1981_82_Memory_Databook 1981 82 Memory Databook

User Manual: 1981_82_Memory_Databook

Open the PDF directly: View PDF PDF.
Page Count: 361

Download1981_82_Memory_Databook 1981 82 Memory Databook
Open PDF In BrowserView PDF
)lIALITY' RELIABILITY· TECHNOLOGY

MOTOROLA

SELECTOR
GUIDES
CROSS-REFERENCE

1

MOS Memories
RAM, EPROM, EEPROM, ROM

2

CMOS Memories
RAM, ROM

3

Bipolar Memories
TTL, MECL-RAM, PROM

4

Memory Boards

5

Mechanical Data

6

MOTOROLA
MEMORIES

Motorola has developed a very broad range of reliable MOS and bipolar
memories for virtually any digital data processing system application.
Complete specifications for the individual circuits are provided in the
form of data sheets. In addition, selector guides are included to simplify
the task of choosing the best combination of circuits for optimum
system architecture.
New Motorola memories are being introduced continually. For the latest
releases, and additional technical information or pricing, contact your
nearest authorized Motorola distributor or Motorola sales office.
The information in this book has been carefully checked; no responsibility, however, is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of microelectronic devices
any license under the patent rights of the manufacturer.

© MOTOROLA INC., 1980
"All Rights Reserved"

iii

MECL, EXORciser are trademarks of Motorola Inc.

iv

Table of Contents
Organization

Page

Alphanumeric Index ......................................................... vii

CHAPTER 1
Memories Selection Guide .................................................... 1-2
Memory Systems Board Selector Guide and Cross Reference .......................... 1-8
MOS Memory Cross-Reference ................................................ 1-9

CHAPTER 2
Dynamic RAMs
MCM4027A
MCM4116B
MCM4517
MCM6632
MCM6633
MCM6664
MCM6665
MCM6665L25

4K x 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
16K x 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
16K x 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20
32K x 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26
32K x 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 c34
64K x 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-41
64K x 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-49
64K x 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-56

Static RAMs
MCM2114,21L14
1 K x 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-63
MCM2115A, 21L15A, 2125A, 21L25A 1 K x 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-68
MCM2115H,2125H
1Kx1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-74
MCM2147
4Kx1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-75
MCM2147H
4Kx1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-80
MCM2148
1Kx4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-81
1Kx4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-85
MCM2149
16Kx1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-86
MCM2167
2K x 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-87
MCM4016
MCM6641, 66L41
4K x 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-88
MCM6810, 68A10, 68B10
128 x 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-92

EPROMs
MCM2532, 25L32
MCM2708, 27A08
MCM2716 27L16
TMS2716, TMS27A16
MCM68708,68A708
MCM68732,68L732
MCM68764,68L764
MCM68766

4K x 8
1K x 8
2K x 8
2K x 8
1K x 8
4Kx8
8K x 8
8Kx8

EEPROMs
MCM2801
MCM2802
MCM2816

16x16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-141
32 x 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-206
2Kx8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-147

ROMs
MCM6670, 6674
MCM66700, 710, 714, 720, 730, 734,
740,750,751,760,770,780,790
MCM68A30A, 68B30A
MCM68A308,68B308
MCM68A316A
MCM68A316E
MCM68A332
MCM68A364,68B364
MCM68365
MCM68366

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-96
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-102
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-108
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-114
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-120
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-126
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-131
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-136

128x(7x5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-148
128x(7x9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-155
1 K x 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-169
1Kx8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-174
2K x 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-179
2Kx8 . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . 2-183
4Kx8 . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . 2-187
8Kx8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-191
8K x 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-196
8Kx8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-201

v

Table of Contents (Continued)
Page

Organization

CHAPTER 3

CMOS Memories

Static RAMs
MCM14505
MCM14537
MCM14552
MCM5101, 51 L01
MCM6508, 6518
MCM65116
MCM65147
MCM65148

64 x 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
256x1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
64x4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20
256x4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-27
1 K x 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-31
2K x 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-35
4K x 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-36
1 K x 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-37

ROMs
MCM14524
MCM65516

CHAPTER 4

256x4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-38
2K x 8 ..... ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-44

Bipolar Memories

TTL RAMs
1024 x 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
1024x 1 . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7

MCM93415
MCM93425

TTL PROMs
MCM7680, 7681
MCM7684, 7685

1024x8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11
2Kx4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15

MECL Memories
General Information ..................................................... 4-19
MECL RAMs
MCM10143
MCM10144,10544
MCM10145,10545
MCM 10146, 10546
MCM10147, 10547
MCM10148,10548
MCM1 0152, 10552

8 x 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-22
256x 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-27
16 x 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-29
1024x1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-31
128 x 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-33
64 x 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-35
256x 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-37

MECL PROMs
MCM10139,10539
MCM 10149, 10549

CHAPTER 5

32 x 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-39
256x4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-43

Memory Subsystems

Board Level
MMS1102
MMS1122
MMS1132
MMS1117
MMS1119
MMS1128
MMS1170
MMS780
MMS8064

LSI-11 Compatible Add-In Memory (32K x 18) . . . . . . . . . . . . . . . . . 5-3
LSI-11, LSI-11/23 Compo Add-In Memory (32K x 16) ............ 5-5
LSI-11, LSI-11123 Compo Add-In Memory (1 28K x 16) ........... 5-7
PDP-11 Compatible (HEX SPC) Add-In Memory (64K x 18) ......... 5-9
PDP-11 (Modified or Extended Unibus) Compo Memory (128K x 18) .. 5-11
PDP-11 (Modified Unibus) Memory Compo (32K, 48K x 18) ....... 5-15
PDP-11170 Compatible Add-In Memory . . . . . . . . . . . . . . . . . . . . . 5-20
VAX-11/780 Compatible Add-In Memory . . . . . . . . . . . . . . . . . . . 5-22
Inter Multibus Compatible Memory . . . . . . . . . . . . . . . . . . . . . . . . 5-25

CHAPTER 6 - Mechanical Data . ......................................... 6-1

vi

Alphanumeric Index
D.~.

Page

Device

MCM10139 . . . . . . . . . . . . . . . . . . . . . 4-39
MCM10143 . . . . . . . . . . . . . . . . . . . . . 4-22
MCM10144 . . . . . . . . . . . . . . . . . . . . . 4-27
MCM10145 . . . . . . . . . . . . . . . . . . . . . 4-29
MCM10146 . . . . . . . . . . . . . . . . . . . . . 4-31
MCM10147 . . . . . . . . . . . . . . . . . . . . . 4-33
MCM10148 . . . . . . . . . . . . . . . . . . . . . 4-35
MCM10149 . . . . . . . . . . . . . . . . . . . . . 4-43
MCM10152 . . . . . . . . . . . . . . . . . . . . . 4-37
MCM10539 . . . . . . . . . . . . . . . . . . . . . 4-39
MCM10544 . . . . . . . . . . . . . . . . . . . . . 4-27
MCM10545 . . . . . . . . . . . . . . . . . . . . . 4-29
MCM 10546 . . . . . . . . . . . . . . . . . . . . . 4-31
MCM10547 ..................... 4-33
MCM10548 . . . . . . . . . . . . . . . . . . . . . 4-35
MCM10549 . . . . . . . . . . . . . . . . . . . . . 4-43
MCM10552 . . . . . . . . . . . . . . . . . . . . . 4-37
MCM14505 . . . . . . . . . . . . . . . . . . . . . . 3-3
MCM14524 . . . . . . . . . . . . . . . . . . . . . 3-38
MCM14537 . . . . . . . . . . . . . . . . . . . . . 3-12
MCM14552 . . . . . . . . . . . . . . . . . . . . . 3-20
MCM21L14 ..................... 2-63
MCM21 L 15A .................... 2-68
MCM21L25A .................... 2-68
MCM2114 . . . . . . . . . . . . . . . . . . . . . . 2-63
MCM2115A . . . . . . . . . . . . . . . . . . . . . 2-68
MCM2115H . . . . . . . . . . . . . . . . . . . . . 2-74
MCM2125A ..................... 2-68
MCM2125H . . . . . . . . . . . . . . . . . . . . . 2-74
MCM2147 . . . . . . . . . . . . . . . . . . . . . . 2-75
MCM2147H . . . . . . . . . . . . . . . . . . . . . 2-80
MCM2148 . . . . . . . . . . . . . . . . . . . . . . 2-81
MCM2149 . . . . . . . . . . . . . . . . . . . . . . 2-85
MCM2167 . . . . . . . . . . . . . . . . . . . . . . 2-86
MCM25L32 . . . . . . . . . . . . . . . . . . . . . 2-96
MCM2532 . . . . . . . . . . . . . . . . . . . . . . 2-96
MCM27A08 .................... 2-102
MCM27L16 .................... 2-108
MCM2708 . . . . . . . . . . . . . . . . . . . . . 2-102
MCM2716 . . . . . . . . . . . . . . . . . . . . . 2-108
MCM2801 . . . . . . . . . . . . . . . . . . . . . 2-141
MCM2802 . . . . . . . . . . . . . . . . . . . . . 2-206
MCM2816 . . . . . . . . . . . . . . . . . . . . . 2-147
MCM4016 . . . . . . . . . . . . . . . . . . . . . . 2-87
MCM2047A . . . . . . . . . . . . . . . . . . . . . . 2-3
MCM41168 . . . . . . . . . . . . . . . . . . . . . 2-13
MCM4517 . . . . . . . . . . . . . . . . . . . . . . 2-20
MCM51L01 . . . . . . . . . . . . . . . . . . . . . 3-27
MCM5101 . . . . . . . . . . . . . . . . . . . . . . 3-27
MCM6508 . . . . . . . . . . . . . . . . . . . . . . 3-31
MCM65116 . . . . . . . . . . . . . . . . . . . . . 3-35
MCM65147 . . . . . . . . . . . . . . . . . . . . . 3-36
MCM65148 . . . . . . . . . . . . . . . . . . . . . 3-37
MCM6518 . . . . . . . . . . . . . . . . . . . . . . 3-31
MCM65516 . . . . . . . . . . . . . . . . . . . . . 3-44
MCM66L41 .................... : 2-88
MCM6632 . . . . . . . . . . . . . . . . . . . . . . 2-26
MCM6633 ...................... 2-34

Page

MCM6641 . . . . . . . . . . . . . . . . . . . . . . 2-88
MCM6664 . . . . . . . . . . . . . . . . . . . . . . 2-41
MCM6665 . . . . . . . . . . . . . . . . . . . . . . 2-49
MCM6665L25 ................... 2-56
MCM6670 . . . . . . . . . . . . . . . . . . . . . 2-148
MCM66700 . . . . . . . . . . . . . . . . . . . . 2-155
MCM66710 . . . . . . . . . . . . . . . . . . . . 2-155
MCM66714 . . . . . . . . . . . . . . . . . . . . 2-155
MCM66720 .................... 2-155
MCM66730 .................... 2-155
MCM66734 .................... 2.-155
MCM6674 . . . . . . . . . . . . . . . . . . . . . 2-148
MCM66740 .................... 2-155
MCM66750 .................... 2-155
MCM66751 .................... 2-155
MCM66760 . . . . . . . . . . . . . . . . . . . . 2-155
MCM66770 . . . . . . . . . . . . . . . . . . . . 2-155
MCM66780 . . . . . . . . . . . . . . . . . . . . 2-155
MCM66790 .................... 2-155
MCM68A 10 . . . . . . . . . . . . . . . . . . . . . 2-92
MCM68A30A ................... 2-169
MCM68A308 ................... 2-174
MCM68A316A .................. 2-179
MCM68A316E .................. 2-183
MCM68A332 . . . . . . . . . . . . . . . . . . . 2-187
MCM68A364 ................... 2-191
MCM68A708 ................... 2-120
MCM68B 10 . . . . . . . . . . . . . . . . . . . . . 2-92
MCM68B30A ................... 2-169
MCM68B308 ................... 2-174
MCM68B364 ................... 2-191
MCM68L732 ................... 2-126
MCM68L764 . . . . . . . . . . . . . . . . . . . 2-131
MCM6810 . . . . . . . . . . . . . . . . . . . . . . 2-92
MCM68365 . . . . . . . . . . . . . . . . . . . . 2-196
MCM68366 .................... 2-201
MCM68708 .................... 2-120
MCM68732 .................... 2-126
MCM68764 .................... 2-131
MCM68766 .................... 2-136
MCM7680 . . . . . . . . . . . . . . . . . . . . . . 4-11
MCM7681 . . . . . . . . . . . . . . . . . . . . . . 4-11
MCM7684 . . . . . . . . . . . . . . . . . . . . . . 4-15
MCM7685 . . . . . . . . . . . . . . . . . . . . . . 4-15
MCM9341 5 . . . . . . . . . . . . . . . . . . . . . . 4-3
MCM93425 . . . . . . . . . . . . . . . . . . . . . . 4-7
MMS1102 . . . . . . . . . . . . . . . . . . . . . . . 5-3
MMS 111 7 . . . . . . . . . . . . . . . . . . . . . . . 5-9
MMS 111 9 . . . . . . . . . . . . . . . . . . . . . . 5-11
MMS1122 . . . . . . . . . . . . . . . . . . . . . . . 5-5
MMS 11 28 . . . . . . . . . . . . . . . . . . . . . . 5-1 5
MMS1132 . . . . . . . . . . . . . . . . . . . . . . . 5-7
MMS1170 . . . . . . . . . . . . . . . . . . . . . . 5-20
MMS780 . . . . . . . . . . . . . . . . . . . . . . . 5-22
MMS8064 . . . . . . . . . . . . . . . . . . . . . . 5-25
TMS27L16 . . . . . . . . . . . . . . . . . . . . . 2-114
TMS2716 . . . . . . . . . . . . . . . . . . . . . 2-114

vii

SELECTOR
GUIDES
CROSS-REFERENCE

1-1

MEMORIES SELECTION GUIDE

NOTES
Not all package options are listed.
Operating temperature ranges:
MOS - O°C to 70°C Selected MOS memories are offered in the following temperature
ranges:
-40°C to +85°C ("G" series)
- 55°C to + 125°C ("E" series)

ECl - Consult individual data sheets
TTL - Military - 55°C to + 125°C, Commercial OOC to 70°C

FOOTNOTES
1 Motorola's innovative pin # 1 refresh.
2 All MOS memory outputs are three-state except the open collector MCM2115A series.
3 Character generators include shifted and unshifted characters, ASCII, alphanumeric control,
math, Japanese, British, German, European and French symbols.

* To be introduced.

1-2

MEMORIES SELECTION GUIDE (continued)

RAMs
MOS DYNAMIC RAMs
Part Number

Access Time
Ins maxI

Power
Supplies

No. of Pins

MCM4027AC-2 . . . . . . . . . . . . . . .
MCM4027AC-3 . . . . . . . . . . . . . . .
MCM4027AC-4 . . . . . . . . . . . . . . .

150
200
250

+ 12, ± 5 V
+ 12, ± 5 V
+ 12, ± 5 V

16
16
16

+
+
+
+

16
16
16
16
16
16
16

Organization

4096 x 1
4096 x 1
4096 x 1
16384 x 1
16384 xl
16384 x 1
16384 xl
16384 xl
16384 x 1
16384 x 1

MCM411 6BC 1 5
MCM4116BC20
MCM4116BC25
MCM4116BC30
MCM4517C12 ·
MCM4517C15 ·
MCM4517C20 ·

· .............
· .............
· .............
· .............
..............
..............
..............

150
200
250
300
120
150
200

32768 xl
32768 x 1
32768 xl
32768 x 1
32768 x 1
32768 xl

MCM6632L 1 51
MCM6632L20 1
MCM6632L25 1
MCM6633L 15 ·
MCM6633L20 ·
MCM6633L25 ·

· .............
·.............
· .............
..............
..............
.. ... ... .. ....

150
200
250
150
200
250

+5V
+5V
+5V
+5V
+5V
+5V

16
16
16
16
16
16

65536 xl
65536 xl
65536 x 1
65536 xl
65536 x 1
65536 xl

MCM6664L 1 51
MCM6664L20 1
MCM6664L25 1
MCM6665L 15 ·
MCM6665L20 ·
MCM6665L25 ·

·. . . . . .... ....
·. ... ... . . ....
· .............
..............
..............
..............

150
200
250
150
200
250

+5V
+5V
+5V
+5V
+5V
+5V

16
16
16
16
16
16

Access Time
Ins maxI

Output

No. of Pins

12, ± 5
12, ± 5
12, ± 5
12, ± 5
+5V
+5V
+5 V

V
V
V
V

TTL BIPOLAR RAMs
Organization

Part Number

256 x 4
256 x 4

MCM93L412*
MCM93L422*

55
55

Open Collector
3·State

22
22

256x4
256x4

MCM93412 · ................
MCM93422 · . . . . . . . . . . . . . . . .

45
45

Open Collector
3·State

22
22

256 x 9
256x 9

MCM93478* ................
MCM93479* . . . . . . . . . . . . . . . .

60
60

Open Collector
3·State

24
24

1024 x 1
1024 x 1

MCM93415 · . . . . . . . . . . . . . . . .
MCM93425 · ................

45
45

Open Collector
3·State

16
16

See Notes on Page 1 - 2.

1-3

MEMORIES SELECTION GUIDE (continued)

MOS STATIC RAMs (+ 5 Voltsl
Part Number

Access Time
(ns max)

No. of Pins

MCM6810 . . . . . . . . . . . . . . . . . .
MCM68A10 . . . . . . . . . . . . . . . . .
MCM68B10 . . . . . . . . . . . . . . . .

450
360
250

24
24
24

1024 x 4
1024 x 4
1024 x 4
1024 x 4
1024 x 4
1024 x 4
1024 x 4
1024 x 4

MCM2114P20 . . . . . . . . . . . . . .
MCM2114P25 . . . . . . . . . . . . . .
MCM2114P30 . . . . . . . . . . . . . .
MCM2114P45 . . . . . . . . . . . . . .
MCM21 L 14P20 . . . . . . . . . . . . . .
MCM21 L 14P25 . . . . . . . . . . . . . .
MCM21L14P30 . . . . . . . . . . . . . .
MCM21 L 14P45 . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.

200
250
300
450
200
250
300
450

18
18
18
18
18
18
18
18

1024 x
1024 x
1024 x
1024 x
1024 x
1024 x
1024 x
1024 x
1024 x
1024 x

MCM2115AC45 2 . . . . . . . . . . . .
MCM2115AC55 2 . . . . . . . . . . . .
MCM2115AC70 2 . . . . . . . . . . . .
MCM21L15AC45 1 . . . . . . . . . . .
MCM21 L 1 5AC70 2 . . . . . . . . . . .
MCM2125AC45 . . . . . . . . . . . . .
MCM2125AC55 . . . . . . . . . . . . .
MCM2125AC70 . . . . . . . . . . . . .
MCM21 L25AC45 . . . . . . . . . . . .
MCM21L25AC70 . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.

45
55
70
45
70
45
55
70
45
70

16
16
16
16
16
16
16
16
16
16

Organization

128 x 8
128 x 8
128 x 8

1
1
1
1
1
1
1
1
1
1

4096 x 1
4096 x 1
4096 x 1

MCM2147C55
MCM2147C70
MCM2147C85

55
70
85

18
18
18

1024 x
1024 x
1024 x
1024 x
1024 x
1024 x

MCM2148C55*
MCM2148C70*
MCM2148C85*
MCM2149C55*
MCM2149C70*
MCM2149C8 5 *

55
70
85
55
70
85

18
18
18
18
18
18

Part Number

Access Time
(ns max)

No. of Pins

MCM5101P65 · ..............
MCM5101P80 · ..............
MCM51L01P45 . . . . . . . . . . . . . . .
MCM51 L01 P65 . . . . . . . . . . . . . . .

650
800
450
650

22
22
22
22

· ..............
· ..............
· ..............
· ..............

300
460
300
460

16
16
18
18

4
4
4
4
4
4

CMOS STATIC RAMs (+ 5 Voltsl
Organization

256
256
256
256

x4
x4
x4
x4

1024 x
1024 x
1024 x
1024 x

1
1
1
1

MCM6508C30
MCM6508C46
MCM6518C30
MCM6518C46

See Notes on Page 1 -2.

1-4

MEMORIES SELECTION GUIDE (continued)

Eel BIPOLAR RAMs
Organization

Part Number

Access Time
(ns max)

Output

No. of Pins

8x2
256 x 1
16 x 4
1024 x 1
1024 x 1
128 x 1
256 x 1
256 x 4
4096 x 1
4096 x 1
4096 x 1
1024 x 4

MCM10143 · ....... .........
MCM10144 · . . . . . . . . . . . . . . . .
MCM10145 · ................
MCM10146 · ................
MCM1 0146A * · . . . . . . . . . . . . . .
MCM1 0147
MCM10152 · ................
MCM10422 · ...... ..........
MCM10470 · ................
MCM1 0470A' · ..............
MCM 104 70B' (low power) . . . . . .
MCM10474 · ...............

15
26
15
29
15
15
15
15
35
20
35
25

ECloutput
ECl output
ECloutput
EC l output
ECloutput
ECloutput
ECloutput
ECloutput
ECloutput
ECloutput
ECloutput
ECloutput

24
16
16
16
16
16
16
24
18
18
18
24

Part Number

Access Time
(ns max)

Power
Supplies

No. of Pins

EPROMs
MOS EPROMs
Organization
1024 x
1024 x
1024 x
1024 x

8
8
8
8

MCM2708C · ................
MCM27A08C · ...............
MCM68708C · . . . . . . . . . . . . . . .
MCM68A708C · ..............

450
300
450
300

+
+
+
+

±5V
±5V
±5V
±5V

24
24
24
24

2048
2048
2048
2048
2048
2048

x
x
x
x
x
x

8
8
8
8
8
8

TMS2716C . . . . . . . . . . . . . . . . . .
TMS27A16C . . . . . . . . . . . . . . . . .
MCM2716C · ................
MCM2716C35 · ..............
MCM27l16C · ...............
MCM27l16C35 · .............

450
300
450
350
450
350

+ 12, ±5V
+ 12, ±5V
+5V
+5V
+5V
+5V

24
24
24
24
24
24

4096
4096
4096
4096

x
x
x
x

8
8
8
8

MCM2532C · . . . . . . . . . . . . . . . .
MCM2532C35 · ..............
MCM25l32C · ...............
MCM25l32C35 · . . . . . . . . . . . . .

450
350
450
350

+5V
+5V
+5 V
+5 V

24
24
24
24

8192 x 8
8192x8
8192x8
8192x8
8192 x 8

MCM68764C · ...............
MCM68764C35 · .............
MCM68l764C · . . . . . . . . . . . . . .
MCM68l764C35 .............
MCM68766C35 · .............

450
350
450
350
350

+5 V
+5V
+5V
+5V
+5V

24
24
24
24
24

Part Number

Access Time

Power
Supplies

No. of Pins

1O.us
10.us
0.45

+5V
+5 V
+5V

14
14
24

12,
12,
12,
12,

EEPROM
MOS EEPROM
Organization
16 x 16
32 x 32
2Kx 8

MCM2801
MCM2802
MCM2816

· .................
· .................
· .................

. See Notes on Page 1 - 2.

1- 5

MEMORIES SELECTION GUIDE (continued)

ROMs
MaS STATIC ROMs (+ 5 Volts)
Character Generators 3
Organization

Part Number

Access Time
(ns max)

No. of Pins

128 x (7 x 5)
128 x (7 x 5)

MCM6670P · ................
MCM6674P · ................

350
350

18
18

128 x (9 x
128 x (9 x
128 x (9 x
128 x (9 x
128 x (9 x
128 x (9 x
128.x (9 x
128 x (9 x
128 x (9 x
128 x (9 x
128 x (9 x
128 x (9 x

MCM66700P
MCM66710P
MCM66714P
MCM66720P
MCM66730P
MCM66734P
MCM66740P
MCM66750P
MCM66760P
MCM66770P
MCM66780P
MCM66790P

· . . . . . . . . . . '.' . . .
·.. ... ..........
· ...............
· ...............
· ...............
· ...............
·.. ... .. . . . . .. ..
·....... ........
· ...............
· ...............
· ...............
·...............

350
350
350
350
350
350
350
350
350
350
350
350

24
24
24
24
24
24
24
24
24
24
24
24

7)
7)
7)
7)
7)
7)
7)
7)
7)
7)
7)
7)

Binary ROMs 1+ 5 Volts)
Organization

Part Number

Access Time
(ns max)

No. of Pins

1024 x 8
1024 x 8
1024 x 8

MCM68A308P · ..............
MCM68A308P7 · .............
MCM688308P · ..............

350
350
250

24
24
24

2048 x 8
2048 x 8
2048 x 8

MCM68A316AP · . . . . . . . . . . . . .
MCM68A316EP · .............
MCM68A316P91 .............

350
350
350

24
24
24

4096 x 8
4096 x 8

MCM68A332P · ..............
MCM68A332P2 · .............

350
350

24
24

8192x8
8192x8
8192x8
8192x8
8192x8
8192x8
8192x8
8192x8

MCM68A364P ·
MCM68A364P3
MCM688364P ·
MCM68365P25
MCM68365P35
MCM68366P25
MCM68366P35
MCM68766C45

..............
· .............
.............
· .............
· .............
· .............
·.............
· .............

350
350
250
250
350
250
350
450

24
24
24
24
24
24
24
24

~

CMOS ROMs (+ 5 Volts)
Organization

Part Number

Access Time
(ns max)

No. of Pins

256 x 4
2048 x 8
2048 x 8

MCM14524 · ................
MCM65516C43 · . . . . . . . . . . . . .
MCM65516C55 · . . . . . . . . . . . . .

1200
430
550

16
18
18

See Notes on Page 1 - 2.

1-6

MEMORIES SELECTION GUIDE (continued)

PROMs
Eel PROMs
Organization

Part Number

Access Time
(ns max)

Output

No. of Pins

32 x 8
256 x 4

MCM10139 · . . . . . . . . . . . . . . . .
MCM10149 · ................

20
25

ECloutput
ECloutput

16
16

Part Number

Access Time
(ns max)

Output

No. of Pins

512 x 8
512x 8

MCM7640 · .................
MCM7641 · .................

70
70

Open Collector
3·State

24
24

1024 x 4
1024 x 4

MCM7642 · .................
MCM7643 · .................

70
70

Open Collector
3·State

18
18

1024 x 8
1024 x 8

MCM7680 · .................
MCM7681 · .................

70
70

Open Collector
3·State

24
24

2048x4
2048 x4

MCM7684* · ................
MCM7685* · ................

70
70

Open Collector
3·State

18
18

2048 x4

MCM7688* · ................

-

Open Collector
with Registers

20

2048x 4

MCM7689* · ................

-

3·State
with Registers

20

2048:-< 8

MCM76161* ................

70

3·Stete

24

TTL PROMs
Organization

See Notes on Page 1-2.

1- 7

Memory Systems Board Selector Guide and Cross Reference
DEC
COMPUTERS

MOrOROLA
PART NUMBER

MEMORY SIZE
81< ' 16
16K .. 16

• LSI 11

lSI 11.02
lSI 11,23

J2K " 16
64K " 16
i28K • 16

POP 11,03
(Q Bus Plus
SIOI)

16K '<
32K •
4f:\K ,
64K •
16K·
32K "
46K •
64K •

\MUOBUS
SPC 5101)

• PDP·11104
PDP 11134
POP·ll-'60
lMudbus
51011

• POP·lli04
poP·' 1/34
PDP·11160
(Mudbus

-'
I

ex>

~

I

PDP·11170
(Add· In)

,VAX 11/780
Memo

SUB·

~YSTE~ slOl1

CM5004616
CM5004632

MK 8005-03
MK BOOH2
MK B005-00

MONOLITHIC
SYSTEMS
PART NUMBER

DATARAM
PART NUMBER

PLESSEY
PART NUMBER

OR· 1155
DR-115S
DR·115S

PM·$V32AII03

M$C4601 16K· 16

NATIONAL
PART NUMBER

MSC4601 32K • 16

NS23P

MK BOOI-02
MK BOOI-Ol
MK B001-00
MK BOil 02_

MMS1117·~2PC

MMS1128P~016

32K • lB
48K • 18
64K " 18

96K, 18

MMS 1128P >< 032
MMS 1128P" 048
• MMS lI2BP" 064
tMMS112BP,,096

32K , lB

MMS1119P,032

18
18
18
18
18

PM-$V32A.l00

MSC4604 321< • 18

PM·$VJ2AP, 103
PM·$V3;>AP·102
PM·$v)2AP, 100

OR·115S
QA-l1JS

MMS1117· ·8

16

NS1L)4·16
N$11134-32

MSC3503
MSC3503
MSC3503
MSC3503

16K.
32' •
48' •
64K •

16
16
16
16

CM-503H32
eM-5034648
CM503HM

MK 6011·01

NS11!J4P·16
NSI L34P·32

MSCJ605 16K.
MSCJ605 32K •
MSC3605 48K :0
MSC360564K '

i8
18
18
18

MK 8011·00
NS1'.34P·16
NSl1·34P·32

MK 8011·02
MK B01 1·01

CM-503H32

MS11·LA

CM·5034·848

MSllL8

MK B012-00

MSC3606

DR·' 14$
DR-114S
DR·114$
DR·114S
OR·114S
OR·114S
OR 114S
QR·114S

MSL3606 32'. IB
MSCJ606 48K. 18
MSCJ606 128K • 18

16K, 1B

OR·114S
OR-114S
OR-114S
OR·114S
OR·114S

MSC3606
MSC3606
MSC3606
MSC3606

OR·114S
l)R·114S
DR·114S
DR·114S

MS11·LC

CM5034-832
CM-S034BM

MSll·LA
MS1'-I.B
MS1'-lC
MS11·LO

MMS1119P,,064
MMS1119P,,096

MMSI119P.128

MK 8012-03
NS1l134Q
~S' );34Q
NS1'i34Q

MK 8012·02
MK 8012·01

MK B012-00

32K·
6"·
96K·
128K •

IB
18
18
18

+ DEC. LSI-l1. PDp·1'. and VA"J..·111780 are
trademarks 01 Dlgrtal EQUipment Corp
PINCOMM IS a reglsterea trademark 01 Trendala
Standard MemOries

· PIIIICOMM
PINCOMM
PINCOMM
PINCOMM
PINCOMM
PINCOMM
PINCOMM
?INCOMM

P$
PS
PS
PS
PS
PS
PS
PS

94234 16
94234·j2

· PINCOMM
PINCOMM
PINCOMM
PINCOMM

PS
PS
PS
r'S

94134 32
9413464

· PINCOMM PS
PINCOMM PS

PM·S1164,10?
PM-S1164ilOl
PM·S 1164,100
94('34 16
IJ4i 34·3.'

PM·S 1164A, 102
PM·S11G4A1101
PM·S 1164AI100

PM·S IlL, 100
PM·SIIL,IOO

PM·S I ll/lOG
PM·Sl1LIIOO
PM-Sl1l,100
PM-S 11 L, 100

94134128

-MMS1119Px256
'MMS1119P ,512

- PINCOMM
70S

MMS " 70E 1064

I

MMS7BOAE1032

I

MS7BO-DA
IMB2101

MK 8016·01

I

I

NS 7BO

I

I

MSC 3610

I.

DR·I ?8S

I

I

t Populated With 32K RAMS
• Populated With 64K RAMS
)( "" 3 lor fast speed
x "'- 4 lor standard speed
PIPC· Parity .. Controller ehmmales Ihe need tor
DEC s 7850 controller

9412].:6
9411332

PM·$V32A,102

OR·l1S$

MSC4604 16K· 18

NS23P

MMSI117·~6

16K .. 18

STANOARO
MEMORIES
PART NUMBER

OR·II3S

MM$1117·

lB

CDC
PART NUMBER

oR-II3S
oR-113S
OR·115S

MK B005-14
MK 8005-12
MK 8005-10

CM 5004-B16
CM5004 Bl2

~ 2
MMSI117·~4

16
16
16
16
16
16

32K , 72

MSV11-EC
MSV11·EB
M$Vl '·Eo

MM$1102·34PC

32Kd9

I

M$Vl1·DD

MOSTEK
PART NUMBER

MMS1132
MMS1132

MMS1117· ·4PC
MMS1117··6PC
MMS1117· ,8PC

(,4K,,96K \(
12BK "
:?56K x
512K x

SIOI)

MSV11·BG

MSVll-DC

MMSll0nlPC
MMSll0n2PC

BK • 18
16K· IB

O~. 10.34.
35_ 40 45
50 55 60

MMSll02-31
MMS 1122N3032
MMSlli2N30)4
MMS 1132

INTEL
PART NUMBER

MMS1132

J2K ~ It!
64K '> 18
128K • 18
• pop 11,04

DEC
PART NUMBER

PINCDMM
7BOS

I

NOll IHIS ODCUMENI 15 INTENDED AS AN AID
10 OUR CUSTOMERS IN SELf CliNG IHE
PROPER ADO· IN

M~MORY

BOARO W[

RECOMMEND THAT THE OATASHEEI &
INTEL
MICROCOMPUTfRS

!-Isac S0110.
BO/20

86/12
, (MULTIBUSI
MDS Development
System

SYSTEM 80

+ISBC aO/l0.

80/20

t MOS Development

MEMORY
SIZE

MOTOROLA
PART
NUMBER

INTEL
PAR)
NUMBER

NATIONAL
PART
NUMBER

CHRISLIN
PART
NUMBER

16K,8

MMS8016
MMS8032
MMSB048
MMSB064
MMSB016P
MMS8032P
MMS804BP
MMS8064P

S8C
S8C
S8C
SBC

. 8LC
8LC
8LC
8LC

016
032
0'8
064

CI BOBO
CI BOBO

MMS80BIO-l
MMS80810

SBC 016
SBC 032

8LC 016
8LC 032

CI 80BO
CI BOBO

32K
4BK
64K
16K
32K
48K
64K

x
"
x
x
x
x
x

8
8
8
9
9
9
9

16K x 8
32K x 8

SYSTtrrlJQ
+ MUlTlBUS and rSSC are trademarks of INTEL Corp.

Ble is a trademark of NATIONAL SemI-conductorCorp

1

016
032
04B
064

J

t Compatible With limitations

rlCH~ICAL

MANUALS fOR THE
PARIICULAR BOARD 11'.1 OUESTION BE

USlD8EfORE INSIALLAIION

CI 80BO

J

-

THE OFFICIAL MOS MEMORY
CROSS·REFERENCE
From Motorola

Plrt Number
AMD
Am2708
Am2716
Am4044
Am9016
Am9114
Am91L14
Am9147
Am9208B
Am9217
Am9218
Am9232
AMI
52114
52114L
52147
54264
55101

S6508
56518
56810

S6830
s&l31A
S6831B
568332
FAIRCHILD
F16K
2114
F2708
F27081
2716

3508
F3516E
FM4027
F68B10
F88B308
F68708
FUJITSU
MB2147
MBM2716
MB4044
M88114
MB8116
MB8227
MB8308
MB8518H

.......,......'j'

I

L

R03-8316B
R03-9316B
R03-9332C
R03-9384B

Orglnl•• llon
o..crlpllon

Motoroll"
Accl•• Time
(n, MIX)

Number 01
Pin,

Power
Supplle,

Motoroll Pln·to·Pln
Rlpllcemlnt

1024 x 8 EPROM
2048 x 8 EPROM
4096 x 1 5RAM
16,384 x 1 DRAM
1024x45RAM
1024x45RAM
4096 x 1 5RAM
1024x85ROM
2048x85ROM
2048x85ROM
4096x85ROM

300·450
450
200-450
150·300
200·450
200·450
55-85
350
350
350
350

24
24
18
16
18
18
18
24
24
24
24

+12, :5V
+5V
+5V
+12, :5V
+5V
+5V
+5V
+5V
+5V
+5V
+5V

MCM2708
MCM2716
MCM66L41
MCM4116
MCM2114
MCM21L14
MCM2147
MCM68A308
MCM68A316A
MCM68A316E
MCM68A332

1024 x4 5RAM
1024x45RAM
4096 x 1 5RAM
8192x85ROM
256x45RAM
1024 x 1 5RAM
1024 x 1 5RAM
128x85RAM
1024x85ROM
2048x85ROM
2048x85ROM
4096x8 ROM

200·450
200·450
70·100
350
450-800
300·460
300·460
250·450
350

18
18
18
24
22
16
18
24
24
24
24
24

+5V
+5V
+5V
+5V
+5V
+5V
+5V
+5V
+5V
+5V
+5V
+5V

MCM2114
MCM21L14
MCM2147
MCM68A364
MCM5101
MCM6508
MCM6518
MCM6810
MCM68A30A
MCM68A316A
MCM68A316E
MCM68A332

16,384 x 1 DRAM
1024x45RAM
1024 x 8 EPROM
1024 x 8 EPROM
2048 x 8 EPROM
1024x85ROM
2048x85ROM
4096 x 1 DRAM
128x85RAM
1024x85ROM
1024x8 EPROM

150·300
200·450
450
300
450

350
350
120·250
250-450
250·350
450

16
18
24
24
24
24
24
16
24
24
24

+12,
+5V
+12,
+12,
+5V
+5V
+5V
+12,
+5V
+5V
+12,

4096 x 1 5RAM
2048 x 8 EPROM
4096 x 1 5RAM
1024x45RAM
16,384 x 1 DRAM
4096 x 1 DRAM
1024x85ROM
1024 x 8 EPROM

70·100
450
200·450
200-450
150-300
120·250
350
450

18
24
18
18
16
16
24
24

+5V
+5V
+5V
+5V
+12, :5V
+12, :5V
+5V
+12, :5V

MCM2147
MCM2718
MCM8841
MCM2114
MCM4116
MCM4027A
MCM88A308
MCM2708

2048 x
2048 x
4096 x
8092 x

350
350

24
24
24
24

+5V
+5V
+5V
+5V

MCM88A316A
MCM88A316E
MCM88A332
MCM88365-35

8
8
8
8

5ROM
5ROM
5ROM
5ROM

350
350
350

350
350

1-9

:5V
:5V
:5V

:5V

:5V

MCM4116
MCM2114
MCM2708
MCM27A08
MCM2716
MCM68A308
MCM68A316E
MCM4027A
MCM88Bl0
MCM88B308
MCM88708

Part Number

Organization
Deecrlptlon

~

Motorola'.
Acca.. Tlma
(na Max)

T

---~---------.

Number 01
Pin.

Power
Supplle.

Motorola Pln·to·Pln
Replacemenl

-

HARRIS
6501
6506
6514
6518

256)(4 SRAM
1024)( 1 SRAM
1024)(1 SRAM
1024)( 1 SRAM

450-800
300-460
200·450
300-460

22
16
18
18

+5V
+5V
+5V
+5V

MCM5101
MCM6506
MCM65114
MCM6518

HITACHI
HM4334P
HM435101
HM462316EP
HM462532
HM462708
HM462716
HM46332
HM46364
HM468Al0
HM46830
HM471/1
HM472114A
HM46016
HM4616
HM4647
HM4664
HM6116P
HM6147P
HM6146P

1024)(4 SRAM
256 )( 4 CMOS SRAM
2046)(8 SROM
4096 )( 8 EPROM
1024)( 8 EPROM
2048)(8
4(96)(8 SROM
8192)(8 SROM
128)(8 SRAM
1024)(8 SROM
16,364 )( 1 DRAM
1024)(1 SRAM
2048)( 8 EEPROM
16,364 )( 1 DRAM
4096)( 1 SRAM
65,536 )( 1 DRAM
2046)( 8 CMOS SRAM
4096)( 1 CMOS SRAM
1024)(4 CMOS SRAM

300·450

18
22
24
24
24
24
24
24
24
24
16
18
24
16
18
16
18
18
18

+5V
+5V
+5V
+5V
+5V
+5V
+5 V
+5V
+5V
+5V
+12, <:5 V
+5V
+5V
+5V
+5V
+5V
+5V
+5V
+5V

MCM65114
MCM5101
MCM68A316E
MCM2532
MCM2708
MCM2716
MCM68A332
MCM68A364
MCM68Al0
MCM68A30A
MCM4116
MCM2114
MCM2816
MCM4517
MCM2147
MCM6665
MCM65116
MCM65147
MCM65148

INTEL
2114
2114L
2115A
2115AL
2115H
2117
2118
2125A
2125AL
2125H
2147
2147H
2146
2146H
2149H
2308
2316A
2316E
2332
2708
2708·1
2716
2716-1
2816

1024)(4 SRAM
1024)(4 SRAM
1024)( 1 SRAM
1024)( 1 SRAM
1024)(1 SRAM
16,364)( 1 DRAM
16,364 )( 1 DRAM
1024)( 1 SRAM
1024)(1 SRAM
1024)( 1 SRAM
4(96)(1 SRAM
4(96)( 1 SRAM
1024)(4 SRAM
1024)(4 SRAM
1024)(4 SRAM
1024)(8 SROM
2046)(8 SROM
2048)(8 SROM
4(96)(8 SROM
1024 )( 8 EPROM
1024)( 8 EPROM
2048)( 8 EPROM
2048 )( 8 EPROM
2046)( 8 EEPROM

200·450
200-450
45-70
45-70
20-35
150-300
100-200
45·70
45·70
20·35
55·100
35·55
70·85
45·55
45·55
350
350
350

350
450
350
450
350
350

18
18
16
16
16
16
16
16
16
16
18
18
18
18
18
24
24
24
24
24
24
24
24
24

+5V
+5V
+5V
+5V
+5V
+12, <:5 V
+5V
+5V
+5V
+5V
+5V
+5V
+5V
+5V
+5V
+5V
+5V
+5V
+5V
+12, <:5 V
+12, <:5 V
+5V
+5V
+5V

MCM2114
MCM21L14
MCM2115A
MCM21L15A
MCM2115H
MCM4116
MCM4517
MCM2125A
MCM21L25A
MCM2125H
MCM2147
MCM2147H
MCM2148
MCM2148H
MCM2149H
MCM68A308
MCM68A316A
MCM68A316E
MCM68A332
MCM2708
MCM27A08
MCM2716
MCM27A16
MCM2816

INTERSIL
2114 (IM2114)
IM2147
MK4027
IM6506
IM6518
IM7027
IM2114L
IM4116
IM7141
IM7141L

1024)(4 SRAM
4(96)( 1 SRAM
4(96)(1 DRAM
1024)(1 SRAM
1024)( 1 SRAM
4(96)( 1 DRAM
1024)(4 SRAM
16,364 )( 1 DRAM
4(96)(1 SRAM
4(96)( 1 SRAM

200-450
55-85
150-250
300-460
300·460
120-250
200-450
150·300
200-450
200-450

18
18
16
16
18
6
18
16
18
18

+5 V
+5V
+ 12, <:5V
+5V
+5V
+12, <:5 V
+5V
+12, <:5 V
+5V
+5V

MCM2114
MCM2147
MCM4027A
MCM6508
MCM6518
MCM4027A
MCM21L14
MCM4116
MCM6641
MCM66L41

ITT
ITT4027
ITT4116

4(96)(1 DRAM
16,384)( 1 DRAM

120-250
150-300

16
16

+ 12, <:5 V
+ 12, <:5 V

MCM4027A
MCM4116

450·600
350
450
450
450
350
350
350
350
150-300
200-450
350
100-200
55·85
150-200
120·200
55-70
55-65

1-10

--Part Number
MIC
MIC2316E
MIC2332

0'9anl2allon
Dncrtptlon

Motorola'.
Ace••• Tim.
(n. Maxi

Number 01
Pin.

Pow.r
Suppll••

Motorol. PIMo·Pln
Replacemenl

2048 x8 SROM
4096 x 8 SROM

350
350

24
24

+5V
+5V

MCM88A318E
MCM68A332

MOSTEK
MK2147
MK2716
MK4027
MK4116
MK4516
MK4164
MK30000
MK31000
MK32000
MK34000
MK36000
MK36000·4

4096 x 1 SRAM
2048 x 8 EPROM
4096 x 1 DRAM
16,384 x 1 DRAM
16,384 x 1 DRAM
65,536 x 1 DRAM
1024x8 SROM
2048x8SROM
4096x8 SROM
2048x8 SROM
8192x6 SROM
8192x8 SROM

70·100
450
150·250
150·300
120·200
150·250
350
350
350
350
350
250

18
24
16
16
16
16
24
24
24
24
24
24

+5V
+5V
+12, .,5 V
+ 12, .,5 V
+5V
+5V
+5V
+5V
+5V
+5V
+5V
+5V

MCM2147
MCM2716
MCM4027A
MCM4116
MCM4516
MCM6884
MCM88A308
MCM88A318A
MCM88A332
MCM88A318E
MCM88A384
MCM88B384

NATIONAL
MM2114
MM2147
MM2708
MM2716
MM5235
MM5257
MM5257L
MM5290

1024x4 SRAM
4096 x 1 SRAM
1024 x 8 EPROM
2048 x 8 [PROM
8192x8 SROM
4096 x 1 SRAM
4096 x 1 SRAM
16,384 x 1 DRAM

200-450
55-85
450
450
350
200-450
200-450
150·300

16
18
24
24
24
18
18
16

+5V
+5V
+12, .,5 V
+5V
+5V
+5V
+5V
+ 12, .,5 V

MCM2114
MCM2147
MCM2708
MCM2716
MCM88A384
MCM8841
MCM88L41
MCM4116

4096 x 1 DRAM
16,384 x 1 DRAM
1024x4 SRAM
4096 x 1 SRAM
4096x8 ROM
2048 x 8 EPROM
4096 x 1 SRAM
256x4 SRAM
1024x1 SRAM
1024x4 SRAM
1024x8SROM

150-250
150·300
200·450
55-85
350
450
200·450
450-800
300-460
200-450
350

16
16
18
16
24
24
18
22
16
18
24

+12, .,5 V
+12, :1:5 V
+5V
+5V
+5V
+5V
+5V
+5V
+5 V
+5V
+5V

MCM4027A
MCM4116A
MCM21L14
MCM2147
MCM88A332
MCM2716
MCM88L41
MCM5101
MCM6508
MCM2114
MCM88A308

2048x8 SROM

350

24

+5V

MCM88A316A

350
450
450
350

24
24
24
24

+5V
+12, .,5V
+5V
+5V

MCM88A316E
MCM2708
MCM2716
MCM88A332

128x(7x91 SROM
128x(7x91 SROM
128x(7x9j SROM
128x(7x91 SROM
128x(7x91 SROM
128x(7x91SROM

350
350
350
350
350
350

24
24
24
24
24
24

+5V
+5V
+5V
+5V
+5V
+5V

MCM88700
MCM88710
MCM88720
MCM88730
MCM88740
MCM88750

1024x8 SROM
1024x8 SROM
128x(7x91 SROM
4096 x 1 DRAM
1024x4 SRAM
2048x8 SROM
4096x8SROM
8192x8 SROM
16,384 x 1 DRAM
1024 x 8 EPROM
2048 x 8 EPROM
4096 x 1 DRAM
256x4 SRAM

350
350
350
120·250
200-450
350
350
350
250-350
450
450
150·250
450-800

24
24
24
16
18
24
24
24
16
24
24
16
22

+5V
+5V
+5V
+12,
+5V
+5V
+5V
+5V
+12,
+12,
+5V
+12,
+5V

MCM88A308
MCM88A30A
MCM88700
MCM4027A
MCM21L14
MCM88A316E
MCM88A332
MCM88A384
MCM4116
MCM2708
MCM2716
MCM4027A
MCM5101

~-

NEc/EA
,PD414A
.PD416
,PD2114L
.PD2147
,PD2332
,PD2716
,PD4104
,PD5101
,PD6508
EA2114
EA230818308
,POor
EA2316A18316A
,POor
EA2318E18316E
EA2708
,PO or EA2716
EA8332
NITRON
NC6570
NC6571
NC6572
NC6573
NC6574
NC6575
SIGNETICS
2607

2608
2609
2880
2614
2618
2633
2664
2690
2708
2716
4027
5101

2048x8
1024x8
2048 x 8
4096x8

SROM
EPROM
EPROM
SROM

1-11

.,5 V

.,5 V
.,5V
.,5 V

Motorol.'.
Accaaa Tlma
(n, MI.)

Organl.allon
Deacrlptlon

Part Number

Number of

Pin,

Pow.r
Supplll'

Motorola Pln-Io-Pln
Rapllcamenl

SYNERTEK
SY2114
SY2147
SY2316A
SY2316B
SY2332
SY2716
SY5101
TEXAS INSTRUMENTS
TMS2114
TMS2147
TMS2516
TMS2532
TMS2708
TMS2716
TMS4016
TMS4044
TMS4116
TMS4164
TMS4732
TMS4764

1024 x4 SRAM
4096 x 1 SRAM
2048x8 SROM
2048x8 SROM
4096x8 ROM
2048 x 8 EPROM
256 x4 SRAM

200-450
55-85
350
350
350
450
450-800

18
18
24
24
24
24
22

+5V
+5V
+5V
+5V
+5V
+5V
+5V

MCM21L14
MCM2147
MCM88A318A
MCM88A316E
MCM88A332
MCM2716
MCM5101

1024)(4 SRAM
4096)( 1 SRAM
2048 )( 8 EPROM
4096 x 8 EPROM
1024 x 8 EPROM
2048 x 8 EPROM
2048x8 SRAM
4096 x 1 SRAM
16,384)( 1 DRAM
65,536 )( 1 DRAM
4096)(8 SROM
8192x8 SROM

200-450
55-85
450
350-450
450
450
200
200-450
150-300
150-250
350
350

18
18
24
24
24
24
24
18
16
16
24
24

+5V
+5V
+5V
+5V
+12, ±5V
+12,±5V
+5V
+5V
+ 12, ± 5 V
+5V
+5V
+5V

MCM2114
MCM2147
MCM2716
MCM2532
MCM2708
TMS2716
MCM4016
MCM8841
MCM4116
MCM6885
MCM88A332
MCM88365

18
18
24

+5V
+5V
+5V

MCM2114
MCM2147
MCM4016

TOSHIBA

!I

I

TMM314
TMM2147
TC5516P

Part

,
,

1024x4 SRAM
4096 x 1 SRAM
2048 x 6 SRAM

I
I

200-450
55-85
200

Number Guide _________________________________________

~_. ."

OMo;, ..

7'. -"".

Directly 8800

.'"~ 7'·~"

MCM21 L 14P45

7/\

Motorola MOS
Memory Prefix

Low Power
Version

r-\
MCM68A30A

Package Type
P _ Plastic
L = Side Braze
C = Cerdip Frit-Seal Ceramic

1-12

Motorola MOS
Memory Prefl.

Access Time Designator
No Letter - ,,450 ns
A= ,;350 ns
B= ,;250 ns

MOS Memories
RAM, EPROM, EEPROM, ROM

2-1

@

MOTOROLA

MCM4027A
MOS

4096-BIT DYNAMIC RANDOM ACCESS MEMORY

IN-CHANNEL. SILICON-GATE I

The MCM4027A is a 4096 x 1 bit high-speed dynamic Random
Access Memory_ It has smaller die size than the MCM4027 providing improved speed selections. The MCM4027 A is fabricated
using Motorola's highly reliable N-channel silicon-gate technology_
By multiplexing row and column address inputs, the MCM4027A
requires only six address lines and permits packaging in Motorola's
standard 16-pin dual-in-line packages. Complete address decoding is
done on chip with address latches incorporated.
All inputs are TTL compatible, and the output is 3-state TTL
compatible. The MCM4027 A incorporates a one-transistor cell
design and dynamic storage techniques, with each of the 64 row
addresses requiring a refresh cycle every 2.0 milliseconds.

4096-BIT DYNAMIC
RANDOM ACCESS
MEMORY

-

-

I

i

" , [ I ; . i ..
•

Maximum Access Time = 120
150
200
250

ns
ns
ns
ns

-

MCM4027 AC1
MCM4027 AC2
MCM4027AC3
MCM4027AC4

•

Maximum Read and Write Cycle Time =
320 ns - MCM4027 AC 1, C2
375 ns - MCM4027AC3, C4

•

Low Power Dissipation - 470 mW Max (Activei
27 mW Max (Standbyi

•

3-State Output for OR-Ties

C SUFFIX
f-AIT·SEAL CEAAMIC PACKAGE

CASE 620-00

PIN ASSIGNMENT
Ie

•

On-Chip Latches for Address, Chip Select, and Data In

•

Power Supply Pins on Package Corners for Optimum Layout

•

Industry Standard 16-Pin Package

•

Page-Mode Capability

•

Compatible with the Popular 21 04/MK4096/MCM6604

•

Second Source for MK4027

16

VSS

15

CAS

14

Dout

RAS

13

ES

AO

12

A3

A2

11

A4

A1

10

A5

VOO

9 VC'C

Ref

Function

TRUTH TABLE
Inputs

ms;s

CAS

L

L

Data Out

L

-+-----L +-L-

I-L

L

H

Valid data

L

~__

X

H
H
X-------'__X
L----_..L_----'-___

~.

H

~

High, L

Low, X

High Imp.

Input data

Full-operating

High Im"p,

High Imp. ---- -

-F~il--~P;~-a-ti-ng--- ly,-e-'--t------rOc:ecc'e"'leCCc"'teccd:;--cc'e"f,:-:ecc'hc-----j

r--v~1id ~r---~ ~d;ta--(cell)

7-f..--'·L H X [----Valid data~==L=~:-~~H-----+__--_x-__ " r-~-= :~~Iid da~~

Cycle Power

~
~
Previous
Interim
Present
---4---~-------~--------+----------+-~---

Valid

~_

Write cycle

d~t;- ----V;Od·-,-d--:.---'t-.-----+-----=R-e-d-u-ce-'----d-o-'--p-e~'_a-t~in_~g:~~_--:_Y~e-'~_--t;~_RAS;=_A;=_r_-o~n_I--:V:-_'-e~f_,-e_,~h_=__=__=__=__=_~...,

_Validd~ __ ~_-H_'g:~h__I_m---'p_.~+___H-i~9-h-l-m'--p-.-------r __S_t._n_d_b'--v_ _ _ _ _

data
_ _Valid
___

Yes

FUII-oper-a-ti-n-g~---t---:Y--:e-s------t-----:R:-e-a--:d-c-V-cl-e-------!

Valid data

Valid
data
__
____

_~

+__N_O_I-S_t_an_d_b~V_-O_u_t~P_u_t_d_i,_ab_l_ed---!

Standby
No__'________Standby-output
_ _'______ _ _---'---_
__
_valid
__

~

~_~

~

Don't Care

OS9464R1/11-78

2-3

MCM4027A

BLOCK DIAGRAM
Write

E

Clocks

RAS Clocks

I

I

1

i

Address

Clocks

p~1

l

t
CAS
Clocks

I

•

Chip Select
I nput Buffer

1

I

Data In
Buffer

~

Data Out

-----rl-

Address
Buffers
(61

Enable

Row

AO

--

Decoder

A2
At

Data

Reset

'----

t
A3

~ataln

~

AS
A4

I

Rowand

~

Out

Dummy Calls
Memory Array

.

64 Sense Refresh Amplifiers
Data In/Out Gating

(1-of·64)

Column

Buffer

-1 t

~

-

"01· 2

Data Bus
Select

I Memory Array I

I

I

I Dummy Cells

I

Column Decoder

(1-of-32)

t

r

r

-_.

OPERATING CHARACTERISTICS
ADDRESSING

DATA OUTPUT

The MCM4D27A has SIX address Inputs (AD-A5) and
two clock signals designated Row Address Strobe (!'!AS)
and Column Address Strobe (CAS), At the beginning of
a memory cycle, the six low order address bits AD through
A5 are strobed into the chip with RAS to select one of
the 64 rows. The row address strobe also initiates the tim·
ing that will enable the 64 column sense amplifiers. After
a specified hold time, the row address is removed and the
six high order address bits (A6-A 11) are placed on the
address pins. This address is then strobed into the chip
with CAS. Two of the 64 column sense amplifiers are
selected by A 1 through A5. A one of two data bus select
is accomplished by AD to complete the data selection.
The Chip Select (CS) is latched into the port along with
the column addresses.

In order to simplify the memory system designed and
reduce the total package count, the MCM4D27A contains
an input data latch and a buffered output data latch. The
state of the output latch and buffer at the end of a memo
ory cycle will depend on the type of memory cycle per·
formed and whether the chip is selected or unselected for
that memory cycle.
A chip will be unselected during a memory cycle if:
(1)
The ch ip receives both R AS and CAS signals,
but no Chip Select signal.
(2)
The chip receives a CAS signal but no tiAS
signal. With this condition, the chip will be
unselected regardless of the state of Chip
Select input.
If, during a read, write, or read·modify·write cycle,

2-4

MCM4027A

INPUT/OUTPUT LEVELS

the chip is unseleeted, the output buffer will be in the
high impedance state at the end of the memory cycle.
The output buffer will remain in the high impedance state
until the chip is selected for a memory cycle.
For a chip to be selected during a memory cycle, it
must receive the following signals: RAS, CAS, and Chip
Select. The state of the output latch and buffer of a
selected chip during the following type of memory cycles
would be:
(1)

All of the inputs to the MC1V!4027 A are TTL-compatible,
featuring high impedance and low capacitance (5 to 7 pF).
The three·state data output buffer is TTL-compatible and
has sufficient current sink capability (3.2 mAl to drive
two TTL loads. The output buffer also has a separate
VCC pin so that it can be powered from the same supply
as the logic being employed.
REFRESH

Read Cycle - On the negative edge of CAS,
the output buffer will unconditionally go to a
high impedance state. It will remain in this
state until access time. At this time, the out·
put latch and buffer will assume the logic
state of the data read from the selected cell.
This output state will be maintained until the
chip receives the next CAS signal.

(2)

Write Cycle - If the WE input is switched to a
logic 0 before the CAS transition, the output
latch and buffer will be switched to the state
of the data input at the end of the access time.
This logiC state will be maintained until the
chip receives the next CAS signal.

(3)

Read·ModifyWrite - Same as read cycle.

In order to maintain valid data, each of the 64 internal
rows of the MCM4027 A must be refreshed once every 2 ms_
Any cycle in which a FfAS signal occurs accomplishps a
refresh operation.

Any read, write, or read-modify-write

cycle will refresh an entire internally selected row_ However, if a write or read-modify-write cycle is used to perform a refresh cycle the chip must be deselected to prevent writing data into the selected cell. The memory can
also be refreshed by employing only the RAS cycle_ This
refresh mode will not shorten the refresh cycle time; however, the system standby power can be reduced by approximately 30%.
If the RAS only refresh cycles are employed for an extended length of time, the output buffer may eventually
lose data and assume the high impedance state. Applying
CAS to the chip will restore activity of the output buffer.
POWER DISSIPATION

DATA INPUT

Since the MCM4027A is a dynamic RAM, its power
drain will be extremely small during the time the chip is
unselected.
The power increases when the chip is selected and
most of this increase is encountered on the address
strobe edge. The circuitry of the MCM4027A is largely

Data to be written into a selected storage cell of the
memory chip is first stored in the on-chip data latch.
The gating of this latch is performed with a combination
of the WE and CAS signals. The last of these signals to
make a negative transition will strobe the data into the
latch_ If the WE input is switching to a logic 0 in the
beginning of a write cycle, the falling edge of CAS strobes
the data into the latch. The data setup and hold times
are then referenced to the negative edge of CAS.
If a read-modify-write cycle is being performed, the
WE input would not make its negative transistion until
after the CAS signal was enabled. Thus, the data would
not be strobed into the latch until the negative transistion

dynamic so power is not drawn during the whole time

the strobe is active. Thus the dynamic power is a function
of the operating frequency rather than the active duty
cycle.
In a memory system, the CAS signal must be supplied
to all the memory chips to ensure that the outputs of
the unselected chips are switched to the high impedance
state_ Those chips that do not receive a RAS signal will
not dissipate any power on the CAS edge except for that
required to turn off the chip outputs_ Thus, in order to
ensure minimum system power, the RAS signal should be
decoded so that only the chips to be selected receive a
RAS signal. If the RAS" signal is decoded, then the chip
select input of all the chips can be. set to a logic 0 state.

of Wf'.. The data setup and hold times would now be referenced to the negative edge of the WE signal. The only
other timing constraints for a write-type-cycle is that both
the CAS and WE signals remain in the logic 0 state for a
sufficient time to accomplish the permanent storage of
the data into the selected cell.

Circuit diagrams external to or containing Motorola products are Included as a means of Illustration only. Complete information
suffiCient for construction purposes may not be fully illustrated. Although the information herein has been carefully checked and IS believed
to be reliable, Motorola assumes no responsibility for inaccuracies. Information herp.1n does not convey to the purchaser any license under
the patent fights of Motorola or others.

The information contained herein is for guidance only, with no warranty of any type, expressed or Implied. Motorola reserves the nght
to make any changes to the Information and the product(s) to which the information applies and to discontinue manufacture of the
product(s) at any time

2-5

MCM4027A

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)
RECOMMENDED OPERATING CONDITIONS IReferenced
Parameter

to VSS" Ground I

Notes

Symbol

Min

Typ

Ma.

Unit

VDD

10.8

12.0

13.2

Vdc

2

VCC

VSS

5.0

VDD

Vdc

3
2

Supply Voltage

VSS

0

0

0

Vdc

VSS

-4.5

-5.0

-5.5

Vdc

2

Logic 1 Voltage, RAS, CAS, WRITE

VIHC

2.4

5.0

7.0

Vdc

2,4

Logic 1 Voltage, all inputs except RAS. CAS, WR ITE

VIH

2.2

5.0

7.0

Vdc

2,4

Logic 0 Voltage, all inputs

VIL

-1.0

0

0.8

Vdc

2.4

DC CHARACTERISTICS

IVDD

12 V '10% Vce

Characteristic

c

50 V '10% VSS

Average VOO Power Supply Current

Vee

Vas

-50 V '10% VSS = 0 V T A - 0 to 70 0 C.1 Notes 1, 5
Typ

Min

IDDl

Power Supply Current

Average

=

Symbol

Ma.

Units

Notes

35

mA

6

mA

7

ICC

Power Supply Current

ISS

250

~A

Standby VOO Power Supply Current

IDD2

2

mA

9

Average VOO Power Supply Current during

IDD3

25

mA

6

Input Leakage Current (any input)

IIiLI

10

~A

8

Output Lea kage Current

IOILi

10

~A

9.10

Output Logic 1 Voltage @ lout -'- -5 mA

VOH

Output Logic 0 Voltage @ 'out'" 3.2 mA

VOL

--

"RAS only" cycles

Vdc

2.4

Vdc

0.4

NOTES 1 through 11:

t. TA is specified for operation at frequencies totRC'?- tRc(minl.
Operation at higher cycle rates with reduced ambient temperatures

6. Current IS proportional to cycle rate.

1001 {maxI

is measured

at the cycle rate specified by tRc(minl.

and higher power disSipation IS permiSSible prOVided that all ac

7.

parameters are met.

data VCC is connected through a low Impedance (135

2. All voltages referenced to VSS.

Data Out. At all other times ICC consists of leakage currents only.

3. Output voltage Will swing from VSS to VCC when enabled,
with no output load. F or purposes of maintain 109 data 10 standby

8. All dev;ce pins at 0 volts except VSS which is at -5 volts and

mode, VCC may be reduced to VSS without affecting refresh
operations or data retention. However, the VOH(mlnl specifica·

9. Output is disabled (high-impedance) and RAS and CAS are

tion is not guaranteed in thiS mode.

measurement of thiS parameter.

the pin ul1der test which is at
both at a logic

4. Device speed IS not guaranteed at input voltages greater than
cycles

are

11.
requ Ired

after

power-up

volts.

1. Transient stabilization is required prior to

Effective capacitance is calculated from the equation:

c ==- t;V
6.0 with 6.V

= 3 volts.

(Full operating voltage and temperature range, periodically sampled rather than 100% tested) Note
Characteristic

Input Capacitance

typ) to

before proper

device operation is achieved. Any 8 cycles which perform refresh
are adequate for this purpose.

EFFECTIVE CAPACITANCE

+10

n

10.0V" VO u , " +10V.

TTL levels (0 to 5 v).
5. Several

ICC depends on output loading. During readout of high level

lAO-AS). D;n. CS

11

Symbof

Ma.

Unit

C;nIEFF)

5.0

pF

RAS, CAS, WRITE

10.0

Output Capacitance

CoutIEFF)

7.0

pF

ABSOLUTE MAXIMUM RATINGS (See Notes 1 and 2)
Rating
Voltage on Any Pin Relative to VBS-

Svmbol
V IO ' V out

Value
-0.5

'0 +20

Unit

Vdc

TA

o to +70

Storage Temperature Range

T stg

-65 to +150

°c

Output Current (Short CtrCUlt)

lout

50

mAdc

Operating Temperature Range

• (V •• - V ..

°c

> 4.5 V)

NOTE: Permanent deVice damage may occur of ABSOLUTE MAXIMUM RATINGS
ARE EXCEEDED. Functional operation should be restricted to RECOMMENDED

OPERATING CONDITIONS. Exposure to higher than recommended voltages
for e)(tended periods of time could affect deVice reliability. VSS must be applied
prior to Vec and VOO. VBS must also be the last power supply switched off.

2-6

ThiS deVice contains CirCuitry to protect the
Inputs agamst damage due to high static voltages or electriC fields: however, It IS adVised that
normal precautions be taken to aVOid appllcatlon of any voltage hIgher than ma)(lmUm rated
voltages to tt-:IS high Impedance C!fCUlt

MCM4027A

AC OPERATING CONDITIONS AND CHARACTERISTICS

(Read, Write, and Read-Modify-WriteCycles)
RECOMMENDED AC OPERATING CONDITIONS

IVDD"'2 v' '0%, vee' 5.0 v' '0%,
to 70 0 e) Notes " 5, '2,'B

'JBB

-5.0

v,

'0%, VSS

a V,

TA "0

P.rlmeter

Symbol

MCM.a27AC'
Min
M ••

Random Read or Write Cvcle Time

'AC

Read Write Cycle Time
Paae Mode Cvcle Time

AWC
PC

Access Time From Row Address SHobe

'RAe

120

Access Time From Column Address Strobe

'CAe

so

Output Buffer and Turn-Off Oelay

'OFF

'AP

Row Address Strobe Precharge Time
Row Address Strobe Pulse Width

'RAS

Aow Address Strobe Hold Time

'ASH

Column Address Strobe Pulse Width
Column Address Strobe Hold Time

'CAS
'CSH

Row to Column Strobe Lead Time

'ReO

Row Address Setup Time

'ASA

Row Address Hold Time

'RAH

C tumn AdOress Setup Time

'ASC
'CAH

Column Address Hold Time
Column Address Hold Time Referenced to ~

ChiD Select SetuD Time
ChiD Select Hold Time
Chip Select Hold T,me Referenced to
TranSition Time Rise and Fall
Read Command SetuD Time
Read Command Hold Time
Write Command Hold Time
Write Command Hold Time Referenced to
Write Command Pulse Width
Write Command to Row Strobe Lead Time

'csc
'CH

m

'CHA
'T
'ACS
IACH

m

Wnte Command to Column Strobe lead Time
Data In Setup Time
Data In Hold Time
Data In Hold Time Referenced to ~
Column to Row Strobe PrecharAe Time
Column Precharge Time
Refresh Period
Wnte Command Setup Time
~ to WIIITl' Del.,
RAS to wmTt Delay
Data Out Hold Time

NOTES 12

through

'AA

WCH
'WCA
'WP
'AWL
'CWL

'OS
'DH

'OHR
'CRP
'CP
'AFSH
'WCS
'CWO
'AWD
'DOH

MCM.a27AC2
Min
M ••

320
320
160

10,000

100
150
100
100

10,000

150

40

20
0
20
·10
45
95

50

45
95
3
0
0
45
95
45
50
50
0
45
95
0
60

35

a
40
80
40
50
50
0
40
80
0
60

200
135
50

2

120
200
135
135
200
25
0
25

0
60
110
10

65

55
3
0
0
55

3
0
0
75

ns
ns
ns
ns

85

ns
n<
ns
ns
ns
n<
ns

50

ns

,8

n<
ns
ns

160

55
70
70
0
55

75
85
85
0
75

120

160

ns

0
80

0
110

ns

2

17

ns

120

0
80
145
10

"

'4 '6
'5, '6

n.

160

50

ns

ns

·10
75

120

'3
,3

ns

10,000

160

·10

35

35
0
35
10
75

Not ..

ns
ns

250
'65
60
120
250
165
165

Unit.
ns

250

55
120

2

0
60
100
10

10,000

·10

·10

MCM.a27AC4
Min
M ..

375
375
2B5

225

'50
100
40

35
100
120
80
BO
120
15
0
15
5
40
BO
0
40
80
3
0

MCM.a27AC3
Min
M ••

375
375

320
320
'70

ns
ns
ns
ns
ns
ns

,.
19

ns

2
0-

90
175
10

ms
nc
n<

,n

ns

20

/IS

18.VIHc(min) or VIH(min) and VIL(max) are reference levels for
measuring timing of input signals. Also, transition times are

20:

12. AC measurements assume tT = 5 ns.

measured between VIHC or VIH and VIL.

13. The specifications for tRc(min) and tRwc(mln) are used only
to indicate cycle time at which proper operation over the full
temperature range (O°e .,,; T A ~ 70 0 e) is assured.

19. These parameters are referenced to CAS leading edge in
random write cycles and to WRITE leading edge in delayed write
or read-modify write cycles.

14.Assumes that tACO"'; tRCO(max).

100 pF,

20. twcs, tewD, and tAWD are not restrictive operating parameters. They are included In the data sheet as electrical characteriSltcs only: If twcs ~ twcs(minl. the cycle is an early write
cycle and Data Out will contain the data written into the selected

17.0peration within the tRCO(msx) limit Insures that tRAc(max)
can be met. tRCO(max) is specified as a reference point only~ If

cell. If tCWD ~ tcwo(min) and tRWD ~ tAWD(minl, the cycle is
a read-write cycle and Data Out will contain data read from the

tRCD is greater than the specified tRco(max) limit, then access
time is controlled exclusively by tCAC'

selected cell. If neither of the above sets of conditions is satisfied,
'the condition of Data Out (at access time) is indeterminate.

15. Assumes that tRCD ~ tACO (max).
16. Measured With a !oad CirCUit equivalent to 2 TTL loads and

2-7

MCM4027A

READ CYCLE TIMING

1+
1
,1---

; i--

AAS

V1HC
V IL

------1'1

'AC
"'-'AA .. -

IRSH----~----..

tCSH

I f.-.. --- tRCO---·
CAS

V,L

ADDRESSES

,

----I

:

i /'-------+---t---------.J i
i I

VIHC

-. -------+1

tAAS

.. -------tCAS -

:;

.r----

--.-~ 14----

•

tCAP

Yr

'--_+--_ _ _---.JI

V,H
V'C

I
1

II
'ACS-j.--.j

!

Dout

2-8

-.-J,

AC H

j

tAPi

1----

------1

MCM4027A

WRITE CYCLE TIMING

r-- -:

AAS

~-~--.-.

