1982_Fairchild_Linear_Division_Products 1982 Fairchild Linear Division Products

User Manual: 1982_Fairchild_Linear_Division_Products

Open the PDF directly: View PDF PDF.
Page Count: 716

Download1982_Fairchild_Linear_Division_Products 1982 Fairchild Linear Division Products
Open PDF In BrowserView PDF
1982 LINEAR DIVISION PRODUCTS

FAIRCHILO
A Schlumberger Company
©

1982 Fairchild Camera and Instrument Corporation' 313 Fairchild Drive, Mountain View, California 94042 • Printed in U.S.A.

Fairchild reserves the right to make changes in the circuitry or specifications in this book at any time without notice.
Manufactured under one of the following U.S. Patents: 2981877, 3015048, 3064167, 3108359, 3117260, other patents pending.
Fairchild cannot assume responsibility for use of any circuitry described other than circuitry entirely embodied in a Fairchild product.
No other circuit patent licenses are implied.
Printed in U.S.A. 610000 100M January 1982

Introduction
Product specifications in this data book cover the current standard linear product line. The data sheets
included are organized in sections by type of product-Operational Amplifier, Comparator, Voltage
Regulator, Interface, Data Acquisition, Telecommunication, and Special Function. In addition, a
separate section covers hybrid voltage regulators.
Basic product specifications are listed on each data sheet, including maximum ratings, electrical
characteristics, performance curves, and packaging information. For many products, typical applications and test circuits are also included. A separate section on packaging includes detailed
information about the various packages available. The codes included on each data sheet indicate
the specific package(s) offered for the product.
An industry cross reference 'keys Fairchild linear products to direct replacements and functional
equivalents offered by other major linear product manufacturers. In addition, there is an alpha-numeric
product listing including all basic part numbers. Electrical, temperature, and package variations as
indicated by suffixes are not included in the alpha-numeric listing. These variations are indicated on the
data sheet referenced under Order Information. An explanation of the part numbering method appears
at the beginning of the packaging section.
Information about high reliability linear products and any other product information may be obtained
from a local sales office or by contacting:
Fairchild Linear Products
Marketing Department MS 4-370
313 Fairchild Drive
Mountain View, California 94042
Any inquiries involving the hybrid voltage regulators included in this data book should be directed to:
Fairchild Hybrid Products
Marketing Department MS 19-1425
369 Whisman Road
Mountain View, California 94042
The specifications included in this data book are as current and correct as could reasonably be determined at time of printing. Any errors noted by users, whether involving content or omission, can be
directed to Linear Marketing at the above address; such information would be appreciated.

FAIRCHILD

Table of Contents

A Schlumberger Company

Section One
Page
Alpha Numeric Index .......................... 1-3
Industry Cross Reference ...................... 1-5
Ordering Information ......................... 1-10

Section Two
Voltage Regulators
Testing ...................................... 2-3
Thermal Considerations ........................ 2-7
~A7800 Series .............................. 2-14
~A78MOO Series ............................ 2-28
~A78LOO Series ............................. 2-43
~A109, ~A209, ~A309 ........................ 2-51
~A7900 Series .............................. 2-57
~A 79MOO Series ............................ 2-66
~A78G, ~A79G .............................. 2-74
~A78MG, ~A79MG ........................... 2-84
~A723 ..................................... 2-94
~A105, ~A205, ~A305, ~A305A, ~A376 ....... 2-102
~A 117, ~A217, ~A317 ...................... 2-109
~A431 .................................... 2-115
~A78S40 .................................. 2-119
~A494 .................................... 2-126

Section Three
Hybrid Voltage Regulators
~A78H05A ................................... 3-3
~A78P05 .................................... 3-7
~A78H12A .................................. 3-11
~A78HGA .................................. 3-15
~A79HG .................................... 3-19
SH323, SH223, SH123 ....................... 3-23
SH1605 ..................................... 3-27

'Section Four
Operational Amplifiers
Testing ...................................... 4-3
~A709 ...................................... 4-9
~A714 , ........................... , ........ 4-17
~A715 ..................................... 4-25
~A725 ..................................... 4-33
~A739, ~A749 .............................. 4-44
~A741 ..................................... 4-55
~A747 ..................................... 4-64
~A748 ..................................... 4-73
~A759 ..................................... 4-83
~A771,ILA772, ~A774 ....................... .4-92
~A776 ..................................... 4-99

Section Four
Operational Amplifiers (Cont.)
Page
~A791 ...... , ............................. 4-109
~A798 .................................... 4-115
~A 101, ~A201 ............................. 4-121
~A101A, ~A201A, ~A301A ................... 4-123
~A107, ~A207, ~A307 ...................... 4-131
~A108/A, ~A208/A, ~A308/A ............... 4-137
~A318 .................................... 4-145
~A124, ~A224, ~A324, ~A2902 .............. 4-151
~A 148, ~A248, ~A348 ..................... .4-156
~A1458, ~A1558 ........... , ............... 4-161
~A3303, ~A3403 ........................... 4-166
~A4136 ................................... 4-174

Section Five
Comparators
~A710 ...................................... 5-3
~A711 ..................................... 5-10
~A734 ..................................... 5-16
~A760 ..................................... 5-26
~A 111, ~A311 .............................. 5-33
~A 139, ~A239, ~A339, ~A290 1, ~A3302 ........ 5-40
~A193, ~A293, ~A393, ~A2903 ................ 5-49

Section Six
Interface
~A9614 ..................................... 6-3
~A9615 ................... , ................ 6-10
~A9616 .................................... 6-17
~A9627, ~A9627C .......... , ................ 6-22
~A9636A ................................... 6-27
~A9637 A ................................... 6-31
~A9638 .................................... 6-35
~A 1488 .................................... 6-38
~A 1489, ~A 1489A ........................... 6-42
~A75107A, ~A75107B, ~A75108B ............. 6-46
~A55/75110A .............................. 6-55
~A75150 ................................... 6-59
~A75154 .................. , ................ 6-63
~A9640 (26S10) ............................ 6-69
~A3448A ................................... 6-72
~A8T26A, ~A8T28 ........................... 6-78
~A9643 .................................... 6-84
~A9645 (3245) .............................. 6-87
~A9665/6/7 /8 ............................. 6-90
~A75450/60/70 ............................ 6-96
~A75491, ~A75492 ......................... 6-114
~A438 .................................... 6-118
Table of Contents continued next page

Table of Contents

Section Seven
Data Acquisition

Page

,uA9650 ..................................... 7-3
,uA9706 ..................................... 7-9
,uA9708 .................................... 7-14
,uA 198, ,uA298, ,uA398 ........................ 7-21
,uA565 ..................................... 7-26
,uA571 ..................................... 7-33
,uA080 1 (OAC-08) ........................... 7-42
,uA0802 (MC 1508/1408) ..................... 7 -51

Section Ten
Page
Hi Rei Processing ........................... 10-3

Section Eleven
Package Outlines ........................... 11-3

Section Twelve
Fairchild Sales Offices ...................... 12-3
Section Eight
Telecommunications
,uA3680
,uA5116
,uA5151
,uA5156

..................................... 8-3
..................................... 8-7
.................................... 8-18
.................................... 8-29

Section Nine
Special Functions
,uA555 ...................................... 9-3
,uA556 ...................................... 9-9
,uA726 ..................................... 9-15
,uA727 ..................................... ~18
,uA733 ..................................... 9-22
,uA 757 ..................................... 9-29
,uA2240 .................................... 9-36
,uA3086 .................................... 9-46
,uA7392 .................................... 9-51

I=AIRCHILD
A Schlumberger Company

Indices, Cross Reference
and Order Information

'~

"
,

",

"

,

,

e

'

"

,~

','"

>~,

,

Data Acquisition'
Tilecommunications '

"

,HI, .,.. P~aJng
,

'

~

"

,

'

,

/,'

,

,

'

1-2

Alpha Numeric Index

F=AIRCHIL.O
A Schlumberger Company

Device

Description

Page

Device

Description

Page

""A8T26A
""A8T28A
""A78G
""A78HGA
""A78H05A
""A78H12A
""A78L05A
""A78L62A
""A78L82A
""A78L98A
""A78L12A
""A78L15A
""A78M05
""A78M06
""A78M08
""A78M12
""A78M15
""A78M24
""A78MG
""A78P05
""A78S40
""A79G
""A79HG
""A79M05
""A79M08
""A79M12
""A79M15
""A79MG
""Al0l
""Al01A
""Al05
""A 107
""A 108
""Al08A
""A 109
""A 111
""Al17
""A124
""A139
""A148
""A 193
""A 193A
""A198
""A201
""A201A
""A207
""A208
""A208A
""A209
""A217
""A224
""A239
""A239A

Interface
Interface
Voltage Regulator
Hybrid Voltage Regulator
Hybrid Voltage Regulator
Hybrid Voltage Regulator
Voltage Regulator
Voltage Regulator
Voltage Regulator
Voltage Regulator
Voltage Regulator
Voltage Regulator
Voltage Regulator
Voltage Regulator
Voltage Regulator
Voltage Regulator
Voltage Regulator
Voltage Regulator
Voltage Regulator
Hybrid Voltage Regulator
Voltage Regulator
Voltage Regulator
Hybrid Voltage Regulator
Voltage Regulator
Voltage Regulator
Voltage Regulator
Voltage Regulator
Voltage Regulator
Operational Amplifier
Operational Amplifier
Voltage Regulator
Operational Amplifier
Operational Amplifier
Operational Amplifier
Voltage Regulator
Comparator
Voltage Regulator
Operational Amplifier
Comparator
Operational Amplifier
Comparator
Comparator
Data Acquisition
Operational Amplifier
Operational Amplifier
Operational Amplifier
Operational Amplifier
Operational Amplifier
Voltage Regulator
Voltage Regulator
Operational Amplifier
Comparator
Comparator

6-78
6-78
2-74
3-15
3-3
3-11
2-43
2-43
2-43
2-43
2-43
2-43
2-28
2-28
2-28
2-28
2-28
2-28
2-84
3-7
2-119
2-74
3-19
2-66
2-66
2-66
2-66
2-84
4-121
4-123
2-102
4-131
4-137
4-137
2-51
5-33
2-109
4-151
5-40
4-156
5-49
5-49
7-21
4-121
4-123
4-131
4-137
4-137
2-51
2-109
4-151
5-40
5-40

""A248
""A293
""A293A
""A298
""A301A
""A305
""A305A
""A307
""A308
""A308A
""A309
""A311
""A317
""A318
""A324
""A339
""A339A
""A348
""A376
""A393
""A393A
""A398
""A431A
""A438
""A494
""A555
""A556
""A565
""A571
""A709
""A709A
""A709C
""A710
""A711
""A714
""A715
""A723
""A725
""A725A
""A726
""A727
""A 733
""A734
""A739
""A741
""A747
""A748
""A749
""A757
""A759
""A760
""A771
""A772

Operational Amplifier
Comparator
Comparator
Data Acquisition
Operational Amplifier
Voltage Regulator
Voltage Regulator
Operational Amplifier
Operational Amplifier
Operational Amplifier
Voltage Regulator
Comparator
Voltage Regulator
Operational Amplifier
Operational Amplifier
Comparator
Comparator
Operational Amplifier
Voltage Regulator
Comparator
Comparator
Data Acquisition
Voltage Regulator
Interface
Voltage Regulator
Special Function
Special Function
Data Acquisition
Data Acquisition
Operational Amplifier
Operational Amplifier
Operational Amplifier
Comparator
Comparator
Operational Amplifier
Operational Amplifier
Voltage Regulator
Operational Amplifier
Operational Amplifier
Special Function
Special Function
Special Function
Comparator
Operational Amplifier
Operational Amplifier
Operational Amplifier
Operational Amplifier
Operational Amplifier
Special Function
Operational Amplifier
Comparator
Operational Amplifier
Operational Amplifier

4-156
5-49
5-49
7-21
4-123
2-102
2-102
4-131
4-137
4-137
2-51
5-33
2-109
4-145
4-151
5-40
5-40
4-156
2-102
5-49
5-49
7-21
2-115
6-118
2-126
9-3
9-9
7-26
7-33
4-9
4-9
4-9
5-3
5-10
4-17
4-25
2-94
4-33
4-33
9-15
9-18
9-22
5-16
4-44
4-55
4-64
4-73
4-44
9-29
4-83
5-26
4-92
4-92

1-3

II

Alpha Numeric Index
Device

Description

Page

Device

Description

Page

IlA774
IlA776
IlA791
IlA798
IlA0801
IlA0802
IlA1458
IlA1488
IlA1489
IlA1558
IlA2240
IlA2901
IlA2902
IlA2903
IlA3086
IlA3302
IlA3303
IlA3403
IlA3448
IlA3680
IlA4136
IlA5116
IlA5151
IlA5156
IlA7392
IlA7805
IlA7806
IlA7808
IlA7885
IlA7812
IlA7815
IlA7818
IlA7824
IlA7905
IlA7908
IlA7912
IlA7915
IlA9614
IlA9615
IlA9616
IlA9627
IlA9636A
IlA9637A
IlA9638
IlA9640
IlA9643
IlA9645
IlA9650
IlA9665
IlA9666
IlA9667
IlA9668
IlA9706
IlA9708
IlA55107A
IlA55110A
IlA75107A
IlA75107B
IlA75108B
IlA75110A
IlA75150
IlA75154

Operational Amplifier
Operational Amplifier
Operational Amplifier
Operational Amplifier
Data Acquisition
Data Acquisition
Operational Amplifier
Interface
Interface
Operational Amplifier
Special Function
Comparator
Operational Amplifier
Comparator
Special Function
Comparator
Operational Amplifier
Operational Amplifier
Interface
Telecommunication
Operational Amplifier
Telecommunication
Telecommunication
Telecommunication
Special Function
Voltage Regulator
Voltage Regulator
Voltage Regulator
Voltage Regulator
Voltage Regulator
Voltage Regulator
Voltage Regulator
Voltage Regulator
Voltage Regulator
Voltage Regulator
Voltage Regulator
Voltage Regulator
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Data Acquisition
Interface
Interface
Interface
Interface
Data Acquisition
Data Acquisition
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface

4-92
4-99
4-109
4-115
7-42
7-51
4-161
6-38
6-42
4-161
9-36
5-40
4-151
5-49
9-46
5-40
4-166
4-166
6-72
8-3
4-174
8-7
8-18
8-29
9-51
2-14
2-14
2-14
2-14
2-14
2-14
2-14
2-14
2-57
2-57
2-57
2-57
6-3
6-10
6-17
6-22
6-27
6-31
6-35
6-69
6-84
6-87
7-3
6-90
6-90
6-90
6-90
7-9
7-14
6-46
6-55
6-46
6-46
6-46
6-55
6-59
6-63

IlA75450B
IlA75451A
IlA75451B
IlA75452A
IlA75452B
IlA75453A
IlA75453B
IlA75461
IlA75462
IlA75471
IlA75472
IlA75491
IlA75492
SH123
SH223
SH323
SH1605

Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Interface
Hybrid Voltage
Hybrid Voltage
Hybrid Voltage
Hybrid Voltage

6-96
6-96
6-96
6-96
6-96
6-96
6-96
6-96
6-96
6-96
6-96
6-114
6-114
3-23
3-23
3-23
3-27

1-4

Regulator
Regulator
Regulator
Regulator

Industry
Cross Reference Guide

FAIRCHILD
A Schlumberger Company

Part
Number

Fairchild
Equivalent

Fairchild
Equivalent

AMD (Cont.)

AMD
715DC
715HC
715DM
715HM
723DC
723DM
723HC
723HM
723PC
725HC
725HM
733DC
733DM
733HC
733HM
741FM
741HC
741HM
741AFM
741AHM
741EHC
747DC
747DM
747HC
747HM
747PC
747ADM
747AHM
747EDC
747EHC
748HC
748HM
AM1408L6
AM1408L7
AM1408L8
AM1458H
AM1508L8
AM1558H
DAC-08CQ
DAC-08EQ
DAC-08Q
LM101H
LM101AH
LM105H
LM108H
LM108AH
LM111H
LM124D

Part
Number

J.lA715DC
J.lA715HC
J.lA715DM
J.lA715HM
J.lA723DC
J.lA723DM
J.lA723HC
J.lA723HM
J.lA723PC
J.lA725HC
J.lA725HM
J.lA733DC
J.lA733DM
J.lA733HC
J.lA733HM
J.lA741FM
J.lA741HC
J.lA741HM
J.lA741AFM
J.lA741AHM
J.lA741EHC
J.lA747DC
J.lA747DM
J.lA747HC
J.lA747HM
J.lA747PC
J.lA747ADM
J.lA747AHM
J.lA747EDC
J.lA747EHC
J.lA748HC
J.lA748HM
J.lA0802CDC
J.lA0802BDC
J.lA0802ADC
J.lA1458HC
J.lA0802DM
J.lA1558HM
J.lA0801CDC
J.lA0801EDC
J.lA0801DM
J.lA101HM
J.lA101AHM
J.lA105HM
J.lA108HM
J.lA1 08AHM
J.lA111HM
J.lA124DM

LM139D
LM139AD
LM201H
LM201AH
LM208H
LM208AH
LM224D
LM239D
LM239AD
LM301AH
LM305H
LM305AH
LM308H
LM308AH
LM311H
LM324D
LM324N
LM339D
LM339N
LM339AD
LM339AN

Part
Number

Fairchild
Equivalent

INTERSIL (Cont.)
J.lA139DM
J.lA139ADM
J.lA201HC
J.lA201AHM
J.lA208HM
J.lA208AHM
J.lA224DV
J.lA239DC
J.lA239ADC
J.lA301AHC
J.lA305HC
J.lA305AHC
J.lA308HC
J.lA308AHC
J.lA311HC
J.lA324DC
J.lA324PC
J.lA339DC
J.lA339PC
J.lA339ADC
J.lA339APC

INTERSIL
ICL 108LNTY
ICL741CHSPA
ICL 7 41 MHSTY
LM101AH
LM105H
LM108H
LM108AH
LM111H
LM124J
LM301AH
LM301AN
LM305H
LM308H
LM308N
LM308AH
LM308AN
LM311H
LM311N
LM324J
LM324N-14
NE555N
NE556N
J.lA723DC
J.lA723DM
J.lA723HC

J.lA108HM
J.lA741TC
J.lA741HM
J.lA101AHM
J.lA105HM
J.lA108HM
J.lA108AHM
J.lA111HM
J.lA124DM
J.lA301AHC
J.lA301ATC
J.lA305HC
J.lA308HC
J.lA308TC
J.lA308AHC
J.lA308ATC
J.lA311HC
J.lA311TC
J.lA324DC
J.lA324PC
J.lA555TC
J.lA556PC
J.lA723DC
J.lA723DM
J.lA723HC

·Note
Not exact package replacement
1-5

J.lA723HM
J.lA723PC
J.lA733HC
J.lA733HM
J.lA741FM
J.lA741HC
J.lA741HM
J.lA741TC
J.lA748HC
J.lA748HM
J.lA748TC

J.lA723HM
J.lA723PC
J.lA733HC
J.lA733HM
J.lA741FM
J.lA741HC
J.lA741HM
J.lA741TC
J.lA748HC
J.lA748HM
J.lA748TC

MOTOROLA
LM101AH
LM105HM
LM108H
LM108AH
LM109K
LM111H
LM111J-8
LM117K
LM124J
LM139J
LM139AJ
LM201AH
LM208H
LM208AH
LM209K
LM217K
LM224J
LM239AJ
LM239J
LM293H
LM293AH
LM301AH
LM301AN
LM305H
LM308AH
LM308AN
LM308H
LM308N
LM309K
LM311H
LM311J-8
LM311N
LM317K
LM317T
LM324J

J.lA101AHM
J.lA105HM
J.lA108HM
J.lA1 08AHM
J.lA109KM
J.lA111HM
J.lA111RM
J.lA117KM
J.lA124DM
J.lA139DM
J.lA139ADM
J.lA201AHM
J.lA208HM
J.lA208AHM
J.lA209KM
J.lA217UV
J.lA224DV
J.lA239ADC
J.lA239DC
*J.lA293RC
*J.lA293ARC
J.lA301AHC
J.lA301ATC
J.lA305HC
J.lA308AHC
J.lA308ATC
J.lA308HC
J.lA308TC
J.lA309KC
J.lA311HC
J.lA311RC
J.lA311TC
J.lA317KC
J.lA317UC
J.lA324DC

•

Industry Cross Reference Guide
Part
Number

Fairchild
Equivalent

MOTOROLA (Cont.)
LM339AJ
ILA339ADC
LM339J
ILA339DC
LM393AN
ILA393ATC
LM393N
ILA393TC
LM710CH
ILA710HC
LM711CH
ILA711HC
LM723CH
ILA723HC
LM723CJ
ILA723DC
LM741CH
ILA741HC
LM741CN
ILA741TC
LM2901N
ILA2901PC
LM2902N
ILA2902PV
LM2903N
ILA2903TC
MC1408L6
ILA0802CDC
MC1408L7
ILA0802BDC
MC1408L8
ILA0802ADC
MC1408P6
ILA0802CPC
MC1408P7
ILA0802BPC
MC1408P8
ILA0802APC
MC1411P
ILA9665PC
MC1412P
ILA9666PC
MC1413P
ILA9667PC
MC1416P
ILA9668PC
MC1455P1
ILA555TC
MC1458CG
ILA1458CHC
MC1458CP1
ILA1458CTC
MC1458CU
ILA1458CRC
MC1458G
ILA1458HC
MC1458P1
ILA1458TC
MC1458U
ILA1458RC
MC1488L
ILA1488DC
MC1488P
ILA1488PC
MC1489L
ILA1489DC
MC1489P
ILA1489PC
MC1489AL
ILA1489ADC
MC1489AP
ILA1489APC
MC1508L8
ILA0802DM
MC1558G
ILA1558HM
MC1558U
ILA1558RM
MC1709CP1
ILA709TC
MC1709CP2
ILA709PC
MC1709G
ILA709HM
MC1710CG
ILA710HC
MC1710CL
ILA710DC
MC1710CP
ILA710PC
MC1710G
ILA710HM
MC1710L
ILA710DM
MC1711CG
ILA711HC
MC1711CL
ILA711DC
MC1711CP
ILA711PC
MC1711G
ILA711HM
MC1711L
ILA711DM
MC1723CG
ILA723HC
MC1723CL
ILA723DC
MC1723CP
ILA723PC
MC1723G
ILA723HM
MC1723L
ILA723DM
MC1733G
ILA733HM
MC1733L
ILA733DM

Part
Number

Fairchild
Equivalent

MOTOROLA (Cont.)
MC1733CG
ILA733HC
MC1733CL
ILA733DC
MC1741CG
ILA741HC
MC1741CP1
ILA741TC
MC1741CU
ILA741RC
MC1741G
ILA741HM
MC1747CG
ILA747HC
MC1747CL
ILA747DC
MC1747CP2
ILA747PC
MC1747G
ILA747HM
MC1747L
ILA747DM
MC1748CG
ILA748HC
MC1748CP1
ILA748TC
MC1748G
ILA748HM
MC1776CG
ILA776HC
MC1776CP1
ILA776TC
MC1776G
ILA776HM
MC3302L
ILA3302DC
MC3302P
ILA3302PC
MC3303P
ILA3303PC
MC3386P
ILA3086PC
MC3403L
ILA3403DC
MC3403P
ILA3403PC
MC3440AP
ILA9640PC
MC3443P
ILA9640PC
MC3448AL
ILA3448ADC
MC3448AP
ILA3448APC
MC3456P
ILA556PC
MC3458P1
ILA798TC
MC3488AP
ILA9636AT
MC3558U
*ILA798TC
MC55107L
ILA55107ADM
MC75107L
ILA75107ADC
MC75107P
ILA75107APC
MC75450P
ILA75450BPC
MC75451U
ILA75451ARC
MC75452U
ILA75452ARC
MC75453U
ILA75453ARC
MC75461P
ILA75461TC
MC75462P
ILA75462TC
MC75491P
ILA75491 PC
MC75492P
ILA75492PC
MC7805K
ILA7805KM
MC7805CK
ILA7805KC
MC7805CT
ILA7805UC
MC7806CK
ILA7806KC
MC7806CT
ILA7806UC
MC7812K
ILA7812KM
MC7812CK
ILA7812KC
MC7812CT
ILA7812UC
MC7815K
ILA7815KM
MC7815CK
ILA7815KC
MC7815CT
ILA7815UC
MC7818K
ILA7818KM
MC7818CK
ILA7818KC
MC7818CT
ILA7818UC
MC7824K
ILA7824KM
MC7824CK
ILA7824KC
MC7824CT
ILA7824UC

-Note
Not exact package replacement
1-6

Part
Number

Fairchild
Equivalent

MOTOROLA (Cont.)
MC78L05ACP
ILA78L05AWC
MC78L 12ACP
ILA78L 12AWC
MC78L 15ACP
ILA78L 15AWC
MC78M05CG
ILA78M05HC
MC78M05CT
ILA78M05UC
MC78M06CG
ILA78M06HC
MC78M06CT
ILA78M06UC
MC78M08CG
ILA78M08HC
MC78M08CT
ILA78M08UC
MC78M12CG
ILA78M12HC
MC78M12CT
ILA78M12UC
MC78M15CT
ILA78M15UC
MC78M24CT
ILA78M24UC
MC7905CK
ILA7905KC
MC7905CT
ILA7905UC
MC7908CK
ILA7908KC
MC7908CT
ILA7908UC
MC7912CK
ILA7912KC
MC7912CT
ILA7912UC
MC7915CK
ILA7915KC
MC7915CT
ILA7915UC
MC8T26AP
ILA8T26APC
MC8T26AL
ILA8T26ADC
MC8T28AP
ILA8T28PC
MC8T28AL
ILA8T28DC
SN75451BP
*ILA75451BTC
SN75452BP
ILA75452BTC
SN75453BP
ILA75453BTC
ILA710HC
ILA710HC
ILA711HC
ILA711HC
ILA723DC
ILA723DC
ILA723HC
ILA723HC
ILA723PC
ILA723PC
ILA741HC
ILA741HC
ILA741TC
ILA741TC
NATIONAL
DS75107J
DS75107N
DS75108N
DS75450N
DS75451J-8
DS75451N
DS75452J-8
DS75452N
DS75453J-8
DS75453N
DS75461N
DS75462N
DS75491N
DS75492N
DS8T26AJ
DS8T28J
LF351N
LF353N
LF398H
LM101AH
LM105H
LM108H

ILA75107ADC
ILA75107APC
ILA75108BPC
ILA75450BPC
ILA75451 ARC
ILA75451ATC
ILA75452ARC
ILA75452ATC
ILA75453ARC
ILA75453ATC
ILA75461TC
ILA75462TC
ILA75491PC
ILA75492PC
ILA8T26ADM
ILA8T28DM
ILA771TC
ILA772TC
ILA398HC
ILA101AHM
ILA105HM
ILA108HM

Industry Cross Reference Guide
Part
Number

Fairchild
Equivalent

NATIONAL (Cont.)
LM108H
LM109K
LM111H
LM124J
LM139J
LM139AJ
LM140K-5.0
LM140K-8.0
LM140K-12
LM140K-15
LM140K-18
LM140K-24
LM201AH
LM208H
LM208AH
LM209K
LM224J
LM239J
LM239AJ
LM301AH
LM301AN
LM305H
LM305AH
LM308H
LM308N
LM308AH
LM308AN
LM309K
LM311H
LM311J-8
LM311N
LM317K
LM317T
LM324J
LM324N
LM339J
LM339N
LM339AJ
LM339AN
LM340K-5.0
LM340T-5.0
LM340K-6.0
LM340K-8.0
LM340K-12
LM340T-12
LM340K-15
LM340T-15
LM340K-18
LM340K-24
LM348J
LM348N
LM376N
LM393N
LM555CN
LM556CN
LM709H
LM709CH
LM709CN
LM709CN-8

J.LA108AHM
J.LA109KM
J.LA111HM
J.LA124DM
J.LA139DM
J.LA139ADM
J.LA7805KM
J.LA7808KM
J.LA7812KM
J.LA7815KM
J.LA7818KM
J.LA7824KM
J.LA201AHM
J.LA208HM
J.LA208AHM
J.LA209KM
J.LA224DV
J.LA239DC
J.LA239ADC
J.LA301AHC
J.LA301ATC
J.LA305HC
J.LA305AHC
J.LA308HC
J.LA308TC
J.LA308AHC
J.LA308ATC
J.LA309KC
J.LA311HC
J.LA311RC
J.LA311TC
J.LA317KC
J.LA317UC
J.LA324DC
J.LA324PC
J.LA339DC
J.LA339PC
J.LA339ADC
J.LA339APC
J.LA7805KC
J.LA7805UC
J.LA7806KC
J.LA7808KC
J.LA7812KC
J.LA7812UC
J.LA7815KC
J.LA7815UC
J.LA7818KC
J.LA7824KC
J.LA348DC
J.LA348PC
J.LA376TC
J.LA393TC
J.LAb55TC
J.LA556PC
J.LA709HM
J.LA709HC
J.LA709PC
J.LA709TC

Part
Number

Fairchild
Equivalent

Part
Number

Fairchild
Equivalent

NATIONAL (Cont.)

NATIONAL (Cont.)

LM709AH
LM710H
LM710CH
LM710CN
LM711H
LM711CH
LM711CN
LM723H
LM723J
LM723CH
LM723CJ
LM723CN
LM725H
LM725CH
LM725CN
LM733H
LM733CH
LM733CN
LM741H
LM741AH
LM741CH
LM741CJ
LM741CN
LM741EH
LM741EN
LM747H
LM747J
LM747AH
LM747AJ
LM747CH
LM747CJ
LM747CN
LM747EH
LM747EJ
LM748H
LM748CH
LM748CN
LM760CH
LM1458H
LM1458J
LM1458N
LM1558H
LM1558J
LM2901N
LM2901J
LM2903N
LM3086N
LM3302J
LM3302N
LM7805CK
LM7805CT
LM7812CK
LM7812CT
LM7815CK
LM7815CT
LM78L05ACZ
LM78L 12ACZ
LM78L 15ACZ
LM78M05CP

LM78M12CP
LM78M15CP
LM7905CK
LM7905CT
LM7912CK
LM7912CT
LM7915CK
LM7915CT
LM7905CH
LM7912CH
LM7915CH

J.LA709AHM
J.LA710HM
J.LA710HC
J.LA710PC
J.LA711HM
J.LA711HC
J.LA711PC
J.LA723HM
J.LA723DM
J.LA723HC
J.LA723DC
J.LA723PC
J.LA725HM
J.LA725HC
J.LA725TC
J.LA733HM
J.LA733HC
J.LA733PC
J.LA741HM
J.LA741AHM
J.LA741HC
J.LA741RC
J.LA741TC
J.LA741EHC
J.LA741 ETC
J.LA747HM
J.LA747DM
J.LA747AHM
J.LA747ADM
J.LA747HC
J.LA747DC
J.LA747PC
J.LA747EHC
J.LA747EDC
J.LA748HM
J.LA748HC
J.LA748TC
J.LA760HC
J.LA1458HC
J.LA1458RC
J.LA1458TC
J.LA1558HM
J.LA1558RM
J.LA2901PC
J.LA2901DC
J.LA2903TC
J.LA3086PC
J.LA3302DC
J.LA3302PC
J.LA7805KC
J.LA7805UC
J.LA7812KC
J.LA7812UC
J.LA7815KC
J.LA7815UC
J.LA78L05AWC
J.LA78L 12AWC
J.LA78L 15AWC
°J.LA78M05UC

·Note
Not exact package replacement
1-7

°J.LA78M12UC
°J.LA78M15UC
J.LA7905KC
J.LA7905UC
J.LA7912KC
J.LA7912UC
J.LA7915KC
J.LA7915UC
J.LA79M05AHC
J.LA79M12AHC
J.LA79M15AHC

PMI
CMP-03AJ
CMP-03AZ
CMP-04BY
CMP-04FY
DAC-08Q
DAC-08Q
DAC-08CP
DAC-08CP
DAC-08CQ
DAC-08CQ
DAC-08EP
DAC-08EP
DAC-08EQ
DAC-08EQ
DAC1408A-6P
DAC1408A-6Q
DAC1408A-7P
DAC1408A-7Q
DAC1408A-8P
DAC 1408A-8Q
DAC1508A-8Q
OP-07J
OP-07CJ
OP-07EJ
PM108J
PM108AJ
PM111J
PM111Z
PM139Y
PM208J
PM208AJ
PM308J
PM308P
PM308AJ
PM308AP
PM311J
PM311Z
PM339Y
PM339AY
PM725J
PM725CJ
PM725CP
PM741J
PM741CJ
PM741CZ
PM1458J

J.LA111HM
J.LA111RM
J.LA139DM
J.LA239DC
J.LA0801DM
J.LA0802DM
J.LA0801CPC
J.LA0802BPC
J.LA0801CDC
J.LA0802BDC
J.LA0801EPC
J.LA0802APC
J.LA0801EDC
J.LA0802ADC
J.LA0802CPC
J.LA0802CDC
J.LA0802BPC
J.LA0802BDC
J.LA0802APC
J.LA0802ADC
J.LA0802DM
J.LA714HM
J.LA714HC
J.LA714EHC
J.LA108HM
J.LA108AHM
J.LA111HM
J.LA111RM
J.LA139DM
J.LA208HM
J.LA208AHM
J.LA308HC
J.LA308TC
J.LA308AHC
J.LA308ATC
J.LA311HC
J.LA311RC
J.LA339DC
J.LA339ADC
J.LA725HM
J.LA725HC
J.LA725TC
J.LA741HM
J.LA741HC
J.LA741RC
J.LA1458HC

Industry Cross Reference Guide
Part
Number

Fairchild
Equivalent

PMI (Cont.)
PM1458Z
PM1558J
PM1558Z

ILA1458RC
ILA1558HM
ILA1558RM

SIGNETICS
LM101AH
LMlllH
LM124F
LM139F
LM193FE
LM201AN
LM224N
LM224F
LM301AN
LM324N
LM324F
LM339N
LM339F
LM2901F
LM2901N
LM2903FE
LM2903N
MC1458FE
MC1458H
MC1458N
MC1488N
MC1488F
MC1489N
MC1489F
MC1489AN
MC1489AF
MC1558H
MC1558FE
MC3302N
MC3302F
NE5501
ULN2001N
ULN2003F
ULN2003N
ULN2004F
ULN2004N
ILA723F
ILA723H
ILA723CF
ILA723CH
ILA723CN
ILA733F
pA733H
ILA733CF
ILA733CH
ILA733CN
ILA741FE
ILA741CFE
ILA741CN
ILA747F
ILA747H
ILA747CF
pA747CH
ILA747CN
ILA748CN

ILA101AHM
ILA 1l1HM
ILA124DM
ILA139DM
pA193RM
'ILA201AHM
/LA224PV
ILA224DV
ILA301ATC
ILA324PC
ILA324DC
ILA339PC
ILA339DC
ILA2901DC
ILA2901PC
ILA2903RC
ILA2903TC
ILA1458RC
ILA1458HC
ILA1458TC
ILA1488PC
ILA 1488DC
ILA1489PC
pA1489DC
ILA1489APC
ILA1489ADC
ILA1558HM
ILA1558RM
ILA3302PC
ILA3302DC
ILA9665PC
ILA9665PC
ILA9667DC
ILA9667PC
ILA9668DC
pA9668PC
ILA723DM
ILA723HM
ILA723DC
pA723HC
ILA723PC
ILA733DM
pA733HM
ILA733DC
ILA733HC
ILA733PC
ILA741RM
ILA741RC
ILA741TC
ILA747DM
ILA747HM
ILA747DC
pA747HC
pA747PC
ILA748TC

Part
Number

Fairchild
Equivalent

SILICON
GENERAL
SG10H
SG101AT
SG105T
SG108T
SG108AT
SG109K
SGllH
SG117K
SG124J
SG139J
SG139AJ
SG20H
SG201AT
SG208T
SG208AT
SG209K
SG2l7P
SG224J
SG224N
SG239J
SG239N
SG239AJ
SG239AN
SG301AM
SG301AT
SG305T
SG305AT
SG308M
SG308T
SG308AM
SG308AT
SG309K
SG3l1M
SG311T
SG317K
SG317P
SG324J
SG324N
SG339J
SG339N
SG339AJ
SG339AN
SG555M
SG556N
SG710J
SG710T
SG710CN
SG710CT
SG711J
SG711T
SG711CJ
SG711CN
SG711CT
SG723CJ
SG723CT
SG723J
SG723T
SG723CN

ILA 101HM
pAl01AHM
ILA105HM
ILA108HM
ILA108AHM
ILA109KM
ILA111HM
ILAl17KM
ILA l24DM
ILA139DM
ILA 139ADM
ILA201HC
ILA201AHM
ILA208HM
pA208AHM
ILA209KM
ILA217UV
ILA224DV
ILA224PV
ILA239DC
pA239PC
ILA239ADC
ILA239APC
ILA301ATC
ILA301AHC
ILA305HC
ILA305AHC
ILA308TC
ILA308HC
ILA308ATC
ILA308AHC
ILA309KC
ILA31HC
ILA311HC
ILA317KC
ILA317UC
ILA324DC
ILA324PC
ILA339DC
ILA339PC
ILA339ADC
ILA339APC
ILA555TC
ILA556PC
ILA710DM
pA710HM
ILA710PC
ILA710HC
ILA711DM
ILA711HM
ILA711DC
ILA711PC
ILA711HC
ILA723DC
ILA723HC
ILA723DM
ILA723HM
ILA723PC

'N ote

Not exact package replacement
1-8

Part
Number

Fairchild
Equivalent

SILICON
GENERAL (Cont.)
SG733J
ILA733DM
SG733T
ILA733HM
SG733CJ
ILA733DC
SG733CN
ILA733PC
SG733CT
ILA733HC
SG741F
ILA741FM
SG741T
ILA741HM
SG741CM
ILA741TC
SG747J
ILA747DM
SG747T
ILA747HM
SG747CJ
ILA747DC
SG747CN
ILA747PC
SG747CT
ILA747HC
SG748T
ILA748HM
SG748CM
ILA748TC
SG748CT
ILA748HC
SG1458M
ILA1458TC
SG1458T
ILA1458HC
SG1458CM
pA1458CTC
SG1458CT
ILA1458CHC
SG1488J
ILA1488DC
SG1489J
ILA1489DC
SG1489AJ
ILA l489ADC
SG1558T
ILA1558HM
SG2001J
'ILA9665PC
SG2002J
ILA9666DC
SG2003J
ILA9667DC
SG3086J
ILA3086DC
SG3086N
ILA3086PC
SG3302J
ILA3302DC
SG3302N
ILA3302PC
SG7805K
ILA7805KM
SG7805CK
ILA7805KC
SG7805CP
ILA7805UC
SG7808K
ILA7808KM
SG7808CK
ILA7808KC
SG7808CP
ILA7808UC
SG7812K
ILA7812KM
SG78l2CK
ILA7812KC
SG7812CP
pA7812UC
SG7815K
ILA7815KM
SG7815CK
ILA7815KC
SG7815CP
ILA7815UC
SG7818K
ILA7818KM
SG7818CK
ILA7818KC
SG7818CP
ILA7818UC
SG7824K
ILA7824KM
SG7824CK
pA7824KC
SG7824CP
ILA7824UC
SG7905K
ILA7905KM
SG7905CK
ILA7905KC
SG7905CP
ILA7905UC
SG7908K
ILA7908KM
SG7908CK
ILA7908KC
SG7908CP
ILA7908UC
SG7912K
ILA7912KM
SG7912CK
ILA7912KC
SG7912CP
ILA7912UC

Industry Cross Reference Guide
Part
Number

Fairchild
Equivalent

SILICON
GENERAL (Cont.)
SG7915K
SG7915CK
SG7915CP
SG75450BCN
SG75451BCM
SG75451BCY
SG75452BCM
SG75452BCY
SG75453BCM
SG75453BCY
SG75461CM
SG75462CM
TEXAS
INSTRUMENTS
AM26S10CJ
AM26S10CN
LM101AJ
LM105L
LM111JG
LM124J
LM139J
LM139AJ
LM148J
LM193JG
LM201AJG
LM209LA
LM217KC
LM224J
LM224N
LM239J
LM239N
LM248J
LM293JG
LM293P
LM301AP
LM305L
LM305AL
LM309LA
LM311JG
LM311P
LM317KC
LM318JG
LM324J
LM324N
LM339AJ
LM339AN
LM339J
LM339N
LM348J
LM348N
LM376P
LM393JG
LM393P
LM2901J
LM2901N
LM2902N
LM2903JG

-

ILA7915KM
ILA7915KC
ILA7915UC
ILA75450BPC
ILA75451BTC
ILA75451BRC
ILA75452BTC
ILA75452BRC
ILA75453BTC
ILA75453BRC
ILA75461TC
ILA75462TC

ILA9640DC
ILA9640PC
·ILA101AHM
ILA105HM
ILA 111RM
ILA124DM
ILA139DM
ILA139ADM
ILA148DM
ILA193RM
·ILA201AHM
·ILA209KM
ILA217UV
ILA224DV
ILA224PV
ILA239DC
ILA239PC
ILA248DC
ILA293RC
ILA293TC
ILA301ATC
ILA305HC
ILA305AHC
·ILA309KC
ILA311RC
ILA311TC
ILA317UC
·ILA318HC
ILA324DC
ILA324PC
ILA339ADC
ILA339APC
ILA339DC
ILA339PC
ILA348DC
ILA348PC
ILA376TC
ILA393RC
ILA393TC
ILA2901DC
ILA2091PC
ILA2902PV
ILA2903RC

Part
Number

Fairchild
Equivalent

TEXAS
INSTRUMENTS (Cont.)
LM2903P
ILA2903TC
MC1458JG
ILA1458RC
MC1458P
ILA1458TC
MC1558JG
ILA1558RM
NE555P
ILA555TC
NE556N
ILA556PC
RC4136J
ILA4136DC
RC4136N
ILA4136PC
SA555P
ILA555TC
SN55107AJ
ILA55107ADM
SN55110AJ
ILA55110ADM
SN75107AJ
ILA75107ADC
SN75107AN
ILA75107APC
SN75107BJ
ILA75107BDC
SN75107BN
ILA75107BPC
SN75108BN
ILA75108BPC
SN75110AJ
ILA75110ADC
SN75110AN
ILA75110APC
SN75114J
ILA9614DC
SN75114N
ILA9614PC
SN75115J
ILA9615DC
SN75115N
ILA9615PC
SN75150N
ILA75150PC
SN75150P
ILA75150TC
SN75154J
ILA75154DC
SN75154N
ILA75154PC
SN75188J
ILA1488DC
SN75188N
ILA1488PC
SN75189J
ILA1489DC
SN75189N
ILA1489PC
SN75189AJ
ILA1489ADC
SN75189AN
ILA1489APC
SN75450BN
ILA75450BPC
SN75451BJG
ILA75451BRC
SN75451BP
ILA75451BTC
SN75452BJG
ILA75452BRC
SN75452BP
ILA75452BTC
SN75453BJG
ILA75453BRC
SN75453BP
ILA75453BTC
SN75461P
ILA75461TC
SN75462P
ILA75462TC
SN75471P
ILA75471TC
SN75472P
ILA75472TC
SN75491N
ILA75491PC
SN75492N
ILA75492PC
TL081ACJG
ILA771 ARC
TL081ACP
ILA771ATC
TL081BCJG
ILA771BRC
TL081BCP
ILA771BTC
TL081CJG
ILA771RC
TL081CP
ILA771TC
TL431CLP
ILA431AWC
TL494CN
ILA494PC
TL494CJ
ILA494DC
TL494MJ
ILA494DM
ULN2001AN
ILA9665PC
ULN2002AJ
ILA9666DC
ULN2002AN
ILA9666PC

'Note
Not exact package replacement

1·9

Part
Number

Fairchild
Equivalent

TEXAS
INSTRUMENTS (Cont.)
ULN2003AJ
ILA9667DC
ULN2003AN
ILA9667PC
ULN2004AJ
ILA9668DC
ULN2004AN
ILA9668PC
ILA709MU
ILA709FM
ILA709AMU
ILA709AFM
ILA709CP
ILA709TC
ILA710DC
ILA710CJ
ILA710CN
ILA710PC
ILA710MJ
ILA710DM
ILA711PC
ILA711CN
ILA711MJ
ILA711DM
ILA723CJ
ILA723DC
ILA723PC
ILA723CN
ILA723MJ
ILA723DM
ILA733CJ
ILA733DC
ILA733CN
ILA733PC
ILA733DM
ILA733MJ
ILA741CJG
ILA741RC
ILA741CP
ILA741TC
ILA741RM
ILA741MJG
ILA747DC
ILA747C
ILA747CN
ILA747PC
ILA747MJ
ILA747DM
ILA748TC
ILA748CP
ILA2240CJ
ILA2240DC
ILA2240CN
ILA2240PC
ILA7805CKC
ILA7805UC
ILA7808CKC
ILA7808UC
ILA7812UC
ILA7812CKC
ILA7815UC
ILA7815CKC
ILA7818CKC
ILA7818UC
ILA7824UC
ILA7824CKC
ILA7885CKC
ILA7885UC
ILA78L05AWC
ILA78L05CLP
ILA78L 12AWC
ILA78L12CLP
ILA78L15CLP
ILA78L 15AWC
ILA78M05UC
ILA78M05CKC
ILA78M06UC
ILA78M06CKC
ILA78M08CKC
ILA78M08UC
ILA78M12UC
ILA78M12CKC
ILA78M15CKC
ILA78M15UC
ILA78M24CKC
ILA78M24UC
ILA7905UC
ILA7905CKC
ILA7908UC
ILA7908CKC
ILA7912UC
ILA7912CKC
ILA7915CKC
ILA7915UC
ILA 79M05AUC
ILA79M05CKC
ILA 79M08AUC
ILA79M08CKC
ILA79M12CKC
ILA 79M 12AUC
ILA 79M 15AUC
ILA79M 15CKC
9614CJ
ILA9614DC
9614CN
ILA9614PC
9615CJ
ILA9615DC
9615CN
ILA9615PC

•

Ordering Information

FAIRCHILD
A Schlumberger Company

Device Identification

Three basic units of information are contained in the
ordering code.
fLA741
Device Type

T
Package Type

All Fairchild standard catalog linear circuits will be
marked as shown in the following example.

C
Temperature Range

fLA710DC
F Date Code

Device Type
This group of alpha numeric characters defines the device
including functional and electrical characteristics, alpha
suffixes are added to further delineate electrical options.

Package Type
One alpha suffix represents the basic package style.
D
Dual In-line (Hermetic, Ceramic)
F
Flatpak (Hermetic)
H
Metal Package
J
Dual In-Line (Side Brazed)
K
Metal Power Package (TO-3)
P
Dual In-Line (Molded)
8-lead DIP (Hermetic, Ceramic)
R
S
Metal Package (Hybrid only)
T
8-lead DIP (Molded)
Power Package (Molded, TO-220)
U
U1 = Power Package (Molded)
W = Molded Package (TO-92 Outline)
Different outlines exist within each package style to
accommodate various die sizes and number of leads.
Specific dimensions for each package can be found in the
Package Outline section of this catalog, listed by online
code. These specific codes are referenced on each data
sheet.

Temperature Range
One alpha suffix represents one of the following three
basic temperature grades in common use. Exact values
and conditions are specified on the device data sheets.

c

~

Commercial
M
O°C to + 70/75°C

Military
- 55°C to + 125°C
-55°Cto + 85°C

v

~

Industflal
- 20°C to 85°C
-40°Cto +85°C

Examples
fLA741 FM This number code indicates a fLA741
Operational Amplifier in a flatpak with military
temperature rating capability.
fLA725EHC This number code indicates a fLA725
Instrumentation Operational Amplifier, electrical option
E, in a metal package with a commercial temperature
rating capability.

1-10

FAIRCHILD
A Schlumberger Company

2-2

Voltage Regulator
Testing

FAIRCHILD
A Schlumberger Company

Linear Products
Testing Voltage Regulators
All Fairchild voltage regulators are factory-tested with
automated equipment to ascertain that they meet or
exceed guaranteed specifications. The testing
equipment operates at relatively high speeds and
automatically measures output voltage tolerances,
line and load regulation, quiescent current, shortcircuit current, and a long list of other voltage
regulator parameters. To adequately interpret
published voltage regulator specifications, it is
advisable to have some understanding of the testing
as performed at Fairchild. This is also important for
customer incoming inspection, as some correlation is
necessary between factory testing and customer
acceptance testing.

Fairchild must be established. In this case, the
temperature coefficients of each regulator type
must be considered.
3-Termlnal Regulators
Testing of 3-terminal regulators is performed at input
voltages that reflect actual use conditions. The
input-output voltage differential considers all of the
variations associated with nominal, unregulated power
supplies. For example, a 12 V regulator (/tA7812)
test uses a 7 V I/O voltage differential and considers
the following parameters.
Device Input/Output Voltage Differential-2 V Nom.
Line Voltage Reference-10%
Filtered Supply Ripple-100f0
Line Regulation-1 0%
Diode Drop and Source Impedance
Variations-1 V

Individual parameter tests performed on Fairchild
voltage regulators require only a few milliseconds, so
a complete regulator test can be accomplished in a
fraction of a second. Such short testing times mean
that the device junction temperature is very close to
ambient. If the devices were tested under steadystate conditions, costs would unfortunately increase,
and the increased expense would be passed on to the
customer. Consequently, published parameters are
based on fast testing and usually specified with a
constant junction temperature of 25°C. Exceptions are
noted in the individual data sheet tables.

This is expressed in the following equation.
VIN

= VOUT(max) + (VIN - VOUT) + Ripple
+ Line Reg + Vo
= 12.6V+2V+ 1.46V+ 1.6V+ 1 V
= 18.66 V

A 12 V regulator, then, is not only tested with a guard
band, but the input voltage range used allows for
greater variation than is present in actual operating
conditions. All Fairchild 3-terminal regulator tests are
based on similar practical considerations.

When a regulator is operated with high dissipation,
however, the effect of temperature drift must be
evaluated or at least considered. For example, a
/tA7805 1 ampere positive voltage regulator with a
junction temperature of 25°C, a 10 V input, and a load
current variation of 1.5 A has a guaranteed load
regulation of less than 50 mV for military-grade units
and less than 100 mV for commercial-grade units.
Under steady-state testing conditions, as opposed
to pulsed testing conditions, junction temperature
would increase by 30°C to 55°C (based on a
4°C/W junction-to-case thermal resistance and
an infinite heat sink.) The /tA7805 regulator has a
temperature coefficient of -1.1 mV / °C, so a 30°C
junction-temperature increase means an output
voltage drift of -33 mY. This drift must be
considered if load regulation is being measured under
steady-state conditions.

Figure 2-1 shows a self-contained load-pulsing circuit
that can be used for measuring load regulation of
either a positive or negative regulator. The /tA555
timer operates in the astable mode as a free-running
multivibrator. Transistors 02 and 04, along with the
load resistors RL, provide the required loading across
the regulator outputs. The on and off times of 02 and
04 are set by potentiometers R2 and R4. Transistors
02 and 04 must be capable of handling the load
current levels to be measured. Line regulation of
positive or negative regulators can be measured using
the circuits in Figure 2-2. Here a pulse generator
switches the input voltages between VIN (min) and
VIN (max) but a similar arrangement could be used by
substituting a /tA555 timer for the pulse generator.

Incoming inspection tests should accommodate these
conditions. One approach would be to duplicate the
testing procedure used by manufacturing; i.e.,
maintain a constant junction temperature of 25°C. If
steady-state testing is performed during acceptance
evaluation, a correlation between the method used
in incoming inspection and the method used by
2-3

Fig.2-1

Self-Contained Load Regulation Test Circuit for Positive or Negative Regulators
POSITIVE

7T035V

ON

~A78M05

OUT

INPUT

+S.

o

+

C1
IOOpF

o
o

r---J----,

••

posmVE ON
260 k NEGATIVE OFF

COM

C'
01.uF

C3
03,1.1F

.,

I

'.3·~
~k

AL+

.....

I
II

(+1

I

MONITOR

I

..l. VOUl

+

SOD /.IF

-----------.,
o

Q4

..-

+

CO

ON

p.A78M05

.,

o

0

IL

o

NEQATIVE
INPUT

Line Regulation Test Circuits

a. For Positive Regulators
VON (MAX) - - - - - - - - - -.....-....,

390

{l

p---t IN R:g~~~~~R

VON ( M I N ) - - - - - - I ) I - - - - + -............

OUT 1--....- -....-

COM

0.J'l.
TO PULSE

RL

GENERATOR

b. For Negative Regulators
50 {l

+

100 {l

0"'1.1"

270 pF

TO PULSE

GENERATOR
390 II

....-t)t-- -VON (MIN)

L . . . - -.....- - - - V O N (MAX)

2·4

1

~F

RL

+ Vour

0
:

___ ,IN ____ .JI
o
o

-5.
SCOPE
TRIGGERING

Fig. 2-2

I

r---.J----,
I
COM
I

24n
OUT

o

I

I
I

- ~ -. -1 OUT R:~~~!~~R

C'
1._

COM

-7 TO-35Y

I

:

I
I
IL.. ___COM
-, ____ J I

.l. VOUT (-)
MONITOR

C'

IN

- ~ - -r - ~ OUT R:g~~~i~A

1k

Ripple Rejection
Ripple rejection is the ratio (in dB) of the regulator
input ac component (or the output of the sine wave
generator) to the output ac component of the device
under test. Its measurement is quite straightforward.

The 5 k potentiometers in both circuits provide the
bias necessary to produce the dc level of the input
voltage to the regulator. The sine-wave generators are
used to produce the ac component of the regulator
input voltage.

Ripple rejection of Fairchild regulators is normally
specified at a load current of 30 to 50% of the rated
output of the device. This is more realistic than the
20 mA or so specified by some other manufacturers.
A regulator with good ripple rejection at low output
currents maY.not necessarily maintain this feature at
moderate-to-high current levels unless special effort
is made during the layout of the integrated circuit to
keep the reference circuit on isotherms (equal
temperature lines) and away from the heat source
(series-pass element).

Life Test and Burn-In (See Figure 2-4)
Burn-in information is provided here as a guide to
perform regulator life testing. The burn-in performed
by Fairchild is based on the thermal resistance of the
regulator package. The power dissipation level is
selected so that the junction temperature is near the
maximum specified level (150°C for most products).
The power level is then determined based on the
chosen ambient. In general, burn-in is performed at
25°C ambient without a heat sink but it can also be
done with a heat sink or a different ambient.

Figure 2-3 shows two simple circuits for measuring
ripple rejection of positive and negative regulators.
Fig. 2-3

Ripple Rejection Measurement Circuits

a. For Positive Regulators
+

5k

2N6123

SINE WAVE
GENERATOR

+-----p__--1IN

R;2~~~~~R

OUT

1-----1p-----1~- VOUT

COM

1k

RL+

b. For Negative Regulators
+

Fig.2-4

Burn-In Circuit for ILA7805 Regulator In TO-220 Package

IN

.33 ~F

7805
COM

1

2-5

OUT

;

0.1

~F

RL
30 II

Example: Determine a burn-in circuit, operating at a
25°C ambient, for a ILA7805 in the TO-220 package.
From the data sheet:
OJA = 65°C/W max
TJ (max) - TA
Po = -"---;;-OJ-A--'-

Note that the value of the load resistor chosen here
(30 fl) is arbitrary. Any other value giving output
currents within the rating of the device could be used.
If the burn-in is to be performed at more than one
temperature, selecting a common load resistor for all
temperatures and changing the input voltage to give
the required power dissipations simplifies the design
and construction of the burn-in fixtures.

1506~ 25 = 1.92 W

If RL = 30 fl and the effects of 10 are neglected,
Po

= (VIN -

VOUT

VOUT)

RL

or
VIN = Po

RL
-VOUT

+ VOUT = 16.5 V

If the same circuit is used at an ambient of 125 0 C,
VIN = Po

RL
VOUT

+ V OUT

150-125
X
65

30
5

+5

= 7.3 V

2·6

Thermal Considerations

FAIRCHILD
A Schlumberger Company

To fully utilize the various available regulator
packages, sufficient attention must be paid to proper
heat removal. For efficient thermal management, the
user must rely on important parameters supplied by
the manufacturer, such as junction-to-case and
junction-to-ambient thermal resistance and maximum
operating junction temperature. The device
temperature depends on the power dissipation level,
the means for removing the heat generated by this
power dissipation and the temperature of the body
(heat sink) to which this heat is removed.

Thermal Evaluation Of Regulators
To measure thermal resistance, the difference
between the junction temperature and the chosen
reference temperature, case, sink or ambient, must be
determined. Ambient or sink temperature
measurement is straightforward. For casetemperature measurement, the device should have a
sufficiently large heat sink and the power level should
be close to the specified rating of the package-die
combination. The case or tab temperature can be
measured by an infrared microradiometer or by using a
thermocouple soldered to a point in the center of the
case or tab at the tab-heat-sink interface as close to
the die as practical.

Figure 6- t shows a simplified equivalent circuit for a
typical semiconductor device in equilibrium. The
power diSSipation, which is analogous to current flow
in electrical terms, is caused by a heat source similar
to a voltage source. Temperature is analogous to
voltage potential and thermal resistance to ohmic
resistance. Extending the analogy of Ohm's law to

OJA(tot)

= 0JC + OCS + USA =

Measurement of the junction temperature,
unfortunately, is not as simple and involves some
calibrations. There are several methods available for
junction-temperature measurement; the two most
commonly used are described here.

TJ - TA
Po

Thermal Shutdown Method
With this method, the thermal shutdown temperature
of each device is used as the thermometer in
determining the thermal resistance. The device is first
heated externally, with as little internal power
dissipation as practical, until it reaches thermal
shutdown. Then, with the device mounted on a heat
sink, the regulator is powered externally until it
reaches thermal shutdown again. With some
packages, the ambient of the device and its heat sink
may have to be elevated sufficiently to force the
regulator into shutdown. The thermal resistance of the
device can then be calculated by using

Thermal resistance, then, is the rise in the
temperature of a package above some reference level
per unit of power dissipation in that package, usually
expressed in degrees centigrade per watt. The
reference temperature may be ambient or it may be
the temperature of a heat sink to which the package is
connected. There are several factors that affect
thermal resistance including die size, the size of the
heat source on the die (series-pass transistor in an Ie
regulator), die-attach material and thickness,
leadframe material, construction and thickness.

Fig. 6·1.

TJ - TC
Po

Simplified Thermal Circuit

where 0JC is the junction-to-case thermal resistance
TJ is the measured thermal shutdown
temperature
TC is the measured case temperature
Po is the power dissipated to force the device
into shutdown and is equal to

.--_ _ _ _,,.. _ _ _..... TJ JUNCTION TEMPERATURE
POWER (P)

8JC JUNCTION-TO-CASE
THERMAL RESISTANCE
Tc CASE TEMPERATURE

HEAT
SOURCE

8CS CASE·TO-SINK
THERMAL RESISTANCE

(V IN - VOUT) lOUT

TS SINK TEMPERATURE

+ VIN 10

10 is the quiescent current of the device and

can be neglected for low thermal resistance
packages such as the TO-3 and TO-220.

8SA SINK-TO-AMBIENT
THERMAL RESISTANCE
'--_ _ _ _ _ _ _ _. . TA AMBIENT TEMPERATURE

2·7

•

Substrate or Isolation Diode Method
The second method of thermal-resistance
measurement utilizes the isolation diodes within the
integrated circuits as temperature sensing element' .
Under normal operating conditions. the substrate
diodes are reverse biased and separate or "isolate"
active as well as passive components within an
integrated circuit. (See Figure 6-2). When the
regulator is reverse biased and a constant current is
forced through the device between the input terminal
and ground. the substrate diodes become forward
biased; naturally. when the forward drop is measured.
the diode with the highest temperature (lowest
forward drop) is detected. Measurement of the
thermal resistance of the regulator then involves two
steps:

Measuring the junction temperature. The device is
powered through a switching circuit S 1 at a duty
cycle greater than 99% (Figure 6-3); thus the device
is electrically heated until it reaches equilibrium.
During short measuring intervals « 1% duty cycle).
the switching circuit de-energizes the device and
the forward drop of the substrate diode is measured
at the previously calibrated ISUBS current level. This
voltage drop must be measured as soon as possible
(several microseconds) after the removal of the
power pulse to avoid inaccurate readings due to
cooling of the chip. Diode 01 prevents reverse
current from flowing through the load resistor RL
during the substrate-diode measuring interval. Since
the change in the isolation diode drop is assumed to
be linear with temperature. the measured voltage
drop can be converted to its corresponding junction
temperature by interpolation or extrapolation.
Thermal resistance can then be calculated by the
same formula used in the thermal-shutdown method.

Calibrating the substrate diode at a fixed ISUBS
level in an oven or bath at two temperatures.
preferably near the device operating junction
temperature. It is assumed that this voltage drop
changes linearly with temperature.

Heat Sink Requirements
When is a heat sink necessary. and what type of a
heat sink should one use? The answers to these
questions depend on reliability and cost requirements.
Heat sinking is necessary to keep the operating
junction temperature TJ of the regulator below the

'For more detailed explanation of this method, see Fairchild
Application Note 205, "Thermal Evaluation of Integrated
Circuits". For p,A723 thermal considerations, see page 3·29.

Fig, 6-2

Monolithic Transistor Isolation
COLLECTOR

SUBSTRATE DIODES

+

+

SUBSTRATE

EMIITER

EM lITER

Equivalent Circuit
Cross-sectional Diagram Showing Two Monolithic
Transistors Isolated by Substrate Diodes

Fig, 6-3

Thermal ReSistance Measurement Circuit Using Substrate Diode Technique

+

ISUBS

VOUT
DUT

OUTPUT 1--+--0
D1

COMMON

2-8

COLLECTOR

specified maximum value. Since semiconductor
reliability improves as operating junction temperature
is lowered, a reliability I cost compromise is usually
made in the device design.

TJ(max)-Maximum operating junction temperature,
specified by the manufacturer.
OJC, OJA-Junction-to-case and junction-to-ambient
thermal resistance values, also specified
by the regulator manufacturer.
Ocs-Case-to-heat-sink thermal resistance which, for
large packages, can range from about 0.2°C/W
to about 1°C/W depending on the quality of the
contact between the package and the heat sink.
0SA-Heat-sink-to-ambient thermal resistance,
specified by heat-sink manufacturer.

Table 6-1 is a tabulation by package of the various
regulators available from Fairchild. It also lists the
average and maximum values of thermal resistance for
the regulator chip-package combinations and can be
used as a guide in selecting a suitable package when
designing a regulator circuit.

Maximum permissible dissipation without a heat sink
is determined by

Thermal characteristics of voltage-regulator chips and
packages determine that some form of heat sinking is
mandatory whenever the power dissipation exceeds
the following.
0.67 W for the TO-39 package
0.69 W for the TO-92 package
1.56 W for the Mini Batwing and Power Watt (similar to
TO-202) packages
1.8 W for the TO-220 package
2.8 W for the TO-3 package

If the device dissipation Po exceeds this figure, a heat

sink is necessary. The total required thermal
resistance may then be calculated.
OJA(tot)

at 25°C ambient or lower power levels at ambients
above 25°C.

= OJC + OCS + OSA =

TJ(max) - TA(max)
Po

Case-to-sink and sink-to-ambient thermal resistance
information on commercially available heat sinks is
normally provided by the heat sink manufacturer. A
summary of some commercially available heat sinks is
shown in Table 6-2. However, if a chassis or other
conventional surface is used as a heat sink, Figure 6-4
can be used as a guide to estimate the required
surface area.

To choose or design a heat sink, the designer must
determine the following regulator parameters.
PO(msx)-Maximum power dissipation: (V IN - VOUT)
lOUT + VIN 10
TA(max)-Maximum ambient temperature the regulator
will encounter during operation.

Fig. 6-4

TJ(max) - TA(max)
OJA

Po (max) =

Heat Sink Material Selection Guide
SURFACE AREA
(SOTH SIDES OF THE HEAT SINK)
SQUARE INCHES

1IIIIIIIIIIiiliilIIIIII 111I1I11I1I11I1I1iiI~ 1111111111"11111111111111111111111111111111111111111111111111111
3

4

:
3/32"

6

7

7 6

7

65

5

44

3

40 5060

251 5

3 2

6543

215

6

3

5

4

80

2

1

1

25

11111111111111111111111111111111111 11111111

3/32"

II

2

III I

I

7

6
8

5
76

4
5

3
4

25
35

2
3252

1IIIljllllllllllWllllllllillillllllliJillllllllllllililliti

3/32"

1"11111111"111"111""1""1"1111111 II I I I I II III

3/16"
/

66

5 5

4

4

111111111 Ii 1111111 111111111111111

;
II

5

32 6 2 5 2 2

II I I I II I " 111111

THERMAL RESISTANCE IN °C/W

To determine either area reqUired or thermal resistance of a given area, draw
a vertical line between the top (or area) hne down to the mateflal 01 interest.

2-9

COPPER.
HORIZONTALLYMOUNTED

COPPER.
VERTICALLYMOUNTED

I

111111111111111111111111111111111111111111 II 1111111

3/16"

3/32"

20 2530

11111111"111"111111"1111111111"1"111111111111111111111 I
7

THICKNESS

THICKNESS

15

1IIIIIlillhliillllllllllllllllllllllllllllllllllili I 11111111

3/16"

THICKNESS

8 10

11111111111111111111111111111111111111111111111111111111111111111 I I ! III

3/16"'
THICKNESS

5

ALUMINUM.
HORIZONTALLYMOUNTED

ALUMINUM.
VERTICALLY MOUNTED

Table 6-1

Thermal Resistance (liJC, liJA) By Device and Package'

Resistances Listed as Follows:
liJC (TVP) liJC (MAX) In 0C/W
liJA (TVP) liJA (MAX)

Reg,Type

Pos,
3-Term

Neg.
3-Term

lOUT
(A)

~A78LXX

0.1

~A78MXX

0.5

~A 109, ~A209
~A309, 5 V

1

~A78XX

1

3.5 5.5
40 45

78H05, 5 V

5

1.52.0
37 40

~A78HXX

5

2.0 2.5
32 38

~A79MXX

0.5

~A79XX

1

~A1051

Pos.
Adj.

to

~A723

0.125

~A78MG

0.5

4-TERM
4-TERM

~A79MG

0.5

~A79G

Power
Watt
U1'

1

TO-39
H
20
40
140 190

3.05.0
62 70

18
25
120 185

3.5 5.5
40 45
3.0 5.0
60 65

3.0 5.0
62 70

18
25
120 185

3.0 5.0
60 65

3.5 5.5
40 45

8
6
7580

4.0 6.0
4447

1
5

4-TERM.

TO-220
U

0.045

~A78HG

4-TERM.

4-Lead
TO-3
K

0.012

305/376

~A78G

Neg.
Adj.

TO-3
K

Device
No.!Series

6
8
7580

2.0 2.5
32 38
6
8
7580
4.0 6.0
44 47

Note
'Similar to TO-202
2-10

8
6
7580

4-Lead
TO-39
H

TO-92
W

-

TO-99
8-Lead TO-S
H

TO-100
10-Lead TO-S
H

TO-116
14-Pin Plastic
0

TO-116
14-Pin Ceramic
0

8 Pin
Minidip
T

-

160 180

•
-

25
40
150 190

-

160 190

-

25
50
150 190

-

150 190

18
25
125 185

25
18
125 185

2-11

-

-

125 160

When using larger packages, be sure the heat sink
surface is flat and free from ridges or high spots.
Check the regulator package for burrs or peened-over
corners. Regardless of the smoothness and flatness
of the package and heat-sink contact, air pockets
between them are unavoidable unless a lubricant is
used. Therefore, for good thermal conduction, use a
thin layer of thermal lubricant such as Dow Corning
DC-340, General Electric 662 or Thermacote
by Thermalloy.

How to Choose a Heat Sink-Example
Determine the heat sink required for a regulator which
has the following system requirements:
Operating ambient temperature range: 0°C-60°C
Maximum junction temperature: 125°C
Maximum output current: BOO mA
Maximum input to output differential: 10 V
From Table 6-1, the choice is narrowed down to the
/LA7BOO family, available in TO-3 and TO-220
packages. The TO-220 package is sufficent (lower
cost, better thermal resistance).
OJe

In some applications, especially with negative
regulators, it is desirable to electrically insulate the
regulator case from the heat sink. Hardware kits for
this purpose are commercially available for such
packages as the TO-3 and TO-220. They generally
consist of a 0.003 to 0.005 inch thick piece of mica or
bonded fiberglass to electrically isolate the two
surfaces, yet provide a thermal path between them.
As expected, the thermal resistance will increase but,
as in the direct metal-to-metal joint, some
improvement can be realized by using thermal
lubricant on each side of the mica.

= 5°C/W maximum (from data sheet
or Table 6-1)

BJA(tot) = OJC
Bes

+ OSA =

+ OCS + BSA =
125 - 60

O.B X 10 - 5 = 3.13°C/W

Assuming Bes = 0.13°C/W then BSA = 3°C/W
If the regulator is mounted on a heat sink with fins, the
most efficient heat transfer takes place when the fin is
in a vertical plane, as this type of mounting forces the
heat transfer from fin to air in a combination of
radiation and convection.

This thermal resistance value can be achieved by
using either 22 square inches of 3/16 inch thick
vertically mounted aluminum (Figure 6-4) or a
commercial heat sink (Table 6-2).
Tips for Better Regulator Heat Sinking
Avoid placing heat-dissipating components such as
power resistors next to regulators.

If it is necessary to bend any of the regulator leads,
handle them carefully to avoid straining the package.
Furthermore, lead bending should be restricted since
repeated bending will fatigue and eventually
break the leads.

When using low dissipation packages such as TO-5,
TO-39, and TO-92, keep lead lengths to a minimum
and use the largest possible area of the printed board
traces or mounting hardware to provide a heat
dissipation path for the regulator.
Table 6-2. Heat Sink Selection Guide

This list is only representative. No attempt has been made to provide a complete list of all heat sink manufacturers.
All values are typical as given by manufacturer or as determined from characteristic curves supplied by
manufacturer.
BSA Approx.
(OC/W)
TO-3 Packages
0.4 (9" length)
0.4-0.5 (6"
length)
0.56-3.0
0.6 (7.5" length)
0.7-1.2 (5-5.5"
length)
1.0-5.4 (3"
length)

0SA Approx.
(OC/W)

Manufacturer and Type

1.9
2.1
2.3-4.7
4.2
4.5

Thermalloy (Extruded) 6590
Series
Thermalloy (Extruded) 6660, 6560
Series
Wakefield 400 Series
Thermalloy (Extruded) 6470
Series
Thermalloy (Extruded) 6423,
6443, 6441, 6450 Series
Thermalloy (Extruded) 6427,
6500,6123,6401,6403,6421,
6463,6176,6129,6141,6169,
6135, 6442 Series

4.B-7.5

5-6
5-10
5.6
5.9-10
6
6.4
6.5-7.5
B
2-12

Manufacturer and Type
IERC E2 Series (Extruded)
IERC E 1, E3 Series (Extruded)
Wakefield 600 Series
IERC HP3 Series
Staver V3-5·2
Thermalloy 6001 Series
IERC HP3 Series
Thermalloy 6013 Series
Staver V3-3-2
Wakefield 6BO Series
Wakefield 390 Series
Staver V3-7-224
IERC UP Series
Staver Vl-5

Table 6-2. (Cont.)
8SA Approx.
(OC/W)

8SA Approx_
(OC/W)

Manufacturer and Type

8.1
8.8
9.5
9.5-10.5
9.8-13.9
10
11

Staver V3·5
Staver V3·7·96
Staver V3·3
IERC LA Series
Wakefield 630 Series
Staver Vl-3
Thermalloy 6103, 6117 Series

TO-220 Packages
4.2
5-6
6.4
6.5-7.5
7.1
8.1
8.8
9.5
10
12.5-14.2
13
15
15.1-17.2
16
18
19
20
20
25

(See Note 1)
IERC HP3 Series
IERC HP 1 Series
Staver V3-7-225
IERC VP Series
Thermalloy 6070 Series
Staver V3-5
Staver V3-7-96
Staver V3-3
Thermalloy 6032, 6034 Series
Staver V4-3-192
Staver V5-1
Thermalloy 6030 Series
Staver V 4-3-128
Thermalloy 6072,6106 Series
Thermalloy 6038,6107 Series
IERC PB Series
Staver V6-2
Thermalloy 6025 Series
IERC PA Series

TO-92 Packages
30
46
50
57
65-5
72
85

Staver F2-7
Staver F5-7A, F5-8-1
IERC RUR Series
Staver F5-7D
IERC RU Series
Staver Fl-7
Thermalloy 2224 Series

Mini Batwing
10
10.6
11.7
13
20
26

Thermalloy
Thermalloy
Thermalloy
Thermalloy
Thermalloy
Thermalloy

6069
6068
6067
6066
6062
6064

Manufacturer and Type

TO-S and TO-39 Packages
Thermalloy 1101, 1103 Series
12
Wakefield 260-5 Series
12-16
15
Staver V3A-5
Thermalloy 1116, 1121, 1123
22
Series
Thermalloy 1130, 1131, 1132
22
Series
Staver F5-5C
24
Thermalloy 2227 Series
25
IERC Thermal Links
26-30
Wakefield 200 Series
27-83
Staver F5-5B
28
Thermalloy 2228 Series
34
IERC Clip Mount Thermal Link
35
Thermalloy 2215 Series
39
Thermalloy 2205 Series
41
Staver F5-5A
42
Wakefield 296 Series
42-65
Staver F6-5, F6-5L
46
50
Thermalloy 2225 Series
IERC Fan Tops
50-55
Thermalloy 2211 Series
53
Thermalloy 2210 Series
55
Thermalloy 1129 Series
56
Thermalloy 2230, 2235 Series
58
Thermalloy 2226 Series
60
Staver Fl-5
68
72
Thermalloy 1115 Series
Power Watt (similar to TO-202)
Packages (See Note 2)
12.5-14.2
Staver V4-3-192
Thermalloy 6063 Series
13
13
Staver V5-1
15.1-17.2
Staver V4-3-128
19
Thermalloy 6106 Series
20
Staver V6-2
24
Thermalloy 6047 Series
25
Thermalloy 6107 Series
37
IERC PAl-7CB with PVC-1B Clip
40-42
Staver F7-3
40-43
Staver F7-2
IERC PA2-7CB with PVC-1B Clip
42
42-44
Staver F7-1

Series
Series
Series
Series
Series
Series

Notes
1. Most TO-3 heat sinks can also be used with TO-220 packages
with appropriate hole patterns.
2. Most TO-220 heat sinks can be used with the Power Watt
package.
IERC: 135 W. Magnolia Blvd., Burbank, CA 91502
Staver Co., Inc.: 41-51 N. Saxon Ave., Bay Shore, N.Y. 11706
Thermalloy Inc.: 2021 W. Valley View Lane, Dallas, TX 75234
Wakefield Engineering, Inc.: Audubon Rd., Wakefield, MA 01880
2·13

•

J-LA 7800 Series
3-Terminal Positive
Voltage Regulators

FAIRCHIL.D
A Schlumberger Company

Linear Products
Connection Diagram
TO-3 Package

Description
The /LA7800 series of monolithic 3-Terminal Positive
Voltage Regulators is constructed using the Fairchild
Planar epitaxial process. These regulators employ
internal current-limiting, thermal-shutdown and safearea compensation, making them essentially
indestructible. If adequate heat sinking is provided,
they can deliver over 1 A output current. They are
intended as fixed voltage regulators in a wide range of
applications including local (on card) regulation for
elimination of distribution problems associated with
single point regulation. In addition to use as fixed
voltage regulators. these devices can be used with
external components to obtain adjustable output
voltages and currents.
•
•
•
•
•
•
•

COMMON 3

(Top View)

Order Information
Type
Package
/LA7805
Metal
/LA7806
Metal
/LA7808
Metal
/LA7812
Metal
/LA7815
Metal
/LA7818
Metal
/LA7824
Metal
/LA7805C
Metal
/LA7806C
Metal
/LA7808C
Metal
IlA7812C
Metal
/LA7815C
Metal
/LA7818C
Metal
/LA7824C
Metal

OUTPUT CURRENT IN EXCESS OF 1 A
NO EXTERNAL COMPONENTS
INTERNAL THERMAL OVERLOAD PROTECTION
INTERNAL SHORT CIRCUIT CURRENT LIMITING
OUTPUT TRANSISTOR SAFE-AREA
COMPENSATION
AVAILABLE IN THE TO-220 AND THE
TO-3 PACKAGE
OUTPUT VOLTAGES OF 5,6,8,8.5,12,15,18,
AND 24 V

Absolute Maximum Ratings
Input Voltage (5 V through 18 V)
(24 V)
Internal Power Dissipation
Storage Temperature Range
Operating Junction
Temperature Range
/LA7800
IlA7800C
Pin Temperature
Soldering, 60s time limit
TO-3 Package
Soldering, 10s time limit
TO-220 Package

~

35 V
40 V
Interna"y Limited
-65°C to +150°C

Code
HJ
HJ
HJ
HJ
HJ
HJ
HJ
HJ
HJ
HJ
HJ
HJ
HJ
HJ

Connection Diagram
To-220 Package

r

Part No.
/LA7805KM
/LA7806KM
IlA7 808KM
/LA7812KM
/LA7815KM
/LA7818KM
/LA7824KM
/LA7805KC
/LA7806KC
IlA7 808KC
/LA7812KC
/LA7815KC
/LA7818KC
/LA7824KC

OUTPUT

~II~
i 2'0..0.

-55°C to +150°C
O°C to +125°C

~-

~ INPUT

'---COMMON

(Side View)

Order Information
Type
Package
/LA7805C
Molded Power
/LA7806C
Molded Power
/LA7808C
Molded Power
IlA7885C
Molded Power
/LA7812C
Molded Power
/LA7815C
Molded Power
IlA7818C
Molded Power
IlA7824C
Molded Power

2-14

Pack
Pack
Pack
Pack
Pack
Pack
Pack
Pack

Code
GH
GH
GH
GH
GH
GH
GH
GH

Part No.
IlA7805UC
IlA7806UC
/LA7808UC
/LA7885UC
/LA7812UC
IlA7815UC
/LA7818UC
/LA7824UC

,."A7800 Series

EqUlval.nt~c:lr~c:u:lt~______-t-______lr-___Jr:-:-=-T___r_'NPuT (1)

2-15

#LA7800 Series
~A7805

Electrical Characteristics

=

=

VIN
10 V, lOUT
500 mA, -55°C ~ TJ ~ 150°C, CIN
unless otherwise specified.

= 0.33 ~F, COUT = 0.1 ~F,

Characteristic

Condition (Note)

Min

Typ

Max

Unit

Output Voltage

TJ

= 25°C
TJ = 25°C

4.8

5.0

5.2

V

50

mV

Line Regulation

= 25°C

7V

~

VIN

~

25 V

3

8V

~

VIN

~

12 V

1

25

mV

5 mA ~ lOUT ~ 1.5 A

15

100

mV

250 mA ~ lOUT ~ 750 mA

5

25

mV

5.35

V

Load Regulation

TJ

Output Voltage

8.0 V ~ VIN ~ 20 V
5 mA ~ lOUT ~ 1.0 A
P ~ 15W

Quiescent Current

TJ

Iwith line
Quiescent Current Change I
with load

= 25°C

6.0

mA

8 V ~ VIN ~ 25 V

4.2

0.8

mA

5 mA ~ lOUT ~ 1.0 A

0.5

mA

40

~V/VOUT

= 25°C,

10 Hz ~ f ~ 100 kHz

Output Noise Voltage

TA

Ripple Rejection

= 120 Hz, 8 V ~ VIN ~
lOUT = 1.0 A, TJ = 25°C
f = 1 kHz
TJ = 25°C, VIN = 35 V
TJ = 25°C
f

Dropout Voltage
Output Resistance
Short-Circuit Current
Peak Output Current
Average Temperature Coefficient of
Output Voltage
~A7805C

Electrical Characteristics

4.65

lOUT

18 V

8
78

68

2.0

1.3

0.75

1.2

A

2.2

3.3

A

0.4

mV/oC/

0.3

VOUT

1-550 C ~ TJ ~ +25°C

=

VIN
10 V, lOUT 500 mA, O°C ~ TJ ~ 125°C, CIN
unless otherwise specified.

V
mQ

17

= 5 mA I+25°C ~ TJ ~ +150°C

=

dB
2.5

= 0.33 ~F, COUT = 0.1 ~F,

Characteristic

Condition (Note)

Min

Typ

Max

Unit

Output Voltage

= 25°C
TJ = 25°C

4.8

5.0

5.2

V

Line Regulation

TJ

= 25°C

7 V ~ VIN ~ 25 V

3

100

mV

8 V ~VIN ~ 12 V

1

50

mV

5 mA ~ lOUT ~ 1.5 A

15

100

mV

250 mA ~ lOUT ~ 750 mA

5

50

mV

5.25

V

Load Regulation

TJ

Output Voltage

7 V ~ VIN ~ 20 V
5 mA ~ lOUT ~ 1.0 A
P ~ 15W

Quiescent Current

TJ

Iwith line
Quiescent Current Change I
with load

7V

5 mA ~ lOUT ~ 1.0 A

Output Noise Voltage

TA

100 kHz

Ripple Rejection

f

18 V

Dropout Voltage
Output Resistance
Short-Circuit Current
Peak Output Current
Average Temperature Coefficient of

4.75

= 25°C
~

VIN

4.2
~

25 V

= 25°C, 10 Hz ~ f ~
= 120 Hz, 8 V ~ VIN ~
lOUT = 1.0 A, TJ = 25°C
f = 1 kHz
TJ = 25°C, VIN = 35 V
TJ = 25°C

lOUT'" 5 mA, O°C ~ TJ ~ 125°C

Output Voltage
2·16

62

8.0

mA

1.3

mA

0.5

mA

40

~V

78

dB

2.0

V

17

mQ

750

mA

2.2

A

1.1

mV/oC

J.LA 7800 Series
JLA7806C
Electrical Characteristics

VIN = 11 V, lOUT = 500 mA, O°C ::5 TJ ::5 125°C, CIN
unless otherwise specified.

Typ

Max

Unit

5.75

6.0

6.25

V

5

120

mV

9 V ::5 VIN ::5 13 V

1.5

60

mV

Condition (Note)

Output Voltage

TJ

Load Regulation

= 25°C

TJ

= 25°C

8 V ::5 VIN ::5 25 V

TJ

= 25°C

5 mA ::5 lOUT ::5 1.5 A

14

120

mV

250 mA ::5 lOUT ::5 750 mA

4

60

mV

6.3

V

8.0

mA

8 V ::5 VIN ::5 25 V

1.3

mA

5 mA ::5 lOUT ::5 1.0 A

0.5

mA

Output Voltage

8 V ::5 VIN ::5 21 V
5 mA ::5 lOUT ::5 1.0 A
P ::5 15 W

Quiescent Current

TJ

Quiescent Current Change

IIwith line
with load

5.7

= 25°C

4.3

= 25°C, 10 Hz::5 f::5
= 120 Hz, 9 V ::5 VIN ::5
lOUT = 1.0 A, TJ = 25°C
f = 1 kHz
TJ = 25°C, VIN = 35 V
TJ = 25°C

Output Noise Voltage

TA

100 kHz

Ripple Rejection

f

19 V

Dropout Voltage
Output Resistance
Short-Circuit Current
Peak Output Current
Average Temperature Coefficient of

JLF,

Min

Characteristic

Line Regulation

= 0.33 JLF, COUT = 0.1

lOUT

= 5 mA, O°C

::5 TJ ::5 125°C

Output Voltage

Nole
1. For all tables, all characteristics except nOise voltage and
ripple rejection ratio are measured usong pulse techniques
(tw .:'S 10 ms, duty cycle .:'S 5%). Output voltage changes due
to changes on internal temperature must be taken into account
separately.
2-17

59

45

JLV

75

dB

2.0

V

19

mrl

550

mA

2.2

A

0.8

mV/oC

•

JLA 7800 Series
/LA7808
Electrical Characteristics

=

=

VIN
14 V, lOUT
500 mA, -55°C:::::: TJ :::::: 150°C, CIN
unless otherwise specilied.

= 0.33/LF, COUT = 0.1

/LF,

Characteristic

Condition (Note)

Min

Typ

Max

Output Voltage

TJ

7.7

Line Regulation

= 25°C
TJ = 25°C

Load Regulation

TJ

Output Voltage

11.5 V :::::: VIN :::::: 23 V
5 mA :::::: lOUT:::::: 1.0 A
P:::::: 15 W

Quiescent Current

T.!

6.0

mA

I with line
Quiescent Current Change I
with load

11.5 V :::::: VIN :::::: 25 V

0.8

mA

5 mA :::::: lOUT:::::: 1.0 A

0.5

mA

Output Noise Voltage

TA

40

/LV IVOUT

Ripple Rejection

1

8.0

8.3

V

10.5 V:::::: VIN :::::: 25 V

6.0

80

mV

11 V :::::: VIN :::::: 17 V

2.0

40

mV

5mA::::::loUT:::::: 1.5A

12

100

mV

250 mA :::::: lOUT:::::: 750 mA

4.0

40

mV

8.4

V

Output Resistance
Short-Circuit Current
Peak Output Current
Average Temperature Coefficient 01
Output Voltage

lOUT = 5 mA

=

7.6

= 25°C

4.3

= 25°C, 10 Hz:::::: I:::::: 100 kHz
= 120 Hz, 11.5 V:::::: VIN:::::: 21.5 V
lOUT = 1.0 A, TJ = 25°C
f = 1 kHz
TJ = 25°C, VIN = 35 V
TJ = 25°C

Dropout Voltage

/LA7808C
Electrical Characteristics

= 25°C

Unit

8
62

72
2.0

dB
2.5

16
1.3

1.2

A

2.2

3.3

A

0.4

mV lOCI

0.3

VOUT

I+25°C :::::: TJ :::::: 150°C

=

mQ

0.75

I-55°C:::::: TJ :::::: +25°C

VIN
14 V, lOUT
500 mA, O°C :::::: TJ :::::: 125°C, CIN
unless otherwise specilied.

V

= 0.33/LF, COUT =

0.1 /LF.

Characteristic

Condition (Note)

Min

Typ

Max

Output Voltage

TJ

= 25°C
TJ = 25°C

7.7

8.0

8.3

V

10.5 V :::::: VIN :::::: 25 V

6.0

160

mV

11 V:::::: VIN :::::: 17 V

2.0

80

mV

Line Regulation

Load Regulation

TJ

= 25°C

Unit

5 mA :::::: lOUT:::::: 1.5 A

12

160

mV

250 mA :::::: lOUT:::::: 750 mA

4.0

80

mV

8.4

V

Output Voltage

10.5 V :::::: VIN :::::: 23 V
5 mA :::::: lOUT:::::: 1.0 A
P:::::: 15 W

Quiescent Current

TJ

8.0

mA

I with line
Quiescent Current Change I
with load

10.5 V :::::: VIN :::::: 25 V

1.0

mA

5 mA :::::: lOUT:::::: 1.0 A

0.5

Output Noise Voltage
Ripple Rejection
Dropout Voltage
Output Resistance
Short-Circuit Current
Peak Output Current
Average Temperature Coefficient 01

7.6

= 25°C

4.3

= 25°C, 10 Hz:::::: I:::::: 100 kHz
1 = 120 Hz, 11.5 V :::::: VIN :::::: 21.5 V
lOUT = 1.0 A, TJ = 25°C
1 = 1 kHz
TJ = 25°C, VIN = 35 V
TJ = 25°C
TA

lOUT = 5 mA, O°C:::::: TJ:::::: 125°C

Output Voltage
2·18

56

mA

52

/LV

72

dB

2.0

V

16

mQ

450

mA

2.2

A

0.8

mV/oC

/-LA 7800 Series
/LA7885C

Electrical Characteristics

VIN = 15 V, lOUT = 500 rnA, -55°C :S TJ :S 150°C, CIN
unless otlierwise specilied.

Typ

Max

Unit

8.5

8.85

V

6.0

170

rnV

11 V :S VIN :S 17 V

2.0

85

rnV

TJ

= 25°C

TJ

= 25°C

10.5 V :S VIN :S 25 V

TJ

= 25°C

5 rnA :S IOUT:S 1.5 A

12

170

rnV

250 rnA :S lOUT :S 750 rnA

4.0

85

rnV

8.9

V

8.0

rnA

10.5 V :S VIN :S 25 V

1.0

rnA

5 rnA:S IOUT:S 1.0 A

0.5

rnA

Output Voltage

11 V :S VIN :S 23.5 V
5 rnA:S IOUT:S 1.0 A
P :S 15 W

Quiescent Current

TJ

Quiescent Current Change

IIwith line
with load

TA
1

Output Resistance
Short-Circuit Current
Peak Output Current
Average Temperature Coefficient 01

8.1

= 25°C

4.3

= 25°C, 10 Hz :S 1 :S 100 kHz
= 120 Hz, 11.5 V :S VIN :S 21.5 V
lOUT = 1.0 A, TJ = 25°C
1 = 1 kHz
TJ = 25°C, VIN = 35 V
TJ = 25°C

Output Noise Voltage
Ripple Rejection
Dropout Voltage

= 0.1

Min

Condition (Note)

Output Voltage

Load Regulation

COUT

8.15

Characteristic

Line Regulation

= 0.33/LF,

lOUT

= 5 rnA, O°C

:S TJ :S 125°C

Output Voltage

Note
1 For all tables, all characteristics except noise voltage and
ripple rejection ratio are measured using pulse techniques
(tw S lams, duty cycle s 5%). Output voltage changes due
to changes in internal temperature must be taken into account
separately

2·19

56

55

/LV

70

dB

2.0

V

16

rnQ

/LF,

450

rnA

2.2

A

0.8

rnV/oC

•

f.LA 7800 Series
#L A7812

Electrical Characteristics

VIN = 19 V, lOUT = 500 mA, -55°C
unless otherwise specified.

::s TJ ::s 150°C, CIN = 0.33 #LF, COUT = 0.1 #LF,

Characteristic

Condition (Note)

Min

Typ

Max

Unit

Output Voltage

TJ = 25°C

11.5

12.0

12.5

V

Line Regulation

TJ = 25°C

::s VIN ::s 30 V
::s VIN ::s 22 V
5 mA ::s lOUT ::s 1.5 A
TJ = 25°C
250 mA ::s lOUT ::s 750 mA
15.5 V ::s VIN ::s 27 V
11.4
5 mA ::s lOUT ::s 1.0 A
P ::s 15 W

Load Regulation

Output Voltage

14.5 V

10

120

mV

16 V

3.0

60

mV

12

120

mV

4.0

60

mV

12.6

V

Quiescent Current

TJ = 25°C

I with line
Quiescent Current Change I
with load

::s VIN ::s 30 V
5 mA ::s lOUT ::s 1.0 A
TA = 25°C, 10 Hz ::s f ::s 100 kHz
f = 120 Hz, 15 V ::s VIN ~ 25 V

Output Noise Voltage
Ripple Rejection

4.3

15 V

8
61

lOUT = 1.0 A, TJ = 25°C

2.0

Output Resistance

f = 1 kHz

18

Short-Circuit Current

TJ = 25°C, VIN = 35 V

0.75

Peak Output Current

TJ = 25°C

Average Temperature Coefficient of

::s TJ ::s +25°C
lOUT = 5 mA
I+25°C ::s TJ ::s 150°C

Output Voltage

mA
mA

0.5

mA

40

#LV IVOUT
dB

71

Dropout Voltage

1.3

6.0
0.8

2.2

I-55°C

2.5

V
mQ

1.2

A

3.3

A

0.4

my/oCt

0.3

VOUT

#L A7812C

Electrical Characteristics

VIN = 19 V, lOUT = 500 mA, O°C
unless otherwise specified.

::s TJ::S 125°C, CIN = 0.33 #LF, COUT = 0.1 #LF,

Characteristic

Condition (Note)

Min

Typ

Output Voltage

TJ = 25°C

11.5

12.0

12.5

V

10

240

mV

3.0

120

mV

12

240

mV

4.0

120

mV

12.6

V

8.0

mA

1.0

mA

0.5

mA

Line Regulation

Load Regulation

Output Voltage

::s VIN ::s 30 V
TJ = 25°C
16 V ::s VIN ::s 22 V
5 mA ::s lOUT ::s 1.5 A
TJ = 25°C
250 mA ::s lOUT ::s 750 mA
14.5 V ::s VIN ::s 27 V
11.4
5 mA ::s IOUT::S 1.0 A
P ::s 15 W
14.5 V

Quiescent Current

TJ = 25°C

I with line
Quiescent Current Change I
with load

::s VIN ::s 30 V
5 mA ::s lOUT ::s 1.0 A
TA = 25°C, 10 Hz ::s f ::s 100 kHz
f = 120 Hz, 15 V ::s VIN ::s 25 V

Output Noise Voltage
Ripple Rejection

4.3

14.5 V

75
55

71

Max

Unit

#LV
dB

Dropout Voltage

lOUT = 1.0 A, TJ = 25°C

2.0

V

Output Resistance

f = 1 kHz

18

mQ

Short-Circuit Current

TJ = 25°C, VIN = 35 V

350

mA

Peak Output Current

TJ = 25°C

2.2

A

1.0

mV/oC

Average Temperature Coefficient of

lOUT = 5 mA, O°C

::s TJ ::s 125°C

Output Voltage
2·20

f.LA 7800 Series
~A7815

Electrical Characteristics

VIN = 23 V, lOUT = 500 mA, -55°C :S TJ :S 150°C, CIN = 0.33
unless otherwise specified

~F,

COUT = 0.1

~F,

Characteristic

Condition (Note)

Min

Typ

Max

Output Voltage

TJ = 25°C

14.4

15.0

15.6

V

17.5 V :S VIN :S 30 V

11

150

mV

20 V :S VIN :S 26 V

3

75

mV

5 mA :S lOUT :S 1.5 A

12

150

mV

250 mA :S lOUT :S 750 mA

4

75

mV

15.75

V

6.0

mA

18.5 V :S VIN :S 30 V

0.8

mA

5 mA :S IOUT:S 1.0 A

0.5

mA

40

~V/VOUT

Line Regulation

TJ = 25°C

Load Regulation

TJ = 25°C

Output Voltage

18.5 V :S VIN :S 30 V
5 mA :S lOUT :S 1.0 A
P:S 15 W

Quiescent Current

TJ = 25°C

Quiescent Current Change

IIwith line
with load

14.25
4.4

Output Noise Voltage

TA = 25°C, 10 Hz:s f:S 100 kHz

Ripple Rejection

f = 120 Hz, 18.5 V :S VIN :S 28.5 V

8
60

70

Dropout Voltage

lOUT = 1.0 A, TJ = 25°C

2.0

Output Resistance

f = 1 kHz

19

Short-Circuit Current

TJ = 25°C, VIN = 35 V

Peak Output Current

TJ = 25°C

Average Temperature Coefficient of
Output Voltage

lOUT = 5 mA

dB
2.5

2.2

V
mfl

0.75
1.3

Unit

A
3.3

A

1-550 C :S TJ:S +25°C

0.4

mV lOCI

I+25°C:S TJ :S +150°C

0.3

VOUT

~A7815C

Electrical Characteristics

VIN = 23 V, lOUT = 500 mA, O°C :S TJ :S 125°C, CIN = 0.33 ~F, COUT = 0.1 ~F,
unless otherwise specified.

Characteristic

Condition (Note)

Min

Typ

Max

Unit

Output Voltage

TJ = 25°C

14.4

15.0

15.6

V

Line Regulation

TJ = 25°C

Load Regulation

TJ = 25°C

17.5 V :S VIN :S 30 V

11

300

mV

20 V :S VIN :S 26 V

3

150

mV

5 mA:S IOUT:S 1.5 A

12

300

mV

250 mA :S lOUT :S 750 mA

4

150

mV

15.75

V

Output Voltage

17.5 V :S VIN :S 30 V
5 mA ~ lOUT :S 1.0 A
P:S 15 W

Quiescent Current

TJ = 25°C

8.0

mA

.
Iwith line
QUiescent Current Change I

17.5 V :S VIN :S 30 V

1.0

mA

5 mA :S IOUT:S 1.0 A

0.5

with load

Output Noise Voltage

14.25
4.4

TA = 25°C, 10 Hz:s f:S 100 kHz

mA

90

~V

70

dB

Ripple Rejection

f = 120 Hz, 18.5 V :S VIN :S 28.5 V

Dropout Voltage

lOUT = 1.0 A, TJ = 25°C

2.0

V

Output Resistance

f = 1 kHz

19

mfl

Short-Circuit Current

TJ = 25°C, VIN = 35 V

230

A

Peak Output Current

TJ=25°C

2.1

A

lOUT = 5 mA, O°C :S TJ :S125°C

1.0

mV/oC

Average Temperature Coefficient of
Output Voltage

2·21

54

•

J.LA 7 800 Series
/tA78l8
Electrical Characteristics

=

=

VIN
27 V, lOUT
500 rnA, -55°C :s TJ :s 150°C, CIN
unless otherwise specified.

= 0.33 /.IF, COUT = 0.1

/.IF,

Characteristic

Condition (Note)

Min

Typ

Max

Unit

Output Voltage

TJ

17.3

V

Line Regulation

= 25°C
TJ = 25°C

Load Regulation

TJ

Output Voltage

22 V :s VIN :s 33 V
5 rnA :s IOUT:S 1.0 A
P :s 15 W

Quiescent Current

TJ

Iwith line
Quiescent Current Change I
with load

22 V :s VIN :s 33 V

0.8

rnA

5 rnA :s IOUT:S 1.0 A

0.5

rnA

Output Noise Voltage

TA

40

/.IV /VOUT

Ripple Rejection

f

Output Resistance
Short-Circuit Current
Peak Output Current
Average Temperature Coefficient of
Output Voltage

Electrical Characteristics

18.7

15

180

mV

24 V :s VIN :s 30 V

5.0

90

mV

5 rnA :s lOUT :s 1.5 A

12

180

mV

250 rnA :s lOUT :s 750 rnA

4.0

90

mV

18.9

V

6.0

rnA

lOUT

=

17.1

= 25°C

4.5

= 25°C, 10 Hz:S f:S 100 kHz
= 120 Hz, 22 V :s VIN :s 32 V
lOUT = 1.0 A, TJ = 25°C
f = 1 kHz
TJ = 25°C, VIN = 35 V
TJ = 25°C

Dropout Voltage

/.IA78l8C

= 25°C

18.0

21 V :s VIN :s 33 V

= 5 rnA

8
69

59

dB
V

2.0
22

2.5

mfl

0.75

1.2

A

2.2

3.3

A

1+250 C:S TJ:S +150°C

0.4

mV/oC/

\-55°C :s TJ:S +25°C

0.3

VOUT

1.3

=

VIN
27 V, lOUT 500 rnA, O°C :s TJ :s 125°C, CIN
unless otherwise specified.

= 0.33 /.IF, COUT = 0.1

/.IF,

Characteristic

Condition (Note)

Min

Typ

Max

Unit

Output Voltage

TJ

= 25°C
TJ = 25°C

17.3

18.0

18.7

V

21V:SVIN:S33V

15

360

mV

Line Regulation

24 V :s VIN :s 30 V

5.0

180

mV

5 rnA :s IOUT:S 1.5 A

12

360

mV

250 rnA :s lOUT :s 750 rnA

4.0

180

mV

18.9

V

8.0

rnA

21 V :s VIN :s 33 V

1.0

rnA

5 mA:s IOUT:S 1.0 A

0.5

= 25°C

Load Regulation

TJ

Output Voltage

21 V :s VIN :s 33 V
5 rnA :s IOUT:S 1.0 A
P:S 15 W

Quiescent Current

TJ

Quiescent Current Change

IIwith line
with load

17.1

= 25°C

4.5

rnA

Dropout Voltage

= 25°C, 10 Hz:s f:S 100 kHz
f = 120 Hz, 22 V :s VIN :s 32 V
lOUT = 1.0 A, TJ = 25°C

2.0

V

Output Resistance

f = 1 kHz

22

mfl

Short-Circuit Current

TJ

= 25°C, VIN = 35 V
= 25°C
lOUT = 5 rnA, O°C:S TJ :S125°C

200

rnA

Peak Output Current

TJ

2.1

A

1.0

mV/oC

Output Noise Voltage
Ripple Rejection

Average Temperature Coefficient of

TA

Output Voltage
2·22

53

110

/.IV

69

dB

JLA 7800 Series
~A7824

Electrical Characteristics

=

=

VIN
33 V, lOUT 500 rnA, -55°C :5 TJ:5 150°C, CIN
unless otherwise specified.

= 0.33 ~F, COUT = 0.1 ~F,

Characteristic

Condition (Note)

Min

Typ

Max

Output Voltage

TJ

23.0

24.0

25.0

V

Line Regulation

= 25°C
TJ = 25°C

27 V :5 VIN :5 38 V

18

240

mV

30 V :5 VIN :5 36 V

6

120

mV

Load Regulation

TJ

5 rnA :5 IOUT:5 1.5 A

12

240

mV

250 rnA :5 lOUT :5 750 rnA

4

120

mV

Output Voltage

28 V :5 VIN :5 38 V
5 rnA :5 IOUT:5 1.0 A
P :5 15 W

25.2

V

Quiescent Current

TJ

Quiescent Current Change

IIwith line
with load

4.6

rnA

28 V :5 VIN :5 38 V

rnA

5 rnA :5 lOUT :5 1.0 A

0.5

rnA

40

~V/VOUT

= 25°C, 10 Hz :5 f:5 100 kHz
= 120 Hz, 28 V :5 VIN :5 38 V
lOUT = 1.0 A, TJ = 25°C
f = 1 kHz
TJ = 25°C, VIN = 35 V
TJ = 25°C

TA
f

Output Resistance
Short-Circuit Current
Peak Output Current
Average Temperature Coefficient of
Output Voltage

Electrical Characteristics

= 25°C

6.0

Output Noise Voltage
Dropout Voltage

22.8

0.8

Ripple Rejection

~A7824C

= 25°C

Unit

lOUT

=

= 5 rnA

8
56

66
2.0

dB
2.5

28

V
mO

0.75

1.2

2.2

3.3

A

1-550 C :5 TJ:5 +25°C

0.4

mV/oC/

I+25°C:5 TJ:5 +150°C

0.3

VOUT

1.3

=

VIN
33 V, lOUT 500 rnA, O°C :5 TJ :5 125°C, CIN
unless otherwise specified.

A

= 0.33 ~F, COUT = 0.1

Characteristic

Condition (Note)

Min

Typ

Max

Output Voltage

TJ

= 25°C
TJ = 25°C

23.0

24.0

25.0

V

Line Regulation

= 25°C

27 V :5 VIN :5 38 V

18

480

30 V :5 VIN :5 36 V

6

240

mV

5 rnA :5 IOUT:5 1.5 A

12

480

mV

250 rnA :5 lOUT :5 750 rnA

4

240

mV

25.2

V

TJ

Output Voltage

27 V :5 VIN :5 38 V
5 rnA :5 IOUT:5 1.0 A
P:5 15 W

Quiescent Current

TJ

Iwith line
Quiescent Current Change I

27 V :5 VIN :5 38 V

with load

Ripple Rejection
Dropout Voltage
Output Resistance
Short-Circuit Current
Peak Output Current
Average Temperature Coefficient of

Unit
mV

Load Regulation

Output Noise Voltage

~F,

22.8

= 25°C

4.6

TA

Output Voltage
2-23

rnA

1.0

rnA

0.5

5 rnA :5 IOUT:5 1.0 A

= 25°C, 10 Hz :5 f :5 100 kHz
f = 120 Hz, 28 V :5 VIN :5 38 V
lOUT = 1.0 A, TJ = 25°C
f = 1 kHz
TJ = 25°C, VIN = 35 V
TJ = 25°C
lOUT = 5 rnA, O°C :5 TJ :S125°C

8.0

50

rnA

170

~V

66

dB

2.0

V

28

mO

150

rnA

2.1

A

1.5

mV/oC

•

/-LA 7800 Series
Typical Performance Curves
Worst Case Power Dissipation
Versus Ambient Temperature
(TO-3)
100

I I LIMIT FOR 7,.0"-

50

.0

;0:

I

z
o

~
i

:0 30
20 -6HS

.....

is 20

I.

10
0.5

03
02

'00

eAT SINI(

I

I

z
o

i'-.,

DHs ".. 1$oC/it

.........

25

".\

75

(JHS""IS o

o0

I I I

4 -

OJC

3 -

6JA

5°C/W
65°C/W

: -

T,J

MAi - ','O.C,

2.

50

~

J--

j

'0 ,

FREQUENCY -

5

I

c
I

~f-.

0

i

::::-

B

5

!;

o ~

,

~
.....~

m
I

~ "-~

I I

0

'0

15

20

I
I I

25

INPUT/OutPUT DIFFERENTIAL -

!i!

~o

26

50

75

100 125 160 175

"c

40

E

~,.~INPUT VOLTAGE

30

20

1

I I

w

10

1

"

~

r- -r-

C

OUTPUT VOLTAGE

!i!

I
I

:>

l-

-10

0

-20

10

I- lOUT

ri

!O

20

= 500 mA

OU ; ,

!i!
~

r- f - -

DEYIATION

I-

i!:
:>

I' VI

o

10

V

12

TIME -~.

Quiescent Current as a
Function of
Input Voltage
2

c

I I

E

I

I

l-

i:i

~

= 20 rnA

"" 25°C

:>

...

......
r-f-' !-"'

Ie

:>

g

V

~80~ -

~ou; , ~ v'

f-'LTJ

Z

~

c

f50

E

I-

0
0

\.

.
0

~:;

•

0

/

0

o

'0

20

.0

30
TIME -

~s

2-24

50

60

>
I
w

!:;

=1500 mA

0

~OL~A~E
f-r- OUTP~T
DEVIATION

~

20

Q

=100 mA

1
-2

30
V

~

0

>

1

~

1

25

JUNCTION TEMPERATURE _

~80J -

LOAD CURRENT

w

"
I·" ::::r

( '$0

5

50

Line Transient Response

t+t-

I
I

~

:-.

lj,

DROPOUT CONDITIONS

o-75

z

z

o

r- ~p.::!!.!!!.A

0

~

= 10 V
VouT=5V

.....

<$."

I

~~"

--~~
'OUr ""
I fO ",":0'-

0'

150

I

V'N

7..15

~ ',r..·c

/'

o

:>

Load Transient Response

~I

~

"

1780~-

INPUT VOLTAGE -

Hz

I
I

I'" ~

I

o
o

100 k

Peak Output Current as a
Function of Input/Output
Differential Voltage

r--.

.....

~

0

125

v 'A ~OUT
/ h ~ i',lyIT

o

'" 8 V TO 18 V

"

10

i!:

:>

IJJ",

VOUT '" 5 V
lOUT '" 500 mA

0

100

= 25°C

~

t

'00

-.... ~ ::-

J,VOUT == 5% OF Your

75

!i!

'0

:>

II

~

lill ~5·i, II

I-

I'

!O

Jou, I, ,'v

f-- TJ

w

o

"-

15

Q

I I~"'" f'. ",\

2

J~o~

,.

v"

~

0=---1<0 HEAT

r-r-.

20

~

i:ia:

178xJ_

r-...
..... r-

20

~

'''s~

Dropout Characteristics

w

~

1

I

AMBIENT TEMPERATURE _ °C

a:

"'

0

"r--..
-L:r~
CIW

"c

Ripple Rejection as a
Function of Frequency
'00
0

OHS

o

'.0

'25

'00

25

>

o~

i ',

'\

AMBIENT TEMPERATURE _

oz

~

I"'- ".\

5°C/W
65°CfW

50

I I LIMIT FOR 7800C- I -

, o=-

i

TI""I"iO• C I

1

50
0
30
2o

•
I

'''sl. SOCIIt
"t-

~

O' ,,,
'JC

-

0

o- -.l.

30

(TQ-220)

;0:

10

Dropout Voltage as a
Function of
Junction Temperature

Worst Case Power Dissipation
Versus Ambient Temperature

0
10

15

20

25

INPUT VOLTAGE -

30
V

35

/-LA 7800 Series
Typical Performance Curyes (ConI.)
Output Voltage as a
Function of
Junction Temperature

Current Limiting Characteristics
6

17"~-

178121-

2

12

5

>
1 12 1
w

"~
~

12

....... r-.,

0

~
~

o

3

r--...

..........

t-

VIN

.175

'" 19 V
12 V

'r" 1= 21 mAl
Your

11

50

0

25

o
SO

75

V"

1

I

=0

25

100 125 150 175

'" 10 V

VOUT '"

1=

T"I
o

1

l~!~ I=I,~I~

10

_f-

TC"'08

12

l/

16

20

6

_~" 1= ,:' I
VOUT =

..
E

I

1780~ -

5 V

4 4-loUT '" 500 mA

1
lOUT

~

20 mA

~

«

42

"o
~

4

r- t--

0

~

,

3

1111 I 1111
1 k

10 k

FREQUENCY -

100 k

II

-

g •

lOUT - 500 mA

100

24

A

Quiescent Current as a
Function of Temperature

7~J5

VOUT = 5 V
T,
'" 25"C
C,
= 0 I'F

v

OUTPUT CURRENT -

Output Impedance as a
Function of Frequency

,

5

04

JUNCTION TEMPERATURE _ "C

10

•

....... r-.,

11 9

6

1 M

75

50

Hz

25

0

25

50

75 100 125 150 175

JUNCTION TEMPERATURE _

ac

Note
The other !lA7eOO series devices have similar curves.

DC Parameter Test Circuit

Y,N

0.331'F

0.1 I'F

Although the internal power dissipation is limited, the
junction temperature must be kept below the maximum
specified temperature (150°C for 7800, 125°C for
7800C) in order to meet data sheet specifications. To
calculate the maximum junction temperature or heat
sink required, the following thermal resistance values
should be used:

Your

Design Considerations
The ILA7800 fixed voltage regulator series has
thermal-overload protection from excessive power
dissipation, internal short circuit protection which
limits the regulator's maximum current, and output
transistor safe area-compensation for reducing the
output current as the voltage across the pass
transistor is increased.

Package

Typ
I!JC
°C/W

Max
I!JC
°C/W

Typ
I!JA
°C/W

Max
I!JA
°C/W

TO-3

3.5

5.5

40

45

TO-220

3.0

5.0

60

65

PO(MAX) =

2·25

TJ(Max) - TA
TJ(Max) - TA
I!JC + I!CA
or
I!JA
(Without heat sink)

JLA7800 Series
(JCA = (JCS

+ (JSA

High Input Voltage Circuits

solving for TJ: TJ = T A + Po «(JJC + (JCA)
or T A + PO(JJA (Without heat sink)

2

1-=-....- - - - Your

Y,N --'"'V'>Ar_>---t
0.33 !,F

where TJ = Junction Temperature
TA = Ambient Temperature
Po = Power Dissipation
(JJC = Junction-to-case-thermal resistance
• (JCA = Case-to-ambient thermal resistance
(JCS = Case-to-heat sink to thermal resistance
(JSA = Heat sink-to-ambient thermal resistance
(JJA = Junction-to-ambient thermal resistance

NOTE 3

'----__1t----.

C2
NOTE 2

2
...-....--Vour

V'N-_---,.

Typical Applications
Fixed Output Regulator
Positive and Negative Regulator
Y,N ----~...-~

1-=-....- - - - Your

r-..._-_--OUTPUT

Notes
1. To specify an output voltage, substItute voltage value for "XX."
2. Bypass capacitors are recommended for optimum stability and
transient response, and should be located as close as
possible to the regulator.

'--_---4>__-_--_--QUTPUT

High Current Voltage Regulator
01

101

Y,N _ ...._ _....;2:..N613;3_ _ _ _ _-_ _ _ _ _---.

R1
3.0 II

lOUT (MAX)

..:. .

Il2;...........==~
I-'

Your

{3(Q 1);::0: IOUT(Max)
IREG(Max)
R1 =

0.9
IREG

,8 (Q 1) VBE(Q 1)
(,8 + 1) - IOUT(Max)

IREG(Max)

Dual Supply
Operational Amplifier Supply (± 15 V @ 1_0 A)
+20 V
INPUT --~t-"'-t

1-=-....___...._______ +15

V

OUTPUT

GND-~...-e---~-.--~~._---1~._-----GND

1N4001 OR
EOUIVALENT
-15 V

r---1~---4~-----OUTPUT

2-26

f.lA7800 Series
High Output Current,
Short Circuit Protected
01
Rsc

INPUT

2N6132
~-----....,

02
2N6124

1-"-+......Rl
3 (1

0.8
RSC= ISC
Rl

=

IREG(Max)

0.33

~F

OUTPUT
0.1

~F

,8 VSE(Q1)
(,8 + 1) - IOUT(Max)

Positive and Negative Regulator

~~----~'--+OUTPUT

~~------

2·27

__----~~----~--OUTPUT

J,tA78MOO Series
3-Terminal Positive
Voltage Regulators

FAIRCHILD
A Schlumberger Company

Linear Products

Description
The /.LA78MOO series of 3-Terminal Medium Current
Positive Voltage Regulators is constructed using the
Fairchild Planar epitaxial process. These regulators
employ internal current-limiting, thermal-shutdown and
safe-area compensation making them essentially
indestructible. If adequate heat sinking is provided,
they can deliver in excess of 500 mA output current.
They are intended as fixed voltage regulators in a
wide range of applications including local or on-card
regulation for elimination of noise and distribution
problems associated with single point regulation. In
addition to use as fixed voltage regulators, these
devices can be used with external components to
obtain adjustable output voltages and currents.

Connection Diagram
TO-39 Package

OUT

COMM

1

2

3

(Top View)

Order Information
Type
Package
/.LA78M05
Metal
/.LA78M06
Metal
/.LA78M08
Metal
/.LA78M12
Metal
/.LA78M15
Metal
/.LA78M24
Metal
IlA78M05C
Metal
/.LA78M06C
Metal
/.LA78M08C
Metal
/.LA78M12C
Metal
/.LA78M15C
Metal

•
•
•
•
•

OUTPUT CURRENT IN EXCESS OF 0.5 A
NO EXTERNAL COMPONENTS
INTERNAL THERMAL-OVERLOAD PROTECTION
INTERNAL SHORT-CIRCUIT CURRENT LIMITING
OUTPUT TRANSISTOR SAFE-AREA
COMPENSATION
• AVAILABLE IN JEDEC TO-220 AND
TO-39 PACKAGES
• OUTPUT VOLTAGES OF 5 V, 6 V, 8 V, 12 V, 15 V,
AND 24 V
• MILITARY AND COMMERCIAL
TEMPERATURE RANGE
Absolute Maximum Ratings
Input Voltage
(5 V through 15 V)
(20 V, 24 V)
Internal Power Dissipation
Storage Temperature Range
TO-39
TO-220
Operating Junction
Temperature Range
/.LA78MOO
/.LA78MOOC
Pin Temperatures
(Soldering, 60 s time limit)
TO-39
(Soldering, 10 s time limit)
TO-220

IN

Code
FC
FC
FC
FC
FC
FC
FC
FC
FC
FC
FC

Part No.
/.LA78M05HM
/.LA78M06HM
/.LA78M08HM
/.LA78M12HM
/.LA78M15HM
/.LA78M24HM
/.LA78M05HC
/.LA78M06HC
/.LA78M08HC
/.LA78M12HC
/.LA78M15HC

Connection Diagram
TO-220 Package
COMMON

~I ~Il~COMM

35 V
40 V
Internally Limited
-65°C to
-55°C to

+ 150°C
+

150°C
(Side View)

-55°C to + 150°C
O°C to + 125°C

Order Information
Type
Package
/.LA78M05C Molded Power
/.LA78M06C Molded Power
/.LA78M08C Molded Power
/.LA78M12C Molded Power
IlA78M15C Molded Power
/.LA78M24C Molded Power

2-28

Pack
Pack
Pack
Pack
Pack
Pack

Code Part No.
GH
/.LA78M05UC
/.LA78M06UC
GH
/.LA78M08UC
GH
/.LA78M12UC
GH
/.LA78M15UC
GH
/.LA78M24UC
GH

JLA78MOO Series
Equivalent Circuit
, . . - - . - - - - - - . - - - - - - . . - - - - _ . _ - _ . _ - - - . - - - I N P U T (1)

R4
100 k

R18
500

012

R11
0.3

R5

r _ , _ - - - - + - - - + - - - - - + - . _ - - + - O U T P U T (2)

3.3 k

R6
2.7 k

R7
500

.......- _ + _ - -........-

L--~___<~___<~-

~A78M05

Electrical Characteristics

=

--+--_ _---4_ _ _ COMMON (3)

........

=

VIN
10 V, lOUT
350 mA, -55°C :::5 TJ :::5 150°C, CIN
unless otherwise specified.
Min

Typ

Max

Unit

4.8

5.0

5.2

V

7 V :::5 VIN :::5 25 V,
lOUT 200 mA

3.0

50

mV

8 V :::5 VIN :::5 20 V,
lOUT
200 mA

1.0

25

mV

5 mA :::5 lOUT :::5 500 mA

20

50

mV

5 mA :::5 lOUT :::5 200 mA

10

25

mV

5.3

V

Characteristic

Condition (Note)

Output Voltage

TJ

Line Regulation

TJ

= 25°C
=

= 25°C

=

= 25°C

Load Regulation

TJ

Output Voltage

8 V :::5 VIN :::5 20 V,
5 mA :::5 lOUT :::5 350 mA

Quiescent Current

TJ

Iwith line
Quiescent Current Change I
with load

8 V :::5 VIN :::5 25 V, lOUT
5 mA :::5 lOUT :::5 350 mA

Output Noise Voltage

TA

Ripple Rejection
Dropout Voltage
Short-Circuit Current
Peak Output Current
Average Temperature Coefficient of
Output Voltage

4.7

= 25°C

= 25°C,
f = 120 Hz,

4.5

= 200 mA
8

10 Hz:::5 f:::5 100 kHz

= 100 mA
lOUT = 300 mA,
TJ = 25°C
lOUT

8 V :::5 VIN:::5 18 V

= 25°C, lOUT = 350 mA
TJ = 25°C, VIN = 35 V
TJ = 25°C
= 5 mA

7.0

mA

0.8

mA

0.5

mA

40

~V IVOUT

dB

62
62

80

dB

2.0

2.5

V

300

600

mA

0.7

1.4

A

1-55°C:::5 TJ:::5 +25°C

0.4

I+25°C:::5 TJ:::5 +150°C

0.3

mV / °C/
VOUT

TA

lOUT

= 0.33 ~F, COUT = O.l~F,

Note
All characteristics except noise voltage and ripple rejection
ratio are measured using pulse techniques (TW ,.; 10 ms, duty

0.5

cycle,.; 5%). Output voltage changes due to changes in
Internal temperature must be taken into account separately.

2-29

JLA 78MOO Series
J.LA78M05C
Electrical Characteristics

=

VIN = 10 V, lOUT 350 mA, O°C.::s TJ.::s 125°C, CIN
otherwise specified.

Characteristic

Condition (Note)

Output Voltage

TJ

= 25°C

Line Regulation

TJ

= 25°C

= 0.33 J.LF, COUT = 0.1 J.LF, unless

Min

Typ

Max

Unit

4.8

5.0

5.2

V

7 V .::s VIN .::s 25 V,
lOUT
200 mA

3.0

100

mV

8 V .::s VIN .::s 25 V,
lOUT
200 mA

1.0

50

mV

5 mA .::s lOUT .::s 500 mA

20

100

mV

5 mA .::s lOUT .::s 200 mA

10

50

mV

5.25

V

=

=

Load Regulation

TJ

= 25°C

Output Voltage

7 V .::s VIN .::s 20 V,
5 mA .::s lOUT .::s 350 mA

Quiescent Current

TJ

Iwith line
Quiescent Current Change I

8 V .::s VIN .::s 25 V, lOUT

with load

Output Noise Voltage
Ripple Rejection

4.75

= 25°C

4.5

= 200 mA

5 mA .::s lOUT .::s 350 mA

= 25°C,
1 = 120 Hz,

TA

10 Hz .::s 1 .::s 100 kHz
lOUT

=

lOUT
300 mA,
62
TJ
25°C

=

8 V .::s VIN .::s 18 V

= 25°C
= 25°C, VIN = 35 V
TJ = 25°C
lOUT = 5 mA

40

= 100 mA 62

8.0

mA

0.8

mA

0.5

mA
J.LV
dB

80

dB

Dropout Voltage

TA

2.0

V

Short-Circuit Current

TJ

300

mA

700

mA

1.0

mV/oC

Peak Output Current
Average Temperature Coelficient 01
Output Voltage

Note
All characteristics except noise voltage and ripple rejection
ratIo are measured using pulse techniques (TW :5 10 ms, duty

cycle :5 5%). Output voltage changes due to changes in
internal temperature must be taken into account separately.

2·30

""A78MOO Series
/LA78M06

Electrical Characteristics

=

=

VIN
11 V, lOUT
350 mA, -55°C :5 TJ :5 150°C, CIN
unless otherwise specified.

Characteristic

Condition (Note)

Output Voltage

TJ

Line Regulation

TJ

= 25°C

Min

Typ

Max

Unit

5.75

6.0

6.25

V

8 V :5 VIN :5 25 V,
lOUT
200 mA

5.0

60

mV

9 V :5 VIN :5 20 V,
lOUT
200 mA

1.5

30

mV

5 mA :5 lOUT :5 500 mA

20

60

mV

5 mA :5 lOUT :5 200 mA

10

30

rnV

6.3

V

7.0

mA

0.8

mA

=

= 25°C

=

Load Regulation

TJ

= 25°C

Output Voltage

9 V :5 VIN :5 21 V,
5 mA :5 lOUT :5 350 rnA

Quiescent Current

TJ

Quiescent Current Change

IIwith line
with load

Output Noise Voltage
Ripple Rejection

= 0.33 /LF, COUT = 0.1 /LF,

5.7

= 25°C

4.5

9 V :5 VIN :5 25 V, lOUT

= 200 mA

5 mA :5 lOUT :5 350 mA
TA

= 25°C,

10 Hz :5 f:5 100 kHz
lOUT

f = 120 Hz,
9 V :5 VIN :5 19 V

= 100 mA
=

8

= 25°C, lOUT = 350 mA
= 25°C, VIN = 35 V
TJ = 25°C

mA

40

/LV IVOUT

59

lOUT
300 mA,
59
TJ
25°C

=

0.5

dB
80

dB

Dropout Voltage

TA

2.0

2.5

V

Short-Circuit Current

TJ

300

600

mA

Peak Output Current
Average Temperature Coefficient of
Output Voltage

lOUT

= 5 mA

1-55°C:5 TJ:5 +25°C

I +25°C :5 TJ :5 +150°C

Note
All characteristics except noise voltage and ripple rejection
ratio are measured using pulse techniques (TW .s 10 ms, duty

0.5

0.7

1.4

A

.4

rnV lOCI
VOUT

.3

cycle .s 5%). Output voltage changes due to changes in
IOternal temperature must be taken into account separately.

2·31

#LA 78MOO Series
~A78M06C

Electrical Characteristics

=

=

VIN
11 V, lOUT 350 mA, O°C :5 TJ :5 125°C, CIN
otherwise specified.

