1980_Unitrode_Semiconductor_Databook 1980 Unitrode Semiconductor Databook
User Manual: 1980_Unitrode_Semiconductor_Databook
Open the PDF directly: View PDF
.
Page Count: 840
| Download | |
| Open PDF In Browser | View PDF |
UNITRODE
SEMICONDUCTOR
DATABOOK
1980
© Copyright 1980 Unitrode Corporation,
Lexington, MA. All rights reserved.
PRINTED IN U.S.A.
INTRODUCTION
From its inception 20 years ago, Unitrode has acquired a
reputation for maintaining an unusually high level of quality,
performance, and reliability in its entire line of silicon
semiconductor devices. Excellence was first established with
Unitrode's uniquely controlled avalanche, hard-glass passivated
Rectifiers and Zener Diodes, and later expanded, through
corporate acquisition, to include planar passivated low-power,
high-speed SCRs, PUTs and high-speed Power Transistors and
Darlingtons.
Unitrode has been at the forefront in meeting the fast changing
needs of industry. The Company has also developed:
1) very high speed rectifiers designed to optimize the
performance of switching power supplies,
2) the first Hybrid Power Switching Circuits for Switching
Regulator applications in the industry,
3)
Power Transistors that significantly improve turnoff and
Eslb characteristics by utilizing a new transistor design
concept,
4) State-of-the-art Schottky rectifiers that offer higher current ratings and better performance characteristics than
conventional Schottkys,
5) SCRs fast enough for laser pulse modulators,
6)
High Voltage stacks and Multipliers,
7)
Doorbell® Rectifier Modules to provide reliable, economic
solid-state rectifier tube replacements in high-voltage
power supplies,
8) Axial leaded, glass encapsulated, taped and reeled
switching diodes.
Unitrode also manufactures monolithic ceramic capacitors
available in axial lead and dual-in-line packages, and as chips.
The capacitors are available in NPO, X7R and Z5U dielectric
formulations.
Doorbell@ is a registered trademark of Unitrode Corporation.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
2
PRINTED IN U.S.A.
TABLE OF CONTENTS
Section
Page
SALES OFFICES
II
PART NUMBER INDEX
III
DESIGNERS' GUIDES
9
19
Power Supply Designers' Guide
Military Designers' Guide . . .
IV
POWER TRANSISTORS & DARLINGTONS
Product Selection Guide . . . . . . .
Data Sheets
........... .
Transistor & Darlington Part Number Index
V
49
54
· 194
SWITCHING REGULATOR POWER CIRCUITS
Product Selection Guide . . . .
Data Sheets
.........
Power Circuit Part Number Index
VI
35
41
. 199
. 200
. 220
RECTIFIERS
(Standard & Fast Recovery, High Efficiency & Schottky)
Product Selection Guide . .
Data Sheets
...........
Rectifier Part Number Index
. 223
. 229
. 346
VII HIGH VOLTAGE RECTIFIERS, RECTIFIER
MODULES & MULTIPLIERS
Product Selection Guide . . . . . .
Data Sheets
...........
High Voltage Rectifier Part Number Index
. 351
. 357
. 421
VIII RECTIFIER BRIDGE ASSEMBLIES
Product Selection Guide . . . . .
Data Sheets
..........
Rectifier Bridge Part Number Index
IX
POWER ZENERS & TRANSIENT VOLTAGE SUPPRESSORS
Product Selection Guide . . . . . . . . . . . . . .
Data Sheets
...................
Zener & Transient Voltage Suppressor Part Number Index
X
. 427
. 431
. 479
. 483
. 486
. 509
THYRISTORS (SCRs, Triacs, PUTs)
Product Selection Guide . .
Data Sheets
...... .
Thyristor Part Number Index
UNITRooE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
· 513
· 518
· 614
3
PRINTED IN U.S.A
TABLE OF CONTENTS
Section
XI
Page
SWITCHING &GENERAL PURPOSE DIODES
619
620
648
Product Selection Guide
Data Sheets
.....
Diode Part Number Index
XII PIN DIODES
651
653
687
Product Selection Guide
Data Sheets
.....
PIN Diode Part Number Index
XIII CAPACITORS
691
Product Selection Guide
XIV APPLICATION NOTES & DESIGN NOTES
704
XV MECHANICAL SPECIFICATIONS
829
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
4
PRINTED IN U.S.A
SALES OFFICES
PART NUMBER INDEX
DESIGNERS' GUIDES
POWER TRANSISTORS & DARLINGTONS
SWITCHING REGULATOR POWER CIRCUITS
RECTIFIERS
HIGH VOLTAGE RECTIFIERS, RECTIFIER
MODULES & MULTIPLIERS
RECTIFIER BRIDGE ASSEMBLIES
POWER ZENERS & TRANSIENT VOLTAGE SUPPRESSORS
THYRISTORS (SCRs, Triacs, PUTs)
SWITCHING & GENERAL PURPOSE DIODES
PIN DIODES
E
IIJ
II
APPLICATION NOTES & DESIGN NOTES
II
MECHANICAL SPECIFICATIONS
E
CAPACITORS
5
~UNITRDDE
6
SALES OFFICES
PART NUMBER IN-DEX
II
DESIGNERS' GUIDES
III
POWER TRANSISTORS & DARLINGTONS
IV
SWITCHING REGULATOR POWER CIRCUITS
V
RECTIFIERS
VI
HIGH VOLTAGE RECTIFIERS, RECTIFIER
MODULES & MULTIPLIERS
VII
RECTIFIER BRIDGE ASSEMBLIES
VIII
POWER ZENERS & TRANSIENT VOLTAGE SUPPRESSORS
IX
THYRISTORS (SCRs, Triacs, PUTs)
X
SWITCHING & GENERAL PURPOSE DIODES
XI
PIN DIODES
XII
CAPACITORS
XIII
APPLICATION NOTES & DESIGN NOTES
XIV
MECHANICAL SPECIFICATIONS
XV
7
8
[ill]
SALES OFFICES
_UNITRDDE
UNITRODE REGIONAL OFFICES
Northeast Office, Door 8 - Lakeside Office Park, North Avenue, Wakefield, MA 01880, Tel. (617)245-3010, TWX 710-348-1733
So. California Office, 15300 Ventura Boulevard, Suite 200, Sherman Oaks, CA 91403, Tel. (213)783-1301, TWX 910-495-1769
Northwest Office, 2444 Moorpark Avenue, Suite 314, San Jose, CA 95128, Tel. (408)294-4210, TWX 910-338-0126
Midamerica Office, 121 South Wilke Road, Arlington Heights, IL 60005, (312)394-5240, TWX 910-233-0168
Mid-Atlantic and Southeast Office, 13975 Connecticut Avenue, Citizens Bank Building, Suite 214, Silver Spring, MD 20906,
Tel. (301)460-8700, TWX 710-828-0081
North Central Office, 1500 E. 79th Street, Suite 109, P.O.B. 1779, Bloomington, MN 55420, Tel. (612)854-0555, TWX 910-576-2406
Southwest Office, 13999 Goldmark, Suite 434, Dallas, TX 75240 Tel. (214)231-8700, TWX 910-867-4738
Metropolitan New York, 150 Broadhollow Road, Suite 210A, Melville, NY 11747, Tel. 516-271-3110, 11
DOMESTIC REPRESENTATIVES
ALABAMA
Conley & Associates, Inc.
3322 Memorial Parkway S.W.
Suite 17
Huntsville - 35801
205-882-0316
ARIZONA
Fred Board Associates, Inc.
P.O. Box 1906
Scottsdale - 85252
602-994-9388
ARKANSAS
See Texas
CALIFORNIA - NORTHERN
12 Inc.
3350 Scott Blvd. No. 10
Santa Clara - 95051
408-988-3400
Conley & Associates, Inc.
1612 N.W. 2nd Avenue
Boca Raton - 33432
305-395-6108
Conley & Associates, Inc.
4021 W. Waters Avenue
Suite 2
Tampa - 33614
813-885-7658
GEORGIA
See Florida
COLORADO
Simpson Associates, Inc.
2552 Ridge Road
Littleton - 80120
303-794-8381
CONNECTICUT
Kanan Associates
1 Padanaram Road
Danbury - 06810
203-743-1812
NORTHERN
Carlson Electronic Sales Co.
600 East Higgins Road
Elk Grove Village - 60007
312-956-8240
ILLINOIS -
SOUTHERN
DIST~ICT OF COLUMBIA
See Maryland
See Massachusetts
MARYLAND
New Era Sales, Inc.
7300 Ritchie Highway
Suite 407
Glen Burnie - 21061
301-768-6666
MASSACHUSETTS
Kanan Associates
100 Main Street
Reading- 01867
617-944-8484
Miltimore Sales, Inc.
3501 Lake Eastbrook S. E.
Suite 127
Grand Rapids - 49506
616-942-9721
MINNESOTA
See Missouri
INDIANA
Carlson Electronic Sales Co.
7202 N. Shadeland Avenue
Indianapolis - 46250
317-842-3740
Electronic Innovators
7625 Bush Lake Road
Suite 16
Minneapolis - 55435
612-835-0303
MISSISSIPPI
See Florida
IOWA
Carlson Electronic Sales Co.
204 Collins Road, N.E.
Cedar Rapids - 52402
319-377-6341
KANSAS
Eastern
MAINE
Miltimore Sales, Inc.
22765 Heslip Drive
Novi - 48050
313-349-0260
See Washington
ILLINOIS -
LOUISIANA
See Texas
MICHIGAN
IDAHO
CALIFORNIA - SOUTHERN
Great American Rep Company
17742 Irvine Boulevard, Suite 102
Tustin - 92680
714-832-8113
Great American Rep Company
15300 Ventura Boulevard, Suite 405
Sherman Oaks - 91403
213-990-4870
S. R. Electronics
4617 Ruffner Street
Suite 206
San Diego - 92111
714-560-8330
DELAWARE
See Pennsylvania -
FLORIDA
Conley & Associates, Inc.
P.O. Box 309
235 S. Central Avenue
Oviedo - 32765
305-365-3283
MISSOURI
Rush & West Associates
481 Melanie Meadows Lane
Ballwin - 63011
314-394-7271
MONTANA
Rush & West Associates
107 N. Chester Street
Olathe - 66061
913-764-2700
See Washington
NEBRASKA
See Missouri
KENTUCKY
See Ohio
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
9
PRINTED IN U.S.A.
SALES OFFICES
o! 0UNITROOE
DOMESTIC REPRESENTATIVES (Continued)
NEVADA- NORTHERN
NORTH DAKOTA
TEXAS
See California - Northern
See Minnesota
NEVADA - SOUTHERN
OHIO
See Arizona
Baehr, Greenleaf &
Associates. Inc.
9505 Montgomery Road
Cincinnati - 45242
513-891-3826
Sundance Sales. Inc.
9230 Markville Street
Dallas - 75243
214-699-0451
Sundance Sales, Inc.
10237 Missel Thrush
Austin - 78750
512-250-0320
NEW HAMPSHIRE
See Massach usetts
NEW JERSEY - NORTHERN
Lorac Sales, Inc.
1200 Route 23, North
Butler - 07405
201-492-1050
NEW JERSEY - SOUTHERN
See Pennsylvania - Eastern
NEW MEXICO
Reptronix
237C Eubank N.E.
Albuquerque - 87123
505-881-8001
NEW YORK - METROPOLITAN
AND LONG ISLAND
Lorac Sales, Inc.
550 Old Country Road, Room 410
Hicksville - 11801
516-681-8746
Baehr, Greenleaf &
Associates. Inc.
3300 So. Dixie Drive
Suite 215
Dayton - 45439
513-293-11 02
UTAH
Simpson Associates. Inc.
P.O. Box 151430
7424 S. 1300th East
Midvale - 84047
801-566-3691
Baehr. Greenleaf &
Associates. Inc.
14700 Detroit Avenue
Cleveland - 44107
216-221-9030
VERMONT
See Massachusetts
VIRGINIA
See Maryland
Baehr, Greenleaf &
Associates. Inc.
P.O. Box 5702
Columbus - 43221
614-486-4046
WASHINGTON
Vantage Corporation
300 - 120th Avenue N.E.
Building No. 7
Suite 207
Bellevue - 98005
206-455-3460
OKLAHOMA
See Texas
NEW YORK - UPSTATE
OREGON
WEST VIRGINIA
Reagan/Cornpar Albany,
6 Highland Avenue
P.O. Box 5208
Albany - 12205
518-489-7408
Reagan/Compar Albany,
41 Woodberry Road
New Hartford - 13413
315-732-3775
Reagan/Compar Albany,
42 Winding Brook Drive
Fairport - 14450
716-271-2230
Reagan/Compar Albany,
3737 Pheasant Lane
P.O. Box 135
Endwell - 13760
607-723-8743
Reagan/Compar Albany,
Castle Creek Road
P.O. Box 453
Binghamton - 13901
607-648-8838
Vantage Corporation
6415 S.W. Canyon Ct.
Suite 220
Portland - 97221
503-297-1714
See Pennsylvania - Western
Inc.
Inc.
Inc.
PENNSYLVANIA - EASTERN
GCM Associates
1014 Bethlehem Pike
Erdenheim - 19118
215-233-4600
Bacon Electronic Sales
115 South High Street
Waterford - 16441
814-796-2381
NORTH CAROLINA
Electronic Marketing Associates
955 Burke Street, Suite 2
Winston-Salem - 27101
919-722-5151
Electronic Marketing Associates
6717 Woodstock Drive
P.O. Box 15316
Charlotte - 28210
704-523-3327
UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
See Colorado
CANADA
See Minnesota
Kaytronics Limited
375 Rue Norman Street
Ville St. Pierre
Quebec H8R 1A3
514-487-3434
Kaytronics Limited
Unit #1
331 Bowes Road
Concord. Ontario L4K 1B1
416-669-2262
Kaytronics Limited
2003 McKnight Blvd .• N.E.
Suite 209
Calgary, Alberta T2E 6L2
403-276-9844
TENNESSEE
BRITISH COLUMBIA
See Florida
See Washington
RHODE ISLAND
Inc.
Carlson Electronic Sales Co.
Northbrook Executive Center
10701 West North Avenue
Suite 209
Milwaukee - 53226
414-476-2790
WYOMING
PENNSYLVANIA - WESTERN
Inc.
WISCONSIN
See Massachusetts
SOUTH CAROLINA
Electronic Marketing Associates
210 W. Stone Avenue
Greenville - 29609
803-233-4637
SOUTH DAKOTA
10
PRINTED IN U.S.A.
SALES OFFICES
o! 0UNITRDDE
DOMESTIC DISTRIBUTORS
ALABAMA
Hall-Mark / Huntsville
4739 Commercial Drive
Huntsville - 35805
205-837 -8700
ARIZONA
K ierulff Electronics
4134 East Wood Street
Phoenix - 85040
602-243-4101
Wyle Distribution Group
8155 North 24th Avenue
Phoenix - 85021
602-249-2232
CALIFORNIA - NORTHERN
Wyle Distribution Group
3000 Bowers Avenue
Santa Clara - 95051
408-727-2500
Kierulff Electronics
3969 E. Bayshore Road
Palo Alto - 94303
415-968-6292
Capacitor Sales
253 Polaris Avenue
Mountain View - 94043
415-964-8880
Components Plus
491 Macara Drive
Sunnyvale - 94086
408-732-0990
CALIFORNIA - SOUTHERN
Components Plus
17811 Skypark Circle
Irvine - 92714
714-754-0471
Kierulff Electronics
2585 Commerce Way
Los Angeles - 90040
213-725-0325
K ierulff Electronics
8797 Balboa Avenue
San Diego - 92123
714-278-2112
Wyle Distribution Group
124 Maryland Street
EI Segundo - 90245
213-322-8100
Kierulff Electronics
14101 Franklin Avenue
Tustin - 92680
714-731-5711
Wyle Distribution Group
17872 Cowan Avenue
Irvine - 92714
714-641-1600
Wyle Distribution Group
9525 Chesapeake Drive
San Diego - 92123
714-565-9171
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173· TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
COLORADO
Wyle Distribution Group
6777 East 50th Avenue
Commerce City - 80022
303-287-9611
Kierulff Electronics
10890 East 47th Street
Denver - 80239
303-371-6500
Bell Industries. Elec.
Dis!. Div.
8155 West 48th Avenue
Wheat ridge - 80033
303-424-1985
CONNECTICUT
Lionex Corp.
1 North Avenue
Burlington. MA 01803
617-272-9400
FLORIDA
Hall-Mark/Orlando
7233 Lake Ellenor Drive
Orlando - 32809
305-855-4020
Pioneer / Florida
6220 S. Orange Trail
Orlando - 32809
305-859-3600
K ierulff Electronics
3247 Tech Drive
St. Petersbu rg - 33702
813-576-1966
Hall-Mark/Miami
1671 West McNab Road
Fort Lauderdale - 33309
305-971-9280
ILLINOIS
Kierulff Electronics
1536 Landmeier Road
Elk Grove Village - 60007
312-860-3807
R M Electronics
47 Chestnut
Westmont - 60059
312-323-9670
Hall-Mark / Chicago
1177 Industrial Drive
Bensenville - 60106
312-860-3823
INDIANA
Pioneer / Indiana
6408 Castleplace Drive
Indianapolis - 46250
317-849-7300
11
RM Electronics
5545 W. Raymond Street
Suite K
Indianapolis - 46241
317-247-9701
KANSAS
Hall-Mark/Kansas City
11870 West 91st Street
Congleton Industrial Park
Shawnee Mission - 66214
913-888-4747
MARYLAND
Hall-Mark/Baltimore
6655 Amberton Drive
Baltimore - 21227
301-796-9300
MASSACHUSETTS
Lionex Corporation
1 North Avenue
Burlington - 01803
617-272-9400
Kierulff Electronics
13 Fortune Drive
Billerica - 01821
617-667-8331
MICHIGAN
Pioneer / Michigan
13485 Stanford
Livonia - 48150
313-525-1800
R M Electronics
4310 Roger B. Chaffee
Memorial Drive
Grand Rapids - 49508
616-531-9300
MINNESOTA
Hall-Mark / Minneapolis
9201 Penn Avenue South
Suite 10
81oomington - 55431
612-884-9056
I.C.1.
Industrial Components, Inc.
5280 W. 74th Street
Minneapolis - 55435
612-831-2666
Kierulff Electronics
5280 West 74th Street
Edina - 55435
612 -835-4388
MISSOURI
Hall-Mark/ S!. Louis
13789 Rider Trail
Earth City - 63045
314-291-5350
PRINTED IN U.S.A.
[ill]
SALES OFFICES
_UNITRDDE
DOMESTIC DISTRIBUTORS (Continued)
NEW JERSEY
Wilshire Electronics
1111 Paulison Avenue
Clifton - 07015
201-340-1900
Kierulff Electronics
3 Edison Place
Fairfield - 07006
201-575-6750
NEW MEXICO
Bell Industries
Elec. Dist. Div.
11728 Linn, N.E.
Albuquerque - 87123
505-292-2700
NEW YORK
Components Plus
40 Oser Avenue
Hauppauge - 11787
516-231-9200
Lionex Corporation
415 Crossways Park Drive
Woodbury - 11797
516-921-4414
NORTH CAROLINA
Hammond Electronics, Inc.
2923 Pacific Avenue
P.O. Box 21728
Greensboro - 27406
919-275-6391
Hall-Mark/Raleigh
1208 Front St. Bldg. K
Raleigh - 27609
919-832-4465
OHIO
Pioneer / Cleveland
4800 East 131st Street
Cleveland - 44105
216-587-3600
Hall-Mark/Columbus
6969 Worthington-Galena
Worthington - 43085
614-846-1882
Pioneer / Dayton
1900 Troy Street
Dayton - 45404
513-236-9900
OKLAHOMA
Hall-Mark/Tulsa
5460 S. 103rd E. Avenue
Tulsa - 74145
405-835-8458
TEXAS
Hall-Mark/Dallas
11333 Page Mill Road
Dallas - 75243
214-234-7300
Components Plus
13777 N. Central Expressway
Suite 210
Dallas - 75243
214-783-6060
Hall-Mark/Houston
8000 Westglen
Houston - 77063
713-781-6100
TEXAS
Lenert Co., Inc.
1420 Hutchins
P.O. Box 2184
Houston - 77001
713-225-1465
Hall-Mark/ Austin
10109 McKalia Place
Suite F
Austin - 78758
512-837-2814
UTAH
Bell Industries
Elec. Dist. Div.
3639 West 2150 South
Salt Lake City - 84120
BOl-972-6969
Kierulff Electronics
3695W 1987S
Salt Lake City - 84104
801-973-6913
WISCONSIN
Taylor Electric Co.
1000 W. Donges Bay Road
Mequon - 53092
414-241-4321
Hall-Mark/Milwaukee
9657 So. 20th Street
Oak Creek - 53154
414-761-3000
Kierulff Electronics
2212 East Moreland Avenue
Waukesha - 53186
414-784-8160
CANADA
Future Electronics, Inc. - Montreal
5647 Ferrier Street
Montreal. Quebec H4P 2K5
514-735-5775
Future Electronics, Inc. - Toronto
4800 Dufferin Street
Downsview, Ontario M3H 5S9
416-663-5563
Future Electronics, Inc.
1050 Baxter Road
Ottawa, Ontario K2C 3P2
613-820-9471
Future Electronics, Inc.
3070 Kingsway
Vancouver, B.C. V5R 5J7
604-438-5545
WASHINGTON
Kierulff Electronics
1005 Andover Park East
Tukwila - 98188
206-575-4420
Shannon, Ltd.
7030 South 188th Street
Kent - 98031
206-763-0545
503-643-5754
Wyle Distribution Group
1750 132nd Avenue N.E.
Bellevue - 9B005
206-453-8300
PENNSYLVANIA
Pioneer / Pittsburgh
560 Alpha Drive
Pittsburgh - 15238
412-782-2300
Hall-Mark/ Philadelphia
458 Pike Road
Huntingdon Valley - 19006
215-355-7300
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
12
PRiNTED IN U.S.A.
[ill]
SALES OFFICES
_UNITRODE
ADDENDUM TO DISTRIBUTOR LISTING
CALIFORNIA (San Francisco)
Arrow Electronics, Inc.
720 Palomar Avenue
Sunnyvale 94086
408-739-3011
General Dynamics (Pomonal
c/o Arrow Electronics, Inc.
1802 West 2nd Street
Pomona 91766
714-622-1271
General Dynamics (San Diego)
c/o Arrow Electronics, Inc.
9511 Ridgehaven Court
San Diego 92123
714-565-2925
CONNECTICUT
Arrow Electronics, Inc.
12 Beaumont Road
Wallingford 06492
203-265-7741
FLORIDA (North)
Arrow Electronics, Inc.
115 Palm Bay Road, N.W.
Bldg. 200
Palm Bay 32905
305-725-1480
FLORIDA (South)
Arrow Electronics, Inc.
1001 N.W. 62nd Street
Suite 108
Ft. Lauderdale 33309
305-776-7790
GEORGIA
Arrow Electronics, Inc.
2979 Pacific Drive
Norcross 30071
404-449-8252
MARYLAND
Arrow Electronics, Inc.
4801 Benson Avenue
Baltimore 21227
301-247-5200
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
MASSACHUSETTS
Arrow Electronics, Inc.
96D Commerce Way
Woburn 01801
617-933-8130
NEW HAMPSHIRE
Arrow Electronics, Inc.
1 Perimeter Drive
Manchester 03103
603-668-6968
NEW JERSEY (North)
Arrow Electronics, Inc.
285 Midland Avenue
Saddle Brook 07662
201-797-5800
NEW JERSEY (South)
Arrow Electronics, Inc.
Pleasant Valley Avenue
Moorestown 08057
215-928-1800
609-235-1900
NEW YORK (Metropolitan)
Arrow Electronics, Inc.
20 Oser Avenue
Hauppauge 11787
516-231-1000
NORTH CAROLINA
Arrow Electronics, Inc.
938 Burke Street
Winston-Salem 27102
919-721-1661
800-334-0421
919-725-8711
800-334-0422
PENNSYLVANIA
Arrow Electronics, Inc.
4297 Greensburg Pike
Suite 3114
Pittsburgh 15221
412-351-4000
TEXAS (Houston)
Arrow Electronics, Inc.
10700 Corporate Drive
Stafford 77477
713-491-4100
TEXAS (Dallas)
Arrow Electronics, Inc.
13715 Gamma Road
Dallas 75234
214-386-7500
NEW YORK (Syracuse)
Arrow Electronics, Inc.
7705 Maltlage Drive
Liverpool 13088
315-652-1000
NEW YORK (Rochester)
Arrow Electronics, Inc.
3000 South Winton Road
Rochester 14623
716-275-0300
13
PRINTED IN U.S.A.
SALES OFFICES
o! 0UNITRDDE
UNITRODE SALES OFFICES
Corporate International Sales Office, 5 Forbes Road, Lexington, MA 02173, Tel. (617) 861-6540, Telex 95-1064
Asian Regional Office, 15300 Ventura Boulevard, Suite 200, Sherman Oaks, CA 91403, Tel. (213) 783-1301,
TWX/Telex 910-495-1769
Unitrode Electronics GmbH, Haupstrasse 68, 8025 Unterhaching, W. Germany, Tel. 089/6190 04,
Telex 841-05-22-109
Unitrode (U.K.) limited, Deepdene House, Bellegrove Road, Welling, Kent DA163PY England, Tel. 01-301-2022,
Telex 896270
Unitrode (SARL pending) 76/78 Avenue Des Champs 75008 Paris, France Tel: 3596804 TELEX: 660364F
INTt:RNATIONAL AGENTS - DISTRIBUTORS
AUSTRIA
Rieger GmbH
Marxergasse 10
A-l030 Wien 3
Tel: (02221 73.46.84
TELEX: 847-131087
AUSTRALIA
Cema Electronics Pty. Ltd.
P.O. Box 578
Crows Nest, N.S.W. 2065
Tel: 419-2397
TELEX: 790-22846
BELGI!JM
J.P. LeMaire
Rampe Gauloise 1A
1020 Brussels
Tel: 02-478-48-47
TELEX: 846-24610
BRAZIL
Cosele Ltda.
Rua Da Consolacao, 867-Cj.31
01301 Sao Paulo
Tel: 257-3535, 258-4325
TELEX: 011-30869, CSEL BR
PEOPLES' REPUBLIC OF CHINA
Rikei H.K. Ltd.
14th Floor - Aurora House
57-59 Connaught Rd. C.
Hong Kong
Tel: 5-450511-4
TELEX: 780-86256
DENMARK
Ditz Schweitzer AI S
Vallensbaekvej 41
DK-2600 Glostrup
Tel: 45-2-453-044
TELEX: 855-33257
EASTERN EUROPE
Dahms Elektronik
A-8020 Graz
Viktor Franz Strasse 9
Austria
Tel: (03161 64.0.30
TELEX: 031099
FINLAND
Nores Oy
P.O. Box 889
SF-00101 Helsinki 10
Tel: 520-311
TELEX: 857-121676
UNITROOE CORPORATION' 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064
FRANCE
C.C.1.
(Comptoir Commercial D'importationi
42 Rue Etienne - Marcel
75081 Paris Cedex 02
Tel: 261-55-49
TELEX: 240835
Spetelec
Tour Europa Belle Epine
Europa III
94532 Rungis Cedex
Tel: 686.56.65
TELEX: 842-250801
GERMANY
Unitrode Electronics GmbH
Haupstrasse 68
8025 Unterhaching
Tel: 089/6190 04
TELEX: 841-0522109
EBV Elektronik GmbH
Oberweg 6
8025 Unterhaching/Munich
Tel. 011-49-611-05234
TELEX: 841-5212995
EBV Elektronik GmbH
Oststrasse 129
4 Duesseldorf
Tel: 211-84-84-6/7
TELEX: 841-8587267
EBV Elektronik GmbH
Myliustrasse 54
6 Frankfurtl Main 1
Tel: 611-72-04-16/18
TELEX: 841-413590
EBV Elektronik GmbH
Kiebitzrain 18
3006 Burgwedel 1
Tel: 05139/5038
TELEX: 841-0923694
EBV Elektronik GmbH
Alexanderstrasse 42
D-7 Stuttgart 1
Tel: 711/247481
TELEX: 841-0722271
Metronik GmbH
Kapellenstrasse 9
8025 Unterhaching
Tel: 089-6114063
TELEX: 841-0529524
14
Metronik GmbH
Am Oberen Luisenpark 2
6800 Mannheim 1
Tel: 0621-443067/68
TELEX: 841-0463654
Metronik GmbH
Vogelsgarten 1
8500 Nuremberg
Tel: 0911/468066-67
Frehsdorf KG
P.O. Box 1244
Rotdornweg 42
2085 Quickborn
Tel: 04106 - 71058
Telex: 841-213693
HONG KONG
Karin Electronic Supplies Co., Ltd.
Room 1319 Ocean Centre
Canton Road
Kowloon
Tel: 3-695321
TELEX: 85322
INDIA
Sujata Sales and Exports Ltd.
11-2 Bajaj Bhawan
Nariman Point
Bombay 400 021
Tel: 367001
TELEX: 011-3855
ISRAEL
S.T.G. International
10 Huberman Street
P.O. Box 1276
Tel-Aviv
Tel: 03-248231
TELEX: 922-32229
ITALY
Microelit,s.r.I.
Via P. Uccello, 8
20148 Milano
Tel: (021 46.90.444
TELEX: 334-284 MICROIT
JAPAN
Rikei Corporation
Shinjuku Nomura Bldg.
1-26-2 Nishi-Shinjuku, Shinjuku-Ku
Tokyo 160
Tel: Tokyo (031345-1411
TELEX: J24208, J23772
Cable Address: "RIKEIGOOD" Tokyo
PRINTeD IN U.S.A.
SALES OFFICES
o! 0UNITRDDE
INTERNATIONAL AGENTS - DISTRIBUTORS (Continued)
KOREA IR.O.K.I
Duksung Trading Co.
RM508 Sindo Bldg,
65-4 2KA Chungmuro
Seoul
Tel: 777-2325
TELEX: K26453 NAMSTRA
NORWAY
Neco A/S
Stanseveien 4
P.O. Box 81, Ovre Grorud
Oslo
Tel: 25-93-10
TELEX: 856-19247
NETHERLANDS
SINGAPORE
Koning en Hartman Elektrotechniek B,V, Technics
P.O. Box 43220
Unit 1033 Blk 1
2504 AE The Hague
10th Floor- PSA Multi-Storey Complex
Tel: 21-01-01
Pasir Panjang Road
Tel: 372-454
TELEX: 844-31528
TELEX: RS22047
NEW ZEALAND
SOUTH AFRICA
Professional Electronics, ltd,
Electrolink (Pty.1 ltd.
22 A Milford
P.O. Box 1020
Auckland
Cape Town 8000
Tel: 493-029, 499-448
Tel: 45-7656/7
TELEX: NZ21084
TELEX: 960-577320
Electrolink (Pty.1 Ltd.
P.O. Box 33533
Jeppestown
Transvaal
2043
Tel: 618-1027
UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
15
SWEDEN
AB Betoma
Box 3005
S-171 03 Solna
Tel: 08-82-0280
TELEX: 854-19389
SWITZERLAND
Stolz AG
8ellikronerstrasse 218
8968 Mutschellen
Tel: 05754655
TELEX: 845-54070
TAIWAN
Headtrade International Inc.
Division of Pacific Hermes
5th Floor No. 820
Ming-Sheng East Road, Taipei
Tel: (021721-8355
TELEX: 785-21795
UNITED KINGDOM
Unitrode (U.K.I Limited
Deepdene House, Bellegrove Road
Welling, Kent
DA163PY England
Tel: 01-301-2022
TELEX: 896270
PRINTED IN U.S.A.
16
SALES OFFICES
PART NUMBER INDEX
DESIGNERS' GUIDES
-
POWER TRANSISTORS & DARLINGTONS
III
IV .
SWITCHING REGULATOR POWER CIRCUITS
V
RECTIFIERS
VI
HIGH VOLTAGE RECTIFIERS, RECTIFIER
MODULES & MULTIPLIERS
VII
RECTIFIER BRIDGE ASSEMBLIES
VIII'
POWER ZENERS & TRANSIENT VOLTAGE SUPPRESSORS
IX
THYRISTORS (SCRs, Triacs, PUTs)
X,
SWITCHING & GENERAL PURPOSE DIODES
XI'
PIN DIODES
XIII
CAPACITORS
xliii
APPLICATION NOTES & DESIGN NOTES
XI~
MECHANICAL SPECIFICATIONS
X~
17
i
i
18
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
PART NUMBER INDEX
PAGE
DESCRIPTION
PART NUMBER
PAGE
PART NUMBER
RECTIFIER
DIODE
622
IN456
IN456A
IN457,J
IN457A
IN458, J
IN458A
IN459, J
IN459A
IN483
IN483A
IN4838, J, JTX
IN483C
IN485
I N485B, J, JTX
90mA; 25V
75mA; 60V
55mA; 125V; 00-7
40mA; 175V
55mA; 150V; 00-7
100mA; 150V
40mA; 200V; 00-7
100mA; 200V
100mA; 70V
100mA; 70V
200mA; 80V; 00-7
100mA; 70V
100mA; 180V
200mA; 200V; 00-7
624
624
IN645J, JTX
IN645-lJ, JTX, JTXV
400mA; 270V
400mA; 270V
620
·•
620
620
*
620
*
•
*
622
•
•
·
*
628
630
632
634
IN4245,
IN4246,
IN4247,
IN4248,
1N4249,
638
IN4305
J,
J,
J,
J,
J,
JTX,
JTX,
JTX,
JTX,
JTX,
JTXV
JTXV
JTXV
JTXV
JTXV
•
IN4321
75mA; 100V
75mA; 100V
75mA; 100V
75mA; 75V; 00-7
200mA; 200V; 00-35
150mA; 150V; 00-7
200mA; 75V; 00-7
*
*
*
IN3611, J, JTX
IN3612, J, JTX
IN3613, J, JTX
IN3614, J, JTX
IN3643 (HVDO)
IN3644 (HVE15)
IN3645 (HVE20)
IN3646 (HVE25)
IN3647 (HVE30)
IN3656
IN3657
IN3658
IN3764
231
231
231
231
231
IN3909,
IN391O,
IN3911,
1N3912,
IN3913,
IN3957
IN3981
IN3982
IN3983
*
*
·
*
l.OA; 200V
l.OA; 400V
l.OA; 600V
l.OA; 800V
l.OkV
l.5kV
2.0kV
2.5kV
3.0kV
0.75A; 200V
0.75A; 400V
0.75A; 600V
638
636
636
636
636
642
642
644
642
628
628
IN4444
IN4446
IN4447
IN4448
IN4449
IN4450
IN4451
IN4452
IN4453
IN4454,J, JTX,JTXV
IN4454-1,J,JTX,JTXV
486
IN4461-1N4496, J,
JTX, JTXV
626
626
636
634
634
636
638
640
IN4148, J, JTX, JTXV
IN4148-lJ, JTX, JTXV
IN4149
IN4150, J, JTX, JTXV
IN4150-lJ, JTX, JTXV
IN4151
IN4152
IN4153, J, JTX, JTXV
IN4153-1, J, JTX, JTXV
IN4154
•
IN4500, J, JTX
IN4607
499
1N4883-1 N4884
235
235
235
IN4942,J,JTX,JTXV
IN4944, J, JTX, JTXV
IN4946, J, JTX, JTXV
488
IN4954-1N4995, J,
JTX, JTXV
IN4996
IN5063-1N5117
IN5118-1N5134
5.0W;
5.0W;
3.0W;
5.0W;
IN5180
IN5181 (HVE40l
IN5182 (HVE50)
IN5183 (HVE75)
IN5184 (HVEIOO)
IN5185
IN5186, J, JTX
IN5187, J, JTX
IN5188, J, JTX
IN5190, J, JTX
IN5207
IN5320
IN5330
IN5415, J, JTX, JTXV
IN5416, J, JTX, JTXV
IN5417, J, JTX, JTXV
IN5418, J, JTX, JTXV
IN5419,J,JTX,JTXV
IN5420,J, JTX, JTXV
IN5433
IN5434
IN5435
4.0A; 100V
4.0kV
5.0kV
7.5kV
IOkV
3.0A; 60V
3.0A; 100V
3.0A; 200V
3.0A; 400V
3.0A; 600V
4.0A; 400V
l.OA; 120V
0.5A; 1500V
3A; 50V
3A; 100V
3A;200V
3A;400V
3A; 500V
3A;600V
2.0A; 700V
2.0A; 700V
12.0A; 700V
•
366
366
366
366
*
237
237
237
237
*
*
*
COMPUTER DIODE
636
l.5W; 5%
646
644
488
499
503
3.0W; 5%
200mA;
150mA;
200mA;
200mA;
200mA;
200mA;
200mA;
150mA;
150mA;
200mA;
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
300mA; 80V; 00-35
400mA; 85V; 00-35
3.0W; 5%
l.OA; 200V
l.OA; 400V
l.OA; 600V
ZENER
ZENER
IN4096-IN4098
70V;
75V;
75V;
75V;
75V;
40V;
40V;
40V;
30V;
75V;
75V;
RECTIFIER
30A; 50V; 00-5
30A; 100V; 00-5
30A; 200V; 00-5
30A; 300V; 00-5
30A; 400V; 00-5
l.OA; 1000V
2.0A; 200V
2.0A; 400V
2.0A; 600V
499
200mA;
200mA;
200mA;
200mA;
200mA;
200mA;
200mA;
400mA;
200mA;
200mA;
200mA;
ZENER
3kV
JTX
JTX
JTX
JTX
JTX
l.OW; 10%
COMPUTER DIODE
RECTIFIER
J,
J,
J,
J,
J,
200mA; 75V; 00-35
ZENER
RECTIFIER MODULE
*
200V
400V
600V
800V
1000V
COMPUTER DIODE
RECTIFIER
229
229
229
229
366
366
366
366
366
l.OA;
l.OA;
l.OA;
l.OA;
l.OA;
ZENER
COMPUTER DIODE
IN914, J, JTX
IN914-1, A, B
IN916, B
IN3064J, JTX
IN3070
IN3595, J, JTX, JTXV
I N3600J, JTX, JTXV
233
233
233
233
233
COMPUTER DIODE
RECTIFIER
626
DESCRIPTION
100V; 00-35
100V; 00-35
75V; 00-35
75V; 00-35
75V; 00-35
75V; 00-35
40V; 00-35
75V; 00-35
75V; 00-35
35V; 00-35
239
239
239
239
239
239
*
*
•
5%
5%
5%
5%
RECTIFIER
·Contact Unit rode for specifications and ratings.
Legend, J -
JAN
JTX -
JANTX
JTXV -
JANTXV
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
19
PRINTED IN U.S.A
PART NUMBER INDEX
PART NUMBER
PAGE
DESCRIPTION
PAGE
1N5550, J,
1N5551, J,
1N5552, J,
1N5553, J,
357
357
357
1N5597, J
1N5600, J
1N5603, J
JTX,JTXV
JTX, JTXV
JTX, JTXV
JTX, JTXV
•
5.0A;200V
5.0A; 400V
5.0A; 600V
5.0A; 800V
*
*
*
*
*
RECTIFIER MODULE
lOkV
*
5kV
5kV
*
*
*
*
*
TRANSIENT VOLTAGE
SUPPRESSOR
490
490
490
490
IN561O,
1N5611,
IN5612,
1N5613,
J,
J,
J,
J,
JTX
JTX
JTX
JTX
33V
43.7V
54V
191V
•
•
*
*
*
RECTIFIER
243
245
243
245
243
245
243
lN56l4,
lN56l5,
lN5616,
IN5617,
IN5618,
IN5619,
IN5620,
653
IN5767
J,
J,
J,
J,
J,
J,
J,
JTX, JTXV
JTX, JTXV
JTX, JTXV
JTX,JTXV
JTX, JTXV
JTX, )TXV
JTX, JTXV
l.OA;
l.OA;
l.OA;
l.OA;
1.0A;
1.0A;
l.OA;
200V
200V
400V
400V
600V
600V
800V
•*
*
•
*
•
PIN DIODE
247
251
247
247
251
247
247
251
247
251
247
247
251
247
247
251
247
254
247
247
254
247
247
254
IN5802
IN5802,
IN5803
IN5804
lN5804,
IN5805
IN5806
IN5806,
IN5807
IN5807,
IN5808
IN5809
lN5809,
IN5810
lN5811
IN5811,
IN5812
lN5812,
IN5813
lN5814
IN58l4,
IN5815
IN5816
lN5816,
653
IN5957
J, JTX, JTXV
J, JTX, JTXV
J, JTX, JTXV
J, JTX, JTXV
J, JTX, JTXV
J, JTX, JTXV
J, JTX, JTXV
J, JTX, JTXV
•
•
•
•
*
2NI720
NPN; O.75A;60V; TO-5;
•
2NI721
NPN; O.75A; lOOV; TO-5
*
•*
30V;
40V;
30V;
40V;
Stud Mount
Stud Mount
Stud Mount
Stud Mount
SCR
*
518
518
518
518
518
522
522
522
522
522
522
524
524
524
524
524
Low Distortion, AGe Diode
2N876
2N877
2N878
2N879
2N880
NPN; O.75A; 100V; TO-5;
•
00-4
00-4
00-5
00-5
•
*
*
SCR
*
2NI719
2.5A; 50V
2.5A; 50V
2.5A; 75V
2.5A; IOOV
2.5A; IOOV
2.5A; 125V
2.5A; 150V
2.5A; 150V
6.0A; 50Y
6.0A; 50V
6.0A; 75V
6.0A; 100V
6.0A; 100V
6.0A; 125V
6.0A; 150V
6.0A; 150V
20.0A; 50V; 00-4
20.0A; 50V; 00-4
20.0A; 75V; 00-4
20.0A; lOOV; 00-4
20.0A; lOOV; 00-4
20.0A; 125V; 00-4
20.0A; 150V; 00-4
20.0A; I50V: 00-4
25A;
25A;
50A;
50A;
POWER TRANSISTOR
*
*
SCHOTTKY RECTIFIER
IN6095
IN6096
lN6097
IN6098
.35A 100·e 300V;TO-18
.35A@lOO·C 400V;TO-18
.35A@100·e 15V; TO-I8
.35A@100·e 30V; TO-18
.35A@100·e 60V; TO-18
.35A@IOO·e 100V;lO-18
.35A@100·e 150V;TO-18
.35A~100·e 200V;lO-18
.35A 100·C 300V;TO-18
.35A@100oe400V;TO-18
.26A@125°e 30V;TO-18
.26A@125·C 60V;TO-18
.26A@125·e lOOV;lO-18
.26A@125°e 200V;TO-18
1.0A@80·C 50V; TO-39
l.OA@80·e IOOV; TO-39
l.OA@80·C 200V; TO-39
1.0A@80·C 300V; TO-39
l.OA@80·e400V; TO-39
NPN; 3.0A; 60V; TO-59
NPN; 3.0A; 80V; TO-59
NPN; 3.0A; 60V; TO-59
NPN; 3.0A; 80V; TO-59
NPN; O.75A; 60V; TO-5
NPN; O.75A; 100V; TO-5
NPN; 0.75A; 60V; TO-5
NPN; 0.75A; 100V; TO-5
NPN; 0.75A; 60V; TO-5
RECTIFIER
PIN DIODE
256
256
258
258
.35A~100·C 200V; TOcl8
2N881
2N882
2N883
2N884
2N885
2N886
2N887
2N888
2N889
2N890
2N89I
2N948
2N949
2N950
2N95I
2N1595
2Nl596
2N1597
2Nl598
2Nl599
2NI647
2Nl648
2Nl649
2Nl650
2NI714
2NI715
2Nl716
2Nl717
2Nl718
*
General Purpose, PIN
J, JTX, JTXV
DESCRIPTION
SCR
RECTIFIER
241
241
241
241
PART NUMBER
.35A@100·e 15V; TO-18
.35A~100·e 30V; TO-18
.35A 100·e 60V; TO-18
.35A@100·e 100V; TO-18
.35A@100·C 150V; TO-18
*
•
*
2N1869
2N1870A,
2N1871A,
2N1872A,
2Nl873A
2N1874A,
2Nl875
2N1876
2Nl877
2N1878
2N1879
2N1880
2Nl881
2N1882
2N1883
2N1884
2N1885
2N2009
2N2010
2N2011
2N2012
2N2013
2N2014
J
J
J
J
• 2N2l50
54 2N2151, J, JTX
1.25A@100·C 15V; TO-9
1.25A@100·C 30V; TO-9
1.25A@100·C 60V; TO-9
1.25A@100·C 100V; TO-9
1.25A@100'C 150V; TO-9
1.25A@100'C 200V; TO-9
1.25A@lOO·C 15V; TO-9
1.25A@100'C 30V; TO-9
1.25A@100'C60V; TO-9
1.25A@100'C 100V; TO-9
1.25A@lOO·C 150V; TO-9
1.25A@lOO·C 200V; TO-9
1.0A@100·C30V; TO-9
l.OA@100'C60V; TO-9
l.OA@100'C lOOV; TO-9
l.OA@100'C 150V; TO-9
1.0A@100·C 200V; TO-9
1.3A@80·C 25V; TO-39
1.3A@80'C 50V; TO-39
1.3A@80·C 100V; TO-39
l.3A@80'C 200V; TO-39
l.3A@80'C 300V; TO-39
'l.3A@80·C 400V; TO-39
POWER TRANSISTOR
NPN; 2.0A; 80V; TO-59
NPN; 2.0A; 80V; TO-59
'Contact Unitrode for specifications and ratings.
legend, J -
JAN
JTX - JANTX
JTXV -
JANTXV
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064
20
PRINTED IN U.S.A.
PART NUMBER INDEX
PAGE
DESCRI PTiON
PART NUMBER
PAGE
526
526
526
526
526
526
526
526
526
526
526
526
526
526
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
58
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
2N2322
2N2323, J, JTX, JTXV
2N2323A, J, JTX, JTXV
2N2324, J, JTX, JTXV
2N2324A, J, JTX, JTXV
2N2325
2N2325A
2N2326, J, JTX, JTXV
2N2326A, J,JTX, JTXV
2N2327
2N2327A
2N232S, J, JTX, JTXV
2N232SA, J, JTX, JTXV
2N2329, J, JTX, JTXV
2N2344
2N2345
2N2346
2N2347
2N2348
SCR
l.6A@85OC
l.6A@S5°C
l.6A@S5°C
l.6A@S5°C
l.6A@S5°C
l.6A@S5°C
l.6A@85°C
l.6A@S5°C
l.6A@S5°C
l.6A@85°C
l.6A@85°C
l.6A@85°C
l.6A@85°C
l.6A@85°C
l.6A@55°C
l.6A@55°C
l.6A@55°C
l.6A@55°C
l.6A@55°C
529
529
529
529
529
529
25V; TO-39
50V; TO-5
50V; TO-5
lOOV; TO-5
lOOV; TO-5
150V; TO-39
150V; TO-39.
200V; TO-5
200V; TO-5
250V; TO-39
250V; TO-39
300V; TO-5
300V; TO-5
400V; TO-5
25V; TO-39
50V; TO-39
lOOV; TO-39
150V; TO-39
200V; TO-39
*
*
*
*
62
62
62
62
*
*
*
*
*
POWER TRANSISTOR
NPN; 5.0A; 60V; TO-5
NPN; 5.0A; 80V; TO-5
2N2657
2N265S
*
*
SCR
.35A@55°C30V; TO-18
.35A@55°C 60V; TO-IS
.35A@55°C 100V; TO-IS
.35A@55°C 200V; TO-IS
.2SA@55°C 30V; TO-IS
.28A@55°C60V; TO-18
.2SA@55°C 100V; TO-IS
.2SA@55°C 200V; TO-IS
.28A@55°C 30V; TO-IS
.28A@55°C 60V; TO-IS
.2SA@55°C lOOV; TO-IS
2SA@55°C 200V; TO-IS
2N2679
2N2680
2N26S1
2N26S2
2N2683
2N26S4
2N26S5
2N2686
2N2687
2N26SS
2N26S9
2N2690
*
*
*
*
*
*
*
*
*
*
*
POWER TRANSISTOR
2N2S5S
2N2859
2N2S77,2N2S7S
2N2879
2N2SS0, J, JTX, JTXV
2N2890,2N2S91
2N2892,2N2893
2N29S3
2N29S4
2N29S5
2N2986
2N29S7
2N29SS
2N29S9
2N2990
2N2991
2N2992
2N2993
2N2994, 2N2995
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
5S
3A; 80V; TO-5
3A; lOOV; TO-5
5A;80V;TO-lll
5A; lOOV; TO-Ill
5.0A; SOY; TO-59
5A; SOY; TO-5
5A; SOY; TO-59
3A; SOY; TO-5
3A; 120V; TO-5
3A; 80V; TO-5
3A; 120V; TO-5
lA; SOY; TO-5
lA; 100V; TO-5
lA; 80V; TO-5
lA; lOOV; TO-5
1A; SOY; TO-5 Stud
lA; lOOV; TO-5 Stud
1A; 80V; TO-5 Stud
lA; lOOV; TO-5 Stud
*
*
*
*
*
*
*
66
66
66
66
*
*
*
*
*
*
*
*
*
*
SCR
.25A@55°C 30V; TO-IS
.25A@55°C60V; TO-IS
.25A@55°C 100V; TO-IS
.25A@55°C 200V; TO-IS
.25A@55°C 30V; TO-IS
.25A@55°C 60V; TO-IS
.25A@55°C 100V; TO-IS
.25A@55'C 200V; TO-IS
2N3001
2N3002
2N3003
2N3004
2N3005
2N3006
2N3007
2N300S
DESCRIPTION
PART NUMBER
SCR
*
*
*
*
2N3027,
2N302S,
2N3029,
2N3030,
2N3031,
2N3032,
2N3273
2N3274
2N3275
2N3276
J,
J,
J,
J,
J,
J,
JTX
JTX
JTX
JTX
JTX
JTX
2N341S,
2N3419,
2N3420,
2N3421,
2N3445
2N3446
2N3447
2N344S
2N3469
J,
J,
J,
J,
JTX,
JTX,
JTX,
JTX,
500mA@100'C 30V; TO-IS
500mA@100°C 60V; TO-IS
500mA@100°C 100V;TO·lS
.5A@100°C 30V; TO·lS
.5A@100°C 60V; TO-IS
.5A@100°C 100V; TO-IS
2.2A@S5°C 100V; TO-39
2.2A@S5°C 200V; TO-39
2.2A@S5°C 300V; TO-39
2.2A@S5°C 400V; TO-39
POWER TRANSISTOR
JTXV
JTXV
JTXV
JTXV
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
3.0A;
3.0A;
3.0A;
3.0A;
7.5A;
7.5A;
7.5A;
7.5A;
5.0A;
60V;
SOY;
60V;
SOY;
60V;
SOY;
60V;
SOY;
25V;
TO-5
TO-5
TO-5
TO-5
TO-3
TO-3
TO-3
TO-3
TO-5
SCR
l.6A;
l.6A;
l.6A;
1.6A;
l.6A;
1.6A;
1.6A;
l.6A;
2N3555
2N3556
2N3557
2N355S
2N3559
2N3560
2N3561
2N3562
30V; TO-39
60V; TO-39
100V; TO-39
200V; TO-39
30V; TO-39
60V; TO-39
100V; TO-39
200V; TO-39
POWER TRANSISTOR
2N3744
2N3745
2N3746
2N3747
2N374S
2N3749,
2N3750
2N3751
2N3752
2N3S50
2N3S51
2N3S52
2N3S53
2N3996,
2N3997,
2N399S,
2N3999,
2N4000
2N4001
2N4070
2N4075
2N4076
J, JTX, JTXV
J,
J,
J,
J,
JTX,
JTX,
JTX,
JTX,
JTXV
JTXV
JTXV
JTXV
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
5.0A; 40V; TO-Ill
5.0A; 60V; TO-Ill
5.0A; SOY; TO-Ill
5.0A; 40V; TO-Ill
5.0A; 60V; TO-Ill
5.0A; SOY; TO-Ill
5.0A; 40V; TO-Ill
5.0A; 60V; TO-Ill
5.0A; SOY; TO-Ill
5.0A; SOY; TO-59
5.0A; SOY; TO-59
5.0A; 40V; TO-59
5.0A; 40V; TO-59
5.0A; SOY; TO-Ill
5.0A; SOY; TO-111
5.0A; SOY; TO-59
5.0A; SOY; TO-59
l.OA; SOY; TO-5
l. OA; 100V; TO-5
10.0A; lOOV; TO-3
3.0A; SOY; TO-Ill
3.0A; SOY; TO-111
SCR
2N41OS
2N4109
2N411O
2N4144
2N4145
2N4146
2N4147
2N4148
2N4149
lS0mA@25°C 50V; TO-18
lSOmA@25°C lOOV; TO-IS
lS0mA@25°C 200V; TO-IS
250mA@75°C 15V; TO-IS
250mA@75°C 30V; TO-IS
250mA@75°C 60V; TO-IS
250mA@75°C 100V; TO-IS
250mA@75°C 150V; TO-IS
250mA@75°C 200V; TO-IS
·Contact Unitrode for specifications and ratings.
Legend: J -
JAN
JTX -
JANTX
JTXV -
JANTXV
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
21
PRINTED IN
u.s
A.
PART NUMBER INDEX
' PART NUMBER
PAGE
DESCRIPTION
PAGE
PART NUMBER
POWER TRANSISTOR
70
PUT
NPN; 1O.OA; 70V; TO-5
2N4l50, J, JTX, JTXV
543
SCR
*
*
•
*
*
*
*
*
*
*
74
74
2N42l2
2N42l3
2N42l4
2N42l5
2N42l6
2N42l7
2N42l8
.2N42l9
•
•
1.0A@85'C25V; TO-39
1.0A@85'C 50V; TO-39
1.0A@85'C 100V; TO-39
1.0A@85'C l50V; TO-39
l.OA@85'C200V; TO-39
1.0A@85'C 250V; TO-39
1.0A@85'C300V; TO-39
1.OA@85'C400V; TO-39
NPN;
NPN;
NPN;
NPN;
l.OA
2.0A
20.0A;150V; TO-3
20.0A; l20V; TO-3
2N5060
2N506l
2N5062
2N5063
2N5064
0.8A@70'C 30V; TO-92
0.8A@70'C 60V; TO-92
0,8A@70'C 100V; TO-92
0.8A@70'C l50V; TO-92
0.8A@70'C 200V; TO-92
78
2N5074-2N5075
2N5076-2N5077
2N5334
2N5335
2N5336-2N5337
2N5338,2N5339
2N5346, 2N5347
2N5348, 2N5349
2N5477,2N5478
2N5479, 2N5480
2N5487
78
78
78
2N5487-l
2N5487-3
2N5488
78
78
81
81
83
83
85
85
85
85
90
90
90
90
95
95
2N5488-l
2N5488-3
2N5552
2N5552-4
2N5658
2N5659
2N5660, J,
2N566l, J,
2N5662, J,
2N5663, J,
2N5664, J,
2N5665, J,
2N5666, J,
2N5667, J,
2N567l
2N5672
•
•
•
•
•*
•
•*
2N5838
2N5839
2N5840
103
103
2N6232
2N6232-4
2N6233
2N6234
2N6235
2N6249
2N6250
2N625l
2N6306
2N6307
2N6308
•
•
•
PUT
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
IDA; 100V;TO-5
IDA; 100V; TO-5 Stud
5A; 225V; TO-66
5A; 275V; TO-66
5A; 325V; TO-66
IDA; 300V; TO-3
lOA; 375V; TO-3
lOA; 450V; TO-3
8.0A; 500V; TO-3
8.0A; 600V; TO-3
8.0A; 700V; TO-3
2N6332
2N6333
2N6334
2N6335
2N6336
2N6337
2,OA@80'C30V; TO-39
2.0A@80'C 50V; TO-39
2.0A@80'C 100V; TO-39
2.0A@80'C 200V; TO-39
2.0A@80'C 300V; TO-39
2.0A@80'C400V; TO-39
POWER DARLINGTON
113
113
113
113
118
118
122
122
122
122
122
126
126
130
130
134
134
555
555
2N6350, J, JTX
2N635l, J, JTX
2N6352, J, JTX
2N6353,J, JTX
2N6354
2N6496
2N65l0
2N6511
2N6512
2N65l3
2N6514
2N6542
2N6543
2N6544
2N6545
2N6546
2N6547
2N6564
2N6565
557
557
557
557
557
2N668l (IP200)
2N6682 (lP202)
2N6683 (lP204)
2N6684 (IP206)
2N6685 (lP208)
3L10l5
3L1030
3L1060
3L1100
3L20l5
3L2030
3L2060
3L2l00
NPN; 1O.OA; 80V; TO-33
NPN; 1O.OA; l50V; TO-33
NPN; 1O.OA; 80V; TO-66
NPN; 10.OA; l50V; TO-66
NPN; 1O.OA; l50V; TO-3
NPN; l5.0A; l50V; TO-3
NPN; 7.0A; 250V; TO-3
NPN; 7.0A; 300V; TO-3
NPN; 7.0A; 350V; TO-3
NPN; 7.0A; 400V; TO-3
NPN; 7.0A; 350V; TO-3
NPN; 5A; 650V; TO-3
NPN; 5A; 850V; TO-3
NPN; 8.0A; 650V; TO-3
NPN; 8.0A; 850V; TO-3
NPN; 15A; 650V; TO-3
NPN; l5A; 850V; TO-3
0.8A@70'C 300V; TO-92
0.8A@70'C 400V; TO-92
SCR
•
•
•*
•
•
•
POWER TRANSISTOR
99
99
99
400mW@25'C40V; TO-18
400mW@25'C40V; TO-18
400mW@25'C 40V; TO-18
SCR
1.6A@85'C 60V; TO-39
1.6A@85'C 100V; TO-39
1.6A@85'C 200V; TO-39
1.6A@85'C 300V; TO-39
l.6A@85'C400V; TO-39
2N5724
2N5725
2N5726
2N5727
2N5728
2N6119
2N6120
2N6l37, 2N6l38, J, JTX
*
*
*
SCR
539
539
539
539
539
547
547
551
•
•
NPN;3A;200V;TO-59
NPN; 3A; 250V; TO-59
NPN; 3A; 60V; TO-39
NPN; 3A; 80V; TO-39
NPN; 5A; 80V; TO-39
NPN; 5A; 100V; TO-39
NPN;7A;80V;TO-59
NPN; 7A; 100V; TO-59
NPN; 7A; 80V; TO-59
NPN; 7A; 100V; TO-59
NPN; 5A; 80V; TO-5
Low Profile
NPN; 5A; 80V; TO-5
NPN; 5A; 80V; TO-5 Stud
NPN; 5A; 100V;
TO-5 Low Profile
NPN; 5A; 100V; TO-5
NPN; 5A; 100V; TO-5 Stud
NPN; IDA; 80V; TO-5
NPN; lOA; 80V; TO-5 Stud
NPN; 20A; 80V; TO-59
NPN; 20A; 80V; TO-lll
NPN; 3A; 200V;JO-66
NPN; 3A;. 300V; TO-66
NPN; 3A; 200V; TO-5
NPN; 3A; 300V; TO-5
NPN; 5A; 200V; TO-66
NPN; 5A; 300V; TO-66
NPN; 5A; 200V; TO-5
NPN; 5A;300V;TO-5
NPN; 30A; l20V; TO-3
NPN; 30A; 150V; TO-3
JTX, JTXV
JTX, JTXV
JTX, JTXV
JTX, JTXV
JTX, JTXV
JTX, JTXV
JTX, JTXV
JTX, JTXV
POWER TRANSISTOR
NPN; 7A;300V;TO-66
NPN; 7A; 275V; TO-66
105
105
105
109
109
109
POWER TRANSISTOR
*
375mW@25'C 40V; TO-92
2N6077
2N6078
*
SCR
535
535
535
535
535
2N6027,2N6028
POWER TRANSISTOR
POWER TRANSISTOR
2N4237-2N4239
2N4300
2N5038, J, JTX, JTXV
2N5039, J, JTX, JTXV
DESCRIPTION
*
NPN; 3A; 275V; TO-3
NPN; 3A; 300V; TO-3
NPN; 3A; 375V; TO-3
lA; 100V; TO-92
lA; 200V; TO-92
lA; 400V; TO-92
lA; 600V; TO-92
lA;800V;TO-92
0.5A@75'C 15V; TO-18
0,5A@75'C 30V; TO-18
0.5A@75'C 60V; TO-18
0.5A@75'C 100V; TO-18
0.5A@100'C l5V; TO-18
0.5A@100'C30V; TO-18
0.5A@100'C 60V; TO-18
0.5A@100'C 100V; TO-18
·Contact Unitrode for specifications and ratings.
Legend: J -
JAN
JTX -
JANTX
JTXV -
JANTXV
UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326'6509 • TELEX 95-1064
22
PRINTED IN U.S.A.
PART NUMBER INDEX
PART NUMBER
PAGE
DESCRIPTION
PAGE
PART NUMBER
FULL WAVE BRIDGE
431
431
431
433
433
433
435
435
435
435
435
435
437
437
437
437
437
437
437
437
435
435
435
435
435
435
437
437
437
437
437
437
437
437
440
440
440
440
440
440
443
443
443
443
443
443
443
443
443
443
443
443
469-1, J, JTX
469-2, J, JTX
469-3, J, JTX
483-IJTX
483-2JTX
483-3JTX
673-1
673-2
673-3
673-4
673-5
673-6
673-7
673-7.5
673-8
673-8.5
673-9
673-10
673-11
673-12
676-1
676-2
676-3
676-4
676-5
676-6
676-12
676-18
676-24
676-30
676-36
676-42
676-48
676-50
678-1
678-2
678-3
678-4
678-5
678-6
679-1
679-2
679-3
679-4
679-5
679-6
680-1
680-2
680-3
680-4
680-5
680-6
FULL WAVE BRIDGE
1 ph; lOA; 200V
1 ph; lOA; 400V
1 ph; lOA; 600V
3 ph; 25.0A; 200V
3 ph; 25.0A; 400V
3 ph; 25.0A; 600V
1 ph; 1.5A; 100V
1 ph; 1.5A; 200V
1 ph; 1. 5A; 300V
1 ph; 1.5A; 400V
1 ph; 1.5A; 500V
1 ph; 1.5A; 600V
1 ph; H.V.; 1200V
1 ph; H.V.; 1800V
1 ph; H.V.; 2400V
1 ph; H.V.; 3000V
1 ph; H.V.; 3600V
1 ph; H.V.; 4200V
1 ph; H.V.; 4800V
1 ph; H.V.; 5000V
1 ph; LOA; 100V
1 ph; LOA; 200V
1 ph; LOA; 300V
1 ph; l.OA; 400V
1 ph; l.OA; 500V
1 ph; l.OA; 600V
1 ph; H.V.; 1200V
1 ph; H.V.; 1800V
1 ph; H.V.; 2400V
1 ph; H.V.; 3000V
1 ph; H.V.; 3600V
1 ph; H.V.; 4200V
1 ph; H.V.; 4800V
1 ph; H.V.; 5000V
3 ph; 25A; 100V
3 ph; 25A; 200V
3 ph; 25A; 300V
3 ph; 25A; 400V
3 ph; 25A; 500V
3 ph; 25A; 600V
1 ph; 25A; 100V
1 ph; 25A; 200V
1 ph; 25A; 300V
1 ph; 25A; 400V
1 ph; 25A; 500V
1 ph; 25A; 600V
1 ph; lOA; 100V
1 ph; lOA; 200V
1 ph; lOA; 300V
1 ph; lOA; 400V
1 ph; lOA; 500V
1 ph; lOA; 600V
440
440
440
440
682-1
682-2
682-3
682-4
FULL WAVE BRIDGE
20A;
20A;
20A;
20A;
360
360
360
360
360
360
688-10
688-12
688-15
688-18
688-20
688-25
3 ph;
3 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
20A; 500V
20A; 600V
20A; lOOV
20A; 200V
20A; 300V
20A; 400V
20A; 500V
20A; 600V
lOA; 100V
lOA; 200V
lOA; 300V
lOA; 400V
lOA; 500V
lOA; 600V
lOkV
12kV
15kV
18kV
20kV
25kV
446
446
446
446
446
446
689-1
689-2
689-3
689-4
689-5
689-6
440
440
440
440
440
440
440
440
440
440
440
440
448
448
448
448
448
448
448
448
448
448
448
448
450
450
450
450
450
450
450
450
450
450
695-1
695-2
695-3
695-4
695-5
695-6
696-1
696-2
696-3
696-4
696-5
696-6
697-1
697-2
697-3
697-4
697-5
697-6
698-1
698-2
698-3
698-4
698-5
698-6
700-1
700-2
700-3
700-4
700-5
700-6
701-1
701-2
701-3
701-4
15A; 100V
15A; 200V
15A; 300V
15A;400V
15A; 500V
15A; 600V
FULL WAVE BRIDGE
15A; 100V
15A; 200V
15A; 300V
15A;400V
15A; 500V
15A; 600V
3 ph;
3 ph;
3 ph;
3 ph;
682-5
682-6
683-1
683-2
683-3
683-4
683-5
683-6
684-1
684-2
684-3
684-4
684-5
684-6
DOUBLER OR
CENTER-TAP
DOUBLER OR
681-1
681-2
681-3
681-4
681-5
681-6
440
440
443
443
443
443
443
443
443
443
443
443
443
443
RECTIFIER MODULE
CENTER-TAP
446
446
446
446
446
446
DESCRIPTION
100V
200V
300V
400V
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
15A; lOOV
15A; 200V
15A; 300V
15A; 400V
15A; 500V
15A; 600V
15A; lOOV
15A; 200V
15A; 300V
15A; 400V
15A; 500V
15A; 600V
2.5A; lOOV
2.5A; 200V
2.5A; 300V
2.5A; 400V
2.5A; 500V
2.5A; 600V
2.25A; 100V
2.25A; 200V
2.25A; 300V
2.25A; 400V
2.25A; 500V
2.25A; 600V
2.5A; 100V
2.5A; 200V
2.5A; 300V
2.5A; 400V
2.5A; 500V
2.5A; 600V
2.25A; 100V
2.25A; 200V
2.25A; 300V
2.25A; 400V
'Contact Unitrode for specifications and ratings.
Legend: J -
JAN
JTX -
JANTX
JTXV - JANTXV
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
23
PRINTED IN U.S.A.
PART NUMBER INDEX
PART NUMBER
PAGE
PAGE
DESCRIPTION
PART NUMBER
FULL WAVE BRIDGE
450
450
452
452
452
452
452
452
452
452
455
455
455
455
455
455
455
455
701-5
701-6
BOO-l
. BOO-2
BOO-3
BOO-4
BOl-l
BOl-2
BOl-3
BOl-4
B02-1
B02-2
B02-3
B02-4
B03-1
B03-2
B03-3
B03-4
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
SCR
2.25A; 500V
2.25A; 600V
40A; 50V
40A; 100V
40A; 125V
40A; 150V
20A; 50V
20A; 100V
20A; 125V
20A; 150V
35A; 50V
35A; 100V
35A; 125V
35A; 150V
20A; 50V
20A; 100V
20A; 125V
20A; 150V
B04-1
B04-2
B04-3
B04-4
20A;
20A;
20A;
20A;
559
559
559
559
559
559
559
559
559
559
559
559
559
559
559
562
562
562
562
562
562
562
562
562
562
562
562
562
562
562
•
AAI00
AAI0l
AA102
AA103
AAI04
AAI07
AAI0B
AA109
AAllO
AAlll
AA1l4
AA1l5
AA1l6
AA1l7
AAllB
ADlOO
ADlOl
ADI02
ADI03
AD104
ADI07
ADI0B
ADI09
ADllO
ADlll
AD1l4
AD1l5
ADl16
AD1l7
ADIIB
BA150
BA151
BA152
0.5A@100·C 60V; TO-IB
0.5A@100·C 100V; TO-IB
0.5A@100·C200V; TO-IB
0.5A@100·C300V; TO-IB
0.5A@100·C400V; TO-IB
0.5A@100·C60V; TO-IB
0.5A@100·C 100V; TO-IB
0.5A@100·C 200V; TO-IB
0.5A@100·C300V;TO-IB
0.5A@100·C400V; TO-IB
0.5A@100·C60V; TO-IB
0.5A@100·C 100V; TO-IB
0.5A@100·C 200V; TO-IB
0.5A@100·C300V; TO-IB
0.5A@100·C400V; TO-IB
l.6A@B5·C60V; TO-39
l.6A@B5·C 100V; TO-39
l.6A@B5·C 200V; TO-39
l.6A@B5·C300V; TO-39
l.6A@B5·C 400V; TO-39
l.6A@B5·C 60V; TO-39
l.6A@B5·C 100V; TO-39
l.6A@B5·C 200V; TO-39
l.6A@B5·C 300V; TO-39
l.6A@B5·C400V; TO-39
l.6A@B5·C 60V; TO-39
l.6A@B5·C 100V; TO-39
l.6A@B5·C 200V; TO-39
l.6A@B5·C 300V; TO-39
l.6A@B5·C 400V; TO-39
0.5A@100·C 30V; TO-IB
0.5@1000C 60V; TO-IB
0.5@100·C 100V; TO-IB
362
362
362
362
CAX15
CAX20
CAX25
CAX30
*
CB200
CB201
CB202
CB203
CD200
CD201
CD202
CD203
565
565
565
CSB20
CSB40
CSB60
25A; 200V
25A;400V
25A;600V
567
567
567
571
571
574
574
571
571
574
574
GAlOO
GAlOl
GA102
GA200-GA200A
GA20 I-GA20 lA
GA300-GA300A
GA301-GA301A
GB200-GB200A
GB201-GB201A
GB300-GB300A
GB301-GB301A
400mA@100·C30V; TO-18
400mA@100·C60V; TO-18
400mA@100·C80V; TO-IB
60V; TO-18
100V; TO-18
60V; TO-18
100V; TO-18
60V;TO-59
100V; TO-59
60V; TO-59
100V; TO-59
*
*
*
•*
•*
TRIAC
50V
100V
125V
150V
SCR
•
•
0.5@100·C30V; TO-IB
0.5@100·C60V; TO-IB
0.5@100·C 100V; TO-IB
0.5@100·C200V;TO-18
l.6A@85·C 30V; TO-39
l.6A@85·C 60V; TO-39
l.6A@85·C 100V; TO-39
l.6A@85·C 200V; TO-39
SCR
DOUBLER OR
CENTER-TAP
45B
45B
45B
45B
DESCRIPTION
HIGH VOLTAGE
RECTIFIER
364
364
364
364
364
364
364
364
364
366
366
366
366
366
366
366
366
366
366
366
366
366
366
366
366
366
366
368
368
36B
368
368
368
368
368
370
370
370
RECTIFIER MODULE
15kV
20kV
25kV
30kV
HAlO
HA15
HA20
HA25
HA30
HA40
HA50
HA75
HAlOO
HSlO
HS15
HS20
HS25
HS30
HS40
HS50
HS75
HSI00
HVElO (lN3643)
HVEl5 (lN3644)
HVE20 (lN3645)
HVE25 (l N3646)
HVE30 (1 N364 7)
HVE40 (lN51Bl)
HVE50 (lN51B2)
HVE75 (lN51B3)
HVElOO (lN51B4)
HVF2500
HVF5000
HVF7500
HVFlOOOO
HVFl2500
HVFl5000
HVF20000
HVF25000
HVFS2500
HVFS5000
HVFS7500
l.OkV
l.5kV
2kV
2.5kV
3.0kV
4.0kV
5.0kV
7.5kV
lOkV
l.OkV
l.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
7.5kV
lOkV
l.OkV
l.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
7.5kV
lOkV
2.5kV
5.0kV
7.5kV
lOkV
12.5kV
15kV
20kV
25kV
2.5kV
5.0kV
7.5kV
'Contact Unitrode for specifications and ratings.
Legend: J -
JAN
JTX -
JANTX
JTXV -
JANTXV
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
24
PRINTED IN U.S.A.
PART NUMBER INDEX
PART NUMBER
PAGE
DESCRIPTION
PAGE
HIGH VOLTAGE
RECTIFIER
370
370
370
370
370
372
372
372
372
372
372
372
374
374
374
374
374
374
374
376
376
376
376
376
376
376
376
376
378
378
378
378
378
378
378
378
380
380
380
380
380
380
380
380
380
364
364
364
364
364
364
364
364
364
IB202
IB204
IB206
10100
10101
10102
10103
10104
10105
10106
10200
10201
10202
10203
10300
10301
IPlOO
IP101
IP102
IP103
IPl04
IP105
IP106
IP200 (2N668l)
IP202 (2N6682)
IP204 (2N6683)
IP206 (2N6684)
IP208 (2N6685)
0.5A@100·C400Y; TO-IS
l.6A@70·C 50Y; TO-39
l.6A@70·C 100Y; TO-39
l.6A@70·C 150Y; TO-39
l.6A@70·C 200Y; TO-39
l.6A@70·C 300Y; TO-39
1.6A@70·C 400Y; TO-39
0.8A@70·C 30Y; TO-92
0.8A@70·C 60Y; TO-92
0.8A@70·C 100Y; TO-92
0.8A@70·C l50Y; TO-92
0.8A@70·C 200Y; TO-92
0.8A@70·C 300Y; TO-92
0.8A@70·C 400Y; TO-92
lAo 100Y; TO-92
lAo 200Y; TO-92
lAo 400Y; TO-92
lAo 600Y; TO-92
lAo 800Y; TO-92
HIGH VOLTAGE
RECTIFIER
382
382
382
382
382
382
382
382
382
382
382
382
382
382
382
382
382
382
KX15
KX20
KX25
KX30
KX40
KX50
KX60
KX80
KXlOO
KXS15
KXS20
KXS25
KXS30
KXS40
KXS50
KXS60
KXS80
KXS100
l.5kY
2.0kY
2.5kY
3.0kY
4.0kY
5.0kY
6.0kY
8.0kY
lOkY
l.5kY
2.0kY
2.5kY
3.0kY
4.0kY
5.0kY
6.0kY
8.0kY
10kY
590
590
590
590
592
592
592
592
594
594
594
594
LlB04302F
LlB04304F
LlB04306F
LlB04308F
LlB05402F
LlB05404F
LlB05406F
LlB05408F
L2B06202F
L2B06204F
L2B06206F
L2B06208F
30A;200Y
30A;400Y
30A;600Y
30A;800Y
40A;200Y
40A;400Y
40A;600Y
40A;800Y
20A;200Y
20A;400Y
20A;600Y
20A;800Y
596
596
596
596
599
599
599
599
L2R06l02FG
L2R06104FG
L2R06106FG
L2R0610SFG
L2R06252F
L2R06254F
L2R06256F
L2R06258F
601
601
L7B08102S
L7B08l04S
TRIAC
SCR
TRIAC
577
577
577
579
579
579
579
579
579
DESCRIPTION
TRIAC
579
582
582
582
582
582
582
584
584
584
584
584
588
588
557
557
557
557
557
10kY
12.5kY
15kY
17.5kY
20kY
5.0kY
7.5kY
10kY
12.5kY
15kY
20kY
25kY
5.0kY
7.5kY
10kY
12.5kY
15kY
20kY
25kY
15kY
20kY
22.5kY
25kY
30kY
35kY
37.5kY
40kY
45kY
2.5kY
5.0kY
7.5kY
lOkY
12.5kY
15kY
17.5kY
20kY
15kY
20kY
22.5kY
25kY
30kY
35kY
37.5kY
40kY
45kY
l.OkY
l.5kY
2.0kY
2.5kY
3.0kY
4.0kY
5.0kY
7.5kY
10kY
HYFS10000
HYFS12500
HYFS15000
HYFS17500
HYFS20000
HYH5000
HYH7500
HYHlOOOO
HYH12500
HYH15000
HYH20000
HYH25000
HYHF5000
HYHF7500
HYHFlOOOO
HYHFl2500
HYHFl5000
HYHF20000
HYHF25000
HYHJ15K
HYHJ20K
HYHJ22.5K
HYHJ25K
HYHJ30K
HYHJ35K
HYHJ37.5K
HYHJ40K
HYHJ45K
HYHS2500
HYHS5000
HYHS7500
HYHSlOOOO
HYHS12500
HYHS15000
HYHS17500
HYHS20000
HYJX15K
HYJX20K
HYJX22.5K
HYJX25K
HYJX30K
HYJX35K
HYJX37.5K
HYJX40K
HYJX45K
HYX10
HVX15
HYX20
HYX25
HYX30
HYX40
HVX50
HYX75
HYX100
PART NUMBER
.8A; 200Y; TO-92
.8A; 400Y; TO-92
.8A; 600Y; TO-92
0.5A@100·C 30Y; TO-18
0.5A@100·C 60Y; TO-18
0.5A@100·C 100Y; TO-18
0.5A@100·C l50Y; TO-18
0.5A@100·C200Y; TO-18
0.5A@100·C300Y; TO-18
lOA; 200Y;
lOA; 400Y;
lOA; 600Y;
lOA; 800Y;
25A;200Y
25A;400Y
25A;600Y
25A;800Y
Fast Turn-off
Fast Turn-off
Fast Turn-off
Fast Turn-off
TRIAC
10A;200Y
lOA;400Y
'Contact Unitrode for specifications and ratings.
Legend, J -
JAN
JTX -
JANTX
JTXV -
JANTXV
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
25
PRINTED IN U.S.A.
PART NUMBER INDEX
PART NUMBER
PAGE
DESCRIPTION
PAGE
PART NUMBER
TRIAC
601
601
L7B08l06S
L7BOBlOBS
10A;600V
lOA; BOOV
SCR
603
603
603
603
606
606
606
606
5A; 200V; Fast Turn-off
5A; 400V; Fast Turn-off
5A; 600V; Fast Turn-off
5A; BOOV; Fast Turn-off
l5A;200V
l5A;400V
l5A; 600V
l5A;800V
L7ROB052SG
L7ROB054SG
L7ROB056SG
L7ROB05BSG
L7ROB152S
L7R08l54S
L7R08l56S
L7R08l58S
HIGH VOLTAGE
RECTIFIER
384
384
384
3B4
384
384
3B4
384
384
384
386
386
386
386
388
388
3!l8
388
384
384
384
384
384
384
384
384
384
384
3B4
384
390
390
390
390
390
390
390
390
390
390
390
390
390
390
390
390
390
390
390
390
390
LA15
LA20
LA25
LA30
LA40
LA50
"LA60
LA80
LAlOO
LA120
LC15
LC20
LC25
LC30
LCSl5
LCS20
LCS25
LCS30
LMl5
LM20
LM25
LM30
LM40
LM50
LM60
LMBO
LMlOO
LM120
LM150
LMlBO
LMS15
LMS20
LMS25
LMS30
LMS40
LMS50
LMS60
LMS80
LMSlOO
LMSl20
LMS150
LMSl80
LS15
LS20
LS25
LS30
LS40
LS50
LS60
LS80
LSlOO
DESCRIPTION
HIGH VOLTAGE
RECTIFIER
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
10kV
l2kV
15kV
20kV
25kV
30kV
l5kV
20kV
25kV
30kV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
B.OkV
10kV
l2kV
l5kV
l8kV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
390
392
392
392
392
392
392
392
392
392
392
394
394
394
394
394
394
394
394
394
394
392
392
392
392
392
392
392
392
392
392
392
392
394
394
394
394
394
394
394
394
394
394
394
394
LSl20
MAl5
MA20
MA25
MA30
MA40
MA50
MA60
MABO
MAlOO
MAl20
MSl5
MS20
MS25
MS30
MS40
MS50
MS60
MSBO
MSlOO
MSl20
MXl5
MX20
MX25
MX30
MX40
MX50
MX60
MX80
MXIOO
MXl20
MXl50
MX200
MXSl5
MXS20
MXS25
MXS30
MXS40
MXS50
MXS60
MXSBO
MXSlOO
MXSl20
MXS150
MXS200
608
608
P13T1
Pl3T2
12kV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
10kV
12kV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
B.OkV
10kV
12kV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
lOkV
12kV
15kV
20kV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
lOkV
12kV
15kV
20kV
PUT
5.0kV
375mW@25°C 40V; TO-92
375mW@25°C 40V; TO-92
SWITCHING REGULATOR
POWER CIRCUIT
6.0kV
8.0kV
10kV
12kV
15kV
IBkV
1.5kV
2.0kV
200
200
200
200
200
200
204
204
204
204
204
204
208
20B
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
B.OkV
10kV
PIC600
PIC601
PIC602
PIC610
PIC611
PIC612
PIC625
PIC626
PIC627
PIC635
PIC636
PIC637
PIC645
PIC646
5.0A; 60V (Pas.!; TO-66
5.0A; 80V (Pas.); T0-66
5.0A; 100V (Pas.); TO-66
5.0A; 60V (Neg.); TO-66
5.0A; 80V (Neg.!; TO-66
5.0A; 100V (Neg.); T0-66
15.0A; 60V (Pas.!; T0-66
15.0A; 80V (Pas.); TO-66
15.0A; 100V (Pas.!; TO-66
15.0A; 60V (Neg.); TO-66
15.0A; BOV (Neg.); TO-66
15.0A; 100V (Neg.!; T0-66
15.0A; 60V (Pas.); TO-3
15.0A; 80V (Pas.!; TO-3
'Contact Unitrode for specifications and ratings.
Legend, J -
JAN
JTX -
JANTX
JTXV -
JANTXV
UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
26
PRINTED IN U.S.A.
PART NUMBER INDEX
PAGE
DESCRIPTION
PART NUMBER
PAGE
PART NUMBER
DOUBLER OR
CENTER-TAP
SWITCHING REGULATOR
POWER CIRCUIT
208
208
208
208
212
212
216
216
216
216
PIC647
PIC655
PIC656
PIC657
PIC730
PIC740
PIC800
PIC801
PIC810
PIC811
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
PMAlOl
PMA102
PMA103
PMA104
PMA105
PMAI06
PMAI07
PMA108
PMAI09
PMAllO
PMAlll
PMAlOIX
PMA102X
PMA103X
PMA104X
PMA105X
PMA106X
PMA107X
PMA108X
PMA109X
PMAllOX
PMAl11X
PMA201
PMA202
PMA203
PMA204
PMA205
PMA206
PMA207
PMA208
PMA201X
PMA202X
PMA203X
PMA204X
PMA205X
PMA206X
PMA207X
PMA208X
15.0A; 100V (Pos.); TO-66
15.0A; 60V (Neg.); TO-3
15.0A; 80V (Neg.); TO-3
15.0A; 100V (Neg.); TO-66
30A; 30V; (P05); TO-3
30A; 30V; (P05); TO-3
8A; 350V; (P05); TO-66
8A; 400V; (P05); TO-66
8A; 350V; (NEG); TO-66
8A; 400V; (NEG); TO-66
RECTIFIER MODULE
5.0kV
7.5kV
lOkV
15kV
20kV
25kV
30kV
35kV
40kV
50kV
60kV
5.0kV
7.5kV
10kV
15kV
20kV
25kV
30kV
35kV
40kV
50kV
60kV
2.5kV
5.0kV
7.5kV
lOkV
15kV
20kV
25kV
30kV
2.5kV
5.0kV
7.5kV
lOkV
15kV
20kV
25kV
30kV
PMBI01
PMBI02
PMB103
PMB104
PMBI05
PMBI06
PMBI07
PMBI0IX
PMBI02X
PMBI03X
PMB104X
PMBI05X
461
461
461
461
461
461
461
461
461
461
461
461
PMBI06X
PMBI07X
PMB201
PMB202
PMB203
PMB204
PMB205
PMB201X
PMB202X
PMB203X
PMB204X
PMB205X
20kV
30kV
2.5kV
5.0kV
7.5kV
10kV
15kV
2.5kV
5.0kV
7.5kV
10kV
15kV
463
463
463
463
463
463
463
463
463
463
463
463
463
463
463
463
465
465
465
465
465
465
465
465
465
465
465
465
PMCI01
PMCI02
PMCI03
PMCI04
PMCI05
PMCI01X
PMCI02X
PMCI03X
PMCI04X
PMC105X
PMC201
PMC202
PMC203
PMC201X
PMC202X
PMC203X
PMDI0l
PMDI02
PMD103
PMDI04
PMDI01X
PMDI02X
PMDI03X
PMDI04X
PMD201
PMD202
PMD201X
PMD202X
2.5kV
5.0kV
7.5kV
10kV
15kV
2.5kV
5.0kV
7.5kV
lOkV
15kV
2.5kV
5.0kV
7.5kV
2.5kV
5.0kV
7.5kV
3 ph; 3A;
3 ph; 3A;
3 ph; 3A;
3 ph; 3A;
3 ph; 3A;
3 ph; 3A;
3 ph; 3A;
3 ph; 3A;
3 ph; 6A;
3 ph; 6A;
3 ph; 6A;
3 ph; 6A;
398
398
398
398
398
398
PMElOI
PMEI02
PMEI03
PMElOIX
PMEl02X
PMEI03X
FULL WAVE BRIDGE
2.5kV
5.0kV
7.5kV
10kV
2.5kV
5.0kV
7.5kV
lOkV
2.5kV
5.0kV
2.5kV
5.0kV
RECTIFIER MODULE
2.5kV
4.0kV
8.0kV
2.5kV
4.0kV
8.0kV
SCHOTTKY
RECTIFIER
DOUBLER OR
CENTER-TAP
461
461
461
461
461
461
461
461
461
461
461
461
DESCRIPTION
2.5kV
5.0kV
7.5kV
lOkV
15kV
20kV
30kV
2.5kV
5.0kV
7.5kV
lOkV
15kV
260
262
264
5D41
5D51
5D241
266
266
266
268
268
268
270
270
270
5E55001
5E55002
5E55003
5E55301
5E55302
SES5303
SES5401
SES5402
SES5403
30A; 45V; DO-5
60A; 45V; DO-5
60A; 45V; TO-3
RECTIFIER
2.0A;
2.0A;
2.0A;
5.0A;
5.0A;
5.0A;
8.0A;
8.0A;
8.0A;
50V
100V
150V
50V
100V
150V
50V; sim to'1O-220
100V; sim to TO-220
150V; sim to TO-220
'Contact Unitrode for specifications and ratings.
Legend, J -
JAN
JTX -
JANTX
JTXV -
JANTXV
UNITRODE CORPORATION· 5 FORBES ROAD
'LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
27
PRINTED IN U.S.A.
PART NUMBER INDEX
PART NUMBER
PAGE
DESCRIPTION
PAGE
RECTIFIER,
CENTER-TAP
272
272
272
274
274
274
SES5401C
SES5402C
SES5403C
SES5601C
SES5602C
SES5603C
276
276
276
278
278
278
SES5701
SES5702
SES5703
SES5801
SES5802
SES5803
20A;
20A;
20A;
60A;
60A;
60A;
471
471
471
471
SPA25, J
SPB25, J
SPC25, J
SPD25, J
1 ph;
1 ph;
1 ph;
1 ph;
16A;
16A;
16A;
25A;
25A;
25A;
RECTIFIER
50V; DO-4
100V; DO-4
150V; DO-4
50V; DO-5
100V; DO-5
150V; DO-5
FULL WAVE BRIDGE
100V
200V
400V
600V
SXlO
SX15
SX20
SX25
SX30
SX40
SX50
SX60
SX80
SXlOO
SXSlO
SXS15
SXS20
SXS25
SXS30
SXS40
SXS50
SXS60
SXS80
SXS100
l.OkV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
10.OkV
l.OkV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
lOkV
TVS305-TVS360
TVS41O-TVS430
TVS505-TVS528
138
138
138
138
140
140
140
140
144
144
144
U2Tl01
U2Tl05
U2T201
U2T205
U2T301
U2T305
U2T401
U2T405
U2TA506
U2TA508
U2TA510
NPN;
NPN;
N.PN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
612
612
U13Tl
U13T2
400mW@25'C 40V; TO-18
400mW@25°C40V; TO-18
402
UDA5
UDA7.5
UDAlO
UDA15
UDB2.5
UDB5
UDB7.5
UDC5
UDC7.5
UDC10
UDC15
UDD2.5
UDD5
UDD7.5
UDE2.5
UDE5
UDF2.5
UDF5
496
496
496
496
496
496
496
496
UDZ210·UDZ240
UDZ707-UDZ790
UDZ807-UDZ890
UDZ5707-UDZ5790
UDZ5807-UDZ5890
UDZ8210·UDZ8220
UDZ8707-UDZ8791
UDZ8807-UDZ8891
7.5kV
1O.OkV
15.0kV
2.5kV
5.0kV
7.5kV
5.0kV
7.5kV
1O.OkV
15.0kV
2.5kV
5.0kV
7.5kV
2.5kV
5.0kV
2.5kV
5.0kV
Bidirectional;
Bidirectional;
Bidirectional;
Bidirectional;
Bidirectional;
Bidirectional;
Bidirectional;
Bidirectional;
3W;
3W;
3W;
5W;
5W;
1W;
1W;
1W;
10%
5%
10%
5%
10%
10%
5%
10%
RECTIFIER
247
247
247
247
247
247
247
247
*
*
*
*
280
280
280
280
280
283
283
283
285
285
285
287
287
287
289
289
289
292
292
292
294
294
294
296
296
296
TRANSIENT VOLTAGE
SUPPRESSOR
492
492
492
402
402
402
402
402
402
402
402
402
402
402
402
402
402
402
402
402
ZENER
HIGH VOLTAGE
RECTIFIER
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
DESCRIPTION
RECTIFIER MODULE
50V; TO-220
100V; 10-2,20
150V; TO-220
50V; TO-3
100V; TO-3
150V; TO-3
25A;
25A;
25A;
25A;
PART NUMBER
150W
150W
500W
POWER DARLINGTON
10.0A; 80V; TO-33
1O.OA; 150V; TO-33
1O.OA; 80V; TO-66
10.0A; 150V; TO-66
5.0A; 60V; TO-33
5.0A; 150V; TO-33
5.0A; 60V; TO-66
5.0A; 150V; TO-66
3.0A; 60V; TO-92
3.0A; 80V; TO-92
3.0A; 100V; TO-92
PUT
RECTIFIER MODULE
5.0kV
UES101 (lN5802)
UES102 (lN5803)
UES103 (lN5804)
UES104 (lN5805)
UES201 (lN5807)
UES202 (l N 5808)
UES203 (lN5809)
UES204 (lN5810)
UES301
UES302
UES303
UES304
UES501
UES502
,UES503
UES504
UES505
UES601
UES602
UES603
UES701
UES702
UES703
UES704
UES705
UES706
UES801
UES802
UES803
UES804
UES805
UES806
UES1001
UES1002
UES1003
UES1101
UESll02
UESll03
2.5A; 50V
2.5A; 75V
2.5A; 100V
2.5A; 125V
6.0A; 50V
6.0A; 75V
6.0A; 100V
6.0A; 125V
20.0A; 50V
20.0A; 75V
20.0A; 100V
20.0A; 125V
50.0A; 50V; DO-5
50.0A; 75V; DO-5
50.0A; 100V; DO-5
50.0A; 125V; DO-5
50.0A; 150V; DO-5
30A; 50V; TO-3
30A; 100V; TO-3
30A; 150V; TO-3
25A; 50V; DO-4
25A; 100V; DO-4
25A; 150V; DO-4
20A; 200V; DO-4
20A; 300V; DO-4
20A; 400V; DO-4
70A; 50V; DO-5
70A; 100V; DO-5
70A; 150V; DO-5
50A; 200V; DO-5
50A; 300V; DO-5
50A; 400V; DO-5
1A; 50V
lA; 100V
1A; 150V
2.5A; 50V
2.5A; 100V
2.5A; 150V
·Contact Unitrode for specifications and ratings.
Legend, J -
JAN
JTX -
JANTX
JTXV -
JANTXV
UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
28
PRINTED IN U.S.A.
PART NUMBER INDEX
PAGE
DESCRIPTION
PART NUMBER
PAGE
PART NUMBER
POWER TRANSISTOR
RECTIFIER
298
298
298
300
300
300
302
302
302
304
304
304
2.0A; 200V
2.0A; 300V
2.0A; 400V
6A; 50V
6A; 100V
6A; 150V
5.0A; 200V
5.0A; 300V
5.0A; 400V
8.0A; 50V; TO-220
8.0A; 100V; TO-220
8.0A; 150V; TO-220
UESll04
UES1105
UESll06
UES1301
UES1302
UES1303
UES1304
UES1305
UES1306
UES1401
UES1402
UES1403
RECTIFIER,
CENTER-TAP
16A;
16A;
16A;
30A;
30A;
30A;
30A;
30A;
30A;
50V; sim to TO-220
100V; sim to TO-220
150V; sim to TO-220
50V; TO-3
100V; TO-3
150V; TO-3
200V; TO-3
300V; TO-3
400V; TO-3
306
306
306
308
308
308
310
310
310
UES2401
UES2402
UES2403
UES2601
UES2602
UES2603
UES2604
UES2605
UES2606
406
406
406
406
406
406
409
409
409
409
409
409
409
409
409
409
409
409
UFB2.5
UFB5
UFB7.5
UFS5
UFS7.5
UFSlO
UGB5
UGB7.5
UGB10
UGD5
UGD7.5
UGD10
UGE2.5
UGE5
UGE7.5
UGF2.5
UGF5
UGF7.5
2.5kV
5.0kV
7.5kV
5.0kV
7.5kV
1O.OkV
5.0kV
7.5kV
1O.OkV
5.0kV
7.5kV
10.0kV
2.5kV
5.0kV
7.5kV
2.5kV
5.0kV
7.5kV
656
661
656
667
667
667
672
672
672
661
UM4000 series
UM4300 series
UM4900 series
UM6000 series
UM6200 series
UM6600 series
UM7000 series
UM7100 series
UM7200 series
UM7300 series
0.5n,3.0pF,25W,100-1200V
1. 5n, 2. 2pF,18W, 100-1000V
0.5n,3.0pF, 37W, 100-600V
l.7n,0.5pF, 6W,100-1000V
O.4n, l.lpF, 6W, 100-400V
2.5n,0.4pF,4W,100-1000V
1.0n;0.9pF,lOW,l00-1600V
0.6n,l.2pF,10W,100-800V
0.25n,2.2pF,10W,100-400V
3.5 n , 0.7 P F, 7.5 W,
100-1000V
CATV Attenuator Diodes
2-Way Radio Switch Diodes
2-Way Radio Switch Diodes
Radiation Detector
RECTIFIER MODULE
PIN DIODE
677
680
680
685
UM9301 series
UM9401 series
UM9415
UM9441
146
146
150
150
154
UMTlO06
UMTlO07
UMTlO08
UMTlO09
UMTl011
154
158
158
162
162
166
166
170
170
174
174
178
178
178
178
178
180
180
180
180
180
182
182
182
182
182
182
182
182
182
182
184
184
184
184
184
186
186
186
186
186
1B8
188
188
188
188
190
190
190
192
192
192
192
UMTlO12
UMTl203
UMTl204
UMT3584
UMT3585
UMTl3004
UMTl3005
UMTl3006
UMTl3007
UMTl3008
UMTl3009
UPTlll
UPTl12
UPTl13
UPTl14
UPTl15
UPT211
UPT212
UPT213
UPT214
UPT215
UPT311
UPT312
UPT313
UPT314
UPT315
UPT321
UPT322
UPT323
UPT324
UPT325
UPT521
UPT522
UPT523
UPT524
UPT525
UPT611
UPT612
UPT613
UPT614
UPT615
UPT721
UPT722
UPT723
UPT724
UPT725
UPTA510
UPTA520
UPTA530
UPTB520
UPTB530
UPTB540
UPTB550
312
312
312
312
312
312
312
312
312
312
UR105
URll0
UR1l5
UR120
UR125
UR205
UR210
UR215
UR220
UR225
UR710
UR720
NPN; 15A; 500V; TO-3
NPN; 3.0A; 300V; TO-220
NPN; 3.0A; 400V; TO-220
NPN; 2.0A; 250V; TO-220
NPN; 2.0A; 300V; TO-220
NPN; 4A; 600V; TO-220
NPN; 4A; 700V; TO-220
NPN; 8A; 600V; TO-220
NPN; 8A; 700V; TO-220
NPN; 12A; 600V; TO·220
NPN; 12A; 700V; TO·220
NPN; l.OA; 40V; TO-5
NPN; l.OA; 60V; TO-5
NPN; l.OA; 80V; TO-5
NPN; l.OA; 100V; TO-5
NPN; l.OA; 100V; TO-5
NPN; 2.0A; 40V; TO-5
NPN; 2.0A; 60V; TO-5
NPN; 2.0A; 80V; TO-5
NPN; 2.0A; 100V; TO-5
NPN; 2.0A; 100V; TO-5
NPN; 2.0A; 150V; TO-5
NPN; 2.0A; 200V; TO-5
NPN; 2.0A; 250V; TO-5
NPN; 2.0A; 300V; TO-5
NPN; 2.0A; 300V; TO-5
NPN; 2.0A; 150V; TO-66
NPN; 2.0A; 200V; TO-66
NPN; 2.0A; 250V; TO-66
NPN; 2.0A; 300V; TO-66
NPN; 2.0A; 300V; TO-66
NPN; 3.5A; 150V; TO-66
NPN; 3.5A; 200V; TO-66
NPN; 3.5A; 250V; TO-66
NPN; 3.5A; 300V; TO-66
NPN; 3.5A; 300V; TO-66
NPN; 5.0A; 40V; TO-5
NPN; 5.0A; 60V; TO-5
NPN; 5.0A; 80V; TO·5
NPN; 5.0A; 100V; TO-5
NPN; 5.0A; 100V; TO-5
NPN; 5.0A; 150V; TO-66
NPN; 5.0A; 200V; TO-66
NPN; 5.0A; 250V; TO-66
NPN; 5.0A; 300V; TO-66
NPN; 5.0A; 300V; TO-66
NPN; 0.5A; 100V; TO-92
NPN; 0.5A; 200V; TO-92
NPN; 0.5A; 300V; TO-92
NPN; O.lA; 200V; TO-92
NPN; O.lA; 300V; TO-92
NPN; O.lA; 400V; TO-92
NPN; O.lA; 500V; TO-92
RECTIFIER
POWER TRANSISTOR
NPN;
NPN;
NPN;
NPN;
NPN;
DESCRIPTION
5A; 400V; TO-3
5A; 500V; TO-3
8A; 300V; TO-3
8A; 400V; TO-3
15A; 400V; TO-3
*
*
2.0A;
l.OA;
l.OA;
l.OA;
l.OA;
2.0A;
2.0A;
2.0A;
2.0A;
2.0A;
l.OA;
l.OA;
50V
100V
150V
200V
250V
50V
100V
150V
200V
250V
100V
200V
'Contact Unitrode for specifications and ratings.
Legend, J -
JAN
JTX -
JANTX
JTXV -
JANTXV
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95·1064
29
PRINTED IN U S.A.
PART NUMBER INDEX
PAGE
PART NUMBER
PAGE
DESCRIPTION
PART NUMBER
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
406
406
406
406
l.2kV
l.5kV
l.8kV
2.0kV
2.5kV
3.0kV
3.5kV
4.0kV
4.5kV
5.0kV
6.0kV
7.0kV
8.0kV
10kV
l2kV
15kV
18kV
20kV
2.5kV
5.0kV
7.5kV
lOkV
US12
US15
US18
US20
US25
US30
US35
US40
US45A
US50A
US60A
US70A
US80A
US100A
US120A
US150A
US180A
US200A
USB2.5
USB5
USB7.5
USB10
*
*
*
*
*
*
*
*
*
*
*
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
318
322
322
322
322
322
SCHOTTKY
RECTIFIER
315
315
315
US0520
US0535
US0545
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
406
406
406
406
USR12
USR15
USR18
USR20
USR25
USR30
USR35
USR40A
USR45A
USR50A
USR60A
USR70A
USR80A
USRlOOA
USR120A
USR150A
USR180A
USS5
USS7.5
USS10
USS15
l.2kV
l.5kV
l.8kV
2.0kV
2.5kV
3.0kV
3.5kV
4.0kV
4.5kV
5.0kV
6.0kV
7.0kV
8.0kV
lOkV
12kV
15kV
l8kV
5.0kV
7.5kV
10kV
15kV
UTl11
UTl12
UTl13
UTl14
UTl15
UTl17
UTl18
UTl19
UTl20
UT211
UT212
UT213
UT214
UT215
UT221
0.75A; 50V
0.75A; 100V
0.75A; 200V
0.75A; 300V
0.75A; 400V
0.75A; 500V
0.75A; 600V
0.75A; 800V
0.75A; 1000V
0.75A; 225V
0.75A; 300V
0.75A; 400V
0.75A; 500V
0.75A; 600V
0.5A; 100V
75A; 20V; 00-5
75A; 35V; 00-5
75A; 45V; 00-5
RECTIFIER MODULE
*
322
322
322
322
322
*
RECTIFIER
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
(lN536)
(1N537)
(lN3656)
(1N539)
(lN3657)
(1N547)
(lN3658)
(1N645)
(lN646)
(lN647)
(lN648)
(1N649)
(lN676)
DESCRIPTION
RECTIFIER
RECTIFIER MODULE
322
322
322
322
322
*
*
326
326
326
*
326
*
326
326
326
UT222 (lN677)
UT223 (lN678)
UT224 (lN679)
UT225 (lN681)
UT226 (1N682)
UT227 (1N683)
UT228 (1 N684)
UT229 (1 N685)
UT231 (1 N686)
UT232 (1 N687)
UT233 (l N689)
UT234
UT235
UT236
UT237
UT238
UT242
UT244
UT245
UT247
UT249
UT251
UT252
UT254
UT255
UT257
UT258
UT261
UT262 (1N398l)
UT264 (1 N3982)
UT265
UT267 (lN3983)
UT268
UT347
UT361
UT362
UT363
UT364
UT2005
UT2010
UT2020
UT2040
UT2060
UT2080
UT3005
UT3010
UT3020
UT3040
UT3060
UT3080
UT4005
UT4010 (lN5180)
UT4020
UT4040 (lN5207)
UT4060
UT4080
UT4100
UT5105
UT5ll0
UT5l20
UT5130
UT5140
UT5l50
UT5160
UT6105
UT6110
0.75A; 100V
0.5A; 200V
0.75A; 200V
0.5A; 300V
0.75A; 300V
0.5A; 400V
0.75A; 400V
O.5A; 500V
0.75A; 500V
0.5A; 600V
0.75A; 600V
l.OA; 200V
l.OA; 400V
l.OA; 100V
l.OA; 500V
1.0A; 600V
1.25A; 200V
1.25A; 400V
1.25A; 500V
1.25A; 600V
1.25A; 100V
1.5A; 100V
1.5A; 200V
1.5A; 400V
1.5A; 500V
1.5A; 600V
l.5A; 800V
2.0A; 100V
2.0A; 200V
2.0A; 400V
2.0A; 500V
2.0A; 600V
2.0A; 800V
1.0A; 1000V
1.0A; 800V
1.2A; 800V
1.2A; 1000V
1.5A; 1000V
2.0A; 50V
2.0A; 100V
2.0A; 200V
2.0A; 400V
2.0A; 600V
2.0A; 800V
3.0A; 50V
3.0A; 100V
3.0A; 200V
3.0A; 400V
3.0A; 600V
3.0A; 800V
4.0A; 50V
4.0A; 100V
4.0A; 200V
4.0A; 400V
4.0A; 600V
4.0A; 800V
4.0A; 1000V
7.5A; 50V
7.5A; 100V
7.5A; 200V
7.5A; 300V
7.5A; 400V
7.5A; 500V
7.5A; 600V
9.0A; 50V
9.0A; 100V
'Contact Unitrode for specifications and ratings.
Legend, J -
JAN
JTX -
JANTX
JTXV -
JANTXV
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
30
PRINTED IN U,S.A.
PART NUMBER INDEX
PAGE
DESCRIPTION
PART NUMBER
PAGE
RECTIFIER
326
*
326
326
326
326
326
*
326
326
329
329
329
329
329
329
329
329
329
329
329
329
329
329
329
329
329
329
329
329
*
*
333
333
333
333
333
333
333
333
333
333
333
333
333
333
333
333
333
333
337
337
337
*
337
337
337
337
*
337
337
337
337
*
337
340
UT6120
UT6130
UT6140
UT6160
UT8105
UT8110
UT8120
UT8l30
UT8l40
UT8l60
UTROI
UTR02
UTRlO
UTR11
UTR12
UTR20
UTR2l
UTR22
UTR30
UTR3l
UTR32
UTR40
UTR4l
UTR42 (lN5206)
UTR50
UTR5l
UTR52
UTR60
UTR6l
UTR62
UTR70
UTR71
UTR2305
UTR2310
UTR2320
UTR2340
UTR2350
UTR2360
UTR3305
UTR3310
UTR3320
UTR3340
UTR3350
UTR3360
UTR4305
UTR4310
UTR4320
UTR4340
UTR4350
UTR4360
UTR4405
UTR44 10
UTR4420
UTR4430
UTR4440
UTR5405
UTR5410
UTR5420
UTR5430
UTR5440
UTR6405
UTR6410
UTR6420
UTR6430
UTR6440
UTXI05
DESCRIPTION
PART NUMBER
RECTIFIER
9.0A; 200V
9.0A; 300V
9.0A; 400V
9.0A; 600V
12.0A; 50V
12.0A; 100V
12.0A; 200V
l2.0A; 300V
l2.0A; 400V
l2.0A; 600V
l.OA; 50V
·2.0A; 50V
0.5A; 100V
l.OA; 100V
2.0A; 100V
0.5A; 200V
l.OA; 200V
2.0A; 200V
0.5A; 300V
l.OA; 300V
2.0A; 300V
0.5A; 400V
l.OA; 400V
2.0A; 400V
0.5A; 500V
l.OA; 500V
2.0A; 500V
0.5A; 600V
l.OA; 600V
2.0A; 600V
0.5A; 700V
l.OA; 700V
2.0A; 50V
2.0A; 100V
2.0A; 200V
2.0A; 400V
2.0A; 500V
2.0A; 600V
3.0A; 50V
3.0A; 100V
3.0A; 200V
3.0A; 400V
3.0A; 500V
3.0A; 600V
4.0A; 50V
4.0A; 100V
4.0A; 200V
4.0A; 400V
4.0A; 500V
4.0A; 600V
6.0A; 50V
6.0A; 100V
6.0A; 200V
6.0A; 300V
6.0A; 400V
7.5A; 50V
7.5A; 100V
7.5A; 200V
7.5A; 300V
7.5A; 400V
9.0A; 50V
9.0A; 100V
9.0A; 200V
9.0A; 300V
9.0A; 400V
l.OA; 50V
340
340
340
340
340
340
340
340
340
343
343
343
343
*
343
343
343
343
*
499
499
499
499
499
499
499
499
501
501
501
501
503
503
503
503
503
503
503
503
505
505
505
505
505
505
505
505
505
505
505
505
507
507
507
507
*
*
417
417
417
417
417
UTX110
UTX115
UTX120
UTX125
UTX205
UTX2l0
UTX2l5
UTX220
UTX225
UTX3l05
UTX3 11 0
UTX3115
UTX3120
UTX3125
UTX4105
UTX4110
UTX4115
UTX4120
UTX4125
lOA;
l.OA;
l.OA;
l.OA;
2.0A;
2.0A;
2.0A;
2.0A;
2.0A;
3.0A;
3.0A;
3.0A;
3.0A;
3.0A;
4.0A;
4.0A;
4.0A;
4.0A;
4.0A;
100V
l50V
200V
250V
50V
100V
l50V
200V
250V
50V
100V
15@V
200V
250V
50V
100V
l50V
200V
250V
ZENER
UZllO-UZl19
UZl20-UZl40
UZ21O-UZ219
UZ220-UZ240
UZ706-UZ760
UZ770-UZ790
UZ806-UZ860
UZ870-UZ890
UZ41l0-UZ4l20
UZ421O-UZ4220
UZ4706-UZ4791
UZ4806-UZ4891
UZ5110-UZ5119
UZ5120
UZ52l0-UZ5240
UZ53l0-UZ5340
UZ5706-UZ5760
UZ5770-UZ5790
UZ5806-UZ5860
UZ5870-UZ5890
UZ71lO
UZ7110L
UZ7210
UZ72l0L
UZ7706L-UZ7750L
UZ77 56-UZ7790
UZ7706-UZ7750
UZ7756L-UZ7790L
UZ7806-UZ7850
UZ7806L-UZ7850L
UZ7856 -UZ7890
UZ7856L -UZ7890L
UZ8llO-UZ8l20
UZ82l0-UZ8220
UZ8706-UZ8790
UZ8806-UZ8890
UZS306-UZS440
UZS506-UZS640
3W; 5%
3W; 5%
3W; 10%
3W; 10%
3W; 5%
3W; 5%
3W; 10%
3W; 10%
5W; 5%
5W; 10%
5W; 5%
5W; 10%
5W; 5%
5W; 5%
5W; 10%
5W; 20%
5W; 5%
5W; 5%
5W; 10%
5W; 10%
lOW; 5%
6W; 5%
lOW; 10%
6W; 10%
6W; 5%
lOW; 5%
lOW; 5%
6W; 5%
lOW; 10%
6W; 10%
lOW; 10%
6W; 10%
lW; 5%
lW; 10%
lW; 5%
lW; 10%
3W; 5%
3W; 10%
HIGH VOLTAGE
RECTIFIER
VXl§
VX20
VX25
VX30
VX40
l5kV
20kV
25kV
30kV
40kV
'Contact Unitrode for specifications and ratings.
Legend, J -
JAN
JTX -
JANTX
JTXV -
JANTXV
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
31
PRINTED IN U.S.A
PART NUMBER INDEX
PART NUMBER
PAGE
417
419
419
419
419
419
419
DESCRIPTION
HIGH VOLTAGE
RECTIFIER
50kV
15kV
20kV
25kV
30kV
40kV
50kV
VX50
VXS15
VXS20
VXS25
VXS30
VXS40
VXS50
'Contact Unitrode for specifications and ratings.
Legend, J -
JAN
JTX -
JANTX
JTXV -
JANTXV
UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
32
PRINTED IN U.S.A
SALES OFFICES
PART NUMBER INDEX
DESIGNERS' GUIDES
POWER TRANSISTORS & DARLINGtONS
II
•
IV
SWITCHING REGULATOR POWER CIRCUITS
V
RECTIFIERS
VI
HIGH VOLTAGE RECTIFIERS, RECTIFIER
MODULES & MULTIPLIERS
VII
RECTIFIER BRIDGE ASSEMBLIES
VIII
POWER ZENERS & TRANSIENT VOLTAGE SUPPRESSORS
IX
THYRISTORS (SCRs, Triacs, PUTs)
X
SWITCHING & GENERAL PURPOSE DIODES
XI
PIN DIODES
XII
CAPACITORS
XII
APPLICATION NOTES & DESIGN NOTES
X"
MECHANICAL SPECIFICATIONS
X'
33
34
POWER SUPPLY DESIGNERS' GUIDE
FAST RECOVERY SILICON POWER RECTIFIERS
Schottky
30V
40V
20V
35V
45V
I
I
I
I
I
I
Surge Current, IF8M ...................•...•......................
Maximum Junction Temperature, TJ ..................... .
Forward Voltage, VF .•............•........•......•.•.•.••••••.•.
Reverse Current, IR ............................................. .
Package: 00-4
400A
150°C
O.86V
250mA
600A
Surge Current, IF8M .•.•.•.•.•.••••.•.•.•.•.•.•.•••.
175°C
Maximum Junction Temperature, TJ ....... .
Forward Voltage, VF ....•.•.•••.•....•.•.•.•.•••..•••.•••••.•..•.• O.50V
100mA
~~~~~~~~~~:~t, IR .....•.................................•......
Surge Current, I F8M .•...•.•.•.•.•.•.•...•.•••.•••.••••••••••.•••• 600A
150°C
Maximum Junction Temperature, TJ ............. .
Forward Voltage, VF •••••.•...•.•.•••..•...•..•.•..•.•.•.•••..•.• O.55V
Reverse Current, IR ......................•...............
I25mA
00-4
30V
40V
Surge Current, I F8M .•.•.•.••••.•••••••.••••••.•.•.•
800A
Maximum Junction Temperature, TJ ...................... . 175°C
.86 @ I57A
~~:~~~ ~~;~eg~', y=@·Rai~d·v~~~;·i·25~C·············· 250mA
Package: 00-5
Surge Current, IF8M •..•.•.•........•.••..•.•.•.•........•.•...... 800A
Maximum Junction Temperature, TJ ..................... .. 150°C
Forward Voltage, V, ............................................ .. .6V@60A
Reverse Current, I R @35V, 125°C ......... .
200mA
Package: 00-5
20V
35V
45V
Surge Current, 1'8M .......................................... ..
Maximum Junction Temperature, TJ ...................... .
Forward Voltage, VF ............................................. .
Reverse Current, I R @ VRWM , 125°C ...................... .
·00-5
lOOOA
175°C
.6V@60A
50mA
Average Forward Current .......... .............................
Surge Current, I F8M ........................ .......................
Maximum Junction Temperature, TJ .......................
Forward Voltage, V, ..............................................
Reverse Current, IR ..............................................
Package: TO-3 Center-Tap
30A
600A
175°C
.47V @ 20A
lOOmA
Average Forward Current .... .......... .........................
Surge Current, I '8M .................... ...........................
Maximum Junction Temperature, TJ .......................
Forward Voltage, V, ..............................................
Reverse
I" ..............................................
Package
30A
400A
150°C
.47V @ 20A
100mA
Schottky Center-Tap Rectifiers
20V
35V
45V
45V
35
~
_UNITRDDE
POWER SUPPLY DESIGNERS' GUIDE
PIN JUNCTION RECTIFIERS
Low Voltage, Ultra-Fast Recovery (trr ,,;;;;50nS)
50V
lOOV
l50V
Surge Current, IFSM ............................................... 30A
Forward Voltage, VF .............................................. .895V@lA
Reverse Recovery Ti me, t" .................................... 25nS
Package: Axial Leaded Glass
{
50V
lOOV
l50V
Surge Current, IFSM ••••••••••••••••••••••••••••••••••••••••••••••• 35A
Forward Voltage, VF .............................................. .895V@2A
Reverse Recovery Time, t" .................................... 25nS
Axial Leaded Glass
50V
lOOV
l50V
Surge Current, IFsM ••••••••••.•••••••••••••••••••••••••••••••.•••• l25A
Forward Voltage, VF .............................................. .850V@6A
Reverse Recovery Time, t" .................................... 30nS
Package: Axial Leaded Glass
50V
lOOV
l50V
50V
lOOV
l50V
50V
lOOV
l50V
{
Surge Current, IFSM ••••.••••••••••••••••••.•.•.•.•••••••••.••••.•• 80A
Forward Voltage, VF .............................................. .895V@8A
Recovery Time, t" .................................... 35nS
Sim. to T0-220
{
Surge Current, IFsM ............................................... 400A
Forward Voltage, VF .............................................. .825V@25A
Reverse Recovery Time, t" .................................... 35nS
Package: 00-4
{
Surge Current, IFSM ............................................... 800A
Forward Voltage, VF .............................................. .840V@70A
Reverse Recovery Time, t" .................................... 50nS
Package: 00-5
{
High Voltage, Ultra-Fast Recovery (trr
200V
300V
400V
200V
300V
400V
200V
300V
400V
200V
300V
400V
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
,,;;;;
SOnS)
Surge Current, IFSM ............................................... 20A
Forward Voltage, VF .............................................. 1.15V @ lA
Reverse Recovery Time, t" ..................... ............... 50nS
. Axial Leaded Glass
Surge Current, I FSM ••••••••••••••••••••••••••••••••••••••••••••••• 70A
{ Forwaro Voltage, VF ••••••••••••••••••••••••••.•••••.•••.•••..•••• l.lV@3A
Reverse Recovery Time, t" ................................... . 50nS
Package: Axial Leaded Glass
Surge Current, IFSM ................................................ 400A
Forward Voltage, VF •••.•••••••••..••••••.••.•.••.•••••••••.••.••• 1.15V @20A
Reverse Recovery Time, trr .................................... 50nS
{
00-4
Surge Current, IFSM ............................................... 800A
Forward Voltage, VF .............................................. 1.15V @ 50A
Reverse Recovery Time, t" .................................... 50nS
Package: 00-5
36
PRINTED IN U.S.A.
POWER SUPPLY DESIGNERS' GUIDE
PIN JUNCTION RECTIFIERS (continued)
Ultra-Fast Recovery Center-Tap Rectifiers (t" :;;;; 50nS)
50V
lOOV
l50V
Surge Current, IFSM •••.•.• ....... ............... •••••••. ......... 80A
Forward Voltage, VF .•...•.....•••••.........•.•.•••••••.••••••••• .895V @ 8A
Reverse Recovery Time, t" ................................... 35nS
Package: T0-220
50V
lOOV
l50V
Surge Current, I FSM .............................................. 400A
Forward Voltage, VF .............................................. .825V @ l5A
Reverse Recovery Time, t" .................................... 35nS
TO-3
200V
300V
400V
Surge Current, I FSM •• •••••.•• •••••••••••• ••••••••••• ••••••••••••• 400A
Forward Voltage, VF ••••••••••••••••••••••••••••••••••••••••••••.• l.l5V @ l5A
Reverse Recovery Time, t" .................................... 50nS
T0-3
Super-Fast Recovery Rectifiers (t"
= lOOnS)
50V
lOOV
l50V
Surge Current, IFS .. ..•••••...•......•••••••••••••••••...•••...•••. 35A
Forward Voltage, VF ••••••••••••.•.••••••••••••••••••••••••••••••• .895V @ lA
Reverse Recovery Time, t"..... ..................... ........... lOOnS
Package: Axial Leaded Glass
50V
lOOV
l50V
Surge Current, IFsM ............................................... llOA
Forward Voltage, VF .............................................. .895V @ 5A
Reverse Recovery Time, t" ..................................... lOOnS
Axial Leaded Glass
50V
lOOV
l50V
Surge Current, I FSM ••••••.•.•••• •••••••••••••••••••• ••••••• ....... 70A
Forward Voltage, VF .............................................. .945V @8A
Reverse Recovery Time, t"..................................... lOOnS
Sim. to TO-220
50V
lOOV
l50V
Surge Current, I FsM •••••••••.•••••.••••••••••••••••••••••••••••••• 400A
Forward Voltage, VF .............................................. .830V @ 20A
Reverse Recovery Time, t" ..................................... lOOnS
: 00-4
50V
Surge Current, IFsM •••••••••••••••••••••••••••••••••••••••••••••• , 800A
Forward Voltage, VF .............................................. .850V @ 60A
Reverse Recovery Time, t" ... ................ ..... ............. lOOnS
00-5
lOOV
l50V
Super-Fast Recovery Center-Tap Rectifiers (t" = lOOnS)
50V
lOOV
l50V
50V
lOOV
l50V
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064
{
Surge Current, I FSM • •••••••••••••• ••• .................... ••••••••• 70A
Forward Voltage, VF .............................................. .945V @ 8A
Reverse Recovery Time, t" ..................................... lOOnS
Package: TO-220
{
Surge Current, I FSM ............................................... 400A
Forward Voltage, VF .............................................. .830V @ l2.5A
Reverse Recovery Time, t" ..................................... lOOnS
T0-3
37
PRINTED IN U.S.A.
POWER SUPPLY DESIGNERS' GUIDE
NPN POWER SWITCHING TRANSISTORS
Plastic Packaging
250
300
8@ 1.0
8@ 1.0
0.75 @ 1.0
0.75@ 1.0
3.0 ~ 1/.11.1
3.0
11.11.1
300
400
8
8~2.0
2.0
0.6 @2.0
0.6 @2.0
0.9 ~ 2/.4/.4
0.9 2/.4/.4
TO-220
TO-220
300
400
6
6~5.0
5.0
1.5 @5.0
1.5 @5.0
0.7
0.7
5/111
5/1/1
TO-220
TO-220
300
400
6
6
8.0
8.0
1.5
1.5
8/1.6/1.6
8/1.6/1.6
TO-220
T0-220
200
200
TO-220
T0-220
Metal Can Packaging
250
275
350
10@2.0
1O@2.0
10@2.0
300
350
400
400
7@3.0
7@3.0
7@3.0
7@3.0
1.0
1.0
1.0
1.0
@3.0
@3.0
@3.0
@3.0
250
300
300
300
350
400
400
15@3.0
15 @3.0
7@5.0
7@5.0
12 @3.0
7@5.0
7@5.0
0.8
0.8
1.5
1.5
1.5
1.5
1.5
@3.0
@3.0
@5.0
@5.0
@3.0
@5.0
@5.0
120
200
275
350
1O@
1O@
8~
6
10.0
10.0
10.0
10.0
1.0
1.5
1.5
1.5
100
300
350
400
400
12 ~8.0
6
10.0
6@ 10.0
6@ 10.0
6@ 10.0
1.0
1.5
1.0
1.0
1.5
75
90
20@ 10.0
20@ 12.0
1.0 @10.0
1.2 @ 12.0
90
120
20@ 15.0
20@ 15.0
0.75@ 15.0
0.75@ 15.0
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
1.0 @3.0
1.5 @2.0
1.5 @2.0
450
450
450
TO-3
TO-3
TO-3
0.8 @ 3/.6/.6
0.4 ~ 3/.6/.6
0.4 3/.6/.6
0.8 @3/.6/.6
180
540
540
180
T0-3
TO-3
TO-3
T0-3
0.4 @ 3/.6/1.5
0.4 @ 3/.6/1.5
1.0@5/1/1
0.4 @5/1I1
0.4 @ 3/.6/1.5
1.0 @ 5/1/1
0.4@ 5/111
180
180
500
1500
180
500
1500
T0-3
TO-3
T0-3
T0-3
TO-3
TO-3
TO-3
300
2500
2500
2500
TO-3
TO-3
TO-3
TO-3
5700
2000
6000
6000
2000
T0-3
TO-3
TO-3
TO-3
TO-3
0.5@ 10/111
0.5 @ 12/1.2/1.2
13000
13000
T0-3
TO-3
0.5 @ 15/1.2/1.2
0.5 @ 15/1.2/1.2
20000
20000
TO-3
T0-3
1.5
1.5
1.5
3/.375/.375
2/.21.2
2/.2/.2
5/.5/.5
10/111
1011. 2 511. 2 5
10/1.67/1.67
8.0
10.0
10.0
10.0
10.0
38
0.3 ~ 8/.81.8
0.7
10/2/2
0.4@ 10/2/2
0.4 @ 10/2/2
0.7 @ 10/2/2
PRINTED IN U.S.A.
POWER SUPPLY DESIGNERS' GUIDE
SWITCHING REGULATOR POWER OUTPUT CIRCUITS
The PIC600 through PIC657 series of devices consist of a driver
transistor, a fast switching output transistor, a suitably matched
fast recovery catch diode and thick film resistors in a hybrid
circuit, designed, constructed and specified for use in high
current switching regulator applications. Specific ratings for
each type is summarized in this table.
Pos.
Pos.
Pos.
Neg.
Neg.
Neg.
5A
15A
20A
60
80
100
60
80
100
Pos.
Pos.
Pos.
Neg.
Neg.
Neg.
60
80
100
60
80
100
Pos.
Pos.
Pos.
Neg.
Neg.
Neg.
75
150
1.5@2
4PIN
T0-66
(Isolated)
175
300
1.5@7
300
300
150
300
(Isolated)
1.5@7
300
4PIN
T0-66
3 PIN
TO-3
300
The PIC730 and 740 series offer a Schottky diode in place of
the fast recovery PN catch diode, to permit higher operating
efficiencies in switching regulator designs.
30A
3 PIN
30
40
TO-3
The PIC800 through 811 series are high voltage (up to 400V)
versions of the PIC600 series. Applications include high voltage
buck or flyback regulators, and, in combination, half bridge or
full bridges, as well as deflection circuits and DC motor drives.
8A
350
400
Pos.
200
200
1.5@5
8A
350
400
Neg.
200
200
1.5@5
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
39
4PIN
T0-66
(Isolated)
4PIN
T0-66
(Isolated)
PRINTED IN U.S.A.
D
POWER SUPPLY DESIGNERS' GUIDE
TRANSIENT VOLTAGE SUPPRESSORS
5V
10
12
15
18
24
28
48
60
100
200
300
6V
11.1
13.8
16.7
20.4
28.4
30.7
54
67
Peak Pulse Power (lmS duration) .............................. 150W
Continuous Power ....... ................. .......... ................... 3W
1 Picosecond Transient Response lime
Package: Axial Leaded Glass
Additional Voltages Available
111
234
342
5V
10
12
15
18
24
28
6V
11.1
13.8
16.7
20.4
28.4
30.7
Peak Pulse Power (lmS duration) .............................. 500W
Continuous Power ........... ... ......................... ........ ...... 5W
1 Picosecond Transient Response lime
Package: Axial Leaded Glass
Additional Voltages Available
THYRISTORS - SCRs
Crowbars
200V
400V
600V
800V
Surge Current, ITSM ..•••••••••••••..••.••.•••.•.•••••..•..••..•..•••
On-State Voltage, VTM •.••••••••••••••••••••••••••••••.••.•••••.••••••
dildt ......................................................................
dv/dt ......................................................................
Package: Metalized ceramic substrate on TO-3 Flange
Other SCRs available with current ratings up to 55A
250A
2.1V @ 50A
150A//LS
200V//LS
Surge Current, ITSM .•. •••• .••••••••••••••••.••.•••••••• •••••••. .....
On-State Voltage, VTM ••••••.•••.•••••••..••••.•.•••••..••..••..••.••
di/dt . ............. .................. .....................................
dv/dt .....................................................................
Circuit Com mutated Turn-Off lime, TQ ••••••••••••••••••••••
Package: Metalized ceramic substrate on TO-3 Flange
5A Version also available
120A
10V @ 100A
150Al/LS
400V//LS
6/LS
Inverter Power Switches
200V
400V
600V
800V
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064
40
PRINTED IN U.S.A.
MILITARY DESIGNERS' GUIDE
SILICON POWER RECTIFIERS
Schottky
60A
45V
0.6V
@60A
75A
20V
35V
45V
0.6V
@60A
@V RWM
Tc= 125°C
800A
00-5
1000A
00-5
High Efficiency, Fast Switching
30n5
Axial
Axial
Axial
1477 •
1477
1477
.900V
@
lOA
35n5
00-4
00-4
00-4
1478.
1478
1478
.95V
@
50A
50n5
00-5
00-5
00-5
N/A
6.0A
20A
50A
50V
lOOV
l50V
"'Series available as JAN, JANTX and JANTXV
General Purpose, Fast Recovery
lA
lA
lA
3A
3A
3A
Axial
Axial
Axial
1429.
1429
1429
Axial
Axial
Axial
Axial
1424 ••
3A
3A
3A
3A
100V
200V
400V
600V
1.5V@
1.5V@
1.5V@
1.5V@
9A
9A
9A
9A
3A
3A
3A
3A
3A
3A
50V
100V
200V
400V
500V
600V
1.5V@
1.5V@
1.5V@
1.5V@
1.5V@
1.5V@
9A
9A
9A
9A
9A
9A
l50n5
l50n5
l50n5
l50n5
250n5
400n5
Axial
Axial
Axial
Axial
Axial
Axial
30A
30A
30A
30A
30A
50V
100V
200V
300V
400V
1.4V@95A
1.4V@95A
1.4V@95A
1.4V@95A
1.4V@95A
200n5
200n5
200n5
200n5
200n5
00-5
00-5
00-5
00-5
00-5
1424
1424
1424
1411.
1411
1411
1411
1411
1411
1308 ..
1308
1308
1308
1308
• Series available at JAN, JANTX and JANTXV
•• Series available as JAN and JANTX
-
[lliJ
41
UNITRODE
•
MILITARY DESIGNERS' GUIDE
SILICON POWER RECTIFIERS (continued)
General Purpose, Standard Recovery
lA
lA
lA
lA
200V
400V
600V
800V
l.3V@3A
l.3V@3A
l.3V@3A
1.3V@3A
30A
30A
30A
30A
Axial
Axial
Axial
Axial
2A
2A
2A
2A
200V
400V
600V
800V
l.lV@lA
l.lV@lA
l.lV@lA
l.lV@lA
20A
20A
20A
20A
Axial
Axial
Axial
Axial
1427 •
1427
1427
1427
1228 ••
1228
1228
1228
3A
3A
3A
3A
200V
400V
600V
800V
1.2V@9A
1.2V@9A
1.2V@9A
1.2V@9A
100A
100A
100A
100A
Axial
Axial
Axial
Axial
1420.
1420
1420
1420
• Series available as JAN and JANTX and JANTXV
... Series available as JAN and JANTX
..... Senes available as JAN only
High Efficiency, Center-Tap Rectifiers and Doublers
SWITCHING DIODES
Low Current
75mA
75mA
150mA
l50mA
200mA
200mA
200mA
300mA
1.0V@lOmA
1.0V@ 10 mA
1.0V@lOmA
.88V@20mA
.74V@10mA
l.OV@lOmA
.74V@lOmA
.77V@20mA
5nS
4nS
5nS
4nS
4nS
4nS
4nS
6nS
• Available as JAN, JANTX and JANTXV
•• Available as JAN and JANTX
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173. TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
42
PRINTED IN U.S.A.
MILITARY DESIGNERS' GUIDE
NPN POWER SWITCHING TRANSISTORS
@IA
@IA
@IA
@IA
3A
3A
3A
3A
5A
5A
5A
5A
5A
5A
5A
5A
5A
5A
5A
60V
BOV
60V
BOV
20@
20@
40@
40@
lA
IA
IA
IA
40@
40@
40@
40@
BO@
40@
BO@
40@
25@
40@
25@
IA
IA
IA
IA
IA
IA
IA
IA
IA
IA
IA
.5V
.5V
.5V
.5V
@2A
@2A
@2A
@2A
1.0V@ IA
.25V@ IA
.25V@ IA
.25V@ IA
.25V@IA
.25V@ IA
.25V@ IA
.4V @3A
.4V @3A
.4V @3A
AV @3A
1.21J,S
1.21J,S
1.21J,S
1.2
TO-5
TO-5
TO-5
TO-5
0.31J,S
0.31J,S
O.BIJ,S
1.0 IJ,S
O.BIJ,S
1.0 IJ,S
O.BIJ,S
1.0 IJ,S
O.BIJ,S
1.0 IJ,S
TO-59
TO-59
TO-111
TO-11 I
TO-III
TO-59
TO-59
TO-66
TO-66
TO-5
TO-5
1393 •
1393
1393
1393
1277 ••
1315 •
1315
1374 •
1374
1374
1374
1455 •
1455
1455
1455
N/A
N/A
N/A
N/A
"Series available as JAN. JANTX. and JANTXV
Series available as JAN and JANTX
"'*
POWER DARLINGTONS
** Series available as JAN, JANTX
POWER ZENERS AND TRANSIENT SUPPRESSORS
.. Series available asJAN, JANTX and JANTXV
,., * Series available as JAN and JANTX
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064
43
PRINTED IN U.S.A.
III
MILITARY DESIGNERS' GUIDE
SWITCHING REGULATOR POWER OUTPUT CIRCUITS
5A
15A
20A
60
80
100
60
80
100
Pos.
Pos.
Pos.
Neg.
Neg.
Neg.
60
80
100
60
Pos.
Pes.
Pes.
Neg.
Neg.
Neg.
80
100
75
150
175
300
300
300
150
300
300
1.5@2
4PIN
TO-66
(Isolated)
1.5@7
4PIN
TO-66
(Isolated)
1.5@7
3PIN
T0-3
300
BRIDGE RECTIFIERS
40 Hz- 5KHz
1469*
lOA
lOOV
200V
Singie Phase
AC~
25A
400V
v, @39A, 1.4V Max
IR@VR, 2iJ.A Max
ISURGE,150A
1446*
V,@39A, 1.3 V Max
iR@VR, 3iJ.A Max
iSURGE' 150A
1483**
600V
Three Phase
200V
400V
600V
25A
• Series available as JAN and JANTX
•• Series available as JANTX only
HIGH VOLTAGE DOORBELL® MODULES
40 Hz-5KHz
• Series available as JAN only
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
44
PRINTED IN U.S.A.
MILITARY DESIGNERS' GUIDE
THYRISTORS
Silicon Control Rectifiers
D.C.
ON STATE
TYPE
MAXIMUM.
MAXIMUM
v'"
PACKAGE
30V
60V
100V
30V
60V
lOOV
20ILA
20ILA
20ILA
20ILA
20ILA
20ILA
. 6V
.6V
.6V
.6V
.6V
.6V
TO-1B
TO-1B
TO-1B
TO-1B
TO-1B
TO-1B
1419 ••
1419
1419
1419
1419
1419
1.25A
1.25A
1.25A
1.25A
1.25A
30V
60V
lOOV
150V
200V
200",A
200ILA
200ILA
200ILA
200",A
.BV
.BV
.BV
.BV
.BV
TO-9
TO-9
TO-9
TO-9
TO-9
/19B •••
1.6A
1.6A
1.6A
1.6A
1.6A
1.6A
1.6A
50V
lOOV
150V
200V
250V
300V
400V
20ILA
.6V
.6V
.6V
.6V
.6V
.6V
.6V
TO-5
TO-5
TO-5
TO-5
TO-5
TO-5
TO-5
1276 •
1276
5A
5A
5A
5A
5A
60V
lOOV
200V
300V
400V
.BV
.BV
.BV
.BV
.BV
TO-59
TO-59
TO-59
TO-59
TO-59
CURRENT
VDflM
.5A
.5A
.5A
.5A
.5A
.5A
2N3027
2N3028
2N3029
2N3030
2N3031
2N3032
2N1870A
.2N1871A
2Nll!72A
.,
. ~Nli!?:3A
'2:N~74~
2N2323A
2N2324A·
2N2325A
2N2326A
2N2327A
2N2328A
2N2329A
F·'.·.CIVI1OO
/.CM1Ot·
"CtV\I02
•. CMI03
¢MI04
':<
....
o·
....
I.,
20ILA
20JLA
20ILA
20ILA
20ILA
20ILA
200ILA
200ILA
200",A
200",A
200ILA
MIL·5-19500
119B
/19B
N/A
/19B
N/A
1276
N/A
1276
1276
N/A
N/A
N/A
N/A
N/A
'" Series available as JAN and JANTX and JANTXV
.. * Series available as JAN and JANTX
•• '" Series available as JAN only
Ultra Fast Switching
PROGRAMMABLE UNIJUNCTION TRANSISTORS
2",A @ RG= 1 MEGl1
'" Series available as JAN, JANTX and JANTXV
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
45
PRINTED IN U.S.A.
•
:
••
46
SALES OFFICES
PART NUMBER INDEX
II
DESIGNERS' GUIDES
III
POWER TRANSISTORS & DARLINGTONS
III
SWITCHING REGULATOR POWER CIRCUITS
V
RECTI FI ERS
VI
HIGH VOLTAGE RECTIFIERS, RECTIFIER
MODULES & MULTIPLIERS
VII
RECTIFIER BRIDGE ASSEMBLIES
VIII
POWER ZENERS & TRANSIENT VOLTAGE SUPPRESSORS
IX
THYRISTORS (SCRs, Triacs, PUTs)
X
SWITCHING & GENERAL PURPOSE DIODES
XI
PIN DIODES
XII
CAPACITORS
XIII
APPLICATION NOTES & DESIGN NOTES
XIV
MECHANICAL SPECIFICATIONS
XV
47
48
POWER DARLINGTONS
PRODUCT SELECTION GUIDE
External bias types - for fast switching
or other special purpose applications
~
~(3-Pin)
NPN Power Darlingtons
•
U2T401
2N6352*
U2T201
2N6350*
U2T101
U2T305
U2T405
2N6351·
U2T105
·Available as JAN and JANTX types.
Plastic NPN Power Darlingtons
Plastic Package and multiple types with
integral bias resistance and shunt diode
for maximum economy in standard
applications
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
49
PRINTED IN U.S.A.
NPN POWER SWITCHING TRANSISTORS
.5-30A, 60-500V
TIt
TO-5
III
"',~k.
TO-5
LOW VOLTAGE
UPT213
2N3419*
2N3421 *
UPT214
UPT215
2N2850
2N5487
2N5488
HIGH VOLTAGE
UPTB520
UPTA520
UPT312
2N5662*
UPT313
UPTB530
UPTA530
UPT314
UPT315
2N5663*
* Ava,lable as JAN, JANTX, JANTXV.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
50
PRINTED IN U S,A
PRODUCT SELECTION GUIDE
i ~220
J~
1i'TO-59
LOW VOLTAGE
2N3999*
2N3749*
2N3996*
~
~0-3
•
2N3997*
HIGH VOLTAGE
UPT522
2N5660'
2N5661*
UMT3584
UPT523
UMT3585
UPT524
UPT525
2N5838
UMTl203
'Available as JAN, JANTX, JANTXV.
"Available as JAN, JANTX.
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
51
PRINTED IN U.S.A.
NPN POWER SWITCHING TRANSISTORS
.5-30A,60-500V
LOW VOLTAGE
HIGH VOLTAGE
2N5667*
2N5665*
UPT724
UPT725
2N6542
'Available as JAN, JANTX, JANTXV.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
52
PRINTED IN U.S.A.
PRODUCT SELECTION GUIDE
;
~
~J0
11
I!
!I
TO-59
TO-220
LOW VOLTAGE
•
'Available as JAN, JANTX, JANTXV.
HIGH VOLTAGE
2N6546
UMTl008
2N6544
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL, (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
53
PRINTED IN U,S.A
POWER TRANSISTORS
JAN &JANTX 2N2151
2 Amp, 80V, Planar NPN
FEATURES
DESCRIPTION
•
•
•
•
•
Unitrode power transistors provide a unique
combination of low saturation voltage, high
gain and fast switching. They are ideally
suited for power supply pulse amplifier and
similar high efficiency power switching
applications.
Meets MIL-S-19S00/277
Collector-Base Voltage: up to lSOV
D.C. Collector Current: 2A
Beta Guaranteed at 3 Current Levels
Characterized for Safe Operating Area
ABSOLUTE MAXIMUM RATINGS
JAN & JANTX
2N2151
....... lSOV
Collector-Base Voltage, VCBO .................. ..
.... .. . . ............................... lOOV
Collector-Emitter Voltage, VCEO .
8V
Emitter-Base Voltage, VEBO
2A
D.C. Collector Current, Ic ...................................................................... .
2A
Base Current, IB ........... .
Power Dissipation
... 30W
lOO'C Case.
Operating Temperature Range .
............. -SS'C to 17S'C
...... -6S'C to 200'C
Storage Temperature Range ...... .
MECHANICAL SPECIFICATIONS
JAN & JANTX2N2151
TO-59
.763
,570
.468
.320
.055 =:gi~
DIA. HOLE
.215
.185
Dimensions in inches.
54
O!O
_UNITRODE
JAN & JANTX 2N2151
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
25'C
Collector-Base Breakdown Voltage
Collector-Emitter Breakdown Voltage
(Note 1)
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current
Collector-Base Cutoff Current
Emitter-Base Cutoff Current
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
Collector Saturation Voltage (Note 1)
Base Saturation Voltage (Note 1)
Base-Emitter Voltage (Note 1)
A.C. Current Gain
Gain-Bandwidth Product
Output Capacitance
Thermal Resistance
MIL-STD-750
Symbol
Min.
Max.
Units
/277C
Subgroup
Method
BVcBO
Vdc
A-2
3001
Ic
Ic
VCE
VCE
VCE
Vcs
VES
Ic
Ic
Ic
Ic
Ic
Ic
Ic
Ic
Vcs
oc/w
A-2
A-2
A-2
A-2
A-2
A-2
A-3
A-3
A-3
A-3
A-3
A-3
A-5
A-5
A-5
C-1
3011
3041
3041
3041
3036
3061
3076
3076
3076
3071
3066
3066
3206
3306
3236
31S1
150
-
BVcEO
ICES
ICEX
ICEO
Icso
IESO
hFE
hFE
hFE
VCE (sat)
VSE (sat)
VSE
hie
fr
Cob
e J_C
100
-
-
1.0
1.2
1.2
160
70
160
2.S
100'C
Forward-Biased Second Breakdown
Forward-Biased Second Breakdown
Forward-Biased Second Breakdown
Unclamped Inductive Sweep
Clamped Inductive Sweep
Isis
Is/B
Isis
Es/s
Es/s
2
200
25
20
80
.-
Adc
mAdc
mAde
mj
mj
B-9
B-9
B-9
B-S
B-6
-
150'C
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current
Emitter-Base Cutoff Current
ICES
ICEX
IESO
-
100
100
20
uAdc
uAdc
uAdc
A-4
A-4
A-4
3041
3041
3061
-55'C
D.C. Current Gain (Note 1)
hFE
20
-
-
A-4
3076
Nate: 1. Pulse length
=
-
40
40
40
0.1
-
40
10
5
5
10
5
2
120
120
-
Vdc
uAdc
uAdc
uAdc
uAdc
uAdc
-
Vdc
Vdc
Vdc
-
MHz
pf
-
Test Conditions
=100uAdc, Condo D
=50mAdc, Condo D
=120Vdc, VSE =0, Condo C
=120Vdc, VEB =1Vdc, Condo A
=80Vdc, Condo D
=120Vdc, Condo D
=8Vdc, Condo D
=lAde, VCE =5Vdc
=O.5Adc, VCE =5Vdc
=O.lAdc, VCE =5Vdc
=lAde, IB =O.lAdc
=1Adc, Is =O.lAdc, Condo A
=lAde, VCE =5Vdc, Condo B
=O.lAdc, VCE =30Vdc, f =1kHz
=O.lAdc, VCE =30Vdc, f =10M Hz
=20Vdc, IE =0, f =1MHz
=
=
=
=
=
=
=
=
=
=
=
VCE =120Vdc, VSE =0, Condo C
VCE =120Vdc, VEB =1Vdc
VES =8Vdc, Condo D
Ic =O.SAdc, VCE =SVdc
VC[ 15Vdc, t
60 sec, see curve
VC[ 57Vdc, t 60 sec, see curve
VCE 100Vdc, t
60 sec, see curve
Ic 2Adc, L 10mh
Ic 2Adc, L 40mh, Vel,mp 150V
300 #S; duty cycle ";2%.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEl. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
55
PRINTED IN U.S.A.
-
JAN & JANTX 2N21S1
Unclamped Reverse Bias
Second Breakdown
ForWard Bias
Safe Operating Area
10
Tc
........
:5:
....z
Dt
'"a:a:
::>
CJ
~lmS/
\).
= 10% \ . \
t,,=sms/
Duty cycle = 50% \
0
....
CJ
'"
0
CJ
,,~
,,,,,,- '}.
~ --\"
.5
a:
...J
...J
= 100'C
t
Outy CYClj
.2
.1
I .05
_u
\
...J
.05
I----I~---+----""k:::
.02
.01 '---_.....l._ _"-_-'---_---'_ _...L_---'
.01
2
10
50
80
100
200
Vee - COLLECTOR TO EMITTER VOLTAGE (V)
Ie - COLLECTOR CURRENT
Reverse Bias
Safe Operating Area
Clamped Inductive Switching
D.C. Current Gain
10
200
100
:5:
....
z
;;:
::>
....
z
"'a:a:
TJ
~
'"
200°C
"'a:::>a:
a:
0
....CJ
'"
...J
...J
0
I
Ve • = SV
,..-
--
Z
CJ
(A)
50
V
.......
150'C
I---"
--
2S'C
.-
-55'C
20
CJ
"
ci
.5
~
..............
~
"\
10
I
CJ
I
r.~
_u
.2
.1
2
100 150 200
10
20
50
Vee - COLLECTOR TO EMITTER VOLTAGE (V)
.05
=25'C
T," = 10
G
~
;- +1.5 1 - - - + - - 1 - - - + - - - \ - T,'" = 10
::;;
~ +1.0.f--+--+---+--+--+----li
Ie
"''"
~
0
>
Z
.
0
;:::
a:
.
::>
....
I
~
/
V" (sat)
.5
z
~ +.51---+--1---~
u:
t:.V e•
~ °1==::t:==t=::::~~:;;:c=t1-1
/
.2
Ve• (sat)
.1
~ -0.51---+--1---+----I--+------i
V
::>
....
ili
. i:i"'"-
en .05
....
I
~
.02
.01
.05
.1
.2
.5
I
Ie - COLLECTOR CURRENT (A)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
.5
Saturation Voltage
Temperature Coefficients
+2.0 ,---,------,-----,-----,---.-----,
TJ
~
.2
Ie - COLLECTOR CURRENT (A)
Saturation Voltages
10
.1
56
-1.0 f - - + - - f - - - + - - - :
-1.5 I - - - + - - I - - - : : ;......'-::::.....~,
-2.0 f--=,j.....-~--If---+--+------l
-2.5 '---_-"--_...L _ _...L_ _-'-_--'-_ _- '
.05
.1
.2
.5
Ie - COLLECTOR CURRENT (A)
PRINTED IN U.S.A.
JAN & JANTX 2N2151
Switching Speed
Characteristics
Switching Speed
Characteristics
1.0 r - - - - - - ; , - - - - - - - , - - - - r - - - r r - - ,
10
1
-----------
.1
Vee =20V
.5
IBI
=
Ie -
-182
1SO'
{l
c::
8
.2
E!
.1
5!
I"
'";::
::.
.05
Siorage lime
"'"0c::
~---_+--,,_==--
"3l
F==~;4=-----l---1-----l-_1
2S'C-
E!
I"
::.'"
;::
r-----r-----""....
f--.
.5
Fall lime
.2
r-----r-----t---+~
.01~
____
~
_ _ _--'_ __ L_
_ L_
_"
.1
.5
COLLECTOR CURRENT (A)
·5
....
Zz
~~
....on.
'"
"'::.
N_
::;..J
««
.2
.1
Irlr
0",
ZJ:
I ....
......
.1
I-
1-.02
.02
Y
.01
- ~ -~
0.5
~
I - ......- ....-: ~
~
.2
.05
::.::.
"V
'/"
~
/"
.........
.,..- ~ ~
/'
Switching Speed Circuit
-- .....
~?
Vee = 40VDC
".,-
~~
24V
OJ-eft}
Single Pulse
= r{tJ
R.=--181 +1 82
• HJ-C
IlJ _e = 3.3'C/W
.005
Pulse widlh = 2ps
Duly cycle = "';2%
Source Impedance
.002
=500
....E
.001
.01
V
X
Ie - COLLECTOR CURRENT (A)
Thermal Response
Duly cycle
'"
cn~
V
.5
Ie -
Z
-.........
I--..
1SO'C
25'C
.02
= 10
V.. =-4VDC
.02 .05
.1
.2
.5
1
2
10 20
SO 100 200 SOO 1000
TIME (milliseconds)
UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861-6540
TWX (710) 326-6S09 • TELEX 95-1064
57
PRINTED IN U.S.A.
•
POWER TRANSISTORS
JAN, JANTX, & JANTXV 2N2880
JAN, JANTX, & JANTXV 2N3749
5 Amp, 80V, Planar, NPN
DESCRIPTION
Unitrode power transistors provide a unique
combination of low saturation voltage, high
gain and fast switching. They are ideally
suited for power supply, pulse amplifier and
similar high effICiency power switching
applications.
FEATURES
• Meets MIL-S-19500/3IS
• Collector-Base Voltage: 110V
• Fast Switching: t r • t f 300nSec max
• Low Saturation Voltage: O.2SV max @ lA
=
ABSOLUTE MAXIMUM RATINGS
JAN, JANTX, JANTXV
aNU8.
2N3748
Collector-Base Voltage, Vcso .
............................... 11OV
Collector-Emitter Voltage, VCEO ... ..... ... .........
...... .... ...... ....... ............
........... SOV
Emitter-Base Voltage, VESO .......................................
. ................... .... BV
D.C. Collector Current, Ic ... .
............. SA
Power Dissipation
25·C Ambient ....................................................
.................... 'RI
IOO·C Case ....................... .
.............................. 30W
Operating and Storage Temperature Range.
....................... -6S·C to +200·C
MECHANICAL SPECIFICATIONS
JAN, JANTlC, & JANTXV 2N288D
TO·58
.055 :::81g r:~!HEXJ
DIA'~OLE
.380
.318
EMITTER
_
.215
1"
.185
BASE
COLLECTOR
Dimensions in inches.
JAN, JANTX, & JANTXV 2N3748
TO-111
Dimensions in inches.
[ill]
58
_UNITRODE
JAN, JANTX, & JANTXV 2N2880
JAN, JANTX, & JANTXV 2N3749
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
MIL· STD· 750
TEST CONDITIONS
1315
TEST
SYMBOL
MIN.
MAX.
-
Visual and Mechanical
-
-
Collector-Base Voltage
Collector-Emitter Voltage (1.)
Emitter-Base Voltage
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current
BVcBO
BVcEO
BVEBO
ICEO
ICEX
110
-
Collector-Base Cutoff Current
Emitter·Base Cutoff Current
Icso
IESO
D,C. Current Gain (1.)
D.C. Current Gain (1.)
D.C. Current Gain (1.)
Collector Saturation Voltage (1.)
Collector Saturation Voltage (1.)
Base Saturation Voltage (1.)
Base On-Voltage (1.)
hFE
hFE
hFE
VCE ,,,!}
UNITS
Sub
group
METHOD
A-1
2071
See Mechanical Data
100
10
Vdc
Vdc
Vdc
!LAdc
!lAdc
A-2
A·2
A-2
A-2
A·2
3001
3011
3026
3041
3041
-
0.4
0.4
/LAdc
!LAdc
A·2
A-2
3036
3061
Ic lO/LAdc, Cond, D
Ic O.1Adc, Condo D
IE 10!LAdc, Condo D
VCE 6OVdc, Condo D
VCE llOVdc, VEB
0.5Vdc,
Cond.A
VCB 8OVdc, Condo D
VEB 6Vdc, Condo D
40
40
lS
120
-
-
3076
3076
3076
3071
3071
3066
3066
80
8
-
Vee Ion}
-
0.2S
2
1.2
1.2
Vdc
Vdc
Vdc
Vdc
A-3
A·3
A-3
A-3
A-3
A-3
A·3
A.C, Current Gain
hFE
40
120
-
A-4
3206
Gain-Bandwidth Product
Output Capacitance
Switching Parameters
Delay Time
Rise Time
Storage Time
Fall Time
fr
Cob
20
120
1SO
MHz
pf
A-4
A-4
3306
3236
td
60
Thermal Resistance
VCEfsatl
VBEhatl
=
===
=
=
=
=
Ic = SOmAdc, VCE =5Vdc
Ic =1Adc, VCE =SVdc
Ic = 5Adc, VCE = 5Vdc
Ic = 1Adc, Is =O.1Adc
Ic = SAdc, Is =O,SAdc
Ic =1Adc, IB =O.1Adc
=1Adc, VCE =2Vdc
Ic =SOmAdc, VCE =SVdc,
f = 1KHz
Ic
Ic = 1Adc, VCE = 10Vdc, f = 10MHz
VCB 10Vdc, IE = 0, f = 1M Hz
=
300
1.7
300
ns
ns
/LS
ns
A-4
A-4
A-4
A-4
-
eJC
-
3.33
'C/W
C-1
31S1
IsiB
5
-
Adc
B-S
30S1
Is/B
80
mAdc
B-5
3051
EsiB
12.5
-
mj
B-7
-
Es/s
12.5
mj
B-6
3053
Es/B
12.S
-
mj
B-6
3053
Ic = SA, L = 1mH
Base Open
Ic 1.6A, L = 10mH
Base Open
lSO'C
Collector-Emitter Cutoff Current
ICEX
-
50
/LA
A·S
3041
VCE = 8OVdc, Ves = O.5Vdc
Condo A, TA = 1SO'C
-6S'C
D.C. Current Gain (1.)
hFE
15
-
-
A-5
3076
Ic = 1Adc, VCE
TA
-6S'C
1OO'C
Forward-Biased Second
Breakdown
Forward-Biased Second
Breakdown
Clamped Reverse·Biased
Second Breakdown
Unclamped Revers. -Biased
Second Breakdown
Unclamped Reverse-Biased
Second Breakdown
Note I. Pulse Width
=
tr
t,
tf
}
See Switching Speed Circuit
VCE = 6Vdc, t= 60Sec,
Tc = 100'C
VCE = SOVdc, t = 6OSec,
Tc = 100'C
Ic 5A, L 1mH, VC1 •mp = 110V,
Tc 100'C
=
=
=
=
=
=5Vdc
3OOI'SIC, duly cycle';; 2%
UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
59
PRINTED IN U.S.A.
•
JAN, JANTX, & JANTXV 2N2880
JAN, JANTX, & JANTXV 2N3749
Forward Bias
Safe Operating Area
10
5
g:
I-
"
2
""0::0::
:::J
u
f - - - f- t. = l m s /
.50% Duty cycle
..J
..J
5
'.ii
"c i
~"
g .5
u
""z
.;:
1\
r-.. \
'\~ ~
V
\
1.=0.5 Im s/
.5
0::
0
~
8
10
= loo'C
\
t--.... ~
V
Z
""zc
r-....
"'" "
D.C.
Unclamped Reverse Bias
Second Breakdown
.2
1\
.10% Duty cycle
1\
.1
~
.2
:::J
0
.1
u
1:
I
_u .05
..J
.02
\\ '\
\'
Te= 1OO'C
~
S"..
\1\
Jill
=-1
0=10Ie
'OK
1\'" I;;~~v~<::'"
---
'0.$"
'~v"""-...
~r--...
r---......
r---- r---
........
---
.05
.02
.01
1
4
20
50 80 100
2
10
Vc,-COLLECTOR TO EMITTER VOLTAGE (V)
Ie - COLLECTOR CURRENT (Al
Reverse Bias
Safe Operating Area
Clamped Inductive Switching
D.C. Current Gain
2N288D-2N3749
SOO
I
Ve.=5V
20
SOV
g:
10
Z
""0::0::
z
I
I-
5
~
TJ
';;
I-
z
""0::0::
200'C
:::J
U
2
u
c
..J
..J
I
8
~
.c
I
.!'
1SO'C
(!>
:::J
U
0::
200
«
110V
.5
100
V
........
25'C
V V
so
V
V
V
r---..
k'-
r.....::
~C
20
~
"
10
5
.01
.2
10
20
50
80100
.02
200
~
.05.1
.2
.5
1
2
Ie - COLLECTOR CURRENT (A)
10
Ve,-COLLECTOR TO EMITTER VOLTAGE
Saturation Voltage
Temperature Coefficients
Saturation Voltages
10
2
~
..!:i""
(!>
0
2
/
I
1.0
V" (sat)
~
.5
>
z
0
~
0::
..
:::J
I-
'V'
,c,\o'"
><'/.<:i
1>"" /
Il.
i:l-1.5
~~
p- - -
~
?
'l.o-..<§l
V"1
~"
2.5'C
<,5'C \~
•• -_
V
~I--I--I-"
'~
---V~~
--~
Ie - COLLECTOR CURRENT (A)
0.5
Ti~e
V~
:::::-- r-...
.1
10
Duly cycle
-
l~'C
g
UJ
I
2S'C
u
::;;
~ r--
Ie
181 =-111 =10
.2
.5
1
2
10 20
so 100 200 SOD 1000
TIME (milliseconds)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064
61
NOTES:
1. Ie ~ lA, 'B. ~ -182 ~ 'lOOmA
2, The values of collector current and base
current are nominal. The actual values will
vary slightly with transistor parameters.
PRINTED IN U.S.A.
JAN, JANTX, &JANTXV 2N3418
JAN, JANTX, & JANTXV 2N3419
JAN, JANTX, & JANTXV 2N3420
JAN, JANTX, &JANTXV 2N3421
POWER TRANSISTORS
3 Amp, 80V, Planar NPN
FEATURES
OESCRIPTION
•
•
•
•
Unitrode power transistors provide a unique
combination of low saturation voltage, high
gain, and fast switching. They are ideally
suited for power supply, pulse amplifier and
similar high frequency power switching
applications.
Meets MIL-S-19500/393
Collector-Base Voltage: up to 125V
Peak Collector Current: 5A
High Power Dissipation in TO-5:
15W@Te = lOO'C
• Fast Switching·
ABSOLUTE MAXIMUM RATINGS
JAN, JANTX, & JANTXV
JAN, JANTX, & JANTXV
2N3418
2N3420
2N3419
2N3421
Collector-Base Voltage, VeBo .
Collector-Emitter Voltage, VeEO
Emitter-Base Voltage, VEBO
D.C. Collector Current, Ie .
Peak Collector Current, Ie .
Power Dissipation
25'C Ambient .
l00'C Case
O~rating and Storage Temperature Range
85V ..
125V
GOV.
80V
8V
8V .....
3A
.. SA ....
. .. 3A
SA
1.0w..
15W
1.0W
15W
-WC to +200'C ..
MECHANICAL SPECIFICATIONS
JAN, JANTX, & JANTXV 2N3418-2N3421
~
TO-5
.2601BL5MIN·l
.240
.030
eg-·..
""'I
.010
T ---- -- --- .
T33.5
.370
.305
_1_
. - ...
.017:!::gg~
Dimensions in inches.
62
lliD
_UNITRODE
JAN, JANTX, & JANTXV 2N3418-2N3421
ELECTRICAL SPECIFICATIONS (at 25·C unless noted)
TEST
SYMBOL
Visual and Mechanical
-
Collector-Emitter Breakdown Voltage (1.)
2N3418, 2N3420
2N3419, 2N3421
Collector-Emitter Cutoff Current
2N3418, 2N3420
2N3419, 2N3421
Collector-Emitter Cutoff Current
2N3418, 2N3420
2N3419, 2N3421
Emitter-Base Cutoff Current
Emitter-Base Cutoff Current
BVCEO
D.C. Current Gain (1.)
2N3418, 2N3419
2N3420, 2N3421
D.C. Current Gain (1.)
2N3418, 2N3419
2N3420, 2N3421
D.C. Current Gain (1.)
2N3418, 2N3419
2N3420, 2N3421
D.C. Current Gain (1.)
2N3418, 2N3419
2N3420, 2N3421
Collector-Emitter Saturation Voltage (1.)
Collector-Emitter Saturation Voltage (1.)
Base-Emitter Saturation Voltage (1.)
Base-Emitter Saturation Voltage (1.)
Gain Bandwidth Product
Output Capacitance
Switching Parameters
Turn-on Time
Turn-off Time
100·C
Forward Biased Second
Forward Biased Second
Forward Biased Second
Forward Biased Second
2N3418, 2N3420
2N3419, 2N3421
Breakdown
Breakdown
Breakdown
Breakdown
Unclamped Reverse Biased
Second Breakdown
Clamped Reverse Biased Second
Breakdown
lS0·C
Collector-Emitter Cutoff Current
2N3418, 2N3420
2N3419, 2N3421
-SS·C
D.C. Current Gain (1.)
Note: 1.
MIN.
-
-
60
80
-
Vdc
Vdc
-
0.5
0.5
/LAde
/LAdc
-
5.0
5.0
0.5
10
/LAdc
/LAde
/LAdc
... Adc
20
40
-
-
20
40
60
120
15
30
-
-
10
15
-
-
-
lEBO
IE,o
hFE
hFE
hFE
hFE
UNITS
-
ICEX
ICEO
MAX.
-
-
-
/393
Sub-
METHOD
A-I
2071
See Mechanical Data
A-2
3011
Ic
A-2
3041
A-2
3041
A-2
A-2
3061
3061
VEB 0.5Vdc, Condo A
VCE 80Vdc
VCE 120Vdc
Cond.D
VCE 45Vdc
VCE 60Vdc
VEB = 6Vdc, Condo D
VEB 8Vdc, Condo D
A-3
3076
=
=
=
=
=
=
Ic = lOOmAdc, VCE =2Vdc
A-3
3076
Ic
=1Adc, VCE =2Vdc
A-3
3076
Ic
=2Adc, VCE =2Vdc
A-3
3076
Ic
=5Adc, VCE =5Vdc
3071
3071
3066
3066
0.25
0.5
1.2
1.4
Vdc
Vdc
Vdc
Vdc
A-3
A-3
A-3
A-3
160
150
MHz
pf
A-4
A-4
0.3
1.2
... S
... S
A-4
A-4
Adc
Adc
Adc
B-6
B-6
B-6
B-6
18S
120
-
mAdc
mAde
Es/b
4S
-
mj
B-7
Eslb
180
-
mj
B-8
-
SO
50
... Ade
... Ade
10
-
VCE!"'I
VCE!"'I
V" 1"'1
VBE!"'I
fr
Cob
too
toff
Islb
Islb
Islb
Islb
ICEX
hFE
-
-
0.6
0.7
40
-
3
1
0.4
A-5
-
MIL - STD - 750
group
TEST CONDITIONS
=50mAdc, Condo D
•
1Adc, IB =O.lAdc
=2Adc,I B=O.2Adc
=1Adc, IB =O.lAdc
=2Adc, I, =0.2Adc
3306 Ic =O.1Adc, VCE = lOVdc, f =20MHz
3236 VCB = lOVdc, IE = 0, f =1MHz
- { Ic = 1Adc, I" = -IB2 =O.1Adc
Ic =
Ic
Ic
Ic
-
See Switching Speed Circuit
=
=
=
=
=
3005
3005
300S
300S
VCE 5Vdc, t
60sec, TC = 1OO·C
VCE 15Vdc, t = 60sec, TC 100·C
VCE 37Vdc, t 60sec, TC 100·C
t 60sec, TC = 100·C
VCE = 60Vde
VCE 80Vdc
3041
VEB = O.SVde, Condo A, TA
VCE = 80Vdc,
VCE 120Vde,
=
=
=
=
- Ic =3Adc, L =10mH,
Base Open
- Ic =3Adc, L =40mH,
V clamp = Rated VCBO
=150·C
=
A-S
3076
Ic
=1Adc, VCE =2Vdc, TA =-SS·C
Pulse width = 300/LSec, duty cycle,;; 2%.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
63
PRINTED IN U.S.A.
JAN, JANTX, & JANTXV 2N3418-2N3421
Forward Bias
Safe Operating Area
Unclamped Reverse Bias
Second Breakdown
10
~
....
z
10
~
2
UJ
'"'"
~
tl
....'"
tl
UJ
0
I'-..
~" k-
Te
=1OO'C
Z
;:
1"-
~
I
.05
2N3418,20-1-I
= F!!
.02
2
Ve • -
181-82-10
;q;~ ~
"'-
"
.1
.05
..J
I
.01
~
\
.2
TC=lOO'C
_ _ Ie
<$'.,
"$0
tl
0
2N3419,21
.5
tl
!:
.02
\
UJ
.1
.2
1
~"
:g
tl
I
\
2
r::
~'"""\1\1\
1"\
.5
.2
"
.~
/
M
\
5
=
D.C.
0
...I
...I
=1
PUlsl Width
1mS Duty cycle
50%
~~.:::::-
~
"
~
-410'
-
;---
.01
5
1020
506080
COLLECTOR TO EMITTER VOLTAGE
1
2
Ie -
Reverse Bias
Safe Operating Area
Clamped Inductive Switching
3
4
5
COLLECTOR CURRENT (AI
D.C. Current Gain Vs. Collector Current
180
10
VeE =2V
160
TJ ';; 2OO'C
~
....Z
~
2.0
'"
~~
1.0
UJ
De
De
100
tl
80
cj
ci
0.5
2N3418,20
I
I
-I--
2N3419,210.2
f-'
I
60
r:
40
.....
V
~
.05
Q:
:>
25'C
Ie
UJ
0
t--5~~
-1 __
.5
COLLECTOR CURRENT (Al
r--I--L
o
tl
W
~ -.5
/V
.1
.01
.005 .01
\
-- ~
.
UJ
/
>
.02
"
UJ
.2
.05
-
I- -
25'C
1.5
..!::! +.5
.5
«
...I
-
~
z
l..----'
V" (sat)
'"
150'C \ -
~
~ 1.0 f--f---+--f--+-+-
1'=10
I-
~
Saturation Voltage
Temperature Coefficients
10
~
"
r ......
~5;-
.2
.1
Ie -
Saturation Voltage
=
2N3418, 19
25'C
f--
o
51020
506080
Ve,-COLLECTOR TO EMITTER VOLTAGE (V)
TJ
--r-
20
o. 1
1
-- -
2N3420, 21
~
f-
I~
J.---
V
~
tl
.2
'z"
120
I-
tl
o
140
:.:
~
De
z
.... y
\,at)
0.
i:i -1.5 f----t-..4..
H:=r
.02
Ie -
.05
.1
.2
f--f-+-+-t--+-+-tr-
~
w
'" -.1
l-
I
~
-.2
f-""i"==-f--t--+-+-p,,"
.5
Ie -
COLLECTOR CURRENT (A)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
64
COLLECTOR CURRENT (AI
PRINTED IN U.S.A.
JAN, JANTX, & JANTXV 2N3418-2N3421
Switchi ng Speed
Characteristics
Switching Speed
Characteristics
10
Vee
= 2QV
""'u
~
~
.2
"u
t rise lS0"C
0
~
W
:;:
8to,
;'''e t·
0
~
eu
g
eu
g
t rise 250C
'":;:;:::
.05
;:::
.I
~
~- k
~
.1
I
=1 20V
Ie 1"=1 182 =10
Vee
.5
f--
.5
'"-
Fall lime If 150'
'[
.02
.2
Fall time t f 25°
.5
.5
Ie -
01
.5
6.5
0.2
'"u;~
~~
~fa
"0.
w:;:
....
!::!.,J.,J
:;::;:
C:c:
Ow
ZJ:
.2
~
0;1.-
~~ '--.1
.05
-
t;; ;? ~
:-20.3Vdc
r::::: ~
20!1
~
.02 / ' /
; 16V
./
IV
.01
9 J -C[t)
1>-
...=-
-
Switching Speed Circuit
.-
-::r- ~ingle pUI~e
o.~
1
Ie - COLLECTOR CURRENT (A)
COLLECTOR CURRENT (A)
Thermal Response
>Z
I
.1
.01
•
.005
= r!il • ~J-C
Pulse width
Duty cycle
11 I
=-'
2115
2(1/0
Source Impedance
fl J •c - 6.7'C/W
.002
I I D---4I..--.llJv\,.--+--I
L
J
50~~
I
6.4Vdc
.001
.01 .02 .05.1
.2
.5
1 2
5 10 20
TIME (milliseconds)
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
50 100 200 500 1000
65
PRINTED IN U.S.A.
POWER TRANSISTORS
JAN,
JAN,
JAN,
JAN,
5 Amp, 80V, Planar NPN
JANTX,
JANTX,
JANTX,
JANTX,
& JANTXV 2N3996
& JANTXV 2N3997
& JANTXV 2N3998
& JANTXV 2N3999
FEATURES
DESCRIPTION
•
•
•
•
•
Unitrode power transistors provide a
unique combination of low saturation
voltage, high gain and fast switching. They
are ideally suited for power supply pulse
amplifier and similar high efficiency power
switching applications.
Meets MIL-S-19S00/374'
Collector-Base Voltage: Up to lOOV
D.C. Collector Current: SA
Fast Switching
Beta Guaranteed at 3 Current Levels
ABSOLUTE MAXIMUM RATINGS
JAN,
JAN,
JAN,
JAN,
Collector-Base Voltage, VCBO .
Collector-Emitter Voltage, VeER
Emitter-Base Voltage, VEBO .
D.C. Collector Current, Ie .
Power Dissipation
25°C Ambient .
100°C Case.... . ......................... ..
Operating and Storage Temperature Range .. .
JANTX,
JANTX,
JANTX,
JANTX,
& JANTXV 2N3996
& JANTXV 2N3997
& JANTXV 2N3998
& JANTXV 2N3999
... 100V
.. ....................................... 80V
.... 8V
.... ......
......
5V
.......... 2W
..... 30W
.. ......... -65°C to 200"C
MECHANICAL SPECIFICATIONS
JAN, JANTX, & JANTXV 2N3996, 2N3997
TO·111
JAN, JANTX, & JANTXV 2N3998, 2N3999
TO-59
Dimensions in inches.
ass
'010
[:~~ HEX
J
.fI .- - 1=: : O_.~ ,::,~ I"'
.318
--.,..--,........"
.185
BASE
COLLECTOR-
Dimensions in inches.
[ill]
66
_UNITRDDE
JAN, JANTX, & JANTXV 2N3996, 2N3997, 2N3998, 2N3999
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)t
2N3996 *
2N3998*
Test
Symbol
Min.
2N3997*
2N3999*
Max.
Min.
Max.
Test Conditions
Units
hfE
30
-
60
-
D.C. Current Gain (Note 1)
hfE
40
120
80
240
D.C. Current Gain (Note 1)
hfE
15
-
20
D.C. Current Gain, -55'C (Note 1)
hfE
10
-
20
-
Collector Saturation Voltage (Note 1)
Ve, (sat)
Collector Saturation Voltage (Note 1)
Ve, (sat)
2
V
Ic=5A, 1.=500 mA
Base Saturation Voltage (Note 1)
V" (sat)
0.6
1.2
0.6
1.2
V
1c=IA, 1.=100 mA
Base Saturation Voltage (Note 1)
V" (sat)
-
1.6
-
1.6
V
le=5A, 1,=500 mA
Collector-Emitter Breakdown Voltage
(Note 1)
BVe,o
80
-
80
-
V
Ic=5O mA, 1.=0
0.5
I'A
V,,=5V,le=0
10
I'A
V,,=8V, 10=0
Ve,=90V, R,,=O
D.C. Current Gain
-
0.25
-
-
2
-
Emitter-Base Cutoff Current
leBO
-
0.5
Emitter-Base Cutoff Current
lEBO
-
10
Collector Cutoff Current
ICES
-
5
Collector Cutoff Current
IeEO
-
10
Collector Cutoff Current, 150'C
ICES
-
50
Collector Capacitance
C,b
-
150
A.C. Current Gain (High Frequency)
h,.
Switching Speeds
Turn-on Time
Turn-off Time
to,
toff
-
4
-
0.3
1.5
0.25
-
4
-
-
10=50 mA, Ve,=2V
le=IA, Vc,=2V
1c=5A, Ve,=5V
-
Ic=IA, Ve,=2V
V
lc=lA, 1.=100 mA
5
I'A
10
I'A
Ve,=60V, 1.=0
50
~
Vc,=90, R,,=O
150
pf
Ve.=10V, 1,=0, f=1 MHz
-
-
le=IA, Ve,=5V, f=lO MHz
0.3
2
1'5
1'5
le=IA
,=100mA, , b2 = -100 mA
,b
Notes:
*Also applicable to
JAN and JANTX versions
1. Pulse Length=300.u5jduty cycle ~2%
t All Values in This Table are JEDEC Registered
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
67
PRINTED IN U.S.A.
D
JAN, JANTX, & JANTXV 2N3996, 2N3997, 2N3993, 2N3999
Forward Bias
Safe Operating Area
10
~
2
I-
Z
OJ
'"'":::>
u
'"0
~
....l
....l
r
'"
" " Te100'C
i'-........... I>-.
V
.5
t. = Ims
ty Cyr
- f - - SO%
.2
- I - - t. =
..
\
.~
)< r\.\ ~
\(\
J. /
0.5 ms
10% Duty Cycle
.1 _ . '
0
10
..........
D.C.
Unclamped Reverse .Bias
Second Breakdown
_u
.5
\ 1'\
\
t:
~"
\
g
V" ~
z
i:!:
u
:::>
0
I
Te = l00'C
Ie
I" =-1"=10
"t::-,.
.2
I
~~
~alOe"
~~
1":'91-
.1
:!:
.05
1
1"\ !\~~,~ t
OJ
u
u
I
2
'\ \
\ 1\
I.........
.05
....l
.02
..tv
i"---
~ ......... r--,
.........
i"---
.02
.01
1
2
.01
5
10
20
SO 80
COLLECTOR TO EMITTER VOLTAGE (V)
VeE -
o
1
2
3
4
Ie - COLLECTOR CURRENT (A)
Reverse Bias
Safe Operating Area
Clamped Inductive Switching
D.C. Current Gain
2N3996-2N3998
SOO
20
I
200
~
I-
Z
OJ
'"'"
u
'"~
z
;;:
5
TJ
"
CI
I-
200'C
:::>
V
OJ
'"u'":::>
2
50
u
OJ
....l
....l
I
l
.5
20
I'"I'- ~ ~
T =ISO'C
J I
1
LV ~2S'CI
~
0
0
..!'
V
100
Z
u
I
_l
Ve .=5V
10
r- r----
TJ~-55lc
V
~~
r\
10
.2
1
.01
2
5
10
20
5080
Ve • - COLLECTOR TO EMITTER VOLTAGE
.02
.05
Ie -
D.C. Current Gain
2N3997·2N3999
500
z
;;:
CI
I-
100
V
./
SO
./
Z
OJ
'"':::>"
u
~
I
~
J Jso.c
I
1'-TJ =2S'C
V
I1J =
,..,-
10
Saturation Voltage
I
I-"'T
,/"
S
10
l
200
.1
.2
.5
1
2
COLLECTOR CURRENT (A)
~SS'C1'--
TJ =2S'C
5
1"---
OJ
r-. ............ '\
""
20
.s:;
10
/
1·=To
2
"'"C\
J
Ie
Vce=5V
CI
1.0
g
.5
~
.JV
VIE (sat)
L
z
o
~
1,,\
~:::>
~
.2
Ve • (sat)
1
/
./
...... /
.05
.02
,/
V
~
.01
.01
.02
.05 .1
.2
.5
1
2
Ie - COLLECTOR CURRENT (A)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173. TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
5
10
.01
68
.02
.0S.1
.2
.S
1
2
Ie-COLLECTOR CURRENT (A)
10
PRINTED IN U.S.A.
JAN, JANTX, & JANTXV 2N3996, 2N3997, 2N3998, 2N3999
Saturation Voltage
Temperature Coefficients
Switching Speed
Characteristics
2
P
;-
1.5
en
1.0
~
I-
~=10
I,
.p.e
Z
'"ti
\0 "\:
.5
~
ii:
t>'lo' 'j;
u.
'"U
0
'"0:
-.5
~
I-
-1
'":;:
'"l-
-1.5
I
-2.0
'"c
"C
I---? ~
---
I
.2
0
u
'"
:;:
a-
.1 I - - - 2S'C I
:g
.OS
;::
'/.s'CV
ss'C\OV
{),'1,.-
~
F1
r--
.02
-2.5
.02
.05 .1
.2
.5
Ie - COLLECTOR CURRENT (Al
5
10
-
I
.5
r-r
-I---
~'C
I I
10
=
150'C
ill
~
.5
f.-.--
(flu
Zz
~C3
V
l~~ ~ xV
2S'C
-I---. I'-.
Fall Time 2S'C
;::
'"
.2
---~
1-",
"':;:
N_
::;..J .02
««
:;::;:
0:0:
0",
ZJ:
II-
"
--n;:-
r--
V
?
~
I--- f.-::
~ /"" ~ ~
.05 _.02
On.
..... ~
V
.1
-- -- ~-~fa~
I-"'
.1
-",
--Storage Time ............ ~
:g
IZ
0.5
r-- r-- L
.2
"C
C
0
.2
2S'C
Delay Time
Thermal Response
Duty cycle
Ie
I" = 1182
'":;:
V-
~~
Ie - COLLECTOR CURRENT (Al
I
Vee=20V
~
r--
~
~
1
10
Switching Speed
Characteristics
u
---
--
./
.01
.01
'"
I
Rise'Time, tr
~
u
x'2-"AJ
~
Ie
181=182=10
ill
I
!>~
n.
>
Vee =20V
:;
/"
~ t:::: V
/
0J-e/fl
Single Pulse
==
'It} • 0J-C
.01
eJ_e = 3.3'C/W
.005
.002
.1
.001
.01
10
Ie - COLLECTOR CURRENT (Al
.02 .05
.1
.2
.5
1
2
10 20
50 100 200 500 1000
TIME (milliseconds)
Switching Speed Circuit
+20.3Vde
20!1
+16Vno-~~JV\I\r-__~__~
-IV
Pulse width = 2f1s
Duty cycle := ~ 2%
Source Impedance
=
50~?
-6.4Vde
NOTES:
1. Ie -= lA, IBI :;:::: -182 -= IOOmA
2. The values of collector current and base
current are nominal. The actual values wUl
vary slightly with transistor parameters.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
69
PRINTED IN U.S.A.
•
POWER TRANSISTORS
JAN, JANTX & JANTXV 2N4150
10 Amp, 70V, Planar NPN
FEATURES
• Meets MIL-5-19500/394
• Collector-Base Voltage: up to lOOV
• Peak Collector Current: lOA
• Fast Switching
• Low Saturation Voltage
DESCRIPTION
Unitrode power transistors provide a
unique combination of low saturation
voltage, high gain and fast switching. They
are ideally suited for power supply pulse
amplifier and similar high efficiency power
switching applications.
JAN & JANTX
2N4150
ABSOLUTE MAXIMUM RATINGS
Collector-Base Voltage, VCBO
. . . ............ 100V
Collector-Emitter Voltage, VCER .
. . . . . . ............ 70V
Emitter-Base Voltage, VEBO ................................... .
................................. SV
Peak Collector Current, Ic .
....... ........
. ........ lOA
Power Dissipation
2S'C Ambient
.......... ... 1.SW
lOO'C Case
.. ...... ............... ... ....... ......... ............ .......... .... ............ 5W
Operating and Storage Temperature Range. ......... ............................ -6S'C to 200'C
MECHANICAL SPECIFICATIONS
JAN, JANTX " JANTXV 2N4150
TO-5
.370
.335
BASE
............,---- COLLECTOR
.335
.305
Dimensions in inches.
70
OJIJ
_UNITRDDE
JAN, JANTX & JANTXV 2N4150
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
Symbol
Min.
Max.
MIL·STD·750
/394
Sub
Units group Method
Visual and Mechanical
Test conditions
A·1
2071
Vdc
A·2
3001
Ic = 10uAdc; Condo D
Vdc
A·2
3011
Ic = O.1Adc; Condo D
IE = lOuAdc; Condo D
See Mechanical Data
25'C
Coliector·Base Breakdown Voltage
BVcBO
100
Coliector·Emitter Breakdown Voltage (Note 1)
BVCEO
70
-
Emitter·Base Breakdown Voltage
BV EBO
7
-
Vdc
A-2
3026
Collector-Emitter Cutoff Current
ICEO
"Adc
A-2
3041
VCE = 60Vdc; Condo D
I CEX
-
10
Collector-Emitter Cutoff Current
10
ItAdc
A-2
3041
VCE = 100Vdc, VEB = 0.5Vdc; Condo A
Collector-Base Cutoff Current
leBo
-
0.1
!lAde
A-2
3036
Vcs = 80Vde; Condo D
Emitter·Base Cutoff Current
lEBO
-
0.1
ItAde
A-2
3061
VEB = 5Vde; Condo D
D.C. Current Gain (Note 1)
hH
40
120
A-3
3076
Ie = 5Ade, VCE = 5Vde
D.C. Current Gain (Note 1)
h"
10
-
A-3
3076
Ie = lOAde, VCE = 5Vde
D.C. Current Gain (Note 1)
Ic = lAdc, VCE = 5Vdc
hFE
50
-
-
A-3
3076
Collector Saturation Voltage (Note 1)
VCE (sat)
-
0.6
Vdc
A-4
3071
Ic = 5Adc, IB = O.5Adc
Collector Saturation Voltage (Note 1)
VCE (sat)
-
2.5
Vdc
A-4
3071
Ic = lOAdc, I, = lAdc
Base Saturation Voltage (Note 1)
VBE (sat)
Vdc
A-4
3066
Ie = 5Adc, IB = O.5Adc; Condo A
VBE (sat)
-
1.5
Base Saturation Voltage (Note 1)
2.5
Vdc
A-4
3066
Ic = lOAdc, Is = lAdc; Condo A
A.C. Current Gain
h,.
40
160
-
A-4
3206
Ie = 50mAdc, VCE = 5Vdc, f = 1KHz
Gain-Bandwidth Product
f,
15
75
MHz
A-4
3306
Ie = O.2Adc, VCE = lOVdc, f =lOMHz
Output Capacitance
Cob
-
350
pf
A-4
3236
VCB = lOVdc, IE = 0, f = IMHz
Thermal Resistance
°J_e
-
20
°elw
C-l
3151
Delay Time
td
-
50
ns
A-4
Rise Time
t,
500
ns
A-4
Storage Time
t,
-
1.5
p's
A-4
Fall Time
t,
-
500
ns
A-4
-
Switching
Speeds
Vee = 20V
(
le=5A
I" = I", I" = O.5A
100'C
Forward-Biased Second Breakdown
IslB
5
-
Adc
B-6
3005
VeE -lVdc, t = 60Sec,
Forward-Biased Second Breakdown
IslB
70
-
mAdc B-6
3005
VeE - 70Vdc, t
Unclamped Reverse Biased Second Breakdown
Esl,
12.5
-
mj
B-7
-
Ic = 5Adc, L = 1mh
Clamped Reverse Biased Second Breakdown
EslB
200
-
mj
B-8
-
Ic = 5Adc, L = 40mh, V,',mp = 70V
I CEX
-
100
p.Adc
A-5
3041
VCE = 80Vdc, VEB = 0.5Vdc, Condo A
hFE
20
-
-
A-5
3076
Ic = 5Adc, VeE = 5Vdc
=
60Sec,
15O"C
Collector-Emitter Cutoff Current
-55'C
D.C. Current Gain (Note 1)
Note: I. Pulse length
= 300!,s, duty
cycle «2%.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064
71
PRINTED IN U.S.A.
JAN, JANTX & JANTXV 2N4150
Unclamped Reverse Bias
Second Breakdown
Forward Bias
Safe 0 perati ng Area
10
10
I
~"" ~ ./~o~Sec,
~
~
2
~
I-
z
"'"
DCI
'"
II:
II:
:::>
u .s
g
~"
I A'" t'-..
8
.1
I
_0. 05
.02 - l e =100·C
.S
w
...... r---..
"'"
lOOJ.(Sec, 10% Duty Cycle /
g
1\
.~
i"-
.2
:::>
o
.1
I
.05
Z
1
\
I"-
I
"'- "-.!!ase op~n
I-+-
""
I I J
V,,=-O.5V
I'k
r-...... V,,~~4;- r--......
r--... .........
.02
.01
2
5
10
20
SO 70
VeE-COLLECTOR TO EMITTER VOLTAGE (V)
Reverse Bias
Safe Operating Area
Clamped Inductive Switching
o
1
2 3 4 S 6 7 8 9 10
Ie - COLLECTOR CURRENT (A)
SOO
L=st
10r---+-----t_--+---_r----~_r~
~
200
z
;;:
~
!zw
II:
II:
100
z
:::>
u
~
r-
D.C. Current Gain
~r-~~--~r---'---'-----'-'-,
II:
I _
'11-- 1B2-'c/'o
..J
I
.01
~
'"
z
ti
1~~l~C
1\
r'\.
u
.2
..J
..J
"
\\ 1\
"
~~
Ims~c, 10% D~tY CYCI~
II:
~
~
1\
r-
~DutYCYCle
W
II:
'"u:::>
2r---~----~--_t----t_----t_~
50
I
8
~
I
20
--",
~J=2~3-I -
~~
ti
ci
..J
..J
IJ~ I -
-........
1\
r--
r-
.c:
_u.sr---~----4---_t----t_----t_+_~
10
S
.01
.02
Saturation Voltage
Temperature Coefficients
Saturation Voltages
10
5
r- ~ j-- 2slc
18=IC/lO
-
V1E(SAT)
~
w .5
~ .2
g
.1
-~
.os
.02
.01
.01
.02
L
/'"
~
2
~
1.S
I~/I.do
~S·C lo 1SOlC/ /
I!!z
o
E
W
8
/
W
II:
:::>
/
!;;:
II:
W
0.
- --- - - -
.S
S
10
72
V
~·C to ISO·C
-1
l:1.V BE
-2
-2.S
.01
....t
SS·C to 2S·C
-.s
~-l.S
I
~
V
0 -!;Ve ,
l-
/
//
w
.-
.0S.1
.2
.S
1
2
Ie - COLLECTOR CURRENT (A)
UNITRODE CORPORATION. S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 9S·1064
10
5
.OS .1
.2.S
2
Ie - COLLECTOR CURRENT (A)
VeE - COLLECTOR TO EMITTER VOLTAGE (V)
.02
-
V
/.
~~ r-I-'
-il
.0S.1
.2
.S
I
2
Ie - COLLECTOR CURRENT (A)
10
PRINTED IN U.S.A.
JAN, JANTX & JANTXV 2N4150
Switching Speed
Characteristics
Switching Speed
Characteristics
Vcc
.5
8
1
-g'"
.2
20V
5
='1' '
~ .05
;:
~elay Time,
2S'C
l
~ .5
td
~~ t:--
;:
I= 20VJ
I" = -I"
~ ~
g1
2S'C
.02
f--
'"
;:t: ~ :::::
I
.1
(J
Vcc
'C
C
RiS~ Time, tt
8
~
l
10
J
f
IC/"
~rage
-
Time, ts
I--r-...
I---r--.. r--..... ::::: K vJ..-
Fall Time, t f
2S'C
.2 f-2S'C
I--1,'C
.01
Duly Cycle
.5
I-
.2
ZU
~~
.1
faN:;;~
.05
:ij
'"
",:;;
.02
1-0
~:;
oei
z J:
~F::
.01
II-
.2
~
-
.5
-:::: --;:;~ ~
k
~
.oyV ./
.0
Switching Speed Circuit
+20V
e- e- ~ §§ ~ ~
I-
.,..- /
10
5
Ic - COLLECTOR CURRENT (A)
Thermal Response
UJ
~
2
1
Ic - COLLECTOR CURRENT (A)
iii ...
-'"
?
.1
10
2
1
Z
V
~ f---~ ~
::::::
~
411
SOV
~V
=
5011
9 J _c (l)
r(l) • 8 J _C
8 J _C 20'C/w
=
~pulse
_
10 ~s
1211
+> .005
r::
.002
-SV
.001
_01 .02 .05 .1 .2
.5 1 2
5 10 20
TIME (milliseconds)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
SO 100 200 SOO 1000
73
PRINTED IN U.S.A.
a
JAN, JANTX, JANTXV 2N5038
JAN, JANTX, JANTXV 2N5039
POWER TRANSISTORS
20 Amp, 150V, Double Diffused
NPN Mesa
FEATURES
• Collector-Base Voltage: up to 150V
• Peak Collector Current: 30A
• ton Time ~SOO nS
• toff Time ~2 ..S
• Qualified to MIL-S-19500/439
DESCRIPTION
These MIL approved double diffused
glass passivated mesa power transistors
combine fast-switching, low saturation
voltage and rugged Es/b capability. They
are designed for use in switching
regulators, converters, inverters and
switching-control amplifiers.
ABSOLUTE MAXIMUM RATINGS
JAN, JANTX
.JANTXV
2NS038
JAN, JANTX
• JANTXV
2NS039
125V
Collector-Base Voltage, Vao ........................................................
..................................... .1S0V
......... 9SV
Collector-Emitter Sustaining Voltage, VCER (SUSI (1) ................... ..... ................
nov
........................... .7SV
VCEO (SUSI ............................. ..................
. ......... 90V ..
Emitter-Base Voltage, Vuo .
.............. ............
7V .... ............ .
7V
............... 20A
Collector Current, Ic continuous ...............................................
.................... 2OA ... .
........ 3OA
Collector Current, ICM peak ............................................................
... 30A.
....... ............. SA
Base Current, 18 continuous ...........................
. ............... SA
... 140W
Power Dissipation, 2S'C Case ... ........................
..140W..
.. -65 to 200'C .....
Operating and Storage Temperature Range .................. .
(1) With R8E ~ 500
MECHANICAL SPECIFICATIONS
NOTE:
JAN, JANTX, JANTXV 2N5038, 2N5039
..... d. may be soldered to within
1/1&" of base provided temperaturetime expo.ure is less than 260'C
for 10 .econd ••
·fthp
~oo
C 0
9/79
~~/J
I,~
1
1,\
j
N
M
j
~,
I
0
E~
F
,-
ins.
BASE
EMITTER
A
.875 MAX.
B
.135 MAX.
C
.250-.450
0
E
.312 MIN.
0.79 MIN .
.205--.225
.420-.440
. 151 .1610IA .
0.52-0.57
,188 MAX. RAD.
.525 MAX. RAD.
0.48 MAX. RAD.
1.33 MAX. RAD.
F
L
mm
2.22 MAX .
0.34 MAX.
0.64-1.14
J
K
~
M
N
P
.6S5-.675
1.177 1.197
.038 .043 orA.
TO-3
1.07 1.12
0.38-0.41
).6!;-I.7I
2.99-3.04
0.10 0.11 OIA .
[ill]
74
_UNITRODE
JAN, JANTX & JANTXV 2N5038
JAN, JANTX & JANTXV 2NS039
Electrical Specifications (at 25'C unless noted)
2N5038
Test
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
Symbol
hFE
hFE
D.C. Current Gain -65'C
hFE
Collector Saturation Voltage
(Note 1)
VCE! ..I)
Collector Saturation Voltage
(Note 1)
VCE! ••I)
Base-Emitter Voltage (Note 1)
VIE
Collector-Emitter Sustaining
Voltage (Notes 2, 3)
2N5039
MIN.
MAX.
MIN.
MAX.
-
-
30
150
SO
200
-
-
-
-
20
-
20
10
-
2.S
1.8
-
VCEO!su.)
90
-
Collector-Emitter Sustaining
Voltage (Notes 2, 3)
VCEX!su.)
ISO
Collector-Emitter Sustaining
Voltage (Notes 2, 3)
VCER!su.)
110
Emitter-Base Voltage
VEIO
Collector Cutoff Current
Collector Cutoff Current
Collector Cutoff Current
Iclo
'CEO
IcEX
10
1.0
-
Units
Test Conditions
-
Ic = O.S, VCE = SV
-
Ic = lOA, VCE = SV
-
Ic = lOA, VCE = SV
1.0
V
Ic = lOA, II = LOA
-
V
2.S
I c =2A,VcE =SV
Ic = 12A, VCE = SV
Ic = 12A, VCE = SV
Ic = 12A, II = 1.2A
a
I c =20A,I.=SA
1.8
V
V
Ic = 10A"Vcc =SV
Ic = 12A, Vcc=SV
7S
-
V
Ic = O.2A, L = lSmH
-
12S
-
V
Ic = 0.2A, L = 2mH
VIE = -1.SV
11 =0
RIE = loon
9S
RaE = SOn,Ic =0.2A,L = lSmH
7.0
-
V
7.0
-
-
-
-
2S
-
2S
-
S.O
-
10
S.O
-
Collector Cutoff Current, lS0'C
'CEX
Emitter Cutoff Current
lEBO
Magnitude of Small Signal
Forward - Current Transfer
Ratio
Ihi. I
12
48
Collector Capacitance
Cob
R6JC
-
SOO
Thermal Resistance:
Junction-to-Case
10
1.25
10
S.O
10
V
mA
mA
mA
IE=2SmA
Vea = 12SV
VCI = lS0V
VCE=SSV
VCE = 70V
VCE = 8SV, VIE = -1.SV
VCE = 100V, VIE = -l.SV
VCE = 8SV, VIE = -1.SV
-
mA
S.O
mA
VIE = -SV
12
48
-
VCE = 10V, 'c
-
SOO
pF
VcB =10V,f=lMHz
1.2S
'C/W
VCE = 100V, VIE = -l.SV
=2A, f = SMHz
VCE = 10V,I c = lOA
Note.
1. Pulse length = 250 #S; duty cycle <;;1%.
2. Sustaining Voltage. Measured at a high current point where
Voltage clamped at maximum collector-emitter voltage.
3. Unclamped Inductive Load.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
collector~emltter
75
voltage is lowest. CUrrent pulse length === 50 J,tS; duty cycle
~1%.
PRINTED IN U.S.A.
JAN, JANTX & JANTXV 2N5038
JAN, JANTX & JANTXV 2N5039
Electrical Specifications (at 25'C unless noted)
Symbol
Test
MIN.
2N5038
MAX.
MIN.
2N5039
MAX.
Test Conditions
Units
-;::;-;;-:;;:;--
Es/b
clamped
Second Breakdown Energy
14
-
14
5.06
-
5.06
5.0
-
5.0
0.9
0.9
-
mJ
Es/b
unclamped
-
Forward Bias
Second Breakdown
Collector Current
I sib
Switching Speeds
Turn-on Time
t.",
-
0.5
-
-
"S
Turn-on Time
ton
-
-
-
0.5
"S
Turn-off Time
toll
-
-
-
2.0
",S
Turn-off Time
toll
-
2.0
-
-
",S
-
A
Ie - 20Adc, L _ 70,uH, O.W
Vee 75V, 90V
RL 3.75n, 4.50
=
=
Ie =4.5Adc, L =500",H, O.W
Vce =10Vdc
VCE =28V, t =15, non-rep.
VeE =45V, t _ 15, non-rep.
Ic_12Adc
IBI
IB2 1.2Adc
Vce 30Vdc ±2V
= =
=
Ic- lOAdc
IBI = IB2 =1Adc
Vec =30Vdc ±2V
Ie =10Adc
IBI = IB2 =1.0Adc
Vce =30Vdc ±2V
Ie =12Adc
lSI = 182 =l.2Adc
Vce =30Vdc ±2V
Switching Time Test Circuit
-4±lV
3.31l (2N5038)
4.0D (2N5039)
lW
Vee = +30V ±2V
3.3D (2N5038)
4.01l (2N5039)
lW
Scope
(Note 2)
Pulse In
(Note 1)
9±lV
Input Waveform
10%
OV - - - - I
10%
. Output Waveform
Notes
1. The rise time (t,) and fall time (tf ) of the applied pulse shall be each :S:;;20 nanosecondsj duty cycle ~2%j generator source impedance shall be
50 ohms; Pulse width = 20 ILS
2.
Output sampling OSCilloscope:
Zin
~l00K
ohms; Cin ':::;;;50pfj rise time ~20 nanoseconds.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
76
PRINTED IN U.S.A.
JAN, JANTX & JANTXV 2N5038
JAN, JANTX & JANTXV 2N5039
Forward Bias Safe Operating Area
for 2N5038 and 2N5039
Power Derating
100
""
t-....
~
1"\
80
a:
0
I0
«
"-
";::Z
60
'\.
I
~(/~
~"'.s'", -...:."~o
r-...
~J
~«
~~
«
a:
w
c
40
I-
Z
~ESIRED
W
a:
a:
::>
2!5'C SOAR CURVE
DASH LINES ON SOAR CURVES ARE EXTENSIONS OF
'\
1,\
DISSIPATION LIMITS FOR T£MPERATURE DERATING
0.3
'----'-'--Iw.I--'-'Iu.JII'---'-I---'-------'------'I-'--'-~__'
10
2
Vc. -
20
50
PURPOSES.
o
100 200
o
40
Te -
COLLECTOR VOLTAGE (V)
Saturation Voltages
"
OISSI~A''''\
AT
OPERATING VOLTAGE, DERATE
TIOH CURRENT LIMIT AND II • CURRENT LIMIT FROM
20
<)
~
120
160
CASE TEMPERATURE ('C)
200
80
DC Current Gain
500
II
200
z
;;:
150'C
" 100
I-
2S'C
Z
W
g:
50
_SS'C
::>
I-- r-
<)
0.2
/v
g
~...
20
VeE
10
0.2
0.5
Ie -
10
~
-I-
VCE[SAT)
I-+-H-t++tt-Hr7"17"rl/¥f-+t-i+-+--j
20
0.2
\
0.5
COLLECTOR CURRENT (A)
Ie -
~
= 2V
10
20
COLLECTOR CURRENT (A)
Turn-Off Time
Turn-On Time
1000
500
200
'"
oS
w 100
::;:
"
r/
"I,
"
-
Vee = lOV
-
........
I B1 =I B2 =-'C/IO
T J = 25'C
t:' r--.
r-.....
'"
.3
t,
......
w 0.5
::;:
;::
;::
50
I
20 10
0.2
"
0.2
N
I");-..
Vee=30V
0.1
'Bj=l c/IO
T J = 25'C
I I I III
0.5
Ie -
.05
10
20
0.2
COLLECTOR CURRENT (A)
UNITRODE CORPORATION. 5 FORBES ROAD.
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
",
77
0.5
Ie -
1
2
5
10
COLLECTOR CURRENT (A)
20
PRINTEO'"'IN U.S.A.
•
2N5487
2N5488
POWER TRANSISTORS
5 Amp, 150V, Planar NPN
5487·1
5487·3
5488·1
5488·3
FEATURES
DESCRIPTION
•
•
•
•
•
•
Unitrode power transistors provide a
unique combination of low saturation
voltage, high gain and fast switching. They
are ideally suited for power supply pulse
amplifier and similar high efficiency power
switching applications.
Collector-Base Voltage: up to 150V
D.C. Collector Current: SA
Peak Collector Current: lOA
Fast Switching
Low Saturation Voltage
High Gain
ABSOLUTE MAXIMUM RATINGS
2N5487
5487-1
5487-3
Collector-Base Voltage, Veso .
Collector-Emitter Voltage, VeER.
Emitter-Base Voltage, VESO .
D.C. Collector Current, Ie .
Peak Collector Current, Ie .
Power Dissipation
2S·C Ambient . .
lOO·C Case ..
Operating and Storage Temperature Range .
2N5488
5488-1
5488-3
...... 120V................ 150V
...... 120V...
.... 150V
.. av... .. .............. av
........ SA..
........ lOA...
...... lOA
.. ......... lOA
.... 1.2SW...
.............. ISW...
.. 1.2SW
ISW
to 200·C
...... -wc
MECHANICAL SPECIFICATIONS
2N5487 2N5488
Pancake TO·5
.185
.165
,
.370'.335 1
BASE
rm~~
Dimensions in inches.
5487-1 5488-1
TO-5
.370
.335
.335
.305
Dimensions in inches.
[ill]
78
_UNITRODE
2N 5487 2N 5488 5487-1 5487-3 5488-1 5488-3
MECHANICAL SPECIFICATIONS
Low Profile
7/16 Hex
5487-3 5488·3
r--
I
360
340
-..r
225+1.500
.205
1- 110
MIN
1
• 002
017 - 001
jo- 200
I~=d'=~.. .~EMITTER
1IIIIIIIIIIIIIIIIIIIIo::E'::!lr
1O.32'NF~
THREAD
!.. _
DE
'
BASE
COLLECTOR
Dimensions in inches.
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)t
Test
D.C. Current Gain (Note 3)
D.C. Current Gain
D.C. Current Gain (Note 3)
Collector Saturation Voltage (Note 3)
Collector Saturation Voltage (Note 3)
Base Saturation Voltage (Note 3)
Base Saturation Voltage (Note 3)
Coliector·Emitter Breakdown Voltage
(Note 3)
Coliector·Emitter Breakdown Voltage
(Note 3)
Emitter-Base Breakdown Voltage
Collector Cutoff Current
Collector Cutoff Current
Collector Cutoff Current
Collector Cutoff Current
Collector Cutoff Current, 150'C
Collector Cutoff Current, 150'C
C·ollector Capacitance
A.C. Current Gain
Switching
Speeds
Turn-on Time
Turn-off Time
2N5487
Max.