1
tAR

VI~~----------'~~__________________________________-J~
!
V

~---tR-C-D---------:-;t+~-"'C:;. ~;;f<<-.:;=:::~:-'-~R~:~SH. -~-~:.

t

te : :

~~~ -------ir-1i------'-----~~~______________~/..-'- - - - - - - - -

i

~ tAAH
tAsA---k--·...i~·
-.~ lAse--;'..., ;"tCAH'"

ADDRESSES

~',: ~ A:d~;" ~ ;~~,:s~ ~~«~'--IWCS i_________ ;... tWCH...j
....

"twp

..

V~H,~.~::>.L::..A-""_LLj<'~,----",--+-I-----t-r-_---4--"m~~~,~'I_L:~.A..-~~~,.
;,.L.'

L.- .

!'

..- tRWL

-

tWCR'

..,

;

r--.... -- --- ,. . -tOHA----;--·
:

cs

tcsc--r

f4--tCH

V~~L"'-"'~:-Jr1i.~,
~~.---.:7":~,\'

.

-i

t'~<>z=="""~Y

DO ut

Write

PAGE MOOE WRITE CYCLE

RAS

CAS

VIH Addresses V JL -

cOs

DOUT

Wnte

D,n

2-11

Row Addresses

s:
s:

Columns

A A A A A A
He.

5 4 3

L

3'
3F
3D
3C
3A
38
39
38
36
37
35
34
32
33
31
30

H
L

2'
2F
20
2C
2A
28
29
28
26
27

n

2 1 0
0

8

H

H

L

H m

L
H
H
L
L

L
L
H
H
L

L

L

H

H

L

H
L

H
L
L
H

L

L

H
H
L
L
H
H
L

H
L

H
L
L
H

L
H

L
H

H
l

L
H
H

L
H

L

H

£

L

L

L

L

H

H
L

L
H
H
L
L
H
H
L
L
H

'"

0

'"

um "m

u
o
u

~

0

u

m m

~

~

'"m u'"m

u

0

~
~

u

m

»

H

H

u

0

u
"
u

u
u

0

0
0
;;

u

'"m '"m

0

~

~

~ ~

0

U

0

U

0

o

0

o
~
o

u

0

u

8
0

'"o u'"0

o
u

~

0
u
0

~

'" u'"

u

o

~

0

~

~

0

u
0

~

'"m '"-

0

'"o 0'"

0

~

~

~

~

~

25

2'
22
23
21
20

~

....,
n

~
0

"

~

'"

L

L

L

L

H

H

H H
H

1F
10
1C
1A
18
19
18
16

N

~

H

~

III

:;
~

C
C
m

H

L

L
L
H
H
L
L

H
L
L
H
H
L

L

H H

L

H
L

17

15
14
12
13

"
~
~

L
H

11

~

10
OE
OF
00

H

L

L

L

H
H
L
L
H
H
L

m

L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L

H
L
L
L
L
L
L
L
L

L
H
H
H
H
L
L
L
L

L
L
H

H
L
L

H
L
L
H

H
H
L
L
H
H
L

L

~ ~
m m

~

0

~

0

~

~ ~

m m

~

~

~

'"m '"m

0

3
0

g

U

0

'"~ ;;'"

u

0

m

'"om '"m

0

U

g
0

U

~

o

u

~

~

~

'"o '"0

0
~

0

o 0
o 0
m m

0

U

'"oo 0'"0

rrxxrrIIrrXIrrrr

~

0

0"
3 •

, t

....
....

»

o
o
o

rrJ:rrrxxr~IxrrXI

~

0
0
0

~

~

~

'"om '"0m

»
"''''
»
"» "
......
»

~

0

"''''

0

~~

~

»

0
0

00

m

~

'"oo '"00

0
0
0

rrrIrrIxrrXIrrXI rrXIrrIIrrIIrrII

"'>
,,>

r r I I r r I I r r X I r r I I x x r r I I r r x x r r X I r r r r I r r r x x r r X I r r I I I I r r l : x r r I I r r X I r r WJ-

/

n

"

0

!

;;;

r r X I r r I I r r x x r r r I r r I I r r : r I r r x x r r I X ::::IrrIIrrxxrrxxrr I I r r x x r r I I r r I x r r

~D

.

~

0

n

H H L a
H H

DC

OA
08
09
08
06
07
05
04
02
03
01
00

L 0
H ~

~ ~

rrIrrrIIIl:rrIl:rr r,IxrrIIxxrr::::Irr rrIIrrIIIxrrIIrr rrIIrrIIIxrrIIrr

i'oJJ-

Ir r I I I I r r r r I I X I r r r r I I I I r r r r I I I I r r r r X I I I r r r r I I I I r r r r I I I X r r r r I I I I r r

- J-

r I I r r l : I r r I l : r r I I r r:rIrrIIrrXIrr:r.lr r I X r r I I r r I I r r I l r r I I r r I I r r I I r r I I r OJ-

Ig~~~S8~~ ~g~~a: 8~~Ia:g~~~~~~g g~ t:~~<:~Ic;::: ~~;; w~ ~ ;u;ri:~a; ~~~Ia;~ ~~; iii ~~;:;o ~~;;; ~ ~~I :=

n
~

g

~

.
iii

~

MCM4116B
.,

,

16.384-BIT DYNAMIC RANDOM ACCESS MEMORY

MOS

The MCM4116B is a 16.384-bit. high-speed dynamic Random
Access Memory designed for high-performance. low-cost
applications in mainframe and buffer memories and peripheral
storage. OrganIZed as 16.384 one-bit words and fabricated using
Motorola's highly reliable N-channel double-polysilicon technology.
this device optimizes speed. power. and density tradeoffs.
By multiplexing row and column address inputs. the MCM4116B
requires only seven address Itnes and permits packaging in
Motorola's standard 16-pm dual in-line packages. This packaging
technique allows high system density and is compatible with widely
available automated test and insertion equipment. Complete
address decoding IS done on chip with address latches incorporated.
All inputs are TIL compatible. and the output is 3-state TIL
compatible. The data output of the MCM4116B is controlled by the
column address strobe and remains valid from access time until the
column address strobe returns to the high state. This·output scheme
allows higher degrees of system design flexibility such as common
input/output operation and two dimensional memory selection by
decoding both row address and column address strobes.
The MCM411 6B mcorporates a one-transistor cell design and
dynamic storage techniques. with each of the 128 row addresses
requiring a refresh cycle every 2 milliseconds.

•

IN-CHANNELl

16.384-BIT DYNAMIC
RANDOM ACCESS
MEMORY

P SUFFIX
PLASTIC PACKAGE
CASE 648

C SUFFIX
FRIT-SEAL CERAMIC PACKAGE
CASE 620

Flexible Timmg with Read-Moaify-Write. RAS·Only Refresh. and
Page-Mode Capability

•

Industry Standard 16-Pin Package

•

16.384 X 1 OrganIZation

PIN ASSIGNMENT
VBB
0

RAS 4

• All Inputs are Fully TIL Compatible
• Three·State Fully TIL-Compatible Output
•

Common 1/0 Capability When Using "Early Write" Mode

• On-Chip Latches for Addresses and Data In
• Low Power Dissipation -

ns
ns
ns
ns

-

MCM4116BP-15.
MCM4116BP-20.
MCM4116BP-25.
MCM4116BP-30.

BC-15
BC-20
BC-25
BC-30

Operating Temperature Range

Symbol

Value

Unit

Vin, Vout

-0.5 to +20

V

TA

o to +70

°c
°c

T stg

-65 to +150

Power Dissipation

Po

1.0

W

Data Out Current

lout

50

mA

Storage Temperature Range

13 A6

AO

,

A2

6

It

Al

I

10 pA5

VOO

8

9 PVCC

t2 pA3

pA4

. ... Address Inputs
. Column Address Strobe
.......................... Oata In

................ Dat. Out
Q ......
~.
. ... Row Address Strobe
W ......................... Read/Write Input

ABSOLUTE MAXIMUM RATINGS ISee Notel

Voltage on Any Pin Relative to VBB

CAS

14 Q

PIN NAMES
AD·A6 ..
CAS
0

Easy Upgrade from 16-Pin 4K RAMs

Rating

VSS

15

463 mW Active. 20 mW Standby(Max)

• Fast Access Time Options:150
200
250
300

•

2

W 3

±10% Tolerance on All Power Supplies

•

IeV"i6

NOTE Permanent deVice damage may occur if ABSOLUTE MAXIMUM RATINGS c:re exceeded. Functional operation should be restncted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended
periods of time could a1fect device reliability

VBB··
VCC·
VOO
VSS

. .Power I - 5 V)
.. Power

(+

5 Vl

.......... Powerl+12V)
...

Ground

This deVice contains circuitry to protect the
Inputs against damage due to high static volt-

ages or electric fields; however. it is advised that
normal precautions be taken to avoid application of any voltage higher than maximum rated
voltages to this high Impedance cirCUit.

D59006/10-79

2-13

MCM4116B

BLOCK DIAGRAM
4--- _ _

V OD

......... --- --vee

WRITE-------------------

......----VS$
'---VaB

r---r=~==;----

Data In

o

A6

--------------1

AS

--------------1

A4

--------------1

A2

--------------1

___D_u_m_m_y_C~._"~S______1
Memory Array

128 - Sense

Memory

Al
AO

Refresh AmlJS

--------------1

Array

Du~my Cells
64·Colum-ri -

Select Lin.es
COlumn Decoders

'·of·64

AO

DC OPERATING CONDITIONS AND CHARACTERISTICS
(F ull operating voltage and temperature range unless otherwise noted.!
RECOMMENDED OPERATING CONDITIONS
P.rameter
Supply Voltage

Not.

Symbol

Min

Typ

Ma.

Unit

VDO

10.8

12.0

13.2

V

1

VCC

4.5

5.0

5.5

V

1,2

VSS

0

0

0

V

1

VBB

-4.5

-5.0

-5.5

V

1
1

V,HC

2.4

V

V,H

2.4

-

7.0

Logic 1 Voltage, all inputs except RAS. CAS. WAITE

7.0

V

1

Logic 0 Voltage, all inputs

V,L

-1.0

..

0.8

V

1

Log.e 1 Volt., RAS, CAS, WRITE

DC CHARACTERISTICS

IVOO

12 V . 10% VCC

50 V

10%

Vas

Characteristic
A..,erag~

Vee

Symbol

VOO Power Supply Current

'001

Power Supply Current

Yee

0

·50 V . 10% VSS' 0 V TAO tu 70 C.I

ICC

Notes

M.n

Max

Units

-

35

rnA

4

-

rnA

5

"A

'BB1,3

-

200

Standby Vee Power Supply Current

'BB2

--

100

"A

Standby VOO Power Supply Current

'002

-

1.5

mA

6

Average VOO Power Supply Current dUring "RAS only" cycles

'003

-

'Z7

mA

4

Input Leakage Current (any Input)

'IILI

"A

'OILi

-

10

Output Leakage Current

10

"A

6.7

VOH

2.4

-

V

2

VOL

-

04

V

Aver~ge

Power Supply Current

Output Logic 1 Voltage

@

'out:: -5 rnA

Output LogiC 0 Voltage @ 'out::' 4.2 rnA
NOTES,
1

All voltages referenced to

2.

vss Vas

must be applied before and removed after other supply .... oltages

Output lIoltage Will SWing from VSS to

Vee

under open Circuit conditions. For purposes of maintaining dala ,n power "own mode, Vee

may be reduced to VSS Without affecting refresh operat.ons. VOH(minl spee,fication is not guaranteed

In

th·s

1110(18

3.

Several cycles are required after power·up before proper device operation IS achieved. Any 8 cycles WhICh perlorrll fefresh are adequate

4.

Current is proportional to cycle rate; maximum current

IS

measured at The fastest cycle rate

5

ICC depends upon output loading. The Vee supply is connected to the outr.,lut buffer only.

6.

OUlput is disabled (open-circuit) when

7

0 V G; V out "

CAPACITANCE

cAs is al a logiC

1

.. 5.5 V

-

-

If-I 0 MHz TA-25'C VCC-5
- V peltod.cally sampled ralher than 100% testedllSee Note 81

Parameter

Symbol

Typ

Max

Input Capacitance IAO-A5), Din

Cll

40

50

Inpul Capacttance~, CAS,WAITE

CI2

80

10

Output Capacitance (Ocutl

Co

50

70

2-14

Unit Notes
pF
9
pF
9
pF
7.9

IICM4116B

r:

AC OPERATING CONDITIONS AND CHARACTERISTICS (See Notes 3, 9,14)
READ, WRITE, AND READ-MODIFY-WRITE CYCLES

{VOO=12V -10% VCC=50V -10% Vee=-50V.,0% VSS=OV TA=O,070 u CI
MCM41168-16 MCM41168-20 MCM41168-26 MCM41188-30

Parameter
Random Read or Wnte Cycle Time

Symbol

Min

Max

Min

Max

Min

Mox

Min

Max

Units

'RC

375

375

-

410

-

480

-

ns

375

-

-

ns

300

ns

10,12

-

200

ns

11,12

60

0

60

ns

17

150

-

180

Read Write Cycle Time

'RWC

Access Time from Row Address Strobe

'RAC

Access Time from Column Address Strobe

'CAC

-

100

-

135

-

165

Output Buffer and Turn-off Delay

'OFF

0

50

0

50

0

'''lP

100

-

120

-

Row Address Strobe Precharge Time

375

150

515

200

660

250

ns

Row Address Strobe Pulse Width

'RAS

150

10,000

200

10,000

250

10,000

300

10,000

ns

Column Address Strobe Pulse Width

'CAS

100

10,000

135

10,000

165

10,000

200

10,000

ns

Row to Column Strobe Lead Time

'RCO

20

50

25

65

35

85 -

60

100

ns

Row Address Setup Time

'ASR

0

-

0

-

0

-

0

-

ns

,Row Address Hold Time

'RAH

20

Column Address Setup Time

'ASC

-10

-

-10

'CAH

45

-

55

'AR

95

-

120

-

160

200

-

'ns

Column Address Hold Time

-

-10

Column Address Hold Time

-

'T

3.0

35

3.0

50

3.0

50

3.0

50

ns

'RCS

0

-

0

0

-

ns

0

--

ns

iOQ

200

-

ns

160

-

0

120

-

55

-

75

-.

100

-

ns

75
-10.

Notes

35

ns

60

75

100

13

ns
ns

Referenced to A AS
Transition Time (Rise and Fall)

Aead Command Setup Time
Read Command Hold T,me

'RCH

0

-

0

Write Command Hold Time

'WCH

45

55

Write Command Hold Time
Referenced to RAS

'WCR

95

-

Write Command Pulse Width

-

0
75

'WP

45

Write Command to Row Strobe Lead Time

tAWL

60

Write Command to Column Strobe
Lead Time

'CWL

60

-

80

-

100

-

-

0

-

0

55

75

120

-

160

100

80

14

ns

ns

180
180

-

ns

0

-

os

15

100

ns

15

200

-

ns

-20

-

ns

200

2.0

ms

Data in Setup Time

'OS

0

Data in Hold Time

'OH

45

'DHR

95

Column to Row Strobe Precharge Time

'CRP

-20

-

-20

RAS Hold Time

'RSH

100

-

135

-

165

-

Refresh Period

'RFSH

-

2.0

-

2.0

-

2.Q

-

-

-20

-

-20

-

-20

-

ns

180

-

ns

16

280

-

ns

16

Data in Hold Time Referenced to RAS

WAITE Command Setup Time

'wcs

-20

CAS to WRITE Delay

'CWO

70

RAS '0 WR ITE Delay

'RWO

120

'CP

60

'PC

170

'CSH

150

CAS Precharge Time (Page mode cycle only)
Page Mode Cycle Time

CAS Hold T;me

95
160
80
225
200

-20

125
210
100
275
250

100

ns

ns

325

7

ns

300

-

ns

NOTES. (continued)
8.

,9.

Capacitance measured With a Boonton Meter or effective capacitance calculated from the equation

AC measurements assume tT

to. Assumes that tACO' tT
11.

~ssumes

that tRCO +, tT

.=

C

5.0 ns.

~ tACO (max).
:;t

tACO (max),

12. Measured with a load circuit equivalent to 2 TTL loads and 100 pF.
13.
14.

Operation within the tRCO (max) limit ensures that tRAC (max) can be met. tRCO (max) is specified as a reference point only; if tACO
is greater than the speCified tRCD (max) limit, then access time is controlled exclusively by tCAC.
VIHC (min) or VIH (min) and VIL (max) are reference levels for measuring timing of input signals. Also, transistion times are measured

between VIHC or VIH and VIL.
15. These parameters are referenced to CAS leading edge in random write cycles and to WRITE leading edge in delayed write or read-modify·
write cycles.
16. twCS. tcwo and t RWD are not restrictive operating parameters. They c:re included in the data sheet as electrical characteristics only-: If
twcs ~ twcs (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the
entire c'ycle; If tcwo ;---

MCM4517

PIN ASSIGNMENT COMPARISON
MCM4517

MCM4516
REFRESH

VSS

N/C

D

CAS

D

W

1.

W

Q

A6

RAS

AO

A3

AO

A2

A4

A2

A1

A5

4

6

A1

VCC

N/C

Vec

N/C'

VSS

D

15 -CAS

MCM6632

16

VSS

REFRESH

15

CAS

D

1.

16

VSS

15

CAS

14

Q

13

A6

14

Q

13

A6

W
RAS

12

A3

AO

12

A3

11

A4

A2

11

A4

10

A5

10

A5

9

A7

4

A1

N/C

Vee

REFRESH

VSS

N/C'

16

VSS

D

CAS

D

15

CAS

14

Q

A6

W
RAS

4

13

A6
A3

8

9

8

MCM6665

MCM6664

1.

W

3

14

Q

RAS

4

13

A6

12

A3

AO

A3

AO

5

12

11

A4

A2

A4

A2

6

11

A4

10

A5

A1

A5

A1

10

A5

9

A7

VCC

A7

VCC

9

A7

AO
A2

6

A1
VCC

8

W

Q

PIN VARIATIONS
Pin Number

MCM4116

MCM4616

MCM4617

MCM6632

MCM6663

MCM6664

MCM6666

1

VBBI-5 VI

REFRESH

NiC

REFRESH

N/C"

REFRESH

N/C"

e

VODI+ 12 VI

VCC

Vec

9

VCCI+5 VI

N/C

N/C

Vec
A7

VCC
A7

VCC
A7

VCC
A7

-'nternal pullup resistor should be left open or tied to

Vee

2-25

®

MOTOROLA

MCM6632

32.768-BIT DYNAMIC RAM
The MCM6632 is a 32,768 bit. high-speed. dynamic Random-Access
Memory. Organized as 32.768' one-bit words and fabricated using
HMOS high-performance N-channel silicon-gate technology. This new
breed of 5-volt only dynamic RAM combines high performance with low
cost and improved reliability.
By multiplexing row- and column-address inputs. the MCM6632 reqUires only eight address lines and permits packaging in standard 16-pin
dual-in-line packages. Complete ~ddress decoding is done on chip with
address latches incorporated. Data out is controlled by CAS allowing
for greater system flexibility.
All Inputs and outputs. Including clocks. are fully TTL compatible.
The MCM6632 incorporates a one-transistor cell design and dynamic
storage techniques. In addition to the RAS-only refresh mode. refresh
control function available on pin 1 provides automatic and self-refresh
modes

MOS
IN-CHANNEL. SILICON·GATEI

32,768-BIT
DYNAMIC RANDOM ACCESS
MEMORY

• OrganIZed as 32.768 Words of 1 Bit
• Single + 5 V Operation
• Fast 150 ns Operation
• Low Power DiSSipation
275 mW Maximum (Actlvel
30 mW Maximum (Standby)
•
•
•
•
•

L SUFFIX
CERAMIC PACKAGE
CASE 690

Three-State Data Output
Internal Latches for Address and Data Input
Early-Write Common I/O Capability
16K Compatible 12B-Cycle. 2 ms Refresh
Control on Pin·l for Automatic and Self Refresh

PIN ASSIGNMENT

REFRESH

•
•
•
•

CAS Controlled Output
Upward Pin Compatible from the 16K RAM IMCM4116)
One Half of the 64K RAM MCM6664
The Operating Half of the MCM6632 is Indicated by Device Marking:
MCM66320 Tie A7 CAS IA15) Low "0"
MCM66321 Tie A7 CAS IA15) High "1"

Clock

Amph~ler

A2

11

A4

Al

10

A5

9

A7

~

A2 ...

~

A3 . .

!

A4 ...
A5 ...
AS __

AO-A7

J

16.384 elt Memory
Array

,

~

~

~

§

16, 384· Sit Memory
Array

u

~

'0

~

-

l"

c
a

(i

11211 of 2561
Column Decoder

~

1/2 Cell
Logic

1/211 of 2561
Column Decoder

'"~
~

16,384- Bit Memory
Array

recha.rgt
Clock

Sense Ampllher

<{

~

0

~

16,384-8It Memory
Array

'"~

A7-"

f-

o

I-rn

RAS ..
CAS ..
VCC

~

i-REFRESH

g'

~Dala In, 0

E

g

~OutPut
Data. 0

V S

Refresh

Address Inpul

...[)~,:t~~~

I

I

.... Read/Write Input
Row Address Strobe
. Column Address Strobe
... Power 1+5 VI
.Ground

ThiS deVice contains circuitry to protect the inputs agarnst damage due to high static voltages
or electric fields; however, it is advised that normal precautions be taken to avoid application of
any voltage higher than maximum fated voltages
to this high-impedance circuit.

'0

-

W

I+-- ~
a
.=

Q

i-AAS

'" f--wnte. W
u

~a

8

PIN NAMES

"

l"

A3

AO

REFRESH

0

11

A6

-vss

Sense Amphfler

a
~

AO-..
AI . .

~

Q

R7i3

_vcc

Sense

~

W

Vee
BLOCK DIAGRAM

precha~gE

VSS

0

• RAS-only Refresh Mode

Sense Amphfler
L-....

DS9B26/!H1l

2-26

~'MCM6632'

ABSOLUTE MAXIMUM
RATINGS ISee Notel
---- -- _.

FIGURE I - OUTPUT LOAD

_..

Rating

Symbol

Value

Unit

~~ on_ ~n2:-"-~Aelatlve to V 55 lexcept Vee I

Yin. Vout

- 2 to + 7

V

.. 1 to + 7

V

Voltage on VCC Supply Aelatlve to VSS
~~eratlng

V m. Vout

TA

Temperature Range

Storage Temperature Range
Power DISSipation

-.

Data Out Current

._-_.

o to

+ 70

5V

970 II

'c

T5t9

-6510+150

·C

Po

10

W

lout

50

mA

.l

tOOpF o •

12kll

NOTE' Permanent deVIce damage may occur If ABSOLUTE MAXIMUM AATINGS are ex
ceeded. Functional operation should be restricted to RECOMMENDED OPERAT·
ING CONDITIONS. Exposure to hlghel than recommended voltages for extended
periods of time could affect deVice reliability

-Includes Jig Capacitance

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED OPERATING CONDITIONS
Parameter

Supply Voltage

MCM6664·15, ·20

Symbol

Min

Typ

Ma.

Unit

Vr.r.
VSS

4.5
0

5.0
0

55
0

V-

I

V

I

Notes

Logic 1 Voltage, All Inputs

VIH

24

-

VCC+ 1

V

1

Logic 0 Voltage, All Inputs

VIL

- 2.0

-

0.8

V

1

Notes

DC CHARACTERISTICS
Characteristic

Symbol

Min

Ma.

Units

ICCI

50

mA

4

5

mA

5

40

mA

-

10

p.A

125

p.A

IOILi

-

10

p.A

Output Logic 1 Voltage @ !out = - 4 mA

VOH

2.4

-

V

-

Output Logic 0 Voltage @ lout = 4 mA

VOL

-

0.4

V

-

Vee Power Supply Current ItRC min,)
Standby

Vee

Power Supply Current

ICC2

VCC Power Supply Current Durong AAS Only Aefresh Cycles

ICC3

Input Leakage Current lany Inputllexcept AEFAESHIIVSS:5V,n :5VCCI

IIiLi

REFRESH Input Current IVF - VSSI
Output Leakage Current ICAS at logic 1, 0:5V out

IF

s5.51 ._-

CAPACITANCE If='1 0 MHz, TA=25'C VCC=5 V Peroodically Sampled Aather Than 100% Testedl
Symbol
Parameter

Typ

Ma.

Units

Notes

Input CapacItance IAO·AlI, Din

Cil

4

5

pF

7

Input Capacitance AAS, CAS, WRITE

CI2

8

10

pF

7

Output Capacitance 1D0uti ICAS = VIH to dIsable outputl

Co

5

7

pF

7

Units

Notes
8,9
8,9

AC OPERATING CONDITIONS AND CHARACTERISTICS
I See Notes 2, 3, 6, and Figure 11
IRead, Wrote, and Read·Modify-Wrote Cycles I
(Full Operating Voltage and Temperature Range Unless Otherwise Noted)

Parameter

Symbol

-

350

-

-

350

-

ns
ns

150

-

200

ns

10,12

75

-

110

ns

11, 12

30

0

40

ns

18

-

140

.-

ns

150

10000

200

10000

ns

75

10000

110

10000

ns

-

30

75

35

90

ns

13

Row Address Setup Time

tRCD
tASR

0

-

tRAH

25

-

0

Row Address Hold T,me

30

-

ns
ns

-

Column Address Setup Time

tASC

ns

-

55
155

-

ns

-

120

-

-

tCAH

0
45

0

Column Address Hold Time

ns

-

3

50

3

50

ns

6

Random Read or Wnte Cycle Time

,,'.

MCM6632-15 . MCM6632-20
Min
Min
Max
Ma.

tRC

300
300
-

Read Write Cycle Time

tRWC

Access Time from Row Address Strobe

tRAC

Access Time from Column Address Strobe

tCAC

Output Buffer and T urn-Off Delay

tOFF

0

Row Address Strobe Precharge Time

tRP

120

Row Address Strobe Pulse Width

tRAS

Column Address Strobe Pulse Width

tCAS

Row to Column Strobe Lead Time

Column Address Hold Time Referenced to RAS

tAR
tT

Transition Time (Rise and Faill

2-27

-

MCM6632
AC OPERATING CONDITIONS AND CHARACTERISTICS
ISee Notes 2, 3, 6 and FIgure 11
IRead, Write, and Read-Modify-Wnte Cycles I
{Full Operating Voltage and Temperature Range Unless Otherwise Notp.dl

Parameter

Symbol

MCM6632-15

MCM6632-20

Min

Ma.

Min

Ma.

-

0

-

ns

-

10

-

ns

14

35

-

ns

14

ns

ns

-

ns

15

ns

15

Read Command Setup Time

tRCS

0

Read Command Hold Time

tRCH

10

Read Command Hold T,me Referenced to RAS

tRRH

30

Write Command Hold Time

tWCH

45

twrR

Write Command Hold Time Relerenced to

RA"S

Write Command Pulse Width
Write Command to Row Strobe Lead Time
Write Command to ColtJmn
Data

In

St~obe

Lead Time

Setup Time

Data in Hold Time
Data in Hold Time Referenced to

R'AS

Column to Row Strobe Precharge Time
RAS Hold T,me
Refresh Period

WRiTE Command Setup
CAS to WlfiTE Delay
RAS to wmTt Delay

120

-

155

55

Units

ns

Notes

twp

45

-

55

tRWL

45

-

55

tCWL

45

55

tDS

0

t[)H

45

tDHR

120

tCRP

-10

tRSH

75

-

110

-

tRFSH

-

2.0

-

2.0

ms

-10

-

ns

16.

55

ns

16

ns

16

ns

450
3BO

-

0
55
155
-10

ns
ns

ns

-

ns

-

ns

tFBP

2000

tFBR

390

REFRESH Cycle T,me IAuto Pulse Model

tFC

330

-

ns

-

~ Pulse Penod IAuto Period Model

tFP

60

2000

60

2000

ns

-

REFRESH to ~ Setup Time IAuto Pulse Model

tFSR

3J

30

ns

REFRESH to RAS Delay T,me IAuto Pulse Model

tFRD

390

450
450

-

-

T,me

twcs

-10

tCWD

45

tRWD

125

CAS Hold Time

tCSH

·,50

~to~Delay

tRFD

0

mR'ESH

Penod I Battery Backup Model

REFRESH to ~ Precharge T,me IBattery Backup Model

~ Inactive Time

~ to ~Lead T,me
NOTES:

tFI

30

-

tFR

390

-

160
200
0
2000

30

ns
ns
ns

ns
ns
ns

1. All voltages referenced to VSS.
2. VIH min and VIL max are reference levels for measuring timing of input signals. Transition times are measured between V(H and
VIL·
3. An initial pause of 100 "s is required after power-up followed by any 8 AAS cycles before proper device operation guaranteed.
4. Current is a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output
open.
5. Output ,s disabled (open-clrcuitl and RAS and CAS are both at a logic 1.
6 The transition time specification applies for all input signals. In addition to meeting the tranSition rate specification, all Input signals must transmit between VIH and VIL (or between VIL and VIH) in a monotonic manner.

7. Capacitance measured with a Boonton Meter or effective capacitance calcula'l:ed from the equation: C = ~

8. The specifications for tAC (min), and tAWC (min) are used only to indicate cycle time at which proper operatton over the full temperature range 10·CsTAS70·CI is assured.
9. AC measurements assume tT = 5.0 ns.
10. Assumes that tRCD s tRCD I Maxi
11. Assumes that tRCD;': tRCD I Maxi
12. Measured with a current load equivalent to 2 TTL loads 1+200 ~A, - 4 mAl and 100 pF IVOH = 2.0 V, VOL = - 0.8 VI.
13. Operation within the tACO (max) limit ensures that tAAC {max} can be met. tACO (maxI is specified as a reference pOint only; if
tRCo is greater than the specified tACO (max) limit, then access time ,s controlled exclusively by tCAC.
14. Either tRRH or tRCH must be satisfied for a read cycle.
15. These parameters are referenced to CAS leading edge in random write cycles and to WRITE leading edge in delayed wnte or readmodify-write cycles.
16. twcs, leWD. and tRWo are not restrictive operating parameters. They are included In the data sheet as electrical characteriistics only: if twcs ~ twcs (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance)
throughout the entire cycle; if tCWD;': tCWD Imln) and tRWD;,:tRWD Imlnl, the cycle IS a read-write cycle and the data out will
contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at
access timel is indeterminate.
17. Addresses, data-in and WRITE are don't care. Data-out depends on the state of CAS. If CA:S remains low, the previous output
will remain ~alid. CAS is allowed to'make an active to inactive transition during the pin 11 refresh cycle. When CAS is brought
high, the output will assume a high-impedance state.
.
18. toff (max) defines the time at which the output achieves the open Circuit condition and is not referenced to output voltage levels.

2-28

:MCM6632

PIN ASSIGNMENT COMPARISON
MCM4516
VSS

N,C

0

15

CAS

W

14

Q

13

A6

AO

12

A3

A2

11

A1

10

Vec

9

1.

MCM6632

MCM4517

16

REFRESH

16

VSS

RHl'fESH

VSS

0

15

CAS

0

CAS

Vii

14

Q

RAS

13

A6

AO

12

A3

AO

A4

A2

11

A4

A2

A5

A1

10

A5

N/C

Vcc

9

VSS

REFRESH

CAS

0

W

1.

W

A6

1.

0

A3
A4
A5

N/C

Vcc

VSS

N/C

VSS

15

CAS

0

CAS

14

Q

W

13

A6

MCM6633

N/C

Q

A7

MCM6665

W

Q

RAS

A6

AO
A2

Q

RAS

4

A6

A3

AO

5

12

A3

AO

A4

A2

11

A4

A2

A4

A3

A1

10

A5

A1

10

A5

A1

A5

VCC

9

A7

VCC

9

A7

Vcc

A7

PIN VARIATIONS

---

Pin Number

MCM4116

MCM4616

1

Vaal-5 VI

8
9

VOOI + 12 VI
VCCI+5VI

MCM6664

REFRESH

N/C

REFRESH

N/C

VCC
A7

VCC
A7

VCC
A7

VCC
A7

MCM6632

REFRESH

N/C

VCC
N/C

VCC

N/C

On-Chip Refresh Featur",,1 Benefits
Reduce
Reduce
Reduce
Reduce

System
System
System
System

Refresh Controller Design Problem
Parts Count
Noise Increasing System Reliability
Power During Refresh

ORDERING INFORMATION
Pert Number

Description

S3)88d

Marking"

MCM6632L15

32K Dynamic

150

MCM66320L 15/MCM66321 L 15

MCM66320L 15

Random Access

150

MCM66320L15

MCM66321 L 15

Memory

150

MCM66321L15

MCM6632L20

Sidebraze

200

MCM66320L20/MCM66321 L20

MCM66320L20

Package "L"

200
200

MCM66320L20

MCM66321 L20
" MCM66320 = Tie A7 CAS IA151 Low "0"
MCM66321 = Tie A7 CAS IA 151 High "1"

2-29

MCM6665

MCM8663

MCM4517

MCM66321 L20

MCM6632

2-30

,1CM6632

SELF REFR~SH MODE (Blttary Backup)
(SEE NOTE 17)

: :~. . ,. . .,. ,. ". ,.n,- -tRFD-\~~-""~
I
ir-----------------------

VIH - - - - - - - - - - , , 1

AUTOMATIC PULSE REFRESH CYCLE (SEE NOTE 17) .

SINGLE PULSE

~tR-F-D--------~----------tFRD-----------------------~~

tF-SR------

~-------------------'FP------------------__..!

AUTOMATIC PULSE REFRESH CYCLE - MULTIPLE PULSE
(SEE NOTE 17)
VIH~~rlr----------~~r_-----------~

RAS-ONL Y REFRESH CYCLE
(Dotl-In Ind WRITE ar. Don't Car.,

CAS is HIGHI

VIH ........rv............
ADDRESSES,
AO-A6

2-31

MCM6632

READ-WRITE/READ-MODIFY-WRITE CYCLE

tRWC

RAS

V,H

tRAS

-I

~1~-----tAA----~"

V,L

tASH
tCSH
tCAS

m

V,H
V,L

V,H
Addresses

Address

~--------~--~I-tRWD--------------~~

L z3

'"f-...- - - - t c w D - - - - - - I I t o i

V,H

a

V,L

Vii

IData Outl VOH
VOL

I

~~:c

r

tOFF

Val,o
Data

_

VIH~14
tDS-rJ~

~

IHAI

o IDatalnl
vlL

2-32

.................

Valid

~nr,...,..,...,..,....,...,....,.....,......,

Date

~

MCM6632

MCM6664 Bil ADDRESS MAP

o

Row Address A7 A6 A5 A4 A3 A2 Al AO
Column Address A7 A6 AS A4 A3 A2 A 1 AO

Row

CoIumnAddreuee

H.,.
FE

Dec:
154

FF

255

Fe
FD
FA
FB
FB
'9

252
253

B2
BO
81

7D

~

~
~

~~

~§§~

88

04
03
02
01

~

~~

.......

~~

0-

0-

oo~~oo~

--------

--

0..- ..... 0 0 . . - . . - 0 0

----00

A2

AO

1
1
1
1
0
0
0
0

1
1

0

0

0

251
248
249

1
1
1
1
1
1
1
1

0
1
1
0
0

1
0
1
0
1

130
131
128
129

1
1
1
1

0
0
0
0

0

0
0

0

0
0

0

0

0
0
0
0

0

1
1
0
0

0
1
0
1

127
126
115

0
0
0

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
0

1
0
1

4
3

0
0
0
0
0

0

0
0
0
0
0

0

0

0
0
0
0
0

1
0
0
0

0
1
1
0
0

0
1
0
1
0

1
0

0
0
0

,

0

0

0
0
0
0

~8bBg8858

n

--

AS

1
1
1
1
1
1
1
1

2

00
~

M

1
1
1
1
1
1
1

··
·
···
···
···
·

~:::o8

0000

A3

1
1
1
1
1
1
1
1

··
···
·

7'
7E

~

AS

I
1
1
1
1
1
1
1

250

B3

00

A7

.3

Max
ns
-

ns

14

ns

14

rl~W~r~'t~e~C~o~m~m~an~d~H~o~ld~T?'~m~e~~~~~~~~__________________t-t~W~C~H~_t--~4~5:~I__----+-~~~_r---~--n~s_t-----_1
Write Command Hold Time Referenced to liAS
tWCR
120
155
ns

I
i,

Write Command Pulse WIdth
Wnte Command to A.ow Strobe Lead Time

tAWL

45
45

-

55
55

-

ns
ns

Wn!e Command to Column Strobe Lead Time

tCWL

45

-

55

-

ns

tDS

0

-

0

-

ns

15

'DH

45

-

~

-

ns

15

Data

In

twp

Setup T,me

Data In Hold Time

~D~a~ta__'n_H~o_l~d_T_im~e_R~e_fe_r~en_c_e~d_t_o_Ri>3.A~__________________________j __ ~tD~H~R__4_--12-:-0~~----4_--1575~~----I_-ns~-----_t
Column to Row Strobe Precharge Time

tCRP

-+__~tR~,S~H~ __

1--~~-,H~O~ld~T,:-lm=e_____________________________________

- 10
~

-

- 10

-

ns

-

110

-

ns

tRFSH
2.0
2.0
ms
Refresh Period
"'W"'R"'I"'f'"Ec-C""o::cm-"m=-=--a-ndc-::S,-e"'"tu-p--T:O-,c-m-e----------- --------------------·+--t"'w"----"C"-S'----+-----:-1::-0+---=-~+----:-10::--I--:O-"---,l--n-"s-'-----l---:1"6,------1