= 0.33 ~F, COUT = 0.1 ~F, unless

Min

Typ

Max

Unit

5.75

6.0

6.25

V

8 V :5 VIN :5 25 V,
lOUT
200 mA

5.0

100

mV

9 V :5 VIN :5 25 V,
lOUT
200 mA

1.5

50

mV

5 mA :5 lOUT :5 500 mA

20

120

mV

5 mA :5 lOUT :5 200 mA

10

60

mV

6.3

V

8.0

mA

0.8

mA

0.5

mA

Characteristic

Condition (Note)

Output Voltage

TJ

= 25°C

Line Regulation

TJ

= 25°C

=

=

= 25°C

Load Regulation

TJ

Output Voltage

8 V :5 VIN :5 21 V,
5 mA :5 lOUT :5 350 mA

Quiescent Current

TJ

Iwith line
Quiescent Current Change I

9 V :5 VIN :5 25 V, lOUT

with load

Output Noise Voltage
Ripple Rejection

5.7

= 25°C

4.5

= 200 mA

5 mA :5 lOUT :5 350 mA

= 25°C,
f = 120 Hz,

TA

10 Hz:5 f:5 100 kHz

= 100 mA
lOUT = 300 mA,
TJ = 25°C
lOUT

9 V :5 VIN :5 19 V

= 25°C
= 25°C, VIN = 35 V
TJ = 25°C
lOUT = 5 mA

45
59
59

~V

dB
80

dB

Dropout Voltage

TA

2.0

V

Short-Circuit Current

TJ

270

mA

700

mA

0.5

mV/oC

Peak Output Current
Average Temperature Coefficient of
Output Voltage

Note
All characterostics except noise voltage and rippla raJection
ratio ara measured uSing pulse techmques (TW .:s 10 ms, duty

cycle .:s 5%). Output voltage changes due to changes In
Internal temperature must be taken into account separately.
2-32

#LA 78MOO Series
#tA78M08
Electrical Characteristics

VIN = 14 V, lOUT = 350 mA, -55°C :5 TJ:5 150°C, CIN = 0.33 #IF, COUT = 0.1 #IF,
unless otherwise specified.

Characteristic

Condition (Note)

Min

Typ

Max

Unit

Output Voltage

TJ = 25°C

7.7

8.0

8.3

V

10.5 V :5 VIN :5 25 V,
lOUT = 200 mA

6.0

60

mV

11 V :5 VIN :5 20 V,
lOUT = 200 mA

2.0

30

mV

5 mA :5 lOUT :5 500 mA

25

80

mV

5 mA :5 lOUT :5 200 mA

10

40

mV

8.4

V

TJ = 25°C

Line Regulation

Load Regulation

TJ = 25°C

Output Voltage

11.5 V:5 VIN:5 23 V,
5 mA :5 lOUT :5 350 mA
TJ = 25°C

Quiescent Current
Quiescent Current Change

7.6

I with line

Iwith load

Output Noise Voltage

4.6

11.5 V :5 VIN :5 25 V, lOUT = 200 mA
5 mA :5 lOUT :5 350 mA
TA = 25°C, 10 Hz:5 f:5 100 kHz

8

7.0

mA

0.8

mA

0.5

mA

40

#tV IVOUT

lOUT = 100 mA 56

f = 120 Hz,

dB

lOUT = 300 mA,
11.5 V :5 VIN :5 21.5 V TJ = 25°C
56

80

Dropout Voltage

TA = 25°C, lOUT = 350 mA

2.0

2.5

Short-Circuit Current

TJ = 25°C, VIN = 35 V

300

600

mA

Peak Output Current

TJ = 25°C

0.7

1.4

A

Average Temperature Coefficient of
Output Voltage

lOUT = 5 mA

Ripple Rejection

0.5
I-55°C :5 TJ :5 +25°C

I+25°C :5 TJ :5 + 150°C

Note
All characteristics except noise voltage and ripple rejectIon
ratIo are measured using pulse techniques (TW ~ 10 ms, duty

dB

0.4

V

mV/oC

0.3

cycle ~ 5%). Output voltage changes due to changes in
internal temperature must be taken into sccount separately.

2·33

•

~A 78MOO Series
"A78M08C
Electrical Characteristics

VIN = 14 V, lOUT = 350 mA, O°C::S TJ::S 125°C, CIN
otherwise specified.

Characteristic

Condition (Note)

Output Voltage

TJ

Line Regulation

TJ

Load Regulation

TJ

= 25°C
= 25°C
= 25°C

Unit

7.7

V

6.0

100

mV

11 V ::s VIN ::s 25 V,
lOUT = 200 mA

2.0

50

mV

25

160

mV

10

80

mV

8.4

V

8.0

mA

5 mA
5 mA

::s lOUT ::s 500 mA
::s lOUT ::s 200 mA

TJ

Ripple Rejection

Max
8.3

Quiescent Current

Output Noise Voltage

Typ
8.0

10.5 V ::s VIN ::s 23 V,
5 mA ::s lOUT ::s 350 mA

.II

Min

10.5 V ::s VIN ::s 25 V,
lOUT = 200 mA

Output Voltage

with line
Quiescent Current Change
'
with load

= 0.33 "F, COUT = 0.1 "F, unless

7.6

= 25°C

4.6

::s VIN ::s 25 V, lOUT = 200 mA
::s lOUT ::s 350 mA
TA = 25°C, 10 Hz ::s f ::s 100 kHz
10.5 V

0.8

mA

5 mA

0.5

mA

f

= 120 Hz,

11.5 V

::s

VIN

= 100 mA
lOUT = 300 mA,
TJ = 25°C
lOUT

::s 21.5 V

= 25°C
= 25°C, VIN = 35 V
TJ = 25°C
lOUT = 5 mA

52

"V
dB

80

dB

56
56

Dropout Voltage

TA

2.0

V

Short-Circuit Current

TJ

250

mA

700

mA

0.5

mV/oC

Peak Output Current
Average Temperature Coefficient of
Output Voltage

Note
All characteristics except noise voltage and ripple rejection
ratio are measured using pulse techniques (Tw ~ 10 ms, duty

cycle ~ 5%). Output voltage changee due to changes in
'"ternal temperature must be taken into account separately.
2-34

JLA 78MOO Series
#tA78M12
Electrical Characteristics

VIN = 19 V, lOUT = 350 mA, -55°C :5 TJ :5 150°C, CIN = 0.33ILF, COUT = 0.1 ILF,
unless otherwise specified.

Characteristic

Condition (Note)

Min

Typ

Max

Unit

Output Voltage

TJ = 25°C

11.5

12

12.5

V

14.5 V :5 VIN :5 30 V,
lOUT = 200 mA

8.0

60

mV

16 V :5 VIN :5 25 V,
lOUT = 200 mA

2.0

30

mV

5 mA :5 lOUT :5 500 mA

25

120

mV

5 mA :5 lOUT :5 200 mA

10

60

mV

12.6

V

7.0

mA

0.8

mA

TJ = 25°C

Line Regulation

TJ = 25°C

Load Regulation
Output Voltage

15.5 V :5 VIN:5 27 V,
5 mA :5 lOUT :5 350 mA

Quiescent Current

TJ = 25°C

Quiescent Current Change

IIwith line
with load

Output Noise Voltage
Ripple Rejection
Dropout Voltage

11.4
4.8

15 V :5 VIN :5 30 V, lOUT = 200 mA
5 mA :5 lOUT :5 350 mA
TA = 25°C, 10 Hz :5 f :5 100 kHz

8

0.5

mA

40

#tV/VOUT
dB

lOUT = 100 mA 55

f = 120 Hz,

lOUT = 300 mA,
55
TJ = 25°C

15 V :5 VIN :5 25 V

80

dB

TA = 25°C, lOUT = 350 mA

2.0

2.5

V

Short-Circuit Current

TJ = 25°C, VIN = 35 V

300

600

mA

Peak Output Current

TJ = 25°C

1.4

A

0.4

mV/oC/
VOUT

Average Temperature Coefficient of
Output Voltage

lOUT = 5 mA

0.5
i-55°C:5 TJ :5 +25°C

I+25°C :5 TJ:5 +150°C

Note
All characteristics except noise voltage and ripple rejection
ratio are measured using pulse techniques (TW .:s 10 ms, duty

0.7

0.3

cycle .:s 6%). Output voltage changes due to changes in
internal temperature must be taken into account separately.

2·36

•

p.A78MOO Series
#A78M12C
Electrical Characteristics

VIN = 19 V, lOUT = 350 mA, O°C 5: TJ 5: 125°C, CIN
otherwise specified.

Characteristic

Condition (Note)

Output Voltage

TJ

Line Regulation

TJ

Load Regulation

TJ

= 25°C
= 25°C
= 25°C

= 0.33 #F, COUT = 0.1 #F, unless

Min

Typ

Max

Unit

11.5

12

12.5

V

14.5 V 5: VIN 5: 30 V,
lOUT = 200 mA

8.0

100

mV

16 V 5: VIN 5: 30 V,
lOUT = 200 mA

2.0

50

mV

5 mA 5: lOUT 5: 500 mA

25

240

mV

5 mA 5: lOUT 5: 200 mA

10

120

mV

12.6

V

8.0

mA

0.8

mA

Output Voltage

14.5 V 5: VIN 5: 27 V,
5 mA 5: lOUT 5: 350 mA

Quiescent Current

TJ

Iwith line
Quiescent Current Change I

14.5 V 5: VIN 5: 30 V, lOUT

Output Noise Voltage

TA

11.4

= 25°C

4.8

= 200 mA

with load 5 mA 5: lOUT 5: 350 mA

Ripple Rejection

= 25°C,
f = 120 Hz,

0.5

10 Hz 5: f 5: 100 kHz
lOUT

= 100 mA

75
55

lOUT = 300 mA,
55
TJ = 25°C

15 V 5: VIN 5: 25 V

= 25°C
= 25°C, VIN = 35 V
TJ = 25°C
lOUT = 5 mA

mA
#V
dB

80

dB

Dropout Voltage

TA

2.0

V

Short-Circuit Current

TJ

240

mA

700

mA

1.0

mV/oC

Peak Output Current
Average Temperature Coefficient of
Output Voltage

Note
All characteristics except noise voltage and ripple rejection
ratio are measured using pulse techniques (TW .:5 10 ms, duty

cycle .:5 5%). Output voltage changes due to changes in
internal temperature must be taken into account separately.

2·36

~A78MOO

Series

~A78M15

Electrical Characteristics

Y,N = 23 V, lOUT = 350 mA, -55°C S TJ S 150°C, C,N = 0.33
unless otherwise specified.

~F,

COUT = 0.1

Characteristic

Condition (Note)

Min

Typ

Max

Unit

Output Voltage

TJ=25°C

14.4

15

15.6

V

17.5 V S Y,N S 30 V,
lOUT = 200 mA

10

60

mV

20 V S Y,N S 30 V,
lOUT = 200 mA

3.0

30

mV

5 mA S lOUT S 500 mA

25

150

mV

5 mA S lOUT S 200 mA

10

75

mV

15.75

V

Line Regulation

TJ = 25°C

Load Regulation

TJ = 25°C

~F,

Output Voltage

18.5 V S Y,N S 30 V,
5 mA S lOUT S 350 mA

Quiescent Current

TJ = 25°C

7.0

mA

.
Iwith line
QUiescent Current Change I

18.5 V S Y,N S 30 V, lOUT = 200 mA

0.8

mA

5 mA S lOUT S 350 mA

0.5

mA

40

~V/VOUT

with load

Output Noise Voltage
Ripple Rejection

14.25
4.8

TA = 25°C, 10 Hz S f S 100 kHz

8

lOUT = 100 mA 54

f= 120Hz,

dB

lOUT = 300 mA,
18.5 V S Y,N S 28.5 V TJ = 25°C
54

70

Dropout Voltage

TA = 25°C

2.0

2.5

V

Short-Circuit Current

TJ = 25°C, Y,N = 35 V

300

600

mA

Peak Output Current

TJ = 25°C

1.4

Average Temperature Coefficient of
Output Voltage

I-550C S TJ S +25°C
lOUT = 5 mA +25°C S TJ S +150°C

A
mV/oC
VOUT

0.5

0.7

dB

0.4
0.3

Note
cycle .:s 5%). Output voltage changes due to changes in
Internal temperature must be taken into account separately.

All characteristics except noise voltage and ripple rejection
ratio are measured using pulse techniques (TW .:s 10 ms, duty
2-37

•

p,A 78MOO Series
"A78M15C
Electrical Characteristics

VIN = 23 V, lOUT = 350 mA, O°C ~ TJ ~ 125°C, CIN = 0.33 "F, COUT = 0.1 "F, unless
otherwise specified.

Characteristic

Condition (Note)

Min

Typ

Max

Unit

Output Voltage

TJ = 25°C

14.4

15

15.6

V

17.5 V ~ VIN ~ 30 V,
lOUT = 200 mA

10

100

mV

20 V ~ VIN ~ 30 V,
lOUT = 200 mA

3.0

50

mV

Line Regulation

TJ = 25°C

5 mA

~

lOUT

~

500 mA

25

300

mV

5 mA

~

lOUT

~

200 mA

10

150

mV

15.75

V

Load Regulation

TJ = 25°C

Output Voltage

17.5 V ~ VIN ~ 30 V,
5 mA ~ lOUT ~ 350 mA

Quiescent Current

TJ = 25°C

Quiescent Current Change

with line
IIwith
load

Output Noise Voltage
Ripple Rejection

17.5 V
5 mA

~

~

4.8

VIN

~

30 V, lOUT = 200 mA

lOUT

~

350 mA

TA = 25°C, 10 Hz

~

VIN

~

f

~

100 kHz

~

lOUT = 300 mA,
54
28.5 V TJ = 25°C

8.0

mA

0.8

mA

0.5

mA

90

"V
dB

70

dB

lOUT = 100 mA 54

f= 120Hz,
18.5 V

14.25

Dropout Voltage

TA = 25°C

2.0

V

Short-Circuit Current

TJ = 25°C, VIN = 35 V

240

mA

Peak Output Current

TJ = 25°C

700

mA

Average Temperature Coefficient of
Output Voltage

lOUT = 5 mA

1.0

mV/oC

Note
All characteristics except noise voltage and ripple rejection
ratio are measured using pulse techniques (TW :$ 10 ms, duty

cycle :$ 5%). Output voltage changes due to changes in
internal temperature must be taken into account separately.
2-38

JLA 78MOO Series
I'A78M24
Electrical Characteristics

VIN = 33 V, lOUT = 350 mA, -55°C :S TJ :S 150°C, CIN = 0.33I'F, COUT = 0.1 I'F,
unless otherwise specified.

Characteristic

Condition (Note)

Min

Typ

Max

Unit

Output Voltage

TJ = 25°C

23

24

25

V

60

mV

TJ=25°C

27 V :S VIN :S 38 V,
lOUT 200 mA

10

Line Regulation

30 V S VIN:S 36 V,
lOUT = 200 mA

5.0

30

mV

5 mA :S lOUT :S 500 mA

30

240

mV

5 mA :S lOUT :S 200 mA

10

120

mV

25.2

V

=

Load Regulation

TJ = 25°C

Output Voltage

28 V :S VIN :S 38 V,
5 mA :S lOUT :S 350 mA

Quiescent Current
Quiescent Current Change

22.8
5.0

7.0

mA

0.8

mA

5 mA :S lOUT :S 350 mA

0.5

mA

TA = 25°C, 10 Hz :S f :S 100 kHz

40

I'VIV OUT
dB

TJ = 25°C
I with line

Iwith load

Output Noise Voltage
Ripple Rejection

28 V :S VIN :S 38 V, lOUT

= 200 mA
8

lOUT = 100 mA 50

f = 120 Hz,

lOUT = 300 mA,
50
TJ = 25°C

28 V :S VIN :S 38 V

70

dB

Dropout Voltage

TA = 25°C, lOUT = 350 mA

2.0

2.5

V

Short-Circuit Current

TJ = 25°C, VIN = 35 V

300

600

mA

Peak Output Current

TJ = 25°C

0.7

1.4

mA
mV/oC
VOUT

Average Temperature Coefficient of
Output Voltage

lOUT = 5 mA

0.5
I-55°C :S TJ :S +25°C

I+25°C:S TJ:S +150°C

Note
All characteristics except noise voltage and ripple rejection
ratio are measured using pulse techniques (Tw ~ 10 ms, duty

0.4
0.3

cycle ~ 5%). Output voltage changes due to changes in
intemsl temperature must be taken into account separately.
2-39

J.LA 78MOO Series
~A78M24C

Electrical Characterl8tlc8

VIN = 33 V, lOUT = 350 rnA, O°C
otherwise specified.

= 25°C
= 25°C

Max

Unit

25

V

27 V ~ VIN ~ 38 V,
lOUT = 200 rnA

10

100

mV

28 V ~ VIN ~ 38 V,
lOUT = 200 rnA

5.0

50

mV

5 rnA

~

lOUT

~

500 rnA

30

480

mV

5 rnA

~

lOUT

~

200 rnA

10

240

mV

25.2

V

8.0

rnA

0.8

rnA

TJ

Output Voltage

27 V ~ VIN ~ 38 V,
5 rnA ~ lOUT ~ 350 rnA

Quiescent Current

TJ

Iwith line
Quiescent Current Change I

27 V

~

VIN

with load 5 rnA

~

lOUT

Output Noise Voltage

TA

Short·Circuit Current
Peak Output Current
Average Temperature Coefficient of
Output Voltage

= 0.33 ~F, COUT = 0.1 ~F, unless
24

= 25°C

Load Regulation

Dropout Voltage

125°C, CIN

Typ

TJ

Ripple Rejection

~

23

Condition (Note)

Output Voltage

TJ

TJ

Min

Characterl8tlc

Line Regulation

~

22.8

= 25°C

= 25°C,
f = 120 Hz,
28 V

~

VIN

5.0
~

38 V, lOUT

~

= 200 rnA

0.5

350 rnA

10 Hz

~

f

~

100 kHz

= 100 rnA
lOUT = 300 rnA,
TJ = 25°C
lOUT

~

38 V

= 25°C, lOUT = 350 rnA
TJ = 25°C, VIN = 35 V
TJ = 25°C
lOUT = 5 rnA
TA

Note
All characteristics except noise voltage and ripple rejection
ratio are measured using pulse techniques (TW .:5 10 ms, duty

170
50
50

rnA
~V

dB
70

dB

2.0

V

240

rnA

700

rnA

1.2

mV/oC

cycle .:5 5%). Output voltage changes due to changes in
internsl temperature must be taken into account separately.

2·40

J,LA78MOO Series
Typical Performance Curves
Worst Case Power Dissipation
Versus Ambient Temperature
TO-39

,.

.l

711MOOC

5.0
;0 40
30

r-:-. ~~81"'o\"
'1'=1·· C)W ~ ~

20

i 1. r-~
"

~

.

!: 10

=
;;
a:

SH$ = 2O"C/W

... 5
..

I

~ 20

>=

,!,~ ~

AI,.. "/fl(

;

0.4

••

I

••
•

~\\

\"...

"

8JC = 25°C/W
PO\MAX) =- 7 5 W

1
25

so

100

75

1\\'

125

AMBIENT TEMPERATURE _

01

I

:>

u

AMBIENT TEMPERATURE _ °C

7805

12.18

"

0.8

.AI-

:-.;:: ~'=-~~>

"~
~.

I'~

:>
04

"

~
~

.,....;1-

1~18Q~OC ~ "
~~
~

O'

o
o

10

I 12.01

I

I

15

20

'0

>
I

•0

w

"i:!

100

S
>

r

0

,iUT 140 mA

~

f1'

II

:>

o •.0

5

Or--... V~ 1::7
I

10 T

= 100 mA

0

fl

•

II

20

40

••0

INPUT VOLTAGE -

80

-75 -50 -25

lOOk

10

V

-75

~ ...+'
'0
.... f~
,
....
~
I'''I~

~

t- f-,..'OUT "" 0 InA

•
•

I-VIN

-so

-25

0

25

50

I
75 100 125 150 175

JUNCTION TEMPERATURE _ °C

Not.
Other IlA78MOO Series devices have similar curves.
2-41

50 75 100 125 150 175

°c

7~MJ.

= 10 V

VouT==5Y
LOAD CURRENT

2

1

1-10

OUTPUT VOLTAGE

DEVIATION

V

I
DROPOUT CONDITIONS

or VyT

75

Load Transient Response

f-

r- :r-- F:::: b

0

JUNCTION TEMPERATURE _

I

I'-- to.....

o I-ivoul = j'"

111

0

10k

Dropout Voltage as a
Function of
Junction Temperature

')'MJS-

5
.5i C

40

1k

5

JouT L L
lOUT

"64

T(IIITi III
10

........

11 ..

== 500 mA

FREQUENCY - Hz

Dropout Characteristics
t- TJ

K

~ 1192

o

V" = 8 V TO 18 V
Your'" 5 V

INPUT OUTPUT DIFFERENTIAL _ V

0

........

.

r"

25

.......

>

lOUT

150

J'ML

= 12 V
= 5 mA

~ 11.98

•0

125

r...

~ '::.:

i

a:

100

L..Iv

12.12 f--I UT

w

~

r" ~1;,1'=:::

:>

>

..
~
....

_fo...

J-.

I-V!N
Your

80

•. 8

75

Output Voltage as a
Function of
Junction Temperature

Ripple Rejection as a
Function of Frequency

,.

50

AMBIENT TEMPERATURE-"C

100

I-

0.
I-

25

25

"c

12

I-

0.5
04

2 03
O'

150

Peak Output Current as a
Function of Input-Output
Differential Voltage

.
.ill

Power Watt (UIC)
Worst Case Power Dissipation
Versus Ambient Temperature

I-

LIMIT FOR

4. t...==-I-/,,,..
"""t-!"'".~"
~ 30 r-5.•

~

Worst Case Power Dissipation
Versus Ambient Temperature
TO-220

1

•

10

20

..

30
TIME -

14

50

..

~A78MOO

Series

Typical Performance Curves (Cont.)

Line Transient Response

..

~
I

I

I

INPUT VO TAOE

3.

)IM~.

~
~

~

w

~

••

I- 1-1-

OUTPUT VOLTAGE

DEVIATION

1-1-

.

•
>

.
I

~

~

...

!

-10 ~ TJ

'" 25°e
lOUT "" 500 mA

o

-2.

7~MJ.-

Ie

"

U

..~

10

..•

1/

...

~

u

..
_

!!!
0

45
4.4

•

l

I

.......

4.
4.2

:;

"

o

••

12

"

•
•

4.

INPUT YOLTAGE -

Package

Typ
(JJC

Max
(JJC

Typ
(JJA

Max
(JJA

TO-39
TO-220
Power Watt

18
3
6

25
5

120
60
70

160
65
75

8

TJ (Max) - TA
(JJC + (JCA

or

TJ (Max) - TA
(JJA

(Without a heat Sink)

"

25

0

25

50

75 100 125 150 1715

AMBIENT TEMPERATURE -

Y

"c

Where TJ = Junction Temperature
TA = Ambient Temperature
Po = Power Dissipation
(JJC = Junction to case thermal resistance
(JCA Case-to-ambient thermal resistance
(JCS Case-to-heat sink to resistance
(JSA Heat sink-to-ambient thermal resistance
(JJA Junction-to-ambient thermal resistance

=
=
=
=

Typical Applications
Fixed Output Regulator
INPUT --'""VV'Ir~~-t

0.331'F
NOTE 2

..2;......,....._ _ _ OUTPUT

+C2
NOTE 2

Not••
1. To specify an output voltage. substitute voltage value for "XX".
2. Bypass Capacitors are recommended for optimum stability and
transient response and should be located as close as possible
to the regulator.

(JSA

Solving for TJ: TJ

-75 -so

5101520253035

Po.

Although the internal power dissipation is limited, the
junction temperature must be kept below the maximum
specified temperature (150°C for 78MOO, 125°C for
78MOOC) in order to meet data sheet specifications.
To calculate the maximum junction temperature or
heat sink required, the following thermal resistance
values should be used:

= (JCS +

= 2DO mA

I .1

IG

Design Considerations
The !LA78MOO fixed voltage regulator series has
thermal-overload protection from excessive power,
internal short circuit protection which limits the
circuit's maximum current, and output transistor safearea compensation for reducing the output short
circuit current as the voltage across the pass
transistor is increased.

(JCA

47 t- Jour

4.

TIME -

Po (MAX) =

JIM~-

I=.J v I
'.1 r-J,.
VouT=5V
;

I

~
Ie

~~oUTI=1YI

•

Joul=~Y'
== 20 mA
s. f--!LT, == 2S°C

Quiescent Current as a
Function of Temperature

E

·,
5

g •

~::)

..
••

20

Quiescant Current as a
Function of
Input Voltage

=TA + Po «(JJC+(JCA) or TA + Po (JJA
(Without a heat sink)

2-42

p,A 78LOO Series
3-Terminal Positive
Voltage Regulators

FAIRCHILD
A Schlumberger Company

Linear Products
Connection Diagram
TO-92 Package

Description
The ~A78LOO series of 3-Terminal Positive Voltage
Regulators is constructed using the Fairchild
Planar epitaxial process. These regulators employ
internal current-limiting and thermal-shutdown, making
them essentially indestructible. If adequate heat
sinking is provided, they can deliver up to 100 mA
output current. They are intended as fixed voltage
regulators in a wide range of applications including
local or on-card regulation for elimination of noise and
distribution problems associated with single-point
regulation. In addition, they can be used with power
pass elements to make high-current voltage
regulators. The ~A78LOO used as a Zener
diode/resistor combination replacement, offers an
effective output impedance improvement of typically
two orders of magnitude, along with lower quiescent
current and lower noise.

(Top View)

Order Information
Type
Package
~A78L05AC
Molded
~A78L62AC
Molded
~A78L82AC
Molded
~A78L09AC
Molded
~A78L 12AC
Molded
~A78L 15AC
Molded

•
•
•
•
•
•

OUTPUT CURRENT UP TO 100 rnA
NO EXTERNAL COMPONENTS
INTERNAL THERMAL OVERLOAD PROTECTION
INTERNAL SHORT CIRCUIT CURRENT LIMITING
AVAILABLE IN JEDEC TO-92
OUTPUT VOLTAGES OF 5 V, 6_2 V, 8.2 V, 9 V,
12 V, 15 V
• OUTPUT VOLTAGE TOLERANCES OF ±5%
OVER THE TEMPERATURE RANGE

Absolute Maximum Ratings
Input Voltage
5.0 V to 15 V
Internal Power Dissipation
Storage Temperature Range
Operating Junction
Temperature Ranges
~A78LOOC (Commercial)
Pin Temperatures
(Soldering, 10 s)

35 V
Internally Limited
-55°C to + 150°C
O°C to

+ 125°C

260°C

2-43
~~~~~~---------

Code
EI
EI
EI
EI
EI
EI

Part No.
~A78L05AWC
~A78L62AWC
~A78L82AWC
~A78L09AWC
~A78L 12AWC
~A78L 15AWC

~A 78LOO

Series

Equivalent Circuit

........- - - - - - - - - - - - - - - _ - _ - - - - - I N P U T

017

R21
1K

R23
3.3!l

OUTPUT

:.:
~

;f~f~f~t
« ;i:f:f~f
...

c.

c:i
0

ri
:.:

...I

03
Rs

0.834 K
~-~---~--~~~--__~-----~----------COMMON

#LA78L05AC and #LA78L05AV (Note 2)
Electrical Characteristics VIN
10 V, lOUT 40 mA, O°C :::s TJ
unless otherwise specified. (Note 1)

=

=

:::s

125°C, CIN

= 0.33 #LF, COUT = 0.1 #LF,

Characteristic

Condition

Min

Typ

Max

Output Voltage

TJ

4.8

5.0

5.2

V

Line Regulation

= 25°C
TJ = 25°C

55

150

mV

45

100

mV

Load Regulation

TJ

11

60

mV

5.0

30

mV

4.75

5.25

V

4.75

5.25

V

5.5

mA

= 25°C

7V
Output Voltage

:::s VIN:::S 20 V
8 V :::s VIN:::S 20 V
1 mA :::s IOUT:::S 100 mA
1 mA :::s lOUT :::s 40 mA
1 mA :::s lOUT :::s 40 mA

7V

:::s

VIN:::S 20 V

7 V :::s VIN
(Note 3)

:::s

VMax

1 mA

:::s

lOUT

:::s

70 mA

2.0

Quiescent Current
Quiescent Current
Change

Iwith line

Iwith load

Output Noise Voltage

:::s VIN:::S 20 V
:::s lOUT :::s 40 mA
TA = 25°C, 10 Hz :::s f :::s

8V

1.5

mA

1 mA

0.1

mA

Temperature Coefficient of
VOUT

lOUT

Ripple Rejection

f
120 Hz, 8 V
TJ
25°C

Dropout Voltage
Peak Output / Short-Circuit
Current
Notes on I'A78L 15 page.

Unit

100 kHz

= 5 mA

=
=
TJ = 25°C
TJ = 25°C

:::s

VIN

:::s

18 V,

2·44·

41

40

#LV

-0.65

mV/oC

49

dB

1.7

V

140

mA

JLA 78LOO Series
J.LA78L62AC
Electrical Characteristics

VIN = 12 V, lOUT = 40 mA, O°C :5 TJ :5 125°C, CIN = 0.33 !tF, COUT = 0.1 J.LF,
unless otherwise specified. (Note 1)

Characteristic

Condition

Min

Typ

Max

Output Voltage

TJ = 25°C

5.95

6.2

6.45

V

8.5 V :5 VIN :5 20 V

65

175

mV

9 V :5 VIN :5 20 V

55

125

mV

1 mA :5 lOUT :5 100 mA

13

80

mV

1 mA :5 lOUT :5 40 mA

6.0

40

mV

Unit

Line Regulation

TJ=25°C

Load Regulation

TJ = 25°C
8.5 V :5 VIN :5 20 V

1 mA :5 lOUT :5 40 mA

5.90

6.5

V

Output Voltage

8.5 V :5 VIN :5 VMax
(Note 3)

1 mA :5 lOUT :5 70 mA

5.90

6.5

V

5.5

mA

8.0 V :5 VIN :5 20 V

1.5

mA

1 mA :5 lOUT :5 40 mA

0.1

mA

2.0

Quiescent Current
Quiescent Current
Change

Iwith line
Iwith load

Output Noise Voltage

TA = 25°C, 10 Hz :5 f:5 100 kHz

50

!tV

Temperature Coefficient of
VOUT

lOUT = 5 mA

-0.75

mV/oC

Ripple Rejection

f = 120 Hz, 10 V :5 VIN :5 20 V,
TJ = 25°C

46

dB

Dropout Voltage

TJ = 25°C

1.7

V

Peak Output / Short-Circuit
Current

TJ = 25°C

140

mA

J.LA78L82AC
Electrical Characteristics

40

VIN = 14 V, lOUT = 40 mA, O°C :5 TJ :5 125°C, CIN = 0.33 J.LF, COUT = 0.1 J.LF,
unless otherwise specified. (Note 1)

Characteristic

Condition

Output Voltage

TJ = 25°C

Line Regulation

TJ = 25°C

Load Regulation

TJ = 25°C

Output Voltage

Min

Typ

Max

7.87

8.2

8.53

V

11 V :5 VIN :5 23 V

80

175

mV

12 V :5 VIN :5 23 V

70

125

mV

1 mA :5 IOUT:5 100 mA

15

80

mV

1 mA :5 lOUT :5 40 mA

8.0

40

mV

11 V :5 VIN :5 23 V

1 mA :5 lOUT :5 40 mA

7.8

8.5

V

11 V :5 VIN :5 VMax
(Note 3)

1 mA :5 lOUT :5 70 mA

7.8

8.6

V

5.5

mA

1.5

mA

Quiescent Current
Quiescent Current
Change

2.1

Iwith line
Iwith load

Unit

12 V :5 VIN :5 23 V

0.1

1 mA :5 lOUT :5 40 mA

mA

Output Noise Voltage

TA = 25°C, 10 Hz:5 f:5 100 kHz

60

J.LV

Temperature Coefficient of
VOUT

lOUT = 5 mA

-0.8

mV/oC

Ripple Rejection

f = 120 Hz, 12 V :5 VIN :5 22 V,
TJ = 25°C

45

dB

Dropout Voltage

TJ = 25°C

1.7

V

Peak Output / Short-Circuit
Current

TJ = 25°C

140

mA

Noles on jtA78L 15 page.
2-45

39

•

~A 78LOO
ItA78L09AC
Electrical Characteristics

=

Series

=

VIN
15 V, lOUT 40 rnA, O°C :5 TJ :5 125°C, CIN
unless otherwise specified. (Note 1)

= 0.331tF, COUT = 0.11tF,

Characteristic

Condition

Min

Output Voltage

= 25°C
TJ = 25°C

8.64

TJ

Line Regulation

Load Regulation

TJ

Output Voltage

= 25°C

Max

Unit

9.0

9.36

V

11.5 V :5 VIN :5 24 V

90

200

mV

13 V :5 VIN :5 24 V

100

150

mV

1 mA:5 IOUT:5 100 rnA

20

90

mV

45

mV

11.5 V :5 VIN :5 24 V 1 rnA :5 lOUT :5 40 rnA

8.55

10

9.45

V

11.5 V :5 VIN:5 VMax
1 rnA :5 lOUT :5 70 rnA
(Note 3)

8.55

9.45

V

1 rnA :5 lOUT :5 40 rnA

5.5

rnA

11.5 V :5 VIN :5 24 V

1.5

rnA

1 rnA :5 lOUT :5 40 rnA

0.1

rnA

Quiescent Current
Quiescent Current
Change

Typ

2.1

Iwith line
Iwith load

= 25°C, 10 Hz :5 f :5 100 kHz
lOUT = 5 rnA
f = 120 Hz, 15 V :5 VIN :5 25 V,
TJ = 25°C
TJ = 25°C
TJ = 25°C

Output Noise Voltage

TA

Temperature Coefficient of
VOUT
Ripple Rejection
Dropout Voltage
Peak Output / Short-Circuit
Current
ItA78L12AC
Electrical Characteristics

=

=

38

VIN
19 V, lOUT
40 rnA, O°C :5 TJ :5 125°C, CIN
unless otherwise specified. (Note 1)

70

ltV

-0.9

mV/oC

44

dB

1.7

V

140

rnA

= 0.33 ItF, COUT = 0.11tF,

Characteristic

Condition

Min

Typ

Max

Unit

Output Voltage

TJ

= 25°C
TJ = 25°C

11.5

12

12.5

V

120

250

mV

16 V :5 VIN :5 27 V

100

200

mV

1 rnA :5 lOUT :5 100 rnA

20

100

mV

1 rnA :5 lOUT :5 40 rnA

10

50

mV

Line Regulation

Load Regulation

TJ

Output Voltage

14.5 V :5 VIN :5 27 V

= 25°C

14.5 V :5 VIN :5 27 V 1 rnA :5 lOUT :5 40 rnA

11.4

12.6

V

14.5 V :5 VIN :5 VMax
1 rnA :5 lOUT :5 70 rnA
(Note 3)

11.4

12.6

V

Quiescent Current
Quiescent Current
Change

2.1

Iwith line
Iwith load

Output Noise Voltage
Temperature Coefficient of
VOUT
Ripple Rejection
Dropout Voltage
Peak Output / Short-Circuit
Current

16 V :5 VIN :5 27 V
1 rnA :5 lOUT :5 40 rnA

= 25°C, 10 Hz :5 f :5 100 kHz
lOUT = 5 rnA
f = 120 Hz, 15 V :5 VIN :5 25 V,
TJ = 25°C
TJ = 25°C
TJ = 25°C

TA

Notes on I'A78L 15 page.

2·46

37

5.5

rnA

1.5

rnA

0.1

rnA

80

ltV

-1.0

mV/oC

42

dB

1.7

V

140

rnA

p,A 78LOO Series
/LA78L 15AC
Electrical Characteristics

VIN = 23 V, lOUT = 40 mA, O·C .:s TJ
unless otherwise specified. (Note 1)

.:s

125·C, CIN

= 0.33 /LF, COUT = 0.1 /LF,

Characteristic

Condition

Min

Typ

Max

Unit

Output Voltage

TJ

= 25·C
TJ = 25·C

14.4

15

15.6

V

17.5 V

130

300

mV

20 V

110

250

mV

25

150

mV

12

75

mV

14.25

15.75

V

14.25

15.75

V

5.5

mA

1.5

mA

0.1

mA

Line Regulation
Load Regulation

TJ

= 25·C

17.5 V
Output Voltage

.:s VIN .:s 30 V
.:s VIN .:s 30 V
1 mA .:s lOUT .:s 100 mA
1 mA .:s lOUT .:s 40 mA
1 mA .:s lOUT .:s 40 mA

.:s

VIN

17.5 V .:s VIN
(Note 2)

.:s
.:s

30 V
VMax

1 mA

.:s lOUT .:s

70 mA

Quiescent Current
Quiescent Current
Change

2.2

Iwith line

.:s VIN .:s 30 V
1 mA .:s lOUT .:s 40 mA
TA = 25·C, 10 Hz .:s f .:s
20 V

Iwith load

Output Noise Voltage
Temperature Coefficient of
VOUT

lOUT

Ripple Rejection

f = 120 Hz, 18.5 V
TJ = 25·C

100 kHz

= 5 mA
.:s

VIN

.:s 28.5 V,

34

= 25·C
TJ = 25·C

Dropout Voltage

TJ

Peak Output / Short-Circuit
Current

Not••
1. The maximum steady state usable output current and input
voltage are very dependent on the heat sinking and I or lead
length of the package. The data above represent pulse test

90

/LV

-1.3

mV/·C

39

dB

1.7

V

140

mA

conditions with junction temperatures as indicated at the
initiation of tests.
2. Power Dissipation :S .75 W.

Typical Performance Curves
Quiescent Current as a
Function of
Input Voltage
7D

1

..
.
.....""
~
I

z

:>

"

••
••
2.
10

o

50

10

15

1

I~

I
I
20

25

30

INPUT VOLTAGE - Y

.- ---......

78~05

.2

t-

I

•

6

3•

Quiescent Current as a
Function of Temperature

•
>
I

~~
.

f--

_f-r-

z

"

J.LO~ -

YOUT =SOY
= 40 mA
= 25°C
TJ

••

Dropout Voltage as a
Function of
Junction Temperature

lOUT - 70

!--

'OUT

m~

= 40

",l

-

-~UT-10,"A--= F -

•

t.LJ-

•• .......
• .......

........

3•

........

•

........

'\.

2
_ DROPOUT CONDITIONS

..

.l.VOUT = 511!. OF YOUT

•

25

75

'00

JUNCTION TEMPERATURE _ °C

Not.
Other "A78LOO Series devices have similar curves.
2-47

i\

v," "" 10 V
0 - YOUT =5V

5

'26

•

'i

U
'

I· "l mA

2.

••

7'

AMBIENT t::EMPEAATURE _

100

cc

125

#LA 78LOO Series
Typical Performance Curves (Cont.)

Ripple Rejection as a
Function of Frequency

Dropout Characteristics
.0

Jouo ~.J

r>
I

.

g~

~
o

1

60

!8LO!-

T( i"jC

'8

I~UT ~,olmA

~

z
o

W

~

'"

i'"

'\...IOUT = 100 mA
lOUT'" 40 mA ........

.0

'0

•. 0

INPUT VOLTAGE -

1

~
~

100

'0

g

0

20

"

I-- YiN

= 8 Y to 18 V
YOUT =5V
lOUT = 40 mA

0'0

'00

,.

200

,

I

0

~

00

~

20

~

1

~

2

DEVIATION

1'1
1

OJ

02

:Oyv

•
,2.

60

~:~::.; BOARD,

50

75

I

100

Design Considerations
The ~A78L series regulators have thermal overload
protection from excessive power, internal short-circuit
protection which limits each circuit's maximum
current, and output transistor safe-area protection for
reducing the output current as the voltage across
each pass transistor is increased.

""=~

125

150

Thermal Considerations
The TO-92 molded package manufactured by Fairchild
is capable of unusually high power dissipation due to
the lead frame design. However, its thermal
capabilities are generally overlooked because of a
lack of understanding of the thermal paths from the
semiconductor junction to ambient temperature. While
thermal resistance is normally specified for the device
mounted 1 cm above an infinite heat sink, very little
has been mentioned of the options available to
improve on the conservatively rated thermal
capability.

Although the internal power dissipation is limited, the
junction temperature must be kept below the maximum
specified temperature (125°) in order to meet data
sheet specifications. To calculate the maximum
junction temperature or heat sink required, the
following thermal resistance values should be used:

TO-92

12

TIME-,..s

AMBIENT TEMPERATURE _ °C

TIME-#!II

Package

c-+10

~ 4" ~EAD LENGTHI~

00
50

-200 b

I"?I

0 12S"LEAD LENGTH
FROM PC BOARD,

0 1 t-- FREE AIR

~ 002

40

1

WITH 72°CIW/AT SINK

~ 00

ill
30

f

0125" LEAD LENGTH
FROM PC BOARD.

0"""

•
= r-ill

OUTPUT VOLTAGE

20

1 1
1 1

lOUT = 100 mA (RESISTIVE LOAD)
YOUT =5V

I I

is

I- ~~UT :
-2
o
10

I OUT:~V~:'::~~AGE_ - f -

I

i
~ ,
o

100 k

'0 •

-100

2

,
,

TO-92 Worst Case Power
Dissipation Versus
Ambient Temperature

.

r-+-

~

o

FREQUENCY - Hz

z
o

~

~ 200

V

i.LO~

1

LOAD CURRENT

300

.0

'0

Load-Transient Response
>
I

~

i'L~-

1 1
INPUT VOLTAGE

~

r-ITJIII ~r·111I

J
2.0

'00

I

.0

;;J

W<
.. 0

~.l~;-

I

'"

40

Line Transient Response

'00

Typ

Max

Typ

Max

8JC

8JC

8JA

8JA

160

175

An explanation of the thermal paths of the TO-92 will
allow the designer to determine the thermal stress he
is applying in any given application.

2-48

J-LA 78LOO Series
shortening the lead length from package base to
mounting medium. However, one point must be kept
in mind. The lead thermal path includes a thermal
resistance, /lSA, from the pins at the mounting point
to ambient, that is, the mounting medium. /lLA is
then equal to /lLS + /lSA. The new model is shown
in Figure 2.

The TO·92 Package
The TO-92 package thermal paths are complex. In
addition to the path through the molding compound to
ambient temperature, there is another path through
the pins, in parallel with the case path, to ambient
temperature, as shown in Figure 1.
The total thermal resistance in this model is then:
/lJA

=

In the case of a socket, /lSA could be as high as
270°C/W, thus causing a net increase in /lJA and a
consequent decrease in the maximum dissipation
capability. Shortening the lead length may return the
net /lJA to the original value, but pin sinking would not
be accomplished.

(/lJC + /lCA) (/lJL + /lLA)
/lJC + /lCA + /lJL + /lLA

Where:/lJC = thermal resistance of the case between
the regulator die and a point on the case
directly above the die location.
/lCA

In those cases where the regulator is inserted into a
copper clad printed circuit board, it is advantageous
to have a maximum area of copper at the entry points
of the pins. While it would be desirable to rigorously
define the effect of PC board copper, the real world
variables are too great to allow anything more than a
few general observations.

=thermal resistance between the case
and air at ambient temperature.

/lJL = thermal resistance from transistor die
through the collector lead to a point
1/16 inch below the regulator case.
/lLA = total thermal resistance of the
collector-base-emitter pins to
ambient temperature.
/lJA

=junction to

The best analogy for PC board copper is to compare it
with parallel resistors. Beyond some pOint, additional
resistors are not significantly effective; beyond some
point, additional copper area is not effective.

ambient thermal resistance.

TO·92 Thermal Equivalent Circuit
(Pin at Other Than Ambient Temperature)
Fig. 2

TO·92 Thermal Equivalent Circuit
Flg_ 1

fiJC

t

PE (WATTS)

t

filS

PE (WATTS)

eCA
eSA

TA

TA

'----~--~:II~--~

'----~t------i:III------l
Methods of Heat Sinking
With two external thermal resistances in each leg of a
parallel network available to the circuit designer as
variables, he can choose the method of heat sinking
most applicable to his particular situation. To
demonstrate, consider the effect of placing a small
72°C/W flag type heat sink, such as the Staver
F1-70-2, on the 78LXX molded case. The heat sink
effectively replaces the /lCA (Figure 2) and the new
thermal resistance, /I'JA, is
/I' JA

High Dissipation Applications
VOUT
~

C2

Rl
240 !l V,

= 145 ° C / W (assuming. 125 inch lead length)

V,N

The net change of 15°C/W increases the allowable
power dissipation to 0.86 W with an inserted cost of
1-2 cents. A still further decrease in /lJA could be
achieved by using a heat sink rated at 46°C/W, such
as the Staver FS-7A. Also, if the case sinking does not
provide an adequate reduction in total /lJA, the other
external thermal resistance, /lLA, may be reduced by

Cl
0.33pF

2·49

1

IL

-

VOUT

2

C2
0.1 pF

Il
10-30mA

RL

#LA 78LOO Series
When it is necessary to operate a ~A78LOO regulator
with a large input-output differential voltage, the
addition of series resistor A 1 will extend the output
current range of the device by sharing the total power
dissipation between A1 and the regulator.

Typical Applications
INPUT - - -.....--'-t

Cl
0.331'F
NOTE 2

A1 = VIN(Min) - VOUT - 2.0 V
IL(Max) + 10

Aegulator power dissipation at maximum input voltage
and maximum load current is now

= (V 1 -

VOUT) IL(Max)

+ V 1 10

where
V 1 = VIN(Max) - (IL(Max)

+ la) A 1

The presence of A 1 will affect load regulation
according to the equation:
load regulation (at constant VIN)
= load regulation (at constant V1)
+ (line regulation, mV per V)
X (AI) X (~IL).
As an example, consider a 15 V regulator with a
supply voltage of 30 ± 5 V, required to supply a
maximum load current of 30 mAo 10 is 4.3 mA, and
minimum load current is to be 10 mAo
A1 = 25 - 15 - 2 = 34.3 :;;: 240 n
30 + 4.3
8
V 1 35 - (30 + 4.3).24
35 -8.2
26.8 V

=

=

PO(Max) = (26.8 - 15) 30

= 354

=

+ 26.8 (4.3)

+ 115

= 470 mW, which permit operation up to 70°C
in most applications.
Line regulation of this circuit is typically 110 mV for an
input range of 25-35 V at a constant load current;
i.e. 11 mV IV.
Load regulation

C2
O.lI'F
NOTE 2

Notes
1. To specify an output voltage. substitute voltage value for "00".
2. Bypass Capacitors are recommended for optimum stability and
transient response and should be located as close as possible
to the regulator.

where la is the regulator quiescent current.

PO(Max)

2

t-'-.....- - - OUTPUT

= constant V 1 load regulation
(typically 10 mV, 10-30 mA IL)

+ (11

mV IV) X 0.24 X 20 mA
(typically 53 mV)

= 63 mV for a load current change of
20 mA at a constant VIN of 30 V.

2-50

~A109·~A209·~A309

FAIRCHILD

5 Volt Regulator

A Schlumberger Company
Linear Products

Description
The /.LA 109, /.LA209, and /.LA309 are complete 5 Volt
Regulators constructed using the Fairchild Planar
epitaxial process. These regulators employ internal
current limiting, thermal shutdown and safe-area
compensation making them essentially indestructible.
They are intended for use as local regulators,
eliminating noise and distribution problems associated
with single point regulation. If adequate heat sinking is
provided, they can provide over 1 A output current.
The /.LA109, /.LA209, and /.LA309 are intended primarily
for use with TTL and DTL logic and are completely
specified under worst case conditions to match the
power supply requirements of these logic families. In
addition to use as a fixed 5 V regulator, these devices
can be used with external components to obtain
adjustable output voltages and currents and as the
power pass element in precision regulators.

Connection Diagram
TO-3 Package

•
(Top View)
Case is connected to ground.

Order Information
Type
Package
/.LA 109
Metal
/.LA209
Metal
/.LA309
Metal

• OUTPUT CURRENT IN EXCESS OF 1 A
• SPECIFIED TO MATCH WORST CASE TTL AND
DTL REQUIREMENTS
• NO EXTERNAL COMPONENTS
• INTERNAL THERMAL-OVERLOAD PROTECTION
• OUTPUT TRANSISTOR SAFE-AREA
COMPENSATION
Absolute Maximum Ratings
Input Voltage
Internal Power Dissipation
Storage Temperature Range
Operating Junction
Temperature Range
Military Grade (/.LA 109)
Industrial Grade (/.LA209)
Commercial Grade (/.LA309)
Temperature (Soldering, 60 s)

35 V
Internally Limited
-65°C to +150°C
-55°C to +150°C
-25°C to +150°C
O°C to 125°C
300°C

2-51

Code
HJ
HJ
HJ

Part No_
/.LA109KM
/.LA209KM
/.LA309KC

~A109·~A209·~A309
Equivalent Circuit
r---~~--------------~--------------~--------~------~----~~---1

R4
100 kn

R1B
500 n

R8

R9

100 n

100 II

INPUT

R13
10 kll

08 ~----~-----r=

014
012

R12

180 II
R5
3.3 kn

Rll
0.3 II

.J---

r:

TJ ==
45

100 125 150

150°1VI

VI; f-T"
/ VITI ~55"IC

~125.C

0

50

J,

w

"<~

--r- r=:

5

INPUT VOLTAGE -

V

Quiescent Current as a
Function of
Input Voltage

10
T"
CL

E

...

49

v"

"

-15 -50

=

0

ffi

w

\

10 V
20 mA

25

I

........

'\

~

g

25°C
0

< 5.01-+-+-+-+-+++-+-+-+-+--1

t'-- i'...

50

•

>

:J

25

25

IL

I-

~

0

20

A

Output Noise Voltage as a
Function of Frequency

1

~

r--

5.5

JUNCTION TEMPERATURE _ °C

Hz

~150"C

INPUT VOLTAGE -

( 101 mY
25

15

10

Hz

40
50

--

~ "'"""'-..."

Dropout Characteristic

&
h"'200::
I·

50

1 M

0

75

TJ == -55°C

VOUT=45V

Dropout Voltage
>

o

I.
510 11
r:

500 mA

o

10

1oor--..,..,..-.,-----,--.,-----,

20

...:J

/.c

FREQUENCY -

Ripple Rejection as a
Function of Frequency

w

Yr---

..-

AMBIENT TEMPERATURE _ °C

FREQUENCY -

r- ~

~

i

~

c 3.0

...I

"

~
g
w
'"
(;

0

'"'"
o

1

:J

/
~ 4.01-¥-+-+-++++-+-+-+-+--I

~

:;

Z

25

50

75

100 125 150

JUNCTION TE""PERATURE _ °C

I

o

001

10

100

1k

FREQUENCY - Hz

2-54

10 k

3.0 5! '-'--''''0--'--'15:--''-:2'="0-'--2'''5--'-':30--'-'35
INPUT VOLTAGE -

Y

~A109·~A209·~A309
Typical Performance Curves for /LA 109 and /LA209 (Cont.)

Quiescent Current as a
Function of Temperature
48

v,; lL
=

~

46

E

...I

44

~
...

42

ffi

0

ffi

il!
:;

"

. /I -

V
V

4.0

-

~=O

r:::: ~ .....

~L=1A

•

38

36
~75

~50

~25

0

25

50

75

100 125 150

JUNCTION TEMPERATURE _ DC

Typical Performance Curves for /LA309
Output Voltage as a
Function of
Junction Temperature

10

1

,

4. 0

V'N
TA

~ .......

I

w 50

"~

~ 49

"

VIN = 10 V
= 20 mA

I,

/

§

100

75

't===: 1:=1,
~ f--I,

.
~

80

.
~

-

1 k

10 k

100 k

5.0

10

20

15

25

INPUT VOLTAGE -

TJ

='

"'"

30

55

I 5.0

w

........
125°~ ~

~

1.01-=::f-----;I-'=-..;;.=--+-'=-i

05~--~----+---_+--~~-.~

== 200 mA

TJ =

g
5~ 45

p

1 k

10 k

FREQUENCY -

100 k
Hz

1 M

°0~--~2~5--~~~---7~5~~1~00~~,25
JUNCTION TEMPERATURE _

2·55

ac

125O~

/;

o"

== 10 V

=

35

Dropout Characteristic

>

1\\

...........

V

==-

" 3Vr
100

r----...

201'-_....

i< 40

20
10

...........

iL

I--

...........

t----., To = "d·c

I

Hz

\

~Vr

TJ = 2SoC_

-.K

0

1 M

Dropout Voltage

= 25"C

i!.

t--- YIN

J

r---...

o
100

25r----r----r----r----~--_,

,,"J

.,./

z
;:
0

500 mA

FREQUENCY -

1\

-

"l!:
"o

I -.......

VQUT=45V

JUNCTION TEMPERATURE _ °C

100

20 rnA

,
10

Ripple Rejection as a
Function of Frequency

2. 0

o

...

/

.........

(

a:

1050

3.

...I

ffi

""

4.8
25

:~.~=
~

........

g
5

o

Peak Output Current as a
Function of
Output Voltage

Output Impedance as a
Function of Frequency

40
5

VI

TJ = 25"C

-r

II
INPUT VOLTAGE - Y

=1,

A

~A109·~A209·~A309
Typical Performance Curves for jlA309 (Cont.)
Quiescent Current as a
Function of
Input Voltage
•.0
I,

.

E

I
>-55

~
~

\.~o~ :.-

:J
(,)

ffi

~ 5,0

~

10

~ 200imA

YIN

I--

10

~

TJ = 12[C

1

15

20

25

00 1
10

INPUT VOLTAGE ..... V

4.5

100

1 k

FREQUENCY -

Typical Applications
Fixed 5 V Regulator
INPUT--.-"I

10 V

,,=~~

50

lL"" l -

J

-=::: ~"""""'=O

-

1

4. 5

50

25°C
0

"-

/
I

•. 0

TJ
C,

-

-

Quiescent Current as a
Function of
Junction Temperature

Output Noise Voltage as a
Function of Frequency

OUTPUT
SV

Cl
0.22 MF

NOTE

Note
Bypass capacitors are recommended for optimum stability and
transient response and should be located as close as possible to
the regulator.

2·56

Hz

10k

o

25

50

75

100

JUNCTION TEMPERATURE _ °C

125

J.lA 7900 Series
3-Terminal Negative
Voltage Regulators

I=AIRCHILC
A Schlumberger Company

Linear Products

Description
The IlA7900 series of Monolithic 3-Terminal Negative
Regulators is manufactured using the Fairchild Planar
epitaxial process. These negative regulators are
intended as complements to the popular IlA7800
series of positive voltage regulators, and they
are available in the same voltage options from
-5 to -15 V. The 7900s employ internal currentlimiting, safe-area protection, and thermal shutdown,
making them virtually indestructible.

Connection Diagram
TO-3 Package

'"Q"'

•

COMMON

(Top View)

•
•
•
•
•
•

OUTPUT CURRENT IN EXCESS OF 1 A
INTERNAL THERMAL-OVERLOAD PROTECTION
INTERNAL SHORT-CIRCUIT CURRENT LIMITING
OUTPUT TRANSISTOR SAFE-AREA
COMPENSATION
AVAILABLE IN THE TO-220 AND
THE TO-3 PACKAGE
OUTPUT VOLTAGES ARE 5, 8,12 and 15 V

Absolute Maximum Ratings
Input Voltage
(5 V through 18 V)
Internal Power Dissipation
Storage Temperature Range
TO-3 (Aluminum or Steel)
TO-220
Operating Junction
Temperature Range
Military (IlA7900)
Commercial (IlA7900C)
Pin Temperature
TO-3 (Soldering, 60 s)
TO-220 (Soldering, 10 s)

Order Information
Type
Package
IlA7905
Metal
IlA7908
Metal
IlA 7912
Metal
IlA7915
Metal
IlA7905C
Metal
IlA7908C
Metal
IlA7912C
Metal
IlA7915C
Metal

-35 V
Internally Limited

Code
HJ
HJ
HJ
HJ
HJ
HJ
HJ
HJ

Part No.
IlA7905KM
IlA7908KM
IlA7912KM
IlA7915KM
IlA7905KC
IlA7908KC
IlA7912KC
IlA7915KC

Connection Diagram
TO-220 Package

-65°C to +150°C
-55°C to +150°C

@>I

-55°C to +150°C
O°C to +125°C

'--,N
(Top View)

Order Information
Type
Package
IlA7905C
Molded Power
IlA7908C
Molded Power
Molded Power
IlA7912C
Molded Power
IlA7915C

Note
The conventIon for NegatIve Regulators IS the Algebraic value,
thus -15 IS less than -10 V.
2-57

Pack
Pack
Pack
Pack

Code Part No.
GH
IlA7905UC
GH
IlA7908UC
IlA7912UC
GH
IlA7915UC
GH

,."A7900 Series
Equivalent Circuit
r-----.---------------.---------~--~----------------~--------------~r_--------~----~-COMMON

1

R2

Uk

D2

R25
4.Sk
TO 6.3 k

R23
4k

04

Rl
7.8k

R20

17.2k

I
I

R24

I
II

1.7k
T018k
-12VTO
-24 V

R4

2.2k

I OPTIONS

-1/ .-----I---If--------I

OUTPUT
2

RS
420

01

020

R19
S.3k
R14
2.3k
R16
4.7k

R17
3k

R21
17k
R30
200

R22
0.04

R13

O.os
INPUT
3

2-58'

/.LA 7900 Series
~A7905

Electrical Characteristics

VIN = -10 V,IOUT = 500 mA, CIN = 2 ~F, COUT = 1 ~F, -55°C:::; TJ:::; 150°C, unless
otherwise specified.

Characteristic

Condition (Note)

Min

Typ

Max

Unit

Output Voltage

TJ = 25°C

-4.8

-5.0

-5.2

V

Line Regulation

TJ = 25°C

-7 V :::; VIN :::; -25 V

3

50

mV

-8 V :::; VIN :::; -12 V

1

25

mV

5 mA :::; lOUT:::; 1.5 A

15

100

mV

250 mA :::; lOUT:::; 750 mA

5

25

mV

-5.30

V

Load Regulation

TJ = 25°C

Output Voltage

-8.0 V :::; VIN :::; -20 V
5 mA :::; lOUT:::; 1.0 A
p:::; 15 W

Quiescent Current

TJ = 25°C

2.0

mA

Iwith line
Quiescent Current Change I
with load

-8 V :::; VIN :::; -25 V

1.3

mA

5 mA :::; lOUT:::; 1.0 A

0.5

mA

Output Noise Voltage

TA = 25°C, 10 Hz:::; I:::; 100 kHz

80

~V!VOUT

Ripple Rejection

1 = 120 Hz, -8 V :::; VIN :::; -18 V

Dropout Voltage

lOUT = 1.0 A, TJ = 25°C

Peak Output Current

TJ = 25°C

-4.70
1.0

25
54
1.3

60

dB

1.1

2.3

2.1

3.3

A

V

Average Temperature Coefficient 01
Output Voltage

lOUT = 5 mA, -55°C:::; TJ:::; 150°C

0.3

mV lOCI
VOUT

Short·Circuit Current

VIN = -35 V, TJ = 25°C

1.2

A

~A7905C

Electrical Characteristics

VIN = -10 V, lOUT = 500 mA, CIN = 2
otherwise specified.

~F,

COUT = 1 ~F, O°C:::; TJ:::; 125°C, unless
.

Characteristic

Condition (Note)

Min

Typ

Max

Unit

Output Voltage

TJ = 25°C

-4.8

-5.0

-5.2

V

Line Regulation

TJ

-7 V :::; VIN :::; -25 V

3.0

100

mV

= 25°C

TJ = 25°C

Load Regulation

-8 V :::; VIN :::; -12 V

1.0

50

mV

5 mA :::; lOUT:::; 1.5 A

15

100

mV

250 rnA:::; lOUT:::; 750 mA

5.0

50

mV

-5.25

V

Output Voltage

-7 V :::; VIN :::; -20 V
5 mA :::; lOUT:::; 1.0 A
p:::; 15 W

Quiescent Current

TJ = 25°C

Iwith line
Quiescent Current Change]

-7 V :::; VIN :::; -25 V

with load

-4.75
1.0

5 mA :::; lOUT:::; 1.0 A

Output Noise Voltage

TA = 25°C, 10 Hz:::; 1 :::; 100 kHz

Ripple Rejection

1 = 120 Hz, -8 V:::; VIN:::; -18 V

2.0

mA

1.3

mA

0.5
54

mA

125

~V

60

dB

Dropout Voltage

lOUT = 1.0 A. TJ = 25°C

1.1

V'

Peak Output Current

TJ = 25°C

2.1

A

Average Temperature Coefficient 01
Output Voltage

lOUT = 5 mAo O°C :::; TJ :::; 125°C

0.4

mV/oC

Note
1. All characteristics except noise voltage and ripple rejection
ratio are measured using pulse techniques (tW :$ 10 ms, duty
cycle :$ 5%). Output voltage changes due to changes in
internal temperature must be taken into account separately.

2-59

.,

•

J-LA 7900 Series
/LA7908
Electrical Characteristics

=

=

VIN -14 V,IOUT 500 mA, CIN
otherwise specified.

= 2/LF, COUT = 1/LF, -55°C:5 TJ:5

150°C, unless

Characteristic

Condition (Note)

Min

Typ

Max

Unit

Output Voltage

TJ

-7.7

-8.0

-8.3

V

Line Regulation

= 25°C
TJ = 25°C

-10.5 V :5 VIN :5 -25 V

6.0

80

mV

-11 V :5 VIN :5 -17 V

2.0

40

mV

Load Regulation

TJ

5 mA:5 IOUT:5 1.5 A

12

100

mV

250 mA :5 lOUT :5 750 mA

4.0

40

mV

-8.4

V

2.0

mA

= 25°C

Output Voltage

-11.5 V :5 VIN :5 -23 V
5 mA :5 IOUT:5 1.0 A
p:5 15 W

Quiescent Current

TJ

-7.6

= 25°C

1.0

Iwith line
Quiescent Current Change I
with load

-11.5 V :5 VIN :5 -25 V

1.0

mA

5 mA:5 IOUT:5 1.0 A

0.5

mA

Output Noise Voltage

TA

80

/LVIVOUT

Ripple Rejection

f

Dropout Voltage

= 25°C, 10 Hz:5 f:5 100 kHz
= 120 Hz, -11.5 V :5 VIN :5 -21.5 V
lOUT = 1.0 A, TJ = 25°C

Peak Output Current

TJ

= 25°C

Average Temperature Coefficient of
Output Voltage

lOUT

Short-Circuit Current

VIN

/LA7908C
Electrical Characteristics

25
54
1.3

= 5 mA, -55°C

60
2.3

2.1

3.3

A

0.3

mV/oC/
VOUT

1.2

A

:5 TJ:5 150°C

= -35 V, TJ = 25°C

=

=

VIN
-14 V, lOUT
500 mA, CIN
otherwise specified.

dB

1.1

= 2 /LF, COUT = 1 /LF, O°C :5 TJ :5

V

125°C, unless

Characteristic

Condition (Note)

Min

Typ

Max

Unit

Output Voltage

TJ = 25°C

-7.7

-8.0

-8.3

V

Line Regulation

TJ=25°C

-10.5 V :5 VIN :5 -25 V

6.0

160

mV

-11 V :5 VIN :5 -17 V

2.0

80

mV

5 mA :5 lOUT :5 1.5 A

12

160

mV

250 mA :5 lOUT :5 750 mA

4.0

80

mV

-8.4

V

2.0

mA

Load Regulation

TJ = 25°C

Output Voltage

-10.5 V :5 VIN :5 -23 V
5 mA :5 IOUT:5 1.0 A
P :5 15 W

Quiescent Current

TJ = 25°C

-7.6
1.0

Iwith line
Quiescent Current Change I
with load

-10.5 V :5 VIN :5 -25 V

1.0

mA

5 mA:5 IOUT:5 1.0 A

0.5

mA

Output Noise Voltage

TA = 25°C, 10 Hz :5 f :5 100 kHz

Ripple Rejection

f = 120 Hz, -11.5 V :5 VIN:5 -21.5 V

Dropout Voltage

200

/LV

60

dB

lOUT = 1.0 A, TJ = 25°C

1.1

V

Peak Output Current

TJ=25°C

2.1

A

Average Temperature Coefficient of
Output Voltage

lOUT

0.6

mV/oC

= 5 mA, O°C

:5 TJ :5 125°C

Note
1. All characteristics except noise voltage and ripple rejectoon
ratio are measured using pulse techniques (tw :oS 10 ms, duty
cycle :oS 5%). Output voltage changes due to changes 10
IOternal temperature must be taken into account separately

2·60

54

JLA 7900 Series
ItA7912
Electrical Characteristics

VIN = -19 V, lOUT = 500 mA, CIN = 2 ItF, COUT = 1 ItF, -55 ° C ~ T J :s 150 ° C, unless
otherwise specified.

Characteristic

Condition (Note)

Min

Typ

Max

Output Voltage

TJ = 25°C

-11.5

-12.0

-12.5

V

10

120

mV

3.0

60

mV

12

120

mV

4.0

60

mV

-12.6

V

Line Regulation

TJ = 25°C

Load Regulation

TJ = 25°C

-14.5 V

~

VIN

5 mA

:s

lOUT

~

1.5 A

250 mA ~ lOUT ~ 750 mA

Output Voltage
Quiescent Current

TJ = 25°C

Iwith line
Quiescent Current Change I
with load

-15 V
5 mA

Output Noise Voltage

TA = 25°C, 10 Hz

~

Ripple Rejection

f = 120 Hz, -15 V

:s

Dropout Voltage

lOUT = 1.0 A, TJ = 25°C

Peak Output Current

-30 V

-16V~VIN~-22V

-15.5 V ~ VIN:S -27 V
5 mA ~ lOUT ~ 1.0 A
P :s 15 W

-11.4

3.0

mA

VIN

~

-30 V

1.0

mA

lOUT

~

1.0 A

0.5

mA

80

ItVIVOUT

:s

~

~

1.5

Unit

~

f

100 kHz

VIN:S -25 V

25
54
1.3

TJ = 25°C

60

dB

1.1

2.3

2.1

3.3

A

V

Average Temperature Coefficient of
Output Voltage

lOUT = 5 mA, -55°C ~ TJ:S 150°C

0.3

mV / °C/
VOUT

Short-Circuit Current

VIN = -35 V, TJ = 25°C

1.2

A

ItA7912C
Electrical Characteristics

VIN = -19 V, lOUT = 500 mA, CIN = 2 ItF, COUT = 1 ItF, O°C ~ TJ
otherwise specified.

Characteristic

Condition (Note)

Output Voltage

TJ=25°C

Line Regulation

TJ = 25°C

Load Regulation

TJ = 25°C

-14.5 V

~

VIN

:s

250 mA

lOUT
~

Output Voltage

-14.5 V :s VIN ~ -27 V
5 mA :s lOUT ~ 1.0 A
P ~ 15 W

Quiescent Current

TJ = 25°C

Iwith line
Quiescent Current Change I

-14.5 V

with load

5 mA

~

Typ

-11.5

-12.0

-12.5

V

10

240

mV

3.0

120

mV

1.5 A

12

240

mV

~

4.0

120

mV

-12.6

V

3.0

mA

~

-30 V

750 mA
-11.4

1.5
VIN:S -30 V

:s lOUT ~

1.0 A

Output Noise Voltage

TA = 25°C, 10 Hz

Ripple Rejection

f=

Dropout Voltage
Peak Output Current
Average Temperature Coefficient of
Output Voltage

~

lOUT

:s f :s

125°C, unless

Min

-16V:SVIN~-22V

5 mA

:s

100 kHz

Max

Unit

1.0

mA

0.5

mA

300

ltV

60

dB

lOUT = 1.0 A, TJ = 25°C

1.1

V

TJ = 25°C

2.1

120Hz,-15V:SVIN~-25V

lOUT = 5 mA, O°C:S TJ:S 125°C

Note
1. All characteristics except noise voltage and ripple rejection
ratio are measured using pulse techniques (tw :s: 10 ms. duty
cycle :s: 5%). Output voltage changes due to changes in
internal temperature must be taken into account separately.

2·61

54

0.8

A
mV/oC

•

JlA 7900 Series
/LA7915
Electrical Characteristics

=

=

= 2/LF, COUT = 1/LF, -55°C S

VIN -23 V, lOUT 500 mA, CIN
otherwise specified.

TJ S 150°C, unless

Characteristic

Condition (Note)

Min

Typ

Max

Unit

Output Voltage

= 25°C
TJ = 25°C

-14.4

-15.0

-15.6

V

TJ

s -30 V
s -26 V
5 mA s lOUT s 1.5 A
TJ = 25°C
250 mA s lOUT s 750 mA
-18.5 V s VIN s -30 V
5 mA s lOUT s 1.0 A
P s 15W

Line Regulation

Load Regulation

Output Voltage
Quiescent Current

-17.5 V
-20 V

s

s

VIN

VIN

5 mA

Output Noise Voltage

TA

-18.5 V

s

s

lOUT

s

s

lOUT = 1.0 A, TJ = 25°C

Peak Output Current

TJ = 25°C

Average Temperature Coefficient of
Output Voltage

lOUT = 5 mA, -55°C

Short-Circuit Current

VIN

Condition (Note)

Output Voltage

TJ

s

TJ

s

= 25°C

TJ = 25°C

= 25°C

-17.5 V
-20 V
5 mA

s

s

s

250 mA

s

VIN

VIN
lOUT

s

s
s

lOUT

-17.5 V s VIN s -30 V
5 mA s lOUT s 1.0 A
P s 15 W

Quiescent Current

75

mV

-15.75 V

TJ

dB
2.3

V

2.1

3.3

A

-1.0

1.3

mV lOCI
VOUT

1.2

A

s

Typ

Max

-14.4

-15.0

-15.6

V

11

300

mV

-30 V

mV
mV

s

4.0

150

mV

750 mA
-14.25

-15.75 V

= 120 Hz, -18.5 V s VIN s
= 1.0 A, TJ = 25°C
TJ = 25°C

100 kHz

f

-28.5 V

lOUT

lOUT = 5 mA, O°C

s

Note
1. All characteristics except noise voltage and ripple rejection
ratio are measured using pulse techniques (t w ::S 10 ms, duty
cycle ::S 5%). Output voltage changes due to changes in
internal temperature must be taken into account separately.

2·62

3.0

mA

1.0

mA

0.5

s

TJ

s

Unit

150

1.0 A
f

125°C, unless

Min

-30 V

s

s

300

Ripple Rejection

s

TJ

12

TA = 25°C, 10 Hz

lOUT

/LV IVOUT

3.0

Output Noise Voltage

s

s

mA

80

1.1

1.5
VIN

mA

0.5

1.5 A

5 mA

s

mA

1.0

60

1 /LF, O°C

= 25°C

-17.5 V

3.0

-26 V

Iwith line
Quiescent Current Change I
with load

Average Temperature Coefficient of
Output Voltage

54

150°C

= 2/LF, COUT =

Output Voltage

Peak Output Current

4.0

= -35 V, TJ = 25°C

Characteristic

Dropout Voltage

mV

25

1.3

VIN = -23 V, lOUT = 500 mA, CIN
otherwise specified.

TJ

150

1.0 A

Dropout Voltage

Load Regulation

12

-30 V

Ripple Rejection

Line Regulation

mV
mV

1.5
VIN

= 25°C, 10 Hz s f s 100 kHz
f = 120 Hz, -18.5 V s VIN s -28.5 V

/LA7915C
Electrical Characteristics

150
75

-14.25

TJ = 25°C

Iwith line
Quiescent Current Change I
with load

11
3.0

125°C

54

mA

375

/LV

60

dB

1.1

V

2.1

A

1.0

mV/oC

JLA 7900 Series
Typical Performance Curves
Worst Case Power
Dissipation as a
Function of
Ambient Temperature (TO-220)
100

J

50
40
30
;0

LIMIT FOR JiA7900C

Worst Case Power
Dissipation as a
Function of
Ambient Temperature (TO-3)

--

ro~::-;---'
~
~ 50 r- ,.....J. T8"S_-'· C1W
-7S"C/1V
if

3D
20
;0

~

4.0

10
Q 50
; 40

iii 3.0

~

30

~

20

10

S
20 ror
~ 1.0

~

~l

I'-

11

os
0.4
03 r-8JC
02 f- ~JA

........

........

"\l\
'\ l\

5"C/W

c/w

65"
PO(MAX} 15W

0.1

50

25

7S

100

125

"

i:::::: [ - NO HEAT SINI(

c

I I

10

I I

;0

o

05
o. 04
03
02

-(lJC
_
~)JA =

30

~

25

........

i

-DOS

!i~

-015

~ -020

YOUT'" -5 0 V AND

:J:±-r-

-Sot--

VOUT ",-12 VAND -15 y-

20

~

15

~

5
o

IOr=rmj
0

100

II

~

i

I II

o

10

J!t:.!;.t.DS: '

10

I

~

"
10k

10k

lOUT = 100 mA
YouT=-50Y
TJ=25"C

,

~
'30: " ""~
"\

15

20

COUT= 25/-1F

~~~~'~~~

,

111111111

10

30

25

100

>

".o.
"0

lOOk

o

1
,
,

10M

100M

.

1

o ~

"
!/"

1

1

1

30

2·63

~

or

1

40

50

INPUT VOLTAGE

30

1

20

10

1

1

g

1

TIME-I-Is

20

1
>
E

I
'\.

1

20

1M

40

!

I

V

10

lOOk

Line Transient Response

1

I

-1

10k

1

I

T

YOIL TAGE
f-L- f-0UTPUT
DEVIATION

Q

1k

FREQUENCY - Hz

1

-2
100

,

~,

I

.
"
.

•

75100125150

Output Impedance as a
Function of Frequency

f'

LOAD CURRENT

~

!:;

lOUT = 200mA

t

Q

\

.lVIN = 10 V pk-pk

I II

!

50

'Cour=10/-IF
SOLID TANTALUM

0

I'
lruy=-s.o'Y
AND -8 0 Y

TJ=25"C

o

V'N"'10V
VOUT = 5V

>=
~

25

~

I" :-.,

z

0

""........

...." r--,I"'

'11

1

II
20

25

~('4

rt-

JUNCTION TEMPERATURE- C

.'~.
~
"
I'-.
L~ :--. ",

>

II

'r l',orVT 1

C

Load Transient Response

V~f~ lSV

40

<0",

04

150

f

DROPOUT CONDITIONS

INPUTJOUTPUT OIFFERENTIAL- Y

III

II

0

'll

or

-....

~"

75 100 125 150 175

Ripple Rejection as a
Function of Frequency

60

125
0

1"'1-.:

50

lou

f00~

I

JUNCTION TEMPERATURE-" C

1

100

75

:::: t-

~111.q- ~

..... ::::1Z..<'oQ"'4

~

10

o
25

I

........ ~

I---

JO~

__ lOur

~ 06

VIN=VOUT-50V

-75 -50 -25

z
o

,\1'

55"C/W

~

~

....

5o. 08
5
~

'\ 1\

45° C/W

50

~

.~

:;j

-0.10

........
........

10

0.15

~

10

~

Peak Output Current as a
Function of Input-Output
Differential Voltage

~ 0.20

~
fE

ffi

AMBIENT TEMPERATURE _

Output Voltage as a
Function of
Junction Temperature

~

r-.

~

POIMAx)~15W

01
25

150

J 12
~

Q

ffi

>

e 8NFINI"rE ~EAr SINK
i= ......!8HS "'soCIW
i= ...J0l<1--7So C;IV ........

AMBIENT TEMPERATURE-" C

1::

14

I LIMIT FOR "A7900C l-

50

40

INFINITE HEAT SINK

20

Dropout Voltage as a
Function of
Junction Temperature

z

0

>=

~

.
"
.
".
Q

i -i - -

OUTP~T VOLTAGE+- rDEVIATION

I

~

o.

1

";!

I

10

~

!:;

"0
60

>

.
~
~

!
·10
lOUT =- 500 mA
VOUT =- 5 V
-20

o

10
TIME -

1-15

12

/.LA 7900 Series
Typical Performance Curves (Cont.)

Ripple Rejection as a
Function of Output Voltages

Qule8cent Current a8 a
Function of Temperature

Quiescent Current as a
Function of Input Voltage
23

25

V"I=V~u,-Jov

'OY=lmA

M~t-t-t-+-+-+-+-+-~

,,19

I

ffi

ll!
il...
~
!;j
::>
o

-c

vo!,J2vlND~'5l- c-r-.;,:;

.........

E
15

i!Z

r--.I'....

11

YOUT '" -5.0 Y AND -8 0

0.7

03
-75

-so

NOMINAl OUTPUT VOLTAGE- V

-25

0

25

50

75

VLT=tsv
15

il...
ffi1.D
u

"-

-r-.

2,0

E
I

r

~

V""- ......

L

.",
-5.0 V

5

o

05

o

100 125 150 175

0510152025303540

AMBIENTTEMPERATURE-oC

Design Considerations
The JlA7900 fixed voltage regulator series has
thermal-overload protection from excessive power
dissipation, internal short-circuit protection which
limits the circuit's maximum current, and output
transistor safe-area compensation for reducing the
output current as the voltage across the pass
transistor is increased.

VOUT

~

INPUTVOLTAGE-Y

Typical Applications
Bypass capacitors are recommended for stable
operation of the JlA7900 series of regulators over the
input voltage and output current ranges. Output
bypass capacitors will improve the transient response
of the regulator.
The bypass capacitors, (2 JlF on the input, 1 JlF on the
output) should be ceramic or solid tantalum which
have good high frequency characteristics. If aluminum
electrolytics are used, their values should be 10 JlF or
larger. The bypass capacitors should be mounted with
the shortest leads, and if possible, directly across the
regulator terminals.

Although the internal power dissipation is limited, the
junction temperature must be kept below the maximum
specified temperature (150'C for 7900, 125'C for
7900C) in order to meet data sheet specifications. To
calculate the maximum junction temperature or heat
sink required, the following thermal resistance values
should be used:

Fixed Output Regulator

Package

Typ
IJJC
'C/W

Max
IJJC
'C/W

Typ
IJJA
'C/W

Max
IJJA
'C/W

TO-3

3.5

5.5

40

45

TO-220

3.0

5.0

60

65

:......t

VIN _ _ _3

I-_--VOUT

1.0 l'F

High Current Voltage Regulator
TJ (Max) - TA
or
PO(MAX) = OJC + DCA
IJCA = IJCS

lOUT
r -__- - - - - _ - V O U T

+ IJSA (Without heat sink)

Solving for TJ: TJ = TA + Po (IJJC
Where TJ =
TA =
Po =
IJJA
IJJC
8CA
8cS
8SA

VIN-.......-""""'"

+ IJCA)

r1.

or TA + POIJJA (Without heat sink)
Junction Temperature
Ambient Temperature
Power Dissipation
Junction-to-Ambient Thermal Resistance
Junction-to-Case Thermal Resistance
Case-to-Ambient Thermal Resistance
Case-to-Heat Sink Thermal Resistance
Heat Sink-to-Ambient Thermal
Resistance

=
=
=
=
=

R1 = VSE(al)
IREG

2-64

lal

= ,6(Q1)IREG

0 1'F

JLA 7900 Series
High Output Current, Foldback Current Limited

......-'VI/'v-_--+"""-

VIN ......-

~------_-VOUT

R1
611

1.0!,F

•

High Output Current, Short·Circuit Protected
~------_-VOUT

R1
611

RSC

= VBE(Q2)
Isc

Operational Amplifier Supply (± 15 V @ 1.0 A)
+20 V
INPUT --~~'i

~~

___

~

_ _ _ _ _ _ +15V
OUTPUT

1N4001 OR
EQUIVALENT

-15 V
~--e---~-----OUTPUT

2-65

J.LA 79MOO Series
3-Terminal Negative
Voltage Regulators

FAIRCHILD
A Schlumberger Company

Linear Products
Description
The ILA79MOO series of 3-Terminal Medium Current
Negative Voltage Regulators are constructed using
the Fairchild Planar epitaxial process. These
regulators employ internal current limiting, thermal
shutdown and safe-area compensation making them
essentially indestructible. If adequate heat sinking is
provided. they can deliver up to 500 mA output
current. They are intended as fixed voltage regulators
in a wide range of applications including local
(on-card) regulation for elimination of noise and
distribution problems associated with single point
regulation. In addition to use as fixed voltage
regulators, these devices can be used with
external components to obtain adjustable output
voltages and currents.

Connection Diagram
TO-39 Package

COMM
1

Order Information
Type
Package
ILA79M05
Metal
ILA79M05C
Metal
ILA79M08
Metal
ILA79M08C
Metal
ILA79M12
Metal
ILA79M12C
Metal
ILA79M15
Metal
ILA79M15C
Metal

OUTPUT CURRENT IN EXCESS OF 0_5 A
INTERNAL THERMAL-OVERLOAD PROTECTION
INTERNAL SHORT CIRCUIT CURRENT LIMITING
OUTPUT TRANSISTOR SAFE-AREA
COMPENSATION
• AVAILABLE IN JEDEC TO-220
AND TO-39 PACKAGES
• OUTPUT VOLTAGES OF -5 V. -8 V, -12 V, and
-15V

-24 V

Internal Power Dissipation
Storage Temperature Range
TO-39
TO-220
Operating Junction
Temperature Range
TO-39
Military (ILA79MOO)
Commercial (ILA79MOOC)
TO-220
Commercial (ILA79MOOC)
Pin Temperature
(Soldering, 60 s) TO-39
(Soldering, 10 s) TO-220

IN
3

(Top View)

•
•
•
•

Absolute Maximum Ratings
Input Voltage
-5 V through -15 V

OUT
2

Code
FC
FC
FC
FC
FC
FC
FC
FC

Part No.
ILA79M05HM
ILA79M05AHC
ILA79M08HM
ILA79M08AHC
ILA79M12HM
ILA79M 12AHC
ILA79M15HM
ILA79M15AHC

Connection Diagram
TO-220 Package
-35 V
-40 V
Internally Limited
-65°C to +150°C
-55°C to +125°C

(Side View)

-55°C to +150°C
O°C to +125°C

Order Information
Type
Package
ILA79M05C Molded Power
ILA79M08C Molded Power
ILA79M12C Molded Power
ILA79M15C Molded Power

300°C
230°C

2·66

Pack
Pack
Pack
Pack

Code
GH
GH
GH
GH

Part No.
ILA79M05AUC
ILA79M08AUC
ILA79M12AUC
ILA79M15AUC

J.LA 79MOO Series
Equivalent Circuit
r-----~----------~------~--~------------_.------------~--------~--~-COMMON

1

R2
14k

R2S
4Sk
TOG 3k

R23
4k

R24

17k
T018k
RS
420

OUTPUT

01

2

R22

01
R30

200

R13
02

~----+-----+-----~----~~~~------------~--~~~----------~~----~~INPUT

3

/LA79M05HM
Electrical Characteristics

VIN = -10 V,IOUT = 350 rnA, -55°C::5 TJ::5 150°C, CIN = 2 /LF, COUT = 1 /LF, unless
otherwise specified. Notes 1 and 2

Characteristic

Condition (Note 3)

Min

Typ

Max

Unit

Output Voltage

TJ=25°C

-5.2

-5.0

-4.8

V

Line Regulation

TJ = 25°C

1-25 V ::5 VIN ::5 -7 V

7.0

50

mV

1-18 V ::5 VIN ::5 -8 V
Load Regulation

3.0

30

mV

TJ = 25°C, 5 rnA ::5 IOUT::5 500 rnA

75

100

mV

TJ = 25°C, 5 rnA ::5 lOUT ::5 350 rnA

50

Output Voltage

-25 V ::5 VIN ::5 -7 V
5 rnA ::5 lOUT ::5 350 rnA, PD ::5 4 W

Quiescent Current

TJ = 25°C

Iwith line
Quiescent Current Change 1
with load

-25 V ::5 VIN ::5 -8 V
5 rnA ::5 lOUT ::5 350 rnA

Output Noise Voltage

TA = 25°C, 10 Hz ::5 f ::5 100 kHz

Ripple Rejection

-4.75 V
1.0

IlOUT = 100 rnA
IlOUT = 300 rnA, TJ = 25°C

25

-18 V ::5 VIN::5 -8 V,

50

f = 120 Hz

54

Dropout Voltage

TJ = 25°C

Short-Circuit Current

TJ = 25°C, VIN = -35 V
0.5
lOUT = 5 rnA -55°C::5 TJ::5 +150°C

Notes on 79M05A page.
2-67

2.0

rnA

0.4

rnA

0.4

rnA

80

/LV IVOUT
dB
dB

60
1.1

Peak Output Current
Average Temperature Coefficient of
Output Voltage

-5.25

mV

0.65

2.3

V

0.6

A

1.4

A

0.3

mV / °C/
VOUT

JLA79MOO Series
p.A79M05AHC AND p.A79M05AUC
Electrical Characteristics VIN = -10 V, lOUT = 350 mA, -O°C ::5 TJ::5 125°C, CIN = 2 p.F, COUT = 1 p.F, unless
otherwise specified.
Characteristic

Condition (Note 3)

Min

Typ

Max

Unit

Output Voltage

TJ = 25°C

-5.2

-5.0

-4.8

V

Line Regulation

TJ = 25°C

1-25 V ::5 VIN ::5 -7 V

7.0

50

mV

1-18 V ::5 VIN ::5 -8 V

3.0

30

mV

TJ = 25°C, 5 mA::5 IOUT::5 500 mA

75

100

mV

TJ = 25°C, 5 mA::5 IOUT::5 350 mA

50

Load Regulation

-25 V ::5 VIN ::5 -7 V
5 mA ::5 lOUT ::5 350 mA, Po ::5 4 W

Output Voltage

TJ = 25°C

Quiescent Current
Quiescent Current Change

-5.25

1with line

Iwith load

Output Noise Voltage

mV
-4.75 V

1.0

2.0

mA

-25 V ::5 VIN ::5 -8 V

0.4

mA

5 mA ::5 lOUT ::5 350 mA

0.4

TA = 25°C, 10 Hz ::5 f ::5 100 kHz

mA

125

p.V

f = 120 Hz 1lOUT = 300 mA, TJ = 25°C 54

60

dB

Dropout Voltage

TJ = 25°C

1.1

V

Short-Circuit Current

TJ = 25°C, VIN = -30 V

140

mA

650

mA

0.4

mV/oC

Ripple Rejection

-18 V ::5 VIN ::5 -8 V, 1lOUT = 100 mA 50

Peak Output Current
Average Temperature Coefficient of
Output Voltage

lOUT = 5 mA

Notes
1. See Test CIrcuit.
2. The convenllon for negative regulators is the algebraIc values,
thus -15 V is less than -10 V
3 All characteristics except noise voltage and ripple rejection
ratio are measured using pulse techOlques  020
I

~g

1k

c

Output Impedance as a
Function of Frequency
0.15

\

25° C

.lJLl.JJJJ..l..illL.LlJlLL1wu
IIII..L11111llJ.
11l..lll.,J
"

100 125 150 175

JUNCTION TEMPERATURE -

"

1\

300

100

I I I I

75

"'"

•

40 0

~
0200

~YOUT

2

600

I

1

t--t--- r--

•

~

~

.oo

I

2

Peak Output Current as a
Function of Input-Output
Differential Voltage

Output Voltage as a
Function of
Junction Temperature

Dropout Voltage as a
Function of
Junction Temerature

, .f--+I\-"-I---+-..,....A~,.,,-t_+--I
VOUT- -5V
05;~-+--4-~--~--~-+--4-~

200 mA

vol'" =1 5 v I

2.

40

80

TIME -

1'5

2-72

••

10.

0,L.--~~,.--~,5L--2L.--2L5--~~~$--~4.
INPUT VOLTAGE-V

J.tA 79MOO Series
Typical Performance Curves (Cont.)
Worst Case Power Dissipation
Versus Ambient
Temperature TO-39

Quiescent Current as a
Function of Temperature

Worst Case Power Dissipation
Versus Ambient
Temperature TO-220

1.

23

-...

VIN '" VOUT -5 V

'JUT ;1200 mA
~ 19

I

;0
......... VOUT-

~

"r-.....

1

1

I

12VTO 24V

~

........

-...

VOUT--SVTO-8V

5

o. 7

..

3
-75

50

25

2S

so

-

10

ffi

OS

~

-...

~

$1"'1(

"'I"-

SINK

"-

•

04

.3
.2 r ~~; ~ ~:;o ~~

AMBIENT TEMPERATURE- 0 C

Typ

Max

Typ

Max

fJJC

fJJC

fJJA

fJJA

TO-39

18.0

25

120

160

TO-220

3.0

5.0

60

65

100
125
7S
AMBIENT TEMPERATURE- 0 C

150

=
=
=

Typical Applications
Bypass capacitors are recommended for stable
operation of the 79MOO series of regulators over the
input voltage and output current ranges. Output
bypass capacitors will improve the transient response
of the regulator.

Although the internal power dissipation' is limited, the
junction temperature must be kept below the maximum
specified temperature (150°C for 79MOO, 125°C for
79MOOAC and 79MOOC) in order to meet data sheet
specifications. To calculate the maximum junction
temperature or heat sink required, the following
thermal resistance values should be used:
Package

so

Where T J = Junction Temperature
TA = Ambient Temperature
Po = Power Dissipation
8JC = Junction-to-case thermal resistance
8CA
Case-to-ambient thermal resistance
8CS
Case-to-heat sink thermal resistance
8SA = Heat sink-to-ambient thermal resistance
8JA
Junction-to-ambientthermal resistance

The safe-area protection network may cause the
device to latch-up if the output is shorted and the
regulator is operating with high input voltages. This
mode of operation will not damage the device.
However, power (input voltage or the load) must be
interrupted momentarily for the device to recover from
the latched condition.

The bypass capacitors, (2 ~F on the input, 1 ~F on the
output) should be ceramic or solid tantalum which
have good high frequency characteristics. If aluminum
electrolytics are used, their values should be 10 ~F
or larger. The bypass capactiors should be mounted
with the shortest leads, and if possible, directly
across the regulator terminals.

Fixed Output Regulator
3

T J (Max)

2.0 MF

or

~ 1::

MA79MOO

2
VOUT
~ i== 1.0 I'F

1

(Without a heat sink)

=

HEAT

Pj

0

5

l-f - -

o

5
71IG

30

"~
5~

30

78G

INPUT VOLTAGE

o

~
~
o

25

! "~I
~

"~
0

>

OUTPUT VOLTAGE
DEVIATION

~

~

i!O

~

::>

"::>

~

20

I

r.

15

~
~

::>

,

0

" t'-.I'\
["-.,1"'

"'::--..

10

0

1

o

o

12

V

"~~. ',,~m
P

IOUT= SOOmA

10

io'

5

~~,I.~~ i"\

VOUT~SV

o

79G

~

~"

I

~

Your 50V
TJ=25°C
lOUT = 100mA

~",~

05

-1 0

-20

Quiescent Current vs
Input Voltage

10

15

f

20

25

30

0

10

INPUT-OUTPUT DIFFERENTIAL-V

15

20

25

30

35

40

INPUTVQLTAGE-¥

Typical Performance Curves for JLA79G (Cont.)
Control Current vs Temperature

Differential Control Voltage vs
Input Voltage
0

0

r-- I"--

79G
9

-2 0
8

"I

07

ffi

06

ll!

a

05

~

0

~

03

1\

i"""

"'-

2
VIN=-10Y
VouF'-5V

r-- !".
""

1

lOUT -=0 -350 rnA

75

50

25

0

2S

V

0

i'

?~;

0

'"

50

75

°v

-1 0

lOUT

r---

"0'

SOOmA

V

~

-8 0

I'"

19G

VOUT-'-50V

"f:t~~

'\

4

0

YIN-lOY

r-..

-6 0

~

"

0
79G

-4 0

\

Differential Control Voltage vs
Output Current

V

V

VouT=50V

100 125 150 175

-1 2
50

10

15

2S

20

30

INPUT VOLTAGE- V

JUNCTION TEMPERATURE- 0 C

Ripple Rejection vs
Output Voltage

600

400

800

1000

OUTPUT CURRENT -rnA

Dropout Voltage vs
Junction Temperature

80

0
200

Ripple Rejection vs Frequency

14

19G

79G

7lG

12
70

60

-r-.. r- lour~14

10

';-...

I'.

........

r- r--~~ t" -

8

'I'.

so

.......

C~~mITlONS

4 -'o\,Fr' O]0J'
10

15

20

OUTPUT VOLTAGE- V

25

30

75

~
rAi r-.....
IOU,.~

1

o

,.

•

tOY

VouT=5V
20

30

40

I
10 ~

,...

-5

.
5

~

OUTPUT VOLTAGE
DEVIATION

g
5

1\

\i

•

~
!

lOUT 5O(JmA
VouT=5V

40

60

eo

100

Design Considerations
The 78G and 79G adjustable voltage regulators have
an output voltage which varies from VCONTROL to
typically

ILA78G Test Circuit 1
OUT

VOUT

Y,N -2 V by VOUT

CONTROL
f---<
COMM

:;:

o. 1 "F

0.33 " F

R2

+10
COMM

= VCONTROL

(Al

+ A2)

A2

The nominal reference in the 78G is 5.0 V and
79G is -2.23 V. If we allow 1.0 rnA to flow in the
control string to eliminate bias current effects, we can
make A2 = 5 kfl in the 78G. The output voltage is then:
VOUT = (A 1 + A2) V, where A 1 and A2 are in kfls.

Rl

78G

IN

>

\

20

50

Test Circuits

-----

15

i\

Q

Q

~2

II

Z

o

1

YIN

INPUTYOLTAGE

Example:

If A2 = 5 kfl and Al = 10 kfl then
VOUT = 15 V nominal, for the 78G

~

A2 = 2.2 kfl and Al = 12.8 kfl then
VOUT = -15.2 nominal, for the 79G

R1 + R2)
VOUT = ( -R-2- VCONTROL

By proper wiring of the feedback resistors, load
regulation of the device can be improved significantly.

VCONTROL Nominal = 5 V

Both 78G and 79G regulators have thermal-overload
protection from excessive power, internal short-circuit
protection which limits each circuit's maximum
current, and output transistor safe-area protection for
reducing the output current as the voltage across
each pass transistor is increased.

ILA79G Test Circuit 2
OUT

I"
F

79G

VOUT

Rl

CONTROL
I---<
COMM

--;:: 1

r

R2

tlO
COMM

l

R1 + R2)
VOUT = ( ~ VCONTROL
VCONTROL Nominal = -2.23 V
Recommended R2 current "" 1 rnA
.". R2 = 5 kil (78/G)
R2 = 2.2 kil (79/G)
2~81

J.LA78G • J.LA79G
/-IA78G and /-IA79G
TO-3 Package
Worst Case Power Dissipation vs
Ambient Temperature
Test Circuit

Design Considerations (Cont.)
Although the internal power dissipation is limited, the
junction temperature must be kept below the maximum
specified temperature in order to meet data sheet
specifications. To calculate the maximum junction
temperature or heat sink required, the following
thermal resistance values should be used:

100

I LIMIT78G/79G- t,"~,

f- f-

Typ
°C/W

Max
°C/W

Typ
°C/W

Max
°C/W

Package

fiJC

fiJC

Power Watt
TO-3

7.5

11

fiJA
75

fiJA
80

4.0

6

44

47

8,

It- I-

,.1

::~.'!O/k

8,s~~

~~

.......

8M "'" aleC(It

"-

.......

"Or. .~ -...... "- ~~

0

t-... I'\: ~

I

IW
fJJA=4rC/W

fiJC-6°

TJ (max) - TA
TJ (max) - TA
or
Po (max) =
IJ JA
fiJC + fiCA
(Without a heat Sink)
IJCA = fics
Solving for TJ:

1

PDMAX~15W

25

=

150

Basic Positive Regulator

Where TJ Junction Temperature
TA = Ambient Temperature
Po = Power Dissipation
IJJA Junction to ambient thermal resistance
IJJC = Junction to case thermal resistance
fiCA = Case to ambient thermal resistance
IJcs = Case to heat sink resistance
IJSA = Heat sink to ambient thermal resistance

OUT 1--_._-_- +VOUT

=

+V,N ......_ - - ! I N 78G

CONTROL
COMMON

/-IA78G and /-IA79G
Power Tab (U1) Package
Worst Case Power Dissipation
vs Ambient Temperature
LIMIT 78GI79G

125

Typical Applications For /-IA78G
Bypassing of the input and output (0.33 /-IF and
0.1 /-IF, respectively) is necessary,.

TJ = TA + Po (IJJC + IJCA) or
TA + PolJJA (Without heat sink)

T

100

AMBIENT TEMPERATURE _ 0 C

+ IJSA

100

75

50

vOUT

= vCOUNT

R1

R2

( R1R+2R2)

lPositive 5 to 30 V Adjustable Regulator

--

f- f10

I~

10

l- I-/}JC.'

'''F~lJ
0tfs'~so 'e"'~/f

8H~
I",
NOHEA.TSIN

I

OUT I--<_........-

"-

-.....

~

r.....

"- \'

5 k

I"...

rC/w

.

+V,N ......---~ IN 78G

"'

r-.... i'\:

(/JA= 8O°C/W
PoMAX=15W

i'
75

100

125

150

AMBIENT TEMPERATURE- C
Q

2-82

.......-+VOUT

JLA78G • JLA79G
Typical Applications for

~A78G

(Cont.)

Positive High-Current Short-Circuit
Protected Regulator

Positive 5 V to 30 V Adjustable Regulator
lOUT> 5.0 A
01

V,N

-1--------------,

1>4DA-.

OUT~--'--~--~

!a L 2N6124

IN

78G

.33/1oFI
OUT
31l

IN 78G

+32 V

I '" 22DmA_
D.33/1oF

CONTROL
COMMON

-

L:

+VOUT
25 k
VOUT

;;Of 0 .1

/IoF

5 k

1

-

-

External series pass device is not short circuit protected.

Positive High-Current Short-Circuit
Protected Regulator
Rsc
2N6124
01
2N6124

-

OUT I -_ _............-+VOUT

31l

+VIN -

IOUTIMAXI

.....W\r-<.......--_---, -o2S
. o
0

4

~

1.

2.

15

5

"

2

••

1'",

o

YIN = 10 V
Your=SOY

'~U;

•

3.

25

Differential Control
Voltage as a
Function of
Output Current

2

II

,.

,/

•

l"-

i

~

"' 5~ t--t~ 1
g
o

•
•

I

2••

60.

400

OUTPUT CURRENT -

•••

45

1000

~4+~-+~~~!_~-+_7:.Ud~

!1l

~

t- ~•• LA

I-t--- j:::

t::: ~ri iA
125
Q

C

t-t-

M
;;]
;
it;;

+-

60~+H-+-++~~~H+-+-++H~

~

40~+H-+-++~~~H+-+-++H~

2.

!

~~u~ ~;o 18 V

l---++-I+-++-++--I

150
FREQUENCY - Hz

2-88

•

10

2.

15

OUTPUT VOLTAGE -

25

3.

V

Load Transient Response
4

z
o
~
~

LOAD CURRENT

1

2

"I

1

•

I
1

~

~
o

J'M"1b

111

o

g

I I

V'N = ,. v I
vo",=5V

>
I

~

lOUT == 500 mA
TJ = 25°C

DROPOUT CONDITIONS
.lVOUT = SOlo OF YOUT
100

•• 1-H:l:J::;oj..+4~+++-++-+-+++H

I

lOUT"" 500 rnA

75

1\

rnA

Ripple Rejection as a
Function of Frequency

i-t--- t-

5.

\

5.

-200

3.

25

JUNCTION TEMPERATURE -

\

TJ == 25°C

10T~1-

25

N

55

-17 5

i

I
z

o

150

be

lOUT = 200 mA

6.

-150

7BYG

1

t--.....

, •• r-rrrr-rTTTr,--,--rrr-r-rTT1--'

r-I- r-

125

7SMG

85

:;-125

'E

~

75

7.

100

5

~

"N.

••

t-....... ~~$OC

I

Dropout Voltage as a
Function of
Junction Temperature

~

........

r

INPUT VOLTAGE - V

o 2 .1-

100

I

/
,/

2.

15

r-.....

~ -75

I
TJ == 125°C

['-...

-5.

I

2

85
7aMG

YOVT = 5 V

-25

4

75

Ripple Rejection as a
Function of
Output Voltage

YIN -10 V

78MG

•
•

5.

AMBIENT TEMPERATURE _

Differential Control
Voltage as a
Function of
Input Voltage

•

~~

7351mf
25

INPUT ·OUTPUT DIFFERENTIAL - V

lOUT = 500 mA
YOUT == 5.0 V

r"'1'-... ......

I

r---...

~I--- I- OUTPUT VOL T]GE
DEVIATION
0

\/ I

1

I

-2

1

,.

2.

3.

TIME -

I\-

4.
~s

Z

~
a:

:J

c.>

~

I

o

l-

50

6.

JLA78MG • JLA79MG
Performance Curves For ",A78MG (Cont.)

Line Transient Response
40
E

I

I INPUT

30

z

0

;:

"
~w

1

>

I

20

1

I

I
w

"~

,

10

""~
g

' - - [ - OUTPUT VOLTAGE

[-

DEVIATION

o

-c--

...>
~

i!O

...

...::>~

20

IVO~T~~ -~i'M~
I

>

-10
lOUT == 500 mA

0

YOUT = 5 V

-20

.tI

1--

o

10

12

TIME -.u8

Typical Performance Curves for ",A79MG
Peak Output Current as a
Function of Input-Output
Differential Voltage

Quiescent Current as a
Function of Input Voltage
-15

.00

~
::I

.......

/'

600

400

~

300

!:;
o

200

\

100

DOC < TJ

o

...

<

IiS!

\

10

20

15

I........ r--.I

I'--

-40

-5

!

-12

-20

-25

25

30

35

40

Ii" j35Li
25

50

75

r---.. . .

100

125

150

JUNCTION TEMPERATURE- DC

Ripple Rejection as a
Function of
Output Voltage
79MG

79MG

,,/'
'8

V

0

..;"-"

I
2.0

~

V

/

70

I

z

~

...

60

~

400

600

OUTPUT CURRENT -

2-89

.00
mA

1000

'Our

f":,~"o

,"'4

w

[--[-

r-.....

50

40

200

'I'

;:

~

0
-30

"

YOUT = -50 V

o
o

.0

~

I
V

-15

20

.ov

10

INPUT VOLTAGE-V

-15

3.0

-.0

-10

-10

VIN=10Y

~

i

I""

02
1

VouT=50V

'"

I",

YIN = 10 V

40

'N~~

I
~ -60

-10

~

INPUT VOLTAGE - V

79~G

J

E

·50

03

~

Differential Control
Voltage as a
Function of
Output Current

"-

lOUT ==·2 A
YOUT == -50

~

o
U

V

Differential Control
Voltage as a
Function of
Input Voltage

~

04

::>

u

V

0

30

25

INPUT-OUTPUT DIFFERENTIAL -

>

...

i

./

-05

,

"T 05

/

125°C

o

-20

V

/

::>

u

ili

06

/
-10

a:

1\

79MG

/

E

...

U

~

79MG

TJ = 25°C
lOUT = -2 A

"I

'" '\.

500

07

YOUT - -50 V

79MG

700

~
I

Control Current as a
Function of Temperature

,~
o

10

15

20

OUTPUT VOLTAGE -

25
V

30

~A78MG
Performance Curves For

~A79MG

Dropout Voltage as a
Function of
Junction Temperature
1

>

I

i= 0.9
08

is

~

07

!;
o

06

~
~

Load Transient Response
79MG

79MG

LOAD CURRENT

!ll

.....

'0

I

0

~"'.

~,..."

IOUi"" 1

>=
~

.,......

'"w~

'ou r-",,<.

j,VOUT = 5%

50

O~TPJT
VblT1GE - DEVIATION
0

.0

I

!!,

I

'"

.......

o~ V~UT I

25

60

OJ

.....

~
~"'.

~I'--f'

I \
I

z

IOur",,~

o

2

I

05

o.

79MG

I

10

:I

~
It

(Cont.)

Ripple Rejection as a
Function of Frequency

IOU~500lmA - f -

r-i'-.

• ~A79MG

1

2

75

I

_~lN =10 V

100

125

10

150

100

JUNCTION TEMPERATURE _ °C

Ik

10 k

VOU'15~
10

100 k

I
20

30

.0

50

TIME-I's

FREQUENCY - Hz

~A78MG

and ~A79MG
Power Watt (U1)

Worst Case Power
Dissipation Versus
Ambient Temperature

Line Transient Response

100
79MG

~

INPUT VOLTAGE

I
z

I

o

~

o

w

~

-5

~

\

;0

~

\

J""'Irt

DEVIATION

I
I

10

~

'"

10

~

is

~_

~ "" 200CIW S.,

20

60

.0

100

--

i'-.

0.5
o.

-

03
02

TIME-,..s

100C

ltd "El 1""- ....... r-.,. f\
-~" i'..:

r-

12°C/W
'JC
POI MAX) "" 7 5 W

I

1

25

50

75

100

125

150

AMBIENT TEMPERATURE _ °C

Both 78MG and 79MG regulators have thermal
overload protection from excessive power, internal
short circuit protection which limits each circuit's
maximum current, and output transistor safe area
protection for reducing the output current as the
voltage across each pass transistor is increased.

Design Considerations
The 78MG and 79MG variable voltage regulators have
an output voltage which varies from VCONTROL to
(R1 + R2)
typically VIN -2 V by VOUT = VCONTROL
R2
The nominal reference in the 78MG is 5.0 V and 79MG
is -2.23 V. If we allow 1.0 mA to flow in the control
string to eliminate bias current effects, we can make
R2 = 5 kQ in the 78MG. The output voltage is then:
VOUT = (R1 + R2) Volts, where R1 and R2 are in kQs.
Example:

.-

I~FlNiTE ~EA~ SINt.

-5

\i

.0

LIMITS FOR C GRADE-

;g = ~
~ r<"'- ~ t--

vor=!"v I
20

I

-

o

lOUT'" 200 mA

0,

50
40
30
20

10

r- r- r-OUT~UT ~OL+AGE

!;

5

I
I

15

Although the internal power dissipation is limited, the
junction temperature must be kept below the maximum
specified temperature in order to meet data sheet
specifications. To calculate the maximum junction
temperature or heat sink required, the following
thermal resistance values should be used:

If R2 = 5 kQ and R1 = 10 kQ then
VOUT = 15 V nominal, for the 78MG;
R2 = 2.2 kQ and R1 = 12.8 kQ then
VOUT = -15.2 V nominal, for the 79MG.

By proper wiring of the feedback resistors, load
regulation of the devices can be improved
significantly.

2·90

Typical

Max

Typical

Max

Package

OJC

OJC

OJA

OJA

Power Watt

8.0

12.0

70

75

~A78MG· ~A79MG

PO(Max) =

Positive S to 30 V Adjustable Regulator
lOUT> 1.SA

TJ(Max) - TA
IJJC + IJCA or

(Without a heat sink) IJCA = IJCS

+ IJSA

Solving for TJ: TJ = TA + Po (IJJC
or TA + POIJJA (Without heat sink)
Where

,...-----,.

01 I> 1.5 A_
2N5124

+ IJCA)
+32

TJ = Junction Temperature
TA = Ambient Temperature
Po = Power Dissipation
IJJC
Junction-to-case thermal resistance
IJCA = Case-to-ambient thermal resistance
IJCS = Case-to-heat sink thermal resistance
IJSA Heat sink-to-ambient thermal
resistance
IJJA = Junction-to-ambient thermal resistance

OUT

Rl
5 n

v

120100mA0.33

+VOUT

IN 78MG
CONTROL
COMMON

~F

0.1

~F

5 k

=

•

=

R1

Typical Applications for ~A78MG
Bypass capacitors are recommended for stable
operation of the ~A78MG over the input voltage and
output current ranges. Output bypass capacitors will
improve the transient response of the regulator.

(1VSE(Ql)
IR(Max) «(3) -I(OUT)

± 10 V, SOO rnA Dual Tracking Regulator
1--........-_-+10 V
+15

The bypass capacitors, (0.33 ~F on the input, 0.1 ~F
on the output) should be ceramic or solid tantalum
which have good high frequency characteristics. The
bypass capacitors should be mounted with the
shortest leads, and if possible, directly across the
regulator terminals.

v -..._---1

0.33

78MG

5 k

~F

7.23

Basic Positive Regulator

2.0

~F

1.0

~F

79MG
OUT
IN 78MG

+VIN
0.33

~F

CONTROL I - COMMON

;

1

+VOUT

-15 V ' - - - - j

0 .1

~F

Note
External senes pass device

R2

R1

V

IS

not short CirCUit protected.

Positive High-Current Short-Circuit
Protected Regulator
RsC

VOUT = VCONT (

1-.......- - - -10

Rl

01

r.::
2N7:5"'12:-:4:------,

+ R2)

R2

Q2
2N290S

Positive S to 30 V Adjustable Regulator

51!

t-~~---~+VOUT
IOUT(MAX)

Rl

OUT 1-1~""""-""--+VOUT
+VIN--1~-4IN 78MG

0.33

~F

CONTROL
COMMON

25 k
0.1

~F

5k

(3VSE(Ql)
R1 = VR(Max) «(3 + 1) -IOUT(Max)
If load .s not ground referenced, connect reverse biased diodes
from outputs to ground.
2·91

JlA78MG· JlA79MG
Typical Applications for 79MG
Bypass capacitors are recommended for stable
operation of the JLA79MG over the input voltage and
output current ranges. Output bypass capacitors will
improve the transient response of the regulator.

Output Waveform
30V-------

/
/
/
/

The bypass capacitors, (2 JLF on the input, 1 JLF on the
output) should be ceramic or solid tantalum which
have good high frequency characteristics. If aluminum
electrolytics are used, their values should be 10 JLF ·or
larger. The bypass capacitors should be mounted with
the shortest leads, and if possible, directly across the
regulator terminals.

~64 STEPS

5vI

Ov----------------Positive High-Current Voltage Regulator

Negative High-Current Short-Circuit
Protected Regulator

External Series Pass (a)

Rsc

01
2N6121

+VIN ---<~--f IN OUT 1---_£
78MG
CONTROL
COMMON

02
2N2222

+VOUT

t-t-t-'-t--VOUT

6 II
-VIN ......HM......----,.,......,........~
R1
IRIMAX)
2.0 ~F

R1

IO~)

25 k

1.0

R2

2.2 k

j3VBE(Q1)

R1 = IR(Max) (/3) -IOUT(Max)
Basic Negative Regulator
OUT

Short-Circuit limit (b)
2.0
+VIN

0.33 ~F

I
-=-

IN

VOUT

IN 79MG
~

F*

CONTROL

r------o

1.0

~F

COMMON

1

OUT I-~_-i:.

78MG

R1

_L..

1'R2

_....

CONTROL
COMMON
L - -....._-+VOUT

VOUT = -VCONT (

R1

R1

+ R2)

R2

-30 V to -2.2 V Adjustable Regulator
OUT~t--...-...,...--VOUT

-VIN

2.0

~F

IN 79MG
CONTROL
COMMON

1.0
2.2 k

2-92

~F

~F

JLA78MG· JLA79MG
Negative High-Current Voltage Regulator
External Series Pass

79MG Test Circuit 2
OUT

--~~IN

OUT~~~L

IN

2N6124

79MG

Rl

CONTROL
COMM

-VOUT

CONTROL
COMMON

79MG

~_~_-VOUT

1 I'F

Rl
R2
R2

+ R2)
= ( R1 R2
VCONTROL
VCONTROL Nominally = -2.23 V
VOUT

78MG Test Circuit 1
OUT
-~

IN

VOUT

78MG
CONTROL
COMM

Recommended R2 current "'" 1 mA
... R2 = 5 kU (78MG)
R2 = 2.2 kU (79MG)

Rl
;::;;;; O.

~

0.33 I' F~

~IQ

R2

~
VOUT

+ R2)
= ( R1 R2
VCONTROL

VCONTROL Nominally = 5 V

2-93

•

Il A723

FAIRCHILD

Precision Voltage
Regulator

A Schlumberger Company

Linear Products

Connection Diagram
10-Pin Metal

Description
The IJ,A723 is a Monolithic Voltage Regulator
constructed using the Fairchild Planar epitaxial
process. The device consists of a temperaturecompensated reference amplifier, error amplifier,
power-series pass transistor and current-limit
circuitry. Additional NPN or PNP pass elements may
be used when output currents exceeding 150 mA are
required. Provisions are made for adjustable current
limiting and remote shutdown. In addition to the above,
the device features low standby current drain, low
temperature drift and high ripple rejection. The IJ,A723
is intended for use with positive or negative supplies
as a series, shunt, switching or floating regulator.
Applications include laboratory power supplies,
isolation regulators for low level data amplifiers, logic
card regulators, small instrument power supplies,
airborne systems and other power supplies for digital
and linear circuits.
•
•
•
•
•

CURRENT
LIMIT

v(Top View)
Pin 5 connected to case.

Order Information
Type
Package
IJ,A723
Metal
IJ,A723C
Metal

POSITIVE OR NEGATIVE SUPPLY OPERATION
SERIES, SHUNT, SWITCHING OR
FLOATING OPERATION
0.01% LINE AND LOAD REGULATION
OUTPUT VOLTAGE ADJUSTABLE FROM
2 TO 37 V
OUTPUT CURRENT TO 150 mA WITHOUT
EXTERNAL PASS TRANSISTOR

Absolute Maximum Ratings
Pulse Voltage from V+ to V-,
(50 ms) (IJ,A723)
Continuous Voltage from
V+ to VInpull Output Voltage
Differential
Differential Input Voltage
Voltage Between Non-Inverting
Input and VCurrent from Vz
Current from VREF
Internal Power Dissipation
(Note)
Metal
DIP
Storage Temperature Range
Operating Temperature Range
Military (IJ,A723)
Commercial (IJ,A723C)
Pin Temperature (Soldering)
Metal, Ceramic DIP (60 s)
Molded DIP (10 s)

Code
5X
5X

Part No.
IJ,A723HM
IJ,A723HC

Connection Diagram
14-Pin DIP
14

NC
CURRENT
LIMIT

50 V

CURRENT
SENSE

40 V
-IN

40 V
±5V

+IN

+8V
25 mA
15 mA

VREF

v-

800 mW
1000 mW
-65°C to +150°C

(Top View)

Order Information
Type
Package
IJ,A723
Ceramic DIP
IJ,A723C
Ceramic DIP
IJ,A723C
Molded DIP

-55°C to +125°C
O°C to +70°C

Notes on following pages.
2-94

Code
6B
6B
9B

Part No.
IJ,A723DM
IJ,A723DC
IJ,A723PC

J.LA723
Block Diagram
FREQUENCY
COMPENSATION

V+
TEMPERATURE
COMPENSATED
ZENER

Vc

INVERTING
INPUT
ERROR
AMPLIFIER

">--'--VREF

NON-INVERTING
INPUT

Your

•

Vz
VOLTAGE
REFERENCE
AMPLIFIER

CURRENT
LIMITER

V-

Equivalent Circuit
V+

R1

R3

500 Il

25 kll

Vc

03
01

Your

03
6.2 V

Vz
....- - - - - - - COMPENSATION
'}-_ _ _ _ _ _ _ ~I~~:ENT
R8

5 kll

~

VREF

NON-INVERTING VINPUT

Note
1. Rating applies to ambient temperatures up to 25°C. Above
25 ° C ambient derate based on the following thermal
resistance values:

OJA
Max
190
90
105

'Typ
TO-5
150
Molded DIP 80
Ceramic DIP 95

2-95

INVERTING
INPUT

_______________ CURRENT
SENSE

p,A723
/lA723
Electrical Characteristic

Characteristic

TA = 25°C, VIN = V+ = Vc = 12 V, V- = 0, VOUT = 5 V, IL = 1 mA, Rsc = 0,
C1 = 100 pF, CREF = 0, unless otherwise specified. Divider impedance as seen by error
amplifier::5 10 kfl connected shown in Figure 1. Line and load regulation specifications
are given for the condition of constant chip temperature. Temperature drifts must be
taken into account separately for high dissipation conditions.

VIN
Line Regulation

Min

Condition

VIN

= 12 V to VIN = 15 V
= 12 V to VIN = 40 V

Typ

Max

0.01

0.1

%VO

0.02

0.2

%VO

0.3

%VO

-55°C::5 TA::5 + 125°C, VIN = 12VtoVIN= 15V
Load Regulation
Ripple Rejection
Average Temperature
Coefficient
of Output Voltage
Short Circuit Current Limit
Reference Voltage
Reference Voltage
Change With Load
Output Noise Voltage

0.03

IL = 1 mA to IL = 50 mA
-55°C::5 TA::5 + 125°C, IL = 1 mA to IL = 50 mA

0.15

%VO

0.6

%VO

f = 50 Hz to 10kHz

74

dB

f = 50 Hz to 10 kHz, CREF = 5/lF

86

dB

-55°C::5 TA::5 +125°C

0.002

= 10 fl, Vo = 0
IREF = 0.1 mA
IREF = 0.1 mA to 5 mA
BW = 100 Hz to 10 kHz, CREF = 0

65

RSC

6.95

BW = 100 Hz to 10 kHz, CREF = 5/lF

7.15

0.015

7.35

V

20

mV

20

/lVrms

2.5

/lVrms

2.3

IL = 0, VIN = 30 V

%/oC
mA

%/1000 hrs

0.1

Long Term Stability
Standby Current Drain

Unit

3.5

mA

Input Voltage Range

9.5

40

V

Output Voltage Range

2.0

37

V

Input / Output Voltage
Differential

3.0

38

V

2·96

J.LA723
J.LA723C
Electrical Characteristic

Characteristic

TA = 25°C, VIN = V+ = Vc = 12 V, V- = 0, Your = 5 V, IL = 1 rnA, Rsc = 0,
Cl
100 pF, CREF
0, unless otherwise specified. Divider impedance as seen by
error amplifier :::5 10 kfl connected as shown in Figure 1. Line and load regulation
specifications are given for the condition of constant chip temperature. Temperature
drifts must be taken into account separately for high dissipation conditions.

=

=

Typ

Max

Unit

= 12 V to VIN = 15 V
VIN = 12 V to VIN = 40 V
O°C:::5 TA:::5 70°C, VIN = 12 V to VIN = 15 V
IL = 1 rnA to IL = 50 rnA
O°C :::5 TA:::5 70°C, IL = 1 rnA to IL = 50 rnA
f = 50 Hz to 10kHz
f = 50 Hz to 10 kHz, CREF = 5 J.LF

0.01

0.1

%Vo

0.1

0.5

%Vo

0.3

%Vo

0.2

%VO

0.6

%VO

O°C :::5 TA :::5 70°C

0.003

Min

Condition
VIN

Line Regulation

Load Regulation
Ripple Rejection
Average Temperature
Coefficient
of Output Voltage
Short Circuit Current Limit
Reference Voltage
Reference Voltage
Change With Load
Output Noise Voltage

= 10 fl, Vo = 0
= 0.1 rnA
IREF = 0.1 rnA to 5 rnA
BW = 100 Hz to 10 kHz, CREF = 0
BW = 100 Hz to 10 kHz, CREF = 5 J.LF

0.03

6.80

86

dB
0.015

7.15

IL

= 0, VIN = 30 V

%/oC
rnA

7.50

V

20

mV

20

J.LVrms

2.5

J.LVrms

0.1

Long Term Stability
Standby Current Drain

dB

65

RSC

IREF

74

2.3

%/1000 hrs
4.0

rnA

Input Voltage Range

9.5

40

V

Output Voltage Range

2.0

37

V

Inpull Output Voltage
Differential

3.0

38

V

2·97

•

p,A723
Typical Performance Curves for J.lA723 and J.lA723C
Line Regulation as a
Function of
Input/Output
Voltage Differential

Current Limiting
Characteristics as a
Function of
Junction Temperature

1-+-+--+---1I-+-+-Y~UO
l +5 y
Asc '" 0
1

+O.21-+-+-I-+-+-!_TA

.'lV

5

+25°C

"

~

~

~

~

-0.11-+-+-/-+-+--1-+-+-+-1

0

-

ffi

~

120

i"""; ~

W

"!:;<
I::I

-40

(YIN -

YOUT) -

+20

·20

v

+60

+100

+140

I

Z

o

~
~

2o I

z

o

11

2.0

0

o

w

~~U~OLTAGE

/

~

l - I-

~

".0

5

-40~

15

v

~

g

I-T r I

·5

YOUT) -

w

"

1- ',

o

1j

-20~

= +12 V
!-VIN
YOUT '" +5 V
'" 1 mA
-20
::I
T,
'" 25·C

(YIN -

15

25

35

45

.se

00

T,

= +25°C
= 50 rnA

I,

~
~

o

v

g

25°C

25

·30

I

0

35

45

Your = +5 V
= +12 Y

y,"

>

I
I

40

=

10

4

INPUT VOLTAGE

+011-+-+--+-t-+--+-!-+-+--+

go

== +12 V
YOUT = +S V
= 40 rnA
I,

y"

Output Impedance as a
Function of Frequency

6D

>
E

-20

I
z

TIME-,..s

Line Transient Response

+0.2 r-T".---,-r-T"--r-y-,-.---,

o
~
~
Q

.'( 1

JUNCTION TEMPERATURE _ °C

Load Regulation as a
Function of
Input/Output
Voltage Differential

-10

T,

\

-8.0
·5

o

1('\

\

()

O. 3
·60

o 
E

o<~

I

~

1-+-+-I-+-+--1-IL

~

200

%
~f'

>

==
'" +3 V
=

Load Transient Response

O. 8

+0.3,.,-,-r-T"-r-Y-,-.,-,-,

'~
"

10

Z

C,

<

'"F

0

!

...::I

~

V

D1

::I

0

."

0.01

1DO

1k

10k

1M

100 k

FREQUENCY - Hz

TIME-J.ls

Typical Performance Curves for J.lA723
Maximum Load Current as a
Function of
Input-Output Voltage Differential
2DO

I

ToL, l,.l.
RTH ""

-

160

~
I
I-

~

'"()

::I

120

r~~A~:~T=S~~K~w

-

~

4D

o

=

l"-. .......

+125°C

"4..

o

-0.05

r---.: .......
t'-...

Z

5

10

-0.1

-0 2
20

~ r-....
·c r- ~
,.

30

40

50

INPUT·OUTPUT VOLTAGE DIFFERENTIAL - V

'SSoC

i"--

_Rr r I
20

40

so

OUTPUT CURRENT - mA

2·98

so

-005

r;;;:: ::--

~

......

~

I
~

f--

~S'C

t<~~
"i-l~$·C ~::::.

-01

r---

5
::I

~ -015

r--...

5 V
-0.1 51-your'"
VIN
'" +12 V

'-....

~

-......:. ~1<).

::I

~

It!::::::-

1
~C

~'-

o
,TA"'" +25°C

I

I
5

so

TA

+0.05

~

~

~

Load Regulation Characteristics
With Current Limiting

+005

1_

150°C/W

\

\

Load Regulation Characteristics
Without Current Limiting

100

·02 I-~our "" 5 V
VIN
'" +12 V
-025

l-i

o

sC

1

1'I
0

0

10

15

20

OUTPUT CURRENT - mA

25

30

f.LA723
Typical Performance Curves (Cont.)

Load Regulation Characteristics
With Current Limiting

,

vL, 1. vi
"""II~

~

V'N

'" +12 V

Ase

= 10 U

I -01

.

5 ••

, ,

w

JOUT I" V;EF
1 ,,".

••

"~ ••
0

>

Z

5~
!il

,.
,.

>
1

~~

"

Current LImiting Characteristics

Standby Current Drain as a
Function of
Input Voltage

.....-

I-

1\ '\
\ ~\

-02

-.

~ -~\

-<14

n

•

••

n

"

••

••

OUTPUT CURRENT - rnA

" f- -

:!;

f-

:.

r-

..