300
2N5488
Symbol
hFE
hFE
hFF
VCE (sat)
VCE (sat)
V'E (sat)
V'E (sat)
BVCER
Min.
Min.
Max.
100
80
25
40
35
15
120
120
BVcEO
80
BVE,o
ICES
ICES
ICES
ICES
ICES
ICES
Cob
h'e
8
8
V
V
V
V
150
V
Ic :::: 10mA, R'E :::: 10 ohms
100
V
Ic :::: 100mA, I, :::: 0
50
75
V
I'A
/LA
/LA
/LA
/LA
/LA
pf
IE:::: lO/LA, Ic :::: 0
VCE :::: 80V, R'E:::: 0
VCE :::: 100V, R'E:::: 0
VCE :::: 120V, R'E:::: 0
VCE :::: 150V, R'E:::: 0
VCE :::: 80V, ROE:::: 0
VCE :::: 100V, R'E:::: 0
Vc, :::: 1OV, IE :::: 0
Ic:::: 200mA, Vc ,:::: 5V, f:::: 10MHz
125
550
ns
ns
0.25
1.0
1.2
1.8
0.1
0.1
10
10
50
75
too
toff
-
Ic _lA, VCE - 2V
Ic:::: SOmA, VCE :::: 2V
Ic :::: 5A, VCE :::: 5V
Ic :::: lA, I, :::: 100mA
Ic :::: 5A, I, :::: 500mA
Ic:::: lA, I, :::: 100mA
Ic :::: 5A, l, :::: 500mA
0.25
1.0
1.2
1.8
4
-
4
125
450
Test Conditions
Units
Ic:::: lA
2N5487 See Fig. 1
2N5488 See Fig. 2
Nates:
1. The device may be switched between maximum rated collector current and maximum rated collector--emitter voltage along a resistive
load line provided the switching time is less than 10 microseconds. Switching at low speed through regions of high instantaneous power
dissipation may cause second breakdown to occur. with consequent damage to the device.
2. Steady state limits based on a maximum junction temperature of 200°C. High pulse power dissipation may cause second breakCllown.
Consult the factory on high power, law duty cycle application.
3. Pulse length = 300 #5; duty cycle ';2%.
tAli values in this table are JEDEC registered.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064
79
PRINTED IN U.S.A.
•
2N5487 2N5488 5487-1 5487-3 5488-1 5488-3
Maximum Safe Operating Area
10
~te=lo~.b
'"
3
....z
'''"""
.5
.37
::>
0
i:!'"
pu\seWid~
'"
1= 100P!-\
Duty Cycle
"
= 10%
"'",-1\
"
!il....
....
0
0
I
.1
:\
\
_u
1\
.025
.01
1
3
10 15
40
80100 150
Vee-COLLECTOR-EMITTER VOLTAGE (V)
Switching Speed Circuit
+30V
Tektronix
541A or
Equivalent
-20V
Figure 1
+30V
25V
3011
-D- ~"
10#5
Tektronix
54IA or
Equivalent
SOil
-20V
Figure 2
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
80
PRINTED IN U.S.A.
POWER TRANSISTORS
2N5552
5552·4
10 Amp, 120V, Planar NPN
FEATURES
• Collector-Base Voltage: up to 120V
• Peak Collector Current: lOA
• Fast Switching
• Beta Guaranteed at 3 Current Levels
DESCRIPTION
Unitrode power transistors provide a
unique combination of low saturation
voltage, high gain and fast switching. They
are ideally suited for power supply pulse
amplifier and similar high efficiency power
switching applications.
II
ABSOLUTE MAXIMUM RATINGS
2N5552
5552-4
Collector-Base Voltage, VCBO
Collector-Emitter Voltage, VCEO .
Emitter-Base Voltage, VEBO
D.C. Collector Current, Ie
Power Dissipation
25°C Ambient
100°C Case
Operating and Storage Temperature Range.
... 120V
...... 80V
..7V
. lOA
1.2SW
SW
...... -WC to 200°C
MECHANICAL SPECIFICATIONS
2N5552
TO·5
Dimensions in inches.
5552-4
TO·5 (Stud)
Dimensions in inches.
[ill]
81
_UNITRODE
2N5552 5552·4
ELECTRICAL SPECIFICATIONS (at 2S·C unless noted)t
Test
Symbol
Min.
Max.
Units
Test Conditions
== 0.5A,
== 2V
== SV
D.C. Current Gain
h"
40
250
-
I,e
D.C. Current Gain (Note 2)
h,[
50
ISO
-
l,e=SA, V"f
D.C. Current Gain (Note 2)
h"
30
-
-
1.,0= lOA, V",::: SV
0.5
V
I,: = SA, I, =0.5A
1.0
V
1,:= lOA, I,. = lA
1.3
V
I,,=SA, I, =O,.SA
Collector Saturation Yoltage (Note 2)
Vee
VCE (sat)
-
Collector Saturation Voltage (Note 2)
VCE (sat)
Base Saturation Yoltage (Note 2)
V'E (sat)
-
Base Saturation Voltage (Note 2)
V" (sat)
-
1.8
V
1,- = lOA, I" = lA
Coliector·Emitter Sustaining Yoltage (Note 2)
BVe"
120
-
V
Ie = lOOmA, RAE = Ion
80
-
V
1,- = 100mA, I,; = 0
V
Ie = 0.2"A, R,o, =
V
If = 101,A, Ie =
itA
Collector-Emitter Sustaining Yoltage (Note 2)
VCi0 (sus)
Collector-Emitter Voltage (Note 2)
BVcES
120
Emitter-Base Breakdown Yoltage
BV[P.Q
7
Collector Cutoff Current
ICES
Collector Cutoff Current, l50·C
Collector Capacitance
A.C. Current Gain
Switching Speeds
Turn-on Time
Turn-off Time
°
°
== °
0.2
ICES
-
0.1
mA
Vcr = l20V, Rei
VCE = 80, R", =0, T = l50'C
Cob"
-
150
pf
VCo = 10, I, =0, f = lMHz
h r,_
3
-
-
Ie = O.5A, Vc:[ = SV f = 10MHz
to"
t, ..
-
100
700
ns
ns
Ie =5A
Ih' = 250ma I,., = - 2S0ma
-
Notes:
1. The device may be switched between maximum rated collector current and maximum rated collector - emitter voltage along a resistive
load line provided the switching time is less than 10 microseconds. Switching at low speed through regions of high instantaneous power
dissipation may cause second breakdown to occur, with consequent damage to the device.
2. Pulse length = 300 I'S; duty cycle <:;2%.
t All values in this table are JEDEC registered.
Switching Speed Circuit
+25V
50V
.051'1
5!l
11
H
lOpS
-25V
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-65-10
TWX (710) 326·6509 • TELEX 95-1064
82
PRINTED IN U.S.A.
2N5658
2N5659
POWER TRANSISTORS
20 Amp, BOV, Planar NPN
FEATURES
DESCRIPTION
•
•
•
•
Unitrode power transistors provide a
unique combination of low saturation
voltage, high gain and fast switching. They
are ideally suited for power supply pulse
amplifier and similar high efficiency power
switching applications .
Collector-Base Voltage: up to 120V
Peak Collector Current: 20A
High Gain
Fast Switching
•
ABSOLUTE MAXIMUM RATINGS
2N5658
2N5659
Collector-Base Voltage, VCBO
Collector-Emitter Voltage, VCEO
Emitter-Base Voltage, VEBO
Peak Collector Current, Ic ...
Power Dissipation
lOO'C Case.
Operating and Storage Temperature Range
... 120V
..... 80V
..... 7V
• ••••••
H.H
•••••••••••••••••••
•••••••
H
•••••
20A
30W
............ -65'C to 200'C
MECHANICAL SPECIFICATIONS
.oss ~:glg
2N5658
TO-59
2N5659
TO-111
I:::! 1
HEX
DIA.~OlEI_
.I
.380
.318
EMITTER
_
~
T
.215
.185
BASE
COLLECTOR
Dimensions in inches.
Dimensions in inches.
Collector Isolated from Case.
[ill]
83
_UNITRODE
2N5658 2N5659
Electrical Specifications (at 25°C unless noted)t
Test
Symbol
Min.
Max.
D.C. Current Gain
hEE
40
250
-
Ic = 0.5A,
VCE
D.C. Current Gain
hFE
50
150
-
Ic = 5A,
VCE = 5V
(Note 1)
D.C. Current Gain
hFE
30
-
Ic = lOA,
VCE = 5V
(Note 1)
Test Conditions
Units
=
=
2V
Collector Saturation Voltage
VCE (sat)
.5
V
Ie = 5A,
I,
Collector Saturation Voltage
VCE (sat)
1.0
V
Ic = lOA,
I, = lA
(Note 1)
Base Saturation Voltage
VBE (sat)
1.3
V
Ic = SA,
I, = O.5A
(Note 1)
Base Saturation Voltage
1.8
V
Ic = lOA,
I, = lA
(Note 1)
120
V
Ic = 100mA,
RBE = IOn
Collector-Emitter Breakdown Voltage
VBE (sat)
BV CE •
BVCES
120
V
Ic = 0.2/LA,
Coliector·Emitter Breakdown Voltage
BVcEO
80
V
Ic = 100mA,
R'E = 0
1,=0
Emitter-Base Breakdown Voltage
BV EBO
7
V
IE = 10!,A,
Ic = 0
RBE = 0
Collector-Emitter Breakdown Voltage
(Note 1)
O.5A
(Note 1)
Collector Cutoff Current
ICES
0.2
ICES
0.1
!'A
mA
VCE = 120V,
Collector Cutoff Current, 150°C
VCE = 80V,
RBE = 0,
T = 150°C
Collector Capacitance
Cobo
150
pf
Vc , = lOV,
Ic == 0.5A,
IE=O,
f = IMHz
A.C. Current Gain
Switching Speeds
hi,
3
Turn-on Time
to,
150
ns
Ic = 5A
Turn-off Time
toE
800
ns
Ibl = 250mA
Note 2.
VCE
=
f = 10MHz
5V,
Ib2 = -250mA
Notes:
1. Pulse length = 300 J.l.S; duty cycle ~2%
2. Measured in saturated switching speed circuit.
t All Values in This Table are JEDEC Registered.
Switching Speed Circuit
+25Y
sov
n
.05~f
50
H
-2SY
UNITRODE CORPORATION. 5 FORBES ROAD
LEX I NGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
84
PRINTED IN U.S.A.
POWER TRANSISTORS
JAN,
JAN,
JAN,
JAN,
2 Amp, 300V, Planar NPN
JANTX,
JANTX,
JANTX,
JANTX,
& JANTXV 2N5660
& JANTXV 2N5661
& JANTXV 2N5662
& JANTXV 2N5663
FEATURES
OESCRIPTION
•
•
•
•
•
Unitrode high voltage transistors provide
a unique combination of low saturation
voltage, fast switching, and excellent gain.
They are ideally suited for off-line power
supply designs and other applications
where the increased voltage rating adds
to system reliability.
Meets MIL-S-19500/454
Collector-Base Voltage: up to 400V
D.C. Collector Current: 5A
Peak Collector Current: lOA
Fast Switching
ABSOLUTE MAXIMUM RATINGS
JAN, JANTX,
& JANTXV
JAN, JANTX,
& JANTXV
JAN, JANTX,
& JANTXV
2N5660
2N5&61
2N56&2
.... 250V.. .
Collector-Base Voltage, VCBO .
. ...... 200V ... .
Collector-Emitter Voltage, VCEO
.. ......... 6V .. .
Emitter-Base Voltage, VEBO ...
........... 2A ...
D.C. Collector Current, Ic .
........ SA.
Peak Collector Current, Ic
Power Dissipation
25'C Ambient ... ............... ..
... 2.0W. ... .
lOO'C Case ............. .
...................... 20W. ... ..
Operating and Storage Temperature Range
.... 250V.
... 400V .....
........ 300V ..
... 200V
.... 6V ....
........ 6V .. .
.......... 2A ... . ................ 2A ..
.... 5A ..... .
............. 5A .
.............
2~~~
.. ......... 300V
..... 6V
. ... 2A
.. .... 5A
.. 2JNI.... .
.. 1.2W.....
.... 20W. .. .
.. .. 15W.....
....... 15W
......................... -65'C to 200'C
... 1.2W
MECHANICAL SPECIFICATIONS
JAN, JANTX, & JANTXV 2N5660 JAN, JANTX, & JANTXV 2N5661
TO-66
:~:~ DIA.
E~~
BASE
EMITTER
.350
MAX.
g~~id
.250
RAD .
.360
MIN.
Dimensions in inches.
JAN, JANTX, & JANTXV 2N5662 JAN, JANTX, & JANTXV 2N5663
TO-5
.370
.335
.335
.305
.100
Dimensions in inches.
[ill]
85
.i
JAN, JANTX,
& JANTXV
_UNITRDDE
'
ELECTRICAL SPECIFICATIONS (at 25'C ·unless noted)
JAN, JANTX, & JANTXV 2N5660
JAN, JANTX, & JANTXV 2N5661
JAN, JANTX, & JANTXV 2N5662
JAN, JANTX, & JANTXV 2N5663
2N5660, 2N5662
Test
Symbol
Min.
Max.
Units
Visual and mechanical
/454
Sub
MIL-STD-75O
group Method
A-I
2071
Test conditions
See Mechanical Data
25'C
Collector-Emitter Breakdown Voltage (Note 1)
BVe.. *
250
A-2
3011
Ie = 10mAdc; R.. = lOOn; Condo B
BVeEO*
200
-
Vdc
Collector-Emitter Breakdown Voltage (Note 1)
Vdc
A-2
3011
Ie = 10mAdc; Condo D
Emitter-Base Breakdown Voltage
BV"o*
6
-
Vdc
A-2
3026
I. = 10,uAdc; Condo D
Collector-Emitter Cutoff Current
ICEs *
-
0.2
,uAdc
A-2
3041
VeE = 200Vdc; Condo C
Collector-aase Cutoff Current
IcBO
-
0.1
,uAdc
A-2
3036
Ve• = 200Vdc; Condo D
Collector-Base Cutoff Current
'CBO
-
1.0
mAdc
A-2
3036
Ve• = 250Vdc; Condo D
D.C. Current Gain (Note 1)
hFE*
40
-
-
A-3
3076
Ie = 50mAdc, Ve• = 2Vdc
D.C. Current Gain (Note 1)
hFE*
40
120
-
A-3
3076
Ie = 0.5Adc, VeE = 5Vdc
D.C. Current Gain (Note 1)
hFE*
15
-
-
A-3
3076
Ie = 1Adc, Ve• = 5Vdc
D.C. Current Gain (Note 1)
h"
-
A-3
3076
Ie = 2Adc, Ve• = 5Vdc
Collector Saturation Voltage (Note 1)
Ve.(sat)*
-
0.4
Vdc
A-3
3071
Ie = 1Adc, I. = O.lAdc
Collector Saturation Voltage (Note 1)
Ve.(sat)
-
0.8
Vdc
A-3
3071
Ie = 2Adc, I. = 0.4Adc
5
-
Base Saturation Voltage (Note 1)
V..(sat)*
-
1.2
Vdc
A-3
3066
Ie = 1Adc, I. = O.1Adc; Condo A
Base Saturation Voltage (Note 1)
V"(sat}
-
1.5
Vdc
A-3
3066
Ie = 2Adc, I. = O.4Ade; Condo A
Gain-Bandwidth Product
f r*
20
70
MHz
A-4
3306
Ie = O.lAdc, Ve• = 5Vdc, f = lOMHz
Output Capacitance
C'b
-
45
pf
A-4
3236
Ve• = lOVdc, I. = 0, f = 1MHz
Thermal Resistance
e J_ C
C-1
3151
-
5.0
'C/W
2N5660
2N5662
Switching Speeds
-
6.7
Turn-on time
t on*
-
0.25
,us
A-4
-
Turn-off time
tOff*
-
0.85
,us
A-4
-
'C/W
Ie = 0.5Adc
100'C
Forward Biased Second Breakdown
2N5660
2N5662
Unclamped Reverse Biased Second Breakdown
Clamped Reverse Biased Second Breakdown
1,/.
2
-
Adc
B-6
3051
VeE = lOVdc, t = 1Sec
I,i.
0.5
Adc
B-6
3051
Ve• = 40Vdc, t = 1Sec
1,/.
1,/.
1,/.
1,1.
E,I.
36
-
mAdc
B-6
3051
Ve• = 200Vdc, t = 1Sec
Adc
B-7
3051
VeE = 7.5 Vdc, t = 1Sec
0.6
-
Adc
B-7
3051
VeE = 25Vdc, t = 1Sec
27
-
mAdc
B-7
3051
Ve• = 200Vdc, t = 1Sec
0.2
-
mj
B-8
3053
Ie = 2Adc, L = 0.1 mh
E".
80
-
mj
B-9
3053
Ie = 2Adc, L·= 40mh, V,'.m, = 200V
ICES*
-
100
,uAdc
A-5
3041
Ve• = 200Vdc, Condo C
15
-
-
A-6
3076
Ie = O.5Adc, Ve• = 5Vdc
2
150'C
Collctor-Emitter Cutoff Current
-65'C
D.C. Current Gain (Note I)
h"
Notes
1. Pulse length = 300 #s; duty cycle :;;;2%.
* Those parameters marked with a * are JEDEC registered and devices meeting these speCifications are available as commercial 2N devices,
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064
86
PRINTED IN U.S.A.
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
JAN, JANTX, & JANTXV 2N5660
JAN, JANTX, & JANTXV 2N5661
JAN, JANTX, & JANTXV 2N5662
JAN, JANTX, & JANTXV 2N5663
2N5661, 2N5663
Test
Symbol
Min.
Max.
Units
Visual and mechanical
/454
Sub
group ~ethod
A-I
2071
MIL-STD-750
Test conditions
See Mechanical Data
25'C
-
Vdc
A-2
3011
Ie::: 10mAdc; R" ::: lOOn; Condo B
Vdc
A-2
3011
Ie ::: 10mAdc; Condo D
Vdc
A-2
3026
I. ::: lO~Adc; Condo D
-
0.2
~Adc
A-2
3041
Ve• ::: 300Vdc; Condo C
-
0.1
/,Adc
A-2
3036
Ve• ::: 300Vdc; Condo D
'CIO
1.0
mAdc
A-2
3036
Ve• ::: 400Vdc; Condo D
D.C. Current Gain (Note 1)
hFt
25
-
A-3
3076
Ie ::: 50mAdc, Ve• ::: 2Vdc
D.C. Current Gain (Note 1)
hfE*
25
75
A-3
3076
Ie ::: 0.5Adc, Ve• ::: 5Vdc
D.C. Current Gain (Note 1)
hF/
15
-
A-3
3076
Ie::: lAdc, Ve• ::: 5Vdc
5
-
-
A-3
3076
Ie::: 2Adc, Ve• ::: 5Vdc
Ie ::: 1Adc, I. ::: O.lAdc
Collector-Emitter Breakdown Voltage (Note 1)
BV e," *
400
Collector-Emitter Breakdown Voltage (Note 1)
BVe•o *
300
Emitter-Base Breakdown Voltage
BV no *
6
Collector-Emitter Cutoff Current
ICEs *
Collector-Base Cutoff Current
I clo
Collector-Base Cutoff Current
D.C. Current Gain (Note 1)
h"
Collector Saturation Voltage (Note 1)
Ve.(sat)*
-
004
Vdc
A-3
3071
Collector Saturation Voltage (Note 1)
Ve.(sat)
-
0.8
Vdc
A-3
3071
Ie ::: 2Adc, I, ::: Oo4Adc
Base Saturation Voltage (Note 1)
V,,(sat)*
-
1.2
Vdc
A-3
3066
Ie ::: 1Adc, I, ::: O.lAdc; Condo A
=
Base Saturation Voltage (Note 1)
V..(sat)
-
1.5
Vdc
A-3
3066
Ie ::: 2Adc, I.
Gain-Bandwith Product
f,*
20
70
MHz
A-4
3306
Ie::: 0.2Adc, Ve• ::: 10Vdc, f ::: lOMHz
Output Capacitance
C,b
-
45
pf
A-4
3236
Ve• ::: 10Vdc, I. ::: 0, f ::: lMHz
Thermal Resistance
9 J_ c
C-1
3151
2N5661
-
5.0
2N5663
-
6.7
Switching Speeds
Turn-on time
t on *
Turn-off time
toff *
Oo4Adc; Condo A
'C/W
'C/W
0.25
/,S
A-4
-
1.2
/,s
A-4
-
Adc
B-6
3051
Ve• ::: 10Vdc, t ::: lSec
Adc
B-6
3051
VeE::: 40Vdc, t ::: 1Sec
mAdc
B-6
3051
VeE::: 300Vdc, t ::: 1Sec
Adc
B-7
3051
Ve• ::: 7.5 Vdc, t ::: 1Sec
Ie::: 0.5Adc
100'C
Forward Biased Second Breakdown
2N5661
2N5663
Unclamped Reverse Biased Second Breakdown
Clamped Reverse Biased Second Breakdown
IS/I
2
IS/8
0.5
IS/ 8
19
ISIB
2
ISIB
0.6
-
Adc
B-7
3051
VeE::: 25Vdc, t ::: 1Sec
ISII
14
-
mAdc
B-7
3051
VeE::: 300Vdc, t ::: 1Sec
ES/ 8
0.2
-
mj
B-8
3053
Ie ::: 2Adc, L
E5"
80
-
mj
B-9
3053
Ie ::: 2Adc, L ::: 40mh, V".mp ::: 300V
100
/'Adc
A-5
3041
VeE::: 300Vdc, Cond_ C
-
-
A-6
3076
Ie ::: 0.5Adc, VeE::: 5Vdc
=0.1 mh
150'C
Collector-Emitter Cutoff Current
ICES*
-
-65'C
D.C. Current Gain (Note 1)
h"
10
Notes
1. Pulse length
300 P.s; duty cycle ~2%.
* Those parameters marked with a . . . are JEOEC registered and devices meeting these specifications are available as commercial 2N devices.
=
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
87
PRINTED IN U.S.A.
•
JAN, JANTX, & JANTXV 2N5660
JAN, JANTX, & JANTXV 2N5661
JAN, JANTX, & JANTXV 2N5662
JAN, JANTX, & JANTXV 2N5663
Forward Bias
Safe Operating Area
Forward Bias
Safe Operating Area
2N5660, 2N5661
2N5662, 2N5663
=
Pul~e Wldih = ,lms
~
Duty Cycle
= 10%-
';
-------0
I-
Z
""'"
'"0:0:
:J
()
.5
0:
~
D.C.-
'"
.2
8
.1
..J
..J
1
::::: lOOps
r\
'" = 10%-
a
.5
D.C.-
o
tJ
.2
c5
.1
---\
OJ
..J
\
"-
1\
\
'\.
0:
"i\
1\ \
()
I
\
.05
\
.02
\
.02
2N5660
2N5662
2N5661
.01
I
10 20
50 100 200 300
COLLECTOR·EMITTER VOLTAGE (V)
Vee -
50 100 200 300
10 20
COLLECTOR·EMITTER VOLTAGE (V)
Reverse Bias
Safe Operating Area
Clamped Inductive Switching
Unclamped Reverse Bias
Second Breakdown
10
10
T = l00'C
T, = 25'C
0
-;;;
"
""
.;:
.5
I
'\
()
~
~ .2
g
'BI=-I B2 =IC/IO
r--..~
~
\.
~
z
.1
~
I-
.5
Ie -
:J .5
()
~
""------v,,
.02
o
'"0:0:
~'--0.5V
1 .05
.01
~
Z
..J
0:
0
I-
--
0
.2
..J
..J
.1
'"
0
= -4V
.01
1
2
Ve , -
10
2N5661, 2N5663
sv
Vc,=SV
z
200
f.-- -ISO'C
2S'C
so
I
:J
""" "
SS'C
20
;;:
'"z 100
~ so
~
0:
:J
()
<5 20
ci
\,
10
200
I-
\~
ci
1
100 200 300
SOD
~ 100
~
so
D.C. Current Gain
Ve , =
0:
20
COLLECTOR·EMITTER VOLTAGE (V)
1000
500
~
!-- .....
.02
2N5660,2N5662
z
I---'
1 .OS
1.5
COLLECTOR CURRENT (A)
1000
;;:
2~5660'1622N5661,63
()
D.C. Current Gain
z
2N5663
.01
V." -
g
'"z
= 100"5
= 10%
'\r -Duty Cycle
"-
OJ
0:
0:
\
.05
_c'
I-
Z
I"
\
Duty Cycle' ::::: 10%-
~
Pulse Width
= 100"5 ~
Pulse Width
~ _Duty Cycle
\
= 100'C
Tc
Tc
100"C
Pulse Width_
1 10
--
........
IS0'C
"" l'\
--....:
-
2S'C
-
-SS'C
i
"'" ~
~
\
2
1
.01
.02
.OS .1
.2
.S
1
2
Ie-COLLECTOR CURRENT (A)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
.01
10
.02
.OS
Ic -
88
.1
.2
.S
2
10
COLLECTOR CURRENT (A)
PRINTED IN U.S.A.
JAN, JANTX, & JANTXV 2N5660 JAN, JANTX, & JANTXV 2N5661
JAN, JANTX, & JANTXV 2N5662 JAN, JANTX, & JANTXV 2N5663
Saturation Voltage
Temperature Coefficients
Saturation Voltages
JJ
_+2
P
=2slc
g
2
~ +1
-
VIEt '.-'ClS
.2
VeE' I, = 'CliO
.1
le/l,..: 10
>+1.5
'"
u:...
8'"
j
~ ......
I
/
/
/
V/
-1
'"
:;: -1.5
'"l-
1/ V
25'C to 150'V
11.
I
l- I--- ~I"I'lle"l
.02
1
~ -.5
::>
·IL.--/" V
.05
.01
~ -:2
sr'c to 2S' C
/
AVe,
~
-2 ~ AV"
~
I---"
.05 .1
.2
.5
1
2
Ie - COLLECTOR CURRENT (A)
.01
10
.02
.05 .1
.2
.5
1
2
Ie-COLLECTOR CURRENT (A)
Switching Speed
Characteristics
/
',= 'ClIO
..,
'in
8 .2
~
gu
'"~
.1
Rise Time, tr V
~ r--
~ r-..
.05
_I--"
5
V/
~
8
2
~
/25'C
.!!
-
'"~
.5
~ t-- l - t -
25'C
t-t--
1SO'C
.02
1SO'C
~r-r-Storage Timtt:
g
1-1t~ j::::l-
.............
Delay Time,
10
10
Vee = 100V
.5
V
.... ~ I-:::"ss'c to 25'C
-2.5
Switching Speed
Characteristics
1.0
/'"
25'C to 1SO'C
+.5
U
lS0'C
Fall Time, tt
.2 t--..
2S'C
r-=:
.01
-
r-1-1-
t:::--.,
l"-
~
t<~
~
.1
.2
.5
1
Ie - COLLECTOR CURRENT (A)
.5
.2
2
Ie-COLLECTOR CURRENT (A)
Switching Speed Circuits
Thermal Response
DUty Cycle
.5
Tektronix
541Aor
Equivalent
I-
Z
'"
iii'"
ZU
",Z
c::'"
1-0
.2
.1
o ~ .05
-4V
"':;:
!::!-'-,
:;::;:
"''''
C::c::
+lOGY
Tektronix
541Aor
Equivalent
0",
ZJ:
.02
.01
II-
~
l
0.5
I-- I--
I-- I-- ~ I::::.;;
-
d-- ..- I-- t::-:: ~~
~ v: ~
y
V
~
.01/
"'L
~
~
...
=
=
ElJ.e(t) r(l)-aJ_e
ElJ.e 5.0·C/~r
f~r 2NI566f' 2rS66~
6.7 C/w <~
for 2N5662, 2N5663
fl J •e
Single Pulse
.005
.002
.001
.01 .02 .05 .1 .2
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
89
.5 1 2
5 10 20
TIME (milliseconds)
50 100200 SOO 1000
PRINTED IN U.S,A.
•
POWER TRANSISTORS
JAN,
JAN,
JAN,
JAN,
5 Amp, 300V, Planar NPN
JANTX,
JANTX,
JANTX,
JANTX,
& JANTXV 2N5664
& JANTXV 2N5665
& JANTXV 2N5666
& JANTXV 2N5667
F£ATURES
DESCRIPTION
•
•
•
•
•
Unitrode high voltage transistors provide
a unique combination of low saturation
voltage, fast switching, and excellent gain.
They are ideally suited for off-line power
supply designs and other applications
where the increased voltage rati ng adds
to system reliability.
Meets MIL-S-19500/455
COllector-Base Voltage: up to 400V
D.C. Collector Current: 5A
Peak Collector Current: lOA
Fast Switching
A9S9LUTE MAXIMUM RATINGS
JAN, JANTX,
& JANTXV
JAN, JANTX,
& JANTXV
JAN, JANTX,
& JANTXV
JAN, JANTX,
& JANTXV
2N5664
2NS665
2N56&&
2N56&7
Collector-Base Voltage, VeBo ........
....................................... 250V. ........................... 400V
............... 250V..
.. ................ 400V
Collector-Emitter Voltage, VeEO
..... .......................
... 200V..
.. .... 300V .. .
..... 20OV
.. ..... 300V
Emitter-Base Voltage, VEBO ...................... ...... ................ .. ........... 6V......
.. ...... 6V
............. 6V...
....... 6V
D.C. Collector Current, Ie
..... 5A....
.. .......... 5A.
................. 5A
....... 5A
Peak Collector Current, Ie
.......................
.. ............ lOA.
.. ...... lOA.
. lOA ......
.. lOA
Power Dissipation
25°C Ambient
.................. 2.5W.
... 2.5W.
............. 1.2W
.... 1.2W
100°C Case .................... .
....... 30W .............................. 30W.............................. 15W ......... . .................. 15W
Operating and Storage Temperature Range
. ................................................................... -65°C to 200°C
MECHANICAL SPECIFICATIONS
JAN, JANTX, & JANTXV 2N5664 JAN, JANTX, & JANTXV 2N5665
TO-66
EM~
:~;g-hd~
.250
.360
MIN.
,210
.190
Dimensions in ·inches.
JAN, JANTX, & JANTXV 2N5666 JAN, JANTX, & JANTXV 2N5667
TO-5
.370
.335
.335
.305
.100
Dimensions in inches.
OJJ]
90
_UNITRODE
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
2N5664 2N5666
Test
Symbol
Min.
JAN, JANTX, & JANTXV 2N5664
JAN, JANTX, & JANTXV 2N5666
JAN, JANTX, & JANTXV 2N5665
JAN, JANTX, & JANTXV 2N5667
Max.
Units
Visual and mechanical
/4SS
Sub
MIL-STD-7S0
Test conditions
group Method
A-I
2071
See Mechanical Data
25'C
Collector-Emitter Breakdown Voltage (Note 1)
BV CER *
250
-
Vdc
A-2
3011
Ie = 10mAdc; R" = 100 [!, Cond_ B
Collector-Emitter Breakdown Voltage (Note 1)
BV CEO *
200
-
Vdc
A-2
3011
Ie = 10mAdc; Condo D
Emitter-Base Breakdown Voltage
BVno ,
6.0
-
Vdc
A-2
3026
IE = 10."Adc; Condo D
Collector-Emitter Cutoff Current
ICEs *
-
0.2
I,Adc
A-2
3041
VeE = 200Vdc; Condo C
Collector-Base Cutoff Current
I cBo
-
0.1
I,Adc
A-2
3036
Collector-Base Cutoff Current
Icao
-
1.0
mAdc A-2
3036
D.C. Current Gain (Note 1)
hFE *
h FE '
40
-
-
A-3
3076
Ve, = 200Vdc; Condo D
Ve, = 2S0Vdc; Condo D
Ie = O.SAdc. VeE = 2Vdc
40
120
-
A-3
3076
Ie = 1Adc, VeE = 5Vdc
D.C. CUrrent Gain (Note 1)
hFE *
15
-
A-3
3076
Ie = 3Adc, VeE = SVdc
D.C. Current Gain (Note 1)
hFE
-
-
A-3
3076
Ie = SAdc, VeE = SVdc
0.4
Vdc
A-3
3071
Ie = 3Adc, I, = 0.3Adc
Vdc
A-3
3071
Ie = SAdc, I, = 1Adc
D.C. Current Gain (Note 1)
S
Collector Saturation Voltage (Note 1)
VeE (sat)'
-
Collector Saturation Voltage (Note 1)
VeE (sat)
-
1.0
Base Saturation Voltage (Note 1)
Base Saturation Voltage (Note 1)
Gain-Bandwith Product
Output Capacitance
Thermal Resistance
V" (sat)'
-
1.2
Vdc
A-3
3066
Ie = 3Adc, I, = 0.3Adc; Condo A
V" (sat)
f T*
-
1.S
Vdc
A-3
3066
Ie
20
70
MHz
A-4
3306
Ie = O.5Adc, VeE
C'b
-
90
pf
A-4
3236
Ve,
C-1
31S1
-
3.3
'C/W
()
J-e
2NS664
2NS666
Switching Speeds
-
6.7
Turn-on Time
t on *
-
0.2S
Turn-off Time
tOil *
-
=- SAdc, I, =
1Adc; Condo A
= SVdc, f = 10MHz
= 10Vdc, IE =0, f = 1MHz
'C/W
1'5
A-4
-
1.5
I'S
A-4
-
Adc
B-6
30S1
Adc
B-6
30S1
Adc
mAdc B-6
B-7
30S1
30S1
Ie = 1Adc
100'C
Forward Biased Second Breakdown
2NS664
2NS666
= Isec
=40Vdc, t = 1sec
VeE = 200Vdc, t = 1sec
VeE = 3Vdc, t = lsec
VeE = 6Vdc, t
I SIB
S
I SIB
0.7S
I SIB
I SIB
43
-
S
-
ISIB
0.4
-
Adc
B-7
30S1
VeE
ISIB
27
mAdc B-7
30S1
VeE
mj
B-8
30S3
Ie
mj
B-9
30S3
Ie
I,Adc A-S
3041
VeE
-
3076
Ie
Unclamped Reverse Biased Second Breakdown E
1.25
-
Clamped Reverse Biased Second Breakdown
500
-
I CES *
-
100
h
IS
-
SIB
E
SIB
VeE
= 37.5Vdc, t = lsec
= 200Vdc, t = 1sec
=SAdc, L =O.lmh
= SAdc, L == 40mh, V".mp = 200V
lS0'C
Collector-Emitter Cutoff Current
= 200Vdc, Condo C
-6S'C
D.C. Current Gain (Note 1)
"
A-6
-= 1Adc, VeE = SVdc
Notes
1. Pulse length :.= 300 tIS; duty cycle -S;;;2%.
* Those parameters marked with a * are JEDEC registered and devices meeting these specifications are available as commercial 2N devices.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064
91
PRINTED IN U.S.A.
JAN, JANTX, & JANTXV 2N5664 JAN, JANTX, & JANTXV 2N5666
JAN, JANTX, & JANTXV 2N5665 JAN, JANTX, & JANTXV 2.1'!5667
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
2N5665, 2N5667
Test
Symbol
Min.
Max.
Units
Visual and mechanical
25'C
Collector-Emitter Cutoff Current
,
,
BVe,o
,
BV"o
,
Collector-Base Cutoff Current
IcBO
Collector-Emitter Breakdown Voltage (Note 1)
Collector-Emitte: Breakdown Voltage (Note 1)
Emitter-Base Breakdown Voltage
BV CER
ICES
/455
Sub
group Method
MIL·STD·750
Test conditions
A-1
2071
See Mechanical Data
Ie = lOmAdc; R" = 100 n, Cond. B
400
-
Vdc
A-2
3011
300
-
Vdc
A-2
3011
Ie = 10mAdc; Cond. D
6
-
Vdc
A-2
3026
I, = lOI'Adc; Condo D
-
0.2
I,Adc
A-2
3041
0.1
I,Adc
A-2
3036
Ve, = 300Vdc; Condo C
Ve, = 300Vdc; Condo D
Collector-Base Cutoff Current
IcBO
-
1.0
mAdc A-2
3036
Ve, = 400Vdc; Condo D
D.C. Current Gain (Note 1)
hft
25
-
-
A-3
3076
Ie = 0.5Adc, Ve, = 2Vdc
D.C. Current Gain (Note 1)
hFE*
25
75
-
A-3
3076
Ie = 1Adc, VeE = 5Vdc
D.C. Current Gain (Note 1)
hFE*
10
-
-
A-3
3076
Ie = 3Adc, VeE = 5Vdc
-
A-3
3076
Ie = 5Adc, VeE = 5Vdc
-
0.4
Vdc
A-3
3071
Ie = 3Adc, I, = 0.6Adc
1.0
Vdc
A-3
3071
Ie = 5Adc, I, = lAde
1.2
Vdc
A-3
3066
Ie = 3Adc, I, = 0.6Ade; Condo A
Ie = 5Adc, I, = 1Adc; Condo A
D.C. Current Gain (Note 1)
h"
Collector Saturation Voltage (Note 1)
VeE (sat)'
Collector Saturation Voltage (Note 1)
VeE (sat)
Base Saturation Voltage (Note 1)
V" (sat)'
Base Saturation Voltage (Note 1)
V" (sat)
fT'
-
1.5
Vdc
A-3
3066
20
70
MHz
A-4
3306
Ie = O.5Adc, VeE = 5Vdc, f = 10MHz
C'b
-
90
pf
A-4
3236
Ve,=10Vdc, IE=O, f=lMHz
C-1
3151
-
3.3
'C/W
Gain-Bandwith Product
Output Capacitance
Thermal Resistance
5
°J_C
2N5665
2N5667
Switching Speeds
-
6.7
Turn-on time
tQn*
-
0.25
I'S
A-4
Turn-off time
tOft
-
2.0
I'S
A-4
-
,
'C/W
Ie = 1Adc
100'C
Forward Biased Second Breakdown
2N5665
2N5667
15/ 8
5
-
Ade
B-6
3051
VeE = 6Vdc, t = 1see
ISIB
0.75
-
Adc
B-6
3051
VeE = 40Vdc, t = 1 sec
IS/B
21
mAde B-6
3051
VeE = 300Vdc, t = 1sec
IS/ 8
5
-
Adc
B-7
3051
VeE = 3Vdc, t = 1see
'5/8
0.4
-
Ade
B-7
3051
VeE = 37.5Vdc, t = 1see
IS/B
14
nAde B-7
3051
VeE = 300Vde, t
Unclamped Reverse Biased Second Breakdown
ES/8
1.25
mj
B-8
3053
Ie = 5Adc, L = O.1mh
Clamped Reverse Biased Second Breakdown
ES/8
500
-
mj
B-9
3053
Ie = 5Adc, L = 40mh, V",,,, = 300V
-
100
"Ade
A-5
3041
VeE
-
A-6
3076
Ie = lAde, VeE
150'C
Collector-Emitter Cutoff Current
,
ICES
= 1sec
=300Vdc, Condo C
-65'C
D.C. Current Gain (Note 1)
h"
10
-
= 5Vdc
Notes
1. Pulse length = 300 .us; duty cycle ~2%.
11 Those parameters marked with a 11 are JEDEC registered and devices meeting these specifications are aVi;lilable as commercial 2N ,devices.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
92
PRINTED IN U.S.A.
*
JAN, JANTX, & JANTXV 2N5664
JAN, JANTX, & JANTXV 2N5666
JAN, JANTX, & JANTXV 2N5665
JAN, JANTX, & JANTXV 2N5667
Forward Bias
Safe Operating Area
Forward Bias
Safe Operating Area
2N5666, 2N5667
2N5664, 2N5665
10
Pulse Width
100.sI
",,-Duty Cycle
~
....
z
"
=10%
UJ
0:
0:
::>
1-.
....
II
.2
UJ
...J
...J
I
.5
II
0:
D.C.
....0
II
.2
UJ
...J
...J
II
I
-""'
1\
.02
2
VCE -
.05
\
1
2
VeE -
lSI
'"
C
~
"
l:
.5
~
UJ
II
Z
~
II
.1
~
~
10
TA = 25°C
=-1 82
I C/IO
=
I
~
---... "-......... V
2N5664,66
.5
.1
.05
~=-4V
.02
o
1
Ie -
I -----
.01
1
COLLECTOR CURRENT (A)
VeE -
D.C. Current Gain
50 100 200 300
10
20
COLLECTOR VOLTAGE (V)
D.C. Current Gain
2N5664, 2N5666
2N5665, 2N5667
1000
1000
VCE = 5V
VeE = 5V
SOO
500
~ 200
II
t.i
20
~
z 200
.---
P-- .---
~7
~....
i'..
I"-
ci
I
~
=-2V
IE
.02
.01
-
~N5665,167 - -
.2
!--
~
...J
5
10 20
50 100 200 300
COLLECTOR-EMITTER VOLTAGE (V)
Reverse Bias
Safe Operating Area
Clamped Inductive Switching
I
.!!!
.05
..
\
1\
5
10
20
50 100 200300
COLLECTOR-EMITTER VOLTAGE (V)
10
I
"--\ \ "\
Unclamped Reverse Bias
Second Breakdown
.2
= 100.s
Duty Cycle
= 10%-
.01
1
~
::>
o
~
~ i'-.
I-
.02
.01
g
Te =lOO°C
Pulse Width_
.1
0
\
.05
_u
-10%_
l"-
::>
1\
.1
0
II
"
UJ
0:
0:
\
\
0
PUIS:~~!h ~
- 1'\ Dut~ CY~le ~
~
....
z
"- = 10%
D{~
.5
II
0:
10
Tc = 100°C
- Pulse Width
= 100.s
~puty Cycle.
z
~
.05 .1
.2
.5
1
2
Ie - COLLECTOR CURRENT (A)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
50
II
t.i 20
ci
I
'\
.02
100
::>
~
10
1
.01
UJ
0:
0:
5
10
-~
150°C
.------
1
.01
10
.02
.05
Ie -
93
-
r----."
25!C
.-----
~
r--
.1
.2
~
.5
......
~
'\
10
COLLECTOR CURRENT (A)
PRINTED IN U.S.A.
JAN, JANTX, & JANTXV 2N5664
JAN, JANTX, & JANTXV 2N5666
JAN, JANTX, & JANTXV 2N5665
JAN, JANTX, & JANTXV 2N5667
Saturation Voltalle
Temperature Coefficients
Saturation Voltages
T;
_ +2
=25 JC
P
i+
Ie/I. :E;; 10
l .5
~ +1
~
~
0
I-- ~
VI~.II= 'CIS
UJ
CI
f-""'"
.5
ld:
UJ
U
...ii:
II
UJ
Q:
:>
VeE
.1
~
.05
.01
.02
,'.= 'eM
~
y~
Vcr:
~
/
25'C to 150IY
~ -1.5
I -2
~
1
.05
.1
.2
.5
1
Ie - COLLECTOR CURRENT (A)
-2.5
10
~
.01
,/
V
V
~to25'C
....
'.= Icls
1/
-55;C to 25'C
-1
UJ
0.
V
-'1
f-.5
....
J
.2
Vl
t----t:::t:=- f.--t7'
:NCE
UJ
o
u
IV
>
25°C to 150°CY
+.5
r-
.05
.1
.2
.5
Ie - COLLECTOR CURRENT (A)
.02
Switching Speed
Characteristics
10
Switching Speed
Characteristics
10
Vee
.5r-~-+~----+-~r---+---~--1
= 100V
= 'CliO
'B2=-I St
"
,.2
'iii'
" 2
~
--
8
'""e
! .1~E*~~~~~~--t---~1
....... 1-
150°C
::;:
..............
'-I-r-
~"
UJ
0
Storage Time,
25°C
I--
UJ
;:: .05 f-+-+-H-T'~_;:!--+--+--+----1
::;: .5
;::
V
f-f-+....
.02 t--+-t-H--t------j--t---t---
m. Tj'l'
.2
f.--
T
r----...
r-- k
~
~
f.--
V
<
;>
25°C
.1
.5
Ie -
COLLECTOR CURRENT (A)
Ie -
Switching Speed Circuits
Thermal Response
Duty Cyele
+lDOV
I"
.5
= -I" = 30rnA
lOO~~
Tektronix
541A or
Equivalent
!z
~
~fi:I
NO.
:J~
~:;t
:s~
+l00V
.2
.2
ZUJ
~~
......
-4V
ZUJ
.1
.05
2SV
Tektronix
541A or
Equivalent
?
~ I--
~ I--
~V
~
I-- l- IJ.....8:::
l- f- ..... ~ ;.-
--
...- l:::
/'
,,/
.005
I::::: ~ ~
SJ_e (t) =. ret) • B J_e
SJ-C = 3.3°C/w for 2N5664,65
0J_e = 6.7'C/w for -
~ngle Pulse
I
.001
.01 .02
I:;:::; !iii JIll""
f'"
...V
..... V ---:::: V
.002
-4V
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
0.5
"'" / ' . /
~ ./"
.01
.02
Ii!'
Jl<>+"V~"V'N'--'---;
COLLECTOR CURRENT (A)
.05 .1.2
.5
1
2
5
-
I 2N~66~, 671
10 20
SO 100 200 SOO 1000
TIME (milliseconds)
94
PRINTED IN U.S.A.
2N5671
2N5672
POWER TRANSISTORS
30A, 150V, Fast Switching,
Silicon NPN Mesa
DESCRIPTION
These glass passivated power transistors
combine fast-switching, low saturation
voltage and rugged Es/b capability.
They are designed for use in switching
regulators, converters, inverters and
switching-control amplifiers.
FEATURES
• Collector-Base Voltage: up to 150V
• DC Collector Current 30A
• Low VCE ISAT)
0.75V Max.
• ton = 0.5I'S} @ Ic = 15A
• t'all 0.51'S
=
=
=
•
ABSOLUTE MAXIMUM RATINGS •
tNIS71
*
tN5672
Collector-to-Base Voltage, VCIO ........ ......................
. .................................................................. 120V..............
.. ... lSOV
Collector-Emitter Sustaining Voltage, VCEX ISUS)
......................
. ............................................ .120V..............
.. ....... lSOV
VCER (SUS) ......
. ............................................................................................
140V
VCEO ISUS}............ ....................... .............................................
.. .. 90V ................................ .120V
* Emitter-Base Voltage, VEIO ....................
...............................
...................................
.. ............. .7V .....................................7V
* Collector Current, Ic continuous.
.................... ....................
........... 30A ..................................30A
* Base Current, II continuous.
.........................
.. ........ .lOA....................
.. ..... .lOA
* Power Dissipation, 25'C Case ............ .......................
.. ........ 140W............................... .l40W
* Operating and Storage Temperature Range ........
.. ............ -65 to 200'C.......... .
nov .................................
*
JEDEC registered values.
MECHANICAL SPECIFICATIONS
NOTE:
2N5671-2N5672
Leads may be soldered to within
1/16" of base provided temperaturetime exposure is less than 260'C
for 10 seconds.
K
Ins.
J
BASE
EMITTER
TO·3
mm
•
.875 MAX .
. 135 MAX.
3.43 MAX .
C
.250-.450
6.35~11.43
22.23 MAX .
7.92 MIN .
.312 MIN.
0
i-=+=='----+=='-------l
5.21-5.72
.205-.225
.420-.440
10.67-11.18
. 151-.161 DIA.
3.84-4.09 DIA .
. 188 MAX. RAO. 4.78 MAX. RAC .
-L
L
.525 MAX. RAO.
13.34 MAX. RAD .
M
.655-.675
16.64-17.15
N
1.177-1.197
29.90-30.40
P
.038-.043 CIA.
9.65-10.92DIA .
[1ill
6-79
95
_UNITRODE
2NS671 2NS672
ELECTRICAL SPECIFICATIONS Cat 25'C unless noted)
*
Test
D.C. Current Gain (Note 1)
Symbol
hFE
D.C. Current Gain (Note 1)
hFE
Collector Saturation Voltage
(Note 1)
VCEI,.t(
Base Saturation Voltage (Note 1)
VSEI..t(
2N5671
MIN.
MAX.
20
100
2N5672
MAX.
MIN.
20
100
Units
Test Conditions
Ic = lSA,VCE = 2V
20
-
20
-
0.7S
0.75
V
Ic = lSA, IB = 1.2A
1.S
V
Ic = 15A, Is = 1.2A
1.6
-
1.6
V
V
Ic = lSA, VCE = SV
Ic = 2OA, VCE = SV
Base to Emitter Voltage (Note 1)
VBE
-
Collector-Emitter Sustaining
Voltage (Note 2)
VCEOI.us(
90
-
120
-
V
Ic = O.2A, IB = 0
VCElCI ...(
120
-
ISO
-
V
VBE=-I.SV
1.5
Ic=0.2A
Collector-Emitter Sustaining
Voltage (Note 2)
IB=O
Collector-Emitter Sustaining
Voltage (Note 2)
Emitter-Cutoff Current
*
*
*
VCERI,..(
Collector Cutoff Current
lEBO
I CEO
Collector Cutoff Current
I CEV
110
10
-
-
140
10
-
mA
VEB =7.OV
10
mA
VCE=SOV
VCE = nov, VBE = -1.SV
mA
VCE = 13SV, VBE = -1.5V
-
15
-
10
12
-
10
10
V
VCE = 100V, VBE = -l.SV,
Tc =150'C
Magnitude of Small
Signal Forward Current Transfer
Ratio
h,.
10
-
10
-
Collector Capacitance
Cab
-
900
-
900
pF
Second Breakdown Energy
EsIb
20
-
20
-
mJ
Forward Bias
Second Breakdown
Collector Current
IsIb
S.8
0.9
-
5.S
0.9
-
A
Switching Speeds:
Turn-on Time
(Delay + Rise)
t..n
-
0.5
0.5
I'S
-
1.5
-
1.5
I'S
0.5
0.5
I'S
1.25
-
1.25
-
'C/W
Storage Time
t,
Fall Time
t,
Thermal Resistance:
Junction-to-Case
RsJC
~
RBE = son, Ic = 0.2A
VCE = 10V, Ic = 2A, f = 5MHz
VCB = 10V, f = 1 MHz
VBE = 4V, Ic = 15A
RBE = 2On, L = IS0l'H
VCE = 24V, t = Is, non-rep.
VCE = 45V, t = Is, non-rep.
Ic =15A
IB' = IB2 = 1.2A
VCC= 30V
VCE = 40V,I c = 0.5A
Not••
1. Pulse length = 250,,5, duty cycle ';;1%.
2. Sustaining Voltage. Measured at a hlSh current point where collector-emitter voltage Is lowest. Current pulse length"" 50,,5, duty cycle ';;1%.
Voltage clamped at maximum collector-emitter voltage.
• JEDEC registered values.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710( 326·6509 • TELEX 95·1064
96
PRINTED IN U.S.A.
2N5671 2N5672
Power Derating
Forward Bias Safe Operating Area
30
NJ
20
~
z>-
I
"!\.
D,C,
UJ
0:
0:
=
\
U
0:
o
>-
IS8
u
Limited~
UJ
..J
..J
2N5671
2N5672
o
u
I
1
I
:-......
~
'\.
80
0:
0
>u
~
\
::J
'" ,'\.
25°C
100"S
"
~ r\
10
Te
1mS
"-10mS
100
60
"'
"
\
I
i\-'
I
~.l'.l'
~J
z
;::
\
40
0
I
>-
Z
UJ
\
0:
0:
.... T DESIRED OPERATING VOLTAGE,
20
::J
_u
I"~O
r-...
"'-
'N-~
0:
UJ
I
~1./~
;~?CN S~~~R~~;V~O'!IT "NO
I"
~"
O[RAT~ OISSI~A.~
CURRENT LI""IT FROM
u
DASH LINES ON SOAR CURVES ARE EXTENSIONS OF
DISSIPATION LlMITj FOR
PU_"jPOSES
0,5
o
0,3
20
10
2
Ve, -
100
50
TMPERrURE IO'ATING
40
Tc -
200
'\
'\
1
l
o
.........
80
120
160
CASE TEMPERATURE ("C)
200
COLLECTOR VOLTAGE (V)
DC Current Gain
500
I
-- -
200
z
;;'
'"z>-
100'C
I
25 JC
100
VeE - 5V
-
W
0:
0:
50
r-..
::J
'-'
'-'
0
.r;;."
20
/1--'
-55'C
/
10
5
0,2
0,5
Ie -
Transistor -
10
Resistive -
Saturation Voltages
3,0
~
UJ
C-
::::--
r---- 1OO ' C
"'oS
010'
,1
">-
,05
~5~
V
~
0:
-
Ie -
10
COLLECTOR CURRENT (A)
UNITRODE CORPORATION" 5 FORBES ROAD
LEXINGTON, MA 02173 " TEL. (617) 861-6540
TWX (710) 326-6509 " TELEX 95-1064
t::'
100'C
..-r
i2r,c
.-
/
t,
r-
t,
r-
25'C
50
I'-...
~
100'C"
~
20
~
Vee = 30V
,04
,5
100
::J
500
/.
25°C
..J
Z
0
---~
1%
(Ial)
5l.c
,5
"'">0
Turn-On Time
1000
V B(;
LO
20
COLLECTOR CURRENT (A)
10
0,2
20 30
lell'f~
0,5
Ie -
97
10
2
20
COLLECTOR CURRENT (A)
PR I NTED IN U,S.A,
2N5671 2N5672
Resistive Turn-Off Time
5
!-r--r-
r-ts
"'"-
---
Vee
--
""
OJ
;::
0.5
...
U
~
25'q,
y
r-....
I
30V
100'C
:E
z'"
=
le/lB~ 8
I'-0.2
100't
r-tj
O•1
.05
0.2
I
r---
I
0.5
Ie -
1
25'c;.....
2
5
10
20
COLLECTOR CURRENT (A)
Switching Time Test Circuit
R"
P.W. :::: 25.us
UNITRODE CORPORATION - 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064
98
PRINTED IN U.S.A.
2N5838
2N5839
2N5840
POWER TRANSISTORS
3A,375V
Silicon NPN Mesa
FEATURES
• Collector-Base Voltage: up to 37SV
• Peak Collector Current: SA
• Low Saturation Voltage
• High Second Breakdown Energy
DESCRIPTION
These high voltage glass passivated power
transistors combine fast switching, low
saturation voltage and rugged Esfb capability.
They are designed for use in off-line power
supplies, high voltage inverters, switching
regulators, ignition systems and deflection
circuits.
•
ABSOLUTE MAXIMUM RATINGS *
2N5838
2N583.
2N584G
Collector-Base Voltage, VCIO .................................... ....................................................... ...... 275V
3OOV...........
.. ....... 37SV
Collector-Emitter Voltage, VCEO ... ................................ .........................................
..... 2S0V ............................... 27SV...................... .. ... 3S0V
Emitter-Base Voltage, VEIO .............................................................................................
.6V......................................6V..................
. 6V
Collector Current, Ic continuous .............................................................................................. 3A ................................... 3A.................................... 3A
Collector Current, ICM, peak ..................................................................................................
SA .........................
... SA..................
. ....... SA
Base Current, II continuous ..................................................................................................... I.SA...........
..... .. 1.SA...............
.. ...... I.SA
Power Dissipation, Pr 2S'C Case ............................................................................................. lOOW........................... IOOW.................................IOOW
Operating and Storage Temperature Range ............................................................................................-6S to +200·C............................................ ..
• JEDEC registered values.
MECHANICAL SPECIFICATIONS
NOTE:
leads may be soldered to within
1!t6" of base provided temperature-
2N5838 2N5839 2N5840
time exposure is less than 260'C
for 10 seconds.
Ins.
A
K
J
BASE
EMITTER
TO-3
mm
.875 MAX.
22.23 MAX.
.135 MAX.
3.43 MAX.
C
.250-.450
8.35-11.43
0
.312 MIN.
7.92 MIN.
E
.205-.225
5.21-5.72
F
.420-.440
10.67-11.18
.151-.1610IA.
3.84-4.09 CIA .
.188 MAX. RAO. ·U8 MAX. RAC .
L
F
..
L
.525 MAX. RAD.
13.~
.655-.675
16.64-17.15
MAX. RAD .
N
1.177-1.197
29.90-30.40
P
.038-.0430IA.
9.65-10.92 CIA .
[ill]
6-79
99
_UNITRDDE
2N5838 2N5839 2N5840
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
D.C. Current Gain (Note 1)
Symbol
hFE
2N5840
2N5838
2N5839
MIN. MAX. MIN. MAX. MIN. MAX.
20
20
20
-
-
-
D.C. Current Gain (Note 1)
hFE
D.C. Current Gain (Note 1)
hFE
Collector Saturation Voltage
(Note 1)
VCE 1••11
-
-
Collector Saturation Voltage
(Note 1)
VCEls.11
-
1.0
-
2.0
-
8
40
-
10
50
10
50
-
-
V
Ie = 3A, VCE = 2V
1.5
-
1.5
V
Ie = 2A,IB = 0.2A
-
-
-
V
Ic = 3A,I B= 0.375A
2.0
-
2.0
V
Ic = 2A, IB = 0.2A
-
V
Ie = 3A, IB = 0.375A
350
-
V
Ic = 200mA,I a = 0
-
V
Ic = O.lA, VaE = -1.5V,
L= lOmH
Base Saturation Voltage (Note 1)
VBEI ..II
VaE 1••11
Collector-Emitter Sustaining
Voltage (Note 2)
VCEO ISUSI
250
-
275
-
Collector-Emitter Sustaining
Voltage
VCEX
275
-
300
-
375
Emitter-Base Cutoff Current
lEBO
Collector Cutoff Current
Collector Cutoff Current
ICEO
leEv
Test Conditions
Ie = 0.5A, VeE = 5V
-
Base Saturation Voltage (Note 1)
-
Units
-
Ie = 2A, VCE =3V
1.0
-
1.0
rnA
VEB = 6V
-
-
-
1.0
2.0
-
-
VCE - 200V
-
2.0
-
2.0
rnA
VCE = 250V
-
-
-
-
2.0
-
-
rnA
-
-
-
8.0
-
-
-
-
-
5.0
-
-
-
-
5.0
5.0
VCE = 265V
2.0
VCE =290V
VaE = -1.5V
VCE = 360V
Forward Bias Second Breakdown
Islb
-
2.5A
-
2.5A
-
2.5A
Second Breakdown Energy
Eslb
0.45
-
0.45
-
0.45
-
mJ
RaE = 50rl, L = 100pH
Collector Capacitance
Cob
-
150
-
150
-
150
pF
Vea = lOV, IE = 0, f = 1 MHz
Small Signal High Frequency
Gain
h,.
-
MHz
Collector Cutoff Current, 150'C
I cEv
5
-
5
5
-
VCE = 265V
rnA
VCE = 290V
VaE = -1.5V
VCE = 360V
VCE = 40V, tp = 1 Sec.
Ie = .2A, VCE = lOV, f = 1 MHz
Switching Speeds:
td
-
-
-
0.7
-
Ic = 2A, VCE = 200V,
0.7
Delay Time
pS
td
t,
-
0.6
-
-
1.5
-
-
-
lSi = 182 = (.375M
Ic = 2A, VCE = 200V,
1.75
Rise Time
pS
t,
-
1.5
-
-
-
-
t,
-
-
-
3.75
-
3.75
Storage Time
-
3.0
-
-
-
-
tf
-
-
-
1.5
-
1.5
Fall Time
Ic = 3A, VeE = 200V,
Ic = 2A, VCE = 200V:
Thermal Resistance
-
1.5
-
-
-
-
R9JC
-
1.75
-
1.75
-
1.75
lSI = 182 = (0.2A)
Ie = 3A, VCE = 200V,
lSi = la2 = (.375M
Ie = 2A, VCE = 200V,
pS
tf
lSi = 182 = (0.2A)
lal = IS2 = (.375M
pS
t.
lSi = la2 = CO.2M
Ic = 3A, VCE = 200V,
lSi = IB2 = (0.2A)
Ic = 3A, VCE = 200V,
lSI = IS2 = (.375M
'C/W
Notes
1. Pulse length 250,,5; duty cycle ,,1%.
2. Sustaining Voltage. Measured at a high current point where collector-emitter voltage is lowest. Current pulse length"" 50,,5; duty cycle ,,1%.
=
Voltage clamped at maximum collector-emitter voltage.
'It
JEDEC registered values.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (6171 861·6540
TWX (710) 326-6509 • TELEX 95·1064
100
PRINTED IN U.S.A.
2N5838 2N5839 2N5840
Forward Bias Safe Operating Area
Power Derating
100
10
D.C.
~
I,
~
....z
Power Dissip.tio~_
Limited
OJ
a:
a:
i!'I
0
...
ImS.,;
">=
'~(/",
a:
<
a:
Is. Limited
OJ
0
t-
2~5838~ ,.......
.5
0
0
U'U'/,ci
60
~1
/0
I
Te= 2S'C
ffies Apply Below
Rated VCEO
.2
II
.1
5
20
40
50
20
O[AA~
o
500
200
o
40
80
120
160
Tc - CASE TEMPERATURE ('C)
S
I I
I
veE = 5V
lel1, = 5
100
2
OJ
a:
a:
100'C
-
SO
....
Z
::l
0
20
I
~
2s'C
~
1
:--
::::
!:i
10
0
> O.S
z
~"
~
::l
....
00:
a:
S
5'
0.2
Ie -
O.S
1
2
0.2
-
/ V
~ /2s'C
/'
~
VeEls.t,
.05
S
.05
COLLECTOR CURRENT (A)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
1---.,.
/ 0 C/
....
0.1
0.1
~
/
55'
100'C
Ul
2
-
t,
0
.elf.
.05
V BE I..
-Ss'C
'"
e.>
Q:
0
le.>
w
oJ
oJ
0
e.>
son
400
.1
UTX
I
1056
-
-20V
.01
.1
10
100
VeE - COLLECTOR·EMITTER VOLTAGE (V)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064
104
PRINTED IN U.S.A.
2N6249
2N6250
2N6251
POWER TRANSISTORS
IOA,450V, Fast Switching,
Silicon NPN Mesa
FEATURES
DESCRIPTION
•
•
•
•
These high voltage glass passivated power
transistors combine fast switching, low
saturation voltage and rugged Es/b capability.
They are designed for use in off-line power
supplies, high voltage inverters, switching
regulators, ignition systems and deflection
circuits.
Collector-Base Voltage: up to 450V
Peak Collector Current: 30A
Low Saturation Voltage
Maximum Safe Area of Operation
-
ABSOLUTE MAXIMUM RATINGS
2N6249
* Collector-Base Voltage, VCRO .
2N6250
............. 300V...
.......... ..375V ....
.. 200V..
. ............ 275V ......
6 V . . . . .... 6V
....... .10A..
. ........ lOA......
... 30A...
.... ..30A
...... .lOA..
..... .lOA...
.. ........ .l75W...
.. l75W... .
............... -65 to +20Q'C ...
*
Collector-Emitter Voltage, VCEO
Emitter-Base Voltage, VERO .
* Collector Current, Ic continuous.
Collector Current, ICM peak.
* Base Current, IR continuous.
* Power Dissipation, Pr 25'C Case.
* Operating and Storage Temperature Range
2N8251
.. ......... 450V
.............. 350V
................... 6V
...lOA
... 20A
............... .10A
..... 175W
* JEOEC registered values.
MECHANICAL SPECIFICATIONS
NOTE:
L.eads may be soldered to within
1/16" of base provided temperature·
time exposure is less than 260°C
2N6249-2N6251
ins.
for 10 seconds.
1 " - - ~p
A
~~
Be---
C
6-79
r
D
1
N
I
K~,
I ~-rT'
;1 ~ft
7
BASE
EMITTER
-
L
mm
A
.875 MAX.
B
.135 MAX
3.43 MAX.
C
.250-.450
6.35-11.43
22.23 MAX
o
312 MIN.
7.92 MIN.
E
.205-.225
5.21-5.72
F
.420-.440
10.67-11.18
J
.151-.161 CIA.
3.84-4.090IA.
K
.188 MAX. RAD
4.78 MAX. RAD.
L
.525 MAX. RAO. 13.34 MAX. RAD.
M
.655-.675
16.64-17.15
N
1.177-1.197
29.90-30.40
P
.038-.0430IA
9.65-10.920IA
105
TO-3
om
_UNITRDDE
I
2N6249 2N62S0 2N62S1
ELECTRICAL SPECIFICATIONS (at 25"C unless noted)
Test
D.C. Current Gain (Note 1)
Collector Saturation Voltage
(Note 1)
Symbol
hFE
2N6250
2N6251
2N6249
MIN. MAX. MIN. MAX. MIN. MAX.
6
50
10
50
8
50
Units
VCEI"'I
-
1.5
-
1.5
-
1.5
V
-
2.25
-
2.25
-
2.25
V
Test Conditions
Ic = lOA, VCE = 3.0V
Ic= lOA
IB = LOA (2N6249)
I. = 1.25A (2N6250)
I. = 1.67A (2N6251)
Base Saturation Voltage (Note 1)
VBEI ••'I
Collector-Emitter Sustaining
Voltage (Note 2)
VCEO I·usl
200
-
275
-
350
-
V
Ic = 200mA
Collector-Emitter Sustaining
Voltage (Note 2)
VC""I,u.1
225
-
300
-
375
-
V
Ic = 2oomA, RBE = SOn
L= 14mH
Emitter Base Cutoff Current
lEBO
1.0
mA
ICEO
5.0
mA
5.0
mA
10
mA
2.5
2.5
-
1.0
Collector Cutoff Current
-
2.5
mJ
Ic = lOA, L = 50"H
R. E= 50n, V. Eloff} = -4V
5.8
0.3
-
5.8
0.3
-
A
VCE = 30V
VCE = 100V
1.0
"C/W
Collector Cutoff Current, 125"
ICEY
I CEY
Second Breakdown Energy
Eslb
-
Forward Bias Second Breakdown
Islb
5.8
0.3
-
Thermal Resistance
R9JC
-
1.0
-
1.0
-
2.5
-
2.5
-
2.5
Collector Cutoff Current
High Frequency Gain
Switching Speeds:
Rise Time
Storage Time
~al1 lime
I hFEI
t
t
tf
0.8
1.8
0.5
5.0
5.0
10
2.0
3.5
1.0
0.8
1.8
0.5
1.0
5.0
5.0
10
2.0
3.5
1.0
0.8
1.8
0.5
VE.=6V
VCE = SOV less than rated
VCEO ISUSI
VBE = -1.5V
VCE = rated VCER ISUS}
VCE = lOV, Ic = SA
= 1 MHz
-
Ic = lA, VCE = 10V, f
2.0
3.5
l.0-
Ic=10A
IBI = 1.2 = 1.0A (2N6249)
IBI = 1.2= 1.25A (2N62S0)
1. , = IB2 = 1.67A (2N6251)
"S
Notes
1. Pulse length", 250"S, duty cycle ,,1%.
2. Sustaining Voltage. Measured at a high current point where
Voltage clamped at maximum collector~mitter voltage.
* JEDEC registered values.
UNITROOE CORPORATION· 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (nO) 326·6509 • TELEX 95-1064
collector~emitter
106
voltage is lowest. Current pulse length:::::: 50,uSj duty cycle
~1%.
PRINTED IN U.S.A.
2N6249 2N6250 2N6251
Forward Bias Safe Operating Area
Power Derating
100
"'\I'\.
4O~~~~I~~I~I~~~~~Tn
20~~~~:t~~~+t~~~n~~:I"I.....
P.W.
P.W.
~
~
f".-
80
a:
....0
t)
...<
.1\:-fI\t+ttI-t--H-HrH
200
.041:=:±=t=t::1:±±lt:tt=±~ct±t:i:±±±±J::j
TC - CASE TEMPERATURE (·C)
10
20
50
100
200
SOO
1000
VeE - COLLECTOR VOLTAGE (V)
Reverse Biased Safe Operating Area
Saturation Voltages
40
'c/s=I"=-'B2
VIE (off) ~ -5V
Te == 100°C
$
....
z
10
'"0::0::
4.0
u
2.0
OJ
....
u
m1
250
u
1
_u
0.4
0.5
~
t--
=--
l00'C
f-
0::
~/~
OJ
~ 0.2
2N6251
II)
Clf..f)
0.1
~;..-'
~V
0.2
.1
~ iJ
f-- VIE 1"'1
5S C
2S'C
>
Z
0
J
-
!:i
c
L
'"
"/
'"«CI
27ft9 rr
1.0
I
~
1/
...I
...I
0
~,..
!
0::
0
11111
le/l.=5
r- lOO•C
25'C
.04
10
20
r--i"""'f"
.05
0.2
50
100
200
2
0.5
5
Ie - COLLECTOR CURRENT (A)
1000
500
5S'C
10
20
Ve", In'I-COLLECTOR VOLTAGE (V)
DC Current Gain
500
Typical
Inductive Load
Switching Performance
200
z
;;:
100
'"0::
II:
50
CI
IZ
OJ
U
c
1
~
..... 1'-..
25°C
20
::::-:!"ssJc
.c
..... ~
--==~
nS
ns
3
25
100
.8
1.10
.14
.18
.025
.035
5
25
100
.9
1.2
.14
.16
.025
.030
10
25
100
1.2
1.5
.05
.12
.050
.100
t fj
~
10
0.2
I,.
p.S
r--- -100·C
U
t,
TJ
·C
Ie
Amps
VeE == 5V
20
...l.
5
10
0.5
2
Ie - COLLECTOR CURRENT (A)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95.1064
107
PRINTED IN U.S.A.
-
2N6249 2N6250 2N6251
Resistive Turn-Off Time
Resistive Turn·On Time
1000
10
100'C
500
l00'C
I"
~ ~
200
'iii
...::IioS
'\ t\,.1"
t,
I'r"o
I
fT
roo-
5.0
l-
2.0
.3 1.0
...::e
25'C
t.
l00"C
50
1;;iIIIIIIIIf""
i=
.5
.... ~
./
....
l00'C
1,\-
I
.2
·';"1
.5
tf
t-
Vcc = 250V
8,-5
2
,[\
~
91
i=
10
.2
i"'"
i""'t'-o
~,.=;,.5_rI,,=-I"r-
'U
100
20
vep ...25OV~
........~.=
;r.c !'-o..
25'C-
...... ~
I
5
10
.1
.2
20
Ie - COLLECTOR CURRENT (A)
I'"
;,+;4-
J..'
I""""
'1
.5
1
2
10
20
Ie - COLLECTOR CURRENT (A)
Switching Time Test Circuit
200V
P.W.
UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064
=25~S
108
PRINTED IN U.S.A.
2N6306
2N6307
2N6308
POWER TRANSISTORS
8 Amp, 700V, Triple Diffused NPN Mesa
FEATURES
• Collector-Base Voltage: up to 700V
• Peak Collector Current: 16A
• Rise Time: :;;:; 600 ns t
• Fall Time: :;;:; 400 ns ~ @ Ic = 3A
DESCRIFTION
These high voltage triple diffused glass
passivated power transistors combine fast
switching, low saturation voltage and rugged
Es/b capability. They are designed for use in
off-line power supplies, high voltage inverters,
switching regulators, ignition systems and
deflection circuits .
•
ABSOLUTE MAXIMUM RATINGS·
2N6306
Collector-Base Voltage, Vc.o ....
Collector-Emitter Voltage, VCEO .
Emitter-Base Voltage, VE• O .
Collector Current, Ic continuous .
Collector Current, ICM, peak .
Base Current, I. continuous.
Power Dissipation, Pr 25'C Case .
Operating and Storage Temperature Range .
* JEOEC
2N6307
.. 500V...
.... 6OOV.
........................ 250V.... ...... 300V.....
ZHI_
........... 700V
.. ... 350V
. ... W . . . . W ................................. ~
....................... 8 A . . . . .. 8A.............................. 8A
............... 16A...
.. 16A.
... .. 16A
....................... ~...~
....... ........................... 125W...
..... 125W....
............ -65 to +200·C.... .
..... ~
125W
registered values.
MECHANICAL SPECIFICATIONS
2N6306 2N6307 2N6308
TOol
.188
1t1h~~:.
BASE
EMITTER
~LlliJ. 135
MAX.
.525
MAX.
RAO .
.205
.450
.250
.312
MIN.
.440
.420
Dimensions in inches.
109
om
_UNITRDDE
2N6306
2N6307
2N630S
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)"
2N6306
Symbol
Test
2N6307
2N6308
MIN.
MAX.
MIN.
MAX.
MIN.
MAX.
75
15
75
12
60
Ie = 3A, VeE = 5V
-
4
3
-
Ie = SA, VeE =5V
Units
Test Conditions
D.C. Current Gain (Note 1)
h"
15
D.C. Current Gain (Note 1)
h"
4
Collector Saturation Voltage
(Note 1)
VeE
(sat)
-
O.S
-
1.0
-
1.5
V
Ic = 3A, IB = 0.6A
Collector Saturation Voltage
(Note 1)
VeE
(sat)
-
5.0
-
5.0
-
-
V
Ie = SA, IB=2A
Collector Saturation Voltage
(Note 1)
VeE
(sat)
-
-
-
-
5.0
V
IC = SA, IB = 2.67A
Base Saturation Voltage (Note 1)
VSE(sat)
2.3
-
V
Ic=SA,IB=2A
VSE(Sd t }
-
-
2.3
Base Saturation Voltage (Note 1)
-
-
2.5
V
Ic = SA, IB = 2.67A
Base-Emitter Voltage (Note 1)
VSE (O'll
-
1.3
-
1.3
-
1.5
V
Ic = 3A, VCE = 5V
Collector-Emitter Sustaining
Voltage (Note 2)
VCEO (SUS}
250
-
300
-
350
-
V
Ic = 100mA, IB = 0
Emitter·Base Cutoff Current
lEBO
-
1.0
-
1.0
rnA
-
-
-
-
-
0.5
-
-
-
1.0
0.5
-
-
-
0.5
-
-
-
-
-
0.5
-
2.5
-
Collector Cutoff Current
Collector Cutoff Current
Collector Cutoff Current, 150'C
ICEO
I CEV
I CEV
-
-
-
-
-
0.5
-
-
-
-
2.5
-
-
-
-
-
-
-
2.5
ISO
-
ISO
-
ISO
250
-
250
-
ES/b
-
Collector Capacitance
Cob
5
fT
-
5
-
rnA
5
VCE = 300V
VCE = 350V
-
-
VES = SV
VcE =250V
0.5
-
Second Breakdown Energy
Gain-Bandwidth Product
-
VCE = 500V
rnA
l
VCE = 600V \ VBE = -1.5V
VCE = 700V,
VCE = 500V}
rnA
VCE = 600V
VBE = -1.5V
VCE = 700V
mJ
Ic = 3.0A, L = 40 mH
RBE = 3Krz, VBB2 = 1.5V
250
pF
VCB = lOY, IE = 0, f = 1 MHz
-
MHz
Ic = .3A, VCE = lOY, f = 1 MHz
Switching Speeds:
Rise Time
t,
-
0.6
-
0.6
-
0.6
!'s
Vcc = l25V, Ic = 3A
I" =0.6A
Storage Time
t,
-
1.6
-
1.6
-
1.6
pS
Vcc = l25V, Ic = 3A
I" = 0.6A, I" = 1.5A
Pulse Width = 25 ItS
Storage Time
t,
-
O.S
-
O.S
-
O.S
pS
Vce = l25V, Ic = 3A
IB' = 0.6A, I" = 1.5A
Pulse Width = 5.0!,s
Fall Time
t,
-
0.4
-
0.4
-
0.4
ItS
Vec = 125V, Ic = 3A
I" = 0.6A, I" = 1.5A
ReJC
-
1.0
-
1.0
-
1.0
'C/W
Thermal Resistance
Notes
1. pulse length = 250 ~s; duty cycle ';:;1%.
2. Sustaining Voltage. Measured at a high current point where collector-emitter voltage is lowest. Current pulse length
Voltage clamped at maximum collector-emitter voltage.
* JEOEC registered values.
UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064
110
== 50
,us; duty cycle ~1 %.
PRINTED IN USA.
2N6306
2N6307
Power Derati ng
Forward Bias Safe Operating Area
100
~
~
0
IU
«
....
'" r--....
'"
80
0:
~
60
t"l
I
~{/4,.
~"'",
-...:."~o
t....:
~J
Z
;::
«
0:
~
w
"
40
W
0:
0:
AT DESIRED OPERATING VOLTAGE, DERATE
20
OISSI~A:'\
!~?: Sc;!~R~~:v~MIT AND J, .. CURRENT LIMIT FROM
"\
0
DASH LINES ON SOAR CURVES ARE EXTENSIONS OF
DISSIPATION liMITS FOR TEMPERATURE DERATING
PURioSESOt
o
"'"
~~
I-
::>
~
N'' -t.
Z
VCE -
2N6308
1
o
1
1
1
1
I\:
40
80
120
160
Te - CASE TEMPERATURE ('C)
COLLECTOR VOLTAGE (V)
200
Saturation Voltages
D.C. Current Gain
200
le l1,-5
100
z
~
t"l
I-
150'C
50
25'C
0:
f---I
W
-,
Z
, ,
a:
::> 20
u
-55'C
t.i
ci 10
I
.r::"
-- - ' •.>
--
,
W
t"l
«
I-
=-25'C
0.5
...J
0
'~l'
>
0.1
VcE ........:I0V
VCE
. / """'VVCEISATl
4-
= 3V
0.2
0.5
Ie - COLLECTOR CURRENT (A)
UNITRODE CORPORATION, 5 FORBES ROAD
LEXINGTON, MA 02173, TEL. (617) 861·6540
TWX (710) 326·6509 ' TELEX 95·1064
17 7
///
~
'i
IJ,C
---
0.1
VBE~~ ~!l'
55'C
~
0.2
2
~
...- ..... I-"1-"
-
"/
55'C
.05
0.1
10
0.2
Ie -
111
0.5
COLLECTOR CURRENT (A)
10
PRINTED IN U.S.A.
•
2N6306 2N6307
2N6308
Switching Time Test Circuit
R _ 125V
l-
RS2
Ie
125V
= 5V
I"
RBI
= Sv -RB2
I"
INSB02
Turn-On Time
Turn-Off Time
1000
Vee = 125V
Ie/I" =5
lei 1,,=2
TJ = 2S"C
SOO
"" '"
w 100
l"-
'"
td
::;;
>=
t,
-~
r..!:.
"
so
0.2
20
Vee _125V
le ll,=5
5V
T J =25"C
i'.. ,
t,
0.1
I"-
,.,..
VilE (olf) ::::
10
0.1
0.2
0.5
le"'-- COLLECTOR CURRENT (A)
UNITRODE CORPORATION" 5 FORBES ROAD
LEXINGTON, MA 02173 " TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
.os
10
0.1
0.2
Ie -
112
0.5
COLLECTOR CURRENT (A)
10
PRINTED IN U,S.A.
JAN
JAN
JAN
JAN
POWER DARLINGTONS
5 Amp, 150V, NPN
FEATURES
•
•
•
•
& JANTX
& JANTX
& JANTX
& JANTX
2N6350
2N6351
2N6352
2N6353
DESCRIPTION
High Current Gain: up to 2000 min. @ Ie = 5A
Low Saturation Voltage: as low as 1.5V max. @ Ie
Peak Current: to lOA
JANiJANTX versions meet MIL-S-19500/472
Unitrode NPN Darlingtons consist of a
two transistor circuit on a single
monolithic planar chip. The 2N6350
series is characterized for fast switching applications.
=2A
ABSOLUTE MAXIMUM RATINGS
3 PIN TO-66
JAN & JANTX
TO-33
JAN & JANTX
2N6350
Collector - Emitter Voltage
Emitter - Base Voltages
SOY. .
VEB2
...... 6V......
12V
VES1
D.C. Collector Current
Peak Collector Current
Base I Current
Power Dissipation
25·C Ambient
100·C Case
Thermal Resistance
Junction-to-Case
Operating and Storage Temperature Range
......... 5A.....
lOA...
0.5A
lW..... .
5W...... .
JAN & JANTX
2N6352
JAN & JANTX
2N6351
150V ..
................... SOV ..
6V .. .
12V .. .
......................... 6V ..
.... 2N6353
150V
... 6V
12V
................. 5A .... . ....... 5A
....... lOA ... .
.... lOA
.0.5A
................ O.5A.
. 12V ... .
5A ..
lOA.
O.5A ....
.... IW ..
. 2W
25W
... 2W ...
.. 25W
5W.
4·C/W
20·C/W
-wC to 200·C
.. -wC to 200·C
MECHANICAL SPECIFICATIONS
JAN & JANTX 2N6350
JAN & JANTX 2N6351
TO-33
JAN & JANTX 2N6353
3 PIN TO-66
COLLECTOR CONNECTED TO CASE
Dimensions in inches.
JAN & JANTX 2N6352
1t]
.075
.050
-1<-
o34
.620
I"
MAX.
-
---
.340'
.250
.360
MIN.
COLLECTOR CONNECTED TO CASE
.145
MAX.
RAD.
Dimensions in inches.
[ill]
113
_UNITRODE
D".
,
,
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
JAN & JANTX 2N6350
JAN & JANTX 2N6351
JAN & JANTX 2N6352
JAN & JANTX 2N6353
MIL·STD·750
Test
Visual and Mechanical
25'C
Collector-Emitter Breakdown Voltage
2N6350, 2N6352
2N6351, 2N6353
Emitter Base Breakdown Voltage, Base 1
Emitter Base Breakdown Voltage, Base 2
Collector- Emitter Cutoff Current
D.C. Current Gain
2N6350, 2N6352
2N6351, 2N6353
D.C. Current Ga i n
2N6350, 2N6352
2N6351, 2N6353
D.C. Current Gain
2N6350, 2N6352
2N6351, 2N6353
Collector Saturation Voltage
2N6350, 2N6352
2N6351, 2N6353
Base Saturation Voltage
A.C. Current Gain
Symbol
Min.
Max.
Units
BVcEO
BV ESOI
BV ES02
IcEX
hFE
80
150
12
6
1.0
Vdc
Vdc
Vdc
Vdc
I'Adc
Method
2071
2000
1000
Ie
3026
3026
3041
3076
IE - 12mA Base 1 Open
IE = 12mA Base 2 Open
VCE = BV CEO Rating
VCE = 5Vdc; Ic = LOA (pulse)
R8E2 = 1K
3076
VCE = 5Vdc; Ic = 5.0Adc (pulse)
R8E2 = 100 Ohms
3076
VCE = 5Vdc; Ic = lOAdc (pulse)
R8E2 = 100 Ohms
3071
Ic = 5.0Adc, R8E2 = 100 Ohms
lSI = 5mAdc (pulse)
lSI = lOmAdc (pulse)
Ic
5.0Adc (pulse), VCE = 5Vdc
R8E2 = 100 Ohms
VCE
10Vdc, Ic = 1.0Adc, f = 10MHz
R8E2 = 100 Ohms
VCSI = lOVdc, 100KHz';;:; f .;;:; 1MHz
Base 2 open
Vcc = 30Vdc; Ic = 5.0Adc
See Switching Speed Circuit
Vcc = 30Vdc; Ie = 5.0Adc
See Switching Speed Circuit
10000
10000
hFE
400
200
VCE (sat)
1.5
1.5
2.5
VSEI (on)
JhFEJ
5
Vdc
Vdc
Vdc
3066
3066
25
= 25mA, R,,, = 2.2K, R", = 100 Ohms
3011
2000
1000
hFE
Test Conditions
See Mechanical Data
=
=
COSOI
40
pf
3236
Turn·on Time
too
0.5
I'S
3251
Turn-off Time
toff
1.2
I'S
3251
150'C
Collector-Emitter Cutoff Current
IcEx
1.0
I'Adc
3041
VESI = 2Vdc, RSE' = 100 Ohms
VCE = BV cEO Rating
3076
VCE = 5Vdc, Ic
5.0Adc (pulse)
Rm = 100 Ohms
Output Capacitance
-65'C
D.C. Current Gain
2N6350,2N6352
2N6351, 2N6353
UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
hFE
400
200
114
=
PRINTED IN U.S.A.
JAN & JANTX 2N6350
JAN & JANTX 2N6351
JAN & JANTX 2N6352
JAN & JANTX 2N6353
Forward Bias
Safe Operating Area
Forward Bias
Safe Operating Area
2N6352, 2N6353
2N6350, 2N6351
10
"'- ~"-
:"
$
IW
a
.'\'\
"- ~ ~
!"k><;
25% ImSec
Duty Cycle
o
I-
~
.2
8-'
.1
1mselc,
10"Sec, 1%
5:
I-
2
Z
\
UJ
0::
0:
\
:>
(J
~ '\
K\
100~
""D~
Te = 100'C
1
~~ ['\\
1
.5
0:
I
.~ ~ '\.
DC ""-
Z
0:
0:
_u
"- '\
10
I-
0
.2
1\ l\
.1
!\
1 .05
_0
2N6350-.
0--
.02
1
Vcr. -
10
[\\ l'\,
5
1\\
."~c:
""'- ~,"-
"
~
Valid for
r\
\
J
i'
I-
.2
:>
0
.1
(J
~
.02
UJ
0::
0::
:>
.......
(J
1
...
6
Ie -
I-
(J
UJ
..J
..J
0
(J
.2
.1
.05
2N6350,
2N6352
_0
,
I I
.01
.5
0::
0
1000 "
"'~1./00~J,
-'
1
I-
Z
1
~,~ ,." ~
MIL·S·19500/472
@V",=-4V,
R",=lK_ r .05 f1
5:
r--..
" "t~l
...... hlr
" I'~"I
r
RBU ~ 1000
VilE
"';:"'''00
,
" 1/,
limit per
(J
+c=100'C -
le/loo-
from 0 to -5V
.,
,-......: ~ "
.5
10
TA = 25'C
= -182 =
I,.
10 20
50 80 150
COLLECTOR TO EMITTER VOLTAGE (V)
Reverse Bias
Safe Operating Area
Clamped Inductive Switching
Unclamped Reverse Bias
Second Breakdown
"=
.01
8
10
COLLECTOR CURRENT (A)
Ve , -
10 20
50 80 90 150
5
COLLECTOR TO EMITTER VOLTAGE (V)
D.C. Current Gain
2N6351, 2N6353
2N635O, 2N6352
50,000
10,000
V r---,-.;:".,.,
5,000
~
W
20,000
10,000
"
5,000
I-
I,v
..,
UJ
0::
0::
2,000
(J
1,000
/
V 1/
:>
c.i
0
1
500
~
.r
200
100
50
r;v
",q
Z
L LV
/
/
V
/""
~
","
y
./
i\
~~/
z
;;:
2,000
I-
"
1,000
UJ
0:
500
V",,- ",q,
'j;
V k(
0
0::
:>
(J
c.i
0
1
.r~
veE = SV
R", = 1000
".., I?v
Z
~
I
/
.01
"- ~
fJ'c,
/
2N6351,
2N6353
.02
D.C. Current Gain
z
;;:
1\
1\
.01
10 20
50 80 150
COLLECTOR TO EMITTER VOLTAGE (V)
Ve , -
z
«
100#5ec
10%
1\
2N6351
.01
UJ
100#Sec
1% -
\
(J
\
f-10"Sec
1%
l\ If
\
1mSec, 10% \
UJ
-'
-'
.02
~
~~
0
(J
\
.05
""
Te = 100'C
I"C\' f\
1
.5
0::
lOO,uSec,
1%
\
100"Sec, 10%"
lmSec, 25%
-·Duty CYre
1\
-
200
100
50
V
V 'V,/ V
v/
V
~
.........
~,c,
~",_Ei
VeE = 5V
RIZE = 1000-
I I
20
10
.02
.05.1
.2
.5 1
2
Ie - COLLECTOR CURRENT (A)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
5
10
.01
115
.02
.05.1
.2.5
2
Ie - COLLECTOR CURRENT (A)
5
10
PRINTED IN U.S.A.
JAN & JANTX 2N6350
JAN & JANTX 2N6351
JAN & JANTX 2N6352
JAN & JANTX 2N6353
Saturation Voltalle
Temperature Coefficients
Saturation Voltages
+4
\("' ''''"..
I
-
,I
;-
E
IJ)
la=lc/looo
\
v..
- f-'\
"'-
-- -..-<
I
.S
.2
.5
Ie -
z
f-
+2
'"0
...ii:
'"0
+1
'"0:
/
./
::>
-6S'C~02~
-1
~
f--- ",ve.
~
0: -2
...:::;'"
'"1
~
-3
Vee
.1
10
.S
2
5
COLLECTOR CURRENT (A)
.2
COLLECTOR CURRENT (A)
Ie -
~ '3riV
ill
e
.2
vee = 30V
'.1 =-IBZ= IC/25G
2S'C
VI
:::: ....... 1.......
,.;...-
.,/
Z~'C
150·C............
.1 '-2S'C
-,.....
~
1
.S
Ie -
~
~D~'.y Time, td
I
O.S
.2
2
S
.S
COLLECTOR CURRENT (A)
Ie -
Thermal Response
--"'$'''1''-:1-;..
I-lo,.~
_.
_~
""'-~-
Duty Cycle
• _INPUTWAVEnmM
I 5I!£ r«fr£S 1 AND~)
10'.. _ -
-
:
.S
f-
OUTPUT W...VEroflM
(SEE NOTE
Z
~J
'"
SCOPE
(SEE
NOTE1}
iii'"
ztJ
(J
U
ci
I
100
10
L -_ _ _ _---L_ _ _ _---'_ _ _ _-----'
.01
1.0
.1
Ie -
10
COLLECTOR CURRENT (A)
2N6351 & 3 Switching Speed Circuit
2N6350 & 52 Switching Speed Circuit
+30Vdc
+30Vdc
60
60
SCOPE
(SEE
NOTE 2)
SCOPE
(SEE
NOTE 2)
B,
sOOt!
lOO!!
-lOVdc
-lOVdc
NOTES,
1. The input waveform is supplied by a pulse
generator with the following characteristics:
tr ~ 15 ns, t f :s;; 15 nSf ZO'Jt = son, PW
10 #5,
Outy cycle,,:; 2%.
2. Output waveforms are monitored on an
oscilloscope with the following characteristics:
tr ~ 15 n5, lin ~ 10 MO, C in ~ 11.5 pF.
=
3, Resistors shall be noninductive types.
4. The DC power supplies may require additional
by~passing in order to minimize ringing.
UNITROOE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
117
PRINTED IN U.S,A.
2N6354
2N6496
POWER TRANSISTORS
20 Amp, 150 V, Double Diffused NPN Mesa
FEATURES
• Collector-Base Voltage: up to lS0V
• Peak Collector Current: 30A
• Rise Time: ,,;; SOOns t
• Fall Time: ,,;; SOOns \ @ Ic up to 12A
DESCRIPTION
These double diffused glass passivated
mesa power transistors combine fastswitching, low saturation voltage and
rugged Eslb capability. They are designed for use in switching regulators,
converters, inverters and switchingcontrol amplifiers.
ABSOLUTE MAXIMUM RATINGS·
2N6354
2N6496
Collector-Base Voltage, VCBO ............................................................................................................. lS0V .. .
lS0V
Collector-Emitter Sustaining Voltage, VCER (SUS) (1) ............................................................. - .. .
..130V
nov
120V
. VCEO (SUS)
Emitter-Base Voltage, VEBO .................................................................................................................. 6.SV ... .
..... 7V
Collector Current, Ic continuous .......................................................................................................lOA ..
lSA
Collector Current, ICM peak ...................................................................................................................12A
Base Current, IB continuous ...................................................................................................................SA .
. .... SA
Power Dissipation, 2S'C Case ............................................................................................................ 140W...
. .. 140W
Operating and Storage Temperature Range ........................................................................................-6S to 200'C
With R" ~ SOn
* JEDEC registered values.
(1)
MECHANICAL SPECIFICATIONS
2N6354, 2N6496
TO·3
."3
.038
OIA .
.875
MAX.
1.135
MAX.
fo---+---I
.450
.312
.250
MIN.
Dimensions in inches.
118
lliD
_UNITRODE
2N6354 2N6496
Electrical Specifications (at 25°C unless noted)
2N6354
Test
D.C. Current Gain
(Note 1)
hFE
D.C. Current Gain
(Note 1)
hFE
D.C. Current Gain
(Note 1)
Collector Saturation
Voltage (Note 1)
Collector Saturation
Voltage (Note 1)
*
Symbol
10
-
hFE
-
VCE I"t)
VCE I"t)
VCE I"t)
Base Saturation
Voltage (Note 1)
V'E I"t)
- - - 12 100
100 - -
VBE1"tl
VCEO 1,",1
-
0.5
-
-
-
1.0
- - - - - - - - 1.3" - 2.0
- 2.0 - - - 120 100 1.0
Collector-Emitter
Sustaining Voltage
(Note 2)
VCEX
(sus)
-
- - -
Collector-Emitter
Sustaining Voltage
(Note 2)
VeER
(sus)
130
Emitter-Base Voltage
VEBO
Collector Cutoff
Current
Ic•o
Collector Cutoff
Current
ICEO
Collector Cutoff
Current
ICEV
Collector Cutoff
Current, 125°C
ICEV
-
Collector Cutoff
Current, 150°C
ICEV
-
Emitter Cutoff
Current
lEBO
- 130 - - - 7.0 5 - - - - 20 - - - - 20
- 10 20 - - - - - - 25
5.0 - - 50
12 - - 300 - 300
- - 1.25
1.25 -
Magnitude of Small
Signal ForwardCurrent Transfer
Ratio
Collector Capacitance
Thermal Resistance:
Junction-to-Case
6.5
-
-
Ihr. I
Units
20 150
Collector Saturation
Voltage (Note 1)
Base Saturation
Voltage (Note 1)
Collector-Emitter
Sustaining Voltage
(Note 2)
2N6496
MIN. MAX. MIN. MAX.
-
8.0
Cob
-
R0JC
-
V
V
Test Conditions
Ic =
Ic =
Ic Ic =
Ic =
Ic Ic =
Ic Ic
2A, VCE = 5V
5A, VCE = 2V
SA, VCE _ 2V
lOA, VCE = 2V
lOA, VCE = 5V
12A, VCE _ 5V
5A, I, = .5A
SA, IB - .SA
=
lOA, IB
=
LOA
l2A, I. = 1.2A
20A, I. = 5A
5A, I. = O.5A
SA, I, = O.SA
lOA, I. = lA
20A, IB = 5A
V
V
Ic Ic =
Ic =
Ic =
Ic =
Ic =
V
Ic=0.2A
V
Ic = 0.2A
VB' = -1.5V
1,=0
RBE = 100 n
V
RBE = 50 n, Ic = 0.2A
R. E= 100 n, Ic = 0.2A
V
I, = 5mA
IE = 50mA
rnA
VCB = l50V
V
V
rnA
rnA
rnA
rnA
rnA
VCE =
VCE VCE =
Vc , =
VCE =
VCE =
VCE -
II
55V
70V
100V
nov, VBE = -1.5V
l30V,
l40V,
l40V,
V'E = 0
V. E= -1.5V
VBE _ 0
VCE = l40V
VCE = S5V, V. E= -1.5V
VCE = 100V, VBE = -1.5V
VCE - l30V, VBE _ OV
VBE - -5V
V. E= -6.5V
VBE = -7V
VCE = 10V, Ic
=
2A, f = 5 MHz
VCE = 10V, Ic = lA, f = 10 MHz
pF
°C/W
VCB = lOV, f = 1 MHz
VCE - lOV, Ic _ lOA
VCE = 20V, Ic = lA
Notes
1. Pulse length = 250 ~s; duty cycle <;;1%.
2. Sustaining Voltage. Measured at a high current point where collector·emitter voltage is lowest. Current pulse
length =:: 50 .uSj duty cycle ~1%. Voltage clamped at maximum collector·emitter voltage.
* JEDEC registered values.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
119
PRINTED IN U.S.A.
2N6354
2N6496
Electrical Specifications (at 25'C unless noted)
Second Breakdown
Energy
0.3
-
-
-
- S.7 -
-
-
-
-
-
-
S.O
0.9
-
Es/b
S.S
Forward Bias
Second Breakdown
Collector Current
- - - 0.3
- 1.0
- 0.2
- - - - -
'sib
Switching Speeds
Rise Time
Storage Time
Fall Time
Rise Time
Storage Time
Fall Time
Rise Time
Storage Time
Fall Time
Rise Time
Storage Time
Fall Time
*
2N6354
2N6496
MIN. MAX. MIN. MAX.
Symbol
Test
t,
t,
tf
t,
t,
tf
t,
t,
tf
t,
t,
tf
-
Units
Test Conditions
Ie = SA, VBE = -1.0V
RBE = 51 n, L = 2SI'H
'e = 8A, V" = -4.0V
RBE = 20 n, L = 180l'H
Ie = 13A, V" = -4.0V
RBE = 20 n, L = 180,uH
VeE - 2SV, t _ Is, non-rep.
VeE - 28V, t _Is, non-rep.
VeE - 45V, t _ Is, non-rep.
mJ
-
A
-
-
1,5
0.5
1.5
0.3
1'5
Ie = SA
'BI='B2=·5A
Vee = 30V
Ie - 8A
'BI='B2=·8A
Vee = 30V
Ie - lOA
'BI = 'B2 = 1.0A
Vee = 30V
'e _12A
'BI = 'B2 = 1.2A
Vee = 30V
-
-
1'5
1'5
-
JEDEC registered values.
Forward Bias Safe Operating Area
for 2N6354
30
Z
UJ
'"'"
'"0....
u
:: ~"-"'-rI"T"I"'Ir"1'T"~-'-"---l'-.."T""
u
~
2N6496
1N-.
./~,,>~I.t~
-.. = F=
%>-= f=
LIMITED
,
u
\
'"
~
UJ
\
..J
..J
..J
..J
I
_0
o
\
To; = 25'C
0
u
T -25'C
u
0.5
,I
2
1
100
10
20
50
VCE ~ COLLECTOR VOLTAGE (VI
UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
[C~'C~~~R~V~E~S~A1p~P~LY~B~E~LO~W~~~~~~~
f--
IU
IS/b LIMITED
0.5
0.3
_
~~
=~i ~: > 10~~D~IIS-~S~'-IP~AIT~Jllol*!N,~~~"~r~~~"f~~\~~~~
,
~I
0.3
IS/b LI MIT ED
L--'---'---ll--ll-L-'.J111'I-,--,--I-,---,---,--,-",,-,~
-1-2
200
120
RATED Vew
10
20
50
100 200
VCE - COLLECTOR VOLTAGE (V)
PRINTED IN U.S.A.
2N6354
Power Derating
100
'" '\:""-'\.
2N6496
DC Current Gain
500
:--....
~
80
0::
0
>-
u
<:
"-
"
60
~oS'oS'1<>
.
0::
W
AT DESIRED OPERATING VOLTAGE. DERATE
20
;~?CN S~~~R~~:V~M'T ANO '\, CURRENT LIMIT FROM
DASH LINES ON SOAR CURVES ARE EXTENSIONS Of
DISSIPATION LIMITS FOR TEMPERATURE DERATING
PURrOSES.
o
~ 50
--
55'C
:::J
U
U
o
£
~r--
~
20
VeE
"-1,\
40
80
120
160
T, - CASE TEMPERATURE ('C)
25'C
w
OISSI~A"
U
o
z>-
""- .......
~"'0
>-
Z
:::J
" 100
.......
N~
40
150'C
<
'''''0
UJ
0::
0::
z
~J~
z
;:::
0
200
.... ~{/~
=
~
1'\
V
10
200
0.2
0.5
Ie -
Saturation Voltages
10
20
COLLECTOR CURRENT (A)
Switching Time Test Circuit
v"
RL==~
I II
".>- 0.5
~
II
5~'C
~
Ve<.
5V
I,ll, = 10
V BE
k::::i!iii'J
r;;-rLL
(SAT)
150'C
UJ
...J
0
>
I/v
0.2
\~~ Vv
0.1
VCE
P.W. = 25115
(SAT)
V
"",r,
+-
.05
0.2
0.5
Ie -
10
20
COLLECTOR CURRENT (A)
Turn-Off Time
Turn-On Time
1000
-
Vee = 30V
500
200
" I'
~
'"co
UJ
:;;
t-r-
100
r---
/
'"
\'-..
=182=lc/I0 T J = 25'C
101
rt:" .....
'"
.3
w 0.5
:;;
t.
;:::
;:::
"
50
r-
0.2
N
Vee = 30V
20 I-- lei == 'CliO
r- TJ =25'C
10
0.2
~
0.1
I I I III
0.5
Ie -
i'
10
.05
0.2
20
COLLECTOR CURRENT (A)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON,. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
121
0.5
Ie -
."
10
20
COLLECTOR CURRENT (A)
PRINTED IN U.S.A.
POWER TRANSISTORS
2N6510
2N6511
2N6512
2N6513
2N6514
7 Amp, 400V, Triple Diffused NPN Mesa
FEATURES
• Collector-Base Voltage: up to 400V
• Peak Collector Current: lOA
• Rise Time: :;;;; 1.5.us l
• Fall Time: :;;;; 1.5.us f @ Ic 4A
DESCRIPTION
These high voltage triple diffused glass
passivated power transistors combine fast
switching, low saturation voltage and rugged
Eslb capability. They are designed for use in
off-line power supplies, high voltage inverters,
switching regulators, ignition systems and
deflection circuits.
=
ABSOLUTE MAXIMUM RATINGS
2N6510
'Collector Base Voltage, Vcpo
Collector-Emitter Sustaining Voltage, VeER (suo) (Il ..
'Collector-Emitter Sustaining Voltage, VeEO (sus) .... ..
'Emitter-Base Voltage, VEao
'Collector Current, Ie continuous
'Base Current, la ..
'Emitter Current, IE ........
'Power Dissipation, Pr 25'C Case.
'Operating and Storage Temperature Range
(1)
R"
.. 2S0V.
... 250V.
200V.
.
2N6511
2N6512
2N&513
2N6514
300V...
350V...
. .400V..... ... 350V
.... 300V .............. 350V. ... .... ...400V ......... ' ..... J50V
. .... 2S0V .... ......... JOOV ...............350V .. ...
.... 300V
D M ............... m.... ...... m ............ m
.. n
....... ~....n... .............. M
~...
.. lOA.....
... 10A.
. .. 10k..
.... 10A... .
M ..................M . ....•................. ~
..... .120W. . ... ...... .120W...
...... 120W ..
. ..... .120W ....
-65 to +200·C .... .
...lOA
....... ~
....... 120W
=501l
*JEDEC registered values
MECHANICAL SPECIFICATIONS
2N6510 2N6511
2N6512 2N6513 2N6514
TD-3
~llil-E!
13S-HJ I
MAX.
.450
.250
.312
M!N.
.440
.420
Dimensions in inches.
[ill]
122
_UNITRDDE
2N6510 2N6511 2N6512 2N6513 2N6514
ELECTRICAL SPECIFICATIONS (at 25"C unless noted)
2N6514
2N6510
Test
"D.C. Current Gain (Note 1)
"Collector Saturation Voltage
(Note 1)
Symbol
Max.
Min.
10
50
1.5
-
-
10
50
1.5
2.5
1.7
hFE
-
VCEI"t)
"Base Saturation Voltage (Note 1)
V'EI"t)
Collector-Emitter Sustaining
Voltage (Note 2)
VCEO I'u,)
VeER
"Collector Cutoff Current
ICEV
"Collector Cutoff Current 100"C
IcEv
"Switching Speeds
Delay Time
Rise Time
Storage Time
Fall Time
Delay Time
Rise Time
Storage Time
Fall Time
td
t,
t,
t
td
t,
t,
Max.
Min.
-
-
2.5
1.7
-
-
200'
250
-
(sus)
300 "
350
-
5.0
-
-
-
-
-
0.2
1.5
5.0
1.5
-
-
10
-
-
-
V
V
Ic =0.2A
-
V
Ic = 0.2A, R'E = 50n
VCE = 250V, V'E == -1.5V
VCE = 350V, V'E == -1.5V
VCE == 250V, V'E = -1.5V
VCE := 35OV, V'E = -1.5V
0.2
1.5
5.0
1.5
-
-
Test Conditions
Ic=3A, VcE =3V
Ic =5A,VCE =3V
Ic = 3A, I, = 0.6A
Ic = 5A, I, = 1A
Ic= 7A, I, =3A
Ic = 3A, I, = 0.6A
Ic =5A,I,=lA
-
-
-
-
-
tf
V
5.0
10
-
Units
mA
mA
p'S
Vcc =200V
Ic =3A
IB' = I" = 0.6A
"s
Vcc:=200V
Ic ==5A
I" == 1,,=lA
ELECTRICAL SPECIFICATIONS (at 25"C unless noted)'
Test
Symbol
"D.C. Current Gain (Note 1)
hFE
"Collector Saturation Voltage
(Note 1)
VCEI"t)
"Base Saturation Voltage (Note 1)
Collector-Emitter Sustaining
Voltage (Note 2)
2N6511
Min.
Max.
10
V'EI"t)
VCEO(,U')
-
50
1.5
2.5
1.7
250
VeER
300
(sus)
-
-
-
300
-
350
5.0
350
-
-
400
-
5.0
-
-
-
5.0
-
-
-
"Collector Cutoff Current, 100"C
-
-
-
-
-
-
"Switching Speeds
Delay Time
Rise Time
Storage Time
Fall Time
-
0.2
1.5
5.0
1.5
-
0.2
1.5
5.0
1.5
-
0.2
1.5
5.0
1.5
ICEv
-
IcEv
-
td
t,
t,
tf
10
2N6513
Max.
Min.
50
1.5
2.5
1.7
"Collector Cutoff Current
2N6512
Max.
Min.
10
-
10
10
-
-
-
50
1.5
2.5
1.7
Units
V
V
V
V
mA
Test Conditions
Ic ==4A,VcE =3V
Ic = 4A, 1,:= O.SA
Ic =7A,I,=3A
Ic = 4A, I, = O.SA
Ic = 0.2A
Ic = 0.2A, R'E = 50n
VCE = 3OOV, V'E = -1.5V
VCE = 35OV, VBE -1.5V
VCE - 400V, V'E -1.5V
VCE 3OOV, V'E -1.5V
VCE = 300V, V'E = -1.5V
VCE 400V, V'E = -1.5V
=
mA
=
=
=
=
10
p's
Vcc=200V
Ic=4A
I" = 1,,:= O.SA
Notes
1. Pulse length = 250 ps; duty cycle <;;1%.
2. Sustaining Voltage. Measured at a high current point where collector-emitter Yoltage is lowest. Current pulse length", 50 pS; duty cycle <;;1%.
Voltage clamped at maximum collector-emitter Yoltage.
* JEDEC registered values.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
123
PRINTED IN U.S.A.
•
2N6510 2N6511
2N6512
2N6513
2N6514
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)"
All Types
Test
Symbol
Emitter-Base Cutoff Current
Magnitude of
Common Emitter
Small-Signal
Short Circuit
Forward Current
Transfer Ratio
Min.
-
lEBO
Forward-Bias
Second Breakdown
Units
3.0
mA
Test Conditions
VEB =6V
Ic=lA
VCE = 10V
f=lMHz
9
3
I hie I
Max.
Collector Current
Collector Capacitance
Islb
3.16
0.1
-
Cob
100
200
A
A
pF
Thermal Resistance,
Junction-to-Case
R9JC
-
1.46
°C/W
VCE = 35V, t = 1s, non-rep.
VCE = 200V, t 1s, non-rep.
VCB = 10V, f = 1M Hz
=
VCE = 20V, Ic
=5A
., All values in this table are JEDEC registered.
Power Derating
Forward Bias Safe Operating Area
100
20
"'\
:--...
10
~
>z
w
""
DISSIPATIO~"'~I'\
'"'"
u
0'"
>-
:>
LIMITED
~
u
'"
\f\
0
u
25'C
Tc
CURVES APPLY BELOW
RATED Vow
0.5
I III
I III
0.2
5
10
I
ISIb LIMITE D
fill Ll
'"....
tt-
.
u
',I'
1\
,,
u.
(.'J
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
~
I
f\. ~ ~(/4,~,.~O
~
~J'Ii
~
a:
OJ
'.
0
i'o..
d'd'
60
z
~."
40
~<"0
....Z
,
""
DISSI~A"
OJ
a:
a:
u
:>
AT DESIRED OPERATING VOLTAGE. OERATIE
nON CURRENT LIMIT AND I,. CURRENT UMIT fROM
20
2S"C SOAR CURVE
DASH LINES ON SOAR CURVES ARE EXTENSIONS OF
DISSIPATION LtMITS fOR TEMPERATURE DERATING
l\ 1\
20
50
100
200
VeE - COLLECTOR VOLTAGE (V)
80
0
\ , '.
~
W
...J
...J
I
~~<
'
%"
~
~\t
'\
PURPOSES.
o
500
124
I
o
40
Tc -
I
I
I
I
80
120
160
CASE TEMPERATURE (oC)
1,\
200
PRINTED IN U.S.A.
2N6510 2N6511
2N6512
2N6513
2N6514
Saturation Voltages
D.C. Current Gain
200
lell,-S
100
z
:;:
"
-
12S"C
so
I-
Z
"'
0:
0:
:>
u
ti
VIE
--"
2S"C
_I20
ci 10
I--
,
~
- - ''': 1\
_~;"C
""'"
0
I..J
'~l~
1--1-"
O.S
~C
0.2
-- -
2
0.1
0.1
Vc~=10V
VeE
=
V
"I
.It
r-
t:;::1'
I"-2S"C
>
I
~b:::;
SS"C
~
/V
V VVCE(S ....
lS~"C
4
3V
1717
~-
T)
"/
SS"C
0.2
O.S
Ie - COLLECTOR CURRENT (A)
.OS
0.1
10
0.2
O.S
Ie - COLLECTOR CURRENT (A)
10
Switching Time Test Circuit
R _ 200V
lIe
200V
R,= SV
I;
R,
P,W.:=: 25)IS
Turn-Off Time
Turn-On Time
10
1000
Vee
lell ,
SOO
.....
181=182
T J = 2S"C
........
"\
..
200V
S
t,
r-
~
I,
t--.
.....
Id
I:
;;;"100
"'
.3
"'
:;;
I'-.
:;;
1
;::
;:
O.S 1'-
so
t,"r-..
Vee - 200V
20
0.2
1011,= S
I
V BE (Qff)=5V
---
T J =2S"C
10
0.1
0.1
0.2
Ie -
O.S
COLLECTOR CURRENT (A)
UNITRODE CORPORATION. S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 9S-1064
0.1
10
0.2
Ie -
125
O.S
COLLECTOR CURRENT (A)
10
PRINTED IN U.S.A.
•
2N6542
2N6543
POWER TRANSISTORS
5A,850V, Fast Switching,
Silicon NPN Mesa
DESCRIPTION
These high voltage glass passivated power
transistors combine fast switching, low
saturation voltage and rugged Es/b capability.
They are designed for use in off-line power
supplies, high voltage inverters, switching
regulators, ignition systems and deflection
circuits.
FEATURES
• Collector-Base Voltage: up to 850V
• Peak Collector Current: lOA
• Rise Time: ';;;0.7.u S} @ I - 3A
• Fall Time: ';;;0.81'5
c• Key Parameters characterized at 100'C
ABSOLUTE MAXIMUM RATINGS •
2N6542
2N6543
Collector-Base Voltage, VCBO ............
.. ........................................................................... 650V............. ..........................
...850V
Collector-Emitter Voltage, VCEO ISUSI ..............
.. ..................................... ........... 300V....................................
..400V
Emitter-Base Voltage, VEBO ..............................
......................
.......................................
.......... 9V....................................................... 9V
Collector Current, Ic. continuous ......................
.. ................................................... 5A ..................................................... SA
Collector Current, Ic peak ........................ ....................
.. ............ .10A.....................................
.. .. lOA
Base Current, lB. continuous ... .......................
.......................
...............................
...SA..............
.. .... SA
Power Dissipation, 2S'C Case ............................
.. .......................................................... 100W............................................... lOOW
Derating Factor ..................................................................................................................................................S71W/'C............................
.S71W/'C
Operating and Storage Temperature Range
....................................................................................................................-65 to 200'C ................... ..
• JEDEC registered values.
MECHANICAL SPECIFICATIONS
NOTE:
2N6542 2N6543
Leads may be soldered to within
111," of base provided
time exposure is less than 260'C
for 10 seconds.
ins.
J
K
~E!bP
C 0
TO-3
temperature~
BASE
1
N
/'''''-'>::
I
1~ 0E
~
F
EMITTER
-L
A
.875 MAX.
mm
22.23 MAX .
B
.135 MAX.
3.43 MAX.
C
.250-.450
6.35-11.43
D
.312 MIN.
7.92 MIN.
E
.205-.225
5.21-5.72
F
.420-.440
10.67-11.18
J
.1S1-.1610IA.
3.84-4.09DIA .
K
. 188 MAX, RAO. 4.78 MAX. RAD .
L
.525 MAX. RAO. 13.34 MAX. RAO .
M
.655-.675
16.64-17.15
N
1.177-1.197
29.90-30.40
P
.038-.043 OIA.
9.65-10.920IA .
(ill]
6-79
126
_UNITRDDE
2N6542
2N6543
ELECTRICAL SPECIFICATIONS (at 25·C unless noted)"
Test
D.C. Current Gain (Note 1)
hFE
Symbol
2N6542
MIN.
MAX.
12
60
2N6543
MIN.
MAX.
12
60
Units
Test Conditions
Ic = 1.5A, ~=2V
D.C. Current Gain (Note 1)
hFE
Collector Saturation Voltage
(Note 1)
VCEls.'1
-
1.0
-
1.0
V
Ic = 3.0A, I. = 0.6A
Collector Saturation Voltage,
Tc = 100·C (Note 1)
VCEls.'1
-
2.0
-
2.0
V
Ic = 3.0A, I. = 0.6A
Collector Saturation Voltage
(Note 1)
VCEls.'1
-
5.0
-
5.0
V
Ic = 5.0A, I.
1.4
-
1.4
V
1.4
-
1.4
V
=3.0A, I. = 0.6A
Ic = 3.0A, I. = 0.6A
7
35
7
35
Ic = 3.0A, VCE = 2V
= LOA
Base Saturation Voltage (Note 1)
V'Els.'1
Base Saturation Voltage,
TC = 100· C (Note 1)
V.Els.tl
Collector-Emitter Sustaining
Voltage (Note 2)
VCEol,"sl
300
-
400
-
V
Ic = O.lA, I. = 0
Collector-Emitter Sustaining
Voltage
TC 100·C (Note 2)
VCEXI,"sl
350
-
450
-
V
L = 1801'H, Ic = 2.6A
V. E= -5V
VCE clamped to rated VCEX Isusl
Collector-Emitter Sustaining
Voltage
Tc = 100·C (Note 2)
VCEXlsusl
200
-
300
-
V
L = 180I'H, Ic = SA
V.Eloffl = -5V
Vc, clamp to VCEO -100V
Emitter-Base Cutoff Current
I E30
=
Collector Cutoff Current
Collector Cutoff Current,
Tc = 100·C
IcEV
IcEV
Collector Cutoff Current,
Tc = 100·C
ICER
Output Capacitance,
Common Base
Cobo
Gain-Bandwidth Product
Fr
Ic
-
1
-
-
0.5
-
-
2.5
3.0
-
-
-
-
3.0
50
150
SO
150
pF
6
24
6
24
MHz
VCE = 10V, Ic
2.S
1
0.5
-
mA
mA
VE.=9V
VCE = 650V, V.E= -1.SV
VCE = 850V, V.E= -1.SV
mA
mA
VCE = 6S0V, V.E= -1.SV
VCE = 850V, V.E= -l.SV
VCE = 650V, R = SOn
VCE = 850V, R = SOn
Vc.=10V,f=lMHz
=0.2A, f = 1 MHz
Forward Bias Second Breakdown
Islb
200
-
200
-
mA
P.W. = 1 sec. single shot
VCE = 100V
Energy Second Breakdown
(unciamped)
Eslb
180
-
180
-
I'J
Ic =3.0A
L = 401'H, VaUof~ = 4.0 Vdc
Resistive Switching Speeds
Delay Time
Rise Time
Storage Time
Fall Time
td
t,
ts
tf
-
O.OS
0.7
4.0
0.8
-
O.OS
0.7
4.0
0.8
"S
Ic = 3.0A, tp 100l'sec
Vcc=25OV
lal = I., 0.6A
VaE loffl = SV
Inductive Switching Speeds
Tc 100·C
Storage Time
Fall Time
=
Thermal Resistance,
Junction-to-Case
tf
t,
ReJc
-
4.0
0.8
US
-
=
4.0
0.8
I'S
1.75
·C/W
=
Ic=3.0A
la = 0.6A, VaE lof~ 5.0 Vdc
VaElofij 5V
VCE clamp rated VCElUs'!!l.
=
Notes
1. Pulse length = 250,,5; duty cycle ';;;1%.
2. Sustaining Voltage. Measured at a high current point where collector-emitter voltage is lowest. Current pulse length
Voltage clamped at maximum collector-emitter voltage.
* JEOEC registered values.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. 1617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
127
=
=
==
50,"S; duty cycle ~1%.
PRINTED IN U.S.A.
•
2N6542
Forward Bias Safe Operating Area
Power Derating
10
100
2OpS-p.,.
"'\ "
:-....
.C.
...z~
....
'"'"
0
0'"
t;
",lmS
~
0
u
.....
z'"
..;:
t-
o
~
.2
a:
2N6543
I
::J
\.
DASH LINES ON SOAR CURVES ARE EXTENSIONS OF
Rated V CEO
II
20
10
"
100
50
DISSIPATION LIMITj FOR TrMPEfljTURE
\
lEItAT'NG
o
500
200
o
40
TC -
.......
Z
«
'....z..."
::J
'"'"
::J
0.5
0
....
..J
100'C
50
25'C
I
20
0
""f:::::
...... ~
SS'C
0
~,
ci 10
..J
I
I
VeE = 5V
100
2N6542--i
'"U'"
0
200
2
w
...u'"
1,\
D.C. Current Gain
200
0
..........
80
120
160
CASE TEMPERATURE ('Cl
Reverse Biased Safe Operating Area
...
'\
PU"POSES.!
VeE - COLLECTOR VOLTAGE (V)
~
z
"-
D£RAT~ DISSI~A.'\
AT DESIRED OPERATING VOLTAGE,
lION CURRENT LIMIT AND 'I ~ CURRENT LIMIT !"ADM
25"C SOAR CURVE
20
0
Curves Apply Below
.1 II
5
'''~o
i'..::
~~
~"'0
....a:
2N6542
Te=25'~
~J
...z
'\
I
_0
60
?
~(/4t.
~;$'",
a:
w 40
c
Limited
lSI
.5
'\.
0
10mS
......J
80
a:
\(
~
::J
..J
~
1"Power Dissipation
Limited
2N6543
I
2N6543 -
.r:.~
0.2
_0
V BE IQIfI ~5V
0.1
=
Te';; 100'C
2
.05
10
50
20
100
500
200
.OS
1000
0.1
Ie -
VeEX 1"'1- COLLECTOR VOLTAGE (V)
0.2
6.5
COLLECTOR CURRENT (AI
5
Saturation Voltages
5
Typical
Inductive Load
Switch ing Performance
I
lell, =5
2
~
-55'C
w
'"~
0
> 0.5
100'C
z
0
~
'"~
::J
"
0.2
/
Attain Specified Peak Iv
PW Varied to Attain
Duty Cycle'; 3%
f = 1kHz
Ie = 100mA
Leo;! ;::: 80mH
Vee
Leo,
== IOV
I
-
(Unclamped)
INDUCTIVE TEST CIRCUIT
...'"
:;
u
II:
:~"~
1
<>
See Above For Input
...'"w
Detailed Conditions
...
2
. or
)Equivalent
V'ii!lmP.T
~
r l
I I Reell
I I
I
JLeoi'
T
Vee
1 R, 1
Rated
Vr"EX
Vcl"mp
OUTPUT WAVEFORMS
t f Clamped
'-jleE.?t<:' lunClamped
Ve'l velY,ramp
or ~n
Time
i--t,..i
Vee;::: IOV
(Unclamped)
t, Adjusted to
= I,
t """
t2 ='
129
--llV _ _ 2
tf~
SOns
Duty Cycle'; 2%
Vee - 250V
Rl =83!l
01 = IN5820 or Equiv.
R,=200
RESISTIVE TEST CIRCUIT
Leoll (lCpk)
Vee
Cl cp...}
----v::;LCQiI
I
OIU-
Obtain Ie
1
10--1,--11,1--
O.W
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173. TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
Leod ;::: 40p.H
Reo . , ;::: 0.20
__ 1
le=3A
PW'; 100~s
t f ~ 5ns
PW Varied to Attain Ie
Value
_+13V
4Vfl
5V
Q1 2N6408 Q32NS87S
Q2 2N6406 Q42N5877
Diodes 1N4933
VC1d"'P ;:::
1
l
O~
180.uH
Reo.! == 0.050
Vee;::: 20V
fo == 500kHz
RWd =0.7P.
VClamp
lSQ 1
IB.=lA~
+22.SV
500
pwA,~~
~
:!:
RESISTIVE SWITCHING
ES/b
+Vo
.1.
-4V O.Dl.F Q2"
1 1
Sel +V,o 10 Oblaln a Forced
20
K4 2
h" = 5 and Adjusl PW 10
10'~fFl 100 ~ ~
~1
u
AND INDUCTIVE SWITCHING
Drivec"e~1
+4V
1k
Ql 20 ~
100 Q3
..-2
200
o...IL..
0
[SUS}
Test Equipment
Tektronix Scope
475 or Equivalent
1
~
RL
.:. Vee
2~ 01
-5V
"
-
PRINTED IN U.S.A.
2N6544
2N6545
POWER TRANSISTORS
8 Amp, 850V, Triple Diffused, NPN, Mesa
FEATURES
• Collector-Base Voltage: up to 850V
• Peak Collector Current: 16A
• Rise Time: :;;;; 1.0ps l
• Fall Time: :;;;; 1.0ps f @ Ie
5A
• Key Parameters characterized at 100'C
DESCRIPTION
These high voltage triple diffused glass
passivated power transistors combine fast
switching, low saturation voltage and rugged
Es/b capability. They are designed for use in
off-line power supplies, high voltage inverters,
switching regulators, ignition systems and
deflection circuits.
=
ABSOLUTE MAXIMUM RATINGS'
2N6544
Collector-Base Voltage, VeBo
Collector-Emitter Voltage, VeEO ISUS}
Emitter-Base Voltage, VEBO
Collector Current, Ie. continuous .
Base Current, lB. continuous
Emitter Current, IE. continuous.
Power Dissipation, 25'C Case .
Derating Factor
Operating and Storage Temperature Range
650V .. .
....... 300V.... .
.. 9V ... .
...... 8A.
. 8A .... .
2N8545
.......... 850V
...... 400V
... 9V
....... 8A
.. ..... 8A
.............. 16A.... .
. 16A
125W
125W.... .
........714W/'C ..
. .714W/'C
...... -65 to 200'C ....
* JEDEC registered values.
MECHANICAL SPECIFICATIONS
2N6544 2N6545
TO-3
.188
£&lliJJ~
BASE
EMITTER
lJ-iJl
.525
MAX.
RAO.
MAX .
. 450
.250
.312
MIN.
.440
.420
Dimensions in inches.
[ill]
130
_UNITRDDE
2N6544 2N6545
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)'
Test
Symbol
D.C. Current Gain (Note 1)
hFE
2N6544
MAX.
MIN.
12
60
3S
D.C. Current Gain (Note 1)
hFE
Collector Saturation Voltage
(Note 1)
VCEI"'I
-
1.S
Collector Saturation Voltage,
Te = lOO'C (Note 1)
VeEI"!1
-
2.S
Collector Saturation Voltage
(Note 1)
VCE{satl
-
Base Saturation Voltage (Note 1)
VSEI"!I
7
2N6545
MAX.
MIN.
12
60
7
S.O
-
-
1.6
VCEO{SUS)
Collector-Emitter Sustaining
Voltage
Te = 100'C (Note 2)
VCEX (sus)
Emitter-Base Cutoff Current
'ESO
Collector Cutoff Current
, cEv
Collector Cutoff Current,
Tc=lOO'C
,CEV
Base Saturation Voltage,
Te = 100'C (Note 1)
Collector-Emitter Sustaining
Voltage (Note 2)
VSEI ,,!)
Ie = 2.5A, VeE - 3V
3S
Ie = S.OA, VeE = 3V
1.S
V
Ie = S.OA, Is = LOA
2.S
V
Ie = S.OA, Is = LOA
S.O
V
Ie = 8.0A, Is = 2.0A
-
1.6
V
Ie = S.OA, Is = LOA
1.6
-
1.6
V
Ie = S.OA, Is = LOA
300
-
400
-
V
Ie =O.lA
3S0
-
4S0
-
V
L = 180l'H,Ie =4.SA
VSE=-SV
VeE clamped to rated VCEX 1'"'1
-
1
O.S
-
-
2.5
-
-
-
1
O.S
2.S
rnA
rnA
rnA
Collector Cutoff Current,
Tc=lOO'C
Output Capacitance,
Common Base
-
3.0
ICER
-
-
-
-
-
3.0
Cobo
100
200
100
200
pF
Gain-Bandwidth Product
Fr
6
24
6
24
MHz
Energy Second Breakdown
(unclamped)
Es/b
Resistive Switching SPeeds
Delay Time
Rise Time
Storage Time
Fall Time
rnA
Thermal Resistance,
Junction-to-Case
VES = 9V
VCE = 6S0V, VSE = -1.SV
VCE = 8S0V, VSE = -1.SV
VCE = 6S0V, VSE = -l.SV
VCE = 8S0V, VSE -l.SV
=
VCE = 6S0V, R =SOn
VCE = 8S0V, R = son
Ves :..=10V,f=lMHz
VCE = 10V, Ic = 0.3A, f = 1 MHz
SOO
-
SOD
-
I'J
Ic=S.OA
IS = 1.0A
L =4OI'H
Id
Ie
t,
If
-
O.OS
1.0
4.0
1.0
-
0.05
1.0
4.0
1.0
I'S
Ie = 5.0A
Vec=12SV
lSI = IS2 = 1.0A
VSEloff) = SV
t,
If
-
-
4.0
0.9
-
-
4.0
0.9
1,5
ReJc
-
1.4
-
1.4
'C/W
-
-
-
Inductive Switching Speeds
Tc=lOO'C
Storage Time
Fall Time
Test Conditions
Units
'c =5.0A
Is = 1.0A
VSEIOff)=5V
VCE clamp = rated VCEX 1'"'1
Notes
1. Pulse length = 250 #s, duty cycle ~1 %.
2. Sustaining Voltage. Measured at a high current pOint where collector-emitter voltage is lowest. Current pulse length
== 50
.us; duty cycle
~l%.
Voltage clamped at maximum collector·emitter voltaa-e.
*
JEOEC registered values.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 - TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064
131
PRINTED IN U.S.A.
•
2N6544 2N6545
Forward Bias Safe Operating Area
20
Power Derating
100
II
~
~~ ~~
'l' ~'?'l'
~'l'
10
~
....
Z
'":JDe
DiSSiPATiO~~ r\ ,
()
LiMiTED
De
~
,
'"
I I
~
"
...u0
"I'\.
it
",
'\
,
is/b LI M iTED·'"
..J
..J
[\ i'-
80
De
,
6"
'C'
UJ
~
~ t'-..
"
z"
.'"
UJ
C
...Z
Te 25'C
CURVES APPLY BELOW
RATED VeEO
I III
0.2
5
10
I
'"'"
:J
60
I~,
\
~~
~"'0
40
I
AT DESIREO OPERATING VOLTAGE, OERATE
20
o
500
o
;(
I
I
'"
:J
De
"....
I
I
~150'C
50
tt-
Z
25,b
UJ
()
De
De
I
I
De
20
....
:J
UJ
U
ci 10
0
U
()
0.5
2N6545
2N6544
I
0.2
V Be IOFF, == ::;;;:SV
Tc
:::;100°C
I
I
0.1
IIIII
t-
--
()
I
_v
10
t:11
t-
I
I
I
I
-- -
2
0.1
2S'C
.
0.5
V
'i
0
>
0.2
156'c
0.1
4-
S5'C
.05
0.1
-
0.2
VeE _10V
VeE
== 3V
10
I,
If.
tfi
~s
~s
~s
25
100
.90
1.40
.07
.12
.07
.15
5.0
25
100
.98
1.52
.10
.15
.11
8.0
25
100
1.10
1.70
.14
.20
.11
ie
Amps
TJ
'c
3.0
.20
.18
./
/V
I" = vollage fall lime; 10-90%
current fall time; 10·90%
tf,
=
/ / VVCE(SAT)
~
,~[~
0.2
0.5
Ie - COLLECTOR CUI/RENT (A)
VBE~~ ~I'
450'c
..J
,~
Inductive Load
Switching Performance
ie/i,- 5
"'
-- -
f- r-
Saturation Voltages
SS'C
, ,~
~
~~
~
s:t
20
100
50
200
500
VeEXISU" - COLLECTOR VOLTAGE (V)
~
-
I
I
=
200
100
z
I
UJ
1'\
40
80
160
120
Te - CASE TEMPERATURE ('C)
D.C. Current Gain
-- '"'"
....
'\
PURPOSES.
200
Z
"
DISSI~A-'
liON CURRENT LIMIT ANO Is. CURRENT LIMIT fROM
2S"C SOAR CURVE
Reverse Biased Safe Operating Area
~
~
DASH LINES ON SOAR CURVES ARE EXTENSIONS Of
DISSIPATION LIMITS FOR TEMPERATURE DERATING
\
20
50
100
200
VeE - COLLECTOR VOLTAGE (V)
~O
~
~J
()
10
"....
'4,'1-.
UJ
I
...:...J 0.5
0
~{I
'l'~...
;:
"
8
..J
..J
......
~
/'
-~
0.5
ie - COLLECTOR CURRENT (A)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
10
132
PRINTED IN U.S.A.
2N6544 2N6545
TEST CONDITIONS FOR DYNAMIC PERFORMANCE
VeE<
VeEO[SUSJ
iSu', AND INDUCTIVE SWITCHING
RESISTIVE SWITCHING
Drive Circuit
U)
Z
15Q
+4V
o
;::
C
z
o(J
5
0-
PW Varied to Attain
:<:
Ie = 100mA
aOmH Vee = lOV
Reo,1 ::;:;:0.7P.
Vc.lamp (Unclamped)
Ltoi !
::;:;:
-4V O.OI#F
Set +Vm to Obtain a Forced
hFE ::;:;: 5 and Adjust PW to
Attain Specified Peak IeQI 2N640B Q3 2N5B75
Duty Cycle ~ 3%
Q2 2N6406 Q4 2N5B77
f=lkHz
Diodes IN4933
LtOil ::;:;: 180JLH
Rtotl =D.05U
Vel amp = Rated VCEX Value
Vee
= 20V
fa::;:;:
500kHz
O~ 4Vfi
PW Varied to Attain Ie
Leoti ::;:;: 40,uH
~
:;
t =
...
...t!l
=
'~
Vee =250V
R L =B3!l
01 = IN5B20 or Equiv.
R,=2oo
j,
,
BTUT
~
Vel amp
~ Vee
-5V
Test Equipment
Tektronix Scope
475 or Equivalent
Turn-Off Time
RL
2~ 01
leo;, (lep,)
2
..
--llV 0---02
I c =3A
PW':; 100~s
tf~ 5ns
tf~ 50ns
Duty Cycle':; 2%
I
Vee
t
See Above For
Detailed Conditions
0---0 I
OIU-
lcod (lePk)
1
0:
- +13V
RESISTIVE TEST CIRCUIT
tl Adjusted to
Obtain Ie
~'-:..--":'-;-"'-t
(J
Vee::::: lOV
Reo,1 ::;:;: O.2n
VCI~mp (Unclamped)
OUTPUT WAVEFORMS
t f Clamped
,.."tf Unclamped = I,
INDUCTIVE TEST CIRCUIT
U
I
I,,=IA~
f.22.5V
{SOO
pw-il-
~
Turn-On Time
10
Vee
'e/l,
1000
125V
5
500
IBI-IIZ
TJ =2S'C
I'
r-r---
"' .....
'"
I,
f'
1'-
on
S
w 100
td
Ie
~ I--'
I"
::;:
;::
0.5
"
50
tf
0.2
f'..
1
0.1
0.1
1'--
V
./
0.5
0.2
Ie -
Vee _125V
20
10
0.1
10
COLLECTOR CURRENT (A)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) B61-6540
TWX (710) 326·6509 • TELEX 95-1064
133
'e/l, = 5
VIE loll) ::;:;: 5V
T J =2S'C
0.2
Ie -
10
0.5
COLLECTOR CURRENT (A)
PRINTED IN U.S.A.
POWER TRANSISTORS
2N6546
2N6547
15A,850V, Fast Switching,
Silicon NPN Mesa
FEATURES
• Collector-Base Voltage: up to 850V
• Peak Collector Current: 30A
DESCRIPTION
These high voltage glass passivated power
transistors combine fast switching, low
saturation voltage and rugged ES!b capability.
They are designed for use in off-line power
supplies, high voltage inverters, switching
regulators, ignition systems and deflection
circuits.
• Rise Time: ~O.7I'S} @ I -lOA
• Fall Time: ~O.7I'S
c• Key Parameters characterized at lOO'C
ABSOLUTE MAXIMUM RATINGS
*
2N6546
Collector-Base Voltage, VCBO .. " ..
Collector-Emitter Voltage, VCEO'sus,
Emitter-Base Voltage, VEBO .
Collector Current, Ic, continuous
Collector Current, Ic peak.
Base Current, IB continuous.
Emitter Current; IE continuous
Power Dissipation, '25'C Case .
Derating Factor ",,",,"
Operating and Storage Temperature Range.
2N6547
850V
400V
.... 650V"
" .. 300V."""
.... " ........ 9V
'.'"."."""""" ....... """""" .. " ... "" .. 9V .. .
""""""""""" ".""" .... ,, .. ,,""
15A
30A
.. lOA
25A
175W
lW/'C
.15A
.30A"
IDA:.
."" ...... 25A"
175W" .. ".
lW/'C
..-65 to 200'C ..
• JEDEC registered values.
MECHANICAL SPECIFICATIONS
NOTE:
Leads may be soldered to within
1116" of base provided temperature·
time exposure is less than 260'C
for 10 seconds.
2N6546 2N6547
ins.
J
K
~Bbp
C
6-79
D
BASE
I1~
~ i'E
~
.
F
EMITTER
.L
A
.875 MAX.
mm
22.23 MAX .
B
.135 MAX.
3.43 MAX.
C
.250-.450
5.35-11.43
0
.312 MIN.
7.92 MIN.
E
.205-.225
5.21-5.72
F
.420-.440
10.67-11.18
J
.151-.161 D1A.
3.84-4.09 DIA
4.78 MAX. RAD.
K
188 MAX. RAD.
L
. 525 MAX. RAD.
M
.655-.675
16.64-17.15
N
1.177-1.197
29.90-30.40
P
.038-.043 DIA.
9.65-10.92 DIA
134
TOol
13.34 MAX. RAD .
llilJ
_UNITRODE
2N6546 2N6547
ELECTRICAL SPECIFICATIONS (at 25·C unless noted)"
Test
D.C. Current Gain (Note 1)
Symbol
hFE
2N6546
MIN.
MAX.
12
60
2N6547
MIN.
MAX.
12
60
Units
Test Conditions
Ic = 5.DA, VCE = 2.0V
D.C. Current Gain (Note 1)
hFE
Collector Saturation Voltage
(Note 1)
VCEI,,')
-
1.5
-
1.5
V
Ic = lOA, I. = 2.0A
Collector Saturation Voltage,
Te = 100"C (Note 1)
VCEI,,')
-
2.5
-
2.5
V
Ic = lOA, I. = 2.0A
Collector Saturation Voltage
(Note 1)
VCEI ••,)
-
5.0
-
5.0
V
Ic = 15A, I. = 3.0A
Base Saturation Voltage (Note 1)
V.EI •• ,)
-
1.6
V
Ic = lOA, 10 = 2.0A
VOE 1••1)
-
1.6
Base Saturation Voltage,
Te = 100"C (Note 1)
1.6
-
1.6
V
Ic = lOA, 10 = 2.0A
COllector-Emitter Sustaining
Voltage (Note 2)
VCEO I••• )
300
-
400
-
V
Ic=O.1A,lo=O
Collector-Emitter Sustaining
Voltage
Te = 100"C (Note 2)
VCEXI ••• )
350
-
450
-
Collector-Emitter Sustaining
Voltage
Tc=lOO"C
VCEX I··s)
200
-
300
-
Emitter-Base Cutoff Current
I EOO
-
-
-
Collector Cutoff Current
ICEV
Collector Cutoff Current,
Te= lOO·C
ICEV
Collector Cutoff Current,
Te =100"C
ICER
Output Capacitance,
Common Base
Cobo
Gain-Bandwidth Product
Fr
6
6
30
1
1
-
-
4
-
30
L = 180",H, Ic = 8.0A
VSE = 5V, 10 = 2.0A
VCE clamped to rated VCEX I•• ')
V
1
1
-
Ic = lOA, VCE = 2.0V
4
mA
mA
mA
-
-
-
180
360
180
360
pF
6
24
6
24
MHz
5
5
mA
Energy Second Breakdown
(unclamped)
Es/b
Resistive Switching Speeds
Delay Time
Rise Time
Storage Ti me
Fall Time
td
t,
t.
t,
-
0.05
0.7
4.0
0.7
-
0.05
0.7
4.0
0.7
",S
Inductive Switching Speeds
Tc= lOQ"C
Storage Time
Fall Time
t.
t,
-
S.O
loS
-
S.O
1.S
"S
Inductive Switching Speeds
Te = 2S"C
Storage Ti me
Fall Time
t.
tf
Thermal Resistance,
Junction-to-Case
R8JC
2
-
2
-
mJ
L = l80",H, Ic = l5A
VSE = -5V, Is = 3.0A
VCE clamp to VCEO -lOOV
VE.=9V
VCE = 650V, V. E= -1.5V
=850V, VSE = -1.5V
=650V, VSE = -1.5V
VCE = 850V, VSE = -1.5V
VCE = 650V, R = 50n
VCE = 850V, R = 50n
VCE
VCE
Vcs = lOV, f = 1 MHz
VCE
= lOV, Ic = 0.5A, f =
1 MHz
Ic= lOA
V.Elolf) = 4.0V
L=40",H
Ic=10A
Vcc = 250V
101 = 1.2 = 2.0A
VaE 10") SV
Ic- 1DA
10 = 2.0A
VOElolf) = SV
VCE clamp = rated VCEX Is.s)
Ic _10A(pk)
VCE clamp rated VCEX
101 = 2.0A
V.Elolfl = 5.0 Vdc
Tc = 25"C
=
=
2.0 typical
0.09 typical
-
1.0
-
",S
1.0
"C/W
Notes
1. Pulse length = 2501'S; duty cycle <;;1 'Yo.
2. Sustaining Voltage. Measured at a high current point where collector-emitter voltage is lowest. Current pulse length
Voltage clamped at maximum collector-emitter voltage.
==
SO,uSj duty cycle ~1%.
• JEDEC registered values.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
135
PRINTED IN U.S.A.
•
2N6546 2N6547
Forward Bias Safe Operating Area
Power Derating
100
~
'"
80
a:
0
..
:--....
.'\ '-.
"- ~
t-
U
"-
";:::z
d'd'
60
UJ
0
~
t-
Z
a:
a:
UJ
a:
a:
:::>
u
'-.
a:
"
~
-'
-'
o
DERAT~ OISSI~A'"
UJ
:::>
u
J
t-
Z
r-...
~~
~"'0
40
5
~,.~O
~O
.
a:
I
~(/~
AT DESIRED OPERATING VOLTAGE,
TION CURRENT LIMIT AND Is b CURRENT LIMIT fROM
ZS·C SOAR CURVE
20
o
o
40
TC -
I
'\
DASH LINES ON SOAR CURVES ARE EXTENSIONS Of
DISSIPATION lIMITj FDA
PURPOSES.
u
YMPERrURE rAATING
80
120
160
CASE TEMPERATURE ('C)
-"
"-
20D
.04~:±=f.~i::c~t±±t~~~~f::t~±±~
10
20
50
100
200
500
1000
VeE -
Saturation Voltages
Reverse Biased Safe Operating Area
40
5
!ZUJ
a:
a:
:::>
u
II'ff~ ~~!~
~-'
u
I
-"
LI II
L
'1
~7
le/ l,=5
10
I
2N6546
~
.4
.
.
.2
~
4.0
I--
'"
CI
2.0
!:i
"'"
a:
o-'
5
V..
Te';;; 100'C
__
2N6547
20
COLLECTOR VOLTAGE (Vl
1.0
0
>
SS'~
I-- V.. (A'I
25'
0.5
z
;:::
i=- f--
lOO'C
0
~:'-I
a: 0.2
::>
veeillt) ~ ~
~ ;.-'
0.1 t-lOO'C
I
25'C •
r-r==t-.
.05
0.2
.04
10
20
50
200
100
500
SS'C
5
2
0.5
1000
10
Ie-COLLECTOR CURRENT CAl
VeEX I'.') - COLLECTOR VOLTAGE (V)
DC Current Gain
Typical
Inductive Load
Switching Performance
SOD
TJ
'C
t,
tfy
1'5
nS
t ff
nS
3
25
100
.8
1.10
.14
.18
.025
.030
5
25
100
.90
1.20
.14
.16
.025
.030
10
25
100
1.20
1.50
.05
.12
.050
.10
Ie
Amps
200
z
:;;:
VeE =5V
CI
t- 100
Z
'"::>
II:
II:
u
u
Q
50
t-lOO'C
t-.....
25'C
I
1
-
20
::::"I!!~
~~
,..
~
10
5
0.2
10
5
2
0.5
Ie-COLLECTOR CURRENT CAl
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
20
136
PR(NTED IN U.S.A.
20
2N6546 2N6547
Resistive Turn-Off Time
Resistive Turn-On Time
10
1000
100'C
500
"
I-f-f-
l00'C
~ ~
.,
oS
"'::;;i=
t-...~
t,
1"\1\
1"
"
200
100
250V
'"
112
"
2.0
'U
:"...
"'.1\
9l
.3 1.0
2S'C
UJ
50
::;;
i...- ~
t.
lOO'C
i=
.s
"'~.....
./
l00'C
.2
B,_ S [
.5
10
Ie -
W
~
.2
COLLECTOR CURRENT (A)
J.;
"""
'1
.1
20
lo-
-;~
11,--1121
10
.2
tf
1--..
Vee = 250V
20
r--...
vee
Ii,: ::s_
r- :.-
2I-C
2S'C-
L,...I.--
~-
r-.
S.O
Ie -
20
COLLECTOR CURRENT (A)
TEST CONDITIONS FOR DYNAMIC PERFORMANCE
Ve"
VCEOISUS)
en
Z
o
+10V
i=
___ 2
0.I1..
is
~
+V,
IB'=IA~IS!l1
+ 38.5V
-4V 0.0 ~F
Set +V," to Obtain a Forced
z
II.
RESISTIVE SWITCHING
AND INDUCTIVE SWITCHING
pwA
2011
8
~
[SU')
Drive Circuit
+4V
0..f"L
2
4V
hfE = 5 and Adjust PW to
Atta," Specified Peak Iv
Duty Cycle" 3%
1= 1kHz
PW Vlried to Attain
Ie = 100mA
L.a."
= 80mH
Vee
=
~
Q3 2N5875
Q4 2N5877
Diodes lN4933
=
Leod
180,u.H
Reo, I = O.OSH
Vee = 20V
I. = 500kHz
lOY
Reod =0.70
Vcl • fIIP (Unclamped)
=
Rated V,,£x Value
OUTPUT WAVEFORMS
t f Clamped
Unclamped = t;>
INDUCTIVE TEST CIRCUIT
/t,
,
I Reotl
I
See Above For
VC1
u
.5
'"~
fJ
.2
8
.1
...J
...J
I
_u
l\.
~
~~
Duty Cycle - 2.5%
~ 1 ms
r'\.
~
"\
10%
pul~e, W,idth ::::: 1 ms
Duty Cycle
25%
Pulse Width=1 ms
" I'
I"
a'"
.5
'"
~
u
.2
5"'
.1
I
.05
1
2
VeE -
\\\
1\
\ \
Pulse Width::::: Ims
Duty Cycle = 10%
I\t---U2T205
1\ r---U2T201
u
_u
1\ !---U2n05
'--U2nOl
.02
1"-
.01
~
Pulse Width = Ims
Duty Cycle = 25%
...J
1'\ I'
I""
D.C.-
"''"
=
"
Tc _100·C
1"\ "~
5:
....
z
I, Duty Cycle
'"'" '" .""'"
.02
'", '\
TA _ 25·C
~ r--rull}Wjdth
'" " "'
D.C.-
.05
1
10
.01
2
VCE -
1
5 10
20
50 80100150
COLLECTOR -EMITTER VOLTAGE (V)
5 10
20
50 80100150
COLLECTOR- EMITTER VOLTAGE (V)
D.C. Current Gain VS. Collector Current
U2Tl0l, U2T105, UmOl, U2T205
10,000 , - - - - - , - - - - -....- - - - - - ,
z
<
~
1000
r----7'I'-7,L----j:::::=::::=--1
100
~~~--+-----~---~
z
"''"
'"
::>
u
<.i
ci
I
10 L-_ _ _
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
.01
139
~
_____
.1
Ie -
~
_ _ _ _- - - '
1.0
COLLECTOR CURRENT (A)
10
-
U2T301
U2T305
POWER DARLINGTONS
U2T401
U2T405
5 Amp, 150V, Planar NPN
FEATURES
• High Current Gain: 1000 min. @ Ic = 2A
• Low Saturation Voltage: as low as 1.5V max. @ Ic = 2A
• High Voltage: up to 150V min. VCER
• Monolithic Design Incorporating Multiple-Emitter Techniques
• Triple-Diffused Planar Construction
OESCRIPTION
Unitrode NPN Darlingtons consist of a two
transistor circuit on a single monolithic
planar chip.
ABSOLUTE MAXIMUM RATINGS
3 PIN TO-I&
U2T401
U2T405
TO-33
U2T301
U2T305
... GOV........... 150V
................ 60V.......... 150V ... .
Collector-Emitter Voltage
Emitter Base Voltages,
............. 6V.................. 6V
VEB> ......................
.. ......................... 6V.
.. ... 6V.
..... 12V................ 12V
VEBI
......................... ..............
. ..... 12V ........... 12V.
........ 2A.................. 2A
D.C. Collector Current
................. 2A. ................ 2A
....... 5A
.... SA
Peak Collector Current
......... SA..
.. ..... 5A ..
.. .... O.SA............... O.SA
Base 1 Current ....
........ ........ ....
... O.SA ............ O.SA .. .
Power Dissipation
................. .lW. .
.. lW .......................................... ................2W................. 2W
2S'C Ambient ... ......... ..
.... 4W ........... 4W
.... 16W .............. 16W
100'C Case .................................. .
Thermal Resistance
.................. 6'C/W ..
Junction to Case ...................... .
... 2S'C/W
.
.. ...............................................-6S'C to 200'C
Operating and Storage Temperature Range
............ -6S'C to 200'C .....
MECHANICAL SPECIFICATIONS
.;~]~
.017
1.5 MIN
:~~
.031
±.OO3 45 0
U2T301 U2T305
TO-33
U2T401 U2T405
3 Pin TO-66
>:
:3351f:t'01B MA~ ~~~.
370
.335
,305
I__~=:r
];iE',
~LLECT~--
BASE2
BASE 1
__
.100
COLLECTOR CONNECTED TO CASE
Dimensions in inches.
.075
tH
:.l!t
.050
'1l""
.250
.03'
MIN.
.145
MAX.
COLLECTOR CONNECTED TO CASE
RAO.
Dimensions in inches.
[ill]
140
_UNITRODE
U2T301
U2T30S U2T401 U2T4OS
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
U2T301 & U2T401
Min.
Max.
Symbol
D.C. Current Gain
(Note 1)
D.C. Current Gain
(Note 1)
Collector Saturation Voltage
(Note 1)
Collector-Emitter
Breakdown Voltage
(Note 1)
h'E
1000
-
1000
h'E
1000
-
VCE (sat)
BVCER
Collector Cutoff
Current
ICER
Collector Cutoff
Current
ICER
Collector Capacitance
A.C. Current Gain
Delay Time
Rise Time
Switching
Speeds
Storage Time
Fall Time
Note: 1. Pulse width = 300
~s;
U2T30S & U2T40S
Min.
Max.
Cobo
-
1000
-
1.S
-
2.S
V
= lA, VCE = 2V, RB2E = 1K
Ic = 2A, VCE = SV, Rm = 100
Ic = 2A, Rm:::;: 100, IBI = 4mA
60
-
lS0
-
V
Ic
-
1.0
-
1.0
I'A
-
1.0
-
1.0
mA
60
pf
60
-
S
100 Typ.
200 Typ.
800 Typ.
300 Typ.
hfe
td
t,
t,
tf
Test Conditions
Units
-
Ic
-
S
100 Typ.
300 Typ.
800 Typ.
300 Typ.
= 2SmA, RBIE = 2.2K, Rm = 100
RBIE = 2.2K, RB2E = 100
U2T301, 401: VCE = 60V
U2T30S, 4OS: VCE = lS0V'
RBIE - 2.2K, Rm - 100, T _ 150'C
U2T301, 401: VCE = GOV
=
U2T30S, 4OS: VCE
lS0V
VC•, - 10V, IE - 0, f _ 1M Hz
Ic - O.5A, VCE - lOV, f _ 10MHz, Rm _100
ns
ns
ns
ns
Vcc
= 3OV, Ic = 2A, I. (on) = I. (off) = 4mA
R82E
= 100
duty cycle ";2%.
Maximum Safe Operating Area
Maximum Safe Operating Area
U2T401 & 405
U2T301 & 305
~
...~
z
~
1
.5
0::
::>
u
.2
0::
o
t;
.1
"'
.os
..J
..J
8
I""
'
"
""
""
'" '" ""
I
.01
1"(
/
~ f"\. ~
I'" I\.
f-Dt
!'xV
Pulse Width = 1ms
Duty Cycle - 2S%
_u .02
.!
j
S
T,=2S'C
Pulse Width
Ims
Duty Cycle = 2.S%
=
...z~
"'
Pulse Width = 1ms
Duty Cycle = 10%
~
f\-
r'\
~
.S
9
I'
I
.2
U
\
I I
1\
Pulse Width = 1ms
Duty Cycle = 10%
.1
l\
8 .os
D.C.--
I
U2T301
_u
~I\
.02
I'-- U2T30S
I<-
t--U2T401
.01
I"
.005
Duty Cycle = 2S%
..J
..J
I"
l"-
l'. 1\\
Pulse Width = Ims
::>
u
0::
Tc = 100'C
l'Sr--.
2
..-U2T40S
.005
10 20
SO 100 1SO
VcE-COLLECTOR-EMITTER VOLTAGE (V)
10
1
VCE -
20
SO
100 1SO
COLLECTOR- EMITTER VOLTAGE (V)
D.C. Current Gain vs. Collector Current
10,000
U2T301, U2T305, U2T401, U2T405
,-----,.------,-------"1
T = 12S'C
z
;;:
~ 1000
f------rt--r'---"--r---'---'.--i
z
"'
0::
0::
::>
U
cJ
ci
I
100
f#$"''----t-----+-----i
,r:;"
10
.01
UNITRODE CORPORATION· S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6S09 • TELEX 95·1064
1.0
.1
Ic -
10
COLLECTOR CURRENT (A)
141
PRINTED IN U.S.A.
•
U2T712
U2T713
U2T722
U2T723
POWER DARLINGTONS
2 Amp, 300V, Planar NPN
DESCRIPTION
Unitrode NPN Darlingtons consist of a two
transistor circuit on a single monolithic
planar chip.
FEATURES
• High Current Gain: up to 1000 min. @ Ic = lA
• Low Saturation Voltage: as low as l.SV max. @ Ic = 2A
• High Voltage: up to 300V. min. VCEO
• Peak Current: to SA
• Monolithic Planar Chip Construction
ABSOLUTE MAXIMUM RATINGS
3 PIN TO-BI
U2T722
U2T723
TO-33
U2T712
Collector-Emitter Voltage ....
Emitter - Base Voltages
U2T713
. ....................... 200V... .......... 30OV
. 200V............... 300V
.. .
.w.
~.~
VEBI
........ 12V..
. 12V..... .
D.C. Collector Current
. 2A .................. 2A ... .
Peak Collector Current
SA .. ..
SA.... .
Base 1 Current
. ......... ......... ..... ....................................... O.SA.. .
O.SA ... .
Power Dissipation
25'C Ambient .
lW ...... .
lW .... .
100'C Case
5W ... .
SW .. .
Thermal Resistance
Junction-to-Case
........ 20'C/W...
Operating and Storage Temperature Range.
........... -WC to 2OO'C ......
.. 6V.
... 12V.
2A ..
. SA ..
.... O.SA ..
6V
12V
2A
........ 5A
O.SA
2W ..
2W
20W
... 20W ..
........ S'C/W
........ -65'C to 200'C
MECHANICAL SPECIFICATIONS
U2T712
U2T713
TO-33
U2T723
3 PIN TO-66
BASE2
BASE 1
COLLECTOR CONNECTED TO CASE
Dimensions in inches.
U2T722
.075
.oso
tH
""41'""" .03'
.028
~
.620
MAX.
.340
.250
-
--
.360
MIN.
.145
~AX.
COLLECTOR CONNECTED TO CASE
RAO.
Dimensions in inches.
[1W
142
_UNITRODE
U2T712
U2T713
U2T722
U2T723
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
U2T712 & 722
Test
D.C. Current Gain
(Note 1)
Collector Saturation
Voltage (Note 1)
Collector-Emitter
Breakdown Voltage
(Note 1)
Collector Cutoff
Current
Symbol
Min.
hFE
1000
-
VCE (sat)
-
1.S
BV cEO
200
BVc ,.
2S0
Typ.
ICE.
-
10.0
Cabo
-
A.C. Current Gain
h fe
4.0
Typ.
Rise Time
Storage Time
Fall Time
t,
t,
tf
Collector Capacitance
U2T713 & 723
Max.
Min.
Max.
-
-
-
1.5
V
-
300
-
V
-
350
Typ.
-
V
-
10.0
p.A
100
-
100
pf
-
4.0
Typ.
1000
0.6 Typ.
1.5 Typ.
1.0 Typ.
Test Conditions
Units
-
-
0.6 Typ.
1.5 Typ.
1.0 Typ.
"S
"S
I'S
= lA, Ve, = SV, RB2E = lK
Ie = 2A, RB2E = laO, lal = 20mA
Ic = lOmA
Ic = lOmA, RalE = 2.2K, RB2E = 100
Ic
RalE - 2.2K, RB2E - 100
U2T712 & 722: VCE
U2T713 & 723: VCE
Vcal
lOV, I, 0, f
lmHz
=200
= 300
= =
Ic = 0.5A, VCE = 10V, f = 20mHz, RB2E = 100
Vcc = 100V, la (on) = la (off) =2SmA,
Ie = 2A, RB2E = 100
=
Note 1. Pulse width = 300 p.S; duty cycle'; 2%
Maximum Safe Operating Area
U2T722 & 723
10.0 ,------,------,---.-..----,
Maximum Safe Operating Area
U2T712 & 713
lOA
,---------r----,------,:,~_::_:::::-::-1
$
$
...
~
z
~ 1.0A
'"0:0:
r-------"k---"""":--f---++----1
0:
'"
0
...
'"
u
'"a
I-
u
UJ
-'
a-'
u
I
_u
~
~~
~
~
UJ
"'-
.5
"" ''""
05
TA
02
Duty Cycle
Dry
cYr
~25'C.
2
5
VCE =
VCE =
VEa =
Vca =
rating, R = 1000
rating, R = lOOn, T = 12S'C
5Vdc
10Vdc, IE = 0, f = 1MHz
-
Ic = 1Adc, VCE = 5Vdc, f = 10MHz
ns
ns
ns
Ic- 2A
Vcc= rating, la
(00'
= la
(off)
= 4mA
VS.
Collector Current
=
z
;;:
U lK ~--------~----~~?---~~~
VCE =
I-
zUJ
'"'"::>
I
VeE = 5V
@ 25'C
u
"- 'X.
sv
@ 125'C
U
o 100 1-----------1---------1----------1
Y
I
-U2TA506
= 10% I
-U2TA508
e = /25'1
_I-- U2TA510
10L---------L---------L-------~
.005
1
Ic = 10mAdc
D.C. Current Gain
~
Pulse Width:::: Ims
.01
Vdc
10K
~ )"
Pulse Width = Ims
lA, VCE = SVdc
3A, 'ICE = SVdc
SA, VCE = SVdc
3A, la = 30mA
Pulse Width
Ims'
uty Cycle = 2.5%
""
. 2 D.C .
.1
d JJ
/0
~
=
=
=
=
2%.
Maximum Safe Operating Area
U2TA506, 508 & 510
I"
Vdc
/LAdc
mAdc
/LAdc
pf
50
-
Test Conditions
Ic
Ic
Ic
Ic
10
20
5C
100 150
.01
VeE-COLLECTOR TO EM lITER VOLTAGE (V)
UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064
.1
lA
lOA
Ie - COLLECTOR CURRENT (A)
145
PRINTED IN U.S.A.
•
POWER TRANSISTORS
UMTI006
UMTI007
5A, 500V, Fast Switching, High ES/b
Silicon NPN Mesa
DESCRIPTION
These high voltage glass passivated
power transistors combine fast
switching, low saturation voltage and
rugged Es/b capability. They are
designed for use in off-line power supplies, high voltage inverters, switching
regulators, ignition systems and
deflection circuits.
FEATURES
• Rise Time: 0.4I'S}
Ic 3A
• Fall Time: 0.41'S
• High Second Breakdown Energy: 540I'J
• Collector Emitter Voltage: up to SOOV
• Peak Collector Current: lOA
• Key Parameters characterized at lOO·C
=
ABSOLUTE MAXIMUM RATINGS
UMT100&
UMT1OG7
Collector Emitter Voltage, VCEV .......................... ........................... ....................................
..... 400V.....
.... SOOV
Collector Emitter Voltage, VCEO (SUS) .
........................... " ..... ,..... ,. .......... "."........
. ............... 300V .................... " ....... ,400V
Emitter Base Voltage, VEBO .................
.........................
... ... .. .......... .7v.........
.......... .7V
Collector Current, Ic continuous
.. ...................
... SA.
............ SA
Collector Current, Ic peak .....................
.................... .lOA...
...................... .lOA
Base Current, 'B continuous ........
... SA...
........... SA
Power Dissipation, 2S·C Case..................
............................
. ......................... 100W ...
... 100W
Derating Factor ........
..................... ...... .......................................................................................S71W/·C...
..... .571W/·C
Operating and Storage Temperature Range.
............................
..................... -6S to 200·C ... .
MECHANICAL SPECIFICATIONS
NOTE:
Leads may be soldered to within
UMT100& UMT1007
TO-3
liI&" of base provided temperature-
time exposure is less than 260°C
In8.
for 10 seconds.
K
J
.875 MAX.
B
.135 MAX.
3.43 MAX.
C
.250-.450
6.35-11.43
.312 MIN.
7.92 MIN .
BASE
EMITTER
5.21-5.72
.205-.225
1-"+,::o:..::::O---+"=~:----l
F
L
F
mm
22.23 MAX.
A
.420-.440
10.67-11.18
. 151-.1610IA.
3.84-4.09 DIA .
K
.186 MAX. RAO. 4.78 MAX. RAD .
L
.525 MAX. RAD.
13.34 MAX. RAO.
M
.655-.675
16.64-17.15
N
1.177-1.197
29.90-30.40
P
.038-.0430IA.
9.65-10.920IA.
[ill]
6-79
146
_UNITRDDE
UMTl006 UMTl007
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
Symbol
UMTlO06
MIN.
MAX.
UMTlO07
MAX.
MIN.
Test Conditions
Units
D.C. Current Gain (Note 1)
hFE
12
60
12
60
Ic = 1.SA, VCE = 2V
7
3S
7
3S
Ic = 3.0A, VCE = 2V
D.C. Current Gain (Note 1)
hFE
Collector Saturation Voltage
(Note 1)
VCEI ••"
-
1.0
-
1.0
V
Ic = 3.0A, la = 0.6A
Collector Saturation Voltage,
TC = 1000C (Note 1)
VCE,I ••"
-
2.0
-
2.0
V
Ic = 3.0A, la = 0.6A
Collector Saturation Voltage
(Note 1)
VCEI ••"
-
5.0
V
Ic = 5.0A, la = LOA
VIE 1'.'1
-
1.4
1.4
V
Ic = 3.0A, la = 0.6A
1.4
-
5.0
Base Saturation Voltage (Note 1)
1.4
V
Ic = 3.0A, la = 0.6A
Base Saturation Voltage,
TC = 100'C (Note 1)
VIE 1"'1
Collector-Emitter Sustaining
Voltage (Note 2)
VCEO I·usl
300
-
400
-
V
Ic = OolA, la = 0
Collector-Emitter Sustaining
Voltage
Tc = 100'C (Note 2)
VCElCI •••,
350
-
450
-
V
Ic = 3.0A, L = 180,uH
lal = 182 = 0.6A
VCE clamp = rated VCEX I.usl
Emitter-Base Cutoff Current
lEBO
Collector Cutoff Current
Collector Cutoff Current,
Tc=lOO'C
, CEV
I CEV
Collector Cutoff Current,
Tc= 100'C
ICER
Output Capacitance,
Common Base
Cobo
Gain-Bandwidth Product
Fy
Energy Second Breakdown
(unclamped)
Es/b
Resistive Switching Speeds
Delay Time
Rise Time
Storage Time
Fall Time
-
2.S
-
-
-
2.5
3.0
-
-
-
3.0
50
150
50
150
pF
6
24
6
24
MHz
1
0.5
-
1
O.S
-
rnA
rnA
rnA
rnA
VEB = 9V
VCE = 400V, VaE = -1.5V
VCE = 500V, VaE = -l.SV
VCE = 400V, VaE = -1.SV
VCE = 500V, VaE = -l.SV
VCE = 400V, RaE = 500
VCE = SOOV, RaE = SOO
Vca =10V,f=lMHz
VCE = 10V, Ic = 0.2A, f = 1 MHz
540
-
540
-
pJ
Ic = 3.0A, VaE loftl = 4V
L = 120,uH unclamped
td
t,
t.
t,
-
.05
0.4
4.0
0.4
-
.05
0.4
4.0
0.4
,uS
Ic =3.0A
Vcc=200V
lal = IB2 = 0.6A
VBE (offl = SV
Inductive Switching Speeds
Tc= 100'C
Storage Time
Fall Time
t.
t,
-
4.0
0.4
4.0
0.4
,uS
Thermal Resistance,
Junction-to-Case
RsJC
-
1.75
-
1.75
'C/W
-
Ic = 3.0A, L = 180,uH
IBI = IB2 = 0.6A
VCE clamp = rated VCElC (•••,
Nates
1. Pulse length = 2SOpS; duty cycle ';;1%.
2. Sustaining Voltage. Measured at a high current point where collector-em iller voltage is lowest. Current pulse length", SOpS; duty cycle ';;1%.
Voltage clamped at maximum collector-emitter voltage.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. 16171 861·6540
TWX (7101 326·6509 • TELEX 95·1064
147
PRINTED IN U.S.A.
iii
UMTl006 UMTl007
Power Derating
Forward Bias Safe Operating Area
100
10
is
"V
I
....z
Power Dissipation
W
0:
0:
Limited
:l
0
0:
"
10mS
'"
~
....
0
0
........
."
~ 1mS
1\
;::
I
..!'
UMTlO06'"
T e = 25'C
Curves Apply Below
.2
1li ~ate~
.1
5
I1111
VeE -
50
,
I"
I III
VfEO
20
10
UMTlOO7
W
0:
0:
:l
'I'
........
'N'~
40
~~()
DISSI~A:\
AT DESIRED OPERATtNG VOLTAGE, OERATE
flON CURRENT LIMIT AND 1\. CURRENT LIMIT FADM
25'C SOAR CURVE
20
U
'\
DASH LINES ON SOAR CURVES AAE EXTENSIONS OF
DISSIPATION liP/UTi FDA rfMPEAjTUAE ,ERATING
PURPOSES
\1\
100
t'-...
~~O
z
r\ f-
'''~o
1'0.:
~J
....
'\
I
60
z
0:
W
.5
"
"'~ (,4,
~d'd'
u
0
0
80
0
lSI Limited
W
1,\J".-
0:
0
..J
..J
"
i'...
20#SJI!s
f-D.C.
o
500
200
o
COLLECTDR VOLTAGE (V)
1,\
80
120
160
CASE TEMPERATURE ('C)
40
TC -
200
Reverse Biased Safe Operating Area
r-- f- v BE loffl ::::;5V
Te" 100'C
f--
is
r--
....
z
I
I
I
I
..!£=II,=llz
5
UMTlO06 - - - l
W
0:
0:
1
:l
0
0:
~
0.5
l;l
1
..J
..J
UMTlOO7 -
0
0
I
0.2
..!'
0.1
.05
10
20
VeE.
50
''''1 -
100
200
500
1000
COLLECTOR VOLTAGE (V)
Saturation Voltages
D.C. Current Gain
200
I I
veE
= 5V
100
le/l,
<
"....
100'C
:l
0
<3
ci
I
~
50
-5S'C
W
Z
W
0:
0:
=
5
2
z
"~
25'C
I
20
I-'"
...... j:::::
r-- ~
5S'C
10
0
>
~~
55'
~0:
til
2
0.2
Ie -
0.5
.05
.05
5
COLLECTOR CURRENT (A)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
0.2
0.1
Ie -
148
~ V1s'c
f .- J..--
0.1
0.1
1./1'/
-
:l 0.2
l;:
5
.05
/ Dlrc7V
100'C
0
z:;~
-I--: l-
VIE \lltJ
S
0.5
z
/
VeE!slt,
0.5
COLLECTOR CURRENT (A)
PRINTED IN U.S.A.
UMTl006 UMTl007
Resistive Turn·On Time
Resistive Turn·Off Time
1000
10
V
~
2S'C
V
./
5
t.
..,.:;
"'
oS
UJ
:0
-
V
i',
100
2
:--
100'C
I'---J::' ~
UJ
;::
td
so
5
I--
:0
;::
ts
2S'C
O.S
2S:C
20
~
100'C
" b:;
0.2
Vee = 12SV
le tl , = S
10
0.1
f..-'r"""
I-""
~tf
k
2S'C
1
0.1
0.2
O.S
1
2
S
0.1
10
0.2
Ie -
Ie-COLLECTOR CURRENT (A)
0.5
1
2
COLLECTOR CURRENT IA)
Switching Time, VCEX 1'"'1
Test Circuit
+10V
R _ 200V
lIe
R8
.
=T·
120,H
1BI=l u
0.20
FOR RESISTIVE SWITCHING.
L = O. UNCLAMPEO
nLJ_
10
Es/b Test Circuit
200V
:6V
12SV
Vee
le tl ,
100'C
SOO
.....-111--
VeE clamp
+17V
R,
0
- - 4V
nL
.J
lS0
ADJUST P.W.
TO OBTAIN
3A PEAK Ie
P.W. =25,S
SOil
-4V
UNITRODE CORPORATION· S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6S40
TWX (710) 326-6509 • TELEX 95-1064
149
PRINTED IN U.S.A.
•
POWER TRANSISTORS
UMTI008
UMTI009
8 Amp, 500V Fast Switching, High ES/b
Silicon NPN Mesa
FEATURES
•
•
•
•
•
•
DESCRIPTION
t
These high voltage triple diffused glass
passivated power transistors combine
fast switching, low saturation voltage
and rugged Es/b capability. They are
designed for use in off-line power supplies, high voltage inverters, switching
regulators, ignition systems and
deflection circuits.
Rise Time: O.4I'S I - 5A
Fall Time: 0.41's ~ c High Second Breakdown Energy: 15001'J
Collector Emitter Voltage: up to 500V
Peak Collector Current: 16A
Key Parameters characterized at l00'C
ABSOLUTE MAXIMUM RATINGS
U MTl 008
Collector Emitter Voltage, VCEV .
Collector Emitter Voltage, VCEO(SUS) ....
Emitter Base Voltage, VEBO ..........
Collector Current, Ic continuous.
Collector Current, Ic peak.
Base Current, 18 continuous.
Power Dissipation, 25'C Case.
Derating Factor ...
Operating and Storage Temperature Range
..
.. 400V.. ..
......... 300V....
...... 7V.
............... SA......
16A.....
. SA...
U MTl 009
.......... 500V
400V
..... 7V
. SA
.......... 16A
.................... SA
... 125W..
............ 125W
.714W/'C...
.714W/'C
.. -65 to 200'C
MECHANICAL SPECIFICATIONS
NOTE:
TO-3
Loads may be soldered to within
1116" of base provided temperature ..
time exposure is less than 260°C
for 10 seconds.
J
K
~f1tJ'
C
D
i
I
~-
-
0
J
E
.ft1
~
EMITTER
-
i"
M
ins.
~BASE
.
F
L
A
B
C
0
E
F
J
K
L
M
N
P
mm
.875 MAX.
2.22 MAX.
.135 MAX.
0.34 MAX •
.250-.450
0.64 1.14
0.79 MIN .
0.52 0.57
1.07 1.12
.312 MIN.
.205-.225
.420-,440
. 151
.1610IA .
•188 MAX. RAD.
,525 MAX. RAD,
.655--.675
1.177-1.197
.038
.0430IA.
0.38-0.41
0.48 MAX. RAD •
1.33 MAX. RAC.
1.66-1.71
2.99-3.04
0.10-0.11 OIA .
[ill]
4/77A
150
_UNITRODE
UMTlOO8 UMTl009
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Test
Symbol
D.C. Current Gain (Note 1)
hFE
UMTlO08
MAX.
MIN.
12
60
UMTlO09
MAX.
MIN.
12
60
7
Test Conditions
Units
Ic = 2.SA, VCE = 3V
D.C. Current Gain (Note 1)
h'E
Collector Saturation Voltage
(Note 1)
VCEls.')
-
1.5
-
1.5
V
Ic = S.OA,la = LOA
Collector Saturation Voltage,
TC = 100°C (Note 1)
VCEls.')
-
2.S
-
2.5
V
Ic = S.OA,la = LOA
Collector Saturation Voltage
(Note 1)
VCEI"')
-
5.0
-
S.O
V
Ic = 8.0A,la = 2.0A
1.6
1.6
V
Ic = S.OA, la = 1.0A
1.6
-
1.6
V
Ic = S.OA, I. = LOA
Base Saturation Voltage (Note 1)
VaE Isat)
Base Saturation Voltage,
Tc = 100°C (Note 1)
VaEI"')
7
35
35
Ic = 5.0A, VCE = 3V
Collector-Emitter Sustaining
Voltage. (Note 2)
Collector-Emitter Sustaining
Voltage
Tc = 100°C (Note 2)
VCE~ Isus)
300
-
400
-
V
'c=O.lA
VCEX lsus)
3S0
-
4SO
-
V
1., = la,=lA
Emitter-Base Cutoff Current
I Eao
Collector Cutoff Current
, CEV
Collector Cutoff Current,
Tc= 100°C
•
)c = S.OA,!. = 180,aH
ICEV
Collector Cutoff Current,
Tc = 100°C
ICER
Output Capacitance,
Common Base
Cobo
Gain-Bandwidth Product
FT
Energy Second Breakdown
(unclamped)
Es/b
Resistive Switching Speeds
Delay Time
Rise Time
Storage Ti me
Fall Time
1
-
1
-
-
O.S
-
-
2.5
-
-
mA
-
0.5
mA
-
-
mA
VCE clamp = rated VCEX ISUS)
VEa =9V
VCE =4oov, VaE = -l.5V
VCE = SOOV, V.E= -1.SV
VCE =4ooV, V.E= -1.SV
-
2.5
-
-
3.0
-
mA
100
200
100
200
pF
Vca = 10V, f = 1 MHz
6
30
6
30
MHz
VCE = lOV, Ic = 0.3A, f = 1 MHz
Ic =5.0A
lal =lA
L = 120,aH unclamped
3.0
lSoo
-
1S00
-
,aJ
td
t,
t,
tf
-
0.1
0.4
4.0
0.4
-
0.1
0.4
4.0
0.4
,as
Inductive Switching Speeds
Tc= 100°C
Storage Time
Fall Time
t,
tf
4.0
0.4
,as
RSJC
-
4.0
0.4
Thermal Resistance,
Junction-to-Case
-
1.4
°C/W
-
1.4
-
VCE = SOOV, VaE = -1.5V
VCE =.4ooV, RaE = SOn
VCE =SOOV, RaE = SOn
I c =5.0A
Vcc = 200V
1., = la, = 1.0A
VBE loff) = 5V
Ic = S.OA, L = 180,aH
=lA
VCE clamp = rated VCEX ISUS)
1., =
',2
Notes
1. Pulse length = 250 I'S; duty cycle ';1%.
2. Sustaining Voltage. Measured at a high current point where collector-emitter voltage is lowest. Current pulse length === 50
Voltage Clamped at maximum collector-emitter voltage.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. 1617) 861-6540
TWX 1710) 326·6509 • TELEX 95·1064
151
flSj
duty cycle
~1%.
PRINTED IN U.S.A.
UMTl008 UMTl009
Forward Bias Safe Operating Area
20
10
5:
....
i"
80
0
0'
"'
!" ,
U
0:
....
U
'" " "-
.~
0:
0:
::>
<
,
,
"-
CJ
'" ~ '"
,
,
"
~
-'
_u
~
~~
0:
Z
o-'
u
I
Power Derating
100
ill
J'~ ./~ ~~
~&
"'-~&
'-...
\.
~J
60
Z
;::
~~
~"'0
<
0:
'"....
Q
40
Z
'"0:0:
Te 25'C
CURVES APPLY BELOW
RATED Vew
0.5
II II
0.2
S
10
::>
r--....
"\
n'C SOAR CURVE
PURPOSES
o
500
o
40
Tc -
"
OERAT~ OISSI~A-'
TlON CURRENT LIMIT AND 1\. CURRENT LIMIT FADM
DASH LINES ON SOAR CURVES ARE EXTENSIONS OF
OISSIPATlON LIMITS FDA TEMPERATURE DERATING
\
20
so
100
200
VeE - COLLECTOR VOLTAGE (V)
AT OESIRED OPERATING VOLTAGE,
20
u
~,
\
I
I
~i.1'ft/~
~;\'.s~O
I
I
160
80
120
CASE TEMPERATURE ('C)
1,\
200
Reverse Biased Safe Operating Area
10
--
5:
....Z
I
I
I
"'0:0:
I
::>
U
0:
I
I
....0
U
"'-'-'0
,
I
0.5
t-
--
u
I
UMTlO09
UMTlO08
Vee
_0
0.2
Tc
(OFF
10
I
= ::;;SV
= :;;;:10Q C
o
I III
0.1
I
I
I
I
I
I
I
100
SOO
20
50
200
VeEXlSus,-COLLECTOR VOLTAGE (V)
Saturation Voltages
D.C. Current Gain
200
lell, - 5
100
z
;;:
CJ
....Z
r-12S'C
50
0:
0:
u
VBE~~ ;::::~
-,
" ,
,...-!-"
"'
::>
-
2S'C
20
I-
'~~
I
0.2
.c."
156'c
r2
0.1
---
0.2
Ie -
VeE
= IOV
VeE
=
0.1
~
3V
0.5
COLLECTOR CURRENT (A)
UNITRODE CORPORATION· S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6S09 • TELEX 9S·1064
5S'C
.OS
0.1
10
152
.,r,/
" /V
..... V~eEISATI
-
,....
0.2
./
I-
0.5
Ie - COLLECTOR CURRENT (A)
10
PRINTED IN U.S,A.
UMTl008 UMTlOO9
Switching Time, VCEX Isus)
Test Circuit
Esfb Test Circuit
+~ov
200V
R _ 200V
lIe
,
Ra=¥,III=112
FOR RESISTIVE SWITCHI NG.
L = 0, UNCLAMPED
.....-111--
VeE clamp
+17TI
:6Jl _
- - 4V
LJ
1511
ADJUST P.W.
TO OBTAIN
3A PEAK Ie
P.W. =25#5
-
5011
-4V
Turn·Off Ti me
Turn·On Time
1000
t-;.....
500
"200
"-
t,
"-
"'
.....
I.,
"' 0.5
:;:
"':;:
;::
;::
I"
50
0.2
20
Vee - 200V
lell, =5
VBe
(011)
200V
Vee
td
.s 100
t,
1"-
........
"
t,
O. 1
= SV
I"
TJ
leiS
= 25 c C
i--"
T J =25°C
10
0.1
0.2
Ie -
0.5
1
2
5
COLLECTOR CURRENT (AI
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064
.0 5
10
0.1
0.2
Ie -
153
10
0.5
COLLECTOR CURRENT (AI
PRINTED IN U.S.A.
UMTIOll
UMTI012
POWER TRANSISTORS
15A,500V, Fast Switching, High ES/b
Silicon NPN Mesa
FEATURES
DESCRIPTION
•
•
•
•
•
•
•
These high voltage glass passivated
power transistors combine fast
switching, low saturation voltage and
rugged Eslb capability. They are
designed for use in off-line power supplies, high voltage inverters, switching
regulators, ignition systems and
deflection circuits.
Rise Time: 0.4I'S}
Fall Time: 0.41'S
Ic lOA
High Second Breakdown Energy: 6000l'J
Low Saturation Voltage
Collector Emitter Voltage: up to SOOV
Peak Collector Current: 30A
Key Parameters characterized at 100·C
=
ABSOLUTE MAXIMUM RATINGS
UMT1011
........ 400V..
... 300V..
Collector Emitter Voltage, VCEV
Collector Emitter Voltage, VCEO (SUS) ...•
Emitter Base Voltage, VEIO ................... .
Collector Current, Ic continuous
Collector Current, Ic peak.
Base Current, I. continuous
Power Dissipation, 2S·C Case
Derating Factor ................
. ................... .
Operating and Storage Temperature Range.
UMT1012
...... 500V
............. 400V
9V.....
..1SA......
...............30A...
..lOA
9V
15A
................30A
..... .lOA
... 175W..
..... 175W
.......... 1.0W,·C.................. 1.0W,·C
......... -65 to 200·C ... .
MECHANICAL SPECIFICATIONS
NOTE:
Leads may be soldered to within
111&" of base provided temperature-
UMT1011
time exposure is less than 260°C
Ins.
for 10 seconds.
J
K
'~P
~oo
C
0
I
N
j
-
/' >.:: -
~\ G-I
E
It'
F
UMT1012
mm
A
.875 MAX.
22.23 MAX.
B
.135 MAX.
3.43 MAX .
6.35-11.43
C
.250-.450
BASE
0
.312 MIN.
7.92 MIN.
EMITTER
E
.205-.225
5.21-5.72
F
.420-.440
10.67-11.18
J
,151-.161 CIA.
3.84-4.09 DIA.
·L
TO-3
K
.188 MAX. RAO. 4.78 MAX. RAO .
L
.525 MAX. RAD. 13.34 MAX. RAO .
M
.655-.675
16.64-17.15
N
1.177-1.197
29.90-30.40
P
.038-.043 CIA.
9.65-10.920IA
[lli]
6-79
154
_UNITRDDE
UMTlOll UMTl012
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
D.C. Current Gain (Note 1)
Symbol
hFE
UMTlOll
MIN.
MAX.
12
60
6
UMTlO12
MAX.
MIN.
60
12
6
30
Units
Test Conditions
Ic - 5.0A, VCE - 2.0V
Ic = lOA, VCE = 2.0V
30
D.C. Current Gain (Note 1)
hFE
Collector Saturation Voltage
(Note 1)
VCE (..,)
-
1.0
-
1.0
V
Ic = lOA, IB = 2.0A
Collector Saturation Voltage,
TC = 100'C (Note 1)
VCEI..,)
-
2.0
-
2.0
V
Ic = lOA, IB = 2.0A
Collector Saturation Voltage
(Note 1)
VCE (sat)
-
5.0
5.0
V
Ic = 15A, IB = 3.0A
1.6
V
Ic = lOA, la = 2.0A
1.6
-
1.6
V
Ic = lOA, I, = 2.0A
1.6
Base Saturation Voltage (Note 1)
VaE(s.')
Base Saturation Voltage,
TC = 100'C (Note 1)
VaE (..,)
Collector-Emitter Sustaining
Voltage (Note 2)
VCEO (.us)
300
-
400
-
V
Ic = O.1A, I, = 0
Collector-Emitter Sustaining
Voltage
TC::: 100'C (Note 2)
VCEX (sus)
350
-
450
-
V
Ic::: 8.0A, L ::: 180l'H
IBI = IB2 = 2.0A
VCE clamp::: rated VCEX (sus)
Emitter-Base Cutoff Current
lEBO
1
-
1
rnA
Collector Cutoff Current
ICEV
-
1.0
-
-
3.0
180
360
180
360
pF
6
24
6
24
MHz
Collector Cutoff Current,
Tc =100'C
ICEV
Collector Cutoff Current,
Tc = 100'C
ICER
Output Capacitance,
Common Base
Cabo
Gain-Bandwidth Product
Fr
Energy Second Breakdown
(unclamped)
Es/b
Resistive Switching Speeds
Delay Time
Rise Time
Storage Time
Fall Time
td
t,
ts
tf
Inductive Switching Speeds
Tc :::100'C
Storage Time
Fall Time
t.
tf
Thermal Resistance,
Junction-to-Case
ReJc
3.0
3.0
1.0
3.0
-
rnA
rnA
rnA
VEl = 'iN
VCE ::: 400V, VBE = -l.SV
VCE = 500V, VaE = -1.5V
VCE ::: 4OOV, VaE = -1.5V
VCE = 500V, VaE = -l.SV
VCE = 400V, RaE = 50!"!
VCE = SOOV, RaE = 500
Vca = 10V, f = 1 MHz
VCE = 10V, Ic = O.SA, f = 1 MHz
6000
-
GOOO
-
I'J
Ic ::: lOA, VaE loff) = -4V
L = 120I'H unclamped
-
.05
0.4
4.0
0.4
-
.05
0.4
4.0
0.4
I'S
Ic=10A
VCC = 200V
IBI ::: IB2 = 2.0A
VBE(ofij = SV
-
4.0
0.4
-
4.0
0.4
I'S
1.0
'C/W
1.0
Ic = lOA, L = 18Ol'H
lal ::: IB2 ::: 2.0A
VCE clamp = rated VCEX Isus)
Nat••
1. Pulse length 2501'S; duty cycle ,,1%.
2. Sustaining Voltage. Measured at a high current point where collector-emitter voltage is lowest. Current pulse length", SOl'S; duty cycle ,,1%.
Voltage clamped at maximum collector-emitler voltage.
=
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173· TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
155
PRINTEO IN U.S.A.
-
UMTlOll UMTl012
Forward Bias Safe Operating Area
Power Derating
100
""r\.
:~~~~~~~~~~I~I~I
t'-....
~
0:
0
.
".
...
I-
<.>
"-
_ r.....
f'.,
80
-....~{/~
~
;::
~~
~"'0
0:
0
40
I-
...
Z
II:
II:
::>
§
r-...
\I'll'
'" '"
20
<.>
DASH LINES ON SOAR CURVU ARE EXTENSIONS
o
Power
P.W.
ImS
~
\
\--1-++++++-1
DISSlpatlon_Hrtctttt_fIH
L'mIited
I
UM.TI012
~
LI~'fted
UMTI011
1 \
8 .4~~ltm~I~\~~m
PURPOSES"
o
4.0
1\
1\
~ 1.0 t--+-I-+-+-+-l~I+If--+.;~-t--trr:::;::!::i:~t-Jt-_t-II_.lH
'\
or
DISSIPATION LIMITj fQ't JMPE~rUItE rRATING
P.W.
10mS
I>
U
~
DE""'T~ OISSl~-'\
AT DESIREP OPERATING VOLTAGE,
TIOH CURRENT LIMIT AND Ii b CURRENT LIMIT fROM
ZS"C SOAR CURVE
~ 2OI'S
"10....
!!E 2.0
P.W.
~
"D.C.
5
~,.~O
~J
60
z
10
120
160
40
80
TC - CASE TEMPERATURE ('C)
I
.2
f--+-+-t-+-++++Hl~
\~~H-tt++-l
.1
f---1=-t1--+-+-+++-tt1I--+\~1--+-++-t-t-t-H
1\' \
Tc ,d25·h
"
200
.04
o::±:±±:::±:ti:tt:l::=±lct:±::t:ttttl
10
20
50
100
200
500
1000
V.,.-COLLECTORVOLTAGE (V)
Reverse Biased Safe Operating Area
40
20
10
5
IZ
...
4.0
/
II:
II:
::> 2.0
u
II:
UMTlOll
~
......0
0.4
I
0.2
u
~
/
I
1.0
II
/
.1
.04
10
20
50
500
200
100
VCEl( ''''1 - COLLECTOR VOLTAGE (V)
1000
Saturation Voltages
DC Current Gain
500
IIIII
II
Ic/l,=5
~
2
...
-
~
!:i
g
Z
0
rJ
J
55 C
=-
"...
100
I-
Z
lOO'C
f-
II:
II:
-
50
::>
u
~II
::>
0.1 -loo'C
--r==r.
~5jC
.... f-
0
I
20
f
10
25'C
-IOO'C
25'C
U
/~ V
~
0.2
.05
0.2
V.,.=sy
Z
;;:
25'
0.5
~
til
-IJrJ
r-- VIt''''1
II:
tc
200
""
~ ...
~
SS'C
0.5
2
5
Ic - COLLECTOR CURRENT (A)
UNITRODE CORPORATION,S FORBES ROAD
LEXINGTON, MA 02173· TEL (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
10
5
20
0.2
156
5
10
2
0.5
Ie - COLLECTOR CURRENT (A)
"
20
PRINTED IN U.S.A.
UMTlOll UMTl012
Resistive Turn-Off Time
Resistive Turn-On Time
10
1000
500
200
'iii
...S.
:Ii
lOO'C
"~
~
100
"
2f.C
2S'C-
l\. 1',...
t,
j"..ol--
.3 1.0
'"j::
:Ii
~~
t.
lOO'C
50
.5
Vee = 250V
.2
'"'-..'"
3!
j::
10
I--
'U
i'
SF -' 5
r-.....
2.0
I"~
2S'C
20
~ ~ f;;;..100'C
5.0
I
7
Vee -25OV
.2
I
III-ill"l
.5
Ie -
,
~
10
.1
.2
20
COLLECTOR CURRENT (A)
I
B,=S
III~-:h
-~
2S'C
10t,
io-""
.f
.5
Ie -
Switching Time, VeEX /'"'1
Test Circuit
lOO'C
100..
10
5
""
20
COLLECTOR CURRENT (A)
Eslb Test Circuit
+lOV
200V
0.211
FOR RESISTIVE SWITCHING,
L=O
~"'I-- VeE clamp
R,
+:~ o-~~~~r-~~
ADJUST P.W.
TO OBTAIN
lOA PEAK Ie
-4V
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 - TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
157
5011
-
PRINTED IN U.S.A.
..
POWER TRANSISTORS
UMT1203
UMT1204
3Amp, 500V, Fast Switching
Silicon NPN Mesa
FEATURES
•
•
•
•
•
•
DESCRIPTION
soov
These high voltage triple diffused glass
passivated power transistors, in a
plastic T0-220 package, combine
fast switching, low saturation voltage
and rugged Es/b capability. They are
designed for use in off-line power supplies, high voltage inverters, switching
regulators, deflection circuits, motor
controls and solenoid/relay drivers.
Collector Emitter Voltage: up to
Peak Collector Current: 5A
Rise Time: .;:;; 1.0,us t t l - 2A
Fall Time: .;:;; O.7,us f a cKey Parameters characterized at 100'C
Economical Plastic Molded Construction
ABSOLUTE MAXIMUM RATINGS
UMT1203
Collector Emitter Voltage, VCEV ...
Collector Emitter Voltage, VCEO {SUS} ...
Emitter Base Voltage, VEBO ................ .
Collector Current, Ic continuous .
Collector Current, ICM peak.
Base Current, IB continuous .
.. ....................................... .
.. ....................................................... .
Power Dissipation, 25'C Case.
.... ..... ..... .... . ..... .... .... ........................................... ..
Derating Factor .
Operating and Storage Temperature Range .
.. ................................. .
UMT1204
........ ..400V...... .. 500V
...... 300V........
........ ..400V
. .......7V....
..............3A......
....... .7V
........ 3A
.................... .5A..
.. ........... 5A
... IA...
............ .1A
...... .40W.....
...... 40W
... O.32W/'C..
....0.32W/·C
........ -65 to 150'C ........
MECHANICAL SPECIFICATIONS
UMT1203, UMT1204
SEATING
PLANE
.'M
A
I
G
- 1I
~-
~l-:
MAX
MIN
MAX
14.23
15.87
0.560
0.625
B
9.66
10.66
0.380
0.420
C
D
3.56
0.51
4.82
0.140
0.190
1.14
0.020
0.045
3.531
3.733
0.139
0.147
2.29
2.79
0.090
0.110
0.250
J
0.38
O.ol5
0.025
K
0.500
0·562
L
12.70
1.14
6.35
0.64
14.27
N
4.83
Q
G
H
A
SE(;fAA
.J~[
PIN 1. BASE
2. COLLECTOR
J. EMITTER
4. COLLECTOR
INCHES
MIN
A
,
I
MILLIMETERS
TO-220
1.77
0.045
0,070
0.190
0.210
•
2.54
5.33
3.04
0.100
0.120
2.04
2.92
0.080
0.115
S
1.14
1.39
0.045
0.055
T
5.85
6.85
0.230
0.270
[ill]
158
_UNITRDDE
UMTl203 UMTl204
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Symbol
Test
D.C. Current Gain (Note 1)
hFE
D.C. Current Gain (Note 1)
hFE
UMT1203
MIN.
MAX.
12
60
7
35
Collector Saturation Voltage
(Note 1)
VCEI"II
-
1.2
Collector Saturation Voltage,
TC 100'C (Note 1)
VCEI,.I)
-
Collector Saturation Voltage
(Note 1)
VCE I,al)
=
UMT1204
MIN.
MAX.
12
60
7
Units
35
-
1.2
V
1.5
-
1.S
V
-
3.0
-
3.0
V
l.3
V
1.S
V
Base Saturation Voltage (Note 1)
VaE ,.11
-
1.3
Base Saturation Voltage,
TC 100'C (Note 1)
VaEI"I)
-
1.S
-
Collector-Emitter Sustaining
Voltage (Note 2)
VCEO lsu,)
300
-
400
-
V
Collector-Emitter Sustaining
Voltage
TC 100'C (Note 2)
VCEXlsus)
350
-
450
-
V
=
=
Emitter-Base Cutoff Current
IEao
Collector Cutoff Current
ICEV
Collector Cutoff Current,
Tc 100'C
ICEV
Collector Cutoff Current,
Tc 100'C
ICER
Output Capacitance,
Common Base
Cabo
Gain-Bandwidth Product
FT
Energy Second Breakdown
(unclamped)
Es/b
Resistive Switching Speeds
Delay Time
Rise Time
Storage Time
Fall Time
=
-
-
-
1
0.5
2.5
1
0.5
2.5
rnA
rnA
rnA
-
3.0
-
-
-
-
-
3.0
3S
100
35
100
pF
6
30
6
30
MHz
80
-
80
-
I'J
td
t,
t,
t,
-
0.1
1.0
4.0
0.7
-
-
0.1
1.0
4.0
0.7
I'S
Inductive Switching Speeds
Tc 100'C
Storage Time
Fall Time
t,
t,
4.0
0.9
-
-
4.0
0.9
/'s
Thermal Resistance,
Junction-to-Case
ReJC
-
3.12
-
3.12
'C/W
=
=
Test Conditions
=1.0A, VCE =3V
Ic =2.0A, VCE =3V
Ic =2.0A, la =OAA
Ic =2.0A, la = 0.4A
Ic = 3.0A, 18 = 0.7SA
Ic =2.0A, la = 0.4A
Ic =2.0A, la = 0.4A
Ic =O.lA
Ic =2.0A, L =500l'H
IBI = la2 = 0.4A
VCE clamp = rated VCEX I'u')
Vel =7V
VCE =400V, VBE = -1.SV
VCE = SOOV, VIE = -1.SV
VCE =400V, VaE = -1.5V
VCE = SOOV, VIE = -1.SV
VCE =400V, R = son
VCE = 500V, R = SOn
VCB = lOV, f = 1 MHz
VCE =10V, Ic = 0.3A, f =1 MHz
Ic = 2.0A
IBI =0.4A
L =40l'H unclamped
Ic
rnA
Ic = 2.0A
Vcc = 200V
IBI = la2 = 0.4A
VaElo'ij
5V
=
Ic = 2.0A, L = SOOI'H
IBI = la2 = 0.4A
VCE clamp = rated VCEX Isus)
Notes
1. Pulse length = 250 P.Sj duty cycle ~1 %.
2. Sustaining Voltage. Measured at a high current point where collector·emitter voltage is lowest. Current pulse length", 50 ps; duty cycle <;;1%.
Voltage clamped at maximum collector·emitter voltage.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95·1064
159
PRINTED IN U.S.A.
-
UMTl203 UMTl204
Forward Bias Safe Operating Area
Power Derating
100
1"'1. II
r'\
~
....
z
"'-
W
0:
0:
DISSIPATION
LIMITED
:::>
r'\
~~.I'\~
$
..
0:
,
III
w
-'
-'
0
t)
1\
\
0.2
CURVES APPLY BELOW
RATED Vew
1
_u
0.1
'SIb
l-
«
"-
,,
CJ
1\
~
0
10
ILl
0:
0:
:::>
......
I
~'b LIMITED
1\
\
40
\\
20
AT DESIRED OPERA.TING VOLTAGE,
DERATE DISSIPATION CURRENT I
'--LIMIT AND 11/1. CURRENT LIMIT FROM
t)
LIMITED
o
500
I
,,
PURPOSES.
....
Z
~,
20
50
100
200
V e , - COLLECTOR VOLTAGE (V)
~~~E;:~~~!::U~~~::!~~:GL~
"\
~
0:
UJ
.05
5
60
DASH LINES ON SOAR CURVES ARE
z
I,
'\. ,\'"
\
\
0
t)
I',
"
Te =25'C
\.
80
0:
I~,
""-
0.5
~
'\
'>.>..
>.0"
t)
....0
t)
~ "-
.1 1 ;N,;?... I
"'-
"ro,or'"
o
1
'I I
\;
ISSIPATION
LIMITED
\
40
80
120
160
T c - CASE TEMPERATURE ('C)
200
Reverse Biased Safe Operating Area
~
f-
--
I-
Z
UJ
0:
0:
,,
,, \
UMT1204
-UMT1203
,,
:::>
,
t)
0:
0
0.5
t;
w
-'
-'
0
t)
I
I
I
I
1,,=0.4A
0.2 - Te =100'C
I
1
I
I
-" 0.1
,
.05
10
200
500
50
100
20
VeEX ,.. ,,- COLLECTOR VOLTAGE (V)
1000
Saturation Voltages
D.C. Current Gain
'el', =
5
I
~
VIE filtl
55'C
~
25'
w
CJ
«
I-
0.5
lSO'C
..J
0
-
>
0.2
'il'C
0.1
.05
.05
'0 - COLLECTOR CURRENT (A)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 86H540
TWX (710) 326·6509 • TELEX 95·1064
160
"
~ ...... /
~ ~'/
'/ih
... v
'l
VeE [Sltl
......
~
0.2
0.5
0.1
Ie - COLLECTOR CURRENT (A)
PRINTED IN U.S.A.
UMT1203
Switching Time
Test Circuit
UMT1204
Eslb Test Circuit
+10V
125V
125V
RL=~
R.
L
= ~V ,III = '.2
•
0.20
FOR RESISTIVE SWITCHING,
L=O
+6Jl_
0-_
4v
t---I*--VCE clamp
7JL
R,
Lf
D--'\30I\N'Il.,............--<>--l
ADJUST·P.W.
TO OBTAIN
2A PEAK
'c
P.W.=25jLS
-
SOil
-4V
Resistive Turn·On Time
Resistive Turn·Off Time
2000
Vee; 200V
1000
lSI
==
TJ
182
= 'c/5
= 25°C
-
r- r-
=
=
500
'"
~
"':>
200
;::
I,
....... ~
"-
100
f'..
.,
.:;
i--" i--"
"':;;;::
0.5
~
td
0.2
V
Vee = 200V
50
0.1
I"
I"
TJ
20
.05
0.1
Ie -
.05
.05
0.2
0.5
I
2
COLLECTOR CURRENT (Al
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064
....... t, I-- l-
.......-
'c /5
25°C
0.1
0.2
'c -
161
r-
0.5
COLLECTOR CURRENT (A)
PRINTED IN U.S.A.
POWER TRANSISTORS
UMT3584
UMT3585
2 Amp, 500V, Fast Switching
Silicon NPN Mesa
FEATURES
• Collector Base Voltage: up to 500V
• Peak Collector Current: SA
• Rise Time:;;;: 3.I'S t I - lA
• Fall Time :;;;: 31'S \ c• Economical Plastic Molded Construction
DESCRIPTION
These high voltage triple diffused glass passivated power transistors in a plastic TO-220
package combine fast switching, low saturation voltage and rugged Eslb capability. They
are designed for use in off-line switching
regulators, converters, inverters and deflection
circuitry.
ABSOLUTE MAXIMUM RATINGS
UMT3584
UMT3585
Collector Base Voltage, Veso .................
.. ................................................................................................... 37SV ............................................ SOOV
Collector Emitter Voltage, VCEO (SUS) ................................................................................................................ 250V ............................................ 300V
Emitter Base Voltage, VEiO .... . ............................................................................................... &I ................................................ 6V
Collector Current, Ic continuous ................................................................................................................................ 2A ................................................ 2A
ICM peak .......................................................................................................................................... SA ................................................ SA
D.C. Base Current, continuous ..............................
.............................................................................................. IA ................................................ 1A
Power Dissipation, PT 2S'C Case ..............................
.. .................................................................... 35W ............................................. 35W
Operating and Storage Temperature Range ..............................................
.. ..................................................... -65 to +l50'C ............. ..