~~~A~t~07W~R~IT~E~D~e~la~y-·----___ ---------------------------__1--~tC~W~D__+_~4,,5~+_-.---~-,-:-::~~~----+--ns~---:1~6~
~~~~t~o-"W~R':-IT~E-"D~e':-Ia~y------_--------------.--------.----__---l__~tR~W~D'_____r-~12~5---l------j--~100,---l~---j--~ns~--"16~__l
~ Hold TIme

tCSH

150

-

CAPACITANCE If= 1.0 MHz, T A = 25°C, VCC= 5 V Periodically Sampled Rather Than 100% Testedl
Parametar
Symbol
Input Capacitance IAO-A71, D
Input Capacitance~,

CAS, wmTt

Dutput Capacitance {Ol {CAS = VIH to disable output!

200

-

ns

Typ

Ma.

Units

Notes

Cll

4

5

pF

7

CI2

8

10

pF

7

Co

5

7

pF

7

NOTES:
1
2

All voltages referenced to VSS.
VIH min and VIL max are reference levels for measuring timing of input signals. Transition times are measured between VIH and
VIL·
3. An initial pause of 100 its IS required after power-up followed by any 8 RAS cycles before proper device operation guaranteed.
Current IS a function of cycle rate and output loading; maximum current is measured at the fastest cycle rate with the output
ooen
5. Output IS dIsabled lopen-clrcuitl and RAS and CAS are both at a logic 1.
6. The transition time specification applies for all input signals. In addition to meeting the transition rate specification. all input signals must transmit between VIH and VIL (or between VIL and VIH) in a monotonic manner.

7. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: C = ~

8.

The specifications for tRC (min). and tAwe (min) are used only to indicate cycle time at which proper operation over the full temperature range (Q°es T A:S 70 0 e) is assured.
AC measurements assume tT = 5.0 ns.
Assumes that tRCDStRCD Imaxl.
Assumes that tRCD" tRCD Imaxl.
Measured WIth a current load equivalent to 2 TTL loads {+ 200 ~A, -4 mAl and 100 p'F {VOH= 2.0 V, VOL = -0,8 VI
Operation WI~hln the tACO (maxi limit ensures that tRAC (max) can be met. tACO (max) IS specified as a reference point.only; if
tACO IS greater than the specified tRCD (maxi limit. then access time is controlled exclusively by tCAe.
14. Either tRRH or tRCH must be satisfied for a read cycle,
15 These parameters are referenced to CAS leading edge in random write cycles and to WAITE leading edge in delayed write or readmodify-write cycles.
16, twCS. teWD. and tRWD are not restrictive operating parameters. They are included in the data sheet as electrical characteriistics only: if twcs ~ twcs (minI. the cycle is an early write cycle and the data out pin will remain open circuit (high impedance)
throughout the entire cycle; If tCWD~ tCWD (minI and tRWD~tRWD Iminl. the cycle is a read-write cycle and the data out will
contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at
access tlmel IS Indeterminate.
.
17. toff (max) defines the time at which the output achieves the open circuit condition and is not referenced to output v~ltage levels.

g,
10.
11
12
13,

2-36

MCM6633

PIN ASSIGNMENT COMPARISON
MCM4517

Iml!rn1

VSS

N/C

16

VSS

mI!m

VSS

D

CAS

D

15

~

D

~

W

14

a

13

A6

W

m

A6

A2
Al

7

VCC

8

AO

12

A3

AO

A3

A2

11

A4

A2

A4

10

A5

10

A5

Al

N/C

VSS

Rtrn~

D

CAS

7

A5

N/C

VCC

16

VSS

N/C

16

VSS

D

15

CAS

D

15

CAS

W

14

a

W

14

a

13

A6

13

AS

12

A3

AO

12

A3

11

A4

A2

11

A4

10

A5

Al

10

A5

9

A7

VCC

9

A7

MCM6633

AO

A6

A4

VCC

4

m

A3

N/C

W

a

W

11

AO

RAS

1.

MCM6665

MCM6664

14

a

13

A6

12

A3

AO

A2

6

i1

A4

A2

Al

7

10

A5

Al

VCC

8

9

A7

VCC

6

8

A7

PIN VARIATIONS
Pin Number

MCM4116

MCM4516

MCM4517

MCM8632

MCM6663

MCM8664

1
8
9

VBB(-5 VI

REFRESH

N/C

REFRESH

N/C

REFRESH

N/C

VDD( + 12 VI

VCC

Vec

VCC(+5VI

N/C

N/C

VCC
A7

VCC
A7

Vee
A7

Vec
A7

MCM6666

ORDERING INSTRUCTIONS
PART NUMBER

DESCRIPTION

SPEED

MCM6633L15
MCM66330L 15
MCM66331L15
MCM6633L20
MCM66330L20

32K RAM
Sidebraze
Package
"L"

66330L 15/66331L15

150

66330115

150
200

MCM66331 L20
"MCM66330L20 ~ Tie A7 CAS (A151 Low"O"
MCM66331L20 ~ Tie A7 CAS (A151 High "1"

2-37

MARKING"

150

66331L15

66330L20/66331 L20

200

66330L20

200

66331L20

MCM6633

READ CYCLE TIMING
~----------~----'RC---------·----

--

~

~----------'RAS-------_i~

V,H

- - - - - . I 1OI1---~'AR-----4'~

RAS
V'L
1OIt---------'CSH~------_i~

__.al..---;--'RSH------il~
V,H
CAS

------:--:-----r---... 1OIt---'---'CAS---~~

,-+--11.--------""""""\1

V,L

Addresses

V,L

I

V,H

~

W
V,L

'CAC

'RAC
Q IData Ou,l VOH

'OFF
Va:ld

HIgh Z

Data

VOL

WRITE CYCLE TIMING
'RC
V,H
RAS
V,L
'RSH
'CSH
'CAS
V,H
CAS

V,L

'CAH
VIH
Addresses

V,L

V,H
W
V,L
tWCR

o lData In)

V,H

Vahd
Data

VIL
'DHR

Q lData Out!

VOH

High Z

VOL

2-38

MCM6633

RAS·O~L 'y REFRESH CYCLE
!Data-in and Write are Don t Care, CAS is HIGH)

~~------------IRC-----------------~~~

Aedresses.
AO·A6

READ-WRITE/READ·MODIFY-WRITE CYCLE

tRWC
tRAS
VIH

AA!.

~

~~__------tAR--------~

VIL

tRSH
tCSH
tCAS
VIHI

m

VIL

VIH

Address••
VIL

Address

~--------~--~I~tRWD--------------~~

I------ICWD----------t~

VIH

Vi
V"

a fData

Outi

VOH
VOL

I

o IData

101

2-39

MCM6633

MCM88IIIi BIT ADDRESS MA'P
Pin

e

o

Row Address A7 A6 A5 A4 A3 A2 A1 IW
Column Address A 7 A6 A5 A4 A3 A2 A 1 AO

Row

Column Add,....

H..

Do<

FE
FF
Fe
FD
FA
FB
FB
F9

254
255
252

253
250
251
248
249

··
··
··

0000

88

§§§~

W~

W

~

~~

~~

~~

N

0-

0-

--------

----



c

E

16.384-Bit Memory

,::

Array

0

a
a:

~
PrechorgE
Clock

AOl5

12pA3

A2[6

llpA4

Al17

lOpA5

"0

Sense Amplifier

-

9

A7

REFRESH.
AD-A7..
0..

"0

~

!

~

~

a

PIN NAMES

Sense Amplifier

0
~

A t.

~
@

14p

13p A6

Sense Amphtler

15p~

4

VCC [ 8

BLOCK DIAGRAM

Precha,fgE

lrii'-""i6p VSS

012

_i

-,4-'

Wrtte,W

Refresh
. Address Input
. ........ Data In
Q..
.. .................... Data Out
W.....
.. ....... Read/Wme Input
RAS..
.. .... Row Address Strobe
CAS ............... Column Address Strobe
Vce ........................ Power' + 5 VI
VSS .................................... Ground

... i

4-'Data In, 0

...

Output

Data,

a

T his device contains circuitry to protect the in-

puts against damage due to high static voltages
or electric fields; however, it is advised that nor·
mal precautions be taken to avoid application of

any voltage higher than maximum rated voltages
Sense Amplifier

-

to this high· impedance Circuit.

DS9B22/~OO

2-41

MCM6664
ABSOLUTE MAXIMUM RATINGS ISee Notel

FIGURE 1 Symbol

Valua

'Unit

Voltage on Any Pin Relative to VSS lexcept VCCI

Vin • Vout

- 2 to + 7

V

Voltage on VCC Supply Relallve to VSS

Yin. Yout

-110+7

V

o to

-6510+150

°c
°c

PD

1.0

W

lout

50

mA

Rating

-

--"---

Operatmg Temperature Range

TA

Storage Temperature Range

- - - - -- T sto

Power DISSipation

----.

Data Out Current

+ 70

OUTPUT LOAO
5V
970

n

----.--+0--...

Q-

....

100 pro

NOTE Permanent deVice damage may occur If ABSOLUTE MAXIMUM RATINGS are ex
ceeded. Functional operauon should be restricted to RECOMMENDED OPERAT1NG CONDITIONS Exposure to higher than recommended voltages for extended
peflods of time could affect deVice reliability

-Includes Jig Capacitance

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted_'

RECOMMENDED OPERATING CONDITIONS
Parameter
Supply Voltage

MCM6664-15. 20

-,--------;-:-;
LogiC 1 Voltage, All Inputs

LogiC 0 Voltage. All Inputs

DC CHARACTERISTICS

Symbol

Min

Typ

Max

Unit

Notes

VCC
VSS

4.5
0

5.0
0

5.5
0

V
V

1
1

VIH

2.4

V

1

- 2.0

-

VCC+ 1

VIL

0.8

V

1

Notes

-

Characteristic

Symbol

Min

Max

Units

r---v-CC Power Supply Current (tAC min.)

ICC1

50

mA

4

Standby V CC Power Supply Current

ICC2

5

mA

5

VCC Power Supply c:urrent DUring AAS Only Refresh Cycles

ICC3

-

40

mA

Input Leakage Current (any Input except REFRESH) (VSS ~ Vln:S VCC)

IIiLi

-

10

~A

IF

-

125

~A

IOILi

10

~A

VOH

2.4

-

V

-

0.4

V

-

Symbol

Typ

Max

Units

Notes

Cl1

4

5

pF

7

CI2

8

10

pF

7

Co

5

7

pF

7

~ Input Current IVF-VSSI

_.

Output Leakage Current (CAS at logiC 1, O:sVout:s5,~i
Output LogiC 1 Voltage @ lout =
Output LogiC

a Voltage @

-4

-

rnA

lout = 4 mA

VOL'

CAPACITANCE If ~ 1 0 MHz T A - 25'C VCC - 5 V Pe"odlcally Sampled Rather Than 100% Testedl
Parameter
Input Capacitance tAO-Ali. 0
Input Capacitance RAS. CAS. WRITE
Output Capacitance (01 (C"A!;

= VIH

.-

to disable output)

AC OPERATING CONDITIONS AND CHARACTERISTICS
ISee Notes 2. 3. 6 and Figure 11
IRead. Write. and Read-Modlfy-Wrlte Cyclesl
(Full Operatlnq Voltaqe and Temperature Range Unless O.therwlse Noted)

r--------------------- ---------Parameter

---r---.....,=OEi"
...
M ;M 1Cili4-15 MCM6664-20
. Symbol

....-;;=;;;-;-o;;;r--.-~---,

Min

Random Read or Wnte Cycle 11me

-

Read Write Cycle Tlm_e-:--;--c-_-=---c_______________ . ______ _

~~::: ~ ::: :~:: ~~:::~~:~e~~r;~~obe
Output Buffer and Turn·OIf Delay

.~

-

tRWC

Max

_ 300
c.'-'..-l-_
300

_-'-~~I--=-

Min

ns

_~

200
110
40

ns
ns
ns

140

120

tRAS

150

10000

200

10000

ns

Column Address Strobe Pulse Width

tCAS

75

10000

110

10000

ns

r.:

10. 12
11.12
18

ns

tRP

Row Address Strobe Pulse Width
Row to Column Strobe Lead Time
Row Address Setup Time

Notes

9
+-33'-:50bO,c-t-_-+_ns=--t--~88
. 9

_________ f--_-'-CA~ __;_-..2~___=;._
tOFF
0
30
0

Row Address Strobe Precharge TIme

Units

Max

tRCo
30
75
35
90
ns
13
--.. -.--.------ - - - . r-·-t:'-Ac'S'-'R'---+--;;O-t----t--,;;-+--~r--n-s-t----l

R;-O-w---=A"'d--:;d"re-'-ssC"7'HCCO "'ld-;:-T"',-m--"e---------- -- - -- - - - --- f-----:-'R"'A=H-f---;:2"'5-+- --if-"""+---t--ns'--+----l
--.-------------t---'='-'---I-----;:!-,C"o",lu::.m",n"-,-:A:,:dc::d.c:re::s.::.s..:S:.::e.::tu"p=::--:-TI,,,m.:.:e,-_ _ _ _ ._ --.- _
-- _ _ _
_t~A~,S,-,C~_+-_-::O:-t- __ +--::o-+-_-t_n_s-t_ _ _-I

r-

f--C"u",ll.::.,m",rc.'..:.A:,:d:.::d.c:re::s.:.s-'-H"o"'ld:....:.Tc.'m..,;e=--____ - - - - _
Column A"ddress Hold Time Referenced 10 RAS
TrarlSllion Time tRlse and Falll

-- _r-~6!::LtAR
-t'T

2-42

r- .~~.
120
-

-3-'

_-i~_n--,s'-t-_ _-I
ns
ns--+--=6--t

MCM6664

AC OPERATING CONDITIONS AND CHARACTERISTICS
(See Notes 2, 3, 6, and Figure 1)
(Read, Write, and Read-Modify-Write Cycles)
(Full Operating Voltage and Temperature Range Unless Otherwise Noted)

Parameter

Symbol

MCM6664-15

MCM6664·20

Min

Max

Min

Max

-

a

-

Read Command Setup Time

tRCS

a

Read Command Hold Time

tRCH

10

10

Units

Notes

os

-

ns

14

Read Command Hold Time Referenced to RAS

tRRH

30

-

15

..

ns

14

Write Command Hold Time

tWCH

45

55

..

ns

tWr:R

120

155

ns

55

-

155

-10

ns

-

ns

15

ns

15

-

ns
ns

110

-

-

2.0

ms

-

-10

-

ns

16

55

-

ns

16

160

ns

16

ns

3BO

-

60

2000

ns

30

-

ns

-

ns

-

ns

-

ns

-

~

45

-

Write Command to Row Strobe Lead Time

tRWL

45

-

55

Write Command to Column Strobe Lead Time

tCWL

45

55

Data in Setup Time

tDS

a

Data

tDH

45

Data In Hold Time Reterenced to ~

IDHR

120

Column to Row Strobe Precharge Time

tCRP

-10

RAS Hold Time

tRSH

75

-

Refresh Period

tRFSH

-

20

Write Command Hold T 1mB Referenced to

R"A!i

Write Command Pulse Width

In

Hold Time

wmTE Command

tW...GS.

-10

rn to WRITE Delay

tCWD

45

RAS to wmTt

tRWD

125

tCSH

150

tRFD

a

REFRESH Pertod IBattery Backup Model

tFBP

2000

REFRESH to ~ Precharge Time lBattery Backup Model

tFBR

390

REFRESH Cycle Time IAuto Pulse Model

tFC

330

-

I!EmSR

IFP

60

2000

-

Setup Time

Delay

CAS Hold Time
RA'S. to ~

Delay

Pulse Pertod IAuto Pertod Model

REFRESH to ~ Setup Time IAuio Pulse Model

IFSR

30

REFRESH to RAS Delay Time IAuto Pulse Model

IFRD

390

tFI

30

tFRL

390

~ Inactive Time
~ to AEmSHLead Time

NOTES·

55

a

200

a
2000
460

460

30
460

ns
ns

ns

ns
ns
ns
ns

All voltages reterenced Ie VSS.
VIH min and VIL max are reference levels for measuring timing of Input signals Transition times are measured between VIH and
VIL
3. An initial pause of 100 "s IS required after power-up followed by any 8 AAS cycles before proper device operation guaranteed
4. Current is a funr:tlon of cycle rate and output loading, maximum current IS measured at the fastest cycle rate with the output
open.
5 OutP~t IS disabled (open-circuit! and RAS and CAS are both at a logic 1
6. The tranSition time specification applies for all tnput signals. In addition to meeting the tranSition rate specification, all Input signals must transmit between VIH and VIL (or between VIL and VIH) In a monotoniC manner.
I~
7. Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation C = ~
8.

The speCifications for tAC (min), and tAWC (min) are used only to indicate cycle time at which proper operation over the futl temperature range (Q°C:s T A:S 70°C) is assured
9. AC measurements assume tT = 5.0 ns
10. Assumes thai tRCD"'IRCD IMaxl
11. Assumes that tRCD"'tRCD IMaxl
12. Measured with a current load equivalent to 2 TTL 1+ 200 ~A. - 4 mAl loads and 100 pF IVOH ~ 2.0 V. VOL ~ - 0.8 1/1.
13. Operation within the tACO (max) limn ensures that tAAC (max! can be met. tACO (max) IS specified as a reference pOint only; if
tACO is greater than the specified tACO (max) limit, then access time IS controlled exclusively by tCAe.
14. Either tRRH or tACH must be satisfied for a read cycle
15. These parameters are referenced to CAS leading edge In random write cycles and to WRITE leading edge m delayed write or readmodify-write cycles.
16. twcs, tCWD, and tAWD are not restnctive operating parameters. They are Included In the data sheet as electrical characteriistlcs only: if twcs2':: twcs (min!, the cycle is an early wnte cycle and the data out pm will remain open CirCUit Ihigh Impedance)
throughout the entire cycle: if tcwo~ tCWD (min) and tAWD~ tAWD Imlnl, the cycle IS a read-Write cycle and the data out Will
contain data read from the selected cell; .t neither of the above sets of condItions IS satisfied, the condItion of the data out (at
access time) IS Indeterminate.
17. Addresses, data-In and WAITE are don't care. Data-out depends on the stale of CAS If CAS remainS low, the prevIous output
will remam valid. CAS is allowed to make an active to inactive transition dunng the pm 11 refresh cycle When CAS IS brought
high, the output will assume a hIgh-Impedance siate
18. toff (max! defines the time at which the output achieves the open Circuit condition and IS not referenced to output voltage levels

2-43

MCM6664

PIN ASSIGNMENT COMPARISON
MCM4516

MCM6632

REFRESH

VSS

N/C

VSS

REFRESH

10

VSS

D

CAS

D

CAS

D

15

CAS

IN

14

a

RAS

13

A6

12

A3

IN
RAS

W

0

0

1'.6

A6

AO

A3

AO

A3

AO

A2

A4

A2

A4

A2

A1

A5

A1

A5

VCC

N/C

VCC

VSS

REFRESH

CAS

D

MCM6633

N/C

1.

D

IN

a

3

11

A4

A1

10

A5

N/C

VCC

9

A7

VSS

N/C

16

VSS

CAS

D

15

a

IN

14

CAS
a

13

A6

12

A3

MCM6664
1.

IN

A6

RAS

A6

RAS

5

A3

AO

A3

AO

A2

6

A4

A2

A4

A2

A1

7

A5

A1

A5

VCC

8

A7

VCC

A7

10

9

6

MCM6665

AO

RAS

1.

1.

4.

11

A4

A1

10

A5

VCC

9

A7

6

PIN VARIATIONS

Pin Number

MCM4116

MCM461e

MCM4617

MCM8632

MCM8883

MCM8864

1

VSSI-5 VI

REFRESH

N/C

REFRESH

N!C

REFRESH

8

VDDI+ 12 VI

VCC

VCC

9

VCCI+5 VI

N/C

N/C

VCC
A7

VCC
A7

VCC
A7

On-Chip Refresh Features! Benef~.
Reduce System Refresh Controller DeSign Problem

Reduce System Parts Count
Reduce System Noise Increasing System Reliability
Reduce System Power During Refresh

2-44

MCM6886

N/C
VCC
A7

MCM6664

,

READ CYCLE TIMING

'RC

'RAS
'AR

VIH
RAS

VIL

'CSH
'RSH-

CAS

'CAS

V'H
VIL

VIH
Addresses
VIL

IN

I

VIH

~

VIL

'CAC

'RAC

a lData Ouli

'OFF

VOH

Valid
Da'a

High Z

VOL

,

WRITE CYCLE TIMING

'RC

tRAS

VIH

~

'AR

RAS
VIL

I

tRSH

l - tRP- '

'CSH

CAS

tASR
VIH
Addresses
Vil

tRAH

r

~

l--1'ASC-l

~

Row

Address

VIH

:u,

VIH

I

,1/
tCWl

f-'WCf~

I
I

--II--

-

tRwL 1

I

~~

tDS~'DH

~

VIL

/

tCAH

Address

~tw

+-tWCR

~

V

Column

I

Vil

D IDa'a Inl

~

_ ~ 'l:JJI

twcs

IN

I

1\ \

Vil

t--'CR~

tCAS

I4---'RC
VIH

l\.-

Valid

tl

Data

~~:

tDHR

a IData Oull

VOH

---------------------------------Highl--------------------------------

VOL

2-45

MCM6664

SELF REFRESH MOOE (llettery Beckupl
(SEE NOTE 171

~~'-----------~
IFBR--J ......- - - - - - VIH----------~

AUTOMATIC PULSE REFRESH CYCLE - SINGLE PULSE
(SEE NOTE 171
VIH~~~-------------------------~

i+-----------tFRD------------+i
tRFD
~----------tFP----------~

AUTOMATIC PULSE REFRESH CYCLE - MULTIPLE PULSE
(SEE NOTE 171

! + -...... tFSR

RAS-ONL Y REFRESH CYCLE
(ON-In .nd WRITE ... Don't Ca ... CAl ia H(GHI

..-------IRC------~-~

VIH""".........." "

ADDRESSES,
A(}A6

2-46

MCM6664

REAO-WRITE/REAO-MOOIFY-WRITE CYCLE
...
-_
-_
-_
-_
--lR
C
-_
-_
-_
-_
-___
- - - - - - - - - - - - - -__
.._
_____-IRAS
_ _W
___
__

m

VIH

~~__------IAR

~

VIL

IRSH
ICSH

CAS

ICAS --------------.1

VIH
VIL

VIH

Addresses
VIL

VIH

W

VIL

L,-

o IData Inl
'I

2-47

MCM6664

MCM6664 BIT ADDRESS MAP

Row Address A 7 A6 AS A4 A3 A2 A 1 AO
Column Address A7 A6 A5 A4 A3 A2 Al .6.0

Column Add,","

Row

Hex

~

..

~if!

"'~
NN.

0-

0-

--------

AO

.1

1
1
1
1
0
0
0
0

1
1
0
0
1
1
0
0

0
1
0
1
0
1
0
1

0

1
1
0
0

0
1
0
1

1
1

1
0
1

1
1
1
1

0
0
0
0

0
0
0
0

0
0

7F

127
126
125

0
0
0

1
1
1

1
1
1

4

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

··
··
·
···
···

04
03
02
01

3
2
1
0

1

1

1

1

0

0

0
0
0
0

1
1
1

1
1
1

1
1

0
0
0
0
0

1
0
0
0
0

~8b~8Z808
.a:><.O ......


c

~
16,384·811 Memory
Array

'0

recharg
Clock

D ..

'0

112 t 1 01 256)
Column Decoder

16,3i::\4·811 Memory
Array

0

~

-

PIN NAMES
....... Address Inpu1
oata In
.... Data Out
Read/Wllte Input
o •••••

. .... Row Address Strobe

.. Column Address Sirobe
.. Power 1+5 VI
... Ground

-+ Output

E
.=

'0

Sense Ampliller

AD-A7 ...

g I-i

a:

~

...

MCM6664 aVCC trace should go to pin II.

r-Sense

Sense Amplifier

'---

Data, 0

This device contains circuitry to protect
the inputs against damage due to high
static voltages or electric fields; however,
it is advised that normal precautions be
taken to avoid application of any voltage
hrgher than maximum rated voltages to
this high-Impedance CirCUIt.

DS9824/9-8O

2-49

MCM6665

FIGURE I - OUTPUT LOAD

ABSOLUTE MAXIMUM RATINGS ISee Notel
Raling

Symbol

Velue

Unit

Voltage on Any Pin Relative to VSS (Except VCCI

Vin. Vout

-210+7

V

Voltage on VCC Supply Relatiye to VSS

Vin. Yout

- I to +7

V

Tst9
Po

-65 to +150

'c

Power Dissipation

1

W

Data Out Current

lout

50

rnA

Storage Temperature Range

5V
9700

Q------~~~--.
100 pF'

NOTE: Permanent deVice damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restncted to RECOMMENOED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended
periods of time could affect device reliability.

-Includes Jig Capacitance

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED OPERATING CONDITIONS
Parlmeter

Symbol

Min

Typ

Max

Unit

NOI..

VCC
VCC
VSS

4.5
4}5
0

5.0
5.0
0

5.5
5.25
0

V

I
I

Logic I Voltage, All Inputs

VIH

2.4

-

VCC+l

V

I

Logic 0 Voltage, All Inputs

VIL

0.8

V

I

Supply Voltage

M CMS665L I 5/ M CMS665L20
M CMS665L I 5-5/ M CM6665L20-5

2.0

DC CHARACTERISTICS (Full Operating Voltage and Temperature Ranges Unless OtherWise Notedl
Symbol

Characteristic
VCC Power Supply Current (tRC min.1

ICCI

Standby VCC Power Supply Current

ICC2

VCC Power Supply Current During

I1AS

Only RefreSh Cycles

Min

Max

Unit.

Not..

-

50

mA

4

5

mA

5

40

mA

-

ICC3
IIiLi

-

10

~A

10

~A

Output Logic I Voltage @ lout - - 4 mA

10(L1
VOH

2.4

-

V

Output Logic 0 Voltage @ lout = 4 mA

VOL

-

0.4

V

Input Leak.age Current (any input) (0::5 Vin::5 5.5) (Except Pin 11

Output Leakage Current IOsV out s5.5HCAS at Logic II

AC OPERATING CONDITIONS AND CHARACTERISTICS
(See Notes 2, 3, 6, and Figure I I
(Read, Write, and Read-Modify-Wnte Cycles I
(Full Operating Voltage and Temperature Range Unless Otherwise Notedl

Parameter

Symbol

Random Read or Write Cycle Time

tRC

Read Write Cycle Time
Access Time from Row Address Strobe

tRwe
tRAC

Access Time from Column Address Strobe

tCAC
tOFF

Output Buffer and Turn-Off Delay
Row Address Strobe Precharge Time
Row Address Strobe Pulse Width

tRP
tRAS

Column Address Strobe Pulse Width
Row to Column Strobe Lead Time

tCAS
tRCD

Row Address Setup Time

tASR

Row Address Hold Time
Column Address Setup Time

tRAH
tASC
tCAH
tAR
tT

Column Address Hold Time
Column Address Hold Time Referenced to

rn

Transition Time (Rise and Falll

2-50

MCM6f1116. I 5
Min
Ma.

MCM6fIII6.20
Units
Min
Max

300
300

-

35Q

-

-

t50

350
-

--

ns

200
110

I\S

0
120
150

30
10000
10000
75
-

0
140

40
10000
10000

120

-

200
110
35
0
30
0
55
155

ns
ns
ns

3

50

:i

50

75

30
0
25
0

45

75

-

-

ns
ns

90

ns
ns

-

ns

-

ns
ns
ns
ns
ns

Not..

8,9
8,9
10, 12
11. 12
t7

13

-

6

UCM6665

AC OPERATING CONDITIONS AND CHARACTERISTICS
ISee Notes 2,3,6, and Figure II
(Read. Write, and Read-Modlfy-Wrlte Cycles)
(Full Operating Voltage and Temperature Range Uriless Otherwise NotedJ

Parameter

Symbol

Read Command Setup Time
Read Command Hold time
Read Command Hold Time Referenced to

i'fAS

Write Command Hold Time
Write Command Hold Time Referenced to RAS

-

Write Command Pulse Width
Write Command to Row Strobe Lead TIme
Wnte Command to Column Strobe Lead Time

Min

tRCS

0

-

ns

-

10

-

0

tRCH

10

--

ns
ns

14
14

ns
ns

-

ns

-

-

ns

-

-

ns

15

ns

15

ns

-

tRRH

30

tWCH

45

-

tWCA

120

-

55
155

twp

45

-

55

tAWL

45
45

-

55

Data In Hold Time Aeferenced to RAS

tDHR

0
45
. 120

Column to Row Strobe Precharge Time

'CAP

- 10

'RSH
tRFSH

lIAS

Hold Time

Refresh P-eflod

WAITE Command Setup Time

..-

CAS to WRITE Delay
IfAS to WRITE Delay
CAS' Hold Time

I-;--'---:--;;-

Input Capacitance 1t3;S,

Parameter

0

CAS', wmTE

OUlpul Capacitance 101 ICAS = VIH to disable output!

35

55
0

ns

-10

75

-

110

-

ns

-

2.0

-

2.0

twcs
tCWD

- 10

- 10

-

16

tRWD

125

ns
ns

16
16

tCSH

150

-

ms
ns

ns

-

45

CAPACITANCE if= 10 MHz TA=25'C VCC=5 V Periodically Sampled Rather Than 100% Tesledl
----

~~t Capacllance IAO-A71,

Ma.

-

tDH

- -

Units Notes

Ma.

tDS

Data in Hold Time

MCM6666-20

Min

tCWL

Dala In Selup Time

MCM6666-15

55
155

55
160

ns

-

200

Symbol

Typ

Ma.

Units

C'l
CI2

4

5

pF

7,

8

10

pF

7

Co

5

7

pF

7

Notes

NOTES:
I. All voltages referenced to VSS.
2 VIH min and VIL max are reference levels for measuring timing of input Signals. Transition times are measured between VIH and
VIL·
3. An initial pause of ·100 1'5 is required after power-up followed by any 8 RAS cycles before proper deVice operation guaranteed.
4. Current is a function .of cycle rate and output laading; maximum current is measured at the fastest cycle rate with the output
open.
5. Output is disabled lopen-circultl and RAS and CAS are both at a logic 1.
6 The transition time specificatian applies for all input signals. In addition t.o meeting th~ transitian rate specification, all.nput signals must transmit between VIH and VIL (or between VIL and VIH) in a manotonic manner.
Capacitance measured with a B.oonton Meter .or effective capacitance calculated from the equation. C = ~
8

9.
10.
11.
12
13.
14.
15.
16.

The specificati.ons for tAC (min), and tAWC (min) are used .only to indicate cycle time at which proper operation over the full temperature range (Q°C:sTAS70°C) is assured.
AC measurements assume tT = 5.0 ns.
Assumes that tACO" tRCD Imaxl.
Assvmes that tRCD'" tRCD Imaxl.
'Measured with a current load equivalent to 2 TTL loads 1+200 ~A, - 4 mAl and 100 pF (VOH = 2.0 V, VOL = - 0.8 VI
Operation within the tACO (max) limit ensures that tRAC (maxI can be met. tRCD Imax) is specified as a reference point only,
tACO is greater than the specified tRCD (max) limit. then access time is controlled exclusively by tCAC
Either tRAH or tACH must be satisfied for a read cycle.
These parameters are referenced to CAS leading edge in random write cycles and to"'W'Ai'IT leading edge in delayed write or readmadify-write cycles.
tWCS. tCWD, and tRWD are not restrictive operating parameters. They are included in the data sheet as electrical characten·
istics .only: if
~
Imln). the cycle is an early write cycle and the data out pin will rer::naln open cirCUIt (high impedance)
throughout the entire cycle; if tCWD~tCWD (min) and tRWD~ tRWD Imin), the cycle is a read-write cycle and the data out Will
contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the ·data out (at
access time) is indeterminate.
taff (max) defines the time at which the output achieves the open circuit canditlon and is not refp.renced to .output valtage levelS

twcs twcs

17.

2-51

MCM6665

PIN ASSIGNMENT COMPARISON

MCM4516
REFRESH

VSS

NIC

MCM4517
16

VSS

REFRESH

0

CAS

0

15

CAS

D

a

W
RAS 4
AO

W

A6

14

a

13

A6

RAS

1.

MCM6632
16

VSS

15

CAS

14

a

W

12

A3

AO

12

A3

AO

4

A6
A3

A2

6

11

A4

A2

11

A4

A2

6

A4

Al

7

10

A5

Al

10

A5

A1

7

A5

VCC

8

9

N/C

VCC

8

A7

16

VSS

N/C

0

8

9

N'C

VCC

16

VSS

REFRESH

0

15

CAS

0

15

CAS

W

14

a

W

14

a

RAS

13

A6

1.

MCM6633

NIC

1.

MCM6664

1.

MCM6665

W
RAS 4

A6

16

VSS

15

CAS

14

a

13

A6
A3

AD

5

12

A3

AO

A3

AO

5

12

A2

6

11

A4

A2

A4

A2

6

11

A4

A1

7

10

A5

A1

A5

A1

10

A5

VCC

8

9

A7

VCC

A7

VCC

9

A7

8

PIN VARIATIONS

Pin Number
1

8
9

MCM4118
VBBI-5 VI
Voot+ 12 VI
VcCt+5 VI

MCM4618

MCM4617

MCM8832

MCMeee3

MCMe884

RmIESH

N/C

rnlWSH

N/C

~

N/C

VCC

VCC

N/C

N/C

VCC
A7

VCC
A7

VCC
A7

VCC
A7

2-5?

MCMeeeI

.MCM6665

REAC CYCLE TIMING
tRC--tRAS

RAs

VIH
VIL

tAR

i
tRSH"

m

tCAS·

VIH
VIL

2-53

MCM6666

RAS·ONL Y REFRESH CYCLE
10.,.·,n and Wriii Ire Don" Cara. CAS il HIGH I

L.~'------------IAC------------------~

Addresses,
AO·AS

REAO·WRITEIREAO·MOOIFY·WRITE CYCLE

RAS

VIH

'RAS

IAWC

-!

'AA

, VIL

IRSH
'CSH
CAS

ICAS

VIH
VIL

Column

Addresses
VIL

Address

~---------T--~I-IRWD----------------~

j4

VIH

W
VIL

l-t

tCWD----....~

cAc ______

D lOata Inl

2-54

MCM6666

MCM8666 BIT ADDRESS MAP
Pm 8

D

Row Address A 7 A6 A5 A4 A3 A2 A 1 AO
Column Address A 7 A6 AS A4 A3 A2 A 1 AO

Cotumn Addreues

He.

Row

Dec
254
255

FE

FF

ilj:il

.'

etw~en VIH and
VIL
_
An .,llllal pause 01 100 "S IS rCllu'fed aller power up followed Py any 8 RAS cvc!es before I..HOPt'l dpvrc~! upercttron
4

5

6

open
Output IS disabled lopen cllcUlII and RAS alld CAS dlt! bOlt) dt d ~oylc 1
Ttle tranSition lime speclflcatlun applies tOI alllflput Signals In addltlOfI In Illt~t't,ny ttw IldliSttlllll Idlp SpP.t.:tfICHIllIn dlllnPlii SlY
nals must IranSrTtil between VIH and Vll (or between Vll and V'HI In (I IlIt)llO!lHlIC manner
Capacltanct; measured Wlttl a 8(lunllln Metel 01 efft=!cltve capaCltiillCf> calculated hum Itle equ.lII.)P C

9
10
11
12
13
14

lb
16

17

4l.i.Hrlnleed

Cllrrent 1<; a 'llllClllln 01 cyCle rate and output loadlllQ. maJ(lmum ClHIHll1 rR m~asured at the Ic:lSlest \'ycip fd:€, Witt) HlP dulpul

~

The speclftcallons flH tRC Imlnl, arId 'AWC hnml die used l)llly ttl IIldl t :;HP eycle tUlIt' at which propt!1 lJL1eration over ttle Ililltem
perature range 10"(:s T A:S 70"CI 15 assured
•
AC measurements assume t 1 =- 5 0 flS
Assumes thallRCDsIRCD (inax}
Assumes that tRCO~ tRCo (maxI
,
Measured with a currenl load eqUivalent 10 2 TTL loads 1+ 200 ~A ..- 4 mAl and 100 pF IVOH 2.0 V. VOL
0.8 VI.
Operation Within the IRCD (max; 1111111 ensures that !RAC (max! can be me! tReD lrnax) IS speClflp.d as a reference pOint only,
tRCD rS grealer than the speCified tRCD (maxllH"It, then access 11:lIP. IS <,ontlOlied exclUSively hy tCAC
E.ither tARH UI tACH must be satisfied fOI a lead cyclt-!
These pararnelf!1S ale retcrenr:ed 10 CAS leadllig edge JrtI,Hl(h l l1l wrlll! cyclt.!S arid tLl WRl1 E 11'iHlln\,} mlge If, dp.layed Wille or read·
modify wllte cycles
IWCS. tCWD, and lRWD are not reS!lIctlve Opcl!IC'> Dilly If 'wcs ~ twcs Imml, the cycle IS an early Wille c\,cle ,111(1 the dilla Ollt pin Will remalll Oppl) CIrCUit lhlgtl Impedancel
throughout tile tlnlHe cycl~, 'ItCWD~ tewD (nunl ..Uld tRWD~ tAWD (l1l1ftl. Ihe cycle IS a ledd write cycle 1nd Ihe data oul Will
contatn data lead hrlm Ihe selected cell, II ra!ttllet of Itle abo ....H ')I

0-

0-

--------

-----.-

•

. . . . ..

1

251
248
249

1
1
1

130
131
128
129

1
1
1
1

0

0

0
0
0

0
0
0

127
126
125

0
0
0

1
1
1

4
3
2
1
0

0
0
0
0
0

0
0

··•
··
···
···
··

u

00

250

1
1
1
1
1
1
1
1

··
·
···

83

c
E

253

1
1
1
1

252

80
81

A7 AI A3

0
0
0

1
1

,

1
1
1
1

,

A4 AS A:l AIJ A1
1
1
I
1
1
1
1
1

1
1
1
1
1
1
1
1

1
1
0
0

0

0
0

1
1
1

1
1
1

1
1
1

1
1
1

1
1
0

1
0
1

0
0
0
0
0

0
0
0
0
0

1
0

0
1
1
0
0

0
1
0
1
0

0

0
0
0

0

-00000000
000000000
·000000000

000000000
000000000

Data Stored - Dine Aoxe A,y

DIIUI
Stored
1

o

Invl3rted
True
True
Inverted

2-62

1
1
0
1

0

0----0000

o

0

0

00..-.-00--0

o
o

1
1
0
0

0

0 - - 0 0 __ 00

Column
Add...
A1

0

0
1

0

0
0
0

.CO\Dr-.\J")~N(",).-O

00

0
0
0

1
1

0
0

0
0

0
0

~8~~!aB58

-

1
1
1
1

0
0

a

1
0
1

"

'([5)

MCM2114
MCM21L14

MOTOROLA

MOS

4096-81T STATIC RANDOM ACCESS MEMORY
The MCM2114 is a 4096-bit random aCCeSS memory fabricated with
high density, high reliability N-channel silicon-gate technology, For ease
of use, the device operates from a single power supply, is directly compatible with TTL and DTL, and requires no clocks or refreshing because
of fully static operation, Data access IS particularly simple, since address
setup times are not required The output data has the same polaruy as
the Input data,
The MCM2114 is designed for memory applications where simple interfacing is the design oblectlve, The MCM2114 is assembled In 18-pln
dual-in-line packages with the industry standard pin-ouL A separate
chip select 1~llead allows easy seJectlon of an individual package when
the three-state outputs are OR-tied,
The MCM2114 senes has a maximum current of 100 mA, Low power
versions li,e" MCM21L 14 seriesl are available with a maximum current
of only 70 mA
• 1024 Words by 4-81t Organization
• Industry Standard 18-PIn ConfiguratIOn

IN-CHANNEL, SILICON-GATE I

4096-BIT,STATIC
RANDOM ACCESS
MEMORY

-

_.-<,,--'-.

• Single + 5 Volt Supply
• No Clock or Timing Strobe Required

.• ~

/

• Fully Static, Cycle Time = Access Time
• Maximum Access Time
MCM2114-20/MCM21 L 14-20200
MCM2114-25/MCM21L14-25 250
MCM2114-30/MCM21L 14-30 300
MCM2114-45/MCM21 L14-45450
• Fully TTL Compatible

..~,~

PLASTIC PACKAGE
CASE 701

r,]11 :

ns
ns
ns
ns

'"'AX

CERAMIC PACKAGE
CASE 680

• Common Data Input and Output
PIN ASSIGNMENT

• Three-State Outputs for OR-Ties
• Low Power Version Available

A6

[iiV1a

A5 2

BLOCK DtAGRAM
A9~1~5~_____{~:j------Vee

A4 ~3_______

A6

Vss -

Pin 18

Ping

"'-----1

A4

3

16 AS

A3

4

t5

AO

5

14 001

Al

6

13 002

A2

7

12

-S 8

11

004

10

W

VSS

17

A7-------1
16
AS --------1

Vee

17 A7

9

A9

003

14

oOt---~--I~r

I

PIN NAMES

002 _'",3_H-+-l

AOA9

Iii

S

004 _-++++-1

001,004
Vee
V~

'0

w---~_'

Address Input
Wnte Enable
ehlp Select
Data Input/Output
Power (+ 5 VI
Ground

AO Al A2 A3

059800/1 79

2-63

MCM2114-MCM21 L14

ABSOLUTE MAXIMUM RATINGS (See Note)
Rating

Temperature Under Bias
Voltage on Any Pin With Respect to VSS

Valua

Unit

-10to +80

'C

-0.5 to + 7.0

V

5.0

mA

1.0

Watt

DC Dutput Currant
Power Dissipation

o to

Operating Temperature Range

+ 70

-65 to +150

Storage Temperature Range

This device contains circUItry to protect
the Inputs against damage due to high
static voltages or electric fields; nowever,
It IS advised that normal precautions be
taken tv avoid application of any voltage
higher than maximum rated voltages to
this high-Impedance Circuit

'c
'C

NOTE' Permanent devIce damage may occur If ABSOLUTE MAXIMUM RATINGS are exceeded. Funcllonal operation should be restncted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended
periods of time could affect device reliability

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.1

RECOMMENDED DC OPERATING CONDITIONS
Parameter

Supply Voltage

•

LogIc 1 Voltage, All Inputs
LogIc 0 Voltage, All Inputs

Svmbol

Min

Typ

Max

Un,

VCC
VSS

4.75
0

5.0
0

5.25
0

V

6.0

V

08

V

-

VIH

2.0

VIL

-05

DC CHARACTERISTICS
Symbol

Parameter

MCM2114
·Min TVp
Max

ICC2

-

Output Low Current VOL = 0.4 V

IOL

21

Dutput HIgh Current VOH = 2.4 V

IOH

-

Input Load Current (All Input PinS, V ln = 0 to 5.5 Vl

III

1/0 Leakage Current (S = 2.4 V, VDO = 0.4 V to VCe!

ilLOI

Power Supply Current (V,n - 5.5 V, (DO - 0 mA, T A - 25'CI

ICCI

Power Supply Current (V ,n -5.5 V, IDO-O mA, TA=O'C)

NOTE: Duration not to exceed

MCM21L14
Typ Max

Min

-

100

-

-

-

2.1

60

' <. .

10

-

10

80

95

6.0

-1.4 -10

-

10

Unit
~A

10

~A

65

mA

70

mA

-

mA

-1.4 -1.0

mA

30 seconds

CAPACITANCE If = 1.0 MHz, TA = 25'C. perlodlcaliy sampled rather than 100% tested)
Characteristic
Input Capacitance IV In = 0 V)

InputlOutput CapaCItance (VDO = 0 V)
Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation

AC OPERATING CONDITIONS AND CHARACTERISTICS
IFuli operating voltage and temperature unless othelw,se noted.1
Input Pulse Levels
Input Rise and Fall Times.

08 Volt to 2.4 VailS
10 ns

Input and Output Timing Levels
Output Load

15 Volts
1 TTL Gate and CL = 100 pF

READ (NOTE 1) WRITE (NOTE 2) CYCLES
Parameter

Symbol

MCM2114-20
MCM21 L14·20
Min
Max

Address Valid to Address Don't Care

'AVAX

200

Address Valid to Output Valid

tAVOV

-

Chip Select Low to Data Valid

'SLOV

MCM2114-25
MCM21 L14-25
Min
Max
250

200

-

70
20

MCM2114·JO
MCM21 L14-JO
Max
Min

85
20

..

Unit

450

-

300

-

450

ns

100

-

120

ns

300
250

MCM2114·45
MCM21 L14-45
Min
Max

ns

20

20

ns

Chip Select Low to Output Don't Care

tSLOX

Chip Select High to Output High Z

tSHOZ

Address Don't Care to Output Hlg~l Z

tAXOZ

50

50

50

Write Low to Write High

tWLWH

120

135

Write High to Address Dan', Care

tWHAX

20

20

Write Low to Qutput High Z

'WLQZ

Data Valid to Wflte High

tDVWH

t20

130

150

200

ns

Write High to Data Don'T

tWHDX

0

0

0

0

ns

50

50'

NOTES 1. A Read occurs dunng the overlap 01 d low S" and (;I ~llgtl W
A Write occurs dUring the overlap 01 a low S and a low W

2-64

80

-

..

50

ns

150

200

ns

20

20

70

ns

ns
100

80

10

100

ns

:M2114-MCM21 L14

READ CYCLE TIMING

ilii HELD

HIGHI

~--------------'AVAX------------~"
~-----------'AVOV----------~"

Address

o

WRITE CYCLE TIMING INOTE 31
4

'AVAX

Address

\\\\\\\\\\\\\\' .\\ \)

w

o

rlllll; '17/7717777777;

1

'WLWH

'III-

\\\"Y

-

_'WHAX

'WLOZ

---

'WHDX

'DVWH
D

3. If the"S low tranSition occurs simultaneouSly with the W !ow lran51110n. the output buffers rem~ln In a hrgtHmpedance state.

WAVEFORMS
Waveform

Input

Qutp'··

Symbol
MUST

~

~
~

8~

VALID

CHANGE
fHOM,", TO L

WILL CHANGt
fHOMHTOL

CH~NGf

fHOM l '0 "
\)ON T CAHt

CHA""G~

~ROM

I

'0"

CHANGING

STAH

PffIMITTf.D

UNKNOWN
HIGH

tMPfOANn

F:;

r::
~.

WILL

ANY CHANGE

=:J--

t·

WILL Bf

VAt It)

2-65

MCM2114-MCM21 L14

TYPICAL CHARACTERISTICS
SUPPL Y CURR ENT v.rsus SUPPL Y VOLTAGE
80

=<

.§.
>-

!
=<

15

- -- -

10

-

~
~
65

...~

z
'"

-

~

~

4.75
5.0
VCC. SUPPL Y VOLT AGE (VOL TSI

5.25

7.0

I'-....
............
............

S5

o

20
40
TA. AMBIENT TEMPERATURE (OC)

OUTPUT SINK CURRENT versus OUTPUT VOL TAGE

1\

B.O

\
\
\

7.0

\

=<
5.0

1

4.0

'"
'"=>

I

:::I

~

:::I

3.0

E

2.0

5.0

u

'"z

\
\
\
\

~
>-

;;;
>- 4.0

~

0

-"

E

3.0

2.0

\

1.0

1.0

\

2.0

i

1.0

\.

o

30
4.0
VOH. OUTPUT VOLTAGE (VOLTSI

o
5.0

/
V

/

/

.§.
>z

-- - -

B
~

/

6.0

=<

:;

III

60

9.0 r - - -

6.0

'"

..........

60

5.5

8.0

0

........

~

OUTPUT SOURCE CURRENT ".rsus OUTPUT VOL TAGE

:::I

'"

50

4.5

~

..........
65

'"u=>

60

.§.
>~

............

....

>

~

............
70

.§.

~

'"
B

SUPPLY CURRENT versus AMBIENT TEMPERATURE
75

II

o

6.0

2-66

/
V
0.1

/

/

0.2
0.3
0.4
VOL. OUTPUT VOLTAGE (VOLTSI

0.5

0.6

MCM2114.MCM21 L14

,

TYPICAL ACCESS TIME versus TEMPERATURE

NORMALIZED ACCESS TIME versus TEMPERATURE

--

1.0

-7

-.-

/"

~

..

/V

~

0.85

"'"
Z

0.80

0

...... V

./
14
I

0.1 5

o

20

40
TA. TEMPERATURE (OCI

°v

........-

13 0
20

80

60

V

./

V

/

V

40

60
TA. TEMPERATURE (OCI

80

MCM2114/MCM21L14 BIT MAP
PIN 18
PIN 1

Vee

D

D
1008 1023 01(
1007

1023 ..
1007

D03 IPIN NO. 121

1008 1023 ..
1007

1008 1023 ..
1007

D04 IPIN NO. 111

1008

D02 (PIN NO. 131

DOl (PIN NO. 141

,

15

..

16

0 15

16
01(

16

0 15

0 15

01(

..

16

0

To determine the precise location on the die.of a word in memory. reassign address numbers to the address pins as
in the table below. The bit locations can then be determined directly from the bit map.

PIN NUMBER
~,

1
2

4
5

REASSIGNED
ADDRESS NUMBER

PIN NUMBER

A6
AS
A4
A3
AO

",
~'

2-67

--

L

160

./

0.90

.,."

j.

/

/

,.~ 0.95
~

17 0

REASSIGNED
ADDRESS NUMBER

6

Al
A2

15
16
17

A9
Ali

10

90

®

MCM2115A
MCM21L15A
MCM2125A
MCM21L25A

MOTOROLA

1024 x 1 STATIC RAM

MOS

The MCM2115A and MCM2125A families are high-speed, 1024 words
by one-bit, random-access memories fabricated using HMOS, highperformance N-channel silicon-gate technology. Both open collector
IMCM2115A) and three-state output IMCM2125A) are available. The
devices use fully static circuitry throughou.t and require no clocks or
timing strobes. Data out has the same polarity as the input data.
Access times are fully compatible with the industry-produced 1K
Bipolar RAMs, yet offer up to 50% reduction in power over their Bipolar
equivalents.
All inputs and output are directly TTL compatible. The chip select
allows easy selection of an individual device when outputs are OR-tied.

IN-CHANNEL, SILICON-GATE)

1024-BIT STATIC
RANDOM ACCESS
MEMORY

-

• Organized as ;024 Words of 1 Bit
• Single + 5 V Operation
• Maximum Access Time of 45 ns, 55 ns, and 70 ns available

16'

• Low Operating Power DiSSipation
• Pin Compatible to 93415A 12115A) and 93425A 12125A)

I

,:

Ii:

I

I'

1'

• TTL Inputs and Outputs
• Uncommitted Collector 12115A) and Three-State i2125A) Output

C SUFFIX
FAIT·SEAl
CEAAMIC PACKAGE
CASE 620,'06

BLOCK DIAGRAM

PIN ASSIGNMENT

s[rii'-'""i6 Pvcc
AO[2

15 pO

Al[ 3

14 ~W

A2

0

4

A3
A4

6

0

13 JA9
12

AS

11

A7

10

VSS 8

AOAI A2 A3 A4

A5 A6 A7 AS A9

PIN NAMES

TRUTH TABLE

S

Inputs
W

A6
A5

Output
2115A Family

Output
2125A Family

Q

Q

High Z
High Z
High Z
Data Out

H

X

X

H

L

L

L

L

L

L

H

H
X

H
H
Data Out

A
D.

Mode

Not Selected
Write "0"

o

S

VCC
VSS·

W

. Address

. Data Input
Data Output
Chip Select
+ 5 V Supply
. Ground
... Write Enable

Write"'"

Read

059819/5-8)

2-68

~CM2115A·MCM21L15A·MCM2125A·MCM21L25A

ABSOLUTE MAXIMUM RATINGS ISee Notel
Rating

Temperature Under Bias

Voltage on Any Pin With Respect to VSS

Value

Unit

-IOta +80

·C

-0.5 to + 7.0

Vdc

DC Output Current

20

mA

Power Dissipation

1.0

Watt

o to

Operating Temperature Range
Storage Temperature Range

NOTE:

This device contains circUitry to protect the inputs against damage due to high static voltages
or el~ctrlc fields; however, It IS advised that normal prtlcautlons be taken to aVOid application of
any voltage higher than maximum rated voltages
to this high-impedance circuit.

'c

+ 70

-65to +150

·C

Permanent damage may occur if ABSOLUTE MAXIMUM RATINGS
are exceeded. Functional operation should be restricted to RECOMMENDED OPERA TlNG CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could -affect device
reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted I

RECOMMENDED DC OPERATING CONDITIONS
Symbol

Min

Typ

Max

Unit

Supply Voltage

VCC
VSS

4.75
0

5.0
0

5.25
0

V

Logic 1 Voltage, All Inputs

VIH

2.1

6

V

Logic 0 Voltage, All Inputs

VIL

-03

-

O.B

V

Parameter

DC OPERATING CHARACTERISTICS
Parameter

Symbol

Input Low Current (All Input PinS, Vrn =0 to 5.5 V)

IlL

Input High Current

IIH

Output Leakage Current (V out = 0.5/2.4 VI

IOL

Output Leakage Current IV out ~ 4.5 VI
Power Supply Current 15- VIL, Outputs Open T A - 25'CI
Output Low Voltage IIOL~7.0 mA, 2125A, 16 mA 2115AI

ICEX
ICC
VOL

Output High Voltage IIOH - - 4.0 mAl

VOH

Current Short Circuit to Ground

lOS

MCM2115A MCM21L15A MCM2125A MCM21125A

Unit

Min

Max

Min

Max

Min

Max

Min

Max

-

-40
40

-

-40
40

-40
40

-40
40

-

50

~A

100

-

-

-

~A

-

-

100
125

-

75

-

0.45

-

50
125

~A

-

~A

75

mA

0.45

-

0.45

-

0.45

V

-

2.4

-

2.4

-

V

-

-100

-

-100

mA

MCM2115A FAMILY AC OPERATING CONDITIONS AND CHARACTERISTICS, READ, WRITE CYCLES
ITA=Ot070'C VCC~50V ±5%1
Parameter

Symbol

MCM2115A-'15

MCM2115A·56

Min

Max

Min

Max

MCM2115A-70

Unit.

Min

Max

Chip Select Low Output Valid

tSLOV

5

30

5

35

5

ns

Chip Select High to Output Invalid

tSHOZ

-

30

-

35

Address Valid to Output Valid

tAVOV

-

45

-

55

-

40
40
70

ns

Address Valid to Output Invalid

tAVOX

10

-

10

-

10

-

ns

Write Low to Output Disable

tWLOZ

-

30

-

-

40

ns

Write High to Output Valid

tWHOV

0

30

0

0

45

ns

Write Low to Write High (Write Pulse Width)

tWLWH

30

-

40

50

-

ns

ns

D8ta Valid to Write Low

tDVWL

5

-

5

Write High to Data Don't Care IData Holdl

tWHDY.

5

-

5

35
35
-

Address Valid to Write Low IAddress Setup I

tAVVVL

5

5

-

15

Write High to Address Don't Care

tWHAX

5

5

_.

ns

tSLWL

5

5

-

ns

Write High to Chip Select High

tWHSH

5

-

5

-

5

Chip Select Low to Write Low

-

5

-

ns

Address Valid to Address Don't Care

tAVAX

45

-

55

-

70

ns

Chip Select Low to Chip Select High

tSLSH

-

45

-

55

-

70

ns

2-69

5

5
5

ns
ns
ns

MCM2115A-MCM21 L15A-MCM2125A-MCM21 L25A

,
MCM21Ll6A FAMILY AC OPERATING CONDITIONS AND CHARACTERISTICS, READ, WRITE CYCLES
IT A=O to 70·C VCC=50 V ±5%1

Pa.. meter

Symbol

c::hip Select Low to Output Valid

MCM21 L15A-<46 MCM21L15A-70
Unila
Min
Min
Max
Ma.
5

Chip Select High to Output Invalid

tSLaV
tSHQZ

-

Address Valid to Output Valid

tAVQV

-

Address Valid to Output Inva id

tAVQX

10

Write Low to Output Disable

tWLQZ

-

30
30
45

5

-

30
30
70

ns
ns
ns
ns

10

25
25

-

25

ns

0

25

ns

-

30

-

ns

-

Write High to Output Valid

tWHQV

0

Write Low to Write High (Write Pulse Width I

tWLWH

30

Data Valid to Write Low

tDVWL

0

Write High to Data Don't Care

tWHDX

5

Address Valid to Write Low (Address Setup I

tAVWL

5

Write High to Address Don't Care

tWHAX

5

Chip Select Low to Write Low

tSLWL

5

Write High to Chip Select High

tWHSH

5

Address Valid to Address Don't Care

tAVAX

-

45

Chip Select Low to Chip Select High

tSLSH

-

45

0
5
5
5
5
5

ns
ns
ns
ns
ns

70

ns
ns

70

ns

MCM2126A FAMILY AC OPERATING CONDITIONS AND CHARACTERISTICS, READ, WRITE CYCLES
(TA-Ot070·C
VCC=50V ±5%1
-

Pa.. meter

Symbol

MCM2125A-<46 MCM2125A-66 MCM2125A-70
Min
Ma.
Min
Ma.
Min
Ma.

ns

ns
ns

50

40
45
-

5

-

ns

5

-

ns

-

-

10

-

10

30
30

-

35
35

-

30

-

5

-

40
5

tWHDX
tAVWL

5

-

5

-

Write High to Address Don't Care
Chip Select Low to Write Low
Write High to Chip Select High

tWHAX

5

tSLWL
tWHSH

5
5

Address Valid to Address Don't Care

tAVAX
tSLSH

-

tSLQV

5

Chip Select High to Output High Z

tSHQZ

-

Address Valid to Output Valid

tAVQV

-

Address Valid to Output Invalid

tAVQX

10

Write Low to Output High Z
Write High to Output Valid

tWLOZ

-

tWHQV

0

Write Low to Write High (Write Pulse Width I

tWLWH

Data Valid to Write Low

tDVWL

Write High to Data Don't Care
Address Valid to Write Low (Address Setup I

Chip Select Low to Chip Select High

30
30
45
-

5

5

-

0

-

5

-

5

45
45

-

5

-

0

ns

ns
ns

ns

ns

15

5

Unila

40
40
70
-

5

35
35
55

Chip Select Low to Output Valid

5

-

5

-

ns
ns

-

70

ns

70

ns

-

5

55
55

ns

MCM21L25A FAMILY AC OPERATING CONDITIONS AND CHARACTERISTICS, READ, WRITE CYCLES
ITA=O to 70·C, VCC=5.0 V ±5%1

Pa .. meter

Symbol

Chip Select Low to Output Valid

MCM21 L2&A-<46 MCM21 L2&A-70
Unila
Min
Ma.
Min
Ma.
30
30
70

ns

10

-

ns

25
25

-

25
25

ns
n.

30

-

ns

5
5

-

tSLWL

5

Write High to Chip Select High

tWHSH

Address Valid to Address Don't Care

tAVAX

Chip Select Low to Chip Select High

tSLSH

5

tSLQV
tSHQZ

-

Address Valid to Output Valid
Address Valid to Output Invalid

tAVQV

-

tAVQX

10

Write Low to Output High Z
Write High to Output Valid
Write Low to Write High (Write Pulse Width I

tWLQZ
tWHQV

-

tWLWH

30

Data Valid to Write Low

tDVWL

0

Write High to Data Don't Care

tWHDX

5

Address Vahd to Write Low (Address Setup I
Write High to Address Don't Care

tAVWL
tWHAX

Chip Select Low to WritB Low

Chip Select High to Output High Z

2-70

0

30
30
45
-

5

0
0
5

-

ns
ns

ns
ns

-

ns

-

5
5

-

5

-

5

-

ns
ns

-

45

-

70

ns

45

-

70

ns

5

ns

MCM2115A-MCM21 L15A-MCM2125A-MCM21 L25A

CAPACITANCE 11=1.0 MHz, TA=25°C, periodically sampled rather than
100% tested.!

OUTPUT LOAD

Vce

Characteristic
Input Capacitance IVin = 0 VI

30011

Output Capacitance IVout=O VI

2115A

Capacitance measured with a Boonton Meter or effective capacitance calculated

0---+---4

from the equation: C=I"'tILW.

600

30 pF
Oncluding
scope and Jig I

2115A FAMILY

READ CYCLE TIMING 1
(~ Held Low, W Held High!
Address

Q IData Out)

READ CYCLE TIMING 2'
(W Held High!

-~~~~~~~~~----~;;;,;,~-----VOH
Previous Data Valid

Data Vahd

~------------------------------------------3.5V

Address~_ _ _ _._ _ _ _ _A_d_d_re_ss_v_al_id_ _ _ _ _ _ _ _ _ _ 0 V

[:_~""

t--J-IS-H-O-;-:: V
VOH

'\

Data Valid
~--------'

,0 IData Dull

-

VOL

WRITE CYCLE TIMING

Address~--·-----tAVAX"-!'-'"

5

~tSLWL 1
l--tAVWL-

IWHSH

1

I

, - - - - - - - - - - - 3.5 V

w
tDVWL

--1..:..-.-r-~

o IData Inl~

Dala Valtd

...j
IAII Time Measurements Referenced to 1 5 VI

2-71

-OV

MCM2115A-MCM21 L15A-MCM2125A-MCM21 L25A

OUTPUT LOAD

WAVEFORMS
Waveform
Svmbol

~

Input

Output

Must Be
Valid

Will Be
Valid

Change
From H to L

VCC
510

Q-.-_-~

2125A

Will Change
From H to L

30 pF
300

//////

Change
From L to H

Will Change
From L to H

OOOOOOOOC

Don't Care:
Any Change
Permitted

Changing

(Including

Scope and jIg I

State
Unk.nown

==>---

High
Impedance

212SA FAMILY
READ CYCLE TIMING 1
IS Held Low, W Held Highl
Address

o fOata Out!
READ CYCLE TIMING 2
(W Held High)

~g

Prev.ous

~,'_3.5V

tAVAX

.~

oata;-~A-~-~-V-----1---:~~~~~~~~~o~a~(a~~IC-a~-'1

,,' 0

- - - - - l -::>--------l

Memorv Array
64 Row

PIN NAMES

"SS=Pin9

AO-All

iN

t

64 Columns

0
Q

VCC·
VSS

11

....

.. Address Input
.Wnte Enable
....... Chip Enable
Data Input
Data Output
Power 1+5 VI
........... Ground

Q

TRUTH TABLE
E

W
x

Mado

Output

Power

Not Salee ted

High Z

Standby

L

L

Write

High Z

Active

L

H

Read

Data Out

Active

H

A3 A4 A5 A9 A1DAll

DS9B21 I li'

o IData OUII

Data Valid

READ CYCLE TIMING 2 13, 5)
iw HELD HIGHI

Address~________________________________A_d_d_re_s_s_v_a_li_d__________________~_____________________
j4-----------IELEH

-----------------CX)<~

Data Valid

I+-----+- tWHOV I4 , 51
o IData Out I

High Impedance

Data Undefined

NOTE:
1. If t goes high simultaneously with W high. the output remains in a high-impedance state
2. tWHAX is measured from the earlier of S or Vii going high to the end of the write cycle.
3. During this period. DQ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
4. If S is low during this period, the DO pins are in the output state. Then the data input signals of opposite phase to the outputs must not

. be applied to them.
5.

Q is the same phase of write data of this write cycle.

WRITE CYCLE 2
IE CONTROLLED I
~-------------------------tAVAX----------------------------------.,

Address

Address Valid
-~~-------------------tELWH----------~----------_e~------------_+-------

1+-------''--------:------- IAVWH

----------------------~

~------tWLWH--------~~~~~r_~~~~

w
tDVWH
D lData In I

",,"'''-/V'l00<')(',

---_14--*

Data Valid

High Impedance

o IData Outl----------------------------------------------------------------------------------------

2-84

®
I

MCM2149

MOTOROLA

Product Preview

MOS

4aJS.BIT STATIC RANDOM ACCESS MEMORY

IN·CHANNEL. SI LlCON·GA TE I

The MCM2149 is a 4096-bit random access memory fabricated using
HMOS, high performance MOS technology. For ease.of use, the device
operates from a single power supply, is directly compatible with TTL
and requires no clocks or refreshing because of fully static operation.
Data access is particularly simple, since address setup times are not required. The output data has the same polarity as the input data.
The MCM2149 is designed for memory applications where simple interfacing is the design objective. The MCM2149 is assembled in 18-pin
dual-in-line packages with the industry standard pin-out. A separate
chip select (5) lead allows easy selection of an individual package when
the three-state outputs are OR-tied.

4096-BIT STATIC
RANDOM ACCESS
MEMORY

• 1024 Words by 4-Bit Organization
•
•
•
•
•

-

Power Dissipation - 140 mA Maximum (Active)
Fully TTL Compatible
Common Data Input and Output
Three-State Outputs for OR-Ties
Automatic Power Down Version Available - MCM2148

PIN ASSIGNMENT

A61~~vCC

BLOCK DIAGRAM

VCC = Pin 18
VSS'= Pin 9

A4~----~c=r---~
A5---A6-----I
A7 _1_7_ _ _-t

A8~----I

A9~
14

Dal--~~-I

Row
Select

L SUFFIX

CERAMIC PACKAGE
CASE 68).06

• Chip Select Access Time
MCM2149-70;30 ns Max.
MCM2149-B5;35 ns Max.
•
•
•
•
•

-~

C SUFFIX

FAIT·SEAl PACKAGE
CASE 726-m

HMOS Technology
Industry Standard 1B-Pin Configuration
Single + 5 Volt Supply
No Clock or Timihg Strobe Required
Maximum Access Time
MCM2149-70;70 ns Max.
MCM2149-B5;B5 ns Max.

Memory Arrav
64 Rows
64 Columns

A5[ 2

17

A4[ 3

16 A8

A3 4

15 A9

~A7

AD 5

14

001

Al 6

13

D02

A2 7

12 003

S

8

11 ~O04

VSS

9

10pW

PIN NAMES

AD-A9 ..

Vi

• • •

~..

D01·004
Vee
VSS

002 _1.:...3-..-1+-1

Address Input
Write Enable
Chip SeleCI
Data Input/Output
Power 1+5 V)

Ground

003 _12_,-+-+-+-1
004 ----H--H-+-i
Motorola reserves the right to make changes to

6

7

any product herein to improve" reliability, function or design. Motorola does not assume any
liability arising out of the application or use of
any product or circuit described herein; neither
does it convey any license under its patent rights
nor the rights of others.

4

AD A1 A2 A3

N P324/11-BO

2-85

®

MOTOROL.A

Product

MCM2167

Previe~

MOS
16,384-BIT STATIC RANDOM ACCESS MEMORY

IN-CHANNEL, SILICON-GATE)

The MCM2167 is a 16,384-bit static random access memory organized as 16,384 words by 1-bit using Motorola's N-channel silicon-gate
MOS technology. It uses a design approach which provides the simple
timing features associated with fully static memories and the reduced
standby power associated With semi-static and dynamic memories. This
means low standby power without the need for clocks, nor reduced
data rates due to cycle times that exceed access times.
~ controls the power-down feature. It is not a clock but rather a chip
select that affects power consumption. In less than a cycle time alter E
goes high, deselect mode, the part automatically reduces its power requirements and remains in this low-power standby mode as long as E
remains high. This feature results in sytem power savings as great as
85% in larger systems, where most devices are deselected. The
automatic powtlr-down feature causes no performance degradation.
The MCM2167 is in a 20 pin dual in-line package with the industry
standard pinout. It is TTL compatible in all respects. The data out has
the same polarity as the Input data. A data input and a separate threestate output provide flexibility and allow easy OR-ties.
• Fully Static Memory - No Clock or Timing Strobe Required

16,384-BIT STATIC
RANDOM ACCESS
MEMORY

•
•
•
•
•

L SUFFIX
CERAMIC PACKAGE
CASE 729-02

PIN ASSIGNMENT

Single + 5 V Supply
High Density 20 Pin Package
Automatic Power-Down
Directly TTL Compatible - All Inputs and Three-State Output
Separate Data Input and Output

• Access Time
MCM2167-55 MCM2167-70 MCM2167-85 MCM2167-1oo -

AO

VCC

Al

Al3,

A2

A12
All

55 ns max

A4

A10

70 ns max
85 ns max
100 ns max

A5

A9

G

A7

W

Vcc=Pin 20
Vss=Pin 10

•

•

E

Vss

BLOCK DIAGRAM

Row
Select

0

PIN NAMES

1\ch4'~l3,~..-------.--..-.. -... ~.A-d~dr-e-~~I-np-u~t

W..
E..

Memory Array

128 Rows
128 Columns

0..
G..

. ......... Write Enable
.. ..... Chip Enable
.. ....................... Data Input
.. ....................... Data Output

Vee ........................ Power 1+5 V)
V~S...
.. ...................... Ground

•
Column I/O Circuits

TRUTH TABLE

G

E
H
L
L

W
X

Mode
Not Selected

Output
High Z

Power
Standby

L
H

Write

High Z
Data Out

Active
Active

Read

--_ ..

W~9~~~------------

NP3.26/11-80

2-86

®

MCM4016

MOTOROLA

Produ.ct

Previe~

MOS
2048 x 8-BIT STATIC RANDOM ACCESS MEMORY

(N-CHANNEL, SILICON-GATE)

The MCM4016 is a 16,384-bit static Random Access Memory organized as 2048 words by a-bits, fabricated using Motorola's highperformance silicon-gate metal oxide semiconductor (HMOS)
technology. Its static design means that no refresh clocking circuitry is
needed and timing requirements are simplified. Access time is equal to
cycle time.
A chip select control is provided for controlling the flow of data in and
data out, and an output enable function is provided which eliminates
the need for external bus buffers.
The MCM4016 is in a 24-pin dual-in-line packa.ge with the industry
standard pinout and is pinout compatible with the industry standard
16K EPROM and 16K mask programmable ROM.
•
•
•
•
•

•
•
•
•

2048 Words by a-Bits Organization
HMOS Technology
Single + 5 V Supply
Fully Static: No Clock or Timing Strobe Required
Low Power Dissipation 35 mW Typical (Standby)
400 mW Tvpical (Active)
Maximum Access Time: MCM4016-20 - 200 ns
Fully TTL Compatible
Pinout Compatible with Industry Standard 2716 16K EPROM and
Mask Programmable ROM
Output Enable (;) Eliminates Need for Extern,,1 Bus Buffers

BLOCK DIAGRAM
AO
Al
A2
A3
A4
A5
A6

8
7
6
5
4

3
2

!!:::=
~
~
~

Row
Decoder

Pin 24= Vee
Pin 12=VSS

-.-.

.

Memory Matrix

128 x 128

,rhn
~"""~~,:;:,~
,~,~,
~~VI':;
~

ii' l

L

PIN ASSIGNMENTS
A7

A5

A9

A3

Iii
G

A2

Al0

t
AO

007

000

006

002

-.--

001 10

002-irOO!i+:

Input
Data
Control

~

Column Decoder

006-1H-007-<
~

I

IJ

t

A7

E

(;
W

.

Column 1/0

~

23

J zJ
22

z

AS

AS

ISU'

~

AlO

21

I
II I
• I I
I
• II I

Control
Loglr:

005
11

004
003

PIN NAMES
AO-A 10 ....................... Address Input
000-007..
. .. Oata Input/Output
G .............................. Output Enable
t
...................... ehip Select
Vii ............................. Write Enable
Vee· ........................ Power 1+ 5 VI
. ............... Ground
VSS..

•

·

J

18

20

Vee
A8

A6

V'ss

D~NJ~
g~~ F
~

LS'JFFIX

CERA~~~;~l~KAGE

CASE 623

001

~

~
v-

2048 x 8 BIT STATIC
RANDOM ACCESS MEMORY

Motorola reserves the right to make changes to
any product herein to improve reliability. function or design. Motorola does not assume any
liability arising out of the application or use of
any product or circuit descnbed herein; neither
does it convey any license under its patent rights
nor the rights of others

NP329/"-80

2-87

®

MCM6641
MCM66L41.

MOTOROLA

Advance Inforu.atlon

MOS

4096-BIT STATIC RANDOM ACCESS MEMORIES

IN·CHANNEL, SILlCON·GATEI

The MCM6641 series 4096 x l-bit Random Access Memory IS
fabricated with high density, high reliability N-channel silicon-gate
technology. For ease of use, the device operates from a single 5-volt
power supply, is directly compatible with TTL and DTL, and requires no
clocks or refreshing because of fully static operation. The fully static
operation allows chip selects to be tied low, further simplifying system
timing. Data access is particularly simple, since address setup times are
not reqUired. The output data has the same polarity as the data input.
The MCM6641 is designed for memory applications where simple interfacing is the design objective, and is assembled in 18-pin dual-m-jine
packages with the industry standard pin-outs.

4096-BIT STATIC
RANDOM ACCESS MEMORIES

• Single ± 10% + 5 V Supply
• Fully Static Operation - No Clock, Timing Strabe, Pre-Charge, or
Refresh Required

CASE 707·01

• Industry Standard 18-Pin Configuration
•
•
•
•

Fully TTL Compatible
Common Data Input and Output Capability
Three-State Outputs for OR- Tie Capability
Power Dissipation MCM6641 Less Than 550 mW IMaxirnuml
MCM66L41 Less Than 385 mW IMaxlmuml

.....
"

• Standby Power DiSSipation Less Than 125 mW ITypicali

PSUFFIX

.

PLASTIC PACKAGE
CASE 707·02

PIN ASSIGNMENT

• Plug-In Replacement For TMS4044

AO I.

Vee

Al

A6

MAXIMUM ACCESS TIME/MINIMUM CYCLE TIME

A7

MCM6641·20
MCM66L41-20

200 ns

MCM6641-30
MCM66L41-30

300 ns

MCM6641-25
MCM66L41·25

25"0 ns

MCM6641-45
MCM66L41-45

450 ns

15 A8

A5

o

7

w

14

A9

'3

AIO

12

A11

II

D

Vss,-_ _10~ S
BLOCK DIAGRAM
Ao------~~_f------,
A 1

PIN NAMES

~Vss

AO·A 11

----;::;C::J

----..f'l.---,

A2
AB _ _ _......, - - ,
A 7 ____

Row
$elecf

Memory Array

.Address Input

D

~VCC

Dala Inpel
.Data Output

o
5

64 Row
64 Columns

. Chip Select
Power Supply (+ 5 V)

Vee

~....,,--,

~s

A 6 - - - -......, - - ,

Ground
Write Enable

w
o

Data Input

D------i
ViI ----__,

TRUTH TABLE

,_~_

A3 A4

A~Al1Al0A9

S

W

D

Q

Mode

H

x

x

High Z

Not Selected

L

L

l

High Z

Wnte "0"

I

I

H

High Z

Write "1"

I

H

x

Oll1PlJl ;JOlla

Read

ADI475/2· 78

2-88

MCM6641-MCM66L41

ABSOLUTE MAXIMUM RATINGS (See Note I
Ratin,
Temperature Under Bias
Voltage on Any Pin With Respect to VSS

Value

Unit

-10 to +80

°c

inputs against damage due to high static voltages

-0.5 to + 7.0

Vdc

20

mA

or electric fields; however, it is advised that
normal precautions be taken to avoid applIcation of any voltage higher than maximum rated

1.0

Watt

o to +70

°c
°c

DC Output Current
Power Dissipation

Operating Temperature Range

Storage Temperature Range
Note:

-65 to + 150

This device contains circuitry to protect the

voltages to this high·impedance circuit.

Permanent dE'vlce damage may occur if ABSOLUTE MAXIMUM

RATINGS are exceeded. Functional operation should be restricted
to RECOMMENDED OPERATING CONDITIONS. Exposure to
higher than recommended voltages for extended periods of time could
affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperatur.e range unless otherwise noted)

RECOMMENDED DC OPERATING CONDITIONS
Parameter

Symbol

Min

Typ

Max

Unit

VCC
VSS

4.5
0

5.0
0

5.5
0

V

VIH

2.0

-

6.0

V

VIL

-05

-

0.8

V

Supply Voltage
Logic 1 Voltage. All Inputs

-

Logic 0 Voltage. All Inputs

DC CHARACTERISTICS
Symbol

Parameter

-

Input Load Current IAII Input Pons, Vin = 0 10 5.5 VI

III

Output Leakage Current ICS - 2.4 V. V,n - 0.4 to VcO

MCM6641
Typ Max

Min

-

-

Output Low Voltage. 10L - 2.1 mA

VOL

-

Output High Voltage. 10H - 1.0 mA

VOH

2.4

Output Short Circuit Current

lOS'

-

ICC

..

-

-

80

100

0.15

0.4

-

10

~A
~A

55

70

mA

0.15

0.4

V

40

mA

2.4

40

Unit

10

10

IILOi

Power Supply Current IVCC = 5.5 V, lout =0 mAo T A = O'CI

10

MCM66L41
Min Typ Max

V

• Duration not to exceed 30 seconds

CAPACITANCE If= 1.0 MHz, TA=25'C. VCC=5.0 V. periodically sampled rathe, than 100% tested I
Characteristic
Input Capacitance 1Vin = 0 V)
Output Capacitance (V out = a V)
Capacitance measured With a Boonton Meter or effective

capaci~ance

calculated from the eQuatron: C = l.6. t /.6.V

STANDBY OPERATION·
(Typical Supply Values)

Device

Supply

Operating

Standby

MCM6641

VCC

+5 V

+2.4 V

225mW

MCM66L41

VCC

+5 V

+2.4 V

150mW

2-89

Max Standby Power

MCM6641-MCM66L41

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)
Input Pulse Levels ................................ 0.6 Volt to 2.0 Volts
Input Rise and Fall Times..
. ... 10 ns

Input and Output Timing Levels..

Output Load..

. ..... 1.5 volts
. ...... 1 TTL Gate and CL = 100 pF

READ (NOTE 1), WRITE (NOTE 2) CYCLES
MCM6641-20
MCM66L41-20
Parameter

Read Cycle Time

MCM6641-25
MCM66L41-25

MCM6641-30
MCM6641-45
MCM66L41-30 MCM66 L41-45

Units

Svmbol

Min

Max

Min

Max

Min

Max

Min

Max

tAC

200

-

250

-

300

-

450

-

ns

tA

-

200

250

450

ns
ns

Chip Selection to Output Valid

tso

-

70

-

65

-

100

-

120

Chip Selection to Output Active

tsx

10

-

10

-

10

-

10

-

ns

Output 3-5ta1e From Deselection

tOTO

-

40

-

60

-

80

-

100

ns

Access Time

Output Hold From Address Change

50

50

50

50

ns

200

250

300

450

ns

tw

100

125

150

200

ns

'WA

a

0

a

0

'aHA

Write Cycle Time

. 'WC

Write Time
Write Release Time

Output 3-5tate From Write

'OTW

Data to Write Time Overlap

'OW
tOH

Data Hold From Write Time

300

100

·40

_.

-

125

60
-

a

0

80
150

a

-

ns
100

200

-

a

ns
ns
ns

READ CYCLE TIMING
(W HELD. HIGH)
tRC ---------~
~I__-------- 'A

-------il-l

Address

DOU,----------------------------~~~t=====~*-----------NOTES·
1 A Read occurs during the overlap of a low

S and a high W.
2. A Wnte occurs dunng the overlap of a low S and a low W.
3 If the S low tranSition occurs simultaneously with the Vii low transition, the output buff~rs remain

2-90

In

a high-Impedance state.

MCM6641·MCM66L41

WRITE CYCLE TIMING INote 31

'we

Addr...

~\\\\\\\

,\\ V. r-

~/IIIII

-

'w

'In

~

°out

'\

'\.~

-

tOTW

'WR

~

I--

,

2-91

--

'OH

~

'111111111I II
f--

®

MCM6810
1.0 MHz
MCM68A10
1,5 MHz
MCM68B10
2,0 MHz

MOTOROLA

MOS

128 X 8-BIT STATIC RANDOM ACCESS MEMORY

INCHANNEL, SILICON-GATEI

The MCM6810 is a byte-organized memory designed for use ii,
bus-organi zed systems. I t IS fabrrcated with N ·channel silicon ·gate
technology. For ease of use, the device operates from a SIngle power
supply, has cotTlpatibillty With TTL and DTL, and needs no
clocks or refreshing because of static operation.
The memory IS compatible With the M6SuO Microcomputer
Family,

providing random storage in byte ir:crements. Memory

expansion is provided through multrple Chi p Select Inputs.
•

Organized as 128 Bytes of B Bits

•

Static Operation

•

Bidirectional Three-State Data Input/Output

•

Six Chip Select Inputs (Four Active Low; Two Active High)

•

Single 5- Volt Power Supply

•
•

TTL Compatible
Maximum Access Time = 450 ns - MCM6Bl0
360 ns - MCM6BA 10
250 ns - MCM6BB10

128 X 8-BIT STATIC
RANDOM ACCESS
MEMORY
P SUFFIX
PLASTIC PACKAGE
CASE 709-02

~

L SUFFIX
CERAMIC PACKAGE
CASE 716-06

PIN ASSIGNMENT
'GNO

00

Vee
AO
Al
A2

ORDERING INFORMATION
Speed

Device

Temperature Range

1.0 MHz

MC6Bl0P, L
MC6Bl0CP, CL
MC6810BJCS
MC6810CJCS

to 70 0 C
-40 to +B5 0 C
-55 to +125 0 C

MC68Al0P, L
MC68Al0CP, CL

to + 70 0 C
-40 to +B5 0 C

MI L·STD-BB3B
MIL·STD·8B3C
1,5 MHz
2,0 MHz

MC6BB10P, L

03

A3

04

A4

06

A6

o

o

o to + 70 0 C

M6800MICROCOMPUTER FAMILY
BLOCK DIAGRAM

A5

07

R/W

eso

eS5

CSl

CS4

CS2

e53

MCM6810 - RANDOM ACCESS MEMORY
BLOCK DIAGRAM

r------,

Data
Bus

Memory Address
and Control

Address Data
Bus

Bus

05948717·78

2-92

MCM6810eMCM68A 10eMCM68B 10

MAXIMUM RATINGS
Symbol

Value

Vee

-0.3 to +7.0

Vdc

Input Voltage

Vin

-0.3 to + 7.0

Vdc

Operating Temperature Range

TA

TL to TH
o to 70
-40 to 85
-55to125

°e

Storage Temperature Range

T stg

-65 to +150

°e

Thermal Resistance

8JA

82.5

ue/w

Rating
Supply Voltage

ELECTRICAL CHARACTERISTICS

Unit

This device cont.",. circuitry to protlCt
the inputs again.t damage due to high
static voltage. or electric fields; howeyer,
it is advised that normal precautions b.
tak,n to avoid application of any voltage
higher than maximum ,attld voltages to
this high impedance circuit.

IVee = 5.0 V '5%. VSS = O. T A = TL to TH unless otherwise noted.1
Symbol

Min

Typ

M ..

Unit

lin

-

-

2.5

I'Ad<

'Output High Voltage
(lOH = -205 /'AI

VOH

2.4

-

Output Low Voltage

VOL

-

-

0.4

Vdc

ITSI

-

-

10

,uAdc

ICC

_.

-

80
100

mAdc

Cin

-

-

7.5

pF

Cout

-

-

12.5

pF

Characteristic
Input Current IAn. A/W. eS n • eSnl
IVin = 0 to 5.25 VI

Vdc

(lOL = 1.6 mAl
Output Leakage Current (Three-State)
les = 0.8 V or es = 2.0 V. V out = 0.4 V to 2.4 VI
Supply Current
IVee = 5.25 V. all other pins groundedl

1.0 MHz
1.5.2.0 MHz

Input Capacitance IAn. AIW. eS n • CSnl
IVin =0. TA = 25 0 e. f = 1.0 MHzl

Output Capacitance (On)
(V out = O. TA = 25 0 e. f = 1.0 MHz. eS0 = 01

RECOMMENDED DC OPERATING CONDITIONS

I

l I"put High Vo Itage

Parameter

I

Symbol

I

Min
2.0

I I nput Low Vo Itage

-0.3

I
I

Nom

I

I
I

I

BLOCK OIAGRAM

AO
A'
A2
A3
A4
A5
A6
CS5

CS4
eS3

23
22
2'

'8

3
4
5
6
1
8

11

~

20

'9

'5
'4
'3

CS2

'2

ES1

"
'0

eso

2-93

DO
Ot
02
03
04
05
06
01

M••
5.25
0.8

I
I

I

Unit

Vdc
Vdc

MCM6810-MCM68A l()eMCM68B 10

FIGURE 1 - AC TEST LOAD
5.0 V

AC TEST CONDITIONS
Condition

Value

0.8Vlo2.0V

Input Pulse Levels

Test Point o-~---1r--+.-+ MM06150
.. or Equiv

20 ns

Input Risp. and Fall Times

See Figure 1

Output Load

11.7 k

r MMD1000
or Equiv

-'ncludeli Jig Capacitance

AC OPERATING CONDITIONS AND CHARACTERISTICS
READ CYCLE (Vee

= 5.0 v

!

5%, VSS '" 0, TA '" TL to TH unless otherwise noted.)

MCM6810

Characteristic
Read Cycle Time

Access Time

MCM68Al0

MCM68Bl0

Symbol

Min

Max

Min

Max

Min

Max

leyelRI

450

-

360

-

250
-

-

360

450

tace

250

Address Setup Time

lAS

20

-

20

IAH

0

-

0

-

20

Address Hold Time

0

-

Data Ot!lay Time (Read)

IDDR

-

230

-

220

-

180

Read to Select Delay Time

IRCS

0

0

0

Data Hold frQ.m Address

IDHA

10

Output Hold Time
Data Hold from Read

I Read Hold from Chip Select

IH

10

IDHR

10

IRH

0

-

10
10

-

10

-

80
-

10

60

10

60

0

-

0

-

10

-

-

Unit

n.
no
n.
n.
n.
n.
n.
n.
no

no

READ CYCLE TIMING
~---------------lcvcIRI---------------~

1'4'--------tacc
Address

---------_~

2.0 V
0.8 V

cs

2.0 V

1'4----IDDR----~

0.8 V

A/iN

D8ta OlJt - - - - -

--------<:-

=

2.4 V
0.4 V

Date Valid

Don't Care

CS can be enabled for con.cutlva
read cycle. provided A/W remaln •• t V IH.

Note: CS end

2-94

M,CM6810eMCM68A 10eMCM68B 10

WRITE CYCLE 1VCC = 5.0 V, 5%, VSS = 0, TA = TL to TH unless otherwise noted.1
MCM6810

Characteristtc
Write Cycle Time
Addres~

Setup Time

MCM68A10

MCM68B10

Symbol

Min

- teyelWI

Max

Min

Max

Min

Max

Unit

450

-

360

-

250

-

ns

20

20

20

ns

Address Hold Time

'AS
tAH

0

0

0

Chip Select Pulse Width

tcs

300

250

ns
ns

Write to Chip Select Delay Time

twcs

0

-

0

-

Deta Setup Time (Write)

tDSW

190

80

-

60

tH

10

-

10

-

10

tWH

0

-

Input Hold Time
Write Hold Time from Chip Select

210
0

-

ns

n,
ns

WRITE CYCLE TIMING

~

2.0 V

Address==>¢:;a V
'AS

cs----------~~~~~~J

~'WCS­
AiW~O.8V

Note

C$ and

Cs

can be enabled for r.onsecutlve write cycles

provided R/W is 5trobed to V I t-I before or coincident

with the Addresschange. and remains high for time tAS-

2-95

®

MCM2532
MCM25L32

MOTOROLA

4096 x 8-BIT UV ERASABLE PROM

MOS

The MCM2532/25L32 is a 32,768-bit Erasable and Electrically
Reprogrammable PROM designed for system debug usage and similar
applications requiring nonvolatile memory that could be reprogrammed
periodically. The transparent window in the package allows the memory
content to be er~d with ultraviolet light.
For ease of use, the device operates from a single power supply and
has static power-down mode. Pin-for-pin compatible mask programmable ROMs are available for large volume production runs of systems
initially using the MCM2532.

(N·CHANNEL, SILlCON·GATEI

4096 x 8-BIT
UV ERASABLE PROM

Single + 5 V Power Supply
Organized as 4096 Bytes of 8 Bits
Automatic Power-Down Mode (Standbyl
Fully Static Operation (No Clocksl
TTL Compatible During Both Read and Program
Maximum Access Time=450 ns MCM2532
350 ns MCM2532-35
250 ns MCM2532-25
• Pin Compatible with MCM68A332 Mask Programmable ROMs

•
•
•
•
•
•

CASE 623A-02

L SUFFIX CERAMIC PACKAGE
ALSO AVAILABLE - CASE 716

• Low Power Version
MCM25L32 Active - 50 mA Max
Standby - 10 mA Max
MCM25L32-25 Active - 70 mA
Standby - 15 mA

PIN ASSIGNMENT
A7

Vce
AS

A6
A5

A9

Vpp

MOTOROLA'S PIN·COMPATIBLE EPROM FAMILY

A3

E/Progr

A2

AlO

Al

All

AD

DOl

000

006

001

005

002

004

Vss

DQ3

MOTOROLA'S PIN·COMPATIBLE ROM FAMILY
32K

'PIN NAMES
A

DO
E/Progr

Address

Data Input/Output
Dual Function Enable
(Power-Down/Program Pulse)

• New Industry standard nomenclature
MCM..... 332

INDUSTRY STANDARD PINOUTS

DS9816/4-80

2-96

MCM2532-MCM25L32

ABSOLUTE MAXIMUM RATINGS
Rating

Value

Unit

-10to +80
-65 to + 125

·C
·C
·C

All Input/Output Voltages with
Respect to VSS

+6to-0.3

Vdc

Vpp Suppty Voltage With Respect to VSS

+28 to -0.3

Vdc

Temperature Under Bias

o to + 70

Operating Temperature Range
Storage Temperature

This device contains circuitry to protect the inputs
against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken 10 avoid applicalion 01 any vollage
highar lhan maximum raled voltages 10 Ihis highimpedance circuit.

NOTE: Permanent device damage may occur If ABSOLUTE MAXIMUM RATINGS are exceeded. FunCtional operation should be restTlcted to RECOMMENDED OPEAATING CONDITIONS. Exposure to higher than recommended voltages for extended
periods of time could affect device reliability

MODE SELECTION
Pin Number

9-11,
1l-17

Mode

DO
Read

12

20

21

24

VSS

EtProgr

Vpp

VCC

O.,a OUI VSS
High Z Vss

OUlput Disable
Standby

High Z

Vss

Program

Oalaln

VSS

Oala OUI VSS
High Z VSS

Program Verify

Program Inhibit

VIL

5V

Vee

VIH

51025 V

Vee

VIH
Pulsed
VIH to VIL

5V

Vee

VPPH

Vee

VIL

5V

Vee

VIH

VPPH

Vee

BLOCK DIAGRAM
Oala Input/Output DOO-007

FIGURE 1 - AC TEST LOAD

~

5.0 V

Tesl Point o-----jp--r-l_f--+

·,00

pF

Y Gating

AO-Al1
·Includes Jig Capacitance
Memory
Matrix
1256 x 1281

2-97

MMD6150
or Equiv.
MM07000
or EqUN.

MCM2532-MCM25L.32

CAPACITANCE If = 1.0 MHz, T = 25°C, periodically sampled rather than 100% tested.)
Characteristic
Input Capacitance IVin = 0 V)
Output Capacitance IV

= 0 VI

Capacitance measured witp a Boonton Meter or effective capacitance calculated from the equation: C=

l~f/~V.

DC OPERATING CONDITIONS AND CHARACTERISTICS
IFuily operating voltage and temperature range unless otherwise noted)

RECOMMENDED DC OPERATING CONDITIONS
Svrnbol

Min

Tw

Max

UnIt

MCM25L32/MCM2532
MCM2532-35/MCM2532-25

VCC

4.75
4.5

5.0
5.0

5.25
5.5

Vo<;

MCM25L32-35/MCM25L32-25

Vpp

VCC-0.6
2.2
-0.1

5.0

VCC+0.6
VCC+ 1.0
0.66

Parameter
Supply Voltage·

Input High Voltage

VIH

Input Low Voltage

VIL

-

Vo<;
Vo<;

RECOMMENDED DC OPERATING CHARACTERISTICS
Chlrllcterlollc
Address and E Input Sink Current

MCM2&32
Min Max

Symbol

Condition
Vin-5.25 V

lin

10

Vn"t~5.25 V

110

10

MCM2532
MCM2532-36

E=VIH

ICCl

-

VCC Standby Current· (Standby)

MCM2532-25

E=VIH

ICCl

-

25

V CC Supply Current· IActive)

MCM2532
MCM2532·3E

E=VIL

ICC2

-

100

MCM2532-25

E=VIL

ICC2
Ippt'

-

120

Output Leakage Current
VCC Supply Curro;nt· (Standby)

VCC Supply Current· (Active)

VJ>!> Sup.ply

Current·

Vpp~5.66

Output Low Voltage

V

IOL=2.1 mA

Output High Volta!!e

IOH-

VOL
VOH

4OO.A

25

MCM2&L32
UnIt·
Min Max
10 . .A

-

5.0
0.45

2.4

-

10

aA

10

mA

15

mA

50

mA

70

mA

5.0

inA

0.45

2.4

V
V

·VCC must be epplied simultaneously or prior to Vpp. VCC must also be switched oH simultaneously with or after Vpp. With Vpp connected
directly to VCC during the read operation, the supply current would be the sum of IPPl and ICC. The additional 0.6 V tolerance on Vpp makes
it possible to use a driver circuit for switching Vpp supply from VCC in Read mode to + 25 V for programming. Typical values are for
T A = 25°C and nominal supply voltages.

AC READ OPERATING CONDITIONS AND CHARACTERISTICS
IFull Operating Voltage and Temperature Range Unless Otherwise Noted)

Symbol

CNnctariIdc
Address Valid to Outout Valid (E/PrOar=V,,)
E 0 OutDut Valid
t to High Z Output
Data Hold from Address

.0.8 and 2.0 Volts
.. .. .... See Figure 1

Input and Output Timing Levels ..
Output Load ...

. 0.66 Voltand 2.2 Volts
........ 20ns

Input Pulse LeVels ...
Input Rise and Fall Times ...

(E = VIU

2-98

MCM2&32-2Ii

Min

Max

-

MCM2&32-36
Max
Min

MCM21i32
Min Max

UnIt

t.6.VOV
tFIOV

-

250
250

-

360

-

3EO

-

460
460

tEHOZ

0

100

100

0

100

ns
ns

tAXDX

0

-

0
0

-

0

-

ns

ns

MCM2532-MCM25L32

READ MODE TIMING DIAGRAMS IE ~ VILI

STANDBY MODE

A (Address)

Address Valid

Eft Progr)

Q

IData Outl

New Address Valid

\

Standby MoJe

/

-

~IEHQZ
!>-----High Z

Output Valid

Active Mode

- "'' ,C~-------->Output Valid

.

DC PROGRAMMING CONDITIONS AND CHARACTERISTICS
ITA=25°C±5°CI

RECOMMENDED PROGRAMMING OPERATION CONDITIONS
Symbol

Min

Nom

Max

VCC. VPPL
VpPH

4.75
24

5.0
25

5.25
26

Vde

VIH
VIL

2.2
-0.1

-

VCC+1
0.65

Vde
Vde

Parameter
Supply \loltage
Input High Voltage lor Data
InpOt Low Voltage for Data

-

Unit

'VCC must be applied simultaneously or prior to Vpp. VCC must also be switched off simultaneously with or after Vpp. The
device must not be inserted into or removed from a board with Vpp at + 25 V. Vpp must not exceed the + 26 V maximum
specifications.

PROGRAMMING OPERATION DC CHARACTERISTICS
Charlcterlltie
Address and EI Progr Input Sink Current

Condition

Symbol

Min

Typ

MIX

Unit

Vin = 5.25 V 10.45 V

III

-

-

1O

,.Ade

1O

mAde

VPP Supply Current IVpp = 25 V ± 1 VI

E/Progr = VIH

IPP1

-

VPP Programming Pulse Supply Current IVpp = 25 V ± 1 VI

t/l'rOQr = VIL

IPP2

-

ICC

-

VCC Supply Current - MCM2532

30

mAde

160

mAde

AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS
Symbol

M"on

Address Setup Time

tAVEL

2.0

VPP Setup Time
Data Setup Time

tPHEL
tOVEL

2.0

Address Hold Time

tEHAX

Vpp to Enable Low Time
Data Hold Time

tpLEL

Characteriltie

tEHOZ

Unit

-

p.S

-

p.S

2.0

-

,.s

°
°

-

,.s

°

2.0

VPP Hold Time
Enable IPrograml Active Time

tEHPL
tELEH

l'

Enable IE/Progrl Pulse Transition Time

tTl PEl
tA. tF

5
0.5

VPP Aise and Fall Time from 5 to 25 V

MIX

55
2

-11 shorter than 45 ms (min) pulses are used, the same number of pulses should be applied after the specific data has been verified.

2-99

ns

ns
ns
ms
ns
,.s

MCM2532·MCM25L32

PROGRAMMING OPERATION TIMING DIAGRAM

.. I..

Program

VIH------""
A IAddressl
V I L - - - - - -J

Program

VenfY~
,.-"----

Address N Valid

t+---tEHAX----+j
VOHIVIH
o or a IDatal - - - - - - H , - z - - - - - - < I

Output Valid 1)---""",

VOLIVIL

VIH---------+------U

E/Progr
VIL

PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in
the device is in the "1" state (represented by Output High!.
Data are entered by programming zeros (Output Low) into
the required bits. The words are addressed the same way as
in the READ operation. A programmed "0" can only be
changed to a "1" by ultraviolet light erasure.
To set the memory up for PROGRAM mode, the VPP input (pin 21) should be raised to + 25 V. The V CC supply
voltage is the same as for the READ operation. Programming
data is entered in a-bit words through the data out IDO} terminals while E/Progr is high. Only "O's" will be programmed
when "O's" and "1's" are entered in the data word.
After address and data setup, a 50 ms program pulse (VIH
to VIL) is applied to the E/Progr input . .A program pulse is
applied to each address location to be programmed. To
minimize programming time, a 2 ms pulse width is recommended. The maximum program pulse width is 55 ms;
therefore, programming must not be attempted with a dc
signal applied to the E/Progr input.
Multiple MCM2532s may be programmed in parallel with
the same data by connecting together like inputs and apply-

ing the program pulse to the f/l>r09r inputs. Different data
may be programmed into multiple MCM2532s connected in
parallel by using the PROGRAM INHIBLT mode. Except for
1he E/Progr pin, all like inputs may be common.
PROGRAM VERIFY for the MCM2532 is the read operation.

READ OPERATION

After access time, data is valid at the outputs in the READ
mode.
ERASING INSTRUCTIONS

The MCM2532/25L32 can be erased by exposure to high
intensity shortwave ultraviolet light, with a wave-length of
2537 angstroms. The recommended integrated dose (i.e.,
UV-intensity X exposure time) is 15 Ws/cm 2 As an example, using the "Model 30-000" UV-Eraser Turner Designs,
Mountain View, CA94043} the ERASE-time is 36 minutes.
The lamps should be used without shortwave filters and the
MCM2532/25L32 should be positioned about one inch away
from the UV-tubes.

2-100

MCM2532·MCM25L32

TIMING PARAMETER ABBREVIATIONS

TIMING LIMITS
The table of timir\g values shows either a minimum or a
m'aximum limit for each parameter. Input requirements are
specified from the external system point of view. Thus, address setup time is shown as a minimum since the system
must supply at least that much time (even though most
devices do not require it!. On the other hand, responses from
the memory are specified from the device point of view.
Thus, the access time IS shown as a maximum since th·e
device never provides data later than that time.

t X X X X

signal name. from. Whi.Ch i.nterval i.S defined ~
transition direction for first signal
signal name to which Interval IS defined
transition direction for second signal

III

The transition definitions used In this data sheet are:
H = transition to high
L = transition to low
V = transition to valid
X = transition to invalid or don't care
Z = transition to off (high impedance)

WAVEFORMS
Waveform
Symbol

Input

Output

Must Be

Wilt Be

Valid

Valid

Change
From H 10 L

Will Change
From H 10 L

~

Change
From L tc H

Will Change
From L to H

NlllN

Don't Care
Any Change
Permitted

Changing

~

==>-

State
Unknown
High
Impedance

2-101

®

MCM2708
MCM27A08

MOTOROLA

1024 X

a ERASABLE

PROM

MOS

The MCM270B/27AOB is an B192-bit Erasable and Electrically
Reprogrammable PROM designed for system debug usage and
similar applications requiring nonvolatile memory that could be
reprogrammed periodically. The transparent window on the package
allows the memory content to be erased with ultraviolet light.
Pin-for-pin m"sk-programmable ROMs are available for large volume
production runs of systems initially using the MCM270BI27AOB.
•

Organized as 1024 Bytes of 8 Bits

•

Static Operation

•

Standard Power Supplies of +12 V, +5 V and - 5 V

•

Maximum Access Time

= 300

ns 450 ns -

(N-CHANNEL, SILICON-GATE)

1024 X a-BIT
UV ERASABLE PROM

MCM27A08
MCM2708

•

Low Power Dissipation

•

Chip-Select Input for Memory Expansion

•

TTL Compatibl~

•

Three-State Outputs

•

Pin Equivalent to the 2708

•

Pin-for-Pin Compatible to MCM65308, MCM68308 or 2308
Mask-Programmable ROMs

FRIT·SEAL CERAMIC PACKAGE
CASE 623A-02

CERAMIC PACKAGE
CASE 716-07

PIN CONNECTION DURING READ OR PROGRAM

Mode

,Pin Number

9-11,13-17

12

18

19

20

21

24

Read

Dout

VSS

VSS

VDD

VIL

VBB

Vec

Program

Din

VSS

Pulsed

VIHW

VBB

VCC

r

VDD

PIN ASSIGNMENT

VIHP

Vee

--

AS

ABSOLUTE MAXIMUM RATINGS (11
Rlting

A9
Value

Unit

Opt-fating Temperature

'Oto+70

Storage Temperature

-65 to +125

°c
°c

VOO with Respect to Vee

+20 to -0.3

Vdc

VOO

VCe and VSS with Respect to VaB

+ 15 to -0.3

Vdc

PROGR.

All Input or Output Voltages with Respect to Vee during Read

+15to-0.3

Vdc

+20 to -0.3

Vdc

CSIWE Input with Respect to

Vee during Programming

~ram .'np~_t with Respect to Vee

Power Dissipation

+35 to -0.3

Vdc

1.8

Watts

Note 1:
Permanent device damage may occur if
ABSOLUTE MAXIMUM RATINGS .re

VSB

CS/WE

07
DO

06

01

05

02

04

VSS

exceeded. Functional

op~ration should
be restricted to RECOMMENDED OP·

ERATING CONDITIONS. Exposur. to
higher than recommended voltages for
extended periods of time could affect
device reliabilitv.

OS9440 R2/1-79

2-102

MCM2708-MCM27A08

BLOCK DIAGRAM

DC READ OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)
RECOMMENDED DC READ OPERATING CONDITIONS
Paramet.r
SupplV Voltage

Symbol

Min

Nom

MIx

VCC

4.75

5.0

5.25

Vdc

VOO

11.4

12

12.6

Vdc

-5.0.

Unit

VBB

-5.25

-4.75

Vdc

Input High Voltage

VIH

3.0

-

VCC + 1.0

Vdc

Input Low Voltage

Vil

VSS

-

0.65

Vdc

Symbol

READ OPERATION DC CHARACTERISTICS
Charlcteristic
Address and CS Input Sink Current
Output Leakage Current
VOO Supply Current
VCC Supply Current
V BB Supply Current

J
I

(Note 21

I

Max

Unit

lin

Min
-

Typ

= Vil
Vout = 5.25 V. CS/WE = 5 V

1

10

,.A

IlO

-

1

10

,.A

Worst-Case Supply Currents

100

.-

50

65

mA

All Inputs High

ICC

Condition
Yin - 5.25 V or Yin

CS/WE

= 5.0 V. TA

' OoC

IBB

.

-

6

10

mA

30

45

mA

0.45

V

800

VOL

-

OU1Put High Voltage

IOH - -100,.A

VOH1

3.7

Out·put High Voltage

IOH - -1.0 mA

VOH2

2.4

-

Po

-

-

Output Low Voltage

Power Dissipation

IOl = 1.6 mA

(Note 21

TA = 70°C

V

-

V
mW

Not. 2:
The total power dissipation is specified at 800 mW. It is not calculable by summing the various ~urrent (100. ICC. and Ise) multiplied by

their respective Yoltages, since current paths exist between the various power supplies and VSS. The IOO( ICC. and
used to determine power supply capacity only.

•

VBB must be applied prior to Vee and VOO. VaB must. also be the last power supply switched off.

2-103

lea currents should

be

MCM27oa-MCM27Aoa

AC READ OPERATING CONDITIONS AND CHARACTERISTICS

(Fu" operating voltage and temperature range u·nless otherwise noted.)
(A" timing with tr = tf = 20 ns, Load per Note 3)
MCM2708

MCM27A08
Symbol

Char.cteristic

Min

Tyi'

Max

Min

Typ

Max

Unit

220

300

-

280

450

ns

60

120

-

60

120

ns

-

-

0

-

-

ns

120

0

120

n.

Addre.. to Output Delay

tAO

Chip Select to Output Delay

tco

-

Data Hold from Address

tDHA

0

Data Hold from Deselection

tDHD

0

CAPACITANCE (periodically sampled r8ther than 100% tested)
Characteristic
Input Capacitance

Condition

Symbol

Typ

Max

Unit

Vin ; 0 V. TA ; 25°C

Cin

4.0

6.0

pF

V out ; 0 V. TA; 25°C

Cout

8.0

12

pF

(f; 1.0 MHz)

Output Capacit8.nce
(f; 1.0 MHz)

Noto 3:
Output Load; 1 TTL Gate and CL ; 100 pF (Include. Jig Capacitance)
Timing Measurement Reference Levels;
Inputs:
0.8 V and 2.8 V
Outputs: 0.8 V and 2.4 V

AC TE8T LOAD
5_0 v

RL=2.2k
Test Poont

00---00 and 300 to 7M are to be pro·
grammed. All other bits are "don't care". The
program pulse width is 0.5 ms. The minimum
number of program loops

,

N

= 100
= 200 .
0.5

One

program loop consists of words 0 to 1023. The
data entered into the "don't care" bits should be
all 15.
3. Same requirements as example 2, but the EPROM is
now to be updated to include data for words S50
to SSO. The minimum number of program loops is
the same as in the previous example, N = 200. One
program loop consists of words 0 to 1023. The data
entered into the "don't care" bits should be all 15.
Addresses 0 to 200 and 300 to 100 must be reo
programmed with their original data pattern.

ERASING INSTRUCTIONS
The' MCM270S/27 AOS can be erased by exposure to
high intensity shortwave ultraviolet light, with a wave·
length of 2537 A. The recommended integrated dose (i.e.,
UV·intensity x exposure time) is 12.5 Ws/cm 2. As an
example, using the "Model 30·000" UV·Eraser (Turner
Designs, Mountain View, CA94043) the ERASE·time is
30 minutes. The lamps should be used without shortwave
filters and the MCM270S/27AOS should be positioned
about one inch away from the UV·tubes.

2-107

®

MCM2716
MCM27L16

MOTOROLA

2048 x 8-BIT UV ERASABLE PROM

MOS
(N-CHANNEL, SILICON-GATEI

The MCM2716127L 16 is a 16,384-bit Erasable and Electrically
Reprogrammable PROM designed for system debug usage and similar
applications requiring nonvolatile memory that could be reprogrammed
periodically. The transparent lid on the package allows the memory content to be erased with ultraviolet light.
For ease of use, the device operates from a single power supply and
has a static power-down mode. Pin-for-pin mask programmable ROMs
are available for large volume production runs of systems initially using
the MCM2716127L 16.
•
•
•
•

Single 5 V Power Supply
Automatic Power-down Mode (Standbyl
Organized as 2048 Bytes of B Bits
Low Power Version 27L 16/27L 16-35 Active 50 mA Max
Standby 10 mA Max
27L 16-25 Active 70 mA Max
Standby 15 mA Max

2048x8-BIT
UV ERASABLE PROM

L SUFFIX CERAMIC PACKAGE
ALSO AVAILABLE - CASE 7t8

• TTL Compatible During Read and Program
• Maximum Access Time =450 ns MCM2716
350 ns MCM2716-35
250 ns MCM2716-25

PIN ASSIGNMENT

• Pin Equivalant to Intel's 2716
• Pin Compatible to MCM68A316E
• Output Enable Active Level is ·User Selectable

A7

MOTOROLA'S PIN-COMPATlILE EPROM FAMILY
121(

.....,
..•.,

11K

-

Vce

A6

AS

A5

AS

A4

Vpp

A3

G

A2

AtO

At

E/Progr

AO

007

000

006

Oat

005

002

004

VSS

003

MOTOROLA'S PIN-COMPATIILE ROM FAMILY

AI

• Pin NIIfn8I

..

'" "
...",'---_
.....-

A.

.. Address

DO .... Data Input/Output
E/Progr .... Chip Enable/Program
G .... Output Enable
• New Industry standard nomenclature

INDUSTRY STANDARD PINOUTS

OS9817/ 4-80

2-108

MCM2716-MCM27L 16

ABSOLUTE MAXIMUM RATINGS
R8IIng
Temperature Under Bias
Operating Temperature Range
Storage Temperature
All Input or Output Voltages with Respect to VSS
Vpp Supply Voltage with Respect to VSS

Vllue

Unit

-10 to +80
o to + 70
-65 to +125
+6 to -0.3
+28 to -0.3

·C
·C
·C
Vdc

This device contains circuitry to protect the inputs
against damage due to high static voltages or alec!ric fields; however, it is advised that normal precautions be taken to avoid application of any voltage
higher than maximum rated voltages to this highimpedance circuit.

Vdc

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended
periods of time could affect device reliability.

MODE SELECTION
PIn Number
&-11,

Mode

13-17

Read

DO

12
VSS

18
E/Progr
VIL
Don't Car,

21
Vpp

VCC
VCC

Data Out

VSS

Output Disable

High Z

VSS

Standby

High Z

VSS

Program

Data In

VSS

Program Verify

Data Out

VSS

VIL

Program Inhibit

High Z

VSS

VIL

VIH

VIH
Pulsed
VIL to VIH

VIL

Vce'

VIH
Don't Care

Vcc'

Vce

Vee'

VCC

VIH

VIHP

Vce

VIL

VIHP
VIHP

VCC
VCC

'In the Read Mode if VPP~VIH, then G (active lowl
VpP:sVIL, then G lactive highl

BLOCK DIAGRAM
Data Input/Output D~DQ7

~

FIGURE 1 - AC TEST LOAD

6.0V
E/Progr

~
TestP~nto-~--~--i4t--i

• loci pF

Y Gating

AO-Al0
'Includes Jig Capacitance

Memory
Matrix

(128)( 1281

2-109

24

20
G·

MMD6160
or Equiv.
MMD7000
or Equiv.

MCM2716-MCM27L16

CAPACITANCE If= 1.0 MHz. T = 25°C. periodically sampled rather than 100% testedl
Ch.r.cteri8tic
Input Capacitance (V ,n = 0 VI
Output Capacitance (Vout-O VI

~

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: C =

Il.v·

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)

P.-

RECOMMENDED DC OPERATING CONDITIONS

-.---

Symbol

MCM27L 161MCM2716
Supply Voltage·
MCM27L 16-351 MCM27L 16-251 MCM2716·351 MCM2716·25

VCC
Vpp

Input High Voltage

VIH

Input Low Voltage

VIL

Min

Nom

Mex

4.75
4.5
VCC-0.6

5.0
5.0
5.0

5.25
5.5
VCC+0.6

2.0
-0.1

-

-

VCC+ 1.0
O.B

Unit
Vdc

Vdc
Vdc

RECOMMENDED DC OPERATING CHARACTERISTICS
Condition

Ch.racteristic
Address. G and EI Progr Input Sink Current
Output Leakage Current
VCC Supply Current (Standbyl 2716/2716-35
VCC Supply Current (Standbyl 2716-25
VCC Supply Current (Activel 2716i2716-35

VCC Supply Current (Activel 2716-25

Symbol

MCM2718

Typ

Mex

Unlte

Min

Typ

Mex
10

,.A

10

,.A

Vin=5.25 V

'in

-

Vo~t-5.25 V
G=50 V

ILO

-

-

10
10

-

-

ICCl

-

-

25

-

-

10

mA

ICCl

-

-

25

-

-

15

mA

ICC2

-

-

100

-

-

50

mA

ICC2

-

-

120

-

-

70

mA

IpPl

-

5.0

mA

EI P!.ogr= VIH
G=VIL
E'!P~gr-VIH
G/VIL
(Outputs Open I G=EIProgr=
VIL
G - E/Progr(Outputs Openl
VIL
Vpp=5.B5 V

Output Low Voltage

IOL=2.1 mA

VOL

-

Output High Voltage

IOH-

IDJ,.A

VOH

. 2.4

'Vpp Supply Current·

MCM27L18

Min

-

5.0
0.45

-

0.45

2.4

V
V

·VCC must be applied Simultaneously or prior to Vpp. Vce must olso be switched off Simultaneously With or alter Vpp. With Vpp connected
directly to VCC during the read operation. the supply current would then be the sum of IPPl and ICC. The additional 0.6 V tolerance on Vpp
makes it possible to use a driver circuit for switching the Vpp supply pin from VCC in Read mode to ± 25 V for programming. Typical values a,.
for T A = 25°C and nominal supply voltages.

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage ond temperature range unless otherwise notedl

Input Pulse Levels ..
Input Rise and Fall Times.

Characteristic
Address Valid to Output Valid

EI Progr to Output Valid
Output Enable to Output Valid

EI Progr to Hi-Z Output
Output Disable to Hi-Z Output
Data Hold from Address

. .0.8 Volt and 2.2 Volts
..20ns

Input and Output Timing Levels .......... 2.0 and 0.8 Volts
Output Load ..
. ....................... See Figure 1

Condition

Symbol

EI Progr = G = VIL

tAVOV

INote 21

lELOV

E/Progr= VIL

-

MCM2718-25 ~CM2718-3I MCMZ718
Unite
Min Max Min Mex Min Mex

-

350
350

150

-

100

0

0

100

0

0

-

0

250
250

tGLOV

-

tEHOZ

0

r/Progr- VIL

tGHOZ

EI Progr= G=VIL

tAXDX

2-110

450
450

150

-

100

0

100

100

0

100

-

0

-

150

ns

Jl'CM2716eMCM27L 16

READ MODE TIMING DIAGRAMS (EI Progr= VILI

Output Valid

STANDBY MODE IOutput Enable = VILI
Standby Mode 1E"/Progr=VIHI
A IAddressl

Active Mode

tELQV INote 21

o IData Out!

Output Valid

NOTE 2: tELQV is referenced to !"/Progr or stable address, whichever occurs last.

DC PROGRAMMING CONDITIONS AND CHARACTERISTICS
ITA=25°C±5°CI

RECOMMENDED PROGRAMMING OPERATING CONDITIONS
Unit

Symbol

Min

Nom

Max

Supply Voltage

VCC
VPP

4.75
24

5.0

5.25

25

26

Input High Voltage for Data

VIH

2.2

-

Input Low Voltage for Data

VIL

-0.1

-

VCC + 1
0.8

Cond~ion

Symbol

Min

Typ

Ma.

Un~

Yin = 5.25 V 10.45 V

III

-

-

10

"Ade
mAde

Parameter

Vde
Vde
Vde

PROGRAMMING OPERATION DC CHARACTERISTICS
Characteriotic
Address, G and E/Progr Input Sink Current
VPP Supply Current IVpp = 25 V ± 1 VI

E/Progr= VIL

IPPl

-.

VPP Programming Pulse Supply Current IVpp = 25 V ± 1 VI

EI Progr= VIH

IPP2

-

-

30

mAde

-

ICC

-

-

160

mAde

Symbol

Min

Max

Unit

tAVEH

2.0

VCC Supply Current IOutputs Openl

10

AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS
Characteriotic

tELAX

2.0

Output Enable Hold Time

tELGL

2.0

Data Hold Time

tELOZ

2.0

VPP Setup Time

tPHEH

0

Vpp to Enable Low Time

tELPL

0

-

Output Disable to High Z Output
Output Enable to Valid Data IE/Progr- VILt

tGHQZ

0

150

tGLQV

-

150

ns

1·
5

55
-

ms

Program Pulse Rise Time

tEHEL
tpR

Program Pulse Fall Time

tPF

5

-

ns

Address Setup Time

2.0
-- r.!9.1-W 2.0
. _ - - - ~H

Output Enable High to Program Pulse
Data Setup Time
Address Hold Time

Program Pulse Width

-If shorter than 45 ms (min) pulses are used, the same number of pulses should be applied after the specific data has been verified.

2-111

"s
"s

"S
"s
"s
"s
ns
ns
ns

ns

MCM2716eMCM27L16

PROGRAMMING OPERATION TIMING

OIA~RAM

Program
A IAddressl

Program Verily
Address N Valid
t+----tELAX----~

G IOutput
Enablel

o or a 10atai
tGHEH

.tOVEH
..--.;;;..;.;---tEHEL

E/Progr
tPR

(t

r-tPHEH

ELPL

PROGRAMMING INSTRUCTIONS
After the completion of an ERASE operation, every bit in
the device is in th!l "1" state Irepresented by Output Highl.
Data are entered by programming zeros IOutput Low) into
the required bits. The words are addressed the same way as
in the READ operation. A programmed "0" can only be
changed to a "1" by ultraviolet light erasure.
To set the memory up for Program Mode, the Vpp input
IPin 21) should be raised to + 25 V. The Vee supply voltage
is the same as for the Read operation and G is at VIH. Programming data is entered in S-bit words through the data out,
100) terminals. Only "O's" will be programmed when "O's"
and "1's" are entered in the S-bit data word.
After address and data setup, a program pulse IVIL to
VIH) 'is applied to the EiProgr input. A program pulse is applied to each address location to be programmed. To
minimize programming time, a 2 ms pulse width is recommended. The maximum program pulse width is 55 ms;
therefore, programmi!lg must not be attempted with a dc
signal applied to the E/Progr input.
Multiple MCM2716s may be programmed in parallel by
connecting together like inputs and applying the program
pulse to the EI Progr inputs. Different data may be programmed into multiple MCM2716s connected in parallel by using
the PROGRAM INHIBIT mode. Except lor the E/Progr pin,
all like inputs !including Output Enable) may be common,

2-112

The PROGRAM VERIFY mode with Vpp at 25 V is used to
determine that all programmed bits were correctly programmed.

READ OPERATION
After access time, data is valid at the outputs in the READ
mode, With stable system addresses, effectively faster access time can be obtained by gating the data onto the bus
with Output Enable.
The Standby mode is available to reduce active power
dissipation. The outputs are in the high impedance state
when the E/Progr input pin is high IVIH) independent of the
Output Enable input.

ERASING INSTRUCTIONS
The MCM2716127L 16 can be erased by exposure to high
intensity shortwave ultraviolet light, with a wavelength of
2537 angstroms. The recommended integrated dose li.e.,
UV-intensity X exposure time) is 15 Ws/cm 2. As an example, using the "Model 30-000" UV-Eraser ITurner Designs,
Mountain View, CA 94043) the ERASE-time is 36 minutes.
The lamps should be used without shortwave filters and the
MCM2716/MCM27L 16 should be positioned about one inch
away from the UV-tubes.

MCM2716-MCM27L 16

TIMING PARAMETER ABBREVIATIONS

TIMING LIMITS
The table of timing values shows either a minimum or a
maximum limit for each parameter. l!'\Put requirements are
specified from the external system point of view. Thus, address setup time is shown as a minimum since the system
must supply at least that much time (even though most
devices do not require it). On the other hand, responses from
the memory are specified from the device point of view.
Thus, the access time is shown as a maximum since the
device never provides data later than that time.

t X X X X

signal name from which interval is defined ----1
transition direction for first signal
signal name to which interval is defined
transition direction for second signal

III

The transition definitions used in this data sheet are:
H = transition to high
L = transition to low
V = transition to valid
X = transition to invalid or don't care
Z = transition to off (high impedance I

WAVEFORMS
Input

Output

Must Be
Valid

Will Be
Valid

~

Change
From H to L

Will Change
From H to L

Jlll7

Change
From L to H

Will Change
From L to H

lYlll'&

Don't Care:
Any Change
Permitted

Changing

Waveform

Symbol

State
Unknown
High
Impedance

=:)-

2-113

®

TM52716
TM527A16

MOTOROLA

MOS

2048 X 8 ERASABLE PROM
The TMS2716 and TMS27A16 are 16,384-bit Erasable and
Electrically Reprogrammable PROMs designed for system debug
usage and similar applications requiring nonvolatile memory that
could be reprogrammed periodically _The transparent window on the
package allows the memory content to be erased with ultraviolet
light. The TMS2716 is pin compatible with 2708 EPROMs, allowing
easy memory size doubling.
•

IN-CHANNEL, SILICON-GATEI

2048 X 8-BIT
UV ERASABLE PROM

Organized as 2048 Bytes of 8 Bits

•

Fully Static Operation (No Clocks, No Refreshl

•

Standard Power Supplies of + 12 V, + 5 V, and - 5 V

•

Maximum Access Time = 300 ns - TMS27A 16
450 ns - TMS2716

•

Chip-Select Input for Memory Expansion

•

TTL Compatible - No Pull-up Resistors Required

•

Three-State Outputs for OR-Tie Capability

•

The TMS2716 is Pin Compatible to MCM2708 and
MCM68708 EPROMs
.

fRIT·SEAL PACKAGE
CAS E 623A-02

CERAMIC PACKAGE
CASE ·716-07

PIN ASSIGNMENT

BLOCK DIAGRAM
Data Input/Output

A7

000-007

A6
A5
A4

A3
A2
Al

Y Gating

DOl

D02
VSS
AO-Al0

PIN NAMES

AO-AID
Memory Matrix
(128 X 128)

DOO-DOl

.Address Inputs
Data Input (Program or

VOD

Output (Read)
. Program Enable
Chop Select
Program Pulse
- 5 V Power Supplv
+ 5 V Power SupplV
+ 12 V Power SupplV

VSS

... Ground

(EI.
~
(Progrl

VBB
VCC·

059618 Rll1-19

2-114

TMS2716eTMS27A 16

ABSOLUTE MAXIMUM RATINGS (1)
Value

Unit

o to + 70

°e

. -65 to + 125

°e

+20 to -0.3

V

+ 15 to -0.3

V

+15to-0.3

V

Rating

Operating Temperature

Storage Temperature

VOO with Respect to

Vas

Vee and VSS with Respect to Vas

All Input or Output Voltage with Respect to
IE) 'nput with Respect to

Vas

Program 'nput with Respect to

Vee

During Read

During Programming

+20 to -0.3

V

Vas

+35 to -0.3

V

1.8

Watts

Power Dissipation

PIN CONNECTION OURING
REAO OR PROGRAM

Pin Number
Mod.

9-11,
13-17

18

24

Read

D out

V'L or

Vee

Program

Din

VIH
Pulsed

VIHW

VIHP

NOTE 1: Permanent device damage may occur it ABSOLUTE MAXIMUM RATINGS are
exceeded. Functional operation should be restricted to RECOMMENDED
OPERATING CONDITIONS. Exposure to higher than recommended voltages for
extended periods of time could affect device reliability.

DC READ OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)
RECOMMENDED DC READ OPERATING CONDITIONS
Svmbol

Min

Nom

Max

Unit

TMS2716

Vee
Voo
Vee

4.75
11.4
-5.25

5.0
12
-5.0

5.25
12.6
-4.75

V
V
V

TMS27A16

Vee
VOO
Vee

4.5
10.8
-5.5

5.0
12
-5.0

5.5
13.2
-4.5

V
V
V

Parameter
Supplv Voltage

Input High Voltage

VIH

2.2

-

Vee+ 1.0

V

Input Low Voltage

VIL

VSS

-

0.65

V

Condition

Svmbol

Min

TVp

Max

Unit

Vin = VCCmax or Vin "" VIL

lin

-

1

10

~A

ILO

-

1

10

~A

-

65

mA

-

12

mA

-

45

mA

VOL

-

READ OPERATING DC CHARACTERISTICS
Characteristic
Address Input Sink Current

Output Leakage Current

V out :; Vee max and S = 5 V

V DO Supply Current

Worst-Case Supply Currents

·100

Vee Supply Current

All Inputs High

lee

Vee Supply Current

(E)=5DV,TA=00e

Output Low Voltage

IOL = 1.6mA

lee

Output High Voltage

IOH = -100

~A

VOHI

3.7

-

Output High Voltage

IOH--l.0mA

VOH2

2.4

-

0.45

V

-

V
V

Vas must be applied prior to Vee and VOO- VBB must also be the last power supply SWItched off.

CAPACITANCE (periodically sampled rather than 100% tested)
Characteristic

Input Capacitance

Condition

Symbol

TVp

Max

Unit

Vin =OV, TA = 25 0 e

Gin

4.0

6.0

pF

V out =0 V, TA = 25 0 e

C out

8.0

12

pF

If = 1.0 MHz)
Output Capacitance
If = 1.0 MHz)

2-115

TMS2716eTMS27A16

AC READ OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperatUie range unless otherwise noted)
(All timing with tr ~ tf ~ 20 ns, Load ~er Note 2)
TMS2716

Characteristic

Symbol

Min

TMS27A16

Ma.

Min

Ma.

Unit

Addless to Output Delay

'AVOV

450

300

ns

Chip Select to Output Delay

'SLOV

120

120

ns

Data Hold from Address

'AXOZ

10

Data Hold hom Deselect ion

'SHOZ

10

-

120

NOTE 2: Output Load'" 1 TTL Gate and CL = 100 pF (Includes Jig Capacitance)
Timing Measurement Reference Levels - Inputs: 0.8 V and 2.8 V
Outputs: 0.8 V and 2.4 V

TIMING PARAMETER ABBREVIATIONS

10

.

10

120

ns·
ns

AC TEST LOAD

TIMING LIMITS
t X X X X

m'".. ", "'m", --'
transition direction for first signal

Sign.al name .'''m w"m"

III

signal name to which interval is def;ned
transition direction for second signal-

The table of timing values shows eithel a minimum or
a maximum limit for each parameter. Input requirements
are specified from the external system point of view.
Thus, address setup time

IS

shown as a minimum since the

system must supply at least that much time (even though
most devices do not require itl. On the other hand,

The transition definitions used in this data sheet are"
H ~ transition to high

responses from the memory are specified from the device

L =- transition to low

point of "iew. Thus, the access time is shown as a maximum since the deVice never provides data later than

V =- transition to valid

lhat time.

X

=

transition to invalid or don't care

Z

~

transition to off (high impedance)

READ OPERATION TIMING DIAGRAM

Address Valid

Chip Select,S

Data Out, Q

High Z

2-116

TMS2716e TMS27A 16

DC PROGRAMMING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)

RECOMMENDED PROGRAMMING OPERATING CONDITIONS
Symbol

Min

Nom

Max

Unit

Supply Voltage - TMS2716 and TMS27A16

VCC
VOO
Vaa

4.75
11.4
-5.25

5.0
12
-5.0

5.25
12.6
-4.75

Vdc
Vdc
Vde

Input High Voltage for Data

VIHO

3.8

-

VCC+ I

Vdc

Input Low Voltage for Data

VILO

Vss

_.

0.65

Vdc

Input High Voltage for Addresses

VIHA

3.B

-

VCC + I

Vde

Input Low Voltage for Addresses

VILA

-

0.4

Vde

Program Enable tE) Input High Voltage (Note 3)

VIHW

VSS
11.4

12

12.6

Vdc

Program Enable (E) Input Low Voltage (Note 3)

VILW'VCC

.4.75

5.0

5.25

Vde

Program Pulse Input High Voltage (Note 3)

VIHP

25

27

Vde

Program Pulse Input Low Voltage (Note 4)

VILP

VSS

-

1.0

Vde

Parameter

NOTE 3: Referenced to VSS·
NOTE 4: VIHP - VILP = 25 V min.

PROGRAMMING OPERATION DC CHARACTERISTICS
Characteristic
Address Input Sink Current

Condition
Yin = 5.25 V

Symbol

Min

Typ

Max

Unit

ILl

-

-

10

,!JAde

3.0

mAde

20

mAde

-

65

mAde

15

mAde

-

45

mAde

Program Pulse Source Current

IIPL

-

Program Pulse Sink Current

IIPH

-

VOO Supply Current

Worst-Case Supply Currents

100

Vec Supply Current

All InpufS High
lEI =5V. TA =OoC

ICC

Vas Supply current

laa

-

AC PROGRAMMING OPERATING CONDLTIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherwise noted)
Symbol

Min

Max

Address Setup Time

tAVPH

10

IE) Setup Time

tEHPH

10

-

Oat8 Setup Time

tOVPH

10

Addres. Hold Time

tpLAX

1.0

IE) Hold Time

tPLEL

0.5

Characteristic

Unit
/"
/"
/"

-

/"

".

Data Hold Time

tpLOX

1.0

Program to Read Delay

tELQV

-

10

/"

Program Pulse Width

tPHPL

0.1

1.0

m.

".

/"

Program Pulse Rise Time

tPR

0.5

2.0

Program Pulse Fall Time

tPF

0.5

2.0

2-117

/"

TMS2716-TMS27 A 16

PROGRAMMING. OPERATION- TIMING DIAGRAM

1 - - - - - - - - - - - - - 1 of N Program Loops

------------o+-~.-

READ (After N
Program
Loops)

Program
Enable, (E)

tpLEL

Note 5

teHPH

VtHA

Address

a

VILA

tAVPH

tPLAX ----..

V1HD

D.t. Out
Valid

Data Out,
VILD

tPLDX

tOVPH

tPR

IPF

tPHPL

VtHP - -

--

Program
PuisI!', P

V, LP--------------J

NOTE 5: This Program Enable tranistion must occur after the Program Pulse transition and before the Address Transition.

WAVEFORM DEFINITIONS
W,n.form

Input

Waveform

Output

Symbol
MUST BE

~

-Z!l7

Input

Output

Symbol
WII.L 6E

VAUf)

VALID

CHANG(

WILL CHANGE:.

FHOMHTOL

FROM H TO L

CHAr-IGI:.

WILL CHANGE

~H()ML10H

FROM L TO H

~

=:J-

2-118

DON

r

CARE

ANY CHANGE
PERMITTED

CHANGING

STATE
UNKNOWN
HIGH

IMPEDANCE

TMS2716eTMS27A 16

PROGRAMMING INSTRUCTIONS

EXAMPLE FOR PROGRAMMING
Always use the TPtotal = N X tPHPL ;;;. 100 ms
relationship.
1. All 16,384 bits should be programmed with a 0.2 ms
program pulse width.
The minimum number of program loops:

After the completion of an ERASE operation, every bit
in the device is in the "1" state (represented by Output
High). Data are entered by programming zeros (Out·
put Low) into the required bits. The words are addressed
the same way as in the READ operation. A programmed
"0" can only be changed to a "1" by ultraviolet light

N = TPtotal
tPHPL

erasure.

To set the memory up for programming mode, the
VCC(E) input (Pin 24) should be raised to + 12 V. Programming data is entered in 8-bit words through the data
output terminals (000 to 007).
The VDD and Vaa supply voltages are the same as for
the READ operation.
After address and data setup, one program pulse per
address is applied to the program input. A program loop is
a full pass through all addresses. Total programming timel
address, TPtotal = N X tPHPL ;;;. 100 ms. The required
number of program loops (N) is a function of the program
pulse width (tPHPL) where: 0.1 ms" tpHPL " 1.0 ms;
correspondingly, N is: 100 " N " 1000. There must be
N successive loops through all 2048 addresses. It is not
permitted to apply more than one program pulse in
succession to the same address (i.e., N program pulses to
an address and then change to the next address to be
programmed). At the end of a program sequence the
Program Enable (E) falling edge transition must occur
before the first address transition, when changing from
a PROGRAM to a READ cycle. The program pin should
be pulled down to V I LP with an active device, because
this pin sources a small amount of current (lIPL) when
(E) is at VIHW (12 V) and the program pulse is at VILP.

= 100 ms

= 500.

0.2 ms

One program loop consists of words 0 to 2047.
2. Words 0 to 200 and 300 to 700 are to be programmed. All other bits are "don't care". The program
pulse width is 0.5 ms. The minimum number of program
loops, N = 100/0.5 = 200. One program loop consists of
words 0 to 2047. The data entered into the "don't care"
bits should be ali 1s.
3. Same requirements as example 2, but the EPROM is
now to be updated to include data for words 850 to 880.
The minimum number of program loops is the same as in
the previous example, N = 200. One program loop consists
of words 0 to 2047. The data entered into the "don't
care" bits should be ali 1s. Addresses 0 to 200 and
300 to .700 must be reprogrammed with their original
data pattern.

ERASING INSTRUCTIONS
The TMS2716127A16 can be erased by exposure to
high intensity shortwave ultraviolet light, with a wave·
length of 253711.. The recommended integrated dose (i.e.,
UV·intensity X exposure time) is 12.5 Ws/cm 2. As an
example, using the "Model 30·000" UV·Eraser (Turner
Designs, Mountain View, CA 94043) the ERASE·time is
30 minutes. The lamps should be used without shortwave
filters and the TMS2716/27A 16 should be positioned
about one inch. away from the UV·tubes.

2-119

®

MCM68708
MCM68A708

MOTOROLA

1024 X

a ERASABLE

MOS

PROM

The MCM6B70B/6BA708 is a 8192-bit Erasable and Electrically
Aeprogrammable PAOM designed for system debug usage and
similar applications requiring nonvolatile memory that could be
reprogrammed periodically. The transparent window on the package
allows the memory content to be erased with ultraviolet light.
Pin-far-pin mask-programmable AOMs are available for large volume
production runs of systems initially using the MCM6870B/68A708.
•

IN-CHANNEL, SILICON-GATE)

1024 X a-BIT
UV ERASABLE PROM

Organized as 1024 Bytes of 8 Bits

•

Fully Static Operation

•

Standard Power Supplies of + 12 V, +5 V and - 5 V

•

Maximum Access Time ~ 300 ns 450 ns -

MCM68A708
MCM6870B

•

Low Power Dissipation

•

Chip-Select Input for Memory Expansion

•

TTL Compatible

• Three-State Outputs
•
•
•

PIN ASSIGNMENT

Pin Equivalent to the 2708

A7[~~VCC

Pin-for-Pin Compatible to MCM6530B, MCM6830B or 2308
Mask-Programmable A OMs
Bus Compatible to the M6800 Family

PIN CONNECTION OURING READ OR PROGRAM
Mode

12

Read

D out

Program

Din

18

19

VSS

VSS

VDD

VSS

Pulsed

VDD

20

21

24

VIL

VBB

Vee

VIHW

VBB

Vec

23 ~A8

A5[ 3

22 PA9

A4[ 4

21 PV88

A3[ 5

20

CS/Wf

A2[ 6

19

VDD

Al[ I

18

PROGR.

AO[ 8

17

D7

DO[ 9

16

D6

Dl[ 10

15

D5

D2[ 11

14

D4

VSS[ 12

13

D3

Pin Number

9-11,13-17

A6[ 2

VIHP

I

Me6BOQ
MIcroprocessor

I

MCM68708/68A708 READ ONLY
MEMORY BLOCK DIAGRAM

M6800 MICROCOMPUTER FAMILY
BLOCK OIAGRAM

--

--

MCM6B70B

~~8A708
EPROM

Memory
MatriX

----1
>-------1

Random
Acte'!is
Memory

Interface
Adapter

(1024 x 8)

I

-

i

I

Data
Buffers

~

Data Bus

-

Selection

and Control

~
Address
Bus

Interface

Adapter

Modem

I
Mema,J A"" .. "

Data
Bus

and Control

DS9439 Rl/l·79

2-120

MCM68708-MCM68A708

BLOCK DIAGRAM
Data Output
00--D7

ABSOLUTE MAXIMUM RATINGS'
Unit

Valuo

Rating
Storage Temperature

-65 to +125

°c
vc

VDD with Respect to VBB

+20 to -0.3

Vdc

VCC and VSS with Respect to VBB

+15 to -0.3

Vdc

All Input or Output Voltages with
Respect to Vee during Read
CS/WE Input with Respoct to VBB

+15 to -0.3

Vdc

+20 to -0.3

Vdc

o to

Operating Temperature

>70

during Programming

Program Input with Respect to VSS

+35 to -0.3

Vdc

1.8

Watts

Power Dissipation

Not.l:
Permanent device damage may occur if ABSOLUTE MAXIMUM
RATINGS sre exceeded. Functional operation should be restricted
to RECOMMENDED OPERATING CONDITIONS. Exposure to
higher than recommended voltages for . extended periods of time
could affect device reliabilitv.

DC READ OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)
RECOMMENDED DC READ OPERATING CONDITIONS
Parameter

Symbol

Min

Nom

Max

Unit

VCC

4.75

5.0

5.25

Vdc

VDD

11.4

12

12.6

Vdc

-5.25

-5.0

-4.75

Vdc

Input High Voltage

VBB.
VIH

VSS +2.0

Vdc

Input Low Voltage

VIL

VSS -0.3

-

VCC
VSS +0.8

Symbol

Min

Tvp

Mox

Unit

lin

-

1

-

1

10
10

Supply Voltage

Vdc

READ OPERATION DC CHARACTERISTICS
Charaeteristic

Condition

Address and CS Input Sink Current

Vin· 5.25 V or Vin - VIL

Output Leakage Current

V out • 5.25 V, CS/WE· 5 V

ILO

Worst-Case Supply Currents

100

All Inputs High

ICC

CS/WE· 5.0 V, TA· OOC

IBB

IOL ·1.6 mA

VOL

-

IOH· -100 "A

VOH

VSS +2.4

VOO Supply Current
VCC Supplv Current
VBB Supply Current
Output Low Voltage

j
J

(Note 2)

I

Output High Voltage

Power Dissipation

(Note 2)

TA·700 C

Po

-

50
6

65
10

30

45

-

VSS +0.4

-

800

-

"A
"A
mA
mA
mA
V
V
mW

Not. 2:
The total power dissipation is specified at 800 mW. It is not calculable by summing the various currents 1100. 'cc. and 'se) multiplied by
their respective voltages. since current paths exist between the various power supplies and VSS. The 100. ICC. and 'ee currents should be
used to determine power supply capacity only.
Vss must be applied prior to Vec and VOO. VBS must aiso be the last power supply switched off.

2-121

MCM68708-MCM68A708

AC READ OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)
(All timing with tr = tf = 20 ns, Load per Note 3)
MCM68A708

Characteristic

Min

Typ

Max

Min

Typ

Max

Unit

tAO

-

220

300

-

280

450

-

60

120

-

60

120

-

120

-

120

ns
n.
n.
n.

Address to Output Delay
Chip

Selec~

to Output Delay

Data Hold from Address
Data Hold from Deselection

MCM68708

Symbol

'CO
tDHA

10

.tDHD

10

10
10

CAPACITANCE (periodicaliV sampled ,ather than 100% tested)

Charecteristic
Input Capacitanc.e
(f

Condition
Vin

=0

= 25°C

V, TA

Symbol

Typ

Max

Unit

Cin

4.0

6.0

pF

Cout

8.0

12

pF

= 1.0 MHz)

Output Capacitance
(f = 1.0 MHz)

V out

=0

V, TA

= 25°C

Noto 3:
Output Load = 1 TTL Gate and CL = 100 pF (Includes Jig Capacitance)

Timing Measurement Reference Levels:
.

Inputs:

0.8 V and 2.8 V

Outputs: 0.8 V and 2.4 V

AC TEST LOAD

-M--"

Test Point o--<~-.....
100 pF • ;::~

24 k

MMD6150
or Equiv

MM07000
or Equiv

• Includes Jig Capacitance

READ OPERATION TIMING DIAGRAM

Address

2-122

MCM68708-MCM68A708

DC PROGRAMMING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted.)
RECOMMENDED PROGRAMMING OPERATING CONDITIONS
Paramlter
Supply Voltage

Unit

Symbol

Min

Nom

Max

VCC

4.75

5.0

5.25

Vde

VDD

11.4

12

12.6

Vde

VSS

-5.25

-5.0

-4.75

Vde

Input High Voltage for All Addresses and Data

VIH

3.0

-

VCC + 1.0

Vde

Input Low Voltage (except Program)

VIL

0.65

Vde

VIHW

VSS
11,4

12

12.6

Vde

Program Pulle Input High Voltage (Note 4)

VIHP

25

-

27

Vde

Program Pulse Input Low Voltage (Noie 5)

VILP

VSS

-

1.0

Vde

Symbol

Typ

Max

Unit

-

10

"Ade

3.0

mAde

20

mAde

50

65

mAde

CSIWE Input High Voltage

(Note 4)

NoM 4: Referenced to VSS.
Noto 6: VIHP - VILP = 25 V min.

PROGRAMMING OPERATION DC CHARACTERISTICS
Charlcteriltic
Program Pulse Source Current

IIPL

Program Pulse Sink Current

IIPH

Min
-

Worst-Case Supply Currents

100

-

VCC Supply Current

All Inputs High

ICC

-

6

10

mAde

Vas SuPPly current

CS/WE = 5 V. TA

las

-

30

45

mAde

Condition

Addres. and CSIWE Input Sink Current

VDD Supply Current

Vin = 5.25 V

ILl

=.Ooc

AC PROGRAMMING OPE~ATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherwise noted.)
Symbol

Min

Max

Unit

Address Setup Time

Characteristic

tAS

10

-

CSIWE Setup Time

-

".

tcss

10

Data Setup Time

tDS

10

".
".

",
".

Address Hold Time

tAH

1.0

-

CSIWE Hold Time

tCH

0.5

-

Dota Hold Time

tDH

1.0

Chip Deselect to Ouptut Float Delay

tDF

0

120

tDPR

-

10

",

Program to Read Delay

".
n.

Program Pulse Width

tpw

0.1

1.0

m.

,.rogram Pulse Rise Time

tPR

0.6

2.0

Program Pulse Fall Time

".

tpF

0.5

2.0

2-123

".

MCM68708·MCM68A708

PROGRAMMING OPERATION TIMING DIAGRAM

1 - - - - - - - - - - - - - 1 of N Program Loops

-------------<--!->--

READ-(After N
Program

Loops)
CS/WE

tCH
NoteS

VIH

Address 0

Address 0

VIL
tAH~

'AS

tAO
(Read)

VIH

Data Out
Valid

Data
VIL
'DH

'OS
'PR

'PW

'OH'PF

'OPR

VIHP

Program

Pulse

VIL------....J

