
5.21-4.45
~
1.40-1.14
F -~65!;-.045
2.67-2.41
G .10!;-.095
2.67-2.03
H .105-.080
4.19-3.18
J .16!;-.125
A

I-MT2
2-GATE
3-MTl

6-79

577

lliJJ
_UNITRDDE

18202 18204 18206
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test

Symbol

Off-State Current

-

.1

-

.1

rnA
rnA

VORM = Rating, Tc = 100'C

-

-

5
10

rnA
rnA

Vo = 12V Quadrants 1, 3 (+ +, Vo = 12V Quadrants 2, 4 (+ -, -

2.0
3.0

V
V

Peak On-State Voltage

VTM

Holding Current

IH

Steady State Thermal Resistance

R9J •c

Thermal Resistance

R9J _A

10

'"

TJ=12S'C I

If)

.1

II

~

z

~

.:

rnA

-

50

'C/W

-

200

'C/W

'"~:;;

.01

ITM = l.OA Peak
Vo= 12V

~o

5

"' ....
0..

If)

IZ

TJ=r'c

Steady State

I,

.........

,,~
....

r--

2
I

-

}.O 0
10
CYCLES AT 60Hz

1

1.0

.1

10
9
8

"''''
"''''
zg

~

-)
+)
12V Quadrants 1, 3 (+ +, - -)
12V Quadrants 2, 4 (+ -, - +)

Maximum Allowable Non-Repetitive Peak
On-State Current Following Rated
Lead Conditions

~~

;: -

;}
1

:i:

~

V

15

V

o

Vo =
Vo =

1.8

Maximum On-State
Characteristics

'"'"
:::>

Test Conditions

-

V&T

lilz

Units

-

Gate Trigger Voltage

°:::>

Max.

IRRM

I&T

'"~

Typical

IORM

Gate Trigger Current

5:
!Z

Min.

100

10

V, -INSTANTANEOUS ON·STATE VOLTAGE (V)

~~

~p

~~

1

~w

.9

1/
/

"'Z

::;;'"
I ~ .1

o
o

.8

a~

.7

UJ

.6

C/)

'\
~

SQ .5

/

~ ~ .5
~ ~ .4
~::l .3
~ C .2

~~
",;:

V

.8

~ I~ .7
~ t: .6

Il.0~

Maximum Allowable Case Temperature
VS. On-State Current (60Hz)

Maximum On-State
Power Dissipation (60Hz)

'\

'? t; .4
z:::>

~ c .3

."'.

~ 8 .2

/
~

.1

~-

°60

;;;;~

2

~

A

~

•

3

~

Tc

I, ""'" - RMS ON-STATE CURRENT (AJ
(360' CONDUCTION SINEWAVE - 60 iiZ)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) '326-6509 • TELEX 95-1064

578

1:'-..

I ::,

.~

70

80

90

100

110

'""1- MAXIMUM

ALLOWABLE
CASE TEMPERATURE ("C)

PRINTED IN U.S.A.

ID100-ID106

SCRs
.5 Amp, Planar
FEATURES

DESCRIPTION

•
•
•
•

This Data Sheet describes Unitrode's line of hermetically sealed industrial SCRs
designed for low-voltage, low-current sensing application. The ID 100 Series is
packaged in a TO-18 metal case with Unitrode's unique oxide passivated
junctions, offering the highest degree of reliability and parameter stability for
any device in its price range.
Typical applications include lamp driving, relay driving, sensor, pulse-generating
and timing circuits.

Voltage Ratings: to 400V
Maximum Gate Trigger Current: 200!,A
Hermetically Sealed TO-18 Metal Can
Planar Passivated Construction

ABSOLUTE MAXIMUM RATINGS
10100

10101

10102

10103

10104

10105

10108

Repetitive Peak Off-State Voltage, VORM ............. 3OV ........... 6OV ............ 100V ... . .... 150V... . .... 200V.. .
. 300V ........... 400V
Repetitive Peak Reverse Voltage, VRRM
.... 30V ........... roV...
lOOV... ..
150V.... ...... 200V.. .... . ... 300V... .. ...... 400V
On-State Current, 'T
75'C Ambient .
... 250mA ..
... 0.5A
lOO'C Case
.................6A....
Repetitive Peak On-State Current, 'TRM
upto 30A.
Peak One Cycle Surge (Non-Rep.) On-State Current, ' TSM ..
... 250mA ....
Peak Gate Current, IGM .
..... 25mA ...
Average Gate Current, IGIAV ) .
.W ..
Reverse Gate Voltage, VGR ...
Storage Temperature Range
.. -65'C to +150'C ..
Operating Temperature Range
.-65'C to +125'C ....

MECHANICAL SPECIFICATIONS

10100-10106

TO-18

5MIN ~
I~.21ot
.170
.
'_I

-r-Cl=~
~

.195

.230

.~

.209 DIA.

II .0'oZ:!.0l7 o·.OO'OIA

---tj

r-MAX .

-.001'

Dimensions in inches.

[ill]
579

_UNITRODE

10100-ID106
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Symbol

Test

Off-State Current

IORM

Reversing Current

IRRM

Gate Trigger Current

IGT

Gate Trigger Voltage

VGT

Peak On-State Voltage

VTM

Holding Current

IH

Turn-on Time

ton

Circuit Commutated Turn-off Time

Min.

Typical

Ma •.

0.4
0.10
-

S.O
10.0
10
IS
5.0

SO
100

-

0.55 '

--'
1.0
-

-

0.5
8.0
15.0

-

tq

-

50

100
200
SOO
0.8
1.0

-

1.7
5.0
10.0

-

Test Conditiori~

Units

'"

VORM - Rating, RGK - lK, T _ l2S'C, 10100-10104
VORM = Rating, RGK = lK, T = 12S'C, 10105-10106
VRRM - Rating, RGK - lK, T _ 12S'C, 10100-IDl04
pA, V RRM = Rating, RGK = lK, T = l2S'C, 10105-IDl06
p.A
Vo - 5V, RGS = 10K
p.A
Vo = 5V, RGS = 10K, T = -40'C
V
Vo = SV, RGs= lOOn
V
Vo = SV, RGS = lOOn, T = -40'C
V.
Vo SV, RGS = lOOn, T = 12S'C
V
.I TM = 1 Amp Pulse
RGK ..:. lK
rnA
rnA
RGK = lK, T = -40'C
p's
IG = lOrnA, IT = lA, Vo - 30V
p's
IT = IR = lA, RGK = lK, 10100-10104
p's
IT = IR = lA, RGK = lK, 101OS-10106
/LA
/LA
p.A

=

Note: Blocking voltage ratings apply over the full operating temperature range, provided the gate is connected to the cathode through a
'
resistor, 1000 ohms or smaller, or other adequate bias is used.

~ate

Trigger Current VS. Junction Temp.

Gate Trigger VOltage VS. Junction Temp.
1.4

;(

..:;

,

3

~

I-

'" 1.2

Z

'"

IX:
IX:
~

'"<.'<.'JJ
ii:

I-

.
.
'"

~

o

U
IX:

I-

~

2

a

~~
r---'i~1o""_

>

IX:

~

!::::::: ~

-1

~
I

'

'"

.6

-:J.
u

.4

~

<.'J

~

~

I-

..J
0..

.8

<.'J

ii:

.2

>~
-25
TJ

a

25

50

75

100

125

ISO

-65

-25

JUNCTION TEMPERATURE ('C)

-

TJ

1000

I'\.

;( 20

E.

RGK

= lOa!)

1 - .J

~

U

<.'J
Z

oJ:

0:
~

r--.5
.2

1
_I

1"- t-- r--

I~GK = lKU

..J

~
u

-

.1

RGK

=

lOKn

I~

.05
-65

-25
T, -

r---

--

r-.

1\
r--

50

'l'.

'"

""

......

100

125

ISO

VD ·= Rated VORM

i'---

......

........

"

\

:---...

I\.

I f

r---

RGK

...........

RSK -

_,100!)

-:],
lKfl

r---......

'\

r----- ...........

...... ~

........... ~10j

........

25

75

dv/dt VS. Junction Temp.

50

10

SO

25

JUNCTION TEMPERATURE (;C)

-

Holding Current VS. Junction Temp.

o

Vo = 6V
f::::::: r:::;
1"

I

-65

'"IX:IX:

;;::::

Rated Vo

0:
~

_~-2

!Z

~~

75

100

125

1

150

-65

JUNCTION TEMPERATURE C'C)

UNITRODE CORPORATION. 5 FORBES ROAD
LEl(INGTON, MA 02173 ·,TE)'. (617) 861-6540
TWX, (.710) 326'6509 • T,E,L~ 95-1064

-25
TJ

580

-

a

1
25

50

75

100

125

150

JUNCTION TEMPERATURE ('C)

PRINTED IN U.S.A.

10100·10106

Gate Pulse for Turn·On vs. Pulse Gate Current
.. -

Circuit Commutated
Turn·Off Time vs, Junction Temp.

.~---

10
1.

:\

~~

OJ-

2. T,

.'\

:;;z
-0
z·
-z
:;;'"
.,JOJ

".-

.5

"''''
~fZ

1-..,

.2

I~
-OJ

go.

.1

"I-

.05

-..,
~C3

'T :::::

lA, Vo

=.

100

Rated VORM

'""
UJ

20

5~

10

I-~

~

10105,106

~~

I

~

_1',1'4

,,,. 1'4~·-

\~-;:;- ~

,'"

I,~............. V

~~

J'-.,

......

~e
'-1I;":

J-... b

·OJ
-:;;

:;;

.5

o

'"

.01
.01 .02

.05 .1
.2
.5
10
iG - PULSE GATE CURRENT (rnA)

.2
.1

20

~5

10

~
z

.-

I-

Z

OJ

'"
;":

(Jl

11

UJ

0.1

0.2

0.5

I

.20

.10
.05

> .02

~

I

.01

.50

"I

I

.02

150

0:.
UJ

I

I

125

"'"

I

.: .05

100

0

(Jl

.1

75

Z

I

S .2

50

UJ
I-

II

.5

25

UJ
0:
0:

jI

UJ

0

JUNCTION TEMPERATURE ('C)

~

~ 25'C ~/~ l!25,d

UJ
0:
0:

-

Current vs. Power Dissipation

J
TJ

-25
TJ

Current VS. On State Voltage

zo

I,

I

.
-;:;\.~,\~

0100·10~
~p

"'z
.,Jo:

"- 1'-.

.02

a

JJfii$f
I

50

= 25'C

i
1.0

.2.0

5.0

10
V,-TYPICAL ON·STATE VOLTAGE (V)

UNITROOE CORPORATION,S FORBES ROAD
LEXINGTON, MA 02173 ' TEL. (617) 861.6540
TWX (710) 326·6509 ' TELEX 95·1064

.01

~--+-----+----+---+----.-t----~--~

.005 ' -__-'--____' -__-'--__-'-____' -__-'----'
.01
.02
.05
.10
.20
.50
1.0
2.0
W - MAXIMUM ON·STATE
POWER DISSIPATION (W)

20

581

PRINTED IN U.S.A.

SCRs

10200·10203
10300·10301

1.6 Amp, Planar
FEATURES

DESCRIPTION

•
•
•
•

This Data Sheet describes Unitrode's line of hermetically sealed industrial SCRs
designed for high-voltage, medium-current control applications. The Series is
packaged in a TO-39 metal case with Unitrode'sunique oxide passivated junctions
to ensure reliability and parameter stability.
Typical applications include relay equipment, motor controls, process controllers
and pulse generators.

Voltage Rating: to 200V
Max. Gate Trigger Current: 200I'A
Hermetically Sealed Metal Can
Planar Passivated Construction

ABSOLUTE MAXIMUM RATINGS
ID2DD

ID2Dl

ID2D3

ID2D2

ID3DD

ID3Dl

Repetitive Peak Off-State Voltage, VDRM ..... .
............. 50V ............. 100V............ 150V ............... 200V......
300V.....
. 400V
Repetitive Peak Reverse Voltage, VRRM .......................... .. 50V .............. 10OY. ............ 150V ................ 200V ............. 300V.....
. 400V
Non-Repetitive Peak Reverse Voltage, VRSM «5ms) .... 75V .............. 150V ................ 225V.....
.... 300V ................ 400V .............. 500V
On-State Current, IT(RMS)
.................... ..... 1.6A ... .
70°C Case
.........................450mA .... .
75°C Ambient .
......... 15A .................................... .
Peak One Cycle Surge (Non-Repetitive) On-State Current, I TSM .
Repetitive Peak On-State Current, ITRM .
............................. up to 30A ..
. ........ 100A! I'S .
Rate of Rise of On-State Current, di/dt ....
....... O.83A's .... .
I't (for times> 1.5 ms) .
...... 250mA .... .
Peak Gate Current, IGM .
.... 25mA ... .
Average Gate Current, IG(AV) .
. ..................................................... ........... W ......................................................... .
Reverse Gate Voltage, VGR .
Storage Temperature Range
... -65'C to +150'C ......................................... .
Operating Temperature Range ..................... .
............ -40'C to +llO'C ... .

MECHANICAL SPECIFICATIONS
10200-10203

[ '260~
.240

.5 MiN.

10300·10301

T0-39

l

:i~~1~;~
- --

------.335

J

-

-

'.017

-

~ :~~

.305

Dimensions in inches.

[ill]
582

_UNITRDDE

10200-10203, 10300-10301

ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Test

Symbol

Off-State Current

IORM

Reverse Current

IRRM

Gate Trigger Current

IGT

On-State Voltage

VGT

Peak On - Voltage

VTM

Min.

Typ.

Max.

Units

-

5
10
-

0.4

0.52
0.7

10
100
10
100
200
SOO
0.8
1.0

-

pA
pA
pA
pA
pA
pA
V
V
V
V
mA
mA
mA

o.s
0.2

Holding Current
Off-State VoltageCritical Rate of Rise
Turn-on Time
Circuit Commutated
Turn-off Time

'H
dv/dt
t

tq

--,

0.3
0.4
0.2

-

0.7
-

-

2.2
3.0
6.0

20

-

VII's

1.0

-

I'S

-

40

ps

Test Conditions

=
= =
=
= =
=
= =
=
= =
=
=
=
=
=
=
=
=
=
=
=
=
=
=
= =
= =
VORM = Rated, RGK = 1K, T = 110°C
IG =10mA, 'T = IN Vo = 30V, T =25°C
IT = iR = lA, RGK = 1K, T = 25°C

VORM Rating, RGK 1K, T 25°C
VORM Rating, RGK 1K, T 110°C
VRRM
Rating, RGK
1K, T 25°C
VRRM
Rating, RGK
1K, T 110°C
Vo SV, RGS 10K, T _ 25°C
Vo SV, RGS 10K, T -40°C
Vo SV, RGS _ loon, T _ 25°C
Vo SV, RGS lOOn, T -40°C
Vo SV, RGS lOOn, T 110°C
'T 4 Amp Pulse, T 25°C
RGK - 1K, T _ 25°C
RGK 1K, T _40°C
RGK 1K, T 110°C

Note: Blocking voltage ratings apply over the full operating temperature range, provided the gate is connected to the cathode through a resistor, 1000 ohms or smaller, or other adequate bias is used.

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

583

PRINTED IN U.S.A.

IPIOO-I PI04

SCRs
.8 Amp RMS, Plastic
FEATURES

DESCRIPTION

•
•
•
•
•
•

This plastic series features very fast switching performance, low forward voltage
drop and a high degree of reliability and parameter stability. All units are fully planar
passivated and are packaged in a rugged TO-92 case, constructed from a special
epoxy compound that features excellent moisture resistance providing stable performance under high humidity conditions and good thermal transfer characteristics.

Voltage Ratings: to 400V
Forward Current: O.8A RMS
Surge Current: 6A, 8 ms
Gate Sensitivity: 200 p.A max.
Planar Passivated Process
TO-92 PlastiC Package

TYPICAL APPLICATIONS
Lamp Driving
Relay Driving
Relay Replacement
Alarm Systems
Counters

Remote Controls
Process Controls
Pressure Controls
High Current SCR Driving
Display Systems
Timers
Touch Switches
Temperature Controls
and many other current sensing and control applications.

ABSOLUTE MAXIMUM RATINGS
IPtOD

IPtOt

IPt02

IPt03

IPt04

Repetitive Peak Off-State Voltage, VORM .
.. .. 30V.... .. ... GOV ............. IOOV............. 150V ........... 200V
Repetitive Peak Reverse Voltage, VRRM ...................... 30V...
.. .... GOV.... ,........ IOOV.... ... 150V............ 200V
On-State Current, IT .
.........................
.. O.8A .. .
Surge (Non-Rep.) On-State Current, ITSM . . ...... 6A .. .
Peak Gate Current, IGM .
.... ... .............
.. .... .I.OA .. .
Peak Gate Power, PGM ....... ....... ...... .............
.. .........................IW .. .
........................
.. ......... O.01W ..
Average Gate Power, PG (Av.) .
Reverse Gate Voltage, VGR .............. ........ ....... ... ......... .... .......
.. ...... 6V.. .
Storage Temperature Range.
........ -65'C to +150'C ..
Operating Temperature Range...
.............. .
. ........ -65'C to +125'C ..

MECHANICAL SPECIFICATIONS
IPIOO-IPI04

TL:S ~ J

TO-92

.019
.016

=

.135
MIN.

fA C > -

:g~~

.205 IGo---EI'05

.175

.095

=L~

...L

_I

Ir·.210I1_' ·
SOO MIN

l7O

IIr----

.1OS
.080

~

.165
.125

Dimensions in inches.

[ill]
584

_UNITRDDE

IPlOO-IP104

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test

Symbol

Off-State Current

IORM

Reverse Current

IRRM

Gate Trigger Current

IGT

Gate Trigger Voltage

VGT

Min.

Typical

Max.

Units

0.1

1.0
50

p.A
p.A

0.1

1.0
50

p.A
p.A

0.4

200
500
0.8
1.0

p.A
p.A
V
V
V

-

-

0.6
-

0.1
Peak On-State Voltage

VTM

Holding Current

I Hx

-

D

1.7

V

-

rnA
rnA

-

75

-

Vlp.s

too

-

0.1

p.S

tq

-

8.0

-

1.2
OJ

-

dv/dt

Turn-on Time
Circuit Commutated Turn-off Time

= Rating, RGK = 1K
= Rating, RGK = 1K, T = 125'C
V"M = Rating, RGK = 1K
VRRM = Rating, RGK = 1K, T = 125'C
Vo = 6V, RGS = 10K,
Vo = 6V, RGS = 10K, T = -65'C
Vo = 6V, RGS = lOOn
V = 6V, RGS = lOOn, T = -65'C
Vo = 6V, RGS = loon, T = l25'C
ITM = 1 Amp Pulse
RGK = 1K, T = 25'C
RGK = lK, T = -65'C
Vo = Rating, RGK = lK,
IG = lOrnA, Ip = lA, Vo = 30V
IT = IR = lA, RGK = lK
VORM
VORM

5.0
10.0

-

Critical Rate of RiseOff-State Voltage

-

Test Conditions

p.S

OESIGN CONSIOERATIONS
1. The IPlOO Series SCRs are guaranteed to block their rated voltage over their rated operating
temperature when a resistance of 1000 ohms or less is connected from gate to cathode
as shown.
ANODE
GATE

RGI( = lK or less

d

CATHODE

2. In cases where the SCR may be subjected to fast rising anode voltages a capacitor can be
connected between anode or gate and cathode as shown, to serve as protection against
dv/dt firing.
ANODE
AN0:IJE
GATE
GATE
C"

CGK

d

CATHODE

CATHODE

Gate Trigger Voltage
ys. Junction Temp.

Gate Trigger Current
vs. Junction Temp.
1.4

z>w
a:
a:
::>
u
a:

~D,,,v

w

0:::::: 6

"">-

r----1i4t-

;;;

eCl Li'-'"

~

::::::::- i--

...J

~

~

-1

>-

I

~

-2

o
-65

-25
Tj -

0

25

50

75

100

125

-65

150

UNITROOE CORPORATION'S FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064

-25
Tj

JUNCTION TEMPERATURE ('C)

585

-

25

50

75

100

125 150

JUNCTION TEMPERATURE ('C)

PRINTED IN U.S.A.

IPlOO·IPI04
Holding Current
VS. Junction Temp.

dv/dt vs.
Junction Temp.

50

100

o

< 20

.s
zI-

10

'"0:0:

~=l~g

0
to
Z

2)

~=lKII

..J

0

:r

..J

« .5

0

a:
>

l-

- - -r- - -.....
r--

::>

.2

I

_r .1

01\

-

50

75

100

1
-65

125 150

Gate Pulse For Turn·On
VS. Pulse Gate Current
1. IT

lA, VD

~6K

= 10011

............

RGK

= 1KIl

l

.........

r'\.

['-::.:..-

",

'"

.........

............ ~10KI

Rated VDRt.!

-

l
-25

= 25'C

~

0

25

75

100

125

150

J~

50

~ 20
l-

e
UJ

50

JUNCTION TEMPERATURE ('C)

z

'"I'-- "

r-

Circuit Commutated Turn·Off Time
vs. Junction Temp.

!
:;100
'">=

1\

10

I'"

'\.",~'"
'\.I',i>';:"-;::'---

IP100·'P10~1""""""'

g
:;
:;

~

t'--.

8
l-

........

S

-.....

o
~

g

j

\

Tj -

JUNCTION TEMPERATURE ('C)

2. T,

"-

........

2

25

10

'" """

0

-..... r--..
Tj

Vo = Rated VORM

5

~KIl

-25

"-

O\.

r--

............

.05
-65

O~

.5

..J

C3

.2

~

.1
-65

a:

.02

.01
.01.02

I

.05 .1.2
.5
10 20
i, - PULSE GATE CURRENT (rnA)

~.

-25
Tj -

0

25

50

75

100

125 150

JUNCTION TEMPERATURE ('C)

Current

Current

VS. On·State Voltage

VS. Power Dissipation

10
~

5
T

I

:!

:!
~

.5

'"~

.2

~

.1

.5

"'
0:
0:

i3
'"
~

I

0:

~

1.-

lo 125,6

I

~

UJ

o

~ 25'C 1~-1j

.2

.1

z
~ .05

~
"'~

I

.!:-.05

I

.02

I

.01

I
.1

.2
VT -

.5

.005

10

20

.01
W-

TYPICAL ON·STATE VOLTAGE (V)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064

.02

I

586

.02

.05

.1

.2

.5

1

2

MAXIMUM ON·STATE POWER DISSIPATION
(WATTS) PGM

PRINTED IN U.S.A,

IPlOO-1P104

Current

Current

vs. Ambient Temp .

vs. Case Temp.

.8

$

1.4
UnO! mol.lnted w,th leads

I-

I-

'"'"
:J
'"

.6

'"a:a:

'"l-

.5

z

1.2

z

:J

U

U

~

~
tn
Z .4

~

'"I-«
I-

i4-ConducllOndngle

0

'"«

"a:

.3

'">«

.2

I

I

oF

J

~ .1

a

.8

"I

z

0

'"«
"
a:
'">«

Ci!w Temperature me
j:::

..

Ei
'"a:
Z
!t
I

50

75

100

125

j.

150

MAXIMUM HEATSINK TEMPERATURE ('C)

UNITROOE CORPORATION, 5 FORBES ROAD
LEXINGTON. MA 02173 ' TEL. (617) 861·6540
TWX (710) 326·6509 ' TELEX 95-1064

150

vs. Pulse Duration

$
z

25

125

Surge Rating

vs. Heatsink Temp,

a

100

75

MAX. CASE TEMPERATURE ('C)

- r---

65CIO--

GO--

=L~

F

~ "~- ,~ I ~"

G

B
0
C
E
F
G
H

.135 MIN.
.019 - .016
.210 - .170
.500 MIN.
.205 - .175
.165 - .125
.055 - .045
.105 - .095
.105 - .080

TO-92

millimeters
3.43 MIN.
.48 - .41
5.33 - 4.32
12.7 MIN.
5.21- 4.45
4.19 - 3.18
1.40 - 1.14
2.67 - 2.41
2.67 - 2.03

[ill]
12179

588

_UNITRODE

IPI05-IP106
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test

Test Conditions

Symbol

Min.

Typical

Max.

Units

Off· State Current
Reverse Current
Gate Trigger Current

IDRt.<
10Rt.<
1ST

-

-

Gate Trigger Voltage

VST

-

100
100
200
0.8
1.2

p.A
p.A
I,A
V
V
V
V
rnA
rnA

VORM
VRRM
VD
VD
VD
VD
ITt.<
RSK
RSK
VD

-

0.1
Peak On-State Voltage

VTt.<

Holding Current

IHX

Critical Rate of RiseOff-State Voltage

dv/dt

Turn-on Time

too
tq

Circuit Com mutated Turn-off Time

-

0.7
-

1.5
5.0
10.0

75

-

VII's

0.5

-

p.S
p.S

-

15

=
=
=
=
=
=

=
=
=

==

=
=

=

=Rating, RSK =lK
IG = lOrnA, I" = lA, V = 30V
IT = I. = lA, RGK = lK
D

Maximum Allowable Non-Repetitive Peak
On-State Current Following Rated
Load Conditions

Maximum On-State
Characteristics

~
Iz

10

'"a:a:

=>

u

;/

'"
"'"
Z
0
'"
=>
o
z'"
II-

TJ =125'1

.1

"

II

I-

Z

~

z
I

-

-

10
0.6

= Rating, RGK = lK, T= llO'C
= Rating, RGK = lK, T= llO'C
6V, Rss _ 10K
6V, Rss lOOn
6V, Rss 1000, T
55'C
6V, Rss 1000, T 125'C
1 Amp Pulse
lK, T 25'C
lK, T -55'C

.01

:

18

If"

'"

16

t:

;;C 14

>

1-'" l-

~=".,

f!;

~ 12

Z

~ 10

"-

~

a: a:
,,~

~;:

6

I Z

4

11.",

~o

-------........

10
v, -

1

1--

.8

V

o~

g .5

~~

::;;cn

I00
~
11.11.

'\

./

.3

/'

.2

\

/'

1

o

'\

/

.4

.

"'\

/v

"'z

x!!?
,,0
::;; a:

~

v

V

"
:!:

100

CYCLES AT 60 Hz

Maximum Allowable Case Temperature
VS. On-State Cumnt (60Hz)

"'~ ~ .9

'" II .7
" .6

-----

10

INSTANTANEOUS ON·STATE VOLTAGE (V)

Maximum On-State
Power Dissipation (60Hz)

~

~

.:f

.1

",p
Z~

~

lEu

o

'\
'\

o
.1

~

~

A

~

~

3

~

~

50
Tc IM"I -

I, I'M'I - RMS ON·STATE CURRENT (A)
(180' CONDUCTION SINEWAVE)

UNITRODE CORPORATION, 5 FORBES ROAD
LEXINGTON, MA 02173 , TEL. (617) 861·6540
TWX (710) 326,6509 • TELEX 95-1064

589

60

70
80
90
100
110
120
MAXIMUM ALLOWABLE CASE TEMPERATURE ('C)

PRINTED IN U.S.A.

TRIACs

LlB04302F
LlB04304F
LIB04306F
LlB04308F

30 Amp RMS, 800V, ChipStrate@

FEATURES
• Voltage Ratings: to BOOV
• Hard-Glass Passivated Junction
• Miniature Size
• Isolated Case
• Economical Design

OESCRIPTION
'Unitrode ChipStrate power Triacs
combine the most advanced hard-glass
passivated chips with a metallized ceramic
substrate. The resultant ChipStrate provides the economy of an unpackaged chip
with the reliability and handling ease of
a discrete device.

ABSOLUTE MAXIMUM RATINGS
L1B04302F

Ll B04304F

L1B04306F

L1 B04308F

Repetitive Peak Off-State Voltage, VORM .
.. ........ 200V...
..... 400V.... ............. 600V................... BOOV
On-State Current IT(RMS) (at Tc = 80'C and conduction angle of 360') .
............................ 30A ... .
Peak One Cycle Surge (Non-Rep.) On-State Current, ITSM .
........................ 300A ..
Peak Gate Power, PGM . . . . . 4 0 W..... .
Average Gate Power, PG(AV) .
.75W ... .
Rate of On-State Current, dildt (at VDM VORM . IGT = 200mA, t, = .11'5) ................................ .150 AIl'S .. .
Storage Temperature Range .
... -40'C to +150'C.
Operating Temperature Range
.... -40'C to +110'C

=

MECHANICAL SPECIFICATIONS
L1B04302F

L1B04304F

L1B04306F

L1B04308F

L1

L 1 with Flange

INS.

IVE COATING

A 1.176 - 1.196
B
.650
. 500 NOM.
C
.060
D
E
.200
.078 R. TYP.
F
G .690 - .710
H .050
J
.150
K
.025
L
.020

mm
29.87 - 30.38
16.51
12.70 NOM .
1.53
5.08
.20 R. TYP .
17.52 -18.04
1.27
3.81
.64
.51

PART NO. SUFFIX: When ordering, specify correct part number suffix.
F - (standard package) - FLANGE MOUNTED, STRAIGHT LEADS
M - FLANGE MOUNTED, PREBENT LEADS
S - SOLDERABLE BACK, STRAIGHT LEADS (not shown)
B - SOLDERABLE BACK, PREBENT LEADS (not shown)

[ill]
1/79

ChipStrate® is a registered trademark of Unitrode Corporation.

590

_UNITRDDE

LlB04302F

LlB04304F

LIB04306F

LlB04308F

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test

-

IORM

Typical

Test Conditions

Units

Max.

-

4.0

mA

80
120

mA
V

VDRM _ Rati ng
Tc =100'C
VD - 12V Quadrant 1, 3 (+
VD 12V Quadrant 2, 4 (+

=
VD = 12V

Gate Trigger Current

IGT

-

-

Gate Trigger Voltage

VGT
VTM

-

-

3.0
2.0

V

IH

-

-

60

mA

40
25
20
10

75
50
40
25

-

VipS

15

-

VipS

IT

-

.B

'C/W

Steady State

Peak On-State Voltage
Holding Current
Critical Rate of RiseOff-State Voltage

dvldt

Critical Rate of RiseCommutated Off-State Voltage

3

dv/dt(c)

Steady State Thermal Resistance'
'"

Min.

Symbol

Off-State Current

-

ReJC

+, - -)
-, - +)

ITM - 42A Peak
VD - 12V
L1B04302F
LlB04304F
L1B04306F
LlB0430BF

VORM

= Rating, Te: = 100'C

=Rating, V =Rating, Tc = 65'C
DRM

Junction~to-Case

On-State Characteristics

g
z>-

ll!

'""
~

I
II

I
I

80

"~

U>

I
60

I

U>

40

~g

~i 250

'"-

>-'"

E~ 200

"'''

t---.

~~ ISO

MAXIMUM

--

0>-

z

~

300

:lII::

0."

/

TYPICAL/

~

350

/

Z

0

"@
z

Maximum Allowable Non-Repetitive Peak
On-State Current Following Rated
Load Conditions

1110

Zu>

20

I
o

V

o

1

100

~

50

V
).5

.5

v, -

I~

/

/

~

2.5

6810
20
CYCLES AT 60 Hz

INSTANTANEQUSON·STATE VOLTAGE (V)

40

60 80 100

Maximum Allowable Case Temp.
On-State Current (50 or 60HZ)

Maximum Conduction Power Dissipation
VS. On-State Current (50 or 60HZ)

VS.

G
60
OJ-

>-;:
50
>-z
"!o

"'~~

~ 120

:f\

--I18C\~O
0,."',,,

5100
MAXIMUY

"'CI>

30

>0:

"'OJ

~o~

./

20
10

.,
~

~TYPICAL

~

'"X
:;;
'"

/f-'
I" •• -

90

I

u

>-

10
30
20
40
FULL CYCLE ON-STATE CURRENT (A)
(360' CONDUCTION)

°""'111

~

0

....I
....I

CONDUCTION ANGLE

~

OJ

....I

V

,0",

~

OJ
CI>

CONDUCTION ANGLE

OJ!:

"''''
ffio

--I-180\~O

OJ

>- llO

, a",

40

/f)

:;;

80
70
60

o
1"" -

40
10
20
30
FULL CYCLE ON·STATE CURRENT (A)
(360' CONDUCTION)

RECOMMENDED MOUNTING METHODS
1. Screw Mount Using Standard Flange
2. Solder
3. Thermally Conductive Epoxy
4. Two-Sided Adhesive Electrical Tape
5. P.C. Board Mount (For Low Duty Cycle Applications)

UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064

591

PRINTED IN U.S.A.

TRIACs

LlB05402F
LlB05404F
LlB05406F
LlB05408F

40 Amp RMS, 800V, ChipStrate®

DESCRIPTION
Unitrode ChipStrate power Triacs
combine the most advanced hard-glass
passivated chips with a metallized ceramic
substrate. The resultant ChipStrate provides the economy of an unpackaged chip
with the reliability and handling ease of
a discrete device.

FEATURES
• Voltage Ratings: to BODY
• Hard-Glass Passivated Junction
• Miniature Size
• Isolated Case
• Economical Design

ABSOLUTE MAXIMUM RATINGS
L1B05402F

L1B05404F

L1B05406F

L1B05408F

Repetitive Peak Off-State Voltage, VORM .
........................... 200V ..
.. .400V ...
600V ...
. BOOV
40A ..
On-State Current I'(RMS) (at Te = BO°C and conduction angle of 360°)
Peak One Cycle Surge (Non-Rep.) On-State Current, IT(RMs) ... .
. .400A ...
Peak Gate Power, PGM ...................................................................... .
.l6W ..
.75W ...
Average Gate Power PG(AV)
... 200 AIl'S . ................................................... ..
Rate of On-State Current, dildt (at VOM VORM . IGT 250mA, tr .11'5)
Storage Temperature Range .
..... .-'40°C to +150°C
Operating Temperature Range ..
... -40°C to +lWOC

=

=

=

MECHANICAL SPECIFICATIONS
L1B05402F

L1B05404F

L1B05406F

L1B05408F

Ll

L 1 with Flange
INS.

A 1.176 - 1.196
B' .6SO
C
.SOO NOM.
D .060
E
.200
F
.078 R. TYP.
G .690 - .710
H
,050
J
.1SO
K
.025
.020

mm
29.87 - 30.38
16.51
12.70 NOM.
1.53
5.08
.20 R. TYP.
17.52 - 18.04
1.27
3.81
.64
.51

PART NO. SUFFIX: When ordering, specify correct part number suffix.
F - (standard package) c... FLANGE MOUNTED, STRAIGHT LEADS
M - FLANGE MOUNTED, PREBENT LEADS
S - SOLDERABLE BACK, STRAIGHT LEADS (not shown)
B - SOLDERABLE BACK, PREBENT LEADS (not shown)

ChipStrate® is a registered trademark of Unitrode Corporation.

592

lliD

_UNITRODE

LlB05402F

LlB05404F

LlB05406F

LlB05408F

ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test

Symbol

IDRM

-

Gate Trigger Current

IGT

Gate Trigger Voltage

VGT
VTM

-

Peak On-State Voltage

Critical Rate of RiseCommutated Off-State Voltage

Units

4.0

mA

-

-

80
120

mA
rnA

-

3.0

V

-

2.0

V
mA

-

-

90

150
100
75
50

-

dv/dt

40
25
20
10

-

Test Conditions

VDRM = Rating, Tc = 100'C
VIJ = 12V Quadrants 1, 3 (+
VD = 12V Quadrants 2,4 (+

Vn = 12V
LlB05402F
LlB05404F
LlB05406F
LlB05408F

V/~S

-

+, - -)
-, - +)

VD = 12V
ITM = 57A Peak

-

=

VCRM

dv/dt lc1

4

10

-

VIpS

Ir

R{h:

-

-

.7

'C/W

Steady State

Steady State Thermal Resistance>
*

-

Max.

-

i

Holding Current
Critical Rate of RiseOff-State Voltage

Typical

Min.

Off-State Current

Rating, V"'M

=

=

Rating, T(.

Rating, Tc

=

=

100'C

65'C

Junction·to~Case

Maximum Allawable Nan-Repetitive Peak
On-State Current Following Rated
Load Conditions

On-State Characteristics

g
~
0:
0:

100

II

I
I

80

=>
e.>

~
~

z
o
z

I
I

40

20

V

I
o

V
o

/
1/

500
400

~~

300

I,~

100

we.>

MAXIMUM

0,..
Z

2:z

TYPICALI!

g
~

~_ 600

I

60

0:
<"" 20

I~

..00.

10

"'""c:i 100

MAXIMUY

CONDUCTION ANGLE

/'

~

10

IT,m. -

~

~

""
ID
oJ

~

TYPICAL

90

------

:j 80
<
X

40

60 80100

f\:-h/'
.J,~
'.9",
CONDUCTION ANGLE

9,+9",

~

~

~ 70

I
20

10

Maximum Allowable Case Temp.
vs. On-State Current (50 ar 60HZ)

u

1M
J,~ :bl"

0< 40
",,!O

8 10

CYCLES AT 60 Hz

V, -INSTANTANEOUSON·STATE VOLTAGE (V)

30

60

...u

40

IT,m. -

FULL CYCLE ON·STATE CURRENT (A)
(360' CONOUCTION)

40
30
10
20
FULL CYCLE ON·STATE CURRENT (A)
(360' CONDUCTION)

RECOMMENDED MOUNTING METHODS
1. Screw Mount Using Standard Flange
2. Solder
3. Two-Sided Adhesive Electrical Tape
4. P.C. Board Mount (For Low Duty Cycle Applications)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL, (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064

593

PRINTED IN U.S.A.

L2B06202F
L2B06204F
L2B06206F
L2B06208F

TRIACs
20 Amp RMS, 800V, ChipStrate®

DESCRIPTION
Unitrode ChipStrate power Triacs
combine the most advanced hard-glass
passivated chips with a metallized ceramic;
substrate. The resultant ChipStrate provides the economy of an unpackaged chip
with the reliability and handling ease of
a discrete device.

FEATURES
• Voltage Ratings: to BOOV
• Hard-Glass Passivated Junction
• Miniature Size
• Isolated Case
• Economical Design

ABSOLUTE MAXIMUM RATINGS
L2B06202F

L2B06204F

L2 B06206F

L2B06208F

Repetitive Peak Off-State Voltage, VORM .
........................... 200V... .
.... 400V... .. ............. 600V.................... BOOV
On-State Current ITIRMS) (at Tc == BO'C and conduction angle of 360') ..
. .................. 20A ... .
Peak One Cycle Surge (Non-Rep.) On-State Current, ' TSM ...
............ 200A .. .
Peak Gate Power, PGM .
.......................... .16W.
Average Gate Power, PGIAVI ..
.5W...
Rate of On-State Current, dildt (at VOM VORM , IGT == 175mA, t, .ll's)
... .125 All's ........
Storage Temperature Range .
......................... -40'C to +150'C ......................... ..
Operating Temperature Range ..
.... -40'C to +110'C .. .

=

=

MECHANICAL SPECIFICATIONS
L2B06202F

L2B06204F

L2B06206F

L2B06208F

L2

L2 with Flange

INS.

PROTECTIVE
COATING

I

-+==9~_~=rl;:;t-.-:i1~1
LL

T

A 1.176 - 1.196
B
.500
C 1.0 NOM.
.060
D
E
.150
F
.078 R. TYP.
G .690 - 710
H
.050
.150
J
K
.025
L
.020
M .040

mm
29.87 - 30.38
12.70
25.4 NOM.
1.53
3.81
.20 R. TYP.
17.52 -18.04
1.27
3.81
.64
.51
1.02

H K J

PART NO. SUFFIX: When ordering, specify correct part number suffix.
F - (standard package) - FLANGE MOUNTED, STRAIGHT LEADS
M - FLANGE MOUNTED, PREBENT LEADS
S - SOLDERABLE BACK, STRAIGHT LEADS (not shown)
B - SOLDERABLE BACK, PREBENT LEADS (not shown)

ChipStrate® is a registered trademark of Unitrode Corporation.

594

[ill]
_UNITRaCE

L2B06202F

L2B06204F

L2B06206F

L2B06208F

ELECTRICAL SPECIFICATIONS (at 25·C unless noted)
Test

Symbol

Max.

Units

ID•M

-

-

2.0

mA

Gate Trigger Current

IG'

-

-

Gate Trigger Voltage

VG,

-

-

50
80
2.5

Peak On-State Voltage

V'M
IH

-

-

1.9

V

-

75

50

mA

-

Holding Current
Critical Rate of RiseOff-State Voltage

Min.

Typical

Off-State Current

30
20
10

dvldt

Critical Rate of RiseCommutated Off-State Voltage

R6JC

mA

L2B06202F
L2 B06204F
L2B06206F VD'M

-

10
3

10

-

VipS

I)

-

-

1.1

·C/W

Steady State

VipS

-

- -)
- +)

VD== 12V
I'M == 28A Peak
VD _12V

V

50
30
25

dv/dt(c)

Steady State Thermal Resistance'

-

Test Conditions

VD• M == Rating, TC == 100·C
VD - 12V Quadrants 1, 3 (+ +,
VD == 12V Quadrants 2, 4 (+ -,

.
•
= Ratmg,
Tc = 100 C

L2B06208F

= Rating, VD• M = Rating, Tc == 65·C

* Junction-ta-Case

On-State Characteristics

g

100

I

t-

150:

0:
:l

80

~

t-

V!

60

"'

fa

z

/

40

V

~

z

~

20

j

1/

~ ~ 200
;::w
~ 160

"-

5

0.:>

j

wU

ex:

MAXIMUM

LLI

~~

I'"

)0

/

"-

.......

120

r---

-

80

40

o

2.5

1.5

.5

v, -

/

/

V

~

280

'o.::!"

;;\ _ 240

TYPICAL

Z
0

:l

I
I

I
I

()

Maximum Allowable Non-Repetitive Peak
On-State Current Following Rated
Load Conditions

1

6 8 10
20
CYCLES AT 60 Hz

INSTANTANEOUS ON·STATE VOLTAGE (V)

G

~

30
I-;:

I-z

"10
z-

o!:;:
",0.
"'Vi
",
<", 10

"'-

/

I;:
c..c:~

£
I" •• -

V/ V

V/ V

'"

;1ICAL

/
V

110

............

100

..J

III

90

..J

80

~

If\
\b!'

.1_,,"

60 80100

Maximum Allowable Case Temp.
vs. On-State Current (50 or 60HZ)

Maximum Conduction Power Oissipation
VS. On-State Current (50 or 60HZ)

"'<-

40

<
X

,8,"

.1_,,"

""- .......

,8",

CONDUCTION ANGLE

8,+8",

~

~

~ 70

CONDUCTION ANGLE

0,+8111

I

60

I-U

10
20
FULL CYCLE ON·STATE CURRENT (A)
(360· CONDUCTION)

I" •• -

20
10
FULL CYCLE ON·STATE CURRENT (A)
(360· CONDUCTION)

RECOMMENDED MOUNTING METHODS
1. Screw Mount Using Standard Flange
2. Solder
3. Two-Sided Adhesive Electrical Tape
4. P.C. Board Mount (For Low Duty Cycle Applications)

UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6~0
TWX (710) 326-6509 • TELEX _95-1064

595

PRINTED IN U.S.A.

L2R06102FG
L2R06104FG
L2R06106FG
L2R06108FG

SCRs
10 Amp. RMS 800V ChipStrate®
Fast Turn-Off Types
For Inverter and Pulse Applications

FEATURES:

DESCRIPTION:

•
•
•
•
•
•
•

This series of SCR's is specifically
designed for use in inverter and high
current pulse applications and exhibits
excellent turn-off capability even at much
higher currents than their rated values.
These devices are made with the most
advanced hard glass passivated chips
mounted on Unitrode's very economical
ChipStrate package.