•• ,

=:

~r- -

+12 V

..

••

OUTPUT CURRENT -rnA

,.

TA

=:

+25°C

~c

.....-"'"

.. ,..

50

TA = -S5°e

~

/

n

f-~OUT '" +5 V

VIN

/

;or- -

0

~~n~\f ~-"0 --

3

••
;t t--;t
"!:!
••
" f-"
f-~
~. ••
r~ n
1
r"Jc I'· il
1
••
••
"~

2.

.

30

INPUT VOLTAGE - V

5.

Typical Performance Curves for ",A723C
Maximum Load Current as a
Function of
Input/Output Voltage Differential
2.•

..

LML "1'50Je

,
1
1

I-

\

120

ill
il!

=:

150°C/W

=:

80 mW

~

z
o

TA = 70°C

~
~

,.

••

".!il

2.

1

....

....,

.

3.

200

1T"~'" I"

.. II

,

.ill

••

=:

111°CIW

=

80 mW

•

\
r- -

••

l

r
••

1

-.

OUTPUT CURRENT - rnA

+. ,

~

.... ~

o

r--.

5

~

3.

5.

INPUT-OUTPUT VOL TAGE DIFFERENTIAL - V

~

02 - :~UT : :!2vV

-<12

r-

~~
-:toe ~

OUTPUT CURRENT - mAo

2-99

.
.""

'00

mA

0."-

'i

••

w 30

.0

Q

Z

t;

3•

TA == +25°C

~~

0

<

1
•0

.

•0

1

, ">OYf'"

,.

'0

IZ

>

•

•-"I" 7'0 i"
• .0

Standby Current Drain as a
Function of
Input Voltage
5.
V~UT ~ V'~,
E

1

••

I
f-+--+-+--f-~ ~

OUTPUT CURRENT -

I
I"'-'

~

o. f-+--+-+-f-II

o.

'" +12 V
=10U"-

t, "O°c l

1'..q ""2$0

2.

~

'00

1 1
1 1

"~ -01

I>
.~
t, i >.oC 1

,.

...

f-+-+--+-+-~:

>

"e:
"0w

<

5

-

••

JouTI" 15 vi _
YIN
Rse

'"1
z

'\

.

••

-

\

o ••

~

ATH
PSTANDBY

\

§

-...~:-;;:~

Load Regulation Characteristics
With Current Limiting

12~Oe 1 _

DIP PACKAGE
(NO HEAT SINK)

I

120

r-!' ""oC r--

Your = +5 V
V'N = +12 V
-<12

50

Maximum Load Current as a
Function of
Input/Output Voltage Differential

~

-

'0
"<~ ••
0

>

INPUT-OUTPUT VOLTAGE DIFFERENTIAL - V

~

>
1

~ -01

25°C

Current LImiting Characteristics

w

TA - DoC

;::

\1\.

••

-"'r--:

'"1

\

\

B 80

~

1

ATH

PSTANDBV

METAL CAN PACKAGE
(NO HEAT SINK)

I

Load Regulation Characteristics
Without Current LImiting

,.
•o

0

10

.0

TA

~

TA == +7QOC

3.

INPUT VOLTAGE - V

- f-

40

5•

p,A723
Typical Applications
Fig. 1

Fig. 2

Basic Low Voltage Regulator
(VOUT= 2 to 7 V)

Basic High Voltage Regulator
(VOUT = 7 to 37 V)
V,N

v+

v+

Vc

Vc

VREF

YOUT

VOUT

YREF
~A723

Rl

Rsc

R3

REGULATED
OUTPUT

CL

~A723

Rsc
CL J---4--'V'____........

csJ----i

CS

Rl

R3
Cl
100 pF

R2

CRE'I

-=

~~~~~TED

R2

-=

Typical Performance
Regulated Output Voltage
Line Regulation (~VIN = 3 V)
Load Regulation (~IL = 50 rnA)

Typical Performance
Regulated Output Voltage
Line Regulation (~VIN = 3 V)
Load Regulation (~IL = 50 rnA)

5V
0.5mV
1.5 mV

Note

15 V
1.5 mV
4.5mV

Note

Rl R2
R3 = R 1 + R2 for minimum temperature drift.

Rl R2
R3 = Rl + R2 for minimum temperature drift.
R3 may be eliminated for minimum component count.

Fig. 3

Fig. 4

Negative Voltage Regulator
V,N

Positive Voltage Regulator (External npn
Pass Transistor)
V,N

RS
2 kn
YREF

Vz
~A723

R4
3 kH

t - -.......-i:. ~~4898

CL

Rsc
REGULATED
OUTPUT

CS
N.!.

R3
3 kn

Rl

V-

Rl
Cl
100 pF
R2

'-----4---4-------1--<........ ~~~~~~TED

Typical Performance
Regulated Output Voltage
Line Regulation (~VIN = 3 V)
Load Regulation (~IL = 100 rnA)

Typical Performance
Regulated Output Voltage
Line Regulation (~VIN = 3 V)
Load Regulation (~IL = 1 A)

-15 V
1 mV
2 mV

+15 V
1.5 mV
15 mV

Note 4

Notes
1. Figures in parentheses may be used if R 1 I R2 divider IS placed
on opposite side of error amp.
2. Replace Rl IR2 in figures with divider shown in Figure 8.

3. V+ must be connected to a +3 V or greater supply.
4. For metal can applications where Vz is required, an external
6.2 V zener diode should be connected in series with VOUT
2-100

ILA723
Typical Applications (Cont.)
Fig. 5

Positive Voltage Regulator (External pnp
Pass Transistor)

Fig.6

Foldback Current Limiting
Y,N

V+

Vc

VAEF

Rsc
30 n

VOUT

Vc

V+

REGULATED
OUTPUT

R3

2.7 kn
VOUT

VREF

R1

pA723

CL

cs
R1

"A723

56 kn

NI

INV

Rsc

cs

R2

REGULATED
OUTPUT

INV

N.I.

R'

CL

'::'

R2

Typical Performance
Regulated Output Voltage
Line Regulation (~VIN
3 V)
Load Regulation (~IL = 1 A)

+5V

=

Fig. 7

Typical Performance
Regulated Output Voltage
Line Regulation (~VIN = 3 V)
Load Regulation (~IL = 10 mAl
Short-Circuit Current

0.5 mV
5 mV

Fig. 8

Remote Shutdown Regulator with
Current Limiting

Output Voltage Adjust

Y,N
R1
V+

Vc
Rsc

VRH

REGULATED
OUTPUT

VOUT

P1

4 - - - NON-INVERTING

INPUT

NOTE 2

R1

>L A723

CL

R2

cs
NI
R2

INV

t:=-4~~i'1':'-'"'WIr-CCSL
R' LOGIC
2 kfl

INPUT

Notes
Current limit transistor may be used for shutdown If current
limiting IS not required. Add if VOUT > 10 V

Typical Performance
Regulated Output Voltage
Line Regulation (~VIN
3 V)
Load Regulation (~IL = 50 mAl

=

+5 V
0.5 mV
1.5 mV

2·101

+5 V
0.5 mV
1 mV
20 mA

•

JLA 105 • JLA305
JLA305A • JLA376
Voltage Regulators

FAIRCHILD
A Schlumberger Company

Linear Products
Connection Diagram
a-Pin 'Metal Package

Description
The 10S/30S/30SA/376 are Monolithic Positive
Voltage Regulators constructed using the Fairchild
Planar epitaxial process. Applications for these
devices include both linear and switching regulator
circuits with output voltages greater than 4.S V. These
devices will not oscillate when confronted with varying
resistive and reactive loads and will start reliably
regardless of the load within the ratings of the circuit.
They also feature fast response to both load and line
transients. Used independently, the 10S/30S will
supply 12 mA, the 30SA, 4S mA and 376, 2S mAo The
10S is specified for the military temperature range
(-SSOC to +12S0C) and the 30S/376/30SA are
specified for O°C to +70°C operation. The
10S/30S/30SA are in an a-pin TO-S package and the
376 is available in the space and cost saving DIP.

REG

OUT

BOOSTER

6

FEEDBACK

COMMON

(Top View)

Order Information
Type
Package
p,A10S
Metal
p,A30S
Metal
p,A30SA
Metal

• LOW STANDBY CURRENT DRAIN
• ADJUSTABLE OUTPUT VOLTAGE FROM
4.S TO 40 V
• HIGH OUTPUT CURRENTS EXCEEDING 10 A
WITH EXTERNAL COMPONENTS
• LOAD REGULATION BETTER THAN 0.1%, FULL
LOAD WITH CURRENT LIMITING
• DC LINE REGULATION GUARANTEED
ATO.03%/V
• RIPPLE REJECTION OF 0.01%/V
Absolute Maximum Ratings
Input Voltage
p,A10S,p,A30SA
p,A30S,p,A376
Input 1Output Voltage
Differential
Internal Power Dissipation
(Note 1)
p,A 10S, p,A30S,
p,A30SA,p,A376
Operating Temperature Range
Military (p,A 10S)
Commercial (p,A30S,
p,A30SA, p,A376)
Storage Temperature Range
Metal
DIP
Pin Temperature
Metal soldering (60 s)
DIP Soldering (1-0 s)

2

OUT

Code
SW
SW
SW

Part No.
p,A10SHM
p,A30SHC
p,A30SAHC

Connection Diagram
a-Pin DIP

CURRENT LIMIT

REG OUT

COMP

BOOSTER OUT

so V

UNREGIN

FEEDBACK

COMMON

REF BYPASS

(TOp View)

40 V

Order Information
Type
Package
p,A376
Molded DIP

40V
SOOmW
4S0mW

-6S0C to +1S0°C
-SsoC to +12SoC

Notes
L Rating applies to ambient temperatures up to lO·C. Above
70·C ambient derate linearly at 6.25 mW /·C for the metal can
and 5.6 mW /·C for the mini Dip.
2-102

Code
9T

Part No.
p,A376TC

Equivalent Circuit
. . . - - - - - - - - - - - - -......- - - - - - - - - - . . - - - - - -......-=-3 UNREGULATED INPUT

r-~~----~--~

BOOSTER OUTPUT

'--'WI..-_'W..-+---'-' CURRENT LIMIT
~------8::'REGULATED OUTPUT
, ' - _ - - - -_ _- - - - - ' - 7 COMPENSATION
SHUTDOWN

R3
6.8k

6 FEEDBACK
:l-_-I_____-+_......__.::.

' - - - - - t - - - - t - - - - - _ > - - - - - - " - 5 REFERENCE BYPASS

'--_~>---......--------_~---------_~---------~4 COMMON
Pin Connections Shown are for Metal Package

p.A105
Electrical Characteristics

TA = 25°C unless otherwise specified (Note 2)

Characteristic

Condition

Max

Unit

8.5

50

V

Output Voltage Range

4.5

40

V

Output/Input Voltage
Differential

3.0

30

V

Load Regulation (Note 3)

Line Regulation

o !5 IL !5

Min

Typ

Input Voltage Range

12 mA

RSC = 100, TA = 25°C

0.02

0.05

%

RSC = 100, TA = 125°C

0.03

0.1

%

RSC = 100, TA = -55°C

0.03

0.1

%

0.025

0.06

%IV

0.015

0.03

%IV

VIN - VO!5 5 V
VIN - Vo

>

5V

Ripple Rejection

CREF = 10 p.F, f = 120 Hz

0.003

0.01

%/V

Temperature Stability
(Note 5)

-55°C !5 TA !5 125°C

0.3

1.0

%

1.7

1.81

Feedback Sense Voltage
Output Noise Voltage

1.63
10 Hz !5 f !5 10 kHz

CREF = 0
CREF

Current Limit Sense
Voltage (Note 4)

RSC = 100, TA = 25°C,
Vo=OV

Standby Current Drain

VIN = 50 V

>

O. 1 p.F
225

Long Term Stability
Notes
2. These specificaltons apply for input and output voltages within
the ranges given, and for a divider Impedance seen by the
feedback terminal of 2 k!l, unless otherwise specified. The
load and Ime regulation specifIcatIons are for constant junction
temperature. Temperature drift effects must be taken into
account separately when the unit IS operating under condItions
of high dissipation.
3. The output currents given. as well as the load regulatIon. can
be increased by the addition of external transistors. The

V

0.005

%

0.002

%

300

375

mV

0.8

2.0

mA

0.1

1.0

%

Improvement factor will be roughly equal to the composite
current gam of the added transIstors.
4. With no external pass transIstor.
5. Temperature Stability IS defined as the percentage change in
output voltage for a thermal variation from room temperature to
either temperature extreme.

2·103

•

~A105 • ~A305 • ~A305A • ~A376
",,305
Electrical Characteristics

TA = 25°C unless otherwise specified (Note 2)

Characteristic

Condition

Min

Typ

Max

Unit

Input Voltage Range

8.5

40

V

Output Voltage Range

4.5

30

V

Outputllnput Voltage
Differential

3.0

30

V

Rsc
Load Regulation (Note 3)

o ~ IL ~

12 mA

Rsc

= 100, TA = 25°C
= 150, TA = 70°C

0.02

(}'05

%

0.03

0.1

%
%

0.03

0.1

VIN- Vo~ 5V

0.025

0.06

%IV

VIN -Vo> 5V

0.015

0.03

%IV

Ripple Rejection

CREF = 10 /IoF, f = 120 Hz

0.003

0.01

%/V

Temperature Stability
(Note 5)

O°C ~ TA ~ 70°C

0.3

1.0

%

1.7

1.81

Rsc = 100, TA = O°C
Line Regulation

'.
1.63

Feedback Sense Voltage
~

f

~

10 kHz

V

CREF = 0

0.005

%

CREF > 0.1 /IoF

0.002

%

Output Noise Voltage

10 Hz

Current Limit Sense
Voltage (Note 4)

RSC = 100, TA = 25°C
Vo= OV

Standby Current Drain

VIN = 40 V

225

Long Term Stability

300

375

mV

0.8

2.0

mA

0.1

1.0

%

Typ

Max

Unit

",,305A
Electrical Characteristics

TA = 25°C unless otherwise specified (Note 2)

Characteristic

Condition

Min

Input Voltage Range

8.5

50

V

Output Voltage Range

4.5

40

V

Output/Input Voltage
Differential

3.0

30

V

= 0 0, TA =
= 00, TA =

25°C

0.02

0.2

%

70°C

0.03

0.4

%

0.03

0.4

%

VIN - Vo ~ 5V

0.025

0.06

%/V

VIN - Vo > 5V

Q.015

0.03

%IV

Rsc
Load Regulation

o ~ IL ~ 45 mA

Rsc

Rsc = 00, TA "i' O°C
Line Regulation

= 10 /IoF, f =

Ripple Rejection

CREF

Temperature Stability
(Note 5)

O°C ~ TA ~ 70°C

0.003

120 Hz

Feedback Sense Voltage
Output Noise Voltage

1.55
10 Hz

~

f

~

10 kHz

%/V

0.3

1.0

1.7

1.85

%
V

=0

0.005

%

CREF > 0.1 /IoF

0.002

%

CREF

Current Limit Sense
Voltage (Note 4)

RSC = 100, TA = 25°C,
Vo= OV

Standby Current Drain

VIN

225

= 50 V

Long Term Stability
Notes on following page.

2-104

300

375

mV

p.8

2.0

mA

0.1

1.0

%

~A105 • ~A305 • ~A305A • ~A376
~A376

Electrical Characteristics

O°C:$ TA :$70°C

Characteristic

Condition

Typ

Min

Max

Unit

Input Voltage Range

9.0

40

V

Output Voltage Range

5.0

37

V

Output/Input Voltage
Differential

3.0

30

V

= 00. TA = 25°C
RSC = 0 O. TA = 70°C

0.2

%

0.5

%

Rsc = 00. TA = O°C

0.5

%

TA = 25°C

0.03

%IV

O°C :$ TA :$ 70°C

RSC

o :$ IL :$ 25 mA

Load Regulation

Line Regulation

0.1

%IV

Ripple Rejection

f

= 120 Hz. TA = 25°C

0.1

%IV

Standby Current Drain

VIN = 30 V. TA =25°C

2.5

mA

1.80

V

Reference Voltage

1.60

1.72

Current Limit Sense
Voltage

360

•

mV

Note.
2. These specifications apply for input and output voltages within
the ranges given, and for a divider impedance seen by the
feedback terminal of 2 kll, unless otherwise specified. The
load and line regulation specifications are for constant junction
temperature. Temperature drift effects must be taken into
account separately when the unit is operating under conditions
of high diSSipation.
3. The output currents given, as well as the load regulation, can
be increased by the addition of external transistors. The

improvement factor will be roughly equal to the composite
current gain of the added transistors.
4 With no external pass transistor.
5 Temperature Stability IS defmed as the percentage change in
output voltage for a thermal variation from room temperature to
either temperature extreme.

Typical Performance Curves for
~105/~305/~A305A

Current Limiting
Characteristics

Load Regulation

f
~.~~.. ...... TA=1!rC
; -D.Ol
........ -~ ....................
!
~1--r~-.'.-.,~~1-~~
....
~ -D.02~+-+-t-+-+'''::''''+-I--i
T.:-..·C ••••••••
~

I

..•....

Short Circuit Current as a
Function of Temperatur~

I

Ii D.·f-+--~H~
U

~C=~H

I-f-+-+++---+--+-+-+-+-I

!:
~

1--t---il:;11

o!~:o!

~;-~!-~
r- lit-I-II

--

o! f-- o!t-f--

-003~+-+-t-+-+-+-+---l

_....

f-- ".c:O-+-+-+-+--+--I

o

I 1
5

10

15

, LOAD CURRENT-mA

ao

1
1

.........

>

f- "'c=lO II+-i+++-+-t-t---l

O~O~~lO~~ao~~ao~~~~~~..·
OUTPUT CURRENT-mA

2·105

10

-

11-......

........ ~=151l

r--. .....
-l r--

",c:i"

r--....

"

t- f:::- ........

1
75

50

2S

0

25

50

75

TEMPEAATURE_oC

100

125 150

p,A 105 • p,A305 • p,A305A • p,A376
Performance Curves for
p.A 10S/p.A30S/p.A30SA (Cont.)

Current Limiting Characteristics

Current Limit Sense Voltage as a
Function of Temperature
.s

..

.:•••:••.••~
\. ...

I

~ -.oo

...
~ ...
Ii

~

~

!

0

\

.......

I'-..

.. ...

!iIU

•

.. .. ..

10

••

7S 50

25

i

.... ~

50

75

75

50

25

,

....

25

50

75

100

.-,

125

TEMPERATURE_OC

Regulator Dropout Voltage

r-

-

~

TEMPERATURE_oC

t'ri I
10

TA = -55 0

1.1

I. ,.

...

8

..

..

./

3.

U

~-r

TA=125"C
.........................

•• !:1O--''--:
..:--.L--:..!:-..J......--!:
..:--.L-~..
INPUTVOLTAGE-Y

Transient Response
.. r--,--r-~--~-,---,
1-----1--+--1--+ RseLoH-

4.

I ...

e ......................

···········~A~ ...~~C~~+--1

! . . ~:~:::: ......

45

~

,--±-.-:..!;-":\..,..-,766--:...!:--:!'..

Standby Current Drain as
Function of
Input Voltage

,

CREF"'O

Minimum Output Voltage as a
Function of Temperature

>
I

"_'=76~_..::--_:
..

..

10

OUTPUT VOLTAGE-V

INPUT-OUTPUT VOLTAGE DIFFERENTIAL-V

'3 r--,-.....,.-,--.,....--,.-,--.--,
~V 1---t-+--+---1f--+-VJ.,,.
Asc=1GU'

IL""5rnA····· ......

..........

'lOy

1 1

./

0

100 1as 110

YOUT

_~REF"'10~f

s.

... •

~

TA 25°C

V

7.

IS

,

.... ~

I

0

"'

.......

Supply Voltage Rejection as a
Function of
Input/Output Voltage Differential

YO~Y=4!V-

>

I'-..

TEMPERATURE_oC

Minimum Input Voltage as a
Function of Temperature

••

-........

a

LOAD CURRENT-rnA

~~

.......

~

-0,08

-.,

........

••

I:

!;

I!:::>

.... 1'-..

IU

ill

~ -

R1 '" 1.11 VOUT , _

\

D-5

~

....

IA1/•• ~I"1I 1-

'.0

IU

' \ ••••• TA- -SS"C

-

3•

.J:SSJA-

>
I

I

Optimum Divider
Resistance Values

./

V

V

/

/

I -..
~

76 ... m

TEMPEAATURE-o C

2-106

I

I--~~-+--r-+--~---1

I

~.
.. ..

VOUT~lOV

r=-~L~. +--t---t--t-1-j
~~ ... ..:::= ~L ~"F ---f---+ IFL=20mA
Asc ~10 II

o

•

.lYIN=5Y

LINE

IU

.. I---'"
76 .. ..

>
I

INL=1.0mA

LOAD
~.........

~\:.......~~.~:.j.1Dv..
I

-... ~.--~--1D~--~-=..~_~I~..
TIME-Io!s

~A105 • ~A305 • ~A305A • ~A376
Typical Performance Curves for 1tA376

Current Limiting Characteristics

Load Regulation

"I
iii

Ii
iiig

~
g

I

I I
I I

.z

1

..

•

3D

.....

i'" ......

-

0.300

!.~

~

iii

"'

,.....

8

i! ••

..

70

~ "'I---F'''''"-;-'~-'::::+-r--.-+-+-t----'H
........

of ::::: .•....
-d i-tr"'f·:;,···
..k..
1O

""-ITYSj

:"I··•....::-1
•• - H

..... .

•
•
•7 11

i

i

I

2.

•

-C,=.

•

...... C. = ... >
..
,..

INL=10mA_

1,OUT =lOY ..... .

nME-~.

2.2f-

•
•

2.

Supply Voltages Rejection as a
Function of
Input/Output Voltage Differential

R2=.!.l!!.!!l
Vo-1.72

VOUT=t72X(~+1)

• \

2.

.......

·~4.~~
...-...~.·~L~~~~~

\

z.3

,,41-+-+--+--+--+-+-+-I--...,H

•• "

IF~C==20mA-

1 I 1 1 1 1

1 \

25

-+--+--1--1

R1=111YOVT(tcU)

Z•

" • L....-!:--'-...L.:..:-1-....J...-50
±-..L...-=70:---'L......J
AMBIENT TEMPERATURE_oC

400

>Y'N=5V

YOUT f'DY

-4DD!:-.--'--1D=----JL---:!:
..,---....J...-~..

70

Optimum Divider Resistance

120I-+-+--+,<\-+--+-+-+-I-H

"8

i

50

2.

-

~

;t
~

......

.sc; •• " +-+--t--t

AMBIENT TEMPERATURE-DC

z.

g "8
i "7

gIY

,,/

~

AMBIENT TEMPERATURE_oC

Regulator Dropout Voltage

-

L .. _

i •
g •
5

50

3DU.

I\.

LINE

I

•
25

101121125

Transient Response

•

7

YOUT=5V

VOJT = sly -

3

7

....

..... 1-"

INPUT VOLTAGE-V

2

I

........

035D

'50

3D

Minimum Input Voltage as a
Function of Temperature

>

1-1-'"

...1 /

.. ..

.1

10

-~

j.... - I -

1/

OUTPUT CURRENT-mA

lol5m~0400

g

i

~-r

~ ....
"'" L

.... ..... .;:;~~.;t~.:
• ..oI!!!! ... ............1 1
I I

>

i:::;

VOUT=t)V

~ "'"
i

~~

Current Limit Sense Voltage as a
Function of Temperature

I

1

'.10

'.70

•..

10

~

i

TA-ODe

LOAD CURRENT-mA

~

...1

l ...

f-I
T.="·C- r.
T.=7O"C-

.....r.J........

=

....
....

~C!101!-

.'I--t-H-+-+-+-H-I.lSI1••.1-

...

Standby Current Drain as a
Function of
Input Voltage TA 25°C

-~

..... I--t-t-r:.....'"Iood:-+++++-i

"t

10

11

20

25

OUTPUTVOLTAGE-Y

2·107

--..

•.OIDI-I-I-t-t-HHI--HI--H

.... f..,
3D

•

10

15

25

INPUT·OUTPUTYOLTAGE DIFfeRENTIAL

3D

•

p,A 105 • p,A305 • p,A305A • p,A376
Typical Appllcatlon8
Ba8ic P081tlve Regulator With Current Limiting
Rsc
r--"N"--'-:'=~~---1r-VOUT
R1

V'N.......:=~~.:.:....:":O
R2
CREF

VOUT"" 1.72 Rl

+ R2

R2

V

ISC "" VSENSE rnA

Rse

2-108

JLA 117 • JLA217 • JLA317

FAIRCHILD

3-Terminal Positive
Adjustable Regulators

A Schlumberger Company

Linear Products
Connection Diagram
To-3 Package

Description
The /LA 117 is a 3-Terminal Adjustable Positive Voltage
Regulator capable of supplying in excess of 1.5 A over
an output voltage range of 1.2 V to 37 V. This voltage
regulator is exceptionally easy to use and requires
only two external resistors to set the output voltage.
Further, it employs internal current-limiting, thermalshutdown and safe-area compensation, making it
essentially blow-out proof.

OUTPUT 3

The /LA 117 series serves a wide variety of
applications including local, on-card regulation. This
device also makes an especially simple adjustable
switching regulator, and a programmable output
regulator; or by connecting a fixed resistor between
the adjustment and output, the /LA 117 series can be
used as a precision current regulator.

(TOp View)

Order Information
Type
Package
/LA317
Metal
/LA 117
Metal

• OUTPUT CURRENT IN EXCESS OF 1_5 A IN To-3
AND TO-220 PACKAGES
• OUTPUT ADJUSTABLE BETWEEN
1_2 V AND 37 V
• INTERNAL THERMAL-OVERLOAD PROTECTION
• INTERNAL SHORT-CIRCUIT CURRENT-LIMITING
CONSTANT TEMPERATURE
• OUTPUT TRANSISTOR SAFE-AREA
COMPENSATION
• FLOATING OPERATION FOR HIGH-VOLTAGE
APPLICATIONS
• STANDARD 3-PIN TRANSISTOR PACKAGES
• AVAILABLE IN MILITARY TEMPERATURE RANGE
Absolute Maximum Ratings
Input-Output Voltage Differential
Power Dissipation
Operating Junction Temperature
Military (/LA 117)
Automotive (jLA217)
Commercial (/LA317C)
Storage Temperature
TO-3 Steel
TO-220
Pin Temperature
TO-3 Package
(Soldering, 60 s Time Limit)
TO-220 Package
(Soldering, 10 s Time Limit)

Code
HJ
HJ

Part No_
/LA317KC
/LA 117KM

Connection Diagram
TO-220 Package

(Top View)

Order Information
Type
Package
/LA317
Molded Power Pack
/LA217
Molded Power Pack

40 Vdc
Internally Limited
-55°C to +150°C
-40°C to +125°C
O°C to +125°C
-65°C to +150°C
-55°C to +150°C

2·109
---~~--~~~

•
Code
GH
GH

Part No_
/LA317UC
/LA217UV

JLA 117 • JLA217 • JLA317
Schematic Diagram

~

310

v

v

""~

"

v

'"'

~

125 k

135

124 k

>-4:::~f-r:~;:1--

>-

-....
r

3Dpi'

36.

5"

110

67"

(F
......

'----

.......

"'"
......
24 "

'2 ~6.3V
100

~

~56"

~'20

230

J31D

30 pF

(

12~

V,N
3

170
160

V

~I-

63V

~~

~
510

13.

200

6.8 k

-r

63!

"- ~

105

126 k

51.

4
>-01
VOU

ADJUST

2·110

~A 117
Electrical Characteristics

• ~A217 • ~A317

VI - Vo = 5 V; 10 = 0.5 A for K and U Packages
TJ = Operating Temperature (see Note 1); IMax and PMax per Note 2;
unless otherwise specified.
/LA117 1217
Min Typ

Max Unit

0.01

0.02

0.01

0.04 %/V

0.02

0.05

0.02

0.07 %/V

5

15

5

25

5 V

0.1

0.3

0.1

0.5

%VO

VO:::::; 5 V

20

50

20

70

mV

~

0.3

1

0.3

1.5

%VO

50

100

50

100 /LA

0.2

5

0.2

5

Condition

Line Regulation
Reg Line (Note 3, 7)

TA = 25°C, 3 V:::::; VI - VO:::::; 40 V
3 V :::::; VI - Vo :::::; 40 V

Regulation
Reg Load Load
(Note 3)

VO:::::; 5 V

TA = 25°C,
10 mA :::::; 10 :::::; IMax

Vo

10 mA :::::; 10 :::::; IMax

/LA317
Max Min Typ

Symbol Characteristic

Vo

~

5V

IAdi

Adjustment Pin Current

~IAdi

Adjustment Pin Current
Change

2.5 V :::::; VI - Vo :::::; 40 V
10 mA :::::; IL :::::; IMax, PO:::::; PMax

VRef

Reference Voltage
(Note 4)

3 V :::::; VI - Vo :::::; 40 V
10 mA :::::; 10 :::::; IMax, Po :::::; PMax

TS

Temperature Stability

IL(Min)

Minimum Load Current
to Maintain Regulation

IMax

Maximum Output
Current

1.20 1.25

1.30 1.20 1.25

0.7
3.5

VI - Vo = 40 V
VI - Vo :::::; 15 V, Po :::::; PMax
K and U Packages

1.5

VI - Vo = 40 V, Po :::::; PMax,
TA = 25°C K and U Packages

0.25 0.4

2.2

1.5

TA = 25°C, 10 Hz:::::; f:::::; 10 kHz

RR

Ripple Rejection
(Note 5)

Vo = 10 V,
f = 120 Hz

S

Long-Term Stability,
TJ = Thigh
(Note 6)

TA = 25°C for
Endpoint Measurements

0.3

1

ROJC

Thermal Resistance
Junction to Case

K Package (TO-3)

2.3

3

Without CAdi

U Package (TO-220)

10

mA

2.2
A

RMS Noise, % of Vo

= 10/LF

%VO

0.15 0.4

N

CAdi

3.5

/LA

1.30 V

0.7
5

mV

66

0.003

0.003

65

65

80

66

%VO
dB

80
0.3

1

2.3

3

%1.0 k
Hrs
°C/W

5

Notes
4 Selected devices with tightened tolerance reference
voltage available.
5 CAdI' when used, IS connected between the adjustment
pin and ground.
6 Since Long-Term Stability cannot be measured on each deVice
before shipment, this specification is an engineering estimate
of average stability from lot to lot.
7. lOUT; 0.5 A for VI - Vo .oS 25 V and IMax for VI - Vo ~ 25 V.

1 ,.,A 117 Operating Junction Temperature Range;
-55'C to +150'C
,.,A217 Operating Junction Temperature Range;
-25'C to +120'C
2. IMax ; 1 5 A for K (TO-3) and U (TO-220) Packages
PMax ; 20 W for K (TO-3) and U (TO-220) Packages
3. Load and line regulation are specified at constant Junction
temperature Changes in Vo due to heating effects must be
taken Into account separately. Pulse testing with low duty
cycle is used.
2-111

•

~A 117· ~A217· ~A317
Typical Performance Curves

Load Regulation
0.'

..

Adjustment Pin Current

Current Limit

70

4

VI = 15 V
Yo = 10 Y

'1,65

2

w

ILL oslA

I

= 1:&'A- l- t-

Il

~ -0.2

-""
..........

~

~ -0.4

1'-...

5
S
-0.•

,

c

/ TJ ::: 25"C

~ f\.

a:

""

.-

2

I

. -D.'

~

-1.0

-75

-so

o
-25

0

25

50

75 100 125 150

~

"'

J

~

20

10

T J. JUNCTION TEMPERATURE _ °C

~

TJ::: -S5°e

1/'"~
TI160'r
~

If-

.§

o

Ii'l

3

~
a:

i

" ""

j

..

./

V

I-

-

V

45

II

40
35
_75

40

30

•

~

,

-

60

-so

-21

0

25

50

75 100 125 150

TJ' JUNCTION TEMPERATURE _·C

VI - Yo. INPUT/OUTPUT
VOLTAGE DIFFERENTIAL - Vdc

Dropout Voltage

Minimum Operating Current

Temperature Stability

5.0

1.260

3.0
.6.Yo"" 100 mY

.}
51

II

2.S

..........

IL=USA

./

I .•

-

II

0

25

SO

75

........

1.240

"".ffi

~ 1.230

,:

100

"121 150

1.220
_7&

~

.

i.
I

i
i

40

20

0

r-

-so

-25

0

25

50

I

.,1-

I--

15
10

T~'5II"C

~/

\. /
.,3- ".

~

/

- :;;; ?'

2.0

I~ ~

rr
II

TJ = 2"C
10

oc

30

20

40

VI - V()t INPUTfOUTPUT
VOLTAGE DIFr:ERENTIAL - VdC

Ripple Rejection as a
Function of Frequency

120

,

{JJ)J.

!.

= 15 Y
Vo = lOY
VI

21

30

35

0
001

,

f"" 120 Hz
TJ = 250C
0.1

10

10. OUTPUT CURRENT - A

2·112

Il = SOD mA

I/~

i

d,

0
20

1---

/

VI = l5Y
I\. TJ=WC
Yo = lOY
\
f-~ITHOUT~
1"\1
40
\1\
'\..
i 20

CAdi = 10 1J.F

VI - Yo - 5 V

Vo. OUTPUT VOLTAGE - Y

CAdi"" 10 p.F

13 ..

I

WITHOUT CAdi

20

2.5

TJ "" _Sloe

100
10

IL = SOD mA
t. 120 Hz
TJ = we

15

3.0

00

100 125 150

TJ. JUNCTION TEMPERATURE -

I---

10

75

Ripple Rejection as a
Function of
Output Current

!

3 .•

05

..........

Ripple Rejection as a
Function of
Output Voltage
IC• d,

a:

"
!i"..

;

T J. JUNCTION TEMPERATURE - ·C

100

~
a:

I

....... ~ ........ ......

IL '" 200 RIA

1.!!. 7& -50 -25

E 40

..... ........

v'"

250

r- ~ :---.
.................. .::::: r-; ~

1-1'=1"1

c

r

V

IL '" SOOmA

II'
_c

g

.....

......... _,,=I.U

2.0

01S
>w
>~

4 .•

,

>

0
10

100

1k

10k

lOOk

f. FREQUENCY - Hz

1 II

10M

pA117·pA217·pA317
Typical Performance Curves (Cont.)

Output Impedance
10

,

10

o

w

"~>

F=~~ """" \50VV
~~L "" 500 rnA
TJ""25"C

1

L

,

5'
>z

/

~~

::»
ow
.0

/

/

..-

10 J
10

-

V

/

J

CAd) = 10pF

b-

10k

tOOk

1M

05
0
-0 5

w

_1 01-

"~>
"z"

'\

(\

\

0

C:~

-1

:;

~~

3

0

~

/1'-

05
0
20

10

30

Rl
240

~

VI
15 V
Vo:::: 10 V
INL 7 50 rnA

0
40

\

TJ=25'C

I
II

'\,

1 /LF

,.V

R2

-

\
10

20

30

-

VOUT
/L A117

1+

Rl

VREF
ADJUST

R2
+ Fi1)
+ IAdj R2

-IAdJ

Smce 'Adj is controlled to less than 100 p.A, the error associated
with this term is negligible m most applications.

\

t'PROG
VOU T
R2

_L...

Basic Circuit Operation
The p,A 117 is a 3·terminal floating regulator. In
operation, the p,A 117 develops and maintains a
nominal 1.25 V reference (VREF) between its output
and adjustment terminals. This reference voltage is
converted to a programming current (lProg) by R 1 (see
Figure 1), and this constant current flows through R2
to ground. The regulated output voltage is given by:

(1 + *)

40

Basic Circuit Configuration

C'N IS required if regulator is located an appreciable distance
from power supply filter.

= VREF

r-- b-

t, TIME - MS

Fig. 1.

VOUT

I,

rr-

Since the p,A 117 is a floating regulator, it is only the
voltage differential across the circuit which is
important to performance, and operation at high
voltages with respect to ground is possible.

CO UT

VOUT = 1.25 V (1

C L - 0, WITHOUT CAd)

Since the current from the adjustment terminal (lAdj)
represents an error term in the equation, the p,A 117
was designed to controllAdj to less than 0 and keep it
constant. To do this, a" quiescent operating current is
returned to the output terminal. This imposes the
requirement for a minimum load current. If the load
current is less than this minimum, the output voltage
will rise.

VO UT

ADJUST

5

j,ts

/L AI17

CIN

I--I--

-~

\

2

5

Standard Application

0.1 /LF

... ~

5Q
.....

10

Typical Applications

IAdJ •

C L :::: 1 MF,CMJ:::: 10!,-F

1

::»

I"
ILl

2

>z

-1 5

f, FREQUENCY - Hz

r--

\

II

t, TIME -

V IN

"
;:>
5,

'" ,

= 10 V
IL = SOmA
TJ = 25°C
Vo

I--

I I
I

CL :::: 1 j.tF, CAdI = 10 j.tF

\.

J

w

...

-."
1k

100

C L '" 0, WITHOUT CAd)

10

~

5'
>w

I

15

"'0

WITHOUT CAd)

,

Load Transient Response

Line Transient Response

,

VRef = 1.25 V TYPICAL

+ IAdj R2

2·113

•

JLA 117 • JLA217 • JLA317
Load Regulation
The /.IA 117 is capable of providing extremely good
load regulation, but a few precautions are needed to
obtain maximum performance. For best performance,
the programming resistor (Rl) should be connected
as close to the regulator as possible to minimize line
drops which effectively appear in series with the
reference, thereby degrading regulation. The ground
end of R2 can be returned near the load ground to
provide remote ground sensing and improve
load regulation.

Figure 2 shows the /.IA 117 with the recommended
protection diodes for output voltages in excess of
25 V or high capacitance values (Co> 25/.1F,
CAdi> 10 /.IF). Diode 01 prevents Co from
discharging through the IC during an input short
circuit. Diode 02 protects against capacitor CAdi
discharging through the IC during an output short
circuit. The combination of diodes Oland 02 prevents
CAdi from discharging through the IC during an input
short circuit.

Fig. 2.

Voltage Regulator with Protection Diode.

External Capacitor.
A 0.1 /.IF disc or 1.0 /.IF tantalum input bypass
capacitor (CIN) is recommended to reduce the
sensitivity to input line impedance.

01
IN4002

VO UT

The adjustment terminal may be bypassed to ground
to improve ripple rejection. This capacitor (CAdi)
prevents ripple from being amplified as the output
voltage is increased. A 10 /.IF capacitor should
improve ripple rejection about 15 dB at 120 Hz in a
10 V application.

R1

02
IN4002

+
ADJUST

Although the /.IA 117 is stable with no output
capacitance, like any feedback circuit, certain values
of external capacitance can cause excessive ringing.
An output capacitance (Co) in the form of a 1.0 /.IF
tantalum or 25 /.IF aluminum electrolytic capacitor on
the output swamps this effect and insures stability.

I - - - - -......--~
R2

Protection Diode.
When external capacitors are used with any IC
regulator it is sometimes necessary to add protection
diodes to prevent the capacitors from discharging
through low current pOints into the regulator.

2-114

Co

~A431

F=AIRCHILD

Adjustable Precision
Shunt Regulator

A Schlumberger Company

Linear Products

Connection Diagram
TO-92 Package

Description
The JlA431 is a 3-terminal Adjustable Shunt Regulator
with guaranteed temperature stability over the entire
temperature range of operation. The output voltage
may be set at any level greater than 2.5 V (VREF) up
to 36 V merely by selecting two external resistors that
act as a voltage divided network. Due to the sharp
turn-on characteristics this device is an excelient
replacement for many zener diode applications.

REF
(2)

~'A,"OO'
ANODE

•

(1)

(3)

This product wili operate over the entire temperature
range of -55°C to +125°C. This includes the unique
automotive range of -40°C to +85°C.

(Top View)

Order Information
Type
Package
JlA431 C
Molded

• AVERAGE TEMPERATURE COEFFICIENT
50 ppm/oC
• TEMPERATURE COMPENSATED FOR
OPERATION OVER THE FULL
TEMPERATURE RANGE
• PROGRAMMABLE OUTPUT VOLTAGE
• FAST TURN-ON RESPONSE
• LOW OUTPUT NOISE

Code
EI

Absolute Maximum Ratings
Cathode Voltage
Continuous Cathode Current

37 V
-10 mA to
+150 mA

-.5 V

Reference Voltage
Reference Input Current
Operating Temperature Range
JlA431C
Storage Temperature Range
TO-92 Molded
Power Dissipation
TO-92 Molded
Pin Temperature (Soldering)
TO-92 Molded (lOs)
Operating Conditions
Cathode Voltage, Vz
Cathode Current, Iz

10 mA

775mW
260°C
Min
VREF
1 mA

Equivalent Circuit
r -______________________________~--~r_--~--_.--1 CATHODE
(v z)
C2

R6
12 k

R7
12 k

R3
2.5 k
04

02
01

R2
1k

R5
640 !l

R1
3.3 !l
2 ANODE
(GND)

2-115

Part No.
JlA431AWC

Max
37 V
100 mA

~A431
Electrical Characteristics

At 25°C ambient temperature unless otherwise noted
/LA431C
Condition

Min

Typ

Max

Unit

Reference Voltage

Vz = VREF, liN = 10 mA
(Figure 1)

2.440

2.495

2.550

V

VOEV

Deviation of Reference
Input Voltage Over
Temperature

Vz
VREF, liN
10 mA,
TA = full range,
See Note 1 (Figure 1)

a

17

mV

AVREF
AVZ

Ratio of the
Change in Reference
Voltage to the Change
in Cathode Voltage

Iz = 10 mA
(Figure 2)

Vz from VREF
to 10V

-1.4

-2.7

mVIV

Vz from
10 V to 36 V

-1

-2

mV/V

IREF

Reference Input
Current

R1 = 10 kfl, R2
00,
liN = 10 mA (Figure 2)

2

4

/LA

alREF

Deviation of
Reference Input
Current over
Temperature

R1 = 10 kfl, R2 =
liN = 10 mA,
TA = Full Range
(Figure 2)

0.4

1.2

/LA

IZ(MIN)

Minimum Cathode
Current for
Regulation

Vz = VREF (Figure 1)

0.4

1

mA

IZ(OFF)

Off-State Current

Vz = 36 V, VREF = 0 V
(Figure 3)

0.3

1

/LA

rz

Dynamic Output
Impedance

Vz = VREF,
Frequency = 0 Hz,
See Note 2 (Figure 1)

.75

fl

Symbol

Characteristic

VREF

=

=

=

00,

Notes
1. Oeviation of reference input voltage. VOEV. is defined as the
maximum variation of the reference input voltage over the full
temperature range.

aVREF can be positive or negative depending
on whether the slope is positive or negative.
Example: VOEV = 8 mY. VREF = 2495 mY.
T2 -T 1 = 70°C. slope is positive

---..

.....

-----:::;-

G489~~V] 10'
aVREF =

~

= +46 ppm/oC

2. The dynamic output impedance. rZ. is
defined as:
tl.VZ

T,

rz=~

TEMPERATURE
When the device is programmed with two external resistors. Rl
and R2. (see Figure 2). the dynamic output impedance of the
overall circuit. rz'. is defined as:

The average temperature coefficient of the
reference input voltage. aVREF. is defined as:
ppm
[
10'
10'
aVREF - - = + VMax - VMin
+ [
VOEV
°C
- VREF (at 25°CU
- - L"REF (at 25°CiJ

1 _

T2- T l

:l

rz'

T2- T l

where T2 -Tl = full temperature change.

2-116

=

tl.VZ'
tl.IZ'

[
"'"

Rl]

rz

1+

R2

#LA431
Typical Performance Curvea

Input Current aa a Function of

Dynamic Impedance aa a
Function of Frequency

Vz

,.

TA= 2!rC
Vz = YREF

e::

500

'1

I

w

I

... 400

ii3

300

I

~

I

"az

Iz MIN

'00

•

!!

~

1j
1;

/

/

I

Ie

J

il!200

I

,.

/

I

.!'

. ..

•,

Yz - CATHODE VOlTAGE _ V

~

,

/

./

'00.

FREQUENCY - Hz

,.M

'M

1 kll

SOil

Thermal Information
~

'000

tide = 10 mA

"-

-=-

","'~

'"

Range of Inatablllty

.........

........
70

,.~-

. """ .........

TEMPERATURE _

r--c

E
I

'25

!i
w

-c

II:
II:

..""...
"i!!

STABLE

I

z

Input Current aa a Function of

Vz

CLOAD

..liN

1
I

!i

'OO~-4---+---+---+--~--~

230 Il

!

i ~r--+--~~~-+--+-~

CLOAD

I

~

Yz - CATHODE VOLTAGE - y

2-117

•

~A431
DC Test Circuits
Fig. 1 Test Circuit For Vz

= VREF

Fig. 3

IIN~

Test Circuit for Off-State Current
INPUT-.l\lV"'""_--VZ

INPUT-f\NIr-_--vz

.--.......,~
-~

liz

--'t'

_L.

Fig. 2

Test Circuit For Vz

> VREF

INPU T

Vz

R1
IREF

--+-- ~~tl z
R2

t

.... ~

VREF

t
_L..

Vz

= VREF (1

+ R1/R2) +IREFe R1

2-118

t

Iz OFF

J.LA78S40
Universal Switching
Regulator Subsystem

FAIRCHILD
A Schlumberger Company

Linear Products

Description
The ~A78S40 is a Monolithic Regulator Subsystem
consisting of all the active building blocks necessary
for switching regulator systems. The device consists
of a temperature-compensated voltage reference, a
duty-cycle controllable oscillator with an active
current limit circuit, an error amplifier, high-current,
high-voltage output switch, a power diode and an
uncommitted operational amplifier. The device can
drive external npn or pnp transistors when currents in
excess of 1.5 A or voltages in excess of 40 V are
required. The device can be used for step-down, stepup or inverting switching regulators as well as for
series pass regulators. It features wide supply voltage
range, low standby power dissipation, high efficiency
and low drift. It is useful for any stand-alone, low part
count switching system and works extremely well in
battery operated systems.

Connection Diagram
16-Pln DIP

• STEP-UP, STEP DOWN OR INVERTING
SWITCHING REGULATORS
• OUTPUT ADJUSTABLE FROM 1.3 to 40 V
• PEAK CURRENTS TO 1.5 A WITHOUT
EXTERNAL TRANSISTORS
• OPERATION FROM 2.5 to 40 V INPUT
• LOW STANDBY CURRENT DRAIN
• 80 dB LINE AND LOAD REGULATION
• HIGH GAIN, HIGH CURRENT, INDEPENDENT
OPAMP
• PULSE WIDTH MODULATION WITH NO DOUBLE
PULSING

Order Information
Type
Package
~A78S40
Ceramic DIP
~A78S40
Ceramic DIP
~A78S40
Molded DIP

16
SWITCH COLLECTOR

OIODE CATHODE

DRIVER COLLECTOR

DIODE ANODE

14
SWITCH EMITTER

Ipk SENSE

OP AMP OUTPUT

Vee

OP AMP SUPPLY

TIMING CAPACITOR

OPAMP NON- 6
INVERTING INPUT
GROUND
OP AMP
COMPARATOR
INVERTING INPUT 8
INVERTING INPUT
REFERENCE
COMPARATOR NONVOLTAGE ~I_ _ _ _ _.INVERTING INPUT

(Top View)

Code

Part No.

68
68
98

~A78S40DM
~A78S40DC
~A78S40PC

Block Diagram
COMPARATOR
NON-INVERTING
INPUT

~---

COMPARATOR
INVERTING
INPUT
Vee

TIMING
CAPACITOR

___ 1___

9

10

13 BIAS

Ipk
SENSE

DRIVER
COLLECTOR
GROUND

SWITCH
COLLECTOR

___ 8 _________ ,

12

14

11

15

16

I
I
I

I

I

I
I
I
I

I
I

U-l-!
REFERENCE
VOLTAGE

OP AMP
INVERTING
INPUT

OP AMP
SUPPLY

OP AMP
OUTPUT

2-119

SWITCH
DIODE
DIODE
EMITTER CATHODE ANODE

•

J.LA78S40
Absolute Maximum Ratings
Input Voltage from V+ to VInput Voltage from V+
Op Amp to VCommon Mode Input Range
(Error Amplifier and Op Amp)
Differential Input Voltage (Note 1)
Output-Short Circuit Duration
(Op Amp)
Current from VREF
Voltage from Switch
Collectors to GND
Voltage from Switch
Emitters to GND
Voltage from Switch
Collectors to Emitter
Voltage from Power Diode
to GND
Reverse Power Diode
Voltage
Current through Power Switch
Current through Power Diode
Internal Power Dissipation
(Note 2)
Molded DIP
Ceramic DIP
Storage Temperature Range
Operating Temperature Range
Military (/LA78S40M)
Commercial (/LA 78S40C)
Pin Temperature
Ceramic DIP (Soldering, 60 s)
Molded DIP (Soldering, 10 s)

40 V
40 V
-0.3 to V+
±30 V
continuous
10 mA
40 V
40 V
40 V
40 V
40 V
1.5 A
1.5 A
1500 mW
1000 mW
-65°C to +150°C
-55°C to 125°C
O°C to 70°C
300°C
260°C

Notes
1. For supply voltages less than 30 V, the absolute maximum
voltage is equal to the supply voltage.
2 Ratings apply to 25·C ambient, derate ceramic DIP at
8 mW /·C and plastic DIP at 14 mW / ·C.

The current limit modifies the ON time. The current
limit is activated when a 300 mV potential appears
between pin 13 (Vee) and pin 14 (I pk). This potential
is intended to result when designed for peak current
flows through Rse. When the peak current is reached
the current limit is turned on. The current limit circuitry
provides for a quick end to ON time and the immediate
start of OFF time. Generally the oscillator is free
running but the current limit action tends to reset the
timing cycle.
Increasing load results in more current limited ON
time and less OFF time. The switching frequency
increases with load current.
VD is the forward voltage drop across the internal
power diode. It is listed on the data sheet as 1.25 V
typical, 1.5 V maximum. If an external diode is used,
then its own forward voltage drop must be used for YD.
Vs is the voltage across the switch element (output
transistors 01 and 02) when the switch is closed
or on. This is listed on the data sheet as output
saturation voltage.
Output saturation voltage 1 - defined as the
switching element voltage for 02 and 01 in
the Darlington configuration with collectors tied
together. On the data sheet this applies to Figure 1,
the step down mode.
Output saturation voltage 2 - switching element
voltage for just 01 used as a transistor switch.
This applies to Figure 2 of the data sheet, the
step-up mode.
For the inverting mode, Figure 3, the saturation
voltage of the external transistor should be used
for VS.

Functional Description
The /LA78S40 is a variable frequency, variable duty
cycle device. The initial switching frequency is set by
the timing capacitor. The initial duty cycle is 6: 1.
This switching frequency and duty cycle can be
modified by two mechanisms-the current limit
circuitry (lpk sense) and the comparator.
The comparator modifies the OFF time. When the
output voltage is correct, the comparator output is in
the HIGH state and has no effect on the circuit
operation. If the output voltage is too high then the
comparator output goes LOW. In the LOW state the
comparator inhibits the turn on of the output stage
switching transistors. As long as the comparator is
LOW the system is in OFF time. As the output current
rises the OFF time decreases. As the output current
nears its maximum the OFF time approaches its
minimum value. The comparator can inhibit several ON
cycles, one ON cycle or any portion of an ON cycle.
Once the ON cycle has begun the comparator cannot
inhibit until the beginning of the next ON cycle.

2-120

JLA78S40
Electrical Characteristics
Characteristic

VIN = 5.0 V, VOp Amp
otherwise specified.

= 5.0 V, TA = Operating temperature range, unless

ICondition

IMin ITyp IMax IUnit

General Characteristics
Supply Voltage
Supply Current
(Op Amp Disconnected)
Supply Current Op Amp
Connected

2.5

= 5.0 V
= 40 V
VIN = 5.0
VIN = 40 V

40

V

3.5
5.0

mA
mA

4.0
5.5

mA
mA

1.245

1.310

V

0.04

0.2

mVIV

0.2

0.5

mV/mA

1.8
2.3

VIN
VIN

Reference Section
0< TA < 70°C #A78S40C

= 1.0 mA

Reference Voltage

IREF

Reference Voltage Line
Regulation

VIN = 3.0 V to VIN
TA = 25°C

Reference Voltage Load
Regulation

IREF

-55°C < TA < 125°C
#A78S40M

1.180

= 40 V, IREF = 1.0 mA,

= 1.0 mA to IREF = 10 mA, TA = 25°C

Oscillator Section

= 5.0 V, TA = 25°C
= 40 V. TA = 25°C
VIN = 5.0 V, TA = 25°C
VIN = 40 V, TA = 25°C
VIN = 5 V, TA = 25°C

Charging Current

VIN

20

50

#A

Charging Current

VIN

20

70

#A

150

250

#A

150

350

#A

Discharge Current
Discharge Current
Oscillator Voltage Swing
tonltoff
Current Limit Section
Current Limit Sense
Voltage

TA

0.5

V

6.0

#s/#s

= 25°C

mV

Output Switch Section
Output Saturation
Voltage 1

ISW

Output Saturation
Voltage 2

Isw

Output Transistor hFE
Output Leakage Current

= 1.0 A.

Figure 1

= 1.0A, Figure 2
IC = 1.0 A, VCE = 5.0 V, TA = 25°C
VOUT = 40 V. TA = 25°C

1.1

1.3

V

0.45

0.7

V

70
10

nA

Power Diode
Forward Voltage Drop

10 = 1.0 A

Diode Leakage Current

Vo

V

= 40 V, TA = 25°C

nA

Comparator

Common Mode Voltage
Range

= VREF
= VREF
VCM = VREF
TA = 25°C

Power Supply Rejection
Ratio

VIN

Input Offset Voltage
Input Bias Current
Input Offset Current

VCM

1.5

15

VCM

35

200

nA

5.0

75

nA

0

= 3.0 V to 40 V. TA = 25°C

70

mV

V+ -2 V
96

dB

2·121
.-.':..----

-~--

-

- .---~~-.

...------

•

#LA78S40
Electrical Characteristics

VIN = 5.0 V, VOp Amp = 5.0 V, TA = Operating temperature range, unless
otherwise specified.

Characteristic

Condition

Typ

Min

Max

Unit

mV

Output Operational
Amplifier
Input Offset Voltage

VCM = 2.5 V

4.0

15

Input Bias Current

VCM = 2.5 V

30

200

nA

Input Offset Current

VCM = 2.5 V

5.0

75

nA

Voltage Gain +

RL = 2.0 k to GND; Va = 1.0 to 2.5 V,
TA = 25°C

25 k

250 k

VIV

Voltage Gain -

RL = 2.0 k to V+ Op Amp;
Va = 1.0 to 2.5 V, TA = 25°C

25 k

250 k

VIV

Common Mode Voltage
Range

TA = 25°C

0

Common Mode Rejection
Ratio

VCM = 0 to 3.0 V, TA = 25°C

76

100

dB

Power Supply Rejection
Ratio

V+ Op Amp = 3.0 to 40 V, TA = 25°C

76

100

dB

Output Source Current

TA = 25°C

75

150

rnA

Output Sink Current

TA = 25°C

10

35

rnA

Slew Rate

TA = 25°C

0.6

V//J.s

Output LOW Voltage

IL = -5.0 rnA, TA = 25°C

1.0

V

V+OP
Amp
-3.0 V

IL = 50 rnA, TA = 25°C

Output HIGH Voltage

V+ -2 V

V

Design Formulas
Characteristic

Step Down

Inverting

Step Up

+ Vo -

VOUT
IPk

2IOUT(Max)

Rsc

0.33/1pk

2 IOUT(Max) •

Ion

VOUT

+ Vo

VOUT
L

loff

+ Vo -

CT (I'F)

VOUT
45 X 10 5 10ff (I'S)

Co

IIN(Avg)
(Max load
ConditIon)

+ Vo

VIN

~
2

.

IVOUTI

VIN
•

toft

+ Vo

VOUT
VOUT

+ Vo

VIN - Vs
-VIN

.

+ Vo
Vs + Vo

- VIN

IVOUTI

VIN -

•

I'H

toft

L
1'8

+ Vo

21pk •

VOUT
VOUT

2

+ Vo -

I'F

(lpk -lOUT)

toft

Vnppl e

~

VOUT

•

Ipk •

45 X 10 510ff~S)

(Ipk - lOUT)
21pk •

.

+ Vo

IPk

2

+ loff)

8 V"pple
VIN - Vs

VIN - Vs

45 X 10 5 10ff(1'8)

Ipk • (ton

Efficiency

VOUT

+ Vo

IVOUTI

Ipk • L

+ Vo

A
[)

VIN

Ipk

Ipk • L
10ff

- Vs

VIN - Vs

VIN - Vs
VOUT

•

+ Vo -

VOUT

+ Vo

IPk

+ IVOUT I + Vo

0.331 pk

VIN - Vs - VOUT

loff

VIN
2 IOUT(Max) •

VIN - Vs

o 331pk

-

Unit

Vs

VIN - Vs

---

Vs

VIN

Ipk

-2

.

• loff
I'F

V"pple

•

IVOUTI
VIN

2

IVOUTI
VOUT

+ Vo

+ Vo

+ I VOUT I + Vo

A
- Vs

H

2·122

J,tA78S40
Fig. 1.

Typical Step-Down Performance
TA = 25°C

Fig. 2.

Typical Step-Up Operational Performance
TA 25°C

=

Rse

V"
2' V

Rse

V"
10 V

033 !1

Vee

~

rElIAS -

---

300 /JH

033 Jl

CT
00111F

rYVY"o

CT

~'~

-~-- - - - -

Vee

I

lal~-

I
I
I
I
I
I
I
I
I
I

I
I
I
I

I
I
I
I

+----t:

I

01

I

01

~

6

I

I

I
I

I~:-R---'I

I
I

I
I
I
I
I
I
I

jJ.A78S40

C-1

I""

I
I

I
I
I
I

__

r--~"'(V02

I
I

I
I

I

I

_E __ ~8~!

- --

I

CT

I"

t-r-

OSCILLATOR

:
1

....._ _C
...
V01

,.....

I
I
I
I
I

r--......

r--r--;I~~

I

I~o/

,..A78S40

..--t---I~

I
I

~
iA I
~ ~E:R~N:~ ~AMP __ ___ ~_J

I
Your

1.3 V

I

-OP

011

10 V
YOUT

L
300 /lH
R2
12k

Characteristic

R1
85k

Condition

lOUT = 200 rnA
20 :5 VIN :5 30 V
5 rnA:5 lOUT
lOUT :5 300 rnA
Max Output Current VOUT = 9.5 V
Output Ripple
lOUT = 200 rnA
Efficiency
lOUT = 200 rnA
Standby Current
lOUT = 200 rnA
Output Voltage
Line Regulation
Load Regulation

2' V
R1

R2
12 k

CO

I'OO

230 k

_F

Typical
Value

Characteristic

10 V
1.5 rnV

Output Voltage
Line Regulation
Load Regulation

Condition

Typical
Value

25 V
lOUT = 50 rnA
5 V :5 VIN :5 15 V 4.0 rnV
5 rnA :5 lOUT
2.0 rnV
lOUT :5 100 rnA
160 rnA
Max Output Current VOUT
23.75 V
30 rnV
Output Ripple
lOUT = 50 rnA
79%
Efficiency
lOUT = 50 rnA
2.6 rnA
Standby Current
lOUT = 50 rnA

3.0 rnV
500 rnA
50 rnV
74%
2.8 rnA

=

Noles
1 For lOUT 2: 200 mA use external diode to limit on chip
power dissipation
2 It'is recommended that the internal reference (pin 8) be
bypassed by a 0.1 /IF capacitor directly to (pin 11) the ground
point of the /lA78S40.

2-123

•

J,LA78S40
Fig. 3.

Typical Inversion Operational Performance
TA

= 25°C

Typical Performance Curves

300 MH

CT as a Function of toff

R"c

V'N
12 V

033 !l

47 0

[7

VIN = 5 V
TA "'- 25"C

Vee
IeIAS -

-

--

_ll __

47

---I

I

I
I
I

I
I
I
I
I

7

/

I
I

I
I

I

i/

047

V

/

10

I

100

1000

toll - /-'-5

I

I
I
I

VREF as a Function of TJ
1220
121

• \\

121 6
121 4

VOUT

-15 V

112k

VIN

\

25k

121 0

Co
l200 pF

--

--

1212

5V

=

•

120

1206
1204
1202

Characteristic

Condition

Typical
Value

1200

-50

-25

0

25
TJ _.

-15 V
lOUT = 100 rnA
8 V :5 VIN :5 18 V 5.0 rnV
5 rnA:5 lOUT
3.0 rnV
lOUT :5 150 rnA
Max Output Current VOUT = 14.25 V
160 rnA
Output Ripple
lOUT = 100 rnA
20 rnV
Efficiency
lOUT
100 rnA
70%
Standby Current
lOUT = 100 rnA
2.3 rnA

50

75

100

125

'c

Output Voltage
Line Regulation
Load Regulation

=

Idlscharge as a Function of VIN
250
TA

=

/

25°C

./

V
20 0

150

2-124

1/

V-

o

10

20

30

40

50

JLA78S40
Typical Performance Curves (Cont.)

VS ense as a Function of VIN
400

TA '" 25°C

350

f~ 300

--

I-- I--

~

>

250

200

o

10

20

30

40

50

Typical Pulse Width Modulator Application
2N605-,1'--_ _ _ _ _ _-t--I100 ~H
FREQ.20 KHz
30Vln

1800

+

1.6 K

.004

~F

I100~F

-=-

I
r--I
I
I
I
I
I
I
I
I
I

MBR4030
SHOTIKY

10

9

12

13

,,
I
,,

I
IL ___

22 K

~~~Ar~~--~------------------------~----------~-5V

5A

8.2 K
.01

11~F

-=-

.02

~F

JOK

.005

~F

-=~F

2·125

JlA494
Pulse Width Modulated
Control Circuit

F=AIRCHILO
A Schlumberger Company

Linear Products

Connection Diagram
1S-Pln DIP

Description
The ~A494 is a monolithic integrated circuit which
includes all the necessary building blocks for the
design of pulse width modulated (PWM) switching
power supplies, including push-pull, bridge and series
configurations. The device can operate at switching
frequencies between 1.0 kHz and 300 kHz and output
voltages up to 40 V. The ~A494C is specified over an
operating temperature range of QOC to 7QoC and the
~A494M is specified over an operating temperature
range of -55°C to 125°C.

NON-INV
INPUT

NON-INV
INPUT

INV
INPUT
COMPEN/ 3
t----I
PWM COMP
INPUT
DEAD 4
TIME
................. ""'CONTROL 5

•

UNCOMMITTED OUTPUT TRANSISTORS
CAPABLE OF 200 mA SOURCE OR SINK
• ON-CHIP ERROR AMPLIFIERS
• ON-CHIP 5 V REFERENCE
• INTERNAL PROTECTION FROM DOUBLE
PULSING OF OUTPUTS WITH NARROW PULSE
WIDTHS OR WITH SUPPLY VOLTAGES BELOW
SPECIFIED LIMITS
• DEAD TIME CONTROL COMPARATOR
• OUTPUT CONTROL SELECTS SINGLE-ENDED OR
PUSH-PULL OPERATION
• EASILY SYNCHRONIZED (SLAVED) TO
OTHER CIRCUITS

INV
INPUT
VREF
OUTPUT
CONTROL

CT

Vee

C2
GROUND

E2

C1

E1

(Top View)

Order Information
Type
Package
/J-A494C
Ceramic DIP
/J-A494C
Molded DIP
/J-A494M
Ceramic DIP

Code
6A
9A
6A

Part No_
/J-A494DC
~A494PC

/J-A494DM

Equivalent Circuit
OUTPUT
CONTROL

PULSE STEERING
FLIP FLOP

RT~6~________~--------'

-----1

Cr _ _ _

OSCILLATOR

5
C2

12

16
ERROR
AMP
2

ERROR

15 AMP

3
COMPENSATION/ PWM
COMPARATOR INPUT

2-126

"~,,

14

Vee

VREF

7 Gnd

~A494
Absolute Maximum Ratings
Power Supply Voltage (Vcc)
Voltage From Any Pin to Ground
(except pin 8 and pin 11)
Output Collector Voltage
(VC1, VC2)
Peak Collector Current
(IC 1 and IC2)
Internal Power Dissipation (Note)
Molded DIP
Ceramic DIP
Storage Temperature Range
Operating Temperature Range
Pin Temperature
Ceramic DIP (Soldering, 60 s)
Molded DIP (Soldering, 10 s)

IlA494C
42 V
VCC + 0.3 V
42 V
250 mA
1500 mW
1000 mW
-65°C to + 150°C
O°C to 70°C
3OO·C
260·C

Functional Description
The basic oscillator (switching) frequency is
controlled by an external resistor (Rr) and
capacitor (Cr). The relationship between the values of
Rr Cr and frequency is shown in Figure 10.

The dead time control prevents on-state overlap of
the output transistors as can be seen in Figure 5. The
dead time is approximately 3 to 5% of the total period
if the dead time control (pin 4) is grounded. This dead
time can be increased by connecting the dead time
control to a voltage up to 5 V.

The level of the sawtooth wave form is compared with
an error voltage by the pulse width modulated
comparator. The output of the PWM Comparator
directs the pulse steering flip flop and the output
control logic.

The frequency response of the error amps
(Figure 11) can be modified by using external
resistors and capacitors. These components are
typically connected between the compensation
terminal (pin 3) and the inverting input of the error
amps (pin 2 or pin 15).

The error voltage is generated by the error amplifier.
The error amplifier boosts the voltage difference
between the output and the 5 V internal reference.
See Figure 7 for error amp sensing techniques. The
second error amp is typically used to implement
current limiting.

The switching frequency of two or more IlA494 circuits
can be synchronized. The timing Capacitor, Cr is
connected as shown in Figure 8. Charging current is
provided by the master circuit. Discharging is through
all the circuits slaved to the master. Rr is required
only for the master circuit.

The output control logic (pin 13) selects either pushpull or single-ended operation of the output transistors
(see Figure 6).
Recommended Operating Conditions

IlA494C
Symbol

Characteristic

Min

Max

Unit

VCC
VIN

7.0

40

V

VC1, VC2
IC1,IC2

Power Supply Voltage
Voltage on Any Pin Except Pins 8 and 11
(Referenced to Ground)
Output Voltage
Output Collector Current

-0.3
-0.3

VCC +0.3
40
200

CT

Timing Capacitor

RT
foac
TA

Timing Resistor
Oscillator Frequency
Operating Ambient Temperature Range

V
V
mA
pF
IlF
kU
kHz
°C

470
1.8
1.0
0

Note
Ratings apply at 25°C, above 25°C ambient derate Hermetic DIP
at 8 mW/oC and Plastic DIP at 14 mW/oC

2-127

10
500
300
+70

•

~A494
~A494C

Electrical Characterl8tlc8 Recommended Operating Conditions per above except Vee = 15 V, f08c = 10 kHz,
TA = 0 to 70·C unless otherwise specified.

Symbol

Characteri8tic

Unit

Condition

Reference Section

= 1.0 mA

5.0

5.25

V

2.0

25

mV

Temperature Coefficient of
O°C < TA < 70°C
Reference Voltage

0.01

0.03

%I·C

Load Regulation of
Reference Voltage

1.0

15

mV

4.75

VREF

Reference Voltage

IREF

Regline

Line Regulation of
Reference Voltage

7.0 V < Vee < 40 V

TCVREF
Regload

1 

20

Z

~

cL = 0
10

~

V
)t--..

50

i'-

I

"""'\

0.1

~

g

1

-

CL

110

100

1k

10 k

LOAD FREQUENCY - Hz

'\

20

'\

1\

10

0.01
10

30

1,\

p.F JANT

10
1

a:
w

40

~

Cl -Ol;J.Fj

20

~
~
is
~

0 05
.

/

1\

~

100 k

1M

o
10

50 100

500

1k

FREQUENCY - Hz

3-4

5 k 10 k

-25

0

25

50

75

100

CASE TEMPERATURE _·C

125

150

,uA78H05 • ,uA78H05A
Typical Performance Curves (Cont.)

Short Circuit Current

Dropout Voltage

Quiescent Current

,.

5

--

~

TJ=-lc X

r-..

"""-

TJ "'75OC,,",

.........

"

...........

••

.,.

(

...........T, = 2SOC

,

"
2•

3D

/

Line Regulation

'our=5A

~-10~---+-H--+----i-----r---1

i-~

i

,.

~ -30I----+-IIf---+---I----+---I
g

§5

~

YOUT, ~

25

25

5V

-00.~----~~~'.~--~'5~---~L----J25

Iv

•

, •
i

Load Regulation

•

125

100

150

Ripple Rejection

VIN = 10 Y
CL 01 p.F

=

""

>

INPUT VOLTAGE _ V

75

,~

rt1our=SA

1-,00

i

00

JUNcnON TEMPERATURE _ "C

'DO

~

,

'll
z

0

80

1=

III

IOUT

;J
a: 80

II!
o

20

40

80

3A

IQUTlsA

, ,.

PULSE WIDTH nME _ ,.,.1

Load Transient Response

l

40

~

80 100

YIN = lOY
CL = O.1,.,.F

I

~

5 ,•

-40

-

pr-

,

'5

" -00

I-----+-ff--+----+----+----I

Iourl = 3 Af---

I

100

, 00

I

IouT=2A

Line Transient Response

:e

5V

=

1aur=5A

" TJ = 25"C

INPUT VOLTAGE _ V

INPUT VOLTAGE - V

>

-

~J=''''c

••

35

Your

>

I
100

1k

I\.

"V
"-

~

10k

lOOk

'M

INPUT FREQUENCY - Hz

Output Voltage
Deviation vs
Junction Temperature

'l: ~ '-""""""-'-''''-'''''''''''''-''''-v"',.-=-,'''.-v''
100 I--+-+-If---+-+-+--"~l =O.l,.,.F

~

>

~-,.~---t~~~--~-----r----1

;-2.~---t----+---~~~~~__1
w

"

~-30

~ I-+-+-;,/f-i-t--+--+--+-I--t
"-'00
5
5-~~-+~~+-~-+~~

.
o

ill

~

l!I

-00

r-l. . . . .;f--t~~;$:~'
~UT:.:.=
=SA r-;::

2A

C

~

g-'00 1---+--+--1--+--+--+--+--1

I!

5

1-,00 1---+--+--1--+--+--+--+--1

§-40
-00 '--_-'-_--...J'--_-'--_---'_ _..J

•

o 20 40 eo 80 100
OUTPUT CURRENT _ A

PULSE WIDTH nilE _ ILl

3-5

JUNCTION TEMPERATURE _ ·C

J,LA78H05 • J,LA78H05A
Test Circuit
Fixed Output Voltage
1

SOLID

TANTALUM

+

I'A78H05
I'A78H05A

C1N

2
VOUT

+
...... CL

3

0.1

11'F

.1
Design Considerations
These devices have thermal-overload protection from
excessive power and internal short-circuit protection
which limits the circuit's maximum current. Thus, the
devices are protected from overload abnormalities.
Although the internal power dissipation is limited, the
junction temperature must be kept below the maximum
specified temperature (150°C). It is recommended by
the manufacturer that the maximum junction"
temperature be kept as low as possible for increased
reliability. To calculate the maximum junction
temperature or heat sink required, the following
thermal resistance values should be used:
Package

Typ

Max
OJC

TO-3

OJC
1.8

PO(max) =
OCA

Where:
TJ
TA
Po
OJC
OCA
OCS
OSA

The devices are designed to operate without external
compensation components. However, the amount of
external filtering of these voltage regulators depends
upon the circuit layout. If in a specific application the
regulator is more than four inches from the filter
capacitor, a 1 /LF solid tantalum capacitor should be
used at the input. A 0.1 /LF capacitor should be used
at the output to reduce transients created by fast
switching loads, as seen in the basic test circuit.
These filter capacitors must be located as close to
the regulator as possible.

Caution: Permanent damage can result from forcing
the output voltage higher than the input voltage. A
protection diode from output to input should be used if
this condition exists.

2.5

TJ(max) - TA
OJC + OCA

= OCS + OSA

Solving for TJ:
TJ = TA + Po (OJC

COMMON

+ OCA)

= Junction Temperature
= Ambient Temperature
= Power Dissipation
= Junction-to-case thermal resistance
= Case-to-ambient thermal resistance
= Case-to-heat sink thermal resistance
= Heat sink-to-ambient thermal resistance

3·6

JlA78P05
5-Volt 10-Amp
Voltage Regulator

FAIRCHILD
A Schlumberger Company

Hybrid Products

Connection Diagram
To-3 Metal Package

Description
The /lA78P05 3-terminal positive 5 V regulator,
consisting of a monolithic control chip driving a seriespass transistor, is capable of delivering 10 A. This
hybrid device is virtually blow-out proof and contains
all the protection features inherent in monolithic
regulators such as internal short-circuit current
limiting, thermal overload and safe-area protection. If
the safe-operating area is exceeded, the device shuts
down rather than failing or damaging other system
components (Note 1). This feature eliminates costly
output circuitry and overly conservative heat sinks
typical of high-current regulators built with discrete
components. The /lA78P05 is packaged in a
hermetically sealed TO-3 providing 70 W
power dissipation.

•

• 10 A OUTPUT CURRENT
• INTERNAL THERMAL OVERLOAD PROTECTION
• INTERNAL SHORT CIRCUIT CURRENT LIMIT
• LOW DROPOUT VOLTAGE (TYPICALLY 2_3 V@
10 A)
• 70 W POWER DISSIPATION
• PIN-FOR-PIN COMPATIBLE WITH THE /lA78H05,
/lA78H05A AND SH323
• STEEL TO-3 PACKAGE

(Top View)

Order Information
Type
Package
/lA78P05
Metal
/lA78P05
Metal

Note
1 This voltage regulator offers output transistor safe-area
protection However, to maintain full protecllon, the device
must be operated within the maximum Input·to-output voltage
differential ratings as listed on this data sheet under "Absolute
Maximum Ratings." For applications violating these limits,
device will not be fully protected.

Part No.
/lA78P05SC
/lA78P05SM

Code
6N
6N

Block Diagram

T

I
START
CIRCUIT

T

CURRENT SOURCE

I

VOLTAGE
REGULATOR

I

-~
r--

7

VIN

THERMAL
SHUTDOWN

R

1',

1

1

SHORT.
CIRCUIT
PROTECTION

....

L

~

........
Rsc

IJ

2
VOUT

3
COMMON

3-7

~A78P05
Absolute Maximum Ratings
Input Voltage
Input-to-Output Voltage
Differential, Output ShortCircuited
Internal Power Dissipation
Operating Junction
Temperature

,uA78P05
Electrical Characteristics

40 V

Military Temperature Range
,uA78P05SM
Commercial Temperature
Range ,uA78P05SC
Storage Temperature Range
Pin Temperature
(Soldering, 60 s)

35 V
70 W @ 25°C Case
150°C

TJ

-55°C to +150°C
O°C to +150°C
-55°C to +150°C
300°C

= 25°C, VIN = 10 V, lOUT = 2.0 A unless otherwise specified
Limits

Symbol

Characteristic

Condition

VOUT

Output Voltage

lOUT

~VOUT

Line Regulation (Note 2)

VIN

~VOUT

Load Regulation (Note 2)

10 mA

~VOUT

Load Regulation (Note 2)

10 mA

la

Quiescent Current

lOUT

RR

Ripple Rejection

=0
lOUT = 1.0 A, f = 120 Hz, 5.0 Vpk-pk

Vn

Output Noise

10Hz

VOO

Dropout Voltage (Note 3)

los

Short-Circuit Current Limit

= 2.0 A
= 8 to 25 V

lOUT
lOUT

:s::
:s::

lOUT

:s::

Min

Typ

Max

Unit

4.85

5.0

5.25

V

5A

10UT:S:: 10 A

:s:: f :s::

10

50

mV

25

40

mV

50

75

mV

3.4

10

mA

60

dB

100 kHz

40

= 5.0 A
= 10 A

,uVRMS

2.0

2.3

V

2.5

3.0

V

14

Notes
2. Load and hne regulation are specified at constant junction
temperature. Pulse testing is required with a pulse width
~ 1 ms and a duty cycle ~ 5%. Full Kelvin connection
methods must be used to measure these parameters.

Apk

3. Dropout Voltage is the input-output voltage differential
that causes the output voltage to decrease by 5% of its
initial value.

Typical Performance Curves

Output Noise Voltage
10

v"

f'--

C,

05

--

-- f---

:

r

10 V
0

-t

) .........
1/
l1'

i
100

CL

I
soo

1k

FREOUENCY - Hz

1

10 k

,'\
[\

20

I\.

10

o
1

10

100

1k

10 k

LOAD FREQUENCY _ Hz

3-8

\

10 iJ.F JANT

10
5 k

30

Cl =01/J.F/

20

50

\

40

C,"O ""\

-

I\.

50

20

5.0

10

\

60

50

10

005

001

70
lOUT"" 1 A
YIN"" 10V

'-

I'--.

Maximum Power Dissipation

100

--

--c--

r01

Output Impedance

100 k

1M

-25

0

25

50

75

100

CASE TEMPERATURE _

0

125

c

150

~A78P05
Typical Performance Curves (Cont.)

Short Circuit Current

.

c

...I

.ill ,.

--

::>
0

...

~

12

::>
0
~

.
."
ili

Dropout Voltage

Quiescent Current

18

.

E

T,

"'-

TJ;

~

25°C

~

3

T,

75°C

J,o c "- ~
~"250C

(

r--

-

TJ

=

loLl-

.....

-~

25° C

lOUT - 5 A

"-1

lOUT - 2 A

2

10

::>

1

0

I

<;

1

0

•o

0
810

20

30

INPUT VOLTAGE -

V

IOUT lo. 5 A -

-

Z

o

~

~ -60

...~

1-+-+--,p1o"\';",,-=-'lS-"A+-+_l'+---t_l
'i-

!li

1--+-+-+-+-+-+-+-+__+_1

0

.
.,

~ -80

-100

o

10

20

15

z

~

80

,d'A ~

t;

201--+-+-r-~-+-r-+-+__+_I

~

151-+-+-t-+-t-1--~-I-__t_l

~

10~~-+-+-+-+-1--+_~__+_I

o

25

5a: 60
~

ii:

lOUT

40

Load Regulation

.
."
~

TJ I -2S"C

TJ~ ~

Z

0

T,

;::

1~

>
E
I
w

lSA ~ ~

l"-V

-150

...

w

~

=

"-

I/"

~

o

10

A

100 k

1M

Hz

IO~' - Jo A
t--

.....

lOUT - 2 A

-50

0

w

~ -100
0
>

12

...::>
e:::> -150

0

0

10 k

- --

I

z

.
".

-04

...
...~::>

1- 10 V

1k

YIN = 10 V

'E
0

Z

VIN

10 V

;::

".:r

...
~::> -200

100

Output Voltage
Deviation vs
Junction Temperature

CL = 0 1 IlF

z

u -02

I

OUTPUT CURRENT -

10

50
YIN

:r

.

w

-250

1

INPUT FREQUENCY -

::>
0

0

I

20

80 100

04
02

."
~

-100

0

~

60

Load Transient Response

.......... ""'-

E
I -50

40

PULSE WIDTH TIME -/,5

INPUT VOLTAGE-V

>

20

150

CL = 01/-lF

~

o

125

°C

V 1N =10V

-100

o

::>

100

I

100

~ -200

l>

75

120

5
::>

50

Ripple Rejection

!I

5

-

lOUT - 10 A

r

~

25

JUNCTION TEMPERATURE -

200

~

>

w

25

V

r-"'T'"--r-,...--.---r-,...-.,.....,.....,---,
~ 100 1-+-+_IlJ~1,_ou_,+'_'_0I-A-+~I~ == 01~ ~F

lOUT 02 A

c

20

15

Line Transient Response

:e

~ -40

10

INPUT VOLTAGE -

Line Regulation

E
I ·20

)

35

0

o

20

40

60

80 100

PULSE WIDTH TIME -1-'5

3-9

-200
-50

-25

25

50

75

100

JUNCTION TEMPERATURE -

125
Q

C

150

•

J,LA78P05
Basic Test Circuit
2
"A78P05

VIN

SOLID
TANTALUM

VOUT

+

+
C IN
11'F

CL
0.1 jLF

3

COMMON

-=Design Considerations
This device has thermal-overload protection from
excessive power and internal short-circuit protection
which limits the circuit's maximum current. Thus, the
devices are protected from overload abnormalities.
Although the internal power dissipation is limited, the
junction temperature must be kept below the maximum
specified temperature (150°C). It is recommended by
the manufacturer that the maximum junction
temperature be kept as low as possible for increased
reliability. To calculate the maximum junction
temperature or heat sink required, the following
thermal resistance values should be used:

Package

TO-3

Typ

Max

8JC

8JC

1.5

1.8

The /LA78P05 is designed to operate without external
compensation components. However, the amount of
external filtering of this voltage regulator depends
upon the circuit layout. If in a specific application the
regulator is more than four inches from the filter
capacitor, a 1 /LF solid tantalum capacitor should be
used at the input. A 0.1 /LF capacitor should be used
at the output to reduce transients created by fast
switching loads, as seen in the basic test circuit.
These filter capacitors must be located as close to
the regulator as possible.

Caution: Permanent damage can result from forcing
the output voltage higher than the input voltage. A
protection diode from output to input should be used if
this condition exists.

TJ(max) - TA
8JC + 8CA

Po (max)

=

8CA

= 8cS

+ 8SA

Solving for TJ:
TJ
= TA + Po (8JC

+ 8CA)

Where:
TJ

TA
Po
8JC
8CA
8cs

8SA

= Junction Temperature

= Ambient Temperature

=
=
=
=

=

Power Dissipation
Junction-to-case thermal resistance
Case-to-ambient thermal resistance
Case-to-heat sink thermal resistance
Heat sink-Io-ambient thermal resistance

3-10

f.lA78H12A
5-Amp Voltage
Regulator

FAIRCHILO
A Schlumberger Company

Hybrid Products

Description
The J,LA78H12A is a hybrid regulator with 12.0 V
fixed output and 5.0 A output capability. It has the
inherent characteristics of the monolithic 3-terminal
regulators; i.e., full thermal overload, short-circuit and
safe-area protection. All devices are packaged in
hermetically sealed TO-3s providing 50 W power
dissipation. If the safe operating area is exceeded,
the device shuts down, rather than failing or damaging
other system components (Note 1). This feature
eliminates costly output circuitry and overly
conservative heat sinks typical of high-current
regulators built from discrete components.
•
•
•
•
•
•

Connection Diagram
TO-3 Metal Package

•

5.0 A OUTPUT CURRENT
INTERNAL CURRENT AND THERMAL OVERLOAD
PROTECTION
INTERNAL SHORT CIRCUIT PROTECTION
LOW DROPOUT VOLTAGE (TYPICALLY 2.3 V @
5.0 A)
50 W POWER DISSIPATION
STEEL TO-3 PACKAGE

COMMON
OtlTPUT 2

(Top View)

Order Information
Type
Package
J,LA78H12A
Metal
J,LA78H12A
Metal

Note
1. ThIs voltage regulator offers output transIstor safe· area
protecllon However. to maintain full protecllon. the devIce
must be operated wIthin the maximum input·to·output voltage
differentIal ratings, as listed on thIs data sheet under "Absolute
MaxImum Ratings." For applicatIons violatIng these limits,
devIce WIll not be fully protected.

Part No.
J,LA78H12ASC
J,LA78H12ASM

Code
GN
GN

Block Diagram

I

I
START
CIRCUIT

I

VOLTAGE
REGULATOR

V,N

T

CURRENT SOURCE

a

I

-:::L
/'"
r-

THERMAL
SHUTDOWN

1

R

......

......

V

1
SHORT
CIRCUIT
PROTECTION

K

r-....
Rsc

IJ

2
VOUT

3

COMMON

3·11

~A78H12A
Absolute Maximum Ratings
Input Voltage
Input-to-Output Voltage
Differential, Output ShortCircuited
Internal Power Dissipation
Operating Junction
Temperature
Military Temperature Range

40 V

Commercial Temperature
Range

35 V
50 W @ 25°C Case

Storage Temperature Range
Pin Temperature
(Soldering, 60 s)

~A78H12ASC

O°C to +150°C
-55°C to +150°C

~A78H12ASM

~A7812A

TJ = 25°C, VIN = 19 V, lOUT = 2.0 A unless otherwise specified

Electrical Characteristics

Limits
Symbol

Characteristic

Condition

Min
11.5

VOUT

Output Voltage

lOUT = 2.0 A

AVOUT

Line Regulation (Note 2)

VIN = 16 to 25 V

AVOUT

Load Regulation (Note 2)

10 mA

10

Quiescent Current

lOUT = 0, VIN = 17 V

RR

Ripple Rejection

lOUT = 1.0 A, f = 120 Hz, 5.0 Vpk-pk 60

Vn

Output Noise

10 Hz

Voo

Dropout Voltage (Note 3)

lOS

Short-Circuit Current Limit

~

~

lOUT

f

~

~

5.0 A

Typ

Max

Unit
V

12

12.5

20

120

mV

20

120

mV

3.7

10

mA
dB

100 kHz, VIN = 17V

75

VRMS

lOUT = 5.0 A

2.3

2.5

V

lOUT = 3.0 A

2.0

2.3

V

7.0

12.0

Apk

Notes
2. Load and line regulation are specified at constant Junction
temperature. Pulse testing is required with a pulse width
oS 1 ms and a duty cycle oS 5%. Full Kelvin connection
methods must be used to measure these parameters.

3. Dropout Voltage ,s the IOpuHo·output voltage d,fferent,al
that causes the output voltage to decrease by 5% of ,ts
IO,t,al value.

Typical Performance Curves

Output Impedance

1.0

IOUT=1A
YIN = lilY
50

0.'

t..

C L :=: 0 __

/
. / CL
CL

i

10

100

1k

'I"-

50

r-

0.1

0

III 0.05

J1'

=0.1.F/

~

,

g

.........

~

0

10 p.F rANT.

1.0
1

60
VIN = 19V
CL = 0

I

~

)
1.0

Maximum Power Dissipation

Output Noise Voltage

100

10k

LOAD FREQUENCY - Hz

lOOk

1M

0.01

10

50 100

500

1k

FREQUENCY - Hz

3-12

5 k 10 k

0
_25

0

25

""""[\1,\

50

75

100

CASE TEMPERATURE - ·C

125

150

j.tA78H12A
Typical Performance Curves (Cont.)

Quiescent Current

Short Circuit Current

.

.
...
.ffi..

,

I

TJ •
4

.-

3

:>

...

"

~

u
".ili
0

•1.

t--TJ

to-....

t:;:; ~

20

1

::e

=

2A

/

10

..

15

lour=5A

, -1·~---+----+--444~~-r----1

~

~ 100
,

50

w

~ -so•

h lour=5A
II

I"

U

~
>-a~---+----4-~~~---+--~

l!i

25

!:;

>

1-.. ~+----+--++-+----+-----I

w

-30

-M.L----~--~1.--~-,L5----~~---J~

,

IOUT

II

1

•

-~

25

lL

z

~

1

60

80 100

Load Transient Response

,.200

'd3A G

..
2.

0_100

1

1.

~

100

1k

10 k

100 k

1M

INPUT FREQUENCY - Hz

Output Voltage
Deviation vs
Junction Temperature
VIN - 19V

I

!:;

~ -200

,

P".

.

o
OUTPUT CURRENT - A

"V
1 l"-

IOUTLSA

I\,

w

i

150

VIN = ltV
CL = O.llJ.f

VIN - 19V
C L = 01IJ.F

100

125

~

so

.

40

100

IOUT~lA

~ so
~

20

75

1

100

,

!g

PULSE WIDTH nMe - itS

,

50

Ripple Rejection

0

o

F-"

IOUT-2A

120

20

INPUT VOLTAGE - V

Load Regulation

T- 3 A r--

I

i3

.!i1 •
i •
Q

'OUT-SA

VIN = 10V
CL = O.lIJ.F

~-100

~---+----+--444----+----1

i!!
g

-

~

JUNCTION TEMPERATURE _ °C

13

l'j

,

"

Line Transient Response

rr1==:±==:1

>

INPUT VOLTAGE - V

Y

Line Regulation
lOUT

~J.m.c
TJ :: 25°C

./

4.

30

....

2

TJ = 25°C

INPUT VOLTAGE -

J...c " ~

If

u

:;

Dropout Voltage

5

12

20

40

eo

80 100

PULSE WIDTH TIME - /oiA

3·13

-200-so

-25

25

'OUT-2A

T-SA

50

75

...;;;;::

100

JUNCTION TEMPERATURE _ °C

125

150

•

JLA78H12A
Basic Test Circuit
1

2
MA78H12A

SOLID
TANTALUM

VOUT

r
+

+
CIN
1 /LF

3

0.1 IJ-F

.1

COMMON

Design Considerations
This device has thermal-overload protection from
excessive power and internal short-circuit protection
which limits the circuit's maximum current. Thus, the
device is protected from overload abnormalities.
Although the internal power dissipation is limited, the
junction temperature must be kept below the maximum
specified temperature (150°C). It is recommended by
the manufacturer that the maximum junction
temperature be kept as low as possible for increased
reliability. To calculate the maximum junction
temperature or heat sink required, the following
thermal resistance values should be used:

Package
TO-3

Po (max) =
0CA

Typ

Max

°JC

°JC

1.8

2.5

The devices are designed to operate without external
compensation components. However, the amount of
external filtering of these voltage regulators depends
upon the circuit layout. If in a specific application the
regulator is more than four inches from the filter
capacitor, a 1 J.tF solid tantalum capacitor should be
used at the input. A 0.1 J.tF capacitor should be used
at the output to reduce transients created by fast
switching loads, as seen in the basic test circuit.
These filter capacitors must be located as close to
the regulator as possible.

Caution: Permanent damage can result from forcing
the output voltage higher than the input voltage. A
protection diode from output to input should be used if
this condition exists.

TJ(max) - TA
0JC + 0CA

= OCS + 0SA

Solving for TJ:
TJ =TA+PO(OJC+OJA)
Where:
T J = Junction Temperature
T A = Ambient Temperature
Po = Power Dissipation
0JC = Junction-to-case thermal resistance
0CA = Case-to-ambient thermal resistance
0CS = Case-to-heat sink thermal resistance
0SA = Heat sink-to-ambient thermal resistance

3-14

J.1A78HGA
Positive Adjustable
5-Amp Voltage Regulator

FAIRCHILO
A Schlumberger Company

Hybrid Products

Description
The IlA78HGA is an adjustable 4-terminal positive
voltage regulator capable of supplying in excess
of 5.0 A over a 5.0 V to 24 V output range. Only
two external resistors are required to set the
output voltage.

Connection Diagram
TO-3 Metal Package

The IlA78HGA is packaged in a hermetically sealed
TO-3, providing 50 W power dissipation. The regulator
consists of a monolithic chip driving a discrete seriespass element. A beryllium-oxide substrate is used in
conjunction with an isothermal layout to optimize the
thermal characteristics of each device and still
maintain electrical isolation between the various
chips. This unique circuit design limits the maximum
junction temperature of the power output transistor to
provide full automatic thermal overload protection. If
the safe operating area is ever exceeded (Note 1),
the device simply shuts down rather than failing or
damaging other system components. This feature
eliminates the need to design costly regulators built
from discrete components.

•
OUTPUT 2

(Top View)

•
•
•
•
•
•
•
•

5.0 A OUTPUT CURRENT
INTERNAL CURRENT AND THERMAL LIMITING
INTERNAL SHORT CIRCUIT CURRENT LIMIT
LOW DROPOUT VOLTAGE (TYPICALLY 2.3 V @
5.0 A)
50 W POWER DISSIPATION
ELECTRICALLY NEUTRAL CASE
STEEL TO-3 PACKAGE
ALL PIN-FOR-PIN COMPATIBLE WITH IlA78HG

Order Information
Type
Package
IlA78HGA
Metal
IlA78HGA
Metal

Code
JA
JA

Part No.
IlA78HGASC
IlA78HGASM

Block Diagram-Positive Adjustable Voltage Regulator

T

I

I
START
CIRCUIT

CURRENT SOURCE

VOLTAGE
REGULATOR

I

-tL
V
.----

V'N

THERMAL
SHUTDOWN

1

R

"- "&.

1

SHORT
CIRCUIT
PROTECTION

r-K

r-....
R~~

2
VOUT

3
CONTROL

4
COMMON

Notes on following pages
3·15

I-LA78HGA
Absolute Maximum Ratings
Input Voltage
Internal Power Dissipation
Maximum Input-to-Output
Voltage
Differential Output Short
Circuit
Operating Junction
Temperature
Military Temperature Range
I-IA78HGASM

Electrical Characteristics

40 V
50 W @ 25°C Case

Commercial Temperature
Range
I-IA78HGASC
Storage Temperature Range
Pin Temperature
(Soldering, 60 s)

35 V

O°C to +150°C
-55°C to +150°C

TJ = 25°C, VIN = 10 V, lOUT = 2.0 A unless otherwise specified
Limits

Symbol

Characteristic

Condition (Note 3)

Min

VOUT

Output Voltage (Note 4)

lOUT = 2.0 A, VIN = VOUT + 3.5 V

5.0

Typ

~VOUT

Line Regulation (Note 2)

VIN = 7.5 to 25 V

~VOUT

Load Regulation (Note 2)

10 mA :S lOUT :S 5.0 A

IQ

Quiescent Current

lOUT = 0

RR

Ripple Rejection

lOUT = 1.0 A, f = 210 Hz, 5.0 Vpk.pk 60

Vn

Output Noise

10 Hz :S f :S 100 kHz,
VIN = VOUT + 5.0 V

50

VDD

Dropout Voltage (Note 5)

lOUT = 5.0 A

2.3

2.5

V

lOUT = 3.0 A

2.0

2.3

V

los

Short-Circuit Current Limit

VIN = 15 V

7.0

12.0

Apk

Vc

Control Pin Voltage

5.0

5.25

V

Unit

24

V

0.2%

1%

V

0.2%

1%

V

3.4

10

mA
dB

4.85

Notes
1. This voltage regulator offers output transistor safe·area
protection. However, to maintain full protectIon, the device
must be operated within the maximum input·to·output voltage
differential rating listed on the data sheet under" Absolute
Maximum Ratings." For applications violating these limits,
device will not be fully protected.
2. Load and line regulation are specified at constant iunction
temperature. Pulse testing IS required with a pulse width
::s 1 ms and a duty cycle ::s 5%. Full Kelvin connection
methods must be used to measure these parameters.

Max

,uVRMS

3. The performance characteristIcs of the adjustable series
(I'A78HGA) is specified for VOUT = 5.0 V, unless
otherwise noted.
Rl + R2
4. VOUT is defmed as VOUT = --R-2- (VCONT) where Rl
and R2 are defined in the Basic Test Circuit diagram.
5. Dropout Voltage is the input·output voltage differential that
causes the output voltage to decrease by 5% of its
mitial value.

Typical Performance Curves
Output Impedance

Output Noise Voltage

100

10

IOUT-1A
VOUT '" 5 V
10 V
V"

50

~,

Maximum Power Dissipation
V 1N

=10V

VOUT = 5 V
CL - 0

0.5

60

50

40

20

"

CL "" 0--.

10

)r-.,.

50

Tl'

/
CL - 0 1

2.0
CL

1 JLFI
'0

100

1k

10 k

LOAD FREQUENCY - Hz

30

20

fLF..i

""1\1'\

10

ANT

1.0
10

r--

100 k

1M

001

10

so

100

500

1k

FREQUENCY - Hz

3·16

5 k 10 k

~

W

75

1\
1'\

100

CASE TEMPERATURE -

~C

1~

1~

,uA78HGA
Typical Performance Curves (Cont.)

Short Circuit Current

Dropout Voltage

Quiescent Current

10
Your;o SV

,

>

c

,
ffi

c

4~--+--+---t-~~~_1

~

3

,

E

r-.....

""u::>

"'-..
"'-..

t:

::>

TJ ""

u

~TJ-25°C

75°~"

"

"

f".,.,

~

~
o
o

8 10

20

"B

"
"'-..

30

TJ = 2SO C

~

2r--~-~--1--_t-~

Io

1~-f+--+---t--+-_1

10

35

~25

..

'5

7&

::=po

100

125

150

Ripple Rejection
120

Irv

~uT=5A

~

iii

= Zit.

JUNCTION TEMPERATURE - ·C

Line Transient Response

IOUT-2A

>

25

louT= 3 It. lour

INPUT VOLTAGE - V

INPUT VOLTAGE _ V

Line Regulation

20

15

I
II

iour=5A

_10 r---t--ti--1--_t--+----1

i

!rlour = 3A

~

r-- ~~OUT

-20 r---t--ti--1--_t---+----1

w

VIN = 10 V
YOUT = 5 V
CL = 0.1 J!lF

lOU! = SAl-

k'},
= 1A

§ 80

V

~

"

i"

§5

-40

20

40

80

80

PULSE WIDTH nMe -

INPUT VOLTAGE - V

100

~8

200

'Dur

40

1

10

lsA ~ ~

I
100

1k

l"-V

10 k

YIN = 10 V

~-10~--+~~~--t--+-~
z

!-20~--+--+--_t~~~~~

W

"~-30~--+--+---t--+~~

I~L

W

~

1M

Output Voltage
Deviation vs
Junction Temperature

..

YIN = 10 V

, 100 ~-+--+-f-+--+_t--ft-VOUT = 5V

>

100 k

INPUT FREQUENCY - Hz

Load Transient Response
~

CL =Olj.!F_

'ada ~

..

20

VOUT",SV

~

~

~ -30 r---t--ti--1--_t--+----1
~

Load Regulation

YIN = 10 Y

I

100

,OUT

= 01 j,LF

"-100 r-+-+--Itl /'-t~-I--+--1-+-l
5

5 V

I~UT.::12A

....

e-200~+--+-+~f-+-+-+-4-~

g

I

I

r=5A

F=

c

g

...::>

§

-40

-500~--~-~--~--~-~
OUTPUT CURRENT - A

-200

o

20

40

60

80 100

PULSE WIDTH nMe - }'s

3-17

-50 -25

25

50

75

100

JUNCTION TEMPERATURE _ °C

125

150

J.LA78HGA
Test Circuit
Adjustable Output Voltage
2

vour

1

C 1N =

2~F 1

SOLID
TANTA LUM

~A78HGA

+

R1

CONTROL

+

3
~

CL" 1.0

':

~

F

4
R2
COMMO N

Design Considerations
This device has thermal-overload protection from
excessive power and internal short-circuit protection
which limits the circuit's maximum current. Thus, the
device is protected from overload abnormalities.
Although the internal power dissipation is limited, the
junction temperature must be kept below the maximum
specified temperature (150°C). It is recommended by
the manufacturer that the maximum junction
temperature be kept as low as possible for increased
reliability. To calculate the maximum junction
temperature or heat sink required, the following
thermal resistance values should be used:

This device is designed to operate without external
compensation components. However, the amount of
external filtering of this voltage regulator depends
upon the circuit layout. If in a specific application the
regulator is more than four inches from the filter
capacitor, a 1 iLF solid tantalum capacitor should be
used at the input. A 0.1 iLF capacitor should be used
at the output to reduce transients created by fast
switching loads, as seen in the basic test circuit.
These filter capacitors must be located as close to
the regulator as possible.

Caution: Permanent damage can result from forcing
the output voltage higher than the input voltage. A
protection diode from output to input should be used if
this condition exists.

Typ

Package

OJC

TO-3

1.8

2.5

Voltage Output
The device has an adjustable output voltage from
5.0 V to 24 V which can be programmed by the
external resistor network (potentiometer or two fixed
resistors) using the relationship

TJ(max) - TA
OJC + 0CA

PD(MAX)

=

OCA

= OCS

+ OSA

VOUT
Solving for TJ:
TJ = TA + PD (OJC

= VCONTROL

+ R2)
( R1 R2

Example: If R 1 = 0 fl and R2 = 5 kfl, then
VOUT
5 V nominal.
Or, if R 1 = 10 kfl and R2 = 5 kfl, then
VOUT = 15 V.

+ 0CA)

=

Where:
TJ
= Junction Temperature
TA
Ambient Temperature
Po
= Power Dissipation
OJC
= Junction-to-case thermal resistance
OCA
= Case-to-ambient thermal resistance
OSA
= Heat sink-to-ambient thermal resistance
OCS
= Case-to-heat sink thermal resistance

=

3-18

JLA79HG
5 A Negative Adjustable
Voltage Regulator

FAIRCHILD
A Schlumberger Company

Hybrid Products

Connection Diagram
4-Pin Metal Package

Description
The !LA79HG is an adjustable 4-terminal negative
voltage regulator capable of supplying in excess of
-5 A over a -24 V to -2.11 V output range. The
!LA 79HG hybrid voltage regulator has been designed
with all the inherent characteristics of the monolithic
4-terminal regulator; i.e., full thermal overload and
short circuit protection. The !LA79HG is packaged in a
hermetically-sealed 4-pin TO-3 package providing
50 W power dissipation. The regulator consists of a
monolithic chip driving a discrete-series pass element
and short circuit detection transistors.

•

-5_0 A OUTPUT CURRENT
INTERNAL CURRENT AND THERMAL OVERLOAD
PROTECTION
• INTERNAL SHORT CIRCUIT CURRENT LIMIT
• LOW DROP-OUT VOLTAGE (TYPICALLY 2_2 V
@5_0A)
• 50 W POWER DISSIPATION
• ELECTRICALLY NEUTRAL CASE
• STEEL TO-3 CASE
•
•

(Top View)

Order Information
Type
Package
!LA79HG
Metal
!LA79HG
Metal

Part No_
!LA79HGSC
!LA79HGSM

Code

JA
JA

Block Diagram
4

I

1

START-UP
CIRCUIT

-

< SHO RTCIRCUIT

SENS E RESISTOR

CURRENT
SOURCE

THERMAL
SHUTDOWN-

J

I

VOLTAGE
REFERENCE

,---

-v UNREGULATED

r--

SHORT
CIRCUIT
LIMIT

f-

1' . . . . . .
......................

~

7'

1'- . . . . . .
................

OUTP UT
SISTOR
ITRA:
OUTPUT

2
1

3-19

CONTROL
COMMON

p,A79HG
Absolute Maximum Ratings
Input Voltage
Internal Power Dissipation
Maximum Input-to-Output
Voltage Differential
Operating Junction
Temperature Range
/LA79HG
Electrical Characteristics

-40 V
50 W @ 25°C Case

Storage Temperature Range
Pin Temperature
(Soldering, 60 s)

-55°C to + 150°C
300°C

-35 V
O°C to +150°C

TJ = 25°C, VIN = -10 V and lOUT = -2.0 A unless otherwise specified.
Limits

Characteristic

Min

Input Voltage Range

-40

Nominal Output Voltage Range

-24

Typ

Output Voltage Tolerance

Max

Unit

-7.0

V

Condition

-2.11
4

V
VIN = VOUT -5 V
%(VOUT) -40 V :S VIN :S -7 V

Line Regulation

0.4

1.0

%(VOUT) -40 V :S VIN :S -7 V

Load Regulation

0.7

1.0

%(VOUT)

Control Pin Current

3.0

Quiescent Current

-5.0

/LA
mA

Ripple Rejection

50

dB

Output Noise Voltage

200

/LV

Dropout Voltage

2.2
-8

Short Circuit Current Limit
Control Pin Voltage
(Reference)

-2.35

VIN = VOUT -10 V,
-10 mA :S lOUT :S -5.0 A
VIN = -10 V
-18 V:S VIN:S -8.5 V
VOUT = -5 V, f = 120 Hz
10 Hz :S f :S 100 kHz,
VOUT = -5.0 V

V

lOUT = -5 A

-12

A

VIN=-15V

-2.11

V

VIN=-10V

Typical Performance Curves

Short Circuit Current
-10

60

2~C

50

-8

"\
1\
1\
l\

75°C
40
-6

30
-4
20

-2
10

o

o

-5

-10

-15

Dropout Voltage

Quiescent Current

-20

-25

-30

-35

0
_25

lOUT'" -SA

lOUT"" -2A

1,\

0

25

50

75

100

125

150

oL--L__L--L~L-~~L-~
-25

0

25

50

75

100

125

JUNCTION TEMPERATURE _ "C

INPUT VOLTAGE - V
CASE TEMPERATURE _ °C

3·20

150

J.!A79HG
Typical Performance Curves (Cont.)

Line Transient Response
~

Load Regulation

f-+-+----1I-+_+-+YOUT = -50 V

20

lour::: -30A
10f-+-+----11-+_+____1--+-+_+~

w

Load Transient Response

~ 0f-+-+--.11-+-+---i--.....+-+--1
~-101-+-+----1~+_-t--1--f-+_+__1

[

8-~f-+-+----11-+_+____1--+-+_+~
>

~-10~~-+--11-+-+----1--~+-+~
~

!:;
g-20f-+-+----1I-+_+----1--+-+_+~

i

~

' - 25°C

'-7SOC

1- 10

~

-" \.

125"C

fi
>-20
~

w

"~-30
g

!-40
-so

1

o

-2

-1

PULSE WIDTH TIME - ~s

-,

_3

Output Voltage Deviation vs
Junction Temperature

PULSE WIDTH TIllE - Id

Control Current
vs Temperature

Differential Control Voltage
vs Input Voltage

07
YIN

~
Ii

.

= -40V

~

_SA

w -so
j$

"g

06

-20

f--+--+-I-+--+----i--+__1

§

~
"
5
rr
0

t\

0'

B

VIN

JUNCTION TEMPERATURE -

"c

o

25

so

75

rr
rr

"

-.

~

0

ffi

.- ~

25°C

-2

~

~

~

75°C

~

_1

o

-5

-10 -15

-20

125

JUNCTION TEMPERATURE _ ·C

:;

"

100

_25 -30 -35 -40

INPUT VOLTAGE - V

3·21

-8.0

-10

1'r--.

-S

~

<2

'f'i'f~

Maximum Power Dissipation

. -,

~

1'1"-

= 10V
= -S.OY

Your

o

r--.. r-.....

~_60

1'1'

!i 02

I.......

TJ = 25"C .....

E

1'1'

D.'
0.1

-200 L---L_L----L_.L.---L_..L-'_
25
50
75
100 125 150
-25

!iw

r--.

>-4.0

rr

~-1~f__+--+--f-_+--+-____1--+~

E

r--- t---

E OS

-2A

•

• •

-S

OUTPUT CURRENT _ A

150

"

louT = -2A
VOUT = _5.OY

-12

-50

-10

-15
-20
-25
INPUT VOLTAGE - V

-30

,uA79HG
Basic Test Circuit, Adjustable Output Voltage
3
VOUT

4
/LA79HG
CONTROL

C IN ; 2/L F

SOLID
TANTALUM

Rl

+

+

2

~!::: CL'" 1.O/L F

~

1
R2
COMM ON

(Rl

+ R2)

VOUT ~ VCONT'--R-2-

Design Considerations
This device has thermal overload protection from
excessive power and internal short circuit protection
which limits the circuit's maximum current. Thus, the
device is protected from overload abnormalities.
Although the internal power dissipation is limited, the
junction temperature must be kept below the maximum
specified temperature (150°C). It is recommended by
the manufacturer that the maximum junction
temperature be kept as low as possible for increased
reliability. To calculate the maximum junction
temperature or heat sink required, the following
thermal resistance values should be used.

Package
TO-3

Typ

Max

IiJC

IiJC
2.5

1.8

PO(MAX)

=

IiCA = lics

switching loads, as seen in the basic test circuit.
These filter capacitors must be located as close to
the regulator as possible.

Caution: Permanent damage can result from forcing
the output voltage higher than the input voltage. A
protection diode from output to input should be used if
this condition exists.
Voltage Output
The device has an adjustable output voltage from
-2.11 to -24 V which can be programmed by the
external resistor network (potentiometer or two fixed
resistors) using the relationship:
VOUT = VCONTROL

+ R2)

R2

Example: If R 1 = 0 Q and R2 = 5 kQ, then
VOUT = -2.11 V nominal.
Or, if R1 = 12.8 kQ and R2 = 2.1 kQ then
VOUT = -15 V.

TJ(MAX) - TA
IiJC + IiCA

+ liSA

Solving for T J:
TJ = TA + Po (IiJC

( R1

+ IiCA)

Where:
T J = Junction Temperature
TA
Ambient Temperature
Po
Power Dissipation
8JC = Junction-to-case thermal resistance
IiCA = Case-to-ambient thermal resistance
IiCS = Case-to-heat sink thermal resistance
liSA = Heat sink-to-ambient thermal resistance

=
=

The device is designed to operate without external
compensation components. However, the amount of
external filtering of these voltage regulators depends
upon the circuit layout. If in a specific application the
regulator is more than four inches from the filter
capacitor, a 2 JtF solid tantalum capacitor should be
used at the input. A 1 JtF capacitor should be used at
the output to reduce transients created by fast

3-22

1
SH323 • SH223 • SH 123
5 A, 3 V
Voltage Regulator

FAIRCHILD
A Schlumberger Company

Hybrid Products

Description
The SH232 is a hybrid regulator with 5.0 V fixed output
and 3.0 A output capability. It has the inherent
characteristics of the monolithic 3-terminal regulators,
i.e., full thermal overload, short circuit and safe area
protection. All devices are packaged in hermetically
sealed TO-3s providing 50 W power dissipation. If the
safe operating area is exceeded, the device shuts
down rather than failing or damaging other system
components (Note 1). This feature eliminates costly
output circuitry and overly conservative heat sinks
typical of high-current regulators built from
discrete components.

Connection Diagram
2-Pin Metal Package

•

•
•

3.0 A OUTPUT CURRENT
INTERNAL CURRENT AND THERMAL
OVERLOAD PROTECTION
• INTERNAL SHORT CIRCUIT PROTECTION
• LOW DROPOUT VOLTAGE (TYPICALLY 2.0 V
@3.0A)
• 50 W POWER DISSIPATION
• STEEL TO-3 PACKAGE
• ALL PIN-FOR-PIN COMPATIBLE WITH THE
LM323, SG323

(Top View)

Order Information
Type
Package
SH323
Metal
SH223
Metal
SH123
Metal

Code
GN
GN
GN

Part No.
SH323SC
SH223SV
SH123SM

Block Diagram

I

I
START
CIRCUIT

I

CURRENT SOURCE

VOLTAGE
REGULATOR

I

~d..
r-

~

VIN

THERMAL
SHUTDOWN

~,

1

1

SHORT
CIRCUIT
PROTECTION

R

.....

~

.....
Rsc

1

2
Vour

3
COMMON

3·23

SH323 • SH223 • SH 123
Absolute Maximum Ratings
Input Voltage
Input-to-Output Voltage
Differential
Output Short Circuited
Internal Power Dissipation
Operating Junction Temperature
Industrial Temperature Range
SH223SV

Military Temperature Range
SH123SM
Commercial Temperature Range
SH323SC
Storage Temperature Range
Pin Temperature
(Soldering, 60 s)

40 V
35 V
50 W @ 25°C Case
150°C

O°C to +150°C
-55°C to +150°C

TJ = 25°C, VIN = 10 V, lOUT = 2.0 A unless otherwise specified.

Electrical Characteristics

Limits
Symbol

Characteristic

Min

Typ

Max

Unit

Condition

VOUT

Output Voltage

4.85

5.0

5.25

~VOUT

Line Regulation (Note 2)

25

lOUT = 2.0 A
VIN = 7.5 to 25 V

~VOUT

Load Regulation (Note 2)

10

Quiescent Current
Ripple Rejection

10
10
3.0

V
mV

50
10

mV
rnA

2.3
12.0

jLVRMS 10 Hz :$ f :$ 100 kHz, VIN = 10 V
V
lOUT = 3 A
VIN = 10 V
Apk

RR

dB

60
40

Output Noise
Dropout Voltage (Note 3)
Short Circuit Current Limit

Vn
Voo
los

2.0
7.0

Notes
1. ThIs voltage regulator offers output transistor safe area
protectIon. However, to maIntaIn full protectIon. the device
must be operated within the maxImum Input-to-output voltage
differentIal ratmgs, as hsted on thIs data sheet under" Absolute
MaxImum Ratmgs." For applicatIons vlolatmg these 10m ItS,
devIce will not be fully protected
2. Load and hne regulatIon are specIfIed at constant JunctIon

10 rnA :$ lOUT :$ 3.0 A
lOUT = 0
lOUT = 1.0 A, f = 120 Hz, 5.0 Vpk-pk

temperature Pulse testmg IS required wIth a pulse wIdth
::s 1 ms and a duty cycle ::s 5% Full Kelvin connection
methods must be used to measure these parameters
3. Dropout Voltage IS the mput·output voltage dIfferential that
causes the output voltage to decrease by 5% of ItS
mltial value

Typical Performance Curves

.

Short Circuit Current

Dropout Voltage

MaxImum Power Dissipation

I.

>
I

I-

50

"'-

I--...

'-...

TJ

1\
""""TJ = 25"C

= 7SOC,""

.........

.....,

I"""1""'-.
••

810

20

INPUT VOLTAGE _ Y

30

'\

35

I.
•

_25

0

25

50

'\

75

CASE TEMPERATURE _ ·C

3-24

~

'\

100

IOUT=2A

-

F-

1

!!

1\

125

I
i•

~loL.l

150

_25

0

25

50

75

100

125

JUNCTION TEMPERATURE - ·C

150

SH323 • SH223 • SH 123
Typical Performance Curves (ConI.)

Line Regulation

>

E

IOUT=2A

>

w

E -10

120

50

V

>-

"e: -50
5

~

w

>

-30

I

0

I

"'"

"
"

%

0

10

15

20

~

IOUT'=3A

l\.

'"

a:

10

40

o

25

...........
>

r--.....

60

80

I

J

> 100

w

1

10

TJ -l25°C-f---/

TJ = 2SOC ---"

tOOk

1M

so
VIN=10V

~
~
~ -so

e:-l00

5

~

'"

Ii?

10k

VOUT vs Junction Temperature

/'

~ -50

-30

lk

I\"

%

/

100

INPUT FREQUENCY - Hz

Cl=Ol~F

50

~

r-- ~

~

20

100

VIN = toV

E

VIN-lOV
____

~25OC

-10

i'lw

40

Load Transient Response

~
~

:;: -20

20

PULSE WIDTH TIME _ P.s

Load Regulation

~ -100

~-40

-

IOUT=2A

r-

5

~ _150

5

o

-so

o

o

OUTPUT CURRENT - A

20

40

60

-200

80 100

-so

10
IOUT=1A

VIN = tOv

so

05

~

"t'-

v"

C,

I

TJ

,.
If

~

C L = 0 """'\

""

I
W

10

"

!

)

50

> 005

n'

/

"0

~

........

./C,=OI.F/

20

CL

""

1

10

100

1k

t-

~

1

)

10 p.F TANT

I

10

01

10 k

LOAD FREQUENCY - Hz

I
100 k

1M

001

10

so

00
100

500

1k

FREQUENCY - Hz

3-25

75

100

125

150

Quiescent Current
10 V
0

~

20

50

JUNCTION TEMPERATURE _ °C

Output Noise Voltage

100

25

-25

PULSE WIDTH TIME - ILS

Output Impedance

~

..

!!,

INPUT VOLTAGE _ V

'~"

~

OJ
a:

20

i!O
0

Q

eo

~

-so

1j
z

Z

0

Z

0

~

~

w

>
>~ -40

"~

100

I'u

%

~

VIN = tOV
CL=OlILF

,..

I

Z

;;: -20

~

VIN = 10 V
CL = 01 ~F

r')I OUT =3A

25

"
o'" -25

I

Z

0

"~

Ripple Rejection

Line Transient Response

5 k 10 k

~

J5'C "-

,&

~

~

~~125'C
TJ=25°C

I
10

15

INPUT VOLTAGE - V

20

25

•

SH323 • SH223 • SH 123
Test Circuit
Fixed Output Voltage

1

2
SH323

SOLID
TANTALUM

VOUT

*

+

+
CIN
1 /LF

3

-L
Design Considerations

Caution: Permanent damage can result from forcing
the output voltage higher than the input voltage. A
protection diode from output to input should be used if
this condition exists.

Max
BJC

TO-3

PO(MAX)
BCA

1.8

=

= OCS

2.5

TJ(MAX) - TA
BJC
BCA

+

+ OSA

Solving for TJ:
TJ = TA + Po (OJC

COMMON

The device is designed to operated without external
compensation components. However, the amount of
external filtering of this voltage regulator depends
upon the circuit layout. If in a specific application the
regulator is more than four inches from the filter
capacitor, a 1 ILF solid tantalum capacitor should be
used at the input. A 0.1 ILF capacitor should be used
at the output to reduce transients created by fast
switching loads, as seen in the basic test circuit.
These filter capacitors must be located as close to
the regulator as possible.

This device has thermal overload protection from
excessive power and internal short circuit protection
which limits the circuit's maximum current. Thus, the
device is protected from overload abnormalities.
Although the internal power dissipation is limited, the
junction temperature must be kept below the maximum
specified temperature (150°C). It is recommended by
the manufacturer that the maximum junction
temperature be kept as low as possible for increased
reliability. To calculate the maximum junction
temperature or heat sink required, the following
thermal resistance values should be used.

Package

CL F
0.1
/-L

+ 0CA)

Where:
Junction Temperature
TJ
Ambient Temperature
TA
Power Dissipation
Po
Junction-to-case thermal resistance
OJC
Case-Io-ambient thermal resislance
OCA
Case-to-heat sink thermal resistance
OCS
Heat sink-to-ambient thermal resistance
OSA

3-26

SH1605
5 A Efficient
Switching Regulator

FAIRCHIL.O
A Schlumberger Company

Hybrid Products

Description
The SH1605 is a hybrid switching regulator with high
output current capabilities. It incorporates a
temperature-compensated voltage reference, a dutycycle controllable oscillator, error amplifier, high
current-high voltage output switch, and a power diode.
The SH 1605 can supply 5 A of regulated output
current over a wide range of output voltage.
•
•
•
•
•

Connection Diagram
S-Pin TO-3 Type
ERROR
AMPLIFIER
INPUT

STEP DOWN SWITCHING REGULATOR
OUTPUT ADJUSTABLE FROM 3_0 TO 30 V
5 A OUTPUT CURRENT
HIGH EFFICIENCY
UP TO 150 W OUTPUT POWER

Absolute Maximum Ratings
VIN - VOUT(mm)
Input Voltage
Output Current
Operating Temperature T J
Internal Power Dissipation
Storage Temperature Range
Duty Cycle
V 7 -8
17 -8

•

VOUT

STEERING
DIODE (ANODE)

TA = 25°C unless
otherwise specified
5V
35 V Max
6A
150°C
20W
-65°C to +150°C
20 :s D :s 80%
60 V
6A

Case

= Ground

Order Information
Type
SH1605

Package
Metal

Code
8G

Block Diagram

1----------------------,
I

I

7

~._~------~CASE

I
I
I
I
I

L ______________________
3-27

I
~

Part No_
SH1605S

SH1605
Electrical Characteristics

Tc = 25°C, VIN = 15 V unless otherwise specified.

SH1605
Symbol

Characteristics

Conditions

VOUT

Output Voltage

VIN 2: Va

Vs

Switch Saturation

lOUT
lOUT

VF

Diode On Voltage

Vcc

Supply Voltage

IRO

Diode Reverse Current

10

Quiescent Current

Min

+ 5 V, 10 = 2 A

Typ

Max

Units

30.0

V

1.5
1.0

2.0
1.2

V
V

2.2
1.6

2.8
2.0

V
V

3.0

= 5.0 A,
= 2.0 A
lOUT = 5.0 A,
lOUT = 2.0 A
10

= 25 V
lOUT = 0.2 A
VRO

35

V

2.0

IJ-A

30

mA

Reference and Oscillator Section
V3

Voltage on Pin 3

2.5

V

6V3/T

V3 Temperature Coefficient

150

ppm/oC

14

Charging Current-Pin 4

25

IJ-A

V4

Voltage Swing-Pin 4

0.5

V

114

Discharging Current-Pin 4

225

IJ-A

Switching Characteristics
Symbol

Characteristics

Conditions

tr

Voltage Rise Time

tj

Voltage Fall Time

lOUT
lOUT

ts

Storage Time

td

Delay Time

Min

Typ

Max

Units

lOUT = 2.0 A
lOUT = 5.0 A

700
1.8

ns
IJ-s

= 2.0 A
= 5.0 A
lOUT = 5.0 A
lOUT = 5.0 A

700
900

ns
ns

2.6

IJ-S

2.5

IJ-S

Thermal Characteristics
Po

Power Dissipation

lOUT = 5.0 A
VOUT = 10 V

16

W

."

Efficiency

VOUT = 10V,
lOUT = 5 A

75

%

°J-C

Thermal Resistance

4.5

°C/W

Notes
1 fiC-A' Typical is 30°C/W for natural convection COOling.
2. For heatsinking requirements see power derating curve.

3·28

SH1605
Power Derating Curve

Design Equations

••

.

Efficiency (1/)

=

POUT X 100

I\.
Transistor DC Losses (PT) = lOUT X Vs tON

•

tOFF
Diode DC Losses (PO) = lOUT X VF tON + tOFF

\

0

'\.

5

Drive Circuit Losses (DL)
00

30

60

90

120

tON
+ tOFF

=

VIN2
tON
300 X tON + tOFF

'\150
Switching Losses Transistor:
tr + tf
(Ps) = VIN X lOUT 2(tON + tOFF)

CASE TEMPERATURE-oC

Transistor Duty Cycle
Diode Duty Cycle

=

Power Inductor (PL)

=

tON

tON
+ tOFF

tOFF
tON + tOFF

VOUT

=~

=1-

VOUT
~

= IOUT2 X RL (Winding Resistance)

Efficiency:
VOUT lOUT
(1/) = VOUT lOUT

3-29

+ PT + Po + DL + Ps + PL

X 100

SH1605
Design Considerations
Figure 1 is a typical design of a step-down switching
regulator using the SH1605.

The output capacitor can now be determined
as follows:
CO(min) = (8 f(min) Vripple(max»

Nominal Design Objectives
VOUT = +5 V
Line Regulation = 2%
IOUT(max) = 5.0 A
Load Regulation = 2%
IOUT(min) = 1.0 A
Ripple (max) = 0.1 Vpk-pk
VIN = 12 to 18 V
Efficiency = 70%

2
(8 X 7.7 X 103) X (1 X 10

The maximum acceptable ESR is therefore
Vripple(max)
ESR(max) = ~Il(max) = 0.025f!

First, R3 is calculated from Equation 5:
R3

=

(2 X 103)(VOUT - 2.5)
2.5

= 2 kf!

Normally, the minimum capacitance value should be
increased considerably if a low ESR capacitor
is not used.

Since the required IOUT(min) is 1 A to maintain
continouous operation, the peak-to-peak current
excursion must be equal to 2 A or less, i.e.,
~Il

As a final step for minimizing switching transients at
the device input, a low ESR capacitor must be used for
decoupling purposes between the input terminal
and ground.

= 2 IOUT(min)

To calculate the value of the inductor, assume the
nominal on time of the system as 60 fJ,s. This value is
chosen keeping the efficiency / component-size tradeoff in mind. From Equation 1.
L1

=

( VIN -~IlVOUT) ton

10

= ""2 (6

X 10- 5 )

1)

= 325 fJ,F

= 300 fJ,H

where VIN(nom) = 15 V, ton = 60 fJ,S

One very important element in achieving the optimum
performance in a switching regulator is to insure the
inductor is kept below the specified saturation limits.