Note 6: The CS/WE transistion must occur after the Program Pulse transition and before the Address Transistion.

2-124

MCM68708·MCM68A708

PROGRAMMING INSTRUCTIONS
After the completion of an ERASE operation, every
.bit in the device is in the "I" state (represented by
Output High). Data are entered by programming zeros
(Output Low) into the required bits. The words are
addressed the same way as in the READ operation. A
programmed "0" can only be changed to a "I i, by ultra·
violet light erasure.
To set the memory up for programming mode, the
CS/WE input (Pin 20) should be raised to +12 V. Pro·
gramming data is entered in 8·bit words through the
data output terminals (DO to 07).
Logic levels for the data lines and addresses and the
supply voltages (Vee, VOO, Vaa) are the same as for the
READ operation.
After address and data setup on8' program pulse per
address is applied to the program input (Pin 18). A pro·
gram loop is a full pass through all addresses. Total
programming time, Tptotal = N x tpw .. 100 ms. The
required number of program loops (N) is a function of the
program pulse width (tpwi. where:· 0.1 ms .;; tpw .;;
1.0ms; correspondingly N is: 100';; N .;; 1000., There
must be N successive loops through all 1024 addresses. It
is not permitted to apply more than one program pulse in
succession to the same address (i.e., N program pulses to
an address and then change to the next address to be pro·
grammed). At the end of a program sequence the eSIWE
falling edge transition must occur before the first address
transition, when changing from a PROGRAM to a READ
cycle. The program pin (Pin 18) should be pulled down
to V ILP with an active device, becaus~his pin sources a
small amount of current (IIPL) when eSIWE is at VIHW
, (12 V) and the program pulse is at V I LP'
EXAMPLES FOR PROGRAMMING

Always use the TPtotal = N x tPW" 100 ms relationship.

1. All 8092 bits should be programmed with a 0.2 ms
program pulse width.
The minimum number of program loops:
N = TPtotal
tpw

= 100 ms = 500.
0.2 ms

One program loop

consists of words 0 to 1023.
2. Words 0 to 200 and 300 to 700 are to be pro·
grammed. All other bits are "don't care". The
program pulse width is 0.5 ms. The minimum
100
number of program loops, N = Q.5 = 200. One
program loop consists of words 0 to 1023. The
data entered into the "don't care" bits should be
all 1s.
3. Same requirements as example 2, but the EPROM is
now to be updated to include data for words 850
to 880. The minimum number of program loops is
the same as in the previous example, N = 200. One
program loop consists of words 0 to 1023. The data
entered into the "don't care" bits should be all 1s.
Addresses 0 to 200 and 300 to 700 must be reo
programmed with their original data pattern.

ERASING INSTRUCTIONS
The MCM68708/68A708 can be erased by exposure to
high intensity shortwave ultraviolet light, with a wave·
length of 2537 A. The recommended integrated dose (i.e.,
UV·intensity x exposure time) is 12.5 Ws/cm 2. As an
example, using the "Model 30·000" UV·Eraser (Turner
Designs, Mountain View, CA 94043) the ERASE·time is
30 minutes. The lamps should be used without shortwave
filters and the MCM68708/68A 708 should be positioned
about one inch away from the UV·tubes.

2-125

®

MCM68732
MCM68L732

MOTOROLA

4096 x 80BIT UV ERASABLE PROM
The MCM68732/68L732 is a 32,768-bit Erasable and Electrically
Reprogrammable PROM designed for system debug usage and similar
applications requiring nonvolatile memory that could be reprogrammed
periodically, or for replacing 32K ROMs for fast turnaround time. The
transparent window on the package allows the memory content to be
erased with ultraviolet light.
For ease of use, the device operates from a single power supply and
has a static power-down mode. Pin-for-pin compatible mask programmable ROMs are available for large volume production runs of systems
initially using the MCM68732/68L732.

MOS
IN-CHANNEL. SILICON-GATE)

4096xB-BIT
UV ERASABLE PROGRAMMABLE
READ ONLY MEMORY

• Single + 5 V Power Supply
• Automatic Power-down Mode (Standby) with Chip Enable
•
•
•
•

Organized as 4096 Bytes of 8 Bits
Low Power Dissipation
Fully TTL Compatible
Maximum AcCess Time = 450 ns MCM68732
350 ns MCM68732-35

• Standard 24-Pln DIP for EPROM Upgradability
• Pin Compatible to MCM68A332 Mask Programmable ROM
• AR Selects the Operational 32K Portion of the Die
MCM68732-1 AR = 1 = HIGH
MCM68732-0 AR = 0= LOW
• Pin Compatible With the MCM2532 32K EPROM in the Read Mode

L SUFFIX SIOEBRAZE CERAMIC PACKAGE
ALSO AVAILABLE - CASE 718

• Low Power Version
MCM68L732 Active 60 mA Maximum
Standby 15 mA Maximum
MCM68L732-35 Active 100 mA Maximum
Standby 25 mA Maximum

PIN ASSIGNMENT

A7

MOTOROLA'S PIN-COMPATIBLE EPROM FAMILY
12K

11K

....

VCC

A6

AS

A5

A9

A4

AA

A3

ENpp

A2

Al0

AI

Al

All

AI

AO

DQ7

000

006

'.

MC_784

001

005

002

004

VSS

003

MOTOROLA'S PIN-COMPATIBLE 110M FAMILY

.......,
....
••

14K

12K

'Pin Names

•

eM

•

GO

Me_liE

A .... Address
AA .... Address Aeference

DO .... Data Input/Output
ENpp .
. Chip Enable/Program
• New industry standard

no~er}cI8ture

INDUSTRY STANDARD PINOUTS

059814 Rl/10-80

2-126

MCM68732-MCM68L732

ABSOLUTE MAXIMUM RATINGS (11
Rating
Temperature Under Bias

Value

Unit

-10 to +80

·C

o to

Operating Temperature Range

+ 70

·C

-65to +125

·C

All Input or Output Voltages with Respect to VSS

+6to-0.3

Vdc

Vpp Supply Voltage with Respect to VSS

+28 to -0.3

Vdc

Storage Temperature

This device contains cirCUitry to protect the inputs
against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage
higher than maximum rated voltages to this highimpedance cirt;uit.

NOTE- Permanent device damage may occur If ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages tor extended
periods of time could affec.t device reliability

MODE SELECTION
Pin Number
&-11,
13-17,
DO

Mode
Read

12

20

24

VSS

ElVpp

VCC

Data out

VSS

VIL

VCC

High Z

VSS

VIH

VCC

Standby

High Z

VSS

Data in

VSS

VIH
usea
VILP to VIHP

VCC

Program

Output Disable

VCC _

VCC

BLOCK DIAGRAM
Data Input/Output

VSS_

DOO-D07

~
FIGURE 1 - AC TEST LOAD

ElVpp

5.0 V

~M{

Test Point o--~.---'-.-~.I--~

Y Gating
·100pF

Memory
Matrix

A5-Al1 { /
AR

CAPACITANCE If ~ 1.0 MHz. T

r-------Input Capacitance (V ln =

a VI

·Includes Jig Capacitance

~ 25°e. peflodlcally sampled rather ttlan 100% lested.)

___,___

Typ Ma. Unit
-+-"1==+'-!!'+==--+-"=-1

Symbol
C~~~~s_ti_c_________________._ _ _
E::;x::..ce"'p:_t..;t,,/::;V."-P."-P_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _-+ Crn

Input Capacitance E/Vpp_________ ._. ____ _
Output Cap<3citance (Vout =

MMD6t50
or EQuiv.
MMD7000
or EQuiv.

a VI

4.0

6.0

pF

100
e ,n
60
pF
------- ---- ----- --- .- --.------+---:--"'---+-::-::--+--,-:---+'----1
Cout

Capacitance measured with a Boonton Meter or effective (;apacltance calculated from

2-127

th~

equatIOn

e~

tt,,,It.V

8.0

12

pF

MCM68732-MCM68L732

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise nO'ed)

RECOMMENDED DC OPERATIN9 CONDITIONS
Parameter

Symbol

Min

Nom

Ma.

VCC

4.75
4.5

5.0
5.0

5.25
5.5

V

Input High Voltage

VIH

2.0

VCC+ 1.0

V

Input Low Voltage

VIL

-0.1

-

0.8

V

MCM68L732/MCM68732
MCM68L732-35/MCM68732-35

Supply Voltage

Unit

RECOMMENDED DC OPERATING CHARACTERISTICS
Characteristic

Condition

--

Ma.

Min

Typ

Ma.

lin

-

10

ILO

10

-

10

~A

ElVpp~O.4

IEL
IEH~ IPL

-

-

10

Vout-5.25 V

-

100

-

-

100

/loA

400

-

25

-

/loA
rnA

25

0.45

-

-

2.4

-

400

-

ElVpp~

V

2.4

VCC Supply Current (Standbyl MCM68732

ElVpp- VIH

ICCl

VCC Supply Current IStandbyl MCM68732-35

ElVpp ~ VIH

VCC Supply Current IActive! MCM6873210utputs Open!

ElVpp- V!L

ICCH- ICC2
-

VCC Supply Current (Active! MCM68732-35 (Outputs Openl

rlVpp~VIL

ICC2

-

Output Low Voltage

lOL~2.1

VOL

-

VOH

2.4

lOH~

Output High Voltage

Units

Typ

Vin~5.25

ElVpp Input Sink Current

MCM68L732

MCM68732

Min

Address Input Sink Current
Output Leakage Current

Symbol

rnA

-400 p.A

-

120
160

15

~A

25
60

mA

100

rnA

0.45

V

-

V

rnA

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)
Input Pulse Levels ..
Input Rise and Fall Times.
Input Timing Levels ..

.................. 0.8 Volt and 2.2 Volts
. .................................. 20ns
.1.0 Volt and 2 Volts

Output Timing Levels ..
Output Load.

Characteristic
Address Valid to Output Valid

Condition

Symbol

E~VIL

tAVOV

-

E to Output Valid

Eto HI-Z Output
Data Hold from Address

-------

. .... 0.8 Volt and 2 Volts
. See Figure 1

E

=

VIL

MCM6873235

MCM68732
Ma.

350

Min
-

0

100

0

-

Ma.

tELOV

Min
-

tEHOZ
tAXDX

350

READ MODE TIMING DIAGRAM

Address Valid

A (Addressl

ElVpp

a (Output!

High Z
---....;;..----{

High Z
Data Valid

2-128

Units

450

ns

450

ns

0

100

ns

0

-

ns

MCM68732-MCM68L732

DC PROGRAMMING CONDITIONS AND CHARACTERISTICS
IT A = 25 i,5°CI
RECOMMENDED PROGRAMMING OPERATING CONDITIONS

Parameter

Symbol

Min

Nom

Max

Unit

Supply Voltage

VCC

4.75

5,0

5,25

V

Input High Voltage for All Addresses and Data

VIH

2,2

Input Low Voltage for All Addresses and Data

VIL

-0,1

-

VCC ,.. 1
0,8

V

V
V

Program Pulse Input High Voltage

VIHP

24

25

Program Pulse Input Low Voltage

VILP

2,0

VCC

26
6,0

V

Symbol

Min

Typ

Max

Unit

III

-

10

p.A

IPH

-

30
400

mA

-

-

-

-

160

mA

PROGRAMMING OPERATION DC CHARACTERISTICS
Condition

Characteristic
Address Input Sink Current
Vpp Program Pulse Supply Current IVpp
Vpp Supply Current IVpp

Y,n

=

= 5,25 V

"

-

25 V ± 1 VI

= 2.4 VI

-

VCC Supply Current IVpp = 5,0 VI

IPL

=
ICC

IEH

p.A

AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS
Symbol

Min

Max

Address Setup Time

Cna ..cterillic

tAVPH

2,0

Data Setup Time

tDVPH

2,0

Chip Enable to Valid Data

tELOV

450

Chip Disable to Data In

tEHDV

2.0

-

Unit

p.s

Program Pulse Width

tPHPL
tPR

1.9

2.1

ms

,Program Pulse Rise Time

0.5

2,0

~s

Program Pulse Fall Time

tpF

0.5

2,0

p's

p.S
p.S

ns

Cumulative Programming Time Per Word12
ms
tcp
50
Block mode programming must be used. Block mode programming IS defined as one program pulse applied to each of the 4096 address locations in sequence. Multiple blocks are used to accumulate programming time Itepl.

PROGRAMMING OPERATION TIMING DIAGRAM

A (Addressl

D or 0 IDatal

ElVpp

2-129

MCM68732-MCM68L732

PROGRAMMING INSTRUCTIONS

READ OPERATION
After access time, data is valid at the outputs in the Read
mode. A single input (ElVppl enables the-.9utputs and puts
the chip in active or standby mode. With ElVpp = "0" the
outputs are enabled and the chip is in active mode; with
ElVpp = "'" the outputs are three-stated and the chip is in
standby mode. During standby mode, the power dissipation
is reduced.
Multiple MCM68732s may share a common data bus with
like outputs OR-tied together. In this configuration the
ElVpp input should be high on all unselected MCM68732s to
prevent data contention.

After the completion of an ERASE operation, every bit in
the device is in the "'" state (represented by Output Highl.
Data are entered by programming zeros (Output Lowl into
the required bits. The words are addressed the same way as
in the READ operation. A programmed "0" can only be
changed to a "'" by ultraviolet light erasure.
To set the memory up for Program Mode, the ElVpp input
I Pin 201 should be between + 2.0 and + 6.0 V, which will
three-state the outputs and allow data to be setup on the DO
terminals. The V CC voltage is the same as for the Read
operation. Only "O's" will be programmed when "O's" and
""s" are entered in the a-bit data word.
After address and data setup, 25-volt programming pulse
(VIH to VIHPI is applied to the ElVpp input. A program
pulse is applied to each address location to be programmed.
The maximum program pulse width is 2 ms and the maximum program pulse amplitude is 26 V.
Multiple MCM68732s may be programmed in parallel by
connecting like inputs and applying the program pulse to the
E/Vpp inputs. Different data may be programmed into multiple MCM68732s connected in parallel by selectively applying
the programming pulse only to the MCM68732s to be programmed.

ERASING INSTRUCTIONS
The M CM68732 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of 2537
angstroms. The recommended integrated dose (i.e., UVintensity X exposure timel is '5 Ws/cm 2 As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA 940431 the ERASE-time is 36 minutes. The
lamps should be used without shortwave filters and the
MCM68732 should be positioned about one inch away from
the UV-tubes.

TIMING PARAMETER ABBREVIATIONS

TIMING LIMITS
t X X X X

Slgn.al name. from. which Interval is defined ---...J
transition direcllon for first signal
Signal name to which interval is defined
tranSition direction for second signal

The table of timing values shows either a minimum or a
maximum limit for each parameter. Input requirements are
specified from the external system point of view. Thus, address setup time is shown as a minimum since the system
must supply at least that much time (even though most
devices do not require it). On the other hand, responses from
the memory are specified from the device point of view.
Thus, the access time is shown as a maximum since the
device never provides data later than that time.

III

The transition definitions used in this data sheet are'
H = transition to high
L = transition to low
V = transition to valid
X = transition to invalid or don't care
Z = trans Ilion to off (high impedancel

Waveform

WAVEFORMS
Input

Output

Sym\>Ol
Valid

Will Be
Valid

. Change

Will Change

Must Be

~

From H to L

From H to L

~

Change
From L to H

Will Change
From L to H

Don't Care:

Changing:

llllm

Any Change

State

Permitted

Unknown

==>-

High
Impedance

2-130

®

MCM68764
MCM68L764

MOTOROLA

MOS

8192 x 8-BIT UV ERASABLE PROM

IN-CHANNEL, SILICON-GATE)

8192x8-BIT
UV ERASABLE
PROGRAMMABLE READ
ONLY MEMORY

The MCM68764/68L764 is a 65,536-bit Erasable and Electrically
Reprogrammable PROM designed for system debug usage and similar
applications requiring nonvolatile memory that could be reprogrammed
periodically, or for replacing 64K ROMs for fast turnaround time. The
transparent window on the package allows the memory content to be
erased with ultraviolet light.
For ease of use, the device operates from a single power supply and
has a static power-down mode. Pin· for-pin mask programmable ROMs
are available for large volume production runs of systems initially using
the MCM68764/68L764.
Single + 5 V Power Supply
Automatic Power-down Mode IStandby) with Chip Enable
Organized as 8192 Bytes of 8 Bits
Low Power Dissipation
Fully TTL Compatible
Maximum Access Time ~ 450 ns MCM68764
350 ns MCM68764-35
• Standard 24-Pin DIP for EPROM Upgradability
• Pin Compatible to MCM68A364 Mask Programmable ROM
•
•
•
•
•
•

C SUFFIX
FAIT-SEAL CEAAMIC PACKAGE
CASE 623A-Q2

24

L SUFFIX CERAMIC PACKAGE
ALSO AVAILABLE - CASE 716-07

• Low Power Version
MCM68L764 Active 60 mA Maximum
Standby 15 mA Maximum
MCM68L764-35 Active 100 mA Maximum
Standby 25 mA Maximum

PIN ASSIGNMENT

Vee
A8
A9

MOTOROLA'S PIN-COMPATIBLE EPROM FAMILY

A12

32K

EIVpp

AIO
Al1
DQ7

006
005
004
MOTOROLA'S PIN-COMPATlBLE ROM FAMILY
32K

Vss

11K

,
,"

.

...
eM

MCM8lA311E

·Pin Names
A .
DO

ElVpp .
INDUSTRY STANDARD PINOUTS .

DQ3

. Address
. Data Input/Output

~/Program

• New Industry standard nomenclature

DS98t5 Rl/9-al

2-131

MCM68764·MCM68L764

ABSOLUTE MAXIMUM RATINGS ISee Notel
Rlting

Vllul

Temperature Under Bias

-10to +60

o to

Operating Temperature Range

Unit
·C
·C

+ 70

-65 to +125

·C

All Input or Output Voltages with Respect to VSS

+610-0.3

VPP Supply Voltage with Respect to VSS

+2810 -0.3

Vdc
Vdc

Storage Temperature

This devIce contains circuitry to protect the inputs

against damage due to high static voltages or electnc fields; however .. it is adVised that normal precautions be taken to avoid application of any voltage
higher than maximum rated voltages to this highimpedance circuit,

NOTE: Permanenl device damage may occur If ABSOLUTE MAXIMUM RA liNGS are exceeded. Functional operation should be restncted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended
periods of time could affect device reliability,

MODE SELECTION
I

Pin Number

~",

ElVpp

24
Vee

Read

Data out

VSS

VIL

VCC

Output Disable

High-Z

VSS

VIH

Vce

Standby

High-Z

VSS

Vee

Program

Data in

VSS

VIH
Pulsed
VILP to VIHP

13-17,

Mode

00

Vce _

..-ss_

12
VSS

20

Vee

BLOCK DIAGRAM
Data Input/Output DOO-D07

/~
FIGURE 1 - AC TEST LOAD

ElVpp

5.0 V

Test Point 0--~-~-"1----1

Y Gating

'100 pF

Memory
Matrix

'Includes Jig Capacitance

2-132

MMD6150
or Equiv.
MMD7000
or Equiv.

~M68764·MCM68L764

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature Tange unless otherwise noted)
" RECOMMENDED DC OPERATING CONDITIONS
Symbol

Peremeter

Input High Voltage

VIH

Min
4.75
4"5
2.0

Input Low Voltage

VIL

-0.1

MCM68L7641 MCM68764
MCM68764-35/MCM68L764-35

Supply Voltage

RECOMMENDED DC OPERATING CHARACTERISTICS

---

VCC

---"-_.
Condition

Characteristic

-Address Input Sink Current

-"

Vin~5.25

V

Vout -5.25 V

Output Leakage Current

tlVpp Input Sink Current

Symbol
lin

-

ElVpp=O.4

IEL
IEH= IpL

VCC Supply Current IStandbyl MCM68764

ElVpp- VIH

ICCI

VCC Supply Current IStandbyl MCM68764-35

ElVpp- VIH

ICCI

VCC Supply Current IActivel MCM68764 IOutputs Open}

ElVpp=VIL

ICC2

VCC Supply Current IActive} MCM68764-35 IOutputs Open}

ElVpp=VIL

ICC2

Output Low Voltage
Output High Voltage

IOL=2"1 mA

VOL
VOH

IOH= -4OO,.A

Me.

Unit

5.25
5.5

Vdc

-

VCC + 1.0

Vdc

-

-

2.4

-

Vdc

. 0"8

MCM88784
Min Typ Me.

ILO

ElVpp=2.4

Nom
5.0
5.0

10
10
100
400
25
25
120

leo

MCM88L764
Unite
Min Typ Me.

-

0.45

-

-

2.4

-

-

-

10
10
100

"A
,.A
,.A

400 , ,.A
15
mA
mA
25
eo mA
100

mA

-

0.45

V

-

-

V

Symbol

Typ

Ma.

Cin

4.0

6.0
100
12

Unit
pF
pF
pF

CAPACITANCE If = 1 0 MHz TA - 25'C periodically sampled rather than 100% tested I

Characteristic
Input Capacitance IV on = 0 VI Except ElVpp
InputCapacotance ElVpp
Output Capacitance IVout=O VI
Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: C

=

Cin

eo

Cout

8.0

14t
I1V·

READ MODE TIMING DIAGRAM

Address Valid

A IAddressl

ElVpp
tEHOZ

tAvov/tELOV

Hogh-Z
o IOutputl---------<

Hogh-Z
Data Valid

2-133

MCM68764-MCM68L764

AC OPERATING CONDITIONS AND CHARACTERISTICS
. (Full operating voltage and temperature range unless otherwise notedl

Input Pulse Levels .......................... 0.8 Volt and 2.2 Volts
.. ............................. 20 ns
Input Rise and Fall Times..
Input Timing Levels.
. ................. 1.0 and 2 Volts

Output Timing Levels
Output Load.

Characteristic

Condition

Address Valid to Output Valid

E = VIL

Symbol

MCM68784MCM1111784
36
UniI8
Min Ma. Min Me.

-

tELQV

-

tEHOZ

E - VIL

tAXDX

E to Output Valid
E to Hi-Z Output
Data Hold from Address

........ 0.8 Volt and 2 Volts.
.. ...... See Figure 1

tAVOV

-

450

ns

450

ns

0

350
350
100

0

100

ns

0

-

0

-

ns

DC PROGRAMMING CONDITIONS AND CHARACTERISTICS
lTA=25± 5°CI

RECOMMENDED PROGRAMMING OPERATING CONDITIONS
Symbol

Min

Nom

Ma.

Unit

Supply Voitage

Vee

4.75

5.0

5.25

V

Input High Voltage for All Addresses and Data

VIH

2.2

-

V

Input Low Voltage for All Addresses and Data

Vil

-0.1

-

VCC + 1
0.8

Program Pulse Input High Voltage

VIHP

24

25

26

V

Program Pulse Input Low Voltage

VILP

2.0

VCC

6.0

V

Symbol

Min

Typ

MI.

Unit

III

-

-

10

,.A
mA

PerImeter

PROGRAMMING OPERATION DC CHARACTERISTICS
Cherect.-IeIIc

Condltlon

Address Input Sink Current

Yin

z

5.25 V

-

Vpp Program Pulse Supply Currant IVpp - 25 V ± 1 VI
Vpp Supply Current IVpp - 2.4 VI

-

VCC Supply Currant IVpp-6.0 VI

IPH
IPL - IEH
ICC

-

V

30
400

,.A
mA

160

AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

S'fII1bo1

Min

Ma.

2.0

-

Deta Setup Time

tAVPH
tDVPH

2.0

-

,.S

Chip Enable to Valid Data

tELOV

-

ns

Chip Disable to Data In

tEHDV
tpHPL
tpA

450
2.0

-

1.9

2.1

I's
ms

0.5

2.0

,.s

0.5

2.0

~

Ch"lctlrtlllc
Address Setup Time

Program Pulse Width
Program Pulse Rise Time

Program Pulse Fall Time

tPF
tc:p

Unit

,.,

Cumulative Programming Time Per Word·
12
50
m•
• Block mode programming must be used. Block mode programming IS defined as one program pulse applied to each of the 8,192 address locations In sequence. Multiple blocks are used to accumulate programming time hCp).

2-134

MCM68764-MCM68L764

PROGRAMMING OPERATION TIMING DIAGRAM

Address 0

A (Address)

o or

Data Out

IData)

Q

ENpp

tELQV
tDVPH

PROGRAMMING INSTRUCTIONS

READ OPERATION

After the completion of an ERASE operation, every bit in
the device is in the "'" state (represented by Output High!.
Data are entered by programming zeros (Output Low! into
the required bits. The words are addressed the same way as
in the READ operation. A programmed "0" can only be
changed to a "'" by ultraviolet light erasure.
To set the memory up for Program Mode, the ElVpp input
(Pin 2O! should be between +2.0 and +6.0 V, which will
three-state the outputs and allow data to be setup on the DO
terminals. The V CC voltage is the same as for the Read
operation. Only "O's" will be programmed when "O's" and
""s" are entered in the 8-bit data word.
After ,address and data setup, 25-volt programming pulse
(VIH to VIHP) is applied to the ElVpp input. The program
pulse width is 2 ms and the maximum program pulse
amplitude is 26 V.
Multiple MCM68764s may be programmed in parallel by
connecting like inputs and applying the program pulse to the
ElVpp inputs. Different data may be programmed into multiple MCM68764s connected in parallel by selectively applying
the programming pulse only to the MCM68764s to be programmed.
.

'2-135

After access time, data is valid at the outputs in the Read
mode. A single input (ElVpp! enables the outputs and puts
the chip in active or standby mode. With Eivpp= "0" the
outputs are enabled and the chip is in active mode; with
ElVpp= "'" the outputs are three-stated and the chip is in
standby mode. During standby mode, the power dissipation
is reduced.
Multiple MCM68764s may share a common data bus with
like outputs OR-tied together. In this configuration, only one
ElVpp input should be low and no other device outputs
should be active on the same bus. This will prevent data contention on the bus.
ERASING INSTRUCTIONS

The M CM68764 can be erased by exposure to high intenSIty shortwave ultraviolet light, with a wavelength of 2537
angstroms. The recommended integrated dose (i.e., UVintensity X exposure time! is '5 Ws/cm 2 As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA 94043! the ERASE-time is 36 minutes. The
lamps should be used without shortwave filters and the
MCM68764 should be pOSitioned about one inch away from
the UV-tubes.

®

MOTOROLA

MCM68766

Advance InforIDation

MOS

8192 x 8-BIT UV ERASABLE PROM

IN-CHANNEL, SILICON-GA TEl

The MC68766 is a 66,536-bit Erasable and Electrically Reprogrammabie PROM designed for system debug usage and similar applications
requiring nonvolatile memory that could be reprogrammed periodically,
or for replacing 64K ROMs for fast turnaround time. The transparent
window on the package allows the memory content to be erased with
ultraviolet light.
For ease of use, the device operates from a single power supply that
has an output enable control and is pin-for-pin compatible with the
MCM68366 mask programmable ROMs, which are available for large
volume production runs of systems initially using the MCM68766.

8192 x 8-BIT
UV ERASABLE
PROGRAMMABLE READ ONLY
MEMORY

• Single + 5 V Power Supply
• Organized as 8192 8ytes of 8 Bits
• Fully TTL Compatible
• Maximum Access Time =450 ns MCM68766
350 ns MCM68766-35
• Standard 24-Pin DIP for EPROM Upgradability
• Pin Compatible to MCM68366 Mask Programmable ROM
• Power Dissipation - 160 mA Maximum

FAIT-SEAL CERAMIC PACKAGE
CASE 623A02
L SUFFIX CERAMIC PACKAGE
ALSO AVAILABLE - CASE 71~

PIN ASSIGNMENT

Vce
MOTOROLA'S PIN-COMPATIBLE EPROM FAMILY

AS

A9
AI2

GIVpp
AIO

All

DOl
006
DOl

005

Vss

003

004
MOTOROLA'S PIN-COMPATIBLE ROM FAMILY
32K

11K

·Pin Names
A
DO

ITlVpp

Address

...... Data Input/Output
Output Enable/ Program

• New tndustry standard nomenclature

INDUSTRY STANDARD PINOUTS

ADI843/9-80

2-136

.MCM68766

ABSOLUTE MAXIMUM RATINGS
Rating
Temperature Under Bias

Value

Unit

-1010 -I:1l)

·e

o to

+ 70
-6610 +125

·e
·e

Allinpul or Output Voltages with Respect to VSS

+6 to -0.3

Vdc

Vpp Supply Vollage with Respecl to VSS

+2810 -0.3

Vdc

Operating Temperature Range
Storage Temperature

This device contains circuitry to protect the inputs
against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage
higher than maximum rsted voltages to this highimpedance circuit.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended
penods of time could affect device reliability.

MODE SELECTION
Pin Number
9-11,
13-17,
DO

Mode
.,

Read
Output Disable
Program

12

20

24

VSS

~/VPP

Vee

Data Out
High-Z

Vss

VIL

Vee

VSS

Vee

Data In

VSS

VIH
Pulsed
VILP to VIHP

BLOCK DIAGRAM
Vee - - .
Vss _

Dala InputlOutput

DOO-D07

~.
FIGURE 1 - AC TEST LOAD

~lVpp

5.0 V

Test Point

o--'--""--1I1111t--+

Y Gating
°100 pF

Memory
Matrix

°lncludes Jig Capacitance

2-137

MM061!iO
or Equiv.
MMD7

MMD6150
or EQuiv

, MM07000

1 TTL Gate and CL - 30 pF

or Equiv

AC CHARACTERISTICS
Characteristic

Symbol

Min

Max

Unit

Icye

350

-

ns

tacelA)

-

350

ns

-

350

ns

150

ns

Cycle Time
Address Access Time
Row Select Access Time

t,ccIRS)

Chip Select to Outf1ut Delay

teo

TIMING DIAGRAM

..

teye
tacdA)

Address

~

I

I
RS

CS

~

2.0 V
0.8 V

~

face( RS)

2.0 V
0.8 V

Y

K
2.0 V
0.8 V

teo
2.0 V

0.8 V

.IS<

2.4 V
04 V

Data Out

~:...

Don't Car.

2-150

. Data Valid

X

X,(X

'V'

MCM667OeMCM6674

CUSTOM PROGRAMMING FOR MCM6670
as VOH; the dots left blank will be at VOL. RO is always
programmed to be blank (VoU. (Blank formats appear at
the end of this data sheet for your convenience; they are
not to be submitted to Motorola, however.)
2. Convert the characters to hexadecimal coding treat·
ing dots as ones and blanks as zeros, and enter this infor·
mation in the blocks to the right of the character font
format. The information for 04 must be a hex one or
zero, and is entered in the left block. The information for
03 thru DO is entered in the right block, with 03 the
most significant bit for the hex coding, and DO the
least significant.
3. Transfer the hexadecimal figures either to punched
cards (Figure 3) or to paper tape (Figurp 5).
4. Transmit this data to Motorola, along with the
customer name, customer part number and revision, and
an indication that the source device is the MCM6670.

By the programming of a single photomask, the cus·
tamer may specify the content of the MCM6670. En·
coding of the photomask is done with the aid of a com·
puter to provide quick, efficient implementation of the
custom bit pattern while reducing the cost of implemen·
tation.
Information for the custom memory content may be
sent to Motorola in the following forms, in order of
preference:
1. Hexadecimal coding using IBM Punch Cards (Fig,
ures 3 and 4).
2. Hexadecimal coding using ASCII Paper Tape Punch
(Figure 5).
Programming of the MCM6670 can be achieved by
using the following sequence:
,. Create the 128 characters in a 5 x 7 font using
the format shown in Figure ,. Note that information at
output 04 appears in column one, 03 in column two,
thru DO information in column five. The dots filled in
and programmed as a logic "'" will appear at the outputs

5. Information should be submitted on an organiza·
tional data form such as that shown in Figure 2.

FtGURE 1 - CHARACTER FORMAT
Character Numbe(tV.J1P/I!~gIAlPClr)
ROW SELECT
TRUTH TABLE
RS3
0
0
0
0

,,
,,

RS2

RS'

,
, ,
,, ,,
0

,0

0
0

0
0

MSB

LSB

Character NumberC@lOfII€1< IA/PrJTJ

HEX

MSB

LSB

00
I F
I 0
I 0

OUTPUT
RO
R'
R2
R3

0

A4
AS

0

R6
R7

HEX

04 03

DO

I C
I 0
I 0
I F

FIGURE 2 - FORMAT FOR PROGRAMMING GENERAL OPTIONS

ORGANIZATIONAL DATA
MCM6670 MOS READ ONLY MEMORY
Customer:
Motorola Use Only:

Company ___________________________________

Quote ________________________
Part No.
Originator ____________________
Phone No. _ _ _ _ _ _ _ _ _ _ _ _ ___
Chip·Select Options:

CS

Part No.:
Speclf. No.:

Active High

Active Low

1

o

D

D

2-151

No·Connect

D

MCM6670eMCM6674

FIGURE 3 - CARD PUNCH FORMAT

Columns
1·9
Blank
10·25 Hex coding for first character
26
Slash (I)
27·42 Hex coding for second character
Slash (I)
43
44·59 Hex coding for third character
60
Slash (I)
61· 76 Hex coding for fourth character
77·7B Blank
79·BO Card number (starting 01; thru 32)

Column lOon the first card contains either a zero or
a one to program D4 of row RO for the first character.
Column 11 contains the hex character for D3 thru DO.
Columns 12 and 13 contain the information to program
Rl. The entire first character is coded in columns 10 thru
25. Each card contains the coding for four characters;
32 cards are required to program the entire 128 characters.
The characters must be programmed in sequence from
the first character to the last in order to establish proper
addressing for the part. Figure 3 provides an illustration of
the correct format.

FIGURE 4 - EXAMPLE OF CARD PUNCH FORMAT

(First 12 Charactors of MCM6670P41

I
08000000011000000000000111110001010101010111110101010101000111101010101010008011
IrJt!""l'II"'J~I~~II~~Mn»nMn.n

• • • ~UUM • • n • • ~~UUM~"U""~~gUMBM~MHAhUQM"MVU"~nnnHn~n • • •

11111111111111111111111111111111111111111111111111111111111111111111111111111111
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2,2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 222 2 2 2
33133133331333333]]] 11131313 3 33 313333313 3 331333333313333133 3 3131113113] 3 31331131

44444444444444444444444444444444444444444444441414141414144444444444444444444444
5555555555555555555\\55555555555555555555555555555555555555555555555555555555555

111116111111111111166"'11111111111111116111116161111111611161666166666111111111
11111111111111111111 J 1 J 111111111111111111111111111111111111111111111111111111111
111111111111111111111111111111111111111111111111111111111111 i 8 8 81111111111111111
9119999999999991999919199199991999991999999999999999999999S3l9999~~ge99999999191
12)4,,".~nUOMn.".~.~nnMn.V

• LON ,- •

5' ANDARO fORM

••• ~UUM»~n.nqn04J~~UUq"~~I~':~~MS'~:

"!.

··!.~~nn~n.".N

•

FIGURE 5 - PAPER,TAPE FORMAT

Frames
Leader
Blank Tape
Allowed for customer use (M ..;;; 64)
1 to M
M + 1, M + 2
CR; LF (Carriage Return; Line Feed)
M T 3 to M + 66 First line of pattern information
(64 hex figures per line)
M +67, M +68 CR;LF
M + 69 to
Remaining 31 lines of hex figures,
M + 2114
each line ,followed by a Carriage Re·
turn and Line Feed
Blank Tape
Frames 1 to M are left to the customer for internal
identification, where M";;; 64, Any combination of alpha·
numerics may be used. This information is terminated
with a Carriage Return and Line Feed, delineating the

start of data entry, (Note that the tape cannot begin with
a CR and/or LF, or the customer identification will be
assumed to be programming data.!
• Frame M + 3 contains a zero or a one to program D4
of row RO for the first character. Frame M + 4 contains
the hex character for D3 thru DO, completing the pro·
gramming information for RO. Frames M + 5 and M + 6
contain the information to program R 1. The entire first
character is coded in Frames M + 3 thru M + 18. Four
complete characters are programmed with each line. A
total of 32 lines program all 128 characters (32 x 4).
The characters must be programmed in sequence from the
first character to the last in order to establish proper
addressing for the part.

2-152

MCM667OeMCM6674

The formats below are given for your convenience in preparing character information for MCM6670 programming. THESE
FORMATS ARE NOT TO BE USED TO TRANSMIT THE INFORMATION TO MOTOROLA. Refer to the Custom Pro·
gramming instructions for detailed procedures.
Character Number _ __
MSB

LSB

HEX

1I0oloOOO
111010000
112 010000

0 0

Character Number _ __
MSB

LSB

Character Number _ _ _ _

HEX

MSB

LSB

HEX

1160ioooo
117010000
0403
DO

MSB

0403

LSB

HEX

MSB

0403

MSB

LSB

Character Number _ __

MSB

HEX

0403

LSB

HEX

Character Num,",er _ __

MSB

0403

DO

Character Number _ _ _
MSB

Character Number _ __

DO

Character Number _ __

LSB

HEX

000
000
000
000
000
000
lieD DOD
117 00000
0403
DO

tJ 0

MSB

LSB

HEX

11000000 o
Rloo000
R200000
R300000
R400000
RS 00000
R60 DOD
117 00000
0403
DO

::B,iBBBB
115 00000

Character Number _ __

Character Number _ __

LSB

0403

MSB

DO

LSB

HEX

Character Number _ __

MSB

HEX

DO .

0403

2-153

LSB

DO

Character Number _ __
MSB

LSB

HFX

RO 0'0000 0
Rloo0oo
R200000
RJooooo
R400000
R500000
R60 000
R700000
04 OJ
DO

ROD DOD 0 0
R100000
R200000
113 00000
R400000
RSOOOoO
RGO DOD
R700000
0403
DO

DO

LSB

HEX

Character Number _ _ _ _

HEX

Character Number _ _ _
MSB

LSB

HEX

0

0

Character Number _ __

LSB

HEX

11000000
Rlooooo
R20 000
RJOoDoo
R40 000
R500000
R60 DOD
R700000
0403
DO

MSB

00

Character Number . _ __

MSB

LSB

HEX

RO 00000
Rlooooo
R200000
RJooODo
1'1 4 00000
R500000
R60 000
R7.ooooo
DO
0403

0 0

MCM667OeMCM6674

FIGURE 6 - MCM6674 PATTERN

2-154

®

MCM66700 MCM66710
MCM66714 MCM66720
MCM66730 MCM66734
MCM66740 MCM66750
MCM66751 MCM66760
MCM66770 MCM66780
MCM66790

MOTOROLA

8192·BIT READ ONLY MEMORIES
ROW SELECT CHARACTER GENERATORS

The MCM66700 is a mask·programmable 8192·blt horizontal·scan
(row select) character generator. It contains 128 characters in
a 7 X 9 matrix, and has the capabilit·, of shifting certain characters
that normally extend below the baseline such as i. y, g, p, and
q. Circuitry is supplied internally to effectively lower the whole
matrix for this type of character-a feature previously requiring
external circuitry.

MOS

A seven-bit address· code is used to select one of the 128 available
characters. Each character is defined as a specific combination of

IN· CHANNEL, SILICON-GATE)

logic Is and Os stored in a 7 X 9 matrix. When a specific four-bit
binary row select code is applied, a word of seven parallel bits appears
at the output. The rows can be sequentially selected, providing
a nine·word sequence of seven parallel bits per word for each
character selected by the address inputs. As the row select inputs
are sequentially addressed, the devices will automatically place
the 7 X 9 character in one of two preprogrammed positions on
the 16-row matrix, with the positions defined by the four row
select inputs. Rows that are not part of the character are
automatically blanked.
The devices listed are preprogrammed versions of the MCM66700.
They contain various sets of characters to meet the requirements
of diverse applications. The complete patterns of these devices
are contained in this data sheet.

8K READ ONL Y MEMORIES
HORIZONTAL·SCAN
CHARACTER GENERATORS
WITH SHIFTED CHARACTERS

C SUFFIX
FAIT-SEAL CEAAMIC PACKAGE
CASE 623-04

• Fully Static Operation
• Fully TTL Compatible with Three·State Outputs
• CMOS and MPU Compatible, Single ± 10% 5 Volt Supply
• Shifted Character Capability
(Except MCM66720, MCM66730, and MCM66734)
• Maximum Access Time = 350 ns
• 4 Programmable Chip Selects (0, 1, or X)
• Pin-far-Pin Replacement for the MCM6570,
Including All Standard Patterns

A2 120A3 110A4 90A5
AS

Decode

SO40-

Aow

1

Output
Buffers

-

j

j

Matrix

Shift

Control
Matrix

(128)

H

I

Matrix

S.lect

CASE7~

PIN ASSIGNMENT

AS3
AS2

~1904

eS4

AS1

03

A6

ASO

f---o 1S 02

05

f---o7

~

I

I'

Vce

f---o 6

r--

P SUFFIX

PLASTIC PACKAGE

f---o 20 06

Decode

(8064)

Blank;n.

BLOCK
DIAGRAM.

24

f---o 5

Memory
Matrix

Address

jJ

,

-

-

f---

AO 150A1 160-

~'

05

01

02

f--<> 17 DO

lL~:Ocs~4

21~)226 236246

Vcc=Pin2

ASO AS 1 AS2 AS3

VSS = Pin 13

D6
D4

DO

A1
eS1

AO

A3

eS2

A2

VSS

OS9516/S-78

2-155

MCM66700 Series

ABSOLUTE MAXIMUM RATINGS

(See Note I, Voltages Referenced to Vss)

Rating
Supply Voltages

Symbol

Valua

Unit

Vee

-0.3 to 7.0
-0.3 to 7.0
o to +70
-55 to +125

Vdc

Input Voltage

Vin

Operating Temperature Range

TA
T stg

Storage Temperature Range

Vde
DC
ue

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are
exceeded. Functional operation should be restricted to RECOMMENDED
OPERATING CONDITIONS. Exposure to higher-than-recommended voltages for

extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)

RECOMMENDED DC OPERATING CONDITIONS

(Referenced to VSS)
Symbol

Min

Nom

Max

Unit

Supply Voltage

Vec

5.0

5.5

Vde

Input Logic "'" Voltage

VIH

-

VCC

Vde

Input Logic "0" Voltage

Vil

4.5
2.0
-0.3

0.8

Vde

Symbol

Min

Typ

Max

Unit

IIH

-

-

2.5

!JAde

Output low Voltage (Blank)
(lOl = 1.6 mAde)

VOL

0

-

0.4

Vde

Output High Voltage (Dati
(lOH = -205 !JAde)

VOH

2.4

ICC
Po

-

-

BO

mAde

200

440

mW

ein

-

4.0

7.0'

pF

C out

-

4.0

7.0

pF

P.remet.r

DC CHARACTERISTICS
Characteristic
Input Leakage Current
(VIH

= 5.5 Vdc, VCC = 4.5 Vdc)

Power SupplV Current

Power Dissipation

CAPACITANCE

(Periodically sampled rather than

Input Capacitanc.

If - 1.0 MHz)
Output Capacitance
(f

= 1.0 MHz)

Vde

100% tested)

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that

norm. precaution, be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

2-156

MCM66700 Series

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)
ACTEST LOAD

5.0 V
R L =2.5k

MMD6150
or Equiv

AC TEST CONDITIONS
130 pF

Condition

Value

Input Pulse Levels

11.7 k

.... 07000
or Equi'lt'

0.8 V to 2.0 V

Input Rise and Fall Times

20 ns

Output Load

1 TTL Gate and Cl ; 130pF

AC CHARACTERISTICS
Characteristic

Address Access Time
Row Select Access Time
Chip Select to Output Delay

Symbol

TVp

Max

Unit

tacclA)

250

350

ns

tacclRS)

250

350

ns

tco

100

150

ns

TIMING DIAGRAM
)4-------------- tacc (A) ----------------1..... 1
2.0 V

Address

0.8 V

\4------------ tace( AS) - - - - - - - - - - - - -..- 1
2.0 V
0.8 V

RS

2.0 V

CS

tco------------~

CS

0.8 V

2.4 V
0.4 V

O.t. Out

~

; Oon't Ca'.

2-157

Data Valid

MCM66700 Series

MEMORY OPERATION !Using Positive logic)
Most positive level = 1, most negative level = O.
Addr...
To select one of the 128 characters, apply the appro·
priate binary code to the Address inputs (AO through A6).

can be programmed to occupy 'either of the two positions
in a 7 X 16 matrix. (Shifted characters are not available
on MCM66720, MCM66730, or MCM66734.)

RowSalect
To select one of the rows of the addressed character
to appear at the seven output lines, apply the appropriate
binary code to the Row Select inputs (RSO through RS3).

Output
For these devices, an output dot is defined as a logic 1
level. and an output blank is defined as a logic 0 level.
Programmable Chip Select
The MCM66700 has four Chip Select inputs that can
be programmed with a 1,0, or don't care (not connected).
A dan'; care must always be the highest chip select pin or
pins. All standard patterns have Don't Care Chip Selectexcept MCM66751.

Shifted Characters
These devices have the capability of displaying charac·
ters that descend below the bottom line (such as lowercase
letters i. y, g, p, and q). Internal circuitry effectively drops
the whole matrix for this type of character. Any character

DISPLAY FORMAT
Figure 1 shows the relationship between the logic
levels at the row select inputs and the character row at
the outputs. The MCM66700 allows the user to locate the
basic 7 X 9 font anywhere in the 7 X 16 array. In addition,
a shifted font can be placed anywhere in the same 7 X 16
array. For example, the basic MCM66710 font is
established in rows R14 through R6. All other rows are
automatically blanked. The shifted font is established in
rows R 11 through R3, with all other rows blanked. Thus,
while anyone character is contained in a 7 X 9 array, the
MCM66710 requires a 7 X 12 array on the CRT screen to
contain both normal and descending characters. Other

uses of the shift option may require as much as the full
7 X 16 array, or as Iittle as the basic 7 X 9 array (when
no shifting occurs, as in the MCM66720).
The MCM66700 can be programmed to be scanned
either from bottom to top or from top to bottom. This is
achieved through the option of assigning row numbers in
ascending or descending count, as long as both the basic
font and the shifted font are the same. For example, an
up counter will scan the MCM66710 from bottom to top,
whereas an up counter will scan the MCM66714 from top
to bottom (see Figures 7 and 8 for row designation).

FIGURE 1 - ROW SELECT INPUT CODE AND SAMPLE CHARACTERS FOR MCM66710 AND MCM66720

ROW SELECT
TRUTH TABLE
RS3

RS2

RSl

MCM66710

RSO

OUTPUT

0
0
0
0

0
0
0
0

0
0
1
1

0
1
0
1

RO
Rl
R2
R3

0
0
0
0

1
1
1
1

0
0
1
1

0
1
0
1

R4
RS
R6
R7

1
1
1
1

0
0
0
0

0
0
1
1

0
1
0
1

RS
R9
Rl0
Rll

1
1
1
1

1
1
1
1

0
0
1
1

0
1
0
1

R12
R13
R14
R15

MCM66720

ROW
NO.

0000000

•••••• 0

.00000.
.00000.
.00000.
••••••0

.000000
.000000
.000000
.000000
0000000
0000000
0000000
0000000
0000000
0000000
06

R1S
R14
R13
R12
Rll
Rl0
R9
RS
R7
R6
RS
R4
R3
R2
Rl
RO

DO

2-158

ROW
NO.

0000000
0000000
0000000
0000000

=~~~~~B

.0000.0
.0000.0
• • 000.0
.0 • • • 00
.000000
.000000
.000000
0000000
0000000
0000000
06

DO

RO 0000000
Rl .0 ••• 00
R2 • • 000.0
R3 .0000.0
• • • • • • 0 R4 • • 000.0
.000000 RS .0 • • • 00
.000000 R6 .000000
.000000 R7 .000000
.000000 RS .000000
06
DO
06
DO

••••••0

.00000.
.00000.
.00000.

MCM66700 Series

CUSTOM PROGRAMMING FOR MCM66700
By the programming of a single photomask, the custom·
er may sPlICify the content of the MCM66700. Encoding
of the photomask is done with the aid of a computer to
provide quick, efficient implementation of the custom bit
pattern while reducing the cost of implementation.
Information for the custom memory content may
be sent to· Motorola in the· following forms, in order
of preference:·
1. Hexadecimal coding using IBM Punch Cards
(Figures 3 and 4)
2. Hexadecimal coding using ASCII Paper. Tape Punch
(Figure 5)

they are not to be submitted to Motorola, however.)
2. Indicate· which characters are shifted by filling
in the extra square (dot) in the top row, at the left
(column S).
3. Convert the characters to hexadecimal coding
treating dots as 15 and blanks as Os, and enter this infor·
mation in the blocks to the right of the character font
format. High order bits are at the left, in columns Sand
03. For the bottom eight rows, the bit in Column S must
be 0, so these locations have been omitted. For the top
row, the bit in Column S will be 0 for an unshifted
character, and 1 for a shifted character.
4. Transfer the hexadecimal figures either to punched
cards (Figure 3) or to paper tape (Figure 5).

Programming of the MCM66700 can be achieved by
using the follow sequence:
1. Create the 128 characters in a 7 X 9 font using the
format shown in Figure 2. Note that information at
output 06 appears in column one, 05 in column two,
through DO information in column seven. The ·dots filled
in and programmed as a logic 1 will appear at the outputs
as VOH;thedotsleft blank will be at VOL. (Blank formats
appear at the end of this data sheet for your convenience;

5. Assign row numbers to the unshifted font. These
must be nine sequential numbers (values 0 through 15)
assigned consecutively to the rows. The shifted font is
similarly placed in any position in the 16 rows.
6. Provide, in writing, the information indicated in
Figure 6 (a copy of Figure 10 may be used for this pur·
pose). Submit this information to Motorola together
with the punched cards or paper tape.

FIGURE 2 - CHARACTER FORMAT

Character Number

(eu'!oHIIt.Iv,.".)

MS8

f R'"R,.

II.

I._

R

,

R II

~Ii

RI.

R.
R,

i R.

R 7

LSB HEX

00000000
0000000
DOD DODD
0000000
DIDIII DoolID
1100 110110
1100 011100
l1li00 110110 'I A
DIDID oODIID a ,
S

06

O. 03

DO

Charachtr Number(CtfK!!II&( ",,,,,)

::
I R.
RII

~

R7

R'

MSB

LSB

l1li 01111111111100
0111000110
0l1li11l1li1100
0l1li000110
0111000110
0l1lil1lil1lil1li00
OliO DODD
OliO 0000
11000000
DO

FIGURE 3 - CARD PUNCH FORMAT

Column,
1 - 10
11
12 - 29
30
31 -48
49
50-67

68
69 - 76
77 -78
79 -80

81ank
Asterisk (*)
Hex coding for first character
Slash (I)
Hex coding for second character
Slash (I)
Hex coding for third character
Slash (I)
Blank
Card number (starting 01; through 43)
Blank

Column 12 on the first card contains the hexadecimal
equivalent of column Sand 06 through 04 for the top row of the
first character. Column 13 contains 03 through DO. Columns 14
and 15 contain the information for the next row. The entire first
character is coded in columns 12 through 29. Each card contains
the coding for three characters. 43 cards are required to program the
entire 128 characters, the last card containing only two characters.
The characters must be programmed in sequence from the first
character to the last in order to establish proper addressing for the
part. As an example, the first nine characters of the MCM66710
are correctly coded and punched in Figure 4.

-NOTE: Motorola can accept magnetic tape and truth table formats. For further information contact your local Motorol. ules repreuntltive.

2-159

MCM66700 Series

FIGURE 4 - EXAMPLE OF CARD PUNCH FORMAT
(Fi ..t 9 Choroct'" of MCM66710)
""::-('?C c .=-' ,":: 1? ~?'- ?f'.= !"? ,"r' 1
,

??~

,:' ':-r;:

1:

~?' 1 ?'."~

.-' f ;-, " ,......

J ;"'". " oJ ,. ,1" ,f.: -;'\

'"-.'

II

I

I
IODODDDDDDDIIIIIIIIDDDDDODODOloODOCDOOODODDlololloloo~oooooololololloooooooolODD
1 I II II

l.t~I'IIII~1~11·'~1Inl,nn~nAII~nW1IJ'"U"~IJ~ftqltUII~11"'!I'"~\'\I~~~~!:~WM"~II~""I',)~~,·

I 1 1 1 1 1 1 11 11 11 1 1 1 11 1 111111 111111 1 1 1 1 1 1 1 1 1 1 I 11 1 1 1 111 1 1111111111 I 1 1 1 I 111 jill 1 1 1 111 1

2222222 22 2 2 2222222222 2 212121111111111111221111211111111111111111111111;', 11111111
3111111111111111131111 II 13311111111111111111111111111111111 3 1111111 I

j

JIll J 111111

•••••••••• 14444444.4414111444.4.444444444444441444444444144444444444444444444444

1111111111111111111111111111111111111111111

j j

111111111 J II}; 5 1111 5 5 11111111111511

1656 616 6 656 6 6 6 6 6 6 6 66 6 6 6 66 6 6 6 6 6 E 6 6 6 6 6 6 6 66 66! 6 6 6 6 6 6 6 616 66 E ~ 6 6 6 6 6 6 6 b 6 6 6 6 6 6 6 6 6 6 6 6' 66
11111111111111111111111111111111111111111111111111111111111111111111111111111 7 7 7

"

, 1'1111' hl8 8 8 8111 8 811111111111111111111111111111111 8111

II III ,

81 '881111111118 I

199" 9991!9 9 9 99 99 9!9 9 9 9999 9 9 99 9 9 9 9 9 99 9 9 99 9 9 99 99 9 9 9 9919 9 9 999 9 99 9 9 9 9 ~ 919 9 9 9 9 9 9 9 9 9 9
I I I I I I I I I "" 1/ _'" II '1 01 LI ";: " ,,', l' /1 I; I' II It M II!: lJ;')I" I' 1111 •• II 01.1" II" II q 11101 I'I_',', \1 II
1
SUNO""O FC'I1li !lOll

~Ill

1111 '" il I: U

~

I) 141 11\" I'I 'I,', II:,:! ' In

FIGURE 5 - PAPER TAPE FORMAT

Frames
Leader
1 to M
M+l,M+2

M + 3 to M + 66
M + 67, M + 68
M + 69 to M + 2378

start of data entrv. (Note that the tape cannot begin
with a CR and/or LF, or the customer identification will
be assumed to be programming data.)
Frame M + 3 contai ns the hexadecimal equivalent of
column Sand D6 thru D4 for the top row of the first
character. Frame M + 4 contains D3 thru DO. Frames
M + 5 and M + 6 program the second row of the first
character. Frames M + 3 to M + 66 comprise the first line
of the printout. The line is terminated with a CR and
LF.

Blank Tape
Allowed for customer use (M ';;64)
CR; LF (Carriage Return; Line
Feed)
First line of pattern information
(64 hex figures per line)
CR; LF
Remaining 35 lines of hex figures,
each line followed by a Carriage
Return and Line Feed

The remaining 35 lines of data are punched in sequence
using the same format, each line terminated with a CR
and LF. The total 36 lines of data contain 36 x 64 or
2304 hex figures. Since 18 hex figures are' required to
program each 7 x 9 character, the full 128 (2304 -0- 18)
characters are programmed.

Blank Tape
Frames 1 to M are left to the customer for internal
identification, where M .;; 64. Anv combination of alpha·
numerics mav be used. This information is terminated
with a Carriage Return and Line Feed, delineating the

FIGURE 6 - FORMAT FOR ORGANIZATIONAL DATA
ORGANIZATIONAL DATA
MCM66700 MOS READ ONLY MEMORY

Customer
Customer Part No.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Rev.

Row Number for top row of non-shifted font
Row Number for bottom row of non-shIfted font
Row Number for top row of shifted font
Programmable Chip Select information: 1 "" Active High

CS1_ CS2 _

0

= Active

CS3_ CS4_

2-160

Low

X = Don't Care (Not Connected)

MCM66700 Series

FIGURE 1 - MCM66110 PATTERN

FIGURE B - MCM66114 PATTERN

- - - - - - - - - - - - _ .....,--------------,-.
1000
_ ..--!~1___ ... ~!~ __ .!.o~~_~__ ..

2-161

'101

MCM66700 Series

FIGURE 9 - MCM66734 .PATTERN"

FIGURE 10 - MCM66120 PATTERN"

2-162

MCM66700 Series

FIGURE 11 - MCM66730 PATTERN··

FIGURE 12 - MCM66740 PATTERN

2-163

MCM66700 Series

FIGURE 13 - MCM66750 PATTERN

MCM66751 - Same as MCM66750 except CSI = O. CS2 = O. CS3 = X. and CS4 = X.
FIGURE 14 - MCM66760 PATTERN

2-164

MCIVJ66700 Series

FIGURE 15 - MCM66770 PATTERN

...
···......·.·..... .......
.
.......
·
··.......
..
·
.....
.
··................··.....
..
...•...
...
-

"

e"

.
"

•

•

'

.
··.··. .....

f ..... ·· ..
··.......
....
·
··..:. .....:'.:::!··.· .
i

: ••••• : 1

:

:I

.,

1[.;.
':' ::1 -I:

.... I:.
.....··· . .•...I:I...
..'.,..'... ..
--f •

....

,

I

:

·......
·
.... ·..·.....
....
·
·
.
.....
·.....··. ..· ." ··....

I " •••

,

-~-

~--

-----L....!!.-•.

...

:.--

-

'

---------------'

FIGURE 16 - MCM66780 PATTERN

. '. t:~:~~~~u:~
!5··.··: i.

II

: I ••• :.

.
i'·, i i·' '.!! 51'
1----1....:..F==+-=----+:.:
..:.:·:.:..:.:·c:.·+'·: ·cc·..
:.:cc·=-t· ---" . .~_I·~~_~~,t-•••

•••

• ••

t-

',I

II

•

':

·::···.1 ....::.' •......

.:

,"rr'
__ .+~~_~!~.
I

••••• '

:

i :"ill 5"i ill: iii": i :5.····· ~ iii ·..···i:
, I :- ' . I I I

II

,I

II

II

:

I, II _:

.•. ••. ... !:·_-t -

••••••••

'

••

~-

,.

~.'.'

'

:

••

··r·: ~ ....

I

I•••••• ~
1-'"

.'

t-I

.:.:. ~ ':- _. t••••

~

:

,

i '.

.'

~

.:.

+-.: •• ··4

•

:.

: : •• ,. i:

••

:~-~--T-

I

1 •••••••••••••••••

:

::.' . i! .::

:••••• I:

1 : : :...

••

i :

I

••

I

....' •

' :

1

:

'.

.:

..:

I:··:!

:

: ••

!: ••••

•

• ••••

• ••••

!! : i
!

:

i

.

!

_ ••••• _l'•• :

1 : ••••• :

:-+.
I:

I:

••

i.... ..... ........:._..-.-:1=_' _ ....:1:' -:-r:-

: : I·.
r---1...:,r====-t.::..:",..,.-=-t:.:":.:':.:":.=...

..

.1 •
• • ••
••: 1

I

:

"j'
••

I

••••••••

:

:...

:

:

1

·1··········
·1·
••••• i •• : I
•• : ••••••
I
i ...... ' ...~~~:t.I..:..:........ :.-.~-.~~l. ; ,_.j :_·_·~~~l_~~~!~~ 1"
1----18f-=::.::=.,-t....::.:=='--t:::
••:.::.:::••:.::.=+1-=-=.... ••••• •• ••••• •••••••
••••

!•

II:

i": i i
1Ii·····1
••••
-+ .. ~
- ..~-~.- -t~·-~-·-~··+: ,--c,,=+,=:::c=t"==1
•• I·.l:~i :!
i
: ! .·~:~!l1i ···i···! .i: I·······:

!:

! ••••••• !

:.'

1'.1:

r---1-=-r-:,=:-t--=----+--::::=,-i-'-:~=: +'·~·-:.·.~,i~." .~ •• ····~·.~l.-- ----to! --~~ --+ ... ~.....!. : •••••••••••

••••••• 1

.;;.

:

••••

i:··i···~··· .··1: ••: , .:. ::.

!

:

.;........

:.1I

:: . :. I· •. ! ,.....

1

:

:

~

-:1'';;;;···:

! •••••

..-

. :i·

:.: li~.~·JI~~· ·.. ! I.··
f -.~r
+=C=-+ ___?_'~:+I;;;-.:fl

i.... ·
1

•••••

•••••• ':' -. I •

j

•

L-f'!~l--:~.)\-+ :..~~

L---'====..c:..:=:..:.L==---'-=:.::.:--'-_::..

. L.='- - -'-:.~. .•.:~.)._.J i;~~i~D~~~:~'A:::ll: :;.~ : .~.=:_L=': -:.: :.L:= .L.: .-c =.L:=_'_'_L. : .:. =_"
-_._----_._-- - - - - - - - - - - - - - _ . _ - - '

2-165

MCM66700 Series

FIGURE 17 - MCM86710 PATTERN

2-166

MCM66700 Series

MCM66700 Seri.
Pin Allignment
MCM6570 Seri.

MCM66700 Equivalent

MCM6571
MCM6571A
MCM6572
MCM6573
MCM6573A
MCM6574
MCM6575
MCM6576
MCM6577
MCM6578
MCM6579

MCM66710
MCM66714
MCM66720
MCM66730
MCM66734
MCM66740
MCM66750
MCM66760
MCM66770
MCM66780
MCM667110

MCM6670 Seri.
Pin A.ignment

,.

Delcription

"
"

ASCII, shifted

,.

ASCII, shifted

ASCII

Japenese
Japenese

'.

Math Svmbols
Alphanumeric Control

British, shifted
German, shifted
French. sh ifted
European,lhi!ted

"-,....c:._-,=,

APPLICATIONS INFORMATION

One important appl itation for the MCM66700 series is
in CRT display systems (Figure 18). A set of buffer shift
registers or random access memories applies a 7·bit
character code. to the input of the character generator,
which then supplies one row of the character according
to the count at the four row select inputs. As each row
is available, it is put into the TTL MC7495 shift registers.
The parallel information in these shift registers is clocked

serially out to the Z·axis where it modulates the raster
to form the character.
The MCM66700 series require one power supply of
+ 5.0 volts. When powering this device from laboratory
or system power supplies, it is important that the Absolute
Maximum Ratings not be exceeded or device failure
can result. Sor"e power supplies exhibit spikes or glitches
on their outputs when the ac power is switched on and off.

FIGURE 18 - CRT DISPLAY APPLICATION USING MCM66710

MC7495

~6
9
8

~
3

~

Cho,ec,o, \

~l

~
~
~
0---2.
~

~

AO

DO

17

4

7

Al

01

A2

02

A3

03

A4

04

A5

05

A6
06
RSO RS 1 RS2RS3
21 22 23 2.

5

18

~

6
19
5

~

Count.,.

Cl
C2

2-167

ao

~

al

~

a2

~

MC
Cl
C2
Opo
OPI
OP2
OP3

a3~

MC7495

1 Os
6
MC
9
Cl
8
C2
2
Opo
3
OPI
4
OP2
5
OP3

Pr...t
Control

Os

ao~
al

~

a2

~
10

a3

Z Axil
Input

MCM66700 Series

The formats below are given for your convenience in preparing character information for MCM66700 programming.
THESE FORMATS ARE NOT TO BE USED TO TRANSMIT THE INFORMATION TO MOTOROLA. Refer to the Custom
Programming instructions for detailed procedures.

LSB

MSB
R
R
R
R
R
R
R
R
R

HEX

0000 000
000 0000
000 000
000 0000
000 0000
000 0000
000 000
000 0000
000 0000
5

06

0403

MSB

R

R
R
R
R
R
R
R

R
R
R
R
A
R
A
R
A

00

LSB

000

DOD DODO

R

A
R
R
R
R
A
R

5

000 0000
000 0000
000 0000
DOD 000
000 ODD
000 DODO
0000
ODD
04 03
00

06

R
R
R
R

R
R
R

R
R

00

A
R

R
R

LSB

HEX

R

R
R
R
R
R
R
R

0000
000
04 03
00

R

5

HEX

R

06

0000

000
DOD 0000

R

'ODD DOD

R
R
R
R
R
R

R

5

000 000
000 000
000 0000
000 000
000 0000
0000
ODD
0403
00

06

2-168

0403

00

LSB

HEX

0000 0000
DOD 0000
000 0000
000 0000
000 0000
000 0000
000 000
000 DODO
000
DODO
04 03
00
5 06

Character Number
LSB

MSB
A

06

MSB
R

DOD DODO
DOD 000
000 DODD

R

HEX

Character Number _

0000 0000
000 0000
000 0000
000 0000
000 0000

R

LSB

0000 000
000 0000
000 0000
000 0000
000 0000
000 0000
000 000
000 0000
000 0000
5

Character Number
LSB

0000

0403

MSB
R

06

MSB

06

MSB

Character Number

HEX

Character Number

R

HEX

0000 000
000 0000
000 0000
000 000
000 0000
000 0000
000 000
000 0000
000 0000
5

0000 0000
000 0000
000 0000
000 0000
000 0000
000 0000
000 000
000 DODD
0000
000
0403
00
5

LSB

MSB

Character Number

R

Character Number

Character Number

Character Number

HEX

MSB
R

R
R

R
A
R
R
R

A

LSB

0000 0000
000 0000
000 0000
000 0000
000 0000
000 0000
000 000
000 0000
0000
000
0403
00
5

06

HEX

®

MCM68A30A
MCM68B30A

MOTOROLA

MOS

1024 X 8-BIT READ ONLY MEMORY

IN{;HANNEL, SILICON-GATE)

The MCM68A30A/MCM68B30A are mask-programmable byteorganized memories designed for use in bus-organized systems_
They are fabricated with N-channel silicon-gate technology. For

1024 X 8-BIT
READ ONLY MEMORY

ease ot use. the device operates \rom a s''''g\e power supp\y, has
compatibility with TTL and DTL, and needs no clocks or

refreshing because of static operation.

I

The memory is compatible with the M6800 Microcomputer
Family, providing read only storage in byte increments. Memory
expansion is provided through multiple Chip Select inputs. The
active level of the Chip Select inputs and the memory content are
defined by the customer.
•

Organized as 1024 Bytes of 8 Bits

•

Static Operation

•

Three·State Data Output

•

Four Chip Select Inputs (Programmable)

,\,:,
~
,
_

.

\

.

, ' '
~...

•

Single ±10% 5-Volt Power Supply
TTL Compatible

•

Maximum Access Time

PLASTIC PACKAGE
CASE 709-02

PIN ASSIGNMENT

= 350

ns - MCM68A30A
250 ns - MCM68B30A

GND~~AO

ABSOLUTE MAXIMUM RATINGS IS •• Not. 11
Symbol

Value

Unit

VCC

-0.3 to +7.0

Vdc

Supply Voltage

I nput Voltage

V,n

Operating Temperature Range
Storage Temperature Range
NOTE 1

CEAAMIC PACKAGE

CASE 623-04

P SUFFIX

•

Rating

CSUFFIX

,,~' FAIT-SEAL

-0.3 to +70

o to

TA
Tst9

+70

-65 to +150

Vdc

°c
°c

Permanent deVice ddmage may occur If ABSOLUTE MAXIMUM RATiNGS are ex
ceeded. Functional operation should be restrICted to RECOMMENDED OPERAT
ING CONDITIONS. Exposure to higher than recommended voltages tor extended

23~Al
22 ~A2

DO

2

01

3

02

4

21 pA3

03£ 5

20 'A4

04[ 6

19

~A5

05[ 7

18

~A6

06[ 8

17 pA7

07[ 9

16 pA8

eSl[lO

15pA9

~CS4

CS2[ 11

14

Vee[ 12

13 peS3

periods of time could offect deVice rehabdlty.

MCM68A30A/MCM68BJOA READ ONLY
MEMORY BLOCK DIAGRAM

M6800 MICROCOMPUTER FAMIL Y
BLOCK 01AGRAM

Memory
Matrix

11024 X 8)

Address

Data

Bus

Bus

Data

Buffars

Data Bus

Memory Address
and Control

OS9456 RI/6-78

2-169

MCM68A30A·MCM68B30A

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operatmg voltage and temperature range unless other\o.'lllse noted_)

RECOMMENDED DC OPERATING CONDITIONS
P.rameter

Symbol

Min

Nom

Max

Unit

Supply Voltage

VCC

4.5

50

5.5

Vdc

Input High Voltage

VIH

2.0

-

5.5

Vdc

I nput Low Voltage

VIL

-0.3

-

0.8

Vdc

DC CHARACTERISTICS
Symbol

Min

Typ

Max

Unit

Input Current
IVin ~ 0'0 5.5VI

I,n

-

-

2.5

J.l.Adc

Output High Voltage

VOH

2.4

-

-

Vdc

VOL

-

-

0.4

Vdc

ILO

-

-

10

/.JAde

ICC

--

-

130

mAde

Characteristic

(IOH = -205"AI
Output Low Voltage

IIOL ~ 1.6 mAl

Output Leakage Current (ThreE ·State)
(CS = 0.8 Vor

Cs = 2.0 V, V OUI =0.4 V 10 2.4 VI

Supply Current

IVCC ~ 5.5 V, TA = DoC)

CAPACITANCE

If - 1.0 MHz, T A ~ 25°C. periodically sampled

rather than 100% tested'!

CMr.cteristic

Unit

Symbol

MIX

I nput Capacitance

Cin

7.5

pF

Output Capacitance

Cout

12.5

pF

This device contains circuitry to protect the
Inputs against damage due to high static voltages
or electric fields; hO\l\ever. it is advised that
nor mal precautions be taken to avoid applicat ion
of any voltage higher than maximum rlted voltages to this high·impedance circuit.

BLOCK DIAGRAM

AO
Al
A2
A3
A4
AS'
A6
A7
AS
A9

24
23
22
21
20
19
18
17
16
15

CS1'
CS2'
CS3'
CS4'

10
11
13
14

2
3
4

5
6

Add,ess
Oecode

7
S
9

Vee
• Active level defined by the customer.

= Pin

00
01
02
03
04
05
06
07

12

Gnd'" Pin ;-

2-170

MCM68A30A-MCM68B30A

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherwise noted.)
(All timing with tr

='

tf = 20 ns, Load of Figure 1)

MCM68A30AL

MCM68B30AL

Symbol

Min

Max

Min

Max

Unit

Cycle Time

teye

350

-

250

-

ns

Access Time
Chip Select to Output Delay

tace

350

250

ns

150

125

ns

Characteristic

-

'CO

Data Hold from Address

'DHA

10

-

10

-

ns

Data Hold from Desetection

'DHD

10

150

10

125

ns

FIGURE 1 - AC TEST LOAD
5.0 V

Telt Point

O-""'---1~--+"-"

130 pF·

11.7 k

MM06150
or Equi ....

~, MM01000
,

or Equiv

• Includes Jig Capacitance

TIMING DIAGRAM

teye

tace
Address

CS

~

2.0 V

~

ir-0.8 V

2.0 V

XXXAX

0.8 V

'CD
2.0 V
0.8 V

"XX

_tOHO~
_tOHA

2.4 V
0.4 V

Data OUt

2-171

XX

MCM68A30A-MCM68B30A

CUSTOM PROGRAMMING
By the programming of a single photomask for the

FIGURE 2 - BINARY TO HEXAOECIMAL CONVERSION

MCM68A30A/MCM68B30A. the customer may specify
the content of the memory and the method of enabling
the outputs.
Information

on

the

MCM68A30A/MCM68B30A

general
should

options
be

of

submitted

B,nary
Data
0

0

0

0

0

0

the

0

0

on

0
0

0

an Organizational Data form such as that shown in Figure

1

0

,
,

Information for custom memory content may be sent
In

,

,
,

0
0

3. ("No Connect" must always be the highest order Chip
Select PII1(sl.1

to Motorola
preference I:

Hexadecimal
Character

one of four forms (shown in order of

,
1

1. Paper tape 'output of the Motowla M6800 Software.

,
,
1

2. Hexadecimal coding uSing IBM Punch Cards.
3. EPROM (MCM2708, MCM27A08, or MCM687081.

,
0
,

,

,

0

2
3

0
0

0

4

,

,

0

5
6

1

7

0
0
0

0

0

0

1

9
9

1

0

A

0

1

1

B

,

0
0

0

c

1

0

1

,
,

1

,
,

0

1

1

0

,

E
F

4. Hand·punched paper tape (Figure 31.

PAPER TAPE
IBM PUNCH CARDS
Included In the software packages developed for the
M6800 Microcomputer Family IS the ability to produce
a paper tape output for computerized mask generation.

The hexadecimal equivalent (from Figure 21 may be
placed on 80 column IBM punch cards as follows:

The assembler directives are used to control allocation
of memory, to assign values for stored data, and for
controlling the assembly process. The paper tape must
specify the full 1024 bytes.

2-172

Step

Column

1

12

Byte "0" Hexadecimal equivalent for
outputs 07 thru 04 (07 ~ M.S.B.I

2

13

Byte "0" Hexadecimal equivalent for
outputs 03 thru DO (03 ~ M.S.B.I

3

14·75

4

77-80

Alternate steps 1 and 2 for consecutive
bytes.
Card number (starting 00011

MCM68A30A-MCM68B30A

FIGURE 3 - HAND·PUNCHED PAPER TAPE FORMII-

r---------------------------------______________________________ o
Frames
Leader
1 to M
M+l,M+2
M+3toM+66
M+67,M+68
M + 69 to M + 2112

Blank Tape
Allowed for customer use (M';;; 64)
CR; LF (Carriage Return; Line
Feed)
First line of pattern information
(64 hex figures per line)
CR;LF
Remaining 31 lines of hex figures,
each line followed bV a Carriage
Return and Line Feed

Blank Tape
Frames 1 to M are left to the customer for internal
identification, where M .;;; 64. Any combination of alpha·
numerics mav be used. This information is terminated
with a Carriage Return and Line Feed, delineating the
start of data entrv. (Note that the tape cannot begin
with a CR and lor LF, o~ the customer identification will
be assumed to be programming data.)
Option A (1024 x 8)
Frame M + 3 contains the hexadecimal equivalent of

~

.• ,.--------------------,

bits 07 thru 04 of bvte O. Frame M + 4 contains bits
03 thru DO. These two hex figures together program bvte
O. Likewise, frames M + 5 and M + 6 program bvte I,
while M + 7 and M + 8 program bvte 2. Frames M + 3 to
M + 66 comprise the first line of the printout and program,
in sequence, the first 32 bvtes of storage. The line is
terminated with a CR and LF.
Option B (2048 x 4)
Frame M + 3 contains the hexadecimal equivalent
of bvte 0, bits 03 thru DO. Frame M + 4 contains bvte I,
frame M + 5 byte 2, and so on. Frames M + 3 to M + 66
sequentially program bytes 0 to 31 (the first 32 bytes).
The line is terminated with a CR and LF.
Bot!! Options
The remaining 31 lines of data are punched in sequence
using the same format, each line terminated with a CR
and LF. The total 32 lines of data contain 32 x 64 or
2048 characters. Since each character programs 4 bits of
information, a full 8192 bits are programmed.
As an example, a printout of the punched tape for
Figure 13 would read as shown in Figure 10 (a CR and
LF is implicit at the end of each line!.

FIGURE 4 - FORMAT FOR PROGRAMMING GENERAL OPTIONS
ORGANIZATIONAL DATA
MCM68A30A/68B30A MOS READ ONLY MEMORY

Motorola Use Only:

Customer:

Quote: __________________________

Company
Part No.

Part No.: ________________________

Or iginator _____________________________________

Specif. No.: ____________________

Phone No. ___________________________

Ch ip Select Options:

Active
High
CSI
CS2
CS3
CS4

0
0
0
0

2-173

Active
Low

0
0
0
0

No Connect
"Don't Care"

0
0
0

0

®

MCM68A308
MCM68B308

MOTOROLA

MOS
1024 X a-BIT READ ONL Y MEMORY
The MCM6SA30S/MCM6SS30S is a mask-programmable byteorganized memory designed for use in bus-organized systems_ It is
fabricated with N-channel silicon-gate technology_ For ease of use,
the device operates from a single power supply, has compatibility
with TTL and DTL, and needs no clocks or refreshing because
of static operation.
The memory is compatible with the M6S00 Microcomputer
Family, providing read only storage in byte increments. Memory
expansion is provided through multiple Chip Select inputs. The
active level of the Chip Select inputs and the memory content
are defined by the customer.
• Organized as 1024 Bytes of S Bits
• Sta.tic Operation
• Three-State Data Output
• Mask-Programmable Chip Selects for
Simplified Memory Expansion
• Single ± 10% 5-Volt Power Supply
• TTL Compatible
• Maximum Access Time = 350 ns - MCM68A30S
250 ns - MCM68B30S
• 350 mW Typical Power Dissipation

IN-CHANNEL, SILICON-GATE)

1024 X a-BIT
READ ONLY MEMORY

e SUFFIX
FAIT·SEAL CEAAMIC PACKAGE
CASE 623-04

P SUFFIX
PLASTIC PACKAGE
CASE 709-02

PIN ASSIGNMENT

MOTOROLA'S PlN-COMPATIBLE EPROM FAMILY
32K

'IK

.. ,

,

.. C....7M

MOTOROLA'S PIN-COMPATIBLE ROM FAMILY

.J

32K

DOS

A7

Vee

A6

A8

A5

AS

A4

S3

A3

S1

A2

S4

A1

S2

AO

Q7

00

06

01

05

02

04

Vss

03
PIN NAMES
Address Inputs

AD -A9

S1

S4

00 07

Vee
INDUSTRY STANDARD PINOUTS

VSS

o

Chip Selects

Data OutPut
I

5 V Power Supply

GrOIJn(l

DS9601 16-78

2-174

MCM68A308e MCM688308

DC OPERATING CONDITIONS AND CHARACTERISTICS
.(Full operating voltage and temperature range unlp.ss otherWise noted)

RECOMMENDED DC OPERATING CONDITIONS
Symbol

Min

Typ

Mmc

Unit

Supply Voltage

VCC

5.0

VIH

5.5
5.5

Vdc

Input High Voltage

Input Low Voltage

VIL

4.5
2.0
-0.3

O.S

Vdc

Parameter

-

Vdc

DC CHARACTERISTICS
Symbol

Min

M ••

Unit

Input Current
(V in = 0 to 5.5 VI

I,n

-

2.5

IJAdc

Output High Voltage
(lOH • -205 ~AI

VOH

2.4

-

Vdc

Output Low Voltage

VOL

-

0.4

Vdc

ILO

10

}.lArtc

ICC

130

mAde

Characteristic

(lad.. =

1.6

mAl

Output Leakage Current (Three-State)
(S = OB V or

5 = 2.0 V. VO"t = 0.4 V

to

2.4

VI

'Supplv Current
. (VCC =

5.5

V, TA = OOCI

ABSOLUTE MAXIMUM RATINGS
Rating

(See Note

11

Symbol

Value

Unit

VCC

-0.310+7.0

Vdc

-0.3

Vrtc

Supply Voltage

Input Voltage

Vin

Operating Temperature Range

TA

Storage Temperature Range

T stg

!o + 7.0

o to
-65

°c
°c

+ 70

to·,

150

NOTE 1: Permanent device damage may occur
M6800 MIC ROCOMPUTE R F AMI L V
BLOCK DIAGRAM

if ABSOLUTE MAXIMUM RATINGS .re
exceeded. Functional operation should be
r.stricted to RECOMMENDED OPERATING

CONO.ITIONS. Exposure to higher than recommended 1I0itages for e)(tended periods of time
could affect device reliability.

AO
A1
A2
A3
A4
AS
A6
A7
A8
A9

BLOCK
DIAGRAM

St'
52'

53'
S4'
•

Addr...

O.t.

Bu.

Bu.

9

I

00

ro 01

6

11

02
13 03
14 04
15 as
16 06
17 07

Address

4
3

Decode

t

23
22

20
18
21
19

Vee ", Pin 24
VSS'= Pin 12

Active level defined by the u ..'.

2-175

MCM68A308-MCM68B308

AC OPERATING CONDITIONS AND CHARACTERISTICS'
(Full operating voltage and temperature unlesc; otherwise noted.
All timing with tr = tf = 20 ns, Load of Figure 1)

MCM6BB308

MCM6BA30B
Symbol

Min

Max

Min

Max

Unit

Cycle Time

teye

350

-

250

-

ns

Access Time

tace

350

-

250

ns

Chip Select to Output Delay

tso

-

150

-

150

ns

Data Hold from Address

tDHA

10

Data Hold from Deselection

tDHD

10

Characteristic

ns

10
150

CAPACITANCE

10

ns

150

This device contains circuitry to protect

(f == 2.0 MHz, TA = 25°C. periodically sampled rather than 100% tested)

Symbol

M..

Unit

Input Capacitance

Gin

7.5

pF

Output Capacitance

C out

12.5

pF

Characteristic

the inputs against damage due to high static
voltages or electric fields; however, 'it is
advised that normal precautions be taken
to avoid application of any \/oltage higher

than

max.imum

rated

'Jo\tages

to

th,'

high·impedance circuit.

FIGURE 1 - AC TEST LOAD
5:0

v

f'L = 2.5k
T elf Po int

t----+

o--.....----.---1r----i'.........--t

Unit

,

MMD6150
Of

E Quiv

MM07000
Of E~uiv

MCM68A316A

TIMING DIAGRAM

-\

- - tCYC

_I

tace

Addres

i

.~1.0.8 V

P¢

2.0 V

O.8~ ~

2.0 V

.xXXx.;y<)<,

'SO

s .)<,

2.0 V

L

0.8 V

XX

r-- tH

XS«;XXXX

=1

~tDHA
Data Out

2.4 V

X

0.4 V

2-181

~

MCM68A316A

CUSTOM PROGRAMMING
FIGURE 2 - BINARY TO HEXADECIMAL CONVERSION

By the programming of a single photomask for the
MCM68316A, the customer may specify the content of
the memory and the method of enabling the outputs.

Binary

HexadeCimal
Character

Data

Information
on
the
general
options of the
MCM68A316A should be submitted on an Organizational
Data form such as that shown in Figure 3.
Information for custom memory content may be sent

to Motorola in one of four forms (shown in order of
preference) :

0
0

0
0

0

0

0

1

1

0

0

1

0

0

0

1

1

2
3

0

1

0

0

4

0
0
0

1

0

1

5

1

1

0

6

1

1

1

7

1

0
0

0
0

0

8
9

1

1

0

1
1

A

1

0
0

0

1. Paper tape output of the Motorola M6800 Software.

1

B

2. Hexadecimal coding using IBM Punch Cards.

1

1

1

C

1

0
0

0

1

1

D

3. EPROM (TMS2716 or M'cM2716).

1

1

1

0

E

4. Hand·punched paper tape.

1

1

1

1

F

IBM PUNCH CARDS
PAPER TAPE
Included in the software packages developed for the
M6800 Microcomputer Family is the ability to produce a
paper tape output for computerized mask generation. The
assembler directives are used to control allocation of
memory. to assign values for stored data. and for control·
ling the assembly process. The paper tape must specify the

The hexadecimal equivalent (from Figure 2) may be
placed on 80 column IBM punch cards as follows:,
Step

Column

1

12

Byte "0·· Hexadecimal equivalent for
outputs 07 thru 04 (07 ~ M.S.B.)

2

13

3

14 - 75

Byte "0" Hexadecimal equivalent for
outputs 03 thru 00 (03 ~ M.S.B.)
Alternate steps 1 and 2 for consecutive
bytes.

4

77-80·

full 2048 bytes.

Card number (starting 0001)
Total number of cards (64)

FIGURE J - FORMAT FOR PROGRAMMING GENERAL OPTIONS

ORGANIZATIONAL DATA
MCM68AJ16A MOS READ ONLY MEMORY

Customer:
Motorola Use Only:
Company
Quote

Part No.
Part No .. _ _ _ _ _ _ _ _ _ _ _ __
Originator
Speci!. No ..
Phone No
Chip Select:

*Oon't Care

Active High

51
S2
S3

Active Low

(No Connect)

D

D
D

D

o

o

o

o

-A don't care must always bP. the

2-182

D
hl~lhest

order Chip Select(sl.

®

MCM68A316E

MOTOROLA

MOS
2048 X 8 BIT READ ONLY MEMORY
IN~HANNEL.SILICON-GATEI

The MCM68A316E is a r1Iask-programmable byte-organized
memory designed for use in bus-organizKt systems. It is fabricated
with N-channel silicon-gate technology. For ease of use. the device
operates from a single power supply. has compatibility with TTL and
o TL. and needs no clocks or refeshing because of static operation.
The memory is compatible with the M6800 Microcomputer
Family. providing read only storage in byte increments. Memory
expansion is provided through multipl, Chip Select inputs.. The
active level of the Chip Select inputs and the memory content
are defined by the user.
•

Fully Static Operation

•

Three-State Data Output

•

Mask-Programmable Chip Selects for
Simplified Memory Expansion

•

Single ± 10% 5·Volt Power Supply

•

TTL Compatible

•

Maximum Access Time

•

Plug-in Compatible with 2316E

•

Pin Compatible with 2708 and TMS27.6 EPROMs

2048 X 8 BIT
READ ONLY MEMORY

C SUFFIX
FRIT -SEAL CERAMIC PACKAGE
CASE~

= 350 ns
P SUFFIX
PLASTIC PACKAGE
CASE 7\)9.{)2

PIN ASSIGNMENT

MOTOROLA'S PlN-COIIPAnBLI IfIIIOII FAMILY
all

-..

all

-

MOTOROLA'S PlN-COMPAnBLr ROM FAMILY
11K

PIN NAMES
AO-A10.

INDUSTRY STANDARD IIiINours

.. Addrenlnpuft

51-53

· Chip Selects

00-07

· Date Output

VCC

· + 5 V Power Supply

Vss

. Ground

DS9IiOO/&-78

2-183

MCM68A316E
DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)

RECOMMENDED DC OPERATING CONDITIONS
Parameter

Symbol

Min

Typ

Max

Unit

Supply Voltage

VCC

4.5

5.0

5.5

Vdc

Input High Voltage

VIH

2.0

5.5

Vdc

Input Low Voltage

VIL

-0.3

-

0.8

Vdc

DC CHARACTERISTICS
Symbol

Min

Max

Unit

Input Current
(Vin = 0 to 5.5 VI

lin

-

2.5

/JAde

Output High Voltage

VOH

2.4

-

Vdc

VOL

-

0.4

Vdc

ILO

-

10

,uAdc

ICC

-

130

mAde

Characteristic

(lOH = -205 ,.AI

Output Low Voltage
(IOL = 1.6mAI

-Output Leakage CUOCo'lt ,I hree-State)
5 = 2.0 v, V out = 0.4

(S = 0.8 V or

V to 2.4 VI

Supply Current

(VCC = 5.5 V, TA = OOCI

ABSOLUTE MAXIMUM RATINGS (See Note 11
Rating

Symbol

Value

Unit

VCC

-0.3 to +7.0

Vdc

Input Voltage

Vin

-0.3 to +7.0

Vdc

Operating Temperature Range
Storage Temperature Range

TA

o to +70

T stg

-65 to +150

°c
°c

Supply Voltage

NOTE1: Permanent device damage may occur If ABSOLUTE MAX IMUM RATINGS are
exceeded. Functional

operation

should be restricted to RECOMMENDED

OPERATING CONDITIONS. Exposure to higher than recommended voltages
for extended periods of time could affect device reliability.

,,======,------------,

CAPACITANCE
(f:: 2.0 MHz, TA = 25°C, periodically sampled rather than 100% tested)

I

J

Characteristic

t Input Capacitance
I Output Capacitance

I
I

Symbol

Max

Unit

Cin
C out

7.5

pF

12.5

pF

M6800 MICROCOMPUTER FAMILY
BLOCK DIAGRAM

Addr ... Data
Bu.
Bu.

BLOCK
DIAGRAM

AO
Al
A2
"3
A.
A5
A6
A'
A8
A9
Ala

8
7

9
10
11
13

6

4
3
2

00
01
02
03

,. o.

Address
Decode

15 05
16 06
17 07

23
22
19
51'
52'
53'
Vee
Gnd

Active level defined by the us.r.

2-184

Pin 24
Pin 12

MCM68A316E

FIGURE l-AC TEST LOAD

SO V

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherwise noted.
All timing with tr :: tf 20 ns, Load of Figure 1)
::0

T est Po In t o---+---<~-I"--+
,

130 pF'

11.7 k

~,

M M 0 6 1 50
or EQuiv

MMD1000
or E qUI ...

Characteristic

Max
-

Unit

-

350

ns

150

ns

10

-

ns

10

150

ns

Symbol

Min

Cycle Time

tcye

350

Access Time

tace

Chip Select to Output Delay

ISO

Data Hold from Address

'DHA
IH

Data Hold from Deselection

ns

"Includes JIg CapacItance

TIMING DIAGRAM
This device contains circuitry to

protect the inputs against damage

'cvc--

due to high static voltages or electric fields; however, it is advised

that normal precautions be taken
to avoid

------------1I

- - . - - - - - - - - lace - - - -.. - -

,It------

Address

application of any vol-

tage higher than maximum rated
voltages to this high-impedance
circuit.

- - ISO

2-185

-.------<~

MCM68A316E

CUSTOM PROGRAMMING
FIGURE

By the programming of a single photomask for the
MCM68A316E, the customer may specify the content of
the memory and the method of enabling the outputs.

a - BINARY TO HEXADECIMAL CONVERSION
Binary,

Hexadecimal
'(;haracter

Oa'i
0
0
0
0

Information
on the general
options of the
MCM68A316E should be submitted on an Organizational
Data form such as that shown in Figure 3. ("No·Connect"
must always be the highest order Chip Select(s).)

0
0

1

,
1

0
1

1

1

0

2

0

1

1

J

1

0

0

,
,

,

,

4

0

,

0

6

0
0
0

0
0

0

,

,
,
,
,
1

1. Paper tape output of the Motorola M6800 Software.
2. Hexadecimal coding using IBM Punch Cards.
3. EPROM (T~S2716 or MCM2716).

0
0

1

0
0

Information for custom memory content may be sent
to Motorola in one of three forms (shown in order of
preference) :

0
0
0

,

0

5

1

1

,

8
9
A
8

0

0

1

1

,

0
0

0

,

c

,

,

0

,

E
F

1

,

0

IBM PUNCH CARDS
PAPER TAPE
Included in the software packages developed for the
M6800 Microcomputer Family is the ability to produce a
paper tape output for computerized mask generation. The
assembler directives are used to control allocation of
memory, to assign values for stored data, and for control·
ling the assembly process. The paper tape must specify the
full 2048 bytes.

The he.a~ecimal equivalent (from Figure 21 may be
placed on
column· IBM punch cards as follows:

eo

Step

Column

1

12

2

13

3

14-75

4

77-~

Byte "0" Hexadecimal equivalent for
outputs 07 thru 04 (07 = M.S.B.I
Byte "0" Hexadecimal equivalent for
outputs 03 thru 00 (03 = M.S.B.)
Alternate steps 1 and 2 for consecutive
bytes.
Card number (starting 00011
Total number of cards (64)

FIGURE 3 - FORMAT FOR PROGRAMMING GENERAL OPTIONS

ORGANIZATIONAL DATA
MCM68A316E MOS READ ONL Y MEMORY
Customer:
Motorola Use Only:
Company -------------------------------------

Ouote: _________________________

Part No.
Part "10.: ______________________
Originator ________________________
Phone No. ________________
Chip Select:

SI
S2

S3

Specif. No.:

Active
High

Active
Low

No
Connect

0
0
0

0
0
0

D
0

2-186

D

®

MCM68A332

MOTOROLA

MOS

4096 X a-BIT READ ONL Y MEMORY
The

MCM68A332

is

a

mask-programmable

byte-organized

INCHANNEL,SILICON-GATEI

memory designed for use in bus-organized systems. It is fabricated
with N-channel silicon-gate technology_ For ease of use, the device
operates from a single power supply, has compatibility with TTL and
DTL, and needs no clocks or refreshing because of static operation_
The memory

IS

4096 X a-BIT
READ ONL YMEMORY

compatible with the M6800 Microcomputer

Family, providing read only storage in byte increments. Memory

expansion

IS

provided through multiple Chip Select inputs_ The

C SUFFIX
FAIT-SEAL CEAAMIC PACKAGE
CASE 623-04

active level of the Chip Select Inputs and the memory content
are defined by the user.
•

Fully Static Operation

•

Three-State Data Output for OR-Ties

•

Mask-Prog,ammable Chip Selects for Simplified Memory
Expansion

•

Single ± 10% 5-Volt Power Supply

•

Fully TTL Compatible

•

MaXimum Access Time

•

Directly Compatible with 4732

= 350

ns

•

Pin Compatible with 2708 and 2716 EPROMs

•

Preprogrammed MCM68A332-2 Available

P SUFFIX
PLASTIC PACKAGE
CASE 709-02

-

PIN ASSIGNMENT

MOTOROLA'S PIN-COMPATIBLE EPROM FAMILY

..r

Vee
AS
A9
21

52

S1
A10

MOTOROLA'S PIN-COMPATIBLE ROM FAMILY
32K

18

All

17

Q7

16

as

15

Q5

14

04

13

03

PIN NAMES

.,

. . Address Inputs

AQ··A"

MCMN"332

S .

. Programmable
Chip Selects

aO-07
Vee.

INDUSTRY STANDARD PINOUTS

Vss

. Data OutPut
.. + 5 V Power SupplV

. Ground

OS961917-78

2-187

MCM68A332

AO
A1
A2
A3
A4
AS
A6
A7
AS
A9
Al0
A11

BLOCK
DIAGRAM

9
10
11
13

7
6
5

•

,.

Address

2

1
23
22

51·
52·

d3

04
15 05
16 06
17 07

Decode

3

00
01
02

20
21
Vee = Pin 24
VSS'" Pin 12

Active 18'1181 defined bV the u .. er.

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operallng voltage and temperature range unless otherWise noted)

RECOMMENDED DC OPERATING CONDITIONS
Parameter

Symbol

Min

TVp

Max

Unit

Vee

4.5

5.0

5.5

Vdc

Input High Voltage

VIH

2.0

-

55

Vdc

Input Low VOltage

VIL

-0.3

0.8

Vdc

Supply Voltage (\ICC must he

applied

at least 100

IJS belore ploper deVIL! operailorll~

achIeved)

DC CHARACTERISTICS
Symbol

Min

Max

Unit

Input Current
(V ,n -" 0 to 5.5 V!

1m

-

25

/JAde

Output High Voltage

VOH

2.4

VOL

-

0.4

Vdc

-

10

/-lAde

-

80

mAde

Characteristic

(IOH

c

Output Low Voltage

"0L

1.6 mAl

Outnut Leakage Current (Three-Slattd
(S
0.8 v Qr' S ~ 2.0 V, v ou t : Q4Vto2.4Vi

ILO

Supr1y Current

lee

IVee

Vdc

-205 "AI

1

5.5 v. TA - oOel

ABSOLUTE MAXIMUM RATINGS (S.e Note 11
Symbol

Value

Unit

Vee

-0.3 to +7.0

Vdr.

Innut Voltage

V,n

-0.3 to + 7.0

Vdc

OperJtrnq Temperature RtatlC voltages or electric flelns; however, It IS advised
that normal precautions he taken
to aVOId applIcation of any voltage higher than maximum rated
voltages to thiS high-Impedance
CirCUIt.

De
°e

NOTE 1 Permanent device cJamaqe may occur If ABSOLUTE MAXIMUM RATINGS are
exceeded.

Functional

operation

should

be

restrlcteu to RI;COrylMENDED

OPERATING CONDITIONS. Exposure to hllJher than recommended voltages
for eXTended periods of tIme could affect device reliab,lity.

CAPACITANCE
(f =

1.0 MHz, TA = 25°C. periodically sampled rather than 100% tested)

Characteristic

Symbol

Input Capacitance
Output Capacitance

Cout

M6800 MICROCOMPUTER EAMILY
-BLOCK DIAGRAM

2-188

Addrass

Data

Bus

Bus

MCM68A332

FIGURE 1 - AC TEST LOAD

5.0 V

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operat!ng voltage and tempel."Jture unless otherWise noted.
All timlnq with tr :: tf

Test Point o-.....---1~---+~.-. MMD6150
or equivalent

r

, 1.7 k

130 pF·

.. MMD7000
.. or equivalent

t-

= 20

ns, Load of Figure 1l

Svmbol

Min

teye

350

Ma.
--

Unit

Cycle Time
Access Time

tace

-

350

ns

Chip Select to Output Delay

'50

150

ns

Characteristic

Data Hold from Address
Data Hold from Deselect_on

'DHA

10

'H

10

ns

ns

150

ns

-Includes jig capacitance

TIMING DIAGRAM

__---------tcvc_--------~

~~2.0V=======:::j=~~
~--------tacc------~·~I

Address, A

~

Chip Select, S

2.0 V

Ch;p Select,S

0.8 V

'50------1

Output,

a -----~----------~(~5L.~~t------J)~-----Waveform

Waveform

Waveform
Symbol

0.4 V

Input

Output

MUST BE

WILL BE

VALID

VALID

Symbol

Input

~ ~~yN~TH~~EE
PERMITTED

2-189

Output
CHANGING.
STATE

UNKNOWN

Svmbol

~

Input

Output
HIGH
IMPEDANCE

MCM68A332

MCM68A332 CUSTOM PROGRAMMING

FIGURE 2 - BINARY TO HEXADECIMAL CONVERSION

By the pl"ogrammlng of a single photomask. for the
MCM68A332, the customer may specify the content of the
memory and the method of enabling the outputs.
Information on the general oPtions of the MCM68A332

0
0
0
0
0
0
0
0
1

should be submitted on an Organizational Data form such as that
shown in Figure 3. (A "No-Connect" or "Don't Care" must always
be the highe~t order Chip Select!s)')
..

Information for custom memory content may be sent to
MOlorola in one 01 four forms Ishown in order of preference):

1. IBM Punch Cards:

1
1
1
1
1
1

A. Hexadecimal Format
B. Intel F armat

C. Binary Negstive-Postive Format
2. EPROMs-two 16K (MCM2716 or TMS27161 or four
BK IMCM27081
3. Paper tape output of the Motorola M6800 software
4. Hand punched paper tape

The hexadecimal equivalent Ifrom Figure 21 may be placed on
80 column IBM. punch cards as foilows:

12

Bytl! "0" Hexadecimal equivalent for outputs

07 through 04 107 • M.S.B.I
2

13

Byte

"a ..

Hexadecimal equivalent for outputs

03 through 00 (03 • M.S.B.I
4
5

14-75
77-79

0
1

0

t

1

0

t

1

2
3

1
1
1
1

0
0

0

4

1

1
1

0

5
6

0
0
0
0

0
0

0
1
0

t

t
1
0
0

0

1

0

t

t

7
B
9
A
B
C
0
E
F

1
1

The -2 standard ROM pattern contains sine-lookup and arctanlookup tables.
Locations 0000 through 2001 contain the sine: valu8$. The
sine's first quadrant is divided into 1000 parts with sine values
corresponding to these angles stored in the ROM. Sin 1112 is
included and is rounded to 0.9999.
The arctan values contain angles in radians corresponding to
the arc tangents of 0 through 1 in steps of 0.001 and are contained
in locations 2048 through 4049.
Locations 2002 through 2047 and 4050 through 4095 are
zero filled.
All values are represented in absolute decimal format with four
digit precision. They are stored in BCD format with the two most
significant digits in the lower byte and the two least significant
digits in the upper byte. The decimal point is assumed to be to
the left of the most significant digit.

IBM PUNCH CARDS, HEXADECIMAL FORMAT

Column

0
0

PRE·PROGRAMMED MCM68A332P2, MCM68A332C2

Included in the software packages developed for the M6800
Microcomputer Family is the ability to produce a paper tape
output for computerized mask generation. The assembler directives are used to control.allocation of memory. to assign values for
stored data. and for controlling the assembly process. The paper
tape must specify the full 4096 bytes.

1

0
0
0
0

1
1
1
1

1

PAPER TAPE

Stop

Hexadecimal
Character

Binary Data

Alternate steps 1 and 2 for consecutive bytes.
Card number Istarting 001).
Total number of cards must equal 128.

ExamplP.: Sin 110~0

~I

• 0.0016 decimal

Address _ _ _ _ _ _..:C;;:o.:.:nt:::e:::n;;:ts:0002
0003

0000
0001

0000
0110

FIGURE 3 - FORMAT FOR PROGRAMMING GENERAL OPTIONS

ORGANIZATIONAL DATA
MCM68A332 MOS READ ONLY MEMORY

Customer:
Motorola Use Only

Company _________________________________

Ouote ____________________________
Part No. ________________________________
Part No. ___________________________
Origimitor _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __
Phone No. __________________________
Chip Select Options:
Sl
S2

Specif. No.

Active High

Active Low

o

o
o

o

2-190

No·Connect

o
o

®

MCM68A364
MCM68B364

MOTOROLA

MOS

8192 X 8-BIT READ ONLY MEMORY
The MCM68A364/MCM68B364 is a mask-p(ogrammable byteorganized memory designed for use in bus-organized systems. It is
. fabricated with N-channel silicon-gate technology. For ease of use,
the device operates from a single power supply, and has
compatibility with TTl. The addresses are latched with the Chip Enable
input - no external latches reQuired.
The memory is compatible with the M6800 Microcomputer
Family. providing read only storage in byte increments. The Chip
Enable input deselects the output and puts the chip in a power-llown
mode.
• Automatic Power Down
• Low Power Dissipation -

(N-CHANNEL. SILICON-GATE)

8192 X 8-BIT
READ ONLY MEMORY

L SUFFIX
CERAMIC PACKAGE
CASE 716-06

150 mW active (typical)
35 mW standby (typical)

• Single ±10% 5-Volt Power Supply
• High Output Drive Capability (2 TIL Loads)
• Three-State Data Output for OR-Ties
• TIL Compatible
• Maximum Access Time -

P SUFFIX
PLASTIC PACKAGE
CASE 709-02

250 ns - MCM68B364
350 ns - MCM68A364

• Pin Compatible with 8K - MCM68A308. 16K - MCM68A316E.
and 32K - MCM68A332 Mask-Programmable ROMs
• Pin Compatible with 24-pin 64K EPROM MCM68764

MOTOROLA'S PINoCOMPATIILE EPROM FAMILY
12K

PIN ASSIGNMENT

Vee

A7

A6

AS

A5

A9

A4

A12

A3
A2

AlO

A1

All

AO

07

00

Q6

01

05

02

Q4

VSS

03

MOTOROLA'S PINoCOMPATIILE ROM FAMILY

PIN NAMES

12K

AD

A12

E
aD 07

Address
Chip Enable

Data Output

Vee·

+ 5 V Power Supply

vss

Ground

This device contair.s Circuitry to protect

the inputs against damage due to high
static voltages or electric fields; however,
It IS advised that normal precautions be
taken to avoid application of any voltage
higher than maximum rated voltages to

INDUSTRY STANDARD PINOUTS

this high-impedance circuit.

0598)617-79

2-191

MCM68A364-MCM688364

BLOCK
DIAGRAM

AO
Al
A2
A3
A4
AS
A6
A7
A8
A9
Al0
All
A12

8
6
5
4

9 DO
10 01
02
13 03
14 04
15 05
16 06
17 07
11

Address
Decode

1
23
22

19
18
21

E 20

Vee

= Pin

24

VSS '-' Pin 12

ABSOLUTE MAXIMUM RATINGS (See note)
Rating

Symbol

Value

Unit

VCC

-0.5 to +7.0

Vdc

Yin

-0.5 to + 7.0

Vdc

Supply Voltage
Input Voltage
Operating Temperature Range

TA
T stg .

Storage Temperature Range

o to

+ 70

-65 to + 150

'c
'c

NOTE: Permanent device damage may occur If ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to
RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended vollages lor extended penods of time could
affect device reliability

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operatmg voltage and temperature range unless otherwise noted.)

RECOMMENDED OPERATING CONDITIONS
Parameter
Supply Voltage

Symbol

Min

Nom

Max

Unit

Vce

4.5

5.0

5:5

Vdc

(Vee must be applied at least lOOps before proper device
operation is achieved)

Input High Voltage

V,H

20

_.

55

Vdc

Input Low Voltage

V,L

-0.5

-

08

Vdc

SymbQI

Min

Typ

Max

Unit

iin

-10

-

10

/JAdc

Output High Voltage IIOH ~ -220 /JAI

VOH

2.4

-

-

Output Low Voltage IIOL ~ 32mAI

VOL

-

-

0.4

Vdc

Output Leakage Current (Three-State)
IE = 2.0 V. Vout = 0 V to 55 VI

ILO

-

10

/JAdc

Supply Current - Active(MinImum Cycle Rate)

ICC

-

25

40

mAdc

Supply Current IE =V,HI

IS8

-

7

10

mAde

RECOMMENDED OPERATING CHARACTERISTICS
Characteristic
Input Current IV,n ' 0 to 55 VI

Standby

-Current is proportIonal to cycle rate

CA~ACITANCE (f~ 1.0 MHz, TA ~ 25'C, periodically sampled rather than 100% teSled)

Characteristic
Input CapacItance
Output Capacitance

2-192

-10

Vdc

MCM68A364·MCM68B364

AC OPERATING CONDITIONS AND CHARACTERISTICS
Read Cycle

RECOMMENDED OPERATING CONDITIONS
(TA = 0 10 70"C Vee = 5 0 V '10% All liming wllh I, = If = 20 ns load'of Flgu,e 1)
MCM688364

MCM68A364

Symbol

Min

Ma.

Min

Ma.

Unit

Chip Enable Low to Chip Enable Low of Next Cycle (Cycle Time)

IELEL

375

_.

450

--

ns

Chip Enable Low to Chip Enable High

IELEH

250

_.

300

_.

ns

Chip Enable Low to Output Valid (Access)

IELOV

-

250

-

300

ns

Chip Enable High to Oulpul High Z (Off Time)

IEHOZ

-

60

-

75

r,')

Chip Enable Low 10 Address Don'l Care (Hold)

IELAX

60

-

75

-

ns

Parameter

Address Valid to Chip Enable Low (Address Setup)

IAVEL

0

-

0

-

ns

Chip Enable Precharge Time

IEHEL

125

-

150

-

ns

TIMING DIAGRAM
IELEL

CHIP ENABLE. ~

VIHVILIELEH

ADDRESS. A

IELQV

VOHDATA OUTPUT. Q

1

VALID

High Z

VOL-

High Z

FIGURE 1 - AC TEST LOAD
WAVEFORMS
Waveform

RL

= 12

'OO'' p

or Equiv

10.9 k

1

Output

MUST BE

WILL BE

VALID

VALID

~

CHANGE
f-ROM H TO L

WilL CHAr~C.E
FHOM H TO l

.PlZZ7

CHANGE

WILL CHANGE

FF-lQMLTOH

I'AOMLTQH

L>ON"T eMU
ANY CHANGE

CHANGING

PEHMITTED

UNKNOWN

k

T esl POlnl O--"'!~""'--f4f---+ MMD6150

1

Input

Svmbol

5.0 V

MMD7000
or EQuiv

~

=r-

-'ncludes Jig Capacitance

2-193

STATE

HIGH

IMPEDANCE

MCM68A364-MCM688364

CUSTOM PROGRAMMING

TIMING PARAMETER ABBREVIATIONS

x XXX

"'",' ",m"
M"'" " """W ~
transition direction for first signal
'0. .",," ;

By the programming of a Single photomask for the
MCM68A364/MCM68B364, the customer may specify the
contents of the memory.
Information for custom memory content may be sent to
Motorola in one of two forms (shown in order of preference):
1. Magnetic Tape - 9 TraCk, 800 bpi, odd parity written
in EBCDIC character code. Motorola's R.O.M.S. format.
2. EPROMs
one 64K (MCM68764), two 32K
(MCM2532), four 16K IMCM2716 or TMS2716), or
eight 8K IMCM27081.
3. IBM Punch Cards
A. Hexadecimal Format
B. INTEL Hexadecimal Format

III

signal name to which interval is defined
transition direction for second signal
The transition definitions used in this data sheet are:

H = transition to high
L = transition to low
V = transition to valid
X = transition to invalid or don't care
Z = transition to off (high impedance)

IBM PUNCH CARDS. HEXADECIMAL
FORMAT

TIMING LIMITS
The table of timing values shows either a minimum or
a maximum limit for each parameter. Input requirements

~

are specified from the external system point of view.
Thus, address setup time is shown as a minimum since the
system must supply at least that much time leven though
most devices do not require it). On the other hand,
responses from the memory are specified from the device
point of view. Thus, the access time is shown as a maximum since the device never provides data later than
that time.

1
2
3
4
5

The hexadecimal equivalent Ifrom Figure 2) may be
placed on 80 column IBM punch cards as follows:
Column
12
Byte "0" Hexadecimal equivalent for outputs 07 through 04 (07= M.S.B.I
13
Byte "0" Hexadecimal equivalent for outputs 03 through 00 (03= M.S.B.I
14-75 Alternate steps 1 and 2 for consecutive
bytes
77-79 Card number (starting 001)
Total number of cards must equal 256

FIGURE 2 - BINARY TO HEXADECIMAL CONVERSION
B,narv

Hexadecimal
Character

Data
0

0
0

0
0

0

0

1

1

0

0

1

0

2

0
0
0

0

1

1

1

0
0

0

J
4

1

1

5

0

1

1

0

6

0

1

1

1

7

1

0

0

0

8

1

0

0

1

9

1

0

1

0

A

1

0

1

1

B
C

1

0

1

0

0

1

1

0

1

0

1

1

1

0

1

1

1

1

E
F

2-194

MCM68A364e MCM68B364

M6800 MICROCOMPUTER FAMILY
BLOCK DIAGRAM

READ ONLY MEMORY
BLOCK DIAGRAM

MCM68A364
MCM686364

. .- .....I - - - - i

Read Only

Memory

Memory
Matrix
(8192 X 8)

Interface
Adapte,

Interface
Adapter

Add,..,

Data

BUI

Bus

Memory Addr •••
and Control

PRE-PROGRAMMED MCM68A364P3/l3
The -3 standard ROM pattern contains log (base 10)
and antilog (base 10) lookup tables for the 64K ROM.
locations 0000 through 3599 contain log base 10
values. The arguments for the log table range from 1.00
through 9.99 incrementing in steps of 1/100. Each log
value. IS
b.ented hy ,In eight-digit decimal number
with decimal P' '11: assumed to be to the left of the mostsigniiicant digit.
A~!ilog (base 10) are stored in locations 4096 through
80'15. Th~' ,uments range from .000 through .999
i!,crementing ,n steps of 1/1000. Each antilog value is

represented by an eight-digit decimal number with
decimal point assumed to be to the right of the mostsignificant digit.
locations 3600 through 4095 and 8096 through
8191 are zero filled.

"'1"

All values are represented in absolute decimal format
with eight digit precision. They are stored in BCD format
with the two most significant digits in the lower byte and
the remaining six digits in the three consecutive
locations.

Example:
log10 (1.01) = .00432137 decimal
Address

4
5
6
7

Contents

0000
0100
0010
0011

2-195

0000
0011
0001
0111

®

MOTOROL.A

MeM68365

Advance InforInation

MOl
8192 ~ 8-BIT READ ONLY MEMORY

IN·CHANNEL, SILICON-GATEI

The MCM68365 IS a mask-programmable byte-organized memory
designed for use in bus-organized systems. It is fabricated With
N-channel silicon-gate technology. For ease of use, the device operates
from a single power supply, has compatibility with TTL, and needs no
clocks or refreshing because of static operation.
The memory is compatible with the M6800 Microcomputer Family,
providing read only storage in byte increments. The active level of the
Chip Enable input and the memory content is defined by the user. The
Chip Enable input deselects the output and puts the chip in a powerdown mode.

8192x8-BIT

READ ONLY MEMORY

• Fully Static Operation
• Automatic Power Down
• Low Power Dissipation - 225 mW Active !Typical)
30 mW Standby ITypical)
•
•
•
•

Single ± 10% 5-Volt Power Supply
High Output Drive Capability 12 TTL Loadsl
Three-State Data Output for OR-Ties
Mask Programmable Chip Enable

• TTL Compatible
• Maximum Access Time - 250 ns - MCM68365-25
350 ns - MCM68365-35

e SUFFIX

P SUFFIX

FRIT-SEAL
CERAMIC PACKAGE
CASE 623

PLASTIC PACKAGE
CASE 709

PIN ASSIGNMENT

• Pin Compatible with 8K - MCM68A308, 16K - MCM68A316E,
and 32K - MCM68A332 Mask-Programmable ROMs

Vee
AS
A9

AI2

MOTOROLA'S PIN·COMPATIBLE EPROM FAMILY

E

UK

AIO
All
Q7

06
05

04
03

MOTOROLA'S PIN-COMPATIBLE ROM FAMILY
'""

UK

PIN NAMES
AO-A I 2 ..... Address
E ..... Chip Enable
00-Q7 ..... Data Output

Vee ..... + 5 V Power Supply

Vss ...... Ground

This device contains Circuitry to protect the
inputs against damage due to high static
voltages or electric fields; however, It is advised that normal precautions be taken to
avoid application of any voltage higher than
maximum rated voltages to this high im-

INDUSTRY STANDARD PINOUTS

pedance circuit

ADI844/9-80

2-196

MCM68365

BLOCK DIAGRAM
AO
Al
A2
A3
AO
AS
A6
A7
AS
A9
Al0
All
A12

'T

----..
--.... '0
__- . 1 6

DO
01
D2
03
DO
05
06

__ -.17

07

9

6

11

s-

3 Stale

Address

Outf'"/ut

Decode

Buffers

2 --

---.13

-----.'4

-----..15

23
22

19
18 --

21

20

Vcc=Pm 24
VSS = P,n 12

• Active level defined bv the user

ABSOLUTE MAXIMUM RATINGS ISee Notel
Rating

Value

Vce
V,n

-0_3 to + 7_0

V

03 to + 7

V

TA

to + 70
-65 to + 150

Input Voltage
Operating Temperature Range
Storage Temperature Range
Note:

Unit

Symbol

Supply Voltage

°

T stg

°

'c
'c

Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to
RECOMMENDED OPERATING CONDITIONS Exposure to higher than recommended voltages for extended pertods of time could affect device reliability

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)

RECOMMENDED OPERATING CONDITIONS
Parameter
Supply Voltage
(Vee must be applied at least 100 pS before proper deVice operation IS achieved)
Input High Voltage
nput Low Voltage

RECOMMENDED OPERATING CHARACTERISTICS
Characteristic

Symbol

Min

Nom

Max

Unit

VCC

45

5_0

5_5

V

VIH
VIL

2_0
0_3

5_5
0_8

V

Symbol

Min

Typ

Max

Unit

lin

-

-

10

pA

Output High Voltage IIOH - - 205 pAl

VOH

2.4

-

V

Output Low Voltage IIOL - 3_2 mAl

VOL

0.4

V

ILO

pA

45

10
80

mA

6.0

15

mA

Input Current (V ln - 0 to 5.5 Vl

a"tput Leakage Current IThree-Statei It~ 2

°

V, Vout - 0.4 V to 2.4 VI

Supply Current

Active IVCC'-55 V, TA-O'CI

ICC

Supply Current -

Standby IVCC - 5_5 V, T A - O'C, E - VIHi

IS8

CAPACITANCE
If ='.0 MHz, T A

= 25°C,

periodically sampled rather than 100% tested)
Characteristic

Input Capacitance
utput Capacitance

2-197

-

MCM68366

AC OPERATING CONDITIONS AND CHARACTERISTICS

Read Cycle
RECOMMENDED OPERATING CONDITIONS
IT A =0 to 70·C, V CC =5.0 V ± 10%. All timing with tr =tf = 10 ns, load of Figure 11

p.,.-

Symbol

Address Valid to Address Don't Care ICycle Time when Chip Enable is held Active)
Chip Enable Low to Chip Enable High
Address Valid to Output Valid IAccessl
Chip Enable Low to Output Valid IAccessl
Address Valid to Output Invalid
: Chip Enable Low to Output Invalid
Chip Enable High to Output High-Z
, (;hlp Selection to Power Up Time
. Chip Deselection to Power Down Time

Address Valid to Chip Enable Low IAddress Setup I

READ CYCLE TIMING 1
IE Held Low)

~ tAVQ~~-

MCM8II366-25
Min
MIx

tAVAX

250

tELEH
tAVQV
tELQV
tAVQX
tELQX
tEHQZ
tpu
tpD

250

-

350
350

-

-

250

-

100

tAVEL

0

-

10
10
0
0
0

350

250

10
10
0
0

-

70

-

------

Q IData

__

350

80

120

-

l-----~:~

__----------------tAVAX

Address

MCM8II366-36
Min
MIx

-il~-l1

Outl_-_-_-_-_-_-_-_-!::P:-r~e~v-:'i~o-~U-s~JD~a;ta~V;a~h~·-:'d~~~~~l~~~~~~~t:~~~~~~~~~~~~~~~D~a-t;aCv;a~li~d--------~-_-_-_-___-VOH
VOL

READ CYCLE TIMING 2
Address

~

_tAVEL
Address Valid

-I
tELEH

tELQV
-tELQX
Q IData
VCC
Supply
Current

~~

-

tEHQZr-

Outl-------:--HI-Z~
........'"""'.,..........!'-----....;;.D.;...at'-a-V-a-lld-----j>-HI-Z.

:~:

_____~ _~"- t=_________----l
___

VOH
VOL

t_PD_t

TIMING PARAMETER ABBREVIATIONS
t X X X X

"'~' ~.
''Om .m,,,, '0_' ...'o"'..J
transition direction lor lirst signa)

III

signal name to which interval is delined
transition direction for second Signal
The transition definitions used in this data sheet are:
H = transition to high
L = tranSition to low
V = transition to valid
X = transition to invalid or don't care
Z = transition to off Ihigh impedance)

TIMING LIMITS
The table of timing values shows either a minimum or a
maximum limit for each parameter. Input requirements are
specified from the external system point of view. Thus, address setup time is shown as a minimum since the system
must supply at least that much time leven though most
devices do not require itl. On the other hand, responses from
the memory are specified from the device pOint of view.
Thus, the access time is shown as a maximum since the
device never provides data later than that time.

2-198

MCM68366

READ ONLY MEMORY BLOCK DIAGRAM

MCM68365
Read Onlv
Memorv

Memory
Matrix
t8192x81

Data Bus

,

,,.'
Memory Address
and Control

Address Data
Bus
Bus
PRE-PROGRAMMED MCM68366f'3S-3/C3S-3,
MCM68366P2S-3/C26-3
The - 3 standard ROM pattern contains log tbase 101 and
antilog (base 10) lookup tables for the 64K ROM.
. Locations 0000 through 3599 contain log base 10 values.
The arguments for the log table range from 1.00 through
9.99 incrementing in steps of 1/100. Each log value is
representer1 by an eight-digit decimal number with decimal
paint assumed to be to the left of the most-significant digit.
Antilog (base 101 are stored in locations 4096 through
8)95. The arguments range from .000 through .999 incrementing in steps of 1/1000. Each antilog value is
represented by an eight-digit decimal number with decimal
point assumed to be to the right of the most-significant digit.

Locations 3600 through 4095 and 8196 through B191 are
zero filled.
All values are represented in absolute decimal format with
eight digit precision. TheV are stored in BCD format with the
two most significant digits in the lower byte and the remaining six digits in the three consecutive locations .
Example: 10910(1.011 = 0.00432137 decimal
Address
4

5
6
7

2-199

Contents
0000
0000
0011
0100
0010
0001
0011
0111

MCM68365

CUSTOM PROGRAMMING

Information for custom memory content may be sent to
Motorola in one of two forms (shown in order of preference):

By the programming of a single photomask for the
MCM68365, the customer may specify the content of the
memory and the method of enabling the outputs.
Information on the general options of the MCM68365
should be submitted on an Organizational Data form such as
that shown in Figure 2.

1. Magnetic Tape
9 track, BOO bpi, odd parity written in EBCDIC character code. Motorola R.O.M.S. format.
2. EPROMs - four 16K (MCM2716, or TMS2716, or eight
8K (MCM27081, one 64K or two 32Kl

FIGURE 2 - FORMAT FOR PROGRAMMING GENERAL OPTIONS

ORGANIZATIONAL DATA
MCM68385 MOS READ ONLY MEMORY

Customer:

Company ____________________________________
Part No. ____________________________________

Motorola Use Only:
Quote: _____________________
Part No: _____________________

Originator ___________________________________

Speci!. No: __________________

Phone No. __________
Enable Options:
Active High Active Low

Chip Enable

D

2-200

0

®

MOTOROLA

MCM68366
Advance InforIllation
MOS
8192 x 8-BIT READ ONLY MEMORY

IN-CHANNEL, SILICON-GATE)

The MCM68366 is a mask-programmable byte-organized memory
designed for use in bus-organized systems It IS fabricated with
N-channel silicon-gate technology. For ease of use, the device operates
from a single power supply, has compatibility with TTL and DTL. and
needs no clocks or refreshing because of static operation
The memory is compatible with the M6800 Microcomputer Family,
providing read only storage In byte Increments. The active level of the
Output Enable input and the memory content IS defined by the user
The Output Enable Input deselects the output.
• Fully Static Operation
• Fast Data Valid Time for High Speed Microprocessors

8192x 8-BIT
READ ONLY MEMORY

~~)
.

2~tnUL~.
,

• Low Power Dissipation - 225 mW Active ITYPlca11

" P SUFFIX

C SUFFIX

• Single ± 10% 5-Volt Power Supply
• High Output Drive Capability 12 TTL Loads)

FRIT·SEAL
CERAMIC PACKAGE
CASE 623

• Three-State Data Output for DR-Ties

t·

IL D

24

PLASTIC PACKAGE
CASE 700

• Mask Programmable Output Enable
• TTL Compatible
• Maximum Access Time -

\20 ns from Output Enable
250 ns from Address - MCM68366-25
350 ns from Address - MCM68368-35

• Pin Compatible with 8K and 32K -

MaSk-Programmable ROMs

• Pin Compatible with MCM68766 64K EPROM

PIN ASSIGNMENT

A7[~~VCC
A6[ 2

22

A9

4

21

A12

A4

MOTOROLA'S PIN·COMPATIBLE EPROM FAMILY

MOTOROLA'S PIN·COMPATIBLE ROM FAMILY
32K

11K

23 JAS

A5[ 3

A31 5

20

G

,A2[ 6

19

A10

All 7

IS

All

AO[ 8

17

Q7

001 9

16~06

011 10

15 P05

021 I'

14P04

Vssl 12

13~03

PIN NAMES
AO-A12. .... Address
G. .. . Output Enable
OO-Q7 ..... Data Output
Vee ..... + 5 V Power Supply.
VSS ...... Ground

AI

This deVIce contains circuitry to protect the
inputs against ,damage due to high static
voltages or electric fields; however, it is advised that normal precautions be taKen to
avoid application of any voltage higher than
maximum rated voltages to this high impedance circuit.

INDUSTRY STANDARD PINOUTS

ADI842/9-8Q

2-201

MCM68366

BLOCK DIAGRAM
AO
Al
A2
A3
AO
A5
A6
A7
A8
A9
Al0
All
A12

9
10
11

13
10
15
16

Address

Deco(1e

I

17

23

DO
01
D2
·03
DO
05
06
07

n
19
18
21

'(l" 20

VCC= Pin 24
YSS = Pin 12

• Active Level Defined by the User

ABSOLUTE MAXIMUM RATINGS ISee Note 11
Symbol

Rating
Supply Voltage

VCC
Y' n

Input Voltage
Operating Temperature Range

Value

Unit

0.3to +7.0

Vdc

-0.3 to + 7.0

Vdc

o to

TA
Tstg

+ 70

'c

Storage Temperature Range
-65 to + 150
'c
NOTE 1. Permanent deVice damage may occur If ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restflcted to
RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and tem~rature range unless otherwise noted)
RECOMMENDED OPERATING CONDITIONS

Perimeter
Supply Voltage
IVee must be applied at least l00,.s before proper device operation is achieved}
Input High Voltage
Input Low Voltage

Symbol

Min

Nom

Max

Unlt

VCC

4.5

5.0

5.5

Vdc

V,~

2.0
-0.3

-

VIL

-

5.5
0.8

Vdc

Symbol

Min

Typ

lin

-

-

Max
10

RECOMMENDED OPERATING CHARACTERISTICS
Ch.r.cteriatic
Input Current IVin = 0 to 5.5 V}
Output High Voltage (fOH = - 206,.A)
Output Low Voltage IIOL = 3.2 mA}
Output Leakage Current IThree-StateIIG=2.0V. Vou ,=O.4 V to 2.4 VI
Supply Current IV CC = 5.5 V. TA = O'C}
CAPACITANCE
If = 1.0 MHz. TA = 25'C. periodically sampled rather than l00,*, tested}
Input Capacitance
Output Capacitance

2-202

VOH
VOL

2.4

1_0

-

ICC

-

45

-

Unit
"Adc
Ydc

0.4

Vdc

10

"Adc
mAdc

80

MCM68366

AC OPERATING CONDITIONS AND CHARACTERISTICS
Read Cycle
RECOMMENDED OPERATING CONDITIONS
IT A = 0 '0 70'C vcc = 5 0 V +
- 10% All timing with 'r = 'I = 10 ns load 01 Figure 11
Symbol

Parameter
t

Address Valid '0 Address Don', Care

MCM68366-25

MCM68366-35

Min

Ma.

Min

Unil

Ma.

'AVAX

250

-

350

-

liS

Address Valid '0 Ou,pu' Valid IAccessl

'AVOV

-

250

-

350

ns

Output Enable Low to Output Valid (Access)

-

120

10

10

-

Output Enable High to Output Hlgh-Z

'GHZO

0

70

10
0

120
-

ns

10

Outpu, Enable Low to Ovtput Invalid

'GLQV
'AVOX
'r.L()X

80

ns

Address Valid to Outpu, Enable Low IAddress Setup)

tAVOL

0

-

0

-

ns

(Cycle Time when Output Enable

IS

Held Active)

Address Valid to Output Invalid

§

READ CYCLE TIMING 1

~

.-----------------tAvAX

'1<3 Held Low)
Address

----------

tAVQ~~------~·~1

ns
ns

VIH
VIL

Dal. Valid
o IData OUtl====!p~re~v;,o;u~sJD~a~t.~V~.~I~id~=:~~~~~=======~!!!~~======
VOL
VOH

READ CYCLE TIMING 2

~

r---tAVGL

Address~yX~(X'~()~('X~X~
...~-I-----------:A...,d~dr-e-ss...,V~a~lid~------------ VIH
~L

'I

G

----------..J

I,....-----VIH
VIL
GLQV

~
~tGLOX
hn~~nm------~-~~-~
VOH
Q mata Outi ---------------HI-Z
_
Data Valid
I
)-HI-Z- VOL

2-203

_

IGHOZr-

MCM68366

FIGURE 1 - AC TEST LOAD

WAVEFORMS
Waveform
Svmbol

MlJ!)!

i:3e

Will Be

Vahd

\~~\\~

milli

YIIIIt!

Will Change
From H It) L

Change
From L 10 H

'NIII Ct1angp
From L to H

Dan't Care
Any Change

:-:hanglfHJ

Permitted

L.;nknowl'

t-

' ' ',:'" tJ

VCllrd

f-rom H 10 l

Change

00 V

Output

Input

RL = 1 2>
MMD6150

Ir

or EQuiv

II I k

,Ir

MMD700G
or EQurv

-=
"Includes Jig Capacitance

Slale

Hlytl
Imp~darlce

READ ONLY MEMORY BLOCK DIAGRAM

MCM68366
Read Only
Memory
Memory
Matrix
18192 x 81

Address
Bus

.-

Memory Address
and Control

Data
Bus

PRE-PROGRAMMED MCM68366P35-3/C35-3.
MCM68366P2!>-31 C2!>-3
The - 3 standard ROM pattern contains log (base 10) and
antilog (base 101 lookup tables for the 64K ROM.
Locations'oooo through 3599 contain log base 10 values.
The arguments for the log table range from 1.00 through
9.99 incrementing in steps of 1/100. Each log value is
represented by an eight-digit decimal number with decimal
point assumed to' be to the left of the most-significant digit.
Anlilog (base 10) are stored in locations 4096 through
8095. The arguments range from 0.000 through 0.999 incrementing in steps of 1/1000. Each antilog value is
represented by an eight-digit decimal number with decimal
point assumed to be to the right of the most-significant digit.

Data Bus

Locations 3600 through 4095 and 8096 through 8191 are
zero filled.
All values are represented ir, absolute decimal format with
eight digit precision. They are stored in BCD format with the
two most significant digits in the lower byte and the remaining six digits in the three consecutive locations.
Example: 1091O (1.011 ~ .00432137 decimal
Address

0000-

0000

5

0100
0010
0011

0011
0001
0111

6
7

2-204

Contents

4

MCM68366

CUSTOM PROGRAMMING

Information for custom memory content may be sent to
Motorola in one of two forms Ishown in order of preferencel:

By the programming of a single photomask for the
MCM68366, the customer may specify the co~tent of the
memory and the method of enabling the outputs.

1. Magnetic Tape
9 track, 800 bpI, odd panty written in EBCDIC character Code. Motorola's R.O.M.S. format.
2. EPROMs - one 64K IMCM68764, MCM687661, two
32K IMCM25321, four 16K IMCM2716, or TMS27161,
or eight 8K IMCM27081.

Information on the general options of the MCM68366
should be submitted on an Organizational Data form such as
that shown in Figure 3.

FIGURE 3 - FORMAT FOR PROGRAMMING GENERAL OPTIONS
ORGANIZATIONAL OATA
MCM68386 MOS REAO ONLY MEMORY

Customer"
Company ____________________________________
Motorola Use Only
Part No .-'"__________________________________
Onglnator ____________________________________

Enable Options·
AL:tlve High Active Low

0

2-205

Part No: ___________________

Specll. No:

Phone No. ___________________________

Output Enable

Quote ______________________

D

(ill

MOTOROLA
~ SCn'1iconductors

MCM2802

Advance Infonnation

.. ,',..... ,."._...

MOS

-_._---------.,

32 X 32 BIT SERIAL ELECTRICALLY ERASABLE PROM
The MCM2802 is a 1 K-bit serial Electrically Erasable PROM designed
for applications requiring both non-volatile memory and in·system
information updates. In digital tuning systems, it provides storage
for up to 32 channels. It has ,external control of timing functions
and serial format for data and address.

IN·CHANNEL, SILICON GATE)

32 X 32 BIT
ELECTRICALLY ERASABLE PROM

,.-

- Single 5V supply in Read mode
_ 5V and 25V supply for Erase and Program
- In·System Program/Erase Capability

I

- O·100kHz clock rate

.

LSUFFIX

_ Floating gate process

CERAMIC PACKAGE
CASE 632.1)6

PSUFFIX

- Expandable to 16K·bit systems

PLASTIC PACKAGE ALSO AVAILABLE
CASE 646.OS

- Word and Array erasable

-----------------'-----------,
FIGURE 1 - BLOCK DIAGRAM

~-----

---

PIN ASSSIGNMENT

T2-

-n

1ft:
AO/61

V,P
C.

C1

Vss

Cl

C2

* For normal operation, hardwired to

vss.

PIN NAMES
VPC. . . . . . . . . Program Voltage Control
ADO. Address Input + Data Input/Output
T1. T2 . . . . . . . . . . . . . Margin Testing
Cl, C2, C3, C4 . . . . . Chip Address 1 to 4
CL . . . . . . . . . . . . . . . . . . . . Clock
RE .................... Reset
AO/DA. . . . . . . .. Shift Register Select

This device contains circuitry to protect the
inputs against dlWTlage due to high static
voltages or electric fields; however, it is
advised that normal precautions be taksn to
avoid application of any voltage higher than
maximum rated vottages to this high
impedance circuit.

This

IS

advance information and specifications are subject to change without notice.

2·206

MCM 2802

ABSOLUTE MAXIMUM RATINGS (Voltages referred to Vss)

Symbol

Min

Max

Unit

DC Supply Voltage

V DD

-0.5

8

Vdc

Programming Voltage

Vpp

-0.5

28

Vdc

Input Voltage

VIN

-0.5

8

Vdc

VP Control Output

VPC

-0.5

28

Vdc

Operattng Temperature Range

TA

-40

85

·C

TSTC

-56

150

·C

Reting

Storage Temperature Range

NOTE - Permanent device damage may occur if ABSOLUTE MAXIMUM
RATINGS are exceeded. Functional operation should be restricted to

RECOMMENDED OPERATING CONDITIONS. Exposure to high ... than
recommended voltages for extended periods of time could affaet device

raliability.

SWITCHING CHARACTERISTICS ITA = 0 ... 70 DC; Voo = 5V ± 10 %; Vp = 24.5V ± 1.5 V

Pin

Symbol

P.remeter

Fig No

Min

tER

Erase time

100

twR

Write time

10

CL

FCL

Clock Frequency FCL = lIT CL

CL

tCLH

Clock High Leyel Hold Time

2

4

CL

tCLL

Clock Low LeYel Hold Time

2

4

CL

tCLRF

Clock Fall Time and Rise Time

2

AD/DA

tAD/DA

Register Control to Clock

Delay Tim. except for tREAD

2

1

tREAD

After READ opcode only

3

2

I/O

tDSUP
tDH

I/O

tDOUTS
tDQUTP

0

Caut

Oat. In Set-Up

2,3

2

2,3

0.1

3

Data Out Parallel Ooley

3

Output Capocitanoo (V out -0 V)

ms

US
US

".

100

".
US
US

1
3
12

2-207

kHz
US

1

Data In Hold

Unit

m.

100

2

Data Out Serial Delay

Max

US
US

pF

MCM 2802

DC CHARACTERISTICS ITA

= 0 ... 70·C;

Ch_

VOO = 5V ± 10%; Vp = 24.5V ± 1.5 V

MOl<

Unit

Vpp

Supply Current

Ipp

3

mA

VOO

Supply Current

100

20

mA

1/0

Tri..... lnputl

V OH =2.4V

10H

-0.1

Output

VOL =0.5V

10L

1.6

Tristate

liN

10

,.A

liN

10

,.A

Pin

Allinputl
Except 1/0
VPC

AllinPUti

Symbol

Condhlon

Input Leakage
VP Control I

VON = IV

ION

Pull down device

OFF .....

V MAX

VOFF = VP

10FF.

Input Low Vol_

V IL

Input High Voltage

V IH

r-------

Min

mA
mA

mA

0.7
Vpp

10

,.A

0.8

V

2.4

V

~-,-=- :u""-G·R~:~-H---,-CL-"·-~---------...,I

-.- - - - - - -

C O CK

---/

H~~~~..f

l--~~

f----

I

i
I

AOCI (II)

AOIDA

______-+__~x~_4--+-~------_++_-

i
.--~~~~~~~~~~~~

FIGURE 3 - READOUT T I M I N G S - - - - - - - - - - - -.......j
tREAD

CLOCK

AOO

__--__----~~~----~_1~====~~~T~.======~D<

ADOR+READ COOl " .. ) IN

AD IDA

DATA OUT

BiTt

'-----

\~+-------~H-------

2-208

- - - - - - - - - - -.. - -