MECHANICAL SPECIFICATIONS
UMT3584, UMT3585
SEATING
PLANE
DIM
2. COLL.ECTOR
3. EMITTER
4. COLLECTOR
INCHES
D
0.51
1.14
F
G
H
3.531
3.733
2..79
0.090
B
C
PIN 1. BASE
MILLIMETERS
MAX
M'N
15.87
14.23
9.66
10.66
3.56
4.82
MIN
0.560
0.380
0.140
0.020
0.139
A
2.29
6.35
MAX
0.625
0.420
0.190
0.045
0.147
0.110
0.250
,
0.38
0.64
oms
K
0.025
0.562
0.070
0.210
12.70
14.27
0.500
L
1.14
4.83
1.77
5,33
0.045
N
Q
2.54
2.04
2.92
o.oBO
0.115
1.14
1.39
0.045
0.055
5.85
6.85
0.230
0.210
R
S
T
3.04
TO-220
0.190
0.100
0.120
[ill]
4177A
162
_UNITRDDE
UMT3584 UMT3585
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
Symbol
UMT3584
MAX.
MIN.
40
8
80
25
100
UMT3585
MIN.
MAX.
Units
Test Conditions
-
40
8
25
-
0.75
0.75
V
Ic = lA, Is = 125mA
1.4
-
1.4
V
Ic = lA, Is = 100mA
-
Ic = 100mA, VCE = 10V
Ic -' lA, VCE ""; ZV
Ic = lA, VCE _lOV
D.C. Current Gain (Note 1)
hFE
Collector Saturation Voltage
(Note 1)
VCE( ••II
Base Saturation Voltage (Note 1)
VIE (••11
Collector-Emitter Sustaining
Voltage (Note 2)
VCEO (' ••1
250
-
300
-
V
Ic=200mA
Collector-Emitter Sustaining
Voltage (See Note 2)
VCER (•••1
300
-
400
-
V
'c=200mA
RIE = 2OO!l
0.5
-
0.5
mA
VSE = -6V
5.0
mA
VCE = 150V
Emitter Cutoff Current
-
Collector-Cutoff Current
'ESO
ICEO
Collector-Cutoff Current
,CEV
Collector Cutoff Current, l50'C
, CEV
Small Signal Forward
Transfer Ratio
hie
Collector Capacitance
Cob
-
120
Second Breakdown
Collector Current
Islb
350
Second Breakdown
Energy
Eslb
Switching Speeds
Rise Time
Storage Time
Fall Time
t,
t,
tf
Thermal Resistance:
Junction-to-Case
REIJC
Junction-to-Ambient
RaJA
5.0
1.0
-
1.0
mA
VCE = 340V, VIE = -1.5V
VCE = 450V, VIE = -1.5V
3.0
mA
VCE = 300V, VSE = -1.5V
-
-
Ic = 200mA, VCE = 10V
f=5MHz
-
120
pF
Vcs=lOV,f=lMHz
-
350
-
mA
VCE = loov
200
-
200
-
"J
'c=2A
RIE = 2O!l
L=loo"H
-
3.0
4.0
3.0
-
3.0
4.0
3.0
"s
Ic=lA
lSI = 112 = loomA
Vcc=200V
3.57
'C/W
70
'C/W
3
3.0
80
100
-
3.57
70
3
Notes
1. Pulse length = 250 !,s, duty cycle ';;1%.
2. Sustaining Voltage. Measured at a high current point where collector·emitter voltage is lowest. Current pulse length
Voltage clamped at maximum collector-emitter voltage.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
163
~
50 I'S;
duty cycle
';;1%.
PRINTED IN U.S.A.
UMT3584 UMT3585
Power Derating
Forward Bias Safe Operating Area
"1'\ "
100
1~-<'t,T~ '<'.s--jff-
I"
i'\. ).<:. . . ~K
5
r'\,.£
....z
I
W
0:
0:
'\
A;.
~
.s-
"-
0
\
t;
1\1
W
1\ iW\1
....z
\
w 0.3
..J
..J
0
1 = 25'C
CURVES APPLY BELOW
RATED VeEOI
I
u
I
u
0.1
<.!l
z
;:
«
0:
.~
0.5
c
\ \
W
0:
0:
:J
60
\
AT DESIRED OPERATING VOLTAGE.
DERATE DISSIPATION CURRENT I
_Ll .... !T AND Is{lo CURRENT LiMIT FR[M
25'1 SOAR fURVE !
1\
10
20
50
100
VeE-COLLECTOR VOLTAGE (V)
o
200 300
'-..
ISlb LIMITED
\
ISSIPATION
LIMITED'
\
20
U
3
1'-.....
I
\
40
H'
.05
I
PURPOSES.
1\
U
«
~OAR CURVES ARE
;~!~:~~~!~:U~~~::!~~~Gl~
""1\
....0
'\,
DASH LINES ON
1\
80
0:
:J
U
0:
~ i'-...
o
\
200
160
80
120
CASE TEMPERATURE ('C)
40
Te -
Saturation Voltages
D.C. Current Gain
I
I
If!
le/l,=10
7
I
~
w
<.!l
«
0.5
=
15d,C
-
1SO'C
I:::l~
VIIEISAT)
25'
".
~
0
>
./
0.2
;'/
ISO'
0.1
V f..-' /
VCE{SAT)
'--: 55'C
.05
.02
Ie-COLLECTOR CURRENT (A)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
.05
Ie -
164
0.1
0.2
0.5
COLLECTOR CURRENT (A)
PRINTED IN U.S.A.
UMT3584 UMT3585
Switching Time Test Circuit
200V
•
P.W. = 25,15
Turn-Off Time
Turn-On Time
Vee _200V
I"
= le/1O
i;"- l-
T _2S'C
'\.
'\.
'\
~
;
,~
on
0.5
'-
:;
;::
i'.
';::"
w 0.5
:;;
-
-..!:.
0.2
,
"",7
0.2
Vee
' " td
0.1
t,
........
0.1
I" '
- TJ
= 200V
1~2' 'lellO
2S'C
.05
.05
.02
.05
Ie -
0.1
0.2
0.5
.02
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
.05
Ie -
COLLECTOR CURRENT (A)
165
0.1
0.2
0.5
COLLECTOR CURRENT (A)
PRINTED IN U.S.A.
POWER TRANSISTORS
UMT13004
UMT13005
4A, 700V, Fast Switching,
Silicon NPN Mesa
FEATURES
• Collector Emitter Voltage: up to 700V
• Peak Collector Current: SA
• Rise Time: ~.7PS} t I - 2A
• Fall Time: ~O.9pS
a c• Key Parameters characterized at lOO'C
• Economical Plastic Molded Construction
DESCRIPTION
These high voltage glass passivated
power transistors, in a plastic TO-220
package, combine fast switching, low
saturation voltage and rugged Eslb
capability. They are designed for use in
off-line power supplies, high voltage
inverters, switching regulators, deflection circuits, motor controls and
solenoid/ relay drivers.
ABSOLUTE MAXIMUM RATINGS
UMTI3D04
Collector Emitter Voltage, VCfN ................................................................................. ..
Collector Emitter Voltage, VCEO (SUSI
Emitter Base Voltage, VERO
Collector Current, Ic continuous
................................ .
Collector Current, ICM peak ........
. .................. .
Base Current, I, continuous. . ........................... .
Power Dissipation, 25'C Case
Derating Factor ............... .
Operating and Storage Temperature Range
UMT13UD5
... 600V..
........ ..... 700V
....... 300V............................ 400V
... 9V....
. .............. 9V
........ .. 4A .............................. ..4A
. SA...
. ....... SA
........... 2A...
.2A
...... .75W...
...75W
... O.59W/'C..
... O.59W/'C
. -65 to 150'C ..
MECHANICAL SPECIFICATIONS
UMT13004, UMT13005
SEATING
PLANE
MILLIMETERS
MIN
MAX
MAX
14.23
15.87
0.560
0.625
B
9.66
10.66
0.380
0.420
C
D
3.56
1.14
0.140
0.020
0.190
0.51
F
3.531
3.733
0.139
0.147
G
2.29
2.79
0.090
0.110
J
0."
6.35
0.64
0.015
0.250
0.025
K
12.70
H
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR
INCHES
MIN
A
DIM
4.82
0.045
14.27
0.500
L
1.I4
1.77
0.045
0.070
N
4.83
5.33
0.190
0.210
Q
2.54
3.04
0.100
0.120
2.04
1.14
2.92
0.080
0.115
S
T
1.3,
0.045
0.055
5.85
6.85
G.2JO
0.270
•
10·220
0.562
[ill]
6·79
166
_UNITRDDE
UMT13004 UMT13005
ELECTRICAL SPECIFICATIONS (at 25·C unless noted)
Test
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
Collector Saturation Voltage
(Note 1)
Collector
} T - 2S.C
Saturation Tc ;;;; 100.C
Voltage
C
(Note 1)
Collector Saturation Voltage
(Note 1)
Base Saturation Voltage (Note 1)
Base
} T - 2S.C
Saturation TC ;;;; 100'C
Voltage
C
(Note 1)
Symbol
hFE
VCE( ••f)
VCE( ••f)
VCE(••f)
V1EjsaiJ
VIE (••f)
VCEO (.u.)
Emitter-Base Cutoff Current
lEBO
Collector Cutoff Current
IcEv
Collector Cutoff Current,
Tc = 100'C
IcEv
UMTl3005
MIN.
MAX.
10
60
40
8
hFE
Collector-Emitter Sustaining
Voltage (Note 2)
Output Capacitance,
Common Base
Gain-Bandwidth Product
Resistive Switching Speeds
Delay Time
Rise Time
Storage Time
Fall Time
Inductive Switching Speeds
Tc = 100'C
Storage Time
Fall Time (t,; + ttv)
Thermal Resistance,
Junction-to-Case
Thermal Resistance,
Junction-to-Ambient
UMTl3004
MIN.
MAX.
10
60
-
Ic - 2.0A, VCE - SV
.5
-
.5
0.6
1.0
-
0.6
-
1.0
1.0
V
1.2
V
=LOA
Ic = LOA, Is =0.2A
1.6
1.5
V
Ic = 2.0A, II = O.SA
-
V
Ic=lmA
V
Ic = LOA, I. = 0.2A
V
Ic = 2.0A, I. = O.SA
-
1.5
-
300
-
400
-
1
-
1
mA
1
-
-
mA
-
mA
1.0
1.2
1.6
-
5
-
-
4
1
5
6Styp.
65 typo
Cabo
FT
Ic _LOA, VCE - SV
40
8
Test Conditions
Units
-
4
pF
-
MHz
td
t,
t.
t,
-
0.1
0.7
3.5
0.9
-
0.1
0.7
3.5
0.9
t,
t,
4.0
0.9
"S
1.67
-
4.0
0.9
R8JC
-
1.67
'C/W
RaJA
-
62.5
-
62.5
'C/W
"S
Ic = 4.0A, I.
=
=
=-1.SV
VCE =700V, VSE = - 1.SV
VCE =600V, VSE = -l.SV
VCE =700V, VSE = - 1.5V
VEl 9V
VCE 600V, VSE
VCI = 10V, f = 1 MHz
VCE
=10V, Ic = .SA, f =1 MHz
Ic=2.0A
Vcc= 12SV
I" = IS2 0.4A
VSE (off) SV, P.W.
=
=
=
=2S"S
=
=
=
Ic 2.0A, L SOO"H
lSI = 0.4A, VIE (ofij SV
VCE clamp rated VCEl( (.u.)
Nate.
1. Pulse length = 250"S, duty cycle ';;;1%.
2. Sustaining Voltage. Measured at a high current point where collector-emitter voltage is lowest. Current pulse length", SOIlS, duty cycle ';;;1%.
Voltage clamped at maximum collector-emitter voltage.
Typical
Inductive Load
Switching Performance
(e
Amps
0.5
1.0
2.0
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6S09 • TELEX 95-1064
TJ
'c
25
100
25
100
25
100
t.
t,.
til
I'S
nS
nS
I.B
1.2
180
240
1.0
1.5
1.2
1.7
160
220
20
30
21
167
180
230
30
25
35
PR(NTED IN U.S.A.
UMT13004 UMT13005
Forward Bias Safe Operating Area
Power Derating
100
10
~ "-
20"S
5.0
D.C.
5:
'\.
~
...
z
r\
'"
r\
:;:)
()
DISSIPATION
LIMITED-i+
0
1.0
'"
.5
t;
..J
..J
0
~S
'\
\
80
c:
...
0
1\.'\
4-
"-
iWi
60
"z>=
"'-
OJ
\
40
...0
ISIb
LIMITED
.2
Te
= 25'C
r\
\
.1
10
20
50
100
\
\
,
'"a:a:
\
.....
,
1\
«
a:
z
I
~~~E::~~~!~:U~~~:!~~~GL~
\
AT OESIRED OPERATING VOLTAGE.
DERATE OISSIPATION CURRENT I
_LIMIT AND 1S CURRENT LIMIT FROM
t-
o
~
200
500
"'1'0" 1""" I I I
o
"'"
IS/b LIMITED
~
ISSIPATION
LIMITED
\
40
80
120
160
Te - CASE TEMPERATURE ('C)
1000
I
\
20
:;:)
()
!
PURPOSES.
\
()
«
MTl300
()
_u
~
i'..
a: 2.0
a:
a:
....'\.
1mS
OASH LINES ON SOAR CURVES ARE
200
VeE - COLLECTOR VOLTAGE (V)
Reverse Biased Safe Operating Area
,
I
...5:z
1\
~
Te -100'C
VIE
I~
loff} - -5V
'"a:a:
:;:)
()
a: 0.5
0
t;
UMTl3004
'"
..J
..J
0
()
0.2
UMTl3005-
I
_u
0.1
.05
20
10
so
100
SOO
200
1000
VeE. 1'''1- COLLECTOR VOLTAGE (V)
Saturation Voltages
D.C. Current Gain
200 r1lrTT1
I: 1...--'-'---'-'-"'--rTTT---'-'--'---'-'
z
illIHm
I
""
I\.
,
,',
'"
I--
~
~~
~
.05
0.1
1SO'C
0
,/
0.2
,/
150'
:-2¥
_.SS'C
,......... 1--'::,....-
VeE (SAT)
.05
__L-L--L-LJ
2
0.2
0.5
Ie - COLLECTOR CURRENT (A)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064
k:::. ~
VBE(SAT)
1551,C
>
0.1
2~LU~-L-L--'--'-L~LU
I '1/
-- ~25'
"'"«S 0.5 I--
,"
r'\.~
III
I
1001Wml'd
f-'25'C
~50
I
lell, = 10
.02
.05
Ie -
168
0.1
0.2
0.5
COLLECTOR CURRENT (Al
PRINTED IN U.S.A.
UMT13004 UMT13005
Resistive Turn-On Time
Resistive Turn-Off Time
2000
Vee
1000
I"
~
200V
leiS
I"
TJ
-
=
t-I-
........ I,l--l-
2S'C
1'"
500
!'...
~
~
OJ
:;; 200
;::
100
."'-
~~
"'
t.,.....- V
~
OJ
:;;
r-..
0.5
;::
Id
K
0.2
Vee =:: 200V
50
0.1
I"
.05
.OS
0.1
0.2
O.S
1
2
Ie - COLLECTOR CURRENT (AI
leiS
I"
25°C
TJ
20
.OS
/
t-
1""-
0.2
0.1
Ie -
0.5
COLLECTOR CURRENT (A)
Switching Time
Test Circuit
125V
R _125V
L-
Ie
,
R.=¥,I B1 =1 82
FOR RESISTIVE SWITCHING,
L=O
+--1111--
VeE clamp
R,
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6S09 • TELEX 95·1064
169
PRINTED IN U.S.A.
UMT13006
UMT13007
POWER TRANSISTORS
8A,700V, Fast Switching,
Silicon NPN Mesa
FEATURES
DESCRIPTION
• Collector Emitter Voltage: up to 700V
• Peak Collector Current: 16A
These high voltage glass passivated
power transistors, in a plastic TO·220
package, combine fast switching, low
saturation voltage and rugged Es/b
capability. They are designed for use in
off·line power supplies, high voltage
inverters, switching regulators, deflection circuits, motor controls and
solenoid/relay drivers.
•
•
•
•
Rise Time: 0::;; l.OI'S} at I - SA
Fall Time: 0::;; 0.71'S
cKey Parameters characterized at lOO'C
Economica I Plastic Molded Construction
ABSOLUTE MAXIMUM RATINGS
UMT1300a
Collector Emitter Voltage, VCEV
Collector Emitter Voltage, VCEO (SUS) .
Emitter Base Voltage, Eao
.................. .
Collector Current, Ic continuous
Collector Current, ICM peak.... .................... .. ........................ ..
Base Current, la continuous ........................................................ ..
Power Dissipation, 2S'C Case.
.. .................................. .
Derating Factor
.......................................... ..
Operating and Storage Temperature Range.
.. .................... ..
UMT13007
.600V.... ................... .700V
............ 300V......
... 400V
v
.. ..SV..................
......... SV
..... SA.....................
....... SA
.. 16A ................................. .16A
.4A.
...... 4A
.. ... SOW ................. .... BOW
.O.64IW/'C....
..O.64IW/·C
................... -65 to ISO·C ...
MECHANICAL SPECIFICATIONS
UMT13006, UMT13007
SEATING
PLANE
MILL! ITERI
DIM
A
MAX
MI.
MAX
• ....
'.56
15.87
10.66
0.560
0.625
0.380
0.420
0.190
0.045
0.147
C
G
0.51
3.531
2.29
H
J
0.38
0
F
L
N
12.70
1.14
4.83
Q
2.54
R
S
T
2."
1.14
5.85
K
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4, COLLECTOR
IHCHIS
MI.
14.23
4.82
0.140
1.14
0.020
3.733
0.139
2.19
6.35
0.64
14.27
1.77
5.33
3.04
2.92
1.39
6.15
TO-220
0.090
0.110
0.250
0.015
0.025
0.562
0.070
o.z10
0.120
0.115
0.055
0,270
0.500
0.045
0.190
0.100
0.010
0.045
0.230
[ill]
6-79
170
_UNITRDDE
UMT13006 UMT13007
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Symbol
Test
UMT13006
MIN.
MAX.
UMT 3007
MIN.
MAX.
Units
Test Conditions
D.C. Current Gain (Note 1)
hfE
8
40
8
40
Ic = 2.0A, VCE = SV
D.C. Current Gain (Note 1)
hFE
6
30
6
30
Ic=S.OA,VCE=SV
Collector Saturation Voltage
(Note 1)
VCE!.atl
Collector
Saturation
Voltage
(Note 1)
VCE!.atl
Tc =2S'C
Tc =100'C
Collector Saturation Voltage
(Note 1)
VCE!.atl
Base Saturation Voltage (Note 1)
VaEI.atl
Base
Saturation
Voltage
(Note 1)
VaE I.atl
Tc =2S'C
Tc =100'C
Collector-Emitter Sustaining
Voltage (Note 2)
VCEO 1•••1
Emitter-Base Cutoff Current
I Eao
Collector Cutoff Current
ICEV
-
1.0
-
1.0
1.5
-
2.0
-
3.0
2.0
V
Ic = 2.0A, la = 0.4A
V
Ic = S.OA,la = 1.0A
3.0
V
Ic = 8.0A, la = 2.0A
1.2
V
Ic = 2.0A, la = 0.4A
V
Ic = S.OA, la = LOA
Ic=10mA
1.5
1.5
-
300
-
400
-
V
-
1
-
1
mA
-
mA
1.2
1.6
1.0
5
1.6
1.5
1.0
-
Collector Cutoff Current,
Tc = 100'C
ICEV
Output Capacitance,
Common Base
Cobo
1l0typ.
Gai n-Bandwidth Product
FT
4
Resistive Switching Speeds
Delay Time
Rise Time
Storage Time
Fall Time
td
t,
t,
tf
-
0.1
1.0
3.0
0.7
-
Inductive Switching Speeds
Tc =l00'C
Storage Ti me
Fall Time (tfl + tfv)
t.
tf
2.3
0.7
I'S
RaJC
1.56
-
2.3
0.7
Thermal Resistance,
Junction-to-Case
-
1.56
'C/W
Thermal Resistance,
Junction-to-Ambient
RaJA
-
62.5
-
62.5
'C/W
-
5
110 typo
-
4
-
mA
pF
MHz
0.1
1.0
3.0
0.7
I'S
VEB = 9V
VCE = 600V, VaE = -1.SV
VCE = 700V, VaE = -1.SV
VCE = 600V, VaE = -l.SV
VCE = 700V, VaE = -l.SV
Vca =10V,f=lMHz
VCE = 10V,Ic = O.SA, f = 1 MHz
Ic=S.OA
Vcc=12SV
lal = 18z= 1A
VaElofij =SV
Ic = S.OA, VaE lof~ = 5V
lal =lA
VCE clamp = rated VCEX ('.'1
Nates
1. Pulse length = 25O#SI duty cycle ';1%.
2. Sustaining Voltage. Measured at a high current point where collector-emitter voltage is lowest. Current pulse length '"
Voltage clamped at maximum collector-emitter voltage.
5O~SI
duty cycle ';1%.
Typical
Inductive Load
Switching Performance
conditions:
V clamp at rated VCEX
{sus}
(refer to RBSOA curve)
VaE
{off}
=
-5V
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
TJ
t,.
'c
t,
p.S
nS
tIl
nS
3.0
25
100
.45
.575
70
100
10
20
5.0
25
100
.475
.60
25
45
4
10
8.0
25
100
.525
.625
20
45
10
15
Ic
Amps
171
PRINTED IN U.S.A.
•
UMT13006 UMT13007
Power Derating
Forward Bias Safe Operating Area
100
20~~~~~~~HI=J=~
,,"10mS
~mS
~OI'S
I
1°§1~~"i§~'ml~!~~
~
D.C.
I'
5
80
't;"
"...
"Zj:
"'"
DiSSi Pation,,,,,-r-!>o..-+-fI.:t++tf--.3k:I\.-+-t-t--i
2~~+TL~im~it~ed;'---_'~~~-PrrH-~I~
~r-~~~
I
\
\
0
UMT130Q60
"-
Power'-
~ ........
i\
~~!E::~~~!~:U~~~::!~~~Gl~
'"
......
\
40
I-
Z
'"
II:
II:
0.2!-'-'-.u,'1,=-,
I-:!:---,-.L.+.-'~b-'~\~y'
10
20
VeE -
so
100
o
500
200
"'1'0'" 1"'" II
o
40
Te -
COLLECTOR VOLTAGE (V)
I"--.
J
.
IS,b LIMITED
1\\
AT DESIFIED OPERATING VOLTAGE.
DERATE DISSIPATION CURRENT I
'-LIMIT AND I'ib CURRENT LIMIT FROM
u
5.
I'-.
20
:>
!
PURPOSES
1\
60
'"c
DASH LINES ON SOAR CURVES ARE
1-
~ISSIPATION
LIMITED
1\
80
120
160
CASE TEMPERATURE ('C)
200
Reverse Biased Safe Operating Area
40
I (off)I :;;;;-5V
L1ll.
V 8E
20
5
l-
Z
'"
II:
II:
Tc
10
SA
~
~
S
4
~
a
~
II:
0
t;
'"0
UMT13006r-
..J
..J
u
I
,lJ
lOO"C
.4
UMt13&07
.2
.1
.04
20
10
so
100
200
SOD
1000
Ve", I"'I-COLLECTOR VOLTAGE (V)
D.C. Current Gain
Saturation Voltages
200
VeE
100
z
;;:
CJ
....
'"
'"u
le/l
2
100'C
50
Z
20
U
ci 10
~
55'C
iii
CJ
25'C
-
II:
:>
I
= 5V
1
~
"'t';:
0
> 0,5
..... R.:
55'C
z
~"
I
i-'"
'"
:> 0.2
~
!;:
5
III
I--'
0.1
2
0.2
Ie -
0.5
.05
2
.05
COLLECTOR CURRENT (A)
UNITRODE CORPORATION, 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
172
V
/V
0
Ie
0.1
55'
/0
100'C
II
-I--
(uti
5'
;::
«
J:
.05
VBE
,=5
0.1
Ie -
0.2
of-'
....-
~ /25'C
VeE, ..
0.5
t,
2
5
COLLECTOR CURRENT (A)
PRINTED IN U.S.A.
UMT13006 UMT13007
Resistive Turn-Off Time
Resistive Turn-On Time
1000
10
Vee
lefl ,
100'C
500
~
1/
..."
r-...
~
V
VJ5'C
t.
2
.,
'in
.s
UJ
:;:
125V
5
5
t--r-.
t--
UJ
,
100'C
1'-
~
100
ts
:;:
;::
;::
t.
25'C
0.5
50
~
20
10
0.1
0.2
Vee = 125V
lefl, = 5
0.2
"~
1
2
5
0.1
10
0.2
Ie -
COLLECTOR CURRENT (A)
1--'1;"
---
0.1
0.5
Ie -
100'C
Vt.,
.J.
25'C
I
0.5
1
COLLECTOR CURRENT (A)
10
Switching Time
Test Circuit
125V
R _ 125V
L-
Ie
,
R.=¥,II,=111
FOR RESISTIVE SWITCHING,
L=O
t-....~-
VeE clamp
P.W. =25#5
UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
173
PRINTED IN U.S.A.
POWER TRANSISTORS
UMT13008
UMT13009
12A, 700V, Fast Switching,
Silicon NPN Mesa
FEATURES
DESCRIPTION
• Collector Emitter Voltage: up to 700V
• Peak Collector Current: 24A
• Rise Time: ~ 1.0I'S} t I - SA
• Fall Time: ~ 0.71'S a c• Key Parameters characterized at 100'C
• Economical Plastic Molded Construction
These high voltage glass passivated
power transistors, in a plastic TO-220
package, combine fast switching, low
saturation voltage and rugged Es/b
capability. They are designed for use in
off-I ine power supplies, high voltage
inverters, switching regulators, deflection circuits, motor controls and
solenoid/ relay drivers.
ABSOLUTE MAXIMUM RATINGS
U MT1300S
Collector Emitter Voltage, VCEV .
Collector Emitter Voltage, VCEO (SUS) .
Emitter Base Voltage, VEIO .
Collector Current, Ic continuous ..
Collector Current, ICM peak.
Base Current,
continuous.
Power Dissipation, 25'C Case ..
Derating Factor
Operating and Storage Temperature Range.
........... 600V....
.. ..... 300V...
. . . . . 9V..
U MT1300S
............... .700V
............ ... 400V
.... 9V
... 1 2 A . .. .12A
... 24A..
'I
... 24A
6A.
............ 6A
... lOOW..
... lOOW
..................... O.80W/'C.....
...... O.80W/'C
.... -65 to 150'C .
MECHANICAL SPECIFICATIONS
UMT13008 UMT13009
SEATING
PLANE
.,M
•
B
C
0
F
G
H
J
K
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR
L
N
MILUMITI. .
MI.
MAX
14,23 15.87
g... 10.66
,...
0.51
3."1
2.2.
1.14
l.733
2.79
6.35
0.31
12.70
1.14
...,
Q
2."
2."
S
T
1.14
•
'.12
5.'5
0.64
14.27
l.n
5.33
3.04
2.92
...g
US
TO-220
INCHII
MI.
MAX
....0
0.625
0....,
0.310
0.140
0.190
0.020
0.045
0.139
0.147
0.0..
0.110
0.250
0.015
0.025
0.500
0.045
0.190
0.100
0.010
0.045
0.562
0.070
0.210
0.120
0.230
0.270
0.115
0.055
[ill]
6-79
174
_UNITRDDE
UMT13008 UMT13009
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
D.C. Current Gam (Note 1)
Symbol
hFE
D.C. Current Gain (Note 1)
hFE
Collector Saturation Voltage
(Note 1)
VCElsa'!
Collector
Saturation
Voltage
(Note 1)
VeE I..'!
Te = 25'C
Te = 100'C
Collector Saturation Voltage
(Note 1)
VCElsa'!
Base Saturation Voltage (Note 1)
VaElsal)
Base
Saturation
Voltage
(Note 1)
Te = 25'C
Te =100'C
VaE Isal)
Collector-Emitter Sustaining
Voltage (Note 2)
VeEo Isus)
Emitter-Base Cutoff Current
'Eao
Collector Cutoff Current
ICEV
Collector Cutoff Current,
Te= lOO'C
ICEV
Output Capacitance,
Common Base
Cobo
UMT13008
MIN.
MAX.
8
40
6
-
30
UMT13009
MIN.
MAX.
8
40
6
30
1.0
-
1.0
1.5
-
2.0
2.0
Ic = 8.0A, VCE = 5V
1.5
V
Ic = S.OA, la = LOA
V
Ie = 8.0A, la = 1.6A
3.0
V
Ie = 12.0A, la = 3A
1.2
V
Ie = 5.0A, la = 1.0A
1.5
V
Ie = 8.0A, la = 1.6A
-
400
-
V
le= 10mA
1
-
1
mA
-
rnA
3.0
300
1.2
1.6
1.0
5.0
-
1.6
1.5
1.0
5.0
l80typ.
l80typ.
-
-
mA
pF
FT
Resistive Switching Speeds
Delay Time
Rise Time
Storage Time
Fall Time
td
t,
t,
t,
-
0.1
1.0
3.0
0.7
-
0.1
1.0
3.0
0.7
I'S
t,
t,
2.3
0.7
1'5
1.25
-
2.3
0.7
RaJc
-
1.25
'C/W
RaJA
-
62.5
-
62.5
'C/W
Inductive Switching Speeds
Tc=lOO'C
Storage Time
Fall Time (t'l + t,v)
Thermal Resistance,
Junction-to-Case
Thermal Resistance,
Junction-to-Ambient
4
MHz
VEa =9V
VeE = 600V, VaE = -1.5V
VCE = 700V, VaE = -1.5V
VCE = 600V, VaE = -1.5V
VCE = 700V, VaE = -1.5V
Vca= 10V, f= 1 MHz
VCE = 10V,I e = 0.5A, f = 1 MHz
Ic =8.0
Vcc = 125V
lal = la2 = 1.6A
VaElolf) =5V
Ic = SA, VaE lolij = 5V
lal 1.6A
Vee clamp rated VCEX Isu,)
=
=
Notes
1. Pulse length = 250#S; duty cycle <:;1%.
2. Sustaining Voltage. Measured at a high current point where collector-emitter voltage is lowest. Current pulse length", 5O#S; duty cycle <:;1%.
Voltage clamped at maximum collector-emitter voltage.
Typical
I nductive Load
Switching Performance
Conditions:
I"
3.0
25
100
t,
#S
0.5
0.85
V clamp at rated VCEX 'JUI)
5.0
~5
0.65
40
12.0
100
0.90
0.72
.092
.70
.78
50
8.0
100
25
100
Ie
Amps
TJ
·C
)e
-
=5
Irefer to RBSOA curve)
VBE (offl
= -SV
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064
25
175
II,
••••
Gain-Bandwidth Product
4
Test Conditions
Ic - 5.0A, VCE _ 5V
-
-
Units
t,v
nS
100
130
60
65
70
70
t,;
nS
10
14
10
12
12
28
25
110
PRINTED IN U.S.A.
UMTl300B UMTl3009
Forward Bias Safe Operating Area
Power Derating
40
100
20
10
g
...
"'
4.0
u
2.0
,
~s
D.C.
r--.....
Z
ImS
r~
~
1.0
0
.40
u
1
_u
.10
50
20
100
20
:>
u
AT DEStRED OPERATING VOLTAGE.
DERATE DISSIPiHION CURRENT I
I--lIMIT AND II~ CURRENT LiMIT FArM
2S'lS0ARrRVE
a
~
200
f"".-
I
Is,b LIMITED
1\
Z
'"0:0:
I
\
40
I-
~ t- I'
.04
I'-.
1\
60
"'0
~~~E~:~~~!~:U~~~::!~~~Gl~
PURPOSES
\
z
;::
«
0:
~
lytH3OO91- ~
VeE -
0
IU
'\ 1'\
UMTl3008
10
0::
"
OA511 LINES ON SOAR CURVES ARE
" ['-..
'\
80
"-
"oJ",.
.20
~
«
"""
~
Te _2S'C
5
r--
~
I;, LIMITED
..J
..J
~
'\~
"r-
0::
0
r--. ......
r-....
DISSIPATION,
LIMITED-[::::< ~
0::
0::
:>
r"-
20p
o
40
T -
' ISSIPATION
LIMITED
1\
200
80
120
160
CASE TEMPERATURE ('C)
e
500
l
\
COLLECTOR VOLTAGE (V)
Reverse Biased Safe Operating Area
15
12
10
3:
I-
Z
~
'"0:0::
:>
u
2.0
VIE loffl ~-5V
Tc:S;;; lOOoe
1'1 =2.SA
0::
g
'"
u
..J
..J
1.0
0
u
.5
1
_u
UMTlJOOB
UMTlJOOS
.2
.15
10
1
20
50
100
200
500
1000
VeEX 1"'1- COLLECTOR VOLTAGE (V)
Saturation Voltages
D.C. Current Gain
200
100
50
I-
"'
0::
:>
a
I.W
-......
----
--
m
-SS'C
U
g
1
I
kI:
S'C
Z
a:
lell, _5
VeE - 5V
fJJ
lOO'C
z
~
LUl
1III
0
r.~
1
V 8E
($at]
~
25'C
5
i"o.i"!o
"
~
./. ~'/
o.2
~
25'C
.1
2
0,1
0,2
0,5
Ie -
10
.05
.05
20
COLLECTOR CURRENT CA)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
YL
lOO'C
5
,as
.- j--, ~r.=
-55'C
0.1
-
",
fsat]
/:WC
!"'"
0.2
10
0.5
Ie -
176
lru~
VeE
,/
20
COLLECTOR CURRENT (A)
PRINTED IN U.S.A.
UMT13008 UMT13009
Resistive Turn-Off Time
Resistive Turn-On Time
2000
~
1000
c--
r
~
Ve• = 125V
I
111111
1- 1" = 1,,=
/
%
500
on
oS 200
::;:
j::
100
~ I:'~
~I"
V lA
V
100'C ""
~
..:;
'"
25'C
aoy
LI
20
.20
II
.5
Ie -
[
2~
.....
.1%
I"
0.5
::;:
0.2
~
O'e/
N.::...: ,
OJ
;:
50
t.
VeE:::: 125~
It....~~0
~
OJ
l~'cl
1""-1-
~ r--
100'C
V
.... 1..;':"tlJ,..oo
-rs;c
100'C
0.1
25'C
II
10
.05
.2
20
COLLECTOR CURRENT (A)
.5
Ie -
10
20
COLLECTOR CURRENT (A)
Switching Time
Test Circuit
125V
125V
RL===Ic~
,
R.=¥,I.I::::I B2
FOR RESISTIVE SWITCHING.
L=O
R,
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
177
PRINTED IN U.S.A.
POWER TRANSISTORS
UPTl11
UPTl12
UPTl13
UPTl14
UPTl15
1 Amp, 150V, Planar NPN
FEATURES
• Collector-Base Voltage: up to lSOV
• Peak Collector Current: 2A
• Tum-on Time: lOOns
• Turn-off Time: 250n5
DESCRIPTION
Unitrode power transistors provide a
unique combination of low saturation
voltage, high gain and fast switching. They
are ideally suited for power supply pulse
amplifier and similar high efficiency power
switching applications.
ABSOLUTE MAXIMUM RATINGS
UPT111
UPT112
UPT113
UPT114
UPT115
Collector-Base Voltage, VCBO .
............. 60V.... ................... BOV . ................. 100V ...... ... ....... .. l20V....................... lSOV
Collector-Emitter Voltage, VCEO "
40V ...
60V..
BOV..
.... 100V .................... lOOV
Emitter-Base Voltage, VEBO .
. .... SV............................ 5V............................ SV............................ SV ... .. ................... SV
D.C. Collector Current, Ic ..
.. ..... lA..................... lA ............................ lA............................ lA .. ..
........... lA
Peak Collector Current, Ic ........................................... 2 A . . . . . . ... 2A..
. .............. 2A.. ..
. .... 2A .. .
. ...... 2A
Base Current, IB
.................. O.SA.....
O.SA................... O.SA .....
. . O.SA .... .
......... O.SA
UPTlll-115
UPT121·125
Power Dissipation
........... .. B5W.. .
............ .1.6W ....... .
25'C Ambient .
. ........ 4W..................................... .16W ..
lOO'C Case
................................ 25'C/W .........
..... 6.7'C/W....
Thermal Resistance, 6J _ C .
Operating and Storage Temperature Range ..
. ................ -65'C to 200'C...
........ -65'C to 200'C
MECHANICAL SPECIFICATIONS
UPT111
UPT112 UPT113 UPT114
UPTl15
TO·5
.370
.335
.335
,305
Dimensions in inches.
178
O:W
_UNITRODE
UPTlll UPTl12 UPTl13 UPTl14 UPTl15
ELECTRICAL SPECIFICATIONS. (at 2S·C unless noted)
Test
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
Collector Saturation Voltage (Note 1)
Base Saturation Voltage (Note 1)
Collector-Emitter Breakdown Voltage
(Note 1)
UPTlll
UPT1l2
UPTl13
UPTl14
UPTl15
Collector-Emitter Breakdown Voltage
(Note 1)
UPTlll
UPTl12
UPT1l3
UPTl14-5
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current, l50·C
Emitter-Base Cutoff Current
Output Capacitance
Gain-Bandwidth Product
Turn-on Time
Switching Speeds
Turn-off Time
Note: 1. Pulse WIdth _ 300
~s;
Symbol
Min.
Max.
Units
hFE
hFE
hFE
VCE (sat)
V'E (sat)
BVCER
30
20
-
-
1.0
1.2
Vdc
Vdc
Vdc
Ic
-
60
80
100
120
150
BVCEO
= 10mAdc
-
40
60
80
100
ICER
ICER
IE,o
Cb
fT
ton
toff
Vdc
15 Typ.
-
Test Conditions
= O.5A, VeE = 5Vdc
= lA, VCE = 5Vdc
= 2A, VCE = 5Vdc
= lA, I, = O.lA
= lA, I, = O.lA
Ic = 10mAdc; R'E = 1001l
Ie
Ic
Ie
Ic
Ic
-
10
1.0
50
40
-
-
/lAdc
mAdc
/lAdc
pf
MHz
ns
ns
50 Typ.
100 Typ.
250 Typ.
VCE - rated BVCEO' R'E _ lOOn
VCE
rated BVcEO , R'E 100ll, T l50·C
VE,
5Vdc
Ve,
lOVdc, IE 0, f
lMHz
Ic a.1Adc, VeE
5Vdc, f
10M Hz
Ic _lA
=
=
=
=
=
= =
=
=
=
duty cycle ";;2%.
Maximum Safe Operating Area
D.C. Current Gain vs. Collector Current
UPT111 ·11S
1J
2
...5:z
~
1
.5
0::
:>
o
.2
o
t;
.1
5'"
.05
0::
i\..
""
r'\.
~
D,C
..J
o
I
_v· 02
~
j
r'\.
L\.
IX
~.1
i\..
SOO
T, =2~·C
Pulse Width = 1 'ms
D~~Cle
= 2.5%,-
TJ=Lc
z
200
SO
I-
A.
~
VeE::::: sV
'"0::0::
UPT111
UPT112
UPT113
-UPT114
-UPT115
TJJ5~ r'\.
f,---
0
T J = -5S'C
U
~
ci
I
it
Pulse widlh
ms " ' Dutr CYClj = 2i%
M
~
20
r-- ~
'\
10
.01
.005
VCE -
10 20
COLLECTOR -
50
100
EMITTER VOLTAGE (V)
.02
Switching Speed Circuit
.05
IC -
.2
.5
.1
COLLECTOR CURRENT (A)
+60V
6O1l
25V
.05~f
Jl
o-+-+"""""""'~_ _~
H
10~s
-4V
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
179
PRINTED IN U.S.A.
•
POWER TRANSISTORS
UPT211
UPT212
UPT213
UPT214
UPT215
2 Amp, 150V, Planar NPN
FEATURES
• Collector-Base Voltage: up to 150V
• Peak Collector Current: 5A
• Turn-on Time: 130ns
• Turn-off Time: 300ns
DESCRIPTION
Unitrode power transistors provide a
unique combination of low saturation
voltage, high gain and fast switching. They
are ideally suited for power supply, pulse
amplifier and similar high efficiency power
switching applications.
ABSOLUTE MAXIMUM RATINGS
UPT211
UPT212
UPT213
UPT214
UPT215
Collector-Base Voltage, VeBo ................................... GOV.......................... SOV .................... 100V......................... l20V.... .
....... l50V
Collector-Emitter Voltage, VCEO" .
40V.....
GOV ..
80V ...................... 100V ....................... 100V
Emitter-Base Voltage, VEBO .
.. ................... 5V ............................. 5V........................... 5V...
. ....... 5V.
.. ............ 5V
D.C. Collector Current, Ic .
.. ............... 2A...
. ....... 2A............................. 2A... ..
. ........ 2A......................... 2A
Peak Collector Current, Ie . .... ................................. 5A......
.. .... 5A.. . ............... SA.. .. .................. 5A.
.. ..... 5A
Base Current, IB ...... .
... ..... ... ... .... .. .. ..... ..... lA ...
.. ............... lA .......................... lA...
......... lA.... .................. lA
Power Dissipation
UPT211-215
..... . .... ......
.. .........85W ............................................................................
25"C Ambient .
lOO"C Case
........ 4W ...............................................................................
Thermal Resistance, 9J _ e .................. ..
..............................................25"C/W ...........................................................................
Operating and Storage Temperature Range ...
........ -G5"C to 200"C ..................................................................
MECHANICAL SPECIFICATIONS
UPT211
UPT212 UPT213 UPT214 UPT215
TO-5
.370
.335
,335
.305
Dimensions in inches.
[ill]
180
_UNITRDDE
UPT211 UPT212 UPT213 UPT214 UPT215
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
Collector Saturation Voltage (Note 1)
Base Saturation Voltage (Note 1)
Coliector·Emitter Breakdown Voltage
(Note 1)
UPT211
UPT212
UPT213
UPT214
UPT215
Collector-Emitter Breakdown Voltage
(Note 1)
UPT211
UPT212
UPT213
UPT214-5
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current, 150'C
Emitter-Base Cutoff Current
Output Capacitance
Gain-Bandwidth Product
Turn-on Time
Switching Speeds
Turn-off Time
Nate: 1. Pulse width
Symbol
Min.
Max.
hFE
hFE
hFE
VcE/sat)
VBE/sat)
BVCER
30
20
-
Units
Vdc
Vdc
Ic
-
-
1.0
1.2
Vdc
Vdc
60
80
100
120
150
-
Ic
Ic
Ic
Ic
Ic
-
10 Typ.
BVcEO
= 10mAdc
-
40
60
80
100
-
ICER
ICER
lEBO
Cob
fT
ton
toll
Test Conditions
= 0.5A, VCE = 5Vdc
= 2A, VeE = 5Vdc
= 5A, VCE = 5Vdc
= 2A, IB = 0.2A
= 2A, IB = 0.2A
Ie = lOmAdc; RBE = loon
-
10
1.0
50
40
-
-
=
=
=
=
/LAdc
mAdc
/LAdc
pf
MHz
ns
ns
70 Typ.
130 Typ.
300 Typ.
=
.=
VCE rated BVCEO' RBE 1000
VCE rated BVcEO, RBE 1000, T 150'C
VEB
5Vdc
VCB
10Vdc, IE 0, f 1M Hz
Ic - O.1Adc, VCE - 5Vdc, f _ 10MHz
Ic - 2A
= =
= 300 I'S; duty cycle ,,2%.
D.C. Current Gain
Maximum Safe Operating Area
UPT211-215
YS.
500
~
5:
I-
Z
'"~
""
~
=
1
.5
~ ~
~
.2
.1
8
.05
"-
1>-Dr-
I-
~
'"
~
K
l',. V
"~
/
~
Pulse Width = Ims
_°. 02
z
;;:
"'100
~
T,.,
I-
= 25°C
~
a:
~ 50
~
"c
t'\. k'""
.;
I
UPT211
-UPT212
-UPT213
20
VC~
:::; sV
I
T, = 25.d - "r-TT,-----sJc ~ :\
-- -
r\
\
10
UPT214
.01
.005
-
200
IOuty Cycle:::: 10%
pu,lse Width = t.s~
DUjY CYClle :::: r% I
I
T,_lJ
,6~~~e C~~~!h~~2~~oS
Callectar Current
'--UPT215
1
2
5
10
20
5
50 100
.05
.2
.1
Ie. -
Vu-COlLECTOR- EMITTER VOLTAGE {V)
.5
COLLECTOR CURRENT (A)
Switching Speed Circuit
HoV
n . . . . .____~. . . . . . .
25V
.05.u f
_I
H
10,,5
-4Y
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064
181
PRINTED IN U.S.A.
•
POWER TRANSISTORS
UPT311
UPT312
UPT313
UPT314
UPT315
2 Amp, 400V, Planar NPN
UPT321
UPT322
UPT323
UPT324
UPT325
DESCRIPTION
Unitrode high voltage transistors provide
a unique combination of low saturation
voltage, fast switching, and excellent gain.
They are ideally suited for off-line power
supply designs and other applications
where the increased voltage rating adds
to system reliability.
I'EATURES
• Collector-Base Voltage: up to 400V
• Peak Collector Current: 3A
• Turn-on Ti me: 200 ns
• Turn-off Time: 800 ns
ABSOLUTE MAXIMUM RATINGS
UPT311
U PT321
UPT312
U PT322
UPT313
UPT323
UPT314
UPT324
UPT315
UPT325
300V......
.... 350V...
.. ...... 400V
Collector-Base Voltage, Vcso'
........................... 200V....
. ........... 250V ..... .
... 250V ................... ..... 300V....... ................ 300V
Collector-Emitter Voltage, VCEO "
.................. 150V....
............. 200V ... .
Emitter-Base Voltage, VESO .
. ................... 5V ........................... 5V ..
............. 5V.................... 5V.
.. .. 5V
................ 2A
................... 2A.......
.... 2A
D.C. Collector Current, Ic .
.. ................................. 2A.
.. ............ 2A.
......... 3A ........................ 3A
........... 3A
Peak Collector Current, Ic .......................................... 3A...
. ... 3A...... ..
Base Current, Is.
.. ............................................... lA .....
.. ......... lA
........... lA
.......... lA ............................ IA
UPT311-315
UPT321-325
Power Dissipation
25·C Ambient .
............. .lW......
............ 2W .... .
.......... .lOW .................................... .l6W.. .
lOO·C Case
.. . l O " C / W 6 . 7 · C / W... ..
Thermal Resistance, 9 J _ C
................................................... .
.............. -65"C to 200·C .. ..
.. .......... -65"C to 200·C
Operating and 'Storage Temperature Range .
MECHANICAL SPECIFICATIONS
UPT311
UPT312
UPT313
UPT314
UPT315
TO-5
UPT321
UPT322
UPT323
UPT324
UPT325
T0-66
Dimensions in inches.
:~~ DIA.
BASE
EMITTER
.35<>
MAX.
RAO.
Dimensions in inches.
[ill]
182
_UNITRDDE
UPT311
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
Collector Saturation Voltage (Note 1)
Base Saturation Voltage (Note 1)
Collector-Emitter Breakdown Voltage
(Note 1)
UPT31l, UPT321
UPT312, UPT322
UPT313, UPT321
UPT314, UPT324
UPT31S, UPT325
Collector-Emitter Breakdown Voltage
(Note 1)
UPT31l, UPT321
UPT312, UPT322
UPT313, UPT323
UPT314-S, UPT324-S
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current, lS0'C
Emitter-Base Cutoff Current
Output Capacitance
Gain-Bandwidth Product
Turn-on Time
Switching Speeds
Turn-off Time
Note: 1. Pulse width
= 300 pS;
Symbol
Min.
Max.
Units
hFE
hFE
hFE
VCE (sat)
VBE (sat:
30
-
-
10
3S0
400
BVCEO
ISO
-
-
10
1.0
SO
SO
~
.5
0:
:>
u
~
I'"
I",
Duty Cycle::;: 25%
Pulse Width
==
1
0:
D.C .. /
o
t
.1
p)!ISe Width
=
1 ms
>[\
!'\
\
I
~
~ 1
~
I-
Z
~
.5 Duty Cycle = 2 5 % / \
u
.2
D.C.
0:
t;
.1
~
I-
...z
~
UPT311UPT312
UPT313
UPT314/315
.01
~
u
..;
I\.
.005
5
VeE -
10
20
COLLECTOR -
SO
100 200 300
EMITTER VOLTAGE (V)
1.
02
.oos
1
VeE -
10 20
5
COLLECTOR -
I--
r--
100
I--
-LJc
50
I
VeE::::
I-- r-- +,
r-
- 5~·C - - ~
-~~
20
"'~
10
.03
(V)
\
I
5
50 100 200 300
EMlnER VOLTAGE
5V
~~,=250
f0-
ci
PT321
UPT322UPT323
UPT324/325
.01
200
0:
\
~
z
~
U
~v .02
500
~ l00'C
10%
Pulse Width::;: 1 ms
5.05
u
fe
OU~y Cycle =
Pulse Width::;: 1 ms
0:
:>
o
\
~
D.C. Current Glin vs. Collector Current
UPT321- 325
DU~Y CY~le = 10%
5.05
=
= =
=
=
Maximum Safe Operating Area
ms~
.2
=
=
VCE
rated BVCEO ' RBE
lOOn
VCE
rated BVcEO , RBE
lOOn, T lS0'C
SVdc
VES
VCB
lOVdc, IE 0, f
1M Hz
Ic
O.SAdc, VCE
SVdc, f
10M Hz
Ic _lA
duty cycle ';;;2%.
Tc::;: lOODC
1
•
= lOmAdc
=
=
=
=
=
/lAdc
mAdc
/lAdc
pf
MHz
ns
ns
40 Typ.
200 Typ.
800 Typ.
UPT311-315
~
Ic
-
200
2S0
300
Maximum Safe Operating Area
IZ
Vdc
Vdc
Vdc
-
300
to"
Vdc
-
-
200
250
taff
Test Conditions
= O.SA, VCE = SVdc
= 2A, VCE = 5Vdc
= 3A, VCE = 5Vdc
= 2A, 'B = 0.4A
= 2A, IB = 0.4A
Ic = 10mAdc; RSE = lOOn
Ic
Ic
Ic
Ic
Ic
-
10 Typ.
1.0
1.S
-
BVCEP.
ICER
ICER
lEBO
Cob
fT
UPT312 UPT313 UPT314 UPT31S
UPT321 UPT322 UPT323 UPT324 UPT32S
.05
.1
Ie -
.2
.5
1
2
3
COLLECTOR CURRENT (A)
Switching Speed Circuit
+100V
1_
25V
Jl
............-..-~...--.--i
H
lOps
-5V
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
183
PRINTED IN U.S.A.
UPT521
UPT522
UPT523
UPT524
UPT525
POWER TRANSISTORS
3 Amp, 400V, Planar NPN
FEATURES
DESCRIPTION
•
•
•
•
Unitrode high voltage transistors provide
a unique combination of low saturation
voltage, fast switching, and excellent gain.
They are ideally suited for off-line power
supply designs and other applications
where the increased voltage rating adds
to system reliability.
Collector-Base Voltage: up to400V
Peilk Collector Current: 5A
Turn-on Time: 200ns
Turn-off Time: 900ns
ABSOLUTE MAXIMUM RATINGS
UPT521
..... 2S0V .. .
.. ...... 200V ...... .
........ 5V
......... 3A.......... .
.......... SA.
............... 2A ........
UPT524
UPT523
UPT522
Collector-Base Voltage, VCBO .
2OOV ...
Collector-Emitter Voltage, VCEO ....
.... 150V ..
Emitter-Base Voltage, VEBO ............................................... 5V
D.C. Collector Current, Ie ...... .....................
. 3A.... ..
Peak Collector Current, Ie .
.. ....... 5A ..
Base Current, IB ... ........................
.. ..................... 2A.
Power Dissipation
25'C Ambient .......
l00'C Case
Thermal Resistance, 9 J _ C ....
Operating and Storage Temperature Range .
.... 3OOV....
UPT525
.... 250V ..
....... 5V .. .
....... 350V ......................... 400V
... 300V..
.. ...... JOOV
.. ............. 5V ............................. 5V
3A .. ..
.... 3A ............................. 3A
.. SA..
............. SA ........ .
....... 2A.
..... 2W
.. 2A.. .....
...5A
2A
.
................................ 25W.
.......... 4'CIW.
.. -65'C to 200'C
MECHANICAL SPECIFICATIONS
UPT521
UPT522 UPT523 UPT524 UPT525
TO·66
:~:~ DIA.
BASE
/ , .. - - - - - EMITTER
.350
MAX.
RAD .
. 210
.190
Dimensions in. inches.
184
ru1J
_UNITRaCE
UPT521 UPT522 UPT523 UPT524 UPT525
ELECTRICAL SPECIFICATIONS (at 25·C unless noted)
Symbol
Min.
Max.
hFE
hFE
hFE
VCE (sat)
VBE (sat)
25
-
Test
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
Collector Saturation Voltage (Note 1)
Base Saturation Voltage (Note 1)
Collector-Emitter Breakdown Voltage
(Note 1)
UPTS21
UPTS22
UPT523
UPT524
UPTS2S
Collector-Emitter Breakdown Voltage
(Note 1)
UPT521
UPTS22
UPTS23
UPTS24-S
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current, 150·C
Emitter-Base Cutoff Current
Output Capacitance
Gain-Bandwidth Product
Turn-on Time
Switching Speeds
Turn-off Time
-
Vdc
Vdc
Ic =
Ic =
Ic =
Ic =
Ic =
Vdc
Ie = 10mAdc; RBE = lOaf!
Vdc
Ie = 10mAdc
-
~Adc
-
mAdc
VCE = rated BVCEO ' RBE = lOaf!
VCE = rated BVcEO , RBE = lOaf!, T = lS0·C
VEB = SVdc
VCB = lOVdc, IE = 0, f = 1MHz
Ic - O.SAdc, VCE _ SVdc, f _ 10M Hz
10
-
10 Typ.
1.U
-
1.S
BV CER
LOA, VCE = SVdc
3A, VCE = SVdc
SA, VCE = 5Vdc
3A, IB = 0.6A
3A, IB = 0.6A
-
200
2S0
300
350
400
-
BVcEO
-
ISO
200
250
300
-
-
-
10
1.0
50
120
30 Typ.
200 Typ.
900 Typ.
ICER
ICER
lEBO
Cob
fr
too
toff
Test Conditions
Units
~Adc
-
pf
MHz
ns
ns
Ic=3A
= 300 pS: duty cycle ';;;2%.
Note: 1. Pulse width
Maximum Safe Operating Area
).." ~ lPuls~
I
.
1
~
.5
~
T
=
I.D.C.
0:
::J
U
0:
g
~
o
u
1
_~
'"
Pulse Width _ 1 ms
Duty Cycle
10%
z
.2
D.C. Current Gain ¥s. CoUector Current
500
= lOOGe
m~_
Width:::: 1
~~utY/Cle:::: 25%
200
z
[~
---'"1\.\
!5u
1\
C
~
.. 100
~
0:
\
.1
.05
50
o
Ve , = SV;
---
TJ
-;:
TJ _
25°C
J-
-............
120
UPT523UPTS24 52
.01
~ \..
~
tl~Hn-
.02
"
T--~ "-
!---:"'
f...--
10
5
.005
1
5
Vr.(
-
10
20
COLLECTOR -
50
.05
100 200300
.1
EMITTER VOLTAGE (V)
.2
.5
'I, - COLLECTOR CURRENT (A)
"
Switching Speld Circuit
+100v
330
25V
.05J.1'
n . . . . . .__~. . . . . . -;
1~ ~o
-5V
UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
185
PRINTED IN U.S.A.
..
POWER TRANSISTORS
UPT611
UPT612
UPT613
UPT614
UPT615
5 Amp, 150V, Planar NPN
FEATURES
DESCRIPTION
•
•
•
•
Unitrode power transistors provide a
unique combination of low saturation
voltage, high gain and fast switChing. They
are idearly suited for power supply, pulse
amplifier and similar high efficiency power
switching applications.
Collector-Base Voltage: up to l50V
Peak Collector Current: lOA
Turn-on Time: 250ns
Turn-off Time: S50ns
ABSOLUTE MAXIMUM RATINGS
UPT611
UPT612
UPTII13
UPTII14
Collector-Base Voltage, Vceo ...... .
................ 60V........................... SOV...
.. ........... lOOV
........ l20V.
Col/ector-Emitter. Voltage, VCEO
40V
60V.....
BOV
lOOV
Emitter-Base Voltage, VEeo .
.... ...... SV ............................. SV............................. SV.........
.. ........ SV
D.C. Col/ector Current, Ic ............................................. SA...
. ............. SA ............................ SA...
.. .................. SA ...
Peak Col/ector Current, Ic ................................... .. .. lOA..
.. ................ lOA....................... lOA..
.. ........... lOA.
Base Current, Ie ............................. .............
................. 2A.
................... 2A....
. 2A...
.. ... 2A ..
Power Dissipation
2S'C Ambient ...
.................. .1w... .
lOO'C Case
................... 5W ... .
Thermal Resistance, e J _ C .
.................................. ......... 20'C/W.
Operating and Storage Temperature Range .
........ .................................. -65'C to 200'C.
UPTII15
...... l50V
........ lOOV
.............. SV
.... SA
.. ......... lOA
... 2A
MECHANICAL SPECIFICATIONS
UPT611
UPT612 UPT613 UPT614 UPT615
TO·5
.370
.335
.335
.305
Dimensions in inches.
186
om
_UNITRODE
UPT611 UPT612 UPT613 UPT614 UPT615
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Test
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
Collector Saturation Voltage (Note 1)
UPT611-3
UPT614-S
Base Saturation Voltage (Note 1)
Collector-Emitter Breakdown Voltage
(Note 1)
UPT611
UPT612
UPT613
UPT614
UPT61S
Collector-Emitter Breakdown Voltage
(Note 1)
UPT611
UPT612
UPT613
UPT614-S
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current, 150°C
Emitter-Base Cutoff Current
Output Capacitance
Gain-Bandwidth Product
Tum-on Time
Switching Speeds
Tum-off Time
= 300 .us; duty cycle
Note: 1. Pulse width
Symbol
Min.
hFE
hFE
hFE
30
IS
--
-
1..0
1.S
Vdc
Vdc
1.S
Vdc
-
Vdc
12 Typ.
-
VCE (sat)
VBE (sat)
BVCER
~
~
~
~
W
0:
0:
" .s I"
U
0:
g
~
.2
o
.1
I
.OS
u
u
60
80
100
120
ISO
-
40
60
80
100
-
BVCEO
Vdc
-
ICER
ICER
lEBO
Cob
fT
ton
torr
10
1.0
SO
120
Ic
= SA, IB = O.SA
= 10mAdc; RBE = lOOn
Ic
= 10mAdc
'VCE = rated BVCEO' RBE = lOOn
"Adc
mAdc
=
=
=
=
"-
~
V
~
2.5%,
200
z
;;
~ 100
1m.
"
'" "'-
VeE
5V
TJ = IS0·C
Duty Cycle ::::
~ Pulse Width ::::
~
Duty Cycle __
~
Pulse Width ::::
1 ms
Duty Cycle _
25%,_
Pulse Width ::::
""-
V
Z
10%.-----,---,---
~ '\
1""-
= =
=
=
J
T A = 25 G C
I"'"
"'- "'-
~
u
r..i
50
I
20
o
Ims_
D.C.
I...----
~
-
f..---"
,~
-......... ~
--- ~
---
T J ::;:;-55°C
10
r-- UPT612
UPT613
UPT614/15
.01
1
5
10
=
D.C. Current Gain VS. Collector Current
500
"-
=
-
VCE
rated BVCEO ' RBE
lOon, T 150°C
VEB
SVdc
VCB
10Vdc, IE 0, f
IMHz
Ic
O.SAdc, VCE SVdc, f
10MHz
Ic - SA
"Adc
pf
MHz
ns
ns
40 Typ.
2S0 Typ.
SOO Typ.
= lA, Vc:.E = SVdc
= SA, VCE = SVdc
= lOA, VeE = SVdc
= SA, IB = O.5A
~2%.
UPT611
.02
Ic
Ic
Ic
Ic
Ie
Maximum Sate Operating Area
10
Test Conditions
Units
Max.
20
Vet-COLLECTOR -
50
100
.1
.s
.2
EMITTER VOLTAGE (V)
Ie -
I'\.
~
\
10
COLLECTOR CURRENT (A)
Switching Speed Circuit
+60V
n
sov
son
W
10,us
lOP.
-4V
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064
187
PRINTED IN U.S.A.
POWER TRANSISTORS
UPT721
UPT722
UPT723
UPT724
UPT725
5 Amp, 400V, Planar NPN
FEATURES
DESCRIPTION
•
•
•
•
Unitrode high voltage transistors provide
a unique combination of low saturation
voltage, fast switching, and excellent gain.
They are ideally suited for off-line power
supply designs and other appl ications
where the increased voltage rating adds
to system reliability.
Collector-Base Voltage: up to 400V
Peak Collector Current: lOA
Turn-on Time: 250ns
Turn-off Time: 800ns
ABSOLUTE MAXIMUM RATINGS
UPT721
UPT722
UPT723
UPT724
UPT725
Collector-Base Voltage, VC80 .
.... 200V...
. 250V....
. ..... 300V...
... .......... 350V...
......... 400V
..... l50V
.... . 200V
..... 250V ...........
300V ......................... 300V
Collector-Emitter Voltage, VCEO"
Emitter-Base Voltage, VE80 .
.......... w...
.... W ....................... W...
....... W ....................... W
...~
.................. ~..
. .. ~....... . . ~..
..~
D.C. Collector Current, Ic .
Peak Collector Current, Ic .
...... ........... lOA .......................... lOA.....
.. lOA.....
............. lOA......
..... lOA
....... ~..
.••....•... ~..
.......... ~ ....................... ~
....... ~
Base Current, 18 .
Power Dissipation
............2W .....
25°C Ambient .
.... 2SW ..
100°C Case
Thermal Resistance, 8 J _ C .
..............4°C/W ..
.......... _65°C to 200°C ..
Operating and Storage Temperature Range ...
MECHANICAL
SPECIFIC~TIONS
UPT721
UPT722 UPT723 UPT724 UPT725
TO·66
~i!; DIA.
BASE
EMITTER
.350
MAX.
RAO.
Dimensions in inches.
[JJJ]
188
_UNITRDDE
UPT721 UPT722 UPT723 UPT724 UPT725
ELECTRICAL SPECIFICATIONS (at 25·C unless noted)
Test
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
Collector Saturation V.oltage (Note 1)
Base Saturation Voltage (Note 1)
Collector-Emitter Breakdown Voltage
(Note 1)
UPT721
UPT722
UPT723
UPT724
UPT725
Collector-Emitter Breakdown Voltage
(Note 1)
UPT721
UPT722
UPT723
UPT724-5
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current, 150·C
Emitter-Base Cutoff Current
Output Capacitance
Gain-Bandwidth Product
Turn-on Time
Switching Speeds
Turn-off Time
Nate: 1.
Pulse width =: 300
J,tSj
Symbol
Min.
Max.
Units
hFE
hFE
hf ,
25
10
-
-
-
1.0
1.8
Vdc
Vdc
200
250
-
Vdc
= lA, VCE = 5Vdc
= 5A, VCE = 5Vdc
= lOA, VCE = 5Vdc
= 5A, Is = 1A
= 5A, Is = 1A
Ic = lOmAdc; RSE = lOOn
Vdc
Ic
!lAdc
mAdc
!lAdc
pf
MHz
ns
ns
VCE
rated BVcEO , RSE = lOOn
VCE
rated BVcEO , RSE
lOOn, T 15O·C
VES
5Vdc
Vcs
10Vdc, IE 0, f = 1M Hz
Ic - O.5Adc, VCE _ 5Vdc, f _ 10MHz
-
-
-
300
350
400
-
BVcEO
-
-
toff
-
-
10
1.0
50
120
30 Typ.
250 Typ.
800 Typ.
0:
.5
Pulse Width= 1
I
I
I
~
.2
g
8
I
I
.05
= 5A
~~~eC!7~~h==2~O/~~
TJ = 150°C--+--+--+---1
200
m~~
z
;;:
~
~
~
z
100
"'0:
l\
~
50
"---.--+-.N~
H
10 t.tS
*Note: For UPTA 410/510, Yee
UNITROOE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
191
= lOOY, R, = 200!)
PRINTED IN U.S.A.
-
POWER TRANSISTORS
UPTB520
UPTB530
UPTB540
UPTB550
0.1 Amp, 500V, Planar NPN, Plastic
FEATURES
• Designed for High Speed Switching Applications
• Collector-Emitter Voltage: up to 500V
• Peak Collector Current: to .2A
• Economical Plastic Molded Construction
DESCRIPTION
Unitrode high voltage power transistors
provide a unique combination of low
saturation voltage, high gain and fast
switching. They are ideally suited for
pulse power applications in power
supplies, thermal printers, solid state
relays and pulse amplifiers.
ABSOLUTE MAXIMUM RATINGS
UPTB520
UPTB530
UPTB540
UPTB550
Collector-Base Voltage, VCBO
. 250V.... ................. 350V......
.. ...... 450V...
. 550V
Collector-Emitter Voltage, VCEO
. 200V ...................... 300V.. . . . ...... 400V...
. 500V
Emitter-Base Voltage, VEBO
.. W...
... ~....
.W .......................... ~
D.C. Collector Current, Ic
.....lA....
... lA.... ....................lA
........lA
Peak Collector Current, Ic
..............2A....
.. ........lA .........................2A
.2A
Base Current, IB .
.............................. .lA. ............... .lA..
.............lA ...........................lA
Power Dissipation
25'C Case
.... 2.4W ...... ..
25'C Ambient .
... 750mW ..
Thermal Resistance, e J _ C
.. 62.5'C/W ..
Thermal Resistance, eJ _ A ................................................................................ .
.... 200'C/W
Storage Temperature Range ............... ..
.................... -55'C to +l50'C
Maximum Junction Temperature
........................................................." ..
... +175'C .......
MECHANICAL SPECIFICATIONS
UPTB520 UPTB530 UPTB540 UPTB550
TO-92
.019
T
T~~ .205~:="
MIN.
-.L
=
.175
J
.105
.095
EO-'
~g:~_500 MIN~ -I~:~~g
.165
.125
Dimensions in inches.
3/78
192
O:W
_UNITRDDE
UPTB520 UPTB530
UPTB540 UPTB550
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
Collector Saturation Voltage (Note 1)
Base Saturation Voltage (Note 1)
Collector-Base Breakdown Voltage
(Note 1)
UPTB520
UPTB530
UPTB540
UPTB550
COllector-Emitter Breakdown Voltage
(Note 1)
UPTB520
UPTB530
UPTB540
UPTB550
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current
Emitter-Base Cutoff Current
Output Capacitance
Gain-Bandwidth Product
Rise Time
Delay Time
Storage Ti me
Fall Time
NDte: 1. Pulse width
Symbol
Min.
Max.
hFE
hFE
VCE (sat)
VCE (sat)
VSE (sat)
BV cso
20
5
-
250
350
450
550
-
ICES
'CES
IESO
Cob
fr
t,
td
t,
tf
-
-
10
1
50
50
-
Vdc
Vdc
Vdc
Vdc
Ic
Ic
Ic
Ic =
Ic
Ic
Vdc
Ic _lmAdc
-
BVCEO
200
300
400
500
= 25mA, VCE = 5Vdc
= 100mA, VCE = 5Vdc
= 50mA, Is = lOrnA
20mA, Is = 2mA
= 50mA, Is = lOrnA
= lO!lAdc
-
-
-
1.2
.5
i.5
Test Conditions
Units
-
15
100 Typ.
50 Typ.
200 Typ.
1000 Typ.
=
VCE = rated BVCEO ' VBE 0
VCE rated BVCEO ' T = 125'C, VBE = 0
VES
5Vdc
Vce
lOVdc, IE
0, f = 1MHz
Ic _lAdc, VCE - 5Vdc, f _10MHz
/LAdc
mAdc
!lAdc
pf
MHz
ns
ns
ns
ns
=
=
=
Ic
=
= 100mA
= 300 ,uS; duty cycle ~ 2%.
D.C. Current Gain VS. Collector Current
Switching Speeds
500 , - - - - , - - - , - - , - - _ , - - - _ , - - ,
10
=
Vcr_
lOOV
t,j1.=10
z
;;:
,~ ~I
200~---t~~~~~-~~-+-~
'''".
to
.... 100
z
,t.~$o
''' 100kHz) results in smaller inductor-capacitor filter
and improved power supply response time
• High operating efficiency: Typical 2A circuit performanceRise and Fall time <75ns
Efficiency >85%
• No reverse recovery spike generated by commutating diode (See note 4. and Fig. 2.)
• Electrically isolated, 4-Pin, TO-66 hermetic case
.
DESCRIPTION
The Unitrode ESP Switching Regulator is a unique hybrid
transistor circuit, specifically designed, constructed and specified for use in high current switching regulator applications.
the designer is thus relieved of one of the most time consuming, tedious and critical aspects of switching regulator
design: choosing the appropriate switching transistors and
tommutating diode, and empirically determining the optimum
drive and bias conditions.
Switching regulators, when compared to conventional regulators, result in significant reductions in size, weight, and internal
power losses and a major decrease in overall cost. Using the
Unitrode PIC600 series, the designer can achieve further
improvements in size, weight, efficiency, and costs. At the
same time, because of the PIC600 series design and packaging,
the designer is aided in overcoming two of the most significant
The PIC600 series switching regulators are designed and characterized to be driven with standard integrated circuit voltage
regulators. They are completely characterized over their entire
operating range of -55°C to +125°C. The devices are enclosed
in a special 4-pin TO-66 package, hermetically sealed for high
reliability. The hybrid circuit construction utilizes thick film
resistors on a beryllia substrate for maximum thermal conductivity and resultant low thermal impedance. All of the
active elements in the hybrid are fully passivated.
Application Notes U-68 and U-76 provide a detailed description of the hybrid circuit and design guidance for specific
circuit applications.
SCHEMATIC
PIC600
PIC601
PIC602
POS.
INPUT
drawbacks to switching regulators: noise generation and slow
response time; there is, in fact, no diode reverse recovery
spike (see note 4.).
,-----~~
PIC610
PIC611
PIC612
NEG. 4
INPUT 0-.....----""""'-
POS.
OUTPUT
2
COMMON
r-'_~~
DRIVE
NEG.
OUTPUT
2
COMMON
MECHANICAL SPECIFICATIONS
PIC6DD PIC6D1 PIC6D2 PIC61D PIC611 PIC612
.075
.050
~~~
:mMIN'
4/79
4-Pin TO-66
.210
.190
.350
MAX
RAD.
NOTES:
1. Case is electrically isolated.
2. Loads may be soldered to within
1/16" of base provided temperaturetime exposure is Jess than 260"C
for 10 seconds.
OUTPUT(l)
200
lliD
_UNITRDDE
PIC600 PIC601 PIC602 PIC610 PIC611 PIC612
ABSOLUTE MAXIMUM RATINGS
PICGOO
PICG01
PICG02
PICG10
PICG11
PICG12
Input Voltage, V._ 2 ...
. .......... 6OV......
.... 80V........
100V......
-60V................ -SOV .............. -lOOV
Output Voltage, V,_2 ..... . ............................................ 60V .................... 80V .................. 10OV' ............... -60V................ -80V.............. -lOOV
Drive-Input Reverse Voltage, V3-4 ................................. 5V ...................... 5V...................... 5V.................. -5V .................. -5V.................. -5V
Output Current, I,
............................. 5A ...................... 5A ...................... 5A.................. -5A .................. -5A .................. -5A
Drive Current, 13 ......... ........................
.............. -0.2A ................ -0.2A. ............... -0.2A.................... 0.2A.................... 0.2A.................... 0.2A
Thermal Resistance
Junction to Case, 9 J_C
Power Switch
4.0°C/W
Commutating Diode
4.0°C/W
Case to Ambient, 9 c _1I
60.0°C/W
-SSoC to +12SoC
Operating Temperature Range, Tc ....
Maximum Junction Temperature, Tj
+lS0°C
Storage Temperature Range
----65°C to +lS0°C
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
PIC600, 601, 602
Test
Symbol
Min. Typ. Max.
Current Delay Time
20
40
tdl
Current Rise Time
PIC610, 611, 612
Typ. Max.
Min.
20
ns
75
ns
See Fi gu re 2.
150
ns
See notes I., 2., 4.
ns
50
75
SO
75
ns
Voltage Rise Time
t"
30
SO
30
50
ns
Voltage Storage Time
t"
Voltage Fall Time
75
700
50
Current Fall Time
t"
t'l
700
50
70
150
70
Efficiency (Notes 2. & 4.)
'1
tri
8S
8S
%
On·State Voltage (Note 3.)
V._ 11ool
1.0
I.S
-1.0 -1.5
V
On-State Voltage (Note 3.)
V4_I (on)
3.5
-2.S -3.S
V
Diode Forward Voltage (Note 3.)
V'_'lo'l
2.5
.8
1.0
-.8 -1.0
V
1.0
1.5
-1.0 -1.S
V
0_1
10
-0.1 -10
p.A
-10
p.A
10
-1.0 -10
p.A
500
p.A
Diode Forward Voltage (Note 3.)
V2_llon)
1.-,
1.-,
1,_,
1,_,
Off-State Current
Off-State Current
Diode Reverse Current
Diode Reverse Current
10
1.0
500
Conditions
Units
= 2SV(-2SV)
Voo ' = SV(-5V)
1 = 2A(-2Al
I = -20mA(20mA)
40
V"
00 ,
J
= 2A(-2Al, I = -.02A(.02A)
= SA(-5A), I = -.02A(.02A)
I, = 2A(-2Al
I, = 5A(-5A)
V. = Rated input voltage
V, = Rated input voltage, TA = 100°C
V, = Rated output voltage
V, = Rated output voltage, T A = 100·C
I,
J
I,
J
Notes:
1. In switching an inductive load, the current will lead the voltage on turn·on and lag the voltage on turn-off (see Figure 2). Therefore, Voltage
Delay Time" (tov ) == tdi
tri and Current storage Time (t~.> == tsv + t f ."
.
2. The efficiency is a measure of internal power losses and is equal to Output Power divided by Input Power. The switching speed circuit of
Figure I, in which the efficiency is measured, is representative of typical operating conditions for the PIC600 series switching regulators.
3. Pulse test: Duration = 3OOms, Duty Cycle ~2%.
4. As can be seen from the switching waveforms shown in Figure 2, no reverse or forward recovery spike is generated by the commutating
diode during switching! This reduces self-generated noise, since no current spike is fed through the switching regulator. It also improves
efficiency and reliability, since the power switch only carries current during turn-on.
+
POWER DISSIPATION CONSIDERATIONS
The total power losses in the switching regulator is the sum of the switching losses, and the power switch and diode D.C. losses. Once total
power dissipation has been determined, the Power Dissipation curve, or thermal resistance data may be used to deterrnind the allowable case
or ambient temperature for any operating condition.
The switching losses curve presents data for a frequency of 20KHz. To find losses at any other frequency, multiply by f/20KHz.
The D.C. losses curves present data for a duty cycle of .2_ To find D.C. losses at any other duty cycle, multiply by 0/.2 for the power switch
and by (1-0)/.8 for the diode.
At frequencies much below 10KHz the above method for determining the allowable case or ambient temperature becomes invelid and a detailed
transient thermal analysis must be performed. Please request Design Note 6 (DN-6) for further information.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
201
PRINTED IN U.S.A.
PIC600 PIC601 PIC602 PIC610 PIC611 PIC612
Efficiency
Power Dissipation
~
z
40
100
3S
90
•
0
>=
'"
en
en
25
a:
w
20
~
w
"'"a:w
z
w
U
r\
0
0-
>u
i\
0
;:
f
_\
'!:
15
\
Maximum allowable average
power dissipation each, for the
power switch and for the diode.
Maximum allowable case
temperature .--: 125°C
10
>
'"I
rf'
i
o
·50
·25
I
I
I
itw
1\
'"
\
As measured in circuit shown in
Figure l.
v,.
2SV
30
=
V'" X (Duty Cycle)
= 20mA
= 2S'C
Voul
I,
T,
::::=
.6 .7.8.91
I, - OUTPUT CURRENT (A)
Power Switch D.C. Losses
Diode D.C. Losses
10
Duty Cycle::.: .2,
/'
MAXIMUM .......-::::
~
en
0
-'
~~
~
.2
U
c::i
T,
,::;:; V
1_1
~
.1
.05
f-- f-f-
=
w
25'C
IJ
= 20mA
multiply by D/.2 where D
Cycle.
~
en
I
Power Switch Duty Cycle::::: 0.2
Diode Duty Cycle ::= 0.8
T,
= 25'C
To obtain the Power Switch
losses at any other duty cycle,
~TYPICAL
.5
(J)
(J)
...........
50
.5
10
w
---
= 5V
40
o
150
o .,
Ts;
60
10
I
= 50kHz, V
70
20
a
25
50
75
100 125
T, - CASE TEMPERATURE ('C)
0"1
-,--
80
30
20V
20kHz, V()U t
f
f 120kHZ Iv
I III
.5
M~xiML~
(J)
(J)
0
-
To obtain diode losses at any
other duty cycle, multiply by
(1-0)/.8 where D";: Power Switch-
...I
.2
U
c::i
.1
.05
= Duty
~
V/
'l
/
VTYPICAL
I-- I--'
IDlty Cycle.
.02
.01
.5
I
I
I
.02
.01
.6 .7 .8.9 1
2
I, - OUTPUT CURRENT (A)
.5
.6 .7 .8.9 1
I, - OUTPUT CURRENT (A)
Switching Losses
.5
~
(J)
w
(J)
(J)
0
-'
Voo = 25V, I, _.. 20mA
f = 20kHz
T, = 25'C
.2
MAXIMUM .1
Power Switch
.05
.002
f-+-+-CJ,..14--~'£'+
.001 '--'----'---'---J-.J<=--_ _ _--L-._ _-'---_'------'
.5 .6 .7.8:9 1
I, - OUTPUT CURRENT (A)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
202
PRINTED IN U.S.A.
PIC600 PIC601 PIC602 PIC610 PIC611 PIC612
300,uH
v
+25V'---UVVVL-~
/
POWER SWITCH
:
-T",!::: 40,u.s
~
-20mA
Pulse Width::: 10,us
Rep. Rate::: 20kHz
IE'PIII
Note: No Diode Reverse or Forward Recovery Spike (See note 4.)!
\,.
! . . ;:'}. . ~~:.~~;~~~~~. ~~.~.~~. . . . . . . '\
I
\
Figure 2. PIC600, PIC601, PIC602 Switching Waveforms
Figure 1. PIC600, 601, 602 Switching Speed Circuit
Note: PIC610, PIC611, PIC612 Test Circuit and waveforms are identical but of opposite polarity (V"
On-State Characteristics
...Z~
0:
0:
::>
u
"
II
w
...
'..."
u
j.XIMUM
0:
0:
I
I II
"'
TYPICAl
"'
0:
'"
;;
0:
o
/
U.
T
I,
c
~.
25'C
/1
JJ
"'o
"Ci
20mA
I
o
o
V. (on) -
DRIVE
ON-STATE VOLTAGE (VI
.S
V, '
M
-
I I III
I
g
"':;
100
-
50
40
30
-
-
-
-
-
-
'"
E.
r--..
t"
---------
tp,
20
>=
V V
t"
MAXIMUM
2S-C
T
1
I.S
2
J
15 ~e~sJre!d
in circuit
2.S
Sh~wn in
SOO f- Figure 1.
400 I- V" C 2SV
I- V,,,, o. SV
300
I):.:: 20mA
200 I- T, - 25"C
"':;0
!
>=
/
Fall Time
1000
I
As measured in circuit shown in
500 f- Figure 1.
400 I- V, = 25V
300 r- VO ,! .::: SV
I].::: 20mA
200 I- Tj = 25'C
/
OIODE FORWARD VOLTAGE (V)
Turn-On Time
1000
= +20mA),
Diode Forward Characteristics
IJ;/
~
...z
=-2SV, V~t =-SV, I
..J
..J
'"u.I
,.-
-'
(..-- I-""
100
c-
~
t"
t--
t--
so
l/
7
t"
40
30
20
10
10
.5
,6 .7.8.9 1
I, -
.S
OUTPUT CURRENT (A)
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
,6
.7.8 ,9 1
I, -
203
OUTPUT CURRENT (AI
PRINTED IN U.S.A.
POWER INTEGRATED CIRCUIT
PIC625
PIC626
PIC627
PIC635
PIC636
PIC637
Switching Regulator 15 Amp Positive and Negative
Power Output Stages
FEATURES
• Designed and characterized for switching regulator applications
• Cost saving design reduces size, improves efficiency, reduces noise and RFI (See note 4.)
• High operating frequency (to >100kHz) results in smaller inductor-capacitor filter
and improved power supply response time
• High operating efficiency: Typical 7A circuit performanceRise and Fall time <300 ns
Efficiency >85%
• No reverse recovery spike generated by commutating diode (See note 4. and Fig. 2.)
• Electrically isolated, 4-Pin, T066 hermetic case
DESCRIPTION
The Unitrode ESP Switching Regulator is a unique hybrid
transistor circuit, specifically designed, constructed and
specified for use in high current switching regulator applications. The designer is thus relieved of one of the most time
consuming, tedious and critical aspects of switching regulator
design: choosing the appropriate switching transistors and
commutating diode, and empirically determining the optimum
drive and bias conditions.
significant drawbacks to switching regulators: noise generation
and slow response time; there is, in fact, no diode reverse
recovery spike (See note 4.).
The PIC600 series switching regulators are designed and
characterized to be driven wih standard integrated circuit
voltage regulators. They are completely characterized over
their entire operating range of _55°C to +125°C. The devices
are enclosed in a special 4-pin T066 package, hermetically
sealed for high reliability. The hybrid circuit construction
utilizes thick film resistors on a beryllia substrate for maximum
thermal conductivity and resultant low thermal impedance. All
of the active elements in the hybrid are fully passivated.
Switching regulators, when compared to conventional regulators, result in significant reductions in size, weight, and
internal power losses and a major decrease in overall cost.
Using the Unitrode PIC600 series the designer can achieve
further improvements in size, weight, efficiency, and costs. At
the same time, because of the PIC600 series design and
packaging, the designer is aided in overcoming two of the most
SCHEMATIC
PIC625
PIC626
PIC627
pas.
Application Notes U-68 and U-76 provide a detailed description of the hybrid circuit and design guidance for specific
circuit applications.
pas.
NEG. 4
INPUT
0---.---..
OUTPUT
INPUT
PIC635
PIC636
PIC637
2
COMMON
NEG.
,r-:
""'«
"''">
«
f = 50KHz,V o .' =
'\
25
~
>
u
z
"" '"
20
0
0-
15
I
-
Maximum allowable average
power dissipation each, for the
power switch and for the diode.
Maximum allowable case
temperature =: 12S a C
50
Uj
40
-50 -25
Tc -
I
I\.
"
'\
30
20
As measured in the circuit shown---j---1
in Figure 1.
Vi, =25V
V O.Jf
10
25
50
75
100 125
CASE TEMPERATURE (OC)
50
T, 25°C
To obtain diode losses at any
o~her duty cycle, multiply by
(I-Dl/.8 where 0 = Power
20
!
"'0en
10
6 7 8 9 10
- OUTPUT CURRENT (A)
50
I
20
V
!
"'
In
..J
./
U
k r:::- j....--
0 1.0
.5
20
0.2,1 3 30mA
T, 25°C
To obtain power switch losses at
Duty Cycle
-- t--
any other duty cycle, multiply by
0/.2, where 0 is the duty cycle.
10
(J)
.....
I--MAXIMUM
In
15
Power Switch D.C. Losses
100
Switch Duty Cycle.
V,n X Duty Cycle
150
0.2
Power Switch Duty Cycle
Diode Duty Cycle
0.8
:::::
13 = 30m A
T, = 25°C
Diode D.C. Losses
100
5V~
60
"'
...ii:
5V
70
U
'\
10
O-C
20KHZ,Vout
80
0
TYPICAL- I - -
(J)
(J)
MAXIMUM
0
..J
k.....- f:;::v
U
0
f--
L
~ TYPICAL
.5
.2
.2
.10
2
.1
20
5678910
I, - OUTPUT CURRENT (A)
6 7 8 910
I, - OUTPUT CURRENT (A)
20
Switching Losses.
10
!
In
1.0
"'In
g
.5
"
.2
(J)
z
I
MAXIMUM -
~ .10
V
.....
Power Switch~
TYPICAL
......
./
V ...........
Power Switch
To determine switching losses at any other
frequency, multiply by f/20KHz where f is the
frequency at which the losses are to be
determined.
~
(J)
V" = 25V, I, = 30mA
f = 20KHz
Tc = 25°C
.05 I-- I-- MAXIMUM
Diode
%
u-11 M
.02
.01
2
Tr~ICAL- Fiode
7 8 910
I, - OUTPUT CURRENT (A)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
20
206
PRINTED IN U.S.A.
PIC625 PIC626 PIC627 PIC635 PIC636 PIC637
V"' :;;:::.
/ ..·;7....
+25V --"vV'v"---'~
=
Rl
. 71SQ
IDRI'IL
-30mA
Pulse Width.:::: 10)!S
Rep. Rate = 20k Hz
t--------<>--~
V~_I
.
V0IJ1
= SV
!
i
POWER SWITCH
j
Ton~10JLS
-Toll ==40ttS
Note: No Diode Reverse or Forward Recovery Spike (See note 4.)!
-----------
j ....
\.
;.)1................................................ '.
.f
'
,
COMMUTATING DIODE
\
f
\.
Figure 2. PIC625, 626, 627 Switching Waveforms
== -2SV, Voot == -SV, IDRIVE == +3OrnA.)
Figure 1. PIC625, 626, 627 Switching Speed Circuit
Note: PIC63S, PIC636, PIC637 Circuit and waveforms are identical but of oppOSite polarity (V"
On·State Characteristics
Diode Forward Characteristics
20
20
18
18
$
$
16
z
14
...
"'
/'
TYPICAL
'"'"
"'......
12
:::J
U
10
'"
'"
Z
a
I
l
6
/
"'
'"'"
16
14
/
:::J
/MAXIMUM
u
/ /
i .i
12
Cl
';:'""
TYPICAL
10
"-
"'aCl
a
I
I
-'
/1
o
o
V._,(on) -
ON·STATE VOLTAGE (V)
.5
V,_,(on) -
Fall Time
1000
As measured in the circuit shown
in Figure 1.
V"
25V
v out SV
I,
30mA
T,
2S'C
500
400
300
V"
400
V out
300
I,
T,
2SV
SV
30mA
2S'C
200
~
;::
As measured in the circuit shown
in Figure 1.
SOO
200
.s
"'::;;
"'::;;;::
100
teo
50
40
I
t"
,
tfi
~
.s
I
T, = 2S'C
2.5
1.5
DIODE FORWARD VOLTAGE (V)
Turn·on Time
1000
VMAXIMUM
/
/ V
II /
/ /
l?-V
'"
a
T, = 2S'C
1,=30mA- -
II
-'
...z
V
.1
100
>--
-
t f,
so
40
30
30
20
20
10
10
2
I, -
6 7 8 9 10
OUTPUT CURRENT (A)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
20
4
2
I, -
207
6 7 8 9 10
OUTPUT CURRENT (A)
20
PRINTED IN U.S.A.
PIC645
PIC646
PIC647
PIC655
PIC656
PIC657
POWER INTEGRATED CIRCUIT
Switching Regulator 15 Amp Positive and Negative
Power Output Stages
FEATURES
• Designed and characterized for switching regulator applications
• Cost saving design reduces size, improves efficiency, reduces noise and RFI (See note 4.)
• High operating frequency (to >100kHz) results in smaller inductor-capacitor filter
and improved power supply response time
• High operating efficiency: Typical 7A circuit performanceRise and Fall time <300 ns
Efficiency >85%
• No reverse recovery spike generated by commutating diode (See note 4. and Fig. 2.)
DESCRIPTION
The Unitrode ESP Switching Regulator is a unique hybrid
transistor circuit, specifically designed, constructed and
specified for use in high current switching regulator applications. The designer is thus relieved of one of the most time
consuming, tedious and critical aspects of switching regulator
design: choosing the appropriate switching transistors and
commutating diode, and empirically determining the optimum
drive and bias conditions.
Switching regulators, when compared to conventional regulators, result in significant reductions in size, weight, and
internal power losses and a major decrease in overall cost.
Using the Unitrode PIC600 series the designer can achieve
further improvements in size, weight, efficiency, and costs. At
the same time, because of the PIC600 series design and
packaging, the designer is aided in overcoming two of the most
The PIC600 series switching regulators are designed and
characterized to be driven with standard integrated circuit
voltage regul~tors. They are completely characterized over
their entire operating range of -55'C to +125'C. The devices
are enclosed in a special 3 pin TO-3 package, hermetically
sealed for high reliability. The hybrid circuit construction
utilizes thick film resistors on a beryllia substrate for maximum
thermal conductivity and resultant low thermal impedance. All
of the active elements in the hybrid are fully passivated.
Application Notes U-68 and U-76 provide a detailed description of the hybrid circuit and design guidance for specific
circuit applications.
SCHEMATIC
PIC645
PIC646
PIC647
pos.
significant drawbacks to switching regulators: noise generation
and slow response time; there is, in fact, no diode reverse
recovery spike (See note 4.).
pos.
NEG. 4
INPUT 0---+-----..
OUTPUT
INPUT
PIC655
PIC656
PIC657
2
COMMON
NEG.
~,.....--+-<) OUTPUT
DRIVE
COMMON
MECHANICAL SPECIFICATIONS
PIC645 PIC646 PIC647 PIC655 PIC656 PIC657
;ij{~~
.440
.420
4
1
3
2
.875
MAX.
L
3 Pin TO-3
:g~
DIA.
NOTE:
Loads may be soldered to within
1!t6" of base provided temperature~
time exposure is Jess than 260°C
for 10 seconds.
-'---7'---'t~,..,---,~
.525
MAX.
RAD.
[ill]
4/79
208
_UNITRDDE
PIC645 PIC646 PIC647 PIC655 PIC656 PIC657
ABSOLUTE MAXIMUM RATINGS
PIC64S
Input Voltage, V4_2 .
Output Voltage, V'_2
Drive-Input Reverse Voltage, V'_4 .
Continuous Output Current, I,
Peak Output Current.
Drive Current, I,
Thermal Resistance
PIC647
PIC646
.... 60V .. .
60V ... .
H . . • • • • H ••• 5V
15A ..
.. 20A
. ...... ... -O.4A.
.H'H.
Plcess
PIC656
PICBS7
100V
-60VH..
-80VHH.H.H .. H -100V
80V .... H
10DV.H.
-60VH.HHH.H
-80V .......... H.. -100V
80V.
5V................. -5V................. -5V.................. -5V
5V ....... .
15A.......... H.... -15A ........ H...... -15A ................ -15A
15A............ .
20A ................ -20A.... H....... H. -20A ................ -20A
20AHHH.
.. -O.4A.................... 0.4A................ H.. O.4A. ............. H.... 0.4A
-0.4A. .
Junction to Case, f)J_C
Power Switch
2'C/W
2'C/W
30.0·C/W
Commutating Diode
Case to Ambient, HCA
Operating Temperature Range, TC
Maximum Junction Temperature, Tj
-55'C to +125'C
+150'C
-65'C to +150'C
Storage Temperature Range
ELECTRICAL SPECIFICATIONS (at 2S'C unless noted)
PIC645{646/647
Test
Current Delay Time
I
Min.
Typ.
Max.
td;
-
35
60
-
35
60
65
40
150
-
65
40
175
60
900
70
175
-
-
900
100
175
85
-1.0
Current Rise Time
tri
Voltage Rise Time
Voltage Storage Time
t"
Voltage Fall Time
Current Fall Time
Efficiency (Notes 2 and 4)
t"
-
tr;
-
On-State Voltage (Note 3)
On-State Voltage (Note 3)
V'_'(onl
V4- lfon)
Diode Fwd. Voltage (Note 3)
Diede FWd. Voltage (Note 3)
V2- I (onl
Off-State Current
Off-State Current
Diode Reverse Current
Diode Reverse Current
PIC655/6S6/857
Typ.
Max.
Symbol
t"
~
V2- I (on}
1._,
1._,
1,_,
1,_,
-
85
1.0
60
175
300
1.5
3.5
Min.
-
-
2.5
.85
1.25
.95
0_1
1.75
10
-
-
-
10
1.0
10
-
500
-
-
-
-
You! = 5V(-5V)
-
ns
ns
lout = 7A(-7A)
I, = -30mA(30mA)
300
300
ns
ns
See Figure 2
See notes 1, 2, 4
-
%
-1.5
V
V
-3.5
-.85 -1.25
-.95 -1.75
-0.1 -10
-
-
SOD
Conditions
ns
ns
-2.5
-10
-1.0
Units
V
V
V;, = 25V(-25V)
I. = 7A(-7A), I, = -.03A(.03A)
I. = 15A(-15AJ, I, = -.03A(.03A)
1,=7A(-7A)
I, = 15A(-15AJ
V. = Rated input voltage
-10
p.A
p.A
p.A
V. = Rated input voltage, TA = 100'C
V, = Rated output voltage
-
p.A
V, = Rated output voltage, TA = 100'C
-
Notes:
1. In switching an inductive load, the current will lead the voltage on turn-on and lag the voltage on turn-off (see Figure 2.). Therefore, Voltage
Delay Time (tov) =::: tdl + tei and Current Storage Time (ts) == tSi + t,.
2. The efficiency is a measure of internal power losses and is equal to Output Power divided by Input Power. The switching speed circuit of
Figure 1., in which the efficiency is measured, is representative of typical operating conditions for the PIC600 series switching regulators.
3. Pulse test: Duration == 300ms, Duty Cycle ~2%.
4. As can be seen from the switching waveforms shown in Figure 2., no reverse or forward recovery spike is generated by the commutating
diode during switching! This reduces self~generated noise, since no current spike is fed through the switching regulator. It also improves
efficiency and reliability, since the power switch only carries current during turn~on.
POWER DISSIPATION CONSIDERATIONS
The total power losses in the switching regulator is the sum of the switching losses, and the power switch and diode D.C. losses. Once total
power dissipation has been determined, the Power Dissipation curve, or thermal resistance data may be used to determine the allowable case
or ambient temperature for any operating condition.
The switching losses curve presents data for a frequency of 20KHz. To find losses at any other frequency, multiply by f/20KHz.
The D.C. losses curves present data for a duty cycle of .2. To find D.C. losses at any other duty cycle, multiply by 0/.2 for the power switch
and by (I-Ol/.8 for the diode.
At frequencies much below 10KHz the above method for determining the allowable case or ambient temperature becomes Invalid and a detailed
transient thermal analysis must be performed. Please request Design Note 6 (ON-6) for further information.
UN'TROOE CORPORATION· 5 FORBES ROAD
LEX I NGTON. MA 02173 • TEL. (6171 861-6540
TWX (710l 326-6509 • TELEX 95-1064
209
PRINTED IN U.S.A
PIC645 PIC646 PIC647 PIC655 PIC656 PIC657
Power Dissipation
Efficiency
80
~
z
0
;::
.«
a.
iii
'"0
0:
OJ
~
100
OJ
20
~
I'"
40
0:
OJ
"«
f
'\
so
30
20KHZ, YO"' j20V
f
80
60
0
a.
1.- f
90
70
>0
zOJ
ti
1\
Maximum allowable average
>
power dissipation each, for the
«
I 10 - power switch and for the diode.
Maximum allowable case
0.0
temperature
125°C
i.::
"OJ
..I
"\
["-
70
o _' '"
20K Hz, Voc'
5V
5V~
60
SO
40
As measured in the circuit shown--+-..,
30
in Figure 1.
V;, =25V
YOu! = V ,n X Duty Cycle
I,
30mA
T, = 25'C
20
=
10
=
= 50KHz,V
0
-50 -25
25
50
75
100 125
CASE TEMPERATURE ('C)
Tc -
ISO
2
I -
Diode D.C. Losses
100
~
50
Power Switch Duty Cycle
Diode Duty Cycle
0.8
25'C
T,
20
To obtain diode losses at any
other duty cycle, multiply by
(1-0)/.8 where 0 = Power
10
Switch Duty Cycle.
'"
'"'"0
OJ
..J
c.i
ci
V
1.0
t:-
50
.....
c---MAXIMUM
15
20
Power Switch D.C. Losses
100
0.2
I
6 7 8 9 10
OUTPUT CURRENT (A)
20
V
~
TYPICAL-
Duty Cycle
30mA
0.2, 13
25'C
T,
To obtain power switch losses at
any other duty cycle, multiply b y - - r-0/.2, where 0 is the duty cycle.
10
I/l
OJ
I/l
I/l
r--
0
/'
..J
V
L
MAXIMUM
2
c.i
V
ci
.5
.5
.2
.2
.10
TYPICAL
I:;::V
.1
-
20
5 6 7 8 9 10
OUTPUT CURRENT (A)
I, -
6 7 8 910
OUTPUT CURRENT (A)
20
Switching Losses
10
L
~
if>
OJ
if>
if>
1.0
MAXIMUM -
"Iz
.2
I-
.10
-
.05
-
S
u
~
if>
.5
.02
.01
.-
-
Power SwitChp..
TYPICAL
,.....
MAXIMUM
I
V..,...........
Power Sw itch
Diode
11.%
I
U11 .Yt4 Tr~'CAL
I, -
UNITROOE CORPORATION, 5 FORBES ROAD
LEXINGTON, MA 02173 ' TEL. (617) 861-6540
TWX (710) 326-6509 ' TELEX 95-1064
Yin :.::::: 25V, I] =: 30m A
f = 20KHz
Tc '" 25'C
To determine switching losses at any other
frequency, multiply by f/20KHz where f is the
frequency at which the losses are to be
determined.
-
Fiode
20
5 6 7 8 9 10
OUTPUT CURRENT (A)
210
PRINTED IN U.S.A.
PIC645 PIC646 PIC647 PIC655 PIC656 PIC657
fVYVY'L----._~ - - -
-I-
RL
=
.71SI)
I.
V o ,,!
= SV
-30mA
Pulse Width.:::: 10tt5
Rep. Rale = 20kHz
IlJRIVl ::::
Figure 1. PIC645, 646, 647 Switching Speed Circuit
Figure 2. PIC645, 646, 647 Switching Waveforms
Note: PIC655, PIC656, Ple6S7 Circuit and waveforms are identical but of opposite polarity (V i l!=-25V, Vout=-SV, 'DRIVE=+3DmA.)
On·State Characteristics
Diode Forward Characteristics
20
20
18
18
$:
...$:Z
w
0:
0:
16
.,.- ,/"
14
TYPICAL
12
:>
()
........
w
...Z
10
/
z'"0
:/
I
11/
-'
V
w
rr
rr
:>
I/MAXIMUM
()
.
V/
16
14
/
12
0
a:
:;t
rr
/
TYPICAL
I /
/ V
II .!.
0
u.
T, = 2S'C
I, =30mA- I---
w
0
0
i5
I
I
/1
It- v
.S
V",(on) -
ON·STATE VOLTAGE (V)
Fall Time
1000
in Figure 1.
V" =25V
SOO
Vo'A:::: 5V
400
I) :::30mA
T, = 2S'C
300
200
As measured in the circuit shown
in Figure 1.
25V
5V
Vout
30mA
I,
T, _25'C
ViI!
200
~
10
w
:;
;::
30
~ t---
If.
;::
I
-
SO
40
.... f-
.1
:; 100
100
,
tfi
~
10
w
I
2.5
I.S
DIODE FORWARD VOLTAGE (V)
Turn·on Time
1000 rA-s~m-e-as-u-re-d~in-I-h-e-c-ir-c-ui-1-sh-o~w-n-----Tt----'
SOO
400
300
T, = 25°C
I
-'
V,.,(on) -
I/MA,XIMUM
I
10
50
40
30
20
20
10
10
2
4
S 6 7 8 9 10
I, - OUTPUT CURRENT (A)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6S09 • TELEX 95·1064
20
2
I, -
211
5 6 7 8 9 10
OUTPUT CURRENT (A)
20
PRINTED IN U.S.A.
POWER INTEGRATED CIRCUIT
PIC730
PIC740
Schottky Switching Regulator 30A, 40V
Power Output Stages
APPLICATIONS:
FEATURES
• Designed and characterized for switching regulator applications
• Cost saving design reduces size, improves efficiency, reduces noise and RFI
• High operating frequency (to 100kHz) results in smaller inductor-capacitor filter
and improved power supply response time
• Low forward drop of Schottky Rectifier:
VF
.6V at 20A
• High Efficiency: 90% typo @ 15A (see last page)
High efficiency and high current
Buck or Flyback type switching
regulator.
=
DESCRIPTION
significant drawbacks to switching regulators: noise generation
and slow response time.
The Unitrode PIC700 series are unique hybrid circuits, specifically designed, constructed and specified for use in high
current switching regulator applications. The designer is thus
relieved of one of the most time consuming, tedious and
critical aspects of switching regulator design: choosing the
appropriate switching transistors and commutating diode.
The PIC700 series switching regulators are completely characterized over their entire operating range of -55°C to +125°C.
The devices are enclosed in a special 3 pin TO-3 package,
hermetically sealed for high reliability. The hybrid circuit
construction utilizes a beryllia substrate for maximum thermal
conductivity and resultant low thermal impedance. All of the
active elements in the hybrid are fully passivated.
Switching regulators, when compared to conventional regulators, result in significant reductions in size, weight, and
internal power losses and a major decrease in overall cost.
Using the Unitrode PIC700 series the designer can achieve
further improvements in size, weight, efficiency, and costs. At
the same time, because of the PIC700 series design and
packaging, the designer is aided in overcoming two of the most
SCHEMATIC
PIC730
PIC740
POS. 4
INPUT
POS.
OUTPUT
cr---....
DRiVE
COMMON
MECHANICAL SPECIFICATIONS
PIC730 PIC740
NOTE:
3 Pin TO-3
Leads may be soldered to within
1!t6" Of base provided temperaturetime exposure is less than 260°C
for 10 seconds.
mm
ins.
C
.875 MAX.
22.23 MAX.
.135
3.43
.250-.4~
6.35-11.43
E ~;'
D
4
1
3
5.21-5.72
.420-440
10.67-11.18
G
.145-.165
3.68-4.19
.395-.405
10.03-10.29
J
.151-.1610IA.
3.84-4.090106,.
K
.188 MAX. RAO. 4.78 MAX. RAD.
H
L
5-79
7.92 MIN.
F
.525 MAX. RAO. 13.34 MAX. RAD.
M
.706-.728
17.98-18.49
N
1.tn-t.t97
29.90-30.40
P
.038-.043 DtA.
.97-1.09 OIA
212
lli1J
_UNITRDDE
PIC730 PIC740
ABSOLUTE MAXIMUM RATINGS
PIC730
PIC740
Input Voltage
.....................
... 30V......... .............................
....... 40V
Output Voltage
.................................................................................30V............. .........................
...................... 40V
Drive-Input Reverse Voltage
................................................ 8V ..................................................................................... 8V
Continuous Output Current ............................................................................................20A ........................................................................................20A
Peak Output Current ........
......................
..................................................30A......... ...........................................
................30A
Drive Current ..................................
......................
......................................... SA...........
... SA
Thermal Resistance
Junction to Case, eJ •c
Power Switch ............................ .
Commutating Diode
Case to Ambient, eC •A ....... .
Operating Temperature Range, Tc..... .
Maximum Junction Temperature, TJ .
Storage Temperature Range ..
........................................... 1.0'C/W
. ...................................................
.............2.0'C/W......... .
................................................................................................................ 30'C/W ..................... .
......................................................................................................-55'C to +125'C........... .
.............................. .............................. ............................. ........... +l50'C.......................... .
. ....................................................-65'C to +l50'C........... .
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
SCHOTTKY RECTIFIER
Test
Symbol
PIC730
. Max.
Min.
PIC740
Min.
Max.
Unit
Test Conditions
V. _ ratea,
Te = 12S'C
Pulse Width = 300,,5,
Duty Cyele = 1 percent
Maximum Instantaneous
Reverse Current
i.
-
50
-
50
mA
Maximum Instantaneous
Forward Voltage
VF
-
0.6
-
0.6
V
iF == 20A
Tc == 12S'C,
Collector Saturation
Voltage (Note 1)
VeE1,a'i
-
1.0
-
1.0
V
Ic =20A
I,
== 2.SA
Base Saturation
Voltage (Note 1)
V'E 1"'1
-
1.5
-
1.5
V
Ic
== 20A
I,
= 2.SA
V CEO (susl
30
-
40
-
V
Ie = 100mA
Collector Cut-off
Current
ICEO
-
10
-
10
mA
VCE == 40V
P.W.= 3001>5
Emitter Cut·off
Current
IEao
-
10
-
10
mA
VEa = 8V
P.W.= 3001>5
td
t,
t,
tf
-
20
SOO
1.5
2S0
-
20
SOO
1.S
2S0
nS
nS
I>S
nS
Vcc = 30V
Ic = 20A
la, = 182 = 2.SA
VaE loffl = -4V
t fj
-
300
-
300
nS
-
3S0
-
3S0
nS
TRANSISTOR
Collector-Emitter Sustaining
Voltage (Note 2)
Resistive
Switching
Speed
Delay
Rise
Storage
Fall
Inductive
Switching
Speed
Current
Fall
Voltage
Fall
tlv
TJ = 100'C
Vec =30V Ic
20A
V clamp = 40V L
1751>H
la,
la,
2.5A
=
= =
=
Notes
1. Pulse length=250 ~s; duty cycle =fi 1%.
2. Sustaining VOltage. Measured at a high current point where collector-emitter voltage is lowest. Current pulse length a! 50 ",s; duty cycle 'lEi 1%.
Voltage clamped at maximum collector-emitter voltage.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
213
PRINTED IN U.S.A.
PIC730 PIC740
Power Dissipation
DC Current Gain
160
SOO
I
140
~
Transistor
200
c: 120
~
'"
0.
.~
\
100
C
:;;
;:
80
0
ll.
ili
~
">
""I
Schottky Rectifier
60
"
40
u
t'....
o
-25
25
"'0:0:
SO
0
0
0
r;~
\
"
75
lao
::>
"\
SO
20
f/
Transistor -
1.0 I--
10
.........
S
100
125
0.2
150
0.5
~
"'«
r-- lOO°C
Cl
~
25°C
0:
0:
..J
~
.1
I---
0:
I-
«
(J)
::>
.....-: j::7/
0
:VV:/
>
::>
Te =2SoC
"'
I-
Z
0
Jill
~~.'b
I~ r-
10
Z
IP7
bblldo "S
r"""
UL"\
I-
./
~
~
20
t%:
.5
20
Forward Bias Safe Operating Area
30
..,.. ~
BE ,,,tj
10
Ie - COLLECTOR CURRENT (Al
Saturation Voltages
J
sk.c
"
-S5°C
~
Tc - Case Temperature (OC)
3.0
-
I
25!C
Z
"\
20
o
Cl
I-
I"'" I\.
ll.
-SO
,....-
z
;j'
Sv
VeE
lOOOC
~
.05
r-=:
I--""
V
0
~\ ~
0:
0
VcEfsetl
I0
"'
V
2
..J
..J
k::: ~5°C
r-I-
I"
Limited
\
V
~
0
0
I
100°C
_u
leJli=a- t-
O.S
.04
0.3
.5
.3
10
Ie - COLLECTOR CURRENT (A)
10
2
20 30
20
SO
200
100
VeE - COLLECTOR VOLTAGE (V)
Resistive -
Resistive - Turn-On Time
Turn-Off Time
1000
SOD
g 200
"'2
;: 100
100°C
H
':::: ..... I--fir°c
t::'"'"
./
on
t, l-
"';:2
Cl
l:!
25°C
50
~
O.S
Vee = 30V
leJl,'n
10
2
0.5
Ie - COLLECTOR CURRENT (A)
0.2
;--t-
100°C
~
~
i"--
100°C
r-t,
.0 5
0.2
20
Vee _30V
leJl,~ 8
2S°
UJ
I
I
.1
:J
<..l
0::
,I
.5
.20
.50
1.0
2.0
5.0
10
20
I-
~-55'C
'/
h
V V
100'C
.10
~
50
~
f--
~I-'
50
ro
50
~
50
-
~
f-
~
125'C
10
~
V,-REVERSE VOLTAGE (% of V,w)
Possible Circuit Configurations
15 AMP
SWITCHING REGULATOR
15 AMP
Pass Transistor - Unsaturated-Mode
T,
PIC74Q
EIN
=~2-5.....-
r-------,
..........---1"--"
SWITCHING REGULATOR
Pass Transistor -
Eo=5Y
,
I
100
500
,I
SOY
EU
u
'"
20
Maximum allowable average"
10
power dissipation each, for the
transistor and for the rectifier.
Maximum allowable case
temperature = 12S"C
I"\.
2
W
oJ
oJ
!\.
j' ,
./a
~~
~
1
Te= 2S'C
~~s Apply Belr
.2
I\,
I I '1
.1
10
5
~
\.
\
Rated V CEO
150
,-C
\~
1,\ ~
..!'
25
50
75
100 125
Te - CASE TEMPERATURE (OC)
'\.+-
~~
~ l
u
g
~
PIC
801
'"i'!:
w
VV
0
;::
'"::>'"
'"
0.2
V
I-- :--
I-
I
(/I
0.1
0.1
.05
' - f--:; 6; ...
55'C
./ OO'C./
1.00'c
z
0.2
10
VSE \SlIt}
25'
0
> 0.5
PIC
811
oJ
oJ
u
-5S'C
w
..J
0.5
(J
a
PIC811
~ Vh,c
VeE (~a'J
.05
20
50
100
200
500
1000
.05
Ie -
Rectifier - Forward Current
vs
Forward Voltage
D.C. Current Gain
200
0.5
0.2
COLLECTOR CURRENT (A)
0.1
VeEX 1'"'1- COLLECTOR VOLTAGE (V)
I I
10
VeE = 5V
100
./
z
;;:
'"
100"C
50
I-
Z
w
IZ
W
'"c:
::>
u
25'C
--
20
t.i
ci 10
I
-5S'C
V/
5
f::::
.....
100'C/, ; / 2S'C
2
//
''""
II
::>
u
~
o
c:
~~
~ .5
c:
I
...a
=-~
5
.1
2
.05
0.1
0.2
0.5
Ie - COLLECTOR CURRENT (A)
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
5
.7
218
.9
1.r
1.3
1.5
1.7
1.9
V,- FORWARD VOLTAGE (V)
2.1
2.3
PRINTED IN U.S.A.
PIC800 PIC801 PIC810
Resistive - Turn-On Time
Resistive -
1000
Turn-Off Time
10
Vee
'ell ,
100'C
500
--
5
2S'C
V
1/
;/
~
,/
t.
r-...
.s'"
"'
:.
PIC81l
....
.....
2
..3
100
;::
100'C
l' ........
:.
;::
t,
125V
5
ts
25'C
0.5
50
~
100'C
...... ~
0.2
0.5
Ie -
2
2S'C
I
0.1
0.1
10
J.-
V
Vee = 125V
'ell,=S
10
0.1
/~
V
0.2
20
0.2
Ie -
COLLECTOR CURRENT {Al
2
0.5
COLLECTOR CURRENT (Al
10
Typical Inductive Switching Times
+
I
=
IB'
=
-I B2 • V(clamp)
=
350V
Vee = 125V
t,
t"
tfi
#S
nS
nS
1.2
1.76
120
140
160
185
2S'C
lOO'C
.8
1.1
100
170
100
130
25'C
100'C
.9
1.0
80
190
100
140
Current
Temp.
'e=IA
25'C
100'C
'e=3A
le=SA
APPLICATIONS:
BUCK REGULATOR
FULL BRIDGE
PUSH-PULL
-
rt"----~_...---<> E'N
,
1
i PIC 810
PIC 810
_J
PIC 810
SINGLE ENDED
HALF BRIDGE
ii~.h=r
,
i,PIC 811
-
E'N
DEFLECTION CIRCUIT
0--..--------.-,
- -,,
FLYBACK TRANSFORMER
,
: PIC 810
__ J
II ~
-,,
-
,: PIC 810
--,
PIC 810
Yoke
_J
'--_ _ _ _ _.......Eout
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (7l0) 326-6509 • TELEX 95-1064
219
PRINTED IN U.S.A.
SWITCHING REGULATOR POWER CIRCUITS
200
200
200
200
200
200
204
204
204
204
204
204
208
208
208
208
208
208
212
212
216
216
216
216
DESCRIPTION
PART NUMBER
PAGE
PIC600
PIC601
PIC602
PIC610
PIC611
PIC612
PIC625
PIC626
PIC627
PIC635
PIC636
PIC637
PIC645
PIC646
PIC647
PIC655
PIC656
PIC657
PIC730
PIC740
PIC800
PIC801
PIC810
PIC811
PART NUMBER INDEX
5.0A; 60V (Pas.); TO-66
5.0A; 80V (Pas.); TO-66
5.0A; 100V (Pas.); TO-66
5.0A; 60V (Neg.); TO-66
5.0A; 80V (Neg.); TO-66
5.0A; 100 V (Neg.); TO-66
15.0A; 60V (Pas.); TO-66
15.0A; 80V (Pas.); TO-66
15.0A; 100V (Pas.); TO-66
15.0A; 60V (Neg.); TO-66
15.0A; 80V (Neg.); TO-66
15.0A; 100V (Neg.); TO-66
15.0A; 60V (Pas.); TO-3
15.0A; 80V (Pas.); TO-3
15.0A; 100V (Pas.); TO-66
15.0A; 60V (Neg.); TO-3
15.0A; 80V (Neg.); TO-3
15.0A; 100V (Neg.); TO-66
30A; 30V; (Pas.); TO-3
30A; 30V; (Pas.); TO-3
8A; 350V; (Pas.); TO-66
8A; 400V; (Pas.); TO-66
8A; 350V; (Neg.); TO-66
SA; 400V; (Neg.); TO-66
·Contact Unitrode far specificatians and ratings.
Legend, J -
JAN
JTX -
JANTX
JTXV -
JANTXV
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (7l0) 326·6509 • TELEX 95·1064
220
PRINTED IN
u.s A
SALES OFFICES
PART NUMBER INDEX
II
DESIGNERS' GUIDES
III
POWER TRANSISTORS & DARLINGTONS
IV
SWITCHING REGULATOR POWER CIRCUITS
V
RECTIFIERS
HIGH VOLTAGE RECTIFIERS, RECTIFIER
MODULES & MULTIPLIERS
VII
RECTIFIER BRIDGE ASSEMBLIES
VIII
POWER ZENERS & TRANSIENT VOLTAGE SUPPRESSORS
IX
THYRISTORS (SCRs, Triacs, PUTs)
X
SWITCHING & GENERAL PURPOSE DIODES
XI
PIN DIODES
XII
CAPACITORS
XIII
APPLICATION NOTES & DESIGN NOTES
XIV
MECHANICAL SPECIFICATIONS
XV
221
222
SCHOTTKY RECTIFIERS
PRODUCT SELECTION GUIDE
~L?ZZZ~
DO-SF
'Center-tap 15A per leg
• 'V R at 25°C is 45V. VR at 150°C is 35V.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
223
PRINTED IN U.b.l\.
RECTIFIERS
A
ULTRA-FAST RECOVERY (trr -
B
~
Sim, to 11>-220
25 to SOnS)
IN5802*
UE51101
.975@2A
25n5
IN5807*
UE51301
.925@6A
30n5
IN5803
.875 @ lA
25n5
IN5808
.925@6A
30n5
IN5804*
UE51102
.975@2A
25n5
IN5809*
UE51302
.925@6A
30n5
IN5805
.875 @ lA
25nS
IN5810
.925@6A
30nS
IN5806*
UESl103
.975@2A
25nS
IN5811*
UES1303
.925@6A
30nS
UE51401
.975@8A
35n5
UE51402
.975@8A
35n5
UES1403
.975@8A
35n5
UES1304
1.25 @3A
50n5
UESll04
1.25 @ lA
50nS
UESll05
1.25 @ lA
50nS
UE51305
1.25 @3A
50nS
UE51106
1.25 @ lA
50nS
UES1306
1.25 @3A
50nS
* Available as JAN, TANTX, JANTXV
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
224
Printed in U.S.A.
PRODUCT SELECTION GUIDE
ULTRA·FAST RECOVERY (t" - 25 to SOnS)
UE52402
.975@8A
35n5
UES2403
.975@8A
35nS
IN5812*
UES701
.825@25A
35n5
UES501
.9@ 50A
50n5
IN5813
.825@25A
30nS
UE5502
.9@ 50A
50n5
IN5814*
UE5702
UES2602
.825@25A .825@ 15A
35n5
35n5
UE5503
.9@50A
50nS
IN5815
.825@25A
35n5
UE5504
.9 @50A
50n5
IN5816*
UES703
UES2603
.825@25A .825 @ 15A
35nS
35n5
UE5505
.9@50A
50nS
UE5704
1.15 @ 20A
50nS
UE5804
UE52604
1.15 @ 15A 1.15 @ 50A
50n5
50n5
UE5705
1.15 @ 20A
50n5
UE52605
UE5805
1.15 @ 15A 1.15 @ 50A
50n5
50n5
UE5706
1.15 @ 20A
50n5
UE52606
UE5806
1.15 @ 15A 1.15 @ 50A
50nS
50nS
UES801
.84@70A
50n5
•
UE5802
.84@70A
50nS
UE5803
.84 @70A
50n5
Center-tap, SA per leg
Center-tap, 15A per leg
'Available as JAN, JANTX, JANTXV
(11
(21
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
225
Printed in U.S.A.
RECTIFIERS
UTX3l05
lV@2A
lOOnS
UTXl05
LOO@.5A
75nS
UTX205
l.OV@ lA
75nS
UTX110
l.OV @ .5A
75nS
UTX2l0
l.OV@ lA
75nS
SES5002
.975 @ lA
lOOnS
UTX3ll0
l.OV@ 2A
lOOnS
UTX4110
l.OV@3A
lOOnS
UTX115
l.00 @ .5A
75nS
UTX2l5
l.OV @ lA
75nS
SES5003
.975@ lA
lOOnS
UTX3115
l.OV @ 2A
lOOnS
UTX4ll5
l.OV@3A
lOOnS
UTX120
1.00@ lA
75nS
UTX220
l.OV@ lA
75nS
UTX3l20
1.0V@ 2A
lOOnS
UTX4l20
1.0V@3A
lOOnS
UTX125
l.00 @ .5A
75nS
UTX225
l.OV@ lA
75nS
SES5301
.975@5A
lOOnS
SES5401
l.025 @SA
lOOnS
SES540lC
l.025 @SA
lOOnS
SES5701
.S3@20A
lOOnS
SES560lC
.S3 @ l2.5A
lOOnS
SES5S0l
.S5@60A
lOOnS
SES5302
.975@5A
lOOnS
SES5402
1.025@SA
lOOnS
SES5402C
1.025@SA
lOOnS
SES5702C
.S3@20A
lOOnS
SES5602C
.S3 @ l2.5A
lOOnS
SES5S02
.S5@60A
lOOnS
SES5303
.975@5A
lOOnS
SES5403
1.025 @SA
lOOnS
SES5403C
1.025@SA
lOOnS
SES5703
.S3@20A
lOOnS
SES5603C
.S3 @ l2.5A
lOOnS
SES5S03
.S5@60A
lOOnS
"'Center·tap. 8A per leg
(2ICenter·tap, 12.5A per leg
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064
226
PRINTED IN U.S.A.
PRODUCT SELECTION GUIDE
9~5
ic
B
A
FAST RECOVERY (t" - 150 to 500nS)
..
, .., ~,~
30A
00-5
IN5415*
IN3909"
l.lV@ .5A
250nS
l.lV@ lA
250nS
l.lV @3A
250nS
1.5V@ 9A
150nS
l.lV@4A
250nS
UTRll
UTR12
UTR3310
IN5416'
IN5186*'
UTR4310
l.lV @ .5A
250nS
l.lV @ lA
250nS
l.1V@3A
250nS
1.5V@9A
150nS
l.1V@4A
250nS
UTR21
IN4942*
IN5615*
UTR22
UTR3320
IN5417*
IN5187*'
UTR4320
l.1V @ .5A
250nS
UTR31
l.1V @ .5A
300nS
l.3V@ lA
150ns
l.1V@lA
250nS
UTR32
l.1V@ lA
300nS
l.1V@ 3A
250nS
1.5V@ 9A
150nS
l.1V@4A
250nS
UTR41
IN4944*
IN5617*
UTR42
UTR3340
IN5418'
IN5188**
UTR4340
l.1V @ .5A
350nS
1.3V @ lA
150nS
l.1V@ lA
350nS
l.1V @ 3A
300nS
1.5V@ 9A
150nS
l.lV @4A
400nS
UTR52
l.1V @ lA
400nS
UTR3350
l.1V@3A
350nS
IN5419*
1.5V @ 9A
250nS
UTR4350
l.1V @4A
400nS
UTR62
UTR3360
l.1V@ lA
400nS
l.1V@3A
400nS
IN5420'
IN5190**
1.5V @ 9A
400nS
l.lV@4A
400nS
UTR51
l.1V @ .5A
400nS
UTR61
l.1V @ .5A
400nS
IN4946*
IN5619*
1.3V @ lA
250nS
1.4V@95A
200nS
UTR4410
UTR5410
UTR6410
l.1V @6A
300nS
UTR4420
UTR5420
UTR6420
l.1V@6A
400nS
IN3910"
1.4V@95A
200nS
IN3911'*
1.4V@95A
300nS
IN3912**
1.4V@95A
200nS
UTR4440
IN3913*
UTR5400
UTR6440
l.1V@ 6A 1.4V@95A
500nS
200nS
UTR4360
"Available as JAN, JANTX, JANTXV
"Available as JAN, JANTX
UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL, (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
227
PRINTED IN U.S.A.
B:
RECTIFIERS
PRODUCT SELECTION GUIDE
A
STANDARD RECOVERY
UT236
URllOt
UT235
IN4246*
IN5616*
UT238
IN4247*
IN5618*
UT361
IN424S*
IN5620*
UT347
IN4249*
UT261
UR210t
UT267
IN3613**
\.
UT3010
UT4010
UT5110
UT6110
UT8110
UT3020
T4020
IN5550*
UT5120
UT6120
UT8120
, UT3040
UT4040
IN5551*
UT5140
UT6140
UT8140
UT3060
UT4060
IN5552*
UT5160
UT6160
UT8160
IN5553*
UT268
IN3614**
UT364
'Available as JAN, JANTX, JANTXV,
"Available as JAN, JANTX,
tRadia!ion Toleran!
UNITRODE CORPORATION. 5 FORBES ROAD
~EXINGTON. MA 02173 • TE~, (617) 861-6540
TWX (710) 326-6509 • TE~EX 95-1064
228
PRINTED IN U.S.A.
RECTIFIERS
JAN &JANTX IN3611-IN3614
Military Approved, 1 Amp,
General Purpose
FEATURES
DESCRIPTION
•
•
•
•
This series of MIL approved JAN and
JANTX general purpose tamp rectifiers are
useful in many high rei applications.
Qualified to MIL-S-19500/228
Continuous Rating: lA
Surge Rating: 30A
PIV: to 800V
ABSOLUTE MAXIMUM RATINGS
Peak Reverse Voltage Min.
Reverse Working Voltage
240V
480V
720V
920V
200V
400V
600V
800V
Type
JAN
JAN
JAN
JAN
& JANTX IN3611
& JANTX IN3612
& JANTX IN3613
& JANTX IN3614
•
Maximum Average D.C. Output Current
....... l.OA
@ TA = lOO'C .
. ................... O.3A
@ TA = 150'.C .
Non-Repetitive Sinusoidal
Surge Current (8.3ms) . . ...... 30A
Operating Temperature Range.
.... -65'C to +175'C
Storage Temperature Range .
......................... -65'C to +200'C
Thermal Resistance ................................................ See Lead Temperature Derating Curve
MECHANICAL SPECIFICATIONS
JAN & JANTX1N3611-1N3614
~
.OSS" TVP.
Band IndicateJ"
cathode end
0
11.
'j"
r
I
1SS " TYP,
. 3.9mm ....
J1
028" -<'-001
O:71mm'1:.03
t
n~ 0
BODY A
f
.085" MAX.
~
TYP.
2.2mm
1+--.700" M1N ...... !-_.250 .. MAX
17.8mm
6.3Smm
1.625" MIN
41.3mm
229
lliD
_UNITRODE
JAN & JANTX 1N3611-1N3614
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Maximum D.C.
Minimum
Reverse
Type
JAN
JAN
JAN
JAN
Peak
Reverse
D.C. Voltage
Breakdown
Voltage
@ 100"A
200V
400V
600V
800V
240V
480V
720V
920V
& JANTX 11113611
& JANTX 1N3612
& JANTX 1N3613
& JANTX '1N3614
Reverse
Forward Voltage
Min.
Max.
I
L
...
~ 3
a
";::
'"
"'"«
3
II:
~ 1
«
I
2.5
'"'"" ""
~
50
T, -
!:l~
eel
1.5
~
'"'~
~
75
100
125
150
LEAD TEMPERATURE ('C)
~
".l
(")
~
25
«
II:
3.5
~ r-....
II:
lum
Z
L-~
'"u:t= 2
u
"'":::>
II:
80
60
III
r---!-+-t+t+1fHS~::;:-...;::~k:~-+-I Tur~~:n~~~ C;i~~~~-
---
a
'"u:(j
40
'"
II.
III
...
20
o
'If.
10
100
CYCLES AT 60 Hz HALF SINE WAVE
.5
1,000
175
Typical Reverse Current vs PIV
10
.001
.002
:;;-
;;
3
/
~ ,5
'"~
I
IIIIII
I
I I
Turret 1" centers-
Typical Forward Current
vs Forward Voltage
...Z
300,uA
Allowable FDrward Surge vs Number of Cycles
I
= Va"
"j~
II:
150°C
1,uA
@1.0A
100
"'l
:::>
u
I
25°C
l.lV(pk)
O.6V
Maximum Current
vs Lead Temperature
~
z
Current
at D.C. Voltage
Peak
.1
:::>
u .05
I
_".02
1/
.01
.005
II
.002
.001
.2
II
.4
V, -
II
.05
.1
.2
:::>
u
'"II:'"
'">
'"
-----
50'C
./
-+2S'C
...... ~
.5
---
II:
5
+75'C
10
20
~25'C
50
100
II
.6
.8
1
VOLTAGE (V)
'"
II:
II:
lV/I'I
/
...
.02
Z
~u.<" u u
$.? ;/&-- c-
.2
.005
.01
150
1.2
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064
1.4
100
50
% OF PIV
230
PRINTED IN U.S.A.
JAN, JANTX
JAN, JANTX
JAN, JANTX
JAN, JANTX
JAN, JANTX
RECTIFIERS
Military Approved,
Fast Recovery, 30A
FEATURES
• Qualified to MIL-S-19500/308
• High Mechanical Integrity
• Low Thermal Resistance
• JAN and JANTX Avai lable
IN3909
IN3910
IN3911
IN3912
IN3913
DESCRIPTION
These devices feature unique mechanical
ruggedness combined with fast switching
electrical characteristics. Devices may be
used in many power switching circuits.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage
Type
SOV
lOOV
200V
300V
400V
JAN, JANTX lN3909
JAN, JANTX lN39l0
JAN, JANTX lN3911
JAN, JANTX lN39l2
JAN, JANTX lN3913
Maximum Average D.C. Output Current
@ Tc = lOO'C ...
Non Repetitive Sinusoidal Surge Current
@ Tc = lOO'C
Thermal Resistance, Junction-to-Case ...
Operating Temperature
Storage Temperature
30A
300A
............................................ L2'C/W
Tc = -65'C to +lSO'C
Tc = -65'C to +175'C
MECHANICAL SPECIFICATIONS
JAN, JANTX lN39D9, lN391D, lN3911, lN3912, lN3913
00-5
.156
l.J---: __
pr(A,NT_!~ .~ ~L'j~!~'
MAX.
lf4-28
UNF-2A
140 MIN. DIA.
~~6ro
Dimensions in inches.
Notes:
1. Polarity is cathode-ta-stud.
2. All metal surfaces tin plated.
3. Maximum unlubricated stud torque: 30 inch pounds.
4. Angular orientation of terminal is undefined.
[ill]
1/79
231
_UNITRDDE
JAN, JANTX IN3909, IN3910, IN3911, IN3912, IN3913
ELECTRICAL SPECIFI.CATIONS (at 25"C unless notedlt
Maximum
Leakage
Current
@PIV
Type
Peak
Inverse
Voltage
Maximum
Forward
Voltage
J, JTX IN3909
J, JTX IN3910
J, JTX IN3911
J, JTX IN3912
J, JTX IN3913
SOV
100V
200V
300V
400V
l.4V(pk)
@
9SApk
tp';;; 8.3rns
de ';;;2%
1,=
Output Current vs.
Case Temperature
~
...
...z
II:
II:
:::J
20
<)
...
;;)
...n.:::J
0
1\\
...z~
1
.2
Tc -
200nsec
:::J
_'\
<)
1
~
./.JCJ/o
.. !oJ
II
175
.2
CASE TEMPERATURE ('C)
1
.1
.2
/
.4
~
...
10
...
20
z
II:
II:
V, -
2slc _ .../
:::J
<)
I.
0
100
200
\OO'C
,/
\SO'C
'/
/'"
II
.6
....--
2
~llll~o/
~
1
.5
150
.1
.2
Vl II I
:/11 !/
r-
II:
II:
=
Typical Reverse Current
vs. Voltage
I
V
10
...
125
100
10rnA
=
VV IV
20
\
80llA
~~/
50
10
1OO'C
Typical Forward Current
vs. Forward Voltage
100
30
25'C
Maximum
Reverse
Recovery Time
IF
lA, V.
30V
1K
2K
1('.8
1.0
1.2
140
1.4
VOLTAGE (V)
75
100
50
25
VOLTAGE IN % OF PIV
Reverse-Recovery Circuit
Jon
NON·I NDUCTIVE
RESISTOR
OUTPUT FOR
MONITORING
OSCILLOSCOPE
SEE NOTE 1.
+
REGULATED
VOLTAGE
SOURCE
SEE NOTE 3
SEE NOTE 2
D.U.T.
30·VOLT
REGULATED
POWER SUPPLY
1. pi
300V
1.0i!
NON· I NDUCTIVE
SHUNT
1. .,
300V
+
NOTES:
1. Monitoring oscilloscope requirements: t, ~14 nsec, Rin;a: 9Mn,
C jn :::;;;12 pF, Ljn (series) ~O.5 pH.
2. SW characteristiCS: Mercury-wetted make-before-break relay
switches at a 60 Hz rate. The relay should conduct for
approximately 640 J,tsec and be open for approximately
7.7 msec. (C.P. Clare HGP 1004 or equivalent).
3. Voltage source characteristics: Output, impedance ~O.5~!
from 0 to 2 Hz.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON; MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064
232
PRINTED IN U.S.A.
RECTIFIERS
1N4245·1 N4249
JAN, JANTX & JANTXV
Military Approved, 1 Amp,
General Purpose
FEATURE~
•
•
•
•
•
DESCRIPTION
This series of general purpose power
rectifiers are available as JAN, JANTX or
JANTXV for many power supply applicatons.
Qualified to MIL-S-19500/286
Surge Rating: 25A
PIV: to lOOOV
Controlled Avalanche
No Plastic, Epoxy, Silicone, Oxides, Gases or Solder are used
ABSOLUTE MAXIMUM RATINGS
Maximum Reverse Voltage
Type
200V
JAN, JANTX, JANTXV IN4245
400V
JAN, JANTX, JANTXV lN4246
600V
JAN, JANTX, JANTXV lN4247
800V
lOOOV
JAN, JANTX, JANTXV lN4248
JAN, JANTX, JANTXV lN4249
Maximum Average D.C. Output Current
@ TA
@ TA
= lOO·C ..
=
.. ....................... l.OA
l50·C ..
'" O.333A
Non-Repetitive Sinusoidal
Surge Current .
............................................. ......... 25A
Operating Temperature Range .
Storage Temperature Range.
Thermal Resistance.
..... -65·C to +175·C
................................. -65·C to +175·C
.. ..... See Lead Temperature Derating Curve
MECHANICAL SPECIFICATIONS
J,
JT)(,
JTXV 1N4245·1 N4249
1179
233
BOOYA
lliJJ
_UNITRODE
JAN, JANTl<, JANTXV IN4245·1N4249
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
J,
J,
J,
J,
J,
JTX, JTXV
JTX, JTXV
JTX, JTXV
JTX, JTXV
JTX, JTXV
Minimum
Reverse
Breakdown
Voltage
@ lOO~A
PIV
Type
IN4245
IN4246
IN4247
IN4248
IN4249
Typical Forward Current
vs Forward Voltage
.005
.01
.2
"'
,0
/i- i- i- I
U.05
."..02
/
.01
.005
II
II
.002
.2
"'
.5
'"~
~
./
::>
u
"'a:
80
~
::>
60
VI
0
W
u:
40
"'0.
...
0
;:: 2
"'
a:
--r
10
20
50
100
150
20
150'C
Time*
1.01'A
15Ol'A
5.01'5
+75'C
"'~
~25;C
~
I
100
=t."
4
.""l
3.5
,,=~~
",1> ""
r--....
"" """"
~
a:
1
1.2
~~
~
(>
.5
'"
50
75
100
125
ISO
T, - LEAD TEMPERATURE ('C)
Reverse-Recovery Circuit
SO
175
10 \I
Q
ALL SERIES
I"" .......
~
-....:::
11111
I I
~~r;~: I" c~nte~s
~::-:::::
+
Turret 1/2" centers
Printed Circuit
_
-=-
--:::::::
NOTE3
10
100
CYCLES AT 60 Hz HALF SINE WAVE
osc I LlOSCOPE
NOTE I
~fl
if.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6S09 • TELEX 95-1064
2SVdc
(APPROX.)
1U
I--
1,000
234
II
t:
"l
'~ ~
25
1ft
1.5
50
1.4
~
'"
Cil
2.5
% OF PIV
.4
.6
.8
I
V, -- VOLTAGE IV)
U
VI
It
u:
Allowable Forward Surge vs Number of Cycles
z
;::
«a:
25'C
L
U
100
~
~
tZ
ow
1
5
II
::: 3
~25'C
"'
I
/
.001
.2
It
I
/
::>
u
>
1,1 /
I
.05
It
It
~ko
$ ~ K; ~-i:- i:-
Ill'
.1
::>
tZ
Maximum
Reverse
Recovery
Maximum Current
vs Lead Temperature
-
5 0'C
1 .02
I
.S
"'~
1.3V(pk)
0.6V
@3.0A(pk)
.001
.002
....-::
5
Max.
Typical Reverse Current vs PIV
10
...Z
Min.
240V
480V
720V
960V
1150V
200V
400V
600V
800V
1000V
Maximum
Reverse
Current
Forward
Voltage
NOTES:
1. Oscilloscope: Rise time ...- 3n5; input impedance = sou.
2. Pulse Generator: Rise time' - 8ns; source impedance IOU.
3. Current Viewing resistor, non-inductive, coaxial recommended.
PRINTED IN U.S.A.
JAN, JANTX, & JANTXV IN4942
JAN, JANTX, & JANTXV IN4944
JAN, JANTX, & JANTXV IN4946
RECTIFIERS
Military Approved, 1 Amp,
Fast Recovery
FEATURES
DESCRIPTION
•
•
•
•
These fast recovery rectifiers are suitable
for use as power devices for many applications. Devices are available as
JAN, JANTX or JANTXV.
Qualified to MIL-S-19S00/3S9
Surge Rating: lSA
PIV: to 600V
Controlled Avalanche
ABSOLUTE MAXIMUM RATINGS
Maximum Reverse Voltage
Type
JAN, JANTX, & JANTXV IN4942
JAN, JANTX, & JANTXV IN4944
JAN, JANTX, & JANTXV IN4946
200V
400V
600V
•
Maximum Average D.C. Output Current
@~=~C........................
. .. _._.~
=
@ TA
lOO'C .................... _.............
................ O.7SA
Non-Repetitive Sinusoidal
.................. 15A
Surge Current (8.3ms) _....................
Operating Temperature Range .............. _...........................
....... -65'C to +175'C
Storage Temperature Range.
........... _ ................... -65'C to +17S'C
Thermal Resistance .. .... ................
. ........... See Lead Temperature Derating Curve
MECHANICAL SPECIFICATIONS
JAN, JANTX, & JANTXV lN4942, lN4944, lN4946
j
'OI~;'rJ~P.
1
Band indicate~",,\
cathode end
[J 6.
BODY A
1,155"
TyP· .....1 .028" "!..OOl
3.9rnm
O.71mm =:.03
1 c:::::6 0
J11
~.O85"
TYP.
.o~~;~:::~x.
I
2.2mm
r-.7f~~~~~N.-+-.2~;5~~ ~
1.625" MIN.
41.3mm
[ill]
1/79
235
_UNITRDDE
JAN, JANTX, & JANTXV IN4942, IN4944, IN4946
ELECTRICAL SPECIFICATIONS (at 2S'C unless noted)
Type
J, JTX, JTXV IN4942
J, JTX, JTXV IN4944
J, JTX, JTXV IN4946
Peak
Minimum
Reverse
Breakdown
Inverse
Voltage
Voltage
@ 5O~A
200V
400V
600V
220V
440V
660V
I
O.6V
1.3Vdc
@lAdc
Maximum Current
Lead Temperature
25'C
150'C
Time*
1.OI'A
200l'A
150ns
150ns
250ns
Q
L = '18'
w
0:
L=~
u
L~
;::
w
a:
w
~
~ I
"D
0
::<
''""
""
Ie>
~,..
i'---r--... """- 0
II
.2
..."l
~
I'--- ~ ~r'>.
«
I
............
25
;;
v:;
/1/
.5
~
50
75
100
125
150
175
T, - LEAD TEMPERATURE ('C)
n
~
.5
z
.2
...
""a:a:
3
/VV
VV/V
1/"'
,CJ CJ ,CJ
~&;'Iil
.1
J J 'I /
::J
U.05
I
/
/
-,".02
.005
/
/
.002
/
.001
.2
/
II
/
.01
45pf
35pf
25pf
/
.02
""a:a:
.05
.1
.2
I-
::J
I-
'"""a:
>
"'a:
u
,.,
50'C
--
./
+ 25'C
.5
OJ
f
~5'C
10
20
--:;r25'~
50
100
f
150
.4
.6.8
V, -
VOLTAGE (V)
1.2
100
50
% OF PIV
1.4
Characteristic Waveform.
10 !l
+0.5A
+
_
-=-
f
.005
.01
...
Z
Reverse·Recovery Circuit
soo
= 12V
= IMHz
@ V,
.001
.002
...
t'....
Capacitance
Typical Reverse Current vs PIV
10
1.5 AMP SERIES
zw
a:
a:
:::>
u
Maximum
Reverse
Recovery
Typical Forward Current
vs Forward Voltage
YS
~
Maximum
Reverse
Current
Forward
Voltage
Min.
Max.
25Vde
(APPROX.)
'\
OA
III
NOTE 3
V
-0.25A
/
1\
-1.01\
NOTES:
1. Oscilloscope: Rise time ~ 3n5; input impedance = SOH.
2. Pulse Generator: Rise time C 8ns; source impedance IOU.
3. Current viewing resistor, non-inductive, coaxial recommended.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
\/
·H-,cm
FOR
236
SET TIME BASE
so TO 100 ns/em
PRINTED IN U.S.A.
IN5186-1N5190
JAN &JANTX
RECTIFIERS
Military Approved, 3 Amp,
Fast Recovery
FEATURES
DESCRIPTION
•
•
•
•
•
•
These miniature fast recovery rectifiers
permit operation at full power at frequencies as high as 100kHz sine wave.
They are qualified to military specification
and available as JAN, JANTX or JANTXV.
Continuous Rating: 3A
Qualified to MIL-S-19S00/424
PIV: to 600V
Recovery Time: 150ns
Miniature Size
Controlled Avalanche
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage
Type
100V
JAN & JANTX 1NS186
200V
JAN & JANTX 1NS187
JAN & JANTX 1NS188
JAN & JANTX 1NS190
400V
600V
Maximum Average D.C. Output Current
@ TA = 2S'C .
@ TA = lS0'C
Non-Repetitive Sinusoidal
Surge Current (8.3ms)
Operating Temperature Range ..
Storage Temperature Range.
Thermal Resistance.
.. ...... 3.0A
.............. O.7A
.... BOA
.................. -65'C to +175'C
. ................ -65'C to +200'C
.. See Lead Temperature Derating Curve
MECHANICAL SPECIFICATIONS
JAN & JANTX lN5186-1N5190
BODY B
[JJJ]
237
_UNITRDDE
JAN, JANTX lNSl86-lNSl90
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Voltage
Minimum
Reverse
Breakdown
Voltage @ 100#A
lOOV
200V
400V
600V
l20V
240V
4BOV
660V
Peak
Inverse
Type
J, JTX
J, JTX
J, JTX
J, JTX
lNSl86
IN5I87
lN5l88
lN5l90
J, JTX
J, JTX
J, JTX
J, JTX
lN51B6
lN51B7
lN5lBB
lN5l90
"'Recovery time measured from IF
T
Mm.
Current
@PIV
~
Max.
25'C
lOO'C
2MA
100MA
I.SV
0.9V
@9A(pk)
(B.3ms)
Time'"
Capacitance
@v,=ov
f = 1M Hz
Capacitance
@V,=4V
f = IMHz
l50ns
200ns
250ns
400ns
300pf
300pf
230pf
lBOpf
200pf
170pf
l20pf
90pf
Reverse
Recovery
Type
Maximum
Reverse D.C.
Peak
Forward
Voltage
= O.SA to IR = I.OA, 'REe = O.2SA
Reverse·Recovery Circuit
Maximum Current vs. Lead Temperature
;::
u
"'0:
=
L
0
"'ii:
~~~
5:
....Z
"'" "'
'" "
"'
L:;;-
0:
0:
~=
.125 "-
"
~
r--......
0: U
50
Lel'd Lelngth
from BOdY-
'"'"
+
===
-.....",
'- ....... -....."
(A~Sp~~'i<.) ~--~
III
"-
'"
35
55
T, -
75
95
115
135
155
175
NOTES:
1. Oscilloscope: Rise time ~ 3n5; input impedance .~-: 5011.
2. Pulse Generator: Rise time :-: 8ns; source impedance 1m2.
3. Current viewing resistor, non-inductive, coaxial recommended.
LEAD TEMPERATURE ('C)
Typical Forward Current
vs Forward Voltage
10
1/'1
:<
...z
"'
"
$§K)5f
14°
V~·0
Z .2
.1
II
_~.02
I II
/I
.2
.4
V, -
~+2S'C
0:
W
10
20
~+7S'C
0:
so
100
200
>
W
/
I
I
II
.6
.8
1
VOLTAGE (V)
UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064
-"
.5
If)
:
.2
U
W
I/
.01
.005
_-SO'C
.05
.1
0:
0:
1-1-+1
"I
u.05
.001
/
II
>-
.002
.01
.02
/
.3
~ .5
"'~
Typical Reverse Current vs PIV
/ / VV
:/
OSCILLOSCOPE
NOTE!
NOTE3
--.......::: ~
'~
>
10 \l
Q
I ....
./
l.,...4i2S'C
500
1,000
1.2
ISO
1.4
238
100
so
% OF PIV
PRINTED IN U.S.A.
RECTIFIERS
Military Approved, Fast Recovery, 3 Amp
FEATURES
• Qualified to MIL-S-19500/411
IN5415-1N5420
JAN, JANTX &JANTXV
DESCRIPTION
This series of devices as designed to meet
the need for high speed, power rectifiers
in military high-rei power supplies.
• PIV: to 600V
• Controlled Avalanche
ABSOLUTE MAXIMUM RATINGS
Type
Peak Inverse Voltage
50V
lOOV
200V
400V
500V
600V
Maximum Average D.C. Output Current
@ TA = 55'C .
@ TA = 100'C
Non-Repetitive Sinusoidal
Surge Current (8.3msl ....
Operating Temperature Range.
Storage Temperature Range.
Thermal Resistance 9 JL @ L = %" ..
JAN,
JAN,
JAN,
JAN,
JAN,
JAN,
JANTX,
JANTX,
JANTX,
JANTX,
JANTX,
JANTX,
JANTXV IN5415
JANTXV IN5416
JANTXV IN5417
JANTXV IN5418
JANTXV IN5419
JANTXV IN5420
•
................. 3.0A
.......................... 2.0A
..... 80A
. .................. -65'C to +175'C
.. ....... ~5'C to +200'C
......................... 20'C/W
See Lead Temperature
Derating Curve
MECHANICAL SPECIFIC~TlONS
J, JTX, JTXV lN5415-1N5420
BODY B
Dimensions in inches.
[ill]
239
_UNITRDDE
JAN, JANTX, JANTXV IN5415 -lN5420
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Minimum
Type
Reverse
Breakdown
Voltage
@ 501LA
PIV
50V
lOOV
200V
400V
SOOV
600V
J, JTX, JTXV IN5415
J, JTX, JTXV IN5416
J, JTX, JTXV 1N5417
J, JTX, JTXV IN5418
J, JTX, JTXV 1N5419
J, JTX, JTXV 1N5420
== lA,
'Measured In circuit IF=O.5 A, I.
Min.
Max.
1
55V
nov
1.0l'A
@9Adc
tp 300,,5
Time*
20l'A
150
1SO
150
150
250
400
I.EC =0.25A.
....r
Typical Forward Current
vs. Forward Voltage
20K
10K
5K
I
t;;!o
~
2K
;: lK
Z 500
+25'~
...
w
~ 200
I-
I
+100'C ~
III'
~
III
1/
.,
50
20
_u..
'J
/
i3 100
,0,U ,U
i-~ -o/.f/- ~
.;cf--i-
10
II
.2
Ii II
/ II
.4
+150'C
.6.8
1.2
V, 7" VOLTAGE(V)
1.4
1.6
I
100
50
~o
PIV
VS,
~
~ 20
~ 18
Q 16
...g:
14
~ 12
o 10
""w>:
a
a.
:;;
Maximum Current vs. Lead Temperature
~~{ma~)
11--
I I
l~~
55
Tl -
"'
.........
Y: . . .
r-L = .750 ............
'" "'"
"'"' ........~"
............
75
95
X 0
~
-
Tj
-
TL
0
\('
\\
( = Le~d
L = .125"
35
100'C
=
~oJC li-
'"'"
Reverse
Recovery
25'C
Typical Reverse Current vs. PIV
.0001
.0002
.0005
.001
.002
.005
.01
~
.3 .02
.05
Z
.1
w
.2
.5
:::>
u
1
2
I
-'!"
5
10
20
50
100
200
500
1000
150
Maximum
Reverse
Current
1.5V(pk)
0.6V
220V
440V
5SOV
660V
Maximum
Forward
Voltage
1"%, I\
"r.....
t--.
l-
.\
.500
IL
25
50
75 100 125 150
Tl - LEAO TEMPERATURE ('C)
175
Reverse-Recovery Circuit
SOil
10 II
........ i'..
['--.: ~
115
135
..... ~
155
+
175
_
-=-
LEAD TEMPERATURE ('C)
25Vdc
(APPRO X.)
III
NOTE3
OSCILLOSCOPE
NOTEI
N'OTES:
1. Oscilloscope: Rise time ~ 3nsi input impedance == SOU.
2. Pulse Generator: Rise time :s:;; anSi source impedance IOU.
3. Current viewing resistor, non-inductive, coaxial recommended.
UNITRODE CORPORATION, 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
240
PRINTED IN U.S.A.
1N5550-1 N5553
RECTIFIERS
JAN, JANTX & JANTXV
Military Approved, 5 Amp,
General Purpose
FEATURES
DESCRIPTION
•
•
•
•
•
•
This series of military approved rectifiers
is useful in many military applications.
The 100% screening requirements in the
"TX" version combined with the unique
Unitrode construction assures the highest
degree of reliability.
Qualified to MIL-S-19500/420A
Continuous Rating: 5A
PIV: to 800V
TX Parts 100% Screened
Miniature Size
Controlled Avalanche
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltal'e
Type
200V
JAN, JANTX & JANTXV 1N5550
JAN, JANTX & JANTXV 1N5551
400V
JAN, JANTX & JANTXV 1N5552
JAN, JANTX & JANTXV 1N5553
600V
800V
Maximum Average D.C. Output Current
.. 3.0A
@ TA = 55'C .
@TL
55'C .................................... .
............. 5.0A
. Non-Repetitive Sinusoidal
....... ........................ 100A
Surge Current (8.3ms) .
Operating Temperature Range .
. .................... -65'C to +175'C
=
Storage Temperature Range.
................................ -65'C to +200'C
Thermal Resistance ............................................. See Lead Temperature Derating Curve
MECHANICAL SPECIFICATIONS
J,
me, JTXV 1N5550-1 N5553
BODY B
[ill]
241
_UNITRaCE
JAN, JANTX, )ANTXV lN5550-lN5553
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Maximum
Leakage
CUrrent
@PIV
100'C
25'C
Minimum
Type
Peak
Inverse
Voltage
J, JTX, JTXV lN5550
200V
240V
J, JTX, JTXV lN555l
400V
460V
Voltage @
J, JTX, JTXV 1N5552
600V
660V
J, JTX, JTXV lN5553
800V
880V
= LOA,
*Measured in a test circuit IF =O.5A, IR
Peak Forward
Reverse
Breakdown
'REG
=
Voltage
Min.
50~A
Max.
I
0.6V
l.O"A
= 9A(pk)
(8.3ms)
L=
.12~
1~75
y .......
I-L = .750
"
"""
r----.
.......
..........
from Body-
"-
I"-..
"'-
1"1'-. f'\
-
Xen
<-
....... ~
L
....z
'"'"0:
10,000
:>
-
10
20
~
-
50
100
200
500
1000
J
150
100
....
200
'"'"
:>
'"
u
100
z
75'C
0
~
1
25'C
I
/
-"
+0.5A
t"
/
o
I
I
I
0.25
V, -
0.5 0.75
1.0 1.25
FORWARD VOLTAGE (V)
1.5
Reverse-Recovery Circuit
~
so
10
Po
\I
'\
OA
+
I--~
-0.25A
_
-=-
/
25Vdc
(APPROX.)
III
NOTE3
-1.0A
II
I
I
Characteristic Wave Form
/
25'C
-SO'C
/ 1/ I
I I
I 1/
10
SO
/L
1//
1/ / /
SO
%OF PIV
-1
/
20
'"~
0'"
...
/
/1/ / 1/
g
J...-".
t-'"
100'C
<,500
u
'"'"
I
l'l',LV
1,000
.L
25'C
I
'"0:en
>
'"
175
b~
5,000
2,000
-I--"'"
.37~-:i=
L=
"-./.( L = .500-
::-.::: ~"-J.
175'C
.5
.......
Forward Current vs.
Forward Voltage
=
50'C
.05
.1
.2
~
7'
25
SO
75
100
125
150
TL - LEAD TEMPERATURE ('C)
Reverse Current vs. PIV
.01
.02
I
L = .2SO
.750
175
T,
-
Rf)Jl
I"-..
t-- K
I--- ::::::-- y..
l-
::;iC
55
75
95 115 135 155
TL - LEAD TEMPERATURE ('C)
P(max) = Tj
.........
::;i_en
j"-.: ~"
35
2.0,,5
75"A
Maximum Power Dissipation
vs. Lead Temperature
20
18 f--L = .000
16
"';:
;:- 14
oz 12
J"..
Q.o
::;ii= 10
:>~
Le~d Le~gth
( =
Time*
O.2SA
Maximum Current vs. Lead Temperature
~
Reverse
Recovery
l.2V
@
IF
Maximum
\ lL
H-'cm
SET TI ME BASE
NOTES:
FOR SOOns/em
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
OSCILLOSCOPE
NOTEI
1. Oscilloscope: Rise time -c;; 3n5; input impedance = sou.
2. Pulse Generator: Rise time C 8nsi source impedance 1m2.
3. Current viewing resistor, non-inductive, coaxial recommended.
242
PRINTED IN U.S.A.
RECTIFIERS
IN5614, IN5616, IN5618,
IN5620,
Standard Recovery, 1 Amp
Military Approved
JAN, JANTX & JANTXV
FEATURES
DESCRIPTION
• Qualified to MIL·S·l9500/427
• PIV: to lOOOV
• Controlled Avalanche
This series of medium power general
purpose rectifiers can be used in the
most demanding military supplies.
Rugged mechanical integrity and tight
electrical parameters make them
particularly useful.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage
Type
200V
400V
600V
BOOV
JAN,
JAN,
JAN,
JAN,
JANTX &
JANTX &
JANTX &
JANTX &
JANTXV
JANTXV
JANTXV
JAI'-I.TXV
lN56l4
lN5616
lN5618
IN5620
•
Maximum Average D.C. Output Current
@~=~C..
=
... _.......
~
@ TA lOO'C. . . . ........................... _. O.75A
Non·Repetitive Sinusoidal
Surge Current (8.3ms)
.. ... ..............
.............. 30A
Operating Temperature Range
..................... _..
........ -65'C to +175'C
Storage Temperature Range.
. ........................ -65'C to +200'C
Thermal Resistance e JL @ L %" ..
. .............................. 38'C/W
See Lead Temperature
Derating Curve
=
MECHANICAL SPECIFICATIONS
J, JTX, JTXV lN5614, lN5616, lN5618, lN5620
BODY A
[ill]
1/79
243
_UNITRODE
JAN, JANTX, JANTXV IN5614, IN5616, IN5618, IN5620
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Minimum
Reverse
Breakdown
PIV
Voltage
@ 50pA
J, JTX, JTXV IN5614
200V
220V
J, JTX, JTXV IN5616
400V
440V
J, JTX, JTXV IN5618
J, JTX, JTXV 1N5620
600V
800V
660V
880V
Type
*Measured in Circuit IF
=
1/2A, IR :::: 1.0A,
'REC::::
Maximum
Reverse
Current
25°C
100°C
Maximum
Reverse
Recovery
Time*
0.51'A
251'A
2.01'5
Forward
Voltage
Min.
0.8
Max.
1.3V(pk)
@3.0A
tp = 3001'5
¥4A
Typical Reverse Current
.0001
.0002
Forward Voltage
Forward Current
VS.
10K
5K
~~
2K
;r:
1K
!zw 200
'" 100
50
,,&iO~/
II
.2
u
I
2
:::>
r-(/ :"r:1 (1
20
10
-"
II 1
II I
II
.4
.8
1
1.2
+100°C
1.4
v. -VOLTAGE{V)
17
H-r
5
10
20
d:::::(
50
100
200
500
1000
II
.6
r-
.1
.2
.5
1
0:
0:
I
+25°C
.01
I- ,05
:;i
,~1.,9 ~(; ,r;.;
'":::>
u
......
l-
..3 ,02
1/1/11
1
Villi
.s 500
I
;r:
I/V
PIV
10°C j,L
.0005
.001
.002
.005
booo'~
VS.
;·150°C
I
100
150
o
50
°0 PIV
Maximum Current
vs Lead Temperature
~
Maximum Power Dissipation
vs. Lead Temperature
10
'-""-.--.-...,--r--,--r~--.--'---,---,
5
Z
o
i=
~
iii
~
c
'"~
8
....
z
r-+-+-+-+-++-+-+-
w
0:
0:
I'.
u
Q
w
ii:
i= 2
u
w
4
&: 3i"'-+-';f"'"'I--d""l'rl--"t-d---l-l-H
~l~tr~~~~~
"
0:
w
""
x
:i'
L = Ifo"
:::>
6r-+--1'-<::+-+--+--+--+--t-t--t-"lH
50
75
100
125
150
T, - LEAD TEMPERATURE (OC)
~
I
175
L~ ~
......................
II:
244
"'- ~
r----... ...........
1
2S
UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (6l7) 861·6540
TWX (710) 326-6509 • TELEX 95·1064
0"
::E
'"@:0
L=~
50
T, -
7S
100
"'"II
.n
~
~
l',.
~
...........
~
125
150
.5
o
175
LEAD TEMPERATURE (OC)
PRINTED IN U.S.A.
RECTIFIERS
Military Approved, Fast Recovery, 1 Amp
FEATURES
• Qualified to MIL-S-19500/429
• PIV: to 600V
• Controlled Avalanche
IN5615,lN5617,lN5619
JAN, JANTX & JANTXV
DESCRIPTION
This series of military approved rectifiers is
useful in many military applications where
fast recovery and medium power are
required. The 100% screening requirements
in the "TX" version combined with the
unique Unitrode construction assures the
highest degree of reliabi lity.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage
Type
200V
400V
600V
JAN, JANTX, JANTXV 1N5615
JAN, JANTX, JANTXV IN5617
JAN, JANTX, JANTXV 1N5619
Maximum Average D.C. Output Current
@ TA =55'C
@ TA =l00'C
Non-Repetitive Sinusoidal
Surge Current (8.3ms)
Operating Temperature Range
Storage Temperature Range .
Thermal Resistance 9 Jl .
....... · · · · · · H .
. ..
.'
.......... 1.0A
0.75A
. ...........
..... 25A
. -65'C to +175'C
. -65'C to +200'C
. . H . H .......... 38'C/W
See Lead Temperature
Derating Curve
MECHANICAL SPECIFICATIONS
J, JTX, JTXV 1N5615, 1N5617, 1N5619
BODY A
h
,DBS"
TYP.
2.2mm
j.-
7p?'~~:nN
+--- 2~~~5~~ ~
-----./
f-----1·~1~;~~N
[ill]
245
_UNITRDDE
JAN, JANTX, JANTXV 1N5615, 1N5617, 1N5619
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Minimum
Type
PIV
Reverse
Breakdown
Voltage
@ 501'1\
J, JTX, JTXV 1N5615
200V
220V
J, JTX, JTXV 1N5617
400V
440V
J, JTX, JTXV 1N5619
600V
660V
*Measured in Circuit IF
=
112A, 'R
= lA,
'REe
Maximum
Maximum
Reverse
Current
Reverse
Recovery
Forward
Voltage
Min.
Max.
1.6V(pk)
@3.0Adc
tp =300/L5
0.8V
25'C
100'C
0.5/LA
25/LA
~
'"ii:
;:
L = Vs"
,
1
L=~
i5<
'"
"«'"a:
'">«
........................
.2
25
~
10
""
~ 8
"-
Vi
!!! 6
o
a:
-;; 4
'"
~.,
~"
~
';])5"-:--'
"1-
'" /,
~
J....; 150'C
I
100
Forward Voltage
vs. Forward Current
10K
5K
,;;;j;II
2K
~ lK
5. 500
>~ 200
from Bod~
rL - ,500"
1
-¥liOO'j
0
50
°0 PtV
=
~L=I.750"
:;;
25
1~.L
v:~
:0
u
r- -
50
V
/1/ I
V /
II
I
20
.: 10
'IV
1/
I
~ 100
«
:;;
V
2
5
10
20
50
100
200
500
1000
ISO
.5
TI-T~_
I
°Jl
1- ,I. I I 1L = Lead Length
-l. :t-+.:::: ::'i Z- .......
::>
X
~
\..
...........
p{"'~'
3
:;;
I
+25'C
50
75
100
125
150
175
T, - LEAD TEMPERATURE ('C)
I I
I I
Z
~
I
-"
Maximum Power
VS. Lead Temperature
o
50'8-
V
U -" I
""'" 0
I'---
I
2Spf
Il::":: .2
~ I .5
L~ ~
u
a:
250ns
Typical Reverse Current vs. PIV
z
o
45pf
35pf
.0001
.0002
.0005
.001
.002
.005
_
.01
.02
~
.05
.1
~
~ 3
150ns
150ns
= lAA
Maximum Current vs Lead Temperature
a:
::>
u
Capacitance
@V,=12V
f=IMHz
Time*
rt~l
_$
~~h
'~"
.,. iii
IJ
==- :::3 ~ t;:;: I:::-
50
75
100
125
150
T, - LEAD TEMPERATURE ('C)
.2
175
.4
.6.8
1.2
V, - VOLTAGE(V)
1.4
1.6
Reverse-Recovery Circuit
son
10
!~
+
_
-=-
25Vdc
(APPROX.)
1n
NOTE3
OSCILLOSCOPE
NOTEI
NOTES:
1. Oscilloscope: Rise time::;;;; 3n5; input impedance =: son.
2. Pulse Generator: Rise time::;; 8ns; source impedance lOP..
3. Current viewing resistor, non~inductive, coaxial recommended.
UNITRODE CORPORATION, 5 FORBES ROAD
LEXINGTON, MA 02173 ' TEl. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064
246
PRINTED IN U.S.A.
RECTIFIERS
1N5802·1 N5806
IN5807·1N5811
IN5812·1N5816
High Efficiency, ESP, 2.5 Amp to 20 Amp
FEATURES
• Exceptional Efficiency
• Low Forward Voltage
• Extremely Fast Reverse Recovery Time
• Extremely Fast Forward Recovery Time
• High Surge
• Small Size
• Rugged, High Current Termination
• Radiation Tolerant
OESCRIPTION
This series of High Efficiency Power
Rectifiers allows circuit designers to
design high current, high frequency sup·
plies to 500 kHz with very low diode losses.
The high forward surge capability makes
these devices useful in protective circuits.
ABSOLUTE MAXIMUM RATINGS
2.5 Amp
6 Amp
Peak Inverse Voltage
Series
Series
20 Amp
Series
50V
75V
lOOV
l25V
l50V
lN5802
lN5803
lN5804
lN5805
lN5806
lN5807
lN5808
lN5809
lN5810
lN5811
lN58l2
lN5813
lN58l4
lN58l5
lN58l6
Maximum Average D.C. Output Current
@ TL
75'C, L %" ....
@ Tc = lOO'C ..
Non·Repetitive Sinusoidal
Surge Current (8.3ms) .. .
Operating and Storage Temperature Range ... .
Thermal Resistance 2.5A and 6A Series ...
20A Series ..
=
=
2.5 AMP
SERIES
6.0 AMP
SERIES
......... 2.SA .. .
20 AMP
SERIES
............ 6.0A ..... .
................ 20.0A
... ................ 3SA..
................................ l25A..
. 250A
...... --65'C to +l75'C ..
. .... ... See Lead Temperature Derating Curve ... .
..... ... 3.0'C/W
MECHANICAL SPECIFICATIONS
Typical Weight -
1N5802·1N5806
BODY A
lN5807·1N5811
BODY B
0.22 grams
Typical Weight - 0.75 grams
[ill]
247
_UNITRODE
1NS802-1N5806 1NS807-1NS811 1N5812-1N5816
MECHANICAL SPECIFICATIONS
DO-4
1N5812-1N5816
~ OO~
Max.
.405 .•
["'.OIOl
.430
·.:~i!ij~kk~.250
±.015
#10-~
Max
UNF.2A .066 M,n D!3
•
Part Identification: Type number printed on metal case.
Polarity: Cathode to stud end
Max. Weight: 7.0 Grams
Installation Precautions: Maximum unlubricated stud torque:
10 inch pounds
Thermal Resistance: 3.0·C/W
Dimensions in inches.
ELECTRICAL SPECIFICATIONS Cat 25°C unless noted)
Leakage
Current
@PIV
25·C
100°C
Maximum
Type
PIV
1N5802
1N5803
1N5804
1NS80S
INS806
1N5807
1N5808
IN5809
1N5810
IN5811
1NS812
1NS813
1NS814
1N5815
INS816
50V
7SV
100V
12SV
lS0V
SOV
7SV
100V
12SV
lS0V
SOV
7SV
100V
125V
lS0V
Forward
Voltage
Drop*
Typical Forward
Recovery Time
@ 1A Recover to 1V
Maximum Reverse
Recovery Time
IFI IRI
I REC
Typical Forward
Recovery
Typical Junction
Voltage
Capacitance
@lAtr=8ns
@-10V
.87S@lA
11'A
SOI'A
2Sn5, 0.5A-0.5A-0.05A
lSns
1.SV
lSpf
.87S@4A
51'A
1SOl'A
30n5, 1.0-tO-OolA
lSn5
1.5V
4Spf
.900@ lOA
1OI'A
7SOp.A
35n5, 1.0-1.0-0olA
lSns
tSV
200pf
'Pulse width = 250ms
Output Current vs. Case Temp.
Output Current vs. Lead Temp.
20
Z
!oJ
II<
II<
!oJ
;;:
;::
U
!oJ
II<
!oJ
"«
II<
!oJ
....
from Body
::>
u 4
""'.~
,-l=
--
"-.....
Z
5
.:0-
4
I
l=";~
~
-
~
'\.
"~
>
«
I
'"
ri
\
."'- f\
75
100
125
15
::>
u
;;:
;::
10
u
150
II<
!oJ
"«
175
LEAD TEMPERATURE (·C)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
"'J
5
""
'i-..
L_~~
[\
10
150
CASE TEMPERATURE (OC)
"
0
'"'" '\.
'"'"
6
\
®
~'"'
\
!::i
d
\
""-
\
248
12
:E
1'\
l= .. ··........,
o
125
L~nllh
from Body
'\.
..9
100
L = lead
l= .. -:\
>
«
I
o
Tl -
~ 6 AMP SERIES
20 AMP SERIES
\\
0
!oJ
II<
!oJ
""""' ~
So
50
'"'"
®
!oJ
II<
II<
II
...... '"
'\.
~\
25
":E0
3 _'"'
~
1\
~
L = Lead Length
5
0
I
2.5 AMP SERIES
,..~
Output Current vs. Lead Temp_
12
.""-
2
""~\
'\
o
25
50
75
100
125
150
0
175
175
TL -
LEAD TEMPERATURE (·C)
PRINTED IN U.S.A.
IN5802-1N5806
Typical Forward Current
vs. Forward Voltage
10
5
Typical Forward Current
vs. Forward Voltage
100
~ ~I/
2.5 AMP SERIES
/ / VI
.5
/
." ~
0:
0:
::J
o
t/fj
r-
.05
I
-'"
.02
/
01
.005
I
.002
J
II
~
I
g
...
2
z
t~
W
1
0:
0:
--
& i(}
I
-'" .2
II
10
...
I
Z
W
0:
0:
::J
0
l-'
iii
I
.1
.2
5
r-r
.2
I
.3
II
.05
il II
01
1 .2 .3 .4 5 .6 7 8 .9 1.0 1112 13
Vr - VOLTAGE (V)
r-r-
I
I I II
I
.02
001
V/ /
2
-"
:;:-
.05
IVI
g
r-l i" ."
-- r;~ "~I
a .5
i-~11
V/~
20
'/1//
II
I /
/ I
.02
.4
..-:;:;::;::::
20 AMP SERIES
50
~~ ~/
10
1IIIil
~ .2
w
100
20
IN5812-1N5816
Typical Forward Current
vs. Forward Voltage
6AMP SERIES
50
II/II
g
IN5807-1N5811
I
"'lJrl ~
~
:;:.
II
II
<&
5?
tfJ
-f.-~ I
:;:.
I
I
I
II
I
'1'2.34.5'6'7'8'91.0111t13141~.'
01
.5 .6 7 .8 .9 1.0 1.1 1.2 13
VI - VOLTAGE (V)
I
V F -VOLTAGE (V)
Typica I Reverse Current
vs. Voltage
.001
1"
-;ill
Typical Reverse Current
vs. Voltage
Typical Reverse Current
vs. Voltage
01
2.S,AMP SERIES
IA 1
T'l-~b
vV
02
01
20 AMP SERIES
.02
6 AMP SERIES
/'
.01
.2
~
...Z
,_f-
W
0:
0:
::J
u
~
.05
.5
1-1- f-f--
1
...
I-
1'5
''';''=25'C
f-f-
;;.'l
...
T=25°C
2
.... f- f-f10
50
~
100
::J
U
I
-
.2 20
Tn "!
10
I---..-
20
75
",.., T-+75"C
4 _,lJJc
T= +25'C
0:
0:
0:
0:
::J
1-1-1-
100
200
I-~~
130 120 1 \0 100 90 80 70 60 50 40 30 20 10
VOLTAGE IN % OF PIV
UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 86J.6540
TWX (710) 326-6509 • TELEX 95-1064
1DOC
a
/'
.-
I
1'5
'[ 10
I
.:
A-soc
I(
T _ +75 C
....
TTyr
130 120 lID 100 90 80 70 60 50 40 30 20 10 0
VOLTAGE IN % OF PIV
249
100
L
200
r1+125
1000
125
100
75
C
.-....--50
25
VOLTAGE IN % OF PIV
PRINTED IN U.S.A.
IN5802·1N5806
Reverse·Recovery Time Circuit
IN5807·1N5811
IN5812·1N5816
Characteristic Waveform
-<
t"
>-
D. U. T.
tREe
1
~!
1\
1\
N.I.
(coaxial)
100
5.000
~
~
500
'"
"z
;::
80
"~
'"
"'50
"'
"::>'"
::>
u
<1)40
"'~
100
::>
..
50
I.
Multiple Sur.. Current vs, Duration
Forward Pulse Current vs. Duration
10,000
1,000
1
SET TIME BASE
FOR 5 NSICM
NOTES:
1. Oscilloscope: Rise time ~ 3 ns; input impedance = 50 U.
2. Pulse Generator: Rise time ~ 8 ns; source impedance 10 t!.
!Z
l
I
...o
""
1'00
~
"20
T. MOUNT
@length =~
..
'fi::::=rJ~ri"led CircuIt
10
l,us
.5
lps
50
lOps
1001's
PULSE DURATION
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
1m,
lOms
I
2
51020
50
loo211
--' II
h.
oBs"
j
TYP.
2.2mm
j.-.7f~:~~~N'--or--.2~;5~~·_
fo-------1.~~~;mMr:,N·----~1
Dimensions in inches.
J, JTX, JTXV 'N5807-1N5811
BODY B
Dimensions in inches.
251
O!D
_UNITRODE
J, JTX & JTXV IN5802·1NS806
J, JTX & JT)N INS807·1N5811
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Type
J, JTX, JTXV
1NS807
J, JTX, JTXV
IN5809
J, JTX,JTXV
IN5811
J, JTX, JTXV
IN5802
J, JTX, JTXV
INS804
J, JTX, JTXV
INS806
PIV
Minimum
Breakdown
Voltage
@ 100#A
SOV
60V
lOOV
nov
150V
160V
50V
60V
lOOV
nov
lSOV
160V
.875V Max.
@4A(pk)
.925V Max.
@6A(pk)
.8V Max.
@4A(pk)
SItA
lS0ltA
.875V Max.
@lA(pk)
.975V Max.
@2.SA(pk)
.8VMax.
@lA(pk)
1l'A
SOItA
Output CUrrent vs. Lead Temperature
1N5802-5806
10
l_lfa"
l
Lead L.~"h_
I
I
=;~~~~~;gth_
L=
from Body
\.
""'"
...........
l=%"
L
r\
"'" ""-
I"'---.
r--..
.........
L=~ ........ ~
I'-..
25
\
Tl -
75
100
"
"o
"
l _ ¥e"
1'.\
'~""........ ~\
:i
125
ISO
..
:;;
~
I - - ~ ..........
\.
\
""
..........
~
50
"'!Q
175
LEAD TEMPERATURE (CC)
o
25
12
\
4
~
2
""'"
m ••
= .000 7
~
I
............ 1 /
K
L = .250]'
~
"........
LL
..:....::: ~ ~ ~
"""---1--.1
6
:t--- ::::-- ::---...
= .750
1 L
0
4 .•
......
.500-' L
........
.375
25
50
75
100
125
150
*MAX. LEAD TEMPERATURE (0C)
3.6
2.'
1.2
175
*Maximum lead temperature in °C (Tt) at point ilL" from
body', (For maximum operating junction temperature of
175°C with equal two-lead conditions.)
~
-"'" ~
50
7S
100
125
ISO
Tl - LEAD TEMPERATURE ("C)
6
::l
~
\.
L
.
" 10
0:
UI
;~~:~~~
IN5809
IN5811
1
Z 18
14
= =
=
di/dt =6SA/l's min.
IF
IR
O.5A
, REC
O.OSA
'N5.07
20
o
"~
'10" ' "
\
!
rl
i= 16
r--...
f\
= =
=
di/dt =100A/lts min.
'F
'R
1.0A
, REC
O.lA
25ns
lN5801·5811
"'\
Maximum
Reverse
Recovery Time
30ns
Output Current vs. lead Temperature
12
o
Maximum
Reverse Current
@PIV
2S'C
100°C
Forward Voltage
@2S'C
@ 100'C
~
175
Characteristic Waveform
Reverse-Recovery Circuit
-0
t"
~
'REC
~
T
~
I,
SET TIME BASE
FOR 5 NS{CM
NOTES:
1. Oscilloscope: Rise time ~ 3nsi input impedance = son.
2. Pulse Generator: Rise time ~ 8nsi source impedance Ion.
3. Current viewing resistor, non-inductive, coaxial recommended.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
rwx (110) 326-6509 • TELEX 9S-1064
252
PRINTED IN U.S.A.
JAN & JANTX IN5802-1N5806
Typical Forward Current vs. Forward Voltage
JAN & JANTX lN5807-S811
.01
50
.02
.0 V; ~
5
...
/
2
Z
V
"'
0:
0:
,5
-f-
.2
II
.1
.05
.01
'I
I
/
.3
;;
.3
1
/ /
50
"'
~
2
(jf
y
I
100
10
.0 ~ =j:
V'/Y
120
.1
'I
.05
j
-~
.02
/,V
.002
I
/
/ /
.001
.1
.2
I
+12S'C
~
V
.
II II1/50
~so,lc
_.05
T
..5 .1
...
z
41
0:
0:
-+
,....V
B .5
I
-
= +2S'C
,.- r--- f-
'/
1
II
T
= +7S'C
T
= +12S'C
-~I-!-"
~,.-
10
1/
I
50
.3 .4 .5 .6 .7 .8 .9 1 1.1 1.2 1.3
V, -VOLTAGE (V)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064
-
.01
I
/
/
.01
.005
-f-
=
100 90 80 70 60 50 40 30 20 ·10. 0
VOLTAGE IN % OF PIV
.001
'"
h~0'~
,~ f
~1Kl-
j-f-!$
::J
T
....- , /
Typical Reverse Current YS. Voltage
JAN & JANTX 1N5802-5806
I II II I
.2
i.-'
./
1000
1.1 1.2 1.3
1/
~
+7S'C
.....
Typical Forward Current vs. Forward Voltage
JAN & JANTX 1N5802-5806
"'~
=
II
I
/
II j
T
10
200
.6 .7 .8 .9 1
V. -VOLTAGE (V)
.5
= + 2S'C f-- f-
-" 20
.5
5
I--
T
I-- --I--~
::J
'I
/
I
.4
TrTT
0:
0:
.1
/
j
/ II
.1 .2
.2
-f-
/
A
.1
J j
. . . . . ., -/.i
I #:~ftI
::J
.02
/
VV
/'
"/
/ / ./V
/ / I I
10
'I
Typical Reverse Current vs. Voltage
JAN & JANTX 1NS807-5811
100
20
JAN & JANTX IN5807-1N5811
100
r
I
120
253
",
Y
-
I-'
Y
,.- V
I-'V
100 90 80 70 60 50 40 30 20 10 0
VOLTAGE IN % OF PIV
PRINTED IN U.S.A.
•
IN5812,lN5814,lN5816
JAN, JANTX & JANTXV
RECTIFIERS
Military Approved
High Efficiency, 20 Amp
FEATURES
• Qualified to Mll-S-19500/478
• Exceptional Efficiency
• Mechanically Rugged
• low Thermal Resistance
• JAN, JANTX and JANTXV Available
DESCRIPTION
This series is suited for use as a power
rectifier in switching regulator and high
frequency inverter/converter and other
appropriate equipment circuits where low
voltage drop and fast recovery times are
important.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage
Type
50V
lOOV
JAN, JANTX, JANTXV IN5812
JAN, JANTX, JANTXV, IN5814
JAN, JANTX, JANTXV IN5816
150V
Maximum Average D.C. Output Current
@ Tc=lOO'C
@ TA=55'C
Non-Repetitive Sinusoidal
Surge Current @ 8.3mSec .
.20A
•••••••
H . . ••
5A
..400A
Thermal Resistance, Junction to Case .
• •••••••
Operating Junction Temperature .
Storage Ambient Temperature .
HH.HH.HH.
..H • • • • • • •
H
H
••• H
•• H
•••••
1.5'C/W
. -65'C to +175'C
-WC to +200'C
••••
MECHANICAL SPECIFICATIONS
J, JTX, JTXV lN5812, lN5814, lN581G
",015
.078
Max.
(unthreaded)
.437
r
.4oSl.BOO
Max.
Max .
00-4
~+'O!O1
.430
Notes:
1. Polarity Is cathode-to-stud.
2. All metal surfaces tin plated.
3. Maximum unlubricated stud torque: 15 inch pounds.
4. Angular orientation of terminal is undefined.
254
lliJJ
_UNITRDDE
JAN, JANTX, JANTXV lN58l2, lN58l4, lN58l6
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Minimum
Reverse
Breakdown
Voltage @ 100,..4
Peak
Inverse
Voltage
Type
J, JTX, JTXV lN58l2
SOV
60V
J, JTX, JTXV lN58l4
lOOV
nov
J, JTX, JTXV lN58l6
lSOV
l60V
Maximum Reverse
Recovery Time @
IF, h, bEe
35nsec 1.OA
-1.0A
.....
g
z
0:
0:
:>
(J
~
10
:>
~
;(
<
~
t
.:: 5
l00'C
.86V
MAX.
.95V
MAX.
lOIlA
750llA
l5nsec
2.2V
300pf
Maximum
Junction
Typical Reverse Current
VS. Reverse Voltage
Typical Forward Current
vs. Forward Voltage
// f/
~ 10
\
1\
...l;:
5
~
2
II III
~
:>
I
r--r-- rk~
'I-
~ 0.5
~
:\
II
02
.::: 0.1
\
0.05
0.02
:/
II
CJ
/
>-
z
"':i
I
I
a
.1
.2
~
.5
0:
If
-
0:
t
_01.
10
,I
20
50
I
--
r Pi
V
~TJ=+l2S'C
~
K=+IS0'C
:1
II
--
+100'C
I
.......
I
J
I--
I I
~
~
V, -
In 1.1 1.2 1.3 lA 1.5
REVERSE VOLTAGE 1% OF PIV)
VOLTAGE IV)
Reverse-Recovery Time Test Circuit
Characteristic Waveform
t"
~
~
D.U.T.
~
1,= 1A
I REC
N.I.
(coaxial)
=
.1A
1
'To
III
1
1
\
I,
= 1A
IJ
NOTES:
1. Oscilloscope: Rise time :0:;;; 3 ns; input impedance::: 50 U.
2. Pulse Generator: Rise time ~ 8 ns; source impedance 10 1L
UNITRODE ,CORPORATION· S FORBES ROAD
LEXI NGTON, MA 02173 ' TEL. (617) 861·6S40
TWX (710) 326-6509 • TELEX 95·1064
/
130 120 110 100 90 80 70 60 50 40 30 20 10 0
Ql .2 .3 A .5 .6 .7
Vf
T J -+2S'C
.OS
"'~
II
II
0.01
175
.OOS
~ p
7- KJ-.}J
"I-
,/
,..l.-t
;;' .01
oS .02
I
V
0:
(J
.001
.002
v. ~~
50
100
125
150
CASE TEMPERATURE I'C)
2S'C
Capacitance
@-10V
lOG
\
@ 20Apk
Maximum
Forward
Recovery
Voltage
@ lA tr = 8nsec
-O.1A
20
\
@ 10Apk
Maximum
Forward
Recovery
Time
@ lA Recovery to IV
Output Current
vs. Case Temperature
15
Maximum
Leakage
Current
@PIV
Peak Forward
Voltage
255
SET TIME BASE
FOR S NS/CM
T
PRINTED IN U.S.A.
IN6095
IN6096
POWER SCHOTTKY RECTIFIERS
25A, 30 and 40V
FEATURES
• Very Low Forward Drop
• Low Recovered Charge
• Rugged Package Design (DO-4)
• High Efficiency for Low Voltage Supplies
DESCRIPTION
Unitrode's series of Schottky barrier power rectifiers is ideally suited for output
rectifiers and catch diodes in low voltage power supplies. The Unitrode high
conductivity design, using a heavy copper top post and 4 point crimp, ensures cool
thermal operation and low dynamic impedance. Rugged design absorbs stress that
can damage glass-to-metal seal during installation and use.
ABSOLUTE MAXIMUM RATINGS (TCASE = 25·C)
lN6095
IN6096
Working Peak Reverse Voltage, VRWM . . . . . . . . . . . . . . . . . . . . • . . • . . • . . . . • . . . . . . . . • . • 30V .............................. 40V
DC Blocking Voltage, VR • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 30V .............................. 40V
Repetitive Peak Reverse Voltage, VRRM • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 30V .............................. 40V
Non-repetitive Peak Reverse Voltage, VRSM •.••••••• , • • • • • • • • • • • • • • • • • • • • • • • • • • • • 36V .............................. 48V
Average Rectified Forward Current, 10 . . .... .. . . . . . .... . . . . . ...... . . . .. . . . . . . ... ....... ... 25A (T, = 70·C) ........... .
lOA (T, = 105·C)
Non-repetitive Peak Surge Current (8.3 mS), IFSM • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
400A
Operating and Storage Temperature Range, Tio Ts '" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65 to + 165·C ........... .
Peak Operating Junction Temperature, TjcPk ) •••••••••••••••••••••••••••••••••••••••••••••••
+150·C
Thermal Resistance Junction to Case, R. JC • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • . • •
2·C/W Max.
MECHANICAL SPECIFICATIONS
IN6095, IN6096
A~Qi~
~~~.~~
--- H---'
G·
A
B
C
0
-F
G
H
.078
.437
.405
.800
.430
.250
.424
.066
ins.
MAX.
± .015
MAX.
MAX.
± .010
MAX.
MAX.
MIN. DIA.
00-4
mm
1.98 MAX.
11.10 ±0.38
10.29 MAX.
20.32 MAX.
10.92 ± 0.25
6.35 MAX.
10.77 MAX.
1.68 MIN. DIA.
Notes:
1. cathode is stud.
2. Maximum unlubricated stud torque: 10 inch pounds.
3. Angular Orientation of terminal is undefined.
2/80
256
llilJ
_UNITRDDE
lN6095
lN6096
ELECTRICAL CHARACTERISTICS (TeAsE=25°C)
Characteristic
Maximum Instantaneous
Reverse Current
Maximum Reverse Current
Maximum Instantaneous
Forward Voltage
Capacitance
Symbol
Both Types
Units
iR
250
mA
IR
VFM
250
0.86
mA
V
VFM
0.60
V
Ct
6000
pF
Conditions
VR= Rated
Te = 125°C
Pulse Width = 300ILS
Duty Cycle'" 2 percent
VR= Rated, Te = 125°C
IF = 78.5A
Te = 70°C
IF = lOA
Pulse Width 300ILS
Duty Cycle'" 2 percent
VR= l.OV
Typical Instantaneous IF vs VF
100
I
I
T,I~ +!2S'C
90
80
""-
+j' ~ ;2S'C
1"-...,
so
~ so
I
-'" 40
30
20
/
10
,.,
./
V
o
0.2
/
20
~
I
T,- +125°C
S
/
T, ~ +2S'C
1.0
O.S
0.2
0.8
IN6096
~
II'
0.1
1.0
VF - VOLTS
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
+12S'C
IN6095
I
1/
0.6
IN6095
~7'
10
./
0.4
_T,
"'/ I
~,~ _16S'C
60
=
100
II
I
I II I
J't. L
I
"""f,'J
I I 1/
I II
I
I
I I
I I I
1/ I
70
o
Typical Instantaneous I. vs V.
200
I
I
257
,
10
VV
IN6096
/
T,
lj'
o
~
/
./
IS
+25°C
20 2S 30
Vf!, - VOLTS
35
40
45
so
PRINTED IN U.S.A.
IN6097
IN6098
POWER SCHOTTKY RECTIFIERS
50 Amp, 30 and 40 Volts
FEATURES
• Very Low Forward Drop
• Low Recovered Charge
• Rugged Package Design (00-5)
• Low Thermal Resistance
• High Surge Current
DESCRIPTION
Unitrode's series of Schottky barrier power rectifiers is ideally suited for output
rectifiers and catch diodes in low voltage power supplies. The Unitrode high
conductivity design, using a heavy copper top post and 4 point crimp, ensures cool
thermal operation and low dynamic impedance. Rugged design absorbs stress that
can damage glass-to-metal seal during installation and use.
ABSOLUTE MAXIMUM RATINGS
1 NS09S
lN6097
... 30V ..
... 30V ..
.... 30V ..
... 36V ..
Working Peak Reverse Voltage, VRWM .
DC Blocking Voltage, VR
Repetitive Peak Reverse Voltage, VRRM .
Non-repetitive Peak Reverse Voltage, VRSM
Average Rectified Forward Current, 10 .....
.......... 50A (TC = 70'C) .
20A(Tc =105'C)
SOOA
-65 to +175'C ..
+175'C
................... I'C/WMax...
Non-repetitive Peak Surge Current (8.3 mS), I.SM .
Operating and Storage Temperature Range, Tio T"9 .... ..
Peak Operating Junction Temperature, Tj(pkl ............ .
Thermal Resistance Junction to Case, RSJC .
ELECTRICAL CHARACTERISTICS
Characteristic
Maximum Instantaneous
Reverse Current
Maximum Reverse Current
Maximum Instantaneous
Forward Voltage
Capacitance
(T CASE
. ........ 40V
..40V
..40V
..... 48V
= 25'C)
Symbol
Both Types
Units
Conditions
IROM
250
rnA
Vo = Rated,
Tc = 125'C
Pulse Width = 3OOI'S,
Duty Cycle:;;; 2 percent
VR = Rated, TC .:= 105'C
10
250
rnA
V. M
0.86
V
I. = 157A
Tc =70'C
V. M
0.60
V
I. = lOA
Pulse Width 3OOI(s
Duty Cycle:;;; 2 percent
C,
7000
pF
VR = l.OV
MECHANICAL SPECIFICATIONS
1N6097. 1N6098
0
1'4·28
"'~
ins.
225' .005
060 MIN
C
396 MIN FLAT
6670lA MAX
090 MAX
677' 010
375 MAX
140 MIN DIA
"
N
16.94 CIA. MAX
2.29 MAX
1720' 025
953 MAX
3.56 MIN OIA
1000 MAX
2540 MAX
450 MAX
1143 MAX
438' 015
1113·038
078 MAX
Nole..
1. Cathode Is stud.
2. Maximum un lubricated stud torque: 30 inch pounds.
3. Angular orientation of terminal is undefined.
4. Maximum tension (90') anode terminal 15 pounds for 30 seconds.
3/79
1 52MIN
396·051
156 MIN FLAT
F
UNF·2A
'572-013
156' 020
G
DO.5
198 MAX
[ill]
258
_UNITRDDE
1N6097, 1N6098
Typical Forward Current
vs Forward Voltage
Typical Reverse Current
vs Reverse Voltage
om
)JJ,,~I.,J
:;'1')'\"1i''''7'
200
ISO
// /
100
0.02
f- f-f-
::c
0.1
....
0.2
.§.
g
Z
50
w
....
a:
a:
Z
w
Q;
Q;
II I II
I
~
10
V
/
a:
I
-"'
1
lA
0.2
II
J
I II
I
I
0.3
0.4
0.5
10
20
I
V
IJ)
/
/ /
V/
,/
,/'
/'
/
.......
/
./
125C
/'
./
0.5
"'a:
iii"'
I
25C
/'"
:J
0
/
20
:J
0
./
0.05
II
/"
--
150C
/
V"
V
50
100
0.6
0.7
0.8
0.9
1.0
100 90
1.1
80 70
V. -
V,-VOLTAGE (V)
60 50
40 30
20
10
REVERSE VOLTAGE (% OF V.WM)
MECHANICAL SPECIFICATIONS
1N6097,1N6098
FLEXIBLE TOP LEAD (OPTIONAL)
Add an "F" Suffix to Part Number.
Standard JEDEC
I
N
~, ~ 11:C1=M1:::izz~:[1
--1'1
\
l~
T
D0-5 with Flexible Lead
..
F.....
/
Cable7~95/36
......
T
~I
...-
P
M
N
1.500;!: 100
38.10:!: 2.54
475:!: 250
12.07:!: 6.35
425:t 025
678:!: 320
R
S
,205:t .005 OIA.
075:!: 010
5.21:!: 0.13 DIA.
1.91 ~ 0,25
.1 MIN
2.54 MIN
""'"
IN<
Note: Consult Factory for Non-standard Lead Lengths.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
259
PRINTED IN U.S.A.
•
POWER SCHOTTKY RECTIFIERS
8D41
60A Pk, 45V
FEATURES
• Very Low Forward Drop
• Low Recovered Charge
• Rugged Package Design (00-4)
• High Efficiency for Low Voltage Supplies
DESCRIPTION
The SD41 has a Schottky barrier junction
and is ideally suited for output rectifiers
and catch diodes in low voltage power
supplies. The Unitrode high conductivity
design, using a heavy copper top post and
a 4 point crimp, ensures cool terminal
operation and low dynamic impedance.
Rugged design absorbs stress that can
damage glass-to-metal seal during installation and use.
ABSOLUTE MAXIMUM RATINGS (TCASE = 25°C)
Working Peak Reverse Voltage VAWM ........................................................... 45V·
DC Blocking Voltage, VA .......................................................................... 45V*
Average Rectified Forward Current, 10 ......................................................... 30A
Peak Repetitive Forward
Current (Rated VA, Square Wave, 20 KHz,
50 percent Duty cycle), IFAM .............................................................. 60A
Non-repetitive Peak
Surge current (8.3 mS), IFSM ........................................................... 600 A
Storage Temperature Range, Tst ............................................. - 55°C to + 165°C
Junction Operating Temperature Range, Tj ................................ -55°C to + 150°C
Thermal Resistance, Junction to Case, RO JC ........................................... 2.0°C/W
"'See curve of
VRCMAX)
Rating vs Case Temperature
MECHANICAL SPECIFICATIONS
SD41
A~Q!~
-
t!~g~
--- ---.
H'
G·
_.
F
mm
ins.
A
.078 MAX.
.437, .015
1.98 MAX.
IUO ±0.38
8
C .405 MAX.
o .800 MAX.
E .430 ± .010
F .250 MAX.
G
.424 MAX.
H
.066 MIN. OIA.
00-4
10.29 MAX.
20.32 MAX.
10.92' 0.25
6.35 MAX.
10.77 MAX.
1.68 MIN. OIA.
Notes:
!. Cathode is stud.
2. All metal surfaces tin plated.
3. Maximum unlubricated stud torque, 10 inch pounds.
4. Angular orientation of terminal is undefined.
2/80
260
ruJJ
_UNITRDDE
SD41
ELECTRICAL CHARACTERISTICS
(TeAsE
Characteristic
= 25°C)
limit
Symbol
Maximum Instantaneous
Reverse Current
iR
Maximum Instantaneous
Forward Voltage
VF
Capacitance
Voltage Rate of Change
TJUNCTION
/;
20
0/
V
pF
2000
700
V/I- -
VOLTS
\.0
o
\.2
~
/
/
/
•
)~
V
V
tV
II
V' /
,'l:
0'0 V
V'
)(
./
I
V
20
tr
1/
,':i
«
V
V ....
lOO
I
IJJ
35V
T, = 125°C
Pulse Width = 400l-
IIV"
5 10 l5 20 25 30 35 40 45
V, - VOLTS
VA (MAX) Rating versus
Case Temperature
45
.........
40
I'-...
r---....
~
r---....
30
I
~
20
10
o
-50
25
75
125
150
TEMPERATURE (OC)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
261
Printed in U.S.A.
POWER SCHOTTKY RECTIFIERS
8D51
120 Amp Pk, 45V
FEATURES
DESCRIPTION
•
•
•
•
•
The SD51 has a Schottky barrier
junction and is ideally suited for output rectifiers and catch diodes in low
voltage power supplies. The Unitrode
high conductivity design, using a heavy
copper top post and a 4 point crimp,
ensures cool terminal operation and
low dynamic impedance. Rugged
design absorbs stress that can damage
glass-to-metal seal during installation
and use.
Very Low Forward Drop
Low Recovered Charge
Rugged Package Design (00-5)
High Efficiency for Low Voltage Supplies
Available with Flexible Top Lead
ABSOLUTE MAXIMUM RATINGS
(TCASE
=25'C)
....... 45V*
Working Peak Reverse Voltage, VRWM
DC Blocking Voltage, VR ...... .
............ 45V·
Peak Repetitive Forward
Current (Rated VR, Square Wave; 20 KHz,
........ 120A
50 percent Duty Cycle), IFRM ........ .
Non-repetitive Peak
. ..... BOOA
Surge Current (8.3 mS), I FSM •..•...
Storage Temperature Range, T. tg ....
. ................................ -5S'C to +16S'C
Junction Operating Temperature Range, Tj ................................................ -5S'C to +lS0'C
Thermal Resistance, Junction·to-Case, RSJC ..................
.......... 1.0'C/W
·See curve of
VR{MAX)
Rating vs case Temperature
MECHANICAL SPECIFICATIONS
SD51
00-5
in••
.225:.005
C
o
E
F
G
H
11.·28
UNF·2A
K
l
.060 MIN.
.156:!: .020
.156 MIN. FLAT
.667 alA. MAX.
.090 MAX.
.677:!: .010
.375 MAX.
. 140 MiN. OIA.
1.000 MAX.
.450 MAX.
.438:!: .015
.078 MAX.
S.72:!:O.13
1.52 MIN.
3.96:!: 0.51
3.96 MIN. FLAT
16.94 OtA. MAX.
2.29 MAX.
17.20:!: 0.25
9.53 MAX .
3.56 MIN. OIA.
25.40 MAX.
11.43 MAX .
1 US + 0.38
1.98 MAlt
Nat•• :
1.
2.
3.
4.
Cathode is stUd.
All metal surfaces tin plated.
Maximum unlubricated stud torque: 30 Inch pounds (35 kg. cm).
Angular orientation of terminal is undefined.
2/80
262
OJJJ
_UNITRDDE
5051
ELECTRICAL CHARACTERISTICS (T CASE
=
Characteristic
25'C)
Symbol
Limit
Units
200
mA
Maximum Instantaneous
Reverse Current
iR
Maximum Instantaneous
Forward Voltage
vF
0.60
V
Flexible Top lead Option
vF
0.65
V
Maximum Capacitance
C,
Maximum Voltage
Rate of Change
dvldt
4000
700
200
150
~
......
40
r-.... r-...
....
"13
§?
'"
::>
"...,.I
u
20
vR
= 35V
10
10
'"
0:
0:
::>
'"'"
'"~
0:
~
II
I
-"
0.3
10
20
0.4
0.5
0.6
0.7
0.8
0.9
1.0
V,-VOLTAGE (V)
150
. /~ V
./ ./
./
/'
/'
./
12S¢
1.1
200
J /
45
40
30
20
10
Vp.-VOLTAGE (V)
CASE TEMPERATURE I"C)
MECHANICAL SPECIFICATIONS
SD51F
FLEXIBLE TOP LEAD (OPTIONAL)
Add an "F" Suffix to Part Number.
Standard
JEOEC
00-5 Package
r-----N-----I
(vIK=rMl~z[j
fW \=,/
Sleevj~
DO-5 with Flexible Lead
ins.
M
R
S
1.500'" .100
.475'" .250
.425'" .025
.678'" .320
.205 ± .0050IA.
.075'" .0lD
.1 MIN.
38.10'" 2.54
12.07'" 6.35
10.80'" 0.64
17.22'" 8.13
5.21 ± 0.13 OIA.
1.91 ... 0.25
2.54 MIN.
"""
LMd
Note: Consult Factory for Non-standard lead lengths.
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON" MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
.
263
:-
TJ=lSO°C
50
100
I
0.2
55"~-
25°C f---
0:
I
II
1
o
...z
u
= iJ1 '"Pr-fr'"
'"
II
125
Typical Reverse Current
vsVoltage
VII
- ....'
75
VII'S
II J II
20
,:
25
= 5.0V
g
-II
-50
VR
= 3001'5
= 1 percent
:<
0:
0:
;;:
'"
pF
50
$
....
z
30
~
g
=
=
1/
/1/
100
........
= 4001'5
= 1 percent
iF
60A
Tc
125'C
Pulse Width
Duty Cycle
Typical Forward Current
vs Forward Voltage
VRIMAXI Rating vs
Case Temperature
45
Conditions
=
=
vR
35V
Tc
125'C
Pulse Width
Duty Cycle
PRINTED IN U.S.A.
DUAL POWER SCHOTTKY RECTIFIERS
80241
30 Amp Pk per diode, 45V
FEATURES
• Very Low Forward Drop
• Low Recovered Charge
• Rugged Package Design CTO-3J
• High Efficiency for Low Voltage Supplies
• Dual Schottky Rectifiers in a Single Package
DESCRIPTION
The SD241 has two Schottky barrier
juntions arranged in a common cathode configuration and is ideally suited
for output rectifiers and catch diodes
in low voltage supplies.
ABSOLUTE MAXIMUM RATINGS (TCASE = 2S·C) Per Diode
Working Peak Reverse Voltage VRWM ........................................................... 45V
DC Blocking Voltage, VR •••• , ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 45V
Average Rectified Forward Current, 10 ......................................................... 30A
Non-repetitive Peak
Surge current (8.3 mS), I FsM ............................................................ 400A
Storage Temperature Range, T" ............................................... -55·C to + 175·C
Junction Operating Terrrperature Range, Tj •••••••••••••••••••••••••••••••• -55·C to + 150·C
Package Thermal Resistance, Junction to Case, RIIJC ............................... 1.4·C/W
MECHANICAL SPECIFICATIONS
NOTE:
Leads may be soldered to within
1111" of base provided temperature·
time exposure is less than 260'C
for 10 seconds.
SD241
ANODE 2 .o____
~+-I-'1-11144--'0 ANODE!
T0-3
CASE (CATHODE)
J
K
ins .
A
ANODE 2
•
C
F
L
F
.875
.135 MAX.
.350'j: .100
.312 MIN.
. 215 ..... 010
.430 ± .010
.156:!:: .005
.18S MAX RAO.
. 525 MAX. RAD.
. 665 ± .010
M
N 1.187:t' .010
P .0405'" .0025
22.23
3.43 MAX .
8.89 .... 2.54
7.92 MIN .
546'" .254
10.92 ± .254
3.96:t .127
4.78 MAX. RAO .
13.34 MAX. RAO .
16.89 ± .254
30.15 ± .254
1.03 ± .064
Noles: All metal surfaces tin plated.
2/80
264
[ill}
_UNITRaCE
ELECTRICAL CHARACTERISTICS (T CASE
5D241
= 25°C) Per Diode
Characteristic
Maximum Instantaneous
Reverse Current
Maximum Instantaneous
Forward Voltage
Symbol
iR
VF
Limit
Units
100
mA
V.