The SH1605 is a highly versatile building block for
high current, step-down switching regulator systems.
However, to attain optimum performance and reliability
the following guidelines should be followed:
• Keep operating period long, relative to the device
switching times, for optimum efficiency.
• Insure that the inductor stays out of saturation and
minimize the series resistance.
• Use high quality capacitors for input and output to
minimize ripple and noise.

Fig. 1

Design Example

-..--_--tS r - - - - - - - - ,

Since the timing capacitor controls the 60 fJ,S on time,
CT can be determined using Equation 7:

300 ILH

SH160S

CT

=

(ton)(le)
~V

where Ie

CASE

= 25 fJ,A nominal per data sheet.

.OO331J.F

sov

The final step is to determine the requirements for the
output capacitor Co to obtain the desired value of
ripple voltage. Consideration must be given to the
absolute value of Co as well as the internal effective
series resistance (ESR). Since the capacitor size is
inversely proportional to the operating frequency, the
lowest frequency of operation must be calculated.
Minimum operating frequency can be determined by
using ~Il(max) vs ~11(nom) in Equation 9.
1
Minimum Frequency
1.3 X 10 4
7.7 kHz

=

Note

CirCUIt Performance
VIN = 12-18 V
VOUT = 506 V
Load Reg = 50 mV (1 A ~ lOUT ~ 5 A)
Lone Reg = 50 mV (12 V ~ VIN 18 V)
SH1605 must be mounted on a heat sonk wIth a maxImum thermal
resIstance of 
Al?: 2kn
-55°C s: TA S +125°C
60>

~

~

0

>

V

~

0

>

I

•

~
.l.

12

11

5

L

~
i--" .....

"''''~ I-

1-1-'
10

V

14

13

-I-

---t:::

10

15

,

I
I

Vs - .!.15 V

R, - 10 k!l

~

0

TA - -55°~~'

50

~

g

~

~,.

o
o

o

•

10

11

,
0.2

0

02 04 06 08 10

o

"
Z

r-

30 k

-. r-.,

20>

II"'-i-

-kJ"J
I

I-

Vs -- +9V

~

60

20

20

11

--

100

60
0

12

14

13

15

T,

0

~15 J

t-25 C
Q

/'

24

'>

22

::>

20

~

18

~

Vs

28

26

/

/

0

~

$
~

>
TEMPERATURE _

140

j

16
14

II

12
10
01

02

c

05

10

LOAD RESISTANCE -

Input Bias Current as a
Function of
Supply Voltage

500

10

9

Output Voltage Swing as a
Function of
load Resistance

~ ~S"'.!:7S"

mY

Input Bias Current as a
Function of
Ambient Temperature

20

SUPPLY VOLTAGE --I:V

......
50 k

10

INPUT YOLTAGE -

-I-

o·

40

15

>
I

~ 40 k

~

_t-

30

~

I

15
10 0.8 06 04

14

>

z

~

f.- I-

~\""\~u'"
60

~:V

50>

~

I

-10

13

12

Voltage Gain as a
Function of
Ambient Temperature

:c

TA '-- 25°C

I

50

~

RLI-l01kn

j

o

g
Z

70

II

80

~

i!i

SUPPLY VOLTAGE -

TA - +125°C

J--

>
I

[lot-

-

~

1'!

50

15

- -

rp

"'~
;;;'
..,..~
Il"!!>-1.>"

-5;'C ~ T! ~ 1'251C

10

:

f.-~

~

SUPPLY VOLTAGE - "!:Y

Voltage Transfer Characteristic

f-

~_'\()~

20

~
o

i--"

I I

I

25

~

12

I
I
I

l1

I

I I

v

i--"

20 >

10

.YI

v

40 >

30>

>

./

.l~~

50>

is

~

30

I I

I I

I~ V

z

Input Common Mode Voltage
Range as a
Function of Supply Voltage

Output Voltage Swing as a
Function of Supply Voltage

k!l

Input Offset Current as a
Function of
Ambient Temperature

105

50
TA"" +25°C

~ 400
I
;

300

~

200

~

-

'\
\.

"100

r-....

0
60

20

20

.....

-

60

TEMPERATURE _

0

c

100

140

40

f.- _I--'"

I-f-

\

30

1\

20

\

85

10

60

o

•

10

11

12

13

SUPPLY VOLTAGE - ±V

4·12

14

15

60

20

,"20

r- .....
60

TEMPERATURE _

100
0

c

140

j.tA709
Typical Performance Curves for j.tA709A (Cont.)
Input Resistance as a
Function of
Ambient Temperature

Common Mode Rejection
Ratio as a Function of
Ambient Temperature

Power Consumption as a
Function of
Ambient Temperature

50

112

90

Rs _10k!!

Vs

'15 V

30

~

11 0

i1

"'oz
~

~

108

r--- ........

~

/

~

i

"'

!j
z

I

z

~

ti:

........

70

........

~

~

05

i

03

z

o

60

U

l-

~

C

10

r- ........

80

I

z
o

~

106

C

o

vV

I

"'w
~

~

104

50

o

u

1

102
20

60

20

60

140

100

TEMPERATURE _

0

12

-JVE~~

"!::0

~

TA

=

E

I
1
J
If- ,'5E TIMf

06
04
02

~

0

u

50

V

ffi

~
I

.
~
~

..... ~

30

~

10

05

10

15

20

9

2S

......
10

10

I

1/

~

f;'

....... V
",~\vo;;.-v

V

10

11

13

12

SUPPLY VOLTAGE -

TIME-J.1s

140

c

Ys=+15Y

./

,/

~

iilz

100

60

f::T' - 2S°C

~",+V

,..",Pr

70

20

100

V

90

20

Slew Rate as a Function of
Closed-Loop Gain
Using Recommended
Compensation Networks

V

z

0

60

TEMPERATURE -

2S"C

TA"'"' 25°C

~

40

140

100
QC

110

VS=~'5~_

10
08

so

28

Power Consumption as a
Function of
Supply Voltage

I-

~

28

TEMPERATURE -

Transient Response
14

60

c

14

1

15

10

±V

100

1000

CLOSED-LOOP GAIN

Typical Performance Curves for j.tA709 and j.tA709C
Power Consumption as a
Function of
Supply Voltage
110

Voltage Transfer Characteristic

,.

V

TA '" 25°C

Ys-±15V
Rl '" 10k!!

,/
~

E

90

~+V
+~~

I

z

~

7

0

iil

8

30

>
I

J~

5.0

I-

"

~

10

0
11

12

13

14
+Y

Q

15

~
I

08

l-

ii
!!iu"'

~

J
If'

-5.0

0

SUPPLY VOLTAGE -

TA - 2S C

I

w

"e
~

f-""

10

Vs=±15Y

I I
TA - +125 b C

§!

",~\V~
~

,/

50

"'

~

./

L""

,/

~

10

10

I
I

I If"
I fll
TA = -55°C". l"-

Input Bias Current as a
Function of
Ambient Temperature

06

"'

04

."
I-

r

!!:

.......

02

!1.

-15
-10 -08 -06 -.04 -02

0

0.2 04

INPUT VOLTAGE -

4-13

mY

06

0.8 1.0

r- t--

o
60

20

20

80

TEMPERATURE -

100
Q

C

140

}lA709
Typical Performance Curves for IlA709 and IlA709C (Cont.)

10

200

120

VA = :t15 V

~ 160

DB

:i

a: 120

~

~
~

80

$

~

""

40

-60

-20

~

r-- I-100

60

20

TEMPERATURE -

I

,

Vo 0;15

~

...
~

o"

~
~
~

I

/

26

/'

4

~

"o

~

I

6

4

~

/

2

02

05
LOAD RESISTANCE -

5

~

"

o

~'2.\<.n

...

.->-

50
w
>

11

10

12

14

13

3r--.

I-

3~

I-'"

11

w

15

>

i

150

7

125

5

12

SUPPLY VOLTAGE -

13

14

-+:.v

15

~

6

~ 1-1- .....

'po

I--

*'9

~""
/...(

I- VC~
~~O'lO
7l; f-o~8."

~

:O"'/l)1"1t
04

I I I
I I I
11

L
t2
¥FC-

L~~

..... t--.,

R~sPo

10

25

Frequency Characteristics
as a Function
of Ambient Temperature
;.1::9 V '$ yo c= .:15 V

~ ccosy-'r

11

20

15
",s

20

I
I I I

Oo~9"""

10

10

TIME -

fi 91- f-)EJ ~."
g
0
~O'Il\01'\,\

17 5

05

=V

cl

III

I

~~:i~~~-

I
I
I
f- RISETIM~
I

06

fi

02

9

140

c

,-

10

~ DB

50

~

...

",\~\"'\lt/l~
/1::: .-~

T,'25-

I-t- I-t-

I-

II

_,o~

0

~L~~

12

g 04

5

1-1-1200

14

I

100

60

Transient Response

I

- I - "'\~\~

20

20

60

TEMPERATURE _

0

TA = 25°C

...

140

Frequency Characteristics as a
Function of
Supply Voltage

225

0

°C

SUPPLY VOLTAGE -

25 0

~

100

60

I I
I

0

k!)

Input Bias Current as a
Function of
Supply Voltage

I-I-

60

0

25

10

--

I--

~ --

a:

~

d-C~T,I'-H

o

10

01

o

20

Z

/

0

V

-20

Cl

~

/

2

~

Output Voltage Swing as a
Function of Supply Voltage
>

80

~

TEMPERATURE -

J

-l-

z

~

;'

0
-60

140

TA -" +25°C

,

02

30

Cl

Z

........v

"C

Output Voltage Swing as a
Function of
load Resistance
0

0.4

~

100

I

'/

/

... v

'"

o

>

06

>!

...

~

./

I

iii
!!i
0
~

Vs=±15V

Vs '" :!12 V

...I

iu
ff!

Power Consumption as a
Function of
Ambient Temperature

Input Resistance as a
Function of
Ambient Temperature

Input Offset Current as a
Function of
Ambient Temperature

12

13

SUPPLY VOLTAGE -

4·14

14
.v

15

0
-60

-20

20

60

TEMPERATURE _ °C

100

140

J.1A709
Typical Performance Curves for J.lA709 and J.lA709C (Cont.)
Voltage Gain as a
Function of
Supply Voltage (709C only)
15k

2 kn
+70°C

-5S~C

<

V

"
"~

w 10 k

~

:...-

0

~
is

5k

o

"
"~
w

~

..... 1--'"

is
g

I

10 k
10

11

12

14

13

SUPPLY VOLTAGE -

15

9

"z~

80

"g~

60

w

--

10

11

12

i--

40

Z

o
~
~

8
14

13

SUPPLY VOLTAGE -

-tv

1.--1--'"

--

to\\N't.'U'"

o

g

"""'~-

I
~70°C

,....-

w

V

20 k

I

w

k-'

40 k

I
T,

10

,/

...l,'¢
~-;:

50 k

30 k

O°C

1/

I

Z

~
0
9

Q

<

""'V
...!.¢;::;--

~

.,- TA"':: r125 C

60 k

..... V

I

V

RL _ 2 kn
<

Z

g

12

10k

R,

QOC, TA

Input Common Mode Voltage
Range as a Function of
Supply Voltage

Voltage Gain as a
Function of
Supply Voltage (709 only)

20

o

15

9

~_V

10

12

11

SUPPLY VOLTAGE -

14

13

15

•v

Frequency Compensation Curves For All Types
Open-Loop Frequency
Response for Various
Values of Compensation

Frequency Response for Various
Closed Loop Gains

Output Voltage Swing as a
Function of Frequency for
Various Compensation Networks
>
I

"~
Z

2'

"e:

20

:>
0

~

<15 V
2S u C

2.

16

12

~

.0

~

40

~

FREQUENCY -

FReQUENCY - Hz

Hz

FREQUENCY -

Test Circuits
Frequency Compensation Circuit

Transient Response Circuit
10 kll

R2

R2
>--p-.A./'I/'v~-~....-

Vour

Note
Use R2 = 50 n when the amplifier ,s
operated w,th capacitive loading

Note
Pon numbers on this and all succeeding
circuits apply to metal can
or mon, DIP package.

4-15

Hz

•

p,A709
Input Breakdown-Protection

Protection Circuits

R1

Output Short-Circuit Protection

01

R1

6

20011
R2

Supply Overvoltage-Protection
v+

Latch-Up Protection

R1

R2

01

R1

01

6

>~~-EOUT

EIN --'VV........._

Pm numbers apply to metal can or mml DIP package only.

4-16

JlA714
Precision Operational
Amplifier

FAIRCHILD
A Sehlumberger Company

Linear Products

Description
The JtA714 is a Monolithic Instrumentation Operational
Amplifier constructed using the Fairchild Planar
epitaxial process. It is intended for precise, low-level
signal amplification applications where low noise, low
drift and accurate closed-loop gain are required. The
offset null capability, low-power consumption, very
high-voltage gain as well as wide power-supply
voltage range provide superior performance for a wide
range of instrumentation applications.
•
•
•
•
•
•
•
•

Connection Diagram
8-Pin Metal Package

-IN

LOW OFFSET VOLTAGE 75 JtV
LOW OFFSET VOLTAGE DRIFT 1.3 JtV/oC
LOW BIAS CURRENT ± 3.0 nA
LOW INPUT NOISE CURRENT 0.17 pAl yHz
@ 1.0 kHz MAX
HIGH OPEN LOOP GAIN 500,000 TYPICALLY
LOW INPUT OFFSET CURRENT 2.8 nA MAX
HIGH COMMON MODE REJECTION 110 dB MIN
WIDE POWER SUPPLY RANGE ± 3.0 TO ± 22 V

Absolute Maximum Ratings
JtA714,JtA714E,JtA714C
Supply Voltage
Internal Power Dissipation
(Note 1)
Metal Package
Differential Input Voltage
Input Voltage (Note 2)
Storage Temperature Range
Metal Package
Operating Temperature Range
Military
Commercial
Pin Temperature
Metal Package (Soldering, 60 s)
JtA714L
Supply Voltage
Internal Power Dissipation
(Note 1)
Metal Package
Differential Input Voltage
Input Voltage (Note 2)
Storage Temperature Range
Metal Package
Operating Temperature Range
Military
Commercial
Pin Temperature
Metal Package (Soldering, 60 s)

>---(JOUT

v(Top View)

Order Information
Type
Package
714
Metal
714E
Metal
714C
Metal
714L
Metal

Code
5W
5W
5W
5W

Part No.
JtA714HM
JtA714EHC
JtA714HC
JtA714LHC

±22 V

500mW
±30 V
±22 V
-65°C to +150°C
-55°C to +125°C
O°C to +70°C
300°C

± 18 V
500mW
±30 V
± 18 V
-65°C to +150°C
O°C to +70°C
300°C

Noles
1. Ratings applies to ambient temperature to 70 oe. Above
TA = 70 0 e derate linearly 6.3 mW/oe.

2. For supply voltage less than ± 22 V, the absolute maximum
Input voltage IS equal to the supply voltage.
4-17

J.LA714
Equivalent Circuit

,
A2A'

~

r--o~UlL

~~

".

'"

e,

Q10>-

a"

a,'(~
'"

I

a~,a.~a·~a"
INPUT

1""~~'
a"

"
NPUT

'"

e,

~~

".

e,

C<

~

o,.~
a"

a"

:-;:J,

1Q42

a,,~a..

'"

'"

LKo"

'"

."

'"

,~15

a..

o,,~
a"

'"

....--

Q35>- ".
"

J. 'ia,

a"

"
~

~

0"

a"

SUPPLY

'"
a.

"

F>O$ITIVE

)Q33
"
~

Q30(

R2S'

a..

".

'"
a":::t-

"

J

.

OUTPUT

a,.

0,"

".

".
'"

.

NEGATIVE
SUPPLY

R2A and R2B are electronically adjusted on chip at the factory for
minimum offset voltage

4-18

J.LA714
J.LA714
Electrical Characteristics
These specifications apply for Vs = ± 15 V, TA = 25°C.

714

Characteristic

Condition

Min

Input Offset Voltage

(Note 3), Rs = 50 fl, VCM = 0.0 V

Long Term Input Offset Voltage Stability

(Note 4), RS = 50 fl, VCM = 0.0 V

0.2

1.0

Input Offset Current

VCM = 0.0 V

0.4

2.8

Typ

Max

30

75

Input Bias Current

VCM = 0.0 V

± 1.0

±3.0

Input Noise Voltage

0.1 Hz to 10 Hz (Note 5)

0.35

0.6

Input Noise Voltage Density

fa = 10 Hz (Note 5)
fa = 100 Hz (Note 5)
fa = 1000 Hz (Note 5)

10.3
10.0
9.6

18.0
13.0
11.0

Input Noise Current

0.1 Hz to 10 Hz (Note 5)

14

30

Input Noise Current Density

fa = 10 Hz (Note 5)
fa = 100 Hz (Note 5)
fa = 1000 Hz (Note 5)

0.32
0.14
0.12

0.80
0.23
0.17

Input Resistance-Differential Mode

20

Input Resistance-Common Mode

60
200

Input Voltage Range

± 13.0

± 14.0

110

126

Common Mode Rejection Ratio

VCM = ± 13 V, Rs = 50 fl

Power Supply Rejection Ratio

Vs= ±3.0Vto ±18V,RS=50fl

100

110

RL 2: 2.0 kfl, Va = -10 V to +10 V

200

500

RL 2: 500 fl, Va = -0.5 V to +0.5 V
Vs= ±3.0V

150

500

Large Signal Voltage Gain

Maximum Output Voltage Swing
Slewing Rate

RL 2: 10 kfl

± 12.5

± 13.0

RL 2: 2.0 kfl

± 12.0

± 12.8

RL2: 1.0kfl

± 10.5

± 12.0

RL 2: 2.0 kfl

0.17

Closed Loop Bandwidth

AVCL = +1.0

0.6

Open Loop Output Resistance

Va = 0 V, 10 = 0 A

60

Va = 0 V

75

120

Vs = ±3.0 V, Va = 0 V

4.0

6.0

Power Consumption
Offset Adjustment Range

Rp = 20 kfl

±4.0

The following specifications apply for Vs = ± 15 V, -55°C

~

TA

~

+125°C

Input Offset Voltage

(Note 3), RS = fl, VCM = 0.0 V

60

200

Average Input Offset Voltage Drift
Without External Trim

RS = 50 n, VCM = 0.0 V

0.3

1.3

(Note 5), Rp = 20 kn, RS = 50 n

0.3

1.3

Input Offset Current

VCM = 0.0 V

1.2

5.6

Average Input Offset Current Drift

VCM = 0.0 V

8.0

50

Input Bias Current

VCM = 0.0 V

±2.0

±6.0

Average Input Bias Current Drift

VCM = 0.0 V

13

50

With External Trim

Input Voltage Range

± 13.0

± 13.5
123

Common Mode Rejection Ratio

VCM = ± 13 V, RS = 50 n

106

Power Supply Rejection Ratio

Vs= ±3.0Vto ±18V,RS=50n

94

106

Large Signal Voltage Gain

RL 2: 2.0 kn, Va = -10 V to +10 V

150

400

Maximum Output Voltage Swing

RL 2: 2.0 kn

± 12.0

± 12.6

4-19

p,A714

Min

15

714E
Typ

Max

714C
Typ

Max

714L
Typ

30

75

60

Max

Unit

150

100

250

0.3

1.5

IlV

0.4

2.0

0.5

3.0

0.5

IlV/mo.

3.8

0.8

6.0

5.0

20

nA

± 1.2

±4.0

± 1.8

±7.0

6.0

±30

0.35

0.6

0.38

0.65

10.3
10.0
9.6

18.0
13.0
11.0

10.5
10.2
9.8

20.0
13.5
11.5

"14

30

15

0.32
0.14
0.12

0.80
0.23
0.17

0.35
0.15
0.13

50

Min

8.0

Min

10.5
10.2
9.8

nV/VHZ

35

15

pA pop

0.90
0.27
0.18

0.35
0.15
0.13

pA/VHZ

33

MQ

120

GQ

8.0

33
120

160

nA
IlVP-P

± 13.0

± 14.0

± 13.0

± 14.0

± 13.0

± 14.0

V

106

123

100

120

100

120

dB

94

107

90

104

90

104

dB

200

500

120

400

100

300

150

500

100

400

50

150

± 12.5

± 13.0

± 12.0

± 13.0

± 12.0

± 13.0

± 12.0

± 12.8

± 11.5

± 12.8

± 11.0

± 12.8

± 10.5

± 12.0

± 12.0

± 12.0

0.17

0.17

0.17

0.6

0.6

0.6

MHz

60

60

60

Q

V/mV

V
V/IlS

75

120

80

150

100

180

4.0

6.0

4.0

8.0

5.0

12

±4.0

±4.0

The following specifications apply for Vs =

±4.0

mW
mV

± 15 V, ooe :::; TA :::; 70 e
0

45

130

85

250

400

IlV

0.3

1.3

0.5

1.8

1.0

3.0

Ilv/oe

0.3

1.3

0.4

1.6

0.9

5.3

1.6

8.0

8.0

40

8.0

35

12

nA

50

20

100

pA/oe

IlV / °e

± 1.5

±5.5

±2.2

±9.0

±15

±60

nA

13

35

18

50

35

150

pA/oe

± 13.0

± 13.5

± 13.0

± 13.5

± 13.0

± 13.5

V

103

123

97

120

94

120

dB

90

104

86

100

83

100

dB

180

450

100

400

80

400

V/mV

± 12.0

± 12.6

± 11.0

± 12.6

± 10.0

± 12.6

V

4·20

JLA714
Typical Performance Curves

Untrimmed Offset Voltage
Versus Temperature

Trimmed Offset Voltage
Versus Temperature

>~ 90

>~ 30

,

w

"!:ic

g
Iii

ii!i

/

80

Vs - :t15V

R

70

=

100

60
50

40

I--"
I'..

w

3c

30

..~

10

/

I'..

/
V-::A714

Iii

20

~

~

-50

50

100

I

II 0/
~ I\@ @

~\\

~
5OJ

UI

~ ~A714

~

10

12

~ .A714l

• ~714C

i!igo

..d- V

>
w 20

C

i

"!:ic

g

J.C.A714~

16
Vas TRIMMED TO < 5.0 p.Y
NULLING p?T = ~O kn

w

If.A714C

n

Offset Voltage Stability
Versus Time

II

/(J)

...

C

o:!

-B

-12
-16

1

2

3

TEMPERATURE _ °C

1000

4

5

6

7

B

25

TA

';.

BOO

.."~
§

600

400

-

L.-- f -

z

~

0

200

50

TEMPERATURE - "C

100

w

~g
Iii

...~
'"
!!!

..

10

:z:
(.)

-50

,

20

z

0
-20

Vs"" :t15V

';.

25

~ ,.
S
.
".
!!!
!!!
w

11 12

1 25'C

tJ.A714

~,

W

Warm-Up Drift

30

,
w
~
g

9

TIME-MONTHS

Offset Voltage Change
Due to Thermal Shock

Open Loop Gain
Versus Temperature

¥ilNbmL~NE

-4

~

100

50

- ~~l.:'b":.':NE

Q

£~

-50

TEMPERATURE _ °C

TREND LINE

I='T'": ~~l.:'bmL~Nl- ~~l.tbmo1Nl

;::

E

'\l Ij'

..

'"
i'"

02IJ.Vl mo

~l.}'bmaJNE

,
w

';.

!!!
w

"li:z:

DEY1CE IMMERSED
' / IN 70'0 OIL BATH

20

40

.. ..

nMe - SECONDS

Notes
3. Input offset voltage measurements are performed by
automated test equipment approximately 0.5 seconds after
application of power.
4. Long term input offset voltage stability refers to the averaged
trend of VOS versus time over extended periods after the first

(.)

100

20

15

r

A 14C " ,

IJ.
.... 714E

10

..-:

U ;..--

If

,
",A714

TIME AFTER POWER SUPPLY TURN-ON - MINUTES

30 days of operation. Parameter is not 100% tested. 90% of
the units meet this specification.
5. Parameter IS not 100% tested; 90% of the units meet
thIS specificatIon.

4-21

•

~A714
Typical Performance Curves (Cont.)

Maximum Error Versus
Source Resistance

Maximum Error Versus
Source Resistance

Maximum Error Versus
Source Resistance

~

~

:;

10

1.0

TA "" 25°C
Vs = ±1S y

~

192

0.8

$

~

~

~

~ ",A714E
·~714C

i

a:

~

O.

a:

~a:

:I

""'~

o

01

10

10

~

~ 06
a:
a:

100

a: ••

..~ ••
a:

Input Bias Current
Versus Temperature

-

~

~A714

i

i •

0.1

/

'.0

Ys - ±15 V

.........

lr-- -

..

0

r

~

~
r-:A714E

20

. ,.
"

A7
"

1000

~

.
"~
.,..
I

.

!!!

-30

=0

1

./

1

./

-20

-10

130

;:~1:15VI
....,

,.0 ~
~A714C

/

0

••

10

30

30

CMRR Versus Frequency

./

..~
.,.

V

DIFFERENTIAL INPUT VOLTAGE

- 1•

r--

100

10

L.o

/

... 7.0 nA (P,A714C)/

~Z -30

'.0

50

EXCLUDED

Rs

,/

Input Wideband Noise
Versus Bandwidth
(O.1 Hz to Frequency Indicated)

THERMAL NOISE OF SOURCERESISTORS INCLUDED

r-

i'-.[\ ~

-30

./

I

~ -10

TEMPERATURE _ "C

,.

VDIF~
..;; 1.~ V
Ie ... 3.0 nA (p,A714)

!!!

.0

100

Ys - :t15Y
TA "" HOC

~
JLA714C

I~

100

0

~
S

'\

. ••

-l.! ll., ~ 20l ~~k

.;:::: t-

>

,.

TEMPERATURE - QC

Input Spot Noise Voltage
Versus Frequency
po..

i!;

~

1\

p.A714

!!!

50

30

10

Iii

,/

1
~

a:
a:

10

MATCHED OR UNMATCHED SOURCE RESISTANCE - k!1

aa:

u

-

10

.0

IZ

- -

/

Input Bias Current
Versus Differential Input Voltage

••
~

3

II
../

JLA714E

Input Offset Current
Versus Temperature
Ys = ±15 V

1

•
JLA714C

1.

10

I

/

/

MATCHED OR UNMATCHED SOURCE RESISTANCE - kO

MATCHED OR UNMATCHED SOURCE RESISTANCE - kO

2

O"C,.,. TA "" 70"e
Ys = ±15 Y

08

!!!

~

/~

.. O.

I

/

·~714

0&

12

-5S°C "" fA'" 125"C
Vs = ±15 V

11.

i

Iv~ J±IUt
TA = 250C

I\t\

-11(10

r'\~

I

I

a:

90
80

,.,.

~A714

v.

,.

+15 Y
TA = 25"C

,,~

V"

f-

.,

O. 1
100

FREQUENCY - Hz

1000

,.

70

r10

10

BANDWIDTH - kHz

4-22

'.0

••

10

100

,.

FREQUENCY - Hz

10k

lOOk

JLA714
Typical Performance Curves (Cont.)

Open Loop Gain Versus
Power Supply Voltage

PSRR Versus Frequency
120

~A 10 kbLJ

JW4

11 0

i

I\t\
1\

~

.

9

~

70

t\

0

10

10

ill,

100

/'

~

1k

ill,
z

c

"
~

b--.

0

4

c

llJ

g

20

±.

..e
..'"
'"
w

w
w

l\..

"~

100

lK

10k

100k

,

:iii
a:

~

10

10

1

30

"
"

2.

3.

~
u
!:
u
!!;
u

.AJ,4

-

1000

100

.."ili
60

v- - v

1

Ys = :!:1S V

.\

~~

"""-

0

40

1M

20

f--

1.

-_®

YiN

-

~

~~IN (PIN 3)

3)

i

= -10 mY, Yo = +15 V

(Pli =,

+10

V' V, =

-1

5 V

o

TIME fROM OUTPUT BEING SHORTED-MINUTES

4-23

10M

NEGATIVE SWING

1

II
II
10
LOAD RESISTOR TO GROUND - kO

TA = 25°C

,:.

TOTAL SUPPLY VOLTAGE, Y+ to

I

1\

a:

20

100k

pls,Ll JJ.lll

1.

"z

12

E
I

"

o

10k

II III

TA = 25°C
Y,N = ±10 mY

i

.
..15

0
10

1k

p.A714

16

Output Short-Circuit Current
Versus Time

IL

is

100

f- Ys =±15Y

,

FREQUENCY - kHz

'"

..

10

20

>

o

".

~

10

0

1M

=¥:71~5°C

100

"

Output Voltage Versus
Load Resistance

2D

...
5"

1DOD

E

"-

FREQUENCY - Hz

Vs = ±15 V
TA = 25°C

>

Power Consumption Versus
Power Supply

Z

01

.171~11111

t-

24

FREQUENCY - Hz

.

..

±20

::!:15

0

"\

"-

-40
:<:10

C

~~

10

40

9z

\

..

,

r'\.

200

Maximum Undistorted Output
Versus Frequency

C

U

r-....

POWER SUPPLY VOLTAGE - V

Vs = ±15 V
TA = 25°C

~

".

Vs = ±15V
TA =25°C

w

o

~A711

•0

80

0

o

10k

Closed Loop Response For
Various Gain Configurations
100

.........

400

FREQUENCY - Hz

so

r'\.

C

~

o

.17141

i"'-.....

z

-...... :--..

600

~

t\

0

01

l"-

800

100

..

120
t£A714

r-TA '" 25°C

.~i,~C

ill, ..

I

Open Loop Frequency Response

1000

•

JLA714
Test Circuits

Optional Offset Nulling Circuit
Ro

Offset Voltage Test Circuit

20kO
;;>-oo.......--v+

200 kO

500
INPUT { :

OUTPUT

vLow Frequency Noise Test Circuit
+15V
100 0
>6'--....._3.Jo.3>/V1kO..--......_

1000

r
2.SMO

Input Referred Noise

OUTPUT
4 .7 1-'F

(",10 Hz Filter)

V

5 mV/cm

25,000

25,000

= __0_ = - - - = 200 nV/cm

4·24

JlA715
High-Speed
Operational Amplifier

FAIRCHIL.O
A Schlumberger Company

Linear Products
Description
The IlA715 is a High-Speed, High-Gain, Monolithic
Operational Amplifier constructed using the Fairchild
Planar epitaxial process. It is intended for use in a
wide range of applications where fast signal
acquisition or wide bandwidth is required. The IlA715
features fast settling time, high slew rate, low offsets
and high output swing for large signal applications. In
addition, the device displays excellent temperature
stability and will operate over a wide range of supply
voltages. The IlA715 is ideally suited for use in AID
and D I A converters, active filters, deflection
amplifiers, video amplifiers, phase-locked loops,
multiplexed analog gates, precision comparators,
sample and holds and general feedback applications
requiring dc wide bandwidth operation.

Connection Diagram
1o-Pin Metal Package

• HIGH SLEW RATE-100 Vllls
• FAST SETTLING TIME-SOO ns
• WIDE BANDWIDTH-65 MHz
• WIDE OPERATING SUPPLY RANGE
• WIDE INPUT VOLTAGE RANGES

Order Information
Type
Package
IlA 715
Metal
IlA 715C
Metal

Absolute Maximum Ratings
Supply Voltage
Internal Power Dissipation
(Note 1)
Metal
DIP
Differential Input Voltage
Input Voltage (Note 2)
Storage Temperature Range
Operating Temperature Range
Military (IlA715)
Commercial (IlA 715C)
Pin Temperature (Soldering, 60 s)

COMP1A

v(Top View)

Part No_
IlA7 15HM
IlA715HC

Code
5X
5X

Connection Diagram
14-Pin DIP

± 18 V

14

500 mW
670mW
± 15 V
± 15 V
-65°C to +150°C
-55°C to +125°C
O°C to +70°C
300°C

COMP1A

COMP2B

COMP1B

v+

CASCO DE

COMP2A

-IN

OUTPUT

+IN

v-

NC

NC

NC

NC

(Top View)

Order Information
Type
Package
IlA715
Ceramic DIP
IlA715C
Ceramic DIP
Notes
1 Rating applies to ambient temperature up to 70°C. Above
70°C ambient derate linearly at 6.3 mW I °c for metal package
and 8.3 mW 1°C for the DIP.
2. For supply voltages less than ± 15 V, the absolute maximum
input voltage IS equal to the supply voltage.
4-25

Code
6A
6A

Part No.
IlA715DM
IlA715DC

•

I-LA715
Equivalent Circuit
r-----------._------~r_----------._------------~------._------._------._------,_~V+
R6
2 kll

R18
• kll

R19
4 kn

R24

10 kn

+-__________i-________r-__________f-__

~COMP2B

1 kll

10

R7

COMP1A--JV~----.

400

n

COMP 1B

R20

50

2
R
INVERTING _3_...,,1,..,.-<
INPUT
400 II

CASCODE

R8
25 kn

R2

400

n

6

15 pF

OUT

R27
50 n

n 4
NONINVERTING
INPUT

R15
2 kll

R16
300 II

~--~~--_4

R17
500 n

R22

300n

________________________

All pin numbers shown refer to 1O-pon metal package

4-26

R23
3 kn

R25
75 n

5

_4------~----~----_4---V-

JLA715
ItA715 and ItA715C
Electrical Characteristics
Characteristic

Vs = +
- 15 V TA = 25°C unless otherwise specified
ItA715
Typ
Condition
Min
Max

Input Offset Voltage

Rs::s 10 kQ

ItA715C
Typ
Min

Max

Unit

2.0

5.0

2.0

7.5

mV

Input Offset Current

70

250

70

250

nA

Input Bias Current

400

750

0.4

1.5

1.0

itA
MQ

±12

V

Input Resistance

1.0

Input Voltage Range
Large Signal Voltage Gain

±10
RL::::: 2 kQ, VOUT

=

± 10 V

±12

± 10

15,000 30,000

10,000 30,000

Output Resistance

75

Supply Current

5.5

7.0

5.5

10

Power Consumption

165

210

165

300

Settling Time (Unity Gain)

VOUT

Transient
Response
(Unity Gain)

VIN

Rise Time

= ±5 V

800

= 400 mV

Overshoot

= 100
Av = 10
Av = 1 (non-inverting)
Av = 1 (inverting)
Av

Slew Rate

800
60

30

75

25

40

25

50

38

18

10

100

mW

ns
%

VIItS
VIItS
Vllts
V I itS

70

38

rnA
ns

30

70
15

Q

75

18
100

The following apply for TA High to Low (Note 4)
Input Offset Voltage
Input Offset Current
Input Bias Current

RS::S 10 kQ

7.5

10

mV

= High
TA = Low
TA = High
TA = Low

250

250

nA

800

750

nA

750

1500

nA

4.0

7.5

itA

TA

Common Mode Rejection
Ratio

RS::S 10 kQ

Supply Voltage Rejection
Ratio

RS ::s 10 kQ

Large Signal Voltage Gain
Output Voltage Swing

RL::::: 2 kQ, VOUT
RL::::: 2 kQ

74

45

=

± 10 V

10,000
±10

Note
3. Specification applies to TA = 25°C only.
4. For I'A715 -55°C:oS TAoS 125°C
For I'A715C DOC:oS TAoS 7DoC
4·27

74(3)

92

92(3)
45(3)

300

dB
400(1) ltV IV

8,000
±13

±10

±13

V

•

p.,A715
Typical Performance Curves for ",A 715
Supply Voltage Rejection
Ratio as a Function of
Ambient Temperature

Open Loop Gain as a
Function of
Ambient Temperature
so.

VS~±l~V

RL=20kn
'0

-

Z

.

~30

10

160

~

140

~

120

-'0

80

40

2.

w

"

2

..

10kJl

10

~

I'....
t"-

•

•

0

,

r---

15

I

60

~
120

~

80

0
4

RL

t"-

,\

t;

~

v/"L

-

Vs=±15V

-'0

eo

40

°C

TEMPERATURE -

25

Rsl~ ,,1,"

100

"B

•
•

~

~OJ

t"-

•

20

o

180

z
o

•I-

9
~

•

200

~

Slew Rate as a
Function of Temperature

TEMPERATURE _

0

.0

120

80

40
TEMPERATURE _

C

0

120

c

Typical Performance Curves for ",A715C
Common Mode Rejection
Ratio as a Function of
Ambient Temperature

Supply Voltage Rejection
Ratio as a Function of
Ambient Temperature

Open Loop Gain as a
Function of
Ambient Temperature

100

~

m
u

I
o

~

100

I

I--+-+--+-f-+-+-+-If-+---l

g

.
t;

~

z

~

90

1l

80

~

/

~

..........

~

f-~+-+-I-+-+-+--+~k---l

~

f+/+-+-+-l-+-+-+--I-H

~

z

g

8

rol--+-+-+---j-t---l--+--+-I----l

10.1---t-+-t--If--t-+--;

0~0--~'0--~2O~~~~~'~0--~SO~~6~0~70
TEMPERATURE _

0

c

TEMPERATURE _

Slew Rate as a
Function of Temperature

°c

110
I

g

~

25

t

I

Z

0
20

w

.

r-- t----...

t;

~

100

~sOoloL;_

15

~

..

..1lz
....
g

80

~.

Vs

-

=

±15 V

0

10

0

o~~_~_~_~~_~--J

010203040506070
TEMPERATURE _ °C

70

.

10

20

30

so

40

TEMPERATURE _

4-28

0

c

~

. , ..........
.

...........
'0

20

o

--

010203040506070
TEMPERATURE -

Common Mode Rejection
Ratio as a Function of
Ambient Temperature
!!i

~
g
~

R~510k!~ _

Vs"'±15V

80

..

7•

~

c

JLA715
Typical Performance Curves for jlA715 and jlA715C

Open Loop Gain as a
Function of Frequency
120
Vs
+15 V
TA -= 25°C
--00

'9
I
z

w

.

.!i!

40

""
"~

"

o..~'1,11

~~..,...~~-

'1l

'b

"

'?..

Z

I

,1\

"

IIII

10k

1M

lOOk

10M

100

10k

1k

SOU

I

80~+#~++ij-~~~fH~~~

.

10M

FREQUENCY -

Output Swing as a
Function of Frequency for
Various Closed Loop
Gain Configurations
30

>

I

25

!"

20

!~ .. 1=t#t=t=F**=t=l*fflffif+H
~+#~++ij-~~~tttH*tti
40

~ 2o~+#~++ij-~~~tttH-+tti
~

15

~

10

FREQUENCY -

II

o

~40I-++H-+-H1H-+ttt-+t+tH-H1tl

g

~

30

2.0

6

10

0001

1.0

0.1

0.01

10

50

FREQUENCY - MHz

Large Signal Pulse
Response for Gain 10
•. 0

i

I

4.0

w

I

\

I

~

3.0

~O

2

g

!\

I

o

Vs=±15V
TA = 25°C

so

\
I

1o

-10
kHz

10
MHz

Vs=±15V
TA == 25°C

40

~

FREQUENCY -

01

A

50

...

1\

-320

6.0

g

1\

~ -240

Unity Gain Large Signal
Pulse Response

~ .. I-+~+-H1+-l-+ttt-+t+tH-H1tl

1\

~

FREQUENCY -

>
I

Vs=±15V
TA = 25°C
N COMP

-400

om

•

I

GAIN 1(10

i

o.~

80~~~~~-+~,4-~H-H~

"

!30-160

i

100 rr1"TT"-rTTlT""'T-,-1"TT"....nTl'""T""T1"T1

~20~~~~~-+H+-4-~H-H~

m -80

1111

II
GAIN 10

'9

"

1111
1111

GAIN 1

kHz

Common Mode Rejection
Ratio as a Function of
Frequency

....

Rl "'10 ktl

6

~~~~~0.Lm~U-~~~1~0~~'0~~~'

Hz

Open Loop Phase as a
Function of Frequency

Vs ±15 v
TA '" 2S°C

!;

~

01':-k~"'-::107kJ..J..lJ'=100:'::-::'k..w-:-''::M~~1~0::MUJ.~'00 M

SOM

Hz

z

~

o
~

1M

Vs=±15V

H-Ht+++It-1I-tttt--t-!~ : ~~gMP

.

lOOk

FREQUENCY -

r-'T"TT1"-.-"TT"'-'r-TT'TT"-'-M"Tr-r-,-m

~

I

IIII

Hz

Supply Voltage
Rejection Ratio as a
Function of Frequency

~

1111
GAIN 1

-20
FREQUENCY -

~

GAIN 10

20

,~

-20
1k

2

~

1'1\

I III

20

r0

>

IIII

GAI~I 100

40

z

\

...,,~

100 rrnr..-rrrrr"TTTrrr1"TT"-.-nrr1

25°C

GAIN 1.000

60

II

0

9

TA

100
80

Open Loop Response With
Compensation Necessary for
Various Closed Loop Gain
Configurations

Closed Loop Frequency
Response for Various Gain
Configurations
80
IIJ, _I "ls lv
IIII

0

-1.0

400

800
TIME - ns

4·29

1200

1800

\

1.0

\

o

200

400

600

800

1000 1200 1400 1600

T1ME- ns

JLA71S
Typical Performance Curves for ILA715 and ILA715C (Cont.)
Slew Rate as a
Function of the
Closed Loop Gain

Large Signal Pulse
Response for Gain 100
60

Vs

~

TA

~

100

-1::15 V
25"C

Slew Rate as a
Function of
Supply Voltage

,---,-rrr-,-.--rrr-'--'
Ys - :!"15 Y

I

40

t1

1

w
"

30

g

20

_

1.0

Il

~O

/

6Of-~+H--f-++i7'''--~--1

200

400

600

800

20

1600

16

12

~

I'
I'

0~1-~~~~1~0-~~~~'00=-~

10

CLOSED LOOP GAIN

18

14

SUPPLY VOLTAGE -

Voltage Follower

22

V

Voltage Offset Null Circuit

v+

v+
50 kll

FD100

5OO~~~~-+--+--+--1-~
'" ..0
/\
1
90M

/

!,..o"'l-i-'""'-H+--+--+-H-+-+---i

TIME -ns

Voltage Follower
Transient Response

/

1

:

~ 4Of-~-bj..VF-~_/++H-_~--1

1000 1200 1400

~

Rl = 10 kit
NO COMP

w

~

o

/

20

w

~
-1.0

T,I" 2'!C

RL = 10kn

0

>

24

I--++-H--I---I-+-I-+TA = 25°C

V"

~300f---fi--+--j--+-+--j---1

o
200

100

~-II+/!-+--+-+---I--+~
f-ff,,=='=::::-l-+-+--j---1
I i RIS~I TIME

4

100

150

200

250

300

7

51 11.0
2.0
nF

,t-r,-'O%I
50

+

350

TIME-ns
v~

nF

-= -

Note
Pin numbers apply to metal package.

Inverting Unity Gain
Large Signal Pulse Response
2.0

5 kll

Vsl~ ±1~ v

~

Vs = :!:15 V
TA = 25"C
VIN '-- 400 mV

TA = 25°C

>
1

g

Small Signal Pulse Response
Inverting Unity Gain

High Slew Rate Circuit

'E

INPUT

1
w

20

5~ -4.0

OUTPUT

-200

~

~

,

:>

0

-400

-15 V

2.5 kll
~400

g

:>

It..

-6.0

"~

\
\

400

800

1200

"

IV

160

1600

TIME - " ,

TIME - ns

4-30

320

480

J.LA715
Frequency Compensation Circuit

Non-Inverting Compensation Components Values

C1

Closed
Loop
Gain
1000
100
10 (Note)

C1

C2

C3

10 pF
50pF

1

250 pF

100 pF

500pF

1000 pF

500 pF

2000pF

1000 pF
C2

Note
For gam 10, compensation may be simplified by removmg C2, C3
and adding a 200 pF capacitor (C4) between Pm 7 and 10

C3

I I

Suggested Values of
Compensation Capacitors as a
Function of the
Closed Loop Gain
Vs=±15V

~1000
I
~

z

~

o
~
u '00

"1;-

•

C,

"

c~···.

c,

.....

t-

Co

.....
.....
....

'0,L.....L...J....L.L-,J,-o.....L...J....L.L-'oo~J.....J...u..~'ooo
CLOSED LOOP GAIN

Layout Instructions
Layout- The layout should be such that stray
capacitance is minimal.
Supplies-The supplies should be adequately
bypassed, Use of 0,1 J.!F high quality ceramic
capacitors is recommended.
Ringing-Excessive ringing (long acquisition time)
may occur with large capacitive loads. This may be
reduced by isolating the capacitive load with a
resistance of 100 n. Large source resistances may

also give rise to the same problem and this may be
decreased by the addition of a capacitance across
the feedback resistance. A value of around 50 pF for
unity gain configuration and around 3.0 pF for gain 10
should be adequate.
Latch·Up- This may occur when the amplifier is used
as a voltage follower. The inclusion of a diode
between pins 6 and 2 with the cathode toward pin 2 is
the recommended preventive measure.

4·31

J.LA715
Typical Applications

Wide Band Video Amplifier With
75 Q Coax Cable Drive Capability
0.5 pF

10

VIDEO OUTPUT
TO 75 !l COAX

75 !l

'\
-10

o dB-

255 mVpk - pkOUT

SI-'A pk- pk

-20

bUT

1\

\

~v

750 Jl

500 II
75 !l

NOISE
= 2
RMS
pk - fk SIG/R~S NOISE I'" 42 dB

-40
0001

001

01
FREQUENCY -

10

100

MHz

75 l!
~

EQUIVALENT CIRCUIT
FOR IMAGE ORTHICON

2N3638

51 kll
750

To·l

-=
High Speed Integrator
20
15
10

1 1\

,/'NPUT
5 \

0
5

•

-1

J

1\

\

l\ V
~

-15

1\
°I'T

-20
10

~

20

3.0

40

5.

TIME-j.ls

4-32

II

10 kll

500 Jl

I ~~"'...A,f
0

g

~

80
RL

0

i

0
±

Vas'" 5jJ.V at 25°C

--

~

--

~

06

~
t;

...
"

-50

08

I

w

~
o

I-04

- -

I--

-

~

w

2kH

Vs= ±15V

15IV

=e

~

~

I-ys I.

50

~o

100

0

~

~
~

±5V

Vs

w

Unnulled Input Offset
Voltage as a
Function of Temperature

Nulled Input Offset
Voltage as a
Function of Temperature

~

" -100
o"

02

Z

J:

60
0

10

20

'0

40

TEMPERTURE _

50

.0

10

70

20

ac

30

40

TEMPERATURE _

50

60

70

o
o

10

20

"c

30

40

TEMPERATURE _

50

60

70

ac

Typical Performance Curves for all Types (Unless Otherwise Specified)

8

8

Vs= ±1SV

7~

\

4

,

100

Vs=±1SV

7

•\
5

Input Bias Current as a
Function of Temperature
IlA725A and IlA725

Input Offset Current as a
Function of Temperature
IlA725C and IlA725E

Input Offset Current as a
Function of Temperature
IlA725A and IlA725

°l~

5

0 1,

0

"-

1

'-......... t---...

2

1'--

20

60

TEMPERATURE _

~
Vs=

t--

0

0

20

"

Vs= +20V

~vs ='±1SV

100

ac

140

10

20

30

40

TEMPERATURE _

4-37

50

ac

60

70

0
-60

±10~ ~
Vs == ±sJ.?

1

0
60

&.

~~

4

j\

2

6

-20

20

.0

TEMPERATURE _ "C

--.;::

100

140

p,A725
Typical Performance Curves for all Types (Cant.)
Input Bias Current as a
Function of Temperature
IlA725C and IlA725E

Supply Voltage Rejection
Ratio as a
Function of Temperature

Common Mode
Rejection Ratio as a
Function of Temperature

100

Vs = :t 1SV

m

Vs = :t 15V

~

':l

6 1-=r-=F1--+-f-+-+-9~ol---I

80

S
z

...I

i.

g 100 1-+-+---I~+-+--+~+-+-+----1

60

~



40

f---

0-

;;

~ov

~

Vs == :t 15V

~V-

Vs = ±5V

o
o

20

30

40

50

TEMPERATURE -

40

~

36

~

32

w
~

~
~

60

70

Vs

24

20
16

Vs

m

I

+

l

:t

12

o

-R\ > 2tO
- 20

20

TEMPERATURE "C

140 , - - , - - , - - - - , - - , - - - - , - - - ,
TA = 25°C

~z

115 V

"
w

80

0

''""

I I
I 60I

~

16

~
w

~

/'

12

3
0-

;;

'oz"
8"'"

5

I

>

20 l,v al t = 0

."
w

...=>

0

0-

--

10

20

'v

I-+--+---I-+--+~;: 2::~V

20

10

\

;;
;;

:i"l:

I
400

600

TIME - HAS

4-38

r-...

w

~LlNE

200

1M

30 1-+-+---i--t--tPREVIOUS Vas ~ ,/,v

~
0

of--

SUPPLY VOlTAGE-

<:

:;;

0/

0

1QOk
11

~

l/'

o

10k

':;

,/

W

o

I

1k

Stabilization Time of Input
Offset Voltage From
Power Turn On

0

//

>

100

I 100

SOURCE RESISTANCE _

TA=40"C

0

10

V

v,l: ±115 vi
Vas

000 1

20

15

Input Offset Voltage
Drift as a
Function of Time

V

AVGL

w

60

SUPPLY VOLTAGE-

,/

00 1

o

40

TA = 25"C

I

0-

o

3

0

20

l,ooo

o



140

Common Mode Input
Voltage Range as a
Function of Supply Voltage

I 10000

I

.

0

100

AVCL

1

"w
"':;

0

'0z"

TA = 25°C

~

z
;;:
100

~

Jov

0

I

"

120

TEMPERATURE - °C

~

DC Closed Loop
Voltage Gain Error as a
Function of Source Resistance

I
0

Vs = ± 5V

-60

°6LO~-_~20~-2~0-L-~60~L-,~0~0-L-,~40

TEMPERATURE _ °C

~

I I

6

~

20V

0

=>

o
~

:t

~6~0~~_~20~~2~0~--6~0~L-'~0~0-L-'~40

Common Mode Rejection
Ratio as a
Function of Supply Voltage

I I

28

...

~

Vs =

601-t--II---+~t-+-+~I-+-+---i

"C

Output Voltage Swing as a
Function of Temperature
z

80f-t--II---+~t-+-+~I-+-+---i



120

800

1000

'ON

"

TIME FROM POWER APPLICATION - MIN

JLA72S
Typical Performance Curves for all Types (Cont.)
Change In Input Offset Voltage
Due to Thermal
Shock as a Function of Time

Input Noise Voltage as a
Function of Frequency

0

10·'

~
>

e- I~;.c:.

25"C

I

J

0

VS = ~15V
PREVIOUS QUIESCENT _

1-= tTPLj

-20

40

'0

80

60

100

I
'"

..

~
g

"

10"

1k

100

is
z

~

100k

.
g
.
~

.'"

.'""'"
0:

1k

10'

z

100
10k

TAl :=,2r~

o

...z
"o.
~

!

/

10V
1V

I.

l100mY

'imj(

.
~g
.

10

100

1k

10k

FREQUENCY -

Hz

6

100k

1M

1

=1

~~"

/

,=

V
/

/
10

100
'"Iz

4-39

100k
fl

500

I"

;0
E

I 400

725Aand 725

z

2
:

~

~~~ f-:
v~
VlL[ '>~

FREOUENCY -

10k

800

FREQ COMPENSATION
AVCL

r-1k

Absolute Maximum Power
Dissipation as a
Function of Ambient Temperature

~5
10

10"

Equivalent Input Ripple
Voltage Due to Power
Supply Ripple as a
Function of Frequency

t

10

Jill
10

FREQUENCY -

[l

II FREe COMPENSATION
AVCL = 1
,7
I

10

lOOk

Ys = ± 15
TA = 25"C
t"' 1kHz·-

,

I"< 'Od"'kl:~~
Nit I 111

10

lOOk

VS -!!: 15V

EXTERNAL COMMON MODE
NOISE VOLTAGE

8

is

10kHz

-rnn'

10

I

100kHz

SOURCE RESISTANCE -

10

v

1 J.l- V

01
100

10k

Hz

4

,
'l:

10Hz

1k

Noise Figure as a Function of
Source Resistance

V
10Hz

100

FREQUENCY -

Vs = ,'5V

10dB

0

I

,

10

100k

~ti~~~~=lT~Ai+'~5:0C~~st~

Equivalent Input Noise
Voltage Due to External
Common Mode Noise as a
Function of Frequency

~

10k
Hz

Narrow Band Spot Noise
Figure Contours

25"C

ill
...I

,. ,,~mm!~

10"

10

V~ l~j5V

10

Vs
+15Y
TA _ 25"C -

10·'

FREQUENCY -

Broad Band Noise for
Various Bandwidths

~

'''''ijiBm~

I 10·'I-t-tlH-H-++++-++Ht-t-t-t+H

10·'

TIME FROM HEAT APPLICATION - S

~

:z:

;;

::Ii

-1 0

TA

=

~ 10-'

"'"
:il"z

0

~

it=:

15

is

Ves'S '"V

0

+

'Soc,

w

II
t--

Vs

.
g~
..

II

TA

Input Noise Current as a
Function of Frequency

1k

illis

300

"" ~

725 E and 725 C

'"~ '00
~

100
0

'5

45

85

105

85

TEMPERATURE -

"C

125

•

ILA725
Typical Performance Curves for all Types (Cont.)
Open Loop Voltage Gain
as a Function of
Frequency Using Recommended
Compensation Networks

Power Consumption as a
Function of Temperature

r- l"'-

160

140

~I
z
~

-

100

:- I-- "-

..

!!i •0
z
8 60
'"w

~

100.

I

~
 800
E

"~

VOUT

0

VS"" ±15V
TA"" 25°C

100/~

~
=>

2 kll

47 II

J

150 pF

0.1 ~F

/

40 0

...>=>
0

/

90%

I

w

6

RL "" 2 kll
CL '" 150pF

o

RISIETljE

-400

I

-=

-=

AVi L=

to

TIME-",s

Pm numbers are shown for metal package only.

Typical Applications
Precision Amplifier

AVCL = 1000
50 Mll

90 kll

500 kll

.,N

•

10 kll

6
500 kll

eOUT

1

Pin numbers are shown for metal package only.

Characteristics
AV = 1000 = 60 dB
DC Gain Error = 0.05%
Bandwidth = 1 kHz for -0.05% error
Dill. Input Res. = 1 Mil
Typical amplifying capability
elN = 10 IJ.V on VCMI = 1.0 V
Caution: Minimize Stray Capacitance

Active Filter-Band Pass With 60 dB Gain

Active Filter Frequency Response

.001

50 Mil

~F

470 II

ex

100

A,

+.

DC)(2' C,/C.) (
2

1 )

'3

R3

f

Rs

-r

12rrfo C3

80

I
~
I

z

1-+10 -

I

80

!il

--~~--

39 !l

= R4
= R5

Gain =

R6

R2

--vv..--.,
50 k!l

+

5 k!l

+ (3..£!2.)
R3

DC GAINS = 1000
BANDWIDTH = DC TO 540 Hz
EQUIVALENT INPUT NOISE = 0.24 IlVrms

Pin numbers are shown for metal package only.

Notes
'Indicates ± 1% metal film resistors recommended for
temperature stability.
Pin numbers are shown for metal package only.

4·42

OUTPUT

f.£A725
Instrumentation Amplifier With High Common
Mode Rejection
R2

10 kll

Rl
47 kll

R6
100 kll

~--~~~--

OUTPUT

INPUTS

270 II

R3
10 kll

R5

10 kll
R7
100 kll

Rl
R6

•

R3
R4 for best CMRR

R3; R4
Rl ;R6; 10R3
R6

Gam;

R7

Pm numbers are shown for metal package only.

4-43

JlA739 • JlA749
Dual Audio Operational
Amplifier / Preamplifier

FAIRCHILO
A Schlumberger Company

Linear Products
Connection Diagram
a-Pin Metal Package

Description
The p,A739 and p,A749 consist of two identical HighGain Operational Amplifiers constructed on a single
silcon chip using the Fairchild Planar epitaxial
process. These 3-stage amplifiers use Class A PNP
transistor output stages with uncommitted collectors.
This enables a variety of loads to be employed for
general purpose applications from dc to 10 MHz,
where two high performance operational amplifiers
are required. In addition, the outputs may be wired-OR
for use as a dual comparator or they may function as
diodes in low threshold rectifying circuits such as
absolute value amplifiers, peak detectors, etc.

y+

y-

•
•
•
•
•
•
•

SINGLE OR DUAL SUPPLY OPERATION
LOW POWER CONSUMPTION
HIGH GAIN, 25,000 V IV
LARGE COMMON MODE RANGE, +11 V, -13 V
EXCELLENT GAIN STABILITY VS.
SUPPLY VOLTAGE
NO LATCH-UP
OUTPUT SHORT CIRCUIT PROTECTED

Absolute Maximum Ratings
Supply Voltage
(p,A749, p,A749C, p,A739)
(p,749D)

Internal Power Dissipation
(Note 1)
Metal Package
DIP
Differential Input Voltage
Input Voltage (Note 2)
(p,A749, p,A749C, p,A739)
(p,A749D)
Storage Temperature Range
Metal Package and
Ceramic DIP
Molded DIP
Operating Temperature Range
Pin Temperature
Metal Package, Ceramic DIP
(Soldering, 60 s)
Molded DIP (Soldering, 10 s)
Output Short Circuit Duration,
TA = 25°C (Note 3)

(Top View)
Pm 4

IS

connected to case.

Order Information
Type
Package
p,A749D
Metal

Code
5W

Part No.
p,A749DHC

Connection Diagram
14-Pin DIP

± 18 V
± 12 V
500mW
650mW
±5V

± 15 V
± 12 V
-65°C to +150°C
-55°C to +125°C
O°C to +70°C
300°C
260°C

(TOp View)

30 seconds

Order Information
Type
Package
p,A739C
Ceramic DIP
p,A739C
Molded DIP
p,A749C
Ceramic DIP
p,A749C
Molded DIP

Notes
1. Rating applies to ambient temperatures up to 70·C. Above
70·C ambient derate linearly at 8.3 mW I·C for the Ceramic
DIP.
2 For supply voltages less than ± 15 V, the absolute maximum
input voltage is equal to the supply voltage.
3. Short circuit may be to ground or either supply
4·44

Code
6A
9A
6A
9A

Part No.
p,A739DC
p,A739PC
p,A749DC
p,A749PC

J.lA739 • J.lA749
Equivalent Circuit
V+
14

R6
200 II

R5

R26
200 II

R25
9 kll

9 kll

R1
10 kll

07

R2
10 kll

R9
15 kll

R21
10 kll

R22
10 kll

027

05

025

13

1
OUTPUT

A

I
I
I

I
I

I

l

06

5 k <.

l
". 5k

026

(pA739~
only)

OUTPUT
B

I
I
I
L_

R4
1.7 kll

I

--'
3

OUTPUT
LAG A

1~~

R24
1.7kll

4

10 11

'-v-"
INPUT
LAG A
NON-INVERTING
INPUT A

V6

INVERTING
INPUT B

INVERTING
INPUT A

'-v-"
9

INPUT
LAG B

NON-INVERTING
INPUT B

Pm numbers for DIP only.

4-45

12
OUTPUT
LAG B

•

JlA739·

~A749

IlA749C, IlA749D and IlA739E
Electrical Characteristics V+ = ± 15 V, RL = 5 kn to Pin 7, TA = 25°C unless otherwise specified

Characteristic

Condition

Input Offset Voltage

RS =200 n

Input Offset Current
Input Bias Current
Input Resistance
Large Signal Voltage Gain

VOUT = ± 10 V

Positive Output Voltage Swing
Negative Output Voltage Swing
Output Resistance

f = 1.0 kHz

Common Mode Rejection Ratio

RS = 200 n, VIN = +11.5 V to -13.5 V

Supply Voltage Rejection Ratio

RS = 200 n

Input Voltage Range
Internal Power Dissipation

VOUT = 0

Supply Current

VOUT = 0

Broadband Noise Figure

Rs = 10 kn, BW = 10Hz to 10kHz

Turn On Delay (See Figure 3)

Open Loop, VIN = ± 20 mV

Turn Off Delay (See Figure 3)

Open Loop, VIN = ± 20 mV

Slew Rate (unity gain) (See Figure 2)

Cj = 0.02 IlF, Rj = 33 n, C2 = 10 pF

Channel Separation (See Figure 4)

Rs = 1 kn, f = 10 kHz

The following specifications apply for V+ = ±4.0 V, RL = 10 kn to Pin 7, TA = 25°C
Input Offset Voltage

Rs = 200 n

Input Offset Current
Input Bias Current
Supply Current

,

VOUT = 0

Internal Power Dissipation

VOUT = 0

Large Signal Voltage Gain

VOUT = ±2.0 V

Positive Output Voltage Swing
Negative Output Voltage Swing
The following specifications apply for TA = THIGH to TLOW, Vs = ± 15 V, RL = 5 kn to Pin 7.
Large Signal Voltage Gain

VOUT = ± 10 V, TA = HIGH
VOUT= ±10V,TA=LOW

Positive Output Voltage Swing
Negative Output Voltage Swing
Input Offset Voltage
Input Offset Current

Rs = 200 n
TA = HIGH
TA = LOW

Input Bias Current

TA = HIGH
TA = LOW

Input Offset Voltage Drift

RS = 200 n, +25°C:::; TA:::; HIGH
RS = 200 n, LOW:::; TA:::; +25°C

4-46

f.LA739 • f.LA749

/LA749D vee = ±6 V

/LA749C

/LA739C

RL = 10 K
Min

Typ

Max

Typ

Max

Typ

Max

Units

1.0

6.0

1.0

10

1.0

6.0

50

750

50

600

50

1000

0.3

1.5

0.3

1.5

0.3

2.0

mV
nA
/LA

Min

Min

50

150

50

150

37

150

kll

15,000

50,000

10,000

20,000

6,500

20,000

+12

+13

+4.5

+5.0

+12

+13

-15

-5.5

-6.0

-14

-15

V/V
V
V

5.0

kll

70

90

70

90

dB

-14

5.0
70

10

90
50

-13

350
+ 11

180

330

9.0

14

50
-4
2.0

100
+2.5

3.0

50
-10

4.5

9.0

14

/LV/V
V
mW
mA

2.5

2.5

2.0

dB

.2

.2

.2

/LS

.3

.3

.3

/LS

1.0

1.0

1.0

V//1-S

140

140

140

dB

6.0

1.0

6.0

50

600

50

1000

.3

1.5

300

2.5

2.5

20
15,000

+11

20

60,000

2,500

15,000

+2.5

+2.8

+2.5

+2.8

-3.6

-4.0

-3.6

-4.0

8,000

40,000

15,000

50,000

+12

+13

-14

-15
1.0

9.0

.05

1.5

.05

1.5

.3

3.0

.3

3.0

mV
nA
/1-A
mA
mW
V/V
V
V
V/V
V/V
V
V
mV
/LA
/1-A
/1-A
/1-A
/1-V /oC
/LV/oC

3.0
3.0

4-47

•

J.LA739 • J.LA749
j.tA749C, j.tA749D and j.tA739C
Electrical Characteristics (Cont.)

V+ = ± 15 V, RL = 5 kfl to Pin 7, TA = 25°C unless otherwise specified

Characteristics

Condition
~

+25°C

Input Offset Current Drift
Input Bias Current Drift

TA

LOW

~

TA

~

+25°C

LOW

~

TA

~

HIGH

VOUT = 0, TA =HIGH

Supply Current

= LOW
= 0, TA = HIGH
VOUT = 0, TA = LOW
VOUT = 0, TA

VOUT

Internal Power Dissipation

The following specifications apply for THIGH to T LOW, Vs = ± 4.5 V, RL = 10 kfl to Pin 7.
Input Offset Voltage

Rs = 200 fl

Input Offset Current
VOUT = ±2.0 V, TA =

Large Signal Voltage Gain

VOUT = ±2.0 V, TA =

Positive Output Voltage Swing
Negative Output Voltage Swing
Typical Performance Curves for j.tA749C and j.tA739C
Open Loop Frequency
Response Using
Recommended
Compensation Networks

Closed Loop Gain as a
Function of Frequency

90

70 rT11T-rrTTrTTr"--rr=v+:--o -::,,,,"'''''V

!II

ITA ~ 25°C
==

i-t+fi''-r'"rnA-i'i-r;.:.:.r-t*lAL 5kfl

!II

.0 1-ttH-+Htf-+-t+tt-f-++W~Hf1-1

~

TO PIN 7

I

~

".

~

.

301-++H-+H+H--++++-H-+l+-lt-1tHl-l

o

~

! 'O~~~~~~#-~~~~~

r-.

60

".
~

.

~

o
o

~

c, -

300 pF. A1 - 470 ,
R1 = 150
C, =001 ",F,R, =33£
0 C, = 0 1 ",F, R1 = 4.7 n

c,

II!

o

1 -120

Y+ - ;+-15 v
TA '" 25°C
AL "'" 5kn
PIN 7

o

1k

10 k

100 k

FREQUENCY -

Hz

TO PIN 7
100 k

'M

'OM

1M

=

Av =0 dB,C,

"..

'~~-H~~,+i~q-++#-+-++~

i~

eo
~ ~~-H~~~~-t+H~-ttH~

0.1 /IF, Rl ""4.7 n

Hz

=':-!,.

M

Hz

2 ••

v+ = :±-15 v
RL=5kHTO PIN 7

'\
,.S

,"~

'.2

.~

I'

••

~

.... ~

BANDWIDTH

-2.

-

SLEW RATE

-...[

••
•...

10 M
FREQUENCY -

eo

o. ~ !::
••:LU"-:":-..!..l.J.'-::,-=-.:-'...llJ.::,.'=".::'-.=:',:;"M

25°C

H-t+H-+-++H-++++- TO PIN 7

4·48

!~_Al""'50ttli:rt~:ma
c, R~!~;~' h

20 dB,

Change of AC Characteristics
With Temperature

::t15 V
==
AL == 5kH

'50

it Av

FREQUENCY -

v+

!II

=

60 dB, C, "" 300 pF,

Av "" 40 dB, C, = 0 001 I-'F,

i:I
:E

=

H-ttt-+-t-ffi---fRl =470 nf1tt-b"I>f9

FREQUENCY -

Open Loop Phase Shift
Without Compensation

P

= 1000 pF,

~ 50~~~~~~~~~T~'~2~'~'CJ
20

...

o

r-.

30

Hz

-60

1\"--

i'

'00

i"-

~(.~."-«

:;;

-30
FREQUENCY -

.o~~+Jl-

~OoO~~~q
+"'' .'. <0
. ~~

r--

Output Capability as a
Function of
Frequency and Compensation
w 100 r-rm--.-rrnr-r-rrn-rr-rv
",+-.-+,"","".V""'

s.
TEMPERATURE _ °C

....

100

140

p,A739 • p,A749

~749D

~A749C

RL
Typ

Min

vee = ±6 V
Typ

Min

Max

~A739C

= 10 K

Max

Min

Typ

Max

Units

.5

nA/oe

2.0

nA/oe

4.0

nA/oe

10

mA

10

mA

100

mW

200

mW

1.5

7.0

mV

50

1,000

nA

VIV
VIV
V
V

8,000
15,000
+2.5

+2.8

-3.6

-4.0

Typical Performance Curves for

Open Loop Frequency
Response Using
Recommended
Compensation Networks

Closed Loop Gain as a
Function of Frequency
70

i ..

[[ [ [ [ [i r

I

~

~

so

.. co

~

Ii!
o~

30

i

.0

U

0

....

I

Y+ = ±IV
TA '" 25°C
RL

= 10kll

!Il
I

'.

t'

"w
"

\

II

i

\

10

30

.0

;;!

10

Z

\

~

100 k

1M

FREQUENCY -

10 M

'. '"
~

~

~

"
10 k

1M

100 M

"t!
g.

9
~

o
o

1-4
V

5
5

.s=~

/

20

It

V '"

Vs _+4V

1/

"'v"-

1.

2

LOAD RESISTANCE - kfl

Hz

Tl

25 0

h

ai-- RL TO PIN4

•
•

t

a

~

I

1.

1M

100 •

Typical Output Voltage
As a Function of
Supply Voltage

f-

/

25

11- -

10.

i/

30

~

~ ~;-

FREQUENCY -

~

I

I

.~

~

,.

01
100

... "'"

-.;.

~~

0.'

,

~\

~~~-

05

Hz

;;k ~

~~T~;1~4

..

V

10 M

',,-.~

0

!\

oI- ~~ ~ ~~zv RMS
I

'

on

100 k

z co
~ 35

I

\'.!,

CI

> 10

Open Loop Voltage Gain
As a Function of
Load Resistance

45 ......

THD-05'A1

~

\

5

SUPPLY VOLTAGE-

.
.."
.."

'" '"

FREOUENCY -

~

RL

~
0

I

1k

Hz

Open Loop Voltage Gain
As a Function of
Supply Voltage

~

,

100 M

V+ =- ±IV
r" = 25 G e
10ktl

50

>
I
~ '0

D

'~

I

on

-10
10 k

~..

""'!-fI: .~~

40

;;!

'.

q~

50

"iii

TA=25°C
RL=10kll

~
~~,...

•

70

Z

cl,1 ~ ~..J. ~J.~, ~ ~ ~l

-10
1k

10
Y+ - ±6V

ao

:c a.

c~I!~.J~~~!R,I =I~ n
[1111111

Output Voltage Swing as a
Function of Frequency for
Various Compensation Networks

90

C,'~,..I.~.I~~ =1.~lr\

•

~A749D

~
,..C

~\.-..,'lSl.
~'J.II.'f.\.'

..........:

./.

....~

~

~

I--- I--

4

,.

0
20
SUPPLY VOLTAGE -

,.

~y

4·49
-.-----~.-.~

~-.--

-

-:.-,,----.---~

JlA739· JlA749
Typical Performance Curves for ,uA749D (Cont.)
Total Supply Current
As a Function of
Supply Voltage

Open Loop Gain
As a Function of
Temperature

Total Power Dissipation
As a Function of
Supply Voltage and Load
300

16

vo'_-o I

"Iz

r----.

60

"

"'

E

Nvr--..

w

0

~
~

~

*201.;1)1;:

0

40

f--

~

0

3

~
0

Rc- 10k!l

2{)

v,

Oc

24 kJl

12

---

r---:;t-- r-

u

V

~

iii

V

~

...-...-

l'

g

v,
'. V

oL--J~-l

o

~

w

~

TEMPERATURE _

0

TO
4
TA =25°C

/

~

E

I 2••

1

I - ---t\-~'()~
I - -r;;: -20kJl

.p/

---

0

c

~

~

100

11

V

V
..- r--

~ >--....-: l:::::== Fo-

o F-

V;~_10'Y

~ t--I

4

10

V

/'
<-~X
V
"L
. / ~'v:-9

£

in
!!!

I

ro

c

r-- ~~ Pt~
f--vo=ov

z

~~~~~

__- L__~__~__~~

~

10

-

/f

1
1,_-- 7"'"

?

o.'c'

10

~

-6V_

R, - 51 kJl
Vc

I

14 r-TA-25QC
RL TQPIN4

12

10
SUPPLY VOLTAGE _

SUPPLY VOLTAGE - ±V

-.-v

Typical Performance Curves for ,uA749 and ,uA749C
Common Mode Range
As a Function of
Supply Voltage

Input Noise Voltage as a
Function of Frequency

Input Noise Current as a
Function of Frequency

10.

10.
V+ = ±15 V

50

I"w

Rs = 100 n

~

"~
"~

~

Z

W

".
w

-

101-50

~

~

li>
i

TA = 25"C

.ili
~
~

~

w
C

.,W

0

~

z

<;
z

""c

"'~

0

U

4

12

10
SUPPLYVQLTAGE-

10

"'<;z

05

ili"'
100

10

-v

10k

1k
FREQUENCY -

100 k

Hz

......
1.0

..

r--r--.

1

10

10'

1k

10k

FREQUENCY - Hz

Open Loop 180· Phase
Shift Frequency as a
Function of
Supply Voltage

Absolute Maximum Power
Dissipation as a
Function of Temperature

10

5'

0

W

Common Mode Range as a
Function of
Supply Voltage

800
I

TA "'" 25°C

f--+-+-I'--t-+-+--tRLTO PIN5k!l
7

--

=

I

>
I
w

"z~
w

0

~

\

2

o

>

V

w

o

~
z

74"

749C

0

o

""oo

1

0
-60

1

-20

20

60

AMBIENT TEMPERATURE -

'"

"C

140
SUPPLY VOLTAGE - V

4-50

~'±\!'v

As = 100 n
TA = 25°C

:J

0.1

10

v1

5'

SUPPLY YOl T AGE -

:tv

100 k

JlA 739 • JlA 749
Typical Performance Curves for #A749 and IlA749C (Cant.)
Typical Output Voltage as a
Function of
Supply Voltage
32

T.' = ,,·b

>

.
".
!:i
. ,.
2•

'/'

>

,,"""

:0

~

AV

:0

0

"~

..

YOUT = 0

~II:

o

10

12

14

SUPPLY VOLTAGE -

16

12~-+--t--~~9---+--t--1

:0

u

>-

t

o

iil

~

e

~

~

2

I

.~
"~
.g

.,..'>-

'fr1--~

'

16r-_'+'T_O__PlrN_'~r-~__~

~

.

I

z

~

.;
~

Total Supply Current as a
Function of
Supply Voltage
TA == 25°C

~

~V

....~

0

/ /'

,.

t-- AL TO PIN 7

I

Open Loop Voltage Gain as a
Function of
Load Resistance

~

°0~-~-~~1~0-·:'~2-~-~~'.·

18

±V

LOAD RESIST ANeE -

Total Power Dissipation as a
Function of Supply
Voltage and Load

SUPPLY VOLTAGE -

kn

Open Loop Voltage Gain as a
Function of
Supply Voltage

150

100

7'r-~1-~~~~~-4--+-~

o

z ,.0

..

eo

~~

40 ,

>

o

,.

10-

~ 120
§" 100
o

~

z
~
o

SUPPLY VOLTAGE -:tV

Y+"'" :t15 y

~ 180
- '00

TA = HOC

~ '25~-t--+--t-+~~'f--t--l

.

200
YOUT = 05 Vrms

Your = 0 5 Vrms
1 kHz

.=

AL TO PIN 7

~
g

•

Open Loop Gain as a
Function of Temperature

175r--,--,-..,..--r-.,--..---.
~

:tV

-

AL TO PIN 7

1

'"

."

!'·~·:J'fJ
If(",;r::;.. - ~

0

....

~

~

RL-25kn

20
-20

18

r - I-

A

.

0
16

1

~'l>

0

20

1

'00

'40

TEMPERATURE _ °C

SUPPLY VOLTAGE -!:.Y

Typical Performance Curves for #A739C
Input Offset Current and
Bias Current as
Functions of Temperature
05

\

00

'1
I

:::

1\

o'

§

\

"-

70.

1

1,

....

o

I
,......

r-BIAS CURRENT

-..1. J"'""-- ...i..
20

1\

00

TEMPERATURE _ °C

100

25°C

~

10-23 1.-11-hf+--f-Hf+-++I++-+-++HH

~
~

10-24 Hl-hf+--+"N:I+-++I++-+-++HH

.
II:

~ 10-25 Hl-hf+--f-Hf+-++I++-+-++HH

OFFSET CURRENT

\

±15 v
100 n

!

n-

I

Ys
As

TA

~ 10-221ij~~aiiii~~i~
~

!!

749C

-20

_

!!i

02

U

Input Noise Current as a
Function of Frequency

"~ ., 10-21~Im~~i~~~~f]~~

~15V_

~~ ;I~;n

/'

~II:

Input Noise Voltage as a
Function of Frequency

~ ~Ef~~f3~~~~~~3f~

I

~ 'O-26~10

:I

140
FREQUENCY -

4·51

Hz

100

1k

FREQUENCY -

10k

Hz

lOOk

J,LA739 • J,LA749
Typical Performance Curves for ILA739C (Cont.)
Wide Band Input Noise
Voltage as a
Function of Temperature

Wide Band Input Noise
Current as a
Function of Temperature

Common Mode Range as a
Function of
Supply Voltage

••• ,.--,--,--..,...--r---.--,----.
BW

-==

20 TO 50 kHz

I--+-+-+--vsAs .", 100
±15 Y
n

-

=

1.

.ill
.
".

'50

I

,~

u

!!

0

z

10

20

30

40

50

60

50

10

70

20

30

40

50

80

70

TEMPERATURE -"C

TEMPERATURE _ "C

Typical Output Voltage as a
Function of
Supply Voltage

SUPPLY VOLTAGE -

Output Capability as a
Function of
Supply Voltage

V

Total Supply Current as a
Function of
Supply Voltage
Yo = 0
TA = 25"C

~

,.~_RL+T_O_P~'N~7_+­

I

>

~

I

~
u

"z
~

12r--+--b~~~.

iiii

I

~

..

·4~~--~--'~.--~"~-'~4--~'~.~'.·
SUPPLY VOLTAGE -

SUPPLY VOLTAGE -

tV

Total Power DisSipation as a
Function of Supply
Voltage and Load

•••

z

2

i

z

.

~ 15k

.~I--+-+--~7t.

ii ••• I---l---l7~ffL,j,L-+-+---i

I

~ '~I-~~~~+--I--+-+---i

10

12

SUPPLY VOLTAGE -

vol •••

14
±V

1.

18

"~

10 k

t.,_

....... i-"'"

-:::

-

-

Vs '" :t1S Y

~~ ~OOk~=rms_
3D

AL - 10 kH

RL
RL

10

5 kU

12

4-52

RL TO GND

........

r---....

~

,. •

3 kU

SUPPLY VOLTAGE -

•

.. •

~

••
•4

~:;02~~~

14

tV

16

18

±Y

Open Loop Gain as a
Function of Temperature
40.

1= 10kHz

•••

.....
1--+-+----11E
I

SUPPLY VOLTAGE -

Open Loop Voltage Gain as a
Function of
Supply Voltage

Yo = 0
TA = 25°C -l--+-4-h~v---l
RL TO PIN 7

~~-~-,~.-~,~.-,~.-~,.~~,.

tV

AL

W

20

.........

t-

",1 10 kll

~

~

~

TEMPERATURE -"C

60

rn

J.LA739 • J.LA749
Typical Performance Curves for

~739C

(Cont.)

Input Offset Current and
Bias Current as a
Function of Temperature

..•
... .........

c

i

Vs=±1SV

........

·'<4e

~~",.

03

~

-r--

5.2
.,
I-- '=== 0,..
10

20

RENT

30

40

50

10

70

TEMPERATURE _ °C

•

Typical Applications
Stereo Phono Preamplifier-RIAA Equalized
+30 V

0.0022 "F

0.1 "F

0.0022 "F

t
470 kll
150 kll

150 kll

9

5 "F/25 V

OUTPUT A -

5 "F/25 V

....-_tl-:-+....~~

>1~3.....+-Ifo-_""'- OUTPUT B

-=- 1 Mll

lMll

~¥~.' :::
kll 11.2kll

INPUTA

INPUTB

Typical Performance
Gain 40 dB at 1 kHz, RIAA equalized
Input overload paint, 80 mV rms
Noise Level, 2 p.V referred to Input
Signal to noise ratio, 74 dB below 10 mW
Channel separation @ 1 kHz, 80 dB

4·53

-=-

~"""-I'v---'

f.LA 739 • f.LA 7 49
Typical Applications (Cont.)
Stereo Tape Preamplifier
1.2 kll

1.5M

I

TAPE HEAD

80

~~

V+ = 12 V
100~F/15V

70

r-....

III

5

~F/9

'"

V

>----------lr--

Z

;;:

60

~ i'.

CI

w

CI

750 kll

~

10 kll

50

o
>

5000
pF

15 kll

,,~

40

4000 pF
100

Mil
TO
SIDE B

1000

10,000 20,000

FREQUENCY - kHz

1.2
OPTIONAL FEEDBACK
TONE COMPENSATION

Typical Performance
Gain at 1 kHz
Output Voltage Swing
Power Consumpllon

":;"

4·54

60 dB
2.8 V rms
30mW

J-LA741

I=AIRCHIL.O

Operational Amplifier

A Schlumberger Company
Linear Products
Connection Diagram
S-Pin Metal Package

Description
The ~A741 is a high performance Monolithic
Operational Amplifier constructed using the Fairchild
Planar epitaxial process. It is intended for a wide
range of analog applications. High common mode
voltage range and absence of latch-Up tendencies
make the ~A741 ideal for use as a voltage follower.
The high gain and wide range of operating voltage
provides superior performance in integrator, summing
amplifier, and general feedback applications.

NC

>-~DOUT

-IN

•
•
•
•

NO FREQUENCY COMPENSATION REQUIRED
SHORT-CIRCUIT PROTECTION
OFFSET VOLTAGE NULL CAPABILITY
LARGE COMMON MODE AND DIFFERENTIAL
VOLTAGE RANGES
• LOW POWER CONSUMPTION
• NO LATCH-UP

(Top View)

PIn 4 connected to case

Order Information
Type
Package
~A741
Metal
~A741A
Metal
~A741C
Metal
~A741E
Metal

Connection Diagram
1o-Pln Flatpak
NC
-OFFSET
NULL

1 •

10

2

9

NC

+IN

v-

NC

8

-IN

OUT

6

Code
3F
3F

Part No.

5W
5W
5W
5W

~A741HM
~A741AHM

~A741HC
~A741EHC

+OFFSET
NULL

(Top View)

Order Information
Type
Package
~A741
Flatpak
~A741A
Flatpak

Code

Connection Diagram
S-Pin DIP

v+

4
5

•

v-

Part No.
~A741FM
~A741AFM

-OFFSET
NULL

NC

-IN

v+

+IN

OUT
+OFFSET
NULL

v-

(Top View)

Order Information
Type
Package
~A741C
Molded DIP
~A741C
Ceramic DIP

Code

Part No.

9T
6T

~A741TC
~A741RC

4·55

------

--------

/lA741
Absolute Maximum Ratings
Supply Voltage
~A741A,~A741,~A741E
~A741C

Internal Power Dissipation
(Note 1)
Metal Package
DIP
Flatpak
Differential Input Voltage
Input Voltage (Note 2)
Storage Temperature Range
Metal Package and Flatpak
DIP

Operating Temperature Range
Military (~A741A, ~A741)
-55°C to +125°C
Commercial (~A741E, ~A741C) O°C to +70°C
Pin Temperature (Soldering 60 s)
Metal Package, Flatpak, and
Ceramic DIP
Molded DIP (10 s)
Output Short Circuit Duration
(Note 3)
Indefinite

±22 V

± 18 V
500MW
310 mW
570mW
±30 V
± 15 V
-65°C to +150°C
-55°C to +125°C

~--------------------------------------------------------------------------------Equivalent Circuit
INVERTING INPUT

r1~-------r----~--------~----------~---'--------------------~~V+

NON·
INVERTING
INPUT

R6

27

n
OUTPUT

R7

22 n

OFFSET
NULL

OFFSET
NULL

Notes
2 For supply voltages less than ± 15 V, the absolute maximum
Input voltage is equal to the supply voltage.
3 Short circUit may be to ground or either supply Rating applies
to +125·e case temperature or 75·e ambient temperature.

1 Rating applies to ambient temperatures up to 70·C. Above
70·e ambient derate linearly at 6 3 mW /·e for the metal
package, 7.1 mW /·C for the flatpak, and 5.6 mW /·e for
the DIP

4·56

J-LA741
/.LA741 and /.LA741C
Electrical Characteristics

Vs = ± 15 V, TA = 25°C unless otherwise specified
/.LA741C

/.LA741

Typ

Max

Typ

Max

Unit

1.0

5.0

2.0

6.0

mV

Input Offset Current

20

200

20

200

nA

Input Bias Current

80

500

80

500

nA

30

150

30

150

/.LV/V

Characteristic

Condition

Input Offset Voltage

RS S

Power Supply Rejection Ratio

Vs
Vs

Min

10 kQ

= +10,
= +20,

-20
-10 V, Rs

= 50 Q

Min

2.0

Mil

Input Capacitance

1.4

1.4

pF

Offset Voltage
Adjustment Range

±15

± 15

mV

±12

±13

V

70

90

dB

25

mA

20k

200k

Input Resistance

.3

2.0

.3

Input Voltage Range
Common Mode
Rejection Ratio

Rs S

10 kQ

Output Short Circuit Current

25

Large Signal Voltage Gain

RL 2: 2 kQ, VOUT

=±

10 V

50k

200k
75

Output Resistance
Output Voltage Swing

75

Q
V

RL 2: 10 kQ

±12

±14

RL 2: 2 kQ

±10

±13

V

Supply Current

1.7

2.8

1.7

2.8

mA

Power Consumption

50

85

50

85

mW

Transient
Response
(Unity Gain)

IRise Time
IOvershoot

VIN = 20 mV, RL
CL S 100 pF

= 2 kQ,

Bandwidth (Note 4)
Slew Rate

RL 2: 2 kQ

Notes
4 Calculated value from BW(MHz)

=

035
Rise Time (I's)

5 All VCC = 15 V for I'A741 and I'A741C
6. Maximum supply current for all devices
25°C = 28 rnA
125°C = 2.5 rnA
-55°C = 33 rnA
4·57

.3

.3

/.LS

5.0

5.0

%

1.0

1.0

MHz

.5

.5

V//.Ls

•

J.LA741
ILA741 and ILA741C
Electrical Characteristics (Cant.)

The following specifications apply over the range of -55 ° C :::; TA :::; 125 ° C
for ILA741 , O°C -<: TA -<: 70°C for ILA741C
ILA741

Characteristic
Input Offset Voltage

Condition

Min

Typ

Max

ILA741C
Typ
Min

Max
7.5

RS:::; 10 kf!

1.0

6.0

= +125°C
TA = -55°C

7.0

200

85

500

TA

= +125°C
TA = -55°C
TA

Input Voltage Range
Common Mode
Rejection Ratio

Rs:::; 10 kf!

nA

Output Voltage Swing
Large Signal Voltage Gain
Supply Current
Power Consumption

.5

ILA

.3

1.5

±13

ILA
V

70

90

dB

± 15
Vs
Vs

= +10,
= +20,

RL

~

RL

~

-20;
-10 V, RS

30

= 50 f!

10 kf!

± 12

± 14

2 kf!

±10

± 13

= 2 kf!, VOUT = ±
TA = +125°C
TA = -55°C
TA = +125°C
TA = -55°C
RL

10 V

Notes
0.35
4 Calculated value from BW(MHz) = Rise Time (I's)
5. All VCC = 15 V for I'A741 and I'A741C.
6. Maximum supply current for all devices
25°C = 28 rnA
125°C = 2.5 rnA
-55°C = 33 rnA
4·58

nA

.03
± 12

Adjustment for Input Offset
Voltage
Supply Voltage
Rejection Ratio

nA
nA

800
Input Bias Current

mV
mV

300
Input Offset Current

Unit

± 15
150

mV
ILV / V
V

±10

25k

±13

V

15k
1.5

2.5

2.0

3.3

mA

45

75

mW

60

100

mW

mA

JlA741
JlA741A and JlA741E
Electrical Characteristics

Vs = ± 15 V, TA = 25°C unless otherwise specified.
JlA741A/E

Characteristic

Condition

Input Offset Voltage

Rs

S;

Min

50 Il

Typ

Max

0.8

3.0

mV

15

JlV/oC

30

nA

Average Input Offset Voltage Drift
Input Offset Current

3.0

Average Input Offset Current Drift
Input Bias Current
Vs
RS

Power Supply Rejection Ratio

= +10,
= 50 Il

-20; Vs

= +20 V,

-10 V,

Output Short Circuit Current

10

= ±20 V
Vs = ±20 V
Vs = ± 20 V, RL = 2 kll,
VOUT = ± 15 V

Power Consumption

Vs

Input Impedance
Large Signal Voltage Gain
Transient Response
(Unity Gain)

0.5

nA/oC

30

80

nA

15

50

JlV/V

25

40

mA

80

150

6.0

Mil

50

200

V/mV

0.25

0.8

I Overshoot

6.0

20

Slew Rate (Unity Gain)

VIN

=±

10 V

The following specifications apply over the range of -55°C
and DoC S; TA S; 70°C for the 741E.

S;

TA

S;

mW

1.0

I Rise Time

Bandwidth (Note 4)

Unit

JlS
%

.437

1.5

MHz

0.3

0.7

V/Jls

125°C for the 741A,

Input Offset Voltage

4.0

mV

Input Offset Current

70

nA

Input Bias Current

210

Common Mode Rejection Ratio
Adjustment For Input Offset Voltage

Vs
Vs

= ±20 V, VIN = ±
= ±20 V

15 V, RS

= 50 Il

80

= ±20 V

JlA741A

mA

I-55°C

165

mW

I +125°C

135

mW

150

JlA741E
Input Impedance

Vs

=

Output Voltage Swing

Vs

= ±20 V

±20 V

IRL = 10 kll
IRL = 2 kll

Vs = ± 20 V, RL
VOUT = ± 15 V

Large Signal Voltage Gain

Vs = ± 5 V, RL
VOUT = ±2 V

= 2 kll,

= 2 kll,

Notes
4. Calculated value from' BW(MHz)

=

0.35
Rise Time (I's)

5. All VCC = 15 V for I'A741 and I'A741C
6. Maximum supply current for all devices
25°C = 28 rnA
125°C = 25 rnA
-55°C = 33 rnA
4-59

mV
40

10
Vs

nA
dB

10

Output Short Circuit Current
Power Consumption

95

mW

0.5

Mil

±16

V

±15

V

32

V/mV
V/mV

10

V/mV

•

JLA741
Typical Performance Curves for I'A741A and I'A741
Open Loop Voltage Gain as a
Function of
Supply Voltage
"5

~

/

'1105

>

~

~ 100

." ..
~

"

!

3.

~

-5S0C $: TA
-ALl2kll

~

16

8.

~

8

~
12

2.

18

/'

./

-5SoC i= TA

+125 C

S;

Q

11

/'

"

/'

24

6 12

SUPPLY VOLTAGE -

•

.. ,

+12SoC

32

3

Input Common Mode
Voltage as a
Function of Supply Voltage

/'

5 2•

""

V

90

I

~ 28

"'~

I

§!

••

~A =' ..·b

"0

Output Voltage Swing as a
Function of
Supply Voltage

~ 12

'"~

/'

/

•

1

~>

Y

/

8

.. •
/'"
~
V
..o~ 4/
o

/'

z

2

4

•

,.

10

±V

SUPPLY VOLTAGE -

" •

2.

,.

~v

2.

15

'v

SUPPLY VOLTAGE -

Typical Performance Curves for I'A741E and I'A741C
Open Loop Voltage Gain as a
Function of
Supply Voltage

..

,

TA

'"
C

"~
e

4

75

7.

o

2

4

6

8

10

12

14

SUPPLY VOLTAGE -

16

18

20

-:':Y

•
•

/
V

./

20

15

10

SUPPLY VOLTAGE -

2/
•

'

C
o

2.

t>---....- -...-VOUT

0..

I
... 12

~

8

I

I
I

RL

..

~

~

70

RISE I'ME-

~
z

..~

Vs - ±15 V
TA eo 25°C
RL '" 2 kl!

-

o

CL - 100 pF
05

10

TIME -

15

20

"

25

,,8

'\

~ 60
UJ 50

'o"

Ys - 1±15 V
TA = 25°C

'\.

80

.. 4

r-=: ,...

'\

•

30

'\

•

2

•
10

100

1 k

10 k

FREQUENCY -

4-60

2.
tV

,

I .0

24

16

,.

Common Mode Rejection
Ratio as a
Function of Frequency

28

~

,.

SUPPLY VOLTAGE -

±V

Transient Response
Test Circuit

Transient Response

/'

/

/'

2

8

DOC ',; TA S t70°C

/'

•

V

C_

V

0

0

Q

L

8

> 8.

.

,
~:c~ ~ ~~I::O +10

2

V

85

.

•

V

/

z
C

." ••

25°C

~

~

.5

I

~

Input Common Mode
Voltage Range as a
Function of Supply Voltage

Output Voltage Swing as a
Function of
Supply Voltage

100 k
Hz

1 M 10 M

f..LA741
Typical Performance Curves for ,uA 7 41 E and ,uA 7 41 C (Cont.)
Frequency Characteristics as a
Function of
Supply Voltage

Voltage Follower Large
Signal Pulse Response

Voltage Offset Null Circuit

14.---,---,---,---,---,----,

I

w

=>

w

~

;!
~ 10r---+---1-~~~~~~==~

,r=ta:t:ttttD
'-OUTPUT

2

f--+-,,'-/~-t---It-t+--\-++-+--l

6> 0f--+.~~--~~-+~--t-~-1

J

~

INPUT_i

\

v-8f--t-+-++-+-+-t-jI--H
06~5---L--~,0--~--~,5~~--~20
SUPPLY VOLTAGE -

-10 '-~O-;'':-O-;!;20:-:'':-O-::40:-:5'=0---:''':-:''=0-:!'':-:!90

=V

TIME -!-,S

•

Typical Performance Curves for ,uA741A, ,uA741 , ,uA741E and ,uA741C
Power Consumption as a
Function of
Supply Voltage
100

T, _

3t

E

I

"

z

0

~

~

Z

0

"'"

"

/'

40

~

li' 20
o

vV"
5

V

/

10,

2~OC /

10, k

/

10,

z

vs

"-

010,
~

w

o
~

~

g

V
10

20

15

+25a~-

5

"-

,
10

"-

0

"-

10

100

1 k

10 k

FREQUENCY -

"- \

100 k

1 M

TA

~

"
10

100

1 k

10 k

100 k

1 M

10 M

Hz

Output Resistance as a
Function of Frequency
1 00

25°C

"0 r-rn'-;-TTrr-'-TT"1T,-,-rrr,

R"

e

~

\

FREQUENCY -

10M

50

Vs V
TA -= +25 Q C

-180
10 M

Hz

Input Resistance and Input
Capacitance as a
Function of Frequency

~

~'5

\

-13 5

10-

~V

Input Offset Current as a
Function of
Supply Voltage

0

l ~ ~ 151 v

TA'=

1

SUPPLY VOLTAGE -

Open Loop Phase
Response as a
Function of Frequency

Open Loop Voltage Gain as a
Function of Frequency

500

f--H-1+-+-tt+t-+++*++Ht-1

'00

f--H-1+-+-tt+t-+++*++Ht-1

40

~
"~ V

1 M

1

=>

'00 f-H1+-+-++++-+++-++-++I-++-l

30

C"

o

1

100 k

~

it

200

f-H1+-+-++++-+++-++-++l-t\I/y

20

~

10
5

10

20

15

SUPPLY VOLTAGE -

-t-V

10k

100

0
1 k

10k

FREQUENCY -

4-61

100 k

Hz

1 M
FREQUENCY -

Hz

IlA741
Typical Performance Curves for ILA741A, ILA741 , ILA741E and ILA741C (Cont.)
Output Voltage Swing as a
Function of
Load Resistance
26

T,

1
~

22

2

~

o

600

0

R, - 10 kll

8

16

6

~

4

2

~

1

I

,

2

z
o

400

~

300

ffi

, J
05

10

50

20

10

r-'Ok

, k

'00

k!l

o

, M

100 k

FREQUENCY -

25

10-15 f-t+fP'I-o:Htt-++ftt-++Itt~

a~
w

~

~

10- 161--t+1+-+-++++-+-H*++Ht-l

g
~ 10

17

f-t+I+-+++++-++ftt-++Itt-

~

10-18

L-.l...LU-..L.LJ..LL..J......LJ.J..J...-'---"-l.ll_
10

100

1 k

10 k

FREQUENCY -

(;

~

~

{/j

10- 24

10 -25

:l
z~ 10-'"

~~ma=t~
f-H-H-+-++tt--t--titt-++t-t+-i

.~~fH~;f~~~~E;~EB~

10

100 k

100

Hz

1 k

10 k

FREQUENCY -

l25

Broadband Noise for
Various Bandwidths

f-t+I'k:-+-t+tt--t-+ftt-++H+-i

10-23

105

85

65

AMBIENT TEMPERATURE

f-H-H-+-t+tt--t--titt-++t-t+-i

I 10-n

45

Hz

Input Noise Current as a
Function of Frequency

~

~

"

~

0

02

w

~

~

200

~

W

IlA741E AND
J. 36

.......

25"C

24

~

Output Voltage Swing as a
Function of Frequency

I----

v, - le,,1 v

> 26

Absolute Maximum Power
Dissipation as a
Function of
Ambient Temperature

10

~-

0

10

10-100

~

I
w

V

Uz

1/

10.10 kHz

;o.i kH~ V

1

'"

"
z

"'o ,
0
~
~

100 k

1

10'

1 k

10k

SOURCE RESISTANCE -

Hz

100 k
q

Typical Performance Curves for ILA741A and ILA741
Input Bias Current as a
Function of
Ambient Temperature

Output Short-Circuit
Current as a
Function of
Ambient Temperature

Input Resistance as a
Function of
Ambient Temperature

200

'00

v,

·15 V

"'EI 3.1"'

50

0

35

,I, v

vs
30

....",

ffi

v

'00

0

0"'-

r-- r-- I-

30

-

0
-60

-20

20

60

TEMPERATURE _ "C

'00

140

"

I--"

~

I ....

-60

I'-,

'-'

"-

~

VV

, 0

1"-

~ 25

~

20

t:--..

[j

v-

~

015

ili
-20

20

60

TEMPERATURE _ °C

4·62

'00

'40

10
-60

-20

20

60

TEMPERATURE _ °C

100

"'
140

~A741
Typical Performance Curves for
Input Offset Current as a
Function of
Ambient Temperature

,

and

~A741

(Cont.)

Power Consumption as a
Function of
Ambient Temperature

,J. y

Ys 1=

~A741A

Frequency Characteristics as a
Function of
Ambient Temperature

•

Vs==±20Y

I Vs =

'20

2
2

•

.......

·•

r-- r--..

•

\
~

,

r--. r--. t-

2

•

2D

-20

100

140

..

-

Typical Performance Curves for
Input Bias Current as a
Function of
Ambient Temperature

~A741E

2.

-2D

....... ....

••
100

BO

140

and

-

~

!

-

t-- r--

20

•

10

20

30

I--

40

50

60

70

10

~
I

z

~

~

.•

.• --

30

40

50

60

r-....

I"'- ..........

2

10

20

30

40

50

TEMPERATURE _ DC

60

70

10

10

20

30

20

100

140

~c

r--

•

-

40

50

TEMPERATURE _ DC

4-63

30

40

50

80

'00

.......

70

60

70

"C

.........

/

I-:;: :::::-

V

V

SLEW RATE

~o~~

~ol

•••

...

/

Vs = ±15 v

......

III

•
•

I I

Frequency Characteristics as a
Function of
Ambient Temperature

10.

4

~8D
0.

•

".
..........

7

........

TEMPERATURE -

.........

8•
•

10

•
•

r-- t--

..........

-c

Output Short Circuit Current as a
Function of
Ambient Temperature

Vs==±20V

.........

20

TEMPERATURE -

Power Consumption as a
Function of
Ambient Temperature

e.

,

TEMPERATURE _ DC

'00

.........

•
•
•

2.

-2.

-BO

Vs == ±15 V

- -

I

!<

DO

Input Offset Current as a
Function of
Ambient Temperature

•
c-Ys
•
.-•

~ 80

iii

I ('''I~

~A741C

'15 V

. ,.

oo~
<9~",

TEMPERATURE -

Input Resistance as a
Function of
Ambient Temperature

Vs == "t15 V

~ 80

~ P" c~1

;-

TEMPERATURE _ DC

TEMPERATURE _ DC

G

s\t.'i4

<~L~w"lTE

•

BO

'00

-- --

•

II)~
~

~"t:

r--. r-....

•

t15 V

~r~o~:-

o

fz

10

20

30

40

50

TEMPERATURE _ °C

eo

70

J-LA747
Dual
Operational Amplifier

FAIRCHILO
A Schlumberger Company

Linear Products

Description
The /-tA747 is a pair of high performance Monolithic
Operational Amplifiers constructed using the Fairchild
Planar epitaxial process. They are intended for a wide
range of analog applications where board space or
weight are important. High common mode voltage
range and absence of latch-up make the /-tA747 ideal
for use as a voltage follower. The high gain and wide
range of operating voltage provides superior
performance in integrator, summing amplifier, and
general feedback applications. The /-tA747 is short
circuit protected and requires no external components
for frequency compensation. The internal 6 dB / octave
roll-off insures stability in closed loop applications.
For single amplifier performance, see /-tA741
data sheet.
•
•
•
•
•
•

Connection Diagram
1o-Pin Metal Package
NC

v(Top View)

v + A IS internally connected to V
/lA747E, and /lA747C.

NO FREQUENCY COMPENSATION REQUIRED
SHORT-CIRCUIT PROTECTION
OFFSET VOLTAGE NULL CAPABILITY
LARGE COMMON MODE AND DIFFERENTIAL
VOLTAGE RANGES
LOW POWER CONSUMPTION
NO LATCH-UP

Absolute Maximum Ratings
Supply Voltage
Military
(/-tA747A, /-tA747, /-tA747E)
Commercial (/-tA747C)
Internal Power Dissipation
(Note 1)
Metal Package
DIP
Differential Input Voltage
Input Voltage (Note 2)
Voltage Between Offset
Null and VStorage Temperature Range
Operating Temperature Range
Military (/-tA747A, /-tA747)
Commercial (/-tA747E, /-tA747C)
Pin Temperature (Soldering)
Metal and Ceramic DIP (60 s)
Molded DIP (10 s)
Output Short Circuit Duration
(Note 3)

Order Information
Type
Package
/-tA747
Metal
/-tA747A
Metal
/-tA747C
Metal
/-tA 74 7E
Metal

+ B for /lA747A.

/lA747.

Part No_
/-tA747HM
/-tA747AHM
/-tA747HC
/-tA747EHC

Code
5X
5X
5X
5X

Connection Diagram
14-Pin DIP
±22 V
± 18 V

500 mW
670mW
±30 V
± 15 V

-IN A

OFFSET NULL A

+IN A

v+

+ OFFSET
NULL A

OUT A

v±0.5 V
-65°C to +150°C

NC

+OFFSET
NULL B

-55°C to +125°C
O°C to 70°C
300°C
260°C
Indefinite

A

OUT B

+IN B

v+

-IN B

OFFSET NULL B

B

(Top View)

Order Information
Type
Package
/-tA747
Ceramic DIP
Ceramic DIP
/-tA747A
Ceramic DIP
/-tA747C
Molded DIP
/-tA747C
Ceramic DIP
/-tA747E

Notes on following pages.
4-64

Code
6A
6A
6A
9A
6A

Part No_
/-tA747DM
/-tA747ADM
/-tA747DC
/-tA747PC
/-tA747EDC

IlA747
Equivalent Circuit (1/2 of circuit shown)
INVERTING
INPUT

r1~------+---~~-------'----------~--~------------------~'--V+

NONINVERTING
INPUT

R6

n

27

OUTPUT
R7

22

n

OFFSET
NULL
R1
1 kll

R3

50 kll

R9

R2

50 kll

1 kll

R11

50 kn

~---+--~---+----~------~--~----~--~--~~----~--6---~VOFFSET
NULL

Notes
1. Ratong applies to ambient temperatures up to 70 ° C. Above
70°C ambient derate linearly at 6.3 mW/oC for the Metal
Package and 7 1 mW / °C for the DIP
2 For supply voltages less than ± 15 V, the absolute maximum
onput voltage IS equal to the supply voltage

3 Short CirCUit may be to ground or either supply. Rallng applies
to +125°C case temperature or 75°C ambient temperature.

4·65
---~

..

--------

•

J.LA747
/-LA747 and /-LA747C
Electrical Characteristics

Vs = +
- 15 V TA = 25°C unless otherwise specified
/-LA747

/-LA747C

Typ

Max

Typ

Max

1.0

5.0

1.0

6.0

mV

Input Offset Current

20

200

20

200

nA

Input Bias Current

80

500

80

500

nA

Vs = +10, -20;
Power Supply Rejection Ratio
Vs = +20, -10V, RS = 5011

30

150

30

150

/-LV/V

Characteristic

Condition

Input Offset Voltage

RS S 10 kll

Min

.3

Input Resistance

2.0

Min

.3

Unit

2.0

Mil

Input Capacitance

1.4

1.4

pF

Offset Voltage
Adjustment Range

±15

±15

mV

25

mA

Output Short Circuit Current
Large Signal Voltage Gain

25
RL 2: 2 kll, VOUT = ± 10 V

50k

200k

25k

200k

It

Output Resistance

75

Supply Current (Total)

3.4

5.6

3.9

5.6

mA

Power Consumption (Total)

100

170

100

170

mW

Transient
Response
(Unity Gain)

IRise Time
IOvershoot

VIN = 20 mV, RL = 2 kit,
CL S 100 pF

Bandwidth (Note 4)
Slew Rate

RL 2: 2 kit

Channel Separation

75

.3

.3

/-LS

5.0

5.0

%

1.0

1.0

MHz

.5

.5

V//-Ls

120

120

dB

The following specifications apply over the range of -55 ° CsT A s 125 ° C for /-LA 7 4 7,
O°CsTAS 70°Cfor/-LA747C
Input Offset Voltage
Input Offset Current

1.0

RS s 10 kit

6.0

TA = +125°C

7.0

200

TA = -55°C

85

500

1.0

7.5

mV

7.0

300

nA
nA
nA

30
Input Bias Current

TA = +125°C
TA = -55°C

Input Voltage Range
Common Mode
Rejection Ratio

Rs s 10 kit

Supply Voltage
Rejection Ratio

Vs = +10, -20;
Vs = +20, -10 V, RS = 5011

.03

.5

.3

1.5

800

nA
/-LA
/-LA

± 12

±13

±12

±13

V

70

90

70

90

dB

30

150

30

150

/-LV/V

RL 2: 10 kll

± 12

±14

± 12

±14

V

RL 2: 2 kll

±10

± 13

± 10

±13

V

Large Signal Voltage Gain

RL 2: 2 kit, VOUT = ± 10 V

25k

Supply Current (Total)

TA = +125°C

3.0

5.0

TA = -55°C

4.0

6.6

Output Voltage Swing

15k
4.0

mA

Calculated value from BW(MHz)

200

mW

TA = +125°C

90

150

mW

TA = -55°C

120

200

mW

Note
4

mA
mA

120
Power Consumption (Total)

6.6

=

035
Rise Time (I-'s)

4-66

J.LA747
J.LA747A and J.LA747E
Electrical Characteristics

±5 V

~

Vs

~

±20 V, TA = 25°C unless otherwise specified.
J.LA747A/E

Typ

Max

Unit

0.8

3.0

mV

15

J.LV/oC

30

nA

J.LA747E

TA = 25°C to 70°C
TA = O°C to 25°C

0.2
0.5

J.LA747A

TA = 25°C to 125°C
TA = -55°C to O°C

0.2
0.5

nA/oC
nA/oC
nA/oC
nA/oC

30

80

nA

15

50

J.LVIV

Characteristic

Condition

Input Offset Voltage

Rs

~

Min

50 Q

Average Input Offset Voltage Drift
Input Offset Current

3

Average Input Offset Current Drift

Input Bias Current
Power Supply Rejection Ratio

Vs = +10, -20; Vs = +20 V, -10 V,
RS = 50 Q

Common Mode Rejection Ratio

Vs = ±20 V, VIN = ± 15 V, RS = 50 Q

80

Adjustment For Input Offset Voltage

Vs = ±20 V

10

J.LA747A

10

25

40

rnA

J.LA747E

10

25

35

rnA

160

300

1.0

6

mW
MQ

0.25

0.8

J.LS

6

20

%

Output Short Circuit Current
Power Consumption

Vs = ±20 V

Input Impedance

Vs= ±20V

Large Signal Voltage Gain
Transient Response
(Unity Gain)

I Rise Time
I Overshoot

dB
mV

Vs = ±20 V, RL = 2 kQ, VOUT = ± 15 V 50
VIN = 20 mV, RL = 2 kQ, CL

~

100 Vs

Bandwidth (Note 4)
Slew Rate (Unity Gain)

95

VIN = ± 10 V

The following specifications apply over the range of -55°C
O°C~TA~ 70°CforJ.LA747E

~

TA

~

V/mV

0.437

1.5

0.3

0.7

MHz
V/J.Ls

125°C for J.LA747A,

Input Offset Voltage

4.0

mV

Input Offset Current

70

nA

Input Bias Current

210

nA

40

rnA

I-55°C

330

mW

I +125°C

270

mW

Output Short Circuit Current
Power Consumption

10
VS= ±20V

.....

J.LA747E

Input Impedance

VS= ±20V

Output Voltage Swing

VS= ±20V

Large Signal Voltage Gain
Channel Separation

J.LA747A

330

lRL =

10 kQ

IRL = 2 kQ

mW

0.5

MQ

± 16

V

±15

V

Vs = ±20 V, RL = 2 kQ, VOUT = ± 15 V 32

V/mV

Vs= ±5V,RL=2kQ,VOUT= ±2V

10

V/mV

Vs = ±20 V

100

dB

Note
035
4 Calculated value from· BW{MHz) = RIse TIme (I's)
4-67
~~~----.

•

J.LA747
Typical Performance Curves for /J-A747A and /J-A747
Input Bias Current as a
Function of
Ambient Temperature

Output Short Circuit
Current as a
Function of
Ambient Temperature

Input Resistance as a
Function of
Ambient Temperature

..

,

2••

Vs = :t15 v

•

:i
I
w

~ 100

~
........

•-6.

r--

--

..

50

~

30

t"-

2.

-2.

TEMPERATURE _ °C

..,-

Input Offset Current as a
Function of
Ambient Temperature

~ 20

"-

U

~

..

we

TEMPERATURE _

f'..

:;

,

6.

2.

-2.

I"--.

~

~

-6.

14.

"-

~

I ....

,.

,

6.

V

v

30

~ 25
""

l-

~

.""'-

~

-

30

~

"-

~

"z

•

35

~ ±1~ v

vs

5.

15

•-6.

1

14.

2.

-2.

..

,

6.

TEMPERATURE _

14.

°C

Frequency Characteristics as a
Function of
Ambient Temperature

Power Consumption as a
Function of
Ambient Temperature

14

14
Ys - :t15 v

~
~ 10
o

~

\

~

•

6

•

-6.

-- --

2.

-2.

........

~

........

••

•

..

,

6.

r-

:i'

I-14.

Il_

........

r- ........

-6.

2.

-2.

TEMPERATURE _ °C

..

,

6.

TEMPERATURE _

14.

=- :!:15 V

....~
~

~rr,\t,~"'i.

~

o

"ffi

Vs

12

• ......

8

z

""'- r--

Ys '" ::!:20 V

12.

r--.. '~L~WR~TE

.....,:P' c~

:::

!

o..~

84"O.. ~:c-

I 'I'"

I

.6

-2.

-6.

..

,I

6.

2.

TEMPERATURE _

DC

°C

14.

Typical Performance Curves for /J-A747E and IJ.A747C
Input Bias Current as a
Function of
Ambient Temperature

..

Input Offset Current as a
Function of
Ambient Temperature

Input Resistance as a
Function of
Ambient Temperature

,.

,

Vs, -= ::1:15, V

vc

f-"

5.

- •o

..- ..-

~

•

r-

r--

20

30

40

TEMPERATURE -

SO
QC

60

70

r---

-

•
Vs '"

10

:1-15 V

,

7.

•

10

20

30

40

TEMPERATURE _

4-68

50
°C

t5

60

1
V

70

10

20

30

40

50

TEMPERATURE _ °C

60

70

JLA747
Typical Performance Curves for J.lA747E and J.lA747C (Cont.)
Output Short-Circuit
Current as a
Function of
Ambient Temperature

Power Consumption as a
Function of
Ambient Temperature

,.•
..

~
I

z

o

•

~ 8

"ii:

8
'"w

70

.

•

Vs"':!:20V

1 2•
I
...........

---- ----

ill'"

2

'"'"o

:J

!:

:J

•

...........

•

........

...........

o

~

22

r-.....

""

~

••
~

Frequency Characteristics
as a Function of
Ambient Temperature

~

•

10

20

30

40

50

80

•
•

70

10

TEMPERATURE _ °C

20

30

40

50

60

••51---t--+-+-t-~

70
TEMPERATURE _ °C

TEMPERATURE _ °C

Typical Performance Curves for J.lA747A, J.lA747C, J.lA747 and J.lA747E
Power Consumption
as a Function of
Supply Voltage

Open Loop Voltage
Gain as a
Function of Frequency

..

,

,.'
TA

,

/

=1 25oC

80

I

z

~IO

..ii:

8

/'

40

V

~

•

/"

1.

5

I"
1"-

,.-

W

~ 10 2

g

1.+V

'"

100 k

\

1 M

-180
1

10 M

w

o
z

10

100

1 k

10 k 100 k

FREQUENCY -

Hz

••
50.l-ttlH-+-ttlH-+-t+H-+-++fH

1

1 M

::l

C'N

.'"

~ 100 k

1

i!!

5

1.

,. k

15

SUPPLY VOLTAGE -

20
+V

100

10 M

RIN

;

'"~ 20

1 M

Hz

Output Resistance as a
Function of Frequency

"

-

V r-

i'

-135

1

r-

S

,.

10 k

,. M

~
I ••

i!!

1 k

~15
V
+2SoC

\

I

"-

Y,
TA

:l
il:

Input Resistance and
Input Capacitance as a
Function of Frequency

TA = 25°C

30

100

1\

w-tO

,
10

5.

~

1"-

FREQUENCY -

Input Offset Current as a
Function of
Supply Voltage

~

-45

,.

2.

15

SUPPLY VOLTAGE -

§'"

== :!:1S' Y
TA = +25 0 ( : -

•"

./

20

v}

I---..

" 103

V

i5

..~

/

/

10'

Open Loop Phase
Response as a
Function of Frequency

•

1

1k

10 k
FREQUENCY -

4-69

100 k
Hz

1 M

FREQUENCY -

Hz

•

p,A747
Typical Performance Curves for JLA747A, JLA747C, JLA747 and JLA747E (Cont.)
Output Voltage Swing
as a Function of
Load Resistance

..
..."z.•
>

vs

128

Ii
!;

TA

='±lJ
v'
25°C

~~~r-~~r-~rnr-r-~~

~

,-

=::

Ys '" ±15 V

>

~20

0, a

II

~ 16

e>l

14

.. 1.

01

2s·e

!

28

H-ttt-H-ttt-t-f-tlt-t-f-tlt--i

~

24

H-+++-H-+++-tl.\r+-I-tt--++I-tt----i

~

•• H-+++-H-+++-+-tt-,,*-++Ht-i

~

~

"H-+++-H-+++-+-N1+-+-f-tlt--i
aH-tt+-H-+++-t-rHt-t-Hrlt--i

.. 4H-+++-H-+++-t-H-f+tI.~+I-tt----i

/

a

=::

RL = 10 kU

~ lsH-+++-H-+++-~Hrl+-+-Hrlt--i

II

•

~ 1

3sH-tt1H-++++-+-+HtTA

~ 32

V

•

Input Noise Voltage
Density as a
Function of Frequency

Output Voltage Swing as a
Function of Frequency

02

05

10

20

LOAD RESISTANCE -

50

~.~.~~-:lJ....~UJ...""l.~.-'-UJ...,~•...,r'~'~~lM

10

kn

FREQUENCY -

1D181,~.-"-,UJ...-;1:;;
••;-'-'UJ...-;1"'.;-'-u..L-;,t.;:"
• .I.-J-~100 k
FREQUENCY -

Hz

Hz

Typical Performance Curves for
JLA747 and p.A747C
Input Noise Current
Density as a
Function of Frequency
~

..