Fast Turn-Off Time
Shorted Emitter.Construction
High-Current Pulse Capability
High di/dt and dv/dt Rating
Center Gate Construction
Isolated Case
Economical Design

ABSOLUTE MAXIMUM RATINGS
L2R061D2FG

Repetitive Peak Off-State Voltage, VDRM
Repetitive Peak Reverse Voltage, VRRM .
On-State Current, IT(RMS) (at Tc
65°C and
conduction angle of 180°) .
Peak One Cycle Surge (Non-Rep.) On-State Current, I TSM
(60 Hz Sinusoidal) ................................................... ..
Peak Gate Power, PGM (for lOl's Max.) .
Average Gate Power PG(AV)
Storage Temperature Range .
Operating Temperature Range
Rate of Change of On-State Current di/dt @ VDRM .
Fusing Current I't (T J
-40 to lOO°C t
1 to 8.3ms) .

=

=

L2R06104FG

....... 200V ............. 400V .. .
... ..... .... 20OV...
.... 400V .. .

L2R06106FG

.. 600V ..
.. 600V .

L2R06108FG

... 800V
... 800V

.... lOA ...... .
............................. 120A..
.. .............. ............ 20W ... .
...................... ,5W....... .
-40°C to +l50°C ..
.............-40°C to +llO·C ..
.. ......... .150 A/I's ..
.. .. 85 A' sec ..

=

MECHANICAL SPECIFICATIONS
L2R06104FG

L2R06106FG L2R06108FG

L2

L2 with Flange
INS.

SUBSTRATE, BeO

I

I

==~_/~=rl~~~-'-l'

lL

PART
FG MG SG BG -

PROTECTIVE
COATING

T

H K

A 1.176 - 1.196
B .500
C 1.0 NOM.
0
.060
E
.150
F
.078 R. TYP.
G .690 - 710
H
.050
J
.150
K
.025
L
.020
M .040

mm
29.87 - 30.38
12.70
25.4 NOM.
1.53
3.81
.20R. TYP .
17.52 -18.04
1.27
3.81
.64
.51
1.02

J

NO. SUFFIX: When ordering, specify correct part number suffix.
(standard package) - FLANGE MOUNTED, STRAIGHT LEADS
FLANGE MOUNTED, PREBENT LEADS
SOLDERABLE BACK, STRAIGHT LEADS (not shown)
SOLDERABLE BACK, PREBENT LEADS (not shown)

,.OJJ]
ChipStrate@ is a registered trademark of Unitrode Corporation.

596

_UNITRODE

L2 R06102FG

L2 R06104FG

L2 R06106FG

L2R06108FG

ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Test

Symbol

Min.

Typical

Max.

Units

Off-State Current

IORM

2

4

mA

Reverse Current

IRRM

2

4

mA

Gate Trigger Current

IGT

30

70

mA

Gate Trigger Voltage

VGT

1.2

3

V

Peak On-State Voltage

VTM

Holding Current

130

IH

Critical Rate of Rise of
Off-State Voltage
Gate Controlled
Turn-On Time, td

dv/dt

1.0

tq

6

Thermal Resistance
Junction-to-Case

ReJC

=

=

mA
V/p.sec

too

Note 1 Vo

V

175

400

Circuit Commutated
Turn-Off Time

+ t,

10

p'sec
8

!,sec

1.3

°C/W

Test Conditions

=Rating, Te =100°C
=Rating, Te =100°C
Vo =12V, RL =300
Vo =12V, RL =30n
ITM =100A (Peak)
Vo =12V, Gate Open
Vo =VORM. Tc =80°C
IT =2A, IGT =200mA
Vo =VORM
VORM
VRRM

Note 1

=

VCRM • IT
100A, PW SOl'sec
Vox
-lSV min. VGT
OV (at to")
dvI dt = 100 vIl'sec, -SA/l'sec
1ST = 100mA. Tc = 80°C

=

=

Maximum Allowable Non-Repetitive Peak
On-State Current Following Rated
Load Conditions

FJQulNL JJLliNE

"

i:'iQ.~

120

!z

~
100
;::..,

iii ~

Q.~

80

..,U

q=

~ 60

~;!:
z'"
I Z 40
_~o

~

Maximum Allowable Peak
On-State Current VS. Pulse Width
1000

I I I I IIII

SUPPLt
WAVE
CASE TEMPERATURE PRIOR TO SURGE
5O"C
LOAD RESISTIVE
REPETITIVE PEAK REVERSE VOLTAGE (v....) =:; MAXIMUM RATED VALUE
AVERAGE ON·STATE CURRENT (I"A.,!
MAXIMUM RATED VALUE

=

=

5:

..,a:Z

=

r-

a:

"""

rr-

~

..,

......

U

I"

I<[

~

I-

.............

'"Z
0

"""-

..."
<[

Q.

20
10
CYCLES AT 60 Hz

UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064

puh[
I 1"
100 If.
~.."r-

SINGlE:

I-

100

-

-

59'7

FOR HALF SINE WAVE
CURRENT ONLY

-

$~"
'rl-t..

10 I(

"t1--.:.1-t..
20 /(/01..

1'-",

w-l

10
PULSE WIDTH - (I's)

100

f'L.f\.

100

400

PRINTED IN U.S.A.

L2R06102FG L2R06104FG L2R06106FG L2R06108FG

~

...
:;:
l!! 100
...Ol
~ 90
...-'

--: 110

III

'~

;( 50

...
'"=>
...
""~....

ANGLE

......... ...............................

-'

I, ..
70 r-CONDUCTION ANGLE 180'

><
<

60

1

50

....

0

~~

2

0:

...............

1

<

0
0:

........
.............

10

w
....
<

I

4
6
ON-STATE CURRENT (A)

I, -

TYPICAL

oS

....z

CONDUCTION

g

u

-tf?.

ANGLE 180'

80

:;:

100

I

I

1

~ ,m, /CONDUCTION

<

3:

Gate Trigger Current
vs. Gate Plilse Width tr == 20nsec

Maximum Allowable Case Temp.
vs. On-State Current (50 or 60Hz)

8

"

W

100

10
GATE PULSE WIDTH

Maximum Conduction Power Dissipation
vs. On-State Current (50 Or 60Hz)

On-State Characteristics.
100

I

90
Ol;( 80

=>0 ....
... Z
z ...
<'"
....
'"
z=>
<0

.......
Ol ....

-1"1

Z<
....

~i5

I

I

TYPICAL

70

I

/

I

...