35V
Tc =125'C
Pulse Width = 4001'5
Duty Cycle = 1 percent
.47
V
iF
IDA
Pulse Width = 300l'S
Duty Cycle = 1 percent
Tc = 12S'C
.60
V
iF = 20A
Pulse Width = 300I'S
Duty Cycle = 1 percent
Tc = 12S'C
Conditions
=
=
Maximum Capacitance
C,
2000
pF
V. = S.OV
Maximum Voltage Rate of Change
dvldt
1000
viI'S
v. = 35V
•
Typical Forward Current
YS Forward Voltage
Typical Reverse Current
vs Reverse Voltage
300
200
100
:<
.s
50
r-'\' ~
"'
'"'"
20
"'rn
10
:l
U
-~
12S'C
"'>'"
"''"
2S'C
V
~
o5
~
~ IJ
",'3
V
1I Ii
;,
~ {>~~
J'i
II
lL
tI1
10 15 20 25 30 35 40 45
VF - REVERSE VOLTAGE (V)
V,- FORWARD VOLTAGE (V)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
~V V
II
~
I
~
~
'\.');
V'
~
0.1 .2 .3 .4 .5 .6 .7 .8 .9 1.01.11.21.31.4
V
VII
~
z
V
c§S) I '
~V
265
PRINTED IN U.S.A
SES5001-SES5003
RECTIFIERS
High Efficiency, 2A
FEATURES
Fast Recovery Times
o Low Forward Voltage
o Small Size
o Convenient Package
DESCRIPTION
An axial leaded power rectifier useful
in many switching applications.
Particularly suited where very fast
recovery and low forward voltage are
required.
o
ABSOLUTE MAXIMUM RATINGS
Peak I nverse Voltage, SES5001 ...................................................................................50V
Peak Inverse Voltage, SES5002 .................................................................................. 100V
Peak Inverse Voltage, SES5003 .................................................................................. 150V
Maximum Average D.C. Output Current at TL = 75·C, L=3/8" .......................................................... 2A
Non-Repetitive Surge Current at 8.3mS ............................................................................ 35A
Thermal Resistance, @ L=3J8" .............................................................................. . 38·C/W
Operating and Storage Temperature Range .............................................................. - 55·C + 175·C
ELECTRICAL SPECIFICATIONS
Type
PIV
SES5001
SES5002
SES5003
50V
100V
150V
"Measured in circuit iF
Maximum
Forward Voltage (VF)
@
TJ =2S·C
TJ =100·C
.975V
@
lA
.895V
@
lA
Maximum
Reverse Current (lR)
@PIV
@TJ =2S·C @ TJ =100·C
2"A
50"A
Maximum
Reverse
Recovery
Time"
100nS
= .5A,IR = 1.0A, IREC = .25A
MECHANICAL SPECIFICAtiONS
SES5001-SE$S003
.7W~~~'
BODY A
-+- .2~~~~X._
r-____
1.~~~:~N.
_ _ _ _-I
[ill]
_UNITRODE
1/10
266
SES5001-SES5003
Output Current
vs. Lead Temperature
1
L
~
'"
L=Vo"
............
""-
L _ 3/8"
""-t-L=14"
Typical Forward Current
vs, Forward Voltage
//. V./
1,-
[LV
T,
"
~
.............
vl/
.2
VII
1/.0
~ .1
0:
~,
I
_"'" .02
'\.
""'" ...........
~
....
z
II
UJ
(J
:J
0:
0:
0
J{f
0
175
100
0:
0:
r--
:J
o
UJ
~
:J
..
--r--
100
so
10
.Ips
.5
;::
«
0:
w
T
H- j.-- ....
+7S'C
.....
~:>--.....
T
+12S'C
rt
J
100
80
60
40
20
VOLTAGE IN % OF PIV
":J
...0
I"
BO
60
'"""'"
~
0:
-----
II
=
Multiple Surge Current
vs, Duration
100
z'-'
SOO
[ [
120
.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.11.21.3
Vf. - VOLTAGE (Vj
~
~ 1,000
UJ
=2S'C
.5
so
Dura~~~a:~r ~~~~R~a:::~ri~~Spu,se
5,000
j.--e-e-
10
Forward Pulse Current
VS. Duration
10,000
.1
I
-"
fI
I
.001
i-"
.05
TJ
1
/ II
.002
v£
.01
1'-' ....'
I
.005
50
75
100
125
150
Tl -LEAD TEMPERATURE {'C}
/1
1-....
/
.01
,\
1.)
$ ~/°(J
~:: ~ j
a.05
~
25
.5
~
....
z
'" ""-
~:tJ.d
k.~
~) i -
~
.001
10
1,,-
Ir
Typical Reverse Current
vs. Voltage
Ul
r---
t-
----
so
lO~s
lOOJl-s
PULSE DURATION
1m.
40
~
~
TlMOUNT
@ Length
...........
20
t--
= lffl"
==+===tp'1"ted Circut --
5
1
lOms
10 20
2
50
100 200
500
1000
CYCLES AT 60 Hz SINE WAVE
Reverse-Recovery Circuit
+
_
-=-
25Vdc
(APPROX.)
In
NOTE 3
OSCILLOSCOPE
NOTE!
NOTES:
1. Oscilloscope: Rise tlme<3n5; input Impedance = 502.
2. Pulse Generator: Rise time<8nS; source Impedance 10Q.
3. Current viewing resistor, non-Inductive, coaxial recommended.
UNITROOE CORPORATION, 5 FORBES ROAD
LEXINGTON, MA 02173 ' TEL (617) 861-6540
TWX (710) 326-6509 ' TELEX 95-1064
267
PAINTED IN U.S.A.
SES5301-SES5303
RECTIFIERS
High Efficiency, 5A
DESCRIPTION
An axial leaded power ractifier useful
in many switching applications.
Particularly suited where very fast
recovery and low forward voltage are
required.
FEATURES
• Low Forward Voltage
• Fast Recovery Times
• Small Size
• High Surge
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, SES5301 ...................................................................................50V
Peak Inverse Voltage, SES5302 .................................................................................. 100V
Peak Inverse Voltage, SES5303 .................................................................................. 150V
Maximum Average D.C. Output Current at TL = 75·C, L = 3/8" ........ .................................................. 5A
Non·Repetitive Sinusoidal Surge Current at 8.3mS .................................................................. 110A
Thermal Resistance at L =3/8" .............................................................................. . 20·C/W
Operating and Storage Temperature Range ............................................................ - 55·C to + 170·C
ELECTRICAL SPECIFICATIONS
Type
PIV
SES5301
SES5302
SES5303
50V
100V
150V
Maximum
Reverse Current (lR)
@PIV
Maximum
Forward Vollaga (V F)
@
TJ =2S·C
TJ =100·C
@T J =2S·C
@TJ =100·C
0.975V
@
5A
0.895V
@
5A
5JAA
150JAA
Maximum
Reverse
Recovery
Time"
100ns
MECHANICAL SPECIFICATIONS
SESS301-SES5303
BODYB
[ill]
1/80
268
_UNITRaCE
SES5301-SES5303
Output Current
vs. Lead Temperature
10
,I
Typical Forward Current
vs. Forward Voltage
'" I/o"\. Hr
1
'\
~/
L
~
5:
!z
"'0:0:
L_
~'''''
4
50
TL -
.02
J---
//; V'j
...
2
/
0:
0:
a
r\
I
\
~
.5
r-'-'i "
'" .2
,
1..'
,
II
1-'
.02
lJj
01
175
~
...z
I I
I
r--- r--. ..........
200
/.
,..'
1000
..
100
50
10
1,£
i'
n
-- -50
100,£
= +lOO·C
I I I L
T = +12S'C
---
I' 1 1 I I
100
aD
60
40
20
VOLTAGE IN % OF PIV
Multiple Surge Current vs. Duration
100
Dura~f1o~a{~r ~U~~~R~~:~~j~~SpUlse
10,£
T
'"
VOLTAGE (V)
1 1
.5
.1,£
~J 'I ~7iC
120
I"
"'so
z
'" ,
.......,
.
...
;:
0: 60
-....
::>
""'~
::>
I-
--
-
100
1-1
Forward Pulse Current vs. Duration
5,000
10
20
-"
.1 .2 .3 .4 .5 .6 .7 .8 .9 1.01.11.21.3
vr -
--
+25·C
::>
"I
10,000
5:
!Z 1,000
::!0: 500
:1, =
'--
::!0:
'I
~tJ/~
.r'/- ~iil
.05
~~
100
125
150
75
LEAO TEMPERATURE (OC)
.1
VI j f
/ II
-so·e
.2
'/ /'j
5:
Vf 1 1
T;::::
10
...z
L="'~
25
50
1,-
\
"":""""
.01
'r--
"\
" i'-..
::>
"I
T,
Typical Reverse Current
vs. Voltage
100
'::>"
I"
0:
r--.. r--
...o
'" '0
=
80
"''"a:
60
z
DUration for Non-Repetitive Pulse
"'
u
100
I I
I I
Peak Half Sine Current
"::>
40
"0
;f'.
20
..........
50
.5
I'
.........
1 2
10"S
100"S
PULSE DURATION
ImS
"'
..J
"'...'"J:
.25
I
e:
...................
---
so 100 200
I-
SOO 1000
CYCLES AT 60 Hz SINE WAVE
Reverse-Recovery Circuit
son
.... ~ 1---
1.0
.5
«
:;:
r---.....
10 \l
2.5
<5
"'"-~
100
80
60
40
20
VOLTAGE IN % OF PIV
10 20
10mS
Thermal Impedance
vs. Pulse Width
zu
125°C
ill I I
~
«
r-...
=:".
--
Multiple Surge Current vs. Duration
Forward Pulse Current vs. Duration
10,000
TJ
120
.1 .2 .3 .4 .S .6 .7 .8 .9 1.0 1.11.21.3
TEMPERATURE ('C)
~=±
::J
I
u
L,
II
111 ,-' ,-'
.05
.01
y.
II
ia:'5
f-I-
J , .
r-
>-
fi"
...
~
I' I
.1
.2
I/. V,
~~
V'f
T J =:::-50·C
IJ.V
~
z
"'
~
......... ~
2SVdc
(APPROX.)
1
,;'
~?
NOTE3
V~
.1
rue: .05
+
_
-=-
NOTES:
/
.01.02 .OS.I.2
tp -
.S 1 2
S 10 20
so 100200
1. Oscil/oscope: Rise time ~ 3nS; input impedance = 50n .
2. Pulse Generator: Rise time ~ 8nS; source impedance lO!!.
3. Current viewing resistor, non-inductive, coaxial recommended.
1000
PULSE WIDTH (mS)
UNITRODE CORPORATION. S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6S40
TWX (710) 326-6509 • TELEX 95-1064
271
PRINTED IN U.i;.A.
SES5401C-SES5403C
RECTIFIERS
High Efficiency, 16A Center-Tap
DESCRIPTION
The SES5401C Series, in the economical,
convenient TO·220 package, is specifically
designed for operation in power switching
circuits to frequencies in excess of
100KHz. The series combines two high
efficiency devices Into one package,
simplifying installation, reducing heatslnk
requirements and the need to purchase
matched components.
FEATURES
• Low Forward Voltage
• Fast Recovery Times
• Economical, Convenient TO·220 Package
• Low Thermal Resistance
• Mechanically Rugged
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, SES5401C ..................................................................................50V
Peak Inverse Voltage, SES5402C ................................................................................. 100V
Peak Inverse Voltage, SES5403C ................................................................................. 150V
Maximum Average D.C. Output Current
@Tc
125·C ............................................................... 16A
@TA = 25·C .....................................•........................... 3A
@TA = 25'C(Note 1) ......................................................... 10A
Non·Repetitive Sinusoidal Surge Current, 8.3mS .................................................................... 70A
Thermal Resistance, Junction toCase,9J .c ................................................................... . 1.75·CIW
Thermal Resistance, Junction to Ambient, 9 J .A .•..••••.•.••.•.••......•.....•....•...•...•.•••.•.•.•••••••.•.•• •60·C/W
Operating and Storage Temperature Range ............................................................ - 55·C to + 150'C
=
NOTE 1.
Using Wakefield Type 295 heatsink with convection cooling. For more
definitive data refer to the Output Current vs. Temperature Curves on this datasheet.
ELECTRICAL SPECIFICATIONS
Type
PIV
SES5401C
SES5402C
SES5403C
50V
100V
150V
Maximum
Forward Voltage (VF)
@
TJ =2S'C
Maximum
Reverse Current (I R)
@PIV
TJ =100'C
@ TJ =2S'C
@ TJ =100'C
5""
150""
0.945V @ 8A
1.025V @ 8A
Maximum
Reverse
Recovery
Time"
Typical
Forward
Recovery
Voltage
@1A
t r =8nS
100nS
1.4V
"Measured In circuit IF=O.5A,IR=1.0A,I REC=O.25A
MECHANICAL SPECIFICATIONS
SES5401C-SES5403C
SEATING
PLANE
.,"·• ",..... "... ..........",. .........
MILLI ITE••
A
j
'/ ~U
SECTA.A
--J
. ! ...
~
Pin 1
Pin 3
14.23
II. .
15.17
c
'.50
0
0.51
3.531
2.29
....
•
G
H
Pin2
J
&
Tab
K
L
N
Q
•
5
T
1.1-4
3.733
IMeMU
0.U5
....
0.140
.....
,.31
.....
•.'.54" ....•.»
,... ,..,.... .....
5.1. .... oa
'.n
6.3.
0.&4
12.10
14.21
1.14
1.77
0.119
0.015
0.045
0.110
0.100
1.14
TO·220
0.045
0.110
a.IM5
0.147
.....
.....
.....
0.110
..........
0.070
0.110
0.115
0.270
[lliJ
1/80
272
_UNITRDDE
SES5401C-SES5403C
Output Current
vs. Temperature
Typical Forward Current
vs. Forward Voltage
18
100
Z
12
x
x
10
.
:J
TJ
I..iI ~~j::.
20
14
.2
.IV.
l/,V.
~
I
.2
e-~fil/
-"
.1
l'l/
t-
Z
I
a:
a:
:0
u
UJ
-"
1
.5
.05
.02
.01
f-+--;.
II
"'
0:
0:
11f--
I
KJ~O
--
In
/;
'- ...'
I
5.000
1.000
~
-........
500
TJ
......
100
50
= -,
1-1-
75°C
, III
1000
r
~J i-+; 10
H
TJ
==
I-f-
C
I
..L.125~C
DB
1 I I I I
120
100
80
60
40
20
VOLTAGE IN % OF PIV
VOLTAGE (V)
Multiple Surge Current VS. Duration
J.J.
-.........
i"r'"
25"C
••
10
20
~
200
1/11
100
Peak Half SIne Current vs.
Duration for Non-Repetitive Pulse
t--
=
I-
100
Forward Pulse Current vs. Duration
10.000
J
j/
U
.1 .2 .3 .4 .5 .6 .7 .8 .9 1.01.11.21.3
V, -
f-±:t-+- r-'-:'
i-;.
:J
8!J u
/1:;: ....-
I1I1
t-
Z
== -SO"C
j
.1
~V
10
C>
IA
.02
50
16
~
Typical Reverse Current
vs. Voltage
.01
-- --
"
80
a:
60
z
>=
«
UJ
"
I. . .
~
if)
r--....
'~
IX
:0
.......
40
"-
o
o~
20
-r--
~
10
.5
50
10~S
1
lOOpS
1mS
2
10mS
10 20
SO 100 200
500 1000
CYCLES AT 60 Hz SINE WAVE
PULSE DURATION
Thermal Impedance
vs. Pulse Width
Reverse-Recovery Circuit
son
2.0
~l
~I-
1.0
./
.4
1--'1-"
j.-""
+
:::::::
Vi-'"
.2
(A~~~~~) 0-----,
1U
NOTE]
~
.1
.04
10
OSCILLOSCOPE
NOTEI
/
g
.02
,.01.02 .05.1 .2
tp -
.5 1 2
5 10 20 50 100 200
NOTES:
1. Oscilloscope: Rise time ~ 3nS; input impedance = 500.
2. Pulse Generator: Rise time ~ 8nS; source impedance lOn.
3. Current Viewing resistor, non-inductive, coaxial recommended.
1000
PULSE WIDTH (mS)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
273
PRINTED IN U.S.A.
SES5601C
SES5602C
SES5603C
RECTIFIERS
High Efficiency, 25A Center-Tap
FEATURES
• Low Forward Voltage Drop
• Fast Switching Speed
• Convenient Package
• High Surge Capability
• Low Thermal Resistance
• Mechanically Rugged T0-3 Package
• Available as Posillve or Negative Center·Tap
DESCRIPTION
The SES, super·fast recovery, rectifiers are
specifically designed for operation in
power switching circuits. Their super·fast
recovery lime and very low forward
voltage drop make them particularly
efficient in most switching applications.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, SES5601C .................................................................................. 50V
Peak Inverse Voltage, SES5602C ................................................................................. 100V
Peak Inverse Voltage, SES5603C ................................................................................. 150V
Maximum Average D.C. Output Current at Tc = 100°C ................................................................ 25A
Non·Repetitive Sinusoidal Surge Current 8.3 mS ................................................................... 400A
Thermal Resistance, Junction to Case .......................................................................... . 1'C/W
Operallng and Storage Temperature Range ............................................................ - 55 'C to + 175 'C
ELECTRICAL SPECIFICATIONS PER DIODE
Type
PIV
SES5601C
SES5602C
SES5603C
50V
l00V
150V
Maximum
Forward Voltage (VF )
@
Maximum
Reverse Current (I R)
@PIV
Tc=2SoC
Tc=12SoC
@Tc=2S oC
@Tc=12S oC
Maximum
Reverse
Recovery
Time"
0.990V
@
12.5A
tp=300,.s
0.830V
@
12.5A
tp=300,.s
20~
4mA
lOOnS
MECHANICAL SPECIFICATIONS
SES5601C-SESS603C
POSITIVE OUTPUT
•
~
I
14
•
CASE
~Bb'
C
Ins.
F
M
J~l
G
j
,
H
0
..~..:::
I
J~
.......,
K
A
.875 MAX .
e
.135 MAX.
3.43 MAX.
C
.250-.450
6.35-11.43
D
.312 MIN.
E
.038-.043 DIA.
22.23 MAX.
7.92 MIN.
0.97-1.09 OIA.
4.18 MAX. RAO.
F
.188 MAX. RAD.
G
1.117-1.197
29.00-30.40
H
.655-.675
16.64-17.15
J
.205-.225
5.21-5.72
K
.420-.440
10.67-11.18
L
.525 MAX. RAD. 13.34 MAX. RAO.
.0
.151-.161
L
TO·3
mm
3.84-4.09 CIA.
NOTES:
1. Standard polarity is positive output.
For reverse polarity (negative output) add suffix "RIO, ie, SES5601CR.
2. All metal surfaces tin plated.
[ill]
1/80
274
_UNITRODE
SES5601C-SES5603C
Typical Forward Current
VS. Forwerd Voltage
Typical Reverse Current
vs. Reverse Voltage
.001
I
.002
--+-h
T -+2S'C
.005
;( .01
.02
SO
V
J
oS
0:
:>
.2
\oJ
II>
.S
0:
\oJ
>
\oJ
0:
1
2
I
-~
10
20
50
10
Z
OJ
0:
0:
.05
\oJ
0:
.1
f- -r i:=T;-
V
I-
--
I-"TJ = +12S·C·
.L
:>
V
<>
/
.j
0
0:
'"
;:
V
1
_--V
+100'C
II I
0:
...0
-"
.S
'7 F== ~=+IS0'C
II
II
_\
20
~
I-
...z
<>
TJ = +IS0'C
30
.2
I I
130 120 110 100 90 80 70 60 50 40 30 20 10
V, - REVERSE VOLTAGE (% OF PI V)
Maximum Forward Surge
vs. Number of Cycles
400
...Z~ 300
\oJ
0:
0:
""
o
~
>
-" 100 f\J\..
~ICYC~E
Q.
V
:;;
.1
.J
«
~
.05
OJ
J:
l-
-
i'--.
r-+-
.2
OJ
'" '"
1.0
.6
.8
FORWARD VOLTAGE (V)
~V
«
I
/
vI--
.5
L>
Z
13200
-TJ = +7S'C
Thermal Impedance
vs. Pulse Width
OJ
I""
t-
I
V, -
0
/
lL
i
V
/
~V
""L
,/ ,/
V
V
.02
I
..g
.01
.01.02 .05.1 .2
.S 1 2
5 10 20 50 100 200
1000
t, - PULSE WIDTH (mS)
N-
10
20
SO
100
CYCLES OF 60 Hz SINEWAVE
200
Reverse·Recovery Circuit
Output Current vs.
Case Temperature
SOP.
100
30
~
-
I-
Z
\oJ
0:
0:
:>
...<>
:>
...:>
20
~
.
0
10
I
_0
100
To -
+
_
=-
"~
25Vdc
(APPROX.)
10
NOTE 3
~
12S
ISO
CASE TEMPERATURE ('C)
UNITRODE CORPORATION. S FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6S09 • TELEX 9S·1064
OSCI LLOSCOPE
NOTE!
NOTES:
1. Oscilloscope: Rise time ~ 3nSj input impedance = son.
2. Pulse Generator: Rise time ~8nSj source i"mpedance 100.
3. Current viewing resistor, non-inductive, coaxial recommended.
17S
275
PRINTED IN U.S.A.
SES5701
SES5702
SES5703
RECTIFIERS
High Efficiency, 20A
DESCRIPTION
The SES, super·fast recovery, rectifiers are
specifically designed for operation in
power switching .clrcuits. Their super·fast
recovery time and very low forward
voltage drop make them particularly
efficient in most switching a'pplications.
FEATURES
• Low Forward Voltage Drop
• Fast Switching
• Low Thermal Resistance
• High Surge Capability
• Mechanically Rugged 00·4 Package
• Reverse Polarity Available
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, SES5701 ................ , .................................................................. 50V
Peak Inverse Voltage, SES5702 ................................ , ................................................. 100V
Peak Inverse Voltage, SES5703 .................................................................................. 150V
Maximum Average D.C. Output Current at Tc = 100°C ................................................................ 20A
Non·Repetitive Sinusoidal Surge Current 8.3 mS .............. , .............. , ..................................... 400A
Thermal Resistance, Junction to Case ......................................................................... 1.5 ·CIW
Operating and Storage Temperature Range ............................................................ - 55·C to + 175·C
ELECTRICAL SPECIFICATIOMS
Type
SES5701
SES5702
SES5703
Maximum
Forward Voltage (VF)
@
PIV
50V
100V
150V
Maximum
Reverse Current (lR)
@PIV
Tc=25°C
Tc=125°C
.990V
@
20A
tp =300!'5
.830
@
20A
t p = 3OOIlS
@ Tc=25°C
@Tc =125°C
20,..A
4mA
Maximum
Reverse
Recovery
Time'
100nS
·Measured In circuit IF = .5A,IR = 1.0A, IREC = .25A
M.ECHANICAL SPECIFICATiONS
SES5701-SES5703
Af:-161 r:l
·.#~l·~
UNF-2A
F
H
mm
ins.
A
00·4
.Q78 MAX.
1.98 MAX .
B
±.437 ±.O15
11.10 ±0.38
C
.405 MAX.
10.29 MAX.
0
.800 MAX.
20.32 MAX•
E
.424 MAX.
F
.088 MIN. DIA.
G
.430 ±.010
10.92 ",0.25
H
.250 MAX.
6.35 MAX.
10.77 MAX.
1.88 MIN. DIA.
NOTES:
1. Standard polarity 15 cathode-to-stud.
For reverse Polarity (anode-ta-stud) add suffix "R", ie. SES5701R.
2. All metal surfaces tin plated,
3. Maximum unlubrlcated stud torque: 10 inch pounds.
4, Angular orlentat/on of terminal is undeflned.
[ill]
1/80
276
_UNITRODE
SES5701 - SES5703
Typical Reverse Current
vs. Reverse Voltage
.001
.002
I
Typical Forward Current
vs. Forward Voltage
80
./
TJ =+150'C/
J-+-
.005
;{ .01
oS .02
TJ
-
50
+ 25'C
"'
1 '--
OJ
a:
T ~f
V
I
-~
10
20
50
OJ
20
/ /
II
II
--
+100'C
u
10
c
a:
r-- /
V
1
":;:a:
...c
f--V
TJ = +125'C
"'"
::J
/
/
II
V
/
/
/
II
/
-"
II
::::r:-= +150'C
J
/
1
.4
I
TJ =1+75•C
V V
a:
a:
.05
a: .1
a:
:> .2
u
OJ
.5
OJ
>
OJ
30
....z
....z
a:
!!:
VA'
L V~
.6
v, -
.8
1.0
FORWARD VOLTAGE (V)
..
130 120 110100 90 80 70 60 50 40 30 20 10 0
v, - REVERSE VOLTAGE ('Yo OF PIV)
Maximum Forward Surge
vs. Number of Cycles
400
!!: 300
....
z
OJ
a:
a:
""
I~
OJ
U
.5
"'"
.2
Thermal Impedance
vs. Pulse Width
f--' f---
Z
""
I
100
1.0
~
i3200
>
-~
;:
f\.JL
~ICYC~E
..
OJ
Vy
/
::;
~
.1
oJ
""
'~"
.05
OJ
J:
"I'---
....
-
1/
/
.02
I
~
.01
.01.02 .05.1 .2
rW
tp -
N
~
10
20
50
100
CYCLES OF 60 Hz SINEWAVE
V
.5 1 2 5 10 20 50100 200
PULSE WIDTH (mS)
1000
200
Reverse·Recovery Circuit
o
utp ut Cu rre nt vs.
·Case Temperature
10 Q
50 P.
25
!!:
....z
20
OJ
a:
a:
:>
u
..
....
....
::J
15
+
~
:>
10
0
I
_0
5
100
Tc -
_
-=-
25Vdc
(APPROX.)
1{)
~
NOTE 3
'"
'"~
OSCILLOSCOPE
NOTE 1
NOTES:
1. Oscilloscope: Rise time ~ 3nS j input impedance = 500.
2. Pulse Generator: Rise time ~8n5i source impedance 100.
3. Current viewing resistor, non-inductive, coaxial recommended.
125
150
175
CASE TEMPERATURE ('C)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064
277
PAINTED IN U.S.A.
SES5801
SES5802
SES5803
RECTIFIERS
High Efficiency, 60A
DESCRIPTION
The SES, super·fast recovery, rectifiers are
specifically designed for operation in
power switching circuits. Their super·fast
recovery time and very low forward
voltage drop make them particularly
efficient in most switching applications.
FEATURES
Low Forward Voltage Drop
o Fast Switching Speeds
o High Surge Capability
o Low Thermal Resistance
o Mechanically Rugged 00·5 Package
o Reverse Polarity Available
o
ABSOLUTE MAXIMUM RATINGS
i
I
Peak Inverse Voltage, SES5B01 ................................................................................... 50V
Peak Inverse Voltage, SES5B02 .................................................................................. 100V
Peak Inverse Voltage, SES5B03 .................................................................................. 150V
Maximum Average D.C. Output Current at Te = 100 oC ................................................................ BOA
Non·Repetitive Sinusoidal Surge Current B.3 mS ................................................................... BOOA
Thermal Resistance, Junction to Case ......................................................................... O.B 'C/W
Operating and Storage Temperature Range ............................................................ - 55'C to + 175'C
ELECTRICAL SPECIFICATIONS
Type
SES5801
SES5802
SES5803
PIV
50V
100V
150V
Maximum
Reverse Current (IR)
@PIV
Maximum
Forward Voltage (VF)
@
Tc=2SoC
Tc=1SOoC
@Tc =2S oC
@Tc =1S0°C
0.990V
@
BOA
tp=300,..S
0.850V
@
BOA
tp=300,..s
25"A
30mA
Maximum
Reverse
Recovery
Time'
100nS
'Measured in circuit IF=O.5A, IR=1.0A, IREC=O.25A
MECHANICAL SPECIFICATIONS
SESS801-SESS803
In8.
A
1/4·28
UNF·2A
.225:1:.005
B
.Q6OMIN.
.156:t .020
0
.156 MIN. FLAT
3.96 MIN. FLAT
E
.667 OIA. MAX.
16.94 OIA. MAX.
F
.090 MAX.
.867:t. .010
H
.375
1.S2MIN.
3.96
::I:
0.51
2.29 MAX.
16.94:2:0.25
9.53
J
.140 MIN. DIA.
K
1.000 MAX.
L
3.56 MIN. OIA.
25.40 MAX.
.450 MAX.
1'.43 MAX.
M
.438 :t,01S
11.13:1:0.38
N
.078 MAX
Notes:
1. Standard polarity Is cathode-ta-stud.
For reverse polarity (anode-ta-stud) add suffix "A", ie. SES5801 R.
2. All metal surfaces tin plated.
3. Maximum un lubricated stud torque: 20 Inch pounds.
4. An angular orientation of terminal is undefined.
1180
mm
5.72.:1: 0.13
e
G
DO·S
1.98 MAX.
lliD
278
_UNITRODE
SES5801·SES5803
Forward Current
Typical Reverse Current
vs. Reverse Voltage
.01
<
S .05
~
....- f -
.005
.02
vs. Forward Voltage
200
.001
.002
c- ' -
TJ
~
TJ = +ISO'C
_V
g
...z
2S'C
z
'"
0:
~
.2
~
1
-"
r- .t.
-
10
20
50
r1
TJ
30
u
20
p- ~12~'C
J-
V
~
/
10
a:
...
/
= +IOO'C
/
/
-"
,
f""' ~Isb·c
I
"
1
/
1
1
/
5:
....
z
600
'"0:0:
'"I'"
~
V
1.0
.8
FORWARD VOLTAGE (V)
~
~
!\.JL
~ICYCIE
,.....
N-
""
-'
'"
::;
~
0:
.............
'"l:...
-
I
10
20
so
100
CYCLES OF 60 Hz SINEWAVE
V
.1
V
.05
/
.02
~ .01
"'
.01.02 .05.1 .2
r-so
....:>
....
:>
.5 I 2 5 10 20 so 100 200
PULSE WIDTH (mS)
1000
200
Reverse-Recovery Circuit
soo
Ion
70
:>
u
Go
f-f-f-
","'"
::;
Output Current vs.
Case Temperature
5:
1.2
./
.2
tp -
...z
'"0:0:
J
I
.5
i3
I
200
+75'C
Thermal Impedance
vs. Pulse Width
z
400
-~
-
VOLTAGE IN % OF PIV
:>
u
TJ
.6
v, -
Maximum Forward Surge
vs. Number of Cycles
800
.A- r
/
.4
130 120 110100 90 80 70 60 SO 40 30 20 10 0
/
rY
I
/
I
Q
/
/'
~
Q
0:
J
.5
1'-.
70
50
'"a:a:
:>
..... 1
100
30
0
I
+
'"""
_0
10
100
Tc -
_
-=....
~
25Vdc
(APPROX.)
10
NOTEl
'" '"
ascI LLOSCOPE
NOTE I
NOTES:
1. Oscilloscope: Rise time ~ 3nS; input impedance
500.
2. Pulse Generator: Rise time ~ anSi source" impedance 100.
3. Current viewing reSistor, non-inductive, coaxial recommended.
=
'"
ISO
175
125
CASE TEMPERATURE ('C)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
279
PRINTED IN U.S.A.
UES50 1-UES505
RECTIFIERS
High Efficiency 50 Amp
I
FEATURES
DESCRIPTION:
•
•
•
•
•
•
•
•
This series of High Efficiency Power
Rectifiers allows circuit designers to design
high current, high frequency supplies with
very low diode losses. Reverse recovery
time is typically 1/10 -1/100th of equivalent
power rectifiers, with even lower forward
voltage.
50A Continuous Rating at Case Temperature of l25'C
Exceptional Efficiency
Low Forward Voltage
Extremely Fast Reverse Recovery Time
Extremely Fast Forward Recovery Time
High Surge
Radiation Tolerant
Rugged, High Current Termination
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage
Type
50V
75V
lOOV
l25V
l50V
UES50l
UES502
UES503
UES504
UES505
Maximum Average D.C. Output Current
@ Te = l25'C
Non-Repetitive Sinusoidal
Surge Current (8.3ms)
Operating Temperature Range
Storage Temperature Range
Thermal Resistance
50A
.. 600A
-WC to +l75'C
-WC to +l75'C
1'C/W
MECHANICAL SPECIFICATIONS
UES501-UES505
00-5
156
~~~T
SEE NOTE 1
ogo
MAX
Dimensions in inches.
Notes:
1. Angular orientation of terminal is undefined.
2. All metal surfaces tin plated.
3. Maximum unlubricated stud torque: 30 inch pounds.
4. All dimensions in inches.
5. Polarity is cathode to stud; for anode to stud add suffix "R".
280
ruJJ
_UNITRDDE
UES50l-UESSOS
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Maximum
Forward
Peak
Type
Inverse
Voltage
UES501
UES502
UES503
UES504
UES50S
SOV
7SV
lOOV
l2SV
150V
Output Current
vs.
Maximum
Maximum Reverse
Recovery Time
Leakage
Current
Voltage
Drop
.9SV@SOA
(pw=250ms)
2S'C
12S'C
trr@IF-IR-IREC
2Sp.A
lOrnA
SOns. lA-lA-O.SA
Pulse Thermal Impedance
vs. Pulse Width
Case Temp.
~
50
3:
....Z
....0:
40
0:
::>
u 30
....::>
....0.
::>
0
"" ""
0.8
'\.
'"Z
'\
'a"
~ 0.5
oJ
'"
0:
w
0.3
:I:
....
....
10
\
155
0.4
:>
\.
\
145
165
Z
~
0.2
z
01
Vl
"....
SK
u
2K
w
~
Vl
1K
::>
500
Z
w
::>
u
r- l--
50 100}IS
500
""-
300
..............
I
t---Ims
_£
5
lOms
200
1
10
-- 20
50
100
200
HALF CYCLES OF 60Hz SINE WAVE
PULSE DURATION
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
25
I'\.
100
lOttS
15
\.
400
200
5
500
t(m5)
\.
0:
0:
TVPICAl
oJ
0.
200
1\
500
....
r-_
100
Multiple Surge Current vs. Duration
600
r--- r-...
•
PULSE WIDTH -
20K
0:
0:
::>
50
20
CASE TEMPERATURE ('C)
50K
10K
/
V
0:
lOOK
w
V
175
Square Pulse Current vs. Duration
for Non-Repetition Square Wave
~
/
0.
I
135
/V
0.6
w
\.
/
0.7
u
_0
....Z
... v
I
\
Tc -
0.9
C
u
20
125
e
281
PRINTED IN U,S.A.
UES50l-UES505
Typical Forward Current
VS. Forward Voltage
Typical Reverse Current vs. Voltage
.001
~~ ~P:
200
~
:5z
...
"'
0::
0::
20
10
u
.2
"'0::0::
yl
:;)
'"0::
'">
'"0::
If II
III
1/ /
rf'f~"
t-Ift- ~Vli ,\
175°
.5
z
u
v
T,
0
"-
5
1-1-1'-
~
,&...,
.2
Xl ~
~"":I
.3
.02
1/
.05
.1
.2
lill~
.5
T
.5
.7
.9
1.1
Vf-VOLTAGE (V)
1.3
1.5
TJ
d-
120 100
80
60
40
20
VOLTAGE -IN % P.I.V.
Characteristic Waveform
~
u.
150 o
1:1
I I I I
140
Reverse·Recovery Circuit
D.
-ll!D°ci V
'I.J.....I-t'
T j -s.125~
1-110
20
50
100
1--'
.1
.1
.01
I-
I/V 1/1/
C
0::
~0::
~
Vl/V
50
rr, 2~oc!
.005
V:;rA/
100
:;)
~
.002
500
t"
I-
T.
IREe .. 112A
lA
~---L
tn
NOTE 3
IJ
NOTES:
1. Oscilloscope: Rise time ~ 3 ns; input impedance ~ 50 n.
2. Pulse Generator: Rise time ~ 8 nSi source impedance 10 t2,
3. Current viewing resistor, non-inductive, coaxial recommended.
UNITRDDE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
282
r
1A
SET TIME BASE
FOR 10 NS/CM
PRINTED IN U.S.A.
UES60 1- UES603
RECTIFIERS
High Efficiency, 30A
FEATURES
• Very Low Forward Voltage
• Very Fast Switching Speeds
• High Surge Capability
• Low Thermal Resistance
• Mechanically Rugged
• Both Polarities Available
OESCRIPTION
This series consists of a power switching
rectifier in a convenient TO-3 package.
Although designed as a component for
switching type power supplies, these
devices can be used in any circuit in
which fast switching and/or high efficiency is required.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, UES601 .
Peak Inverse Voltage, UES602 .
Peak Inverse Voltage, UES603 .
Maximum Average D.C. Output Current at Tc = 100'C
Non-Repetitive Sinusoidal Surge Current 8.3 ms .
Thermal Resistance, Junction to Case.
Operating and Storage Temperature Range.
..... 50V
.100V
... 150V
.... 30A
...... 80OA
.......... PC/W
.... _55°C to +175°C
POWER CYCLING
These devices possess the unique ability to pass many
thousands of cycles of a stress test designed to evaluate the
integrity of the bonding systems used in the construction of
power rectifiers.
In this stress test, the case of the device is not heat sunk.
Full rated forward current is supplied to force a case temperature increase at least 75°C, at which time, the current is
removed and the case allowed to cool. The cycle is repeated a
minimum of 5,000 times to simulate equipment being turned
on and off. Extended power cycling tests demonstrate a product
capability in excess of 25,000 cycles.
SWITCHING CHARACTERISTICS
The switching times of these ultra-fast rectifiers increase
relatively little, with temperature or at different currents. Even
in severe applications, such as catch diodes for switching
regulators and output rectifiers for high frequency square
wave inverters, these devices switch many times faster than
the fastest associated transistors. Thus, the stresses on and
powers dissipated in the switching transistors are substantially
less than when using other rectifiers.
MECHANICAL SPECIFICATIONS
UES601-UES603
TO-3
.161
I~J~:.
} TERMINAL PINS
ELECTRICALLY COMMON
~LOO
.525
MAX.
RAD .
. 135
MAX .
.450
.312
.250
MIN.
.440
.420
Dimensions in inches.
Note:
Standard polarity is cathode-to-case.
For reverse polarity (anode-ta-case) add suffix URn, ie. UES601R.
283
om
_UNITRODE
-
UES601- UES603
ELECTRICAL SPECIFICATIONS
Type
PIV
50V
lOOV
150V
UES601
UES602
UES603
* Measured In Circuit 'F -
Maximum
Maximum
Forward Voltage
Reverse Current
@
@
Te = 12S'C
Tc =2S'C
Te= 12S'C
Time·
.915V
@
30A
t p =300"S
.SOOV
@
30A
t p =300"S
25"A
10mA
50nS
a.SA, 'R _lA, 'REe - O.2SA
.001
.002
Forward Current
Forward Voltage
.02
~
VS.
100
70
_v
~
.01
r-- r--
~
c.--
30
II:
II:
20
w
TJ = 2S'C
;:
.1
0:
~
.2
c
0:
u
~"
,
v
::J
U
2
10
20
50
r-- ~ :J-=+100'C
- P =T,--'-l~'C
,
~
/I
I--<
I
10
...
1/ //
-"
\.TJ '= +i25'C
/
V
I.
I //
0
- - =TYPICAL V
---- = MAXIMUM V
F
F
/ /11/
)
,6
.4
VF -
:::::t;;:r+15h,c
I
/
./ ~TJ=+75'C
\
V, b"
~
II:
)
.5
1
......-~~
T = +lS0'C
50
...z
.05
~
Reverse
Recovery
Tc =2S'C
Typical Reverse Current
vs. Reverse Voltage
.005
Maximum
.8
1.0
FORWARD VOLTAGE (V)
1.2
I I
I
130 120 110 100 90 80 70 60 50 40 30 20 10 0
VOLTAGE IN % OF PIV
Maximum Forward Surge
vs. Number of Cycles
800
::J
400
,/
z
8'"
:;;;
t'-,.
'":;;;
~
~lCYC1E
*
r---- r--
5
10
20
50
100
CYCLES OF 60 Hz SINEWAVE
l- e--
/
V
l:
'I
.....
,/
.05
0:
w
f\.JL
N-
.1
...J
""-
I,
2
vy
.2
Q.
"'"
W
200
.5
u
~
0:
0:
-~
e
w
~
... 600
z
U
Thermal Impedance
vs. Pulse Width
~
.02
N .01.01.02 .05.1 ,2 .5 1 2 5 10 20 SO 100 200
tp - PULSE WIDTH (mS)
1000
200
Reverse·Recovery Circuit
Output Current vs.
Case Temperature
SOP.
10 P.
'0 greater
than lSA, both terminal pins
For operation at
~ 30
must be connected together.
...
+
zW
-=_
0:
~
u
...::J
...::J
20
r-~----r~--~--~
25Vdc
IAPPROX.)
10
NOTE 3
OSCILLOSCOPE
NOTE 1
Q.
o
10 r--t------+------+~--~
I
NOTES:
1. Oscilloscope: Rise time ~ 3n5; input impedance = SOO.
2. Pulse Generator: Rise time :s;;; 8ns; source impedance 100.
3. Current viewing resistor, non~inductjve, coaxial recommended.
_0
100
Te -
12S
150
17S
CASE TEMPERATURE ('C)
284
PRINTED IN U.S.A.
RECTIFIERS
UES701-UES703
High Efficiency, 25 A
FEATURES
• Low Forward Voltage
• Very Fast Switching
• Low Thermal Resistance
• High Surge Capability
• Mechanically Rugged
• Both Polarities Available
DESCRIPTION
Designed to meet the efficiency"demand
of switching type power supplies, these
devices are useful in many switching
applications.
The low thermal resistance and forward
voltage drop of this series allows the
user to replace DO-5 size devices in
many applications.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, UES701
Peak Inverse Voltage, UES702
Peak Inverse Voltage, UES703
Maximum Average D.C. Output Current at Tc = 100'C
Non-Repetitive Sinusoidal Surge Current at B.3ms
Thermal Resistance, Junction to Case
Operating and Storage Temperature Range
.. 50V
100V
....... 150V
.. 25A
400A
lSC/W
-55'C to +175'C
SWITCHING CHARACTERISTICS
The switching times of these ultra-fast rectifiers increase
relatively little, with temperature or at different currents. Even
in severe applications, such as catch diodes for switching
regulators and output rectifiers for high frequency square
wave inverters, these devices switch many times faster than
the fastest associated transistors. Thus, the stresses on and
powers dissipated in the switching transistors are substantially
less than when using other rectifiers.
POWER CYCLING
These devices possess the unique abi lity to pass many
thousands of cycles of a stress test designed to evaluate the
integrity of the bonding systems used in the construction of
power rectifiers.
In this stress test, the case of the device is not heat sunk.
Full rated forward current is supplied to force a case temperature increase at least 75'C, at which time, the current is
removed and the case allowed to cool. The cycle is repeated a
minimum of 5,000 times to simulate equipment being turned
on and off. Extended power cycling tests demonstrate a product
capability in excess of 25,000 cycles.
MECHANICAL SPECIFICATIONS
UES701-UES703
00-4
Dimension in inches.
Notes:
1. Standard polarity is cathode-ta-stud.
For reverse Polarity (anode-to-stud) add suffix "R", ie. UES701R.
2. All metal surfaces tin plated.
3. Maximum unlubricated stud torque: 15 inch pounds.
4. Angular orientation of terminal is undefined.
285
lliD
_UNITRDDE
UES701-UES703
ELECTRICAL SPECIFICATIONS
Type
PIV
UES701
UES702
UES703
SOV
lOOV
150V
'* Measured in circuit I,. = O.SA, IR = lA,
'R.EC
Maximum
Forward Voltage
Maximum
Reverse Current
@
@
Tc =2S'C
Tc = 12S'C
.950
.825
@
@
25A
t p =3OO#S
25A
t p =3OO#S
Tc= 12S'C
Time·
20#A
4mA
35nS
= O.2SA
Forward Current
vs. Forward Voltage
80
V
J L
J...+T - +25'C
.005
;;' .01
S .02
J
....
.1
.2
~
.5
II:
20
50
20
"'
I--
-r ~f!
V-
-~ 10
V /'--
I
+IOO'C
TJ = +125'C
~=+150'C I
~
---
::>
u
J
10
C
~
II:
...0
J
j
-~
I
I
V
/ II
.4
I
.6
V, -
130 120 110 100 90 80 70 60 so 40 30 20 10 0
VR - REVERSE VOLTAGE (% OF PIV)
Maximum Forward Surge
vs. Number of Cycles
400
~
....z
~
300
I~
-~
100
z
'"
C
fVL
~ICYC~E
N-
"-
""
.1
..J
'~"
~
.05
w
J:
"i'--
....
-
10
20
50
lOa
CYCLES OF 60 Hz SINEWAVE
25
....Z
"'II:II:
::>
u
....
"....
::>
20
r--...
'"
tp -
I
_0
100
T" -
.5 I 2 5 10 20 50100200
PULSE WIDTH ImS)
1000
200
Reverse-Recovery Circuit
10 n
50 !!
+
_
-=-
~
10
0
/
V
.01
.01.02 .05.1 .2
N
"",IS
V
.02
I
r-r-
V
:;;
Output Current vs.
Case Temperature
~
VV
.2
w
~
2
....--1----"
.5
u
I
1.0
.8
FORWARD VOLTAGE (V)
Thermal Impedance
vs. Pulse Width
w
"'II:II:
i:l 200
- - = TYPICAL VF
- - - - = MAXIMUM V,
[/, /1
~
I
~J=L5'C
TJ = -t-12S'C
/V
/ 1//j
II:
/
V
/§/
/ /1
II:
II:
-
UJ
i:iII:
/ /~
~ 30
....Z
Z .05
~
TJ=+150'~
SO
UJ
~
Reverse
Recovery
Tc =2S'C
Typical Reverse Current
vs. Reverse Voltage
.001
.002
Maximum
25Vdc
IAPPROX.)
In
NOTE3
~
OSCillOSCOPE
NOTE I
NOTES:
1. Oscilloscope: Rise time ~ 3ns; input impedance = son.
2. Pulse Generator: Rise time ~ 8nsi source impedance 100.
3. Current viewing resistor, non-inductive, coaxial recommended.
'\
125
ISO
175
CASE TEMPERATURE ('C)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 9S-1064
286
PRINTED IN U.S.A.
UES704--UES706
RECTIFIERS
High Efficiency, 20A
FEATURES
• Very Low Forward Voltage (1.l5V)
• Very Fast Recovery Ti mes (50nSec)
• Low Thermal Resistance
• High Surge Capability
• Mechanically Rugged
• Both Polarities Available
DESCRIPTION
The UES704 series is specifically
designed for operation in power switching
circuits operating at frequencies of at
least 20 KHz.
The low thermal resistance and forward
voltage drop of this series allows the
user to replace 00-5 size devices in
many applications.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, UES704 .
Peak I nverse Voltage, UES705 .
Peak Inverse Voltage, UES706 .
Ave. D.C. Output Current, 10 @ Tc 100'C ..
Surge Current, 8.3mSec
Thermal Resistance, Junction to Case.
Operating and Storage Temperature Range.
....... 200V
..300V
.. .. 400V
...... 20A
...........30OA
......... 1.5'C/W
................. -55'C to +150'C
=
SWITCHING CHARACTERISTICS
The switching times of these ultra-fast rectifiers increase
relatively little, with temperature or at different currents. Even
in severe applications, such as catch diodes for switching
regulators and output rectifiers for high frequency square
wave inverters, these devices switch many times faster than
the fastest associated transistors. Thus, the stresses on and
powers dissipated in the switching transistors are substantially
less than when using other rectifiers.
POWER CYCLING
These devices possess the unique ability to pass many
thousands of cycles of a stress test designed to evaluate the
integrity of the bonding systems used in the construction of
power rectifiers.
In this stress test, the case of the device is not heat sunk.
Full rated forward current is supplied to force a case tem·
perature increase at least 75'C, at which time, the current is
removed and the case allowed to cool. The cycle is repeated a
minimum of 5,000 times to simulate equipment being turned
on and off. Extended power cycling tests demonstrate a product
capability in excess of 25,000 cycles.
MECHANICAL SPECIFICATIONS
UES704·U ES706
00-4
~
+'OI0
.430
.424
Max:
.066 Min Dia
--
.250
Max.
Dimension in inches.
Note.,
1. Standard polarity is cathode·to-stud.
For reverse Polarity (anode-ta-stud) add suffix IIR", ie. UES704R.
2. All metal surfaces tin plated.
3. Maximum unlubricated stud torque: 15 inch pounds.
4. Angular orientation of terminal is undefined.
4/79 (Rev. 1)
287
lliJJ
_UNITRDDE
ELECTRICAL SPECIFICATIONS
UES704-UES706
Maximum
Forward Voltage
Type
PIV
UES704
UES705
UES706
200V
300V
400V
Maximum
Maximum
Reverse Current
Reverse
Recovery
Tc =2S'C
Tc = 12S'C
Tc =2S'C
T c =12S'C
Time*
1.25V
@ 20A
t. =3OO"S
1.l5V
@20A
t. =300"S
5O"A
lOrnA
50nS
* Measured In circuit IF == O.SA, III = lA, 'REe = O.25A
Typical Reverse Current
vs. Reverse Voltage
Forward Current
vs. Forward Voltage
lOOK
!
If
Z
II:
II:
Ul
I
V
'/
10
'"
0::
0::
::>
0::
/ /
.5
0::
-- -
1
10
II/"
.2
.1
-~
.05
~
'i- 'iII II
'-'11-1/ "y
.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.11.2 1.3 1.4 1.5
V, - FORWARD VOLTAGE IV)
REVERSE VOLTAGE (% OF PIV)
Thermal Impedance
vs. Pulse Width
300
ii)
'"z
.5
'"
.2
u
' ' ' r--..
l-
200
II:
II:
::>
r---
(,J
1
~
_l:! 100
v
,,/"
g
Q.
"'"
~
....."
«
r-f\J'L
~
~
JICiCLE
.05
'"J:
l-
~
r--
...... 1- t-
/
V
.02
I
'-.....
",,-
-
V
.1
..J
~
'i,
" ' - ' ;#,
/
1l 11
.01 1.11
Maximum Forward Surge
vs. Number of Cycles
~
I
II
f- ciL
~tf!l ~
.02
10 20 30 405060708090100110120130140150
V, -
II
,CJ ,CJ
...0
/
2:;-
II
v/
(,J
c
100
o
~~~
20
~
Iz
«
;:
II:
-~
12S'C
k:::= ~P"
50
/l
I-ido'c
If
(,J
II:
-
1/
I'
IK
::>
...
...i:;
,/
f-j1""~
I-
...
-
10K
100
l'
.01
.01.02 .05.1 .2
N
.5 I 2
5 10 20 50 100 200
1000
t, - PULSE WIDTH (mS)
o
12
N-
5102050
100200
CYCLES OF 60 Hz SINEWAVE
Output Current vs.
Case Temperature
Reverse-Recovery Circuit
soo
~
I-
+
Z
'"
0::
0::
::>
lOll
30
20
(,J
I-
::>
t---
..........
_
-=-
'-...,
10
NOTE 3
Q.
I-
::> 10
0
I
_0
0
25Vdc
(APPROX.)
"'" ""~
=
NOTES:
1. Oscilloscope; Rise time ~ 3nsj input impedance = SOU.
2. Pulse Generator: Rise time ~ 8nsi source impedance 100.
3. Current viewing resistor, non-inductive r coaxial recommended.
100
110
120
130
140
150
Tc - CASE TEMPERATURE ('C)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 86].6540
TWX. (710) 326·6509 • TELEX 95-l064
OSCILLOSCOPE
NOTE I
288
PRINTED IN U.S.A.
RECTIFIERS
UES801-UES803
High Efficiency, 70 Amp
FEATURES
• High Continuous Current Rating
• Very Low Forward Voltage
• Very Fast Switching Speeds
• High Surge Capability
• Low Thermal Resistance
• Mechanically Rugged
• Both Polarities Avai lable
• Available with Flexible Top Lead
DESCRIPTION
The UES80l Series is specifically designed
for operation in power switching circuits
operating at frequencies of at least
20 KHz. The very low forward voltage and
very fast recovery time make them particularly suited for switching type power
supplies.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, UESBOl
Peak Inverse Voltage, UES802 ..
Peak Inverse Voltage, UES803 .
Maximum Average D.C. Output Current at Tc = 100"C
Non-Repetitive Sinusoidal Surge Current B.3 ms
Thermal Resistance, Junction to Case .
Operating and Storage Temperature Range.
. SOV
looV
........... 150V
...... 70A
............. BOOA
0.8"C/W
-55"C to +175"C
POWER CYCLING
These devices possess the unique abi lity to pass many
thousands of cycles of a stress test designed to evaluate the
integrity of the bonding systems used in the construction of
power rectifiers.
In this stress test, the case of the device is not heat sunk.
Full rated forward current is supplied to force a case temperature increase at least 75"C, at which time, the current is
removed and the case allowed to cool. The cycle is repeated a
minimum of 5,000 times to simulate equipment being turned
on and off. Extended power cycling tests demonstrate a product
capability in excess of 25,000 cycles.
SWITCHING CHARACTERISTICS
The switching times of these ultra-fast rectifiers increase
relatively little, with temperature or at different currents. Even
in severe applications, such as catch diodes for switching
regulators and output rectifiers for high frequency square
wave inverters, these devices switch many times faster than
the fastest associated transistors. Thus, the stresses on and
powers dissipated in the switching transistors are substantially
less than when using other rectifiers.
MECHANICAL SPECIFICATIONS
UES801-UES803
00-5
ins.
0
"'~
A
0
E
F
G
060 MIN
5 72·013
152 M!N
156
396·051
225· 005
-<;
020
156 MIN FLAT
.66701A MAX.
090 MAX
677
~
010
375 MAX
1'4·28
UNF·2A
140MIN. DlA
396 MIN. FLAT
16.94 DIA. MAX
2.29 MAX
1720' 025
9.53 MAX
3.56 MIN OIA
1.000 MAX
25.40 MAX
.450 MAX
1143 MAX
438' 015
078 MAX
II 13 • 0.38
198 MAX
Notes:
1. Standard polarity is cathode-to·stud.
For reverse polarity (anode-te-stud) add suffix IIR", ie. UESBOIR.
2. All metal surfaces tin plated.
3. Maximum un lubricated stud torque: 20 inch pounds (20 kg. em).
4. Angular orientation of terminal is undefined.
[ill]
9/79
289
_UNITRDDE
•
UES801-U ES803
ELECTRICAL SPECIFICATIONS
Type
PIV
UES801
UES802
UES803
50V
lOGV
lSOV
Maximum
Forward Voltage
Maximum
Reverse Current
@
@
Tc =2S'C
Tc = l50'C
.975V
.840V
@
@
70A
t.=300p.S
70A
t.= 3001'5
Maximum
Reverse
Recovery
Tc =2S'C
Tc = lSO'C
Time·
25p.A
30mA
SOnS
Note: Add 0.03 Volts to Max Forward Voltage for Flexible Top Lead Option .• Measured in circuit I, = O.SA, I. = lA, IREC = 0.2SA
Forward Current
vs. Forward Voltage
Typical Reverse Current
vs. Reverse Voltage
200
.001
.002
f--/
.005
.01
::(
g
.02
r - e-
~
.5
~"
""
:;)
0
f- -I-
f--- j?
10
20 H I--<
50
IA
III
I- TJ
=+IOO'C
"~
I
1
I
...z~
w
"
600
I
.6
.8
1.0
FORWARD VOLTAGE (V)
.4
VF -
1.2
Thermal Impedance
vs. Pulse Width
IL
I'--.
400
I
fV'L
~
..J
.1
"::;;
,05
0:
w
...
l:
I'- r--
I
.02
~ .01
~lCYCIE
N
VV
j..X
['.,.
200
--=TYPICALV F
- - - - = MAXIMUM VF
I~
0:
-~
+7S'C
+ISO'C
r-f--t-
:;)
0
-
j/ II
I' 1
Maximum Forward Surge
vs. Number of Cycles
~
-
1/
II> !
-"
130 120 110 100 90 80 70 60 50 40 30 20 10 0
VOLTAGE IN % OF PIV
800
TJ
I'-- TJ
;: 1/
10
~=~ls6,c
i
~
V //
"...0
V
J
~J::·t~,c
J- ,
L /1
30
20
<>
J
:
/
...
.05
.2
0:
/.
70
~
50
z
w
TJ = 2S'C
.... 1
~
TJ~+I:W'
100
I-- I-- r--
V
V
.01.02 ,05.1 .2
.5 I
2
5 10 20 50100200
t. - PULSE WIDTH
10
20
~o
100
N - CYCLES OF 60 Hz SINEWAVE
UNITRODE CORPORATION, 5 FORBES ROAD
LEXINGTON. MA 02173 ' TEL, (617) 861·6540
TWX (710) 326-6509 • TELEX 95·1064
1000
(mS)
200
290
PRINTED IN U.S.A.
UESSOI-UES803
Reverse-Recovery Circuit
Output Current vs.
Case Temperature
~
70
r--....
....
zOJ
-
z
'"
0: 40
30
_0
10
o
I
10 Q
r--..
"""
"-
"-
20
1000
Reverse-Recovery Circuit
5OP.
:::J
5
.5 1 2 5 10 20 50 100200
PULSE WIDTH (mS)
200
60
$ so
/'
,/y
"::;;a: .05
100
>-
'l-r--l
1/
E
ilCiCLE
0:
:::J
U
'I-
V, - FORWARD VOLTAGE IV)
600
SOO
~!
~w "I·
'I-
REVERSE VOLTAGE (% OF PIV)
Maximum Forward Surge
vs. Number of Cycles
>z
",/'
.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 loS 1.6
10 20 30 40 50 60 70 80 90 100 110 120 130140
V, -
V
./ ./
~ V/
II
II
20
:J
u
Cl
lL
$
~V
"' SO
1~
o
....-:::: ?
;: 100
Ll
I
200
"z
./
'25'C l -
100
0:
-"
SOO
~
1 O'C
'"
III
0:
SOnS
lK
fo"':
VJ
V
-I"""
C
If
lK
Time*
Forward Current
vs. Forward Voltage
I
lr
:;( 10K /"
'"0:0:
Reverse
Recovery
Tc _ 2SoC
=O.SA, 'R = lA, 'REe = O.2SA
Measured in circuit 'F-
..!
z>-
Maximum
100
110
+
"
-=_
'"
'\
120
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617).861-6540
TWX (710) 326-6509 • TELEX 95-1064
25Vdc
(APPROX.)
111
NOTE 3
'\
130
\
OSCILLOSCOPE
NOTE!
=
140
\
NOTES:
1. Oscilloscope: Rise time:::;;; 3n5, input impedance = 500'.
2. Pulse Generator: Rise time S;; 8ns; source impedance 100.
3. Current viewing resistor, non-inductive, coaxial recommended.
ISO
293
PRINTED IN U.S.A.
..
UES1001-UES1003
RECTIFIERS
High Efficiency, 1A
FEATURES
• Very Fast Recovery Times
• Very Low Forward Voltage
• Small Size
• Convenient Package
DESCRIPTION
An axial leaded power rectifier useful
in many switching applications.
Particularly suited where very fast
recovery and low forward voltage are
required.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, UES1001 ...................................................................................SOV
Peak Inverse Voltage, UES1002 .................................................................................. 100V
Peak Inverse Voltage, UES1003 .................................................................................. 1SOV
Maximum Average D.C. Output Current atT L = 75'C, L=3/S" .......................................................... 1A
Non·Repetitive Surge Current at S.3mS ............................................................................ 30A
Thermal Resistance at L=3/S" ................................................................................75'C/W
Operating and Storage Temperature Range .............................................................. - 55'C + 175 'C
ELECTRICAL SPECIFICATIONS
Type
PIV
UES1001
UES1002
UES1003
50V
100V
150V
"Measured in circuit IF
TJ ,"25°C
TJ =100°C
@ TJ=25°C
@ TJ =100·C
Maximum
Reverse
Recovery
Time"
.975V
@
1A
.S95V
@
1A
2,.,A
50,.,A
25nS
Maximum
Reverse Current (I R)
@PIV
Maximum
Forward Voltage (VF)
@
= .SA, IA = 1.0A, IREC = .25A
MECHANICAL SPECIFICATIONS
UES1001·UES1003
.700"
MIN.
17.8mm
~~:
L .2~~::.
~
6.35mm'
1-------l·fI~;~N.
1/80
BODY A
---_--/
294
l1W
_UNITRDDE
UES1001-UES1003
L
...z~
0:
0:
.............
:::>
:;;
~
:;;
""
L=V8"
:::>
u
:;;
~
T-...
l ==¥4"
'"
50
Tl -
a
II.,"
0:
""
-
.05
I
t\.
,..,...II
_- .02
"-
"'" r-....
~ f\
75
100
125
LEAD TEMPERATURE
!I
.01
.005
.\
~
150
7
.002
.1
rtft
0:
0:
:::>
u
,:
-r
50
100
Square Pulse Current vs.
Duration for Non-Repetitive Pulse
";::z
!z 1,000
-l-
:::>
u
w
~
:::>
..
"
":::>
0:
500
100
w
i-- l- t--
rt-±it":TJ
t-t
120
100
+12S·C
80
60
l.,..of..- V
40
20
VOLTAGE IN % OF PIV
i"1'--.
80
'"f"-.. r--.
60
0:
..."'0
r--
50
I--"
Multiple Surge Current
vs. Duration
100
~
w
a::
f..-i-"'"
T = +7S·C
VOLTAGE (V)
Forward Pulse Current
vs. Duration
a:
LL
-"
10
10,000
5,000
f..-f..-
~J =2S·C
iJ
il
IT
VI -
.1
.5
.2 .3 .4 .5 .6 .7 .8 .9 1.0 1.11.21.3
(~C)
V
.05
~
/1-' ....'
.001
175
1
...
!J
/1:~~
J,il.J
.01
V- I/ /
flll II I
.5
.... 2
Z
~ .1
........... .......
1
2S
~-
~
\="'. ~
I
~b:-
?-
T,
~
1
r
I
r-u;
............
W
.001
10
I~-
I
Typical Reverse Current
vs. Voltage
Typical Forward Current
vs. Forward Voltage
Output Current
vs. Lead Temperature
I-
~
40
TL MOUNT
~
@ Length::::
f'-..
20
3!a"
R=::t1
PTted c; rc t-
10
.5
.1P.5
10P.5
50
1m.
lOO,us
5
1
IOms
2
10 20
SO
100 200
SOO
1000
CYCLES AT 60 Hz SINE WAVE
PULSE DURATION
Reverse-Recovery Circuit
10 n
50 !!
+
-=_
25Vdc
(APPROX.)
III
NOTE 3
OSCILLOSCOPE
NOTE I
NOTES:
1. Oscilloscope: Rise tlmB<3nS; Input impedance = 50Q,
2. Pulse Generator: Rise tlme<8nS; source Impedance 102.
3. Current viewing resistor, non-Inductive, coaxial recommended.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6S09 • TELEX 95-1064
295
PRINTED IN U.S.A.
UESllOl- UESl103
RECTIFIERS
High Efficiency, 2.5A
FEATURES
•
•
•
•
DESCRIPTION
An axial leaded power rectifier useful
in many switching applications.
Particularly suited where very fast
recovery and low forward voltage are
required.
Very Fast Recovery Times
Very Low Forward Voltage
Small Size
Convenient Package
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, UESllOl .
50V
lOOV
Peak Inverse Voltage, UESl102 ..
Peak Inverse Voltage, UESl103 .
l50V
Maximum Average D.C. Output Current at TL = 75°C, L = 'lil"
... 2.SA
Non-Repetitive Surge Current at 8.3 ms .
3M
......................................... 38°C/W
Thermal Resistance at L = 'lil" .
Operating and Storage Temperature Range.
..... -55°C +175°C
u u
• •••••••
uu
.u ..... uu •..
.....
MECHANICAL SPECIFICATIONS
UES11D1-UES1103
BODY A
.OB5"
~2.2mm
TYP.
.700" MIN.
17.Smm
I--
.2~~~~X.--<
i'-----1,1~~;~~N.
_ _ _ _--
<>
Ul
II"
10
~
V;
/ I I
'"
i:
a:
100'C
...o
'",
-'"
& '/ :/'
IZ
U1
U1
U1
~ ~~
~
lK
Z
'"
'"
c~t·
-
~
1--,<.
-
-
1.0
f-
V
o. 1
20
.2,5·C
40
V. -
60
80
II
II II
.001
100
120
140
160
...
z
U1
~
a: 1.5
a::
:0
...u::>
...::>a.
0
,
............
"'- '\
r-.....
_0
o
25
50
T, -
...
U1
0:
0:
::>
'\.LJ, ..
80
a. .4
::>
...
"""
'" 60
w
"~'"
...o
40
"#
20
V
'""'"
'"
\
f\
\
I .2
~
\
_0
o
25
75
100
125
150
LEAO TEMPERATURE ('C)
~
1-"'/
0
1\
50
75
100
125
150
TA - AMBIENT TEMPERATURE ('C)
Reverse-Recovery Circuit
50 !!
"~
0:
.6
...u::>
Multiple Surge Current
vs. Duration
"
z
;::
II
.~//
j...,"
II
~
~ .8
z
T,
" "'"
.5
1/
Output Current vs.
Ambient Temperature
~
"'
\
L=3f4~
I I
V, - FORWARD VOLTAGE (VI
REVERSE VOLTAGE (% OF PIV)
............
ij/ /
.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.11.2 1.31.41.5
180
2.5
~
/(Jf-~,
-t-
;'
II
,,-, J...'"
Output Current vs.
Lead Temperature
100
SOnS
Forward Current
vs. Forward Voltage
10K
...
Time*
O.25A
Typical Reverse Current
vs. Reverse Voltage
~
Reverse
Recovery
@ PIV, T J = 25'C
1.15V
@lA
1.25V
@lA
tp
Maximum
Maximum
Reverse Current
Forward Voltage
PIV
10 !l
+
i"
_
~
-=-
TlMOUNT
@ Length::::
I'---
:va"
2SVdc
(APPROX.)
li!
R=::t---
NOTE 3
OSCILLOSCOPE
NOTEl
...
printed clrCullt
1
2
10 20
50
100 200
CYCLES AT 60 Hz SINE WAVE
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
SOD
NOTES:
1. Oscilloscope: Rise time:::;; 3nsi input impedance = 500.
2. Pulse Generator: Rise time ~ 8nsi source impedance 100.
3. Current viewing resistor, non-inductive, coaxial recommended.
1000
299
PRINTED IN U.S.A.
UES1301-UES1303
RECTIFIERS
High Efficiency, 6A
DESCRIPTION
Now power rectifiers in axial leaded
package to meet the most demanding
switching applications. An industrial
product with military reliability.
FEATURES
• Very LQw Forward Voltage
• Very Fast Recovery Times
• Small Size
• High Surge
ABSOLUTE MAXIMUM RATINGS
.................................... 50V
Peak Inverse Voltage, UESl30l ...
.... lOOV
Peak Inverse Voltage, UESl302
............ l50V
Peak Inverse Voltage, UESl303
......... 6.0A
Maximum Average D.C. Output Current at TL 75'C, L '%" ..
............ l25A
Non-Repetitive Sinusoidal Surge Current at 8.3ms
. .................... 20'C/W
Thermal Resistance at L = '%" .
Operating and Storage Temperature Range
... -55'C to +l75'C
=
=
MECHANICAL SPECIFICATIONS
UES1301-1303
BODYB
[ill]
300
_UNITRDDE
UES1301-UES1303
ELECTRICAL SPECIFICATIONS
Type
PIV
UES1301
UES1302
UES1303
50V
lOOV
150V
'* Measured in circuit IF = O.SA,
It = lA, fREe
Reverse Current
@
@
TJ = lOO'C
.925V
@6A
tp =300",S
.850V
@6A
tp = 300",S
Hr
"L=Ifa':\
"- \
........,
I-
Z
'"~
'i--.
"I
OJ
L_=¥4"
50
SO
(-
20
JI-
10
!z 1,000
'"'"
"'"
'"~
500
'"~
1
-"""" r--..\\
"'-
-""
z
Typical Reverse Current
VS. Voltage
r-
,2
r--
........, \
,05
"f..
......
11'
" ...
Xl
..,...
-!1/ ,,..""
,-'
---
r---.
175
-- ----
1
~
"u'"
I
-"
,
,5
.I.us
l.us
TJ
-
+75'C
,/"
''I' = +100'C
100
( lj J L
200
I
1000
~
T
b-"
= +125'C
( 11 11
120
100
80
60
40
20
VOLTAGE IN % OF PIV
,2.3.45.6.7.8.91.0111213
V,-VOlTAGE (V)
Multiple Surge Current VS. Duration
I"
,,80
z
i'-.
"'"'"
"...
I'--~
50
laps
.... ,/"
....
f--
' I i ..1
"""-
1""-0
",40
~
o
"'20
10
"
10
20
~
'" 60
----
= 25'C
Z
""
50
J
'"'"
I
Square Pulse Current vs.
Duration for Non-Repetitive Pulse
100
-
___ 1------T
t--
I-
100
.......
,2
/~J
il /
,01
= -50°C
,1
$ 8
i
7-~Od
i~ 11~
I
,02
"
TJ
111/
II
.5
I
IA 1 1
,02
a --
,"" ~\
125
150
75
100
LEAD TEMPERATURE (OC)
u
"..
30nS
~~ B~
"/ / rJ
Forward Pulse Current VS. Duration
5,000
150.uA
5",A
1/
\
10,000
g
Time*
,01
g
2
......
TL -
(--
T'l_
...... ........,
25
TJ _lOO'C
Typical Forward Current
VS. Forward Voltage
I-
L=r·'''-.".
6
2S'C
100
I\.
g
-
Maximum
Reverse
Recovery
= O.2SA
Output Current
10
TJ
TJ =2S'C
VS. Lead Temperature
12
Maximum
Maximum
Forward Voltage
T, MOUNT
@Length =~"
t~
IPrlni
ed Circuit
5
lOOps
1ms
lOms
1 2
5
10 20
50
100 200
500 1000
CYCLES AT 60 Hz SINE WAVE
PULSE ,DURATION
Reverse-Recovery Circuit
10 U
500
+
_
-=-
25Vdc
(APPROX,)
111
NOTE]
NOTES:
1. Oscilloscope: Rise time ~ 3nsj input impedance = 500.
2. Pulse Generator: Rise time ~ 8nsj source impedance Ion.
3. Current viewing resistor, non-inductive, coaxial recommended.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
301
PRINTED IN U.S.A.
•
RECTIFIERS
UES1304-U ES1306
High Efficiency, 5A
FEATURES
• Very Low Forward Voltage (1.15V)
• Very Fast Recovery Times (50nSec)
• Small Size
• High Surge
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, UES1304
Peak Inverse Voltage, UESl305
Peak Inverse Voltage, UES1306
Maximum Average D.C. Output Current, 10
@ TA
25"C (Free Air) .
@T l
50"C, L
%" ....
Surge Current, 8.3mSec .
Thermal Resistance @ L - %" .
Operating and Storage Temperature Range ...
=
=
=
DESCRIPTION
The UES1304 series is specifica lIy
designed for operation in power switching
circuits operating at frequencies of at
least 20 KHz.
..........200V
........ ..JOOV
....... .400V
...................................3A
...5A
.. .......... .70A
...... 20"C/W
........................ -55"C to +150°C
MECHANICAL SPECIFICATIONS
UES13D4·1306
BODYB
[ill]
4/79 (Rev. 1)
302
_UNITRDDE
UES1304·U ES1306
ELECTRICAL SPECIFICATIONS
PIV
UES1304
UES1305
UES1306
200V
300V
400V
* Measured in circuit If = O.SA, IR =
lA, I IEe
Reverse Current
T J = 25'C
TJ =100'C
@ PIV, TJ = 25'C
TJ =100'C
Time'"
1.25V
@3A
tp = 300l'S
1.15V
@3A
tp = 300l'S
2OI'A
5OOI'A
SOnS
= O.25A
Typical Reverse Current
vs. Reverse Voltage
10K
~
!z
~
100
'"
:>
o
Forward Current
Forward Voltage
VS.
100
1/
~
I
.....
1K
I
I
~
l.(~
Cl
0:
~
...o
Ul
10
I
.0 1
_L
-~
1.0
lO. 1
20
40
V. -
I-"
60
n
J
80
,
V
.00 1
0.0 0.2
100 120
140
160
180
~
\
~
~ 2.5
...
z
~
T,
I
L= 3,8"
2
'"~ 1.5
""'" '"
0: 60
<.'I
~
:>
o
I
_0
\
~
#20
'\
1.6
1.8
2
I'.
\
o
25
\
50
75
100
125
150
TA - AMBIENT TEMPERATURE C'C)
Reverse·Recovery Circuit
son
""" ""-
iil4Q
1.4
~
.5
50
75
100
125
150
T, - LEAD TEMPERATURE C'C)
"
0:
1.2
\
:>
Multiple Surge Current vs. Duration
.....
1.0
r-.....
:>
~
o
<.'180
Z
0.8
Output Current vs
Ambient Temperature
1\
;::
0.6
V, - FORWARD VOLTAGE IV)
Output Current
Lead Temperature
r---...,
100
I
0.4
REVERSE VOLTAGE (% OF PlY)
V5.
25
"
¥~~kJl-'
I III rv f?
O. 1
'"
~
'"I
:;..1
:>
u
100"C
II!!!
~
UJ
0:
0:
j...o
I
'"ffi
0
...
z
/
1f5"f
""
Maximum
Reverse
Recovery
Maximum
Maximum
Forward Voltage
Type
10 II
+
I"'"
~
-=-=-
T. MOUNT
@L"'... = ..··
'fi:::
I
25 Vdc
(APPROX.)
In
l-
NOTEJ
OSCILLOSCOPE
NOTEI
Pllnred ClfCuit
I 2
5
to 20
50
100 200
CYCLES AT 60 Hz SINE WAVE
NOTES:
1. Oscilloscope: Rise time ~ 3nSj input impedance = 500.
2. Pulse Generator: Rise time ~ 8nsj source impedance 100.
500 1000
3. Current viewing resistor, non"inductive, coaxial recommended.
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064
303
PRINTED IN U.S.A.
RECTIFIERS
UES1401·UES1403
High Efficiency, 8A
FEATURES
DESCRIPTION
•
•
•
•
•
The UES1401 Series, in a plastic package
similar to the TO·220, is specifically de·
signed for operation in power switching cir·
cuits to frequencies in excess of 100KHz.
The very low forward voltage and very fast
recovery time make them particularly suited
for switching type power supplies.
Very Low Forward Voltage
Very Fast Recovery Times
Economical, Convenient Plastic Package
Low Thermal Resistance
Mechanically Rugged
ABSOLUTE MAXIMUM RATINGS
........ SOV
lOOV
Peak Inverse Voltage, UES1401 .
Peak Inverse Voltage, UES1402 .
Peak Inverse Voltage, UES1403 .
Maximum Average D.C. Output Current
lS0V
. ... B.OA
@T c =125°C (Note 1) ..
@TA = 25°C.
@TA = 25·C (Note 2) ...
Non·Repetitive Sinusoidal Surge Current, B.3mS
Thermal Resistance, Junction to Case, 0J •c .
Thermal Resistance, Junction to Ambient, 0J.A .
Operating and Storage Temperature Range.
3.0A
.. B.OA
BOA
... 2.S'C/W
60'C/W
-SS'C to +lS0'C
Note 1. Above lOO·C use the tab for electrical connection.
Note 2. Using Wakefield Type 295 heatsink with convection cooling. For more definitive
data refer to the Output Current vs. Temperature Curves on this datasheet.
MECHANICAL SPECIFICATIONS
UES1401·1403
SEATING
PLANE
MILLIMI1'IRS
DIM
g...
M. .
15.87
10.66
C
'.56
'.R
D
F
0.51
3.531
G
'.29
\.14
3.133
2.19
A
•
H
A
J
A
H
J
I
K
I~[L
.
J
D
G
L
N
PIN 1. Cathode
2. Anode
MI.
14.23
INC II
0.560
MI.
M. .
0,625
0....
0.140
0....
0....
0.190
0.045
0.139
0,147
0.110
O.ota
0.210
6.35
0.34
12.10
1.14
4.13
0."
0.015
14.27
1.11
5.33
0....
0.045
0.562
0.190
0.210
0.120
0.115
Q
'.56
'.0<
3.04
0.100
2.92
S
1.14
5.85
0.010
0.045
6.15
Tab is connected
•
to Cathode.
T
I."
SIMILAR TO TO·220
o.z30
0.025
0,070
0....
0.270
N
[ill]
304
_UNITRDDE
UES140l-UES1403
ELECTRICAL SPECIFICATIONS
Type
UES140l
UES1402
UES1403
50V
100V
l50V
'Measured in circuit I,
~
Maximum
Reverse Current
Maximum
Forward Voltage
PIV
TJ =2S·C
TJ = lOO·C
T J = 25°C
0.9V@4A
0.975V@8A
tp = 300,,5
0.8V@4A
O.895V@BA
5pA
Reverse
Recovery
TJ = 100·C
-
l50"A
Typical Forward Current
vs. Forward Voltage
50
f---+--+-
10
5:
l4
5:
I-
Z
'"
I-
'"0:0:
:>
C,)
:>
I
C,)
.5
I
.2
..'!'
.1
.05
,02
.01
.01
VI'
T J =-50·C
~I//
#1 I
':-=!~o+
II
rio..'
.1
.2
~
""f
i50:
2
0:
,-
"~
10
I-
_" 20
f5
~JlrIC
I
/1
:11/ /-.'
r-;. J = 25'C
"
I-
P
;:
J,.....
1/
100
1--'
II
TEMPERATURE (·C)
1111
1000
1
120
'"0:
~
C,)
'"
I I
I
I
I
----
Z
100
50
I
1 1 1 1
100
80
60
40
20
VOLTAGE IN % OF PIV
Multiple Surge Current vs. Ouration
100
C!J
Z
Peak Half Sine Current vs.
Duration for Non-Repetitive Pulse
I-
( II 11
T = +125'C
J
V,-VOLTAGE(V}
I
500
........... r-..
~
0:
w
I'
80
~
.........
60
0:
:>
............
(fJ
~
--
"~
C!J
40
"0
'if.
(fJ
20
..J
:>
..
... lOA
Non-Repetitive Sinusoidal Surge Current, 8.3mS
80A
. .... 1.75'C/W
Thermal Resistance, Junction to Case, 6 J •c ................................ ..
Thermal Resistance, Junction to Ambient, 6 J •A
60'C/W
Operating and Storage Temperature Range ..
.. ...... -55'C to +150'C
Note 1. Above 8A use the tab for electrical connection.
Note 2. Using Wakefield Type 295 heatsink with convection cooling. For more definitive
data refer to the Output Current vs. Temperature Curves on this datasheet.
MECHANICAL SPECIFICATIONS
UES2401·2403
SEATING
PLANE
DIM
A
•
,
I .
II
U
---1
C
•
~-
SECT A.'
~
Pin 1
!
Pin2
&
Tab
14.
Pin 3
D
F
G
H
J
•
L
N
••
S
T
MILLlMDIR,
MI.
MAX
14.23 15.17
10.66
....3."
4.8'
0.51
1.14
3.531 3.733
2.29
2.79
US
0.38
0."
12.ro
14.27
1.14
1.77
4.83
........
1.14
5.85
'.33
0.310
0.140
0.0:10
0.139
.....-
0.015
0.5..
0-045
3."
2.9'
...10
D.045
0.230
0....
0.110
0.04&
0.147
0.110
0.110
0.025
0.562
0.070
0.210
0.1"
0.115
0,055
0.270
[ill]
6-79
(Revised)
....
INCHU
MI.
MAX
MeD
0.190
Q.1oo
I."
6.15
TO·220
306
_UNITRODE
UES2401-UES2403
ELECTRICAL SPECIFICATIONS
Maximum
Reverse Current
@PIV
Maximum
Type
Forward Voltage
PIV
UES2401
UES2402
UES2403
50V
lOOV
150V
·Measured in drcuit IF
TJ =2S'C
TJ = 100'C
TJ =2S'C
T J = lODGe
0.9V@4A
0.975V@8A
tp = 300l'S
0.8V@4A
0.895V@8A
5,uA
150,uA
Typical Forward Current
vs. Forward Voltage
100
50
16~--~~+---+----r---t
20
10
S
zw
12
a:
a:
14
S
10
~
Forward
Recovery'
Time*
Voltage
@IA
t, = 8nS
35nS
1.4V
= O.5A, IR = l.OA, tREe = O.25A
Output Current
vs. Temperature
I-
Typical
Ma'ximum
Reverse
Recovery
I-
r---
Z
w
a:
a:
U
I
-~
~
u
I
-~
H-
.1 I-e.05
.02
.....
.01
~
l..dj~ ~~
JI/ [I
JIJ
/5
,....'"
::;::
-SOOC
.2
l-
i- f= 2'C
1
T
IZ
j .,
'I
0
;:!Q
TJ
.1
1~f
A.~
Vf
.02
_~~II
.5 1-- -"f..2
I
Typical Reverse Current
vs. Voltage
p
10
_" 20
I!
....'
f-
I-
~jlr~C
r
100
( 1 I I I
200
VI
1
II I
T
= -'-12S'C
I' 1 1 1 1
1000
.01
.1 .2 .3 .4 .5 .6 .7 .8 .9 1.01.11.21.3
_ ..... f-"
= +IOO'C'
120
100
80
60
40
20
VOLTAGE IN % OF PIV
V, - VOLTAGE (V)
Multiple Surge Current vs. Duration
Forward Pulse Current ys. Duration
10.000
5.000
1.000
S
I
i'-.....
I I
I
............ ~
Z
100
50
"'
(!l
z
;::
I'"
80
«
a:
w
............
500
"'a:
~
I
.1
Peak Half Sine cu~re~t VS.
~ Duration for Non-Repetitive Pulse
I
I-
u
100
~
"- .........
60
-... ..............
(!l
a:
iil
............
40
u.
c
'#
(/)
20
..J
~
Q.
10
.5
I
50
ImS
2
lamS
-- -
50 IDa 200
10 20
CYCLES AT 60 Hz SINE WAVE
500 1000
PULSE DURATION
3'
~
Thermal Impedance
vs. Pulse Width
2.0
"'
1.0
"'~
.4
u
z
«
c
..J
,,"
.2
a:
.1
I
.04
"'l-:I:
~
",-
10 H
I.o-I-~
Q.
«
:;;
Reverse-Recovery Circuit
SOil
//
:..,...-
~~
i-"'"'
+
_
~
1 ~2
NOTE]
"
.02
.01.02 .05.1.2
I, -
.5 I
2
2SVdc
(APPRDX.)
5 10 20 50 lOa 200
NOTEI
NOTES:
1. Oscil/oscope: Rise time ~ 3nS; input impedance = 50n.
2. Pulse Generator: Rise time ~ 8nS; source impedance IOn.
3. Current viewing resistor, non-inductive, coaxial recommended.
1000
PULSE WIDTH (mS)
UNITRODE CORPORATION· S FORBES ROAD
LEXINGTON, MA 02173. TEL. (617) 861·6040
TWX (710) 326-6509 • TELEX 95-1064
OSCILLOSCOPE
307
PRINTED IN U.S.A.
RECTIFIERS
UES-2601-UES2603
High Efficiency, 30A Center-Tap
FEATURES
• Very Low Forward Voltage
• Very Fast Switching Speed
• Convenient Package
• High Surge
• Low Thermal Resistance
• Mechanically Rugged
• Both Polarities Available
DESCRIPTION
This series combines two high efficiency
devices into one package, simplifying
installation, reducing heat sink requirements and the need to purchase
matched components.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, UES2601 .
. ..................................................... 50V
Peak Inverse Voltage, UES2602. .
................. lOOV
Peak Inverse Voltage, UES2603
........................................................................ 150V
Maximum Average D.C. Output Current at Tc
100'C .
....... 30A
Non-Repetitive Sinusoidal Surge Current 8.3 ms
.... 400A
Thermal Resistance, Junction to Case .
..... ..... .......
........ 1'C/W
Operating and Storage Temperature Range ...
. .............. -55'C to +175'C
=
POWER CYCLING
These devices possess the unique ability to pass many
thousands of cycles of a stress test designed to evaluate the
integrity of the bonding systems used in the construction of
power rectifiers.
In this stress test, the case of the device is not heat sunk.
Full rated forward current is supplied to force a case temperature increase at least 75'C, at which time, the current is
removed and the case allowed to cool. The cycle is repeated a
minimum of 5,000 times to simulate equipment being turned
on and off. Extended power cycling tests demonstrate a product
capability in excess of 25,000 cycles.
SWITCHING CHARACTERISTICS
The switching times of these ultra-fast rectifiers increase
relatively little, with temperature or at different currents. Even
in severe applications, such as catch diodes for switching
regulators and output rectifiers for high frequency square
wave inverters, these devices switch many ·times faster than
the fastest associated transistors. Thus, the stresses on and
powers dissipated in the switching transistors are substantially
less than when using other rectifiers.
MECHANICAL SPECIFICATIONS
UES2601-UES2603
•
~
I
14
•
CASE
•
NEGATIVE OUTPUT
14
1.1
CASE
•
[.7.Ji1~
MAXtdlJ
.450
.250
TO-3
.161
.151
.188
MAX.
POSITIVE OUTPUT
.525
MAX.
RAO.
.440
.420
.312
M!N.
Dimensions in inches.
Nate:
Standard polarity is positive output.
For reverse polarity (negative output) add suffix "R", ie. UES2601R.
308
~
_UNITRDDE
UES2601- UES2603
ELECTRICAL SPECIFICATIONS
Type
PIV
UES260l
UES2602
UES2603
* Measured
SOV
lOOV
150V
Maximum
Forward Voltage
Maximum
Reverse Current
Maximum
@
@
Recovery
Tc =2S'C
Tc = 12S'C
.930V
.825V
@
@
l5A
t p = 300I'S
l5A
t p = 300I'S
Tc=2S'C
Tc= 12S'C
Time·
2Op,A
4mA
35nS
in circuit IF = O.SA, IR = lA, 'REC = O.2SA
Typical Reverse Current
vs. Reverse Voltage
.001
.002
.OS
~
.1
.2
~
.5
0:
T J _+2S'C
~
....
z
1
2
50
I
---
TJ = +12S'C
"'" f::i- +IS0'C- j
J-
II
/
"a:
~
a:
...
V
--
I--"
-~ 10
20
r
+100'C
-- /
/
0
~
I
-"
.S
.2
II
/
/
0:
OJ
U
}
::::TJ
/
10
"'a:
~
\, V
20
~
>--
~
TJ = +ISO'C
30
.02
z
"'
50
V
J-+-
;;C .01
"'~
Forward Current
vs. Forward Voltage
I
.OOS
S
....
Reverse
,/
V
/
lZ
".
/
_ TYPICAL V,
/I
/
/
W/
".
f-T J = +7S'C
f-T J = +12S'C
- - - - = MAXIMUM V,
I
/1
.4
I
V, -
1.0
.6
.8
FORWARD VOLTAGE (V)
1.2
130 120 110 100 90 80 70 60 SO 40 30 20 10
V, - REVERSE VOLTAGE (% OF PIV)
Maximum Forward Surge
vs. Number of Cycles
400
~
....z
~
300
~
200
I
100
f\JL
'" '"
~lCYC~E
"'zu
.5
OJ
.2
'o"
'"
~
""
.os
OJ
I
....
-
I'--.-
"'0:0:
OJ
20
i--
~~
u
....
OJ
"....
OJ
0
10
:/
V
.02
I
.01
.01.02 .05.1 .2 .S I 2 S 10 20 50100200
tp - PULSE WIDTH (mS)
1000
200
Reverse-Recovery Circuit
SOP.
100
+
_
-=-
I
NOTE 3
~
12S
150
CASE TEMPERATURE ('C)
UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064
25Vdc
(APPROX.)
In
~
_0
100
Tc -
~
......
/
.1
.J
Output Current vs.
Case Temperature
30
v/
"-
:2'
10
20
50
100
CYCLES OF 60 Hz SINEWAVE
N-
~
...
z
-
.-e-
"'0:0:
a
Thermal Impedance
vs. Pulse Width
OSCILLOSCOPE
NOTE!
NOTES:
1. Oscilloscope: Rise time ~ 3ns; input impedance = 50n.
2. Pulse Generator: Rise time :E;; 8ns; source impedance 100.
l. Current viewing resistor, non-inductive, coaxial recommended.
175
309
PRINTED IN U.S.A.
UES260~UES2606
RECTIFIERS
High Efficiency, 30A Center-Tap
FEATURES
• Very Low Forward Voltage (1.l5V)
• Very Fast Recovery Times (SOn Sec)
• Low Profile Package
• High Surge Capability
• Low Thermal Resistance
• Mechanically Rugged
• Both Polarities Available
DESCRIPTION
The UES2604 series is specifically
designed for operation in power switching
circuits operating at frequencies of at
least 20 KHz.
This series combines two high efficiency
devices into one package, simplifying
installation, reducing heat sink requirements and the need to purchase
matched components.
ABSOLUTE MAXIMUM RATINGS
.......... 200V
Peak Inverse Voltage, UES2604 .......................................................................... .
Peak I nverse Voltage, U ES260S .................................
...........300V
Peak Inverse Voltage, UES2606 ..... .
...400V
. ..... 30A
Maximum Average D.C. Output Current @ Tc 100·C ................ .
Surge Current, 8.3mSec ....................................... .
. ........ 300A
Thermal Resistance, Junction to Case ........... .
.1·C/W
.......... -S5·C to +150·C
Operating and Storage Temperature Range ....................... .
=
POWER CYCLING
These devices possess the unique ability to pass many
thousands of cycles of a stress test designed to evaluate the
integrity of the bonding systems used in the construction of
power rectifiers.
In this stress test, the case of the device is not heat sunk.
Full rated forward current is supplied to force a case temperature increase at least 75·C, at which time, the current is
removed and the case allowed to cool. The cycle is repeated a
minimum of 5,000 times to simulate equipment being turned
on and off. Extended power cycling tests demonstrate a product
capability in excess of 25,000 cycles.
SWITCHING CHARACTERISTICS
The switching times of these ultra-fast rectifiers increase
relatively little, with temperature or at different currents. Even
in severe applications, such as catch diodes for switching
regulators and output rectifiers for high frequency square
wave inverters, these devices switch many times faster than
the fastest associated transistors. Thus, the stresses on and
powers dissipated in the switching transistors are substantially
less than when using other rectifiers.
MECHANICAL SPECIFICATIONS
UES2604-UES2606
•
~
I
l1l/I
•
CASE
•
NEGATIVE OUTPUT
TO-3
.188
POSITIVE OUTPUT
141 ~I •
£~oo~~:
.525
MAX.
135-HJ I
RAO.
MAX
CASE
.450
.312
.250
MiN
.440
.420
Dimensions in inches.
Nole:
Standard polarity is positive output.
For reverse polarity (negative output) add suffix "R", ie. UES2604R.
4/79 (Rev. 1)
310
OJJJ
_UNITRDDE
UES2604-UES2606
ELECTRICAL SPECIFICATIONS, PER LEG
Maximum
Forward Voltage
Type
PIV
UES2604
UES260S
UES2606
200V
300V
400V
Tc
*Measured in circuit If = .5A.
IR
=25°C
Tc
1.2SV
@ lSA
tp =3001'S
=125°C
=25°C
Tc
1.lSV
@15A
tp = 300l'S
....
z
'"c::c::
lK If'
o
I{
:::>
'"
(/)
:5
-
,-
I
fJ"1'~
125°C
i-- I-'loo°c
100
50
i..--' I/.
:/
5:
-- -
10
« .5
~
-f-
...0
-
2~
/
I
-~
.2
.1
.05
f-""
.02
.01
oV
REVERSE VOLTAGE (% OF PIV)
~
II
II
7r II
w
.2
~
.1
:::>
0
"'"
-f\J'L
100
,ICiCLE
2
N-
""
-'
«
~
w
.05
J:
....
.-i-P
V
vV'" V
"'" -
10
20
so 100
CYCLES OF 60 Hz SINEWAVE
/
V
/
.02
I
~
"-....
'"
.01
.01.02 .05.1 .2
5:
....z
w
c::
0:
:::>
u
20
....:::>
Q.
....
:::>
0
10
I
_0
5 10 20 50100200
1000
(mS)
200
Reverse-Recovery Circuit
50
r-...
"'"~
.5 1 2
t, - PULSE WIDTH
Output Current vs_
Case Temperature
30
-
Thermal Impedance
vs. Pulse Width
Z
«
Q
""'r--.
II
Y II V Y
/ I
Q.
I
II
-"'J ,,> "'If-"'I
.5
o
I"'"
200
lL~/
J
Q? ~ J!~l- it
:;::;:
I
1.0
tw
....
v
oV
V
/
.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.11.2 1.3 1.4'1.5
V, - FORWARD VOLTAGE IV)
20 30 40 50 60 70 80 90100110 120130140150
300
5:
VV
1/ II
c::
100
Maximum Forward Surge
vs. Number of Cycles
-~
5
:::>
c::
V, -
'"c::c::
10
0
11'
o 10
z
....
'"c::c::
z
V
~ ~ ~ t7
/1/ /
1/ / / V
20
0
iiic::
_~
50nS
Forward Current
vs. Forward Voltage
V-
If
10mA
=lA, IREe = .25A
100 K
10K
=125°C
Tc
5OI'A
Typical Reverse Current
vs. Reverse Voltage
~
Maximum
Reverse
Recovery
Time*
Maximum
Reverse Current
Ion
Q
+
_
'"
0
-=-
10
~'\
NOTE 3
OSCILLOSCOPE
NOTEl
-=
1\
NOTES:
1. Oscilloscope: Rise time ~ 3nsj input impedance = 500.
2. Pulse Generator: Rise time ~ 8nsi source impedance 100.
100
110
120
130
140
ISO
Tc - CASE TEMPERATURE (OC)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
25Vdc
(APPROX.)
3. Current viewing resistor, non-inductive, coaxial recommended.
311
PRINTED IN U.S.A.
•
RECTIFIERS
URI05-UR125
UR205-UR225
Radiation Tolerant, 1 Amp-2 Amp
FEATURES
• Radiation Tolerant: to 10" NVT
• Continuous Rating: to 2A
• Controlled Avalanche
• Surge Rating: to 25A
• Miniature Package
DESCRIPTION
These devices are particularly suited to
applications where radiation is present.
These units have unique ability to withstand high levels of neutron, gamma and
electron radiation.
ABSOLUTE MAXIMUM RATINGS
1 Amp
Series
2 Amp
Peak Inverse Voltage
50V
100V
150V
200V
250V
URI05
URllO
URn5
URl20
URl25
UR205
UR210
UR215
UR220
UR225
Series
1 AMP
SERIES
2 AMP
SERIES
Maximum Average D.C. Output Current
........ 2A
... IA ..
@ TA = 25°C.
... IA
........... O.5A ..
@ TA =IOO°C .
Non-Repetitive Sinusoidal
. 20A...
.. 25A
Surge Current (8.3ms) .
.. -195°C to +175°C
Operating Temperature Range.
Storage Temperature Range .
-195°C to +200°C
. See ~ad Temperature Derating Curve
Thermal Resistance
H
MECHANICAL SPECIFICATIONS
UR105-UR125 UR205-UR225
BODY A
Part Identification: White band indicates "UR." Part number printed on body.
Polarity: Denoted by white band.
Weight: 0.26 grams, typical.
[ill]
312
_UNITRDDE
UR105-UR205 URllO-UR210 UR1l5-UR215 UR120-UR220 UR125-UR225
ELECTRICAL SPECIFICATIONS (at 25"C unless noted)
Maximum
Type
PIV
UR205
UR210
UR215
UR220
UR225
UR105
URllO
URll5
UR120
UR125
leakage
Maximum
Forward
Voltage
Drop
50V
100V
l50V
200V
250V
50V
100V
l50V
200V
250V
CUrrent
@PIV
25'C
1.0V@lA
3"A
50"A
1.0V@ O.5A
3"A
50"A
Maximum Current
vs Lead Temperature
I~
w
cr
cr
:::>
u
I.!:..= 3fe""-
~
.............
25
"-
~
:----.....
L
ow
;::
u
w
cr
w
~
~
~~
~
= Va"
~
ii:
.'"""
•
1 AMP SERIES
~
....
z
'i.
~3,4"
10" NVT
10 '0
10 '5
10 '4
10 '4
10 '0
10 '0
10 '5
10 '4
10 '4
Maximum Current
vs Lead Temperature
2 AMP SERIES
= Va"
Maximum
Radiation
Tolerance
100'C
~ 1
cr
w
>
«
I
t;:: ~
L
= ¥4"
~
~ -.......
~~
~
_0
25
50
75
100
125
ISO
175
T, - LEAD TEMPERATURE ('C)
50
T, -
~
75
100
125
ISO
175
LEAD TEMPERATURE ('C)
Allowable Forward Surge vs Number of Cycles
100
"z«;::
a:
I~
80
I III
........
w
":::>a:
60
ii:
40
en
0
w
U
w
a.
III
u.
i:::::,.
-..;:::
~::'
"
20
ALL SERIES
Turret 1" centers
Turret l/Z" centers
Printed Circuit
r--
~
::J.
0
#10
100
CYCLES AT 60 Hz HALF SINE WAVE
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
313
1,000
PRINTED IN U.S.A.
UR105-UR205 URllO-UR21O UR1l5-UR215
Typical Reverse Current vs PIV
ALL SERIES
.01
.02
~
.3
....
zw
a:
a:
:;,
u
w
a:
w
>
UJ
a:
Typical Forward Current
vs Forward Voltage
10
~"C
.2
~C
.5
5:f-
zUJ
a
V
10
20
75"C
----
~
....
~ .05
~
a: .2
a:
C\I
/
.005
1/ i
II
.001
.2
.4
VF
-
"- .01
.005
Forward Pulse Current vs Pulse Duration
5:
1,000
2
0
.4
V, -
-
I
•
~
1
VOLTAGE (V)
12
1.4
Reverse Pulse Power vs Pulse Duration
ALL SERIES •
Square Pulse current vs
Duration for Non·Repetitive Pu loe
(8.3 ms sine wave equivalent
to 3 ms square wave)
r--...
~
w
w
:;:
0
Il.
Square Pulse Current vs
Duration for Non-Repetitive Pulse
(8.3 ms sine wave equivalent
to 3 ms square wave)
10,000
a:
a:
a:
u
w
1.4
Q
100,000
:;,
'"
111
.001
1.2
0
ill
11
1 111
.002
.I
.6
.8
1
VOLTAGE (V)
10,000
ALL SERIES
j
11
~
a: .02
o
II
M~
ILl 1
~
1~
~ /Cli? -f- -f- -/- I
~ .05
/ I
II
IL: '//
1/ I
.5
a .1
1I"j-1-/--/--!-I
.1
.002
100
50
% OF PIV
z
w
L
"- .01
125"C
5:f-
//)
"'-' ~/I'-'
~ 0':' 0
a: .02
V
~ -;p-
I1I1 'III
.5
o
50
100
2QO
150
...J
1 AMP SERIES
VI
a: .2
a:
500
1.000
....
10
/v'rl
.05
.1
VI
Z
Typical Forward Current
. vs Forward Voltage
v,
2 AMP SERIES
UR120-UR220 UR125-UR225
......
1,000
W
'"
100
...J
:J
:;,
Il.
0.
10
.1.us
10
l.us
lOpS
100,u.5
Ims
lOms
PULSe: DURATION (SECONDS)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710\ 326-6509 • TELEX 95-1064
314
1---
100
lOOns
1111
IJ.ls
lOti 5
lOO.us
Ims
PULSE DURATION (SECONDS)
lOms
PRINTED IN U.S.A.
USD520
USD535
USD545
POWER SCHOTTKY RECTIFIERS
150 Amp Pk, Up to 45V
FEATURES
DESCRIPTION
•
•
•
•
•
•
•
•
This series of Schottky barrier power
rectifiers is ideally suited for output
rectifiers and catch diodes in low
voltage power supplies. The Unitrode
high conductivity design, using a heavy
copper top post and 4 point crimp,
ensures cool thermal operation and low
dynamic impedance. Rugged design
absorbs stress that can damage glass-tometal seal during installation and use.
Very Low Forward Drop (O.6V at 60A, 125°C)
Low Recovered Charge
Rugged Package Design (00-5)
High Efficiency for Low Voltage Supplies
Low Thermal Resistance (0.8° C/W)
High Surge Current (lOOOA)
Low Reverse Current «SO rnA at rated vR at 125°C)
Available with Flexible Top Lead
•
ABSOLUTE MAXIMUM RATINGS
USD535
USD520
........... 35V.
.... 3SV.....
Working Peak Reverse Voltage, VRWM ' ........... 2OV ... ..
DC Blocking Voltage, VR .
....... 20V ... .
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 KHz,
50 percent Duty Cycle), IFRM ..
Average Rectified Forward Current, IFIAVI .
Non-repetitive Peak Surge Current (8.3 mS), I FSM ... .
Operating an.d Storage. Temperature Range, lj, Tstg ........ .
Peak Operat~ng Junction .Temperature, ljlplcl ............ ..
Thermal ReSistance .JunctlOn-to-Case,R SJc ...... ..
USD545
.......... ..45V
........... 4SV
=
......... lS0A (at T c
115°C)
.......... 75A (at T c = l1S0C)
. ........... l000A
....... -SSoC to +lWC
. .. +175°C
............................... O.8°C/W
MECHANICAL SPECIFICATIONS
USD520
USD535
USD545
00-5
,...
e
A
"'~
•e
0
E
H
J
K
L
M
N
. 225 ± .005
5.72 ± 0.13
.060 MIN.
1.52 MIN .
.156
3.96.:!: 0.51
+
.020
.156 MIN. FLAT
.667 OIA. MAX .
3.96 MIN. FLAT
.090 MAX.
16.94 DIA. MAX.
2.29 MAX .
.677
17.20
+
.010
.375 MAX.
. 140 MIN. DIA.
1.000 MAX.
.450 MAX.
.438 ± .015
.078 MAX.
±
0.25
9.53 MAX .
3.56 MIN. OIA.
25.40 MAX.
11.43 MAX.
11.13'" 0.38
1.98 MAX.
Notes:
1. Cathode is stud.
2. All metal surfaces tin plated.
3. Maximum un lubricated stud torque: 30 inch pounds (35 kg. em).
4. Angular orientation of terminal is undefined.
[ill]
2/80
315
_UNITRDDE
'
USD520
ELECTRICAL CHARACTERISTICS (TeAsE
=
Symbol
All
Units
50
mA
Maximum Instantaneous
Reverse Current
i.
Maximum Instantaneous
Forward Voltage
vF
0.60
V
Flexible Top Lead Option
vF
0.63
V
Maximum Capacitance
C,
Maximum Voltage
Rate of Change
dv/dt
Conditions
v. = rated,
Te = 125'C
Pulse Width
300pS
Duty Cycle
1 percent
=
=
4000
700
pF
=60A
= 125'C
V. = S.OV
VII'S
v.
iF
Te
Vii
1/
=
rated
Typical Reverse Current
vs Reverse Voltage
Typical Forward Current
vs Forward Voltage
100
0.01
1/
0.02
II
/"
0.05
50
fZ
UJ
'"'"
::>
u
',Lv/t vVf:Q
~
oV
~
10
0.1
f-
0.2
0
/'
'"
::>
u
/
UJ
I
If)
~
UJ
'">
II
1
0.2
'"I
I
I
-"
I II
I
0.3
0.4
0.5
0.6
0.8
0.9
1.0
50
1.1
V,-VOLTAGE (V)
J /
10
20
0.7
VV
:/ ./v
UJ
11
,\,
./
0.5
'"
V"
~ ,>,0
." ",'I'
zUJ
fj ~ 4710
20
"
;;(
.s
I
is
USD545
25'C)
Characteristic
200
150
USD535
7,
."
./
/"
10-""
125'C
--
~'c
/"
'/
//
Y
100
~
~
00
vR -
ro
~
W
~
m
~
w
REVERSE VOLTAGE (% OF VRWM )
Maximum Current
vs Case Temperature
1W
"\
UJ_
>
" 120
i= ;:-
\
;:: z
UJ
UJ
a. '"
UJ '"
~
a
~ 0
a. ~
I, ~
_::: 2
\.
VR
~
i\.
=
RATED
80 f-V R
50% DUTY
f - SQUARE WAVE
f
20 KHz
40
\
'\
1\
=
\
100
Tc -
=0
125
\
\
150
f\
175
CASE TEMPERATURE (OC)
UNITRODE CORPORATION. 5 FORBES ROAD
LEX I NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
PRINTED IN U.S.A.
316
. USD520
USD535
USD545
VRIMAX) Rating vs
Case Temperature
50
45
USi545
40
35
~
USD535
30
en
~
0
.
>
I
>
25
20
USD520
15
10
-so
-25
25
50
75
100
125
150
175
CASE TEMPERATURE C'C)
MECHANICAL SPECIFICATIONS
FLEXIBLE TOP LEAD (OPTIONAL)
Add an "F" Suffix to Part Number.
Standard JEDEC
DO·5 Package
@
I
I
I
rM-l
N
~"F_ )
~I -":136
....""'.'"
USD52DF
USD535F
USD545F
/
:JtJl
~
T
ins.
p
(L4/l-bJ 15
1.500:t .100
.475:t .250
.425:t .025
M
N
P
Q
R
.678:!:: .320
. 205:t .005 OIA.
s
.075:!: ,010
T
1 MIN.
DO-5 with Flexible Lead
mm
38.1O:!: 2.54
12.07:t 6.35
10.80 ± 0.64
17.2210 8.13
5.21 ± 0.13 DIA .
1.91::!:. 0.25
2.54 MIN.
lud
Note: Consult Factory for Non-standard Lead Lengths.
UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6S09 • TELEX 95-1064
PRINTED IN U.S.A.
317
RECTIFIERS
UT236-UT347
UT249-UT363
UT251-UT364
UT261-UT268
Standard Recovery, 1 Amp to 2 Amp
FEATURES
• Continuous Rating: to 2A
• Controlled Avalanche
• Surge Rating: to 30A
• PIV: to lOOOV
• Miniature Package
DESCRIPTIDN
These miniature power rectifiers offer the
user extreme reliability for high-rei
military supplies.
ABSDLUTE MAXIMUM RATINGS
1 Amp
Series
1.25 Amp
1.5 Amp
Peak Inverse Voltage
Series
Series
Series
lOOV
200V
400V
500V
600V
800V
lOOOV
UT236
UT234
UT235
UT237
UT238
UT361
UT347
UT249
UT242
UT244
UT245
UT247
UT362
UT363
UT251
UT252
UT254
UT255
UT257
UT258
UT364
UT261
UT262
UT264
UT265
UT267
UT268
Maximum Average D.C. Output Current
@ TA = 25'C ..
@ T. = lOO'C ...
Non-Repetitive Sinuosoidal
Surge (8.3ms)
Operating Temperature Range
Storage Temperature Range
Thermal Resistance ............................................. .
1 AMP
SERIES
...... 1.0A ..
... O.5A.....
..... 20A ...
2Amp
1.25 AMP
1.5 AMP
SERIES
SERIES
... 1.25A .....
.. ........ O.65A ..
1.5A.
... O.75A ....
.... .... 20A....... 25A ....
.......... -195'C to +175'C
-195'C to +175'C
See lead temperature derating curve .....
2AMP
SERIES
........... 2.0A
.... 1.OA
.. 30A
MECHANICAL SPECIFICATIO.NS
UT236-UT347 UT249-UT363 UT251-UT364 UT261-UT268
Part Identific.tion:
Orang~
BODY A
band indicates "UT." Part
number printed on body.
Polarity: Denoted by orange band.
Weilht: 0.26 grams, typica:.
318
[lliJ
_UNITRaDE
UT236-UT347 UT249-UT363 UT251-UT364 UT261-UT268
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Type
PIV
UT261
UT262
UT264
UT265
UT267
UT268
UT251
UT252
UT254
UT255
UT257
UT258
UT364
UT249
UT242
UT244
UT245
UT247
UT362
UT363
UT236
UT234
UT235
UT237
UT238
UT361
UT347
lOOV
200V
400V
500V
600V
800V
lOOV
200V
400V
SOOV
600V
800V
lOOOV
lOOV
200V
400V
500V
600V
800V
lOOOV
lOOV
200V
400V
500V
600V
800V
lOOOV
Maximum Leakage
Current (ii) PIV
Maximum Forward
Voltage Drop
2S'C
100'C
lV@900mA
2pA
75pA
lV@750mA
2pA
75p.A
lV@500mA
2p.A
75p.A
lV@400mA
2p.A
751'A
Maximum Current
vs Lead Temperature
Maximum Current
vs Lead Temperature
t AMP SERIES
~
>z
'"a:
2
L
= V,"
'"
~
a:
2
;;:
.'"
.'"
"
a:
::: 3
a:
o
>= 2
()
~
'"a:
"'"
.
Ul
~
I
I
.2
_0
T, -
75
100
125
ISO
175
UNITRODE CORPORATION, 5 FORBES ROAD
LEXINGTON, MA 02173 ' TEL. (617) 861-6540
TWX (710) 326-6509 ' TELEX 95-1064
L~ ~
I
SO
75
3
~
2
(e)
100
'"'"
c'II"'
0
-...........
T, -
319
.............
I'-- I'--.... ~ !'\..
1
25
LEAD TEMPERATURE ('C)
-0
L=~
1--:---..,
a:
>
so
.......
'";;:
(e)
o
1
L = Va"
:J
()
~'"'
1.5
25
1.5 AMP SERIES
~
>z
~
2.5 !:l
a:
ao
..
125
.5
~
ISO
o
175
LEAD TEMPERATURE ('C)
PRINTED IN U.S.A.
UT236-UT347 UT249-UT363 UT2S1-UT364 UT261-UT268
Maximum Current
vs Lead Temperature
Maximum Current
Lead Temperature
VI
1.25AMP SERIES
~
I-
L
==
Z
\40"
-""~0
'"-"
"""
-....
r-..
"" ""-"
"
75
100
125
...Z~
::::.
.1
.2
w
.5
~
u
'">
d
.5
.............
I
'-...,
.2
o
SO
25
Tt
-
2 AMP SERIES
VV/'
IV
z
'"~
I/~O:'" !J
/
I
I
~'C
.002
II
'I
.001
ISO
100
50
.2
% OF PIV
Typical Forward Current
vs Forward Voltage
I
/
.01
.005
I1I1
II
_-.02
~75'C
ifJf--
~ -1'-1'
~
.1
;:)
./
50
100
.2
U.05
I
10
20
111/
~ .5
-;;;'C
~
5
II
I
.4
V, -
I
II
.6
.8
1
VOLTAGE (V)
1.25 AMP SERIES
;::::; I?""
~
'// //
~
II
/
l& !oJ
.2
~ .1
U.05
;:)
U.05
II
/
.001
~
I
A
V, -
/
.01
.005
•
~
1
VOLTAGE (V)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (ijI7) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
II
.002
II
.001
1~
lA
.2
320
I-~
III I
I
-"".02
II
/
.002
k...~O
fjh~O
;:&v,~
1! /-
w
~ .1
I-
1/
.005
I
,5
Z .2
IIi! /
/
.01
o-
;:-1'1
I
~.02
0
5
I-
r-
~ 8X;~
/
;:)
1.4
10
1.5 AMP SERIES
~ .5
!.2
Typical Forward Current
vs Forward Voltage
10
...
o
10
I-
W
.5
75
100
125
150
175
LEAD TEMPERATURE ('C)
SO'C
It:
~~
I~
Typical Forward Current
vs Forward Voltage
-
ALL SERIES
"
"'" .'"
'---- " ~
I
PIV
VS.
It:
'"
1--"':::
175
.02
.05
'"
«
"'"'"
'"
>
«
LEAD TEMPERATURE ('C)
-
.005
.01
w
L -W'
It:
t--.\.
ISO
~
2
U
t:
"'" ""'" ,
I.!;..=%'~
a
'"
;::
ii:
~~
Typical Leakage Current
.001
.002
U
@
...........
Tt
::e
,.,
3
::::.
:v
~34"
so
It:
0
"-
25
'"'"
'11
2 AMP SERIES
~=W'
~
/
.4
V, -
II
I
I
.6
.8
1
VOLTAGE (V)
1.2
1.4
PRINTED IN U.S.A.
UT236-UT347 UT249-UT363 UT2S1-UT364 UT261-UT268
Typical Forward Current
vs Forward Voltage
10
1 AMP SERIES
Vl/ '/
VV/
~ .5
0-
z
I I VI/
.2
w
1//'0.'
() ()
$~ki?
~ .1
I-t-
1- 1- 1- /
::>
U.05
'/
I
1/ / / III-
-" .02
.01
.005
II
.002
/
.001
.2
I
/
.4
VF
I
.6.8
VOLTAGE (V)
-
1.2
Allowable Forward Surge vs Number of Cycles
100
";::z
'"
"::>
0:
W
0:
I~
80
IIIII
0
ii:
40
"'
...0
i::>
::>w
0"
...05'"
I---
----::::: r:-L
0..
If)
If)
t=~
::>0
Turret 1/2 " centers
Printed Circuit
"" ~
If)
ALL SERIES
I I
;~r~~: I" c~nte~s
~
60
w
c::;
Efficiency vs Frequency at Rated Current (Sine Wave) •
100
i'.
20
70
50
40
w -.
30
':!o
20
~~
10
1,000
100
"" "
lK
2
~
0-
z
SERIES
ALL S
Duratici~af':r ~'::~~R~~~Tti~:~~
(8.3 ms sine wave equivalent
to 3 ms square wave)
..........
1,000
1M
Square Pulse
uration for
!
curren~,~vsp-=
Non~Repetitive
Pu se
(8.3 msec sine wave equivalent
to 3 ms square wave) ~
10,000
0:
W
~
::>
0
r--.
(J
"'
ES
I
"'
..J
lOOK
100,000
0:
0:
If)
6 810K
Reverse Pulse Power vs Pulse Duration
Forward Pulse Current vs Pulse Duration
F= ALL
3 4
FREQUENCY (H,) - HALF WAVE RESISTIVE LOAD NO FILTER
CYCLES AT 60 Hz HALF SINE WAVE
10,000
SERIES
60
~~
-I
r-- ALL
80
>0
ZO
oe
90
U·
... 0
10
1.4
0..
W
1,000
~
100
::>
::>
"-
0..
100
!O
10
l,uS
10,u5
lOOJ,LS
Ims
lOms
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
lOOns
l,us
IO,us
Ims
100.u5
PULSE DURATION (SECONDS)
PULSE DURATION (SECONDS)
321
PRINTED IN U.S.A.
IOms
RECTIFIERS
UT2005-UT2060
UT3005-UT3060
UT4005-UT4060
Standard Recovery, 2 Amp to 4 Amp
FEATURES
DESCRIPTION
•
•
•
•
•
High average power and surge capability
make these series of devices attractive
in many high-rei applications.
Continuous Rating:t04A
Controlled Avalanche
Surge Rating:to 100A
PIV: to 600 V
Miniature Package
All Unitrode rectifiers have a sleeve of
pure hard glass fused to the si licon junction. Since the silicon sees only this glass,
electrical characteristics are permanently
stable. This void less, monolithic package
is totally unaffected by the most severe
moisture or temperature testing.
ABSOLUTE MAXIMUM RATINGS
2Amp
Seri8$
3Amp
Peak Inverse Voltage
Series
Series
SOV
lOOV
200V
400V
600V
UT200S
UT20l0
UT2020
UT2040
UT2060
UT300S
UT3010
UT3020
UT3040
UT3060
UT400S
UT40l0
UT4020
UT4040
UT4060
2AMP
SERIES
Maximum Average D.C. Output Current
4Amp
3AMP
SERIEs
4AMP
SERIES
._.___. 3.0A..
.... 4.0A
@~=~C.·UA_
...... l.SA .... _._ .. _.. _
@ TA
lOO'C .. _..... _.. _....... _...... _................... 1.0A.
..... 2.0A
Non-Repetitive Sinusoidal
_.. _._._. __ . lOOA
Surge Current (8.3ms). . . _.... _. 60A...
._ .... _... 8OA.
Operating Temperature Range ......... _._._ .. _............. _..
.... _.......... -19S'C to +l7S'C .. .
Storage Temperature Range ... _._ .. _.... _.. __ ... _._..
....... _........
..... _._-l9S'C to +200'C .. .
Thermal Resistance .. _....... _..... __ .. _.. _ .. _.... __ .. _._ .. _._ ... _ ..... _...... __ .. _.... __ ._ .......... See lead temperature derating curve .. .
=
MECHANICAL SPECIFICATIONS
UT200S-IIT2060 UT300S-UT3060 UT4005·UT4060
BODY B
Part Identification: Orange band indicates "UT." Part
number printed on body.
Polarity: Denoted by orange band.
Weight: 0.75 grams. typical.
322
lliD
_UNITRDDE
UT2005-UT2060
UT300S-UT3060
UT400S-UT4060
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Maximum Leakage
Current @ PIV
Maximum Forward
Type
PIV
Voltage Drop
25'C
100"C
UT400S
UT4010
UT4020
UT4040
UT4060
SOV
lOOV
200V
400V
600V
lV@3A
51'A
lOOIlA
UT300S
UT3010
UT3020
UT3040
UT3060
SOV
lOOV
200V
400V
600V
lV@2A
SI'A
lOOIlA
UT200S
UT2010
UT2020
UT2040
UT2060
SOV
100V
200V
400V
600V
lV@lA
51'A
lOOIlA
Maximum Current
Lead Temperature
Maxi mum Current
Lead Temperature
YS
:!:
I-
Z
:;: 3
0:
=>
U
"
i;:
UJ
i= 2
~
0:
UJ
L '"
,~."
2 AMP SERIES
L
= ¥a'~
KJ;4"~ I""
'" '"
"'"
2
@
-'"
:::
l'---- "- ~
" 5
0
i;: 4
i=
u
UJ
0:
UJ
~~¥a:I\
1--.
'\
I~~~"'" .'"
~
'\
"" -'"
1'--..,..
"
u .05
I
I
'" .02
.01
/
.005
.002
.001
0:
0:
oU oU CJ U
I/h
~/!i,
..... ....,
tv
II
.2
V
/
.4
V, -
0
I
0:
UJ
>
w
0:
II
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064
.05
.1
--
.2
.5
1
J.--""
10
20
so
/
2S'C
V
7S'C
/'
100
200
I
.6
.8
I
VOLTAGE (V)
1.4
VsooC
w
u
5$
II
I
~.
.4
V, -
ALL SERIES
.01
.02
UJ
~ .1
II
Typical Reverse Current vs PIV
/V
....
Z .2
I
II
1.4
/1/ III
II
I
1/
.001
4 AMP SERIES
UJ
II
.002
.6
.8
1
VOLTAGE (V)
~ .5
II
.01
.005
Typical Forward Current
vs Forward Voltage
10
/
I
."..02
I
.4
V, -
lit ou u u
S -I-~ll5?
-I-I- I
;:>
U.05
I
I
j
.2
~ .1
II')
1/ /
I
_".02
.001
0
0
;:; +/1
::>
u.05
.002
....Z
Il-' o~r ~u
~ .1
II II LI
~ ,5
....
UJ
//
3 AMP SERIES
'j
/
UT4005·UT4060
Typical Forward Current
vs Forward Voltage
//.
2 AMP SERIES
Un005·Un060
-J.--""
12S'C
500
1,000
1.2
150
1.4
100
so
0/0 OF PIV
324
PRINTED IN U.S.A.
UT2005-UT2060
UT3005-UT3060
UT4005-UT4060
Allowable Forward Surge vs Number of Cycles
100
,,",
Z
;::
~
80
<{
a:
UJ
'"'
a:
III
"
&-...;:::;
60
:::l
If)
0
UJ
u:
40
;:;
~t-~
Turret 1/2" centers
Printed Circuit
t--
~ ~~
a.
If)
I I
~Jr~i~ 1" celnte~s
UJ
...0
ALL SERIES
20
if
10
100
CYCLES AT 60 Hz HALF SINE WAVE
1,000
Forward Pulse Current vs Pulse Duration
10,000
Square Pulse Current vs_~
Duration for Non·Repetitive Pulse
LL SERIES
~
zw
>-
(8.3 msec sine wave equilialent
to 3 ms square wave)
1,000
a:
a:
:::l
U
w
If)
-'
100
------
:::l
a.
10
l~s
lOllS
100#5
10ms
Ims
PULSE DURATION (SECONDS)
Reverse Pulse Power vs Pulse Duration
100,000
FALL SERIES
~
Square Pulse Power ys ~
DUration .for Non-Repetitiv,e Pulse
(8.3 msec sine wave equivalent
to 3 ms square wave)
-
10,000
a:
UJ
;:
0
0..
1,000
w
If)
-'
:::l
0..
H
100
IIII
10
lOOns
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL, (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
IpS
11111
11111
lOps
lOOpS
Ims
PULSE DURATION (SECONDS)
325
lOms
PRINTED IN U.S.A.
UT5105-UT5160
UT6105-UT6160
UT8105-UT8160
RECTIFIERS
Standard Recovery, 7.5 Amp to 12 Amp
DESCRIPTION
These series of high current rectifiers
offers opportunity for size and weight
reduction in high power supplies.
FEATURES
• Rating: 12A
• Controlled Avalanche
• Miniature Package
• Surge Rating: 200A
ABSOLUTE MAXIMUM RATINGS
12 Amp
9 Amp
Peak Inverse Voltage
Series
Series
Series
50V
100V
200V
400V
600V
UT8105
UT8110
UT8120
UT8140
UT8160
UT6105
UT6110
UT6120
UT6140
UT6160
UT5105
UT5110
UT5120
UT5140
UT5160
12 AMP
SERIES
9AMP
SERIES
7.5 AMP
SERIES
................. 12.0A ..
............. 9.0A..
. .......... 7.5A
Maximum Average D.C. Output Current
@ Tc == 100°C.
Non-Repetitive Sinusoidal
Surge Current (8.3ms)
Operating and Storage Temperature Range.
Thermal Resistance, Junction to Case.
Current Derating .
7.5 Amp
... 200A ...
175A....
. ...... 150A
. .. -wC to +175°C ...
... 7.5°C/Watt ..
. ..... See current vs. case temperature curve ...
MECHANICAL SPECIFICATIONS
UT510S-UTS160
.lB7" MAX.
.005 MAx'
Radius
(4~:mm\
UT610S-UT6160
UT810S-UT8160
BODY C -
Stud Mount
.045" TYP .
(oTmJ
::~;~~~
z~"'···'~:::'0
.460"MA~~
#4·40 )( .250" (6.34mm) LONG THREAD
(3.0Smm)
Part Identification:' Numerals and polarity letter indicate
uUT" type number; e.g., 810SR.
Palarity: CathQc;te to Stud is standard. Reverse polarity
denoted by uR" Suffix.
Finish: Metal parts gold plated per MIL·G-45204. Type II.
Max. Weight: 1.5 grams.
Also available with insulated stud.
Installation
Maximum un lubricated stud torque: 28 inch-ounces.
Insulating hardware supplied.
Do not use a screwdriver in the turret slot for installation purposes, or damage may result.
[1W
326
_UNITRDDE
UT5l05-UT5l60
UT6105-UT6l60 UT8l0S-UT8l60
ELECTRICAL SPECIFICATIONS (at 2f; C unless noted)
Type
Peak I "verse
Voltage
UT8l05
UT8110
UT8l20
UT8l40
UT8l60
UT6105
UT6110
UT6l20
UT6l40
UT6l60
UTSlO5
UT5110
UT5l20
UT5l40
UT5l60
SOV
lOOV
200V
400V
600V
SOV
lOOV
200V
400V
600V
50V
lOOV
200V
400V
600V
Max. Reverse
Current at PIV
Maximum Forward
Voltage
2S'C
1OO'C
lV@8A
lO"A
300"A
lV@6A
lO"A
300"A
lV@5A
lO"A
300ilA
Typical Forward Voltage
vs Forward Current
10,000
<"
.5
2,000
!z
1,000
~
500
::>
o
200
iii:
~_
50
f--
20
kk
~ou
~+
1/ ~
10
K:
!z
1,000
~
500
:>
o
200
iii:
'/~tfI
...
'j
iii:
100
iii:
50
~
I
~
I I
1// /
rr-
20
10
1.2
o
VI Volts
Typical ForwardVoltage
vs Forward Current
10,000
7.5 Amp
5,000
<"
oS
....Z
2,000
..,
1,000
iii:
iii:
500
0
200
Q
iii:
~
iii:
~
100
50
-
20
10
V/V/
/, V/y
'/ /
// /
<"
..:;
....
..,Z
iii:
iii:
:>
..,c..>
..,
..,>
1'1/:(
(I)
iii:
iii:
.2
.4
.6
.8
VI Volts
UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6S09 • TELEX 95-1064
IS
.,t,
.,t
...
·1
lL .11 1
.2
.4
.6
.8
VF Volts
1.2
J_
.05
.1
50'C
I..,
.S
1
j25"C
5
10
50
~C
100
k
SOO
1000
II A I I
o
FIll,"~ ~r"
Typical PJ_V_ vs
Reverse Current
1// /
::>
/
/ VI 1/
Q
~
0.2.4.6.8
/ ~
l2.000
/ I
II / I
f--
•
1//VI
9Amp
5,000
[/ /
100
~
10,000
11/ rl/
Q
iii:
WI r;
12 Amp
5,000
Typical Forward Voltage
vs Forward Current
150
1.2
327
+f5'C
100
so
% 01 P.I.V.
PRINTED IN U.S.A.
UT5105-UT5160
UT6105-UT6160
UT8105-UT8160
Current Rating vs Case Temperature
100
I\-
"c
~
\
50
o
1,\
o
200
100
Temperature 'C
Forward Pulse Current vs. Pulse Duration
10KEtIB
. . .
~
e
lK _ , , _
~
:;
u
~
~
100
IIIIIIII
lmS
1"5
lOmS
Pulse DUration (Seconds)
Reverse Pulse Power vs. Pulse Duration
lOOK
~
10K
~
~
a
,
1K
"~
:;
"-
100
~
Square Pulse Power vs
Duration for Non-Repetitive Pulse
(8.3 ms sine wave equivalent
. I I i I iW!13
10
.1.uS
,
1"5
7) li~~iire iiiii""
.
I [
III
lmS
10"5
10mS
Pulse DUration (Seconds)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
328
PRINTED IN U.S.A.
RECTIFIERS
UTRIO-UTR60
UTROI-UTR61
UTR02-UTR62
Fast Recovery, 0.5 Amp to 2 Amp
FEATURES
• Continuous Rating:t02A
• Controlled Avalanche
• Surge Rating: to 25A
• Fast Recovery 40kHz Operation
• PIV: to 600V
• Miniature Package
DESCRIPTION
These miniature fast recovery rectifiers
permit operation at full frequencies as
high as 40kHz square wave. They have
the unique Unitrode Fused in Glass construction.
ABSOLUTE MAXIMUM RATINGS
V. Amp
1 Amp
Series
Series
Series
UTRIO
UTR20
UTR30
UTR40
UTRSO
UTR60
UTROI
UTRll
UTR21
UTR31
UTR41
UTR51
UTR61
UTR02
UTR12
UTR22
UTR32
UTR42
UTR52
UTR62
Peak Inverse Voltaee
50V
lOOV
200V
300V
400V
500V
600V
'!:lAMP
SERIES
Maximum Average D.C. Output Current
@ TA = 2S·C ....
@ TA = lOO·C .
Non-Repetitive Sinusoidal
Surge Current (8.3ms) ...
Operating Temperature Range
Storage Temperature Range ....
Thermal Resistance
2 Amp
1 AMP
SERIES
2 AMP
SERIES
....... 2.0A
O.SA..
. .......... 1.0A.... .
.. O.2SA............ . ........ O.SA...... ..... . .. .... 1.0A
.................... 2OA ..
................... 25A
. ..... -195·C to +175·C .
. ..... -195·C to +200·C
.......... See lead temperature derating curves ..
.. ...... lSA ..
MECHANICAL SPECIFICATIONS
UTR10-UTR60
1
1-,155" TYP.-J
3.9mm.
Ba~~t~~~'~~t;~""\.1
.055" TYP. ,..." ('"
1.4mm LJ Q..
'f
UTR02-UTR62
BODY A
.028" :-!:.O()l
O.71mm :=.03
I
J1
UTR01-UTR61
,...-
""10
.oes" MAX.
~
2.16t m
I
.08S··
TVP
2.2mm
.7f~"~~~N. t--.2~~;5~~·----1
1--____ l·~~~;m~N.----_.j
Part Identification: Green band indicates "UTR." Part
number printed on body.
Polarity: Oenoted by Green band.
Weight: 0.26 grams, typical.
[ill]
329
_UNITRDDE
UTRlO-UTR60
UTROI-UTR61
UTR02-UTR62
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Type
PIV
UTR02
UTRl2
UTR22
UTR32
UTR42
UTR52
UTR62
UTROI
UTRll
UTR21
UTR31
UTR41
UTR51
UTR61
UTRIO
UTR20
UTR30
UTR40
UTR50
UTR60
50V
100V
200V
300V
400V
500V
600V
50V
100V
200V
300V
400V
500V
600V
100V
200V
300V
400V
500V
600V
Maximum
Maximum
Leakage
Current
@PIV
Maximum
Forward
Voltage
Drop
l.lV@ 1000mA
3p,A
100p,A
l.lV@ 500mA
3p,A
lOOp,A
1.IV@200mA
3p.A
100p.A
Junction
Reverse
Recovery
Capacitance
@2S'C
Time*
100"(;
2S'C
Maximum
OV
25On5
250ns
250n5
300n5
350n5
400n5
400n5
250n5
250n5
250n5
300n5
350n5
400n5
400n5
250n5
250ns
300ns
350n5
400n5
400ns
10V
60pf
40pf
32pf
2Spf
24pf
20pf
16pf
60pf
40pf
32pf
28pf
24pf
20pf
16pf
40pf
32pf
2Spf
24pf
20pf
16pf
150pf
100pf
SOpf
70pf
60pf
50pf
40pf
150pf
lOOpf
SOpf
70pf
60pf
50pf
40pf
100pf
SOpf
70pf
60pf
50pf
40pf
*Recovery time is measured from lO.OmA to lO.OmA recovery to S.OmA
Maximum Current
Maximum Current
vs lead Temperature
vs Lead Temperature
Maximum Current
1.5
2 AMP SERIES
L = lfa"
"l
I.!::.=¥a·~
~
l_~J/4"
............
"''"" ."'""-
...........
............
25
50
T, -
75
100
3.5
3
"0
...z
::;:
0:
0:
0
'"
!:l
il
@
;;:
2.5 ~
~
-
2
-
15 II
-'"
.~
150
...
2.5
2
L:::; ]/e"
2
;:
.5
'"'"
u
~
1
UJ
1
.5
0
0
UJ
;;:
....
@
0
.75 @
II
'"~
.5
U(
'"I
UJ
0:
0:
:;)
~
1.5 -
_0
175
(g
::;:
"
;:
UJ
0:
,5
25
50
TL -
UJ
>
.25
'"
75
100
125
150
175
LEAD TEMPERATURE (OC)
....
II
U(
0:
.2
LEAD TEMPERATURE ('e)
1.75
I--I--+--+---.----,--~ 1.5
Z
0
UJ
:::''""
V2 AMP SERIES
5
>
~ ~.~
125
1 AMP SERIES
5
-
vs Lead Temperature
r - - - r - - - - r - - , - - - - - - r - 2.5
25
50
TL -
75
100
125
"
150
LEAD TEMPERATURE ( C)
Reverse-Recovery Circuit
,..--------00
_
99011
D.C.
0----------,
+
D.U.T.
'--------+-0
UNITRODE CORPORATION. S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 86J.6540
TWX (710) 326-6S09 • TELEX 9S-1064
10V
101!
~~6. 0---------'
330
PRINTED IN U.S.A.
UTRlO·UTR60
Typical Forward Current
vs Forward Voltage
10
10
1 AMP SERIES
b--:.
/,
~
z>-
'"~
'l:
/1/
/. '/
.2
:::>
/
u .05
I
-"".02
I
.01
.005
-t-
.2
"'v
>-
.01
I
'"'"
':::>"
.2
1.4
(V)
.05
I
.02
...~
'"cr:
i/l/ /1/
.01
VI
'"'"
'II
I
.002
V
10
20
75'C
50
100
200
V
V
500
1.000
ISO
.001
.2
.6
.8
V, - VOLTAGE
1.2
.4
1.4
-- ~C
.5
'"
'"cr:
>
'"
J
1/
1.2
~O'C
.05
.1
.2
u
f:.> ~I/L
~ ~i ~I
.005
I
.4
.6
.8
I
V, - VOLTAGE (V)
:::>
::;:; +
-"
II
ALL SERIES
.01
.02
Z
~CJ
I
Typical Reverse Current vs PIV
/ / VV
/
u
II
.001
1.2
I
I
.002
tJ~~
.1
II
.005
0.5 AMP SERIES
.2
1/ /
I
.:.02
Typical Forward Current
vs Forward Voltage
~
z>-
:;: :;!f! l- i-r---
:::>
U.05
.4
.5
k~'~ ~ ~
~ & ~ $;
~ .1
V)
-I- I
.6.8
V, - VOLTAGE
/VV
VV IV
.5
Z .2
w
0
/ II
I /
I /
.001
II)
I II I I
I / II
.002
5
I /
r;:r
...
~~~/ijt
~ ~
.1
UTR02·UTR62
Typical Forward Current
vs Forward Voltage
2 AMP SERIES
~ .5
UTR01·UTR61
12S'C
50
100
% OF PIV
1.4
(V)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. ·MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064
331
PRINTED IN U.S.A.
UTRI0-UTR60
Efficiency vs Frequency at Rated Current (Sine Wave)
-
-~
90
80
Allowable Forward Surge vs Number Of Cycles
..'"
ALL. SERIES
z
;::
.... -J
\:>
:::OUJ
c::
"
70
.....
offi
'"c::en
e:~
50
0
>-0
U·
40
!!;
UJN
30
5,!o
20
...
0
10
#
zO
-J:
t!:§
UJ@
80
UJ
60
0'"
:::0
60
"'"
.......
I ~Jr~i~ 1" c~nle~s ~
r---+-+-++++ttI~p<:'~::+-I Turret 1/2" cenlers"""'~t-
f:::
UJ
40
UJ
en
20
10
100
HALF CYCLES OF 60 Hz SINE WAVE
Forward Pulse Current vs Pulse Duration
ALL SERIES
Reverse Pulse Power vs Pulse Duration
ALL SERIES
Square Pu Ise Current V5
Duration for Non-Repetitive Pulse
(8.3 ms sine wave equivalent
to 3 ms square wave)
..........
~
(8.3 ms sine wave equivalent
to 3 ms square wave)
10,000
UJ
UJ
0
UJ
en
...l
Square Pulse CUrrent vs
DUration for Non-Repetitive Pulse
c::
c::
c::
:::0
u
'":::0
1,000
100,000
10,000
1,000
r--
Q.
2 3 4 6 810K
lOOK
1M
FREQUENCY (Hz) - HALF WAVE RESISTIVE LOAD NO FILTER
~
z
Prinled Circuil-
u
1K
....
UTR02-UTR62
lOa
100
:::00
UTROl-UTR61
~
Q.
1,000
UJ
...l
100
:::0
Q.
Q.
100
10
10
IpS
lOps
lOO,u:s
Ims
lOms
PULSE DURATION (SECONDS)
lOOns
I,us
10lts
lOOps
1ms
PULSE DURATION (SECONDS)
10ms
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
twx (710) 326-6509 • TELEX 95·1064
332
PRINTED IN U.S.A.
RECTIFIERS
UTR2305-UTR2360
UTR3305-UTR3360
UTR4305- UTR4360
Fast Recovery, 2Amp to 4Amp
FEATURES
• Continuous Rating: to 4A
• Controlled Ava lanche
• Surge Rating:tolOOA
• PIV: to 600V
• Miniature Package
DESCRIPTION
Small size and high surge capability
make this series of power switching
rectifiers desirable for power supplies
where size, weight and reliability are
important.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage
2Amp
Series
3Amp
Series
4Amp
Series
SOV
lOOV
200V
400V
500V
600V
UTR2305
UTR23lO
UTR2320
UTR2340
UTR2350
UTR2360
UTR3305
UTR3310
UTR3320
UTR3340
UTR3350
UTR3360
UTR4305
UTR43lO
UTR4320
UTR4340
UTR4350
UTR4360
2 AMP
SERIES
Maximum Average D.C. Output Current
@ TA =25'C
@ TA = lOO'C
Non-Repetitive Sinusoidal
Surge Current (8.3ms) ..
Operating Temperature Range
Storage Temperature Range
Thermal Resistance.
••••••••
2.0A
.. 1.0A.
" ' P .
3AMP
SERIES
........ 3.0A....
...... 1.5Ap
4AMP
SERIES
.. 4.0A
........ 2.0A
..... lOOA
'pp
60A... . . . . 80A .....
......................................... -195'C to +175'C ..
........... -195'C to +200'C
.............. See lead temperature derating curve .. .
MECHANICAL SPECIFICATIONS
UTR4305-UTR4360
UTR3305-UTR3360
UTR2305-UTR2360
BODYB
Part Identification: Green band indicates HUTR." Part
number printed on body.
Polarity: Denoted by Green band.
Weight: 0.75 grams, typical.
[ill]
333
_UNITRDDE
•
UTR2305-UTR2360 UTR3305-UTR3360 UTR4305-UTR4360
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Maximum
Junction
Capacitance
Maximum
Leakage
CUrrent
@PIV
Maximum
Forward
Voltage
Drop
Type
PIV
UTR4305
UTR4310
UTR4320
UTR4340
UTR4350
UTR4360
UTR3305
UTR3310
UTR3320
UTR3340
UTR3350
UTR3360
UTR2305
UTR2310
UTR2320
UTR2340
UTR2350
UTR2360
SOV
l00V
200V
400V
500V
600V
50V
l00V
200V
400V
500V
600V
50V
l00V
200V
400V
SOOV
600V
Maximum
Reverse
@25'C
Recovery
25'C
100'C
1.lV@4A
5p.A
100p.A
l.lV@3A
5p.A
100p.A
1.1V@2A
5p.A
100p.A
Time""
OV
-10V
250n5
250n5
2SOn5
400n5
4OOn5
4OOn5
250n5
250n5
250n5
300n5
35On5
400n5
250n5
250n5
250n5
300n5
350n5
400ns
600pf
400pf
320pf
240pf
200pf
160pf
600pf
400pf
320pf
240pf
200pf
160pf
600pf
400pf
320pf
240pf
200pf
160pf
240pf
160pf
12Spf
96pf
SOpf
64pf
240pf
160pf
12Spf
96pf
SOpf
64pf
240pf
160pf
128pf
96pf
SOpf
64pf
*Recovery time is measured from lA to lA recovering to O.SA.
Maximum Current
vs Lead Temperature
Maximum Current
vs Lead Temperature
:(
\.L _ 'Is"
\l
"'0:
~5
~=W'
Q
"'-
"'iL 4
g
0:
-~=
.
.
...'
I\.
'\.
""-
\.
'\.
0:
~2
""-
~
"""
'" '"
I
';·1
25
4
~
2
\
"-....
(J
0:
!::
""'
u:
n
1"--,
'"
II
.
.I
""-[\
~
,.,
""'----- ""
2 @
'"
~
-'"
1.5 II
~""
1
'~ ~
~
50
75
100 125
ISO
175
T, - LEAD TEMPERATURE ('e)
25
;g
:E
"'-
0:
~ 1
"---., ~\
25
2.5
Q
3 _'"
\.
I"-. \.
~
'\.1\
1\\
r--...\\
,.,~ " ~r~
'" '"iL;:: 2 L~1>@
0:
(J
"l
L-~4~
t"--.-
\
""'- "'-. ""- 1\.\
"' 3
"
~ 3
L _ ¥II" "-
3.5
"{
0Z
."
2 AMP SERIES
l == Vs"
5:
"'- I"-.
I\.
(J
I
3 AMP SERIES
L:::::;. lis"
1"-
;:6
z
4 AMP SERIES
Maximum Current
vs Lead Temperature
"nu:
.5
~
50
75
100
125
ISO
T - LEAD TEMPERATURE ('e)
175
50
75
100
125
150
175
T, - LEAD TEMPERATURE ('e)
Reverse Recovery Circuit
_
5V
D.C.
+
SCOPE
4U
D.U.T.
lP.
~--------------+-o~6.o---------------~
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
334
PRINTED IN U.S.A.
UTR2305-UTR2360 UTR3305-UTR3360 UTR4305-UTR4360
Typical Forward Current
vs Forward Voltage
10
Typical Forward Current
vs Forward Voltage
10
L'- V/J
4 AMP SERIES
111/ IIV
ilil 1/11
/ 1
II / II
~ .5
I-
zOJ
_".02
.01
.005
.001
I-
Z .2
II
'/
.2
.4
V, -
u.os
I
.01
.2
1.4
!if{)
...., .....
1-~ 1-
::>
U.05
111/
I
_".02
.002
.001
1/
lJ
II
.2
.4
V, -
I
!/
OJ
U tJ
::>
1.2
1.4
1..-
.05
.1
.2
.5
I-----'
w
VI
0::
OJ
0::
J
U
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
.6
.8
1
VOLTAGE (VI
L
25'C
u
rv""
-I- I
.6.8
VOLTAGE (VI
II
_~-50-C
0::
0::
>
OJ
II
II
II
.01
Z
;/fr
Q(,)
~ .1
.005
<
.:;
I-
Z .2
.4
VF -
j
I
.01
.02
1/
1/
1/11 /1/
.5
V
Typical Reverse Current vs PIV
VV' Vv
2 AMP SERIES
OJ
I
V
.001
1.2
•
I
.002
.6
.8
1
VOLTAGE (VI
f
I
.005
10
I-
11[/
..,..02
Typical Forward Current
vs Forward Voltage
5
...~ -I-..,8 -I-'"tiS?I
.1
::>
I
I
00 QU CJ <.J
OJ
:i
[/ I I II
/ J
/ I
/ :1 I
I
.002
~
jl:;
::>
u.05
III
~ .5
~k I
tflit
.2
~ .1
VV:V
3 AMP SERIES
/ 1/
L
10
20
----
50
100
200
./
V125'C
500
1.000
150
1.2
1.4
335
75'C
100
50
% OF PIV
PRINTED IN U.S.A.
UTR2305-UTR2360 UTR3305-UTR3360 UTR4305 -UTR4360
Efficiency vs Frequency at Rated Current (Sine Wave)
100
-'"
....
.... ..J
:::>0
::>
:::>uJ
0"
...offi'"
~~
>-u
U'
ZC
uJ N
-:to
~g
...
~
"'@J
Allowable Forward Surge vs Number of Cycles
100
r--.....
ALL SERIES
90
"-
80
70
";:z
'"
0:
W
"'
":::>
'"0
w
0:
60
50
""
I III ttr'n
i"~
60
;;:
40
80
""" ~::--
40
W
Q.
...'"0
10
20
~
~
....
ALL SERIES
ALL SERIES
Square Pulse CUrrent vs
DUration for Non-Repetitive Pulse
(8.3 ms sine wave equivalent
to 3 ms square wave)
!
1.000
~
Square Pulse Power V5
DUration for Non-Repetitive Pulse
!
10.000
il
(8.3 ms sine wave equivalent
to 3 ms square wave)
0:
uJ
;:
0
U
uJ
w
1.000
Reverse Pulse Power vs Pulse Duration
:::>
:::>
Q.
Il.
100
11111
10
10
.1#5
l#s
10#s
lOO#s
1ms
10ms
PULSE DURATION (SECONOS)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064
336
lOOns
1/15
IIIUIi
I
lO,lS
100,u5
Ims
PULSE DURATION (SECONDS)
lOms
PRINTED IN U.S.A.
UTR4405-UTR4440
UTR5405-UTR5440
UTR6405- UTR6440
RECTIFIERS
Fast Recovery, 6 Amp to 9 Amp
FEATURES
DESCRIPTION
•
•
•
•
•
•
The same basic construction as all
Unitrode diodes, but using a miniature
stud mounting and larger junction area,
provides a 9 Amp continuous and 150
Amp surge rating in a package only one
fifth the weight and one quarter the
volume of conventional types.
Continuous Rating: to 9A
Controlled Avalanche
Surge Rating: to 150A
Fast Recovery, 40kHz Operation
PIV: to 400V
Miniature Package
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage
50V
lOOV
200V
400V
9 Amp
6 Amp
7.5 Amp
Series
Series
Series
UTR5405
UTR54lO
UTR5420
UTR5440
UTR6405
UTR64lO
UTR6420
UTR6440
UTR4405
UTR44lO
UTR4420
UTR4440
6 AMP
SERIES
Maximum Average D.C. Output Current
@ Tc :=: 100·C .
Non-Repetitive Sinusoidal
Surge Current (8.3ms) ...
Operating Temperature Range .
Storage Temperature Range
Thermal Resistance
6.0A..
7.5 AMP
SERIES
.... 7.5A ...
1 2 0 A . . . . d . . . 135A ...
........ -195·C to +175·C .... .
....... -195·C to +200·C ..
9.0 AMP
SERIES
......... 9.0A
.d. 150A
.................. 7.5"C/W ...
MECHANICAL SPECIFICATIONS
UTR6405-UTR6440
#4-40 x
UTR5405-UTR5440
UTR4405-UTR4440
BODY C - Stud Mount
:~~:: ~~:~!~~~ LONG THREAD
Part Identification: Numerals and polarity letter indicate
UTR type number, e.g., UTR 4405.
Polarity: Cathode to Stud is standard. Reverse polarity
denoled by UR" suffix.
Finish: Metal parts gold plated per MIL-G-45204, Type II.
Weight: 1.5 grams, typical.
Also available with insulated stUd.
Installation
Maximum unlubricaled stud torque: 28 inch~ounces.
Insulating hardware supplied.
Do not use a screwdriver in the turret slot for installation purposes, or damage may result.
[ill]
337
_UNITRDDE
•
UTR4405-UTR4440
UTR5405-UTR5440
UTR640S-UTR6440
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Type
PIV
UTR6405
UTR6410
UTR6420
UTR6440
UTR5405
UTR5410
UTR5420
UTR5440
UTR4405
UTR4410
UTR4420
UTR4440
SOV
100V
200V
400V
SOV
100V
200V
400V
SOV
looV
200V
400V
Maximum
Forward
Voltage
Drop
Maximum
Reverse
Current @ PIV
2S'C
Maximum Reverse
Recovery Time*
l00"C
1.IV@6.0A
10ILA
300ilA
l.lV@S.OA
10!,A
300!,A
1.IV@4.0A
10ilA
300ilA
300ns
300ns
400ns
500ns
300ns
300ns
400ns
500ns
300ns
300ns
400ns
SOOns
*ReCDvery time is measured from lA to lA, recovering to a.SA.
Typical Forward Voltage
vs Forward Current
Typical Forward Voltage
vs Forward Current
30,000
20,000
I
I
I
l0r;
9 AMP SERIES
10,000
S,OOO
'"0:0:
I
....z
SOO
-"
200
100
50
I
30
.2
II
.4
If -
:>
SOO
-"
200
:;;
E.
....z
SOO
:>
200
I
100
()
-"
20
,4--50'C
10
20
--
50
a: 100
200
-
500
1.000
2.000
150
100
,,/
2S'C
,/
75'C
,./
125'C
50
% OF PIV
II
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
5
'"lQ
'"~
I
.4
.6
.8
1
If - VOLTAGE (V)
-
.5
:>
()
I I
.2
.2
'"
0:
0:
/ I/ I I
I
1.4
I
.1
:<
..3
....
z
I/
10
1.2
lso:c
.05
I
50
.6.8
VOLTAGE (V)
ALL SERIES
.02
/ /1
'"0:0:
I
.4
If -
Typical Reverse Current vs PIV
+175'~~ ~25'C
1,000
I
/11
.2
~/
I, V/
/ /
II
20
+100'C-
2,000
!(J
'i- I
/
1.4
Typical Forward Voltage
vs Forward Current
5,000
Po
J.f
so
1.2
r;
Ir!i?
St
f
l!f~~
100
J
6 AMP SERIES
VI /
II! VI
1,000
0:
0:
()
.6
.8
VOLTAGE (V)
10,000
/ VI
2,000
'"
III /
:11 /11
/I
/II I
:>
()
:;;
E.
-SO'C
1,000
~ /~
S,OOO
+2S'C
+100'C
2,000
// ~
7.5 AMP SERIES
10,000
!I;VI
+l7S'~:Z: Vi II
VI II ~
:;;
E.
....z
20,000
////
L2
1.4
338
PRINTED IN U.S.A.
UTR4405·UTR4440
100
If)
-+-
t:'S
::J
o
::>
SCOPE
4~~
D.U.T.
80
::J"'
Ot!l
60
~~
50
>-0
zO
40
'::'0
...
0
... 0
20
"'@';
10
"'- I'.
I"
70
.....
0::J
U·
H!
ALL SERIES
90
30
2 3 4 6 B 10K
1M
lOOK
FREQUENCY (H,) -HALF WAVE RESISTIVE LOAD NO FILTER
IK
L-----------------40 10V
D.C.
Current Rating vs Case Temperature
100
ALL SERIES
Square Pulse CUrrent liS
Duration for Non-Repetitive Pulse
5:
....
\
t!l
~
Forward Pulse Current vs Pulse Duration
10.000
"- '\.
Z
z
"'
...J
I
100
::J
\
a.
\
100
120
140
TEMPERATURE ( C)
'\.
10
ISO
160
.1115
200
l,uS
lOps
100.u.5
Ims
IOms
PULSE DURATION (SECONDS)
Reverse Pulse Power vs Pulse Duration
100,000
Square Pulse Current vs
Duration for Non-Repetitive Pu Ise
~
11111I1r"-
10.000
ALL SERIES
0:
"'0:
0
a.
(8.3 msec sine wave equivalent
to 3 ms square wave)
:---..,
1.000
"'
If)
...J
::J
a.
100
10
lOOns
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064
•
......
::J
u
If)
80
1.000
0:
0:
'\.
60
(8.3 msec sine wave equivalent
to 3 ms square wave)
I'""
ALL SERIES
"'
'\
50
0:
,o
40
UTR6405·UTR6440
Efficiency vs Frequency at Rated Current (Sine Wave)
Reverse Recovery Circuit
5V
D.C.
UTR5405·UTR5440
1115
10~!s
100115
Ims
PULSE DURATION (SECONDS)
339
lOms
PRINTED IN U.S.A.
RECTIFIERS
UTX 105-UTX125
UTX205-UTX225
Ultra-Fast Recovery, 1 Amp and 2 Amp
FEATURES
DESCRIPTION
•
•
•
•
•
These miniature ultra-fast recovery
rectifiers permit operation at full power at
frequencies as high as 100kHz square"
wave. They may be used as half wave
rectifiers or as legs of a bridge.
Continuous Rating: to 2A
Controlled Avalanche
Surge: to 25A
Recovery Time less than 75ns
Miniature Package
ABSOLUTE MAXIMUM RATINGS
1 Amp
Peak Inverse Voltage
Series
2 Amp
Series
50V
100V
150V
200V
250V
UTX105
UTX110
UTX1l5
UTXl20
UTX125
UTX205
UTX210
UTX215
UTX220
UTX225
Maximum Average D.C. Output Current
1 AMP
SERIES
2AMP
SERIES
@ TA == 25"C .
...... 1.0A ... .
..2.0A
@ TA == lOO"C .. .............. . .... O.5A.. .. ................. 1.0A
Non-Repetitive Sinusoidal
........... 2OA.. .......... ............. 25A
Surge Current (8.3ms)
Operating Temperature Range
... -195"C to +175"C ..
Storage Temperature Range
.... -195"C to +200"C ....
Thermal Resistance.
............................... See Lead Temperature Derating Curve ...
MECHANICAL SPECIFICATIONS
UTX105-UTX125
UTX205-UTX225
BODY A
O·085"MAX .
. 700" MIN
17.8mm
Part Identification: Green band indicates "UTX." Part
number printed on body.
Polarity: Denoted by green band.
Weight: 0.26 grams, typical.
340
lliD
_UNITRDDE
UTX105-UTX125
UTX205-UTX225
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Type
PIV
UTX 205
UTX 210
UTX 215
UTX 220
UTX 225
UTX 105
UTX 110
UTX ll5
UTX 120
UTX 125
SOY
100Y
l50Y
200Y
250V
50Y
100V
l50V
200Y
250V
*Recovery time
IS
leakage Current
@ PIV
Maximum
Voltage
Forward Drop
25'C
100'C
Max. Reverse
Recovery
Time*
1.0V@lAdc
31'A
5Ol'A
75ns
1.OY @ 0.5 Adc
31'A
5Ol'A
75ns
measured from lO.OmA to 1O.OmA recovery to S.OrnA.
Maximum Current
vs Lead Temperature
Maximum Current
vs Lead Temperature
1 AMP SERIES
"l
.!;,= 'Is"'"
UJ
L
IX
IX
2.5 <
~
:>
u
®
;;:
'".,
= V,"
o
UJ
;:: 2
~:-t---j---j---j----::! 1.5-:-'
&l
II
..'"
.
Ul
n
I.
L -
UJ
IX
~
.5
I
"IJ
o
3
"" ""'" ."'-
I~
IX
~
•
2 AMP SERIES
L = Va"
~
z
>-
®
~,..
2
~4"
~
'-......
II
....
"l
o
~
""~~
............
.,~
.5
1'\
25
50
Tl -
75
100
125
150
175
25
LEAD TEMPERATURE ('C)
Reverse Recovery Circuit
T, -
100
'"
->>--J
:>0
~>
:>UJ
0'"
9900
10V D.C.
20V D.C.
+
lOll
Scope
75
100
125
150
175
LEAD TEMPERATURE ('C)
Efficiency vs Frequency· at Rated Current (Sine Wave)
UZ 840
IKI!
+
50
90
70
~g
60
~~
50
~c
UJ'
-r
30
>u
"0
,,-0
,,-0
UJ@
r-- ALL SERIES
80
40
20
10
IK
2
3 4
6 SIOK
lOOK
1M
FREQUENCY (H,) -- HALF WAVE RESISTIVE LOAD NO FIL fER
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
341
PRINTED IN U.S.A.
UTX105·UT~125
Typical Forward Current
vs Forward Voltage
Typical Leakage Current VS. PIV
.:l
zUJ
u
UJ
III
.5
UJ
1
a:
>
UJ
-
I
z
--t;c
f--
UJ
I
_".02
.005
I
~'C
50
100
II
.01
I
10
20
.002
~
% OF PIV
A
V, -
:::J
U.05
1K
.005
lL
.002
.001
~
I~
1
VOLTAGE (V)
.2
IA
II
11
(:)
~
0
/ I
II IL
~
[
.4
.6
V, -
VOLTAGE (V)
.8
I
1.2
1.4
Reverse Pulse Power vs Pulse Duration
lOOK
ALL SERIES
Square Pulse Current vs
Duration for Non·Repetitive Pu Ise
(8.3ms sine wave equivalent
to 3 ms square wave)
r--..
~
Square Pulse Current vs
Duration for Non-Repetitive Pu Ise
(8.3 ms sine wave equivalent
to 3 ms square wave)
10K
a:
w
UJ
a:
a:
u
~
:::J
UJ
til
...J
~
.01
Forward Pulse Current vs Pulse Duration
ALL SERIES
~
z
11/
I
."..02
I
10K
....
U
U)
~ .1
1
~
k ,uu u - 1; ~ 7-r-
UJ
ilL
I /
I II
so
100
I~ j.ijJU;!~=
/1/ / /
/ / II
.001
150
~5
Z .2
i-i-i-I
u .05
LlLlL
....
-
.2
:::J
I
I ./
~5'C
a:
II I
,
~ .1
i
VI
lL': LL:
~.
....
I
.1
.2
/j
VVj
/'/ ~
I
.05
II:
II:
:::J
2 AMP SERIES
SO'C
.02
....
10
1 AMP SERIES
I ..-
.005
.01
:<
Typical Forward Current
vs Forward Voltage
10
I
I
ALL SERIES
.001
.002
UTX205·UTX225
0
a.
1--.
.......
1K
w
III
...J
100
:::J
a.
:::J
a.
.,...,., JII
III
II
10
.lps
l.us
I linn
1111111
lOps
.......
100
lOO)J:s
Ims
10
lOms
I}IS
lOOns
PULSE DURATION (SECONDS)
lOlls
lOO,uS
Ims
PULSE DURATION (SECONDS)
lOms
Allowable Forward Surge vs Number of Cycles
100
"
Z
~
z
UJ
I~_'ls"
0:
!5u
1,,\
"\
5
o
UJ
;;: 4
;::
u
UJ
0:
~
UJ
2
-
I
UJ
I'\.
4
"\
f'-....
0:
3 AMP SERIES
~
z>-
k=w'"" 1"'-
'-'
'"
>
'"I
4 AMP SERIES
~
'"
.
0
""
1'\.\
;::
U
3
UJ
0:
\oJ
....;....
'-'
'"
'"I
50
50
T, -
'\
"'- 1\
\
""" L"\.~
75
100
125
150
175
LEAD TEMPERATURE (OC)
75
100
125
ISO
175
LEAD TEMPERATURE (OC)
Efficiency vs Frequency at Rated Current (Sine Wave)
Reverse Recovery Circuit
100
5V
D.C.
+
'"
::lo
90
::l'"
70
~g
60
-,>
~«
50
>-0
40
-I1--,
SCOPE
~>
0'-'
U'
4~!
"\
f'-.. 1"\
--..........
25
~
T, -
I'\.
'-......
l'-.. 1\\
r--...\\
25
"" ""
f'--,.
2
0:
"\.
K=3/."
"'>
"\ 1\
l'-..
"l
;;:
~
2
4
\oJ
~,..
\
~_3",""
0
'"'"
Ie)
"\
""" J"-,.
0:
0:
::l
U
~
1'\
L::=. Ve"
D.U.T.
ZO
1~!
30
~o
20
UJ@
10
-1:
+
1M
lOOK
2 3 4 6 810K
IK
FREQUENCY (Hz) -HALF WAVE RESISTIVE LOAD NO FILTER
IOV o-----------.J
D.C.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
ALL SERIES
80
",N
... 0
... 0
-
344
PRINTED IN U.S.A.
UTX 3105-UTX 3120
Typical Leakage Current
.01
.02
:<
.3
...z
'"'"
:>
uJ
'"
10
50'C
.5
I---'
10
20
50
-
100
200
500
1,000
?
...Z
w
V
u .05
'" .02
~
.01
125'C
1
150
.002
.001
50
100
1/
.005
I
% OF PIV
II
.2
.4
VF -
Forward Pulse Current
YS
.01
II
.005
II
II
.002
.001
.6
.8
1
VOLTAGE (V)
1.2
1.4
~
.4
V, -
Pulse Duration
1
~
:J
•
VOLTAGE
1
1~
1.4
(V)
Reverse Pulse Power vs Pulse Duration
100,000
"""
ALL SERIES
(S.) ms sine wave equivalent
to 3 ms square wave)
5
~ 10,000
1,000
0:
w
W
~
'"'"
:>
0..
W
u
w
~
_".02
lL
10,000
!z
II /
I
II
I
-I- -I- -I- f
0.05
/
II
~~~~~
.2
w
~ .1
:>
II
II /
I
1/ II III
~ .5
...
Z
!
~ &
j/J
'~r~ 00
(i: :;: +(?
:>
I
~
I I
.2
V
3 AMP SERIES
lLlL lLV
I IU
.5
~ .1
75'C
10
1/ !/ ,f
-f-
1/
I----'"" 25'C
!
1
.2
Typical Forward Current
vs Forward Voltage
4 AMP SERIES
I
.05
.1
uJ
VI
'"uJ
Typical Forward Current
vs Forward Voltage
./
0
>
w
PIV
YS
ALL SERIES
UTX 4105-UTX 4120
1,000
VI
..J
100
:>
:>
0..
0..
10
100
10
l.u S
lOp 5
100/es
1 ms
lOOns
lOms
1#5
PULSE DURATION (SECONOS)
Allowable Forward Surge
100
"
Z
~
80
"~
60
0:
W
I~
YS
10tt5
100.u:5
Ims
PULSE DURATION (SECONOS)
IOms
Number of Cycles
ALL SERIES
111111
I I
VI
o
'"
ii:
40
8
0..
~
o
20
10
100
CYCLES AT 60 Hz HALF SINE WAVE
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
345
1.000
PRINT[O IN U.S.A.
RECTIFIERS
PAGE
PART NUMBER INDEX
PAGE
DESCRIPTION
PART NUMBER
RECTIFIER
229
229
229
229
*
*
*
231
231
231
231
231
*
•
•
•
233
233
233
233
233
235
235
235
*
*
237
237
237
237
•
•
*
239
239
239
239
239
239
•
*
*
241
241
241
241
243
245
243
245
243
245
243
247
251
247
247
251
247
247
251
247
251
247
247
251
1N3611, J, JTX
1N3612, J, JTX
1N3613, J, JTX
1N3614, J, JTX
1N3656
1N3657
1N3658
1N3909, J, JTX
1N3910, J; JTX
1N3911, J, JTX
1N3912, J, JTX
1N3913, J, JTX
1N3957
1N3981
1N3982
1N3983
1N4245,J,JTX,JTXV
1N4246, J, JTX, JTXV
1N4247, J, JTX, JTXV
1N4248,J,JTX,JTXV
1N4249,J,JTX,JTXV
1N4942, J, JTX,JTXV
1N4944,J,JTX,JTXV
1N4946, J, JTX, JTXV
1N5180
1N5185
1N5186, J, JTX
1N5187, J, JTX
1N5188, J, JTX
1N5190, J, JTX
1N5207
IN5320
1N5330
1N5415, J, JTX, JTXV
1N5416, J, JTX, JTXV
IN5417, J, JTX, JTXV
1N5418, J, JTX, JTXV
IN5419, J, JTX, JTXV
1N5420, J, JTX, JTXV
1N5433
1N5434
1N5435
1N5550, J, JTX, JTXV
1N5551, J, JTX, JTXV
1N5552, J,JTX,JTXV
1N5553,J,JTX,JTXV
1N5614, J, JTX, JTXV
1N5615, J, JTX, JTXV
1N5616, J, JTX, JTXV
1N5617,J,JTX,JTXV
1N5618,J,JTX,JTXV
1N5619, J, JTX, JTXV
1N5620, J, JTX, JTXV
1N5802
1N5802, J, JTX, JTXV
1N5803
1N5804
1N5804, J, JTX, JTXV
1N5805
1N5806
1N5806, J, JTX, JTXV
1N5807
1N5807, J, JTX, JTXV
1N5808
1N5809
1N5809, J, JTX, JTXV
DESCRIPTION
PART NUMBER
RECTIFIER
l.OA; 200V
l.OA; 400V
l.OA; 600V
l.OA; 800V
0.75A; 200V
0.75A; 400V
0.75A; 600V
30A; 50V; 00-5
30A; 100V; 00-5
30A; 200V; 00-5
30A; 300V; 00-5
30A; 400V; 00-5
l.OA; 1000V
2.0A; 200V
2.0A; 400V
2.0A; 600V
l.OA; 200V
l.OA; 400V
l.OA; 600V
l.OA; 800V
l.OA; 1000V
l.OA; 200V
l.OA; 400V
l.OA; 600V
4.0A; 100V
3.0A; 60V
3.0A; 100V
3.0A; 200V
3.0A; 400V
3.0A; 600V
4.0A; 400V
l.OA; 120V
0.5A; 1500V
3A; 50V
3A; 100V
3A;200V
3A;400V
3A; 500V
3A; 600V
2.0A; 700V
2.0A; 700V
12.0A; 700V
5.0A; 200V
5.0A; 400V
5.0A; 600V
5.0A; 800V
l.OA; 200V
l.OA; 200V
l.OA; 400V
l.OA; 400V
l.OA; 600V
l.OA; 600V
l.OA; 800V
2.5A; 50V
2.5A; 50V
2.5A; 75V
2.5A; 100V
2.5A; 100V
2.5A; 125V
2.5A; 150V
2.5A; 150V
6.0A; 50V
6.0A; 50V
6.0A; 75V
6.0A; 100V
6.0A; 100V
247
247
251
247
254
247
247
254
247
247
254
1N5810
1N5811
1N5811,
1N5812
1N5812,
1N5813
1N5814
1N5814,
1N5815
1N5816
1N5816,
256
256
258
258
260
262
264
1N6095
1N6096
1N6097
1N6098
S041
S051
S0241
25A;
25A;
50A;
50A;
30A;
60A;
60A;
266
266
266
268
268
268
270
270
270
SES5001
SES5002
SES5003
SES5301
SES5302
SES5303
SES5401
SES5402
SES5403
2.0A;
2.0A;
2.0A;
5.0A;
5.0A;
5.0A;
8.0A;
8.0A;
8.0A;
J, JTX, JTXV
J, JTX, JTXV
J, JTX, JTXV
J, JTX, JTXV
6.0A; 125V
6.0A; 150V
6.0A; 150V
20.0A; 50V
20.0A; 50V; 00-4
20.0A; 75V
20.0A; 100V
20.0A; 100V; 00-4
20.0A; 125V
20.0A; 150V
20.0A; 150V; 00-4
SCHOTIKY RECTIFIER
30V;
40V;
30V;
40V;
45V;
45V;
45V;
00-4
00-4
00-5
00-5
00-5
00-5
TO-3
RECTIFIER
50V
100V
150V
50V
100V
150V
50V; sim to TO-220
100V; sim to TO-220
150V; sim to TO-220
RECTIFIER,
CENTER-TAP
272
272
272
274
274
274
SES5401C
SES5402C
SES5403C
SES5601C
SES5602C
SES5603C
276
276
276
278
278
278
247
247
247
247
247
247
247
247
SES5701
SES5702
SES5703
SES5801
SES5802
SES5803
UESlOl (lN5802)
UES102 (lN5803)
UES103 (lN5804)
UES104 (lN5805)
UES201 (lN5807)
UES202 (lN5808)
UES203 (l N5809)
UES204 (lN581O)
UES301
UES302
UES303
UES304
UES501
UES502
UES503
UES504
UES505
UES601
UES602
UES603
UES701
16A;
16A;
16A;
25A;
25A;
25A;
50V; TO-220
100V; TO-220
150V; TO-220
50V; TO-3
100V; TO-3
150V; TO-3
RECTIFIER
*
*
•
•
280
280
280
280
280
283
283
283
285
20A; 50V; 00-4
20A; 100V; 00-4
20A; 150V; 00-4
60A; 50V; 00-5
60A; 100V; 00-5
60A; 150V; 00-5
2.5A; 50V
2.5A; 75V
2.5A; 100V
2.5A; 125V
6.0A; 50V
6.0A; 75V
6.0A; 100V
6.0A; 125V
20.0A; 50V
20.0A; 75V
20.0A; 100V
20.0A; 125V
50.0A; 50V; 00-5
50.0A; 75V; 00-5
50.0A; 100V; 00-5
50.0A; 125V; 00-5
50.0A; 150V; 00-5
30A; 50V; TO-3
30A; 100V; TO-3
30A; 150V; TO-3
25A; 50V; 00-4
'Contact Unitrode for specifications and ratings.
Legend, J -
JAN
JTX -
JANTX
JTXV -
JANTXV
UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
346
PRINTED IN U.S.A.
PART NUMBER INDEX
PAGE
DESCRIPTION
PART NUMBER
PAGE
RECTIFIER
285
285
287
287
287
289
289
289
292
292
292
294
294
294
296
296
296
298
298
298
300
300
300
302
302
302
304
304
304
UES702
UES703
UES704
UES705
UES706
UES801
UES802
UES803
UES804
UES805
UES806
UES1001
UESlO02
UESlO03
UESllOl
UESll02
UESll03
UESll04
UESll05
UESll06
UES1301
UES1302
UES1303
UES1304
UES1305
0E;S1306
UES1401
UES1402
UES1403
•
•
25A; 100V; 00-4
25A; 150V; 00-4
20A; 200V; 00-4
20A; 300V; 00-4
20A; 400V; 00-4
70A; 50V; 00-5
70A; 100V; 00-5
70A; 150V; DO-5
50A; 200V; 00-5
50A; 300V; 00-5
50A; 400V; 00-5
1A; 50V
1A; 100V
1A; 150V
2.5A; 50V
2.5A; 100V
2.5A; 150V
2.0A; 200V
2.0A; 300V
2.0A; 400V
6A; 50V
6A; 100V
6A; 150V
5.0A; 200V
5.0A; 300V
5.0A; 400V
8.0A; 50V; TO-220
8.0A; 100V; TO-220
8.0A; 150V; TO-220
•*
•
•
•
•
*
*
•
•
•
•
*
*
•
•
*
31B
31B
31B
31B
31B
31B
31B
31B
31B
31B
318
RECTIFIER,
CENTER-TAP
306
306
306
308
308
308
310
310
310
UES2401
UES2402
UES2403
UES2601
UES2602
UES2603
UES2604
UES2605
UES2606
16A; 50V; sim to TO-220
16A; 100V; sim to TO-220
16A; 150V; sim to TO-220
30A; 50V; TO-3
30A; 100V; TO-3
30A; 150V; TO-3
30A; 200V; TO-3
30A; 300V; TO-3
30A; 400V; TO-3
312
312
312
312
312
312
312
312
312
312
UR105
URllO
UR1l5
UR120
UR125
UR205
UR210
UR215
UR220
UR225
UR710
UR720
2.0A;
l.OA;
l.OA;
l.OA;
l.OA;
2.0A;
2.0A;
2.0A;
2.0A;
2.0A;
l.OA;
l.OA;
31B
318
318
318
31B
31B
31B
318
318
318
318
318
RECTIFIER
•
·
315
315
315
50V
100V
150V
200V
250V
50V
100V
150V
200V
250V
100V
200V
31B
31B
318
31B
322
322
322
322
322
•
322
322
322
322
322
SCHOTIKY RECTIFIER
US0520
US0535
US0545
75A; 20V; 00-5
75A; 35V; 00-5
75A; 45V; 00-5
*
RECTIFIER
•*
•
•
*
*
*
UTl11(1N536)
UTl12(lN537)
UTl13(l N3656)
UTl14(lN539)
UTl15(l N3657)
UTl17(lN547)
UTl18(lN3658)
0.75A;
0.75A;
0.75A;
0.75A;
0.75A;
0.75A;
0.75A;
322
322
322
322
322
50V
100V
200V
300V
400V
500V
600V
*
*
326
PART NUMBER
DESCRIPTION
RECTIFIER
UTl19
UTl20
UT211(lN645)
UT212(lN646)
UT213(lN647)
UT214(lN648)
UT215(lN649)
UT221(1 N676)
UT222(lN677)
UT223(lN678)
UT224(lN679)
UT225(lN681)
UT226(lN682)
UT227(lN683)
UT228(lN684)
UT229(1 N685)
UT231(1N6B6)
UT232(lN6B7)
UT233(1 N689)
UT234
UT235
UT236
UT237
UT238
UT242
UT244
UT245
UT247
UT249
UT251
UT252
UT254
UT255
UT257
UT25B
UT261
UT262(lN39B1)
UT264(1 N39B2)
UT265
UT267(lN39B3)
UT26B
UT347
UT361
UT362
UT363
UT364
UT2005
UT2010
UT2020
UT2040
UT2060
UT2080
UT3005
UT3010
UT3020
UT3040
UT3060
UT30BO
UT4005
UT401O(1N5180)
UT4020
UT4040(1 N5207)
UT4060
UT4080
UT4100
UT5105
0.75A; 800V
0.75A; 1000V
0.75A; 225V
0.75A; 300V
0.75A; 400V
0.75A; 500V
. 0.75A; 600V
0.5A; 100V
0.]5A; 100V
0.5A; 200V
0.75A; 200V
0.5A; 300V
0.75A; 300V
0.5A; 400V
0.75A; 400V
0.5A; 500V
0.75A; 500V
0.5A; 600V
0.75A; 600V
l.OA; 200V
l.OA; 400V
l.OA; 100V
l.OA; 500V
l.OA; 600V
l.25A; 200V
l.25A; 400V
l.25A; 500V
l.25A; 600V
l.25A; lOOV
l.5A; 100V
l.5A; 200V
l.5A; 400V
l.5A; 500V
l.5A; 600V
l.5A; BOOV
2.0A; 100V
2.0A; 200V
2.0A; 400V
2.0A; 500V
2.0A; 600V
2.0A; BOOV
l.OA; 1000V
l.OA; BOOV
l.2A; BOOV
l.2A; 1000V
l.5A; 1000V
2.0A; 50V
2.0A; 100V
2.0A; 200V
2.0A; 400V
2.0A; 600V
2.0A; BOOV
3.0A; 50V
3.0A; 100V
3.0A; 200V
3.0A; 400V
3.0A; 600V
3.0A; BOOV
4.0A; 50V
4.0A; 100V
4.0A; 200V
4.0A; 400V
4.0A; 600V
4.0A; BOOV
4.0A; 1000V
7.5A; 50V
·Contact Unitrode for specifications and ratings.
Legend, J -
JAN
JTX -
JANTX
JTXV -
JANTXV
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
347
PRINTED IN U.S.A.
PART NUMBER INDEX
PAGE
DESCRIPTION
PART NUMBER
PAGE
PART NUMBER
•
•
326
326
326
326
326
*
326
326
326
326
326
•
326
326
329
329
329
329
329
329
329
329
329
329
329
329
329
329
329
329
329
329
329
329
•
*
333
333
333
333
333
333
333
333
333
333
333
333
333
333
333
333
333
333
337
337
337
•
337
337
337
337
UT5110
UT5l20
UT5l30
UT5l40
UT5l50
UT5l60
UT6l05
UT6110
UT6l20
UT6l30
UT6l40
UT6l60
UT8l05
UT8llO
UT8l20
UT8l30
UT8l40
UT8l60
UTROl
UTR02
UTRlO
UTRll
UTRl2
UTR20
UTR2l
UTR22
UTR30
UTR3l
UTR32
UTR40
UTR4l
UTR42(1 N5206)
UTR50
UTR5l
UTR52
UTR60
UTR6l
UTR62
UTR70
UTR71
UTR2305
UTR23l0
UTR2320
UTR2340
UTR2350
UTR2360
UTR3305
UTR33l0
UTR3320
UTR3340
UTR3350
UTR3360
UTR4305
UTR4310
UTR4320
UTR4340
UTR4350
UTR4360
UTR4405
UTR4410
UTR4420,
UTR4430
UTR4440
UTR5405
UTR5410
UTR5420
"
RECTIFIER
RECTIFIER
326
326
DESCRIPTION
7.5A; lOOV
7.5A; 200V
7.5A; 300V
7.5A; 400V
7.5A; 500V
7.5A; 600V
9.0A; 50V
9.0A; lOOV
9.0A; 200"
9.0A; 300V
9.0A; 400V
9.0A; 600V
l2.0A; 50V
l2.0A; 100V
l2.0A; 200V
l2.0A; 300V
l2.0A; 400V
l2.0A; 600V
l.OA; 50V
2.0A; 50V
0.5A; lOOV
l.OA; lOOV
2.0A; lOOV
0.5A; 200V
l.OA; 200V
2.0A; 200V
0.5A; 300V
l.OA; 300V
2.0A; 300V
0.5A; 400V
1.0A; 400V
2.0A; 400V
0.5A; 500V
l.OA; 500V
2.0A; 500V
0.5A; 600V
l.OA; 600V
2.0A; 600V
0.5A; 700V
l.OA; 700V
2.0A; 50V
2.0A; 100V
2.0A; 200V
2.0A; 400V
2.0A; 500V
2.0A; 600V
3.0A; 50V
3.0A; lOOV
3.0A; 200V
3.0A; 400V
3.0A; 500V
3.0A; 600V
4.0A; 50V
4.0A; 100V
4.0A; 200V
4.0A; 400V
4.0A; 500V
4.0A; 600V
6.0A; 50V
6.0A; 100V
6.0A;200V
6.0A; 300V
6.0A; 400V
7.5A; 50V
7.5A; 100V
7.5A; 200V
*
337
337
337
337
*
337
340
340
340
340
340
340
340
340
340
340
343
343
343
343
•
343
343
343
343
•
UTR5430
UTR5440
UTR6405
UTR6410
UTR6420
UTR6430
UTR6440
UTXl05
UTX110
UTX115
UTXl20
UTXl25
UTX205
UTX210
UTX2l5
UTX220
UTX225
UTX3105
UTX3110
UTX3115
UTX3l20
UTX3l25
UTX4105
UTX4110
UTX4115
UTX4l20
UTX4l25
7.5A;
7.5A;
9.0A;
9.0A;
9.0A;
9.0A;
9.0A;
l.OA;
1.0A;
1.0A;
1.0A;
l.OA;
2.0A;
2.0A;
2.0A;
2.0A;
2.0A;
3.0A;
3_0A;
3.0A;
3.0A;
3.0A;
4.0A;
4.0A;
4.0A;
4.0A;
4.0A;
300V
400V
50V
lOOV
200V
300V
400V
50V
lOOV
l50V
200V
250V
50V
100V
l50V
200V
250V
50V
lOOV
l50V
200V
250V
50V
100V
l50V
200V
250V
·Contact Unitrode for specifications and ratings.
Legend: J -
JAN
JTX -
JANTX
JTXV -
JANTXV
UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX 1710) 326-6509 • TELEX 95-1064
348
PRINTED IN U.S.A.
SALES OFFICES
PART NUMBER INDEX
II
DESIGNERS' GUIDES
III
POWER TRANSISTORS & DARLINGTONS
IV
SWITCHING REGULATOR POWER CIRCUITS
V
RECTIFIERS
VI
HIGH VOLTAGE RECTIFIERS, RECTIFIER
MODULES & MULTIPLIERS
RECTIFIER BRIDGE ASSEMBLIES
VIII
POWER ZENERS & TRANSIENT VOLTAGE SUPPRESSORS
IX
THYRISTORS (SCRs, Triacs, PUTs)
X
SWITCHING & GENERAL PURPOSE DIODES
XI
PIN DIODES
XII
CAPACITORS
XIII
APPLICATION NOTES & DESIGN NOTES
XIV
MECHANICAL SPECIFICATIONS
XV
349
350
HIGH VOLTAGE RECTIFIERS
& RECTIFIER MODULES
~
SA-SM
s~
g
----~
PC
PRODUCT SELECTION GUIDE
OG
PME
STANDARD RECOVERY
,.,,:."
l.OkV
HVElO
SJ
HSlO
SXSlO
SL
SK
\:
IN3643
SJ
'.>,
.".
(USI2)
SA
LSI5
HSI5
SXSI5
SH
SK
SL
HVEl5
(USI5)
SA
LMSI5
SG
SJ
MSI5
IN3644
SH
SJ
KXSI5
SM
MXSI5
SG
:.•·.:. l,ak~,.
(USI8)
SA
LS20
HS20
SH
SK
LMS20
HVE20
SG
SJ
MS20
IN3645
SH
SJ
(US20)
SA
SXS20
(US25)
S8
SXS25
(USB2.5)
PMA20I
SL
OH
PMA
KXS20
SM
SL
MXS20
SG
LS25
HS25
SH
SK
LMS25
HVE25
PMElOl
SG
SJ
PME
MS25
IN3646
SH
SJ
HVHS
2500
PC
KXS25
(UDE2.5) (UGE2.5)
SM
DO
DG
(UDB2.5)
DO
MXS25
SG
LS30
HS30
SXS30
SH
SK
SL
LMS30
HVE30
SG
SJ
(US30)
S8
MS30
IN3647
SH
SJ
KXS30
SM
MXS30
SG
(US35)
SC
LS40
HS40
(US40)
SXS40
SH
SK
SC
SL
LMS40
HVE40
SJ
IN5I8I
SJ
SG
MS40
SH
KXS40
SM
PMEI02
PME
MXS40
SG
(US45A)
SO
Parentheses ( ) designates product using
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
351
fused~in-glass
single chip rectifiers; all others use stacked chips.
Printed in U.S.A.
HIGH VOLTAGE RECTIFIERS
& RECTIFIER MODULES
STANDARD RECOVERY
HVH
5000
LS50
SH
LMS50
PB
SG
HVHF
5000
MS50
SH
PB
MXS50
(US50A)
SO
SG
SXS60
KXS60
SL
SM
(US60A)
SO
(US70A)
SO
HS75
USB7.5) PMA102 (UDA7.5)
PMA203
PMA
PMA
SK
HVH
7500
HVF75
PB
(UDB7.5)
SJ
HVHF
7500
DO
1N5183
SJ
OH
DO
HVHS
7500
DG
DG
PC
PB
USS7.5)
OH
(uS80A)
SXS80
KXS80
SE
SL
SM
PMEl03
PME
HS100
SK
SE
HVH
10000
(UDA10)
BE
DO *
HVE100
PB
1N5597
SJ
DE
1N5184
HVHF
10000
PMA103
SJ
PB
PMA
KXS100
PMA204
SM
PMA
HVHS
10000
PC
GBlO)
DG
SXS100
SL
(USBlO)
DH
(USS10)
OH
SE
BE
HVH
12500
HVHS
12500
PB
PC
HVHF
12500
PB
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TE~EX 95·1064
Parentheses ( ) designates product using fused-in-glass single chip rectifiers; all others use stacked chips.
*Avallable as JAN
352
PRINTED IN U S.A.
PMA
PME
DD,DE
DF,DG
iTANDARD RECOVERY
HVHJ
15K
HVH
15000
PA
PB
HVHF
15000
PB
(688-15)
BE
HVHS
17500
PC
(US 180A) (688-18)
HVHJ
20K
SF
BE
(US200A)
HVH
20000
SF
PA
PB
PMAI05
PMA206
PMA
PMA
HVHS
20000
PC
HVHF
20000
PB
(688-20)
BE
HVHJ
22.5K
PA
SN
HVHJ
25K
VXS25
PA
LCS25
(688-25)
SP
BE
HVH
25000
PMAI06
PMA207
PMA
PMA
PMAI07
PMA208
PMA
PMA
PB
HVHF
25000
PB
HVHJ
30K
PA
HVHJ
35K
PMAI08
PMA
PA
HVHJ
37.5K
PA
HVHJ
40K
PMA109
PMA
PA
HVHJ
45K
PA
~ ITROOE CORPORATION. 5 FORBES ROAO
:XI NGTON, MA 02173 • TEL. (617) 861·6540
VX (710) 326·6509 • TELEX 95·1064
PMAllO
PMA
PMA111
PMA
Parentheses (
) designates product using fused-in-glass single chip rectifiers; all others use stacked chips.
353
PRINTED IN U.S.A.
HIGH VOLTAGE RECTIFIERS
& RECTIFIER MODULES
/
/
~,,~
~
~~~
PA- PC
SA-SN
FAST RECOVERY
PMA
p?9
0/
PME
(USR12)
SA
LA15
HA15'
(USR15)
SX15'
KX15*
SH
SK
SA
SL
SM
LM15'
HVX15
SG
SJ
MA15"
SH
MX15
SG
(USR18)
SA
HA20'
(USR20)
SX20'
KX20'
SH
SK
S8
SL
SM
LM20
HVX20'
SG
SJ
LA20
MA20'
SH
MX20'
SG
HVF
2500t
SX25'
PMA201X
SL
PMA
HVX25*
P8
(UFB2.5)
SJ
(USR25)
OH
HVFS
2500t
PC
(UDD2.5)
S8
PMEIOIX'
DO
LA25
HA25*
SH
SK
·LM25
SG
MA25*
SH
KX25*
SM
(UDF2.5)
DO
(UGF2.5)
DG
PME
MX25'
SG
LA30
HA30'
(USR30)
SX30'
KX30'
SH
SK
SC
SL
SM
LM30
HVX30'
SG
SJ
MA30'
SH
MX30'
SG
(USR35)
SC
LA40
HA40'
(USR40A)
SX40'
KX40'
SH
SK
SO
SL
SM
LM40
HVX40'
PME102X'
SJ
PME
SG
MA40'
SH
MX40'
SG
Parentheses ( ) designates product using fused-in-glass single chip rectifiers; all others use stacked chips.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
354
PRINTED IN U.S.A.
~
BE
PRODUCT SELECTION GUIDE
UDH
DG
FAST RECOVERY
LA50
SH
LM50
SG
MA50'
SH
MX50'
SG
(USR60A)
SX60'
KX60'
SD
SL
SM
(USR70A)
SE
HVF
7500t
(UDC7.5)
PMA203X'
DD
PMA
HVX75
PB
(UDD7.5)
PC
SJ
(UFB7.5)
DD
(UGD7.5)
DG
(UGF7.5)
DG
HA75
SK
DH
PMAI02X'
(UFS7.5)
PMA
DH
LA80
(USR80A)
SH
SE
SX8O'
KX8O'
SL
SM
LM80
PMElO3X'
SG
PME
HVFS
7500t
MA8O'
SH
MX8O'
SG
HAlOO
(USRIOOA)
SK
SE
HVF
lOOOOt
(UDCIO)
PMAI03X'
KXlOO'
PB
DD
PMA
SM
(688-lOR)
(UGDIO)
DG
PMA204X'
BE
PMA
HVXlOO
SJ
SXIOO'
HVFS
lOooot
PC
SL
(UFSIO)
DH
(USR120A) (688-12R)
SF
Parentheses (
UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
BE
) designates product using fused-in-glass single chip rectifiers; all others use stacked chips.
355
PRINTED IN U.S.A.
HIGH VOLTAGE RECTIFIERS
& RECTIFIER MODULES FAST RECOVERY
~.. ~
~
;i. 8
~
'<-SN
Q
PRODUCT SELECTION GUIDE
#/
DD
k
P.. ~ 4 ..."
HVF
15000t
PB
(UDC15)
DO
(688-15R)
BE
HVFS
17500
PC
LM180
SG
MX200
SG
VX20·
SP
LC20
SN
CAX20
CAX
HVJX
20K
PA
(USR180A)
SF
(688-18R)
BE
(688-20R)
BE
HVF
20000t
PB
PMA105X
PMA
PMA206X
PMA
(688-25R)
BE
HVF
25000t
PB
PMA106X
PMA
PMA207X
PMA
PMA208X
PMA
HVFS
20000
PC
HVJX
22.5K
PA
VX25·
SP
LC25
SN
CAX25
CAX
HVJX
25K
PA
VX30'
SP
LC30
SN
CAX30
CAX
HVJX
30K
PA
PMA107X
PMA
HVJX
35K
PA
PMA108X
PMA
HVJX
37.5K
PA
VX40'
SP
HVJX
40K
PA
PMA109X
PMA
HVJX
45K
PA
VX50·
SP
UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
PMA110X
PMA
Parentheses (
) designates product using fused·'in-glass single chip rectifiers; all others use stacked chips.
356
PRINTED IN U.S.A.
RECTIFIER ASSEMBLIES
JAN IN5597
JAN IN5600
JAN IN5603
High Voltage Stacks, 1Amp to 5 Amp,
Military Approved
FEATURES
DESCRIPTION
•
•
•
•
•
•
•
This series of military high-voltage highcurrent stacks offers the utmost in
reliability as required in military system
designs. The rectifiers are assembled with
diodes which have been subjected to TX
type screening tests.
Qua I i fied to MIL -S-19500 / 404A
PIV: to lOkV
Surge Ratings: to 200A
Current Ratings: to 5A
Only Fused-in-Glass Diodes Used
Controlled Avalanche Characteristics
Modular Package For Easy Stacking
ABSOLUTE MAXIMUM RATINGS
JAN lN5597
Peak Inverse Voltage
Maximum Average D.C. Output Current
@ Tc = 75°C
Non-Repetitive Sinusoidal Surge (8.3ms)
@Tc = 75°C ...
Operating and Storage Temperature Range
JAN lN5600
10kV..
1A..
.. .......... 30A..
. ....
H
JAN lN5603
. SkV ...
........ SkV
2A ...
............. SA
••
aOA
............. _65°C to +150°C ...
. 200A
MECHANICAL SPECIFICATIONS
JAN 1N5597 , JAN 1N5600
THREAD
RELIEF TO
?-
A .012 OUT TO OIA
=MAX ",0,
MINOR DIA
FROM 1 TO 3
THOS
.020 MIN x 45
CHAM
JAN lN5603
JAN 1N5597
Ltr
A
B
C
C,
.0
00'
JAN 1N5600
Dimensions in inches with metric
eQuivalents mm) in Darentheses
Minimum
Maximum
.73 (18.54)
.83 (21.08
.OBO (2.03)
.240 (6.10)
.26' (6.71)
.265 (6.73)
.400 (10.16)
1.85 (46.99)
1.95 (49.53)
.57 (14.48)
.67 (l7.02)
JAN lN5603
NOTES
1. All marking shall be on cathode side of
module.
2. Threaded stud 1f4-28UNF-2A.
3. Threaded stud %-24UNF-2A.
4. Threaded insert 1f4-28UNF'-2B.
Ltr
A
• ;6
C
C,
.0
00,
Dimensions in inches with metric
equivalents Imm) ;n parentheses
Minimum
Maximum
,970 (24.64)
1.020 (25.91)
)
(2.03)
.307 (7.80)
.317 (8.05)
.318 (8.OB)
.400 (10.16)
3.450 (87.631
3.650 (92.71)
.95 124.13)
1.250 (31.75)
....
NOTES
8
3
5.7
5. Threaded insert %-24UNF-2B.
6. Cathode connected to terminal 2.
7. Cathode connected to terminal 1.
S. Module contour within dimenSion A is not
specified.
357
[ill]
_UNITRODE
JAN 1N5597 JAN 1N5600 JAN 1N5603
Electrical Specifications (at 25'C unless noted)
Maximum leakage
Current
@PIV
Forward
Voltage Drop
Type
PIV
JAN 1N5597
JAN 1N5600
JAN 1N5603
lO
Min.
Max.
13V@lA
6V@2A
6V@5A
19V@lA
10V@2A
lOV@5A
kV
5
5
TA
= 25'C
TA
=
= 100°C
#A
#A
1
5
5
75
100
100
5
7
15
Typical Forward Voltage
VS. Forward Current
10K
JAN1N5597
5K
//
- 500
I II
Z
~ 200
'"~
"u.
E SOD
Z
~ 200
0:
:J 100
'ViI '~f~I
I
I.;
20
u
:;: Jj-:;; "'I
"
50
'"~
20
I I
"
0:
II
10
I
II /
I 0
/
u.
.5
.75
1.25
1.5
MULTIPLY V, BY,
E
-
IZ
50
"~
20
u.
10
o
I-
zw
V)
I
I
1.25
I
W
..J
PIV
./
50'C
____ +25'C
.5
-
w
"'"
""
VS.
JAN1~5600
:J
I
1.5
MULTIPLY VF BY,
u
I I
I
.75
0:
0:
:;: .; '" I
0:
.5
-"
£~~u
J:,J[!
8
Ii?u
:J 100
I I
.25
.05
.1
;;(
.2
I
/
~ 200
u
"0:
.01
.02
/1 II
500
o
/
Typical Leakage Current
L V/;
;;( IK
I
I
FORWARD VOLTAGE -
//, '/
JAN1N56D3
2K
I
I I
10
I
Typical Forward Voltage
VS. Forward Current
10K
~o/lt
if $L7,~
/ II I I
FORWARD VOLTAGE -
5K
r--
I
I I
.25
v/ I /
/ II / J
I-
~8
50
/ //
/1 II
;; lK
I
j j jl
0:
:J 100
//;V
2K
/; '//
:;{ lK
E
u
"
0:
JAN1N5600
5K
W/-/
I-
2
6
12
30
30
40
Typical Forward Voltage
VS. Forward Current
10K
2K
Maximum
Reverse
Transient
Energy
Absorption
joules
Capacitance
@ V,
100V
Max.
Min.
pI
pI
10
20
50
100
200
i----"
L
+75"C
V
125'C
SOD
I
o
.25
.5
.75
FORWARD VOLTAGE -
1.25
IK
1.5
125
MULTIPLY VF BY,
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6S09 • TELEX 95-1064
lao
75
50
25
% OF PIV
358
PRINTED IN U.S.A.
JAN IN5597 JAN IN5600 JAN IN5603
Typical Leakage Current vs. PlY
.001
.002
Ty·pical.eakage Current vs. PlY
f-- JAN1 N5597·
.01
.02
--
.005
.01
<' .02
50-C
~
...""
.05
.1
:> .2
z
"'0:0:
u
"'"«
"«
t
25° C
10
20
50
100
""
«
....
"'
I
~-C
'I
125
100
75
10
20
.,./
+25°C
....t..--:::
_ _ +75°C
50
100
200
~5OC
500
1K
25
50
5
"'
«
..,,-
"'
-
.5
:>
u
!-----+75-C
..J
50°C
"'0:0:
V
.5
~
.05
.1
.2
I-
z
JAN1~56D3
125
100
% OF PIV
75
50
% OF PIV
25
Current Derating Curve
100
\
"
«
z
;::
\
\
50
\
0:
"#
~
\
o
o
150
50
100
CASE TEMPERATURE ('C)
200
Discrete diode inspection lot.
•
100%
3. Reverse-recovery time
I
3. Measurement of specified parameters to
determine delta
f--t
4. Lot rejection criteria based on rejects
from burn-in test
Preparation for delivery
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064
of discrete diodes
2. Reverse bias burn·in
1. High-temperature storage
2. Thermal Shock (temperature cycling)
Burn~ln
1. Measurement of specified parameters
100% process conditioning of discrete diodes
Review of groups A.
B. and C data for lot
accept or reject.
359
H
Assembly and encapsulation of
discrete diodes into bridge assembly
r
1
Inspection test to verify LTPD
Group A
Group B
Group C
PR;INTED IN U.S.A.
RECTIFIER ASSEMBLIES
688 SERIES
High Voltage Stacks,
Standard and fast Recovery
FEATURES
DESCRIPTION
•
•
•
•
•
•
•
This series of high power stacks has a
unique packaging design that provides
characteristics not obtainable in conventional molded epoxy packages. This series,
therefore, is ideally suited for high-voltage,
high-power applications.
PIV: from lOkV to 2SkV
Surge Rating: to 20A
Recovery Time Available: to 500ns
Current Ratings: to 0.6A
Bonded Platefor,Maximum Heat Transfer
Controlled Avalanche Characteri'stics
Only Fused-in-Glass Diodes Used
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage,
Maximum Average D.C. Output Current,
Non-repetitive Sinusoidal Surge (8.3ms)
Operating and Storage Temperature Range,
Thermal Resistance Junction to Ambient '
Junction to Case ,
""""",,1OkV to 2SkV
." See Electrical Specifications
, 20A
" , -6S'C to +lSO'C
,,2S'C/W
"lO'C/W
688 SERIES
-'----0
.770
.740
r---,
.... .,
-4.-'
I
1,75<) I
~".-~
-~ :'f'==t
/
r
.720
-t
Add suffix R to denote Fast
Recovery version. For example,
for recovery time, trr ::::: Soons;
order 6SS-l0R.
. TAPPED.IO-32 THREAD
Dimensions in inches.
Typical Weight - 2.5 ounces
70 grams
MARKING
Cathode - Positive Output
Anode - Negative
Part number is printed on the body.
360
O:W
_UNITRODE
688 SERIES
Electrical Specifications (at 25°C unless noted)
Maximum
Forward
Type
Standard
And Fast
Recovery"
Voltage
Drop
PIV
kV
10
12
15
18
688-10
688-12
688-15
688-18
688-20
688-25
20
Maximum
Leakage
Current
@PIV
D.C. Output
Average
Current
TA _ 25°C
#A
T. _100°C
#A
2
100
17V@0.4A
20V@0.4A
25V@0.4A
30V@0.4A
34V@0.4A
42V@0.4A
25
Maximum Ratings
Maximum
Tc _100°C
Amps
0.60
0.50
0.40
0.35
0.30
0.20
*Add suffix R to denote Fast Recovery version.
Typical Forward Voltage Per leg
vs. Forward Current
Typical leakage Current VS. PIV
10
.01
.02
I"VI/
~
z
OJ
0:
0:
a
V
.2
.1
.02
I.L.
.01
o
zOJ
I-
II
.002
I
o
.2
:J
II
Y
10
20
"
"'"
OJ
..J
+75°C
50
100
I
I
.4
+25'C
<.J
OJ
"
II
V
.5
0:
0:
II / /
.005
.001
I-
;: :;:: "I- /
if
.2
'"
IV
k(;
,(; .~"
~ & lO t?-f-
~ .05
"~
:<
/VV
.5
I-
~O'c
.05
.1
I
.6
V
200
.8
~125'C
500
1
1.2
lK
1.4
125
FORWARD VOLTAGE- MULTIPLY V, BY,
100
75
50
% OF PIV
25
Current Derating Curve
100
\
\
"
z
~
0:
50
\
if.
\
\
I
il
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (no) 326-6509 • TELEX 95-1064
I
o
50
100
lSO
CASE TEMPERATURE (OC)
361
200
PRINTED IN U.S.A.
CAX1S-30
HIGH VOLTAGE
RECTIFIER ASSEMBLY
10mA
WITN J 1-21 Anode Cap
DESCRIPTION
The CAX anode assembly combines a fast
recovery high voltage silicon rectifier
molded void free into a UL approved wire
and terminated with a Jl-21 anode cap. The
high reliability & economy designed into the
assembly makes it ideally suited for both
commercial and industrial video monitors.
FEATURES
• PI v: From 15kV to 30kV
• 300nS Recovery
• High Surge Current Ratings
• Low Reverse Leakage
• UL Rated Materials
• Corona Free
• LowCost
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage .•....•...•.......................•.........•....... 15kV to 30kV
Maximum Average Rectified Current ...................... See Electrical Specificatiom
Maximum One Cycle Surge 8.3mS ............•.•......•.. See Electrical Specifications
Operating and Storage Temperature Range •.•......................... -55°C to +90°C
MECHANICAL SPECIFICATIONS
CAX15-30
3.00 ± .015
.40
(10.16)
(7B.2) ± (.38)
HIGH VOLTAGE WIRE
STYLE 3238 FR·l
40K VDC TYPE 2 PL
UL RATED
-----1-----
FLAME RET ARDENT
POLYPROPYLENE
V-O RATED
CAX
B ± .25
(B.35) ---~
~l
CONNECTOR
J1-21 TVPE
CAX
-T f
xx
-
]
1.50/1.7501A
(38.13)/(44.45)
-fM "A"
DIM "B"
VOLTAGE
Dimensions in inches and (millimeters)
Reformatted 12179
362
~ HiGH"'vOLTAGE DEVICES
CAX1S-30
ELECTRICAL SPECIFICATIONS (at 25° C unless noted)
Peak
Type
Maximum
Reverse
Current
Inverse
Voltage*
Maximum
Forward
Voltage
@Io
VF
@PIV
PIV
IR
CAX30
Junction
Maximum
Average
Maximum
One Cycle
Surge
8.3rnS
@100V
Rectified
Currentt
TRR
CJ
10
IF(surge)
V
nS
pF
rnA
A
Capacitance
25°C
85°C
IlA
IlA
15000
.25
10
40
300
1.0
.25
10
10
40
300
300
1.0
1.0
10
10
10
2
20000
25000
30000
300
1.0
10
2
V
CAX15
CAX20
CAX25
MAXIMUM RATINGS
Maximum
Maximum
Reverse
Recovery
Time
.25
.25
40
40
10
2
2
*Operation and testing of devices over 10,000 V/inch may require re-encapsulation or immersion in a suitable dielectric material.
t The stated, AVERAGE RECTI FlED CURRENT ratings require no heat sinking, special mounting or forced air across the body of the
device.