Common Mode Rejection
Ratio as a
Function of Frequency

Broadband Noise for
Various Bandwidths

•

'·-20~~m~~~~
Vs
TA

+15 Y
2soe

.
~

I 10-22 HH-f+-HH-f+-+-H-f+-+-H-f+--1

o

§~ 10-23~~~~~~~~~~~~~
~~~~
o~
R=t
:10-24~~~s~~~~~~~~
~ ~

•
1

10 -

,.

f-

'~
"'""

100 kHz

10 kHz

,. _l"HI,

'"

gz 10-2S I-f-tl+-+-f-tl+-+-f-tl+-+-f-tl+-l

7

Z

o

50

~

5

~

~
~

8

1
1• •

1k

SOURCE RESISTANCE -

100 k

n

TA "" 2S·C--

" -""

S•

'"

Hz

Vs =- :!.15 V

8

II:

:E

FREQUENCY -

.••
•

-""

. •
" ..
.. ••

V

:I

10-261_~.-'-UJ.-:,""
..-'-UJ.-:,J....-'-w..",,1.~.-'-u..L-:-::'100 k

,.•

.

-""

1

•

10

100

1 k

10 k

FREQUENCY -

100 k

1 M

Hz

Typical Performance Curves for JLA747 and JLA747C (Cont.)
Voltage Follower Large
Signal Pulse Response

Transient Response

Frequency Characteristics
as a Function of
Supply Voltage

28
Vs - ±15 v
TA '" 25°C

•

Al

'E
I

~

1a

•

1

::J

o

4

=

2 kH

CL = 100 pF

~

20

8...

>
I

I

O:>~

I

II
- lifo. f:M.
10%

OUTPUT

if
INPUT

i

~\

~

~

~~+-+-+~--~~~~--~
-4

"

-t

~+-+-+~--t-+~-t'~--~

1-r---+-+---+--I----1f-'
...t-"_".+"_l.....-+i-----1f-----I

-81-+-+-+-+-++-+-f----jH
10

TIME -,uS

15

20

25

-1~1!o:.--!:.--:,'=".-+.
••~.."...,..!::--.!.."...,50!::--:7."...,8!:.~..
TIME

-Il'

4-70

SUPPLY VOLTAGE -

±V

10 M

J.LA747
Test Circuits
Transient Response Test Circuit

Voltage Offset Null Circuit

>=-.....- .....--VOUT
RL

t

v-

Typical Applications
Quadrature Oscillator

C2
820 pF
1%

C3
820 pF
1%

SINE
OUTPUT

R3

190 kll
1%

•

+15 V

>-4_....._COSINE

R2

OUTPUT

180 kll
1%

Rl

R4

190 kll

-15 V

190 kll
1%

1

Cl
820 pF

1%

f

=

1
2". ylC2R2C3R3

(R1C1

= R2C2)

Tracking Positive and
Negative Voltage References
R4

12 kll
01
6.2 V

V+

R5
10 kll

RS
10 kll

V+
NEGATIVE
REGULATED
OUTPUT

R3

180 kll

-12 V

V-

Rl
10 kll

V-

IL :5 5 rnA
SOURCE
OR SINK

R2

11 kll

Positive Output

= V01

R1 + R2
x --R-2-

Negative Output = -PositIve Output x

4·71

R6

As

J.LA747
Analog Multiplier
+15 V
CURRENT SOURCE
R2
20 kll
1%

Rl
20 kll
1%

AMPLIFIER
R14
25.8 kll'
1%

lN963B

-=

Rll
12 kll'
1%

+15 V

EIN 1

-15 V

+15 V

MULTIPLIER
2N2920
OR
I'A726

R5
5 kll
1%

R12
12 kll'
1%

EOUT

R15
25.8 kll'
1%

EIN 2

-15 V

R4
15 kll
1%

R3
20 kll

1%

R7
150 kll

Rl0
150 kll
ZERO ADJUST

-15 V

+15 V

'Matched 10 01%
EOUT

=

100EIN 1 x EIN2

Compressor IExpander Amplifiers
R

01

R2
10 kll

R

D2

R5

R

+15 V

1 kll

D3

Rl
COMPRESSOR
IN PUT --''''1"'k....
ll......,
EXPANDER
INPUT
R3
10 kll

EXPANDER
OUTPUT
R

-15 V

-=
COMPRESSOR

ftr

-=-

Notes
1. Maximum Compression Expansion Ratio = R / R (10 kll > R 2: 0)
2. Diodes 01 through 04 are matched F0666 or Equivalent

4-72

EXPANDER

JlA748
Operational Amplifier

FAIRCHILD
A Schlumberger Company

Linear Products

Description
The JlA748 is a High Performance Monolithic
Operational Amplifier constructed using the Fairchild
Planar epitaxial process. It is intended for a high wide
range of analog applications where tailoring of
frequency characteristics is desirable. High common
mode voltage range and absence of latch·up make the
JlA748 ideal for use as a voltage follower. The high
gain and wide range of operating voltages provide
superior performance in integrator, summing amplifier,
and general feedback applications. The JlA748 is
short circuit protected and has the same pin
configuration as the popular JlA 7 41 operational
amplifier. Unity gain frequency compensation is
achieved by means of a single 30 pF capacitor.

Connection Diagram
8-Pin Metal Package

>---{) OUT

-IN

•

v(TOp View)

•
•
•
•
•

SHORT CIRCUIT PROTECTION
OFFSET VOLTAGE NULL CAPABILITY
LARGE COMMON MODE AND DIFFERENTIAL
VOLTAGE RANGES
LOW POWER CONSUMPTION
NO LATCH-UP

Pm 4 connected to case

Order Information
Type
Package
JlA748
Metal
ILA748C
Metal

Absolute Maximum Ratings
Supply Voltage
±22 V
Internal Power Dissipation
(Note 1)
Metal Package
500mW
DIP
310 mW
Flatpak
570 mW
Differential Input Voltage
±30 V
Input Voltage (Note 2)
± 15 V
Storage Temperature Range
Metal Package
-65°C to +150°C
DIP
-55°C to +125°C
Operating Temperature Range
Military (JlA 7 48)
-55°C to +125°C
Commercial (JlA748C)
O°C to +70°C
Pin Temperature (Soldering 60 s)
Metal Package
300°C
Molded DIP (lOs)
260°C
Output Short Circuit Duration
Indefinite
(Note 3)

Code

Part No.
JlA748HM
ILA748HC

5W
5W

Connection Diagram
8-Pin DIP
8

OFFSET
NULL

FREO
COMP

-IN

v+

+IN

OUT
OFFSET
NULL

v-

(Top View)

Order Information
Type
Package
ILA748C
Molded DIP

Code
9T

Part No.
JlA748TC

Notes
1 Ratmg applies to ambient temperatures up to 70'C Above
70°C ambient derate linearly at 6 3 mW / °c for metal package,
5 6 mW / °C for the DIP
2 For supply voltages less than ± 15 V, the absolute maximum
mput voltage 10 equal to the supply voltage
3 Short circuit may be to ground or either supply Ratmg applies
to +125°C case temperature or +75°C ambient temperature

4·73

- - - - - - - _.. -

/-LA748
Equivalent Circuit
INVERTING INPUT -

COMP OFFSET NULL

COMP

r--------------+-+--_1~------._------_1~~~--+_--------------t_- V+

NON-INVERT
INPUT +
R6

2711

OUTPUT

R5
40 kll

R7
2211
OFFSET NULL

V+

300 II

017
023~---+--~~--~--~----t-.

011

R1
1 kll

R3
50 kll

R2
1 kll

R4

R9

10 kll

50 kll

4-74

R8
100 II

R11
50 kll

f.LA748
/LA748 and /LA78A
Electrical Characteristics

Vs

Characteristic
Input Offset Voltage

= +- 15 V

TA

= 25°C

Cc

= 30 pF unless otherwise specified
/LA748A
Typ
Min
0.5

Condition
Rs:::; 10 kf!

Max
2.0

/LA748
Min
Typ
1.0

Max
5.0

Unit
mV

Input Offset Current

2.0

10

20

200

nA

Input Bias Current

20

75

80

500

nA

Input Resistance

2.0

10.0

0.3

2.0

Mf!

Input Capacitance

3.0

2.0

pF

Offset Voltage
Adjustment Range

±25

±15

mV

Large Signal Voltage Gain

RL;:::: 2 kf!, VOUT

=

± 10 V

50 k

Output Resistance

250 k

50 k

100

150 k

VIV

75

f!

Output Short-Circuit Current

±25

Supply Current

1.9

2.8

1.9

2.8

mA

Power Consumption

60

85

60

85

mW

Transient
Response
(Voltage
Follower,
Gain of 1)

Rise Time
Overshoot

VIN = 20 mV, Cc = 30 pF,
RL = 2 kf!, CL :::; 100 pF

Slew Rate (Voltage
Follower, Gain of 1)

RL;:::: 2 kf!

Transient
Response
(Voltage
Follower,
Gain of 10)

VIN = 20 mV, Cc = 3.5 pF,
RL = 2 kf!, CL :::; 100 pF

Rise Time
Overshoot

Slew Rate (Voltage
Follower, Gain of 10)

RL ;:::: 2 kf!, Cc

25

mA

0.3

0.3

/LS

5.0

5.0

%

0.5

0.5

V//Ls

0.2

0.2

/LS

5.0

5.0

%

5.5

V//Ls

= 3.5 pF

The following specifications apply for -55 ° C :::; TA :::; 125 ° C
Input Offset Voltage
Input Offset Current
Input Bias Current

RS:::; 10 kf!

0.5

= HIGH
TA = LOW
TA = HIGH
TA = LOW
TA

Input Voltage Range
Common Mode
Rejection Ratio

RS:::; 10 kf!

Supply Voltage
Rejection Ratio

RS:::; 10 kf!

Large Signal Voltage Gain
Output Voltage Swing

RL;:::: 2 kf!, VOUT
RL;:::: 10 kf!

± 10 V

Supply Current
Power Consumption

= HIGH
TA = LOW
TA = HIGH
TA = LOW

4·75

mV

200

nA

25

50

500

nA

0.1

0.03

0.5

/LA

0.1

0.3

1.5

/LA
V
dB

± 13

± 12

80

95

70

90

100

25 k
±10

RL;:::: 2 kf!

6.0

10

± 13

±12

TA

1.0

25

±12

13

=

3.0

30

150

25 k
±14

± 12

±13

±10

/LV IV
VIV

± 14

V

± 13

V

1.5

2.5

1.5

2.5

2.0

3.3

2.0

3.3

mA
mA

40

75

45

75

mW

60

100

60

100

mW

•

,."A748
p,A748C
Electrical Characteristics

Vs

= ± 15 V, TA = 25°C, Cc = 30 pF unless otherwise specified.
p,A748C

Typ

Max

Unit

2.0

6.0

mV

Input Offset Current

20

200

nA

Input Bias Current

80

500

nA

Characteristic

Condition

Input Offset Voltage

RS .::;; 10 kfl

Min

Input Resistance

0.3

Input Capacitance
Offset Voltage Adjustment Range

2.0

Mfl

2.0

pF

± 15

mV

150 k

VIV

Output Resistance

75

fl

Output Short-Circuit Current

25

Supply Current

1.9

2.8

Power Consumption

60

85

Large Signal Voltage Gain

Transient Response
(Voltage Follower,
Gain of 1)

RL 2:: 2 kfl, VOUT

Rise Time
Overshoot

Slew Rate (Voltage
Follower, Gain of 1)
Transient Response
(Voltage Follower,
Gain of 10)

Rise Time
Overshoot

Slew Rate (Voltage
Follower, Gain of 10)

=

± 10 V

20 k

mA
mA
mW

VIN = 20 mV, Cc = 30 pF,
RL = 2 kfl, CL .::;; 100 pF

0.3

p,s

5.0

%

RL 2:: 2 kfl

0.5

V/p,s

VIN = 20 mV, Cc = 3.5 pF,
RL = 2 kfl, CL .::;; 100 pF

0.2

p,s

5.0

%

5.5

V/p,s

RL 2:: 2 kfl, Cc

= 3.5 pF

The following specification apply for O°C .::;; TA'::;; 70°C
Input Offset Voltage
Input Offset Current

RS'::;; 10 kfl

2.0

= HIGH
TA = LOW
TA

Input Voltage Range
Common Mode Rejection Ratio

RS .::;; 10 kfl

Supply Voltage Rejection Ratio

RS .::;; 10 kfl

Large Signal Voltage Gain

RL 2:: 2 kfl, VOUT
RL 2:: 10 kfl

Output Voltage Swing

RL 2:: 2 kfl
Supply Current
Power Consumption

= HIGH
TA = LO
TA = HIGH
TA = LO
TA

4·76

± 10 V

mV
nA

800

p,A

± 12

± 13

V

70

90

dB

30

=

7.5
300

150

15,000

± 12
± 10

p,V IV
VIV

± 14
± 13

V
V

1.5

2.5

mA

2.0

3.3

mA

45

75

mW

60

100

mW

p,A748
Typical Performance Curves for I'A748
Input Bias Current as a
Function of
Ambient Temperature

...

•

10.

V5~.,JV

... \
~.

35

±~ v

..... ~

i

I

I-

V51=

••

1!

.
..""~
".

\

I

3•

;

10

e~

\

I-

100

~ .....

;E

..

r-...

~

......

..

•

Output Short Circuit
Current as a
Function of
Ambient Temperature

Input Resistance as a
Function of
Ambient Temperature

100

.

E
I

./

~
II!
G

.//

/

~

••

~

•.3

iii

.

••

140

TEMPERATURE _ DC

Input Offset Current as a
Function of
Supply Voltage

.. .

100

3D

i'..

25

" I'.. r'\.

20

'5

••-60

.40

TEMPERATURE _

.

Vs=±1SY

I

I-

.ill

""

i

3D

20

;E

~

3D

~

II:

20

~

I......

0

0

."
I-

I

I

."
I-

••
••

~

i8
i

-

••

;E

••

I

--.

••±v

.00

'40

CD

70

.. 1-r......

r- ..........

50

40

30
-80

..

-20

TEMPERATURE _ "C

SUPPLY VOLTAGE -

140

c

0

Vs=±15Y

AL '"
40

"

100

Power Consumption as a
Function of
~mblent Temperature

50

1!

..

-20

TEMPERATURE _ DC

Input Offset Current as a
Function of
Ambient Temperature

1!

Vs="!:5V

" ........

TEMPERATURE -

100

140

"C

Typical Perfomance Curves for I'A748C
Input Bias Current as a
Function of
Ambient Temperature

...

10

.....
'20

""

..

~
l-

i

r--....

i

;E

+15 V

Vs=±15Y

7•

I

!zw

32
Vs

VS-±15V

...
1
.

Output Short Circuit
Current as a
Function of
Ambient Temperature

Input Resistance as a
Function of
Ambient Temperature

--

I

~
z
j!

-

.5~
.
;E

••

20

30

40

TEMPERATURE _

50
0

c

60

70

,/

" " i'-

3.

.,,- ,/"

2.

40

10

......~

V

••

...

,/"

,/"
18

010203040506070
TEMPERATURE _ "C

4·77

•

10

..

3D

40

50

TEMPERATURE _ "C

.........

.........

..

70

p,A748
Typical Perfomance Curves for ItA748C (Cont.)
Input Offset Current as a
Function of
Supply Voltage

Input Offset Current as a
Function of
Ambient Temperature

Power Consumption as a
Function of
Ambient Temperature
.0
Vs= ~15V

0
Ys"'+15V

Fk=
I

:>

l)"

Hz

10.

r"
c

1'\...

; '•• 1

'<

RL-2kU

Cc~3pF

g 20 1---+-+--+--+---'+----'
'~_l
......•..
..... \
-0. !---,,!::.-,=.,:---=,.::-,---;""::--":'::.'-'=":---='.7

1110.

n

FREQUENCY -

'20 r--r-,--,--,-,-"""-"

-tsl~~lv
TA =:we
jL= 10 kil

32

Hz

Open Loop Voltage Gain as a
Function of Frequency for Various
Gain/Compensation Options

Output Voltage Swing as a
Function of Frequency

.~-r--r-~--'--'--'--'

30~'

,.

SOURCE RESISTANCE -

FREQUENCY - Hz

Open Loop Phase Response
as a Function of Frequency

".

\

Z

C

60

~ 40~+~~~-~*~-k~-,F~~~~-'~,t,,-i--I

., ............. ~

~

~ 1025

'I

Rs ~ 50
~ eo f---+-"'.,.......-'........r-,,-t--+-+--I
•••••••••• " " "

i"

10-10 kHz

iii
0:

W 1024

~

10-100 ....

510:
iii

Z

V;~±'5~
TA~+"·C-

_L

~~!-~~~

I

8

Hz

'2Or--r-,--,:---,-,--.-,

!

..·c

~~~~

10 181~
• ..J....I.u....-=1OO::-'-.LLL-:':':.~.L.I.L-:,.~.:-'-w..==,.. k

1110
Ys

TA

~~~~tt~~~~~~~

TEMPERATURE _ DC

Broad Band Noise for
Various Bandwidths

i

..~
...

15

~

110"

~

10

!Iig ,."

Input Noise Current as a
Function of Frequency

,."

~

.~

",1),

..

H.-++HH+H-+-++++-+-+-+++--1

I

C(~III

20

10 14

~

.

("o,,~

-m

Input Noise Voltage as a
Function of Frequency

11.r---.--.--r---'-"T""-r-~

Vs=±15Y

r<;:;-r
....... r-.. ~ ~E~RAi.

TEMPERATURE _

~

jl748C Frequency Characteristics
as a Function of
Ambient Temperature

'DO ~~~~-+--+'ll eo
I

24

,.

I\CC=3PF
\CC~~PF\

~

60

~

.. I--+-+--Ir---~.~~

~ .. I---+-+--+--+---''k-''ri't--!

~
r

•

1k

10.

...r--

r--

,

FREQUENCY -

4·79

'M
Hz

10M
FREQUENCY -

Hz

,."A748
Typical Perfomance Curves for ,uA748 and ,uA748C (Cont.)

Frequency Response for Various
Closed Loop Gains

Compensation Capacitance as a
Function of
Closed Loop Voltage Gain

Input Resistance and Input
Capacitance as a
Function of Frequency

50
100

%.

20

I

~
I
Z

;;

"w

"

~

1l

80
60

Cc -='2 pF

40

z

10

~

50

~

Cc=lpF

Vs +15 V
TA = 25°C
RL = 2 k!l

\

'a

"\ \
"-

Z

o

fi

§! 20

8~

cc =~PF~ ':-••••

CC=~OPF

-20

100

10

/

20

(CL

,~

100 pF)

~

"'

20% OVERSHOOT
(CL::S 20 pF)

10k

lOOk

1M

10

10M

Hz

20

-....:::: ~
30

40

~

~

!!;

..... ~

50

60

CLOSED LOOP VOLTAGE GAIN -

Voltage Fo"ower Transient
Response (Gain of 1)

~

~ 100 k1-t+H---+-++-I+-+-HH+-+-+++IHl 0 ~

~

10

~
j!

Z
~

s
lk

FREQUENCY -

~ lMI-t+H---+-++-I+-+-HH+-+-+~Hl0 ~

NO OVERSHOOT

70

dB

FREQUENCY -

Transient Response Test Circuit

Hz

Voltage Fo"ower
Large-Signal Pulse Response
10

8

Vs~±15V

TA '" 25°C
RL = 2 kn

24

-

CL

o

~

R,ser ME -

RL

Vs -'- ±15 V
TA - 25°C
RL ~ 2 k!l

25

Common Mode Rejection
Ratio as a
Function of Frequency

5001-t+H---+-++-I+-++f-++-+-++HH

~
:>

200

z

OJ
a:

50

~

100

..

8
10 k
FREQUENCY -

100k
Hz

70

60

v!-±"Iv-

\.

TA = 25°C
CL-=30pF-

\.
\.

:g 40
o
.. '0

I

1k

90

80

o

~

0

0
100

I

o

!ia:

400

Z

~

'"

O~TPUT

0

0

o

I

INPUT

~

I
cc,
~

10

~

\
~

,

'r
<

V

I

~

~

TIME-"s

100

...a:

~
:>

-2

-1

20

15
"S

~

300

!I

,1
Cc=30pF

J

6f:: i -

Output Resistance as a
Function of Frequency

"~

§!

CL rOPF

f------

10

I

I

...

TIME -

w

~

~

U
f--

>
I

1M

\.

20
10

0

10

100

lk

10k

FREQUENCY -

4-80

lOOk
Hz

1M

10M

j-

~

~

~

~

f.LA748
Typical Performance Curves for ILA748 and ILA748C (Cont.)

Large Signal Feed Forward
Transient Response

Feed Forward Compensation
10 kll

2Sr-r-~~-+-+-+~-r-H~

10 kfl
V'N - - . . , . . , . , . - -.....4...--......;-1

\

>:...........---.-VOUT

-25 0!:--L--:,:-o-'--!,,:-'--'3:':0:-'---'4':-0-L-:S:O--'--:'"

CL

I10 P F

5 pF

3.0 kll

RESPONSE TIME - I-'S

150 pF

•

Voltage Offset Null Circuit

5.1
Mil

1"",,

5.1 Mil

10 mil

. . . . . . .""'_-V25 kil

Suggested

Alternate

Typical Applications
Pulse Width Modulator
Rl

+~'~

R2

__1"10"0,,krll_~_ _ _ _ _ _ _ _10....0....k...!_l--,
+15 V -15 V

....-------jf--

VOUT

'e = 211" R2 Cl

R3

10 kll
C1

0.47

~F

1

'n = 211" Rl Cl

I
R4

=

100 k!l

R5

100 !l

1

211" R2 C2

'e < 'n < 'unity gain

01
6.2 V

02
6.2 V

4·81

p,A748
Typical Applications (Cont.)
Circuit for Operating the JlA748 Without a
Negative Supply

Practical Differentiator
C2

R2

R1

R2
+20 V
+15 V -15 V
R1

Y,N

1

C1

---\l'llv-----jl-.....--=:...t

6

>~""'--VOUT

VOUT

R3
":" 30 pF

4·82

fJ,A759

F=AIRCHIL.O

Power Operational
Amplifier

A Schlumberger Company

Linear Products

Description
The J,lA759 is a High Performance Monolithic
Operational Amplifier constructed using the Fairchild
Planar Epitaxial process. The amplifier provides
325 rnA output current and features small signal
characteristics better than the J,lA 7 41. The amplifier is
designed to operate from a single or dual power
supply and the input common mode range includes the
negative supply. The high gain and high output power
provide superior performance whenever an
operational amplifier is needed. The J,lA759 employs
internal current limiting, thermal shutdown and safearea compensation making it essentially
indestructible. It is intended for a wide range of
applications including voltage regulators, audio
amplifiers, servo amplifiers and power drivers.

Connection Diagram
a-Pin Metal Package

•
•
•
•

Pm 4 connected to case

•

NC

>-"""<1 OUT

-IN

v(Top View)

OUTPUT CURRENT-325 mA MINIMUM
INTERNAL SHORT-CIRCUIT CURRENT LIMITING
INTERNAL THERMAL-OVERLOAD PROTECTION
INTERNAL OUTPUT TRANSISTORS
SAFE-AREA PROTECTION
INPUT COMMON MODE VOLTAGE RANGE
INCLUDES GROUND OR NEGATIVE SUPPLY

Order Information
Type
Package
J,lA759
Metal
J,lA759C
Metal

Code
5W
5W

Part No.
J,lA759HM
J,lA759HC

Connection Diagram
Power Watt Package

Absolute Maximum Ratings
Supply Voltage
Between V+ and V36V
Differential Input Voltage (Note 1) 30 V
(V- -0.3 V) to V+
Input Voltage (Note 1)
Internal Power Dissipation
(Note 2)
Internally Limited
Operating Junction
Temperature Range
Military (J,lA749)
-55°C to +150°C
Commercial (J,lA759C)
O°C to +125°C
Storage Temperature Range
4-Pin Power Watt (U1)
-55°C to +150°C
8-Pin TO-99 (H)
-65°C to + 150°C
Pin Temperature
4-Pin Power Watt (U1)
(Soldering, 10 s)
260°C
8-Pin TO-99 (H)
(Soldering, 60 s)
300°C

(Top View)

Order Information
Type
Package
J,lA759C
Power Watt

Notes
1. For a supply voltage less than 30 V between V+ and V-, the
absolute maximum mput voltage IS equal to the supply voltage.
2 Although the internal power diSSipation is limited, the junction
temperature must be kept below the maximum speCified
temperature in order to meet data sheet speCifications. To
calculate the maximum Junction temperature or heat smk
required, use the thermal resistance values on page 3
4·83

Code

8Z

Part No.
J,lA759U1C

p,A759
Equivalent Circuit

= +- 15 V, TJ = 25 ° C unless otherwise specified

Electrical Characteristics

Vs

Characteristic

Condition

Input Offset Voltage

Rs::; 10 kQ

IlA759
Typ
Min

Max

IlA759C
Typ
Min

Max

Unit

1.0

3.0

1.0

6.0

mV

Input Offset Current

5.0

30

5.0

50

nA

Input Bias Current

50

150

50

250

nA

Input Resistance

0.25

Input Voltage Range
Large Signal Voltage Gain

RL ~ 50 Q, VOUT

= ± 10 V

0.25

1.5

+13 to +13 to
-VS
-VS
200 k
50 k

Supply Current

12

1.5

MQ

+13 to +13 to
-VS
-VS
25 k
18

V

200 k
12

VIV
18

mA

Peak Output Current

3 V ::; I Vs - VOUT I < 10 V

Short Circuit Current

Ivs - vOUTI = 30 V

±200

±200

mA

Transient
Response
(Unity Gain)

RL ~ 50 Q

300

300

ns

Risetime

±325

±500

±325

±500

mA

Overshoot RL ~ 50 Q

5.0

10

%

RL ~ 50 Q

0.6

0.5

V/lls

1.0

1.0

MHz

Slew Rate
Unity Gain Bandwidth

The following specifications apply for -55°C -< TJ -< 150°C (IlA759), or 0° -< TJ -< 125°C (IlA759C)
Input Offset Voltage
4.5
7.5
RS::; 10 kQ

mV

Input Offset Current

60

100

nA

Input Bias Current

300

400

nA

Common Mode
Rejection Ratio

Rs::; 10 kQ

80

100

70

100

dB

Power Supply
Rejection Ratio

RS::; 10 kQ

80

100

80

100

dB

Large Signal Voltage Gain

RL ~ 50 Q, VOUT

25 k

200 k

25 k

200 k

VIV

Output Voltage Swing

RL ~ 50 Q

±10

± 12.5

± 10

± 12.5

V

=±

10 V

4·84

p,A759
Package

Type Max

Typ

Max

Power Watt (U1)
Metal Can (H)

liJC
°C/W
8.0
30

liJA
°C/W
75
120

liJA
°C/W
80
185

PO(MAX)

liJC
°C/W
12
40

Mounting Hints
Metal Can Package (~A759HC/~A759HM)
The ~A759 in the 8-Pin TO-99 metal can package must
be used with a heat sink. With ± 15 V power supplies,
the ~A759 can dissipate up to 540 mW in its quiescent
(no load) state. This would result in a 100°C rise in
chip temperature to 125°C (assuming a 25°C ambient
temperature). In order to avoid this problem, it is
advisable to use either a slip on or stud mount heat
sink with this package. If a stud mount heat sink is
used, it may be necessary to use insulating washers
between the stud and the chassis because the case
of the ~A759 is internally connected to the negative
power supply terminal.

TJ(MAX) - TA
TJ(MAX) - TA
liJC + liCA
or
liJA

=

(Without a heat sink)
liCA = lics

+ liSA

Solving for TJ: TJ = TA + Po (liJC
(Without heat sink)
Where:

+ liCA) or TA + POliJA

Power Watt Package (~A759U1C)
The ~A759U1C is designed to be attached by the tab
to a heat sink. This heat sink can be either one of the
many heat sinks which are commercially available, a
piece of metal such as the equipment chassis, or a
suitable amount of copper foil as on a double sided PC
board. The important thing to remember is that the
negative power supply connection to the op amp must
be made through the tab. Furthermore, adequate heat
sinking must be provided to keep the chip temperature
below 125°C under worst case load and ambient
temperature conditions.

= Junction Temperature

TJ
TA
Po
liJA

= Ambient Temperature
= Power Dissipation

= Junction to ambient
thermal resistance

liJC

= Junction to case

liCA

= Case to ambient

liCS

= Case to heat sink
thermal resistance
= Heat sink to ambient

thermal resistance

thermal resistance

liSA

thermal resistance

Typical Performance Curves
Frequency Response at
Various Closed
Loop Gain Settings

. r--

Open Loop Gain and
Phase Response as a
Function of Frequency

100

80
70

100

'\

90

i:

~
..

0

'\

0

1'\
\

50
40

10 1

102

103

104

I\.
'\

0

105

FREQUENCY-Hz

lOS

100

60

"

103

104

105

FREQUENCY-Hz

4·85

106

•

f

0

5

15

\

I!:"

10

20

I')...

40

"\

102

..

40

I\.
10 1

:

BO

1\

-10

..

30

40

100

I\.
'\

10

107

PHA~-

'\.

\

0

"''\1\

10

100

./

0

Vs= ±15V
fA = 25°C
RL = son

160

I'\.
\

0

I"\.

~ 30
!i! ..

'\.

•

I 80

t - ,/~AIN

o '\

1\

'II ..

Output Voltage as a
Function of Frequency

107

10'

10"

10'
FREQUENCY-Hz

10'

10'

4

J.LA759
Typical Performance Curves (Cont.)
p.p Output Voltage as a
Function of
Load Resistance

30

~~ =

21S0C

10

I

II'

Vs
±15V
RL=50n

~; ~ ~O:¢F

V
10

I

- 4

I
I

I

TJ = 150"C

Ii

10

1000

20

30

40

Vs = :t15V
son
RL
20V p_p

1.0

10

I

f = 1 kHz

~~ ~! ~~~~~:g~8n)
=1

J,...

60

.02

04

en

-

L"oID6

1

II I
10'

1

00 01

02

16

n

32

n

05

FREQUENCY-Hz

Noise Current as a
Function of Frequency

08

1.0

1.2

Input Noise Voltage as a
Function of Frequency

/I

Vs
TA

=±

1S V
2S"C

I I

RL

=

06

I

1

V

103

RISeTIME 0.22 f,lS

TIME-f.ls

10

10'

0

Total Harmonic Distortion as a
Function of
Power Output

Av

Av-20D6

50

I
I

0

TIME-Ils

Total Harmonic Distortion as a
Function of Frequency

1

30

0

LOAD RESISTANCE-J!

10

\-\

40

--

-6

I
100

r.......

90%

--\.

I
II

-2

r

50

~

OUTPUT

INPUT/"

I

IJI

1

= SO!l

fA"" 25"C

RL

V

III
III'.

15

o

=

Vs = :t15V

V.

1\/

>0.. 20
_

Voltage Follower
Transient Response

Vs = ±15V

II

25

~

Voltage Follower
Large Signal
Pulse Response

0.1

/

02

05 1.0

2

5

10

POWER OUTPUT-W

FREQUENCY-Hz

Output Short Circuit
Current as a
Function of
Junction Temperature

Peak Output Current as a
Function of
Output Voltage

800
Power supply-single 36 V
Temperature T J '" 25" C

0

500

I"--... .........,
0
0

I"--... .........,

400

I"--...

.........

300

I"--...

.........

1.....-1-...

V
V

1/

./

7

200

100
100

-50
FREQUENCY· Hz

50

100

JUNCTION TEMPERATURE-C

4·86

150

12

18

24

OUTPUT VOLTAGE-V

30

p,A759
Paralleling #'A759 Power OP Amps

Offset Null Circuit

0.50

VOUT

v0.50

Audio Applications
Low Cost Phono Amplifier
C2
10 pF

•

R3
25 k

v+

R1

47 k

~

CRYSTAL
CARTRIDGE'T

~''J~
1
CONT

V-

CONTROL

-=

Speaker
Impedance
(ohms)

Output
Power
(watts)

Min
Supply
(volts)

VoutP-P

4
8
16
32

.18
.36
.72
1.44

9
12
15
25

2.4
4.8
9.6
19.2

(volts)

Headphone Amplifier
~------------'-----------V+

VIN

180pF
22 k

10 k

2.2 k

4·87
----

-

-~

.--~-

...

--~

p,A759
Bidirectional Intercom System Using the
Power OP Amp

~A759

+12 V

2k

+12 V

t-......_+,10JLF
BALANCE

25 k

16 !1

25 JLF

(

:~II

VOLUME

2.7 k

-12 V
(-

:-11

-

+12 V

10 JLF

25 k

TONE
CONTROL
(OPTIONAL)

-=-

1

BALANCE

16!1

25 JLF

VOLUME

2.7 k

-12 V

-=Features
•
•
•

Circuit Simplicity
1 Watt of Audio Output
Duplex operation with only one two-wire cable
as interconnect.

4·88

TONE
CONTROL
(OPTIONAL)

JLA759
AC Servo Amplifier - Bridge Type

High Slew Rate Power OP Amp/Audio Amp

C
30

5k

50 k

VIN --.;iI-.J\,fI~""'----'lM--.
+28 V

n
10 pF

5.1 k

10 k
+28 V --A.JI/'V"....,--t

VOUT

-::-

5k

PO(MAX) (8 11) ~ 18 W

5.1 k

+28 V
5k

o

2 PHASE

SERVOMOTOR

3011

-13 V

*0.47 p.F
10 k

Features
• High Slew Rate 9 V I /ls
• High 3 dB Power Bandwidth 85 kHz
• 18 Watts Output Power Into an 8 D Load.
• Low Distortion - .2%, 10 VRMS, 1 kHz Into 8 D

Features
• Gain of 10
• Use of /lA759 Means Simple inexpensive Circuit

Design Consideration
• Av 2:: 10

Design Considerations
• 325 rnA Max Output Current

Servo Applications
DC Servo Amplifiers
5k

50 k

1

SERVOMOTOR

Features
• Circuit Simplicity
• One Chip Means Excellent Reliability
Design Considerations
IOUT:S 325 mA

•

4·89
----.-~--

--

•

f.LA759
Regulator Applications
Adjustable Dual Tracking Regulator
+VIN
+7 V to +35 V

-*

GND

1 JLF

I

2 JLF

-VIN

+VOUT

< 2 k

COMMON
CONTROL
IN

----1

1 JLF

5.6
1%

125k

79MG

-7 VI0-35 V

5.6 k
1%

OUT

Features
• Wide Output Voltage Range (± 2.2 to ± 30 V)
• Excellent Load Regulation .iVOUT < ±5 mV for
.iIOUT = ± 0.2 A
• Excellent Line Regulation .iOUT < ± 2 mV for
.iVIN = 10 V

4-90

"

-VOUT

J.LA759
Regulator Applications (Con't)
10 Amp - 12 Volt Regulator
VIN

1~25V--~----~-------------'

R1

12
Q1

2N2907

l

Q2

2N6125

R2
2k

Q3

SE9300

I

I
L
Q4

2N2612

+

151'F
l@25V

R4

0.03

n

t------. Your
12 k

=

12V

R5
9.1 k

R6

3k

Features
• Excellent Load and Line Regulation
• Excellent Temperature Coefficient-Depends
Largely on Tempco of the Reference Zener

4·91
.~----.-.---~----~

•

~A771·~A772·~A774

FAIRCHILD

Operational
Amplifier Family

A Schlumberger Company

Linear Products

J.l.A772 Connection Diagram
S-Pin DIP

Description
These monolithic JFET Input Operational Amplifiers
incorporate well-matched ion-implanted JFETS on the
same chip with standard bipolar transistors. The key
features of these op amps are low input bias currents
in the sub nanoamp range plus high slew rate (13 V / J.l.s
typically) and wide bandwidth (3.0 MHz typically).
•
•
•
•

LOW INPUT BIAS CURRENT-200 pA
LOW INPUT OFFSET CURRENT-100 pA
HIGH SLEW RATE -13 V / J.l.S TYPICALLY
WIDE BANDWIDTH-3.0 MHz TYPICALLY

-INA

OUTB

+INA

-INB

y

+INB

J.l.A771 Connection Diagram
B-Pin DIP

(Top View)

OFFSET
NULL

NC

-IN

y+

+IN

OUT

Order Information
Type
Package
J.l.A772AM
Ceramic
J.l.A772BM
Ceramic
J.l.A772A
Ceramic
J.l.A772B
Ceramic
J.l.A772
Ceramic
J.l.A772 A
Molded
J.l.A772B
Molded
J.l.A772
Molded

OFFSET
NULL

y-

Code

6T
6T
6T
6T
6T
9T
9T
9T
6T
9T

Code

6T
6T
6T
6T
6T
9T
9T
9T

Part No.
J.l.A772ARM
J.l.A772BRM
J.l.A772ARC
J.l.A772BRC
J.l.A772RC
J.l.A772ATC
J.l.A772BTC
J.l.A772TC

J.l.A774 Connection Diagram
14-Pin DIP

(Top View)

Order Information
Type
Package
J.l.A771AM
Ceramic
IlA771BM
Ceramic
J.l.A771A
Ceramic
J.l.A771 B
Ceramic
J.l.A771
Ceramic
J.l.A 771 A
Molded
J.l.A771B
Mo~ed
J.l.A771
Molded
J.l.A771L
Ceramic
J.l.A 771 L
Molded

y+

OUTA

OUTA

Part No.
J.l.A771ARM
IlA771BRM
J.l.A771ARC
J.l.A771BRC
J.l.A771RC
J.l.A771ATC
J.l.A771BTC
J.l.A771TC
J.l.A771LRC
J.l.A771 LTC

-IN A
+IN A

V+
+IN B
-IN B
OUT B

(Top View)

Order Information
Type
Package
J.l.A774L
Ceramic
J.l.A 77 4L
Molded

4·92

Code
6A
9A

Part No.
J.l.A774LDC
J.l.A774LPC

J.LA771 • J.LA772 • J.LA774
Absolute Maximum Ratings
Supply Voltage
Internal Power Dissipation
(Note 1)
Ceramic DIP
Molded DIP Package
Differential Input Voltage
Input Voltage Range (Note 2)
Output Short-Circuit Duration
Storage Temperature Range
Ceramic
Molded

± 18 V

Operating Temperature Range
Commercial
~AF77XA,~AF77XB,
~AF77X, ~AF77XL

670 mW
310 mW
±30 V
± 16 V
continuous

O°C to +70°C

Military
~AF77XAM,~AF77XBM

Pin Temperature
Molded DIP (Soldering, 10 s)
Ceramic DIP (Soldering, 60 s)

-55°C to +125°C
260°C
300°C

-65°C to +150°C
-55°C to +125°C

Equivalent Circuit
.---------------~----------~~--------~--------------------~----~~--~-v+
R,
R2
R3
R4

•
NOTE
R17

NOTE
R18

~~~--~~_+~--~~--4-+_----4-~--~~------~----------------~-------4--~V-

OFFSET NULL

OFFSET NULL

NOTE

NOTE

Note
I'A771 only

Notes
1. Rating applies to ambIent temperatures up to 70 D e above
TA = 70 De 5.6 mW / De for the minI DIP and 8.3 mW / De for
the DIP

2 Unless otherwIse specIfIed the absolute maxImum negatIve
Input voltage IS equal to the negatIve power supply voltage.

4-93

p,A771 • p,A772 • p,A774
DC Electrical Characteristics-Commercial Grade Devices
Symbol

Characteristic

Condition

The Following Specifications Apply for Vs

Unit

= ± 15 V, TA = 25°C

= 10 kn
= 25°C
(Notes 3, 4)Tj = 25°C

Vos

Input Offset Voltage

(Note 3) RS

10.0

15.0

mV

lOS

Input Offset Current

(Notes 3, 4) Tj

100

100

pA

18

Input

RIN

Input Resistance

AVOL

Large Signal
Voltage Gain

Isc

Short Circuit Current

IS

Supply Current

Bi~s

Current

50

200

50

10 12
Vo

= ± 10 V

RL

= 2 kn

50

100

50

25
Per Amplifier

The Following Specifications Apply for Vs

200

pA

10 12

n

100

V/mV

25

mA

2.8

2.8

mA

13

20

mV

= ± 15 V, O°C :$ TA 70°C
= 10 kn

Vos

Input Offset Voltage

(Note 3)

~Vos/~T

Average TC of
Input Offset Voltage

Rs

los

Input Offset Current

(Notes 3,4)

4.0

18

Input Bias Current

(Notes 3,4)

8.0

AVOL

Large Signal
Voltage Gain

Vo

= ± 10 V,

Vo

Output Voltage Swing

RL
RL

= 10 kn
= 2 kn

VCM

Input Common Mode
Voltage Range

CMRR

Common Mode
Rejection Ratio

Rs

= 10 kn

70

70

dB

PSRR

Supply Voltage
Rejection Ratio

RS

= 10 kn

70

70

dB

IS

Supply Current

Per Amplifier

RS

= 10 kn

10

RL

= 2 kn

25

± 12
±10

±12
±10
+15
-12

± 11

3.0

Notes
3 YOS. Ie and lOS are measured at YCM = O.
4. The Input bIas currents are junctIon leakage currents whIch
approxImately double for every 10'C increase In the lunction
temperature. TJ Due to limIted productIon test tIme, the Input
bIas currents measured are correlated to JunctIon temperature.
In normal operatIon the JunctIon temperature roses above the
ambIent temperature as a result of Internal power dlssipatoon,

,

25

± 11

j.LV/oC

10
4.0

nA

8.0

nA

1,.,

V/mV
V
V

+15
-12

V

3.0

mA

Po TJ = TA = 8JA Po where 8JA is the thermal resistance from
JunctIon to ambIent. Use of a heat sInk IS recommended If Input
bIas current IS to be kept to a minImum.
5 Supply voltage rejectIon ratIo IS measured for both supply
magnItudes Increasing or decreaSIng sImultaneously In
accordance with common practice.

4-94

J,LA771 • J,LA772 • J,LA774
DC Electrical Characteristics-Commercial Grade Devices
Symbol

Characteristic

Condition

Unit

The Following Specifications Apply for Vs = ± 15 V, TA = 25°C

= 10 kfl
= 25°C
4) Tj = 25°C

Vas

Input Offset Voltage

(Note 3) RS

2.0

5.0

lOS

Input Offset Current

(Notes 3, 4) TJ

50

50

pA

IS

Input Bias Current

(Notes 3,

100

pA

RIN

Input Resistance

AVOL

Large Signal
Voltage Gain

ISC

Short Circuit Current

Is

Supply Current

50

100

50

10 12
Va

=±

10 V

RL

= 2 kfl

50

100

50

10 12

fl

100

V/mV

25

25
Per Amplifier

mV

rnA

2.8

2.8

rnA

4.0

7.0

mV

The Following Specifications Apply for Vs = ± 15 V, O°C S TA 70°C

= 10 kfl

Vas

Input Offset Voltage

(Note 3)

~VOS/~T

Average TC of
Input Offset Voltage

Rs

lOS

Input Offset Current

(Notes 3,4)

2.0

2.0

nA

IS

Input Bias Current

(Notes 3, 4)

4.0

4.0

nA

AVOL

Large Signal
Voltage Gain

Va

=±

Va

Output Voltage Swing

RL
RL

= 10 kfl
= 2 kfl

VCM

Input Common Mode
Voltage Range

CMRR

Common Mode
Rejection Ratio

RS

= 10 kfl

80

80

dB

PSRR

Supply Voltage
Rejection Ratio

Rs

= 10 kfl

80

80

dB

IS

Supply Current

Per Amplifier

RS

= 10 kfl

10 V,

10

RL

= 2 kfl

jlV 1°C

10

25

25

V/mV

±12
±10

± 12
±10

V
V

±11

+15
-12

±11

3.0

+15
-12

V

3.0

rnA

Notes

Po TJ ; T A ; IIJA Po where IIJA IS the thermal resistance from
Junction to ambient Use of a heat Sink IS recommended If Input
bias current IS to be kept to a minimum
5 Supply voltage rejection ratio IS measured for both supply
magnitudes increasing or decreaSing simultaneously In

3 VOS. IS and lOS are measured at VCM ; 0
4 The Input bias currents are Junction leakage currents which
approximately double for every 10'C Increase In the Junction
temperature. TJ Oue to limited production test time. the Input
bias currents measured are correlated to Junction temperature
In normal operation the Junction temperature rises above the

accordance With common practice

ambient temperature as a result of Internal power diSSipation.

4·95

•

JlA771 • JlA772 • JlA774
DC Electrical Characteristics-Military Grade Devices
Symbol

Characteristic

Unit

Condition

The Following Specifications Apply for Vs = ± 15 V, TA = 25°C
Vos

Input Offset Voltage

RS = 10 kQ

(Note 3)

5.0

2.0
50

mV

50

pA

100

pA

los

Input Offset Current

(Notes 3, 4) Tj = 25°C

Is

Input Bias Current

(Notes 3,4) TJ = 25°C

RIN

Input Resistance

AVOL

Large Signal
Voltage Gain

Vo = ± 10 V,

Vo

Output Voltage Swing

RL = 10 kQ
RL = 2 kQ

VCM

Input Common Mode
Voltage Range

CMRR

Common Mode
Rejection Ratio

RS = 10 kQ

80

80

dB

PSRR

Supply Voltage
Rejection Ratio

RS = 10 kQ

80

80

dB

Is

Supply Current

Per Amplifier

50

100

50

10 12
RL = 2 kQ

::s

Q

50

50

V/mV

±12
±10

± 12
±10

V
V

±11

The Following Specifications Apply for Vs = ± 15 V, -55°C

10 12

+15
-12

±11

+15
-12

V

2.8

2.8

mA

5.0

8.0

mV

TA 125°C

(Note 3)

Vos

Input Offset Voltage

RS = 10 kQ

~Vos/~T

Average TC of
Input Offset Voltage

RS = 10 kQ

los

Input

(Notes 3,4)

20

20

nA

Is

Input Bias:Current

(Notes 3,4)

50

50

nA

AVOL

Large Signal
Voltage Gain

Vo = ± 10 V

Vo

Output Voltage Swing

CMRR

Offs~t

Current

10

IlVo IC

10

25

25

V/mV

RL = 10 kQ
RL = 2 kQ

±12
±10

±12
±10

V
V

Common Mode
Rejection Ratio

RS = 10 kQ

80

80

dB

PSRR

Supply Voltage
Rejection Ratio

RS = 10 kQ

80

80

dB

IS

Supply Current

Per Amplifier

Commercial and Military
AC Electrical Characteristics

RL = 2 kQ

3.4

3.4

mA

V S = ± 15 V, TA = 25 ° C
All Grades

Symbol

Characteristic

Condition

Min

SR

Slew Rate

(Figure 1)

13

V / IlS

GBW

Gain Bandwidth
Product

(Figure 2)

3.0

MHz

en

Equivalent Input
Noise Voltage

RS = 100 Q, f = 1000 Hz

16

nV/VHz

in

Equivalent Input
Noise Current

f = 1000 Hz

0.01

pA/VHz

Notes on preceding page

4-96

Typ

Max

Unit

J.LA 771 • J.LA 772 • J.LA 77 4
Typical Performance Curves

Output Voltage Swing vs.
Load Resistance

Output Voltage Swing vs.
Supply Voltage

JO

Open Loop
Frequency Response

0

r,

140

I--

-15V
25°C

V,

I

/

120

V

allOO

g.-30

/

5

0

Z

"
~

045

'\~~r-

0

60

Z

40

w

"'~"

20

o
05

01

50

10

10

SUPPLY VOLTAGE -

OUTPUT lOA.D - !l

TA

lK

10K

lOOK

1M

10M

100M

FREQUENCY - Hz

•

Slew Rate vs.
Temperature
25
Vs

llil 1lv

r-Rl

100

V

II

28

10

20

Gain Bandwidth
Product vs.
Temperature

Maximum Undistorted
Output vs. Frequency

"

15

10

180

'\

020

o

-135

"

"-

./
0

"

'\0&"

~

0

090

"

~~

g

/

1/

80

~

G

/

11

~

0

V

20

10K

"-

25°C

~

5

" '-.
\

.....

t-- -......,

10K

~

"- t--

1

1M

lOOK

"

10

o
1K

!15V

5
75

10M

-50

FREQUENCY - Hz:

25

25

50

75

100

125

AMBIENT TEMPERATURE - 'C

Small Signal Pulse Response

75

50

25

25

50

75

100

125

AMBIENT TEMPERATURE -' C

Input Bias Current
vs. Temperature

Bias Current
Warm-up Change

0

r, I "ocl
0
~

50

E

Vs =1",,:lSV
1M

Vs -- 415V
R, ~ 20
Cl = lOOpl

f\ ......

I

90%f T

0

/

0

/

0

0

~

~

I

~

()

,

lO'1l

10K
1K

"iii

100

ir~

10

~

I

1

25

50

75

100

TIME - NS

125

150

~150~-+--+-~--~--~-+--+-~

/

V

o

RISETIME =60

0

/

~100K

-

/

./'

i-"""

-50

25

25

50

75

CASE TEMPERATURE _ °C

4 97
0

100

125
TIME AFTER POWER SUPPLY TURN-ON -

MINUTES

•

p,A771 • p,A772 • p,A774
Typical Performance Curves (Cont.)
Maximum Common Mode
Input Voltage vs.
Supply Voltage

.
g~
.

0

Ys=±15Y

15

C

.,Ji.t,.~

o

'"

~

>

;:

5

in

.. /

V
~

50r--r~--t--r-1--t--r-i

/

~~:7

10

~'IJ"

.

Supply Current vs.
Temperature

~o

/ /

A.,."'i

+0;~

20r--r-1--+--r-1--+--r-1
10r--r-1--+--r-1--+--r-1

/

~

0
10

..0

15

-so

-25

0

25

50

75

100

125

AMBIENT TEMPERATURE _ 0 c

SUPPLY VOLTAGE· =V

Test Circuit
Input Offset Voltage Null Circuit (JLA771 only)

vTypical Applications
Fig. 1. Unity Gain Amplifier

Fig. 2. Gain-of-10 Inverting Amplifier
10 kfl

4·98

JLA776
Multi-Purpose
Programmable Op Amp

FAIRCHIL.D
A Schlumberger Company

Linear Products
Description
The IlA776 Programmable Operational Amplifier is
constructed using the Fairchild Planar epitaxial
process. High input impedance, low supply currents,
and low input noise over a wide range of operating
supply voltages coupled with programmable electrical
characteristics result in an extremely versatile
amplifier for use in high accuracy, low power
consumption analog applications. Input noise voltage
and current, power consumption, and input current can
be optimized by a single resistor or current source
that sets the chip quiescent current for nano watt
power consumption or for characteristics similar to
the IlA741. Internal frequency compensation, absence
of latch-up, high slew rate and short circuit current
protection assure ease of use in long time integrators,
active filters, and sample and hold circuits.

Connection Diagram
S-Pin Metal Package
ISET

>-~OOUT

-IN

v(Top View)

Order Information
Type
Package
IlA776
Metal
IlA776C
Metal

• MICROPOWER CONSUMPTION
• ± 1.2 V to ± 1S V OPERATION
• NO FREQUENCY COMPENSATION REQUIRED
• LOW INPUT BIAS CURRENTS
• WIDE PROGRAMMING RANGE
• HIGH SLEW RATE
• LOW NOISE
• SHORT-CIRCUIT PROTECTION
• OFFSET NULL CAPABILITY
• NO LATCH-UP

Code
5W
5W

Part No.
IlA776HM
IlA776HC

Connection Diagram
S-Pin DIP
8

OFFSET
NULL

ISET

-IN

v+

+IN

OUT
OFFSET
NULL

v-

(Top View)

Order Information
Type
Package
IlA776C
Molded DIP

4·99

-----._-----

Code
9T

Part No.
IlA776TC

•

JlA776
Absolute Maximum Ratings
Supply Voltage
± 18 V
Internal Power
Dissipation (Note 1)
500 mW
Metal Package
310 mW
DIP
Differential Input Voltage ± 30 V
Input Voltage (Note 2)
± 15 V
Voltage Between Offset
Null and V±0.5 V
ISET (Maximum Current
at ISET)
500 IlA
VSET (Maximum Voltage
to Ground at ISET)
(V+ -2.0 V)

Storage Temperature
Metal Package
DIP
Operating Temperature
Military (IlA776)
Commercial (IlA 776C)
Pin Temperature
(Soldering)
Metal Package (60 s)
DIP(10s)
Output Short Circuit
Duration (Note 3)

:s

VSET

:s

-65°C to +150°C
-55°C to +125°C
-55°C to +125°C
O°C to +70°C

300°C
260°C
Indefinite

V+

Equivalent Circuit
ISET

.---------------~~----_.----~----~--~------._------------------~-------v+

R3
2 kn

INVERTING
INPUT

R4
50 II

Cl

R5
100 II
OUTPUT
R7
100 n

OFFSET
NULL

OFFSET
NULL

R6
100 II

RS
50 II
Q24

Rl

R2

10 kll

10 kll

~----~--------~----~~----~--~--------~~----------------~------V-

Notes
3. Short Circuit may be to ground or either supply. Rating applies
to +125°C case temperature or +75°C ambient temperature
for ISET :'5 30 !lA.

1. Ratmg applies to ambient temperatures up to 70°C. Above
70°C ambient derate linearly at 6.3 mW / °C for Metal Can.
8.3 mW / °C for the DIP, and 5.6 mW / °C for the Mmi DIP
2. For supply voltages less than ± 15 V, the absolute maximum
mput voltage is equal to the supply voltage.
4·100

JlA776
± 15 V Operation for IJ.A776
Electrical Characteristics TA = 25 ° C, unless otherwise specified.
ISET
Condition

= 1.51J.A

Min

Typ

'SET
Min

= 15IJ.A
Typ

Characteristic
Input Offset Voltage

Rs :::5 10 kll

2.0

Max
5.0

Input Offset Current

Rs :::5 10 kll

0.7

3.0

2.0

15

nA

2.0

7.5

15
5.0

50

nA

Input Bias Current
Input Resistance

50
2.0

Input Capacitance
Offset Voltage
Adjustment Range

9.0

Large Signal Voltage Gain

= ± 10 V
= ± 10 V

RL ;::: 75 kll, Your
RL ;::: 5 kll, Your

5.0 k
3.0

Supply Current

20

Power Consumption

Slew Rate
Output Voltage Swing

= 20 mV, RL ;::: 5 kll,
= 100 pF
± 12

Input Bias Current

Supply Voltage
Rejection Ratio
Large Signal Voltage Gain
Output Voltage Swing

18

mV
V/V

25

160

= +125°C
TA = -55°C
TA = +125°C
TA = -55°C

RL ;::: 75 kll, Your
RL;::: 75 kll

IJ.S
%

0.8

V/lJ.s
V

± 13

V

6.0

6.0

mV

15

nA

10

40

nA

7.5

50

nA

120

nA

±10

= ± 10 V

70

90
25

RS:::5 10 kll

150

V
90
25

dB
150

IJ.VIV

100 k

75 k

V/V

±10

±10

V

Supply Current

30

200

Power Consumption

0.9

6.0

4·101

IJ.A
mW

0.35
10

20

70

180

5.0

±10
RS :::510 kll

VIV
Il
mA
5.4

±10

TA

Input Voltage Range
Common Mode
Rejection Ratio

pF

± 14

RL ;::: 5 kll
The following specifications apply -55°C -< TA -< +125°C
Input Offset Voltage
RS :::5 10 kll

Input Offset Current

mil

100 k 400 k
1.0 k
12

1.6
0
0.1

RL ;::: 5 kll
RL;::: 75 kll

Unit
mV

2.0

0.75

Rise Time VIN
Overshoot CL

Max
5.0

200 k 400 k

Output Resistance
Output Short-Circuit Current

Transient
Response
(unity gain)

2.0

IJ.A
mW

•

JLA776
± 3 V Operation For p,A776
Electrical Characteristics TA = 25°C , unless otherwise specified
ISET

= 1.5 p,A

ISET

= 15 p,A

Min

Typ

Max

Unit

2.0

5.0

mV

3.0

2.0

15

nA

7.5

15

50

5.0

nA
Mg

2.0

pF

18

mV

Typ

Max

2.0

5.0

Input Offset Current

0.7

Input Bias Current

2.0

Input Resistance

50

Input Capacitance
Offset Voltage
Adjustment Range

2.0
9.0

Characteristic

Condition

Input Offset Voltage

Rs:5 10 kg

Large Signal Voltage Gain

Min

= ± 1V
=± 1V

RL ~ 75 kg, Your
RL

~

5 kg, Your

50 k

200 k

V/V
50 k

200 k

V/V
g

Output Resistance
Output Short-Circuit Current

5.0 k

Supply Current

13

20

130

160

p,A

Power Consumption

78

120

780

960

p,W

Transient
Response
(unity gain)

3.0

Rise Time VIN = 20 mV, RL
100 pF
Overshoot CL

Slew Rate

=

RL

~

~

5 kg,

5 kg

Input Bias Current

p,s

0.6

0

5

010

0.03

0.35

V/p,s

6.0

6.0

mV

15

nA

TA = -55°C

10

40

nA

TA = +125°C

7.5

50

nA

120

nA

TA

= +125°C
= -55°C

20
± 1.0

Common Mode
Rejection Ratio

Rs :510 kg

Supply Voltage
Rejection Ratio

Rs:5 10 kg

Output Voltage Swing

rnA

5.0

TA

Input Voltage Range

Large Signal Voltage Gain

5.0

3.0

The following specifications apply for -55°C --< TA --< +125°C
Rs:5 10 kg
Input Offset Voltage
Input Offset Current

1.0 k

70

± 1.0
86
25

=± 1V
= ± 1V

RL

~

75 kg, Your

RL
RL

~
~

5 kg, VOUT
75 kg

RL

~

5 kg

70
150

V
86
25

dB
150

25 k

p,VIV
VIV
VIV

25 k
±2.0 ±2.4

V
± 1.9 ±2.1

V
p,A

Supply Current

25

180

Power Consumption

150

1080 p,W

4-102

J.LA776
± 15 V Operation for J.LA 776C
Electrical Characteristics TA = 25 ° C, unless otherwise specified
ISET

= 1.5 J.LA

ISET = 15 J.LA

Typ

Max

Typ

Max

2.0

6.0

2.0

6.0

mV

0.7

6.0

2.0

25

nA

Input Bias Current

2.0

10

15

50

nA

Input Resistance

50

5.0

Mn

Input Capacitance

2.0

2.0

pF

Offset Voltage
Adjustment Range

9.0

18

mV

400 k

V/V
kn

Conditions

Characteristic
Input Offset Voltage

Min

Rs ::5 10 kn

Input Offset Current

Large Signal Voltage Gain

Your = ± 10 V
Your = ± 10 V

50 k

RL 2: 75 kn,
RL 2: 5 kn,

Min

VIV

400 k
50 k

Output Resistance

5.0

1.0

Output Short-Circuit Current

3.0

12

Supply Current

20

30

Power Consumption
Transient
Response
(unity gain)

=

VIN
20 mV, RL 2: 5 kn,
Overshoot CL ::5 100 pF

Slew Rate
Output Voltage Swing

RL ::5 5 kn
±12

RL 2: 75 kn

0.35
10

J.LS
%

0.1

0.8

V/J.Ls

± 14

V
±10

= +70°C
TA = O°C
TA = +70°C
TA = O°C
TA

Input Voltage Range
RS ::5 10 kn

Supply Voltage
Rejection Ratio

RS ::5 10 kn"

Large Signal Voltage Gain

RL 2: 75 kn,

Output Voltage Swing

RL 2: 75 kn

70

= ± 10 V

V

7.5

7.5

mV

25

nA

10

40

nA

10

50

nA

20

100

nA
V

±10
90
25

Your

±13

6.0

±10

Common Mode
Rejection Ratio

5.7

70
200

90
25

50 k

50 k

± 10

±10

dB
200

V

35

200

Power Consumption

1.05

6.0

4-103
--~

.. -

----~

.------

J.LVIV
VIV

Supply Current

..

J.LA
mW

1.6

RL 2: 5 kn

Input Bias Current

mA
190

0

The following specifications apply O°C -< TA -< +70°C
Input Offset Voltage
RS ::5 10 kn
Input Offset Current

160

0.9

Rise Time

Unit

J.LA
mW

•

JLA776
±3 V Operation For /LA776C
Electrical Characteristics TA = 25 ° C, unless otherwise specified
Characteristic

Condition

Input Offset Voltage

Rs ::5 10 kn

ISET = 1.5 /LA

ISET = 15 /LA

Min

Min

Typ

Max

Typ

Max

2.0

6.0

2.0

6.0

mV

0.7

6.0

2.0

25

nA

Input Bias Current

2.0

10

15

50

nA

Input Resistance

50

5.0

mn

Input Capacitance
Offset Voltage
Adjustment Range

2.0

2.0

pF

9.0

18

mV

Input Offset Current

Large Signal Voltage Gain

±1V

RL

~

75 kn, VOUT =

RL

~

5 kn, Your = ± 1 V

25 k

200 k

Unit

VIV
25 k

200 k

VIV
kn

Output Resistance

5.0

1.0

Output Short-Circuit Current

3.0

5.0

Supply Current

13

20

130

170

/LA

Power Consumption

78

120

780

1020

/LW

Transient
Response
(unity gain)

VIN = 20 mV, RL
Overshoot CL ::5 100 pF

Rise Time

Slew Rate

~

5 kn,

RL ::5 5 kn

3.0

0.6

0

5

/LS
%

0.03

0.35

V / /LS

The following specifications apply for O°C -< TA -< +70°C
Input Offset Voltage
RS ::5 10 kn
Input Offset Current
Input Bias Current

TA = +70°C

7.5

mV

6.0

25

nA

10

40

nA

TA = +70°C

10

50

nA

100

nA

TA = O°C

20
± 1.0

Common Mode
Rejection Ratio

Rs ::510 kn

Supply Voltage
Rejection Ratio

Rs ::5 10 kn

Output Voltage Swing

7.5

TA = O°C

Input Voltage Range

Large Signal Voltage Gain

mA

RL

~

70

75 kn, Your = ± 1 V

~

70

86
25

RL ~ 5 kn, Your = ± 1 V
RL ~ 75 kn
RL

± 1.0

200

V
86
25

dB
200

25 k

/LV IV
V/V

25 k

VIV

±2.0 ±2.4

V
±2.0 ±2.1

5 kn

V

Supply Current

25

180

Power Consumption

150

1080 /LW

4-104

/LA

JLA776
Typical Performance Curves for IJ.A776 and IJ.A776C
Input Bias Current as a
Function of
Set Current
10

Input Bias Current as a
Function of
Ambient Temperature
0

LIJJ5.J I III

o

"'30 V < Vs

<'

Input Offset Current as a
Function of
Ambient Temperature
5

+3~V~VS!:!:1Jy

+1' V

1.1

0

1/

"-

•

o1

001

01

10

o

-eo

100

w

"

i
...

~
o

~1 ~ 2;.C I I I I

';.

::!:30 V :S Ys :S 1:18 V

."

v!

I 400

=

g

0

140

-60

~

r-....

i',

...0

~
i!!

......

!

w

0

./

-10 0

"~ -200 _/"

~

%

}'0v l,_

'"

20

100

60

140

Input Noise Voltage as a
Function of
Set Current

£

~

10-".~9
TA
25°C
+30 Y:S Ys < +18 Y
f
1 kHz
.lot
1 Hz

10-13

I

."
.
W

V

100

-20

-

TEMPERATURE _ °C

V

200

-

I"....!.,LJ5'A- r-

- -

ISET '" 15,u.A

!:; 300

~ -300

"h..

,-

100

000

w

I""'-

~ -100
i!!

!:;

10-14

0

>

V

w

10-15

:>

g
z

i

10- 1 6

%

(J

0_ 30

5

10
ISET -

10-1

.

'!'(ISE)·

~

1S IlA)

W

o"'z

.

~ 10-1 6

:>

g

" '-

.........

c:

'"
...I

z

:>

~

!!!

z

0

10-25 ~

-

0

10-1

,
10

100

10 k

1 k

FREQUENCY -

Hz

10-17

00.

10-27

100 k

IJA

100

\.

w

0

z

:>

~

100

10
SET CURRENT -

Optimum Source Resistor for
Minimum Noise as a
Function of Set Current

"

z

w

-

01
ISET -

(J

0

I

15 lolA)

140

.iii
...
"" 25°C
. ,..::l 10-291-H-f+-++H+4TA
if
~;E~~~~~!E+3~oivll<~v~s~<~+~,,~v:,t
c:

In2(ISET '" 15 ,u.A)

In2(ISEl

100

£
. .
.15
\:

I I I

z

,.

::l

60

.,

151,AI±:::

e~21ISE! I

g

20

Input Noise Current as a
Function of Set Current

TA '" 25°C

5

-20

TEMPERATURE _ °C

IJ.A

1+3olv ,J,,±\.v

w

"~ 10-1

0

-eo

100

SET CURRENT -

Input Noise Voltage and
Current as a
Function of Frequency
£

eo

20

NSET"'5/J.A

2

15ET=15.u.6:_

-20

I"

C-

Change in Input Offset
Voltage as a Function of
Ambient Temperature (Unnulled)

300
10 0

-

15 jJ.A

TEMPERATURE _ °C

Change in Input Offset
Voltage as a Function of
Set Current
500

=

"- I'

--

ISET - SEY CURRENT - J.l.A

';.

IseT

l'o..

/

\

3

"-

V

,

'310vlvs~ "lv

4\

4 ......

~

1

0

z

.lot
1 Hz
11kHz

10-30

001

01

ISET -

10

SET CURRENT -

4-105

jl.A

100

o1

001

10

01
ISET -

SET CURRENT -

jl.A

100

•

JLA776
Typical Performance Curves for p.A776 and p.A776C (Cont.)
Output Voltage Swing as a
Function of
Load Resistance

..
.
"

""

11

0

K. ""
'Yj i '5t

~

Ys=±15Y

I-

~

~

UL.!.v

6
"Irc
~

~

I-

1S "A S ISET S 151lA

•••

....

1111

•••

lOAD RESISTANCE -

o"

1111
'M

~
~

.... •

~

~

9 200 .i.--'
I-"'
z

r,OD •

~~5=1'7~ ~!~SET:S; 15 ,uA~

~.

.

,ai-""

2

.V

:0;.00

b

ISET '" 1 5 j.lA

!

~

±9

_12
+

_15
+

:c

"~

Rl == 5 kll "",

" ....

........

".,.

2.

2•

12M

15ET"'15",,- ~ ~
RL=75kfl

•o.

_18
+

••

ISET -

SET CURRENT -

600

±3Q v:s Vs:S 18 Y
TA = 25°C

400
2••

..

'00

•••

'1'
....
•
•..
-

ISET -; 15 "A

Vs

+15 V

Vs

±30 V-I--

•

•

~=±A ~ ~ Il-

..... .....

Rl=75kn

2.

-2D

100

80

~ BOO

~

~800
>

r-r-r-+-+-+-+-1-1--r~

i .. I-+-~-+~t-+-~-+~-~

. ~~~:;~~f:~v~s;-;±~. ~~;;;~~
ISET '" 15 pA

.1

Vs

±3.0 v

~~.~~-2O~~~2D~~~..~~~
...
~~
...
TEMPERATURE _ °C

V

Iii

/

~

•••••

~
~

"~
IseT -

••
SET CURRENT -

4-106

/J.A

~.c '2~.C

1

~

•

40

~

••

/

I

•
-20

-

Ys=±15V

..1·',-..

InltialOllyt

Vt"i

(J

'00

•••
J.tA

-- --

~200

•

SET CURRENT -

Thermal Response of Input Offset
Voltage to Step
Change of
Case Temperature

+18 Y

10

••
ISET -

.20 -

-""""

•••

140

Standby Supply Current as a
Function of
Set Current
<

~ f-of-

•

TEMPERATURE _ °C

.... F~;O :5;~s

.00
p.A

Power Supply Rejection
Ratio as a Function of
Set Current

,

RL=Sr n I

1M

.9g ... •
z
~
o

Supply Current as a
Function of
Ambient Temperature
... r-.,.-,......,.-,-,-,......,.-,-r-,
1 _

CIlI

•

V

~ET=15I'A'

~

TEMPERATURE _ °C

B

1/

Vs = ±15 Y

_~SET == 15 p.A

i-'
v/ ./
Vs-±30V

•

'4M

•

~

10

Z

:!:6

Vs - ±15

~

RL '" 5 kU

~
_3
+

I I

1 M

~

V

~~

8

g

V

Open Loop Voltage Gain as a
Function of
Ambient Temperature

z

o

....

=T~ ~ J~·c

~
I

W

SUPPLY VOLTAGE -

•

~400

4

RL "" 5 kfl

Ys=±30V

••• •
500

•

ISET =-',5 J.lA

n

Open Loop Voltage Gain as a
Function of
Ambient Temperature

z

•• M

TA '" 25°C

! 2•
•
~"

1.1

.2

:l"

>
I

ISET = 15 JJA

V

Gain-Bandwidth Product as a
Function of
Set Current

2

I"'" -+-T"
Vs "" ±15 Y

i

."i

,.·c ......

TA

>
I

Output Voltage Swing as a
Function of
Supply Voltage

2.

4.

<

TIME FROM HEAT APPLICATION -

•

,."A776
Typical Performance Curves for /lA776 and /lA776C (Cont.)
Stabilization Time of Input
Offset Voltage From
Power On

Input Offset Voltage
Drift as a
Function of Time

':.

.~

..
"

~ 100

I

!:;

0

~

1/

-10

I;;
~

l';

-20

.
..
".
!!;
!!;

z

J:

=

~'1 ~_

0

TA = 12S"C

8

I'll

0
1
Ys

>

J

...::>

Js

o

V
1/

>

Slew Rate as a
Function of
Set Current

5

60

It
o
~

40

/

V

IV

1

VS - ±3.0

!!;

-30

/

..

TA = 25°C

"~

Vs=±15V
-40

InTal

0

-1

0

1

2

3

I"·et\ YO'i l' 0('V
ge

4

5

6

7

20

I

9

0
200

TIME FROM POWER APPLICATION - MIN

400
TIME -

Set Current as a
Function of
Set Resistor

600

800

1000

0001
001

V

HRS

v+

ISET
10 M

......

.>

1 M

100 k

II

10

k

" ....

Vs = ±3 yt-

l!"

10 Y_

-II ir" 'f

GjD

10

100

10

± 1.5 V

1.7 MO

170 kO

±3.0V

3.6MO

360 kO

V+ -0.7
ISET = RSET

±6.0V

7.5 MO

750 kO

where RSET is connected to ground.

± 15 V

20MO

2.0 MO

Note
The /lA776 may be operated with RSET
connected to ground or V-

.
I

32

"~

24

...>::>

11

0

V""-

40

I!:::>
0

Ys=±15Y
ISET = 15 Jl.A
= 5 kn
CL = 100 pF

I

'k

I
I
I
I

I--

-I
15
TIME -

v-

15/lA

.6

E

ISET =

-0.7 RSET

1.5/lA

Voltage Follower Transient
Response (Unity Gain)
41

p.A

Vs

ISET -p.A

>

100

10
SET CURRENT -

ISET Equations

100 M

Vs - +15 Y

01
ISET -

Quiescent Current Setting Resistor
(ISET to V-)

....

V

1/

00 1

v

II

J:

o

8

.c.

+15 Y

TREND LINE

25

JI.'

4·107

where RSET

IS

connected to V-

•

JLA776
Biasing Circuits

Voltage Offset Null Circuit

Resistor Biasing

>---6
3

100 k!l
~·-_-v-

2

Your

RSET

FET Current Source Biasing
v-

"::"

2
6
3

RSET Connected to Ground

v+

1----vG

Your

v-

3
RSEr

Transient Response
Test Circuit

vRSET Connected to Vo Recommended for supply voltages less than ± 6 V.

>-....- _ - - - Your

Transistor Current Source Blasing
RL

2
6

3

v-

r---vs

v-

4-108

J.LA791

FAIRCHILD

Power
Operational Amplifier

A Schlumberger Company

Linear Products
Connection Diagram
10-Pin Metal Package

Description
The IlA791 is a High Performance Monolithic
Operational Amplifier constructed using the Fairchild
Planar Epitaxial process with input characteristics
similar to the IlA 741 operational amplifier and 1A
available output current. It is intended for use in a wide
variety of applications including audio amplifiers,
servo amplifiers, and power supplies. The high gain
and high output power capability provide superior
performance wherever an operational amplifier I power
booster combination is required. The IlA791 is
thermal-overload and short-circuit protected.

v(SHORTED
TO CASE)

-IN

"""-Ir-"""",J +IN

v+
CURRENT SENSE

•
•
•
•
•

CURRENT OUTPUT TO 1 A
SHORT-CIRCUIT PROTECTION
OFFSET VOLTAGE NULL CAPABILITY
NO LATCH UP
LARGE COMMON MODE AND DIFFERENTIAL
MODE RANGES
• THERMAL-OVERLOAD PROTECTION

(Top View)

Order Information
Type
Package
IlA791C
Metal
IlA 791
Metal

Code
5H
5H

Part No.
IlA791KC
IlA791KM

Equivalent Circuit
V

COMPENSATION

2

4

08

R13

NON-INVERTING
INPUT

CURRENT
SENSE

R5

t--------t-- 3

R7

5 pF

r~----i OUTPUT

THERMAL
SHUTDOWN

03~--~E-------~

1
R9

R10

D2

~--.,.....--+---~-'i::'013

06

Q7

OFFSET
ADJUST

8
R12
Rl

R2

R3

R4

R6

,.

v-

COMPENSATION

Note
Pin connections shown are for metal can.
4·109

J.LA791
Absolute Maximum Ratings
Supply Voltage
Military (j.lA791)
Commercial (j.lA791C)
Peak Output Current
Continuous Internal Power
Dissipation (Total Package)
(Note 1)
Peak Internal Power Dissipation
(Per Output Transistor for
t :$ 5 s, Note 2)
Differential Input Voltage
Input Voltage (Note 3)
Voltages between offset
Null and VOperating Junction Temperature
Military (j.lA791)
Commercial (j.lA791C)
Storage Temperature
Metal Package
Pin Temperature
Metal Package (Soldering,
60 s max.)

j.lA791 and j.lA791C
Electrical CharacteristiCs

Vs

±22 V
± 18 V
1.25 A
.Internally Limited
Notes
1 Thermal resistance of the packages (without a heat sink)

15 W
±30 V
± 15 V

Package

±0.5 V
-55°C to +150°C
O°C to +125°C

Junction
to Case
Typ
Max

TO·3

4

280°C

Output Short Circuit Current

40

°CtW

= ± 15 V, TJ = 25°C unless otherwise specified
j.lA791

Output Voltage Swing

35

Unit

2. Under short circuit conditions, the safe operating area and dc
power dissIpation limitations must be observed.
3. For supply voltages less than ± 15 V, the absolute maxImum
input voltage is equal to the supply voltage.

-65°C to +150°C

Characteristic
Condition
Input Offset Voltage
Rs:$ 10 kO
Input Offset Current
Input Bias Current
Input Resistance
Offset Voltage
Adjustment Range
Input Voltage Range
Common Mode
Rejection Ratio
Power Supply Rejection Ratio
Large Signal Voltage Gain

6

Junction
to Ambient
Typ
Max

=
=
=
=
=

Min

Typ

0.3

1.0
20
80
2.0

Max
5.0
200
500

j.lA791C
Typ
Min
2.0
20
80
0.3
1.0

± 15
± 12

±13

± 12

70

=
=

Supply Current (Zero Signal)

50k
50 k
± 12
±10

mV

± 13

V
dB
150

j.lVtV

30

VIV
VIV
V
V
mA
mA
mA

20 k
20 k
± 11.5 ±14
±10 ± 12.2
1000
500
25

4·110

MO

70

±14
± 12.2
1000
500

Units
mV
nA
nA

± 15

150

=
=

AL
1 kO, VOUT
± 10 V
RL
100, VOUT
± 10 V
Rse 0, RL
1 kO
10 0
Rse 0, RL
Ase 0.7 0
Rse = 1.50

Max
6.0
200
500

JLA791
IlA791 and IlA791C
Electrical Characteristics (Cont.)
The following specifications apply for -55°C :5 TJ :5 150°C
IlA791
Typ
Min

Characteristic
Condition
Input Offset Voltage
Rs:5 10 kn
Input Offset Current
Input Bias Current
Common Mode
Rejection Ratio
Power Supply Rejection Ratio

70

Output Voltage Swing

Max
7.5
300
800

Units
mV
nA
nA

70

dB

150

150

IlV/V
VIV
VIV
V
V
mA

15 k
15 k
±10
±10

25 k
25 k
±10
±10

RL = 1 kn, VOUT = ± 10 V
RL = 10 kn, VOUT = ± 10 V
Rsc= 0, RL = 1 kn
RSC = 0, RL = 10 kn

Large Signal Voltage Gain

}lA791C
Typ
Min

Max
6
500
1.5

Supply Current (Zero Signal)

30

30

•

Typical Performance Curvea for
IlA791 and IlA791C
Input Blaa Current aa a
Function of
Junction Temperature
3.0

150

V=~15V

:\

v=

...

~ 100
a:

--

"

0

20
TJ -

20

~

~

60

100

o
140

180

--80

\

!;

-20

20

&0

100

I
~ 25

140

180

!-IV

1I
II

o"
f-

I/.

lour.:: 0

~ 50

"-............
TJ -

Voltage Gain aa a
Function of
Power Supply Voltage

:3a:

\.

50

JUNCTION TEMPERATURE _ °C

I

I

!!! 75

~

r--

•

;!

!;

.........

12

~15 v

1\

t;

\

0

Output Realatance aa a
Function of
Frequency (Open Loop)

1100

i:l

\.

0

50
60

Input Offaet Current aa a
Function of
Junction Temperature

lOUT::' 0

II

•

100

1 k

10 k

100 k

FREQUENCY -

JUNCTION TEMPERATURE _ °C

Power Supply Rejection Ratio aa a
Function of Frequency

75

TJ '"

.0

~5~C

TJ:

.

80

. / ~.oc

~V

r-.
10-1

,,/ V

40

15

20

POWER SUPPLY VOLTAGE -

25
±V

30

1.

=

TJ

+\~Iv
25"C

I

,

"

2'

10

vi

10-1

60

!~oc

II

V ~ ~15 Y
T, = 25°C

t--

10 M

Input Nolae Voltage aa a
Function of Frequency
10-1 3

100

1 M
Hz

10-' 6
100

1 k

10 k

FREQUENCY -

4-111

Hz

100 k

1 M

1.

..

,

I

1. k

1 k

FREQUENCV -

Hz

100 k

J.tA791
Typical Performance Curves for
#A791 and #A791C (Cont.)
Total Noise (20 Hz-20 kHz) as a
Function of
Junction Temperature

Input Noise Current as a
Function of Frequency

,

10 ,

100 kll

25°C

V

0

"15 V

3

r=: G11N

I

.". ",A791

2D Hz -

10

20 kHz

R,
R,
R,

GAIN - 1000

GAIN - 100
GAIN
10

GAIN -

100 Jl
1k!1
10 kJl

~oo

10

100

10 k

1k
FReQUENCY -

100 k

-20

Hz

TJ -

g
100

o

75

il
5

"

'I I
V

td < 20

w

~ 75

/ I

~

g
...~

II

I

I

:3

o

r-

/

-15

-os

-10

lOUT -

I

...

1000

05

ii

s

"'- ...........

0

as
Rsc -

A

Power Bandwidth as a
Function of
Closed Loop Gain

10

15

100
V

~ 25 0

co

o

30

·50

(1

~
z

10

25

CLOSED LOOP GAIN

100

130 Jl

C--

I -- r-=:
75

100

125

°C

I--

~

"~ 40

CLOSED LOOP GAIN

100

RL = 110 TJ = 25°C

I,

5 pF

~

~

10

tl

UI =1":5 I

Cc

> 60

4-112

1'57- C--

Cc - 0

.... I--

o

V

1

10

50

III
III

0

~100

~

•

Rse

~ I-

JUNCTION TEMPERATURE -

z

,/

V

--

--

-

~ !I

160

w

•L

~ ........
I

-25

,.

"~ 80

:l

1500

-.::mA

- r

Rse.

TJ -

~

Q

-t 10

1250

Voltage Gain as a
Function of Open Loop
Frequency Response

2S C

/'

~

--~

--

112<1

:I: 100 k

~

o

TJ -2SoC-

=

"I

ffi

r--....

v; ";5V_

v', ' 11!"II

RL
TJ

1000

--

~

25

750

r---

i:i

Slew Rate as a
Function of
Closed Loop Gain

1 M

500

--

-

750

~ 500

20

J1

...........

:;

CURRENT SENSE RESISTOR -

-1'5

OUTPUT CURRENT -

['---.

...

25 0

10

OUTPUT CURRENT -

~a

\

75 0

~

o
20

<

250

I 1000

(j 500

/
Vto

"E

~
:;
~

I
IV

de

1-75

1250

:3

Rsc"'30U

Short Circuit Current as a
Function of
Case Temperature

~125 0

~

o

lOUT -

...

de

v

-Rsc

140

1500

>
I

1~15

Rsc-062n

25

100

60

..-

I-

I

20

r-- r--

JUNCTION TEMPERATURE _ °C

Short Circuit Current as a
Function of
Current Sense Resistor. RsC

Output Safe Operating
Area per Output Transistor

--...JVVv-.....--VOUT

Notes
3.0 V to 27 V regulator
500 rnA output current

DC Servo Amplifier
5 k

50 k

10 pF

r

+15 V
3.911

SIZE 8 OR 9 12 Vdc
SERVOMOTOR

AC Servo Amplifier Bridge Type
5 k

VIN

50 k

0--1 t--'V'I'v---...,...---.JV'.I'v-----,

10 k
+28 V --.....,..,.,.--.....-------1

5 k

o

SERVOMOTOR

1.5 II

10 k

4·114

JlA798
Dual Operational
Amplifier

FAIRCHIL.D
A Schlumberger Company

Linear Products
Connection Diagram
8-Pln Mini DIP

Description
The /LA798 is a monolithic pair of independent, high
gain, internally frequency compensated operational
amplifiers designed to operate from a single power
supply or dual power supplies over a wide range of
voltages. The common mode input range includes the
negative supply, thereby eliminating the necessity for
external biasing components in many applications.
The output voltage range also includes the negative
power supply voltage. They are constructed using the
Fairchild Planar epitaxial process.
•
•
•
•
•
•
•
•
•
•

v+

OUT A

INPUT COMMON MODE VOLTAGE RANGE
INCLUDES GROUND OR NEGATIVE SUPPLY
OUTPUT VOLTAGE CAN SWING NEAR GROUND
OR NEGATIVE SUPPLY
INTERNALLY COMPENSATED
WIDE POWER SUPPLY RANGE SINGLE SUPPLY
OF 3.0 TO 36 V
DUAL SUPPLY OF ± 1.5 V TO ± 18 V
CLASS AB OUTPUT STAGE FOR MINIMAL
CROSSOVER DISTORTION
SHORT CIRCUIT PROTECTED OUTPUT
HIGH OPEN LOOP GAIN 200 k
EXCEEDS 1458 TYPE PERFORMANCE
OPERATION SPECIFIED AT ± 15 V AND +5 V
POWER SUPPLIES
HIGH OUTPUT CURRENT SINK CAPABILITY
0.8 mA AT VOUT = 400 mV

-IN A

OUT B

+IN A

-IN B

v-

+IN B

(Top View)

Order Information
Type
Package
/LA798C
Molded DIP

Part No.
/LA798TC

Code
9T

Equivalent Circuit (1/2 of circuit shown)
V+~--------------

__

~

______________________

~

______

~

______

~

________- ,

R1
1 k

INVERTING
INPUT
2 (6)

V_~4~__~____~____~____~~+-

____

~~

__________ ______ __ ____ __ __

3 (5)
NON-INVERTING INPUT

4·115

~

~

~

~

~

~

•

J.LA798
Absolute Maximum Ratings
Supply Voltage Between
V+ and V36 V
Differential Input Voltage (Note 1) ±30 V
-0.3 V (V-) to V+
Input Voltage (V-) (Note 1)
310 mW
Internal Power Dissipation
(Note 2)
Operating Temperature Range
Commercial (C)
O°C to +70°C
Storage Temperature Range
-55°C to +125°C
260°C
Pin Temperature
(Note 5)
(Soldering, 10 s)
Output Short Circuit Duration

Notes
1. For supply voltage less than 30 V between V+ and V-. the
absolute maximum input voltage is equal to the supply voltage.
2. Rating applies to ambient temperature up to 70 oe. Above
TA = 70 oe, derate linearly 5.6 mw/oe for the Molded DIP.
3. Not to exceed maximum package power dissipation.

4. Output wIll swing to ground.
5. Indefinite on shorts to ground or V- supply. Shorts to V+
supply may result in power dissipation exceeding the absolute
maximum rating.

4-116

p,A798
~A798C

Electrical Character/stlcs

Vs = ± 15, V, TA = 25°C unless otherwise noted.

Typ

Max

Input Offset Voltage

2.0

6.0

mV

Input Offset Current

10

50

nA

-50

-250

nA

Characteristic

Min

Condition

Input Bias Current
Input Impedance

f = 20 Hz

Input Common Mode Voltage Range

Unit

0.3

1.0

MQ

+13
to
-VS

+13.5
to
-Vs

V

Common Mode Rejection Ratio

RS:$ 10 kQ

70

90

dB

Large Signal Open Loop
Voltage Gain

VOUT = ± 10 V, RL = 2 kQ

20

200

V/mV

Power Bandwidth

Ay = 1, RL = 2 kQ, VOUT = 20 V pk-pk

9.0

kHz

Small Signal Bandwidth

Ay = 1, RL = 10 kQ, VOUT = 50 mV

1.0

MHz

Slew Rate

Ay= 1,VIN=-10Vto+l0V

0.6

V/~s

Rise Time

Ay = 1, RL = 10 kQ, VOUT = 50 mV

0.3

~s

Fall Time

Ay = 1, RL = 10 kQ, VOUT = 50 mV

0.3

~s

Overshoot

Ay= 1,RL= 10kQ,VOUT=50mV

20

%

Phase Margin

Ay = 1, RL = 2 kQ, CL = 200 pF

60

Degree

Crossover Distortion

VIN = 30 mV pk-pk, VOUT = 2 V pk-pk
f = 10 kHz

0.1

%

Output Voltage Range

RL = 10 kQ
RL = 2 kQ

± 13
± 12

±14
± 13.5

V
V

Individual Output Short Circuit Current (Notes 3,4)

±10

±30

mA
Q

Output Impedance

f = 20 Hz

800

Power Supply Rejection Ratio

Positive
Negative

30
30

150
150

~V!V
~V!V

Power Supply Current

VOUT = 0, RL =

2.0

4.0

mA

Channel Separation

f = 1 kHz to 20 kHz (Input Referenced)

00

-120

dB

The following specifications apply for O°C :$ TA:$ 70°C
7.5

Input Offset Voltage
Average Temperature Coefficient of
Input Offset Voltage

~V/oC

10

Input Offset Current

200

Average Temperature Coefficient of
Input Offset Current

nA
pA/oC

50
-400

Input Bias Current

mV

nA

Large Signal Open Loop
Voltage Gain

RL = 2 kQ, VOUT = ± 10 V

15

V/mV

Output Voltage Range

RL = 2 kQ

±10

V

Notes
3. Not to exceed maximum package power dissipation.
4. Indefinite on shorts to ground or V- supply. Shorts to V+
supply may result In power dissipation exceeding the absolute
maximum rating.
4-117

•

f.LA798
Vs = ±5.0 V and Ground, TA = 25°C unless otherwise noted.

Electrical Characteristics

Typ

Max

Unit

Input Offset Voltage

2.0

7.5

mV

Input Offset Current

10

50

nA

Input Bias Current

-80

-250

nA

Characteristic

Condition

Large Signal Open Loop
Voltage Gain

Min

RL

= 2 kQ

20

RL

= 10 kQ
= 10 kQ, 5.0 V :::; Vs :::;

4.0
(V+)
-1.5

V/rnV

200
150

Power Supply Rejection Ratio
Output Voltage Range (Note 5)

RL

Output Sink Current

= 1.0 V,

VIN

VOUT

30 V

= 200 rnV

J.LV/V
V pk-pk
V pk-pk

0.35

Power Supply Current

rnA
2.0

4.0

rnA

Note
5. Output will swing to ground.

Typical Performance Curves

Sinewave Response
Av

'\

~

/\

"

=

f

w
CJ

I.
\,

~
g

.ir
!5

.--...

--..;

'"' '"'

T,le I,J.~

'5

VS

;- 20

~

~

30
100

.1

J V

Large Signal Open Loop
Voltage Gain as a
Function of Frequency

Output Voltage as a
Function of Frequency

15

10

50

-5 0
10k
50 j.ts/DIV

"
"-

-

100 k

10k
FREQUENCY -

Output Swing as a
Function of
Supply Voltage

Vs
TA

"t15 V

100

RL -" 10 k!l

o

.--...

=c

10M

T,I =

,J.e

100

0

75

0

50

10

10

100

10k

J,

= 1±15

10 k

100 k

10M

Hz

Input Bias Current as a
Function of
Supply Voltage

Input Bias Current as a
Function of Temperature

0

-20 UJ.ll.J-LllLl,J..l.lL.1..llILL,-LllLL.illLJ
FREQUENCY -

Hz

'15 V
25°C

f+1+Io.t-+l4HI+l-fHI+l++-+-ttfH-+t1+---1

~_

50ttti:1:ttti:jj

0

/

V

F-

V

I"-

.0 1-+--+--l--l--+~I-l--+--I---1

'5

/
o '
o 2.0

40 60

80 10

12

14

"

18

V+ AND V- POWER SUPPLY VOLTAGES -

20
V

0
-75 -55 -35 -15 5.0

25

45

TEMPERATURE -

4-118

65
Q

C

85 105 125

30 0L-,:1:.0,.-1''''0"",.LO-o,:L.0-+
1O-""1L, -,:L.-,L16,---J'.~20
V+ AND V- POWER SUPPLY VOLTAGES -

V

IlA798
Wein Bridge Oscillator

Typical Applications

50 k

Multiple Feedback Bandpass Filter

r----~~~---~-VOUT

10 k

1

+

1'0

VREF

VREF

=-

2

-=- R

V+

c

"F
R

j.

fa = center frequency
j.

BW = Bandwidth
Rink!!

C

In

fa

=

211'RC

"F

fa
0= BW

<

10

High Impedance Differential Amplifier

o

Cl

= C2 ="3

Rl
R3

= R2 = 1
= 90 2

- 1

R6

}

VI

Use scaling factors in these expressions.

R2

>---VOUT

If source Impedance IS high or varies, filter may be preceded
with voltage follower buffer to stabilize filter parameters

Rl

Design example:
given: 0
5, fa
1 kHz
Let Rl = R2 = 10 k!!
then R3 = 9(5)2 - 10
R3 = 215 k!!
5
C
'3 1.6 nF

=

=

=

R3
R4

=

R5

Comparator With Hysteresis
V2

R2

R7

Rl

VREF

V,N

-.1\11"""---1

-------1

V_ou-l,o"li·l

>_.....

VOL
V,NL

I

Your
R2
R5

V,NH

VREF

Rl
VINH = Rl + R2 (VOH - VREF) + VREF

Gain

Rl
H = Rl + R2 (VOH VOL)

=

Rl + R2
4CRfR 1 if R3 =

= C (1 + a +b)(V2 -VI)
R6

== R7 for best CMRR

Rl = R4
R2 = R5

Rl
VINL = Rl + R2 (VOL - VREF) + VREF

f

•

=

for fa
1 kHz
R = 16 k!!
C = 0.01 "F

R2Rl

Fi2+"R1

4·119

=

R6
2Rl
R2 (1 + AS)

= C (1

+ a + b)

..-_ _..AyI\A___- ___-SQUARE
OUTPUT

Rt
L---4--VREF

4-120

WAVE

,uA 101 • ,uA201
General Purpose
Operational Amplifiers

I=AIRCHILO
A Schlumberger Company

Linear Products

Connection Diagram
a-Pin Metal Package

Description
The J.l.A 1Oland J.l.A20 1 are General Purpose Monolithic
Operational Amplifiers constructed using the
Fairchild Planar epitaxial process. They are intended
for a wide range of analog applications where tailoring
of frequency characteristics is desirable. The J.l.A 101
and J.l.A20 1 compensate easily with a single external
component. High common mode voltage range and
absence of "latch-up" make the J.l.A 101 and J.l.A201
ideal for use as voltage followers. The high gain and
wide range of operating voltages provide superior
performance in integrator, summing amplifier, and
general feedback applications. The J.l.A 101 and J.l.A201
are short-circuit protected and have the same
pin configuration as the popular J.l.A741 , J.l.A748
and J.l.A709.

>---'-C~ OUT

-IN

v(Top View)
Pm 4 connected to case

•
•
•
•
•

SHORT-CIRCUIT PROTECTION
OFFSET VOLTAGE NULL CAPABILITY
LARGE COMMON-MODE AND DIFFERENTIAL
VOLTAGE RANGES
LOW POWER CONSUMPTION
NO LATCH-UP

Order Information
Type
Package
J.l.A101
Metal
J.l.A201
Metal

Code
5W
5W

Part No.
J.l.A 101HM
J.l.A201HC

Equivalent Circuit
COMP NULL

COMP

r-----------~------~--_1------------+_~------------_.-----------V+
INVERTING INPUT NON-INVERTING INPUT +

--r-----------+------c
--i----------C"

'-----t---......-----

OUTPUT

R8
1 kn

'-----~~~---4--~__--I---------------~----------------+---~------~----------vR4

250 fl

OFFSET NULL

4·121

•

f.lA 10 1 • f.lA20 1
Absolute Maximum Ratings
Supply Voltage
Internal Power Dissipation
(Note 1)
Metal Package
Differential Input Voltage
Input Voltage (Note 2)
Storage Temperature Range
Metal Package

/LA101
Electrical Characteristics
/LA201
Electrical Characteristics
Characteristic
Input Offset Voltage

±22 V

Operating Temperature Range
(Note 3)
Military (/LA 101)
-55°C to +125°C
Commercial (/LA20 1)
O°C to +70°C
Pin Temperature (Soldering, 60 s) 300°C

500 mW
±30 V
± 15 V

±5.0 V

:0;

VS:O; ±20 V, TA = 25°C, unless otherwise specified.

+50
V -< Vs -< +
- 15 V, TA = 25°C
/LA101
Typ
Condition
Min
1.0

Max
5.0

Input Offset Current

40

Input Bias Current

120

Rs:O; 10 kf!

Input Resistance
Supply Current

300
Vs = ±20 V

2.0

Max
7.5

200

100

500

nA

500

0.25

1.5

/LA
kf!

800
1.8

/LA201
Typ
Min

100

1.8

Vs = ± 15 V
Large Signal Voltage Gain

Vs = ± 15 V
VOUT = ± 10 V, RL 2: 2 kU

The following specifications apply over -55°C

400

3.0

:0;

50

160

20

3.0

150

Unit
mV

mA
V/mV

TJ:O; 125°C for /LA10l, O°C:O; TJ:O; 70°C for /LA201.

Input Offset Voltage

RS:O; 10 kf!

Average Temperature
Coefficient of Input

RS

:0;

50 f!

3.0

6.0

/LV 1°C

Offset Voltage

RS

:0;

10 kf!

6.0

10.0

/LV 1°C

6.0

10

mV

TA =

10

200

50

400

nA

TA =

100

500

150

750

nA

Average Temperature
Coefficient of Input
Offset Current

+25 :0; TA :0; max
min :0; TA:O; +25°C

0.Q1
0.02

0.1
0.2

0.01
0.02

0.3
0.6

nA/oC
nA/oC

Input Bias Current

TA = -55°C

0.28

1.5

0.32

2.0

Supply Current

TA = +125°C, Vs = ±20 V

1.2

2.5

/LA
mA

Large Signal Voltage Gain

Vs = ± 15 V, VOUT = ± 10 V
RL 2: 2 kf!

Output Voltage Swing

Vs = ± 15 V

Input Voltage Range

Vs = ± 15 V

± 12

Common Mode
Rejection Ratio

RS

:0;

10 kf!

70

90

65

90

dB

Supply Voltage
Rejection Ratio

Rs

:0;

10 kf!

70

90

70

90

dB

Input Offset Current

IRL =
IRL =

15

25

V/mV

10 kf!

±12

±14

±12

±14

V

2 kf!

±10

±13

±10

± 13

V

Notes
1 Rating applies to ambient temperature up to 70°C. Above
70°C ambient derate linearly at 6.3 mW / °C for the Metal Can.
2. For supply voltages less than ± 15 V, the absolute maximum
input voltage is equal to the supply voltage.

±12

V

3. Short circuit may be to ground or either supply. The 101 ratings
apply to +125°C case temperature or +75°C ambient
temperature. The 201 ratings apply to case temperatures
up to +70°C.
4-122

p,A 101A • p,A201A •
p,A301A General-Purpose
Operational Amplifiers

FAIRCHILO
A Sehlumberger

Company

Linear Products

Connection Diagram
S-Pin Metal Package

Description
The /LA 10 1A, /LA20 1A and /LA30 1A are GeneralPurpose Monolithic Operational Amplifiers
constructed using the Fairchild Planar epitaxial
process. These integrated cirucuits are intended for
applications requiring low input offset voltage or low
input offset current. The accuracy of long interval
integrators, timers and sample and !lold circuits is
improved due to the low drift and low bias currents of
the /LA 101A, /LA201A, or /LA301A. Frequency response
may be matched to the individual circuit need with one
external capacitor. The absence of "latch-up" coupled
with internal short-circuit protection make the /LA 10 1A,
/LA201A and /LA301A virtually foolproof.

-IN

>-----=1D OUT

V(Top View)

•
•
•
•
•

LOW OFFSET CURRENT AND VOLTAGE
LOW OFFSET CURRENT DRIFT
LOW BIAS CURRENT
SHORT CIRCUIT PROTECTED
LOW POWER CONSUMPTION

Absolute Maximum Ratings
Supply Voltage
Military and Instrument
(/LA 10 1A and /LA20 1A)
Commercial (/LA30 1A)
Internal Power Dissipation
(Note 1)
Metal Package
DIP
Differential Input Voltage
Input Voltage (Note 2)
Storage Temperature Range
Metal Package
DIP
Operating Temperature Range
Military (/LA 10 1A)
Instrument (/LA20 1A)
Commercial (/LA30 1A)
Pin Temperature (Soldering)
Metal Package (60 s)
DIP (10 s)
Output Short Circuit Duration
(Note 3)

PIO 4 connected to case

Order Information
Type
Package
/LA101A
Metal
/LA201A
Metal
/LA30 1A
Metal

Part No.
/LA101AHM
/LA201AHM
/LA301HC

Connection Diagram
S-Pin DIP

±22 V

± 18

Code
SW
SW
SW

V

sao

mW
310 mW
±30 V
± 1S V

OFFSET NULL
(COMP)

FREQ
COMP

-IN

OUT

+IN

-64°C to +1S0°C
-SsoC to +12SoC

OFFSET
NULL

v-

-SsoC to +12SoC
-2SoC to +E1SoC
O°C to +70°C
(Top View)

300°C
260°C

Order Information
Type
Package
/LA301A
Molded DIP

Indefinite

Noles
1. RatlOg applies to ambient temperature up to 70 o e. Above
70 0 e ambient derate linearly at 6.3 mW / °e for the metal
package, 5.6 mW / °e for the DIP.
2. For supply voltage less than ± 15 V. the absolute maxImum
input voltage is equal to the supply voltage.
3. Short circuit may be to ground or either supply. lOlA and 201A
ratings apply to +125°e case temperature or +75°e ambient
temperature. 301A ratings apply for case temperatures to 70 o e.
4-123

Code
9T

Part No.
/LA30 1ATC

•

p,A 101A • p,A201A • p,A301A
Equivalent Circuit
COMPo
NUll

COMPo

~----------~-------+--+----4--------~---------------+------V+

I N VERTING IN PUT ~
NON·INVERTING INPUT

---+-----------+-------£

+----+--------["
R11

25 (]
'---+--+-OUTPUT

Q11

RS

RS

R7

40 krl

40 krl

80 kO

R8
1 kO
L---~--~

__

~~

__

~~~

______________4-__________________

OFFSET NUll

4·124

~

____4-__

~

_____ V_

JLA 101A • JLA201A • JLA301A
Electrical Characteristics

TA = +25 ° C unless otherwise noted. Unless otherwise specified, these
specifications apply for supply voltages from ± 5.0 V to ± 20 V for the /LA 10 1A and
/LA20 1A, and from ± 5.0 V to ± 15 V for the 301 A.
/LA101A,/LA201A

Symbol

Characteristic

Condition
Rs ::S 10 kfl

Min

Typ

Max

/LA301A
Min

Typ

Max

Unit

VIO

Input Offset Voltage

0.7

2.0

2.0

7.5

mV

110

Input Offset Current

1.5

10

3.0

50

nA

118

Input Bias Current

30

75

70

250

nA

rj

Input Resistance

1.5

4.0
1.8

Icc, lEE

Supply Current

VeeIVEE= ±20V
Vee/VEE = ± 15 V

Av

Large Signal
Voltage Gain

VeelVEE ± 15 V, Vo =
± 10 V, RL > 2.0 kfl

0.5

2.0
1.8

50

Mfl

3.0

160

25

3.0

160

rnA
V/mV

The following specifications apply over the operating temperature range.
VIO

Input Offset Voltage

110

Input Offset Current

RS::S 10 kfl

3.0

10

mV

20

70

nA

Average Temperature
.:lVlo/.:lT Coefficient of
Input Offset Voltage

TA (min) ::S T A ::S TA(max)

3.0

15

6.0

30

/LV/oC

.:lIIO/.:lT

Average Temperature
Coefficient of
Input Offset Current

+25°C ::S TA::S TA (max)
TA (min) ::S TA ::S 25°C

0.01
0.02

0.1
0.2

0.01
0.02

0.3
0.6

nA/oC

18

Input Bias Current

300

nA

Av

Large Signal
Voltage Gain

VeelVEE = ± 15 V, Vo =
± 10 V, RL 2: 2.0 kfl

VI

Input Voltage Range

VeelVEE = ±20 V
VeelVEE = ± 15 V

±15

CMRR

Common-Mode
Rejection Ratio

RS ::S 10 kfl

80

96

70

90

dB

PSSR

Supply Voltage
Rejection Ratio

Rs ::S 10 kfl

80

96

70

96

dB

Vo

Output Voltage Swing

VeelVEE = ± 15 V, RL = 10 kfl ± 12
RL = 2.0 kfl
± 10

±14
±13

± 12
±10

±14
±13

V

IcC, lEE

Supply Currents

TA = TA (max)
Vee/VEE = ±20 V

1.2

100
25

15

V/mV
V

±12

4·125

2.5

rnA

•

JJ,A 101A· JJ,A201A· JJ,A301A
Typical Performance Curves for
Input Voltage Range as a
Function of
Supply Voltage

~A101A

~A201A

and

Output Swing as a
Function of
Supply Voltage

20

Voltage Gain as a
Function of
Supply Voltage

0

100

- 55'"C:s; 'TA S 125'"C

>

./

+116

...

./

"..z 12
'"w

g
...
"
J!:

8

..

/'~"'~

./

0-

"z~

:$:I;~
\~

~

v

z 88

"I

f'\.

1M

10 M

.,m

Vs

"-

...:J:

90~

~

TA "'" 25°C
r-~S = ±15V
C1 = 30pF
C2=300pF
10M

180

TA "" 25°C

f-- ......

100

225

I

1

15

SUPPLYVOLTAGE- ±V

100

225

Gi'N<:=: I---

f..- f-

TWO POLE

~~

20

\~

-I-'"

70

120

",-y
~i'"
,

0

.. ..

15

TA'" 25°C
Vs=+15V

~~~ PHASE /

I

82

7.

Open Loop
Frequency Response

,,~~

!g80

"
"~
~

10

Open Loop
Frequency Response
120

88

w

SUPPLVVOLTAGE- ±V

Typical Performance Curves for

>

.. .

~

 15

/

I
w

"w

20

Voltage Gain as a
Function of Supply Voltage

20
D"C:s; TA s looe

~

15

~A301A

Output Swing as a
Function of Supply Voltage

Input Voltage Range as a
Function of Supply Voltage

J!:

10

SUPPLYVOLTAGE- '!:;V

SUPPLY VOLTAGE- ±V

~V

SUPPL,YVOLTAGE-

",,,,,,, V

7'

78

0

5

V

~

.,.?-'

/'

f--

"~ 82

",'I<

~~\~:$'

o

V

~"

TA :s 125°C

'""I

..~

10

:s;

9'

) / /'

"

/"

~ :~~
&2:./

qO~

f--

~

15

>

/

~'" V

- 55°C

-55°CsTAS 125°C

±15V

...

rv
»
GA'~)..

0
0
0

"-

FEE'l FORiARD

-20
100

1k

2 25

180 :J:

",Hi,E

0

10

=

10k

lOOk

1M

FREQUENCY - Hz

J

~

1 35~

"I

90 ~

~

45

10M 100M

.,Hl

J,LA 101A • J,LA201A· J,LA301A
Typical Performance Curves for /-LA101A, /-LA201A and /-LA301A (Cont.)

,.

,.

LI2~'U

> 12

..
.

'\

> 12

+

"iz

8

\

0-

=>

~

[\

C, = 30pF\

o

.

~

SINGLE POLE

> 12

\

"

\

8

vu+Ut

TA :::; 25"C

\

\

+
\C1 = 3pF

16

Vs = ±15V
TA = 25"C
Cl = 30pF
C2 = 300pF

VS"" ± 15V

"iz

Large Signal
Frequency Response

Large Signal
Frequency Response

Large Signal
Frequency Response

"zi

.
.

8

0-

=>

\

o

0-

FEED FORWARD

o=>

TWO POLE

I'..
0

...... t-

i't--

100k

1M

10k

1k

t-

0
10M

1M

100k

10k

FREQUENCY - Hz

o

Voltage Follower
Pulse Response

Hz

•

Inverter Pulse Response
10

10

10

10M

FREQUENCY -

FREQUENCY - Hz

Voltage Follower
Pulse Response

""- r-

1M

100 k

,

OUTPUT

I--

1\

I

I

I

-

>

I

"z

~

~

OUTPUT

0

I

g -4

r-

-6

l\

-6

SINGLE POLE

IIINPUT

I

OUTPUT

~

TWO POLE

INPUT

I

FEEDFORWARD

-8

-8

-10

-10

~

~

~

TIME -

~

00

ro

o

~

10

~

30

~

~

TIME -

jJS

~

ro

-----r
TA:::;

20

T,

z

C

~

.

" 100

!--

p----

b?'

~ I-- r--

-

~

~

\ 1'\ "'\
...

~

80
10

15

SUPPLY VOLTAGE -

20
± V

5

1\

15

10

SUPPLY VOLTAGE -

4-127

20
±Y

o

o

10

15

OUTPUT CURRENT -

... >...
"Cl ;n n

>

&n

125°C

90

5

~

Vs= ±15V

>
TA

ro

~

"s

25°C

05

o

~

~ r--....

55°C

~,

g

30

Current Limiting
15

~ 110

~

TIME -

IS5 0 C

~ f---"" r:;:: 2S"C

10

",S

120

25

TA = 25"C

~S=t'5t-

a

~

Voltage Gain as a
Function of
Supply Voltage

Supply Voltage Current as
Function of
Supply Voltage

-

-6

-8
10

I

g -4

-10

o

I

0

"~-2

TA = 2S"C
Vs= ±15V
Cl =30pF
C2=300pF

- ..,

- - - il' -

"z

I----

I \

"

-

>

!\

.. -2
~

I

\

I

-

/

I

\

I

r-

r

INPUT

20
mA

25

30

p,A 101A • p,A201A • p,A301A
Typical Performance Curves for

~A101, ~A201

50

100

0

80

1As- r-

0
20

!i

10

Input Noise Voltage
vs Frequency
5

601-- 1--8 ,"'-

r--

(Cont.)

Input Current
vs Temperature
(~A301A only)

Input Current
vs Temperature
(~A 101A and ~A201A only)

~

~A301

and

I--

""- I-

.......

I

I'

0

.,

0

t-..

0

TA~25'C

~

i"'-

8

4

3

I'--

2

OFFSET

-r--

1
0
~

~

~

-

~

0

6

41:::::::- f-OFFSET
2
~

1<10

20

~

60

40

80

100

TEMPERATURE _ °C

4

"-

10-26

10

120

10-26
10.

100

10

100'

"-

'"

'" "- rz~

~-:-

I"

ot-~~;~~
10

100

1k

10k

FREQUENCY -

lOOk

Hz.

V

,

Av=1

V

,
2

"1M

Av = 1000

1'-""

f--f---

" ~"-... '\ I\..

r- ~~~:~!fION

100'

Hz

80

~

80

10M

40

RsJkU
TA '= 25°C

'" '"

~±10V

VCM~:rV~

i/
I"'-"

10-3
10

1<10

V

V

SINGLE POLE

COMPENSAnoN

C,=30pF

-

TA"'25°C
5mA l
' OU

r+

1k

10k

FREQUENCY -

4·128

lOOk

Hz

W

1<10

1k

10k

FREQUENCY - Hz

Closed Loop Output Impedance
vs Frequency

I~~
f----'

10.

1k

FREQUENCY -

Power Supply Rejection
vs Frequency

- I--.

~W

-

20

FREQUENCY - Hz

100

100

t

......

1.

100

~
~

5

I'

100'

Common Mode Rejection
vs Frequency

4

1\

10'

FREQUENCY - Hz

Input Noise Current
vs Frequency
(~A301A only)

Input Noise Current
vs Frequency
(~A 101A and ~A201A only)

5

,.

6

~

TEMPERATURE - °C

1M

lOOk

1M

p,A 101A • p,A201A • p,A301A
Compensation Circuits
(All pin numbers shown refer to B-Pin metal package)

Typical Applications
(All pin numbers shown refer to B-Pin metal package)

Single Pole Compensation

Fast Voltage Follower
R2

R1
-VIN

VOUT
VOUT

VIN

R3
+VIN

R1 C 8

Power Bandwidth: 15 kHz
Slew Rate: 1 V / 1'8

C1~ R1+ R2
C s = 30 pF

Inverting Amplifier With Balancing Circuit
Two Pole Compensation

Rl

R2

INPUT--~~~----~~r------'

R2

R1

6
>-----OUTPUT
R4
5.1 MD

>~"",,-VOUT

~

SMD

.J:.

C1
30 pF
Nole
May be zero or equal to parallel combination of R 1 and R2 for
minimum offset.

R 1Cs
Cl~ R 1 +R2

Voltage Comparator for Driving or
DTL Integrated Circuits

C s = 30 pF
C2 = 10 Cl

Feedforward Compensation

OUTPUT
C2
R2

R1
VIN

----JVlIv-_.....--I
6

>---VOUT

R3

C,
150 pF

4·129

•

f,LA 101A • f,LA201A • f,LA301A
Typical Applications (Cont.)
(All pin numbers shown refer to B-Pin metal package)
Low Frequency Square Wave Generator

Practical Differentiator

R1
1M

C2
R2

LOW
, - - - - - i -__ 'IMPEDANCE
'C1

+ 15V

-15V

OUTPUT

R1

>----'1."1\.....----+... CLAMPED

VI N

OUTPUT

R3

C1

--'vVv---i t--+---1
6
>'--.....
-VOUT

D1,6.2V
D2,6.2V

• Adjust C 1 lor frequency

Circuit for Operating Without a Negative Supply
R1

R2

1= __1_

c
+20V

1

.J

1
fh = 211" R 1C 1
1

6

=

I

VIN

fc

VOUT
R3
"::"

C1
30pF

211"R 2 C 1

t

4·130

<

211"R2C 2
fh

<

lunity gain

~A107·~A207·~A307

FAIRCHIL.O

General Purpose
Operational Amplifiers

A Schlumberger Company

Linear Products

Description
The j.lA 107 General Purpose Operational Amplifier
series is constructed using the Fairchild Planar
epitaxial process. Advanced processing techniques
have reduced the 107 input current an order of
magnitude below industry standards such as the
j.lA709 while still replacing, pin-for-pin, j.lA709, j.lA 10 1,
j.lA 10 1A, and j.lA 7 41. The j.lA 107, !1A207, and j.lA307
offer better accuracy, internal compensation, and
lower noise for high impedance circuit applications
while providing features similar to the j.lA 10 1A. The
low input currents allow the device to be used in slowcharge applications such as long period integrators,
slow ramps, and sample-and-hold circuits. The j.lA207
is identical to the j.lA 107 except that the j.lA207
performance is guaranteed from -25°C to +85°C
while the j.lA 107 performance is guaranteed over a
-55 ° C to + 125 ° C temperature range. The j.lA307 is
guaranteed over a O°C to + 70°C temperature range.
•
•
•
•
•

Connection Diagram
a-Pin Metal Package
NC

•

v(Top View)
Pin 4 connected to case

Order Information
Type
Package
j.lA107
Metal
j.lA207
Metal
j.lA307
Metal

LOW OFFSET VOLTAGE
LOW INPUT CURRENT
LOW OFFSET CURRENT
GUARANTEED DRIFT CHARACTERISTICS
GUARANTEED OFFSETS OVER COMMON MODE
RANGE

Absolute Maximum Ratings
Supply Voltage
Military and Instrument (j.lA 107
and j.lA207)
Commercial (j.lA307)
Internal Power Dissipation
(Note 1)
Metal Package
Molded DIP
Differential Input Voltage
Input Voltage (Note 2)
Storage Temperature Range
Metal Package
Molded DIP
Operating Temperature Range
Military (j.lA 107)
Instrument (j.lA207)
Commercial (j.lA307)
Pin Temperature (Soldering)
Metal Package (60 s)
Molded DIP (10 s)
Output Short Circuit Duration
(Note 3)

>--.....:.c:J OUT

-IN

Part No_
j.lA107HM
j.lA207HM
j.lA307HC

Code
5W
5W
5W

a-Pin Molded DIP

±22 V
± 18 V

500 mW
310mW
±30 V
± 15 V

NC

NC

-~

v+

rlN

OUT

V

NC

(Top View)

-65°C to +150°C
-55°C to +125°C

Order Information
Type
Package
j.lA307
Molded DIP

-55°C to +125°C
-25°C to +85°C
O°C to +70°C
300°C
260°C
Indefinite

Notes on following page
4-131

Code
9T

Part No.
j.lA307TC

~A107·~A207·~A307
Equivalent Circuit
7

r-~--------------9---------~-----------------1~-----------1~--V+

R7

4.5 kll
INVERTING
INPUT

6 OUTPUT

R10
30kll

R1

R3

1 kll

50kll

R12
50 kll

R2
1 kll

R11
50 n

4
~----~----~----~------~~--~----~--~----------~--~

Noles
1 Rallng applies to ambient temperalures up to 70°C Above
70 ° C ambient derate linearly at 6 3 mW 1 0 C for metal package
and 5 6 mW 1°C lor Ihe molded DIP
2 For supply voltages less than ± 15 V. Ihe absolute maximum
Input vollage IS equal to the supply voltage

3 Continuous short CirCUit IS allowed with IlA307 for case
temperatures to 70°C and ambient temperatures to 55°C

4-132

~A107·~A207·~A307
!lAl07 1!lA207
Electrical Characteristics

±5.0 V

-s

Vs::O:: ±20 V, TA = 25°C unless otherwise specified.

Characteristics

Conditions

Input Offset Voltage

Rs::o:: 50 kll

Min

Typ

Max

Units

0.7

2.0

mV

Input Offset Current

1.5

10

nA

Input Bias Current

30

75

nA

1.5

Input Resistance
Supply Current

Vs = ±20 V

Large Signal Voltage Gain

Vs=±15V
VOUT = ± 10 V, RL 2: 2 kll

4.0

Mil
3.0

1.8
160

50

V/mV

The following applies for 55 ° C -<: T A -<: 125 ° C unless otherwise specified
Input Offset Voltage
RS::O:: 50 kll
Average Temperature
Coefficient of Input
Offset Voltage

3.0

Input Offset Current
Average Temperature
Coefficient of Input
Offset Current

mA

3.0

mV

15

!lV/oC

20

nA

25°C ::0:: TA::O:: 125°C

0.01

0.1

nA/oC

-55°C ::0:: TA::O:: 25°C

0.02

0.2

nA/oC

100

nA

2.5

mA

Input Bias Current
Supply Current

TA = +125°C, Vs = ±20 V

Large Signal Voltage Gain

Vs = ± 15 V, VOUT = ± 10 V
RL 2: 2 kll

Output Voltage Swing

Vs = ± 15 V

Input Voltage Range

Vs = ±20 V

±15

Common Mode
Rejection Ratio

RS::O:: 50 kn

80

96

dB

Supply Voltage
Rejection Ratio

RS::O:: 50 kll

80

96

dB

lRL =

1.2
25

10 kll

IRL = 2 kll

V/mV

± 12

±14

V

±10

±13

V
V

Guaranteed Performance Curves for !lA 107 and !lA207

Input Voltage Range
vs Supply Voltage

Output Swing vs
Supply Voltage

Voltage Gain vs
Supply Voltage

..

,

20

20

'6
L
<,'"

12

1/

V

,~'f.V

,/"

~/
"",<>&'

f - - _flO

~«,.

V

'0

,/

~

V

1
'0

~1-1
15

SUPPLY VOLTAGE--tV

20

~
"'," "I

~\¥o.

~V

'/

94

I

••

~

z

;;

-:'l.'f.~ -

" .2 f--- r--"'\""
/
"~ V

~,

...-

w

-55QC::oITA","~125QC_

207 -25 C:_/A:::S5i C
0

0,

.
~

107

~~i =;~:g:,_~~:_- !!:~c ~

o
5

/'

15

/'

1

'0

15

SUPPLY VOLTAGE - ±V

4-133

20

76

1 - - - + _ + - 1 0 7 -55°CS TA-:O 125°C_
20\ 2S° C r,,·5;C

70 5~---1--..",:-o--"---'':-5-...L---,I"
SUPPLY VOLTAGE -:rV

•

~A107·~A207·~A307
/l-A307
Electrical Characteristics

s:

±5.0 V

Vs

s:

± 15 V, TA = 25°C unless otherwise specified.
Typ

Max

Units

2.0

7.5

mV

Input Offset Current

3.0

50

nA

Input Bias Current

70

250

nA

Characteristics

Conditions

Input Offset Voltage

Rs

s:

Min

50 kQ

0.5

Input Resistance

MQ

2.0
1.8

Supply Current

Vs = ± 15 V

Large Signal Voltage Gain

VS= ±15V
VOUT = ± 10 V, RL 2: 2 kQ

3.0

160

25

V/mV

The following specifications apply for O°C -<: TA -<: 70°C
Input Offset Voltage
Rs s: 50 kQ
Average Temperature
Coefficient of Input
Offset Voltage

10

mV

30

/l-V 1°C

70

nA

0.01

0.3

nA/oC

0.02

0.6

nA/oC

300

nA

6.0

Input Offset Current
Average Temperature
Coefficient of Input
Offset Current

25°C
O°C

s:

s:

TA

TA

s:

s:

mA

70°C

25°C

Input Bias Current
Large Signal Voltage Gain

Vs = ± 15 V, VOUT = ± 10 V
RL 2: 2 kQ

Output Voltage Swing

Vs = ± 15 V

Input Voltage Range

Vs = ± 15 V

Common Mode
Rejection Ratio

RS

s:

50 kQ

70

90

dB

Supply Voltage
Rejection Ratio

Rs

s:

50 kQ

70

96

dB

IRL =
IRL =

15

V/mV

10 kQ

±12

±14

V

2 kQ

±10

±13

V

±12

V

Guaranteed Performance Curves for /l-A307

Input Voltage Range
vs Supply Voltage

Voltage Gain vs
Supply Voltage

Output Swing vs
Supply Voltage

2.

I ••

20

16

,.......

94

15

,.......
12

~o~*
17'

~

.",.""
•

5

V

.1~~~

.",.'"

. / f-"'"

~V V

",\~'f'\.-"'""

~

I. r 1" 1'·'1c

15

SUPPLY VOLTAGE --j:.V

,....... f-"'"

I.

~

•

5

:;...

82

".- ~\

rr

SUPPLY VOLTAGE -

4-134

I--

76

I.

15
~

v

-

88

,.

5

-

..

\~

l-

rCI T, 1'·'1I.

SUPPLY VOLTAGE -

15
tV

~A107·~A207·~A307
Typical Performance Curves for f.lA 107 and f.lA207

Voltage Gain vs
Supply Voltage

Input Current vs
Supply Voltage
40

~

110

"1\_ ~5S°c..

I

z

~

"w
"~

100

V

.... ?

~

g
90

-

~

TA-2.r C

-

:- ........

30

':!

20

ffi

10

I

•

r---.

......

~

~

..........

-

V,.:+15V

~

'\

~

I 100

I
TA=125°C

TA.25O~

...::>

o

I!:::>

50

0

~

o

20

r- """'=::: ::::---

~

~

15

.

::>

TA-125°C

10

./~

150

"~

1

80

Current Limiting

50

120

75

50

25

25

50

75

100

125

10

AMBIENT TEMPERATURE_o C

SUPPLY VOLTAGE _ ±V

15

25

20

30

OUTPUT CURRENT - +mA

•

Typical Performance Curves for f.lA307
Voltage Gain vs
Supply Voltage

Input Noise Current
vs Frequency

Input Current vs
Ambient Temperature
100

120

-

80
SIAS

~
I

80

110

-

z

"w
"~

I

SoC

I-'~~

~

\

':! •0

100

0

~
o

~

>

,
10

100

1k

10 k

80

lOOk

•
15

10
SUPPLY VOLTAGE -

OFFSET

2

I

•

FREQUENCY - Hz

TEMPERATURE _

150

~ T.J25 C

i

0

I
w

"I

I"

g
w
'"
i5
~

I!:

::>
0

~

::>

g
z

~
~

10

1\

...::>~

t'-r-.

w

10.0

"z

......

z

10- 2

TAJO~ ~

>

"~

,

5.0

-v5'

"'V

1

,

10- 1

100

1k
FREQUENCY - Hz

10k

100'

80

c

Input Noise Voltage
vs Frequency

10- 1 5

5

0

Typical Performance Curves for
f.lA107, f.lA207,.f.lA307 (Cont)

Input Noise Current
vs Frequency

1"\

60

40

20

±V

Typical Performance Curves for f.lA307 (Cont.)
Current Limiting

•

~

90

10-2

20

~

::>

10

100

1k
FREQUENCY - Hz

4-135

10k

100 •

10

15

2'

20

OUTPUT CURRENT -

± mA

30

~A107·~A207·~A307
Typical Performance Curves for
~A 107, ~A207 and ~A307 (Cont.)
Large Signal
Frequency Response

Open Loop
Frequency Response

16

120

TA=25°C

TA=25°C

........
lDO
'll
I

80

"'"

.0

z

"'- ~

40

'Ii

i"

I"
10

100

~

lK

'"

8

I

-

4

\

, ....•.. _ -

1\
~

INPUT

\

~

/
OUTPUT

"'~

\
V
-2r-~+*+\-+-+-+~1H-~-b~

g

-.1--+."::...::(.."::...::j.Yl=+=:J=++--+-l

-4~+-1-~-b-+-+~~~~

1'1'-

\

10K lOOK 1M

FREQUENCY - Hz

6~+-1-~-b-+-+~~~~

~

z

~

20

1

>

12

I

g

-20

Vs=±15V

Vs,,-:!:.15V

w

'~"

Voltage Follower
Pulse Response

10M

o

lK

10K

lOOK
TIME-",s

FREQUENCY -- Hz

Typical Applications
Non-Inverting Amplifier

Non-Inverting AC Amplifier
R2

R2

10M

6
>----4>-Your

Rl

>6~4--Vour

1M

Rl
R3
910K

"::"

V,N

R1 + R2
VOUT = --R-1- VIN

R1 + R2
VOUT = --R-1-

Inverting Amplifier

RIN = R3
R2

III

>6::..----<'-_ Your

R2

VOUT =

R1

VIN

RIN = R1

4-136

VIN

JLA10S/A· JLA20S/A·
JLA30S/A Super Beta
Operational Amplifiers

FAIRCHILO
A Schlumberger Company

Linear Products

Description
The IlA 108 Super Beta Operational Amplifier series is
constructed using the Fairchild Planar epitaxial
process. High input impedance, low noise, low-input
offsets, and temperature drift are made possible
through use of super beta processing, making the
device suitable for applications requiring high
accuracy and low-drift performance. The IlA 108A
series is specially selected for extremely low offset
voltage and drift, and high common-mode rejection,
giving superior performance in applications where
offset nulling is undesirable. Increased slew rate
without performance compromise is available through
use of feedforward compensation techniques,
maximizing performance in high-speed sample-andhold circuits and precision high-speed summing
amplifiers. The wide supply range and excellent
supply voltage rejection assure maximum flexibility in
voltage follower, summing, and general
feedback applications.
•
•
•
•
•

Connection Diagram
8-Pin Metal Package

-IN

v(Top View)

Order Information
Type
Package
Metal
IlA108A
Metal
IlA 108
Metal
IlA208A
Metal
IlA208
Metal
IlA308A
Metal
IlA308

GUARANTEED LOW INPUT
OFFSET CHARACTERISTICS
HIGH INPUT IMPEDANCE
LOW OFFSET CURRENT
LOW BIAS CURRENT
OPERATION OVER WIDE SUPPLY RANGE

Absolute Maximum Ratings
Supply Voltage
IlA 108A, IlA 108,
IlA208A,IlA208
IlA308A,IlA308
Internal Power Dissipation
(Note 1)
Metal Package
DIP
Differential Input Current (Note 2)
Input Voltage (Note 3)
Storage Temperature Range
Operating Temperature Range
Military (IlA 108A, IlA 108)
Industrial (IlA208A, IlA208)
Commercial (IlA308A, IlA308)
Pin Temperature (Soldering)
Metal (60 s)
DIP (10 s)
Output Short Circuit Duration
(Note 4)

>-----["

Notes
1. Rating applies to ambient temperatures up to 70·C ambient
derate linearly at 6.3 mW I·e for metal package, 8.3 mW I·e
for the DIP.
2. The inputs are shunted with back·to·back diodes for
overvoltage protection. Therefore, excessive current will flow if
a differential Input voltage in excess of 1 V is applied between
the inputs unless adequate limiting resistance is used.

3. For supply voltages less than ± 15 V, the absolute maximum
input voltage is equal to the supply voltage.
4. Short circUit may be to either supply or ground. Rating applies
to operation up to the maximum operating temperature range.

4·138

JLA 10S/A • JLA20S/A • JLA30S/A
J1,A 10S1 A and J1,A20SI A
Electrical Characteristics

Unless otherwise noted these specifications apply for supply voltages of
+5.0V
V, TA = +25°C.
--< Vs --< +20
-

J1,A10SA
J1,A20SA

J1,A10S
J1,A20S

Symbol

Characteristic

Typ

Max

Typ

Max

Unit

VIO

Input Offset Voltage

0.3

0.5

0.7

2.0

mV

110

Input Offset Current

0.05

0.2

0.05

0.2

nA

lIB
q

Input Bias Current

O.S

2.0

0.8

2.0

ICC, lEE
AVOL

Input Resistance
Power Supply Currents
Vee = +20 V, VEE = -20 V
Large Signal Voltage Gain
Vee = IVEEI = +15 V,
Vo =± 10 V, RL 2:: 10 kfl

Min

30

70
±0.3

80

Min

30
±0.6

300

70
±0.3

50

nA
Mfl

±0.6

300

mA
V/mV

The following specifications apply over the operating temperature range. (Note 5)
VIO

Input Offset Voltage

1.0

3.0

mV

110

Input Offset Current

0.4

0.4

nA

Average Temperature Coefficient
LlVIOIL\T of Input Offset Voltage
TA(min) ::S TA ::S TA(max)

1.0

5.0

3.0

15

J1,V/oC

Llilo I Ll T

Average Temperature Coefficient
of Input Offset Current

0.5

2.5

0.5

2.5

pA/oC

liS

Input Bias Current

0.8

3.0

3.0

nA

AVOL

Large Signal Voltage Gain
Vee = IVEEI = +15 V,
Vo = ± 10 V, RL = 10 kfl

VIR
CMRR

Input Voltage Range
Vee = IVEEI = +15 V
Common-Mode Rejection Ratio

40

25

V/mV

± 13.5

± 13.5

V

96

110

85

100

dB

96

110

80

96

dB

± 13

±14

V

PSSR

Power Supply Voltage
Rejection Ratio

VOR

Output Voltage Range
± 13
Vee = IVEEI = +15 V, RL = 10 kfl

±14

Icc, lEE

Supply Current (T A = TA[max»

±0.15

Note
5 For the

I'A 1OS / A specifications apply over -55' C ::5 TA ::5
125'C For the I'A20S/ A specifications apply over -25'C ::5
TA:::: S5'C.
4-139

±0.4

±0.15

±0.4

mA

•

j..LA 1OS/A • j..LA20S/A • j..LA30S/A
~A308/A

Electrical Characteristics

Unless otherwise noted these specifications apply for supply voltages of
+50 V --< Vee --< +15 V and -50 V>
+25°C
- -15 V TA
- VEE>

=

~A308A

~A308

Typ

Max

Typ

Max

Unit

VIO

Input Offset Voltage

0.3

0.5

2.0

7.5

mV

110

Input Offset Current

0.2

1.0

0.2

1.0

nA

118

Input Bias Current

1.5

7.0

1.5

7.0

q

Input Resistance

Symbol Characteristic

ICC. lEE
AVOL

Min

40

10

Power Supply Currents
Vee = +15 V. VEE = -15 V
Large Signal Voltage Gain
Vee = +15 V. VEE = -15 V.
Vo
± 10 V. RL 2: 10 kQ

10

±0.3

nA

40

±O.S

300

BO

=

Min

MQ

±0.3

±O.B

mA

300

25

V/mV

The following specifications apply over O°C S TA S 70°C
VIO

Input Offset Voltage

0.73

10

mV

110

Input Offset Current

1.5

1.5

nA

Average Temperature Coefficient
D.VIOI D.T of Input Offset Voltage
T A(min) s TA s TA(max)

1.0

5.0

6.0

30

~V/oC

D.IIOI D. T

Average Temperature Coefficient
of Input Offset Current

2.0

10

2.0

10

pA/oC

118

Input Bias Current

10

nA

10

Large Signal Voltage Gain
Vee = +15 V. VEE = -15 V.
Vo
± 10 V. RL 2: 10 kQ
Input Voltage Range
Vee = +15 V. VEE = -15 V
Common-Mode Rejection Ratio
RS s 50 kQ

AVOL

=

VIR
CMRR

60

15

V/mV

± 13.5

± 13.5

V

96

110

SO

100

dB

PSSR

Supply Voltage Rejection Ratio
Rs s 50 kQ

96

110

BO

96

dB

VOR

Output Voltage Range
Vee = +15 V. VEE = -15 V.
RL
10 kQ

±13

±14

±13

± 14

V

=

Typical Performance Curves for

Input Noise Voltage as 8
Function of Frequency

~A 108

Series

Power Supply Rejection 88 8
Function of Frequency
120,--,--,---,---,--...,
Vs = + 15V

1000

Open Loop
Frequency Response
120
100

r"":

C'=13PF~

r-.....