I

50

I /
I II

40
30

10

4

J

1/ '/

z-

o~ 20

,,-

/

    ", 10 cO 0.0. 10 12 L 14 ~ 110" CO~~'l.l1·ON I~ ",0 <", 13: Jf? I. / ",0. I '/ 20 ~ .... 3: 25 .... ...o Ii , J g 200 z < >< ~IOO 1 ) / / 1 10 PULSE WIDTH - UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95·1064 598 100 1000 ("sec.) PRINTED IN U.S.A. L2R06252F L2R06254F L2R06256F L2R06258F SCRs 25 Amp RMS, 800V, ChipStrate@ DESCRIPTION Unitrode ChipStrate power SCRs combine the most advanced hard-glass passivated chips with a metallized ceramic substrate. The resultant ChipStrate provides the economy of an unpackaged chip with the reliability and handling ease of a discrete device. FEATURES • Voltage Ratings: to BOOV • Hard-Glass Passivated Junction • Miniature Size • Isolated Case • Economical Design ABSOLUTE MAXIMUM RATINGS L2R06252F L2ROB254F L2R06256F L2R06258F .... 600V .................. BOOV . ....... ..400V.... Repetitive Peak Off-State Voltage, VORM . ...... 200V ..... . ....400V ...................... 600V... ............ BOOV Repetitive Peak Reverse Voltage, VRRM . . .............. 200V ... . ............... .25A.. . On-State Current, ITIRMS) (at Tc = BO'C and conduction angle of 1BO') . ......... ..250A ... .. Peak One Cycle Surge (Non-Rep.) On--State Current, I TSM . ................ 20W .... . Peak Gate Power, PGM . .5W.. . Average Gate Power PG(AVI . . ...................... .150 AI,as ............................................ .. Rate of On-State Current, dildt (at VDM = VDRM . IGT = 1SOmA, t, = .5,as) ... ........................ .250 A's ... Fusing Current, I', (for SCR Protection) T; -40'C to 1l0'C, 1 to B.3msec .. ...... _40°C to +150°C. Storage Temperature Range . .... -40'C to +llO'C ... Operating Temperature Range. = MECHANICAL SPECIFICATIONS L2R06252F L2R06254F L2 R06256F L2 R06258F L2 L2 with Flange INS. PROTECTIVE COATING . I lL ~+I: A 1.176 - 1.196 B .500 c 1.0 NOM. 0 .060 E .150 F .078 R. TYP. G .690 - 710 H .050 J .150 K .025 L .020 M .040 mm 29.87 - 30.38 12.70 25.4 NOM . 1.53 3.81 .20 R. TYP. 17.52 -18.04 1.27 3.81 .64 .51 1.02 H K J PART NO. SUFFIX: When ordering, specify correct part number suffix. F - (standard package) - FLANGE MOUNTED, STRAIGHT LEADS M - FLANGE MOUNTED, PREBENT LEADS S - SOLDERABlE BACK, STRAIGHT LEADS (not shown) B - SOLDERABLE BACK, PREBENT LEADS (not shown) [ill] ChipStrate® is a registered trademark of Unitrode Corporation. 599 _UNITRDDE L2R06252F L2R06254F L2R06256F L2R06258F ELECTRICAL SPECIFICATIONS (at 25'C unless noted) Test Symbol Off-State Current Reverse Current Gate Trigger Current Gate Trigger Voltage Peak On-State Voltage Holding Current Critical Rate of RiseOff-State Voltage Steady State Thermal Resistance* IORM Min. Typical Max. Units Test Conditions - 2.0 2.0 25 2.0 2.1 'H - 50 rnA rnA rnA V V rnA VORM = Rating, Tc = 1OO'C VRRt>A = Rating, Tc = 1OO'C Vo-l2V Vo=l2V 'TM - 50A Peak Vo=l2V dv/dt 100 200 - V/p.S VORM = Rating , Tc =100'C RaJc - - 1.1 'C/W Steady State 'RRM IGT VGT VTM * Junction-to-Case On-State Characteristics g 100 I- ~ 0: 0: / 80 II / I "! ii '":::> S z 60 / 40 II 20 / / .5 V / / / TYPICAL / ~ z ~ 350 / :::> " S Maximum Allowable Non-Repetitive Peak On-State Current Following Rated Load Conditions " MAXIMUM ...... / 1.5 2.5 6 20 8 10 40 60 80100 V,-INSTANTANEOUSON·STATE YOLTAGE(V) Maximum Conduction Power Dissipation VS. On-State Current (50 or 60HZ) "'... ~ "'- 25 ~~ 20 ~ I 30 n: V MAXIMUM/ V "'z 1(>0 ~ llO ... '" 100 '" '" 0 '"CD ",D. CI", "'''' "'- 15 "'''' I~ 10 / ",0 >", ~~ 5 Maximum Allowable Case Temp. vs. On-State Current (50 Dr 60HZ) # o /TYPICAL // // oJ 90 ~ 0 80 oJ oJ -ifitw '" '" X 60' 70 go' :::!; CONDUCTION ANGLE I ...u 10 20 30 I,,,. -AVERAGE ON·STATE CURRENT (A) (ISO' CONDUCTION) 120' 60 10 0 I,,,. - 15 20 25 30 35 40 AVERAGE ON-STATE CURRENT (A) RECOMMENOEO MOUNTING METHODS 1. Screw Mount Using Standard Flange 2. Solder 3. Two-Sided Adhesive Electrical Tape 4. P.C. Board Mount (For Low Duty Cycle Applications) UNITRODE CORPORATION. 5 FORBES ROAD LEXII'IGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 600 PRINTED IN U.S.A. L7B08102S L7B08104S L7B08106S L7B08108S TRIACs 10 Amp RMS, BOOV, ChipStrate@ FEATURES DESCRIPTION • • • • • Unitrode ChipStrate power Triacs combine the most advanced hard-glass passivated chips with a metallized ceramic substrate_ The resultant ChipStrate provides the economy of an unpackaged chip with the reliability and handling ease of a discrete device. Voltage Ratings: to 800V Hard-Glass Passivated Junction Miniature Size Isolated Case Economical Design ABSOLUTE MAXIMUM RATINGS L7B08102S Repetitive Peak Off-State Voltage, VDRM . On-State Current IT(RMS) (at Tc = 65'C and conduction angle of 360') . Peak One Cycle Surge (Non-Rep.) On-State Current, I TSM . Peak Gate Power, PGM . Average Gate Power PG(AV) . Rate of On-State Current, di/dt (at VDM VDRM , IGT 150mA, t, .1,,5) Storage Temperature Range Operating Temperature Range . = = L7B08104S .... 200V ................... 400V... .. L7B08106S ...... 60W L7B0810&S 800V . .............. .lOA... 100A .. ..... 16W.. . .5W... . = .................. .100 Ai"s. -40'C to +150·C . . .-40'C to +11O'C . MECHANICAL SPECIFICATIONS L7B08102F L7B08104F L7B08106F L7B08108F L7 S L7 with Flange INS. 0.4 8 .350 C .300 0 . 500 MIN. E .100 F .032 G .1SO H .015 ,020 I J .020 A CATHODE ANODE GATE H I mm 10.16 8,89 7.62 12.70 MIN . 2.54 .82 3,81 .39 ,51 .51 I, G PART NO_ SUFFIX: When ordering, specify correct part number suffix. S (standard package) - SOLDERABLE BACK, STRAIGHT LEADS F - FLANGE MOUNTED, STRAIGHT LEADS [1W ChipStrate® is a registered trademark of Unitrode Corporation. 601 _UNITRDDE L7B08102S L7B08104S L7B08106S L7B08108S ELECTRICAL SPECIFICATIONS (at 25°C unless noted) Test Min. Symbol Off-State Current - IDRM Max. Units - 2_0 rnA 30 50 rnA rnA 2.0 V 1.6 V 30 rnA Typical Gate Trigger Current IG' - Gate Trigger Voltage V"'T - - Peak On-State Voltage V'M - - Holding Current Critical Rate of RiseOff-State Voltage Critical Rate of RiseCom mutated Off-State Voltage Steady State Thermal Resistance* IH - - dv/dt 30 20 10 10 75 50 30 25 dv/dt 10l 3 ROJC - = Test Conditions = VDRM Rating, Tc 100°C VD =: 12V Quadrants 1 & 2 VD =: 12V Quadrants 3 & 4 (- (+ +, - -) +, + -) = VD 12V ITM =: 14A Peak VD =: 12V L7B08102S L7B08104S VD'M =: Rating, Tc =: 100°C L7B08106S L7B08108S - VII'S 10 - VII'S IT=: Rating, VDRM =: Rating, T c - 3.0 °C/W Steady State =65°C * Junction-to-Case Maximum Allowable Non-Repetitive Peak On-State Current Following Rated Load Conditions On-State Characteristics 100 / 5: 0- is0: 0: 140 80 "~ 0- "! :I '"::> "" tn"" ;; ~~ w" 20 / II I o " 80 o:w MAXIMUM 1L Z o ~~ 100 / II TYPICAL 0- ~~ o-W 40 z 120 :w::: I II 60 z 0 53 / I ::> w LI ~~ 60 I~ J 40 - 20 o ---~ 1 v' - Maximum Conduction Power Dissipation vs_ On-State Current (50 or 60HZ) 12 180, \ ;;: no :;: 360· OJ ... 100 , a," MAXIMUM/ OJ In CONDUCTION ANGLE 9,+9", « u / --' III « ;: "" " 80 --' --' « 70 • « :;: 60 I 50 ...u FULL CYCLE ON-STATE CURRENT (A) (360' CONDUCTION) :~ ....J 180,0 \ '. r..... 360' 9 111 CONOUCTION ANGLE 9,+9u1 ~ '\ X 2468101214 60 80 100 I'\. 0 /~ ~~ 90 OJ / V/ ~PICAL 40 Maximum Allowable Case Temp_ vii_ On-State Current (50 or 60HZ) p ~ -1 IT, •• - 6810 20 CYCLES AT 60 Hz INSTANTANEOUSON·STATE VOLTAGE (V) 02468101214 IT, •• - FULL CYCLE ON-STATE CURRENT (A) (360° CONDUCTION) RECOMMENDED MOUNTING METHODS 1. Screw Mount Using Standard Flange 2. Solder 3. Two-Sided Adhesive Electrical Tape 4_ P_C_ Board Mount (For Low Duty Cycle Applications) UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 602 PRINTED IN U.S.A. L7R08052SG L7R08054SG L7R08056SG L7R08058SG SCRs 5 Amp_ RMS BOOV ChipStrate@ Fast Turn-Off Types For Inverter and Pulse Applications FEATURES: OESCRIPTION: • • • • • • • This series of SCR's is specifically designed for use in inverter and high current pulse applications and exhibits excellent turn-off capability even at much higher currents than their rated values. These devices are made with the most advanced hard glass passivated chips mounted on Unitrode's economical ChipStrate package. Fast Turn-Off Time Shorted Emitter Construction High-Current Pulse Capability High di/dt and dv/dt Rating Center Gate Construction Isolated Case Economical Design ABSOLUTE MAXIMUM RATINGS L7.R08052SG Repetitive Peak Off-State Voltage, VDRM Repetitive Peak Reverse Voltage, VRRM On-State Current, IT(RMs) (at Tc '= 65'C and conduction angle of ISO'). Peak One Cycle (Non-Rep.) On-State Current, I TSM 60 Hz (Sinusoidal) ... Peak Gate Power, PGM (for 1OI's Max) .. . Average Gate Power, PG(AV) .... Storage Temperature Range Operating Temperature Range Rate of Change of On-State Current di/dt @V DRM . -40 to 100'C t 1 to S.3ms) Fusing Current I't(TJ = L7R08054SG ....... 200V. ........ 200V L7R08056SG 400V. 400V ... .. 600V .... . 600V ... . L7ROB058SG ..... SOOV ....... 800V ............ SA .... . BOA ... . .. SW .... . ..................... SW ... . ....... -40'C to +l50'C. ................................ -40'C to +llO'C. .. 200 AIl'S. .. 60 A'sec. = MECHANICAL SPECIFICATIONS L7R08052fG L7R08054FG L7R08056FG L7ROB058FG L7 SG L7 with Flange INS. A B C D E F G CATHODE urrr--HNODE GATE H I J HI 0.4 .350 .300 .500 MIN. .100 .032 .150 .015 .020 .020 mm 10.16 8.89 7.62 12.70 MIN. 2.54 .82 3.81 .39 .51 .51 I, G PART NO. SUFFIX: When ordering, specify correct part number suffix. SG (standard package) - SOLDERABLE BACK, STRAIGHT LEADS FG - FLANGE MOUNTED, STRAIGHT LEADS [lliJ ChipStrate& is a registered trademark of Unitrode Corporation. 603 _UNITRDDE L7R080S2SG L7R08054SG L7 R080S6SG L7R080S8SG ELECTRICAL SPECIFICATIONS (at 25·C unless noted) Test Min. Symbol Off-state Current Reverse Current Typical Max. IORM 0.4 3 Units , , Tes! Conditions I11A YORM, ::.Rat,ing, Tc,= 100·C 'RRM 0.4 2 mA VRRM = Rating, Tc = 100·C Gate Trigger Current 1ST 20 40 mA Vo = 12V, RL = 30n Gate Trigger Voltage VST 1.S 3.0 V Vo = 12V, RL = 30n Peak On-state Voltage VTM 2.0 3.0 V ITM = 30A (Peak) Holdi'ng Current IH 20 SO mA Vo = 12V, Gate open' Critical rate of,rise of Off-state Voltage dv/dt 400 V/Ilsec Vo = VORM ' Tc = 80·t Gate controlled turn-on time (td ton 0.7 Ilsec IT = 2A, 1ST = 200mA ' VO=VORM Circuit commutated turn-off time tq 8 10 Ilsec Note 1 Thermal Resistance Junction-to-case ReJc 7 ·C/W Note 1 Vo = VORt.!' IT + tr) = 20A, PW 200 = 50.usec VRX = -lSV Min, VST = OV (at t off> dv/dt = lOOV1~sec, -di/dt = -lOA/~sec 'ST lOOmA, T c 80·C = = Maximum Allowable Peak On-State Current VS. Pulse Width Maximum Allowable Non-Repetitive Peak On-State Current Following Rated Load Conditions '" ""'",50 80 "'I- >z 60 E~ 1-", "'::> :!;o 'I"'''' z" 01- 40 ~ .Jv ..LLllJlJ.'NEWAVE I )0 f\..J\. '"'"::> REPETITIVE PEAK REVERSE VOLTAGE (v....) MAXIMUM RATED VALUE AVERAGE ON..sTATE CURRENT {I,!,"V)] := MAXIMUM RATED VALUE ~ 0: o ~ 100 ~ """'- 20 Z o - 10 CURRENT ONLY IZ ' = FOR HALF SINE WAvE 5: I I 11111 CASE TEMPERATURE PRIOR TO SURGE:= &O'"C LOAD:= AESISTfV£ z(/) IZ 1000 'i::i" '" .... " ..... ..... ,..... SINGLE PULSE r- ~If~ SOON~ -:!!!.If~ ~~ ....... I,i-p;-.. . . ""r10 PULSE WIDTH (~s) 100 .......... ......... 100 CYCLES AT 60 Hz UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 "NIX (710) 326-6509 • TELEX 95-1064 604 PRINTED IN U.S.A. l7R08052SG l7R08054SG l7R08056SG l7R08058SG Maximum Allowable Case Temp. vs. On-State Current (50 or 60Hz) E Gate Trigger Current == 20 nsec VS. Gate Pulse Width tr 100 O:llolr-t--t----'t-----j:-----j-----j--t---i ::; OJ ;t 50 ~ 100 H-.=I'r-t+-t----1r----1----1---!--i .s V) <3 OJ 90 ... ~ 80 u ;;! 70 t--HHf+-Yi'r----jf-"o,..-I-- '" '~"I 60 t--::b1Rf-t+H----jf---t!- ... TYPICAL '"e:: III ~ r---... I- zOJ r-~~~~~P-~r----1-----1----1--i 10 OJ '"i<'" IOJ ~ ~ ~ L-~~][IJ~1-L--l__~==~~ '" 4 IT ON-STATE CURRENT (A) 10 100 GATE PULSE WIOTH i"s) Maximum Conduction Power Dissipation vs_ On-State Current (50 or 60Hz) On-State Characteristics ~9 o V) ~ 0 OJ Z " " l- z $ I TYPICAL Z OJ e:: 30 e:: ~ U I- OJ V) I- ~ 40 I- " 20 0 10 j l- V) ~z :1 / / II V 180" --- cO~~ll'°N / V LMAXiMUM V / ,/ 1 v, - INSTANTANEOUS ON-STATE VOLTAGE (V) IT", - V 2 3 4 AVERAGE ON-STATE CURRENT (180" CONOUCTION) 5 (A) Maximum Peak Current YS. Pulse Width ;t ;:: ~ ~ a 240 220 200 180 160 ~ 140 oz 120 f'Lf\. J 1\ FOR HALF SINE WAVE CURRENT ONLY I I I " 100 ~ 80 ::; 60 I 40 j 20 100 10 PULSE WIDTH - UNITROOE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6~9 • TELEX 95-1064 605 1000 (flsec) PRINTED IN U.S.A. SCRs L7R08152S L7R08154S L7R08156S L7R08158S 15 Amp RMS, BOOV, ChipStrate@ DESCRIPTION Unitrode ChipStrate power SCRs combine the most advanced hard-glass passivated chips with a metallized ceramic substrate. The resultant ChipStrate provides the economy of an unpackaged chip with the reliability and handling ease of a discrete device. FEATURES • Voltage Ratings: to SOOV • Hard-Glass Passivated Junction • Miniature Size • Isolated Case • Economical Design ABSOLUTE MAXIMUM RATINGS L7R08152S L7R08154S L7R081585 L7R08158S Repetitive Peak Off-State Voltage, VDRM . . ............. 200V ....................400V................... 600V ....................... SOOV Repetitive Peak Reverse Voltage, VRRM ............................................................ 200V.. ........... 400V... .. ..... 600V .......................SOOV On-State Current, IT(RMS} (at Tc 65·C and conduction angle of ISO·) ................................... .15A... . Peak One Cycle Surge (Non-Rep.) On-State Current, I TSM ..... . ................ 150A ... . Peak Gate Power, PGM ............... .10W .... . Average Gate Power, PG(AV} . ...........5W ... ·Rate of On-State Current, di/dt (atVoM VORM IGT lOOmA, tr .51'5) ............ . ......... 125 AI 1'5........ ..................... . Fusing Current, 12t (for SCR Protection) Ti "":40·C to no·c, 1 to 8.3msec .... . ........... .150 Ns...... ....................... . Storage Temperature Range .. .. ... ...... ............. .................... -40·C to +l50·C .......................................... . Operating Temperature Range .... -40·C to +110·C... . = = = = = MECHANICAL SPECIFICATIONS L7R08152F LlR08154F L7 R08156F L1R08158F L7 S L7 with Flange INS. 0.4 B .350 C .300 D . 500 MIN. E .100 F .032 G .ISO H .015 1 .020 J .020 A mm 10.16 8.89 7.62 12.70 MIN . 2.54 .82 3.81 .39 .51 .51 I, PART NO. SUFFIX: When ordering, specify correct part number suffix. S (standard package) - SOLDERABLE BACK, STRAIGHT LEADS F - FLANGE MOUNTED, STRAIGHT LEADS [ill] ChipStratel!! is a registered trademark of Unitrode Corporation. 606 _UNITRDDE L7R08152S L7R08154S L7R08156S L7R08158S ELECTRICAL SPECIFICATIONS (at 25·C unless noted) Test Symbol Min. Typical Max. Units 2.0 2.0 mA mA VCRM Rating, Tc 100·C VR• M - Rating Tc _lOO·C ITM - Test Conditions - 15 1.5 2.1 mA V V IH - 25 mA Critical Rate of RiseOff-State Voltage dvldt 100 200 - VII'S = = Vc =12V Vc =12V 25A Peak Vc =12V V = Rating, Tc = 100·C Steady State Thermal Resistance" RSJC - - 3.0 ·C/W Steady State Off-State Current Reverse Current ICRM IRRM Gate Trigger Current Gate Trigger Voltage IGT VGT VTM Peak On-State Voltage Holding Current - - - - CRM * Junction-ta-Case Maximum Allowable Non-Repetitive Peak On-State Current Following Rated Load Conditions On-State Characteristics g 100 is 0: 0: / / ... / 80 210 / :::> " ~ 60 / Z 0 :::> '" ...... :;; S z II / TYPICAL/ z o / / 20 / V o 180 ~ !z ISO ~ a ~ S Z LLJ III IZ ~0 V .5 '0.5 " a:: MAXIMUM ~ _ ;= '" ;= ~ / 40 ~ 0- 120 r-... o 6 8 10 20 CYCLES AT 60 Hz 1 V, -INSTANTANEOUSON·STATEVOLTAGE (VI Maximum Conduction Power Dissipation VS. On-State Current (50 or 60HZ) ~ ./ ...l ~ '""'100 '" ~ t-..... ""- "-......... ""- VI ;:; 90 I I \ '"III-' .. 80 I . / TYPICAL V . / ..,/ ..... , . / ~ ~;;I. 70 ~~ -it} 60 CONDUCTION I 50 ..." 10 IT", - ...... ;;: lIO ANGLE: ,/ 60 80 100 Maximum Allowable Case Temp. On-State Current (50 or 60HZ) CONDUCTION /1 /1 40 VS. ,v-. MAXIMUM - 60 30 2.5 1.5 " 90 "T'.' I" "- ANC~E 0 IT". - AVERAGE ON·STATE CURRENT (AI (180" CONOUCTlON) IT"~ 10 12 14 16 AVERAGE ON·STATE CURRENT (AI (180" CONDUCTION) RECOMMENDED MOUNTING METHODS 1. Screw Mount Using Standard Flange 2. Solder 3. Two-Sided Adhesive Electrical Tape 4. P.C. Board Mount (For Low Duty Cycle Applications) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 607 PRINTED IN U.S.A. PUTs P13TI-P13T2 Planar, TO-92, Plastic FEATURES DESCRIPTION • • • • • • Functionally equivalent to standard unijunction transistors, Unitrode's Programmable Unijunction Transistors offer the distinct advantage of versatile programming. External resistors can be added to meet the designer's needs in programming Eta, RBB , Ip and Iv functions. Applications include pulse and timing circuits, SCR trigger circuits, relaxation oscillators and sensing circuits. For additional information see Unitrode Application Note U-66. TO"92 Plastic Package Maximum Peak Current: 0.15 p.A Minimum Valley Current: 70 p.A Peak Forward Current: SA Programmable Eta, RBB, Ip and Iv Passivated Planar Construction for Maximum Reliability and Parameter Uniformity ABSOLUTE MAXIMUM RATINGS ............ ±40V Anode-to:Cathode Voltage, VAK ........ 40V Gate-to-Cathode Forward Voltage, VGK . .40V Gate-to-Anode Reverse Voltage, VGAR . . .................... -5V Gate-to-Cathode Reverse Voltage, VGKR . . Peak Recurrent Forward Current .................. 5A 10p.s, 1% Duty Cycle . ............ 1A 100p.s, 1% Duty Cycle . Power Dissipation . 375mW 25'C Ambient ... ... .. ... .... ............. ..... 5mW/'C Derating Factor . .... . ...................... ...... -55'C to +l50'C Storage Temperature ." Operating Temperature Range. .. -55'C to +100'C MECHANICAL SPECIFICATIONS P13Tl·P13T2 TO·92 .019 .016 T~:= !: _I r170 MIN I -.L 210_1_ 500 MIN .205 GO--- -II 175 J .105 .095 AO-' .105 ~.080 ~ .165 .125 Dimensions in inches. 608 0J1J _'UNITRODE P13Tl-P13T2 ELECTRICAL SPECIFICATIONS (at 2S'C unless noted) P13Tl Test Symbol Fig. Peak Current Ip 1 Valley Current Iv 1 Max. Min. Max. Units Test Conditions 70 - 5 2 25 - 1.0 0.15 p.A p.A p.A I'A V V nA nA nA V V ns RG == 10k, V, == 10V RG == 1 Mil RG == 10k, V, == 10V RG == 1 Mil RG - 10k, V, _ 10V RG == 1 Mil T _ 25'C, V, _ 40V T == 75'C V, == 40V IF == 50mA Vr 1 0.2 0.2 Gate-to-Anode Leakage IGAO 2 - Gate-to-Cathode Leakage Forward Voltage Pulse Output Voltage Pulse Output Rise Time IGKS VF 3 4 - Va tr 5 9 5 - Offset Voltage P13T2 Min. 50 0.6 1.6 10 100 100 1.0 - 80 - 25 0.6 0.6 10 100 100 1.0 9 - 0.2 0.2 - 80 +v c v, :L v, 1 R,V '='Vs:::::' R1+R z R2 a) Typical Circuit p , ' G vr = v -vs v, v, 'bFl Et A - Vv I, b) Equivalent Test Circuit I, Iv c) Characteristic Curve Figure 1 rr l V, ' .-L Figure 2 Figure 4 Figure 3 + 20V R, 510K 6V C, .2 pI .6V ........o:..:L..:.:..._ _ _ _ _ _--+ Figure 5 UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 609 PRINTED IN U.S.A. P13T1 -P13T2 Typical Peak Point Current vs. Gate Source Voltage ;;: 10 I ..:! I- 10KIl Z '"0:0: ::> u I- 10KIl 1MIl Z o0- ""i'5 ~ RG=lMIl 1i: ~ I § .01 _~ Z '" 0: 0: o ,, RG = ~MIl ::> u \ I- Z 0 \ "" '" <: \ 0- .1 ..J <: u ", , '\: \ 0- ~ I--- .1 ''':~ I'-- ---... I " r---..... , \ - 10,000 I '"0:0: ;; ..J 5 1i: >l- 10KIl -- - ------------- 10KIl 10 I RG-1MIl £: RG=lMIl ..? 1 a --- :;) ------ ---- u >- ---- I ---- ----- I 100 10K{l.... '" ..J ..J <: > 'r" ..J ~ <: u 10 RG-IMO'" 1i: >l- ~ ..? 1 5 10 15 20 Vs-GATE SOURCE VOLTAGE (V) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 " - "" 100 Vs = 10VJ --P13T1 ---P13T2 JK{l, Z 100 ' .... 1000 ..:! '" >- , ;;: I- ..J ..J ,, -- Typical Valley Current Ambient Temperature I- '" ~ , .... VS. --P13T1 ---Pl3T2 ::> u ---... -80 -60 -40 -20 20 40 60 80 TA -AMBIENT TEMPERATURE ('C) Typical Valley Current Gate Source Voltage ;;: ..:! , ~ :. .01 VS. 0: 0: , I -- --- 10 15 20 Vs - GATE SOURCE VOLTAGE (V) z 1000 , ~ 1i: >l- ...... = Vs 10V --P13T1 ---P13T2 10KIl 1M\) I- -- ---- ---- --~ 0- u 10 oS --P13T1 - - - P13T2 ~ I--- Typical Peak Point Current VS. Ambient Temperature ;;: i'-... ......... --,--- ' .... ... r- r-.... r-........... ... ... ... ... .............. r--... -- ... , ---... :-- -- r- -- r-- r- -- -- -- -- -80 -60 -40 -20 20 40 60 80 TA -AMBIENT TEMPERATURE ('C) 610 100 PRINTED IN U.S.A. P13T1-P13T2 sa," Typical Pulse Output Typical Offset Voltage vs. Circuit Supply Voltage vs. Ambient Temperature 1.4 ~ 1.3 "'" 1.1 " w 1.2 , I..J 0 > Iw VJ ""0 ..J .9 .8 .7 .6 "ua: .5 l- >- .4 I .3 .§ .2 ;;- -:-20!!V o 1.0 '" RG _1M!) RG _10K!), ....... ~ ""'~ i'.... .1 ........... ........ ......... r- I--- --80 ~o T, - ~ -40 -20 20 40 60 80 AMBIENT TEMPERATURE ('C) 100 Gate·Anode Blocking CUI rent vs. Ambient Temperature Typical On-State Current vs_ Voltage I- Z W Q: Q: $ :J U ~ ~ I- Z W .1~-+--------t--------+------~ Q: Q: :J U 9 In '" '"oo VJ ~ S oZ I .01r--1--------~--~~--1_--~--~ '" !;;: .1 r--+-+-H-ftttlt---+-+-+-t+i+t'r--+-+-HffltI -" '"I Q -~.001~~------~~---------'-------~ 100 -80 -50 50 o .01 10 .1 T, -AMBIENT TEMPERATURE ('C) UNITRODE CORPORATION, 5 FORBES ROAD LEXINGTON, Mil. 02173 , TEL. (6In 861-6540 TWX (710) 326-6509 ' TELEX 95-1064 L----'--L.LJ.........J.-.-.J--'--'-'J..ll.'-'-__L.....O-LLLU,U V, - 611 100 ON-STATE VOLTAGE (V) PRINTED IN U.S.A. U13T1-U13T2 PUTs Planar, TO-18 Hermetic FEATURES • • • • • • DESCRIPTION Voltage Ratings: to lOOV Maximum Peak Current: 150nA Valley Current: as low as 25 ",A Low Forward Voltage Drop Nano-Amp Leakage Hermetically Sealed TO-18 Metal Can The Unitrode hermetically sealed TO-18 metal can series of programmable unijunction transistors feature blocking voltages to 100V, the highest available to designers. These PUTs are functionally equivalent to standard unijunction transistors, with the added advantages of programming versatility. External resistors can be added to program 'I, RBB, Ip and lv' depending upon your design requirements. All units are fully planar passivated. This series features a hermetically sealed TO-18 package for optimum reliability in all environmental conditions. Applications include pulse and timing circuits, SCR trigger circuits, relaxation oscillators, and sensing circuits. For further application information see Unitrode's Application Note U-66. ABSOLUTE MAXIMUM RATINGS U13Tl U13T2 Anode-to-Cathode Forward Voltage, VAK Anode-to-Cathode Reverse Voltage, VAKR Gate-to-Cathode Forward Voltage, VGK .. Gate-to-Anode Reverse Voltage, VGAR . Gate-to-Cathode Reverse Voltage, VGKR Peak Recurrent Forward Current 10 "s 1% Duty Cycle . 100 I'S 1% Duty Cycle . Power Dissipation 25"C Ambient. Derating Factor Storage Temperature Range . Operating Temperature Range ... .... 40V ... 40V ... 40V ......... 40V .... 5V ..... 8A ......... 5A ...... 400mW . .... 3.2mW/"C ......... -55"C to +l50"C ............. -55"C to +l50"C MECHANICAL SPECIFICATIONS U13T1-U13T2 TO-18 t-r-[l=-r210 1.-. .5MIN.~ !.170~ .195 .230 ~ .209 DIA . .17SD1A. ..l.-.: 4 II .02~.01J r-MAX. +.002 01 •. -.001 GATE CONNECTED TO CASE Dimensions in inches. [ill] 612 _UNITRaCE U13T1-U13T2 ELECTRICAL SPECIFICATIONS (at 25'C unless noted) U13T1 U13T2 Symbol Fig. Min. Max. Min. Max. Units Peak Current Ip 1 - 5 2 - 1.0 0.15 p.A p.A Valley Current Iv 1 70 - 25 - 25 p.A p.A Test Offset Voltage - 50 0.2 0.2 0.6 0.6 V V - 10 100 nA nA 100 nA 1.5 V Vr 1 0.2 0.2 0.6 1.6 Gate-to-Anode Leakage IGAO 2 10 100 Gate-to-Cathode Leakage IGKS 3 Forward Voltage VF 4 - Pulse Output Voltage Vo 5 6 t, 5 - - Pulse Output Rate of Rise - 100 1.5 6 - 80 +V li]' tr v A C G :L v, s a) Typical Circuit V 80 n& vT = vp -vs Vf .::.v~y R2 - vp v, R t : .. 10 I II c: :;; 0: o I U. 1.0 I .1 .2 .3 V, - .05 0.1 .5 .6 .7 f .5 uJ 1.0 uJ I 10 I-- f- r- V ./ 50 100 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 I .8 .9 1.0 1.1 1.2 1.31.4 1.5 ---i.. ....-1- 17S'C 20 ./ f- l - c: FORWARD VOLTAGE (V) Production Process 1. Raw Materia I 2. Factory Processing - 100'C > uJ I --./ f- u II / I TJ .005 II 1/- ~ ~12s'c uJ c: c: ~ 0.001 002 ,0 "/(/1' 2 dc=2% MAX. Reverse Voltage vs. Reverse Current Forward Voltage vs. Forward Current 1000 Forward Voltage V, - Inspection Lot Formed at Final Assembly Operation REVERSE VOLTAGE IV) *100 Percent Process Conditioning 1. High-Temp Storage 2. Temp Cycling 3. Hermetic Seal Tests EI - *100 Percent Burn-In 1. Measurement of Inspection Tests to Verify LTPD Group A Group B Specified Parameters 2. Burn-In 3. Measurement of Specified Parameters to Determine Delta -- *Order of the tests in the blocks shall be performed as shown. Order of procedure diagrams for TX types only. UNITROOE CORPORATION' 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 9!H064 623 PRINTED IN U.S.A. RECTIFIERS JAN, JANTX IN645 JAN, JANTX & JANTXV IN645·1 High Voltage, Low Current FEATURES DESCRIPTION • • • • • These devices are useful in general purpose low current applications in high reliability and military equipment. Metallurgical Bond Qualified to MIL-S-19500/240 Planar Passivated Chip 00-35 or 00-7 Package Non-JAN Available ABSOLUTE MAXIMUM RATINGS AT 2S'C Reverse Breakdown Voltage ................................................................................................ 270V Peak Working Voltage ...........•................................................................................................ 225V Average Output Current, 2S'C ..................................................... ,.................................. 400mA 150'C ........................................................................................ 150mA Surge Current, 8.3msec .............................................................................................................. 5A Operating Temperature Range .................................................................. -6S'C to lS0'C Storage Temperature Range ...................................................................... -65'C to 200'C + + MECHANICAL SPECIFICATIONS J, JTX 1N64S J, JTX, Be JTXV 1N645-1 .... .130 .018 .023 ...L =911 F==rf Tr--:: -+,. MIN.~ [ill] 12179 624 _UNITRDDE J, JTX 1N645 J,JTX, JTXV 1N645·1 ELECTRICAL SPECIFICATIONS (at 25'C unless noted) Reverse Current @2S'C Reverse Current @SO'C Peak Reverse CUrrent @2S'C Average Reverse Current @ 1SO'C 1N645 O.025I'A @225Vdc 151'Adc @225Vdc lOOI'A(pk) @270V(pk) 100,uAdc @225V(pk) 1N645·1 O.OSO,uA @225Vdc 25,uAdc @225Vdc lOOI'A (pk) @270V(pk) 100~dc Type Forward Voltage VS. :< ..."" ~~ 100 I-- z TJ =+17S'C V V; 'j / / II II--f - / W / V II 0:: 0:: :> ~ « 10 I 0:: ~/ ~ 0:: o u. I 1.0 /r r--- c- -6S'C - 2S'C I I :< 0.01 .02 "" .05 0:: 0:: 0.1 .2 en .5 1.0 t- z w 100'C :> u w / 0:: II / II W > W -" II I 10 20 ---!.~ 1.0Vdc @ IF = 400mAdc 8.3msec 20pf VR =4Vdc f=l MHz V,ig=SOmV VS. I TJ =2S'C ~ ".- f- Reverse Current -- L......- I I /' - - - -- --100'C V I- J V ..- 50 100 140 130120 110 100 90 80 70 60 50 40 30 20 10 0 V, - REVERSE VOLTAGE (V) (% OF PIV) I .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.31.4 1.5 V, - FORWARD VOLTAGE (V) Production Process 1. Raw Material 2. Factory Processing 20pf VR =4Vdc f=lMHz V,ig=50mV 17S'C 0:: II / / I .005 Capacitance 1.0Vdc @ IF = 400mAdc 8.3msec Reverse Voltage 0.001 .002 / -~ .1 II @225V(pk) Forward Current ·1000 Forward Voltage @2S'C Inspection Lot Formed at Final Assembly Operation *100 Percent Process Conditioning 1. High-Temp Storage 2. Temp Cycling 3. Hermetic Seal Tests • - *100 Percent Burn-In 1. Measurement of Specified Parameters 2. Burn-In 3. Measurement of Specified Parameters to Determine Delta Inspection Tests to Verify LTPD Group A Group B *Order of the tests in the blocks shall be performed as shown. Order of procedure diagrams for TX types only. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95·1064 625 PRINTED IN U.S.A. COMPUTER DIODE JAN, JANTX, IN914 JAN, JANTX, JANTXV IN4148 JAN, JANTX, JANTXV IN4148·1 General Purpose Switching FEATURES • Metallurgical Bond • Qua lified to MIL-S-19500 /116 • Planar Passivated Chip • 00-35 Package • Non-JAN Available OESCRIPTION This series is very popular for general purpose switching applications in electronic equipment. ABSOLUTE MAXIMUM RATINGS, AT 25·C Reverse Breakdown Voltage .................... ..... 100V Peak Working Voltage ............................................... .................. 75V Average Output Current, 1N914 ......... ................................ .......... 75mAdc 1N4148 ....... .. ........................ ....................... ...... 200mAdc 1N4148-1 .............................................................................. 150mAdc Surge Current, 8.3msec ................................................................................................. 500mA Operating Temperature Range ............. ..................... ... -65·C to +175·C Storage Temperature Range .... ............... -65·C to +20Q·C MECHANICAL SPECIFICATIONS J, JTX 1N914 J, JTX & JTXV 1N4148, 1N4148-1 [ill] 12179 626 .... UNITRDDE J, JTX 1N914 J, JTX, JTXV, 1N4148-1N4148.1 ELECTRICAL SPECIFICATIONS (at 25'C unless noted) Peak Reverse Reverse Reverse Reverse Current @2S'C Current @2S'C Current @2S'C Current @lS0'C Reverse Current @lSO'C 2SnAdc @ VR = 20Vdc S.O! u 0 10 V / a: '5:" '0" u. / 1.0 / -" .1 1 / / I / .005 I0.01 ;;{ .02 It' r- 25'C IL 100'C J 1 L TJ - ...- .... OJ '"a: / :::J u OJ OJ 25'C .05 0.1 .2 V .5 1.0 -" / I • V V ,./' / /' I-.- V V J 10 20 I I r::p ",L r- 50 100 l - f140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 VR - REVERSE VOLTAGE (V) (% OF PIV) I .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.31.4 1.5 V, - FORWARD VOLTAGE (V) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95-1064 V 100'C a: I -,./' L .:! Z .- .- = -65'C UJ / 175 Reverse Voltage vs. Reverse Current 0.001 .002 II / '" ~ 25 50 75 100 125 150 T. -AMBIENT TEMPERATURE ('C) 1/VV VI V V V I;' -6S'C / / f ~~ I Forward Voltage vs. Forward Current .s.... IN4J54 1N4454-1 _0 1000 < 100 "" '""'" :J u '" OJ ii: ....z 1N~064 ~ OJ 0: 0: U 2.0pf @ VR=OVdc,f=lMHz V,;g = 50mV (pk to pk) Forward Recovery Time 5.0V(pk) 1.0 Vdc Capacitance 629 PRINTED IN U.S.A. 1N3070 COMPUTER DIODE High Voltage Switching FEATURES DESCRIPTION • • • • This series offers Metallurgical Bonding and is specifically designed for high voltage applications. Metallurgical Bond Planar Passivated High Voltage 00-35 Package ABSOLUTE MAXIMUM RATINGS, AT 25·C Reverse Breakdown Voltage .................................................................................... 200V Average Rectified Current ................................................................................... 200mAdc Surge Current, 8.3 mS ........................................................................................ 500mA Operating Temperature Range ...................................................................... - 65·C to + 150·C Storage Temperature Range ........................................................................ -65·Cto +200·C MECHANICAL SPECIFICATIONS 1N3070 00-35 0.065 (1.65) max J.- 1.1.0(25.4)min~-...l q~ II TI· 0.H\5 (3.94) max F=1t=Jf"'1' ·1 Dimensions in inches and (millimeters) om _UNITRDDE 12/79 630 1N3070 ELECTRICAL SPECIFICATIONS (at 25'C unless noted) Type Peak Invarse Voltage (V) Forward Voltage @100mA (V) Reverse Current (V) (nA) 200 1.0 175100 1N3070 (V)(~A) Capacitance OV (pF) Reverse Recovery Time (nS) 175100 5 50 Reverse Current @ 150'C Typical Forward Voltage vs. Forward Current 1000 « 2 E ;= 100 Z W 5 a: a: r- - TJ = + 175'C 10 I ~ o ' - ; - -65'C /~ f+ _ 1 25'C !z 1oo'C ~ 1.0 / _IL / .1 .2 .3 .4 VF - .5 .6 ./ O. 1 w .5 ffi 1.0 f- -- 100'C I .!!- I 7 .8 .9 L - 175'C 10 20 ..... ..- - f - f- .-V 50 100 260260240220200 160 160 140 120 100 80 60 40 20 0 V R - REVERSE VOLTAGE (V) 1.01.1 1.2 1.31.4 1.5 FORWARD VOLTAGE (V) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 V --I-" I- Gj I / I .1 .05 I.-- l - ,./ I I a: / / 02 I-- .- TJ =25'C ~2 II / .00 5 0.0 I' () / / / / IL I 1/ / '/ II ,/ () « /- ' j 'A' II / :> iil Typical Reverse Voltage VS. Reverse Current 0.00 1 002 v:: /"A"A" 631 PAINTED IN U.s.A. JAN, JANTX, JANTXV 1N3595 COMPUTER DIODE 150 rnA, Switching FEATURES DESCRIPTION • • • • • A very useful device for medium current switching applications. Metallurgical Bond Qualified to MIL·S·19500/241 Planar Passivated Chip 00·7 Package Non·JAN Available ABSOLUTE MAXIMUM RATINGS, AT 2S"C Peak Reverse Voltage ...............................................................................•.......... 125V Reverse Breakdown Voltage ..................................................................................... 150V Average Output Current .................................................................•.................. 150mAdc Surge Current, lS ............................................................................................500mA 1,,8 ...............................................................................................4A Operating Temperature Range ...................................................................... - 65·Cto + 150·C 8torageTemperatureRange ........................................................................ -65·Cto +200·C MECHANICAL SPECIFICATIONS JAN, JANTX, JANTXV lN3S9S DO·7 0.092 (2.37) 0.130 (3.30) ..-.L p=* :::~: -+ '"' ' J 0.018 (0.46) 0.022 (0.56) =911 TI- 1.5 (38.1) Dimensions in inches and (millimeters) OJD _UNITRaDE 12/79 632 JAN, JANTX, JANTXV 1N3595 ELECTRICAL SPECIFICATIONS 1 o~~ 65'C I- 10 0: / io / u, 1.0 / _u, / / lj I .1 I / .2 .3 .4 .5 .6 .7 0.1 13 2 ~ w a; I I .E' -- f- .5 - -"""' ,.- I-' >- r- V J 175'C 10 ,/' -r-- V V 50 100 280260240220200180160140120100 80 60 40 20 0 1.01.1 \.2 1.3 1.4 1.5 VF - FORWARD VOLTAGE (V) UNITRODE CORPORATION, 5 FORBES ROAD LEXINGTON. MA 02173 ' TEL. (617) 861·6540 TWX (710) 326-6509 ' TELEX 95-1064 - 100'C 1.0 20 I ...... I--" I 0: I .8 .9 .05 W / / I II I I / Z g: w 100'C II II () I /A' f-r I I TJ = 2S'C .005 I II I~ 'r-I- r-\25'C W 0: 0: o 0.001 .002 ~ 0-rA' V VF, IF = lmAdc VR - REVERSE VOLTAGE (V) 633 PRINTED IN u.s.A. COMPUTER DIODE JAN, JANTX & JANTXV IN3600 JAN, JANTX & JANTXV IN4150 JAN, JANTX &.JANTXV IN4150·1 200mA Low Power, Switching FEATURES • Metallurgical Bond • Qualified to MIL-S-19500/231 • Planar Passivated Chip • 00-7 or 00-35 Package • Non-JAN Available DESCRIPTION This series of switching diodes is useful in many computer switching applications, for both military and commercial systems. ABSOLUTE MAXIMUM RATINGS, AT 25'C Reverse Breakdown Voltage ............................... ................................... ... 7SV Peak Working Voltage . ............................................................................................... .......... SOV Average Output Current .... .................................................. ...... 200mA Surge Current (lsec) ................................................................................................................ O.SA (lpSec) ............................................................................................................ 4.OA Operating Temperature Range .................................................................. -6S'C to +17S'C Storage Temperature Range ...................................................................... -6S'C to +200'C MECHANICAL SPECIFICATIONS J, JTX & JTXV 1N3600 J, JTX & JTXV lN4150, lN415D-l [ill] 12/79 634 _UNITRODE JAN, JANTX & JANTXV lN3600, lN4lS0 & lN41S0-1 ELECTRICAL SPECIFICATIONS (at 25·C unless noted) Reverse Breakdown Characteristics Forward Voltage Forward Voltage Forward Voltage Forward Voltage Forward Voltage Voltage Conditions VFI 'F= 1 mAdc VF2 'F=10mAdc VF3 'F = SO mAdc (pulse) VF4 'F = 100 mAdc (pulse) VF5 'F =200 mAdc (pulse) BV 'R = S.O /lAdc Minimum Maximum 0.S40 Vdc 0.620 Vdc 0.660 Vdc 0.740 Vdc 0.760 Vdc 0.860 Vdc 0.820 Vdc 0.920 Vdc 0.870 Vdc 1.00 Vdc Characteristics Reverse Current Reverse CUrrent Junction Capacitance 7SVdc - Reverse Reverse Recovery Time Recovery Time Forward Recovery Time C VR=O F=l MHz V,;g = SO mv (p-p) trrz 'R VR=SOVdc 'R VR= SO Vdc TA = lS0·C trrl Conditions 'F='R= 10 to 200 mAdc; RL = 100 ohms 'F='R= 200 to 400 mAdc; RL =100 ohms t f, 'F = 200 mAdc; tp = 100 nsec; t, =0.4 nsec Maximum O.l/lAdc 100/lAdc 2.S pf 4 nsec 6 nsec 10 nsec Typical Forward Current vs Voltage Reverse Voltage YS. Reverse Current 0.00 1 .002 1000 500 _ v VI/' 200 .s'" 100 ~ 50 ~ 20 :J (J 10 ...o 1 .!" , if / 0: 0: If :> '"'"ffi" 1:; II 0: II .5 .1 § II 2 .2 1 ." ,,,~,,I/,J/ f-r--- ho/fj/q ., ., o c: '" 1;: .00 5 _ 'j I II II _" II I.... .02 ~ -.! -~5'cl il .0 5 J- I- ,- J..-:-rV 25·b I- l- ~ O. I 2 5 V 1.0 100;;:- 2 10 17SOC-p.. I.Y 0 Lots proposed for non-TX types I.... IL fL'r--- f-r- 5 0 II 10o -'140 130120 llD 100 90 80 70 60 50 40 30 20 10 0 VR - REVERSE VOLTAGE (V) (% OF PIV) .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.11.2 1.31.41.5 V,- FORWARD VOLTAGE (V) Inspection lots formed atfinal assembly operation (sealing) -I- 0.0 1 Inspection tests to verify LTPD Group A Group B 1--- Review of Groups A and B data for accept or reject I.... Non-TX Preparation for Delivery t , Lots proposed for "TX"types 100 Percent burn-in* (reverse and forward bias tests) 1. Measurement of specified parameters 100 Percent process conditioning* 1. High-temp storage 2. Thermal shock (glass strain) 3. Acceleration 4. Hermetic seal tests .... 2. Reverse bias 3. Measurement of specified parameter to determine delta 4. Forward bias 5. Measurement of specified parameters to determine delta 6. Lot rejection criteria based on rejects from the Reverse and Forward bias tests. Order of procedure diagram for non-TX and "TX" types. UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 635 ...... Inspection tests to verify LTPD Group A Group B I Review of Group Aand B data for lot accept or reject t TX Preparation for Delivery PRINTED IN U.S.A. 1N4149, 1N4151, 1N4154 1N4446, 1N4447, 1N4448 1N4449 COMPUTER DIODE Switching DI;SCRIPTION This series offers Metallurgical Bonding and is very popular for general purpose switching applications. FEATURI;S • Metallurgical Bond • Planar Passivated • 00-35 ABSOLUTE MAXIMUM RATINGS, AT 25°C 1N4149 1N41S1 1N41S4 1N4448 1N4447 1N4448 1N4449 Peak Reverse Voltage ............... 75V ........ 75V ........ 35V ........ 75V ........ 75V ........ 75V ........ 75V ....... . Average Rectified Current ............................................... 200mAdc .................................. . Surge Current, 8.3 mS ....................................................500mA ................................... . Operating Temperature Range .................................... ,. -65·C to + 150·C ............................... . Storage Temperature Range ........................................ - 65·C to + 200·C ............................... . MECHANICAL SPECIFICATIONS 1N4149, 1N41S1, 1N4154, 1N4446, 1N4447, 1N4448 1N4449 00·35 0.065 (1.65) max ..:t 141.0(25.4)mln~ ~ q~ II T I· 0.155(3.94) max Pt=JT~'" ·1 . Dimensions in inches and (millimeters) lliD _UNITRODE 12/79 636 1N4149, 1N4151, 1N4154, 1 N4446, 1 N4447, 1 N4448, 1N4449 ELECTRICAL SPECIFICATIONS (at 2S'C unless noted) Forward Voltage Type Peak Inverse Voltage @ 10mA @2OmA 1N4149 75 1.0 1N4151 75 - 1N4154 35 - - 1N4446 75 1N4447 75 1N4448 75 1N4449 75 - 1.0 1.0 - @3OmA @50mA @ 100mA - - - 20 25 - 1.0 50 50 50 4pF 2nS 1.0 - - 25 100 25 100 4pF 2nS - - - 20 25 20 50 4pF 4nS 20 25 20 50 4pF 4nS - - 1.0 20 25 20 50 4pF 4nS 1.0 - - 20 25 20 50 2pF 4nS 0.001 .002 l TJ = +17S'C Z V ... 100 w a: a: => (.) ~ V 'I-,f / 10 / 1.0 [I .!L V .1 .1 .2 .3 I '/ _0.01 ~ .02 ... Z w 2S'C a: a: => (.) I w '">a:w / 1/ ,... .05 0.1 .2 I [I .,; 50 100 .8 .9 1.0 l.l 1.2 1.31.4 1.5 2slc ~ ~ J l00'C §. 10 20 / I - 1.0 a: .,; -r- ~- I I V / V 17S'C ~ 11 V I 140130120 110 100 90 80 70 60 50 40 30 20 VF - FORWARD VOLTAGE (V) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 V- w I .5 .6 .7 - I I .5 I [I .4 -+ iJ =1 +Js'ci .005 l00'C / vV .....-: ~ ~ V '->- -6S'C II i:t I 50 Typical Reverse Voltale VI. Reverse Current Typical Forward Voltage vs Forward Current 1000 ~ Reverse Reverse Junellon Recovery Current @ 150°C Capadtanee Time @ OV tRR VR "" 4pF 4nS 20 50 Reverse Current VRnA VR - REVERSE VOLTAGE (V) 637 PRINTED IN U.S.A. 1N4152, 1N4305, 1N4444 COMPUTER DIODE Switching DESCRIPTION This series offers Metallurgical Bonding and is very popular for general purpose switching applications. FEATURES • Metallurgical Bond • Planar Passivated • 00-35 Package ABSOLUTE MAXIMUM RATINGS, AT 2S'C 1N41S2 1N4444 1N430S Peak Reverse Voltage ................................................................................................................................. 40V ............ 75V ............ 70V .... .. Reverse Working Voltage ........................................................................................................................... 30V ............ SOV ............ SOV .... .. Average Rectified Current ........................................................................................................................................... 200mAdc ..................... .. Surge Current, 8.3 mS .................................................................................................................................................... 500mA ....................... .. Operating Temperature Range ........................................................................................................................... -65'C to + 150'C .............. . Storage Temperature Range ............................................................................................................................... - 65'C to + 2oo'C .............. . MECHANICAL SPECIFICATIONS 1N41S2, 1N430S, 1N4444 0.065 (1.65) max I i q~ II T1 4 0.155 (3.94) max I 1.0 (25.4) min 00-35 ~-.t Pp-r"'" 4 ·1 Dimensions in inches and (millimeters) [ill] _UNITRODE 12/79 638 1N4152, 1N4305, 1N4444 ELECTRICAL SPECIFICATIONS (at 25°C unle•• noted) Forward Voltage @O.1mA Peak Inverse Voltage (V) Type Forward Voltage @O.2SmA min max Forward Voltage @ 1.0mA min max min max Forward Voltage @10mA Forward Voltage @2.0mA min max min Forward Voltage @20mA max min max min max - - 0.85 1.0 1N4152 40 0.49 0.55 0.53 0.59 0.59 0.67 0.62 0.70 0.70 0.81 0.74 0.88 1N4305 75 - - 0.505 0.575 0.55 0.65 0.61 0.71 0.70 0.85 - 1N4444 70 0.44 0.55 - 0.56 0.68 - - 0.69 0.82 - - - Reyer.e Current @ 1SOoC Reyerse Current Type VA (nA) VA ,.A Junction Capacitance @ OV Reverse Recovery Time trr 1N4152 30 50 30 500 2pF 2nS 1N4305 50 100 50 1000 2pF 2nS 1N4444 50 50 50 500 2pF - Reverse Voltage vs. Reverse Current Forward Voltage vs. Forward Current 0.001 1000 « 2 TJ = +17S'C ~ 100 i'a:li 5 :::J 2 a: II / a: io u. 10 II V / 5 / 2 I 1.0 _u.. 5 / / '.1 .1 ~ If h' - V () o 1/ ~ /' VV V V[ 005 -65'C 2S'C l00'C ~ a I / ~ > w a: I .!!' I .4 .5 .6 .7 0 I 2 .S 1.0 .8 .9 V / ./" ./" 1 V J l00'C ~- 2 ./" J 10 II -- 1~ ".L r- J 50 I I 100 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 1.0 l.l 1.2 1.3 1.4 1.5 VF - FORWARD VOLTAGE (V) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 -,/ 2S'C .05 20 II .2 .3 V I- i'li I / - ..- f.- I- TJ = -6S'C _ 001 02 1 w L II I I 002 / / Forward Voltage @100mA ..- VR - REVERSE VOLTAGE (V) (% OF PIV) 639 PRINTED IN U.S.A. • COMPUTER DIODE JAN, JANTX & JANTXV IN4153 150mA Switching Diode FEATURES OESCRIPTION • Metallurgical Bond • Qualified to MIL·S·19500/337 • Planar Passivated Chip • 00-35 Package • Non·JAN Available This device is particularly suited to applications where tightly controlled forward characteristics and fast recovery time are important. ABSOLUTE MAXIMUM RATINGS, AT 25'C Reverse Breakdown Voltage ...... Peak Working Voltage .... Average Output Current ..... .. Surge Current, ll'sec ................... . Operating Temperature Range ... . Storage Temperature Range. ............ 75V ...................... 50V ...... ............. .................... 150mA ... .... ....................... .... 2.0A .. .......... -65'C to +200'C ... -65'C to +200'C MECHANICAL SPECIFICATIONS J, JTX & JTXV 1N4153 12179 640 lliD _UNITRDDE JAN, JANTX & JANTXV 1N4153 ELECTRICAL SPECIFICATIONS (at 25'C unless noted) Limit VFI 'F= 100,uAde Vn 'F = 250p.Ade VF1 'F= 1 mAde VF4 'F=2mAde VF5 'F= 10 mAde VF6 'F=20mAde Min Max 0.490Vde 0.550 Vde 0.530Vde 0.590Vde 0.590 Vde 0.670 Vdc 0.620 Vde 0.700 Vdc 0.700 Vde 0.810 Vdc 0.740 Vde 0.880 Vdc Limit IR VR=50V Min Max 0.05 p.Adc C VR=O f=l MHz IR2 VR=50V TA =150C - g .... TJ = 175'C- V V z / V w a: a: :::> ~ 10 u I .4 V, - I I 0.1 .2 w .5 a: w > w a: 1.0 -" 10 VI I .8 .9 I VI - ..- 25~C l- V J I -100'e I- f-'" 5 20 II ./ l- f-"'" I V "" k-i:.:- - ..- SO V I 100 II 140 130 120 110 100 90 80 70 60 SO 40 30 20 10 0 II .5 .6 .7 V z / -" / .02 1'-'- -65'C .,...- V J .005 / / II ~ 'T ' ~5'cl 0.01 100'C a: - Reverse Voltage vs. Reverse Current 0.001 .002 25'C If / 75V 4 ns I---': ~ ~ V i'i - 2.0 pF Forward Voltage vs. Forward Current 2 100 Reverse Breakdown Voltage 'R = 5.0 p.Adc - - 50 p.Adc 1000 -« t" 'F= 'R =10 mAde RL = 100 ohms 1.01.1 1.2 1.31.4 1.5 FORWARD VOLTAGE (V) V, - REVERSE VOLTAGE (V) (% OF PIV) Production Process 1. Raw Material 2. Factory Processing --...,... Inspection Lot Formed at Final Assembly Operation *100 Percent Process Conditioning 1. High-Temp Storage 2. Temp Cycling 3. Hermetic Seal Tests *100 Percent Burn-In 1. Measurement of Specified Parameters 2. Burn-In 3. Measurement of Specified Parameters to Determine Delta Inspection Tests to Verify LTPD Group A Group B EI - - *Order of the tests in the blocks shall be performed as shown. Order of procedure diagrams for TX types only. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95-1064 641 PRINTED IN U.S.A. 1N4450~1N4451, COMPUTER DIODE 1N4453 Switching FEATURES DESCRIPTION • Metallurgical Bond • Planar Passivated • 00-35 Package This series offers Metallurgical Bonding and is very popular for general purpose switching applications. ABSOLUTE MAXIMUM RATINGS, AT 2S·C 1N4450 1N44S1 1N44S3 Peak Reverse Voltage ................................................................................................................................. 40V ............ 40V ............ 30V ..... . Reverse Working Voltage ........................................................................................................................... 30V ............ 30V ............ 20V ..... . Average Rectified Current ........................................................................................................................................... 200mAdc ...................... . Surge Current, 8.3 mS .................................................................................................................................................... 500mA ......................... Operating Temperature Range ........................................................................................................................... - 65·C to + 150·C .............. . Storage Temperature Range .....................