NOTE: Maximum lead temperature for soldering is 250°C 3/8" (9.5mm) from case for 5 seconds.
MAXIMUM FORWARD CURRENT VS AMBIENT TEMPERATURE
fZ
UJ
a: '00
a:
::J
u..U
00 75
f-a:
~
ru~
Ua:
a:o
UJu..
Q.UJ
(!)
21
-<:
a:
UJ
>
-<:
'"'" \\
1'0...
10
o
21
10
75
'00
'25
AMBIENT TEMPERATURE (OC)
REVERSE RECOVERY TEST CONDITIONS: I F = 5 rnA. I R = 10 rnA. I RR = 2.5 rnA
REVERSE RECOVERY WAVE FORM
REVERSE RECOVERY TEST CIRCUIT
I.U.T.
I
TAR "300nS
r---- rll
~
't
..
........ ~ '
~
'.
i
---<0
~
I(
r
.01
,.
---t>I--
5111
SCOff
PULSE
GENERATOR
HEWLErT
ranl_x
PACKARD
EQUIVAIINT
7403 01
214A 01
EQUIVALENT
5011
3411
120
j
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
363
PRINTED IN U.S.A.
HIGH VOLTAGE
SILICON RECTIFIERS
HA1 0-1 00
HVX10-100
100-250mA
Fast Recovery, Miniature
FEATURES
• PIV: From 1.0kVto 10kV
• 250nS Reverse Recovery
• High Surge Current Ratings
• Low Reverse Leakage
• Corona Free
DESCRIPTION
The HVX/HA silicon rectifier series combine
a medium rectified current capability and
high reliability in a miniature package for
commercial, industrial and military applications. The use of cylindrical die construction and metallurgical bonds minimize
electrical and mechanical stress, contributing to long life. The fast reverse recovery
characteristics enhance applications in high
frequency power conversion and control
circuits.
ABSOLUTE MAXIMUM RATINGS
Peak I nverse Voltage
................................................ 1.0 kV to 10kV
Maximum Average Rectified Current ....................•. See Electrical Specifications
Maximum One Cycle Surge 8.3mS ......................•. See Electrical Specifications
Maximum Recurrent Peak Current Surge ...•.............. See Electrical Specifications
Operating and Storage Temperature Ranges ...............•.......... -65°C to +150°C
MECHANICAL SPECIFICATIONS
HVX10-l00
.031
j;
SJ
.002" OIA.
(0.79) ± (0.05)
99.9% SILVER
.140
± .005" DIA.
(3.57) ± (0.13)
°o
Dimensions in inches and (millimeters)
HA10-100
.031 ± .002" OIA.
j
(0.79) ± (0.05)
99.9% SILVER
II
.200 ± .005"
(5.08) ± (0.13)
&~====lDF==.1=00=±
1.12 Min.
(28.4)
-1I
SK
.005 .. DIA.
0°1
(2.54) ± (0.13)
Dimensions in inches and (millimeters)
Reformatted 12/79
364
~ HiGH"'VOLTAGE DEVICES
HA10-100
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Peak
Type
Type
Maximum
Forward
Maximum
Reverse
Current
Inverse
Voltage *
@PIV
Voltage
@100rnA
IR
V,
PIV
V
25°C
100°C
"A
20
20
20
20
20
20
20
20
20
HVX10
HVX15
HVX20
HVX25
HVX30
HA10
HA15
HA20
HA25
HA30
1000
1500
2000
2500
3000
"A
1
1
1
1
1
HVX40
HVX50
HVX75
HVX100
HA40
HA50
HA75
HA100
4000
5000
7500
10000
1
1
1
1
MAXIMUM RATINGS
Maximum
Reverse
Recovery
Time
Maximum
Average
Maximum
Recurrent
Rectified
Currentt
Peak
TRR
V
nS
5
5
5
250
250
250
250
250
250
250
250
250
250
250
250
250
250
100
100
100
100
5
Current
I,
10
50°C
rnA
5
12
12
12
12
HVX10-100
100°C
rnA
125°C
mA
125
125
125
125
125
50
50
50
50
62.5
62.5
62.5
62.5
62.5
25
25
25
25
Maximum
One Cycle
Surge
B.3rnS
Surge
',(surge)
A
A
14
14
14
14
14
2.5
2.5
2.5
2.5
2.5
1.0
1.0
1.0
1.0
4
4
4
4
*Operation and testing of devices over 10,000 V/inch may require re-encapsulation or immersion in a suitable dielectric material.
t The stated, AVERAGE RECTIFIED CURRENT ratings require no heat sinking, special mounting or forced air across the body of the
device.
NOTE: Maximum lead temperature for soldering is 250° C, 3/8" (9.5mm) from case for 5 seconds maximum.
MAXIMUM FORWARD CURRENT VS. AMBIENT TEMPERATURE
(!)
z
;::
..:
tr 100
i\
fZ
UJ
u.
o
tr
a::
75
!z:G
UJO
~~
50
UJ3:
i\
o..tr
o
u.
UJ
(!)
25
..:
tr
UJ
>
«
-55
25
so
"i\
100
125
150
175
AMBIENT TEMPERATURE (OC)
REVERSE RECOVERY TEST CONDITIONS: I F = 50 mA. I R =100 mAo I RR = 25 mA
REVERSE RECOVERY WAVE FORM
,
TRR = 2S0nS
REVERSE RECOVERY TEST CIRCUIT
R.U.T.
-----{>I--
I-- T.. -i-
"
t
'.
1
~
I
/
UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
~
..
.
'
.01
PULSE
GENERATOR
HEWLETT
PACKARD
214A OR
"
5111
SCOPE
TEKTRONIX
7403 OR
EQUIVALENT
EQUIVALENT
5011
365
3411
120
5011
PRINTED IN U.S.A.
HS 10-100
HVE10-30 (1 N3643-47)
HVE40-100 (1 N5181-84)
HIGH VOLTAGE
SILICON RECTIFIERS
100-2S0mA
Standard Recovery, Minature
DESCRIPTION
The HVElHS silicon rectifier series combine a medium average rectified current
capability and high reliability in a miniature
package for commercial, industrial and
military applications. The use of cylindrical
die construction and metallurgical bonds
minimize electrical and mechanical stress,
contributing to long life. A 2 microsecond
reverse recovery characteristic improves
the circuit efficiency of power conversion
and control systems.
FEATURES
• PIV: From 1.0kV to 10kV
• JEDEC Types
• High Surge Current Ratings
• Low Reverse Leakage
• Corona Free
ABSOLUTE MAXIMUM RATINGS
HS
HVE
Peak Inverse Voltage •.......••...•.•.•...•.....•.•.•................... 1.0kV ...................•.. 10kV ...•....•.•...
Maximum Average Rectified Current .....................................•.. See Electrical Specifications ...•.......•......
Maximum One Cycle Surge 8.3mS .....................•......•.•........... See Electrical Specifications .................•
Maximum Recurrent Peak Current Surge ........•......•.........•.......... See Electrical Specifications ................. .
Operating and Storage Temperature Ranges: ...•....•.•......•.........•.•....... -65°C to +175°C ..•........... , .•.•.....
MECHANICAL SPECIFICATIONS
.031 ± .002 DIA.
(0.79) ± (0.05)
99.9% SILVER
rl
HVE10-30 (1N3643-47)
HVE40-100 (1N5181-84)
SJ
.410 ± .005
(10.41) ± (0.13)
!
~==9CJF===
~ 1(~~.~~~~
.140 ± .005 DIA.
(3.56) ± (0.13)
Dimensions in inches and (millimeters)
HS10-100
r
.031 ± .002 DIA.
(0.79) ± (0.05)
99.9% SILV
11
1.0-
I
.200 ± .005
(5.08) ± (0.13)
~====~DF======
II-- \~~~~~ ~
SK
Q
.100 ± ,005 DIA.
(2.54) ± (0.13)
D
Dimensions in inr-hes and (millimeters)
Reformatted 12/79
366
~ HioH"'vOLTAGE DEVICES
HS10-100
HVE10-30 (1N3643)
ELECTRICAL SPECIFICATIONS (at 25·C unless noted)
Maximum
Reverse
Recovery
Time
Maximum
Inverse
Reverse
Current
Voltage'
Type
MAXIMUM RATINGS
Maximum
Forward
Maximum
Average
Maximum
Recurrent
Rectified
Currentt
Peak
@PIV
Voltage@
100rnA Max.
IR
VF
10
Maximum
One Cycle
Surge
B.3rnS
Current
Surge
PIV
2~S
21'S
HS10
HS15
HS20
HS25
HS30
HS40
HS50
HS75
HS100
Peak
HVE40-100 (1N5181-84)
Type
HVE10
HVE15
HVE20
HVE25
HVE30
HVE40
V
(1N3643)
(1N3644)
(1N3645)
(1N3646)
(1N3647)
(1 N5181)
25·C
p.A
100·C
p.A
1
1
1
1
1
20
20
20
20
20
20
20
20
20
1000
1500
2000
2500
3000
4000
5000
7500
10000
HVE50 (1N5182)
HVE75 (1N5183)
HVE100 (1N5184)
1
1
1
1
25'C
V
50'C
rnA
100'C
rnA
150'C
rnA
3.5
250
50
3.5
3.5
3.5
3.5
10.0
10.0
10.0
10.0
250
250
250
250
100
100
100
100
150
150
50
50
50
50
20
20
20
20
150
150
150
60
60
60
60
IF(surge)
IF
A
A
2.5
2.5
2.5
2.5
2.5
1.0
14
14
14
14
14
4
4
4
4
1.0
1.0
1.0
'Operation and testing of devices over 10,000 V/inch may require re-encapsulation or immersion in a suitable dielectric material.
t The stated, AVERAGE RECTIFIED CURRENT ratings require no heat sinking, special mounting or forced air across the body of the
device.
NOTE: Maximum lead temperature for soldering is 250'C 3/8" (9.5mm) from case for 5 seconds maximum.
HVE/HVE10-30/1N3643-47
<"
300
I-
2SO
UJ
a:
a:
~
200
()
0
a: ISO
«
~
a:
f2
100
UJ
(!l
«
a:
w
>
«
SO
o
-65
25
50
IZI00
UJ
""
75
i"
1'"
""
~
Z
HVE/HVE40-100 11N5181-84)
a:
a:
~
()o 7'
a:
~ SO
a:
"
100
125
AMBIENT TEMPERATURE ('C)
UJ
~17.
~
a:
2.
UJ
:;(
ISO
" " ""
'-
f2
o
--6,
o
2.
SO
100
~
"~
125
150
17.
AMBIENT TEMPERATURE ('C)
REVERSE RECOVERY TEST CONDITIONS: I F =50 rnA, I R =100 rnA, I RR =25 rnA
REVERSE RECOVERY WAVE FORM
,fF
I--- T•• ~
~-
t
..
/
'.
1
REVERSE RECOVERY TEST CIRCUIT
R.U.T.
1/~ '
I(
T
.01
PIlLS<
GENHATOR
HEWLETT
PACKARD
21404 01
.
,
-i*--
sin
SCOPE
T&CT.ONIX
7403 01
EOU'VA1lNT
EQUIVAlENT
son
34n
120
j
UN'TRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
367
PRINTED IN U.S.A.
HIGH VOLTAGE
SILICON RECTIFIERS
HVF2500-25000
MULTISTAC
Fast Recovery, High Current
FEATURES
• PIV: From 2.5kV to 25kV
• 150nS Reverse Recovery
• High Surge Current Ratings
• Low Reverse Leakage
• Corona Free
DESCRIPTION
The HVF MULTISTAC high current, high
voltage silicon rectifier's convenient size
and high power capability meets the reliability requirements of commercial, industrial
and military applications. Reliability with
economy are obtained through the use of
proprietary innovations in manufacturing
technique. Cylindrical die construction and
metallurgical bonds minimize electrical and
mechanical stress, contributing to long life .
. ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage ................. , ................................ 2.5kV to 25kV
Maximum Average Rectified Current ...................... See Electrical Specifications
Maximum One Cycle Surge 8.3mS ........................ See Electrical Specifications
Operating and Storage Temperature Range ........................... -55°C to +150°C
MECHANICAL SPECIFICATIONS
HVF2S00-2S000
1..- CASE LENGTH--!
==============«
PB
.250 ± .01"
•
F=!'bI6.35mm) , 1.254mm)
T
50 t .02"
r--_ _ _ _ _--,I(12.70mm) t (.50Bmm)
~====TI=N=N=EO=C=0=P=P=E=R=LE=A=D=S~j====9L_ _ _ _ _~~~
.051 ± .001" OIA.
(1.30mm) ± (.254mm)
!
~
- - - - - 2" Min.
(50.80mm)
PART
NUMBER
CASE LENGTH
INCHES
MILLIMETERS
HVF2500
1.125 ± .02
HVF5000
2.000 ± .02
50.80 ± .508
HVF7500
2.750 ± .02
69.85 ± .508
HVF10000
3.500 ± .02
88.90 ± .508
HVF12500
4.250 ± .02
107.95 ± .508
HVF15000
4.250 ± .02
107.95 ± .508
HVF20000
4.250 ± .02
107.95 ± .508
HVF25000
4.250 ± .02
107.95 ± .508
28.58 ± .508
Dimensions In inches and (m1Ilimeters)
Reformatted 12/79
368
~ H'iGH"'yil"LTAGE DEVICES
HVF2500 - 25000
ELECTRICAL SPECIFICATIONS (aI25°C unless noled)
Peak
Maximum
Reverse
Current
Inverse
Type
Voltage*
@PIV
PIV
HVF2500
IR
V
25·C
p.A
lDD·C
2500
0.1
Maximum
Forward
MAXIMUM RATINGS
Maximum
Reverse
Recovery
Voltage
@ 10 Max.
VF
One Cycle
Surge
8.3mS
Rectified
Currentt
Time
TRR
V
nS
15
5.5
150
.5
Case
Length
IF(surge)
10
55·C
A
p.A
Maximum
Maximum
Average
laaoC
lDa·C
A
25°C
A
A
Ins.
.33
40
20
1.125
28.58
50.80
MM
HVF5000
5000
0.1
15
11.0
150
.5
.33
40
20
2.000
HVF7500
HVF10000
7500
10000
0.1
15
16.5
150
.33
2.750
69.85
22.0
27.5
150
.33
40
40
20
15
15
.5
.5
3.500
4.250
8S.90
107.95
HVF12500
12500
0.1
0.1
150
.5
.33
40
20
20
HVF15000
15000
0.1
15
33.0
150
.5
.33
40
20
4.250
107.95
HVF20000
HVF25000
20000
0.1
15
·0.1
15
150
150
.5
.5
.33
.33
40
40
20
25000
38.5
44.0
4.250
4.250
107.95
107.95
20
*Operation and testing of devices over 10,000 v/inch may require re-encapsulation or immersion in a suitable dielectric material.
t The stated, AVERAGE RECTIFIED CURRENT ratings require no heat sinking, special mounting or forced air across the body of the
device.
NOTE: Maximum lead temperature for soldering is 250°C 3/S" (9.5mm) from case for 5 seconds.
MAXIMUM FORWARD CURRENT VS. AMBIENT TEMPERATURE
700r---~----'----'----
Envlronmenl
Multiply by
OIL.
Cl
w
600 I---;oo~
---jf---
::
FORCED AIR 200 CFM .
--'
ffi
~g:g~g ~:: ~~~ g~~
1.0
1.5
1.75
2.0
~~"-+~~~~-1----
0-
w
~
a:
w
~
«
E
o
a:
«
~~---+--~~~~'---~----~---1
XO~"~~~~--~~~~~--r----1
200
:0:
a:
ou..
FORWARD CURRENT PER LEG VS. AMBIENT TEMPERATURE (.C)
REVERSE RECOVERY TEST CONDITIONS: IF
= O.IA. IR = O.2A.
IRR
= O.OSA
REVERSE RECOVERY TEST CIRCUIT
R.U.T.
REVERSE RECOVERY WAVE FORM
-i>I--
T RR
~
150nS
I! ----
·tI.
1
Tn I---
.01
IK
5111
GENERATOR
SCOPE
fEKTIONIX
HEWlE'n
PACKARD
7403 01
EQUIVALENT
PULSE
/~
214A OR
EQUIVALENT
~~
SOil
3411
120
f
u
Reverse recovery is measured on each rectifier stack prior to manufacture of the assembly.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 86J.6540
TWX (710) 326-6509 • TELEX 95-1064
369
PRINTED IN U.S.A.
HIGH VOLTAGE
SILICON RECTIFIERS
HVFS2500-20000
MULTISTAC
Fast Recovery, High Current
DESCRIPTION
The HVFS MUL TISTAC high current, high
voltage silicon rectifier's convenient size and
high power capability meets the reliability
requirements of commercial, industrial and
military applications. Reliability with
economy are obtained through the use of
proprietary innovations in manufacturing
technique. Cylindrical die construction and
metallurgical bonds minimize electrical and
mechanical stress, contributing to long life.
FEATURES
• PIV: From 2.5 kV to 20 kV
• 150 nS Reverse Recovery
• High Surge Curren.t Ratings
• Low Reverse Leakage
• Corona Free
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage ......... , ......................................... 2.5kV to 20kV
Maximum Average Rectified Current ...................... See Electrical Specifications
Maximum One Cycle Surge 8.3 mS ........................ See Electrical Specifications
Operating and Storage Temperature Ranges ........................... -55°C to 150° C
MECHANICAL SPECIFICATIONS
HVFS2500-20000
PC
.38 ± .01
.051 ± .003 OIA.
(1.30) ± (0.08)
(9.65) ± (2.54)
I
====~~C~__~)F======
1--.69 ± .02
(17.53) ± (0.51)
CASE LENGTH
--I
_
2.0M;n.J
(50.8)
CASE LENGTH
PART
NUMBER
INCHES
HVFS2500
1.5 ± .03
HVFS5000
2.5 ± .03
63.5 ± 0,76
HVFS7500
3.5 ± .03
88.9 ± 0.76
MILLIMETERS
38.1 ± 0.76
HVFS10000
4.5 ± .03
1143±D.76
HVFS 12500
5.5 ± .03
139.7 ± 0.76
HVFS 15000
6.5 ± .03
165.1 ± 0.76
HVFS 17500
6.5 ± .03
165.1 ± 0.76
HVFS20000
6.5 ± .03
165.1 ± 0.76
Dimensions in inches and (millimeters)
Reformatted 12/79
370
~ tiio"li"'vOLTAGE DEVICES
HVFS2500-20000
ELECTRICAL SPECIFICATIONS (at 25° C unless noted)
Peak
Maximum
Reverse
Current
Inverse
Type
Voltage*
Maximum
Forward
Voltage
@Io
VF
@PIV
PIV
IR
V
25°C
100°C
IJ.A
120
MAXIMUM RATINGS
Maximum
Reverse
Recovery
Time
Maximum
Maximum
Average
One Cycle
Surge
8.3mS
Rectified
Currentt
TRR
Case
Length
IF(surge)
10
100'C
25'C
A
100'C
A
Ins.
MM
200
100
1.5
38.1
2.5
63.5
3.5
4.5
88.9
V
nS
55'C
A
150
2.2
A
1.3
150
2.2
1.3
200
HVFS2500
2500
IJ.A
10
HVFS5000
5000
10
120
8
16
HVFS7500
7500
10
120
21
150
2.2
1.3
200
100
100
HVFS10000
10000
12500
10
10
120
HVFS12500
120
29
36
150
150
2.2
2.2
1.3
1.3
200
200
100
100
HVFS15000
15000
10
120
44
150
2.2
1.3
200
165.1
17500
10
120
51
150
2.2
1.3
200
100
100
6.5
HVFS17500
6.5
165.1
HVFS20000
20000
10
120
58
150
2.2
1.3
200
100
6.5
165.1
5.5
114.9
139.7
*Operation and testing of devices over 10,000 V/inch may require re-encapsulation or immersion in a suitable dielectric material.
tThe stated, AVERAGE RECTIFIED CURRENT ratings require no heat sinking, special mounting or forced air across the body of the
device.
NOTE: Maximum lead temperature for soldering is 250°C 3/8" (9.5mm) from case for 5 seconds.
MAXIMUM FORWARD CURRENT VS AMBIENT TEMPERATURE
:<
~ 25
!Z...
••
U
~
a
•
i...
I" ~
20
15
"" \
~
10
•~...
~
o
o
-55
so
2S
\
7S
100
125
AMBIENT TEMPERATURE (OC I
REVERSE RECOVERY TEST CONDITIONS: IF =12.5A. I R=25A. IRR =6.25A
REVERSE RECOVERY WAVE FORM
I
T AA ~ 1S0nS
t
--
1
---t>I---
Tn ~
~
'0
REVERSE RECOVERY TEST CIRCUIT
R.U.T.
~
.01
....... ~
..
'
IK
5W
PUlSE
SCOPE
GENEIATOI
HEWLETT
TEKTIIONIX
7403 01
EQUIVALENT
PACKAiD
214A 01
EQUIVALENT
son
34n
120
If
J
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
371
PRINTED IN U.S.A.
HVHSOOO-2S000
HIGH VOLTAGE
SILICON RECTIFIERS
MULTISTAC
Standard Recovery
DESCRIPTION
The HVH MULTISTAC silicon rectifier
assemblies meet the stringent reliability
requirements of commercial, industrial and
military users through the use of proprietary
innovations in manufacturing technique.
Cylindrical die construction and metallurgical bonds minimize electrical and mechanical stress, contributing to long life. The
2 microsecond reverse recovery time improves the circuit efficiency of power
conversion and control systems.
FEATURES
• PI v: From 5kV to 25kV
• 21'S Reverse Recovery
• High Surge Current Ratings
• Low Reverse Leakage
• Corona Free
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage .................................................... 5kVto 25kV
Maximum Average Rectified Current ..•. '.................. See Electrical Specifications
Maximum One Cycle Surge 8.3mS ........................ See Electrical Specifications
Operating and Storage Temperaiure Range ........•................... -55°C to +150°C
MECHANICAL SPECIFICATIONS
\..- CASE LENGTH
==============«
HVHSOOO-2S000
--I ~
H
PB
.250 ± .01"
lp=IS.35mm l ± (.254mml
T
.50 ± .02"
t(12.70mm) ± (.508mm)
~===~TI~N=NE=D=C=O=P=PE=R~L=E=AD=s==~====~1
r~'.f===
~.
.051 ± .001" DIA.
(1.30mml ± 1.254_m_m_I_ _ _ _ _
- - - - - 2" Min.
!-I-------' 1
(SO.80mm)
PART
NUMBER
CASE LENGTH
INCHES
MILLIMETERS
HVH5000
1.125 ± .02
28.58 ± .50B
HVH7500
1.625 ± .02
41.28 ± .50B
HVH10000
2.000 ± .02
50.80 ± .508
HVH1250Q
2.375 ± .02
60.33 ± .SOB
HVH15000
2.750 ± .02
69.85 ± .508
HVH20000
3.500 ± .02
88.90 ± .508
HVH2500Q
4.250 ± .02
107.95 ± .508
Dimensions in inches and (millimeters)
Reformatted 12/79
372
~ iiioH""VOLTAGE DEVICES
HVH5000 - 25000
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Maximum
Reverse
Recovery
Time
MAXIMUM RATINGS
Peak
Maximum
Maximum
Inverse
Reverse
Current
@PIV
Forward
Voltage*
PIV
2~S
Voltage
@Io
VF
IR
25°C
100°C
25°C
5000
J.lA
0.1
J.lA
15
HVH 7500
7500
0.1
HVH10000
HVH12500
10000
12500
0.1
0.1
HVH15000
15000
HVH20000
20000
HVH25000
25000
Type
V
HVH 5000
Maximum
Average
Maximum
One Cycle
Surge
Rectified
Currentt
Case
Length
IF(surge)
10
100°C
A
25°C
V
55°C
A
A
100°C
A
Ins.
7
.5
.33
60
30
1.125
15
10
.33
.33
.33
60
60
1.625
41.28
14
17
.5
.5
.5
30
15
15
30
2.000
50.80
60
30
2.375
0.1
15
20
.5
.33
60
30
2.750
60.33
69.85
0.1
0.1
15
27
.5
.33
60
30
3.500
88.90
15
33
.5
.33
60
30
4.250
107.95
MM
28.58
*Operation and testing of devices over 10,000 V/inch may require re-encapsulation or immersion in a suitable dielectric material.
t The stated, AVERAGE RECTIFIED CURRENT ratings require no heat sinking, special mounting or forced air across the body of the
device.
NOTE: Maximum lead temperature for soldering is 250°C 3/8" (9.5mm) from case for 5 seconds.
MAXIMUM RATINGS FOR CAPACITY LOADS
MAXIMUM FORWARD CURRENT VS. AMBIENT TEMPERATURE
700
Environment
600
...J
II:
FORCED AIR 200 CFM
1.5
FORCED AIR 400 OM
.175
W
a.
2.0
500
20
100~
W
C)
-0:
II:
-0:
.00
w
>
w
C)
II:
-0:
«
300
II:
200
:::J
(f)
E
0
~
-0:
~
~' -
.O~
.2.0
Oil ..
C)
W
•
Multl,I,.,
so
'"
•
~
INSURGE
/
lOOoC
........
"-
r--:::::
0
0.1
0.2
O..c
0.6
.-
~~
20
FORWARD CURRENT PER LEG VS. AMBIENT TEMPERATURE (0C)
---
L
100
0
= E IN PEAK
•
,,"~
"-~~
40
II:
Ie
fiN
1.0
2.0
~
".0
b.O
10
RC TIME CONSTANT (mS)
"
~
......
.~
.
--TIUl-
'r -
..........
~
I
............ ~
,
REVERSE RECOVERY TEST C'RCUIT
REVERSE RECOVERY WAVE FORM
NON-RECURRENT FORWARD CURRENT SURGE CURVE
"·C
.......... ~
.
1007;:- fo-
/
'1
~
NUMBER OF CYCLES AT 60 CPS
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
""
1
'I
J
373
i..--'
'11
PULSE
GENHATOIT
HEWLETT
I'AOCAtlD
214" 011
EQUIVALENt
T
Reverse recovery is measured on each rectifier
stack prior to manufacture of the assembly.
PRINTED IN U.S.A.
HVH FSOOO-2S000
HIGH VOLTAGE
SiliCON RECTIFIERS
MULTISTAC
Standard Recovery, High Current
FEATURES
• PI v: From 5kV to 25kV
• 11'S Reverse Recovery
• High Surge Current Ratings
• Low Reverse Leakage
• Corona Free
DESCRIPTION
The HVHF MULTISTAC high current, high
voltage silicon rectifer's convenient size and
high power capability meets the reliability
requirements of commercial, industrial and
military applications. Reliability with
economy are obtained through the use of
proprietary innovations in manufacturing
technique. Cylindrical die construction and
metallurgical bonds minimize electrical and
mechanical stress, contributing to long life.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage ..................•.................................. 5kV to 25kV
Maximum Average Rectified Current ...................... See Electrical Specifications
Maximum One Cycle Surge 8.3mS ........................ See Electrical Specifications
Operating and Storage Temperature Range ............................ -55°C to +150°C
MECHANICAL SPECIFICATIONS
1===============«
CASE LENGTH
HVHFSOOO-2S000
-\.-L
PB
.250 ± 01"
~ ~(6.35mml
± (.254mml
T
50 ± .02"
{1.30~~~ ~ .(~g~;~~~.
!(12.70mm) ± (.508mm)
~======W='=~%==SI=LV=E=A===~=+==~L-________~~l===
- - - - - - - - 2" Min.
(50.80mm)
PART
NUMBER
HVHF5000
CASE LENGTH
INCHES
MILLIMETERS
1.125 ± .02
28.58 ± .soa
HVHF7500
1.625 ± .02
41.28 ± .508
HVHF10000
2.000 ± .02
50.80 ± .508
HVHF12500
2.375 ± .02
60.33 ± .508
HVHF15000
2.750 ± .02
69.85 ± .508
HVHF20000
3.500 ± .02
88.90 ± .508
HVHF25QOO
4.250 ± .02
107.95 ± .508
DImensions in inches and (millimeters)
Reformatted 12179
374
~ H'iGH""Voi~iAGE DEVICES
HVHFSOOO-2S000
ELECTRICAL SPECIFICATIONS (aI25°C unless noted)
Peak
Maximum
Reverse
Current
Inverse
Voltage*
Type
Maximum
Reverse
Recovery
MAXIMUM RATINGS
Maximum
Average
Maximum
One Cycle
Surge
B.3mS
Rectified
Currentt
@PIV
Voltage
@Io
'A
VF
TAR
V
/1S
55°C
A
100°C
PIV
V
Maximum
Forward
25°C
100°C
/lA
/lA
Time
'F(surge)
10
A
HVHF5000
5000
0.1
15
7
1
.5
.33
HVHF7500
HVHF10000
HVHF12500
7500
10000
12500
0.1
0.1
0.1
15
15
15
10
14
17
1
1
.5
.5
.33
.33
1
15000
0.1
15
0.1
0.1
15
15
1
1
1
.33
.33
20000
25000
20
27
33
.5
.5
.5
.5
.33
.33
HVHF15000
HVHF20000
HVHF25000
Case
Length
25°C
A
100°C
A
Ins.
60
60
30
1.125
30
40
1.625
2.000
2.375
60
60
60
60
60
40
40
40
40
2.750
3.500
4.250
MM
28.58
41.28
50.80
60.33
69.85
88.90
107.95
*Operation and testing of devices over 10,000 V/inch may require re-encapsulation or immersion in a suitable dielectric material.
t The stated, AVERAGE RECTIFIED CURRENT ratings require no heatsinking, special mounting or forced air across the body of the
device.
NOTE: Maximum lead temperature for soldering is 250° C 3/8" (9.5mm) from case for 5 seconds.
MAXIMUM FORWARD CURRENT VS. AMBIENT TEMPERATURE
7 0 0 , - - - - , - - . . . , - - - , - - - EnvlronrMnt
§ 600~-~"",
rr
w
~
w
Multtpl, By
~l..
2.0
--+---- FOItCED Alit 200 CFM . .
I.S
FORCEDAIft400CFM.
. .. 1.75
.2.0
~~---;~--~~-i--
C)
~ M»~--i-~~~~,"-~~~~~~~
w
>
~ ~~--~~~t---~~~Q7~~r---~
E
o
«
200
~
lOO~--i-~~~~~~~~~-a. .~~
rr
;;:
I.L
FORWARD CURRENT PER LEG VS. AMBIENT TEMPERATURE (OC)
REVERSE RECOVERY TEST CONDITIONS: ' F"100mA, ' R=200mA, ' RR =50mA
REVERSE RECOVERY TEST CIRCUIT
R.U.T.
REVERSE RECOVERY WAVE FORM
---i>I--
,f.
_ T •• ~
t
/
/
'.
1
.01
I{
J
UNITRODE CORPORATION· 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
I ••
---- T
IK
Sill
PULSE
GENERATOI
. SCOPE
TB
..
\..
\
25
0
o
-55
25
so
75
100
\
125
ISO
175
AMBIENT TEMPERATURE (OC)
REVERSE RECOVERY TEST CONDITIONS: IF =50mA, IR =100mA, IAA =25mA
REVERSE RECOVERY WAVE FORM
REVERSE RECOVERY TEST CIRCUIT
R.U.T.
.
~
Ii,
TRR~2uS
o
_TRO-
t
'.
1
.01
I
/
1/~
~
'.1
PULSE
GENERATOR
,
Sin
seOPE
TEKTRONIX
7403 OR
HEWlETT
PACKARD
214A OR
EQUIVALENT
EQUIVALENT
son
T
34n
120
J
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064
377
PRINTED IN U.S.A.
HVHS2500-20000
HIGH VOLTAGE
SILICON RECTIFIERS
MULTISTAC
Medium Recovery, High Current
FEATURES
• PIV: From 2.SkV to 20kV
• 2 uS Reverse Recovery
• High Surge Current Ratings
• Low Reverse Leakage
• Corona Free
DESCRIPTION
The HVHS MULTISTAC high current, high
voltage silicon rectifier's convenient size and
high power capability meets the reliability
requirements of commercial, industrial and
military applications. Reliability with
economy are obtained through the use of
proprietary innovations in manufacturing
technique. Cylindrical die construction and
metallurgical bonds minimize electrical and
mechanical stress, contributing to long li'fe.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage .............................•..................... 2.5kV to 20kV
Maximum Average Rectified Current ...................... See Electrical Specifications
Maximum One Cycle Surge 8.3mS ........................ See Electrical Specifications
Operating and Storage Temperature Range .......•................... -SS·C to +150·C
MECHANICAL SPECIFICATIONS
HVHS2500-20000
.051 :J: .003 DIA.
(1.30) ± (O.OS)
_____)~===l====
====~l==~c~
_1__ 1--.S9 ± .02
(17.53) ± (0.51)
DimenSions in inches and (millimeters)
Reformatted 12/79
PC
,38 ± .01
(9.6S) ± (2.S4)
CASE LENGTH
--I
\- - - - -
2.0 Min .
(50.S) - - - I
CASE LENGTH
PART
NUMBER
INCHES
HVHS2500
1.5 ± .03
HVHSSOOO
2.5 ± .03
63.5 ± 0.76
HVHS7500
3.5 ± .03
88.9 ± 0.76
MILLIMETERS
38.1 ± 0.76
HVHS1QOOQ
4.5 ± .03
114.3 ± 0.76
HVHS12500
5.5 + .03
139.7 ± 0.76
HVHS15000
6.5 ± .03
165.1 ± 0.76
HVHS17500
6.5 + .03
165.1 ± 0.76
HVHS20000
6.5 ± .03
165.1 ± 0.76
378
~ i~l'iiiH"'VoiTAGE DEVICES
HVHS2500-20000
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Peak
Maximum
Reverse
Current
Inverse
Type
Voltage*
Forward
Voltage
@Io
VF
@PIV
PIV
IA
V
MAXIMUM RATINGS
Maximum
Reverse
Recovery
Time
Maximum
Maximum
Average
Rectified
Currentt
TAR
pS
100'C
!LA
120
55'C
A
5
2
100'C
Case
Length
'Ftsurge)
10
V
25°C
Maximum
One Cycle
Surge
B.3mS
100'C
A
25'C
A
A
Ins.
MM
2.2
1.3
200
100
1.5
38.1
HVHS2500
2500
!LA
10
HVHS5000
5000
10
120
10
2
2.2
1.3
200
100
2.5
63.5
HVHS7500
HVHS10000
7500
10
10
120
120
15
2
2.2
1.3
200
100
3.5
88.9
10
120
20
25
2.2
2.2
1.3
1.3
200
200
100
100
4.5
5.5
114.9
139.7
10000
12500
HVHS15000
15000
10
120
30
2
2
2
2.2
1.3
200
100
17500
10
120
35
2
2.2
1.3
200
100
6.5
6.5
165.1
HVHS17500
HVHS20000
20000
10
120
40
2
2.2
1.3
200
100
6.5
165.1
HVHS12500
165.1
*Operation and testing of devices over 10,000 V/inch may require re-encapsulation or immersion in a suitable dielectric material.
t The stated, AVERAGE RECTIFIED CURRENT ratings require no heat sinking, special mounting or forced air across the body of the
device.
NOTE: Maximum lead temperature for soldering is 250°C 3/8" (9.5mm) from case for 5 seconds.
MAXIMUM FORWARD CURRENT VS AMBIENT TEMPERATURE
(!)
z
f=
~
100
" "\
t-
Z
W
~~
75
wO
a!~
50
~G
wS:
'-
I\.
Q.a::
a
~
2S
\
(!)
<{
a::
w
>
«
-55
~
~
~
100
125
,so
175
AMBIENT TEMPERATURE ('C)
REVERSE RECOVERY TEST CONDITIONS: IF =OAmA, IA =O.BmA, IAA =O.2mA
REVERSE RECOVERY WAVE FORM
,fF
I--t .. -
t
I
'.
i
REVERSE RECOVERY TEST CIRCUIT
R.U.T.
.0'
./
~
"",..,.
I
'
..
---f>I--
511l
PULSE
GENERATOR
HEWLETT
PACKARD
214A OR
SCOI'E
TEKTRONIX
7403 01
EQUIVALENT
EQUIVALENT
T
5011
j
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
,.
lOll
'20
Reverse recovery is measured on each rectifier stack
prior to manufacture of the assembly.
379
PRINTED IN U.S.A.
HVJX15K-45K
HIGH VOLTAGE
SILICON RECTIFIERS
MULTISTAC
Fast Recovery, Medium Current
FEATURES
• PIV: From 15kV to 45kV
• 200nS Reverse Recovery
• High Surge Current Ratings
• Low Reverse Leakage
• Corona Free
DESCRIPTION
The HVJX MULTISTAC medium current
high voltage silicon rectifier assembly's
small size and high power capability meets
the stringent reliability requirements of
commercial, industrial and military applications. Reliability with economy are obtained through the use of proprietary innovations in manufacturing technique. Cylindrical die construction and metallurgical
bonds minimize electrical and mechanical
stress, contributing to long life.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage ........................•.•.....•................•. 15kVt045kV
Maximum Average Rectified Current .....................• See Electrical Specifications
Maximum One Cycle Surge 8.3mS ........................ See Electrical Specifications
Operating and Storage Temperature Range ...•...........•..........• -55 0 C to +150°C
MECHANICAL SPECIFICATIONS
HVJX15K-45K
PA
.250 ± .01
.40 ± .001 OIA.
(10.16) ± (.0254)
(6.35) ± (.254)
I
====~l~(~~---------------~~~)~~~===
- - - - C A S E LENGTH - - - -
I---
I
.250 ± .01
I
2.0 Min. _ _
(SO.8)
(6.35) ± (.254)
CASE LENGTH
PART
NUMBER
INCHES
HVJX15K
1.5 ± .02
38.1 ± .508
HVJX20K
2.0 ± .02
50.8 ± .508
HVJX22.5K
2.0
63.5 ± .508
HVJX30K
± .02
± .02
2.5 ± .02
50.8
2.5
HVJX35K
3.0 ± .02
76.2 ± .508
HVJX37.5K
3.0 ± .02
76.2 ± .508
HVJX40K
3.5
.02
88.9 ± .508
HVJX45K
3.5 ± .02
88.9 ± .508
HVJX25K
Reformatted 12/79
±
380
MILLIMETERS
±
.508
63.5 ± .508
~ iiioH""voiTAGE DEVICES
HVJX15K-45K
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Peak
Maximum
Reverse
Current
Inverse
Type
Voltage*
@PIV
PIV
IR
V
Maximum
Forward
Voltage
@Io
VF
MAXIMUM RATINGS
Maximum
Reverse
Recovery
Time
Maximum
Average
TRR
25°C
100°C
V
nS
Jl.A
25
24
Maximum
One Cycle
Surge
B.3rnS
Rectified
Currentt
Case
Length
IF{surge)
10
55°C
rnA
100°C
rnA
25°C
A
100°C
A
Ins.
MM
50
5
5
2.5
1.5
38.1
50.8
HVJX 15K
15000
Jl.A
0.1
HVJK 20K
20000
0.1
25
36
200
200
50
30
30
2.5
2.0
HVJX 22.5K
HVJX 25K
22500
25000
0.1
0.1
25
36
200
50
30
5
2.5
2.0
50.8
48
48
200
200
50
30
5
2.5
HVJX 30K
30000
0.1
25
25
50
30
5
2.5
2.5
2.5
63.5
63.5
HVJX 35K
35000
0.1
25
60
200
50
30
5
2.5
3.0
76.2
HVJX 37.5K
37500
40000
45000
0.1
25
25
60
72
72
200
50
30
5
3.0
76.2
200
200
50
50
30
30
5
5
2.5
2.5
2.5
3.5
3.5
88.9
88.9
HVJX 40K
HVJX 45K
0.1
0.1
25
*Operation and testing of devices over 10,000 Vlinch may require re-encapsulation or immersion in a suitable dielectric material.
t The stated, AVERAGE RECTIFIED CURRENT ratings require no heat sinking, special mounting or forced air across the body of the
device.
NOTE: Maximum lead temperature for soldering is 250°C 3/8" (9.5mm) from case for 5 seconds.
MAXIMUM FORWARD CURRENT VS AMBIENT TEMPERATURE
(')
z
;::
«
a::
>-
100
f"
Z
UJ
LLa::
o a::
>-'"
75
ZO
UJO
oa::«
a::
UJ5:
"'\
50
\.
\
"-a::
0
LL
ill
(')
25
\
«
a::
UJ
>
«
-55
25
50
75
,.5
100
150
175
AMBIENT TEMPERATURE 1°C)
REVERSE RECOVERY TEST CONDITIONS: I, =50mA. IR = 100mA. IRR =25rnA
REVERSE RECOVERY WAVE FORM
REVERSE RECOVERY TEST CIRCUIT
R.U.T.
.
~
f
I--
.01
Tn
'F
TRR =200n8
t
~I-
if'
'.
1
..
'
PULSE
GENERATOR
HEWLETT
PACKARD
214A 01
EQUIVALENT
.oil
,
5111
SCOPE
JIKTIONJX
740:1 01
EQUIYALENT
3411
170
I(
J
UNITRODE CORPORATION. 5 FORBES ROAD
·LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
381
PRINTED IN U.S.A.
HIGH VOLTAGE
SILICON RECTIFIERS
KX1S-100
KXS1S-100
POWERSTACK
1.5 to 3.0A
Very High Current, Miniature
FEATURES
• PIV: From 1.5kVto 10kV
• 1.5to 3.0A
• 250nS Reverse Recovery
• High Surge Ratings
• Low Reverse Leakage
• Corona Free
DESCRIPTION
The KX/KXS silicon rectifier series is a
unique concept for high current high voltage
applications. Matched junction characteristics and low stray capacitance due to
metallurgically bonded junctions eliminates
the need for external compensation networks. These rectifiers utilize HVD's cylindrical die construction, which minimizes electrical and mechanical stress, insuring long
life for commercial, military and industrial
appl ications.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage .....•.........•.............•........•.•.•......... 1.5kV to 10kV
Maximum Average Rectified Current ...................... See Electrical Specifications
Maximum One Cycle Surge 8.3mS ...•..•................. See Electrical Specifications
Operating Temperature Range .•...................................... -55°C to +150°C
Storage Temperature Range •.....•.................•................. -55° C to +175°C
MECHANICAL SPECIFICATIONS
KX1S-100
KXS1S-100
SM
.093 ± .003 DIA.
(2.36) ± (.076)
~
.40 Min.
(10.16)
II
~
G
l
.375 ± .015
(9.52) ± (.381)
.500 ± .015 DIA.
(12.7) ± (.381)
Dimensions in inches and (millimeters)
Reformatted 12/79
382
WlJ H'iG"'H""YO'LTAGE DEVICES
KX1S-100
ELECTRICAL SPECIFICATIONS (aI25°C unless noled)
Maximum
Peak
Reverse
Recovery
Time
Voltage*
Inverse
2uS
PIV
Type
Type
V
KX15
KXS15
KX20
KX25
KX30
KX40
KXS20
KXS25
KXS30
KXS40
KXS50
KXS60
1500
2000
2500
3000
4000
5000
6000
KXSSO
KXS100
SOOO
10000
KX50
KX60
KX80
KX100
IA
25"C
uA
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
Maximum
Maximum
Average
Rectified
Currentt
One Cycle
Surge
8.3mS
Voltage
@Io
VF
@PIV
250nS
MAXIMUM RATINGS
Maximum
Forward
Maximum
Reverse
Current
100"C
uA
100
100
100
100
100
100
100
100
100
KXS1S-100
10
V
5.0
5.0
5.0
7.0
7.0
7.0
11.0
11.0
11.0
50"C
A
3.00
100"C
A
1.50
120"C
A
.75
3.00
3.00
2.20
2.20
2.20
1.50
1.50
1.50
1.10
1.10
1.10
.75
.75
.55
.55
.55
.37
.75
.75
.75
1.50
1.50
.37
.37
Typical
Thermal
Impedancett
IF(surge)
Bj-L
A
200
"CIWatt
200
200
150
150
150
100
100
100
2.0
2.0
2.0
2.5
2.5
2.5
3.0
3.0
3.0
*Operation and testing of devices over 10,000 Vlinch may require re-encapsulation or immersion in a suitable dielectric material.
t The stated, AVERAGE RECTI FlED CURRENT ratings require no heat sinking, special mounting or forced air across the body of the
device.
ttTypical thermal impedance determined with rectifier mounted on infinite heat sinks 0.10" from device body using temperature of
center junction and lead temperature adjacent to body.
NOTE: Maximum lead temperature for soldering is 250"C 3/S" (9.5mm) from case for 5 seconds.
MAXIMUM FORWARD CURRENT VS. AMBIENT TEMPERATURE
!
II)
100mA
II
I I
::J
25',lOO'C
I I
LM I LAl2D-l80
lOO'C
w
INSTANTANEOUS FORWARO CURRENT (mA)
REVERSE RECOVERY TEST CONDITIONS
.... .. l-
o
II
1mA
S5'C
o~
It
-55'C
LM I LA1S-2S\
~20
>
_ In'c
0
TEST
100
10
INSTANTANEOUS REVERSE CURRENT (~A)
Z
~
V
w
lI-
III
I-
't;;"
75
TYPICAL FORWARD CHARACTERISTICS AT VARIOUS JUNCTION TEMPERATURES
----::::
::J
o
w
Q.
:;
AMBIENT TEMPERATURE ('C)
!:i
o
> •
50
,,~
It
W
,
25
100
'"
,
-ss
'"
t'.
1
g
REVERSE 'lCOVEIY rEST CIICUIT
I.U.T.
--i>t--
'II
-.l
.......
~
'/
'"
'II
T
se,,"
PULSE
'_00
"'""""-
GENu...rO!
HEWlETT
..... OC .... D
EQUIVAUN"J
21."'01
EQUIVALENT
34f,
"CO
son
J
385
PRINTED IN U.S.A.
LC15-30
HIGH VOLTAGE
SILICON RECTIFIERS
MULTISTAC
Fast Recovery
FEATURES
• PI v: From 15kVt030kV
• 300nS Reverse Recovery
• High Surge Current Ratings
• Low Reverse Leakage
• Corona Free
DESCRIPTION
The LC MULTISTAC silicon rectifiers
combine high reliability and economy to
meet the requirements of commercial and
industrial applications. Proprietary innovations in manufacturing technique, cylindrical
die construction and metallurgical bonds
are used to minimize electrical and mechanical stress, contributing to long life. The
fast reverse recovery characteristics enhance their use in high frequency power
conversion and control circuits.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage ................................................... 15kVt030 kV
Maximum Average Rectified Current •..•....•............. See Electrical Specifications
Maximum One Cycle Surge 8.3mS ........................ See Electrical Specifications
Operating Temperature Range ................•.................•...... -55°C to +90°C
Storage Temperature Range ......................................... -65°C to +150°C
MECHANICAL SPECIFICATIONS
LC15-30
SN
.020 ± .001" DJA.
(0.51 mm) ± (O.03mm)
99.9% SILVER
i
1
If----
1.500 ± .015"
(38.1mm) ± (O.38mm)
I
~
.60 min
(lS.24mml
L
.235 ± .005" 01A.
(S.97mm) ± (O.13mm)
Dimensions in inches and (millimeters)
Reformatted 12/79
386
~ tiio'li"YOiTAGE DEVICES
LC1S-30
i
MAXIMUM RATINGS
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Peak
Type
Maximum
Inverse
Reverse
Voitage*
Current
@PIV
PIV
'R
V
25'C
p.A
LC15
15000
.25
10
LC20
LC25
20000
.25
10
25000
30000
.25
10
.25
10
LC30
85'C
p.A
Maximum
Forward
Reverse
Recovery
Voltage
@Io
VF
Time
Maximum
Junction
Capacitance
@100V
Maximum
Maximum
Average
Rectified
Currentt
One Cycle
Surge
8.3mS
10
'F(surge)
CJ
TRR
25'C
85'C
rnA
rnA
nS
pF
36
300
1
25
10
2
36
1
25
10
2
36
300
300
1
25
10
2
36
300
1
25
10
2
25'C
A
*Operation and testing of devices over 10,000 Vlinch may require re-encapsulation or immersion in a suitable dielectric material.
t The stated AVERAGE RECTIFIED CURRENT ratings require no heat sinking, special mounting or forced dir across the body of the
device.
NOTE: Maximum lead temperature for soldering is 250'C 3/8" (9.5 mm) from case for 5 seconds.
MAXIMUM FORWARD CURRENT VS AMBIENT TEMPERATURE
~
§.
f-z
25
g;;
20
"
W
~,
::J
o
o
a:
..:
15
;;:
a:
~
w
"'-
10
~
()
15
o
a:
..:
;;:
a:
~
10
o
u.
UJ
CJ
..:
a:
w
>
..:
o
o
-55
2$
50
75
100
125
150
175
AMBIENT TEMPERATURE 1°C)
REVERSE RECOVERY TEST CONDITIONS: IF= 12.5mA, IR= 25mA, IRR= 6.25mA
REVERSE RECOVERY TEST CIRCUIT
REVERSE RECOVERY WAVE FOIIM
I.U.T.
J
't
'.
I
.L
--
TU
f---.
.01
~
....... 1~
{
"
\oJ
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
'..
,.
--i:*-5lS1
PULSE
SCOP!!
GENEItATOI
HEWLETT
ramtONIX
7_ 01
EQUIVALENT
PACKARD
214A 01
EQUIVALENT
son
l
34n
'20
Reverse recovery is measured on each rectifier stack prior to manufacture of the assembly .
389
PRINTED IN U.S.A.
LS15-120
LMS 15-180
HIGH VOLTAGE
SILICON RECTIFIERS
10-80mA
Standard Recovery, Miniature
FEATURES
DESCRIPTION
•
•
•
•
•
The LMSILS silicon rectifier series are designed
to meet the economical needs of commercial
and industrial requirements. Cylindrical die
construction and metallurgical bonds minimize
electrical and mechanical stress, contributing to
long life.
PIV:From1.5kVt018kV
2"S Reverse Recovery
High Surge Current Ratings
Low Reverse Leakage
Corona Free
ABSOLUTE MAXIMUM RATINGS
LS
LMS
Peak Inverse Voltage .................................................. 1.5kVto 12kV ................... 1.5kVto 18kV ........... ..
Maximum Average Rectified Current ...................................•........ See Electrical Specifications ..................... .
Maximum One Cycle Surge 8.3mS .............................................. See Electrical Specifications ..................... .
Maximum Recurrent Peak Current Surge ........................................ See Electrical Specifications .•......•..•..........
Operating Temperature Range ........................................................ -550 C to + 90 0 C .......................... .
Storage Temperature Range .......................................................... -65 0 C to +175 0 C .•....................•....
MECHANICAL SPECIFICATIONS
rl
.020"±.001"OIA
(0.51mm) ±0.03mm)
99.9% SILVER
j
LMS15-180
400"
(10.16mm)
±
.005"
(0.13mm)
8
F===~c=J
~
73"
(1B.54mm
TYPICAL
SG
~
.125" ±.OO2"OIA
(3.1Bmm) ± (0.05mm)
0
Dimensions in inches and (millimeters)
LS15-120
SH
H
.225"
(5.7~mm)
.020" ±.OO1"OIA
(0.51 mm) ± 0.03mm)
99.9% SILVER
OF===
j
~
.005"
(0.13mm)
~
73"
(1B.54mm
TYPICAL
8
.090±.002"OIA
(2.29mm) t. (0.05mm)
0
Dimensions in inches and (millimeters)
Reformatted 12/79
390
~ tiio"li"'voiTAGE DEVICES
LS15-120
Type
ELECTRICAL SPECIFICATIONS (@ 25° C unless noled)
Peak
Maximum
Maximum
Maximum
Maximum
Reverse
Forward
Reverse
Junction
Voltage*
Current
Voltage
Recovery
Capacitance
@PIV
@100Volts
Time §
@IO
Type
Pkg.
Style
SG
lMS15
LMS20
LMS25
lMS30
LMS40
LMS50
lMS60
LMS80
LMS100
LMS120
lMS150
LMS180
MAXIMUM RATINGS
Max.
Inverse
Pkg.
Style
SH
PIV
lS15
lS20
lS25
LS30
LS40
LS50
LS60
LS80
LS100
lS120
VF
IR
V
25'C
/lA
85"C
/lA
25'C
V
nS
pF
1500
2000
2500
3000
4000
5000
6000
8000
10000
12000
15000
18000
.25
.25
.25
.25
.25
.25
.25
.25
.25
.25
.25
.25
10
10
10
10
10
10
10
10
10
10
10
10
5
5
5
8
8
8
12
12
12
24
24
24
2(A)
2(A)
2(A)
2(8)
2(8)
2(8)
2(C)
2(C)
2(C)
2(0)
2(0)
2(0)
2.0
2.0
2.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Surge
Max.
One
Cycle
Surge
8.3mS
Maximum
Average
Rectified
Recurrent
Currentt
Current
CJ
TRR
LMS15-180
Peak
IF
IF (surge)
50"C
mA
85°C
mA
A
A
80
80
40
40
40
20
20
20
12.5
12.5
12.5
5
5
5
0.8
0.8
0.8
0.4
0.4
0.4
0.2
0.2
0.2
0.1
0.1
0.1
8
8
8
4
4
4
2
2
2
1
1
1
10
80
40
40
40
25
25
25
10
10
10
*Operation and testing of devices over 10,000 Vlinch may require re-encapsulation or immersion in a suitable dielectric material.
t The stated, AVERAGE RECTIFIED CURRENT ratings require no heat sinking, special mounting or forced air across the body
of the device.
NOTE: Maximum lead temperature for soldering is 250°C, 3/8 inch (9.5 mm) from case for 5 seconds maximum.
TYPICAL DYNAMIC REVERSE CHARACTERISTICS AT UTED PIV
MAXIMUM FORWARD CURRENT VS AMBIENT TEMPERATURE
~
"i\.1
€
/
0.1
1.0
.01
so
75
100
AMBIENT TEMPERATURE (OC)
INSTANTANEOUS REVERSE CURRENT (~A)
TYPICAL FORWARD CHARACTERISTICS AT VARIOUS JUNCTION TEMPERATURES
€ 20
55'C
8
III
III
!:i
§!
6
a:
o
I""""
4
"-
~I"""
o
~
III
::J
w
Z
~
-_.
-
-_
--"'"-
_
b
fr
III
::J
~
10mA
IRmA
I RRmA
I
A
40
80
20
"
40
10
C
12.5
25
6.25
D
5
10
2.5
UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064
-t'l
lMS / LS60- I 00
~
4
I I
I I
10mA
1mA
REVERSE RECOVERY WAVE FORM
I FmA
20
I I
I
I
100mA
INSTANTANEOUS FORWARD CURRENT (mA)
TEST
B
I
lMS / lSI20-IBO
I I
"
~
10
.... -S5'C
2S'C
.......
INSTANTANEOUS FORWARD CURRENT (mA)
§
l00'C
IIII
100mA
REVERSE RECOVERY TEST CONDITIONS
_...1-1-
~ I""""
Z
II
:;; 0
~
1mA
•
ow
25',lMS / lS15-25\ l00'C
"
I I
25'C
;a: " k-""'" I""'"
1~'~
Z
16
>
C
a:
25'C
-5S'C
-I-
--
~
IJ~
lMS / lS30-SO
C
;a:
~~
/
1
----::--25
-::-:----
~ ....
/
t
"
1
1---
.
'
$I"
~
/
If
391
--
REVERSf RECOVERY TEST CIRCUIT
I.U.T.
..
PULU
GENHAtOI
I..
Hfwun
'ACICAID
214A 01
feUIVALENT
Y
'C<'"
".3 ""
TEKTIONIX
fOUrvA1lNl'
son
PRINTED IN U.S.A.
HIGH VOLTAGE
SILICON RECTIFIERS
MA15-120
MX15-200
1S-200mA
Fast Recovery, Miniature
FEATURES
• PIV: From 1.SkV to 20kV
• 2S0nS Reverse Recovery
• High Surge Current Ratings
• Low Reverse Leakage
• Corona Free
DESCRIPTION
The MX/MA silicon rectifier series utilizes
manufacturing techniques that meet the
reliability standards of commercial, industrial and military users. Cylindrical die
construction and metallurgical bonds
minimize electrical and mechanical stress,
contributing to long life. The fast reverse
recovery characteristics enhance applications in high frequency power supply
circuits and voltage multipliers for television,
CRT displays and instruments.
ABSOLUTE MAXIMUM RATINGS
MA
MX
Peak Inverse Voltage
............................................ 1.SkV to 12kV ................................ 1.5kV to 20kV
Maximum Average Rectified Current ..... '" ..................... " .................. See Electrical Specifications ... , ........... .
Maximum One Cycle Surge 8.3mS ................................................... See Electrical Specifications .......... " .. "
Maximum Recurrent Peak Current Surge ............................................. See Electrical Specifications .............. ..
Operating Temperature Range ............................................................. -55°C to +150°C .................... .
Storage Temperature Range ............................................................... -65°C to +17SoC .................... .
MECHANICAL SPECIFICATIONS
~
.020" ± .001" OIA.
(0.51 mm) ± (0.03mm)
99.9% SILVER
i
~
l
73"
SG
MA1S-120
SH
400"
(1O.16.mm)
.005"
(0.13mm)
c::::J1===
(1B.S4mm)
MX1S-200
~
0)
.125" ,,002" OIA
(3.1Bmm) t (O.OSmm)
0
TYPICAL
Oimensions in Inches and (millimeters)
H.
.22S"
(S.72mm)
.020" ± .001" OIA.
(0.51 mm) ± (0.03mm)
99.9% SILVER
~I
n
(1B.S4mm)
.OOS"
(0.13mm)
~DF==='090=t
.002" DIA
(2.29mm) t (0.05mm)
TYPICAL
Dimensions in Inches and (millimeters)
Reformatted 12179
392
~ tiIOH"'VoiTAGE DEVICES
MA1S-120
ELECTRICAL SPECIFICATIONS (@25'Cunlessnoted)
Maximum
Reverse
Current
@PIV
Peak
Type
Type
Inverse
Voltage'
PIV
Pkg.
Style
SG
Pkg.
Style
SH
MX15
MX20
MX25
MX30
MX40
MX50
MX60
MX80
MX100
MX120
MX150
MX200
MA15
MA20
MA25
MA30
MA40
MA50
MA60
MA80
MA100
MA120
MAXIMUM RATINGS
Maximum
Forward
Voltage
@IO
Maximum
Recovery
Tirne§
Maximum
Junction
Capacitance
@100Volts
VF
T RR
CJ
IR
25°C
100°C
V
"A
"A
25'C
V
1500
2000
2500
3000
4000
5000
6000
8000
10000
12000
15000
20000
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
10
10
10
10
10
10
10
10
10
10
10
10
5
5
5
8
8
8
12
12
12
24
24
24
Reverse
Maximum
Average
Rectified
Current t
Max,
Recurrent
Peak
Current
Surge
Max.
One
Cycle
Surge
8.3rnS
IF
I F(surge)
10
tOO°C
rnA
125°C
pF
50°C
rnA
rnA
A
A
2.0
2.0
2.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
80
80
80
40
40
40
25
25
25
10
10
10
40
40
80
20
20
20
12.5
12.5
12.5
5
5
5
20
20
20
10
10
10
6.25
6.25
6.25
2.5
2.5
2.5
0.8
0.8
0.8
0.4
0.4
0.4
0.2
0.2
0.2
0.1
0.1
0.1
8
8
8
4
4
4
2
2
2
1
1
1
nS
250(A)
250(A)
250(A)
250(B)
250(B).
250(B)
250(C)
250(C)
250(C)
250(0)
250(0)
250(0)
MX1S-200
'Operation and testing of devices over 10,000 Vlinch may require re-encapsulation or immersion in a suitable dielectric material.
t The stated, AVERAGE RECTI FlED CURRENT ratings require no heat sinking, special mounting or forced air across the body olthe
device.
NOTE: Maximum lead temperature for soldering is 250'C 3/8" (9.5mm) from case for 5 seconds.
MAXIMUM FORWARD CURRENT VS AMBIENT TEMPERATURE
TYPICAL DYNAMIC REVEISE CHARACTERISTICS AT RATED PlY
~
I ..
U
-
.. 100
z
01
,... u
r'\
15
lio
u"
85;
..
~
50
r:
-"
25
:::l
I-
1\
"
50
125
~~
iii
II:
'"
100
:Ii
75
II:
iii
D.
iii
""
125
AMBtENT TEMPERATURE
~~
lIZ
iii
iii
50
'"
25
~
:Ii
150
115
ee)
.01
0.1
1.0
'0
'00
INSTANTANEOUS REVERSE CURRENT (I'A)
TYPICAL FORWARD CHARACTERISTICS AT YARIOUS JUNCTION TEMPERATURES
;;;20
III
_
-~J.~
25·C
I- _
lM·C
MAl MX30·5O
!--""
~
~
1-0"
~-
l - f-"
~
~16
i
MA I MXI5·25 \
I
25·C
100·C
REYERSE RECOVERY TEST CONDITIONS
§
IFmA
IRmA
A
40
80
20
B
20
40
10
C
12.5
25
6.25
0
5
10
2.5
TEST
100mA
lOrnA
INSTANTANEOUS FORWARD CURRENT (mA)
I
MA I MXI2O·200
I
l00·C
'i
I I
~
.---"""
-55·C
25·C
100.,
MA I MX60·100
I--"
I I
I I
1mA
I
I
10mA
INSTANTANEOUS FORWARD CURRENT (mA)
IEVEISE IKOVElY WAVE FORM
100mA
----
lEV ElSE IECOVO' TEST CIRCUIT
IRRmA
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
25·C
fo--"""
12
~
II
1mA
-
o
-55·C
I I
-55·C
!
"
TR R "250nS 0
t
-
I.U.T.
'II
~
~i" '"
/
"
I
>1n
"'".
GlNHATOI
MIWLITI
'AOCAlO
214A 01
IOUIVAUNT
l4n
120
1
393
PRINTED IN U.S.A.
HIGH VOLTAGE
SILICON RECTIFIERS
MS15-120
MXS15-200
10-80mA
Standard Recovery, Miniature
DESCRIPTION
The MXS/MS silicon rectifier series utilizes
manufacturing techniques that meet the
reliability standards of commercial, industrial and military users. Cylindrical die
construction and metallurgical bonds
minimize electrical and mechanical stress,
contributing to long life. The medium
reverse recovery characteristics improve the
circuit efficiency of power conversion and
control systems.
FEATURES:
• PIV: From 1.5kV to 20kV
• 2j.LS Reverse Recovery
• High Surge Current Ratings
• Low Reverse Leakage
• Corona Free
ABSOLUTE MAXIMUM RATINGS
MS
MXS
PeaklnverseVoltage ..................................... , ....... 1.5kVt012kV ................................ 1.5kVt020kV
Maximum Average Rectified Current ................................................. See Electrical Specifications ............... .
Maximum One Cycle Surge 8.3mS .................................................. See Electrical Specifications ............... .
Maximum Recurrent Peak Current Surge .............. , '" .............. , ............ See Electrical Specifications ............... .
Operating Temperature Range ............................................................. -55"Cto +150"C .................... .
Storage Temperature Range ............................................................... _65" C to +175" C .................... .
MECHANICAL SPECIFICATIONS
r1
MXS1S-200
SG
MS1S-120
SH
400"
.020"t.001"DIA
(0.S1mm)±0.03mm)
99.9%SILVER
(10.1Smm)
±
.00S"
(0.13mm)
i
~====~c==J
~
73"
(1B.54mm)
TYPICAL
~
.12S"±.002"DIA
(3.1Bmm) t (O.OSmm)
0
I~I
I-.J
Dimensions in inches and (millimeters)
.22S"
.020" t..001" DIA
(0.51mm) ±0.03m.m)
99.9% SILVER
i
~
73"
(1B.S4mm)
TYPICAL
Ii
'-
(S.7~mm)
I
OF===
~
.OOS"
(0.13mm)
o
.090 ± .002" DIA
(2.29mm) ± (0.05mm)
Q
DimenSions in inches and (millimeters)
Reformatted 12/79
394
~ H'iGH"'VoiTAGE DEVICES
MXS15-200
MS15-120
ELECTRICAL SPECIFICATIONS (a125°C unless noled)
Peak
Type
Type
Maximum
Inverse
Reverse
Voltage*
Current
Maximum
Forward
@PIV
Voltage
@loMax.
IR
VF
25°C 100°C
25°C
V
Maximum
Reverse
Recovery
MAXIMUM RATINGS
Maximum
Average
Maximum
Recurrent
Peak
@100V
Rectified
Currentt
CJ
10
IF
IF(surge)
~S
pF
50°C 100°C 125°C
mA
mA
mA
A
A
Maximum
Junction
Capacitance
Time§
Maximum
One Cycle
Surge
8.3mS
Current
Surge
PIV
Pkg
Style
SG
Pkg
Style
SH
MXS15
MXS20
MXS25
MS15
MS20
MS25
MXS30
MXS40
MXS50
V
TRR
/-I A
/-I A
1500
2000
2500
0.1
0.1
0.1
10
10
10
5
5
5
2(A)
2(A)
2(A)
2.0
2.0
2.0
80
80
80
40
40
40
20
20
20
0.8
0.8
0.8
8
8
8
MS30
MS40
MS50
3000
4000
5000
0.1
0.1
0.1
10
10
10
8
8
8
2(9)
2(9)
2(9)
1.0
1.0
1.0
40
40
40
20
20
20
10
10
10
0.4
0.4
0.4
4
4
4
MXS60
MXS80
MXS100
MS60
MS80
MS100
6000
8000
10000
0.1
0.1
0.1
10
10
10
12
12
12
2(C)
2(C)
2(C)
1.0
1.0
1.0
25
25
25
12.5
12.5
12.5
6.25
6.25
6.25
0.2
0.2
0.2
2
2
2
MXS120
MXS150
MXS200
MS120
12000
15000
20000
0.1
0.1
0.1
10
10
10
24
24
24
2(0)
2(0)
2(0)
1.0
1.0
1.0
10
10
10
5
5
5
2.5
2.5
2.5
0.1
0.1
0.1
1
1
1
'Operation and testing of devices over 10,000 V/inch may require re-encapsulation or immersion in a suitable dielectric material.
tThe stated, AVERAGE RECTlFIEOCURRENT ratings require no heatsinking, special mounting or forced air across the body olthe
device.
NOTE: Maximum lead temperature for soldering is 250°C 3/8" (9.5mm) from case for 5 seconds.
MAXIMUM FORWARD CURRENT vs AMBIENT TEMPERATURE
~
.....i
TYPICAL DYNAMIC REVERSE CHARACTERISTICS AT RATED PIV
150
.'"1,\
O! 75
.. u
ilia
u"
ei
50
~
;;
"
..
0
~
/ ~ '1
U
. . . 00
.
"
55
75
~12S
W
a:
I
i..
100
~
75
V
W
IE
...
""
100
125
/~
iii
..
iii
IE
150
.0
" .0'
175
0.'
AMBIENT TEMPERATURE 'C
~
•
~
~
--- ....
..,.......-::
ow
!
~
1111
>
aa:
~
'0
TYPICAL FORWARD CHARACTERISTICS AT VARIOUS JUNCTION TEMPERATURES
8
~
o
i!l
1.0
INSTANTANEOUS REVERSE CURRENT (,.A)
2
MS I MXS30-SO
......
~
~
...
....
-
.~
>
a
2S'C
I- 11~'C
MS I MXS15-25 \
-SS'C
~
25'C
lOO'C
~
~Z
~
III
0
1mA
10mA
INSTANTANEOUS FORWARD CURRENT (mA)
REVERSE RECOVERY TEST CONDITIONS
§
---"'"
§ ••
I ~~,~
-i
20
lDOmA
12
~
I I Ll
-S5'C
I I
2S'C
.-
lOO'C
I I
... -5S'C
_ ... 2S'C
t'f
.
~
MS I MXS60-IOO
I"'""'
I I
I FmA
IRmA
I RRmA
1 mA
10mA
INSTANTANEOUS FORWARD CURRENT (mA)
IIVEISf RKOVERY WAVE FORM
A
40
80
20
B
20
40
10
C
12.5
25
6.25
D
5
10
2.5
UNITRODE CORPORATION, 5 FORBES ROAO
LEX I NGTON, MA 02173 ' TEL. (617) 861-6540
TWX (710) 326-6509 ' TELEX 95-1064
,I,
t
I
'.
.. n
,.,.. ~
'"
395
100mA
REVERSE RKOVERY TEST CIKUIT
I.U.T.
_ l..
/
I
I I I
0
---ot---
TEST
II
I/IS I MXSI20-200
T
PULSE
GENEtAlla-
HEWLIn
'AtkAn)
2'4A 01
EQUIVALENT
Y
..
' S
0:
0:
:::l
~cs
:::l
u
U
~ 100
~100
..J
oJ
Q.
Q.
10
.l,u:S
10
1.S
1O.S
100.S
1mS
PULSE DURATION (SECONDS)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
10mS
.l,u:S
403
/JOO ii;!ilJI.
SC~/cS:
PC Se
WCS
:::l
:::l
(8.3 ms sine wave equivalent
to 3 ms square wave)
1111
1.S
10.S
lOOpS
1mS
PULSE DURATION [SECONDS)
10mS
PRINTED IN U.S.A.
UDA, UDB, UDC, UDD, UDE, UDF SERIES
Multiple Surge Rating VS. Duration
";:::z
~ 100
........... 1'--
UJ
~
80
::>
r-...
III
~ 60
~
40
UJ
g;
20
o
o
...
~
1
10
100
CYCLES AT 60 Hz. HALF SINE WAVE
Typical Forward Voltage
vs. Forward Current
10K
Typical Leakage Current VS. PIV
UDA, UDC SERIES
O"/,v
h 'II
II /
2K
E
1K
a:
a:
::>
u
II / /
a:
::> 100
u
o 50
~ 20
a:
~
/
10
/
1~~foU
:q~
Vi I
;...
a:
~
=<
.:>
z>UJ
/ VI
- 500
>Z
~ 200
...
~
UJ
+- I
I /
.05
.1
.2
5K
1K
oS
z>-
SOO
l:!
./'
~7S"C
so
100
1.25
1.5
MULTIPLY V, BY,
a:
u
o so f---
~ 20
a:
~
.01
.02
I/j
II II
VII /
I II I I
a:
I
.05
.1
.2
Z
.5
>-
"
-
UJ
"«
«
'"
UJ
..J
10
20
so
100
200
1.25
1.5
MULTIPLY V, BY,
UNITRODE CORPORATION,S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6S09 • TELEX 95-1064
125
404
./'
+7S"C
V
+12S"C
500
1K
I I
./'
SO"C
....--- +2S"C
::>
u
I
I
o .25 .5 .75
FORWARD VOLTAGE -
=<
.:>
a:
a:
/ :f / I
1
50
UDB, UDD SERIES
UJ
i1l~u
§! $/7~
I
I I
10
'I
100
Typical Leakage Current YS. PIV
//;V
::>100
---t;'S"C
1SO
% OF PIV
UDB, UDD SERIES
200
I'
10
20
I I
2K
=<
-~"C
.5
Typical Forward Voltage
VS. Forward Current
10K
SO"C
UJ
..J
I I
.25
.5
.75
FORWARD VOLTAGE -
L
.005
.01
.02
"«
«
'"
II / / II
10
UDA, UDC SERIES
.001
.002
5K
=<
1,000
100
75
50
% OF PIV
25
PRINTED IN U.S.A.
UDA, UDB, UDC, UDD, UDE, UDF SERIES
Typical Forward Voltage
VS. Forward Current
10K
UDE, UDF SERIES /
5K
2K
E
SOD
....
z
~ 200 f - -
cr
OJ 100
u
o
"
~
o
u.
~
/
I
&
~0,0
fi?
1
....
z
/
/
.25
50'C
.2
-
.5
0:
0:
OJ
I
U
/ I
UJ
Cl
"'"
"....
--
10
20
UJ
50
100
200
!I
.5
.75
FORWARD VOLTAGE -
1K
1.25
1.5
MULTIPLY V, BY,
,./
+25'C
IL
+75'C
~5'C
500
I
j
a
..J..-
.05
.1
UJ
I I
I I J
10
1
.01
.02
:;:;~I
/
20
j
-/tVl
50
0:
'/
I I II
:;( lK
-
/.
/ ;1:
Typical Leakage Current VS. PIV
UDE, UDF SERIES
125
Output Current Ratio
vs. Velocity of Air Flow
100
75
% OF PIV
50
25
Current Derating Curve
~ 1.75
100 ~"""''-,--r--r-'---'--'--'----'
~
cr 1.50
/'
OJ
en
51.25
u
~ 1.00
./
....
"- .75
>=
:> .50
::;:
I
'"
~ 50~-+--~--~-'~'+'.'-,~---+--~~
:/
OJ
...J
Cl
Z
/'
V
o
.25
100
V-
200
300
400
500
bOO
VELOCITY OF AIR (LFM)
Current Derating Curve
Current Derating Curve
100
100
'.
Cl
>=
"
Cl
"
Z
"
Z
i=
50
"
0:
50
?P
,,
0
50
100
150
CASE TEMPERATURE ('C)
*
,
I
I
0
200
0
50
100
150
CASE TEMPERATURE I'C)
200
Oil Immersed
Air Cooled
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
.'.
,
"
0:
a
__L--L__L--L__L--L~
50
100
150
200
AMBIENT TEMPERATURE ('C)
O~-L
405
PRINTED IN U.S.A.
RECTIFIER ASSEMBLIES
UFB, UFS, USB, USS SERIES
High Voltage Stacks,
Standard and Fast Recovery
FEATURES
• Controlled Avalanche Characteristics
• Only Fused-in-Glass Diodes Used
• High Forward and Reverse Surge Capability
• Transfer Molded for Void less Construction
• Modular for Easy Stacking
• PIV: from 2.5 kV to 15kV
• Recovery Times: to 500ns
• Continuous Ratings: to 2.3A
DESCRIPTION
These assemblies uniquely combine a
versatile stackable design with all the
requirements for reliable high voltage
operation. All modules are suitable for
bridge or series operations.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, USS Series .
. 5.0 kV to 15kV
Peak Inverse Voltage, USB Series .
.. 2.5 kV to lOkV
. ................... 5.0kV to lOkV
Peak Inverse Voltage, UFS Series .
. 2.5 kV to 7.5 kV
Peak Inverse Voltage, UFB Series.
Maximum Average D.C. Output Current ........................... See Electrical Specifications
Non-Repetitive Sinusoidal Surge (8.3ms)
.. See Electrical Specifications
........ -65°C to +l50°C
Operating and Storage Temperature Range
MECHANICAL SPECIFICATIONS
UFB, UFS, USB, USS SERIES
I
~
Il
j
235-r---1
--
10-32
THRO
UNF·2A
Ol!
I-
040 TYPICAL
020
---
110
980
10·32
THRO
UNF-2B
Typical Weight: USS & UFS Series -
Dimensions in inches.
1.0 ounce
28 grams
use & UFe Series -1.1 ounce
31 grams
MARKING
Type number marked on unit.
Polarity -
Cathode connected to stud.
406
om
_UNITRDDE
UFB, UFS, USB, USS SERIES
Electrical Specifications (at 25'C unless noted)
Maximum Ratings
Maximum
Maximum
Reverse
Transient
Maximum
Maximum
Type
Standard
Recovery
PIV
kV
USS5
USS 7.5
USS10
USS 15
USB 2.5
USB5
USB 7.5
USB 10
Standard
Recovery
Forward
Voltage Drop
Fast
Recovery
UFS5
UFS 7.5
UFS 10
Fast
Recovery
UFB2.5
UFB5
UFB 7.5
5.0
7.5
Leakage
Current
@ PIV
Reverse
Recovery
Time
Energy
Absorr. .ion
ILA
ns
joules
9V@0.6A
13V@0.5A
17V@0.3A
25V@0.2A
5V@ l.lA
9V@0.7A
13V@0.5A
17V@O.4A
12V@0.5A
18V@OAA
23V@0.3A
6V@O.9A
12V@0.6A
18V@0.4A
10
15
2.5
5.0
7.5
10
5.0
7.5
10
2.5
5.0
7.5
5
-
10
-
5
500'
350t
10
500'
350t
Average
D.C. Output
Current
TA _ 25 C
T, = 5O'C
AIR
OIL
Amps
Amps
Non~Repetitiye
Sinusoidal
Surge
(8.3ms)
G
Amps
1.5
2.5
3.0
5.0
3.0
6.0
9.0
12
0.60
0.45
0.35
0.25
1.1
0.91
0.71
0.51
25
1.1
0.68
0.53
0.43
2.3
1.5
1.2
1.0
80
l.5
2.5
3.0
3.0
6.0
9.0
0.50
0.38
0.30
0.90
0.75
0.58
20
0.90
0.58
0.45
2.0
1.3
1.0
70
*Measured in a reverse recovery circuit switching from lA forward to lA reverse current recovering to a.SA.
tMeasured in a reverse recovery circuit switching from .SA toward current to lA reverse current, recovery to .25A.
Output Current Ratio
vs. Velocity of Air Flow
_
~ 100
" 2.50
Z
~ 2.25
~ 2.00
~ 1,75
;::: 1.50
'" 1.00
0:
0:
:J
'u 60
I-
:J
0.
I-
'"
~ 80
...o
80 100 120 140 160 180
if.
w 20
«
...0
FIG. I
if.
FIG.2
0
20 40 60
~
""- ,
I-
100 200 300 400 500 600
V - VELOCITY OF AIR (LFM)
I'\.
0:
:J
~
0
/
""
I-
Z
0
0:
Output Current
vs. Ambient (Oil) Temperature
...J
2. 100
:J 40
V
...J
I
Z
w 80
/
0.
Output Current
Ambient (Air) Temperature
""'-
I-
V
...o
:J
~ 1.25
....-
V
a:
VS.
60
:J
1\
0.
I-
:J 40
o
ow
\
~ 20
0:
1
FIG. 3
20 40 60 80 100 120 140 160 180
TEMPERATURE ('C)
TEMPERATURE ('C)
Application example: The rectifier is to be used in a cabinet at 6O'C with ambient
air moving at 400 LFM. The rating is reduced (Fig. 2) by a factor of 0.81 due to the
elevated temperature, but it is enhanced by 2 X (Fig. 1) due to the air flow. Hence
the DC output current is 0.81 x 2, or 1.6 times the 25'C air rating.
Multiple Surge Current vs. Duration
Forward Pulse Current vs. Duration
10K
5K
$
l!:
w
2K
IK
500
200
~ 100
U 50
0:
20
10
.Ills
100
SQUARE PULSE
I
t:::::::
t'~
!""=I::::-
$
I
_ w 80
I-Z
Z -
w'"
i'~ USB
I'P:::: t::,. UFB'" ~
~~
I
lOpS
I
lOOtis
0: ...
0: ...J
..........
u J:
F=::t-.
p:::~
I
40
«
20
w
UFB
r-1--1-
USS & UFS
1--.
0.
r-;:
1m.
...
0
_t~
........
~SB &
:J«
o
IOms
DURATION
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064
..........
60
407
I
10 20
SO 100 200
CYCLES OF 60Hz SINEWAVE
500 1000
PRINTED IN U.S.A.
UFB, UFS, USB, USS SERIES
Typical Forward Voltage
YS. Forward Current
10
USB SERIES
II
III 1/'
~
!;:
~
II
.2
::>
()
o
~
~ .02
+175'~i
.01
.005
.002
II
+toi~ r-~
I
V
.001
~
1
~
.5
V '/
~
.2
~
.1
::>
~ .05
0:
1+ 7S'C
~ .02
.01
,J
I
l
UFS SERIES
5:
.002
.5
Z
OJ
~
::>
()
o
.2
.1
:t .02
/ II
1// I I
.... 05
I /
0:
~ .02
.01
.005
.002
.001
I
+1 S'C
rrv-
./
A 'I
/ I
i:i.J
I
I
---
.5
1
2
f ~S
II
10
'C
o
.2
.4
.6
.8
1.0 1.2 1.4
FORWARD VOLTAGE - MULTIPLY Vf BY,
UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON. MA 02173 ' TEL. (617) 861·6540
TWX (710) 326-6509 ' TELEX 95-1064
Typical Leakage Current YS. PIV
.005
.01
20
50
100
C
125
100
75
50
% OF PIV
408
fZ
~~,L I-
---
+2r~- l -
.3 0.1
"'0:0:
0.2
0.5
::>
7S'C
I
USS AND UFS SERlE
:t
I,...-
-sO'C
o
.2
.4
.6
.8
1.0 1.2 1.4
FORWARD VOLTAGE - MULTIPLY V, BY,
.002
--
.2
>- +2S'C
I
II
V
.mil
2S'C
+25'C
It
II
Lh
.05
()
"~
+100'C
.02
~ .1
~I
I
/
iT 1/
.002
-~sd'c
z
OJ
~ .05
.005
USB AND UFB SERIES
.3
gj
+17S'C
.02
.01
.01
j/
0:
~
II
.005
...
~ .05
0:
Typical Leakage Current YS. PIV
.001
10
II !I II
0:
.2
.4
.6
.8
1.0 1.2 1.4
FORWARD VOLTAGE- MULTIPLY V, BY,
Typical Forward Voltage
YS. Forward Current
/lI:jI
.2
.1
o
II I1I1
II
r.- II +2S'C
I
.001
o
.2
.4
.6
.8
1.0 1.2 1.4
FORWARO VOLTAGE- MULTIPLY V, BY,
~
::>
()
itrV- II If-I-rf
.002
III 1/11
.5
OJ
I
.005
II
...
i/
Z
/ I
0:
+2S'C
~
1/1/,/
1/ III
OJ
II
/
V
~rJrl
I
I
II J
.05
UFB S'ERIES
USS SERIES
II/II
.1
Typical Forward Voltage
YS. Forward Current
10
10
II
.5
OJ
0::
Typical Forward Voltage
YS. Forward Current
'-""
()
.."
OJ
"
I,...+12~'C
I I
25
~- I..... ./
OJ
.J
I
10
-1o-"+12S'C
20
50
100
200
125
100
75
50
%OF PIV
25
o
PRINTED IN U.S.A.
RECTIFIER ASSEMBLIES
UG8, UGO, UGE, UGF SERIES
High Voltage Doorbell® Modules
Standard and Fast Recovery
FEATURES
DESCRIPTION
•
•
•
•
•
•
•
This series of high-voltage, high-current
stacks that incorporate a unique modular
design makes it·particularly well-suited for
high power applications such a5 in radar
systems as charge, hold-off and clipper
diodes.
Current Ratings: to lOA
PIV: 2.5 kV to lOkV
Recovery Times: to SOOns
Only Fused-in-Glass Diodes Used
Controlled Avalanche Characteristics
Stackable to 600IW
Modular Package for Easy Stacking
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage
UGB, UGD Series.
UGS, UGF Series .
Maximum Average D.C. Output Current.
Non-repetitive Sinusoidal Surge (8.3ms)
Operating and Storage Temperature Range .
........ SkVto 10kV
..... ... ..2.5 kV to 7.5 kV
................. See Electrical Specifications
... See Electrical Specifications
to +1SO"C
. -wc
MECHANICAL SPECIFICATIONS
UGB, UGD, UGE, UGF SERIES
3.487" OIA. MAX.
87.Smm
3it~_
2s:m
38"-24
1-;::
(
"\
~30"D~
MAX.
25.Smm
1.02J MAX.
2S.42mm
I
Polarity - Cathode connected to base.
Part Number - On base of unit.
Typic.1 Weight -
1.0 ounces
200 grams
EXTENDER PLATE G
_________ . " o ; . m · - - - - - - - - - - 1
-r
(
:t:
r
I
~II--
.0620 Radius
1/1" ±.OlO
.380 Diam. ±.005 :
Dimensions in inches.
Ooorbell@ is a registered trademark of Unitrode Corporation
Typical Weight -
409
9.25 ounces
265 grams
lliD
_UNITRDDE
UGB. UGO. UGE. UGF SERIES
Electrical Specifications (at 25'C unless noted)
Maximum Ratings
Maximum Avera"ge D.C. Output
Current
Type
PIV
Maximum
Forward
Voltage
Drop
Maximum
Leakage
Current
@PIV
Maximum
Reverse
Recovery
Time
#A
ns
kV
Standard
Recovery
Fast
Recovery
UGE-2.5
UGE-S
UGB-5
UGE-7.5
UG8-7.S
UGB-10
UGF-2.5
UGF-5
UGO-5
UGF-7.S
UGO-7.5
UGO-10
2.5
5
5
7.S
7.5
10
2.5
S
S
7.5
7.5
10
SV@3.30A
lOV@2.50A
9V@2.20A
13V@1.60A
13V@1.50A
17V@1.10A
6V@2.50A
llV@1.80A
llV@ 1.60A
17V@1.20A
17V@1.l0A
22V@0.8SA
10
15
S
10
5
5
10
10
5
10
5
5
Amps
Tc - 60°C
Air
with Extender
Plate"'*
Amps
6.60
5.00
4.40
3.30
3.00
2.30
S.OO
3.75
3.30
2.S0
2.25
1.75
8.25
6.25
5.50
4.10
3.75
2.8S
6.25
4.70
4.10
3.10
2.80
2.20
Tc
-
SOO'
350t
= 75'C
Air
Non-repetitive
Sinusoidal
Surge
(8.3ms)
Maximum
Reverse
Amps
Tc _100'C
Amps
Absorption
joules
10.00
7.S0
6.60
5.00
5.00
3.S0
8.00
6.00
4.80
4.00
3.50
2.S0
200
200
100
200
100
100
150
lS0
80
150
80
80
8
14
7
20
10
14
8
14
Tc
= SO°C
Oil
Transient
Energy
Y
20
10
14
*Measured in a reverse recovery circuit switching from 1.OA forward to 1.0A reverse current recovering to O.SA.
tMeasured in a reverse recovery circuit switching from O.SA forward to 1.0A reverse current recovering to O.25A.
*"'These ratings are based on using "extender plates" that provide additional surface area to radiate heat. Because of possible corona effects
caused by scratches on these plates, extreme care is necessary in their handling and they are not recommended where the working voltage
exceeds 7.5KV/module. They should be carefully polished prior to installation.
Forward Pulse Current VS. Pulse Duration
Forward Pulse Current VS. Pulse Duration
10K
~
~
...
Z
100
c
50
'"~
20
cr
a
u.
r/
.01
.02
1
/
1J;41it~
:;: fj: '" /'
u
I
I-
z
w
I
.5
J...-
.05
.1
.2
50"C
.5
,/"
+25"C
W
'"
"''""
W
..J
I I I
1/
I :I
.25
.1
.1
UGE. UGF SERIES
U
I I
o
25
:::J
II
1
50
cr
cr
/I I
10
75
Typical Leakage Current VS. PIV
I, II I
lK
100
% OF PIV
/ Vi,
2K
V
+125"C
lK
Typical Forward Voltage
VS. Forward Current
10K
~
r--
L
+75"C
500
.25
.5
.75
1
1.25
1.5
FORWARD VOLTAGE- MULTIPLY V, BY:
5K
-
cr
cr
:::J
U
/ II I I
I
L.
---+25"C
z .5
w
I
I
II
,/
50"C
I-
~~"~~U
K' 8 v, IS?~
:r.:;:.:;-.
I
/
/ /
10
UGB. UGD SERIES
.05
.1
.2
;;:
/ II III
cr
:::J 100
u
Cl
.01
.02
V/; tI
2K
cr
Typical Leakage Current vs. PIV
UGB. UGD SERIES
5K
1,000
10
20
L
___ +75"C
50
100
200
500
.75
FORWARD VOLTAGE -
1
1.25
125
100
75
50
~5"C
25
% OF PIV
MULTIPLY V, BY:
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
-r-
lK
1.5
411
PRINTED IN U.S.A.
UGB. UGD. UGE. UGF SERIES
Output Current Ratio
vs. Velocity of Air Flow
Current Derating Curve
~ 1.75
~ 1.50
w
/'
13'" 1.25
u
~ 1.00
w
....
0..
.75
;::
....
:> .50
::;:
V
V
L
"
'"z
~
I'"
50
0:
~-+---r--~-'~'~--~-t---r~
'.
#.
oL--L~L--L~L-~~=-~-7
o
I
SO
100
150
AMBIENT TEMPERATURE ('C)
200
>c: .25
100
V-
200
300
400
500
600
VELOCITY OF AIR (LFM)
Current Derating Curve
Current Derating Curve
100
100
\
'"z;::
'"
'";::z
"
50
"
0:
" " ,,
,,
50
0:
#.
#.
\
,
I
I
0
0
50
100
150
CASE TEMPERATURE ('C)
Air Cooled
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064
0
200
412
0
SO
100
150
CASE TEMPERATURE ('C)
Oil Immersed
200
PRINTED IN U.S.A.
RECTIFIER ASSEMBLIES
US12-US200A
USR12-USR180A
High Voltage Stacks, .125 Amp to 1 Amp,
Standard and Fast Recovery
FEATURES
• Controlled Avalanche Characteristics
• Recovery Times: to SOOns
• Transfer Molded for Voidless Encapsulation
• High Forward and Reverse Surge Capability
• PIV: from 1200 to 20, OOOV
• Only Fused-in-Glass Diodes Used
DESCRIPTION
This series of High Voltage, Medium
Current Stacks are assembled from
hermetically sealed, controlled avalanche
individual diodes. Therefore, they offer
the ultimate in reliability for such applications as clipper diodes, back swing
diodes and hold-off diodes in pulse
modulators.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage.
Maximum Average D,C, Output Current . , . , .
Non-Repetitive Sinusoidal Surge (S.3ms)
Operating and Storage Temperature Range.
Output Current Ratio vs
Velocity of Air Flow
2.50
Output Current vs
Ambient (Air) Temperature
~~-""""-.----r--'-----,
"~ 2.25 I--+-+-f--+--b~
«
II:
!!:
«
2.00
~ 1.75 1--+-+~f-'7i-++-1
~100
::>
">-
z
'"
II:
II:
1.25
1--.4''''-+-1--+-''''-+-1
I
~ 20
200
300
400
500
V - VELOCITY OF AIR (LFMi
600
z>~
I"'.
if.
80
I"-
0::
:>
u 60
1"-
""
«
II:
:5
100
40
Output Current vs
Ambient (Oil) Temperature
:J
§loo
I"-
>-
:> 40
\
o
o
20 40 60 80 100 120 140 160 180
AMBIENT (AIR) TEMPERATURE ('C)
1
«
II:
...o
if.
20 40
60 80 100 120 140 160 180
AMBIENT (OIL) TEMPERATURE ('C)
[ill]
413
f\
1\
~ 20
1\
0
1""-
50..
0..
o
o
51.50
80
:>
u 60
>:>
5
'"-'0..
i
.........,,' 1200 to 20,000V
. ........ See Electrical Specifications
. 20A
.. ". , ... ,',., .. , -6S'C to +150'C
_UNITRDDE
US12·US200AUSR12·USR180A
Electrical Specifications (at 25'C unless noted)
Maximum Leakage
Type
PIV
Current at PIV
TA -100'C
Maximum Reverse
Maximum Forward
Recovery
Body
Voltage Drop
Timet
Size
TA _ 25°C
V
pA
pA
1200
1500
1800
2000
2S00
3000
3S00
4000
4500
5000
6000
7000
8000
10000
12000
15000
18000
20000
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
2.0V@ 400mA
3.0V@ 400mA
3.0V@ 400mA
4.0V@ 400mA
5.0V@ 400mA
6.0V@400mA
7.0V@ 200mA
7.0V@200mA
S.OV@ 200mA
9.0V@ 200mA
1O.OV @ 200mA
12.0V @ 200mA
14.0V @ 100mA
17.0V @ 100mA
21.0V @ 100mA
26.0V @ 100mA
31.0V·@ 100mA
34.0V @ lOOmA
1200
1500
2000
2500
3000
3500
4000
4500
5000
6000
7000
8000
10000
12000
15000
18000
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
150
150
150
150
150
150
150
150
150
ISO
150
150
ISO
ISO
ISO
ISO
3.3V@400mA
4.0V@400mA
5.5V@400mA
6.6V@400mA
7.7V@400mA
8.8V@200mA
9.9V@200mA
11.0V @ 100mA
13.0V @ 100mA
15.4V @ 100mA
17.6V@ 100mA
2O.0V @ 100mA
24.0V @ 100mA
31.0V @ 100mA
33.0V @ lOOmA
35.0V @ 100mA
Maximum Ratings
Max, Avg. D.C.
Output Current
T, _ 25'C
T, _ SO'C
(Air)
(Oil)
ns
mA
mA
SA
SA
SA
SA
S8
S8
SC
SC
SO
SO
SO
SO
SE
SE
SE
SF
SF
SF
1000
SOO
700
600
600
SOO
400
350
330
330
300
300
2SO
250
200
200
ISO
180
2500
SA
SA
S8
S8
SC
SC
SO
SO
SO
SO
SE
SE
SE
SF
SF
SF
7SO
600
500
400
400
350
300
2SO
250
220
220
1850
1S00
12SO
1000
1000
850
750
625
625
500
500
400
400
300
300
250
Standard Recovery
US 12
US 15
US IS
US 20
US 25
US 30
US 35
US 40
US45A
US 50A
US 60A
US 70A
US 80A
US 100A
US 120A
US 1SOA
US 180A
US 200A
-----
---
2000
1750
1500
1500
12SO
1000
8SO
750
750
620
620
500
500
400
400
360
360
Fast Recovery
USR 12
USR 15
USR 20
USR 25
USR 30
USR 35
USR 40A
USR 45A
USR SOA
USR 60A
USR 70A
USR 80A
USR 100A
USR 120A
USR 150A
USR lSOA
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
200
200
150
150
125
tMeasured in a reverse recovery circuit switching from lOrnA forward to IOmA reverse current recovering to 5mA.
Reverse Recovery Circuit
1KU
+
20V D.C.
9900
D.U.T.
lOll
=
UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
414
PRINTED IN U.S.A.
US12-US200A USR12-USR180A
Typical Forward Current
vs. Forward Voltage
Typical Forwarll Current
vs. Forward Voltage
10
Typical Leakage Current vs. Voltage
.01
10
f-
.02
-- -10'~
r-
.05
~ VI/
i?
II I
.5
w
0::
.2
0::
G .1
o
0::
~
/
.05
~02
~
/ / /,1
II I /
!;:
I
.005
/
I II
.00 1
,2
.4
(,)
~
0::
.8
FORWARD VOLTAGE -
1.0
+lOrct
1.2
.002
i?
I-
Z
UJ
0::
0::
:;)
(,)
MULTIPLY V, BY:
.4
.6
~
'"""'"'
l.us
1.0
-
UJ
Ii:
8a.
I
I I
US AND USR SERIES
120 110 100 90 80 70 60 50 40 30 20 10 0
%OF P.I.V.
60
G
~
~
40
en
~
... 20
Ims
l
Multiple Forward Surge Rating
~ 100
-....
100,u5
--
(
M
+12S'C
~
0::
o
lOms
10
DURATION
UNITRODE CORPORATION· S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
500
1.2
"
~
10,u5
50
100
z
US
~
20
200
0::
I
O.l,us
,8
o
J
10
-'
+2S'C
~ 80
200
100
50 r--USR/
20
w
+~S'~-r-
I -I
10
1,4
FORWARD VOLTAGE- MULTIPLY V, BY:
.2
f- DUR~Wi:rN;:H6~ER~~~~IWJEV~uLSE
2000
1000
~
500
-.....:::
I
II
r,
1 II I -5O~C
Forward Pulse Current YS Duration
10000
SOOO
w
«
""«
..-
-- ~CI-
:;)
(,)
I USR SERIES
I
,001
1.4
I
/
.005
/ us SERIES
W
0::
0::
/
II /
/ /
+l7S'C
.01
j
I
/
...0,02
+2S'C
-SO'C
.6
.05
0:::
I-
Z
III1//
.1
o
/
7/
+IOi'C /
.002
:;)
/
I. i
.2
--
.2
.3- ,5
I VI II
w
~
~
/; VL
.5
Z
//I
-tS'C /
.0 I
,1
~ '/
'---100
1,000
CYCLES AT 60Hz HALF SINE WAVE
415
PRINTED IN U.S.A.
US12-US200A USR12-USR180A
MECHANICAL SPECIFICATIONS
r~
t --l
.75
MIN ·
.50 MAX .
12.70 mm
===C:J1====
.028 DIA
TIN'D CU.
}
BODY SA
@
---110.187" MAX.
4.75 mm
======~C====O========
BODY SB
~~}~~
. -01
1.125" MAX.
28.60 mm
L
~~
BODY SC
.187" MAX.
4.75 mm
.250
MAX.
l~l~'-T~~i'l
======~~F=======t
.032 DIA
TlN'D. CU.
1,rJ
._Qt_
LJ
.375
MAX.
, -r-
BODY SO
.250
MAX.
I~~~:-I-W:~'-I
===11
()
@
.032 DIA
TIN'D CU.
==1
1=1
.032 DIA
TIN'D. CU.
1,~
-.rh: ..MAX.
375
W
j,-r-
(
\>
BDDY SE
.078 R TYP.
.400
MAX.
r~~~'I~~5X'~
====91
===+
1=1
.032 DIA.
TIN'D. CU.
l,W rl
_rt"i-:AOo
MAX.
i'l
BODY SF
.078 R TYP.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
416
PRINTED IN U.S.A.
HIGH VOLTAGE
SILICON RECTIFIERS
VX1S-S0
MULTISTAC
Fast Recovery
FEATURES
•
•
•
•
•
DESCRIPTION
The VX MUL TISTAC silicon rectifier
assemblies meet the stringent reliability
requirements of commercial, industrial and
military users through the use of proprietary
innovations in manufacturing technique.
Cylindrical die construction and metallurgical bonds minimize electrical and mechanical stress, contributing to long life. The
fast reverse recovery characteristics enhance applications in high frequency power
conversion and control circuits.
PIV: From 15kVto 50kV
250nS Reverse Recovery
High Surge Current Ratings
Low Reverse Leakage
Corona Free
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage. . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 15kV to 50kV
Maximum Average Rectified Current ...................... See Electrical Specifications
Maximum One Cycle Surge 8.3 mS ........................ See Electrical Specifications
Operating Temperature Range ....•......•............................-55°C to +150°C
Storage Temperature Range .............................•...... , ..... -65°C to +150°C
MECHANICAL SPECIFICATIONS
(O.79mm) ~(O.05mm)
TINNED COPPER LEADS
LENGTH 1.500" (38.1 mm) MINIMUM
PART
NUMBER
. VX1S
VX20.25
VX30. 40. 50
CASE LENGTH
INCHES
1.50
+
03
200· 03
250-03
MILLIMETERS
3810:<:0.76
50 80
+
a 76
63.50 + 0 76
Dimensions in inches and (millimeters)
Reformatted 12179
417
~
tiio'ti"'voiTAGE DEVICES
VX1S-S0
ELECTRICAL SPECIFICATIONS (@25'Cunlessnoted)
Maximum
Peak
Maximum
Reverse
Inverse
Voltage*
Reverse
Recovery
Time
Current
@PIV
I R
25'C
100'C
/1A
/1A
250nS
PIV
Type
V
VX15
15000
0.1
Maximum
Forward
Voltage
@Io
VF
MAXIMUM RATINGS
Maximum
Average
Rectified
Currentt
Maximum
Junction
Capacitance
@100V
Maximum
Case
Surge
Length
8.3mS
I F (surge)
I 0
CJ
One Cycle
V
pF
50'C
mA
100'C
mA
A
Ins
MM
10
24
1.0
25
10
2
1.50
38.10
VX20
20000
0.1
10
36
1.0
25
10
2
2.00
50.80
VX25
25000
0.1
10
36
1.0
25
10
2
2.00
50.80
VX30
30000
0.1
10
48
1.0
25
10
2
2.50
63.50
VX40
40000
0.1
10
48
1.0
25
10
2
2.50
63.50
VX50
50000
0.1
10
60
1.0
25
10
2
2.50
63.50
* Operation and testing of devices over 10,000 V/inch may require re-encapsulation or immersion
in a suitable dielectric material.
t The stated AVERAGE RECTIFIED CURRENT ratings require no heat sinking, special mounting or forced air across the body of the
device.
NOTE: Maximum lead temperature for soldering is 250' C 3/8" (9.5 mm) from case for 5 seconds.
MAXIMUM FORWARD CURRENT VS. AMBIENT TEMPERATURE
«
E
I
25
i\.,
fZ
W
II:
II:
20
:J
r\.
()
~
15
\
~
@5
10
\
u..
W
"«w
II:
>
«
0
-55
25
so
75
100
\
125
ISO
AMBIENT TEMPERATURE ('C)
REVERSE RECOVERY TEST CONDITIONS: IF = 12.5mA, IA= 25mA, IRA= 6.25mA
REVERSE RECOVERY WAVE FORM
,
I.
TAR = 250nS
-i*--
I--
.01
TRI- -
lK
51n
SCOPE
PULSE
GENERATOR
·t
....... ~
TEKTRONIX
7403 OR
EQUIVALENT
HEWLETT
PACkARD
I ..
214A OR
EQUIVALENT
/~
I.
l
REVERSE RECOVERY TEST CIRCUIT
R.U.T.
son
34n
120
f
J
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173. TEL. (617) 861'6540
TWX (710) 326-6509 • TELEX 95-1064
418
PRINTED IN U.S.A.
HIGH VOLTAGE
SILICON RECTIFIERS
VXS1S-S0
MULTISTAC
Standard Recovery
FEATURES
• PIV: From 15kV-50kV
• 2"S Reverse Recovery
• High Surge Current Ratings
• Low Reverse Leakage
• Corona Free
DESCRIPTION
The VXS MUL TlSTAC silicon rectifier
assemblies meet the stringent reliability
requirements of commercial, industrial and
military users through the use of proprietary
innovations in manufacturing technique.
Cylindrical die construction and metallurgical bonds minimize electrical and mechanical stress, contributing to long life. The
2 microsecond reverse recovery time improves the circuit efficiency of power
conversion and control systems.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Vollage ..•..................•.•.....•................ " ... 15 kV to 50 kV
Maximum Average Rectified Current ...................... See Electrical Specifications
Maximum One Cycle Surge 8.3 mS ........................ See Electrical Specifications
Operating Temperature Range .•.. " ..•........•..................... -55°C to +150°C
Storage Temperature Range ................•........................ -65°C to +150°C
MECHANICAL SPECIFICATIONS
30
r--- ,~~" ---l
~
I
.031 < 002
(0.79mm) < (0.05 mmJ
TINNED COPPER LEADS
LENGTH 1 500" (38.1 mm) MINIMUM
VXS1S-S0
t .. 02
~·~~ll-
SP
~62mm~G
PART
NUMBER
CASE LENGTH
INCHES
MILLIMETERS
VXS15
1.50±-.03
36.10±-0.76
VXS20.25
2.00 ± .03
50.80 iO.7S
VXS30, 40. 50
2.50 ± .03
63.50 ±.0.76
DimenSIons In inches and (miJjJmeters)
Reformatted 12/79
419
~ H'io"ti""YOiTAGE DEVICES
YXS15-50
ELECTRICAL SPECIFICATIONS (@25°Cunlessnoted)
Type
Peak
Maximum
Inverse
Voltage*
Reverse
10
Reverse
Maximum
Junction
Capacitance
100°C
/lA
V
/lS
pF
50°C
rnA
100°C
/lA
15000
0.1
10
24
2
1
25
12.5
V
VXS15
C J
Recovery
Time
I R
2SoC
@100V
T RR
Voltage
@IO
@PIV
PIV
VF
Maximum
Current
MAXIMUM RATINGS
Maximum
Average
Rectified
Currentt
Maximum
Forward
Maximum
One Cycle
Case
Surge
Length
8.3mS
I F (surge)
A
rnA
Ins
MM
2
1.50
38.10
VXS20
20000
0.1
10
36
2
1
25
12.5
2
2.00
50.80
VXS25
25000
0.1
10
36
2
1
25
12.5
2
2.00
50.80
VXS30
30000
0.1
10
48
2
1
25
12.5
2
2.50
63.50
VXS40
40000
0.1
10
48
2
1
25
12.5
2
2.50
63.50
VXS50
50000
0.1
10
60
2
1
25
12.5
2
2.50
63.50
*Operation and testing of devices over 10.000 V/inch may require re-encapsulation or immersion in a suitable dielectric material.
t The stated AVERAGE RECTIFIED CURRENT ratings require no heat sinking. special mounting or forced dir across the body of the
device.
NOTE: Maximum lead temperature for soldering is 250° C 3/8" (9.5 mm) from case for 5 seconds.
MAXIMUM FORWARD CURRENT VS. AMBIENT TEMPERATURE
<
E
I
fZ
UJ
a:
cr:
25
~
20
'"'-
:::>
()
0
a:
15
<
;:
a:
0
10
u.
UJ
\..
Cl
<
a:
UJ
>
<
0
-55
25
50
75
100
"
"
REVERSE RECOVERY TEST CONDITIONS: I. = 12.SmA. I R= 2SmA. IRR= 6.2SmA
REVERSE RECOVERY WAVE FORM
,f.
I
'.
i
REVERSE RECOVERY TEST CIRCUIT
R.U.T.
.01
-TIR--
t
I
1/i--""'
150
125
AMBIENT TEMPERATURE (OC)
~
I RR
,.
---i>I--
51ll
SCOPE
TEICIIlONX
PULSE
GENERATOR
7_ 01
HEWLETT
EQUIVALENT
PACKARD
214A OR
EQUIYAlENT
T
son
34n
120
J
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861.6540
TWX (710) 326·6509 • TELEX 95-1064
420
PRINTED IN U.S.A.
HIGH VOLTAGE RECTIFIERS, RECTIFIER
MODULES & MULTIPLIERS
PAGE
PART NUMBER
DESCRIPTION
PAGE
PART NUMBER
366
366
366
366
lN3643 (HVE10)
lN3644 (HVE15)
lN3645 (HVE20)
lN3646 (HVE25)
lN3647 (HVE30)
lN3764
lN5181 (HVE40)
lN5l82 (HVE50)
lN5l83 (HVE75)
lN5184 (HVElOO)
357
357
357
360
360
360
360
360
360
362
362
362
362
lN5597, J
lN5600, J
IN5603, J
688-10
688-12
688-15
688-18
688-20
688-25
CAX15
CAX20
CAX25
CAX30
*
l.OkV
l.5kV
2.0kV
2.5kV
3.0kV
3.0kV
4.0kV
5.0kV
7.5kV
10kV
370
370
370
370
370
370
372
372
372
372
372
372
372
374
374
374
374
374
374
374
376
376
376
376
376
376
376
376
376
378
378
378
378
378
378
378
378
380
380
380
380
380
380
380
380
380
364
364
364
364
364
364
364
364
364
382
382
382
382
382
382
382
382
382
RECTIFIER MODULE
10kV
5.0kV
5.0kV
10kV
12kV
l5kV
l8kV
20kV
25kV
l5kV
2.0kV
25kV
30kV
HIGH VOLTAGE
RECTIFIER
364
364
364
364
364
364
364
364
364
366
366
366
366
366
366
366
366
366
366
366
366
366
366
366
366
366
366
368
368
368
368
368
368
368
368
370
370
l.OkV
l.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
7.5kV
lOkV
l.OkV
l.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
7.5kV
10kV
l.OkV
l.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
7.5kV
10kV
2.5kV
5.0kV
7.5kV
10kV
12.5kV
15kV
20kV
25kV
2.5kV
5.0kV
HAlO
HA15
HA20
HA25
HA30
HA40
HA50
HA75
HAIOO
HSlO
HSl5
HS20
HS25
HS30
HS40
HS50
HS75
HSIOO
HVElO(lN3643)
HVE15(lN3644)
HVE20(1 N3645)
HVE25(1 N3646)
HVE30(lN3647)
HVE40(lN5l8l)
HVE50(lN5182)
HVE75(lN5183)
HVElOO(IN5l84)
HVF2500
HVF5000
HVF7500
HVFlOOOO
HVFl2500
HVFl5000
HVF20000
HVF25000
HVFS2500
HVFS5000
DESCRIPTION
HIGH VOLTAGE
RECTIFIER
HIGH VOLTAGE
RECTIFIER
366
366
366
366
366
PART NUMBER INDEX
HVFS7500
HVFSIOOOO
HVFSl2500
HVFSl5000
HVFSl7500
HVFS20000
HVH5000
HVH7500
HVHIOOOO
HVH12500
HVHl5000
HVH20000
HVH25000
HVHF5000
HVHF7500
HVHFIOOOO
HVHF12500
HVHFl5000
HVHF20000
HVHF25000
HVHJl5K
HVHJ20K
HVHJ22.5K
HVHJ25K
HVHJ30K
HVHJ35K
HVHJ37.5K
HVHJ40K
HVHJ45K
HVHS2500
HVHS5000
HVHS7500
HVHSIOOOO
HVHSl2500
HVHSl5000
HVHSl7500
HVHS20000
HVJXl5K
HVJX20K
HVJX22.5K
HVJX25K
HVJX30K
HVJX35K
HVJX37.5
HVJX40K
HVJX45K
HVXIO
HVX15
HVX20
HVX25
HVX30
HVX40
HVX50
HVX75
HVXIOO
KXl5
KX20
KX25
KX30
KX40
KX50
KX60
KX80
KXIOO
7.5kV
10kV
12.5kV
15kV
17.5kV
20kV
5.0kV
7.5kV
10kV
12.5kV
15kV
20kV
25kV
5.0kV
7.5kV
10kV
12.5kV
15kV
20kV
25kV
15kV
20kV
22.5kV
25kV
30kV
35kV
37.5kV
40kV
45kV
2.5kV
5.0kV
7.5kV
10kV
l2.5kV
15kV
l7.5kV
20kV
l5kV
20kV
22.5kV
25kV
30kV
35kV
37.5kV
40kV
45kV
l.OkV
l.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
7.5kV
10kV
l.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
10kV
·Contact Unitrode for specifications and ratings.
Legend, J -
JAN
JTX -
JANTX
JTXV -
JANTXV
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
421
PRINTED IN U.S.A.
PART NUMBER INDEX
PAGE
DESCRIPTION
PART NUMBER
PAGE
PART NUMBER
HIGH VOLTAGE
RECTIFIER
382
382
382
382
382
382
382
382
382
384
384
384
384
384
384
384
384
384
384
386
386
386
386
388
388
388
388
384
384
384
384
384
384
384
384
384
384
384
384
390
390
390
390
390
390
390
390
390
390
390
390
390
390
390
390
390
390
390
390'
390
390
392
392
392
392
KXSl5
KXS20
KXS25
KXS30
KXS40
KXS50
KXS60
KXS80
KXSlOO
LAl5
LA20
LA25
LA30
LA40
LA50
LA60
LA80
LAIOO
LAl20
LCl5
LC20
LC25
LC30
LCSl5
LCS20
LCS25
LCS30
LMl5
LM20
LM25
LM30
LM40
LM50
LM60
LM80
LMIOO
LMl20
LMl50
LMl80
LMSl5
LMS20
LMS25
LMS30
LMS40
LMS50
LMS60
LMS80
LMSIOO
LMSl20
LMSl50
LMSl80
LSl5
LS20
LS25
LS30
LS40
LS50
LS60
LS80
LSIOO
LSl20
MAl5
MA20
MA25
MA30
DESCRIPTION
HIGH VOLTAGE
RECTIFIER
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
10kV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
10kV
12kV
15kV
20kV
25kV
30kV
15kV
20kV
25kV
30kV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
lOkV
12kV
15kV
18kV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
10kV
12kV
15kV
18kV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
lOkV
12kV
1.5kV
2.0kV
2.5kV
3.0kV
392
392
392
392
392
392
394
394
394
394
394
394
394
394
394
394
392
392
392
392
392
392
392
392
392
392
392
392
394
394
394
394
394
394
394
394
394
394
394
394
MA40
MA50
MA60
MA80
MAIOO
MAl20
MS15
MS20
MS25
MS30
MS40
MS50
MS60
MS80
MSIOO
MSl20
MXl5
MX20
MX25
MX30
MX40
MX50
MX60
MX80
MXIOO
MXl20
MXl50
MX200
MXSl5
MXS20
MXS25
MXS30
MXS40
MXS50
MXS60
MXS80
MXSIOO
MXSl20
MXSl50
MXS200
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
396
PMAIOI
PMAI02
PMAI03
PMAI04
PMAI05
PMAI06
PMA107
PMAI08
PMAI09
PMAllO
PMAlll
PMAIOIX
PMA102X
PMAI03X
PMAI04X
PMA105X
PMAI06X
PMAI07X
PMA108X
PMAI09X
PMAllOX
PMAlllX
PMA201
PMA202
4.0kV
5.0kV
6.0kV
8.0kV
lOkV
12kV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
lOkV
12kV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
10kV
12kV
15kV
20kV
1.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
8.0kV
lOkV
12kV
15kV
20kV
RECTIFIER MODULE
5.0kV
7.5kV
10kV
15kV
20kV
25kV
30kV
35kV
40kV
50kV
60kV
5.0kV
7.5kV
10kV
15kV
20kV
25kV
30kV
35kV
40kV
50kV
60kV
2.5kV
5.0kV
'Contact Unitrode for specifications and ratings.
Legend, J -
JAN
JTX -
JANTX
JTXV -
JANTXV
UNITROOE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064
422
PRINTED IN U.S.A.
PART NUMBER INDEX
PAGE
PART NUMBER
DESCRIPTION
PAGE
PART NUMBER
RECTIFIER MODULE
396
396
396
396
396
396
396
396
396
396
396
396
396
396
39B
398
39B
39B
39B
39B
PMA203
PMA204
PMA205
PMA206
PMA201
PMA208
PMA20lX
PMA202X
PMA203X
PMA204X
PMA205X
PMA206X
PMA201X
PMA208X
PMEIOI
PMEl02
PMEl03
PMElOIX
PMEl02X
PMEI03X
RECTIFIER MODULE
406
406
409
409
409
409
409
409
409
409
409
409
409
409
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
406
406
406
406
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
406
406
406
406
1.5kV
lOkV
15kV
20kV
25kV
30kV
2.5kV
5.0kV
1.5kV
lOkV
15kV
20kV
25kV
30kV
2.5kV
4.0kV
B.OkV
2.5kV
4.0kV
B.OkV
HIGH VOLTAGE
RECTIFIER
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
SXIO
SXI5
SX20
SX25
SX30
SX40
SX50
SX60
SXBO
SXlOO
SXSIO
SXSI5
SXS20
SXS25
SXS30
SXS40
SXS50
SXS60
SXSBO
SXSlOO
402
402
402
402
402
402
402
402
402
402
402
402
402
402
402
402
402
402
406
406
406
406
UDA5
UDA1.5
UDAlO
UDAI5
UDB2.5
UDB5
UDB7.5
UDC5
UDC7.5
UDClO
UDCI5
UDD2.5
UDD5
UDD7.5
UDE2.5
UDE5
UDF2.5
UDF5
UFB2.5
UFB5
UFB1.5
UFS5
DESCRIPTION
l.OkV
l.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
B.OkV
lOkV
l.OkY
l.5kV
2.0kV
2.5kV
3.0kV
4.0kV
5.0kV
6.0kV
B.OkV
10kV
RECTIFIER MODULE
5.0kV
1.5kV
10kV
15.0kV
2.5kV
5.0kV
1.5kV
5.0kV
1.5kV
10kV
15kV
2.5kV
5.0kV
7.5kV
2.5kV
5.0kV
2.5kV
5.0kV
2.5kV
5.0kV
1.5kV
5.0kV
UFS1.5
UFSlO
UGB5
UGB1.5
UGBIO
UGD5
UGD1.5
UGDlO
UGE2.5
UGE5
UGE1.5
UGF2.5
UGF5
UGF1.5
USI2
USI5
USIB
US20
US25
US30
US35
US40
US45A
US50A
US60A
US70A
USBOA
USlOOA
USI20A
USI50A
USI80A
US200A
USB2.5
USB5
USB7.5
USBIO
USRI2
USRI5
USRI8
USR20
USR25
USR30
USR35
USR40A
USR45A
USR50A
USR60A
USR10A
USR80A
USRIOOA
USRI20A
USRI50A
USRI80A
USS5
USS7.5
USSIO
USSI5
1.5kV
10kV
5.0kV
1.5kV
10kV
5.0kV
7.5kV
10kV
2.5kV
5.0kV
7.5kV
2.5kV
5.0kV
1.5kV
l.2kV
l.5kV
l.BkV
2.0kV
2.5kV
3.0kV
3.5kV
4.0kV
4.5kV
5.0kV
6.0kV
7.0kV
8.0kV
lOkV
12kV
15kV
IBkV
20kV
2.5kV
5.0kV
7.5kV
lOkV
l.2kV
l.5kV
l.8kV
2.0kV
2.5kV
3.0kV
3.5kV
4.0kV
4.5kV
5.0kV
6.0kV
1.OkV
8.0kV
10kV
12kV
15kV
18kV
5.0kV
7.5kV
10kV
15kV
·Contact Unitrode for specifications and ratings.
Legend, J -
JAN
JTX -
JANTX
JTXV -
JANTXV
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
423
PRINTED IN U.S.A.
PART NUMBER INDEX
PAGE
DESCRIPTION
PART NUMBER
HIGH VOLTAGE
RECTIFIER
417
417
417
417
417
417
419
419
419
419
419
419
15kV
20kV
25kV
30kV
40kV
50kV
15kV
20kV
25kV
30kV
40kV
50kV
VX15
VX20
VX25
VX30
VX40
VX50
VXS15
VXS20
VXS25
VXS30
VXS40
VXS50
'Contact Unitrode for specifications and ratings.
Legend, J -
JAN
JTX -
JANTX
JTXV -
JANTXV
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEl. (617) 861·6540
TWX (710) 326·6509 • TElEX 95·1064
424
PRINTED IN U.5 A
SALES OFFICES
PART NUMBER INDEX
II
DESIGNERS' GUIDES
III
POWER TRANSISTORS & DARLINGTONS
IV
SWITCHING REGULATOR POWER CIRCUITS
V
RECTIFIERS
VI
HIGH VOLTAGE RECTIFIERS, RECTIFIER
MODULES & MULTIPLIERS
VII
RECTIFIER BRIDGE ASSEMBLIES
POWER ZENERS & TRANSIENT VOLTAGE SUPPRESSORS
•
IX
THYRISTORS (SCRs, Triacs, PUTs)
X
SWITCHING & GENERAL PURPOSE DIODES
XI
PI N DIODES
XII
CAPACITORS
XIII
APPLICATION NOTES & DESIGN NOTES
XIV
MECHANICAL SPECIFICATIONS
XV
425
426
RECTIFIER BRIDGES
Single Phase Full-Wave Bridges
~
t1f
~
--;
HJ, HK, HL, HM,
HN,HO,HP
G, GA, GH
STANDARD RECOVERY
lOOV
673-1
G or S
680-1
NA
697-1
GA
679-1
NB
SPA-25*
MC
673-2
G or S
697-2
GA
680-2
NA
469-1 **
MD
679-2
NB
SPB-25*
MC
673-3
GorS
697-3
GA
680-3
NA
679-3
673-4
G or S
697-4
GA
680-4
NA
469-2**
MD
679-4
NB
NB
SPC-25*
MC
673-5
GorS
697-5
GA
680-5
NA
679-5
673-6
G or S
697-6
GA
680-6
NA
469-3**
MD
679-6
NB
NB
SPD-25*
MC
III
673-7
GH
673-75
HJ
673-8
HK
(PMC101) (PMC201)
PMA
PMA
673-85
HL
673-9
HM
•,~,~______+-______~____-r(_P_~_~_~0_4_)~
'"
____-+____
~
(PMC105)
PMA
*Available as JAN
**Available as JAN, JANTX
Parentheses (
) designates product using stacked chips
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064
427
PRINTED IN U.S.A.
RECTIFIER BRIDGES
PRODUCT SELECTION GUIDE
Single Phase Full-Wave Bridges
NA,NB
.
~
~:~
~ MA, MB, MC, MD ~
PMA
FAST RECOVERY
676-1
Gor S
698-1
GA
684-1
NA
683-1
NB
803-2
MB
803-3
MB
803-4
MB
676-2
698-2
684-2
683-2
676-3
698-3
684-3
683-3
676,4
698-4
684-4
683-4
676-5
698-5
684-5
683-5
676-6
698-6
684-6
683-6
Gor S
Gor S
Gor S
GorS
Gor S
GA
GA
GA
GA
GA
NA
NA
NA
NA
NA
802-4
MA
NB
NB
NB
NB
NB
676-12
HJ
676-18
HK
676-24
Hl
(PMC201X)
PMA
676-30
HM
Parentheses (
) designates product using stacked chips
428
PRINTED IN U.S,A
RECTIFIER BRIDGES
PRODUCT SELECTION GUIDE
Three Phase Full-Wave Bridge
" ,
~
"
-
,,
NC
Q
IDARD RECOVERY
~
~ME
FAST RECOVERY
695-1
NC
701-1
678-1
NC
F
696-1
NC
682-1
NC
801-2
800-2
801-3
800-3
801-4
800-4
ME
ME
ME
695-2
678-2
695-3
678-3
695-4
678-4
NC
tIC
NC
NC
NC
678-5
695-6
678-6
NC
ME
ME
682-2
701-3
696-3
682-3
701-4
696-4
682-4
701-5
696-5
682-5
701-6
696-6
682-6
F
F
483-3'
ME
F
(PMD101) (PMD201)
PMA
696-2
F
483-2"
NC
NC
701-2
F
NC
695-5
NC
483-1'
NC
NC
NC
NC
NC
ME
ME
ME
NC
NC
NC
III
NC
NC
(PMD101X) (PMD201X)
PMA
PMA
(PMD202)
PMA
(PMD102X) (PMD202X)
PMA
PMA
PMA
(PMD103X)
PMA
(PMD104)
PMA
.ble as JANTX
heses ( ) designates product using stacked chips
Parentheses (
UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX mO} 326-6509 • TELEX 95-1064
429
) designates product using stacked chips
PRINTED IN U.S.A.
RECTIFIER BRIDGES
PRODUCT SELECTION GUIDE
Doublers and Center-Tap Rectifiers
~
~TO-3
r ~220 Q
~A
US0335C*
TO-3
US0345C*
S0241 *
TO-3
681-1
NO
689-1
NO
SES5401C* SES5601C' UES2401C*
TO-220
TO-3
TO-220
804-1
SES5402C* SES5602C'
TO-220
TO-3
804-2
UES2402*
TO-220
MF
MF
UES2601
TO-3
UES2602
TO-3
804·3
MF
SES5403C* SES5603C*
TO-220
T0-3
681-2
689-2
NO
NO
681-3
689-3
NO
NO
681-4
689-4
NO
NO
681-5
689-5
NO
NO
681-6
689-6
NO
804-4
MF
UES2603
TO-3
UES2604
TO-3
UES2605
TO-3
UES2606
TO-3
NO
(PMB101)
(PMB201)
(PMB101X)
(PMB201X)
PMA
PMA
(PMB102)
(PMB202)
(PMB102X)
(PMB202X)
PMA
PMA
(PMB103)
(PMB203)
(PMB103X)
(PMB203X)
PMA
PMA
(PMB104)
(PMB204)
(PMB104X)
(PMB204X)
PMA
PMA
(PMB105)
(PMB205)
(PMB105X)
(PMB205X)
PMA
PMA
(PMB106)
(PMB106X)
PMA
PMA
*Center-tap only
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
UES2403*
TO-220
Parentheses (
430
) designates product using stacked chips
PRINTED IN U.S.A.
JAN & JANTX 469-1
JAN & JANTX 469-2
JAN & JANTX 469-3
RECTIFIER ASSEMBLIES
Single Phase Bridges, 10 Amp,
Military Approved
FEATURES
DESCRIPTION
•
•
•
•
•
•
•
This series of military high-current
single-phase bridge offer the utmost in
reliability as required in military system
designs. The TX series is assembled
with diodes which have been subjected
to 100% screening tests.
Qualified to MIL-S-19500/469
Current Rating: to lOA
PIV: from 200 to 600V
Surge Ratings: to 100A
Only Fused-in-Glass Diodes Used
Controlled Avalanche Characteristics
Aluminum Heat Sink Case, Electrically Insulated
Dimensions
INCHES
ABSOLUTE MAXIMUM RATINGS
Ltr
Peak Inverse Voltage.
. ......... 200 to 600V
Maximum Average D.C. Output Current
. ........... lOA
@Tc=+55°C.
...... 6A
@Tc=+lOO°C
Non-Repetitive Sinusoidal Surge (8.3ms)
@Tc = +55°C ............................................................................... IOOA
Operating and Storage Temperature Range. ...................................... -65°C to +150°C
. .......... 25°C/W
Thermal Resistance Junction to Ambient .
Junction to Case. .
......... 5°C/W
MILLIMETERS
MIN.
MAX.
MIN.
C,
.367
C,
¢O,
.350
.175
.139
.091
¢O,
.066
.375
.450
.225
.149
.101
.076
.570
.370
.098
.030
.750
9.32
8.89
4.45
3.53
2.31
1.68
C,
¢O,
H,
H,
L,
L,
W
.088
.020
.735
2.24
.51
18.67
MAX.
9.53
11.43
5.72
3.78
2.57
1.93
14.48
9.40
2.49
.76
19.05
MECHANICAL SPECIFICATIONS
JAN & JANTX 469-1, JAN & JANTX 469-2, JAN & JANTX 469-3
ENCAPSULATION
TERMINAL DETAILS
C,
c"!
METAL AREA
SHAPE OPTIONAL
TERMINAL POLARITY
~~~
~'I'DDIA
I
I
,---rH
3:AC
4
See table above
=+
I
I
SEE NOTE 4 '
---1
r-".DI
;-1 tr.J."
L~T
r-
II
HI
005
Typical Weight _ 0.35 ounces
10 grams
NOTES:
1. Metric equivalents (to the nearest .01 mm) are given for general information only and are based upon 1 inch = 25.4 mm.
2. Terminals shall be tinned.
3. Polarity shall be marked on the bridge body adjacent to terminals. Terminal numbers are for reference and do not have to be marked on
the bridgej however, terminal (1) shall be indicated by a mechanical index such as a line, flattened corner, etc., visible from the top (terminal surface) of the device.
4. Point at which Tc is read shall be in metal part of a case as shown on drawing.
431
ruJJ
_UNITRDDE
JAN & JANTX 469-1 JAN & JANTX 469-2
JAN & JANTX 469-3
Electrical Specification (at 25"C unless noted)
Minimum
Reverse
Breakdown
Voltage
PIV
Per
Leg
Type
JAN & JANTX 469-1
JAN & JANTX 469-2
JAN & JANTX 469-3
Per Leg
@ 50,A
Volts
Volts
200
400
600
240
460
660
Maximum
Leakage
Current
Per Leg@ PIV
Maximum
Maximum
Forward
Voltage Drop
Reverse
Recovery
Timet
~_25'C
~_l00'C
JlS
JlA
JlA
2
2
125
Per leg*
l.35V @ 15.7A(pk)
oJ- Maximum forward voltage drop is measured at a pulse width of S.3ms.
tMeasured in a reverse-recovery circuit switching from O.SA forward to l.OA reverse current recovering to O.2SA.
Typical Forward Voltage Per Leg
vs. Forward Current
20
1/1/ 1/
C
'"~
'""-
:;:.
.1
. 05
I
.02
ifl
11./"1-"1'
....Z
...
0:
0:
.005
II
.2
Production
Process
(Discrete
diodes
processing)
~
I
~
oJ
I
1/
.002 0
...
"
"...
(J
II
I-t
___ +25'C
(.--
_\.
o
--
10
20
L
175
L
V+125'C
125
100
75
50
25
% OF PIV
Lots Proposed
for JAN
Types
(Non-TX)
Inspection Tests
to verify LTPD
Group A
Group B
Group C
Review of
Groups A, B,
and C Data
for accept
Preparation
for
Delivery
JAN
or reject
1
Reverse-R ecovery Circuit
SO
High temperature storage
Thermal shock
Acceleration
Hermetic seal tests
•
1
l
100 Percent Power Conditioning
1. Measurement of specified parameters
2. Burn~in
3. Measurement of specified parameters
to determine delta and other rejects
~!
25 Vdc
(APPROX.)
1 ~!
NOTE3
o
OSCILLOSCOPE
NOTE!
NOTES:
1. Oscilloscope: Rise time' 3n5; input impedance ::= 50!!.
2. Pulse Generator: Rise ti me .. 8ns; source impedance lOr..
4. Scope display evaluation
5. Lot rejection criteria based on rejects
from burn·in test
3. Current viewing reSistor. non-inductive, coaxial recommended.
1
Inspection Lots
Formed after Final
Assembly Operation
50
100
150
CASE TEMPERATURE ('C)
75'C
100 Percent Process Conditioning
1.
2.
3.
4.
a
--I--
50
100
1.4
Inspection Lots
Formed after Final
Assembly Operation
_\.
...
/"
.5
1
SOD
1K
.4
.6.8
1.2
FORWARD VOLTAGE (V)
~
50
0:
200
II
"-
z"
~
.05
.1
::J
0
:1
II
.01
I"
_----SO'C
.3 .2
141ik
~ ~
.2
0
..:
:;c
1/ /
.5
-'"
.01
.02
VI vI
$
....
z
Current Derating Curve
100
~'" VV'
10
...
'"0:>'"
Typical Leakage Current VS. PIV
Lots Proposed
forJANTX
Types
UNITRDDE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173.' TEL. (617) 861-6540
TWX (710) 326-6S09 ' TELEX 95-1064
~
Inspection Tests
to verify LTPD
Group A
Group B
GroupC
Review of
Groups A, B,
and C Data
for accept
or reject
432
Preparation
for
H
Delivery
JANTX
PRINTED IN U.S.A.
RECTIFIER ASSEMBLIES
JANTX483-1
JANTX483-2
JANTX483-3
Three Phase Bridges, 25 Amp,
Military Approved
FEATURES
DESCRIPTION
•
•
•
•
•
•
•
This military high-current three phase
bridge series is assembled with diodes
which have been subjected to TX type
screening tests. This series of bridges offers the utmost in high reliability as normally required in military system design.
Qualified to MIL-S-19500/483
Current Rating: 25A
PIV: from 200 to 600V
Surge Ratings: 150A
Only Fused-in-Glass Diodes Used
Controlled Avalanche Characteristics
Aluminum Heat Sink Case, Electrically Insulated
DIMENSIONS
LTR
ABSOLUTE MAXIMUM RATINGS
..... 200 to 600V
Peak Inverse Voltage .
Maximum Average D.C. Output Current
..25A
@Tc = Ss'C.
=
@ Tc
100'C .
Non-Repetitive Sinusoidal Surge (8.3ms)
@ Tc
55'C .
Operating and Storage Temperature Range ..
Thermal Resistance Junction to Ambient
Junction to Case
=
..... 18.5A
......... 150A
..... -65'C to +l50'C
... 20'C/W
. ....... 2.5'C/W
A
B
C
D,
D,
INCH
MAX
MIN
MAX
.730
.355
.355
.141
.108
.770
.395
.395
.151
.11B
.395
.270
.189
.395
.B2
.51
.320
.030
.125
.0bU
.7B
1.90
2.2B
.15
.20B
1.53
18.54
9.02
9.02
3.58
2.74
9.02
5.84
3.7B
9.02
19.56
10.03
10.03
3.B4
3.00
10.03
6.86
4.BO
10.03
20.B3
12.95
B.13
.76
3.1B
1.'<
19.Bl
4B.26
57.91
3.Bl
5.2B
3B.B6
~
.,,,
F
G
H
.230
.149
.355
J
K
L,
L,
L,
M
N
0
P
R
S
T
MILLIMETERS
MIN
.39
.240
.015
.100
.U4U
.72
l.B4
2.22
.09
.16B
1.47
9.91
6.10
.38
2.54
LU<
18.29
46.74
56.39
2.29
4.27
37.34
MECHANICAL SPECIFICATIONS
JANTX 483-1 JANTX 483-2 JANTX 483-3
See Table Above
Typical Weight - 1.0 ounces
30 grams
NOTES:
1. Terminals shaJi be tinned.
2. Polarity shall be marked as shown on drawing.
3. Point at which T c is read (shall be in metal part of case).
UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064
433
PRINTED IN U.S.A.
III
JANTX 483·1 JANTX 483·2· JANTX 483·3
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
PIV
Per
Leg
Type
Volts
JAN 483-1
JAN 483-2
JAN 483-3
* Maximum forward
/, V;j
10
...'0"
100
j j
'"'"
u
:;:./:;:
"
"'""'-'
-I-
.05
.2
.4
200
~
'\
50
'\
'";11.
I
/'
\.
o
+75'C
o
50
100
150
CASE TEMPERATURE ('C)
175
1/
_-+125'C
200
/ / II
II I
.1
I--'
10
20
50
100
//
.2
___ +25'C
.5
~
Ik~~8K:~
~Ao/tI
.5
./
"'
2
'-
OJ
Z
OJ
I'A
'-
,/
50'C
.01
.02
z
Tc _IOO'C
I'A
Current Derating Curve
Typical Leakage Current vs. PIV
"'
Tc _2S'C
~20/0.
~
1//
Curren1:
Per Leg@ PIV
Per Leg*
.05
.1
>- .2
I (/V
II I.
5
c
Maximum
Forward
voltage drop is measured at a pulse width of 8.3ms, duty cycle
1--1 ~
'"~"
1.3V @ 39A (pk)
400
20
~
240
480
660
600
50
...z
"'
''""
u
Voltage Drop
200
Typical Forward Voltage Per Leg
vs. Forward Current
Maximum
Leakage
Breakdown
Voltage
Per Leg
@ SOI'A
Volts
500
IK
125
.6.8
1.2
50
100
75
% OF PIV
25
1.4
FORWARD VOLTAGE (V)
I
diode.~
Discrete
inspection lot
100 Percent process conditioning
of discrete diodes
~
1. High-temperature storage
100 Percent burn-in of discrete
diodes
1. Measurement of specified
parameters
2. Thermal shock (temperature
cycling)
2. Reverse bias burn-in
3. Reverse-recovery time
3. Measurement of specified
parameters to determine
delta
4. lot rejection criteria
based on rejects from
burn-in test
.-----.
Assembly and
encapsulation of
discrete diodes
into bridge
assembly
l
Inspection tests
to verify LTPD
Group A
Group B
Group C
1
Review of groups
A, 9, and C data
for lot accept or
reject
1
Preparation for
delivery
UNITRDDE CORPORATION 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95·1064
434
J
PRINTED IN U.s.A.
RECTIFIER ASSEMBLIES
673,676 SERIES
Single Phase Bridges, 1.5Amp,
Standard and Fast Recovery
FEATURES
DESCRIPTION
•
•
•
•
•
•
These miniature transfer-molded singlephase power bridges are designed for
universal application in power supplies.
One basic bridge assembly comes in a
choice of lead configurations for mounting
in wired chassis or on printed boards.
Miniature Package
Surge Ratings: to 25A
PIV's: from 100 to 600V
Recovery Times: to 500ns
Controlled Avalanche Characteristics
Only Fused-in-Glass Diodes Used
ABSOLUTE MAXIMUM RATINGS
Peak I nverse Voltage .
Maximum Average D.C. Output Current
Non-Repetitive Sinusoidal Surge (8.3mS)
Operating and Storage Temperature Range.
Thermal Resistance Junction to Ambient
... 100 to 600V
.................. See Electrical Specifications
See Electrical Specifications
.......................... -WC to +150'C
........ 50'C/W
MECHANICAL SPECIFICATIONS
673,676 SERIES
.028" Dia.
O.71mn
0.32~ +
G BODY
_~
1.25" Min. long
31.8mm
Tinned Copper
Lead
-l
1-°.15" Max.
I 3.81mm
AC
B.13mm
~~
1
f----
---0
L~
.125" ±.030
3.18mm ±.76
0.32" Max.
Typical Weight G:
B.13mm
0.05 ounces
1.4 grams
673,676 SERIES
440" Max.
11.17mm
S BODY
.187" Max.
4.7Smm
M
r------1rrrr:J
---.l.
Mo>.
1l.17mm
AC-A'C+
.100·· Typ .
2.54mm
....! I.-
~
.028" 0;,. 0.50·' 100.
O.71mm 12.1mrn
Tinned Copper Lead
When specifying S body. add suffix S i.e., 673-15
Typical Weight s: 0.11 ounces
3.1 grams
MARKING
Alternating Current Input
Cathode - Positive Output
Anode - Negative
Part number is printed on the body,
435
~UNITRDDE
III
.673. 676 SER I ES
Maximum Ratings
Electrical Specifications (at 25°C unless noted)
Maximum
Forward
Drop
Per Leg
PIV
Per
Leg
Type
Leakage
Current
Per Leg
T, _ lOO'C
T, _ 25'C
Volts
Standard
Recovery
673-1
673-2
673-3
673-4
673-5
673-6
676-1
676-2
676-3
676-4
676-5
676-6
Fast
Recovery
"A
100
200
300
400
500
600
100
200
300
400
500
600
Maximum
Average
D.C. Output
Current
T, = 25'C
Maximum
Reverse
Recovery
Timet
"A
ns
Non·Repetilive
Sinusoidal
Surge
(8.3mS)
Amps
Amps
l.lV @ LOA
2
100
-
1.5
25
l.lV@0.5A
3
150
500
1.0
20
tMeasured in a reverse recovery Circuit sWitching from lOrnA forward to lOrnA reverse current recovering to SmA.
Typical Forward Voltage Per Leg
vs. Forward Current
10
t;::
,///
~5
~ .2
0:
.1
/
.~ 05
02
12
01
...Z
vv !II
Z
«
~
~
II
Il'
'0,
~coO(J
... ~ /{J~--f. -f. '
.002
/
.001
.2
il
;(
.;!
.2
...
'::>"
V
.5
zUJ
+ 25'C
.05
.1
.2
UJ
UJ
.5
...I-10
20
,/
V
500
1.000
1.4
--: I-"'"
25'C
r-
UJ
oJ
50
100
200
I
"«
'"«
+ 75'C
50'C
.02
0
10
20
100
150
PIV
"
.005
.01
0:
UJ
oJ
VS.
673 SERIES
.001
.002
.05
.1
'"
'"
.4
.6
.8
I
1.2
FORWARD VOLTAGE (V)
Typical Leakage Current
::>
u
"««
I
/
II
I
~
PIV
5O'C
0:
J/
1/
.005
w
VS.
676 SERIES
.01
.02
//
a
Typical Leakage Current
ALL SERIES
125'C
k-+~'c
'1
50
100
50
75'C
150
100
% OF PIV
50
% OF PIV
Reverse Recovery Circuit
lKIl
--
100
+
99011
' ...
";:::z
''""
20V D.C.
if-
50
1'...
...
CONVECTION
COOLED
-
...
......
+
I
Scope
1011
Current Derating Curve
... ,
o
o
50
100
ISO
AMBIENT TEMPERATURE ('C)
=
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
436
PRINTED IN U.S.A.
RECTIFIER ASSEMBLIES
673,676 SERIES
( 1200-5000V)
Single Phase Bridges, High Voltage
0.125-0.6 Amp, Standard and Fast Recovery
FEATURES
• Miniature High Voltage Bridges
• Continuous Ratings: to 0.6A
• Surge Ratings: to 15A
• PIV's: from 1200 to 5000V
• Recovery Times: to 500ns
• Controlled Avalanche Characteristics
• Only Fused in Glass Diodes Used
DESCRIPTION
These miniature molded high-voltage single
phase bridges are designed for universal
application in power supplies. The miniature package is shatterproof and is capable
of handling extremes in temperature, vibration and shock. These bridges, therefore
are ideally suited for miniaturized, tightly
packaged equipment operating in extreme
environments.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage .
. ... 1200 to 5000V
Maximum Average D.C. Output Current ...
.. See Electrical Specifications
Non-repetitive Sinusoidal Surge (8.3ms)
.................. See Electrical Specifications
Operating and Storage Temperature Range .
.. -65·C to +lS0·C
Thermal Resistance Junction-to-Ambient .
....... SO·C/W
MECHANICAL SPECIFICATIONS
673-7
(6.35mm::::'.76)
.250"± .030
c~
--+I
I
Ael ~2;;~3:) C
Lij
t-
Body H
III
1.-. 188"
I (4.78mm)
.~ MAX.
lAC
(6.3Smm ±.76)
lr:~I
.032" DIA.
(O.S1mm)
.688" MAX.
(17.4Bmml
Tinned Copper leads
673, 678 SERIES
--
-·.!-AC.,.--.,.,.
BODY J through P
'i~:~o~~'
-..300 .. :::t .030
7.62mm:::':: .76
MAX. LENGTHS
MARKING
Alternating Current Input
Cathode - Positive Output
Anode - Negative Output
A.C.
+
[ill]
Part number is printed on the body.
437
_UNITRDDE
673,676 SERIES
Electrical Specifications at 2S'C
Maximum Ratings
Maximum
Average
Type
Leakage
Maximum
Forward
Voltage Drop
Per Leg
PIV
Per
Leg
T A -25'C
TA _100'C
Maximum
Reverse
Recovery
Time*
p.A
p.A
ns
Current
Per Leg @ PIV
Volts
Standard
Recovery
673-7
673-75
673-8
673-85
673-9
673-10
673-11
673-12
675-12
675-18
676-24
676-30
676-36
676-42
676-48
676-50
Fast
Recovery
2.2V@0.4A
33V@0.4A
4.4V@0.4A
5.5V@0.3A
6.6V@0.2A
7.7V@0.2A
8.BV@0.15A
9.0V@0.15A
3.3V@0.3A
4.4V@0.2A
5.5V@0.2A
7.7V@0.2A
8.SV@0.15A
9.9V@0.15A
llV@0.15A
11V@0.15A
1200
1800
2400
3000
3600
4200
4800
5000
1200
1800
2400
3000
3600
4200
4S00
5000
2
D.C. Output
Current
TA _25°C TA = 50°C
Air
Oil
Body
Size
H
J
K
L
M
100
N
0
0
5
500
150
J
K
L
M
N
0
p
p
Amps
Amps
0.6
0.5
0.4
0.3
0.2
O.1S
0.16
0.16
0.4
0.35
0.325
0.25
0.175
0.15
0.135
0.125
1.5
1.25
1.0
0.75
0.5
0.45
0.4
0.4
1.0
0.S5
0.8
0.625
0.425
0.375
0.325
0.3
Non~repetitive
Sinusoidal
Surge
(8.3ms)
Amps
15
10
tMeasured in a "reverse recovery circuit switching from lOrnA forward to lOrnA reverse current recovering to SmA.
Output Current Ratio vs
Velocity of Air Flow
g 100
2.50
~
"z;::: a5
'""' 2.00
BODY
~
...'o" 1.75
!!: 1.50
~
I
'" 1.00
ty'
~
V
"'"':>
u
.,/" f.--
V
a
l?<
100
v-
"B~DY J IthroulBh P
200 300
400
500
60
I;
40
o
o
~
"-
80
...:>
.
// V
"'....
:>
::; 1.25
H"
...
Output Current vs
Ambient (Air) Temperature
§100
~
~
"" '\
80
"'
u
60
:>
40
.....
I;
o
o
1\
40 60 80 100 120 140 160 180
AMBIENT (AIR) TEMPERATURE (OC)
VELOCITY OF AIR (LFMJ
l:!
:>
\
20
"' a
15
t- 20
600
Output Current vs
Ambient (Oil) Temperature
:J
~ 20
;ii
15
'JI.
'"
1"-I\.
'\
'\.
1\
1
20 40 60 80 100 120 140 160 180
AMBIENT (OIL) TEMPERATURE ('C)
Application example: The rectifier is to be used in a cabinet at 60·C with ambient
air moving at 400 LFM. The rating is reduced (Fig. 2) by a factor of 0.B1 due to the
elevated temperature, but is enhanced by 2.X (Fig. 1) due to the air flow. Hence
the DC output current is O.Bl x 2, or 1.6 times the 2S'C air rating.
Reverse·Recovery Circuit
lKt!
+
20V D.C.
990n
D.U.T.
lOll
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064
438
PRINTED IN U.S.A.
673, 676 SER I ES
Typical Forward Voltage vs
Forward Current
Typical Forward Voltage vs
Forward Current
10
10
673 SERIES
676 SERIES
/, 'if
S
...
.5
~
.2
II '/
/ // /
Z
0:
OJ
u
D
0:
'"
;:
0:
...o
II
.1
/
.0
5 _+17S'C /
02
.0 I
I
/
.005
+IJO'Cj
.002
.00 I
!I I
.2
0:
0:
OJ
U
D
0:
/ I
/
I
If II
.1
.05
'"
...0
.01
.005
+17S'C
t1
+IO~Ct
-5!"C
.002
I
.001
.8
1.0 1.2
1.4
MULTIPLY VF BY:
~~
VI
/Il II
~
;: .02
0:
L1-!-2s'c
I~
I I
UJ
z>-
/ /
.2
.4
.6
FORWARD VOLTAGE -
5:
.5
°
/
/
/
/
II
/
I~
/
II /
IJ
I
.2
.4
.6
FORWARD VOLTAGE -
/
+2S'C
I -SO~C
I
.8
1.0
1.2 I.'
MULTIPLY VF BY:
Typical Leakage Current vs. Voltage
.01
•
-'-" r-150'~
.02
,os
.1
<
,:;
.2
>Z
.5
-I-- I-
+~5'~-'-
UJ
0:
0:
::>
u
I- ~C>--
UJ
"'"
'"'"
UJ
II
10
20
V
..J
50
100
200
500
1-1-" +12S'C
(
I
I
120 110 100 90 80 70 60 50 40 30 20 10
a
% OF P.I.V.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
439
PRINTED IN U.S.A.
678,682,695
696 SERIES
RECTIFIER ASSEMBLIES
Three Phase Bridges, 15-25 Amp,
Standard and Fast Recovery Magnum®
FEATURES
• Current Rating: to 2SA
• PIVs: from 100 to 600V
• Only Fused-in-Glass Diodes Used
• Recovery Times: to SOOns
• Controlled Avalanche Characteristics
• Surge Ratings: to 150A
• Aluminum Heat Sink Case, Electrically Insulated
DESCRIPTION
This series of three phase MAGNUM ®
bridges offer the ultimate in high current
power supply applications. The fast
recovery series allows operation at full
power at high frequencies (up to 40KHz
squarewave), often used in choppers,
inverters and converters in aircraft,
missiles, etc., equipment.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage.
......... ....... ........... ..........
.. ................. 100 to 600V
Maximum Average D.C. Output Current. . ................ See Electrical Specifications
Non-Repetitive Sinusoidal Surge (8.3ms) . ...................... See Electrical Specifications
Operating and Storage Temperature Range.
. ........... -6S·C to +lS0·C
Thermal Resistance Junction to Ambient, All Series . ..
. . 20·C/W
Junction to Case, 678, 682 Series .....
. ... .... .. l.5·C/W
Junction to Case, 695, 696 Series ..
. ... 3.0·C/W
MECHANICAL SPECIFICATIONS
678,682,695,696 SERIES
:~~!DIA.
(2 PLACES)
Dimensions in inches.
Typical Weight -
30 grams
MARKING
Alternating Current Input
Cathode - Positive Output
Anode - Negative
Part number is printed on the body.
MagnUm@ is a registered trademark of Unitrode Corporation
440
[ill]
_UNITRDDE
678,682,695,696 SERIES
Electrical Specifications (at 25'C unless noted)
Maximum Ratings
Maximum
Maximum
PIV
Per
Leg
Volts
Type
Standard
Recovery
678·1
678·2
678·3
678·4
678·5
678·6
695·1
695·2
695·3
695-4
695-5
695-6
682·1
682·2
682·3
682-4
682·5
682·6
696·1
696·2
696·3
696·4
696·5
696-6
Standard
Recovery
Fast
Recovery
Fast
Recovery
100
200
300
400
500
600
100
200
300
400
Maximum
Forward
Leakage
Voltage Drop
Per Leg
Per Leg@ PIV
T, ~ 25'(;
T, _1OO'C
"A
Average
Maximum
Reverse
Current
D.C. Output
Current
Tc _ 100°C
Tc - 55'C
Amps
Amps
Recovery
Time"
ns
"A
Non-Repetitive
Sinusoidal
Surge (8.3ms)
100'C
T,
Amps
1.2V@10A
10
200
-
25
18.5
150
1.2V@2A
5
150
-
15
9
80
1.2V@6A
10
200
500
20
14
150
1.2V@2A
5
150
500
15
9
60
SOO
600
100
200
300
400
500
600
100
200
300
400
500
600
*Measured in a reverse recovery circuit switching from 1.0A forward to I.OA reverse current recovering to O.SA.
Typical Forward Voltage Per Leg
YS. Forward Current
30
678 SERIES
0V
Ii il
10
~
+175'~t.
I
I
Z
100'C
OJ
0
a:
fi .05
a:
u
fi
.2
;:
10
/v../;'
20
I-
Typical Forward Voltage Per Leg
YS. Forward Current
Typical Forward Voltage Per Leg
YS. Forward Current
I
II
.2
I
I
I
I
I
II
.4
.6
.B
1.2 1.4
FORWARD VOLTAGE IV)
1.4
FORWARD VOLTAGE IV)
441
PRINTED IN U.S.A.
•
678, 682, 695, 696 SER IES
Typical leakage Current
Typical Leakage Current vs. PIV
.05
.1
.,
~6781682 S~RIES
I
I
/
.5
....
z
UJ
0:
0:
:J
u
I-
zOJ
~125"e
u
OJ
./'
UJ
"i:l'" 100
---
500
1K
125
100
75
50
.P5°C
10
20
OJ
1
..J
I
..J
/'
to
"'"
"
------I we
50
-
:J
I
CJ
/
_____ +25°C
.5
0:
0:
I
5
10
.05
.1
.2
~
50
100
200
Y
1 125"C
I
PIV
/'
50°C
.01 _ 695,696 SERIES
.02
.J;;e
.5
VS.
/'
_
+125°e
500
lK
25
125
% OF PIV
100
75
50
% OF PIV
25
Reverse Recovery Circuit
UZ 840
51l
5V D.C.
10V D.C.
=
Current Derating Curve
Current Derating Curve
100
100
55°C
682 SERIES
55°C
..... ;."i..
"'.' ,
to
Z
~
~;
"
~
~
'#
a:
o
150
100
50
CASE TEMPERATURE (OC)
,
... ["I.,
~
a
175
Fast Recovery Series
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6040
TWX (710) 326-6509 • TELEX 95-1064
695 SERIES
50
'#
I....
o
1'.'
Z
696 SERIES
50
0:
678 SERIES
" '':'~
a
50
100
150
CASE TEMPERATURE ee)
175
Standard Recovery Series
442
PRINTED IN U.S.A.
RECTIFIER ASSEMBLIES
679, 680, 683, 684 SERIES
Single Phase Bridges, 10·25 Amp,
Standard and Fast Recovery Magnum™
FEATURES
DESCRIPTION
•
•
•
•
•
•
•
This series of single phase MAGNUMTM
bridge offers the designer the ultimate in
high current power supply applications.
The fast recovery series allows operation
at full power at high frequencies, up to
40kHz square wave, which is often used
in chopper, inverters and converters in
aircraft, missiles, etc., equipment.
Current Ratings: to 25A
Recovery Time: to 500ns
PIVs: from 100 to 600V
Surge Ratings: to 150A
Only Fused-in-Glass Diodes Used
Controlled Avalanche Characteristics
Aluminum Heat Sink Case, Electrically Insulated
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage.
. ......... 100 to GOOV
Maximum Average D.C. Output Current .............................. See Electrical Specifications
Non-Repetitive Sinusoidal Surge (8.3ms)
........... See Electrical Specifications
Operating and Storage Temperature Range ...
. ............ -65°C to +l50°C
Thermal Resistance Junction to Ambient, 679, 683 Series ...
.... 20°C/W
Junction to Ambient, 680, 684 Series .
.. 25°C/W
Junction to Case, 679, 683 Series .
.... 2.0°C/W
Junction to Case, 680, 684 Series .
.... 4.0°C/W
MECHANICAL SPECIFICATIONS
680, 684 SERIES
-;-JO
rl.'t!x(.1
.140 OIA .
. 750
MAX .
---'&f
...L
TINNED CU •
. 040 TYP.
,
,------.57
MAX.
.09 DIA. TYP.
...L
~'
.240 MAX.
Typical Weight
10 grams
Typical Weight - 0.3S ounces
10 grams
Dimensions in inches.
~~~2:
.562-1
T
;U~
1.125
MAX.
__
bl u
l Iu L ~·L
r-qq
7+'
T~~4~~~;U1r-
I
Dimensions in inches.
.328
MAX.
679, 683 SERIES
rr-·193 CIA.
,. lh
...L
T..J..
~-.09 OIA. TYP.
r.062
-1f2:-
.062
Typical Weight -
0.7 ounces
20 grams
[ill]
443
_UNITRODE
679, 680, 683, 684 SER IES
Electrical Specifications (at 25'C unless noted)
Maximum
Forward
Voltage Drop
Per Leg
PIV
Per
Leg
Type
679-1
679-2
679-3
679-4
679-5
679-6
680-1
680-2
680-3
680-4
680-5
680-6
683-1
683-2
683-3
683-4
683-5
683-6
684-1
684-2
684-3
684-4
684-5
684-6
Standard
Recovery
Fast
Recovery
Fast
Recovery
100
200
300
400
500
600
100
200
300
400
500
600
100
200
300
400
500
600
100
200
300
400
Maximum
Average
D.C. Output
Maximum
Reverse
Non~Repetitive
Sinusoidal
Surge (8.3ms)
TA _l00'C
Current
TA - 2S'C
T, _ l00'C
I'A
I'A
Recovery
Time*
ns
1.2V@10A
10
200
-
25
18.5
ISO
1.2V@2A
2
SO
-
10
6
50
1.2V@6A
10
200
500
20
14
150
1.2V@2A
5
100
500
10
6
50
Volts
Standard
Recovery
Maximum Ratings
Maximum
Leakage
Current
Per Leg @ PIV
Tc _ 55°C
Tc - l00'C
Amps
Amps
Amps
SOO
600
*Measured in a reverse recovery circuit switching from t.OA forward to 1.0A reverse current recovering to O.5A.
Typical Forward Voltage Per Leg
VS. Forward Current
30
20
10
////
679 SERIES
680,684 SERIES
~ 'I
10
I
UJ
0:
0:
VI lit r---~O'C
III I
U
0
0:
« .5
~
III
0:
0
.2
....~
25'C
:J
I II
.05
.02
I
.2
I
~-+---t---n~~~~~L-~
I-
.5
0:
.2
3
:J
~ .05
0:
~ .2 ~-+---h~fr~~--~~L--+
~
/I
~
zUJ
~
"-
j
IIV
II/ u
~~l''?
;;~r
J
0:
.1
II
«
~ .02
I
"- .01
I
.005
.05 ~-+-I-+f-+-f+---~~f--+
I
.002
.02 r--++--+-,I+~+---~---lr--+
I
.4
.6.8
1.2
FORWARD VOLTAGE (V)
1.4
UNITRODE CORPORATION,S FORBES ROAD
LEXINGTON, MA 02173 'TEL. (617) 861·6540
TWX (710) 326-6509 ' TELEX 95·1064
II
I
.001
f
JJ
I
o
.1
1/
i/II I
z
~ .5 ~-+---+-,~~R-f-~~t---+
U
/ I
.1
/V VV
1/
IIIVI
V
+175'~i
lOO"b VL f-+
~
....
z
...
Typical Forward Voltage Per Leg
VS. Forward Current
Typical Forward Voltage Per Leg
VS. Forward Current
.2
II
.4
.6
.8
1.2 1.4
FORWARD VOLTAGE (V)
.01 '---' __...L1..--'--'--L--'--__.L...---''--'
.2
.4
.6.8
1.2
FORWARD VOLTAGE (V)
444
1.4
·PRINTED IN U,S.A.
679,680,683,684 SERIES
Typical Leakage Current vs. PlY
.05
.1
=<
I
.5
u
zOJ
-+25'C
"'"'L5" 100so
"'"
I
SOO
1K
125
100
+125'C
50
100
200
I
500
lK
Y
~
50
75
% OF PIV
f.-'
10
20
OJ
..J
I
.05
OJ
.1
.2
0:
""
---+75'C
..J
....
z
OJ
0:
OJ
./
u
+75'C
OJ
100
75
50
I"
""
'"
"
...-
i.--+75'C
W
..J
./
125
-~5'C
r-
.5
I
I
10
20
50
100
_f.--"'+125'C
25
50'C
.3
u
1/
OJ
./
____ +25'C
::>
I
10
.....
.005
.01
=< .02
.5
0::
0::
1
680 SERIES
.001
.002
=<
I~
...
Typical Leakage Current vs. PlY
./
50'C
.05
.3 .1
.... .2
I
zOJ
684 SERIES
.01
.02
);;;:C
.3
0:
0:
OJ
Typical Leakage Current vs. PlY
678,683 SERIES
~'C
125
25
lao
75
50
25
% OF PIV
% OF PIV
Reverse Recovery Circuit
uz 840
51)
10V D.C.
5V D.C.
III
=
Current Derating Curve
Current Derating Curve
100
55'C
"z~
0:
!
50
#
"-
100
"
I
"" .....
I
a
~
1,
,
'~
#
'\
so
100
150
CASE TEMPERATURE ('C)
a
175
Standard Recovery Series
UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509' TELEX 95·1064
683 SERIES
684 SERIES
50
0:
I
o
...
l"l..
"z
1'.'
680 SERIES
~
55'C
679 SERIES
:.~
o
"
U
10
'''"""
"''"
-+75"C
50
100
..J
y
500
~
lK
J
125
I
•
./
"'
/ II
/I I
~
.05
-SO"C_
II
II
::>
u
:<
....-"
1ttt-2S"~
··17S"C.• IOO;C
.v
.05
.1
100
75
50
% OF PIV
+125"C
25
.4
.6
.8
1.0
1.2
FORWARD VOLTAGE (V)
Reverse-Recovery Circuit
UZ840
Current Derating Curve
100
55-C
"
'"
z
~
a:
'-,
10V D,V.
5V D.C.
50
'.,
a
a
1',
50
100
150
CASE TEMPERATURE ( C)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
175
447
PRINTED IN U.S.A.
RECTIFIER ASSEMBLIES
697,698 SERIES
Single Phase Bridges, 7.5 Amp, Standard
and Fast Recovery
FEATURES
DESCRIPTION
•
•
•
•
•
•
•
These miniature molded high-current
single-phase bridges are designed for universal application in power supplies. One
basic bridge fills current requirements up
to 7.5A, with PIV's from 100 to 600 volts and
recovery times of standard, and 500ns max.
Miniature High Current Assemblies
Continuous Ratings: to 7.SA
Surge Ratings: to 80A
PIV's: from 100V to 600V
Recovery Times: to 500ns
Only Fused-in-Glass Diodes Used
Controlled Avalanche Characteristics
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage.
Maximum Average D.C. Output Current
Non-Repetitive Sinusoidal Surge (8.3ms)
Operating and Storage Temperature Range.
Thermal Resistance Junction to Ambient
Junction to Case
100 to 600V
See Electrical Specifications
See Electrical Specifications
.. -WC to +lSO'C
32'C/W
... 1O'C/W
MECHANICAL SPECIFICATIONS
697,698 SERIES
1.0·:0~~n~i~Ong -<
o~ + ~
.250 M".-i
Tinnt~a~oppef
r
',01
-*-~
-<
1- .150 Typ,
~
',01
TYpical Weight Dimensions in inches.
0.14 ounces
4.0 grams
MARKING
Alternating Current Input
Cathode - Positive Output
Anode - Negative
Part number is printed on the body.
[ill]
448
_UNITRDDE
697,698 SERIES
Electrical Specifications (at 25'C unless noted)
Maximum Ratings
Maximum
Type
Leakage
Current
Per Leg @ PIV
Maximum
Forward
Voltage Drop
PIV
Per
Leg
Per Leg
T,
=, 2S'C
697-1
697-2
697-3
697-4
697-5
697-6
698-1
698-2
698-3
698-4
698-5
698-6
Standard
Recovery
Fast
Recovery
Timet
pA
100
200
300
400
500
600
100
200
300
400
500
600
ns
1.0V@2A
5
200
1.lV@2A
5
200
Non-Repetitive
Sinusoidal
Surge
(8.3ms)
D.C. Output
Current
T, = 2S'C
Tc - SS'C
Reverse
Recovery
TA -- 100'C
pA
Volts
Average
Maximum
Amps
500
Amps
Amps
2.5
7.5
80
2.25
7.0
70
tMeasured in a reverse recovery circuit switching from lA forward to lA reverse current recovering to .SA.
Typical Forward Voltage Per Leg
vs. Forward Current
Typical Forward Voltage Per Leg
VS. Forward Current
10
III
5:
!z
....
(J
V
II
I/lJ
0
"So
~ .05
~02
"-
(J
~.02
/
.005
.002
.2
/
/
il
.001
"-
I
II
I
j II
-
.002
II
.001
.4
.6
.8
1
1.2
FORWARD VOLTAGE (V)
1.4
.2
50'C
./
.2
-----+2S'C
.5
0:
:>
(J
....
/
I
.01
.oos
1--
....0:
,<.Ji.<.J
II /
So
I
.01
;C
...
Z
K'8~~
:;::;: i- I
,./
.05
.1
.3
Ilj.<.J
.1
ALL SERIES
.01
.02
II I/V
I
"~.os
II
/
1
.5
~ .2
:>
U U
:;:~ :;:~lk
-F/I~
.1
5:
!;:
....
Typical Leakage Current VS. PIV
VV' /.~
/1/ I/V
698 SERIES
tLIl III
.5
~ .2
:>
10
V,
697 SERIES
"'"
'"'"....
/
..J
L
/
I
---
10
20
50
100
200
-
_
V
+7S'C
V
+12S'C
500
1.000
.4
.6
.8
1
1.2
FORWARD VOLTAGE (V)
100
50
% OF PIV
150
1.4
Reverse Recovery Circuit
Current Derating Curve
UZ 840
51)
100
-
,, ,
55'(;
,
41)
"
10V D.C.
D.U.T.
" ,"
,
FREE AIR
Z
SV D.C.
,
;:
"'so
0:
'#
"CASE TEMP.
"
",
,
"",
l!l
I
o
o
so
100
150
200
TEMPERATURE ('C)
=
UNITRODE CORPORATION· S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326~6S09 • TELEX 9S-1064
449
PRINTED IN U.S.A.
RECTIFIER ASSEMBLIES
700, 701 SERIES
Three Phase Bridges, 2.5 Amp, Standard
and Fast Recovery
FEATURES
DESCRIPTION
•
•
•
•
•
•
These miniature transfer-molded highvoltage three-phase power bridges are
designed for universal application in power
supplies. One basic bridge fills current
requirements up to 2.5A, with PIV's from
100 to 600 volts and recovery times of
standard and 500ns.
Miniature Package
Recovery Time: to 500ns
Surge Ratings: to 25A
PIV: from 100 to 600V
Controlled Avalanche Characteristics
Only Fused-in-Glass Diodes Used
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage .
.. ...................................
.. ............. 100 to 600V
Maximum Average D.C. Output Current ............................... See Electrical Specifications
Non-Repetitive Sinusoidal Surge (8.3ms) .......................... See Electrical Specifications
Operating and Storage Temperature Range .
.. .......................... -65'C to +150'C
Thermal Resistance Junction-to-Ambient
....................................... 25'C/W
MECHANICAL SPECIFICATIONS
700, 701 SERIES
1
.028 DIA .
.31 0 ..)-.621
r-
I:c ~c
Dimensions in inches.
AC
-Il--- Tinned Copper
I
512 REF
1
-r
.460 MAX.
l~..'.:::r
.B75
.220
I ~
MAX.-I
Typical Weight - 0.12 ounces
3.5 grams
450
lliIJ
_UNITRDDE
700,701 SERIES
Electrical Specifications (at 25'C unless noted)
Type
Leakage
Current
Per Leg @ PIV
Maximum
Forward
Voltage Drop
Per Leg
PIV
Per
Leg
TA - 100'C
Maximum
Reverse
Recovery
Timet
I/A
I,A
ns
1.0V@0.SA
2
100
l.lV@O.SA
2
100
TA - 25'C
Volts
Standard
Recovery
700-1
700-2
700-3
700-4
700-5
700-6
701-1
701-2
701-3
701-4
701-5
701-6
Fast
Recovery
100
200
300
400
500
600
100
200
300
400
500
600
Maximum Ratings
Maximum
Average
D.C. Output
Current
Non-Repetitive
Sinusoidal
Surge
(8.3ms)
TA - SS'C
Amps
Amps
500
2.5
25
2.25
20
tMeasured in a reverse recovery circuit switching from lOmA forward to lOrnA reverse current recovering to SmA.
Typical Forward Voltage Per Leg
vs. Forward Current
Typical Forward Voltage Per Leg
VS. Forward Current
10
700 SE!lIES
701 SERIES
w
VI/:
::>
.2
0
.1
0
0:
«
~
UJ
110.
0:
0:
L
Y')
.05
.02
il
.01
.005
if
.002
.001
.2
/
(;)
~
.,
~
/li/t
f-J 5.>
'~;cJ?
.1
II
0:
~
I
.02
/
.01
.005
/ I
j
/
.002
1.4
2
.05
.1
UJ
.5
...z
0:
0:
I
I
L
/+2S'C
I
rs'c III
1
w
'"
«
"«w
II
..J
../
10
20
50
I
/
100
/
200
-------+125'C
,L
500
1.000
I
.4
.6
.8
1
1.2
FORWARD VOLTAGE (V)
PIV
~'C
::>
u
c-
I /
I
.001
.4
.6
.8
1
1.2
FORWARD VOLTAGE (V)
II
<'
.0;
c-
.... 'I- 'I- I
~05
III I
I
.5
G2
:;'J.fh.~/l
~ :q fif(1.'1- 'I- I r--
0:
0
...
z
.5
0:
0:
/v V
/V/
VI/ IV
~
VS.
ALL SERIES
.01
.02
l.--
...~
Z
Typical Leakage Current
10
100
150
1.4
50
°'0 OF PIV
Reverse Recovery Circuit
Current Derating Curve
1Ka
100 r - - - -
+
,,
I
,
99011
'"
CONVECTION
COOLED
Z
20V D.C.
;::
«
0:
D.U.T.
"-
50
~
"
-
,
"
loa
o
o
50
100
ISO
200
AMBIENT TEMPERATURE ('C)
UNITRODE CORPORATION· 5 FORBES ROAD
.LEXINGTON. MA 02173 • TEL, (617) 861-6540
TWX (710) 326-6S09 • TELEX 95-1064
451
PRINTED IN U.S.A.
800,801 SERIES
RECTIFIER ASSEMBLIES
Three Phase Bridges, 20-40 Amp,
High Efficiency, ESP
DESCRIPTION
This series of three phase bridges
offers the highest efficiency possible
for appl ications where nothing else
will do. The series allows operation at full
power at high frequencies.
FEATURES
• Current Ratings: to 40A
• Recovery Time: SOns
• Surge Ratings: to 250A
• PIVs: from 50 to 150V
• Only Fused-in-Glass Diodes Used
• Exceptionally High Efficiency
• Aluminum Heat Sink Case, Electrically Insulated
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltages.
.. .. 50 to 150V
Maximum Average D.C. Output Current.
...... See Electrical Specifications
Non-Repetitive Sinusoidal Surge (8.3ms)
.... . . . . See Electrical Specifications
Operating and Storage Temperature Range.
. ............... -65'C to +150'C
Thermal Resistance Junction to Ambient, All Series . ... .
. ....... 20'C/W
Junction to Case, 800 Series .
. ................................ 2.5'C/W
Junction to Case, 801 Series .
.. 3.0'C/W
MECHANICAL SPECIFICATIONS
800, 801 SERIES
11r===:::=;rl~r..JBS
.365
4-.l!::=====-1='-h.J~90I-
, e" a. a. a
.820 MAX,
I I AC
Lc±:
AC
AC
-l-
.370
.sk
I
~~86
1----1.880
.I
1.870----'
Dimensions in inches.
:~~: OIA.
(2 PLACES)
.135
.115
Typical Weight -1.0 ounce
30 grams
[ill]
452
_UNITRDDE
800, 801 SER IES
Maximum Ratings
Electrical Specifications (at 25'C unless noted)
Maximum
Reverse
Type
TA - 25'C
TA - 100'C
I'A
I'A
Time*
ns
Tc - 55'C
Amps
Tc _IOO'C
Amps
.95V@lOA
20
1000
50
40
25
250
.95V@6A
10
300
50
20
16
125
Voltage Drop
Per Leg
Volts
ESP
Recovery
800-1
800-2
800-3
800-4
801-1
801-2
801-3
801-4
ESP
Recovery
50
100
125
150
50
100
125
150
Maximum
leakage Current
Per Leg@ PIV
Forward
PIV
Per
Leg
Maximum
Average
Non-Repetitive
Sinusoidal
Surge (8.3ms)
TA - lOO'C
Amps
Maximum
D.C. Output
Current
Reverse
Recovery
*Measured in a reverse recovery circuit switching from lA forward to lA reverse current recovering to O.SA.
Forward Surge Current VS. Duration
Forward Surge Current VS. Duration
;:;
;:;
~ 160
~ 320
;:: 280
t:i
~
240
~
,
200
..!..
:l
u 160
~ 120
"-
I-
80
o
40
:l
I-
Z
.02
.05
.1
"BOI SERIES
..t
~ 80
r--
.2
............
~ 100
~ 60
-
o
.01
140
~ 120
00 SERIES
.5
1
5
.....
40
20
o
o
10
20
.01
.02
.05
DURATION (SEC.)
.1.2
.5
10
20
DURATION (SEC.)
Current Derating Curve
'0 40
~
...
Z
LU
0:
0:
"- V- -
35
30
25
801 SERIES
:l 20
h
u
I-
:l
"
I--
15
"- 10
-
800 SERIES
I"-,
I--
"'"
...... t'--
I-
r--...
:l
0
o
o
55
100
150
CASE TEMPERATURE ('C)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
453
PRINTED IN U.S.A.
III
800,801 SERIES
Typical Forward Voltage Per Leg
vs. Forward Current
Typical Forward Voltage Per Leg
vs. Forward Current
100
100
~ ~~
800 SERIES
50
50
VV ~
20
/1/ II
I-
1[1 I /
- - Il"CJ II
Iq
I
-'-/7
il
Z
W
a:
a:
::J
u
Z
.2
a:
a:
::J
u
I
.5
I
1/
.01
.1
I
[I
.5
0:
"
.2
"- .1
.05
.01
I
.5
.7
.9
1.1
1.3
FORWARD VOLTAGE (V)
801 SERIES
/VV
.1
.2
~
J-J-f-I-
~
IZ
1
a:
a:
2
w
w
0:
0:
T -
/
1.3
I
8 0 SERI S
AJ-25'L
-5JC
/"
I
.-/
::J
,/
U
I
II
/
.2
Z
::J
if:;:~r~"Ii.+kjt7
II !/
.1
,--
I-
w 10
I
Vt,CJ
r--
Typical Leakage Current vs. PIV
.01
.02
iitolc
+2;:'I cI
T _
r--I-
I
!II
.1 .2 .3 .4 .5 .6 .7 .8.9
1.1
FORWARD VOLTAGE (V)
1.5
Typical Leakage Current VS. PIV
.01
.02
r--I-
0
.02
I
.3
"
"a:
I
/
"- .1
/ /
W
:;:~,.,
'f-J !;J
~ .05
U
W
+75"C
"":.:
~ 20
:.:
"
L;'j
..1
1// /V
10
~
I-
o
....;~ ;:;:V
20
10
~
"~
801 SERIES
10
20
T _ - 75-;;'-'--
W
.......
..J
100
T _ +125"C
200
,-
100
200
T~'12~ ~
lK
125
100
75
50
% OF PIV
25
IK
125
Reverse-Recovery Circuit
75
50
% OF PIV
100
25
Characteristic Waveform
--<
~
t"
tREe
\
,
LI
,
l
~
I
I.
SET TIME BASt
FOR 5 NS/CM
NOTES:
1. Oscilloscope: Rise time ~ 3n5; input impedance ::: 5m~.
2. Pulse Generator: Rise time :s;; 8ns; source impedance lOt?,
3. Current viewing resistor, non-inductive, coaxial recommended.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEl. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
,
454
PRINTED IN U.S.A.
802,803 SERIES
RECTIFIER ASSEMBLIES
Single Phase Bridges, 20-35 Amp,
High Efficiency ESP Series
DESCRIPTION
This series of single phase bridges
offer the highest efficiency possible
for applications where nothing else
will do. The series allow operation at
full power at very high frequency.
FEATURES
• Current Ratings: to 35A
• Recovery Time: 50ns
• Surge Ratings: to 250A
• PIVs: from 50 to 150V
• Only Fused-in-Glass Diodes Used
• Exceptional High Efficiency
• Aluminum Heat Sink Case, Electrically Insulated
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage .
... 50 to 150V
Maximum Average D.C. Output Current.
.... See Electrical Specifications
Non-Repetitive Sinusoidal Surge (8.3ms)
See Electrical Specifications
Operating and Storage Temperature Range.
.. -65'C to +150'C
Thermal Resistance Junction to Ambient, 802 Series
20'C/W
803 Series
......... 25'C/W
Junction to Case, 802 Series.
. ........ 2.0'C/W
4.0'C/W
803 Series.
HHH
MECHANICAL SPECIFICATIONS
"Tjf--
:~i~;.
-L
n
-rr
1.-.755 ...J
l
.735 I
803 SERIES
:l;g
OlA.
+
Q
~¥
.570
--L-
'
MAX.
,
I
~
.226
Typical Weight -
Dimensions in inches.
,itt
802 SERIES
r- m
1135
1.1~.572
.552
~
@2@
.572
.552
.:A
t-- :~~g
'~~
@-@
C
1.l15
L!;
.302
0.35 ounces
10 grams
DIA.
~
,.--
m-l-
u
c
0
;,
~
I
.5 t - - ~(,)
r- ...~ &oJ;.o{,)
.2
-
Ul
II
0
"""I
-f.
~ .05
0:
/lo{,)&
/
1.1
.9
1.3
I
II
II
/ V
.1
.7
;;::v-
I I III
/ /
~
....
z
III J I
0:
0:
::>
,...:;:t;::::
'/1/ V
20
10
.3
.5
.7
.9
1.1
1.3
FORWARD VOLTAGE (V)
1.5
FORWARD VOLTAGE (V)
Typical Leakage Current VS. PIV
.01
.02
~
....z
Ul
802
I
SERIES
Typical Leakage Current VS. PIV
.01
I
.02
~=-5atI
./"
.1
.2
1
,....V
"'"
lito~c
I I
.2
./"
TI=+25t_
T _ +25"C 1--
1-1-1-1-;"'"
....
z
Ul
0:
0:
Ul
SERIES
.1
0:
0:
::>
u
""
803
.... ""
:0
~
10
20
T_+75'~
Ul
.J
T
10
.-
'"
;::l
.J
100
200
100
T _ +125°C
200
T = +125.:,s-- ......----
lK
125
100
75
~'O
50
+75°C
~ 20
I-
lK
125
100
75
50
25
% OF PIV
25
OF PIV
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
456
PRINTED IN U.S.A.
802, 803 SER I ES
Current Derating Curve
0' 40
"C
:::. 35
....z
W
0::
0::
:;J
30
25
1-··
a02 SERIES
:;J
15
....
10
a.
g
.......
I
I r- h"-
u 20
....
.-
.......,
803 SERIES
f'.
I'-
r- t--... I'-
r--r--.
I I
I I
55
150
100
CASE TEMPERATURE ('C)
Forward Surge Current vs. Duration
Forward Surge Current vs. Duration
u
u
~ 160
.... 140
;:- 2ao
::! 120 :---......
!5100
~ 240
~ 200
u
u 160
~ 320
z
~
t--...
60
I
~ 40
o
I La03 SERIES
20
I II
o
.01
_02
............,
I'-
:;J
80
.05
.1
.2
--
.5
j
120
....
80
o
40
a.
:;J
I
LiJ02 SERIES
20
-r-.
I IIIII
o
10
.01
.02
.05
.1
.2
.5
10
20
DURATION (SEC.)
DURATION (SEC.)
Characteristic Waveform
Reverse·Recovery Circuit
--<
0-
t"
\
I REe
l
I
1\
./
l
"
SET TIME BASE
FOR 5 NS/CM
NOTES:
1. Oscilloscope: Rise time:';;; 3ns; input impedance ::= sou.
2. Pulse Generator: Rise time ~ 8ns; source impedance lO!2.
3. Current viewing resistor, non-inductive, coaxial recommended.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064
II
........
457
PRINTED IN U.S.A.
804 SERIES
RECTIFIER ASSEMBLIES
Doublers and Center Tap, 20 Amp,
High Efficiency, ESP
FEATURES
DESCRIPTION
•
•
•
•
•
•
•
This series of doublers and center tap
rectifiers offer the ultimate in high
efficiency application. The rectifiers are
particularly suited to switching regulator
supplies where very fast recovery time
and low forward drop are of prime
importance.
Current Rati ng: to 20A
Aluminum Heat Sink Case, Electrically Insulated
Recovery Time: SOns
Surge Rating: to 250A
PIVs: from 50 to 150V
Only Fused-in-Glass Diodes Used
Exceptional High Efficiency
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage .
..... 50 to 150V
Maximum Average D.C. Output Current
@ Tc = +55·C .
......................... 20A
@ Tc = +lOO·C ..................................................................... 14A
Non-Repetitive Sinusoidal Surge (8.3ms)
@ TA
+l00"C .
................................................................ 250A
Operating and Storage Temperature Range ....................................... -65·C to +15O·C
Thermal Resistance Junction to Ambient.
... 20·C/W
Junction to Case..................................
.. ....... 6.0·C/W
=
MECHANICAL SPECIFICATIONS
804 SERIES
AC
:~~~ OIA.
(2 PLACES)
"D"
.
"P"
.
~
"N"
.
l1li
~I
~
+
AC
I
AC
Dimensions in inches.
+
AC
loiii
~I
AC
Typical Weight - 0.35 ounces
10 grams
MARKING
Alternating Current Input
Cathode - Positive Output
Anode - Negative
Part number is printed on the body.
t Add suffix P, N. or 0 for terminal
configuration P, N, or D.
For example, for center tap
configuration, P, order 804·IP
[ill]
458
_UNITRDDE
804 SERIES
Electrical Specifications (at 25'C unless noted)
Maximum
Type
Maximum
Forward
Voltage Drop
Leg
Per Leg
TA - 2S'C
pA
TA - IOO'C
pA
Time*
.95V@10A
10
500
50
Volts
804-1
804-2
804-3
804-4
ESP
Recovery
Maximum
Reverse
Recovery
Leakage
Current (pA)
Per Leg @ PIV
PIV
Per
50
100
125
150
ns
*Measured in a reverse recovery circuit switching from lA forward to lA reverse current recovering to O.SA.
Typical Forward Voltage Per Leg
VS. Forward Current
100
50
/-j r:I
20
10
g
...
5
~
2
-f-
1
.
~
1
...
II III I
~ .05
~
.1
I
V
Z
3'"
Typical Leakage Current
II
.2
.1
/
.5
1
~.
... 1 h
/
V
.01
.1
1/"'
()
." /5 ()
.3
II
I
~
",-
.2
~J
TL+251_
I
,/
:J
U
iJ
uJ
~
-1-1"1
II
'"
~
10
20
T_+75';"'-
...J
100
200
T
75
:= +12S:.s..--
I
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95·1064
PIV
lA=-5JcJ
'"'"
I
.5
.7
.9
1.1
1.3
FORWARD VOLTAGE (V)
VS.
.01
.02
f.-:: ::::=t::::
lK
125
1.5
459
100
50
% OF PIV
•
f-"""""
V
25
PRINTED IN U.S.A.
804 SERIES
Forward Surge Current vs. Duration
Current Derating Curve
U 40
35
U
'0
$160
I- 140
:::.
I-
z
zw
~ 120
g; 100 i'---...
~ 80
(J
o
IL
.01
Q,
I-
804 SERIES
I
o
.02
25
20
I"t-
:> 15
I
40
20
30
I-
b-.
~ 60
5
''""
:>
:>
0
l-
804 SERIES
10
I I II
.5
10
....... ;-...
I I
I I
20
55
100
CASE TEMPERATURE ('C)
DURATION (SEC.)
........
150
Reverse·Recovery Circuit
NOTES:
1. Oscilloscope: Rise time ~ 3nsi input impedance = 50~~.
2. Pulse Generator: Rise time::;; 8nsi source impedance lOn.
3. Current viewing reSistor, non~inductive, coaxial recommended.
Characteristic Waveform
~
t"
r-
1\
I REe
1\
l
l
I
I.
SET TIME BASE
FOR 5 NS/CM
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 86J.6540
TWX (710) 326-6509 • TELEX 95-1064
460
PRINTED IN U.S.A.
PMB101-PMB107
PMB101X-PMB107X
PMB201-PMB205
PMB201X-PMB205X
RECTIFIER ASSEMBLIES
Doubler and Center-Tap
PMB Power Modules
High Voltage, High Current
FEATURES
• PIV: From 2.5kV to 30kV
• 6A in Oil
• 300A Surge Current
• Dense Packaging
• Convenient Mounting
DESCRIPTION
The PMB POWER MODULE is available as
a high voltage doubler or center tap with
either a positive or negative tap. The high
current capabilities suggest such applications as high power TWT amplifiers, power
supplies and precipitators, The molded
heat sunk configuration allows operation in
oil and air.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage ................................................. 2.5kV to 30kV
Maximum Average Rectified Current ..................... See Electrical Specifications
Maximum One Cycle Surge 8.3mS ...................... See Electrical Specifications
Operating and Storage Temperature Range ......................... -65°C to +150'C
MECHANICAL SPECIFICATIONS
_I 1-
~CASE
LENGTH ± .030
PMB101-PMB107
PMB101X-PMB107X
PMB201 -PMB205
PMB201 X -PMB205X
(.762)~
.55 (13.97) TYP.
.37 (9.398) R TYP
1=~~
+
~;::-
~
~ f:5
~,-'
~
~~
,
u
,2
/.'/.
12
.CJ
w
a:
a:
I
-"
::>
u
I
,2
-"
.1
75
"'
0:
0:
::>
u
100
III
1000
1,000
~
500
~
Z
w
a:
~
...uen
.
--
I I
iJirI
C
~
i II
120
V, -
I
100
I I
"z>=
"-........
60
UJ
"::>a:
40
en
...........
:'
80
«
a:
r--
II
60
40
" "'~
r-
"-
0
20
;f
..J
::>
10
.5
50
lOpS
1 2
lOOpS
ImS
20
Multiple Surge Current VS. Duration
100
............
100
50
80
VOLTAGE IN % OF PIV
VOLTAGE (V)
Peak Half Sme Current vs.
Duration for Non-Repetitive Pulse
-........... r--.
I-
TI'l ~101\
T= +125'C
(
,1 .2 ,3 ,4 ,5 ,6 .7 _8 .9 1.01.11.21.3
Forward Pulse Current vs. Duration
5,000
i-
20 t-
200
TEMPERATURE ('C)
10,000
10
I
~
A, 1/ II
III ',-,
,01
100
I
1-.;:0 '&$J u
,02
50
'/
~~
J"
I-
....
z
;t,}Ei~
.~
,5
,05
25
~
1'/
~
~
z
10
-50"e
_
I
,1
~V
10
TJ
::-
1.",jI~
20
~
I/f
.02
50
16
10mS
10 20
---
50 100 200
500 1000
CYCLES AT 60 Hz SINE WAVE
PULSE DURATION
~
2,0
...uE 1.0
./
.4
Q.
;§
-'
«
1--'' ' '
,2
::;:
a:
:x:
....
I
,04
+
"
_
-=-
25Vdc
(APPROX.)
III
NOTE)
I--'
.1
UJ
10 II
.... :.- ....
«
0
son
."
z
UJ
Reverse-Recovery Circuit
Thermal Impedance
vs ..Pulse Width
V
NOTES:
~ ,02
rjJ
,01.02 ,05.1.2
I, -
.5 1 2
5 10 20 50 100 200
1. Oscilloscope: Rise lime'" 3nS: input impedance = 500.
2. Pulse Generator: Rise time s;; BnS; source impedance IOn.
3. Current viewing resistor, nonMinductive, coaxial recommended.
1000
PULSE WIDTH (mS)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 ' TEL. (617) 861-6540
TWX (710) 326-6509 ' TELEX 95-1064
468
PRINTED IN U.S.A.
RECTIFIERS
SES5601C
SES5602C
SES5603C
High Efficiency, 25A Center-Tap
FEATURES
• Low Forward Voltage Drop
• Fast Switching Speed
• Convenient Package
• High Surge Capability
• Low Thermal Resistance
• Mechanically Rugged TO-3 Package
• Available as Positive or Negative Center-Tap
DESCRIPTION
The SES, super-fast recovery, rectifiers are
specifically designed for operation in
power switching circuits. Their super-fast
recovery time and very low forward
voltage drop make them particularly
efficient in most switching applications.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, SES5601C ..................................................................................50V
Peak Inverse Voltage, SES5602C ................................................................................. 100V
Peak Inverse Voltage, SES5603C ................................................................................. 150V
Maximum Average D.C. Output Current at Tc = 100°C ................................................................ 25A
Non-Repetitive Sinusoidal Surge Current 8.3 mS ................................................................... 400A
Thermal ReSistance, Junction to Case ........................................................................... 1 ·C/W
Operating and Storage Temperature Range ............................................................ - 55·C to + 175·C
ELECTRICAL SPECIFICATIONS PER DIODE
Type
PIV
SES5601C
SES5602C
SES5603C
50V
100V
150V
Maximum
Forward Voltage (VF )
@
Maximum
Reverse Current (lR)
@PIV
Tc =2SoC
Tc =12SoC
@Tc=2SoC
@Tc=12SoC
Maximum
Reverse
Recovery
Time·
0.990V
@
12.5A
tp=300,..s
0.830V
@
12.5A
tp=300,..s
20"A
4mA
100nS
'Measured in circuili F =O.5A, iR=1.0A, i REC=O.25A
MECHANICAL SPECIFICATIONS
•
SESS601C-SESS603C
POSITIVE OUTPUT
~
1
14
•
CASE
-l
'~'
-~
BlliJ
C
0
Ins.
F
I
G
i
M
~,L
~"
I
j
G>
J~~
.875 MAX.
B
.135 MAX.
3.43 MAX .
C
.250-.450
6.35-11.43
.312 MIN.
E
.038-.043 DIA.
22.23 MAX.
7.92 MIN.
0.97-1.09 OIA.
F
. 188 MAX. RAD.
G
1.177-1.197
29.00-30.40
H
.855-.675
16.64-17.15
J
.205-.225
5.21-5.72
K
.420-.440
10.67-11.18
L
.525 MAX. RAO. 13.34 MAX, RAO.
M
.151-.161
.
H
A
0
L
~
K
TO-3
mm
4.78 MAX. RAD.
3.84-4.09 DIA.
NOTES:
1. Standard polarity Is positive output.
For reyerse polarity (negative output) add Bufflx "A", Ie, SES5801CR.
2. All metal surfaces tin platad.
[ill]
1180
469
_UNITRODE
III
SES5601C-SES5603C
Typical Forward Current
VI. Forward Voltage
Typical Revene Current
vs. Reverse Voltage
.001
.002
I
J-+
.005
.01
50
V
20
TJ -+2S'C
<
oS .02
~
z 10
\oJ
II:
II:
:>
'"
:>
0
'"
en
II:
iiiII:'"
II:
II:
.1
.2
.5
1 f02
50
,I
+lOO'C
r ~+t
v T = +12S'C
~H
J
,/
II
II:
I
~
II:
/
V
...
0
f--
J
10
20
0
..... ~
-"
.5
= +ISO'C
.2
I
I
V
V
j
V, -
400
-~
100
1\ '"
V V
L
~ -T
J
=+7S'C
V
.6
.8
1.0
FORWARD VOLTAGE (V)
1.2
REVERSE VOLTAGE ('Yo OF PIV)
Maximum Forward Surge
VS. Number of Cycles
I"'"
~
II
.4
I
130 120 110 100 90 80 70 60 50 40 30 20 10 0
V. -
V
/
0
I
-"
L
I-
IZ .OS
0
TJ = +IS0'C
30
~
1.0
UJ
U
.5
Thermal Impedance
vs. Pulse Width
~
I""
~
Z
VV
-<
'" '"
."
.2
UJ
:!i
-<
~
~
.05
UJ
. . . 1"--.
I
-
10
20
50
100
CYCLES OF 60 Hz SINEWAVE
l-
1-1- c-
V
V-
.1
-'
~ICYC~E
N-
i---'f--
I/
V
.02
I
~
...
.01
.01.02 .05.1 .2
I, -
.5 I 2
5 10 20 50 100 200
PULSE WIDTH (mS)
1000
200
Output Current vs.
Case Temperature
Reverse-Recovery Circuit
Ion
SOP.
30
~
-
I-
Z
'"
II:
II:
:>
20
0
I-
~ ......
:>
Q.
I-
:>
0
+
10
I
_0
100
Tc -
_
-=-
25Vdc
(APPROX.)
In
""
NOTE 3
OSCI LLOSCOPE
NOTE I
=
~
NOTES:
1. Oscilloscope: Rise time ~ 3nSj input impedance = son.
2. Pulse Generator: Rise time ~ anSj source impedance 100.
3. Current viewing resistor, non~inductive. coaxial recommended.
12S
150
17S
CASE TEMPERATURE ('C)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02113 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
470
PRINTED IN U.S.A.
RECTIFIER ASSEMBLIES
JAN
JAN
JAN
JAN
Single Phase Bridges, 25 Amp,
Military Approved
SPA25
SPB25
SPC25
SPD25
FEATURES
DESCRIPTION
•
•
•
•
•
•
•
This series of mi I itary high-current
single-phase bridges offer the utmost in
reliability as required in military system
designs, This series is assembled with
diodes which have been subjected to
100% screening tests.
Qualified to MIL-S-19500/446
Current Rating: to 25A
PIV: from 100 to 600V
Surge Ratings: to 150A
Only Fused-in-Glass Diodes Used
Controlled Avalanche Characteristics
Aluminum Heat Sink Case, Electrically Insulated
ABSOLUTE MAXIMUM RATINGS
Dimensions
Peak Inverse Voltage .
Maximum Average D.C. Output Current
@ Tc = 55"C ...
@ Tc
100"C .
Non-Repetitive Sinusoidal Surge (8.3ms)
@ Tc = 55"C .
Operating and Storage Temperature Range ....
Thermal Resistance Junction to Ambient .
Junction to Case
100 to 600V
INCHES
Ltr
MIN,
.... 25A
. 15A
=
............ 150A
.. ........ -65"C to +150"C
........... 20"C/W
.... 2.5"C/W
C,
C,
C,
C.
dO,
¢D2
~1Dl
~'!D4
~'iD~
H,
H,
Hl
H.
L,
L,
L,
L.
Ls
W
.552
.624
.312
.495
.189
.057
.108
.141
.225
.669
.300
.040
.042
.370
.307
.089
.132
.026
1.104
MAX.
,572
,760
,380
.512
.195
.067
.118
.151
.235
1.060
.500
.060
.062
.560
.365
.099
.142
.036
1.144
MILLIMETERS
MIN.
MAX.
14.02
15.85
7.92
12.57
4.80
1.45
2.74
3.58
5.72
17.53
7.62
1.02
1.07
9.40
7,80
2.26
3.35
.66
28.04
14.53
19,30
9.65
l3.00
4.95
1.70
3.00
3.84
5.97
26,92
12.70
1.52
1.57
14.22
9,27
2.49
3.61
.91
29.06
MECHANICAL SPECIFICATIONS
SPA25 SPB25 SPC25 SPD25
ENCAPSULATION
[ ~c
...
C'1?
METAL
__ I
I
HI
B'
"
4
VIEW
'~D,
a-a
SEE
I
r~'DETAIL
H : :;:: 'I' ::',
I, '::' , H,f
#1...
jo-C
SEE NOTE 2
w-
~H
L~~~ ~gi~ ~
l'
B
t _ _ _ _ _ ..J
,0,1:=:;1. 0
L-cr
SEE - _
NOTE 1
1[005J
SEE
NOTE 5
flL
erL
~.l(REFl
: ~Lj
,', D!,
DETAIL
-
NOTES:
1.
2~
3.
4.
5.
Terminals shall be hot tin dipped or silver plated.
Polarity shall be marked on terminal side of device.
Point at which Tc is read (must be in metal part of case).
locating pin shall be adjacent to positive terminal.
Insulating sleeve shall be alumina (AL 2 0 3 ) or equivalent.
[ill]
471
_UNITRODE
III
JAN SPA25 JAN SPB25 JAN SPC25
JAN SPD25
Electrical Specifications (at 25°C unless noted)
Peak
Forward
Voltage
PIV
Per
Leg
Type
Drop*
100
200
400
SPA25
SPB25
SPC25
SPD25
I
Minimum
Volts
JAN
JAN
JAN
JAN
Maximum
Reverse
Recovery
Timet
Maximum
0.9V
Maximum Leakage
Current
Per Leg~@ PIV
Tc _l50'C
Tc - 25'C
"S
lAV
2
"A
"A
2
250
@39A(pk)
600
*Peak forward voltage drop is measured at a pulse width of B.3ms.
tMeasured in a reverse recovery circuit switching from O.SA forward to 1.0A reverse current recovery to a.SA.
Typical Forward Voltage Per Leg
vs. Forward Current
50
// ~
~ III
20
10
/ Ij
II L /1
VI
~
z>UJ
0:
0:
I II
:0
<)
Cl
Ih~
:;./~
'">=
0:
...
Cl
.2
.4
.6
I
I
_
UJ
1- (
Current Derating Curve
100
'\.
1./
+75'C
"z~
'\.
\.
50
\.
0:
if.
I\,
o
o
L
50
100
200
"
50
100
150
CASE TEMPERATURE ('C)
175
1./
-
+125'C
500
1K
I
/11
.05
./
_ _ +25'C
10
20
..J
I I '/ I
.1
1
UJ
/ /
.2
.05
.1
>- .2
Z
UJ
.5
"
"''""
PIV
50'C
<)
~ g
.5
.01
.02
:0
II /
VS.
I~/
0:
0:
fo 0
'~h1t
0:
Typical Leakage Current
125
.8
1.2
100
75
50
% OF PIV
25
1.4
FORWARD VOLTAGE (V)
100 Percent process conditioning
of discrete diodes
100 Percent burn-in of discrete
diodes
1. High·temperature storage
1. Measurement of specified
parameters
2. Thermal shock (temperature
cycling)
2. Reverse bias burn·in
3. Reverse-recovery time
3. Measurement of specified
parameters to determine
delta
4. Lot rejection criteria
based on rejects from
burn-in test
Reverse·Recovery Circuit
SOH
to verify LTPD
Group A
Group B
Group C
Review of groups
At B, and C data
for lot accept or
reject
25Vdc
(APPROX.)
II!
NOTE3
I nspection tests
10 !!
+
_
-=-
Assembly and
encapsulation of
discrete diodes
into bridge
assembly
OSCILLOSCOPE
NOTE1
NOTES:
1. Oscilloscope: Rise time :G: 3n5; input impedance:.:: SOQ.
2. Pulse Generator: Rise time ~ 8nsi source impedance lOP..
3. Current viewing resistor, non~inductivet coaxial recommended.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
472
PRINTED IN U.S.A.
RECTIFIERS
UES2401-UES2403
High Efficiency, 16A Center-Tap
FEATURES
DESCRIPTION
•
•
•
•
•
The UES2401 Series in the economical,
convenient T0-22O package, is specifically
designed for operation in power switching
circuits to frequencies in excess of 100KHz.
The series combines two high efficiency
devices into one package, simplifying
installation, reducing heatsink requirements and the need to purchase matched
components.
Very Low Forward Voltage
Very Fast Recovery Times
Economical, Convenient TO-22O Package
Low Thermal Resistance
Mechanically Rugged
ABSOLUTE MAXIMUM RATINGS
Peak I nverse Voltage, U ES2401 .
Peak Inverse Voltage, UES2402 ...
Peak Inverse Voltage, UES2403 .
Maximum Average D.C. Output Current
SOV
100V
150V
................ .16A
@ Tc = 125°C (Note 1)
@T. = 25°C.
. ........... ....... 3A
@T. = 25°C (Note 2) .................................... lOA
Non-Repetitive Sinusoidal Surge Current, 8.3mS
80A
Thermal Resistance, Junction to Case, 9 J _C . ...
. . . . 1.75'C/W
60'C/W
Thermal Resistance, Junction to Ambient, 9J _A . ..
Operating and Storage Temperature Range.
-55'C to +150'C
l1li
Note 1. Above 8A use the tab for electrical connection.
Note 2. Using Wakefield Type 295 heatsink with convection cooling. For more definitive
data refer to the Output Current vs. Temperature Curves on this datasheet.
MECHANICAL SPECIFICATIONS
UES2401-2403
SEATING
PLANE
A
~rFc
(~
J
r·-I~
F
f;
10
"'a:c::
1
-~
.5
:>
'f-
.2
1
-~
.1
.05
1-- '"
L..L.--L7~7
.02
I
.01
III
~
.....
;:!l
t-.'
It
t-.'
II
2
0:
1---1--
II
u
i50:
lw~
If J
1--1-/is () 1-+-+-+-H-1
--
r=2~
' ..
I-
....
0Z
u
= -SOOC
.2
~
5:
Vf
TJ
.1
~//
10
14
z
1.4V
Typical Reverse Current
VS. Voltage
.01
.02
50
16~--r-~r---r---+---\
'"a:a:
t, =8n5
35nS
Typical Forward Current
VS. Forward Voltage
100
0-
V~trr'
Time*
O.2SA
Output Current
vs. Temperature
g
Typical
Forward
Recovery
Maximum
Reverse
Recovary
Reverse Current
@PIV
I"
0
1--'110
_" 20
5? +-+-+-+-H
I
~~~;;~;;~~
T
= +7S'C
1.1 l= +100'C
1'1
t
100
I'll I I
200
I
1000
~
120
.1 .2 .3 .4 .5 .6 .7 .8 .9 1.01.11.21.3
T
= -l-12S'C
( II ' I
100
80
60
40
20
VOLTAGE IN % OF PIV
V,-VOLTAGE (V)
Multiple Surge Current
Forward Pulse Current VS. Duration
10,000
5,000
1,000
g
~ r-..