Cj _ 30pF-

400
80

Rs

1M

II I I

100

Rs

40

-

r-- h~
~,('>,
r-- ....

l-

i
10

100

1k
FREQUENCY - Hz

,- .,,,

GAIN _ _ -lOOk

1k

10k

lOOk

FREOUENCY - Hz

4-140

1M

10M

1

10

100

135

'

90

'\.

4

,

Cj = 30pF~ ~.

-20

10k

1

80

~\

PHASE _ _ _

I

,,~

"-,'\.

20

I

!i

I

Cs _100pF

'\.

40

100k

Rs - 0

10

~

10-

"

!OOO, C, 130 pF
I

TA = 25°C
lOUT = 1 mA
Vs =

1'5

Cf =

0

100

Cf=3pF

1\

lk

10k

lOOk

FREQUENCY -

1M

30~~

"

2

10k

1k

10M

1\

-

~

-

/

INPUT

\

2

-

4

,

I
T,
Vs

2'oC -=;

:t

15V

E' =lOP~ -

-1 0

1M

-

OUTPUT

V

\

B

100 k

FREQUENCY -

Hz

r- - I f

-

0

"'"~

:-

I! I

V

10 2
10

4

~

\

' A v = 1,Ct = 30pF

IJ

,
>
I
2:

Av "" lCOD,C! '" OpF

/

,

0
B

Vs= :t15V

\

12

l()O

~
o

Voltage Follower
Pulse Response

- 20 0

20

40

60

Hz

80

TIME -

100 120 140 160 180
j1S

•

Typical Performance Curves for ILA 108A, ILA 108, ILA208A and ILA208 (Unless Otherwise Specified)
Input Currents as a
Function of
Ambient Temperature

~ 100

1k

I

5

'"

.........

0

~

N08A/ IOB

~

5

g

SIAS 208AJ208

~;>

;>

5

O~ r-- ~All08
35

15

5

25

45

65

85

105

II

1.0

S

120

2~81208A ~25"C I~ TA:S 85"C

1M

10o

90

/

,

L

10

T

Z

~

!;

~

o
10

15

SUPPLYVOLTAGE- ±V

20

r\

o

'00

,..I

~

""
:l:
"'"

I
OUTPUT CURRENT -

4-141

,,_I_ ..oc

"l.
400

300

V

200

V-

>~

T'i-tC

0

800

........

\

100M

n

Supply Current as a
Function of
Supply Voltage ILA 108

Vs=±1SY

........

10M

1M

INPUT RESISTANCE -

Ti = Oc
Ti = i'oc

"

~ .. oc

"=-

\

>

"

-

II

10
100 k

n

Output Swing as a
Function of
Output Current ILA 108

!

ffi1f;08l108A' _55°C s T, < 125°C
~,ocl< T~ < ,8f;c
208I20fA

100M

10M

INPUT RESISTANCE -

I"'

~

TA < 125°C

1

~

r--1081208
10

Q

100k

15

V-

"'

0

Cj = 0
f = 100Hz

TA ~5"C
11 0 _
~_55°C
~ 'A - I
,/'""'

t:

V

ffi1f;08l108A _55°C <

AMBIENT TEMPERATURE _ °C

Voltage Gain as a
Function of
Supply Voltage ILA 108

~

100

~

/

108A1208A

5

125

"~
I

r-'08l208

~

OFFSET 208A/20B

/

a;

~

0
S5

~

t

.

,

v.

10

Iii

,..o
"~
,..

0

01

Maximum Drift Error

Maximum Offset Error

0

V
100

,

o
± mA

..........

v

T1 = ,,·c
I--

TA _loc

I--

10

15

SUPPlYVOLTAGE- ±V

20

JLA 10S/A • JLA20S/A • JLA30S/A
Typical Performance Curves for ILA308A and ILA308 (Unless Otherwise Specified)
Input Current as a
Function of
Ambient Temperature

Maximum Offset Error ILA308

•

> 1000

1000

T;I,~!c

E

3

Maximum Drift Error ILA308

I

O°C < TA < 70 0

/

e

w

~
I

....

ill
o~

....

'r-- t--

~

BIAS

1

g

0

i

0.25;>-

...........

~ 0.20

r--

~~

!!;

0.1 5
01 0
0

10

20

30

.a

i>

-

50

80

ffi
~

~

8D

"A",,2SoC_

110

~

w

g

r--t:::i = 10· e -

!""".;; r--..; ~

-

1\

10
TA, = 70

0

e

T!I -r'~·c

I-'"

./'
/

0

100

t
5

10

15

SUPPLY VOLTAGE-

+v

o-+'!,ll
--r

0

~·c

1.0
lOOk

100M

I I
1M

10M

100M

INPUT RESISTANCE - 0

400

Vs'.j5V

3SO

1\'

1.
I
.... ,so
z
~

.#

~200

T'Ol.C-

..---

........

..----

L

~

300

T,
TA

r

c

= 70 0 e

o

/

>-

~ 15

/'

0

'" 100

so

o
o

20

=MAX,MUM

Q

1 I

90

/

Supply Current as a
Function of
Supply Voltage

15

:c

"c
"~

10M

1M

Cf"" 0
f=1ooHz

T."O~

ill
Ii:
a:Q

III

Output Swing as a
Function of
Output Current

120

I
z

I'
~

INPUT RESISTANCE -

Voltage Gain as a
Function of
Supply Voltage

100

I

f--~YP'CAL
1.0
,100k

TEMPERATURE - DC

'll

V

o r-MAX'MUM

~

'"l?

./

....=>

!!;

70

I'

o

.

V

o
100

0
10
OUTPUT CURRENT -

15

20

SUPPLY VOlTAGE- ±V

± mA

Standard Compensation Circuits
R2

R2

R1
INVERTING --'IIII'v-_--t
INPUT

R3
NON·INVERTING --'I/'>N----1
INPUT

R1
INVERTING --'IIII'v---I
INPUT

. - - - - OUTPUT
R3
NON·INVERTING -"V'If'y---I
INPUT

4·142

OUTPUT

JLA 10S/A • JLA20S/A • JLA30S/A
Guarding
Extra care must be taken in the assembly of printed
circuit boards to take full advantage of the low input
currents of the J.lA 108 amplifier. Boards must be
thoroughly cleaned with TCE or alcohol and blown dry
with compressed air. After cleaning, the boards
should be coated with epoxy or silicone rubber to
prevent contamination.

Feedforward Compensation
Higher Slew Rate and
Wider Bandwidth
Standard Feedforward
C2

R1
10 kll

5 pF

INPUT--~~~----~Ir-----,

Even with properly cleaned and coated boards,
leakage currents may cause trouble at 125°C,
particularly since the input pins are adjacent to pins
that are at supply potentials. This leakage can be
significantly reduced by uSing guarding to lower the
voltage difference between the inputs and adjacent
metal runs. Input guarding of the S-pin TO-99 package
is accomplished by using a 10-pin circle, with the pins
of the device formed so that the holes adjacent tt;> the
inputs are empty when it is inserted in the b.oard. The
guard, which is a conductive ring surrounding the
inputs, is connected to a low impedance point that is
at approximately the same voltage as the inputs .
Leakage currents from high voltage pins are then
absorbed by the guard.

~~~OUTPUT

The pin configuration of the dual in-line package is
designed to facilitate guarding, since the pins
adjacent to the inputs are not used (this is
different from the standard J.lA741 and J.lA101A
pin configuration).

Open Loop Voltage Gain
120
100

e

80

--...

FOR~ARD

" , I"

FEEJ
C~PENSATION

'\

I

"'(

'\

80

"w

1

10

100

1k

t?""- 1

"- ~HASE
),-"

I-COMPS;;::T~~~

-20

f--

35

"

" ""
I:
'"
~

180

to k

FREQUENCY -

,,"OAIN

00

45

,I'\.
1"'..."

100 k

1M

10 M

Hz

Feedforward Compensation for Decoupllng Load Capacitance
R2

Rs>10kll

100 kll

INPUT~~~~-'-'----------~~--------~

R4

>6::.....~.;.50"'0"'1l.--_....._ OUTPUT

CL
75 pF
to 0.01

4·143

~F

•

JLA 10S/A • JLA20S/A • JLA30S/A
Inverting Amplifier

Board Layout for Input Guarding
With TO-99 Package

R2
Rl
INPUT -'l/V\r-.......- - -........' V V ' _ - - - - - ,

COMPENSATION

__~-OUTPUT

Follower

R3'
(Bottom View)

OUTPUT
INPUT ---~-+--I

Non-Inverting Amplifier
R2

OUTPUT

Rl

4·144

J.LA318

FAIRCHILD

High-Speed
Operational Amplifier

A Schlumberger Company

Linear Products
Description
The #A318 is a Precision High-Speed Operational
Amplifier designed for applications requiring wide
bandwidth and high slew rate. It features a factor of
ten increase in speed over general purpose devices
without sacrificing dc performance.

Connection Diagram
8-Pin Metal Package
COMPENSATION-2

The #A318 has internal unity gain frequency
compensation. This simplifies its application since no
external components are necessary for operation.
However, unlike most internally compensated
amplifiers, external frequency compensation may be
added for optimum performance. For inverting
applications, feedforward compensation will boost the
slew rate to over 150 V I #s and almost double the
bandwidth. Overcompensation can be used with the
amplifier for greater stability when maximum
bandwidth is not needed. Further, a single capacitor
can be added to reduce the 0.1% settling time to
under 1 #s.

v(Top View)

Order Information
Type
Package
ILA318
Metal

Code
5W

Part No_
#A318HC

The high speed and fast settling time of this op amp
makes it useful in aId converters, oscillators, active
filters, sample-and-hold circuits or general-purpose
amplifiers. This device is easy to apply and offers a
better ac performance than industry standards such
as the #A709.
•
•
•
•
•
•
•

15 MHz SMALL SIGNAL BANDWIDTH
GUARANTEED 50 V / #s SLEW RATE
MAXIMUM BIAS CURRENT OF 500 nA
OPERATES FROM SUPPLIES OF ± 5 V TO ± 20 V
INTERNAL FREQUENCY COMPENSATION
INPUT AND OUTPUT OVERLOAD PROTECTED
PIN COMPATIBLE WITH GENERAL PURPOSE
OPAMPS

Absolute Maximum Ratings
Supply Voltage
Power Dissipation (Note 1)
Differential Input Current (Note 2)
Input Voltage (Note 3)
Output Short Circuit Duration
Operating Temperature Range
Storage Temperature Range
Pin Temperature (Soldering, 60 s)

±20 V
500mW
±10 mA
± 15 V
Indefinite
O°C to +70°C
-65°C to +150°C
300°C

Notes
1 Tile maxImum junction temperature of the !LA318 IS 150·C for
operating at elevated temperatures. The package
must be derated based on a thermal resIstance of 150· C / W.
Juncllon to ambient or 45·C/W. Juncllon to case.
2 The onputs are shunte~ WIth back-to-back diodes for
overvoltage protection. Therefore. excessive current will flow

if a differential input voltage In excess of 1 V IS applied
between the inputs unless some limIting resIstance IS used.
3 For supply voltages less than ± 15 V. the absolute maximum
onput voltage IS equal to the supply voltage.

4-145

--

_. --- - - -

----

•

p,A318
Equivalent Cilcuit
BAUCOMP-3

BAL/COMP-1

COMP-2

1

5

(

\

'c,

\

R.
22k

~

)

t---

~n

R5
2.2k

Rl0
140k

013
V

Q15~~
JOk

30k

7

010t-.

VI

(']~

OC2

I

f-K

03:::

IN

3

a.:::

,.. ..

..

K05
~01

Rl
13k

.----

R5

44·

qa

T
v-

R.
8k

r~

l038

I5k

:f-

~

R23
lOll

~

- ~a32

2.

R
30

•

OUT

R21
3k

~033

45E

030

~~lE

R3
37k

8E

'E

035

-10pF

~
-10 PFJ

07r-

R22

~~~23~

~

~12
1E

017
35E

Q18

35'

R2.

~
R2
12k

-25pF

Cl
-25 pF

~
~02

75k

'--

I~

2

R25

Rl1;E~C2

R12
75k

011 1...1

IN

·~J037

~~6.)

r4

014

8

rl

022

~023

R14
1.Sk

1E

01.e-.E

a20~ I

"r

'~~'

021
2E
R18

:2~ :~v

K028
02.

027
5E
Rl'
15k

14Sk

4·146

02.

~rE
R20

loon

• v-

~A318
~A318

Electrical Characteristics

±5 V :5 VS :5 ±20 V. TA

Characteristic

= +25·C

Condition

Typ

Max

Unit

Input Offset Voltage

4

10

mV

Input Offset Current

30

200

nA

Input Bias Current

150

500

Min

Input Resistance

0.5

Supply Current

M!l
10

5

= ± 15 V. Your = ± 10 V. RL;::: 2 k!l
Vs = ± 15 V. Av = 1
Vs = ± 15 V

Large Signal Voltage Gain

Vs

Slew Rate
Small Signal Bandwidth

The following specifications apply for O·C

<

TA

<

nA

3

mA

25

200

V/mV

50

70

V/~s

15

MHz

+70·C

Input Offset Voltage

15

mV

Input Offset Current

300

nA

Input Bias Current

750

= ± 15 V. Your = ± 10 V. RL;::: 2 k!l
Vs = ± 15 V. RL = 2 k!l
Vs = ± 15 V

Large Signal Voltage Gain

Vs

Output Voltage Swing
Input Voltage Range

nA

20

V/mV

± 12

±13

V

± 11.5

V

Common-Mode Rejection Ratio

70

100

dB

Supply Voltage Rejection Ratio

65

80

dB

Typical Performance Curves

Input Current

Voltage Gain

200

100

l1S

5.

BIAS

100

TA:::

11.

50

~

.•

<>

80

ere

105

~

TA

JUPPLY

TA = 25-<:

\

20

TA = 7O"C

OFF,SET
100

I•

10

20

30

40

TEMPERATURE _

so
°c

60

70

..

= 25"C

.......

. ~t'TIVE
.. I--NEGATIVES~

~
1\

".

3.
2.

•

Power Supply Rejection

1\

'\,

~.

5

I.

,.

SUPPLY VOLTAGE -

4·147

-20
20
+Y

100

1k

10k

lOOk

FREQUENCY -

Hz

1M

"

10M

JLA318
Typical Performance Curves (Cont.)

Input Noise Voltage

.

TA = 25°C
VS"" "!:15Y

~

1000

1

120

irl
~

RS = 100k

'00

11-

'"

'"C

80

TA

~

10

IIII

,.

100

"

100

1k

10k

:>

">
it

"

Hz

,

-

/
\J

~

,

100

-V
1•

'l'

~

-400
Vs -

lOOk

1M

0

4

10

20

15

-800

25

-08 -0.6 -04 -02

mA

15

r--

l

70
0
TEMPERATURE _ °C

~

g

10

20

30

40

--

so

TEMPERATURE _ °C

4-148

80

70

lmY

,/

l-

80

14

l00 my}

'"

90
NEGATIVE SLEW

06

V

,~~~

I

Ys= :t-16Y
Rs "" AI' = 10 kll
C f = 5pF

I

04

10

>

~

02

Inverter Settling Time

110

11

0

DIFFERENTIAL INPUT -

Voltage Follower Slew Rate
120 ,--r--;--,--,.-,.-,--,

20

\
\

1"5 V
OUTPUT CURRENT -

"

~

1\
\

0

~ 100

Z
:>

\

~

:>

,.

~

\

:>

l-

II
".z

1\

I-

POSITIVE SLEW

":cI

200

TA"'25OC-

FREQUENCY -- Hz

l!

20
V

400
T A = 7..e-

0

Unity Gain Bandwidth

15

10

"

V
10k

10

5

800

z

Av=;/

TA ,70"C

Input Current

12

r--

/

f-- !--

45

40

14

AJ = 1000

/T.=\5'1: \

--

SUPPLY VOLTAGE -

Current Limiting

Vs "' ~15 V
TA =25"C

\"k-

ii:

10M

1M

tOOk

FREQUENCY -

Closed Loop Output Impedance

~
~

\

20

Hz

",-/

~

\.

40

o

100.

/- ~

I-

~

0

= ..

E
I 50

0

I
10.

FREQUENCY -

..

e-

= l00n,Rs = 1 k

II

3
10

Z

= 25°C
oC

~

~ 30

~A J

RS:::: 2 kn

"

.0

0

!!!

55

-

100

I

z
0
;::

~

Supply Current

Common, Mode Rejection

3000

Y, ""5 V

ii

5

I;
o
_1

r~~ :~5~

AF'" 5 ktl
CF= 10pF

',I'
l00C 1\.
Y

or-nmf 'm

_1 5

003

01

03

TIME - liS

lmY

Il

08

~A318
Typical Performance Curves (Cant.)

Large Signal
Frequency Response

Open Loop
Frequency Response

14

TA

I.
~

\

10

"
Z

!II

\
1\

4

o

!
C!l

80

"
~>

40

.

~

I

eo

06M

1M

2M

5M

10M

20M

SOM

~

I
~

!

~

6

Ys == "':15 Y

100

i

!\

."~

10

100

lk

~
3M

10M

tOOk

1M

>

>

20

30M

JI

100M

FREQUENCY - Hz

10k

IS

FREQUENCY -

T'-I~-

-.0-0'

100M

o.

01

1.0

11

14

Inverter Pulse Response
.0
Y

16

•••

.. i

,

135

M

90

iI

PHASV

"\

tOOk

~
Ys"'- +15 V

"

.. n

>

1M

"

I
4

!

a

\-

~

I

.-

-I'

FEEDFORWAAD

Vs 1=
0.1

0.3

r-

TA = aee

-16

-.0-0.1

10M 100M

-

/OUTPUT

I

\
\
\

L:

\.

h

- .- ._,.. rINPUT

~

Gj'N\
1k

-8

-II

1

'-./

100

II

-4

TIME - ",

FfEDFOrWARr

-'010

INPUT JOUTPUT

-"-

Hz

"", "-

.- '0-- ~

I

1\

-I'

10M

Ys =

["..

FEEOPORWARD

1M

10k

"c~

0

t.~"C

..

"~
0

4

-......

80

40

c

o

.

\

1~

---.
--I

~

".iz

1

K' -'"

120

iA ~ ~-hl

.

"

1

Open Loop
Frequency Response

-

10

16

PHJEj

FREQUENCY -

Large Signal
Frequency Response

"

I

"'-

FREQUENCY - Hz

14

A ••

20

-20

'0

iVs " :t15
~c
y-

"",

I

i!:

6

--.
100

Vs == "-15 V

~
~

120

.1'54 J

Voltage Follower
Pulse Response

05

07

"i

v

o.

nME-~.

Hz

Auxiliary Circuits
Feedforward Compensation For
Greater Inverting Slew Rate

Compensation for Minimum Settling Time
5 pF

5k
10k
3k

5k
INPUT

10k

-"""''1'<--4-...- ,

INPUT

OUTPUT

-"""''1'<--_'''1
OUTPUT

5k

Slew and settling time to 0.1% for a 10 V step change is 800 ns.
Slew rate tYPically 150 V / /lS.
Balance CirCUit necessary for increased slew.
4·149

~A318
Offset Balancing

Isolating Large Capacitive Loads
v+

AF

,..---""'I'v--.....-

.....-

OUTPUT

200 k

AS

INPUT

--""'I'v-+--I

Overcompensation

Typical Applications
Fast Voltage Follower

Weln Bridge Sine Wave OSCillator
5pF

A1

750
10k

>'-<1-.....L1'
A2

.ok
1'>

Fast Summing Amplifier
5pF

5k

INPUT 2

10 k

L 1 = 10

=

R2 R3
Cl = C2

5k
INPUT 2

v-

14 rnA bulb ELDEMA 1869

1

1= 2... R2 Cl

Differential Amplifier
10 k

10k
INPUT
10 k
INPUT

10k

4-150

OUTPUT

JLA 124 • JLA224 • JLA324
JLA2902 Quad
Operational Amplifiers

FAIRCHILO
A Schlumberger Company

Linear Products
Description
The JJ.A 124 series of Quad Operational Amplifiers
consists of four independent high-gain, internally
frequency-compensated operational amplifiers
designed to operate from a single power supply or
dual power supplies over a wide range of voltages.
The common mode input range includes the negative
supply, thereby eliminating the necessity for external
biasing components in many applications. The output
voltage range also includes the negative power supply
voltage. They are constructed using the Fairchild
Planar epitaxial process.
•
•
•
•
•

Connection Diagram
14-Pin DIP
OUT A

OUT 0

-IN A

-IN 0

+IN A

+IN 0

v+

INPUT COMMON MODE VOLTAGE RANGE
INCLUDES GROUND OR NEGATIVE SUPPLY
OUTPUT VOLTAGE CAN SWING TO GROUND OR
NEGATIVE SUPPLY
FOUR INTERNALLY COMPENSATED
OPERATIONAL AMPLIFIERS IN A
SINGLE PACKAGE
WIDE POWER SUPPLY RANGE SINGLE OF 3.0 V
to 30 V DUAL SUPPLY OF ± 1_5 V to ± 16 V
POWER DRAIN SUITABLE FOR
BATTERY OPERATION

v-

OR GND

+IN B

+IN C

-IN B

-IN C

OUT B

OUT C

(Top View)

Order Information
Type
Package
JJ.A 124
Ceramic DIP
JJ.A224
Molded DIP
JJ.A224
Ceramic DIP
JJ.A324
Molded DIP
JJ.A324
Ceramic DIP
JJ.A2902
Molded DIP

Code
6A
6A
9A
6A
9A
9A

Part No_
JJ.A124DM
JJ.A224PV
JJ.A224DV
JJ.A324PC
p.A324DC
JJ.A2902PV

Equivalent Circuit (1/4 of circuit shown)
OUTPUT

~------------.-----------.---~~--------.------+-+------.----v+

+-+------------~~-----,
3. S.
10.12
INPUTS

4-151

J.LA 124 • J.LA224 • J.LA324 • J.LA2902
Absolute Maximum Ratings
Supply Voltage Between V+
and V32
Differential Input Voltage (Note 1) 32
Input Voltage (V-) (Note 1)
-0.3 V (V-) to V+
Internal Power Dissipation
(Note 2)
670mW
Operating Temperature Range
-55°C to +125°C
/J.A124
-25°C to +85°C
/J.A224
O°C to +70°C
/J.A324
/J.A2902
-40°C to +85°C
Storage Temperature Range
-55°C to +125°C
Molded DIP
-65°C to +150°C
Ceramic DIP
Pin Temperature (Soldering)
260°C
Molded DIP (lOs)
Ceramic DIP (60 s)
300°C

Notes
1. Tlow = -55°C for jtA124
Thigh = +125°e for jtA124
= -40°C for jtA2902
= +85°e for jtA2902
= -25°C for jtA224
and jtA224
= ooe for jtA324
= +70 oe for jtA324
2. The input common-mode voltage or either Input signal voltage
should not be allowed to go negative by more than 0.3 V. The

upper end of the common-mode voltage range is Vee - 1.5 V,
but either or both inputs can go to +32 V without damage
(+26 V for jtA2902).
3. Short circUits from the output to Vee can cause excessive
heating and eventual destruction. Destructive dissipation can
result from Simultaneous shorts on all amplifiers.
4-152

~A124·~A224·~A324·~A2902
IJ.A 124, IJ.A224 and IJ.A324
Electrical Characteristics

Vee

= 5.0 V,

VEE

= GND, TA = 25°C unless otherwise noted.
IJ.A124/IJ.A224

Symbol

Via

Characteristic

Condition

Input Offset Voltage

Vee = 5.0 V to 30 V
Vie = 0 V to Vee -1.5 V,
Va"", 1.4 V, Rs = 0 f!
TA = Thigh to Tlow (Note 1)

Average Temperature
AVIO/AT Coefficient of Input
Offset Voltage
110

Input Offset Current

Alia/AT

Average Temperature
Coefficient of
Input Offset Current

liS

Input Bias Current

VieR

Input Common-Mode
Voltage Range
(Note 2)

Min

2.0

5.0
7.0

= Thigh to Tlow (Note

1)

TA

= Thigh to Tlow (Note

1)

TA

= Thigh to Tlow (Note

1)

10

= Thigh to Tlow (Note
Vee = 30 V
Vee = 30 V
TA = Thigh to Tlow (Note

1)

-45
-40

TA

AVOL

Large Signal OpenLoop Voltage Gain

RL
TA

Channel Separation

1.0 kHz :5 f :5 20 kHz,
Input Referenced

CMMR

Common-Mode
Rejection Ratio

Rs:5 10 kf!

PSSR

Power Supply
Rejection Ratio

VOH

Output Voltage-High

1)

IJ.A324
Min

7.0
3.0

Differential Input
Voltage Range

Typ

Max

Unit

2.0

7.0
9.0

mV

= 2.0 kf!, Vee = 15 V,
= Thigh to Tlow (Note 1)

30

5.0

± 100

-150
-300

-45
-50

10+

Output Source Current

(VID = +1.0 V, Vee = 15 V)
TA = Thigh to Tlow (Note 1)

10-

Output Sink Current

VID = -1.0 V, Vee
15 V
TA = Thigh to Tlow (Note 1)
VID
-1.0 V, Va = 200 mV

los

Output Short Circuit to
Ground (Note 3)

=

=

(T A = Thigh to Tlow) (Note 1)
Vee = 30 V, Va
0 V,
RL = 00
Vee = 5 V, Va = 0 V,
RL = 00

=

Power Supply Current

Notes
1. Tlow = -55'e for I'A124
Thigh = +125'e for I'A124
-40'e for I'A2902
+85'e for I'A2902
= -25'e for I'A224
and I'A224
= 0' e for I'A324
= +70'e for I'A324
2. The input common-mode voltage or either ,"put signal voltage
should not be allowed to go negative by more than 0.3 V The

-250
nA
-500

28.5

0

28.5

0

28

0

28

50
25

100

Vee
25
15

nA
pA/oC

0

100

V
V

V/mV

-120

dB

70

85

65

70

dB

65

100

65

100

dB

28

26
27

28

(TA = Thigh to Tlow) (Note 1)
26
Vee = 30 V, RL = 2 kf!
27
Vee = 30 V, RL = 10 kf!
Vee = 5.0 V, RL = 10 kf!,
TA = Thigh to Tlow (Note 1)

50
150

10

-120

Output Voltage-Low

IJ.V/oC

7.0

Vee

VOL

=

Max

TA

VIDR

lee

Typ

5.0

V

5.0

20

20

mV

20
10

40
20

20
10

40
20

rnA

10
5
12

20
8
50

10
5
12

20
8
50

rnA
rnA
IJ.A

40

60

40

60

1.5

3.0

1.5

3.0

0.7

1.2

0.7

1.2

rnA

rnA

upper end of the common-mode voltage range is Vee - 1.5 v,
but either or both inputs can go to +32 V without damage
(+26 V for I'A2902).
3 Short cirCUits from the output to Vee can cause excessive
heatong and eventual destructoon. Destructive diSSipation can
result from simultaneous shorts on all amplifiers.

=

4-153

p,A 124 • p,A224 • p,A324 • p,A2902
/LA2902

Electrical Characteristics

(Cont.) Vee = 5.0 V, VEE = GND, TA = 25°C unless otherwise noted.
/LA2902

Symbol

VIO

Min

Characteristic

Condition

Input Offset Voltage

Vee = 5.0 V to 26 V, Vie = 0 V
to Vee -1.5 V, Va """ 1.4 V, Rs = 0 Q
TA = 25°C
T A = Thigh to Tlow (Note 1)

Average Temperature
.:lVIO/.:lT Coefficient of Input
Offset Voltage

5.0
45

TA = Thigh to Tlow (Note 1)

10

TA = Thigh to Tlow (Note 1)

-45
-50

Average Temperature
Coefficient of
Input Offset Current

liB

Input Bias Current

VieR

Input Common-Mode
Voltage Range
(Note 2)

VIDR

Differential Input
Voltage Range

AVOL

Large Signal OpenLoop Voltage Gain

RL = 2.0 kQ, Vee = 15 V,
For Large Va Swing,
TA = Thigh to Tlow (Note 1)

Channel Separation

1.0 kHz :S f :S 20 kHz,
Input Referenced

CMMR

Common-Mode
Rejection Ratio

RS:S 10 kQ

PSSR

Power Supply
Rejection Ratio

VOH

Output Voltage-High

Output Source Current

10-

Output Sink Current

lOS

Output Short Circuit to
Ground (Note 3)

lee

Power Supply Current

7.0
10

TA = Thigh to Tlow (Note 1)

.:lIla 1.:IT

10+

2.0

7.0

Input Offset Current

Output Voltage-Low

Max

T A = Thigh to Tlow (Ndte 1)

110

VOL

Typ

Vee = 26 V
Vee = 26 V, TA = Thigh to Tlow

0
0

15

(T A = Thigh to Tlow) (Note 1)
Vee = 26 V, RL = 2 kQ
Vee = 26 V, RL
10 kQ

=

=
=
(VID = +1.0 V, Vee = 15 V)
=

VID = -1.0 V, Vee
15 V
TA
Thigh to Tlow (Note 1)

=

(T A = Thigh to Tlow) (Note 1)
Vee = 26 V, Va
0 V, RL
(Xl
Vee = 5 V, Va
0 V, RL = (Xl

=
=

Notes
1. Tlow = -55°C for "A 124
Thigh = +125°e for "A124
= +85°e for "A2902
= -40°C for "A2902
= -25°C for "A224
and "A224
= ooe for "A324
= +70 oe for "A324
2. The Input common-mode voltage or either input signal voltage
should not be allowed to go negative by more than 0.3 V. The

=

mV

/LV 1 ° C
50
200

nA

pA/oC
-250
-500

nA

24.5
24

V

Vee

V

100

V/mV

-120

dB

50

70

dB

50

100

dB

22
23

24

Vee
5.0 V, RL :S 10 kQ,
TA
Thigh to Tlow (Note 1)

TA = Thigh to Tlow (Note 1)

Unit

V

5.0
20
10

40
20

10
5

20

100

mV

rnA
rnA

8
40

60

rnA

1.5
0.7

3.0
1.2

rnA

upper end of the common-mode voltage range is Vee - 1 5 V,
but either or both inputs can go to +32 V without damage
(+26 V for "A2902).
3. Short circuits from the output to Vee can cause excessive
heating and eventual destruction. Destructive dissipation can
result from simultaneous shorts on all amplifiers.
4-154

~A124·~A224.~A324.~A2902
Typical Performance Curves

Large Signal Open Loop Voltage Gain as a
Function of Frequency
'I

120

~

130

,

"w
"

.~
0

9
z

~

0

;I
z

V~ J11.IV_
TA

..
.
..

~

= 25"C_

......
......
......
~

20

......
r-....

~

10

100

1.0k
FREQUENCY -

V+ = +5 YdC

10+ -

I

"0I

j

t

01

ry

OUTPUT SOURCE CURRENT -

100

.. ~1.

,

".
.55

mAde

10 -

001

"

!:;

10

0

>

'0

50

I II T = ~25'C I III

01

10

OUTPUT SINK CURRENT -

_50
10k

100

mAde

Input Bias Current as a
Function of Temperature

w 20

200

!i!

r---

V
~

10

Input Bias Current as a
Function of
Supply Voltage

1i

,
ffiII:

170

§

160

u

......

"-

~

150

-/
o

o

20 4.0 6.0 80 10

12

14

16

18

20

V+ AND V-. POWER SUPPLY VOLTAGES - y

o

-75-55-35155025456585105125
TEMPERATURE - C

4-155

,

i
i

100

/

50

10M

Hz

Vs 1= .\5V
300

~

--

lOOk

180

= aoc_

30

"

10k
FREQUENCY -

400
TA

I'

0

w

i.5

20

>

+

VI I"
0001

Rl = 10kU
TA = 2S8 C

I

1.

~

V~=I,n

1\

25

w

001
10

01

.

>

~I

v.

~

Output Swing as a
Function of
Supply Voltage

I,

".
.."......

IIIIIIII

g

TiiliT

001

y+
V+

!:;

'0'

0.001

= +15 Vdc
= +30 Vdc

;
w

INDEPENDENT OF 'y~

1

30

I

...• ~
IIll

Output Voltage as a
Function of Frequency

10

!1"

5

10M

lOOk

Output Characteristics
Current Sinking

Output Characteristics
Current Sourcing
IIII I "" I

10k

Hz

o

o

2.0 40 60 80 10

12

14

1. 1.

20

V+ AND V-, POWER SUPPLY VOLTAGES - Y

f.lA 148 • f.lA248 • f.lA348

I=AIRCHILO

Quad Operational
Amplifiers

A Schlumberger Company

Linear Products

Connection Diagram
14 Pin DIP

Description
The j.tA 148 series is a true quad j.tA 7 41. It consists of
four independent, high-gain, internally-compensated,
low-power operational amplifiers which have been
designed to provide functional characteristics
identical to those of the familiar j.tA 7 41 operational
amplifier. In addition, the total supply current for all
four amplifiers is comparable to the supply current of a
single j.tA741 type op amp.

OUT A
-IN A
+IN A

V+

Other features include input offset currents and input
bias current which are much less than those of a
standard j.tA741. Also, excellent isolation between
amplifiers has been achieved by independently
biasing each amplifier and using layout techniques
which minimize thermal coupling.
•
•
•
•
•
•
•
•
•
•

+IN B
-IN B
OUT B

j.tA741 OP AMP OPERATING CHARACTERISTICS
LOW SUPPLY CURRENT DRAIN
CLASS AB OUTPUT STAGE-NO
CROSSOVER DISTORTION
PIN COMPATIBLE WITH THE j.tA324 & j.tA3403
LOW INPUT OFFSET VOLTAGE-1 mV TYP
LOW INPUT OFFSET CURRENT -4 nA TYP
LOW INPUT BIAS CURRENT-30 nA TYP
GAIN BANDWIDTH PRODUCT FOR
j.tA148 (UNITY GAIN)-1.0 MHz TYP
HIGH DEGREE OF ISOLATION BETWEEN
AMPLIFIERS-120 dB
OVERLOAD PROTECTION FOR INPUTS
AND OUTPUTS

(Top View)

Order Information .
Type
Package
j.tA 148
Ceramic DIP
j.tA248
Ceramic DIP
j.tA348
Ceramic DIP
j.tA348
Molded DIP

Code
6A
6A
6A
9A

Part No.
j.tA148DM
j.tA248DC
j.tA348DC
j.tA348PC

Absolute Maximum Ratings
Supply Voltage
Differential Input Voltage
Input Voltage
Output Short·Circuit
Duration (Note 1)
Power Dissipation (Po at
25°C) and Thermal
Resistance (OJA), (Note 2)
Molded DIP
Po
8JA
Ceramic DIP
Po
8JA
Operating Temperature
Storage Temperature
Pin Temperature (Soldering)
Molded DIP (lOs)
Ceramic DIP (60 s)

j.tA148
±22 V
±44V
±22 V

j.tA248
± 18 V
±36 V
± 18 V

j.tA348
± 18 V
±36 V
± 18 V

continuous

continuous

continuous

670 mW
100°C/W
-55°C

8I

o

15

"'!::

z!
o~

"'ocw

"'"
~~

r . /1/
10

/

d l-t-125 d
:5 TA

/

1/

Negative Common Mode
Input Voltage Limit as a
Function of Supply Voltage
-2. r--,---,---,--r--,--,

1/

I

w>

8I

~
I

•

!f;! 5

~

-10 1--!--I>-/-'#1---+---+---1

5>

Av

Vo

I
I

NEGATIVE SUPPLY VOLTS -

,.

1

>
I

•

I

/

J,i

Ys = ±15 V
RL === 2 k
TA
25°C

=

'"'7V'N

'00

"c-'.!or~

>

,.

.,.••
TIME

-~.

=-

,.

V'N

.

08

i

08

!'"

04

!

I

llllill III iI
,.. 1111111,. 1U , •

..

02

Hz

Inverting Large Signal
Pulse Response

v!.±~v_
RL=2k

Vo

1

II

•

\

~
1«

MEAN NOISE CURRENT

20

,.

~

w

•

••

MEAN NOISE VOL TAOEI

FREQUENCY -

vb

I

G

\

"

Z

10

n

V

Large Signal Pulse Response

= 2S C

1\

&0

1\

•,.

2.

~

~

o

"

V

Vs = !o15 Y
TA

80

14;0:

£!

w 100

g~

,.
"Z

120

I

Z

~

15

~ I±l~ U

V5 1

TA = 25°C

::l

z

~ -10

g

-15 f--t----1----1---t-:h~---1

"'~
",w

Small Signal Pulse Response

,.•

~

8~

,.

..

,

~ 140

~i

POSITIVE SUPPL Y VOLTS -

Input Noise Voltage and
Noise Current as a
Function of Frequency

,.....
,.

~Z~~oc-

\
\

II
'"'?""

•

V,N

10

••

12•

TIME -

Jl8

4-159

180

200

o

20

40

so

80 100 120 140 180 180 200
TIME -

~s

J.LA 148 • J.LA248 • J.LA348
Typical Performance Curves (Cont.)
Supply Current as a
Function of Power
Supply Voltage

Input Bias Current as a
Function of
Ambient Temperature

•

Output Voltage Swing as a
Function of
Supply Voltage

0

50

80

>
I

0

"

5

+25.~,<......
3

2

1

~

0

4

V

>-

0

0

--:::::: ~ ~

or0

0
15

5

5

1

.."::!

10 Vs-

-t;::;- ~ l.:---

~

.

"

~
o

\-s•.c
\\
+r\
,.

o~

.

+125°C

10

2.

20

OUTPUT SOURCE CURRENT -

~"

o

z

~

t\-

0

f'..

-1 0
100

1 k

10 k

FREQUENCV -

100 k
Hz

1 M

J

15 V

25

20

30

mA

-25
-30

FREQUENCY -

-38
01

Hz

Gain Band Width as a
Function of Temperature

1DO
90

80

.
70

10k

50

"-\

r1>1
."..".

10 M

TA=25°C

PHASE

-10
-15

v~-\sV

1111
IIILIl

......,.~

-5

-20

""

25

Output Impedance as a
Function of Frequency

Gain as a Function of Frequency

'8

"

15

10

OUTPUT SINK CURRENT -

1\

o

20
V

0

mA

10

",

15

10

SUPPLY VOLTAGE -

+125°C

15

0

o

1\~ l'o-,-sJ.c

30

t\-

ICJ

105 125

QC

-5

20

I'-

85

V

+25°1\ f"\

-10

"iil

Ys - lS V
TA = 25 C C

"

65

V

10

V

Ie

CMRR and Open Loop
Frequency Response as a
Function of Frequency

0'

45

Vs

>

1\

0

25

-15

"z I::----

'l\

5

-5

V

20

>-

Output Voltage as a
Function of Sink Current

r'\,r\

25°C

V

0

t- f:;:E=='

TeMPERATURE -

>
I

=

V

30

0

~~5VS

.......

S

55 -35 -15

20

Ys '" 15 V

0

10

-

~~--

V

Output Voltage as a
Function of Source Current

o
'II
I
",so

'-..20V5

0
10

SUPPLY VOLTAGE -

11 0

~:>

.......

ot'-,

~ ......-> I--

TA

40

Z

40

GAIN

30
20

l

2k

\

FREQUENCY -

MHz

10

:l!

~

..~
:0

III

l!

2
I

3.0

S

;
z
~

20

"',48

10

.".

4·160

10
10

0
-55

·35

·15

5

25

45

TEMPERATURE -

85

ac

85

105 125

JLA 1458 • JLA 1558 Dual
Internally Compensated
Operational Amplifiers

F=AIRCHILO
A Schlumberger Company

Linear Products

Connection Diagram
8-Pin Metal Package

Description
The /LA 14581 /LA 1558 are a monolithic pair of Internally
Compensated High Performance Amplifiers
constructed using the Fairchild Planar epitaxial
process. They are intended for a wide range of analog
applications where board space or weight are
important. High common mode voltage range and
absence of "latch-up" make the /LA14581/LA1558
ideal for use as voltage followers. The high gain and
wide range of operating voltage provides superior
performance in integrator, summing amplifier and
general feedback applications.

Vee+

Vee-

The /LA 14581 /LA 1558 are short-circuit protected and
require no external components for frequency
compensation. The internal 6 db 1octave roll-off
insures stability in closed loop applications. For single
amplifier performance, see the /LA741 data sheet.

(Top View)

Order Information
Type
Package
/LA 1458
Metal
/LA 1458C
Metal
/LA 1558
Metal

The Fairchild /LA 14581 /LA 1558 slew rate has been
improved to 0.81/Ls typical.

• NO FREQUENCY COMPENSATION REQUIRED
• SHORT-CIRCUIT PROTECTION
• LARGE COMMON-MODE AND DIFFERENTIAL
VOLTAGE RANGES
• LOW POWER CONSUMPTION
• NO LATCH-UP
• MINI DIP PACKAGE
Absolute Maximum Ratings
Supply Voltage
Military (/LA1558)
Commercial (/LA 1458 and
/LA 1458C)
Internal Power Dissipation
(Note 1)
Metal Package
DIP
Differential Input Voltage (Note 2)
Common-Mode Input Swing
(Note 2)
Output Short Circuit Duration
(Note 3)
Storage Temperature Range
Operating Temperature Range
Military (/lA 1558)
Commercial (/LA 1458 and
/LA 1458C)
Pin Temperature (Soldering, 60 s)
Metal Package
Mini DIP (Soldering, 10 s)

Part No_
/LA 1458HC
/LA1458CHC
/LA 1558HM

Code
5W
5W
5W

•

Connection Diagram
a-Pin DIP

Vee+

OUTA
-IN A

OUTB

+INA

-IN B

Vee-

+IN B

±22 V

± 18 V

(Top View)

500 mW
310mW
±30 V

Order Information
Type
Package
/LA 1458
Ceramic DIP
/LA 1458
Molded DIP
/LA 1458C
Ceramic DIP
/LA 1458C
Molded DIP
/lA 1558
Ceramic DIP

± 15 V
Indefinite
-65°C to +150°C

Part No_
/LA 1458RC
/LA 1458TC
/LA1458CRC
/LA 1458CTC
/LA 1558RM

Code
6T
9T
6T
9T
6T

Notes on following pages.
4-161
.----------~

..

~-

..

.---- ----

-~-~---.-.--

JLA 1458 • JLA 1558
Equivalent Circuit

(Each Amplifier)

.....- - - t _ - - - - - - - - - - - - t _ - + V c c

r--t------;p-----~------

R6

27 II

OUTPUT

NON-INVERTING
INPUT

R7

22 II

INVE~J~~~---t--+----;---'

R5

39 kll

300

R1

R3

R2

R4

1 kll

50 kl!

1 kll

5 kll

L----~--~--~

__

30pFr---t-----t------------,

!l

R11

50 kll

----~--~---4_--~~-~----~--~-~~--VCC

Notes
1. Rating applies to ambient temperatures up to 70°C. Above
70°C ambient derate linearly at 63 mW / °C for the Metal
Package and 5.6 mW / °C for the mini DIP.
2 For supply voltages less than ± 15 V, the absolute maximum
Input voltage IS equal to the supply voltage.

3. Short CirCUit may be to ground or either supply. Rating applies
to + 125°C case temperature or 70°C ambient temperature.

4-162

JlA 1458 • JlA 1558
Electrical Characteristics

V S = ± 15 V T A = 25 0 C unless otherwise specified

Characteristic

Condition

Input Offset Voltage

RS:S 10 kll

~A1458C

~A1458

Min

Typ

Max

2.0

Input Offset Current
Input Bias Current
Differential Input Impedance
Parallel Input Resistance
Parallel Input Capacitance
Common-Mode Input
Impedance

0.3

f = 20 Hz,
Open Loop
f = 20 Hz

Common-Mode Input
Voltage Swing
Equivalent Input
Noise Voltage
Common-Mode
Rejection Ratio

±12
AV = 100
Rs = 10 kll
f = 1.0 kHz
BW = 1.0 Hz

Min

Max

Typ

Max

6.0

2.0

10

1.0

5.0

mV

.03

0.2

.03

0.3

0.03

0.2

~A

0.2

0.5

0.2

0.7

0.2

0.5

~A

70

Min

Unit

1.0

1.0

1.0

Mil

6.0

6.0

6.0

pF

200

200

200

Mil

±13

V

45

nV/yHz

90

dB

±13

±11

45

f = 100 Hz

~A1558

Typ

0.3

±13

±12

45

90

60

90

70

•

Open-Loop
VOUT = ± 10 V
20 k 100 k
20 k 100 k
50 k 200 k
V IV
_V_o_lta_g~e__
G_a_in__________~R~L~=
__2_.0__
kll
____~----~--~----+----r---4----+----r--~----+_----Av = 1
RS = 2.0 kll
Power Bandwidth
14
14
14
kHz
THD:s 5%
VOUT = 20 Vpk-pk
Unity Gain Crossover
Frequency (Open Loop)

1.1

1.1

1.1

MHz

Phase Margin
(Open Loop)

65

65

65

Degrees
dB

Gain Margin

11

11

11

Slew Rate

AV = 1

0.8

0.8

0;8

Output Impedance

f = 20 Hz

75

75

75

20

20

20

mA

± 14

V

Short-Circuit Output
Current
Output Voltage Swing
Power Supply Sensitivity
Vcc- = Constant
V cc+ = Constant
Power Supply Current
Power Dissipation

RL

=

±14

: 11

±14

± 12

RS:S 10 kll

30

150

30

1+

2.3

5.6

2.3

8.0

1-

2.3

5.6

2.3

8.0

VOUT = 0

70

170

70

240

The following specifications apply for 0 0 C
Input Offset Voltage

±12

10 kll

<

TA

<

150

~V IV

2.3

5.0

mA

2.3

5.0

mA

70

150

mW

30

70 0 C (~A 1458 and ~A 1458C) -55 0 C :S T A :S 125 0 C (~A 1558)

RS:S 10 kQ

Input Offset Current
Input Bias Current
Open-Loop
Voltage Gain

VOUT = ± 10 V
RL = 2.0 kQ

15 k

Output Voltage Swing

RL = 2 kQ

±1O

Average Temperature
Coefficient of Input
Offset Voltage

RS = 50 Il

± 13
15

4-163

7.5

12

6.0

mV

0.3

0.4

0.5

~A

0.8

1.0

1.5

~A

15 k

25 k

±9.0 ±13

± 10

15

VIV
± 13

V

15

~V/oC

•

llA 1458 • llA 1558
Typical Performance Curves for p.A 1458, p.A 1458C and p.A 1558
Vcc+ = +15 V, VCC- = -15 V, TA = 25°C unless otherwise noted
Open-Loop Voltage Gain as a
Function of
Power Supply Voltages

Power Bandwidth
(Large Signal Swing as a
Function of Frequency)

Output Voltage Swing as a
Function of
Load Resistance

120

2

!g

115

8

281Ittttl~~~~~

Z

110

4

~24~-1-1-tiT~t---r-~-H~

;;:

~

105

"~

100

!;
..o

g
~
o

9'

V

!;

85

40

60

90

15

12

18

POWER SUPPLY VOL.TAGE -

"
"~
w

140

g

;-20

-20

10

100

V

I I I II
10

'\
100 k

10 k

FREQUENCY -

LOAD RESISTANCE -

Hz

Power Dissipation as a
Function of
Power Supply Voltage

!l

Output Noise as a
Function of
Source Resistance

10 0

0
0
0
0
0

·100

t60

1111

10

'-120

t80

::;5 80r-~--t---H

RL = 2 k
VOLTAGE FOLLOWER
:::15 V SUPPLlES
THO < 5%

o

21

Open-Loop Frequency Response

z
;;:

5 12 r---t--,t---H

2

0

!8

~ 20r--1-1-t~+tt~~~ri-HitH

""~ 16 r---+--t-ft

6

90

80
30

1\

0

.-V

~

~

'"
10

100

10k

~

10 k

FREQUENCY -

~

Vo

~-

0-

L

V
V

0
0
0
0
0
0

[\

0

100 k 10M 10 M

20

Hz

60

10

14

18

POWER SUPPLY VOLTAGE -

22
V

SOURCE RESISTANCE -

11

Typical Applications
High-Impedance, High-Gain Inverting Amplifier

Quadrature Oscillator

v+
C2

C3
820 pF
1%

SINE
OUTPUT

820 pF
1%

01

+15 V

02

+15 V

>-.........._~COSINE

OUTPUT

R2

180 kll
1%

R

R1
1%

Note
1
f;
2... yC2R2C3R3
4-164

(R1C1 ; R2C2)

190 kll
1%

:r

C1
820 pF
1%

/-LA 1458 • /-LA 1558
Typical Applications (Cont.)
Compressor IExpander Amplifiers
01

R
R2

10 kll

Rl

+15 V

COMPRESSOR ......lv..kl\ll,.....~
INPUT

R3
10 kll

R

02

COMPRESSOR
OUTPUT

R5

03

R

1 kll

+15 V

R4
10 kll

EXPANDER
INPUT

>-----......
-<}-- ---<}-+-.......'VY-_-.....'"""4 > ___ EXPANDER
1/2
OUTPUT

MA1558
-15 V
R

04
EXPANDER

COMPRESSOR

Notes
MaxImum compression expansIon ratIo = R 11 R (10 kSl > R 2: 0)
DIodes 01 through 04 are matched FD6666 or equIvalent

Analog Multiplier
+15

v
R13
1.5 kll
1%

CURRENT SOURCE
lN9638
R2

20 kll
1%

AMPLIFIER
R14
25.8 kW
1%

R12

12 k!l
1%

Rl
20 kll
1%

> __...

E~OUT

1/2 MA1558
R5

-15 V

R3
20 kll
1%

5 kll
1%
-liN

R4
15 kll
1%
R7
150 kll

Rl0
150 kll
-15 V
• Matched to O. 1%

EOUT

=

100 EINl x EIN2

4-165

ZERO ADJUST

+15 V

•

~A3303 • ~A3403 Quad

FAIRCHILO

Operational Amplifiers

A Schlumberger Company

l,
Linear Products

Description
The !lA3303 and IlA3403 are Monolithic Quad
Operational Amplifiers consisting of four independent
high·gain, internally frequency·compensated
operational amplifiers designed to operate from a
single power supply or dual power supplies over a
wide range of voltages. The common mode input range
includes the negative supply, thereby eliminating the
necessity for external biasing components in many
applications. They are constructed using the Fairchild
Planar epitaxial process.
•
•
•
•
•
•
•
•

Connection Diagram
14-Pin DIP
OUT A
~IN

OUT 0

A

~IN

+IN A

+IN 0

v+

INPUT COMMON MODE VOLTAGE RANGE
INCLUDES GROUND OR NEGATIVE SUPPLY
OUTPUT VOLTAGE CAN SWING TO GROUND OR
NEGATIVE SUPPLY
FOUR INTERNALLY COMPENSATED
OPERATIONAL AMPLIFIERS IN A
SINGLE PACKAGE
WIDE POWER SUPPLY RANGE SINGLE SUPPLY
OF 3.0 TO 36 V
DUAL SUPPLY of ± 1.5 TO ± 18 V
CLASS AB OUTPUT STAGE FOR MINIMAL
CROSSOVER DISTORTION
SHORT CIRCUIT PROTECTED OUTPUTS
HIGH OPEN LOOP GAIN 200 k
'fA741 OPERATIONAL AMPLIFIER
TYPE PERFORMANCE

0

v~

OR GND

+IN B

+IN C

B

-IN C

~IN

OUT B

OUT C

(Top View)

Order Information
Type
Package
!lA3303
Molded DIP
!lA3403
Ceramic DIP
!lA3403
Molded DIP

Code
9A
6A

9A

Part No.
!lA3303PC
!lA3403DC
!lA3403PC

Equivalent Circuit (1 14 of circuit shown)
OUTPUT

r-------------~--------~~--~--~----~------+_~----~---V+

NONINVERTING _~f-----------++------,

INPUT

3,5,

10,12

INVERTING

INPUT

2,6,
9.13

11
~~~~------~--~--~--~--+---~----~--~~--~--~------~~----~~-V­
(GROUND)

4-166

ILA3303 • ILA3403
Absolute Maximum Ratings
Supply Voltage Between V+
and VDifferential Input Voltage
(Note 1)
Input Voltage (V-) (Note 1)
Internal Power Dissipation
(Note 2)
Operating Temperature Range
/LA3303
/LA3403

Electrical Characteristics

Storage Temperature Range
Molded Package
Ceramic Package
pfn Temperature (Soldering)
Molded Package (10 s)
Ceramic Package (60 s)

36 V
±30 V
-0.3 V(V-) to V+
670 mW

-55°C to +125°C
-65°C to +150°C
260°C
300°C

Notes
1. For supply Voltage less than 30 V between V+ and V-. the
absolute maximum input voltage is equal to the supply voltage.
2. Rating applies to ambient temperature up to 70°C. derate
linearly at 8.3 mW 1°C.

-40°C to +85°C
O°C to +70°C

Vs = ± 15 V. TA = 25°C unless otherwise noted.
/L3303

Characteristic

Condition

Min

Typ

Max

Input Offset Voltage

2.0

8.0

mV

Input Offset Current

30

75

nA

200

-500

nA

Input Bias Current
Input Impedance

f = 20 Hz

0.3

Input Common Mode Voltage Range

.:s

1.0

Unit

MQ

+12 to +12.5
-Vs
to -VS

V

70

90

dB

20

200

V/mV

Common Mode Rejection Ratio

RS

Large Signal Open
Loop Voltage Gain

VOUT = ± 10 V. RL = 2 kQ

Power Bandwidth

AV = 1. RL = 2 kQ. VOUT = 20 V pk-pk

18

kHz

Small Signal Bandwidth

Av= 1.RL= 10kQ.VOUT=50mV

1.0

MHz

10 kQ

Slew Rate

AV = 1. VIN = -10 V to + 10 V

0.6

V//Ls

Rise Time

Av = 1. RL = 10 kQ. VOUT = 50 mV

0.3

/LS

Fall Time

Av = 1. RL = 10 kQ, VOUT = 50 mV

0.3

/LS

Overshoot

AV = 1, RL = 10 kQ, VOUT = 50 mV

5.0

Phase Margin

Av = 1, RL = 2 kQ, CL = 200 pF

60

%
Degree

Crossover Distortion at f = 10kHz

VIN = 30 mV pk-pk, VOUT = 2 V pk-pk

Output Voltage Range

RL = 10 kQ
RL = 2 kQ

± 12
± 10
± 10

Individual Output Short Circuit Current (Note 3)

1.0

%

12.5
12

V
V

± 30

± 45

rnA
Q

30
30

150
150

2.8

7.0

/LV IV
/LV IV
rnA

10

mA

Output Impedance

f = 20 Hz

80

Power Supply Rejection Ratio

Positive
Negative

Power Supply Current
VOUT = 0, RL = co
The following specification apply for -55 ° C -< TA -< + 125 ° C
Input Offset Voltage
Storage Temperature Coefficient
of Input Offset Voltage

10

Input Offset Current

/LV 1°C
250

Average Temperature Coefficient
of Input Offset Current

50

Input Bias Current

nA

pA/oC
-1000 nA

Large Signal Open
Loop Voltage Gain

RL = 2 kQ, VOUT = ± 10 V

15

V/mV

Output Voltage Range

RL = 2 kQ

± 10

V

4·167

•

JLA3303 • JLA3403
Electrical Characteristic

Vs = +5.0 V, Vs- = Gnd, TA = 25°C unless otherwise noted.
/LA3303

Characteristic

Min

Condition

Typ

Max

Unit

Input Offset Voltage

10

mV

Input Offset Current

75

nA

Input Bias Current

-500

nA

Large Signal Open
Loop Voltage Gain

RL = 2 krl

20

RL = 10 krl
RL = 10 krl, 5.0 V .:::s Vs .:::s 30 V

3.5
(V+)
-1.7

Power Supply Rejection Ratio
Output Voltage Range (Note 4)

150

Power Supply Current

2.5

Channel Separation
Electrical Characteristics

V/mV

200

f = 1 kHz to 20 kHz (Input Referenced)

7.0

-120

/LV IV
V pk-pk
V pk-pk
mA
dB

Vs = ± 15 V, TA = 25°C unless otherwise noted
/LA3403

Typ

Max

Input Offset Voltage

2.0

8.0

mV

Input Offset Current

30

50

nA

-200

-500

nA

Characteristic

Condition

Min

Input Bias Current
Input Impedance

f = 20 Hz

Input Common Mode Voltage
Range

Unit

0.3

1.0

Mrl

+13
to
-Vs

+13.5
to
-Vs

V

Common Mode Rejection
Ratio

Rs.:::s 10 krl

70

90

dB

Large Signal Open
Loop Voltage Gain

VOUT = ± 10 V, RL = 2 krl

20

200

V/mV

Power Bandwidth

Av = 1, RL = 2 krl,
VOUT = 20 V pk-pk

9.0

kHz

Slew Rate

Av= 1,RL= 10krl,
VOUT = 50 mV
Av= 1,VIN=-10Vto+10V

0.6

V I /LS

Rise Time

Av=

1,RL= 10krl,
VOUT = 50 mV

0.3

/LS

Fall Time

Av = 1, RL = 10 krl,
VOUT = 50 mV

0.3

/Ls

Overshoot

Av = 1, RL = 10 krl,
VOUT = 50 mV

5.0

%

Phase Margin

Av = 1, RL = 2 krl,
CL = 200 pF

60

Degree

Crossover Distortion at
f = 10 kHz

VIN = 30 mV pk-pk,
VOUT = 2 V pk-pk

Output Voltage Range

RL = 10 krl
RL = 2 krl

± 12
±10

± 13.5
± 13

Individual Output Short Circuit
Current

(Note 3)

± 10

±30

Output Impedance

f = 20 Hz

80

Power Supply Rejection Ratio

Positive
Negative

30
30

150
150

Power Supply Current

VOUT = 0, RL =

2.8

7.0

Small Signal Bandwidth

00

4·168

1.0

MHz

1.0

%

V
V
±45

mA
rl
/LV/V
/LV IV
mA

~A3303 • ~A3403
Electrical Characteristics

Vs =

± 15 V, -55°C

S TA

s

+125°C
/LA3403

Characteristic

Min

Condition

Typ

Input Offset Voltage
Average Temperature
Coefficient of Input
Offset Voltage

Max

Unit

10

mV

10

/LV 1°C

Input Offset Current

200

Average Temperature
Coefficient of Input
Offset Current

nA
pA/oC

50
-800

Input Bias Current
Large Signal Open
Loop Voltage Range

RL

Output Voltage Range

RL

Electrical Characteristics

Vs

= 2 kfl, VOUT = ±
= 2 kfl

= +5.0 V,

Vs-

10 V

nA

15

V/mV

± 10

V

= G, TA = 25°C unless otherwise noted.
/LA3403
Typ

Max

Unit

Input Offset Voltage

2.0

10

mV

Input Offset Current

30

50

nA

Input Bias Current

-200

-500

nA

Characteristic

Condition

Large Signal Open
Loop Voltage Gain

RL

Min

= 2 kfl

20

200

Power Supply Rejection Ratio
Output Voltage Range
(Note 4)

RL
RL

= 10 kfl
= kfl, 5.0 V S

Vs S 30 V

3.5
(V+)
-1.7

Power Supply Current

7.0

2.5
f = 1 kHz to 20 kHz (Input
Referenced)

Channel Separation

V/mV
/LV/V
V pk-pk
V pk-pk

150

Notes
3. Not to exceed maximum package power dissipation.

rnA

-120

dB

4. Output will sWing to ground.

Typical Performance Curves
Large Signal Open Loop
Voltage Gain as a
Function of Frequency

Output Voltage as a
Function of Frequency

Sine Wave Response

0
Av '" 100

(

"

'I' /' If

Vs """ ±15 V
RL = 10 kO

0

l

IV IV U IV \
r...

h

,,-..

..-..;

TA = 25°C

5

5

'\

o.

"r-

r.

NOTE Clas. AB output stage produces

-201·"0,ua-t'0;-ll''-:'~00l..lJL';-!;0:-tk..Ll'-;:'0~kl..J.J.';':;!;''~kJ..C,~.0 M
FREQUENCY -

dlstortlonles. sinew."e
50 "s/DIV

Hz

10 k
FREOUENCY -

4·169

100 k
Hz

10M

•

JLA3303 • JLA3403
Typical Performance Curves (Cont.)
Output Swing as a
Function of
Supply Voltage

Input Bias Current as a
Function of
Supply Voltage

Input Bias Current as a
Function of Temperature

40

t

~

=125°~_

400

J,

=

180

~'5~-

;f
300

I 30
w

"~

w 20

>

~

-

200

~o

IL

10

100

/

:J

"

r--.....,

/

o

00

2.0 4.0 60 80

10

12

14

16

V+ AND VPOWER SUPPLY VOLTAGES -

18

20

o

-75 -55 -35 -15 50

25

45

65

15°0

85 105 125

20 40 60 80

10

12

14

16

V t AND y._,
POWER SUPPLY VOLTAGES -

TEMPERATURE _ °C
V

18

20

V

Typical Applications
Multiple Feedback Bandpass Filter

Wein Bridge Oscillator
50 kll
r-----~~~----_.---VOUT

~~~~--e-R~3
R1

C2
10 kll

VREF

1
2

C

-v+
R
R

fo '= center frequency
BW = Bandwidth
R in kfl

C '" I'F
fo
0= BW

1

fo

<

C1 = C2 =

= 2".RC

10

o

=

for fo
1 kHz
R = 16 kfl
C = 0.011'F

Comparator With Hysteresis

"3

HYSTERESIS

R2

R1 = R2 = 1 }
R8 = 90 2 - 1

Use scaling factors," these expressions.

VOHEffL
VOUT VOUT
I
VOL
VINL I V,NH

R1

-"""...,...,.----t
Y,N ----------4

VREF

If source impedance is high or varies, filter may be preceded with
voltage follower buffer to stabilize filter parameters.
Design example:
given: 0 = 5, fo = 1 kHz
Let R 1 = R2 = 10 kfl
then R3 = 9(5)2 - 10
R3 = 215 kfl
C =

C

5

3' =

I

VREF

R1
VINL = R1

1.6 nF

+

R2 (VOL - VREF)

R1
VINH = R1
H

4-170

=

+ R2

(VOH - VREF)

R1
R1

+ R2

(VOH - VOL)

+

VREF

+ VREF

~A3303 • ~A3403
Typical Applications (Cont.)
High Impedance Differential Amplifier

AC Coupled Inverting Amplifer

RS

Rt
100 kll

VI

R2
Vour

Co

Rl

R2
100 kll

R3

V+ -I/V"I"'-~
Cl
+

R4

10"F

R

I

RS
V2
R7

VOUT = C(1
R2

As

+ a + b)(V2

RI

AV

=Ri"

AV

= 10 (as shown)

•

Voltage Reference

- VI)

R6

== R7 lor best CMRR

V+

Rl = R4
R2 = R5

R2
10 kll
VOUT

Gain =

R6
As

(

1

2Rl )
+ R3
= C (1 + a + b)
Rl
10 kll

AC Coupled Non-Inverting Amplifier
Rl
100 kll

R2
1 Mll

Rl

VOUT

=

VOUT

="2 VCC

Rl

+ R2

(V+
=""""2

as shown

)

1

Ground Referencing a Differential Input Signal
Rl
1 Mll

RS
100 kll

Your

R2
VA

1 M!l

R3

Av

= 11

1 Mll

(as shown)

4·171

JLA3303 • JLA3403
Typical Applications (ConI.)
Voltage Controlled Oscillator
0.05 ~F
R1
100 k!!
51 k!!
10k!!

OUTPUT 1

R2

50 k!!

~
OUTPUT 2

10 kll

Function Generator
VAEF

=

1

2

TRIANGLE WAVE

OUTPUT

v+

R2

SQUARE WAVE

300 kll

OUTPUT

VREF

R

100 kll

' - - -......-VREF

Rl + R2
f = 4CRfR 1

if

R2Rl
R3 = R2 + R 1

Pulse Generator
Rl

1N914

VOUT

R2

150 kn

R3

100 kll

R5

+

11 n
L.J L-

100 kll...J

o

'W,de Control Voltage Range.
OVDC ~ Vc ~ 2 (V+ - 1.5 VDC)

4·172

JLA3303 • JLA3403
Typical Applications (Cont.)
Bi-Quad Filter
R

R

C

Cl

VIN

c
R2

100 kll

100 kll

--f ......_..JVv.,-~

100 kll

BANDPASS
OUTPUT
VREF

VREF

VREF

R3

Rl
R2

Cl

f---NOTCH OUTPUT

VREF

•

BW

0=

fa"

where

TBP = Center Frequency Gain
TN =Bandpass Notch Gain
I
'0 = 2.-RC

RI = OR
R1
R2 = TBP

R3 = TNR2
C1 = 10 C
Example'
= 1000 Hz
BW = 100 Hz

'0

TBP = 1
TN = I
R = 160 kll
RI = 1.6 Mil
R2=1.6MU
R3= 1.6 Mil
C = 0.001 JlF

4·173

ILA4136
Quad Operational
Amplifiers

FAIRCHILO
A Schlumberger Company

Linear Products
Connection Diagram
14-Pin DIP

Description
The ~A4136 Monolithic Quad Operational Amplifiers
consists of four independent high gain, internal
frequency compensated operational amplifiers. The
specifically designed low noise input transistors allow
the ~A4136 to be used in low noise signal processing
applications such as audio preamplifiers and signal
conditioners. They are constructed using the Fairchild
Planar Epitaxial process. The simplified output stage
completely eliminates crossover distortion under any
load conditions, has large source and sink capacity,
and is short circuit protected. A novel current source
stabilizes output parameters over a wide power supply
voltage range.

-IN A,.. ---'_---,
+IN A

UNITY GAIN BANDWIDTH 3 MHz
CONTINUOUS SHORT CIRCUIT PROTECTION
NO FREQUENCY COMPENSATION REQUIRED
NO LATCH-UP
LARGE COMMON MODE AND DIFFERENTIAL
VOLTAGE RANGES
• ~A741 OPERATIONAL AMPLIFIER
TYPE PERFORMANCE
• PARAMETER TRACKING OVER
TEMPERATURE RANGE
• GAIN AND PHASE MATCH
BETWEEN AMPLIFIERS

OUT A

OUT D

OUT B

v+

+IN B

OUTC

-IN B

+IN C

v-

-IN C

•
•
•
•
•

(Top View)

Order Information
Type
Package
~A4136
Ceramic DIP
~A4136C
Ceramic DIP
~A4136C
Molded DIP

Code
6A
6A
9A

Part No.
~A4136DM

~A4136DC
~A4136PC

Equivalent Circuit (114 of circuit shown)
11

v,~------~~----------~--~~--------------~------~~--,
Rl
87 k

OS~----------+-~~=---------------+-~~~

+-_____-------['

all

R6
50

INVERTING
INPUT

R8
100

3,4,10,12 OUTPUT

R4
50 k

NONINVERTING
INPUT

R9
68 k

R2
S k

R3
5 k

RS

50 k

~~--~--~----~------~--------------~----~------~----~--~
4-174

J.LA4136
Pin Temperature
Molded Package (10 s)
Ceramic Package (60 s)

Absolute Maximum Ratings
Supply Voltage
±22 V
I£A4136
I£A4136C
± 18 V
Differential Input Voltage (Note 1) ±30 V
Input Voltage (Note 1)
± 15 V
Internal Power Dissipation
(Note 2)
670mW
Output Short Circuit Duration
(Note 3)
Indefinite
Operating Temperature Range
-55°C to +125°C
1£A4136
I£A4136C
O°C to +70°C
Storage Temperature range
Molded Package
-55°C to +125°C
Ceramic Package
-65°C to +150°C
Electrical Characteristics

TA

Notes
1. For supply voltage less than ± 15 V, the absolute maximum
Input voltage IS equal to the supply voltage
2 Rating applies to ambient temperature up to 7D·e Above
T A = 7D·e, derate linearly at 8 3 mW I·e
3 Short CircUit may be to ground, one amplifier only
Ise = 45 rnA (TYPical)

= 25°C , Vs = +- 15 V unless otherwise specified
I£A4136

Characteristic

Condition

Input Offset Voltage

Rs.::5 10 kf!

Min

Input Offset Current
Input Bias Current
Input Resistance
Large Signal Voltage Gain
Output Voltage Swing

=±

10 V

Transient Response
(Unity Gain)
Overshoot
Unity Gain Bandwidth

Unit

5.0

0.5

6.0

mV

5.0
40

200
500

5.0
40
5.0

200
500

nA
nA

0.3
20 k

Mf!

300 k

±12

± 14

V

RL ~ 2 kf!

±10
± 12

± 13
±14

± 10
± 12

±13
±14

V
V

RS.::5 10 kf!

70

90

70

90

dB

RS.::5 10 kf!

Channel Separation
(Open Loop)
100)
(Gain

F

30

150

30

150

I£V IV

210

340

210

340

mW

= 2 kf!,

0.13

0.13

I£S

=

= 2 kf!,

5.0

5.0

%

3.0
1.5

3.0
1.0

VII's

105

105

dB

105

105

dB

VIN
20 mV, RL
CL.::5 100 pF

RL

"

=

VIN
20 mV, RL
CL.::5 100 pF

Slew Rate (Unity Gain)

=

Max

0.5

5.0
50 k 300 k
± 12 ± 14

Power Consumption
Transient Response
(Unity Gain)
Risetime

Max

0.3
RL ~ 2 kf!, VOUT
RL ~ 10 kf!

Input Voltage Range
Common Mode
Rejection Ratio
Supply Voltage
Rejection Ratio

I£A4136C
Typ
Min

Typ

~

2 kf!

= 10 kHz, RS = 1 kf!
f = 10 kHz, RS = 1 kf!

MHz

The following specifications apply for -55°C .::5 TA.::5 +125°C for I£A4136: O°C .::5 TA.::5 +70°C for I£A4136C.
Input Offset Voltage

RS.::5 10 kf!

Input Offset Current
Input Bias Current
Large Signal Voltage Gain
Output Voltage Swing
Power Consumption

RL ~ 2 kf!, VOUT
RL ~ 2 kf!
Vs
± 15 V

=±

10 V

=
TA = High
TA = Low

4·175

6.0

7.5

mV

500
1500

300
800

nA
nA

25 k

15 k

±12

± 10

V

180

300

180

300

mW

240

400

240

400

mW

•

~A4136
Typical Performance Curves
Input Bias Current as a
Function of
Ambient Temperature

..

,

!-Ys

1

Input Offset Current as a
Function of
Ambient Temperature

•

1 J

Vs =

i15

Ls

v

Common Mode Range as a
Function of
Supply Voltage
r--

80

I

!<

i 6•
i3

..

40

!

•

;

~

•
•

-

•

r--

•
•

10

20

30

40

50

60

...... ----

•

70

10

TEMPERATURE _ GC

~
w

"

~

g

•
•
•
•
•

•
Ys

"'

•

600

"'I'\.

4

3

~400

'I'\.
'I'\.

~
"'

1 k

50

10

70
SUPPLY VOLTAGE -

°C

=1+ 15 V

24

~

I 220

10 k

FREOUENCY -

100 k

1 M

10 M

i

•

t--

f5

~
10

Hz

Typical Output Voltage as a
Function of
Supply Voltage

20
30
40
SO
TEMPERATURE _ °C

80

• T, =12.J C I

26

•

Ys '" ±15 v

V

4

2

.

• /
•,
SUPPLY VOLTAGE -

±V

r-- I--

200

•

18

180
20
30
40
SO
TEMPERATURE _ °C

i"co
...
:>
...
:>

.
."
...
".
0

~

II

,.
4·176

70

TA = 25°C
3& Vs = ±1SV
RL = 2 kn

32

2.

.••
16
1•

1\

0

LOAD RESISTANCE -

80

4.

>
I

•
•

~

t---.

10

t-

I---'

Z

!;
o

Y

Output Voltage Swing as a
Function of Frequency

/

2

~

.......

70

Output Voltage Swing
as a Function of
Load Resistance
>

"

8

It "" 21r.{J

1+15

o Vs =

z
o
~

... •

±V

Power Consumption as a
Function of
Ambient Temperature

•

•

-2

100

40

z

I'\.
10

30

Open Loop Gain as a
Function of Temperature
BOO

III •
z

20

TEMPERATURE _

Open Loop Voltage Gain as a
Function of Frequency

,.•
,..1-

I--

.

,
kn

~

1'1

•

•

100

I'-1•

1••
FREQUENCY -

100 •
HI

1 M

JLA4136
Typical Performance Curves (Cont.)

Quiesent Current as a
Function of
Supply Voltage
10
TA

1

8

J

..-

~

~

B
!ii

o"
2

12
SUPPLY VOLTAGE -

15

"0

r-

•

18

."...... -.

II

0
-025

10% RISE
TIME

025

:tv

050

TA
Vs
AL
CL

075

10

10

~
1 10~~-+~~+-~~-+H+~++~
I

30

.0

•

140

,. jW-.J.
0

'II

I 10o

Z

o

~

r-.~

LIJ l•.l

Vs=±15V

so

.

~

::: 80
w

~ 10

!l! •0
l!

oz

"
10

100

,.

FREQUENCY -

10.

07

100

10

Hz

1k

10.

100 k

Hz

06 rAv = 40 dB

Distortion as a Function of
Frequency VOUT = 1 Vrms

~

OS

'"I

f -= 1 kHz
Rs = 1 kU

Ys=±30Y
AIAA COMPENSATION

o.

Z

0

~

0:

OS

0

0

in o.

o.

Ci

I

"

..

iii 03
0

C
J:

O.

...:J0
...

01

./

J

00~~,0~.~0~3~0:.~0~stO~.~0:7tO~870-.~0~,0
OUTPUT VOLTAGE

"iii0

'"

:iJ:
...:J

...0

03
02

1\

01

1..1

o
10

100

10.

1k
FREQUENCY -

4-177

Hz

10

100

"

FREQUENCY -

07

Ys = ±1S v
RL ,. 2 k

'"I

z

10

FREQUENCY -

=

20
0

100 k

Total Harmonic Distortion as a
Function of
Output Voltage f
1 kHz

0:

20
TIME -~.

Channel Separation

~

Q

l-

-10

100 1"""T-m-r-rr-n-,-r-rrT"""T-rrrr.,...,..,.,,,.....,

~100~+H-+~~+-~~-+H+~++~
I

if

-4

1\

•

-8

125

Input Noise Current as a
Function of Frequency

I~

··• ,
• -

./

-lI

== 25~C
== -15 V
= 2 k!l
= 100 pF

I
I

I
I

~s

TIME -

Input Noise Voltage as a
Function of Frequency

II

I

~

I

8

•

0

...!1!

~--

~

I

2

±15 V

.-

w

-j .0%

16

I

0:

i

Ys

4

0

I

"

10
TA = 25°C

25°C

8

~
0:

i"

Voltage Follower Large Signal
Pulse Response

Transient Response

100 k

10 •
Hz

100.

f.LA4136
Typical Applications
400 Hz Lowpass Butterworth Active Filter
10 k

20 k

620

n

INPUT'--~--~r--4-~AA~~--------------~AA__------------------~------------JV~--------~~--OUTPUT

0.331'F

1 k

1 k

-I

I

12

I

I

I

II'A41 36

I

_______

-----t--

+ _____
o 331'F

O.331'F

1 62 k

1.62 k

1 k

1k

o 331'F

Differential Input Instrumentation Amplifier with
High Common Mode Rejection
R2'
10 k

R6t
100 k
0.1%

1%

OUTPUT

Rl

~

R4

R2 ~ R5
R6 ~ R7
t 'MATCHING DETERMINES CMRR

R3
10 k

1%

A
V

R4
45 k
1%
R5'
10 k
0.1%

R7t
100 k
0.1%

4-178

~ R6 il ~
R2 \

1...B.l)
R3

13.2 k

~A4136
Typical Applications (Cont.)
Analog Multiplier / Divider
-15 v
10 k

10 k

i
10 k

D.
LM103

Q,.
10 k
E1

10 k

2
6

EOUT ~

E1 E2

E3

-=-

1 k
6

10 k

-=-

10 k

-=Q2'

10 k

10 k

E3

E2

1 k
6
02
IN457
10 k

10 k

-=-

-=-

-=-

-=1 kHz Bandpass Active Filter
390 k

v+

O.OlI1F

120 k

V+

V,N

VOUT

390 k

39 k

O.OlI1F
620

(1

-=-

-=620 k

-=-

r

100 k

100 k

1Ol1F

-=-

-=V+

4·179

•

/-LA4136
Typical Applications (Cant.)
Full-Wave Rectifier and Averaging Filter
20 k
2,0%k
2.5 k
DC
1%
r--------------~~----------------JVV'v-~~C~A~L-.-OUTPUT

4.7 flF

INP~~-!jHI-+~-""''v-----.JVI/'v----...,
4.7 flF

2,0%k

4.7 flF

'0 k
1%

D2
FD 6666

5.' k

'1) k

Notch Filter Using the !J.A4136 as a Gyrator

Multiple Aperture Window Discriminator

R2
30 k

V4-1---~

INPUT

OUTPUT

,..------,

TRIM R. SUCH THAT
R'
R3
-=-R2
2 R4

C,

V3

0,

7.5 k
R4

C2

R4

' flF

V,

VIN

V,

Notch Frequency as a Function of C1

03

'0 k

VIN <

, k

v,

I

I

'00

'0
00001

"
0001

00'

0'

, 0

C1 - CAPACITOR - IJF

4·180

V,

<

V3

FAIRCHILO
A SchlLimberger Oompany

.

.'

,

Voltage Regutatol'$

.Hybrid Voliage Regulators
Operational Amplifler~
Comparators

Data Acquisition
.Telecommunications
' .

.'

Special Functions •

I

HI Rei Processing·

Package Outlines

F.alrchitd Sales. Offices. "\. .
/'

,

~

5-2

jlA710
High-Speed
Differential Comparator

FAIRCHILO
A Schlumberger Company

Linear Products

Description
The J.lA 710 is a Differential Voltage Comparator
intended for applications requiring high accuracy and
fast response times. It is constructed on a single
silicon chip using the Fairchild Planar epitaxial
process. The device is useful as a variable threshold
Schmitt trigger, a pulse-height discriminator, a voltage
comparator in high-speed a / d converters, a memory
sense amplifier or a high noise immunity line receiver.
The output of the comparator is compatible with all
integrated logic forms.
•

Connection Diagram
8-Pin Metal Package
v+

5 mV MAXIMUM OFFSET VOLTAGE

v-

• 5 J.lA MAXIMUM OFFSET CURRENT
•
•

1000 MINIMUM VOLTAGE GAIN
20 J.lV/oC MAXIMUM OFFSET VOLTAGE DRIFT

(Top View)

Pin 4 connected to case

Absolute Maximum Ratings
Positive Supply Voltage
Negative Supply Voltage
Peak Output Current
Differential Input Voltage
Input Voltage
Internal Power Dissipation
(Note 1)
Metal Package
Molded DIP
Storage Temperature Range
Metal Package, Ceramic DIP
Molded DIP
Operating Temperature Range
Military (J.lA710)
Commercial (J.lA71OC)
Pin Temperature (Soldering)
Metal Package, Ceramic DIP
(60 s)
Molded DIP (10 s)

+14.0 V
-7.0 V
10 rnA
±5.0 V
±7.0 V

Order Information
Type
Package
J.lA710
Metal
J.lA710C
Metal

Part No_
J.lA71OHM
J.lA710HC

Code
5W
5W

Connection Diagram
14-Pin DIP
500 mW
670 mW
-65°C to +150°C
-55°C to +125°C
-55°C to +125°C
O°C to +70°C

300°C
260°C

NC

NC

GND

NC

+IN

NC

-IN

v+

NC

NC

v-

OUT

NC

NC

(Top View)

Order Information
Type
Package
J.lA710
Ceramic DIP
J.lA710C
Ceramic DIP
J.lA710C
Molded DIP

Notes
1 Rating applies to ambient temperatures up to 70°C Above
70°C ambient derate linearly at 6.3 mW / °C for metal package,
83 mW/oC for DIPs
5-3

Code
6A
6A
9A

Part No_
IlA710DM
J.lA71ODC
IlA710PC

•

p,A710
Equivalent Circuit
r--------------1~----~------~._---V+

R4
2.8 kD

R3
1.1 kD

05
R2
500 D

R1
500 D

02
6.2 V

OUTPUT
NONINVERTING
INPUT

---+---------£

02
01
6.2 V

INVERTING
INPUT

GROUND

R8
100 !l

R7

68 !l

~------------~-----v-

5-4

f,LA710
!LA710
Electrical Characteristics

TA = 25°C, V+ = 12.0 V, V- = -6.0 V unless otherwise specified.
Typ

Max

Unit

0.6

2.0

mV

Input Offset Current

0.75

3.0

!LA

Input Bias Current

13

20

!LA

Characteristic
Input Offset Voltage

Condition (Note 2)
RS

~

Min

200 Q

Voltage Gain

1250

Output Resistance
Output Sink Current

~VIN 2:

2.0

5 mV, VOUT = 0

Response Time (Note 3)

1700
200

Q

2.5

mA

40

ns

The following specifications apply for -55°C -< TA -< +125°C
RS ~ 200 Q
Input Offset Voltage

3.0

mV

RS = 50 Q, TA = 25°C to TA = +125°C
RA = 50 Q. TA = 25°Cto TA = -55°C

3.5
2.7

10
10

!LV 1°C
!LV 1°C

0.25
1.8

3.0
7.0

!LA
!LA

5.0
15

25
75

nA/oC

27

45

!LA

Input Voltage Range

= +125°C
= -55°C
TA = 25°C to TA = +125°C
TA = 25°C to TA -55°C
TA = -55°C
V- = -7.0V

Common Mode Rejection Ratio

Rs

Average Temperature Coefficient
of Input Offset Voltage
Input Offset Current
Average Temperature Coefficient
of Input Offset Current
Input Bias Current

TA
TA

~

200 Q

±5.0
80

V
100

dB

±5.0

Differential Input Voltage Range
Voltage Gain

nA/oC

V

1000
3.2

4.0

V

-0.5

0

V

0.5
1.0

1.7
2.3

5 mV, 0

Output LOW Voltage

~VIN 2:

5 mV

Output Sink Current

TA
TA

Positive Supply Current

VOUT ~ 0

5.2

9.0

mA

Negative Supply Current

VOUT

= GND, Inverting Input = +5 mV
VOUT = GND, Inverting Input = + 10 mV

4.6

7.0

mA

90

150

mW

lOUT

~

-1.0

~VIN 2:

Power Consumption

~

2.5

Output HIGH Voltage

5.0 mA

= +125°C, ~VIN 2: 5 mV, VOUT = 0
= -55°C, ~VIN 2: 5mV, VOUT = 0

mA
mA

Notes
2 The Input offset voltage and input offset current are specIfied
for a logic threshold voltage as follows For 710, 1.8 V at
-55'C, 1.4 V at +25'C, 10 V at +125'C. For 710C. 1.5 V at
O'C, 14 V at +25'C, and 1.2 V at +70'C.

3. The response time specified IS for a 100 mV input step with
5 mV overdrive.

5·5

J,LA710
JLA710C
Electrical Characteristics

TA

= 25°C, V+ = 12.0 V, V- = -6.0 V unless otherwise specified

Characteristic

Condition (Note 2)

Input Offset Voltage

RA:5 200 Q

Typ

Max

Unit

1.6

5.0

mV

Input Offset Current

1.8

5.0

JLA

Input Bias Current

16

25

JLA

Min

Voltage Gain

1000

Output Resistance
~V'N 2: 5 mV, VOUT

Output Sink Current

1.6

= 0

Response Time (Note 2)

1500
200

Q

2.5

mA

40

ns

The following specifications apply for 0 ° C --< TA --< + 70 ° C
Input Offset Voltage
RS:5 200 Q
Average Temperature Coefficient
of Input Offset Voltage

RS

= 50 Q, TA = O°C to TA = +70°C

6.5

mV

5.0

20

JLV/oC

7.5

JLA

15
24

50
100

nA/oC
nA/oC

25

40

JLA

Input Offset Current

Input Voltage Range

= 25°C to TA = +70°C
= 25°C to TA = O·C
TA = O°C
V = -7.0 V

±5.0

Common Mode Rejection Ratio

RA:5 200 Q

70

Average Temperature Coefficient
of Input Offset Current
Input Bias Current

TA
TA

98

Differential Input Voltage Range

±5.0

Voltage Gain

800
~V'N

Output HIGH Voltage

dB
V

2.5

3.2

4.0

V

-1.0

-0.5

0

V

VOUT:5 0

5.2

9.0

mA

= GND, Inverting Input = +5 mV
VOUT = GND, Inverting Input = + 10 mV

4.6

7.0

mA

90

150

mW

2: 5 mV, 0 :5 lOUT :5 5.0 mA

Output LOW Voltage

~V'N 2: 5 mV

Output Sink Current

~VIN

Positive Supply Current
Negative Supply Current

2: 5 mV, VOUT

=0

0.5

mA

VOUT

Power Comsumption

V

Notes on preceding page

Typical Performance Curves for JLA710

Voltage Transfer Characteristic
0

1800

c---~,-I12VI
V

-80 V

V

0

T,

TA

//1

=

125°C

1600

50

30

"

2000

L

\

1500

10

30

50

/"

/"

i--

-':;;("
J,~

~_<;o"

~

.,.- V ;!;/"'
.,.-V
1000/

\

,/

500

1300

10

INPUT VOLTAGE-mY

._ V

'\

\

.,.--

I-- T~ ~ 2'I,C

2500

1400

0

3000

=

1500

VI

0

Voltage Gain as a
Function of
Supply Voltages

_J+
~ ~2 v 1._
v- -60 V

TA "" 25°C

III

-

i'-

1700

!.
'II V~
'I';
Il

55°C

0

0

Voltage Gain as a
Function of
Ambient Temperature

60

-20

20

60

TEMPERATURE-OC

5·6

100

140

10

11

12

13

POSITIVE SUPPLY VOLTAGE-Y

14

JLA710
Typical Performance Curves for
Input Bias Current as a
Function of
Ambient Temperature
50

(Cont.)

Input Offset Current as a
Function of
Ambient Temperature
2'

~~ ;~~>

Common Mode Rejection
Ratio as a Function of
Ambient Temperature
104

t,

l2v.I._

v- "- -60 V

1\

1

40

'"i

~A710

I

30

"
<.>

~

20

"'

10

I'

."

:::o

-

...............

~

60

20

100

60

20

~

~

5

90

~
8

85

......

,/

~

il!

I"--

2

~

5

80

60

20

so

20

•

•6'
~

40

"'

30

~
o
~

"~

"o

20
10

0

2Jmt
I I

10mV

1111

2. ~v
I

V

II/V

~

5QiV

>

100

~~

50

!!:~

g

vi"" +12 V
V-=-6DV

T,=rl

c

g

'E

~I

..""'
"
!~

'\ iY'

r-~OmV

~10

60
TIME-nl

80

100

120

~

.

NEGATIVE OUTPUT LEVEL

1
~

2.

20

so

100

140

TEMPERATURE-OC

Common Mode Pulse RellPonse

I'-

10'
V+"'+12V

50

y- == -60 V

Tr=rl

>

1
40

10

I- r!:E~THAES"OLO

I
r- I20mV

0

20

~

""'"

r:::

10

"~

"0

-10

.. f

140

Response Time for
Various Input Overdrives
> 4.
~ 3.
2QmY
.\ r-~ 2.
50mV

I
,~

20

•

100

60

140

o"

TEMPERATURE-OC

Response Time for
Various Input Overdrives

~

10
20

100

~~SITivEJ.
WJ-~+ ~1'2VI._
~EVEL v ~-60V

.
•

-60 V

"
20

so

Output Voltage Levels as a
Function of
Ambient Temperature

t-.....

15

140

100

2.

20

~

TEMPERATURE-OC

.........

TEMPERATUAE-OC

>
I

• 6.
4

I

•

"-

o

140

J,~ \2V I_

25

"~

.........

5

r-..

g
,. ..

100

v- -

"<.>

'"

~..

3

I

~

~

5

V-=-6DY

I_

r-.....

z

6'

20

I

r-....

..

Output Sink Current as a
Function of
Ambient Temperature

J,= \2v l _

.

......

TEMPERATURE-OC

Power Consumption as a
Function of
Ambient Temperature

~
I

100

<.>

20

TEMPERATUAE-OC

100

"- I.......
.........

•so

~

\2v l

V
-70Y
-SOV:-:oVCM_ TSOV_

~
6
i!:o '

.........

14.

102

§

"'

I--

o

'\

10

~

r-..

~

\

<.>
"'"

o

i

I

~

~

ffi
il!

L

ill

20

4{)

60
TIME-ns

5-7

80

100

C
120

40

so
TIME-n.

120

16.

•

f,lA710
Typical Performance Curves for ILA710C

Voltage Transfer Characteristic

1700

0

-

I--

"",f.!I

TA! ",Ie

0

1600

'/

0

I

0

TA= 70 0

- 50

"

~g

1500

1400

r=i
10

60

i-

30

50

~

30

i3

....
'"~

0

30

40

50

1'-.

~

"-

l!;

i"-....
o

20

O~

15

V~"
12~._
V-=-60V

..
I'

0

10

20

30

40

50

60

70

10

20

40

-

~

w

g

'5
-- ---

-

'"
Z

~

80

30

0

10

20

30

40

50

TEMPERATURE-DC

60

70

60

70

vl=12~._

-I--

'.0

r--.

~f---+--+-+-4--t--f---+

t--------- POSlTliE OUYUT LiVEL

LOGI~ THR~SHOLJ VOLTAGE- t---

10

t---t-----+-~f__-~--+-~

94f--+--+-+-+--+--f----1

NEGATIVE OUTPUT LEVEL

8
75

50

V-~-60V

f---+-+-.j--- -5.0 V~VCM:S +50 V_

'"oz 9,r-r-

§

40

Output Voltage Levels as a
Function of
Ambient Temperature

:t
90

30

TEMPERATURE_oC

-

Q 100

95

I--

.......

Output Sink Current as a
Function of
Ambient Temperature

"iilz
'"~
2

~

TEMPERATURE_oC

z

0

......,

i?

70

--

25

(l

...0

0

U

V-=-60V

~

it

Power Consumption as a
Function of
Ambient Temperature

ii:

vl=12~_

30

I

'"

14

13

35

vl=12~._
-60 V

TEMPERATURE-oC

100

12

11

Common Mode Rejection Ratio
as a Function of
Ambient Temperature

!z

~

60

I

POSITIVE SUPPLY VOLTAGE-V

~

10

,..- e-

V

o/

10

~

30
20

120

40 0

4

u

---

r-- t--

g

---

,..-l -

V

v- =

''""

10

E
I

i'--

£.'
/~
...
/" /T
~/'l

....-

800 /

20

_
::>

0

1600

010203040506070

0

;0

r-...

I'

i?

l!;

.........

Input Offset Current as a
Function of
Ambient Temperature

vl=12~

,

"w
~

V--

TEMPERATURE_oC

V--=-60V

Jz

2000

1200

50

Input Bias Current as a
Function of
Ambient Temperature

"

Z

;;

............

T~ = ,,!c

'40 0

= 12 V

INPUT VOLTAGE-mV

~

V--~-60V

1300

v+

- 1.0

30

e

I

A

-1 0

z
;;

,",-

VII

2800

V~=12~_

--

TA - DOC

0

Voltage Gain as a
Function of
Supply Voltages

Voltage Gain as a
Function of
Ambient Temperature

92 0:----f.1O:--:'!::0---::3'="0---:''':--'*'0---:''=0---:!70
TEMPERATURE_oC

5-8

I

-1 0

10

20

30

40

50

TEMPERATURE_oC

60

70

~A710
Typical Performance Curves for jlA710C (Cont.)

Response Time for
Various Input Overdrives
>",1

~
...g

~

o

4.

3.

,.
20

2J m~

I I

10mV

Response Time for
Various Input Overdrives
>

1

'II
~

I11I

V1

/~ I'-~. ~VrI
"-

5°iY

r-

:;

Do

!~

3.

~ 2.
g ,.
...
"...
" ,. r- I
~

vl"'+12v

100

v-

-= -60 V

Tj =I25T
I I

50

g
20

40

60
TIME-ns

80

100

>

E

... 1

"'"
~"
!S

""

'\

I\Jo

..

,

V+"'+12Y
y- '" -60 V

>
20

40

60
TIME-ns

80

y- ~ -8 V

A =25G C -

5On~

_

20mV

5.

r

.--f('>--

SOmY

I

t=I+12~_

•
•

2DmV

0
120

Common Mode Pulse Response

I

r-.

'i

r-,10mV

0

-10

I
... 1
"",
CJ

4.

rrl
100

C
120

-

-IYCM

-

-

f--

-

.

•
•

I
4.

..

120

160

TIME-n.

•

5-9

J,tA711

FAIRCHIL.D

Dual High-Speed
Differential Comparator

A Sehlumberger Company

Linear Products
Connection Diagram
1O-Pln Metal Package.

Description
The JLA711 is a Dual, Differential Voltage Comparator
featuring high accuracy, fast response times, large
input voltage range, low power consumption and
compatibility with practically all integrated logic
forms. When used as a sense amplifier, the threshold
voltage can be adjusted over a wide range, almost
independent of the integrated circuit characteristics.
Independent strobing of each comparator channel is
provided, and pulse stretching on the output is easily
accomplished. Other applications of the dual
comparator include a window discriminator in pulse
height detectors and a double-ended limit detector
for automatic Go I No-Go test equipment. The JLA711,
which is similar to the JLA710 differential comparator,
is constructed using the Fairchild Planar
epitaxial process.

v+

v(Top View)
Pin 5 connected to case

• FAST RESPONSE TIME-40 ns TYPICAL
• 5 mV MAXIMUM OFFSET VOLTAGE
• 10 JLA MAXIMUM OFFSET CURRENT
• INDEPENDENT COMPARATOR STROBING

Order Information
Type
Package
JLA 711
Metal
JLA711C
Metal

Code
5X
5X

Part No.
JLA711HM
JLA711HC

Absolute Maximum Ratings
Positive Supply Voltage
Negative Supply Voltage
Peak Output Current
Differential Input Voltage
Input Voltage
Strobe Voltage
Internal Power Dissipation
(Note 1)
Metal
DIP
Operating Temperature Range
Military (JLA711)
Commercial (JLA711C)
Storage Temperature Range
Pin Temperature
Metal Package, Ceramic DIP
Molded DIP (Soldering, 10 s)

Connection Diagram
14·Pin DIP

+14 V
-7.0 V
50 rnA
±5.0 V
±7.0V
o to +S.O V

NC
-IN A
+INA

500mW
S70mW

v-

-55°C to +125°C
O°C to +70°C
-S5°C to +150°C

+IN B

NC

(Top View)

Order Information
Type
Package
JLA 711
Ceramic DIP
JLA711C
Ceramic DIP
JLA711 C
Molded DIP
Note.
1. Ratong applies to ambient temperatures up to 70·e. Above
70·e ambient derate linearly at 6.3 mW I·e for the metal
package, 8.3 mW I·e for the DIP.
5·10

Code
SA
SA
9A

Part No.
JLA711DM
JLA711DC
JLA711PC

JLA711
Equivalent Circuit
STROBEl

STROBE 2

~----'-----------------~-----+-----9-----;----~~----------------~----~----V+
R4
4.3kll

R5

R15

4.3kll

R14
4.3kll

4.3kll

R2

R12

910ll

910ll

Rl
910ll

INVERTING
INPUT,

R13
910!!

01

013

NON-INVERTING
INPUT,

INVERTING
INPUT2
NON-INVERTING
INPUT2

Rl0
12011

R9

120!!

~----------------~~----------------------~---------------V-

5-11

•

p,A711
/LA711
Electrical Characteristics

TA

Characteristic
Input Offset Voltage
Input Offset Current

= 25°C, V+ = 12 V, V- = -6.0 V unless otherwise specified
Min

Condition

= +1.4 V, Rs:S.
VOUT = +1.4 V, Rs:S.
VOUT = +1.4 V
VOUT

200 Q, VCM

=0

200 Q

Input Bias Current
Voltage Gain

750

Typ

Max

Unit

1.0

3.5

mV

1.0

5.0

mV

0.5

10.0

/LA

25

75

/LA

1500

Response Time (Note 2)

40

ns

Strobe Release Time

12

ns

Input Voltage Range

V-

= -7.0 V

Differential Input Voltage Range

±5.0

V

±5.0

V

Output Resistance
Output HIGH Voltage

VIN 2: 10 mV

Loaded Output HIGH Voltage

VIN 2: 10 mV, 10

Output LOW Voltage
Strobed Output Level

4.5

= 5 mA

2.5

3.5

VIN 2: 10 mV

-1.0

-0.5

VSTROBE :S. 0.3 V

-1.0

Output Sink Current

VIN 2: 10 mV, VOUT 2: 0

Strobe Current

VSTROBE

= 100 mV

1.2

Positive Supply Current

VOUT = Ground,lnverting Input

8.6

Negative Supply Current

Q

200

0.5

= +5 mV
VOUT = Ground, Inverting Input = +5 mV

5.0

V

0

V

0

V

V

0.8

mA
2.5

mA
mA

3.9

Power Consumption

130

mA

200

mW

The following specifications apply for -55°C :S. TA:S. +125°C
Rs:S. 200 Q, VCM = 0

4.5

mV

RS:S. 200 Q

6.0

mV

Input Offset Current (Note 3)

20

/LA

Input Bias Current

150

/LA

Input Offset Voltage (Note 3)

Temperature Coefficient of
Input Offset Voltage

5.0

Voltage Gain

500

Notes
2 The response time specified (see definitions) is for a 100 mV
step mput with 5 mV overdrive.
3. The Input offset voltage is specified for a logic threshold
as follows:
711. 1.8 V at -55°C. 1.4 V at +25°C. 1.0 V at +125°C711C: 15 Vat O°C. 1.4 V at +25°C. 1.2 V at +70°C

5·12

/LV/oC

J.LA711
~A711C

Electrical Characteristics

TA

= 25°C, V+ = 12 V, V- = -6.0 V unless otherwise specified

Characteristic

Condition

Input Offset Voltage

VOUT

Input Offset Current

Min

= +1.4 V, RS::5 200n, VCM = 0
VOUT = +1.4 V, Rs::5 200 n
VOUT = +1.4 V

Input Bias Current
700

Voltage Gain

Typ

Max

Unit

1.0

5.0

mV

1.0

7.5

mV

0.5

15

~A

25

100

~A

1500

Response Time (Note 2)

40

ns

Strobe Release Time

12

ns

Input Voltage Range

V-

= -7.0 V

±5.0

Differential Input Voltage Range

V

±5.0

Output Resistance

V
200
4.5

Output HIGH Voltage

VIN 2::: 10 mV

Loaded Output HIGH Voltage

VIN 2::: 10 mV, 10

Output LOW Voltage
Strobed Output Level

= 5 rnA

2.5

3.5

VIN 2::: 10 mV

-1.0

-0.5

VSTROBE ::5 0.3 V

-1.0

Output Sink Current

VIN 2::: 10 mV, VOUT 2::: 0

0.5

Strobe Current

VSTROBE

Positive Supply Current

VOUT Ground, Inverting Input

Negative Supply Current

= 100 mV

5.0
0

V

0

V
rnA

2.5

rnA

3.9
130

rnA
rnA

8.6

Power Consumption

V
V

0.8
1.2

= + 10 mV
VOUT Ground, Inverting Input = + 10 mV

n

230

mW

The following specifications apply for O°C ::5 TA::5 +70°C

=0

6.0

mV

10

mV

Input Offset Current (Note 3)

25

~A

Input Bias Current

150

~A

Input Offset Voltage (Note 3)

Rs ::5 200 n, VCM
Rs ::5 200 n

Temperature Coefficient of
Input Offset Voltage

5.0

Voltage Gain

500

Notes
2. The response time specified (see definitions) is for a 100 mV
step input with 5 mV overdrive.
3. The input offset voltage is specified for a logic threshold
as follows;
711; 1.8Vat-55°C, 1.4Vat+25°C, 1.0Vat+125°C711C; 1.5 V at O°C, 1.4 V at +25°C, 1.2 V at +70°C
5·13

~V/oC

•

J.LA711
Typical Performance Curves

Voltage Transfer
Characteristic /-LA 711
0

0

l

"
g~

...

40

1//
'/..

t-125°C,---

30

l

T, - -55 C
D

"r!g

1//,

,0

Ii

10

VI

TA

co

~25°C

~

!;

//1

o

1//

0

I

>

ilV

it

!;
o

=- +12 V
V-=-60Y

f/I

"J. ~ T'I +70 C
1
8.,
0

20

J.

fI

30

10

10

30

50

1600

0

1+12

TA--'25"C

1200
-60

10

10

30

30

"
"~
w

20

10mV

0

v,

g

''\

I"-

100

50

'/

V-+~+12V= -60Y

100

g

50

it

0

V

T'i'i'c,40

2Q

50

~ +25ol c

--------x=
'" ~
~

1600

,,"

/

1200

,....-

/" /

,...

i~
~

g

20
10

I

r~

-

1

I

I

~

r-,..
o-

.

20

w

1

0

-

1

1

1

1

40

g

, 0

"~

trr .

...

f-.-

-SOy

,.,~ 5~

J C.-i---r$?~~h~
:;. '%",

r/
'/

...

~

0

50

TA= 25°C,_

40

.0........ ,

~

I I
200

100

TIME-ns

1
300

400

500

Vou'

Strobe Release Time for
Various Input Overdrives
>

~+ ~12 ~

\

V-=-60~-·--0

I'\.

30

~

10

~

,

!

........ r--

"~

g

0

LLl-

/

" '0
o

I.........

20

V-=-6QV
TA = 25°C _

V

20
50mY

10

!;

5o :~

--..., '/ ~

~

60

20

20

100

50

TEMPERATURE _

5-14

0

C

140

20mV

I""

10

OmV

Jmv t-I

-1

0
160

l

~

\

30

120

~+-

~

'II

~
~

14

Input Bias Current as a
Function of
Ambient Temperature

~+c~12L
V-=-60V

I

50

120

y- =- -60 V
TA = 25°C

ICc

f-

1
13

12

11

1 100

TIME-ns

I I I I
40

80

Y+ "" +12 V

60

-'0

10

50n

_

i
g

I

1

E"

-

"~

1

60
TIME-ns

",,
E

/

2000

140

510m~

J

Output Pulse Stretching
With Capacitive Loading

400

-20

1

++ !IVr..

l

T,

,400

~

'\

1300

~

"~

2800

~

'\

" '\

20

~

'\

1400

$!

...

50

V-=-60~~

1500

30

~

Voltage Gain as a
Function of
Supply Voltages

~+

"

40

~

INPUT VOLTAGE-mY

Voltage Gain as a
Function of
Ambient Temperature
1700

50

~

a

u

10

INPUT VOLTAGE - mY

g

//.

-1 0
50

"w
"~

I

0

-1 0

Z
~

~

TA=O"C

30

Response Time for
Various Input Overdrives
>

I

f-- V+

~V

I
1

V-=-60Y

T,

50

I

~v+ ~+12V

>

Voltage Transfer
Characteristic /-LA 711 C

20
TIME-ns

,.

40

50

JLA711
Typical Performance Curves (Cont.)
Power Consumption as a
Function of
Ambient Temperature
140

L~'2L

y- '" -60Y

130

I-"'"

120

.

-

r---

I-"'"

20

20

..

'" f',.
100

140

5·15

it

Il A734
Precision Voltage
Comparator

FAIRCHILI:J
A Schlumberger Company

Linear Products

Connection Diagram
1o-Pln Metal Package

Description
The JA.A734 is a Pre'cision Voltage Comparator
constructed on a single silicon chip using the Fairchild
Planar epitaxial process. It is specifically designed for
high accuracy level sensing and measuring
applications. The JA.A734 is extremely useful for
analog-to-digital converters with 12-bit accuracies
and one mega-bit conversion rates. Maximum
resolution is obtained by high gain, low input offset
current, and low ,input offset voltage. Its superior
temperature stability can be improved by offset nulling
which further reduces offset voltage drift. Balanced or
unbalanced supply operation and standard TTL logic
cornpatibility enhance the JA.A734 versatility.

+IN

Ne

PULL-UP
RESISTOR

OFFSET

OUT

NULL

v(Top View)

•
•
•
•
•
•
•

CONSTANT INPUT IMPEDANCE OVER
DIFFERENTIAL INPUT RANGE
HIGH INPUT IMPEDANCE-55 MU
LOW DRIFT-3_5 JA.VI"C
HIGH GAIN-60 k
BALANCED OFFSET NULL CAPABILITY
WIDE SUPPLY VOLTAGE RANGE- ±5 V
to ± 18 V
TTL COMPATIBLE

Order Information
Type
Package
JA.A734
Metal
JA.A734C
Metal

Part No.
JA.A734HM
JA.A734HC

Connection Diagram
14-Pin DIP

=

TA
2SoC unless
specified otherwise
Supply Voltage
± 18 V
lOrnA
Peak Output Current
Differential Input Voltage
± 10 V
Input Voltage Range (Note 1)
± 13 V
Voltage Between Offset Null
and V±O.S V
Internal Power Dissipation
(Note 2)
Metal Package
SOOmW
Ceramic DIP
670mW
Operating Temperature Range
-SSoC to +12SoC
Military (JA.A734)
Commercial (JA.A734C)
O°C to +70°C
Storage Temperature Range
-6SoC to +150°C
Metal Can, DIP
Pin Temperature (Soldering,
60 s Max)
300°C
Absolute Maximum Ratings

Code
5N
5N

Ne

PULL-UP
RESISTOR

Ne

OUT

v+

GND

Ne

vOFFSET

+IN

NULL

Ne

Ne

-IN

OFFSET
NULL

(Top View)

Order Information
Type
Package
JA.A734
Ceramic DIP
JA.A734C
Ceramic DIP

Notes
1. Ratmg apploes for ± 15 V supplies, For other supply voltages
the rating IS within 2 V of either supply,
2 Rating applies to ambient temperatures up to 70·C, Above
70·C ambient derate linearly at 6 3 mW I·C for metal package.
S 3 mW/·C for DIP,

5·16

Code
SA
SA

Part No.
JA.A734DM
JA.A734DC

Il A734
Equivalent Circuit

09~
,....
R6
6.0 k

R5
2.4 k

07

'-.J
,...,

R3
3.5 k

a/
.........

R4
3.5 k

OS

r

05

06

'f'"

PULL-UP

R9
10 k
OUT

"r-...

R11

....

012

2.7 k

GND
04

r

011

R10
740
R2
3.5 k

"

01

,.--

~010

R1
3.5 k
(-)

RS
400

R7
200

R12
19 k

..&

/1

03 ..........

02

R13
52

(+)

'-l

~

,...,017

,..., 016

R1B
3.6 k

'-.J
,...,014

R15
3.6 k

R17
110
R19

'-.J
,..., 015

R16

1

R14
110

'-.I
013(

2.0 k

v-

2.0 k
OFFSET NULL

OFFSET NULL

5-17

J.LA734
IlA734C Electrical Characteristics

TA = 25°C, Pin 8 tied to +15 V, unless otherwise specified, V±
(Note 3)

Characteristic

Condition

Input Offset Voltage

Rs::::; 50 kQ

Min

Input Offset Current
Input Bias Current

Typ

Max

± 15V.
Unit

1.1

5.0

mV

3.5

25

nA

30

100

nA

55

MQ

Input Capacitance

3.0

pF

Offset Voltage Adjustment Range

8.5

mV

60 k

V/V

Input Resistance

Large Signal Voltage Gain

7.0

RL = 1.5 kQ to +5.0 V

35 k

Positive Supply Current
Output LOW

4.0

5.0

Negative Supply Current
Output LOW

1.5

2.0

mA

Power Consumption-Output LOW

82

105

mW

Transient Response

RL = 1.5 kQ to +5.0 V
5 mV Overdrive, 100 mV Pulse

mA

ns

200

The following specifications apply for O°C ::::; TA ::::; +70°C
Input Offset Voltage

1.2

7.5

mV

4.0

45

nA

RS::::; 50 Q

3.5

20

IlV 1°C

TA = +25°C to +70°C

0.02

0.3

nA/oC

TA = +25°C to O°C

0.05

0.75

nA/oC

RS::::; 50 kQ

Input Offset Current
Average Input Offset Voltage Drift
Without External Trim
Average Input Offset Current Drift
Input Bias Current
Large Signal Voltage Gain

150

nA

25 k

VIV

Input Common Mode Voltage Range

± 10

V

Differential Input Voltage Range

±10

V

Common Mode Rejection Ratio

Rs::::; 50 kQ

70

Supply Voltage Rejection Ratio
VS= ±5Vto ±18V

RS::::; 50 kQ

Output HIGH Voltage

lOUT = 0.080 mA

7.0

lOUT = 0.080 mA, Va = +5.0 V

2.4

Output LOW Voltage

RL = 1.5 kQ to +5.0 V

dB

100
6.0

100

IlV/V
V

5.0

V

0.4

V

Positive Supply Current
Output LOW

7.0

mA

Negative Supply Current
Output LOW

2.5

mA

Power Dissipation-Output LOW

145

mW

ISINK = 3.2 mA

Note
3. Pin numbers refer to metal package.

5·18

IlA734
/lA734 Electrical Characteristics

TA = 25°C, Pin 8 tied to +15 V, unless otherwise specified, V± = ± 15 V.
(Note 3)

Characteristic

Condition

Input Offset Voltage

Rs ::; 50 kfl

Min

Typ

Max

Unit

0.9

3.0

mV

Input Offset Current

1.5

10

nA

Input Bias Current

28

50

nA

Input Resistance

20

Input Capacitance
Offset Voltage Adjustment Range
Large Signal Voltage Gain

RL = 1.5 kfl to +5.0 V

35 k

Positive Supply Current
Output LOW

60

Mfl

3.0

pF

8.5

mV

70 k

VIV

4.0

5.0

mA

Negative Supply Current
Output LOW

1.5

2.0

mA

Power Consumption-Output LOW

82

105

mW

Transient Response

RL = 1.5 kfl to +5.0 V
5 mV Overdrive, 100 mV Pulse

200

ns

The following specifications apply for -55 ° C ::; TA ::; + 125 ° C
Input Offset Voltage

RS ::; 50 kfl

Input Offset Current

1.1

4.0

mV

3.0

20

nA

Average Input Offset Voltage Drift
Without External Trim

RS ::; 50 kfl

2.5

15

/lV/oC

Average Input Offset Current Drift

TA = +25°C to +125°C
TA = +25°C to -55°C

0.01
0.05

0.1
0.4

nA/oC
nA/oC

150

nA

Input Bias Current
Large Signal Voltage Gain

RL = 1.5 kfl to +5.0 V

Input Common Mode Voltage Range
Differential Input Voltage Range

25 k

VIV

±10

V

±10

Common Mode Rejection Ratio

RS ::; 50 kfl

70

Supply Voltage Rejection Ratio
Vs = ±5 V to ± 18 V

Rs ::; 50 kfl

Output HIGH Voltage

lOUT =0.080 mA
lOUT = 0.080 mA, Va = +5.0 V

Output LOW Voltage

ISINK = 3.2 mA

V
100
5.0

dB
100

/lV/V

5.0

V
V

0.4

V

Positive Supply Current
Output LOW

7.0

mA

Negative Supply Current
Output LOW

2.5

mA

Power Dissipation-Output LOW

145

mW

Note
3. Pin numbers refer to metal package.

5·19

7.0
2.4

J.LA734
Typical Performance Curves For ILA734 and ILA734C

Transfer
Characteristics
80
Vs

Un-Nulled Input Offset Voltage vs.
Ambient Temperature

~500r-'--r-'--r--r~--r-'--r-'

0

=-

:!::15V

Vs =

PINSTIEDTO +15V
RL"" 15knTIEDTO +5V

>

~
~

I

w

~ 4.0
g

~

"-

1\ /

...

l..\ II

O 2.0

V

o

- 400 - 300 - 200 - 100

~

"

'h---t
0

100

200

300

1

o
~1

NON· INVERTING
INPUT

400

"

O. 6
-80

~

;

-20

20

60

140

100

i'-

20

..-

100

60

350

"

I

iVS=±15V~

%

0
4.40

~
<

~ 8.15

:-f-r-.

"i 810
I
"~
V
g 805
... l ...... v
w

c-

VSI"~,v p- I---/-

'-

410~

400
20

20

60

~
~
I
<

800

-60

,.
%

.........

:>

430 ~

4 20

r> t--.

.
;

-6

10

-2

1\

I

i...

~

80

~

60

~
o

40

\

1\

z

......

- 20

100

AMBIENT TEMPERATURE _ °C

140

"

> 325
E

H--

- 60

-20

" l'l!
~ 300

0

>

.........

9

...:>
...

.

is

275

./

0

0

4

0

v

250

I
I

~

22'
-60

-20

20

60

100

AMBIENT TEMPERATURE - "C

5-20

:=

25°C

_

+1Sy :::: V,.,- t:2:1EN
- f--

PIN8TIED10
0

I

.......

TA

V1'N> 10mV
L

~+

;.

140

Output Voltage Low
vs. Sink Current

800

X

I

100

60

VIS"I±15~

PIN8T1EDTQV+ ISNK=32mA

w

--:--

o
AMBIENT TEMPERATURE _ °C

Output Low Voltage vs.
Supply Voltage and Ambient
Temperature

PIN8T1EOTOV+
lo=80J1A

.,

;,oJ,J" ~15~-

~ 10

DIFFERENTIAL \NPUTVOLTAGE - V

Output High Voltage vs.
Supply Voltage and Ambient
Temperature
~

V~A == ~~:cv

-10

140

AMBIENT TEMPERATURE _ °C

> 820

AMBIENT TEMPERATURE _ °C

~

0

'- .......

- 20

:.--

0

.........

10
-60

L-~_-2~O-J--2LO~--6~0--L-'~0-O-L-'~40

Input Offset Current vs.
Ambient Temperature

,

20

0

'"

'- ~ !--

, ,0

~

o

w

O.8

,

I

"

"

12

!Z

"-

~200~~-P~~~~~~~4--+-1

~ 100r-4-~~~+--r~~~4--+-1

40

30

~

45

~ 50

:>

~ 30°r-~~-1--t--r-+--r-17~-1

o

.....- ...-;t:~0"

0,-

400

g

Input Bias Current vs.
Differential Input Voltage

±L,'vsJ ±lL

~ 40

~

AMBIENT TEMPERATURE _ °C

Input Bias Current vs.
Ambient Temperature

'"~"

"~S"lOCkE

2

INPUT VOLTAGE - JAV

60

I
w

15V

I-"
I-"
,-/

C;1 4

g

I~

INVERTING INPUT \

16

:!::

--

18

E

> 6.0

Input Offset Voltage Change vs.
Ambient Temperature Nulled to
Zero at 25°C

V- ::::V
V

100

10

140

SINK CURRENT - rnA

/lA734
Typical Performance Curves for

Voltage Gain vs. Ambient
Temperature
120k

~A734

and

~A734C

Positive and Negative
Supply Currents vs. Ambient
Temperature

Voltage Gain vs. Supply
Voltage

55

I

Vs == ±15V

(Cont.)

TA=2S"C
RL = 15kflTIEDTO +5V

70 k

RL == 1S!1TIEDTO +5V

r~U~1 ~~~Vj

100 k

~
~
~

8Dk

~

6Dk

f--

~

E

~

I,

w

:;

'" 4 5

!\

I

~

z

~

'"

SDk

w

.......
t-

40k

"~

--

I\.

t'....

~

20

- 20

60

100

±s

140

-

"'- r-...

±7

± 11

±9

Response Time For
Various Input
Overdrives

Response Time For
Various Input
Overdrives

>
I

>
I

"~
~

.

6

4

~

=>

o

1

~~N!?~~~TIIED~O ~15!V

1

TA=25°C

I

Vs=+15V

2

---..V V 1
10 mV -fJ 1/ I'- 2 mV
/ V" f-r- 5 mV

E

~

g

0

6

~

4

~

2

o

I

>

I
w

w

~

20mV-

~

=>

>

E

I
w

"~

100

~

50

.

~

ir -100

~

=>

160

240

320

400

TIME - ns

20 mV--

,...,\

10mV

f-

o

>

.

~

=>

~

o
>

E

I
w

6

pIN8~IE~TO'+1~V '

I

RL = 10kTIEDTO +15V
TA = 25°C
Vs"=±15V

II
/
I
!-PI '/A '"" 2 mV
r- - 20~V
I
'/
'
5~V
2f- -10mV 1= f-h
~/,
I
4

r/

0

"

>

6

4
20 mY

10 mV./

240

320

-50

~ 50

160

240

TIME- ns

320

400

"

~

TRENb LlN'E

o

2

0

,

1

II

10

V

V

0

200

400

\'
\
\,\
1\

-U

T1
Vr

10

l5.J
t

\ ,\

O!"

'--~

~

~

'mV

240

TlME-ns

5-21

-s

o

....- ~-

)/

1

~ -10

0
160

1000

800

f"!

~

I

~

80

600
HOURS

w

15V

I\~ ,.--2mV

1\\ \

400
TIME -

Stabilization Time of
Input Offset Voltage
From Power Turn-On

0;,-

-100
80

f---

2

~

~

is =,'0"

~

I

"

s ='±15'V
TA = 125°C-

~

~V c-

"

160

E

w

140

J

l 30
":;'" 2,

~

8

~ 100

"

5

,

TIME - ns

~

100

w

80

~g

60

":z:z /
'" 'If

>

"

20

~

~

o

~

05
-60

III I
Is
I 1
J J
20

AMBIENT TEMPERATURE _ °C

0

"

:;
'"

-..... ""

Input Offset Voltage
Drift vs. Time

\" :--tt---

>
I

:;"'"

15

15

I \""t-2 mV

~\

>

8

±

\'

Response Time For
Various Input
Overdrives

I

13

PIN80PEN
RL = 15knTlEDTO +5V
TA "" 25"C
+15V
V

Response Time For
Various Input
Overdrives
w

i25

J.....l--1"
~f=(li8TlrDTb ':;5 VI
j.....{"
~N8hpE~I_ - - -

"

Z

0

80

:!:

o

-50

"

5 ..... 1-"'"

v

SUPPLY VOLTAGE -

AMBIENT TEMPERATURE -"C

w

r

50 k

20k
-60

1

'"

f--

320

400

Vs = :!:1SV
Rs=SO[!
-

Z

~ -15
w

"~ -20
:z:
" -25

",0 = ,14\

IN!TlA~OF~SET ~OL1AGEI < 1 iV
40

80

120

TIME FROM POWER APPLICATION -

160

s

f.tA734
Typical Performance Curves for ILA734 and ILA734C (Cont.)

Response Time For
Various Input
Overdrives
0
10 my
0

20 mV- ~

E

II

>
I
~ 60

~o

1'r-2 mV

~c-

~

SmV

Ii , J I

0

>

H.J

Response Time For
Various Input
Overdrives

rl

g

II

>

0

E
I
w

I
w

~~ -5

PIN8T1EDTO +1SV
RL::; 15k(lTlEDTO +5V
TA == 2S Q C
Vs = :t15V

0

"

60

160

240

TIME -

320

ns

~

~

I

\

0
PIN8TIEDTO +15V

50

~

0

VSI"

1

15 IV

I

I

I
80

160

I

1-

I I

240

320

400

TIME- ns

Vs= :t15V
VIN = ± tOVRis == 100 kll

j:: 100

-..

...-I -

~
Z

o

"

~

~
;;J

/

'"c
o
'oz"

0

w

/

"~ or- -

~/

I

~~ : ~55o~n TIED TO + 5 V _

o

I

~ 200

""

\

5 mV

11 0

!;

w

-

I

I\- -2mV

~
I

w

""

20

J

Common Mode Rejection
Ratio vs. Ambient Temperature

h- -;,te

~o

\

20 mV_ ~,\
10mV

!;

300

~ 100

0
4

"

400

Thermal Response of
Input Offset Voltage
To Step Change of Case
Temperature
>
I

\,\

"':;" 100

0

~-10 0

I

I \\

Vs= ±15V

Rs = SOn

-

Vo = 14 V

I

'NllTIAiOFrETIVOliAGi < 1rV
20

40

60

TIME FROM HEAT APPLICATION -

60

'"
8'"

I

-

C-

7o

60

-60

SECONDS

-20

20

60

AMBIENT TEMPERATURE -

Test Circuits
Offset Null Circuit

v+

v5-22

100

gc

140

JlA734
AC Test Circuit

Typical Applications (Cont.)

SCOPE
VERTICAL

Level Detector With Hysteresis
115 V

"A"

V+

INPUT

Rs
Y,N -""VI,,.,,.---t
~-...~VOUT

50 fl

VR1

R2

VOUT

-15 V
5011

7V

150 k!l

r---~~----~--~VVV----4JrS1~+15V

~VHYS
[[

0.2 V

Vo (MAX)

__

i

Vo (MIN)

VREF

Typical Applications

RS

=

Strobe Circuitry
VHYS

R1 R2
R 1 + R2 FOR MINIMUM OFFSET

=

R1 [VO MAX - Vo MINI
R1 + R2

V+

High Power Output Circuits

10

V+
>,~..--------- VOUT

.---.""'- STRO BE

RL

2 kll

VOUT

Alternate Strobe Circuitry
V+

>~..-------- VOUT

STROBE 1
STROBE 2

V-

• y, 9944

5·23

J.LA734
Free Running Oscillator

Typical Applications (Cont.)

+15 V

Precision Dual Limit Go No Go Tester

1 kfl
20 kll

VIN-_--I

>"'-------_.VAEF'

+15 V

VOUT

VOUTPUT

V-

c
VREF2

-15 V

-=-

V-

2 kfl'

Voltage Controlled Oscillator

18 kfl

68 kfl
30 kll

+15 V

c ~ 80 x 10-61
'AdJusls

VAEF < 0
V,N > 0
VOUT 1
OV

VAEF

10 I,

12

r5JS!SJ

V-

7.0V-W-,nr
0.2

v ______ ~

ov

-.lllf
10

11

~

I.12

5-24

IlA734
Typical Applications (Cant.)