•......................:.................................................................................. - 65·C to + 200·C ............. .. MECHANICAL SPECIFICATIONS 1N4450, 1N4451, 1N4453 -.t 0.065 (1.65) max c::itlll I~ 1.0 (25.4) min ~ 00-35 .l-. ~PT·"J T I~ 0.155 (3.94) max .,. Dimensions in inches and (millimeters) 12/79 642 QW _UNITRODE 1N4450, 1N4451 , 1N4453 ELECTRICAL SPECIFICATIONS (at 2S·C unless noted) Forward Voltage @O.OlmA Peak Inverse Voltage (V) Type Forward Voltage @O.lmA min max Forward Voltage @ 1.0mA Forward Voltage @10mA min max min max min max min 0.52 0.64 0.64 0.76 0.80 0.96 - - 0.42 - - 0.50 0.51 0.61 0.62 0.72 0.75 0.875 - 1.0 0.40 - 1.0 1N4453 30 0.43 0.55 0.51 0.63 0.60 0.71 0.69 0.80 0.80 0.92 - - - Reverse Current @ l50·C VR Junction Capacitance @ OV Reverse Recovery Time trr Type VR (nA) 1N4450 30 50 30 500 4pF 4nS 1N4451 30 50 30 500 6pF 1N4453 20 50 20 500 30pF - VS. "A TJ = + 17S'C 100 5 II 10 / ~ o LL I / 10 / ~ L '.1 .1 .2 .3 / / ./ t/ /' VT V / V f. -6S'C V If H - .005 _ 001 2S'C / / VF - .5 .6 .7 02 ~ 0.1 i3 .2 W .5 w 1.0 rQ ~ a: I .!!' I I / I .4 1 ... V 2S'C ........ ,./ ........ ........ / ./ V l00'C ...- r- V ) I II r::p ~ f- 50 l - II 100 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 1 .8 .9 1.01.1 1.2 1.3 1.4 1.5 FORWARD VOLTAGE (V) UNITROOE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 r- f- 2 10 20 ------ I TJ = 6S"C aJOS loo'C / II - Reverse Voltage vs. Reverse Current Forward Current 0.001 .002 U o max 40 ::> a: ..: min 40 ;{ a: a: max 1N4451 Forward Voltage W min 1N4450 1000 Z max Forward Voltage @300mA 0.54 Reverse Current E j:'" Forward Voltage @200mA Forward Voltage @ 100mA VR - 643 REVERSE VOLTAGE (V) PRINTED IN u.s.A. COMPUTER DIODE 1N4452, 1N4607 High Conductance FEATURES • Metallurgical Bond • Planar Passivated • High Conductance • 00·35 Package DESCRIPTION This series offers Metallurgical Bonding and is specifically designed for high conductance switching applications such as core memories. ABSOLUTE MAXIMUM RATINGS, AT 2S'C lN44S2 lN4607 Peak Reverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 40V ...... 85V .. . Reverse Working Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30V ...... 50V .. . Average Rectified Current ................................................................................... 400mAdc ...... . Surge Current, 8.3 mS .......................................................................................... 1A ......... . Operating Temperature Range .......................................................................... - 65'C to + 150·C .. Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. - 65'C to + 200'C .. MECHANICAL SPECIFICATIONS 1 N4452, 1N4607 00·35 Dimensions in inches and (millimeters) [ill] _UNITRODE 12/79 644 1N4452, 1N4607 ELECTRICAL SPECIFICATIONS W a: I a: I II VF - .5 .6 .7 .8 .~ 25'C ~ .05 0.1 ./ I-- !-- ~ V .2 V .5 1.0 2 - l00'C 1--1-" 10 50 100 1.0 1.1 1.2 1.3 1.4 1.5 ( L l- f- 150'C I-- I - - - V /' f-""" 140 130 120 110 100 90 80 70 60 50 40 30 20 10 FORWARD VOLTAGE (V) UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 ,.., :." .02 20 ~ 1 2 .3 .4 - .005 1/ 1 V .5 .2 =1 1: 0.01 I/;,C/i/i/l 1:S~ct'~ c( 3: a: 1.0 =1 1.1 .002 VVI 50 ::I - 1.0 Forward Voltage l000mA min max @ Typical Reverse Voltage vs Reverse Current V V /. / I- 100 a: a: =1 Forward Voltage BOOmA min max @ .001 500 §. @ - Reversa Recovery Time Typical Forward Voltage vs Forward Current 1000 <" Forward Voltaga 400mA min max Forward Voltage 350mA min max @ VR - 645 0 REVERSE VOLTAGE (V) PAINTED IN u.s.A. COMPUTER DIODE JAN &JANTX IN4500 500mA Switching Diode FEATURES • Metallurgical Bond • Qualified to MIL-S-19500/403 • Planar Passivated Chip • 00-35 Package • Non-JAN Available DESCRIPTION This device is a fast switching, high conductance diode for military, space, high reI and other systems. ABSOLUTE MAXIMUM RATINGS, AT 25'C ...................................... 80Vdc Reverse Breakdown Voltage Peak Working Voltage .................... . .................................................................... 75Vpk ........... 300mAdc Average Output Current .. . Surge Current, lsec .. . ................................................................................... O.SA .. ...................................................................... 4.0A IJLsec ..................... Operating Temperature Range .... . . .................................................. -65'C to +175'C Storage Temperature Range ...... .. ..................................... .. ........ -65'C to +200'C MECHANICAL SPECIFICATIONS J & JTX 1N4500 [ill] 12179 646 _UNITRODE JAN & JANTX IN4500 ELECTRICAL SPECIFICATIONS (at 25'C unless noted) C VR=O Limits VF, IF = 250,uAde Vn IF = 1.0mAde VFl F=10mAde VF4 IF=20mAde VFs l/ IF=300mAde mVde 470 560 mVde 520 600 mVde 640 720 mVdc 670 770 Vdc Minimum Maximum Va la 75Vdc Bv la=5,uAdc = nAdc Minimum Maximum " S ...z 100 l - I- TJ nsec 100 Reverse Voltage vs. Reverse Current /;1' .005 '-t- -we / II II- f:-!- f-[25"C '"'" ';;:" 10 I I 0: " 1/ 0: '" 106·c. V 1/ II OJ u / LL 1.0 II "'" J II .1 .1 / / II .05 ~ ~ u O. 1 0: U.J - r- r---- I I ~J ~ -~5"CI ~ .2 I 1+ 1-+ r--- r....... IL 1 I 100'~ r--- 10 20 J...- f- f- ~ j- r- rJ,:::P"- 5 50 -r100 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 V, - REVERSE VOLTAGE (V) (% OF PIV) I Lots proposed for non-TX types V ./ .....!- f-25,b f-- 1/ .5 1.0 0: y I 1,----- ;1 [;j I .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.31.4 1.5 V, - FORWARD VOLTAGE (V) Inspection lots formed at final assembly operation (sealing) ~ If) II / 0.01 .02 w II 1/ / ;;( .3 U.J / - 6.0 0.001 .002 /. "A'A' =+175"C V 4.0 1.10 ,uAdc Forward Voltage vs. Forward Current V, - trr IF=la= 10 mAde: RL = 100 ohms 100 1000 pF - la Va = 75Vdc TA = 150'C Vdc 80 - 100 kHz~f~l MHz V,;g = 50 mv (p-p) Inspection tests to verify LTPD Group A Group B 1-' Review of Groups A and B data for accept or reject 1-+ Non-TX Preparation for Delivery t Lots proposed for "TX"types 100 Percent process conditioning* 1. High-temp storage 2. Therma I shock (glass strain) 3. Acceleration 4. Hermetic seal tests 1. 2. 3. 4. 5. 6. 100 Percent burn-in* (reverse and forward bias tests) Measurement of specified parameters Reverse bias Measurement of specified parameter to determine delta Forward bias Measurement of specified parameters to determine delta Lot rejection criteria based on rejects from the Reverse and Forward bias tests. Order of procedure diagram for non-TX and "TX" types. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 647 Inspection tests to verify LTPD Group A GroupB Review of GroupAand B data for lot accept or reject .! TX Preparation for Delivery PRINTED IN U.S.A. SWITCHING & GENERAL PURPOSE DIODES DESCRIPTION PART NUMBER PAGE PART NUMBER INDEX DIODE 622 IN456 IN456A IN457, J IN457A IN458, J IN458A IN459, J IN459A IN483 IN483A I N483B, J, JTX IN483C IN485 I N485B, J, JTX 90mA; 25V 75mA; 60V 55mA; 125V; DO-7 40mA; 175V 55mA; 150V; DO-7 100mA; 150V 40mA; 200V; DO-7 100mA; 200V 100mA; 70V 100mA; 70V 200mA; 80V; DO-7 100mA; 70V 100mA; 180V 200mA; 200V; DO-7 624 624 IN645J, JTX IN645-lJ, JTX, JTXV 400mA; 270V 400mA; 270V 626 IN914, J, JTX IN914-1, A, B IN916, B 1N3064J, JTX IN3070 IN3595, J, JTX, JTXV I N3600J, JTX, JTXV IN4148, J, JTX, JTXV IN4148-lJ, JTX, JTXV IN4149 IN4150, J, JTX, JTXV IN4150-lJ, JTX, JTXV IN4151 IN4152 IN4153, J, JTX, JTXV IN4153-1, J, JTX, JTXV IN4154 IN4305 IN4444 IN4446 IN4447 IN4448 IN4449 IN4450 IN4451 IN4452 IN4453 I N4454, J, JTX, JTXV I N4454-lJ, JTX, JTXV I N4500, J, JTX IN4607 620 * 620 * 620 * 620 * * * 622 * * RECTIFIER DIODE * * 628 630 632 634 626 626 636 634 634 636 638 640 * 636 638 638 636 636 636 636 642 642 644 642 628 628 646 644 75mA; 100V 75mA; 100V 75mA; lOOV 75mA; 75V; DO-7 200mA; 200V; DO-35 150mA; 150V; DO-7 200mA; 75V; DO-7 200mA; lOOV; DO-35 150mA; lOOV; DO-35 200mA; 75V; DO-35 200mA; 75V; DO-35 200mA; 75V; DO-35 200mA; 75V; DO-35 200mA; 40V; DO-35 150mA; 75V; DO-35 150mA; 7 5V; DO-35 200mA; 35V; DO-35 200mA; 75V; DO-35 200mA; 70V; DO-35 200mA; 75V; DO-35 200mA; 75V; DO-35 200mA; 75V; DO-35 200mA; 75V; DO-35 200mA; 40V; DO-35 200mA; 40V; DO-35 400mA; 40V; DO-35 200mA; 30V; DO-35 200mA; 75V; DO-35 200mA; 75V; DO-35 300mA; 80V; DO-35 400mA; 85V; DO-35 ·Contact Unitrode for specifications and ratings. Legend: J - JAN JTX - JANTX JTXV - JANTXV UNITROOE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173· TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 648 PRINTED IN U.S.A. SALES OFFICES PART NUMBER INDEX II DESIGNERS' GUIDES III POWER TRANSISTORS & DARLINGTONS IV SWITCHING REGULATOR POWER CIRCUITS V RECTIFIERS VI HIGH VOLTAGE RECTIFIERS, RECTIFIER MODULES & MULTIPLIERS VII RECTIFIER BRIDGE ASSEMBLIES VIII POWER ZENERS & TRANSIENT VOLTAGE SUPPRESSORS IX THYRISTORS (SCRs, Triacs, PUTs) X SWITCHING & GENERAL PURPOSE DIODES XI PIN DIODES l1li CAPACITORS XIII APPLICATION NOTES & DESIGN NOTES XIV MECHANICAL SPECIFICATIONS XV 649 650 PIN DIODES PRODUCT SELECTION GUIDE SWITCHING PIN DID DES AVlirage Average Therma'I····""fiIo'We'c·' Resistlihce . Dls$JpatRl!t: 0Aniax; P,.; max. ('c/W) ;(pF) {OJ 3.0 3.0 0.5 0.5 0.5 2 2 1.7 1.1 0.4 0.9 0.4 15 10 10 1.0 10 1.2 0.6 0.25 8 2.2 2.5 7 (W) 25 37 100 100 25 25 6 25 1.0 6 0.6 35 15 15 15 4 10 10 13 60 35 20 6 4 10 10 5.0 5.0 1.0 2.5 2.0 1.5 HIGH POWER ATTENUATOR & MODULATOR PIN DIODES GENERAL PURPOSE PIN DIODE • LOW DISTORTION ATTENUATOR PIN DIODES .UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 651 PRINTED IN U.S.A. PIN DIODES PRODUCT SELECTION GUIDE TWO WAY RADIO ANTENNA SWITCHES RADIATION DETECTORS PACKAGE STYlES (For UM4000. 6000 & 7000 Series) ===C[)==== A Style Basic Diode B Style Round Axial Leads *C Style Stud *0 Style Insulated Stud E Style Ribbon AXial Leads 'Not available for UM6000. UM6600. UM6200. VOLTAGE RATINGS ORDERING INFORMATION Part numbers of Microwave PIN diodes consist of the letters UM followed by four digits and one or two letters. The first two digits indicate the diode series, the next two digits specify the voltage rating in hundreds of volts. The remaining letters denote the package style. Reverse polarity is available for C, and D, style and denoted by adding second letter R. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON. MA 02173 .• TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 652 PRINTED IN U.S.A. 1N5767 (5082 - 3080)SERIES 1N5957 SERIES PIN DIODE Features • Useful attenuation from 1 j.jA. to 100 mA bias. • Capacitance below 0.4 pF. • Low distortion in switches and attenuators. • Rugged Unitrode construction. Description The 1N5767 and 1N5957 PIN diodes are based upon low capacitance PIN chips designed with long minority carrier lifetime, and thick intrinsic width. Thus operation as low as 1 MHz is possible with low distortion. Additionally, the low diode capacitance allows useful operation well into the microwave frequency range. The 1N5767 (5082-3080) is a general purpose low power PIN diode designed for both switch and attenuator applications. The 1N5957 is primarily used as an attenuator PIN diode and is particularly suitable wherever current controlled, wide dynamic range resistance elements are required. The 1N5957 has also been characterized for the 75Q attenuator, commonly employed in CATV systems. MAXIMUM RATINGS Reverse Voltage (V R) - Volts (IR = 10 jJA) 100V "A~v-er-a-g-e~P~o-w-e-r~D~is-s~i~pa~t~io-n~:1.(2U5~~~)'--.-----------------------------------,~ Free Air (PJ 400 mW (Derate linearly to 175 'C) Operating and Storage Temperature Range 653 ~UNITRDDE 1N5767 (5082-3080) 1N5957 Electrical Specifications (25 ·C) Test Symbol 1N5767 (5082· 3080) 1N5957 Total Capacitance (Max) Series Resistance Cr Series Resistance Rs Series Resistance Rs Carrier Lifetime (Min) T 0.4 pF 1000Q(min) 2000Q(typ) SQ(max) 4Q(typ) 2.5Q(max) 1.5Q(typ) 1.0 lAS Reverse Current (Max) Current for Rs 75Q (typ) Return Loss (typ) IR 175 0.7mA - 30dB 0.4 pF 1500Q(min) 3000Q(typ) SQ(max) 6Q(typ) 3.5Q(max) 2.0Q(typ) 1.5(min) 2(typ) 10 I-IA O.S mA1.2 mA 30 dB Second Order Distortion (typ) - -40 dB -50 dB Third Order Distortion (typ) - -60dB -65 dB Rs = 10 I-IA RESISTANCE VS FORWARD CURRENT (TYPICAL) 10 K~ Conditions 50V,1 MHz 10 !-lA, 100 MHz 20 mA 100 MHz 100 mA, 100 MHz IF = 10 mA VR = Rating = Rs 75Q Diode .terminates 75Q line Bridged tee attenuator atten. 10 dB 50 dBmV Pin F, 10 MHz, F2 13 MHz = = = = FORWARD VOLTAGE VS FORWARD CURRENT (TYPICAL) 100 I lN5767 ., IJ t- E 1000 I lN5957 ~ If '"1~~957 10.0 ." o c: ;;( .§. fii 100 fZ w "= II: I II: lN5767 ° 1.0 II: II: (/) :::J U (3080) Cl II: 0.001 ~ II: IIIII I 1 0.01 0.10 1.0 10.0 J 0.10 Cl lL 100.0 Diode Current (rnA) I 0.01 1 0.00 1 o .2 IL.4 .6 .8 1.0 FORWARD VOLTAGE (VOLTS) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 654 PRINTED IN USA 1N5767(5080·3080) 1N5957 TOTAL CAPACITANCE VS REVERSE VOLTAGE .8 ~ .7 w c .6 " ."! '" " 1 MHz '<3 ~ .5 () 5MHz "- .4 .3 ~ 100 MHz I .2 2 10 20 50 100 200 500 1000 VR- Reverse Voltage (V) PARALLEL RESISTANCE VS REVERSE VOLTAGE 100 1--+-++++t+tt--::,.,..q.+t--l3.OGHz-+-+-H-Htti V ..- 20 10 2 10 20 50 100 200 500 1000 VR - Reverse Voltage (V) Ell MECHANICAL SPECIFICATIONS \ATHODEBAND 1 g,~J MAX. <.193) ~ f4 b .~~ Ji:. MIN. (24.7) (4.3) I MI~, --j ~ .021 (5.30) .014 (.256) DIA. (24.7) Dimensions - UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 9 655 English/Metric PRINTED IN U.S.A UM4000 SERIES UM4900 SERIES PIN DIODE Features • Power dissipation to 37.5W • Voltage ratings to 1000V • Series resistance rated at O.5Q • Carrier lifetime greater than 5~s Description The UM4000 and UM4900 series feature high power PIN diodes with long carrier lifetimes and thick I-regions. They are especially suitable for use in low distortion switches and attenuators, in the HF through S band frequencies. While both series are electrically equivalent, the UM4900 series have higher power ratings due to a shorter thermal path between chip and package. High charge storage and long carrier lifetime enable high RF levels to be controlled with relatively low bias current. Similarly, peak RF voltages can be handled well in excess of applied reverse bias voltage. Both series have been fully qualified in high power UHF phase shifters and megawatt peak-power duplexers, accumulating thousands of hours of proven performance. Both types have been used in the design of antenna selectors and couplers, where inductive and capacitive elements are switched in and out of filter or cavity networks. MAXIMUM RATINGS Average Power Dissipation and Thermal Resistance Ratings Package Condition UM4000 A 25°C Pin Temperature B&E (Axial Leads) Y2 in. (12.7mm) Overall Length to 25°C Contact B&E (Axial Leads) Free Air C (Studded) 25°C Stud Temperature o (Insulated Stud) 25°C Stud Temperature PD 25W 6°C/W 12W 12.5°C/W 2.5W 25W 1B.75W Peak Power Dissipation Rating All Packages 1 ~s Pulse (Single) at 25°C Ambient IOperating and Storage Temperature Range: UM4900 e - 6°C/W BOC/W PD 37.5W e 4°C/W 12W 12.5°C/W 2.5W 37.5W 25W 4°C/W 6°C/W 100 KW - 65°C to + 175°C 656 llilJ UNITRODE UM4000 UM4900 Voltage Ratings (25°C) Reverse Voltage (V R) - Volts (lR 10", Amps) Types = UM4901 UM4902 UM4904 UM4906 UM4001 UM4002 100 200 400 600 1000 UM4006 UM4010 - Electrical Specifications (25°C) UM4000 UM4900 Symbol Test Total Capacitance (Max) Series Resistance (Max) Parallel Resistance (Min) Carrier Lifetime (Min) Reverse Current (Max) I-Region Width (Min) Conditions 3 pF 0.5Q 2 KQ 5",s 10,..A 150",m CT Rs Rp T IR W OV,1 GHz 100 rnA, 1 GHz 100V,1 GHz IF 10 rnA VR Rating = = - TYPICAL FORWARD RESISTANCE vs FORWARD CURRENT (F= 100 MHz) TYPICAL PARALLEL RESISTANCE CHARACTERISTIC 1000 / " MI ~ 500 ./" ~ 200 z g: 1000. . . w ~ 100 en ... . . . iii '" ;;j ~~100._ in w a: '"~ I ~ ",' a: o 1'°lllnllllll . . . . MHz - V / 50 / 20 10 V~O / V'" ...J :;;! @10.0 _ _ _ _ 0.,. V I Z ~ V ---- - -0: - ...-100 MHz ~ V-rOO MHz 'j ~V t;::::::-" V ~~ ~lGHZ --- 10 3 GHz 10 20 50 200 V, - REVERSE VOLTAGE (V) 500 1000 . .01 L.....J-.L..J..JJ""'--L.J..UWlL......I.....L..U.............L..l........."--'..J..UL.WL-'-'~ 1 /JA 10/JA 100/JA lmA lOmA lOOmA lA IF - FORWARD CURRENT UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 657 PRINTED IN USA UM4000 UM4900 POWER RATING STUD MOUNTED DIODES POWER RATING AXIAL LEADED DIODE 16 ~ " z a i= ~ ~ 0 '"w " ~ x "" 1 ~o °O~--~25~~5~O--~75~~'~OO~~'2=5--~~~ STUD TEMPERATURE 1°C) T L . LEAD TEMPERATURE (oC) DC CHARACTERISTICS FORWARD VOLTAGE VS FORWARD CURRENT (TYPICAL) TYPICAL CAPACITANCE CHARACTERISTIC 1A 12 LL e .... u 10 Z « f- U a I~MHZ J~ «0.. « u ...J 6 0 f- I 4 U 1100 2 MHZ- --= ~ ~ 5 2 10 v, - 20 50 ~ w u z « 0 OJ Do ;:;: ...J 100 200 500 1000 I .'" .01 0.6 0.8 1.0 ORDERING INSTRUCTIONS UM4900::: Part numbers of Unltrode PIN Diodes consist of the letters UM followed by four digits and one or two letters. The first two digits Indicate the diode series, the next two digits specify the minimum breakdown voltage in hundreds of volts. The remaining letters denote the package style. Reverse polarity (anode large end cap) Is available for the C style and denoted by adding second letter R. .2 .02 '" I,,::::F'"" .5 OJ 0.4 UM4000 1.0 OJ :I: ... 0.2 V F - FORWARD VOLTAGE IV) 2.0 .1 .05 :E I 100}J A REVERSE VOLTAGE (V) 10. 5.0 II: « I 1mA THERMAL IMPEDANCE §: I 10mA t::' ~ ~ «f- I lOOmA V ...J :> .005 Do .002 I _" .001 10-0 10-5 10-4 10-J 10-> PULSE WIDTH (SEC) UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 10-1 PRINTED IN U.::t . .:\. 658 UM4000 UM4900 MECHANICAL SPECIFICATIONS UM4000 Series Dimensions - English/Metric STYLE A STYLE B .171 .155 _~_t~:~~·~·= 130 (330) DIAMAX • ~ YELLOW CATHODE BAND .130 0915 (232) OIA ~~512.271 --I ~ 1.0531 .021 MIN TO GLASS TYP. STYLE D INSULATED STUD STYLE C STUD fu ll.%IHEX. 13.021 .119 12.821 .111 CU RIBBON CATHODE (2 PLACES) 1.891 MAX. TO FIRST FULL THO. CATHODE 4-40NC-2 Ell STYLE E RIBBON LEADS YELLOW CATHODE MARK UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 PRINTED IN U.S.A 659 UM4000 UM4900 MECHANICAL SPECIFICATIONS (continued) UM 4900 Series Dimensions - English/Metric STYLE A STYLE B .094 .088 12.391 12.241 Li~~81~~~~IF-i;~581 r1 TVP .014 1.361 MIN. .12513.181 TOGLASS1r r= I ~ c:::Jc::=~1 ~':~. l~o-' CATHODE BLACK 1 L 12.321 M~ I .04111.0~09512.411J OIA DOT .0391.991 DIA. DIA. 12.271 .0915 .0895 STYLE C STUD MA~. [ MIN' I I c:=:::J 13.181.125 OIA. CAT~~'oL.P~AND MAX . STYLE D INSULATED STUD ~ .159 .053 .154 14.0411·049 13.911 11.351 DIA 11.241 .035 .: 1.891 MAX. TO FIRST FULL THO. \ r......--"'r-, I .600 115.21 I !MIN.TYP,! 13.18IxI1.5mT 222 15.641 8eO CERAMIC 15.18)MAX. ~-.---'---, 14.981 "9'=9==9 .125 OIA. x .060 1 i1.'93! j 15001 197 14:501 ==:::l==':~==:;::r~·l1t'l-4.076 I :177 cu RIBBON 12 .069 14.751.187 4.40 NC.2 14tOI .177 PLACESI :36~~lx :2i~: CATHODE/ .128 .121 THK .008 .005 :;gci. I j '--.-----'----r--'_.035-.1.891 MAX. TO 14.831.190 '14.571.180 ~;:--__ ..-J 4·40 NC·2 "S;;' STYLE E RIBBON LEADS .975 i----- 124.81 ----1.. -11 MIN. II .200 15.081 MAX. .090 .080 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-1;540 TWX (710) 326-6509 • TELEX 95-1064 .017 .015 .975 124.81 J MIN. - - - - , c=J :=TD g:~~: X :;~: -J.- THK DIA. YELLOW MAX. CATHODE MARK PRINTED IN U.S.A. 660 UM4300 SERIES UM7300 SERIES PIN DIODE For Attenuator Applications Features • Extremely low distortion performance • Useful frequency range extends below 500 KHz • Power dissipation to 20W (UM4300) • Capacitance as low as 0.7 pF (UM7300) • Voltage ratings to 1000V Description The UM4300 and UM7300 series combine a diode chip of extremely thick intrinsic region with a low thermal resistance construction. This results in diodes uniquely applicable to very low distortion linear attenuators and specialized switching functions. The UM4300 series, with large cross-sectional chip area offers the highest power capability, of the two series. The UM7300 series offers lower capacitance. Both diode series are intended for use in linear attenuators operating from HF to beyond 1 GHz. Low distortion at low frequencies is a result of transit time frequencies below 5 MHz. Operated as RF switches, either diode series can be operated at low dc reverse bias voltages, to hold off much higher RF voltage levels. MAXIMUM RATINGS Average Power Dissipation and Thermal Resistance Ratings Package A B&E (Axial Leads) B&E (Axial Leads) C (Studded) o (Insulated Stud) UM4300 (J Po 20W 7.5·C/W 15·C/W 10W Condition 25·C Pin Temperature % in. Total Length to 25·C Contact Free Air 25·C Stud 25·C Stud 2.5W 20W 15W 7.5·C/W 10·C/W UM7300 (J Po 20·C/W 7.5W 4W 37.5·C/W 1.5W 7.5W 6W 20·C/W 25·C/W Peak Power Dissipation Rating All packages 1J.IS Pulse (Single) at 25·C Ambient Operating and Storage Temperature Range: 500 KW 100 KW - 65·C to + 175·C 661 [lUJ UNITRODE lUI UM4300 UM7300 Voltage Ratings (25°C) Reverse Voltage (VR) - Volts (IR = 10 IJA) Types 100V 200V 600V 1000V UM4301 UM4302 UM4306 UM4310 UM7301 UM7302 UM7306 UM7310 Electrical Specifications (25°C) Test Symbol UM4300 UM7300 Total Capacitance (Max) Series Resistance (Max) Series Resistance (Min) Carrier Lifetime (Min) Leakage Current (Max) I-Region Width (Min) CT Rs Rs 2.2 pF 1.5Q 1000Q 6j.1s 10,..A 250j.lm 0.7 pF 3.0Q 30002 4.0j.lS 10,..A 250j.lm T IR W Conditions OV, 1 GHz 100 mA, 1 GHz 10 ,..A, 100 MHz IF = 10 mA V R = Rating - TYPICAL DC CHARACTERISTIC FORWARD VOLTAGE VS FORWARD CURRENT TYPICAL FORWARD RESISTANCE VS FORWARD CURRENT (F = 100 MHz) 1A ~ i-= I 10K ~,oo0 I' ~ u Z F in" :1i " . L 100 !2w I II a: a: ::> u 1/ II l00mA / lOmA "a: . !~o. ~ "a: ;:: a: ~ "... " a: o UM4300 I ~ 10.0 _LL UM7300oj... '" lmA I ~ I a:'" 1. a Jf 100ILA 1 lilA lOllA 100llA lmA lOmA l00mA I lA IF - FORWARD CURRENT I 1/ A 0.2 Q.4 0.6 O.S 1.0 1.2 1.4 VF - FORWARD VOLTAGE PRINTED IN USA 662 UM4300 UM7300 PARALLEL RESISTANCE VS REVERSE VOLTAGE UM4300 UM7300 lOOK UJ u 20K ~ 10K z UJ U z lOOK « - U ~ 100MH U 0 :-.... r--;:: ~ iTffl 10 20 50 100 200 500 1000 VR - REVERSE VOLTAGE (V) 0 10 VR - 20 50 100 200 500 1000 REVERSE BIAS VOLTAGE (V) POWER RATING AXIAL LEADED DIODE UM7300 UM4300 16r---r---,---,----.---,---,---, 14r---r---,----r---,---,---,----, ~. ~ o 2 ~ ;:: « 12 "- '!! 0 a: a: UJ :;: w ~ 0 "- « ::;; ::;; x « X I o 10 iii ~ o .. 12 0 2 I 0 4r---t---~--~~~~~~_+--~ "- TL - LEAD TEMPERATURE 1°C) 175 TL - LEAD TEMPERATURE i"C) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 lWX (710) 326·6509 • TELEX 95-1064 PRINTED IN U.S.A 663 - UM4300 UM7300 UM4300/UM7300 POWER RATING STUD MOUNTED DIODES NORMALIZED RS VS TEMPERATURE 20 1.3 18W 1'\ ~ 15 z 0 i= <{ '\ UM4300C ~UM4300~ 0.. a: CI> a: 'I '\ 10 CI> - X <{ ::;: '\. "- ....... 6W '" '" UM7300D o 25 50 '" 1.0 V 1J .!:! OJ " .8 "-" r'-... "-" ~ -.........:: ...... 100 .9 E 0 z 125 150 / / /' V .7 -60 -40 -20 ~ -~ ~ / / V ./ CI> 1'\ "-" "- ............ 75 is " UM7300.C ............ 5 o 1J 0 1"- '\ UJ :;: 0... 0 c: '" 'iii iii 1.1 "\. I'\. 0 0.. CI> 0 I'\. iii ~ 0 1.2 " "'" 15W 175 0 +20 +40 +60 +80 +100 +120 Temperature (OC) STUD TEMPERATURE (oC) PULSE THERMAL IMPEDANCE VS PULSE WIDTH ORDERING INSTRUCTIONS Part numbers of Unitrode PIN Diodes consist of the letters UM followed by four digits and one or two letters. The first two digits indicate the diode series. the next two digits specify the minimum breakdown voltage in hundreds of volts. The remaining letters denote the package style. Reverse polarity (anode on stud end) is available in C or 0 Styles and denoted by adding second letter R. I For Exampl~~___~~l~? 01 C Series 7300 100 volts TStyleCl Reverse polarity available in C style. Part number designated by adding R. PULSE WIDTH (sec) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 9So1064 PRINTED IN U.S."- 664 UM4300 UM7300 MECHANICAL SPECIFICATIONS UM4300 SERIES Dimensions - English/Metric STYLE B STYLE A .171 .155 ~~:::.~~'~'1'i'~ 130 1330} CIA MAX. . • ~ ~ .041 "~ 11.041 1.991 DIA 0915 (232) DIA 0895 12271 ..~ ~----:531 YELLOW CATHODE BANO l -.L ~~----+ _______ 124.81 .021 MIN .130 ~O"M" I [ : 2 DIA MAX. ····F 97~~----1 ~ .300 MIN. TO GLASS 12.341 (7.62) MAX. 124.81 MIN. TYP. STYLE C STUD STYLE D INSULATED STUD (~%I HE.. ~ =\=9=';"';; X=. .292 .274 MAX·.264 17.421 16.961 MAX. 16.711 13.021 .119 12.821.111 CU RIBBON I .190 .180 14.831 14.571 CATHODE (2 PLACES) 1.891 MAX. TO .128 FIRST FULL THO. .121 .005 .008 THK :~:~~: x ::~6: 4·40NC·2 CATHODE x 4·40NC·2 Ell STYLE E RIBBON LEADS CATHODE MARK UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 665 PRINTED IN U.S.A. UM4300 UM7300 MECHANICAL SPECIFICATIONS (continued) UM7300 Series Dimensions - English/Metric STYLE A STYLE B TYP. .020 +g~~~f lJL~58) I (3.1B)~ ~~ ~:~I~ STYLE C STUD .0465 BLACK .0445 CATHODE DOT . (2.29) OIA. MAX. ~(15.2).600.. J 1--MIN. TYP. ~ (1.09) [ 1.99) I -,---~ I :: : :1\ I ! .187 HEX. (4.75) , 1 1 C\ATHODE CU RIBBON (2 PLACES) 16.35) .250 (5.97) .235 4·40NC·2 1 1 lj(3.18) x 11.52) THK (6.60) .125 DIA x .060 .260 ~==:i""~BeO. CERAMIC MJAX . .241 (6.12) . 119 (3.02) \ .111 (2.82) .231 (5.87) 1 1 I (6.10) .240 ,-,--,,=='--,-,.---L 15.46) .215 I 1112.44) .096 I 1 (2.29) .090 /! : ~ .?5.~, JTT~ r. YELLOW .090 CATHOOE BAIIID (1.40) DIA. MAX. :~~ EJ-r12.44) DIA. .035 1.89) MAX. TO FIRST FULL TH·D.l MIIII. STYLE D INSULATED STUD -1 (~:i~ (4.75) HEX. .975 (24.8) Mlj . ...1J. MAX. --r~c::::=:J 029 (74) I '027 ('71) - l . OIA .100 .187 .975 (24.8) j.250 (6.35) ~ .090 (2.29) CIA. MAX. t r .125 .140 I 19:~~l :gg~ THK. ,--r !L·0351.89)MAX. TO (4.b3).190 1457) 180 0; : i jJ\FIRST FULL THO. '1' .-.OIllC2 CATHODE STYLE E RIBBON LEADS ~ . .9751·250 (24.8) 16,35) ~ M i l MAX. I .975 (24.8) ~ MIIII. [1~CJ ~090 (1.78) X (2.8) THK DIA. (1.52) (.23) . MAX . .011 .070 .060 .009 UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173. TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 t YELLOW CATHODE MARK PRINTED IN U.S.A. 666 UM6000 SERIES UM6200 SERIES UM6600 SERIES PIN DIODE Features • Capacitance specified as low as 0.4 pF (UM6600) • Resistance specified as low as 0.4Q (UM6200) • Voltage ratings to 1000V • Power dissipation to 6W Description These series of PIN diodes are designed for applications requiring small package size and moderate average power handling capability. The low capacitance of the UM6000 and UM6600 allows them to be used as series switching elements to 1 GHz. The low resistance of the UM6200 is useful in applications where forward bias current must be minimized. Because of its thick I-region width and long lifetime the UM6000 and UM6600 have been used in distortion sensitive and high peak power applications, including receiver protectors, TACAN, and IFF equipment. Their low capacitance allows them to be useful as attenuator diodes at frequencies greater than 1 GHz. The UM6200 has been used suc- cessfully in switches in which low insertion loss at low bias current is required. The "A" style package for this series is the smallest Unitrode PIN diode package. It has been used successfully in many microwave applications using coaxial, microstrip, and stripline techniques at frequencies beyond X-Band. The "B" and "E" style, leaded packages offer the highest available power dissipation for a package this small. They have been used extensively as series switch elements in microstrip circuits. The "C" style package duplicates the physical outline available in conventional ceramic-metal packages but incorporates the many reliability advantages of the Unit rode construction. MAXIMUM RATINGS Average Power Dissipation and Thermal Resistance Ratings Package UM6000 UM6200 Condition 25°C Pin Temperature A&C B&E (Axial Leads) Vz in. Total Lead Length to (12.7mm) to 25°C Contact B&E (Axial Leads) Free Air UM6600 Po B 6W 2.5W 25°C/W 60°C/W 0.5W - Po B 4W 37.5°C/W 2.0W 75°C/W O.5W - Peak Power Dissipation Rating All Packages 1 /AS Pulse (Single) at 25°C Ambient Operating and Storage Temperature Range: UM6000 - 25 KW UM6200 - 10 KW UM6600 - 13 KW - 65°C to + 175°C 667 [ill] UNITRDDE - UM6000 UM6200 UM6600 Voltage Ratings (25°C) Reverse Voltage (V R) - Volts (lR Types = 10 JAA) 100V 200V 400V 600V 1000V UM6001 UM6002 - UM6201 UM6202 UM6204 UM6601 UM6602 - - UM6006 UM6010 UM6606 UM6610 Electrical Specifications (25°C) Test Total Capacitance (Max) Series Resistance (Max) Parallel Resistance (Min) Carrier Lifetime (Min) Reverse Current (Max) I-Region Width (Min) Symbol CT Rs Rp UM6000 0.5 pF 1.7Q 15 KQ 1.0 jAS UM6200 1.1 pF 0.4Q 10 KQ 0.6 JAS T UM6600 0.4 pF 2.5Q 10 KQ 1.0 jAs IR W 10~ 10~ 10~ 150 jAm 150 jAm 40 jAm TYPICAL SERIES RESISTANCE VS FORWARD CURRENT (F = 100MHz) Conditions OV, 1 GHz 100 mA, 1 GHz 100V,1 GHz IF = 10 mA VA = Rating - DC CHARACTERISTICS FORWARD VOLTAGE VS CURRENT lA IL J 100 mA >zOJ a: a: ::> u 0) a: u; '" :t g I II 10 mAj ..: L ==UM6200 sa: fr .!" UM6000 UM6600 ~ 11 I ~ J lmA /I 100"", FORWARD CURRENT lOP" o 0.2 0.4 0.6 0.8 1.0 1.2 V F - FORWARD VOLTAGE IV') UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 PRINTED IN U.S.A 668 UM6000 UM6200 UM6600 TYPICAL Rp VS VOLTAGE & FREQUENCY UM6000/UM6600 UM6200 1000 100 100MHz I.t II. g / 100MHzI ~ UJ a 100 u z 500MHz SOOMHz « fVl -- 8i0: ..J UJ ..J ..J « 0: « C- i-- ~ 10 1G1Hzl- "./ 1O.L ~ 3GHz V L. - 1GH7 O- 0: V ...- 3Tr 1 10 10 100 1000 100 1000 VR-REVERSE VOLTAGE IV) V R · REVERSE VOLTAGE IV) TYPICAL CAPACITANCE VS VOLTAGE AND FREQUENCY UM6000 SERIES 1.5 i: .e LLI u z ..: 1.0 I- r~' 5 0 u .e LLI u z ~Hz" I- .5 0 « 0 «0.. 1.0 I- ~ :::::::, ..J ..: 1 I ...J « .5 o 10 V, - 20 MHz I- I cS 5 10,0 500 MHz a lI cS l- 2 '10 MHz I--~ ..: u 1-0 ?100 MHz ~Hzl .1.1.11 ~ i: ~ ..: "..: UM6200 SERIES 1.5 50 100 200 2 V, - 500 REVERSE VOLTAGE (V) 5 10 20 50 100 REVERSE VOLTAGE (V) UM6600 SERIES ORDERING INSTRUCTIONS .8 Part numbers of Unitrode PIN diodes consist of the letters UM followed by four digits and one or two letters. The first two digits indicate the diode series, the next two digits specify the minimum breakdown voltage in hundreds of volts. The remaining letters denote the package style. Reverse polarity (anode large end cap) is available for the C style and denoted by adding second letter R. G: .e .7 w u z « .6 '\ I- u « "« u ....J « .5 1 MH2 .4 . . ., L I- a l- I cS 10 MHz .3 I I 1 669 t--.. 100 MHz .2 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 I"-f' 5MT'r-- 2 V, - 10 20 50 100 REVERSE VOLTAGE (V) PRINTED IN u.s A • ' c ..•. UM6000 UM6200 UM6600 POWER RATING - AXIAL LEADED DIODE UM8OOOIUM6200 UM6600 ~ 4f----+----+------1---,"""'iT~L~T L ~ ~ L·1!4"16.35mml Bi o "' ~ 2~==~~~-+~~~~--+-----~---1----~ "" X I ~Q O~O----~2~5----~W----~7~5--~'~OO~--~----~~~ 175 T l . LEAD TEMPERATURE (oC) T L· LEAD TEMPERATURE (oC) POWER RATING 0:: ILl ~~ o! o..z ILl 0 ~ 5 (!l- 4 ILI_ o::~ 3 >Ul etUl 2 etl- 6.0W 6 I I I UM6000 and 4.0W ............... ~ KM6200 Series UM6600"' r---.. 10 0..< ~ r-----. ~........ 0 ~50 a -25 25 50 75 100 125 ~ lSO 175 TEMPERATURE ('C) (of one metal pin) PULSE THERMAL IMPEDANCE VS PULSE WIDTH ~ 100 E ILl 50 Z 20 10 ILl 5 :; 2 u et 0 0.. :; ...J et :; 0:: ILl :r I- ILl Ul ...J ::l 0.. I oS" .5 .2 .1 .05 .02 .01 / / 10-6 10- 4 10- 3 10-2 1 PULSE WIDTH (SEC) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95-1064 PRINTED IN U.S.A 670 UM6000 UM6200 UM6600 MECHANICAL SPECIFICATIONS STYLE B STYLE A .085 .095 12.18) 12.41) .008 1.20) MIN . TO GLASS r-I)l i;~~.) :+ :52~: t i;~58) r ~I 1 040 11.02) CO MAX. 175) MAX. \ .0315 MIN. l --r. = =~ CIA.~78) ....t.......-+-I .070 11}8) CIA. MAX. BLACK .070 C"A. YE LLOW CATHODE BAND MAX. .019·.021 1.482-.5301 CATHODE DOT .0295 STYLE E STYLE C CARTRIDGE RIBBON LEADS i;~58j ~~~) +- i;~~) -.l I .084 .080 11.83) 11.52) MIN. MIN 1 I' 10.070T c=J 11.27) X 1.23) 11.78)1 11.02) 1.18) THK CIA . .050 .040 .009 .007 MAX. YELLOW CATHODE MARK CATHODE • UNITROOE CORPOR LEXINGTON, MA 021;r'.O~i. 5 FORBES ROAO TWX (710) 326-6509 • TELEX 9~~~ 161·6540 PRINT£D IN U.S.A 671 UM.7000 SERIES UM7100 SERIES .UM7200 SERIES PIN DIODE Features • Voltage ratings to 1000V (UM7000) • Wide vari~ty of package styles • Rated average power dissipation to 10W • Cost effective in volume applications Description The UM7000 and UM7100 series offer moderately high power handling in combination with reasonably low levels of both series resistance and capacitance. The UM7200 series offers the lowest series resistance, but the highest capacitance of the group. The differences in specified performance, for each of th.e series, results from different I-region thicknesses. The three series have broad applicability in many RF and microwave switch and attenuator circuits. Additionally, the UM7100 in leaded versions, is usually the most cost-effective diode choice in high volume usage. MAXIMUM RATINGS Average Power Dissipation and Thermal Resistance Ratings Package Condition A 25°C Pin Temperature B&E (Axial Leads) V2 in.(12.7mm) Lead Length to 25°C Contact B&E (Axial Leads) Free Air C (Studded) 25°C Stud Temperature o (Insulated Stud) 25°C Stud Temperature Peak Power Dlssipati~n All Packages B Po 10W 5.5W 15°C/W 27.5°C/W 1.5W 10W 7.5W 15°C/W 20°C/W - Rating 1 lAS Pulse (Single) at 25°C Ambient UM7000 - 60 KW UM7100 - 35 KW UM7200 - 20 KW Operating and Storage Temperature Range: 672 lliDUNITRDDE UM7000 UM7100 UM7200 Voltage Ratings (25°C) Reverse Voltage (V R) - Volts (lR = 10 /-fA) Types 100V 200V 400V 600V 800V 1000V UM7101 UM7102 UM7104 UM7001 UM7002 - UM7201 UM7202 UM7204 - UM7006 - - UM7108 - UM7010 Electrical Specifications (25°C) Test Symbol UM7000 UM7100 UM7200 CT Rs Rp 0.9 pF 1.0Q 10 KQ 2.5 /AS 10 !lA 150/Am 1.2 pF 0.6Q 8 KQ 2.2 pF 0.25Q 7 KQ 1.5 /AS 10/AA 40/Am Total Capacitance (Max) Series Resistance (Max) Parallel Resistance (Min) Carrier Lifetime (Min) Reverse Current (Max) I·Region Width (Min) T IR W 2.0/As 10 !lA 80/Am TYPICAL FORWARD RESISTANCE VS FORWARD CURRENT (F 100 MHz) Conditions OV,1 GHz 100 mA, 1 GHz 100V, 1 GHz IF 10 mA Rating VR = = - TYPICAL DC CHARACTERISTIC FORWARD VOLTAGE VS FORWARD CURRENT UM7000/UM71001UM7200 = lA UM7100 10,000 g UM7200~ Ii l00mA 1000 iiia: f- z 100 a: a: lOrnA • :J U "«a: 10 ;;: :t '" 0 I a:'" ~UM7000 I w " a: < ;;: a: = , w u z « in ""- u. I 1.0 lmA .!'- I 0.1 1l'A 10l'A l00l'A lmA lOrnA l00mA I lA 100l'A 'F - FORWARD CURRENT 10l1A o I 0.2 0.4 0.6 0.8 1.0 1.2 V F - FORWARD VOLTAGE (V) UNITRODE CORPORATION· 5 FORBES ROAD LEXINl;TON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 673 PRINTED IN U.S." UM7000 UM7100 UM7200 TYPICAL Rp CHARACTERISTIC TYPICAL CT CHARACTERISTIC UM 7000 SERIES UM 7000 SERIES 3 1M 100 MHz - G:: w ~ ~ lOOK u U J.U « ...J III ~ a.. 0.011.L.-~_.L...... 10.5 _ _.L......_ _...L..._ _...J......_ _...J......_ 10·/ 10-' 10·' 10-2 ____' PULSE WIDTH (SEC) ORDERING INSTRUCTIONS Part numbers of Unitrode PIN Diodes consist of the letters UM followed by four digits and one or two letters. The first two digits indicate the diode series, the next two digits specify the minimum breakdown voltage in hundreds of volts. The remaining letters denote the package style. Reverse polarity (anode on stud end) Is available in C or D Styles and denoted by adding second letter R. UNITROOE CORPORATION· 5 FORBES ROAO LEXINGTON, MA 02173 • TEL. (6171 861·6540 TWX (7101 326-6509 • TELEX 95-1064 675 PRINTED IN u.s A UM7000 UM7100 UM7200 MECHANICAL SPECIFICATIONS Dimensions - English/Metric STYLE A STYLE B .125 .140 TYP. .020 1.51 MIN.) lI3"B)j 13.58) TOGL~I ~ -n=o~ .090 12.29) CIA. MAX. 11.13) .0465 .0445 . 029 (74) :027 1'71) OIA BLACK CATHOOE DOT .975 j.250 124.8) 16.35) 975 124.8) Mil'..!..!. MAX. MIN. ~Ill .055 ..J .11.401 ] DIA. . STYLE C STUD r t1 MAX. ~c::::::::J. T090 i2.29) L YELLOW CATHODE BAND CIA. MAX. " STYLE D INSULATED STUD ---1 .100 .096 ~ .043 (2.54i .039 12.44) 11.09) DIA. _-,-[_1_.99_)_'_,- ~115.2) .600 ~ ~MIN.TVP.~ 13.18) x 11.52) THK .125 DIA x .060 16.10) .240 15.46) .215 12.44) .096 *==*=c:;r===iI;:==~=s,8eO CERAMIC ! I 12.29\ .090 .260 .231 15.87) 16.35) .250 15.97) .235 CU RIBBON (2 PLACES) 10.13) .005 THK 10.15) .006 . I CATHooe 116.~0) .24116.1~AX. 4-40NC-2 STYLE E RIBBON LEADS ! rt 1 .975 . 124.8) .250 .. 16.35) MIN. ~.~ I .975 124.8) MIN. I '[I~D . 12.29) .090 11.78) X 12.8) THK DIA. 11.52) 1.23) . MAX . .011 .070 .060 .009 UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173· TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 ~ MAX. 676 YELLOW' CATHODE.MARK PRINTED IN U.S.A. PIN DIODE UM9301 SERIES COMMERCIAL ATTENUATOR DIODE Features • Specified low distortion • Low rectification properties at low reverse bias • Resistance specified at 3 current points • High reliability fused-in-glass construction Description The UM9301 PIN Diode utilizes a special overall chip geometry with an extremely thick intrinsic "I" region, to offer unique capabilities in both RF switch and attenuator applications. Volume production also makes the diode an economical choice suitable for many commercial low power equipments. The UM9301 has been designed for use in bridged TEE attenuator circuits commonly utilized for gain and slope control in CATV amplifiers. Low distortion and high dynamic range are characteristic of the diodes' outstanding performance. The UM9301 is also appropriate for switch applications, when little or no bias voltage is available. Frequent applications occur in portable 12 volt-powered communications equipments, operating at frequencies as low as 2 MHz. MAXIMUM RATINGS Reverse Voltage (VR) - Volts (lR 10~) = 75V .:; A;.; :.v~er;:; .;a: .1fz .g. . :. ;in. e: . .p-,-,overall o.:. :.w-=e;.:.r.: ;.;D. .:to ; is:. :.25°C ;s. .:iP. : :.a. .;:Contact t;.; :.io_n=-. ; @~(p:.:.;J~_ _ _ _--L.._1_._0W_(_D_e_ra_t_e_li_n_ea_r_'y_to_17_5_0_C_)_----' '-. Leads Operating and Storage Temperature Range 677 -65°C to +175°C Ell I [ill] UNITRDDE UM9301 Electrical Specifications (25 ·C) Test Min Typ Max Units 3.0 150 3000 1.7 80 5000 Q Q Q 0.5 1.1 2.0 rnA f :::: 100 MHz pF V :::: OV, f :::: 100 MHz dB Frequency Range: 10 - 300MHz Rs :::: 75Q @ 100 MHz Diode Terminates 75Q line Diode Resistance Rs Current for Rs:::: 75Q Capacitance 0.8 Return Loss 25 Second Order Distortion 55 50 -dB -dB 70 Third Order Distortion 75 Cross Modulation Distortion -dB 65 95 -dB 75 -dB Reverse Current 10 Carrier Lifetime 4.0 Conditions I :::: 100 rnA, f :::: 100 MHz I :::: 1 rnA, f :::: 100 MHz I :::: 0.01 rnA, f :::: 100 MHz f1 :::: 10 MHz, f2 :::: 13 MHz p :::: 50 dBmV See Test Circuit F1 :::: 67 MHz, F2 :::: 77 MHz p :::: 50 dBmV, See Test Circuit F1 :::: 10 MHz, F2 p :::: 50 dBmV, Triple Beat; 205 p :::: 50 dBmV, 12 Channel Test p:::: 50 dBmV, See Test Circuit Dix Hills Test Set JJA V :::: 75V liS I :::: 10 rnA DIODE RESISTANCE VS DIODE CURRENT (TYPICAL) FORWARD CURRENT VS FORWARD VOLTAGE (TYPICAL) 1000 lOOK 10K 100 Ii) :;( E .c o .s "- ;'1000 c "c ~ OJ () '" 'iii £ :::: 13 MHz See Test Circuit + 67 - 77 MHz See Test Circuit " U 100 .... § r-~ 10 "C " m '.1 ~ <; Q) "C o II IJ.. is r--.... 10 I'. .1 .01 .1 10 .5 100 Diode Current (rnA) UNITRODE CORPORATION' 5 FORBES ROAD LEXINGTON; MA 02173 .~. TEL. (617) 86H540' TWX (710) 326·6509 " TELEX 95-1U64 .6 .7 .8 .9 1.0 1.1 Forward Voltage (Volts) 678 PRINTED IN USA UM9301 TEST CIRCUIT FOR DISTORTION MEASUREMENTS NORMALIZED RS VS TEMPERATURE 1.3 ./' 1.2 ".,<= 0 Ui 1.1 'in " "0 " a: 0 i5 1.0 "0 " ;;; .~ /' .9 .8 / V 6600 pF From 75\1 Input Diode Current V E :; z V V D.U.T. / / Supply .7 -60 -40 -20 Note: Diode Current adjusted for 10dB Attenuation 0 +20 +40 +60 +80 +100 +120 Temperature ('C) TYPICAL BRIDGED TEE ATTENUATOR PERFORMANCE DIODE CURRENT VS ATTENUATION UM9301 DISTORTION ATTENUATION 30 100 11111 III I !llllllil 40 <" S 10 ,;;<:<\ ..v:< E f;\rA0 second order distortion 50 ~ 60 " 70 u" "0 0 third order distortion i5 Oi o '0. ~ "61"1. 80 19"01' = Input Power + 60 dBmV Input Frequencies 10 MHz & 13 MHz 100'e .1 90 111111111111111 I I I 100 o .01 = 2 o 2 4 6 8 1012141618202224 4 6 8 10 12 14 16 18 20 Ell Attenuation (dB) Attenuation (dB) MECHANICAL SPECIFICATIONS t .975" 24.8mm MIN. ~ 6.35mlll~24.8mm MAX. MIN. .250" 975" -~~~~~~ .~90" ~\ 2.29mm r"f-LYi -l \-c=:=:=J 02 •• .74mm ~ .027" .6Bmm . 9 DIA. I LCATHOOE BAND MAX. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95-1064 PRINTED IN U.S.A 679 PIN DIODE UM9401 SERIES UM9402 SERIES UM9415 SERIES COMMERCIAL TWO·WAY RADIO ANTENNA SWITCH DIODES Features • • • • Specified low distortion Unitrode ruggedness and reliability Low bias current requirements Priced for high quantity applications Description: Unitrode offers a series of PIN diodes spe· cifically designed and characterized for solid state antenna switches in commercial twoway radios. Antenna switches using the UM9401 and UM9415 series PIN diodes provide high isolation, low loss and low distortion characteristics formerly possible only with electromechanical relay type switches. The UM9401 and UM9402 diodes can handle above 100W of transmitter power, while the UM9415 will handle over 1000W. The extensive characterization of these PIN diodes in antenna switch applications has resulted in guaranteed low distortion specifications under transmit and receive conditions. These diodes also feature low forward bias resistance and high zero bias impedance which are required for low loss, high isolation and wide bandwidth antenna switch performance. MAXIMUM RATINGS Reverse Voltage (V R) - Volts (IR 10 IJA) = Average Power Dissipation (PA) Leads - Yz in. Overall to 25°C Heat Sink 25°C (Package Flange) Temperature Free Air UM9401 UM9402 UM9415 50V 50V 50V 5.5W - 10W - 10W 1.5W - 2.5W Operating and Storage Temperature Range 680 [ill] UNITRCDE UM9401 UM9402 UM9415 Electrical Specifications (at 25 ·C) UM9415 UM9401lUM9402 Test Symbol Min Typ Max Min Typ Max Units Diode Resistance Rs Diode Capacitance Cr Parallel Resistance Rp 5K 10K 1K T 1.0 2.0 5 Carrier Lifetime 0.75 1.0 1.1 0.75 1.0 1.5 2K Q 1-'5 Transmit HarmoniC Distortion ~, R3A A A 80 80 -dB P'N = 50W f 50 MHz, I Receive Third Order Distortion R2AB -A 60 60 -dB P'N fA IR 10 1.0 10 1.0 I-IA V Reverse Leakage Current Forward Voltage VF = V 10 ....161 = 10 mW, OV Bias = 50 MHz, fB = 51 MHz = 50V = 50 mA / lOa =- UM9415 z ~ iiicr: :i! IF = 50 mA TYPICAL DC CHARACTERISTIC TYPICAL FORWARD RESISTANCE VS FORWARD CURRENT (F = 100 MHz) u = 100MHz typical 50 mA = 100 MHz OV = 100 MHz = OV = 10 mA f I f V f V I Q pF 4 Conditions I" UM9401/UM9402 1"1 10.0 ~ ~ ~10""" II l00I'A " o 1 L..l..l.l.UJJII-1..liJlWlL-,-L.l..il.lJlll..J..Lll.WlL.-L.Lr>O.wL--'-lu.LJ.UU lOMA 100/JA lmA lOrnA lOOmA lA 08 v F - FORWARD IF - FORWARD CURRENT VOLTAGE N~ TYPICAL Rp CHARACTERISTICS 1000 TYPICAL CAPACITANCE CHARACTERISTIC "' 0 g 6_ VR 4~ 7'T OV --.L 2 VR = w u z ~ iii UM9415 .1. ~ ~ ~ "'~" UM9401/UM9402 1 lOMHI ...... "w 50V ~~OV VR ~ 50V 1/ 100 a .... UM9401/UM9402 50V VR "N.II ........... oJ UM9415 VR 50V I 100MHI 0- lOOOMHt UM94011940X " """:7-4- VR = OV FREQUENCY 1 UM~1~ ~~OV 10MHz 100MHz lGHz FREQUENCY PRINTED IN U.S.A 681 Ell UM9401 UM9402 UM9415 MAXIMUM TRANSMITTER POWER POWER RATING UM940119402 POWER RATING UM9415 16 ~ ~ L=,." ! 12 I - -....-+---+---+-T,~ T, z 0 12 j: « o -iii 0- iii 0- '"0 -iii III 10 a:: is w ~ o !? ;: x « c.. ~ ~ 6 I Cl ::2 0. 4 I o c.. B M ~ 100 lB 1~ 1M TL - Lead Temperature (0C) T L - HEAT SINK TEMPERATURE 1°C) UM9401/UM9402 UM9415 ~ -1000 J - -- .~ -I-- III c: Ol ~ 100 ::J 0 = .., L = V." r---- II;",~ :-. ~ E _ z. = SOil, , - r- - l f '" 'f", ~ I ~ sao rn~ r-... «lj rn~ -.. . . 0 = 00 ~ I l: -....... ~ "" ;; E I"t-....... --....... ~ '\ I -.:..... 100 ~ E ::J E 'x Ol E .~ --....... ~ '\ r--. ........... t'-- '\ 100 IF I I 50 mA ./ ::2 ::2 100 mA IF IF c: "' I I III I'\. rn~ I ~t-IF = 200 mA 0 c.. If I K"'= <- .... ~~ o 3 --- ~ 1 kHz 10 kHz 25 20 10 c ~ ~ z c ~ · 15 Of vs FREO 0 ~ ~ A.C. VOLTS (R.M.S.) C vs FREO -1 ~ ~~ A.C. VOLTS (R.M.S.) ~ +100 +120 +140 ~ ~ ./ 15 +80 0 >= ~ 10 +60 z ~ 10 +40 liiio.. 10 ~ ~ ~ +20 0 -.. r-- Ofvs VAC · 100 20 ~ TEMPERATURE IN" C < ~ 30 -20 °c ~CvsVAC · '-40 ""'" 100 kHz 1 MHz 10 MHz 100 MHz 10Hz ~ 100Hz 1/ 1kHz / 1/ ~ 10kHz lQOkHzl MHzl0MHz FREQUENCY FREQUENCY l1li ~CvsOCV IR vs TEMP lOOk · ~, c · " 10k "" ~ ~ ~ • 1000 ~ ... ~ -20 ~ ........ 100 -60 -80 I. -60 " "- -40 ~ 40 -20 0 +20 +40 +60 TEMPERATURE IN +80 25 +100 +120 +140 "c UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 50 ~ 75 100 125 D.C. VOLTS 699 PRINTED IN U.S.A. 700 SALES OFFICES PART NUMBER INDEX II DESIGNERS' GUIDES III POWER TRANSISTORS & DARLINGTONS IV SWITCHING REGULATOR POWER CIRCUITS V RECTIFIERS VI HIGH VOLTAGE RECTIFIERS, RECTIFIER MODULES & MULTIPLIERS VII RECTIFIER BRIDGE ASSEMBLIES VIII POWER ZENERS & TRANSIENT VOLTAGE SUPPRESSORS IX THYRISTORS (SCRs, Triacs, PUTs) X SWITCHING & GENERAL PURPOSE DIODES XI PI N DIODES XII CAPACITORS .. APPLICATION NOTES & DESIGN NOTES MECHANICAL SPECIFICATIONS 701 XIII XV Unitrode Corporation makes no representation that the use or interconnection of the circuits described herein will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the granting of licenses to make, use or sell equipment constructed in accordance therewith. © 1980, by Unitrode Corporation. All rights reserved. This section, or any part or parts thereof, must not be reproduced in any form without permission of the copyright owner. NOTE: The information presented in this section is believed to be accurate and reliable. However, no responsibility is assumed by Unitrode Corporation for its use. Doorbeli@ is a registered trademark of Unitrode Corporation ChipStrate@ is a registered trademark of Unitrode Corporation 702 APPLICATION AND DESIGN NOTES SUBJECT PAGE SUBJECT PAGE POWER TRANSISTORS & DARLINGTONS H. V. RECTIFIER ASSEMBLIES Power Darlingtons as Switching Devices (U-70B) • . . . . . . . .. * The Unitrode monolithic power Darlington is characterized and compared with other switching methods. Unique advantages are discussed and basic circuits for many modern applications are shown. High Voltage, High Performance Power Switching Transistors(U-75) ..... : .........••.••.•.••....•... 745 Thermal Design Considerations for Operating Unitrode's TO-92 Transistors and Darlingtons in Pulsed-Power Applications(U-77) .••.•.•.......... 759 Unitrode's New Power Switching Transistor (DN-2) ........ * How to Safely Check Sustaining Voltage on Power Transistors(DN-5) ........................... 790 High Voltage Multipliers (DN-19) ...•.••.•..•......... 820 Doorbell® High Voltage Stacking (N-136B) ............... * Self-stacking rectifier modules are described and shown in numerous applications. Examples of circuits and mounting configurations are given. Ooorbell®Tube Replacement (N-130B) ..•.•.•..••..•.•.. • The advantages of using rectifier modules to replace tubes are discussed. Case histories are noted and advice is given relating to module selection and installation. Pertinent ratings and other information is presented in tabular form, and outlines are shown for standard caps and bases. TRANSIENT VOLTAGE SUPPRESSORS/ZENERS Guidelines for Using Transient Voltage Suppressors(U-79) ................................ 769 Determining the Change in Zener Voltage when the Current is Changed (DN-1A) ........................... • Thermal Design Considerations (DN-12) •••••••••••••. 809 Lead Materials(DN-16) ............................ 817 Insulated Stud Packages (DN-17) .................... 818 SWITCHING REGULATOR POWER CIRCUITS Switching Regulator Design Guide (U-68A) •..•...••.•. 712 Operating Switching Regulator Output Stages in ParalleI(U-72) .................................... * Three methods to increase the output current capability of switching regulators are discussed. Waveforms show transient and ·steady-state" current sharing. Analysis shows the.reasons that one method is clearly preferred. Flybackand Boost Switching Power Supplies (U-76) •..• 750 Operating Buck Type Switching Regulators above 100KHz (U-80) ............................. 