I
I
~
I
r Peak
Half Sine cu;re~t vs.
Duration for Non-Repetitive Pulse
..............
UJ
c::
100
50
"'
"z;:
80
c::
60
"c::
r.... ~
OJ
"' " "~
40
U)
u.
0
20
#
U)
VS.
Duration
'"" i'..
«
UJ
Z
~
I
.1
r-..
500
0-
u
100
-r----
..J
:>
Q,
10
.5
1
50
ImS
2
10mS
10 20
50 100 200
CYCLES AT 60 Hz SINE WAVE
500 1000
PULSE DURATION
~
,.,
z"'
u
'";!
.4
i'~
Q,
..J
«
::;:
a:
.2
.1
UJ
J:
0-
1 .04
N
~
SOil
10 it
2.0
E 1.0
«
0
Reverse-Recovery Circuit
Thermal Impedance
VS. Pu Ise Wi dth
./
.... ~f-
+
".'"
_
-=-
25Vdc
(APPROX.)
III
NOTE3
i'
V
OSCILLOSCOPE
NOTEI
-=
.02
.01.02 .05.1 .2
t, -
.5 1 2
NOTES:
1. Oscilloscope: Rise time'" 3nS; input impedance = 50n.
2. Pulse Generator: Rise time'" 8nS; source impedance lOll.
3. Current viewing resistor, non·inductive, coaxial recommended.
5 10 20 50 100200 1000
PULSE WIDTH (mS)
UNITRODE CORPORATION, 5 FORBES ROAD
LEXINGTON, MA 02173 ' TEL. (617) 861-6540
TWX (710) 326-6509 ' TE LEX 95-1064
474
PRINTED IN U.S.A.
RECTIFIERS
UES·2601-UES2603
High Efficiency, 30A Center-Tap
FEATURES
DESCRIPTION
•
•
•
•
•
•
•
This series combines two high efficiency
devices into one package, simplifying
installation, reducing heat sink requirements and the need to purchase
matched components.
Very Low Forward Voltage
Very Fast Switching Speed
Convenient Package
High Surge
Low Thermal Resistance
Mechanically Rugged
Both Polarities Available
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, UES2601 .
Peak Inverse Voltage, UES2602 .
Peak Inverse Voltage, UES2603
Maximum Average D.C. Output Current at Tc == 100°C
Non-Repetitive Sinusoidal Surge Current 8.3 ms
Thermal Resistance, Junction to Case
Operating and Storage Temperature Range
... 50V
100V
150V
30A
400A
.... PC/W
_55°C to +175°C
POWER CYCLING
SWITCHING CHARACTERISTICS
These devices possess the unique ability to pass many
thousands of cycles of a stress test designed to evaluate the
integrity of the bonding systems used in the construction of
power rectifiers.
In this stress test, the case of the device is not heat sunk.
Full rated forward current is supplied to force a case temperature increase at least 75°C, at which time, the current is
removed and the case allowed to cool. The cycle is repeated a
minimum of 5,000 times to simUlate equipment being turned
on and off. Extended power cycling tests demonstrate a product
capability in excess of 25,000 cycles.
The switching times of these ultra·fast rectifiers increase
relatively little, with temperature or at different currents. Even
in severe applications, such as catch diodes for switching
regulators and output rectifiers for high frequency square
wave inverters, these devices switch many times faster than
the fastest associated transistors. Thus, the stresses on and
powers dissipated in the switching transistors are substantially
less than when using other rectifiers.
MECHANICAL SPECIFICATIONS
UES2601-UES2603
TO-3
.161
POSITIVE OUTPUT
• ~
I
14
•
CASE
NEGATIVE OUTPUT
•
14
I .1
•
[dl,;oo~~~:
135FlJ-i
MAX
CASE
.450
312
.250
M!N
.440
.420
DimensIons in inches.
Not.:
Standard polarity is positive output.
For reverse polarity (negative output) add suffix "R", ie. UES2601R.
475
O:W
_UNITRDDE
III
UES260l- UES2603
ELECTRICAL SPECIFICATIONS
Maximum
Reverse Current
@
Maximum
Type
Forward Voltage
@
PIV
UES260l
UES2602
UES2603
SOV
lOOV
l50V
Tc = 2S'C
Tc = 12S'C
.930V
.825V
@
@
l5A
t. 300I'S
l5A
t. 300p.S
=
Maximum
Reverse
Recovery
Tc =2S'C
Tc = 12S'C
Time·
2Op.A
4mA
35nS
=
* Measured in circuit IF = O.SA, IR = lA, I REe = O.2SA
Typical Reverse Current
vs. Reverse Voltage
.001
.002
I
Forward Current
vs. Forward Voltage
50
V
I
...-H-l
T -+2S'C
.005
J
;( .01
.02
IUJ
UJ
a:
a:
u
.2
~
a:
.5
r---
UJ
i:ia:
r e:=T!
~
I
10
20
50
+l00'C
a:
~
/
0:
...0
___ v1
TJ = +12S'C
'7 "'"
/
0
--- ---V
-"
.5
HJ = +lS0'C
[I
U
/
/
::>
.1
a
_tfJ£.
10
Z
.05
Z
:i
20
:!
.s
I-
TJ = +lSO'C
30
.2
/
,I
.l
!
/
/
\.- V
,-
r.t=
f/
/
~
,-
•
r-TJ - +7S'C
r-TJ = +125'C
/
- - _ TYPICAL V,
MAXIMUM V,
---- =
I
/j
.4
J
V, -
1.0
.6
.8
FORWARD VOLTAGE (V)
1.2
130 120 110 100 90 80 70 60 50 40 30 20 10
V, -
REVERSE VOLTAGE (% OF PIV)
Maximum Forward Surge
vs. Number of Cycles
400
:! 300
I-
Z
UJ
a:
a:
a
"'" "'"
200
100
~
1.0
w
.5
Thermal Impedance
VS. Pulse Width
~
u
... v
'"
""
.2
W
Q.
::<
""
'"
::<
~
.05
0:
w
r
....
"-...
~lCYC~E
-
/
.1
...J
/
/
.02
I
g
.01
.01.02 .05.1 .2
,.....
Ip -
10
20
50
100
CYCLES OF 60 Hz SINEWAVE
N-
30
....
Z
UJ
0:
0:
::>
20
-
::>
Q.
....::>
0
10
I
_0
100
Tc -
10
Q
+
_
-=-
~
....
1000
Reverse·Recovery Circuit
50 f!
~
u
.5 1 2 5 10 20 50100200
PULSE WIDTH (mS)
200
Output Current vs.
Case Temperature
:!
i-i-
vV' V
z
o
I
-~
ii'
25Vdc
(APPROX.)
In
NQTE3
"\
OSCILLOSCOPE
NOTEl
NOTES:
1. Oscilloscope: Rise time ~ 3n5; input impedance = 500.
2. Pulse Generator: Rise time ~ 8ns; source impedance 100.
3. Current viewing resistor, non-inductive, coaxial recommended.
125
150
175
CASE TEMPERATURE ('C)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
476
PRINTED IN U.S.A.
UES2604-U ES2606
RECTIFIERS
High Efficiency, 30A Center-Tap
FEATURES
• Very Low Forward Voltage (l.lSV)
• Very Fast Recovery Times (SOnSec)
• Low Profile Package
• High Surge Capability
• Low Thermal Resistance
• Mechanically Rugged
• Both Polarities Available
DESCRIPTION
The UES2604 series is specifically
designed for operation in power switching
circuits operating at frequencies of at
least 20 KHz.
This series combines two high efficiency
devices into one package, simplifying
installation, reducing heat sink requirements and the need to purchase
matched components.
ABSOLUTE MAXIMUM RATINGS
Peak I nverse Voltage, U ES2604 ....
.. .................................... .
Peak Inverse Voltage, UES260S ............................................... ..
Peak Inverse Voltage, UES2606 ........
.. .............................
Maximum Average D,C. Output Current @ Tc 100'C ............ ..
Surge Current, 8.3mSec .......................................... .
Thermal Resistance, Junction to Case .......... ..
Operating and Storage Temperature Range ...................... ..
................... 200v
.. ... 300V
.. ......... 400V
.... 30A
.. ....................... 300A
=
.. ....................... l·C/W
.... -5S·C to +ISO'C
POWER CYCLING
These devices possess the unique ability to pass many
thousands of cycles of a stress test designed to evaluate the
integrity of the bonding systems used in the construction of
power rectifiers.
In this stress test, the case of the device is not heat sunk.
Full rated forward current is supplied to force a case temperature increase at least 7S'C, at which time, the current is
removed and the case allowed to cool. The cycle is repeated a
minimum of 5,000 times to simulate equipment being turned
on and off. Extended power cycling tests demonstrate a product
capability in excess of 25,000 cycles.
SWITCHING CHARACTERISTICS
The switching times of th'ese ultra·fast rectifiers increase
relatively little, with temperature or at different currents. Even
in severe applications, such as catch diodes for switching
regulators and output rectifiers for high frequency square
wave inverters, these devices switch many times faster than
the fastest associated transistors. Thus, the stresses on and
powers disSipated in the switching transistors are substantially
less than when using other rectifiers.
MECHANICAL SPECIFICATIONS
UES2604·UES2606
•
~
I
14
•
CASE
•
I ~I
NEGATIVE OUTPUT
14
•
£~oo~~:
135-HJr-
MAX.
CASE
.450
.312
.250
MIN
TO·3
.161
.151
.188
MAX.
POSITIVE OUTPUT
I
.525
MAX.
RAO.
.20S
.440
.420
DImensions in inches.
Nat.:
Standard polarity is positive output.
For reverse polarity (nelllltive output) add suffix "R", ie. UES2604R.
[1W
1,/79 (Rev. 1)
477
_UNITRODE
III
UES2604-U ES2606
ELECTRICAL SPECIFICATIONS, PER LEG
Maximum
Forward Voltage
Type
PIV
UES2604
UES2605
UES2606
200V
300V
400V
"'Measured in circuit
IF
= .5A,
lR
=lA, I REC
=
Tc=2SoC
Tc = 125'C
T c =2S'C
Tc =12S'C
Time*
1.25V
@ l5A
tp =300"S
1.l5V
@15A
tp -;; 3OO"S
SO"A
lOrnA
50nS
.25A
Typical Reverse Current
vs. Reverse Voltage
Forward Current
Forward Voltage
VS.
lOOK
=<
.:;
'"
1/
IK
::J
if
Ir
Ir
(J
'"en
'"iii
100
-"
10
Ir
-
-
If
I-
Z
100
IT
10K
50
....- I/,
~
fz
I-i"j/
-
125'C
V
'"
:J
'"
'"u.0
/
-~
I""
-.
1.0
u
z'"
.5
.'"
II
II
L-.!\JL
II II
/
1--'''''-
i1CyLE
~--
V
.2
V
.1
..J
'" ~
1/
",t--,,'1
'f II Y Y
:;;
"-.
(J
:>
II
/V'
o
::J
I
1/- 'il
«
""r--.
/
Thermal Impedance
vs. Pulse Width
~
t
Ir
Ir
-"'j '"
REVERSE VOLTAGE (o". OF PIV)
300
200
.1
j
/
.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.11.21.31.41.5
V, - FORWARD VOLTAGE IV)
Maximum Forward Surge
vs. Number of Cycles
I-
I
V
;,tJ
-f-;:';:'
.01
/
/'
-l
l f--~tJ
~jV
.2
.02
1£
o 10 20 30 40 50 60 70 80 90 100110 120130140 ISO
-~ 100
/ /
V/
.05
-I-""
V
/
2
u
-I-"
~
lO
« .5
::
~
2:;-
Z
LI/' L
0
Ir
Ul
~~?
20
'"'"
t-ioO"c
VR -
Maximum
Reverse
Recovery
Maximum
Reverse Current
«
~
.05
'"f-J:
1/
V
I .02
~ .01
i'--. t---
'"
.01.02 .05.1 .2
tp -
.5 1 2 5 10 20 50 100 200
PULSE WIDTH (mS)
1000
o
1
10
20
50
100
N - CYCLES OF 60 Hz SINEWAVE
200
Output Current vs.
Case Temperature
~
30
I-
Z
'"'"
'"
:J
20
U
I-
.
:J
I-
:J
0
10
I
_0
-.....
Reverse-Recovery Circuit
Ion
SOP.
~
'" '""-
0
+
_
-=-
III
NOTE 3
\
ascI LLOSCOPE
NOTE 1
NOTES:
1. Oscilloscope: Rise time::::; 3"s; input impedance = 500.
2. Pulse Generator: Rise time :s;; 8nsj source impedance 100.
3. Current viewing resistor, non~inductive. coaxial recommended.
100
110
120
130
140
150
Tc - CASE TEMPERATURE ('C)
UNITRODE CORPORATION, 5 FORBES ROAD
LEXINGTON. MA 02173 ' TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
25Vdc
(APPROX.)
478
PRINTED IN U.S.A.
PART NUMBER INDEX
RECTIFIER BRIDGE ASSEMBLIES
PAGE
DESCRIPTION
PART NUMBER
PAGE
PART NUMBER
FULL WAVE BRIDGE
431
431
431
433
433
433
435
435
435
435
435
435
437
437
437
437
437
437
437
437
435
435
435
435
435
435
437
437
437
437
437
437
437
437
440
440
440
440
440
440
443
443
443
443
443
443
443
443
443
443
443
443
469-1, J, JTX
469-2, J, JTX
469-3, J, JTX
483-IJTX
483-2JTX
483-3JTX
673-1
673-2
673-3
673-4
673-5
673-6
673-7
673-7.5
673-8
673-8.5
673-9
673-10
673-11
673-12
676-1
676-2
676-3
676-4
676-5
676-6
676-12
676-18
676-24
676-30
676-36
676-42
676-48
676-50
678-1
678-2
678-3
678-4
678-5
678-6
679-1
679-2
679-3
679-4
679-5
679-6
680-1
680-2
680-3
680-4
680-5
680-6
FULL WAVE BRIDGE
I ph; lOA; 200V
1 ph; lOA; 400V
1 ph; lOA; 600V
3 ph; 25A; 200V
3 ph; 25A; 400V
3 ph; 25A; 600V
1 ph; 1.5A; 100V
1 ph; 1.5A; 200V
1 ph; 1. 5A; 300V
1 ph; 1. 5A; 400V
I ph; 1.5A; 500V
I ph; 1. 5A; 600V
1 ph; H.V.; 1200V
1 ph; H.V.; 1800V
1 ph; H.V.; 2400V
1 ph; H.V.; 3000V
1 ph; H.V.; 3600V
I ph; H.V.; 4200V
I ph; H.V.; 4800V
I ph; H.V.; 5000V
I ph; LOA; 100V
1 ph; I.OA; 200V
1 ph; 1. OA; 300V
1 ph; 1. OA; 400V
I ph; LOA; 500V
I ph; LOA; 600V
1 ph; H.V.; 1200V
I ph; H.V.; 1800V
I ph; H.V.; 2400V
1 ph; H.V.; 3000V
I ph; H.V.; 3600V
I ph; H.V.; 4200V
I ph; H.V.; 4800V
I ph; H.V.; 5000V
3 ph; 25A; 100V
3 ph; 25A; 200V
3 ph; 25A; 300V
3 ph; 25A; 400V
3 ph; 25A; 500V
3 ph; 25A; 600V
I ph; 25A; 100V
I ph; 25A; 200V
1 ph; 25A; 300V
I ph; 25A; 400V
I ph; 25A; 500V
I ph; 25A; 600V
I ph; lOA; 100V
I ph; lOA; 200V
1 ph; lOA; 300V
1 ph; lOA; 400V
I ph; lOA; 500V
I ph; lOA; 600V
440
440
443
443
443
443
443
443
443
443
443
443
443
443
681-1
681-2
681-3
681-4
681-5
681-6
440
440
440
440
682-1
682-2
682-3
682-4
15.0A;
15.0A;
15.0A;
15.0A;
15.0A;
15.0A;
100V
200V
300V
400V
500V
600V
20A;
20A;
20A;
20A;
3
3
I
I
I
I
I
I
I
I
I
I
I
I
ph;
ph;
ph;
ph;
ph;
ph;
ph;
ph;
ph;
ph;
ph;
ph;
ph;
ph;
20A;
20A;
20A;
20A;
20A;
20A;
20A;
20A;
lOA;
lOA;
lOA;
lOA;
lOA;
lOA;
500V
600V
100V
200V
300V
400V
500V
600V
100V
200V
300V
400V
500V
600V
446
446
446
446
446
446
689-1
689-2
689-3
689-4
689-5
689-6
15A;400V
15A; 500V
15A; 600V
440
440
440
440
440
440
440
440
440
440
440
440
448
448
448
448
448
448
448
448
448
448
448
448
450
450
450
450
450
450
450
450
450
450
450
450
452
452
452
452
452
452
695-1
695-2
695-3
695-4
695-5
695-6
696-1
696-2
696-3
696-4
696-5
696-6
697-1
697-2
697-3
697-4
697-5
697-6
698-1
698-2
698-3
698-4
698-5
698-6
700-1
700-2
700-3
700-4
700-5
700-6
701-1
701-2
701-3
701-4
701-5
701-6
800-1
800-2
800-3
800-4
801-1
801-2
3 ph; 15A; 100V
3 ph; 15A; 200V
3 ph; 15A; 300V
3 ph; 15A; 400V
3 ph; 15A; 500V
3 ph; 15A; 600V
3 ph; 15A; 100V
3 ph; 15A; 200V
3 ph; 15A; 300V
3 ph; 15A; 400V
3 ph; 15A; 500V
3 ph; 15A; 600V
1 ph; 2.5A; 100V
1 ph; 2.5A; 200V
1 ph; 2.5A; 300V
I ph; 2.5A; 400V
1 ph; 2.5A; 500V
I ph; 2.5A; 600V
1 ph; 2.25A; 100V
1 ph; 2.25A; 200V
1 ph; 2.25A; 300V
1 ph; 2.25A; 400V
1 ph; 2.25A; 500V
1 ph; 2.25A; 600V
3 ph; 2.5A; 100V
3 ph; 2.5A; 200V
3 ph; 2.5A; 300V
3 ph; 2.5A; 400V
3 ph; 2.5A; 500V
3 ph; 2.5A; 600V
3 ph; 2.25A; 100V
3 ph; 2.25A; 200V
3 ph; 2.25A; 300V
3 ph; 2.25A; 400V
3 ph; 2.25A; 500V
3 ph; 2.25A; 600V
3 ph; 40A; 50V
3 ph; 40A; 100V
3 ph; 40A; 125V
3 ph; 40A; 150V
3 ph; 20A; 50V
3 ph; 20A; 100V
15A; 100V
15A;200V
15A;300V
FULL WAVE BRIDGE
FULL WAVE BRIDGE
3 ph;
3 ph;
3 ph;
3 ph;
682-5
682-6
683-1
683-2
683-3
683-4
683-5
683-6
684-1
684-2
684-3
684-4
684-5
684-6
DOUBLE OR
CENTER-TAP
DOUBLER OR
CENTER-TAP
446
446
446
446
446
446
DESCRIPTION
100V
200V
300V
400V
·Contact Unitrode for specifications and ratings.
Legend, J -
JAN
JTX -
JANTX
JTXV -
JANTXV
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064
479
PRINTED IN U.S.A.
•
PART NUMBER INDEX
PAGE
DESCRIPTION
PART NUMBER
PAGE
PART NUMBER
FULL WAVE BRIDGE
FULL WAVE BRIDGE
452
452
455
455
455
455
455
455
455
455
3 ph;
3 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
801-3
801-4
802-1
802-2
802-3
802-4
803-1
803-2
803-3
803-4
20A; 125V
20A; 150V
35A; 50V
35A;'100V
35A; 125V
35A; 150V
20A; 50V
20A; 100V
20A; 125V
20A; 150V
465
465
465
465
465
804-1
804-2
804-3
804-4
PMB101
PMB102
PMB103
PMB104
PMB105
PMB106
PMB107
PMB101X
PMB102X
PMB103X
PMB104X
PMB105X
PMB106X
PMB107X
PMB201
PMB202
PMB203
PMB204
PMB205
PMB201X
PMB202X
PMB203X
PMB204X
PMB205X
463
463
463
463
463
463
463
463
463
463
463
463
463
463
463
463
463
465
465
465
465
465
465
465
PMClOl
PMC102
PMC103
PMC104
PMC104
PMC105
PMC101X
PMC102X
PMC103X
PMC104X
PMC105X
PMC201
PMC202
PMC203
PMC201X
PMC202X
PMC203X
PMDlOl
PMD102
PMD103
PMD104
PMD101X
PMD102X
PMD103X
PMD104X
PMD201
PMD202
PMD201X
PMD202X
3
3
3
3
3
ph;
ph;
ph;
ph;
ph;
6A;
6A;
3A;
6A;
6A;
2.5kV
5.0kV
lOkV
2.5kV
5.0kV
DOUBLER OR
CENTER-TAP
DOUBLER OR
CENTER-TAP
458
458
458
458
461
461
461
461
461
461
461
461
461
461
461
461
461
461
461
461
461
461
461
461
461
461
461
461
DESCRIPTION
20A;50V
20A; 100V
20A; 125V
20A; 150V
l.OA; 2.5kV
l.OA; 5.0kV
l.OA; 7.5kV
l.OA; lOkV
l.OA; 15kV
l.OA; 20kV
l.OA; 30kV
l.OA; 2.5kV
l.OA; 5.0kV
l.OA; 7.5kV
l.OA; 10kV
l.OA; 15kV
l.OA; 20kV
l.OA; 30kV
2.0A; 2.5kV
2.0A; 5.0kV
2.0A; 7.5kV
2.0A; lOkV
2.0A; 15kV
2.0A; 2.5kV
2.0A; 5.0kV
2.0A; 7.5kV
2.0A; lOkV
2.0A; 15kV
467
467
467
469
469
469
SES5401C
SES5402C
SES5403C
SES5601C
SES5602C
SES5603C
471
471
471
471
SPA25, J
SPB25,J
SPC25, J
SPD25, J
16A:
16A:
16A:
25A;
25A;
25A:
50V: TO-220
100V; TO-220
150V; TO-220
50V; TO-220
100V; TO-220
150V; TO-220
FULL WAVE BRIDGE
1 ph;
1 ph;
1 ph;
1 ph;
25A;
25A;
25A;
25A;
100V
200V
400V
600V
DOUBLER OR
CENTER-TAP
473
473
473
475
475
475
477
477
477
UES2401
UES2402
UES2403
UES2601
UES2602
UES2603
UES2604
UES2605
UES2606
16A,
16A;
16A,
30A;
30A;
30A;
30A;
30A;
30A:
50V; TO-220
100V; TO-220
150V; TO-220
50V; TO-3
100V: TO-3
150V; TO-3
200V; TO-3
300V: TO-3
400V; TO-3
FULL WAVE BRIDGE
1 ph;
1 ph;
1 ph;
1 ph;
I ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
2A;
2A;
2A;
2A;
2A;
2A;
2A;
2A;
2A;
2A;
2A;
4A;
4A;
4A;
4A;
4A;
4A;
3A;
3A;
3A;
3A;
3A;
3A;
3A;
2.5kV
5.0kV
7.5kV
15kV
10kV
15kV
2.5kV
5.0kV
7.5kV
10kV
15kV
2.5kV
5.0kV
7.5kV
2.5kV
5.0kV
7.5kV
2.5kV
5.0kV
7.5kV
lOkV
2.5kV
5.0kV
7.5kV
·Contact Unitrode for specifications and ratings.
Legend: J -
JAN
JTX -
JANTX
JTXV -
JANTXV
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
480
PRINTED IN U.S.A.
SALES OFFICES
PART NUMBER INDEX
II
DESIGNERS' GUIDES
III
POWER TRANSISTORS & DARLINGTONS
IV
SWITCHING REGULATOR POWER CIRCUITS
V
RECTIFIERS
VI
HIGH VOLTAGE RECTIFIERS, RECTIFIER
MODULES & MULTIPLIERS
VII
RECTIFIER BRIDGE ASSEMBLIES
VIII
POWER ZENERS & TRANSIENT VOLTAGE SUPPRESSORS
III
THYRISTORS (SCRs, Triacs, PUTs)
X
SWITCHING & GENERAL PURPOSE DIODES
XI
PIN DIODES
Xli
CAPACITORS
XIII
APPLICATION NOTES & DESIGN NOTES
XIV
MECHANICAL SPECIFICATIONS
XV
481
482
POWER ZENERS AND TRANSIENT
VOLTAGE SUPPRESSORS
PRODUCT SELECTION GUIDE
A
Transient Voltage Suppressors
5.0
10.0
12.0
15.0
18.0
24.0
28.0
48.0
60.0
100.0
200.0
300.0
6.0
11.1
13.8
16.7
20.4
28.4
30.7
54
67
111
234
342
17
8.9
7.1
5.9
4.9
3.6
3.2
1.7
1.4
.91
.42
.28
5.0
10.0
12.0
15.0
18.0
24.0
28.0
6.0
11.1
13.8
16.7
20.4
28.4
30.7
53.7
30.3
23.8
19.8
16.3
11.9
10.7
9.3
16.5
21.0
25.2
30.5
42.0
46.5
33.0
43.7
54.0
191.0
32.0
24.0
19.0
5.7
47.5
63.5
79.5
265.0
I. f
eel
8.7
16.8
21.0
25
31
42
46
82
105
160
360
520
lEI
'Available," JAN & JANTX
Bi-directional Zeners
AA
UDZ5815
UDZ5818
UDZ5820
UDZ5824
UDZ5827
UDZ5830
UDZ5833
UDZ5836
UDZ5840
UDZ5845
UDZ860
UDZ230
UDZ222
UDZ210
UNITRODE CORPORATION, 5 FORBES ROAD
LEXINGTON, MA 02173 ' TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
483
UDZ5860
UDZ5230
UDZ5222
UDZ5210
PRINTED IN U.S.A.
POWER ZENERS AND TRANSIENT
.VOLTAGE SUPPRESSORS
A
UZ8711
UZ8712
UZ8713
UZ8714
UZ8715
IN4466*
IN4467*
IN4468*
IN4469*
IN5068
IN4883
IN5069
IN5070
IN5071
UZ8716
UZ8718
UZ8720
UZ8722
UZ8724
IN4470*
IN4471 *
IN4472*
IN4473*
IN4474*
UZ8727
UZ8730
UZ8733
UZ8736
IN4475*
IN4476*
IN4477*
IN4478*
IN4479*
UZ8740
IN4480*
UZ8745
IN4481 *
UZ8750
UZ8756
UZ8760
B
UZ4715
IN4959*
IN4960*
IN4961*
IN5118
IN4962*
UZ771IL
UZ771.2L
UZ7713L
UZ7714L
UZ7715L
UZ7711
UZ7712
UZ7713
UZ7714
UZ7715
IN5072
IN5073
IN4884
IN5074
IN5075
UZ4716
UZ4718
UZ4720
UZ4722
UZ4724
IN4963*
IN4964*
IN4965*
IN4966*
IN4967*
UZ7716L
UZ7718L
UZ7720L
UZ7722L
UZ7724L
UZ7716
UZ7718
UZ7720
UZ7722
UZ7724
IN5076
IN5077
IN5078
IN5079
IN5080
UZ4727
UZ4730
UZ4733
UZ4736
UZ4739
IN4968*
IN4969*
I N4970*
1N4971*
IN4972*
UZ7727L
UZ7730L
UZ7733L
UZ7736L
UZ7727
UZ7730
UZ7733
UZ7736
IN5119
IN4973*
IN5120
IN4974*
IN5121
UZ7740L
UZ7740
UZ7745L
UZ7745
UZ7750L
UZ7750
UZ7756L
UZ7760L
UZ7756
UZ7760
IN5081
IN5082
IN5083
IN5084
IN5085
IN4482*
IN4483*
UZ4712
UZ4713
UZ4743
UZ4747
UZ4751
UZ4756
*.Available as JAN, JANTX, & JANTXV
For 100 ,usee pulse width
fused~in-glass construction
t 10% and 20% tolerance also available.
**
:t: Unitrode
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
484
PRINTED IN U.S.A.
PRODUCT SELECTION GUIDE
CL
C
IN4486
UZ4775
IN4487
UZ4782
IN4488
lN4489
IN4095
IN4097
IN5096
IN5097
IN5098
IN5099
IN4098
IN5100
IN5101
IN5102
IN5l03
IN5l04
IN5105
IN5l06
IN5l07
UZ4791
UZ4110
UZ411 I
UZ4112
UZ4113
IN498l*
lN4982*
IN4983*
IN4984*
lN4985*
UZ4115
UZ4116
IN4986*
lN4987*
IN5127
lN4988*
UZ4118
UZ4120
UZ7790L
UZ7790
UZ71l0L
UZ71l0
•
IN5l28
lN4989*
IN4990*
lN499l'
lN5l29
lN4992IN5l30
lN4993'
IN5l3l
lN4994'
IN5l08
IN5109
IN5110
IN5111
lN51l2
• Available as JAN, JANTX, & JANTXV
** For 100 p'sec pulse width
:; Unitrode fused-in-glass construction
10% and 20% tolerance also available.
t
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA ·02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
485
PRINTED IN U.S.A.
POWERZENERS
1N4461·1 N4496
JAN, JANTX & JANTXV
1.5 Watt, Military
FEATURES
• 5 Times Greater Surge Rating than
JANIN3016 Series
• Low Reverse Current: to 50nA
• 14 Size of Conventional 1 Watt Zeners
DESCRIPTION
Fused-in-glass, metallurgically bonded
1.5 watt zeners, qualified to MIL-S-19500/406.
ABSOLUTE MAXIMUM RATINGS
Zener Voltage, Vz .
. ........ 6.8 to 200V
Continuous Current
.......... See Table
Surge Current (8.3ms)
...................... See Table
Surge Power...
......................................... See Graph
Power .......................................................................... See Lead Temperature Derating Curve
Storage and Operating Temperature ............. "...
............. -65°C to +175°C
MECHANICAL SPECIFICATIONS
JAN, JANTX & JANTXV lN4461-1N4496
1
8and jndjcate~....
cathOde end '\
r
,155" TVP .....l
3.9mm
I
.028"
BODY A
~.OOl
O.71mm :t.Ol
111
Max. Surge Power
vs. Surge Duration
Power Dissipation
vs. Lead Temperature Oerating Curve
~
z
o
10K
2.5 1--+--+--+--1r--+-+~
'"
~
iii
'"
~
;;:
0
1.5
f---+-+--'!,'
x
S~UARE PUiLSE_
2K
IK
"- 500
UJ
.",
0:
200
uJ
«
::;:
IKr----~---~--~
I
5K
UJ
II)
o
~
Typical Zener Impedance
VS. Zener Current
lOOj
=1mA
Maximum Reverse
leakage Current
Voltage
Regulation
l>BV §§
Ohms
Volts
1000
800
600
400
125
125
100
100
75
75
1.0
1.5
1.5
2.0
2.0
2.5
2.5
3.0
3.5
3.5
0.7
0.7
0.7
0.7
0.8
0.8
0.8
0.8
1.0
18
20
22
24
27
65
65
50
50
50
4.0
4.5
5.0
5.0
6.0
160
165
170
175
180
30
33
36
39
43
40
40
30
30
30
8
10
11
14
20
47
51
56
62
68
25
25
20
20
20
1N4979*
1N4980*
1N4981*
1N4982*
1N4983*
75
82
91
100
110
1N4984*
1N4985'
1N4986*
1N4987*
1N4988'
Tolerance
1N4954*
1N4955*
1N4956*
1N4957*
IN4958*
1N4959*
1N4960*
1N4961*
1N4962*
1N4963*
Maximum Ratings
I, tt
I,
pA
150 300
100 200
50 100
25 50
25 25
Maximum
Maximum
Temperature Continuous
V,
Coell.
Tc@I ZT
Current
I'M
Volts
%!'C
mA
*
Maximum
Surge
Currenti
I,
Amps
5.2
5.7
6.2
6.9
7.6
.05
.06
.06
.06
.07
700
630
580
520
475
40
32
24
22
20
19
18
16
12
10
1.1
10
10
10
5
5
15
10
10
5
5
8.4
9.1
9.9
11.4
12.2
.07
.07
.08
.08
.08
430
395
365
315
294
1.2
1.5
1.8
2.0
2.0
5
2
2
2
2
5
2
2
2
2
13.7
15.2
16.7
18.2
20.6
.085
.085
.085
.090
.090
264
237
216
198
176
9.0
8.0
7.0
6.5
6.0
190
200
220
230
240
2.5
2.8
3.0
3.0
3.3
2
2
2
2
2
2
2
2
2
2
22.8
25.1
27.4
29.7
32.7
.090
.095
.095
.095
.095
158
144
132
122
110
5.5
5.0
4.5
4.0
3.5
25
27
35
42
50
250
270
320
400
500
3.5
4.0
4.4
5.0
5.5
2
2
2
2
2
2
2
2
2
2
35.8
38.8
42.6
47.1
51.7
.095
.095
.095
.100
.100
100
92
84
76
70
3.2
3.0
2.8
2.5
2.2
20
15
15
12
12
55
80
90
110
125
620
720
760
800
1000
6.0
6.6
7.5
8.0
9.0
2
2
2
2
2
2
2
2
2
2
56.0
62.2
69.2
76.0
83.6
.100
.100
.100
.100
.100
63.0
58.0
52.5
47.5
43.0
2.0
1.8
1.6
1.4
1.2
120
130
150
160
180
10
10
8
8
5
170
190
330
350
450
1150
1250
1500
1650
1750
10
11
13
14
16
2
2
2
2
2
2
2
2
2
2
91.2
98.8
114.0
121.6
136.8
.100
.105
.105
.105
.110
39.5
36.6
31.6
29.4
26.4
1N4989'
1N4990'
1N4991'
1N4992'
1N4993'
200
220
240
270
300
5
5
5
5
4
500
550
650
800
950
1850
2000
2050
2100
2150
18
19
22
25
28
2
2
2
2
2
2
2
2
2
2
152
167
182
206
228
.110
.115
.115
.120
.120
23.6
21.6
19.8
17.5
15.6
1.00
0.80
0.75
0.70
0.60
0.50
0.50
0.40
0.35
0.30
1N4994'
1N4995'
1N4996
330
360
390
4
3
3
1175
1400
1800
2200
2300
2500
32
35
40
2
2
2
2
2
2
251
274
297
.120
.120
.120
14.4
13.0
12.0
0.25
0.22
0.20
130
140
145
150
155
• Available as JAN, JANTX & JANTXV.
t All zener Yoltages are measured with an automated test set using a 35 msec test time. Longer or shorter test times will have a corresponding effect on the measured value due to heating effects.
§ Zener impedance is derived from the 6D-cycle Yoltage created when AC current with RMS value of 10% of DC zener test current is super~
imposed on the test current.
!t§~BV is obtained by measuring the voltage change when the test current is changed from 10% to 50% of Iz max under DC conditions. Dur~
ing this measurement the leads are heat sunk .375 inch from the body and maintained at 25°C.
Maximum CUrrent based on 5 Watt Rating. See lead temperature derating curves for proper mounting methods.
i Figures shown are for peak sinusoidal surge current of 8.3 msec duration, non·repetitive. The 8.3 ms square pulse rating is 71% of the value
shown.
t t These specifications apply only to JAN and JANTX
*
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064
489
PRINTED IN U.S.A.
.POWER ZENERS
JAN &JANTX IN5610-1N5613
Transient Suppressor Diodes
FEATURES
• 1500 Watts for 1ms Pulse Power Capabifity
• Small Physical Size
• Designed to be Used in Mil-Std-704A Applications
DESCRIPTION
Zener diodes with high surge capability
qualified to MIL-S-19500/434. 1N5555 series
in 00-13 package and 1N5610 series on
double C body for ultimate reliability in
repetitive surge applications.
ABSOLUTE MAXIMUM RATINGS (at 25'C except where otherwise noted)
lN5611
lN5610
Zener Voltage ..
Forward Surge Current
200A ....
Zener Surge Current, at 25°C
Surge Current, at 150°C
Surge Power .
lN5&12
See Electrical Specifications
.... . 200A
...... 200A .... .
19.0A ..
24.0A .
... 32.0A
......... 5.5A
.. 4.8A
See Graph.
Storage and Operating Temperature ...
... 3.2A ....
lN5613
............ 200A
5.7A
... 1.0A
-WC to +175°C .
JAN & JANTX lN5810-1N5613
Double C BODY
f
185"
0 .MAX.
i
Polarity: Cathode indicated by band.
Weight: 1.5 gram (approximate).
Mounting Position: Any. Leads: Tinned Copper.
Marking: Type number marked on unit.
[lliJ
1179
490
_UNITRODE
JAN & JANTX lN56l0-lN56l3
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Max.
Reverse
Min. Zener
Voltage §
Vz@ ImA
Type
Max. Zener
Voltaget
Vz @ Is
"A
Volts
Volts
Typical
Temperature
Coefficient
%/oC
5.0
5.0
5.0
5.0
30.5
40.3
49.0
175.0
4.B
4.B
4.B
4.B
.093
.094
.096
.100
I,@V,
Volts
Volts
Amps
lN561O*
lN56U*
lN5612*
33.0
43.7
54.0
47.5
IN5613*
191.0
32.0
24.0
19.0
5.7
63.5
79.5
265.0
Max.
Forward
Voltage*
@ 100 Amps
Leakage
Current
Notes, * Available as JAN and JANTX.
§ Duration of applied current :s;; 300ms, duty cycle:;;;; 2%.
t Utilizing a pulse which decays exponentially to 50% of the peak value in Ims. See graph en titled "Pulse Waveform."
Peak Sinusoidal surge current of 8.3ms duration, non-repetitive.
*
Peak Power Rating vs. Pulse Width"
APPLICATIONS
Voltage transients can be suppressed with series elements, shunt elements, or a
combination of both. These elements may be passive or active. For low and
medium power applications, a series resistor and zener clamp offer several
attractive features:
1. Simplicity of design
2. High reliability
3. Fast response time
The IN5610 series of surge suppressors will suppress the following transients
defined by MIL-S-704A without the use of any series limiting resistance beyond
that provided by the source:
1. All 600V transients (category # 1 on chart below)
2. All BOV transients except those generated by the main voltage regulator
(category #2 on chart below)
3. The overvoltage transients generated by the main voltage regulator (category
#3 on chart below) will also be suppressed by the IN5610 series if:
a. A 20 ohm series limiting resistor is used, or
b. No series resistance is used but the zener is protected within 500 I'S by
using, for example, an SCR crowbar
The above statements are based on the source impedances and dv / dt characteristics as given in ARINC* Specification #413. This report entitled "Guidance for
Aircraft Electrical Power Utilization and Transient Protection" serves to further
define MIL-STD-704A for large aircraft electrical sYstems.
lOOK
l
SOK f- 'Pulse Wi~th is defined as that _
point at which pulse power
decays to 50% of peak
20K
10K
!
c:
UI
!:
..........
.............
5K
0
0.
~
2K
IK
'"
«
UI
............
200
100
.01
Source of
Transient
Maximum
Amplitude
Duration
Min. Source
Impedance
dv/dt
10
.1
TIME (ms)
Pulse Waveform
g
i;!
it:
!:1
100%
~
z
~
~
~
50
I~
u
Category
r-...
500
0.
ir
~
l"-I'-- -
4
TIME (ms)
~ 10"s
50 ohms
80 V
~
IOms
15 ohms
BOV
;;;, 10 ms
0.2 ohms
1.
Inductive
Switching
600 V
2.
BUS
Switching
3.
Main Voltage
Regulator
Peak Power Rating"
vs. Ambient Temperature
!1
These Surge Suppressors are useful in a variety of other applications where semiconductor devices must function reliably in an environment subject to extremely
high but short term surges.
* ARINC stands for Aeronautical
2000
5OV/ms
1500
~
0::
UI
1000
~
0.
Radio, Inc. (Annapolis, Maryland 21401)
~
500
o
-~
Millisec~nd PUIS~
~
~
n
~
m
ill
AMBIENT TEMPERATURE (OC)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
491
PRINTED IN U.S.A.
TRANSIENT VOLTAGE SUPPRESSORS
TVS305·TVS430
TVS505·TVS528
FEATURES
DESCRIPTION
• Up to 500W for ImS Pulse Power
Capability
• Clamping Time in Picoseconds
• Direct Applicability for all popular
Microprocessors and IC families
• Metallurgically bonded assembly system
to assure long term reliability
• Miniature glass encased hermetically
sealed package
Unitrode's TVS series of transient
voltage suppressors feature oxide
passivated zener type chips with fullfaced metallurgical bonds on both sides to
achieve high surge capability and negligible electrical degradation under repeated
surge conditions. The series is especially
useful in protecting microprocessor, MOS,
CMOS, TTL, Schottky TTL, ECl, J2l and
linear integrated circuits from spurious
transient disturbances.
ABSOLUTE MAXIMUM RATINGS @ 25'C
TVS5D5-TVS528
TVS3D5-TVS43D
Stand-off Voltage, VA ..................................................................... 5 to 300V ................................. 5.0V to 28.0V
Peak Pulse Power (lmS)" ...................................................................... 150W ............................................ 500W
Forward Surge Current (8.3mS half sinewave) .............................................. 15A ""'''''''''''''''''''''''''''''''''''''''''' 50A
Peak Pulse Current ......................................................................... See Table ....................................... See Table
Breakdown Voltage .......................................................................... See Table ........................................ See Table
Power, Continuous "",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 3W ............................................... 5W
Storage and Operating Temperature ............................................ -65 to + 175'C ............................... -65to + 175'C
"See Figures 3 and 4 for Peak Pulse Power vs Pulse Duration.
MECHANICAL SPECIFICATIONS
1
.•55" TYP.
1.4mm
Indicate~_ II
Band
cathode end"
0'I CLr
.155" TYP.
J.9mm
Nil'
. III
TVS305 Series
BODY A
TVS505 Series
BODY B
.028" ..... 001
O.71mm !::.03
j
I
I
T
~O .085" MAX.
..JJ
2.16tm
.a85"
~2.2mm
TYP.
1-.7f~.·~~~N'_1--.2~~~5~~ _
1--____ 1.~~~;:~N.-----.j
MECHANICAL SPECIFICATIONS
.040":!: .001
l.02mm =:.03
.975" MIN.
24.8mm
2/80
492
[ill]
_UNITRaCE
TVS 305-TVS 430
TVS 505-TVS 528
ELECTRICAL SPECIFICATIONS @ 25'C
TVS
Part No.
TVS305
TVS310
TVS312
TVS315
TVS318
TVS324
TVS328
TVS348
TVS360
TVS410
TVS420
TVS430
TVS505
TVS510
TVS512
TVS515
TVS518
TVS524
TVS528
Stand
·Off
Voltage
V,
Min.
Breakdown
Voltage
BVlml'l @ 1mA
Max.
Leakage
Current
I.@V,
V
V
6.0
11.1
13.8
16.7
20.4
28.4
30.7
54
67
p.A
5.0
10.0
12
15
18
24
28
48
60
100
200
300
5.0
10.0
12.0
15.0
18.0
24.0
28.0
Peak
Pulse Current""
Ipp
Max.
Clamping
Voltage'
Vc @ Ip.
Max.
Clamping
Voltage'
Vc@lA
Max.
Clamping
Voltage*
Vc @
5A
lOA
A
17
8.9
7.1
5.9
4.9
3.6
3.2
1.7
1.4
.91
.42
.28
53.7
30.3
23.8
19.8
16.3
11.9
10.7
V
8.7
16.8
21.0
25
31
42
46
82
105
160
360
520
9.3
16.5
21.0
25.2
30.5
42.0
46.5
V
V
Max.
50
2
1
1
1
1
1
1
1
1
1
1
300
5
5
5
5
5
5
111
234
342
6.0
11.1
13.8
16.7
20.4
28.4
30.7
-
-
7.4
13.2
16.5
19.7
23.8
32.4
35.9
-
26.0
37.0
41.0
-
-
7.9
14.4
18.5
22.2
-
-
-
·For ImS pulse: see Figure 1.
Pulse Waveform
1.
j
"0
~
>z
Derating Curve
2.
100
\
75
\
=
PULSE TIME DURATION (tp)
POINT
WHERE I. DECAYS TO 50% OF Ipp
UJ
~100
:::>
u
UJ
en
...J
:::>
0..
I 50
~
~
50
25
.~
----------
o
t-TIME (ms)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064
493
•
i\.
1\
\
o
50
1\
100
150
TEMPERATURE ('C)
200
PRINTED IN U.S.A.
TVS305-TVS430
TVSS05-TVS528
3.
10
Peak Pulse Power vs. Pulse Duration
""-
Peak Pulse Power vs. Pulse Duration
(WAVE FORM - SEE FIGURE 1)
EXPONENTIAL
PULSE
'" ""-
~
10
"-
" , 0 5 series
~
~
::>
"'~""-
",05s.n.s
,
"-
"-
100,,5
PULSE TIME
MAX. DUTY CYCLE •. 0.1 %
!<'"
0
.01
5.
4.
100
'"~
"-
"
"
I
a:
.1
IOmS
ImS
"
ImS
(t,>
PULSE TiME (t,>
lamS
6. Clamping Voltage vs. Pulse Current
Capacitance YS. Stand·Off Voltage
100
10,000
SEE FIGURE 1 FOR WAVEFORM
<:.
UI
t'l
MEASURED
@ZEROBIAS-
'"
o
z
;!:
~1000
5
MEASURED @ V,
~
IN-
""'\
--t-
r--
528
525
518
515
----
20
0
>
t'l
z
a:::;;
~MEASURED @ ZERO BI~S
1...1
I
ct'
«
IoJ
50
40
30
10
~!2
,510
05
«
oJ
TVS
0
505
I
'"
>"
M~dukJJ@~ I'} TVS
305
100
1
V, -
10
STAND·OFF VOLTAGE -
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
1
100
10
1
(V)
I, -
494
20
50
100
PULSE CURRENT (AI
PRINTED IN U.S.A.
TVS305·TVS430
TVS505·TVS528
CHOOSING AND SPECIFYING THE PROPER TVS
The following terms are generally used in specifying Transient Voltage Suppressors (TVS):
1.
2.
Stand·off Voltage (VR) is the highest reverse voltage at which the TVS will be non·conducting.
Minimum Breakdown Voltage (BV min) is the reverse voltage at which the TVS conducts
1 milli·amp. This is the point where the TVS begins to limit the transient.
3. Maximum Clamping Voltage (V c max) is the maximum voltage the TVS will allow during a
transient "spike."
Figure 7 graphically shows all three terms.
lmA--------
II
+
Figure 7
The three most important factors in choosing the appropriate TVS for an application in their order
of importa'nce are:
1.
Pulse power (Pp) - Choose the TVS series that will handle the Transient Pulse Power.
Transient Pulse Power is equal to the clamping voltage (Vel times the peak pulse current
(ipp). The pulse duration vs. pulse power graph on the TVS data sheet can then be used to
determine the maximum allowable pulse duration. (Figure 3 or 4).
2.
Standoff voltage (VR) - From the TVS series selected, choose the device with the stand-off
voltage equal to or greater than the normal circuit operating voltage.
3.
Maximum Clamping Voltage (V CMAX ) - Determine the clamping voltage of the device chosen for the
transient given and be sure it is below the voltage that might damage any components.
For further information see Unitrode Application Note U-79, "Guidelines for Using Transient Voltage
Suppressors. "
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
495
PRINTED IN U.S.A.
UDZ807 SERIES
UDZ5807 SERIES
UDZ7807 SERIES
UDZ8807 SERIES
AC POWER ZENERS
1, 3, 5, and 6 Watt Types
FEATURES
• Zener Characteristics in Both Directions
• 7.5 to 300V
• High Surge Ratings
• Small Physical Size
DESCRIPTION
These devices consist of two fused-in-glass
zeners brazed anode-to-anode to provide
zener action in both directions.
.
ABSOLUTE MAXIMUM RATINGS
Zener Voltage .
Continuous Current.
Surge Current (8.3ms)
Surge Power .
. ............................ .7.5 to 300V
................ See Tables
.................................... See Tables
.. See Graph
Power.
............................................... See Data Sheets for Related Series
(UZ8807, UZ807, UZ5807, and UZ7807)
Storage and Operating Temperature
.......-65·C to +175'C
MECHANiCAL SPECIFICATIONS
UOZ807 SERIES
UDZ5B07 SERIES
UDZ7807 SERIES
UDZ8B07 SERIES
1 & 3 WATT 5 WATT 6 WATT
~
MARKING: "0," followed by last 3 to 4
digi.ts and part number.
Example: 7.5 volt :t10%,
1 watt type would be
marked: "D8807".
Dimensions
1 Watt UDZ8807 Series
A•. 475" max.
B •. 104" max.
C•. 300" typical
D•• 028" ± .001"
E.•975" min.
3 Watt UDZ807 Series
A. .450" max.
B•. 085" max.
C.. 275" typical
D.. 028" ± .001"
E•.700" min.
5 Watt UDZ5807 Series
6 Watt UDZ7807 Series
A•. 500" max.
A.. 600" max.
B.. 145" max.
C. .325" typica I
D.. 040" ± .001"
E.. 975" min.
B •• 185" max.
C.•430" typical
D.• 040" ± .001"
E..925" min.
OJ-l]
496
_UNITRODE
UDZ807 SERIES UDZ5807 SERIES UDZ7807 SERIES UDZ8807 SERIES
Electrical Specifications at 25'C
Type
±10%
Tolerance *
Nominal
Zener
Voltaget
Vz @ lIT
Volts
Test
Current
lIT
Max. Zener Imped §
Zz
@
lIT
mA
Maximum Ratin,s··
Maximum
Leakage @ Reverse Voltage
±10%
Current
Ohms
"A
1 WATT ZENERS - Specifications apply for both directions.
7.5
34
UDZ8807
6
50
8.2
31
UDZ8808
7
30
9.1
28
8
UDZ8809
10
10
25
UDZ8810
8.5
3
12
23
UDZ8812
9
1
15
17
14
UDZ8815
0.5
18
14
20
0.5
UDZ8818
20
UDZ8820
12.5
23
0.5
24
10.5
25
UDZ8824
0.5
27
9.5
UDZ8827
35
0.5
30
8.5
40
0.5
UDZ8830
33
7.5
45
0.5
UDZ8833
36
7.0
50
0.5
UDZ8836
40
UDZ8840
6.5
62
0.5
45
6
75
0.5
UDZ8845
60
4
125
UDZ8860
0.5
±5%
Maximum
Maximum
Cont.
Current
IZII
Surlll'
Current;
Is
Volts
Volts
mA
4.9
5.4
5.9
6.6
8.6
10.8
12.9
14.4
17.3
19.4
21.6
23.7
25.9
28.8
32.4
43.2
5.2
5.7
6.2
6.9
9.1
11.4
13.7
15.2
18.2
20.6
22.8
25.1
27.4
30.4
34.2
45.6
125
115
105
95
85
63
52
47
40
35
31
28
26
24
22
15
5
4.5
3.9
3.37
2.25
1.65
1.12
1.12
0.825
0.825
0.825
0.675
0.562
0.562
0.450
0.337
4.9
5.4
5.9
6.6
8.6
10.8
12.9
14.4
17.3
19.4
21.6
23.7
25.9
28.8
32.4
43.2
5.2
5.7
6.2
6.9
9.1
11.4
13.7
15.2
18.2
20.6
22.8
25.1
27.4
30.4
34.7
45.6
76
167.2
228
400
360
330
300
250
200
170
150
125
110
100
90
85
75
65
50
30
15
10
10
8
7
5
4
3
2
2
1.5
1.5
1.5
1.2
1
1
0.8
0.6
0.4
0.1
0,07
Amps
3 WATT ZENERS - Specifications apply for both directions.
UDZ807
UDZ808
UDZ809
UDZ810
UDZ812
UDZ815
UDZ818
UDZ820
UDZ824
UDZ827
UDZ830
UDZ833
UDZ836
UDZ840
UDZ845
UDZ860
UDZ210
UDZ222
UDZ230
7.5
8.2
9.1
10
12
15
18
20
24
27
30
33
36
40
45
60
100
220
300
75
75
75
75
65
50
40
40
30
25
25
20
20
20
15
10
5
3
3
500
300
200
100
10
10
5
5
5
1
1
1
1
1
1
1
1
1
1
3
4
4
5
5
6
8
9
10
12
15
21
21
27
37
70
175
325
1900
72
158.4
216
.~F>-~-----1i-------1i-----1
:;:
20 P""""-"1~------1P"""'-"1~
::l
50
I---,i----""-....:Ip""<;:--~I::_---"',
S
20
I-------,i----II-"'-....:,.-i'-
~ lK I--~~-">.~i--~~
~
100
50
1-------,i-------1i--~~
1-------1i-------1i-------1'---"""'!!
20 1-------1i-------1i-------1--~f___'''"'"''c--4
10 '--_------.JL-_------.JL-_------.J_ _------.JL-_--'"
lOOns
1.u.s
10.u.s
100.u.5
1ms
lOms
PULSE DURATION (S)
For Sinusoidal Pulse, Peak Value
is 1.4 Times Value Shown
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064
497
PRINTED IN '-'.S.A.
..
UDZSO",SERIES UDZ5807 SERIES UDZ7807 SERIES UDZ8807 SERIES
Maximum Ratings··
Electrical Specifications at 25'C
Type
:±:lO%
Tolerance"
Nominal
Zener
Voltaget
Vz @ IZT
Volts
Test
Max. Zener Imped §
Z,
Maximum
Leakage @ Reverse Voltage
Current
:!::lO%
@
Current
lIT
IZT
mA
Ohms
pA
Maximum
:±:5%
Maximum
Cont.
Current
In<
Volts
Volts
mA
Amps
4.9
5.4
5.9
6.6
8.6
10.8
12.9
14.4
17.3
19.4
21.6
23.7
25.9
28.8
32.4
43.2
5.2
5.7
6.2
6.9
9.1
11.4
13.7
15.2
18.2
20.6
22.8
25.1
27.4
30.4
34.2
45.6
76
167.2
228
620
570
510
470
385
300
255
220
180
155
140
130
120
105
95
75
45
20
15
40
32
24
22
18
12
9
8
6.5
6
5.5
5
4.5
4
3.5
2.5
1.4
0.5
0.25
5.2
5.7
6.2
6.9
9.1
11.4
13.7
15.2
18.2
20.6
22.8
25.1
27.4
30.4
34.2
45.6
76
1250
1150
1020
950
770
600
500
440
360
310
280
260
240
210
180
150
90
50
41
31
29
17
17
13
12
10
9
8.5
7.5
7
6.4
5.5
3.7
2.3
Surge
Current
Is
*
5 WATT ZENERS - Specifications apply for both directions.
UDZ5807
UDZ5808
UDZ5809
UDZ5810
UDZ5812
UDZ5815
UDZ5818
UDZ5820
UOZ5824
UDZ5827
UDZ5830
UDZ5833
UDZ5836
UDZ5840
UDZ5845
UDZ5860
UDZ5210
UDZ5222
UDZ5230
7.5
8.2
9.1
10
12
15
18
20
24
27
30
33
36
40
45
60
100
220
300
175
150
150
125
100
75
65
65
50
50
40
40
30
30
30
20
10
5
5
1.8
1.8
2.5
2.5
2.5
3.5
4
4.5
5
6
8
10
500
400
200
100
50
15
10
10
10
10
10
5
5
5
5
5
5
5
5
11
14
20
40
100
550
950
72
158.4
216
6 WATT ZENERS - Specifications apply for both directions.
UDZ7807
UDZ7808
UDZ7809
UDZ7810
UDZ7812
UDZ7815
UDZ7818
UDZ7820
UDZ7824
UDZ7827
UDZ7830
UDZ7833
UDZ7836
UDZ7840
UDZ7845
UDZ7860
UDZ7210
7.5
8.2
9.1
10
12
15
18
20
24
27
30
33
36
40
45
60
100
325
300
275
250
200
150
130
120
100
90
80
70
60
60
50
40
20
0.9
1.0
1.2
1.2
1.3
2.0
3.5
4.0
5.0
6.0
8.0
10
12
15
20
35
90
1000
800
200
150
75
30
20
20
20
20
20
10
10
10
10
10
10
4.9
5.4
5.9
6.6
8.6
10.8
12.9
14.4
17.3
19.4
21.6
23.9
25.9
28.8
32.4
43.2
72
*For ±S% voltage tolerance chanee the 3rd number from the right from 8 to 7 or from 2 to 1. i.e, UDZ8807 to UDZ8707, UDZ210 to UOZllO, etc.
tAli zener voltages are measured with an automated test set using a 35ms test time. Longer or shorter test times will have a corresponding
effect on the measured value due to heating effects.
§Zener impedance is derived from the 50-cycle voltage created when AC current with RMS value of 10% of DC zener test current is superimposed on the test current.
**O.C. Ratings are based on the lead temperature conditions shown in the data sheets oovering the UDZ8807, UOZ807, UDZ5807. and UDZ7807
series devices. Other conditions will affect the power ratings of all the families except the 1 watt zener family. However, the surge values
given apply for any mounting conditions including printed circuit board mounting.
tFigures shown are for peak sinusoidal surge current of 8.3ms duration using 60 cycle AC. The 8.3ms square pulse rating is 71% of the value
shown.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
498
PRINTED IN l,I.S.A.
POWER ZENERS
UZ706 SERIES
UZ806 SERIES
3 Watt
FEATURES
DESCRIPTION
• 10 Times Greater Surge Rating than Conventional
1 Watt Types
• Small Physical Size
Fused-in-glass metallurgically bonded
3 watt zener diodes.
ABSOLUTE MAXIMUM RATINGS
........ 6.8 to 400V
.......... See Table
See Table
See Graph
See Lead Temperature Derating Curve
. . -65'C to +175'C
Zener Voltage, V, .
Continuous Current
Surge Current (B.3ms)
Surge Power
Power .....
Storage and Operating Temperature
MECHI\.NICAL SPECIFICATIONS
UZ706 SERIES
UZ806SERIES
BODY A
.7f~"~~:"'N'-r-.2~;5~~·
__ 1.~1~~:~N. ____~
UZ Prefix is identified by a Blue or Red Cathode Band
10K
5K
o
~ 2K
"
'"
ffi
lK
~
500
>=
"-
iii
i5
"UJ
0:
"-....
200
~
"~ 100
"-
'"
UJ
o
X
SQUARE PULSE
""
"
50
75
100
125
150
LEAD TEMPERATURE ('C)
IJls
1K
~-~~~~~~~~-~
Cl
"-
"" '"
10,u5
100 ~----"~"""-...::-po..=--+--~
UJ
..........
50
lOOns
Z
r--.,
10
25
S
UJ
U
20
:;;
10K , - - ; ; ; : - - , - - - , - - - , - - - - - ,
I
~
z
Typical Zener Impedance
vs. Zener Current
Surge Power
vs. Surge Duration
Power Dissipation
vs. Lead Temperature Derating Curve
100#5
Ims
~
10
0:
f---f---">..;::R~~t-=---j
UJ
Z
..........
UJ
N
.1
lOms
L-_ _L-_ _
.1
SURGE DURATION (5)
499
1
~
10
___
~~~
100
1A
ZENER CURRENT (rnA)
lliD
_UNITRDDE
UZ706 SERIES UZ806 SER.IE$
Electrical Specifications at 2S'C
Nominal
Zener
Voltage t
Vz@ln
Type*
Max. Zener
Impedance§
Test
Current
±5%
'ZT
Z,@I"
Maximum Ratings
Maximum Reverse
Leakage Current
I,@V,
Typ.
± 10%
V.
V.
Temp.
Coefficient
Tc @
'ZJ
Maximum
Continuous
Maximum
Surge
1'M
Is
Current *
Current:l;
Tolerance
±S%
Jedec**
Registration
Volts
rnA
Ohms
pA
Volts
Volts
%/CC
rnA
Amps
UZ706
UZ707
UZ708
UZ709
UZ710
UZ712
UZ713
UZ714
UZ715
UZ716
UZ718
UZ720
UZ722
UZ724
UZ727
UZ730
UZ733
UZ736
UZ740
UZ745
UZ750
UZ756
UZ760
UZ770
UZ775
UZ780
UZ790
UZll0
UZ111
UZ112
UZ1l3
UZ114
UZll5
UZ116
UZll7
UZ118
UZ119
UZ120
UZ122
UZ124
UZ126
UZ128
UZ130
UZ132
UZ134
UZ136
UZ138
UZ140
1N5063
1N5064
1N5065
1N5066
1N5067
1N4883
1N5069
1N5070
1N5071
1N5072
1N5073
1N4884
1N5074
1N5075
1N5076
1N5077
1N5078
1N5079
1N5081
1N5083
1N5085
1N5087
1N5088
1N5091
1N5092
1N5093
1N4096
1N4097
1N5096
1N5097
1N5098
1N5099
'lN4098
1N5100
1N5101
1N5102
1N5103
1N5104
1N5105
1N5106
1N5107
1N5109
1N5110
1N5111
1N5113
1N5114
1N5115
1N5117
6.8
7.5
8.2
9.1
10.0
12
13
14
15
16
18
20
22
24
27
30
33
36
40
45
50
56
60
70
75
80
90
100
110
120
130
140
150
160
170
180
190
200
220
240
260
280
300
320
340
360
380
400
75
75
75
75
75
65
50
50
50
50
40
40
30
30
25
25
20
20
20
15
15
10
10
10
10
10
8.0
5.0
5.0
5.0
5.0
5.0
5.0
4.0
4.0
4.0
4.0
4.0
3.0
3.0
3.0
3.0
3.0
2.0
2.0
2.0
2.0
2.0
2
2
3
3
4
5
6
6
6
7
8
9
10
10
12
15
21
21
27
37
50
70
70
90
100
115
150
175
250
325
375
550
650
700
750
850
900
950
1100
1300
1500
1700
1900
2100
2400
2700
3000
3500
500
300
200
100
40
10
10
10
10
5
5
5
5
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
5.2
5.7
6.2
6.9
7.6
9.1
9.9
10.6
11.4
12.2
13.7
15.2
16.7
18.2
20.6
22.8
25.1
27.4
30.4
34.2
38.0
42.6
45.7
53.3
56.0
60.8
68.5
76.0
83.6
91.2
98.8
106
114
122
129
4.9
5.4
5.9
6.6
7.2
8.6
9.3
10.1
10.8
11.5
12.9
14.4
15.8
17.3
19.4
21.6
23.7
25.9
28.8
32.4
36.0
40.3
43.2
50.5
54.0
57.7
64.8
72.0
79.2
86.4
93.6
101
108
115
122
129
137
144
158
173
187
202
216
230
245
259
274
288
.04
.04
.05
.05
.06
.07
.07
.07
.07
.07
.08
.08
.08
.08
.09
.090
.090
.090
.095
.095
.095
.095
.095
.095
.095
.095
.095
.100
.100
.100
.100
.100
.100
.100
.100
.100
.100
.100
.100
.105
.105
.105
.105
.105
.110
.110
.110
.110
440
400
360
330
300
250
230
210
200
185
170
150
135
125
110
100
90
85
75
65
60
55
50
45
40
35
30
30
25
25
20
20
20
20
18
18
15
15
15
12
12
10
10.0
8.0
7:0
6.0
5.0
4.0
4.0
4.0
3.0
3.0
2.0
2.0
2.0
1.5
1.5
1.5
1.2
1.0
1.0
0.8
0.8
0.7
0.6
0.6
0.5
0.4
0.4
0.4
0.3
0.2
0.20
0.20
0.20
0.15
0.15
0.10
0.10
0.10
0.09
0.09
0.08
0.08
0.07
0.07
0.06
0.06
0.06
0.06
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
137
144
152
167
182
198
213
228
243
258
274
289
304
10
9
9
8
8
7
... Specify 20% voltage tolerance by changing first numeral ·of type number trom 7 to 9. (UZ709 becomes UZ909) or from 1 to .3 (UZ1l1 be~
comes UZ311).
Specify 10% voltage tolerance by changing first numeral of type number from 7 to 8. (UZ709 becomes UZ809) or from 1 to ? (UZlll becomes
UZ21l).
** Jedec registration applies to ±5% tolerance,zeners only.
t All zener voltages' are measured with an automated test set using, ,a 35 'ms test time. Longer or shorter test times will' have a corresponding
effect on the measured value due to heating effec;ts.
§ Zener impedance is derived from the 60-cyc'le AC Yoltage created when AC current with RMS value of 10% of DC zener ,test' current is super. . '
imposed ,c)O the test current.
Maximu,,;' current based on 3 watt rating. See lead temperature derating curves for proper mounting methods.
i Figures: shown are for a peak sinusoidal ~urge current of 8.3ms duration using 60 cycle AC. The 8.3ms square pulse rating is 71% of
the value shown.
*
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509' •.TELEX 95-10.64 .
500
PRINTED IN U.S.A.
UZ4706 SERIES
UZ4806 SERIES
POWER ZENERS
5 Watt, Industrial
FEATURES
DESCRIPTION
• 2 Times Greater Surge
Rati ng than Plastic Types
• Small Physical Size
• Impervious to Moistllre
Fused-in-glass 5 watt zener5 with the same
electrical specs as the lN5342-1N5388
series.
ABSOLUTE MAXIMUM RATINGS
. 6.8 to 200V
See Table
.... See Table
See Graph
. Sep 1 ead Temperature Derating Curve
... -65'C to +175'C
Zener Voltage, Vz .
Continuous Current
Surge Current (8.3ms)
Surge Power ..
Power.
Storage and Operating Temperature ...
MECHANICAL SPECIFICATIONS
UZ4706 SERIES
UZ4806 SERIES
BODY B
UZ Prefix is identified by a Blue or Red Cathode Band
10K
5K
~ 2K - a: 1K
UJ
~
o
500
~ 200
~
100
en
50
:::>
1
L
"
"'" ""
SQUARE PULSE
-
25
50
75
LEAD TEMPERATURE ('C)
10
lOOns
IJls
lOJ,ls
§
UJ
.5r-+---+-r----I--+~~~~~
.1
L-L----'----L_--c'c--:-:',--_L-J
.5
1
[ill]
503
5 10
50 100
ZENER CURRENT (rnA)
_UNITRDDE
UZ5706 SERIES
Maximum Ratings
Electrical Specifications at 2S"C
Type *
Max. Zener
Impedance§
Nominal
Zener
Voltage t
V,@ I"
Test
Current
I"
Z,@ I"
Maximum Reverse
Leakage Current
I,
±5%
Tolerance
±10%
Tolerance
Volts
mA
Ohms
pA
UZ5706
UZ5707
UZ5708
UZ5709
UZ5710
UZ5712
UZ5713
UZ5714
UZ5715
UZ5716
UZ5718
UZ5720
UZ5722
UZ5724
UZ5727
UZ5730
UZ5733
UZ5736
UZ5740
UZ5745
UZ5750
UZ5755
UZ5760
UZ5770
UZ5775
UZ5780
UZ5790
UZ5110
UZ5111
UZ5112
UZ5113
UZ5114
UZ5115
UZ5116
UZ5117
UZ5118
UZ5119
UZ5120
UZ5122
UZ5!24
UZ5126
UZ5128
UZ5130
UZ5132
UZ5134
UZ5136
UZ5138
UZ5140
UZ5806
UZ5807
UZ5808
UZ5809
UZ5810
UZ5812
UZ5813
UZ5814
UZ5815
UZ5816
UZ5818
UZ5820
UZ5822
UZ5824
UZ5827
UZ5830
UZ5833
UZ5836
UZ5840
UZ5845
UZ5850
UZ5856
UZ5860
UZ5870
UZ5875
UZ5880
UZ5890
UZ5210
UZ5211
UZ5212
UZ5213
UZ5214
UZ5215
UZ5216
UZ5217
UZ5218
UZ5219
UZ5220
UZ5222
UZ5224
UZ5226
UZ5228
UZ5230
UZ5232
UZ5234
UZ5236
UZ5238
UZ5240
6.8
7.5
8.2
9.1
10.0
12
13
14
15
16
18
20
22
24
27
30
33
36
40
45
50
56
60
70
75
80
90
100
110
120
130
140
150
160
170
180
190
200
220
240
260
280
300
320
340
360
380
400
175
175
150
150
125
100
100
100
75
75
65
65
50
50
50
40
40
30
30
30
25
20
20
20
15
15
15
10
10
10
10
8
8
8
8
5
5
5
5
5
5
4
4
4
4
3
3
3
1.0
1.5
1.5
2.0
2.0
2.5
3.0
3.0
3.5
3.5
4.0
4.5
5.0
5.0
6.0
8
10
11
14
20
25
35
40
50
55
80
90
100
125
170
190
230
330
350
380
450
470
500
550
650
750
850
950
1100
1200
1400
1500
1800
500
400
200
100
75
50
25
20
15
10
10
10
10
10
10
10
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
V,
Typ.
Temp.
Coefl.
Tc@ I"
Continuous
Current
Volts
%'"C
mA
.05
.06
675
620
570
510
470
385
350
320
300
275
255
220
195
180
155
140
130
120
105
95
85
80
75
65
60
55
50
45
40
38
35
33
31
±5%
V,
± 10%
Volts
5.2
5.7
6.2
6.9
7.6
9.1
9.9
10.6
11.4
12.2
13.7
15.2
16.7
18.2
20.6
22.8
25.1
27.4
30.4
34.2
38.0
42.6
45.7
53.3
56.0
60.8
68.5
76.0
83.6
91.2
98.8
106.0
114.0
122.0
129.0
137
144
152
167
182
198
213
228
243
258
274
289
304
~
5
5
5
5
5
5
5
5
5
5
5
5
5
UZ5806 SERIES
4.9
5.4
5.9
6.6
7.2
8.6
9.3
10.1
10.8
11.5
12.9
14.4
15.8
17.3
19.4
21.6
23.7
25.9
28.8
32.4
36.0
40.3
43.2
50.5
54.0
57.7
64.8
72.0
79.2
86.4
93.6
101.0
108.0
m:~
129
137
144
158
173
187
202
216
230
245
259
274
288
.06
.06
.07
.07
.08
.08
.08
.08
.085
.085
.085
.090
.090
.09
.09
.095
.095
.095
.095
.095
.100
.100
.100
.100
.100
.100
.100
.100
.105
.105
.105
.105
.105
.110
.110
.110
.115
.115
.120
.120
.120
.120
.120
.120
.120
.120
Maximum
I,..
*
Maximum
Surge
Current
Is
*
Amps
40
32
24
22
20
18
16
14
12
10
9.0
8.0
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.8
2.5
2.3
2.0
1.8
1.6
1.4
1.2
1.0
0.80
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.24
0.23
0.22
0.21
0.20
30
27
25
24
22
20
18
17
16
15
14
13
12
12
11
Temperature Range: Operating and Storage _65°C to +17S C .
0
• Specify 20% tolerance by changing the second numeral of type number from 8
UZ5311).
to
9 (UZ5809 becomes UZ5909) or from 2 to 3 (UZ5211 becomes
t All zener voltages are measured with an automat.ed test set using a 35 millisecond test time. Longer or shorter test times will have a
corresponding effect on the measured value due to heating effects.
§ Zener impedance is derived from the 60-cycle AC voltage created when AC current with RMS value of 10% of DC zener test current is
superimposed on the test current .
Maximum current based on 5 watt rating. See lead temperature derating curves for proper m0l.lnting methods.
*• Figures
shown are for a peak sinusoidal surge current of 8.3ms duration USing 60 cycle' AC. The 8.3ms square pulse rating is 710/0 of the
value shown.
Several of the above types now have JEDEC IN type numbers. The following cross-reference table lists the appropriate 1N
numbers; specifications are same as above.
JEDEC #
UNITRODE TYPE
JEDEC #
UNITRODE TYPE
JEDEC #
UNITRODE TYPE
1N51l8
1N5119
1N5120
1N5121
1N5122
1N5123
UZ5714
UZ5740
UZ5745
UZ5750
UZ5760
UZ5770
1N5124
1N5125
1N5126
IN5127
1N5128
1N5129
UZ5780
UZ5790
UZ5114
UZ5117
UZ5119
UZ5126
1N5130
1N5131
1N5132
1N5133
1N5134
UZ5128
UZ5132
UZ5134
UZ5138
UZ5140
UNITRODE CORPORATION· 5 FORBES ROAO
LEXINGTON •.MA,02173. TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95·1064
504
PRINTED IN U.S.A.
POWER ZENERS
UZ7706L and UZ7806L SERIES
UZ7706 and UZ7806 SERIES
6 Watt, Military, 10 Watt Military
FEATURES
OESCRIPTION
• High Surge Rating
• Small Physical Size
• Leaded and Stud Packages Available
Fused-in-glass, metallurgically bonded
6 watt leaded zeners and 10 watt
stud-type zeners.
ABSOLUTE MAXIMUM RATINGS
Zener Voltage, VZ .
Continuous Current
Surge Current (8.3ms)
Surge Power .
Power .
.. ......... 6.8 to lOOV
............. See Table
... See Table
.............. ............. ............ ..... ....... ................... .......
See Graph
... Ul7706L & Ul7806L See Lead Temperature Derating Curve
Ul7706 & UZ7806 @lOO'C Case ....
... lOW
Storage and Operating Temperature ....
..
.. .....................-65'C to +175'C
MECHANICAL SPECIFICATIONS
UZ7706L and UZ7806L SERIES
BOOYCLead Mount
•
UZ Prefix is identified by a Blue or Red Cathode Band
UZ7706 and UZ7806 SERIES
.187" MAX.
C4.75m=llml
~(ollmml
,005 MAX.
Radius
. 112 MAX .
r
BOOY C - Stud Mount
.045" TVP.
,!:~;~~~.
.460" MAX .
Cll .68m":',
..
,/
'-==r~;/\
,
#4-40
x
:~~:: ~~:~:~~~ LONG THREAD
.120" TYP,
(3.05mm)
POLARITY: Cathode to Stud is standard. Re·
verse polarity denoted by "R" suffix.
FINISH: Metal parts gold plated per MIL·G·
45204, Type II.
WEIGHT: 1.5 grams (max.1
INSTALLATION PRECAUTIONS: Maximum unlubricated stud torque: 28 inCh-ounces. Do
not use a screwdriver in the turret slot for
installation purposes, or damage may result.
UZ Prefix is identified by a Blue or Red Cathode Band
[ill]
505
_UNITRDDE
UZ7706L and UZ7806L SERIES
UZ7706 and UZ7806 SERIES
Electric" Specifications at 25·C
Type-
Nominal
Zener
Voltage t
Vz @ I"
Maximum Reverse
Leakage Current
Max. Zener
Impedance §
Test
Current
Maximum Ratings
I.@V.
Typ.
Temp.
Coeff.
±5%
V.
±10%
V.
Tc@ IZT
Maximum
Continuous
Maximum
Surge
Current t
Is
Amps
CurrenH
I",
!zT
Zz@lzT
Volts
mA
Ohms
~A
Volts
Volts
%/·C
mA
6.8
7.5
8.2
9.1
10.0
350
325
300
275
250
0.6
0.7
0.8
1.0
1.0
1000
800
200
150
100
5.2
5.7
6.2
6.9
7.6
4.9
5.4
5.9
6.6
7.2
.04
.04
.05
.05
.06
1350
1250
1150
1020
950
50
41
31
29
26
UZ7812
UZ7813
UZ7814
UZ7815
UZ7816
12
13
14
15
16
200
200
175
150
150
1.3
1.5
1.5
2.0
2.5
75
50
40
30
20
9.1
9.9
10.6
11.4
12.2
8.6
9.3
10.1
10.8
11.5
.07
.07
.07
.07
.07
770
700
640
600
550
23
21
20
17
15
UZ7718
UZ7720
UZ7722
UZ7724
UZ7727
UZ7818
UZ7820
UZ7822
UZ7824
UZ7827
18
20
22
24
27
130
120
100
100
90
3.5
4.0
4.5
5.0
6.0
20
20
20
20
20
13.7
15.2
16.7
18.2
20.6
12.9
14.4
15.8
17.3
19.4
.08
.08
.08
.08
.09
500
440
390
360
310
13
12
11
10
9
UZ7730
UZ7733
UZ7736
UZ7740
UZ7745
UZ7830
UZ7833
UZ7836
UZ7840
UZ7845
30
33
36
40
45
80
70
60
60
50
8
10
12
15
20
20
10
10
22.8
25.1
27.4
30.4
34.2
21.6
23.7
25.9
28.8
32.4
.090
.090
.090
.095
.095
280
260
240
210
180
8.5
7.5
7.0
6.4
5.5
UZ77S0
UZ77S6
UZ7760
UZ7770
UZ7775
UZ7850
UZ7856
UZ7860
UZ7870
UZ7875
50
56
60
70
75
50
40
40
35
30
22
30
35
40
45
10
10
10
10
10
38.0
42.6
45.6
53.2
56.0
36.0
40.3
43.2
50.4
54.0
.095
.095
.095
.095
.095
170
160
150
130
120
4.6
4.1
3.7
3.3
3.1
UZ7780
UZ7790
UZ7l10
UZ7880
UZ7890
UZ7210
80
90
100
30
25
20
60
75
90
10
60.8
68.4
76.0
57.6
64.8
72.0
.095
.095
.100
110
100
90
2.9
2.6
2.3
±5%
±10%
Tolerance
Tolerance
UZ7706
UZ7707
UZ7708
UZ7709
UZ7710
UZ7806
UZ7807
UZ7808
UZ7809
UZ7810
UZ7712
UZ7713
UZ7714
UZ7715
UZ7716
10
10
10
10
Power Rating: Stud Mounted: 10 watts at 100°C Case derate linerally to zero at 175°C Case.
Lead Mounted: See lead temperature derating curve.
Temperature Range: Operating and storage _65°C to 175°C .
• Specify 20% tolerance by changing the second numeral of type number from 8 to 9 (UZ7809 becomes UZ7909) or from 2 to 3 (UZ7210 be~
comes UZ7310). Specify leaded version by adding an L suffix (UZ7809 becomes UZ7809L).
t All zener voltages are measured with an automated test set using a 35 msec test time, longer or shorter test times will have a corresponding effect on the measured value due to heating effects.
§ Zener impedance is derived from the 60-cycle voltage created when AC current with RMS value of 10% of DC zener test current is superimposed on the test current.
Ratings Based on 100°C Case temperature.
i Figures shown are for a peak sinusoidal surge current of 8.3ms duration, non·repetitive. The 8.3ms square pulse rating is 71% of the value
shown.
*
Power Dissipation
vs. Lead Temperature Derating Curve
VS.
Surge Power
Surge Duration
lOOK
SOK
l: 20K
I
I"'"
;;:- 10K
w
~
5K
~w
2K
U)
SQUARE PULS[;
500
w
~
'"
Cl
""" """
200
lOa
25
50
75
lOa 125 ISO
LEAD TEMPERATURE (OC)
175
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064
lOOns
§
........
"""
~ IK
:0
Typical Zener Impedance
vs. Zener Current
~
~
5 r-~~~~~'~~-T----~
1 r-+---~~~~~~~~~
.5r-i-·--~~~~~~~
0:
"
w
~
.:::::-".
l#s
10#s 1oo#s
1ms
SURGE DURATION (S)
506
10~~~~~~~~-t----~
N
.1r-+---~--r_--~~~~~
.05 r-+---~--r_--_t_-'t'...,_"""'t='_I
10ms
ZENER CURRENT (mA)
PRINTED IN U.S.A.
UZ8706 SERIES
UZ8806 SERIES
POWER ZENERS
1 Watt, Industrial
FEATURES
DESCRIPTION
• High Surge Ratings
• A Quarter the Size of Conventional 1 Watt Zeners
• Impervious to Moisture
One watt zener diodes, hermetically
sealed in glass.
ABSOLUTE MAXIMUM RATINGS
Zener Voltage, VZ .
Continuous Current
Surge Current (8.3ms)
Surge Power
Power .. '
Storage and Operating Temperature
.. 6.8 to 200V
See Table
See Table
.............................................See Graph
.......... See Lead Temperature Derating Curve
.... ~5'C to +175'C
MECHANICAL SPECIFICATIONS
UZ8706 SERIES UZ8806 SERIES
°r5~,,;~P
111
0 (
II
I c::::A Oo~}~:;:~
~.O.5"
TYP.
T
BODY A
j
2.2mm
~.7f~.·~~:nN.-+jt-.2~~~5~';;·~.._____ 1.~1~;mM~N ----~I
UZ Prefix is identified by a Blue or Red Cathode Band
1.5
,---".-----.----.,~-,-__r--.-_______,
10K
~
z
;::
«
a.
~ 2K
ffi
lK
iii
~
500
Q
w 200
to
~ 100
(",';'i~!';':':'
,~,~,::.
.'.':":';'.'
~:~':.:)(i:<;
'.;;', .:
<; ,"
'-;·'.T:·
'.j': ,
PACKAGE L7
,.
,SG
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
513
PRINTED IN U.S.A.
THYRISTORS (SCRs, TRIACs & PUTs)
PRODUCT SELECTION GUIDE
PACKAGE L7
PACKAGE L2
~
M
A PART NUMBER SUFFIX MUST BE SPECIFIED WHEN ORDERING
SUFFIX
S, SG B, BG F, FG M, MG -
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
DESCRIPTION
SOLDERABLE BACK, STRAIGHT LEADS
SOLDERABLE BACK, PREBENT LEADS
FLANGE MOUNTED, STRAIGHT LEADS
FLANGE MOUNTED, PREBENT LEADS
514
PRINTED IN U.S.A.
THYRISTORS (SCRs, TRIACs & PUTs)
PRODUCT SELECTION GUIDE
TO·18
TO·92
TO·9
TO·39
TO·92
'Available as JAN and JANTX types .
• 'Available as JAN type .
••• Available as JAN, JANTX, JANTXV types.
t3mA available from factory
·UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
515
PRINTED IN U.S.A.
THYRISTORS (SCRs, TRIACs& PUTs)
PRODUCT SELECTION GUIDE
ULTRAFAS.T SWITCHING
TO·lI'
TO·59
RADIATION HARDENED SCRs
TO·18
PUTs - PROGRAMMABLE
UNIJUNCTION TRANSISTORS
TO·18
* Available 8$ JAN and JANTX types.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
516
PRINTED IN U.S.A.
THYRISTORS (SCRs, TRIACs & PUTs)
PRODUCT SELECTION GUIDE
GLASS PASSIVATED
SOLDERABLE CHIPS
(Only Available Through Factory)
100mA
120mA
150mA
80620··
80430··
80540··
*Current ratings are at operating temperature of 65<1C as measured on the substrate Immediately adjacent to the
chip. (Equivalent to case temperature in a packaged unit.) Current rating at 65°C derates linearly to zero at a
operating temperature of 110°C .
•• Add suffix 20, 40, 60 to depict voltages 200V, 400V, 600V respectively.
Design Comments
1. Chips available in 5/95 solder or 60/40 solder. Call factory for additional information.
2. Chips are supplied with metal contact cliPS (unattached),
[ill]
517
_UNITRDDE
SCRs
2N1870A·2N1874A
1.25 Amp, Planar
FEATURES
DESCRIPTION
• Available as Either "JAN" or
Standard Types
• Operating D.C. Current Range:
5 to I250mA
• Pulse Currents: to 30A
• Voltage Ratings: to 200V
• Maximum Trigger Current: O.2mA
• Maximum Trigger Voltage: O.BV
• All Leads Isolated from Case
• Maximum 6 J _ c : 20'C/W
These are premium PNPN controlled switches intended for use in applications
requiring a high degree of reliability assurance. The JAN types are specified under
MIL-S-19500/I9B, and are included in MIL-STD-70I as recommended types for
military usage.
This series is useful in a wide variety of applications including: safety, arming
and detonating circuits; timing and programming circuits; protective and warning
circuits; driving relays; driving indicator lamps, encoding and decoding circuits;
replacing relays, thyratrons, and magamps; servo motor control; pulse generation;
plus many others.
ABSOLUTE MAXIMUM RATINGS
2N1870A
JAN2N1870A
Repetitive Peak Off-State Voltage, VORM .
........... 30V.
Repetitive Peak Reverse Voltage, VRRM .
. . 30V....... .
D.C. On-State Current, IT
IOO'C Ambient .
IOO'C Case
Repetitive Peak On-State Current, ITRM .
Peak One Cycle Surge (Non-Rep.) On-State Current, I TSM
Peak Gate Current, IGM
Average Gate Current, IG(AV)
Reverse Gate Voltage, VGR .
Thermal Resistance, Junction to Case, R6J _ C
Operating and Storage Temperature Range.
2N1872A
JAN2N1872A
2NI871A
JAN2NI871A
. ....... 60V ..
............. 60V ..
.. lOOV.....
.......... 1ODV..... ..
2N1873A
. ....
l50V.....
2N1874A
JAN2NI874A
.. 200V
......... l50V........................ 200V
......... 250mA .. .
....... J.2SA.......
................ .
.......... up to 30A..
......................... ..
... .lSA...
..... ...... .............. .
.......... .2S0mA.... . ...................................................... .
.. 2SmA....
. ................ ..
.. ........ SV...
.......................................... .
............ 20'C/W................................. .
...................... -65'C to +150'C..
...................... ..
MECHANICAL SPECt:FICATIONS
2N1870A-2N1874A
.370
.290
l
1 MIN'l
1 ·~~~1f!'5
TO-9
CATHODE
.030
.010
,.---=:--
GATE
--
.335
.275
~017+·002
-.001
ANODE
-1.100-
Dimensions in inches.
518
lliD
_UNITRDDE
2N1870A-2N1874A
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)t
Test
Symbol
Subgroup 1 (Visual and Mechanical)
Subgroup 2 (25°C Tests)
Off-State Current
Reverse Current
Gate Trigger Voltage
Gate Trigger Current
On-State Voltage
Off-State Voltage - Critical of Rise
Reverse Gate Current
Holding Current
Subgroup 3 (l25°C Tests)
High Temp. Off-State Current
High Temp. Reverse Current
High Temp. Gate Non-Trigger Voltage
High Temp. Holding Current
Subgroup 4 (-65°C Tests)
low Temp. Gate Trigger Voltage
low Temp. Gate Trigger Current
low Temp. Holding Current
IORM
IRRM
VGT
IGT
VTM
dVc/dt
IGR
IH
Min.
-
0.4
100
-
Typical
Max.
Units
Test Conditions
0.5
0.5
0.55
30
l.8
10
10
0.8
200
2.5
,..A
,..A
V
,..A
V
V/,..s
,..A
mA
RGK = 1K, VORM
Rating
RGK = 1K, VRRM = - Rating
RGS = 100 ohms, Vo
5V
RGs> 10K ohms, Vo
5V
ITM = 2A (pulse test)
Specified test circuit
VGRM = 5V, anode open
IG = - 1SO,..A, Vo = 5V
-
=+
=
=
0.5
0.3
-
10
5.0
-
15
15
100
100
-
/LA
,..A
V
mA
RGK = 1K, VORM
Rating
RGK = 1K, VRRM = - Rating
RGS = 100 ohms, Vo
5V
IG = - 1SO,..A, Vo
5V
1.0
500
15
V
,..A
mA
RGK = 100 ohms, Vo = 5V
RGK > 10K ohms, Vo
5V
IG = -150,..A, VAA
5V
IORM
IRRM
VGO
IH
0.2
0.2
VGT
IGT
IH
-
-
=+
=
=
=
=
tAli values in this table are JEDEC registered.
Not.: Voltage ratings apply over the full operating temperature range, provided the gate is connected to the cathode through a reSistor, 1 K
or smaller, or other adequate gate bias is used.
Triggering and Bias Stabilization
Gate Trigger Voltage
2.
Gate Trigger Current
800
~
1600
....
z
OJ
~ 400
u
:>
P>..
Y/7>
~
to
to
//// Y/ //~
~
:L/~ ~ V#n~ 'i/ V/ Y/
OJ
!;(
I----I---t-_+_-+--I---+-_+_---I
~"
g
ALL UNITS FIRE
'"~ 200 //~ -'/; ~JGTmax.
"ii:....
1.2
OJ
'GT
"I
"
.4
1----I--~~~~*7-;,~71Lf7H~
I
NO UNITS FIRE
~
_~-200
>
.2 1----+--1
o L-_-L_i-~_-L~L--L~~~
-400
-65
.6 ~Lf~~~~~~~~~~~~~
OJ
!;(
~
min.
.8 ~Lf~~ff~~~+-~~~-~--4
-25
TJ
-
25
50
75
100
125
-65
150
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064
-25
TJ
JUNCTION TEMPERATURE (OC)
519
-
0
25
50
75
100
125
150
JUNCTION TEMPERATURE (OC)
PRINTED IN U.S.A.
2N1870A-2N1874A
Holding Current
1. Max. Holding Current (Current Bias)
2. Max. Holding Current (Resistor Bias)
50
50
:<
:<
oS
20
...
z
"'::>'"'"
10
"15z
2
oS
~ r-- r-- r-- r-
IG =-1.5mA
~ ~ I-- r~
u
~
~ :--:-t;
N-
..J
0
:t
><
'"
u
"z
10
IG =-.05mA
><
:1
I
~I
.2
_I.
.1
:1><
--65
3K~~
-25
0
25
50
75
100 125
T J - JUNCTION TEMPERATURE ('C)
5
...~
15
'"'"
::>
u
r-- r---+=-~A
1.5
.2
.1
o
I
_I
Z
:ij
-25
0
25
50
75
100 125
TJ - JUNCTION TEMPERATURE ('C)
150
.5
.5
.2
I
.15
.1
IG =-.05mA
.05
--65
-
RGK = 100Q-
z
300-"
..J
I-F-==.1~,\
:t
Z
:1
I
r----
_I.
.5
.2
Z
:ij
r-- t--....
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
10
o
-
-25
25
50
75
100 125
T J - JUNCTION TEMPERATURE ('C)
20
"15
-f""'oo ~
:t
:1
~
.5
50
..J
Z
~~
4. Min. Holding Current (Resistor Bias)
50
'~"
u
"15z
~
r--- r-- t:::::::",
.......
--65
150
:<
10
r-- r--r-- I--
RGK=10~ ~
3. Min. Holding Current (Current Bias)
20
~
lK·
~~
.05
.05
oS
~oon
9
.5
15
~
--
~
><
;::
~II
"OJ
r "it
,..,If..... ,,.)
I ...~
.1
.05
.05
.1
0:
,
1
.5
10
V,- ON VOLTAGE (V)
.2
~ ~\
.3~ ",,'
DUTY CYCLE:I .............
.5
;::
OJ
20
I----. "",-\
.1
OJ
I
0
-- -...... ."
---'"\.\"
50
...«
z'"0
"«"-
d
«
0
u
POWER DISSIPATION (W)'
2
1.5
1
.5
OJ
0:
0:
'"
:>
1. 1
:>
u
Z
0:
0:
ql
OJ
Peak Current vs. Case Temperature
.2
\
.1
.: .05
100
90
110
120
130
140
150
T•. ' .. - MAX. CASE TEMPERATURE ('C)
3. Peak Current vs. Ambient Temperature
3:
...z
OJ
0:
0:
:>
u
PA
.625
-
20
-
10
...
...
z0'"
OJ
--
«
OJ
"-
>
;::
.5
;::
OJ
"OJ
0:
,
1
.2
.003-
I---..
.01-
~
.03"-
~
...
zOJ
"'-
""
.1 ......
a
25
TA
. ., -
10
:>
~ ~\
:>
OJ
"-
1~
:>
3<6
10-' 10 '. 10-' 10- 2 10- 1 1
10
SURGE DURATION (5)
PA
.625
.5
0:
0:
:>
u
Z
.6 ~==~~~~~~
~
.4
...
;:
z'"0
g
OJ
__~~._4--~
~--_+----~----4_~~~~~r---~
1
J
90
100
T e ." -
____- L_ _ _ _L -_ _
110
120
130
140
MAX, CASE TEMPERATURE ('C)
UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710)326·6509 • TELEX 95·1064
-q"
-"
102
10'
POWER DISSIPATION (W)
.5
.375
.25
.125
."."" '"
"'"1""-"-
~~
.2
~"-
~
~ ~\
I'-..~ ~
"~\~~
.1
o
150
o
25
TA
521
,
~
~
__
~
____
~
__
~
~
f----+----+-----+-----+-----Ni~_i
o
.3
3
\
\\
"«
OJ
50
50
.001
Surge Current vs. Time
4.
POWER DISSIPATION (W)
.5
.375
.25
.125
50
75
100
125
150
m,,- MAX. AMBIENT TEMPERATURE ('C)
PRINTED IN U.S.A.
SCRs'
2N 1875-2N 1880
1.25 Amp, Planar
FEATURES
• Operating D.C. Current Range: 1O-12S0mA
• Peak Pulse Current: to 30A
• Maximum Gate Current to Fire: 20l'A
• Firing Voltage: .S2±.08V
• Voltage Ratings: to 200V
• "Turn-on" Time: Typically O.ll's
• Low On Voltage: 2.5V Maximum at 2A
DESCRIPTION
This high sensitivity series, featuring very precise control of triggering
characteristics, is particularly useful for timing and time delay circuits, voltage
limit detectors, high gain static switching, logic circuits, pulse and sweep
generators, and related applications.
This series is available in a TO-9 package. with all leads isolated from the case,
providing a maximum thermal resistance of 20'CIWatt between junction and case.
ABSOLUTE MAXIMUM RATINGS
2N1875
2N1877
2N1876
2N1878
2Nl879
2N1880
60V. ................. 10OV.. ....•............ ISOV...
Repetitive Peak Off-State Voltage. VDRM
.......... lSV ..
....... 3OV ...
.." . 200V
Repetitive Peak Reverse Voltage, VRRM .
..... 60V ...
10OV........
ISV ...
........... 30V.
150V... .. ......... 200V
D.C. On-State Current, IT
. ..............250mA ............................................... .
100'C Ambient .
....... USA.......................................................
100'C Case
.. ... upto 30A ...................................................... ..
Repetitive Peak On-State Current, ITRM ...
Peak One Cycle Surge (Non-Rep.) On-State Current, ITSM ...
....... .lSA
..............
.................... .
. ...................................250mA
Peak Gate Current, IGM .
. ..................... 25mA ... .
Average Gate Current, IG(Av) ..... .
.............5V ... ..
Reverse Gate Voltage, VGR .... .
......20'CIW......................... .
Thermal Resistance, Junction to Case, R9 J _ C .
Operating and Storage Temperature Range .
......... -65"C to +150'C
MECHANICAL SPECIFICATIONS
.
.37()
[
.200
.
.
.260-;-,
5 MIN
1
.030
l
2N1875·2N1880
TO·9
CATHODE
'290L~.01O
~ =_ -=:=
1L __-----.335
.275
~0l7
;.002
.
-.001
-1.100-
Dimensions in inches.
[ill]
522
_UNITRODE
2N1875-2N1880
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)t
Test
Symbol
Subgroup 1 (Visual and Mechanical)
Subgroup 2 (2S0C Tests)
Off-State Current
Reverse Current
Reverse Gate Current
Gate Trigger Current
Gate Trigger Voltage
Anode Trigger Current (Note 2)
On-State Voltage
Holding Current
Subgroup 3 (25°C Tests)
Turn-on Time
Turn-off Time
Gate Trigger - on Pulse Width
Circuit Commutated Turn-off Time
Subgroup 4 (125°C Tests)
High Temp. Off-State Current
High Temp. Reverse Current
IORM
IRRM
IGR
IGT
VGT
IAT
VT
IH
Min.
Typical
Max.
Units
.44
-
o.s
5
10
10
VORM
Rating, RGK
1K
VRRM
Rating
VG• = 2V
Vo = SV, RGS = 10K
Vo = 5V, RGS = lOOn
Vo = SV
IT
2A (Pulse Test)
IG = - 150I'A,VAA = 5V
0.8
0.3
-
ton
toll
tpglonl
tq
IORM
IRRM
Test Conditions
=
=
=
0.5
0.5
5
.S2
100
1.8
1.0
2.5
3
p.A
p.A
p.A
p.A
V
p.A
V
rnA
0.1
0.5
O.S
10
-
p's
p's
p's
p's
~ IT = .5A
5
15
20
100
p.A
p.A
Vo
Rating, RGK
V. RM
Rating
20
.60
-
=
IG =20mA
Vo = 30V
IT = .5A, i. = .5A, RGK
=
=
= 1K
=1K
Note: 1. Voltage ratings apply over the operating temperature range, provided the gate is connected to the cathode through an appropriate re·
sistor, or adequate gate bias is used.
2. For a maximum limit of SO.uA, use suffix "-1" and drop "2N". Example: 1877-!.
t All values in this table are JEDEC registered.
TRIGGERING AND BIAS STABILIZATION
1. Gate Trigger CUrrent
2. Gate Trigger Voltage
BOr----,---,--,---r--,--,---,--,
f----f-----t--+--ALL UNITS FIRE
w
!;<
" -40
I
-~ -GO f--------t---t--+-+-f--t---t---'/
~O~--L--J--L--L-_L--L-~-~
-65
-25
25
50
75
100
125
-25
150
TJ - JUNCTION TEMPERATURE ("C)
UNITRODE CORPORATION' 5 FORBES ROAD
LEXI NGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
TJ
523
-
0
25
50
75
100
125
150
JUNCTION TEMPERATURE (OC)
PRINTED IN U.S.A.
2N 1881-2N 1885
SCRs
1 Amp, Planar
FEATURES
• One Cycle Surge Current: 15A
• Voltage Rati ngs: to 200V
• Low "On-Voltage": 2V Max. at lA
• Operation: to lSO'C Junction
Temperature
• All Leads Isolated for Design
Flexibility
DESCRIPTION
These types are useful in AC and DC static switching, proportioning control, relay
and thyratron replacement, DC to AC converters, servo motor driving, protective
circuits, and related applications.
This series is available in a TO-9 package, with all leads isolated from the case,
providing a maximum thermal resistance of 2O'C/Watt between junction and case.
ABSOLUTE MAXIMUM RATINGS
2Nl881
2N1882
2N1884
2Nl883
2N1885
.... 200V
Repetitive Peak Off-State Voltage, VORM .................. 30V
lSOV ..... .
... 60V.
......... lOOV... .
..... 200V
Repetitive Peak Reverse Voltage, VRRM
. 3OV.
.... 150V..
............. 60V.
.... lOOV.. .
D.C. On-State Current, IT
lOO'C Ambient ........................................................................................2SOmA.
lOO'C Case
.. .l.OA ..
Repetitive Peak On-State Current, ITRM .
........ up to 30A .. .
Peak One Cycle Surge (Non-Rep.) On-State Current, ITSM
.... . ..... ..................
....... 1SA..... .
Peak Gate Current, IGM
..................................................... 2S0mA.
Average Gate Current IGIAV) .....
. ...... 2SmA
............................. .
Reverse Gate Voltage, VGR ...
.... ...... .... .. ...
.. .. .......... ... .............. .. ....... 3V...
... ............ .
Thermal Resistance, Junction to Case, R8J _ C
.... .....................
. ...... 2O'C/W ........................... .
Operating and Storage Temperature Range ................... ... ............. ..
.......... -6S'C to +150'C..
.................................... .
MECHANICAL SPECIFICATIONS
2N1881-2N1885
1 :~~~1F!'5 MIN·l
.370
TO·9
CATHODE
030
.290~ll
1 :010
---
---
--'
- -.335.
.275
----
GATE
------~
.017
~:~~~
-1..00-
Dimensions in inches.
524
lli:O
_UNITRODE
2N1881·2N1885
ELECTRICAL SPECIFICATIONS (at 25°C unless notedlt
Test
Subgroup 1 (Visual and Mechanical)
Subgroup 2 (25°C Tests)
Off·State Current
Reverse Current
Reverse Gate Current
Gate Trigger Current
Gate Trigger Voltage
On·State Voltage
Holding Current
Anode Trigger Current
Subgroup 3 (25°C Tests)
Turn·on Time
Gate Trigger - on Pulse Width
Turn-off Time
Circuit Commutated Turn·off Time
Subgroup 3 (l25°C Tests)
High Temp. Off·State Current
High Temp. Reverse Current
Symbol
IDRM
IRRM
IGR
IGT
VGT
VT
IH
IAT
too
tpg (on)
Min.
Typical
Max.
Units
0.5
0.5
0.5
0.2
1
1.5
2
0.5
10
"A
I'A
"A
mA
V
V
mA
mA
-
-
0.40
-
-
toff
-
tq
-
IDRM
IRRM
-
-
10
10
2
2
2
0.2
1
1
10
-
15
15
200
200
Test Conditions
RGK == 1K, VDRM == Rating
RGK == 1K, VRRM == Rating
VGRM == 2V
RGS == 10K, VD == 5V
RGS == lOOn, VD == 5V
IT == 1A (pulse test)
IG == -lS0I'A, VD == SV
RGS == 10K, VD == 5V
"S
"S
IG == 20mA, IT ==
IG == 20mA, IT ==
IT == lA, IR == lA,
IT == lA, IR == lA,
"A
"A
RGK
RGK
"s
"s
O.SA, VD == 30V
O.SA, VD== 30V
RGK == IK
RGK == IK
== 1K, VDRM == Rating
== 1K, VRRM == Rating
t All values in this table are JEDEC registered.
Note: Voltage ratings apply over the operating temperature range, provided the gate is connected to the cathode through an appropriate resistor, or adequate gate bias is used.
UNITRDDE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
525
PRINTED IN U.S.A.
SCRs
2N2322-2N2329
2N2323A-2N2328A
1.6 Amp, Planar
FEATURES
•
•
•
•
•
•
DESCRIPTION
Available as JAN & JANTX Types
1.6A D.C. Current
Peak Currents: to 30A
Voltage Ratings: to 400V
20l'A Max. Trigger Current ("A" types)
O.6V Max. Trigger Voltage ("A" types)
These are premium thyristor switches intended for use in high performance
industrial, military and space applications requiring a high degree of reliability
assurance. This series is useful in a wide variety of applications including timing
and programming circuits, protective and warning circuits, driving relays,
driving indicator lamps, encoding and decoding circuits, replacing relays,
thyratrons, and magamps, servo motor control, pulse generation, plus many others.
The high surge current rating (15A -1 cycle) makes this series particularly
useful for squib firing.
The following JAN and JANTX types are specified under Mil-S-19500/276A and are
included in Mil-STD-701 as recommended types for military usage:
ABSOLUTE MAXIMUM RATINGS
2N2323
JAN2N2323
JANTX2N2323
2N2324
JAN2N2324
JANTX2N2324
2N2326
JAN2N2326
JANTX2N2326
2N2323A
2N2324A
2N2326A
JAN2N2323A
JAN2N2324A
2N2325
JAN2N2326A
2N2322 JANTX2N2323A JANTX2N2324A 2N2325A JANTX2N2326A
2N2328
JAN2N2328
JANTX2N2328
2N2328A
2N2329
2N2327
JAN2N2328A
JAN2N2329
2N2327A JANTX2N2328A JANTX2N2329
Repetitive Peak Off-State Voltage, VDRM 2SV ............. SOV...
........ 100V ............ lS0V ........... 200V ............ 250V ........... 300V
........ 400V
Repetitive Peak Reverse
Voltage, VRRM
........ 25V.... ....... 50V ................ 100V ...... 150V ..
. 200V ............. 250V ......... .300V ............... 400V
Non-Repetitive Peak Reverse
Voltage, VRSM « Sms)
................. 40V... ....... 75V ............. 150V ............ 225V ......... 300V .. ....... 350V ......... 400V ................ 500V
D.C. On-State Current, IT
80'C Ambient .
....... 300mA .. .
............. 1.6A .... .
85'C Case
One Cycle Surge (Non-Rep.) On-State Current, I TSM .
... 15A .. .
Repetitive Peak On-State Current, ITM .
... 30A ... .
Gate Power Dissipation, PGM
.. O.lW ..
................. O.OlW ... .
Gate Power Dissipation, PGM[AVI .
. ..... 100mA .. .
Peak Gate Current, IGM .
Peak Gate Voltage, Forward and Reverse
................ 6V ...
Reverse Gate Current, IGR .
. 3mA ..
Storage Temperature Range
-65'C to +150'C ..
Operating Temperature Range
...... -65'C to +125'C .
MECHANICAL SPECIFICATIONS
2N2322-2N2329 2N2323A-2N2328A
1B'
TO-5
TO-39
I
;;:rrag1:::
T __~= : :
.260
.240
[
. 5 M'N
I
11- --- - -
.335J
305
Dimensions in inches.
.017
-~"66~
Non JAN types available in TO-39 package
TO-39 has .5" lead length
526
lliJJ
_UNITRDDE
2N2322-2N2329
2N2323A-2N232BA
ELECTRICAL SPECIFICATIONS
Symbol
Test
Visual and Mechanical
25'C
Off-State Current
Reverse Current
Gate Trigger Current
"A" Types
non-"A" Types
Gate Trigger Voltage
"A" Types
non_"A" Types
On-State Voltage
Holding Current
Reverse Gate Current
Delay Time
Rise Time
Circuit Commutated Turn-Off Time
l25'C
Off-State Current
Reverse Current
Gate Trigger Voltage
Holding Current
"A" Types
non-"A" Types
Off-State Voltage - Critical Rate of Rise
"A" Types
non-"A" Types
-65'C
Off-State Current
Reverse Current
Gate Trigger Current
"An Types
non-"A" Types
Gate Trigger Voltage
"A" Types
non_"A" Types
Holding Current
Min.
Typical
Max.
Test Conditions
Units
MIL-STD-750, Method 2071
-
0.1
0_1
10
10
p.A
p.A
VDRM
VRRM
2
50
20
200
p.A
p.A
VD == 6V, RL
VD == 6V, RL
0_35
0_35
0.52
0.55
2_0
0_3
1
0_6
0_4
20
0_60
V
V
V
rnA
p.A
p.S
p.S
p.S
Vo == 6V, RGK == 2K, RL == lOOn
Vo == 6V, RGK == lK, RL == lOOn
ITM == 4A (pulse test)
Vo == 6V, RGK == lK (2K for "A" Types)
VGR == 6V
IG == lOrnA, IT == lA, Vo == 30V
IG == lOrnA, IT == lA, Vo == 30V
IT == lA, IR == lA, RGK == lK
VDRM == Rating, RGK
VRRM == Rating, RGK
Vo == Rated VD, RGK
IORM
IRRM
IGT
VGT
-
VTM
IH
IGR
td
tr
tq
O_BO
2_2
2_0
200'
-
== Rating, RGK == lK (2K for "A" Types)
== Rating, RGK == lK (2K for "A" Types)
== lOon
== lOon
100
100
0_1
1
1
0_3
-
p.A
p.A
V
O.1t
0_15t
-
-
rnA
rnA
Vo
Vo
VII's
VII's
Vo == Rating, RGK
VD== Rating, RGK
IORM
IRRM
VGT
IH
dvldt
0.7'
1.8'
IDRM
IRRM
IGT
VGT
IH
== lK (2K for "A" Types)
== lK (2K for "A" Types)
== lK (2K for "A" Types)
== 6V, RGK == 2K
== 6V, RGK == lK
== 2K
== lK
-
_05
_05
5_0'
5_0'
p.A
p.A
VORM
VRRM
-
50
100
75
350
I'A
p.A
Vo == 6V, RL
VD == 6V, RL
0_7
O_B'
-
0.75
0_9t
1.0
3_0t
V
V
V
rnA
V0 == 6V, RGK == 2K, RL == 1000
VD== 6V, RGK == 2K, RL == lOOn
VD== 6V, RGK == lK, RL == lOOn
VD == 6V, RGK == 1K (2K for "A" Types)
-
-
-
== Rating, RGK == lK (2K for "An Types)
== Rating, RGK == lK (2K for "A" Types)
== lOOn
== lOOn
• JAN and JANTX Types only_
t Industrial Types only_
JAN and JANTX Acceptance Tests
100% Screening TX-Types
Group B Tests
Group C Tests
High Temperature Storage
Temperature Cycling
Constant Acceleration
Fi ne & Gross Hermetic Sea I
Electrical Test
Burn-in
Electrica I Test
Subgroup 1- Reverse Gate Current
Surge Current
Non-Repetitive Reverse Voltage
Subgroup 1- Physical Dimensions
Subgroup 2- Low Temp_
Low Temp_
Low Temp_
Low Temp_
Reverse Blocking Current
Forward Blocking Current
Gate Trigger Voltage
Gate Trigger Current
Subgroup 3- Temperature Cycling
Thermal Shock
Moisture Resistance
Solderability
Subgroup 2 - Shock
Constant Acceleration
Vibration, Variable Frequency
Subgroup 3 - Barometric Pressure, Reduced
Subgroup 4 - Salt Atmosphere
Subgroup 5 - Terminal Strength
Subgroup 6 - Intermittent Operating Life Test
Subgroup 4 - Blocking Life Test
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL_ (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
527
PRINTED IN U.S.A.
2N2322-2N2329
Gate Trigger Current
~400
...~
~
o
...~
~~--+---+---+---+---+---+-~
200
~~~~~~~'7Z7im7im:;j;,"73
!:i
0
>
8
Cl
Cl
...
...a:
0:
.......
j
0:
200
.8
~
a:
!i:
...........
.6
.4
<
Cl
r----jf---+--+-+-f--I------1
/
_li
>~. .2
-400
~----'---'----'--'----'----'----I
-65
TJ
-25
0
25
50
75
100
- JUNCTION TEMPERATURE C'C)
125
o 25 50 75 100
-25
T J - JUNCTION TEMPERATURE C'C)
PD -
POWER DISSIPATION CW)
20
1.5
R""
10
= 2K -
1-----+--+ RGI( = lK -
g
....
I
...a:z
~
...a:
~
a:
...0
o
~
Cl
Z
z
...'"
§
J:
D:C •
1.6
:::>
a:
:::>
o
CO~duction ~
1.2
An~e = 180'C
0
.5
Cl
12O;C
.8
...
22
25
50
/2:
J~
~~
~
75
100
16
\.
14
'\
12
'\..
10
6
"'-..
~
..............
4
o
125
528
Tc = 85'C
T,=~
2
T, .,,- MAXIMUM AMBIENT TEMPERATURE C'C)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064
18
.1
1
10
20
CYCLES AT 60Hz
50
100
PRINTED IN U.S.A.
JAN & JANTX 2N3027·2N3032
SCRs
0.5 Amp, Planar
FEATURES
DESCRIPTION
• JAN and JANTX Types Avai lable
• Fully Characterized for "Worst Case" Design
• Passivated Planar Construction for Maximum
Reliabilityand Parameter Uniformity
• low On-State Voltage and Fast Switching
at High Current levels
• Typical Turn-On Time: 0.121's
• Typical Recovery Time: 0.71's
• Pulse Currents: to 30A
The 2N3027 series of planar SCRs (controlled switches) are intended for use in
military and space applications requiring a high degree of reliability. They offer a
unique combination of extremely fast switching, precise triggering, high pulse
power, small size, intrinsic parameter stability, and high radiation tolerance.
The JAN and JANTX types are specified under Mll-S-19S00/419, and are included
in Mll-STD-70l as recommended types for military usage.
ABSOLUTE MAXIMUM RATINGS
JAN & JANTX 2N3027
JAN & JANTX 2N3030
Repetitive Peak Off-State Voltage, VORM
Repetitive Peak Reverse Voltage, VRRM ..
D.C. On-State Current, IT
100'C Case
75'C Ambient
Repetitive Peak On-State Current, ITRM .
Surge (Non-Rep.) On-State Current, I TSM
SOms
Sms
Peak Gate Current, IGM .
Average Gate Current, IGIAVI .
Reverse Gate Voltage
Reverse Gate Current
Storage Temperature Range .
Operating Temperature Range
. 30V .. .
.. .................... 30V .. .
JAN & JANTX 2N3028
JAN & JANTX 2N3031
................... 60V.......
........ 60V.........
JAN & JANTX 2N3029
JAN & JANTX 2N3032
... 100V
....... 100V
............ SOOmA .. ..
............... 2S0mA .... .
.................. 30A ..
............SA .. .
............ SA ... .
. ............. 2SOmA .... .
...... 2SmA ... .
.... SV .. .
............3mA ... ..
.......................... -6S'C to +200'C .. .
.... -6S'C to +lS0'C.
Nate: Blocking voltage ratings apply over the operating temperature range, provided the gate is connected to the cathode through an
appropriate resistor, or adequate gate bias is used. (See section on bias stabilization.)
MECHANICAL SPECIFICATIONS
JAN & JANTX 2N3027-2N3032
T018
r::::t·SM1Nj
r-a=~
.195
.178 DIA.
---'--
c::::::::::;:)
11
.230
.209 DIA.
."X.
---1I'-MAX.
Ol7 +.002 0IA .
-.001
Dimensions in inches.
[ill]
529
_UNITRDDE
JAN & JANTX 2N3027-2N3032
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
2N3027 - 2N3028 - 2N3029
Parameter
Symbol
SUBGROUP 1
Visual and Mechanical
SUBGROUP 2 (2S'C Tests)
Off-State Current
Reverse Current
Reverse Gate Voltage
Gate Trigger Current
Gate Trigger Voltage
On-State Voltage
Holding Current
SUBGROUP 3 (2S'C Tests)
Off-State Voltage -Critical Rate of Rise
Gate Trigger-on Pulse Width
Delay Time
Rise Time
Circuit Commutated Turn-off Time
SUBGROUP 4 (1S0'C Tests)
High Temp. Off-State Current
High Temp. Reverse Current
High Temp. Gate Trigger Voltage
High Temp. Holding Current
SUBGROUP S ( 6S'C Tests)
Low Temp. Gate Trigger Voltage
Low Temp. Gate Trigger Current
Low Temp. Holding Current
Min.
Typical
Max.
-
-
-
-
-
IORM
-
.002
.002
8
8
.55
1.2
0.7
0.1
0.1
pA
pA
V
"A
V
V
mA
IRRM
VG,
IGT
VGT
VT
IH
5
-5
.40
0.8
0.3
dv,ldt
30
tpg (onl
-
td
t,
tq
-
IDRM
-
60
.07
.08
.04
0.7
-
200
.80
loS
5.0
0.2
-
Test Conditions
Units
vl"s
"s
ps
2.0
"s
"s
20
50
0.6
1.0
"A
pA
V
mA
IRRM
-
VGT
IH
.10
.OS
2
20
.15
.20
VGT
IGT
IH
0.6
0
O.S
O.7S
150
3.S
1.1
1.2
10
V
mA
mA
MIL-STD-750
Method 2071
=
=
=
=
=
=
=
=
=
=
=
=
RGK = lK, Vo = 30V
IG = IOmA, IT = lA, YOM = 30V
IG = 10mA, IT = lA, Vo = 30V
IG = 10mA, IT = lA, Vo = 30V
IT = lA, i, = lA, RGK = lK
RGK = lK, VO'M = Rating
= lK, V
Rating
RGS = lOOn, Vo = SV
RGK = IK, Vo = SV
RGS = lOOn, Vo = SV
RGS = 10K, Vo = SV
RGK = lK, Vo = SV
RGK
lK, VORM
Rating
RGK lK, VRRM
Rating
IGR
O.1mA
RGS
10K, Vo
SV
RGS
lOOn, Vo
SV
iT
lA (pulse test)
RGK
lK, Vo
SV
RGK
RRM :=
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
2N3030 - 2N3031- 2N3032
Parameter
SUBGROUP 1
Visual and Mechanical
SUBGROUP 2 (2S'C Tests)
Off-State Current
Reverse Current
Reverse Gate Voltage
Gate Trigger Current
Gate Trigger Voltage
On-State Voltage
Holding Current
SUBGROUP 3 (2S'C Tests)
Off·State Voltage - Critical Rate of Rise
Gate Trigger-on Pulse Width
Delay Time
Rise Time
Circuit Commutated Turn·off Time
SUBGROUP 4 (150'C Tests)
High Temp. Off·State Current
High Temp. Reverse Current
High Temp. Gate Trigger Voltage
High Temp. Holding Current
SUBGROUP S (-6S'C Tests)
Low Temp. Gate Trigger Voltage
Low Temp. Gate Trigger Current
Low Temp. Holding Current
Symbol
Min.
Typical
Max.
Units
-
-
-
-
-
MIL-STD-750
Method 2071
-
.002
.002
8
0.1
0.1
"A
"A
V
"A
V
V
mA
RGK
IK, VORM
Rating
RGK
IK, VRRM
Rating
IGR
O.lmA
RGS
10K, Vo
SV
RGS
lOOn, Vo
SV
iT
lA (pulse test)
RGK
IK, Vo
SV
IORM
'RRM
VGR
IGT
VGT
VT
IH
-
5
-5
0.44
0.8
0.3
-
1.2
1.0
20
0.6
loS
4.0
30
60
-
-
.OS
0.1
.OS
0.7
0.1
-
2.0
vl"s
"s
ps
"s
"s
VGT
IH
.10
.05
2
20
.IS
.30
20
50
0.4
2.0
"A
"A
V
mA
VGT
IGT
IH
0.44
0
O.S
0.8
0.4
5.0
0.9S
0.5
8
V
mA
mA
dv,ldt
tpg (on)
td
t,
tq
-
IORM
-
IRRM
-
Test Conditions
=
=
=
=
=
=
=
=
=
=
=
=
RGK = lK, Vo = 30V
IG = 10mA, IT = lA, Vo = 30V
IG = 10mA, IT = lA, Vo = 30V
IG = 10mA, IT = lA, Vo = 30V
IT = lA, i, = lA, RGK = IK
RGK = IK, VORM = Rating
RGK = lK, VRRM = Rating
RGS = lOOn, Vo = SV
RGK = IK, Vo = SV
RGS = lOOn, Vo = SV
RGS = 10K, Vo = 5V
RGK = lK, Vo = SV
High Raliabilily Processing
The 2N3027·2N3032 series provides a complete range of high reliability processing
from the standard devices that undergo extensive electrical testing, through JAN
and JANTX levels. 100% processing, Group B, and Group C tests for JAN and JANTX
devices is shown below. For further details, see MIL·S·19S0014l9(EL).
100% Screening TX·Types
High Temperature Storage
Temperature CYCling
Constant Acceleration
Fine & Gross Hermetic Seal
Electrical Test
Burn·jn
Electrical Test
Group B Tests
Subgroup 1- Physical Dimensions
Subgroup 2 - Solderability
Temperature Cycling
Thermal Shock
Constant Acceleration
Moisture Resistance
Subgroup 3 Subgroup 4 Subgroup SSubgroup 6 -
UNITROOE CORPORATION' 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
Surge Current
Blocking Life Test
Storage Life Test
Operating Life Test
530
Group C Tests
Subgroup 1- Shock
Vibration, Variable Frequency
Subgroup 2 - Salt Atmosphere
Subgroup 3 - Terminal Strength
Subgroup 4 - High Temp. Anode Voltage - Critical
rate or rise
Subgroup S- Storage Life Test
Subgroup 6 - Operating Life Test
PRINTED IN U.S.A.
JAN & JANTX 2N3027-2N3032
TYPICAL CHARACTERISTICS
2N3027 - 2N3028 - 2N3029
Gate Trigger Current
1400 ,..---r---,---,--.,---,--,---,--,
1.4
<1200r---r--t-~-+-~--t-~~
~ 1.2
.3
~100C~-~r--+-~-+-~~-+-~~
....
CI
u
0:
w
0:
!!!
CI
0:
.6
CI
,4
.......
a
.2
o
TJ
3
-
25
so 75 100 125
JUNCTION TEMPERATURE (oC)
200
~
">-
"
...J
:
lK
,
~
z:
\
3K
\
10K
"-
RGK - 30K
I
I
I
1\
20
U
10
\
;::
><'Oo,f
:E
:::>
:E
~
:E
I
.5 I-DASH LINES SHOW .0011'fd CAPACITORADDlED BETfEEN FATE fND CATHOD~
.2
10
20
1
2
so 100 200
Max. Holding Current (Resistor Bias)
so
20
z
....
0:
10
...
CI
z
i5
0
u
CI
z
~~~K
...J
:z:
X
{K
SO
,.-.-
0:
:::>
u
3000
.2
<
g
I'
I
BIASED AS SHOWN IN FIG. 1
.5
Vo-APPLIED OFF·STATE VOLTAGE (V)
5
iJ = 12S'C
"
\~~II0K- ~~..:001
0:
u
........
'\
",\
-
'-
ISO
Min. Critical dv/dt (125°C - R Bias)
200
I
"
20
L-~_~_~~L--J_~_~
-25
25
so 75 100 125
TJ - JUNCTION TEMPERATURE (oC)
:\ \j(
,\ ........... 3000 l\~
100
:E
4
__
SOO
,\
'iii
NO UNITS FIRE
~
-65
150
Min. Critical dv/dt (25°C - R Bias)
500
i
Gate Trigger Voltage
2
:z:
Z
-~
.2
iii
I
:li
.1
Z
I
-~
x
iii
-25
0
25
so 75 100 125
TJ - JUNCTION TEMPERATURE (OC)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6S09 • TELEX 95-1064
t:::---
0
.5
.05
-65
2
i5
...J
t=:::tr::-..:::: t:::::
r--r--- r-r- """':'!'<-""
II/go ::::::: t'-.....
r--r-.. ~p.
R
.S
.2
.1
150
531
~ ........ ~ ........ ~
""\"" 10
.05
-65
111Q , -
~'
"
25
50
75 100 125
-25
TJ - JUNCTION TEMPERATURE (oC)
150
PRINTED IN U.S.A.
JAN & JANTX 2N3027·2N3032
TYPICAL CHARACTERISTICS
2N3030 - 2N3031 - 2N3032
Gate Trigger Current
Gate Trigger Voltage
2
600
1.4
;(
"-
;:: 500
Z
"'~
400
::l
U
a: 300
"''"~
200
"'~
100
...a:
'"I
3
0
~
A
~
~
...'"
..I
0
>
a:
.8
UJ
'"
~
....a:
"'«...
~ ~ ~II1AX.
'"I
..........
IGT ~IN.
.6
.4
G
> .2
-100
NO UNITS FIRE
I
I
I
-25
25
50
75 100 125
T J - JUNCTION TEMPERATURE ('C)
150
-25
0
25
50
75
100 125
TJ:- JUNCTION TEMPERATURE ('C)
Min. Critical dv/dt (25'C - R Bias)
500
",--~on
1\
100
1"'-
11<
>-
!'...
3K_
'"
..I
20
T J = 25'C 1\ .
~ 10
E
a:
u
::;;
'r--.,
::l
::;;
z
:E
BIASEO AS
I
t-\~
.....
-
I
20
;::
10
..I
.\
\
u
::;;
~
~
:E
I
.2
5
20
50
100
1
200
VD -
APPLIED DFF·STATE VOLTAGE (V)
6
Max. Holding Current (Resistor Bias)
Z
"'a:a:
50
100
10
20
APPLIED OFF·STATE VOLTAGE (V)
200
Min. Holding Current (Resistor Bias)
;(
.s...
20
Z
10
UJ
I=-
--,-. -
'0"
~ ..:::: ::::: ::::::::~O!!
~ ::::
...............
:I:
...........
::l
U
Z
....0
r--......
><
«
.5
I
.2
'0Z"
t--.~
....
:I:
-~
R
Z
:E
31{
I
-'
Z
:E
-25
TJ -
25
50
75
100 125
JUNCTION TEMPERATURE ('C)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064
~
0
.05
-65
10
a:
a:
R
-----
20
::l
U
G'~
::;;
-'
101{'
= 10K~_.:!;. .00] r----
50
50
;(
.s...
I
I
r----
DASH LINES SHOW .001 ~fd CAPACITOR
ADDED BETWEEN GATE AND CATHODE
ADpED BETWEEN GATE AND CATHODE
VD -
~K
·001
BIASED AS SHOWN IN FIG. 1
.5
.2
10
I 1',11{-!-
RGK
= 125'C
,
I'
iK
z
.5 !-DASH LINES SHOW .001 "fd CAPACITOR1
!I
300U
!'...
~
::l
SHOW~IN FIG. 1
I
'"«
TJ
P
II "r:-"
\..
50
<;:
......
RG, - 30K
100
u
\~
10K
'"
~
;:;
>-
-\-
f'....
5
1\
200
I \
.::.. 50
;:;
500
118,...
150
Min, Critical dv/dt (125'C- R Bias)
4
:\~
\\
200
~
ALL UNITS FIRE
«
r----
ALL UNITS FIRE-
%
-200
-65
1.2
UJ
.5
.2
::-::::t=:::::: ::::=::::
~
.1
.05
-65
150
532
r-- r-.....
-~
.............
--1/
-:---GK '" 1000 -
~~b :---...
h;--::-... .Ji?"::::...... -....~
' - 101{...............
I
""'-
"'"
__ ~
-25
0
25
50
75
100 125
T J - JUNCTION TEMPERATURE ('C)
150
PRINTED .IN. U.S.A.
JAN & JANTX 2N3027-2N3032
CURRENT RATINGS
C2
50
PA -
5:
%~J.,"
>-
10
a:
a:
OJ
u
>«
>if)
Z
o
I
>«
>en
Z
0
7/
OJ
I
.5
.2
OJ
>
;:
;:
OJ
::,
a.
'" '" 'f
// if
a:
M
OJ
~
.1
1--' 1--'
.05
.05
.1
-
'a."
«
OJ
TypicalCilaracteristics
u
I
...."
.2
.5
10
Vj -ON-STATE VOLTAGE (V)
.5
~\
-r--. b,
~
'"1'--\
~
~
r-'
.1
""\
~ t"---..
~~ '""'"' ~
,2
3. 05
so
20
r--
,001
-:00;-. r---.... ~
~ r--
OJ
J
~
2
OJ
If!
zOJ
J
50
a: 20
a:
OJ
u 10
."
....
POWER DISSIPATION (W)
A
~
z
oV
20
g
Peak Current vs. Case Temperature
Forward on Current vs. Voltage
Cl
90
120
110
100
130
..'i'
~
140
150
Te ... -MAX, CASE TEMPERATURE (OC)
C3 Peak Current vs. Ambient Temperature
TO·18 Ratings (see note)
PA -
$
::!a:
a
5:
50 , -__-".4____,-.,3__,--,.2__. -__.,1,-__-.
z>-
z>-
f----+-=4:=:::::t--------=r-~
a:
a: 20
10
r---+---~=~+-----~~~.~~
<)
OJ
~
>en
o
'a.~"
0.:
a:
~
.5 >----__+----_+-----+--""_t----c--1'~--\'I
~
.2 ~--__+----_+----4-.~~
"'
Z
,5
OJ
"''"a:
,2
:::l
a:
(/)
I,
I
,1
.: .05 ' -__-'-____....L____-'---_ _' - ' -_ _- ' - - ' - - ' - '
25
o
50
100
75
125
150
TA~" - MAX. AMBIENT TEMPERATURE (OC)
C5
.5
>zOJ
a:
a:
OJ
u
DC
'"
.3
>«
>if)
Z
.2
I
~
.1
J
100
Te .,' -
"-
~
f
~ ~
J)
10-'
10-'
10-'
1
10
100°C
10'
10'
PA -
POWER DISSIPATION (W)
.3
A
.1
.2
1,;
l""
~'\
~
""~"~
5:
~
.3
~~6=9~--~~~--r----t-----r---~
a:
:::l
<)
"'~
~
o
<3
~
I
~
"
.1
r-----+-----t-----r----t-~~r---~
25
110
130
120
140
150
MAX. CASE TEMPERATURE (OC)
UNITRODE CORPORATION, 5 FORBES ROAD
LEXINGTON, MA 02173 ' TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064
.2
Z
~
o
90
'
~
DASH LINE BLOCKING VOLTAGE MAY
NOT BE SUSTAINED FOR 0,1
SECONDS AFTER SURGE
~
2
""
0
<3
>
«
A
3';~"'"
6,;~
OJ
J
L
I
,
C6 Average Current vs. Ambient Temperature
TO·1S Ratings (see note)
~ "",'\
.4
1
POWER DISSIPATION (W)
.5
"-
SURGE DURATION (Sec)
Average Current vs. Case Temperature
PA -
""RAT~
1
10-'
=0
"-
SOLID LINE
BLOCKING VOLTAGE ~
MAY BE APPLIED AFTER
SUR E
0
~
IF BEFORE SURGE
"'"
10
Z
0
$
~ " "-
....OJ
«
Z
;:
;:
so
OJ
20
OJ
Surge Current vs. Time
C4
POWER DISSIPATION (W)
TA _,. -
533
50
75
100
125
ISO
MAX. AMBIENT TEMPERATURE (OC)
PRINTED IN U.S.A.
JAN & JANTX 2N3027-2N3032
SWITCHING SPEEDS
Sl Maximum Delay Time td' Rise Time t r•
and Gate Trigger Pulse Width tpg (on)
10
I\.
"
Ui'
.5
TJ
IF
"- ~
.3
OJ
:;;
;:::
S2 Maximum Delay Time td' Rise Time t r •
and Gate Trigger Pulse Width tpg (on)
10
L
= lA
I
'=~
I~r
iI1~
.1
:;:
;:::
I.
MAX. I,
.2
1:::::::--1-
MAX. Id (lG - lOrnA)
1
.05
MAX. I,
.02
.02
I
.05 .1.2
.5
5 10
IG - PULSE GATE CURRENT (rnA)
10
.01
-65
20
m 100
""-
1
on
MAX. Ip, (lG _ O.SmA)
.5
w
:;:
I
.2
0.5mA,-==
I
-
:::>
=
~
w
r------
MAX. I" (IG
.05
-
lOrnA)
MAX. t
I
'
:::>
-::::: ~ r-~ (..-- V
R G\( - 10K
R
~
'\1,--
GK
0
< 10l<. i. -
11\
-
:::>
~
.5
(3
1
~~
.5
I
2
5
10
I; - ON-STATE CURRENT (A)
20
S5
.2
.1
-65
.01
.2
2
o
()
.02
.1
~ L
........- V ~ ' /
. _ 0
ll<.
:;;
:;:
r--
/
20
S
>---MAX. Id (I G = lOrnA)
.1
J
50 - I F I I A
10
150
Maximum Circuit Commutated
Turn-off Time tq
.3
o
Z
0::
_I
25
50
75
100 125
-25
TJ - JUNCTION TEMPERATURE ('C)
S4
T~ = 25'~MAX. I, (IG
0.5r~
f--
F'"""-
. p, (IG -lOrnA)
53 Maximum Delay Time td' Rise Time t r •
and Gate Trigger Pulse Width tpg (on)
;:::
'G
.05
.01 .02
0.5~A) -
rI
(
MAX I
.1
,.........;
.01
3
MAX. Id (lG MAX I
,5
OJ
~
'1:!,,~
.2
'~=Il-
2J.C-
-25
0
25
50
75
100 125
TJ - JUNCTION TEMPERATURE ('C)
ISO
Maximum Circuit Commutated
Turn-off Time tq
100
I . Jo
50
~
J
f.---
IJ-
20
r-
10
--
on
.3
OJ
:;:
;:::
~",25'C,I'-
--
!---
Rr=li-
.1
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
~-\f
L
.1
~
~",o~
-
.5
.2
l!.o·C,~f
.2
.5
10
IT - ON-STATE CURRENT (A) .
534
20
PRINTED IN U.S.A.
SCRs
2N5060·2N5064
.8 Amp RMS, Plastic
FEATURES
DESCRIPTION
•
•
•
•
•
•
This plastic series features very fast switching performance, low forward voltage
drop and a high degree of reliability and parameter stability. All units are fully planar
passivated and are packaged in a rugged TO-92 case, constructed from a special
epoxy compound that features excellent moisture resistance providing stable performance under high humidity conditions and good thermal transfer characteristics.
Voltage Ratings: to 200V
Forward Current: O.SA RMS
Surge Current: GA, Sms
Gate Sensitivity: 200!,a max.
Planar Passivated Process
TO-92 Plastic Package
TYPICAL APPLICATIONS
Lamp Driving
Relay Driving
Relay Replacement
Alarm Systems
Counters
Process Controls
Remote Controls
Pressure Controls
High Current SCR Driving
Display Systems
Timers
Touch Switches
Temperature Controls
and many other current sensing and control applications.
ABSOLUTE MAXIMUM RATINGS
2N5060
Repetitive Peak Off-State Voltage, VORM .
. ..... 30V.... .
Repetitive Peak Reverse Voltage, VRRM ...................... 3OV .. .
On-State Current, ITIRMS) ....
Peak One Cycle Surge (Non-Rep.) On-State Current, ITSM .
Peak Gate Current, IGM .
Peak Gate Power, PGM .
Average Gate Power PGIAV) .
Reverse Gate Voltage, VGR .
Storage Temperature Range ...
Operating Temperature Range .
2N5061
.... GOV ..
2N5063
2N5062
.... ...... GOV ...
..... IOOV .. .
. ... IOOV ... .
.. ....... 150V ..
.. 150V ....
2N5064
.... 200V
.. ........ 200V
............. O.SA ... .
. ........6A .. .
............ l.OA .. .
...... lW ... .
...O.OIW ..
........ 6V .. .
............ -G5'C to +150'C
........... -G5'C to +125'C .. .
MECHANICAL SPECIFICATIONS
2NS060-2NS064
T092
.019
T~ ~J
!
,135
MIN.
_1-
c:::=:=:J .175
.205
Ao-G
:g::
o--~1'05
.095
=_l-v'
I II
Ir.17ol-·SOD
.210
I
MIN._
105
- - :080
I-m.125
Dimensions in inches.
535
lliD
_UNITRDDE
2N5060-2N5064
ELECTRICAL SPECIFICATIONS (at 25"C unless noted
Test
Min.
Symbol
Off-State Current
0.1
-
IORM
Reverse Current
IRRM
Gate Trigger Current
IGT
Gate Trigger Voltage
VGT
Peak On-State Voltage
VTM
Holding Current
IH
Critical Rate of RiseOff-State Voltage
Turn-on Time
Circuit Commutated Turn-off Time
dv/dt
ton
tq
Typical
0.1
0.6
-
0.1
Max.
Units
Test Conditions
1.0
50
1.0
50
200
350
0.8
1.2
p.A
p.A
p.A
p.A
p.A
p.A
V
V
V
V
mA
mA
VORM = Rating
RGK = 1K!l
VORM = Rating, T = 125"C
VRRM = Rating
RGK = 1K!l
VRRM = Rating, T = 125"C
Vo = 7V, RL = 100 ohms RGS = lOK!l
Vo = 7V, RL = 100 ohms, T = -65"C
Vo = 7V, RL = 100 ohms RGS = 10K!l·
Vo = 7V, RL = 100 ohms, T = -65"C
Vo
Rating, RL = 100 ohms, T = 125"C
ITM = 1 Amp Pulse
Vo = 7V, T 25"C
Vo
7V, T = -65"C
-
1.2
0.7
1.7
5.0
10.0
75
-
-
0.1
8
V/p.s
I'S
p.S
=
=
Vo = Rated
=
IG = lOmA, IT
I, = IR
1A
Note: Blockmg voltage ratings apply over the full operatmg temperature range, provided the gate
sistor, 1000 ohms or smaller, or other adequate bias is used.
=
IS
=
lA, Vo
= 30V
connected to the cathode through a re-
DESIGN CONSIDERATIONS
1. The 2N5060 Series SCRs are guaranteed to block their rated voltage over the
rated operating temperature when a resistance of 1000 ohms or less is connected
from gate to cathode as shown.
d
ANODE
GATE
RGK
=c
1K or less
CATHODE
2. In cases where the SCR may be subjected to fast rising anode voltages a
capacitor can be connected between anode or gate and cathode as shown, to
serve as protection against dv/dt firing.
ANOiJE
GATE
CAK
GATE
CGK
CATHODE
UNITRODE CORPORATION· S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX'(nO) ·326-6509 • TELEX 95-1064
d
ANODE
CATHODE
536
PRINTED IN U.S.A.
2N5060-2N5064
Gate Trigger Current VS. Junction Temp.
Gate Trigger Voltage vs. Junction Temp.
_ 1.4
~
"'~
1.2
I..J
0
>
"''"
~v"" :::::--1?%Cl
'"
~
.8
'"
"'
'""
"u0:
~
II-
DR.,
.6
~ t:::::::....
..::::::
..J
Rated V ORM
.4
~ ~,,~6V
1'-,
>l-
I
.2
;,
>
o
--25
0
Tj
-
25
50
75
100
JUNCTION TEMP. (OC)
125
150
-65
-25
T, -
Holding Current VS. Junction Temp.
1000
..s
20
I- 10
z
"'
0:
0:
--I--
- --
~1~P.
r--
:J
U
(!l
Z
~K=lKP.
0
..J
0
..
r--
r
..J
.5
u
0:
>l- .2
I
~
.05
-25
""
~
r---..
"r--..
1---
r-----
"'- ~
1
0
25
50
75
100
Tj -JUNCTION TEMP. (OC)
125
150
-65
=
1\
-25
0
Tj
-
l
i
RGK _lKP.
r-:::.r-.-
i'-.... RGK = 10Kn
Vi 100
.3
Rated VORM
I
"' 50
::;;
It
I'"
o
~
20
-
10
I-
o
"'
~
.5
.
...,:~ ~ -
'l/
\ ~
\i"\'...........
~r--
8
::;;
::;;
..........
'0 - PULSE GATE CURRENT (mA)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
150
:J
----.1.2
125
\",~"""
~
V
:J
"""-
I
l
25
50
75
100
JUNCTION TEMP. (OC)
;:
.05
!.GK = lOOn
Forward Blooki-ng Recovery. Time
vs. Junction Temp.
2. T, '= 25°C
.01 .02
r----..
Rated VORM
N
1. IT = .lA, Vo
.01
~" . . . r--
r\.
Gate Pulse For Turn·On
vs. Pulse Gate Current
'"
=
"-.
"\
-........... I--...
-65
150
,
Vo
'\
l -I---
~g
.1
,,"''\
........
125
dv/dt vs. Junction Temp.
50
:?
25
50
75
100
JUNCTION TEMP. (OC)
o
~
S
.5
0:
.2
I
.1
u
U
10 20
.$
537
-65
-25 0
25
50
75 100
T j - JUNCTION TEMP. (OC)
125
150
PRINTED IN U.S.A.
.t,
2N 5060-2N 5064
Current vs. on-Sf~te Voltage'
10
1
I
5
T J =1 25'C
5:
!z
'"
.5
'"~
.2
Iii
~
~~J~125,J
.5
l
'::>'""
u
CUrrent vs. Power Dissipation'
,/
'"~
1/
/
.1
-'" .05
I
.01
I
.2
.1
VT -
.05 1----1-'-'-~~~'-t-_+--+_-+___I
0:
"';;:
.02
I
I
.02
1--+---+---,>iI~7'f:""--+--ir--1
~
I
I
.1
z~
.01
.005
10
.5
TYPICAL ON-STATE VOLTAGE (V)
20
.01
.02
W-
MAXIMUM ON-STATE POWER DISSIPATION (W)
C~rrent ~s. Ambient Temp.
I-
.7
'"'"
'"
.6
'"
.5
Z
::>
u
I-
~
.2
.5
1
2
Current lis. Case Temp.
Unit mounted with leads
vertical in free air',
Case Temperature measured at
ce~"ter of flat side of device body.
5:I- 1.2
z
I---+---+--+~onduction
'"'"'"::>
u
'"
..., ...... angle
I
.2
'"'"
u
"'
I
(J
(J
......0
10
'"a:
"zi5
10
'"'"
....
i!V>
20
OJ
:>
OJ
;C
S
....
z
1.0
2
oJ
0
I
X
...
.1
:;
.5
1
1
-'
_0
...X
:;
.01
.2
----
----
25
50
TJ
....z
100
75
125
150
-65
TJ
50
20
20
10
10
~
....
-
"zi5
R...
~ 10011
oJ
0
I
.5
r--
I
.2
i
.1
101(
r--
t:-------....
r-----
0
-
I
,I
R"~lOI(
-25
TJ
-
0
50
75
100
125
150
!
I
...........
~
V>
Z
0
1
MAX.
/ II
w
..........
~
I /
u
.5
T J = 25'C
.:-
............
.2
'-..,.
.1
100
.05
125
150
.05
0.1
0.5
0.2
v, -
JUNCTION TEMPERATURE ('C)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
75
V/
:>
~ j"---....,
25
50
Mil. /
0:
0:
-
-f-r-- ---
.05
-65
-r--
25
JUNCTION TEMPERATURE ('C)
OJ
(J
i.
r-- I---R.. '"
Z
:>
-'
I--
On-State Current
VS. Voltage
50
OJ
i
II(
-25
JUNCTION TEMPERATURE ('C)
-
a:
a:
i.
-
f--
.1
Min. Holding Current
S
r--:.::r--
.05
.001
;C
---
R
--!!!: '" lOOQ
541
1.0
2.0
5.0
10
20
50
ON-STATE VOLTAGE (V)
PRINTED IN U.S.A.
2N5724·2N5728
Avg. Current
vs. Ambient Temperature
Avg. Current
vs. Case Temperature
PD 2.0
2.0
Po -
POWER DISSIPATION (W)
1.5
1.0
.5
1.
.8
r---oc ~
.7
5:
DC
1.6
a:
a:
:>
'-'
""
1¢
'"
I-
"'-
m
Z
3¢
.8
>
'"I
~
'~
ci
-
I-
1.2
UJ
I-
0
5:
"-
I-
..,z
f-6¢
r--..
.4
Tc
90
m.. -
:>
.5
a:
a:
r-
"'"
l"-.............
;:
m
39
~ ~'\ t--.
~ ~~
~ ,,~ ~
I""
0"'"
ci
110
120
6¢
.3
>
'"I
"i"..
--- --- ~ ~"'"'
100
.4
Z
0
-
130
~
140
~
~ I~
19
UJ
I-
-..;
80
.6
'-'
I--.
70
..,z
POWER DISSIPATION (W)
8
6
4
.2
.2
""~~
.1
~~
o
1SO
o
MAX. CASE TEMPERATURE (OC)
SO
100
75
125
MAX. AMBIENT TEMPERATURE (OC)
25
T,
m" -
ISO
Surge Current
5:
SO
I-
..,Z
~
:>
..,'-'
20
r--. ~
10
~
~
"'"
z
..,a:
o
a:
Z
o
..,~
'-'
a:
.5
'"
Tc =85°C-
...........
:>
m
'""-
~
I
1"'-
T~ =
75°'(:-
.2
.1
]. .05
10-'
10"
10-'
10-'
10"
10
10'
10'
SURGE DURATION (.)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6S09 • TELEX 95-1064
542
PRINTED IN U.S.A.
PUTs
2N6027 -2N6028
Planar, TO-92, Plastic
FEATURES
DESCRIPTION
•
•
•
•
•
•
The Unitrode Programmable Unijunction Transistor is today's preferred device for low
cost timing circuits, oscillators, sensing circuits and a wide range of other applications
where a variable voltage level threshold is desired_ Functionally equivalent to standard
unijunction transistors, the Unitrode PUT offers the distinct advantage of versatile programming. External resistors can be added to meet the designer's needs in programming the Eta, Raa, Ip, and Iv functions. For additional information see Unitrode
Application Note U-66.
TO-92 Plastic Package
Maximum Peak Current: lS0nA
Minimum Valley Current: l_SmA
Peak Forward Current: SA
Programmable Eta, Raa, Ip and Iv
Planar Passivated Construction for Maximum
Reliability and Parameter Uniformity
TYPICAL FEATURES
TYPICAL APPLICATIONS
Programmable Turn-on
Programmable Turn-off
Low Leakage Current
High Output Pulse
SCR Triggers
Timing Circuits
Oscillators
Sweep Circuits
Delay Circuits
Sampling Circuits
Relay Drivers
Smoke Detectors
ABSOLUTE MAXIMUM RATINGS
Anode-to-Cathode Voltage, VAK ..
. .... ±40V
Gate-to-Cathode Forward Voltage, VGK .
.. ............................... 40V
Gate-to-Anode Reverse Voltage, VGAR .
. .40V
Gate-to-Cathode Reverse Voltage, VGKR
....... -SV
Peak Recurrent Forward Current
201's, 1% Duty Cycle ...
..2A
1001'S, 1% Duty Cycle.
..1A
Peak Non-recurrent Forward Current, 10"s ..
. ...... ....... ... .. ........... . . . . . . ... SA
Power Dissipation
2S'C Ambient.
........................................ 37SmW
Derating Factor .
............ SmW('C
Storage Temperature ..
..................... -SS'C to +12S'C
Operating Temperature Range.
. ....... ......... -SS'C to +100'C
MECHANICAL SPECIFICATIONS
2N6027-2N6028
TO-92
.019
.016
1
.055
-r~==r J I =--EI·I05
...L
=J y '
.04'
c:::::::::J
.135
M1N.
.205
.175
:
I 1_ _I -[I
.210
500 MIN
r-.170~··
.
Dimensions
.095
-}
.10'
r--.080
~
.125
'jn inches.
543
llilJ UNITRaCE
IIIIIiIIII
2N6027-2N6028
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
2N6027
Test
Symbol
Fig.
Peak Current
Ip
1
Valley Current
Iv.
1
Offset Voltage
VT
1
Gate-to-Anode Leakage
IGAO
2
Gate-to-Cathode Leakage
Forward Voltage
Pulse Output Voltage
Pulse Output Rise Time
IGKS
3
4
5
5
VF
Vo
t
2N6028
Max.
Min.
Max.
Min.
-
2
-
0.15
1.0
25
-
0.6
0.6
10
100
100
1.5
5
SO
70
1.5
-
O.~
0.6
1.6
10
100
100
1.5
.0:2
6
-
80
25
1.0
0.2
0.2
6
-
Test Conditions
Units
p.A
p.A
p.A
p.A
mA
V
V
nA
nA
·nA·
V
V
ns
-
80
RG = IMn, Vs = lOY
RG = 10kn, Vs = 10V
RG - lMn, Vs _ lOY
RE, = lOkn, Vs = lOY
RG = 200n, Vs = lOY
RG - 10kn, Vs"':' 10V
&z. = lMn,. Ys. = 10V
T =.25'C, Vs = 40V
T =.75'C, Vs = 40V
Vs _ 40V
IF - SOmA
NEGATIVE
RESISTANCE
,/REGION
Ip
SWITCH~
Iv
POINT~
VA~LEY
Vs Vp
CURRENT
a) Typical Circuit
VT = Vp -v~
Vv
VALLEY VOLTAGE PEAK VOLTAGE
b) Equivalent Test Circuit
Figure 1
T~I'
V,
...L
Figure 2
Figure 4
Figure 3
V..
Note: Con~itions for oscillation
16k!!
R
Vas-V,
--->
Ip
R
Vaa-V"
---<
Iv
C
27k!!
R
Figure 5
UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON. MA 02173.. TEL. (611) 86H540
TWX (710) 326-6509 • TELEX. 95-1064
54:4
PRINTED IN U.S.A.
2N6027-2N6028
VS.
Valley Current vs. Gate Current
Peak Point Current
Gate Source Resistance
10
1000
2N6027
OOlir,c, ~,~f'
TI'IIII
;(
..3
1,\ ,
tZ
III 111111111
J~ 2N6028,111
"'0:0:
005
tCi!l!!t
2N'602~~
Sp~c
;(
IW-
c Max.
~~~~
-t:Ji
Max.
t- 100
z
"'
U
~
"1l!!
~">
'\,
"'I
.1
Q,
-"
FVS
2N6028
-Spec Max.
"1
I
lK
R" -
II
III
111111111
II
lOOK
10K
·2N60~~.ijt
Spec Min.
/'
10
1
.001
1M
III
II
.01
I" -
GATE SOURCE RESISTANCE (Il)
VS.
•
Spec Max.
~
f-- ---Max.
f-- _ _ _ Typ .
.01
lOa
Rf:;~:~2~i~
2N60281~
~
-'
-'
00.
2N6027
OOSpec Max?
f=
0::
0:
OJ
U
tZ
"<
unll
..3
::I
Offset Voltage
Ambient Temperature
I
1111
.1
1
GATE CURRENT ""
VS.
V
10
R:
(MA)
Peak Point Current
Ambient Temperature
10
3.0
10V::::
Vs
2.5
;(
..3
~
"'<
CJ
I'..
t-
~
2N6027
R
OOspec Max. "
0
> 1.5
t;
UJ
0:
0:
If)
IL
IL
0
I
:>
.!>
= 1M
~G "'1M
o
-60.
f
t-
-25.
TA -
"<
• spec Min.
=
G -
...........
.1
Q,
-~
-
I
IJ"i
O.
25.
50.
75.
100
AMBIENT TEMPERATURE ('C)
UNITRODE CORPORATION. 5 FORBES ROAD
. LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
---
........
..2'
RI -
= IK
UJ
2N6028
R
1M
Max. F I
~2N6027
R"
U
0
Q,
f-. 00 Spec
t---
.63=
::I
Z
~
~
-
..........
t'-..
Z
2.0
•
.01
-60
125
-25
TA -
545
o
25
~ lOOK
R" I IM-
60
75
lOa
125
AMBIENT TEMPERATURE ('C)
PRINTED IN U.S,A.
2N6027-2N6028
Valley Current
Forward Current
vs. Ambient Temperature
vs. Forward Voltage
1000
10
V,
~
.63-
"1"--
1 ~
li:
w
I
=>
Is;;:::::
U
~
..J
..J
~
-r-.-
2N6027
~pec Min. RG - 10~
10
-
2N6028
•
Spec Min. R"
Z
OJ
0::
0::
10K
Rs
-
5....
~
100
0::
0::
lOY:::
=>
o
10K
U
•
0::
R,,!. lOOK
!5u.
1M::;
R"
I
~
I
.1
/
I
I
1
"::50
I
.01
-25
75
100
25
50
T, -AMBIENT TEMPERATURE ('C)
.6
125
.8
1.2
1.4
1.6
1.8
V,- FORWARD VOLTAGE (V)
Typical Pulse Output
vs. Circuit Supply Voltage
40
~
w
36
r--
i!..J
32
r-r--
CJ
0
>
....
=>
....0.
=>
28
tEO'
'"
"
c
21k!"l
201l '00
24
0
w 20
'"=>
~
..J
..
0.
16
u 12
0:
C,r
./
~
I
~ 4
0
> 0
Iy.
l/::V
8
V-
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
~
,,!)'>~
..J
~
L
~
V
V
<:J§>.9Y
......::'\:
~
~
~
u
~
36
~
CIRCUIT SUPPLY VOLTAGE (V)
546
PRINTED IN U.S,A.
2N6119-2N6120
PUTs
Planar, TO-18, Hermetic
FEATURES
• Hermetically Sealed TO-18 Metal Can
• Programmable Eta, RBB , I, and Iv
• Maximum Peak Point Current: 150nA
• Minimum Valley Current to 1.5mA
• Nano-Amp Leakage
• Passivated Planar Construction for Maximum
Reliability and Parameter Uniformity
ABSOLUTE MAXIMUM RATINGS
Anode-to-Cathode Voltage, VAK
Gate-to-Cathode Forward Voltage, VGK .
Gate-to-Anode Reverse Voltage, VGAR .
Gate-to-Cathode Reverse Voltage, VGKR .
Peak Recurrent Forward Current
1OI's, 1% Duty Cycle .
1001's, 1% Duty Cycle .
Power Dissipation
2S'C Ambient
Derating Factor
Storage Temperature
Operating Temperature Range.
DESCRIPTION
Functionally equivalent to standard unijunction transistors, Unitrode's Programmable
Unijunction Transistors offer the distinct advantage of versatile programming. External
resistors can be added to meet the designer's needs in programming Eta, RBB , I, and Iv
functions. This series also features a hermetically sealed TO-18 package for optimum
reliability in all environmental conditions. Applications include pulse and timing
circuits, SCR trigger circuits, relaxation oscillators and sensing circuits. For additional
information see Unitrode Application Note U-66.
±40V
..... 40V
... 40V
-5V
.. 8A
. ... 5A
....... 400mW
...... 3.2mW/'C
.............. -55'C to +12S'C
............ -55'C to +12S'C
MECHANICAL SPECIFICATIONS
2N6119-2N6120
-r-a=-r
rii~t5MINj
.195
e
.230
,l7aDIA.
..L..
TO-18
c=::::)
II
-tj
.2090IA .
"T""~
.020
I-MAX.
.017
.~ .D02 DIA .
-.001
GATE CONNECTED TO CASE
Dimensions in inches.
547
OJD
_UNITRODE
2N6119-2N6120
ELECTRICAL SPECIFICATIONS
(at 25'C unless noted)
2N6120
2N61l9
Symbol
Test
Fig.
Peak Current
Ip
1
Valley Current
Iv
1
Vr
1
Gate-to-Anode Leakage
IGAO
2
Gate-to-Cathode Leakage
Forward Voltage
Pulse Output Voltage
Pulse Output Rate of Rise
IGKS
3
4
5
5
Offset Voltage
VF
Vo
tr
Min.
Max.
70
-
5
2
Min.
-
25
-
50
-
1.5
0.2
0.2
1.0
0.2
0.2
0.6
1.6
10
100
100
1.0
-
-
.~
-
-
9
-
80
Max.
Units
1.0
0.15
/LA
/LA
/LA
/LA
mA
V
-
25
0.6
0.6
10
100
100
1.0
9
-
-
80
vp
"(iT fT
v
A G
C
:l
RjXR2
v,
a) Typical Circuit
b)
Eq~iv~lent
nA
nA
nA
V
V
ns
:;:::
10V
lOV
lOV
40V
vp -vs
v,
"='Vs=~
R +R
R2
V
vr
+v
Test Conditions
RG = 10k, Vs =
RG = 1 Meg.
RG = 10k, Vs =
RG = 1 Meg.
RG = 20012
RG = 10k, Vs =
RG= 1 Meg.
T = 25'C, Vs=
T = 75'C
Vs = 40V
IF - 50mA
1
Vr
2
Vv
Ip
Iv
IF
c) Characteristic Curve
Test Circuit
Figure 1
Figure 2
Figure 4
Figure 3
+20V
R,
16K
-"L"--""Vs
6V
R,
27K
.6V
L..-LL-"-_ _ _ _ _ _ _....
Figure 5
UN ITROOE CORPORATION. 5 FORB ES ROAD
\.EXINGTQN, MA 02173·· TE~. (617) 861-6540
TWX (710) 326-~509 • TELEX 95-106~.
.
548
PRINTED IN U.S.A.
2N6119-2N6120
:t
-"
l-
Typical Peak Point Current
vs. Gate Source Voltage
10
I
z
U!
0:
0:
I
::J
I
lOK~2
10K~!
IM~!
"'"
U!
"
.1
u
n:
>I-
RG=lM~?
I
_.
z
200R
0:
2000
~loo0
::J
u
>-
U!
100
10KIl
>
...J
>-
10Kn
10
1Mn
I
~
RG=lMIl
..?
I
1f~g~
I
I-
6
Q.
'"
;;)
Q.
...J
"u0::
'"
.........
_.
.........
",, '"r"
r--.... ,
,
~
I
---
J. .l
v"~ = 10V
- - - 2N6119
- - - - 2N6120
r---.
,
,1
r---..
r---r-.
....
...
....
,
\
,
'" "
,
-
....
r---.
r-
"
,01
-80 -60 -40 -20 0 20 40 60 80 100 120 140 160
TA -AMBIENT TEMPERATURE ('C)
Typical Valley Current
Typical Valley Current
VS. Gate Source Voltage
VS. Ambient Temperature
10.000
------- ------ --- ------ --- ---
20~_ t- t- r--
~
I-
z
r-
20rll-
~lOO0
cr
::J
u
I
~
...J
...J
~
I
10KIl ...
100
lOKI),
...J
"
u
0::
>-
l-
10
..?
-80
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX,(7l0) 326-6509 • TELEX 95-1064
549
~O
-
I--
.... 1', ....
J
t- r-
t- r-
RG=lMIl
= 10vi
-- - - - -
1~1l'r---. r- r-- ...
I
§
10
15
20
GATE SOURCE VOLTAGE (V)
r- r-
Vi
---2N6119
- - - - 2N6120
r-
1
V, -
=
RG
1Mn,
Z
---2N6119
- - - - 2N6120
-"
...
l-
.....
10Kn,
cr
::J
u
10
15
20
Vs -GATE SOURCE VOLTAGE (V)
10.000
"
"u0::
.... .....
,01
:t
...J
...J
....
10
0:
K ---
Q.
...J
z
Typical Peak Point Current
VS. Ambient Temperature
U!
.--
I-
Z
I-
I
- - - 2N6119
- - - - 2N6120
u
6
Q.
1
-
t-- ,....
--r-- I-
-1"'"
-
-40 -20 0 20 40 60 80 100 120 140 160
TA - AMBIENT TEMPERATURE ('C)
PRINTED IN U.S.A.
2N6119·2N6120
Typical Offset Voltage
Typical Pulse Output
VS. Ambient Temperature
VS. Circuit Supply Voltage
1.4
""
!:i
0
...~
I
1.3
v, _ 10V
~
w 1.2
g
~
1.0
.9
..
g
.8
III
.7
0
..J
.6
"0::
,.
u
.5
l-
.4
I
.3
!
.2
.;-
:
32
w 28
"
"_"\
~
.
..J
~
fB.f""N.
'i>
13
~
.fo~
I"~ I'{J.?
.1
.......
.......
2OI!Vo
'"
Note: A mUll becllosen so thai
the eurrent Ivailabl. at tile
lirin.painleIiCilIlc!II,ilnd
steady-sllteOllcurrantil
'.sslhanl,..etllNldlllired
V,klrthecil'(;lIittooscUlale
24
I I I I e....e~
I I l\o~~1 V
20
16
I~
Co""
~9\1
12
I
8
>0
0
~Co"'11 I
I~
I I I I I I
048121620242832364044485256
V-CIRCUIT SUPPLY VOLTAGE (V)
-80 ~O -40 -20 0 20 40 60 80 100 120.140 160
T, -AMBIENT TEMPERATURE ('C)
~
tiJ"'
~
!:i
1.1
>
Iw
v,
Typical On.State. Current VS. Voltage
Gate.Anocie Blocking Current
VS. Ambient Temperature
10
IZ
W
5
'"'"
;:,
IZ
u
~
W
.1 ~--t------r-----+----~t-~--~
'";:,'"
;;:
g
U
W
l-
III
W
i!:
o
'1
z
~ .01 I--I---t-~=--+--T-+---I
0
"
.1
I
~I
-~
JO~8LO--_-SO'-----"'0L-----.J.SO-----I0LO-----l..JSO
T, -
.01
.1
AMBIENT TEMP'ERATURE ('C)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173. TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064
550
1
10
V, - ON·STATE VOLTAGE (V)
100
PRINTED IN U·.s ....
PUTs
2N6137-2N6138
Military, Planar, TO-18, Hermetic
FEATURES
• Avai lable as JAN and JAN TX types
• -55°C to +125°C Temperature Range
for Timing and Oscillator Circuits
• I, ,,;;; lOILA at T = -5SoC
Iv ;;;, 40ILA at T = +12SoC
• Programmable n, RBB , I, and Iv
• Peak Recurrent Current: of SA
• Low On-State Voltage Drop
• Hermetically Sealed Metal Case and
Planar Passivated Construction for
Maximum Reliability and Parameter Stability.
DESCRIPTION
The Programmable Unijunction Transistor is functionally equivalent to a standard
unijunction transistor with the advantage that external resistors can be used to
program n, Raa , I" and lv, depending upon the designer's needs. The Unitrode
device, in addition to allowing programmable versatility, is completely planar
passivated and packaged in a TO-18 hermetically sealed package, which offers an
order of magnitude improvement in inherent reliability over many similar devices.
Applications include pulse and timing circuits, SCR trigger circuits, relaxation
oscillators, and sensing circuits. For further application information see Unitrode
Appl ication Note U-66.
ABSOLUTE MAXIMUM RATINGS
2N6137
2N6138
Anode-to-Cathode Forward Voltage, VAK
.......... 40V..
............... lOOV
Anode-to-Cathode Reverse Voltage, VAKR ..
... 40V ......................... lOOV
Gate-to-Cathode Forward Voltage, VGK .
. .... 4OV...
.. lOOV
Gate-to-Anode Reverse Voltage, VGAR ...
. ........ 40V.....
.. ..... lOOV
Gate-to-Cathode Reverse Voltage, VGKR .
.. .. SV....
. .... SV
Peak Recurrent Forward Current, 10l's 1% Duty Cycle ................. SA..
.. ........ SA
Peak Gate Current, IGM
.... 250mA.... . ........ 250mA
Average Gate Current, IGIAVI .
...... SOmA...
. SOmA
Power Dissipation
2SoC Ambient.
.. 300mW...
. .... 300mW
..... 2.4mW/oC...
.. .... 2.4mW/oC
Derating Factor
Storage Temperature Range
...... -5SoC to +125°C
-SsoC to +12SoC
Operating Temperature Range
MECHANICAL SPECIFICATIONS
2N6137-2N6138
5MIN
IL.21Ot·
.170
.
TO·18
j
--r-G=""T
195
~178 DIA.
--L-
.230
c:::::::::» .209 DIA.
II
----1
.02X.
r-MAX.
017 4.002 oIA .
-.001
GATE CONNECTED TO CASE
Dimensions in inches.
[ill]
551
_UNITRODE
2N6137-2N6138
ELECTRICAL SPECIFICATIONS (at 25°C unless noted}t
Symbol
Figure
Minimum
Typical
Maximum
Units
SUBGROUP 1 Visual and Mechanical
-
-
-
-
-
-
SUBGROUP 2
Gate-anode blocking current
Gate-cathode blocking current
IGAO
IGKS
2
3
-
-
2
5
10
100
SUBGROUP3
Peak-point anode current
Ip
1
Peak-point offset voltage
VT
1
Va lIey-poi nt anode current
Iv
1
Test
SUBGROUP 4
Forward on-state voltage
Peak pulse voltage
Peak pulse voltage rise time
0.2
0.2
-
70
1.5
-
t,
4
5
5
-
IGAO
Iv
Ip
2
1
1
40
-
V,
Vo
SUBGROUP 5
Gate-anode blocking current (125°C Test)
Valley-point anode current (125°C Test)
Peak-point anode current (-55°C Test)
-
1
2.5
0.26
0.35
15
200
2
--
1.0
-
80
500
150
100
7.5
10
Cc;mditions
-
nA
nA
2
5
1.6
0.6
50
0.85
12
50
9
TE~st
VG•
I,A
I'A
V
= Rating
== Rating
VG ,
== 1 Meg I V - 10V
== 10K ( , RG == 1 Meg ( V - lOV .
RG == 10K
,RG == 1 Meg (
RG == 10K . V, = 10V
RG
RG
V
I,A
I,A
mA
RG
V
I,
= 200!!
= SOmA
V
ns
=
=
nA
I'A
I'A
VG• Rating
RG == 10K, V, == 10V
RG 10K, V, =:: 10V
t All values in table are JEOEC registered
Iv
NEGATIVE
RESISTANCE
I,
..... REGION
SWITCH~
POINT
===t=+-
VALLEY
CURRENT
Vs Vp
Vr =Vp -Vs
a) Typical Circuit
Vv
VALLEY VOLTAGE
b) Equivalent Test Circuit
PEAK VOLTAGE
Figure 1
T~
ctJ
1:.f
=-Vs
Figure 2
Figure 4
Figure 3
+ 20V
Note: Conditions for oscillation
Vo
VII-VP >1,
___
R,
510K
16K
Vs
R
6V
C,
VBB-V v
---<
Iv
.2.1
27K
R
.6V
Figure S
UNITRODE CORPORATION. 5 FORBES ROAD
4.EXINGTON. MA 02173 • TEL. (617) 861-6540
twx (710) 326-6509 • TELEX 95-1064
552
PRINTED IN U.S.A.
2N6137-2N6138
Peak Point Current vs. Ambient Temperature
Peak Point Current vs. Gate Source Resistance
10
V.
10
10V
V
SPEC.
MAX.
...........
II~PEC.
"
;,
;,
..'0
.3
f-
I-
Z
Z
'"0:0:
UJ
0:
0:
:>
::>
()
()
f0.
0.
I
fZ
"
0
".
'"
""
MAX.
Z
10V
"~
'.1
Q.
1
~
""
"
~G
"" ~
o0.
.1
~~IKO
10KO
...............
"
~=IMO
~
.01
100
RG -
lK
10K
lOOK
GATE SOURCE RESISTANCE (n)
.01
-50
1M
-25
TA -
100
50
75
25
AMBIENT TEMPERATURE ('C)
Valley Current vs. Ambient Temperature
Valley Current vs. 'Gate Current
1000
1000
- -----
150
=
V.
10V
RG
10KO
,
r'
----
V
;,
;,
..'0 100
..'0 100
SPEC.
MIN.
fZ
'"0:0:
SPEC.
MAX.
:>
fZ
UJ
0:
0:
:>
()
()
>
.
..J
..J
>
..
UJ
..J
..J
/
>
I
>
~
'"
I
1
,DOl
>
~1
IG-
~
GATE CURRENT
1
~ (*!J (MA)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
10
1
-50
10
- --'--
>
10
-25
TA -
553
---_
RG= lMO
25
50
75
100
AMBIENT TEMPERATURE ('C)
125
PRINTED IN U.S.A.
2N6137-2N6138
Offset Voltage vs.
Ambient Temperat~re
Typical Pulse Output Voltage vs.
Circuit Supply Voltage
3.0
'~'"
100
~
2.5
2.0
"'"'"...
0
...>
""
80
Note:
:>
60
0
SPEC. MAX.
@ RG =·lMP.
1.5
R must be chosen so that the
current available at the firing point
exceeds III and steady state on current
is less than Iv at the desired level
of V, for the circuit to oscillate.
0..
I-
..J
27K
20
..J
?:
"0
C
UJ
"'>-"
0
>
...
:>
I.~>,t~~
UJ
'"
..J
......'"
0
:>
VI
I
,;-
~
~
I?
-50
,..'"
l-
-25
v';''':;/
I
b-J
SPEC. MA)(.@ RG = 10KII
50
75
100
25
TA - AMBIENT TEMPERATURE ('C)
1U- V = 40 V max.
20
~
-
V = 100V
max for
2N6138
",i ... ~Cf""
11:
'./
~ll\ln
q}e ~ Q
0"'- .(.,....; ~ ,,"
40
(,l
o "-
ROlf!]'
.5
0..
..J
0
>
o
o
~
~
20
V-
fori 2N6137. I.
40
60
80
100
CIRCUIT SUPPLY VOLTAGE (V)
125
Typical Current vs. O.n·State Voltage
Gate-Anode Blocking Current vs.
Ambient Temperature
10
,{,_ 25'C
Raling=
V
T . 12S'C
GAO
~
J
>-
zUJ
IX
IX
:>
(,l
/
"
''""
u
(,l
0
Ul
/
..J
S
'1
'"0
V 1
UJ
z
I
I
.1
z
;;:
:>
0
il
UJ
£'
~
J
I-
Z
I
/ /
0
z
'"
.1
UJ
I-
.:
"'"I
.01
-
-Maximum
0
-~
I
I
.01
.1
V, -
10
ON-STATE VOLTAGE (V)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064
.001
-100
100.
554
/
TypyL
-50
0
50
100
T, -:-- AMBIENT TEMPERATURE ('C)
150
PRINTED IN U.S.A.
SCRs
2N6564-2N6565
.8 Amp RMS, Plastic
FEATURES
DESCRIPTION
•
•
•
•
•
•
This plastic series features very fast switching performance, low forward voltage
drop and a high degree of reliability and parameter stability. All units are fully planar
passivated and are packaged in a rugged TO-92 case, constructed from a special
epoxy compound that features excellent moisture resistance providing stable performance under high humidity conditions and good thermal transfer characteristics.
Voltage Ratings: to 400V
Forward Current: O.SA RMS
Surge Current: 6A, 8ms
Gate Sensitivity: 200!,a max.
Planar Passivated Process
TO-92 Plastic Package
TYPICAL APPLICATIONS
Lamp Driving
Relay Driving
Relay Replacement
Alarm Systems
Counters
Process Control's
Remote Controls
Pressure Controls
High Current SCR Driving
Display Systems
Timers
Touch Switches
Temperature Controls
and many other current sensing and control applications.
ABSOLUTE MAXIMUM RATINGS
2N6584
Repetitive Peak Off-State Voltage, VDRM .
Repetitive Peak Reverse Voltage, VRRM .
On-State Current, IT(RMSt @ Tc = 70'C ...
Peak One Cycle Surge (Non-Rep.) On-State Current, I TSM .
Peak Gate Current, IGM .. ' .
.
Peak Gate Power, PGM .
Average Gate Power PGIAVI .
Reverse Gate Voltage, VGR
Storage Temperature Range .
Operating Temperature Range .
2N6585
. .. 300V ... .
.400V
... 300V .. .
...... 400V
. ..... O.8A ..
..............6A
....... I.OA ..
................ lW.
...... O.OlW ...
..............6V ..
........ -65'C to + 150'C ..
-65'C to +125'C ...
MECHANICAL SPECIFICATIONS
2N&5&4-2N&5&5
T092
.019
.016
1
-)~=
1
~
.135
.205
.175
MIN.
_I
.045
Go----ITT.105
1,- 1.095
=l~
500 MIN
I I
.1OS
I _.210 I
I , °1-"17
.055
Ao--
j-.OBO
--:m-.125
Dimensions in inches.
[1W
555
_UNITRDDE
2N6564C2N6565
ELECTRICAL SPECIFICATIONS (at 25°C unless noted, RGK := 1000 ohms)
Test
Symbol
Off-State Current
,
-
IORM
Reverse Current
IRRM
,~
Gate Trigger Current.
VGT
Peak On-State Voltage
VTM
Holding Current
Critical Rate ot RiseOff-State Voltage
Units
0.1
1.0
100
p-A
p-A
0.1
1.0
100'
pA
pA
0.6
-
200
350
p-A
p-A
0.8
1.2
-
V
V
V
Vo := 6V, Rl := 100 ohms
Vo := 6V, Rl := 100 ohms, T := --'65°C'
Vo:= Rating, Rl := 100 ohms, T
125°C'
1.0
0.7
1.7
V
-
5.0
10.0
mA
mA
:= 1.2 Amp Pulse"
Vp _ 6V, T _ 25°C
Vo := 6V, T := -65°C'
-
0.1
-
IH
Max.
-
-
IGT
Gate Trigger Voltage
Typical
Min.
Test Conditions
=
=
=
=
=
VORM
Rati ng
VORM := Rating, T
125°C'
VRRM
Rating
VRRM
Rating, T := 125°C'
Vo
6V, Rl
100 ohms
Vo
6V, Rl
100 ohms, T
=
=
=
= -65°C'
==
ITM
dvldt
-
75
-
VII'S
Turn-on Time
to,
0.5
1.5
p-S
Circuit Commutated Turn-off Time
tq
-
15
-
= Rating
IG = lamA, IT = lA, Vo =Rating"
p-S
IT -IR _lA
Vo
Note: Blocking volta,ee ratings apply over the full operating temperature range, provided the gate
IS
connected to the cathode through, a
re~
sistor, 1000 ohms or smaller, or other adequate bias is used.
'Indicates JEOEC Registered data.
DESIGN CONSIDERATIONS
1. The 2N6564 Series SCRs are guaranteed to block their rated voltage over the
rated operating temoerature when a resistance of 1000 ohms or less is connected
from gate to cathode as shown.
d
ANODE
GATE
RGK
:=
lK or less
CATHODE
2. In cases where the SCR may be subjected to fast rising anode voltages a
capacitor can be connected between anode or gate and cathode as shown, to
serve as protection against dv/dt firing.
AN0:IJE
GATE
CAK
GATE
CGK
CATHODE
UNITROOE CORPORATION· 5 FORBES ROAD
LEXlNGTON; MA 02173 ..• TEL. (617) 861-6540
TWX (710)'326-6509 • TELEX 95'1064.
.
d
ANODE
CATHODE
556
PRINTED IN U.S.A.
SCRs
2N6681
2N6682
2N6683
2N6684
2N6685
1.0 Amp RMS, Plastic
800V
FEATURES:
DESCRIPTION:
•
•
•
•
•
•
This plastic PNPN device is rated at
1.0 Amp RMS maximum on-state current,
with rated voltages up to 800 volts. All
units in this series offer full hard glass
passivation with sensitivity especially
targeted for good transient immunity.
Supplied in an economical TO-92 package,
this device is well suited for many high
volume applications.
Forward Current: LOA RMS
Voltage Ratings: to 800V
High Surge Current: l5A, 8mS
Gate Sensitivity: 30llA Typical
Hard Glass Passivated Junction
Economical TO-92 Package
TYPICAL APPLICATIONS:
Ground fault interrupters
Photo flash circuits
Ignition/Ignitor ci rcuits
Relay drivers
Relay replacement
Gate drivers for high current SCRs
Lamp driving
Off-line appliance controls
MAXIMUM RATINGS
2NBB81
Repetitive Peak Off-State Voltage, VORM
Repetitive Peak Reverse Voltage, VRRM
On-State Current, 'T RMS At 60'C Case, 180' Conduction Sinewave
Surge (Non-Rep.) On-State Current, ' TSM
Peak Gate Current, IGM
Peak Gate Power, PGM
Average Gate Power PG (AV.)
Reverse Gate Voltage, VGR
Storage Temperature Range
... 100V.
lOOV ...
2N6682
2N6683
2N6684
2N6B8S
200V ....... AOOV..
..600V.... ..... 800V
..200V..... .. 400V ............. 600V....... . .. 800V
1.0A
...... 15A
.1.0A
......... 1W
O.OlW
..........6V
.-55'C to +150'C
-55°C to +llO'C
- 55°C to + 85'C
Operating Temperature Range (2N6681-2N6683)
Operating Temperature Range (2N6684-2N6685)
MECHANICAL SPECIFICATIONS
2N6681·5 SERIES
B
-~
11 AC>--E[(
!
==r
=
F
A
-.L
E
~D~-
GO---
=l~'
c
~-~"
G
A
B
D
C
E
F
G
H
inches
.135 MIN.
.019 - .016
.210 - .170
.500 MIN.
.205 - .175
.165 - .125
.055· .045
.105 - .095
.105 - .OBO
TO·92
millimeters
3.43 MIN.
.4B - .41
5.33 - 4.32
12.7 MIN.
5.21- 4.45
4.19 - 3.18
1.40 - 1.14
2.67 - 2.41
2.67 - 2.03
[ill]
12/79 (Formerly IP200 Series)
557
_UNITRODE
2N6681 2N6682 2N6683 2N6684 2N6685
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
IORM
IRRM
IGT
Gate Trigger Voltage
Typical
Max.
Units
-
-
-
30
0.6
100
100
200
0.8
1.2
ItA
p.A
ItA
Min.
Symbol
Off-State Current
Reverse Current
Gate Trigger Current
VGT
-
-
0.1
Peak On-State Voltage
VTM
Holding Current
IHX
Critical Rate of RiseOff-State Voltage
dvldt
-
0.7
-
-
V
V
V
V
-
Test Conditions
VORM
VRRM
Vo Vo
Vo
Vo
ITM
RGK
RGK
-
1.5
5.0
10.0
rnA
rnA
20
-
VII's
= Rating, RGK = lK, T*- llO'C
= Rating, RGK = lK, 1* = llO'C
6V, RGS _10K
=6V, RGS =lOOn
=6V, RGS =loon, T = - 55'C
=6V, RGS =lOon, T =125'C
=1 Amp Pulse
=1K, T =25'C
=1K, T =-55'C
Vo = Rating, RGK =1K, T =100'C
'For 2N6684, 2N6685 T = 90'C
Maximum Allowable Non-Repetitive Peak
On-State Current Following Rated
'
Load Conditions
Maximum On-State
Characteristics
$
!Z
10
18
'"0:0:
;)
U
'"...
~
'"
Z
L
I
o
'"
S
TJ =125'/
;)
~ .1
~
~
I
'"
>
.01
16
-
t: :;(
'"e;... iii...
0:0:
~ g;
~,,,.,
14
"-
12
~
10
z u
8
~~
6
I Z
4
"'~
II
z
..:-
~
10
I
$
"'z
::;; 0:
.2
I00
~
1
Q,Q,
.
!t
~ ~.6
~
/
g.5
Z U
0
/'
.3
.9
~ ~.7
./
~; .4
",0
0:
,/
'"'"~ t:"~ .7.6
UJ
'"
0:: >
u
20
'"'"
'"
~
0
ALL
~
NITS FIRE
'Go MAX.
IGT MIN.
"~-20
~
~
NO UNITS FIRE
~
ALL UNITS FIRE
to,.
IGT MAX.
~
IGT MIN.
I
NO UNITS FIRE
Cl_40
"
I
- --<;0
-80
-65
-25
-
25
50
75
100
125
150
-65
JUNCTION TEMPERATURE (Oel
-25
TJ
25
'--,-,.--,-..,.--,--r-,.-.
1.4
~.OOr--_+-~-+-+--+-4_~r-~
~
OJ
"~
\oJ
:>
400 Vf1'lr-t-+--+-+--+-+-Ir--4
ALL UNITS FIRE
II!
~
200
g
IWfflnft~rn.,.,f,'7T.rtrm17771n77l~.,..j
~
~
0
150
,.---,-,---,-..,.--r--r-,--,
1.2 f----+-+-~-,4_-I-_+-+-_l
li---+-+--t-+-r--t-+--1
.8~~_+--+-~~~~--~--1-~
.6~~~~m9~~+--I--~--1-~
"~
.41----t--t-~~~~~~~~~
"
.2r----t--+--+--+--I--~~~~
-25
JUNCTION TEMPERATURE (Oe)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173'.' TEL. (617) 86!,6540
TWX (710) 326·6509 • TELEX 95·1064
125
(OC)
""
~
>
-400 ~--=-~----,":---L--:":__...L..J.--'
-65
-25
0
ISO
-
100
ffi
I
I
~-200r----t--+--+--+--+--+-I~&f
TJ
75
Gate Trigger Voltage
!i;
~
50
JUNCTION TEMPERATURE
-
Gate Trigger Current
AA114 Series
(J
'\';
-400
TJ
8DO
"'«G If//;
'VI;
TJ
560
-
25
50
75
100
125
ISO
JUNCTION TEMPERATURE (Oe)
PRINTED IN U.S.A.
AAlOO-AAI04
Max. Holding Current
50
20
r-- r-
"' 10
0:
0:
::J
U
2
~
I
x
;j
I
_'I.
--
IK
l - t--
':::-
Rj' ~ I~K
.2
x
;
~
l - I--- I--.
-
.5
".s...
RGK :::: lOOt!
S
§"
20
10
~
::J
U
"
RGK
Z
-
~
I--- I -
I
-2S
-
25
50
75
100
125
- l -I -
.2
_'I.
~=lOK
:1
-25
TJ
JUNCTION TEMPERATURE (OC)
DC
5
~
.."' ...6..4
0:
::J
u
~
.3
~
5
!z"'
I
...
",-"- .'\.
~ ~'\
"'~
,,~
.2
~~
~
.1
100
Tc m., -
110
120
~
a;;-.3
130
25
50
75
~I
125
150
POWER DISSIPATION (W)
3
2
1
~
",\,
~~
.2
~
.1
~~
~~
~
140
100
JUNCTION TEMPERATURE (DC)
'"'"~"""
6"
Z
o
o
90
DC
::J
U
,,~ ~
~
-
Po 4
.4
[\.
,,'\
~
-
t--...
Avg. Current vs. Ambient Temperature
AVI. Current VS. Case Temperature
5 PII - 'j>WER D~SSIPATJON (Wl1
.5
-
--r--.....
-;--
.OS
..... S
ISO
1----1-
IK
.5
i
.OS
TJ
-
~
~
~5
100!!
::::::
9
t--- I--
.1
~
AA1l4-AA1l8
Min. Holding CUrrent
50
"!zg
AAI07-AAlll
"'
o
150
o
25
TA .. u
MAX. CASE TEMPERATURE COC)
-
SO
75
100
"
125
150
MAX. AMBIENT TEMPERATURE (OC)
Surge Current
5
§
..
50
::J
20
"'
10
u
~
~1',
"'-
Z
o
.
Z
o
.S
"~
.2
I
j
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509· TELEX 95-1064
,
'"f\
,
f\. ,
~::;;:::g~
1
i'...' ...
0:
.'"i5
,
SOLtD
LINE:
RATED
BLOCKING
VOLTAGE MAY
BE APPLIED
AFTER SURGE
DASH LINE:
BLOCKING VOLTAGE MAY
NOT BE SUSTAI NED FOR 0.1
SECONDS AFTER SURGE
W
0:
~
If BEFORE SURGE:::: 0
.1
.05
10
~
10 • 10 l
10- 2 10- 1
1
~
10
102
10l
SURGE DURATION (5)
561
PRINTED IN U.S.A.
ADI00-ADI04
ADI07-ADll1
ADl14-ADl18
SCRs
1.6 Amp, Planar
FEATURES
•
•
•
•
OESCRIPTION
Maximum Gate Trigger Current: 2,20 or 200~A
Tight Gate Trigger Voltage Range: .44 to .6V
Voltage Ratings: to 400V
Specified for dv/dt and Switching Time
This data sheet describes Unitrode'sAD Series 1.6A SCRs designed for medium. current control and sensing applications. Units are available in a complete range
of blocking voltages from 60 to 400 volts;
The AD100 series offers a maximum gate trigger current of 2.0 microamps making
it the most sensitive device of its type. TheAD107 series has a maximum IGT of
20~A while this parameter is specified at 200~A for the AD114 series.
ABSOLUTE MAXIMUM RATINGS
AD1DD
AD1D7
AD114
AD1Dl
AD1D8
AD115
AD1D2
AD1D9
AD116
AD1D3
AD110
ADl17
Repetitive Peak Off-State Voltage, VORM .
. .. GOV."
..... lOOV.
,,",," 200V"
"",." ..... " 300V."".
" 200V,
Repetitive Peak Reverse Voltage, VRRM ................ ," 60V.""."
". lOOV""""
.. """""",300V"".
Non·Repetitive Peak Reverse Voltage, VR5M . """"""" 80V.
.,,""" 150V"
300V"."."
.. """.400V"
." ..... " .. "SOOV
Non·Repetitive Peak Off·State Voltage, V05M '
"""". """""" ... """"".,,",,.
D.C. On·State Current, IT
. 7S'C Ambient .".
"". """""""""
"450mA.""".,,
"."""""".,,,," "
....... "."",,.. """""'" """.1.6A:"
8S'C Case ""
Repetitive Peak On·State Current, ITRM .
". ". """"".
... "." .. " ... up to 30A.
" ...... "" ... "........
" ..... " .. .15A .. ,,,.
Peak One Cycle Surge (Non·Rep.) On·State Current, IT5M .
"."" ... ".2S0mA.
Peak Gate Current, IGM
" """""""". """"""""" "
Average Gate Current, IG{Av) .
""""" """""" """""""""""".
""""" """ """" .... ".25mA."."
........ 6V.
Reverse Gate Voltage, VGR .
""""""""" """"""""
... -65'C to +150'C
Operating and Storage Temperature' Range .
AD104
ADlll
AD118
." 400V
.."",,. 400V
"" ... " 500V
MECHANICAL SPECIFICATIONS
AD100·AD104 AD107-ADll1
ADl14-ADllB
T0-39
[ :;:~--t-;;;5 MlNl
:ii~[Iag1i~;~
T- ....•
,33SJ
.305
.017' .002
.001
,
--;.100
Dimensions in inches.
[ill]
562
_UNITRODE
AD100-AD104
ADl07-AD111 AD114-AD118
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Parameter
SUBGROUP 1
Visual & Mechanical
SUBGROUP 2 (25'C TESTS)
Off-State Current
Reverse Current
Reverse Gate Current
Gate Trigger Current
ADlOO-104
AD107-111
AD114-U8
Gate Trigger Voltage
On-State Voltage
Holding Current
SUBGROUP 3 (25'C TESTS)
On-State Voltage-Critical Rate of Rise
Gate Trigger-on Pulse Width
Delay Time
Rise Time
Circuit Commutated Turn-off Time
SUBGROUP 4 (125'C TESTS)
Off-State Current
Reverse Current
Gate Trigger Voltage
Holding Current
Symbol
Min.
Typical
Max,
Units
-
-
-
-
-
0.44
-
.01
.01
0.1
0.1
0.1
0.2
I'A
I'A
I'A
0.2
2.0
20
0.52
1.1
0.5
2.0
20
200
0.60
1.5
2.0
I'A
I'A
I'A
V
V
mA
IORM
IRRM
IGR
IGT
VGT
VT
0.3
'H
dvldt
50
tpg (on)
td
tr
tg
IORM
'RRM
VGT
0.15
0.2
'H
-
100
0.5
0.6
0.4
20
-
RGK == 1K, VORM = Rating
RGK = 1K, VRRM = Rating
VGR =2V
RGS == 10K, Vo == 5V
=
RGS == lOOn, VD 5V
'T == 1.0 Amp (pulse)
RGK == 1K
=
I'S
I'S
RGK == 1K, Vo
30V
IG == 10mA, IT = lA, Vo = 30V
IG == 10mA, 'T = lA, Vo
30V
IG == 10mA, 'T = lA, Vo
30V
'T == lA, 'R == lA, RGK = 1K
I'A
I'A
V
mA
RGK == 1K, VORM
Rating
RGK == 1K, VRRM = Rating
RGS == lOOn, Vo = 5V
RGK == 1K
VII's
2.0
I'S
I'S
50
10
30
0.2
0.4
Test Conditions
100
100
-
1.5
=
=
=
Note: Blocking voltage ratings apply over the full operating temperature range, provided the gate is connected to the cathode through a resistor, 1000 ohms or smaller, or other adequate bias is used.
Gate Trigger Current
AD107 Series
Gate Trigger Current
AD100 Series
80
..~
~ 60
~
~600
0:
0:
40
'"
~400
ALL UNITS FIRE
20
ffi
"'"
~
"''"
IGo MAX.
""l.o\
I GT MIN.
~
-20
NO UNITS FIRE
'"~ -40
"'
~ 200
'"
'III!!.
5I
I
~
~
-65
-25
0
25
50
75
100
125
150
T J -JUNCTION TEMPERATURE (OC)
Gate Trigger Voltage
..
r----r~r-1-~r-1-~--~-i
~ 600
ir---+---1f----t---,f----t----1--+-----1
:>
r«l !fIlA
I
-400
Gate Trigger Current
AD114 Series
ffi400
_'G,-
0:
§:
o
BOO
~~-r~r--r--r-1-~--~-i
g
~200
5'"I
0
-400 ' -__-'-~'---L__'---'---'__..L..-I
-65
-25
TJ -
0
25
50
75
100 125
150
JUNCTION TEMPERATURE fOe)
UN'TROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
563
PRINTED IN U.S.A.
ADIOO-AD104
Max. HDlding Current
Min. Holding Current
.,g
50
.,g
20
...z
"'
10
-r- --
r--
0:
0:
:J
o
z
2
Ii!
I
~
.5
~z
x
.2
"9
:;
~
RG,
...
",1~00"
--..::..
1---
-25
TJ
~
25
50
7S
125
S
Ii!
i
i
I
.5
I
.: .2
1
.OS
-65
ISO
-25
TJ
ffi0:
cr::
:J
1<1>
"'
3<1>
S
'"
z
.8
o
I
.!.
.7
.4
6<1>
0:
~
"" '" "-
i'-..
i'--.. ~
.........
----
"- ~
~ .4
~
-..:::
g
...
~50
0:
0:
~ 20
"'~ 10
~ 5
o
'~"
--
.1
I
,
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
150
]
.2
.6
.4
.2
'":'"
~
~ ~
"'"
~
~'"
~~
..........
~
ma. -
50
75
100
,
125
150
MAX. AMBIENT TEMPERATURE C°C)
Surge Current
............
""
"""'-
TC
10
-.
10
-,
-,
-,
10
10
1
10
SURGE DURATION (5)
564
8S'C_
""""-J.
.,,~
'>.t'(oo
],05 10-
.3
TA
1
.2
125
~
25
~ .5
:J
Z
o
I
-
150
~ 2
.8
.1
80
90
100
110 120
130
140
T c .... - MAX. CASE TEMPERATURE (Oe)
~
.5
o
~
75
"-
1<1>
~ .6
r-- -....... t-70
7
g
"-
o
50
POWER DISSIPATION (W)
1
"-
1.'
25
JUNCTION TEMPERATURE COC)
-
PD -
.5
DC
1.6
-
Avg. Current vs. Ambient Temperature
.8
g
r--
.1
PI)- POWER DISSIPATION (W)
1.5
-I--.
_RGI<-lOI{
i
i
Ava. Current vs. Case Temperatura
2
-lGof!
r!-'!- r-- r--
C~C)
JUNCTION TEMPERATURE
RG,
~
9
r--
100
10
:J
!;1
.1
.OS
-6S
20
r5
o
r- -r-.
I--
50
0:
0:
~/(
_~~~o/(
AD107-AD111 AD114-AD118
=
102
103
PRINTED IN U.S.A.
CSB20
CSB40
CSB60
TRIACs
25 Amp RMS, 600V, ChipStrate®
Quick Connect Terminals
FEATURES
• Voltage Ratings: 200V-600V
• Hard-Glass Passivated Junction
• Isolated Case
• Quick Connect Terminals
OESCRIPTION
The Unitrode ChipStrate CSB20 series
Triac has been designed specifically for
the appliance and industrial controls
market. Standard quick connect terminals
allow for simple solderless connections,
ideally suited to production line techniques. The heart of this device is the
exclusive ChipStrate assembly with
proven reliability, incorporating a copper
heat spreader, a BeO substrate for
lowest thermal resistance, and a one
piece lead frame construction for
mechanical strength and optimum
power handling capability. All Unitrode
ChipStrate Triacs are isolated from the
mounting flange.
ABSOLUTE MAXIMUM RATINGS
CSB2D
CSB40
Repetitive Peak Off-State Voltage, VORM .
........... 200V .
....... 400V .
On-State Current ITIRMSI (at Tc = 6S·C and conduction angle of 360·) . . .
.................. 2SA .
. ............................................... 2S0A .. .
Peak One Cycle Surge (Non-Rep.) On-State Current, I TSM .
. ........... 16W ... .
Peak Gate Power, PSM ..
Average Gate Power, PSIAVI ......................................... .. .........................
. ......... O.SW ..
Rate of On-State Current, di/dt (at VOM = VORM' 1ST = 175mA, t, = O.1/,s) .
....... 125A/p.s ..
Storage Temperature Range.
...... -40·C to +150·C ... .
-40·C to +110·C .. .
Operating Temperature Range.
Isolation Voltage, Flange to Terminal.
..................................... 2500V RmS ..
CSB60
n~'
-~
III
l~ n
+
J
I
'"
H
~
'" -9
OEF
Tj j
A
B
finches)
Metric
1.395
35.4lmm
1.181
1---'-
G
.675
11.15mm
0
,
.156 (TYP.)
3.96 mm (TYP.)
.615
17.15mm
F
.700
G
.187 WIDE X .032
H
I-M--I
Q
I
~
~
-r
•
~
.-
17.78rnm
4.75 mrn WIDE X 0.81 mm
THICK (GATE)
.250 WIDE X .032
6.35 mm WIDE X 0.81
THICK (MTl)
-,
N
........L
I
1
THICK (MTl)
J
.290
7.37mm
,
.442
1l.2lmrn
.580
14.73mm
.290
7.l7mm
K
1
L3
lO.lSmm
C
THICK (GATE)
H
CSB20
..600V
DIMENSIONS
B
r-c----l
CSB40
CSBGD
M
N
.218
S.54rnm
p
.360
9.14mm
Q
.156 (2 PLACES)
3.96 mm (2 PLACES)
R
.oso
1.27mm
s
17S(TVP.)
22.23mm
[1ill
ChipStrat... is • registered trademark of Unitrode Corporation.
565
_UNITRDDE
CSB20
CSB40
CSB60
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
Off-State Current
Typical
Test Conditions
Symbol
Min.
Max.
Units
IDRM
-
-
2.0
mA
-
-
50
80
mA
2.5
V
VD
-
1.9
V
ITM -
mA
V DRM ~ Rating, Te _lOO'C
VD - 12V Quadrants 1,.:! (+ +,
VD == 12V Quadrants 2, 4 (+ -,
Gate Trigger Current
IGr
Gate Trigger Voltage
VGT
Peak On·State Voltage
VrM
-
IH
-
-
50
20
50
V/~S
3
10
-
VII'S
IT
-
-
1.1
'C/W
Steady State
Holding Current
Critical Rate of RiseOff·State Voltage
dv/dt
Critical Rate of RiseCommutated Off-State Voltage
dv/dtl<1
Steady State Thermal Resistance'
R9JC
-
-)
- +)
=12V
28A Peak
VD - 12V
VDRM
=Rating, Te = 100'C
= Rating, VDRM =Rating, Te = 65°C
• Junction-ta-Case
On-State Characteristics
100
...i?
~
"'"'
I
80
I
I
U
w
/
'"
::J
60
TYPICAL
40
II
~
z
in'"
"~ .- 240
"- ::!.
~ ~ 200
i= '"
/
0
8z
280
L
::J
~:i:
Maximum Allowable Non-Repetitive Peak
On-State Current FOllowing Rated
L~d Conditions
/
/
5
~
"- :::J
"'u
0:: UJ
MAXIMU~
J
V
.5
vT -
120
0
40
o
2.5
1.5
INSTANTANEOUS ON STATE VOL TAGE (V)
I
MA~MUM
"'iii
<[Ill
0:",0
>0:
<[",
13:
G
~
V
'"t- 110
"'u 100
"' 90
III
<[
a..Q~
V
IT ••• -
/
.....J
--........ r-.....
oJ
III
<[
~
..1,•. \
...
80
"I
60
<[
• eN.
9,+9111
'~
~
<[
:; 70
CONDUCTION ANGLE
9 , +9'11
lID'
CONDUCTION ANOLE
0
oJ
oJ
i'iir \
.9,,,
:;:
/'/
10
:~
120
:;
/
15
60 80100
Maximum Allowable Case Temp,
/
o!;< 20
","-
40
VS, On-State Current (50 or 60HZ)
/
"'~
t-:;:
< [ - 25
t-z
~o
z-
6 8 10
20
CYCLES AT 60 Hz
1
Maximum Conduction Power Dissipation
vs, On-State Current (50 or 60HZ)
30
I-
\2
V
I
.t
160
~ S 80
z",
/
20
;!:
""-
l~
u
t-
10
20
FULL CYCLE ON-STATE CURRENT (A)
(360' CONDUCTION)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710)326·6509 • TELEX 95·1064
10
I; ••• -
566
20
FULL CYCLE ON·STATE CURRENT(A)
(360' CONDUCTION)
PRINTED IN U,S,A,
GAIOO
GAIOI
GAI02
SCRs
Nuclear Radiation Resistant, Planar
FEATURES
DESCRIPTION
• Optimized for Radiation Resistance
• Fully Characterized for "Worst Case"
Design
• Post Radiation Design Limits Specified
• Passivated Planar Construction for
Maximum Reliability and Parameter
Uniformity
• Pulse Currents: to 30A
• Max. Trigger Current 20mA after
3 X 10" NVT
• Max. Holding Current 30mA after
3 X 10 NVT
The GA100 Series of Radiation Hard SCRs have been designed to provide
significantly greater radiation tolerance than conventional SCRs or Transistors with
the same current handling ability. This Series is capable of operation after exposure
to 10 '5 NVT.
The radiation resistant characteristics of the GAIOO series devices make them
particularly desirable for use under radiation environments in squib firing circuits;
inverters and converters; pulse generators; relay drivers; and modulator discharge
switches.
'4
ABSOLUTE MAXIMUM RATINGS
GAIOI
GAlOO
... 30V.....
Repetitive Peak Off-State Voltage, VORM .
D.C. On-State Current, IT
75'C Ambient ...
1OO'C Case .
Repetitive Peak On-State Current, ITRM
Surge (non-rep.) On-State Current, I TSM (Sq. Pulse-50ms) .
Peak Gate Current, IGM . .
................. .
Average Gate Current, IG1AV) .
Reverse Gate Voltage, VGR .......................................... .
Reverse Gate Current,IGR.
Storage Temperature Range .
Operating Temperature Range .....
60V.......
GAI02
.. 80V
. .... 200mA ....
..... ..400mA
............. up to 30A ..... .
....... 5A .... .
.. ... 250mA ..
. ........ 25mA ... .
.... 5V .. .
........ 3mA .... .
... -65'C to +200'C ... .
....... _65'C to +150'C ..... .
MECHANICAL SPECIFICATIONS
GA100
GA101
GA102
TO-18
~.210--ol.-.5MIN~
I
I
.~
r-[l=--r
.170
.195
.1780IA.
c:::::::::)
-L-
.230
.209 DIA.
c:;;=~
.020
.011 -! .002 0IA .
r-MAX.
-.001
II
--tj
Dimensions in inches,
lliJ]
567
_UNITRODE
GAlOO
GAlOl
GAl02
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Test
Preradiation
Limits
Symbol
IDRM
IGR
1ST
VGT
VT
I
dvc/ dt
tpg (on)
td
t,
tq
IDR"
VGT
Units
Test Conditions
Typ.
Max.
-
-
-
-
-
-
MIL-STD-7S0
Method 2071
-
.005
.01
2.3
0.5
1.1
OJ
0.1
0.1
3.5
OJ
1.5
10
-
1.0
1.0
20
1.5
3.0
30
I"A
I"A
mAo
V
V
mA
RGK = 220f!, VD"" = Rating
VGR = 2V
RGK = 220f!, VD = SV
RGK = 220f!, VD = SV
iT =,lA (pulse test)
RGK = 220f!
-
V/I"S
I"S
I"S
I"S
Min.
SUBGROUP 1
Visual and Mechanical
SUBGROUP 2 (25°C Tests)
Off-State Current
Reverse Gate Current
Input Trigger Current (Note 2)
Gate Trigger Voltage
On-State Voltage
Holding Current
SUBGROUP 3 (25°C Tests)
Off-State Voltage-Critical Rate of Rise
Gate Trigger-on Pulse Width
Delay Time
Rise Time
Circuit Commutated Turn-off Time
SUBGROUP 4 (l2SoC Tests)
High Temp Off-State Current
High Temp Gate Trigger Voltage
Post 3 )( 1014
NVT Design
Limits
Max.
Min.
1.8
0.4
0.8
0.3
20
-
-
0.1
-
40
.02
.02
.05
1.5
2.5
10
100
.17
.05
-
0.1
"
1.0
I'S
RGK == 220f!, VD ::: 30V '
IG = 2SmA, IT = lA, VD:::: 30V
IG = 2SmA, IT == lA, VD ::: 30V
IG = 2SmA, IT = lA; VD ::: 30V
IT ::: lA, iR = lA, RGK ::: 220f!