~~~~0-Ah--Cr:/t==
I I
~ptJ---"""'----

CLOCK

~

ADO

DO

~

AD/5i.
OP COO<
DECODING

•

L

STBY

~ I PIS

D1

DZ

1\ I

(

H

l

H

I

I,

~"
~

\1

II

t

ST8Y

)

~

f

/

READ OUT

/

,

RfADOUT

D31

,

------~I~---~I/

C

DlI

i

/

(FORCED)

II

-.--.-.-

(fORCm)

STaY

,

(DECtXJED)

II

l

q

U

/I

H

•

':-l

~

FIGURE 4 - READOUT SEQUENCE

------------------1

"
32

12

"

CLOCK

ADO

AD{Di.

OP CODE
DECOD1NG

,

,;

STaY
(fORCED)

f

STaY

-----,

WR1Tt

'I

(fORCED)

f--

L--

ERASE

T ER

~

ST8Y

(FORaDI

f-

T WR

-!

-I

---- FIGURE 5 - WRITE SEQUENCE _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _--J

MCM 2802

FUNCTIONAL DESCRIPTION
The circuit accepts 12 bits of Address/Op code in the
address register and 32 bits of data in the data register
(see figure 1: Block diagraml.
Addre../Op code format (figure 11
The four shifted bits C1 to C4 are used as chip select
word in multichip systems. The chip address is defined by
hardwiring the C1 to C4 pins. These bits are adjacent to
the address field, so that no software modification is reo
quired in a program designed for a multi·1 K memory appli·
cation.
The five following A 1 to A5 bits select one of the word
addresses. The last 3 bits 01 to 03 control the operating
modes.
Function
Read

Word ErasE!

01

02

03

o
o

o

0

Block Erase

Write

Standby

___J ·

Read operation (figure 41

:m~ I

11 The ADDRESS/OP CODE is loaded. The address
selecting the word to be read and the op code bits being
the READ code.
21 The AD/M is switched to the data mode, thus
initiating the parallel transfer from the core to the shift
register. First bit of data is present at the output.
31 As soon as the first of the 31 data out clock pulses is
applied, the parallel transfer is stopped and data is
shifted at the output. Data is recirculated in the data
register.

41
The output buffer is turned on only, when READ is
internally decoded, AD/DA is low and chip is selected by
C1 and C4. Otherwise it is in the high impedance state.

41 The AD/DA line is switched low again for a t =
tWRITE, during which the selected word is programmed.
51 At the end of the WR ITE operation it is recommended
to load op code STANDBY and to return input AD/DA to
the low state.
Erase
Both BLOCK ERASE and. WORD ERASE are provided
and are controlled by the op code. Vpp has to be applied
for BLOCK ERASE, WORD ERASE and for WRITE. For
all other conditions it can be switched off to high
impedance or VDD or VSS.
Standby
When AD/DA is high, the instruction decoder is disabled
and hence STANDBY is forced. By shifting the STANDBY
op code into the address register, STANDBY will be reo
cognized independently of the state of AD/DA.
Clock
The active high clock is only used for shifting data and
addresses. This shift occurs on the clock falling edge.
Chip selection
The ADDRESS/DATA line can be used as a chip select in
a system having other serial I/O devices. DATA and
CLOCK lines being shared the non-volatile memory is
only activated when the AD/DA line is low .. Shifting
information to the data register has no effect to the core
while the chip is deselected.
In a multi·memory arrangement, all the lines including
ADDRESS/DATA, CLOCK and DATA, are shared, with
the exception of C1 to C4 which are hardwired to VDO or
VSS, thus defining the circuit address. All Vp control
outputs of the memory circuits can be combined in a
wired OR configuration.
Data protection

Addresses and data are clocked in and out with the falling
edge of block.

Writing (figure 51
11 ADDRESS/OP CODE is shifted in, the op code being
either BLOCK ERASE or WORD ERASE.
21 Switching the ADiOA line low for t = tERASE
initiates the erase process. During this period of time,
a data word can be shifted into the data register.
31 Then the WRITE code and the same address is loaded
to the address register.

When Vpp is turned off, data stored in the array is always
protected. A Vpp control output is provided for switching
the Vpp supply. It consists of a pull down device to VSS.
This device is turned on only when: VDD is present, a
WRITE or ERASE code has been loaded in the address
register and AD/DA is low.
Schematics for this exte. nal Vpp control are proposed in
figure 6.
Reset
Vpp and VDD may be turned on or off in any sequence
without disturbing data in the NVM array. During power·
up, the op code is preset to the standby mode. The
RESET input can be connected to the system RESET.

2-210

MCM 2802

r---------------- FIGURE 6 -

Vpp CONTROL AND MULTICHIP SETUP -

vPP-......- _
10kA

41kA

J

R2
vpcl

VPP

.s

vpcl

VPP
N

N

V

CL

ADQ
AD/DA

I

...

0

IS
u

U

E
1

VPP
N

0

E

vpp

vpcl

...

v,ki'

•

E

2

I

'--------------_._------_. ----- -

1.

3

I

I
""-

- - - ..

2·211

_-----

'R11

25V

CMOS Memories
RAM, ROM

3-1

®

MCM14S0S

MOTOROLA

CMOS LSI
64-BIT STATIC RANDOM ACCESS MEMORY
I LOW·POWER COMPLEMENTARY MOSt

The MCM14505 64-bit random access memory is fully decoded
on the chip and organized as 64 one-bit words (64 X 1)_ Medium
speed operation and micro power supply requirements make this
device useful for scratch pad or buffer memory applications where
power must be conserved or where battery operation is required.
When used with a battery backup. the MCM 14505 can be utilized
as an alterable read-only memory, allowing the battery to retain information in the memory when the system is powered down, and
allowing the battery to charge wh~n power is applied_ The micropower requirements of this memory allow quiescent battery operation
for great lengths of time without significant discharging.

•

64-BIT (64 X 1) STATIC
RANDOM ACCESS MEMORY

Quiescent Current = 50 nA/package typical @ 5 Vdc

•

Noise Immunity = 45% of VDD typical

•

Supply Voltage Range

•

Single ReadlWrite Control Line

•

Wired·OR Output Capability
Expansion

=

3_0 Vdc to 18 Vdc

= 180 ns typical

(3-State Output)

at VDD

Write Cycle Time = 275 ns typical at VDD = 10 Vdc

CASE 632

CASE 646

"""'' 11SUffIX

= 10 Vdc

Access Time

•

P SUFFIX
PLASTIC PACKAGE

OROERING INFORMATION

for Memory

•

L SUFFIX
CERAMIC PACKAGE

L
P
A

•

Fully 8uffered Low Capacitance Inputs

•

Capable of Driving Two Low·power TTL Loads, One Low-power
Schottky TTL Load or Two HTL Loads Over the Rated Temperature Range

C

Denote,
Ceramic Package
PlastiC Package
Extended Operating
Tamperatur. Ranga
Limited Operating
Temperatur. Range

MAXIMUM RA TI NGS (Voltages referenced to Vss)
Symbol

Value

Unit

VOO

-05to+18

Vdc

Input Voltage, AU Inputs

Vin

-0.5 to VOO + 0.5

Vdc

DC Current Drain per Pin

I

10

mAde

TA

-55 to +125
-40 to +85

°c

Rating
DC SupplV Voltage

Operating Temperature Range - AL Device
C LlCP Device

Storage Temperature Range

T stg

-65 to +150

°c

BLOCK DIAGRAM

Add .... { : ;
Inputs
A3

~

4

10 Data Out

A411
AS 12

Data In 13

This device contains circuitry to protect the inputs against damage due to high
static voltages or electric fields; however, it is advised that normal precautions be
taken to avoid application of any voltage higher than maximum rated voltages to
this high impedance circuit. For proper operation it is recommended that Vin and
V out be constrained to the range VSS';;; (Vin or V out )';;; VDD.
Unused inputs must always be tied to an appropriate logic voltage level (e.g.,
either VSS or VOOI.

3-3

Strobe S
CE 16
CE28
R/W 9
Voo -; Pin 14
VSS"'Pln7

MCM14505

ELECTRICAL CHARACTERISTICS
Chafacterlstlc
Output VIJltaqe

V,n

"0" Level

Vee
Vdc

VOL

~O

VOH

Oar VOO

NOise Immunity u

I V out
I YOU!
I YOU!

10 Vdel
1 5 Voe}

VNH

Output Onve Current (AI. DeVice)
Source
IVOH 2.5 Vdc}

4.6 Vdcl
95 Vdcl
04 Vdcl

Sink

'OL

0.5 Vdc)
~

Thi h·

Min

Typ

Max

-

a
a
a

005
005
0.05

4.95
995
1495

5.0
10
15

005
0.05
0.05

50
10
15

495
995
1495

5.0
10
15

15
3.0
4.5

15
3.0
4.5

2.25
4.50
675

50
10
15

14
2.9
4.4

15
3.0
4.5

225
4.50
6.75

5 a
50
10
15

-1.2
-0 25
-0.62
-18

-

-10
-0.2
-05
-15

-17
-0.36
-0.9
-35

50
10
15

0.3
0.9
2.2

..