Pulse Width Discriminator

Frequency Divider and Staircase Generator

C
C2
STAIRCASE
OUTPUT

Your

R
Vour

v,

v-

v-

v-

l[

7.0V

-- 0.2 V

IVREF I= 2VO + N [3.5T + 2VO T in Seconds
Vo for FJT 1000

~

VOUT Pulse Appears

C1C~IN ]

Whenever T

>

R C V2
V1

031 V

Phase Meter
v·

VOUT

v,~
20 k!l
10 It

V2~
VAVG~

21l'VAVG
VOUT, PEAK

-1l'

'" > 0

5-25

V2~
VOUT _ _ __

VOUT

VAVG------r-:b
'" >

0

JlA760
High-Speed
Differential Comparator

F=AIRCHILD
A Schlumberger Company

Linear Products

Connection Diagram
8-Pin Metal Package

Description
The IlA760 is a Differential Voltage Comparator
offering considerable speed improvement over the
IlA 710 family and operation from symmelric supplies
of from ± 4.5 V to ± 6.5 V. The IlA760 can be used in
high-speed analog-Io-digital conversion systems and
as a zero crossing detector in disc file and tape
amplifiers. The IlA760 output features balanced rise
and fall times for minimum skew and close matching
between the complementary outputs. The outputs are
TTL compatible with a minimum sink capability of two
gate loads.
•
•
•
•
•

v+

IP2

v-

GUARANTEED HIGH SPEED-25 ns MAX
GUARANTEED DELAY MATCHING ON
BOTH OUTPUTS
COMPLEMENTARY TTL COMPATIBLE OUTPUTS
HIGH SENSITIVITY
STANDARD SUPPLY VOLTAGES

(Top View)
PIO 4 connected to case

Order Information
Type
Package
IlA760
Metal
IlA760C
Metal

Connection Diagram
14-Pin DIP

Code
5W
5W

Part No_
IlA760HM
IlA760HC

NC

Connection Diagram
8-Pin DIP

NC
NC

NC

IP 2

IP 2

IP 1

IP 1

v-

0

v'

2

7

3

6

4

5

V-

NC

8

OP 1
OP 2

GND
(Top View)

(TOp View)

Order Information
Type
Package
IlA760
Ceramic DIP
IlA760C
Ceramic DIP

Code
6A
6A

Order Information
Type
Package
IlA760
Ceramic DIP
IlA760C
Ceramic DIP

Part No_
IlA760DM
IlA7 60DC

5-26

Code
6T
6T

Part No_
IlA760RM
IlA760RC

p,A760
Absolute Maximum Ratings
Positive Supply Voltage
Negative Supply Voltage
Peak Output Current
Differential Input Voltage
Input Voltage
Internal Power Dissipation
(Note 1)
Metal Package
DIP

+8V
-8V
10 mA
±5V
V+ ~ VIN

~

Operating Temperature Range
Military (~A760)
Commercial (~A760C)
Storage Temperature Range
Metal and Ceramic DIP
Molded DIP
Pin Temperature (Soldering)
Metal and Ceramic DIP
(60 s)
Molded DIP

V-

500mW
670mW

-55°C to 125°C
O°C to 70°C
-65°C to 150°C
-55°C to 125°C

Equivalent Circuit
r-~----'-----~----~------------------~----~--------~~--~----------'-- v'

OUTPUT 1

INPUT 1

GROUND

INPUT 2
OUTPUT 2

R3
350n

RS
350 11

R7

350

n

R8
100

n

R12
300n

R13
4 kn

Note
1. Ratings applies to ambIent temperatures up to 70 oe. Above
70 0 e ambient derate linearly at 6.3 mWfoe for metal package
and 8.3 mW foe for the ceramIc DIP. For molded DIP, derate at
6.7 mWfoe above 30 0 e ambient temperature.
5-27

R14

3500

•

JLA760
~A760

Electrical Characteristics

Vs = ±4.5 V to ±6.5 V, TA
otherwise specified.

Characteristic

Condition

Input Offset Voltage

Rs.:o; 200

= -55°C to +125°C, TA = 25°C for typical figures unless
Min

n

Typ

Max

Unit

1.0

6.0

mV
~A

Input Offset Current

0.5

7.5

Input Bias Current

8.0

60

= VOH

Output Resistance (either output)

VOUT

Response Time

(Note 3), TA

(Note 2), TA

= 25°C
= 25°C

18

(Note 4)
Response Time Difference between
Outputs
(tpd of +VIN1) - (tpd of -VIN2)
(tpd of +VIN2) - (tpd of -VIN1)
(tpd of +VIN1) - (tpd of +VIN2)
(tpd of -VIN1) - (tpd of -VIN2)
Input Resistance
Input Capacitance
Average Temperature Coefficient
of Input Offset Voltage
Average Temperature Coefficient
of Input Offset Current
Input Voltage Range

(Note
(Note
(Note
(Note

2),
2),
2),
2),

= 25°C
= 25°C
= 25°C
= 25°C

Output LOW Voltage (either output)
Positive Supply Current
Negative Supply Current

ns

25

ns

= 1 MHz
f = 1 MHz
RS = 50 n, TA = -55°C to
TA = +125°C
TA = 25°C to TA = +125°C
TA = 25°C to TA = -55°C
Vs = ±6.5 V
f

o .:0; lOUT .:0; 5.0 rnA
Vs = ±5.0 V
lOUT = 80 ~A, Vs = ±4.5 V
ISINK = 3.2 rnA
Vs = ±6.5 V
Vs = ±6.5 V

Notes
2. Response time measured from the 50% pOint of a 30 mVp·p
10 MHz sinusoidal input to the 50% pOint of the output
3. Response time measured from the 50% pOint of a 2 Vpk-pk
10 MHz sinusoidal Input to the 50% pOint of the output

ns

5.0
5.0
7.5
7.5

±4.0

Differential Input Voltage Range
Output HIGH Voltage (either output)

30

16

TA
TA
TA
TA

2.4
2.4

~A

n

100

ns
ns
ns
ns

12

kn

8.0

pF

3.0

~V/oC

2.0
7.0

nA/oC
nA/oC

±4.5

V

±5.0

V

3.2
3.0

V
V

0.25

0.4

V

18

32

rnA

9.0

16

rnA

4. Response time measured from the start of a 100 mV Input step
with 5 mV overdrive to the time when the output crosses the
logic threshold.

5-28

J,tA760
IlA760C
Electrical Characteristics

Vs = ±4.5 V to 6.5 V, TA = O°C to 70°C, TA = 25°C for typical figures unless
otherwise specified.

Characteristic

Condition

Input Offset Voltage

Rs:::; 200 fl

Min

Typ

Max

Unit

1.0

6.0

mV

Input Offset Current

0.5

7.5

IlA

Input Bias Current

8.0

60

IlA

= VOH

Output Resistance (either output)

VOUT

Response Time

(Note 2), TA = 25°C
(Note 3), T A = 25°C
(Note 4)

Response Time Difference between
Outputs
(tpd of +V,N1) - (tpd of -V,N2)
(tpd of +V,N2) - (tpd of -V,N1)
(tpd of +V,N1) - (tpd of +V,N2)
(tpd of -V,N1) - (tpd of -V,N2)

(Note
(Note
(Note
(Note
f

Input Capacitance

f

Average Temperature Coefficient
of Input Offset Voltage

RS

Input Voltage Range

TA
TA
TA
TA

18

= 25°C
= 25°C
= 25°C
= 25°C

= 50 fl, TA = O°C to TA = +70°C
TA = 25°C to TA = +70°C
TA = 25°C to TA = O°C
Vs = ±6.5 V

±4.0

Differential Input Voltage Range

Positive Supply Current
Negative Supply Current

Vs = ±6.5 V

Output LOW Voltage (either output)

ns
ns
ns

5.0
5.0
10
10

ns
ns
ns
ns

12

kfl

8.0

pF

3.0

IlV 1°C

5.0
10

nA/oC
nA/oC

±4.5

V

±5.0

o :::; 'OUT:::; 5.0 rnA
Vs = ±5.0 V
lOUT = 80 IlA, Vs =
ISINK = 3.2 rnA
Vs = ±6.5 V

Output HIGH Voltage (either output)

fl
30
25

16

= 1 MHz
= 1 MHz

Input Resistance

Average Temperature Coefficient
of Input Offset Current

2),
2),
2),
2),

100

Notes
2. Response time measured from the 50% point of a 30 mVp·p
10 MHz sonusoldal onput to the 50% point of the output.
3 Response time measured from the 50% point of a 2 Vpk.pk
10 MHz sinusoidal input to the 50% point of the output.

±4.5 V

2.4
2.5

3.2
3.0

V
V

0.25

0.4

V

18

34

rnA

9.0

16

rnA

4. Response time measured from the start of a 100 mV input step
with 5 mV overdrive to the time when the output crosses the
logic threshold.

5·29

•

JlA760
Typical Performance Curves

Response Time for
Various Input Overdrives
>

>

v~ ~ ±51V

I
w

TA=

"~

2OmV--.,

0

>
~

~

10

o.ff#

~

~
~

20 mV

~

"0

;::
w

100

...~

50

~

50

11
~

20

30

TIME - ns

30

I

tpd+

;::

w

Ip,

!l!

10

-

3Q

2

35

ns

I--+-+--+-t-v' .,Vs-±65V
............ ..

>

i

Voltage Transfer Characteristic

>

w

"~

"~

g

~

~

5

§

"o

Ii'

........
-

-~

o

10

20

50

100

200

INPUT VOLTAGE -

500 1000 2000
INPUT VOLTAGE -

mVpk-pk

Voltage Gain as a
Function of
Supply Voltage

INPUT VOLTAGE -

mV

Voltage Gain as a
Function of
Ambient Temperature

7,000

4,000

I 6,000

z

~

5,000

/~

~ 4,000
~

3,000
2,000

/

/'

---

>

,/"

;0

;0

V

""

~

,. "

~

t'-..

"-

"~

Vs~±65V

"-

t'-..

iiicr

I'"

cr

"0

I'...

.......
....... t--,

~

=

.......

~

~

~
il
2,000

o
±45

l - i'-..

~w 3,000

/

12

Vs=±5V

TA'" 25°C
8,000

mY

Input Bias Current as a
Function of
Ambient Temperature

9,000

>

mVpk-pk

I

I

w

!

12

10
INPUT VOLTAGE -

Vs-±5V

1

...........

25

1-

Q

w

20

Voltage Transfer Characteristic

10 MHz SINE WAVE INPUTS
TA""25 C

::--..,
2.

15

TIME -

v~~±;vl II

I

10

10

3S

Response Time as a
Function of
Input Voltage

--

I

IPd-

I

";:;
15

20

~
I

I

~

10

-

'"z

~

I

Q

I

30

;

I

~
il

~

~2iv

>
E
100

I

I

10 MHz SINE WAVE INPUTS = 25 C

TI

'~

10 mY

V;~;5VI

TA=25°C-

~5mv

~

~

.

,..,

~

E

I
~

"~
~

2~V

~

">

0

w

40

V;~±5~

I

25°C~

:-- 5mV

mv-" 'fIj-

Response Time as a
Function of
Input Voltage

Response Time for
Various Input Overdrives

±5Q

±55

SUPPLY VOLTAGE -

±60
V

±65

60

2.

6.

TEMPERATURE _ °C

5-30

100

140

•

-60

-20

20

60

TEMPERATURE _

100
0

C

140

J,LA760
Typical Performance Curves (Cont.)
Response Time as a
Function of
Ambient Temperature

Input Offset Current as a
Function of
Ambient Temperature

,.

"1
I

!za:W

a

~

08

\

30

.6

Vs=±5Y

vo~ @ iOUT ~ ••lmA

25

-= !---

'\

04

>
I

.- ......-

~
g

>-- .-

-tpd+

......

fpd-

•
-2.

2.

so

TEMPERATURE _

100
e

•-so

140

C

-20

20

so

140

100

AMBIENT TEMPERATURE _

0

30
Ys=±5V
TA=25"C
25

20

25

20

/

~

a:

15

~

,.

50

100

200

CAPACITIVE LOAD - pF

,.

10

~~4'-:.C-L-""±'~0c-L--±.~.-.L-""±6"".•C-.L-~±6 •
SUPPLY VOLTAGE -

50

K

V

5·31

100

20D

---

>--

l/

V

CAPACITIYE LOAD - pF

Common Mode Range as a
Function of
Supply Voltage

14.

100

_ °C

Ys=±l5Y
TA = 25°C

/

W

!I!

so

TEMPERA~RE

14

/

W

,.

20

16

YS=±5Y:i

I

,. ,.
;::
W

VOL@ 'SINK ~ 32 mA

-20

Input Bias Current as a
Function of
Differential Input Voltage
TA = 25°C

I

•-so

AMBIENT

30

I-

~e

C

Fall Time as a
Function of
Capacitive Load

Rise Time as a
Function of
Capacitive Load

I- I-- ~OQICtHIf

I

......... .....,

i .2
-

I

=30 mY k-pk, f = 10 MHz -

YIN

o

~

v;~±~.• vITO,I..J

Vs""±6~V

\.

Output Voltage Levels as a
Function of
Ambient Temperature

v

I"'-- r-...
20

/'~

.........

~

40

rso

---so

t-

DIFFERENTIAL INPUT VOLTAGE - mV

100

j.LA760
Typical Applications

Line Receiver With High Common Mode Range
Rs

Fast Positive Peak Detector
INPUT

-.AJ\f>r~WI,-----1o--i

OUTPUT

INPUT

-"VItv---------,r-:-l

OUTPUT

Common mode range

=

RS
± 4 x 50 V

RS
Differential Input sensitivity = 5 x 50 mV

Level Detector with Hysteresis

PI must be adjusted for optimum common mode reJection.

100kn

For RS = 200 n
Common mode range = ± 16 V
Sensitivity = 20 mV

OUTPUTj:

,-''Mr-1-'"'' .,~----1r--OUTPUT

I

High-Speed 3-Bit AID Converter

o

MSB

Zero Crossing Detector
v+

FD666

5 k11

INPUT -.,....-..., ""'oc---I>I-,---I!-~--1R ~~--- OUTPUT
0.75 Y

.,,-c-_.,-_ OUTPUT

R3
100 n

son
1.25 V

R'n

100

Total Delay = 30 ns
Input frequency = 300 Hz to 3 MHz
Minimum input voltage = 20 mVpk-pk

1.75 V

R'

100 0

2.25 V

R6
100 0

2.75 V
R7
100 0

soo

R8
3500

+.v
Input voltage range: 3.5 V
TYPical conversion speed: 30 ns

Pin numbers shown are for Metal Package only.
5-32

~A 111

• ~A311
Voltage Comparators

FAIRCHILD
A Schlumberger Company

Linear Products

DESCRIPTION
The J.LA 111 and J.LA311 are monolithic, low input current
Voltage Comparators, each constructed using the
Fairchild Planar epitaxial process. The J.LA 111 series
operates from the single 5 V integrated circuit logic
supply to the standard ± 15 V operational amplifier
supplies. The J.LA 111 series is intended for a wide
range of applications including driving lamps or relays
and switching voltages up to 50 V at currents as high
as 50 mAo The output stage is compatible with RTL,
DTL, TTL and MOS logic. The input stage current can
be raised to increase input slew rate.
•
•
•
•
•
•

Connection Diagram
B-Pin Metal Package
v+

v-

LOW INPUT BIAS CURRENT 150 nA MAX (111),
250 nA MAX (311)
LOW INPUT OFFSET CURRENT 20 nA MAX
(111),50 nA MAX (311)
DIFFERENTIAL INPUT VOLTAGE ±30 V
POWER SUPPLY VOLTAGE SINGLE 5.0 V
SUPPLY TO ± 15 V
OFFSET VOLTAGE NULL CAPABILITY
STROBE CAPABILITY

Absolute Maximum Ratings
Voltage Between V+ and VTerminals
Output to V- (J.LA 111)
(J.LA311 )
Ground to VDifferential Input Voltage
Input Voltage (Note 1)
Internal Power Dissipation
(Note 2)
Output Short,Circuit Duration
Storage Temperature Range
Metal and
Ceramic DIP
Molded DIP
Operating Temperature Range
Military (J.LA 111)
Commercial (J.LA311)
Pin Temperature (Soldering)
Metal and Ceramic (60 s)
Molded (10 s)

BALANCE!
STROBE

+IN

(Top View)

Order Information
Type
Package
J.LA111
Metal
J.LA311
Metal

Code
5W
5W

Part No. •
J.LA 111HM
J.LA311HC

Connection Diagram
B-Pin Mini DIP
8

36 V
50 V
40 V
30 V
±30 V
± 15 V

v+

GND

500mW
10 s

+IN

OUT

-IN

BALANCE!
STROBE

v-

BALANCE

(Top View)

-65°C to +150°C
-55°C to +125°C

Order Information
Type
Package
J.LA 111
Ceramic DIP
J.LA311
Ceramic DIP
J.LA311
Molded DIP

-55°C to +125°C
O°C to +70°C

Notes
1 ThIs rating applies for ± 15 V supplies. The positive input
voltage limit IS 30 V above the negatIve supply. The negatIve
IOput voltage limit IS equal to the negative supply voltage or
30 V below the positive supply. whichever is less.
2. RatIng applies to ambient temperatures up to 70'C. Above
70'C ambient derate linearly at 6.3 mV! 'c to Metal Package.
8.3 mW! 'c for mini DIP.
5-33

Code
6T
6T
9T

Part No.
J.LA111RM
J.LA311RC
J.LA311TC

~A 111

• ~A311

Equivalent Circuit
BALANCE

r---~--~~'---~---+----~----~-------;~-;~----------------~-----V+
R9
500 !!

:J-+---_OUTPUT

R11
130 !l
Q15
R12
600 {l

R13
4 n

'----t----+-GROUND

JLA111
Electrical Characteristics

Vs = ± 15 V, TA = -55°C to +125°C unless otherwise specified. (Note 3)
Typ

Max

Unit

0.7

3.0

mV

TA = 25°C

4.0

10

nA

Input Bias Current

TA = 25°C

60

100

nA

Voltage Gain

TA=25°C

200

V/mV

Response Time (Note 5)

TA = 25°C

200

ns

Saturation Voltage

VIN ~ -5 mY, lOUT = 50 mA
TA=25°C

0.75

Strobe On Current

TA = 25°C

3.0

Output Leakage Current

VIN ~ 5 mY, VOUT = 35 V
TA = 25°C

0.2

Input Offset Voltage (Note 4)

RS

Characteristic

Condition

Input Offset Voltage (Note 4)

TA = 25°C, RS

Input Offset Current (Note 4)

~

Min
~

50 kQ

50 kQ

Input Offset Current (Note 4)
Input Bias Current
Input Voltage Range

1.5

V
mA

10

nA

4.0

mV

20

nA

150

nA

±14

V

V+ ~ 4.5 V, V- = 0
VIN ~ -6 mY, ISINK ~ 8 mA

0.23

0.4

V

Output Leakage Current

VIN ~ 5 mY, VOUT = 35 V

0.1

0.5

JLA

Positive Supply Current

TA = 25°C

5.1

6.0

mA

Negative Supply Current

TA = 25°C

4.1

5.0

mA

Saturation Voltage

Notes on following pages.
5-34

JlA 111 • JlA311
IlA311
Electrical Characteristics

Vs = ± 15 V, TA = O°C to + 70°C unless otherwise specified. (Note 3)

Characteric

Condition

Min

Typ

Max

Unit

Input Offset Voltage (Note 4)

TA = 25°C, RS :5 50 kfl

2.0

7.5

rnV

Input Offset Current (Note 4)

TA=25°C

6.0

50

nA

250

Input Bias Current

TA=25°C

100

Voltage Gain

TA=25°C

200

V/rnV

nA

Response Time (Note 5)

TA = 25°C

200

ns

Saturation Voltage

VIN :5 -10 rnV, lOUT = 50 rnA
TA = 25°C

0.75

Strobe On Current

TA = 25°C

3.0

Output Leakage Current

VIN 2: 10 rnV, VOUT = 35 V
TA=25°C

0.2

Input Offset Voltage (Note 4)

RS :5 50 kfl

1.5

V
rnA

50

nA

10

rnV

Input Offset Current (Note 4)

70

nA

Input Bias Current

300

nA

Input Voltage Range

±14

V

Saturation Voltage

V+ 2: 4.5 V, V- = 0
VIN:5 -10 rnV, ISINK:5 8 rnA

0.23

0.4

V

Positive Supply Current

TA = 25°C

5.1

7.5

rnA

TA=25°C

4.1

5.0

rnA

Negative Supply Current

Notes
3. The offset voltage, offset current and bias current
specifications apply for any supply voltage from a single
5 V supply up to ± 15 V supplies.
4. The offset voltages and offset currents given are the maximum
values required to drive the output within a volt of either supply

with a 1 rnA load. Thus, these parameters define an error band
and take into account the worst case effects of voltage gain
and input impedance.
5 The response time specified (see definitions) is for a 100 mV
Input step with 5 mV overdrive.

Typical Performance Curves for IlA 111

Input Bias Current as a
Function of Temperature
40 0

vs~±1'5V

I

Offset Voltage as a
Function of
Input Resistance

Input Offset Current as a
Function of Temperature

> 100

30

VS"" ±15V

TA _ 25"C

E

I

w

'"

0

RAISEO·

~

"-

'-

20 0

~ 10
t;
~

"

.........

~

'-...
100

0
-55 -35 -15

'-

NORMAL

~

RAISED"

l'!

..........

r--

~

t--

NORMAL

o
5

25

45

TEMPERATURE -

65

"c

85

105125

I

-55 -35 -15

5

25

45

TEMPERTURE -

65

85

°C

• PinS 5, 6 and 8 are shorted.
5·35

105125

~
os
5l

1

MAXIMUM

TYPICAL

.........

;!

Im~lvoYtl'i11

o1
10k

100 k

10M

1M

INPUT RESISTANCE -

n

•

JLA 111 • JLA311
Typical Performance Curves for J.LA 111
Input Bias Current as a
Function of
Differential Input Voltage
180

.

V;:I ,115~

160

TA '" 25°C

...'"
i

120

§ 100
,

80

~

10

",,"-

~

30

l\.

o

EMITTER

FOLLOWER

-f-

-8

-4

12

DIFFERENTIAL INPUT VOLTAGE -

"-'\

RL = Soon

J

-55 -35 -1S

16

25

45

65

85

105 125

1.0

0.5

DIFFERENTIAL INPUT VOLTAGE _ mV

Supply Current as a
Function of Temperature

Leakage Current as a
Function of Temperature
10 '

Vs=±1SV

07

-0.5

-1.0

TEMPERATURE _ "C

V

Output Saturation Voltage
as a Function of
Output Current

Vs

+15V

7"

.... ; /

~06

-"""V
.v

w

~ 05

\A''\

OUTPUT

10

-

o

I

I

20
-16 -12

TA = 25"C

I

~20

I--

v; : aJv

I

40

~

-

04

:!l: 40

{

>

-

w

iii
~ 60

RL = 1 kG
V++=50V

50

"o '!.:,..
"z~
"oo 02
Q

OUT~UT ';:: -~

N01RMAi

0.5

ffi

~

60

~~=~~~~g[~AGES -

>
I

~ 140

~

Output Voltage as a
Function of
Differential Input Voltage

Common Mode Limits as a
Function of Temperature

-

T A "" - 55"C

~O.4

~

4~~.J-/C;/#;;?''-f-+-.-J_--I

v

10- 8

...

UT=50V/

ffi

a~

/' /"

~03~+'~~·~···-+-+-4--+-+-+-~
"'.
r--~
~02 ..Ll'~TA: 25'C'-+-+--1-+--1

lO-

w

/'

"

/'
V'N

";:2

~
~10-1 0

15V

./

0.1 f'..7.'+-+--1-+-+--1--+-+--+--1
OL-~_L-~~~~~

20

10

30

OUTPUT CURRENT -

50

40

__k--L~

-55 -35 -15

10- 1

,V
25

105125

'5

45

TEMPERATURE _ °C

rnA

105

65

125

TEMPERATURE _ °C

Typical Performance Curves for J.LA311

Input Bias Current as a
Function of Temperature
500

~ 400

I--

...zI
w 300
§
o
'"~ 200
...=>

-

Input Offset Current as a
Function of Temperature

V~: ,;5VI

RAISEO*-

r-

-

10

.,~

NORMAL

10

20

30

40

50

TEMPERATURE

• Pins 5, 6 and 8 are shorted.

60

70

--

1
, , 5V_

'E

~

i-- r--

i

o~

I

.,...

I--

..
z

w

NORMAL

~

30

40

50

TEMPERATURE _ °C

• Pons 5, 6 and 8 are shorted.
5-36

60

70

+,

M(XIMUM

TYPICAL

1

~

0

i

/

10

~

20

25°C

g

51
10

TA

1

w

RAl;:-

ffi

"'
""'ol:i:i

Vsl :

I'---

"li

~

z

100

'-..

...I

~

o
o

0

o

- 100

Offset Voltage as a
Function of Input Resistance

, I
1

10k

I1111 IT vOl +1 iWi

I
100 k

1M

INPUT RESISTANCE -

10M

n

1LA 111 • 1LA311
Typical Performance Curves for IlA311 (Cont.)

Input Bias Current as a
Function of
Differential Input Voltage
20

~17 5

~

!

~ 12 5

0

10

iii

~

,

5

" ''';'''''-i =
::;

"~
"o

:

I

i

I

0

-8

04

10

12

-4

o

16

10

"0

~

--

5

c-+- -+-

~

-

02

--

--;:/ V

-;7
-

--

tt
t

i/

01

o
o

,

10

l-30

20

-

40

OUTPUT CURRENT -

~10

70

ac

'\

~~~TP:Tl~:UT
'"I

I-

<.>

~ f=-

"'" ,
F=

c-~

I

30

40

50

f---

~

10

20

TEMPERATURE _

rnA

60

70

-~~

::.:: 10--\

;

,f--~
25

35

ac

-

45

=
55

TEMPERTURE _ °C

Strobe Circuit
3 kll ____ v+

~~.N'-

TTL
STROBE

1 kll

STROBING
OFFSET BALANCING

5-37

-=-

-

-- - - -

Typical Applications
Offset Null Circuit

~

INPUTVIN = 15V- -

w

10-1

50

-

=- ==

ffi

I

10
mV

V
./

10- ,

POSITIVE SUPPLY

NEGATIVE SUPPLY

40V

1---

~- 1----

pur HIGH

05

10--8

-

°r

I
~05

Leakage Currents as a
Function of Temperature

I

--

1'\

I '\
I

DIFFERENTIAL INPUT VOL TAGE -

L

- f- I--:-- - -I---

/I

60

Vs= ;r15V

'/

-

~o 3
~

SO

TA = 25°C

./'

>0 4

o

40

Supply Current as a
Function of Temperature

./'

o
Z

30

10

-!-

w

20

TEMPERATURE _

Saturation Voltage as a
Function of Current

>

I
I

V++=40V

t\.

<.>

,

•

"-

RL = soon

o

DIFFERENTIAL INPUT VOLTAGE - 'Ii

7

EMITTER

FOLLOWER
~ 20 OUTPUT
~
~

2

i

30

'""

~

-16 -'12

I 06

g

-RL = lkO

(
If ,
If

;:"
,,""-

r-

NORMAL OUTPUT

I 40
w

,

o
z

I

1 1
I--

>

I
i"~ 10

i

c~

!

= 30V

TA = 25°C

w

•

5

I-- Vs
50

5

>

I

:

., 0H- W.
7

~O

:

!

I

60

:~~~~~~g[~AGES -

Vs = :t15V
TA == 2S O C
,

150

ffi

~

+

:~

22

Output Voltage as a
Function of
Differential Input Voltage

Common Mode Limits as a
Function of Temperature

75

•

}LA 111 • }LA311
Typical Applications (Cont.)

Zero Crossing Detector
Driving MOS Logic

Increasing Input Stage Current'
r-........--v+
R2
3 k

v+ ~ 5 V

INPUT
8

7

TO
MOS
R3 LOGIC

10 k

4

-=-

-10 V

-=-

+15 V

Rl
~ 5 V

~

Negative Peak Detector

Adjustable Low Voltage
Reference Supply
v+

v-

'Solid tantalum

Note
'Increases typical common mode slew rate from
7.0 V//LS to 18 V//Ls.

R4

--1r--....--'W.......---1r-",/V'..---,
3.9 k

500

OUTPUT

R310 k
INPUT-vvv-.......
Rl
2 k

VOUT

-15 V

2N3904

'Solid tantalum

Digital Transmission Isolator
V+
R2
1 k

Cl
1.5

V+

~F

~

~

5.0 V

5 V

R5

R6
1 k

5 k

2

'Solid tantalum

Positive Peak Detector

TTL
OUTPUT

+15 V

Rl
100

I

FROM
TTL
GATE

INPUT

-15

v--<__......

'Solid tantalum

5·38

lk

#LA 111 • #LA311
Relay Driver with Strobe

Typical Applications (Cont.)

V++

Strobing of Both Input
And Output Stages
FROM D/A NETWORK

TTL

STROBE

Rl
1 k

TTL STROBE

• Typical input current is 50 pA
with Inputs strobed off.

• Absorbs Inductive kickback of relay
and protects Ie from severe voltage
transients on V++ line.

Precision Photodiode Comparator
Switching Power Amplifier

Rl
,---~----~~------'----'-+5V

INPUT

3.9 k

Rl

~PT100

R3

Ql

~~VV~

10 k

__~ 2N6125

1 k

3

R2 V-

TTL
OUTPUT

R3 100 k

-=-

OUTPUT

100 k

R2'
25 k

R4

47

• R2 sets the comparison level.
At companson, the photodlode has
less than 5 mV across It, decreasing
leakages by an order of magnitude

~----~----~~~V-

Switching Power Amplifier

JOI

R1620

",2N6125
OUTPUT

.-

R2
620

8 7

r l

R3
620

"::r

~(,

R4
300 k
R5
510

R6
39 k

R12
620

I

I
I

3 6

11~

v+

02~
2N6125

1

Rll
620

...-,
6'3
7 8 ......_

~111~
RIO
620

112

R13
300 k
R9
39 k

R14
510

R8
15 k
INPUT

if

1 pF
022

R7
15 k

5-39

REFERENCE

•

f.lA 139 - f.lA239 - f.lA339
f.lA2901-f.lA3302

FAIRCHILO
A Schlumberger Company

Quad Comparators
Linear Products

Description
The J.LA 139 series consists of four independent
precision voltage comparators designed specifically
to operate from a single power supply. Operation from
split power supplies is also possible and the low
power supply current drain is independent of the
supply voltage range. Darlington connected pnp input
stages allow the input common-mode voltage to
include ground.
•
•
•
•
•
•
•
•

Connection Diagram
14-Pin DIP

...--------.14
OUTPUT 2

OUTPUT 3

OUTPUT 1

OUTPUT 4

v+

SINGLE SUPPLY OPERATION +2.0 V TO +36 V
DUAL SUPPLY OPERATION ± 1.0 V TO ± 18 V
ALLOW COMPARISON OF VOLTAGES NEAR
GROUND POTENTIAL
LOW CURRENT DRAIN 800 J.LA TYP
COMPATIBLE WITH ALL FORMS OF LOGIC
LOW INPUT BIAS CURRENT 25 nA TYP
LOW INPUT OFFSET CURRENT ± 5 nA TYP
LOW OFFSET VOLTAGE ±2 mV

Schematic Diagram

GND

INPUT 1-

INPUT 4+

INPUT 1+

INPUT 4-

INPUT 2-

INPUT 3+

INPUT 2+

INPUT 3-

(Top View)

Order Information
Type
Package
J.LA 139A
Ceramic DIP
J.LA139
Ceramic DIP
J.LA239A
Ceramic DIP
J.LA239A
Molded DIP
J.LA239
Ceramic DIP
J.LA239
Molded DIP
J.LA339A
Ceramic DIP
J.LA339A
Molded DIP
J.LA339
Ceramic DIP
J.LA339
Molded DIP
J.LA290 1
Ceramic DIP
J.LA290 1
Molded DIP
J.LA3302
Ceramic DIP
J.LA3302
Molded DIP

-INPUT

OUTPUT

5-40

Code

6A
6A
6A
9A

6A
9A

6A
9A

6A
9A

6A
9A

6A
9A

Part No.
J.LA139ADM
J.LA139DM
J.LA239ADC
J.LA239APC
J.LA239DC
J.LA239PC
J.LA339ADC
J.LA339APC
J.LA339DC
J.LA339PC
J.LA2901DC
J.LA2901PC
J.LA3302DC
J.LA3302PC

J.LA 139 Series· J.LA290 1 • J.LA3302
Absolute Maximum Ratings

ILA139/ILA239/ILA339
ILA139A/ILA239A/ILA339A
ILA2901
Supply Voltage, v+
Differential Input Voltage
Input Voltage Range
Power Dissipation (Note 1) 9A, 6A
Output Short Circuit to GND, (Note 2)
Input Current (VIN < -0.3 V), (Note 3)
Operating Temperature Range
ILA339,ILA339A
ILA239,ILA239A
ILA139,ILA139A
ILA2901,ILA3302
Storage Temperature Range
Pin Temperature (Soldering)
Ceramic DIP (60 s)
Molded DIP (10 s)

36 V or ± 18 V
36 V
-0.3 V to +36 V
1W
Continuous
50 mA

ILA3302
28 V or ± 14 V
28 V
-0.3 V to +28 V
1W
Continuous
50mA

O°C to +70°C
-25°C to +85°C
-55°C to +125°C
-40°C to +85°C
-65°C to +150°C

•

Factors Important to Maximum Ratings and
Electrical Characteristics
Notes
1. For operating at high temperatures, the /LA339/ /LA339A,
/LA2901, IlA3302 must be derated based on a 125'e
maximum Junction temperature and a thermal resistance of
125'e/W which applies for the device soldered on a printed
circuit board, operating on a still air ambient The /LA 139 and
IlA 139A must be derated based on a 150' e maximum junction
temperature. The low bias dissipation and the "ON-OFF"
characterostlc of the outputs keeps the chip dlsslpatoon very
small (PO :oS 100 mW), provided the output transistors are
allowed to saturate.
2. Short circuits from the output to V+ can cause excessive
heating and eventual destruction. The maximum output
current IS approximately 20 mA independent of the
magnitude of V+

5

6

7

3. This onput current will exist only when the voltage at any of the
Input leads is droven negative. It is due to the collector-base
Junction of the Input pnp transistors becomong forward biased
and thereby acting as input diode clamps. In addition to diode
action, there is also lateral npn parasitic transistor action on
the Ie chip. This transistor action can cause the output
voltages of the comparators to go to the V+ voltage level or
to ground for a large over-drive, for the time duration that an
onput IS droven negative. This IS not destructove and normal
output states will reestablish when the input voltage, which IS
negative, again returns to a value greater than -0.3 V.
4. These specifications apply for V+ = 5.0 V and
-55'e:oS TA:oS +125'e, unless otherwise stated. With the
/LA239 / /LA239A, all temperature specifications are limited to

8

9

10

5-41

-25'e:oS TA:oS +85'e, the IlA339//LA339A temperature
specifications are limited to o'e :oS TA :oS -70'e, and the
IlA290 I, /LA3302 temperature range is
-40'e:oS TA:oS +85'e.
The direct lOP of the input current IS out of the Ie due to the
pnp onput stage. This current IS essentoally constant,
independent of the state of the output so no loading change
eXists on the reference or input lines.
The Input common-mode voltage or either Input signal voltage
should not be allowed to go negative by more than 0.3 V. The
upper end of the common-mode voltage range IS V+ - 1 5 V,
but either or both onputs can go to +30 V without damage.
The response time specified is for a 100 mV input step With
5 mV overdrive. For larger overdrive signals 300 ns can be
obtained; see typical performance characterostics section
Positive excursions of onput voltage may exceed the power
supply level. As long as the other voltage remains Within the
common-mode range, comparator will provide a proper output
state. The low input voltage state must not be less than
-0.3 V or 0.3 V below the magnitude of the negative power
supply, If used.
At output sWitch point, Vo "" 1.4 V, RS = 0!1 with V+ from
5 V; and over the full input common-mode range
OVtoV+-15V.
For onput signals that exceed Vee, only the overdriven
comparator is affected. With a 5 V supply, VIN should be
limited to 25 V maximum and a limiting resistor should be
used on all inputs that might exceed the positive supply

JLA 139 Series· JLA2901 • JLA3302
Electrical Characteristics
Characteristic

V+ = 5 V

(Note 4)

Condition

/LA139A
Min Typ

Input Offset Voltage TA = 25°C (Note 9)
Input Bias Current
IIN(+) or IIN(-) with
Output in Linear Range.
TA = 25°C (Note 5)

Supply Current

/LA239A,/LA339A
Min Typ Max

± 1.0 ±2.0
25

Input Offset Current IIN(+) - IIN(-).
TA = 25°C
Input Common-Mode TA = 25°C
(Note 6)
Voltage Range

Max

100

±5.0 ±25

RL = 00 on all
Comparators.
TA = 25°C

0.8

±2.0 ±5.0

25

25

250

±5.0 ±50

2.0

Max

± 1.0 ±2.0

V+ -1.5 0

0

/LA139
Min Typ

±5.0 ±25

V+ -1.5 0
0.8

100

2.0

Unit
mV
nA
nA

V+-1.5 V
0.8

2.0

mA

RL = 00. V+ = 30 V.
TA = 25°C
Voltage Gain

Large Signal
Response Time

Response Time

RL ~ 15 kfl.
V+ = 15 V. (To
Support Large Vo
Swing) TA = 25°C

50

200

50

200

200

V/mV

VIN = TTL Logic Swing.
Vref = 1.4 V.
VRL = 5.0 V.
RL = 5.1 kfl.
TA = 25°C

300

300

300

ns

VRL = 5.0 V.
RL = 5.1 kfl.
TA = 25°C (Note 7)

1.3

1.3

1.3

/Ls

Output Sink Current VIN(-) ~ 1.0 V.
6.0 16
VIN(+) = O.
VO:::; 1.5 V. TA = 25°C
Saturation Voltage VIN(-) ~ 1.0 V.
VIN(+) = O.
250
ISINK :::; 4.0 mAo
TA=25°C
VIN(+) ~ 1.0 V.
VIN(-) = O.
Vo = 30 V.
TA=25°C
Input Offset Voltage (Note 9)
Output Leakage
Current

6.0 16

400

250

6.0 16

400

250

mA

400

mV

200

200

200

nA

4.0

4.0

9.0

mV

± 100

± 150

± 100

nA

300

400

300

nA

V+ -2.0 0

V+ -2.0 0

V+ -2.0 V

VIN(-) ~ 1.0 V.
VIN(+) = O.
ISINK:::; 4 mA

700

700

700

mV

Output Leakage
Current

VIN(-) ~ 1.0 V.
VIN(+) = O.
Vo = 30 V

1.0

1.0

1.0

/LA

Differential Input
Voltage

Keep all VINs ~ 0 V
(or V-. if used)
(Note 8)

V+

V+

36

V

Input Offset Current IIN(+) - IIN(-)
Input Bias Current
IIN(+) or IIN(-)
with Output in
Linear Range
Input Common-Mode
Voltage Range
Saturation Voltage

0

Notes on following page
5-42

~A 139 Series • ~A2901 • ~A3302
Electrical Characteristics
Characteristic

V+ = 5 V

(Note 4)

Condition

.uA239,.uA339
Min Typ Max

Input Offset Voltage TA = 25°C (Note 9)
Input Bias Current

IIN( +) or IIN( _) with
Output in Linear Range,
TA = 25°C (Note 5)

Input Offset Current IIN(+) - IIN(-),
TA = 25°C
Input Common-Mode TA = 25°C
(Note 6)
Voltage Range
Supply Current

.uA2901
Min Typ

Large Signal
Response Time

Response Time

Output Sink Current

Saturation Voltage

mV

25

25

25

nA

250

Rl ~ 15 kf!,
V+ = 15 V, To
Support Large Vo
Swing, T A = 25°C

200

VIN = TTL Logic
Swing, Vref = 1.4 V,
VRl = 5.0 V,
Rl = 5.1 kf!,
TA = 25°C

300

VRl = 5.0 V,
Rl = 5.1 kf!,
TA = 25°C (Note 7)

1.3

2.0

25

VIN(-) ~ 1.0 V,
6.0 16
VIN(+) = 0,
VO::S 1.5 V, TA = 25°C
250

VIN(+) ~ 1.0 V,
VIN(-) = 0,
Vo = 30 V,
TA = 25°C
Input Offset Voltage (Note 9)
Input Offset Current IINC+) - IINC-)
Input Bias Current
IIN(+) or IIN(-)
with Output in
Linear Range
Input Common-Mode
Voltage Range

0

250

±5.0 ±50

V+ -1.5 0
0.8

Output Leakage
Current

Unit

±3.0 ±20

0

VIN(-) ~ 1.0 V,
VIN(+) = 0,
ISINK ::S 4.0 mA,
TA=25°C

Max

±2.0 ±7.0

Rl = 00, V+ = 30 V,
TA = 25°C
Voltage Gain

.uA3302
Min Typ

±2.0 ±5.0

±5.0 ±50

Rl = 00 on all
Comparators,
TA=25°C

Max

±5.0 ± 100

V+ -1.5 0
0.8

2.0

1.0

2.5

100

500

V+ -1.5 V
0.8

2

nA

2.0

mA

30

V/mV

300

300

ns

1.3

1.3

.uS

6.0 16

2.0 16

400

400

200

200

250

mA

500

mV

200

nA

9.0

9.0

15

40

mV

± 150

50

200

300

nA

400

200

500

1000

nA

V+ -2.0 0

V+ -2.0 V

700

700

mV

V+ -2.0 0

VIN(-) ~ 1.0 V,
VIN(+) = 0,
ISINK ::S 4 mA

700

Output Leakage
Current

VIN(-) ~ 1.0 V,
VIN(+) = 0,
Vo = 30

1.0

1.0

1.0

.u A

Differential Input
Voltage

Keep all VINs ~ 0 V
(or V-, if used)
(Note 8)

36

V+

V+

V

Saturation Voltage

Notes on following page
5-43

400

•

p,A 139 Series • p,A290 1 • p,A3302
Typical Performance Curves for p,A 139/ p,A239/ p,A339/ p,A 139A, p,A239A/ p,A339A/ p,A3302

--

0

.

,.08

E

,;-

1

~

0

:::i

04

/

o.,

.;-

a
~

'/

I--

80

TA-55°C

-- -

Tl

+'r c -

I
13

~

o

40

~

2

RL='"

1--;:; o,J

o~1

40

0

i'"

.0

+

100 mV
0
0

0

1

'~"=

20mV

0

>

40

T~

30

>1

~a
5~

VOUT-

-

\.

,..

~E

""

"0
~I

»

0

Ty 25ic

-100
10

~T:'+f~'t-

10

15

20

o.

~

20
10

r

I

~

"i

1

o

J

VIN

-50 -100

-r T
2

05

c -

-

I

~"
-

VOUT

I
10

TIME-iiS

5-44

15

r,

0Tr +2S C
o

o

01

10

10

lo-OUTPUT SINK CURRENT-rnA

n

+

TAi-S50C-

C'if7

1%:/
001

/srnv

I

I

0

~
/~ V

h~
'i".

> 000

II

/20mV

1

00

"

40

30

20

INPUT OVERDRIVE = 100 mV

1"

~6

05

~

Response Time for Various
Input Overdrives-Positive
Transition

50 mV = INPUT OVERDRIVE

"5V 1

1

o

V-I--SUPPlY VOlTAGE-V

0

0

~

+1j5 0 C

SUPPLY VOlTAGE-V

1

TAT-t125~

~

I

o
o

0

0

z
o

~

I

Response Time for Various
Input Overdrives-Negative
Transition

10

>

TA--55°C

~
z

I
I
30

.

w

80

I'

-=t +1JsoC

20

0

1

n

~

..

I

-:tI]
-+7~OC_

/'"

>

VIN(CM)= OV
RIN(CM)"=109

-t:1 J-

I-I--

10

Output Saturation Voltage

Input Current

Supply Current

20

7""

100

itA 139 Series • ItA2901 • ItA3302
Typical Performance Curves for ILA2901

Supply Current

Input Current

Output Saturation Voltage

80
RL

V

"
1

10

0-

~

"0"
~

~

./'
/"
08

-

V

I-

./

f-"""

/

10

1

"
1

~+2JOC~

......-

06

TA

I
-t~o,~

//-

E

>

""-;A-C-40°C

/

=."

12

II
I

1

l

'"

~

TA

-

'0

o
40

r-

0
5 0 mV -" INPUT OVERDRIVE

>
>1

T~

~~
g~
>~

0-0-

0.0
""
001

40

20
10

0

100

+5V 1

.~
.

20mV

30

+:

mv\
\

»

0

I

TA

15

_I850CL

"o

TA

....

0

-

0
0

-= 25JC
~I

I

, 0

Ij

~

0-

30

40

~1

oo

11
05

/

~r

,aV

"'

~V
~V
.

~

T~-O°C

iA=-rO

C -

r--

~

/SrnV

I

/20mV

I

II

1

1+50v

_

..~.,

J

VOUT

I-- t-

10

TIME-l1s

5-45

001

01

10

OUTPUT SINK CURRENT -

100
rnA

•

I
(I

r

-T'YC

~

001

10 -

+

50 e-----

T;= +2SbC",,-

1

~~

o
> 000

'0

"N

~TA=+85°C

0-

1

INPUT aVERlJRIVE = 100 mV

0

1

10

Tj: f--

0

1

0

50

05

;::
~

Response Time for Various
Input Overdrives-Positive
Transition

I ;..

~100

COC

/.

1

~
z
o

"
S

10

VOUT -

1 ~

~6

;"

V+-SUPPLY VOLTAGE-V

Response Time for Various
Input Overdrives-Negative
Transition
1

I
I

I

o

V+ - SUPPLY VOLTAGE - V

0

w

40

~
z

I

I

~

"0
0-

-r:-e+8;'C

20

60

0

1

-'40°C

I

I

15

, 0

J.tA 139 Series • J.tA290 1 • J.tA3302
Application Information

Typical Applications (V+

The /-LA 139 series are high-gain, wide-bandwidth
devices which, like most comparators, can easily
oscillate if Ihe output lead is inadvertently allowed to
capacitively couple to the inputs via stray
capacitance. This shows up only during the output
voltage transition intervals as the comparator
changes slates. Power supply bypassing is not
required to solve this problem. Standard pc board
layout is helpful as it reduces stray input-output
coupling. Reducing Ihe inpul resistors 10 < 10 k!1
reduces the feedback signal levels and finally, adding
even a small amount (1.0 to 10 mY) of positive
feedback (hysteresis) causes such a rapid transition
that oscillations due to stray feedback are not
possible. Simply socketing the IC and attaching
resistors 10 the pins will cause input / output
oscillations during the small transition intervals unless
hysteresis is used. If the input signal is a pulse
waveform, with relatively fast rise and fall times,
hysteresis is not required.

AND Gate

= 15 V)
V+

30k

100k
100 k

B-Wv-_-......--I
100k
C~\IVI.---'

v;::r

"0" "1"

OR Gate
V+

200 k

All pins of any unused comparators should
be grounded.

3.0 k

100 k
A

100 k

The bias network of the /-LA 139 series establishes a
drain current which is independent of the magnitude of
the power supply voltage over the range of
2 V to 30 V.

B
100 k

C

v~:r

-=

"0" "1"

It is usually unnecessary to use a bypass capacitor
across the power supply line.

Monostable Multivibrator
V+

The differential input voltage may be larger than V+
with:>ut damaging the device. Protection should be
provided to prevent the input voltages from going
more negative than -0.3 V (at 25°C). An input
clamp diode can be used as shown in the
applications section.

ol ---j f-....--...4----i

10 k

100pF

PW
1ms _ _--V+

to

~

+VIN

to tt

1N914

The output of the /-LA 139 series is the uncommitted
collector of a grounded-emitter npn output transistor.
Many collectors can be tied together to provide wiredOR output function. An output pull-up resistor can be
connected to any available power supply voltage
within the permitted supply voltage range and there is
no restriction on this voltage due to the magnitude of
the voltage which is applied to the V+ terminal of the
/-LA 139 package. The output can also be used as a
simple SP / ST switch to ground (when a pull-up
resistor is not used). The amount of current which the
output device can sink is limited by the drive available
(which is independent of V+) and the (J of this device.
When the maximum current limit is reached
(approximately 16 mAl, the output transistor will come
out of saturation and the output voltage will rise very
rapidly. The output saturation voltage is limited by the
approximately 60 !1 saturation resistance of the output
transistor. The low offset voltage of the output
transistor (1 mY) allows the output to clamp
essentially to ground level for small load currents.

Vo
0.001 F

1.0M

Bistable Multivibrator
V+

15k

100k

51k

V+:::rL

o

5-46

100k

R--~~~--~

Vo

o

J,LA 139 Series • J,LA290 1 • J,LA3302
Typical Applications (V+ = 15 V) (Con!.)
Monostable Multivibrator with Input Lock-Out
V+

15 k

1.0M
100 k

40}J.S~+

-fEo "s

+4V

to 11

1

Vo

240 k
62 k

Time Delay Generator
V+

10 k

15 k

3.0 k

200 k
10 M
10 k

V03
Vo+::,rV3

to

13

51 k
INPUT GATING
SIGNAL

VC1

10 k

10 k

V02
Vo+::r-

to 12
3.0 k
51 k

v+

10 M

----------",-.;a-

10 k

t

v;::r

Vet

10 11

I

V01

V,

-1--

51 k

5-47

•

p,A 139 Series • p,A290 1 • p,A3302
Typical Applications (V+ = 15 V) (Cont.)
Wired-OR Outputs

Squarewave Oscillator

V+

V+

4.3 k

3.0 k

100 k

f=100kHz

Vo

Vo

100 k

Large Fan-In AND Gate
V+

3.0 k

lOOk
10 k

VOUT

Pulse Generator
A
V+

B--KI---

>=

-=;:A

+125° C

rT

•o

40

"""-.

10

TA.=+25°C

r+tt-

20

30

I

.m

I
o
>.00

~ '/

,t%V

40

om

h~

1(=-55O~_

I

"TA= f-25°C

0'

'0

'00

la-OUTPUT SINK CURRENT-mA

V+ -SUPPLY VOLTAGE_V

SUPPLY VOLTAGE- Y

~7
~~

5

z

20

TA-+125°~

iI! •,

1

I-

,-

'0

!l

a:

.

'0

I

R(NleMI '" 109 I!

I

~

30

>
VINICMI-=

1

"L •
20

Output Saturation Voltage

.
.
a . _,Tw1
T

I
I

,.

••

55°C

{TI wti-'T

,.. .....I~

8/

JLA 193/293/393

Typical Performance Curves for I'A2903

Supply Current

·

......-

,,-

,- ......-

,,-

8

~---4O"C

V

RL "" ...

2

-

I I

l-t+J.c-

~ !--

-

,.""

V

1
I
!Zw

I,...- ~~wJ

r I
I I

I,...-

6

Output Saturation Voltage

Input Current

20

a:
a:
u

:>

i

..
..
..

TA

TAr:

--

20

~

.

y- -SUPPLY VOLTAGE-V

ii! • ,

T,

,.

o
o

-,85'c
I

5
I-

~

1

20

..

30

Typical Performance Curves For All Devices

•

•
•
•
•

•
•,...

50 mY = INPUT OVERDRIVE

I

+s. I

Response Time for Various
Input Overdrives
Positive Transition

I

0

I

~.. =

20m.

YOUT -

100m.

-

I I .,.

-'00

.s

,.
TIME-p.I

I I
T}~2SJC
-I -I
,s

2..

•

..

•

•
0
0

INPUT OVERDRIVE'" 100 mY

~

Hom.

I I

"" L
""I I
J

SmY

I~;

J

YIN

-100

r- r-Ti' e
05

I

n
I

r

- r-

,.
TIME-p..

5-53

-

+.".

YOUT

I I I
15

TA=+25°C

~
~V
V

..,a: .,

>.om

10 -

V+ -SUPPLY YOLTAGE- V

Response Time for Various
Input Overctrives
Negative Transition

~ .m
5
/
I
o

/.

r--;rA = +,8So C

l-

:>

30

•
,

~

TA-O·C

.

f-T!:- ,J'e
I I

~

I
I

I-

iI!
I

>
I

-4Q°C

2.

lO ~

\0.

~

~

&V

r

T~""O°C

TA-=-r Cr-- 10

OUTPUT SINK CURRENT - mA

'00

JLA 193/293/393 • JLA2903
The differential input voltage may be larger than V+
without damaging the device. Protection should be
provided to prevent the input voltages from going
negative more than -0.3 V (at 25°C). An input
clamp diode can be used as shown in the
applications section.

Application Information
The itA 193 series are high-gain, wide-bandwidth
devices which, like most comparators, can easily
oscillate if the output lead is inadvertently allowed to
capacitively couple to the inputs via stray
capacitance. This shows up only during the output
voltage transition intervals as the comparator
changes states. Power supply bypassing is not
required to solve this problem. Standard pc board
layout is helpful as it reduces stray input-output
coupling. Reducing the input resistors to less than
10 kQ reduces the feedback signal levels and finally,
adding even a small amount (1.0 to 10 mY) of positive
feedback (hysteresis) causes such a rapid transition
that oscillations due to stray feedback are not
possible. Simply socketing the IC and attaching
resistors to the pins will cause input-output
oscillations during the small transition intervals unless
hysteresis is used. If the input signal is a pulse
waveform, with relatively fast rise and fall times,
hysteresis is not required. All pins of any unused
omparators should be grounded.

The output of the itA 193 series is the uncommitted
collector of a grounded-emitter npn output transistor.
Many collectors can be tied together to provide an
output ORing function. An output pull-up resistor can
be connected to any available power supply voltage
within the permitted supply voltage range and there is
no restriction on this voltage due to the magnitude of
the voltage which is applied to the V+ terminal of the
itA 193 package. The output can also be used as a
simple SPST switch to ground (when a pull-up resistor
is not used). The amount of current which the output
device can sink is limited by the drive available (which
is independent of V+) and the {J of this device. When
the maximum current limit is reached (approximately
16 rnA), the output transistor will come out of
saturation and the output voltage will rise very rapidly.
The output saturation voltage is limited by the
approximately 60 Q saturation resistance of the output
transistor. The low offset voltage of the output
transistor (1 mY) allows the output to clamp
essentially to ground level for small load currents.

The bias network of the itA 193 series establishes a
drain current which is independent of the magnitude of
the power supply voltage over the range of from 2 V
to 30 V. It is unnecessary to use a bypass capacitor
across the power supply line.

Typical Applications (V+ = 15 V)
Bi-Stable Multivibrator

One-Shot Multivibrator

V+

V+

ol --jf--___.......--1

10k

100pF

to

15k
PW

_ --V+
;:fE:

1 ms-.

~VIN

to

1N914

tt

o

V~:.:rL

s

100 k

5
..rt:o

-'VV'v-li-......-j

R

Va
V+=n..

o

0001 F

10M

1N914

5-54

R

100k

-""","v-<~-~

Vo

15V

I=AIRCHILO
A Schlumberger Company

6-2

JLA9614
Dual Differential
Line Driver

FAIRCHILD
A Schlumberger Company

Interface Products
Connection Diagram
16-Pin DIP

Description
The JLA9614 is a TTL compatible Dual Differential Line
Driver. It is designed to drive transmission lines either
differentially or single-ended, back-matched or
terminated. The outputs are similar to TTL, with the
active pull-up and the pull-down split and brought out
to adjacent pins. This allows multiplex operation
(Wired-OR) at the driving site in either the singleended mode via the uncommitted collector, or in the
differential mode by use of the active pull-ups on one
side and the uncommitted collectors on the other (See
Applications). The active pull-up is short-circuit
protected and offers a low output impedance to allow
back-matching. The two pairs of outputs are
complementary, providing NAND and AND functions of
the inputs and adding greater flexibility. The input and
output levels are TTL compatible with clamp diodes
provided at both input and output to handle line
transients.

ACTIVE
PULL UP AI
OUT AI
OUTA2
ACTIVE
PULL UP A2
12 ACTIVE
PULL UP Bl

INAI
INA2

IN B3

INA3

IN B2

GND

IN Bl

(Top View)

Order Information
Type
Package
JLA9614
Ceramic DIP
JLA9614C
Ceramic DIP
JLA9614C
Molded DIP

• SINGLE 5 V SUPPLY
• TTL COMPATIBLE INPUTS
• OUTPUT SHORT CIRCUIT PROTECTION
• INPUT CLAMP DIODES
• OUTPUT CLAMP DIODES FOR TERMINATION OF
LINE TRANSIENTS
• COMPLEMENTARY OUTPUTS FOR NAND AND
OPERATION
• UNCOMMITTED COLLECTOR OUTPUTS FOR
WIRED-OR APPLICATION
• MILITARY TEMPERATURE RANGE
Absolute Maximum Ratings
(above which the useful life may be impaired)
Storage Temperature Range
-65° C to + 150° C
Vee Pin Potential to Ground Pin -0.7 V to +7.0 V
-0.5 V to +5.5 V
Input Voltage
Voltage Supplied to Outputs
(Open Collector)
-0.5 V to +12 V
Pin Temperature
Ceramic DIP, Flatpak
(Soldering, 60 s)
300°C
Molded DIP (Soldering, 10 s)
260°C
Internal Power Dissipation (Note) 670mW
Operating Temperature Range
Military (JLA9614)
-55°Cto +125°C
Commercial (JLA9614C)
0° C to +70° C

Note
For Ceramic DIP, rating applies to ambient temperatures up to
70· C, above 70· C derate linearly at 8.3 mW /. C. For the
Flatpak, derate linearly at 7 1 mW /. C above 60· C.

6·3

Code

68
68
98

Part No_
JLA9614DM
JLA9614DC
JLA9614PC

•

p,A9614
Equivalent Circuit (1 /2 of circuit)
r-~t-~t-~t-----~t-----~t-~t-~t-------t-----------t---t-----------t----1~---16

Vee

R19
540

01

025
t-----<024

C4

03

R22
4k

ACTIVE
PULL UP 12, 4------....-

....- - - - - '

R23

OUTPUT 1 3 , 3 - - -....- - ,

10
C3

02

R1

R16

4k

Uk

' - - - - 4 > - - - + - 1 , 15 ACTIVE
PULL UP
...---9'-2,14 OUTPUT

04
R21

1k

9,5-----------1___________J

-+___+ __--+

INPUTS 10,
11,76----------i------1------I
_____

Jr------~--~1-~r-----------------------~

":"

6·4

}

TOOTHER
DRIVER

~A9614
!LA9614
Electrical Characteristics

Vee = 5.0 V +
- 10%.

-55°C
Symbol

Characteristic

VOL

Output LOW Voltage

VOH1

Output HIGH Voltage

VOH2

Min

+25°C
Max

Min

400

+125°C
Typ

Max

200

400

Min

Max

Unit

Condition

400

mV

IOL = 40 mA
Vee = 4.5 V

2.4

2.4

3.2

2.4

V

2.0

2.0

2.6

2.0

V

-40

-90

-120

10

100

Ise

Output Short Circuit
Current

leEX

Output Leakage Current

IF

Input Forward Current

IR

Input Reverse Current

VIL

Input LOW Voltage

VIH

Input HIGH Voltage

VOLe

Clamped Output
LOW Voltage

-0.8

lee

Supply Current

Imax

-1.60

0.8

200

IOH = -10 mA,
Vee = 4.5 V
IOH = -20 mA,
Vee = 4.5 V

mA

VOUT = 0.0 V
Vee = 5.5 V

!LA

VeEX = 12.0 V
Vee = 5.5 V

-1.10 -1.60

-1.60 mA

VF = 0.4 V
Vee = 5.5 V

35

60

100

!LA

VR = 4.5 V
Vee = 5.5 V

1.3
1.5

0.8

0.8

V

Vee = 5.5 V

V

Vee = 4.5 V

-1.5

V

IOLe = -40 mA
Vee = 5.5 V

34

50

mA

Supply Current

46

65

mA

tpLH

Turn-Off Time

14

20

ns

CL = 30 pF
Vee = 5.0 V

tpHL

Turn-On Time

18

20

ns

See AC Circuit
VM = 1.5 V

VeD

Input Clamp
Diode Voltage

V

Vee = 4.5 V
lie = -12 mA

2.0

2.0

-1.0

6-5

2.0

-1.5

Inputs = 0 V
Vee = 5.5 V
Inputs = 0 V
V max = 7.0 V

•

J,LA9614
!LA9614C
Electrical Characteristics

Vee = 5.0 V +
- 5%.
O"C
+25°C

Symbol

Characteristic

VOL

Output LOW Voltage

VOH1

Min

Output HIGH Voltage

VOH2

Max

Min

450

+75°C
Typ

Max

200

450

Min

Max

Unit

Condition

450

mV

IOL = 40 mA
Vee = 4.75 V

2.4

2.4

3.2

2.4

V

IOH = -10 mA,
Vee = 4.75 V

2.0

2.0

2.6

2.0

V

IOH = -40 mA,
Vee = 4.75 V

-40

-90

-120

mA

VOUT = 0.0 V
Vee = 5.25 V

10

100

!LA

VeEX = 5.25 V
Vee = 5.25 V

Ise

Output Short Circuit
Current

leEX

Output Leakage
Current

IF

Input Forward Current

IR

Input Reverse Current

VIL

Input LOW Voltage

VIH

Input HIGH Voltage

VOLe

Clamped Output
LOW Voltage

-0.8

-1.5

V

lee

Supply Current

33

50

mA

Imax

Supply Current

46

70

mA

tpLH

Turn-Off Time

14

30

ns

iPHL

Turn-On Time

18

30

ns

Veo

Input Clamp
Diode Voltage

-1.0

-1.5

V

-1.60

0.8
2.0

2.0

200

-1.10 -1.60

-1.60 mA

VF = 0.45 V
Vee = 5.25 V

35

60

100

/lA

VR = 4.5 V
Vee = 5.25 V

1.3

0.8

V

Vee

V

Vee = 4.75 V

1.5

0.8
2.0

= 5.25 V

IOLe = -40 mA
Vee = 5.25 V
Inputs = 0 V
Vee = 5.25
Inputs = 0 V
Vmax = 7.0 V
CL = 30 pF
Vee = 5.0 V
See AC Circuit
VM = 1.5 V
Vee = 4.75 V
lie = -12 mA

Typical Performance Curves
Active Pull Down Output
LOW Current vs
Output LOW Voltage
'00

TA - 25°C

1&

80
Vcc~5SV

~

Ycc=SOY

~

60

~

40

20

Active Pull-Up Output
HIGH Current vs
Output HIGH Voltage

35

~

vc1c

3.

.ffi

Vrc=45V

.'

, '"
01

0.2

25

~

~ -60 1---+--+--'\r-+-ft--M.~t--1

e
03

04

0.5

YOl-OUTPUTYOLTAGE-Y

06

07

-80

15
10

~

o

-

V~" N'o LdAO

5.V

~I-"

2.

~40

a:
a:

~

J

Logic Levels vs
Ambient Temperature

1---+--+--+--::;lE-7f-'7"4-t-"'l

-100 O!---,--"'-:.--,--,:':--....1,,.--:-L,--'--""
••
OUTPUT HIGH VOLTAGE _ V

6-6

.5

•

-60

VOL@loL'""'4OmA

I I
20

0

20

60

100

TA -AMBIENT TEMPERATUAE-" C

140

JLA9614
Typical Performance Curves (Cont.)

Supply Current vs
Supply Voltage

Supply Current vs
Temperature

60

Supply Current vs
Operating Frequency

40
NO LOAD
TA 25°C

1/

0

,$

.E 35

IL

o
o

~
40

~

30

~

I'

'060

10

80

Vee-SUPPLY VDLTAGE-V

20

100

60

>

30

~

~

g:

..
1

"g
1!

..

/'
20

IPHL

1-

10
0

60

TA-12S0C

40

T -'SOCT -

-

55~C

30

..::::

.

.-- ~v

~ 20

20

0

20

60

100

10

20

50

10

Transfer Characteristics vs
Supply Voltage

50;--,---r--,---,---r--,---,
Vee 55V
I..-> 40
V" 50V
~g 30
Vee 45V
1

0

§10

140

05

~ 20

0

~

~

>

TA-AMBIENTTEMPERATURE-OC

02

.it

::>

'"

'"

01

f-FREQUENCY-MHz

VCC-"'SOV

~

~

20

140

0

Z

b

V
:,....--'

o
0

20

Transfer Characteristics vs
Temperature

f
Q

40

T A-AMBIENT TEMPERATURE- 0 C

Propagation Delay Time vs
Temperature

j

i

::>

~25

60

/

60

G

r

I

'0

E
I

~

a

30pF"-

.. 80

It
::>

I

;

vee l lov

el

OUTPUTS OPEN

I

~~~

;

100

5L I

~

,J.."-,. "0

0

veJ

00~;0~5~~'~0::'lt51=j'=0==j'=5==3!0==3j5
YIN -INPUT VOLTAGE- V

6·7

10
°0~·0~5~·1~0"~'~5--'~0--~'~5--J3:0·--~35
YIN-INPUT YOLTAGE-V

•

~A9614
AC Test Circuit and Waveforms
Vee

Vee

16

8
51 !l

1

5%

-=-

-=-

I
VOUT

(A)

'oo"A'

I

HtPLH
tPHL
~rM----------------~

Inpul Pulse
Frequency = 500 kHz
Amphlude = 3.0 ± 0 1 V
Pulse Widlh = 110 ± 10 ns
Ir = I, ::s 5.0 ns

6-8

-=-

~A9614
Typical Applications
Differential Mode Expansion Multiplex Operation
+5 V

O<--------TWISTEO-PAIR L l N E - - - - - - - - -..
~1

100n

foll
..

•

10

3

SHIELD OR COMMON GROUND CONNECTION

11

Only one driver

IS

enabled at one time

Expand by tYing NAND active pull-down outputs together and by
tYing AND active pull-up outputs together. The drivers can be
inhibited by taking one Input to ground

Simplex -- Differential Operation
V

5:~CC-'16
1/2~1' ~
':3

DATA

INPurs

I_ _ _ _ _ _ _

I~wr,;-

L,IN_E_____________

___

P
SHIELD OR COMMON GROUND
CONNECTION

See /iA9615 data sheet for operation of /iA9615

Typical Reflection Diagram

.M

vL2.dv
25°C

TA

Ilol S~A)E du)pJ OL~E

=

~ 120

CHARACTERISTICS

I

a~
~

,

40

40

::>

II

:t

o

~

,£-120

cc
1j2~15

+

7

;

6

r
200

v

~TWISTED-PAIR~

HIGH STATE OUTPUT :>EVICE

CilAfjRT'iS1U

-'00
10

Your -OUTPUT VOLTAGE - V

See /i9621 data sheet for usage of reflection diagram

6-9

~2

1•

i

3

DATA

1 OUTPUT

,uA9615
Dual Differential
Line Receiver

F=AIRCHILO
A Sehlumberger Company

Interface Products

Connection Diagram
16-Pin DIP

Description
The 9615 is a Dual Differential Line Receiver designed
to receive differential digital data from transmission
lines and operate over the military and industrial
temperature ranges using a single 5 V supply. It can
receive differential data in the presence of high level
(± 15 V) common mode voltages and deliver
undisturbed TTL logic to the output.
The response time can be controlled by use of an
external capacitor. A strobe and a 130 \! terminating
resistor are provided at the inputs. The output has an
uncommitted collector with an active pull-up available
on an adjacent pin to allow either wire-OR or active
pull-up TTL output configuration.
•
•
•
•
•
•
•
•

vee

OUT A
ACTIVE
PULL UP A
STROBEA

OUTB
14 ACTIVE
PULL UP B

RESPA

STROBE B

A+

RESP B

B+

1300
A-

1300
'---~

GND

TTL COMPATIBLE OUTPUT
HIGH COMMON MODE VOLTAGE RANGE
CHOICE OF AN UNCOMMITTED COLLECTOR OR
ACTIVE PULL-UP
STROBE
FULL MILITARY TEMPERATURE RANGE
SINGLE 5 V SUPPLY VOLTAGES
FREQUENCY RESPONSE CONTROL
130 f! TERMINATING RESISTOR

I

B-

(Top View)

Order Information
Type
Package
",A9615
Ceramic DIP
",A9615C
Ceramic DIP
",A9615C
Molded DIP

Absolute Maximum Ratings

above which the useful
life may be impaired
Storage Temperature
-65°C to +150°C
Vee Pin Potential to Ground Pin
-0.5 V to +7.0 V
Input Voltage Referred to Ground
(Pins 5, 6, 7, 9, 10,11)
±20 V
Voltage Applied to Outputs for
HIGH output State without
Active Pull-Up
-0.5 V to +13.2 V
Voltage Applied to Strobe
-0.5 V to +5.5 V
Pin Temperature Range
Ceramic DIP, Flatpak
(Soldering, 60 s)
300°C
Molded DIP (Soldering, 10 s)
260°C
Internal Power Dissipation (Note) 670 mW
Operating Temperature Range
Military (9615)
-55°C to +125°C
Commercial (9615C)
O°C to +70°C

Note
For CeramIc DIP. rating applies to ambient temperatures up to
70°C; above 70°C derate linearly at 8.3 mW 1°C. For the Flatpak.
derate linearly at 7.1 mW 1°C above 60°C.
6-10

Code
6B
6B
9B

Part No.
",A9615DM
",A9615DC
",A9615PC

JLA9615
Equivalent Circuit (Y2 ILA9615)
16 Vee
RESPONSE
CONTROLS

STROBES

164k

1.Sk

~ ~
~
r
164k

-

8.36k

5k

f-K
3k

~!;

(T---r(~O)

L--

soon

7k

7k

"".,

v

""

"-

~

~~

J

~(9J

30 !l

J

2k

2.6k

INPUTS

IN PUTS

(12)

1

~

26k

8.36k

~t;

27k

3M
(13) 1"1

..~

SOOn

........

".,

~~

K

r

.".

ACTIVE
PULL·
UP

20n
(14)
2
1
(15)

OUTPUTS

2.5k

rK

1.5k

'----

"-..t

~;z:
300n

13211

300n

150n

150n

150n

TOOT HER
REeEI VER

I
BGND

6-"

•

~A9615
~A9615

Electrical Characteristics

Vee = 5.0 V ± 10%.
T 25°C
Typ
Min

Max

T = +125OC
Min
Max

0.40

0.18

0.40

0.40

Characteristic

VOL

Output LOW Voltage

VOH

Output HIGH Voltage

leEX

Output Leakage
Current

Ise

Output Shorted
Current

liN

Input Current

IIN(ST)

Strobe Input Current

IIN(R-e)

Response Control
Input Current

VeM

Common Mode Voltage -15

IR(ST)

Strobe Input
Leakage Current

RIN

Input Resistor

VTH" •

Differential Input
Threshold Voltage

=

T = -55°C
Min
Max

Symbol

2.2

2.4

2.4

3.2

100

-15

V

V

200

-80

p.A

mA

-0.49 -0.7

-0.9

+15

-39

Unit Condition

-0.7

mA

-1.15 -2.4

mA

-1.2

-3.4

mA

-15

± 17.5 +15

-15

2.0

+15

V

5.0

p.A

77

130

167

-500 500

-500

80

500

-500

500

mV

-1.0

-1.0

+1.0

-1.0

1.0

V

1.0

0

Power Supply Current

28.7

50

mA

tPLH

Turn-Off Time

30

50

ns

tpHL

Turn-On Time

30

50

ns

Icc
:

Notes
'VOIFF is a differential input voltage referred from "+IN A" to
"-IN A" and from "+IN B" to "-IN B" .
• • Connect Output "An to Active Pull-up "A" and Output "B" to
Active Pull-up "B".

Vee = 4.5 V,
VOUT = ••
IOL = 15.0 mA,
'VOIFF = 0.5 V
Vee = 4.5 V,
VOUT = ••
IOH = -5.0 mA,
'VOIFF'" -0.5 V
VeEX = 12 V,
'VOIFF = Vee
Vee = 4.5 V
Vee = 5.5 V,
"Vse = 0 V,
'VOIFF = -0.5 V
Vee = 5.5 V,
VIN = 0.4 V
Other Input = 5.5 V
Vee = 5.5 V,
VIN = 0.4 V
'VOIFF = 0.5 V
Vee = 5.5 V,
'VOIFF = 0.5 V
Vee = 5.0 V,
'VOIFF = 1.0 V
Vee = 4.5 V,
'VOIFF = -0.5 V
VR = 4.5 V
Vee = 5.0 V,
VIN(R) = 1.0 V,
+Input = GND
VeM = 0 V
Vee = 5.0V ±10%
-155 VeM
VeM5+15V
Vee = 5.0V ±10%
Vee = 5.5 V,
-Inputs = 0 V,
+Inputs = 0.5 V
RL = 3.9 kO,
Vee = 5.0 V,
CL = 30 pF,
Figure 1
RL = 3900,
Vee = 5.0 V,
CL = 30 pF,
Figure 1

••• See input· output tranafer characteristic graphs on
following pages.

6-12

,uA9615
!LA9615C
Electrical Characteristics

Vee

= 5.0 V

T = 25°C

Min

Min

Symbol

Characteristic

VOL

Output LOW Voltage

VOH

Output HIGH Voltage

leE X

Output Leakage
Current

Ise

Output Shorted
Current

liN

Input Current

IIN(ST)

Strobe Input Current

IIN(R·e)

Response Control
Input Current

VeM

Common Mode Voltage -15

IR(ST)

Strobe Input
Leakage Current

RIN

VTH" •

± 5%.

T = O"C
Max
0.45

2.4

2.4

Max

0.25

0.45

3.3

Min

-14

Unit

Condition

0.45

V

Vee = 4.75 V,
VOUT = ••
IOL = 15.0 mA,
'VOIFF = 0.5 V

V

Vee = 4.75 V,
VOUT = ••
IOH = -5.0 mA,
'VOIFF = -0.5 V

!LA

VeEX = 5.25 V,
'VOIFF = Vee
Vee = 4.75 V

mA

Vee = 5.25 V,
• 'Vse = 0 V,
'VOIFF = -0.5 V

mA

Vee = 5.25 V,
VIN = 0.45 V; Other
Input = 5.25 V

200

-100

-0.9

+15

Max

2.4

100

-0.49 -0.7

-0.7

-1.15 -2.4

mA

-1.2

-3.4

mA

-15

± 17.5 +15

-15

5.0

Input Resistor

Differential Input
Threshold Voltage

T = 70°C

Typ

Vee = 5.25 V,
VIN = 0.45 V
'VOIFF 0.5 V
Vee = 5.25 V,
• VOIFF = 0.5 V

=

+15

V

Vee = 5.0 V,
'VOIFF = 1.0 V

10

!LA

Vee = 4.75 V,
'VOIFF = -0.5 V
VR = 4.5 V

n

Vee = 5.0 V,
VIN(R) = 1.0 V,
+Input = GND

74

130

179

80

500

-500

500

mV

VeM = 0 V
Vee = 5.0V ±5%

1.0

-1.0

1.0

V

-15:5 VeM
VeM:5 +15 V
Vee = 5.0 V ±5%

-500

500

-500

-1.0

1.0

-1.0

lee

Power Supply Current

28.7

50

mA

Vee = 5.25 V,
+Inputs = 0.5 V,
-Inputs = 0 V

tpLH

Turn-Off Time

30

75

ns

RL = 3.9 kn,
Vee = 5.0 V,
CL "" 30 pF,
Figure t

tpHL

Turn-On Time

30

75

ns

RL = 390 n,
Vee = 5.0 V,
CL = 30 pF,
Figure 1

Notes
'VOIFF is a differential input voltage referred from "+IN A" to
"-IN A" and from "+IN e" to "-IN e".
• • Connect Output "A" to Active Pull· up "A" and Output "e" to
Active Pull·up "e".

••• See input-output transfer characteristic graphs on
following pages .

6·13

•

JLA9615
Typical Performance Curves for
Output LOW Voltage as a
Function of
Output LOW Current
300

~

~

~A9615C

0

>
I

Output HIGH Voltage as a
Function of
Ambient Temperature

~ ~Jl..
I--

~

3.0

~
.~.!!. ......

~

20

05

o

20

10

lOt-OUTPUT LOW CURRENT-rnA

so

-

VIN

0
Ycc

vJe

+
~_

30

..

-40

TA==25°C

0-

-<

-:::"
<

V,N

0

~-

-

-

;<

<

~

o-

<

0

0

r-- ~III

;<

;<

~- ~

" " "
"l

0
01

02

-0'

VIN-INPUTVOLTAGE-V

Strobe Input/Output Transfer
Characteristic as a Function
Of Ambient Temperature
YCC

~

30

~

20

02

o.

02

o
o

Output Voltage as a
Function of
Common Mode Voltage
cc

55V

1/

1 1

q ~III

/
/

0

...

~

" " 20"
10

L

UNTESTED INPUT = 0 y
TA=25°C

0

\
;<

.0

30

Vee 50V

0

0

0

20

Input Current as a
Function of
Input Voltage
0

150V

10

YIN-STROBE INPUT VOLTAGE-V

:'\.

or-- r--

140

I ved=55t

r---r-0

100

~ .0 Vee 50V
!/ ~.:!.!.v,

0

r

so

20

50

0

~

0

TA=~OC
>
I

YIN-INPUT YOLTAGE- V

...

-20

TA-AMBIENT TEMPERATURE_o C

~ 10

0

-01

-so

!:j

o0
-0.2

VOtFF=05V

0

Vee

1S0V

so

0

-

{ Vcc=4.5Y
IOL=15mA

Strobe Input/Output
Transfer Characteristic as a
Function of VCC

Input/Output Transfer
Characteristics as a
Function of Temperature

I I I

"'

20

_lOt

IOH- OUTPUT HIGH CURRENT -rnA

Input/Output Transfer
Characteristics as a
Function of VCC

IoH'" SOmA
YOtFF=05Y

o

o

15

YOH

:J

I

10

--

0

~ 10

5.0

.....

5

~
0

::trJu~

TA=2S"C

~S5"

~
g30 I"'-

-

35

I I
I I

-

.0 I'-...

I'---

A

~ YC~=5.0V -

and

Output HIGH Voltage as a
Function of
Output HIGH Current

T.='... C
Vcc"'45Y

~A9615

-.

VPIFF==20Y

30

YIN-STROBE INPUTVOLTAGE-Y

.0

Vee=O.oV

-25

-15

1

'" 1

OS

15

YCM-COMMON MODE VOLTAGE-V

6-14

0

/

V

-s 0
25

-25

15

-5

0

5

VIN-INPUTVOLTAGE

15

25

~A9615
Typical Performance Curves for ,uA9615 and ,uA9615C (Cont.)
Power Supply Current as a
Function of
Power Supply Voltage
70

WITHIACTIV~ PULL!UP

Power Supply Current as a
Function of
Ambient Temperature

"EI

Vee
-INPUTS=OV

o

./
10

20

~

70

50

50

50

0

K'"
w'1H

40

iil

30

~~s=ov
-'NiuTS=tcc

Vcc-55V

'"

~

......
-

30

;-

INbuT!vee-= II'TT(I
+

20

I

.9

I'RL=39kllee) I

0

[t

10

0..-

--

4.0

1

50

60

70

o

-50

IPHL

cy,or

RL=39D!';_

0

20

0

20

50

100

140

0
-50

20

lA-AMBIENT TEMPERATURE-o C

~-

L-11
V V

REjiSTOR PULltP

30

Vee - POWER SUPPLY VOLTAGE- V

Fig. 1

l~cc=s'OV
VIN=-3V TO+3V

C,~tOpV

"~
U

\V V
/

o

~

V

+ INPUTS =

/..

70
TA"'25°C

CONNECTED TO ACTIVE
PULL DOWN ONLY

\

Switching Time as a
Function of
Ambient Temperature

0

20

II

60

-

'-

100

140

TA -AMBIENT TEMPERATURE- 0 C

Switching Time Test Circuit and Waveforms
Vee

,----....,.-+---+3.0 V
0.0 V
------3.0 V

-

.....

~-

VIN~

~----~--~~~-VOUT

=:IPH't
L

VOUT

~~

t,_+3.0V
0.0 V

~~H ':=-

3.0V

~. -3.0V

_ _ _~

1.5V

("USE Y,N OR YiN GROUND OTHER INPUT)
STROBE AND RESPONSE ARE
LEFT OPEN

Fig. 2
INA+=t>--oOUTA
INA-

VERTICAL ~ 2.0 VlDIV. HORIZONTAL ~ 50 no/DIV.

Photograph of a 9615 switching differential data in the presence
of h,gh common mode nOise.
6·15

•

JLA9615
Typical Applications
Fig. 3

Standard Usage
DRIVER SYSTEM

RECEIVER SYSTEM
LINE

9615

Fig. 4

Frequency Response Control

TTL LOGIC

Frequency Response as a
Function of Capacitance
10M

vc~mv

TA" 25°C
1M

RESPONSE
CONTROL PIN

100 k

10k

Notes
CR > .01 /LF may cause slowing of rise and fall tomes of
the output
Due to the mechanIsm of Inductoon of dlfferentoal nOIse, the
use of the response control IS not normally needed

k

100
0001

001

01

10

CR-CAPACITANCE-"f

6-16

10

~A9616

FAIRCHILD

Triple EIA RS-232-C/
MIL-STD-188C Line Driver

A Schlumberger Company

Interface Products

Connection Diagram
14-Pln

Description
The 9616 is a Triple Line Driver which meets the
electrical interface specifications of EIA RS-232-C
and CCITT V.24 and/or MIL-STD-188C (by the
appropriate device selection). Each driver converts
TTLlDTL logic levels to EIA/CCITT and/or MIL-STD188C logic levels for transmission between data
terminal equipment and data communications
equipment. The output slew rate is internally limited
and can be lowered by an external capacitor; all
output currents are short-circuit limited. The outputs
are protected against RS-232-C fault conditions. A
logic HIGH on the inhibit terminal interrupts signal
transfer and forces the output to a VOL (EIA/CCITT
MARK) state.

INA1
INA2

INHIBIT A
OUTA
INC

INHIBITC
GND

(Top View)

For the complementary function, see the 9617 Triple
EIA RS-232-C Line Receiver and the 9627 Dual EIA
RS-232-C and MIL-STD-188C Line Receiver.

Order Information
Type
Package
J.LA9616
Ceramic DIP
J.LA9616C
Ceramic DIP
J.LA9616E
Ceramic DIP
J.LA9616C
Molded DIP
J.LA9616E
Molded DIP

•
•

INTERNAL SLEW RATE LIMITING
MEETS EIA R5-232-C AND CCITT V_24 ANDIOR
MIL-STD-188C
• LOGIC TRUE INHIBIT FUNCTION
• OUTPUT SHORT-CIRCUIT CURRENT LIMITING
• OUTPUT VOLTAGE LEVELS INDEPENDENT OF
SUPPLY VOLTAGES
Absolute Maximum Ratings
Supply Voltage
Input or Inhibit Voltage
Output Signal Voltage
Internal Power Dissipation
(Note 1)
Storage Temperature Range
Operating Temperature Range
RS-232 MIL-STD-188 (9616)
RS-232 (9616C)
RS-232 MIL-STD-188 (9616E)
Pin Temperatures
Ceramic DIP (Soldering, 60 s)
Molded DIP (Soldering, 10 s)

Truth Table
1

2

± 15 V
-1.5 V to +6.0 V
± 15 V

L
H
L
H

L
L
H
H

670mW
-65°C to +150°C

X

X

Truth Table

x=

Note
1. For Ceramic and Molded DIP above
8.3 mW/oC.

Sections A and B

Input

-55°C to +125°C
O°C to 70°C
O°C to 70°C

eo°c derate linearly at

6·17

Part No.
J.LA9616DM
J.LA9616DC
J.LA9616EDC
j.LA9616PC
J.LA9616EPC

Code
6A
6A
6A
9A
9A

Inhibit

Output

L
L
L
L
H

H
H
H
L
L

Section C

Input

Inhibit

Output

L
H
L
H

L
L
H
H

H
L
L
L

output not dependent on Input

6

~A9616
Equivalent Circuit (One of three channels)
V+
I
I NOTE

.I.

¥
I
I

015
3,6,11

14

INHIBIT

Vee,

R9

017

R5
3.6k!l

10.7 !l

018

01

R7

35 !l

.....-------+----1

4,9,10

OUTPUT

GNO • A

7

NOTE."

GNO

---i< .. - - - - -......---+---....- -.. .

R3

R4

40011

1.2k!l

8 I Vee-

I

".I.".

-¥-

: NOTE
V

Nota
Three external diodes in series with VCC+, VCC- and GND are
required 10 meet the ± 2.0 V requirement

6-18

~A9616 AND ~A9616E, RS-232-C and MIL-STD-188C
DC Characteristics Vee = ± 12 V ± 10%; Rl ;:::: 3 kfl. See Test Circuit, unless otherwise specified. (Note 2)

Symbol

Characteristic

Condition

Min

Typ

Max

VOH

Output HIGH Voltage

VINl and/or VIN2 = VINHIBIT = 0.8 V

5.0

6.0

7.0

V

VOL

Output LOW Voltage

VIN 1 = VIN2 = VINHIBIT = 2.0 V

-7.0

-6.0

-5.0

V

Ripple Rejection

Power Supply Ripple = 2.4 Vp-p, f=400 Hz

Output HIGH Voltage to
Output LOW Voltage
Magnitude Matching Error

Ise+

Positive Output Short
Circuit Current

Rl = 0 fl,VINl and/or
VIN2 = VINHIBIT = 0.8 V

-45

Ise-

Negative Output Short
Circuit Current

Rl = 0 fl, VINl = VIN2 = VINHIBIT = 2.0 V +12

VIH

Input HIGH Voltage

Vil

Input LOW Voltage

IIH

Input HIGH Current

III

Input LOW Current

1+

Positive Supply Current

L

Negative Supply Current

om of

0.25

VOH
to
VOL

VOUT
±10

%

-25

-12

rnA

+25

+45

rnA

2.0

V

VINl = VIN2 = 2.4 V
VINI = VIN2 = 5.5 V
VINI = VIN2 = 0.4 V

0.8

V

40

~A

1.0
-1.6

-1.2
15

25

VINI = VIN2 = VINHIBIT = 2.0 V

7.5

15

VINI = VIN2 = VINHIBIT = 0.8 V

-1.0

0

VINI = VIN2 = VINHIBIT = 2.0 V

-25

-15

~Il

Output Resistance, Power On

Rl = 6 kfl,

ROUT

Output Resistance, Power Off

-2.0 V :::5 VOUT :::5 +2.0 V (Notes 4 and 5) 300

= 10 rnA

rnA
rnA

VIN 1 = VIN2 = VINHIBIT = 0.8 V

ROUT

Unit

rnA
rnA

75

fl
fl

~A9616

AND ~A9616E, RS-232-C and MIL-STD-188C
AC Characteristics 0:::5 TA :::5 70° C, (Notes 2 and 3)
Symbol

Characteristic

Condition

Min

Typ

Max

Unit

Positive Slew Rate

:::5 Cl :::5 2500 pF, Rl ;:::: 3 kfl

4.0

15

30

V/~s

:::5 Cl :::5 2500 pF, Rl ;:::: 3 kfl

-30

-15

-4.0

V/~s

Negative Slew Rate

o pF
o pF

tPlH

Propagation Delay Time

No Load

740

ns

tpHl

Propagation Delay Time

No Load

740

ns

Notes
2. The operating temperature range for the 9616 is -55°C to
+ 125°C and 9616E is O°C to +70°C.
3. An external capacitor may be needed to meet signal wave
shaping requirements of MIL·STD·188C at the applicable
modulation rate. No external capacitor is needed to
meet RS-232-C over the operating temperature range of
O°C to +70°C.

4. All Input and supply pins grounded.
5. Three external diodes in series with VCC+. VCC- and GND
are required to meet the ± 2.0 V requirement

6-19

•

JLA9616
9616C, EIA RS-232-C
DC Characteristics Vee = ± 12 V ± 10%, over operating temperature range. See Test Circuit, RL
otherwise specified.

= 3 kD, unless

Symbol

Characteristic

Condition

Min

Typ

Max

= VINHIBIT = 0.8 V
= VIN2 = VINHIBIT = 2.0 V
RL = 0 D, VINl and/or
VIN2 = VINHIBIT = 0.8 V
RL = 0 D, VINl = VIN2 = VINHIBIT = 2.0 V

Unit

VOH

Output HIGH Voltage

VINl and/or VIN2

5.0

6.0

7.5

V

VOL

Output LOW Voltage

VINl

-7.5

-6.0

-5.0

V

Ise+

Positive Output
Short-Circuit Current

Ise-

Negative Output
Short-Circuit Current

VIH

Input HIGH Voltage

VIL

Input LOW Voltage

IIH

Input HIGH Current

IlL

Input LOW Current

-25

mA

25

mA

2.0

= VIN2 = 2.4 V
= VIN2 = 5.5 V
VINI = VIN2 .. 0.4 V
VINl = VIN2 = VINHIBIT = 0.8 V
VINl = VIN2 = VINHIBIT = 2.0 V
VIN 1 = VIN2 = VINHIBIT = 0.8 V
VINl = VIN2 = VINHIBIT = 2.0 V

V

VINl

VINl

1+

Positive Supply Current

L

Negative Supply Current

ROUT

Output Resistance, P,ower Off -2.0 V

-1.6

0.8

V

40
1.0

/-IA
mA

-1.2

mA

15

22

7.5

13

-1.0

0

-22

-15

mA

::s VOUT ::s +2.0 V (Notes 4 and 5) 300

9616C, EIA RS-232-C
AC Characteristics 0 --< TA --< 70°C, (Note 6)
Symbol Characteristics
Conditions

Min

mA

D

Typ

Max

Unit

Negative Slew Rate

o pF ::s CL ::s
o pF ::s CL ::s

tpLH

Propagation Delay Time

No Load

740

ns

tpHL

Propagation Delay Time

No Load

740

ns

Positive Slew Rate

2500 pF, RL ~ 3 kD

4.0

15

30

V//-IS

2500 pF, RL ~ 3 kD

-30

-15

-4.0

V//-IS

Notes
4 All mput and supply pins grounded,
5 Three external diodes 10 series with VCC+. VCC- and GND
are required to meet the ± 2.0 V requirement

6 The operating temperature range lor the 9616 is -55·C to
+125·C and 9616E is O·C to +70·C.

6-20

~A9616
AC Test Circuit
VIN 1

1/39616

Voltage Waveforms

INPUT
10R2
(INHIBIT = LOW)

OV

~

1.5V

VOH ________~~~
OUTPUT

OV----------~_+~--~,_----------------~~~~~-If

Note
Omil VIN2 for channel "C".
Inpul: Frequency = 50 kHz
Pulse Width = 20 P.s
Ir and If = 10 ± 5 ns

•

6·21

J.LA9627 • J.LA9627C
RS-232C/MIL-STD-188C
Dual Line Receivers

FAIRCHILD
A Schlumberger Company

Interface Products

Description
The 9627 is a Dual Line Receiver which meets the
electrical interface specifications of EIA RS-232C and
MIL-STD-188C. The input circuitry accommddates
± 25 V input signals and the differential inputs allow
user selection of either inverting or non-inverting logic
for the receiver operation. The 9627 provides both a
selectable hysteresis range and selectable receiver
input resistance. When pin 1 is tied to Vee, the typical
switching points are at +2.6 V and -2.6 V, thus
meeting RS-232-C requirements. When pin 1 is open,
the typical switching points are at +50 IJ.A and
-50 IJ.A, thus satisfying the requirements to MIL-STD188C LOW level interface. Connecting the RIN pin to
the (-) input yields an input impedance in the range of
3 kQ to 7 kQ and satisfies RS-232-C requirements;
leaving RIN unconnected, the input resistance will be
greater than 6 kQ to satisfy MIL-STD-188C.

Connection Diagram
16-PinDIP

The output circuitry is TTL/DTL compatible and will
allow "collector-dotting" to generate the wire-OR
function. A TTL / DTL strobe is also provided for each
receiver. The EIA failsafe mode of operation is shown
in the application section of this data sheet.

"Internal Connectionmake no connection to this pm.

16
HYSTERESIS
OUTA
STROBE A

RIN A

RIN B

HNA
GND

Vee-

(Top View)

Order Information
Type
Package
IJ.A 9627
Ceramic DIP
IJ.A9627C
Ceramic DIP
1J.A.9627C
Molded DIP

•
•
•
•
•
•
•

EIA RS-232-C INPUT STANDARDS
MIL-STD-188C INPUT STANDARDS
VARIABLE HYSTERESIS CONTROL
HIGH COMMON-MODE REJECTION
RIN CONTROL (5 kQ OR 10 kQ)
WIRED-OR CAPABILITY
CHOICE OF INVERTING AND
NON-INVERTING INPUTS
• OUTPUTS AND STROBE nL COMPATIBLE
Absolute Maximum Ratings
Vee+ to Ground
Vee- to Ground
Input Voltage Referred to
Ground Pin
Strobe to Ground Voltage
Maximum Applied Output Voltage
Storage Temperature Range
Operating Temperature Range
Military (9627)
Commercial (9627C)
Internal Power Dissipation
(Note 1)
Pin Temperature
Ceramic DIP, (Soldering, 60 s)
Molded DIP (Soldering, 10 s)

Vee.

o V to +15 V
o V to -15 V
±25 V
-0.5 V to +5.5 V
-0.5 V to +15 V
-65°C to +150°C
-55°C to +125°C
O°C to +70°C
730mW

Notes
1. Above 65°C ambient temperature, derate linearly at
8.3 mW/oC

6·22

Code
68
68
98

Part No.
IJ.A9627DM
IJ.A9627DC
IJ.A9627PC

J,LA9627 • J,LA9627C
Equivalent Circuit (1 /2 of circuit shown)
vcc' ________________~~----~~----~~----_.--------------------~----._------~~---------16

R11
1.28 kIl

C1

R10
7OO1l

R43
700H

R9

700ll

7, 10 --~__4t_.,
R1
8kll
R2
11.3 kll

R4
2 kll
R42
7.6kll

6,11

R34
11.3kll
R41
3.2kll

07
R17
2.4 kll

R24
5.3kH

R22
1.12 kll

R25
450 II

R23
450 Il

R26
450ll

VCC-~9--------~----~----~----~----~--------------4---------~~------~------~-------4-R29
3.76kll

=

=

=

=

C 1 C2
C3
C4
1 1 pF
Pin 4 and 13 = Internal connection

6·23

•

~A9627 • ~A9627C
#A9627
DC Characteristics

Vcc+ = 12 V ± 10%, Vcc- = -12 V ± 10% over Operating Temperature Range,
unless otherwise specified.

MIL • STD • 188C

Symbol

Characteristic

VOL

Output LOW Voltage

VOH

Output HIGH Voltage

Isc

Output Shorted Current

IIH
Input HIGH Current (Strobe)
(Strobe)

Condition
(Pins 6 and 11 Open, Inverting
Inputs Open, Pin 1 Open)

Vcc+ = +10.8 V, Vcc- = -13.2 V
Non-Inverting Input = +0.6 V,
IOH = -0.5 mA

ITH+

Positive Threshold Current

VOUT

ITH-

Negative Threshold Current

VOUT

1+

Positive Supply Current

L

Negative Supply Current

= 2.4 V
= 0.4 V

Unit

0.4

V
V

Vcc+ = +10.8 V,
Vs = 2.4 V
Vcc- = -13.2 V
Non-Inverting Input = +0.6 V Vs = 5.5 V

Input Resistance

Max

2.4

Vcc+ = +13.2 V, Vcc- = -10.8 V
Non-Inverting Input = +0.6 V
Outputs Grounded

RIN

VIH
Input HIGH Voltage (Strobe)
(Strobe)

Typ

Vcc+ = +10.8 V, VCC- = -13.2 V
Non-Inverting Input = -0.6 V,IOL = 6.4 mA

Vcc+ = +13.2 V, Vcc- = -13.2 V
Non-Inverting Input = +3.0 V or -3.0 V

VIL
Input LOW Voltage (Strobe)
(Strobe)

Min

3.0

mA

40

#A

1.0

mA
kg

6.0
100
-100

= -0.6 V
VNon-lnverting Input = +0.6 V
Vcc+ = +13.2 V, Vcc- = -10.8 V
VNon-lnverting Input = -0.6 V
ITA = +125°C (9627)
VNon-lnverting Input = +0.6 V
ITA = +125°C (9627)

#A
#A

0.8

VNon-lnverting Input

2.0

V
V

18
12.4
-16

mA
mA

-11.4

RS·232C
Condition
(Non-Inverting Inputs Connected to
Ground, RIN Inputs Connected to Inverting
Inputs, Pin 1 Connected to Vcc-)
Min

Symbol

Characteristic

RIN

Input Resistance

VIN
VIN

Open Circuit

VIN

Input Voltage

VTH+

Positive Threshold Voltage

VTH-

Negative Threshold Voltage

AC Characteristics

TA - +25°C, Vcc+

Symbol

Characteristic

tpLH

Propagation Delay Time

tpHL

Propagation Delay Time

= +3.0 V to +25 V
= -3.0 V to -25 V

Typ

Max

3.0
3.0

7.0
7.0

Unit
kg
kg

-2.0

2.0

V

+3.0

V

-3.0

V

= +12 V, Vcc- = -12 V, MIL-STD-188C. RS-232C
Typ

Max

Unit

See AC Teat Circuit

60

250

na

See AC Teat Circuit

84

250

na

Min

Condition

6-24

p,A9627 • p,A9627C
AC Test Circuit and Waveforms

Threshold Current Matching Circuit
Vou-

+5.0 V
VIN_----!

VIN

7(10)
6(11)
5(12)
47011

Vcc+~VCC-

1 6 - - - Vcc+~12V

ADJUST POT TO ACHIEVE POSITIVE THRESHOLD CURRENT
AND NEGATIVE THRESHOLD CURRENT MATCHING

8~GND
9 - - - Vcc-~ -12V
PIN10PEN

Note.
15 pF includes jig capacitance
All diodes are FD777 or equivalent

PRR =10 kHz,
PW=50MS,
Ir=I,=5 no

•

+-.1

VOUT _ _ _ _

EIA R5-232C Interface with Failsafe Receiver
(Pin 1 Connected to VCC-)

-'~
1/39616

DATA 2

INHIBIT

r----

DATA OUT IS LOW
IF INPUT IS OPEN. OR
INPUT IS SHORTED TO AB. OR
DRIVER POWER IS OFF.

EIA RS-232C

INTERFACE----I

>

DATA OUT

)
10kn

+5V

SIGNAL COMMON
RETURN

CIRCUIT

6·25

Vcc-

p,A9627 • p,A9627C
MIL-STD-188C Interface
(Pin 1 Open)
1/69N04/7404

I~~T:T -I >,.........."

DATA OUT

(NOT~~»__

>-----,

.::SI:.:G::;N::Al::C:;,O:::M::;M:::.O:::N"---_-7)

470 l!

~

RETURN

PIN 1 OPEN
~

Vcc+

Capacitor for transmitter waveshapmg at applicable modulation
rate

6-26

50 k!l

Vcc-

,uA9636A
Dual Programmable
Slew Rate Line Driver
EIA RS-423 Driver

FAIRCHILO
A Schlumberger Company

Interface Products

Connection Diagram
a-Pin DIP

Description
The IlA9636A is a TTL/CMOS compatible, dual,
single-ended, line driver which has been specifically
designed to satisfy the requirements of
EIA Standard RS-423.

WAVESHAPE
CONTROL

Vcc+

IN A

OUT A

IN B

OUT B

GND

Vcc -

The IlA9636A is suitable for use in digital data
transmission systems where signal wave shaping is
desired. The output slew rates are jointly controlled by
a single external resistor connected between the
wave shaping control (WS) pin and ground. This
eliminates any need for external filtering of the output
signals. Output voltage levels and slew rates are
independent of power supply variations. Current
limiting is provided in both output states. The IlA9636A
is designed for nominal power supplies of ± 12 V.

(Top View)

Order Information
Type
Package
IlA9636A
Ceramic DIP
IlA9636A
Ceramic DIP
IlA9636A
Molded DIP

Inputs are TTL compatible with input current loading
low enough (1/10 UL) to be also compatible with
CMOS logic. Clamp diodes are provided on the inputs
to limit transients below ground.
• PROGRAMMABLE SLEW RATE LIMITING
• MEETS EIA RS-423 REQUIREMENTS
• COMMERCIAL OR MILITARY TEMPERATURE
RANGE
• OUTPUT SHORT CIRCUIT PROTECTION
• TTL AND CMOS COMPATIBLE INPUTS

RS-423

System Application
Vcc+

TWISTED PAIR
OR
FLAT CABLE

Vcc-

Note
Newer versions will not require the external diode and
normal opera lion IS not Impaired if the diode IS absent

6-27

+ 5.0 V

Code
6T
6T
9T

Part No.
IlA9636ARM •
IlA9636ARC
IlA9636ATC

,uA9636A
TA = 25°C unless
otherwise noted
Vcc+ Pin Potential to Ground Pin VCC- to + 15 V
VCC- Pin Potential to Ground Pin +0.5 to -15 V
VCC+ Pin Potential to VCC- Pin 0 to +30 V
Output Potential to Ground Pin
± 15 V
Output Source Current
-150 rnA
Output Sink Current
150 rnA
Internal Power Dissipation (Note 1)
9T Molded DIP
1.3 W
1.15 W
6T Ceramic DIP

Operating Temperature
Military (9636ARM)
Commercial (9636ARC / ATC)
Storage Temperature
Pin Temperature
Molded DIP (Soldering, 10 s)
Ceramic DIP (Soldering, 60 s)

Absolute Maximum Ratings

-55°C to 125° C
O°C to 70° C
-65° C to 150° C
260° C
300°C

Noles
1. Derate at 7,7 mW/oC for ambient temperature above 25°C for
6T package and derate 11,1 mW / ° C for 9T package.

!LA9636A
Recommended Operating Conditions
!LA9636ARM

!LA9636ARC,!LA9636ATC

Characteristic

Min

Typ

Max

Min

Typ

Max

Unit

Positive Supply Voltage (Vcc+)
Negative Supply Voltage (VCC-)
Operating Ambient Temperature (T A)
Wave Shaping Resistance (RwS)

10.8
-13.2
-55
10

12
-12
25

13.2
-10.8
125
500

10.8
-13.2
0
10

12
-12
25

13.2
-10.8
70
1000

V
V
°C
kfl

!LA9636A
Electrical Characteristics

Over recommended temperature supply voltage and wave shaping resistance ranges
unless noted.

Characteristic

Condition

Min

Typ

Max

Unit

VOHI
vOH2
VOH3

Output HiGH Voltage

RL to GND (RL
RL to GND (RL
RL to GND (RL

5.0
5.0
4.0

5.6
5.6
5.5

6.0
6.0
6.0

V
V
V

VOlt
VOL2
VOL3

Output LOW Voltage

= 00)
= 3 kfl)
= 450 fl)
RL to GND (RL = 00)
RL to GND (RL = 3 kfl)
RL to GND (RL = 450 fl)

-6.0
-6.0
-6.0

-5.7
-5.6
-5.4

-5.0
-5.0
-4.0

V
V
V

Ro

Output Resistance

25

50

n

Isc+
ISC-

Output Short Circuit Current
Output Short Circuit Current

-60
60

-15
150

rnA
rnA

100

!LA

0.8

V
V

Symbol

lOX

Output Leakage Current

VIH
VIL

Input HiGH Voltage
Input LOW Voltage

s RL
VOUT = 0 V, VIN = 0 V
VOUT = 0 V, VIN = 2.0 V
VOUT = ±6 V, Power-Off

450 n

(Note 2)

-150
15
-100
2.0

= 15 rnA

VCD

Input Clamp Diode

liN

IlL

Input LOW Current

IIH

Input HIGH Current

ICC+

Positive Supply Current

ICC-

Negative Supply Current

= 0.4 V
VIN = 2.4 V
VIN = 5.5 V
Vcc+ = +12 V, VCC- = -12 V
RL = 00, RwS = 100 kn, VIN = 0 V
VCC+ = +12 V, VCC- = -12 V
RL = 00, RwS = 100 kn, VIN = 0 V
VIN

Notes
2. Only one output should be shorted at a time.

6·28

-1.5

-1.1

V

-80

-16

!LA

-18

1.0
10

10
100

!LA
!LA

13

18

rnA

-13

rnA

~A9636A
~A9636A

AC Characteristics
Symbol

TA = 25°C, Vee = ± 12 V

Characteristic

Output Fall Time

tf

Min

Typ

Max

= 10 kfl
= 100 kfl
= 500 kfl
= 1000 kfl
RWS = 10 kfl
RwS = 100 kfl
RwS = 500 kfl
RWS = 1000 kfl

0.8
8.0
40
80

1.1
11
55
110

1.4
14
70
140

0.8
8.0
40
80

1.1
11
55
110

1.4
14
70
140

Rws
RWS
RWS
RWS

Output Rise Time

tr

± 10%, see AC Test Circuit

Condition

Unit
~s
~s
~s
~s

~s
~s
~s

~s

Typical Performance Curves

Input/Output Transfer
Characteristic vs Temperature

I

"~

200

f--+-+-+-t~+-+=~s 45~O~lkll

150 -Bws

100

40

50

125¢C

f~

~

-50

25"C
-100

-20

0

O'C
55°C

08

16

12

Output Current vs
Output Voltage (Power Off)
100

I

80

::>

0

...

-20

~

~

I

20

)

I

20

~

10

::>

-80

0r-+-,r-+-t~+-+-+~r-~
u
~ -10

-55°C

g

-20 I-+-+-+-t~+--!V-'N-+O-V+-+--l

-30 r-HIt-+-+-+/-rt--.l+-.l-II-+--i

I~- 25°C

-40b=*"LI--+...-4-F==F=F:::.j.~1--l

3

1

4

5

-4

-2

0

2

OUTPUT VOLTAGE -

4

6
V

-5~lLO--'_8-_6'--_..L.4---'_2'--.l.-...J2'--.1.4--'6-"'-8--"0

6

OUTPUT VOLTAGE -

v;, ~ ~12 J

8

10

o- r-

1,000

,

55'Cf:

100

,

~LOGIC

Icc-

VIN = 1

-

VIN = 1

-10

~

-20

Ice~

'LOGIC_
VIN = 0

-

V

Transition Time vs RwS

LOGIC
JiVIN =

10

Wc'l1
25°C

70°C & 125°C

-30

I I
I I

-40
~6

20

§

~

-

J~OGIC

o

iil

-8

30t=l==~t:5::$~::t:~=t~

~

~

Rws"'"' 100 k!l-

~

-40
::>
0
-60

-100
-10

11"'-

30
~

100 kll

-12 V

~ 10

40

- r-

~

TA -= 25"C

Supply Current vs Temperature

II

Vee' - VIN - 0
F0600 DIODE CONNECTED
IN SERIES WITH Vee PIN

r- -

u

4Of--+-+-+-t~+-+vcc,

INPUT YOlTAGE-V

INPUT VOLTAGE-V

40

Rws

---...

o

18

Output Current vs
Output Voltage (Power On)

25°C -----i

-200
04

~

-55°C

vi

I - - 125°C

-60

...I

co

112

12V
100 kll

-150

-40

60

0

vee

125°C

60

70°C

I!:::>

~Ivccl

I-+-+-+-t~+-+~~~- ~ ~l~\V

20

...~::>

Input Current vs Input Voltage

55

25

70

TEMPERATURE _ °C

6·29

125

1

V

10 k 20 k 50 k 100 k
Rws -

300 k

1M

3M

WAVE SHAPING RESISTANCE -

JI

•

~A9636A
AC Test Circuit and Waveforms
+12 V

7 (6)

><:>-...;.....;.....- - - _ - - VOUT

V,N--.....-...;.....;-I

51 !l

450 !l

CL
30 pF

-12 V

CL -

VIN
Ampiliude 3 0 V
Offsel 0 V
Pulse W,dlh 500 I'S
PRR 1 kHz

Includes Jig and probe capacilance

I r . If

6-30

10 ns

,uA9637A
Dual Differential
Line Receiver

FAIRCHIL.O
A Schlumberger Company

Interface Products

Description
The J.lA9637 A is a Schottky Dual Differential Line
Receiver which has been specifically designed to
satisfy the requirements of EIA Standards RS-422
and RS-423. In addition, the J.lA9637 A satisfies the
requirements of MIL-STD 188-114 and is compatible
with the International Standard CCITT
recommendations. The pA9637 A is suitable for use as
a line receiver in digital data systems, using either
single-ended or differential, unipolar or bipolar
transmission. It requires a single 5 V power supply
and has Schottky TTL compatible outputs. The
J.lA9637 A has an operational input common mode
range ± 7 V either differentially or to ground.

Connection Diagram
a-Pin DIP

vcc+

IN A+

OUT A

IN A-

OUT B

IN B+

GND

IN B-

Top View

•
•
•
•
•
•
•
•

DUAL CHANNELS
SINGLE 5 V SUPPLY
SATISFIES EIA STANDARDS RS-422 AND RS-423
BUILT IN ± 35 mV HYSTERESIS
HIGH COMMON MODE RANGE
HIGH INPUT IMPEDANCE
TTL COMPATIBLE OUTPUT
SCHOTTKY TECHNOLOGY

Absolute Maximum Ratings

Order Information
Type
Package
pA9637 A
Ceramic DIP
pA9637 A
Ceramic DIP
J.lA9637 A
Molded DIP

TA = 25°C unless
otherwise noted

Supply Voltage (Vee Potential
to Ground)
-0.5 V to 7.0 V
Input Potential to Ground Pin
± 15 V
Differential Input Voltage
± 15 V
-0.5 V to 5.5 V
Output Potential to Ground Pin
Output Sink Current
50 rnA
Internal Power Dissipation (Note 1)
6T Ceramic DIP
1. 15 W
9T Molded DIP
1.3 W
Operating Temperature
pA9637ARM
-55°C to 125°C
pA9637ARC,pA9637ATC
O°C to 70°C
Storage Temperature
-65°C to 150°C
Pin Temperature
Ceramic DIP (Soldering, 30 s)
Molded DIP (Soldering, 10 s)

6-31

Code
6T
6T
9T

Part No.
J.lA9637ARM
pA9637ARC
J.lA9637ATC

•

f.LA9637A
Equivalent Circuit
,---~--------~--------------~--------~-------'---'---------'-----VeCT
R25
R7

R8

R24

R14

R15

R23

08

R11

R18

R3

Vee

2,3

t--------<,-I:.

017

R16

+IN _7-,-,5--.....-.N'V'-_---I-------t------.

R6

020

R19

RS

-=

GND

~A9637A

Recommended Operating Conditions
~A9637ARC,~A9637ATC

~A9637ARM

Characteristic

Min

Typ

Max

Min

Typ

Max

Unit

Supply Voltage (Vee>
Operating Ambient Temperature (T A)

4.5
-55

5.0
25

5.5
125

4.75
0

5.0
25

5.25
70

V

6·32

°c

Vo

JLA9637A
JLA9637A
Electrical Characteristics

Over recommended temperature and supply voltage ranges, unless otherwise noted.

Symbol

Characteristic

Condition (1)

Min

VTH

Differential Input
Threshold Voltage

-7.0 V ::5 VeM ::5 7.0 V (3)

VTH(R)

Differential Input
Threshold Voltage

liN

Input Current

VOL

Output LOW Voltage

Max

Unit

-0.2

0.2

V

-7.0 V ::5 VeM ::5 7.0 V (4)

-0.4

0.4

V

VIN = 10 V, 0 ::5 Vee ::5 5.5 V (5)
VIN = -10 V, 0::5 Vee::5 5.5 V (5)

1.1
-3.25 -1.6

3.25

rnA
rnA

0.5

V

= 20 rnA, Vee = Min
IOH = -1.0 rnA, Vee = Min
VOUT = 0 V, Vee = Max (6)
Vee = Max, VIN(+) = 0.5 V,
VIN(-) = GND, (Both outputs low)
VeM = ± 7 V (See curves)

0.35

IOL

VOH

Output HIGH Voltage

Ise

Output Short Circuit Current

Icc

Supply Current

VHYST

Input Hysteresis

Typ

2.5

3.5

-40

-75

-100

rnA

35

50

rnA

V

70

mV

JLA9637A
AC Characteristics

Vee = 5 V, TA = 25°C

Symbol

Characteristic

Condition (1)

IpLH

Propagation Delay Time
LOW to HIGH

tpHL

Propagation Delay Time
HIGH to LOW

Typ

Max

Unit

See AC Test Circuit

15

25

ns

See AC Test Circuit

13

25

ns

Noles
2 Use Min I Max values specified In recommended
operating conditIOns
3. TYPical limits are at Vce = 5 a v and 25°e
4. VDIFF (Differenlial Input Voltage) = (VIN+) - (VIN-)
VCM (Common Mode Input Voltage) = (VIN+) or (VIN-)

Min

•

5 500!l ± 1% In series with Inputs
6 The input not under test IS lied 10 ground
7 Only one output should be shorted al a time.

Typicallnput/Output
Transfer Characteristics
Vcc-·S2SV

VJc"'475Y

Ir-

I
I
I
: VeM

I
I

1

o
100

..

:

I

oov~

VCM '" ±7V

:

I

I
I
I

I

I

VCM~OV"""":

I

I
I

I:

I
3

!

1

..

I
I

0

100

100

INPUT VOLTAGE-mY

.

.

1~=~7V

I

I

I
I

..

INPUT VOLTAGE-mV

6·33

100

J-LA9637A
AC Test Circuit and
Waveforms
Vee

~

5V

Vee

VOUT

~

5 V
+O.5V

8(6)

V,N

392 n
V,N

51 0

-O.5V

7(5)

CL

15 pF

3.92 kn

CL Includes jig and probe capacitance. All diodes are
F0700 or equivalent.

VIN

Amplitude' 1 0 V
Offset· 0.5 V
Pulse Width: 100 ns
PRR. 5 MHz
tr If = S 5 ns

Typical Application
RS-422 System Application (FIPS 1020) Differential Simplex Bus Transmission
TWISTED PAIR
OR
FLAT CABLE

+5V

+5V

~

...JL

DUAL RS·422 LINE DRIVER
+5V

Note
Rt 2: 50 n for RS·422 operatton
Rt combined wilh Input impedance of receIvers must be greater
than 90 n.

6-34

JLA9638 Dual High-Speed
Differential Line Driver
(EIA-RS-422)

FAIRCHILD
A Schlumberger Company

Interface Products

Description
The 9638 is a Schottky, TTL-compatible Dual Channel
Differential Line Driver, designed specifically to meet
the EIA-RS-422 specifications. It is designed to
provide unipolar differential drive to twisted-pair or
parallel-wire transmission lines. The inputs are TTL
compatible. The outputs are similar to totem-pole
TTL outputs, with active pull-up and pull-down. The
device features a short-circuit protected active pull-up
with low output impedance and is specified to drive
50 n transmission lines at high speed. The mini DIP
provides high package density.
•
•
•
•
•
•
•

•
•
•
•
•

Connection Diagram
a·Pin DIP

SINGLE 5 V SUPPLY
SCHOTTKY TECHNOLOGY
TTL AND CMOS·COMPATIBLE INPUTS
OUTPUT SHORT·CIRCUIT PROTECTION
INPUT CLAMP DIODES
COMPLEMENTARY OUTPUTS
MINIMUM OUTPUT SKEW « 1 ns TYPICAL)
50 mA OUTPUT DRIVE CAPABILITY FOR 50 n
TRANSMISSION LINES
MEETS EIA·RS·422 SPECIFICATIONS
PROPAGATION DELAY OF LESS THAN 10 ns
"GLITCH LESS" DIFFERENTIAL OUTPUT
DELAY TIME STABLE WITH Vee AND
TEMPERATURE VARIATIONS
« 2 ns TYPICAL) (FIGURE 3)

Absolute Maximum Ratings
Vee Pin Potential to Ground Pin
Input Voltage
Internal Power Dissipation
Operating Temperature
9638RM
9638RC,9638TC
Storage Temperature
Pin Temprature
Molded DIP (Soldering, 10 s)
Ceramic DIP (Soldering, 30 s)

Vee

CH.1
OUTB

INCH.1

CH.1
OUT A

INCH.2

CH.2
OUTB

GND

CH.2
OUT A

(Top View)

Order Information
Type
Package
ILA9638
Ceramic DIP
ILA9638
Ceramic DIP
ILA9638
Molded DIP

Code
6T
6T
9T

Part No.
ILA9638RM
ILA9638RC
ILA9638TC

-0.5 V to +7.0 V
-0.5 V to +7.0 V
800mW
-55·Cto +125·C
O· C to 70· C
-65· C to +150· C
260· C
300·C

6·35
-.----:.-=-------.-------.--"~~--- --.

---"'-".---------==------

-~--

•

#LA9638
Recommended Operating Conditions
9638RM
Typ
Min
4.5
5.0

Symbol Characteristic
Supply Voltage
Vee
Output HIGH Current
10H
Output LOW Current
10L
Ambient Temperature
TA
Electrical Characteristics

Max
5.5
-50
50
125

-55

9638RC,9638TC
Min
Typ
Max
4.75
5.0
5.25
-50
50
0
70

Unit
V
mA
mA
°C

Over recommended ambient temperature, unless otherwise noted

Symbol

Characteristic

VIH

Input HIGH Voltage

VIL

Input LOW Voltage

VI

Clamped Input Voltage

VOH

Output HIGH Voltage

VOL

Output LOW Voltage

liN

Input Current at Maximum
Input Voltage

IIH

Input HIGH Current

IlL

Input LOW Current

lOS

Short-Circuit Output Curren

Condition (Notes 1 and 2)

Min

Typ

Max

9638RC,9638TC

0.8

9638RM

0.7

= Min, liN = -18 mA
Vee = Min,
10H = -10 mA
VIH = VIH Min,
VIL = VIL Max 10H = -40 mA
Vee = Min, VIH = VIH Min,
VIL = VIL Max, 10L = 40 mA
Vee = Max, VIN Max = 5.5 V
Vee = Max, VIH = 2.7 V
Vee = Max, VIL = 0.5 V
Vee = Max, Vour = 0 V

-1.0

Vee

Terminated Output Voltage
Vr, Vr
Vr - Vr Output Balance
See Figure 1
VOS.VOS Output Offset Voltage
Vos-Vos Output Offset Balance

<

Vx

2.5

-1.2

<

Output Leakage Current

-0.25 V

lee

Supply Current
(both drivers)

All input at 0 V, Vee

V
V

3.5
V

2.0
0.5

V

50

/LA

25

/LA

-200

/LA

-150

mA

0.4
3.0
0.4

V
V
V

100

/LA

65

mA

Typ

Max

Unit

10
10
10
10

20
20
20
20

ns
ns
ns
ns

-50

V

2.0

Ix

Unit
V

2.0

6.0 V

= 5.5 V, no load

45

AC Characteristics
Symbol
tpHL
tpLH
tf
tr

Characteristic

Min

Condition

Propagation Delay

Fall Time, 90% - 10%
Rise Time, 10% - 90%
Skew Between Outputs
tpA-tPB
A and B

TA
RL

= 25°C, CL = 15 pF (Note 2),
= 100 fl, See Figure 2

1

Notes
1 Use minimum and maximum values specified in recommended
operating conditions.

2. TYPical limits are at Vee = 5.0 and TA = 25°e.

6·36

ns

~A9638
DC Test Circuit
Fig. 1

Terminated Output Voltage
and Output Balance
+
50 II

Y,N

VT

50 II

Fig. 2

AC Test Circuit and Voltage Waveform
~-----'------~------VOUT

Y,N

___1.5....11

RL
100 II

ICL

Y,N

•

-=VCiU'T

90%

I CL

IPLH

VOUT-VOUT------,'

•

Notes
1 The pulse generator has the following characteristics
ZOUT = 50 12, PRR = 500 kHz
tw = 100 ns, tr :$ 5 ns
2 CL Includes probe and Jig capacitance

Fig. 3

Typical Delay Characteristics

,.

,.

14

14

-

12

,.
~

•o

f--

50

2S

0

25

50

75

100

-

12

,.

--

t--

•

125

3

vcc-v

AMBIENT TEMPEAATURE_oC

6·37

t-

JlA1488
RS-232C
Quad Line Driver

FAIRCHILD
A Schlumberger Company

Interface Products
Connection Diagram
14-Pln DIP

Description
The /LA 1488 is an EIA RS-232C specified Quad Line
Driver. This device is used to interface data terminals
with data communications equipment. The /LA 1488 is a
pin-for-pin replacement of the MC 1488.

VeeINA

• CURRENT LIMITED OUTPUT- ± 10 mA TYP
• POWER-OFF SOURCE IMPEDANCE
300nMIN
• SIMPLE SLEW RATE CONTROL WITH
EXTERNAL CAPACITOR
• FLEXIBLE OPERATING SUPPLY RANGE

OUT A
IN B1
IN B2
OUTB

Absolute Maximum Ratings (at 25°C unless
otherwise noted)
Power Supply Voltages
+15 V
vee+
-15 V
VCC-15 Vdc to +7.0 Vdc
Input Voltage Range (VIR)
Output Signal Voltage
± 15 Vdc
Continuous Total Power
Dissipation (Note 1)
800mW
Operating Temperature
O°C to 70 0 e
-65°C to +150°C
Storage Temperature
Pin Temperatures
Ceramic DIP (Soldering,
60 s)
300°C
Molded DIP (Soldering,
10 s)
260°C

GND

(Top View)

Order Information
Type
Package
/LA 1488
Ceramic DIP
/LA 1488
Molded DIP

14

V e c . - - . . - - - - - -.....- -.....- - - - - ,
6.2 k

PINS 4, 9, 12 OR 2

INPUTS

9A

Part No.
/LA1488DC
/LA 1488PC

Notes
1 Above 60°C ambient temperatures. derate linearly at
83 mW/oC

Circuit Schematic ('A of Circuit Shown)

8.2 k

Code
6A

{-+n-.,

PINS 5, 10, 13

300

OUTPUT
PINS 6, 8,
11 OR 3

GND7""l
10 k

1
Vee- - - - -_ _-_----~>__--'

6-38

JlA1488
DC Characteristics

Vcc+ = +9.0 V ± 1%, Vccunless otherwise noted

Symbol Characteristic
IlL

Input LOW Current

IIH

Input HIGH Current

VOH

Output HIGH Voltage

VOL

Output LOW Voltage

Positive Output Short-Circuit Current

ROUT

Output Resistance

Negative Output Short-Circuit Current

Positive Supply Current

Icc-

Negative Supply Current

Pc

Power Consumption

AC Characteristics

Vcc+

± 1%, TA

= 0 to +70°C,

Condition

Fig

=0
VIH = 5.0 V
VIL = 0.8 V, RL = 3.0 kQ
VCC+ = +9.0 V, VCC- = -9.0 V
VIL = 0.8 V, RL = 3.0 kQ
VCC+ = +13.2 V,
Vcc- = -13.2 V
VIH = 1.9 V, RL = 3.0 kQ
Vcc+ = +9.0 V, VCC- = -9.0 V
VIH = 1.9 V, RL = 3.0 kQ
Vcc+ = +13.2 V,
Vcc- = -13.2 V
VIL = 0.8 V (Note 2)
VIH = 1.9 V (Note 2)
Vcc+ = VCC- = 0 V,
Vo = ±2.0 V
RL = co
VIH = 1.9 V, Vcc+ = +0.9 V
VIL = 0.8 V, VCC- = +9.0 V
VIH = 1.9 V, VCC+ = +12 V
VIL = 0.8 V, VCC+ = +12 V
VIH = 1.9 V, Vcc+ = +15 V
VIL = 0.8 V, VCC+ = +15 V
RL = co
VIH = 1.9 V, VCC- = -9.0 V
VIL = 0.8 V, VCC- = -9.0 V
VIH = 1.9 V, VCC- = -12 V
VIL = 0.8 V, VCC- = -12 V
VIH = 1.9 V, VCC- = -15 V
VIL = 0.8 V, VCC- = -15 V
VCC+ = 9.0 V, VCC- = -9.0 V
VCC+ = 12 V, VCC- = -12 V

1

VIL

los+
los-

Icc+

= -9.0 V

= +9.0 V

Symbol Characteristic

± 1%, Vcc-

= -9.0 V

-+ 1%, TA

Condition

tpLH
tpHL

Propagation Delay Time

RL

= 3.0 kQ, CL = 15 pF

tf
tr

Fall Time
Rise Time

RL

= 3.0 kQ, CL = 15 pF

Notes
2 MaxImum Package Power DIssIpatIon may be exceeded If all
outputs are shorted sImultaneously
6-39

Min

Typ

Max Unit

1.0

1.6

1

10

2

+6.0

+7.0

2

+9.0

+10.5

2

-6.0

-7.0

2

-9.0

-10.5

3
3

+6.0
-6.0

+10
-10

4

300

rnA
/LA
V

V

5

rnA
rnA
Q

+15
+4.5
+19
+5.5

+20
+6.0
+25
+7.0
+34
+12

-13

-17 rnA

-18

5

+12
-12

rnA

-15
-23
-15
-34
-2.5

/LA
rnA
/LA
rnA
rnA

333
576

mW

= 25°C
Fig

Min

Typ

6

220
70

Max Unit
350
ns
175

6

70
55

75
,100

ns

JLA1488
Typical Performance Curves
Transfer Characteristics as a
Function of
Power Supply Voltage
2

r>

Vee

±6 V

l

"~
...!1::>

12
+9 v

50_, o

E
I

...

i

\

V"~VO"'

\

-40

~::>

3 kll

0

J II II
0'

04

16

19

-12

-20
-16

20

\..