100
I"A
V
RGK ::: 220f!, VDR " ::: Rating
RGK = 220f!, VD = SV
0.1
-
Notes: 1. Off-State voltage ratings apply over the operating temperature range provided the gate is connected to the cathode through an
appropriate resistor, or other adequate bias is used.
2. Total Input Trigger Current, including current required by 2200 gate bias resistance.
DESIGN CONSIDERATIONS
1. Curve 1 shows the off-state current, IDR" of the SCR as a function of temperature. IDR" is increased by radiation damage,
but is not a design consideration at the recommended gate bias levels.
In order to optimize for radiation tolerance, reverse blocking capability has not been retained as a design feature. Devices
with reverse blocking capability can be provided.
2. Minimum critical dv/dt levels are defined in Curve 2. The dv/dt capability is improved after radiation because of reduced
triggering sensitivity. dv/dt is therefore a design consideration only prior to radiation.
3. Curves 3 and 4 show the limits of Gate Trigger Voltage and Total Input Trigger Current prior to radiation. 'Maximum design
limits after a total radiation dosage of 3 x 10'4 NVT is also shown. Curves 5 and 6 show the maximum limits of Gate
Trigger Voltage and Total Input Trigger Currents as a junction of neutron dosage. The minimum level of Tril;lger currenI'
prior to radiation is established by the shunting effect of a 220 ohm resistor between gate and cathode. After radiation
the device is less sensitive and Total Trigger Current will increase to a level relatively independent of the bias resistance.
The 220 ohm resistor is recommended since it raises the minimum preradiation trigger current to a level that is closer to
the past radiation limit and minimizes the percentage change in this parameter.
4. Current ratings shown in Curves 10, 11, and 12 apply after the device has been subjected to 3 x 10'4 NVT. Current ratings
prior to radiation are greater than the values indicated.
5. Gamma radiation produces a reversible ionization (leakage) current within the device which is directly proportional to the
Gamma flux level. When the Gamma flux level is in the range of 10 to 100 Roentgens per microsecond for burst durations
greater than 1 microsecond, the device will self trigger ON. For the radiation bursts associated with nuclear explosions,
the Gamma flux level will invariably cause device triggering at radiation levels significantly below the levels that would
produce detectable permanent device damage due to cumulative neutron dosage. In applications where the burst effect
triggering cannot be tolerated, it is necessary to reset the device after the radiation burst. Special circuit approaches such
as additional SCRs to c,owbar or otherwise cancel the output function may be used.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
• TELEX 95-1064'
twx (7111)' 326-6509
568
PRINTED IN U.S.A.
GAlOO
1.
2.
Off·State Current
1000 ,----..,---....,------,...----.---,.-,
100
~
10
~
500
~"
....e
f---+-
~
0:
..
::>
o
III
~
~
..J
1.0 .......c..-1-----:
u
;:
"'
//
.001 ' -_ _..L_ _ _ _--'-_ _--'_ _----'
25
50
75
125
100
150
~
2.0
~
0:
III
":=
~
f-----+--I---
= 5V
z
'"0:0:
f---+--f--I---+-+-+-+---1
2.0
RG:
VO
1.0
~""",--+-
SO
"'....
20
::>
10
""
= 2JOQ
= 5V
5
Sr 3 x 1014 NVT
....
25
50
75
100
125
ISO
-65
JUNCTION TEMPERATURE C'C)
-
5.
Max. Gate Trigger Voltage
vs. Neutron Dosage
3.5
6.
3.0
:(
E-
III
..J
/
0
2.0
1.5
-65'C
1.0
25'C
X
0.5
+125'C
1011
~~
l~
~~
-25
0
25
50
75 100 125
TJ
JUNCTION TEMPERATURE ('C)
=
150
Max. Input Trigger Current
vs. Neutron Dosage
....
100
SO
0:
III
""
....
VI
"'....
10 14
UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6S09 • TELEX 95·1064
LL
20
10 -_6S'C
~
===.1 25,C
::>
Q.
..
""X
V
10 13
NVT
/
::>
---- V
--
=' 2200
=5V
0
VI
.--/
10 12
RGK
200 I-Vo
'"0:0:
z
2.5
10 10
P~ERAO/AT/ON
500
I
=22011
f--- Vo = 5V
RGK
::;;
10 16
~
. ~OIAr/ION
b
~ ~~
Q.
..J
TJ
.."
.
10 15
200
0:
""'"
....
1.5 f---+--f-=''''-t~
-25
"''"........
10 14
Input Trigger Current
MIN.
'"
""
10 13
NVT
u
"'""',..---+--1---1--1--+-+-+----1
~
0:
10 12
1011
E-
....
> 0.5 F==-"'""'~~~~~~'R~~t....d=-4
>
./
1000
I
."....
.,../
V
:( 500
= 22011--+--+--1
RGK
L
::> 100
....
~
~
+l~5'C
4.
III
C3
10
0.5
10 10
,-----,r--r-,----,--,------,----,-----,
Vo
3.5
l
25 C
20
Gate Trigger Voltage
III
~
SO
~
JUNCTION TEMPERATURE C'C)
-
3.
3.5
-
I
-6~'C
100
i
.,.."
TJ
= 220Q
= 30V
Z
-~ .01 f-----,7'-!---+----+---I---I
~
I
u
::;;
::>
::;;
0.1 ~"""'-+--//
I
GAl02
Minimum Critical DV/DT
vs. Neutron Dosage
RGK
iii' 200 r-vo
1
GAlOl
+125'C
2
::;;
1015
0.5
10 10
10 16
569
1011
1012
L LL
,/ /
-V
1013
NVT
10 14
10 15
10 16
PRINTED IN U.S,A.
GAlOO
Holding Current
7.
GA101
GA102
8. Max. Holding Current vs. Neutron Dosage
500
;:.§.
;:-
200
I-
Z
.§.
w
100
::J
U
50
c:
c:
I-
..,
Z
c:
c:
Cl
z
0
20
Z
0
:I:
10
..J
X
«
::J
U
-65°C
/
+2S o C
V
..J
Cl
o
o
:I:
::;;
I
I
_Ie
_Ie
/
VI
V
/
V
+12S o C
RGK = 2201l
X
«
1.0
::;;
0.5 '-_--'-_ _.L-_....L_ _. L . . . _ . . . . L _ - - '
-25
0
25
50
75 100 125
TJ - JUNCTION TEMPERATURE (OC)
ISO
1012
1011
10 10
PA 50
Cl
o~
>
w
20
5.0 ~ I- If = S.OA
0.3
0.2
0.1
50 , - - - - , - - - r - - - , - - - , - - - , - - - ,
I-I f
LOA
1.0
~ ro f=::=t::=~===~~~
/
~
----- ~
/'"
::;;
10
~::=t::=~::::t=r'
S5.0 ~==+==t=:-I=r"
-
If - O.IA
~ 0.5
U)
z
~
i:'i
1.0
~
0.5
2.0
D..
;::
I 0.2
~==t=::+::::l--i"""
I----+---!---+--=.....::- ;-4.,....--\-'1
I----+---!---==+-=--+----'......--'.........
E 0.2 I-~::=+::=:~~~~
.}
D..
w
O.i
i
.05
1010
1011
10 12
1013
NVT
10 14
10 15
0.1
J
10 16
i----f---+---+--+-"".;:'
.05 oL--.....I.---...L--.L...--'--....L:'-~
25
50
75
100
125
ISO
TA
P A ,.- POWER DISSIPATION (W)
50
0.5
0.4
0.3
0.2
0.1
50,---,---,.----.....- - , - - - , - - - - ,
Z
~
z 10
~ 20~::=t::::4:::::t:--~~'~:::1
~ lO~==~~=:~::==t--=~~
I-
w
c: 5.0
c:
S 5.0 f--+_=+---.....JI-=".,."-.
::J
U
w
Cl 2.0
c:
U)
~
~
;::
2.0
I--+-'=t:::::----+---==~
::J
U)
1.0
0.5
f=::=I===t=:::-i-"'1'
i-----f-----+---P_d-
I
J
,-~,.-......_1
D..
I
1
.05
.05 '-_.....L._ _-'-_ _L....._....J._ _......,~.L..I
100
110
120
130
140
ISO
90
m.. -
0.2
,,
,
IT
"
'" '"
BE~ORE kURGk =
0
"
"
~'
',-
SOLID LINE: RATED ~ ,
BLOCKING VOLTAGE
MAY BE APPLI ED AFTER
SURGE
~'-
,,-
1"--.''-
DASH LINE: BLOCKING VOLTAGE TC~lIOO°C
MAY NOT BE SUSTAINED
FOR ~,I S~CON~S AFjER SYRGE
TA=~
0.1
0.1i-----f-----+----1---+-~~~~
TC
1.0
x:
« 0.5
w
E
D..
0.2 i----f-----+---t-='.......:::
w
c:
Surge Current vs. Time
~
20
I-
Z
x:
MAX. AMBIENT TEMPERATURE (OC)
m.. -
12.
11. Peak Current vs. Case Temperature
o
POWER DISSIPATION (W)
z
10
"I
~
10 16
I-
S 2.0 I---~
1015
0.4
~
~
10 14
10. Peak Current vs. Ambient Temperature
9. Max. On-State Voltage vs. Neutron Dosage
w
1013
NVT
10-5
10"
10-'
10-' 10-'
10
10'
10'
SURGE DURATION (5)
MAX. CASE TEMPERATURE (OC)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173. TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
570
PRINTED IN U.S,A.
GA200
GA200A
GA201
GA201A
SCRs
Nanosecond Switching, Planar
GB200
GB200A
GB201
GB201A
FEATURES
DESCRIPTION
•
•
•
•
•
The Unitrode Nanosecond Thyristor Switch combines the turn-on speed of logic
level transistors with the high current switching capability inherent in SCRs. With
this device engineers can now design circuits capable of switching pulse currents of
lA in less than IOns or up to 30A in less than 20ns.
Rise Time: lOns
Delay Time: IOns
Recovery Time: 0.5 I's
Pulse Current: to 100A
Turn-on with 20ns, 10 mA Gate Pulse
The GA/GB200 series is specifically designed for use as switching elements in high
speed, low-to-medium power radar pulse modulators. Other applications include
switching elements for phased array radars, laser pulse drivers, harmonic wave-form
generators, line drivers and high current replacements for avalanche transistors.
For applications requiring higher voltage levels, Unitrode has developed several
"series string" circuits which allow the series connection of virtually an unlimited
number of devices for voltages as high as 2000V with no significant decrease in
speed. These circuits are described in Unitrode Design Nole #14.
ABSOLUTE MAXIMUM RATINGS
GA200
GA200A
Repetitive Peak Off-State Voltage, VDRM .
Repetitive Peak On-State Current, ITRM .
D.C. On-State Current, IT
70·C Ambient .
70·C Case.
Peak Gate Current, IGM
Average Gate Current, IGIAVj
Reverse Gate Current, IGR .
Reverse Gate Voltage, VGR .
Storage Temperature Range .
Operating Temperature Range
GA201
GA201A
.... 60V ..
GB200
GB200A
GB201B
lOW ........................... 6OV ..... .
.. lOOV
.. .. up to 100A .
... up to 100A ...
........ 200mA ... .
. . . ..... 400mA .. .
... 250mA .. .
... 25mA ... .
... 3mA ..
. ...... 5V .. ..
.. .6A
... 250mA .. .
............................. 50mA .. .
. ............................ 3mA. ..
.................................
........ 5V ...
.......... -WC to +200·C.
. .. -65·C to +150·C ..
MECHANICAL SPECIFICATIONS
GA200 GA200A GA201
GA201A
TO-18
GB2DO GB200A GB201
GB201A
TO-59
~
IL.21Ot
.170
.5MIN·_
r-G=----r
1
.195
.~
.230
~.209DIA.
II ."nZ!.017
-----11'-MAX.
+.002 D1A .
-.001
Dimensions in inches.
055 +.010
I'::~ HEX
J
..-~IA.-::.g~t~
.
CATHODE
:~~~
•
GATE
ANODE
Dimensions in inches.
NOTE: Anode connected to case.
571
lli1J
_UNITRaDE
GA200 GA200A GA201 C;A201A
GB200 GB200A GB201GB201A
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
Symbol
Delay Time
td
Rise Time GA200, 200A, GB200, 200A
t,
Rise Time GA201, 201A, GB201, 201A
t,
Gate Trigger on Pulse Width
Circuit com mutated Turn-off Time
GA200,'201, GB200, 201
GA200A, 201A, GB200A, 201A
Typ.
Min.
,
Units
30
ns
ns
IG == 20mA, IT == lA
IG == 30mA, IT == 1A
ns
ns
Vo == 60V, IT == lA (1)
Vo == 60V, IT == 30A (1)
-
20
10
-
-
15
25
-
25
10
20
20
-
ns
ns
Vo == 100V, IT == 1A (1)
Vo == 100V, IT == 30A (1)
tpg{on}
-
.02
.05
p'S
IG
== lOmA, IT == 1A
tq
-
0.8
2.0
p'S
-
IT
0.3
0.5
== lA, IR == lA, RGK == lK
tq
I'S
-
.01
0.1
I'A
VORM == Rating, RGK
-
20
100
I,A
VORM == Rating, RGK == lK,
150'C
-
1.0
10
mA
.01
0.1
mA
== 30V, RGK == 1K (2)
VGRM == 5V
Vo == 5V, RGS == 10K
Vo == 5V, RGS == lOOn, T == 25'C
T == +150'C
Off-State Current
IORM
Reverse Current
IRRM
Reverse Gate Current
IGR
-
Gate Trigger Current
IGT
-
10
200
I,A
0.4
.06
0.75
V
0.10
0.2
-
V
Gate Trigger Voltage
VGT
On-State Voltage
V,
Holding Current
IH
Off-State Voltage-Critical Rate of Rise
Notes: 1. IG
==
Test Conditions
Max.
dvldt
== lK
VRRM
-
1.1
1.5
V
0.3
2.0
5.0
mA
Vo
0.05
0.2
-
mA
T == +150'C
20
40
-
VII's
IT==2A
== 5V, RGS == lOOn, T == 25'C
VD == 30V,R GK
== lK
lOmA; Pulse Test, Duty Cycle <1%.
2. Pulse test intended to guarantee reverse anode voltage capability for pulse commutation. Device should not be operated in the
Reverse blocking mode on a continuous basis.
1000
...s
Switching Speed (Typical)
GAIGB200 Series
,----.,--,-------y-----,
Peak Current vs. Pulse Width
GA200 Series
DUTY CYCLE
100
DUT
=.005%
DUTY CYCLE
.0001 %
y CYCLE:~
OR LESS
-. l%---=--.,. ~
w
::;;
j:
g~~~ g~gt~ =.~;;;,----.I
I
--=:::::
10
DUTY CYCLE - .5~2
DUTY CYCLE
1%
=
DUTY CYCLE _ 5%-"
DUTY CYCLE
l L -______- L______
.1
~
______
10
IT - ANODE CURRENT (A)
100
tp -
NOTES: 1. v. = Rated V.RM
2. TA = 25'C
3. I. 20mA
4. td 20ns TYPICALLY FOR ALL
TYPES INDEPENDENT OF ANODE
CURRENT
100
10
PULSE WIDTH (~s)
NOTES: 1. DATA BASED ON ON-STATE
lSOoC.
VOLTAGE GRAPH AT Ti
BLOCKING VOLTAGE MAY BE
APPLIED IMMEDIATELY AFTER
TERMINATION OF CURRENT
PULSE.
2. TA
75°C
=
=
=
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617)'861-6540
TWX (710, 326·6509 • TELEX 95·1064
T 10%--"
~
=
572
PRINTED IN U.S.A.
GA200 GA200A GA20l GA201A
GB200 GB200A GB201 GB201A
~1000
....
zUJ
Peak CUrrent vs. Pulse Width
GB200 Series
~1000
....
zUJ
0:
0:
0:
0:
'"
U
UJ
~
~TY
S
CYCLE .1% OR LESS
DUTY CYCLE .. 5%
DUTY CYCLE '"
OUTY CYCLE
5%
OUTY CYCLE
10%-'
"a.~
i=
UJ
DUTY CYCLE=l%
100
Z
o
Eia.
'"
U
en
~
Peak Current vs. Pulse Width
GB200 Series
DUTY CYCLE= .05%
100
Vl
Z
o
~
UJ
~
10 OUTY CYCLE _ 200~:::J
DUTY CYCLE = 50%
g~:::~ g~m = i~;:--Y
10
i=
i=
UJ
a.
UJ
.1%
DUTY CYCLE
"«a.
--.;;;:
DUTY CYCLE
DUTY CYCLE _
5%~
DUTY CYCLE
10%--"
.001%
OR LESS
DUTY CYCLE
~
=::::::::::::::
T
UJ
0:
0:
I
I
to -
DUTY CYCLE
50%
1
10
100
.1
PULSE WIDTH (.5)
10
to -
NOTES: 1. DATA BASED ON ON-STATE
1SO·C.
VOLTAGE GRAPH AT T,
BLOCKING VOLTAGE MAY BE
APPLIED IMMEDIATELY AFTER
TERMINATION OF CURRENT
PULSE.
2. Tc = 75'C
100
PULSE WIDTH (.5)
NOTES: 1. DATA BASEO ON ON-STATE
VOLTAGE GRAPH AT T, = 1SO·C.
BLOCKING VOLTAGE MAY BE.
APPLIED IMMEDIATELY AFTER
TERMINATION OF CURRENT
PULSE.
2. TA = 75'C
=
On-State Current VS. Voltage
GA/GB200 Series
Surge Rating Maximum
GA/GB200 Series
~
z
....
100
UJ
0:
a:
'"
= 25'C
~
....
zUJ
a:
u
....UJ
«
....
II!
10
Z
0
0:
'"
100
"«a.
u
OJ
OJ
....
«
....
OJ
Z
0
>
i=
i=
I
a.
In
10
OJ
OJ
...:-
0:
Z
0
z
I
.1
.1
10
J
100
VrM-'---ON-STATE VOLTAGE (V)
tp -
10
PULSE WIOTH (.5)
100
NOTES: 1. BLOCKING VOLTAGE MAY NOT BE
APPLIED FOR .001 SEC. AFTER
TERMINATION OF SURGE PULSE
AS JUNCTION TEMPERATURE
WILL EXCEED 1SO·C.
2. Tc 75'C
=
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 3~6'6S09 •. TElEX 95.~0~4
' ,.• '
573
PRINTED IN U.S.A.
SCRs
GA300
GA300A
GA301
GA301A
Commercial Nanosecond SWitching,
Planar
FEATURES
• Rise Time: 10ns
• Delay Time: 10ns
• Recovery Time: 0.51's
• Pulse Current: to 100A
• Turn-on with ~Ons, 10mA gate pulse
GB300
GB300A
GB301
GB301A
DESCRIPTION
Unitrode's Nanosecond Thyristor Switch combines the turn-on speed of logic level
transistors with the high current switching capability inherent in SCRs. With this
device, engineers can now design circuits capable of switching pulse currents Clf
1A in less than 10ns or up to 30A in less than 20ns.
The GA300, GB300 Series is specifically designed for ~s~a~ the switching element
in high speed laser diode pulse drivers. Other application.sJnclude electronic
crowbars, harmonic wave-form generators;. line drivers'and general purpose replacements for avalanche transistors. For applications requiring higher. voltage levels,
Unitrode has developed several "series string" circuits which allow' the series connection of an unlimited number of devices for voltages as high as.2000V with no
. significant decrease in speed. These circuits are described in Unitrode's
Design Note #14.
ABSOLUTE MAXIMUM RATINGS
GA300
GA300A
Repetitive Peak Off-State Voltage, VORM
Repetitive Peak On-State Current, IrRM,.
Peak Gate Current, IGM ........................ .
Average Gate Current, IG(lIv) .................... .
Reverse Gate Current, IGR .... .
Reverse Gate Voltage, VGR .
Storage Temperature Range ................... .
Operating Temperature Range .
GA301
GA301A
HH .. HH .... 60V
GB300
GB300A
GB3D1A
GB3Dl
100V............ .
.. H.HH 60V ...... H
.. ... 100V
........ up to 100A
H.·.'·'H ..... H........... up to 100A
. .......................... 250mA
250mA .... .
..........25mA ..
. .... 50mA .... .
.......................... 3mA .................. ,
3mA ........ .
..H ...... H....... HH ..H .. H..... H.. H5V.H .. HHHH .. ..
.. ........ 5V ....... ..
........ -65·C to +150·C
.. ................... O·C to +125·C.
•
••••• H
•••
H
. . . . . . . . . . . . .· . , . . . . . . . . . . . . . . . . . . . .
MECHANICAL SPECIFICATIONS
GA300 GA300A GA301
GA301A
TO-18
GB300 GB300A GB301
GB301A
TO-59
-r-a=-r
r:;i:t'M1Nl
.195
.178 CIA.,
....1.....J
.230
c:::::::::t '.209 CIA .
c:;:= 1
II .02~.017
-! jt-MAX.
+.002 01A .
-.001
Dimensions in inches.
'I':~~ 1
~IA'H~gt~
.
055 +.010
HEX
CATHODE
.215
1. 18 '
GATE
ANODE
Dimensions in inches.
1/79
NOTE: Anode connected to case.
574
ruJJ
_uNiTRODE
GA300, GA300A, GA30l, GA30lA
G8300, G8300A, G830l, G830lA
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Symbol
Test
Min.
Typical
t,
-
20
10
15
25
10
20
tq
-
tpg (on)
-
Delay Time
td
Rise Time (Note 1)
GA300, 300A, G8300, 300A
t,
Rise Time (Note 1)
GA30l, 30lA, G8301, 30lA
Circuit Commutated Turn-off Time
GA300, 301, G8300, 301
GA300A, 30lA, G8300A, 30lA
Gate Trigger-on Pulse Width
-
Off-state Current
IORM
Reverse Current (Note 2)
IRRM
-
Gate Trigger Voltage
VGT
0.4
0.10
Gate Trigger Current
On-state Voltage
Off-state Voltage - Critical Rate of Rise
Reverse Gate Current
Holding Current
-
IGT
VT
dv/dt
-
IG'
-
IH
0.3
0.05
15
Max.
Test Conditions
Units
30
= 20mA, IT = lA
= 30mA, IT = lA
= GOV, IT = lA
= GOV, IT = 30A
100V, IT - lA
= 100V, IT = 30A
IT = lA, I, = lA, RGK = lK
IG
IG
VD
VD
VD VD
ns
25
ns
20
-
ns
0.8
2.0
pS
0.3
0.5
1'5
0.02
0.01
20
1.0
O.G
0.2
10
1.1
30
0.01
2.0
0.4
0.05
0.1
100
10
0.75
1'5
-
0.1
S.O
-
(Note 1)
IT - lA, I, _ lA, RGK _ lK
=
IG =: 10m A, IT
lA
VDRM - Rating, RGK - lK, T _ 25'C
VO'M
Rating, RGK
lK, T l25'C
(Note 2)
VRRM
30V, RGK - lK
Vo - 5V, RGS _ lOOn, T _ 25°C
Vo
SV, RGS
loon, T
l2SoC
VD 5V, RGS
10K
IT - 2A
Vo - 30V, RGK - lK
VG, - SV
Vo - SV, RGK - lK, T _ 25°C
Vo
5V, RGK
lK, T 125°C
"A
"A
mA
V
V
}1A
V
V/}1S
mA
mA
mA
200
1.S
(Note 1)
=
=
=
=
=
=
=
=
=
=
=
=
=
Notes: 1. I.
lOrnA; Pulse Test, Duty Cycle < 1%.
2. Pulse test intended to guarantee reverse anode voltage capability for pulse commutation. Device should not be operated in the reverse blocking mode on a continuous basis.
Switching Speed vs. Current
GAl GB300 Series
Peak Current vs. Pulse Width
GA3DO Series
1000 , - - - - - , Notes:
'"
'"'"
;:
1.
2.
3.
4.
$1000
Vr = Rated V DR ,)
TA = 25"C
I. =, 20mA
t;) ::::: 20ns typically for all types
independent of anode current.
I-
Z
"'
'"'"
::>
u
"'~
I-
:;; 100 r - - - - - - t - - - - - t - - - - - - - - - - - j
en
Z
"'en
'.«"
..J
()
~
.05Z9"
"'
."'
IT -
______
10
ANODE CURRENT (A)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064
.......::::
5%. .
'"I
10%. .
~
~
_
_
_
_
_
_
_
_
-
L
w
L -_ _ _ _ _ _ _ _
~~
.1%
;:
I
.1
rDuty Cycle = ,0001% or less
~ 10 .5%-"
;:
1%~
10 t:~~~--~~~~~t---------l
1
t---__
.01 % - L,005%
o
iX
Ii:
100
Notes: 1. Data based on On-State Voltage
graph at T, = 12S"C.
B!ocking Voltage may be applied
immediately after current pulse
termination.
2. TA = 75"C.
..:."
100
1
.1
Tp -
575
10
PULSE WIDTH (~s)
100
PRINTED IN U.S.A.
GA300, GA300A, GA301, GA301A
GB300, GB300A, GB301, GB301A
Peak Current vs. Pulse Width
GB300 Series
Peak Current VS. purse Width
GB300 Series
gI000,----------,----------,----------,
Notes: 1. Based on On-State Voltage
z
graph at T;
125·C.
0:
Blocking Voltage may be applied
0:
immediately after current pulse
::>
()
termination.
g1000
...
Notes: 1. Based on On-State Voltage
graph"at T; = 125·C.
Blocking Voltage may be applied
immediately after cUlent pulse
1o/~~: termination.
.5%, 2. T c = 75·C.
!ZUJ
0:
0:
::>
()
UJ
!:c 100
'"!:c 100
~ !r-Duty Cycle = .1% or less
~
Z
~.
o
'i5"
O%~
Q.
UJ
20%-:"
;::
50%-'
> 10
2. TA = 75·C ....,....--=--:---I-:-:-:-:c-:--:-__..,
Duty Cycle == .001 % or less
~
Z
o
---.
5%
=
'"
'"i5
Q.
--=:
'">
;::
10
5%
;::
E
}O%
'"0.
'"0:
Q.
UJ
0:
I
I
J
.1
Tp -
10
PULSE WIDTH (#5)
50%
J
1
100
1
.1
Tp -
On-State Voltage VS. Current
GA/GB300 Series
Surge Rating
GA/GB300 Series
g
!Z 1000
100
Notes:
'"0:0:
()
g
UJ
0:
0:
'"
~
10
I-100
o
::>
UJ
'i5"
~
'"
>
I
E
'"Z
.....
of surge pulse as junction
temperature will ereed 125·C.
2. TA = 75·C.
--r---
Non~Repetitlive Peak curre~
Z
<.)
1. Blocking Voltage may not be
applied for O.ls after terminatioh
::>
...z
100
10
PULSE WIDTH (#s)
0.
z0
;::
10
0.
..:
0:
o
z
I
.1
.1
V'M -
10
DN.STATE VOLTAGE (V)
UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
1
.1
100
Tp -
576
10
PULSE WIDTH (#5)
100
PRINTED IN U.S.A.
TRIAC
18202
18204
18206
.8 Amp. RMS, Plastic TO-92
600V
FEATURES:
• Forward Current: .SA RMS
• Voltage Ratings: to 600V
• High Surge Current: SA
• Gate Sensitivity: 2mA Typical, 1st & 3rd Quad
• Hard Glass Passivated Junction
• Economical TO-92 Package
DESCRIPTION:
This series of low current triacs is
designed specifically for high volume,
low cost AC switching applications.
Supplied in the economical TO-92
package, these devices feature fu II
hard glass passivated junctions and
rugged mesa construction.
TYPICAL APPLICATIONS:
• Appliance Control Circuitry
• Speed Controls
• AC Switches
• Logic to A.C. Interface
MAXIMUM RATINGS
18202
18204
18206
Repetitive Peak Off·State Voltage, VCRM ................... 200V...
.......... 400V.................... 600V
Repetitive Peak Reverse Voltage, VRRM .
.......... 200V.
............. 400V... .. . .......... 600V
On-State Current, IT RMS At 6S·C Case, 180· Conduction Sinewave .SA
Surge (Non-Rep.) On-State Current, ITSM " ..
SA
Peak Gate Current, IGM ..
............. .............. ............ .l.OA
Peak Gate Power, PGM
........ .lW
Average Gate Power PG (AV.)..
...........................1W
Reverse Gate Voltage, VGR .. .
.................... 6V
Storage Temperature Range, TISTGI ..
.............................. -SS·C to +lSO·C
Operating Temperature Range, TIOP1 ................................................... -55·C to +110·C
Circuit Fusing Consideration, 12t@ -40 to 100·C, 1.0 to 8.3ms.. .......2SA2S
MECHANICAL SPECIFICATIONS
IB202, IB204, IB206 SERIES
TO-92
inches
millimeters
.135 MIN. 3.43 MIN.
8 .019-.016
.48- .41
C .SOO MIN. 12.7 MIN.
D .210-.170
5.33-4.32
.20!;-.175
5.21-4.45
~
1.40-1.14
F -~65!;-.045
2.67-2.41
G .10!;-.095
2.67-2.03
H .105-.080
4.19-3.18
J .16!;-.125
A
I-MT2
2-GATE
3-MTl
6-79
577
lliJJ
_UNITRDDE
18202 18204 18206
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
Symbol
Off-State Current
-
.1
-
.1
rnA
rnA
VORM = Rating, Tc = 100'C
-
-
5
10
rnA
rnA
Vo = 12V Quadrants 1, 3 (+ +, Vo = 12V Quadrants 2, 4 (+ -, -
2.0
3.0
V
V
Peak On-State Voltage
VTM
Holding Current
IH
Steady State Thermal Resistance
R9J •c
Thermal Resistance
R9J _A
10
'"
TJ=12S'C I
If)
.1
II
~
z
~
.:
rnA
-
50
'C/W
-
200
'C/W
'"~:;;
.01
ITM = l.OA Peak
Vo= 12V
~o
5
"' ....
0..
If)
IZ
TJ=r'c
Steady State
I,
.........
,,~
....
r--
2
I
-
}.O 0
10
CYCLES AT 60Hz
1
1.0
.1
10
9
8
"''''
"''''
zg
~
-)
+)
12V Quadrants 1, 3 (+ +, - -)
12V Quadrants 2, 4 (+ -, - +)
Maximum Allowable Non-Repetitive Peak
On-State Current Following Rated
Lead Conditions
~~
;: -
;}
1
:i:
~
V
15
V
o
Vo =
Vo =
1.8
Maximum On-State
Characteristics
'"'"
:::>
Test Conditions
-
V&T
lilz
Units
-
Gate Trigger Voltage
°:::>
Max.
IRRM
I&T
'"~
Typical
IORM
Gate Trigger Current
5:
!Z
Min.
100
10
V, -INSTANTANEOUS ON·STATE VOLTAGE (V)
~~
~p
~~
1
~w
.9
1/
/
"'Z
::;;'"
I ~ .1
o
o
.8
a~
.7
UJ
.6
C/)
'\
~
SQ .5
/
~ ~ .5
~ ~ .4
~::l .3
~ C .2
~~
",;:
V
.8
~ I~ .7
~ t: .6
Il.0~
Maximum Allowable Case Temperature
VS. On-State Current (60Hz)
Maximum On-State
Power Dissipation (60Hz)
'\
'? t; .4
z:::>
~ c .3
."'.
~ 8 .2
/
~
.1
~-
°60
;;;;~
2
~
A
~
•
3
~
Tc
I, ""'" - RMS ON-STATE CURRENT (AJ
(360' CONDUCTION SINEWAVE - 60 iiZ)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) '326-6509 • TELEX 95-1064
578
1:'-..
I ::,
.~
70
80
90
100
110
'""1- MAXIMUM
ALLOWABLE
CASE TEMPERATURE ("C)
PRINTED IN U.S.A.
ID100-ID106
SCRs
.5 Amp, Planar
FEATURES
DESCRIPTION
•
•
•
•
This Data Sheet describes Unitrode's line of hermetically sealed industrial SCRs
designed for low-voltage, low-current sensing application. The ID 100 Series is
packaged in a TO-18 metal case with Unitrode's unique oxide passivated
junctions, offering the highest degree of reliability and parameter stability for
any device in its price range.
Typical applications include lamp driving, relay driving, sensor, pulse-generating
and timing circuits.
Voltage Ratings: to 400V
Maximum Gate Trigger Current: 200!,A
Hermetically Sealed TO-18 Metal Can
Planar Passivated Construction
ABSOLUTE MAXIMUM RATINGS
10100
10101
10102
10103
10104
10105
10108
Repetitive Peak Off-State Voltage, VORM ............. 3OV ........... 6OV ............ 100V ... . .... 150V... . .... 200V.. .
. 300V ........... 400V
Repetitive Peak Reverse Voltage, VRRM
.... 30V ........... roV...
lOOV... ..
150V.... ...... 200V.. .... . ... 300V... .. ...... 400V
On-State Current, 'T
75'C Ambient .
... 250mA ..
... 0.5A
lOO'C Case
.................6A....
Repetitive Peak On-State Current, 'TRM
upto 30A.
Peak One Cycle Surge (Non-Rep.) On-State Current, ' TSM ..
... 250mA ....
Peak Gate Current, IGM .
..... 25mA ...
Average Gate Current, IGIAV ) .
.W ..
Reverse Gate Voltage, VGR ...
Storage Temperature Range
.. -65'C to +150'C ..
Operating Temperature Range
.-65'C to +125'C ....
MECHANICAL SPECIFICATIONS
10100-10106
TO-18
5MIN ~
I~.21ot
.170
.
'_I
-r-Cl=~
~
.195
.230
.~
.209 DIA.
II .0'oZ:!.0l7 o·.OO'OIA
---tj
r-MAX .
-.001'
Dimensions in inches.
[ill]
579
_UNITRODE
10100-ID106
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Symbol
Test
Off-State Current
IORM
Reversing Current
IRRM
Gate Trigger Current
IGT
Gate Trigger Voltage
VGT
Peak On-State Voltage
VTM
Holding Current
IH
Turn-on Time
ton
Circuit Commutated Turn-off Time
Min.
Typical
Ma •.
0.4
0.10
-
S.O
10.0
10
IS
5.0
SO
100
-
0.55 '
--'
1.0
-
-
0.5
8.0
15.0
-
tq
-
50
100
200
SOO
0.8
1.0
-
1.7
5.0
10.0
-
Test Conditiori~
Units
'"
VORM - Rating, RGK - lK, T _ l2S'C, 10100-10104
VORM = Rating, RGK = lK, T = 12S'C, 10105-10106
VRRM - Rating, RGK - lK, T _ 12S'C, 10100-IDl04
pA, V RRM = Rating, RGK = lK, T = l2S'C, 10105-IDl06
p.A
Vo - 5V, RGS = 10K
p.A
Vo = 5V, RGS = 10K, T = -40'C
V
Vo = SV, RGs= lOOn
V
Vo = SV, RGS = lOOn, T = -40'C
V.
Vo SV, RGS = lOOn, T = 12S'C
V
.I TM = 1 Amp Pulse
RGK ..:. lK
rnA
rnA
RGK = lK, T = -40'C
p's
IG = lOrnA, IT = lA, Vo - 30V
p's
IT = IR = lA, RGK = lK, 10100-10104
p's
IT = IR = lA, RGK = lK, 101OS-10106
/LA
/LA
p.A
=
Note: Blocking voltage ratings apply over the full operating temperature range, provided the gate is connected to the cathode through a
'
resistor, 1000 ohms or smaller, or other adequate bias is used.
~ate
Trigger Current VS. Junction Temp.
Gate Trigger VOltage VS. Junction Temp.
1.4
;(
..:;
,
3
~
I-
'" 1.2
Z
'"
IX:
IX:
~
'"<.'<.'JJ
ii:
I-
.
.
'"
~
o
U
IX:
I-
~
2
a
~~
r---'i~1o""_
>
IX:
~
!::::::: ~
-1
~
I
'
'"
.6
-:J.
u
.4
~
<.'J
~
~
I-
..J
0..
.8
<.'J
ii:
.2
>~
-25
TJ
a
25
50
75
100
125
ISO
-65
-25
JUNCTION TEMPERATURE ('C)
-
TJ
1000
I'\.
;( 20
E.
RGK
= lOa!)
1 - .J
~
U
<.'J
Z
oJ:
0:
~
r--.5
.2
1
_I
1"- t-- r--
I~GK = lKU
..J
~
u
-
.1
RGK
=
lOKn
I~
.05
-65
-25
T, -
r---
--
r-.
1\
r--
50
'l'.
'"
""
......
100
125
ISO
VD ·= Rated VORM
i'---
......
........
"
\
:---...
I\.
I f
r---
RGK
...........
RSK -
_,100!)
-:],
lKfl
r---......
'\
r----- ...........
...... ~
........... ~10j
........
25
75
dv/dt VS. Junction Temp.
50
10
SO
25
JUNCTION TEMPERATURE (;C)
-
Holding Current VS. Junction Temp.
o
Vo = 6V
f::::::: r:::;
1"
I
-65
'"IX:IX:
;;::::
Rated Vo
0:
~
_~-2
!Z
~~
75
100
125
1
150
-65
JUNCTION TEMPERATURE C'C)
UNITRODE CORPORATION. 5 FORBES ROAD
LEl(INGTON, MA 02173 ·,TE)'. (617) 861-6540
TWX, (.710) 326'6509 • T,E,L~ 95-1064
-25
TJ
580
-
a
1
25
50
75
100
125
150
JUNCTION TEMPERATURE ('C)
PRINTED IN U.S.A.
10100·10106
Gate Pulse for Turn·On vs. Pulse Gate Current
.. -
Circuit Commutated
Turn·Off Time vs, Junction Temp.
.~---
10
1.
:\
~~
OJ-
2. T,
.'\
:;;z
-0
z·
-z
:;;'"
.,JOJ
".-
.5
"''''
~fZ
1-..,
.2
I~
-OJ
go.
.1
"I-
.05
-..,
~C3
'T :::::
lA, Vo
=.
100
Rated VORM
'""
UJ
20
5~
10
I-~
~
10105,106
~~
I
~
_1',1'4
,,,. 1'4~·-
\~-;:;- ~
,'"
I,~............. V
~~
J'-.,
......
~e
'-1I;":
J-... b
·OJ
-:;;
:;;
.5
o
'"
.01
.01 .02
.05 .1
.2
.5
10
iG - PULSE GATE CURRENT (rnA)
.2
.1
20
~5
10
~
z
.-
I-
Z
OJ
'"
;":
(Jl
11
UJ
0.1
0.2
0.5
I
.20
.10
.05
> .02
~
I
.01
.50
"I
I
.02
150
0:.
UJ
I
I
125
"'"
I
.: .05
100
0
(Jl
.1
75
Z
I
S .2
50
UJ
I-
II
.5
25
UJ
0:
0:
jI
UJ
0
JUNCTION TEMPERATURE ('C)
~
~ 25'C ~/~ l!25,d
UJ
0:
0:
-
Current vs. Power Dissipation
J
TJ
-25
TJ
Current VS. On State Voltage
zo
I,
I
.
-;:;\.~,\~
0100·10~
~p
"'z
.,Jo:
"- 1'-.
.02
a
JJfii$f
I
50
= 25'C
i
1.0
.2.0
5.0
10
V,-TYPICAL ON·STATE VOLTAGE (V)
UNITROOE CORPORATION,S FORBES ROAD
LEXINGTON, MA 02173 ' TEL. (617) 861.6540
TWX (710) 326·6509 ' TELEX 95·1064
.01
~--+-----+----+---+----.-t----~--~
.005 ' -__-'--____' -__-'--__-'-____' -__-'----'
.01
.02
.05
.10
.20
.50
1.0
2.0
W - MAXIMUM ON·STATE
POWER DISSIPATION (W)
20
581
PRINTED IN U.S.A.
SCRs
10200·10203
10300·10301
1.6 Amp, Planar
FEATURES
DESCRIPTION
•
•
•
•
This Data Sheet describes Unitrode's line of hermetically sealed industrial SCRs
designed for high-voltage, medium-current control applications. The Series is
packaged in a TO-39 metal case with Unitrode'sunique oxide passivated junctions
to ensure reliability and parameter stability.
Typical applications include relay equipment, motor controls, process controllers
and pulse generators.
Voltage Rating: to 200V
Max. Gate Trigger Current: 200I'A
Hermetically Sealed Metal Can
Planar Passivated Construction
ABSOLUTE MAXIMUM RATINGS
ID2DD
ID2Dl
ID2D3
ID2D2
ID3DD
ID3Dl
Repetitive Peak Off-State Voltage, VDRM ..... .
............. 50V ............. 100V............ 150V ............... 200V......
300V.....
. 400V
Repetitive Peak Reverse Voltage, VRRM .......................... .. 50V .............. 10OY. ............ 150V ................ 200V ............. 300V.....
. 400V
Non-Repetitive Peak Reverse Voltage, VRSM «5ms) .... 75V .............. 150V ................ 225V.....
.... 300V ................ 400V .............. 500V
On-State Current, IT(RMS)
.................... ..... 1.6A ... .
70°C Case
.........................450mA .... .
75°C Ambient .
......... 15A .................................... .
Peak One Cycle Surge (Non-Repetitive) On-State Current, I TSM .
Repetitive Peak On-State Current, ITRM .
............................. up to 30A ..
. ........ 100A! I'S .
Rate of Rise of On-State Current, di/dt ....
....... O.83A's .... .
I't (for times> 1.5 ms) .
...... 250mA .... .
Peak Gate Current, IGM .
.... 25mA ... .
Average Gate Current, IG(AV) .
. ..................................................... ........... W ......................................................... .
Reverse Gate Voltage, VGR .
Storage Temperature Range
... -65'C to +150'C ......................................... .
Operating Temperature Range ..................... .
............ -40'C to +llO'C ... .
MECHANICAL SPECIFICATIONS
10200-10203
[ '260~
.240
.5 MiN.
10300·10301
T0-39
l
:i~~1~;~
- --
------.335
J
-
-
'.017
-
~ :~~
.305
Dimensions in inches.
[ill]
582
_UNITRDDE
10200-10203, 10300-10301
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Test
Symbol
Off-State Current
IORM
Reverse Current
IRRM
Gate Trigger Current
IGT
On-State Voltage
VGT
Peak On - Voltage
VTM
Min.
Typ.
Max.
Units
-
5
10
-
0.4
0.52
0.7
10
100
10
100
200
SOO
0.8
1.0
-
pA
pA
pA
pA
pA
pA
V
V
V
V
mA
mA
mA
o.s
0.2
Holding Current
Off-State VoltageCritical Rate of Rise
Turn-on Time
Circuit Commutated
Turn-off Time
'H
dv/dt
t
tq
--,
0.3
0.4
0.2
-
0.7
-
-
2.2
3.0
6.0
20
-
VII's
1.0
-
I'S
-
40
ps
Test Conditions
=
= =
=
= =
=
= =
=
= =
=
=
=
=
=
=
=
=
=
=
=
=
=
=
= =
= =
VORM = Rated, RGK = 1K, T = 110°C
IG =10mA, 'T = IN Vo = 30V, T =25°C
IT = iR = lA, RGK = 1K, T = 25°C
VORM Rating, RGK 1K, T 25°C
VORM Rating, RGK 1K, T 110°C
VRRM
Rating, RGK
1K, T 25°C
VRRM
Rating, RGK
1K, T 110°C
Vo SV, RGS 10K, T _ 25°C
Vo SV, RGS 10K, T -40°C
Vo SV, RGS _ loon, T _ 25°C
Vo SV, RGS lOOn, T -40°C
Vo SV, RGS lOOn, T 110°C
'T 4 Amp Pulse, T 25°C
RGK - 1K, T _ 25°C
RGK 1K, T _40°C
RGK 1K, T 110°C
Note: Blocking voltage ratings apply over the full operating temperature range, provided the gate is connected to the cathode through a resistor, 1000 ohms or smaller, or other adequate bias is used.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
583
PRINTED IN U.S.A.
IPIOO-I PI04
SCRs
.8 Amp RMS, Plastic
FEATURES
DESCRIPTION
•
•
•
•
•
•
This plastic series features very fast switching performance, low forward voltage
drop and a high degree of reliability and parameter stability. All units are fully planar
passivated and are packaged in a rugged TO-92 case, constructed from a special
epoxy compound that features excellent moisture resistance providing stable performance under high humidity conditions and good thermal transfer characteristics.
Voltage Ratings: to 400V
Forward Current: O.8A RMS
Surge Current: 6A, 8 ms
Gate Sensitivity: 200 p.A max.
Planar Passivated Process
TO-92 PlastiC Package
TYPICAL APPLICATIONS
Lamp Driving
Relay Driving
Relay Replacement
Alarm Systems
Counters
Remote Controls
Process Controls
Pressure Controls
High Current SCR Driving
Display Systems
Timers
Touch Switches
Temperature Controls
and many other current sensing and control applications.
ABSOLUTE MAXIMUM RATINGS
IPtOD
IPtOt
IPt02
IPt03
IPt04
Repetitive Peak Off-State Voltage, VORM .
.. .. 30V.... .. ... GOV ............. IOOV............. 150V ........... 200V
Repetitive Peak Reverse Voltage, VRRM ...................... 30V...
.. .... GOV.... ,........ IOOV.... ... 150V............ 200V
On-State Current, IT .
.........................
.. O.8A .. .
Surge (Non-Rep.) On-State Current, ITSM . . ...... 6A .. .
Peak Gate Current, IGM .
.... ... .............
.. .... .I.OA .. .
Peak Gate Power, PGM ....... ....... ...... .............
.. .........................IW .. .
........................
.. ......... O.01W ..
Average Gate Power, PG (Av.) .
Reverse Gate Voltage, VGR .............. ........ ....... ... ......... .... .......
.. ...... 6V.. .
Storage Temperature Range.
........ -65'C to +150'C ..
Operating Temperature Range...
.............. .
. ........ -65'C to +125'C ..
MECHANICAL SPECIFICATIONS
IPIOO-IPI04
TL:S ~ J
TO-92
.019
.016
=
.135
MIN.
fA C > -
:g~~
.205 IGo---EI'05
.175
.095
=L~
...L
_I
Ir·.210I1_' ·
SOO MIN
l7O
IIr----
.1OS
.080
~
.165
.125
Dimensions in inches.
[ill]
584
_UNITRDDE
IPlOO-IP104
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
Symbol
Off-State Current
IORM
Reverse Current
IRRM
Gate Trigger Current
IGT
Gate Trigger Voltage
VGT
Min.
Typical
Max.
Units
0.1
1.0
50
p.A
p.A
0.1
1.0
50
p.A
p.A
0.4
200
500
0.8
1.0
p.A
p.A
V
V
V
-
-
0.6
-
0.1
Peak On-State Voltage
VTM
Holding Current
I Hx
-
D
1.7
V
-
rnA
rnA
-
75
-
Vlp.s
too
-
0.1
p.S
tq
-
8.0
-
1.2
OJ
-
dv/dt
Turn-on Time
Circuit Commutated Turn-off Time
= Rating, RGK = 1K
= Rating, RGK = 1K, T = 125'C
V"M = Rating, RGK = 1K
VRRM = Rating, RGK = 1K, T = 125'C
Vo = 6V, RGS = 10K,
Vo = 6V, RGS = 10K, T = -65'C
Vo = 6V, RGS = lOOn
V = 6V, RGS = lOOn, T = -65'C
Vo = 6V, RGS = loon, T = l25'C
ITM = 1 Amp Pulse
RGK = 1K, T = 25'C
RGK = lK, T = -65'C
Vo = Rating, RGK = lK,
IG = lOrnA, Ip = lA, Vo = 30V
IT = IR = lA, RGK = lK
VORM
VORM
5.0
10.0
-
Critical Rate of RiseOff-State Voltage
-
Test Conditions
p.S
OESIGN CONSIOERATIONS
1. The IPlOO Series SCRs are guaranteed to block their rated voltage over their rated operating
temperature when a resistance of 1000 ohms or less is connected from gate to cathode
as shown.
ANODE
GATE
RGI( = lK or less
d
CATHODE
2. In cases where the SCR may be subjected to fast rising anode voltages a capacitor can be
connected between anode or gate and cathode as shown, to serve as protection against
dv/dt firing.
ANODE
AN0:IJE
GATE
GATE
C"
CGK
d
CATHODE
CATHODE
Gate Trigger Voltage
ys. Junction Temp.
Gate Trigger Current
vs. Junction Temp.
1.4
z>w
a:
a:
::>
u
a:
~D,,,v
w
0:::::: 6
"">-
r----1i4t-
;;;
eCl Li'-'"
~
::::::::- i--
...J
~
~
-1
>-
I
~
-2
o
-65
-25
Tj -
0
25
50
75
100
125
-65
150
UNITROOE CORPORATION'S FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
-25
Tj
JUNCTION TEMPERATURE ('C)
585
-
25
50
75
100
125 150
JUNCTION TEMPERATURE ('C)
PRINTED IN U.S.A.
IPlOO·IPI04
Holding Current
VS. Junction Temp.
dv/dt vs.
Junction Temp.
50
100
o
< 20
.s
zI-
10
'"0:0:
~=l~g
0
to
Z
2)
~=lKII
..J
0
:r
..J
« .5
0
a:
>
l-
- - -r- - -.....
r--
::>
.2
I
_r .1
01\
-
50
75
100
1
-65
125 150
Gate Pulse For Turn·On
VS. Pulse Gate Current
1. IT
lA, VD
~6K
= 10011
............
RGK
= 1KIl
l
.........
r'\.
['-::.:..-
",
'"
.........
............ ~10KI
Rated VDRt.!
-
l
-25
= 25'C
~
0
25
75
100
125
150
J~
50
~ 20
l-
e
UJ
50
JUNCTION TEMPERATURE ('C)
z
'"I'-- "
r-
Circuit Commutated Turn·Off Time
vs. Junction Temp.
!
:;100
'">=
1\
10
I'"
'\.",~'"
'\.I',i>';:"-;::'---
IP100·'P10~1""""""'
g
:;
:;
~
t'--.
8
l-
........
S
-.....
o
~
g
j
\
Tj -
JUNCTION TEMPERATURE ('C)
2. T,
"-
........
2
25
10
'" """
0
-..... r--..
Tj
Vo = Rated VORM
5
~KIl
-25
"-
O\.
r--
............
.05
-65
O~
.5
..J
C3
.2
~
.1
-65
a:
.02
.01
.01.02
I
.05 .1.2
.5
10 20
i, - PULSE GATE CURRENT (rnA)
~.
-25
Tj -
0
25
50
75
100
125 150
JUNCTION TEMPERATURE ('C)
Current
Current
VS. On·State Voltage
VS. Power Dissipation
10
~
5
T
I
:!
:!
~
.5
'"~
.2
~
.1
.5
"'
0:
0:
i3
'"
~
I
0:
~
1.-
lo 125,6
I
~
UJ
o
~ 25'C 1~-1j
.2
.1
z
~ .05
~
"'~
I
.!:-.05
I
.02
I
.01
I
.1
.2
VT -
.5
.005
10
20
.01
W-
TYPICAL ON·STATE VOLTAGE (V)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064
.02
I
586
.02
.05
.1
.2
.5
1
2
MAXIMUM ON·STATE POWER DISSIPATION
(WATTS) PGM
PRINTED IN U.S.A,
IPlOO-1P104
Current
Current
vs. Ambient Temp .
vs. Case Temp.
.8
$
1.4
UnO! mol.lnted w,th leads
I-
I-
'"'"
:J
'"
.6
'"a:a:
'"l-
.5
z
1.2
z
:J
U
U
~
~
tn
Z .4
~
'"I-«
I-
i4-ConducllOndngle
0
'"«
"a:
.3
'">«
.2
I
I
oF
J
~ .1
a
.8
"I
z
0
'"«
"
a:
'">«
Ci!w Temperature me
j:::
..
Ei
'"a:
Z
!t
I
50
75
100
125
j.
150
MAXIMUM HEATSINK TEMPERATURE ('C)
UNITROOE CORPORATION, 5 FORBES ROAD
LEXINGTON. MA 02173 ' TEL. (617) 861·6540
TWX (710) 326·6509 ' TELEX 95-1064
150
vs. Pulse Duration
$
z
25
125
Surge Rating
vs. Heatsink Temp,
a
100
75
MAX. CASE TEMPERATURE ('C)
- r---
65CIO--
GO--
=L~
F
~ "~- ,~ I ~"
G
B
0
C
E
F
G
H
.135 MIN.
.019 - .016
.210 - .170
.500 MIN.
.205 - .175
.165 - .125
.055 - .045
.105 - .095
.105 - .080
TO-92
millimeters
3.43 MIN.
.48 - .41
5.33 - 4.32
12.7 MIN.
5.21- 4.45
4.19 - 3.18
1.40 - 1.14
2.67 - 2.41
2.67 - 2.03
[ill]
12179
588
_UNITRODE
IPI05-IP106
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
Test Conditions
Symbol
Min.
Typical
Max.
Units
Off· State Current
Reverse Current
Gate Trigger Current
IDRt.<
10Rt.<
1ST
-
-
Gate Trigger Voltage
VST
-
100
100
200
0.8
1.2
p.A
p.A
I,A
V
V
V
V
rnA
rnA
VORM
VRRM
VD
VD
VD
VD
ITt.<
RSK
RSK
VD
-
0.1
Peak On-State Voltage
VTt.<
Holding Current
IHX
Critical Rate of RiseOff-State Voltage
dv/dt
Turn-on Time
too
tq
Circuit Com mutated Turn-off Time
-
0.7
-
1.5
5.0
10.0
75
-
VII's
0.5
-
p.S
p.S
-
15
=
=
=
=
=
=
=
=
=
==
=
=
=
=Rating, RSK =lK
IG = lOrnA, I" = lA, V = 30V
IT = I. = lA, RGK = lK
D
Maximum Allowable Non-Repetitive Peak
On-State Current Following Rated
Load Conditions
Maximum On-State
Characteristics
~
Iz
10
'"a:a:
=>
u
;/
'"
"'"
Z
0
'"
=>
o
z'"
II-
TJ =125'1
.1
"
II
I-
Z
~
z
I
-
-
10
0.6
= Rating, RGK = lK, T= llO'C
= Rating, RGK = lK, T= llO'C
6V, Rss _ 10K
6V, Rss lOOn
6V, Rss 1000, T
55'C
6V, Rss 1000, T 125'C
1 Amp Pulse
lK, T 25'C
lK, T -55'C
.01
:
18
If"
'"
16
t:
;;C 14
>
1-'" l-
~=".,
f!;
~ 12
Z
~ 10
"-
~
a: a:
,,~
~;:
6
I Z
4
11.",
~o
-------........
10
v, -
1
1--
.8
V
o~
g .5
~~
::;;cn
I00
~
11.11.
'\
./
.3
/'
.2
\
/'
1
o
'\
/
.4
.
"'\
/v
"'z
x!!?
,,0
::;; a:
~
v
V
"
:!:
100
CYCLES AT 60 Hz
Maximum Allowable Case Temperature
VS. On-State Cumnt (60Hz)
"'~ ~ .9
'" II .7
" .6
-----
10
INSTANTANEOUS ON·STATE VOLTAGE (V)
Maximum On-State
Power Dissipation (60Hz)
~
~
.:f
.1
",p
Z~
~
lEu
o
'\
'\
o
.1
~
~
A
~
~
3
~
~
50
Tc IM"I -
I, I'M'I - RMS ON·STATE CURRENT (A)
(180' CONDUCTION SINEWAVE)
UNITRODE CORPORATION, 5 FORBES ROAD
LEXINGTON, MA 02173 , TEL. (617) 861·6540
TWX (710) 326,6509 • TELEX 95-1064
589
60
70
80
90
100
110
120
MAXIMUM ALLOWABLE CASE TEMPERATURE ('C)
PRINTED IN U.S.A.
TRIACs
LlB04302F
LlB04304F
LIB04306F
LlB04308F
30 Amp RMS, 800V, ChipStrate@
FEATURES
• Voltage Ratings: to BOOV
• Hard-Glass Passivated Junction
• Miniature Size
• Isolated Case
• Economical Design
OESCRIPTION
'Unitrode ChipStrate power Triacs
combine the most advanced hard-glass
passivated chips with a metallized ceramic
substrate. The resultant ChipStrate provides the economy of an unpackaged chip
with the reliability and handling ease of
a discrete device.
ABSOLUTE MAXIMUM RATINGS
L1B04302F
Ll B04304F
L1B04306F
L1 B04308F
Repetitive Peak Off-State Voltage, VORM .
.. ........ 200V...
..... 400V.... ............. 600V................... BOOV
On-State Current IT(RMS) (at Tc = 80'C and conduction angle of 360') .
............................ 30A ... .
Peak One Cycle Surge (Non-Rep.) On-State Current, ITSM .
........................ 300A ..
Peak Gate Power, PGM . . . . . 4 0 W..... .
Average Gate Power, PG(AV) .
.75W ... .
Rate of On-State Current, dildt (at VDM VORM . IGT = 200mA, t, = .11'5) ................................ .150 AIl'S .. .
Storage Temperature Range .
... -40'C to +150'C.
Operating Temperature Range
.... -40'C to +110'C
=
MECHANICAL SPECIFICATIONS
L1B04302F
L1B04304F
L1B04306F
L1B04308F
L1
L 1 with Flange
INS.
IVE COATING
A 1.176 - 1.196
B
.650
. 500 NOM.
C
.060
D
E
.200
.078 R. TYP.
F
G .690 - .710
H .050
J
.150
K
.025
L
.020
mm
29.87 - 30.38
16.51
12.70 NOM .
1.53
5.08
.20 R. TYP .
17.52 -18.04
1.27
3.81
.64
.51
PART NO. SUFFIX: When ordering, specify correct part number suffix.
F - (standard package) - FLANGE MOUNTED, STRAIGHT LEADS
M - FLANGE MOUNTED, PREBENT LEADS
S - SOLDERABLE BACK, STRAIGHT LEADS (not shown)
B - SOLDERABLE BACK, PREBENT LEADS (not shown)
[ill]
1/79
ChipStrate® is a registered trademark of Unitrode Corporation.
590
_UNITRDDE
LlB04302F
LlB04304F
LIB04306F
LlB04308F
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
-
IORM
Typical
Test Conditions
Units
Max.
-
4.0
mA
80
120
mA
V
VDRM _ Rati ng
Tc =100'C
VD - 12V Quadrant 1, 3 (+
VD 12V Quadrant 2, 4 (+
=
VD = 12V
Gate Trigger Current
IGT
-
-
Gate Trigger Voltage
VGT
VTM
-
-
3.0
2.0
V
IH
-
-
60
mA
40
25
20
10
75
50
40
25
-
VipS
15
-
VipS
IT
-
.B
'C/W
Steady State
Peak On-State Voltage
Holding Current
Critical Rate of RiseOff-State Voltage
dvldt
Critical Rate of RiseCommutated Off-State Voltage
3
dv/dt(c)
Steady State Thermal Resistance'
'"
Min.
Symbol
Off-State Current
-
ReJC
+, - -)
-, - +)
ITM - 42A Peak
VD - 12V
L1B04302F
LlB04304F
L1B04306F
LlB0430BF
VORM
= Rating, Te: = 100'C
=Rating, V =Rating, Tc = 65'C
DRM
Junction~to-Case
On-State Characteristics
g
z>-
ll!
'""
~
I
II
I
I
80
"~
U>
I
60
I
U>
40
~g
~i 250
'"-
>-'"
E~ 200
"'''
t---.
~~ ISO
MAXIMUM
--
0>-
z
~
300
:lII::
0."
/
TYPICAL/
~
350
/
Z
0
"@
z
Maximum Allowable Non-Repetitive Peak
On-State Current Following Rated
Load Conditions
1110
Zu>
20
I
o
V
o
1
100
~
50
V
).5
.5
v, -
I~
/
/
~
2.5
6810
20
CYCLES AT 60 Hz
INSTANTANEQUSON·STATE VOLTAGE (V)
40
60 80 100
Maximum Allowable Case Temp.
On-State Current (50 or 60HZ)
Maximum Conduction Power Dissipation
VS. On-State Current (50 or 60HZ)
VS.
G
60
OJ-
>-;:
50
>-z
"!o
"'~~
~ 120
:f\
--I18C\~O
0,."',,,
5100
MAXIMUY
"'CI>
30
>0:
"'OJ
~o~
./
20
10
.,
~
~TYPICAL
~
'"X
:;;
'"
/f-'
I" •• -
90
I
u
>-
10
30
20
40
FULL CYCLE ON-STATE CURRENT (A)
(360' CONDUCTION)
°""'111
~
0
....I
....I
CONDUCTION ANGLE
~
OJ
....I
V
,0",
~
OJ
CI>
CONDUCTION ANGLE
OJ!:
"''''
ffio
--I-180\~O
OJ
>- llO
, a",
40
/f)
:;;
80
70
60
o
1"" -
40
10
20
30
FULL CYCLE ON·STATE CURRENT (A)
(360' CONDUCTION)
RECOMMENDED MOUNTING METHODS
1. Screw Mount Using Standard Flange
2. Solder
3. Thermally Conductive Epoxy
4. Two-Sided Adhesive Electrical Tape
5. P.C. Board Mount (For Low Duty Cycle Applications)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064
591
PRINTED IN U.S.A.
TRIACs
LlB05402F
LlB05404F
LlB05406F
LlB05408F
40 Amp RMS, 800V, ChipStrate®
DESCRIPTION
Unitrode ChipStrate power Triacs
combine the most advanced hard-glass
passivated chips with a metallized ceramic
substrate. The resultant ChipStrate provides the economy of an unpackaged chip
with the reliability and handling ease of
a discrete device.
FEATURES
• Voltage Ratings: to BODY
• Hard-Glass Passivated Junction
• Miniature Size
• Isolated Case
• Economical Design
ABSOLUTE MAXIMUM RATINGS
L1B05402F
L1B05404F
L1B05406F
L1B05408F
Repetitive Peak Off-State Voltage, VORM .
........................... 200V ..
.. .400V ...
600V ...
. BOOV
40A ..
On-State Current I'(RMS) (at Te = BO°C and conduction angle of 360°)
Peak One Cycle Surge (Non-Rep.) On-State Current, IT(RMs) ... .
. .400A ...
Peak Gate Power, PGM ...................................................................... .
.l6W ..
.75W ...
Average Gate Power PG(AV)
... 200 AIl'S . ................................................... ..
Rate of On-State Current, dildt (at VOM VORM . IGT 250mA, tr .11'5)
Storage Temperature Range .
..... .-'40°C to +150°C
Operating Temperature Range ..
... -40°C to +lWOC
=
=
=
MECHANICAL SPECIFICATIONS
L1B05402F
L1B05404F
L1B05406F
L1B05408F
Ll
L 1 with Flange
INS.
A 1.176 - 1.196
B' .6SO
C
.SOO NOM.
D .060
E
.200
F
.078 R. TYP.
G .690 - .710
H
,050
J
.1SO
K
.025
.020
mm
29.87 - 30.38
16.51
12.70 NOM.
1.53
5.08
.20 R. TYP.
17.52 - 18.04
1.27
3.81
.64
.51
PART NO. SUFFIX: When ordering, specify correct part number suffix.
F - (standard package) c... FLANGE MOUNTED, STRAIGHT LEADS
M - FLANGE MOUNTED, PREBENT LEADS
S - SOLDERABLE BACK, STRAIGHT LEADS (not shown)
B - SOLDERABLE BACK, PREBENT LEADS (not shown)
ChipStrate® is a registered trademark of Unitrode Corporation.
592
lliD
_UNITRODE
LlB05402F
LlB05404F
LlB05406F
LlB05408F
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
Symbol
IDRM
-
Gate Trigger Current
IGT
Gate Trigger Voltage
VGT
VTM
-
Peak On-State Voltage
Critical Rate of RiseCommutated Off-State Voltage
Units
4.0
mA
-
-
80
120
mA
rnA
-
3.0
V
-
2.0
V
mA
-
-
90
150
100
75
50
-
dv/dt
40
25
20
10
-
Test Conditions
VDRM = Rating, Tc = 100'C
VIJ = 12V Quadrants 1, 3 (+
VD = 12V Quadrants 2,4 (+
Vn = 12V
LlB05402F
LlB05404F
LlB05406F
LlB05408F
V/~S
-
+, - -)
-, - +)
VD = 12V
ITM = 57A Peak
-
=
VCRM
dv/dt lc1
4
10
-
VIpS
Ir
R{h:
-
-
.7
'C/W
Steady State
Steady State Thermal Resistance>
*
-
Max.
-
i
Holding Current
Critical Rate of RiseOff-State Voltage
Typical
Min.
Off-State Current
Rating, V"'M
=
=
Rating, T(.
Rating, Tc
=
=
100'C
65'C
Junction·to~Case
Maximum Allawable Nan-Repetitive Peak
On-State Current Following Rated
Load Conditions
On-State Characteristics
g
~
0:
0:
100
II
I
I
80
=>
e.>
~
~
z
o
z
I
I
40
20
V
I
o
V
o
/
1/
500
400
~~
300
I,~
100
we.>
MAXIMUM
0,..
Z
2:z
TYPICALI!
g
~
~_ 600
I
60
0:
<"" 20
I~
..00.
10
"'""c:i 100
MAXIMUY
CONDUCTION ANGLE
/'
~
10
IT,m. -
~
~
""
ID
oJ
~
TYPICAL
90
------
:j 80
<
X
40
60 80100
f\:-h/'
.J,~
'.9",
CONDUCTION ANGLE
9,+9",
~
~
~ 70
I
20
10
Maximum Allowable Case Temp.
vs. On-State Current (50 ar 60HZ)
u
1M
J,~ :bl"
0< 40
",,!O
8 10
CYCLES AT 60 Hz
V, -INSTANTANEOUSON·STATE VOLTAGE (V)
30
60
...u
40
IT,m. -
FULL CYCLE ON·STATE CURRENT (A)
(360' CONOUCTION)
40
30
10
20
FULL CYCLE ON·STATE CURRENT (A)
(360' CONDUCTION)
RECOMMENDED MOUNTING METHODS
1. Screw Mount Using Standard Flange
2. Solder
3. Two-Sided Adhesive Electrical Tape
4. P.C. Board Mount (For Low Duty Cycle Applications)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL, (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064
593
PRINTED IN U.S.A.
L2B06202F
L2B06204F
L2B06206F
L2B06208F
TRIACs
20 Amp RMS, 800V, ChipStrate®
DESCRIPTION
Unitrode ChipStrate power Triacs
combine the most advanced hard-glass
passivated chips with a metallized ceramic;
substrate. The resultant ChipStrate provides the economy of an unpackaged chip
with the reliability and handling ease of
a discrete device.
FEATURES
• Voltage Ratings: to BOOV
• Hard-Glass Passivated Junction
• Miniature Size
• Isolated Case
• Economical Design
ABSOLUTE MAXIMUM RATINGS
L2B06202F
L2B06204F
L2 B06206F
L2B06208F
Repetitive Peak Off-State Voltage, VORM .
........................... 200V... .
.... 400V... .. ............. 600V.................... BOOV
On-State Current ITIRMS) (at Tc == BO'C and conduction angle of 360') ..
. .................. 20A ... .
Peak One Cycle Surge (Non-Rep.) On-State Current, ' TSM ...
............ 200A .. .
Peak Gate Power, PGM .
.......................... .16W.
Average Gate Power, PGIAVI ..
.5W...
Rate of On-State Current, dildt (at VOM VORM , IGT == 175mA, t, .ll's)
... .125 All's ........
Storage Temperature Range .
......................... -40'C to +150'C ......................... ..
Operating Temperature Range ..
.... -40'C to +110'C .. .
=
=
MECHANICAL SPECIFICATIONS
L2B06202F
L2B06204F
L2B06206F
L2B06208F
L2
L2 with Flange
INS.
PROTECTIVE
COATING
I
-+==9~_~=rl;:;t-.-:i1~1
LL
T
A 1.176 - 1.196
B
.500
C 1.0 NOM.
.060
D
E
.150
F
.078 R. TYP.
G .690 - 710
H
.050
.150
J
K
.025
L
.020
M .040
mm
29.87 - 30.38
12.70
25.4 NOM.
1.53
3.81
.20 R. TYP.
17.52 -18.04
1.27
3.81
.64
.51
1.02
H K J
PART NO. SUFFIX: When ordering, specify correct part number suffix.
F - (standard package) - FLANGE MOUNTED, STRAIGHT LEADS
M - FLANGE MOUNTED, PREBENT LEADS
S - SOLDERABLE BACK, STRAIGHT LEADS (not shown)
B - SOLDERABLE BACK, PREBENT LEADS (not shown)
ChipStrate® is a registered trademark of Unitrode Corporation.
594
[ill]
_UNITRaCE
L2B06202F
L2B06204F
L2B06206F
L2B06208F
ELECTRICAL SPECIFICATIONS (at 25·C unless noted)
Test
Symbol
Max.
Units
ID•M
-
-
2.0
mA
Gate Trigger Current
IG'
-
-
Gate Trigger Voltage
VG,
-
-
50
80
2.5
Peak On-State Voltage
V'M
IH
-
-
1.9
V
-
75
50
mA
-
Holding Current
Critical Rate of RiseOff-State Voltage
Min.
Typical
Off-State Current
30
20
10
dvldt
Critical Rate of RiseCommutated Off-State Voltage
R6JC
mA
L2B06202F
L2 B06204F
L2B06206F VD'M
-
10
3
10
-
VipS
I)
-
-
1.1
·C/W
Steady State
VipS
-
- -)
- +)
VD== 12V
I'M == 28A Peak
VD _12V
V
50
30
25
dv/dt(c)
Steady State Thermal Resistance'
-
Test Conditions
VD• M == Rating, TC == 100·C
VD - 12V Quadrants 1, 3 (+ +,
VD == 12V Quadrants 2, 4 (+ -,
.
•
= Ratmg,
Tc = 100 C
L2B06208F
= Rating, VD• M = Rating, Tc == 65·C
* Junction-ta-Case
On-State Characteristics
g
100
I
t-
150:
0:
:l
80
~
t-
V!
60
"'
fa
z
/
40
V
~
z
~
20
j
1/
~ ~ 200
;::w
~ 160
"-
5
0.:>
j
wU
ex:
MAXIMUM
LLI
~~
I'"
)0
/
"-
.......
120
r---
-
80
40
o
2.5
1.5
.5
v, -
/
/
V
~
280
'o.::!"
;;\ _ 240
TYPICAL
Z
0
:l
I
I
I
I
()
Maximum Allowable Non-Repetitive Peak
On-State Current Following Rated
Load Conditions
1
6 8 10
20
CYCLES AT 60 Hz
INSTANTANEOUS ON·STATE VOLTAGE (V)
G
~
30
I-;:
I-z
"10
z-
o!:;:
",0.
"'Vi
",
<", 10
"'-
/
I;:
c..c:~
£
I" •• -
V/ V
V/ V
'"
;1ICAL
/
V
110
............
100
..J
III
90
..J
80
~
If\
\b!'
.1_,,"
60 80100
Maximum Allowable Case Temp.
vs. On-State Current (50 or 60HZ)
Maximum Conduction Power Oissipation
VS. On-State Current (50 or 60HZ)
"'<-
40
<
X
,8,"
.1_,,"
""- .......
,8",
CONDUCTION ANGLE
8,+8",
~
~
~ 70
CONDUCTION ANGLE
0,+8111
I
60
I-U
10
20
FULL CYCLE ON·STATE CURRENT (A)
(360· CONDUCTION)
I" •• -
20
10
FULL CYCLE ON·STATE CURRENT (A)
(360· CONDUCTION)
RECOMMENDED MOUNTING METHODS
1. Screw Mount Using Standard Flange
2. Solder
3. Two-Sided Adhesive Electrical Tape
4. P.C. Board Mount (For Low Duty Cycle Applications)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6~0
TWX (710) 326-6509 • TELEX _95-1064
595
PRINTED IN U.S.A.
L2R06102FG
L2R06104FG
L2R06106FG
L2R06108FG
SCRs
10 Amp. RMS 800V ChipStrate®
Fast Turn-Off Types
For Inverter and Pulse Applications
FEATURES:
DESCRIPTION:
•
•
•
•
•
•
•
This series of SCR's is specifically
designed for use in inverter and high
current pulse applications and exhibits
excellent turn-off capability even at much
higher currents than their rated values.
These devices are made with the most
advanced hard glass passivated chips
mounted on Unitrode's very economical
ChipStrate package.
Fast Turn-Off Time
Shorted Emitter.Construction
High-Current Pulse Capability
High di/dt and dv/dt Rating
Center Gate Construction
Isolated Case
Economical Design
ABSOLUTE MAXIMUM RATINGS
L2R061D2FG
Repetitive Peak Off-State Voltage, VDRM
Repetitive Peak Reverse Voltage, VRRM .
On-State Current, IT(RMS) (at Tc
65°C and
conduction angle of 180°) .
Peak One Cycle Surge (Non-Rep.) On-State Current, I TSM
(60 Hz Sinusoidal) ................................................... ..
Peak Gate Power, PGM (for lOl's Max.) .
Average Gate Power PG(AV)
Storage Temperature Range .
Operating Temperature Range
Rate of Change of On-State Current di/dt @ VDRM .
Fusing Current I't (T J
-40 to lOO°C t
1 to 8.3ms) .
=
=
L2R06104FG
....... 200V ............. 400V .. .
... ..... .... 20OV...
.... 400V .. .
L2R06106FG
.. 600V ..
.. 600V .
L2R06108FG
... 800V
... 800V
.... lOA ...... .
............................. 120A..
.. .............. ............ 20W ... .
...................... ,5W....... .
-40°C to +l50°C ..
.............-40°C to +llO·C ..
.. ......... .150 A/I's ..
.. .. 85 A' sec ..
=
MECHANICAL SPECIFICATIONS
L2R06104FG
L2R06106FG L2R06108FG
L2
L2 with Flange
INS.
SUBSTRATE, BeO
I
I
==~_/~=rl~~~-'-l'
lL
PART
FG MG SG BG -
PROTECTIVE
COATING
T
H K
A 1.176 - 1.196
B .500
C 1.0 NOM.
0
.060
E
.150
F
.078 R. TYP.
G .690 - 710
H
.050
J
.150
K
.025
L
.020
M .040
mm
29.87 - 30.38
12.70
25.4 NOM.
1.53
3.81
.20R. TYP .
17.52 -18.04
1.27
3.81
.64
.51
1.02
J
NO. SUFFIX: When ordering, specify correct part number suffix.
(standard package) - FLANGE MOUNTED, STRAIGHT LEADS
FLANGE MOUNTED, PREBENT LEADS
SOLDERABLE BACK, STRAIGHT LEADS (not shown)
SOLDERABLE BACK, PREBENT LEADS (not shown)
,.OJJ]
ChipStrate@ is a registered trademark of Unitrode Corporation.
596
_UNITRODE
L2 R06102FG
L2 R06104FG
L2 R06106FG
L2R06108FG
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Test
Symbol
Min.
Typical
Max.
Units
Off-State Current
IORM
2
4
mA
Reverse Current
IRRM
2
4
mA
Gate Trigger Current
IGT
30
70
mA
Gate Trigger Voltage
VGT
1.2
3
V
Peak On-State Voltage
VTM
Holding Current
130
IH
Critical Rate of Rise of
Off-State Voltage
Gate Controlled
Turn-On Time, td
dv/dt
1.0
tq
6
Thermal Resistance
Junction-to-Case
ReJC
=
=
mA
V/p.sec
too
Note 1 Vo
V
175
400
Circuit Commutated
Turn-Off Time
+ t,
10
p'sec
8
!,sec
1.3
°C/W
Test Conditions
=Rating, Te =100°C
=Rating, Te =100°C
Vo =12V, RL =300
Vo =12V, RL =30n
ITM =100A (Peak)
Vo =12V, Gate Open
Vo =VORM. Tc =80°C
IT =2A, IGT =200mA
Vo =VORM
VORM
VRRM
Note 1
=
VCRM • IT
100A, PW SOl'sec
Vox
-lSV min. VGT
OV (at to")
dvI dt = 100 vIl'sec, -SA/l'sec
1ST = 100mA. Tc = 80°C
=
=
Maximum Allowable Non-Repetitive Peak
On-State Current Following Rated
Load Conditions
FJQulNL JJLliNE
"
i:'iQ.~
120
!z
~
100
;::..,
iii ~
Q.~
80
..,U
q=
~ 60
~;!:
z'"
I Z 40
_~o
~
Maximum Allowable Peak
On-State Current VS. Pulse Width
1000
I I I I IIII
SUPPLt
WAVE
CASE TEMPERATURE PRIOR TO SURGE
5O"C
LOAD RESISTIVE
REPETITIVE PEAK REVERSE VOLTAGE (v....) =:; MAXIMUM RATED VALUE
AVERAGE ON·STATE CURRENT (I"A.,!
MAXIMUM RATED VALUE
=
=
5:
..,a:Z
=
r-
a:
"""
rr-
~
..,
......
U
I"
I<[
~
I-
.............
'"Z
0
"""-
..."
<[
Q.
20
10
CYCLES AT 60 Hz
UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
puh[
I 1"
100 If.
~.."r-
SINGlE:
I-
100
-
-
59'7
FOR HALF SINE WAVE
CURRENT ONLY
-
$~"
'rl-t..
10 I(
"t1--.:.1-t..
20 /(/01..
1'-",
w-l
10
PULSE WIDTH - (I's)
100
f'L.f\.
100
400
PRINTED IN U.S.A.
L2R06102FG L2R06104FG L2R06106FG L2R06108FG
~
...
:;:
l!! 100
...Ol
~ 90
...-'
--: 110
III
'~
;( 50
...
'"=>
...
""~....
ANGLE
......... ...............................
-'
I, ..
70 r-CONDUCTION ANGLE 180'
><
<
60
1
50
....
0
~~
2
0:
...............
1
<
0
0:
........
.............
10
w
....
<
I
4
6
ON-STATE CURRENT (A)
I, -
TYPICAL
oS
....z
CONDUCTION
g
u
-tf?.
ANGLE 180'
80
:;:
100
I
I
1
~ ,m, /CONDUCTION
<
3:
Gate Trigger Current
vs. Gate Plilse Width tr == 20nsec
Maximum Allowable Case Temp.
vs. On-State Current (50 or 60Hz)
8
"
W
100
10
GATE PULSE WIDTH
Maximum Conduction Power Dissipation
vs. On-State Current (50 Or 60Hz)
On-State Characteristics.
100
I
90
Ol;( 80
=>0 ....
... Z
z ...
<'"
....
'"
z=>
<0
.......
Ol ....
-1"1
Z<
....
~i5
I
I
TYPICAL
70
I
/
I
...
I
50
I /
I II
40
30
10
4
J
1/ '/
z-
o~ 20
,,-
/
",
10
cO
0.0.
10
12
L
14
~
110"
CO~~'l.l1·ON
I~
",0
<",
13:
Jf?
I. /
",0.
I
'/
20
~
.... 3: 25
....
...o
Ii ,
J
g 200
z
<
><
~IOO
1
)
/
/
1
10
PULSE WIDTH -
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064
598
100
1000
("sec.)
PRINTED IN U.S.A.
L2R06252F
L2R06254F
L2R06256F
L2R06258F
SCRs
25 Amp RMS, 800V, ChipStrate@
DESCRIPTION
Unitrode ChipStrate power SCRs
combine the most advanced hard-glass
passivated chips with a metallized ceramic
substrate. The resultant ChipStrate provides the economy of an unpackaged chip
with the reliability and handling ease of
a discrete device.
FEATURES
• Voltage Ratings: to BOOV
• Hard-Glass Passivated Junction
• Miniature Size
• Isolated Case
• Economical Design
ABSOLUTE MAXIMUM RATINGS
L2R06252F
L2ROB254F
L2R06256F
L2R06258F
.... 600V .................. BOOV
. ....... ..400V....
Repetitive Peak Off-State Voltage, VORM .
...... 200V ..... .
....400V ...................... 600V...
............ BOOV
Repetitive Peak Reverse Voltage, VRRM .
. .............. 200V ... .
............... .25A.. .
On-State Current, ITIRMS) (at Tc = BO'C and conduction angle of 1BO') .
......... ..250A ... ..
Peak One Cycle Surge (Non-Rep.) On--State Current, I TSM .
................ 20W .... .
Peak Gate Power, PGM .
.5W.. .
Average Gate Power PG(AVI .
. ...................... .150 AI,as ............................................ ..
Rate of On-State Current, dildt (at VDM = VDRM . IGT = 1SOmA, t, = .5,as) ...
........................ .250 A's ...
Fusing Current, I', (for SCR Protection) T;
-40'C to 1l0'C, 1 to B.3msec
.. ...... _40°C to +150°C.
Storage Temperature Range .
.... -40'C to +llO'C ...
Operating Temperature Range.
=
MECHANICAL SPECIFICATIONS
L2R06252F
L2R06254F
L2 R06256F
L2 R06258F
L2
L2 with Flange
INS.
PROTECTIVE
COATING .
I
lL
~+I:
A 1.176 - 1.196
B
.500
c 1.0 NOM.
0
.060
E
.150
F
.078 R. TYP.
G .690 - 710
H
.050
J
.150
K
.025
L
.020
M .040
mm
29.87 - 30.38
12.70
25.4 NOM .
1.53
3.81
.20 R. TYP.
17.52 -18.04
1.27
3.81
.64
.51
1.02
H K J
PART NO. SUFFIX: When ordering, specify correct part number suffix.
F - (standard package) - FLANGE MOUNTED, STRAIGHT LEADS
M - FLANGE MOUNTED, PREBENT LEADS
S - SOLDERABlE BACK, STRAIGHT LEADS (not shown)
B - SOLDERABLE BACK, PREBENT LEADS (not shown)
[ill]
ChipStrate® is a registered trademark of Unitrode Corporation.
599
_UNITRDDE
L2R06252F
L2R06254F
L2R06256F
L2R06258F
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
Symbol
Off-State Current
Reverse Current
Gate Trigger Current
Gate Trigger Voltage
Peak On-State Voltage
Holding Current
Critical Rate of RiseOff-State Voltage
Steady State Thermal Resistance*
IORM
Min.
Typical
Max.
Units
Test Conditions
-
2.0
2.0
25
2.0
2.1
'H
-
50
rnA
rnA
rnA
V
V
rnA
VORM = Rating, Tc = 1OO'C
VRRt>A = Rating, Tc = 1OO'C
Vo-l2V
Vo=l2V
'TM - 50A Peak
Vo=l2V
dv/dt
100
200
-
V/p.S
VORM = Rating , Tc =100'C
RaJc
-
-
1.1
'C/W
Steady State
'RRM
IGT
VGT
VTM
* Junction-to-Case
On-State Characteristics
g
100
I-
~
0:
0:
/
80
II
/
I
"!
ii
'":::>
S
z
60
/
40
II
20
/
/
.5
V
/
/
/
TYPICAL /
~
z
~
350
/
:::>
"
S
Maximum Allowable Non-Repetitive Peak
On-State Current Following Rated
Load Conditions
"
MAXIMUM
......
/
1.5
2.5
6
20
8 10
40
60 80100
V,-INSTANTANEOUSON·STATE YOLTAGE(V)
Maximum Conduction Power Dissipation
VS. On-State Current (50 or 60HZ)
"'...
~
"'-
25
~~
20
~
I
30
n:
V
MAXIMUM/ V
"'z
1(>0
~ llO
...
'" 100
'"
'"
0
'"CD
",D.
CI",
"''''
"'-
15
"''''
I~
10
/
",0
>",
~~
5
Maximum Allowable Case Temp.
vs. On-State Current (50 Dr 60HZ)
#
o
/TYPICAL
//
//
oJ
90
~
0
80
oJ
oJ
-ifitw
'"
'"
X
60'
70
go'
:::!;
CONDUCTION
ANGLE
I
...u
10
20
30
I,,,. -AVERAGE ON·STATE CURRENT (A)
(ISO' CONDUCTION)
120'
60
10
0
I,,,. -
15
20
25
30
35
40
AVERAGE ON-STATE CURRENT (A)
RECOMMENOEO MOUNTING METHODS
1. Screw Mount Using Standard Flange
2. Solder
3. Two-Sided Adhesive Electrical Tape
4. P.C. Board Mount (For Low Duty Cycle Applications)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXII'IGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
600
PRINTED IN U.S.A.
L7B08102S
L7B08104S
L7B08106S
L7B08108S
TRIACs
10 Amp RMS, BOOV, ChipStrate@
FEATURES
DESCRIPTION
•
•
•
•
•
Unitrode ChipStrate power Triacs
combine the most advanced hard-glass
passivated chips with a metallized ceramic
substrate_ The resultant ChipStrate provides the economy of an unpackaged chip
with the reliability and handling ease of
a discrete device.
Voltage Ratings: to 800V
Hard-Glass Passivated Junction
Miniature Size
Isolated Case
Economical Design
ABSOLUTE MAXIMUM RATINGS
L7B08102S
Repetitive Peak Off-State Voltage, VDRM .
On-State Current IT(RMS) (at Tc = 65'C and conduction angle of 360') .
Peak One Cycle Surge (Non-Rep.) On-State Current, I TSM .
Peak Gate Power, PGM .
Average Gate Power PG(AV) .
Rate of On-State Current, di/dt (at VDM VDRM , IGT 150mA, t, .1,,5)
Storage Temperature Range
Operating Temperature Range .
=
=
L7B08104S
.... 200V ................... 400V... ..
L7B08106S
...... 60W
L7B0810&S
800V
. .............. .lOA...
100A ..
..... 16W.. .
.5W... .
=
.................. .100 Ai"s.
-40'C to +150·C .
. .-40'C to +11O'C .
MECHANICAL SPECIFICATIONS
L7B08102F
L7B08104F
L7B08106F
L7B08108F
L7
S
L7 with Flange
INS.
0.4
8
.350
C
.300
0
. 500 MIN.
E .100
F
.032
G .1SO
H .015
,020
I
J
.020
A
CATHODE
ANODE
GATE
H I
mm
10.16
8,89
7.62
12.70 MIN .
2.54
.82
3,81
.39
,51
.51
I,
G
PART NO_ SUFFIX: When ordering, specify correct part number suffix.
S (standard package) - SOLDERABLE BACK, STRAIGHT LEADS
F - FLANGE MOUNTED, STRAIGHT LEADS
[1W
ChipStrate® is a registered trademark of Unitrode Corporation.
601
_UNITRDDE
L7B08102S
L7B08104S
L7B08106S
L7B08108S
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Test
Min.
Symbol
Off-State Current
-
IDRM
Max.
Units
-
2_0
rnA
30
50
rnA
rnA
2.0
V
1.6
V
30
rnA
Typical
Gate Trigger Current
IG'
-
Gate Trigger Voltage
V"'T
-
-
Peak On-State Voltage
V'M
-
-
Holding Current
Critical Rate of RiseOff-State Voltage
Critical Rate of RiseCom mutated Off-State Voltage
Steady State Thermal Resistance*
IH
-
-
dv/dt
30
20
10
10
75
50
30
25
dv/dt 10l
3
ROJC
-
=
Test Conditions
=
VDRM
Rating, Tc
100°C
VD =: 12V Quadrants 1 & 2
VD =: 12V Quadrants 3 & 4 (-
(+ +, - -)
+, + -)
=
VD 12V
ITM =: 14A Peak
VD =: 12V
L7B08102S
L7B08104S
VD'M =: Rating, Tc =: 100°C
L7B08106S
L7B08108S
-
VII'S
10
-
VII'S
IT=: Rating, VDRM =: Rating, T c
-
3.0
°C/W
Steady State
=65°C
* Junction-to-Case
Maximum Allowable Non-Repetitive Peak
On-State Current Following Rated
Load Conditions
On-State Characteristics
100
/
5:
0-
is0:
0:
140
80
"~
0-
"!
:I
'"::>
""
tn""
;;
~~
w"
20
/ II
I
o
"
80
o:w
MAXIMUM
1L
Z
o
~~ 100
/
II
TYPICAL
0-
~~
o-W
40
z
120
:w:::
I II
60
z
0
53
/
I
::>
w
LI
~~
60
I~
J
40
-
20
o
---~
1
v' -
Maximum Conduction Power Dissipation
vs_ On-State Current (50 or 60HZ)
12
180,
\
;;: no
:;:
360·
OJ
... 100
, a,"
MAXIMUM/
OJ
In
CONDUCTION ANGLE
9,+9",
«
u
/
--'
III
«
;:
"" "
80
--'
--'
«
70
•
«
:;:
60
I
50
...u
FULL CYCLE ON-STATE CURRENT (A)
(360' CONDUCTION)
:~
....J
180,0
\
'.
r.....
360'
9 111
CONOUCTION ANGLE
9,+9u1
~
'\
X
2468101214
60 80 100
I'\.
0
/~
~~
90
OJ
/ V/ ~PICAL
40
Maximum Allowable Case Temp_
vii_ On-State Current (50 or 60HZ)
p
~
-1
IT, •• -
6810
20
CYCLES AT 60 Hz
INSTANTANEOUSON·STATE VOLTAGE (V)
02468101214
IT, •• -
FULL CYCLE ON-STATE CURRENT (A)
(360° CONDUCTION)
RECOMMENDED MOUNTING METHODS
1. Screw Mount Using Standard Flange
2. Solder
3. Two-Sided Adhesive Electrical Tape
4_ P_C_ Board Mount (For Low Duty Cycle Applications)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
602
PRINTED IN U.S.A.
L7R08052SG
L7R08054SG
L7R08056SG
L7R08058SG
SCRs
5 Amp_ RMS BOOV ChipStrate@
Fast Turn-Off Types
For Inverter and Pulse Applications
FEATURES:
OESCRIPTION:
•
•
•
•
•
•
•
This series of SCR's is specifically designed
for use in inverter and high current pulse
applications and exhibits excellent turn-off
capability even at much higher currents
than their rated values. These devices are
made with the most advanced hard glass
passivated chips mounted on Unitrode's
economical ChipStrate package.
Fast Turn-Off Time
Shorted Emitter Construction
High-Current Pulse Capability
High di/dt and dv/dt Rating
Center Gate Construction
Isolated Case
Economical Design
ABSOLUTE MAXIMUM RATINGS
L7.R08052SG
Repetitive Peak Off-State Voltage, VDRM
Repetitive Peak Reverse Voltage, VRRM
On-State Current, IT(RMs) (at Tc '= 65'C and
conduction angle of ISO').
Peak One Cycle (Non-Rep.) On-State Current, I TSM
60 Hz (Sinusoidal) ...
Peak Gate Power, PGM (for 1OI's Max) .. .
Average Gate Power, PG(AV) ....
Storage Temperature Range
Operating Temperature Range
Rate of Change of On-State Current di/dt @V DRM .
-40 to 100'C t
1 to S.3ms)
Fusing Current I't(TJ
=
L7R08054SG
....... 200V.
........ 200V
L7R08056SG
400V.
400V ...
.. 600V .... .
600V ... .
L7ROB058SG
..... SOOV
....... 800V
............ SA .... .
BOA ... .
.. SW .... .
..................... SW ... .
....... -40'C to +l50'C.
................................ -40'C to +llO'C.
.. 200 AIl'S.
.. 60 A'sec.
=
MECHANICAL SPECIFICATIONS
L7R08052fG L7R08054FG L7R08056FG L7ROB058FG
L7
SG
L7 with Flange
INS.
A
B
C
D
E
F
G
CATHODE
urrr--HNODE
GATE
H
I
J
HI
0.4
.350
.300
.500 MIN.
.100
.032
.150
.015
.020
.020
mm
10.16
8.89
7.62
12.70 MIN.
2.54
.82
3.81
.39
.51
.51
I,
G
PART NO. SUFFIX: When ordering, specify correct part number suffix.
SG (standard package) - SOLDERABLE BACK, STRAIGHT LEADS
FG - FLANGE MOUNTED, STRAIGHT LEADS
[lliJ
ChipStrate& is a registered trademark of Unitrode Corporation.
603
_UNITRDDE
L7R080S2SG L7R08054SG L7 R080S6SG L7R080S8SG
ELECTRICAL SPECIFICATIONS (at 25·C unless noted)
Test
Min.
Symbol
Off-state Current
Reverse Current
Typical
Max.
IORM
0.4
3
Units
,
,
Tes! Conditions
I11A
YORM, ::.Rat,ing, Tc,= 100·C
'RRM
0.4
2
mA
VRRM = Rating, Tc = 100·C
Gate Trigger Current
1ST
20
40
mA
Vo = 12V, RL = 30n
Gate Trigger Voltage
VST
1.S
3.0
V
Vo = 12V, RL = 30n
Peak On-state Voltage
VTM
2.0
3.0
V
ITM = 30A (Peak)
Holdi'ng Current
IH
20
SO
mA
Vo = 12V, Gate open'
Critical rate of,rise of
Off-state Voltage
dv/dt
400
V/Ilsec
Vo = VORM ' Tc = 80·t
Gate controlled
turn-on time (td
ton
0.7
Ilsec
IT = 2A, 1ST = 200mA '
VO=VORM
Circuit commutated
turn-off time
tq
8
10
Ilsec
Note 1
Thermal Resistance
Junction-to-case
ReJc
7
·C/W
Note 1 Vo
= VORt.!'
IT
+ tr)
= 20A,
PW
200
= 50.usec
VRX = -lSV Min, VST = OV (at t off>
dv/dt = lOOV1~sec, -di/dt = -lOA/~sec
'ST
lOOmA, T c 80·C
=
=
Maximum Allowable Peak
On-State Current VS. Pulse Width
Maximum Allowable Non-Repetitive Peak
On-State Current Following Rated
Load Conditions
'"
""'",50
80
"'I-
>z 60
E~
1-",
"'::>
:!;o
'I"''''
z"
01-
40
~
.Jv ..LLllJlJ.'NEWAVE
I
)0
f\..J\.
'"'"::>
REPETITIVE PEAK REVERSE VOLTAGE (v....)
MAXIMUM RATED VALUE
AVERAGE ON..sTATE CURRENT {I,!,"V)] := MAXIMUM RATED VALUE
~
0:
o
~ 100
~
"""'-
20
Z
o
-
10
CURRENT ONLY
IZ
'
=
FOR HALF SINE WAvE
5:
I I 11111
CASE TEMPERATURE PRIOR TO SURGE:= &O'"C
LOAD:= AESISTfV£
z(/)
IZ
1000
'i::i"
'"
....
" .....
.....
,.....
SINGLE PULSE
r-
~If~
SOON~
-:!!!.If~
~~ .......
I,i-p;-.. . . ""r10
PULSE WIDTH (~s)
100
..........
.........
100
CYCLES AT 60 Hz
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
"NIX (710) 326-6509 • TELEX 95-1064
604
PRINTED IN U.S.A.
l7R08052SG l7R08054SG l7R08056SG l7R08058SG
Maximum Allowable Case Temp.
vs. On-State Current (50 or 60Hz)
E
Gate Trigger Current
== 20 nsec
VS. Gate Pulse Width tr
100
O:llolr-t--t----'t-----j:-----j-----j--t---i
::;
OJ
;t 50
~ 100 H-.=I'r-t+-t----1r----1----1---!--i
.s
V)
<3
OJ 90
...
~
80
u
;;!
70
t--HHf+-Yi'r----jf-"o,..-I--
'"
'~"I
60
t--::b1Rf-t+H----jf---t!-
...
TYPICAL
'"e::
III
~
r---...
I-
zOJ
r-~~~~~P-~r----1-----1----1--i
10
OJ
'"i<'"
IOJ
~
~ ~ L-~~][IJ~1-L--l__~==~~
'"
4
IT ON-STATE CURRENT (A)
10
100
GATE PULSE WIOTH i"s)
Maximum Conduction Power Dissipation
vs_ On-State Current (50 or 60Hz)
On-State Characteristics
~9
o
V)
~
0
OJ
Z
"
"
l-
z
$
I
TYPICAL
Z
OJ
e:: 30
e::
~
U
I- OJ
V)
I-
~
40
I-
"
20
0
10
j
l-
V)
~z
:1
/ /
II
V
180"
---
cO~~ll'°N
/
V
LMAXiMUM
V
/
,/
1
v, -
INSTANTANEOUS
ON-STATE VOLTAGE (V)
IT", -
V
2
3
4
AVERAGE ON-STATE CURRENT
(180" CONOUCTION)
5
(A)
Maximum Peak Current
YS. Pulse Width
;t
;::
~
~
a
240
220
200
180
160
~ 140
oz
120
f'Lf\.
J
1\
FOR HALF SINE WAVE
CURRENT ONLY
I
I
I
" 100
~ 80
::;
60
I
40
j
20
100
10
PULSE WIDTH -
UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6~9 • TELEX 95-1064
605
1000
(flsec)
PRINTED IN U.S.A.
SCRs
L7R08152S
L7R08154S
L7R08156S
L7R08158S
15 Amp RMS, BOOV, ChipStrate@
DESCRIPTION
Unitrode ChipStrate power SCRs
combine the most advanced hard-glass
passivated chips with a metallized ceramic
substrate. The resultant ChipStrate provides the economy of an unpackaged chip
with the reliability and handling ease of
a discrete device.
FEATURES
• Voltage Ratings: to SOOV
• Hard-Glass Passivated Junction
• Miniature Size
• Isolated Case
• Economical Design
ABSOLUTE MAXIMUM RATINGS
L7R08152S
L7R08154S
L7R081585
L7R08158S
Repetitive Peak Off-State Voltage, VDRM .
. ............. 200V ....................400V................... 600V ....................... SOOV
Repetitive Peak Reverse Voltage, VRRM ............................................................ 200V.. ........... 400V... ..
..... 600V .......................SOOV
On-State Current, IT(RMS} (at Tc
65·C and conduction angle of ISO·) ................................... .15A... .
Peak One Cycle Surge (Non-Rep.) On-State Current, I TSM .....
. ................ 150A ... .
Peak Gate Power, PGM
............... .10W .... .
Average Gate Power, PG(AV} .
...........5W ...
·Rate of On-State Current, di/dt (atVoM VORM IGT lOOmA, tr .51'5) ............ .
......... 125 AI 1'5........
..................... .
Fusing Current, 12t (for SCR Protection) Ti "":40·C to no·c, 1 to 8.3msec ....
. ........... .150 Ns......
....................... .
Storage Temperature Range .. .. ... ...... .............
.................... -40·C to +l50·C .......................................... .
Operating Temperature Range
.... -40·C to +110·C... .
=
=
=
=
=
MECHANICAL SPECIFICATIONS
L7R08152F
LlR08154F
L7 R08156F
L1R08158F
L7
S
L7 with Flange
INS.
0.4
B
.350
C .300
D
. 500 MIN.
E
.100
F
.032
G .ISO
H .015
1
.020
J
.020
A
mm
10.16
8.89
7.62
12.70 MIN .
2.54
.82
3.81
.39
.51
.51
I,
PART NO. SUFFIX: When ordering, specify correct part number suffix.
S (standard package) - SOLDERABLE BACK, STRAIGHT LEADS
F - FLANGE MOUNTED, STRAIGHT LEADS
[ill]
ChipStratel!! is a registered trademark of Unitrode Corporation.
606
_UNITRDDE
L7R08152S
L7R08154S
L7R08156S
L7R08158S
ELECTRICAL SPECIFICATIONS (at 25·C unless noted)
Test
Symbol
Min.
Typical
Max.
Units
2.0
2.0
mA
mA
VCRM
Rating, Tc
100·C
VR• M - Rating Tc _lOO·C
ITM -
Test Conditions
-
15
1.5
2.1
mA
V
V
IH
-
25
mA
Critical Rate of RiseOff-State Voltage
dvldt
100
200
-
VII'S
=
=
Vc =12V
Vc =12V
25A Peak
Vc =12V
V
= Rating, Tc = 100·C
Steady State Thermal Resistance"
RSJC
-
-
3.0
·C/W
Steady State
Off-State Current
Reverse Current
ICRM
IRRM
Gate Trigger Current
Gate Trigger Voltage
IGT
VGT
VTM
Peak On-State Voltage
Holding Current
-
-
-
-
CRM
* Junction-ta-Case
Maximum Allowable Non-Repetitive Peak
On-State Current Following Rated
Load Conditions
On-State Characteristics
g
100
is
0:
0:
/
/
...
/
80
210
/
:::>
"
~
60
/
Z
0
:::>
'"
......
:;;
S
z
II
/
TYPICAL/
z
o
/
/
20
/
V
o
180
~
!z
ISO
~
a
~
S
Z
LLJ
III
IZ
~0
V
.5
'0.5
"
a::
MAXIMUM
~
_
;= '"
;= ~
/
40
~
0-
120
r-...
o
6 8 10
20
CYCLES AT 60 Hz
1
V, -INSTANTANEOUSON·STATEVOLTAGE (VI
Maximum Conduction Power Dissipation
VS. On-State Current (50 or 60HZ)
~
./
...l
~
'""'100
'"
~ t-.....
""- "-......... ""-
VI
;:; 90
I
I
\
'"III-'
.. 80
I
. / TYPICAL
V
. / ..,/
..... , . /
~
~;;I.
70
~~
-it}
60
CONDUCTION
I
50
..."
10
IT", -
......
;;: lIO
ANGLE:
,/
60 80 100
Maximum Allowable Case Temp.
On-State Current (50 or 60HZ)
CONDUCTION
/1
/1
40
VS.
,v-.
MAXIMUM
-
60
30
2.5
1.5
"
90
"T'.'
I" "-
ANC~E
0
IT". -
AVERAGE ON·STATE CURRENT (AI
(180" CONOUCTlON)
IT"~
10
12
14
16
AVERAGE ON·STATE CURRENT (AI
(180" CONDUCTION)
RECOMMENDED MOUNTING METHODS
1. Screw Mount Using Standard Flange
2. Solder
3. Two-Sided Adhesive Electrical Tape
4. P.C. Board Mount (For Low Duty Cycle Applications)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064
607
PRINTED IN U.S.A.
PUTs
P13TI-P13T2
Planar, TO-92, Plastic
FEATURES
DESCRIPTION
•
•
•
•
•
•
Functionally equivalent to standard unijunction transistors, Unitrode's Programmable
Unijunction Transistors offer the distinct advantage of versatile programming. External
resistors can be added to meet the designer's needs in programming Eta, RBB , Ip and Iv
functions. Applications include pulse and timing circuits, SCR trigger circuits,
relaxation oscillators and sensing circuits. For additional information see Unitrode
Application Note U-66.
TO"92 Plastic Package
Maximum Peak Current: 0.15 p.A
Minimum Valley Current: 70 p.A
Peak Forward Current: SA
Programmable Eta, RBB, Ip and Iv
Passivated Planar Construction for
Maximum Reliability and
Parameter Uniformity
ABSOLUTE MAXIMUM RATINGS
............ ±40V
Anode-to:Cathode Voltage, VAK
........ 40V
Gate-to-Cathode Forward Voltage, VGK .
.40V
Gate-to-Anode Reverse Voltage, VGAR .
. .................... -5V
Gate-to-Cathode Reverse Voltage, VGKR . .
Peak Recurrent Forward Current
.................. 5A
10p.s, 1% Duty Cycle .
............ 1A
100p.s, 1% Duty Cycle .
Power Dissipation
. 375mW
25'C Ambient
... ... .. ... .... ............. ..... 5mW/'C
Derating Factor .
.... . ...................... ...... -55'C to +l50'C
Storage Temperature ."
Operating Temperature Range.
.. -55'C to +100'C
MECHANICAL SPECIFICATIONS
P13Tl·P13T2
TO·92
.019
.016
T~:= !:
_I
r170
MIN
I
-.L
210_1_ 500 MIN
.205
GO---
-II
175
J
.105
.095
AO-'
.105
~.080
~
.165
.125
Dimensions in inches.
608
0J1J
_'UNITRODE
P13Tl-P13T2
ELECTRICAL SPECIFICATIONS (at 2S'C unless noted)
P13Tl
Test
Symbol
Fig.
Peak Current
Ip
1
Valley Current
Iv
1
Max.
Min.
Max.
Units
Test Conditions
70
-
5
2
25
-
1.0
0.15
p.A
p.A
p.A
I'A
V
V
nA
nA
nA
V
V
ns
RG == 10k, V, == 10V
RG == 1 Mil
RG == 10k, V, == 10V
RG == 1 Mil
RG - 10k, V, _ 10V
RG == 1 Mil
T _ 25'C, V, _ 40V
T == 75'C
V, == 40V
IF == 50mA
Vr
1
0.2
0.2
Gate-to-Anode Leakage
IGAO
2
-
Gate-to-Cathode Leakage
Forward Voltage
Pulse Output Voltage
Pulse Output Rise Time
IGKS
VF
3
4
-
Va
tr
5
9
5
-
Offset Voltage
P13T2
Min.
50
0.6
1.6
10
100
100
1.0
-
80
-
25
0.6
0.6
10
100
100
1.0
9
-
0.2
0.2
-
80
+v
c
v,
:L
v,
1
R,V
'='Vs:::::' R1+R z
R2
a) Typical Circuit
p
,
'
G
vr = v -vs
v,
v,
'bFl Et
A
-
Vv
I,
b) Equivalent Test Circuit
I,
Iv
c) Characteristic Curve
Figure 1
rr
l
V,
'
.-L
Figure 2
Figure 4
Figure 3
+ 20V
R,
510K
6V
C,
.2 pI
.6V ........o:..:L..:.:..._ _ _ _ _ _--+
Figure 5
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
609
PRINTED IN U.S.A.
P13T1 -P13T2
Typical Peak Point Current
vs. Gate Source Voltage
;;: 10
I
..:!
I-
10KIl
Z
'"0:0:
::>
u
I-
10KIl
1MIl
Z
o0-
""i'5
~
RG=lMIl
1i:
~
I
§
.01
_~
Z
'"
0:
0:
o
,,
RG = ~MIl
::>
u
\
I-
Z
0
\
""
'"
<:
\
0-
.1
..J
<:
u
", ,
'\:
\
0-
~ I---
.1
''':~
I'-- ---...
I " r---.....
,
\
-
10,000
I
'"0:0:
;;
..J
5
1i:
>l-
10KIl
-- - -------------
10KIl 10
I
RG-1MIl
£:
RG=lMIl
..?
1
a
---
:;)
------ ----
u
>-
----
I
---- -----
I
100
10K{l....
'"
..J
..J
<:
>
'r"
..J
~
<:
u 10
RG-IMO'"
1i:
>l-
~
..?
1
5
10
15
20
Vs-GATE SOURCE VOLTAGE (V)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
" -
""
100
Vs = 10VJ
--P13T1
---P13T2
JK{l,
Z
100
' ....
1000
..:!
'"
>-
,
;;:
I-
..J
..J
,,
--
Typical Valley Current
Ambient Temperature
I-
'"
~
, ....
VS.
--P13T1
---Pl3T2
::>
u
---...
-80 -60 -40 -20
20 40
60 80
TA -AMBIENT TEMPERATURE ('C)
Typical Valley Current
Gate Source Voltage
;;:
..:!
,
~
:. .01
VS.
0:
0:
,
I
-- ---
10
15
20
Vs - GATE SOURCE VOLTAGE (V)
z 1000
,
~
1i:
>l-
......
=
Vs
10V
--P13T1
---P13T2
10KIl
1M\)
I-
-- ---- ---- --~
0-
u
10
oS
--P13T1
- - - P13T2
~ I---
Typical Peak Point Current
VS. Ambient Temperature
;;:
i'-... .........
--,---
' .... ... r- r-....
r-...........
... ...
... ...
..............
r--...
-- ...
,
---... :-- --
r-
--
r-- r-
-- -- -- --
-80 -60 -40 -20
20 40
60
80
TA -AMBIENT TEMPERATURE ('C)
610
100
PRINTED IN U.S.A.
P13T1-P13T2
sa,"
Typical Pulse Output
Typical Offset Voltage
vs. Circuit Supply Voltage
vs. Ambient Temperature
1.4
~
1.3
"'"
1.1
"
w 1.2
,
I..J
0
>
Iw
VJ
""0
..J
.9
.8
.7
.6
"ua:
.5
l-
>-
.4
I
.3
.§
.2
;;-
-:-20!!V o
1.0
'"
RG _1M!)
RG _10K!),
.......
~
""'~
i'....
.1
...........
........ ......... r-
I---
--80
~o
T, -
~
-40 -20
20 40 60 80
AMBIENT TEMPERATURE ('C)
100
Gate·Anode Blocking CUI rent
vs. Ambient Temperature
Typical On-State Current vs_ Voltage
I-
Z
W
Q:
Q:
$
:J
U
~
~
I-
Z
W
.1~-+--------t--------+------~
Q:
Q:
:J
U
9
In
'"
'"oo
VJ
~
S
oZ
I
.01r--1--------~--~~--1_--~--~
'"
!;;:
.1 r--+-+-H-ftttlt---+-+-+-t+i+t'r--+-+-HffltI
-"
'"I
Q
-~.001~~------~~---------'-------~
100
-80 -50
50
o
.01
10
.1
T, -AMBIENT TEMPERATURE ('C)
UNITRODE CORPORATION, 5 FORBES ROAD
LEXINGTON, Mil. 02173 , TEL. (6In 861-6540
TWX (710) 326-6509 ' TELEX 95-1064
L----'--L.LJ.........J.-.-.J--'--'-'J..ll.'-'-__L.....O-LLLU,U
V, -
611
100
ON-STATE VOLTAGE (V)
PRINTED IN U.S.A.
U13T1-U13T2
PUTs
Planar, TO-18 Hermetic
FEATURES
•
•
•
•
•
•
DESCRIPTION
Voltage Ratings: to lOOV
Maximum Peak Current: 150nA
Valley Current: as low as 25 ",A
Low Forward Voltage Drop
Nano-Amp Leakage
Hermetically Sealed TO-18 Metal Can
The Unitrode hermetically sealed TO-18 metal can series of programmable unijunction
transistors feature blocking voltages to 100V, the highest available to designers. These
PUTs are functionally equivalent to standard unijunction transistors, with the added
advantages of programming versatility. External resistors can be added to program
'I, RBB, Ip and lv' depending upon your design requirements. All units are fully planar
passivated. This series features a hermetically sealed TO-18 package for optimum
reliability in all environmental conditions. Applications include pulse and timing
circuits, SCR trigger circuits, relaxation oscillators, and sensing circuits. For further
application information see Unitrode's Application Note U-66.
ABSOLUTE MAXIMUM RATINGS
U13Tl
U13T2
Anode-to-Cathode Forward Voltage, VAK
Anode-to-Cathode Reverse Voltage, VAKR
Gate-to-Cathode Forward Voltage, VGK ..
Gate-to-Anode Reverse Voltage, VGAR .
Gate-to-Cathode Reverse Voltage, VGKR
Peak Recurrent Forward Current
10 "s 1% Duty Cycle .
100 I'S 1% Duty Cycle .
Power Dissipation
25"C Ambient.
Derating Factor
Storage Temperature Range .
Operating Temperature Range ...
.... 40V
... 40V
... 40V
......... 40V
.... 5V
..... 8A
......... 5A
...... 400mW
. .... 3.2mW/"C
......... -55"C to +l50"C
............. -55"C to +l50"C
MECHANICAL SPECIFICATIONS
U13T1-U13T2
TO-18
t-r-[l=-r210
1.-.
.5MIN.~
!.170~
.195
.230
~ .209 DIA .
.17SD1A.
..l.-.:
4
II
.02~.01J
r-MAX.
+.002 01 •.
-.001
GATE CONNECTED TO CASE
Dimensions in inches.
[ill]
612
_UNITRaCE
U13T1-U13T2
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
U13T1
U13T2
Symbol
Fig.
Min.
Max.
Min.
Max.
Units
Peak Current
Ip
1
-
5
2
-
1.0
0.15
p.A
p.A
Valley Current
Iv
1
70
-
25
-
25
p.A
p.A
Test
Offset Voltage
-
50
0.2
0.2
0.6
0.6
V
V
-
10
100
nA
nA
100
nA
1.5
V
Vr
1
0.2
0.2
0.6
1.6
Gate-to-Anode Leakage
IGAO
2
10
100
Gate-to-Cathode Leakage
IGKS
3
Forward Voltage
VF
4
-
Pulse Output Voltage
Vo
5
6
t,
5
-
-
Pulse Output Rate of Rise
-
100
1.5
6
-
80
+V
li]' tr
v
A
C
G
:L
v,
s
a) Typical Circuit
V
80
n&
vT = vp -vs
Vf
.::.v~y
R2
-
vp
v,
R t :
..
10
I
II
c:
:;;
0:
o
I
U.
1.0
I
.1
.2 .3
V, -
.05
0.1
.5 .6 .7
f
.5
uJ
1.0
uJ
I
10
I--
f-
r-
V
./
50
100
140 130 120 110 100 90 80 70 60 50 40 30 20 10 0
I
.8 .9 1.0 1.1 1.2 1.31.4 1.5
---i..
....-1-
17S'C
20
./
f- l -
c:
FORWARD VOLTAGE (V)
Production
Process
1. Raw Materia I
2. Factory
Processing
-
100'C
>
uJ
I
--./
f-
u
II /
I
TJ
.005
II 1/- ~ ~12s'c
uJ
c:
c:
~
0.001
002
,0 "/(/1'
2
dc=2% MAX.
Reverse Voltage vs. Reverse Current
Forward Voltage vs. Forward Current
1000
Forward Voltage
V, -
Inspection Lot
Formed at
Final
Assembly
Operation
REVERSE VOLTAGE IV)
*100 Percent Process
Conditioning
1. High-Temp Storage
2. Temp Cycling
3. Hermetic Seal Tests
EI
-
*100 Percent Burn-In
1. Measurement of
Inspection Tests
to
Verify LTPD
Group A
Group B
Specified Parameters
2. Burn-In
3. Measurement of
Specified Parameters
to Determine Delta
--
*Order of the tests in the blocks shall be performed as shown.
Order of procedure diagrams for TX types only.
UNITROOE CORPORATION' 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 9!H064
623
PRINTED IN U.S.A.
RECTIFIERS
JAN, JANTX IN645
JAN, JANTX & JANTXV IN645·1
High Voltage, Low Current
FEATURES
DESCRIPTION
•
•
•
•
•
These devices are useful in general
purpose low current applications in high
reliability and military equipment.
Metallurgical Bond
Qualified to MIL-S-19500/240
Planar Passivated Chip
00-35 or 00-7 Package
Non-JAN Available
ABSOLUTE MAXIMUM RATINGS AT 2S'C
Reverse Breakdown Voltage ................................................................................................ 270V
Peak Working Voltage ...........•................................................................................................ 225V
Average Output Current, 2S'C ..................................................... ,.................................. 400mA
150'C ........................................................................................ 150mA
Surge Current, 8.3msec .............................................................................................................. 5A
Operating Temperature Range .................................................................. -6S'C to lS0'C
Storage Temperature Range ...................................................................... -65'C to 200'C
+
+
MECHANICAL SPECIFICATIONS
J, JTX 1N64S
J, JTX, Be JTXV 1N645-1
....
.130
.018
.023
...L
=911
F==rf
Tr--:: -+,. MIN.~
[ill]
12179
624
_UNITRDDE
J, JTX 1N645
J,JTX, JTXV 1N645·1
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Reverse
Current
@2S'C
Reverse
Current
@SO'C
Peak
Reverse
CUrrent
@2S'C
Average
Reverse
Current
@ 1SO'C
1N645
O.025I'A
@225Vdc
151'Adc
@225Vdc
lOOI'A(pk)
@270V(pk)
100,uAdc
@225V(pk)
1N645·1
O.OSO,uA
@225Vdc
25,uAdc
@225Vdc
lOOI'A (pk)
@270V(pk)
100~dc
Type
Forward Voltage
VS.
:<
...""
~~
100 I--
z
TJ =+17S'C
V
V; 'j /
/ II II--f
-
/
W
/
V II
0::
0::
:>
~
«
10
I
0::
~/
~
0::
o
u.
I
1.0
/r
r--- c- -6S'C
-
2S'C
I
I
:<
0.01
.02
""
.05
0::
0::
0.1
.2
en
.5
1.0
t-
z
w
100'C
:>
u
w
/
0::
II / II
W
>
W
-"
II
I
10
20
---!.~
1.0Vdc
@ IF = 400mAdc
8.3msec
20pf
VR =4Vdc
f=l MHz
V,ig=SOmV
VS.
I
TJ =2S'C
~
".- f-
Reverse Current
--
L......-
I
I
/'
- - - -- --100'C
V
I-
J
V
..-
50
100
140 130120 110 100 90 80 70 60 50 40 30 20 10 0
V, - REVERSE VOLTAGE (V)
(% OF PIV)
I
.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.31.4 1.5
V, - FORWARD VOLTAGE (V)
Production
Process
1. Raw Material
2. Factory
Processing
20pf
VR =4Vdc
f=lMHz
V,ig=50mV
17S'C
0::
II
/
/
I
.005
Capacitance
1.0Vdc
@ IF = 400mAdc
8.3msec
Reverse Voltage
0.001
.002
/
-~
.1
II
@225V(pk)
Forward Current
·1000
Forward
Voltage
@2S'C
Inspection Lot
Formed at
Final
Assembly
Operation
*100 Percent Process
Conditioning
1. High-Temp Storage
2. Temp Cycling
3. Hermetic Seal Tests
•
-
*100 Percent Burn-In
1. Measurement of
Specified Parameters
2. Burn-In
3. Measurement of
Specified Parameters
to Determine Delta
Inspection Tests
to
Verify LTPD
Group A
Group B
*Order of the tests in the blocks shall be performed as shown.
Order of procedure diagrams for TX types only.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95·1064
625
PRINTED IN U.S.A.
COMPUTER DIODE
JAN, JANTX, IN914
JAN, JANTX, JANTXV IN4148
JAN, JANTX, JANTXV IN4148·1
General Purpose
Switching
FEATURES
• Metallurgical Bond
• Qua lified to MIL-S-19500 /116
• Planar Passivated Chip
• 00-35 Package
• Non-JAN Available
OESCRIPTION
This series is very popular for general
purpose switching applications in electronic equipment.
ABSOLUTE MAXIMUM RATINGS, AT 25·C
Reverse Breakdown Voltage ....................
..... 100V
Peak Working Voltage ...............................................
.................. 75V
Average Output Current, 1N914 .........
................................
.......... 75mAdc
1N4148 ....... .. ........................
.......................
...... 200mAdc
1N4148-1 .............................................................................. 150mAdc
Surge Current, 8.3msec ................................................................................................. 500mA
Operating Temperature Range .............
.....................
... -65·C to +175·C
Storage Temperature Range ....
............... -65·C to +20Q·C
MECHANICAL SPECIFICATIONS
J, JTX 1N914
J, JTX & JTXV 1N4148, 1N4148-1
[ill]
12179
626
.... UNITRDDE
J, JTX 1N914
J, JTX, JTXV, 1N4148-1N4148.1
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Peak
Reverse
Reverse
Reverse
Reverse
Current
@2S'C
Current
@2S'C
Current
@2S'C
Current
@lS0'C
Reverse
Current
@lSO'C
2SnAdc
@
VR = 20Vdc
S.O!
u
0
10
V /
a:
'5:"
'0"
u.
/
1.0
/
-"
.1
1
/
/
I
/
.005 I0.01
;;{ .02
It' r- 25'C
IL 100'C
J 1 L
TJ
-
...-
....
OJ
'"a:
/
:::J
u
OJ
OJ
25'C
.05
0.1
.2
V
.5
1.0
-"
/ I
•
V
V
,./'
/
/'
I-.-
V
V
J
10
20
I
I
r::p
",L r-
50
100
l - f140 130 120 110 100 90 80 70 60 50 40 30 20 10 0
VR - REVERSE VOLTAGE (V)
(% OF PIV)
I
.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.31.4 1.5
V, - FORWARD VOLTAGE (V)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064
V
100'C
a:
I
-,./'
L
.:!
Z
.- .-
= -65'C
UJ
/
175
Reverse Voltage vs. Reverse Current
0.001
.002
II
/
'" ~
25
50
75
100
125
150
T. -AMBIENT TEMPERATURE ('C)
1/VV VI
V V V I;' -6S'C
/ / f
~~
I
Forward Voltage vs. Forward Current
.s....
IN4J54
1N4454-1
_0
1000
< 100
"" '""'"
:J
u
'"
OJ
ii:
....z
1N~064
~
OJ
0:
0:
U
2.0pf
@
VR=OVdc,f=lMHz
V,;g = 50mV (pk to pk)
Forward
Recovery
Time
5.0V(pk)
1.0 Vdc
Capacitance
629
PRINTED IN U.S.A.
1N3070
COMPUTER DIODE
High Voltage Switching
FEATURES
DESCRIPTION
•
•
•
•
This series offers Metallurgical Bonding
and is specifically designed for high
voltage applications.
Metallurgical Bond
Planar Passivated
High Voltage
00-35 Package
ABSOLUTE MAXIMUM RATINGS, AT 25·C
Reverse Breakdown Voltage .................................................................................... 200V
Average Rectified Current ................................................................................... 200mAdc
Surge Current, 8.3 mS ........................................................................................ 500mA
Operating Temperature Range ...................................................................... - 65·C to + 150·C
Storage Temperature Range ........................................................................ -65·Cto +200·C
MECHANICAL SPECIFICATIONS
1N3070
00-35
0.065 (1.65) max
J.-
1.1.0(25.4)min~-...l
q~ II
TI·
0.H\5 (3.94) max
F=1t=Jf"'1'
·1
Dimensions in inches and (millimeters)
om
_UNITRDDE
12/79
630
1N3070
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Type
Peak
Invarse
Voltage
(V)
Forward
Voltage
@100mA
(V)
Reverse
Current
(V) (nA)
200
1.0
175100
1N3070
(V)(~A)
Capacitance
OV
(pF)
Reverse
Recovery
Time
(nS)
175100
5
50
Reverse
Current
@ 150'C
Typical Forward Voltage vs. Forward Current
1000
«
2
E
;=
100
Z
W
5
a:
a:
r- -
TJ =
+ 175'C
10
I
~
o
' - ; - -65'C
/~
f+ _
1
25'C
!z
1oo'C
~
1.0
/
_IL
/
.1
.2 .3
.4
VF -
.5
.6
./
O. 1
w
.5
ffi
1.0
f-
--
100'C
I
.!!-
I
7
.8 .9
L
-
175'C
10
20
..... ..-
- f - f-
.-V
50
100
260260240220200 160 160 140 120 100 80 60 40 20 0
V R - REVERSE VOLTAGE (V)
1.01.1 1.2 1.31.4 1.5
FORWARD VOLTAGE (V)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
V
--I-"
I-
Gj
I
/
I
.1
.05
I.-- l -
,./
I
I
a:
/
/
02
I-- .-
TJ =25'C
~2
II
/
.00 5
0.0 I'
()
/
/ / /
IL
I
1/
/ '/
II ,/
()
«
/- ' j 'A'
II
/
:>
iil
Typical Reverse Voltage VS. Reverse Current
0.00 1
002
v:: /"A"A"
631
PAINTED IN U.s.A.
JAN, JANTX, JANTXV 1N3595
COMPUTER DIODE
150 rnA, Switching
FEATURES
DESCRIPTION
•
•
•
•
•
A very useful device for medium current
switching applications.
Metallurgical Bond
Qualified to MIL·S·19500/241
Planar Passivated Chip
00·7 Package
Non·JAN Available
ABSOLUTE MAXIMUM RATINGS, AT 2S"C
Peak Reverse Voltage ...............................................................................•.......... 125V
Reverse Breakdown Voltage ..................................................................................... 150V
Average Output Current .................................................................•.................. 150mAdc
Surge Current, lS ............................................................................................500mA
1,,8 ...............................................................................................4A
Operating Temperature Range ...................................................................... - 65·Cto + 150·C
8torageTemperatureRange ........................................................................ -65·Cto +200·C
MECHANICAL SPECIFICATIONS
JAN, JANTX, JANTXV lN3S9S
DO·7
0.092 (2.37)
0.130 (3.30)
..-.L
p=*
:::~: -+ '"' ' J
0.018 (0.46)
0.022 (0.56)
=911
TI-
1.5 (38.1)
Dimensions in inches and (millimeters)
OJD
_UNITRaDE
12/79
632
JAN, JANTX, JANTXV 1N3595
ELECTRICAL SPECIFICATIONS
1 o~~
65'C
I-
10
0:
/
io
/
u,
1.0
/
_u,
/
/
lj
I
.1
I
/
.2 .3 .4
.5 .6 .7
0.1
13
2
~
w
a;
I
I
.E'
--
f-
.5
- -"""'
,.- I-'
>- r-
V
J
175'C
10
,/'
-r--
V V
50
100
280260240220200180160140120100 80 60 40 20 0
1.01.1 \.2 1.3 1.4 1.5
VF - FORWARD VOLTAGE (V)
UNITRODE CORPORATION, 5 FORBES ROAD
LEXINGTON. MA 02173 ' TEL. (617) 861·6540
TWX (710) 326-6509 ' TELEX 95-1064
-
100'C
1.0
20
I
......
I--"
I
0:
I
.8 .9
.05
W
/ / I
II
I
I
/
Z
g:
w
100'C
II II
()
I
/A'
f-r
I I
TJ = 2S'C
.005
I II I~ 'r-I- r-\25'C
W
0:
0:
o
0.001
.002
~ 0-rA'
V
VF,
IF = lmAdc
VR - REVERSE VOLTAGE (V)
633
PRINTED IN u.s.A.
COMPUTER DIODE
JAN, JANTX & JANTXV IN3600
JAN, JANTX & JANTXV IN4150
JAN, JANTX &.JANTXV IN4150·1
200mA
Low Power, Switching
FEATURES
• Metallurgical Bond
• Qualified to MIL-S-19500/231
• Planar Passivated Chip
• 00-7 or 00-35 Package
• Non-JAN Available
DESCRIPTION
This series of switching diodes is useful in
many computer switching applications, for
both military and commercial systems.
ABSOLUTE MAXIMUM RATINGS, AT 25'C
Reverse Breakdown Voltage ............................... ...................................
... 7SV
Peak Working Voltage . ............................................................................................... .......... SOV
Average Output Current ....
..................................................
...... 200mA
Surge Current (lsec) ................................................................................................................ O.SA
(lpSec) ............................................................................................................ 4.OA
Operating Temperature Range .................................................................. -6S'C to +17S'C
Storage Temperature Range ...................................................................... -6S'C to +200'C
MECHANICAL SPECIFICATIONS
J, JTX & JTXV 1N3600
J, JTX & JTXV lN4150, lN415D-l
[ill]
12/79
634
_UNITRODE
JAN, JANTX & JANTXV lN3600, lN4lS0 & lN41S0-1
ELECTRICAL SPECIFICATIONS (at 25·C unless noted)
Reverse
Breakdown
Characteristics
Forward Voltage
Forward Voltage
Forward Voltage
Forward Voltage
Forward Voltage
Voltage
Conditions
VFI
'F= 1 mAdc
VF2
'F=10mAdc
VF3
'F = SO mAdc
(pulse)
VF4
'F = 100 mAdc
(pulse)
VF5
'F =200 mAdc
(pulse)
BV
'R = S.O /lAdc
Minimum
Maximum
0.S40 Vdc
0.620 Vdc
0.660 Vdc
0.740 Vdc
0.760 Vdc
0.860 Vdc
0.820 Vdc
0.920 Vdc
0.870 Vdc
1.00 Vdc
Characteristics
Reverse Current
Reverse CUrrent
Junction Capacitance
7SVdc
-
Reverse
Reverse
Recovery Time
Recovery Time
Forward
Recovery Time
C
VR=O
F=l MHz
V,;g = SO mv (p-p)
trrz
'R
VR=SOVdc
'R
VR= SO Vdc
TA = lS0·C
trrl
Conditions
'F='R=
10 to 200 mAdc;
RL = 100 ohms
'F='R=
200 to 400 mAdc;
RL =100 ohms
t f,
'F = 200 mAdc;
tp = 100 nsec;
t, =0.4 nsec
Maximum
O.l/lAdc
100/lAdc
2.S pf
4 nsec
6 nsec
10 nsec
Typical Forward Current vs Voltage
Reverse Voltage YS. Reverse Current
0.00 1
.002
1000
500
_
v VI/'
200
.s'" 100
~
50
~
20
:J
(J
10
...o
1
.!"
,
if /
0:
0:
If
:>
'"'"ffi"
1:;
II
0:
II
.5
.1
§
II
2
.2
1
." ,,,~,,I/,J/
f-r--- ho/fj/q
., .,
o
c:
'"
1;:
.00 5 _
'j
I
II II
_"
II
I....
.02
~
-.! -~5'cl
il
.0 5
J- I-
,- J..-:-rV
25·b
I-
l-
~
O. I
2
5
V
1.0
100;;:-
2
10
17SOC-p..
I.Y
0
Lots proposed
for
non-TX
types
I....
IL
fL'r---
f-r-
5
0
II
10o -'140 130120 llD 100 90 80 70 60 50 40 30 20 10 0
VR - REVERSE VOLTAGE (V)
(% OF PIV)
.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.11.2 1.31.41.5
V,- FORWARD VOLTAGE (V)
Inspection lots
formed atfinal
assembly operation
(sealing)
-I-
0.0 1
Inspection tests to
verify LTPD
Group A
Group B
1---
Review of
Groups A and B
data for
accept or reject
I....
Non-TX
Preparation
for
Delivery
t
,
Lots proposed
for
"TX"types
100 Percent burn-in*
(reverse and forward bias tests)
1. Measurement of specified parameters
100 Percent process conditioning*
1. High-temp storage
2. Thermal shock
(glass strain)
3. Acceleration
4. Hermetic seal tests
....
2. Reverse bias
3. Measurement of specified parameter
to determine delta
4. Forward bias
5. Measurement of specified parameters
to determine delta
6. Lot rejection criteria based on
rejects from the Reverse and
Forward bias tests.
Order of procedure diagram for non-TX and "TX" types.
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
635
......
Inspection
tests to verify
LTPD
Group A
Group B
I
Review of
Group Aand B
data for
lot accept
or reject
t
TX
Preparation
for
Delivery
PRINTED IN U.S.A.
1N4149, 1N4151, 1N4154
1N4446, 1N4447, 1N4448
1N4449
COMPUTER DIODE
Switching
DI;SCRIPTION
This series offers Metallurgical Bonding
and is very popular for general purpose
switching applications.
FEATURI;S
• Metallurgical Bond
• Planar Passivated
• 00-35
ABSOLUTE MAXIMUM RATINGS, AT 25°C
1N4149
1N41S1
1N41S4
1N4448
1N4447
1N4448
1N4449
Peak Reverse Voltage ............... 75V ........ 75V ........ 35V ........ 75V ........ 75V ........ 75V ........ 75V ....... .
Average Rectified Current ............................................... 200mAdc .................................. .
Surge Current, 8.3 mS ....................................................500mA ................................... .
Operating Temperature Range .................................... ,. -65·C to + 150·C ............................... .
Storage Temperature Range ........................................ - 65·C to + 200·C ............................... .
MECHANICAL SPECIFICATIONS
1N4149, 1N41S1, 1N4154,
1N4446, 1N4447, 1N4448
1N4449
00·35
0.065 (1.65) max
..:t
141.0(25.4)mln~ ~
q~ II
T I·
0.155(3.94) max
Pt=JT~'"
·1
.
Dimensions in inches and (millimeters)
lliD
_UNITRODE
12/79
636
1N4149, 1N4151, 1N4154,
1 N4446, 1 N4447, 1 N4448,
1N4449
ELECTRICAL SPECIFICATIONS (at 2S'C unless noted)
Forward Voltage
Type
Peak
Inverse
Voltage
@ 10mA
@2OmA
1N4149
75
1.0
1N4151
75
-
1N4154
35
-
-
1N4446
75
1N4447
75
1N4448
75
1N4449
75
-
1.0
1.0
-
@3OmA
@50mA
@ 100mA
-
-
-
20
25
-
1.0
50
50
50
4pF
2nS
1.0
-
-
25 100
25 100
4pF
2nS
-
-
-
20
25
20
50
4pF
4nS
20
25
20
50
4pF
4nS
-
-
1.0
20
25
20
50
4pF
4nS
1.0
-
-
20
25
20
50
2pF
4nS
0.001
.002
l
TJ = +17S'C
Z
V
... 100
w
a:
a:
=>
(.)
~
V 'I-,f
/
10
/
1.0
[I
.!L
V
.1
.1
.2 .3
I
'/
_0.01
~ .02
...
Z
w
2S'C
a:
a:
=>
(.)
I
w
'">a:w
/ 1/
,...
.05
0.1
.2
I
[I
.,;
50
100
.8 .9 1.0 l.l 1.2 1.31.4 1.5
2slc
~
~
J
l00'C
§. 10
20
/ I
-
1.0
a:
.,;
-r-
~-
I
I
V
/
V
17S'C
~
11
V
I
140130120 110 100 90 80 70 60 50 40 30 20
VF - FORWARD VOLTAGE (V)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
V-
w
I
.5 .6 .7
-
I
I
.5
I
[I
.4
-+
iJ =1 +Js'ci
.005
l00'C
/
vV
.....-: ~ ~ V
'->- -6S'C
II
i:t
I
50
Typical Reverse Voltale VI. Reverse Current
Typical Forward Voltage vs Forward Current
1000
~
Reverse
Reverse
Junellon Recovery
Current
@ 150°C Capadtanee Time
@ OV
tRR
VR ""
4pF
4nS
20 50
Reverse
Current
VRnA
VR - REVERSE VOLTAGE (V)
637
PRINTED IN U.S.A.
1N4152, 1N4305, 1N4444
COMPUTER DIODE
Switching
DESCRIPTION
This series offers Metallurgical Bonding and
is very popular for general purpose switching
applications.
FEATURES
• Metallurgical Bond
• Planar Passivated
• 00-35 Package
ABSOLUTE MAXIMUM RATINGS, AT 2S'C
1N41S2
1N4444
1N430S
Peak Reverse Voltage ................................................................................................................................. 40V ............ 75V ............ 70V .... ..
Reverse Working Voltage ........................................................................................................................... 30V ............ SOV ............ SOV .... ..
Average Rectified Current ........................................................................................................................................... 200mAdc ..................... ..
Surge Current, 8.3 mS .................................................................................................................................................... 500mA ....................... ..
Operating Temperature Range ........................................................................................................................... -65'C to + 150'C .............. .
Storage Temperature Range ............................................................................................................................... - 65'C to + 2oo'C .............. .
MECHANICAL SPECIFICATIONS
1N41S2, 1N430S, 1N4444
0.065 (1.65) max
I
i
q~
II
T1
4 0.155 (3.94) max
I 1.0 (25.4) min
00-35
~-.t
Pp-r"'"
4
·1
Dimensions in inches and (millimeters)
[ill]
_UNITRODE
12/79
638
1N4152, 1N4305, 1N4444
ELECTRICAL SPECIFICATIONS (at 25°C unle•• noted)
Forward
Voltage
@O.1mA
Peak
Inverse
Voltage
(V)
Type
Forward
Voltage
@O.2SmA
min
max
Forward
Voltage
@ 1.0mA
min
max
min
max
Forward
Voltage
@10mA
Forward
Voltage
@2.0mA
min
max
min
Forward
Voltage
@20mA
max
min
max
min
max
-
-
0.85
1.0
1N4152
40
0.49
0.55
0.53
0.59
0.59
0.67
0.62
0.70
0.70
0.81
0.74
0.88
1N4305
75
-
-
0.505
0.575
0.55
0.65
0.61
0.71
0.70
0.85
-
1N4444
70
0.44
0.55
-
0.56
0.68
-
-
0.69
0.82
-
-
-
Reyer.e
Current
@ 1SOoC
Reyerse
Current
Type
VA
(nA)
VA
,.A
Junction
Capacitance
@
OV
Reverse
Recovery
Time
trr
1N4152
30
50
30
500
2pF
2nS
1N4305
50
100
50
1000
2pF
2nS
1N4444
50
50
50
500
2pF
-
Reverse Voltage vs. Reverse Current
Forward Voltage vs. Forward Current
0.001
1000
«
2
TJ = +17S'C
~ 100
i'a:li
5
:::J
2
a:
II
/
a:
io
u.
10
II
V /
5
/
2
I
1.0
_u.. 5
/
/
'.1
.1
~
If h' -
V
()
o
1/ ~ /'
VV V
V[
005
-65'C
2S'C
l00'C
~
a
I
/
~
>
w
a:
I
.!!'
I
.4
.5
.6
.7
0 I
2
.S
1.0
.8 .9
V
/
./"
./"
1
V
J
l00'C
~-
2
./"
J
10
II
--
1~ ".L r-
J
50
I
I
100
140 130 120 110 100 90 80 70 60 50 40 30 20 10 0
1.0 l.l 1.2 1.3 1.4 1.5
VF - FORWARD VOLTAGE (V)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
-,/
2S'C
.05
20
II
.2 .3
V
I-
i'li
I
/
-
..- f.-
I- TJ = -6S'C
_ 001
02
1
w
L II
I I
002
/
/
Forward
Voltage
@100mA
..-
VR - REVERSE VOLTAGE (V)
(% OF PIV)
639
PRINTED IN U.S.A.
•
COMPUTER DIODE
JAN, JANTX & JANTXV IN4153
150mA
Switching Diode
FEATURES
OESCRIPTION
• Metallurgical Bond
• Qualified to MIL·S·19500/337
• Planar Passivated Chip
• 00-35 Package
• Non·JAN Available
This device is particularly suited to
applications where tightly controlled
forward characteristics and fast recovery
time are important.
ABSOLUTE MAXIMUM RATINGS, AT 25'C
Reverse Breakdown Voltage ......
Peak Working Voltage ....
Average Output Current ..... ..
Surge Current, ll'sec ................... .
Operating Temperature Range ... .
Storage Temperature Range.
............ 75V
...................... 50V
...... .............
.................... 150mA
... .... .......................
.... 2.0A
.. .......... -65'C to +200'C
... -65'C to +200'C
MECHANICAL SPECIFICATIONS
J, JTX & JTXV 1N4153
12179
640
lliD
_UNITRDDE
JAN, JANTX & JANTXV 1N4153
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Limit
VFI
'F= 100,uAde
Vn
'F = 250p.Ade
VF1
'F= 1 mAde
VF4
'F=2mAde
VF5
'F= 10 mAde
VF6
'F=20mAde
Min
Max
0.490Vde
0.550 Vde
0.530Vde
0.590Vde
0.590 Vde
0.670 Vdc
0.620 Vde
0.700 Vdc
0.700 Vde
0.810 Vdc
0.740 Vde
0.880 Vdc
Limit
IR
VR=50V
Min
Max
0.05 p.Adc
C
VR=O
f=l MHz
IR2
VR=50V
TA =150C
-
g
....
TJ
= 175'C- V
V
z
/ V
w
a:
a:
:::>
~
10
u
I
.4
V, -
I
I
0.1
.2
w
.5
a:
w
>
w
a:
1.0
-"
10
VI
I
.8 .9
I
VI
-
..-
25~C l-
V
J
I
-100'e
I- f-'"
5
20
II
./
l- f-"'"
I
V
""
k-i:.:- - ..-
SO
V
I
100 II
140 130 120 110 100 90 80 70 60 SO 40 30 20 10 0
II
.5 .6 .7
V
z
/
-"
/
.02
1'-'- -65'C
.,...- V
J
.005
/ / II
~
'T ' ~5'cl
0.01
100'C
a:
-
Reverse Voltage vs. Reverse Current
0.001
.002
25'C
If
/
75V
4 ns
I---': ~ ~ V
i'i
-
2.0 pF
Forward Voltage vs. Forward Current
2
100
Reverse
Breakdown
Voltage
'R = 5.0 p.Adc
-
-
50 p.Adc
1000
-«
t"
'F= 'R =10 mAde
RL = 100 ohms
1.01.1 1.2 1.31.4 1.5
FORWARD VOLTAGE (V)
V, -
REVERSE VOLTAGE (V)
(% OF PIV)
Production
Process
1. Raw Material
2. Factory
Processing
--...,...
Inspection Lot
Formed at
Final
Assembly
Operation
*100 Percent Process
Conditioning
1. High-Temp Storage
2. Temp Cycling
3. Hermetic Seal Tests
*100 Percent Burn-In
1. Measurement of
Specified Parameters
2. Burn-In
3. Measurement of
Specified Parameters
to Determine Delta
Inspection Tests
to
Verify LTPD
Group A
Group B
EI
-
-
*Order of the tests in the blocks shall be performed as shown.
Order of procedure diagrams for TX types only.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064
641
PRINTED IN U.S.A.
1N4450~1N4451,
COMPUTER DIODE
1N4453
Switching
FEATURES
DESCRIPTION
• Metallurgical Bond
• Planar Passivated
• 00-35 Package
This series offers Metallurgical Bonding
and is very popular for general purpose
switching applications.
ABSOLUTE MAXIMUM RATINGS, AT 2S·C
1N4450
1N44S1
1N44S3
Peak Reverse Voltage ................................................................................................................................. 40V ............ 40V ............ 30V ..... .
Reverse Working Voltage ........................................................................................................................... 30V ............ 30V ............ 20V ..... .
Average Rectified Current ........................................................................................................................................... 200mAdc ...................... .
Surge Current, 8.3 mS .................................................................................................................................................... 500mA .........................
Operating Temperature Range ........................................................................................................................... - 65·C to + 150·C .............. .
Storage Temperature Range .....................•......................:.................................................................................. - 65·C to + 200·C ............. ..
MECHANICAL SPECIFICATIONS
1N4450, 1N4451, 1N4453
-.t
0.065 (1.65) max
c::itlll
I~ 1.0 (25.4) min ~
00-35
.l-.
~PT·"J
T I~ 0.155 (3.94) max .,.
Dimensions in inches and (millimeters)
12/79
642
QW
_UNITRODE
1N4450, 1N4451 , 1N4453
ELECTRICAL SPECIFICATIONS (at 2S·C unless noted)
Forward
Voltage
@O.OlmA
Peak
Inverse
Voltage
(V)
Type
Forward
Voltage
@O.lmA
min
max
Forward
Voltage
@ 1.0mA
Forward
Voltage
@10mA
min
max
min
max
min
max
min
0.52
0.64
0.64
0.76
0.80
0.96
-
-
0.42
-
-
0.50
0.51
0.61
0.62
0.72
0.75
0.875
-
1.0
0.40
-
1.0
1N4453
30
0.43
0.55
0.51
0.63
0.60
0.71
0.69
0.80
0.80
0.92
-
-
-
Reverse
Current
@ l50·C
VR
Junction
Capacitance
@
OV
Reverse
Recovery
Time
trr
Type
VR
(nA)
1N4450
30
50
30
500
4pF
4nS
1N4451
30
50
30
500
6pF
1N4453
20
50
20
500
30pF
-
VS.
"A
TJ = + 17S'C
100
5
II
10
/
~
o
LL
I
/
10
/
~
L
'.1
.1
.2 .3
/
/
./ t/ /' VT
V / V f. -6S'C
V If H -
.005
_ 001
2S'C
/
/
VF -
.5 .6 .7
02
~
0.1
i3
.2
W
.5
w
1.0
rQ
~
a:
I
.!!'
I
I / I
.4
1
...
V
2S'C
........
,./
........
........
/
./
V
l00'C
...- r-
V
)
I II
r::p
~ f-
50
l - II
100
140 130 120 110 100 90 80 70 60 50 40 30 20 10 0
1
.8 .9 1.01.1 1.2 1.3 1.4 1.5
FORWARD VOLTAGE (V)
UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
r- f-
2
10
20
------
I
TJ = 6S"C
aJOS
loo'C
/
II
-
Reverse Voltage vs. Reverse Current
Forward Current
0.001
.002
U
o
max
40
::>
a:
..:
min
40
;{
a:
a:
max
1N4451
Forward Voltage
W
min
1N4450
1000
Z
max
Forward
Voltage
@300mA
0.54
Reverse
Current
E
j:'"
Forward
Voltage
@200mA
Forward
Voltage
@ 100mA
VR -
643
REVERSE VOLTAGE (V)
PRINTED IN u.s.A.
COMPUTER DIODE
1N4452, 1N4607
High Conductance
FEATURES
• Metallurgical Bond
• Planar Passivated
• High Conductance
• 00·35 Package
DESCRIPTION
This series offers Metallurgical Bonding
and is specifically designed for high
conductance switching applications
such as core memories.
ABSOLUTE MAXIMUM RATINGS, AT 2S'C
lN44S2
lN4607
Peak Reverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 40V ...... 85V .. .
Reverse Working Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30V ...... 50V .. .
Average Rectified Current ................................................................................... 400mAdc ...... .
Surge Current, 8.3 mS .......................................................................................... 1A ......... .
Operating Temperature Range .......................................................................... - 65'C to + 150·C ..
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. - 65'C to + 200'C ..
MECHANICAL SPECIFICATIONS
1 N4452, 1N4607
00·35
Dimensions in inches and (millimeters)
[ill]
_UNITRODE
12/79
644
1N4452, 1N4607
ELECTRICAL SPECIFICATIONS
W
a:
I
a:
I
II
VF -
.5
.6 .7
.8
.~
25'C
~
.05
0.1
./
I-- !--
~
V
.2
V
.5
1.0
2
-
l00'C
1--1-"
10
50
100
1.0 1.1 1.2 1.3 1.4 1.5
(
L
l- f-
150'C
I-- I -
-
-
V
/'
f-"""
140 130 120 110 100 90 80 70 60 50 40 30 20 10
FORWARD VOLTAGE (V)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
,.., :."
.02
20
~
1 2 .3 .4
-
.005
1/ 1
V
.5
.2
=1
1: 0.01
I/;,C/i/i/l
1:S~ct'~
c(
3:
a:
1.0
=1 1.1
.002
VVI
50
::I
-
1.0
Forward
Voltage
l000mA
min max
@
Typical Reverse Voltage vs Reverse Current
V V /. /
I- 100
a:
a:
=1
Forward
Voltage
BOOmA
min max
@
.001
500
§.
@
-
Reversa
Recovery
Time
Typical Forward Voltage vs Forward Current
1000
<"
Forward
Voltaga
400mA
min max
Forward
Voltage
350mA
min max
@
VR -
645
0
REVERSE VOLTAGE (V)
PAINTED IN u.s.A.
COMPUTER DIODE
JAN &JANTX IN4500
500mA
Switching Diode
FEATURES
• Metallurgical Bond
• Qualified to MIL-S-19500/403
• Planar Passivated Chip
• 00-35 Package
• Non-JAN Available
DESCRIPTION
This device is a fast switching, high conductance diode for military, space, high reI
and other systems.
ABSOLUTE MAXIMUM RATINGS, AT 25'C
...................................... 80Vdc
Reverse Breakdown Voltage
Peak Working Voltage .................... .
.................................................................... 75Vpk
........... 300mAdc
Average Output Current .. .
Surge Current, lsec .. .
................................................................................... O.SA
.. ...................................................................... 4.0A
IJLsec .....................
Operating Temperature Range .... . . .................................................. -65'C to +175'C
Storage Temperature Range ...... ..
..................................... .. ........ -65'C to +200'C
MECHANICAL SPECIFICATIONS
J & JTX 1N4500
[ill]
12179
646
_UNITRODE
JAN & JANTX IN4500
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
C
VR=O
Limits
VF,
IF = 250,uAde
Vn
IF = 1.0mAde
VFl
F=10mAde
VF4
IF=20mAde
VFs l/
IF=300mAde
mVde
470
560
mVde
520
600
mVde
640
720
mVdc
670
770
Vdc
Minimum
Maximum
Va
la
75Vdc
Bv
la=5,uAdc
=
nAdc
Minimum
Maximum
"
S
...z
100 l - I- TJ
nsec
100
Reverse Voltage vs. Reverse Current
/;1'
.005
'-t- -we
/ II II- f:-!- f-[25"C
'"'"
';;:"
10
I
I
0:
"
1/
0:
'"
106·c.
V 1/ II
OJ
u
/
LL
1.0
II
"'"
J
II
.1
.1
/
/ II
.05
~
~
u
O. 1
0:
U.J
- r-
r----
I
I
~J ~ -~5"CI
~
.2
I
1+
1-+
r---
r.......
IL
1
I
100'~
r---
10
20
J...- f- f-
~ j-
r-
rJ,:::P"-
5
50
-r100
140 130 120 110 100 90 80 70 60 50 40 30 20 10 0
V, - REVERSE VOLTAGE (V)
(% OF PIV)
I
Lots proposed
for
non-TX
types
V
./
.....!- f-25,b f--
1/
.5
1.0
0:
y
I
1,-----
;1
[;j
I
.2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.31.4 1.5
V, - FORWARD VOLTAGE (V)
Inspection lots
formed at final
assembly operation
(sealing)
~
If)
II
/
0.01
.02
w
II
1/ /
;;(
.3
U.J
/
-
6.0
0.001
.002
/. "A'A'
=+175"C V
4.0
1.10
,uAdc
Forward Voltage vs. Forward Current
V,
-
trr
IF=la=
10 mAde: RL = 100 ohms
100
1000
pF
-
la
Va = 75Vdc
TA = 150'C
Vdc
80
-
100 kHz~f~l MHz
V,;g = 50 mv (p-p)
Inspection tests to
verify LTPD
Group A
Group B
1-'
Review of
Groups A and B
data for
accept or reject
1-+
Non-TX
Preparation
for
Delivery
t
Lots proposed
for
"TX"types
100 Percent process conditioning*
1. High-temp storage
2. Therma I shock
(glass strain)
3. Acceleration
4. Hermetic seal tests
1.
2.
3.
4.
5.
6.
100 Percent burn-in*
(reverse and forward bias tests)
Measurement of specified parameters
Reverse bias
Measurement of specified parameter
to determine delta
Forward bias
Measurement of specified parameters
to determine delta
Lot rejection criteria based on
rejects from the Reverse and
Forward bias tests.
Order of procedure diagram for non-TX and "TX" types.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
647
Inspection
tests to verify
LTPD
Group A
GroupB
Review of
GroupAand B
data for
lot accept
or reject
.!
TX
Preparation
for
Delivery
PRINTED IN U.S.A.
SWITCHING & GENERAL PURPOSE DIODES
DESCRIPTION
PART NUMBER
PAGE
PART NUMBER INDEX
DIODE
622
IN456
IN456A
IN457, J
IN457A
IN458, J
IN458A
IN459, J
IN459A
IN483
IN483A
I N483B, J, JTX
IN483C
IN485
I N485B, J, JTX
90mA; 25V
75mA; 60V
55mA; 125V; DO-7
40mA; 175V
55mA; 150V; DO-7
100mA; 150V
40mA; 200V; DO-7
100mA; 200V
100mA; 70V
100mA; 70V
200mA; 80V; DO-7
100mA; 70V
100mA; 180V
200mA; 200V; DO-7
624
624
IN645J, JTX
IN645-lJ, JTX, JTXV
400mA; 270V
400mA; 270V
626
IN914, J, JTX
IN914-1, A, B
IN916, B
1N3064J, JTX
IN3070
IN3595, J, JTX, JTXV
I N3600J, JTX, JTXV
IN4148, J, JTX, JTXV
IN4148-lJ, JTX, JTXV
IN4149
IN4150, J, JTX, JTXV
IN4150-lJ, JTX, JTXV
IN4151
IN4152
IN4153, J, JTX, JTXV
IN4153-1, J, JTX, JTXV
IN4154
IN4305
IN4444
IN4446
IN4447
IN4448
IN4449
IN4450
IN4451
IN4452
IN4453
I N4454, J, JTX, JTXV
I N4454-lJ, JTX, JTXV
I N4500, J, JTX
IN4607
620
*
620
*
620
*
620
*
*
*
622
*
*
RECTIFIER
DIODE
*
*
628
630
632
634
626
626
636
634
634
636
638
640
*
636
638
638
636
636
636
636
642
642
644
642
628
628
646
644
75mA; 100V
75mA; 100V
75mA; lOOV
75mA; 75V; DO-7
200mA; 200V; DO-35
150mA; 150V; DO-7
200mA; 75V; DO-7
200mA; lOOV; DO-35
150mA; lOOV; DO-35
200mA; 75V; DO-35
200mA; 75V; DO-35
200mA; 75V; DO-35
200mA; 75V; DO-35
200mA; 40V; DO-35
150mA; 75V; DO-35
150mA; 7 5V; DO-35
200mA; 35V; DO-35
200mA; 75V; DO-35
200mA; 70V; DO-35
200mA; 75V; DO-35
200mA; 75V; DO-35
200mA; 75V; DO-35
200mA; 75V; DO-35
200mA; 40V; DO-35
200mA; 40V; DO-35
400mA; 40V; DO-35
200mA; 30V; DO-35
200mA; 75V; DO-35
200mA; 75V; DO-35
300mA; 80V; DO-35
400mA; 85V; DO-35
·Contact Unitrode for specifications and ratings.
Legend: J -
JAN
JTX -
JANTX
JTXV -
JANTXV
UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
648
PRINTED IN U.S.A.
SALES OFFICES
PART NUMBER INDEX
II
DESIGNERS' GUIDES
III
POWER TRANSISTORS & DARLINGTONS
IV
SWITCHING REGULATOR POWER CIRCUITS
V
RECTIFIERS
VI
HIGH VOLTAGE RECTIFIERS, RECTIFIER
MODULES & MULTIPLIERS
VII
RECTIFIER BRIDGE ASSEMBLIES
VIII
POWER ZENERS & TRANSIENT VOLTAGE SUPPRESSORS
IX
THYRISTORS (SCRs, Triacs, PUTs)
X
SWITCHING & GENERAL PURPOSE DIODES
XI
PIN DIODES
l1li
CAPACITORS
XIII
APPLICATION NOTES & DESIGN NOTES
XIV
MECHANICAL SPECIFICATIONS
XV
649
650
PIN DIODES
PRODUCT SELECTION GUIDE
SWITCHING PIN DID DES
AVlirage
Average
Therma'I····""fiIo'We'c·'
Resistlihce . Dls$JpatRl!t:
0Aniax;
P,.; max.
('c/W)
;(pF)
{OJ
3.0
3.0
0.5
0.5
0.5
2
2
1.7
1.1
0.4
0.9
0.4
15
10
10
1.0
10
1.2
0.6
0.25
8
2.2
2.5
7
(W)
25
37
100
100
25
25
6
25
1.0
6
0.6
35
15
15
15
4
10
10
13
60
35
20
6
4
10
10
5.0
5.0
1.0
2.5
2.0
1.5
HIGH POWER ATTENUATOR & MODULATOR PIN DIODES
GENERAL PURPOSE PIN DIODE
•
LOW DISTORTION ATTENUATOR PIN DIODES
.UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
651
PRINTED IN U.S.A.
PIN DIODES
PRODUCT SELECTION GUIDE
TWO WAY RADIO ANTENNA SWITCHES
RADIATION DETECTORS
PACKAGE STYlES
(For UM4000. 6000 & 7000 Series)
===C[)====
A Style
Basic Diode
B Style
Round Axial Leads
*C Style
Stud
*0 Style
Insulated Stud
E Style
Ribbon AXial Leads
'Not available for UM6000. UM6600. UM6200.
VOLTAGE RATINGS
ORDERING INFORMATION
Part numbers of Microwave PIN diodes consist of the letters
UM followed by four digits and one or two letters. The first
two digits indicate the diode series, the next two digits
specify the voltage rating in hundreds of volts. The remaining letters denote the package style. Reverse polarity is
available for C, and D, style and denoted by adding second
letter R.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 .• TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064
652
PRINTED IN U.S.A.
1N5767 (5082 - 3080)SERIES
1N5957 SERIES
PIN DIODE
Features
• Useful attenuation from 1 j.jA. to 100 mA bias.
• Capacitance below 0.4 pF.
• Low distortion in switches and attenuators.
• Rugged Unitrode construction.
Description
The 1N5767 and 1N5957 PIN diodes are
based upon low capacitance PIN chips
designed with long minority carrier lifetime,
and thick intrinsic width. Thus operation as
low as 1 MHz is possible with low distortion.
Additionally, the low diode capacitance
allows useful operation well into the microwave frequency range.
The 1N5767 (5082-3080) is a general purpose low power PIN diode designed for both
switch and attenuator applications.
The 1N5957 is primarily used as an attenuator PIN diode and is particularly suitable
wherever current controlled, wide dynamic
range resistance elements are required. The
1N5957 has also been characterized for the
75Q attenuator, commonly employed in CATV
systems.
MAXIMUM RATINGS
Reverse Voltage
(V R) - Volts
(IR = 10 jJA)
100V
"A~v-er-a-g-e~P~o-w-e-r~D~is-s~i~pa~t~io-n~:1.(2U5~~~)'--.-----------------------------------,~
Free Air (PJ
400 mW (Derate linearly to 175 'C)
Operating and Storage Temperature Range
653
~UNITRDDE
1N5767 (5082-3080) 1N5957
Electrical Specifications (25 ·C)
Test
Symbol
1N5767
(5082·
3080)
1N5957
Total Capacitance (Max)
Series Resistance
Cr
Series Resistance
Rs
Series Resistance
Rs
Carrier Lifetime (Min)
T
0.4 pF
1000Q(min)
2000Q(typ)
SQ(max)
4Q(typ)
2.5Q(max)
1.5Q(typ)
1.0 lAS
Reverse Current (Max)
Current for Rs
75Q
(typ)
Return Loss (typ)
IR
175
0.7mA
-
30dB
0.4 pF
1500Q(min)
3000Q(typ)
SQ(max)
6Q(typ)
3.5Q(max)
2.0Q(typ)
1.5(min)
2(typ)
10 I-IA
O.S mA1.2 mA
30 dB
Second Order Distortion
(typ)
-
-40 dB
-50 dB
Third Order Distortion (typ)
-
-60dB
-65 dB
Rs
=
10
I-IA
RESISTANCE
VS FORWARD CURRENT
(TYPICAL)
10
K~
Conditions
50V,1 MHz
10
!-lA,
100 MHz
20 mA 100 MHz
100 mA, 100 MHz
IF = 10 mA
VR = Rating
=
Rs
75Q
Diode .terminates
75Q line
Bridged tee attenuator
atten.
10 dB
50 dBmV
Pin
F,
10 MHz,
F2
13 MHz
=
=
=
=
FORWARD VOLTAGE
VS FORWARD CURRENT
(TYPICAL)
100
I
lN5767
.,
IJ
t-
E 1000
I
lN5957
~
If '"1~~957
10.0
."
o
c:
;;(
.§.
fii 100
fZ
w
"=
II:
I
II:
lN5767
°
1.0
II:
II:
(/)
:::J
U
(3080)
Cl
II:
0.001
~
II:
IIIII I
1
0.01
0.10
1.0
10.0
J
0.10
Cl
lL
100.0
Diode Current (rnA)
I
0.01
1
0.00 1
o
.2
IL.4
.6
.8
1.0
FORWARD VOLTAGE (VOLTS)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064
654
PRINTED IN USA
1N5767(5080·3080) 1N5957
TOTAL CAPACITANCE VS
REVERSE VOLTAGE
.8
~
.7
w
c
.6
"
."!
'" "
1 MHz
'<3
~
.5
()
5MHz "-
.4
.3
~
100 MHz
I
.2
2
10
20
50
100
200
500
1000
VR- Reverse Voltage (V)
PARALLEL RESISTANCE VS REVERSE VOLTAGE
100
1--+-++++t+tt--::,.,..q.+t--l3.OGHz-+-+-H-Htti
V
..-
20
10
2
10
20
50
100
200
500 1000
VR - Reverse Voltage (V)
Ell
MECHANICAL SPECIFICATIONS
\ATHODEBAND
1
g,~J
MAX.
<.193)
~
f4 b .~~
Ji:.
MIN.
(24.7)
(4.3)
I
MI~, --j
~
.021 (5.30)
.014 (.256)
DIA.
(24.7)
Dimensions -
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064
9
655
English/Metric
PRINTED IN U.S.A
UM4000 SERIES
UM4900 SERIES
PIN DIODE
Features
• Power dissipation to 37.5W
• Voltage ratings to 1000V
• Series resistance rated at O.5Q
• Carrier lifetime greater than 5~s
Description
The UM4000 and UM4900 series feature
high power PIN diodes with long carrier lifetimes and thick I-regions. They are especially
suitable for use in low distortion switches
and attenuators, in the HF through S band
frequencies. While both series are electrically equivalent, the UM4900 series have
higher power ratings due to a shorter thermal
path between chip and package. High charge
storage and long carrier lifetime enable high
RF levels to be controlled with relatively low
bias current. Similarly, peak RF voltages can
be handled well in excess of applied reverse
bias voltage.
Both series have been fully qualified in
high power UHF phase shifters and megawatt peak-power duplexers, accumulating
thousands of hours of proven performance.
Both types have been used in the design of
antenna selectors and couplers, where inductive and capacitive elements are switched in
and out of filter or cavity networks.
MAXIMUM RATINGS
Average Power Dissipation and Thermal Resistance Ratings
Package
Condition
UM4000
A
25°C Pin Temperature
B&E (Axial Leads) Y2 in. (12.7mm) Overall Length
to 25°C Contact
B&E (Axial Leads) Free Air
C (Studded)
25°C Stud Temperature
o (Insulated Stud) 25°C Stud Temperature
PD
25W
6°C/W
12W 12.5°C/W
2.5W
25W
1B.75W
Peak Power Dissipation Rating
All Packages
1 ~s Pulse (Single)
at 25°C Ambient
IOperating and Storage Temperature Range:
UM4900
e
-
6°C/W
BOC/W
PD
37.5W
e
4°C/W
12W 12.5°C/W
2.5W
37.5W
25W
4°C/W
6°C/W
100 KW
- 65°C to + 175°C
656
llilJ
UNITRODE
UM4000 UM4900
Voltage Ratings (25°C)
Reverse Voltage
(V R) - Volts
(lR
10", Amps)
Types
=
UM4901
UM4902
UM4904
UM4906
UM4001
UM4002
100
200
400
600
1000
UM4006
UM4010
-
Electrical Specifications (25°C)
UM4000
UM4900
Symbol
Test
Total Capacitance (Max)
Series Resistance (Max)
Parallel Resistance (Min)
Carrier Lifetime (Min)
Reverse Current (Max)
I-Region Width (Min)
Conditions
3 pF
0.5Q
2 KQ
5",s
10,..A
150",m
CT
Rs
Rp
T
IR
W
OV,1 GHz
100 rnA, 1 GHz
100V,1 GHz
IF
10 rnA
VR
Rating
=
=
-
TYPICAL FORWARD RESISTANCE
vs
FORWARD CURRENT
(F= 100 MHz)
TYPICAL PARALLEL RESISTANCE CHARACTERISTIC
1000
/ " MI
~ 500
./"
~ 200
z
g:
1000.
.
.
w
~ 100
en
...
.
.
.
iii
'"
;;j
~~100._
in
w
a:
'"~
I
~
",'
a:
o
1'°lllnllllll
.
.
.
.
MHz
-
V
/
50
/
20
10
V~O
/
V'"
...J
:;;!
@10.0 _ _ _ _
0.,.
V
I
Z
~
V
---- -
-0:
-
...-100 MHz
~ V-rOO MHz
'j
~V
t;::::::-"
V
~~
~lGHZ
---
10
3 GHz
10
20
50
200
V, - REVERSE VOLTAGE (V)
500
1000
.
.01 L.....J-.L..J..JJ""'--L.J..UWlL......I.....L..U.............L..l........."--'..J..UL.WL-'-'~
1 /JA
10/JA
100/JA
lmA
lOmA
lOOmA
lA
IF - FORWARD CURRENT
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064
657
PRINTED IN USA
UM4000 UM4900
POWER RATING
STUD MOUNTED DIODES
POWER RATING
AXIAL LEADED DIODE
16
~
"
z
a
i=
~
~
0
'"w
"
~
x
""
1
~o
°O~--~25~~5~O--~75~~'~OO~~'2=5--~~~
STUD TEMPERATURE 1°C)
T L . LEAD TEMPERATURE (oC)
DC CHARACTERISTICS
FORWARD VOLTAGE
VS
FORWARD CURRENT (TYPICAL)
TYPICAL CAPACITANCE CHARACTERISTIC
1A
12
LL
e
....
u
10
Z
«
f-
U
a
I~MHZ
J~
«0..
«
u
...J
6
0
f-
I
4
U
1100
2
MHZ- --= ~ ~
5
2
10
v, -
20
50
~
w
u
z
«
0
OJ
Do
;:;:
...J
100
200
500
1000
I
.'"
.01
0.6
0.8
1.0
ORDERING INSTRUCTIONS
UM4900:::
Part numbers of Unltrode PIN Diodes consist of the
letters UM followed by four digits and one or two letters.
The first two digits Indicate the diode series, the next
two digits specify the minimum breakdown voltage in
hundreds of volts. The remaining letters denote the
package style. Reverse polarity (anode large end cap) Is
available for the C style and denoted by adding second
letter R.
.2
.02
'"
I,,::::F'""
.5
OJ
0.4
UM4000
1.0
OJ
:I:
...
0.2
V F - FORWARD VOLTAGE IV)
2.0
.1
.05
:E
I
100}J A
REVERSE VOLTAGE (V)
10.
5.0
II:
«
I
1mA
THERMAL IMPEDANCE
§:
I
10mA
t::' ~ ~
«f-
I
lOOmA
V
...J
:> .005
Do
.002
I
_" .001
10-0
10-5
10-4
10-J
10->
PULSE WIDTH (SEC)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
10-1
PRINTED IN U.::t . .:\.
658
UM4000 UM4900
MECHANICAL SPECIFICATIONS
UM4000 Series
Dimensions - English/Metric
STYLE A
STYLE B
.171
.155
_~_t~:~~·~·=
130 (330) DIAMAX
•
~
YELLOW CATHODE BAND
.130
0915 (232) OIA
~~512.271
--I ~
1.0531 .021 MIN
TO GLASS
TYP.
STYLE D
INSULATED STUD
STYLE C
STUD
fu
ll.%IHEX.
13.021 .119
12.821 .111
CU RIBBON
CATHODE
(2 PLACES)
1.891 MAX. TO
FIRST FULL THO.
CATHODE
4-40NC-2
Ell
STYLE E
RIBBON LEADS
YELLOW
CATHODE MARK
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
PRINTED IN U.S.A
659
UM4000 UM4900
MECHANICAL SPECIFICATIONS (continued)
UM 4900 Series
Dimensions -
English/Metric
STYLE A
STYLE B
.094
.088
12.391
12.241
Li~~81~~~~IF-i;~581
r1
TVP
.014 1.361 MIN.
.12513.181 TOGLASS1r
r=
I
~ c:::Jc::=~1
~':~. l~o-' CATHODE
BLACK
1 L 12.321
M~
I
.04111.0~09512.411J
OIA
DOT
.0391.991
DIA.
DIA.
12.271
.0915
.0895
STYLE C
STUD
MA~.
[
MIN'
I
I
c:=:::J
13.181.125
OIA.
CAT~~'oL.P~AND
MAX .
STYLE D
INSULATED STUD
~
.159
.053
.154
14.0411·049
13.911 11.351
DIA
11.241
.035
.:
1.891 MAX. TO
FIRST FULL THO. \ r......--"'r-,
I
.600
115.21
I
!MIN.TYP,!
13.18IxI1.5mT 222
15.641
8eO CERAMIC
15.18)MAX.
~-.---'---,
14.981
"9'=9==9 .125 OIA. x .060
1
i1.'93!
j
15001 197
14:501
==:::l==':~==:;::r~·l1t'l-4.076
I
:177
cu RIBBON 12
.069 14.751.187
4.40 NC.2 14tOI .177
PLACESI
:36~~lx :2i~:
CATHODE/
.128
.121
THK
.008
.005
:;gci.
I
j
'--.-----'----r--'_.035-.1.891 MAX. TO 14.831.190
'14.571.180
~;:--__ ..-J
4·40 NC·2
"S;;'
STYLE E
RIBBON LEADS
.975
i----- 124.81 ----1..
-11
MIN.
II
.200
15.081
MAX.
.090
.080
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-1;540
TWX (710) 326-6509 • TELEX 95-1064
.017
.015
.975
124.81
J
MIN. - - - - ,
c=J
:=TD
g:~~: X :;~:
-J.-
THK
DIA.
YELLOW
MAX.
CATHODE
MARK
PRINTED IN U.S.A.
660
UM4300 SERIES
UM7300 SERIES
PIN DIODE
For Attenuator Applications
Features
• Extremely low distortion performance
• Useful frequency range extends below 500 KHz
• Power dissipation to 20W (UM4300)
• Capacitance as low as 0.7 pF (UM7300)
• Voltage ratings to 1000V
Description
The UM4300 and UM7300 series combine a
diode chip of extremely thick intrinsic region
with a low thermal resistance construction.
This results in diodes uniquely applicable to
very low distortion linear attenuators and
specialized switching functions. The UM4300
series, with large cross-sectional chip area
offers the highest power capability, of the
two series. The UM7300 series offers lower
capacitance.
Both diode series are intended for use in
linear attenuators operating from HF to
beyond 1 GHz. Low distortion at low frequencies is a result of transit time frequencies
below 5 MHz.
Operated as RF switches, either diode
series can be operated at low dc reverse bias
voltages, to hold off much higher RF voltage
levels.
MAXIMUM RATINGS
Average Power Dissipation and Thermal Resistance Ratings
Package
A
B&E (Axial Leads)
B&E (Axial Leads)
C (Studded)
o (Insulated Stud)
UM4300
(J
Po
20W 7.5·C/W
15·C/W
10W
Condition
25·C Pin Temperature
% in. Total Length to
25·C Contact
Free Air
25·C Stud
25·C Stud
2.5W
20W
15W
7.5·C/W
10·C/W
UM7300
(J
Po
20·C/W
7.5W
4W 37.5·C/W
1.5W
7.5W
6W
20·C/W
25·C/W
Peak Power Dissipation Rating
All packages
1J.IS Pulse (Single)
at 25·C Ambient
Operating and Storage Temperature Range:
500 KW
100 KW
- 65·C to + 175·C
661
[lUJ UNITRODE
lUI
UM4300 UM7300
Voltage Ratings (25°C)
Reverse Voltage
(VR) - Volts
(IR = 10 IJA)
Types
100V
200V
600V
1000V
UM4301
UM4302
UM4306
UM4310
UM7301
UM7302
UM7306
UM7310
Electrical Specifications (25°C)
Test
Symbol
UM4300
UM7300
Total Capacitance (Max)
Series Resistance (Max)
Series Resistance (Min)
Carrier Lifetime (Min)
Leakage Current (Max)
I-Region Width (Min)
CT
Rs
Rs
2.2 pF
1.5Q
1000Q
6j.1s
10,..A
250j.lm
0.7 pF
3.0Q
30002
4.0j.lS
10,..A
250j.lm
T
IR
W
Conditions
OV, 1 GHz
100 mA, 1 GHz
10 ,..A, 100 MHz
IF = 10 mA
V R = Rating
-
TYPICAL DC CHARACTERISTIC
FORWARD VOLTAGE
VS FORWARD CURRENT
TYPICAL FORWARD RESISTANCE
VS FORWARD CURRENT (F = 100 MHz)
1A
~
i-=
I
10K
~,oo0
I'
~
u
Z
F
in"
:1i
"
. L
100
!2w
I II
a:
a:
::>
u
1/
II
l00mA
/
lOmA
"a:
. !~o.
~
"a:
;::
a:
~
"...
"
a:
o
UM4300
I
~ 10.0
_LL
UM7300oj...
'"
lmA
I
~
I
a:'"
1.
a
Jf
100ILA
1
lilA
lOllA
100llA
lmA
lOmA
l00mA
I
lA
IF - FORWARD CURRENT
I 1/
A
0.2
Q.4
0.6
O.S
1.0
1.2
1.4
VF - FORWARD VOLTAGE
PRINTED IN USA
662
UM4300 UM7300
PARALLEL RESISTANCE VS REVERSE VOLTAGE
UM4300
UM7300
lOOK
UJ
u
20K
~
10K
z
UJ
U
z lOOK
«
-
U
~
100MH
U
0
:-....
r--;::
~
iTffl
10
20
50
100
200
500
1000
VR - REVERSE VOLTAGE (V)
0
10
VR -
20
50
100
200
500
1000
REVERSE BIAS VOLTAGE (V)
POWER RATING AXIAL LEADED DIODE
UM7300
UM4300
16r---r---,---,----.---,---,---,
14r---r---,----r---,---,---,----,
~.
~
o
2
~
;::
«
12
"-
'!!
0
a:
a:
UJ
:;:
w
~
0
"-
«
::;;
::;;
x
«
X
I
o
10
iii
~
o
..
12
0
2
I
0
4r---t---~--~~~~~~_+--~
"-
TL - LEAD TEMPERATURE 1°C)
175
TL - LEAD TEMPERATURE
i"C)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
lWX (710) 326·6509 • TELEX 95-1064
PRINTED IN U.S.A
663
-
UM4300 UM7300
UM4300/UM7300
POWER RATING
STUD MOUNTED DIODES
NORMALIZED RS VS TEMPERATURE
20
1.3
18W
1'\
~
15
z
0
i=
<{
'\ UM4300C
~UM4300~
0..
a:
CI>
a:
'I
'\
10
CI>
-
X
<{
::;:
'\.
"-
.......
6W
'" '"
UM7300D
o
25
50
'"
1.0
V
1J
.!:!
OJ
"
.8
"-"
r'-...
"-" ~
-.........:: ......
100
.9
E
0
z
125
150
/
/
/'
V
.7
-60 -40 -20
~ -~
~
/
/
V
./
CI>
1'\
"-"
"-
............
75
is
"
UM7300.C
............
5
o
1J
0
1"- '\
UJ
:;:
0...
0
c:
'"
'iii
iii 1.1
"\. I'\.
0
0..
CI>
0
I'\.
iii
~
0
1.2
" "'"
15W
175
0 +20 +40 +60 +80 +100 +120
Temperature (OC)
STUD TEMPERATURE (oC)
PULSE THERMAL IMPEDANCE VS PULSE WIDTH
ORDERING INSTRUCTIONS
Part numbers of Unitrode PIN Diodes consist of the
letters UM followed by four digits and one or two letters.
The first two digits indicate the diode series. the next
two digits specify the minimum breakdown voltage in
hundreds of volts. The remaining letters denote the
package style. Reverse polarity (anode on stud end) is
available in C or 0 Styles and denoted by adding second
letter R.
I For Exampl~~___~~l~? 01 C
Series 7300
100 volts
TStyleCl
Reverse polarity available in C style. Part number
designated by adding R.
PULSE WIDTH (sec)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 9So1064
PRINTED IN U.S."-
664
UM4300 UM7300
MECHANICAL SPECIFICATIONS
UM4300 SERIES
Dimensions - English/Metric
STYLE B
STYLE A
.171
.155
~~:::.~~'~'1'i'~
130 1330} CIA MAX.
.
•
~
~
.041
"~
11.041
1.991
DIA
0915 (232) DIA
0895 12271
..~ ~----:531
YELLOW CATHODE BANO
l
-.L
~~----+
_______ 124.81
.021 MIN
.130
~O"M"
I [ : 2 DIA MAX.
····F 97~~----1
~
.300
MIN.
TO GLASS
12.341
(7.62)
MAX.
124.81
MIN.
TYP.
STYLE C
STUD
STYLE D
INSULATED STUD
(~%I HE..
~
=\=9=';"';;
X=.
.292 .274
MAX·.264
17.421 16.961
MAX. 16.711
13.021 .119
12.821.111
CU RIBBON
I
.190
.180
14.831
14.571
CATHODE
(2 PLACES)
1.891 MAX. TO
.128
FIRST FULL THO.
.121
.005
.008 THK
:~:~~: x ::~6:
4·40NC·2
CATHODE
x
4·40NC·2
Ell
STYLE E
RIBBON LEADS
CATHODE MARK
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
665
PRINTED IN U.S.A.
UM4300 UM7300
MECHANICAL SPECIFICATIONS (continued)
UM7300 Series
Dimensions -
English/Metric
STYLE A
STYLE B
TYP.
.020
+g~~~f
lJL~58) I
(3.1B)~
~~
~:~I~
STYLE C
STUD
.0465
BLACK
.0445 CATHODE DOT
.
(2.29)
OIA.
MAX.
~(15.2).600..
J
1--MIN. TYP. ~
(1.09)
[ 1.99)
I
-,---~
I
::
: :1\
I
!
.187 HEX.
(4.75)
,
1
1
C\ATHODE
CU RIBBON (2 PLACES)
16.35) .250
(5.97) .235
4·40NC·2
1
1
lj(3.18) x 11.52) THK
(6.60)
.125 DIA x .060
.260
~==:i""~BeO. CERAMIC
MJAX .
.241 (6.12)
. 119 (3.02) \
.111 (2.82)
.231 (5.87)
1
1
I (6.10) .240
,-,--,,=='--,-,.---L 15.46) .215
I
1112.44) .096 I
1
(2.29) .090
/! :
~
.?5.~, JTT~
r.
YELLOW
.090
CATHOOE BAIIID
(1.40)
DIA.
MAX.
:~~
EJ-r12.44)
DIA.
.035
1.89) MAX. TO
FIRST FULL TH·D.l
MIIII.
STYLE D
INSULATED STUD
-1 (~:i~
(4.75) HEX.
.975
(24.8)
Mlj . ...1J. MAX.
--r~c::::=:J
029 (74)
I
'027 ('71) - l
.
OIA
.100
.187
.975
(24.8) j.250
(6.35)
~
.090 (2.29)
CIA.
MAX.
t
r
.125
.140
I
19:~~l :gg~
THK.
,--r
!L·0351.89)MAX. TO
(4.b3).190
1457) 180
0;
:
i
jJ\FIRST FULL THO.
'1'
.-.OIllC2
CATHODE
STYLE E
RIBBON LEADS
~
.
.9751·250
(24.8)
16,35)
~
M i l MAX.
I
.975
(24.8)
~
MIIII.
[1~CJ
~090
(1.78) X (2.8) THK DIA.
(1.52)
(.23)
. MAX .
.011
.070
.060
.009
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173. TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
t
YELLOW
CATHODE MARK
PRINTED IN U.S.A.
666
UM6000 SERIES
UM6200 SERIES
UM6600 SERIES
PIN DIODE
Features
• Capacitance specified as low as 0.4 pF (UM6600)
• Resistance specified as low as 0.4Q (UM6200)
• Voltage ratings to 1000V
• Power dissipation to 6W
Description
These series of PIN diodes are designed
for applications requiring small package size
and moderate average power handling capability. The low capacitance of the UM6000
and UM6600 allows them to be used as series
switching elements to 1 GHz. The low resistance of the UM6200 is useful in applications
where forward bias current must be minimized.
Because of its thick I-region width and
long lifetime the UM6000 and UM6600 have
been used in distortion sensitive and high
peak power applications, including receiver
protectors, TACAN, and IFF equipment. Their
low capacitance allows them to be useful as
attenuator diodes at frequencies greater
than 1 GHz. The UM6200 has been used suc-
cessfully in switches in which low insertion
loss at low bias current is required.
The "A" style package for this series is the
smallest Unitrode PIN diode package. It has
been used successfully in many microwave
applications using coaxial, microstrip, and
stripline techniques at frequencies beyond
X-Band. The "B" and "E" style, leaded packages offer the highest available power dissipation for a package this small. They have
been used extensively as series switch elements in microstrip circuits. The "C" style
package duplicates the physical outline
available in conventional ceramic-metal
packages but incorporates the many reliability advantages of the Unit rode construction.
MAXIMUM RATINGS
Average Power Dissipation and Thermal Resistance Ratings
Package
UM6000
UM6200
Condition
25°C Pin Temperature
A&C
B&E (Axial Leads) Vz in. Total Lead Length to
(12.7mm) to 25°C Contact
B&E (Axial Leads) Free Air
UM6600
Po
B
6W
2.5W
25°C/W
60°C/W
0.5W
-
Po
B
4W 37.5°C/W
2.0W
75°C/W
O.5W
-
Peak Power Dissipation Rating
All Packages
1 /AS Pulse (Single)
at 25°C Ambient
Operating and Storage Temperature Range:
UM6000 - 25 KW
UM6200 - 10 KW
UM6600 - 13 KW
- 65°C to + 175°C
667
[ill] UNITRDDE
-
UM6000 UM6200 UM6600
Voltage Ratings (25°C)
Reverse Voltage
(V R) - Volts
(lR
Types
= 10 JAA)
100V
200V
400V
600V
1000V
UM6001
UM6002
-
UM6201
UM6202
UM6204
UM6601
UM6602
-
-
UM6006
UM6010
UM6606
UM6610
Electrical Specifications (25°C)
Test
Total Capacitance (Max)
Series Resistance (Max)
Parallel Resistance (Min)
Carrier Lifetime (Min)
Reverse Current (Max)
I-Region Width (Min)
Symbol
CT
Rs
Rp
UM6000
0.5 pF
1.7Q
15 KQ
1.0 jAS
UM6200
1.1 pF
0.4Q
10 KQ
0.6 JAS
T
UM6600
0.4 pF
2.5Q
10 KQ
1.0 jAs
IR
W
10~
10~
10~
150 jAm
150 jAm
40 jAm
TYPICAL SERIES RESISTANCE
VS
FORWARD CURRENT
(F = 100MHz)
Conditions
OV, 1 GHz
100 mA, 1 GHz
100V,1 GHz
IF = 10 mA
VA = Rating
-
DC CHARACTERISTICS
FORWARD VOLTAGE VS CURRENT
lA
IL J
100 mA
>zOJ
a:
a:
::>
u
0)
a:
u;
'"
:t
g
I II
10 mAj
..:
L
==UM6200
sa:
fr
.!"
UM6000
UM6600
~
11
I
~
J
lmA
/I
100"",
FORWARD CURRENT
lOP"
o
0.2
0.4
0.6
0.8
1.0
1.2
V F - FORWARD VOLTAGE IV')
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
PRINTED IN U.S.A
668
UM6000 UM6200 UM6600
TYPICAL Rp VS VOLTAGE & FREQUENCY
UM6000/UM6600
UM6200
1000
100
100MHz
I.t
II.
g
/
100MHzI
~
UJ
a
100
u
z
500MHz
SOOMHz
«
fVl
--
8i0:
..J
UJ
..J
..J
«
0:
«
C-
i-- ~
10
1G1Hzl-
"./
1O.L ~
3GHz
V
L.
-
1GH7
O-
0:
V
...-
3Tr
1
10
10
100
1000
100
1000
VR-REVERSE VOLTAGE IV)
V R · REVERSE VOLTAGE IV)
TYPICAL CAPACITANCE VS VOLTAGE AND FREQUENCY
UM6000 SERIES
1.5
i:
.e
LLI
u
z
..:
1.0
I-
r~'
5
0
u
.e
LLI
u
z
~Hz"
I-
.5
0
«
0
«0..
1.0
I-
~ :::::::,
..J
..:
1
I
...J
«
.5
o
10
V, -
20
MHz
I-
I
cS
5
10,0
500 MHz
a
lI
cS
l-
2
'10 MHz
I--~
..:
u
1-0
?100 MHz
~Hzl .1.1.11
~
i:
~
..:
"..:
UM6200 SERIES
1.5
50
100
200
2
V, -
500
REVERSE VOLTAGE (V)
5
10
20
50
100
REVERSE VOLTAGE (V)
UM6600 SERIES
ORDERING INSTRUCTIONS
.8
Part numbers of Unitrode PIN diodes consist of the letters
UM followed by four digits and one or two letters. The first
two digits indicate the diode series, the next two digits
specify the minimum breakdown voltage in hundreds of
volts. The remaining letters denote the package style.
Reverse polarity (anode large end cap) is available for
the C style and denoted by adding second letter R.
G:
.e
.7
w
u
z
«
.6
'\
I-
u
«
"«
u
....J
«
.5
1 MH2
.4
. . ., L
I-
a
l-
I
cS
10 MHz
.3
I I
1
669
t--..
100 MHz
.2
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
I"-f'
5MT'r--
2
V, -
10
20
50
100
REVERSE VOLTAGE (V)
PRINTED IN
u.s
A
•
'
c
..•.
UM6000 UM6200 UM6600
POWER RATING -
AXIAL LEADED DIODE
UM8OOOIUM6200
UM6600
~ 4f----+----+------1---,"""'iT~L~T L
~
~
L·1!4"16.35mml
Bi
o
"'
~ 2~==~~~-+~~~~--+-----~---1----~
""
X
I
~Q
O~O----~2~5----~W----~7~5--~'~OO~--~----~~~
175
T l . LEAD TEMPERATURE (oC)
T L· LEAD TEMPERATURE (oC)
POWER RATING
0::
ILl
~~
o!
o..z
ILl 0
~
5
(!l-
4
ILI_
o::~
3
>Ul
etUl
2
etl-
6.0W
6
I
I
I
UM6000 and
4.0W
...............
~ KM6200 Series
UM6600"' r---..
10
0..<
~
r-----. ~........
0
~50
a
-25
25
50
75
100
125
~
lSO
175
TEMPERATURE ('C) (of one metal pin)
PULSE THERMAL IMPEDANCE VS PULSE WIDTH
~ 100
E
ILl
50
Z
20
10
ILl
5
:;
2
u
et
0
0..
:;
...J
et
:;
0::
ILl
:r
I-
ILl
Ul
...J
::l
0..
I
oS"
.5
.2
.1
.05
.02
.01
/
/
10-6
10- 4
10- 3
10-2
1
PULSE WIDTH (SEC)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064
PRINTED IN U.S.A
670
UM6000 UM6200 UM6600
MECHANICAL SPECIFICATIONS
STYLE B
STYLE A
.085
.095
12.18)
12.41)
.008 1.20) MIN .
TO GLASS
r-I)l
i;~~.) :+ :52~: t i;~58)
r
~I
1
040
11.02)
CO
MAX.
175)
MAX.
\
.0315
MIN.
l
--r. =
=~
CIA.~78)
....t.......-+-I
.070 11}8)
CIA.
MAX.
BLACK
.070
C"A.
YE LLOW CATHODE BAND
MAX.
.019·.021
1.482-.5301
CATHODE DOT
.0295
STYLE E
STYLE C
CARTRIDGE
RIBBON LEADS
i;~58j ~~~) +- i;~~)
-.l I
.084
.080
11.83)
11.52)
MIN.
MIN
1
I'
10.070T
c=J
11.27) X 1.23)
11.78)1
11.02)
1.18) THK CIA .
.050
.040
.009
.007
MAX.
YELLOW
CATHODE MARK
CATHODE
•
UNITROOE CORPOR
LEXINGTON, MA 021;r'.O~i. 5 FORBES ROAO
TWX (710) 326-6509 • TELEX 9~~~ 161·6540
PRINT£D IN U.S.A
671
UM.7000 SERIES
UM7100 SERIES
.UM7200 SERIES
PIN DIODE
Features
• Voltage ratings to 1000V (UM7000)
• Wide vari~ty of package styles
• Rated average power dissipation to 10W
• Cost effective in volume applications
Description
The UM7000 and UM7100 series offer moderately high power handling in combination
with reasonably low levels of both series
resistance and capacitance. The UM7200
series offers the lowest series resistance,
but the highest capacitance of the group.
The differences in specified performance, for
each of th.e series, results from different
I-region thicknesses. The three series have
broad applicability in many RF and microwave switch and attenuator circuits. Additionally, the UM7100 in leaded versions, is
usually the most cost-effective diode choice
in high volume usage.
MAXIMUM RATINGS
Average Power Dissipation and Thermal Resistance Ratings
Package
Condition
A
25°C Pin Temperature
B&E (Axial Leads) V2 in.(12.7mm) Lead Length to
25°C Contact
B&E (Axial Leads) Free Air
C (Studded)
25°C Stud Temperature
o (Insulated Stud) 25°C Stud Temperature
Peak Power
Dlssipati~n
All Packages
B
Po
10W
5.5W
15°C/W
27.5°C/W
1.5W
10W
7.5W
15°C/W
20°C/W
-
Rating
1 lAS Pulse (Single)
at 25°C Ambient
UM7000 - 60 KW
UM7100 - 35 KW
UM7200 - 20 KW
Operating and Storage Temperature Range:
672
lliDUNITRDDE
UM7000 UM7100 UM7200
Voltage Ratings (25°C)
Reverse Voltage
(V R) - Volts
(lR = 10 /-fA)
Types
100V
200V
400V
600V
800V
1000V
UM7101
UM7102
UM7104
UM7001
UM7002
-
UM7201
UM7202
UM7204
-
UM7006
-
-
UM7108
-
UM7010
Electrical Specifications (25°C)
Test
Symbol
UM7000
UM7100
UM7200
CT
Rs
Rp
0.9 pF
1.0Q
10 KQ
2.5 /AS
10 !lA
150/Am
1.2 pF
0.6Q
8 KQ
2.2 pF
0.25Q
7 KQ
1.5 /AS
10/AA
40/Am
Total Capacitance (Max)
Series Resistance (Max)
Parallel Resistance (Min)
Carrier Lifetime (Min)
Reverse Current (Max)
I·Region Width (Min)
T
IR
W
2.0/As
10 !lA
80/Am
TYPICAL FORWARD RESISTANCE
VS FORWARD CURRENT
(F
100 MHz)
Conditions
OV,1 GHz
100 mA, 1 GHz
100V, 1 GHz
IF
10 mA
Rating
VR
=
=
-
TYPICAL DC CHARACTERISTIC
FORWARD VOLTAGE
VS FORWARD CURRENT
UM7000/UM71001UM7200
=
lA
UM7100
10,000
g
UM7200~
Ii
l00mA
1000
iiia:
f-
z
100
a:
a:
lOrnA
•
:J
U
"«a:
10
;;:
:t
'"
0
I
a:'"
~UM7000
I
w
"
a:
<
;;:
a:
=
,
w
u
z
«
in
""-
u.
I
1.0
lmA
.!'-
I
0.1
1l'A
10l'A
l00l'A
lmA
lOrnA
l00mA
I
lA
100l'A
'F - FORWARD CURRENT
10l1A
o
I
0.2
0.4
0.6
0.8
1.0
1.2
V F - FORWARD VOLTAGE (V)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINl;TON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
673
PRINTED IN U.S."
UM7000 UM7100 UM7200
TYPICAL Rp CHARACTERISTIC
TYPICAL CT CHARACTERISTIC
UM 7000 SERIES
UM 7000 SERIES
3
1M
100 MHz
-
G::
w
~
~ lOOK
u
U
J.U
«
...J
III
~
a..
0.011.L.-~_.L......
10.5
_ _.L......_ _...L..._ _...J......_ _...J......_
10·/
10-'
10·'
10-2
____'
PULSE WIDTH (SEC)
ORDERING INSTRUCTIONS
Part numbers of Unitrode PIN Diodes consist of the
letters UM followed by four digits and one or two letters.
The first two digits indicate the diode series, the next
two digits specify the minimum breakdown voltage in
hundreds of volts. The remaining letters denote the
package style. Reverse polarity (anode on stud end) Is
available in C or D Styles and denoted by adding second
letter R.
UNITROOE CORPORATION· 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (6171 861·6540
TWX (7101 326-6509 • TELEX 95-1064
675
PRINTED IN
u.s
A
UM7000 UM7100 UM7200
MECHANICAL SPECIFICATIONS
Dimensions -
English/Metric
STYLE A
STYLE B
.125
.140
TYP.
.020 1.51 MIN.)
lI3"B)j
13.58)
TOGL~I
~
-n=o~
.090 12.29)
CIA.
MAX.
11.13)
.0465
.0445
.
029 (74)
:027 1'71)
OIA
BLACK
CATHOOE DOT
.975 j.250
124.8)
16.35)
975
124.8)
Mil'..!..!. MAX.
MIN.
~Ill
.055
..J .11.401
]
DIA.
.
STYLE C
STUD
r t1
MAX.
~c::::::::J.
T090
i2.29)
L
YELLOW
CATHODE BAND
CIA.
MAX.
"
STYLE D
INSULATED STUD
---1
.100
.096 ~
.043
(2.54i
.039
12.44)
11.09)
DIA. _-,-[_1_.99_)_'_,-
~115.2) .600 ~
~MIN.TVP.~
13.18) x 11.52) THK
.125 DIA x .060
16.10) .240
15.46) .215
12.44) .096
*==*=c:;r===iI;:==~=s,8eO CERAMIC
!
I
12.29\ .090
.260
.231 15.87)
16.35) .250
15.97) .235
CU RIBBON (2 PLACES)
10.13) .005 THK
10.15) .006
.
I
CATHooe
116.~0)
.24116.1~AX.
4-40NC-2
STYLE E
RIBBON LEADS
!
rt 1
.975
. 124.8)
.250
.. 16.35)
MIN.
~.~
I
.975
124.8)
MIN.
I
'[I~D
.
12.29) .090
11.78) X 12.8) THK DIA.
11.52)
1.23)
. MAX .
.011
.070
.060
.009
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
~
MAX.
676
YELLOW'
CATHODE.MARK
PRINTED IN U.S.A.
PIN DIODE
UM9301 SERIES
COMMERCIAL ATTENUATOR DIODE
Features
• Specified low distortion
• Low rectification properties at low reverse bias
• Resistance specified at 3 current points
• High reliability fused-in-glass construction
Description
The UM9301 PIN Diode utilizes a special
overall chip geometry with an extremely
thick intrinsic "I" region, to offer unique
capabilities in both RF switch and attenuator
applications. Volume production also makes
the diode an economical choice suitable for
many commercial low power equipments.
The UM9301 has been designed for use in
bridged TEE attenuator circuits commonly
utilized for gain and slope control in CATV
amplifiers. Low distortion and high dynamic
range are characteristic of the diodes'
outstanding performance.
The UM9301 is also appropriate for switch
applications, when little or no bias voltage is
available. Frequent applications occur in
portable 12 volt-powered communications
equipments, operating at frequencies as low
as 2 MHz.
MAXIMUM RATINGS
Reverse Voltage
(VR) - Volts
(lR
10~)
=
75V
.:; A;.; :.v~er;:; .;a: .1fz
.g. . :. ;in.
e: . .p-,-,overall
o.:. :.w-=e;.:.r.: ;.;D. .:to
; is:. :.25°C
;s. .:iP. : :.a. .;:Contact
t;.; :.io_n=-. ; @~(p:.:.;J~_ _ _ _--L.._1_._0W_(_D_e_ra_t_e_li_n_ea_r_'y_to_17_5_0_C_)_----'
'-. Leads
Operating and Storage Temperature Range
677
-65°C to +175°C
Ell
I
[ill] UNITRDDE
UM9301
Electrical Specifications (25 ·C)
Test
Min
Typ
Max
Units
3.0
150
3000
1.7
80
5000
Q
Q
Q
0.5
1.1
2.0
rnA
f :::: 100 MHz
pF
V :::: OV, f :::: 100 MHz
dB
Frequency Range: 10 - 300MHz
Rs :::: 75Q @ 100 MHz
Diode Terminates 75Q line
Diode Resistance Rs
Current for Rs:::: 75Q
Capacitance
0.8
Return Loss
25
Second Order Distortion
55
50
-dB
-dB
70
Third Order Distortion
75
Cross Modulation
Distortion
-dB
65
95
-dB
75
-dB
Reverse Current
10
Carrier Lifetime
4.0
Conditions
I :::: 100 rnA, f :::: 100 MHz
I :::: 1 rnA, f :::: 100 MHz
I :::: 0.01 rnA, f :::: 100 MHz
f1 :::: 10 MHz, f2 :::: 13 MHz
p :::: 50 dBmV See Test Circuit
F1 :::: 67 MHz, F2 :::: 77 MHz
p :::: 50 dBmV, See Test Circuit
F1 :::: 10 MHz, F2
p :::: 50 dBmV,
Triple Beat; 205
p :::: 50 dBmV,
12 Channel Test
p:::: 50 dBmV, See Test Circuit
Dix Hills Test Set
JJA
V :::: 75V
liS
I :::: 10 rnA
DIODE RESISTANCE
VS DIODE CURRENT
(TYPICAL)
FORWARD CURRENT VS
FORWARD VOLTAGE
(TYPICAL)
1000
lOOK
10K
100
Ii)
:;(
E
.c
o
.s
"-
;'1000
c
"c
~
OJ
()
'"
'iii
£
:::: 13 MHz
See Test Circuit
+ 67 - 77 MHz
See Test Circuit
"
U
100
....
§
r-~
10
"C
"
m
'.1
~
<;
Q)
"C
o
II
IJ..
is
r--....
10
I'.
.1
.01
.1
10
.5
100
Diode Current (rnA)
UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON; MA 02173 .~. TEL. (617) 86H540'
TWX (710) 326·6509 " TELEX 95-1U64
.6
.7
.8
.9 1.0 1.1
Forward Voltage (Volts)
678
PRINTED IN USA
UM9301
TEST CIRCUIT FOR DISTORTION
MEASUREMENTS
NORMALIZED RS VS TEMPERATURE
1.3
./'
1.2
".,<=
0
Ui 1.1
'in
"
"0
"
a:
0
i5
1.0
"0
"
;;;
.~
/'
.9
.8
/
V
6600 pF
From
75\1
Input
Diode
Current
V
E
:;
z
V
V
D.U.T.
/
/
Supply
.7
-60 -40 -20
Note: Diode Current adjusted
for 10dB Attenuation
0 +20 +40 +60 +80 +100 +120
Temperature ('C)
TYPICAL BRIDGED TEE ATTENUATOR PERFORMANCE
DIODE CURRENT
VS ATTENUATION UM9301
DISTORTION
ATTENUATION
30
100
11111 III I
!llllllil
40
<"
S
10
,;;<:<\
..v:<
E
f;\rA0
second order
distortion
50
~
60
"
70
u"
"0
0
third order
distortion
i5
Oi
o
'0.
~
"61"1.
80
19"01'
=
Input Power
+ 60 dBmV
Input Frequencies
10 MHz
& 13 MHz
100'e
.1
90
111111111111111 I I I
100
o
.01
=
2
o 2 4 6 8 1012141618202224
4
6
8 10 12 14 16 18 20
Ell
Attenuation (dB)
Attenuation (dB)
MECHANICAL SPECIFICATIONS
t
.975"
24.8mm
MIN.
~
6.35mlll~24.8mm
MAX.
MIN.
.250"
975"
-~~~~~~
.~90"
~\
2.29mm
r"f-LYi
-l
\-c=:=:=J
02 ••
.74mm
~ .027"
.6Bmm
.
9 DIA.
I
LCATHOOE
BAND
MAX.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064
PRINTED IN U.S.A
679
PIN DIODE
UM9401 SERIES
UM9402 SERIES
UM9415 SERIES
COMMERCIAL TWO·WAY RADIO
ANTENNA SWITCH DIODES
Features
•
•
•
•
Specified low distortion
Unitrode ruggedness and reliability
Low bias current requirements
Priced for high quantity applications
Description:
Unitrode offers a series of PIN diodes spe·
cifically designed and characterized for solid
state antenna switches in commercial twoway radios. Antenna switches using the
UM9401 and UM9415 series PIN diodes provide high isolation, low loss and low distortion characteristics formerly possible only
with electromechanical relay type switches.
The UM9401 and UM9402 diodes can
handle above 100W of transmitter power,
while the UM9415 will handle over 1000W.