0.25
0.75
1.7

0.35
1.2
4.5

5.0
5 a
10
15

-1.0
-02
-05
- 1.4

·08
-0 16
-0.4
-1.2

-1.7
-036
-0.9
-3.5

5.0
10
15

0.2
0.6
3.9

0.15
0.5
0.7S

0.35
1.2
4.5

..

Min

495
9.95
14.95

Max

Unit

0.05
0.05
005

Vdc

-

Vdc

Vdc

1.5 Vdcl

Output Drive Current (CUep DeVice)

(VOH 2.5 Vdel
(VOH 46 Vdcl
(VOH ·9.5 Vdcl
(VOH" 135 Vdcl

Source

IVOL • 0.4 Vdcl
(VOL - 0.5 Vdcl
IVOL • 15 Vdcl

Sink

-

14
2.9
4.4

-

15
3.0
4.5

-

..

-0.7
-014
-0.35

-

0.18
0.50
12

-1.1

'OL

-

0.1
0.4
0.6

I,n

15

'0 1

'0 00001

'0 1

I,n

15

.1.0

.0 00001

t

C,n

-

QUiescent Current (CLlep DeVice)

'00

100

(Per Package)

Total Supply Current·· 't
(DynamiC plus QUiescent,
Pel Package)
ICL 50 pF on all outputs, _II
buffers sWltchmg)
Three-State Leakage Current
(AL DeVice)
Three-State Leakaqe Current
(CLlCP DeVice)

'T

mAde

mAde

-0.6
-0.12
-0.3
-1.0

-

Input Current (CUep DeVice)

QUiescent Currenl (AL Oevlce)
(Per Package)

-

IOH

Input Current (AL DevICe)

Input Capacitance
(V,n 01

Vdc

mAde

'OH

(VOH -,13.5 Vdcl

IVOL
(VOL
(VOL

Max

VNL

0.8 Vdc!

I YOU! ",- 0.8 Velc)
I YOU! . 1.0 Vdcl
I V out ' 1,5 Vde)

IVOH
IVOH

2SoC

T ,ow •

Min

10
15

VOO or 0

"'" Level

V,n

Symbol

50

7.5

0.050

50
10
15

5 a
10
20

a 100
0150

50
10
20

50
10
15

50
lOa
200

0.050
a 100
0150

50
lOa
200

50
10
15

'T
'T
'T

'TL

15

,0 1

'TL

15

±1 0

11.28 "A/kHzl I
12.56 "A/kHzl I
13.85 "A/kHzl I

·Tlow == -5SoC for AL Device, -40 0 C for CLlCP Device.
Thigh == +125 0 C for AL Device, +8S o C for CLlCP Device
#Noise immunity specified for worst-case input combination.
tTo calculate total supply current at loads other than 50 pF.
iTlell = iT'50 pFJ t 1 x 10- 3 ICl -Sal VOOI
where: IT is in jJA (per package), CL in pF, VDO in.Vdc, and f in kHz is input frequency_
··The formulas given are for the typical characteristics only at 25°C.

3-4

-

1.0

t
t
t

..

mAde
_.

.10

/-lAde

·14

IJAdc

pF

..
..

-

150
300
600

pAdc

375
750
1 SOD

/JAde

/JAdc

100
iDD
100

. 000001

± 0.1

,3.0

/JAdc

'0 00001

, 1.0

± 7.5

pAdc

MCM14505

SWITCHING CHARACTERISTICS·

ICL

= 50 pF

TA

=

Output Rise Time

'TLH
'TLH
'TLH

=
=
=

25 0 CI
Symbol

Characteristic

12.43 ns/pFI CL + 58.5 n,
11.08 ns/pFI CL + 36 n,
10.72 ns/pFI CL + 39 ns

Output Fall Time

Propagation Delay Time
Read Access Time
=
=
=

Typ

Mox

5.0
10
15

-

-

180
90
75

360
180
150

5.0
10
15

-

160
80
65

320
160
130

Strobe Down Time

ns

ns
5.0
10
15

-

455
210
130

750
400
300

5.0
10
15

500
125
95

100
50
75

-

5.0
10
15

300
120
90

-100
-40
-25

-

5.0
10
15

200
75
55

70
25
20

-

5.0
10
15

270
60
45

90
20
15

-

5.0
10
15

400
100
75

80
25
11

-

5.0
10
15

75
25
20

15
10
5.0

-

5.0
10
15

50
15
10

0
0
0

-

5.0
10
15

0
0
0

-25
-10

5.0
10
15

0
0
0

5.0
10
30

-

5.0
10
15

-

500
200
150

750
400
300

5.0
10
15

-

440
275
200

700
550
415

5.0
10
15

-

200
80
60

600
200
150

-

ns

'WL

---

i
--

Write Setup Time

I

Address Release Time

ns

'sulWI

I

ns

'sulAI

I

-

ns

treHR)
I

i
Data Hold Time

ns

'hlDl

I

I
I

Read Release Time

i

1

Read Cycle Time

'cyclAI

Write Cycle Time

ns

-90

ns

'rellW)

iI

--

-

',ellA)

I
Write Release Time

Output Disable Delay
(10% Output Change into 1.0

ns

'sulD)

Aead Setup Time

ns

'su

Data Setup Time

n.

ns

'cyclWI

ns

tdis

kn

Load)

The formula IS for the typical characteristics only.

I

3-5

Unit

ns

'acclAI

11.4 ns/pFI CL + 385 ns
110.7 ns/pF) CL + 175 ns
10.5 ns/pFI CL + 105 ns

~etupTime

Min

'THL

'THL =12.16ns/pFI CL +52n,
'THL = 10.96 ns/pFI CL + 32 n,
'THL = 10.69 ns/pFI CL + 33 ns

'acclAI
'acclAI
'acclAI

VOO

'TLH

MCM14505

FIGURE 1 - READ CYCLE TIMING DIAGRAM

50%

Strobe

tWHmin

=:

tcyc(A) mSK tWlmin

Nots. The read/write input can be maintained at a logical " ' "
(high voltage) during a read cycle.

tacc(RI

Data Output -o:::-u,-p-u-,-'\.

"0"

f-

_

/

tdis -

r--"-'-"--lo._---:----,-----VOH
I".. Ou'pu'

Disabled

"0"
Oat.
Valtd

V

Disabled

r-

FIGURE 2 - WRITE CYCLE TIMING DIAGRAM

tWHmin == tcyc(W) max -tWL min

50%

'WH

Strobe
Note The read/write input can be maintained at a logic "0"
(low voltage) durIng a write cycle. If the read/write
mput IS mamtalned at 8 logic "0" whtle the strobe IS

8 logic"''', then the output data will be d isab led (high

impedance) during the wr.te cycle.

Data In

--------w--------Y
_ _ _ _ _ _ _5_0__
~~_ _ _ _ _ _ _ _ __

FIGURE J - MAXIMUM STROBE PULSE WIDTH
versus TEMPERATURE

FIGURE 4 - TYPICAL READ ACCESS TIME
yersus LOAD CAPACITANCE

100~~~~~~~~~~~~~~~~~~~~~
~ -~ ----F-':=-r-:.--4'=----r--

~

10 - -

--~

-~O

--r=:

--r-----

50Vdc

!

600

~

400

r.

25°C

r--'--

1

";::

"

r

T··--

800

VOD

~

D

~
~ 200

~

':1.0 Vdc

L

10 Vdc

15 Vdc

0
-60

20

20

60

100

140

0

TA. AMBIENT TEMPERATURE IUCI

20

40

60

CL. LOAD CAPACITANCE (pfl

3-6

80

100

MCM14505

FIGURE 5 - TYPICAL OUTPUT SOURCE
CAPABILITY '''5U5 TEMPERATURE

FIGURE 6 - TYPICAL OUTPUT SINK
CAPABILITY yo"U5 TEMPERATURE

_uI_. ___IU I

Voo-,
Vlnput

0----

_._--

----l ~

300 '"

1 0 k.HI

Notes
, Cycle R IW to ground and then to V DO
prIor to measurement to Insure turn

on of the device under test
2

For the P-channel characteristiCS.

3

For the N-channel characteristiCS,

VOS'

VOS
4

IS

VO H

VOO'

,o~

measured directly

For the drain current, 10 - 100 Amp

1";,

v,,,

---_._-,_."--(al TA
55 u C
'25 u C
It;) TA 112SUC

(h) TA

;;C

5

·t

10

..j t
I

z
tt
~

t

., 0

Voo

I

. rf'
50 Vdc

h

1

tJ

z

"

~

u

Z

tt

'""

"

0

~

~

~

"

~
~

0

~

0

l__

BO

a

(iI)

+-.+--+~

"

0

TA . -55°C

lb)TA - +25 uC
(ellA '125 0 C

·10
10

10

·B 0

vos. ORAIN

VO I T AGE IVtlc)

Vos. ORAIN VOl TAGE (Vile!

3-7

MCM14505

FIGURE 7 - FUNCTIONAL CIRCUIT DIAGRAM

Oat. In

BasIc Memorv Cell

3-8

MCM14505

OPERATING CHARACTERISTICS
In considering the operation of the MCM14505 CMOS memory.

row IS In the low state, and the unselected 15 rows retain their
logiC "1" level due to the row capacitance that exists when the row
decoder Inhibit gates are disabled. ThIs capaCItive storage mechanism requires a maximum strobe Width (see Figure 3) equal to the
lunctlon reverse bias RC time constant. When the strobe IS returned
to a logiC "0" the rows are forced to VDO by the row decoder
inhibit gates (pullup deVices!. Similarly the column read/write
inhibit gates (pulldown deVIces) force the column lines to a logiC
"0" state.
Two column lines are associated With each memory cell In order
to write IOta the cell. The write selection drivers are enabled when
the R/W line IS a logiC "0" and the strobe line IS a logiC "1" The
input data IS written Into the column selected by the column
decoder. For Instance, If a "1" IS to be written In the memory cell
associated WIth row 1 and column 1, then row 1 would be enabled
(logic "0") while column 1b is forced high and column la is forced
low by the wrtte selection drivers. If a logic "0·' is to be written
IOto the cell, then column 1a IS forced high and lb is forced low.
The data that IS retamed 10 the memory cell is the data that was
present on the data Input pin at the moment the strobe goes low
when R/W IS low, or when R/W goes high when the strobe IS high.

refer to the functional CirCUit diagram of Figure 7 and timing

diagrams shown in Figures 1 and 2 The basIc memory cell IS a
cross.roupled flip-flop consisting of two Inverter gates and two
P-channel devices for read/write control. The push-pull cell provides
high speed as well as low power
Durmg a read cycle, when the strobe line IS high the write

selection dnvers are disabled and the data from the selected row

IS

available on columns lb, 2b, 3b, and 4b. The A4 and AS address
bits are decoded to select output data from one of the four columns.
The output data is available on the data output pin only when the

strobe and read/wnte lines are high simultaneously and after the
read access time, tacdR!, has occurred (see Figure ll. Note that
the output IS mitla"y disabled and always goes to the logiC "0" state
(low voltage) before data 15 valid. The output IS In the hlghImpedance state (disabled) when the strobe line or the R /W line is
in the low state. The memory IS strobed for reading or writing only
when the strobe, CE 1, and CE2 are high simultaneously. The R/W
line can be a dc voltage dUring a read or Write cycle and need not
be pulsed, as shown In the timing diagrams. For this case the RfW
line should be a logiC "1" (high! for reading and a logiC "0" for
WrttlOg.
When the strobe line IS high, the column read/wrtte Inhibit
gates and the row decoder Inhibit gates are disabled, the selected

APPLICATIONS INFORMATION
Figure 8 shows a 256·\NOrd by n-blt statiC R AM memory system
The outputs of four MCM14505 deVices are tied together to form
256 words by 1 bit. Additional bits are attained by paralleling the
tnputs in groups of four. Memortes of larger words can be attained
by decoding the most significant bits of the address and ANDing
them with the strobe Input.
Fan-In and fan-out of the memory IS limited only by speed
requirements. The extremely low Input and output leakage current
(100 nA maximum) keep the output voltage levels from changtng
Signif,cantly as more outputs are tied together. With the output
levels independent of fan-out, most of the power supply range IS
available as logic swing, regardless of the number of units wired
together. As a result, high nOise immunity is marntatned under
all conditions.
Power dissipation IS 0.1 JJW per bit at a 1.0-k Hz rate for a
5.0-\,I()lt power supply, while the static power dissipation IS 2.0 nW
per bit. ThiS low power allows non-volatile information storage
when the memory is powered by a small standby battery.
Figure 9 shows an optional standby power supply CtrCUlt tor
making a CMOS memory "non-volatile". When the usual power
fails, a battery is used to sustain operation or maintain stored
information. While normal power supply voltage is present, the
battery is trickle

t=c>

,

G

2
3

H

4

"

,2
6

-=-

MCM14505

64·Bit

Ram

'Or--

8

5
~ t- 9
'3

Dat8 In

,

~BOOut

2
3
4

"

MCM14505

6
8

Ram

12

Dynamic

64-Bit

'0 r--

5

StrOb:...s---L..

~

r-~

9

,3

,

2
3
4

"

"12

6
8
Aead/Write
~

I I I I II II
I I II I II I
I I I 1111 I
I II III I I

I I
I I
I I
I I

I
I

I
I

MCM145Q5

64-Bit

Ram

'0 r--

5
9
,3

I

I
I
I

Expand Verticallv For n·Bits

Circuit diagrams ul111Zlng Motorola products are Included as a means
of Illustrating typical semiconductor applications. conseQuentlV.
cQr"Iplete 'nforrr.ation suffrClent for construction purposes is not
necessarily given
The Information has been t;aretu1ly checked and

.5 believed to be entirely reliable
However, no re$pons,b,llty IS
assumed for Inaccuracies. Furthermore, such Information does not
convey to the purchaser of the semiconductor devices descrtbed any
Itcense under the patent rights of Motorola Inc or others

3-10

MCM14505

FIGURE 9 - STAND BY
BATTERY CIRCUIT

FIGURE 11 - CMOS·TO·TTL INTERFACE
FOR VOO • 5.0 V

FIGURE 10 - TTL TO CMOS INTERFACE

Vee

Von "'- 5.0 V

2.0 k

r--~~-----o V DD

470

TO TTL
IF.O.· 1)

R

x>--1.0

,000001

Con

-

100

mAde

pAdc
-",Adc

50

75

_.

pF

100
200

1800

.uAdc

50
10
15

100

0.5

100

200
400

1.0
1.5

200
400

Per Package)
50 pF on all outputs, all

50
10

IT
IT
IT

15

-,14

0.5
10
1.5

IT

-

mAde

·1.0

100
200
400

100

-

10

50
10
15

(Per Package)

Total SupplV Current"' t
(DynamiC plus QUiescent.

-

2.4

~

!per Package)

Vdc

-

0.36
09

15

QUiescent Current (CLlCP Oevu:;e)

-

-0.3
-1.0

Ion

QUiescent Current (AL DeVice)

-

-1.1

Input Current tAL DeVice)

Input Capacitance
(V ln
01

1.4
2.9
4.4

mAde

IVOH 095 VdcJ
IVOH 0 135 Vdcl
Sink

-

IOH

IVOH 0 4.6 Vdcl

= 1.5

50
10
15

-

TVp

mAde

IVOL 0 1.5 VdcJ

Output Dnve Current (ClICP Devlcel
Source
IVOH 02.5 Vdcl

IVOL

Thi h·

Min

IOH

0

IVOL 0 0.4 Vdcl
IVOL = 0.5 Vdcl

25°C

M ••

Vdc

VNH

Output Drive Current (AL Device)
IVOH
25 Vdcl
Source
IVOH - 4.6 Vdcl
IVOH 0 9.5 VdcJ
(VOH ~ 135 Vdcl
0

.

VNL

SI

I YOU! . 0.8 Vdc)
I .v out "- 1 0 Vdc}
I YOU! . '.5 Vdc)

IVOL 04 Vdcl
IVOL 0 0.5 Vdcl

Tlow
Min

!

3600
7200

400

1800
3600

--

}JAde

7200
}-lAde

(146 /JA/kHz) I + 100
!2 91 .uA/kHz) t + 100

!4 37 .uA/kHz) t + 100

ICL

buffers SWitching}
Three·State Leakage Current
(AL DeVice)

In

15

,0 1

·000001

,0.1

,30

/.lAdc

Three·State Leakage Current

In

15

!10

. a 00001

:!:

1,0

, 7.5

.uAdc

!CLlCP DeVice)

-Tlow . -55°C for AL DeVice, -40°C for CLlCP DeVice
Thigh ~ +125 0 C for AL DeVice. +85 0 C for CLlCP DeVice
".Noise Immunity sp~Clfled for worst·case Input combination
NOise Margin lor b01h "1" and "0" level" 1.0 Vdc min @ VOO

. 5,0 Vdc

20 Vdc mm @ VOO

10 Vdc

2.5 Vdc mln@ Voo

15 Vdc

tTo calculate total supply current at loads other than 50 pF

ITICLI
where

ITI50pFI' 1.10- 3 IC L -501 VDDI

IT IS In.uA (per package), CL m pF, VOO ,n Vdc, and fin kHz

IS

--The formulas given are for the tYPical characteristiCS only at 2SoC

3-13

mput frequency

MCM14537

SWITCHING CHARACTERISTICS·

ICL

=

50 pF TA

=

250 C)

Ch.r.cteriltic

Figur.

Symbol

3

tTLH

Output Rise Time
tTLH = 13.0 ns/pF) CL + 30 ns
tTLH = 11.5 ns/pF) CL + 15 ns
tTLH = ILl ns/pF) CL + 10 ns
Output Fall Time
tTHL = 11.5 ns/pF) CL + 25 ns
tTHL = 10.75 ns/pF) CL + 12.5 n.
tTHL = 10.55 n./pF) CL + 9.5 ns
Read Access Time from ST or CE2
tace = 11.4 ns/pF) CL + 2480 ns
tace = 10.7 n./pF) CL + 690 ns
tace = 10.5 ns/pf) CL + 393 ns
Output Enable Delay from eEl or CE2

3

Typ

5.0
10
15

-

180
90
65

5.0
10
15

-

100
50
40

5.0
10
15

400
150
115

2500
700
400

5.0
10
15

70
25
20

300
100
70

5.0
10
15

1800
600
450

ns

ns

t acC7 (CE n )

4,5,6,7

tsulA)

-. -4:5,6~7- .-;;;(~)--

;~

I

,
I

tsulD)

ns
6000
2000
1500
ns

900
300
225

600
200
140'-

ns

I -

1400

I

t ::.-- - n;--

480

-.-- ___ ~L_ f_~;--~~--I

---------- .. - ---7---

200
100
80

l:rT-2:0t'--r~-' 1--,;-;-

thID)·5.0··

Data Setup Time

Unit

360
180
130

taeclR)

5,6

H~ld Time f-;-om An to sf;;-,CE2 .-. -----. -.

Min

tTHL

4,5

Setup Time from An to 5T or CE2

- - r---- 1--Max

VOO

~

1

5.0

3600

1200

i=---+,--ns----1

10
15

1800
1350

600,
420

~~

720

:~

24=o----t------1---n-s---1

240
180

80
55

-

~==~~~~--T---------------~,---'7--t-~th-I~W=E~)-i-~5~.~0-i-~1'~5o--r-!5ci---+-1 ----~I-n-s-~
Write Enable Hold

ime

r-;,W;:rC;it':Oe"1E":nc::abi':'li::et(~o%_

;i
,~J

-1--1

''---f--.

----._-'-W-L-(-W-I--------,-Cy-;-(r--W-I--------'-;:--(A-I- - _ -

Strobe or
eE1 or CE2

1ST, CEI, CE21



The Strobe, eE1 and CE2 may be utilized to control a write cycle,
however, during changes of address either Strobe or CE2 must
be in the logical " ' " state (high level).

2

oeta input logic level is don't care during the indicated intervals.

3

Data input logic level must remain fixed.

4

Write Enable may be maintained as a logical "0" during the write cycle.

S

All input rise and fall times are 20 ns.

3-17

Vaa

VOL

MCM14537
LOGIC/BLOCK DIAGRAM

3 State Enable
tHigh AeslstanCE! State)

ST

±----L=rr--

I

A7J-----=f··

:::!

I

u_

A3

J;':~ ~~
-~
L

I

AO

0--1--------1

II
16.16.1

~~

I

A2D--i-----------1
AI

l

l::===__
I=<~_

-

M:~'~~V

10f16~M
=---=-3

J

Decoder

O---':---L__ -~:-~~~

i-----Set

~~:~~t

Q

~-~Re,et
L ____ ._~I

I

L __

FUNCTION
Address changing

sf

WE

D,n

°out

X

X

R'A

X

X

X

R

0

0

X

X

R'4

X

X

X

X

R

" ' " disables write cycle
and D out

X

X

X

A

The chip

C-El

CE2

X

X

VCllld

X

Adc:Jress changing

X

not valid
C out <..hsabled In
high reSistance state

X

COMMENTS
00.lJ.l will t)e active If t-E; aoc:l

GE2

"0" cmd WE

C'E2· "1"

",",

fully disabies Internal

log": and output.
Changing address ,n this mode

may result

III

altered data

GEl

IS

tully disabled.

WE
X

X

X

0

X

R

"0" enables IIIIrl11119 Into
memory If CE i, CE2, and

ST
Dour enatJled
actIVe state

If
111

"0"

S:,..-

",", the output stores

0

0

X

X

A

0

0

0

X

A

The output reads the present
contents that are addressed.

0

X

R

The addressed location '5 read
,nto outpUT latch With OIJtput In
the "R" state.

Read addressed
memory lo,atlon
mto output latch.

X

X

Disable reading
from memory

X

X

Wnte Into memory

0

0

X

X

R

X

X

RIA

0

0

A

R

X
X
X
1

X
X
X
X

X

X

X
X

X

X

X

X
1
X

Write disabled

and reads the prevIous data
frorn or wrItten into ",erTlory.

Address changing can take
place In this condition.
Om is written .nto memory
and into the output latch

WE - "1" IS a read enable.
R
WE ~ "0" IS a write enable.
R
RIA
RIA

R' High resistance state at D out
A
An active level of either VSS or VO D
AiA

An R or A condition dependmg on the don't care conditiOn

X

Don't ClIre condition (must be In th ...· "1" or "0" state)

1
0

A high level at VDD
A low level ilt VSS

3-18

MCM14537

TYPICAL APPLICATION FOR SERIAL WORDS UTILIZING BUS TECHNIOUES

T word
T wor{lllywi

t,H.{(ST)' in·l) t acu C£.l)

3 8

~s

tor a 32 bit senal wurd <11 VOO

10 V

Typical 1024)( 1 RAM Utill}',ng Four MCM14537's

Typical Low Power 1024 x 1 RAM UtiliZing Four MCM14537's.

3-19

®

MCM14552

MOTOROLA

CMOS LSI
256-BIT STATIC RANDOM ACCESS MEMORY

ILOW-POWER COMPLEMENTARY MOSI

The MCM14552 is a static random access memory (RAM) organ·
ized in a 64 x 4 bit pattern. The three chip enable inputs can be used
as extensions of the six address inputs, creating 9·bit address scheme.
Eight MCM14552 devices may be used to comprise a 2048·bit memo
ory (512 x 4) without additional address decoding.
The mode control (M) is used to change the control logic charac·
teristic of the circuit. For example, with M high, the J·state input
(T) fully controls the J·state characteristic of the output. With M
low, the output J·state characteristic is controlled by chip enable
inputs (CEl, write enable input (WE) and T.
The memory is designed so that dc signals may operate the memo
ory, with no maximum pulse width restrictions.
Medium speed, micropower operation, and control flexibility
make the device useful in scratch pad or buffer applications where
battery operation or high noise immunity are required.

256-BIT (64 X 4) STATIC
RANDOM ACCESS MEMORY

L SUFFIX

•

Quiescent Current

•

Noise Immunity = 45% of VDD typical

=

50 !lA/package typical @ 5 Vdc

CERAMIC PACKAGE
CASE 623

•

J·state Output Capability for Memory Expansion

•

Output Data Latch Eliminates Need for Storage Buffer

= 10 Vdc

•

Access Time = 700 ns typical @ VDD

•

Fully Decoded and Buffered

•

Supply Voltage Range

•

Capable of Driving Two Low·power TTL Loads, One Low·power
Schottky TTL Load or Two HTL Loads Over the Rated Temper·
ature Range

= J.O Vdc

to 18 Vdc

P SUFFIX

r'" .

PLASTIC PACKAGE
CASE 709

ORDERING INFORMATION

MOM'"''
NOTE: Pin 20(LE)) must be connected to VSS

L

L
P
A

e
MAXIMUM RATINGS (Voltage, referenced to vssl
Rating

Unit

Symbol

Value

VOO

-0.5 to +,8

Vdc

Input Voltage, AU Inputs

V ,n

Vdc

DC Current Drain per Pin

I

-0.5 to VOO + 0.5
,0

DC Supply Voltage

Operating Temperature Range ~ AL Device
CLlCP DeVice

TA

Storage Temperature Range

T 5t9

PIN ASSIGNMENT

mAde

-55 to +125
-40 to +85

°c

-65 to +,50

°c

•

M

VDD

2'

ST

eEl

23

D out 0

Ce2

22

Din 0

Ce3

21

IE
T

20

D out 1
Din 1

18

Din 2

A'

17

°out2

static voltages or electric fields... however, It is advised that normal precautions be
taken to avoid application of any voltage higher than ma:Klmum rated voltages
to this high Impedance CIrcuit
For proper operatIon it is recommended that

V ,n and Vout be constraIned to the range VSS ~ (V IO or Voutl ~ VOO
Unused Inputs must always be tied to an appropriate logic voltage level (e.g., either

3-20

19

A5

This device contains circuitry to protect the inputs against damage due to high

VSS or \/00·

O.".~

CeramIc Package
PlastIc Package
Extended OperatIng
Temperatufe Range
LImIted Operating
Temperature Range

D out 3

A3

t6

10

Din 3

A2

15

11

WE

A1

,.

12

VSS

AO

13

MCM14552

ELECTRICAL CHARACTERISTICS
Symbol

CharacteristiC
Output Voltaqe
V,n

Vao

V,n

Oar VOO

Or

Voo
Vdc

"0" Level

VOL

50
10
15

"1" Level

VOH

50
10

0

15
"0" Level

Input VOltage '/

IVo
IVo
IVa

·

9.0 or 1 0 Vde)
135 Of 1.5 Vdcl

TVp

Max

Min

Max

Unit

0.05
0.05
005

-

0
0
0

0.05
005
005

-

0.05
0.05
0.05

Vde

495
995
14.95

150r 13.5Vdc)

15
3.0
40

.-

550
825

-

3.5
70
11.0

-

-0.7
-014
-035

-

-11

225
450
6 75

1.5
3.0
40
35
/0
110

215

35
1.0
11.0

-1.2

--1.0

-1.7

50
10

IVOH

13.5 Vde)

15

-025
-0.62
-18

-

-0.2
-05
-1.5

-036
-09
-3.5

5.0
10
15

0.64
1.6
42

-

051
13
34

088
225
88

50
50

·08
-016

-1 7

15

-10
-02
-05
-1.4

5.0
10

052
13

0.44
11

15

36

IOl

IVOl
IVOl

0.5 Vde)

IOl

'.5 Vdc}

Inpul Current (AL DeVice)

I,n

15

Input Current (CLlCP Devlcel

I,n

15

Input CilpaclInnce
01
(V,n

C,n

QUIescent CUlfent (AL DevH.:p.)

100

(Pel PiJ<.:kaqe)

-

50

50
10

15

20

50
10
15

50
100
200

t

IT

50
10

IDynamlc plus QUiescenT.
Per PockiJlje)

1Cl

3.0
• 01
·10

'UI)

(Per Pilckaqe)

Tolal Supply CurrenT"

-04
-12

10

QUiescent CurrenT lel 'CP Devlcel

0.36
0.9
2.4

-

-

mAde

mAde

10
Sink

Vde

-

10H

(VOH 4.6 Vdc)
(VOH - 9.5 Vdc)
135 Vecl
(VOH

04 Vacl

_.
-

mAde
50

46 Vdcl
95 Vdc)

(VOL

1.5
3.0
4.0

10H

IVOH
IVOH

Output Orlve Current (CL/CP Devlcel
25 Vdcl
Source
(VOH

Vde

995
14.95
Vde

5.0
10
15

Sink

4.95

50
10
15

VIH

0.5 or 4 5 Veld
1.0 or 9 0 Vdc}

IVOl 04 Vdel
(Val . 0 5 Velcl
15 Vdcl
(VOL

Thi h-

Min

495
9.95
1495

5.0
10
15

Output Drive Current (Al Devlcel
2.5 Vdd
Source
IVOH

25°C

Max

Vil

4.5 or 0 5 Vdc)

.. ," Level

IVO
IVO
IVa

T 10w

Min

-

088
225
8.8

0.36
09
2.4

--

--

• 000001

-01

• 000001

'10

50

7.5

0050
0100
0150

50
10
20

300
600

0050
0100

50
100
200

375
750
1500

0150

IT
IT
IT

15

-036
-09
--35

-0.6
-0 12
-0.3
-1 0

mAde

'10

j...!Adc

'14.0

.uAdc

pF
150

(1.98 j..IA/kHl) I • IOD

}.lAde

.uAde

.uAdc

13.96 .uA/kH,) I + 100

(5.86 /.IA/kH,1 I • 100

50 pF no all OuTpUTS, <:lll

huffers sWilch,nq)
Three,STatf! Le<'lkaqe CurrenT

ITL

15

· 01

· 0 f)0001

·01

·30

/-lAde

ITL

15

.10

·000001

'1 ()

• 7.5

/-JAdc

(AL DeVice)
Three,SlaTe LC;Jkaqe CurrenT
(CUep Dev,u)

'T low

·55 0 C IOf AL DeVice. -40(JC lor CLlCP Oevlce

Th,qh
1125 0 C for AL DeVice, 185°C for CLlCP DeVice
""NOise Irnmutuly spp-uhed fOf wor!,l-case Input cornlHnilTHJn
NOise ~arqln for bOTh "1" and "0" level

10 Vdt: min (,,) VOO

'50 Vdc

20 Vdc min ('.') VDO

10 Vrlc

25 Vdc min ~!l VOD

15 Vdc

tTo calculate TOlal supply currenT aT loads other Than 50 pF
ITICL)
ITI50 pr) i 4 J( 10-- 3 ICL -50) VOOf
where- IT IS In j.JA Iper PiJckaqe). C L In pF, VOO,n Vdc, and lin kH/lS InpuT frequency
• ·The formulas (Jlven are fOr The tvprc..al characteristics only at 25°C

3-21

MCM14552

SWITCHING CHARACTERISTICS'

ICL" 50 pF, T A" 25 0 CI

~:~;~m:S/PF~:~:~::~~=~-=-~~~~-~r-fi~¥i!~i S:T~~~II~V::'I

tTLH"ll,5ns/pFICL+25ns
tTLH" 11.1 ns/pFI CL + 10 ns

. __ ._ ..__

Output Fall Time

._-1 .... --.--.. -, -1--c-tT- H- L

tTHL" 11.5 ns/pFI CL + 25 ns
tTHL" 10,75 ns/pFI CL + 12,5 ns
tTHL" 10.55 ns/pFI CL + 9.5 ns
Read Cycle Time

" 2

I

._~..

-rl-

I

tcyciR I

i
I Strobe to

1,3

Ad~;~-;-H~d T~e

I

I

tsufA-Sf)

L

I

I

I

l'

i

J-- 2006 - L

t

I

i

. _

~~ J-

100
50

I

40

i

5.0
10
15

1500
450
350

~__

200
100

80
6000

i
t.., _

ns
i

~
ns

-'~;;O -~ ::~~- ~-~sj
~~~- ~ -~~-~

L_

500

-

I

150

_

i

120

ns

I

150
100
75

2,4

tsu(A-eEI

5.0
10
15

1800
600
450

600
200
150

ns

2,4

thiCE-AI

5.0
10
15

450
300
225

150
100
75

ns

Wh"en Reading

1,2

tWLlRI

5.0
10
15

1800
450
350

450
150
100

When Writing

3,4

tWLIWI

5.0
10
15

3600
1800
1350

1200
600
400
-100
-40
-30

Address to Chip Enable Serup Time

I Chip l~;bi~ to Addres~ -H~ld Time
I
I
I

~-=-=~"'"
Strobe or Chip Enable Pulse Width

180

5.0
10
15

f-----

I

I

thIST·AI

I

I Strobe or Ch~E'~~ife Puls~"Wtd'th

15
5.0

90

_+,' ___ ..s5_-+ __

1,3

I

i

5.0
10

;C~C~~I-~ - ~~

f-----=----- --Address to Strobe Setup Time

I

TI__ '~JI ..

I

-- 3 4 -1--

Write Cycle Time

f ~"----r ~::=r::: -I Un~it

10

I

IR";;d" Setup -T'i~e

t~u(R)

f

5.0
15

a
a

ttdAI

5.0
10
15

540
240
180

180
60
45

tw(D)

5.0

1800
600
450

600
200
150

600
150
120

200
50
30

I

10
Read Hold Time

I

f-::-.. - ---

I Data Setup Time

3,4

I

10

I
i- - -.. _-

I Data Hold Time

Y

15
3,4

thllli

I

5.0
10

L_

15

-+-

-':;-s_1
I

~~: -j

:J
i

ns

l
J
I

{contmul-!dl

*The formula given IS for the tYPical characteristics only

3-22

MCM14552

---------,

Ie L

C

50 pF, T A

2SoC) /continued)

T- ~~~~~~~-

F igu re
3,4

I

tsu (WE)

r.w
""-r"";,=e='En~a"'51~e:-:-Ho-'-Id-'-;:T;-m-e- - - - - - - .--.. --- .;- - 3, 4

i

~;d A~~~;~ TIme fr~m-S'~~rob~-'

1

1,3

_

I tacc(A·STI

!

L.

t-

VDD

!

-!

Min
-t-

Typ

5.0
10
15

720
240
180

240
80
55

5.0
10
15

150
60
45

50
20
15

'-----T-!

-

i

ns

I

I

!

I
I

I

ns

----~

5.0
10
15

2000
700
350

6000
2100
1600

5.0

2100

6300

10
15

750
400

2250
1700

5.0
10
15

400
200
150

1200
600
450

ns

5.0
10
15

400
160
120

ns

;

1200
480
360

5.0
10
15

500
200
150

;

1500

:

600
450

I
I

ns

2

ktpu; Enable!Dosabie Delay tram Chop Enable-;'r

\

2,4

tRICE),
tRIW{\

Wr'ite-Enable

r

'Ftiiiie-S,ite Enable/DISable Output Delay

i
[:h~ OutputPropaga"on

Delay

i

--J

--'=-'- _ _ _ ._

/ Read Access T,me from Chip Enable

iI

!

--<

I
• ----.-r---

_1

ns

_1

The formula given IS for the tYPical characteristIcs only.

Din Din Din Din

T

LOGIC DIAGRAM

6

c;>

c;>

M

WE
ST

10
c;>

19

1
-~20¢

-1

"

eEl 23

I

CE222
CE3 21

A5 180
3 to B

00

A4 17
Oecnder

Al

14~

3 00ut 0

01

5

02

02

7 0 out2

03

03

9

01
Memory

A2 15 0

GO

64)( 4

A3 160-----

3 to 8

D out '

Latches

Array

Decoder

AO 13 0

Pin 24

VOO
VSS

3-23

~

Pin 12

1

.. t .___M~~ __ +-_~~.'-

Gout 3

I

MCM14552

FIGURE 1 - READ CYCLE WAVEFORMS UTILIZING STROBE TO ACCESS MEMORY

Add,"" _ _ _

------

~f-

_-I

--'CVdRI--------

t---

',u
(A

51)

th(A

1 5O%_________

ST;-t==

Vaa

VSS

i

- - - - - Vaa
50%

r----- -I

Vss

tWURI __ _

, - - - - - - - - - - Vaa

I

tsu(A)

50%

-~

------i

- - - - - - - - VSS
-----Vaa

La tt': hEriabTe

/

' \ 50%

I'

--------~------------~

--..j 'actlRSTI f----

Data Out

VSS

------1 tee

----------~Xl
90%
_ _ _ _ _ _ _ _ _ _ _ _--'_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
~

,~O~%~_

tTLH tTHL

c'r 1, C[2, CE:3 and T are

Notes

WE.

~:

low, M

IS

----1

VOL

50%VO

H

~

high

may t)e held high during the complete rea(~ cvcle

FIGURE 2 - READ CYCLE WAVEFORMS UTILIZING CHIP ENABLE TO ACCESS MEMORY

Ad<:~~'~
Cf;TpTnable

-f

'cvc(RI -

-------I

i---t:--t-(A-t;-E-~-(R-I---------'*~5-0-%-------- ~::

-1-------

<:-E-I

-1------\ '"
1!

'"c(R

\~

C:'_I

____--___

--_-_v:s:

-

Voo
Vss

Data Out
Notes

Unused

c''E. ST,

M and

f are low and WE IS high

High ,,,,penance output state occurs when any
and M

IS

low, or when

T

CE

IS high

The output displays data from the prevIous state

'WUR)

. 'ar:c(R CElrna)('

3-24

IS high

MCM14552

FIGURE 3 - WRITE CYCLE WAVEFORMS UTILIZING STROBE

4===---

Add, ... _ _ _ _ _

'cyclWl

---

~

thIA·ST)

-=1'-________ ~::

, - - - - - - " - - - - - - - - VDD

Vss

r----t------

VDD

Write Enable
---~Vss

,-----j------

VDD

Data In

--4--.....,*~-------E= ~::

Data Out

VOL
Notes:

1 _. CEl, CE2, CE3 and T are maintained at the logical "0" level.
2 -- M is maintained at the logical" 1" level.

3 - The output displays the

c~ntents of the prevIOus state

4 - The output displavs the contents of the presently addressed location as in 8
read modify write cycle

5 - The output displays the data that was written mto addressed location.

FIGURE 4 - WRITE CYCLE WAVEFORM UTILIZING CHIP ENABLE

f-------tcVC(W)----~1

-~*50%

VDD
VSS

,r-----VDD
50%
- - - - - - VSS

Write Enable

Oat. In

r - - - - - - - - - t - - - - - - - VDD
-----+-------t---~'I~-J''---------+_------VSS

r----VOH

Data Out

Note.:

1 - High impedance output state occurs when
is low, for M and

2 - Unused

CE' •. Sf.

T

CE

'----VOL
il high or when WE

maintained in the low state.

M and

T

are maintained at the logica' "0" level.

3-25

MCM14552
TRUTH TABLE

~~~F~""~'."~O~"____+-~C~'~'4-CCE~'~~C~E~J-t~~+-~L~E~~M~+-_S~T~~~W~E-t~D~,"-t~D~O~"'Y-C---~c~O~m~~~"~"---[l"Ul w ,lIl'eaCl 1yp,j')1i

CE

n T

0' " ~'.

0 "nrl

WF.

1

n

1 ,1n,1 T

~"-'''-''-''-L-''-'''-O'-''O)----+-~-~--~~-~:C,--+~~+-----~~'+-~--i-~-+~~+-~-t-D-Oo-,,-w-"'-h-,--;,-:,~-,-,'~i--()-,!"-----

13

0:-;:---------1
,5

[")illa

TRUTH TABLE

ConTrOl

004

Output

Mode

Hlgh·L Not Selected
Hlgh-Z Not Selected

Hlgh-Z Output Disabled
18

X

DO
AS

A6

Hlgh·Z Write

x

A 7

X

DOUI

Read

DS982B/9~80

3-27

MCM5101-MCM51 LOl

MAXIMUM RATINGS (Voltages referenced to Vss Pin 81
Rating

Symbol

Valua

Unit

Vcc
Vrn

- 0.510 + 70

V

DC Supply Voltage
Voltage on Any Pin
Operating Temperature Range

Storage Temperature Range

V

-0310 VCC+0.3

o to

lA

+ 70

'c

-65to + 150

lstQ

This device contains circuitry to protect the in~
puts against damage due to high static voltages
or electric fields; however, it IS advised that normal precautions be taken to avoid application of
any voltage higher than maximum rated voltages
to this high-Impedance Circuit

'c

NOTE' Permanent device damage may occur If ABSOLUTE MAXIMUM RATINGS are exceeded, Functional operation should be restrrcted to RECOMMENDED OPERATING CONOITIOr~S Exposure to higher than recommended voltages tor extended
periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operatmg voitage and temperature range unless otherwise noted)

RECOMMENDED OPERATING CONDITIONS

~PIY VOltage~

s~~rl ~i~

Paramater

::~

~;~

Unit
V

~i-L-o-g-iC-1--V-o-'ta-9-e-,~A-II-I-n-pu-t-s-----------------------------------------+---v~,~H~-r~2~.2--t--------rV~C-C--+~0~.3+---V~~

I

Logic 0 Voltage, All Inputs

VIL

-0.3

-

0.65

V

DC CHRACTERISTICS
Symbol

Characteristic

MCM51 L01-45
MCM51 L01-65
Min Typlll
Max

Input Current

lin 121

-

Input High Voltage

VIH
V,L

2.2
-0

VOH

24

-

VOL

-

-

Input Low Voltage

Output High Voltage IIOH

~

- 1.0 mAl

Output Low Voltage IIOL ~ 2.0 mAl
Output Leakage Current

ICEl

~

ILOl21

22 V, VOL ~O V to VCCI

-

5.0

-

-

MCM5101-80
Min l yp l1J

2.4

-

-

-

04

0.4

--

-

± 10

-

-

± 10

-

-

Vce -t- 03 22
-03
065
24

VCC + 0.3 2.2
-03
0.65

Unit

Max

5.0

-

-

--

-

Max

-

nA

VCC + O.
0.65

V
V

-

V

0.4
:!:

V
~A

2.0

-- - - ' - - -

Operating Current
IVin~VCC,

5.0

MCM5101-65
Min l yp l1J

except CE1,,065 V,

'CC1

--

9.0

22

-

9.0

22

-

11

25

ICC2

-

13

27

-

13

27

--

15

30

mA

ICCL 121141

-

-

10

-

-

200

-

-

500

~A

Min
2.0
0
tRC t,!

Typl1l

Max

-

-

Unit
V

0.14

10

~A

0.70

200

~A

-

-

ns

i
I

ns

I

,

mA

outputs open)
Operating Current
IVrn~2.2

V, Except CE1,,0.65 V,

outputs open)
Standby Current

ICE2,,0.2 V,

Vrn~O

V or VCCI

Characteristic
Input Capacitance (Vin = 0 VI
Output Capacitance {V OUl = 0 VI

LOW VICC DATA R ETENTION CHARACTERISTICS IExeluding MCM5101-801
Parameter
Test Conditions

I

V CC for Data Retention

MCM51 LOl-45, -65 Data Retention Current
MCM5101-65 Data Retention Current

CE2,,0.2 V

I
I

Symbol
VDR

VDR~2.0

V

ICCDRl

VDR~20V

ICCDR2
tCDR
IR

Chip Deselect to Data Retention Time
Operation Recover Time
Notes
,. Typical values are T A = 25°C and nominal supply voltage
2 Current through all inputs and outputs included In ICCL measurement

3 tRC ~ Read Cycle Time
4. Low current state is for CE2 = 0 only

3-28

J
i

J

MCM5101-MCM51 L01

TYPICAL ICCDR vs TEMPERATURE

lOW VCC DATA RETENTION WAVEFORM

r
vee ~ 0 v
eE2 02 v

Supply

Voltage

I 11

(Vee)

v ,n

lOY

;;

tCDR --.,

=

~i

V,H

"u

Chip Enable 0.2 V'\.,,=========
(CE::2)

0 V

III

-

11 01

11

10

lU

JO

1(1

rU-.1PtRATlJRE

\11

611

/11

(IJ[)

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherwise noted)

+ 0 65 V to 2 2 V

Input Pulse Levels
Input Rise and Fall Times

READ CYCLE

Outpulload
1 TTL Gate and CL = 100 pF
Timing Measurement Refelence Level
1~V

20 ns

----------------------Symbol

Parameter

__________ ______

1---,M,,-~c_:,_5-~rl.;::_;;'::_-:,_~-+-M.M:_;;-~'=~-5T~-,~.~1._:-~c_~-_t-__._M.,C-:M~5:;-0..'o::-80_,,__1 ~~
Min
Max
Min'-j.__::MC'a-:x, _+_.M,-"in"---jl---'M:.:a=x~_j.--::=_+--"-=_+---

-

ns
ns
800
ns
800
400
------t---tC02---5OO--=- -700-t----+~=-+-n·-s--i
850
OUlPUI O>sabl;U;-O~tP~t-----------'aD
-~-- ~250- 350
ns
450
'OF
0
130-(j--r--'50 -0- -c2:-::00
c:---t---n-s- - j
Data Output 10 Hlgh-Z State
Read Cycle
Access T,me
Ch,p Enable (CEll to Outpul
Ch,p Enable (CE21 ,O-Out,;-~,-----------

__ ...'R_~ ~50
-~----'CO'

450

650

650
600

800

---

o--~-~~~o--t--~--~

----------------;:--;--;--;cc----

PrevIous Rea?_~ata _V~wlth Respect to Ad?_~~~han~_.=t__ ~~_~ _
0
f---- ----;;;;-PrevIous Read Data Valid with Respect 10 Chip Enable
tOH2
0
- - -------- - - - ---'----'------''----"----'-----'---'-----

o

3-29

MCM5101-MCM51 L01

READ CYCLE TIMING

r-

I
Address

'RC

------------1

,,,nJE
--+--t('eo, I
__{Iy--I

L..-

IOH2-~

CE2

I

r-=r--==:t

'C02

-t
~---

00
ICommon 1/0)11)

Data
OUI

------I

'oo
'OF

IA

~.>-~.-- ~i
....

It\
-----------------~~~---------Data OiJl Valid

WRITE CYCLE TIMING
,

--- 'we -

1-+

Address ---------'*'--1.___-__-__--_-__-__
r--

'eWl

---------J

---I-~t=
-,

,

l-------I~;r
i
1

CE2

------.J

I

4

i

---...,

I

'eW2

~------------------~--------~---

00
(CC)mrr1[)n I/Oll.;O

'OS

'OH

---

Data In Siable

lAW
RiW

1 ~~r-I

lOW -

________________

,
~--

'WP

Notes
1 00 may bE':: lied low for separdte 1;0 opefallor~
2 During the write cycle. 00 IS "hlgh" for common \/0 ard "don', care" for separate I/O operation

3-30

®

MCM6508
MCM6518

MOTOROLA

1024 x 1 BIT STATIC RANDOM ACCESS MEMORY
The MCM6508 and MCM6518 are fully static 1024 x 1 RAMs
fabricated uSing CMOS silicon gate technology. They offer low power
operation from a single + 5 V supply with data retention to 2.0 V. The
16·pln MCM6508 has a single active low chip enable. The MCM6518 has
two select lines, In additIOn to the chip enable. Both part types latch ad·
dresses with COIP enable The MCM6518 IS especially suitable for
multiplexed bus microprocessors like the MC146805
• Low Standby and Operating Power
•

Single ± 10% 5 V Supply

•

Data Retention \0 2.0 V

•

Fast Access Time

•

Address Lalches

CMOS
(COMPLEMENTARY MOSI

1024 X 1 BIT STATIC
RANDOM ACCESS MEMORY

-'I

•

three State Outputs

•

Fully TTL Compatible Inputs/OulPUIS

.

•

Fully Slatlc Operation

•

Dlreci Replacement For
HarriS HM650SIHM6518
Inlersll IM6508/1M6518

L

"-

C SUFFIX
FRIT SEAL CERAMIC PACKAGE
CASE 620·06

~~ ~

c'"""

Type Number

Package Typical Current
Suffixes
2V
5V

MCM6508·751 MCM65t825

CrP

oI

MCM650830 / MCM65tS30

C/P

I

~A

MCM650S46/MCM651S 46

C/P

1.A

~A

oI

Maximum
Access Time

T emperatu re

Range

250 ns

010 70'C

I ~A

300 ns

1.A

460 ns

o 10
o 10

~A

fRIT SEAL CERAMIC PACKA!1{{ffO
CASE 726·02

Operating

PIN ASSIGNMENTS

70'C
70'C

'E

MCM650B AND MCM651B
FUNCTIONAL BLOCK DIAGRAM

16 VCC

1.

AO

t5

D

Al

14

W

A2

4

A3

t2

AS

A4

"10

A7

Q

MCM650S

13 A9

A6

I.

A5

Vss

MCM651S

IS

S2

t6

D

15

W

14 A9
13

0
Vss

:rJ--

I

.fo' MCM6508

L-E__S_1_s-_2_a_'e_._"_'''_''_'',_'_OO___________________A_O_A__'_A_2_A_3_A_4______

~

VCC

t7

AS

12

A7

11

A6

10 A5

ThiS deVice contains circuitry 10 protect the m
putS against damage due f0 hlQh static voltages
or electriC fields, however. It IS adVised that nor
mal precautions be taken to avoid applications of
any voltage higher than maximum rated voltages
to thiS high· Impedance CirCUit

DS9B29/1()'80

3-31

MCM6508·MCM6518

ABSOLUTE MAXIMUM RATINGS ISee Notel

Note Permanent device damage may occur If ABSOLUTE: MAXIMUM RATINGS are exceeded Functional operation should be restricted to
RECOMMENDED OPERATING CONDITIONS Exposure to higher than recommended voltages for extended periods of lime
could affect device rehablillY

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise notedl

RECOMMENDED DC OPERATING CONDITIONS

Note
1 TYPICdl valuf-!s ,ire TA

2~"C

rind nominal

~l'lJpl\- vOI:aqt~

Max

HO
12 Il

3-32

MCM6508e MCM6518

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range u'lless otherWise noted)

Output Load

0_8 V to VCC - 2_0 V
20 ns

Input Pulse Levels
Input Rise and Fall Times

, - - - - - - - - - - - - - - - - - - - - - - - - - , - - - - - -Svmbol

Parameter

Read or Write Cycle Time

tELEL
tELEH
tEHEL

E;;ai)i;P';I-se Width, Low
Enable Pulse Width, High
Enable Access T1me

Address Setup
~s-,-H-,-o-,-Id-;--------

----------

~Ot~-------------------

Data Hold

1 TTL Gate and CL = 50 pF

Timing Measurement Reference Level

- - - - - - - - - - - - - - - - - -- ------

MCM6S08-25
MCM6S08-30
MCM6S08-46
~
MCM6518-25 +-M
..Ci':M_65T--l"8-~30'___t____,,Mri:C:_M__,65-'-IT8i:-46_::_1 Units
Min
Max
Min
Max
Min
Max
---- 450- - - - r-i3Qns
350
----- 1---460
ns
300
250
100
150
270
ns

I

,1~~i
tWHDX

15V

-0

-1 E,~: Jt~ l
-

0

r -

0--

1

:-----;;~

-

--

~lseWidih

-- -----~==_=_-_-_==_=__=_--==_=__=__=_-_-_--t-:tWLWH-,----;)Or--f-l~-~~O~--~~
Wnle Enable 10 Outpul Disable
tWLOZ
160
- , 180
- ! 285 I ns
Output Dlsable--i6508-0-nlYi------- -------tEHOZ
-160
--=; --i8() - 285
ns
Output Disable 16518 Dnlyl
--------f-r.;S"'H=O"'Z+--- -----,00285
ns
WriteDiSable to OutputEnabie-----------------+-::tW"'-':H'c:O"'X'+160
!-- 180
285
ns

----=--+---,so -

Output En~~!e_l?5OBJ5:riiil--:-_-=':'__
~nalJle-16518-0nlyl _________

tELOX~ I - - _ -----;6() - - --I80-r------::tSLQX
tWLSH
tSLWH

Select to Wnte Pulse Setup
Pulse Hold

seleCtto Wnte

Enable to Write Pulse Setup
~-----------

160

28~_+

ns

r-180-+- - -285 i ---;,~
r-------.=-- -fio
ns

160
160

--27"'0-+----+----,n=-=s:----1

tWLEH
130
160
270
ns
- - - - - - - - - - - - ---'\ELWf:!- ----;-'j() ---~-f---;-§O -~---2"'7"0c--i------+-ns--1

--

Enab:e to Write Pulse Hold

130
130

_ _ _ _ _ _ _ _ _ _ _ _ L-____

_~

_ _L __ _

~~_~

READ CYCLE

~----~--------------IELEL--------------------~

A

E

---~---JI'~-~'~-------~----1

~--------====~*-~----------IELEH--------------~====~IE~H~f~l~==~
-----'1
IWLQZ

o
Q

PrevIous data
I$HOZ

ST

~------~---------------P------------------------LL------------"me Rele,ence _ _

-+-t-11-----+-t---+-f---+-1--+t-+---t2

Time
Reference

-1
0
1
2
3
4
5

r-

~

w

H

H
X

X
H
H

'-L
L

J
H

'--

3

4

TRUTH TABLE
Output
'nputs

L

L
L

H
H

H
X

X
H

A

X
V
X
X
X
X
V

D
X
X
X
X
X
X
X

Notes:

Q

Z
Z
X
V
V

Z
Z

Function
DIsabled
Ao(jress Latched

Output Enabled
OIJtpul Valid

Output Latched
Disabled (Same As 11
Next CYClf~ (Samp As 01

1 MCM6518 selected Dilly II both ~ and ~ are low and deselected 11 either
high ~ and ~ are connected to ton MCM6508
2 The address WithIn the memory WIll change only on failing t

3-33

Sf or 52

's

5

MCM6508-MCM6518

WRITE CYCLE

~'FLAX

A
F'EHfL

~....
;

I

w

~

--

J

'll EH

~

-- -!FlWH~~~"'"

..... IAVEL
Nt·)([

LEHEL_

I4---- I'WLWH
)(

VoIl,(! D,Ha

~!DVWH

IWHQX

I

H !I"

-=1

'AVE,
Vdl,d

J

ISlWH

~

IWLSt-I

/(

-tt---+-t
-+-t--+t---+t-+-to
,

,,,,, R"',,,,'''''----+-t

2

3

4

TRUTH TABLE
Inputs

Time
Reference

I

I

1

I

7
1

W

A

0

Q

H

X
X

X
X
l

X

X
X

Z
Z
Z
Z
Z

Addrf'SS Lolched
Wrl!p Mode
Data Wrillpn

Z

Drsablf':j (Sarn\'-' A.s

Z

Nt.,,;! Cycie (Sarnt-' As 0)

l

Iz

4

;,

Nntp.s
r\1

~

'l

0

I

~1

f,', ~ H

Output

~

",-', ,

l

J
X
X
X

l

X
X
X
i Ih'~1

V

X
X
X
X

V
V

X
X
X

V

S1

011111

S7

3-34

,11,'

;I'~'"

<111(j

Function
Disabled

Wrill-' COflipletpu

{1\'~("f'( To't!

I', ,:I't'l

"

S1 ,1/ S7.<,

5

®

MOTOROLA

MCM65116

Product Previe,",
CMOS
2048 x 8-BIT STATIC RANDOM ACCESS MEMORY
The MCM65116 IS a 16,384-bil SIalic Random Access Memory
organIZed as 2048 words by B-bilS, fabrlcaled uSing Motorola's highperformance silicon-gale complemenlary melal oxide semiconductor
IHCMOS) technology. II uses a design approach which provides the
simple timing features associated With fully static memOries and the
reduced power associated wilh CMOS memories. This means low
slandby power wlthOUI Ihe need for clocks, nor reduced dala rales due
10 cycle limes Ihat exceed access time
Chip Enable lEI controls Ihe power-down fealure. II is nol a clock bUI
ralher a chip conlrollhataffecls power consumpllon. In less than a cycle
time after chip enable lEI goes high, Ihe part automatically reduces its
power requirements and remams in this low-power slandby as long as
Ihe chip enable lEI remains high. The automatic power-down feature
causes no performance degradallon.
The MCM65116 IS m a 24-pln dual-m-line package With the Industry
standard pinout and is pinout compatible With the industry standard
16K EPROM/ROM.
• 2048 Words by 8-BIt OrganIZation

ICOMPLEMENTARY MOSI

2,048xB BIT
STATIC RANDOM
ACCESS MEMORY

~
-

I

- .

,II,

.

I

.'

LSUFFIX
CERAMIC PACKAGE
CASE 716

I

~.
n~t I~;FR'TSEALC ~ :~,I~
',r
' ' ! .':

I' ..

t

CASE 623

PACKAGE

• HCMOS Technology
• Single + 5 V Supply
• Fully Static: No Clock or Timing Strobe Required

PIN ASSIGNMENTS

• Industry Slandard 24-Pln Package
• Maximum Access Time
MCM65116-12
120 ns
MCM65116-15 - 150 flS
MCM65116-20
200 ns
•

13
2:l

VCC
AS
A9

Vi
G

Power DIssipation
80 mA Maximum (Actlvel
15 mA Maximum IStandbyl

A10

• Fully TTL Compallble
• Automatic Power-Down
• Pinout Compatible With Industry Standard 2716 16K EPROM and Mask
Programmable ROM

E

Al

007
006
001
004

BLOCK DIAGRAM

13

VSS

003

PIN NAMES

AO-AlO
OOO-OO?

W

G
t

Vce
VSS

Address Input
Data Input/Output
. Write Enable
Output Enable

. Chip Enable
.Power 1+ 5VI
_..

,Ground

Motorola reserves the nght to mak.e changes to
any product herein to Improve reliability, function or design Motorola does not assume any
liabIlity arisIng out of the applIcatIon or use of
any product or Circuit descnbed herein; neither
does It convey any license under ItS patent fights
nor the flghts of others

NP330/1 HlO

3-35

®

MOTOROLA

MCM65147

'----_____P_r_o_d_"_Ct Prev ie""
______

J

CMOS
I.COMPLIMENTARY MOSt

4096-BIT STATIC RANDOM ACCESS MEMORY
The MCM65147 IS a 4096-bll static Random Access Memory orga
nlled as 4096 words by l-blt, fabricated uSing Motorola's high perfor·
mance CMOS Silicon gate technology IHCMOSI It uses a design ap·
proach which provides the simple timing features associated with fully
static memo"es and the reduced power associated with CMOS
memories. This means low power without the need for clocks, nor
reduced data rates due to cycle times that exceed access times
Chip enable tE) controls the power·down feature_ It IS not a clock,
but rather a chip control that affects power consumption. Arter Egoes
high, Initiating deselect mode, the part automatically reduces Its power
requirements and remams In this low-power standby mode as long as E
remains high
The MCM65147 IS In an 18·prn dualln·lllle package With the Industry
standard pinout It IS TTL compatible In all resrects The dalo <)ut has
the same polarity as the Input data. A data Input and a separate three
state output prOVide flexibility and allow easy OR ties
•

Single + 5 V Supply

•

Fully Static Memory - No Clock or Timing Strobe Requlled

•

Automatic Power Down

•

Low Power DisSipation
75 mW TYPical IActlvel
500 I'W TYPical (Stand~yl

•

Directly TTL Compatible -

-~::-~~

-,

~

r<:

..•.. ---

• .

LSUFFIX

CERAMIC PACKAGE
' C A S E 680

'oJ '

,RIT

I

SEALCC~~:~:~
CASE

PACKAGE

no

,rl'"I((~ll
.

i

_i.__1 _:_ _ _..J

~-------PINASSIGNMENTS
AO ; •

Vee

Al

A6

A2

A7

A4

A9

0

All

All Inputs and Output

•

Separate Data Input and Three·State Output

•

Equal Access and Cycle Time

•

Maximum Access Time
MCM65147-55= 55 ns
MCM65147-70= 70 ns

•

4,096 X 1 BIT
STATIC RANDOM
ACCESS MEMORY

A8

___J

High Density 18-Pln Package

AlO

D

E

VSS

BLOCK DIAGRAM

Aoo---{X::::=JAt

o----a==:J

A2 c>-----Ci\:::=::J

~"O

o

A3 o-----1~===l a:

A4o----DC=j

Vcc=P,nt8
VSS = Pin 9

;;;
0

il

o

Memory Matrix

~'::0 A t l_~-=~N_N_~MEs. __ -Address

I

Chip Enable
Data In

IE
0

~~

64x64

pow::t~;~~ J

ec

A5~-~~===L__~

VSS

.

---------_.

Ground

-~-

----

DO----

Motorola reserves the nght 10 make changes to dny product
herein 10 'fTlpruve rellab!lity. funCllt)(', or deSign Motorol""
does not assume (lny liability anSlI1g out (11 the application O!

A6A7 A8 A9AlOA1t

use of any

p~odUCl

or CIrCUli described herein, neither does

II convey <'Iny license undtll ,IS Di:llf>n\ (lghTS nor the rights of
alhp.f:';

NP328/tl-80

3-36

®

MOTOROLA

MCM65148

Product Prev ie,""
CMOS

4096-BIT STATIC RANDOM ACCESS MEMORY

(COMPLEMENTARY MOS)

The MCM65148 IS a 4096-blt Random Access Memory organized as
1024 words by 4-blts, fabricated uSing Motorola's high-performance
silicon-gate complementary metal oXide semiconductor IHCMOS)
technology. For ease of use, the device operates from a single power
supply, IS directly compatible with TTL and reqUires no clocks or
refreshmg because of Its fully statiC design. Data access IS pa'llcularly
simple, Since address setup times arp not required. The output data has
the same polarity as the input data
The MCM65148 IS designed for memory applications where simple Interfacing IS the design obJective. The MCM65148 is assembled in an
18-pin dual-m-line package wllh the mdustry standard pmout A chip
enable (E) lead allows easy selection of an individual package when the
three-state outputs are OR-tied.
•

4096-BIT STATIC
RANDOM ACCESS MEMORY

~"~lll ) S[~c
~

II "'>'"
FLR"

'A(,AGE

:"ASf ;26

1024 Words by 4-811 Organization

• HCMOS Technology
• Single + 5 V Supply
• No Clock or Timing Strobe Required
• Industry Standard 18-Pln Conflgurallon
• Maximum Access Time
MCM65148-70 - 70 ns
MCM65148-85 - 85 ns
•

Automatic Power Down

•

Power DiSSipation
200 mW TYPical (Activel
100 ~W TYPical (Standby)

PIN ASSIGNMENT

I\b

f"Ti\-Ti'B

• Fully TTL Compatible

00

11

A·

• Common Data (nputs and Outputs
• Three-State Outputs for OR- Ties

A4

Ib

A8

,

A][ -,
All
Al

A2

BLOCK DIAGRAM
Vcc

P'I; 18

vss

Pill

r

9

\Iss

AO A9

W

E
001 004

VCC
VSS

lJOI

.,

V('l

'0 A9
14

lJO'

"

11

DO:?

I

'2

UO~~

11

D04

'0

W

H

Address Input
\.'V~I!e

Enab:p.

Chip Selec1
Data Inpul, Output
Powerl+'5VI
Ground

Motorola reserves the right to make changes to
any product herein to Improve reliability, 'unction or design, Motorola does not assume any
liability arising out of the application or use of
any product or Circuit described herein; neither

does It convey any license under Its patent rights
nor the nghts of others

NP331/1 t-80

3-37

@

MOTOROLA

CMOS LSI
1024-81T READ ONLY MEMORY

ILOWPOWER COMPLEMENTARY MOSI

The MCM 14524 is a complementary MaS mask programmable
Read Only Memory IROMI. TillS deVice IS ordered as a factory spe·
cial with its unique nattern specified by the user
This ROM is organized in a 256 x 4,ult pattern. The contents of
a specified address 1< AD, A 1, A2, A3, A4, A5, A6, A7 >1 will
appear at the four data outputs lBO, B 1, B2, B31 following the
negative going edge of the clock. When the clock goes high, the data

1024-81T
(256 X 4)
READ ONLY MEMORY

_. . 1_.

present at the output will be latched. The mf~mory Enable may be
taken low (lsynchronously, forcing the oatd outputs low and reset·
ting the output latches. This device finds dpplicdtioll wherever low
power or high noise immunity is a deSign consiueration.

•

J,Iii - ,

~,ode Protection on All Inputs

,,"

,l

45~" of VDD tYPical

•

Noise Immunity

•

Quiescent Current

•

Single Supply Operation - Either PositIVe or Negative

•

Memory Enable Allows Expansion

10 nA/package tYPical @ 5 Vdc

.

.l \

\ . :

" ~

L SUFFIX

P SUFFIX

CERAMIC PACKAGE

PLASTIC PACKAGE

CASE 620

CASE: 648

ORDERING INFORMATION

•

Output Latches Provide a Useful Storage Register

•

Supply Voltage Range

•

Capable of Driving Two Low power TTL Loads, One Low power
Schottky TTL Load to Two HTL Loads Over the Rated Temper·

c

. . .'

l

3.0 Vdc to 18 Vdc

MC14xxx

ature Range

I

_J

SU~f':e,:~,~~f::".ge

~

P
J\

PlaSllt Package

f: I,1 t"

"v'.

: :' ~:,:" ::-=-,=~i-~,=,_~[-"_,_._- - - f-:- -'~- '.~- :)'
""'11)'_""0'"

-----

OLl'

, ' 1·.'1111'

II

i

--'~-

1I0}fdgl'~

1',,'

H"

'~--~~~--,-

-.-- ..

~--.,--

or VOOI

.__________ L_.~~~i

I),,,.• ·."

1

"

.1

"

1 !
I

.,

"

:..:

" II>

• T low
Thlqh

~50C lOt AL D~v'CI:

howt~vl"f.

It IS

advised that

to ,h'$ high Ifllpr.'dt1nl..'i' nrCI/I(

appropr. I i< Add""'> I
OUTPUT DATA

BINARY TO HEXADECIMAL CONVERSION TABLE

LATCHES
0

X
x

1

BO

I

0

I

0

I

0

0

Care

t

'Ind,cates Cl,)nrents 01 spectf,erj Address

w;11 ap~)ear

BINARY
WORD
CARD
DESIRED CHARACTER

at outputs as stated above

(J

()

fT'lt~\flod$

Two

may be us..,d to transnllt the custom

m~!mory

~:i)ttefn to Motorola

0
(1

()

)

U

i

I

')

1

()

METHOD '" PuNCHED COMPUTER CARDS
A b:llarv
be punched

U 0
0 1

I)

1
~

._----.J

i

I

;:,-'_':~'j t~!·CIIr:.·,' ,-t;t:I'.''::;\!llt

1:1 ·"li1'-:i;'.~c;

f'H all 2SG words)

';';"':Itp(

In . ,;IlW~I(.dl

per card are punched

of I~ach de~lr.'d Qlltput nlay
ciJrds (tour cards <.Ire rt'qulred

()

Iword numberl order

li\ COitH'flf',S

12··thru 75

USlIlg

the

I

64 ...... ords
BH1dry

L'

()

I

:

1.1

{)

to

tabie. Columm 77 and 78 are used
to nurnber thp card:>, which IllU'3t OI! H' fllimerical ordpr Please
use characters as ~hOW,l In the tabli~ wh\~fl pdllr:hllig computer cards
Hexadecimal

U

converSion

ROM SAMPLE WORD PROGRAMMING FOR PUNCHED CARD
SAMPLE WORD
OUTPUTS

ADDRESS INPUTS
WORD
NUMBER

Al

[)

1

2

J

I

A6

';0

A4

AJ

A2

AI

a
a
a
o

a

a
a
a
a

0

a

o
o

0

1

0

a
a

{)

AO
o

B3

I

o

o
o

1

o

B2

o

B1

I

C.l\RD

BO

CHARACTER

o
J
J

o

o

l

Shown In colurnns

,.12
,

150ncard

below

I
I

I

A

0

Card

N°_I

WORD NUMBER

000
00000000000100111111111111111111111111111111111111111111111111111111111111101
JI JI j,
€: "
I

I

I

I

I

I

I I

I II II II Ij II 1~ II 'I II I' JIll ~')) 'I l~ II 11 11 "

)1 II )1 JJ J. )1 jl

II II "() II I I " I; II It ~ I' 1/ II II II )I Ii II ~. 10~' '.'

.1 ",: 61., II

~ 'I :1

'j

'I ;1 'I ., II

11 I I 1111 I 111 I I 1 1 1 1 I 1 I 1 1 I 1 1 1 1 111 1 1 1 1 1 I 1 1 1 I 1 I I 1 I I I I I I I I I I 1 I I I I I I I I I I 1 I I I I I I I I I III I
22222222222222222222222222211111111221211121111111212112222211111111111211111111
3 3 3 33 3 3 3 3 3 3 3 . . 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 J 3 J 3 J 31 J 3 J 3 J J 3 3 3
444 44 44 4 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 44444444444444444444444444444444444444

5555555555555555555555555555555555555555555555555555555555555555555555;555555555
6 6 6 66 6 66 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 G6 6 6 6 6 6 6 6 G6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 G6 6 6 6 6 6 6 6

11111111111111 1111 11 111 11111 1 11 111111 11 1 1 11 ).1 1111 ) 1 ) ) ) ) ) 1 ) ) ) 1 ) 1 ) ) ) 11 ) ) I 1 ) ) ) ) ) ) ) )
I I 8 . . . . . . I I 8 8 B8 B B B8 8 8 8 8 8 8 8 8 I 8 8 8 a 8 8 8 8 B8 B, B B8 8 8 8 8 8 6 8 8 8 6 S 8 6 8 8 8 8 B8 B B 8 8 8 8 8 8 ! 8 B8 8 B8 8 8 8
9999999999999999999999999999999999999999999999999999g939999999999999999999999999
I I

GLOI!l

~0

,

.1 'I

I ' I I, : \ ' I . I ,. "

,~ II II ; I '. ", : i ,! II "

II : I II !) : I 1\ "

.' il !i I~ II I; I, 10 .', Ii I' Ii 11 )~ ;, I, I' "

;

3-42

~. 'I .'

MCM14524

METHOD B: TRUTH TABLE
For customers who do not have access to punch cards, Motorola

will accept Truth Tables. When filling out the table, use the 0 to F
hexideClmal character in column "e".

CUSTOM PROGRAM for the MCM14524 Read Only Memory
WORD
0
1
2
3
4

C

WORD
51
52
53
54
55

5
6
7

56
57

8
9
10
11
12
13
14
15
16
17
18

59
60
61
62
63
64
65
66
67

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

58

68
69
70
71
72
73
74
75
76
77

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

C

WORD

C

WORD

C

WORD

102
103
104
105
106

153
154
155
156
157

204

107
108
109

158
159

209
210

160
161
162

211

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

205
206
207
208

163
164
165
166
167
168
169
170
171

212
213
214
215
216
217
218
219
220
221
222

172
173
174

223
224
225

175
176
177
178
179
180
181
182
183

226
227

184
185

228
229
230
231
232
233
234

135
136
137

186
187
188

235
236
237
238
239

138
139
140
141

189
190
191
192

240
241
242
243

142
143
144
145
146

193
194
195
196
197

147
148
149
150
151
152

198
199
200
201
202
203

244
245
246
247
248
249
250
251
252
253
254
255

3-43

C

@

MOTOROLA

MCM65516

Advance InforIllation
CMOS
ICOMPLEMENTARY MOSI

2048 x 8 BIT READ ONLY MEMORY
The MCM65516 IS a complementary MOS mask programmable byte
organized read only memory {ROMI The MCM65516 IS organized as
2048 bytes of 8 OltS, designed lor use In muitlplex bus systems It IS
fabrrcated uSing Motorola's Sl:,con gate CMOS technology, which of
fers low-power operation from a single 50 volt supply
The memory IS compatible with CMOS microprocessors that share
address and data lines Compatibility IS enhanced by pins 13, 14, 16,
and 17 which give the user the versatility of selecting the active levels of
each. Pin 17 allows the user to choose active high, aCTive low or a third
option of programmrng which IS termed the "MOTEL" mode If this
mode IS selected by the user, it provides direct compatibility with either
the Motorola MCl46805E2 or Intel 8085 type microprocessor serres, In
the MOTEL operation the ROM can accept either polarrty Signal on the
data strobe Input as long as the Signal toggles dunng the cycle, This
unique operational f~ature makes the ROM an extremely versatile part.

2048 X 8 BIT
MULTIPLEXED BUS
READ ONLY MEMORY

'?~~~~f{ffr7
\ j'J ~ :
~

L SUFFIX

CERAMIC PACKAGE
CASf 68006

• 2K x 8 CMOS ROM
• 3 to 6 Volt Supply
•

Access Time
430 ns {5 VI MCM65516-43
550 ns {5 VI MCM65516-55

•

Low Power'Dlsslpatlon
30 rnA Maximum (Actlve l
50 I'A Maximum (Standbyl

•

Multiplex Bus Dllectly Compatible Wltl1 All CMOS Microprocessors
iMCl46805E2, NSC8001

PIN ASSIGNMENTS

AUO

~~vcc

AOI
A02

3

17

pc,'

t6

pl

•

Prns 13, 14, 16, and 17 are Mask Programmable

•

MOTEL Mask Optron Also Insures Dllect Compatibility with NMOS
Microprocessors Like MC6803, MC6801, 8085, and 8086

A04[ 5

14

•

Standard 18 Prn Package

;.\05

13

E

A06

12

AIO

AQ)

1t

A8

VSS

10 A8

AQ3[ 4

AOO,AOl
BLOCK DIAGRAM

15 pM

PS

E

Sf
G

PIN NAMES
AGO-A07

A8,A 10
M .
E
S
G

M---

S

Ad(jress/Dala Output

. Address
Multiplex Address Strobe
Ch,p Enable
Chip Select
.Data Strobe ,Output Enable)

Disables

Output Buffers

E, E Llrnlt
Power O:sslpal'on

ThiS device contains CirCUiTry tu protect

ROM Array

the Inputs agamst. damage due to high
sla11(, voltages Of electflc fields, however,

1128x 1281

It 15 advised that normal preCi::Iul10ns be
taken to aVOid application of any VOltage

higher ttlan maXilllum rated voltages 10
Ibis rllgh-lmpeda11ce ClfCUI;

ADI854/9-80

3-44

MCM65516

ABSOLUTE MAXIMUM RATINGS ISee Notel
Rating

Symbol

Supply Voltage

Value

o 3 tu--

Vcc

Input Voltage

Vm

Operating Temperature Range

TA

Storage Temperature Range

Unit

+

70

-- 0 3 to + 7 0

o 10

+ JO

V
"e

-65 to +150

TstQ

V

'c

NOTE Permanent device damage may occur If ABSOLUTE MAXIMUM RATINGS are exc:eeded FlJnctlonal operation should be restncted to

RECOMMENDED OPERATING CONDITIONS Exposure to higher than recommended voltages for extended periods uf time could al·
feet device reliability

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherWise noted)

RECOMMENDED OPERATING CONDITIONS
Parameter

Symbol

Min

Nom

Max

Unit

Vce

45

50

55

V

Input High Voltage

VIH

VCC - 2 0

5.5

V

Input Low Voltage

VIL

-- 03

--

08

V

Supply Voltage
IV CC must be applied al least 100 J,L~ before proper device operation

IS

achieved)

RECOMMENDED OPERATING CHARACTERISTICS
Characteristic

MCM66616-43

Symbol

MCM66616-55

Unit

Test Condition

Min

Max

Min

VOH

Vce- OAV

-

Vec-04 V

VOL

-

0_4

-

OA

V

Supply Current (Operattng)

ICC1

-

30

-

30

rnA

CL - 130 pF, V," - VIH to VIL
tcyc= 1.0 ~s

Supply Current IDC Actlvel

ICC2

-

100

-

100

~A

Vin - Vee to GND

Standby Current

IIS6

75

~A

V,n - VCC to GND

- 10

+10

~A

-10

+ 10

~A

Output High Voltage

Max

v

Source Current - 1,6 mA
Output Low Voltage
Sink Current + 1.6 mA

Input Leakage
Output Leakage

CAPACITANCE

50

lin

-10

IOL

-10

+ 10
+ 10

(f= 1 0 MHz, TA-=25 vC periodically sampled rather than 100% tested)

I

I

Characteristic

I Input Capacitance

Symbol

I

C,n
If--:cO-'u-=tp':'u-=t-=c:::a:'':p':'ac-=,t-a:'':n':'ce-,------------~-----------------------111-- Cout

I Max I Unit

I :, I
I 1251

of
pF

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherWise noted I
READ CYCLE
CL = 130 pF
MCM66616-43

Symbol

Parameter

MCM66616-s6

Address Strobe Access Time

tMLDV

Min
-

Read Cycle Time

tMHMH

580

-

725

Multiplex Address Strobe High to Multiplex Address Strobe Low (Pulse Width)

tMHML

150

175

Data Strobe Low to Multiplex Address Strobe Low

'GLML

50

--

Multiplex Address Strobe Low to Data Strobe High

tMLGH

100

160

Address Valid to Multiplex Address Strobe Low

tAVML

50

50

Chip Select Low to Multiplex Address Strobe Low
Multiplex Address Strobe Low to Chip Select High
Chip Enable Low/High to Multiplex Address Strobe Low
Multiplex Address Strobe Low to Address Don't Care

50

- - ~.l.ML

-

tMLSH

50

tELML
tEHML

50
50

Max
430

-

- ---

Min
~

50

ns

-

ns

-~

ns

--

ns
ns
ns

~-

~
ns

50
50

ns

50

80

tGHDV

175

200

Data Strobe Low to Hlgh-Z

tGL.DL

Data Strobe High to Address Don't Care

tGHDX

3-45

550

80

Data Strobe High to Da1a Valid

160
-~

Unit

Max

50

tMLAX

2 0 - r-----

.--

20

--

ns

ns
100- ~
-

ns

MCM65516

~-------I

READ CYCLE TIMING

IMHMH (Redd Cycle

,

!.---I

'''Hi'.':

llfTl£:)

-------------+{

---.j

!