778 Minimizing Storage Time When Using Unitrode Switching Regulator Power Output Circuits (DN-3) ....•. 788 Avoiding Spurious Oscillation When Using Unitrode Switching Regulator Power Output Circuits (DN-4) .....• 789 Operating the Switching Regulator Output Circuit at Low Frequencies(DN-6) ......................... 793 A 350 Watt Switching Regulated Output Power Supply for Multiple Outputs Utilizing Unitrode Semiconductors Components(DN-8) ••••••••...•••..• 799 THYRISTORS (SCRs, TRIACs, PUTs) Programmable Unijunction Transistors (U-66) ..•.....•• 704 Power Switching Capabilities of Improved TO-92 Thyristors(U-78) ...•.•.•....•.•.•.••.••..•.• 763 Programmable Bidirectional Diac Using PUT (DN-9) ..•..•. * Squib-Firing Circuit Provides for Reliable Firing, from Low Levellnputs (DN-10) ...................... 805 Combined AC-DC Load Control Simplifies SCR Reset(DN-11) ................................ 807 Turn-off Method for SCRs Minimizes Effect of DV/DT(DN-13) .................................... 811 Nanosecond SCR Switch for Reliable High Current Pulse Generators and Modulators (DN-14) .•••.••.•.•.. 813 Nanosecond SCR for Laser Diode Pulse Driver(DN-15) .••..•.........•....•.•.•.••.•...... 815 RECTIFIERS The Importance of Rectifier Characteristics in Switching Power Supply Design (U-73A) ..........•.•. 734 The Unitrode Schottky Rectifier - A New Design Tool for Switching Power Supply Engineers (DN-7) •.••..••.. 797 Thermal Design Considerations (DN-12) .............. 809 Lead Materials(DN-16) ............................ 817 Insulated Stud Packages (DN-17) ...•..•............. 818 HIGH REL SCREENING HR-201Screening(DN-18) •.••.••...•...•..•.••••.. 819 PIN DIODES Pin Diode Designers' Handbook & Catalog (PD-500A) •.•.•• • 'Does not appear in data book NOTE, All Application and Design Notes may be obtained as single printed pieces. UNITRODE CORPORATION· 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 703 PRINTED IN U.S.A. II U-66 APPLICATION NOTE PROGRAMMABLE UNIJUNCTION TRANSISTORS INTRODUCTION The Programmable Unijunction Transistor is today's preferred device for low cost timing circuits, oscillators, sensing circuits, and a wide range of other applications where a variable voltage level threshold is desired. This note describes the principle of operation of the PUT, its electrical characteristics, and its various applications. PRINCIPLE OF OPERATION The PUT is a three-terminal device as shown in the schematic representation, Fig. la. The anode voltage VA and the gate voltage VG are measured with respect to the cathode (k). The corresponding anode, gate and cathode currents are given respectively by lA, IG, and IK. The most general usage of a PUT involves an external gate resistor RG as shown in Fig. la. Hence, the voltage generally referred to in characterizing PUT's is the applied voltage Vs rather than the gate voltage VG which is less than Vs by the voltage drop across RG. The theory of operation of .the PUT can perhaps be best understood by considering that it is a four-layer (PNPN) device, as is a silicon-controlled rectifier (SCR). The basic PUT structure is shown in Fig. lb, in which it is noted that the gate is adjacent the anode, in contrast to an SCR in which the gate lead is adjacent the cathode. As shown in Fig. lc, the PUT, has a two-transistor analogy, which is similar to that used to explain the operation of an SCR, except that the gate connection is common to the PNP base and the NPN collector. Regenerative switching occurs when the sum of the alpha's dynamically approach unity. The net result is that when the anode voltage exceeds the gate voltage by an amount equal to the emitter to base drop of the PNP transistor, the positive feedback drops the anode-cathode voltage and presents a negative resistance. Figure 1b. PUT Structure Figure 1a. PUT Parameters UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95-1064 704 PRINTED IN U.S.A. APPLICATION NOTE U-66 A (Anode) - G (Gate) K (Cathode) Figure 1c. Two Transistor Analogy ANODE CHARACTERISTIC The PUT, together with RG as shown in Fig. 1a, exhibits a negative resistance .characteristic illustrated in Fig. 2 for a fixed value of Vs and RG. For anode voltages less than the peak voltage Vp at which a current IGA flows. (Region I). a~positive incremental resistance results. For anode currents above the valley current lV, which occurs at the valley voltage Vv (Region III) a positive incremental resistance also occurs. However, for anode currents between the peak point current Ip and the valley current IV (Region II) the incremental resistance is negative. This region is unstable and forms the basis for use in oscillator circuits. With VA less than Vs forward anode current flows. At the peak current point, Ip where VA exceeds Vp the PUT will regeneratively switch to its low impedance state: anode current increases rapidly to a level limited by external load resistance. The PUT will remain on this "ON STATE" until the anode current is reduced to a level below the valley current, IV. At this point the PUT returns to its blocking or "OFF STATE", because operation in the negative region is unstable. Operation in the region between '0 and IV will be covered in detail. f IV lli • V T = Vp- Vs - - VALLEY I'" I Ip F .... ....r~ II I " " .... __ IL ________ ~ PEAK Figure 2. PUT Characteristics UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 705 PRINTED IN U.S.A. U-66 APPLICATION NOTE ADVANTAGES The primary advantage of the PUT over the UJT is the programmability of operating parameters such as peak point current (Ip!. valley current (IV)' and offset voltage (V T ), which is defined as (1 ) These are easily programmed over a range by the choice of circuit components. Shown in Fig. 3 are the relationships between Ip and IV vs stand off voltage (VS) and gate source impedance (R g). As observed from Fig. 3, operation at higher voltages allow a greater spread between Ip and IV' The significance of this becomes apparent in applications where the negative resistance (Region II, Fig. 2) must be large and must remain relatively broad over a temperature range. Other advantages of the PUT over the UJT are: 1. Lower current drain through R1 and R2 ; the UJT required several milliamperes of current, The PUT micro amperes of current. 2. Lower peak point current of the PUT allows use of larger Rt (timing resistor) therefore, the Ct may be smaller for the same time delay hence, lower in cost. Lower capacitance values also result in lower leakage current and lower temperature coefficient. 3. Higher efficiency is available due to greater energy transfer from the capacitor to the load. The on state voltage (VF) is considerably lower for a PUT than for a UJT. 4. High or low operating voltages may be used; Vs as low as 2V or greater than 40V will operate the PUT. 5. The PUT has an overall extended operating range due to programmability of Ip and IV' 6. Greater uniformity of triggering point. Stand off ratio TJ is not determined by manufacturing tolerance. 10,000 Iv ~~220f< ~ <;: ":;z 1,000 lK ~~ 10Kf< .... w zO:: wO:: o::=> 0:: u =» uw '"w 100 100Kf< l~Mf< 10 _o...:?' Ip lKf< 220f< r.~ 10Kf< 0.1 l00Kf< lMf< 0.01 .001 .01 0.1 1.0 10 100 1000 Vs 'G :::::: R Gate Source Current (mA) G UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 Figure 3. 706 PRINTED IN U.S.A. APPLICATION NOTE U-66 BASIC PUT OSCILLATOR An analysis of the basic PUT oscillator demonstrates the inter-relationship of parameters. From Fig. 4b, the voltage Va changes at a rate determined by the RtC t charging path. When the PUT is operating in Region I, the anode voltage is given by Va = VBB (1_e- t / Rt Ct) (2) The standoff voltage is related to the supply voltage VBB VS=7)VBB (3) where R, (4) TJ = - - - R, + R2 Triggering is accomplished when the voltage on the capacitor reaches the standoff voltage V S: plus the offset voltage V T, i.e. V BB (1-e-t/RtCt)-VT = 1) V BB (5) The switching time occurs at t = RtCt -V~ ) in ( (6) '-1)--- VBB VT varies only slightly with temperature having a temperature coefficient of about 2.5 mv/oC. Advantages of the PUT over the UJT are readily observed by comparing their operation in a simple relaxation oscillator circuit. Figure 4a shows a typical UJT oscillator with the simplified UJT model. In the off state the resistance ratio at the intersection of r, and r2 is a fixed value represented by TJ (intrinsic stand off ratio). This ratio which determines the device triggering voltage is established in the manufacturing process by the resistance of the silicon material and the diode contact. Manufacturing tolerance result in values of TJ which typically range in value from about 0.4 to 0.9. Replacing the UJT with a PUT results in stable operation in any given circuit (Fig. 4b). The parameter stand-off ratio 7) is now established exclusively by setting the value of R2 and Rl and remains relatively temperature stable. Ip and IV are controlled by gate source resistance Rg and stand off voltage Vs (Fig. 3). A detailed discussion of the PUT oscillator will be given. II 8, Typical UJT Oscillator UJT Model Figure 4a. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95-1064 707 PRINTED IN U.S,A. APPLICATION NOTE U-66 R, = T/ Vs Va Standoff Ratio' R2 RT T R, + R2 A t R, CT VT "1 Vaa Vp - Vs Standoff Voltage Offset Voltage Vs RG R,R 2 R, + R2 Gate Source Resistance (7) Fig.4b CONDITIONS FOR OSCILLATION Switching on takes place at the peak point lip) switching off requires that current through the PUT be less than the valley current (IV). Therefore, the load line must intersect the characteristic curve in the negative resistance region Fig. 5 and must be above the Ip point. CONDITION FOR SUSTAINED OSCILLATION VBB - Vp RT (max) > Ip (max) VT 1-"1 » - V This condition insures current levels greater than the I p (8) This condition insures current levels lower than the I V (9) This condition insures more stable operation. BB (10) IV Negative Resistance Load Line Ip Vv ~ 0.6v UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710)326·6509 • TELEX 95·1064 Vs Vp Figure 5. Offset Voltage 708 PRINTED IN U.S.A. U-66 APPLICATION NOTE CONDITIONS FOR ONE SHOT OPERATION V BB - Vp RT > Ip (max) >IV must be satisfied. Since the load current is in the positive resistance region, the PUT will LATCH on and remain on. PUT OFFSET COMPENSATION In order to compensate for offset voltage (VT) temperature shift, a diode D 1 forward biased through RD may be used Fig. 6. The value of RD is selected by: RD = Ip (max) A diode having a forward voltage temperature characteristic similar to the offset voltage temperature coefficient (TC) would provide optimum compensation. II Figure 6. Offset Compensation Methods UNITRODE CORPORATION. 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 709 PRINTED IN U;5.A. APPLICATION NOTE U-66 TUNABLE FREQUENCY OSCILLATORS Variable oscillator circuits which include active elements for discharging the timing capacitor CT are shown in Fig. 7. A second method is given as in Fig. 8. RT1 1KS1 R2 5.6Kn FREQUENCY RANGE 40 Hz to 65 kHz RT2 3MS1 OUTPUT PULSE Rise time-200 nsec. Pulse width -1OfLseC. Recovery time < 200 nsec. PUT Cr Vo .005J.1.F R1 15KS1 Fig. 7 FREQUENCY RANGE 40 Hz to 40 kHz OUTPUT PULSE Width - 5 SCR I-IS8C. Fig. 8 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 710 PRINTED IN U.S,A. U-66 APPLICATION NOTE DESIGN EXAMPLE A relaxation oscillator. A trigger generator is needed to provide a pulse of energy. The required repetition rate is 1000 pulses per second. A power source of 20 Vdc is available. Step 1 Select the value of R 1 and R2 based on Ip, IV requirements. For RG = 1OKn, (Fig.3) R1 ~ 27Kn, R2 ~ 16Kn this will give an T/ of ~ 0.63. (Equations 7 and 4). From Fig. 9 with T given as 0.001 sec and T/ of 0.63. RtC t 0.63. Step 2 = 0.001, T/RTCT =1 @ T/ = Step 3 The condition for sustained oscillation must be satisfied (equations 8 and 9) hence, 275K < Rt < 1.4 meg (using spec values for a 2N6027). Step 4 The value of capacitance is chosen by considering the rise time and energy required. Since RTCT = 0.001 the CT range is 0.0007 < CT < 0.0036}.lfd. Choose a standard value of capacitance and resistance. For example, CT = 0.002}.lfd and RT = 470Kn (Standard Value). For this example Rt = 470Kn, Ct = 0.002}.lfd. A cathode resistance of 20n will provide a pulse of current of 130 ma with a pulse width of 300 nsec. 1.1 / 1.0 Vi .9 .8 / .7 ... u ... IE: ...... ... ) .6 .5 .4 .3 .2 .1 o /' o V .1 V / / I( I I I I I / / I I I I I I I I • I II I I I .2 .3 .4 Stand Off Ratio .5 .6 .63 .7 .8 1) Fig. 9 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 711 PRINTED IN U.S.A. U-68A APPLICATION NOTE SWITCHING REGULATOR DESIGN GUIDE I. The Advantages of the Switching Regulator industrial process control systems, instrumentation, and communication. Compared to the dissipative regulator, the switching regulator does have some disadvantages which preclude its use in some applications. The primary power source delivers current to the switching regulator in pulses which, for efficiency reasons, have short rise and fall times. In those applications where a significant series impedance appears between the supply and the regulator, the rapid changes in current can generate considerable noise. This problem can be reduced by reducing the series impedance, increasing the switching time, or by filtering the input to the regulator. Unlike conventional "dissipative" series or shunt regulators, in which the power-regulating transistor operates in a continuous-conduction mode, dissipating large amounts of power at high load currents especially when the input-output voltage difference is large- the switching regulator has high efficiency under all input and output conditions. Furthermore, since the power-transistor "switch" is always either cut off or saturated (except for a very brief transition between those two states), the switching regulator can achieve good regulation despite large changes in input voltage, and maintains high efficiency over wide ranges in load current. Because the switching regulator regulates by varying the ON-OFF duty cycle of the power-transistor switch, and the switching frequency can be made very much higher than the line frequency, the filtering elements used in the power supply can be made small, lightweight, low in cost, and very efficient-i.e., with almost negligible power losses. It is possible to drive the switching regulator with very poorly filtered DC (in fact, in high-power applications, three-phase rectification without filtering of any kind is often used to develop the input DC from the power line), thereby eliminating large and expensive line-frequency filtering elements. A second problem of the switching regulator, compared to the dissipative regulator, is its response time to rapid changes in load current. The switching regulator will reach a new equilibrium only when the average inductor current reaches its new steady-state value. In order to make this time short, it is advantageous to use low inductor values, or else to use a large difference between the input and output voltage. Improved circuits for controlling switching regulators have been developed at Unitrode, thereby eliminating some earlier design constraints and optimizing the performance attainable with available hardware. These new circuits permit taking full advantage of the economy and efficiency of the Unitrode PIC600 Series Hybrid Power Switch. Finally, it is possible to design switching regulators with excellent load-transient properties, so that step increases of load current cause relatively small instantaneous changes in output voltage, recovery from which is essentially completed in a few hundred microseconds. The design approach used herein is believed to be original, and to be clearly superior to earlier methods of calculating the key parameters and designing the power inductor ... yielding explicit, accurate results in significantly less time than the approximate equations in common use. The switching regulator has become increasingly popular in new-equipment designs, not only in aerospace and defense applications, but in computers, UNITRODE CORPORATION. 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 712 APPLICATION NOTE U-68A II. The Switching Regulator Described and Characterized The basic configuration of a switching regulator is shown in Figure 1. It accepts a DC voltage input, Ein, and regulates a DC ouput voltage, Eo, despite variations in Ein and load current. Although the static regulation, dynamic regulation, and ripple rejection of this type of regulator cannot be as easily optimized as they can in a continuous (so-called "dissipative") series regulator, its efficiency, power density (Watts output per cubic inch) and economy are all markedly superior to the series regulator ... particularly for low-voltage, high-current supplies. Unlike a series regulator, it maintains high efficiency with high input voltages. Switching regulators can thus be employed with high efficiency to derive low voltage outputs from a high voltage unregulated supply. load, circulating through "catch" diode 01. The input of the LC filter is now at zero Volts, i 1 decreases to its original value and the cycle repeats. The output voltage, Eo, will equal the time average of the voltage at the input of the LC filter: Eo = where: 'T = Ein toofT 1/f The control circuit senses and regulates Eo by controlling the duty cycle, a = toofT. If Ein increases, the control circuit will cause a corresponding reduction in the duty cycle, a, so as to maintain a constant Eo. All of these advantages derive from the method of regulating the output voltage: by varying the duty cycle of a power-transistor switch, rather than varying the voltage drop across a power transistor operating in the linear mode. Because the switch (01 in Figure 1) is always in the saturated state when it is conducting, and is otherwise completely non-conducting (except for a brief commutation time between the ON and OFF states), the power dissipated in the regulator is much lower than it would be in a series regulator for the same input and output conditions. Eo = As..1!..- a Ein L "I c E in The basic switching regulator circuit functions as follows: The control circuit causes transistor switch, 01, to switch on and off at a predetermined frequency, f. During the time that 01 is on, too. the input voltage, Ein, is applied to the input of the LC filter, causing current i l to increase. When 01 is off, the energy stored in the inductor, L, maintains current flow to the FROM SENSING AND CONTROL CIRCUITS D1 ESR Figure 1. Switching Regulator Basic Configuration II UNITROOE CORPORATION. 5 FORBES ROAO LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 713 APPLICATION NOTE U-68A r.E.Q.. t •• Ein Ein-Eo Figure 2a VL toff ::::: T - ton -Eo Figure 2b Ein - EO t L i, dh il max - Eo L 0. t • ff il min Figure 2c h -10 i2 1 dQ Figure 2d 2 . C Vc Figure2e dil ""2 . !. 2 C t.h . Vc + VESR ESR vESR eo Figure 21 eo de. dVe OR dvESR, whichever is greater. NOTE: See Appendix A for rigorous analysis and justification Figure 2. Switching Regulator Waveforms UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 714 APPLICATION NOTE U-68A Figure 2 shows some of the important waveforms and equations which define the operation of the switching regulator power circuit. The following discussion is based on several simplifying assumptions which are explained and justified or corrected in Appendix A. The most significant assumptions are to neglect the saturation voltage of 01, the forward drop of 01, and the series loss resistance, Rs, of the inductor, L. peak to peak capacitive ripple component ~Vc = = ~id8fC (The factor 8f for a triangular current waveform is comparable to 27Tf for a sinusoidal input current.) ~O!C Figure 2e shows the resistive component, VESR, of the ripple voltage which simply equals i2 x ESR, and is in phase with i2 . Figure 2f, the total output ripple voltage, eo, is the sum of the waveforms in Figures 2d and 2e. Note that since Vc and V'SR are in quadrature, the greater of these two components dominates, and for all practical purposes the peak to peak output ripple voltage, ~eo, is equal to either oilvc or oilVESR whichever is greater. Figure 2a shows the voltage across inductor, L, which equals (Ein . Eo) during too, and (- Eo) during toff . Under equilibrium conditions, when output load current, 10, is constant, the average voltage across L must, by definition, equal zero. Figure 2b shows the current i 1 through the inductor. Under equilibrium output current conditions, the increase in current during to," L~h must equal the decrease in current during toff. The average value of i 1 equals the output current, 10. The magnitude of VESR in comparison with Vc shown in these waveforms is not exaggerated. Indeed, when designing a switching regulator to operate at frequencies greater than 20 kHz in order to achieve small size and low cost in the Land C filter elements, the ESR of the capacitor usually dominates completely. Even when high quality capacitors (lOW ESR) are employed, it is usually necessary to use a larger capacitance value than would otherwise be required in order to realize the ESR required to achieve the ripple objective of the design. Figure 2c shows current i2 through the capacitor, which IS equal to (i I 10). The average value of i2 = 0, and oili 2 = oili j . Current i2 causes a ripple voltage to appear at the output. The output ripple voltage, e", has two components, a capacitive component, vc, and a resistive component, VESR, caused by the equivalent series resistance of the capacitor. With conventional free running switching regulator control circuits, capacitor ESR also causes very significant departure from the design frequency, which can result in large ripple magnitude, inductor saturation, and switching transistor failure. In the circuits developed at Unitrode and presented in the next section, the frequency-variation effect caused by ESR is effectively eliminated, leaving only the ripple consideration. Figure 2d shows the capacitive component, vc, of the ripple voltage, which is the time integral of the capacitor current, i2. Note that Vc is the integral of a triangular wave, and is not sinusoidal. Also note that Vc is in "quadrature" with i2, in the sense that Vc min and Vc max occur at times A and B, midway in the too and toff intervals, when i2is zero. The total charge, oilO flowing into C is computed graphically by finding the area of the triangular current waveform between time A and time B (Area = 'h bh: oilO = '12 X 7/2 x ~id2). The Detailed design considerations for switching regulator power circuits are contained in Section IV. II UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 715 U-68A APPL1CATION NOTE III. Applications Circuits for Switching Regulators The design and performance of conventional switching regulators are usually dominated by the ESR of the output capacitor. However, in the group of circuits described in this section, the following parametric relationships and circuit characteristics are easily and economically attained: • The switching frequency may be selected and established at the optimum value for the switching components, and will be independent of the value of the ESR of the output capacitor. • The value of toff is held relatively constant, over wide ranges of load current and input voltage, and independent of the ESR of the output capacitor. Constant toff results in constant ripple current and output ripple voltage. • Settable overcurrent limiting is provided, thereby protecting both the load and the switching transistors under all conditions, and preventing saturation of the power inductor during tlie startup transient period, thereby minimizing startup overshoot. • • The overcurrent limiting circuit is significantly lower in dissipation than conventional current-limit-feedback arrangements. The drive current to the power output (switch) stage is regulated to a pre-determined value, for best efficiency and optimum switching speed. Drive current is automatically increased at low temperatures and decreased at high temperatures, thereby maintaining optimum drive conditions for the power switch. 3 typifies this family of regulators. It is shown implemented by the popular LM305 regulator IC, and a Unitrode Series PIC600 Hybrid Power Switch, comprising a quasi-Darlington switching transistor, a fast recovery catch diode, and transistor bias resistors, all matched for optimum efficiency and switching speed (up to 100 kHz without derating). The configuration of Figure 3 is a positive output regulator, with performance characteristics as follows: 20 to 40V Eo 5V ± ~eo 10 Isc 1% 100 mV p-p (2% p-p ripple) 2 to 10A 12A Regulation versus Ein (20 to 40V) <25 mV Transient Recovery Time for step change in load current from 2A to 10A, or 10A to 2A < 150 p.sec. = 50 kHz nominal Efficiency> 70% The circuit of Figure 3 operates in the fixed-off-time mode; hence, output ripple is independent of input voltage over wide ranges. In this circuit, two feedback signal paths are provided: • Note that, although the use of this circuit approach permits essentially constant "toff" operation even with capacitors having relatively high ESR, the output ripple voltage is increased by high ESR. (If the ripple developed across ESR is significantly larger than that developed across C, then the ripple is essentially proportional to ESR.) Not all of the circuits that follow have all of the virtues listed above, but the exceptions will be noted. Figure UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 Ein 716 DC Feedback. A fraction of the DC output voltage, Eo, is fed back to the inverting input of the LM305 through voltage divider R1, R2. The DC voltage at the inverting input is compared to a reference voltage (approximately 1.8V) within the LM305, and the LM305 regulates Eo so that the voltage fed back to the inverting input is essentially equal to the built in reference Voltage. The R1, R2 divider ratio therefore establishes the level of the DC output voltage, Eo. Resistor R5 improves output voltage regulation versus input voltage changes by feeding a small compensating voltage proportional to the input voltage into the inverting input of the LM305. APPLICATION NOTE U-68A • AC Feedback. Capacitor C1 feeds back an AC voltage waveform to the inverting input of the LM305. This voltage is proportional to the output ripple voltage plus the AC voltage developed across R,. ~eo + ~VRI' Current-limiting action is provided by transistor 01, the collector of which is connected to the "gate" or "inhibit" terminal of the LM305 (pin 7). When the load current is normal, 01 is cut off and pin 7 floats; but when the voltage drop across R, increases to a value greater than the sum of VeE (01) and VR1, 01 turns on, cutting off the drive current from the LM305 and, ultimately, the power switch. This cutoff action is made to "latch" by the fact that, with the drive cut off, VRJ disappears. This keeps 01 on, until the current through R, drops significantly - enough to make the voltage drop across R, fall below the VeE of 01. Capacitor C2 feeds back an AC voltage to the non-inverting input of the LM305. This voltage is proportional to the output ripple voltage plus the AC voltage across R3. ~eo + VRI. When the circuit values are properly established, the same fraction of ~eo is fed back to both inverting and non-inverting inputs, thereby effectively cancelling. The operation of the switching regulator is thus rendered independent of the output ripple voltage developed across the C or ESR of the output capacitor. The current through R" following such an overload cutoff action, falls linearly at the rate of Eo/L. When 01 is cut off, drive current is restored. The circuit will then continue to switch on and off at a frequency comparable to normal operation, with the average current limited at the design limit, and power dissipation held to safe values. Since the ~eo components cancel each other, the LM305 essentially compares ~VRI at the inverting input to ~VRl at the non-inverting input. Voltage ~VRl is a rectangular waveform with a peak-to-peak amplitude equal to I drive x R3. where I drive is the base drive to the hybrid switching transistor provided by the LM305, and AVRI is a triangular waveform with a peakto-peak amplitude equal io ~il x R" where ~il is the ripple current through inductor L. When the drive current is on, AVRl is at its peak positive amplitude. As il increases, VRI increases proportionately. When the positive amplitude of ~VRI reaches ~VR1' this causes the LM305 to switch off the drive current, ~VRl immediately drops to its peak negative amplitude, and it starts to fall. When ~VRI reaches a negative amplitude equal to ~VR1' the LM305 switches the drive current back on, and the process repeats. In this manner, the LM305 controls the power switch so that ~it is fixed. Since toff = ~il x LlEo, with fixed values of Land Eo, toff is fixed and independent of changes in Ein or capacitor Cor ESR values. . E in R. 0.06 ........-4-<> R2 3.BK R4, connected between pins 1 and 8 of the LM305, establishes the desired level of base drive for the PIC600 Series Hybrid Power Switch, and determines the hysteresis voltage across R3. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 0--_'<>--_-____ Eout Co 240pfd O,025J! Figure 3. Positive Voltage Switching Regulator 717 U-68A APPLICATION NOTE rectangular current pulse associated with the power switch turning on and off from propagating into the Ein supply line. The capacitance value required is a function of the impedance characteristics of the Ein supply and intervening wiring. Watch out for underdamped resonance with the inductance of the input wiring, or transient induced ringing may occur. The input capacitor must have short leads, and the ground side should preferably be connected directly to the ground sideof the output filter capacitor. Transient response of the switching regulator of Figure 3 is shown in Figures 4, 5, and 6.. 5 ..r-rJ'" """ Output Volts 3 1 ,/ o / A 10A negative voltage switching regulator, utilizing an LM304 and PIC600 series, is shown in Figure 7. / o 'DO 200 300 400 500 Time, ,usee A reference voltage is determined by resistor R1 and R2. The error amplifier controls the output voltage at twice the voltage across R2. Diode D1 is used to ensure a potential difference of less than 2V at the unregulated input (pin 5) with respect to the reference supply (pin 3). (If the unregulated supply terminal gets more than 2V positive with respect to reference supply, the collector isolation junction of transistor 06 of LM304 becomes forward biased and disrupts the reference.) Figure 4. Ein from 0 to 25V Current limiting is achieved, in Figure 7, by means of reducing the reference voltage to ground with the help of transistor 01 and resistor RS, instead of turning off the base drive t6 the power output switch as in Figure 3. 0+---~--~~--4----+--~ o 100 200 300 400 500 Figure 5. 10 from 4A to 10A The functions of the rest of the components and the operation of the switching regulator are the same as described for Figure 3. A positive switching regulator using a Il-A723 is shown in Figure S. Output The basic performance and circuit operation is the same as Figure 3. Volts The circuit shown in Figure 9 is a high voltage positive switching regulator. Because the LM305 (like almost all IC regulators) cannot be operated at supply voltage in excess of 40V, this circuit uses a fraction of Ein as a power supply for the IC circuit by means of zener diode and current limiting resistor R9. The voltage isolation between LM305 and power switch, and the regulated base drive to the power switch are provided by transistor 02. o+o--~,oor---~200~--430-0---4+00----4500 Time, ,usee Figure 6.10 from 10A to 4A It is usually necessary to employ a noise filtering capacitor across the input of any switching regulator. This functions to prevent the steep waveform of the UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 718 APPLICATION NOTE U-68A The basic operation of the circuit and design approach is the same as that of a low voltage positive switching regulator. This circuit is similar to the low voltage negative switching regulator with a minor modification. Transistor Q2, resistor R1 0 and R11 are ali used to provide regulated base drive to the power output stage and also to provide the voltage isolation between power output stage and LM305. The resistor R9 is used to limit current through zener diode under steady state and startup conditions. The circuit shown in Figure 10 is a negative high voltage switching regulator. - Eino--p--c>-!-.,. E in <>--..-:'>--,---...... 1I~2"H 01 C1 A' 0.07 R6 2.2 Eout - Eoul I R8 240ft! Co A2 ':" O.O25!! 8201l 3.8K Figure 7: Negative Voltage Switching Regulator Figure 9. High Voltage Positive Switching Regulator - - - - - -.r-..-(>'-.., - + Ein R6 15K A, 0.06 Eout 'L---;_+...o tE out T CO O.Q1,...! R2 4.7K -= 240j.li 0.02511 Figure 10. High Voltage Negative Switching Regulator Figure 8. Positive Voltage Switching Regulator UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95·1064 719 U-68A APPLICATION NOTE IV. Designing the Power Circuit In designing a switching regulator power supply, the following parameters will normally be predefined. Specific values shown for each parameter will be used as the basis for a design example: Eo .:leo Referring to the specification for the Unitrode PIC 625/635 Hybrid Power Switch, the DC losses (Transistor VeEsa " Diode VF) under the conditions of this application amount to 10W. The following tabulation shows the switching losses and overall efficiency at several frequencies . 5V Output Voltage 100 mV Output Ripple Voltage, Peak to Peak lomax 10A Output Current, Full Load lomin 2A Output Current, Minimum Load Ein max 40V Input Voltage, Maximum Einmin 20V Input Voltage, Minimum 1 kHz 20 kHz Power output DC losses Switching losses Total power input Realizable efficiency SO 10 O.OS 60.0S 83.3% SO 10 1 61 82% 50 kHz SO 10 2.S 62.S 80% 100 kHz SO 10 S 6S 77% For our example, we will choose a frequency of 50 kHz, even though the efficiency is not significantly reduced at 100 kHz. At 100 kHz most currently available tantalum and aluminum electrolytic capacitors begin to exhibit series inductance. The first step in the design is to decide on the operating frequency of the switching regulator. No concrete rules can be given for this decision. High frequency operation is distinctly advantageous in that the cost, weight and volume of both Land C filter elements are reduced. However, above the frequency where the capacitor ESR exceeds its capacitive reactance, no further reduction in capacitor size or cost wi.ll occur. This frequency, in the range of 1-50 kHz, depends upon the "quality" of the capacitor in terms of ESR. Above this frequency, the inductor will continue to diminish in size and cost, although when the inductor reaches a very small size, cost will level off. Transistors and diodes which do not have the fast switching capabilities of the PIC 625/635 will become efficiency limited at much lower frequencies. Note that in this specific application, a dissipative regulator design will incur power losses in the series transistor of 350W, resulting in an efficiency of 12.5 percent! The control circuits shown in the previous section control the on-off switching periods by sensing and controlling the ripple current, .:li 1 , through the inductor L. This mode of operation results in a constant ripple current and (assuming Eo and L are fixed) constant off time, toff , independent of input Voltage. The relationship between toff, f, Eo, and Ein is as follows (from Figure 2a): Operation above 20 kHz is desirable to eliminate the possibility of audio noise. The main factor limiting high frequency operation is the drop in efficiency caused by switching losses in the power switching transistor and "catch" diode. The higher cost of these fast switching semiconductors required to operate efficiently at high frequencies must be weighed against the reduced cost, size and weight of the Land C components to arrive at the optimum frequency for any specific application. It may be desirable to work the design through at several frequencies in order to make a decision. toff = (1 - Eo/Ein) / f With toff and Eo fixed by the control circuit, f will change when Ein changes, and f will be maximum when Ein is maximum. In our specific example, fmax Ein max Eo In the specific application defined at the beginning of this section, the power output (Eo x 10 max) is 50W. UNITRODE CORPORATION. 5 FORBES ROAO LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95·1064 Frequency 720 50 kHz 40V 5V APPLICATION NOTE U-68A so that: = toff 3. (1 - 5/40) / 50,000 = 17.5fLsec Now, with toff fixed at 17.5 fLsec, if Ein changes to Ein min 20V, (1-Eo/Ein) fmin toff (1 - 5/20) 17.5 x 10- 6 = Losses in a practical inductor are higher than in a capacitor with equal energy storage capacity (assuming low ESR). This again argues for small L, large C. One major objection to a low LI C ratio is that it causes large and sometimes intolerable overshoot in input current and output voltage on startup, when the circuit is first energized. Input current overshoot can saturate the inductor and destroy the switching transistor. The current limiting feature of the applications circuits shown in Section III effectively controls the startup transient, thereby protecting all components and minimizing voltage overshoot. With current limiting, this problem is eliminated and no longer pertains to the selection of Land C values. 43 kHz The fact that the frequency changes slightly with Ein is really not important, as stated earlier, because constant toff operation results in more constant output ripple than constant frequency operation. Having determined (or assumed) the maximum operating frequency and calculated toff, we next proceed to find specific values for Land C. Land C together form a low pass filter which reduces the rectangular waveform at the filter input to a DC output voltage, Eo, with a small amount of ripple, D.eo, superimposed. To achieve a specified !leo requires a specific LC product, independent of load current. Theoretically, this LC product can be achieved with any LlC ratio - small L and large C, or large L and small C (or very large L and no C at all, using instead the load resistance R, as one element of an LlR filter). There are, however, several practical ecorlomic and performance considerations that apply to selecting specific Land C values. Referring to Figure 2b and its associated equations, the peak-to-peak ripple current through the inductor, D.i I, is inversely proportional to the inductance, L. As L is made smaller, D.h increases. Maximum limits on D.il determine how small L is permitted to be, as follows: 1. 1. Under the power and frequency ranges commonly encountered in switching regulator circuits, it costs more to store energy in an inductor than in a capacitor. Also, an inductor will have considerably greater weight and volume than a capacitor with equal energy storage capacity. Small Land large C, within the limits defined below, will usually result in the lowest cost, weight and size design. The instantaneous current through L ranges between a maximum of lo:+- D.id2 and a minimum of 10 - 8id2. If 8id2 is permitted to become larger than 10, the minimum inductor current becomes a negative value. This is impossible, since neither the switching transistor nor the "catch" diode will conduct. Therefore, the switching regulator goes into a discontinuous mode of operation which is perfectly safe, but the frequency changes considerably and regulation with output current changes becomes relatively poor. The worst case consideration to insure that discontinuous operation does not occur is to make D.id2 equal to the minimum load output current, 10 min, or D.h = 2 10 min. 2. Small L and large C results in low "surge impedance" of the filter, hence better transient behavior with step changes in load current. It is not practical to apply this criterion if 10 min is very small «0.05 10 max) because D.i l would then be very small, forcing an impractically large L value. In applications It is favorable to push in the direction of small Land large C for the following reasons: 131 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 721 APPLICATION NOTE where 10 min is very small, there are two alternatives: fa) raise 10 min by preloading the supply, or (b) make di 1 = 2(0.05 10 max) = 0.1 10 max realizing that when 10 becomes less than 0.05 10 max, the discontinuous mode will occur. 2. The maximum peak current is equal to the full load current, 10 max + did2. As L is decreased, the corresponding increase in diJ will begin to cause a significant increase in the maximum peak current. Since the inductor must be designed not to saturate at the maximum peak current, this begins to negate the cost, size and weight advantages of making the L value smaller. Higher peak currents will have an adverse effect on efficiency and transistor drive requirements, and may require transistor and "catch" diodes with higher current ratings (and higher cost). It is, therefore, recommended that dit/2 be no greater than 0.25 10 max, which will limit the maximum peak current to 1.25 10 max, or di 1 max = 0.510 max. U-68A The final step is to determine the requirements for the capacitor C and ESR values which will result in the desired output ripple voltage, deo. Since the two components of deo : dVc and dVESR, are in "quadrature", we can consider each component separately, with a worst case error of less than 20 percent when both components are equal. This much error is highly unlikely, since the ESR component usually dominates completely when operating at high frequencies. From Figure 2d: di, C Cmin 8 x 43 114f.LF di 1 max 0.510 max In our example, 10 min = 2A, 10 max = 10A. Calculating di 1 = 2 10 min = 4A, which is acceptable since di 1 max = 0.5 x 10A = 5A, and di 1 min = 0.1 x 10A = 1A. Now that toff and dh have been determined, L can be calculated as follows: L == 5 x 17.5 x 10 -6 4 UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95-1064 x 103 X 100 X 10- 3 From Figure 2e: 2 10 min, within the following somewhat arbitrary limits: 0.110 max 8f dv, note that C varies inversely with f. In order to achieve dVc less than the desired maximum deo, the minimum value for C must be determined at the lowest frequency, f m;", calculated previously. In summary: diJmin = ESR max dVESR dh 100 x 10- 3 4 0.025D With high frequency operation, capacitor ESR usually dominates, forcing the use of a C value much greater than C min in order not to exceed ESR max. Subsequent sections deal with designing the inductor and selecting the capacitor and other components of the switching regulator. 722 U-68A APPLICATION NOTE V. Design of the Power Inductor This simplified nomographic method facilitates selecting the smallest core that will achieve the desired characteristics of the power inductor. This procedure is useful in selecting the proper core and determining wire size, number of turns, copper losses, and temperature rise. It also permits investigating the effects of change in assumed initial conditions and in "trimming" the design. A detailed analysis of this inductor design procedure is contained in Appendix B. Tables 1 and 2 give core parameters for a variety of commonly used ferrite pot cores and Mo-Permalloy toroids. (Note: There is no significance to the selection of manufacturers, nor is any intended. Many manufacturers make roughly equivalent cores in these sizes, with similar magnetic properties.) Ferrite and Mo-Permalloy powder are excellent core materials for the switching regulator inductor. Since the rms AC current through the inductor is small compared to the DC current, AC losses in the winding and core losses will be negligible compared with DC winding losses. Selection of the proper core for a specific application is a process concerned with two factors: (1) The core must provide the desired inductance without saturating magnetically at the maximum peak overload current, h max. In this respect each core has a specific (Ll2)", energy storage capability. (2) The core must have a window area for the winding which admits the number of turns necessary to obtain the required inductance with a wire size which will result in acceptable DC losses in the winding at the full load output current, 10. Each core has a specific (Ll2)d'" capability that will result in a specific power loss or temperature rise. The significant core parameters are primarily core size and the magnetic gap in series with the flux path. Consider a very small (for the application) ferrite pot core with no air gap. The effective permeability, }i-., will be very large because there is no gap. Relatively few turns will be required to achieve the desired inductance, and the power loss at 10 will be small, but the core cannot store the required energy L(il max)2 without saturating. If we introduce a gap into this core, the energy storage capability increases (the extra energy is actually stored in the gap, not in the ferrite material). However, the gap causes the effective permeability to drop, which requires more turns of finer wire to achieve the desired inductance. If the core is 'UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95·1064 too small, as the gap is increased to the point required to achieve the necessary energy storage capability without saturating, the DC resistance of the increased number of turns of finer wire has increased to the pOint where the power dissipation and temperature rise is too great. This conflict is resolved by going to a larger core with appropriate gap. To facilitate core selection, Tables 1 and 2 contain tabulated values of (Ll2)", energy storage capability (saturation limited) and (Ll 2l25C capability (based on power dissipation resulting in 25°C temperature rise). These values have been calculated for various size cores with different gaps, by methods described in Appendix B. Also given in the tables are the power dissipation corresponding to a 25°C rise for each core size, and the effective window area for the winding, Aw'. Tabulated A, values relate to different gaps. (A, is the inductance index at a particular gap setting defined as the inductance in mH for 1000 turns.) The optimum cores for switching regulator inductor applications generally have quite large gaps, and consequent relatively low A, values. This is fortuitous, since the core properties are then dependent mostly on the gap itself, and variations in the magnetic materials of the core are swamped out, resulting in excellent stability and linearity. Note, however, that in the ferrite pot core table, many of the lower A, values are not supplied as stock items by the manufacturer, and the desired gap must be ground to size on a special order basis. Mo-Permalloy powder cores are effectively "gapped" by the manufacturer by means of varying the amount of non-magnetic binder that holds the Mo-Permalloy particles together within the core, and by the size and shape of the Mo-Permalloy particles. Thus, the "gap" is actually distributed throughout the core material. These cores are supplied with many different AL values in each size. One of the main advantages of ferrite pot cores and ferrite E-I cores (not tabulated, but worth considering) is that the winding is easily formed on a bobbin which is subsequently assembled within the two-piece core assembly. Ferrite toroids are not recommended because of the practical difficulty of introducing a gap. Mo-Permalloy toroids are not as convenient to wind, but this is not a serious problem as most switching regulator inductor designs require few turns of relatively heavy wire. 723 II APPLICATION NOTE U-68A Example of Inductor Design Power loss in inductor; The example shown below will illustrate the method of solution, as drawn on the nomograph of Figure 11. Ll o 2 Actual Pw == P25C X (Ll2)25C Given: L ==21.9p.H 10 10A 14A (current limited) iJ max 50W (output of regulator) Eo x 10 0.547 x 2~2~98 ; W 0.524W Actual power foss in the inductor as a percentage of the power output of the switching regulator is: Copper losses not to exceed 1% of output power, and temperature rise of inductor not to exceed 25°C. Pw x 100% == Eo x 10 0.524 x 100% 50 == 105°;' . ° If power losses are not acceptable, then select a core with higher (Ll 2l25C capability. Step 1: Draw line CD, from 10 == 10A on the "I" scale, to 0.0219 mH (21.9 p.H) on the "L" scale through the "Ll2" scale. Note that Ll o 2 == 2.19 millijoules. Step 5: In the nomogram, draw line Q) from 0.0219 mH on the "L" scale through Al == 160 on "A," scale to the "N" scale. Note that 12 turns are required to obtain the desired inductance. Step 2: Draw line @ from il max == 14A on the "I" scale to the 0.0219 mH on the "L" scale through the "Ll2" scale. Note that L(iJ max)2 == 4.3 millijoules. Step 3: Find the smallest core in Tables 1 or 2 that has (Ll2)25C capability greater than Ll o 2 defined in step 1, and (Ll2)", capability greater than L(iJmax)2 defined in step 2. This appears to be a 2616-387 pot core with A, == 160 from Table 1, or an A-291 061-2 toroid from Table 2. Step 6: Enter the Aw' == 0.193 from the table for the core selected on the "Aw'" scale. Draw @ from "N" scale where N == 12 through Aw' == 0.193 to the "wire size" scale. From this scale, note that wire size is AWG 15.2. Select the next highest integer, AWG 16, in order to fit within the available window area. This will result in a slight increase in power loss and tem· perature rise. Step 4: Actual temperature rise of the core and power loss can be calculated as follows: The same procedure applies if a toroid is selected instead of a pot core. Temperature rise of pot core; If both the Ll o2 and L(i1max)2 values calculated in steps 1 and 2 are less than the appropriate limiting (Ll2) values for the core selected, it is suggested that the L value of the application be increased until one or the other of the core limits is reached. This will permit reduction of 8iJ, and reduce the requirements of the output capacitor. Actual8T 250C LV (step 1) (Ll2)25C from cor~ table 250C 2.19 x 2.288 UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 724 ... r e =Emz )(~=t l> "'0 "'0 0.2 3~~ sao 5 "'z'" ~- 0 om o,s:::o :g":;: "'°0 .