The extensive characterization of these PIN
diodes in antenna switch applications has
resulted in guaranteed low distortion specifications under transmit and receive
conditions. These diodes also feature low
forward bias resistance and high zero bias
impedance which are required for low loss,
high isolation and wide bandwidth antenna
switch performance.
MAXIMUM RATINGS
Reverse Voltage
(V R) - Volts
(IR
10 IJA)
=
Average Power Dissipation (PA)
Leads - Yz in. Overall to 25°C
Heat Sink
25°C (Package Flange) Temperature
Free Air
UM9401
UM9402
UM9415
50V
50V
50V
5.5W
-
10W
-
10W
1.5W
-
2.5W
Operating and Storage Temperature Range
680
[ill]
UNITRCDE
UM9401 UM9402 UM9415
Electrical Specifications (at 25 ·C)
UM9415
UM9401lUM9402
Test
Symbol
Min Typ Max Min Typ Max Units
Diode Resistance
Rs
Diode Capacitance
Cr
Parallel Resistance
Rp
5K 10K
1K
T
1.0 2.0
5
Carrier Lifetime
0.75 1.0
1.1
0.75 1.0
1.5
2K
Q
1-'5
Transmit HarmoniC Distortion
~, R3A
A
A
80
80
-dB P'N = 50W
f
50 MHz, I
Receive Third Order Distortion
R2AB
-A
60
60
-dB P'N
fA
IR
10
1.0
10
1.0
I-IA V
Reverse Leakage Current
Forward Voltage
VF
=
V
10 ....161
= 10 mW, OV Bias
= 50 MHz, fB = 51 MHz
= 50V
= 50 mA
/
lOa
=- UM9415
z
~
iiicr:
:i!
IF
= 50 mA
TYPICAL DC CHARACTERISTIC
TYPICAL FORWARD RESISTANCE
VS
FORWARD CURRENT
(F = 100 MHz)
u
= 100MHz typical
50 mA
= 100 MHz
OV
= 100 MHz
= OV
= 10 mA
f
I f
V f
V
I
Q
pF
4
Conditions
I"
UM9401/UM9402
1"1
10.0
~
~
~10"""
II
l00I'A
"
o 1 L..l..l.l.UJJII-1..liJlWlL-,-L.l..il.lJlll..J..Lll.WlL.-L.Lr>O.wL--'-lu.LJ.UU
lOMA
100/JA
lmA
lOrnA
lOOmA
lA
08
v F - FORWARD
IF - FORWARD CURRENT
VOLTAGE N~
TYPICAL Rp CHARACTERISTICS
1000
TYPICAL CAPACITANCE CHARACTERISTIC
"'
0
g
6_
VR
4~ 7'T
OV
--.L
2
VR
=
w
u
z
~
iii
UM9415
.1.
~
~
~
"'~"
UM9401/UM9402
1
lOMHI
......
"w
50V
~~OV
VR ~ 50V
1/
100
a
....
UM9401/UM9402
50V
VR
"N.II
........... oJ UM9415
VR
50V
I
100MHI
0-
lOOOMHt
UM94011940X
"
""":7-4- VR = OV
FREQUENCY
1
UM~1~ ~~OV
10MHz
100MHz
lGHz
FREQUENCY
PRINTED IN U.S.A
681
Ell
UM9401 UM9402 UM9415
MAXIMUM TRANSMITTER POWER
POWER RATING
UM940119402
POWER RATING
UM9415
16
~
~
L=,."
!
12 I - -....-+---+---+-T,~ T,
z
0 12
j:
«
o
-iii
0-
iii
0-
'"0
-iii
III
10
a::
is
w
~
o
!?
;:
x
«
c..
~
~
6
I
Cl
::2
0.
4
I
o
c..
B
M
~
100
lB
1~
1M
TL - Lead Temperature (0C)
T L - HEAT SINK TEMPERATURE 1°C)
UM9401/UM9402
UM9415
~
-1000
J
-
--
.~
-I--
III
c:
Ol
~
100
::J
0
= .., L = V." r----
II;",~
:-.
~
E
_ z. = SOil,
,
-
r- -
l
f '"
'f",
~
I
~
sao rn~
r-... «lj rn~ -.. . .
0 = 00
~
I
l:
-.......
~
""
;;
E
I"t-....... --....... ~ '\
I
-.:.....
100
~
E
::J
E
'x
Ol
E
.~
--.......
~
'\
r--. ........... t'-- '\
100
IF
I
I
50 mA
./
::2
::2
100 mA
IF
IF
c:
"'
I
I
III
I'\.
rn~
I
~t-IF = 200 mA
0
c..
If I
K"'=
<-
....
~~
o
3
---
~
1 kHz
10 kHz
25
20
10
c
~
~
z
c
~
·
15
Of vs FREO
0
~
~
A.C. VOLTS (R.M.S.)
C vs FREO
-1
~
~~
A.C. VOLTS (R.M.S.)
~
+100 +120 +140
~
~
./
15
+80
0
>=
~
10
+60
z
~
10
+40
liiio..
10
~
~
~
+20
0
-.. r--
Ofvs VAC
·
100
20
~
TEMPERATURE IN" C
<
~
30
-20
°c
~CvsVAC
·
'-40
""'"
100 kHz
1 MHz
10 MHz
100 MHz
10Hz
~
100Hz
1/
1kHz
/
1/
~
10kHz lQOkHzl MHzl0MHz
FREQUENCY
FREQUENCY
l1li
~CvsOCV
IR vs TEMP
lOOk
·
~,
c
·
"
10k
""
~
~
~
•
1000
~ ...
~
-20
~ ........
100
-60
-80
I.
-60
" "-
-40
~
40
-20
0
+20
+40
+60
TEMPERATURE IN
+80
25
+100 +120 +140
"c
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
50
~
75
100
125
D.C. VOLTS
699
PRINTED IN U.S.A.
700
SALES OFFICES
PART NUMBER INDEX
II
DESIGNERS' GUIDES
III
POWER TRANSISTORS & DARLINGTONS
IV
SWITCHING REGULATOR POWER CIRCUITS
V
RECTIFIERS
VI
HIGH VOLTAGE RECTIFIERS, RECTIFIER
MODULES & MULTIPLIERS
VII
RECTIFIER BRIDGE ASSEMBLIES
VIII
POWER ZENERS & TRANSIENT VOLTAGE SUPPRESSORS
IX
THYRISTORS (SCRs, Triacs, PUTs)
X
SWITCHING & GENERAL PURPOSE DIODES
XI
PI N DIODES
XII
CAPACITORS
..
APPLICATION NOTES & DESIGN NOTES
MECHANICAL SPECIFICATIONS
701
XIII
XV
Unitrode Corporation makes no representation that
the use or interconnection of the circuits described
herein will not infringe on existing or future patent
rights, nor do the descriptions contained herein imply
the granting of licenses to make, use or sell equipment constructed in accordance therewith.
© 1980, by Unitrode Corporation. All rights reserved.
This section, or any part or parts thereof, must not be
reproduced in any form without permission of the
copyright owner.
NOTE: The information presented in this section is
believed to be accurate and reliable. However, no
responsibility is assumed by Unitrode Corporation for
its use.
Doorbeli@ is a registered trademark of Unitrode Corporation
ChipStrate@ is a registered trademark of Unitrode Corporation
702
APPLICATION AND DESIGN NOTES
SUBJECT
PAGE
SUBJECT
PAGE
POWER TRANSISTORS & DARLINGTONS
H. V. RECTIFIER ASSEMBLIES
Power Darlingtons as Switching Devices (U-70B) • . . . . . . . .. *
The Unitrode monolithic power Darlington is characterized and compared with other switching methods.
Unique advantages are discussed and basic circuits for
many modern applications are shown.
High Voltage, High Performance Power Switching
Transistors(U-75) ..... : .........••.••.•.••....•... 745
Thermal Design Considerations for Operating
Unitrode's TO-92 Transistors and Darlingtons
in Pulsed-Power Applications(U-77) .••.•.•.......... 759
Unitrode's New Power Switching Transistor (DN-2) ........ *
How to Safely Check Sustaining Voltage on
Power Transistors(DN-5) ........................... 790
High Voltage Multipliers (DN-19) ...•.••.•..•......... 820
Doorbell® High Voltage Stacking (N-136B) ............... *
Self-stacking rectifier modules are described and shown
in numerous applications. Examples of circuits and
mounting configurations are given.
Ooorbell®Tube Replacement (N-130B) ..•.•.•..••..•.•.. •
The advantages of using rectifier modules to replace
tubes are discussed. Case histories are noted and advice
is given relating to module selection and installation.
Pertinent ratings and other information is presented in
tabular form, and outlines are shown for standard caps
and bases.
TRANSIENT VOLTAGE SUPPRESSORS/ZENERS
Guidelines for Using Transient Voltage
Suppressors(U-79) ................................ 769
Determining the Change in Zener Voltage when the
Current is Changed (DN-1A) ........................... •
Thermal Design Considerations (DN-12) •••••••••••••. 809
Lead Materials(DN-16) ............................ 817
Insulated Stud Packages (DN-17) .................... 818
SWITCHING REGULATOR POWER CIRCUITS
Switching Regulator Design Guide (U-68A) •..•...••.•. 712
Operating Switching Regulator Output Stages
in ParalleI(U-72) .................................... *
Three methods to increase the output current capability
of switching regulators are discussed. Waveforms show
transient and ·steady-state" current sharing. Analysis
shows the.reasons that one method is clearly preferred.
Flybackand Boost Switching Power Supplies (U-76) •..• 750
Operating Buck Type Switching Regulators
above 100KHz (U-80) ............................. 778
Minimizing Storage Time When Using Unitrode
Switching Regulator Power Output Circuits (DN-3) ....•. 788
Avoiding Spurious Oscillation When Using Unitrode
Switching Regulator Power Output Circuits (DN-4) .....• 789
Operating the Switching Regulator Output Circuit
at Low Frequencies(DN-6) ......................... 793
A 350 Watt Switching Regulated Output Power
Supply for Multiple Outputs Utilizing Unitrode
Semiconductors Components(DN-8) ••••••••...•••..• 799
THYRISTORS (SCRs, TRIACs, PUTs)
Programmable Unijunction Transistors (U-66) ..•.....•• 704
Power Switching Capabilities of Improved
TO-92 Thyristors(U-78) ...•.•.•....•.•.•.••.••..•.• 763
Programmable Bidirectional Diac Using PUT (DN-9) ..•..•. *
Squib-Firing Circuit Provides for Reliable Firing,
from Low Levellnputs (DN-10) ...................... 805
Combined AC-DC Load Control Simplifies
SCR Reset(DN-11) ................................ 807
Turn-off Method for SCRs Minimizes Effect of
DV/DT(DN-13) .................................... 811
Nanosecond SCR Switch for Reliable High Current
Pulse Generators and Modulators (DN-14) .•••.••.•.•.. 813
Nanosecond SCR for Laser Diode Pulse
Driver(DN-15) .••..•.........•....•.•.•.••.•...... 815
RECTIFIERS
The Importance of Rectifier Characteristics in
Switching Power Supply Design (U-73A) ..........•.•. 734
The Unitrode Schottky Rectifier - A New Design Tool
for Switching Power Supply Engineers (DN-7) •.••..••.. 797
Thermal Design Considerations (DN-12) .............. 809
Lead Materials(DN-16) ............................ 817
Insulated Stud Packages (DN-17) ...•..•............. 818
HIGH REL SCREENING
HR-201Screening(DN-18) •.••.••...•...•..•.••••.. 819
PIN DIODES
Pin Diode Designers' Handbook & Catalog (PD-500A) •.•.•• •
'Does not appear in data book
NOTE, All Application and Design Notes may be obtained as single printed
pieces.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
703
PRINTED IN U.S.A.
II
U-66
APPLICATION NOTE
PROGRAMMABLE UNIJUNCTION TRANSISTORS
INTRODUCTION
The Programmable Unijunction Transistor is today's preferred device for low cost timing circuits,
oscillators, sensing circuits, and a wide range of other applications where a variable voltage level
threshold is desired. This note describes the principle of operation of the PUT, its electrical characteristics, and its various applications.
PRINCIPLE OF OPERATION
The PUT is a three-terminal device as shown in the schematic representation, Fig. la. The anode
voltage VA and the gate voltage VG are measured with respect to the cathode (k). The corresponding anode, gate and cathode currents are given respectively by lA, IG, and IK. The most
general usage of a PUT involves an external gate resistor RG as shown in Fig. la. Hence, the voltage generally referred to in characterizing PUT's is the applied voltage Vs rather than the gate
voltage VG which is less than Vs by the voltage drop across RG.
The theory of operation of .the PUT can perhaps be best understood by considering that it is a
four-layer (PNPN) device, as is a silicon-controlled rectifier (SCR). The basic PUT structure is
shown in Fig. lb, in which it is noted that the gate is adjacent the anode, in contrast to an SCR in
which the gate lead is adjacent the cathode. As shown in Fig. lc, the PUT, has a two-transistor
analogy, which is similar to that used to explain the operation of an SCR, except that the gate
connection is common to the PNP base and the NPN collector. Regenerative switching occurs
when the sum of the alpha's dynamically approach unity. The net result is that when the anode
voltage exceeds the gate voltage by an amount equal to the emitter to base drop of the PNP transistor, the positive feedback drops the anode-cathode voltage and presents a negative resistance.
Figure 1b. PUT Structure
Figure 1a. PUT Parameters
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064
704
PRINTED IN U.S.A.
APPLICATION NOTE
U-66
A (Anode)
-
G (Gate)
K (Cathode)
Figure 1c. Two Transistor Analogy
ANODE CHARACTERISTIC
The PUT, together with RG as shown in Fig. 1a, exhibits a negative resistance .characteristic illustrated in Fig. 2 for a fixed value of Vs and RG. For anode voltages less than the peak voltage Vp
at which a current IGA flows. (Region I). a~positive incremental resistance results. For anode
currents above the valley current lV, which occurs at the valley voltage Vv (Region III) a positive
incremental resistance also occurs. However, for anode currents between the peak point current
Ip and the valley current IV (Region II) the incremental resistance is negative. This region is unstable and forms the basis for use in oscillator circuits. With VA less than Vs forward anode current flows. At the peak current point, Ip where VA exceeds Vp the PUT will regeneratively
switch to its low impedance state: anode current increases rapidly to a level limited by external
load resistance. The PUT will remain on this "ON STATE" until the anode current is reduced to
a level below the valley current, IV. At this point the PUT returns to its blocking or "OFF
STATE", because operation in the negative region is unstable. Operation in the region between
'0 and IV will be covered in detail.
f
IV
lli
•
V T = Vp- Vs
- - VALLEY
I'"
I
Ip
F
....
....r~
II
I
"
" ....
__ IL ________
~
PEAK
Figure 2. PUT Characteristics
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064
705
PRINTED IN U.S.A.
U-66
APPLICATION NOTE
ADVANTAGES
The primary advantage of the PUT over the UJT is the programmability of operating parameters
such as peak point current (Ip!. valley current (IV)' and offset voltage (V T ), which is defined as
(1 )
These are easily programmed over a range by the choice of circuit components. Shown in Fig. 3
are the relationships between Ip and IV vs stand off voltage (VS) and gate source impedance
(R g). As observed from Fig. 3, operation at higher voltages allow a greater spread between Ip and
IV' The significance of this becomes apparent in applications where the negative resistance
(Region II, Fig. 2) must be large and must remain relatively broad over a temperature range.
Other advantages of the PUT over the UJT are:
1.
Lower current drain through R1 and R2 ; the UJT required several milliamperes of
current, The PUT micro amperes of current.
2. Lower peak point current of the PUT allows use of larger Rt (timing resistor) therefore, the Ct may be smaller for the same time delay hence, lower in cost. Lower capacitance values also result in lower leakage current and lower temperature coefficient.
3. Higher efficiency is available due to greater energy transfer from the capacitor to the
load. The on state voltage (VF) is considerably lower for a PUT than for a UJT.
4.
High or low operating voltages may be used; Vs as low as 2V or greater than 40V will
operate the PUT.
5. The PUT has an overall extended operating range due to programmability of Ip and IV'
6. Greater uniformity of triggering point. Stand off ratio TJ is not determined by manufacturing tolerance.
10,000
Iv
~~220f<
~
<;:
":;z
1,000
lK
~~ 10Kf<
.... w
zO::
wO::
o::=>
0:: u
=»
uw
'"w
100
100Kf<
l~Mf<
10
_o...:?'
Ip
lKf<
220f<
r.~
10Kf<
0.1
l00Kf<
lMf<
0.01
.001
.01
0.1
1.0
10
100
1000
Vs
'G :::::: R Gate Source Current (mA)
G
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
Figure 3.
706
PRINTED IN U.S.A.
APPLICATION NOTE
U-66
BASIC PUT OSCILLATOR
An analysis of the basic PUT oscillator demonstrates the inter-relationship of parameters. From
Fig. 4b, the voltage Va changes at a rate determined by the RtC t charging path. When the PUT is
operating in Region I, the anode voltage is given by
Va = VBB (1_e- t / Rt Ct)
(2)
The standoff voltage is related to the supply voltage VBB
VS=7)VBB
(3)
where
R,
(4)
TJ = - - -
R, + R2
Triggering is accomplished when the voltage on the capacitor reaches the standoff voltage V S:
plus the offset voltage V T, i.e.
V BB (1-e-t/RtCt)-VT = 1) V BB
(5)
The switching time occurs at
t = RtCt
-V~ )
in (
(6)
'-1)---
VBB
VT varies only slightly with temperature having a temperature coefficient of about 2.5 mv/oC.
Advantages of the PUT over the UJT are readily observed by comparing their operation in a simple relaxation oscillator circuit. Figure 4a shows a typical UJT oscillator with the simplified UJT
model. In the off state the resistance ratio at the intersection of r, and r2 is a fixed value represented by TJ (intrinsic stand off ratio). This ratio which determines the device triggering voltage
is established in the manufacturing process by the resistance of the silicon material and the diode
contact. Manufacturing tolerance result in values of TJ which typically range in value from about
0.4 to 0.9. Replacing the UJT with a PUT results in stable operation in any given circuit (Fig.
4b). The parameter stand-off ratio 7) is now established exclusively by setting the value of R2
and Rl and remains relatively temperature stable. Ip and IV are controlled by gate source resistance Rg and stand off voltage Vs (Fig. 3). A detailed discussion of the PUT oscillator will be
given.
II
8,
Typical UJT Oscillator
UJT Model
Figure 4a.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064
707
PRINTED IN U.S,A.
APPLICATION NOTE
U-66
R,
=
T/
Vs
Va
Standoff Ratio'
R2
RT
T
R, + R2
A
t
R,
CT
VT
"1 Vaa
Vp -
Vs
Standoff Voltage
Offset Voltage
Vs
RG
R,R 2
R, + R2
Gate Source
Resistance
(7)
Fig.4b
CONDITIONS FOR OSCILLATION
Switching on takes place at the peak point lip) switching off requires that current through the
PUT be less than the valley current (IV). Therefore, the load line must intersect the characteristic curve in the negative resistance region Fig. 5 and must be above the Ip point.
CONDITION FOR SUSTAINED OSCILLATION
VBB - Vp
RT
(max) > Ip (max)
VT
1-"1 » - V
This condition insures current
levels greater than the I p
(8)
This condition insures current
levels lower than the I V
(9)
This condition insures more
stable operation.
BB
(10)
IV
Negative Resistance
Load Line
Ip
Vv ~ 0.6v
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710)326·6509 • TELEX 95·1064
Vs
Vp
Figure 5. Offset Voltage
708
PRINTED IN U.S.A.
U-66
APPLICATION NOTE
CONDITIONS FOR ONE SHOT OPERATION
V BB - Vp
RT
> Ip (max)
>IV
must be satisfied. Since the load current is in the positive resistance region, the PUT will LATCH
on and remain on.
PUT OFFSET COMPENSATION
In order to compensate for offset voltage (VT) temperature shift, a diode D 1 forward biased
through RD may be used Fig. 6. The value of RD is selected by:
RD =
Ip (max)
A diode having a forward voltage temperature characteristic similar to the offset voltage temperature coefficient (TC) would provide optimum compensation.
II
Figure 6. Offset Compensation Methods
UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
709
PRINTED IN U;5.A.
APPLICATION NOTE
U-66
TUNABLE FREQUENCY OSCILLATORS
Variable oscillator circuits which include active elements for discharging the timing capacitor CT
are shown in Fig. 7. A second method is given as in Fig. 8.
RT1
1KS1
R2
5.6Kn
FREQUENCY RANGE
40 Hz to 65 kHz
RT2
3MS1
OUTPUT PULSE
Rise time-200 nsec.
Pulse width -1OfLseC.
Recovery time < 200 nsec.
PUT
Cr
Vo
.005J.1.F
R1
15KS1
Fig. 7
FREQUENCY RANGE
40 Hz to 40 kHz
OUTPUT PULSE
Width - 5
SCR
I-IS8C.
Fig. 8
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
710
PRINTED IN U.S,A.
U-66
APPLICATION NOTE
DESIGN EXAMPLE
A relaxation oscillator. A trigger generator is needed to provide a pulse of energy.
The required repetition rate is 1000 pulses per second. A power source of 20 Vdc is available.
Step 1
Select the value of R 1 and R2 based on Ip, IV requirements. For RG = 1OKn,
(Fig.3) R1 ~ 27Kn, R2 ~ 16Kn this will give an T/ of ~ 0.63. (Equations 7 and 4).
From Fig. 9 with T given as 0.001 sec and T/ of 0.63. RtC t
0.63.
Step 2
= 0.001,
T/RTCT
=1
@ T/ =
Step 3
The condition for sustained oscillation must be satisfied (equations 8 and 9)
hence, 275K < Rt < 1.4 meg (using spec values for a 2N6027).
Step 4
The value of capacitance is chosen by considering the rise time and energy
required. Since RTCT = 0.001 the CT range is 0.0007 < CT < 0.0036}.lfd.
Choose a standard value of capacitance and resistance. For example, CT = 0.002}.lfd
and RT = 470Kn (Standard Value).
For this example Rt = 470Kn, Ct = 0.002}.lfd. A cathode resistance of 20n will provide a
pulse of current of 130 ma with a pulse width of 300 nsec.
1.1
/
1.0
Vi
.9
.8
/
.7
...
u
...
IE:
......
...
)
.6
.5
.4
.3
.2
.1
o
/'
o
V
.1
V
/
/
I(
I
I
I
I
I
/
/
I
I
I
I
I
I
I
I
•
I
II
I
I
I
.2
.3
.4
Stand Off Ratio
.5
.6 .63
.7
.8
1)
Fig. 9
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064
711
PRINTED IN U.S.A.
U-68A
APPLICATION NOTE
SWITCHING REGULATOR DESIGN GUIDE
I. The Advantages of the Switching Regulator
industrial process control systems, instrumentation,
and communication.
Compared to the dissipative regulator, the switching
regulator does have some disadvantages which preclude its use in some applications. The primary power
source delivers current to the switching regulator in
pulses which, for efficiency reasons, have short rise
and fall times. In those applications where a significant series impedance appears between the supply
and the regulator, the rapid changes in current can
generate considerable noise. This problem can be
reduced by reducing the series impedance, increasing the switching time, or by filtering the input to the
regulator.
Unlike conventional "dissipative" series or shunt
regulators, in which the power-regulating transistor
operates in a continuous-conduction mode, dissipating large amounts of power at high load currents especially when the input-output voltage difference is
large- the switching regulator has high efficiency
under all input and output conditions. Furthermore,
since the power-transistor "switch" is always either
cut off or saturated (except for a very brief transition
between those two states), the switching regulator
can achieve good regulation despite large changes in
input voltage, and maintains high efficiency over wide
ranges in load current.
Because the switching regulator regulates by varying
the ON-OFF duty cycle of the power-transistor switch,
and the switching frequency can be made very much
higher than the line frequency, the filtering elements
used in the power supply can be made small, lightweight, low in cost, and very efficient-i.e., with almost
negligible power losses. It is possible to drive the
switching regulator with very poorly filtered DC (in
fact, in high-power applications, three-phase rectification without filtering of any kind is often used to
develop the input DC from the power line), thereby
eliminating large and expensive line-frequency filtering elements.
A second problem of the switching regulator, compared to the dissipative regulator, is its response time
to rapid changes in load current. The switching regulator will reach a new equilibrium only when the
average inductor current reaches its new steady-state
value. In order to make this time short, it is advantageous to use low inductor values, or else to use a
large difference between the input and output voltage.
Improved circuits for controlling switching regulators
have been developed at Unitrode, thereby eliminating
some earlier design constraints and optimizing the
performance attainable with available hardware.
These new circuits permit taking full advantage of the
economy and efficiency of the Unitrode PIC600
Series Hybrid Power Switch.
Finally, it is possible to design switching regulators
with excellent load-transient properties, so that step
increases of load current cause relatively small instantaneous changes in output voltage, recovery from
which is essentially completed in a few hundred
microseconds.
The design approach used herein is believed to be
original, and to be clearly superior to earlier methods
of calculating the key parameters and designing the
power inductor ... yielding explicit, accurate results
in significantly less time than the approximate equations in common use.
The switching regulator has become increasingly
popular in new-equipment designs, not only in aerospace and defense applications, but in computers,
UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
712
APPLICATION NOTE
U-68A
II. The Switching Regulator Described
and Characterized
The basic configuration of a switching regulator is
shown in Figure 1. It accepts a DC voltage input, Ein,
and regulates a DC ouput voltage, Eo, despite variations in Ein and load current. Although the static regulation, dynamic regulation, and ripple rejection of this
type of regulator cannot be as easily optimized as they
can in a continuous (so-called "dissipative") series
regulator, its efficiency, power density (Watts output
per cubic inch) and economy are all markedly superior
to the series regulator ... particularly for low-voltage,
high-current supplies. Unlike a series regulator, it
maintains high efficiency with high input voltages.
Switching regulators can thus be employed with high
efficiency to derive low voltage outputs from a high
voltage unregulated supply.
load, circulating through "catch" diode 01. The input
of the LC filter is now at zero Volts, i 1 decreases to
its original value and the cycle repeats.
The output voltage, Eo, will equal the time average of
the voltage at the input of the LC filter:
Eo =
where:
'T
=
Ein toofT
1/f
The control circuit senses and regulates Eo by controlling the duty cycle, a = toofT. If Ein increases,
the control circuit will cause a corresponding reduction in the duty cycle, a, so as to maintain a constant
Eo.
All of these advantages derive from the method of
regulating the output voltage: by varying the duty
cycle of a power-transistor switch, rather than varying
the voltage drop across a power transistor operating
in the linear mode. Because the switch (01 in Figure
1) is always in the saturated state when it is conducting, and is otherwise completely non-conducting (except for a brief commutation time between the ON and
OFF states), the power dissipated in the regulator is
much lower than it would be in a series regulator for
the same input and output conditions.
Eo =
As..1!..-
a Ein
L
"I
c
E in
The basic switching regulator circuit functions
as follows:
The control circuit causes transistor switch, 01, to
switch on and off at a predetermined frequency, f.
During the time that 01 is on, too. the input voltage,
Ein, is applied to the input of the LC filter, causing
current i l to increase. When 01 is off, the energy
stored in the inductor, L, maintains current flow to the
FROM SENSING
AND
CONTROL CIRCUITS
D1
ESR
Figure 1. Switching Regulator Basic Configuration
II
UNITROOE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
713
APPLICATION NOTE
U-68A
r.E.Q..
t ••
Ein
Ein-Eo
Figure 2a
VL
toff
:::::
T
- ton
-Eo
Figure 2b
Ein - EO t
L
i,
dh
il max -
Eo
L
0.
t • ff
il min
Figure 2c
h -10
i2
1
dQ
Figure 2d
2 .
C
Vc
Figure2e
dil
""2 .
!.
2
C
t.h
.
Vc
+ VESR
ESR
vESR
eo
Figure 21
eo
de.
dVe OR dvESR, whichever is greater.
NOTE: See Appendix A for rigorous analysis and justification
Figure 2. Switching Regulator Waveforms
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
714
APPLICATION NOTE
U-68A
Figure 2 shows some of the important waveforms and
equations which define the operation of the switching
regulator power circuit. The following discussion is
based on several simplifying assumptions which are
explained and justified or corrected in Appendix A.
The most significant assumptions are to neglect the
saturation voltage of 01, the forward drop of 01, and
the series loss resistance, Rs, of the inductor, L.
peak to peak capacitive ripple component ~Vc =
= ~id8fC (The factor 8f for a triangular current waveform is comparable to 27Tf for a sinusoidal
input current.)
~O!C
Figure 2e shows the resistive component, VESR, of the
ripple voltage which simply equals i2 x ESR, and is
in phase with i2 .
Figure 2f, the total output ripple voltage, eo, is the sum
of the waveforms in Figures 2d and 2e. Note that since
Vc and V'SR are in quadrature, the greater of these two
components dominates, and for all practical purposes
the peak to peak output ripple voltage, ~eo, is equal to
either oilvc or oilVESR whichever is greater.
Figure 2a shows the voltage across inductor, L, which
equals (Ein . Eo) during too, and (- Eo) during toff .
Under equilibrium conditions, when output load current, 10, is constant, the average voltage across L
must, by definition, equal zero.
Figure 2b shows the current i 1 through the inductor.
Under equilibrium output current conditions, the increase in current during to," L~h must equal the decrease in current during toff. The average value of i 1
equals the output current, 10.
The magnitude of VESR in comparison with Vc shown in
these waveforms is not exaggerated. Indeed, when
designing a switching regulator to operate at frequencies greater than 20 kHz in order to achieve small size
and low cost in the Land C filter elements, the ESR of
the capacitor usually dominates completely. Even
when high quality capacitors (lOW ESR) are employed,
it is usually necessary to use a larger capacitance
value than would otherwise be required in order to
realize the ESR required to achieve the ripple objective of the design.
Figure 2c shows current i2 through the capacitor,
which IS equal to (i I
10). The average value of
i2 = 0, and oili 2 = oili j . Current i2 causes a ripple voltage to appear at the output. The output ripple voltage,
e", has two components, a capacitive component, vc,
and a resistive component, VESR, caused by the equivalent series resistance of the capacitor.
With conventional free running switching regulator
control circuits, capacitor ESR also causes very significant departure from the design frequency, which
can result in large ripple magnitude, inductor saturation, and switching transistor failure. In the circuits
developed at Unitrode and presented in the next
section, the frequency-variation effect caused by ESR
is effectively eliminated, leaving only the ripple consideration.
Figure 2d shows the capacitive component, vc, of the
ripple voltage, which is the time integral of the capacitor current, i2. Note that Vc is the integral of a triangular
wave, and is not sinusoidal. Also note that Vc is in
"quadrature" with i2, in the sense that Vc min and Vc
max occur at times A and B, midway in the too and toff
intervals, when i2is zero. The total charge, oilO flowing
into C is computed graphically by finding the area of
the triangular current waveform between time A and
time B (Area = 'h bh: oilO = '12 X 7/2 x ~id2). The
Detailed design considerations for switching regulator
power circuits are contained in Section IV.
II
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
715
U-68A
APPL1CATION NOTE
III. Applications Circuits for Switching Regulators
The design and performance of conventional switching regulators are usually dominated by the ESR of the
output capacitor. However, in the group of circuits
described in this section, the following parametric relationships and circuit characteristics are easily and
economically attained:
• The switching frequency may be selected
and established at the optimum value for the
switching components, and will be independent of the value of the ESR of the output
capacitor.
• The value of toff is held relatively constant,
over wide ranges of load current and input
voltage, and independent of the ESR of the
output capacitor. Constant toff results in constant ripple current and output ripple voltage.
• Settable overcurrent limiting is provided,
thereby protecting both the load and the
switching transistors under all conditions,
and preventing saturation of the power inductor during tlie startup transient period,
thereby minimizing startup overshoot.
•
•
The overcurrent limiting circuit is significantly
lower in dissipation than conventional
current-limit-feedback arrangements.
The drive current to the power output (switch)
stage is regulated to a pre-determined value,
for best efficiency and optimum switching
speed. Drive current is automatically increased at low temperatures and decreased
at high temperatures, thereby maintaining
optimum drive conditions for the power
switch.
3 typifies this family of regulators. It is shown implemented by the popular LM305 regulator IC, and a
Unitrode Series PIC600 Hybrid Power Switch, comprising a quasi-Darlington switching transistor, a fast
recovery catch diode, and transistor bias resistors,
all matched for optimum efficiency and switching
speed (up to 100 kHz without derating). The configuration of Figure 3 is a positive output regulator, with
performance characteristics as follows:
20 to 40V
Eo
5V ±
~eo
10
Isc
1%
100 mV p-p (2% p-p ripple)
2 to 10A
12A
Regulation versus Ein (20 to 40V) <25 mV
Transient Recovery Time for step change in load
current from 2A to 10A, or 10A to 2A < 150
p.sec.
= 50 kHz nominal
Efficiency> 70%
The circuit of Figure 3 operates in the fixed-off-time
mode; hence, output ripple is independent of input
voltage over wide ranges. In this circuit, two feedback
signal paths are provided:
•
Note that, although the use of this circuit approach
permits essentially constant "toff" operation even with
capacitors having relatively high ESR, the output
ripple voltage is increased by high ESR. (If the ripple
developed across ESR is significantly larger than that
developed across C, then the ripple is essentially
proportional to ESR.)
Not all of the circuits that follow have all of the virtues
listed above, but the exceptions will be noted. Figure
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
Ein
716
DC Feedback. A fraction of the DC output
voltage, Eo, is fed back to the inverting input
of the LM305 through voltage divider R1, R2.
The DC voltage at the inverting input is compared to a reference voltage (approximately
1.8V) within the LM305, and the LM305 regulates Eo so that the voltage fed back to the
inverting input is essentially equal to the built
in reference Voltage. The R1, R2 divider ratio
therefore establishes the level of the DC output voltage, Eo. Resistor R5 improves output
voltage regulation versus input voltage
changes by feeding a small compensating
voltage proportional to the input voltage into
the inverting input of the LM305.
APPLICATION NOTE
U-68A
• AC Feedback. Capacitor C1 feeds back an AC
voltage waveform to the inverting input of the
LM305. This voltage is proportional to the output ripple voltage plus the AC voltage developed across R,. ~eo + ~VRI'
Current-limiting action is provided by transistor 01,
the collector of which is connected to the "gate" or
"inhibit" terminal of the LM305 (pin 7). When the load
current is normal, 01 is cut off and pin 7 floats; but
when the voltage drop across R, increases to a value
greater than the sum of VeE (01) and VR1, 01 turns on,
cutting off the drive current from the LM305 and, ultimately, the power switch. This cutoff action is made to
"latch" by the fact that, with the drive cut off, VRJ disappears. This keeps 01 on, until the current through
R, drops significantly - enough to make the voltage
drop across R, fall below the VeE of 01.
Capacitor C2 feeds back an AC voltage to the
non-inverting input of the LM305. This voltage
is proportional to the output ripple voltage plus
the AC voltage across R3. ~eo + VRI.
When the circuit values are properly established, the
same fraction of ~eo is fed back to both inverting and
non-inverting inputs, thereby effectively cancelling.
The operation of the switching regulator is thus rendered independent of the output ripple voltage developed across the C or ESR of the output capacitor.
The current through R" following such an overload
cutoff action, falls linearly at the rate of Eo/L. When
01 is cut off, drive current is restored. The circuit will
then continue to switch on and off at a frequency comparable to normal operation, with the average current
limited at the design limit, and power dissipation held
to safe values.
Since the ~eo components cancel each other, the
LM305 essentially compares ~VRI at the inverting input
to ~VRl at the non-inverting input. Voltage ~VRl is a
rectangular waveform with a peak-to-peak amplitude
equal to I drive x R3. where I drive is the base drive
to the hybrid switching transistor provided by the
LM305, and AVRI is a triangular waveform with a peakto-peak amplitude equal io ~il x R" where ~il is
the ripple current through inductor L. When the drive
current is on, AVRl is at its peak positive amplitude. As
il increases, VRI increases proportionately. When the
positive amplitude of ~VRI reaches ~VR1' this causes
the LM305 to switch off the drive current, ~VRl immediately drops to its peak negative amplitude, and it
starts to fall. When ~VRI reaches a negative amplitude
equal to ~VR1' the LM305 switches the drive current
back on, and the process repeats. In this manner, the
LM305 controls the power switch so that ~it is fixed.
Since toff = ~il x LlEo, with fixed values of Land
Eo, toff is fixed and independent of changes in Ein
or capacitor Cor ESR values.
. E in
R.
0.06
........-4-<>
R2
3.BK
R4, connected between pins 1 and 8 of the LM305,
establishes the desired level of base drive for the
PIC600 Series Hybrid Power Switch, and determines
the hysteresis voltage across R3.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
0--_'<>--_-____
Eout
Co
240pfd
O,025J!
Figure 3. Positive Voltage Switching Regulator
717
U-68A
APPLICATION NOTE
rectangular current pulse associated with the power
switch turning on and off from propagating into the
Ein supply line. The capacitance value required is a
function of the impedance characteristics of the Ein
supply and intervening wiring. Watch out for underdamped resonance with the inductance of the input
wiring, or transient induced ringing may occur. The
input capacitor must have short leads, and the ground
side should preferably be connected directly to the
ground sideof the output filter capacitor.
Transient response of the switching regulator of
Figure 3 is shown in Figures 4, 5, and 6..
5
..r-rJ'" """
Output
Volts
3
1
,/
o
/
A 10A negative voltage switching regulator, utilizing
an LM304 and PIC600 series, is shown in Figure 7.
/
o
'DO
200
300
400
500
Time, ,usee
A reference voltage is determined by resistor R1 and
R2. The error amplifier controls the output voltage at
twice the voltage across R2. Diode D1 is used to ensure a potential difference of less than 2V at the unregulated input (pin 5) with respect to the reference
supply (pin 3). (If the unregulated supply terminal gets
more than 2V positive with respect to reference supply, the collector isolation junction of transistor 06 of
LM304 becomes forward biased and disrupts the
reference.)
Figure 4. Ein from 0 to 25V
Current limiting is achieved, in Figure 7, by means of
reducing the reference voltage to ground with the
help of transistor 01 and resistor RS, instead of turning off the base drive t6 the power output switch as
in Figure 3.
0+---~--~~--4----+--~
o
100
200
300
400
500
Figure 5. 10 from 4A to 10A
The functions of the rest of the components and the
operation of the switching regulator are the same as
described for Figure 3.
A positive switching regulator using a Il-A723 is shown
in Figure S.
Output
The basic performance and circuit operation is the
same as Figure 3.
Volts
The circuit shown in Figure 9 is a high voltage positive
switching regulator. Because the LM305 (like almost
all IC regulators) cannot be operated at supply voltage
in excess of 40V, this circuit uses a fraction of Ein as
a power supply for the IC circuit by means of zener
diode and current limiting resistor R9. The voltage
isolation between LM305 and power switch, and the
regulated base drive to the power switch are provided
by transistor 02.
o+o--~,oor---~200~--430-0---4+00----4500
Time, ,usee
Figure 6.10 from 10A to 4A
It is usually necessary to employ a noise filtering
capacitor across the input of any switching regulator.
This functions to prevent the steep waveform of the
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064
718
APPLICATION NOTE
U-68A
The basic operation of the circuit and design approach is the same as that of a low voltage positive
switching regulator.
This circuit is similar to the low voltage negative
switching regulator with a minor modification. Transistor Q2, resistor R1 0 and R11 are ali used to provide
regulated base drive to the power output stage and
also to provide the voltage isolation between power
output stage and LM305. The resistor R9 is used to
limit current through zener diode under steady state
and startup conditions.
The circuit shown in Figure 10 is a negative high voltage switching regulator.
- Eino--p--c>-!-.,.
E in
<>--..-:'>--,---......
1I~2"H
01
C1
A'
0.07
R6
2.2
Eout
- Eoul
I
R8
240ft!
Co
A2
':" O.O25!!
8201l
3.8K
Figure 7: Negative Voltage Switching Regulator
Figure 9. High Voltage Positive Switching Regulator
- - - - - -.r-..-(>'-..,
-
+ Ein
R6
15K
A,
0.06
Eout
'L---;_+...o tE out
T
CO
O.Q1,...!
R2
4.7K
-=
240j.li
0.02511
Figure 10. High Voltage Negative Switching Regulator
Figure 8. Positive Voltage Switching Regulator
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95·1064
719
U-68A
APPLICATION NOTE
IV. Designing the Power Circuit
In designing a switching regulator power supply, the
following parameters will normally be predefined.
Specific values shown for each parameter will be used
as the basis for a design example:
Eo
.:leo
Referring to the specification for the Unitrode PIC
625/635 Hybrid Power Switch, the DC losses (Transistor VeEsa " Diode VF) under the conditions of this
application amount to 10W. The following tabulation
shows the switching losses and overall efficiency at
several frequencies .
5V Output Voltage
100 mV Output Ripple Voltage,
Peak to Peak
lomax
10A Output Current, Full Load
lomin
2A Output Current, Minimum Load
Ein max
40V Input Voltage, Maximum
Einmin
20V Input Voltage, Minimum
1 kHz
20 kHz
Power output
DC losses
Switching losses
Total power input
Realizable efficiency
SO
10
O.OS
60.0S
83.3%
SO
10
1
61
82%
50 kHz
SO
10
2.S
62.S
80%
100 kHz
SO
10
S
6S
77%
For our example, we will choose a frequency of
50 kHz, even though the efficiency is not significantly
reduced at 100 kHz. At 100 kHz most currently available tantalum and aluminum electrolytic capacitors
begin to exhibit series inductance.
The first step in the design is to decide on the operating frequency of the switching regulator. No concrete
rules can be given for this decision.
High frequency operation is distinctly advantageous
in that the cost, weight and volume of both Land C
filter elements are reduced. However, above the frequency where the capacitor ESR exceeds its capacitive reactance, no further reduction in capacitor size
or cost wi.ll occur. This frequency, in the range of 1-50
kHz, depends upon the "quality" of the capacitor in
terms of ESR. Above this frequency, the inductor will
continue to diminish in size and cost, although when
the inductor reaches a very small size, cost will
level off.
Transistors and diodes which do not have the fast
switching capabilities of the PIC 625/635 will become efficiency limited at much lower frequencies.
Note that in this specific application, a dissipative
regulator design will incur power losses in the series
transistor of 350W, resulting in an efficiency of 12.5
percent!
The control circuits shown in the previous section
control the on-off switching periods by sensing and
controlling the ripple current, .:li 1 , through the inductor
L. This mode of operation results in a constant ripple
current and (assuming Eo and L are fixed) constant
off time, toff , independent of input Voltage. The relationship between toff, f, Eo, and Ein is as follows (from
Figure 2a):
Operation above 20 kHz is desirable to eliminate the
possibility of audio noise.
The main factor limiting high frequency operation is
the drop in efficiency caused by switching losses in
the power switching transistor and "catch" diode. The
higher cost of these fast switching semiconductors required to operate efficiently at high frequencies must
be weighed against the reduced cost, size and weight
of the Land C components to arrive at the optimum
frequency for any specific application. It may be desirable to work the design through at several frequencies in order to make a decision.
toff =
(1 - Eo/Ein) / f
With toff and Eo fixed by the control circuit, f will
change when Ein changes, and f will be maximum
when Ein is maximum. In our specific example,
fmax
Ein max
Eo
In the specific application defined at the beginning of
this section, the power output (Eo x 10 max) is 50W.
UNITRODE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95·1064
Frequency
720
50 kHz
40V
5V
APPLICATION NOTE
U-68A
so that:
=
toff
3.
(1
-
5/40)
/
50,000
=
17.5fLsec
Now, with toff fixed at 17.5 fLsec, if Ein changes to Ein
min
20V,
(1-Eo/Ein)
fmin
toff
(1 - 5/20)
17.5 x 10- 6
=
Losses in a practical inductor are higher
than in a capacitor with equal energy storage capacity (assuming low ESR). This
again argues for small L, large C.
One major objection to a low LI C ratio is that it causes
large and sometimes intolerable overshoot in input
current and output voltage on startup, when the circuit
is first energized. Input current overshoot can saturate
the inductor and destroy the switching transistor. The
current limiting feature of the applications circuits
shown in Section III effectively controls the startup
transient, thereby protecting all components and minimizing voltage overshoot. With current limiting, this
problem is eliminated and no longer pertains to the
selection of Land C values.
43 kHz
The fact that the frequency changes slightly with Ein
is really not important, as stated earlier, because constant toff operation results in more constant output
ripple than constant frequency operation.
Having determined (or assumed) the maximum operating frequency and calculated toff, we next proceed to
find specific values for Land C. Land C together form
a low pass filter which reduces the rectangular waveform at the filter input to a DC output voltage, Eo, with
a small amount of ripple, D.eo, superimposed. To
achieve a specified !leo requires a specific LC product, independent of load current. Theoretically, this
LC product can be achieved with any LlC ratio - small
L and large C, or large L and small C (or very large L
and no C at all, using instead the load resistance R, as
one element of an LlR filter). There are, however, several practical ecorlomic and performance considerations that apply to selecting specific Land C values.
Referring to Figure 2b and its associated equations,
the peak-to-peak ripple current through the inductor,
D.i I, is inversely proportional to the inductance, L. As L
is made smaller, D.h increases. Maximum limits on D.il
determine how small L is permitted to be, as follows:
1.
1.
Under the power and frequency ranges
commonly encountered in switching regulator circuits, it costs more to store energy
in an inductor than in a capacitor. Also, an
inductor will have considerably greater
weight and volume than a capacitor with
equal energy storage capacity. Small Land
large C, within the limits defined below, will
usually result in the lowest cost, weight and
size design.
The instantaneous current through L ranges
between a maximum of lo:+- D.id2 and a
minimum of 10 - 8id2. If 8id2 is permitted
to become larger than 10, the minimum inductor current becomes a negative value.
This is impossible, since neither the switching transistor nor the "catch" diode will
conduct. Therefore, the switching regulator
goes into a discontinuous mode of operation which is perfectly safe, but the frequency changes considerably and regulation with output current changes becomes
relatively poor. The worst case consideration to insure that discontinuous operation
does not occur is to make D.id2 equal to the
minimum load output current, 10 min, or
D.h = 2 10 min.
2.
Small L and large C results in low "surge
impedance" of the filter, hence better transient behavior with step changes in load
current.
It is not practical to apply this criterion if 10
min is very small «0.05 10 max) because
D.i l would then be very small, forcing an impractically large L value. In applications
It is favorable to push in the direction of small Land
large C for the following reasons:
131
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
721
APPLICATION NOTE
where 10 min is very small, there are two
alternatives: fa) raise 10 min by preloading the supply, or (b) make di 1 = 2(0.05
10 max) = 0.1 10 max realizing that when
10 becomes less than 0.05 10 max, the discontinuous mode will occur.
2.
The maximum peak current is equal to the
full load current, 10 max + did2. As L is
decreased, the corresponding increase in
diJ will begin to cause a significant increase
in the maximum peak current. Since the inductor must be designed not to saturate at
the maximum peak current, this begins to
negate the cost, size and weight advantages
of making the L value smaller. Higher peak
currents will have an adverse effect on efficiency and transistor drive requirements,
and may require transistor and "catch" diodes with higher current ratings (and higher
cost). It is, therefore, recommended that
dit/2 be no greater than 0.25 10 max, which
will limit the maximum peak current to 1.25
10 max, or di 1 max = 0.510 max.
U-68A
The final step is to determine the requirements for
the capacitor C and ESR values which will result in the
desired output ripple voltage, deo. Since the two components of deo : dVc and dVESR, are in "quadrature",
we can consider each component separately, with a
worst case error of less than 20 percent when both
components are equal. This much error is highly unlikely, since the ESR component usually dominates
completely when operating at high frequencies.
From Figure 2d:
di,
C
Cmin
8 x 43
114f.LF
di 1 max
0.510 max
In our example, 10 min = 2A, 10 max = 10A. Calculating di 1 = 2 10 min = 4A, which is acceptable
since di 1 max = 0.5 x 10A = 5A, and di 1 min = 0.1
x 10A = 1A.
Now that toff and dh have been determined, L can be
calculated as follows:
L ==
5 x 17.5 x 10 -6
4
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064
x
103 X 100 X 10- 3
From Figure 2e:
2 10 min, within the following
somewhat arbitrary limits:
0.110 max
8f dv,
note that C varies inversely with f. In order to achieve
dVc less than the desired maximum deo, the minimum
value for C must be determined at the lowest frequency, f m;", calculated previously.
In summary:
diJmin
=
ESR max
dVESR
dh
100 x 10- 3
4
0.025D
With high frequency operation, capacitor ESR usually
dominates, forcing the use of a C value much greater
than C min in order not to exceed ESR max.
Subsequent sections deal with designing the inductor
and selecting the capacitor and other components of
the switching regulator.
722
U-68A
APPLICATION NOTE
V. Design of the Power Inductor
This simplified nomographic method facilitates selecting the smallest core that will achieve the desired
characteristics of the power inductor. This procedure
is useful in selecting the proper core and determining
wire size, number of turns, copper losses, and temperature rise. It also permits investigating the effects
of change in assumed initial conditions and in "trimming" the design.
A detailed analysis of this inductor design procedure
is contained in Appendix B.
Tables 1 and 2 give core parameters for a variety of
commonly used ferrite pot cores and Mo-Permalloy
toroids. (Note: There is no significance to the selection of manufacturers, nor is any intended. Many manufacturers make roughly equivalent cores in these
sizes, with similar magnetic properties.)
Ferrite and Mo-Permalloy powder are excellent core
materials for the switching regulator inductor. Since
the rms AC current through the inductor is small
compared to the DC current, AC losses in the winding
and core losses will be negligible compared with DC
winding losses.
Selection of the proper core for a specific application
is a process concerned with two factors: (1) The core
must provide the desired inductance without saturating magnetically at the maximum peak overload current, h max. In this respect each core has a specific
(Ll2)", energy storage capability. (2) The core must
have a window area for the winding which admits the
number of turns necessary to obtain the required inductance with a wire size which will result in acceptable DC losses in the winding at the full load output
current, 10. Each core has a specific (Ll2)d'" capability
that will result in a specific power loss or temperature
rise.
The significant core parameters are primarily core
size and the magnetic gap in series with the flux path.
Consider a very small (for the application) ferrite pot
core with no air gap. The effective permeability, }i-.,
will be very large because there is no gap. Relatively
few turns will be required to achieve the desired inductance, and the power loss at 10 will be small, but
the core cannot store the required energy L(il max)2
without saturating. If we introduce a gap into this core,
the energy storage capability increases (the extra
energy is actually stored in the gap, not in the ferrite
material). However, the gap causes the effective permeability to drop, which requires more turns of finer
wire to achieve the desired inductance. If the core is
'UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064
too small, as the gap is increased to the point required
to achieve the necessary energy storage capability
without saturating, the DC resistance of the increased
number of turns of finer wire has increased to the
pOint where the power dissipation and temperature
rise is too great. This conflict is resolved by going to
a larger core with appropriate gap.
To facilitate core selection, Tables 1 and 2 contain
tabulated values of (Ll2)", energy storage capability
(saturation limited) and (Ll 2l25C capability (based on
power dissipation resulting in 25°C temperature rise).
These values have been calculated for various size
cores with different gaps, by methods described in
Appendix B. Also given in the tables are the power
dissipation corresponding to a 25°C rise for each core
size, and the effective window area for the winding,
Aw'. Tabulated A, values relate to different gaps. (A, is
the inductance index at a particular gap setting defined as the inductance in mH for 1000 turns.)
The optimum cores for switching regulator inductor
applications generally have quite large gaps, and
consequent relatively low A, values. This is fortuitous,
since the core properties are then dependent mostly
on the gap itself, and variations in the magnetic materials of the core are swamped out, resulting in
excellent stability and linearity. Note, however, that
in the ferrite pot core table, many of the lower A,
values are not supplied as stock items by the manufacturer, and the desired gap must be ground to size
on a special order basis.
Mo-Permalloy powder cores are effectively "gapped"
by the manufacturer by means of varying the amount
of non-magnetic binder that holds the Mo-Permalloy
particles together within the core, and by the size and
shape of the Mo-Permalloy particles. Thus, the "gap"
is actually distributed throughout the core material.
These cores are supplied with many different AL values
in each size.
One of the main advantages of ferrite pot cores and
ferrite E-I cores (not tabulated, but worth considering)
is that the winding is easily formed on a bobbin which
is subsequently assembled within the two-piece core
assembly. Ferrite toroids are not recommended because of the practical difficulty of introducing a gap.
Mo-Permalloy toroids are not as convenient to wind,
but this is not a serious problem as most switching
regulator inductor designs require few turns of relatively heavy wire.
723
II
APPLICATION NOTE
U-68A
Example of Inductor Design
Power loss in inductor;
The example shown below will illustrate the method of
solution, as drawn on the nomograph of Figure 11.
Ll o 2
Actual Pw == P25C X (Ll2)25C
Given:
L ==21.9p.H
10
10A
14A (current limited)
iJ max
50W (output of regulator)
Eo x 10
0.547 x
2~2~98
;
W
0.524W
Actual power foss in the inductor as a percentage of
the power output of the switching regulator is:
Copper losses not to exceed 1% of
output power, and temperature rise of
inductor not to exceed 25°C.
Pw x 100% ==
Eo x 10
0.524 x 100%
50
== 105°;'
.
°
If power losses are not acceptable, then select a core
with higher (Ll 2l25C capability.
Step 1: Draw line CD, from 10 == 10A on the "I" scale,
to 0.0219 mH (21.9 p.H) on the "L" scale through the
"Ll2" scale. Note that Ll o 2 == 2.19 millijoules.
Step 5: In the nomogram, draw line Q) from 0.0219
mH on the "L" scale through Al == 160 on "A," scale
to the "N" scale. Note that 12 turns are required to
obtain the desired inductance.
Step 2: Draw line @ from il max == 14A on the "I"
scale to the 0.0219 mH on the "L" scale through the
"Ll2" scale. Note that L(iJ max)2 == 4.3 millijoules.
Step 3: Find the smallest core in Tables 1 or 2 that has
(Ll2)25C capability greater than Ll o 2 defined in step 1,
and (Ll2)", capability greater than L(iJmax)2 defined in
step 2. This appears to be a 2616-387 pot core with
A, == 160 from Table 1, or an A-291 061-2 toroid from
Table 2.
Step 6: Enter the Aw' == 0.193 from the table for the
core selected on the "Aw'" scale. Draw @ from "N"
scale where N == 12 through Aw' == 0.193 to the "wire
size" scale. From this scale, note that wire size is
AWG 15.2. Select the next highest integer, AWG 16,
in order to fit within the available window area. This
will result in a slight increase in power loss and tem·
perature rise.
Step 4: Actual temperature rise of the core and power
loss can be calculated as follows:
The same procedure applies if a toroid is selected
instead of a pot core.
Temperature rise of pot core;
If both the Ll o2 and L(i1max)2 values calculated in
steps 1 and 2 are less than the appropriate limiting
(Ll2) values for the core selected, it is suggested that
the L value of the application be increased until one
or the other of the core limits is reached. This will
permit reduction of 8iJ, and reduce the requirements
of the output capacitor.
Actual8T
250C
LV (step 1)
(Ll2)25C from cor~ table
250C
2.19
x 2.288
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
724
... r e
=Emz
)(~=t
l>
"'0
"'0
0.2
3~~
sao
5
"'z'"
~- 0
om
o,s:::o
:g":;:
"'°0
.~;o
.......
"
","'-<
0.1
~.:.o
x",z
0.02
",r·
Y1:""c.n
~"''''
i~o
,,"~:a
i
C
n
~
24~
23
1000
o~
500
0.05
0
10
-..J
I\)
(J1
l
rO'
21
005j
.
r
0.02
0
22
@
5
Z
Z
-f
ITI
a>1D
~rn
~:a
0
20
0.1
19
......
18
L
-I
""-
17
0.2
0.1
U2
(mJ)
2
0. 01
1
1
LlO
Al
0.005-1
50
1
0.5
.J
15
1°l
14
2.0-i
12
13
11
.002-J
L
(mH)
I
(Amp)
5.0...J
100J
N
Aw'
(em2)
10
WIRE
GAGE
c:
I
Figure 11. Inductor Design Nomograph
I
en
00
l>
APPLICATION NOTE
U-68A
Table 1. Ferrite Pot Cores
Ferroxcube
Part No.
1107-Al00-387
1107-A160-387
1408-A 100-387
1408-A 160-387
1811-A160-387
2213-A160-3B7
-387
26162616-A250-3B7
-387
30193622-3B7
4229-3B7
·
··
·
Dimensions
(Inches)
Power
Dissipation
2SoC rise
(walls)
Window Area
O~65 Aw
Inductor
Index
Saturation
Limit
(mJ)
Dissipation
Limit
25°C rise
(mJ)
(cm')
(00)
(HT)
(P"c)
(Aw')
(AL)
(Ill')..,)
((LI')"c)
0.445
0.445
0.559
0.559
0.716
0.858
1.024
1.024
1.201
1.418
1.697
0.264
0.264
0.334
0.334
0.428
0.538
0.640
0.640
0.754
0.880
1.16
U.l00
0.100
0.158
0.158
0.259
0.358
0.547
0.547
0.754
1.04
1.60
0.034
0.034
0.063
0.063
0.122
0.193
0.263
0.263
0.382
0.486
0.910
100
160
100
160
160
160
160'
250
200'
200'
200'
0.200
0.144
0.490
0.324
1.02
2.12
5.06
3.24
8.57
18.4
31.8
0.077
0.124
0.180
0.288
0.719
1.32
2.29
3.58
4.90
7.21
17.9
Window Area
O.SAw
Icm')
Inductor
Index
Saturation
Limit
(mJ)
Dissipation
Limit
2SoC rise
ImJ)
·Indicates not stock item. Gap must be ground to obtain desired AI
Table 2. Mo-Permalloy Toroids
Arnold
Part No.
A-307032-2
A-051027-2
A-189043-2
A-059043-2
A-894075-2
A-291061-2
A-298028-2
A-085035-2
A-087059-2
Dimensions
linches)
Power
Dissipation
25°C rise
(walls)
(00)
IHT)
IP"c)
lAw')
IAL)
I (LI') ..,)
I (LI')"c)
0.425
0.530
0.710
0.930
1.09
1.33
1.33
1.60
1.875
0.180
0.217
0.280
0.330
0.472
0.457
0.457
0.605
0.745
0.072
0.125
0.209
0.346
0.520
0.708
0.708
1.04
1.48
0.082
0.192
0.319
0.703
0.781
1.47
1.47
2.14
2.14
32
27
43
43
75
61
28
35
59
0.180
0.296
0.782
1.55
3.40
4.54
9.90
20.1
40.2
0.065
0.199
0.659
2.06
4.32
8.97
4.12
8.65
16.0
UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
726
APPLICATION NOTE
U-68A
VI. Component Selection
1 . Power Switching Components
Voltage ratings of the power switching transistor and
catch diode must be greater than the maximum input
voltage, Ein, including any transient voltages that may
appear at the input of the switching regulator. Low
transistor VCE,,' and diode V, at full load output current
are important considerations to maintain high efficiency (Ref efficiency calculations - Appendix A).
Fast switching diodes and transistors are required to
maintain good efficiency in high frequency switching
regulators. Transistor switching losses become significant when combined rise time plus fall time exceeds approximately 0.025 x T. Thus, for 50 kHz
operation, t, + tf should be approximately 0.5 p,sec
or less. Transistor delay and storage times do not
affect efficiency, but cause delays in turn on and turn
off resulting in lowering the frequency of operation
and increasing ripple. Combined td + t, should be
less than 0.05 x T.
Unitrode manufactures a broad variety of fast switching
power transistors and Darlingtons, which are listed in
the Power Transistor & Darlington Product Selection
Guide. Their combinational high voltage, high current,
low saturation voltage and medium to fast switching
characteristics make them ideal for this application.
The diode reverse recovery time must be no more
than about half the current rise time through the transistor. If this requirement is not met, large amplitude
reverse recovery current spikes will be drawn from the
input power supply causing severe EMI problems.
Large transient currents through the transistor may
cause degradation or second breakdown. Referring to
Figure 1, Section II, during the time that the transistor
is off, the catch diode is conducting the output current,
10, and the transistor VCE equals Ein. When base drive
is applied to the transistor to turn it on, current through
the transistor rises from 0 to 10. During this current rise
time interval, t,;, the diode remains in forward conduction, but the diode current declines from 10 to 0, since
the inductor maintains the total current at a constant
value equal to 10. If the diode has recovered at the end
of the t,; interval, the voltage across the transistor will
start to decrease and the diode will go into the reverse
direction. This period of time is the transistor voltage
rise time interval, t", which is terminated when the
transistor VCE reaches VCE,,' and the diode VR reaches
Ein. If the diode has not recovered at the end of the t,;
interval, it will remain a low impedance instead of proceeding smoothly into the reverse direction. Transistor
current will increase well above 10 until the diode
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
recovers, pulling the additional current through the
diode in the reverse direction.
This problem has probably caused more grief in
switching regulator applications than any other, and
almost completely dominates diode selection. Diode
switching losses will be completely negligible if the
diode is fast enough to minimize the recovery problem, i.e., two to three times faster than the transistor
turn-on rate.
Unitrode UES rectifiers, listed in the Rectifier Product
Selection Guide, are uniquely suited to this type of
application. With low forward drop and typical recovery
time of 20 nsec from forward currents as high as 50A,
they cause no discernible recovery spike when used in
conjunction with Unitrode's medium frequency switching transistors.
Unitrode PIC600 Hybrid Power Switches summarized
in the Switching Regulator Power Circuits Product Selection Guide combine in a single package the UES
rectifier and power switching transistor with its associated drive transistor and bias resistors. Power transistor, drive transistor and rectifier are matched to
optimize switching speeds and VCE sal' Available in NPN
and PNP versions, the PIC600 series can operate at 50
kHz with only 2.5 percent loss of efficiency compared
with operation at lower frequencies. Significant reduction of EMI can be achieved because of the reduction of
circuit wiring.
2. Output Filter CapaCitor.
The most difficult component selection problem for
high frequency switching regulator applications is to
find and specify an output capacitor with suitably low
ESR. Most tantalum and aluminum electrolytic capacitor types do not have ESR specifications (probably
because ESR is not very good). In some cases, the
dissipation factor, OF, is given in the specification.
However, OF is usually specified at 60 Hz, which is
more indicative of effective parallel resistance, and is
virtually useless in determining ESR. When OF is
specified at 1 kHz or higher, it may be used to determine ESR:
ESR = OF (%) x 0.01 x Xc = OF (O;~f~ 0.01
The power circuit design example given in Section IV
requires an output capacitor with Cm ;" of 114 p,fd and
ESR m" of 0.0250.. The capacitor which comes closest
to meeting this requirement (after a limited search) is
solid tantalum, Mallory THF, 120 p,fd @ 10V. This
capacitor has a max OF of 8% at 1 kHz, which defines
ESR m" = 0.1060.. ESR is typically 0.050.. Two of
727
II
APPLICATION NOTE
U-68A
In the design example of Section IV, .::leo RMS = 0.033V,
which is less than the 0.05V max ripple rating of the
1OV Mallory THF capacitor, and .::li RMS = 1.14A, which
is less than the 2.47A max ripple current rating of the
1000 ttfd, 12V Sprague 672D capacitor.
these capacitors in parallel are required, based on
typical ESR, to achieve an ESR of 0.025.0; four in
parallel are required, based on ESR m" of the capacitor.
The aluminum electrolytic which comes closest (again
based on a limited search) is the Sprague 672D series,
1000 ttfd @ 12V, which has an ESR m" of 0.065.0 @
50 kHz. Typical ESR is 0.025.0. In either case, a much
larger C value is required in order to achieve the desired ESR. This does have the advantage of reducing
transient voltage changes with sudden changes in
load current.
Series inductance of the capacitor is usually not significant compared to ESR at frequencies below 100
kHz. However, inductance can become dominant if
good wiring practices are not followed. Specifically,
the ground side of the catch diode should be returned
directly and as close as possible to the ground side of
the capacitor, and capacitor lead length including
circuit wiring on both sides of the capacitor should
be minimized.
It is worth noting again that with the control circuits
shown in Section III (unlike conventional switching
regulator control circuits), the operating frequency
will remain relatively constant, regardless of ESR, although the output ripple voltage \!;Iill vary directly with
ESR. In some cases, it maybe economically advantageous to increase the value of L (and the size and
cost of the inductor) in order to reduce ripple
current,.::lir = .::li 2 , and thereby increase the ESR m"
requirement.
3.
In addition to considering the C and ESR values and
appropriate volta~e derating for the application, most
capacitors have maximum RMS ripple current or max
RMS ripple voltage ratings which should not be exceeded. Actual RMS ripple current and voltage in the
application can be calculated as follows:
.::leo RMS
.::leop-p/3.0
.::liRMS = .::li1 p-p/3.5
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
Control Amplifier and Reference.
Control circuits for switching regulators can be designed around IC operational amplifiers and separate
voltage references, or around low power voltage regulator IC's which have built-in references. Voltage regulator IC's such as the LM304, LM305, and }LA723
have the added advantage that the output current they
provide to drive the power switching transistor can be
caused to diminish at higher temperatures, which
conforms to the transistor drive requirements vs. temperature and helps to maintain optimum switching
speeds over a range of temperatures. Amplifiers used
in the control circuit should be uncompensated in order to obtain fast switching speeds, otherwise the
delay times introduced will result in lower frequency
operation and larger ripple amplitudes, and may
cause circuit instability.
728
U-68A
APPLICATION NOTE
Appendix A
Analysis of Power Circuit
(Ein - Eo)
(Ein - Eo - Vsat - loRx)
The design equations for the switching regulator
power circuit used throughout this design guide were
based on several simplifying assumptions, which will
now be dealt with.
toff'
toff
The simplified equations neglected the effect of
"catch" diode forward drop; V" transistor saturation
voltage, V"" and the IR drops in theinductor and 'current sensing resistor, 10R x. If a design is implemented
using the values of L, C, ESR, and Ai derived from the
simplified equations, then to", toff , f, and Ae o will differ
from the design values because of the effect of the
simplifying assumptions as follows, from Figure 2b:
=
(Ein - Eo)to"
L
(1 )
(Ein - Eo - V"t - 10 Rx)too'
L
(2)
Eotoff
-L-
(3)
Exact:
Ail
Exact
Ail
(Eo
+ VD + 10 RX)toff'
L
+ V + loRx
D
The only other assumption that could have possible
significance is that the transistor switching times
are negligible at the highest frequency of operation.
The validity of this assumption is normally assured
by selecting appropriate devices (see Section VI).
This also applies to the speed of the control circuit.
If delay time through the control circuit in addition to
transistor turn-on and turn-off times is significant with
respect to the total period, T, the consequent delay in
turning the power circuit on and off will cause a proportional increase in Ah and Ae o, and a proportional
decrease in frequency.
Simplified:
Ah
Eo
Eo
Although the actual toff' is less than the assumedtoff,
to,,' is greater than the assumed to", so that their net
effect on the operating frequency is reduced. In the
worst .case, when Eo is small (5V) and Ein is high
(50V), the actual frequency will be 25 percent higher
than the original assumed frequency, resulting in a
very slight drop in efficiency. Output ripple component AVe will be smaller because of the higher frequency, and AVES. will not change because Ail is fixed.
Component tolerances will result in larger deviations
than those caused by the use of the simplified
equations.
Simplified:
Ah
and
(4)
Note that Ail is fixed, because the control circuit controls this value directly. Instead of the original design
values of to" and toff, actual values ton' and toff' will be
observed. Since Ail is fixed, we can equate Equations
(1) to (2) and (3) to (4):
II
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
729
APPLICATION NOTE
U-68A
Efficiency Calculations: The efficiency of a switching
regulator depends upon the factors given in the following equation:
Efficiency =
Pp~ut
x 100%
In
Eo xlo
= Eo x 10 + Pr + PD+ Pr + PD + PL + P, + Pc + Pc
Note that the worst case for each factor does not
necessarily occur under the same conditions.
1.
DC Losses - Transistor. (Worst case when Ein is
lowest because ton is largest.)
x
where:
ton
=
7'
2.
10
4. Switching Losses - Diode.
This is a very complex calculation if diode, recovery
time is not much smaller than the transistor rise time,
because the diode will short-circuit the power supply
prior to turn-off, affecting the transistor dissipation,
possibly causing second breakdown, and generating
intolerable EMI. By usihg a diode whose recovery time
is not more than half the transistor rise time, all these
problems become negligible.
5.
PL =
x ~
where:
7'
Eo
Ein
6.
DC Losses -' Diode. (Worst case when Ein is
highest.)
3.
toff
_
7'
-
7.
t, =
DC Losses - Current Sense Resistor. (AC losses
negligible when ~i, is small compared to 10.)
AC Losses - Capacitor. (Usually negligible.)
Pc =
Ein
Switching Losses - Transistor. (Worst case when
Ein is high. td + ts do not contribute to power
losses.)
where:
Rs'is equal to effective series resistance of
inductor.
1-i£.
Pr =
t"
8.
tf = tf,
Pc
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
where:
+ tf;
730
~ii2
12
x ESR
Control Circuit Losses. (Base drive to switching
transistor is dominant, but usually negligible.)
Ein x 10 t, ~ tf
+ td ,
102 X Rs
P, = 102 X R,
7'
where:
DC Losses -inductor. (AC losses are negligible
when ~i, is small compared to 10.)
Ion
=
-:;:- =
Ein x Ib x
Eo
Ein
~
7'
=
Eo X Ib
APPLICATION NOTE
U-68A
Appendix B
Analysis of Power Inductor Design
This appendix describes the methods used to develop
the core tables given in Section V and the nomographic method for design of the power inductor. Core
parameters for any cores not listed in the tables can
be derived from the equations given.
Core Saturation Limits.
Any specific core has a maximum ampere-turn, NI,
capability limited by magnetic saturation of the core
material. (NI)", is listed in some core catalogs, in
which case the maximum (Ll2)", capability of the core
can be calculated from Equation (2). (NI)", is related
to the saturation flux density, B"" as follows:
The following equations provide the basis for this
design approach. Equation (1 a) defines the value of
inductance, L, in terms of basic core parameters and
the total number of turns, N, wound on the core:
N2 x 0.41T f.t:'e x 10-'5
L
(NI)", =
10
B'~,Ae
ampere-turns
(3)
Substituting Equation (3) into (2),
mH
(1a)
(Ll2)",
=
B",2 Ae~LX 10- 4
millijoules
(4)
effective permeability of core
where:
Qe
effective magnetic path lengthcm
Ae
effective magnetic cross section cm2
Values of (Ll2)", are given for each core represented
in Tables 1 and 2 of Section III. Equation (2) or (4) was
employed, using values for either B", or NI which
would result in a reduction of AL (and L) of 20 percent
under maximum overload conditions, according to the
core manufacturer's data. The core selected for an
application must have an (Ll2)", value greater than
L(iJ max)2 to insure that the core will not saturate
under maximum peak overload current conditions.
For most standard cores, the above calculation has
been simplified by listing the compound parameter
A L, called the "inductor index", as follows:
Power Dissipation and Temperature Rise Limits.
L =
where:
AL
N2AL xlO- 6
0.41T f.t:'e x 10
mH
(1b)
In switching regulator applications, the AC current
component is small compared to the DC current
through the power inductor. Power dissipation in the
inductor is almost entirely DC losses in the winding.
DC resistance of the winding, R" is calculated from
the following:
mH for 1000 turns
Multiplying both sides of Equation (1 b) by 12,
Ll2
=
(NI)2 AL x 10- 6
millijoules
(2)
•
UNITRODE CORPORATION,S FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
731
U-68A
APPLICATION NOTE
Substituting for N from Equation (1 b), and rearranging:
(5)
ohms
where:
P
Ll2•
mean length of turn - cm
effective area of wire - cm2
resistivity of wi re - fi-cm
Aw' cm2
~T
where:
(6)
N
(7)
ohms
Multiplying both sides of Equation (7) by 12, the power
dissipation in the winding, P, ' is:
Watts
UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
'>(
10- 6
miJliJ'oules
(9)
=
A, =
~T
=
850~
A
°C
(10)
temperature rise
surface area of inductor- cm2
The factor 850 in the above equation represents a
temperature rise of 850°C for 1W power dissipation
from 1 cm2 surface area, empirically determined for
natural convection cooling. The surface area, A" used
in the calculation is taken as the top and sides of the
inductor, ignoring the mounted bottom surface. Substituting a temperature rise of 25°C:
Substituting Equation (6) into (5):
~N2
R, = PAw'
PL ALAw'
pQ w
Equation (9) shows that the Ll2 capability is directly
related to, and is limited by the maximum permissible
power dissipation. Using a value for P, that will result
in a 25°C rise in the temperature of the inductor,
values of (Ll 2bc are calculated for each core in
Tables 1 and 2 of Section III. For these calculations,
resistivity, p, is assumed to be 1.9 x 10- 6 fi-cm, the
resistivity of copper wire at 65°C. The power dissipation that will result in a 25°C rise is calculated and
tabulated for each core as follows:
Core geometry, provides a certain window area, Aw,
for the winding, but only a fraction of this area can be
occupied by the actual conductor. The effective window area, Aw' is taken as 0.5 Aw for toroids, and 0.65
Aw for pot cores. This allows for wasted area of uniformly wound, round wire with HF insulation, allows
for the fact that the central fourth of the window area of
a toroid cannot practically be filled, and allows for a
single section bobbin in the case of the pot core. The
number of turns, area of wire, and effective window
area of a fully wound core are related by:
A, =
=
(8)
P25C =
732
25 x A,
---sso-
Walls
(11)
U-68A
APPLICATION NOTE
Appendix C
Analysis of Application Circuits
The design equations for the critical components and
operating parameters of Figure 3, Section III, are
given below. for the following design objectives:
Eo
Mo
Ein
10
Current Limit
C2
+5V
100 mV p-p
20V min, 40V max
2A min, 10A max
14A max peak
~il
R4
R1 R2
Rin
==
10n
Since ~h has been previously defined as 4A p-p, if
we assume a minimum value of 1OA for i 1 under overload conditions, then the maximum peak overload
value for h will be 14A, and the average value of
i 1 == 10 under overload conditions is 12A.
R =
,
1.S
VBE
i 1 (min overload)
=
0.6V
10A
== 0.06n
Power dissipation in R, will be 6W under full load conditions, and B.64W under overload conditions.
5
== 2.4K
R3 determines ~ii' under overload conditions as well
as for normal operation of the switching regulator:
The resulting values are R1 := 6.SK. R2 == 3.BK.
R2 may be trimmed for precise setting of Eo.
R, x
C1 and C2 function to provide negative and positive
AC feedback, and should be large enough to result in
small losses to the AC signals. Assuming that Rin ==
(R1 x R2)/(R1 + R2), the value of C1 should be
twice the value of C2, so that the negative feedback
will be dominant over positive feedback at all frequencies, thereby ensuring circuit stability. The following
relationships satisfy these conditions:
UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
0.3V
0.03A
Current sampling resistor R, is determined by the desired short circuit current limit and the VBE of 01. As
described in Section III, under current overload conditions, current i 1 ranges between two values. The
maximum i'lstantaneous overload current is defined
by: i 1 x R, == VeE + V." The minimum instantaneous
overload current is defined by: h x R, = VeE.
First, we may calculate the values R1" and R2 of the
output divider. We will make the effective parallel resistance of R1 and R2 equal to 2.4K, so that the
impedance at the inverting input will be approximately
the same as the noninverting input of the LM305:
=
== V threshold
I drive
From the Unitrode data for the PIC625 Hybrid Power
Switch, the drive current (I drive) required for
10 == 10A is 30 mA. The VeE of 01 is taken as 0.6V.
Eo
2 x C2
R4 is calculated from the threshold voltage of the
LM305 drive current limiting circuit and the required
base drive current.
50 kHz (nominal)
17.5 p.sec
22 p.H
120p.Frnin
0.025 nmax
4A
Vref
=
= the nominal switching frequency.
where:
From the manufacturer's design data for the LM305,
we know that: the internal reference voltage, V,,(, is
1.SV. nominal; the impedance of the inverting input is
very high; the threshold level of the drive-currentlimiting circuit is 0.30V; and the impedance of the noninverting input (Rin) is 2.4K, nominal.
R2
R1 +R2
C1
These equations are satisfied by C2 """ 0.01 f.LF and
C1 == 0.02 p.F. Making C1 and C2 too large will have
an adverse effect on transient recovery time of the
switching regulator.
Using the procedure described in Section IV, the following parameters were established:
toff
L
C
ESR of capacitor
~
R3
~h
R, x ~il =
~
0.06 x 4
0.030
== sn
The value of R5. is determined empirically to optimize
regulation versus changes in Ein. With R5 omitted. Eo
changes approximately 70 mV when Ein is changed
from 20V to 40V. With R5 == 12 MH, the change in
Eo is reduced to less than 25 mV.
733
II
APPLICATION NOTE
U-73A
THE IMPORTANCE OF RECTIFIER CHARACTERISTICS IN SWITCHING
POWER SUPPLY DESIGN
With the increasing interest in switching regulated
power supplies designers have directed much of their
effort to selecting transistors with low switching losses
and adequate power handling capability. While recognizing that they must use fast recovery rectifiers, less
attention has been given to "how fast" or "what type of
recovery characteristic" is desired. More detailed
knowledge of rectifier behavior allows determination of
the magnitude of increased losses and stress on the
transistor by the non-ideal diode. By choosing the best
available rectifier, transistor stress can be minimal,
thereby resulting in higher reliability. Other benefits are:
A. Improved power supply efficiency
B. Lower noise
C. Lower cost and/or
D. Smaller size and weight
The performance of fast recitifiers in the most popular
switching circuits is discussed below.
"Switcher" inputs use available DC voltages,
rectifiers directly off the AC line. This DC "input"
converted by semiconductor switches operating
high frequency in circuits such as buck, flyback
boost regulators and in pulse-width-modulated
square wave inverters.
or
is
at
or
or
Inverter output rectifiers and regulator "catch" diodes
are subjectto unusual stresses due to the fast switching
rates and very low impedance seen by the diode during
the reverse transient (diode turn-off) and a momentary
high impedance during diode turn-on.
These new square wave switching supplies are limited
in efficiency and frequency by transistor stress and
switching losses, some of which is due to diode switching characteristics. Faster transistors and diodes are
helping to increase efficiency and/or frequency. At low
output voltages, and lowerfrequency the DC characteristics (VeE(.a!) and V F) have the major influence on
efficiency. However, as frequency and/or input voltage
increase the switching characteristics become increasingly important.
BUCK REGULATOR ANALYSIS
Ideal Diode - For better understanding consider the
buck regulator and resulting waveforms, using an ideal
diode and assuming linear current rise and fall in the
power transistor during switching. Similar considerations apply to other types of switching regulator
circuits.
The transistor "on" time, t controls the conversion such
that,
(1)Vo ='!'V;
where T is the period. t is determined by the control
circuit which senses output voltage and controls transistor base drive.
Figure1a
In this regulator the inductor current is essentially constant as it flows alternately through the transistor or
"catch" diode. The sum of the transistor current and
diode current must always equal the current in the
inductor, which cannot change instantaneously.
At to the diode is conducting inductor current while the
transistor is blocking the input voltage.
io
---0
~
v
T
vo
- [X~
r-
/
/
1\
-0
\
I,
PT
-0
Figure 1b
I,
I,
r
l"V
t"
t, I,
I,
~
T·
I,
.r
t, to t2 is the current rise time t,; of the transistor. Since
inductor current is not changing, the diode current must
decrease. The forward biased diode maintains full
input voltage across the transistor.
At t2 the transistor is conducting all the inductor current
so the diode turns off and voltage across the transistor
T
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
734
PRINTED IN U.S.A.
APPLICATION NOTE
U-73A
starts to decrease toward VCE
(sal)'
t2 to t3 is the voltage rise time, trv of the transistor.
t,
From t3 to t. the transistor is saturated and conducting
the inductor current iL'
At t4 the transistor starts to turn off and
VCE
increases.
t,'
io =-l.:--A~=::::=\""4=:::::=4.-
t. to t5 is the voltage fall time tfv of the transistor. During
iT - 0 -+--''H-i----fc........r.----f-
this time the transistor must conduct the entire inductor
current because the diode is still reverse biased. At t5
the diode is forward biased and the transistor is blocking the full input voltage. Diode current starts to increase and the transistor current decreases, the sum
equalling il.
vT--t--t-H---JP--t----+Vo - 0 -=F=*,",r*==~===l====1=
t5 to ts is the current fall time tli of the transistor. Diode
current increases in a complementary manner. From ts
to t, the transistor is off and the diode is conducting all
the inductor current.
PT-O
To simplify the illustration assume the inductor current
constant and equal to 10 , Transistor dissipation PT is the
sum of transient switching and DC losses. Neglecting
losses due to DC leakages, which are generally negligible:
(2) P
Vi
10
T=T
(tr; + trv
+ tfv + tf;)
T
+
VCE
(sat) 10
(t. -t3)
T
Figure 1c
Practical diode - Now consider how the non-ideal
diode with reverse recovery, junction capacitance, forward recovery and DC loss affects the circuit of Figure
1a.
TRANSISTOR TURN-ON BEHAVIOR
The transistor "turn-on transient", when the diode is
switching from forward conduction to reverse blocking,
results in the following transistor and diode waveforms:
In Figure 1c the solid lines are the waveforms using a
practical diode in a buck regulator circuit. Comparing
them with the dotted lines of the ideal diode previously
considered we see three significant differences during
transient switching and one during DC conduction:
-
0 --..:!-¥:....+:.F~r==t
CATCH
DIODE
From the PT curve of Figure 1c it is obvious that transistor power dissipation increases above that of (3) due
to the "real" diode, - see the hatched regions.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
SWITCHING
TRANSISTOR
1. The peak collector current increases (above 10 ) during a period of high dissipation t2 to t2"
2. Rise times tr; and trY are increased. (t2' - t,) > (t2 - t,)
and (t3' - t2') > (t3 - t2)'
3. Maximum collector voltage peaks up above V; briefly
at t 5 .
4. The diode has DC loss (from ts to t,) and switching
loss (principally from t2' to Is').
The magnitude of these detrimental factors depends on
the choice of rectifier. Before considering losses more
fully let us examine the switching periods in greater
detail.
_=--
Po -
O--===P"'4..:'!..
Figure 2
Dashed lines show what the current and power would
be if the diode were ideal to the extent of having no
reverse recovery time or junction capacitance. (Dotted
735
PRINTED IN U.S.A.
APPLICATION NOTE
lines show the voltage f()rthe ideal diode case.) The
reverse diode current caused by diode capacitance
and recovered charge is shown by the cross hatched
.area of the io curve. The transistor must conduct this
reverse diode current as well as the inductor current.
The grey area represents additional tran~istor dissipation due' solely to the diode recove(ed charge and
capacitahce ..
Faster switching transistors will nof necessarily result in
reduced switching losses. Unless a diode with recovery time 2 or 3 times fqlster than the transistor current
rise time is used, a fa$ier transistor will increase the
peak reC0yery current in the diode and :thus increase
overall switching losses. Furthermore, a diode with a
"soft" recovery characteristic will cause 'more dissipa"
tion than an "abrupt" type with the same peak recovery
current. The relationship of recovery characteristic to
switching rate is discussed in Appendix B. With many
switching transistors ndw available a 200 oS fastrecovery rectifier will have a peak recovery current
IRM(REc) greater than shown in the.io waveform of Figure 2, where it is about V3 of the forward current. This
rather modest additional collector current (of 33%
above that limited by an ideal diode) can cause increased transistor power dissipation of 100 to 150%
during the turn-on period. Other serious probler.ns can
occur from high peak currents, such as noise transients
in the line, the transistor coming-out of saturation and
forward-biased second breakdown.
Rectifiers are now available with recovery characteristics to keep these problems minimal. Their use is re'quired for a switching supply of maximum reliability and
efficiency.
TRANSISTOR TURN-OFF BEHAVIOR:
When the transistor turns off, the diode turn-on characteristic USUally has little effect on power dissipation but
may cause voltage spiking, with resulting noise and the
iT
i'../
~
iD
-0
,",
-0 ...
y
/
/ ......
I
possibility of exceeding the transistor voltage ratings.
Diode characteristics and conditions under which
these transients occur are discussed in Appendix C.
The' voltage spike is due to the forward recovery
characteristic and, when present, will occur as shown
(dotted) inHgure 3. To correct it a snubber (series RC
across the diode) may be needed. However, the choice
of .an optimum diode Will minimize or eliminate this
need.
POWER LOSSES IN THE
SEMICONDUCTOR DEVICES
DC Losses in the buck .regulator occur alternately
when the diode is forward conducting and when the
transistor is turned.on. Referring to Figu(e 1 these intervals are teto t1 and t3 to t. respectivelY: During either
interval the dissipation is independent of input voltage,
V;, or output voltage, o, depending only on load current
and device voltage drop. Total circuit DC losses are a
function of VoNi because a) this ratio relates to "on"
time and b) transistor VeE(Sat) will probably not equal
diode VF . Neglecting switching intervals the dissipation
due t'D DC losses is:
v
(4)
= VF
10
Vi - Vo
Vo
-V-.- + VeE (sat) 10 V-:
I
I
Loss of efficiency due to DC losses is greatest when Vo
is low, with diode loss being more significant when Vi is
relatively high and transistor loss dominating when Vi is
close to Vo.
TranSient (switching). losses in the regulator vary
considerably with voltage, being highest at "high line"
Vi (see Eq. 3). Furthermore, high voltage transistors and
rectifiers generally have longer switching times than
low voltage types. Speed and "recovery characteristic"
(see Appendix B), and consequently losses, can vary
greatly between different device types and manufacturing processes. A relationship for caiculating approximate transient dissipation of practical devices during
the transistor turn-on interval is given in Appendix B.
The other component (turn-off interval) Can be Similarly
developed but it is not significantly affected by diode
selection. However, when transistors and/or drive
techniques are chosen for shorter fall times overall losses are reduced and the benefits of optimum diode
selection become more significant. Proper diode (and
transistor) selection is important in ai'lswitching
supplies, but the higher the voltage (and frequency) the
more significant will be the effect of selection on switching losses.
OTHER SWITCHING CIRCUITS
vDY
The pulse-width-modulated inverter (PWM) supply
(Figure 4a) has much in common with the buck regulator. Output rectifiers also perform the catch diode
function. Current waveforms are shown in Figure 4b,
Figuni3
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173. TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
Poe
736
PRINTED .IN U.S.A.
APPLICATION NOTE
U-73A
with overshoot due to diode reverse recovery and capacitance. Here again slow diodes cause additional
transistor stress, usually not reduced significantly by
transformer impedance. Leakage reactance will often
require the use of a snubber, to protect the transistor.
Transistor "on" time t and the turns-ratio control the
conversion such that
The square wave inverter can be considered, in terms
of device operation, a special case of the PWM where 2t
approaches T. Regulation is achieved by varying Vi'
EMI, RFI, NOISEGiven any inductance in a circuit "loop" of wiring, a
rapid current change will generate a voltage transient,
V = L di/dt, and the energy in such a transient will vary
with the square of the current, E = V2 Ll2. The interference and voltage spiking will be easier to filter if the
energy is low and has predominantly high frequency
components.
(5) Va = 2tNNs Vi
T
because they (0, and/or O2) are conducting the full
cycle regardless of Vi to Va ratio. Another difference is
that here the diode recovery is from half, rather than full,
load current.
p
We can establish a priority of factors for reducing EMI:
1. IRM(REC) should be as low as possible, - accomplish
by diode selection (see Appendix B and Fig. 7).
2. L (circuit loop) should be minimum, - accomplish by
layout and interconnect geometry. (See Fig. 5).
3. Use a "soft recovery" diode (See Appendix B). However, this is an item of possible trade-off since such a
device may have longer t", higher IRM(REc) and, thus,
create much higher switching loss.
Figure 4a
\
An ultra-fast device with moderate recovery (vs. abrupt
or soft) will often be the best choice.
-ir,-O
I'"
REDUCE EMI BY LOWERING CIRCUIT WIRING INDUCTANCE:
~-;S-'I
- i T2 - O
IA.
-io,--O
- i 02 - O
-
,
I~
~
T
-
r----'
=
Low L needed in loop shown In grey. Avoid ground loop noise by returning input capacitor
directly to diode.
r----
Figure Sa
=1~:~~~~~
IY
I~ 1---- ~I
T
I,
of
'- _ C~e~_)
13
Figure 5b
I,
Flgure4b
From t, to t2 transistor T, and diode 0, conduct, with
diode current equal to inductor current iL.
At t2 the transistor turns off and the inductor "pulls" iL
equally through 0, and O2,
At t3 transistor T2 turns on, driving full iL through O2 and
causing 0, to be reversed biased. O2 current is increased by the recovery current of 0" and T2 current
also increases proportionally.
From t4 to t, both transistors are again off and at t, the
events of t3 occyr on the opposite device pair.
One difference between the inverter and the regulator
is that here the OC diode losses are more significant
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
SELECTING THE BEST SWITCHING RECTIFIER
Ratings and characteristics have different priorities and
significance when they are to be applied to these power
switching circuits. Selection should be based on the
following:
1. Peak inverse voltage, PIVof "catch" diodes must at
least equal the highest input voltage, while PIV of
center-tap output rectifiers must be at least twice the
maximum output voltage in a square wave inverter and
much greater in the pulse width modulated inverter.
More significant perhaps are the transient voltages in
practical fast switching circuits partly due to wiring
inductance and rectifier's own recovery. Unless these
are intentionally clipped, damped, or "designed out" it
is advisable to use a safety factor of 2 or 3. PIV selected
737
PRINTED IN U.S.A.
II
APPLICATION NOTE
U-73A
should apply over a range from lowest ambient to the
highest expected junction temperature.
Unitrode UES series is closest to the Schottky, especially at expected operating conditions.
2. Reverse recovery time t" must be much lower than
the rise time of the transistor with which it will be used,
- preferably by at least 3 times when measured at
conditions similar to circuit operation. Selection is
complicated because rectifiers are normally specified
at conditions less severe than in power switching circuits. Furthermore, correlation between test conditions
is not always the same (see Table I of Appendix 8).
4. Maximum average rectified output current at
Following preliminary selection from available data the
devices should be compared in a circuit developing the
highest current, junction temperature and rate of current switching (- di/dt) expected.
The desired goal is to minimize peak recovery current
IRMIREC) and switching loss. Note that these are the same
order of magnitude with Schottky rectifiers (due to high
capacitance, principally) as with the fastest PN
rectifiers. The figures below illustrate these points. Figure 6 shows the variation of peak current with switching
rate, using the Unitrode UES 801 in a special test circuit. Figure 7 shows the difference in IRMIREC) and t"
when representative fast recovery DO-5 devices are
measured in a JEDEC test circuit at different temperatures. In Figure 8 the incremental collector current (the
peak value in excess of 30 A) for a 30 A buck regulator
using 50, 100, and 200 nS catch diodes is plotted as a
function of transistor rise time (and resulting di/dt). Figures 9a, b, and c show the loss of efficiency due to
transistor turn-on dissipation as a function of operating
frequency, with 3 transistor rise times and 3 diode recovery times, in a regulator operated with 40 V in and 10
V out. Similar figures can be developed for other conditons using the model and assumptions in Appendix B.
maximum expected case or ambient temperature must
always be considered. Note however, that standard
current rating is based on a half sine waveform. These
square wave applications at average current equal to
this rating will usually dissipate somewhat lower power,
and, thus, be used conservatively. However, regulators
with Vi:::: 1.5 Vo should use a catch diode with a higher
rating than the average current it conducts at full load.
5. Peak voltage VFIDYN) during forward recovery will
be of significance when using transistors with fast fall
times at close to the VCE rating. This is further discussed
in Appendix C. See Table II for typical performance of
representative devices. At lower values of di/dt the
peak voltages will be lower.
6. Surge current (8.3 mS) is not of great significance
because transistor saturation limits fault current. If the
power supply is designed to provide rapid charging of
a large output capacitor the "overload" requirement for
the charge time (perhaps 0.1 to 2 seconds or so) must
be considered.
3. Forward voltage should be as low as possible to
optimize efficiency, especially for inverter output
rectifiers and regulators with high V)/V o ratios. Loss of
efficiency due to VF is most significant at low output
Voltages. Figure 10, which relates this loss to device
choiCe over the range of available forward voltages,
applies to output rectifiers of inverter supplies with
popular output Voltages.
IRMIREC) & t"
"
CONDITIONS ,,"
I,
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
738
1OA, LINEAR SLOPE.
\--
i~. ,,~.
.Ol~
I,t
~
di
dt
UNITRDDE UES B01 RECTIFIER.
-------------- ---- ---- ----
-----
a-
Ai . . .
~
0-
------ - - ---\&::--- - - - -
Figure 6
IRMIR,C) & t" of 005 FAST RECTIFIERS
CONDITIONS: 1," ~ 30A
Schottky rectifiers have the lowest VF and are therefore
widely used as output rectifiers for 5 V supplies. Their
limitations in PIV, transient voltage capability and temperature must be considered when applying them in
other applications.
Selection should be based on conditions where losses
are most significant, - at rated supply output current
and anticipated junction temperature. The approximate
range of VF, at rated current and 25°C, as welJ as at
more typical operating conditions, is shown in Figure 11
for representative fast rectifier types. Note that the
\
~
VS
(30VJEDEC)
-
Figure7a
PRINTED IN U.S.A.
APPLICATION NOTE
U-73A
125C
2
3
INCREMENTAL COLLECTOR CURRENT (AT TURN-ON)
di)
.11< vs tro ( and dt
Conditions:
30A buck regulator.
-- -- --
Lineardlldt.
50
,,,=2~
V
/
.....
......
Flgure7b
DEVICE
TYPE
25°C
(A)
125°C
(A)
1
2
3
4
0.6
1.0
1.3
1.0
50
86
1.7
2.9
3.7
5.4
86
142
1
2
3
4
Unitrode UES 803
Schottky rectifier.
100nS rectifier.
200nS rectifier.
125°C
(nS)
25°C
(nS)
, ...
t"
MAX.
At low
Current
Cond'ns.
t"
IRM(AECl
-
......
,,,=100_
-
40
30
20
1--
- --
-I-
....
50
~
1,,-5On8.==
50
72
95
185
296
100
200
100
200
300
dildl (N~S)
400
500
300
150
100
I" (nS)
75
60
Figure 8
Flgure7c
lOSS OF EFFICIENCY DUE TO TRANSISTOR TURN-ON lOSS· - BUCK REGULATOR
20
40
30
50
80
20
40
30
50
80
= 300
I
nS
10
..........
.......
...... ~
....-::......
~
..... :...- ....
t,;=150n5
...- .
,.,- ..........: ...
...... ..,'"
",........
~
..........
./"
.0
- -.
.......... /
./
.....
....
...
.... "
...........
-'
30
40
50
FREQUENCY (kHZ)
80
..,"
20
, .... :...-
40
50
FREQUENCY (KHZ)
..
, :...-
20
....... .....
. .....
?
...
:;;;;
...
:...-
7'
100
.--
......
V' ......
- - - - = 50 nSdiode (UES 803)
- - - - - = IDEAL DIODE
20
80
10"" .....
- 200 nS diode
- - - =100nSdiode
0.2
50
t" =60 :nS
....
......
~."..".,,,,,
0.5
40
30
-
20
I"
20
... ,,,
.
II
40
50
FREQUENCY (KHZ)
100
• Calculations of total switching losses (diode and transistor) per model in
Appendix B for a 30A buck regulator with V ,n = 40V and VOU! = 10V.
Figure 9
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX .(710) 326-6509 • TELEX 95·1064
739
PRINTED IN U.S.A.
U-73A
APPLICATION NOTE
20
~
15
VV
10
L
i"'"
".,.
I-""
./
-
12V
".,.
20V
~ __
".,.
f.-'"
'/V
'"
V
V
V
I-- I-I--
LOSS OF EFFICIENCY
DUETO FORWARD VOLTAGE
OF INVERTER OUTPUT
RECTIFIERS.
24V
".,.
".,.
-
48V
V
1.2
1.0
.B
.6
r-r-
.... 1-1-
, /~
V
10V
".,.
/'/ . / f.-'"
./
0.4
".,.
i""
/ ./
'/
5V=Vo
I-
....... ~
1.4
1.6
1.B
VdV)
Figure 10
VI available (approximate range) for low to medium VRM applications
.45
VI in volts: .35
.55
r
.65
.75
I
Max V.(spec'd @ rated
IF and TJ=25C.)
Typical VI @V2 Max
current @ max TJ.
{
11
.95
1.15
1.35
1.55
1.75
I
gOto40
I
I2
150 1
13
150
14
20
12
150 1
13
100- lso
l
400
I
KEY~
1 = Schottky.
2 = Unitrode UES 150 V series.
N
= Device Class
3
= Other devices for low forward voltage.
XY=V RW
4
= TYPical fast recovery (200 nS) deVices
(Max al TJ noted above).
5
= Fast deVices to 800 V.
Figure 11
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (ij17) 861-6540
TWX (710) 326·6509 • TELEX 95·1064
740
PRINTED IN U.S.A.
APPLICATION NOTE
U-73A
Appendix A
"Off-Line" Supplies
BASIC CIRCUIT
TYPE
FEATURES
a) Buck
Regulator
Output non-isolated.
Easy to filter output. Noisy input.
Vo < Vin.
w
o
a:
:::J
@
6'
FlgureA·2
b) Flyback
Regulator
c
ffi
~a:
Q.
w
z
Vo opposite polarity
from Vin . (Unless
isolated).
Output can be isolated. Output can
be stepped up to HV.
Noisy input and output.
~
u.
C
ow
u:
FlgureA·3
~a:
c) Boost
Regulator
Vo > Vin·
Output non-isolated.
Hard to filter output. Quiet input.
d) PWM
(Variable
Duty Cycle)
Inverter.
Used with single
Vo. - also common
for lab supplies.
Provides isolation.
Does not
need separate catch
diode, - rectifiers
serve this function.
possibly with small
HV diodes in primary for
magnetizing current.
~u.
FlgureA-4
e) Square Wave
Inverter (50%
Duty)
FlgureA-5
(') INV. ~ Bridge, center-tap,
or half-bridge inverter.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 ' TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
741
Regulation provided
by previous input.
Regulates one of
(possible) multiple
outputs. Uses high
transistor count.
Provides isolation.
Does not
need separate catch
diode. - rectifiers
serve this function,
possibly with small
HV diodes in primary for
magnetizing current.
PRINTED IN U.S.A.
II
APPLICATION NOTE
U-73A
Appendix B
Reverse Recovery Behavior and Dissipation
1. Waveforms and definition of terms:
TOTAL AREA OF REVERSE CURRENT ~
ORIRECl
This area shown
enlarged at
. , r - - - - right
High d~
slope ~.::Q!..
dt
JEDEC test - standard slope = 25AI J,£S
Figure B-1
dt
dt
"ABRUPT"
Figure B-2
2. Discussion of Variables:
Any PN junction diode operating in the forward direction contains stored charge in the form of excess minority carriers. The amount of stored charge is proportional
to the forward current level.
The diode or rectifier in a switching regulator is
switched from forward conduction to reverse at a specific ramp rate (-dl/dt) determined by the extemal
circuit, usually by the turn-on time of the associated
switching transistor. During the first portion of the reverse recovery period, ta, charge stored in the diode is
able to provide more current than the circuit demands,
so that the device appears to be a short circuit. Transition from ta to tb occurs when stored charge has been
depleted to the point where it can no longer supply the
increasing current demanded by the circuit. The device
becomes a high impedance and during tb the reverse
voltage is permitted to increase. Reverse current, no
longer circuit determined, dwindles as excess stored
charge depletes to zero. Stored charge is depleted by
the reverse current flow and also by recombination
within the device.
At (-dl/dt) rates which are slow relative to the rate of
recombination of the specific device relatively little
stored charge is swept out. Recovery time, trr is determined mainly by the recombination rate, independent
of (-dl/dt). Peak reverse recovery current IRM(REc}, and
total charge associated with reverse current, OR(REC}
are almost directly proportional to (-dl/dt) (Region I,
Figure B-4). The recovery characteristic with slow
(-dl/dt) rates tends to be soft.
When the (-dl/dt) rate is fast compared to recombination rate (transistor turn-on faster than diode recovery
time), trr decreases as - dl/dt increases, because more
of the available stored charge is swept out sooner,
UNITRODE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064
fo-l.OW d~
Figure B-3
leaving little to be depleted by recombination. As
(-dl/dt) increases, peak recovery current increases
and can become much greater than the original forward current level. However, OR(REC} levels off as (-dl/
dt) increases because it can only approach but not
exceed the total stored charge which is a function olthe
original forward current level (Region II, Figure B-4).
Higher voltage devices have poorer recovery characteristics because they require thicker regions of higher
resistivity, resulting in greater volume of stored charge
and longer recombination rates.
RECOVERY CHARACTERISTICS
I,
.51,
.21,
dl/d!
Figure 8-4
With a given IF and dl/dt the OR(REC}' IRM(REc}, and trr all
increase with temperature. Recovery characteristic
changes as well (generally becoming more abrupt if
reverse current is not circuit limited, and softer if limited). Furthermore, OR(REC} increases and recovery
generally softens if higher circuit voltage is applied to a
given diode.
742
PRINTED IN U,S.A.
APPLICATION NOTE
U-73A
3. Comparison of devices at popular test conditions:
Table I, below, shows measured trr values (in nanoseconds) using ultra-fast and fast recovery 00-5 rectifiers.
IF
IA
-di/dt
(A)
(A)
(AiJ,
a:
~
;)
U
w
w
Z
in
!;;: z
0
~ U~
.
Z
0
U-78
..
'\
.9
22
.
\.
'\
.8
.7
2:
!:
:Ii 0z
a:
.4
~~
:10",
.3
!!i
.2
18
,•
~ iii 14
~a12
.!c
:i"
"-..
'-...
q.
\
J
'\
u
..r
~
lit ..
\.
.5
;)
0
$
Iii
'\
.6
20
10
8
"\
'\..
.1
a
50
60
70
60
100
80
0,
'\,,0
-
----
----
IP200I2N868"S SERIES
t---
I
-I----
........ TYPICAL 1'0-82 SCA
••
CVCLH AT 10 H:C
20
50
...
120
TC (MAXI- MAXIMUM ALLOWABLE CASE TEMPERATURE ('CI
Fig. lAo Maximum Allowable Case Temperature
vs. On-State Current (60 Hz)
-
Fig. I B. Maximum Allowable Non-Repetitive Peak
On-State Current Following Rated Load Conditions
- ---- ------
IP200/2N8881·5 SERIES
........
[:---.....
/
-.....
~
TY'IC.. { T0.f2 SCR
""'"
~
.5
.0001
""
,01
01
·PULSE DURATION
emil
I.
'"
Fig. I C. Surge Rating vs. Pulse Duration
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (6171 861-6540
TWX (7101 326-6509 • TELEX 95-1064
766
PRINTED IN U.S.A.
APPLICATION NOTE
U-78
CURRENT
TRANSFORMER
HOT
LINE
NEUTRAL
RELAY
CONTROL
LOGIC
CIRCUIT
Fig. 2. Ground-Fault Interrupter Circuit
/
v
ICURREINT
'"'" ~,WAVEFORM
V
\.. ~
~
CONVENTIONAL
TO-92 SCR EXCURSION
.1\
V
/
.L V
/'
\
-
\
V i P 200/2N6681-S
..
V
~~
TIME: 10I'S/SQUARE
CURRENT: 40 A/SQUARE IUPPER TRACE)
VOLTAGE: 5 V/SQUARE ILOWER TRACES)
Fig. 3. Response to Short Pulse Surge Stress
UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
767
PRINTED IN U.S.A.
APPLICATION NOTE
U-78
POWER
SUPPLY
POWER
SUPPLY
QUENCH TUBE
ORIVER
IP200/2N6681-5
IP200/2N6681-5
QUENCH
TUBE
Fig. 4B. Quench Tube Driver
Fig.4A. Commutating SCR
FLY
WHEEL
MAGNET
MOTION10
OF FLY
WHEEL
-
IP200/2N66B1-5
1
INPUT
I I COIL
j
.,,~
,..--SPARK
PLUG
POWER
SUPPLY
I
INPUT
COIL
~
p/CHARGE CAPACITOR
VOLTAGE
U
' - FIRESCR
0
U
INPUT COIL VOLTAGE WAVEFORM
Fig. 4C. "Pilot" SCR
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGtON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
Fig. 5. Small Engine Ignition
768
PRINTED IN U.S,A.
U-79
APPLICATION NOTE
GUIDELINES FOR USING TRANSIENT VOLTAGE SUPPRESSORS
1.0 Introduction
operating life. Unitrode has performed full power
pulse life tests for 100,000 pulses with negligible
change in characteristics. These devices are suitable
for almost any equipment and environment.
During transient periods, system voltages and currents are often many times greater than their steadystate values_ These transients must be considered in
overall electronic systems design to insure required
circuit performance and reliability both during and
after the transient.
2.0 Choosing the Correct
Transient Voltage
Suppressor for
the Application
Transients may result from a variety of causes. The
most common of these are: normal switching operations (power supply turn-on and turn-off cycles),
routine AC line fluctuations, or abrupt circuit disturbances (faults, load switching, voltage dips, magnetic
coupling by electro-mechanical devices, lightning
surges, etc.). Voltage transients are a major cause of
component failures in semiconductors. Random high
voltage transient spikes can permanently damage
these voltage sensitive devices and disrupt proper
system operation. Catastrophic power supply conditions should not necessarily be the designer's prime
concern, since lower level transients can cause
improper operation of a system even though no component failures are caused. Normal power supply onoff cycles have the potential of emitting spikes with
sufficient energy to destroy an entire semiconductor
device chain. Any surviving devices are also suspect.
Trouble shooting, isolating, and replacing damaged
devices is time consuming and costly; especially
when performed in the field.
Certain critical terms must be defined before any
discussion of "how to" choose the correct TVS.
1. Stand-Off Voltage (VA) is the highest reverse
voltage at which the TVS will be nonconducting.
2. Min. Breakdown Voltage (BVmin) is the reverse
voltage at which the TVS conducts 1 mA. This
is the point where the TVS becomes a low impedance path for the transient.
3. Max. Clamping Voltage (VCma~ is the maximum
voltage drop across the TVS while it is
subjected to the peak pulse current, usually
for1mS.
Figure 1 graphically shows all three terms.
Unit rode's TVS305 and TVS505 series of transient
voltage suppressors (TVS) offer the designer significant price/performance advantages over other protection methods. Their miniature size permits simple
"close-in" installation in applications where circuit
boards are dispersed throughout one or more electronic racks. Dispersed usage aids system trouble
shooting and affords transient voltage protection
where internal system disturbances such as those
caused by inductive load switching could occur.
1 mAI----./-.,,~1
In spite of their small size, the TVS305 and TVS505
suppressor series can dissipate 500 watts and 150
watts (respectively) of peak pulse power for 1 millisecond. Response time to transients is just about instantaneous - about 1 x 10- 12 seconds. These
devices perform to their data sheet specifications
without significant degradation throughout their
.UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
+--------------~-----===~~+-+--V
VR BV Vc
(
+
Figure 1 -
769
TVS Characteristics
PRINTED IN U.S.A.
APPLICATION NOTE
U-79
2. Stand-off voltage (VA) - From the TVS series
selected, choose the device with the stand-off
voltage equal to or greater than your normal
circuit operating voltage. This insures that the
TVS will draw a negligible amount of current
from the circuit during normal circuit operation. The electrical specifications for the
TVS505 series are shown in Figure 3.
3. Maximum Clamping Voltage (Vema,) - Determine the clamping voltage of the device
chosen for the transient given and be sure itis
below the voltage that might damage any
components in the protected circuit. See
Figure 3.
2.1 Determining Pulse
Power Levels
Since a zener TVS has an almost constant clamping
voltage throughout a transient pulse, the transient
pulse power (Pp) equals the peak pulse current (Ipp)
multiplied by the clamping voltage (Ve).
100.---.---,----r--~--~
~
2.2 Choosing the Appropriate
Transient Voltage
Suppressor
0:
UJ
:s:
o
11-
The three most important factors in choosing the
appropriate TVS for your application, in their order of
importance are:
UJ
C/)
--l
::::>
11-
::.:::
1. Pulse power (Pp) - Choose the TVS series that
will handle the Transient Pulse Power. To determine Transient Pulse Power use the simple
equation in section 2.1. If Ipp is not known or
measurable, it can be calculated - see Sections 3 and 4. The pulse duration vs. pulse
power graph on the Unitrode TVS3051
TVS505 data sheet can then be used to determine the TVS series that will handle the
transient. This graph for the TVS505 series is
shown in Figure 2.
TVS
Part No.
TVS505
TVS51 0
TVS512
TVS515
TVS518
TVS524
TVS528
Stand-off
Voltage
VR
V
5.0
10.0
12.0
15.0
18.0
24.0
28.0
Min.
Breakdown
Voltage
BV(min) @ 1mA
V
6.0
11.1
13.8
16.7
20.4
28.4
30.7
Figure 3 -
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
MAX. DUTY CYCLE = 0.1 %
~
Max.
Leakage
Current
IR@ VR
iJA
300
5
5
5
5
5
5
«
UJ
11-
100nS
1ILS
10ILS
100ILS
1mS
10mS
PULSE TIME (tp)
Figure 2 -
Max.
Clamping
Voltage
Ve@ 1A
V
7.4
13.2
16.5
19.7
23.8
32.4
35.9
Peak Pulse Power vs. Pulse Duration
Max.
Clamping
Voltage
Ve@
5A
10A
V
7.9
14.4
18.5
22.2
26.0
37.0
41.0
Max.
Peak
Pulse Current
Ipp
A
53.7
30.3
23.8
19.8
16.3
11.9
10.7
Max.
Clamping
Voltage
Ve @ Ipp
V
9.3
16.5
21.0
25.2
30.5
42.0
46.5
Electrical Specifications @ 25°C
770
PRINTED IN U.S.A.
APPLICATION NOTE
U·79
If the actual pulse power and pulse width are different
from those listed on the data sheet, the clamping
voltage can be calculated. The actual calculation
method is beyond the scope of this note. Instead, we
offer a graphical approximation using Figure 4. The
approximation is based on the ratio of the actual and
rated pulse power.
1.3
C.R
1.2
1.1/
----- ----
a. Calculate Pp (actual)=1.3BVmin Ipl>"
b. For Pp (rated) use value from TVS data sheet
curve (See Fig. 2 for example).
c. Calculate Pp (actual)/Pp(rated).
d. Use Fig. 4 to find corresponding value of C.R.
e. Calculate Vc = C.R. x BVmin.
-
1.5
14
The procedure is as follows:
~
2.3 Installation Considerations
10
0
2
4
.6
8
1.0
1. Locate the TVS as close to the device or circuit
to be protected as possible.
Pp(actual)
P,(ra1ed)
C.R
= Clamping Ratio
:;:
~
VBmin
2. Minimize the "common path" through the TVS
to minimize voltage spikes produced by fast
risetime transients in lead and wiring stray
inductance. See Figure 5.
Figure 4 - Graphical Approximation for the Clamping
Ratio
r--iNCORRECTMETHoD ---,
I
Undesired
Transient
I
I
I
I
I
I
Long /
Common
Path
I
I
I
I
Vp
"
L Qi where
dt
I
I
L" .02"Hlinch
L ___f~~~~n..£.~ _ _ _ ..J
Input
Transient
r-------------,
I
\
I
\
Minimized
I
I
I
I
Short
Common.;'
Path /"
Transie~
v
1-\- - -
\
II
I
I
L_ _ ~ORRECT ~THO.E. __
Figure 5 -
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
I
I
J
Minimizing the Common Path
771
PRINTED IN U.S.A.
U-79
APPLICATION NOTE
3.0 Transient Levels
and Waveforms
3.1
Voltag~,
Curreht9-nd
Power Levels
In addition to the magnitude of the voltage, current or
power, the waveform or pulse width should be
specified, as shown in Figure 7, for example.
Since TVS tests and specs may be written in terms of
voltage, current or power levels, the relationships are
shown in Figure 6 for (a) field conditions and (b) test
conditions.
a) FIELD
, line impedance
(Wires, etc.)
voltage
source
(Lightning. etc.)
circuit being
protected
TVS
~f t
Vs
TVS
Rs
series test
resistor
b) TEST
test generator
Figure 6 -
I
instrument to
measure clamping
voltage (scope. etc.)
Equivalent Circuit for Field and Test Conditions
3.2 Typical Transient Levels
over a two year period, The table indicates two
primary causes of transients; load switching within
the house and lightning storms.
Martzloff and Hahn .in their paper on transients on
120 volt power lines' produced this table showing the
surges recorded at a number of different locations
Table l '
Detailed Analysis of Recorded Surges
Most
Severe Surge
House
1
2
3
4
5
6
7
8
9
10
11
12
13
,
Typet
k15
A·20
C
8-0 3
B·1
C
8-025
8-0 25
8-0 2
B02
8-01
14
C
15
16
8-0 25
B-O 15
B-O 5
C
8-0 3
8-05
8-0 2
Sireel pole
Hospital
Hospital
Dept store
SHeet pole
tA
8-0 5
8·0 5
Crest
(volts)
700
750
600
400
640
400
1800
1200
1500
2500
1500
1700
350
800
800
400
5600
2700
1100
300
1400
Duration
{iJ.S or
cycles)
Most
Frequent Surge
Duration
Crest
(",s or
(volts)
cycles)
300
10 ",S
500
20 lAS
10/-IS
15mHz
Typet
A·15
20 J,lS
A20
1 cycle
, cycle
8-0 5
300
8-0 5
2 cycles
300
100 lew to Show typical
8·0 3
250
cycle
I cycle
800
B·'O
8-0 5
4 cycles
300
1
2 cycles
5"
1 cycle
1 cycle
10,",s
1 cycle
1 cycle
1 cycle
1 cycle
1 cycle
15 ~s
3 cycles
15 f'S
4 cycles
9 f'S
1 cycle
1 cycle
4 cycles
l'
same as most severe
I
I
I
I
8-025
2000
1 cycle
same as most severe
1400
B02
1 cycle
100 few to show Iyplcal
-
-
8-0 25
8-0 13
8-0 3
C
too few
8-0 5
Ba 2
600
200
1000
900
13
Cy~es
30 j.lS
1 cycle
5,s
show Iyplcal
I
300
600
-II
cycle
4 cycles
Average
Surges
Remarks
per Hour
007
014
0.05
fluorescent light
sWltchmg
02
10 total
001
003
01
02
04
015
006
4 tolal
1 total
005
04
01
01
lightning storm
011 burnet
oil burner
water pump
all burner
house nexl to 12
lightning
rural area
surges
lightning stroke nearby
lightning storm
410lal
05
007
lightning storm
long oscillation 8-damped oscillation C-Unldlrectlonal Number shows frequency In megahertz
'Reprinted from Surge Voltages in Residential and Industrial Power Circuits by Francois D, Martzloff, Member, IEEE, and Gerald J. Hahn. Reprinted by
permission from IEEE Transactions on Power Apparatus and Systems, Vol. PAS·89, No, 6, JulylAugust 1970, pp. 1049-1056. Copyright 1970. by the
Institute of Electrical and Electronics Engineers, Inc, Printed in U.S.A.
UNITROOE CORPORATION· 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
772
PRINTED IN U_S_A_
U-79
APPLICATION NOTE
3.3 Commonly Used Test
Waveforms
Ipp
1. The 10 x 1000p.S Test Waveform used by
many TVS manufacturers, also by incoming inspection departments of users, represents
some commonly encountered transients. (See
Figure 7).
Ipp
as specified on data sheet.
o- - - - ' - 1 f - - I
Figure 7 -
2. The IEEE Standard (ANSI C 37.90a - 1974) for
surge withstand capability. (See Figure 8).
Commonly Used Test Waveform
2.5KV
O---f
3.4 Surge Testing
R = 150Q
Figure 9 shows a typical test set used to produce an
exponentially decaying current pulse of 1mS to 50%
down. (10 x 1000p.S). The 1mS waveform is used by
many manufacturers to test and characterize their
TVS devices for pulse power and clamping voltage.
2K
5.0W
6p.S to 50% down.
Figure 8 -
More Complex Standard Waveform
5.4Q
20W
Reset
-L
+12V
Sprague
1122001
J
+
Adjustable
350V P.S.
200mA
Surge1
Figure 9 -
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
•
Unitrode
L1R05554F
Unitrode
1N5550
Unitrode
1N5612
or 1N5613
DurtE
Suggested Set-up for Surge Testing
773
PRINTED IN U.S.A.
U-79
APPLICATION NOTE
After the contacts switch at t == 0, e
4.0 Examples.
di
= - Ldt'
and when using a TVS the change in coil curVc Referring to Figure 10d,
di
'dt
L'
10 _ Vee/RL = Veev.
L . Note that the higher
t, = di/dt - Veil
RL e
the Ve of the TVS, the shorter the current
decay time.
rent
4.1 Relay and Solenoid
Applications
When the energy stored in the coil inductance of a
relay or solenoid is released it can damage contacts
or drive transistors. It can also produce EMI
interference. A TVS used as shown in Figure 10 will
provide reliable operation.
In order to select the proper TVS, determine:
=1
50% down point of iTVs) = ..!2...
1. Peak pulse power Pp
Ip
x
Ve, where Ip
0,
2. Pulse time tp (@
2
3. These values of Pp and tp are used with graphs
of pulse power VS. pulse duration provided on
the TVS305 and TVS505 data sheet to select
proper device. See example in Figure 2.
Just before the switch opens, the initial inductor current 10 =
0=
~~.
This is the worst case (maximum) current and
assumes the switch was closed long enough for the
circuit to reach steady-state.
For TVS:
1. VR> V"
2. V,< V"' of Q,
Figure 1~b, DC Coil and Transistor.
Figure IDa, DC Coil and Contacts.
10
----
AC
Irvs
0+-----'
For TVS:
VR> VAcpeak
Figure 10c, AC Coil and Contacts.
UNITRODE CORPORATION' 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
Figure 10d, Simplified Current Waveform
in the TVS.
774
PRINTED IN U.S.A.
U-79
APPLICATION NOTE
NOTE: In some cases, because of accessibility,
the TVS must be located across the coil; in
that case a diode should be used in series
with the TVS, connected back to back as
shown in Figure 11.
Sample Calculations:
For example, using the circuit of Figure 10a,
and sample values of:
Voo = 14V, L = 1mH, and RL = 2Q;
=
For Voo
14V, the next higher VA is 15V. (Note that
Vo = 22.2V at 10A).
STEP 1:
Diode
For diode: PIV
~
V"
10=
Voo = ~= 7A
RL
2Q
Pp = Ip X Vo = 7.0A X 22.2V = 155W
TVS
STEP 2:
t =
1
Voo/RL =
14/2 = 0.32mS
Veil
22.2/10-3
0.32mS = 0.16mS = 160~S
2
From Figure 2, Ppma, for tp = 160~S is
1200W, which is well above the circuit
value of 155W.
so t p =
STEP 3:
Figure 11 -
Using TVS Across Coil
4.2 Protecting Switching
Power Supplies
Transients can produce failures because of
their own high energy level; and also they can cause
improper operation and component failure.
The designer needs to protect against:
Figure 12 shows a simplified schematic of a typical
switching power supply.
1. load transients
2. Line transients
3. Internally generated transients including
those produced by internal faults or
failures.
Referring to Figure 12, the TVS devices shown protect
the following circuit components:
1.
2.
3.
4.
the
the
the
the
rectifiers.
HV switching transistors.
output rectifiers.
control circuitry.
110VAC
60 Hz
OUTPUT TO
TVS
~~~~7:sL
•
Figure 12 -
UNITROOE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
Typical Switching Power Supply
775
PRINTED IN U.S.A.
APPLICATION NOTE
U-79
4.3 Protecting
Microprocessor
Based Systems
While most microprocessor and Ie semiconductor
manufacturers design some form of diode-resistive input clamping network on the chip itself, transient
voltage protection offered is very minimal - on the
order of a few watts of pulse power. Manufacturers
are also reluctant to make device performance and
reliability claims when power supply operation
TVS
~~
~~
~
extends beyond the maximum rated level of the individual device for even relatively short durations
such as those that may be encountered during on-off
transitions. Therefore, there is a need for some external protective device to suppress voltage transients,
as shown in Figu re 13.
Address Bus
--=- -==
~
I
Clock
CPU
'--
r-~
I
,...------,
'---
'--
ROM
....-RAM
i--
--
'"
-
c0
'"
'"
co
_0
::J
aJ
e-
:J
aJ
0
-
-
1/0
~Jt
TVS~~ ~
-::1:-
~~
TVS ':41t-
--=Figure 13 -
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
--
~
~
~ ~*
~~ TVS
-- -=- -..=-
Protecting Microprocessors
776
PRINTED IN U.S.A,
APPLICATION NOTE
U-79
5.0 Alternative Protection
Devices
Other protective devices such as MOVs, spark gaps,
and crowbars have one common disadvantage when
compared to zener TVS products; the response time is
from nanoseconds to as much as tens of microseconds as compared to 1 pS for an avalanche zener
diode. Even 50nS is long enough to allow a transient to
destroy the small junctions used in most integrated
circuits, logic, fast transistors, etc.
TVS products do not significantly degrade even after
100,000 transients.
In many cases, the zener TVS and one of the alternative devices can complement each other. For
example, when used with an SeR crowbar, the zener
TVS will keep the voltage during a transient to an
acceptable level until the crowbar, which may take
10p,S to short the line, can protect the load circuits,
and in the case of a heavy transient protect the
smaller TVS as well.
In circuits where transient pulses are fairly common,
device degradation becomes a significant problem.
131
UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
777
PRINTED IN U,S.A.
APPLICATION NOTE
U-80
OPERATING BUCK TYPE SWITCHING REGULATORS ABOVE 100 KHz
1. INTRODUCTION
Until now, most
switching regulated power supplies have been
des ig.ned to operate between 20 and 40KHz, generally because of
various qevice limitations.
Because of the recent availability
of power MOSFETS, there has been considerable interest shown in
operating switching power supplies at much higher frequencies
(above 100KHz). The advantages and disadvantages of operating
regulators
at
higher
frequencies
are
discussed
in
this
application note. Important characteristics of MOSFET and Bipolar
devices are considered for buck type switching regulators.
The
circuit described presents an economical design of a buck type
regulator that operates above 100KHz using bipolar devices (in
this case the Unitrode PIC600 switching regulator output stage).
2. SWITCHING REGULATOR HIGH FREQUENCY CONSIDERATIONS
When "Off Line", including buck type, switching regulators
operated at higher frequencies, the following advantages
achieved:
A.
B.
C.
D.
E.
F.
G.
are
are
Lower filter cost (L and C).
Reduced size and weight.
Improved transient response.
Effective, inexpensive and lightweight(aluminum)
shielding of noise radiation (EMI)
Simpler EMI filtering.
Improved minimum loading requirements for multiple
output voltage tracking.
Greater control over output ripple.
The disadvantages are:
A.
B.
C.
Increase in transistor switching losses.
Increase in magnetic losses.
Increase in diode reverse recovery losses.
Normally the "Off Line" switching regulator operates at much
higher input voltage than the popular "point-of-use" buck type
switching
regulator.
Since
switching
losses
are
directly
dependent upon the input voltage, switching characteristics
become more significant in an "Off Line" switching regulator.
3. BUCK TYPE SWITCHING REGULATORS (LOW INPUT VOLTAGE)
A buck type switching regulator is normally used to (a) provide
regulation of multiple outputs from the output of an "Off Line"
swi tching regulator, (b) convert unregulated DC input voltage
into regulated low voltage output, (c) drive a stepper motor
drive, or (d) control the speed of a DC motor.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
778
PRINTED IN U.S.A.
APPLICATION NOTE
U-80
-i1
As
OUTPUT
CAP
Ein
FAOM SENSING
AND
CONTAOL CIACUITS
-10
L
01
I
l i2
C
I
I
I
I
I
Eo,eo
AL
I
ESA
L
J
Fig. 1 Switching Regulator Basic Configuration (Buck Type)
Since this regulator operates at a lower input voltage than the
"Off-Line" version, the power losses during switching are not
significant up to 500KHz if the transistors and the catch diode
are properly selected.
3.1 Turn-on Time
The shortest possible turn-on time of a pass transistor or MOSFET
is limited by the reverse recovery time of the catch diode.
Presently the fastest available recovery time of a power PN
junction diode (such as the Unitrode UES1301) is about 20nSec.
The Schottky diode also has about the same effective reverse
recovery time due to its high junction capacitance.
Tb minimize
the over-shoot during the current rise time, one must increase
the (turn-on) rise time of a MOSFET. A properly selected bipolar
device
(e.g.
PIC600) matches perfectly without controlling
current rise time.
Figure 2 shows the reverse recovery characteristics of a Schottky
and a PN junction rectifier in a buck type switching regulator
(Fig 1).
-
10 = 1A
~~
\.
+0
-
~p
-
VCE = 25V
--
\
J
VCE = 0----
~ V~~t=·~- --
1--
o
40
80
120
o
160
(nSec)
(SD4l)
The ringing in Fig. 2A
capacitance and high Q of
series resonating with a
negligible with a Unitrode
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
80
120
-
160
(nSec)
Fig. 2A Reverse Recovery
of a Schottky Rectifier
NOTE:
40
--
779
Fig. 2B Reverse Recovery
of a PN junction
(UES701)
is due to the large junction
the Schottky Rectifier which is
filter choke.
This effect is
PN junction device.
PRINTED IN U.S.A.
U-80
APPLICATION NOTE
Thus, the losses during turn-on will remain the same regardless
of whether the pass element is a bipolar or a MOSFET device.
The importance of the ratio of reverse recovery time to
current rise time is shown in Figure 3.
It is obvious
that the current rise time of the MOSFET or bipolar transistor
should be at least 3 times slower than reverse ,recovery time of
the catch diode. Figure 4 shows the reverse recovery times, and
current rise times of commercially available fast switching
diodes and transistors.
2,0 r------r---~-----r--,___r---_,
1.8
1.6
1.4
1.2
PIt,,)
Plt,.i) 1.0
t"
NOTE: See Figure 1 for circuit.
0.8
Reverse Recovery Time. Rectifier.
0.6
Current Rise Time, Transistor.
0.4
Collector Current.
lovershoot: Overshoot of Collector Current Due
to Reverse Recovery.
Power Dissipation in Transistor Due
to Reverse Recovery Time.
Ph,,):
0.6
'Overshoot
Ie
==
0.8
1.0
2r
Power Dissipation in Transistor Due
to CUrrent. Rise Time,
trj
Impor'tance of Current Rise Time of a Transistor
and Reverse Recovery of a Rectifier
Fig. 3
~Or----'r----'----.----.----r----'
UMT·l009
2N6545
~
w
2fl0
~~
100
~
g
w
a:
III
lo·SA
o
80
120
160
200
240
REVERSE RECOVERY TIME AND CURRENT RISE TIME lin nSec)
Fig. 4
Switching Times vs Breakdown Voltage
(Unitrode Rectifiers and Transistors)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064
780
PRINTED IN U.S.A.
U-80
APPLICATION NOTE
3.2 Storage Time
Since the bipolar transistor is a minority carrier device it has
a finite storage time. This time can be significantly reduced if
the device is clamped out of saturation.
In a low voltage
device, there is less majority carrier injection in the collector
region, due to its lower collector resistivity, than in high
voltage devices.
By preventing the output transistor from
saturating, significant improvement in the storage time can be
achieved.
The Unitrode PIC600 series device (see Fig.5) provides
a natural clamp.
The output device, Ql which carries the
loadcurrent, is kept out of saturation by driver transistor, Q2.
The
driver
transistor
operates
in
saturation
mode.
At
frequencies above 100KHz however, the storage time of the driver
transistor , Q2, needs to be reduced.
,-I
I
L
IDrive
Constant
Fig 5 Simple Clamped Circuit
The circuit shown in Figure 5 reduces the overall storage time of
the PIC 600 to less than 100nSec without complicating the drive
circuit, at the expense of increased
VCE(SAT).
When the ratio
of the input to output vol tage is high (factor of rv 3 or more)
the DC loss in a transistor is low compared to other losses .when
operating at frequencies above 100 KHz (see Fig.6).
The maximum
operating frequency is determined by the storage time.
In
general, the maximum operating frequency of a switching regulator
for a given storage time can be determined by the equation;
0.2 x Eout
f max
Ein(max) x ts(max)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
781
PRINTED IN U.S.A.
•
APPLICATION NOTE
U-80
EIN = 25V
EO=5V
UNDER NORMAL
OPERATING CONDITIONS
5.0
---,r-_-..,..-/-
1.0 r-R_E_C_T_IF_IE_R_LO_S;...S_E_S_10"-=_1...;,5A_I_DC;...}_ _ _ _ _ _
TRANSISTOR LOSSES 10 = 1.5A IDC}
--....1'--__
..L___ _
...~'I"/
0.5
,,;/
0.1'-_ _ _ _ _ _ _ _.L..-_ _ _" - -_ _ _ _ _ _ _ _.L..-_ _- - - '
10
100
50
500
FREQUENCY (kHz)
Fig. 6
Switching Losses in a Transistor and Rectifier
of a PIC600 switching Regulator Output Stage
UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
782
PRINTED IN U.S.A.
APPLICATION NOTE
U-80
For a lOOnSec storage time, the maximum operating frequency will
be 400KHz where EO = 5V, Ein = 25V.
3. 3 Fall Time
MOSFET devices will provide faster fall time than bipolar devices
providing the drive current is large enough to discharge the input
capaci tance quickly. However, as pointed out earlier, in a low
voltage switching regulator the switching loss during the fall
time is a very small percentage of the total power losses.
3.4 ES/B and IS/B
Since the inductive load is clamped by diode, the bipolar pass
transistor does not experience reverse bias second breakdown
(ES/B)
in a buck switching regulator.
Forward bias second
breakdown can be prevented by providing adequate drive current and
by preventing the core of the inductor from saturating.
3.5 QUASI-SAT LOSSES.
The output device of a PIC600 is highly interdigitated which
minimizes operating in the QUASI-SAT region. Thus turn-on losses
during QUASI-SAT are avoided.
4. OTHER CONSIDERATIONS.
4.1 Magnetics
Generally,
hysteresis losses in the magnetic material will
increase significantly when an inverter is operating at a higher
frequency because of the wide variation of the magnetic flux over
the period of a cycle.
To minimize the hysteresis losses and
leakage inductance losses, proper selection of a core shape
magnetic material is required.
However, the hysteresis losses in the magnetic components of a
buck type switching regulator are low compared to those in
an inverter because the change in the flux is limited over a
period of a cycle.
Furthermore there are no leakage inductance
losses in the buck regulator.
The selection of the inductor and
its' shape for a buck type switching regulator is therefore, less
critical.
To minimize the radiation due to the changing magnetic
field in the filter inductor, it is advisable to use a gapped pot
core or a toroid.
4.2 Capacitor
The output ripple vol tage of a swi tching regulator depends not
only upon the value of the capacitor, but also on its effective
series resistance (ESR).
The ESR of the capacitor is inversely
dependent upon the value of the capacitor.
Since the output
ripple voltage depends upon the ESR of the capacitor, paralleling
capacitors is helpful.
This, however, may affect the transient
response of the switching regulator.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
783
PRINTED IN U.S,A.
II
APPLICATION NOTE
U-80
At higher frequencies, the inductance of the capacitor becomes
significant.
The equivalent circuit of the capacitor (Cout)is
shown in Figure 1.
The effects of the ESR and inductance of the
capacitor can be observed at the instant when an abrupt change in
di/dt occurs (see Fig 7).
A solid tantalum or electrolytic
capacitor has a higher ESR than a high frequency bypass capacitor
like metallized polypropylene, polystyrene foil and ceramic.
However, the value of the capacitance available in these types is
low compared to solid tantalum or electrolytic capacitors.
When
switching regulators are operated at a higher frequency , the
output ripple voltage is more dependent upon the ESR and the
inductance of the capacitor than its capacitance.
~Q
Current Flowing
Through Capacitor
Voltage Developed
Due to Ideal Capacitor
1
Voltage Developed
Across the ESR of
the Capacitor
A...
J
V~
T
0
~VESR
Effect on Output
Voltage Due to
Inductance of
Capacitor
Fig. 7
Effect on the Output Ripple Voltage Due to
Parasitics of the Output Capacitor
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
784
PRIN.TED IN U.S.A.
APPLICATION NOTE
U-80
4.3 Circuit Layout and RFI
Circuit layout is another important consideration in a high
frequency switching regulator.
Every inch of wire adds 20nH to
the circuit.
Any extra lead length of the wire produces
unwanted ringing and also radiates energy into the environment.
The length of the high di/dt path should be kept to a minimum
and,
where
necessary,
bypassed with a
ceramic capacitor.
Twisting the wire of the transformer and arranging the high
current paths such that they oppose each other will reduce the
radiated energy to the environment.
The layout of the circuit
should be designed such that it m1n1mizes the ground loop
problems by separating the high current path from the small
signal circuit current.
5. CIRCUIT DESCRIPTION
The circuit described in this section provides a simple and
economical design of a buck type switching regulator operating at
250KHz with an existing bipolar device (PIC600).
The main
advantages of operating a switching regulator at a higher
frequency are (a)reduction in the size of the inductor required
to obtain low output ripple voltage, (b) improved transient
response and (c)reduction in cost, size and weight.
The complete circuit is shown in Figure 8.
It converts
unregulated 25V input voltage into a regulated +5V output
voltage.
Significant improvement in the storage times and
voltage fall time is ach ieved wi th a clamping diode, Dl and
resistors Rl and R2.
Since the Uni trode PIC600 operates with a
constant current base drive, a fixed voltage drop is developed
across R2.
The voltage is clamped across the collector to emitter of the
output device by the clamping diode, Dl, and is given by the
equation:
VCE clamped = Idrive x R2
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (7l0) 326-6509 • TELEX 95-1064
785
PRINTED IN U.S.A.
APPLICATION NOTE
Under normal
parameters of
listed below:
U-80
operating conditions,
the
important operating
the PIC600 at output current of lA and 2A are
Vol tage Rise Time -------------Voltage Fall Time -------------Current Rise Time -------------Current Fall Time -------------Storage Time ------------------Diode Forward Drop VF---------Saturation Voltage VCE(SAT)-----
IO=lA
IO=2A
24nSec ------- 24nSec
36nSec ------- 56nSec
28nSec ------- 40nSec
66nSec ------- 84nSec
76nSec ------- 160nSec
0.74V ------- 0.82V
2.5V ------- 2.5V
The switching losses at 250KHz are less than O. 5W, so that the
overall efficiency of the PIC600 is greater than 78%.
The constant base drive current to the PIC600 switching regulator
output stage is provided by operating transistor Ql and the
output transistor of the SG1524 in series as an AND gate.
The
base of the transistor Ql is connected to the reference output
voltage
(+5V) of the SG1524, PWM voltage regulator integrated
circuit. The amount of drive current to the PIC600 is determined
by resistor value R3 and is given by the equation:
The current limit
and transistor Q2'
is
achieved with current sense resistor RIO
There is sufficient gain in the error amplifier of the SG1524 to
operate up to 500 KHz. The fixed dead-band period of the SG1524
is not adversely effected in buck type switching regulator
applications.
Capacitor Cl improves the high frequency response and provides
stability in the circuit.
6.
CONCLUSION
The circuit described in this application note provides an
economical approach to the high frequency buck type switching
regulator using a bipolar device instead of a MOSFET device. The
circuit operates with a simplified drive circuit and provides
improvement in a transient response and reduction in size, cost,
and weight.
The circuit efficiency is greater than 78% and
provides control over output ripple voltage without a large
inductor.
The PIC625 switching regulator output stage can be operated at a
5A level at an operating frequency of 250-500KHz.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
786
PRINTED IN U.S.A.
... re
::;:"'z
l>
x~:::;
-z"
~(j'JO
r ____ ~!..OO
:~~
+"
~3:g
/.
~l>::g
lDfGO
..... ",.
.......
EIN
",w:!
r·O
~~z
c1
~
I
I
47n
I
I
R1
100n
~
...g~o
-"CD
co
';"cn
en",
8:"
"'0
0,.
I
750PF
R13
°2
2N2905
C1
~.::~
.... en."
I
~¥
I
------
I
I
I
I
I
I
_...J
~
r-
n
/
!"'"
jl'
I
I '--IL ___
IN914
!i
....C2 =10.F
01
COUT
.
EOUT" 5 VOLTS
Ae = 5Om.
sz
z
o
-t
ITI
R2
55n
o
~~I
V IN
1
R•• 4.7K
INV
CA
NI
EA
I
R5· 4 .7K
I
<)--
R6. 4•7K
'-I
00
'-I
-,
R100.33n
'1J
'1J
CORE ARNOLD A 149098-2
WIRE #18
N =42
R7 ·4.7K
R11
10K
I
~~t-;>VREF
C4·O.1.1
Ca
R8
RT
I
2.2K
Ea
~J. ----6CT
n
~
0.0022.1
R12
2.2K
I
SG1524
I
ct I
CL
Oose
Sh. ON
COMP
h
~ND----.J
~
I
Fig. 8
l
II
I
l'
2N2222
R3
150n
Cs
0.001
Rg
18K
Complete Circuit Diagram
c:
I
00
o
II
DN-3
DESIGN NOTE
MINIMIZING STORAGE TIME WHEN USING UNITRODE SWITCHING
REGULATOR POWER OUTPUT CIRCUITS (PIC600 SERIES)
In some applications (such as a reversing motor drive, for example: stepper motor) where storage
time is an important consideration in the design, the normal storage time of PIC600 series (approximately
600ns) can be reduced to acceptable level.
At lower output currents, the excess storage time is a result of the driver stage operating well under
saturation, while at higher output currents it is a result of the output transistor operating into quasisaturation region.
The storage time can be reduced to less than lOOns by utilizing a Baker Clamp technique as shown
in the circuit below:
r---- - --'4
Baker Clamp
I
1
31
I
I
I
r--,
1
I Drive
1
11N9141
1
1
1
1
positive supply
LP~6~5 _ _
_
2
_...J
I
-.,
L,
I Drive
3
12
I
1
1
1
I
I
L ___ _
1
4
--I
negative supply
The Baker Clamp will increase the VCE(sat) losses but this disadvantage will be more than offset by
the improved switching speed.
The Baker Clamp circuit varies the drive current of the PIC600 series for optimum switching speed at
any given load current. The drive current required to the Baker Clamp can be unregulated, as long as it is
greater than 30mA.
The small value of the inductor Ll and L2 (5 to 10 ~H) stops cross conduction during the switching
of PIC600 series.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173. TEL. (817) 881·8540
TWX (710} 32a.t\508· TELEX 95·1084
788
PRINTED IN U,S.A,
DESIGN NOTE
DN-4
AVOIDING SPURIOUS OSCILLATION WHEN USING UNITRODE SWITCHING
REGULATOR POWER OUTPUT CIRCUITS (PIC600 SERIES)
Avoid spurious oscillation due to ground loops and RFI when using a Unitrode Switching Regulator
Power Output Circuit (PIC600 Series) in a switching regulator.
The Unitrode switching regulator power output stage (PIC600 Series) is a high frequency fast switching device. Its control circuitry must also operate at high frequency and high gain. Therefore, it is necessary to avoid any ground loops and RFI for stable circuit operation.
The high frequency roll-off of the control circuit should be adjusted properly with a compensation
network. The typical layout of the power circuit is shown in the figure below.
COPPER PATTERN
EIN
TO CURRENT SENSE
..J
1--+3
_ _~2
EIN
GROUND
TO INVERTER {
INPUT
---~
CONTROL CIRCUIT
I
PC BOARD LAYOUT OF POWER CIRCUIT
CIRCUIT DIAGRAM
Capacitor C I (0.2 1J.f) reduces the RFI generated due to the reverse recovery current spike of the catch
diode, and should be physically located near pin 4 and pin 2 of the PIC625. The capacitor should be a high
frequency by-pass capacitor, such as Polystyrene.
The current sense resistor R3 should be a non-inductive (carbon) type. The current sense signal should
be picked up right across this resistor.
If the switching regulator is operated at the higher end of the input voltage, the inductor should be
shielded with an electrostatic shield, grounded to Point A. The case of PIC625 should also be connected to . . .
Point A.
II'JM
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95·1064
789
PRINTED IN U.S.A.
DESIGN NOTE
DN-5
HOW TO SAFELY CHECK SUSTAINING VOLTAGE ON
POWER TRANSISTORS
One of the most important parameters for any power transistor, particularly in switching applications
with inductive loads, is the sustaining voltage. Many manufacturers specify only open base sustaining
voltage (VCEO(SUS» at a low current level (10 to 200mA); and, even where sustaining voltage with resistive bias (V CER(SUS» or voltage bias (VCEX(SUS» is specified on a data sheet, the chances -are that it
will not be specified under the exact conditions that will be required by a specific application. Because of
this, many designers select a transistor based on its VCEO(SUS) rating, since VCER or VCEX will always
be greater than VCEO (see Figure I for a graphical explanation of the relationship among VCEO, VCER
and VCEX)'
By choosing a transistor based upon its VCEO rating, the designer may be using a higher voltage
device than necessary. If he could determine the voltage under the actual conditions of his application, it
is possible that a lower voltage device could be used, resulting in considerable cost savings. Figure 2
presents a test circuit that can be used to safely measure sustaining voltage under any bias condition at
collector currents up to SA.
PLEASE NOTE: SUSTAINING VOLTAGE SHOULD NEVER BE READ ON A
CURVE TRACER, EVEN AT LOW CURRENT LEVELS, SINCE POWER RATING
OR REVERSE-BIASED SECOND-BREAKDOWN RATING (ES/b) MAY BE
EXCEEDED, RESULTING IN PERMANENT DAMAGE TO THE TRANSISTOR.
The test circuit of Figure 2 may also be used to check a transistor's ES/b rating if the zener clamp is
removed. ES/b, under a specified bias condition of RBB and VBB, is related to collector current and
inductance as follows:
ES/b (joules) == 1/2Li2
Where i is the peak collector current flowing at the time the transistor is turned-off.
It should be noted, however, that the transistor is not protected without the zener clamp, and the
device may be damaged or destroyed if it does not meet its ES/b rating.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
790
PRINTED IN U.S.A.
DESIGN NOTE
DN-S
5A------------------++~+4r_------------------
IZ
LIJ
Q!
Q!
::::l
U
Q!
~
U
LIJ
~--'-t-- V CER2
....J
....J
o
u
RBE2
I
<
RBEl
u
VCE - COLLECTOR TO EMITTER VOLTAGE
Fig. I. Relationship among VCEO(SUS). V CER(SUS). V CEX(SUS)
(Not to Scale)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
791
•
PRINTED IN U.S.A.
DESIGN NOTE
DN-5
+
-=- VCC ",,10Vdc
10Vr-,
I~PUSH
L- o--JVV~~~~
ov-l
INPUT PULSE
REP. RATE = 60
f'TOTEST
·ZENER CLAMP VOLTAGE SHOULD BE EQUAL TO THE MINIMUM SPECIFIED VALUE OF THE
VCEO. VCER OR V CEX VOLTAGE BEING CHECKED.
VOLTAGE RATING
(VCEO. V CER • V CEX )
INDUCTOR
(L)
CURRENT
SENSE
(RS)
IB
INPUT
PULSE
WIDTH
.;;aOV
<;;50mA
50mA-200mA
200mA-1.0A
1.0A-S.OA
50mH
20mH
2mH
O.5mH
10n
5n
In
0.2n
0.1{1e)
0.1 (Ie)
0.1 (Ie)
0.1 (Ie)
350llSec
52SIlSec
2S0llSec
32SIlSec
80V-200V
<;;SOmA
50mA-200mA
200mA-l.0A
1.0A-S.OA
100mH
40mH
4mH
lmH
10n
sn
0.1 (Ie)
0.1 (Ie)
0.1 (Ie)
0.2(1e)
800llSec
1.0mSec
5S0llSec
650llSec
.;;sOmA
SOmA-200mA
200mA-1.0A
1.0A-S.OA
200mH
80mH
10mH
2mH
0.1 (Ie)
0.1 (Ie)
0.2(1e)
0.2(1e)
1.5mSec
2.0mSec
1.25mSec
1.2SmSec
~200V
1.
TEST CURRENT
(lel l
1n
0.2n
10n
sn
1n
0.2n
THE ZENER CLAMP SHOULD ALWAYS BE USED WHEN TESTING AT COLLECTOR CURRENT
VALUES ABOVE 200mA SINCE THE REVERSE-BIASED SECOND-BREAKDOWN (ES/b) RATING
OF THE TRANSISTOR UNDER TEST MAY BE EXCEEDED.
IC
2S0mA
PASS
250mA
PASS, VOLTAGE CLAMPED
TEST POINT
100mA.200V
FAIL
TEST POINT
100mA,200V
------~--L---VCE
REPRESENTATIVE SCOPE TRACE FOR
UNCLAMPED TEST AT IC = 100mA
REPRESENTATIVE SCOPE TRACE FOR
CLAMPED TEST AT IC = 100mA
Fig. 2. Test Circuit for VCEO(SUS)' VCER(SUS)' VCEX(SUS)
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
792
PRINTED IN U.S.A.
DN-6
DESIGN NOTE
OPERATING THE SWITCHING REGULATOR OUTPUT CIRCUIT
(PIC600 SERIES) AT LOW FREQUENCIES
The Unitrode switching regulator power output circuit consists basically of
a power transistor switch and a catch diode.
The appropriate data sheets in the
Unitrode Semiconductor Databook provide the necessary information for determining
junction temperature and power dissipation at frequencies above 10 kHz.
This Design Note provides a method for determining the junction temperature
and maximum allowable power dissipation for the transistor switch and catch diode
when the switching regulator is operated at frequencies under 10 kHz, where the
switching losses are negligible and can be safely ignored.
The method of determining safe power dissipation requires a detailed transient thermal analysis, since the junctions of the transistor and diode are subjected to temperature excursions due to the applied pulse power.
When the device is subjected to a train of periodical power pulses, the
maximum power dissipation and junction temperature can be calculated from the
effective pulse thermal resistance (0 ) as follows:
p
0p
~
x D + (l-D) r(t + T) - r(T) + r(t)
where:
t
T
pulse width
= period
Duty cycle D
=%
Peak Power, Ppk is peak of an
equivalent square power pulse
r (t + T) = transient resistance
at time t + T
l-t-/
I_
Figure 1.
T - -.....~I
r(t) = transient thermal resistance
at time t
Power Pulses
UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
= DC thermal resistance (from
data sheets)
~
793
PRINTED IN U.S.A.
DESIGN NOTE
1.
DN-6
Calculating the Junction Temperatures (Pulse Train)
A.
Power Transistor Switch
The peak junction temperature of the transistor switch under repetitive
peak power pulse conditions is calculated as follows:
T
T
j (peak)
j (peak)
TeASE + VeE x Ie
- reT)
~ [~;1.
+ (l - tTT) x r(t T +
T)
+ r(t T )]
The transient thermal impedances r(t T + T), reT), r(t T) are obtained from
the transient thermal impedance plot for the transistor (see Figure 2),
tT
B.
= transistor
on-time
Catch Diode
The peak junction temperature of the catch diode under repetitive peak
power pulse condition is calculated as follows:
T
j (peak)
TCASE + IF x VF
- reT)
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
[Rr x t~
+ (l -
t~ )
r (t D
+T)
+ r(t D)]
794
PRINTED IN U.S.A.
DESIGN NOTE
DN-6
where:
tD
diode on-time
The Transient thermal impedances r(t D + T), reT), r(t D), are obtained from
the transient thermal impedance plot for the catch diode (see Figure 2). ,
C.
Power Dissipation
The maximum allowable power dissipation in either the transistor or the
diode is determined by the maximum junction temperature of lSO°C:
P
2.
pk(max)
Calculating the Junction Temperature (Single Shot Power Pulse)
For a non-repetitive power pulse, the rise of junction temperature can be
calculated as follows:
For a pulse with less than 100 millisec, the case temperature is assumed
to remain at ambient temperature.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
795
PRINTED IN U.S.A.
DESIGN NOTE
DN-6
5.0
t
4.0
..
3.0
~
u
r>1
~
~
Ul
H
Ul
2.0
~
1.0
gj
r>1
::c
Eo<
0.0
0.01
0.1
1
10
100
1000
TIME (millisec)
Figure 2.
Transient Thermal Resistance - Power Transistor or Catch Diode
UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
796
PRINTED IN U.S.A.
DESIGN NOTE
DN-7
THE UNITRODE SCHOTTKY RECTIFIER - A NEW DESIGN
TOOL FOR SWITCHING POWER SUPPLY ENGINEERS
1.
Advantages of Schottky Rectifiers Over Conventional PN Junctions.
In today's power supplies with low DC output voltages the Schottky rectifier provides the opportunity
to achieve the highest efficiency possible. This is due to its naturally lower forward voltage than P-N silicon
junctions and, for "switching" supplies where it is most often used, very low recovery times and recovered
.
charge.
The primary benefits of higher efficiency are, of course, reduced heat sink requirements, less heat
generated and less power wasted. An additional feature is the rather soft recovery characteristic which will
often keep voltage "spiking" and generated EMI low.
As a "catch" diode for buck-type 20 kHz switching regulators the improvement in efficiency with the
use of a Schottky rectifier is directly related to diode on time, tD(on)' This, in turn, increases as the
difference between input and output voltage increases, i.e.,:
tD(on) =
V jn - Vo
I
V.
xf
m
' where f is the switching frequency.
When used as an output rectifier for inverter circuits, however, one finds the largest improvement
efficiency (see curve beloW). For all applications, the improvement is most significant when the output
voltage is low.
15~--~----+----+~~r---~
Advantage of Schottky over alternate
rectifier choices due to lower VF, - used
as output rectifiers for inverters with DC
output as shown. This example is based
on IOOA output and 125 C junction
temperatures.
Improved
Efficiency
(%)
2~--~~~+----+--------~
1.0
.8
1.2
v f, at Operating Condition,
of Alternate Rectifier
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
797
PRINrED IN U.S.A.
DN-7
DESIGN NOTE
2.
Advantages of Unitrode Schottky.
The search for extended temperature performance and higher reliability has continued since Schottky
power rectifiers were first introduced.
Unitrode Corporation has introduced devices which have the lowest reverse current yet offered at high
temperature. Furthermore, change in reverse current with temperature is much less than with conventional
devices or other Schottkys. This behavior substantially raises the threshold of thermal runaway, even when
limited heat transfer is provided (high ROCA as with a relatively poor heat sink). Additionally, our high conductivity design, using a heavy copper top post and low series resistance, ensures cool terminal operation
and low dymlmic impedance.
Reliability is further enhanced by materials and construction which provide thermal-fangue-free life
through many thousands of cycles.
3.
Measurement Considerations and Precautions.
A.
TRANSIENT DAMAGE
Greater caution must be used because Schottkys are more sensitive to voltage transients and to
high rate of rise of applied reverse voltage (dv/dt) than PN junction rectifiers. Even a nonrepetitive, one-tenth microsecond transient can cause permanent damage.
B.
When measuring reverse current never exceed the reverse voltage rating or the dv/dt rating, even
on a transient basis. Sudden application of a voltage on the device in a test set-up may overstress
it with a transient too "fast" to be observed. It is therefore advisable, when measuring reverse
current (or observing the reverse characteristic on a curve tracer) to use a IKn resistor in series
with the device and never "switch on" an open circuit voltage exceeding the rated PR V. Even
when "sweeping out" reverse voltage on a curve tracer do not exceed PR V.
REVERSE CURRENT MEASUREMENTS
Do not expect the reverse current at room ambient to be of orders of magnitude lower than at
rated high temperature, as is common with PN junction rectifiers. While Unitrode Schottky devices
change less with temperature than competitive devices, they may exhibit higher reverse currents
at room temperature. The high temperature reverse current is the significant parameter, however,
since it reflects actual operating conditions. At elevated temperatures, the Unitrode Schottky
rectifier will have lower reverse currents than other manufacturers.
To obtain values which correlate with the manufacturer's published data, it is necessary to measure
reverse current under specified (low duty) pulsed conditions, rather than with DC applied.
C.
FORWARD VOLTAGE MEASUREMENTS
At low current and room temperature the forward voltage may be higher than other manufacturers. The low dynamic impedance, however, makes this voltage more uniform as current
increases. At higher current, even at room temperature, the Unitrode forward voltage compares
very favorably. At expected operating conditions the Unitrode Schottky rectifiers will have a
more favorable low and uniform forward voltage.
All forward voltage measurements should be made with the Kelvin 4-terminal method, to nullify
the error otherwise due to test clip contact and test lead resistance, and with specified low duty
pulses to maintain desired junction temperatures. (Note that pulsed base current on a curve
tracer does not maintain low duty on a rectifier, - a pulsed collector supply must be used).
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95·1064
798
PRINTED IN U.S.A.
DESIGN NOTE
DN-8
A 350 WATT SWITCHING REGULATED OUTPUT POWER SUPPLY
FOR MULTIPLE OUTPUTS UTILIZING
UNITRODE SEMICONDUCTOR COMPONENTS
There are many ways a switching power supply can be designed to obtain regulated
output voltages. When multiple outputs are desired, such as ±5 volts and ±12 volts, the
circuit described below provides the basis for an efficient, economical, and reliable power
supply. It consists of a pulse width modulated buck regulator and a synchronized "H"
(full bridge) inverter, each leg of which operates at 50% duty cycle. The block diagram of
the power supply is shown in Figure 1.
AC
INPUT
RECTIFIER AND
FILTER
BUCK REGULATOR
CONTROL
CIRCUIT
Figure I. Block Diagram
The advantages of this design approach are as follows:
1.
Numerous inductors (normally needed when pulse-width modulating an inverter)
are not required. No filter inductor is required in the output which lowers costs.
Minimum load bleeder resistors are not needed, thus improving efficiency and
excessive heat generation. These features result from the "H" inverter operating
at I 00% duty cycle.
2.
A high voltage, low ESR capacitor in series with the power transformer is not
required. The problem of excessive collector current in an "H" inverter stage due
to "walking of core flux" on a saturated B-H curve is eliminated.
3.
There is no possibility of high current or forward-biased second breakdown in the
inverter bridge transistors when they are simultaneously on during switching
periods. The "cross-current" is limited by the inductor, LI, (the buck regulator
acts as a constant current source) which increases reliability. Furthermore, the
transistors are in saturation during cross conduction again improving efficiency,
and reducing heat generation.
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064
799
PRINTED IN U.S.A.
DESIGN NOTE
4.
5.
6.
DN·8
Only one high voltage switching transistor is required for either 110 or 220V
input.
There is no possibility of forward-biased second breakdown in the bridge transistor during initial turn-on ("start-up").
No expensive high voltage filter capacitor is needed. Filtering is achieved with a
low voltage output capacitor.
Description of the Circuit:
The buck regulator, "H" inverter and control circuit is described in brief in this section.
The detailed schematic of the circuit is shown in Figure 2.
A.
Buck Regulator:
The output stage of a buck regulator consists of a Unitrode Barrier transistor™
UMTI009 and a fast recovery (50 nanoseconds) high voltage catch diode, the Unitrode
UES 1306. The buck regulator is operated at 50 kHz, twice the operating frequency of tlW
"H" inverter, with very low switching losses. Operating the buck regulator at higher fre-'
quency reduces the cost of the filtering inductor, L I .
The output voltage is regulated in this stage by employing a pUlse-width modulation
technique using a Silicon General Monolithic integrated circuit SG 1524. The output of the
filter inductor is clamped below the BVCEO of transistors used in an "H" bridge with a
Unitrode zener. diode UZ4212. This diode absorbs the energy stored in inductor LI during
the period when energy is not coupled into the secondary due to the leakage inductance of
power transformer T3' Notice that there is no output filter capacitor in the buck regulator.
This design feature limits excessive cross conduction collector current in the transistors of
the "H" inverter.
The base drive current to the pass transistor is provided with a unique transformer
coupled drive circuit. It provides base drive current up to I 00% duty cycle if required. Furthermore, a small amount of energy stored in a ferrite bead in the base drive circuit provides
assistance in turning off the high voltage pass transistor.
B.
"H" Inverter:
The "H" inverter operates at 25 kHz, with a 50% duty cycle in each leg, synchronized
with the buck regulator. It utilizes four low voltage 2N6354 transistors. Low voltage transistors offer low VCE(SAT), high gain and fast switching times. Due to high gain, the base
.
.
drive current required is low.
The switching losses are kept to a minimum by switching the transistors when inductor,
L I , current is at a minimum. The storage time of the transistor is kept to a minimum by
reducing the base drive just prior to transistor turn-off. (The base drive current is highest
when transistor is turned on and reducing linearly.)
The diodes DI - D4 provide the path for magnetizing current at lower output current
as well as the path for energy stored in the leakage inductance of the power output
transformer.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95.1064
800
PRINTED IN U.S.A.
DN-8
DESIGN NOTE
e
e
o
III
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
801
PRINTED IN U.S.A.
DN-8
DESIGN NOTE
Current limiting is obtained with a current transformer. The level of the current limit is
maintained constant regardless of temperature by effectively using two diodes in series with
an 8.2 volt zener (Z2) UZ708. Only one driver transformer is used for all four transistors.
The trilnsistor turn-on and turn-off is enhanced with a ferrite bead in the drive circuit.
The output is rectified with Unitrode USD545 Schottky Rectifiers which provide the
advantages of low VF at high current and minimum change in leakage current with temperature. The snubber network across the Schottky diodes prevent reverse bias breakdown from
the large voltage spikes due to leakage inductance in the power transformer, and reduces
RFI.
C.
Control and Drive Circuits:
The regulation function is achieved with a Silicon General SG 1524 P. W.M. monolithic
integrated circuit. The synchronizing pulses from the integrated circuit drive the D-Flip
Flop, SN7474. The output of this D-Flip Flop drives the logic circuit 75450P which provides
drive current to low cost 2N3019 NPN transistors. Line isolation is maintained with a driver
transformer.
The control circuit (SG 1524) is inhibited in a slow start mode to prevent large current
and voltage transients.
The circuit described herein provides conversion efficiency up to 85%. This design
approach achieves an efficient and economical switching-regulated power supply when multiple outputs are desired. The output filter capacitor is smaller in size because each leg of
the "H" inverter operates at 50% duty cycle.
UNITROOE CORPORATION. 5 FORBES ROAO
LEXINGTON. MA 02173 • TEL. (617) 861·6540
TWX (710) 326-6509 • TELEX 95-1064
802
PRINTED IN U.S.A:
DESIGN NOTE
DN-8
VOLTSV1~,.........o
VOLT~________~IL-______~~O
CT - CLAMP VOLTAGE
SG1524
OSCILLATOR OUTPUT
SG1524
V CE - PASS TRANSISTOR
UMTlOO9
IC - PASS TRANSISTOR
UMTlOO9
IB - BASE DRIVE TO
UMT1009
I Z - ZENER CURRENT
UZ4212
SUPPLY VOLTAGE
TO "H" INVERTER
INDUCTOR CURRENT OR
INPUT CURRENT
TO "H" INVERTER
I B - BASE DR IVES
TO "H" INVERTER
Ip - PRIMARY CURRENT
TRANSFORMER T 3
o
ID - DIODE CURRENT
SCHOTTKY RECTIFIER
USD545
Figure 3. Basic Waveforms
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
803
PRINTED IN U.S.A.
DN-8
DESIGN NOTE
TRANSFORMER AND INDUCTOR DETAILS
L I . Filter Inductor;
core:
Ferroxcube.IF-19
)1
N
= 198 turns,
wire size AWG #16
Air gap = 0.2 inches
L2 . Ferrite Bead;
core:
Stackpole #57-1552 Ferrite Bead
N I = 2 turns, wire size #32
N2 = 2 turns, wire size #32
T I. "H" Inverter Driver Transformer;
Ferroxcube 376U2S0-3C8, 376UB2S0-3C8
Np = 90 turns, wire size AWG #32
NS = IS turns, wire size AWG #32
SHIElO
T2. Buck Regulator Driver Transformer;
core:
Ferroxcube 78E272-3C8, 782B272-3C8
~lIps
~~
Np
= 90
turns, wire size AWG #34
NS = IS turns, wrie size AWG #28
Two transformers wound on same core, over outside legs of
E-I core.
GROUND
T 3. Power Output Transformer;
core:
jl~"
GROUND
SHIELD
Ferroxcube EC-S2
Np = 32 turns, wire size #16
NS = 4 turns, wire size #26, 36 wires twisted together
NOTE: Secondary is designed for +12 volts output. For
multiple output total copper area of secondary
should be 0.30 x Total Window Area.
Current Transformer;
core:
Ferroxcube 376U2S0-3C8, 376B2S0-3C8
Np = 2 turns, wire size AWG # 16
NS
= 60 turns, wire size AWG #32
NOTE: The information presented in this bulletin is believed to be accurate and reliable. However. no responsibility
is assumed by Unitrode Corporation for its use.
Unitrode Corporation makes no representation that the use or interconnection of the circuits described herein will
not infringe on existing or future patent rights, nor do the descriptions contained herein imply the granting of
licenses to make, use or sell equipment constructed in accordance therewith.
UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064
804
PRINTED IN U.S.A.
DESIGN NOTE
DN·10
SQUIB·FIRING CIRCUIT PROVIDES FOR RELIABLE FIRING,
FROM LOW LEVEL INPUTS
The design of reliable squib-firing circuitry often presents particular problems. Squib functions are typically
quite critical, and the initial triggering source for these systems is, by nature, usually minute.
Conventional transistor squib-firing circuits usually require several gain stages, together with a power transistor to handle the squib-firing current. Mechanical squib switches, on the other hand, cannot be operated
repetitively to allow for complete testing of the device and associated circuitry during check-out.
The high sensitivity planar Silicon Controlled Rectifier (SCR) can be triggered directly from low-level input
circuitry, with significant reduction in circuit complexity and size. Reliability is thus considerably enhanced.
The unique characteristics of the planar SCR have resulted in wide usage of this semiconductor component
in squib-firing circuits for rocket engine ignition, detonation, and explosive bolt applications. Compared with conventional transistor techniques or mechanical squib switches, this proven approach has significant reliability advantages, with circuit simplicity, size reduction, mechanical ruggedness and elimination of electrical contacts.
An SCR, with surge current ratings at l00 cC of 5 amperes-50 milliseconds or 20 amperes-l millisecond can
easily handle the current required for firing most squibs. Input circuits can be designed to trigger reliably at levels
below 100 microamperes and 1.0 Volt, making the SCR particularly well-suited for direct drive from low level
control logic circuits and simple RC time delay networks. In addition, the bistable properties of the SCR enable it
to be triggered on by a pulse input-remaining in the "ON" state until reset. This inherent "memory" is frequently used to advantage in arming circuits.
Two circuits typical of squib firing applications are shown in Figures 1 and 2. Both will operate from
- 65 cC to over 125 cC.
In Figure I, Capacitor C, is charged to +28 Volts through R, and stores energy for firing the squib. A
positive pulse of 1 rnA applied to the gate of SCR, will cause it to conduct, discharging C, into the squib load X,.
With the load in the cathode circuit, the cathode rises immediately to + 28 Volts as soon as the SCR is triggered
on. Diode D, decouples the gate from the gate trigger source, allowing the gate to rise in potential along with the
cathode so that the negative gate-to-cathode voltage rating is not exceeded. This circuit will reset itself after test
firing, since the available current through R, is less than the holding current of the SCR. After C, has been
discharged, the SCR automatically turns off-allowing C, to recharge.
R,
+28V
lOOK
II
0,
-A..
INPUT
C,
JAN1N4148
200",
FIGURE 1
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
805
PRINTED IN U.s.A.
DESIGN NOTE
DN·10
In Figure 2, energy for firing the squib is supplied directly from the +28 Volt supply. Caution must be exercised when arming this type of circuit. If anode voltage is applied too rapidly, the SCR may fire. This dv/dt effect acts thtough the SCR anode-gate capacitance (15 pt), which couples current to the SCR gate (in proportion to
anode dv/dt). The effect is negligible if dv/dt is under 1 Voltl~-as in Figure I, where it is limited by the
charging of C,. Faster rates of rise can be safely handled by increasing the SCR gate bias.
L,
+28V
10l'h
R,
10n
c,
c,
0.11'1
FIGURE 2
In Figure 2, the LRC input network limits the anode dv/dt to a safe value-below 30 Volts/j.lS. R, provides
critical damping to prevent voltage overshoot. While a simple RC filter section could be used, the high current required by the squib would dictate a small value of resistance and a much larger capacitor. Resistor R,provides
DC bias stabilization, while C, provides stiff gate bias during the transient interval when anode voltage is applied.
In this circuit the SCR is fired one second after arm4ig by means of the simple R, C, Z, time delay network.
R. provides a load for the SCR for testing the circuit with the squib disconnected-limiting the current to a level
well within the continuous rating of the SCR. The circuit can be reset by opening the + 28 Volt supply and then
re-arming,
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95·1064
806
PRINTED IN U.S.A.
DESIGN NOTE
DN·11
COMBINED AC·DC LOAD CONTROL SIMPLIFIES SCR RESET
Silicon Controlled Rectifiers (SCRs) are finding increased use in a wide variety of control circuit and power
switching applications. They offer an economical way to achieve high switching gain, efficiency and blocking
voltage.
When the inherent memory or "latching" feature is not desired, AC anode supply is often used, allowing
the SCR to turn off automatically upon removal of the gate control signal. With an AC anode supply, an additional benefit is derived-the SCR doubles in function as a rectifying element. Thus, it is possible to operate DC
loads directly from an AC power source, often eliminating the need for separate bulky and expensive DC power
sources.
When SCR latching action is desired, DC anode supply is commonly employed. Here, however, reset can be
a problem, since "brute force" reset techniques must normally be used. This involves an additional switching element, to either open or shunt the load voltage, and current from the SCR.
The circuit of Figure I retains the advantages of operating loads directly from an AC power source. Latching action is provided with no need for brute force reset techniques. The DC source needs to provide only a few
milliamps of SCR holding current, since load power is drawn from the AC source.
CONTROL
INPUT
II
FIGURE 1
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
807
PRINTED IN U_S.A.
DN·11
DESIGN NOTE
When the SCR is on, a half-wave rectified voltage waveform is a)?plied to the load. During each positive
half-cycle of the AC source, diode (or rectifier) 0, and the SCR conduct the load current as well as the DC
holding current provided through R,. During each negative half-cycle, 0, blocks the negative voltage from the AC
supply, allowing the SCR to remain in conduction. Resistive loads such as heaters and incandescent lamps are
driven satisfactorily with the half-wave rectified output of this circuit. DC loads that are less tolerant of this
waveform can easily be operated by using shunt capacitors or other filtering methods. Shunt free-wheeling diodes
should be employed across inductive loads.
Reset is simply accomplished by interrupting the holding current provided from the DC supply through R,.
The reset interval must, of course, be longer than one half-cycle of the AC line frequency, or it must be timed to
occur during the negative half-cycle, since load current will keep the SCR latched on during the entire positive
half-cycle. The reset interval must exceed the device gate recovery time which ranges from less than 0.5 IJS for the
higher speed SCRs to 50 IJS for the slower SCRs.
The DC supply voltage level is not critical and can be less than equal to, or greater than the peak AC supply
voltage. When it is less than the peak AC, however, 0, will conduct for a portion of each half-cycle when the
SCR is off, causing a current pulse to flow from the AC to the DC supply through R,.
0, must have a blocking voltage capability greater than the sum of the peak AC voltage plus the DC supply
voltage. The SCR voltage rating must be at least equal to the peak AC or DC supply voltage, whichever of these
is greater.
When many identical or similar circuits are used in a single system (as in a band of SCR incandescent lamp
drivers), multiple reset is easily accomplished by simultaneously interrupting the DC source and resetting all circuits connected to that source.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
808
PRINTED IN U.S.A.
DESIGN NOTE
DN·12
THERMAL DESIGN CONSIDERATIONS
For Lead Mounted Rectifiers
and Zeners, for 5 types
of mounting.
Determining The Power Rating for Your Application.
The information given in this section is presented for
straight-forward use by the designer. The value given in
this table is R6JA, the "Total" thermal resistance of the
diode and mounting together;. no other graphs or tables
are needed.
p..., TJmax - TAmo,
RaJA
Where: Pma, is the maximum power that can be dissipated
in the device reliably. TJma, is the maximum of the
operating temperature range, usually 17S·C, unless
derated for a military or hi rei application.
TAmax is the max temp that the ambient reference (air
below the device) will reach during operation.
Alternately,
Junction Temp Rise
PR aJA
CI
r- '/." +
,
e
"1/8"
o
.060"
TYPE 1
DIA.
PC BOARD, LIGHT
1'12"---1e
~'12" .1 .
j
·1e»
1'1,"
a
0
1/,"
\'/!6"DIA.
TYPE 2
PC BOARD, MEDIUM
TYPE 3
PC BOARD, HEAVY
=
=
.060"
~I/'"~
~pon~
\
_ _ and solder
YlZZZZZZ[]uLLLL
.060 Epoxy Glass
.060" dia. x
3/," high
Terminals are per MS 17122·7
TYPE 4 PC BOARD WITH CHESSMEN TERMINALS
~ ~
'12"
#16
H~k
~
Up
"e
Wrap once
~dsOlder
.060 Epoxy Glass
.125" dia. x \12" high
Terminals are per MS 17122·8
TYPE 5 TERMINALS AND HOOK-UP WIRES
UNITRODE CORPORATION. 5 FORBES ROAD
LEXI NGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95·1064
809
II
DN·12
DESIGN NOTE
ReJA
Total Thermal Resistance in Degrees C/watt
Mounting Type
Type
1N3611-3614
1N4245-4249
1N4461-4489
1N4736-4764
1N4942-4946
1N4954-4996
1N5063-5117
1N5186-5189
1N5186-5190
1N5550-5553
1N5614-5622
1N5802-5806
1N5807-5811
TVS 505-528
UES1101-1106
UES1301-1306
URI05-125
UR205-225
UT236-347
UT249-363
UT251-364
UT261-268
UT2005-2060
UT3005-3060
UT400S-4060
UTROl-61
UTR02-62
UTRlO-60
UTR2305-2360
UTR3305-3360
UTR4305-4360
UTX105-125
UTX205-225
UTX3105-3120
UTX4105-4120
UZ706-140
UZ4706-4120
UZ5706-5140
UZ7706L-7710L
UZ8706-8120
UZS 306-440
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
1
2
3
4
5
105
105
105
140
98
75
94
75
92
92
92
127
85
62
81
62
59
62
80
81
62
62
81
62
129
85
114
97
92
85
84
75
75
75
110
68
45
64
45
42
45
63
64
45
45
64
45
112
68
97
80
75
68
67
55
50
97
68
146
67
55
50
112
68
55
50
64
45
45
43
110
64
97
97
97
132
90
67
86
67
64
67
85
86
67
67
86
67
134
90
119
102
97
90
89
77
73
119
90
168
89
77
65
65
65
100
58
35
54
35
32
35
53
54
35
35
54
35
102
58
87
70
65
58
57
45
40
87
58
136
57
45
40
102
58
45
40
54
35
35
33
100
54
72
75
93
94
75
75
94
75
142
98
127
110
105
98
97
85
80
127
98
176
97
85
80
142
98
85
80
94
75
75
73
140
94
I
I
i
72
67
114
85
163
84
72
67
129
85
72
67
81
62
62
60
127
81
72
134
90
77
72
86
67
67
65
132
86
PRINTED IN U.S.A.
810
DN·13
DESIGN NOTE
TURN·OFF METHOD FOR SCRs
MINIMIZES EFFECT OF DV/DT
SCRs can be turned off by reducing the magnitude of the anode current to a level below that of the holding
current, either by opening the anode circuit or by driving the anode negative. Forward blocking voltage cannot be
reapplied until after the minority carrier charge stored in the device as a result of previous forward conduction
has been dissipated to a level that can be controlled by the gate bias, otherwise the SCR will self-trigger on again.
In addition, even after the SCRs have recovered, reapplication of anode supply voltage may cause selftriggering due to dv/dt.
Self-triggering of a SCR dueto dv/dt is caused by a capacitive current equal to the product of the anodegate (CAd capacitance of the SCR and the rate of rise (dv/dt) of applied anode voltage. Sensitivity of a SCR to
dv/dt effects can be controlled by the use of a gate-cathode resistor or a current bias. The SCR will self-trigger
only if the capacitive current is too large to be controlled by the bias resistor. The smaller the bias resistor, the
higher will be the critical rate of rise of anode voltage. However, if the anode-gate capacitance is fully charged
before the supply voltage is reapplied across the SCR, the device will be immune to dv/dt effects.
A simple SCR switching circuit is shown in Figure 1. When switch SI (which can be a relay or a transistor)
is in the closed position, the SCR will fire upon the application of a gate trigger pulse of the appropriate
magnitude and duration. Switch SI, when opened, will turn off the SCR. After switch SI is opened, the anodegate capacitance will charge through the load resistor and the lOOK between gate and ground. When the SCR has
recovered, SI can be closed, and no capacitive current will flow since CAG is already charged to the full anode
supply voltage.
1K
,----I
_J.._
D,
..
100K
FIGURE 1
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
PRINTED IN U.S.A.
811
DN·13
DESIGN tJOTE
When the cathode circuit of a copducting SCR is initially opened, a large reverse gate current can flow
which may damage the gate-cathode junction of the device. Reverse gate current should be limited to 3 rna for
safe operation of most SCRs. The bias resistors shown in Figure I accomplish this objective, while affording bias
stabilization over the operating temperature range. Bias resistor RGK removes all of the internally supplied gate
current out through the gate terminal. Under this condition, the internal gate current cannot flow across the gate
junction; the device is cut-off, and self-triggering cannot occur. If RGK was connected to the ground side of the
switch, when the switch opened the reverse gate current would be about 15 rnA - far exceeding the maximum
reverse current rating for most SCRs. RGG takes over from RGK when the switch is opened, limiting the reverse
gate current to less than 0.3 rnA. Diode D, decouples the gate trigger source from the SCR when the cathode
switch is opened. This pr'events a low impedance supply from drawing excessive reverse gate current.
For the situation where the anode supply voltage may be subjected to transient pulses or voltage spikes, a
small capacitor CGK , connected in parallel with RGK will absorb the transient charging current. If we assume CAG
is 100 pf then a CGK of 0.002 /.If will form a 20:1 voltage divider requiring a IOV pulse on the anode to result in
the required 0.5V (at 25°C) to trigger the SCR.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINQTON, MA 02173 • TEL. (En7) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
812
PRINTED IN U,.S.A.
DESIGN NOTE
DN·14
NANOSECOND SCR SWITCH FOR RELIABLE HIGH CURRENT PULSE
GENERATORS AND MODULATORS
The design of reliable modulator and pulse generator circuitry often presents the design engineer with seemingly conflicting requirements. In order to obtain fast rise times, "hard tubes" or hydrogen thyratrons are often
used. This results in a large system which consumes considerable power and has relatively low conversion efficiency. Reliability, jitter, and stability are also common problems in these systems.
To improve reliability, as well as decrease standby power consumption and improve conversion efficiency,
semiconductor devices are a natural choice. However, at the voltage and current levels most often encountered in
these applications, conventional semiconductors are usually too slow.
The nanosecond SCR switch developed by Unitrode allows the designer to upgrade high current, high
voltage modulator and pulse generator circuitry. A single device (GA201 or GA301 *) is capable of operating in
circuits with supply voltages up to 100 Volts DC and pulsed load currents in excess of 50 Amperes. It can be triggered directly from logic level signals (1 Volt, 200 microamps) and exhibits a rise time of less than
10 nanoseconds to 1 Ampere with only 10 milliamps of drive signal. Single switches operated in this mode can be
used as high current replacements for avalanche transistors, modulators, and harmonic wave form generators.
Special circuity has been developed to apply these nanosecond switches in applications where supply voltages
exceed the forward blocking capability of a single device. The simplest of these is shown in Figure 1.
The I meg-ohm resistors act as a voltage-sharing network to insure that no single device is overvoltaged
because of unequal leakage currents. Turn-on is accomplished by applying a trigger signal to the primary of the
pulse transformer, Tl. The capacitor, which has been charged to the supply voltage through Rc, discharges
through R L , and the string of SCRs. This circuit is useful until the number of stages used requires a pulse
transformer that becomes objectionably bulky. Beyond that point the circuit of Figure 2 or 3 is used.
Figure 2 illustrates an approach that uses a pulse transformer to trigger only part of the string, while the rest
of the devices in the string are supplied with gate drive through the zener diodes. With a supply voltage of 360
Volts DC, a 95 Volt ± 5OJo zener diode across each SCR in the string prevents unequal voltage distribution. When
SCR, and SCR. are triggered, 360 Volts appear across SCR, and SCR, causing zener diodes Z, and Z, to conduct.
Since 0, and 0, are back-biased, the current must flow through the gate-to-cathode junctions of SCR, and SCR"
thus driving them on. Up to eight stages can be stacked in this manner using a pulse transformer to drive only the
bottom two SCRs in the string. Driving three SCRs with a pulse transformer allows stacking sixteen stages, which
can switch a 1440 Volt load using a pulse transformer that needs to have a dielectric isolation rating of less than
300 Volts.
Figure 3 uses no pulse transformer and can be extended to virtually any number of stages. When SCR, is
triggered, the cathode of SCR, drops from + 100 to essentially 0 Volts. Capacitor C, discharges into the gate of
SCR, causing it to conduct, and this process is repeated for SCR, and SCR•. This circuit has the added feature of
providing negative bias to the SCRs during recharge of the load in order to minimize the effect of dv I dt. As the
voltage rises on the anode of SCR., current flows through the path consisting of C., R., C" R" C" R" etc. This
provides negative bias for the gate-to-cathode junctions of the SCR in the string, making them less sensitive to
dv/dt triggering. This allows the use of rapid recharge circuits which permits operation at higher repetition rates.
Either resonant recharge or active (SCR) rapid recharge techniques may be used with these circuits.
"'GA201 recommended for military, GA301 for commercial applications.
UNITROOE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173 • TEL. (617) 861·6540
TWX (710) 326·6509 • TELEX 95-1064
813
PRINTED IN U.S.A.
DESIGN NOTE
DN·14
+300V DC
Rc
T,
<1K
SCR,
1M
C
Dc
0,
RLy
Z3
d
]
FIGURE 1
DR
Z4
V
FIGURE 2
DC
len
FIGURE 3
If the energy storage element(s) and load consist only of R and C components, the charging resistor must be
large enough to limit the DC current to a value less than the minimum holding current of the SCRs in the string.
When the load contains an inductive component, as is usually the case in modulator circuits, the network can be
designed to "ring" in order to reverse-bias the SCR string momentarily, permitting the SCRs to regain their forward blocking capability even though Rc allows more than the minimum holding current to flow. Diode DR_may
be used in all circuits so that the recharge current will not flow through the output element. In Figures 2 and 3,
DR shunts the reverse "ringing" current around the output element. Diode Dc must be used in circuits that contain inductive elements to protect the string from being excessively back-biased due to circuit ringing.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
814
PRINTED IN U.S.A.
DESIGN NOTE
DN·15
NANOSECOND SCR FOR LASER DIODE PULSE DRIVER
The use of pulsed gallium-arsenide lasers requires a reliable high speed, high current switch to drive these
devices. In the past the only solid state devices that could be used in this application were avalanche transistors
and fast medium power transistors. Avalanche transistors presented reliability problems, while the standard
medium power transistors available were too slow. The GA200 series "Nanosecond SCR" with a rise time
capability of 10 nsec to I Amp or 20 nsec to 30 Amps provides a solution to both the reliability and the speed
problems and appears to be ideal for this type of application.
The circuit shown in Figure I utilizes a GA201 device along with a lumped constant delay line to generate
the desired square current pulse. For simplicity, a single capacitor could be used instead of the delay line. The
delay line, however, has the advantage of producing a square pulse that provides sharp turn-off, which limits the
excess power dissipation that would occur in the laser diode if the pulse fell exponentially. The impedance of the
delay line (=
is chosen to produce a slight mismatch, which produces overshoot on the trailing edge of the
pulse. This overshoot acts as a reverse bias on the anode of the SCR, assisting in turning it off. A typical value
for the delay line impedance would be 1 to 2 ohms, which approximates the impedance of the load formed by the
SCR and laser diode in series. The time duration of the pulse (=
per section) can be made as short as desired
with a value of 50 to 100 nsec being typical.
Vc)
-_ _ _ _ _ _ _ Volts
-"r--'--'_ _ _ _ _ _ _ _ Sec.
Modulator Application:
1.
2.
Use ----------T--+----,,-Peak Voltage ______~-~~,,~~~~----------------------------V
3.
~
S~.
5.
~----------___ AmpsAt-------oC
~
S~.
7.
Average Current _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _,_ _ _ _ _ _ _ _ _ _ Amps
8.
PRF
PPS
ENVIRONMENTAL REQUIREMENTS
Operating Medium
Operating Temperature Range
Storage Temperature Range
Other Requirements _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___
MECHANICAL REQUIREMENTS
Maximum Size _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __
Maximum Weight _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __
Terminal Provisions _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___
Mounting Provisions _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___
825
~HiGH'"voiTAGE DEVICES
II
826
SALES OFFICES
PART NUMBER INDEX
II
DESIGNERS' GUIDES
III
POWER TRANSISTORS & DARLINGTONS
IV
SWITCHING REGULATOR POWER CIRCUITS
V
RECTI FI ERS
VI
HIGH VOLTAGE RECTIFIERS, RECTIFIER
MODULES & MULTIPLIERS
VII
RECTIFIER BRIDGE ASSEMBLIES
VIII
POWER ZENERS & TRANSIENT VOLTAGE SUPPRESSORS
IX
THYRISTORS (SCRs, Triacs, PUTs)
X
SWITCHING & GENERAL PURPOSE DIODES
XI
PIN DIODES
XII
CAPACITORS
XIII
APPLICATION NOTES & DESIGN NOTES
XIV
MECHANICAL SPECIFICATIONS
827
828
M ECHAN ICAl SPECI FICATION S
00-4
00·5
1,;.·28
UNF·2A
00-35
00-7
.078
.:.~_
.107
.L
.022
=911
p=~
Tf--::--+'·0MIN.~
TO-3 (3 PIN)
TO·3
.450
.188
.312
M~~
~D1;lliJE:
l;
135-HJ I
-450
.250
:g;:
OIA. -'--¥-"\,Gl,L---""'"
M~~.
f---
MAX.
::~:
;[1__ -
RAD.
" - .161
.188.../
,151
~:~:
DIA.
.440
.312
COLLECTOR CONNECTED TO CASE
Pancake TO-5
TO·5
..
85
~
;:;+';"1
trbt~---~
--
165
030
EMITTER
45"
~~3.
1010
l3~r-r==l=: - -~
BASE
100
j:LLJF~ 2-'--_~d"'__If>
-
m
COlLECTOR--J
'"
UNITROOE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
--I
+ 002
15~,7N-l] =O~3; gg
829
PRINTED IN U.S.A.
TO·9
TO·t8
MIN'l
1
1 ·~~1F1.'
.370
t-
-r-a=-r-
CATHODE
21o
1.-.
.'MIN.~
1·170~
030
----'29°1l~I:OIO
--'
----- ~.'-,
- --
-
,195 DIA .
.178
-
-. .
c:=:::;)
..L.-
----
"'" I
'.
-I ~~~.
:::~~~
.017
DIA .
017~::~
.335
.230. DI'
.209
.
.275
TO·33
TO·59
COLLECTOR CONNECTED TO
CA~E
.
00
TO·66
TO·66 (3 PIN)
034
.,--
I
.620
.028
OIA .
I.075
oso
1,,1
.
B.360
.210
.190
MIN.
TO·66 (4 PIN)
COllECTOR CONNECTED TO CASE
TO·92
.019
==r='
_~T
=-1_210~_500MIN~I-11
~
~
.620
-
c::::=:::J
135
O"
.0,28
MAX.
3()-~-
t
.075
.OSO
. . I+-
205
.105
.095
20-----
Irs
r
•
._-
170
r---
\
.10'
.080
-~
.125
.340
.360
.250
MIN.
UNITRODE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861-6540
TWX (710) 326·6509 • TELEX 95-1064
SCR
830
PUT
TRANSISTOR
3 - Anode
3 - Cathode
3 - Collector
2 - Gate
2 - Gate
1- Cathode
1- Anode
2 - Base
1- Emitter
PRINTED· IN U.S.A.
MECHANICAL SPECIFICATIONS
TO-98
TO-111
r 11'"\
.455=5.7\l.400
ll:
10.32- NF-2A
THREAD
.423
'1;['43~_
.570
t
~
I;
BASE
COLLECTOR
. '3180,:~----r:,
~
~S
.313
t
1
.090
EMiTTER
.070
CASE
TO-220
SEATING
PLANE
MILLIMETERS
DIM
MIN
1423
966
3.56
051
3.531
'"
H
038
1270
J
MAX
15.87
10.66
."
'"
3733
2.79
INCHES
MIN
MAX
0.560
0380
0625
0.420
0.140
0.19('
0020
0.045
0139
0.090
0.147
0025
6.35
0.110
0.250
1427
0015
o SOD
1.14
1.77
0.045
0070
483
533
0.190
0.210
2.54
2.04
304
0.100
0.120
2.92
0.115
0055
0.270
064
1.14
1.39
0080
0045
S.85
6.85
0.230
0562
SIMILAR TO TO-220
SEATING
r(Cf
"LANE
1 --1
8
1
b5~~. Jt~,,~,"r-=-'-
,0--t
,~
_I
'r-'
-I
f-'
,jl-- J
j~
f
i .
o
G
2. Anode
Tab is connected
to Cathode.
N ,...
A
MILLlMI'U.
MIN
MAX
14.23 15.17
9." 10.66
DIM
••
INCNII
"'N
..
"
.....
.....
C
3."
D
0.51
1.14
G.!I6O i
0.310 '
0.140
0.11D
0.045
.... .....
F
3.531
3.733
0.139
'.29
2.79
6,35
0....
G
H
J
,
0.147
.... ..... .....
.....
,'.54... ,... .....
.....
.... I." .....
•• 31
0.015
0,110
K
12.10
14.27
0.512
l
1.14
4.lJ
1.71
0.0&51 0.070
5.3]
0.110
3."
0.100
N
Q
•
5
T
1.14
1.15
0.210
0.120
o.l15
0.0"
0.270
B
1
Band ,ndlcate~_
cathode end,
r
l!iS" TYPj
39mn:'
UNITROOE CORPORATION· 5 FORBES ROAD
LEXINGTON, MA 02173· TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
-
028" '001
071mm '.03
60
II
'..T
MAX .
08
216mm
I
831
PRINTED IN U.S.A.
C
Cl
:~~:: f::~:~~llONG THREAD
'4-40 x
AA,BB,CCl
BE
O~A
1
1
r9
~L~'lc'+"1
~CJB
~EI_~
~ ,
"','
~3.015
'
'
.110
-1-
I
r--,
I
.,
.750
r--2.985
.720
~:~tg-
AA
AA
se"es
I Willt UOl8801
A..475 M rIIb.
B.. 104M max
C.. 3OO"typieal
O..028H:!: .001
E. .975 min.
BB
3 Witt UOZ8Q7 series
5 Watl UOIS801
A.. 500 H nIU.
A..45O"mu.
8 .. 085Hmlll.
C.. 275 I""(I'
D.. 028H±.OOIH
E.. 700" min.
SWettUOZ7807 Se"II!!o
A.•6OO"mu.
8. 185M II\II~.
C.325 H tnlleal
O. 040- ± 001
E. .975-min.
I
-1
CCl
se"ps
B .• 14SHITIU.
H
H
H
I
H
g::==~~.
TAPPED 10-32 THREAD
E. ,925"m;n.
DD
CAX
"'''ri
(6.35/
3.00.t015
1711.21 ± (38)
"
.
(10.16)
fit 25
(6.351
A37.t -01501A.
(1109):1:.\.36)
HIGH VOLTAGE WIRE
FLAME RETARDENT
STVLE 3238 FR,'
AOKVOCTYPE2PL
POLYPROPYLENE
V.oRATeO
ULRATEO
"'---.L
1.:,,28 II 14
6.Slmm
Dimensions in inches and (millimeters)
DE,DF
Lt.
Dimensions in inch.. with metric
~m in~..nt.....
Mlximum
DE
A
B
C
C,
~
01),
lI<
DF
A
832
.240
••5
1.15
.51
(6.10)
16.13)
(4Ut)
(14.41)
...
.13 21.01
.010 2.03
(6.71)
.... (10.16)
1.95 ('9.53)
.61 111.02)
Oimensions in inches with metric
in ~entheses
M.ximum
1.020 (25.91)
.9~0
~m
)
--'!.
,
.0
.0,
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON. MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
.
. 1
(.10)
(. )
3.'~ ~'1.&3)
.•5
.... 13)
.317
.400
3.650
1.250
(1.05)
110.16)
(92.71)
(31.75)
NOTES
•
•
2.6
NOTES
•
l
5•
PRINTED IN V.S.A.
MECHANICAL SPECIFICATIONS
DH
DG
3.487' DIA MAX.
»------81.5mm--
'040TY~'CAL
jl .020
.23Si"-"!
'2~OI!
10-32THRD.
USS-IO
10-32
~l.l0-l
UNF-2B
.980
11.030" OIA.
--I
.-,
1.00
'.97
THRO
--._-
.330
1
_
.320
I
jo---:MAX.---oj
25.5mm
G
F
.028 DIA.
310..r6~1
-I~ Tinned
1,512
I
REF
Ir+,JL-+,---'-c'-I-:1
MAX.
Copper
.875
10-0.15" Max.
1
I
[J~
3.81mm
0.32" Max.
8.llmm
GA
GH
.688:' MAX.
U1.48mmJ
O.SO"
Tinned Copper leads
::t.OI
HJ,HK, HL,HM,HN,HO,HP
• •
.,
'1~:~o~~'
"100'':;!;: .030
7.62mm=:.76
!
MAX. LENGTHS
.562"
1.&25"
,14.21mm
41.2Imm
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
833
PRINTED IN U.S.A.
L1
L 1 with FI.n ••
mm
INS.
COATING
A 1.176 - 1.196
B' .650
.500 NOM.
C
0
.0ti0
E .200
F
.078 R. TYP.
G
.690 - .710
H
.050
J
.150
.025
K
.020
l
29.87 - 30.38
16.51
12.70 NOM.
1.53
5.08
.20 R. TYP.
17.52 - 18.04
1.27
3.81
.6'
.51
L2
L2 with Flange
mm
INS.
1.176 - 1.196
.500
C 1.0 NOM.
.060
0
.150
E
.078 R. TYP.
F
G
.690 - 710
H
.050
J
.150
K
.025
.020
l
M .040
29.S7 - 30.38
12.70
25.4 NOM
1.53
3.81
.20 R. TYP .
17 .52 - 18.04
1.27
3.81
.64
.51
1.02
A
B
..
__:T;Njl
~,
E
SUBSTRATE: BeQ
.J..
II
PROTECTIVE
H K J
L3
DIMENSIONS
35.43
1.395
1.\87
.675
17.15
.156 (TYP.)
3.96 (TYP.l
.675
.700
.187 (.032 THICM:) (GATE)
.250 (.OJ2·THICKJ (2 PLACES)
17.18 (0.81 THICK) (GATE)
6.35 (0.81 THICK) (GATE)
1.31
.442
lUll
14.13
7.11
:;so
.280
.218
].96 (2 PLACES)
156 (2 PLACESI
'50
875 (TYPICALI
22.23 (TYPICAll
L7
_1~~11
f ~THODE
I F~
..LJ
E-l
SUBSTRATE Al,O,
17 with Fiance
INS.
A 0.4
B
.350
.300
·0 .500 MIN.
ANODE
GATE
U-
-!
~
PROTECTIVE
C~ATING
+ ,- .,I!
J
UNITRODE CORPORATION. 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL. (617) S61·6MO
TWX (710) 326·6509 • TELEX 95.1064
E
F
E
HI
:
G
H
.100
.032
.150
.015
.020
.020
mm
1016
8.89
7.62
12.70 MIN .
2.54
.82
3.Bl
.51
.51
>
G',
834
PRINTED IN U.S·A.
MECHANICAL SPECIFICATIONS
MB
MA
I
10-. 755 .-.1
~i-.I ::Jg
.735
.7 5 5 : . .
.735
+
DIA .
:;.
-,-n
'---$
....
.570
.L
M~
,,,
.•26
Me
MD
ENCAPSULATION
MATERIAL
METAL CASE
: : ;: : , ' ~;~ :T
;
AC
3
AC
I--:H
SEE NOTE 5
005
TERMINAL OETAllS
MF
ME
......•.
r-~======~~~-lr
:~~~DIA .
12 PLACES}
:~!:DIA.
12 PLACES)
RRR
f
:~-LCr:Y;:;.::._____;:;4,::;:'-I~AX.
r;:r.
.U5
NA
i
NB
.140 CIA.
TJ~~E~;~U --,~
II
090lA TYP
M~~ .L
~'
240 MAX
UNITROOE CORPORATION. 5 FORBES ROAO
LEXINGTON, MA 02173. TEL. (617) 861-6540
TWX (710) 326-6509 • TELEX 95-1064
TypIcal Wellht
10 grams
835
PRINTED IN U.S.A.
ND
NC
.09 DIA.
TYP.~
--'II-TINNED CU .•040 TYP.
~, I
~.6~O
aY"-~-"""~I-;-:-L: jX
I
."J,"i
.IIS
PA
.250 ± .01
(6.35) ± (.254)
,40 ± .001 OIA.
~
110.161' 1.02541
======*~=9~~__________~)F========
--1-
I~--- CASE LENGTH ----I
I
2.0 Min. _ _
150.81
MM
38.1 ± .508
2.5 ± .0..2
63.5 ±
3.0 ± .02
76.2 ± 50..8_
88.9 :t .50..8
3.5 ± ,0..2
I--I
.250 ± .01
16.351 ± 1.2541
CASE LENGTH
Ins.
1.5 ± ,0..2
2.0.. ± ,0..2
50...8 ± .508
.:.-
5~~
I
Oimensions in inches and (millimeters)
PB
1-
==============(C
CASE LENGTH
---I ,
CASE LENGTH
.250 .1 .01"
P"'=16.35mm l , 1.254mml
~-------T
50 .t .02"
1(12.70mm) + (.50Bmm)
TINNED COPPER LEADS
[
,.....--,------,~-'-~
I
I
.051 ± .001" DIA.~
(.254mm) ± (1.30mm)
i
I
2" Min
(SO.80mm)
MM
Ins.
1.125 ± ,0..2
28.58 ± .508
1.625 ± .0.2
41.28 ± .50B
2,0..0..0.. ± .0..2
50.80 ± .508
2,375
2.750..
3,50..0..
4.250..
60.33 ± .508
± .0..2
± .0..2
69.80.. ± .50..8
± .0..2
88.90 ± .508
----
"'-
± ,0..2
107.95 ± .508
Dimensions in inches and (millimeters)
PC
.38 ± .01
19.651 ± 12.541
j
.051 ± .003 PIA.
11.301 , 10.081
====~l~C~
I
__~)F======
1---
CASE LENGTH
--I
1
~IL--~I
.69 ± .02
t
(17.53) t (0.51)
~_ _ _ 2(~:~r
MM
1.5 ± .03
38.10.. ± 0..,76
2.5 ± .0..3
4.5 ± .03
5.5 ± .0..3
63.50.. ± 0...76
88.90.. ± 0...76
114.30 ± 0.76
139.70.. ± 0...76
6.5 ± .03
165.10.. ± 0...76
3.5 ± .03
=
I
CASE LENGTH
Ins.
___
Dimensions in inohes and (millimeters)
UNITROOE C;ORPORATION • 5 FORBES ROAD
LEXINGTON, MA 02173 • TEL, (617) 861-6540
TWX (710..) 326-6509 • TELEX 95-1064
836
PRINTED IN U.S.A.
MECHANICAL SPECIFICATIONS
PMA
CASE LENGTH
MM
Ins.
1.65 ± .030
41.91 ± 0.76
2.20 " .030
55.88 " 0.76
69.85 ± 0.76
2.75 ± .030
3.85
~~
~ 0
g~
lID II
I
75
I
~~:-:..
r+'" '"
II
TO~:~A.~~5\381J
(254/
~,~ ~ ~
+
4.95 ± .030
97.79 ± 0.76
125.73 ± 0.76
6.05 " .030
7.15 ± .030
181.61 ± 0.76
8.25
9.35
25 (6351 R lYP
±
.030
±
.030
±
.030 237.49
10.45 ± .030
11.55 ± .030
' - NI PLATED 062 1'.575) D"Fe
13.75 " .030
HEAT SINK TYP
153.67" 0.76
209.55 ± 0.76
±
0.76
265.43 ± 0.76
293.37 " 0.76
349.25 ± 0.76
For mounting and electrical spacing.
refer to individual data sheets.
Dimensions in inches and (millimeters)
S
PME
_''''''''---o!'I'''''''·''-
(6736)[4369)
t-I-+-r--~--....
1
!-t-f--'~r
440' Max.
i
J=====';'-'--'--t-t~~-'-t--+--;'~"",'-"
. "I. 4~O
110002)
11 17mm
_
I
__ 110592)4-
ll:rM"
nrr ~ .a28D'"
• 25 (11176' 635) TVPE 2PL
FOR MOUNTING AND ELECTRICAL
CONNECTION
llJ7mm
~216~;-;-+
~c
"II PLATED 062 (1575) OHFC
TOLERANCE
"""7""
8-.---------.9
XX· 015(381)
XXX-Ol01254j
1"---·"
"I''+"''
+
---1.
~c
0.50 long
O.71mm 12.7mm
Tinned Copper lead
100 Typ
--..I
~
2.54mm
. """'" '"
Dimensions in inches and (millimeters)
SA
SB
I..
I
.50 MAX.
12.70mm
.75
MINt
1
~
.02801A
=
,===-~-tc:::=JJ-.~1
@)
... 10--
TlN'O CU.
sc
@)
I--- ~~~. -+---1 T~~.gtU.
181"' MAX.
4.7Smm
--
Source Exif Data:
File Type : PDF
File Type Extension : pdf
MIME Type : application/pdf
PDF Version : 1.3
Linearized : No
XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date : 2017:07:17 19:20:03-08:00
Modify Date : 2017:07:17 19:51:36-07:00
Metadata Date : 2017:07:17 19:51:36-07:00
Producer : Adobe Acrobat 9.0 Paper Capture Plug-in
Format : application/pdf
Document ID : uuid:f5eb3ada-f7b5-564d-b71a-023fd12ae381
Instance ID : uuid:cf2773db-a92a-034f-867f-7065893d433d
Page Layout : SinglePage
Page Mode : UseNone
Page Count : 840
EXIF Metadata provided by EXIF.tools