'/ -,

A8

:,~,

Ail'

AGO :0 AQ1

V,H

V'L

~~l8~~~~:8§8~~>< I'---+-J >--------<'X>
Dor'~

Care

~-~---!MLDV------~~

FUNCTIONAL DESCRIPTION

of address strobe. Address strobe has a mrnlmum pulse
Width requirement since the Circuit is internally pr8charged
dunng this time and IS setup for the next cycle on the trading
edge of address strobe. Access time IS measured from the
negative edge of address strobe
The part IS eqUipped With a data strobe Input IGI which
controls the output of data onto the bus Irnes after the addresses are off the bus. The data strobe has three potential
modes of operation which are programmable With the ROM
array. The first mode IS termed the MOTEL mode of operation. In thiS mode, the Circuit can work With either the
Motorola or Intel type microprocessor series. The difference
between the two senes for a ROM peripheral IS only the
polarity of the data strobe signal. Therefore, In the MOTEL
mode the ROM recognrzes the state of the data strobe signal
at the trailing edge of address strobe Irequ"es a setup and
hold tlmel, latches the state Into the CIrcuit after address
strobe, and !Urns on !he data outputs when an opposite
polarity signal appears on the data strobe Input. In this manner the data strobe input can work With either polarity Signal
but that Signal must toggle dUring a cycle to output data on
the bus Irnes. If the data strobe remains at a d.c level the
outputs Will remain off. The data strobe Input has two other
programmable modes of operation and those are the standard static select modes Ihlgh or lowl where a d.c. Input not
synchronous With the address strobe will turn the outputs on
or off
The chip enable and chip select Inputs are all programmable with the ROM array to either a high or low select. The
chip select acts as an additional address and is latched on the
address strobe trailing edge. On deselect the chip select
merely turns off the output drivers acting as an output
disable, It does not power down the chip The chip enable rnputs, however, do put the chip rn a power down standby
mode but they are not latched With address strobe and must
be maintained ,n a d.c. state for a full cycle,

The 2K x 8 bll CMOS ROM IMCM655161 shares address
and data lines and, therefore, IS compatible with the malority
of CMOS microprocessors In the Industry The package size
IS reduced from 24 pinS for standard NMOS ROMs to 18 pins
because of the multiplexed bus approach The savings In
package size and external bus I!nes adds up to tighter board
packing density which IS handy for battery powered hand
carned CMOS systems ThiS ROM IS designed with the intention of having very low active as weI' as standby currents
The active power dlsslpallon of 15C mW fat VCC = 5 V
freq = 1 MHzl and standby power of 25C ~W lat VCC = 5 VI
add up to low power for battery operatIon, The tYPIcal access time 01 the ROM IS 200 ns making It acceptable for
operation With today's eXisting CMOS microprocessors
An example of thiS operation IS shown 1/' Figure 1 Shown
IS a tYPical connection with either the Motorola MC146805E2

CMOS microprocessor IM6BOO serres) or !he Na!lonal
NSCBOO which IS an 8085 or ZOO based system The main difference between ttle systems IS ttlal Ihe dala s\robe IDSI on
the MCl46805E2 and ttle read bar IRDI on the 8085 both
control the output of data from n'8 ROM but are of OPPosite

polarity The Motorola 2K x 8 ROM can accept either polanty
Signal on the data strobe Input as long as the signa! toggles
dUfing the cycle ThiS IS termed the MOTEL mode of operation ThiS unique operational feature makes the ROM an extremely versatile pan Further operational features are explamed In t~le foiioWlflg section
Operational Features
In order to operate In a multiplexed bus sytem the ROM
latches, for one cycle, the address and chip select Input tnformation on the trading edge of address strobe IMI so the
address Signals can be taken off the bus
Since they are latChed, the address and chip select Signals
have a setup and hold time referenced to the negative edqe

3-46

MCM65516

FIGURE 1
TYPICAL MINIMUM SYSTEM - MOTOROLA

lAO
LI

Microprocessor
MCl46805E2

High Order Address Bus 151

Bus Control Signals (3)

TYPICAL SYSTEM - NATIONAL

v

C
~

~ ~~

r01
Xl
_BREO

X2

~,..----~
....,+-~--+-J
RESET
A8- A15

A12 A13

NSCaoo

I

ADO-AD?
_

~

t-__--,

4 - - BACK
_WAIT

Man~set

INTA
INT

K;==

ALE

RDt----i

_NMI

,---~A

WR

_~B

IO/"Mt-----I

_RSTC
RFSH

CLKt----i
SO _

_

_1'5

A13

/I

t-----"..-----.---r---.--......-----.).
~r~~_+~--~~~~------_

-

Sl_
RESET OUTI----i

1!
u
>

z

co

r--

VV
A8-A 10 AOO-AQ7

VCCGND-

,
M

G

2K x 8 ROM
MCM65516

3-47

E

, 1
S

CE

~ToIN

I

ADOAD7

~

I@

I~

4:
Muxed RAM

To OUT

PA

PB

of:3~

I:::;
-

a:

PC

MCM65516

CUSTOM PROGRAMMING
InformatIon for custom memory content may be sent to
Motorola In one of two forms (shown In order of preferencel:

By the programming of a single photomask for the
MCM65516 the customer may specify the content of the
memory and the method of enabling the outputs, or selection of the "MOTEL" optIOn IPm 171.
Information on the general options of the MCM65516
should be submitted on an OrganIZational Data form such as
that shown m the below figure

1 Magnetic Tape
9 track, 800 bPI, odd panty written In EBCDIC character code Motorola's R.O.M.S format.
2 EPROMs
One 16K IMCM2716, or TMS27161

FORMAT FOR PROGRAMMING GENERAL OPTIONS

ORGANIZATIONAL DATA MOS READ ONLY MEMORY

Customer"

Company ___________________________________
Motorola Use Only
Part No ___________________________________

Originator ___________________________________

Ouote. _____________________________

Part No

Speci/. No .. _________________________

Phone No ---------------------------

Programmable Pin Options

13

ACllve

Low

14

15

17

u

[J

[J

[]

[j

MOTEL 0

3-48

Bipolar Memories
TTL, MECL-RAM, PROM

4-1

@ MOTOROLA

MCM93415

1024-BIT RANDOM ACCESS MEMORY

The MCM93415

TTL
1024 X 1 BIT
RANDOM ACCESS MEMORY

a 1024-bit Read/Write RAM organIZed 1024

IS

wOlds by 1 bIt.
The MCM93415 IS deSIgned for butler control storage and hIgh
performance main memory applications, and has a typical access
tIme of 35 ns.
The

MCM93415

has

full

decodIng

on-chip,

separate

data

Input and uatd output lines, anrl an active low chip select. The

deVIce

IS

fully

compatIble

With

standard

F SUFFIX

DTL anrl TTL logiC

CfRAMIC PACKAGE .....

families dnd features drl uncommitted collector output for ease

•

Uncommitted Coi(ector Output

•

TTL Inputs and Output

•

Non-Inverting Data Output

•

High Speed
Access Time - 35 ns TYPical
Chip Select·

~.

_
.'

16!

15 no TYrlcal

•

Power Dissipation Decred58s \.vlth Increasmg Temperature

•

Power DISSIIJatlon 0.5 mW!Bit TYPical

•

Olganlled 1024 Words X 1 Bit

_.~
__ ~. _..
_r_-_;~:_~'_:::<._
--."

CASE 6 5 0 . r :

of memory expdnSlon

1

f

,f

:

'

I"

:

D SUFFIX
CERAMIC PACKAGE

CASE 620

-

..

BLOCK DIAGRAM

P SUFFIX

PLASTIC PACKAGE

CASE 648

Sense Amp
and

Write Drivers

PIN ASSIGNMENT

16

Wor(J

Drivers

I.

15

32 X 32
Array

14

WE

13

12

c-s

"

10
15

D,n
1 of 32

1 of 32

Decoder

Decoder

PiQ Designation

CS
AD - A9

13
AO

A 1 A2 A3 A4 A5 A6 A 7 AS

A9

Address Inputs

Write Enable

Vee - Pin 16
Gnd . Pin 8

Data Input
D out

4-3

Chip Select

Data OutPut

MCM93415

FUNCTIONAL DESCRIPTION
The MCM93415 is a fully decoded 1024-blt Random Access
Memory organized 1024 ......ords by one bit. Bit selection IS
achieved by means of a 1 O·blt address, AD to A9.
The Chip Select input provides for memory array expanSion.

RL

IS In

kit

FO "" number of TTL Unit Loads lUll driven
ICEX "'- Memory Output Leakage Current
VOH -= RequlTeu Output High Level at Output Node

system performance
The read and write operations are controlled by the state of

(WE.

VCCIMIIl)-VOH

nllCEXJ + FOIO.041

number of Wired-OR outputs tied together

For large memories, the fast chip select access time permits the
decoding of Chip Select (Cs) from the address Without affecting

the active low Write Enable

VCCIM,nJ
IOL - FOll.6J

IOL

Pin 14). With WE held low and

c

Output Low Curnmt

the chip selected, .t~ data at Din IS written Into the addressed
toeatlon. To read, WE IS held high and the chip selected. Data 111

The minimum RL value

the specified locatron IS presented at DouT and IS non-HlVerted

abtllty. The maximum RL value
at VOH. One Unit Load

OR applications. In any application an external pull·up reSistor of
d

hlyh at the output when

1<;

determined by the output and

input leakage current which must bf~ supplied to hold the output

Uncommitted collector outputs are provided 10 allow Wired
AL value must be used to provide

limited by output current slnkmg

IS

c-

40 p.A Hlgh/I.G rnA low

It IS

off. Any RL value Within the range specified below rTlily be used

ABSOLUTE MAXIMUM RATINGS (Note II

TRUTH TABLE
Inputs

Storage Temperature
Ceramic Package ID and F Suffixi

- 55°C 10 + 165°C

PlastiC Package IP SuffiX)

- 5S0C 10 + 125°C

Open

Operating Junction Temperature, T J
Ceramic Package (0 and F SuffiX)

165°C

125°C

PlastiC Package (P SuffiX)

- O. 5 V to + 7.0 V

V CC Pin Potential to Ground Pin

Output

C$

WE

Om

Collector

Mode

H

X

X

H

Not Selected

L

L

L

H

Write ·'0"

L

L

H

H

Wnte "1"

L

H

X

DOll!

Read

-0.5Vto-+55V

Input Voltage (dc)
Voltage Applied to Outputs (Output High)

H '- High Voltage

-0.5 V to 15.5 V

L .= Low Voltaqe Level

120 rnA

Output Current (dc) (Output Low)

U~vel

X

Don't Care (High

01

Low)

-12 rnA to 15.0 rnA

Input Current Idc)

NOTE 1: DeVice damage may occur If ABSOLUTE MAXIMUM RATINGS .H(~ e)(Ct~eded

GUARANTEED OPERATING RANGES (Note 2)
Supply Voltage (Vee)
Part Number

Min

MCM934150C, PC

4.75 V

MCM93415FM, DM

4.50 V

I

I
I

Nom
5.0 V
5.0 V

I

Ambient Temperature (T A)

Max

I 5.25 V
I 5.50 V

DoC 10
- 55 0 C 10

75()C

t
t

125 0 C

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operatIng voltage and temperature range unless otherWise noted)

Limits
Symbol

Characteristic

Min

Max

Unit

0.45

Vdc

Conditions

VCC ~ Mm,IOl ' 16mA

VOL

Output low Voltage

VIH

Input High Voltage

VIL

Input Low Voltage

0.8

IlL

Input low Current

-400

.uAdc

Vec"" Max, V ln

0.4 V

IIH

Input High Current

40

}JAdc

Vce~: Mux, V tn

·4.5 V

1.0

mAdc

VCC·- Max, V,n·- 5.25 V

ICEX

Output Leakage Current

100

}.lAdc

VCD

Input Olode Clamp Voltage

-1.5

Vdc

ICC

Power Supply Current

130

mAdc

155

mAdc

T A - ODC

170

mAdc

TA"" Mill

2.1

4-4

Vdc

Guaranteed Input High Voltage for All Inputs

Vdc

Guaranteed Inpui Low Voltilge for All Inputs

VCC ., Max, V out -45V
VCC

~

Max, lin

~

-10 rnA

I

TA - Max

l

I

VCC

-=

Max,

All Inputs Grounded

MCM93415

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherwise noted)

AC TEST LOAD AND WAVEFORM

Input Pulses

Loading Condition

All Input Pulses

>-.--<

3

,,--------,.,

5~VD~;I
_

300 H

- -- - --

--~~ - - 90:

: :

Gnd':'"......,

,.......10n$

,

MCM93415

3~ ~

30 pF
Capacitance

60012

--:-r:1~10ns

( Inclucllng

0

: I

__

Gnd-:- ---4

1--10n5

',-----

~I,
-1~ _

- - - -- - - -

"' v_p ~)~" _ _ _ _ _ _ _

Scope and Jig}

0

~\-_'OI'

1- _ _ _ _ _ _ _ _

--10%

-90%

I'~10ns

~

MCM93415DC. PC MCM93415DM.FM
Symbol

Characteristic (Notes 2. 3)

READ MODE

Min

Ma.

Ma.

Min

Unit

Conditions

ns

DELAY TIMES

tACS

Chip Select Time

35

45

See Test Circuit

tRCS

Chip Select Recovery Time

35

50

and Waveforms

'AA

Address Access T'me

45

60

WRITE MODE::

ns

DE LA Y TIMES

'W5

Write Disable Time

35

45

'WR

Write Recovery Time

40

50

See Test Circuit
and Waveforms

ns

INPUT TIMING REQUIREMENTS

30

40

See Test Circuit

'WSO

Data Setup T irne Prior to Write

5

5

and Waveforms

tWHO

Data Hold TIme After WrIte

5

5

10

15

10

10

'W

Write Pulse Width (to guarantee write)

tWSA

Adclrcss S€tup TIme (at

tWHA

Address Hold Time

tw

Min}

twscs

Chip Select Setup Time

5

5

tWHCS

Chip Select Hold TIme

5

5

READ OPERATION TIMING DIAGRAM

Propagation Delay from Address Inputs

Propagation Delay from Chip Select

AO-Ag--y
Addre~,-_ _ _ _ _ _ _ __
I

~~~at Output - - - - . . . : . . . . - - ,
I

1 A C5

\'---i----,r

Dout

Data Output

I

-----t-----i
(All Time Measurements Referenced to 1.5 V)

4-5

MCM93415

WRITE CYCLE TIMING

cs
Chip Select

'\

r

I

I

~~d':'~'_n_p_u_"___....:__-J~
~~a
~

)f(. .---t-[____

l:i

Input

_ _ _ _- I -_ _+--J

1---,\

W-E
Write Enable

D~ut

I

I

I

tW---Ijg I
'WHol

I

'---tWHA---I

ItWSD~

I

I

I
I
I

~tWHCS~
I

111

f--tWSA.......,.j

i

Data OutPut
t----twscs---l
______________________
-+I__- J

\1

II

I

~

______________

I
I

tws -+--------I

r------t-- tw A

(All Time Measurements Referenced to 1 5 V)

NOTE 2

DC and AC Specifications I,mlts guaranteed with 500 linear feet per minute blown air Contact your Motorola Sales Representative
d extended temperature or moddled operating conditions are deSired

1/ JA

(Junction to Ambient)

Package

Blown

D Suffix

50 0 CIW

85 0 CIW

15 0 CIW

F Suffix

55 0 CIW

90 0 CIW

15 0 CIW

P Suffix

65 0 CIW

100 0 CIW

25 0 CIW

Still

/J JC (Junction to Case)

NOTE 3. The AC limits are guaranteed to be the worst case bit In the memory

4-6

®

MCM93425

MOTOROLA

1024-BIT RANDOM ACCESS MEMORY
The MCM93425 is a 1024-bit Read/Write RAM, organized 1024

TTL

words by 1 bit.
The MCM93425 IS designed for high performance main memory
and control storage applications and has a typical address time of
35 ns_

1024 X 1 BIT
RANDOM ACCESS MEMORY

The MCM93425 has full decoding on-chip, separate data input
and data output lines, and an active low-chip select and write enable.
The device is fully compatible with standard DTL and TTL logic
families. A three-state output is provided to drive bus-organized
systems and/or highly capacitive loads.

F SUFFIX
CERAMIC PACKAGE
CASE 650

Three-State Output

•
•

TTL Inputs and Output

•

Non-Inverting Data Output

•

High Speed Access Time - 35 ns Typical

_

Chip Select - 15 ns TYPical

'. I

•

Power Dissipation - 0_5 mW/Bit Typical

•

Power DISsipation Decreases With IncreaSing Temperature

.

.r,
r I : .' ,.

,'

D SUFFIX
CERAMIC PACKAGE
CASE 670

IfIIIIIIe~ ~
,.rmyn

BLOCK DIAGRAM

P SUFFIX
PLASTIC PACKAGE

Sense Amp

CASE 648

and

Write Drivers

PIN ASSIGNMENT

Word
Drivers

32 X 32
Array

1.

16

WE

15
14
13

CS

12
11

6

15
D,n
, of 32

Decoder

10

1 of 32
Decoder

9

Pin Description
13
AO

A 1 A2 A3 A4 A5 A6 A 7 AS

Vee"= Pin 16

cs

God'" Pin 8

AO·A9

Address I nputt;

WE

Write Enable

Din

Data Input

D out

Data Output

A9

NOTE: Logic driving sense amp/write dr .... ers depicts
negative-onlV' write used on C4m

4-7

Chip Select

MCM93425

FUNCTIONAL DESCRIPTION
The MCM93425 IS a fully decoded 1024-blt Random Access

lOW, the data at Din IS written Into the addressed !oeatlon. To

Cs

Memory organized 1024 words by one bit. Word selection IS
achieved by mF!ans of a 1 O-blt address, AD -- A9
The Chip Select
Input provides for memory array expan-

location IS presented at 00UI and IS non-Inverted.

Sion. For large memories, the fast chip select tlrne permits the

speeds

decoding

Imped othl-'rWI')" n()tl~cl)

r--

UnIts

CondLtLon!.

V"c -

Vee

Mill, IOL . 16 mA

-VI-I;;'---

'OH
IOH

- 10 J mA, Vce
5') mA

Vrle

Vee

f------jf----:------::-----,,-,---=-:--------------- loft

Output Current (High Z)

Output High Voltage

I MeM9J42S0C~-PCI MCM934:?~FM, DM

24

Vri<

---7~

-

---

I--V-e-D-+-'-n-p-ut-D-,a-d-e-e-'a-m-p-V-,.L"-til-4~-------~-f--"-·--·--· -~'l-S'
ICC

Power Supply Current

- - - - - - --- - - --'130

---- -iSS

TA

iliArle

-t----:,c'A"-----:u""::e-+1

rn-A"--''',--;

_-.2~

4-8

M<.IX,

1111

MilK

___

MI(l

I

Vce

5UV

5'\

10 InA

--------+

M •• x,

AI: InplJt'>

(,rl)lJnd,~d

--~---------~

MCM93425

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherwise noted)

AC TEST LOAD AND WAVEFORMS

Input Pulses

Loading Conditions
All Input Pulses

:t~-

~
• - i - -

1 - - - - - - - -\--90%

- - - - -:-\

1 I

I

-=_ 1-"-'0 n,

----1

1--'0 n,

::3---------{
_____

30 pF

J.:>~p_~~\

----::!:""""

I

'0%

--/~-90%

I

I

t----' a n,

-= ~

Load B

Load A

-'0%

I

1

--i 1--' a n,

MCM93425DC. PC MCM93425DM. FM

Characteristic (Notes 2, 4)

Symbol
READ MODE

DELAY TIMES

Min

Max

Max

Min

Units

Conditions

n,

tACS

Chip Select Time

35

45

See Test CirCUit

1ZACS

Chip Select to High Z

35

50

and Waveforms

tAA

Address Access Time

45

60

n,

WRITE MODE

DE LA Y TIMES

tzws

Write Disable to High Z

35

45

tWR

Write Recoverv Time

40

50

See Test CirCUit

and Waveforms

n,

INPUT TIMING REQUIREMENTS

tw

Write Pulse Width (to guarantee write)

30

40

See Test CirCUit

tWSD

Data Setup Time Prior to Write

5

5

<=====

------i

MCM93425

WRITE CYCLE TIMING

CS
Chip Select

AO

A9

-5

D,n
Data Input

¥r--+--f

~!
i t ~~-~ 1---+-1
; , ILJLi

-+---

WF."
Write Endi.lc

TWSO

-..J ~-

t-- - -twscs

~A-..I

~ __

-

tWHCS

H.";,h"Z - -, - \

Load A

D out
Data Output

-· . .1

Load B

I

lWHD~

-...J

~- tWSA

I

tWR

J

High Z _ _ _ _

____

~_-_ _ __

(All ahove measurements referencp. to 1 5 VI

WRITE ENABLE TO HIGH Z DELAY
&V

WE
Write Enable

00ut

TZWS----1

Data Output "0" Level

~_ _ _ _
05 V High Z

5 pF
. " " Level

0.5 V

°out

High Z

'-----

Data Output
Load C

Propagation Delay from Chip Select to High Z

CS

1'5V

Chip Select

~tZRCS

°out

Data 0 u tp_u...;I_·..:;·O_"_L::.;e...;v.:.el~--'I

,---0 5 V High Z

. " " Level

0.5 V

°out

' - _ _ _ _ High Z

Data Output
(All

tzxxx parameters are measured at a delta of 0.5 V from the logic level and using Load C)

NOTE 2: DC and AC specifications limits guaranteed with 500 linear feet per minute blown 81r. Contact your Motorola Sales Representative
if extended temperature or modified operating conditions are desired.

(J JA

(Junction to Ambientt

Package

Blown

Still

9 JC (Junction to Case)

D Suffix

50 0 C/W

85 0 CiW

15 0 C/W

F Suffix

55 0 C/W

90 0 C/W

15 0 C/W

P Suffix

65 0 C/W

1000 C/W

25 0 C/W

NOTE 3: Out~ut shorr circuit conditions must not exceed 1 second duration
NOTE 4 The maximum address access time IS guaranteed to be the worst case bit in the memory.

4-10

®

MCM7680
MCM7681

MOTOROLA

MIll

8192-BIT PROGRAMMABLE READ ONLY MEMORY
The MCM7680!81 together with the MCM7620!21, MCM7640/43

8192-BIT PROGRAMMABLE
READ ONLY MEMORIES

comprise a complete, compatible family having common dc electrical characteristics and identical programming requirements. They

are fully decoded, high-speed, field-programmable ROMs and are
available

In

MCM7680 - 1024 X 8 - Open-Collector
MCM7681 - 1024 X 8 - Three-State

commonly used organizations, with both open-collector

and three-state outputs_ All bits are manufactured stOring a logical
"1" (outputs high), and can be selectively programmed for logical "0"
(outputs low).
The f,eld·programmable PROM can be custom-programmed to
any pattern using a simple programming procedure Schottky bipolar
circuitry provides fast access time, and features temperature and
voltage compensation to minimize access time variations.

Pinouts are compatible to industry-standard PROMs and ROMs.
In addition, the MCM7680 and 81 are pin compatible replacement
for the 512 X 8 with pin 2 connected as A9 on the 1024 X 8.

I n addition to the conventional storage array, extra test rows and
columns are included to assure high programmability, and guarantee

CE RAMie PACKAGE

parametric and ac performance. Fuses in these test rows and columns

CASE 623

are blown prior to shipment.
•

Common de Electrical Characteristics and

•

Simple, High-Speed Programming Procedure
(0.1 seconu per 1024 8its, Typical)

•

Expandable - Open-Collector or Three-State
Outputs and Chip Enable Inputs

•

Inputs and Outputs TTL-Compatible
Low Input Current - 250 /lA Logic "0",40 /lA Logic "1"
Full Output Drive - 16 mA Sink, 2_0 mA Source

•

Fast Access Time - Guaranteed for Worst-Case
N2 Sequencing, Over Commercial and Military

•

Pin-Compatible with Industry-Standard PROMs and ROMs

Programming Procedure

PIN ASSIGNMENT

24

Temperature Ranges

23

22
4

ABSOLUTE MAXIMUM RATINGS ISee Note)
Rating

21
20

Symbol

Value

Unit

VCC

+ 70

Vdc

V,"

+5.5

Vdc

VOH

+7.0

Vdc

ICC

650

mAde

10

Input Current

I,"

-20

mAde

11

14

Output Sink Current

10

100

mAde

12

13

SUpply Voltage (opf>rattng)
Input Voltage
Output Voltage (operating)
Supply Current

18

8

TA

Storage Temperature Range

T stg

-55to+150

TJ

+175

-55 to 'i'"125
o to +70

°c
°c

.,.

NOTE' Permanent device damage may occur ,I ABSOLUTE MAXIMUM RATINGS
Functional operation should be restricted to RECOMMENDED
exceeded
OPERATING CONDITIONS
Exposure to higher than recommended . . ortages
for extended periods 01 time could allect devIce reliabilttv. (While programmrng,
follow the programming speCifications.)

4-11

17
16

°c

Operating Temperature Range
MCM76xxDM
MCM76xxDC

Maximum Junction Temperature

19

15

MCM7680, MCM7681

DC OPERATING CONDITIONS AND CHARACTERISTICS
RECOMMENDED DC OPERATING CONDITIONS
Parameter

Symbol

Supply Voltage

Min

Nom

Max

4.50
4.75

5.0
5.0

5.50
5.25

Unit
Vdc

Vee

MCM76)(xOM
MCM76xxDC

Input High Voltage

V,H

2.0

-

.-

Vdc

Input Low Voltage

V,l

-

-

0.8

Vdc

DC CHARACTERISTICS
Three-State
Output

Open·Collector
Output
Symbol

'RA. 'RE

Parameter

Test Conditions

Address/Enable

"1"

V,H

Vee Max

Min

Input Current

"0"

V,l

045 V

Output Voltage

"1"

10H

"0"

'Ol

-2.0 mAo Vee" Vee M,n
-+16 mA, Vee
Vee Min

10HE
'OlE

Output DIsabled
Current

"1"
"0"

VOH. Vee Vee Max
'0.3V.Vec Vee Max
VOL

10H

Output Leakage

"1"

VOH.Vec

VCl

Input Clamp Voltage

lOS

Output Short

ICC

Power Supply Curren!

CirCUIt

I,n

Current

(f - 1.0 MHz, T A

Max

Unit

40

}JAde

-0.1

-0.25

mAde

3.4
0.35

0.45

Vdc

100
N/A

100
-100

.uAde

100

N/A

}JAde

-1.5

-1.5

Vdc

70

mAde

150
170

mAde

Min

TVp

-0.1
0.35

-

Vee Max

-10 mA

Vec Vee Max, Vout 0.0 V
One Output Only for 1 s Max

-0.25

-

N/A

N/A

2.4

0.45

N/A

Velc

15

,uAdc

VCC - VCC Max

MeM7680iMCM7681 DC
MCM7680iMCM7681DM

CAPACITANCE

Max
40

VOH
VOL

'FA.'FE

Tvp

All Inputs Grounded

110
110

110

150
170

110

mAde

25°C, perlodicilily sampled rather than 100% tested.)

Characteristic
Input Capacitance
Output Capacitance

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherWise noted)

o to

+70 0 C

-55 to +125 0 C

Symbol

TVp

Max

TVp

Max

Unit

Address to Output Access Time

tAA

45

70

45

85

ns

Chip Enable Access Time

tEA
30

40

30

00

Characteristic

ns

MCM7680/81

Ae TEST lOAD

TIMING DIAGRAM

'

Address

1.5 V
~

--------3.0 V

_, . - - : - , - - - - - - 0 0 V
'AA ~
__

Oulpul

',.5

v*

1.5V
cs ~
._.,-_ __

CS

I

tEA-.

"0" Oulpul

•

r--

'.5 V \

Vee
o

E-

~

3 OV
.

1.5V

t.
.-1

0.0 V

i--. tEA

Fv

Test Point 0 ..,.-.
30"Fo

-~-

300

--t---o

0)(

~600

-~
-Includes Jig CSfJacitance

4-12

MCM7680, MCM7681

PROGRAMMING

his own programmer to satisfy the sepcifications described

The PROMs are manufactured with all bits/outputs
Logical "1" (Output High).

in Table 1. or buy any of the commercially available pro·

Any desired bit/output can

grammers which meet these specifications. These PROMs

be programmed to a Logical "0" (Output Low) by follow·
ing the simple procedure shown below. One may build

can be programmed automatically or by the manual pro·

PROGRAMMING PROCEDURE
1. Address the PROM with the binary address of the

while the Vee input is raised to VpH by applying
output enable pulses to each output which is to be

selected word to be programmed.

cedure shown below.

programmed.

Address inputs

The output enable pulses must be

separated by a minimum interval of td'

are TTL·compatible. An open circuit should not be
used to address the PROM.
2. Disa':!: the chip by applying Inputs highs (VIH) to

7. Lower Vee to 4.5 Volts following a delay of td
from the last programming enable pulse applied to
an output.

the es Inputs. es Inputs must remain at VIH for
program and verify. The chip select is TTL·compatible.

8. Enable

the PROM for verification by applying a

logic "0" IVILI to the es Inputs.
9. If any bit does not verify as programmed. repeat

An open circuit should not be used to disable the
chip.
3. Disable the ~ro"rammlng circuitry by applying an
Output Voltage Di,able of less than VOPD to the
output of the PROM. The output may be left open
to achieve the disable.
4. Raise Vee to VpH with rise time equal to t r .
5. After a delay equal to or greater than td. apply a
pulse with amplitude of VOPE and duration of tp to
the output selected for programming. Note that the

Steps 2 through 8 until the bit has received a total
of 1.0 ms of programmi~g time. Bits which do not
program within 1.0 ms may be considered programming rejects.
Multiple pulses of durations
shorter than 1.0 ms may be used to enhance programming speed.
10. Repeat Steps 1 through 9 for all other bits to be
programmed In the PROM.

PROM is supplied with fuses intact generating an

11. Programming rejects returned to the factory must

output high.
Programming a fuse will cause the
output to go low In the verify mode.

be accompanied by data giving address with desired
and actual output data of a location in which a
programming failure has occurred.

6. Other bits in the same word may be programmed

TABLE 1
PROGRAMMING SPECIFICATIONS
Symbol

Parameter

VIH
VIL

Address Input

VPH
VPL

Programming/Verify

ICCp

Programming Voltage Current Limit

Voltage(1 )

Voltage to

Vee

Min

TVp

Max

Unit

2.4
0.0
11.75
4.5

5.0
0.4

5.0

V

12.0
4.5

0.8
12.25
5.5
650

V
V

V

600

600

'r

I

1

I

I

10
10

~s

If

Programming (Vee)
Voltage Rise and
Fall Time

td

Programming Delay

10

10

100

~s

Ip

Programming Pulse Width

100

1000

~s

DC

Programming Duty Cycle

-

50

90

%

10.0
4.5

10.5
5.0

11.0
5.5

V

Output Voltage Enable Current

2

4

10

mA

Case Temperature

-

25

75

°c

mA

~s

Output Voltage
VOPE
VOPD
lOPE
TC

Enable

Disablel21

(1) Address and chip select should not be left open for V I H.
(2) Disable condition will be met with output open circuit.

4-13

V

MCM7680, MCM7681

FIGURE 1 - TYPICAL PROGRAMMING WAVEFORMS

Vee

Data-'

DolO 2 _ _ _ _ _ _ _ _ _ _ _..J

DOloN _ _ _ _ _ _ _ _ _ _ _ _ _ _ _---l

4-14

®
[

MCM7684
MCM7685

MOTOROLA

]

Advance InforIllation

MTTL

8192-BIT PROGRAMMABLE READ ONLY MEMORY
The MCM7684/85 together with the MCM7620/21/40/41 142/431

8192-BIT PROGRAMMABLE
READ ONLY MEMORIES

80/81 comprise a complete, compatible family having common dc
electrical characteristics and identical programming requirements.
They are fully decoded, high-speed, field-programmable ROMs
and are available in commonly used organizations, with both opencollector and three-state outputs. All bits are manufactured storing
a logical "1" (outputs high!. and can be selectively programmed
for logical "0" (outputs low).
The field·programmable PROM can be custom-programmed
to any pattern using a simple programming procedure. Schottky

MCM7684 - 2048 X 4 - Open-Collector
MCM7685 - 2048 X 4 - Three-State

bipolar circuitry provides fast access time, and features temperature

and voltage compensation to minimize access time variations.
Pinouts are compatible to industry-standard PROMs and ROMs.
In addition, the MCM7684 and 85 are pin compatible replacement
for the 1024 X 4 with pin 8 connected as A 10 on the 2048 X 4.

In addition to the conventional storage array, extra test rows and

o SUFFIX

columns are included to assure high programmability, and guarantee

CERAMIC PACKAGE

parametric and ac performance. Fuses in these test rows and columns

CASE 726

are blown prior to shipment.
•

Common de Electrical Characteristics and
Programming Procedure

•

Simple, High-Speed Programming Procedure

•

Expandab!e - Open-Collector or Three-State
Outputs and Chip Enable Input

•

Inputs and Outputs TTL-Compatible
Low Input Current - 250 J.1A Logic "0",40 J.1A Logic "1"

•

Fast Access Time - Guaranteed for Worst-Case
N2 Sequencing, Over Commercial and Military

•

Pin·Compatible with Industry-Standard PROMs and ROMs

10.1 second per 1024 Bits, Typicall

PIN ASSIGNMENT

Full Output Drive - 16 mA Sink, 2.0 mA Source

Temperature Ranges

18

17
16
4

15

6

13

ABSOLUTE MAXIMUM RATINGS ISee Notel
Supply Voltage

14

Rating

Symbol

Value

Unit

{op~ratlngl

VCC

+ 7.0

Vdc

V,n

+5.5

Vdc

VOH

+7.0

Vdc

'CC
I,n

650

mAde

-20

mAdc

'0

100

mAdc

Input Voltage
Output Voltage (operating I
Supply Current
Input Current
Output Sink Current
Operating Temperature Range
MCM76xxDM

-55to+125
o to .. 70
T stg

-55 to +150

TJ

+175

Maximum Junction Temperature

°c
uc

.,e

"

NOTE' Permanent device damage may occur
ABSOLUTE MAXIMUM RATINGS
exceeded
Functional operation should be restricted to RECOMMENDED
OPERATING CONDITIONS
Exposure to higher than recommended voltages
for extended periods of time could affect device reliability. (While programming,
follow the programming speCIfications.)
ThiS" advance Information and speclflc.atlons are subJec.t to change withOut notice

4-15

11
10

°c

TA

MCM76xxDC
Storage Temperature Range

12

B

MCM7684, MCM7685

DC OPERATING CONDITIONS AND CHARACTERISTICS
RECOMMENDED DC OPERATING CONDITIONS
Parameter

Min

Nom

Ma.

4.50
4.75

5.0
5.0

5.50
5.25

VIH

2.0

Vdc

-

-

-

VIL

0.8

Vdc

Symbol

Supply Voltage
MCM76xxOM
MCM76xxOC

VCC

Input High Voltage
Input Low Voltage

Unit
Vdc

DC CHARACTERISTICS
{Over Recommended Operating Temperature Rangel
Symbol

Open-Collector
Output

Parameter

Test Conditions

Three-State

Output

Min

Typ

Max

Min

Typ

Max

Unit

-

-

40

--

40

.uAdc

-0.1

-0.25

mAde

3.4
0.35

0.45

Vdc
Vdc

100
-100

}JAde
.uAdc

N/A

.uAdc

IRA, IRE
IFA,IFE

Address/Enable

"1··

Input Current

·'0·'

VIH
VIL

-0.1

-0.25

-

VOH
VOL

Output Voltage

"1"
"0"

IOH - -2.0 mA, VCC M;n
10L +16 mA, Vce M,n

N/A

-

-

2.4

-

0.35

0.45

-

10HZ
10LZ

Output DIsabled
Current

·'1"
·'0"

VOH. VCC Max
VOL - +0.3 V. VCC Max

-

VOH. Vcc Mox

-

100
N/A

·'1"

-

100

.-

- 1.5

-

-

-1.5

Vdc

N/A

-

N/A

15

-

70

mAde

-

80
80

120
140

-

80
80

120
140

mAde

-

0

0

VCC Max
U.45 V

0

10H

Output Leakage

VIC

Input Clamp Voltage

lin-- 1OmA

lOS

Output Short Circuit Current

Vee Max, Vout - 0.0 V
One Output Only for 1 5 Max

ICC

Power Supply Current

VCC Max

MCM7684/MCM7685 DC
MCM7684/MCM7685 OM

CAPACITANCE If

=

All Inputs Grounded

-

-

-

mAde

1.0 MHz, TA = 25°C. per;od,cally sampled rather than 100% tested.1
Characteristic

Input Capacitance

Output Capacitance

AC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherWise noted)

o to

+70o C

-55 to +125 0 C

Svmbol

Typ

Max

Typ

Ma.

Unit

Address to Output Access Time

tAA

45

70

45

85

ns

Chip Enable Access Time

tEA

15

25

15

30

ns

Characteristic

AC TEST LOAD

TIMING DIAGRAM

tJ:
Vee

'

Address

~
1.5 V

*

--------3.0 V

' .--,.-,------O.OV
'AA__

Ou,pu'

'1.5 V

cs~
1.5V

~3.0V
1.5V

oo

1...
. . , -_ __

CS

I-It
tEA-I
r--...-I

·'0" Ou'put

1.5 V ,

r--

O.OV

tEA

Fv

Input t,. tf

<

Test Point

30pF-

.

Ox

600

5.0 ns
-Includes Jig Capacitanee

4-16

MCM7684, MCM7685

PROGRAMMING

his own programmer to satisfy the sepcifications described

The PROMs are manufactured with all bits/outputs
Logical "1" (Output High).

In Table 1. or buy any of the commercially available pro-

Any desired bit/output can

grammers which meet these specifications. These PROMs

be programmed to a Logical "0" (Output Low) by follow·

can be programmed automatically or by the manual pro-

ing the simple procedure shown below.

cedure shown below.

One may build

PROGRAMMING PROCEDURE

while the Vee input is raised to V PH by applying
output enable pulses to each output which is to be

1. Address the PROM with the binary address of the

programmed.

selected word to be programmed. Address inputs
are TTL·compatible. An open circuit should not be
used to address the PROM.

The output enable pulses must be

separated by 0 minimum interval of td'

the es input. The chip select is TTL-compatible.

7. Lower Vee to 4.5 Volts following a delay of td
from the last programming enable pulse applied to
an output.

An open circuit should not be used to disable the

8. Enable the PROM for verification by applying a

2. Disable the chip by applying an input high (VIH) to

logic "0" (VIL) to the es inputs.

chip.

9. If any bit does not verify as programmed. repeat

3. Disable the programming circuitry by applying an

Steps 2 through B until the bit has received a total

Output Voltage Di5able of less than VOPD to the
output of the PROM. The output may be left open

of 1.0 ms of programming time.

4. Raise Vee to VpH with rise time equal to t r ·

5. Alter a delay equal to or greater than td' apply a

gramming speed.

pulse with amplitude of VOPE and duration of tp to
the output selected for programming.

10. Repeat Steps 1 through 9 for all other bits to be

Note that the

programmed in the PROM.

PROM is supplied with fuses intact generating an
output high.

Bits which do not

program withi n 1.0 ms may be considered programming rejects.
Multiple pulses of durations
shorter than 1.0 ms may be used to enhance pro-

to achieve the disable.

11. Programming rejects returned to the factory must

Programming a fuse will cause the

be accompanied by data giving address with desired

output to go low in the verify mode.

and actual output data of a location in which a
programming failure has occurred.

6. Other bits in the same word may be programmed

TABLE 1
PROGRAMMING SPECIFICATIONS
Symbol

Min

Typ

Ma.

Unit

VIH
VIL

Address Input

2.4

5.0

5.0

V

Voltagel1 I

0.0

0.4

0.8

V

VPH
VPL

Programming/Verify

11.75

12.0

12.25

V

4.5

4.5

5.5

V

600

600

650

mA

1
1

1
1

10
10

1"

10

10

lOa

1"

ICCp
tr
tf

Parameter

Voltage to

Vee

Programming Voltage Current L,mit
Programming (Vee)
Voltage Rise and.

Fall Time

1"

td

Programming Derav

tp

Programming Pulse Width

100

.-

Programming Duty Cycle

-

50

1000
90

1"

DC

Enable

10.0

10.5

11.0

V

Disable(2)

4.5

5.0

5.5

V

Output Voltage Enable Current

2

4

10

mA

Case Temperature

-

25

75

°c

%

Output Voltage

VOPE
VOPD
lOPE
TC

(1) Address and chIp select should not be left open for VIH.

(21 Disable condition will be met with output open circuit.

4-17

MCM7684, MCM7685

FIGURE 1 - TYPICAL PROGRAMMING WAVEFORMS

cs _____--I
VpH----

Vee

Data- 1

Oata-2

--------------1

Data N

-------------------1

4-18

MECL MEMORIES
GENERAL INFORMATION

Complete information is available in the M EC L Data Book. Contact your sales representative or authorized
distributor for information.

TABLE 1 - LIMITS BEYOND WHICH DEVICE LIFE MAY BE IMPAIRED
Characteristic
Supply Voltage
Input Voltage IV CC - 0)
Output Source Current -

Symbol

Rating

Unit

VEE

-8.0 to 0

V

o to

Yin
Continuous

50

lout

Surge

Junction Ternperature - Ceramic PackageG)
Storage Temperature

V
mA

100
165

TJ

Piastic Package

CD

VEE

°c

150
T stg

- 55 to + 150

°c

Maximum TJ may be exceeded I " 250 0 C) for short periods of time (';; 240 hours) without significant
reduction in device life.

TABLE 2 - LIMITS BEYOND WHICH PERFORMANCE MAY BE DEGRADED
Characteristic
Supply Voltage (V cc
Output Drive -

~

O)@

MCM10l00 Series

Symbol

Rating

VEE

-4.94 to - 5.46

V

-

50Hto-2.0V

n

MCM 1 0500 Series
Operating Temperature Range@)

100

n

to -2.0 V

°c

TA

o to

MCM10l00 Series

75

-55 to + 125

MCMl 0500 Series

Functionality only. Data sheet limits are specified for --5.19 to -5.21 V.
With airflow;;' 500 Ifpm.

4-19

Unit

MECL MEMORI ES (continued)
TABLE 3 - DC TEST PARAMETERS
Each MECL 10,000 series device has l!een designed to meet the dc specifications shown in the test table, after
thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board

and transverse airflow greater than 500 linear feet per minute is maintained. VEE

OoC

-SSoC

Forcing
Function

=-

5.2 V ± 0.01 0 V.

7SoC

2SoC

Parameter MCM10S00* MCM10100** MCM10100- MCM10S00* MCM10100**

12SoC
MCM10S00*

vlHmax = VOHmax

-0.880

-0.840

- 0.81 0

-0.780

-- O. 720

-0.630

VOHmin

-1.080

-1.000

-0.960

-0.930

-0.900

-0.825

VOHAmin

-1.100

-1.020

-0.980

-0.950

-0.920

-0.845

VIHAmin

-1.255

-1.145

-1.105

- 1.105

-1.045

-1.000

VILAmin

-1.510

-1.490

-1.475

-1.4 75

-1.450

-1.400

- 1 .635

-1.645

-1.630

-1 .600

-1.605

-1.525

VOLAmax

-1.655

-1.665

-1.650

-1.620

-1.625

-1.545

VOLmin
IINLmin

-1.920

-1.870

-1.850

-1.850

-1.830

--1.820

0.5

0.5

0.5

0.5

0.3

0.3

VOLAmin
VILmin
VILmin

r

'Drlvlng 100 n to -2.0 V .
• 'Driving 50 n to -2.0 V.

Vee

=0

Gnd

1~ __ -,
°

~--.-

I

0

I

I
I
I
I

I

-l--l

I
I

INPUT LEVELS

CS' CS2 CS3

"0

'A7
"
A]

I

I

0

I

o----!I

tr

A"

All timing measurements referenced to 50% of input levels

A7

I

I

I

I

CL -;;;:

I
I

oeley should be derated 30 ps/pF for capacitive loed up to 50 pF

I

I

I

2.0nstyp.

°out --;-

A6

I
I

I

If

A4

I

Din

WE

I

5,0 pF (including jig lind stray capacitance)

-2.0 V

I
I

I

I

FIGURE 1 - SWITCHING TIME TEST CIRCUIT

4-20

MECL MEMORIES (continued)
FIGURE 2 -- CHIP SELECT ACCESS TIME WAVEFORM

Chip Select

cs
50%

FIGURE 3 - ADD.RESS ACCESS TIME WAVEFORM

._--j
Dout

____________________

~~r5-0-o/.-0-------------------

FIGURE 4 - SETUP AND HOLD WAVEFORMS (WRITE MODEl

Address

50%

50%

D out

~-----tWSA----~

tws

4-21

@

MCM10143

MOTOROLA

8 X 2 MULTIPORT REGISTER
FILE (RAM)

8 x 2 MULTIPORT REGISTER FILE
(RAM)
The MCM10143 is an 8 word b." 2 bit multipart register file
(RAM) capable of reading two locations and writing one location simultaneously. Two sets of eight latches are used for data
storage in this LSI circuit.

WRITE
The word to be Wrlttell IS selected by "ddrt,s,,'s AO . A2. Each bit
of the word has a separal!' Writ" elldbl" to Jllow more flexibility In
system design. A write occurs on the

Data

IS

POSltIVl:

trdn...,ltlon of the clock

enabled by having the write elldbles Jt a low level when the

clock makes the transition. To inhit)lt d bit frorn

t}(~lIlg

L SUFFIX

written, the

CERAMIC PACKAGE
CASE 623

bit enable must be at a high level whell the clock qoes low and not
change until the clock gues high. Operatlull of ttw clock and the bit
I~

enables can ue reversed. While the clock

low d

pO~ltlve

transition of

the bit enable will WrlW that tllt Illtu the add"'55 ",t.,ct"d t)y AO-A2.

READ
When the clock is hl9h Jny twu

\Vord~ rndY t){~ rPdcl

out simulta

neausly, as selected by add""ses 80 B2 alld Co C2. Including the
word written during the prewdlf'g half l?lol?k "yci<' When the clock
goes low the addressed rtilt<..l is stored III tht: ')lrJ\lI:~, Ll.'vel changes on

PIN ASSIGNMENT

the redd ,.HJdress Ijnt~s hJvt~ no effl~ct Ull ttll' output IHn!! the cluck

again goes high. Read uut is accumrllSl",d at dny tllne by enabling
output gates (BO B 1), (CO C 1)

tpd
Clock to Data out
(R cad So lected)

pk~1

2

C~

OB,

r~

OBO

OCt

r~·

R'E B

OCo

•
lOr" (typ)

(typ

110

6
I

8

luadl

c;

'MOOE

INPUT
LJ 0

II E~

[) ,

I

11

()U TPu T

HEllUBo

OBt

()(;o

DC,

or
Re .•HJ

Ii

\fI.'''O!

I"H

tI

~I

I

i

Hea(l
"Note

-,'\I01P

CI()<.'" u ....

("r~<,t'q\Je"l

;111'1 lh''''''jt,

T,,,!h

AU 1'.. 2, BO H2. d,,,r LO C:.! .1'" d I .,..:

~(,

1,,1,',·

',.j

ItlrO"4hUCll T at,I,·

Do,. ,

Cdr~

4-22

H

H

12

BO

~,

vcc

veel

AEc

1-,-.'

L~

Bt

C2

WE1

Co

wfo

C,

2'

~ 23

- .,

22

2t

.

,

-.~

20
19

Clock

[

'0 L
TRUTH TABLE

1----'-"-+-.-.-C-'O-'k-'W-t'-o'-W-E-,'

.-f Vcco

L~ B2

Read ErlatJie to Ddta out 28 r]> (typ)
(Clock high. Add""ses 1",?Selltj
610 mW

[

5 ns (tYI'I

Address to Data out
(Clock Hrgh)

Po

,

::-:J

.--

18
t7
16

-1

DO

A,

~

-]

15

,

D,

AO

rj

1.

,

13

[-1

.
'LV~E

A2

-1

J

MCM10143

BLOCK DIAGRAM

4
REB

,--

6
Read
Decoder
B

7
v

5

I----<

f---~

~

9

t--

10
~

Clock

Multiplexer
Bbit 1

Write
Amplifier
Bit 0

~

L~

r+

Multiplexer
B-bit 0

-

~

r-- I--

t-

Slave
B-bit 1

Slave
B-bit 0

f--

.....

....
f-----

Output
Gate
B-bit 1

2
- - 0 aB,

Output
Gate
B-bit 0

3

~

aBO

8 x1
Master Latches
Bit 0

14
Write
Decoder
A

15
13

8

WE,

~

11

01

Write
Amplifier
Bit 1

IL.,
~

...
0

17

16
18

.1 "., ~
l

f--

8 x 1
Master Latches
Bit 1

Multiptexer
C-bit 1

~

r-- r-

Slave

C-bit 1

~

r-

22

I

QC1

J

r-----

Dec;der

l

Output
Gate
Cblt 1

L....,
L-....,

Multi
plexer

~

Cbit 0

f----

20

Slave

r-- I--

C-bit 0

~
--

0

4-23

Output
Gate
Cblt 0
L-- _ _

~ aco

MCM10143

ELECTRICAL CHARACTERISTICS
oOC
Characteristics
Power Supply Drain Current
Input Current
Pins 10, 11, 19
All other pins
Switching Times Q)
Read Mode
Address Input
Read Enable
Data
Setup
Address
Hold
Address

+25 0 C

+75 0 C

Symbol

Min

Max

Min

Typ

Max

Min

Max

Unit

IE

-

150

-

118

150

-

150

mAde

-

245
200

-

-

-

-

245
200

-

245
200

/JAde

linH
-

ns

15.3
5.3
7.3

4.5
1.2
2.0

10
3.5
5.0

-

-

8.5

5.5

thold(Clock -8 +)

-

-

-1.5

tsetup(WE -Clock +)
tsetup(WE +Clock-)
tsetup(A -Clock +)

-

-

-

-

-

-

tRE-OB+
tClock+08-

4.0
1.1
1.7

tsetup (8 -Clock -)

ts ±- 08 ±

14.5
5.0
7.0

4.5
1.2
2.0

15.5
5.5
7.6

-

-

-

-4.5

-

-

-

7.0
1.0
8.0
5.0

4.0
-2.0
5.0
2.0

-

-

-

2.5
-2.0
-3.0
-2.0

Write Mode
Setup
Write Enable
Address
Data
Hold
Write Enable
Address
Data
Write Pulse Width
Rise Time, Fall Time
(20% to 80%)

tsetuo(D -Clock +)

-

-

-

-

-

-

PWWE

-

5.5
1.0
1.0
1.0

-

8.0

t r , tf

1.1

4.2

1.1

thold(Clock +WE +)
thold(Cloek +WE-)
thold(Clock + A +)
thold(Clock+D+)

G)AC timing figures do not show all the necessary presetting conditions.

4-24

-

-

-

-

-

-

-

-

-

-

-

5.0

-

-

-

2.5

4.0

1 .1

4.5

MCM10143

READ TIMING DIAGRAMS

FIGURE 1

FIGURE 2

FIGURE 3

FIGUR.E 4

4-25

MCM10143

(

WRITE TIMING DIAGRAM

(nab's ~tup

WE _ _ _ _ _ ~-----

r
t

tup
{

•

CIO;".k

FIGURE 5

Enable Hold

FIGURE 6

WE

Clock

Disable

WE

FIGURE 7

Clock

Pulse Width
FIGURE B

Clock

WE

--, > > 'se'up

Address

1---, »'hold
I ~--- - ----

--==1-----

'---------------+-------~-h-:-Id

A -----.,-

-----+--------,
0-- -

+-__-'1\_ - - - - - - - -

- - - - _ I ' -_ _

Clock _ _ _ _ _ _ _ _ _ _ _J

4-26

FIGURE 9

®

MCM10144/MCM10544

MOTOROLA

256 X 1-BIT RANDOM
ACCESS MEMORY

The
X

MCM10144/10544

1bit

RAM.

Bit

is

selection

a

256

word

is achieved

by

means of an 8·bit address AO through A7.
The active-low chip

expansion

up

to

select

2048 words.

allows memory

The fast ch ip

select access time allows memory expansion
without affecting system performance.

The operating mode of the RAM (CS inputs
low) is controlled by the WE input. With WE
low the chip is in the write mode-the output
AO
Al
A2
A3
A4

WE

is low and the data present at Din is stored
at the selected address. With WE high the chip

is

3

in

the

selected
4

read

mode-the data state

memory

location

at the

is presented

non-

inverted at D out '

9

~

•

Typical Address Access Time

•

Typical Ch ip Select Access Time ~ 4.0 ns

•

50

kn

17 ns

Input Pulldown Resistors on Chip

Select

A5

A6

•

Power 0 issipation (470 mW typ @ 25 0 C)

•

Pin·forPin Replacement for Fl0410

Decreases with Increasing Temperature

A7

TRUTH TABLE
MODE

INPUT

OUTPUT

cs·

WE

D,"

Dout

Write "0"

L

L

L

L

Write " ' "

L

L

H

L

R.. d

L

H

if>

a

16

Diubled

H



if>

L

15

PIN ASSIGNMENT

14

¢ '" Don't Care

13
12
11

F SUFFIX
CERAMIC PACKAGE
CASE 650

4-27

10

MCM10144/MCM10544

ELECTRICAL CHARACTERISTICS
OOC

-55 0 C
Characteristic

Symbol

+25 0 C

+75 0 C

+125 0 C

Min Max Min Max Min Max Min Max Min Max

Unit

Power Supply Drain Current

lEE

-

140

-

135

-

130

-

125

-

125

mAdc

Input Current High

linH

-

375

-

220

-

220

-

220

-

220

}.lAdc

-55°C and +125 0 C test values apply to MC105xx devices only.

SWITCHING CHARACTERISTICS (Note 1)

Characteristics
Read Mode
Chip Select Access Time
Chip Select Recovery Time
Address Access Time
Write Mode·
Write Pulse Width
Data Setup Time Prior to Write
Data Hold Time After Write
Address Setup Time Prior to Write
Address Hold Time After Write
Chip Select Setup Time Prior to
Write
Chip Select Hold Time After Write
Write Disable Time
Write Recovery Time
Rise and Fall Time

Symbol

NOTES:

MCM10544

TA=Oto
+ 75 0 C,

TA = -55 to
+125 0 C,

VEE =
-5.2 Vdc
± 5%

VEE =
-5.2 Vdc
± 5%

Min

Max

Min

Max

tACS
tRCS
tAA

2.0
2.0
7.0

10
10
26

2.0
2.0
7.0

10
10
26

tw

25
2.0

-

25
2.0
2.0
8.0
0.0
2.0

-

-

2.0
2.5
2.5

10
10

-

tWSD
tWHD
tWSA
tWHA
tWSCS

2.0
8.0
2.0
2.0

-

tWHCS
tws
tWR

2.0
2.5
2.5

10
10

-

-

Cin
C out

Conditions

ns

Measured from 50% of
input to 50% of output.
See Note 2.

ns

tWSA = 8.0 ns
Measured at 50% of
input to 50% of output.
tw = 25 ns.

ns

Measured between 20%
and 80% points.

pF

Measured with a pulse
technique.

-

1.5
1.5

7.0
5.0

1.5
1.5

7.0
5.0

-

5.0
8.0

-

5.0
8.0

-

Unit

-

t r , tf

Address to Output
CS or WE to Output
Capacitance
Input Capacitance
Output Capacitance

MCM10144

1. Test circuit characteristics: RT ~ 50 n, MCM10144; 100 n, MCM10544. CL';; 5.0 pF (including jig
and stray capacitance). Delay should be derated 30 ps/pF for capacitive load up to 50 pF.
2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.
3. For proper use of MECL Memories in a system environment, consult MECL System Design
Handbook.

4-28

@ MOTOROLA
00

0'

MCM10145/MCM10545
16 X 4-BIT REGISTER FILE
(RAM)

cs

OJ

The MCM10145/10545 isa 16 word X 4-bit
RAM.

Bit selection

is achieved by means of

a 4-bit address AO through A3.
The active·low chip
expansion

up

to

32

select allows memory
words.

The

chip

fast

select access time allows memory expansion
without affecting system performance.
The operating mode of the RAM (CS input
low) is controlled by the WE input. With WE
low the chip is in the write mode-the output

is low and the data present at Dn is stored at
the selected address. With WE high
is

in

the

selected
AI

mode-the

memory

inverted at

A3

read

location

data

the ch ip

state

at the

is presented

non-

an.
=

•

Typical Address Access Time

•

Typical Chip Select Access Time

•

50 kl1 Pulldown Resistors on All Inputs
Power Dissipation (470 mW typ @ 25 0 C)

•

10· ns
=

4.5 ns

Decreases with Increasing Temperature
Wf

PIN ASSIGNMENT

16

15

TRUTH TABLE

14

MODE

INPUT

cs

WE

OUTPUT
On

13

On

12

Write "0"

11

Write "1"

H

R.ad

Oilabled

L SUFFIX

H

H

~

~

~

10

a

~ '" Don't Care.

CERAMIC PACKAGE
CASE 620

FIGURE 1 - CHIP ENABLE STROBE MODE

A

----'1'- _ _ _ _ _ _ _ _ _ JI'-___
jo4--_+__

Don

---.....,1-"

F SUFFIX
CERAMIC PACKAGE
CASE 650

4-29

tCHA

MCM10145/MCM10545
ELECTRICAL CHARACTERISTICS
OOC

-55°C
Characteri~tic

Symbol

Power Supply Drarn Current

lEE

Input Current High

linH

+75 0 C

+25 0 C

+ 125°C

Min Max Min Max Min Max Min Max Min Max

-

Unit

135

-

130

-

125

_.

120

-

120

mAde

375

-

220

-

220

-

220

-

220

/lAde

55°C and +125 0 C test values apply to MC105xx devices only.

SWITCHING CHARACTERISTICS (Note 1)
MCM10145
TA

Characteristics
Read Mode
Chip Select Access Time
Chip Select Recovery Time
Address Access Time
Write Mode
Write Pulse Width
Data Setup Time Prior to Write
Data Hold Time After Write
Address Setup Time Prior to Write
Address Hold Time After Write
Chip Select Setup Time Prior to
Write
Chip Select Hold Time After Write
Write Disable Time
Write Recovery Time
Chip Enable Strobe Mode
Data Setup Prior to Chip Select
Write Enable Setup Prior to
Chip Select
Address Setup Prior to Chip Select
Data Hold Time After Chip Select
Write Enable Hold Time After
Chip Select
~ddress Hold Time After Chip
Select
Chip Select Minimum Pulse Width
Rise and Fall Time
Address to Output
CS to Output
Capacitance
Input Capacitance
Output Capacitance
NOTES:

Symbol

~

0 to

MCM10545
TA~-55to

+75 0 C,

+125 0 C,

VEE ~
-5.2 Vdc
5%

VEE ~
-5.2 Vdc
5%

Min

Max

Min

Max

tACS
tRCS
tAA

2.0
2.0
4.0

8.0
8.0
15

2.0
2.0
4.0

10
10
18

tw

-

-

tWSCS

0

--

8.0
0
4.0
5.0
3.0
5.0

-

tWSD
tWHD
tWSA
tWHA

8.0
0
3.0
5.0
1.0

tWHCS
tws
tWR

0
2.0
2.0

8.0
8.0

tCSD
tcsw

0
0

tCSA
tCHD
tCHW

0
2.0
0

tCHA
tcs

-

-

0
2.0
2.0

Unit

Conditions

ns

Measured from 50% of
input to 50% of output.
See Note 2.

ns

tWSA ~ 5 ns
Measured at 50% of
input to 50% of output.
tw ~ 8 ns.

ns

Guaranteed but not
tested on standard
product. See Figure 1.

-

10
10

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

4.0

-

-

-

18

-

.-

-

1.5
1.5

7.0
5.0

1.5
1.5

7.0
5.0

6.0
8.0

-

6.0
8.0

ns

t r , tf

pF
Cin
C out

-

-

Measured between 20%
and 80% points.
Measured with a pulse
technique.

1. Test circuit characteristics: RT ~ 50 l', MCM10145; 100 n, MCM10545. CL ~ 5.0 pF (including jig
and Stray Capacitance). Delay should be derated 30 ps/pF for capacitive loads up to 50 pF.
2. The maximum Address Access Time is guaranteed to be the worst-case bit in the memory.
3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

4-30

®

MCM1 0146/MCM1 0546

MOTOROLA

1024 X 1-BIT RANDOM
ACCESS MEMORY

The MCM10146/10546 is a 1024 X 1-bit
RAM. Bit selection is achieved by means of
a 10-bit address, AO to A9.
The active-low chip select is provided for
memory expansion up to 2048 words.

The operating mode of the RAM (CS input
low) is controlled by the WE input. With WE
low, the chip is in the write mode, the output,

D out . is low and

.

AO

~

i;

A1

A2

we

"C

0

~

A3
A4

..
"C

4

N

6

the data state present at

Din is stored at the selected address_ With WE
high, the chip is in the read mode and the data

!:'

15

L
A6

A7

A8

•

Pin-for-Pin Compatible with the 10415

•

Power Dissipation (520 mW typ @ 25 0 C)

•

Typical Address Access of 24 ns

•

Typical Chip Select Access of 4.0 ns

•

50

Decreases with I ncreasing Temperature

12
A5

stored at the selected memory location will be
non-inverted at D out - (See Truth
Table_)

presented

A9

kn

Pulldown Resistor on Chip Select
Input

PIN ASSIGNMENT
TRUTH TABLE

MOOE

INPUT

WE

CS

16

OUTPUT
O,n

15

°out

Write

'0"

I.

L

L

L

Write

'1'

L

L

H

L

R.ad

L

H



Q

DI5abied

H

¢

0

L

14

13

4

c> ""

12
11

10

9

Don"t Care

_LSUFFIX

CERAMIC PACKAGE

CERAMIC PACKAGE

CASE 620

CASE 65003

4-31

MCM 10146/MCM 10546

ELECTRICAL CHARACTERISTICS
OOC

-55°C

+25 0 C

+75 0 C

+ 125°C

Characteristic

Symbol

Min

Max

Min

Max

Min

Max

Min

Max

Min

Max

Unit

Power Supply Drain Current

lEE

-

155

150

-

145

-

125

-

125

mAdc

-

375

-

220

-

220

-

220

-

220

/JAdc

Input Current High

linH

Logic "0" Output Voltage

VOL

-1.970 -1.655 -1.920 -1.665 -1.900 -1.650 -1.880 -1.625 -1.870 -1.545

Vdc

NOTE: -55°C and +125 0 C test values apply to MCM105XX only.

SWITCHING CHARACTERISTICS (Note 1)

Symbol

Characteristics

MCM10146

MCM10546

TA ~ 0 to
+75 0 C.
VEE = -5.2 Vd.
• 5%

TA~-55to

Min

Max

+125 0 C.
VEE ~ -5.2 Vd •
• 5%
Min

Max

Read Mode

ns

Chip Select Access Time

tACS
tRCS
tAA

2.0
2.0
8.0

7.0
7.0
29

2.0
2.0
8.0

8.0
8.0
40

tw

25

-

25

-

tWSD
tWHD
tWSA
tWHA
tWSCS

5.0
5.0
8.0
2.0
5.0

-

5.0
5.0
10
8.0
5.0

-

tWHCS
tws
tWR

5.0
2.8
2.8

7.0
7.0

5.0
2.8
2.8

12
12

~or~ toOutput

1.5

4.0

1.5

4.0

Address to Output

1.5

8.0

1.5

8.0

Cin

-

-

C out

-

5.0
8.0

5.0
8.0

Chip Select Recovery Time

Address Access Time
Write Mode
Write Pulse Width
(To guarantee writing)
Data Setup Time Prior to Write

Data Hold Time After Write
Address Setup Time Prior to Write

Address Hold Time After Write
Chip Select Setup Time Prior to
I

Write
Chip Select Hold Time After Write'
Write Disable Time
Write Recovery Time

Rise and Fall Time

-

-

Output Capacitance

NOTES:

ns

tWSA = 8.0 ns.
Measured at 50% of input
to 50% of output.
tw = 25 ns

ns

Measured between 20% and
80% points.

pF

Measured with a pulse

-

-

-

tr.tf

-

Conditions
Measured at 50% of input
to 50% of output.
See Note 2.

-

Capacitance
I nput Capac ita nee

Unit

technique.

1. Test Circuit characteristics: RT = 50 n. MCM10146; 100 n. MCM10546. CL" 5.0 pf including Jig and stray capacitance.
For Capacitance Loading" 50 pF. delay should be derated by 30 ps/pF.
2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.
3. For proper use of MECl Memories in a system environment, consult MECl System Design Handbook.

4-32

®

MOTOROLA

MCM10147/MCM10547
128 X 1-BIT
RANDOM ACCESS MEMORY

X

The M CM 1 047/10547 is a fast 128-word
l-bit RAM. 8it selection is achieved by

means of a 7-bit address, AO through A6.
The

active-low

chip

selects and fast chip

select access time allow easy memory expansion
up to 512 words without affecting system
performance.

The operating mode (CS inputs low) is
controlled by the WE input. With WE low the
chip is in the write mode-the output is low and

AO

WE

A1

the data present at D in is stored at the selected
address. With WE high the chip is in the read

mode-the data state at the selected memory

A2

location is presented non-inverted at D out '

A3

A4

AS

•

Typical Address Access Time of 10 ns

•

Typical Chip Select Access Time of 4.0 ns

•

50 kS1 Input Pulldown Resistors
on All Inputs

•

Power Dissipation (420 mW typ @ 25 0 C)
Decreases with Increasing Temperature

•

SimiiartoFl0405

A6

PIN ASSIGNMENT
TRUTH TABLE
vee1
AO
A1

vCC2

16

Dout

15

CS1

A2
A3

BC=

14

WE

D,n

A5

A6

VEE

NC

11

~" _LSUFFIX
CERAMIC PACKAGE
CASE 620

4-33

Dout

WE

Don

L

L

L

L

L

L

H

L

R . .d

L

H

~

a

QIs.abled

H

.p

.p

L

··0··

Write "1"

12

OUTPUT

cs·
Write

13

A4

INPUT

MODE

¢J::: Don't C.r •.

CERAMIC PACKAGE
CASE 650

MCM10147/MCM10547

ELECTRICAL CHARACTERISTICS
OOC

-55°C

Characteristic

Symbol

+25 0 C

+75 0 C

+125 0 C

Min Max Min Max Min Max Min Max Min Max

Unit

Power Supply Drain Current

lEE

-

115

-

105

-

100

--

95

-

95

mAde

Input Current High

linH

-

375

-

220

-

220

-

220

-

220

,uAdc

5S0C and -+125 0 C test values apply to MC105xx devices only_

SWITCHING CHARACTERISTICS (Note 1)

Characteristics

Symbol

MCM10147

MCM10547

T A - 0 to + 75°C.
VEE = -5.2 Vdc ,5%

T A - -55 to + 125°C.
VEE = -5.2 Vdc ,5%

Min

Max

Read Mode

Min

···

'ACS
'ACS
tAA

2.0
2.0
5.0

B.O

tw
tWSD
tWHD
tWSA
tWHA
tWSCS
tWHCS
tws
tWA

8.0
1.0
3.0
4.0
3.0
1.0
1.0
2.0
2.0

-

8.0
8.0

Rise and Fall Time

tr,tf

1.5

5.0

·

Capacitance
I nput Capacitance
Output Capacitance

Cin

-

Cout

.-

5.0
8.0

-

Chip Select Access Time
Chip Select Recovery Time

Address Access Time

8.0
15

Write Mode
Write Pulse Width

Data Setup Time Prror to Write
Data Hold Time After Write
Address Setup Time Prior to Write

Address Hold Time After Write
Chip Select Setup Time Prior to Write

Chip Select Hold Time After Write

Write Disable Time
Write Recovery Time

NOTES:

1. Test Circuit charactemtlcs: AT: 50

···

ns

···
··
MCM10547.

Measured from 50% of
input to 50% of output.

See Note 2.
ns

tWSA - 4.0 ns

Measured at 50% of input
to 50% of output.
tw = 8.0 ns.

-

-

Conditions

Unit

-

-

n. MCM10147; 100 n.

Max

-

-

··
·
··

ns

Measured between 20% and
80% points.

pF

Measured with a pulse
technique.

CL '" 5.0 pF (including JIg and stray capacitance).
Delay should be derated 30 ps/pF for capacitive load up to 50 pF_
2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.
3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.
"To be determined; contact your Motorola representative tor up-to-date Information.

4-34

®

MCM1 0148/MCM1 0548
MOTOROLA

°OUT

CSl

CS2

I

I

14

1'1

64 X 1-8\1'
RANDOM ACCESS MEMORY

The MCM10148/10548 is a fast 64 word X
bit RAM. Bit selection is achieved by means

I"

l)"ta OlJ1

ChllJ

Buffer

Selert

of a 6 bit address, AO through A5,
The

active low

chip

selects and

fast chip

seleCT access tllnc allow easy memory expansion
up to 256 warns without affecting system
perforfnance

Tile

Sen!ioe

2 c-

AD
Al

A2

--~

l,

B X B

___6_

Menlory Cell

Array

--1
I

__ 1

,

L_

Bit Address Buffer!

1/8 Decoder

L,_ --io,1
I
A3

A4

operCJtmg

mode

(CS

inputs

low)

Ta

r
J
lI l

chip

1
.
-g; 1,2
-.
J3
«CD
e~

the write rnode---the output is low

IS In

and the data present at Om
WE

I

selected
If)

<; ;;

Din

0

address

the read rnode

memory

\i'FE

With

is stored at the
high

the

chip

location

presented

IS

non inverted

at D out .

j

•

Typical Address Access Time of 10 ns

•

Typical Chip Select Access Time of 4.0 ns

•

50 kU Input Pullclown Resistors

•

Power DISSipation (420 mW typ @ 25 0

on A II Inputs

AS

Ci

PIN ASSIGNMENT

~

'1

-..../·1
Veel

' . AD

Vee2

00ut

~ ___._J

TRUTH TABLE
16

~_-..J'~

L:-:j

Al

[-:-=~

CS1

~ L":':'~1

CS2

WEh,2

A2

N C r..:.=J1 1

3

4

6
1

C::j
c.:-~

A3

MODE

I
N Cr]l.
Din

AS

~13

r=~-::-Jl0
I

Be_tEE __~}--:J 9

INPUT

WE

D,n

°out
L

Wrote

D

L

L

L

Write

1

L

L

H

L

L

H

cJ>

Q

c:>

cJ>

L

DI~abled

L SUFFIX

OUTPUT

CS·

Read

.. cs

~

CSl

+

H

CS2

+ CS3

CJ

c

Don·t Care

CERAMIC PACKAGE
CASE 620

~~~SUFFIX
~RA~IC

PACKAGE

CASE 650

4-35

is

the data state at the selected

Decreases with Increasing Temperature

1 ' ...

is

controlled l)y the W-E Input. With WE low the

A'Tlp11f'e r

MCM10148/MCM10548

ELECTRICAL CHARACTERISTICS
-55°C
Characteristic

Symbol

OoC

+7SoC

+ 25°C

+ 12SoC

MiniMax MmlMax MiniMax MiniMax MiniMax

Power Supply Drain Current

lEE

.. 1 '15

1105

Input Current High

l,nH

- 1375

1 220

. I 95

1 100
1 220

1 220

Unit

..

1 95

mAde

..

1220

JJAdc

·5S0C and +12SoC test values apply to MC105xx devlc~s only

SWITCHING CHARACTERISTICS (Note 1)

Characteristics

Symbol

MCM10148

MCM10548

TA '" 0 to + 15°C.
VEE = -5.2 Vdc • 5%

TA - -55 10 + 12S0C.
VEE = -5.2 Vdc • 5%

Min

Max

Min

Max

Read Mode

Unit

os

Chip Select Access Time
Chip Select Recovery Time

Address Access Time

'ACS
'RCS
'AA

-

75
75

-

15

.-

Input to 50% of output.
See Note 2.

.

Wnte Mode

os

Write Pulse Width

Data Setup Time Prior to Write
Data Hold Time After Write
Address Setup Time Prior to Write
Address Hold Time After Write
Chip Select Setup Time Prior to Write
Chip Select Hold Time After Write
Write Disable Time
Write Recovery Time
Rise and Fall Time

'WHA
tWSCS
'WHCS
tws
tWR

8.0
3.0
2.0
5.0
3.0
3.0
0
2.0
20

7.5
7.5

tr.tf

1.5

5.0

tw
tWSD
'WHD
tWSA

-

-

Conditions
Measured from 50% of

tWSA :. 5.0 ns
Measured at 50% of Input
to 50% of output.

tw ~ 8.0 ns.

.
os

Measured between 20%
and 80% points.

Capacitance
I nput Capacitance
Output Capacitance
NOTES:

pF
Cin
C out

-

5.0.
8.0

-

,. Test CirCUit characteristiCS: AT'" 50 H, MCM10148; 100 H,MCM10548.
CL"'" 5.0 pF (Including Jig and stray capacitance)
Delay should be derated 30 ps/pF for capaCitive load up to 50 pF.
2

The maximum Address Access Time

IS

guaranteed to be the Worst·Case Bit In the Memory.

3. For proper u!>e of MECL Memories In a system envuonme.'lt, consult MECL System Design Handbook.
-To be determined; contact your Motorola representative tor up·to·date Information.

4-36

Measured with a pulse
technique.

®

MCM1 0152/MCM1 0552

MOTOROLA

256 X 1-BIT
RANDOM ACCESS MEMORY

TheMCM10152/10552 isa256·word X 1·bit
RAM.

Bit selection

by means of

is achieved

an 8·bit address AO through A 7.
The active-low chip select allows memory

expansion

up to 2048 words. The fast chip
select access time allows memory expansion
without affecting system performance.

The operating mode of the RAM (CS inputs
low) is controlled by the WE input. With WE

.

AO

'"5 Iii
alu

A1

4

•

UN

"



a

Olsabled

H





L

CSl

+

CS2

+ CS3

D out

(j) '" Don't Care

10

CERAMIC PACKAGE

CERAMIC PACKAGE

CASE 620

CASE 650

4-37

MCM 10152/MCM 10552

ELECTRICAL CHARACTERISTICS
r----------------------,------.----.-----.----.----.---T --55°C
OoC
+ 2SoC
+ 7SoC
+ 125°C i
CharacterIstic

Symbol

Min Max Min Max Min Max Min Max Mm Md)(

IE:E:.

140

135

130

125

17.~)

I

I

Ufllt

:nA(1(

--1,~---'375---~2~2~0~--~2~2~0+---~2~2~0~-~2~.2~O~-"-A~,-"~

In~ul CUIII~ll1 Hlqh

--------------5SoC and +12SoC test values apply to MC105xx devices only.

SWITCHING CHARACTERISTICS (Note 1)

----- - - - - - - -

--.-----.--~-,-:-:-:-::-::--.---------:~:-.,..,--:=----,-----.---------,

MCM10152

MCM10552

TA =0 to +75 0 C,

TA - -55to +125 0 C,

VEE

Characteristics

= -5_2

Symbol

Mm

lACS

20
20
70

Rcad Mode
Chip Select Ace" ...... Tltlw
Chip S'~I'~ct Recnvel y TIfTll~
Add! t~SS ACCI!sS T lm.~

"lC5
'AA

Vdc
Max

Oatil S(!tup T IInl!

'w
PI 1<)1

(I) Will,·

'WSD

Chin Sell!CI Huld T rnw Afl!'1 Wille

'WHCS

'ws

75

AllI~1 Wrltl'

W/I!(~ DrS.!!>[!! TlflH~

Write Hcc(}very

'W5A
tWHJ\

Max

5%
Unit

Conditions

75

Input 10 50",,,

75

S!'c N')\I: 2

1"

--------1-----------;;-;--

to

I)' ()ulnut

50 ns

-'V'JSA

tw

'wscs

A(i(irpss Hold TIrTH:'

tW~H)

Vdc

MI~()surf'd CIt

Chip St!lcct Setup Time Pllnr t() Wille

Will!'

= -5_2

Min

10
2_0
70
~) 0
J 0
20
20

Diltil HrJld TIITW AfH:r

Address Setup TIfTH' Prior to WIII('

VEE

- - - - - r----·-~--'----+---I-M-c-"-ilS-·U-'-1-~(-,- -!-'-()-n-'C:5C:O-<~

WrltP Modp
Wllte PUISf! Width

5%

50o~,

50", 1)1 IrlPUl

of nut nut

10 ns

TIlTH:

R,s" "n,' GilT""e ---------Capacitance
Input C.lPilcltance

Output Capacltanc£!

NOTES

-- r
---S::'--- ---- 'c-=~-C

50

pF

Mp.

AJ 1:1

A4

14

CS I!) ------------------------~~t_--._~--~~--~_+--_._4--_.~~_1~~~

:I

[)J

[)4

4-39

[)]

02

0,

DO

MCM10139/MCM10539

ELECTRICAL CHARACTERISTICS
+25 o C

-DOC

-SSoC

+12S0C

+7SoC

Characteristic

Symbol

Min

Max

Min

Max

Min

Max

Min

Max

Min

MIx

Unit

Power Supply Drain Current

lEE

-

160

-

150

-

145

140

-

160

mAde

Input Current High

linH

-

450

-

265

-

265

-

265

-

265

"Adc

Logic "0" Output Voltage
MCM10139
MCM10539

VOL

Vdc

-2.010 -1.665 -1.990 -1.650 -1.970 -1.625
-2.060 -1.655
-1.990 -1.620
-1.960 -1.545
-

SWITCHING CHARACTERISTICS (Note 1)
MCM10139

MCM10539
(VEE· -5.2 Vdc ± 5 %;
TA· -SSoC to +12SoC)

Chl,ect.,inic

Symbol

(VEE· -5.2 Vdc ± 5%;
TA'. OOC to +75 0 C)

Chip Select Access Time
Chip Select Recovery Time

Address Access Time

tACS
tRCS
tAA

15 ns Max
15 ns Max
20 ns Max

Rise and Fall Time

t r • tf

3.0 ns Typ

Input Capacitance
Output Capacitance

Cin

Caut

5.0 pF Max
B.O pF Max

NOTES'

1.

Test circuit characteristics' AT = 50

n,

··

··
·
·

MCM 10139; 100

n,

Conditions
Measured from 50% of input to 50%
of output. See Note 2

Measured between 20% and BO% points.
Measured with a pulse technique.

MCM10539. CL ~ 5.0 pF including jig and stray capacitance.

For Capacitance Loadmg ~50 pF. delav should be derated by 30 ps/pF.

2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.
3.

For proper use at MECL Memories In a system environment, consult MECL System Design Handbook.

-To be determined; contact your Motorola representative for up·to·date information.

4-40

MCM 10139/MCM 10539

FIGURE 1 - MANUAL PROGRAMMING CIRCUIT

+6.B V 0.0 V

Program

-0.8 V

1

+'5 V

3 k
Verify

--,
(Momentary)

Address

'" "

I
I

-c___....---------1

Decoder

A410---Ll=_

CS13~_-tJ
F SUFFIX

r)

CERAMIC PACKAGE

"
D3

CASE 650

4-43

12
D2

1.

15

D'

DO

MCM10149/MCM10549
ELECTRICAL CHARACTERISTICS
OOC

55°C

+25 0 C

+75 0 C

+125 0 C

Min Max Min Max Min Max Min Max Min Max

Symbol

Characteristic
Power Supply Drain Current

lEE

140

I nput Current High

IlnH

450

135

_.

-

265

130

125

265

265

.-

Unit

125

mAde

1 265

J...IAdc

5S0C and -t12SoC test values apply to MC1Q5xk devices only.

SWITCHING CHARACTERISTICS (Note 1)
MCM10149

MCM10549

T A = 0 to + 75°C,
VEE = -5.2 Vdc . 5%

TA - -55 to +125 0 C,
VEE = -5.2 Vdc . 5%

Symbol

Characteristics

Max

Min

Max

Min

Read Mode

Chip Select Access Time
Chip Select Recovery Time

Address Access Time
Rise and Fall Time

Capacitance
Input Capacitance
Output Capacitance
NOTES:

1. Test

Circuli

tACS
tRCS
tAA

2.0
2.0
7.0

10
10
25

t(,tf

1.5

7.0

Unit

ns

··
·
·

.