~;o ....... " ","'-< 0.1 ~.:.o x",z 0.02 ",r· Y1:""c.n ~"'''' i~o ,,"~:a i C n ~ 24~ 23 1000 o~ 500 0.05 0 10 -..J I\) (J1 l rO' 21 005j . r 0.02 0 22 @ 5 Z Z -f ITI a>1D ~rn ~:a 0 20 0.1 19 ...... 18 L -I ""- 17 0.2 0.1 U2 (mJ) 2 0. 01 1 1 LlO Al 0.005-1 50 1 0.5 .J 15 1°l 14 2.0-i 12 13 11 .002-J L (mH) I (Amp) 5.0...J 100J N Aw' (em2) 10 WIRE GAGE c: I Figure 11. Inductor Design Nomograph I en 00 l> APPLICATION NOTE U-68A Table 1. Ferrite Pot Cores Ferroxcube Part No. 1107-Al00-387 1107-A160-387 1408-A 100-387 1408-A 160-387 1811-A160-387 2213-A160-3B7 -387 26162616-A250-3B7 -387 30193622-3B7 4229-3B7 · ·· · Dimensions (Inches) Power Dissipation 2SoC rise (walls) Window Area O~65 Aw Inductor Index Saturation Limit (mJ) Dissipation Limit 25°C rise (mJ) (cm') (00) (HT) (P"c) (Aw') (AL) (Ill')..,) ((LI')"c) 0.445 0.445 0.559 0.559 0.716 0.858 1.024 1.024 1.201 1.418 1.697 0.264 0.264 0.334 0.334 0.428 0.538 0.640 0.640 0.754 0.880 1.16 U.l00 0.100 0.158 0.158 0.259 0.358 0.547 0.547 0.754 1.04 1.60 0.034 0.034 0.063 0.063 0.122 0.193 0.263 0.263 0.382 0.486 0.910 100 160 100 160 160 160 160' 250 200' 200' 200' 0.200 0.144 0.490 0.324 1.02 2.12 5.06 3.24 8.57 18.4 31.8 0.077 0.124 0.180 0.288 0.719 1.32 2.29 3.58 4.90 7.21 17.9 Window Area O.SAw Icm') Inductor Index Saturation Limit (mJ) Dissipation Limit 2SoC rise ImJ) ·Indicates not stock item. Gap must be ground to obtain desired AI Table 2. Mo-Permalloy Toroids Arnold Part No. A-307032-2 A-051027-2 A-189043-2 A-059043-2 A-894075-2 A-291061-2 A-298028-2 A-085035-2 A-087059-2 Dimensions linches) Power Dissipation 25°C rise (walls) (00) IHT) IP"c) lAw') IAL) I (LI') ..,) I (LI')"c) 0.425 0.530 0.710 0.930 1.09 1.33 1.33 1.60 1.875 0.180 0.217 0.280 0.330 0.472 0.457 0.457 0.605 0.745 0.072 0.125 0.209 0.346 0.520 0.708 0.708 1.04 1.48 0.082 0.192 0.319 0.703 0.781 1.47 1.47 2.14 2.14 32 27 43 43 75 61 28 35 59 0.180 0.296 0.782 1.55 3.40 4.54 9.90 20.1 40.2 0.065 0.199 0.659 2.06 4.32 8.97 4.12 8.65 16.0 UNITRODE CORPORATION. 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 726 APPLICATION NOTE U-68A VI. Component Selection 1 . Power Switching Components Voltage ratings of the power switching transistor and catch diode must be greater than the maximum input voltage, Ein, including any transient voltages that may appear at the input of the switching regulator. Low transistor VCE,,' and diode V, at full load output current are important considerations to maintain high efficiency (Ref efficiency calculations - Appendix A). Fast switching diodes and transistors are required to maintain good efficiency in high frequency switching regulators. Transistor switching losses become significant when combined rise time plus fall time exceeds approximately 0.025 x T. Thus, for 50 kHz operation, t, + tf should be approximately 0.5 p,sec or less. Transistor delay and storage times do not affect efficiency, but cause delays in turn on and turn off resulting in lowering the frequency of operation and increasing ripple. Combined td + t, should be less than 0.05 x T. Unitrode manufactures a broad variety of fast switching power transistors and Darlingtons, which are listed in the Power Transistor & Darlington Product Selection Guide. Their combinational high voltage, high current, low saturation voltage and medium to fast switching characteristics make them ideal for this application. The diode reverse recovery time must be no more than about half the current rise time through the transistor. If this requirement is not met, large amplitude reverse recovery current spikes will be drawn from the input power supply causing severe EMI problems. Large transient currents through the transistor may cause degradation or second breakdown. Referring to Figure 1, Section II, during the time that the transistor is off, the catch diode is conducting the output current, 10, and the transistor VCE equals Ein. When base drive is applied to the transistor to turn it on, current through the transistor rises from 0 to 10. During this current rise time interval, t,;, the diode remains in forward conduction, but the diode current declines from 10 to 0, since the inductor maintains the total current at a constant value equal to 10. If the diode has recovered at the end of the t,; interval, the voltage across the transistor will start to decrease and the diode will go into the reverse direction. This period of time is the transistor voltage rise time interval, t", which is terminated when the transistor VCE reaches VCE,,' and the diode VR reaches Ein. If the diode has not recovered at the end of the t,; interval, it will remain a low impedance instead of proceeding smoothly into the reverse direction. Transistor current will increase well above 10 until the diode UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 recovers, pulling the additional current through the diode in the reverse direction. This problem has probably caused more grief in switching regulator applications than any other, and almost completely dominates diode selection. Diode switching losses will be completely negligible if the diode is fast enough to minimize the recovery problem, i.e., two to three times faster than the transistor turn-on rate. Unitrode UES rectifiers, listed in the Rectifier Product Selection Guide, are uniquely suited to this type of application. With low forward drop and typical recovery time of 20 nsec from forward currents as high as 50A, they cause no discernible recovery spike when used in conjunction with Unitrode's medium frequency switching transistors. Unitrode PIC600 Hybrid Power Switches summarized in the Switching Regulator Power Circuits Product Selection Guide combine in a single package the UES rectifier and power switching transistor with its associated drive transistor and bias resistors. Power transistor, drive transistor and rectifier are matched to optimize switching speeds and VCE sal' Available in NPN and PNP versions, the PIC600 series can operate at 50 kHz with only 2.5 percent loss of efficiency compared with operation at lower frequencies. Significant reduction of EMI can be achieved because of the reduction of circuit wiring. 2. Output Filter CapaCitor. The most difficult component selection problem for high frequency switching regulator applications is to find and specify an output capacitor with suitably low ESR. Most tantalum and aluminum electrolytic capacitor types do not have ESR specifications (probably because ESR is not very good). In some cases, the dissipation factor, OF, is given in the specification. However, OF is usually specified at 60 Hz, which is more indicative of effective parallel resistance, and is virtually useless in determining ESR. When OF is specified at 1 kHz or higher, it may be used to determine ESR: ESR = OF (%) x 0.01 x Xc = OF (O;~f~ 0.01 The power circuit design example given in Section IV requires an output capacitor with Cm ;" of 114 p,fd and ESR m" of 0.0250.. The capacitor which comes closest to meeting this requirement (after a limited search) is solid tantalum, Mallory THF, 120 p,fd @ 10V. This capacitor has a max OF of 8% at 1 kHz, which defines ESR m" = 0.1060.. ESR is typically 0.050.. Two of 727 II APPLICATION NOTE U-68A In the design example of Section IV, .::leo RMS = 0.033V, which is less than the 0.05V max ripple rating of the 1OV Mallory THF capacitor, and .::li RMS = 1.14A, which is less than the 2.47A max ripple current rating of the 1000 ttfd, 12V Sprague 672D capacitor. these capacitors in parallel are required, based on typical ESR, to achieve an ESR of 0.025.0; four in parallel are required, based on ESR m" of the capacitor. The aluminum electrolytic which comes closest (again based on a limited search) is the Sprague 672D series, 1000 ttfd @ 12V, which has an ESR m" of 0.065.0 @ 50 kHz. Typical ESR is 0.025.0. In either case, a much larger C value is required in order to achieve the desired ESR. This does have the advantage of reducing transient voltage changes with sudden changes in load current. Series inductance of the capacitor is usually not significant compared to ESR at frequencies below 100 kHz. However, inductance can become dominant if good wiring practices are not followed. Specifically, the ground side of the catch diode should be returned directly and as close as possible to the ground side of the capacitor, and capacitor lead length including circuit wiring on both sides of the capacitor should be minimized. It is worth noting again that with the control circuits shown in Section III (unlike conventional switching regulator control circuits), the operating frequency will remain relatively constant, regardless of ESR, although the output ripple voltage \!;Iill vary directly with ESR. In some cases, it maybe economically advantageous to increase the value of L (and the size and cost of the inductor) in order to reduce ripple current,.::lir = .::li 2 , and thereby increase the ESR m" requirement. 3. In addition to considering the C and ESR values and appropriate volta~e derating for the application, most capacitors have maximum RMS ripple current or max RMS ripple voltage ratings which should not be exceeded. Actual RMS ripple current and voltage in the application can be calculated as follows: .::leo RMS .::leop-p/3.0 .::liRMS = .::li1 p-p/3.5 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 Control Amplifier and Reference. Control circuits for switching regulators can be designed around IC operational amplifiers and separate voltage references, or around low power voltage regulator IC's which have built-in references. Voltage regulator IC's such as the LM304, LM305, and }LA723 have the added advantage that the output current they provide to drive the power switching transistor can be caused to diminish at higher temperatures, which conforms to the transistor drive requirements vs. temperature and helps to maintain optimum switching speeds over a range of temperatures. Amplifiers used in the control circuit should be uncompensated in order to obtain fast switching speeds, otherwise the delay times introduced will result in lower frequency operation and larger ripple amplitudes, and may cause circuit instability. 728 U-68A APPLICATION NOTE Appendix A Analysis of Power Circuit (Ein - Eo) (Ein - Eo - Vsat - loRx) The design equations for the switching regulator power circuit used throughout this design guide were based on several simplifying assumptions, which will now be dealt with. toff' toff The simplified equations neglected the effect of "catch" diode forward drop; V" transistor saturation voltage, V"" and the IR drops in theinductor and 'current sensing resistor, 10R x. If a design is implemented using the values of L, C, ESR, and Ai derived from the simplified equations, then to", toff , f, and Ae o will differ from the design values because of the effect of the simplifying assumptions as follows, from Figure 2b: = (Ein - Eo)to" L (1 ) (Ein - Eo - V"t - 10 Rx)too' L (2) Eotoff -L- (3) Exact: Ail Exact Ail (Eo + VD + 10 RX)toff' L + V + loRx D The only other assumption that could have possible significance is that the transistor switching times are negligible at the highest frequency of operation. The validity of this assumption is normally assured by selecting appropriate devices (see Section VI). This also applies to the speed of the control circuit. If delay time through the control circuit in addition to transistor turn-on and turn-off times is significant with respect to the total period, T, the consequent delay in turning the power circuit on and off will cause a proportional increase in Ah and Ae o, and a proportional decrease in frequency. Simplified: Ah Eo Eo Although the actual toff' is less than the assumedtoff, to,,' is greater than the assumed to", so that their net effect on the operating frequency is reduced. In the worst .case, when Eo is small (5V) and Ein is high (50V), the actual frequency will be 25 percent higher than the original assumed frequency, resulting in a very slight drop in efficiency. Output ripple component AVe will be smaller because of the higher frequency, and AVES. will not change because Ail is fixed. Component tolerances will result in larger deviations than those caused by the use of the simplified equations. Simplified: Ah and (4) Note that Ail is fixed, because the control circuit controls this value directly. Instead of the original design values of to" and toff, actual values ton' and toff' will be observed. Since Ail is fixed, we can equate Equations (1) to (2) and (3) to (4): II UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 729 APPLICATION NOTE U-68A Efficiency Calculations: The efficiency of a switching regulator depends upon the factors given in the following equation: Efficiency = Pp~ut x 100% In Eo xlo = Eo x 10 + Pr + PD+ Pr + PD + PL + P, + Pc + Pc Note that the worst case for each factor does not necessarily occur under the same conditions. 1. DC Losses - Transistor. (Worst case when Ein is lowest because ton is largest.) x where: ton = 7' 2. 10 4. Switching Losses - Diode. This is a very complex calculation if diode, recovery time is not much smaller than the transistor rise time, because the diode will short-circuit the power supply prior to turn-off, affecting the transistor dissipation, possibly causing second breakdown, and generating intolerable EMI. By usihg a diode whose recovery time is not more than half the transistor rise time, all these problems become negligible. 5. PL = x ~ where: 7' Eo Ein 6. DC Losses -' Diode. (Worst case when Ein is highest.) 3. toff _ 7' - 7. t, = DC Losses - Current Sense Resistor. (AC losses negligible when ~i, is small compared to 10.) AC Losses - Capacitor. (Usually negligible.) Pc = Ein Switching Losses - Transistor. (Worst case when Ein is high. td + ts do not contribute to power losses.) where: Rs'is equal to effective series resistance of inductor. 1-i£. Pr = t" 8. tf = tf, Pc UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 where: + tf; 730 ~ii2 12 x ESR Control Circuit Losses. (Base drive to switching transistor is dominant, but usually negligible.) Ein x 10 t, ~ tf + td , 102 X Rs P, = 102 X R, 7' where: DC Losses -inductor. (AC losses are negligible when ~i, is small compared to 10.) Ion = -:;:- = Ein x Ib x Eo Ein ~ 7' = Eo X Ib APPLICATION NOTE U-68A Appendix B Analysis of Power Inductor Design This appendix describes the methods used to develop the core tables given in Section V and the nomographic method for design of the power inductor. Core parameters for any cores not listed in the tables can be derived from the equations given. Core Saturation Limits. Any specific core has a maximum ampere-turn, NI, capability limited by magnetic saturation of the core material. (NI)", is listed in some core catalogs, in which case the maximum (Ll2)", capability of the core can be calculated from Equation (2). (NI)", is related to the saturation flux density, B"" as follows: The following equations provide the basis for this design approach. Equation (1 a) defines the value of inductance, L, in terms of basic core parameters and the total number of turns, N, wound on the core: N2 x 0.41T f.t:'e x 10-'5 L (NI)", = 10 B'~,Ae ampere-turns (3) Substituting Equation (3) into (2), mH (1a) (Ll2)", = B",2 Ae~LX 10- 4 millijoules (4) effective permeability of core where: Qe effective magnetic path lengthcm Ae effective magnetic cross section cm2 Values of (Ll2)", are given for each core represented in Tables 1 and 2 of Section III. Equation (2) or (4) was employed, using values for either B", or NI which would result in a reduction of AL (and L) of 20 percent under maximum overload conditions, according to the core manufacturer's data. The core selected for an application must have an (Ll2)", value greater than L(iJ max)2 to insure that the core will not saturate under maximum peak overload current conditions. For most standard cores, the above calculation has been simplified by listing the compound parameter A L, called the "inductor index", as follows: Power Dissipation and Temperature Rise Limits. L = where: AL N2AL xlO- 6 0.41T f.t:'e x 10 mH (1b) In switching regulator applications, the AC current component is small compared to the DC current through the power inductor. Power dissipation in the inductor is almost entirely DC losses in the winding. DC resistance of the winding, R" is calculated from the following: mH for 1000 turns Multiplying both sides of Equation (1 b) by 12, Ll2 = (NI)2 AL x 10- 6 millijoules (2) • UNITRODE CORPORATION,S FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 731 U-68A APPLICATION NOTE Substituting for N from Equation (1 b), and rearranging: (5) ohms where: P Ll2• mean length of turn - cm effective area of wire - cm2 resistivity of wi re - fi-cm Aw' cm2 ~T where: (6) N (7) ohms Multiplying both sides of Equation (7) by 12, the power dissipation in the winding, P, ' is: Watts UNITRODE CORPORATION. 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 '>( 10- 6 miJliJ'oules (9) = A, = ~T = 850~ A °C (10) temperature rise surface area of inductor- cm2 The factor 850 in the above equation represents a temperature rise of 850°C for 1W power dissipation from 1 cm2 surface area, empirically determined for natural convection cooling. The surface area, A" used in the calculation is taken as the top and sides of the inductor, ignoring the mounted bottom surface. Substituting a temperature rise of 25°C: Substituting Equation (6) into (5): ~N2 R, = PAw' PL ALAw' pQ w Equation (9) shows that the Ll2 capability is directly related to, and is limited by the maximum permissible power dissipation. Using a value for P, that will result in a 25°C rise in the temperature of the inductor, values of (Ll 2bc are calculated for each core in Tables 1 and 2 of Section III. For these calculations, resistivity, p, is assumed to be 1.9 x 10- 6 fi-cm, the resistivity of copper wire at 65°C. The power dissipation that will result in a 25°C rise is calculated and tabulated for each core as follows: Core geometry, provides a certain window area, Aw, for the winding, but only a fraction of this area can be occupied by the actual conductor. The effective window area, Aw' is taken as 0.5 Aw for toroids, and 0.65 Aw for pot cores. This allows for wasted area of uniformly wound, round wire with HF insulation, allows for the fact that the central fourth of the window area of a toroid cannot practically be filled, and allows for a single section bobbin in the case of the pot core. The number of turns, area of wire, and effective window area of a fully wound core are related by: A, = = (8) P25C = 732 25 x A, ---sso- Walls (11) U-68A APPLICATION NOTE Appendix C Analysis of Application Circuits The design equations for the critical components and operating parameters of Figure 3, Section III, are given below. for the following design objectives: Eo Mo Ein 10 Current Limit C2 +5V 100 mV p-p 20V min, 40V max 2A min, 10A max 14A max peak ~il R4 R1 R2 Rin == 10n Since ~h has been previously defined as 4A p-p, if we assume a minimum value of 1OA for i 1 under overload conditions, then the maximum peak overload value for h will be 14A, and the average value of i 1 == 10 under overload conditions is 12A. R = , 1.S VBE i 1 (min overload) = 0.6V 10A == 0.06n Power dissipation in R, will be 6W under full load conditions, and B.64W under overload conditions. 5 == 2.4K R3 determines ~ii' under overload conditions as well as for normal operation of the switching regulator: The resulting values are R1 := 6.SK. R2 == 3.BK. R2 may be trimmed for precise setting of Eo. R, x C1 and C2 function to provide negative and positive AC feedback, and should be large enough to result in small losses to the AC signals. Assuming that Rin == (R1 x R2)/(R1 + R2), the value of C1 should be twice the value of C2, so that the negative feedback will be dominant over positive feedback at all frequencies, thereby ensuring circuit stability. The following relationships satisfy these conditions: UNITRODE CORPORATION. 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 0.3V 0.03A Current sampling resistor R, is determined by the desired short circuit current limit and the VBE of 01. As described in Section III, under current overload conditions, current i 1 ranges between two values. The maximum i'lstantaneous overload current is defined by: i 1 x R, == VeE + V." The minimum instantaneous overload current is defined by: h x R, = VeE. First, we may calculate the values R1" and R2 of the output divider. We will make the effective parallel resistance of R1 and R2 equal to 2.4K, so that the impedance at the inverting input will be approximately the same as the noninverting input of the LM305: = == V threshold I drive From the Unitrode data for the PIC625 Hybrid Power Switch, the drive current (I drive) required for 10 == 10A is 30 mA. The VeE of 01 is taken as 0.6V. Eo 2 x C2 R4 is calculated from the threshold voltage of the LM305 drive current limiting circuit and the required base drive current. 50 kHz (nominal) 17.5 p.sec 22 p.H 120p.Frnin 0.025 nmax 4A Vref = = the nominal switching frequency. where: From the manufacturer's design data for the LM305, we know that: the internal reference voltage, V,,(, is 1.SV. nominal; the impedance of the inverting input is very high; the threshold level of the drive-currentlimiting circuit is 0.30V; and the impedance of the noninverting input (Rin) is 2.4K, nominal. R2 R1 +R2 C1 These equations are satisfied by C2 """ 0.01 f.LF and C1 == 0.02 p.F. Making C1 and C2 too large will have an adverse effect on transient recovery time of the switching regulator. Using the procedure described in Section IV, the following parameters were established: toff L C ESR of capacitor ~ R3 ~h R, x ~il = ~ 0.06 x 4 0.030 == sn The value of R5. is determined empirically to optimize regulation versus changes in Ein. With R5 omitted. Eo changes approximately 70 mV when Ein is changed from 20V to 40V. With R5 == 12 MH, the change in Eo is reduced to less than 25 mV. 733 II APPLICATION NOTE U-73A THE IMPORTANCE OF RECTIFIER CHARACTERISTICS IN SWITCHING POWER SUPPLY DESIGN With the increasing interest in switching regulated power supplies designers have directed much of their effort to selecting transistors with low switching losses and adequate power handling capability. While recognizing that they must use fast recovery rectifiers, less attention has been given to "how fast" or "what type of recovery characteristic" is desired. More detailed knowledge of rectifier behavior allows determination of the magnitude of increased losses and stress on the transistor by the non-ideal diode. By choosing the best available rectifier, transistor stress can be minimal, thereby resulting in higher reliability. Other benefits are: A. Improved power supply efficiency B. Lower noise C. Lower cost and/or D. Smaller size and weight The performance of fast recitifiers in the most popular switching circuits is discussed below. "Switcher" inputs use available DC voltages, rectifiers directly off the AC line. This DC "input" converted by semiconductor switches operating high frequency in circuits such as buck, flyback boost regulators and in pulse-width-modulated square wave inverters. or is at or or Inverter output rectifiers and regulator "catch" diodes are subjectto unusual stresses due to the fast switching rates and very low impedance seen by the diode during the reverse transient (diode turn-off) and a momentary high impedance during diode turn-on. These new square wave switching supplies are limited in efficiency and frequency by transistor stress and switching losses, some of which is due to diode switching characteristics. Faster transistors and diodes are helping to increase efficiency and/or frequency. At low output voltages, and lowerfrequency the DC characteristics (VeE(.a!) and V F) have the major influence on efficiency. However, as frequency and/or input voltage increase the switching characteristics become increasingly important. BUCK REGULATOR ANALYSIS Ideal Diode - For better understanding consider the buck regulator and resulting waveforms, using an ideal diode and assuming linear current rise and fall in the power transistor during switching. Similar considerations apply to other types of switching regulator circuits. The transistor "on" time, t controls the conversion such that, (1)Vo ='!'V; where T is the period. t is determined by the control circuit which senses output voltage and controls transistor base drive. Figure1a In this regulator the inductor current is essentially constant as it flows alternately through the transistor or "catch" diode. The sum of the transistor current and diode current must always equal the current in the inductor, which cannot change instantaneously. At to the diode is conducting inductor current while the transistor is blocking the input voltage. io ---0 ~ v T vo - [X~ r- / / 1\ -0 \ I, PT -0 Figure 1b I, I, r l"V t" t, I, I, ~ T· I, .r t, to t2 is the current rise time t,; of the transistor. Since inductor current is not changing, the diode current must decrease. The forward biased diode maintains full input voltage across the transistor. At t2 the transistor is conducting all the inductor current so the diode turns off and voltage across the transistor T UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 734 PRINTED IN U.S.A. APPLICATION NOTE U-73A starts to decrease toward VCE (sal)' t2 to t3 is the voltage rise time, trv of the transistor. t, From t3 to t. the transistor is saturated and conducting the inductor current iL' At t4 the transistor starts to turn off and VCE increases. t,' io =-l.:--A~=::::=\""4=:::::=4.- t. to t5 is the voltage fall time tfv of the transistor. During iT - 0 -+--''H-i----fc........r.----f- this time the transistor must conduct the entire inductor current because the diode is still reverse biased. At t5 the diode is forward biased and the transistor is blocking the full input voltage. Diode current starts to increase and the transistor current decreases, the sum equalling il. vT--t--t-H---JP--t----+Vo - 0 -=F=*,",r*==~===l====1= t5 to ts is the current fall time tli of the transistor. Diode current increases in a complementary manner. From ts to t, the transistor is off and the diode is conducting all the inductor current. PT-O To simplify the illustration assume the inductor current constant and equal to 10 , Transistor dissipation PT is the sum of transient switching and DC losses. Neglecting losses due to DC leakages, which are generally negligible: (2) P Vi 10 T=T (tr; + trv + tfv + tf;) T + VCE (sat) 10 (t. -t3) T Figure 1c Practical diode - Now consider how the non-ideal diode with reverse recovery, junction capacitance, forward recovery and DC loss affects the circuit of Figure 1a. TRANSISTOR TURN-ON BEHAVIOR The transistor "turn-on transient", when the diode is switching from forward conduction to reverse blocking, results in the following transistor and diode waveforms: In Figure 1c the solid lines are the waveforms using a practical diode in a buck regulator circuit. Comparing them with the dotted lines of the ideal diode previously considered we see three significant differences during transient switching and one during DC conduction: - 0 --..:!-¥:....+:.F~r==t CATCH DIODE From the PT curve of Figure 1c it is obvious that transistor power dissipation increases above that of (3) due to the "real" diode, - see the hatched regions. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 SWITCHING TRANSISTOR 1. The peak collector current increases (above 10 ) during a period of high dissipation t2 to t2" 2. Rise times tr; and trY are increased. (t2' - t,) > (t2 - t,) and (t3' - t2') > (t3 - t2)' 3. Maximum collector voltage peaks up above V; briefly at t 5 . 4. The diode has DC loss (from ts to t,) and switching loss (principally from t2' to Is'). The magnitude of these detrimental factors depends on the choice of rectifier. Before considering losses more fully let us examine the switching periods in greater detail. _=-- Po - O--===P"'4..:'!.. Figure 2 Dashed lines show what the current and power would be if the diode were ideal to the extent of having no reverse recovery time or junction capacitance. (Dotted 735 PRINTED IN U.S.A. APPLICATION NOTE lines show the voltage f()rthe ideal diode case.) The reverse diode current caused by diode capacitance and recovered charge is shown by the cross hatched .area of the io curve. The transistor must conduct this reverse diode current as well as the inductor current. The grey area represents additional tran~istor dissipation due' solely to the diode recove(ed charge and capacitahce .. Faster switching transistors will nof necessarily result in reduced switching losses. Unless a diode with recovery time 2 or 3 times fqlster than the transistor current rise time is used, a fa$ier transistor will increase the peak reC0yery current in the diode and :thus increase overall switching losses. Furthermore, a diode with a "soft" recovery characteristic will cause 'more dissipa" tion than an "abrupt" type with the same peak recovery current. The relationship of recovery characteristic to switching rate is discussed in Appendix B. With many switching transistors ndw available a 200 oS fastrecovery rectifier will have a peak recovery current IRM(REc) greater than shown in the.io waveform of Figure 2, where it is about V3 of the forward current. This rather modest additional collector current (of 33% above that limited by an ideal diode) can cause increased transistor power dissipation of 100 to 150% during the turn-on period. Other serious probler.ns can occur from high peak currents, such as noise transients in the line, the transistor coming-out of saturation and forward-biased second breakdown. Rectifiers are now available with recovery characteristics to keep these problems minimal. Their use is re'quired for a switching supply of maximum reliability and efficiency. TRANSISTOR TURN-OFF BEHAVIOR: When the transistor turns off, the diode turn-on characteristic USUally has little effect on power dissipation but may cause voltage spiking, with resulting noise and the iT i'../ ~ iD -0 ,", -0 ... y / / ...... I possibility of exceeding the transistor voltage ratings. Diode characteristics and conditions under which these transients occur are discussed in Appendix C. The' voltage spike is due to the forward recovery characteristic and, when present, will occur as shown (dotted) inHgure 3. To correct it a snubber (series RC across the diode) may be needed. However, the choice of .an optimum diode Will minimize or eliminate this need. POWER LOSSES IN THE SEMICONDUCTOR DEVICES DC Losses in the buck .regulator occur alternately when the diode is forward conducting and when the transistor is turned.on. Referring to Figu(e 1 these intervals are teto t1 and t3 to t. respectivelY: During either interval the dissipation is independent of input voltage, V;, or output voltage, o, depending only on load current and device voltage drop. Total circuit DC losses are a function of VoNi because a) this ratio relates to "on" time and b) transistor VeE(Sat) will probably not equal diode VF . Neglecting switching intervals the dissipation due t'D DC losses is: v (4) = VF 10 Vi - Vo Vo -V-.- + VeE (sat) 10 V-: I I Loss of efficiency due to DC losses is greatest when Vo is low, with diode loss being more significant when Vi is relatively high and transistor loss dominating when Vi is close to Vo. TranSient (switching). losses in the regulator vary considerably with voltage, being highest at "high line" Vi (see Eq. 3). Furthermore, high voltage transistors and rectifiers generally have longer switching times than low voltage types. Speed and "recovery characteristic" (see Appendix B), and consequently losses, can vary greatly between different device types and manufacturing processes. A relationship for caiculating approximate transient dissipation of practical devices during the transistor turn-on interval is given in Appendix B. The other component (turn-off interval) Can be Similarly developed but it is not significantly affected by diode selection. However, when transistors and/or drive techniques are chosen for shorter fall times overall losses are reduced and the benefits of optimum diode selection become more significant. Proper diode (and transistor) selection is important in ai'lswitching supplies, but the higher the voltage (and frequency) the more significant will be the effect of selection on switching losses. OTHER SWITCHING CIRCUITS vDY The pulse-width-modulated inverter (PWM) supply (Figure 4a) has much in common with the buck regulator. Output rectifiers also perform the catch diode function. Current waveforms are shown in Figure 4b, Figuni3 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173. TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 Poe 736 PRINTED .IN U.S.A. APPLICATION NOTE U-73A with overshoot due to diode reverse recovery and capacitance. Here again slow diodes cause additional transistor stress, usually not reduced significantly by transformer impedance. Leakage reactance will often require the use of a snubber, to protect the transistor. Transistor "on" time t and the turns-ratio control the conversion such that The square wave inverter can be considered, in terms of device operation, a special case of the PWM where 2t approaches T. Regulation is achieved by varying Vi' EMI, RFI, NOISEGiven any inductance in a circuit "loop" of wiring, a rapid current change will generate a voltage transient, V = L di/dt, and the energy in such a transient will vary with the square of the current, E = V2 Ll2. The interference and voltage spiking will be easier to filter if the energy is low and has predominantly high frequency components. (5) Va = 2tNNs Vi T because they (0, and/or O2) are conducting the full cycle regardless of Vi to Va ratio. Another difference is that here the diode recovery is from half, rather than full, load current. p We can establish a priority of factors for reducing EMI: 1. IRM(REC) should be as low as possible, - accomplish by diode selection (see Appendix B and Fig. 7). 2. L (circuit loop) should be minimum, - accomplish by layout and interconnect geometry. (See Fig. 5). 3. Use a "soft recovery" diode (See Appendix B). However, this is an item of possible trade-off since such a device may have longer t", higher IRM(REc) and, thus, create much higher switching loss. Figure 4a \ An ultra-fast device with moderate recovery (vs. abrupt or soft) will often be the best choice. -ir,-O I'" REDUCE EMI BY LOWERING CIRCUIT WIRING INDUCTANCE: ~-;S-'I - i T2 - O IA. -io,--O - i 02 - O - , I~ ~ T - r----' = Low L needed in loop shown In grey. Avoid ground loop noise by returning input capacitor directly to diode. r---- Figure Sa =1~:~~~~~ IY I~ 1---- ~I T I, of '- _ C~e~_) 13 Figure 5b I, Flgure4b From t, to t2 transistor T, and diode 0, conduct, with diode current equal to inductor current iL. At t2 the transistor turns off and the inductor "pulls" iL equally through 0, and O2, At t3 transistor T2 turns on, driving full iL through O2 and causing 0, to be reversed biased. O2 current is increased by the recovery current of 0" and T2 current also increases proportionally. From t4 to t, both transistors are again off and at t, the events of t3 occyr on the opposite device pair. One difference between the inverter and the regulator is that here the OC diode losses are more significant UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 SELECTING THE BEST SWITCHING RECTIFIER Ratings and characteristics have different priorities and significance when they are to be applied to these power switching circuits. Selection should be based on the following: 1. Peak inverse voltage, PIVof "catch" diodes must at least equal the highest input voltage, while PIV of center-tap output rectifiers must be at least twice the maximum output voltage in a square wave inverter and much greater in the pulse width modulated inverter. More significant perhaps are the transient voltages in practical fast switching circuits partly due to wiring inductance and rectifier's own recovery. Unless these are intentionally clipped, damped, or "designed out" it is advisable to use a safety factor of 2 or 3. PIV selected 737 PRINTED IN U.S.A. II APPLICATION NOTE U-73A should apply over a range from lowest ambient to the highest expected junction temperature. Unitrode UES series is closest to the Schottky, especially at expected operating conditions. 2. Reverse recovery time t" must be much lower than the rise time of the transistor with which it will be used, - preferably by at least 3 times when measured at conditions similar to circuit operation. Selection is complicated because rectifiers are normally specified at conditions less severe than in power switching circuits. Furthermore, correlation between test conditions is not always the same (see Table I of Appendix 8). 4. Maximum average rectified output current at Following preliminary selection from available data the devices should be compared in a circuit developing the highest current, junction temperature and rate of current switching (- di/dt) expected. The desired goal is to minimize peak recovery current IRMIREC) and switching loss. Note that these are the same order of magnitude with Schottky rectifiers (due to high capacitance, principally) as with the fastest PN rectifiers. The figures below illustrate these points. Figure 6 shows the variation of peak current with switching rate, using the Unitrode UES 801 in a special test circuit. Figure 7 shows the difference in IRMIREC) and t" when representative fast recovery DO-5 devices are measured in a JEDEC test circuit at different temperatures. In Figure 8 the incremental collector current (the peak value in excess of 30 A) for a 30 A buck regulator using 50, 100, and 200 nS catch diodes is plotted as a function of transistor rise time (and resulting di/dt). Figures 9a, b, and c show the loss of efficiency due to transistor turn-on dissipation as a function of operating frequency, with 3 transistor rise times and 3 diode recovery times, in a regulator operated with 40 V in and 10 V out. Similar figures can be developed for other conditons using the model and assumptions in Appendix B. maximum expected case or ambient temperature must always be considered. Note however, that standard current rating is based on a half sine waveform. These square wave applications at average current equal to this rating will usually dissipate somewhat lower power, and, thus, be used conservatively. However, regulators with Vi:::: 1.5 Vo should use a catch diode with a higher rating than the average current it conducts at full load. 5. Peak voltage VFIDYN) during forward recovery will be of significance when using transistors with fast fall times at close to the VCE rating. This is further discussed in Appendix C. See Table II for typical performance of representative devices. At lower values of di/dt the peak voltages will be lower. 6. Surge current (8.3 mS) is not of great significance because transistor saturation limits fault current. If the power supply is designed to provide rapid charging of a large output capacitor the "overload" requirement for the charge time (perhaps 0.1 to 2 seconds or so) must be considered. 3. Forward voltage should be as low as possible to optimize efficiency, especially for inverter output rectifiers and regulators with high V)/V o ratios. Loss of efficiency due to VF is most significant at low output Voltages. Figure 10, which relates this loss to device choiCe over the range of available forward voltages, applies to output rectifiers of inverter supplies with popular output Voltages. IRMIREC) & t" " CONDITIONS ,," I, UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 738 1OA, LINEAR SLOPE. \-- i~. ,,~. .Ol~ I,t ~ di dt UNITRDDE UES B01 RECTIFIER. -------------- ---- ---- ---- ----- a- Ai . . . ~ 0- ------ - - ---\&::--- - - - - Figure 6 IRMIR,C) & t" of 005 FAST RECTIFIERS CONDITIONS: 1," ~ 30A Schottky rectifiers have the lowest VF and are therefore widely used as output rectifiers for 5 V supplies. Their limitations in PIV, transient voltage capability and temperature must be considered when applying them in other applications. Selection should be based on conditions where losses are most significant, - at rated supply output current and anticipated junction temperature. The approximate range of VF, at rated current and 25°C, as welJ as at more typical operating conditions, is shown in Figure 11 for representative fast rectifier types. Note that the \ ~ VS (30VJEDEC) - Figure7a PRINTED IN U.S.A. APPLICATION NOTE U-73A 125C 2 3 INCREMENTAL COLLECTOR CURRENT (AT TURN-ON) di) .11< vs tro ( and dt Conditions: 30A buck regulator. -- -- -- Lineardlldt. 50 ,,,=2~ V / ..... ...... Flgure7b DEVICE TYPE 25°C (A) 125°C (A) 1 2 3 4 0.6 1.0 1.3 1.0 50 86 1.7 2.9 3.7 5.4 86 142 1 2 3 4 Unitrode UES 803 Schottky rectifier. 100nS rectifier. 200nS rectifier. 125°C (nS) 25°C (nS) , ... t" MAX. At low Current Cond'ns. t" IRM(AECl - ...... ,,,=100_ - 40 30 20 1-- - -- -I- .... 50 ~ 1,,-5On8.== 50 72 95 185 296 100 200 100 200 300 dildl (N~S) 400 500 300 150 100 I" (nS) 75 60 Figure 8 Flgure7c lOSS OF EFFICIENCY DUE TO TRANSISTOR TURN-ON lOSS· - BUCK REGULATOR 20 40 30 50 80 20 40 30 50 80 = 300 I nS 10 .......... ....... ...... ~ ....-::...... ~ ..... :...- .... t,;=150n5 ...- . ,.,- ..........: ... ...... ..,'" ",........ ~ .......... ./" .0 - -. .......... / ./ ..... .... ... .... " ........... -' 30 40 50 FREQUENCY (kHZ) 80 ..," 20 , .... :...- 40 50 FREQUENCY (KHZ) .. , :...- 20 ....... ..... . ..... ? ... :;;;; ... :...- 7' 100 .-- ...... V' ...... - - - - = 50 nSdiode (UES 803) - - - - - = IDEAL DIODE 20 80 10"" ..... - 200 nS diode - - - =100nSdiode 0.2 50 t" =60 :nS .... ...... ~."..".,,,,, 0.5 40 30 - 20 I" 20 ... ,,, . II 40 50 FREQUENCY (KHZ) 100 • Calculations of total switching losses (diode and transistor) per model in Appendix B for a 30A buck regulator with V ,n = 40V and VOU! = 10V. Figure 9 UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX .(710) 326-6509 • TELEX 95·1064 739 PRINTED IN U.S.A. U-73A APPLICATION NOTE 20 ~ 15 VV 10 L i"'" ".,. I-"" ./ - 12V ".,. 20V ~ __ ".,. f.-'" '/V '" V V V I-- I-I-- LOSS OF EFFICIENCY DUETO FORWARD VOLTAGE OF INVERTER OUTPUT RECTIFIERS. 24V ".,. ".,. - 48V V 1.2 1.0 .B .6 r-r- .... 1-1- , /~ V 10V ".,. /'/ . / f.-'" ./ 0.4 ".,. i"" / ./ '/ 5V=Vo I- ....... ~ 1.4 1.6 1.B VdV) Figure 10 VI available (approximate range) for low to medium VRM applications .45 VI in volts: .35 .55 r .65 .75 I Max V.(spec'd @ rated IF and TJ=25C.) Typical VI @V2 Max current @ max TJ. { 11 .95 1.15 1.35 1.55 1.75 I gOto40 I I2 150 1 13 150 14 20 12 150 1 13 100- lso l 400 I KEY~ 1 = Schottky. 2 = Unitrode UES 150 V series. N = Device Class 3 = Other devices for low forward voltage. XY=V RW 4 = TYPical fast recovery (200 nS) deVices (Max al TJ noted above). 5 = Fast deVices to 800 V. Figure 11 UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (ij17) 861-6540 TWX (710) 326·6509 • TELEX 95·1064 740 PRINTED IN U.S.A. APPLICATION NOTE U-73A Appendix A "Off-Line" Supplies BASIC CIRCUIT TYPE FEATURES a) Buck Regulator Output non-isolated. Easy to filter output. Noisy input. Vo < Vin. w o a: :::J @ 6' FlgureA·2 b) Flyback Regulator c ffi ~a: Q. w z Vo opposite polarity from Vin . (Unless isolated). Output can be isolated. Output can be stepped up to HV. Noisy input and output. ~ u. C ow u: FlgureA·3 ~a: c) Boost Regulator Vo > Vin· Output non-isolated. Hard to filter output. Quiet input. d) PWM (Variable Duty Cycle) Inverter. Used with single Vo. - also common for lab supplies. Provides isolation. Does not need separate catch diode, - rectifiers serve this function. possibly with small HV diodes in primary for magnetizing current. ~u. FlgureA-4 e) Square Wave Inverter (50% Duty) FlgureA-5 (') INV. ~ Bridge, center-tap, or half-bridge inverter. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 ' TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 741 Regulation provided by previous input. Regulates one of (possible) multiple outputs. Uses high transistor count. Provides isolation. Does not need separate catch diode. - rectifiers serve this function, possibly with small HV diodes in primary for magnetizing current. PRINTED IN U.S.A. II APPLICATION NOTE U-73A Appendix B Reverse Recovery Behavior and Dissipation 1. Waveforms and definition of terms: TOTAL AREA OF REVERSE CURRENT ~ ORIRECl This area shown enlarged at . , r - - - - right High d~ slope ~.::Q!.. dt JEDEC test - standard slope = 25AI J,£S Figure B-1 dt dt "ABRUPT" Figure B-2 2. Discussion of Variables: Any PN junction diode operating in the forward direction contains stored charge in the form of excess minority carriers. The amount of stored charge is proportional to the forward current level. The diode or rectifier in a switching regulator is switched from forward conduction to reverse at a specific ramp rate (-dl/dt) determined by the extemal circuit, usually by the turn-on time of the associated switching transistor. During the first portion of the reverse recovery period, ta, charge stored in the diode is able to provide more current than the circuit demands, so that the device appears to be a short circuit. Transition from ta to tb occurs when stored charge has been depleted to the point where it can no longer supply the increasing current demanded by the circuit. The device becomes a high impedance and during tb the reverse voltage is permitted to increase. Reverse current, no longer circuit determined, dwindles as excess stored charge depletes to zero. Stored charge is depleted by the reverse current flow and also by recombination within the device. At (-dl/dt) rates which are slow relative to the rate of recombination of the specific device relatively little stored charge is swept out. Recovery time, trr is determined mainly by the recombination rate, independent of (-dl/dt). Peak reverse recovery current IRM(REc}, and total charge associated with reverse current, OR(REC} are almost directly proportional to (-dl/dt) (Region I, Figure B-4). The recovery characteristic with slow (-dl/dt) rates tends to be soft. When the (-dl/dt) rate is fast compared to recombination rate (transistor turn-on faster than diode recovery time), trr decreases as - dl/dt increases, because more of the available stored charge is swept out sooner, UNITRODE CORPORATION. 5 FORBES ROAO LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 fo-l.OW d~ Figure B-3 leaving little to be depleted by recombination. As (-dl/dt) increases, peak recovery current increases and can become much greater than the original forward current level. However, OR(REC} levels off as (-dl/ dt) increases because it can only approach but not exceed the total stored charge which is a function olthe original forward current level (Region II, Figure B-4). Higher voltage devices have poorer recovery characteristics because they require thicker regions of higher resistivity, resulting in greater volume of stored charge and longer recombination rates. RECOVERY CHARACTERISTICS I, .51, .21, dl/d! Figure 8-4 With a given IF and dl/dt the OR(REC}' IRM(REc}, and trr all increase with temperature. Recovery characteristic changes as well (generally becoming more abrupt if reverse current is not circuit limited, and softer if limited). Furthermore, OR(REC} increases and recovery generally softens if higher circuit voltage is applied to a given diode. 742 PRINTED IN U,S.A. APPLICATION NOTE U-73A 3. Comparison of devices at popular test conditions: Table I, below, shows measured trr values (in nanoseconds) using ultra-fast and fast recovery 00-5 rectifiers. IF IA -di/dt (A) (A) (AiJ, a: ~ ;) U w w Z in !;;: z 0 ~ U~ . Z 0 U-78 .. '\ .9 22 . \. '\ .8 .7 2: !: :Ii 0z a: .4 ~~ :10", .3 !!i .2 18 ,• ~ iii 14 ~a12 .!c :i" "-.. '-... q. \ J '\ u ..r ~ lit .. \. .5 ;) 0 $ Iii '\ .6 20 10 8 "\ '\.. .1 a 50 60 70 60 100 80 0, '\,,0 - ---- ---- IP200I2N868"S SERIES t--- I -I---- ........ TYPICAL 1'0-82 SCA •• CVCLH AT 10 H:C 20 50 ... 120 TC (MAXI- MAXIMUM ALLOWABLE CASE TEMPERATURE ('CI Fig. lAo Maximum Allowable Case Temperature vs. On-State Current (60 Hz) - Fig. I B. Maximum Allowable Non-Repetitive Peak On-State Current Following Rated Load Conditions - ---- ------ IP200/2N8881·5 SERIES ........ [:---..... / -..... ~ TY'IC.. { T0.f2 SCR ""'" ~ .5 .0001 "" ,01 01 ·PULSE DURATION emil I. '" Fig. I C. Surge Rating vs. Pulse Duration UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (6171 861-6540 TWX (7101 326-6509 • TELEX 95-1064 766 PRINTED IN U.S.A. APPLICATION NOTE U-78 CURRENT TRANSFORMER HOT LINE NEUTRAL RELAY CONTROL LOGIC CIRCUIT Fig. 2. Ground-Fault Interrupter Circuit / v ICURREINT '"'" ~,WAVEFORM V \.. ~ ~ CONVENTIONAL TO-92 SCR EXCURSION .1\ V / .L V /' \ - \ V i P 200/2N6681-S .. V ~~ TIME: 10I'S/SQUARE CURRENT: 40 A/SQUARE IUPPER TRACE) VOLTAGE: 5 V/SQUARE ILOWER TRACES) Fig. 3. Response to Short Pulse Surge Stress UNITRODE CORPORATION' 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 767 PRINTED IN U.S.A. APPLICATION NOTE U-78 POWER SUPPLY POWER SUPPLY QUENCH TUBE ORIVER IP200/2N6681-5 IP200/2N6681-5 QUENCH TUBE Fig. 4B. Quench Tube Driver Fig.4A. Commutating SCR FLY WHEEL MAGNET MOTION10 OF FLY WHEEL - IP200/2N66B1-5 1 INPUT I I COIL j .,,~ ,..--SPARK PLUG POWER SUPPLY I INPUT COIL ~ p/CHARGE CAPACITOR VOLTAGE U ' - FIRESCR 0 U INPUT COIL VOLTAGE WAVEFORM Fig. 4C. "Pilot" SCR UNITRODE CORPORATION. 5 FORBES ROAD LEXINGtON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 Fig. 5. Small Engine Ignition 768 PRINTED IN U.S,A. U-79 APPLICATION NOTE GUIDELINES FOR USING TRANSIENT VOLTAGE SUPPRESSORS 1.0 Introduction operating life. Unitrode has performed full power pulse life tests for 100,000 pulses with negligible change in characteristics. These devices are suitable for almost any equipment and environment. During transient periods, system voltages and currents are often many times greater than their steadystate values_ These transients must be considered in overall electronic systems design to insure required circuit performance and reliability both during and after the transient. 2.0 Choosing the Correct Transient Voltage Suppressor for the Application Transients may result from a variety of causes. The most common of these are: normal switching operations (power supply turn-on and turn-off cycles), routine AC line fluctuations, or abrupt circuit disturbances (faults, load switching, voltage dips, magnetic coupling by electro-mechanical devices, lightning surges, etc.). Voltage transients are a major cause of component failures in semiconductors. Random high voltage transient spikes can permanently damage these voltage sensitive devices and disrupt proper system operation. Catastrophic power supply conditions should not necessarily be the designer's prime concern, since lower level transients can cause improper operation of a system even though no component failures are caused. Normal power supply onoff cycles have the potential of emitting spikes with sufficient energy to destroy an entire semiconductor device chain. Any surviving devices are also suspect. Trouble shooting, isolating, and replacing damaged devices is time consuming and costly; especially when performed in the field. Certain critical terms must be defined before any discussion of "how to" choose the correct TVS. 1. Stand-Off Voltage (VA) is the highest reverse voltage at which the TVS will be nonconducting. 2. Min. Breakdown Voltage (BVmin) is the reverse voltage at which the TVS conducts 1 mA. This is the point where the TVS becomes a low impedance path for the transient. 3. Max. Clamping Voltage (VCma~ is the maximum voltage drop across the TVS while it is subjected to the peak pulse current, usually for1mS. Figure 1 graphically shows all three terms. Unit rode's TVS305 and TVS505 series of transient voltage suppressors (TVS) offer the designer significant price/performance advantages over other protection methods. Their miniature size permits simple "close-in" installation in applications where circuit boards are dispersed throughout one or more electronic racks. Dispersed usage aids system trouble shooting and affords transient voltage protection where internal system disturbances such as those caused by inductive load switching could occur. 1 mAI----./-.,,~1 In spite of their small size, the TVS305 and TVS505 suppressor series can dissipate 500 watts and 150 watts (respectively) of peak pulse power for 1 millisecond. Response time to transients is just about instantaneous - about 1 x 10- 12 seconds. These devices perform to their data sheet specifications without significant degradation throughout their .UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 +--------------~-----===~~+-+--V VR BV Vc ( + Figure 1 - 769 TVS Characteristics PRINTED IN U.S.A. APPLICATION NOTE U-79 2. Stand-off voltage (VA) - From the TVS series selected, choose the device with the stand-off voltage equal to or greater than your normal circuit operating voltage. This insures that the TVS will draw a negligible amount of current from the circuit during normal circuit operation. The electrical specifications for the TVS505 series are shown in Figure 3. 3. Maximum Clamping Voltage (Vema,) - Determine the clamping voltage of the device chosen for the transient given and be sure itis below the voltage that might damage any components in the protected circuit. See Figure 3. 2.1 Determining Pulse Power Levels Since a zener TVS has an almost constant clamping voltage throughout a transient pulse, the transient pulse power (Pp) equals the peak pulse current (Ipp) multiplied by the clamping voltage (Ve). 100.---.---,----r--~--~ ~ 2.2 Choosing the Appropriate Transient Voltage Suppressor 0: UJ :s: o 11- The three most important factors in choosing the appropriate TVS for your application, in their order of importance are: UJ C/) --l ::::> 11- ::.::: 1. Pulse power (Pp) - Choose the TVS series that will handle the Transient Pulse Power. To determine Transient Pulse Power use the simple equation in section 2.1. If Ipp is not known or measurable, it can be calculated - see Sections 3 and 4. The pulse duration vs. pulse power graph on the Unitrode TVS3051 TVS505 data sheet can then be used to determine the TVS series that will handle the transient. This graph for the TVS505 series is shown in Figure 2. TVS Part No. TVS505 TVS51 0 TVS512 TVS515 TVS518 TVS524 TVS528 Stand-off Voltage VR V 5.0 10.0 12.0 15.0 18.0 24.0 28.0 Min. Breakdown Voltage BV(min) @ 1mA V 6.0 11.1 13.8 16.7 20.4 28.4 30.7 Figure 3 - UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 MAX. DUTY CYCLE = 0.1 % ~ Max. Leakage Current IR@ VR iJA 300 5 5 5 5 5 5 « UJ 11- 100nS 1ILS 10ILS 100ILS 1mS 10mS PULSE TIME (tp) Figure 2 - Max. Clamping Voltage Ve@ 1A V 7.4 13.2 16.5 19.7 23.8 32.4 35.9 Peak Pulse Power vs. Pulse Duration Max. Clamping Voltage Ve@ 5A 10A V 7.9 14.4 18.5 22.2 26.0 37.0 41.0 Max. Peak Pulse Current Ipp A 53.7 30.3 23.8 19.8 16.3 11.9 10.7 Max. Clamping Voltage Ve @ Ipp V 9.3 16.5 21.0 25.2 30.5 42.0 46.5 Electrical Specifications @ 25°C 770 PRINTED IN U.S.A. APPLICATION NOTE U·79 If the actual pulse power and pulse width are different from those listed on the data sheet, the clamping voltage can be calculated. The actual calculation method is beyond the scope of this note. Instead, we offer a graphical approximation using Figure 4. The approximation is based on the ratio of the actual and rated pulse power. 1.3 C.R 1.2 1.1/ ----- ---- a. Calculate Pp (actual)=1.3BVmin Ipl>" b. For Pp (rated) use value from TVS data sheet curve (See Fig. 2 for example). c. Calculate Pp (actual)/Pp(rated). d. Use Fig. 4 to find corresponding value of C.R. e. Calculate Vc = C.R. x BVmin. - 1.5 14 The procedure is as follows: ~ 2.3 Installation Considerations 10 0 2 4 .6 8 1.0 1. Locate the TVS as close to the device or circuit to be protected as possible. Pp(actual) P,(ra1ed) C.R = Clamping Ratio :;: ~ VBmin 2. Minimize the "common path" through the TVS to minimize voltage spikes produced by fast risetime transients in lead and wiring stray inductance. See Figure 5. Figure 4 - Graphical Approximation for the Clamping Ratio r--iNCORRECTMETHoD ---, I Undesired Transient I I I I I I Long / Common Path I I I I Vp " L Qi where dt I I L" .02"Hlinch L ___f~~~~n..£.~ _ _ _ ..J Input Transient r-------------, I \ I \ Minimized I I I I Short Common.;' Path /" Transie~ v 1-\- - - \ II I I L_ _ ~ORRECT ~THO.E. __ Figure 5 - UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173· TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 I I J Minimizing the Common Path 771 PRINTED IN U.S.A. U-79 APPLICATION NOTE 3.0 Transient Levels and Waveforms 3.1 Voltag~, Curreht9-nd Power Levels In addition to the magnitude of the voltage, current or power, the waveform or pulse width should be specified, as shown in Figure 7, for example. Since TVS tests and specs may be written in terms of voltage, current or power levels, the relationships are shown in Figure 6 for (a) field conditions and (b) test conditions. a) FIELD , line impedance (Wires, etc.) voltage source (Lightning. etc.) circuit being protected TVS ~f t Vs TVS Rs series test resistor b) TEST test generator Figure 6 - I instrument to measure clamping voltage (scope. etc.) Equivalent Circuit for Field and Test Conditions 3.2 Typical Transient Levels over a two year period, The table indicates two primary causes of transients; load switching within the house and lightning storms. Martzloff and Hahn .in their paper on transients on 120 volt power lines' produced this table showing the surges recorded at a number of different locations Table l ' Detailed Analysis of Recorded Surges Most Severe Surge House 1 2 3 4 5 6 7 8 9 10 11 12 13 , Typet k15 A·20 C 8-0 3 B·1 C 8-025 8-0 25 8-0 2 B02 8-01 14 C 15 16 8-0 25 B-O 15 B-O 5 C 8-0 3 8-05 8-0 2 Sireel pole Hospital Hospital Dept store SHeet pole tA 8-0 5 8·0 5 Crest (volts) 700 750 600 400 640 400 1800 1200 1500 2500 1500 1700 350 800 800 400 5600 2700 1100 300 1400 Duration {iJ.S or cycles) Most Frequent Surge Duration Crest (",s or (volts) cycles) 300 10 ",S 500 20 lAS 10/-IS 15mHz Typet A·15 20 J,lS A20 1 cycle , cycle 8-0 5 300 8-0 5 2 cycles 300 100 lew to Show typical 8·0 3 250 cycle I cycle 800 B·'O 8-0 5 4 cycles 300 1 2 cycles 5" 1 cycle 1 cycle 10,",s 1 cycle 1 cycle 1 cycle 1 cycle 1 cycle 15 ~s 3 cycles 15 f'S 4 cycles 9 f'S 1 cycle 1 cycle 4 cycles l' same as most severe I I I I 8-025 2000 1 cycle same as most severe 1400 B02 1 cycle 100 few to show Iyplcal - - 8-0 25 8-0 13 8-0 3 C too few 8-0 5 Ba 2 600 200 1000 900 13 Cy~es 30 j.lS 1 cycle 5,s show Iyplcal I 300 600 -II cycle 4 cycles Average Surges Remarks per Hour 007 014 0.05 fluorescent light sWltchmg 02 10 total 001 003 01 02 04 015 006 4 tolal 1 total 005 04 01 01 lightning storm 011 burnet oil burner water pump all burner house nexl to 12 lightning rural area surges lightning stroke nearby lightning storm 410lal 05 007 lightning storm long oscillation 8-damped oscillation C-Unldlrectlonal Number shows frequency In megahertz 'Reprinted from Surge Voltages in Residential and Industrial Power Circuits by Francois D, Martzloff, Member, IEEE, and Gerald J. Hahn. Reprinted by permission from IEEE Transactions on Power Apparatus and Systems, Vol. PAS·89, No, 6, JulylAugust 1970, pp. 1049-1056. Copyright 1970. by the Institute of Electrical and Electronics Engineers, Inc, Printed in U.S.A. UNITROOE CORPORATION· 5 FORBES ROAO LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 772 PRINTED IN U_S_A_ U-79 APPLICATION NOTE 3.3 Commonly Used Test Waveforms Ipp 1. The 10 x 1000p.S Test Waveform used by many TVS manufacturers, also by incoming inspection departments of users, represents some commonly encountered transients. (See Figure 7). Ipp as specified on data sheet. o- - - - ' - 1 f - - I Figure 7 - 2. The IEEE Standard (ANSI C 37.90a - 1974) for surge withstand capability. (See Figure 8). Commonly Used Test Waveform 2.5KV O---f 3.4 Surge Testing R = 150Q Figure 9 shows a typical test set used to produce an exponentially decaying current pulse of 1mS to 50% down. (10 x 1000p.S). The 1mS waveform is used by many manufacturers to test and characterize their TVS devices for pulse power and clamping voltage. 2K 5.0W 6p.S to 50% down. Figure 8 - More Complex Standard Waveform 5.4Q 20W Reset -L +12V Sprague 1122001 J + Adjustable 350V P.S. 200mA Surge1 Figure 9 - UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 • Unitrode L1R05554F Unitrode 1N5550 Unitrode 1N5612 or 1N5613 DurtE Suggested Set-up for Surge Testing 773 PRINTED IN U.S.A. U-79 APPLICATION NOTE After the contacts switch at t == 0, e 4.0 Examples. di = - Ldt' and when using a TVS the change in coil curVc Referring to Figure 10d, di 'dt L' 10 _ Vee/RL = Veev. L . Note that the higher t, = di/dt - Veil RL e the Ve of the TVS, the shorter the current decay time. rent 4.1 Relay and Solenoid Applications When the energy stored in the coil inductance of a relay or solenoid is released it can damage contacts or drive transistors. It can also produce EMI interference. A TVS used as shown in Figure 10 will provide reliable operation. In order to select the proper TVS, determine: =1 50% down point of iTVs) = ..!2... 1. Peak pulse power Pp Ip x Ve, where Ip 0, 2. Pulse time tp (@ 2 3. These values of Pp and tp are used with graphs of pulse power VS. pulse duration provided on the TVS305 and TVS505 data sheet to select proper device. See example in Figure 2. Just before the switch opens, the initial inductor current 10 = 0= ~~. This is the worst case (maximum) current and assumes the switch was closed long enough for the circuit to reach steady-state. For TVS: 1. VR> V" 2. V,< V"' of Q, Figure 1~b, DC Coil and Transistor. Figure IDa, DC Coil and Contacts. 10 ---- AC Irvs 0+-----' For TVS: VR> VAcpeak Figure 10c, AC Coil and Contacts. UNITRODE CORPORATION' 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 Figure 10d, Simplified Current Waveform in the TVS. 774 PRINTED IN U.S.A. U-79 APPLICATION NOTE NOTE: In some cases, because of accessibility, the TVS must be located across the coil; in that case a diode should be used in series with the TVS, connected back to back as shown in Figure 11. Sample Calculations: For example, using the circuit of Figure 10a, and sample values of: Voo = 14V, L = 1mH, and RL = 2Q; = For Voo 14V, the next higher VA is 15V. (Note that Vo = 22.2V at 10A). STEP 1: Diode For diode: PIV ~ V" 10= Voo = ~= 7A RL 2Q Pp = Ip X Vo = 7.0A X 22.2V = 155W TVS STEP 2: t = 1 Voo/RL = 14/2 = 0.32mS Veil 22.2/10-3 0.32mS = 0.16mS = 160~S 2 From Figure 2, Ppma, for tp = 160~S is 1200W, which is well above the circuit value of 155W. so t p = STEP 3: Figure 11 - Using TVS Across Coil 4.2 Protecting Switching Power Supplies Transients can produce failures because of their own high energy level; and also they can cause improper operation and component failure. The designer needs to protect against: Figure 12 shows a simplified schematic of a typical switching power supply. 1. load transients 2. Line transients 3. Internally generated transients including those produced by internal faults or failures. Referring to Figure 12, the TVS devices shown protect the following circuit components: 1. 2. 3. 4. the the the the rectifiers. HV switching transistors. output rectifiers. control circuitry. 110VAC 60 Hz OUTPUT TO TVS ~~~~7:sL • Figure 12 - UNITROOE CORPORATION. 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 Typical Switching Power Supply 775 PRINTED IN U.S.A. APPLICATION NOTE U-79 4.3 Protecting Microprocessor Based Systems While most microprocessor and Ie semiconductor manufacturers design some form of diode-resistive input clamping network on the chip itself, transient voltage protection offered is very minimal - on the order of a few watts of pulse power. Manufacturers are also reluctant to make device performance and reliability claims when power supply operation TVS ~~ ~~ ~ extends beyond the maximum rated level of the individual device for even relatively short durations such as those that may be encountered during on-off transitions. Therefore, there is a need for some external protective device to suppress voltage transients, as shown in Figu re 13. Address Bus --=- -== ~ I Clock CPU '-- r-~ I ,...------, '--- '-- ROM ....-RAM i-- -- '" - c0 '" '" co _0 ::J aJ e- :J aJ 0 - - 1/0 ~Jt TVS~~ ~ -::1:- ~~ TVS ':41t- --=Figure 13 - UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 -- ~ ~ ~ ~* ~~ TVS -- -=- -..=- Protecting Microprocessors 776 PRINTED IN U.S.A, APPLICATION NOTE U-79 5.0 Alternative Protection Devices Other protective devices such as MOVs, spark gaps, and crowbars have one common disadvantage when compared to zener TVS products; the response time is from nanoseconds to as much as tens of microseconds as compared to 1 pS for an avalanche zener diode. Even 50nS is long enough to allow a transient to destroy the small junctions used in most integrated circuits, logic, fast transistors, etc. TVS products do not significantly degrade even after 100,000 transients. In many cases, the zener TVS and one of the alternative devices can complement each other. For example, when used with an SeR crowbar, the zener TVS will keep the voltage during a transient to an acceptable level until the crowbar, which may take 10p,S to short the line, can protect the load circuits, and in the case of a heavy transient protect the smaller TVS as well. In circuits where transient pulses are fairly common, device degradation becomes a significant problem. 131 UNITROOE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 777 PRINTED IN U,S.A. APPLICATION NOTE U-80 OPERATING BUCK TYPE SWITCHING REGULATORS ABOVE 100 KHz 1. INTRODUCTION Until now, most switching regulated power supplies have been des ig.ned to operate between 20 and 40KHz, generally because of various qevice limitations. Because of the recent availability of power MOSFETS, there has been considerable interest shown in operating switching power supplies at much higher frequencies (above 100KHz). The advantages and disadvantages of operating regulators at higher frequencies are discussed in this application note. Important characteristics of MOSFET and Bipolar devices are considered for buck type switching regulators. The circuit described presents an economical design of a buck type regulator that operates above 100KHz using bipolar devices (in this case the Unitrode PIC600 switching regulator output stage). 2. SWITCHING REGULATOR HIGH FREQUENCY CONSIDERATIONS When "Off Line", including buck type, switching regulators operated at higher frequencies, the following advantages achieved: A. B. C. D. E. F. G. are are Lower filter cost (L and C). Reduced size and weight. Improved transient response. Effective, inexpensive and lightweight(aluminum) shielding of noise radiation (EMI) Simpler EMI filtering. Improved minimum loading requirements for multiple output voltage tracking. Greater control over output ripple. The disadvantages are: A. B. C. Increase in transistor switching losses. Increase in magnetic losses. Increase in diode reverse recovery losses. Normally the "Off Line" switching regulator operates at much higher input voltage than the popular "point-of-use" buck type switching regulator. Since switching losses are directly dependent upon the input voltage, switching characteristics become more significant in an "Off Line" switching regulator. 3. BUCK TYPE SWITCHING REGULATORS (LOW INPUT VOLTAGE) A buck type switching regulator is normally used to (a) provide regulation of multiple outputs from the output of an "Off Line" swi tching regulator, (b) convert unregulated DC input voltage into regulated low voltage output, (c) drive a stepper motor drive, or (d) control the speed of a DC motor. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 778 PRINTED IN U.S.A. APPLICATION NOTE U-80 -i1 As OUTPUT CAP Ein FAOM SENSING AND CONTAOL CIACUITS -10 L 01 I l i2 C I I I I I Eo,eo AL I ESA L J Fig. 1 Switching Regulator Basic Configuration (Buck Type) Since this regulator operates at a lower input voltage than the "Off-Line" version, the power losses during switching are not significant up to 500KHz if the transistors and the catch diode are properly selected. 3.1 Turn-on Time The shortest possible turn-on time of a pass transistor or MOSFET is limited by the reverse recovery time of the catch diode. Presently the fastest available recovery time of a power PN junction diode (such as the Unitrode UES1301) is about 20nSec. The Schottky diode also has about the same effective reverse recovery time due to its high junction capacitance. Tb minimize the over-shoot during the current rise time, one must increase the (turn-on) rise time of a MOSFET. A properly selected bipolar device (e.g. PIC600) matches perfectly without controlling current rise time. Figure 2 shows the reverse recovery characteristics of a Schottky and a PN junction rectifier in a buck type switching regulator (Fig 1). - 10 = 1A ~~ \. +0 - ~p - VCE = 25V -- \ J VCE = 0---- ~ V~~t=·~- -- 1-- o 40 80 120 o 160 (nSec) (SD4l) The ringing in Fig. 2A capacitance and high Q of series resonating with a negligible with a Unitrode UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 80 120 - 160 (nSec) Fig. 2A Reverse Recovery of a Schottky Rectifier NOTE: 40 -- 779 Fig. 2B Reverse Recovery of a PN junction (UES701) is due to the large junction the Schottky Rectifier which is filter choke. This effect is PN junction device. PRINTED IN U.S.A. U-80 APPLICATION NOTE Thus, the losses during turn-on will remain the same regardless of whether the pass element is a bipolar or a MOSFET device. The importance of the ratio of reverse recovery time to current rise time is shown in Figure 3. It is obvious that the current rise time of the MOSFET or bipolar transistor should be at least 3 times slower than reverse ,recovery time of the catch diode. Figure 4 shows the reverse recovery times, and current rise times of commercially available fast switching diodes and transistors. 2,0 r------r---~-----r--,___r---_, 1.8 1.6 1.4 1.2 PIt,,) Plt,.i) 1.0 t" NOTE: See Figure 1 for circuit. 0.8 Reverse Recovery Time. Rectifier. 0.6 Current Rise Time, Transistor. 0.4 Collector Current. lovershoot: Overshoot of Collector Current Due to Reverse Recovery. Power Dissipation in Transistor Due to Reverse Recovery Time. Ph,,): 0.6 'Overshoot Ie == 0.8 1.0 2r Power Dissipation in Transistor Due to CUrrent. Rise Time, trj Impor'tance of Current Rise Time of a Transistor and Reverse Recovery of a Rectifier Fig. 3 ~Or----'r----'----.----.----r----' UMT·l009 2N6545 ~ w 2fl0 ~~ 100 ~ g w a: III lo·SA o 80 120 160 200 240 REVERSE RECOVERY TIME AND CURRENT RISE TIME lin nSec) Fig. 4 Switching Times vs Breakdown Voltage (Unitrode Rectifiers and Transistors) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95-1064 780 PRINTED IN U.S.A. U-80 APPLICATION NOTE 3.2 Storage Time Since the bipolar transistor is a minority carrier device it has a finite storage time. This time can be significantly reduced if the device is clamped out of saturation. In a low voltage device, there is less majority carrier injection in the collector region, due to its lower collector resistivity, than in high voltage devices. By preventing the output transistor from saturating, significant improvement in the storage time can be achieved. The Unitrode PIC600 series device (see Fig.5) provides a natural clamp. The output device, Ql which carries the loadcurrent, is kept out of saturation by driver transistor, Q2. The driver transistor operates in saturation mode. At frequencies above 100KHz however, the storage time of the driver transistor , Q2, needs to be reduced. ,-I I L IDrive Constant Fig 5 Simple Clamped Circuit The circuit shown in Figure 5 reduces the overall storage time of the PIC 600 to less than 100nSec without complicating the drive circuit, at the expense of increased VCE(SAT). When the ratio of the input to output vol tage is high (factor of rv 3 or more) the DC loss in a transistor is low compared to other losses .when operating at frequencies above 100 KHz (see Fig.6). The maximum operating frequency is determined by the storage time. In general, the maximum operating frequency of a switching regulator for a given storage time can be determined by the equation; 0.2 x Eout f max Ein(max) x ts(max) UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 781 PRINTED IN U.S.A. • APPLICATION NOTE U-80 EIN = 25V EO=5V UNDER NORMAL OPERATING CONDITIONS 5.0 ---,r-_-..,..-/- 1.0 r-R_E_C_T_IF_IE_R_LO_S;...S_E_S_10"-=_1...;,5A_I_DC;...}_ _ _ _ _ _ TRANSISTOR LOSSES 10 = 1.5A IDC} --....1'--__ ..L___ _ ...~'I"/ 0.5 ,,;/ 0.1'-_ _ _ _ _ _ _ _.L..-_ _ _" - -_ _ _ _ _ _ _ _.L..-_ _- - - ' 10 100 50 500 FREQUENCY (kHz) Fig. 6 Switching Losses in a Transistor and Rectifier of a PIC600 switching Regulator Output Stage UNITRODE CORPORATION. 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 782 PRINTED IN U.S.A. APPLICATION NOTE U-80 For a lOOnSec storage time, the maximum operating frequency will be 400KHz where EO = 5V, Ein = 25V. 3. 3 Fall Time MOSFET devices will provide faster fall time than bipolar devices providing the drive current is large enough to discharge the input capaci tance quickly. However, as pointed out earlier, in a low voltage switching regulator the switching loss during the fall time is a very small percentage of the total power losses. 3.4 ES/B and IS/B Since the inductive load is clamped by diode, the bipolar pass transistor does not experience reverse bias second breakdown (ES/B) in a buck switching regulator. Forward bias second breakdown can be prevented by providing adequate drive current and by preventing the core of the inductor from saturating. 3.5 QUASI-SAT LOSSES. The output device of a PIC600 is highly interdigitated which minimizes operating in the QUASI-SAT region. Thus turn-on losses during QUASI-SAT are avoided. 4. OTHER CONSIDERATIONS. 4.1 Magnetics Generally, hysteresis losses in the magnetic material will increase significantly when an inverter is operating at a higher frequency because of the wide variation of the magnetic flux over the period of a cycle. To minimize the hysteresis losses and leakage inductance losses, proper selection of a core shape magnetic material is required. However, the hysteresis losses in the magnetic components of a buck type switching regulator are low compared to those in an inverter because the change in the flux is limited over a period of a cycle. Furthermore there are no leakage inductance losses in the buck regulator. The selection of the inductor and its' shape for a buck type switching regulator is therefore, less critical. To minimize the radiation due to the changing magnetic field in the filter inductor, it is advisable to use a gapped pot core or a toroid. 4.2 Capacitor The output ripple vol tage of a swi tching regulator depends not only upon the value of the capacitor, but also on its effective series resistance (ESR). The ESR of the capacitor is inversely dependent upon the value of the capacitor. Since the output ripple voltage depends upon the ESR of the capacitor, paralleling capacitors is helpful. This, however, may affect the transient response of the switching regulator. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 783 PRINTED IN U.S,A. II APPLICATION NOTE U-80 At higher frequencies, the inductance of the capacitor becomes significant. The equivalent circuit of the capacitor (Cout)is shown in Figure 1. The effects of the ESR and inductance of the capacitor can be observed at the instant when an abrupt change in di/dt occurs (see Fig 7). A solid tantalum or electrolytic capacitor has a higher ESR than a high frequency bypass capacitor like metallized polypropylene, polystyrene foil and ceramic. However, the value of the capacitance available in these types is low compared to solid tantalum or electrolytic capacitors. When switching regulators are operated at a higher frequency , the output ripple voltage is more dependent upon the ESR and the inductance of the capacitor than its capacitance. ~Q Current Flowing Through Capacitor Voltage Developed Due to Ideal Capacitor 1 Voltage Developed Across the ESR of the Capacitor A... J V~ T 0 ~VESR Effect on Output Voltage Due to Inductance of Capacitor Fig. 7 Effect on the Output Ripple Voltage Due to Parasitics of the Output Capacitor UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 784 PRIN.TED IN U.S.A. APPLICATION NOTE U-80 4.3 Circuit Layout and RFI Circuit layout is another important consideration in a high frequency switching regulator. Every inch of wire adds 20nH to the circuit. Any extra lead length of the wire produces unwanted ringing and also radiates energy into the environment. The length of the high di/dt path should be kept to a minimum and, where necessary, bypassed with a ceramic capacitor. Twisting the wire of the transformer and arranging the high current paths such that they oppose each other will reduce the radiated energy to the environment. The layout of the circuit should be designed such that it m1n1mizes the ground loop problems by separating the high current path from the small signal circuit current. 5. CIRCUIT DESCRIPTION The circuit described in this section provides a simple and economical design of a buck type switching regulator operating at 250KHz with an existing bipolar device (PIC600). The main advantages of operating a switching regulator at a higher frequency are (a)reduction in the size of the inductor required to obtain low output ripple voltage, (b) improved transient response and (c)reduction in cost, size and weight. The complete circuit is shown in Figure 8. It converts unregulated 25V input voltage into a regulated +5V output voltage. Significant improvement in the storage times and voltage fall time is ach ieved wi th a clamping diode, Dl and resistors Rl and R2. Since the Uni trode PIC600 operates with a constant current base drive, a fixed voltage drop is developed across R2. The voltage is clamped across the collector to emitter of the output device by the clamping diode, Dl, and is given by the equation: VCE clamped = Idrive x R2 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (7l0) 326-6509 • TELEX 95-1064 785 PRINTED IN U.S.A. APPLICATION NOTE Under normal parameters of listed below: U-80 operating conditions, the important operating the PIC600 at output current of lA and 2A are Vol tage Rise Time -------------Voltage Fall Time -------------Current Rise Time -------------Current Fall Time -------------Storage Time ------------------Diode Forward Drop VF---------Saturation Voltage VCE(SAT)----- IO=lA IO=2A 24nSec ------- 24nSec 36nSec ------- 56nSec 28nSec ------- 40nSec 66nSec ------- 84nSec 76nSec ------- 160nSec 0.74V ------- 0.82V 2.5V ------- 2.5V The switching losses at 250KHz are less than O. 5W, so that the overall efficiency of the PIC600 is greater than 78%. The constant base drive current to the PIC600 switching regulator output stage is provided by operating transistor Ql and the output transistor of the SG1524 in series as an AND gate. The base of the transistor Ql is connected to the reference output voltage (+5V) of the SG1524, PWM voltage regulator integrated circuit. The amount of drive current to the PIC600 is determined by resistor value R3 and is given by the equation: The current limit and transistor Q2' is achieved with current sense resistor RIO There is sufficient gain in the error amplifier of the SG1524 to operate up to 500 KHz. The fixed dead-band period of the SG1524 is not adversely effected in buck type switching regulator applications. Capacitor Cl improves the high frequency response and provides stability in the circuit. 6. CONCLUSION The circuit described in this application note provides an economical approach to the high frequency buck type switching regulator using a bipolar device instead of a MOSFET device. The circuit operates with a simplified drive circuit and provides improvement in a transient response and reduction in size, cost, and weight. The circuit efficiency is greater than 78% and provides control over output ripple voltage without a large inductor. The PIC625 switching regulator output stage can be operated at a 5A level at an operating frequency of 250-500KHz. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 786 PRINTED IN U.S.A. ... re ::;:"'z l> x~:::; -z" ~(j'JO r ____ ~!..OO :~~ +" ~3:g /. ~l>::g lDfGO ..... ",. ....... EIN ",w:! r·O ~~z c1 ~ I I 47n I I R1 100n ~ ...g~o -"CD co ';"cn en", 8:" "'0 0,. I 750PF R13 °2 2N2905 C1 ~.::~ .... en." I ~¥ I ------ I I I I I I _...J ~ r- n / !"'" jl' I I '--IL ___ IN914 !i ....C2 =10.F 01 COUT . EOUT" 5 VOLTS Ae = 5Om. sz z o -t ITI R2 55n o ~~I V IN 1 R•• 4.7K INV CA NI EA I R5· 4 .7K I <)-- R6. 4•7K '-I 00 '-I -, R100.33n '1J '1J CORE ARNOLD A 149098-2 WIRE #18 N =42 R7 ·4.7K R11 10K I ~~t-;>VREF C4·O.1.1 Ca R8 RT I 2.2K Ea ~J. ----6CT n ~ 0.0022.1 R12 2.2K I SG1524 I ct I CL Oose Sh. ON COMP h ~ND----.J ~ I Fig. 8 l II I l' 2N2222 R3 150n Cs 0.001 Rg 18K Complete Circuit Diagram c: I 00 o II DN-3 DESIGN NOTE MINIMIZING STORAGE TIME WHEN USING UNITRODE SWITCHING REGULATOR POWER OUTPUT CIRCUITS (PIC600 SERIES) In some applications (such as a reversing motor drive, for example: stepper motor) where storage time is an important consideration in the design, the normal storage time of PIC600 series (approximately 600ns) can be reduced to acceptable level. At lower output currents, the excess storage time is a result of the driver stage operating well under saturation, while at higher output currents it is a result of the output transistor operating into quasisaturation region. The storage time can be reduced to less than lOOns by utilizing a Baker Clamp technique as shown in the circuit below: r---- - --'4 Baker Clamp I 1 31 I I I r--, 1 I Drive 1 11N9141 1 1 1 1 positive supply LP~6~5 _ _ _ 2 _...J I -., L, I Drive 3 12 I 1 1 1 I I L ___ _ 1 4 --I negative supply The Baker Clamp will increase the VCE(sat) losses but this disadvantage will be more than offset by the improved switching speed. The Baker Clamp circuit varies the drive current of the PIC600 series for optimum switching speed at any given load current. The drive current required to the Baker Clamp can be unregulated, as long as it is greater than 30mA. The small value of the inductor Ll and L2 (5 to 10 ~H) stops cross conduction during the switching of PIC600 series. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173. TEL. (817) 881·8540 TWX (710} 32a.t\508· TELEX 95·1084 788 PRINTED IN U,S.A, DESIGN NOTE DN-4 AVOIDING SPURIOUS OSCILLATION WHEN USING UNITRODE SWITCHING REGULATOR POWER OUTPUT CIRCUITS (PIC600 SERIES) Avoid spurious oscillation due to ground loops and RFI when using a Unitrode Switching Regulator Power Output Circuit (PIC600 Series) in a switching regulator. The Unitrode switching regulator power output stage (PIC600 Series) is a high frequency fast switching device. Its control circuitry must also operate at high frequency and high gain. Therefore, it is necessary to avoid any ground loops and RFI for stable circuit operation. The high frequency roll-off of the control circuit should be adjusted properly with a compensation network. The typical layout of the power circuit is shown in the figure below. COPPER PATTERN EIN TO CURRENT SENSE ..J 1--+3 _ _~2 EIN GROUND TO INVERTER { INPUT ---~ CONTROL CIRCUIT I PC BOARD LAYOUT OF POWER CIRCUIT CIRCUIT DIAGRAM Capacitor C I (0.2 1J.f) reduces the RFI generated due to the reverse recovery current spike of the catch diode, and should be physically located near pin 4 and pin 2 of the PIC625. The capacitor should be a high frequency by-pass capacitor, such as Polystyrene. The current sense resistor R3 should be a non-inductive (carbon) type. The current sense signal should be picked up right across this resistor. If the switching regulator is operated at the higher end of the input voltage, the inductor should be shielded with an electrostatic shield, grounded to Point A. The case of PIC625 should also be connected to . . . Point A. II'JM UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95·1064 789 PRINTED IN U.S.A. DESIGN NOTE DN-5 HOW TO SAFELY CHECK SUSTAINING VOLTAGE ON POWER TRANSISTORS One of the most important parameters for any power transistor, particularly in switching applications with inductive loads, is the sustaining voltage. Many manufacturers specify only open base sustaining voltage (VCEO(SUS» at a low current level (10 to 200mA); and, even where sustaining voltage with resistive bias (V CER(SUS» or voltage bias (VCEX(SUS» is specified on a data sheet, the chances -are that it will not be specified under the exact conditions that will be required by a specific application. Because of this, many designers select a transistor based on its VCEO(SUS) rating, since VCER or VCEX will always be greater than VCEO (see Figure I for a graphical explanation of the relationship among VCEO, VCER and VCEX)' By choosing a transistor based upon its VCEO rating, the designer may be using a higher voltage device than necessary. If he could determine the voltage under the actual conditions of his application, it is possible that a lower voltage device could be used, resulting in considerable cost savings. Figure 2 presents a test circuit that can be used to safely measure sustaining voltage under any bias condition at collector currents up to SA. PLEASE NOTE: SUSTAINING VOLTAGE SHOULD NEVER BE READ ON A CURVE TRACER, EVEN AT LOW CURRENT LEVELS, SINCE POWER RATING OR REVERSE-BIASED SECOND-BREAKDOWN RATING (ES/b) MAY BE EXCEEDED, RESULTING IN PERMANENT DAMAGE TO THE TRANSISTOR. The test circuit of Figure 2 may also be used to check a transistor's ES/b rating if the zener clamp is removed. ES/b, under a specified bias condition of RBB and VBB, is related to collector current and inductance as follows: ES/b (joules) == 1/2Li2 Where i is the peak collector current flowing at the time the transistor is turned-off. It should be noted, however, that the transistor is not protected without the zener clamp, and the device may be damaged or destroyed if it does not meet its ES/b rating. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 790 PRINTED IN U.S.A. DESIGN NOTE DN-S 5A------------------++~+4r_------------------ IZ LIJ Q! Q! ::::l U Q! ~ U LIJ ~--'-t-- V CER2 ....J ....J o u RBE2 I < RBEl u VCE - COLLECTOR TO EMITTER VOLTAGE Fig. I. Relationship among VCEO(SUS). V CER(SUS). V CEX(SUS) (Not to Scale) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 791 • PRINTED IN U.S.A. DESIGN NOTE DN-5 + -=- VCC ",,10Vdc 10Vr-, I~PUSH L- o--JVV~~~~ ov-l INPUT PULSE REP. RATE = 60 f'TOTEST ·ZENER CLAMP VOLTAGE SHOULD BE EQUAL TO THE MINIMUM SPECIFIED VALUE OF THE VCEO. VCER OR V CEX VOLTAGE BEING CHECKED. VOLTAGE RATING (VCEO. V CER • V CEX ) INDUCTOR (L) CURRENT SENSE (RS) IB INPUT PULSE WIDTH .;;aOV <;;50mA 50mA-200mA 200mA-1.0A 1.0A-S.OA 50mH 20mH 2mH O.5mH 10n 5n In 0.2n 0.1{1e) 0.1 (Ie) 0.1 (Ie) 0.1 (Ie) 350llSec 52SIlSec 2S0llSec 32SIlSec 80V-200V <;;SOmA 50mA-200mA 200mA-l.0A 1.0A-S.OA 100mH 40mH 4mH lmH 10n sn 0.1 (Ie) 0.1 (Ie) 0.1 (Ie) 0.2(1e) 800llSec 1.0mSec 5S0llSec 650llSec .;;sOmA SOmA-200mA 200mA-1.0A 1.0A-S.OA 200mH 80mH 10mH 2mH 0.1 (Ie) 0.1 (Ie) 0.2(1e) 0.2(1e) 1.5mSec 2.0mSec 1.25mSec 1.2SmSec ~200V 1. TEST CURRENT (lel l 1n 0.2n 10n sn 1n 0.2n THE ZENER CLAMP SHOULD ALWAYS BE USED WHEN TESTING AT COLLECTOR CURRENT VALUES ABOVE 200mA SINCE THE REVERSE-BIASED SECOND-BREAKDOWN (ES/b) RATING OF THE TRANSISTOR UNDER TEST MAY BE EXCEEDED. IC 2S0mA PASS 250mA PASS, VOLTAGE CLAMPED TEST POINT 100mA.200V FAIL TEST POINT 100mA,200V ------~--L---VCE REPRESENTATIVE SCOPE TRACE FOR UNCLAMPED TEST AT IC = 100mA REPRESENTATIVE SCOPE TRACE FOR CLAMPED TEST AT IC = 100mA Fig. 2. Test Circuit for VCEO(SUS)' VCER(SUS)' VCEX(SUS) UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 792 PRINTED IN U.S.A. DN-6 DESIGN NOTE OPERATING THE SWITCHING REGULATOR OUTPUT CIRCUIT (PIC600 SERIES) AT LOW FREQUENCIES The Unitrode switching regulator power output circuit consists basically of a power transistor switch and a catch diode. The appropriate data sheets in the Unitrode Semiconductor Databook provide the necessary information for determining junction temperature and power dissipation at frequencies above 10 kHz. This Design Note provides a method for determining the junction temperature and maximum allowable power dissipation for the transistor switch and catch diode when the switching regulator is operated at frequencies under 10 kHz, where the switching losses are negligible and can be safely ignored. The method of determining safe power dissipation requires a detailed transient thermal analysis, since the junctions of the transistor and diode are subjected to temperature excursions due to the applied pulse power. When the device is subjected to a train of periodical power pulses, the maximum power dissipation and junction temperature can be calculated from the effective pulse thermal resistance (0 ) as follows: p 0p ~ x D + (l-D) r(t + T) - r(T) + r(t) where: t T pulse width = period Duty cycle D =% Peak Power, Ppk is peak of an equivalent square power pulse r (t + T) = transient resistance at time t + T l-t-/ I_ Figure 1. T - -.....~I r(t) = transient thermal resistance at time t Power Pulses UNITRODE CORPORATION. 5 FORBES ROAD LEXI NGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 = DC thermal resistance (from data sheets) ~ 793 PRINTED IN U.S.A. DESIGN NOTE 1. DN-6 Calculating the Junction Temperatures (Pulse Train) A. Power Transistor Switch The peak junction temperature of the transistor switch under repetitive peak power pulse conditions is calculated as follows: T T j (peak) j (peak) TeASE + VeE x Ie - reT) ~ [~;1. + (l - tTT) x r(t T + T) + r(t T )] The transient thermal impedances r(t T + T), reT), r(t T) are obtained from the transient thermal impedance plot for the transistor (see Figure 2), tT B. = transistor on-time Catch Diode The peak junction temperature of the catch diode under repetitive peak power pulse condition is calculated as follows: T j (peak) TCASE + IF x VF - reT) UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 [Rr x t~ + (l - t~ ) r (t D +T) + r(t D)] 794 PRINTED IN U.S.A. DESIGN NOTE DN-6 where: tD diode on-time The Transient thermal impedances r(t D + T), reT), r(t D), are obtained from the transient thermal impedance plot for the catch diode (see Figure 2). , C. Power Dissipation The maximum allowable power dissipation in either the transistor or the diode is determined by the maximum junction temperature of lSO°C: P 2. pk(max) Calculating the Junction Temperature (Single Shot Power Pulse) For a non-repetitive power pulse, the rise of junction temperature can be calculated as follows: For a pulse with less than 100 millisec, the case temperature is assumed to remain at ambient temperature. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 795 PRINTED IN U.S.A. DESIGN NOTE DN-6 5.0 t 4.0 1 ~ ~ Ul H Ul 2.0 ~ 1.0 gj r>1 ::c Eo< 0.0 0.01 0.1 1 10 100 1000 TIME (millisec) Figure 2. Transient Thermal Resistance - Power Transistor or Catch Diode UNITRODE CORPORATION· 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 796 PRINTED IN U.S.A. DESIGN NOTE DN-7 THE UNITRODE SCHOTTKY RECTIFIER - A NEW DESIGN TOOL FOR SWITCHING POWER SUPPLY ENGINEERS 1. Advantages of Schottky Rectifiers Over Conventional PN Junctions. In today's power supplies with low DC output voltages the Schottky rectifier provides the opportunity to achieve the highest efficiency possible. This is due to its naturally lower forward voltage than P-N silicon junctions and, for "switching" supplies where it is most often used, very low recovery times and recovered . charge. The primary benefits of higher efficiency are, of course, reduced heat sink requirements, less heat generated and less power wasted. An additional feature is the rather soft recovery characteristic which will often keep voltage "spiking" and generated EMI low. As a "catch" diode for buck-type 20 kHz switching regulators the improvement in efficiency with the use of a Schottky rectifier is directly related to diode on time, tD(on)' This, in turn, increases as the difference between input and output voltage increases, i.e.,: tD(on) = V jn - Vo I V. xf m ' where f is the switching frequency. When used as an output rectifier for inverter circuits, however, one finds the largest improvement efficiency (see curve beloW). For all applications, the improvement is most significant when the output voltage is low. 15~--~----+----+~~r---~ Advantage of Schottky over alternate rectifier choices due to lower VF, - used as output rectifiers for inverters with DC output as shown. This example is based on IOOA output and 125 C junction temperatures. Improved Efficiency (%) 2~--~~~+----+--------~ 1.0 .8 1.2 v f, at Operating Condition, of Alternate Rectifier UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 797 PRINrED IN U.S.A. DN-7 DESIGN NOTE 2. Advantages of Unitrode Schottky. The search for extended temperature performance and higher reliability has continued since Schottky power rectifiers were first introduced. Unitrode Corporation has introduced devices which have the lowest reverse current yet offered at high temperature. Furthermore, change in reverse current with temperature is much less than with conventional devices or other Schottkys. This behavior substantially raises the threshold of thermal runaway, even when limited heat transfer is provided (high ROCA as with a relatively poor heat sink). Additionally, our high conductivity design, using a heavy copper top post and low series resistance, ensures cool terminal operation and low dymlmic impedance. Reliability is further enhanced by materials and construction which provide thermal-fangue-free life through many thousands of cycles. 3. Measurement Considerations and Precautions. A. TRANSIENT DAMAGE Greater caution must be used because Schottkys are more sensitive to voltage transients and to high rate of rise of applied reverse voltage (dv/dt) than PN junction rectifiers. Even a nonrepetitive, one-tenth microsecond transient can cause permanent damage. B. When measuring reverse current never exceed the reverse voltage rating or the dv/dt rating, even on a transient basis. Sudden application of a voltage on the device in a test set-up may overstress it with a transient too "fast" to be observed. It is therefore advisable, when measuring reverse current (or observing the reverse characteristic on a curve tracer) to use a IKn resistor in series with the device and never "switch on" an open circuit voltage exceeding the rated PR V. Even when "sweeping out" reverse voltage on a curve tracer do not exceed PR V. REVERSE CURRENT MEASUREMENTS Do not expect the reverse current at room ambient to be of orders of magnitude lower than at rated high temperature, as is common with PN junction rectifiers. While Unitrode Schottky devices change less with temperature than competitive devices, they may exhibit higher reverse currents at room temperature. The high temperature reverse current is the significant parameter, however, since it reflects actual operating conditions. At elevated temperatures, the Unitrode Schottky rectifier will have lower reverse currents than other manufacturers. To obtain values which correlate with the manufacturer's published data, it is necessary to measure reverse current under specified (low duty) pulsed conditions, rather than with DC applied. C. FORWARD VOLTAGE MEASUREMENTS At low current and room temperature the forward voltage may be higher than other manufacturers. The low dynamic impedance, however, makes this voltage more uniform as current increases. At higher current, even at room temperature, the Unitrode forward voltage compares very favorably. At expected operating conditions the Unitrode Schottky rectifiers will have a more favorable low and uniform forward voltage. All forward voltage measurements should be made with the Kelvin 4-terminal method, to nullify the error otherwise due to test clip contact and test lead resistance, and with specified low duty pulses to maintain desired junction temperatures. (Note that pulsed base current on a curve tracer does not maintain low duty on a rectifier, - a pulsed collector supply must be used). UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95·1064 798 PRINTED IN U.S.A. DESIGN NOTE DN-8 A 350 WATT SWITCHING REGULATED OUTPUT POWER SUPPLY FOR MULTIPLE OUTPUTS UTILIZING UNITRODE SEMICONDUCTOR COMPONENTS There are many ways a switching power supply can be designed to obtain regulated output voltages. When multiple outputs are desired, such as ±5 volts and ±12 volts, the circuit described below provides the basis for an efficient, economical, and reliable power supply. It consists of a pulse width modulated buck regulator and a synchronized "H" (full bridge) inverter, each leg of which operates at 50% duty cycle. The block diagram of the power supply is shown in Figure 1. AC INPUT RECTIFIER AND FILTER BUCK REGULATOR CONTROL CIRCUIT Figure I. Block Diagram The advantages of this design approach are as follows: 1. Numerous inductors (normally needed when pulse-width modulating an inverter) are not required. No filter inductor is required in the output which lowers costs. Minimum load bleeder resistors are not needed, thus improving efficiency and excessive heat generation. These features result from the "H" inverter operating at I 00% duty cycle. 2. A high voltage, low ESR capacitor in series with the power transformer is not required. The problem of excessive collector current in an "H" inverter stage due to "walking of core flux" on a saturated B-H curve is eliminated. 3. There is no possibility of high current or forward-biased second breakdown in the inverter bridge transistors when they are simultaneously on during switching periods. The "cross-current" is limited by the inductor, LI, (the buck regulator acts as a constant current source) which increases reliability. Furthermore, the transistors are in saturation during cross conduction again improving efficiency, and reducing heat generation. UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95-1064 799 PRINTED IN U.S.A. DESIGN NOTE 4. 5. 6. DN·8 Only one high voltage switching transistor is required for either 110 or 220V input. There is no possibility of forward-biased second breakdown in the bridge transistor during initial turn-on ("start-up"). No expensive high voltage filter capacitor is needed. Filtering is achieved with a low voltage output capacitor. Description of the Circuit: The buck regulator, "H" inverter and control circuit is described in brief in this section. The detailed schematic of the circuit is shown in Figure 2. A. Buck Regulator: The output stage of a buck regulator consists of a Unitrode Barrier transistor™ UMTI009 and a fast recovery (50 nanoseconds) high voltage catch diode, the Unitrode UES 1306. The buck regulator is operated at 50 kHz, twice the operating frequency of tlW "H" inverter, with very low switching losses. Operating the buck regulator at higher fre-' quency reduces the cost of the filtering inductor, L I . The output voltage is regulated in this stage by employing a pUlse-width modulation technique using a Silicon General Monolithic integrated circuit SG 1524. The output of the filter inductor is clamped below the BVCEO of transistors used in an "H" bridge with a Unitrode zener. diode UZ4212. This diode absorbs the energy stored in inductor LI during the period when energy is not coupled into the secondary due to the leakage inductance of power transformer T3' Notice that there is no output filter capacitor in the buck regulator. This design feature limits excessive cross conduction collector current in the transistors of the "H" inverter. The base drive current to the pass transistor is provided with a unique transformer coupled drive circuit. It provides base drive current up to I 00% duty cycle if required. Furthermore, a small amount of energy stored in a ferrite bead in the base drive circuit provides assistance in turning off the high voltage pass transistor. B. "H" Inverter: The "H" inverter operates at 25 kHz, with a 50% duty cycle in each leg, synchronized with the buck regulator. It utilizes four low voltage 2N6354 transistors. Low voltage transistors offer low VCE(SAT), high gain and fast switching times. Due to high gain, the base . . drive current required is low. The switching losses are kept to a minimum by switching the transistors when inductor, L I , current is at a minimum. The storage time of the transistor is kept to a minimum by reducing the base drive just prior to transistor turn-off. (The base drive current is highest when transistor is turned on and reducing linearly.) The diodes DI - D4 provide the path for magnetizing current at lower output current as well as the path for energy stored in the leakage inductance of the power output transformer. UNITRODE CORPORATION· 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95.1064 800 PRINTED IN U.S.A. DN-8 DESIGN NOTE e e o III UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 801 PRINTED IN U.S.A. DN-8 DESIGN NOTE Current limiting is obtained with a current transformer. The level of the current limit is maintained constant regardless of temperature by effectively using two diodes in series with an 8.2 volt zener (Z2) UZ708. Only one driver transformer is used for all four transistors. The trilnsistor turn-on and turn-off is enhanced with a ferrite bead in the drive circuit. The output is rectified with Unitrode USD545 Schottky Rectifiers which provide the advantages of low VF at high current and minimum change in leakage current with temperature. The snubber network across the Schottky diodes prevent reverse bias breakdown from the large voltage spikes due to leakage inductance in the power transformer, and reduces RFI. C. Control and Drive Circuits: The regulation function is achieved with a Silicon General SG 1524 P. W.M. monolithic integrated circuit. The synchronizing pulses from the integrated circuit drive the D-Flip Flop, SN7474. The output of this D-Flip Flop drives the logic circuit 75450P which provides drive current to low cost 2N3019 NPN transistors. Line isolation is maintained with a driver transformer. The control circuit (SG 1524) is inhibited in a slow start mode to prevent large current and voltage transients. The circuit described herein provides conversion efficiency up to 85%. This design approach achieves an efficient and economical switching-regulated power supply when multiple outputs are desired. The output filter capacitor is smaller in size because each leg of the "H" inverter operates at 50% duty cycle. UNITROOE CORPORATION. 5 FORBES ROAO LEXINGTON. MA 02173 • TEL. (617) 861·6540 TWX (710) 326-6509 • TELEX 95-1064 802 PRINTED IN U.S.A: DESIGN NOTE DN-8 VOLTSV1~,.........o VOLT~________~IL-______~~O CT - CLAMP VOLTAGE SG1524 OSCILLATOR OUTPUT SG1524 V CE - PASS TRANSISTOR UMTlOO9 IC - PASS TRANSISTOR UMTlOO9 IB - BASE DRIVE TO UMT1009 I Z - ZENER CURRENT UZ4212 SUPPLY VOLTAGE TO "H" INVERTER INDUCTOR CURRENT OR INPUT CURRENT TO "H" INVERTER I B - BASE DR IVES TO "H" INVERTER Ip - PRIMARY CURRENT TRANSFORMER T 3 o ID - DIODE CURRENT SCHOTTKY RECTIFIER USD545 Figure 3. Basic Waveforms UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 803 PRINTED IN U.S.A. DN-8 DESIGN NOTE TRANSFORMER AND INDUCTOR DETAILS L I . Filter Inductor; core: Ferroxcube.IF-19 )1 N = 198 turns, wire size AWG #16 Air gap = 0.2 inches L2 . Ferrite Bead; core: Stackpole #57-1552 Ferrite Bead N I = 2 turns, wire size #32 N2 = 2 turns, wire size #32 T I. "H" Inverter Driver Transformer; Ferroxcube 376U2S0-3C8, 376UB2S0-3C8 Np = 90 turns, wire size AWG #32 NS = IS turns, wire size AWG #32 SHIElO T2. Buck Regulator Driver Transformer; core: Ferroxcube 78E272-3C8, 782B272-3C8 ~lIps ~~ Np = 90 turns, wire size AWG #34 NS = IS turns, wrie size AWG #28 Two transformers wound on same core, over outside legs of E-I core. GROUND T 3. Power Output Transformer; core: jl~" GROUND SHIELD Ferroxcube EC-S2 Np = 32 turns, wire size #16 NS = 4 turns, wire size #26, 36 wires twisted together NOTE: Secondary is designed for +12 volts output. For multiple output total copper area of secondary should be 0.30 x Total Window Area. Current Transformer; core: Ferroxcube 376U2S0-3C8, 376B2S0-3C8 Np = 2 turns, wire size AWG # 16 NS = 60 turns, wire size AWG #32 NOTE: The information presented in this bulletin is believed to be accurate and reliable. However. no responsibility is assumed by Unitrode Corporation for its use. Unitrode Corporation makes no representation that the use or interconnection of the circuits described herein will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the granting of licenses to make, use or sell equipment constructed in accordance therewith. UNITROOE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 804 PRINTED IN U.S.A. DESIGN NOTE DN·10 SQUIB·FIRING CIRCUIT PROVIDES FOR RELIABLE FIRING, FROM LOW LEVEL INPUTS The design of reliable squib-firing circuitry often presents particular problems. Squib functions are typically quite critical, and the initial triggering source for these systems is, by nature, usually minute. Conventional transistor squib-firing circuits usually require several gain stages, together with a power transistor to handle the squib-firing current. Mechanical squib switches, on the other hand, cannot be operated repetitively to allow for complete testing of the device and associated circuitry during check-out. The high sensitivity planar Silicon Controlled Rectifier (SCR) can be triggered directly from low-level input circuitry, with significant reduction in circuit complexity and size. Reliability is thus considerably enhanced. The unique characteristics of the planar SCR have resulted in wide usage of this semiconductor component in squib-firing circuits for rocket engine ignition, detonation, and explosive bolt applications. Compared with conventional transistor techniques or mechanical squib switches, this proven approach has significant reliability advantages, with circuit simplicity, size reduction, mechanical ruggedness and elimination of electrical contacts. An SCR, with surge current ratings at l00 cC of 5 amperes-50 milliseconds or 20 amperes-l millisecond can easily handle the current required for firing most squibs. Input circuits can be designed to trigger reliably at levels below 100 microamperes and 1.0 Volt, making the SCR particularly well-suited for direct drive from low level control logic circuits and simple RC time delay networks. In addition, the bistable properties of the SCR enable it to be triggered on by a pulse input-remaining in the "ON" state until reset. This inherent "memory" is frequently used to advantage in arming circuits. Two circuits typical of squib firing applications are shown in Figures 1 and 2. Both will operate from - 65 cC to over 125 cC. In Figure I, Capacitor C, is charged to +28 Volts through R, and stores energy for firing the squib. A positive pulse of 1 rnA applied to the gate of SCR, will cause it to conduct, discharging C, into the squib load X,. With the load in the cathode circuit, the cathode rises immediately to + 28 Volts as soon as the SCR is triggered on. Diode D, decouples the gate from the gate trigger source, allowing the gate to rise in potential along with the cathode so that the negative gate-to-cathode voltage rating is not exceeded. This circuit will reset itself after test firing, since the available current through R, is less than the holding current of the SCR. After C, has been discharged, the SCR automatically turns off-allowing C, to recharge. R, +28V lOOK II 0, -A.. INPUT C, JAN1N4148 200", FIGURE 1 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 805 PRINTED IN U.s.A. DESIGN NOTE DN·10 In Figure 2, energy for firing the squib is supplied directly from the +28 Volt supply. Caution must be exercised when arming this type of circuit. If anode voltage is applied too rapidly, the SCR may fire. This dv/dt effect acts thtough the SCR anode-gate capacitance (15 pt), which couples current to the SCR gate (in proportion to anode dv/dt). The effect is negligible if dv/dt is under 1 Voltl~-as in Figure I, where it is limited by the charging of C,. Faster rates of rise can be safely handled by increasing the SCR gate bias. L, +28V 10l'h R, 10n c, c, 0.11'1 FIGURE 2 In Figure 2, the LRC input network limits the anode dv/dt to a safe value-below 30 Volts/j.lS. R, provides critical damping to prevent voltage overshoot. While a simple RC filter section could be used, the high current required by the squib would dictate a small value of resistance and a much larger capacitor. Resistor R,provides DC bias stabilization, while C, provides stiff gate bias during the transient interval when anode voltage is applied. In this circuit the SCR is fired one second after arm4ig by means of the simple R, C, Z, time delay network. R. provides a load for the SCR for testing the circuit with the squib disconnected-limiting the current to a level well within the continuous rating of the SCR. The circuit can be reset by opening the + 28 Volt supply and then re-arming, UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95·1064 806 PRINTED IN U.S.A. DESIGN NOTE DN·11 COMBINED AC·DC LOAD CONTROL SIMPLIFIES SCR RESET Silicon Controlled Rectifiers (SCRs) are finding increased use in a wide variety of control circuit and power switching applications. They offer an economical way to achieve high switching gain, efficiency and blocking voltage. When the inherent memory or "latching" feature is not desired, AC anode supply is often used, allowing the SCR to turn off automatically upon removal of the gate control signal. With an AC anode supply, an additional benefit is derived-the SCR doubles in function as a rectifying element. Thus, it is possible to operate DC loads directly from an AC power source, often eliminating the need for separate bulky and expensive DC power sources. When SCR latching action is desired, DC anode supply is commonly employed. Here, however, reset can be a problem, since "brute force" reset techniques must normally be used. This involves an additional switching element, to either open or shunt the load voltage, and current from the SCR. The circuit of Figure I retains the advantages of operating loads directly from an AC power source. Latching action is provided with no need for brute force reset techniques. The DC source needs to provide only a few milliamps of SCR holding current, since load power is drawn from the AC source. CONTROL INPUT II FIGURE 1 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 807 PRINTED IN U_S.A. DN·11 DESIGN NOTE When the SCR is on, a half-wave rectified voltage waveform is a)?plied to the load. During each positive half-cycle of the AC source, diode (or rectifier) 0, and the SCR conduct the load current as well as the DC holding current provided through R,. During each negative half-cycle, 0, blocks the negative voltage from the AC supply, allowing the SCR to remain in conduction. Resistive loads such as heaters and incandescent lamps are driven satisfactorily with the half-wave rectified output of this circuit. DC loads that are less tolerant of this waveform can easily be operated by using shunt capacitors or other filtering methods. Shunt free-wheeling diodes should be employed across inductive loads. Reset is simply accomplished by interrupting the holding current provided from the DC supply through R,. The reset interval must, of course, be longer than one half-cycle of the AC line frequency, or it must be timed to occur during the negative half-cycle, since load current will keep the SCR latched on during the entire positive half-cycle. The reset interval must exceed the device gate recovery time which ranges from less than 0.5 IJS for the higher speed SCRs to 50 IJS for the slower SCRs. The DC supply voltage level is not critical and can be less than equal to, or greater than the peak AC supply voltage. When it is less than the peak AC, however, 0, will conduct for a portion of each half-cycle when the SCR is off, causing a current pulse to flow from the AC to the DC supply through R,. 0, must have a blocking voltage capability greater than the sum of the peak AC voltage plus the DC supply voltage. The SCR voltage rating must be at least equal to the peak AC or DC supply voltage, whichever of these is greater. When many identical or similar circuits are used in a single system (as in a band of SCR incandescent lamp drivers), multiple reset is easily accomplished by simultaneously interrupting the DC source and resetting all circuits connected to that source. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 808 PRINTED IN U.S.A. DESIGN NOTE DN·12 THERMAL DESIGN CONSIDERATIONS For Lead Mounted Rectifiers and Zeners, for 5 types of mounting. Determining The Power Rating for Your Application. The information given in this section is presented for straight-forward use by the designer. The value given in this table is R6JA, the "Total" thermal resistance of the diode and mounting together;. no other graphs or tables are needed. p..., TJmax - TAmo, RaJA Where: Pma, is the maximum power that can be dissipated in the device reliably. TJma, is the maximum of the operating temperature range, usually 17S·C, unless derated for a military or hi rei application. TAmax is the max temp that the ambient reference (air below the device) will reach during operation. Alternately, Junction Temp Rise PR aJA CI r- '/." + , e "1/8" o .060" TYPE 1 DIA. PC BOARD, LIGHT 1'12"---1e ~'12" .1 . j ·1e» 1'1," a 0 1/," \'/!6"DIA. TYPE 2 PC BOARD, MEDIUM TYPE 3 PC BOARD, HEAVY = = .060" ~I/'"~ ~pon~ \ _ _ and solder YlZZZZZZ[]uLLLL .060 Epoxy Glass .060" dia. x 3/," high Terminals are per MS 17122·7 TYPE 4 PC BOARD WITH CHESSMEN TERMINALS ~ ~ '12" #16 H~k ~ Up "e Wrap once ~dsOlder .060 Epoxy Glass .125" dia. x \12" high Terminals are per MS 17122·8 TYPE 5 TERMINALS AND HOOK-UP WIRES UNITRODE CORPORATION. 5 FORBES ROAD LEXI NGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95·1064 809 II DN·12 DESIGN NOTE ReJA Total Thermal Resistance in Degrees C/watt Mounting Type Type 1N3611-3614 1N4245-4249 1N4461-4489 1N4736-4764 1N4942-4946 1N4954-4996 1N5063-5117 1N5186-5189 1N5186-5190 1N5550-5553 1N5614-5622 1N5802-5806 1N5807-5811 TVS 505-528 UES1101-1106 UES1301-1306 URI05-125 UR205-225 UT236-347 UT249-363 UT251-364 UT261-268 UT2005-2060 UT3005-3060 UT400S-4060 UTROl-61 UTR02-62 UTRlO-60 UTR2305-2360 UTR3305-3360 UTR4305-4360 UTX105-125 UTX205-225 UTX3105-3120 UTX4105-4120 UZ706-140 UZ4706-4120 UZ5706-5140 UZ7706L-7710L UZ8706-8120 UZS 306-440 UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 1 2 3 4 5 105 105 105 140 98 75 94 75 92 92 92 127 85 62 81 62 59 62 80 81 62 62 81 62 129 85 114 97 92 85 84 75 75 75 110 68 45 64 45 42 45 63 64 45 45 64 45 112 68 97 80 75 68 67 55 50 97 68 146 67 55 50 112 68 55 50 64 45 45 43 110 64 97 97 97 132 90 67 86 67 64 67 85 86 67 67 86 67 134 90 119 102 97 90 89 77 73 119 90 168 89 77 65 65 65 100 58 35 54 35 32 35 53 54 35 35 54 35 102 58 87 70 65 58 57 45 40 87 58 136 57 45 40 102 58 45 40 54 35 35 33 100 54 72 75 93 94 75 75 94 75 142 98 127 110 105 98 97 85 80 127 98 176 97 85 80 142 98 85 80 94 75 75 73 140 94 I I i 72 67 114 85 163 84 72 67 129 85 72 67 81 62 62 60 127 81 72 134 90 77 72 86 67 67 65 132 86 PRINTED IN U.S.A. 810 DN·13 DESIGN NOTE TURN·OFF METHOD FOR SCRs MINIMIZES EFFECT OF DV/DT SCRs can be turned off by reducing the magnitude of the anode current to a level below that of the holding current, either by opening the anode circuit or by driving the anode negative. Forward blocking voltage cannot be reapplied until after the minority carrier charge stored in the device as a result of previous forward conduction has been dissipated to a level that can be controlled by the gate bias, otherwise the SCR will self-trigger on again. In addition, even after the SCRs have recovered, reapplication of anode supply voltage may cause selftriggering due to dv/dt. Self-triggering of a SCR dueto dv/dt is caused by a capacitive current equal to the product of the anodegate (CAd capacitance of the SCR and the rate of rise (dv/dt) of applied anode voltage. Sensitivity of a SCR to dv/dt effects can be controlled by the use of a gate-cathode resistor or a current bias. The SCR will self-trigger only if the capacitive current is too large to be controlled by the bias resistor. The smaller the bias resistor, the higher will be the critical rate of rise of anode voltage. However, if the anode-gate capacitance is fully charged before the supply voltage is reapplied across the SCR, the device will be immune to dv/dt effects. A simple SCR switching circuit is shown in Figure 1. When switch SI (which can be a relay or a transistor) is in the closed position, the SCR will fire upon the application of a gate trigger pulse of the appropriate magnitude and duration. Switch SI, when opened, will turn off the SCR. After switch SI is opened, the anodegate capacitance will charge through the load resistor and the lOOK between gate and ground. When the SCR has recovered, SI can be closed, and no capacitive current will flow since CAG is already charged to the full anode supply voltage. 1K ,----I _J.._ D, .. 100K FIGURE 1 UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 PRINTED IN U.S.A. 811 DN·13 DESIGN tJOTE When the cathode circuit of a copducting SCR is initially opened, a large reverse gate current can flow which may damage the gate-cathode junction of the device. Reverse gate current should be limited to 3 rna for safe operation of most SCRs. The bias resistors shown in Figure I accomplish this objective, while affording bias stabilization over the operating temperature range. Bias resistor RGK removes all of the internally supplied gate current out through the gate terminal. Under this condition, the internal gate current cannot flow across the gate junction; the device is cut-off, and self-triggering cannot occur. If RGK was connected to the ground side of the switch, when the switch opened the reverse gate current would be about 15 rnA - far exceeding the maximum reverse current rating for most SCRs. RGG takes over from RGK when the switch is opened, limiting the reverse gate current to less than 0.3 rnA. Diode D, decouples the gate trigger source from the SCR when the cathode switch is opened. This pr'events a low impedance supply from drawing excessive reverse gate current. For the situation where the anode supply voltage may be subjected to transient pulses or voltage spikes, a small capacitor CGK , connected in parallel with RGK will absorb the transient charging current. If we assume CAG is 100 pf then a CGK of 0.002 /.If will form a 20:1 voltage divider requiring a IOV pulse on the anode to result in the required 0.5V (at 25°C) to trigger the SCR. UNITRODE CORPORATION· 5 FORBES ROAD LEXINQTON, MA 02173 • TEL. (En7) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 812 PRINTED IN U,.S.A. DESIGN NOTE DN·14 NANOSECOND SCR SWITCH FOR RELIABLE HIGH CURRENT PULSE GENERATORS AND MODULATORS The design of reliable modulator and pulse generator circuitry often presents the design engineer with seemingly conflicting requirements. In order to obtain fast rise times, "hard tubes" or hydrogen thyratrons are often used. This results in a large system which consumes considerable power and has relatively low conversion efficiency. Reliability, jitter, and stability are also common problems in these systems. To improve reliability, as well as decrease standby power consumption and improve conversion efficiency, semiconductor devices are a natural choice. However, at the voltage and current levels most often encountered in these applications, conventional semiconductors are usually too slow. The nanosecond SCR switch developed by Unitrode allows the designer to upgrade high current, high voltage modulator and pulse generator circuitry. A single device (GA201 or GA301 *) is capable of operating in circuits with supply voltages up to 100 Volts DC and pulsed load currents in excess of 50 Amperes. It can be triggered directly from logic level signals (1 Volt, 200 microamps) and exhibits a rise time of less than 10 nanoseconds to 1 Ampere with only 10 milliamps of drive signal. Single switches operated in this mode can be used as high current replacements for avalanche transistors, modulators, and harmonic wave form generators. Special circuity has been developed to apply these nanosecond switches in applications where supply voltages exceed the forward blocking capability of a single device. The simplest of these is shown in Figure 1. The I meg-ohm resistors act as a voltage-sharing network to insure that no single device is overvoltaged because of unequal leakage currents. Turn-on is accomplished by applying a trigger signal to the primary of the pulse transformer, Tl. The capacitor, which has been charged to the supply voltage through Rc, discharges through R L , and the string of SCRs. This circuit is useful until the number of stages used requires a pulse transformer that becomes objectionably bulky. Beyond that point the circuit of Figure 2 or 3 is used. Figure 2 illustrates an approach that uses a pulse transformer to trigger only part of the string, while the rest of the devices in the string are supplied with gate drive through the zener diodes. With a supply voltage of 360 Volts DC, a 95 Volt ± 5OJo zener diode across each SCR in the string prevents unequal voltage distribution. When SCR, and SCR. are triggered, 360 Volts appear across SCR, and SCR, causing zener diodes Z, and Z, to conduct. Since 0, and 0, are back-biased, the current must flow through the gate-to-cathode junctions of SCR, and SCR" thus driving them on. Up to eight stages can be stacked in this manner using a pulse transformer to drive only the bottom two SCRs in the string. Driving three SCRs with a pulse transformer allows stacking sixteen stages, which can switch a 1440 Volt load using a pulse transformer that needs to have a dielectric isolation rating of less than 300 Volts. Figure 3 uses no pulse transformer and can be extended to virtually any number of stages. When SCR, is triggered, the cathode of SCR, drops from + 100 to essentially 0 Volts. Capacitor C, discharges into the gate of SCR, causing it to conduct, and this process is repeated for SCR, and SCR•. This circuit has the added feature of providing negative bias to the SCRs during recharge of the load in order to minimize the effect of dv I dt. As the voltage rises on the anode of SCR., current flows through the path consisting of C., R., C" R" C" R" etc. This provides negative bias for the gate-to-cathode junctions of the SCR in the string, making them less sensitive to dv/dt triggering. This allows the use of rapid recharge circuits which permits operation at higher repetition rates. Either resonant recharge or active (SCR) rapid recharge techniques may be used with these circuits. "'GA201 recommended for military, GA301 for commercial applications. UNITROOE CORPORATION. 5 FORBES ROAO LEXINGTON, MA 02173 • TEL. (617) 861·6540 TWX (710) 326·6509 • TELEX 95-1064 813 PRINTED IN U.S.A. DESIGN NOTE DN·14 +300V DC Rc T, <1K SCR, 1M C Dc 0, RLy Z3 d ] FIGURE 1 DR Z4 V FIGURE 2 DC len FIGURE 3 If the energy storage element(s) and load consist only of R and C components, the charging resistor must be large enough to limit the DC current to a value less than the minimum holding current of the SCRs in the string. When the load contains an inductive component, as is usually the case in modulator circuits, the network can be designed to "ring" in order to reverse-bias the SCR string momentarily, permitting the SCRs to regain their forward blocking capability even though Rc allows more than the minimum holding current to flow. Diode DR_may be used in all circuits so that the recharge current will not flow through the output element. In Figures 2 and 3, DR shunts the reverse "ringing" current around the output element. Diode Dc must be used in circuits that contain inductive elements to protect the string from being excessively back-biased due to circuit ringing. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 814 PRINTED IN U.S.A. DESIGN NOTE DN·15 NANOSECOND SCR FOR LASER DIODE PULSE DRIVER The use of pulsed gallium-arsenide lasers requires a reliable high speed, high current switch to drive these devices. In the past the only solid state devices that could be used in this application were avalanche transistors and fast medium power transistors. Avalanche transistors presented reliability problems, while the standard medium power transistors available were too slow. The GA200 series "Nanosecond SCR" with a rise time capability of 10 nsec to I Amp or 20 nsec to 30 Amps provides a solution to both the reliability and the speed problems and appears to be ideal for this type of application. The circuit shown in Figure I utilizes a GA201 device along with a lumped constant delay line to generate the desired square current pulse. For simplicity, a single capacitor could be used instead of the delay line. The delay line, however, has the advantage of producing a square pulse that provides sharp turn-off, which limits the excess power dissipation that would occur in the laser diode if the pulse fell exponentially. The impedance of the delay line (= is chosen to produce a slight mismatch, which produces overshoot on the trailing edge of the pulse. This overshoot acts as a reverse bias on the anode of the SCR, assisting in turning it off. A typical value for the delay line impedance would be 1 to 2 ohms, which approximates the impedance of the load formed by the SCR and laser diode in series. The time duration of the pulse (= per section) can be made as short as desired with a value of 50 to 100 nsec being typical. Vc) -_ _ _ _ _ _ _ Volts -"r--'--'_ _ _ _ _ _ _ _ Sec. Modulator Application: 1. 2. Use ----------T--+----,,-Peak Voltage ______~-~~,,~~~~----------------------------V 3. ~ S~. 5. ~----------___ AmpsAt-------oC ~ S~. 7. Average Current _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _,_ _ _ _ _ _ _ _ _ _ Amps 8. PRF PPS ENVIRONMENTAL REQUIREMENTS Operating Medium Operating Temperature Range Storage Temperature Range Other Requirements _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___ MECHANICAL REQUIREMENTS Maximum Size _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ Maximum Weight _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ Terminal Provisions _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___ Mounting Provisions _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___ 825 ~HiGH'"voiTAGE DEVICES II 826 SALES OFFICES PART NUMBER INDEX II DESIGNERS' GUIDES III POWER TRANSISTORS & DARLINGTONS IV SWITCHING REGULATOR POWER CIRCUITS V RECTI FI ERS VI HIGH VOLTAGE RECTIFIERS, RECTIFIER MODULES & MULTIPLIERS VII RECTIFIER BRIDGE ASSEMBLIES VIII POWER ZENERS & TRANSIENT VOLTAGE SUPPRESSORS IX THYRISTORS (SCRs, Triacs, PUTs) X SWITCHING & GENERAL PURPOSE DIODES XI PIN DIODES XII CAPACITORS XIII APPLICATION NOTES & DESIGN NOTES XIV MECHANICAL SPECIFICATIONS 827 828 M ECHAN ICAl SPECI FICATION S 00-4 00·5 1,;.·28 UNF·2A 00-35 00-7 .078 .:.~_ .107 .L .022 =911 p=~ Tf--::--+'·0MIN.~ TO-3 (3 PIN) TO·3 .450 .188 .312 M~~ ~D1;lliJE: l; 135-HJ I -450 .250 :g;: OIA. -'--¥-"\,Gl,L---""'" M~~. f--- MAX. ::~: ;[1__ - RAD. " - .161 .188.../ ,151 ~:~: DIA. .440 .312 COLLECTOR CONNECTED TO CASE Pancake TO-5 TO·5 .. 85 ~ ;:;+';"1 trbt~---~ -- 165 030 EMITTER 45" ~~3. 1010 l3~r-r==l=: - -~ BASE 100 j:LLJF~ 2-'--_~d"'__If> - m COlLECTOR--J '" UNITROOE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 --I + 002 15~,7N-l] =O~3; gg 829 PRINTED IN U.S.A. TO·9 TO·t8 MIN'l 1 1 ·~~1F1.' .370 t- -r-a=-r- CATHODE 21o 1.-. .'MIN.~ 1·170~ 030 ----'29°1l~I:OIO --' ----- ~.'-, - -- - ,195 DIA . .178 - -. . c:=:::;) ..L.- ---- "'" I '. -I ~~~. :::~~~ .017 DIA . 017~::~ .335 .230. DI' .209 . .275 TO·33 TO·59 COLLECTOR CONNECTED TO CA~E . 00 TO·66 TO·66 (3 PIN) 034 .,-- I .620 .028 OIA . I.075 oso 1,,1 . B.360 .210 .190 MIN. TO·66 (4 PIN) COllECTOR CONNECTED TO CASE TO·92 .019 ==r=' _~T =-1_210~_500MIN~I-11 ~ ~ .620 - c::::=:::J 135 O" .0,28 MAX. 3()-~- t .075 .OSO . . I+- 205 .105 .095 20----- Irs r • ._- 170 r--- \ .10' .080 -~ .125 .340 .360 .250 MIN. UNITRODE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173· TEL. (617) 861-6540 TWX (710) 326·6509 • TELEX 95-1064 SCR 830 PUT TRANSISTOR 3 - Anode 3 - Cathode 3 - Collector 2 - Gate 2 - Gate 1- Cathode 1- Anode 2 - Base 1- Emitter PRINTED· IN U.S.A. MECHANICAL SPECIFICATIONS TO-98 TO-111 r 11'"\ .455=5.7\l.400 ll: 10.32- NF-2A THREAD .423 '1;['43~_ .570 t ~ I; BASE COLLECTOR . '3180,:~----r:, ~ ~S .313 t 1 .090 EMiTTER .070 CASE TO-220 SEATING PLANE MILLIMETERS DIM MIN 1423 966 3.56 051 3.531 '" H 038 1270 J MAX 15.87 10.66 ." '" 3733 2.79 INCHES MIN MAX 0.560 0380 0625 0.420 0.140 0.19(' 0020 0.045 0139 0.090 0.147 0025 6.35 0.110 0.250 1427 0015 o SOD 1.14 1.77 0.045 0070 483 533 0.190 0.210 2.54 2.04 304 0.100 0.120 2.92 0.115 0055 0.270 064 1.14 1.39 0080 0045 S.85 6.85 0.230 0562 SIMILAR TO TO-220 SEATING r(Cf "LANE 1 --1 8 1 b5~~. Jt~,,~,"r-=-'- ,0--t ,~ _I 'r-' -I f-' ,jl-- J j~ f i . o G 2. Anode Tab is connected to Cathode. N ,... A MILLlMI'U. MIN MAX 14.23 15.17 9." 10.66 DIM •• INCNII "'N .. " ..... ..... C 3." D 0.51 1.14 G.!I6O i 0.310 ' 0.140 0.11D 0.045 .... ..... F 3.531 3.733 0.139 '.29 2.79 6,35 0.... G H J , 0.147 .... ..... ..... ..... ,'.54... ,... ..... ..... .... I." ..... •• 31 0.015 0,110 K 12.10 14.27 0.512 l 1.14 4.lJ 1.71 0.0&51 0.070 5.3] 0.110 3." 0.100 N Q • 5 T 1.14 1.15 0.210 0.120 o.l15 0.0" 0.270 B 1 Band ,ndlcate~_ cathode end, r l!iS" TYPj 39mn:' UNITROOE CORPORATION· 5 FORBES ROAD LEXINGTON, MA 02173· TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 - 028" '001 071mm '.03 60 II '..T MAX . 08 216mm I 831 PRINTED IN U.S.A. C Cl :~~:: f::~:~~llONG THREAD '4-40 x AA,BB,CCl BE O~A 1 1 r9 ~L~'lc'+"1 ~CJB ~EI_~ ~ , "',' ~3.015 ' ' .110 -1- I r--, I ., .750 r--2.985 .720 ~:~tg- AA AA se"es I Willt UOl8801 A..475 M rIIb. B.. 104M max C.. 3OO"typieal O..028H:!: .001 E. .975 min. BB 3 Witt UOZ8Q7 series 5 Watl UOIS801 A.. 500 H nIU. A..45O"mu. 8 .. 085Hmlll. C.. 275 I""(I' D.. 028H±.OOIH E.. 700" min. SWettUOZ7807 Se"II!!o A.•6OO"mu. 8. 185M II\II~. C.325 H tnlleal O. 040- ± 001 E. .975-min. I -1 CCl se"ps B .• 14SHITIU. H H H I H g::==~~. TAPPED 10-32 THREAD E. ,925"m;n. DD CAX "'''ri (6.35/ 3.00.t015 1711.21 ± (38) " . (10.16) fit 25 (6.351 A37.t -01501A. (1109):1:.\.36) HIGH VOLTAGE WIRE FLAME RETARDENT STVLE 3238 FR,' AOKVOCTYPE2PL POLYPROPYLENE V.oRATeO ULRATEO "'---.L 1.:,,28 II 14 6.Slmm Dimensions in inches and (millimeters) DE,DF Lt. Dimensions in inch.. with metric ~m in~..nt..... Mlximum DE A B C C, ~ 01), lI< DF A 832 .240 ••5 1.15 .51 (6.10) 16.13) (4Ut) (14.41) ... .13 21.01 .010 2.03 (6.71) .... (10.16) 1.95 ('9.53) .61 111.02) Oimensions in inches with metric in ~entheses M.ximum 1.020 (25.91) .9~0 ~m ) --'!. , .0 .0, UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON. MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 . . 1 (.10) (. ) 3.'~ ~'1.&3) .•5 .... 13) .317 .400 3.650 1.250 (1.05) 110.16) (92.71) (31.75) NOTES • • 2.6 NOTES • l 5• PRINTED IN V.S.A. MECHANICAL SPECIFICATIONS DH DG 3.487' DIA MAX. »------81.5mm-- '040TY~'CAL jl .020 .23Si"-"! '2~OI! 10-32THRD. USS-IO 10-32 ~l.l0-l UNF-2B .980 11.030" OIA. --I .-, 1.00 '.97 THRO --._- .330 1 _ .320 I jo---:MAX.---oj 25.5mm G F .028 DIA. 310..r6~1 -I~ Tinned 1,512 I REF Ir+,JL-+,---'-c'-I-:1 MAX. Copper .875 10-0.15" Max. 1 I [J~ 3.81mm 0.32" Max. 8.llmm GA GH .688:' MAX. U1.48mmJ O.SO" Tinned Copper leads ::t.OI HJ,HK, HL,HM,HN,HO,HP • • ., '1~:~o~~' "100'':;!;: .030 7.62mm=:.76 ! MAX. LENGTHS .562" 1.&25" ,14.21mm 41.2Imm UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 833 PRINTED IN U.S.A. L1 L 1 with FI.n •• mm INS. COATING A 1.176 - 1.196 B' .650 .500 NOM. C 0 .0ti0 E .200 F .078 R. TYP. G .690 - .710 H .050 J .150 .025 K .020 l 29.87 - 30.38 16.51 12.70 NOM. 1.53 5.08 .20 R. TYP. 17.52 - 18.04 1.27 3.81 .6' .51 L2 L2 with Flange mm INS. 1.176 - 1.196 .500 C 1.0 NOM. .060 0 .150 E .078 R. TYP. F G .690 - 710 H .050 J .150 K .025 .020 l M .040 29.S7 - 30.38 12.70 25.4 NOM 1.53 3.81 .20 R. TYP . 17 .52 - 18.04 1.27 3.81 .64 .51 1.02 A B .. __:T;Njl ~, E SUBSTRATE: BeQ .J.. II PROTECTIVE H K J L3 DIMENSIONS 35.43 1.395 1.\87 .675 17.15 .156 (TYP.) 3.96 (TYP.l .675 .700 .187 (.032 THICM:) (GATE) .250 (.OJ2·THICKJ (2 PLACES) 17.18 (0.81 THICK) (GATE) 6.35 (0.81 THICK) (GATE) 1.31 .442 lUll 14.13 7.11 :;so .280 .218 ].96 (2 PLACES) 156 (2 PLACESI '50 875 (TYPICALI 22.23 (TYPICAll L7 _1~~11 f ~THODE I F~ ..LJ E-l SUBSTRATE Al,O, 17 with Fiance INS. A 0.4 B .350 .300 ·0 .500 MIN. ANODE GATE U- -! ~ PROTECTIVE C~ATING + ,- .,I! J UNITRODE CORPORATION. 5 FORBES ROAD LEXINGTON, MA 02173 • TEL. (617) S61·6MO TWX (710) 326·6509 • TELEX 95.1064 E F E HI : G H .100 .032 .150 .015 .020 .020 mm 1016 8.89 7.62 12.70 MIN . 2.54 .82 3.Bl .51 .51 > G', 834 PRINTED IN U.S·A. MECHANICAL SPECIFICATIONS MB MA I 10-. 755 .-.1 ~i-.I ::Jg .735 .7 5 5 : . . .735 + DIA . :;. -,-n '---$ .... .570 .L M~ ,,, .•26 Me MD ENCAPSULATION MATERIAL METAL CASE : : ;: : , ' ~;~ :T ; AC 3 AC I--:H SEE NOTE 5 005 TERMINAL OETAllS MF ME ......•. r-~======~~~-lr :~~~DIA . 12 PLACES} :~!:DIA. 12 PLACES) RRR f :~-LCr:Y;:;.::._____;:;4,::;:'-I~AX. r;:r. .U5 NA i NB .140 CIA. TJ~~E~;~U --,~ II 090lA TYP M~~ .L ~' 240 MAX UNITROOE CORPORATION. 5 FORBES ROAO LEXINGTON, MA 02173. TEL. (617) 861-6540 TWX (710) 326-6509 • TELEX 95-1064 TypIcal Wellht 10 grams 835 PRINTED IN U.S.A. ND NC .09 DIA. TYP.~ --'II-TINNED CU .•040 TYP. ~, I ~.6~O aY"-~-"""~I-;-:-L: jX I ."J,"i .IIS PA .250 ± .01 (6.35) ± (.254) ,40 ± .001 OIA. ~ 110.161' 1.02541 ======*~=9~~__________~)F======== --1- I~--- CASE LENGTH ----I I 2.0 Min. _ _ 150.81 MM 38.1 ± .508 2.5 ± .0..2 63.5 ± 3.0 ± .02 76.2 ± 50..8_ 88.9 :t .50..8 3.5 ± ,0..2 I--I .250 ± .01 16.351 ± 1.2541 CASE LENGTH Ins. 1.5 ± ,0..2 2.0.. ± ,0..2 50...8 ± .508 .:.- 5~~ I Oimensions in inches and (millimeters) PB 1- ==============(C CASE LENGTH ---I , CASE LENGTH .250 .1 .01" P"'=16.35mm l , 1.254mml ~-------T 50 .t .02" 1(12.70mm) + (.50Bmm) TINNED COPPER LEADS [ ,.....--,------,~-'-~ I I .051 ± .001" DIA.~ (.254mm) ± (1.30mm) i I 2" Min (SO.80mm) MM Ins. 1.125 ± ,0..2 28.58 ± .508 1.625 ± .0.2 41.28 ± .50B 2,0..0..0.. ± .0..2 50.80 ± .508 2,375 2.750.. 3,50..0.. 4.250.. 60.33 ± .508 ± .0..2 ± .0..2 69.80.. ± .50..8 ± .0..2 88.90 ± .508 ---- "'- ± ,0..2 107.95 ± .508 Dimensions in inches and (millimeters) PC .38 ± .01 19.651 ± 12.541 j .051 ± .003 PIA. 11.301 , 10.081 ====~l~C~ I __~)F====== 1--- CASE LENGTH --I 1 ~IL--~I .69 ± .02 t (17.53) t (0.51) ~_ _ _ 2(~:~r MM 1.5 ± .03 38.10.. ± 0..,76 2.5 ± .0..3 4.5 ± .03 5.5 ± .0..3 63.50.. ± 0...76 88.90.. ± 0...76 114.30 ± 0.76 139.70.. ± 0...76 6.5 ± .03 165.10.. ± 0...76 3.5 ± .03 = I CASE LENGTH Ins. ___ Dimensions in inohes and (millimeters) UNITROOE C;ORPORATION • 5 FORBES ROAD LEXINGTON, MA 02173 • TEL, (617) 861-6540 TWX (710..) 326-6509 • TELEX 95-1064 836 PRINTED IN U.S.A. MECHANICAL SPECIFICATIONS PMA CASE LENGTH MM Ins. 1.65 ± .030 41.91 ± 0.76 2.20 " .030 55.88 " 0.76 69.85 ± 0.76 2.75 ± .030 3.85 ~~ ~ 0 g~ lID II I 75 I ~~:-:.. r+'" '" II TO~:~A.~~5\381J (254/ ~,~ ~ ~ + 4.95 ± .030 97.79 ± 0.76 125.73 ± 0.76 6.05 " .030 7.15 ± .030 181.61 ± 0.76 8.25 9.35 25 (6351 R lYP ± .030 ± .030 ± .030 237.49 10.45 ± .030 11.55 ± .030 ' - NI PLATED 062 1'.575) D"Fe 13.75 " .030 HEAT SINK TYP 153.67" 0.76 209.55 ± 0.76 ± 0.76 265.43 ± 0.76 293.37 " 0.76 349.25 ± 0.76 For mounting and electrical spacing. refer to individual data sheets. Dimensions in inches and (millimeters) S PME _''''''''---o!'I'''''''·''- (6736)[4369) t-I-+-r--~--.... 1 !-t-f--'~r 440' Max. i J=====';'-'--'--t-t~~-'-t--+--;'~"",'-" . "I. 4~O 110002) 11 17mm _ I __ 110592)4- ll:rM" nrr ~ .a28D'" • 25 (11176' 635) TVPE 2PL FOR MOUNTING AND ELECTRICAL CONNECTION llJ7mm ~216~;-;-+ ~c "II PLATED 062 (1575) OHFC TOLERANCE """7"" 8-.---------.9 XX· 015(381) XXX-Ol01254j 1"---·" "I''+"'' + ---1. ~c 0.50 long O.71mm 12.7mm Tinned Copper lead 100 Typ --..I ~ 2.54mm . """'" '" Dimensions in inches and (millimeters) SA SB I.. I .50 MAX. 12.70mm .75 MINt 1 ~ .02801A = ,===-~-tc:::=JJ-.~1 @) ... 10-- TlN'O CU. sc @) I--- ~~~. -+---1 T~~.gtU. 181"' MAX. 4.7Smm --
    Source Exif Data:
    File Type                       : PDF
    File Type Extension             : pdf
    MIME Type                       : application/pdf
    PDF Version                     : 1.3
    Linearized                      : No
    XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
    Create Date                     : 2017:07:17 19:20:03-08:00
    Modify Date                     : 2017:07:17 19:51:36-07:00
    Metadata Date                   : 2017:07:17 19:51:36-07:00
    Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
    Format                          : application/pdf
    Document ID                     : uuid:f5eb3ada-f7b5-564d-b71a-023fd12ae381
    Instance ID                     : uuid:cf2773db-a92a-034f-867f-7065893d433d
    Page Layout                     : SinglePage
    Page Mode                       : UseNone
    Page Count                      : 840
    
    EXIF Metadata provided by EXIF.tools

Navigation menu