See Note 1.

ns

-

5.0
8.0

5.0
8.0

-

Measured between 20%
and 80% points.

pF

-

Cin
C out

Conditions
Measured from 50% of
Input to 50% of output.

Measured with a pulse
technique.

characterIStics. RT - 50 n, MCM10149, 100 n, MCM10549.

CL ~ 5.0 pF (including jig and stray capacitance)

Delay should be derated 30 ps/pF for capacitive load up to 50 pF
2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.
3.

For proper use of MECL Memones In a system environment, consult MECL System Design Handbook.

4. VCP = VCC =- Gnd for normal operation.
·To be determined; contact your Motorola representative for up·to-date information.

t

PROGRAMMING THE MCM10149
During programming of the MCM10149, input
pins

7,

9,

and

Coincident

10 are addressed with standard

With,

or at some delay after the

V CP pulse has reached its 100% level, the desired

M EC L 10K logic levels. However, during program·

bit to be fused can be selected. This is done by

ming input

pins 2, 3, 4, 5, and 6 are addressed

taking the corresonding output pin to a voltage

with 0 V .;; VIH .;; + 0.25 V and VEE';; V IL .;;
-3.0 V. It should be stressed that this deviation
from standard input levels is required only during

of + 2.85 V ± 5%. It is to be noted that only one bit
outputs should remain terminated through their

the programming mode. During normal operation,
standard MECL 10,000 input levels must be used.

50 ohm

load resistor (100 ohm for MCM 1 0549)

to

V.

With these requirements met, and with VCP

is to be fused at a time. The other three unselected

=

-2.0

Current into the selected output is

5 rnA maximum.

VCC = 0 V and VEE = - 5.2 V ± 5%, the address
is set up. After a minimum of 100 ns delay, VCP

the

(pin 1)

is

sourced out of the chip select pin 13. The 0% to

voltage

VCP

ramped up to + 12 V

0.5 V

:I.

(total

is now 17.2 V, + 12 V

to VEE

After the bit select pulse has been applied to

-

appropriate

100%

rise

output,

the

fusing

current

is

time of this current pulse should be

[-5.2 vJ). The rise time of this VCP voltage
pulse should be in the 1 -lOlls range, while its

250 ns max. Its pulse width should be greater than
100 IlS. Pulse magnitude is 50 mA ± 5.0 mAo The

pulse width (t w l) should be greater than 100 Ils
but less than 1 ms. The V CP supply current at + 12

voltage clamp
be-6.0V.

V

will be approximately 525 mA while current

After

drain from V CC will be approximately 175 mAo A
supplies.

The

current

limit

on

the

this

current

source

is

to

the fusing current source has returned

a

rnA, the bit select pulse is returned to it initial
level, i.e., the output is returned through its load

current limit should therefore be set on both of
these

on

VCP

to -2.0 V. Thereafter,

VCP is returned to 0 V.

supply should be set at 700 mA while the V CC sup·

Strobing of the outputs to determine success in

ply should be limited to 250 mAo

programming

It should be

noted that the VEE supply must be capable of
sink ing

VCP

the combined

supplies

while

current

of

maintaining

the

a

Vee
voltage

should

Occur

no

sooner

and

maming bits are programmed in a similar fashion.

of

-5.2 V ± 5%.

t

NOTE:

than

100 ns after VCP has returned to 0 V. The re-

For devices that program incorrectly, return serialized units with individual truth tables.
Non compliance voids warranty.

4-44

MCM 10 149/MCM 10549

PROGRAMMING SPECIFICATIONS
The

following

timing

diagrams

and

fusing

Definitions and values of timing symbols are

information represent programming specifications

as follows.

for the M CM 10149.
Vee - Pin 16 - a v
VEE
Pjn 8
-5.2 V 1:5%

Symbol

+12 V

~'05V

~ L~ ~

------J

:
iHf

trl-..l

'wl

~---

1+_·,25~~V

I

Selected OutPut Open

Pln(11

12 140rlSt

I ~

iI

0 V

I

Rise Time,
Programming Voltage

twl

Pulse Width,
Programming Voltage

tOl

Delay Time,
Programming Voltage

I

t02

'Ol'-j ,
50 rnA

;;. 100 JJ.s

<

1 ms

;;'0

tw2

Pulse Width, Bit Select

;;. 100 JJ.s

t02

Delay Time, Bit Select

;;'0

Pulse to Programming

+5mA
Chip Select Pin 13

Value
;;. 1 JJ.s

Pulse to Bit
Select Pu Ise

I

tw2

Definition

trl

0 mA---+-'

Voltage Pulse
t03

Delay Time, Bit Select

;;. 1 JJ.s

Pulse to Programming
Current Pulse
tr3

The timing diagram is shown for programming
All addressing must be done 100 ns prior to the

tw3

a

250 ns max

Pulse Width,

;;. 100 JJ.s

Programming

beginning of the VCP pulse, i.e., VCP =
V.
Likewise, strobing of the outputs to determine
success in programn1ing should occur no sooner

Current Pulse

t04

a

than 100 ns after V CP returns to
V.
Note that the fusing current is defined

Rise Time, Programming

Current Pulse

one bit. Note that only one bit is blown at a time.

Delay Time,
Programming Current

as

Pulse to Bit

a positive current out of the chip select, pin 13.
A programming duty cycle of ~ 15% is to be

Select Pulse

observed.

4-45

;;. 1 JJ.s

MCM10149/MCM10549
MANUAL PROGRAMMING CIRCUIT
+5 V

+5 V

12k
0.005

r

1
Verify

116 MC7406

0.05

"F

8.2 k

"F

J"2OL

"s

Delav

r--'--~-,
Q

680~

1/2

MC8602

Enable

Q

Current
Pulse

1/2

MC8602

Cp

Q

Program
+5V

Enable

+5 V

~
lN914
--5.2 V
(-6 V Ciampi

Curren t Sro_u_r_c_e...._ _""'~---_ _ _--,

510
510
lN914
or Equiv.

100

-5.2 V

·12 V

+5 V

+12.5V
r-----..---O+5 V
, - - -.....- - , Lim it

1/4

150

1.0

MC7438

240

1/4 MC7438

180

180 H. 1/2 W
lN914
51!!,1/2W
+5 V o--'\M~..----II*----.-----.

"0"
CS

7
"O--~----o----I A 7

1.0 k
-5.2 V

11
D3 f--<>----....- - - - O ' "
680
-S.2 V

5

~-~>----O--;A6

1.0 k
-5.2 V
1.0 k
-S.2 V

6
AS

12
10

D2

A4
1.0 k
-5.2 V

9
A3

1.0 k
-5.2 V

680
-S.2 V

MCM101491
10549

14
Dl

3

680
-5_2 V

A2
1.0 k
-S.2 V

2

"0---.-----<>--1 A
1.0 k
-S.2 V

4

1

C
Rotary SW

15
DO f--<>----+----O
680
-5.2 V

1.0 k
-5.2 V
16

4-46

Memory Boards

5-1

@

MOTOROLA

MMSll02

Advance Information
ADD-ON MEMORY CARD FOR THE LSI-11 FAMILY
The MMS11 02 is a dual height (5.187" x 8.94") add-on memory card for the LSI-11 family of computers.
It is compatible with the LSI-11/2 and LSI-11 processors as weH as the PDP 11 V03 computer systems. It
incorporates byte parity storage as well as generation and detection logic.

Specification Highlights
INTERFACE

LSI-11, "Q" Bus-Plus.

CAPACITY

8K words

PARITY

Optional on-board storage, generation and detection logic for both upper and lower byte.
Parity option does not degrade access times. ,

SPEED

The MMS 11 02-3X has a read access time under 300 ns. Read access time is defined here
as the time from receipt of SYNC H to the transmission of RPL Y H, assuming that the
SYNC H to DIN H time is no greater than 160 ns.

x

16 bits, 16K words

x

16 bits, 32K words

x

1 6 bits.

ADDRESSING

Switch-selectable, to start on any 4K word boundary between 0 and 128K.

110 PAGE USE

Three switches allow anyone of the lowest three kilowords of the 110 page to be used
as ReadlWrite memory.

BATIERY BACKUP Jumper selectable; allows the MMS1102 to be operated from a separate uninterrupted
power source (+5 BBU and + 12 BBU).
REFRESH

Implemented internal to the MMS1102 and totally transparent to the system.

5-3

MMS1102

MMS1102-XX ORDERING INFORMATION
Storllge Capacity

Part Number
(With Parity and Controller)

Part Number
(No Parity)

16 Kilobytes

MMSll02-31PC

MMSll02-31

32 Kilobytes

MMSll02-32PC

MMSll02-32

64 Kilobytes

MMSll02-34PC

MMSll02-34

MMS1102-3X -

AC

OP~RATING

CHARACTERISTICS
Writ. Ace••• (n.)

Reed Acce .. (n.)

Wor.t C..e

Typical

Worat C...

Typical

Ace••• Time-

250

300

125

175

Cycle Time-·

470

500

350

400

A.fntlh Latency···

175

400

175

400

-As measured from receipt of RSYNC H to transmission of TRPLY H.
··This is the reciprocal of the maximum continuous transfer rate. assuming no refresh interference.

···Occurs approximately once every 16 microseconds.
MMS1102 POWER REQUIREMENTS
Curr.nt Requirement. (mA)

Active

Standby
Nominal Vohllge

Min

Max

Typical
725
925'

.5 VDC (Total)

4.75

5.25

Wor.t
Cao.

Wor.t
Ca ••

Input Pin.

775
1000'

850
1100'

AA2. BA2
AD2. BD2

Typical

800
1000'

.12 VDC

11.40

12.60

100

150

250

400

.5 VDC (BBU)

4.75

5.25

400

500

450

550

AV1"

.12 VDC (BBU)

11.40

12.60

100

150

250

400

AS1'"

·Parity version only_
··In svstems without battery backup this voltage is obtained from the regular +5 V rail via an on~board jumper.
···The +12 V supply requirement can be met via an on-board jumper from the regular +12 V rail.
MMS1102 BACKPLANE CONNECTOR PIN ASSIGNMENT
A

Row
Pin
A
B
C

0
E
F
H

J
K
L
M
N
P
R
S
T
U
V

B

1

Side

2

-

+5 V

BDCOK H

-

-

BAD16 L"
BAD17 L

GND
.12 V
aDOUT L
BRPLY L

-

-

GND

},

-

-

BDIN L
BSYNC L
BWlBT L

GND

},

BIAKI L } '"
BIAKO L

GND

BBS7 L

-

BREF L
.12 V BBU
GND

BDMGI L } '"
BDMGO L

-

-

GND

-

BDAL 0 L
BDAL 1 L

.5 V

GND

-

.5 V BBU

2

1

-

-

*Must be hardwired on backplane or damage to MOS devices may result.
"Or PRTYER or PRTYCK .
••• Hardwired on MMS 11 02.

5-4

.5 V

GND
.12 V
BDAL 2 L
BDAL 3 L
BDAL
BDAL
BDAL
BDAL
BDAL
BDAL

4
5
6
7
8
9

L
L
L
L
L
L

BDAL
BDAL
BDAL
BDAL
BDAL
BDAL

10
11
12
13
14
15

L
L
L
L
L
L

®

MOTOROLA

MMSl122

J

Product Previe"",

---------_

..

_---

- - - - - - - -

-.--~-------------------

ADD-IN MEMORY CARD FOR THE LSI-ll FAMILY
The MMS1122 IS a dual height 15.19" x B94") add-on memory card for the LSI 11 family of computers It IS compatible with
LSI-11, LSI-11/2, and LSI-1L23 processors as well as PDP l1V03" computer systems It utilIZes MCM4132L 32K RAM
moduies
FEATURES
• Capacity of 32K Words, Each 16- Bits Long

•

•

•
•
•
•

Effective Capacity IS SWitch Selectable at any 1K Word Increment
AddreSSing IS SWitch Selectable to Start on Any 1K Word Boundarv
From 0 10 127K
Reild Access Time of 300 ns Imax.)
Cycle Time 500 ns Imax )
Refresh Implemented Internal to the Card ITransparentto the
System) On-Board Jumpers Permit SynchronIZation of Refresh If
Desired.

r

Relresh and~
Address

Memory Array

Mult;plexer

Jumper Selectable Battery Backup ProvIsions Allow Use of Separate
Power Source

• LSI-11 IO-Bus and O-Bus Plusl Interface Compatible

User Option
SWltches/
Jumpers

MMSl122N3032

BaSIC Pan

l=r~
No Panty

Number

Speed
(300 ns Access)

 Invalid

tAH

25

-

Address Setup Time - A <0:21> Valid to MSYN I

tAS

75

-

ns

1

Processor Handshake Time - SSYN I to MSYN t

tPH

-

0

ns

I, 2

Data Hold Time IWrite CycleiDATOI - MSYNI to 0 <015> Invalid

tDHW

40

1

tDSW

15

--

ns

Data Setup Time IWnte CycieiDATOI - 0 <0:15> Valid to MSYNI

ns

1

NOTES' 1. AU timing is referenced at card edge. Operation
refresh arbitration.

IS

assumed to be

a properly term mated backplane, with memory not busy and no

In

2. Assumes handshaking occurs Immediately.

AC OPERATING CHARACTERISTICS IO'CsTAS70'CI

Characterhrtica

MMS1119X3XXX
Min Typ Ma.

Symbol

MMS1119X4XXX
Typ Ma.
Min

Unit

Note

360

-

440

425

-

ns

1

tRACC

3ro
-

330

360

-

380

430

ns

1

Data Hold Time - Read IDA Til
Cycle MSYN t to Data Invalid

tDH

70

-

-

70

-

-

ns

1

Data Setup Time - Read IDA Til
Cycle 0<0:15> Valid to SSYNI

tDS

0

-

-

0

-

-

ns

1

Memory Handshake Time - Read IDATII
or Write IDATOI Cycle MSYN t to SSYN'

tMH

-

-

75

-

-

75

ns

1

Write Access Time - MSYN I 10 SSYN'

tWACC

-

125

165

-

125

165

ns

1

Cycle Time - Write IDATOI Cycle

tWCYC

340

-

-

440

-

-

ns

1

Cycle Time - Read IDA Til Cycle

tRCYC

Read Access Time - MSYN I to SSYN I

NOTES: 1. All timing IS referenced at card edge. Operation is assumed to be In a properly terminated backplane, with memory not busy and no
refresh arbitration.
2. Assumes handshaking occurs Immediately.

WRITE CYCLE TIMING

Bus A <0:21 >
Bus 0 <0:16>
Bus MSYN L

----.:....::~-+----1-,(----'i

Bus SSYN L
tDH
t-----tWCYC---~

READ CYCLE TIMING

r:

Bus A <0:21 >

)[

Bus C <0:1 >

--......X

AS

tRACC

tAH

~

-

tPHBus MSYN L

~

-tMH
Bus SSYN L
tDS
Bus 0 <0:15> L
tRCYC

5-13

-

-tDt:j

MMS1119

TIMING
The MMS111S is fully compatible with the PDP-11
Modified and Extended UNIBUS protocol and timing. limits
are specified In the AC Conditions/Characteristics Tables in
conlunction with the DATI/DATO waveforms.

BUS INTERFACE
The M M S 11 1S is provided with a switch to select the type
of Bus to be used. With this switch closed, the Interface IS to
en Extended UNIBUS backplane 122 bit address!. The
memory operates with a Modified UNIBUS system 118 bit
addressl with this switch open.
STARTING ADDRESS
The MMS1 119 utilizes a set of switches to allow the starting address to be selected at any 4K boundary. This feature
is available regardless of the Bus Interface or Memory
Capacity option chosen. In cases where the sum of the starting address and the memory capacity exceeds the host
machine addressing capability, the capability is automatically
reduced. INo wraparound to starting address locations occurS.1

REFRESH
The storage cells in the MMS111S are implemented with
dynamic MOS RAM's. The charge stored in the cells must be
refreshed every 2 milliseconds, requiring a single refresh cycle to be initiated approximately once every 16 M Seconds.
The latency induced to bus cycles concurrent with refresh
cycles is no greater than the specified minimum cycle time
for the MMS111S version chosen.
The MMS' 11S contains circuitry to automatically refresh
the memory cells. An option is also provided to allow the
User to control the refresh externally. In this case, the
Refresh Latency will be no greater than the refresh cycle time
defined by the external cirCUitry. Note that any external
refresh circuitry must conform to the requirements previously mentioned, i.e., each cell refreshed at a 2 millisecond rate
and a refresh cycle time not less than the minimum Read Cycle time.

I/O PAGE SIZE
When the MMS111S is located in high memory, the User
may select part of the I/O page as Read/Write memory. This
is implemented via three switches, resulting in optional I/O
page sizes of 2K, 4K, or 8K words.
PARITY OPTIONS
The MMS11 1SPXXXX contains parity control cirCUitry
which is fully compatible with the DEC parity module. This
circuitry does not degrade access or cycle times, and the
Parity Control Status Register ICSRI address can be switch
selected to any standard pre-assigned bus address. 1772100a
thru 772136a for Modified UNIBUS, 1772100a thru 1772136a
for Extended UNIBUS. In any case, the CSR occupies a
single two-byte address spacel. The on-board parity circuitry
does not impose any additional bus loading on the system.
The MMS1'1SPXXXX can also be used in systems which
utilize the DEC Parity Module. The User selects this mode of
operation by opening a switch Iprovided on the MMS 11 19PI
prior to installation of the memory. The parity generation and
detection circuitry of the MMS111SP is fully compatible with
the DEC Parity Module.
The MMS1 11SNXXXX version IS available for those
systems not requiring parity. This product is supplied as a
16-bit word memory with the Internal/ External Parity Control
switch open I Externall.

AVAILABLE OPTIONS
The MMS" 1S features a variety of options, allowing its
configuration into a wide range of applications. Several of
these options are installed at the factory, witt> most of these
specified by the part number as shown in the "Ordering Information" on Page 1. Others are chosen by the User prior to
installation of the product.

MEMORY CAPACITY
The MMS1 11S utilizes either 16K or 64K RAM components to allow optional storage capacities of 64K, 96K,
128K, 256K, or 512K Words. As noted on Page 1 10rdering
Informationl, the last three digits of the full part number
identifies the total memory capacity In K Words.

1/0 SIGNAL DESCRIPTION

Signal

Type

Daacription

A<0:21 >

Input

Address lines to select memory locations AO selects byte in DATOB

0<0:15>

Bidir.

Data lines used to communicate with Master

C<0:1>

Input

Control lines to specify type of cycle

MSYN

Input

Timing control from Master. Used to start cycle

SSYN

Output

IN IT

Input

System Reset

DClO

Input

Power monitoring

Timing control used to notify Master that cycle is complete

PB

Output

P<0:1>

Bidir.

Data Parity Bits

PAR DET

Input

Indicates external parity module

INT SSYN

Output

Signal to Master that parity error has occurred
IS In

use

Slave Sync used with external parity module only

NOTE: All Signals are low assertion level.

5-14

®

MOTOROLA

MMS1128

Advance InforIllation
'PDP-ll MODIFIED UNIBUS' COMPATIBLE MEMORY SYSTEM

• Uses 16K, 32K, or 64K Dynamic RAM Chips
• Available in 32K, 48K, 64K, 96K, and 128K Word
Capacities

• Read Access Time Typically 300 ns (Measured (nslde
Buffers)
• Cycle Times as Low as 460 ns Typical
• Two Speed Options Available
• Worst-Case AC Limits Specified at Card Edge
• On-Board Parity and Parity Controller Standard
• Also Available Without Parity
• Starting Address Conflgurable at any 4K Boundary
• Automatic Internal Refresh
• Provisions for External Refresh Control
• Battery Backup Capability Standard
• Single 5-Volt Power Supply Required for 64K, 96K, 128K,
Word Versions

ORDERING INFORMATION
Z1 Zo

--rOption

BasIc Product

Parity + Controller

Desl.9nat:on

No Parity··

I
I

I

I

L y 1 head Access I

I

I

3

4

I

I

300 ns I typl
350 ns I,ypl

I

I

1
Z2

Z1

Zo

0
0
0
0

3

2

1
•• Available on special order

NOTE K

5-15

Capacl~;32 K Words

4

8

48 K Words

6

4

64 K Words

9

6

96 K Words

2

8

128 K Words

1024, Word = 16 Bits WIO, 18 Bits With Panty

MMS1128

I/O SIGNAL DESCRIPTION
Signal

Typa

A <0:17>

Input

0<015>

Bidirectional

C <01>
MSYN

Input

Control lines to specify type of cycle

Input

Timing control

SSYN

Output

INIT

Input

System Aeset

OCLO
PB

Input

Power monltonng

Description
Address lInes to select memory locations AO selects byte

In

DATOS.

Data lines used to communicate with Master
~rom

Master. Used to start cycle

Timing control used to notify Master that cycle is complete.

Output

Signal to Master that parity error has occurred

P <0:1>
PAA OET

Bidirectional

INT SSYN

Output

Input

Data Parity Bits
Indicates extend parity module In use.
Slave Sync used WIth external parity module only

NOTE: All signals are low assertion level

ABSOLUTE MAXIMUM RATINGS
Rating

Lim~

Symbol

voo
Supply Voltage IAelatlve to Groundl
Input Voltage (Any input relative to GNOJ
NOTES: 1. Permanent damage may occur If Absolute MaXimum Ratrngs are exceeded.
Recommended Operating Conditions.
2. Permanent damage may also occur if VOO

IS

Min

Max

-0.3

20.0

VCC

-0.3

7.0

VBB

- 20.0

0.3

Vn

-OJ

5.5

UnM

Vdc
Vdc

Functional operatIon shall be restncted to

applied for more than one second while VBB is outside its Recommended Operating

Aange.

ENVIRONMENTAL RATINGS
Rating
Operating Temperature
Storage Temperature
Relative Humidity (Without Condensation)

Symbol

Limit

Un~

TA

o to 55

Tstg
AH

-40 to +B5

'c
'c

o to 90

%

RECOMMENDED DC OPERATION CONDITIONS
Parameter

Symbol

Lim~

Min

Max

Un~

Note

Supply Voltage
- Nominal + 15 V or nominal + 12 V, pon AAI

VOO

- Nominal + 5 V, pins AA2, BA2, CA2

VCC
VCC/BBU

- Nomrnal + 5 V BBU, pin BOI
- Nominal - 15 V or nominal - 12 V, pm AS 1

NOTES. 1. + 15 V or + 12 V

IS

VBB
lumper selectable on all modules populated With 16K AAMs.

1,3

14.50

16.50

11.40

12.60

4.15
4.15

5.25
5.25

~

-7.00

-20.00

3:"4

Vdc

-----;-

2 Pins AA2, BA2, and CA2 are connected together on the MMSl128.
These voltages must be present on cards populated With 16K RAMs if Battery Back Up IS required. Only VCC/BBU need be
present for cards populated With 32K or 64K RAMs.
4. VOO and VBB not reqUired for cards populated with 32K or 64K RAMs.

5-16

MMS1128

WRITE CYCLE TIMING (DATOI

tAS-...._---twACC - - -.....

Bus A <0:17> L

BusC <0:1> L

Bus D <0:15> L

Bus MSYN L

Bus SSYN L

~---------twCYC--------~~

READ CYCLE TIMING (DATil
tAH ......
_tAS
Bus A <0:'7> L

'/;:

BusO<0:1>L

'//

f-

tRACC

:1///////

-

Bus MSYN L

'L/IIII~
~tPH

f-tMH

J

Bus SSYN L
t DS
Bus D <0:15> L
tACYC

5-17

-1

. . ~tDH:1

MMS1128

DC OPERATING CHARACTERISTICS (0° < T A < 55°C)
Capacity
(K Wo,dal

Characteristic

Mode

Symbol

Min

Limit
Typ

Ma.

Units

Notes

Adc

1, 2
1

Supply Current
32,48

Active

100

0.25

0.50

32,48

Standby

100

0.16

030

- Nominal + 5 V Supply

32,48

ActfStby

ICC

120

150

Adc

-

Nominal + 5 V BBU

32,48

BBU

ICC

0.55

0.80

Adc

1

-

Nominal + 5 V Supply

64,96, 128
64,96, 128

Act/Stby

ICC

1.60

2.25

Adc

1

BBU

ICC

0.80

115

Adc

1

32,48

All

IBB

12

20

mAde

1, 2

Vdc

IIH

15

Any Input, VIL =0.4 Vdc

IlL

- Nominal + 15 V or + 12 V Supply BBU

- Nominal + 5 V BBU
- Nominal - 15 V or - 12 V Supply BBU
Logic "1" Input Current - Any Input, VIH
Logic "0" Input Current Logic"'" Output Current V Bus ~ 4.0 Vdc

~4.0

Any Output,

Logic "0" Output Voltage - Any Output,
IOL ~50 mAdc
Any Input
Input Threshold Voltage
High Logic State
Input Threshold Voltage - Any Input low LOQic State

50

~Adc

3

-16

mAdc

3

VOH

20

100

~Adc

3

VOL

0.4

0.70

Vdc

3

VILH

1.80

2.25

2.50

Vdc

VIHl

1.05

1.30

1.55

Vdc

NOTES· ,. Active Mode = Memory accesses at maximum continuous rates; Standby Mode = Internal Refresh Cycles only; Battery Back Up
(SBUI = Standby Mode With + 5 V applied only through Pin 801
2. + 15 VI + 12 V and - 15 VI -12 V supplies not reqUIred for products populated with 64K RAMs
3. Negative Sign = Current out of pin. MinIMax limits refer to absolute values of current

AC OPERATING CONDITIONS
Parameter

Symbol

Umil
Min Max
50

Address Hold Time - MSYN to A<017> Invalid

tAH

Address Setup Time - A < 0: 17 > Valid to M SYN

tAS
tpH

75

tDHW

40

Processor Handshake Time -

SSYN to MSYN

Data Hold Time IWrote Cycle/DATO)
Data Setup Time IWrote Cycle/OATOI NOTES:

MSYN to 0 <0:15> Invalid

0

Unit

Note

ns

1

ns

1

ns

1, 2

ns

1

<015> Valod to MSYN

All timing IS referenced at card edge Operation
no refresh arbitration

1:3

15
ns
1
tosw
assumed to be In a properly terminated backplane, With memory not busy and

2. Assumes handshaking occurs Immediately

AC OPERATING CHARACTERISTICS (O°C < T A < WCI

Cycle Time -

Read (DATil Cycle

Read Access Time Data Hold Time -

MSYN to SSYN

Read (DATil Cycle MSYN to Data Invalid

Data Setup Time - Read IDATII
Cycle 0 <0:15> Valod to SSYN
Memory Handshake Time - Read IDATII or
Write IDATO) Cycle - MSYN to SSYN
Write Access Time - MSYN to SSYN

Min

IS

MMS1128X4XXX
Typ Me.

Min

Unit

Note

tRCYC

460

515

510

565

ns

1

tRACC

330

300

3BO

430

os

1

70

ns

1

ros

2

75

ns

1

165

ns

1

70

tDH
tDS

0

tMH

25

tWCYC
assumed to be

Timing is referenced Inside Bus Onvers.

5-18

0
75
125

tWACC

Cycle Time - Write IDATOI Cycle
NOTES. 1. All timing IS referenced at card edge OperatIon
no refresh arbitration

MMSI128X3XXX
Typ Max

Symbol

Chirecteriatici

In

165

25
125

1
ns
325
340
425
440
a properly terminated backplane, with memory not busy and

MMS1128

TIMING

the last three digits of the full part number Identifies the total
memory capaCIty in K Words.

The MMS 1128 IS fully compatible with the PDP-11
Modified UNIBUS protocol and timing. Limits are specified
in the A.C. ConditlOnslCharactenstlcs Tables In conlunction
with the DATIIDATD waveforms.

STARTING ADDRESS
The MMS 1128 utilizes a set of SWitches to allow the startIng address to be selected at any 4K boundary. ThiS feature
IS available regardless of the Memory Capacity option
chosen. In cases where the sum of the starting address and
the memory capaCIty exceeds the host machine addreSSing
capability, the capability is automatically reduced INa
wraparound to starting address location occurs. I

REFRESH
The storage cells in the MMSl128 are Implemented with
dynamic MDS RAM's. The charge stored in the cells must be
refreshed every 2 milliseconds, requiring a single refresh cycle to be Initiated approximately once every 16 milliseconds.
The latency induced to bus cycles concurred with refresh
cycles IS no greater than the specified minimum cycle time
for the M M S 1128 version chosen.
The M M S 1128 contains circuitry to automatically refresh
the memory cells. An option is also provided to allow the
User to control the refresh externally. In thiS case, the
Refresh Latency will be no greater than the refresh cycle time
defined by the external circuilry. Note that any external

1/0 PAGE SIZE
When the MMS2118 IS located In high memory, the User
may select part of the 1/0 page as ReadlWrlte memory ThiS
IS Implemented via three switches, resulting In optional 1/0
page sizes of 2K, 4K, or 8K words.
PARITY OPTIONS
The MMS2118PXXXX contains parity control circuitry
which is fully compatible With the DEC parity module. ThiS
circuitry does. not degrade access or cycle times, and the
Parity Control Status Register (CSRI address can be SWitch
selected to any standard pre-aSSigned bus address. (772100s
through 7721368.1 In any case, the CSR occupies a Single
two-byte address space. The on-board parity circuitry does
not impose any additional bus loading on the system.
The MMSl128PXXXX can also be used in systems which
utilize the DEC Parity Module. The User selects this mode of
operation by inserting a lumper pnor to installation of the
memory. The parity generation and detection circuitry of the
MMSl128P IS fully compatible With the DEC Parity Module.
The MMSl128PXXXX version is available for those
systems not requiring panty. ThiS product IS supplied as a
16-bit word memory with the Internal! External Parity Control
switch open IExternali

refresh circuitry must conform to the requirements prevIous-

ly mentioned, i.e., each cell refreshed at a 2 millisecond rate
and a refresh cycle time not less than the minimum Read Cycle time.
AVAILABLE OPTIONS
The MMS1128 features a variety of optIOns, allowing its
configuration Into a wide range of applications. Several of
these options are installed at the factory, with most of these
specified by the part number as shown in the "Ordering InformatIOn" on Page 1. Others are chosen by the User pnor to
installation of the product.
MEMORY CAPACITY
The MMSl128 utilizes 16K, 32K, or 64K RAM components
to allow optional storage capacities of 32K, 48K, 64K, 96K,
or 128K Words. As noted on Page 1 (Ordering InformatlOnl,

5-19

@

MOTOROLA

MMSl170

Product Pre v Ie,",
MEMORY ARRAY CARD FOR PDP*-11170

The MMS1170 is a dynamic memory array system
specifically designed for use In PDP-11170 minicomputers
from Digital Equipment Corporation. The array has a capacity of 64K double words 1256K bytesl using 16K RAM chips.
It is hardware and software compatible with the PDP-11170
memory controller module and DEC diagnostics.
The MMS1170 is designed to occupy a single hex slot of
the DEC MK-11 Memory System chassis. It features an On

Line/Off line switch Iwith an LED indicator) to facilitate
trouble-shooting. A separate LED indicates when battery
backup voltage is available via the backplane connector.
All RAMs used on the MMS1170 are socketed. Two spare
16K x 1 RAMs are provided on the board. The product is fully burned-in and covered by the Motorola Memory System
One-Year limited Warranty.

ORDERING INFORMATION

r
ECC

BasIc Part No

NOTE Double Word

·PDP 15

~

Speed Option

32 Date and 7 ECC Bits

a trademark of Digital EQUipment Corporation

5-20

5"8164 x 1024 Double Words)

MMS1170

ENVIRONMENTAL RATINGS
Symbol

Rating
Operating Temperature

TA

Storage Temperature

T St9
RH

Relative Humidity (Without Condensatton)

limit

o to

Units

+ 50

'C

-40 to +00

'C

o to 00

%

PHYSICAL DIMENSIONS
Dimen8ton
Width
HeIght
PC Board Thickness
Clearance ReQuired (Component Side)Clearance Required (Solder Sidel-

Millimeters

Inches

39.85
22225
0.142
0.952
0.254

15.688
8.75

0.056
0.375
0.10

-Measured from surface of PC Board

POWER REQUIREMENTS
Maximum Current Requirements
Operating Standby Battery Backup

Input Voltage

+12 B
+5V
-12 B
+5 VB

1.5
0.4
0.04
0.9

0.25
0.35
002
0.8

0.25
0
0.02
0.8

Un~.

Adc
Adc
Adc
Adc

AC OPERATING CHARACTERISTICS
Nominal··
650
680
320
70

Characteristic
Cvcle Time Access Time -

Read
Write
Read
Write

Un~

ns
ns

··The actual response times are determined by DEC MK-l1 Memory System Controller design. Nominal values shown are for reference only.

5-21

®

MOTOROLA

MMS780

Advance InforIllation
MEMORY ARRAY CARD FOR VAX-11 1700·
The MMS780 is a dynamic memory array system specifically designed for use in VAX-11 1780 minicomputers
from Digital Equipment Corporation. The array has a capacity of 32K words 1256K Bytesl using 16K RAM chips. It
is fully compatible with the VAX-111780 memory controller module.

;' M~
~ foooj ~

~'IIII'l) ~

~. . . .

,1.· [.

....

....:::..

"" ~'fjf][~ eM .,~

.l1li i ' . ""
.

...

~

~ ~. ~.

,..

-

R2

~

••

1""'

II

'11

l~

ORDERING INFORMATION

MM S780AE1032

BaSIC~

iii

ECs~eed IOP1IDn

I

SIZe IK Words I
Note K = 1024
Word = 64 Data + 8 ECC Bits
·VAX is a trademark. of Digital Equipment Corporation

5-22

MMS780

ENVIRONMENTAL RATINGS
Symbol

Rating
Operating Temperature

TA

Storage Temperature

Tst9
RH

Relative Humidity (Without Condensation)

Limit

o to

Unita

-4Oto +!Kl

·C
·C

o to 90

%

+56

PHYSICAL DIMENSIONS
Width

MHlimetera
39.85

Height

:Jl.48

12.0

PC Board Thickness

0.142

0.056

Clearance Required (Component Side'-

0.952

0.375

Clearance Required (Solder Side)-

0.254

0.10

Dimension

Inchee
15.688

• Measured from surface of PC Board

POWER REOUIREMENTS

+ 12 V

Maximum Current Requirementa
Unita
Standby Battery Backup
1.5
0.25
0.25
Adc

+5 V
-5V

0.04

0.6
0.02

0
0.02

Adc
Adc

+ 5 V Battery

0.9

0.8

0.8

Adc

Input Voltage

Operating
0.7

AC OPERATING CHARACTERISTICS
Characteristic

Nominal··
5:J)

Cycle Time - Read. Refresh, or Init.
- Readl Modify IWrite

1100

Access Time - Read
- Write

250
750

Unita
ns
ns

• -The actual response times are determined by VAX-111780 Memory Subsystem Controller design. Nominal values shown are tor reference
only

OPERATING PRINCIPLES
The MSM780 is based on 16K x 1 dynamic RAMs arranged
in two banks, each containing 72 chips. The 72-bit word thus
formed is subdivided into two 32-bit long words (Upper and
Lower! and eight ECC bits. All memory array accesses correspond to a Read from, or write to, the selected 72-bit
word. (All 8, 16, and 32 bit memory operations are
transformed into 72 bit accesses by the memory controller. J
The memory array selection is accomplished via address
lines (ADR19:ADR16J and four select signals at the Memory
Subsystem Backplane This Backplane has 16 slots
dedicated for memory array cards, with the select signals
uniquely specified for each slot. This arrangement eliminates
the need for special lumpers and address switches. The
MMS780 is merely inserted in the next available backplane
slot. A total of 4 Megabytes of memory can be accomodated
by one Memory Subsystem.

5-23

USAGE RECOMMENDATIONS
The MMS780 is recommended for use with any
VAX-ll/780 memory subsystem set up for operation with
the DEC M8210 array card. It is hardware and software compatible with the VAX-11/780, including DEC diagnostics
which allOW failure isolation at the chip level. The MMS780 is
also compatible with DEC battery backup proviSions.

INTERFACE
The VAX-11/780 computer system is normally configured
with either one or two memory subsystems, as shown in
Figure 1. The normal interface signals ut;lized within each
subsystem are depicted in Figure 2. The MMS780 Array
Module functions in any slot of either subsystem, with no
modifications required.

MMS780

FIGURE 1 - NORMAL VAX-ll/780 MEMORY CONFIGURATION

VAX-111780
CPU

Cache Memory

Synchronous Backplane Interconnect

4,"

....

,r.
:
I
'OJ ,7

_----,
,,

r--~--'

2-16

Memory

:
I

I
I

Memory

Controller

Array Cards

roC::::::::'i

,

I
I

:

,

~

•

Optional
Memory
Controller

"I

,: ," '---~ ' M 0-16

{

~

I' :I :I •I

emory,.

! I~AI-A
L
_____ _ J-I

. " ,.. __ ,,'1 Array Cards
'~i'

______ J

'

I

IMMS7801

IMMS7801

FIGURE 2 -

,.'------, I
I I :

rt------,

MEMORY SUBSYSTEM INTERFACE

.---M
E
M

Memory

I-------~~
Slot Select < SLOT03:SLOToo>

y

I - - - - - - -____

Memory

o

Controller

Board Select Addr. 

)
V

Base Chip Addr.'  ' )

~----~~
/

V

ECC Bits < C07:Coo>

T
E
M

C
K

-)

~
' - -_ _ _--J

~

E

~L----EC-C--Bi-ts-<--C-07-:C-oo-->----~~

I( .
'---

~

V

A

Data  ' )

_ _ _-l~

Control Signals" 181

N

~
V

~_

L
A
N

»
V

P

V

~

Base Chip Addresses < ADAI2:ADAOI

~

V

Control Signals" 181

Extended Addresses' 

S

I~

V
~
Data  ' \

/

L-_ _ _--J

'Extended Addresses are labeled ADA13, ADACS, and ADA EXT. During normal operation, they correspond to > ADAI5:ADAI3<
··Control signals are: Read. Column Address Strobe (CAS), Row Address Strobe (RAS). Multiplexer Control, Refresh Cycle, Bus Select, Bus Output Enable. and Initiate.

5-24

®

MMS8064(P)
MMS8048(P)
MMS8032(P)
MMS8016(P)

MOTOROLA

Advance Information
SBC-COMPATIBLE MEMORY SYSTEMS
The MMSBOXX family of memory systems is designed
for use with the Intel SBC BO Series computers. System
BO microcomputers. MDS systems. and the 16-blt SBC
B6/12. The modules employ 16K dynamic RAM's
mounted on a single 6 3/4" X 12" PC board along with
timing, control. and bus interface logic. Eight models are
available. all having the same access and cycle times All
electrictfl connections are made via two edge connectors

•

Pin. Function. and Form-Factor Compatible with
MULTIBUS' Systems

•

Even/Odd Bank Address Allows 16-Bit or B-Blt
Operation

• Addresses Selectable
•

20 Address Lines -

In

Independent BK Blocks

Operates in 1 M Byte System

•

Handles Early or Late Inhibits

•

Operates in Delayed Write. Advance Write. and Read
Modes

•

Battery Backup Capability through use of Memory
-Protect Signal on P2 Connector

•

On-Board Refresh Control Circuitry

•

Programmable Advanced Acknowledge (AACK/)
Signal

• On-board VBB Generation (-5 V) Allows Operation
from 12 V. +5 V. and -12 V. -10 V. or -5 V Supplies
•

Cycle Times of 700 ns (Read. Delayed. Write) and
1240 ns (Advanced Write)

• Available In 16K. 32K. 4BK. and 64K Byte
Configurations

PHYSICAL CHARACTERISTICS

ORDERING INFORMATION
No Parity

MMS8064

Parity

Capacity

Charlcteristic

limit

MMS8064P

64K Bytes

Width

3048 cm (12 00 Inches)

MMS8048

MMS8048P

48K Bytes

Depth

17 15 em (6 75 Inches)

MMS8032

MMS8032P

32K Bytes

Thickness

t 27 em (0 50 Inches)

MMS8016

MMS80t6P

16K Bytes

Weight

397 grams (140 ounces)

'Trademark of Intel. Inc

5-25

MMS8064(p)eMMS8048(p)eMMS8032(p)eMMS8016(P)

AC OPERATING CONDITIONS
limit
Parameter
Read or Delayed Write Cycle
Advanced Write Cycle

Cycle Time
Address Setup Time
Address Hold Time

Symbol

Min

Unit.

Notel

tCYC
tCYC'AI

700
1240

ns

1.2
1.2.3

Address Valid to MADC/' or MWAC/I

tAS

50

ns

MADCII or MWRC/I to Address Invalid

tAH

0

ns

Data Valid to MWACI j

tDSW

-100

ns

Write Data Setup Time (Delayed Write)

Write Data Oelay Ti me
(Advanced Write)

MWACI I to Data Invalid

Byte High Enable Setup Time

Byte High Enable Hold Time

tDHW

0

ns

!)S1
!)S2

10
-50

ns

Early Inhibit

Inhibit Setup Time
INHII Valid to MADC/j or MWAC/I

Late Inhibit Option Installed

MADC/I or MWACI j to INHI Invalid

tlH

100

ns

BHENI Valid to MRDCI j or MWACI I

tBS

50

ns

MADC/' or MWACII to BHENI Invalid

tBH

0

ns

15

iJs

< 475

Memory Protect Setup Time

MPAO/j to VCC

Vdc

tMPS

Memory Protect Hold Time

VCC ? 4 75 Vdc to MPRO/I

tMPH

0

tAl

12.7

Refresh Interval
NOTES

ns

500

tDDAW

Write Data Hold Time

Inhibit Hold Time

Me.

3

ns
15.6

ms

Typ

Max

Units

Notes

400

450

ns

1.3

1) Add Refresh Delay Time (TRO) to these parameters when Asynchronous Refresh occurs
2) Add 40 ns (Typ), 50 ns (Max) to these parameters If Late Inhibit Option is Installed
3) Applicable only if Advanced Write Cycle option IS installed

AC OPERATING CHARACTERISTICS (O"C <- TA <- 55'C)
Limit
Symbol

Parameter
MADCI j to Data Valid

tAce

Aead Data Valid to XACKI j

tDSA

0

XACKI I to Data Invalid

tDHA

0

MADC/I or MWTC/j to AACK/I

tAAK

-

MADC/j or MWTC/j to XACK/j

tACK

Read Access Time
Read Data Setup Time

Aead Data Hold Time
Advance Acknowledge
Delay Time
Transfer Acknowledge
Delay Time
Acknowledge Turn-Off Time
Panty Error Setup Time
Parity Error Hold Time

1)
2)
3)
4)
5)

ns

-

MADC/I or MWTC/I to AACK/I or
XACK/I

tTD

15

PAA EAAI Valid to XACK/j

tps

0

XACKI j to PAR EAAI Invalid

tPH

50

65

ns

-

ns

1.4.5

50

ns

1.2

55

ns
ns
ns
ns

550

tDA

Refresh Delay Time

NOTES

Min

Add 40 ns (Typ). 50 ns (Max) to these parameters If Late Inhibit option IS Installed.
Add 450 ns (Typ), 500 ns (Max) to these parameters for Advanced Write Cycle operations.
Add Refresh Delay Time (tAD) to these parameters when Asynchronous Refresh occurs
See Advance Acknowledge options table for Delay Time
Advance Acknowledge IS delayed until Transfer Acknowledge Time If Asynchronous Refresh occurs

ADVANCE ACKNOWLEDGE OPTIONS
The MMS8060 Series can be programmed 10
prOVide an ADV ACK Delay (tAAKI of 10010
450 ns. Available options are as noted In table
at right_ Selection IS made via installation of a
smgle jumper between two terminals of a 16
pm DIP socket. (Jumper between pinS 8 & 9 -lOOns Typ. between 1 &. 16 - '50 ns. etc)

Option Selected
Limit

8-9

1 -16

7-10

2-16

3-14

6-12

4-13

6-11

Units

Min

70

120

165

215

260

310

360

400

ns

Typ

100

150

200

250

300

350

400

450

ns

Ma.

125

175

230

285

335

400

450

500

ns

5-26

MMS8064(p)eMMS8048(p)eMMS8032(p)eMMS8016(P)

ABSOLUTE MAXIMUM RATINGS
limit
Symbol

Min

Max

Units

Nominal .,-5 Vdc

Vee

-03

+70

Vde

Nominal + 12 vdc

VDD

-03

+150

Vde

VBB

·03
+03

-70
-15.0

Vde
Vde

VtN

-03

+55

Vdc

Rating
Power Supply Voltage
(Measured at Connector
P 1 or P2 With Respect
to GND)

Nominal ·5 Vdc (Negative voltage regulator disabled)
Nominal -'0 Vdc or -12 Vdc (Negative

r---

vQlt~ge

regulator enabled)

Input Voltage. Any Input (Measured at Pl or P2 Conn With Respect to GNO)

NOTES

1) Permanent damage may occur If Absolute Ma)(lmum Ratings are exceeded Functional operation should be restncted to
Recommended Operating Conditions
2) Permanent damage may also occur If VOO

IS

applied for more than one second while Ves

IS

outside

Its

Recommended

Operating Range

ENVIRONMENTAL RATINGS
Limit
Rating

Symbol

Min

Ma.
+55
+85

Unit

TA

90

%

Storage Temperature

T9tg

0
-40

Relative Humidity (Without Condensation)

R.H

0

Symbol

Min

Ma.

Units

Nominal +5 Vdc

Vee

475

5.25

Vde

Nominal .,2 Vdc

VDD

114

12.6

Vde

Nominal ·5 Vdc (Negative voltage regulator disabled)
Nominal -'0 Vdc or -'2 Vdc (Negative voltage regulator enabled)

VBB

-475
-95

-5.25
-126

Vde

Operating Temperature

°C
°C

RECOMMENDED DC OPERATING CONDITIONS
Limit
Condition
Supply Voltage

Logic Zero Input Voltage, Any Input

Vil

-03

+08

Vde

Logic One, Input Voltage, Any Input

VtH

+20

+525

Vde

Max

Units

DC OPERATING CHARACTERISTICS (O"C <
- TA < 55°C)
limit
Parameter

Symbol

Min

Typ

Supply Current

Nominal +5 Vdc

ICC

3.0

Ade

(Normal Mode)

Nominal + 12 Vdc

IDD

260

mAde

Nominal -5 Vdc (Negative voltage regulator disable.d)
Nominal -'0 Vdc or -12 Vdc (Negative voltage regulator enabled)

IBB

14
30

mAde
mAde

Supply Current

Nominal +5 Vdc

ICC

11

Ade

(Battery Backup Mode)

Nominal +'2 Vdc

IDD

90

mAde

Nommal -5 Vdc (Negative voltage regulator disabled)
Nominal -10 Vde or -12 Vdc {Negative voltage regulator enabled}

IBB

72
14

mAde
mAde

logic One Input Current
(Vee = 4.75 Vde, VIH = 2.4 Vde

DATO/-DATFI
All Other Inputs

IIH

250
40

/JAde
/JAde

Logic Zero Input Current
(Vee = 5.25 Vde_ Vil = 0.4 Vde)

DATOI-DATF:
An Other Inputs

III

-600
-400

/JAde
/JAde

All Outputs

Logic One Output Voltage
(Vee = 475 Vde, IOH = -5 mAde)

All Outputs

Logic Zero Output VoltagE:
(Vee = 4.75 Vde, IOl = 48 mAde)

5-27

VOH

1---:-:-VOL

24

Vde

0.5

Vde

MMS8064(p)eMMS8048(p)eMMS8032(p)eMMS8016(P)

BASIC CYCLE TIMING
'CYC
Address

MWRC/ ________________

~

or

MRDCI
AACKI
XACKI

INHII

BHENI

/

MRDCI

DATA
XACK

~~-----

PARERR------------------

DELAYED WRITE CYCLE TIMING

MWRCI

r--'DSW)~--::1

DATA-------~

r-""W

p->-----------

ADVANCED WRITE CYCLE TIMING

~I

j

\

DATA _________

~~!_.~~~=~~=~~=~=-_'-D~D~A~W~~=~==~=-_~=-_~=-~~!-----------------'-D-H--W~ ~

5-28

MMS8064(p)eMMS8048(p)eMMS8032(p)eMMS8016(P)

P1 CONNECTOR PIN ASSIGNMENTS
Signal Name

Symbol

Pin No.

Signal Name

Symbol

Pin No.

Signal Name

Ground
Ground

VSS
VSS
VSS
VSS
VDD
Vee
Vee
Vee
Vee
VBB
VBBl
VBB2
XACKI

1. 2
11.12
75. 76
85. 86
7.8
3. 4
5.6.
81.82
1:13. 1:14
9.10
77.78
79. 80
23

Address Lme 0
Address Line 1

ADROI
ADR1/
ADR2I
ADR31
ADR4/
ADR5/
ADR61
ADR7/
ADRI:I!
ADR9!
ADRAI
ADRBI
ADRCI
ADRDI
ADREI
ADRFI
ADR101
ADR111
ADR121
ADR131

57
58
55
56
53
54
51
52
49
50
47
48
45
46
43
44
28
30
32
34

Memory Read
Command

Ground
Ground
+12 V Supply
+5 V Supply
+5 V Supply
+5 V Supply
+5 V Supply
-5 V Supply
-10 V Supply
-12 V Supply
Transfer

Acknowledge
AAeKI

25

Command
Inhibit

INH11

24

8yte H;gh

BHENI

27

Advance
Acknowledge

Enable

Address line 2
Address
Address
Address
Address
Address
Address
Address

Address
Address

Line
Line
LIne
Line
Lme
line
LI ne
Li ne
Li ne
Li ne
Line
Line

3
4
5
6
7
B
9
A
B
C
0
E

Address
Address
Address
Address
Address

Une
Line
Lme
Line
Line

F
10
11
12
13

Address
Address
Address

Memorv Write

Symbol

Pin No.

MRDCI
MWTCI

19
20

DATO/
DATlI
DAT2/
DAT31
DAT4/
DAT51
DAT6!
DAnl
DAT81
DAT91
DATAl
DATBI
DATCI
DATD,
DATEI
DAlF/

73
74
71

Command

Data
Data
Data
Data
Data
Data
Data

Lme
Line
Lme
Line
Line
Lme
Line

0
1
2
3
4
5
6

Data line 7
Data
Data
Data
Data
Data
Data
Data
Data

Line
Une
Lme
Line
Line
Une
Lme
Lme

8
9
A
8
C
0
E
F

72
69
70
67
68
65
66
63
64
61
62
59
60

NOTE: Pins not listed are not connected to Memory System circuitry

P2 CONNECTOR PIN ASSIGNMENTS
Signal Name
Memory Protect
Parity Error
Test Point - Advanced Write
Test Point - Refresh Clock
Test Po;nt - Parity 0 & 1

Symbol

Pin No.

MPROI
PAR ERRI
Tp·ADVW
TP·REFCLK
Tp·PART 0 & 1

20
29
38
40
42

Symbol

Pin No.

lP·PARl2 & 3
VSS
Vee (BAn)
VDD(BAn)
VBe (8An)

44
1.2
3. 4

Signal Name

Test Po;nt - Par;ty 2 & 3
Ground
+5 V (Battery)
+12 V (Battery)
-5 V (8attery)

9.10

NOTE' PinS not listed are not connected to Memory System cirCUitry

MMS80XX SYSTEM
Description

Signal (Pl)
ADRO/·ADRF/

Lower Order Address used to select 1 location out of 64K· block

ADR10·ADR·131

High Order Addresss used to select one 64K block out of 1024K

DATOI·DAn/

Data signals for 8-bit mode or lower byte of data signals for' 6-bit mode

DAT8/·DATFI

High order byte data signals for 16-blt mode

AACKI

(Programmable - 8 timing selections) Advanced Acknowledgement Signal from Memory Card in response to
MWTCI or MRDC

XACKI

Acknowledgement Signa: from Memory Card Indicating that Data Transfer has occurred

MRDCI

Signal to Memory Card requesting to read RAM memory

MWTc/

Signal to Memory Card requesting to write data into RAM memory

INH11

Signal disabling response of the Memory card to MWTC/ and MRDel

BHENI

Signal used to enable the 16-bit mode of operation
Description

Signal (P2)
MPROI

Signal used to enable the transfer from normal voltages to battery back-up voltages by disabling all cirCUits except
refresh. Can also be used separately from battery back-up to do same thing

PAR ERRI

Signal used to indicate a Parity Error

Tp·ADVW

Test Point Signal used to select Advanced Write Mode

Tp·REF C/K

Test Point Signal used to clock refresh flip-flop externally (used only for evaluation purposes)

Tp·PART 0 AND 1

Test Point Signal used to force a Parity Error on Reading Banks 0 or 1

TP·PART 2 AND 3

Test Point Signal used to force a Parity Error on Reading Banks 2 or 3

·K = 1024 Bytes

5-29

MMS8Q64(p)eMMS8048(p)eMMS8032(p)eMMS8016(P)

GENERAL DESCRIPTION

series allows the user to select an Advance-Acknowledge
Delay Time of 100 to 450 ns (in 50 ns Increments) This
facilitates tailoring of the memory response time to the
system speed.
An Inhibit Input is provided With the MMSBOXX series
to allow the Bus Master to turn off the memory for certain
operations. In general, the system activates this signal
prior to a Memory Read (MRDC/) or Write IMWRC/)
command. In certain types of systems, however, the
Inhibit signal arrives after the Read/Write command. A
lumper option is provided with the MMSBOXX Series,
allowing the Inhibit input to respond to a "Late Inhibit"
signal. This option should be Installed only if the system
requires it, since It slows the Memory System response by
approximately 50 ns.
Most SBC systems utilize a "Delayed Write" command
wherein the Data is available coincident With activation of
MWRC/. Some systems, however, utilize an "Advanced
Write" technique, with the data becoming valid some 500
ns after the Write Command. A jumper option is provided
with the MMS80XX series to allow operation In the Write
Cycle. Transfer Acknowledge (XACK/) is inhlbiied during
the dummy cycle, but Advance Acknowledge (AACK/)
occurs if programmed to do so. XACKI then occurs during
the actual Write Cycle unless the system has responded
to the AACKI signal. (In this case, system response to the
AACKI Signal is defined as a deactivation of the MWRCI
Input). Selection of the "Advanced Write" option does not
affect Read Cycle operations.
In general, SBC backplanes provide -5 volts at pins 9
and 10 of connector Pl. Some systems. however, provide
only -10 volts at pins 77 and 78 and/or -12 volts of pins
79 and BO. The MMS80XX Series contain an on-board
negative 5 volt regulator to allow operation with such
systems.

The MSM80XX series is designed for operation with
SBC/BlC 80 Series Single-Board Computers (including
the SBC 86/12 16-bit computer). System 80 Series
Microcomputers. and Intel MDS Systems The four
configurations are plug-In replacements for
Intel/National SBC/BlC 016. 032. 048. 064 memory
cards.

OPTIONS
The MMS80XX series is available in foUl population
options. Each of these configurations can be obtained
with or without parity. (See Ordering Information on Page
1.) In addition to the population and parity options,
provisions are made to allow the user to configure the
memory card to meet system requirements. The primary
user options are Address Selection. AdvanceAcknowledge Response time. Early/late Inhibit optIOns,
Advanced/ Delayed Write selection. and -5 Vdc
derivation.
Address Selection options allow the user to locate the
memory card in anyone of sixteen memory segfflents with each of these segments defined as a 64K memory
space. If the MMS8064 IS chosen, the memory system
responds to all addresses within the selected memory
segment. When depopulated modules (8016/80321
8048) are used, address selection for ,ndependent 8K
Byte blocks is provided. The MMS8048. for example, can
be configured to respond to 6 of the eight 8K blocks In the
chosen segment.
Advance Acknowledge is utilIZed to prevent initiation of
unnecessary processor "Walt" states. (In effect, the
signal indicates that the memory transfer will be
completed during the current cycle). The MMS80XX

5-30

Mechanical Data
6-1

MECHANICAL DATA
The packaging availabil ity for each device is indicated on the individual data sheets. Dimensions
for the packages are given in this section.

-----------14-PIN PACKAGES-----------

g.

FRIT·SEAL CERAMIC PACKAGE
CASE 632

8~
7~

I

-ll--o J

F

MILLIMETERS
MIN
MAX
19.05 19.94
6.10
7.49
B
C
5.08
D
0.38
0.58
1.40
1.77
F
2.54 esc
G
1.91
H
2.29
0.20
0.38
J
5.08
K
3.18
L
7.62 esc
150
M
N
0.51
1.02

INCHES
MIN
MAX
0.750 0.785
0.240 0.295
0.200
0.015 0.023
0.055 0.070
0.100 esc
0.075 0.090
0.008 0.015
0.125 0.200
0.300 esc
150
0.020 0.040

DIM
A

-

NOTES:
1. ALL RULES AND NOTES ASSOCIATED
WITH MD·OOI AA OUTLINE SHALL APPLY.
2. DIMENSION "L" TO CENTER OF LEADS
WHEN FORMED PARALLEL.
3. OIMENSION "A" ANO "8" (632·061 DO
NOT INCLUOE GLASS RUN·OUT.
4. LEADS WITHIN 0.25 mm (0.010) OIA
OF TRUE POSITION AT SEATING PLANE
AND MAXIMUM MATERIAL CONDITION.

CASE 632·06

PLASTIC PACKAGE
CASE 646

.

HI-

"

....j G ~

MILLIMETERS
DIM MIN
MAX
A
18.16 19.56
6.10
6.60
B
4.06
5.08
C
0.38
0.53
0
F
1.02
1.78
G
.548SC
1.32
2.41
H
0.38
J
0.20
K
.92
3.43
1.628SC
L
100
M
00
0.51
1.02
N

INCHES
MIN
MAX
0.115 0170
0.240 0.260
0.160 0.200
0.015 0.021
0.040 0.010
0.10 8S(
0.052 0.095
0.008 0.015
.115 0.135
0.3008SC
100
0°
0.020 0.040

CASE 646-05

6-3

NOTES:
1. LEADS WITHIN 0.13 mm
(0.005) RADIUS OF TRUE
POSITION AT SEATING
PLANE AT MAXIMUM
MATERIAL CONOITION.
2. OIMENSION "L" TO
CENTER OF LEAOS
WHEN FORMED
PARALLEL.
3. OIMENSION "8" OOES NOT
INCLUOE MOLO FLASH.
4. ROUNDED CORNERS OPTIONAL.

MECHANICAL DATA (Continued)
- - - - - - - - - - 16-PIN PACKAGES
FRIT-SEAL CERAMIC PACKAGE
CASE 620

"0 '\
1

,

B

•

~

, - A

'[

C

J_i1

DIM
A

B
C

0

~L ~FL lSEATlNG

F
G
H

PLANE

J
K
1. LEADS WITHIN 0.13 mm (0.005) RADIUS
OF TRUE POSITION AT SEATING PLANE
AT MAXIMUM MATERIAL CONOITION.
2. PACKAGE INDEX: NOTCH IN LEAD
NOTCH IN CERAMIC OR INK OOT.
3. OIM "L"TO CENTER OF LEADS WHEN
FORMED PARALLEL.

4. DIM "A" AND "B" DO NOT INCLUDE
GLASS RUN·OUT
5. DIM "F" MAY NARROW TO 0.76 mm
(0.030) WHERE THE LEAD ENTERS
THE CERAMIC BODY.

L
M
N

MILLIMETERS
MIN
MAX
19.05 19.94
7.49
6.10
5.08
0.38
0.53
1.78
1.40
2.54 BSC
1.14
0.51
0.30
0.20
5.08
3.18
7.62 BSC
150
0.51
1.02

INCHES
MIN
MAX
0.750 0.785
0.240 0.295
0.200
0.015 0.021
0.055 0.070
0.100 BSC
0.020 0.045
0.008 0.012
0.125 0.200
0.300 BSC
15 0
0.020 0.040

CASE 62CHJ6

PLASTIC PACKAGE
CASE 648

oi;:::::::P
~
-l
_

P

~ F__
lA

'\ CONFIG
OPTIONAL LEAD
(1.8.9.& 16)
I

..j

NOTE 5

DIM
A

8
C
0
f
G
H
J

"

L
M

N

MILLIMETERS
INCHES
MAX
MIN
MAX
MIN
lB.BO 21.34 0.740 0.840
6.10
6.60
0.240 0.260
5.0B
0.160 0.200
4.06
0.3B
0.53
0.015 0.021
1.02
0.040 0.070
1.78
2.54 Bse
O.l00BSC
0.38
2.41
0.015 0.095
0.20
0.38 _",008 0.015
0.115 0.135
3.43
t."
0.300 BSC
7.62 BSC
00
0
100
10
0"
0.51
1.02
0.020 0.040

CASE 648-05

6-4

NOTES:
1. LEADS WITHIN 0.13 mm
(0.005) RADIUS Of TRUE
POSITION AT SEATING
PLANE AT MAXIMUM
MATERIAL CONDITION.
2. DIMENSION "L" TO
CENTER OF LEADS
WHEN FORMED
PARALLEL.
3. OIMENSION "B" DOES NOT
INCLUDE MOLD FLASH.
4. "F" DIMENSION IS FOR FULL
LEADS. "HALF" LEADS ARE
OPTIONAL AT LEAO POSITIONS
1,8,9,and 161.
5 ROUNDED CORNERS OPTIONAL.

MECHANICAL DATA (Continued)

- - - - - - - - - 1 6 - P I N PACKAGES (Continued) - - - - - - - - CERAMIC PACKAGE
CASE 660

I 9

(
t

8 I

MILLIMETERS
DIM MIN
MAX
A
9.40 10.16
1.24
8
6.22
C
2.03
1.52
0.41
0.48
0
0.15
0.08
1.21 Bse
0.89
H
0.64
9.40
K
6.l5
18.92
t-~
0.51
R
0.38

r+-

NOTES:
1. LEAD NO. 110ENTIFIEO BY TAB
ON LEAD OR DOT ON COVER.
2. LEAOS WITHIN O.ll mm 10.DOS)
TOTAL OF TRUE POSITION AT
MAXIMUM MATERIAL CONDITION.

INCHES
MIN
MAX
0.310 0.400
0.245 0.285
0060 0.080
0.016 0.019
o.ool 0.006
0.050 Bse
0.025 0.035
0.250 0.310
0.145
0.020
- 0.015

CASE 6fiO.03

CERAMIC PACKAGE
CASE fB)

NOTES:
I. A AND ·8· ARE DATUMS.
2. T IS SEATING PLANE
3. POSITIONAL TOLERANCE FOR LEADS (D).
['![i'O:25 (o.ololel Tl A@IBf!)1
DIM
A
8
C
0
F
G
H
J
K
L
M

MILLIMETERS
MIN
MAX
20.07 20.57
1.11
7.62
2.67
4.19
038
0.53
0.76
1.52
2.54 8se
0.76
1.18
020 _L 0.30
3.1B
5.0B
7.628SC
100

.!l ~1l,3B L L~l

INCHES
MIN
MAX
0.190 0.810
0.280 0.300
0.105 0.165
0.015 0021
0.030 0.060
01008SC
0.030 0.010
0.008 0.012
0.125 0.200
0.300 BSC
100
0.015.J 0.D60

CASE 600-13

6-5

4. DIMENSION L TO CENTER OF LEAOS
WHEN FORMED PARAllEL.
5. DIMENSIONING AND TOLERANCING
PER ANSI YI4.5. 1973.
6.690·11 AND 690·12 OBSOLETE.
NEW STANDARD 690·13.

MECHANICAL DATA (Continued)

- - - - - - - - - - 1 8 - P I N PACKAGES ••- - - - - - - - - CERAMIC PACKAGE
CASE 600

NOTES;
1. LEAOS WITHIN 0.13 mm (0.005) RAO OF
TRUE POSITION AT SEATING PLANE AT
MAXIMUM MATERIAL CONOITION.
2. OIMENSION "L" TO CENTER OF LEAOS
WHEN FORMEO PARALLEL.

MILLIMETERS
DIM MIN
MAX
A 22.48 23.24
B
7.16
7.57
C- 3.18
4.27
D
0.38
0.58
F
0.76
1.40
G
2.54 SSC
H
1.02
1.52
J
0.20
0.30
K
2.68
4.44
L
7.37
7.87
M
100
N
0.38
1.40

INCHES
MIN
MAX
0.885 0.915
0.282 0.298
0.125 0.168
0.015 0.023
0.030 0.055
0.100 8SC
0.040 0.060
0.008 0.012
0.105 0.175
0.290 0.310
100
0.015 0.055

CASE flOO.06

PLASTIC PACKAGE
CASE 701-01

NOTES'
1 LEAOSWITHINO.13mm
. (0.005) RADIUM OF TRUE
POSHION AT SEATING
PLANE AT MAXIMUM
MATERIAL CONDITION
101M "G")
2. OIMENSION "L" TO CENTER
OFLEAOSWHENFORMEO
PARALLEL.

MILLIMETERS
DIM MIN
MAX
A 23.11 23.88
8 6.10
6.60
C 4.06
4.57
0
0.38
051
F 1.02
1.52
2.54 SSC
G
H 1.32
1.83
J
0.30
0.20
K 2.92
3.43
7.37
7.87
L
00
M
100
N
0.51
1.02

INCHES
MIN
MAX
0.910 0.940
0.240 0.260
0.160 0.180
0.015 0.020
0.040 0.060
0.100 8SC
0.052 0.072
0.008 0.012
0.115 0.135
0.290 0.310
10·
00
0.020 0.040

CASE 701-01

6-6

MECHANICAL DATA (Continued)
- - - - - - - - - l8-PIN PACKAGES (Continued)
PLASTIC PACKAGE
CASE 707

r~ :::::::~

I.

A

II
•

1

I

JW\NVvV~lf}~
iJF

i
.~

Hf--

I

G I--

iLl

A

1 --I
. ~·-M

---H--D

SEATlNGPlA"

1

J-\\--

NOTES:
1. POSITIONAL TOLERANCE OF LEADS (01.
SHALL BE WITHIN 0.25mmI0.Ol0) AT
MAXIMUM MATERIAL CONDITION, IN
RELATION TO SEATING PLANE ANO
EACH OTHER.
2 DIMENSION L TO CENTER OF LEADS
WHEN FORMED PARALLEL.
3. DIMENSION B OOES NOT INCLUOE
MOLD FLASH.

MILLIMETERS
MAX
DIM MIN
A 22.22 23.24
6.60
6.10
B
3.94
4.57
C
0.36
0.56
0
1.27
1.78
F
2.54 BSC
G
1.52
H
1.02
0.20
0.30
J
K
3.43
2.92
7.62 BS
l
QO
150
M
0.51
1.02
N

INCHES
MIN
MAX
0.875 0.915
0.240 0.260
0.155 0.180
0.014 0.022
0.050 0.070
0.100 BSC
0.040 0.060
0.008 0.012
0.115 0.135
O. 00 BSC
QO
150
0.020 0.040

CASE 707-02

FRIT SEAL CERAMIC PACKAGE
CASE 726

.-i

I
B

~~n=r~~---.=I~

.,

jG~

L~J

F~

I

-f

A~

r~1
J~II
U
I [

H

i
I

r-r--'T

-11--0

\

L-

SE.ATlNG PLANE

DIM
NOTES:
1. LEADS, TRUE POSITIONED
WITHIN 0.25 mm (0.0101 DIA.
AT SEATING PLANE, AT
MAXIMUM MATERIAL
CONDITION.
2. DIM "L" TO CENTER OF
LEADS WHEN FORMED
PARALLEl.
3. DIM "A" & '·S"INCLUDES
MENISCUS.

A
B
C
0
F
G
H

J
K

l
M
N

MILLIMETERS
MIN
MAX
23.11
7.75
4.06
0.51
1.52
2.~4 BSC
1.40
0.30
0.20
4.44
7.37
B.OO
15 0
00
0.51
1.27

22.35
7.11

0.41
1.27

INCHES
MAX
MIN
0.910
0.305
0.160
0.016 0.020
0.050 0.060
0.100BSC

0.8BO
0.2BO

U.O~~

0.008

-

0.290
00
0.020

CASE 726-02

6-7

0.012
0.175
5
150
0.050

u.

MECHANICAL DATA (Continued)
- - - - - - - - - 1 8 - P I N PACKAGES (Continued) - - - - - - - -

[C::J] ,
~-----~A.}-

CERAMIC PACKAGE
CASE 749

~

I

I

H C

~
,

DIM
A
B
C
0
F

-I.

!

I

--, G r-

G
H
J

NOTES:
1. OIMENSIONOO IS DATUM.
2. POSITIONAL TOLERANCE FOR LEADS:

K

L
N
P

\-4>1025(0010) e1T1Mil\
3. ill IS SEATING PLANE.
4. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5, 1973.

MILLIMETERS
MIN
MAX
22.61 23.11
7.24
7.75
8.64
0.36
0.61
0.89
1.40
2.548SC
3.30
0.23
0.30
2.92
7.37
7.87
0.64
1.14
9.14

INCHES
MIN
MAX
0.890 0.910
0.285 0.305
0.340
0.014 0,024
0.035 0.055
0.1008SC
0130
0.009 0.012
0.115
0,290 0.310
0.025 0.045
0,360

CASE 749-01

- - - - - - - - - - 2O-PIN P A C K A G E - - - - - - - - - CERAMIC PACKAGE
CASE 729

~'
~I-II-!/-W-

J,~LIii

H,

D

Ili

SEATING"'"

~G

DIM
A
B
C

I

=q
l-j

,

0
F

G

K

H
J
K
L
M
N

NOTE:
1. LEADS WITHIN 0.13 mm (0.005)
RADIUS OF TRUE POSITION AT
SEATING PLANE, AT MAXIMUM
MATERIAL CONDITION.
2. DIMENSION L TO CENTER OF
LEADS WHEN FORMED
PARALLEL

MILLIMETERS
MAX
MIN
24.64 25,91
8,13
7.06
2.79
4.70
0.51
0.38
1.14
1.40
2.54 8SC
0.89
1.52
0.20
O.JU
4.57
3.18
7.62 BSC
00
100
0.51
1.52

INCHES
MAX
MIN
0.970 1.020
0.278 0.320
0,110 0.185
0.015 0.020
0.045 0.055
8SC
0.100
0035 0.060
10.008 10.012
0.125 0.180
BSC
0.300

a

IOU

0.020

0.060

CASE 729-02

6-8

MECHANICAL DATA (Continued)
- - - - - - - - - - 22-PIN P A C K A G E S - - - - - - - - - PLASTIC PACKAGE
CASE 708

" " '"-""4

1
I

B

VV'v~

L

A

N C

Ol...M

- H -

-

G -

-- F

_

-- 0

M

J --

NOTES

2156
864

C

394

2iiji

9.14
5.08
'0.56

f+Hf ~~~~~~~
G-r--··
H
J

POSITIONAL TOLERANCE OF LEADS 101.
SHALL BE WITHIN 0.25111111100101 AT
MAXIMUM MATERIAL CONDITION. IN
RELAllON TO SEATING PLANE AND
EACH OTHE R

3.

A

B

~

K

MILLIMETERS
_~IN._. MAX

~-+.~~~~~~~~~~~
M
N

DIMENSION L fa CENTER OF LEADS
WHEN FORMED PARALLEL
DIMENSION B ODES NOT INCLUDE
MOLD FLASH

0.51

CASE 7a3-04

FRIT-SEAL CERAMIC PACKAGE
CASE 736

A

r - MIi-LIMETERS
I

DIM

N C

I

A

I

r-~

K

..... H,-

-G·---F

- ..-

0

SEATING
PLANE

I

__ M

Ii

J -1'-

r+
H

•

NOTES
T. LEADS TRUE POSITIONED
WITHIN 0.25 mm (0.010) OIA AT
SEATING PLANE AT MAXIMUM
MATERIAL CONOITlOfIl (DIM "0")
2 DlM "L" TO CENTER OF LEADS
WHEN FO RMEO PARALLEL.

L

Ilf

•

r---MiN26.80
9.14

MAX

27.£11
9.91
5.46

3.81
038 053
1.21 1.65
2.54 Bse
0.51
1.27
.0)0 O.
2.54 4.32
9.91 10.41
.
15
0.25 0.89

mCHE-SMAX
MI.
I.OSS 1.095
0.360 0.390
0.150 0.215
0.015

CASE 736-01

6-9

0.021

0.050 0.1165
0.100 esc
0.020 0.050
O.
0.012
0.100 0.170
0.390 0.410
15
0.010 0.035

MECHANICAL DATA (Continued)
- - - - - - - - - - - 24-PIN PACKAGES - - - - - - - - - - FRIT-SEAL CERAMIC PACKAGE
CASE 623

[~~~~~~~~]
A

I-

"

-I

,..- SEATING PLANE

~'TI

t

~{~~j
D
NJ I .' '.
I· :,

--i G ~--

-11-

KJ

-,

1--

L
M

---~\ .

J_.-I-

DIM
A
B
C
0
F
G

J

NOTES:
1. OIM "L" TO CENTER OF
LEAOS WHEN FORMEO
PARALLEL
2. LEAOSWITHINO.13mm
(O.OOS) RADIUS OF TRUE
POSITION AT SEATING
PLANE AT MAXIMUM
MATERIAL CONDITION.
(WHEN FORMED PARALLEL)

K
L
M
N

MILLIMETERS
MIN
MAX

INCH[S
MIN
MAX

31.24 32.77
12.70 IS.49
4.06
S.S9
0.41
O.SI
1.27
I.S2
2.S4 BSC
0.20
0.30
4.06
2.29
IS.24 BSC
ISO
00
1.27
O.SI

1.230 1.290
O.SOO 0.610
0.160 0.220
0.016 a.020
O.OSO 0.060
0.100BSC
0.008 0.012
0.090 0.160
0600 BSC
ISO
00
0.020 O.OSO

CASE 623--04

FRIT-SEAL CERAM)C PACKAGE
CASE 623A

MILLIMETERS
MIN
MAX
31.24 32.77
12.70 IS.49
4.06
S.84
0.41
O.SI
1.27
I.S2
2.S4
BSC
G
J
0.20
0.30
2.29
4.06
K
IS.24 Bse
l
0
M
150
0
N
O.SI
1.27

DIM
A
B
C
D
F
NOTES:
1 DIM "L" TO CENTER OF
LEADS WHEN FORMEO
PARALLEL
2. LEADS WITHIN 0.13 mm
1O.00S) RADIUS OF TRUE
POSITION AT SEATING PLANE
AT MAXIMUM MATERIAL
CONDITION. (WHEN FORMED
PARALLEL).

INCHES
MIN
MAXJ
1.230
0.610
O.SoO
0.160 0.230
0.016 0.020
O.OSO 0.060
0.100 BSC
O.OOB 0.012
0.090 0.160
0.600 BSC
00 J. ISO
0.020 O.OSO

CASE 623A-02

6-10

~

MECHANICAL DATA (Continued)

- - - - - - - - - 2 4 - - P I N PACKAGES (Continued)--------..
PLASTIC PACKAGE
CASE 700

B

~,:,

,

L

,~
L ' .._.liI

,

i

','

·-JH~

-1GI--

:

._!

F

-

DIM
A

iK

Ii

_L.

0 'SfJl,II~G

B
C

0

NOTES:
I POSITIONAL TOLERANCE OF LEADS (0),
SHALL BE WITHIN 0.25 mm (0.010) AT
MAXIMUM MATERIAL CONDITION, IN
RELATION TO SEATING PLANE AND
EACH OTHER.
2. DIMENSION L TO CENTER OF LEADS
WHEN FORMED PARALLEL.
3. DIMENSION 8 ODES NOT INCLUDE MOLD
FLASH.

F
G
H

J
K
L
M

N

MILLIMETERS
MIN
MAX
31.37 32.13
13.72 14.22
3.94
5.08
0.56
0.36
1.52
1.02
2.54 8SC
1.65
2.03
0.20
0.38
2.92
3.43
15.24 8SC
15°
0"
0.51
1.02

INCHES
MIN
MAX
1.235 1.265
0.540 0.560
0.155 0.200
0.014 0.022
0.040 0.060
0.100 8SC
0.065 0.080
0.008 0.015
0.115 0.135
0.600 SSC
15°
0°
0.020 0.040

CASE 709-02

CERAMIC PACKAGE
CASE 716

NOTE:
I. LEADS TRUE POSITIONED WITHIN
0.25f"m (0.010) DIA (AT SEATING
PLANEI AT MAXIMUM MATERIAL
CONDITION.
2. DIM T'TO CENTER OF LEADS
WHEN FORMED PARALLEL

, 1- L-i

:NjFl,
-1>-

J

M

.e

MILLIMETERS
MIN
MAX
27.64 30.99
14.94 15.34
4.32
2.67
0.38
0.53
0.76
1.40
2.54 8SC
178
I---'J:!--- ~0.20
0.30
4.19
~
15.49
~.
M
10°
~ .!I!?- 1.52
DIM
A
8
C
D
F
G

r-{i~9

y

INCHES
MIN
MAX
1.088 1.220
0.588 0.604
0.105
~
0.015 0.021
0.030 0.055
a 100 8S
0.030 JL070
0.008 ..,M,1
0.100 0.165
0.590 0.610
10°
0.040 0.060

CASE 716-06

6-11

MECHANICAL DATA (Continued)

- - - - - - - - - 24-PIN PACKAGES (Continued)------_ __
CERAMIC PACKAGE
CASE 716

"I

"j

~------~---==-~

I----A----..!

H -

Wttffiffm
-

SI~"frlc;.~l ... JtI ,J

--- 0

G-

-

- - J

M

NOTE:
1. LEADS TRUE POSITIONED WITHIN
0.25mm (0.010) DIA (AT SEATING
PLANE) AT MAXIMUM MATERIAL
CONDITION.
2. DIM "L" TO CENTER OF LEADS
WHEN FORMEO PARALLEl.

DIM
A
8
C
0
F
G
H
J
K
L
M

N

MILLIMETERS
INCHES
MIN
MAX
MIN
MAX
27.64 30.99 1088 1.220
14.73 15.34 0.580 0.604
3.18
5.08
0.125 0.200
0.38
0.53
0.015 0.021
0.76
140 0.030 0.055
2.54 SSC
0.1 08SC
0.16
178
0.030 . O.OlD..
0.20
0.30
0.008 O. 12
2.54
4.57
0.100 0.180
14.99 15.49 0.590 0.610
10 0
100 ,
102
152
0.040 0.060

CASE 716-07

6-12



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.6
Linearized                      : No
Create Date                     : 2014:01:21 19:17:41+01:00
Creator                         : Adobe Acrobat 11.0.6
Modify Date                     : 2014:07:21 19:39:44-07:00
Title                           : 
XMP Toolkit                     : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:56:37
Metadata Date                   : 2014:07:21 19:39:44-07:00
Creator Tool                    : Adobe Acrobat 11.0.6
Format                          : application/pdf
Document ID                     : uuid:342ff119-cd22-4333-b3dd-97d0200dd2c6
Instance ID                     : uuid:481ca77e-d4a0-474d-ab0f-f14b53f8aaeb
Producer                        : Adobe Acrobat 9.55 Paper Capture Plug-in
Page Layout                     : SinglePage
Page Count                      : 361
EXIF Metadata provided by EXIF.tools

Navigation menu