~
I-- I-I Vee·~:t9 -=

\

il:

iil

0

40

v"

-or VO"~S
f'
-=-

~

vee
0
-75

125

75
TEMPERATURE -

Q

10
10

10

100

DC Test Circuits
Fig. 1

Input Current
+9 V -9 V

14

5

2
4

10

9
12

13
7

?I

t

IIH

+5 V

==
1000

CAPACITANCE-pF

C

Vee

90 V

loe

TEMPERATURE- 0 C

\

12

'0

08 V

-50 ~-+-+--+-+--+--l---+~

16

\

"~
'"
~

'0

Output Slew Rate as a
Function of
Load Capacitance

!1

o

V

-80

1000

~

los

·90Y

19~-=

V"

i\
F= ~

OUTPUT VOLTAGE-V

Maximum Operating
Temperature as a Function of
Power Supply Voltage

l

I\:~

v

INPUT VOLTAGE-V

>

Vee
~

n\..O~~\~~

08 V

12

'O~-+-~-+-~-+-~-+~

'\

\

v"
2

t-..

\.

40

::>

...u

-

1""-

~

I I

0

12.--__: : : - , - - , - - , - - , - - , - - , - - - - ,

20

I I
+1i V

vee,

01-- Vee

Short-Circuit Output
Current as a
Function of Temperature

Output Voltage and Current
Limiting Characteristics

1
6-40

i\
10,000

JLA1488
Fig. 3

Output Short-Circuit Current

Fig. 5

Power-Supply Currents

VCC+ Vcc-

VCC+

14

+1.9 V

10s-1

2

3

4

6

+1.9 V

2

VIH!
4

7

9
9

los.
12

-=

11
V,L

+0.8 V

12

+0.8 V

Vcc-

Fig. 4

Output Resistance (Power-off)
Fig. 6

-o-I3-k

AC Test Circuit and Voltage Waveform
Y,N

3

-1I-=

VOUT

1sPF
CL

4

-=

6

1'S:3V

VOUT

8

±2 Vdc

9

Y,N

~
tPHL

11

10

VOUT - - -.......

13
Ir and If are measured 10% 10 90%

6-41

RL

-------oV

•

f.lA 1489 • f.lA 1489A
RS-232C
Quad Line Receivers

FAIRCHILD
A Sehlumberger Company

Interface Products
Description
The !LA 1489 and the !LA 1489A are EIA RS-232C
specified Quad Line Receivers. These devices are
used to interface data terminals with data
communications equipment. The !LA 1489 and !LA 1489A
are pin-for-pin replacements of the MC 1489 and
MC 1489A respectively.
•
•
•
•

Connection Diagram
14-Pin DIP
IN A

OUT A

INPUT RESISTANCE 3.0 kfl to 7.0 kfl
INPUT SIGNAL RANGE ± 30 V
INPUT THRESHOLD HYSTERESIS BUILT IN
RESPONSE CONTROL
a) LOGIC THRESHOLD SHIFTING
b) INPUT NOISE FILTERING

Absolute Maximum Ratings
Power Supply Voltage
Input Voltage Range
Output Load Current
Continuous Total Power
Dissipation (Note 1)
Operating Temperature
Storage Temperature
Pin Temperatures
Ceramic DIP (Soldering, 60 s)
Molded DIP (Soldering, 10 s)

vee

RESPONSE 2
CONTROL A 3

IN B
RESPONSE 5
CONTROL B
9 RESPONSE
8 CONTROL C

OUT B

GND

+10Vdc
±30 Vdc
20 mA

OUTC

(Top View)

Order Information
Type
Package
!LA 1489
Ceramic DIP
!LA 1489
Molded DIP
/-LA 1489A
Ceramic DIP
!LA 1489A
Molded DIP

800 mW
O°C to 70°C
-65°C to + 175°C

Notes
1 Above 60°C ambient temperature. derate linearly at

83 mw/'e

Circuit Schematic (1/4 of circuit shown)
14

. . . - - _ -...........;..;.Vce

1.6 kll
RESPONSE _2_ _ _ _ _ _ _..........R"'F...,...-+_-.
CONTROL

OUTPUT

3.55 kll
INPUT --iVV\r-1r--..........- - - i : .

10 kll
7

~-....._ - - -....._~~-~--GND

6·42

Code
6A
9A
6A
9A

Part No.
!LA 1489DC
!LA 1489PC
/-LA 1489ADC
!LA 1489APC

JLA 1489 • JLA 1489A
DC Characteristics

Vee = 5.0 V ± 1%, response control pin is open, TA = O°C to 70°C
unless otherwise noted.

Symbol Characteristic

Condition

IIH

Positive Input Current

VIH = 25 V
VIH = 3.0 V

IlL

Negative Input Current

VIL = -25 V
VIL = -3.0 V

VIHL

Input Turn-on Threshold Voltage

VILH

Input Turn-off Threshold Voltage

VOH

Output HIGH Voltage

IlA1489

VOL :S 0.45 V

IlA 1489A

TA=25°C,
VOH 2: 2.5 V,
IL = -0.5 mA

IlA1489

Output LOW Voltage
Output Short-circuit Current

lee

Power Supply Current

Pe

Power Consumption

-3.6
-0.43

-8.3

1.0
1.75

1.5
1.95

2.25

mA
mA
V

1.25

0.75

2

Unit

V
0.75

0.8

1.25

2.6

4.0

5.0

V

0.45

V

2

0.2
3.0

VIH = 5.0 V

4

20

26

mA

VIH = 5.0 V

4

100

130

mW

Unit

Vee = 50 V +
- 1%, TA = 25°C
Condition

Fig

RL = 3.9 kfl

Propagation Delay Time

1

Max

3

VIL = 3.0 V, IL = 10 mA

5

RL = 390 fl

tPHL

1

8.3

IlA14 89A

Symbol Characteristic
tPLH

Typ

2

Input open circuit, IL = -0.5 mA

VOL

Min
3.6
0.43

2

VIH = 0.75 V, IL = -0.5 mA

los

AC Characteristics

TA =25°C,

Fig

tr

Rise Time

RL = 3.9 kfl

tf

Fall Time

RL = 390 fl

5

Min

mA

Typ

Max

25

85

25

50

120

175

10

20

ns
ns

Typical Performance Curves

Input Current as a
Function of
Input Voltage

Input Threshold Voltage as a
Function of
Temperature
24

10

I I I

r- t- ".'''~, )- -

20

60

V

20

""-..;....;,.!'!~IL

./

-

./

V

1-'41489A Vic H

y"

-10
15

08

Y

-60

-25

r-- ~\rIHL
J.l A1489 V ILH

./

50

0

50

INPUT VOLTAGE-V

-

6

-20

,/

Input Threshold Voltage as a
Function of
Power Supply Voltage

I

4

15

I

0
25

60

IlA1489A

I
60

TEMPERATURE - " C

6·43

--

10 1--_-f_4...:.y,::::"'...:.,Ar.;.;'.;;:48;;..9+--+--i
______ ,VI_H (=9=='A~'4~891:==j:==f==I

120
POWER SUPPLY VOLTAGE-V

•

~A1489

• ~A1489A

Performance Curves (Cont.)

IJ.A 1489A Input Threshold
Voltage Adjustment

IJ.A 1489 Input Threshold
Voltage Adjustment

...

VTH=+50Y

50

..
~

)'\H
}IHL

30

§!
~
j!:
:>
0

5.~VrTH+=~+~5_.V-r~~I-,~r-VT~H_=~-5r·~V

y

~

> 40
I

•• r-'--r-r-,~c-r-~'--r-,
RT=..SOkll
RT-<>C>
RT=-11kH

III

Ai~

RT= 5 kn

AT

-=- YTH

'0

1

10

/
RT = 13 kH

VT1=+rv

-1 .... 1

_~T=11kn

I

1

1'"y r I I I
o

-10
-30

30

-1 ~3!-::.~......J~:--.!-....L...-::3':.-'---'-:.'='
......

•.0

INPUT VOLTAGE-Y

INPUT YOLTAGE-V

Test Circuits
Fig. 1

Fig. 3

Input Current

Output Short-Circuit Current
Vee

+5.0 V

V'N

14

14

,.

10

"

12

13

L....---~--1

Fig. 2

11

13

Fig. 4

Output Voltage and Input Threshold Voltage
I

Power Supply Current
Vee

VIHL

Icc

VILH

YIHLO
OPEN 0

50 V

+50V
VILH

14

14

r

10

,.

10

,.

13

VOH

13

-:

Ii
6-44

11

/.LA 1489 • /.LA 1489A
Fig. 5

Fig. 6

AC Test Circuit and Voltage Waveforms

Rl

Response Control Node
VR

50 V

ALL DIODES FD600
OR EQUIVALENT

VOUT

1/4 /1A 1489A

Note
CT = 15 pf = Total parasitic capacitance, which includes probe
and Jig capacitance.

Notes
Capacitor IS for noise filtering
Resistor is for threshold shifting

I, AND If
MEASURED 10%- 90%

•

6-45

f.lA55/751 07Aef.lA751 078
f.lA751 088
Dual Line Receivers

FAIRCHILD
A Schlumberger Company

Interface Products
Connection Diagram
14-Pin DIP

Description
The devices in this series are high-speed, twochannel Line Receivers with common voltage supply
and ground terminals. They are designed to detect
input signals of 25 mV (or greater) amplitude and
convert the polarity of the signal into appropriate TTL
compatible output logic levels. They feature high-input
impedance and low-input currents which induce very
little loading on the transmission line making these
devices ideal for use in party line systems. The
receiver input common mode voltage range is ± 3 V
but can be increased 10' ± 15 V by the use of input
attenuators. Separate or common strobes are
available. The 55/75107 circuits feature an active
pull-up (totem-pole output). The 751 08B circuit
features an open collector output configuration that
permits wired-OR connections. The receivers are
designed to be used with the 55110/75110A line
drivers. These line receivers are useful in high-speed
balanced, unbalanced and party-line transmission
systems and as data comparators.

INAl
IN A2
NC
OUTA
STROBE A
STROBE

GND
(Top View)

Order Information
Type
Package
/-LA551 07 A
Ceramic DIP
/-LA75107A
Ceramic DIP
/-LA75107A
Molded DIP
IlA75107B
Ceramic DIP
/-LA75107B
Molded DIP
IlA75108B
Molded DIP

• HIGH SPEED
• STANDARD SUPPLY VOLTAGES
• DUAL CHANNELS
• HIGH COMMON-MODE REJECTION RATIO
• HIGH INPUT IMPEDANCE
• HIGH INPUT SENSITIVITY
• INPUT COMMON-MODE VOLTAGE RANGE
OF ±3 V
• SEPARATE OR COMMON STROBES
• WIRED-OR OUTPUT CAPABILITY
• HIGH dc NOISE MARGINS
• STROBE INPUT CLAMP DIODES
• INPUT IS DIODE PROTECTED AGAINST POWEROFF LOADING ON B VERSIONS DEVICES
Absolute Maximum Ratings
Supply Voltage (Note 1) .
±7V
Internal Power Dissipation
(Note 3)
670mW
Differential Input Voltage (Note 2) ±6V
Common Mode Input Voltage
(Note 1)
±5V
Strobe Input Voltage (Note 1)
5.5 V
Operating Temperature Range
55107A
-55°C to +125°C
75107A/107B/108B
O°C to +70°C
Storage Temperature Range
-65°C to +150°C
Pin Temperature
Ceramic DIP
(Soldering, 60 s)
300°C
Molded DIP (Soldering, 10 s)
260°C

Code
6A
6A
9A
6A
9A
9A

Part No_
/-LA55107ADM
J.tA75107ADC
/-LA75107APC
/-LA75107BDC
/-LA75107BPC
/-LA75108BPC

Notes
1. These voltages are with respect to network ground terminal.
2. These voltage values are at the noninverting (+) terminal with
respect to the inverting (-) terminal.
3. For Ceramic DIP rating applies to ambient temperatures up to
70°C, above 70·C derate linearly at 8.3 mW I ·C.

6-46

J,lA55/75107A • J,lA751078
J,lA751 088
Equivalent Circuit
14
Vee· -"'--~---1r---"'--~-----"""'r---

Rll
120!!
~--t-- ~

.......

Rl
lkO

R2
1 k!!

R5

R8

4000

4k!!

--,
I
r--';
1.8k!~
I
-~10
I

R9

R6
4.2kO
R12
4kO

AI -'-f---1r

INPUTS {

ZI

R7
760n

Z2

t----oUTA

+--......;...GNO

RIO
1kn

1
A2~2~r----~----J

L---.--------+-~~-STROBEA

R3
3k!1

+-__________+-_......;...6 STROBE

13

Vee

R16
3 k!l

R17

3kn

r-------.....----+---~ STROBE B
B2
INPUTS

11

{
Z3

Bl +

R23
lkn

Z4

12

~~~~l
t- -

-~027
R14

tkO

R15
1 kO

R18

4000

R21
4kn

R22

9
"'---OUTB

028

I

'1.. __ ..I

1.8 k!l R24

-----4~--.....------......----......- -........ -~---l

L - _.....- -.....

Note
Components shown wIth dashed lines are applicable to the
55107A and 751078 only. See description tor dIfferences
between A and 8 verSIons
Pin 3 not connected

6·47

•

J,LA55/75107A • J,LA75107B

J,LA75108B
Truth Table

Circuit Differences Between A and B Versions
The essential difference between the 55/75107 A and
75107B versions is shown in the following
schematics of the input stage:
"A" Version

Differential
Inputs

Strobes

A-B

G

VID 2': 25 mV

Lor H Lor H H

Vee- - - . . - - _ - - . . - - - - ,

Lor H L

-25 mV

<

VID

VID ::; -25 mV
A

<

25 mV L
H

Output

S
H

Lor H H
H

Indeterminate

H
Lor H L
L
Lor H H
H

H

L

B----+---....
Recommended Combinations of
Input Voltage for
Line Receivers
"B" Version
Vee - - _ - _ - - . . - - - - ,

A

+ __.J

B -_ _

INPUT -B-TO-GROUND VOLTAGE- V

The input protection diodes are useful in certain partyline systems which may have multiple Vcc+ power
supplies and, in which case, may be operated with
some of the Vcc+ supplies turned off. In such a
system, if a supply is turned off and allowed to go to
ground, the equivalent input circuit connected to that
supply would be as follows:
"A" Version

INPUT~I

~

~J-

"B" Version

This would be a problem in specific systems which
might possibly have the transmission lines biased to
some potential greater than 1.4 V. Since this is not a
widespread application problem, both the A and B
versions will be available. The ratings and .
characteristic specifications of the B versions are the
same as those of the A versions.

6-48

JLA55/75107A • JLA75107B
JLA75108B
55/75107A,751078
DC Characteristics Ratings apply over full ambient temperature range with VCC+
otherwise noted (Notes 4 & 6)
Symbol

Characteristic

Condition

IIH

Input HIGH Current

IlL

Input LOW Current

= 0.5 V, VCM = -3 V to +3 V
= -2 V, VCM = -3 V to +3 V
VGATE = 2.4 V
VGATE = VCC+
VGATE = 0.4 V
VSTROBE = 2.4 V
VSTROBE = Vcc+
VSTROBE = 0.4 V
IL = -400 /lA,
Vcc+ = MIN
VCM = -3 V to +3 V Vcc- = MIN
ISINK = 16 mA,
Vcc+ = MIN
VCM = -3 V to +3 V Vcc- = MIN
VOUT = 0 (Note 5)
VOUT = VOH, IL = 0, TA = 25°C
VOUT = VOH, IL = 0, TA = 25°C

IIH(G)

Gate Input HIGH Current

IIL(G)

Gate Input LOW Current

IIH(S)

Strobe Input HIGH Current

IIL(S)

Strobe Input LOW Current

VOH

Output HIGH Voltage

VOL

Output LOW Voltage

ISC

Short-Circuit Output Current

ICC+

Positive Supply Current

Icc-

Negative Supply Current

55/75107A,751078
AC Characteristics Vcc+

= +5 V,

Min

VDIFF

= Max and VCC- = Max, unless
Typ

Max

Unit

30

75

/lA

VDIFF

Vcc-

= -5 V,

RL

= 39011,

CL

= 50

-10

/lA

40

/lA

1.0

mA

-1.6

mA

80

/lA

2.0

mA

-3.2

mA

2.4

V

-18

pF, TA

0.4

V

-70

mA

18

30

mA

-8.4

-15

mA

= 25°C. See Test Circuit
ns

tPLH(D)

17

25

tpHdD)

17

25

ns

10

15

ns

10

15

ns

tPLH(S)

Propagation Delay Time

tpHL(S)

Notes
4 For 55107 A guaranteed supply voltage range IS
± 4 5 V to ± 5 5 V Operating temperature range IS
-55°C ~ TA ~ +125°e
For 75107A18 and 751088 guaranteed supply voltage range IS
± 475 V to ± 525 V. Operating temperature range IS
ooe ~ TA ~ 70°C

5 Not more than one (1) output should be shorted at a time
6 Vee- Max Implies Vee- ; -5.5 V or -5 25 V. depending on
deVice type

6·49

•

JlA55/75107A • JlA751078
JlA751 088
751088
DC Characteristics

Ratings apply over full ambient temperature range with VCC+ = Max
Max, unless otherwise noted (Notes 4 & 6)
and Vcc-

=

Symbol

Characteristic

Condition

IIH

Input HIGH Current

VOIFF

IlL

Input LOW Current

IIH(G)

Gate Input HIGH Current

IlL (G)

Gate Input LOW Current

IIH(S)

Strobe Input HIGH Current

IIL(S)

Strobe Input LOW Current

VOL

Output LOW Voltage

IOH

Output HIGH Current

Icc+

Positive Supply Current

Icc-

Negative Supply Current

751088
AC Characteristics

Vcc+

= +5 V,

Min

= 0.5 V, VCM = -3 V to +3 V
VOIFF = -2 V, VCM = -3 V to +3 V
VGATE = 2.4 V
VGATE = VCC+
VGATE = 0.4 V
VSTROBE = 2.4 V
VSTROBE = VCC+
VSTROBE = 0.4 V
ISINK = 16 mA,
Vcc+ = MIN
VCM = -3 V to +3 V Vcc- = MIN
Vcc+ = MIN
VOUT = VCC+
Vcc- = MIN
VOUT = VOH, IL = 0, TA = 25°C
VOUT = VOH, IL = 0, T A = 25°C
= -5 V, RL = 390 fl,

Vcc-

CL

Typ

Max

Unit

30

75

J.lA

-10

J.lA

40

J.lA
mA

1.0
-1.6

mA

SO
2.0

J.lA
mA

-3.2

mA

0.4

V

250

J.lA

1S

30

mA

-S.4

-15

mA

= 15 pF, TA = 25"C. See Test Circuit

tpLH(D)

19

25

ns

tpHL(D)

19

25

ns

13

20

ns

13

20

ns

Propogation Delay Time

tPLH(S)
tpHLCS)

Noles
4. For 55107A guaranteed supply voltage range is
± 45 V to ± 5.5 V. Operating temperature range is
-55°C S; TA S; + 125°C.
For 75107 A / Band 751 08B guaranteed supply voltage range
±4.75 V to ±5.25 V. Operating temperature range IS
DoC S; T A S; 70°C.

5. Not more than one (1) output should be shorted at a time.

6. Vee- Max implies Vee- = -5.5 V or -5.25 V, depending on
device type.
IS

Typical Performance Curves
Input HIGH Current
Into 1A or 2A vs
Ambient Temperature

Output Voltage vs
Differential Input Voltage

100

lsJS8

75188
I--

30
0

5 vi

vee- - sv
Vcc~

Vee_ -0 -5 V

;: INPuTs

INjUTS . 75107AJ8

I

.. i~~g~~/B ..1

15

I

0

j"--...

-,-5V
Vee - -5V

-

N~10

30

-20

10

0

10

20

~25°C

30

DIFFERENTIAL INPUT VOLTAGE-mV

40

on

w

~

0

~

w

AMBIENT TEMPERATURE _

6-50

I

r-- ;5107A!B ....1
I

751088

:-. -..;

tee
40

ls-

I--

I

o

I
I

20

5S107A/B

TA

=--sv

25

80

N~NvJRTINl -

INvelTINt

vcc~

High Logic Level
Supply Current vs
Ambient Temperature

n
0

~

c

_

'I

5

on

w

~

0

~

w

n

AMBIENT TEMPERATURE-DC

~

_

~A55/75107A

~A75107B

•

~A75108B
Performance Curves (Cont.)
55/75107A,75107B
Propagation Delay Time
(Differential Inputs) vs
Ambient Temperature

75108B Propagation Delay Time
LOW-to-HIGH Level vs
Ambient Temperature
120

Vee-

Vcc.=5V
35

!
I

~
~

Q

~
If

• 100

20
15

ik

!Ii~
.....-j

80

:!! so

!i
~

,.
~

~

25

•

25

~

~

~

~

AMBIENTTEMPERATURE-oC

I

!

5
:!!

3S -

1'"

25
20

i ,.

15

~~

20

I

~
.,./

I--

r

~

15

o

1

II:

RL-1950n

R,

I~
3900n

•

I

•

25

~

~

108

•

m

-75

-50

-25

25

50

75

100

125

AMBIENT TEMPERATUAE-" C

t-" k::::

:~~-~~~

30
25

~

20

Z

;. ,."
f

H

tPLH(S)

0

If

-

..... 75107A1S ....1

2

0

•

CL=15pF

F=

Ii

Y

~V

""--75108B
tPLH(S)
tpHLIS)

~

Vcc·=5V

Ycc-.=-sv
Rl'=39DJI
CL"'50pF

30

II

."...

55/75107A,75107B
Propagation Delay Time
(Strobe Inputs) vs
Ambient Temperature

Vcc·=5V

3'

~

_~108.-I

5

AMBIENTTEMPERATURE_oC

75108B Propagation Delay Time
(Strobe Inputs) vs
Ambient Temperature

!

1T

~

30

! -RLI~3911
5

I

rol..J.

•

m

-- J

T

--!'fo'"

40

f 2.

•

I--

R,L ,••L

~

tPHL(D)

vcc!= ••1
Ycc- =-5V
c'I"O·1

•

--+:

II

5

V

... 75107A/B-.J

~1'08.I-l

AJJU

I

30

~

r;

CL=1SpF

CL=50pF

25

5V

vcc-=-sv

~:~~-~~IV

75108B Propagation Delay Time
HIGH-to-LOW Level vs
Ambient Temperature

I
I

-;-HLIS)

.-

·7~5~~~7.25~~.~25~~ro~~7~'-='00~12'
AMBIENT TEMPEAATURE- "C

AMBIENT TEMPERATURE-o C

Voltage Waveforms

~,nomv
INPUTAl -..Ill00mv

STROBE
INPUT
A OR S

\____

,,-----200mV

C~

--+---11--~~

OV

tp2--l

I

3V

tPLH(DI_

OUTPUTA
VOL

6-51

--

--

-- ------------

ILA55/75107A • ILA75107B
ILA75108B
AC Test Circuit
OUTPUT
55107A
75107A/B

DIFFERENTIAL
INPUT

390 Ii
STROBE A

-=

SEE NOTE4

COMMON
STROBE STROBE B

390 Ii

.....~-.....- ' l M -.....- _ - - - - - ~5~ri:~T

50 Ii

STROBE
INPUT
SEE NOTE 2

Cl

-----------------------------------~----_+--~~~

I

SEE NOTE 3
15PF

VCCt -- +5.0 V

Noles
1 The pulse generators have the following characteristics
ZOUT = 50 12, tr = tf = 10 ± 5 ns, tpl = 500 ns, PRR = 1 MHz,
tp2 = 1 ~s, PRR = 500 kHz
2 Strobe Input pulse IS applied to Strobe A when Inputs A l-A2
are being tested to common Strobe when Inputs A l-A2 or

61-62 are being tested, and to Strobe 6 when Inputs 61-62 are
being tested.
3 CL Includes probe and Jig capacitance
4 All diodes are 1N916

Application
The 55175107 A dual line circuits are designed
specifically for use in high-speed data transmission
systems that utilize balanced, terminated transmission
lines such as twisted-pair lines, The system operates
in the balanced mode, so that noise induced on one
line is also induced on the other. The noise appears
common-mode at the receiver input terminals where
it is rejected. The ground connection between the
line driver and receiver is not part of the signal circuit
so that system performance is not affected by
circulating ground currents.

Data is impressed on the balanced-line system by
unbalancing the line voltages with the driver output
current. The driven line is selected by appropriate
driver-input logic levels. The voltage difference
is approximately:
VOIFF

=

1 /2 IOUT(on) . RT

High series line resistance will cause degradation of
the signal. The receivers, however, will detect signals
as low as 25 mV (or less). For normal line resistances,
data may be recovered from lines of several thousand
feet in length.

The unique driver output circuit allows terminated
transmission lines to be driven at normal line
impedances, High-speed system operation is ensured
since line reflections are virtually eliminated when
terminated lines are used. Cross-talk is minimized by
low signal amplitudes and low line impedances.

Line-termination resistors (RT) are required only at the
extreme ends of the line. For short lines, termination
resistors at the receiver only may prove adequate.
The signal amplitude will then be approximately:

The typical data delay in a system is approximately
(30 + 1.3L) ns, where L is the distance in feet
separating the driver and receiver. This delay includes
one gate delay in both the driver and receiver,

VOIFF "'" IOUT(on) . RT

6-52

J,LA55/75107A • J,LA75107B

J,LA75108B
Basic Balanced-Line Transmission System
RT

RT

RT

TWISTED-PAIR OR EQUIVALENT
TRANSMISSION LINE

DATA

Zo

2RT

INPUT

1
2
STROBES

INHIBIT
A

~I

C

RECEIVER

Data-Bus or Party-Line System

TWISTED-PAIR LINE

P

RT

RT

RT

RT
LOCATION 2

DATA
INPUT

DRIVER 1

DRIVER 3

DRIVER 4

INHIBIT

A
C

A
C

LOCATION 1

The strobe feature of the receivers and the inhibit
feature of the drivers allow the 55/75107 A dual line
circuits to be used in data-bus or party-line systems.
In these applications, several drivers and receivers
may share a common transmission line. An enabled
driver transmits data to all enabled receivers on the
line while other drivers and receivers are disabled.
Data is thus time-multiplexed on the transmission line.
The 55/75107A device specifications allow widely
varying thermal and electrical environments at the
various driver and receiver locations. The data-bus
system offers maximum performance at minimum cost.

The receiver threshold level is established by
applying a dc reference voltage to one receiver input
terminal. The signal from the transmission line is
applied to the remaining input. The reference voltage
should be optimized so that signal swing is
symmetrical about it for maximum noise margin. The
reference voltage should be in the range of -3.0 V to
+3.0 V. It can be provided by a voltage supply or by a
voltage divider from an available supply voltage.

Unbalanced or Single-line Systems
INPUT =t>--rro-551751D7A/B
OR

The 55/75107A dual line circuits may also be used
in unbalanced or single-line systems. Although these
systems do not offer the same performance as
balanced systems for long lines, they are adequate
for very short lines where environment noise
is not severe.

OUTPUT

VREF
STROBES

6·53
-~~----

- - - - - ---- -

-~------~-~~~~~-

J,tA55/75107A • J,tA75107B
J,tA75108B
Precautions in the Use of 55/75107A and
751088 Dual Line Receivers
The following precaution should be observed when
using or testing 55175107 A line circuits.

Increasing Common-Mode Input
Voltage Range of Receiver
R1

R2

When only one receiver in a package is being used, at
least one of the differential inputs of the unused
receiver should be terminated at some voltage
between -3.0 V and +3.0 V, preferably at ground.
Failure to do so will cause improper operation of the
unit being used because of common bias circuitry for
the current sources of the two receivers.

R2

R1

751088 Wired-OR Output Connections

The 55175107A and 75108B line receivers feature
a common-mode input voltage range of ± 3.0 V. This
satisfies the requirements for all but the noisiest
system applications. For these severe noise
environments, the common-mode range can be
extended by the use of external input attenuators.
Common-mode input voltages can in this way be
reduced to ± 3.0 V at the receiver input terminals.
Differential data signals will be reduced
proportionately. Input sensitivity, input impedance and
delay times will be adversely affected.

Jo--H"""}--

The 75108B line receivers feature an open-collectoroutput circuit that can be connected in the DOT-OR
logic configuration with other 75108B outputs. This
allows a level of logic to be implemented without
additional logic delay.

6·54

OUTPUT

~A55/75110A

FAIRCHILD

Dual Line Drivers

A Schlumberger Company

Interface Products
Connection Diagram
14-Pin DIP

Description
The ~A55110A and ~A75110A have improved output
current regulation with supply voltage and temperature
variations. The higher current outputs allow data to be
transmitted over longer lines. These drivers offer
optimum performance when used with the ~A55107A,
~A75107A and ~A75108B line receivers.

IN lA
IN 18
INHIC

These drivers feature independent channels with
common voltage supply and ground terminals. The
significant difference between the two drivers is in the
output current specificaiton. The driller circuits feature
a constant output current that is switched to either of
two output terminals by the appropriate logic levels at
the input terminals. The output current can be
switched off (inhibited) by LOW logic levels on the
inhibit inputs.

INH 2C

•
•
•
•
•
•
•

A
X
X
L
X
H

Inhibitor

OUT 2Y

Code
6A
6A
9A

Part No.
IlA55110ADM
~A7511OADC
~A75110APC

Outputs

B
X

C
L

D
X

Y
OFF

Z

X
X
L

X
H
H
H

L

OFF

OFF

H

OFF

H

ON
ON

H

OFF

H

OUT 2Z

GND

Absolute Maximum Ratings
Over operating temperature range, unless
otherwf~e specified
7V
Supply voltage, Vcc+ (Note 1)
-7 V
Supply voltage, VccInput voltage (any input)
5.5 V
Outpu't voltage (any output)
-5 V to 12 V
Continuous totaL dissipation at
TA = 25~C (Noh!' 2)
Cerami'c DIP
900mW
1700 mW
Molqed DIP
Operafing temperature range
-55°C to 125°C
~A55110A
~A75110A
O°C to 70°C
Storage temperature range
-65°C to 150°C
Pin temperature
300°C
Ceramic DIP Soldering (60 s)
Molded PIP Soldering (10 s)
260°C

Function Table

Logic

IN 28

Order Information
Type
Package
~A5511 OA
Ceramic DIP
~A75110A
Ceramic DIP
~A75110A
Molded DIP

NO OUTPUT TRANSIENTS ON POWER-UP OR
DOWN
IMPROVED STABILITY OVER SUPPLY VOLTAGE
AND TEMPERATURE RANGES
CONSTANT-CURRENT,
HIGH-IMPEDANCE OUTPUTS
HIGH SPEED 15 ns
STANDARD SUPPLY VOLTAGES
INHIBITOR AVAILABLE FOR DRIVER SELECTION
HIGH COMMON-MODE OIJTPUT VOLTAGE
RANGE (-3 V to 10 V)
TTL INPUT COMPATIBILITY

Inputs

INH 0

(Top View)

The inhibit feature is provided so the circuits can be
used in party-line or data-bus applications. A strobe or
inhibitor, common to both drivers, is included for
increased driver-logic versatility. The output current in
the inhibited mode, 10(0ff), is specified so that
minimum line loading is induced when the driver is
used In a party-line system with other drivers. The
output impedance of the driver in the inhibited mode is
very high; the output impedance of output transistor is
biased to cutoff.
•

Vee·

IN2A

OFF

Notes
1 Voltage values are with respect to network ground termonal.
2 For operation above 25°C ambient temperature, derate
ceramic pIP at 8 mW/oC and molded DIP at 14 mW/oC

OFF
ON

H = HIGH, L = LOW, X = Don't Care
6-55

---------,"

~---~,-"

•

~A55/75110A
Recommended Operating Conditions

(Note 3)
75110A

55110A
Characteristic

Min

Typ

Max

Min

Typ

Max

Unit

Supply Voltage Vcc+
Supply Voltage VccPositive Common Mode Output Voltage

4.5
-4.5

5
-5

5.5
-5.5

4.75
-4.75

5
-5

5.25
-5.25

V

0

Negative Common Mode Output Voltage

0
-55

10
-3

0

10
-3

125

0

70

0

Operating Ambient Temperature Range
Electrical Characteristics

V
V
V
°C

Over Recommended Operating Ambient Temperature Range (unless otherwise noted)
55110A/75110A

Symbol

Characteristic

Condition (Note 4)

VIH

Input HIGH voltage

VIL

Input LOW voltage

Min

Typ (5)

VIC

Input clamp voltage

Vcc± = MIN, liN = -12 rnA

10(on)

On-state
output current

Vcc± = MAX, VOUT = 10 V
Vcc± = MIN, VOUT = -3 V

12
12

10(011)

Off-state output current

II

IIH

IlL

Input current
at maximum
input voltage
Input
HIGH
Current

A, B or C
Inputs
D Input

Input
LOW
Current

A, B or C
Inputs

Supply current from
Icc+(olf) Vcc+ with driver
inhibited
Supply current from
ICC-(olf) VCC- with driver
inhibited

V

-1.5

V

15

rnA
J.LA

1
rnA

Vcc± = MAX, VIN = 5.5 V
2
40
Vcc± = MAX, VIN = 2.4 V

J.LA
80
-3
rnA

Vcc± = MAX, VIN = 0.4 V
-6

Vcc±

= MAX,

A & B inputs at 0.4 V,
C & D inputs at 2 V

35

-34

-50

21
rnA

A, B, C, & D inputs
at 0.4 V

Vcc+ = 5 V , V'cc-

23

rnA

Vcc± = MAX,

-17

= - 5 V, TA=

Symbol Characteristic
Propagation Delay Time, LOW to HIGH
tpLH
tpLH

Propagation Delay Time, HIGH to LOW
Propagation Delay Time, LOW to HIGH

tpHL

Propagation Delay Time, HIGH to LOW

tpHL

0.8

100

Vcc+ = MIN, VOUT = 10 V

D Input

Supply current from
ICC-(on) VCC- with driver
enabled

AC Character'stlcs
I

6.5

D input

Supply current from
ICC+(on) Vcc+ with driver
enabled

Unit
V

-0.9

A, B or C
Inputs

Max

2

From
To
(Input) (Output) Condition
A or B
Cor D

Notes
3. When usmg only one channel of the hne drivers, the other
channel should be mhiblted and I or its outputs grounded.
4. For condItIons shown as MIN or MAX, use appropriate value

V or Z
Vor Z

CL = 40 pF,
RL = 50 n
See Figures

Min

Typ

Max

Unit

9

15

ns

9
16
13

15
25

ns
ns

25

ns

speCIfied under recommended operating conditions.
5 All typical values are VCC+ = 5 V, VCC- = -5 V, TA = 25°C

6·56

j,tA55/75110A
Characteristic Measurement Information
vcc~

~

I

I -:::l::-

_ _......._

_ _.......__~__

OUr,:UT

OU~UT

RL
50 II

TO OTHER CHANNEL

I

L.---I---~

The pulse generators have the following characteristics
ZOUT = 50!.l, tr = tr = 10 ±5 ns, tw1 = 500 ns, PRR = 1 MHz,
tw2 = 1 ms, PRR = 500 kHz
CL Includes probe and Jig capacitance
For simplicity, only one channel and the inhibitor connections
are shown

AC Test Circuit and Waveforms

/ \

LOGIC
INPUT
AOR B

3V

OV

Iw2

3V
INHIBITOR
INPUT
COR 0

50%

OV
tpLH

tPHL

OFF
OUTPUT
Y
ON

OFF

f
OUTPUT
Z

ON
tPLH

6-57

•

j.LA55/75110A
Typical Applications
Simplex Operation
DATA IN

+

DATA OUT

INHIBIT

SHIELD OR COMMON GROUND RETURN

Half-Duplex Operation

PORT
ENABLES --~_-'

P
~__r - -

PORT
ENABLES

DATA
IN --~_-'

SHIELD OR
COMMON GROUND
RETURN
DATA
OUT

DATA
OUT

Notes
1 All drivers are I'A7511OA or I'A55110A. Receivers are
I'A75107A or I'A75108B. Twisted-pair or coaxial transmission
hne should be used for minimum nOise and cross talk.

2 When only one driver In a package IS being used, the outputs of
the other driver should either be grounded or inhibited to
reduce power dissipation.
6-58

~A75150

FAIRCHIL.D

Dual Line Driver

A Schlumberger Company

Interface Products
Connection Diagram
14-Pin DIP

Description
The 75150 is a monolithic Dual Line Driver designed to
satisfy the requirements of the standard interface
between data terminal equipment and data
communication equipment as defined by EIA Standard
RS-232-C. A rate of 20,000 bits per second can be
transmitted with a full 2500 pF load. Other
applications are in data-transmission systems using
relatively short single lines, in level translators, and for
driving MOS devices. The logic input is compatible
with most TTL and DTL families. Operation is from
+ 12 V and -12 V power supplies.
•
•

•
•
•
•
•

NC
STROBE
INAl
INA2

GND
NC
NC

WITHSTANDS SUSTAINED OUTPUT SHORTCIRCUIT TO ANY LOW-IMPEDANCE VOLTAGE
BETWEEN -25 V AND +25 V
2.0,us MAX TRANSITION TIME THROUGH THE
+3.0 V TO -3.0 V TRANSITION REGION UNDER
FULL 2500 pF LOAD
INPUTS COMPATIBLE WITH MOST TTL AND
DTL FAMILIES
COMMON STROBE INPUT
INVERTING OUTPUT
SLEW RATE CAN BE CONTROLLED WITH AN
EXTERNAL CAPACITOR AT THE OUTPUT
STANDARD SUPPLY VOLTAGES ± 12 V

Absolute Maximum Ratings

Supply Voltage Vcc+
(See Note 1)
Supply Voltage Vcc(See Note 1)
Input Voltage (See Note)
Applied Output Voltage
(See Note)
Operating Temperature
Storage Temperature Range
Pin Temperature
Molded, (Soldering, 10 s)

(Top View)

Order Information
Type
Package
,uA75150
Molded DIP

Part No.
,uA75150PC

Code
9A

Connection Diagram
B-Pin DIP

STROBE

over operating ambient
temperature range,
unless otherwise
noted.
15 V

Vee·

INAl

OUTAl

INA2

OUTA2

GND

Vee-

-15 V
15 V
(Top View)

±25 V
O°C to 70°C
-65°C to 150°C

Order Information
Type
Package
,uA75150
Molded DIP

Noles
1 Voltage values are wIth respect to network ground terminal.

Recommended Operating Conditions
Min Typ
10.8 12
Supply Voltage Vcc+
-10.8 -12
Supply Voltage VccInput Voltage, VI
0
Applied Output Voltage, Vo
Operating Ambient
0
Temperature, TA

Max

Unit

13.2 V
-13.2V
5.5
V
±15 V
70

°C

6-59

Code
9T

Part No.
,uA75150TC

•

JLA75150
Schematic (each line driver)
Vee.

~13~------'------1__------------~t-------~t------,-------------------,

TO OTHER - - - -.....
LINE DRIVER

INPUT

11 kll

15 kll

10 kll

15 kll

_3.;.'-4---------tO-

STROBE---------9--K
TO OTHER _ - - -.....
LINE DRIVER

11,12
OUTPUT

4.5 kll

5
GND -----~--~~-~
TO OTHER - - - -.....
LINE DRIVER

Vee-

~10~

-+________________ __________ ______4-__

______~__________1-____

~

TO OTHER _ - - -.....
LINE DRIVER

Component values shown are nominal
Pins 1, 6, 7, 8, 9, and 14 = not connected
Pin connections are for 14·lead DIP

6-60

~

~

~A75150
DC Characteristics

TA

= 0 to 70°C , unless otherwise specified (Note 2)

Symbol

Characteristic

Test
Figure Condition

Min

VIH

Input HIGH Voltage

1

2.0

VIL

Input LOW Voltage

2

VOH

Output HIGH Voltage

2

VOL

Output LOW Voltage

1

IIH

Input HIGH Current

3

IlL

Input LOW Current

los

Short-Circuit
Output Current

=

=

=

=

5.0

=

=

=
=

=

= 13.2 V,
Vcc- = -13.2 V,
VI = 0.4

ICCH+

Supply Current from
Vcc+, Output High

ICCH-

Supply Current from
Vcc-, Output HIGH

ICCL+

Supply Current from
Vcc+, Output LOW

ICCL-

Supply Current from
Vcc-, Output LOW

AC Characteristics

Vee+

5

10

Strobe Input

2.0

20

Data Input

-1.0

-1.6

Strobe Input

-2.0

-3.2

V

/lA

mA

2.0

10

22

mA

= 25°C
Vcc+ = 13.2 V, Vcc- = -13.2 V,
VI = 3 V, RL = 3 kQ,

-1.0

-10

mA

8.0

17

mA

-9.0

-20

mA

Min

Typ

Max

Unit

0.2

1.4

2.0

/LS

0.2

1.5

2.0

40

/lS
ns

TA

-3.0

mA

15
-15

= 25°C

= 12 V, Vee - = -12 V, TA = 25°C
Test
Figure Condition

Characteristic

tTLH

Transition Time, Output LOW to HIGH

tTHL

Transition Time, Output HIGH to LOW

tTLH

Transition Time, Output LOW to HIGH

tTHL
tpLH

Transition Time, Output HIGH to LOW

tpHL

Propagation Delay Time,
Output HIGH to LOW

Propagation Delay Time,
Output LOW to HIGH

= 2500 pF,
RL = 3 kQ to 7 kQ
CL = 15 pF,

CL

6
6

6

Notes
2 The algebraIc conventIon where the most-posItIve (least·
negatIve) limIt IS deSIgnated as maxImum is used on th,s data
sheet for logIC levels only, e.g, when -5 V IS the maXImum, the
tYPIcal value IS a more negatIve voltage. All tYPIcal values are
at VCC+
12 V, VCC-12 V, TA 25°C.

=

V

8.0

= 25 V
Vo = -25 V
VCC+ = 13.2 V,
VCC- = -13.2 V Vo = 0 V, VI = 3 V
Vo = 0 V, VI = 0 V
Vcc+ = 13.2 V, Vcc- = -13.2 V,
VI = 3 V, RL = 3 kQ,

Symbol

=

V

1.0

TA

5

0.8

-5.0

Vo

4

Unit

-8.0

=

Vcc-13.2 V,
VI 2.4 V

Max

V

r

Vcc+
10.8 V, Vcc-10.8 V,
VIH
2 V, RL
3 kQ to 7 kQ
Data Input
Vcc+
13.2 V,

Vcc+

3

=

Vcc+
10.8 V, Vcc-13.2 V,
VIL
0.8 V, RL
3 kQ to 7 kQ

Typ

=

6-61

RL

= 7 kQ

20

ns

CL

= 15 pF,

60

ns

RL

= 7 kQ

45

ns

•

JLA75150
Typical Performance Curve

Fig.4

lOS
3V

Typical Output Current vs
Applied Output Voltage
Jee.l"v'

20

Vec·

Vcc-

1

r ---

(NOTE)

l~

v,',.Jv

15 r--Vcc-=~12V'--i-F1l-+-+-I

l
~
i

1

TA=25°C

>--I--Vo

.-'

I

10

"t-t--+-:H+++-tiH--+-I

:tt: . . .

I"
U

o _r-"!--

-

~--

R,o 7kll

I-+-++-+-+---l-+f-"'
. . .~ ~L '" 31kO
• -10 I-+-++-+-+---l-+I-+-+-I
II
-15I-+-+-t;;:j.....-~I-+-+-I

lOS IS tested for both Input conditions at each of the specified
output conditions.

yoi'"

Fig.5

-~2~5--~20--~15~-,~O--5~O~0~5-0-,~O-,~5~20~25

ICCH+. ICCH-. ICCL+. ICCLVee.

Vo-APPLIED OUTPUT VOLTAGE-V

Vce-

+I
r~---

ICCH"', leel ...

Test Circuits

it.,

ICCH-. IcCL-

I

V,-....-+--i

Fig. 1

3kll

• Arrows ondlcate actual direction of current flow. Current Into a
termonal IS a posillve value

Fig. 6

Switching Characteristics

Test Circuit
Fig. 2

3V

Vce.

Vce-

rl---l,
PULSE
I
GENERATOR t--~I:-L-.J
(SEE NOTE 1)
I

I

>--t-t--......-

L_-1-_...J

I

OUTPUT

(SEE
CL NOTE 2)

Voltage Waveforms
Each onput IS tested separately

•

I

~<;:10ns

Fig. 3

~=---~=c-t-

IIH. IlL

90%

Vee.

~
'H

-.
V,

hL -

Vec-

__

r l---l,

R=D--t+

SEE
NOTE

I

--1--

I

-------

• , ...

~

I

~IPLH~

I

I

------------~I

.JI

I
I

I

OUTPUT
-3V

Note
When tesllng IIH, the other onput IS at 3 V, when testong IlL, the
other onput IS open

3V

I~---------ov

,-4----5O,I.Is---.I
L..-IPHL

OPEN

•

~~r:

I

I

IL

I
I

goo/a

INPUT

-3V

!

Notes
1. The pulse generator has the followong characterostics duty
cycle oS 50%, ZOUT "'" 50 Il.
2 CL oncludes probe and Jig capacitance

6-62

JLA75154
RS-232C
Quad Line Receiver

FAIRCHILD
A Schlumberger Company

Interface Products
Description
The 75154 is a monolithic Quad Line Receiver
designed to satisfy the requirements of the standard
interface between data terminal equipment and data
communication equipment as defined by EIA Standard
RS-232C. Other applications are for relatively short,
single-line, point-to-point data transmission and for
level translators. Operation is normally from a single
5 V supply; however, a built-in option allows operation
from a 12 V supply without the use of additional
components. The output is compatible with most TTL
and DTL circuits when either supply voltage is used.

Connection Diagram
16-Pin DIP

In normal operation, the threshold control terminals
are connected to the VCCl terminal, pin 15, even if
power is being supplied via the alternate VCC2
terminal, pin 16. This provides a wide hysteresis loop
which is the difference between the positive-going and
negative-going threshold voltages. In this mode of
operation, if the input voltage goes to zero, the output
voltage will remain LOW or HIGH as determined by the
previous input.

(Top View)

Order Information
Type
Package
IlA 75154
Ceramic DIP
IlA 75154
Molded DIP

For fail-safe operation, the threshold-control terminals
are open. This reduces the hysteresis loop by causing
the negative-going threshold voltage to be above
zero. The positive-going threshold voltage remains
above zero as it is unaffected by the disposition of the
threshold terminals. In the fail-safe mode, if the input
voltage goes to zero or an open-circuit condition, the
output will go HIGH regardless of the previous
input condition.

Code
68

98

Absolute Maximum Ratings
Normal Supply Voltage
(Pin 15), VCCl (Note 1)
Alternate Supply Voltage
(Pin 16), VCC2 (Note 1)
Input Voltage (Note 1)
Continuous Total Power
Dissipation (Note 2)
Operating Temperature Range
Storage Temperature Range
Pin Temperatures
Molded DIP (Soldering, 10 s)
Ceramic DIP (Soldering, 60 s)

The 75154 is characterized for operation from 00 C
to 70 0 C.
• INPUT RESISTANCE-3 kl1 TO 7 kl1 OVER FULL
RS-232C VOLTAGE RANGE
• INPUT THRESHOLD ADJUSTABLE TO MEET
FAIL-SAFE REQUIREMENTS WITHOUT USING
EXTERNAL COMPONENTS
• BUILT-IN HYSTERESIS FOR INCREASED
NOISE IMMUNITY
• INVERTING OUTPUT COMPATIBLE WITH
DTL OR TTL
• OUTPUT WITH ACTIVE PULL-UP FOR
SYMMETRICAL SWITCHING SPEEDS
• STANDARD SUPPLY VOLTAGES-5 V OR 12 V

Part No_
Il A75154DC
Il A75154PC

7V
14 V
±25 V
800 mW
O°C to 70°C
-65°C to 150°C
260°C
300°C

Recommended Operating Conditions
Normal Supply Voltage
(Pin 15), VCCl
Alternate Supply Voltage
(Pin 16), VCC2
Input Voltage
Normalized Fan Out from
Each Output, N
Operating Ambient
Temperature Range

Min

Typ

Max

Unit

4.5

5

5.5

V

10.8

12

13.2 V
± 15 V
10

a

70

Notes
1. Voltage values are wIth respect to the network
ground termmal.
2. Above 60°C ambIent temperature, derate hnearly
at 8.3 mW / °C.
6·63

DC

•

/-LA75154
Equivalent Circuit

---------1

'---I
COMMON TO 4 CIRCUITS

I
I
I
I
I

16

SEE

N~Ci~ -+---~--,

BELOW

32kn

Veel .;::15,--+_ _ _~

1 OF 4 RECEIVERS

1,2,
THRESHOLD
CONTROL

_3,_14-+-_¥v-~.--,

10, 11, 12, 13

+---+- OUTPUT
4,5.6,7

5kD

5 k!l

4 2 kn

INPUT -+_Vv'--+--~--1[

I

GND-+------~

I

I

L ___ ~

27 k!!

I

1 kn

I

I

L _________ ~

Notes
Component values shown are normal.
When uSing VCCI (pm 15), VCC2 (pin 16) may be left open or
shorted to V CC 1· When using V CC2, VCC 1 must be left open or
connected to the threshold control pins.

DC Characteristics

TA = 0 to 70°C unless otherwise specified (Note 5)

Symbol

Characteristic

Test
Figure Condition

Min

V,H

Input HIGH Voltage

1

3.0

V,L

Input LOW Voltage

-3.0

Positive-Going
Threshold Voltage Fail-Safe Operation

1

VT-

Normal Operation
Negative-Going
Threshold Voltage Fail-Safe Operation

1

VT+ - VT-

Hysteresis

VOH

Output HIGH Voltage

1

10H = -400 J.LA

VOL

Output LOW Voltage

1

10L = 16 mA
~V, = -25 V to -14 V

Normal Operation
Fail-Safe Operation

Input Resistance

1

2

3.0

-3.0

-1.1

0

0.8

1.4

3.0

0.8

3.3

6.0

0

0.8

2,2

2.4

3,5
0.4

5.0

7.0
7.0

3.0

5.0
6.0

~V,

= 3 V to 14 V

3.0

5.0

~VI

= 14 V to 25 V

V
V
V
V
V

0.23

3.0

V

kll
7.0

3.0

5.0

7.0

0

0.2

2.0

V

VeC1 = 5.5 V, V, = -5 V -10

-20

-40

mA

VCC1 = 5.5 V, TA = 25°C

20

35

VCC2 = 13.2 V,
TA=25°C

23

40

los

Short-Circuit Output Current (Note 3)

4

ICCI

Supply Current from VCC1

6-64

2.2

= -14 V to -3 V

I, = 0

Notes on following pages.

0.8

= -3 V to 3 V

3

Supply Current from VCC2

3.0

~VI

Open-Circuit Input Voltage

ICC2

2.2

~V,

V, (open)

5

0.8

3.0

Unit
V

1
Normal Operation

VT+

RI

Typ(4) Max

mA

~A75154
AC Characteristics

VCCl

= 50 V , TA = 25°C , n = 10
Test
Figure Condition

Symbol

Characteristic

tPLH

Propagation Delay Time, LOW-to-HIGH

22

ns

tPHL

Propagation Delay Time, HIGH-to-LOW

20

ns

tTLH

Transition Time, LOW-to-HIGH

9.0

ns

tTHL

Transition Time, HIGH-to-LOW

6.0

ns

Min

CL = 50 pF, RL = 390 Q

6

Typ

Max

Unit

Typical Characteristics
Output Voltage Versus Input Voltage
VCC1=50V

TA == 25°C

J,

NORMAL

O~~I~A~6~ -+-

OPERATION

n
VT-

VT_

----Jt
1

VT·

JL

n
n

"

25
INPUTVOLTAGE-Y

•

Note
For normal operation. the threshold controls are connected to
V CC 1, Pin 15. For fall· safe operation, the threshold controls are
open

Notes
3. Not more than one output should be shorted at a time.
4. All typical values are at VCCI
5 V. TA
25°C.
5. The algebraic convention where the most-positive (leastnegative) limit is designated as maximum is used in this data
sheet for logic and threshold levels only. e.g .. when -3 V is the
maximum. the minimum limit is a more-negative voltage.

=

=

6-65

JLA75154
DC Test Circuits

o 13.2 V

55V 0

10H

VI. Vr

liN

I

---1---

L

GND

Note
Arrows indicate actual direction of current flow. Current Into a
terminal IS a positive value.

Test Table
VCC1

VCC2

(Pin 15)

(Pin 16)

IOH

4.5 V

Open

IOH

Open

10.8 V

Open

IOH

5.5 V

Open

0.8 V

Open

IOH

Open

13.2 V

VOH

Note 6

Pin 15

IOH

5.5 V and T

Open

IOH

T

13.2 V

Open

Test

Measure

In

T

Out

Open-circuit input

VOH

Open

Open

(fail safe)

VOH

Open

Open

VT+ min,

VOH

0,8 V

VT- min (fail safe)

VOH

VT + min (normal)

VOH

Note 6

Pin 15

VIL max,

VOH

-3V

Pin 15

IOH

5.5 V and T

VT - min (normal)

VOH

-3 V

Pin 15

IOH

T

13.2 V

VIH min, VT + max,

VOL

~V

Open

IOL

4.5 V

Open

VT- max (fail safe)

VOL

3V

Open

IOL

Open

10.8 V

VIH min, VT+ max

VOL

3V

Pin 15

IOL

4.5 V and T

Open

(normal)

VOL

3V

Pin 15

IOL

T

10.8 V

VOL

Note 7

Pin 15

IOL

5.5 V and T

Open

VOL

Note 7

Pin 15

IOL

T

13.2 V

VT - max (normal)

Notes
6. Momentarily apply -5 V, then 0.8 V.
7. Momentarily apply 5 V, then ground.

6·66

J.LA75154
DC Test Circuits (Cont)
Fig.2

R,

Fig.4

lOS
OPEN

55V

OPEN

OPEN

_k--.b_~
Vee1

50V

Fig.5

Rl

I
OUTI

I

L

Nole
Each output

VCC2

IS

---T--- J

I

~ los

GND

tested separately

ICC

Test Table
T

VCC1

VCC2

(Pin 15)

(Pin 16)

Open

5V

Open

Open

GNO

Open

Open

Open

Open

Pin 15

T and 5 V

Open

GNO

GNO

Open

Open

Open

12 V

Open

Open

GIliO

Pin 15

T

12 V

Pin 15

T

GNO

Pin 15

T

Open

Fig. 3

--t

VI (open)

0
55V:1

0--<:>

50V

Noles
All four hne receivers are tested simultaneously.
Arrows indicate actual directIOn of current flow. Current Into a
terminal IS a positive value

132V

OPEN

~T

15
-

Veel

J

16
VCC2 -

1

R1

I

OUTI
>0----':::0:.;1-

VllOPENll

iL----j---

J

OPEN

Test Table
T

VCC1

(Pin 15)

VCC2
(Pin 16)

Open

5.5 V

Open

Pin 15

5.5 V

Open

Open

Open

13.2 V

Pin 15

T

13.2 V

>c>-----i-- OPEN

6-67

•

JLA75154
AC Characteristics
Test Circuit
INPUT

5.0V

OPEN
15

i---T---Vee1

PULSE
GENERATOR
NOTE1

OUTPUT

OPEN

-~-~-I
Vee2
I

RL ~ 390!l

R1

liN
I

L ----r---- J
GND

Notes
1 The pulse generalor has Ihe following charaClerlSllcs:
ZOUT = 50 ~!, IW = 200 ns, duly cycle 00; 20%
2 CL includes probe and Jig capacllance.
3 All diodes are 1N3064.

Voltage Waveforms

6-68

I

CL~50PF

NOTE 2

jlA9640/26S10

F=AIRCHILO

Quad General-Purpose
Bus Transceiver

A Schlumberger Company

Interface Products

Description
The JLA9640 is a High-Speed Quad Bus Transceiver.
Each driver output, which is capable of sinking 100 rnA
at 0.8 V, is connected internally to the high-speed bus
receiver in addition to being connected to the package
pin. The receiver has a Schottky TTL output capable
of driving ten Schottky TTL unit loads. The bus output
is capable of driving lines having 100 Q impedance.

Connection Diagram
16-Pin DIP
GND1
BUSA
RECEIVER
OUT A
DRIVER
IN A
DRIVER
IN B
RECEIVER
OUT B

The line can be terminated at both ends and still give
considerable noise margin at the receiver. The
receiver typical switching point is 2.0 V.

RECEIVER
OUT D
13 DRIVER
IN D

4
5
6

STROBE
DRIVER
10
IN C
RECEIVER
9
OUT C

7

BUSB

The JLA9640 features advanced Schottky processing
to minimize propagation delay. The device package
also has two ground pins to improve ground current
handling and allow close decoupling between Vee and
ground at the package. Both GND1 and GND2 should
be tied to the ground bus external to the
device package.

LOGICGND

BUSC

(Top View)

Order Information
Type
Package
JLA9640
Ceramic DIP
JLA9640
Ceramic DIP
JLA9640
Molded DIP

The JLA9640 is a pin for pin replacement for
the AM26S 1O.
•
•

INPUT TO BUS IS INVERTING
QUAD HIGH-SPEED OPEN COLLECTOR
BUS TRANSCEIVERS
• DRIVER OUTPUTS CAN SINK 100 mA AT
0_8 V MAXIMUM
• ADVANCED SCHOTTKY PROCESSING
• PNP INPUTS TO REDUCE INPUT LOADING
Absolute Maximum Ratings
Supply Voltage to
Ground Potential
DC Voltage Applied to
Outputs for High
Output State
DC Input Voltage
Output Current, into Bus
Output Current, into Outputs
(Except Bus)
DC Input Current
Operating Temperature
JLA9640DM
JLA9640DC / PC
Storage Temperature
Pin Temperatures
Molded DIP (Soldering 10 s)
Ceramic DIP (Soldering 60 s)

3

Code
6B
6B
9B

Part No.
JLA9640DM
JLA9640DC
JLA9640PC

Truth Table
Inputs
Strobe

H
L

-0.5 V to +7 V

Outputs

Driver INA-D

BusA_D Receiver OutA_D

L

L

H

L

L

H

L

H

H

x

y

y

= HIGH Voltage Level
= LOW Voltage Level

x = Don't Care
Y

-0.5 V to +Vee Max
-0.5 V to +5.5 V
200 rnA

= Voltage Level of Bus (Assumes control by
another bus transceiver)

30 rnA
-30 rnA to +5.0 rnA
-55°C to +125°C
O°C to +70°C
-65°C to +150°C

6-69

•

JLA9640/26S10
Recommended Operating Conditions
Military (4)

Commercial (5)

Characteristic

Min

Typ

Positive Supply Voltage
Operating Ambient Temperature - TA

4.50
-55

5.0
+25

DC Characteristics

Min

Typ

Max

Unit

5.5
+125

4.75

5.0
+25

5.25
+70

V

0

Condition (Note 1)

Output HIGH
Voltage

Vee = MIN.
IOH = -1.0 mAo

(Receiver Outputs)

Mil (4)

Min

Typ (2)

2.5

3.4

2.7

3.4

Max

VOL

Output LOW Voltage
(Receiver Outputs)

VIH

Input HIGH Level
(Except Bus)

Guaranteed Input Logic HIGH
for all inputs

VIL

Input LOW Level
(Except Bus)

Guaranteed Input Logic LOW
for all inputs

VI

Input Clamp Voltage
(Except Bus)

Vee

IlL

Input LOW Current

Vee = MAX.
VIN = 0.4 V

ENABLE

-0.36

DATA

-0.54

IIH

Input HIGH Current

Vee = MAX.
VIN = 2.7 V

ENABLE

20

DATA

30

IIH

Input HIGH Current

VCC

VIN

Vee = MAX
Enable = GND

V

100

45

70

mA
IJ.A
IJ.A
mA
mA

= +25°C. Vee = 5.0 V

Symbol

Characteristic

Condition

tpLH. tpHl

Data Input to Bus

tpLH. tpHl

Enable Input to Bus

RS
Cs

tpHL. tpHl Bus to Receiver Out
Bus

-1.2

-60

Power Supply Current
(All Bus Outputs LOW)

Bus

V

-18

ICCl

tr

0.8

-55

Comm (5)

V
V

-20

(Note 3)

tf

2.0

= MAX. VIN = 5.5 V
Mil (4)
Vce = MAX

Output Short-Circuit
Current (Except Bus)

TA

0.5

= MIN. liN = -18 mA

Ise

Unit

V

= VIL or VIH Comm (5)
Vee = MIN. IOl = 20 mA
VIN = VIL or VIH

AC Characteristics

°C

Over operating temperature & voltage range. unless otherwise specified.

Symbol Characteristic
VOH

Max

Min

= 50 n.
= 50 pF (Note 6)
RS = 50 n. RL = 280 n.
Cs = 50 pF. CL = 15 pF (Note 6)
RS = 50 n.
Cs = 50 pF (Note 6)

Notes
1. For conditions shown as Min or Max. use the appropriate value
specified under Electrical Characteristics for the applicable
device type.
2. Typical limits are at VCC = 5.0 V. 25°C ambient
and maximum loading.

Typ

Max

10

15

ns

14

18

ns

10

15

ns

Unit

4.0

10

ns

2.0

4.0

ns

3. Not more than one output should be shorted at a time. Duration
of the short-Circuit test should not exceed one second.
4. Military temperature range, ceramic DIP
5. Commercial temperature range, ceramic or molded DIP
6. Includes probe and Jig capacitance.

6-70

j

/lA9640/26S10
Bus Input/Output Characteristics
Symbol Characteristic

Output LOW Voltage

Vee

= Min
Cornrn (Note 5)

10

Bus Leakage Current

Vee

= Max

Mil (Note 4)
Cornrn (Note 5)

(Power On)
10FF

Bus Leakage Current
(Power Off)

Vo

VTH

Receiver Input
HIGH Threshold

Bus Enable
Vee = Max

= 2.4 V

VTL

Receiver Input
LOW Threshold

Bus Enable
Vee = Min

= 2.4 V

Fig. 1

Max

10L

0.33

0.5

10L

0.42

0.7

0.51

0.8

0.33

0.5

0.42

0.7

0.51

0.8

Min

Mil (Note 4)
VOL

Typ (2)

Condition (Note 1)

= 40 rnA
= 70 rnA
10L = 100 rnA
10L = 40 rnA
10L = 70 rnA
10L = 100 rnA
Vo = 0.8 V
Vo = 4.5 V
Vo = 4.5 V
OM

2.0

2.4

DC,PC

2.0

2.25

OM

1.6

2.0

DC,PC

1.75

2.0

AC Test Circuit
RECEIVER
OUT

Vee

Rl
280 Q

CB

50pF
NOTE

I

Cl

BUS
TEST
POINT

Note
Includes probe and JIg capacItance.

Fig. 2

Waveforms

RECEIVER OUT
TEST POINT

6-71

I

NOTE

15PF

/-LA

100
100

TEST
POINT

V

-50
200

= 4.5 V

Vee

Unit

ALL DIODES
lN916 OR
EQUIVALENT

/-LA
V
V

~A3448A

FAIRCHILD

Quad Instrumentation
Bus (GPIB) Transceiver

A Schlumberger Company

Interface Products

Connection Diagram
16-Pin DIP

Description
is a 3-state bidirectional Quad Bus
Transceiver operating from a single +5 V supply. It
interfaces between TTL or MOS logic and the IEEE
Standard Instrumentation Bus (488-1975), often
referred to as GPIB. The required bus termination is
internally provided.
~A3448A

BUSA
PULL-UP 4
ENABLE
INPUTA-B 5

DATAB

Truth Table
Info. Flow

Comments

Bus ..... Data
Data ..... Bus
Data ..... 8us

Active Pull-Up
Open Collector

DATAC

Order Information
Type
Package
JlA3448A
Molded DIP
JlA3448A
Ceramic DIP

-65 to +150°C

X
1
0

BUS C

(Top View)

o to +70°C

Enable

. .TOlL---'

SEND/REC.
INPUT C

7.0 V
5.5 V
150 mA
150°C

0
1
1

BUS 0
PULL-UP
ENABLE
INPUT CoD

SEND/REC.
INPUT B

TA = 25°C unless
otherwise noted

Send/Rec.

DATA 0
--.c='L---'

BUSB

• 3-STATE OUTPUTS
• SCHOTTKY TECHNOLOGY
• HIGH IMPEDANCE INPUTS
• RECEIVER HYSTERESIS-6DO mV
• SINGLE +5 V SUPPLY
• POWER UP/POWER DOWN PROTECTION
• NO BUS LOADING WHEN POWER IS REMOVED

Power Supply Voltage
Input Voltage
Driver Output Current
Junction Temperature
Operating Ambient
Temperature Range
Storage Temperature Range
Pin Temperatures
Molded DIP (Soldering, 10 s)
Ceramic DIP (Soldering, 60 s)

Vee
15 SEND/REC.
INPUT 0

DATA A

The receivers have built-in input hysteresis to improve
noise margin, and their input loading follows the bus
standard specifications.

Absolute Maximum Ratings

16

SEND/REC.
INPUT A

-

x = Don't Care

6-72

Code
98
78

Part No.
JlA3448APC
JlA3448ADC

JlA3448A
DC Characteristics
Symbol

Unless otherwise noted, 4.75
TA = 25°C, VCC = 5.0 V

Characteristic

VCC :::; 5.25 V and 0:::; TA:::; 70°C; typical values are at

Condition

Min

Bus Pin Open, VIN(S/R)
IBUS = -12 mA

VB US
Bus Voltage
VIC(BUS)
IBUS

v:::;

= 0.8 V

Bus Current

5.0 V :::; VBUS :::; 5.5 V
VBUS = 0.5 V
VCC = 0 V, 0 V :::; VBUS :::; 2.75 V

Typ

Max

Unit

2.75

3.7
-1.5

V
V

0.7
-1.3

2.5
-3.2
+0.04

mA
mA
mA

= 0.8 V
= 0.8 V, LOW to HIGH

400

600

HIGH to LOW

0.8

1.6
1.0

Receiver Input Hysteresis

VIN(S/R)

VILH(R)
VIHL(R)

Receiver Input Threshold

VIN(S/R)
VIN(S/R)

VOH(R)

Receiver Output HIGH Voltage VIN(S/R) = 0.8 V, 10H(R)
VBUS = 2.0 V

= -800 p,A

VOL(R)

Receiver Output LOW Voltage VIN(S/R) = 0.8 V, 10L(R)
VSUS = 0.8 V

= 16 mA

10S(R)

Receiver Output Short-Circuit
Current

= 2.0 V

VIH(O)

= 0.8 V,

VIN(S/R)

= 0.8 V,

Driver Input HIGH Voltage

VIN(S/R)

VIL(O)

Driver Input LOW Voltage

VIN(S/R)

liN (D)
IIB(O)

Driver Input Current
Data Pins

= 2.0 V
= 2.0 V
= VIN(E) = 2.0 V

VIN(S/R)
0.5 V :::; VIN(O) :::; 2.7 V
VIN(O) = 5.5 V

IIN(S/R)
IIB(S/R)

Input Current
Send / Receive

liN (E)
IIB(E)

VB US

mV
1.8

2.7

V
V
V

-15

0.5

V

-75

mA

2.0

V
0.8

V

200

40
200

p,A
A

0.5 V :::; VIN(S/R) :5 2.7 V
VIN(S/R) = 5.5 V

-100

20
100

p,A
p,A

Input Current
Enable

0.5 V :::; VIN(E) :::; 2.7 V
VIN(E) = 5.5 V

-200

20
100

p,A
p,A

VIC (D)

Driver Input Clamp Voltage

VIN(S/R)

-1.5

V

VOH(O)

Driver Output HIGH Voltage

VOL (D)

Driver Output LOW Voltage
(Note)

10S(0)

Output Short·Circuit Current

ICCL
ICCH

Power Supply Current

= 2.0 V, IIC(O) = -18 mA
VIN(S/R) = 2.0 V, VIH(O) = 2.0 V
VIH(E) = 2.0 V, IOH = -5.2 mA
VIN(S/R)

2.5

V

= 2.0 V, 10L(0) = 48 mA

VIN(S/R) = 2.0 V, VIH(O)
VIH(E) = 2.0 V

= 2.0 V,

0.5

V

-120

V

63
106

85
125

mA

-30

Listening Mode, All Receivers On
Talking Mode, All Drivers On

Note
A modIficatIon of the IEEE 488·1975 Bus Standard changes
VOL (D) from 0.4 to 0.5 V maximum to permit the use of
Schottky technology.

AC Characteristics VCC
Symbol Characteristic
tpLH(O)
tpHL(O)
tpLH(R)
tpHL(R)

=5 0 V

TA

= 25 ° C unless otherwise noted
Condition

Typ

Max

Unit

Propagation Delay of Driver

Output LOW to HIGH
Output HIGH to LOW

Min

10
11

15
17

ns
ns

Propagation Delay of Receiver

Output LOW to HIGH
Output HIGH to LOW

20
16

25
23

ns
ns

6-73

•

JLA3448A
AC Characteristics (Cont.) Vee
Symbol

Characteristic

tPHZ(R)
tpZH(R)
tpLZ(R)
tpZL(R)

= 5.0 V, TA = 25

0

C unless otherwise noted
Typ

Min

Max

Unit

Propagation Delay Time-Send/Receiver to Data
Logic HIGH to Third State
Third State to Logic HIGH
Logic LOW to Third State
Third State to Logic LOW

30
30
30
30

ns
ns
ns
ns

tpHZ(D)
tpZH(D)
tpLZ(D)
tpZL(D)

Propagation Delay Time-Send/Receiver to Bus
Logic HIGH to Third State
Third State to Logic HIGH
Logic LOW to Third State
Third State to Logic LOW

30
30
30
30

ns
ns
ns
ns

tpOFF(E)
tpON(E)

Turn-On Time-Enable to Bus
Pull-Up Enable to Open Collector
Open Collector to Pull-Up Enable

30
20

ns
ns

Typical Performance Curves

Typical Receiver
Hysteresis Characteristics
Vee'" 5 ov

140

Vee == 5 0 v

TA

Typical Bus Load Line

-----,f-+---+-l--+---l

25°C

.
"
g~30f-4--+--~4--4--++~-j
.

2.

"I
~2

•

~4

•

--

....

~

520r-~-+--r---j-~--++~-j

~

o

I

~

~1.

~12
~14
~4

VIN -

INPUT VOLTAGE -

•

V

-2.

20

VBUS -

BUS VOLTAGE -

AC Test Circuits and Waveforms
Bus Input to Data Output (Receiver)
TO SCOPE
(INPUT)

TO SCOPE
(OUTPUT)

50V

240

n

~tPLHIR)
OUTPUT
CLO

30 pF

lN916
OR

EQUIV
(NOTE)

SENOI

-=- REC
f = 10 MHz
tTLH = tTHL :oS 5 0 ns (10%-90%)
Duty Cycle = 50%
"Includes Jl9 and probe capacitance

6-74

15 V

40
V

60

~A3448A
AC Test Circuits and Waveforms (Cont.)
Data Input to Bus Output (Driver)
TO SCOPE
(INPUT)

TO SCOPE
(OUTPUT)

3.0

v

~

2.3 V

INPUT

15V

ORENA~

SEND/

L-....-+--+

REC

38.3!l

I='PLHIOI

~/;'OV

BUS

PULL-UP ENABLE

==--

f = 1.0 MHz
tTLH = tTHL :s 5.0 ns (10%-90%)
Duty Cycle = 50%

CLI30PF

(NOTE)

·Includes Jig and probe capacitance

Send/Receive Input to Bus
Output (Driver)
30

TO SCOPE
(OUTPUT

v

~.

ZH

f:=VOH

90%

SEND/REC

;;~: I: ;~'P_H_Z(_O_'

ZH

TO SCOPE
(INPUT)

ov

______________________J.

ZL
DATA

F'"

~.

2.0 V

___VZ____"_O_V________-+__,
-VZ"" 1.1 V

51 !l

CL*

PULSE

480

n

13.511

------1--':

-=-

10%

------------------

11 V

f = 1.0 MHz

CL = 1 5 pF (Includes Jig and probe capacitance)

tTLH = tTHL :s 5.0 ns (10%-90%)
Duty Cycle = 50%

6-75

•

~A3448A
AC Test Circuits and Waveforms (Cont.)
Send/Receive Input to
Data Output (Receiver)
TO SCOPE
(OUTPUT)

::1.

50 V

280 II

~..
tPZHIRI-"

DATA

BUS
SEND/REC

90%

OUTPUT
HIGH
TO OPEN

ZH

ZL

rr

3.0

v

OV

VOH

OV
TO SCOPE
(INPUT)

51 n

PULSE

CL

= 1 5 pF

CL'

3 kH

---+-"';

10%

f = 1.0 MHz

(Includes Jig and probe capacitance)

tTLH = tTHL ::5 5.0 ns (10%-90%)
Duty Cycle = 50%

Enable Input to Bus Output (Driver)
30

TO SCOPE
(OUTPUT)

v

ENABLE

1.5 V

INPUT~
tPON(E)

DATA

SENDIREC

OUTPUT

TO SCOPE
(INPUT)

51

n

CL'

480

n

t

j'"

f=1.0MHz
tTLH = tTHL ::5 5.0 ns (10%-90%)
Duty Cycle = 50%

CL = 1 5 pF (Includes Ji9 and probe capacitance)

6-76

I

0V
-iIPOFFIEI

-"='""
Voe

J-LA3448A
Simple System Configuration
15 V

,---I
I

T/R2

4- "A3448A

I

I

EOl

EO,

DBo-DBl

00-07

TiFf,

BUS
MANAGEMENT

SRO

SRO

REN

REN

R/IN

R/IN
F6802
OR
F6800
MPU

IFe

IFe

ATN

ATN

NDAC

DAe

RSo-RS2

IRO
BUS
HANDSHAKE

CI)

NRFD

RFD

DAV

DAV

::>

F68488
GPIA

ID

..."'~

'....."

DlO,

mo

0108

.-+------+---r-~ffi7

w
w

!!!

DATA

TRIG +--+----~

Notes
1. Although the I'A3448A transceivers are non-inverting, the
488-1975 bus callouts appear inverted with respect to the
F68488 pin designations. This is because the 488-1975
Standard is defined for negative logiC, while all F6800 MPU
components make use of positive logic format.

2. Unless proper considerations are provided, it is recommended
that the pull-up enable pins on the I'A3448As be grounded,
selecting the open-collector mode.

6-77

•

JLA8T26A • JLA8T28
Quad 3-State
Bus Transceivers

FAIRCHILD
A Schlumberger Company

Interface Products
Connection Diagrams
16-Pin DIP

Description
,uAST26A and ,uAST2S are Quad 3-State 8us
Transceivers featuring MPU or MOS compatibility.
80th parts feature high-impedance pnp inputs and
high-speed operation made possible by the use of
Schottky transistor technology.

,uABT26A
RECEIVER
ENABLE
INPUT
RECEIVER
OUTPUT 1

These devices are useful as bus extenders in systems
employing the F6S00, F3S70 or other comparable
MPU families. Maximum input current of 200 ,uA at the
device input pins assures proper operation despite
limited drive capability of the MPU chip.

BUS 1
DRIVER
INPUT 1

DRIVER
INPUT 4
RECEIVER
OUTPUT 3

BUS 2
DRIVER
INPUT 2

• ,uA8T26A-INVERTING BUS
• ,uA8T28- NON-INVERTING
• MPU COMPATIBLE
• HIGH-IMPEDANCE pnp INPUTS
• HIGH-SPEED SCHOTTKY TECHNOLOGY
• +5 V SINGLE SUPPLY OPERATION
• 3-STATE DRIVERS AND RECEIVERS

Power Supply Voltage (Vee)
Input Voltage (VI)
Junction Temperature (T J)
Ceramic DIP
Molded DIP
Operating Temperature
Storage Temperature
Pin Temperature
Molded DIP (Soldering, 10 s)
Ceramic DIP (Soldering, 60 s)

BUS 4

RECEIVER
OUTPUT 2

The ,uAST26A / 2S are identical to the NEST26A / 2S or
the MCST26A / 2S.

Absolute Maximum Ratings

Vee
15 DRIVER
ENABLE
14 INPUT
RECEIVER
OUTPUT 4

BUS 3
DRIVER
INPUT 3

GND

(Top View)

Order Information
Type
Package
,uAST26A
Ceramic DIP
,uAST26A
Ceramic DIP
,uAST26A
Molded DIP

TA = 25°C unless
otherwise noted
S.O V

Code
68
68

Part No.
,uAST26ADM
,uAST26ADC
,uAST26APC

98

5.5 V
Connection Diagram
,uABT2B

175°C
150°C
-55°C to +125°C
-65°C to +150°C

RECEIVER
ENABLE
INPUT
RECEIVER
OUTPUT 1

Vee
15 DRIVER
ENABLE
14 INPUT
RECEIVER
OUTPUT 4

BUS 1
DRIVER
INPUT 1

BUS 4

RECEIVER
OUTPUT 2

DRIVER
INPUT 4
RECEIVER
OUTPUT 3

BUS 2
DRIVER
INPUT 2

BUS 3
DRIVER
INPUT 3

GND

(Top View)

Order Information
Type
Package
,uAST2S
Ceramic DIP
,uA8T2S
Ceramic DIP
,uAST2S
Molded DIP

6·78

Code
68
68

98

Part No.
,uAST2SDM
,uAST2SDC
,uAST2SPC

J.LA8T26A • J.LA8T28
Bidirectional Bus Application
TO OTHER
DRIVERS/RECEIVERS

RECEIVER
OUTPUTS

1

( RECEIVER

DRIVER
INPUTS

1

(DRIVER

DRIVER
ENABLE

DC Characteristics

\ OUTPUTS

\ INPUTS

RECEIVER
ENABLE

DRIVER
ENABLE

4.75 V .:S Vee .:S 5.25 V for ooe .:S T A .:S 70 oe, and 4.5 V .:S Vee .:S 5.5 V
for -55 ° C .:S T A .:S + 125 ° C, unless otherwise noted

Symbol

Characteristic

Max

Unit

IIL(RE)
IIL(DE)
IIL(D)
IlL (B)

Input Current, LOW Logic State
Receiver Enable Input, VIL(RE) = 0.4 V
Driver Enable Input, VIL(DE) = 0.4 V
Driver Input, VIL(D) = 0.4 V
Bus Receiver Input, VIL(B) = 0.4 V

-200
-200
-200
-200

p.A

IIL(D)DIS

Input Disabled Current, LOW Logic State
Driver Input, VIL(D) = 0.4 V

-25

p.A

IIH(RE)
IIH(DE)
IIH(D)
IIH(B)

Input Current, HIGH Logic State
Receiver Enable Input, VIH(RE) = 5.25 V
Driver Enable Input, VIH(DE) = 5.25 V
Driver Input, VIH(D) = 5.25 V
Receiver Input, VIH(B) = 5.25 V (p.A8T26 only)

25
25
25
100

p.A

VIL(RE)
VIL(DE)
VIL(D)
VIL(B)

Input Voltage, LOW Logic State
Receiver Enable Input
Driver Enable Input
Driver Input
Receiver Input

0.85
0.85
0.85
0.85

V

VIH(RE)
VIH(DE)
VIH(D)
VIH(B)

Input Voltage, HIGH Logic State
Receiver Enable Input
Driver Enable Input
Driver Input
Receiver Input

VOL(B)
VOL(R)

Output Voltage, LOW Logic State
Bus Driver Output, IOL(B) = 48 rnA
Receiver Output, IOL(R) = 20 rnA

VOH(B)
VOH(R)

IOHL(B)
IOHL(R)

Min

Typ

2.0
2.0
2.0
2.0

V

0.5
0.5

Output Voltage, HIGH Logic State
Bus Driver Output, IOH(B) = -10 rnA
2.4
Receiver Output, IOH(R) = -2.0 rnA
2.4
Receiver Output, IOH(R) = -100 p.A, vee = 5.0 V 3.5
Output Disabled Leakage Current
HIGH Logic State
Bus Driver Output, VOH(B) = 2.4 V
Receiver Output, VOH(R) = 2.4 V

3.1
3.1

V

100
100

6·79

V

p.A

•

#LA8T26A • #LA8T28
DC Characteristics (Cont.)

4.75 V :5 Vcc :5 5.25 V for QOC :5 TA:5 70°C, and 4.5 V :5 VCC:5 5.5 V
for -55°C -< TA -< +125°C, unless otherwise noted
Max

Unit

10ll(B)
10ll(R)

Output Disabled Leakage Current
LOW Logic State
Bus Output, VOl(B)
0.5 V
Receiver Output, VOl(R)
0.5 V

-100
-100

p,A

VIC(DE)
VIC(RE)
VIC(D)

Input Clamp Voltage
Driver Enable Input IIC(DE)
-12 mA
Receiver Enable Input IIC(RE)
-12 mA
Driver Input IIC(D)
-12 mA

-1.0
-1.0
-1.0

V

10S(B)
10S(R)

Output Short·Circuit Current, VCC
Bus Driver Output
Receiver Output

80
50

-150
-75

mA

Icc

Power Supply Current
VCC 5.25 V

50

87

mA

Symbol

Characteristic

Min

=

Typ

=

=

=

=

= 5.25 V, Note

-50
-30

=

Note
Only one output may be short-circuited at a time

p,A8T26A AC Characteristics

Unless otherwise noted, specifications apply at TA
and VCC = 5.0 V.

= 25 ° C

Symbol

Characteristic

Figure

Typ

Max

Unit

tplH(R)

Propagation Delay Time from Receiver (Bus)
Input to HIGH Logic State Receiver Output

1

9

14

ns

tpHl(R)

Propagation Delay Time from Receiver (Bus)
Input to LOW Logic State Receiver Output

1

6

14

ns

tplH(D)

Propagation Delay Time from Driver Input to
HIGH Logic State Driver (Bus) Output

2

10

14

ns

tPHl(D)

Propagation Delay Time from Driver Input to
LOW Logic State Driver (Bus) Output

2

10

14

ns

tplZ(RE)

Propagation Delay Time from Receiver Enable
Input to HIGH Impedance (Open) Logic State
Receiver Output

3

10

15

ns

tpZl(RE)

Propagation Delay Time from Receiver Enable
Input to LOW Logic Level Receiver Output

3

15

20

ns

tplZ(DE)

Propagation Delay Time from Driver Enable Input
to HIGH Impedance Logic State Driver
(Bus) Output

4

15

20

ns

tpZl(DE)

Propagation Delay Time from Driver Enable
Input to LOW Logic State Driver (Bus) Output

4

19

25

ns

p,A8T28 AC Characteristics
Symbol

TA

= 25°C, VCC = 5.0 V unless otherwise specified.

Characteristic

tplH(R)
tpHl(R)

Propagation Delay Time-Receiver (Cl

tplH(D)
tpHl(D)

Propagation Delay Time-Driver (Cl

tpZl(RE)

Propagation Delay Time-Receiver Enable
(Cl 30 pF)

= 30 pF)

= 300 pF)

=

Figure

Typ

Max

Unit

5

-12
-9

17
17

ns

6

-13
-13

17
17

ns

-18

23

-13

18

-21

28

-18

23

7

tplZ(RE)
tpZl(DE)

Propagation Delay Time-Driver Enable
(Cl 300 pF)

=

8

tplZ(DE)
6·80

ns

ns

#LA8T26A • #LA8T28
Fig. 1 #A8T26A Test Circuit and Waveforms for
Propagation Delay Time from Bus
(Receiver) Input to Receiver Output,
tpLH(R) and tpHL(R)
TO SCOPE
(OUTPUT)

TO SCOPE
(INPUT)

Fig. 3

#A8T26A Test Circuit and Waveforms for
Propagation Delay Time from Receiver
Enable Input to Receiver Output,
tpLZ(RE) and tpZL(RE)
TO SCOPE
(INPUT)

26V

RECEIVER EN""""ABIE"
INPUT

TO SCOPE
(OUTPUT)

2.6 V

92 i!

5.0 V

2.4 k

240

n

1N916
OR EaUIV

It

51

n

PULSE
GENERATOR
13k

30 pF

tTLH

hLH '550 ns

<~

5.0 ns

26V-------i--~~~-------~~

OV--"';"...I\

oV~_"",,""'"

• 3.5 V

VOH - - - - - - , .

Val

-------'----~,N~P~U~T:-:P~U~L~SE~FR:-:E:-:QJUENCy ~ 5 0 MHz

---------------i----:;_---------'\

V O l - - - - - -......

10%
INPUT PULSE FREOUENCY -=- 5 0 MHz
DUTY CYCLE - 50%

DUTY CYCLE = 50%

Fig. 2

#A8T26A Test Circuit and Waveforms for
Propagation Delay Time from Driver
Input to Bus (Driver) Output, tpLH(D)
and tpHL(D)
TO SCOPE
(INPUT)

26 V

TO SCOPE
(OUTPUT)

Fig. 4

26V

TO SCOPE
(INPUT)

DRIVER

ENABLE
INPUT

#A8T26A Test Circuit and Waveforms for
Propagation Delay Time from Driver
Enable Input to Driver (Bus) Output,
tpLZ(DE) and tpZL(DE)
TO SCOPE

+2.6 V

(OUTPUT) 50 V

30 !l

DRIVER

DRIVER

INPUT

ENABLE
INPUT

DRIVER
51 fl

51 !l

300 pF

INPUT

RECEIVER
ENABLE

hLH :::; 5 0 ns

INPUT
tTLH

:s 5 0

ns

INPUT

oV _ _

';:';'~

INPUT

VOH----...;........
OV--="I
IpZLIDEI

·3.5 V----...;..-,.
Val

---------------~-----,-N:-:P-U~T~P~U:-:LS:-:E:-:F:-:R:-:E~QJU.ENCy"50MHZ

OUTPUT

DUTY CYCLE = 50%

-=__-=______

Val _____________ ' -_ _ _ _ _ _

;J" 10%

INPUT PULSE FREQUENCY
50 MHz
DUTY CYCLE
50%

6-81

•

p,A8T26A • p,A8T28
Fig. 5

~A8T28

Test Circuit and Waveforms for
Propagation Delay Time from Bus
(Receiver) Input to Receiver Output,
tpLH(R) and tpHL(R)
TO SCOPE
(INPUT)

TO SCOPE
(INPUT)

RECEIVER

Fig. 6

Test Circuit and Waveforms for
Propagation Delay Time from Driver
Input to Bus (Driver) Output, tpLH(D)
and tpHL(D)
26V

TO SCOPE
(INPUT)

26 V

ENABLE
INPUT

~A8T28

TO SCOPE
(OUTPUT)

DRIVER
ENABLE
INPUT

92 l!

2.6 V

30 n

1N916

OR eaulv

DRIVER
INPUT

RECEIVER
OUTPUT
13 k

51!!

30 pF

hHL < 5 0 ns

26 V

26V---:::::-li.
15 V

INPUT

INPUT

10%

ov----

oV---Vo~-----,

Vo~

---------,

OUTPUT

VOl---------,~----------------,

VOL

INPUT PULSE FREOUENCY -= 10 MHz
DUTY CYCLE = 50%

Fig. 7

---------,~-----------,

INPUT PULSE FREQUENCY
10 MHz
DUTY CYCLE
50%

~A8T28 Test Circuit and Waveforms for Propagation Delay Time from
Receiver Enable Input to Receiver Output, tpLZ(RE) and tpZL(RE)
TO SCOPE
(INPUT)

TO SCOPE
(OUTPUT)

RECEIVER
ENABLE

50V

PULSE
GENERATOR

51 !l

50 k

trLH

240 !!

24k

RECEIVER
OUTPUT

30 pF

1N916
OR eQUIV

s; 5.0 ns

2.6V

----t-:r.::::::-------~=~

INPUT

OV--=.II

'35V--------t-~~------------_.,.
50 MHz

OUTPUT

DUTY CYCLE

VOL _ _ _ _ _ _.;;;T1O%

6-82

50%

JLA8T26A • JLA8T28
Fig. 8

~A8T28 Test Circuit and Waveforms for Propagation Delay Time from
Driver Enable Input to Driver (Bus) Output, tpLZ(DE) and tpZL(DE)
TO SCOPE
(INPUT)

TO SCOPE

DRIVER
+26 V

50

(OUTPUT)

ENABLE
INPUT

v

24.

70

n

DRIVER

PULSE

(BUS)
OUTPUT

GENERATOR

RECEIVER

50.

ENABLE

300 pF

1N918
OR EQUIV

INPUT

ITLH~SOns

INPUT

oV---"'I
• 3.5 V ----...;..""""
INPUT PULSE FREQUENCV == 50 MHz
DUTY CYCLE = 50%

OUTPUT

VOL - - - - - - - ,,_ _ _ _ _ _ _ _ _.-J 10%

•

6-83
----------~

---

._-----

JLA9643
Dual TTL To
MOS/CCD Driver

I=AIRCHILD
A Schlumberger Company

Interface Products
Description
The ILA9643 is a Dual Positive-Logic "AND" TTL-toMOS Driver. The ILA9643 is a functional replacement
of the SN75322 with one important exception: the two
external pnp transistors are no longer needed for
operation. The ILA9643 is also a functional
replacement for the 75363 with the important
exception that the VCC3 supply is not needed. The pin
connections normally used for the external pnp
transistors are purposely not internally connected to
the ILA9643.
•
•
•
•
•
•
•
•
•

Connection Diagram
S-Pin DIP

tNA

Vee1

E

SATISFIES CCD MEMORY AND DELAY
LINE REQUIREMENTS
DUAL POSITIVE-LOGIC TTL-TO-MOS DRIVER
OPERATES FROM STANDARD BIPOLAR AND
MOS SUPPLY VOLTAGES
HIGH-SPEED SWITCHING
TTL AND DTL COMPATIBLE INPUTS
SEPARATE DRIVER ADDRESS INPUTS WITH
COMMON STROBE
VOH AND VOL COMPATIBLE WITH POPULAR
MOS RAMs
DOES NOT REQUIRE EXTERNAL pnp
TRANSISTORS OR VCC3
VOH MINIMUM IS VCC2 - 0_5 V

OUTA

tNS

Vee2

GND

OUTS

(Top View)

Order Information
Type
Package
ILA9643
Molded DIP

Absolute Maximum Ratings
Over operating ambient temperature range unless
otherwise noted
Supply Voltage Range of VCC1
(Note 1)
-0.5 V to 7 V
Supply Voltage Range of VCC2
-0.5 V to 15 V
Input Voltage
5.5 V
Inter-Input Voltage (Note 2)
5.5 V
Continuous Total Dissipation at
1000 mW
TA = 25°C
Operating Temperature Range
O°C to 70°C
Storage Temperature Range
-65°C to 150°C
Pin Temperature
Molded DIP (Soldering, 10 s)

Notes
1. Voltage values are wIth respect to network ground termonal
unless otherwise noted.
2. This rating applies between any two inputs of anyone of
the gates.

6·84

Code
9T

Part No_
ILA9643TC

JLA9643
Recommended Operating Conditions
Characteristic
Min Typ
4.75 5.0
Supply Voltage, VCC1
4.75
0

Supply Voltage, VCC2
Operating Temperature, TA
Electrical Characteristics

12

Max Unit
5.25 V
15
V
70
°C

Over recommended ranges of VCC1, VCC2 and operating ambient temperature unless
otherwise noted.

Symbol Characteristic

Condition

Min

Typ(3)

Max

Unit

0.8

V

VIH

Input HIGH Voltage

VIL

Input LOW Voltage

VOH

Output HIGH Voltage

VOL

Output LOW Voltage

liN

Input Current at Maximum VCC1 = 5.25 V, VCC2 = 11.4 V
Input Voltage
VIN = 5.25 V

IIH

Input HIGH Current

VIN = 2.4 V

IlL

Input LOW Current

VIN = 0.4 V

ICC1(L)

Supply Current from VCC1 VCC1 = 5.25 V
All Outputs LOW
VCC2 = 12.6 V

No Load

15

19

mA

ICC2(L)

Supply Current from VCC2
VCC2 = 12.6 V
All Outputs LOW

VCC1 = 5.25 V

5.5

9.5

mA

Supply Current from VCC1 VCC1 = 5.5 V
ICC1(H) All Outputs HIGH
VCC2 = 13.2 V

No Load

9.0

13

mA

Supply Current from VCC2
VCC2 = 12.6 V
ICC2(H) All Outputs HIGH

VCC1 = 5.25 V

5.5

9.5

mA

AC Characteristics

2.0
IOH = -400 /LA

V

VCC2- 0.5 VCC2 - 0.2

V

IOL = 10 mA

0.4

0.5

V

IOL = 1.0 mA

0.2

0.3

V

0.1

mA

A Inputs

40

E Inputs

80

A Inputs

0.5

E Inputs

- 1.0

/LA
mA

VCC1 = 5.0 V, VCC2 = 12 V, TA = 25°C

Symbol

Characteristic

tOLH
tOHL

Delay Time

tTLH

Rise Time

tTHL

Fall Time

tTLH

Rise Time

tTHL

Fall Time

tPLHAtpLHS
tpHLAtpHLS

Skew between outputs
Aand B

Condition
CL = 300 pF

Delay Time

RSERIES = 0
CL = 300 pF
RSERIES = 10 n

=

Typ

Max

Unit

5.0

9.0

17

ns

5.0

9.0

17

ns

6.0

17

6.0
8.0

11
11

17

ns
ns

14

20

ns

8.0

14

20

ns

0.5

Note
3. All tYPIcal values are at VCCI
5.0 V, VCC2
T A = 25· C unless otherwise noted.

Min

= 12 V, and
6-85

ns

•

JLA9643
AC Test Circuit and Waveforms
YCCl = 5Y

YCC2 = 12V

Y,N

)--\M--1I--- Your

2.4V

-::'

<10ns-\

I

Y'N

-I

l-

I

I

1-<10ns

I

"...---

~~---0.5~s---7.j

10%

l=
I ---.I

tDHL-I . -IYour

I--trHL
I

i

tpHL

l-tTLH

I:~ I

v
0.

-I'''------+--tlpLL~_=r - - - - VOL

The pulse generator has the following characteristics:
PRR = 1 MHz, ZOUT - 50 n
CL includes probe and jig capacitance.

6·86

J,lA9645 I 3245

F=AIRCHIL.O

Quad TTL-to-MOS/CCD
Driver

A Schlumberger Company

Interface Products

Description
The ~A9645/3245 is a High-Speed Driver intended to
be used as a clock (high-level) driver for 18 or 22-pin
dynamic NMOS RAMs. It also satisfies the nonoverlapping 2-phase clock drive requirements for CCD
memories like the F464 (64K) RAM.

Connection Diagram
l6-Pin DIP

The device features two common enable inputs, a
refresh select input and a clock control input. Internal
gating structure is organized so that all four drivers
may be deactivated for standby operation, or single
driver may be activated for read /write operation or all
four drivers may be activated for refresh operation.

INA

IN

C

E,

R

E2

INS

IN

(Top View)

Order Information
Type
Package
~A9645
Ceramic DIP
~A9645
Molded DIP

Logic Diagram

OUTB

S --+--OIr--~_4_+_+--1

OUTC

C --+--OIr--~_+_+_+-I

IN

i5

Part No_

~A9645PC/3245
~A9645DC / 3245

Inputs

I Address

Control

OUTA

INA -----0\

IN

Code
78
98

Truth Table

E1-------------.--~

IN

C

NC

GNO

INTERCHANGEABLE WITH INTEL 3245
FOUR HIGH-SPEED, HIGH-CURRENT DRIVERS
CONTROL LOGIC OPTIMIZED FOR MOS RAMs
SATISFIES CCD MEMORY AND DELAY LINE
DRIVE REQUIREMENTS
TTL AND DTL COMPATIBLE INPUTS
HIGH-VOLTAGE SCHOTTKY TECHNOLOGY

E2-----------._4--~._~

i5

OUTC

OUTB

The ~A9645/3245 is a pin-for-pin replacement of the
Intel 3245 Quad TTL-to-MOS Driver, with substantially
reduced dc power dissipation.

•
•

OUTO

OUT A

The circuit is designed to operate on nominal +5 V
and + 12 V power supplies and contains input and
output clamp diodes to minimize line reflections.

•
•
•
•

Vee

Voo

C

E2

E1

INPUT

REFRESH

H

X

X
X
X

H

X
X

X
X

H

X
X
X

X
X
X

L
L

L
L

H
L

H

L
L

X

L

H = HIGH
L = LOW
X = Don" Care

OUTO

-+--<:Jl

R --+--o,jL~

c-------..J

6-87

X

X

Output

L
L
L
L
H
H

•
•

jlA9645/3245
Absolute Maximum Ratings
Temperature Under Bias
Storage Temperature
Supply Voltage, Vee
Supply Voltage, Voo
All Input Voltages

DC Characteristics

TA

-1Q°C
-65°C
-0.5 V
-0.5 V
-1.0 V

to
to
to
to
to

= O°C to 70°C,

+70°C
+150°C
+7.0 V
+14.0 V
Voo

Vee

= 5.0 V

Symbol

Characteristic

Condition

IFD

Inp'!!. !:.o~

...'"0
0

TYPICAL
(SINGLE DEVICE) -

200

,,

I

'

I '

I,

"

05

'"

~

/

~ f-'

~

o

300

a
o

I

100

I
I

,II

V

ILA9667 Input Current vs
Input Voltage

0

V

/

5

0

5

,,

MAX

/ '

V,

/,
,

L"
"

V

V

V

26

•

11

12

400 '-"""TTT"'-"'T'""'T""""'T'"-r---r--..,

"EI
:e'"

g:

300

~

i;l

300

a

u

::j
0

~

~

0

~

200

~

m

200

~

~
m

~

~
g

80

100

J

' 'JCIW

"

Peak Collector Current vs
Duty Cycle and Number of
Outputs (Ceramic Package)

::>

,

~

5 r-KOVAR lEj FRAME

VIN-INPUT VOLTAGE-V

ili

'\

100
0

DUTY CYCLE - %

6-93

,

I .........

, "

10

DUTY CYCLE - %

24

~EVICELIMIT

o~

","
TVP

0

60

22

60'C/W

V ,

40

20

~ COPPER LEAD FRAME

400

100
20

18

5

V
./

E

~

16

"

f-'

Allowable Average
Package Power Dissipation vs
Ambient Temperature

,

...I

~

14

TVP'

Peak Collector Current vs
Duty Cycle and Number of
Outputs (Molded Package)

...'"0

12

0

liN -INPUT VOlTAGE- rnA

0

o

"

YIN -INPUT VOLTAGE - V

20

0

C

600

ILA9668 Input Current vs
Input Voltage

,,
MAX/

400

,,

/,

5

TVP

,,

V

liN -INPUT CURRENT -I1-A

VCElsat)-SATURATION VOLTAGE-V

5

V

/
V

200

15

10

MAX

0

V

I
I

~

/LIMIT

I

I

,,

.L

5

V

I

0
20

L

MAxi

TYPICAL,

::>

I
400

~

0

...I
ili
g:

I

ili
0

~

I

1-..1

20

V

I

50

,

,,

,,
100

AMBIENT TEMPERATURE - ' C

,

,

,

','
150

J.LA9665/6/7/8
Test Circuits
Figure 4

Figure 1a

OPEN +SOV

OPEN -SOY

OPEN

I.,.
Figure 1b

Figure 5
OPEN

OPEN -SO V

I
Figure 2

Figure 6
OPEN

+SOV

OPEN

Figure 3

Figure 7
OPEN

t~>O--- OPEN

6·94

--[>C>-1r-DI--l

J[A9665/6/7/8
Typical Applications
Buffer for Higher Current Loads

PMOS to Load
+vss

+v

~vcc

16
16
15

2

l

3

14

4

13

5

2

15

3

14

4

9666

13

12
9667

12

6
11
7
10

PMOS
OUTPUT

8

9
9

TTL
OUTPUT

-=

TTL to Load

-v

•

16
15
3

14

4
5
6

13
9668

12
11

200l!

10
8

6-95

jlA75450/S0/70

FAIRCHILD

Series Dual
Peripheral Drivers

A Schlumberger Company

Interface Products

Description
The ~A75400 series of devices are Dual
High-Speed General-Purpose Interface Drivers that
convert TTL and DTL logic levels to high-current drive
capability. The ~A75450B features two TTL NAND
gates and two uncommitted transistors. The
~A75451A, ~A75452A, and ~A75453A feature two
standard series 74 TTL gates in AND, NAND, OR and
NOR configurations respectively, driving the base of
two high voltage, high current, uncommitted collector
output transistors.

•
•
•
•
•

NO LATCH-UP UP TO 55 V
HIGH OUTPUT CURRENT CAPABILITY
TTL OR DTL INPUT COMPATIBILITY
INPUT CLAMP DIODES
+5 V SUPPLY VOLTAGE

The ~A75400 series offers flexibility in designing highspeed logic buffers, power drivers, lamp drivers, line
drivers, MOS drivers, clock drivers and
memory drivers.
Absolute Maximum Ratings
~A75451A/B
~A75452A/B

~A75453A/B

I-IA75450B
Supply Voltage, Vee, Note 1

7V

7V

Input Voltage, Note 1

5.5 V

5.5 V

Inter-emitter Voltage, Note 2

5.5 V

5.5 V

Vee to Substrate Voltage, Note 6

35 V

Collector to Substrate Voltage, Note 6

35 V

Collector to Base Voltage

35 V

Collector to Emitter Voltage, Note 3

30 V

Emitter to Base Voltage

5V

Output Voltage Notes 1 and 4
Continuous Collector Current, Note 5

~A75461
~A75462

I-IA75471
I-IA75472

Table 2
300 mA

Continuous Output Current, Note 5

300 mA

Continuous Total Power Dissipation, Note 7

800mW

800mW

Operating Ambient Temperature Range

O°C to 70°C

O°C to 70°C

Storage Temperature Range

-65°C to +150°C

-65°C to +150°C

Pin Temperature
Molded DIP (Soldering, 10 s)
Ceramic DIP (Soldering, 60 s)

260°C
300°C

260°C
300°C

Notes on follOWing page

6-96

~A75450/60/70
Test Table 1

Series

Operating Temperature Range and
Supply Voltage Range
/LA75000 Series

Temperature, TA

O°C to 70°C

Supply Voltage, Vee

+4.75 V to +5.25 V

Test Table 2
/LA7545XA
/LA7545XB

/LA75461
/LA75462

Maximum Output, VOH

30 V

35 V

80 V

Maximum, Latch-up, Vs

20 V

30V

55 V

/LA75471
/LA75472

~A75450B

Dual Positive AND Peripheral Drivers
Connection Diagram
14-Pin DIP

Equivalent Circuit
Vee
Vee

GATE

4k
INA

Uk

130

IN B
OUT B

OUT A
1B

IE

2B

lC

2C

1E

2E

GND

INA

lC

1k

SUB

SUB

G

(Top View)
4 k

1.6 k

130

Logic Function
Positive Logic Z = XV (gate only)
Z = XV (gate and transistor)
2C

Order Information
Type
Package
/LA75450B
Molded DIP

Code
9A

OUT
B

Part No.
/LA75450BPC

IN B I - f - - t - - i

2E

~-+-~--~-~~--------GND

All resistor values In ohms
Notes
1 Voltage values are with respect to network ground terminal
unless otherwise specified
2 This IS the voltage between two emillers of a multiple-em Iller
Input transistor
3 This value applies when the base-em Iller resistance (RBE)IS
equal to or less than 500 II
4 This IS the maximum voltage which should be applied to any
output when It IS In the off state
5 Both halves of these dual CirCUitS may conduct rated
current Simultaneously

6 For the I'A75450 only, the substrate (Pin 8), must always be at
the most negative deVice voltage for proper operation
7 Above 60 0 e ambient temperature, derate linearly at
8 3 mW / ° C for Ceramic DIP and Molded DIP For the Molded
Mini DIP and Ceramic Mini DIP, derate at 6 7 mW / °C
above 30°C

6-97

•

j.£A75450/60/70 Series
/-tA75450B
Electrical Characteristics

Guaranteed over operating temperature range and supply voltage range, use test
table 1, unless otherwise indicated

TTL Gates
Symbol Characteristic

Test
Figure Condition

Min
2

VIH

Input HIGH Voltage

1

Vil

Input LOW Voltage

2

VCD

Input Clamp Diode Voltage

3

VOH

Output HIGH Voltage

2

Val

Output LOW Voltage

1

II

Input Current
at Maximum
Input Voltage

4

VCC

= Max, VIN = 5.5 V

IIH

Input HIGH Current

4

VCC

= Max, VIN = 2.4 V

III

Input LOW Current

3

VCC

= Max, VIN = 0.4 V

lOS

Short-Circuit Output Current,
Note 2

5

VCC

ICCH

Supply Current, Output HIGH

ICCl

Supply Current, Output LOW

= Max
= Max, VIN = 0 V
= Max, VIN = 5 V

/-tA75450B
Electrical Characteristics

= Min, liN = -12 mA
VCC = Min, Vil = 0.8 V
10H = -400/-tA
VCC = Min, VIN = 2 V
10l = 16 mA

Input A
Input G
Input A
Input G

VCC

6

VCC

2.4

Unit
V

0.8
-1.5

VCC

Input A
Input G

Typ(1) Max

3.3
0.22

V
V
V

0.4

V

1
mA
2
40
80
-1.6
-3.2
-18

-55
2

4

6

11

/-t A
mA
mA
mA

Guaranteed over operating temperature range and supply voltage range, use test
table 1, unless otherwise indicated

Output Transistors
Min

Symbol

Characteristic

Condition

V(SR)CSO

Collector to Base
Breakdown Voltage

Ic

= 100 /-tA,

IE

V(SR)CER

Collector to Base
Breakdown Voltage

Ic

= 100 /-tA,

RSE

V(SR)ESO

Emitter to Base
Breakdown Voltage

IE

hFE

Static Forward Current
Transfer Ratio, Note 3

VSE(sat)

Base to Emitter Voltage,
Note 3

VCE(sat)

Collector to Emitter Saturation
Voltage, Note 3

=0
= 500 Q

= 100 /-tA, Ic = 0
VCE = 3 V, Ic = 100 mA, TA = 25°C
VCE = 3 V, IC = 300 mA, TA = 25°C
VCE = 3 V, Ic = 100 mA
VCE = 3 V, Ic = 300 mA
Is = 10 mA, Ic = 100 mA
IS = 30 mA, IC = 300 mA
Is = 10 mA, IC = 100 mA
IS = 30 mA, Ic = 300 mA

Notes
1 All tYPIcal values are at Vec = 5 V. TA = 25°C
2 Not more than one output should be shorted at a tIme
3 These parameters must be measured uSIng the pulse
techniques tw = 300 liS. duty cycle:::; 2%

Typ (1) Max

Unit

35

V

30

V

5

V

25
30
20
25
0.85

1.0

V

1.05

1.2

V

0.25

0.4

V

0.5

0.7

V

4 Voltage and current values shown are nommal, exact values
vary slightly WIth transIstor parameter

6·98

/-LA75450/60170 Series
I'A75450B
AC Characteristics

Vee = 5 V, TA = 25°C

TTL Gates
Symbol Characteristic
TpLH
tpHL

Propagation Delay Time,
LOW to HIGH
Propagation Delay Time,
HIGH to LOW

I'A75450B

Test
Figure Condition

12

Min

CL = 15 pF, RL = 400

Typ

Max

Unit

12

22

ns

8

15

ns

n

Output Transistors
Symbol Characteristic
td

Delay Time

tr

Rise Time

ts

Storage Time

tf

Fall Time

Test
Figure Condition (Note 3)

13

Min

Ie = 200 mA, VBE(oft) = -1 V
IB( 1) = 20 mA, IB(2) = -40 mA
CL = 15 pF, RL = 50 n

Typ

Max

Unit

8
12

15

ns

20

ns

7

15

ns

6

15

ns

Unit

Gates and Transistors Combined
Symbol Characteristic
tpLH

Propagation Delay Time, LOW to HIGH

tpHL

Propagation Delay Time, HIGH to LOW

tTLH

Transition Time, LOW to HIGH

tTHL

Transition Time, HIGH to LOW

VOH

HIGH Level Output Voltage After Switching

Test
Figure Condition

Min

Ie = 200 mA,
CL=15pF,
RL = 50 n

14

Vs = 20 V,
Ie = 300 mA
RBE = 500 n

15

Vs - 6.5

Typ

Max

20

30

ns

20

30

ns

7

12

ns

9

15

ns
mV

Notes
1. All tYPical values are at Vee = 5 V, T A = 25°e
2 Not more than one output should be shorted at a time
3 These parameters must be measured uSing the pulse
techniques tw = 300 I1S, duty cycle ~ 2%

4

Voltage and current values shown are nommal, exact values
vary slightly with transistor parameter

6-99

•

J.LA75450/60/70 Series

J.LA75451A/B • J.LA75461 • J.LA75471
Dual Positive AND Peripheral Drivers
Truth Table

Connection Diagram
8-Pin DIP

Inputs
8

IN A1

Vee

IN A2

IN B2

OUT A

IN B1

GND

H

Output

x

y

L
L
H
H

L
H
L
H

= HIGH Level, L = LOW

z
L
L
L
H
Level

OUT B

(Top View)

Order Information
Type
Package
IlA75451A
Molded DIP
IlA75451A
Ceramic DIP
IlA 75451 B
Molded DIP
IlA75451 B
Ceramic DIP
IlA75461
Molded DIP
IlA75471
Molded DIP

Code
9T
6T
9T
6T
9T
9T

Part No.
IlA75451ATC
IlA75451ARC
IlA75451BTC
IlA75451BRC
IlA75461TC
IlA75471TC

Equivalent Circuit (Each Driver)
.----_-_~----Vcc

1.Sk

4k

130

OUTPUT

INPUTS!

1_-+-_....
2

1k

500

~-+---~~--+-+--~--GND

Component values shown are nominal All resistor values

In

ohms

6·100

(on state)
(on state)
(on state)
(off state)

f.lA75450/60170 Series
IlA75451A/B
Electrical Characteristics

Guaranteed over operating temperature range and supply voltage range, use test
table 1.
IlA75451A

Symbol Characteristic

Test
Figure Condition (Note 1) Min

VIH

Input HIGH Voltage

7

VIL

Input LOW Voltage

7

VCD

Input Clamp
Diode Voltage

10H

Output HIGH Current 7

8

Output LOW Voltage 7

liN

= -12

Input Current at
Maximum Input

Min

Typ

Max

2.0

= Min,

VCC

mA

VCC = Min,
VIH = 2 V, Note 2

0.25

Unit
V

0.8

0.8

V

-1.5

-1.5

V

100

100

IlA

0.4

0.25

0.4

10L = 100 mA

V

VCC = Min
VIL = 0.8 V,

10L
II

Max

2.0

VCC = Min,
VIL = 0.8 V,
VOL

Typ

IlA75451B

0.5

0.7

0.5

= 300 mA

0.7

9

Vcc = Max,
VIN = 5.5 V

1.0

1.0

mA

40

40

IlA

Voltage

IIH

Input HIGH Current

9

Vcc = Max,
VIN = 2.4 V

IlL

Input LOW Current

8

Vcc = Max,
VIN = 0.4 V

-1.0

-1.6

-1.0

-1.6

mA

ICCH

Supply Current,
Output High

VCC = Max,
VIN = 5 V

7.0

11

7.0

11

mA

Vcc = Max,
VIN = 0 V

52

65

52

65

mA

Typ

Max

Unit

ICCL

Supply Current
Output LOW

IlA75451A/B
AC Characteristics

10

Vcc = 5 V, T A = 25 C
0

IlA75451A
Symbol Characteristic
tpLH

Propagation Delay
Time, LOW to HIGH

tpHL

Propagation Delay
Time, HIGH to LOW

tTLH

Transition Time,
LOW to HIGH

tTHL

Transition Time,
HIGH to LOW

VOH

Voltage After

Test
Figure Condition

14

HIGH Level Output
Switching

15

Min

10 = 200 mA,
CL = 15 pF,
RL = 50 Q

10 = 300 mA,
Note 3

Vs - 6.5

Notes
1. All tYPical values are at Vee = 5 V, TA = 25"e
2 VOH = 30 V for I'A75451A and B, 35 V for I'A75461, 80 V
for I'A75471

3

6·101

IlA75451B

Typ

Max

Min

20

55

18

25

ns

20

40

18

25

ns

8

20

5

8

ns

12

20

7

12

ns

Vs - 6.5

mV

Vs = 20 V for I'A75451A and B, 30 V for I'A75461, 55 V for
I'A75471

•

j.LA75450/60/70 Series
J.lA75461/J.lA75471
Electrical Characteristics

Guaranteed over operating temperature range and supply voltage range, use test
table 1, page 1.
J.lA75461
Test
Figure Condition (Note 1) Min

Symbol Characteristic
VIH

Input HIGH Voltage

7

VIL

Input LOW Voltage

7

VCD

Input Clamp
Didde Voltage

8

10H

Output HIGH Current 7

VOL

Output LOW Voltage 7

J.lA75471
Typ

Max

Min

Typ

Max

Unit

0.8

V

-1.5

V

100

J.lA

V

2.0

2.0
0.8
VCC = Min,
liN = -12 mA

-1.2

Vcc = Min,
VIH = 2 V, Note 2

-1.5

-1.2

100

VCC = Min,
VIL = 0.8 V,
10L = 100 mA

.16

VCC = Min,
VIL = 0.8 V
10L = 300 mA

.35

0.4

0.16

0.4
V

0.7

0.35

0.7

II

Input Current at
Maximum Input
Voltage

9

Vcc = Max,
VI = 5.5 V

1.0

1.0

mA

IIH

Input HIGH Current

9

Vcc = Max,
VI = 2.4 V

40

40

J.lA

IlL

Input LOW Current

8

Vcc = Max,
VI = 0.4 V

-1.0

-1.6

-1.0

-1.6

mA

ICCH

Supply Current,
Output High

VCC = Max,
VI = 5 V

8.0

11

8.0

11

mA

VCC = Max,
VIH = 0 V

61

76

61

76

mA

Typ

Max

Unit

ICCL

10

Supply Current
Output LOW

J.lA75461/J.lA75471
AC Characteristics

Vcc

= 5 V, TA = 25

0

C
J.lA75471

J.lA75461
Symbol Characteristic
tPLH

Propagation Delay
Time, LOW to HIGH

tpHL

Propagation Delay
Time, HIGH to LOW

tTLH

Transition Time,
LOW to HIGH

tTHL

Transition Time,
HIGH to LOW

VOH

HIGH Level Output
Voltage After
Switching

Test
Figure Condition

14

15

Min

10 = 200 mA,
CL = 15 pF,
RL = 50 Q

10 = 300 mA,
Note 3

Typ

Max

35

55

35

55

ns

25

40

25

40

ns

8

20

8.0

20

ns

10

20

10

20

ns

Vs - 10

Min

mV

Vs - 18

Noles
1 All typical values are at Vee = 5 V, TA = 25°e
2 VOH = 30 V for ~A75451A and S, 35 V for ~A75461, 80 V

3

Vs = 20 V for
~A75471

for~A75471

6·102

~A75451A

and S, 30 V for

~A75461,

55 V for

~A75450/60/70

~A75452A/B

Series

• ~A75472
Dual Positive NAND Peripheral Driver
•

~A75462

Connection Diagram
a-Pin DIP

Truth Table
Inputs
8

Output

2

IN Al

Vee

IN A2

IN B2

L
L
H

H
L

OUT A

IN Bl

H

H

GND

L

H
H
H
L

(off
(off
(off
(on

state)
state)
state)
state)

H = HIGH Level, L = LOW Level

OUT B

(Top View)

Order Information
Type
Package
!1A75452A
Molded DIP
!1A75452A
Ceramic DIP
Molded DIP
!1A754528
!1A754528
Ceramic DIP
!1A 75461
Ceramic DIP
!1A75471
Ceramic DIP

Code
9T
6T
9T
6T
6T
6T

Part No.
!1A75452ATC
!1A75452ARC
!1A754528TC
!1A754528RC
!1A7 5461TC
!1A75471TC

Equivalent Circuit (Each Driver)
...---_----_-_----Vee
1.6 k

4 k

1.6 k

130

OUTPUT

INPUTSl

-2-;-.......

~-+---~~--4--+--~~-~-GND

Component values shown are nominal All resistor values

In

ohms

6-103

•

j1A75450/60170 Series
IlA75452A/B
Electrical Characteristics

Guaranteed over operating temperature range and supply voltage range, use test
table 1, page 1, unless otherwise indicated.

IlA75452A
Symbol Characteristic

Test
Figure Condition (Note 1) Min

VIH

Input HIGH Voltage

7

VIL

Input LOW Voltage

7

VCD

Input Clamp
Diode Voltage

10H

Output HIGH Current 7

VOL

8

Output LOW Voltage 7

Typ

IlA75452B
Max

Min

Typ

Max

2

2

Unit
V

0.8

0.8

V

VCC = Min,
liN = -12 mA

-1.5

-1.5

V

Vcc = Min
VIL = 0.8 V, Note 2

100

100

IlA

Vcc = Min,
VIH = 2 V
10L = 100 mA

0.25

Vcc = Min,
VIH = 2 V
10L = 300 mA

0.5

0.4

0.25

0.4
V

0.7

0.5

0.7

II

Input Current at
Maximum Input
Voltage

9

VCC = Max,
VIN = 5.5 V

1.0

1.0

mA

IIH

Input HIGH Current

9

Vcc = Max,
VIN = 2.4 V

40

40

IlA

IlL

Input LOW Current

8

VCC = Max,
VIN = 0.4 V

-1.0

-1.6

-1.0

-1.6

mA

ICCH

Supply Current,
Output HIGH

VCC = Max,
VIN = a V

11

14

11

14

mA

VCC = Max,
VIN = 5 V

56

71

56

71

mA

Typ

Max

Unit

ICCL

Supply Current
Output LOW

10

IlA75452AIIlA75452B
AC Characteristics Vcc = 5 V, T A = 25 0 C
IlA75452A
Symbol Characteristic
tpLH

Propagation Delay
Time. LOW to HIGH

tpHL

Propagation Delay
Time, HIGH to LOW

tTLH

Transition Time,
LOW to HIGH

tTHL

Transition Time,
HIGH to LOW

VOH

HIGH Level Output
Voltage After
Switching

Test
Figure Condition

14

15

Min

10 = 200 mA,
CL = 15 pF,
RL = 50 Q

10 = 300 mA,
Note 3

IlA55175452B

Typ

Max

25

65

25

35

ns

25

50

22

35

ns

8

25

5

8

ns

12

20

7

12

ns

Vs - 6.5

Min

Vs - 6.5

mV

Notes
1 All typical values are at Vec ; 5 V. T A; 25°C
2 VOH; 30 V for I'A75452A and S, 35 V for I'A75462, 80 V

3

VS; 20 V for I'A75452A and S, 30 V for I'A75462, 55 V
for I'A75472.

for I'A75472
6·104

~A75450/60/70
/-LA754621/-LA75472
Electrical Characteristics

Guaranteed over operating temperature range and supply voltage range, use test
table 1, page 1, unless otherwise indicated.
/-LA75462
Test
Figure Condition (Note 1) Min

Symbol Characteristic
VIH

Input HIGH Voltage

7

VIL

Input LOW Voltage

7

VCO

Input Clamp
Diode Voltage

10H

Output HIGH Current 7

VOL

Series

/-LA75472

Typ

Max

2

Min

Typ

2.0

VCC = Min,
liN = -12 rnA

-1.2

VCC = Min
VIL = 0.8 V, Note 2

Output LOW Voltage 7

-1.5

-1.2

100

VCC = Min
VIH = 2 V
10L = 100 rnA

0.16

VCC = Min,
VIH = 2 V
10L = 300 rnA

0.35

0.4

Unit
V

0.8

8

Max

0.16

0.8

V

-1.5

V

100

/-LA

0.4
V

0.7

0.35

0.7

II

Input Current at
Maximum Input
Voltage

9

VCC = Max,
VIN = 5.5 V

1.0

1.0

rnA

IIH

Input HIGH Current

9

VCC = Max,
VIN = 2.4 V

40

40

/-LA

IlL

Input LOW Current

8

VCC = Max,
VIN = 0.4 V

-1.0

-1.6

-1.0

-1.6

rnA

ICCH

Supply Current,
Output HIGH

VCC = Max,
VIN = 0 V

13

17

13

17

rnA

VCC = Max,
VIN = 5 V

65

76

65

76

rnA

Typ

Max

Unit

ICCL

10

Supply Current
Output LOW

/-LA754621/-LA75472
AC Characteristics

Vcc

= 5 V,

TA

= 25°C
/-LA75462

Test
Figure Condition

Symbol Characteristic
tpLH

Propagation Delay
Time, LOW to HIGH

tPHL

Propagation Delay
Time, HIGH to LOW

tTLH

Transition Time,
LOW to HIGH

tTHL

Transition Time,
HIGH to LOW

VOH

HIGH Level Output
Voltage After
Switching

Min

=

10
200 rnA,
CL = 15 pF,
RL = 50 n

14

=

10
300 rnA,
Note 3

15

Vs - 10

/-LA75472

Typ

Max

50

65

45

65

ns

40

50

30

50

ns

12

25

13

25

ns

15

20

10

20

ns

Min

Vs - 18

Notes

=

=

3

1 All tYPIcal values are at Vee
5 V, TA
25°e.
2 vOH = 30 V for I'A75452A and B, 35 V for I'A75462,
80 V for I'A75472.
6·105

Vs = 30 V for I'A75462 and 55 V for I'A75472

mV

•

~A75450/60/70

Series

~A75453A/B

Dual Positive OR Peripheral Drivers
Connection Diagram
a-Pin DIP

Truth Table
Inputs
8

IN Al

Vee

IN A2

IN 82

OUT A

IN 81

GND

H

OUT 8

~

Output

1

2

L
L
H
H

L
H
L
H

HIGH Level, L

~

LOW Level

(Top View)

Order Information
Type
Package
IlA75453A
Ceramic DIP
IlA75453A
Molded DIP
IlA75453B
Ceramic DIP
IlA75453B
Molded DIP

Code
6T
9T
6T
9T

Part No.
IlA75453ARC
IlA75453ATC
IlA75453BRC
IlA75453BTC

Equivalent Circuit (Each Driver)
r----_...----~---t_----vee

.::.:-;r-----;~-_t-------'

'"'""\.

~--+---~-------~---;~-~'GND

Component values shown are nominal All resistor values

In

ohms

6-106

L
H
H
H

(on
(off
(off
(off

state)
state)
state)
state)

,uA75450/60/70 Series
JiA75453A/B
Electrical Characteristics

Guaranteed over operating temperature range and supply voltage range, use test
table 1, page 1, unless otherwise indicated.
Test
Figure Condition

Symbol Characteristic

Min

VIH

Input HIGH Voltage

VIL

Input LOW Voltage

VeD

Input Clamp
Diode Voltage

8

Vee = Min,
liN = -12 rnA

10H

Output HIGH Current

7

Vee = Min, VOH
VIH = 2 V

VOL

Output LOW Voltage

7

2

7
7

II

Input Current at Maximum
Input Voltage

IIH

V

100

JiA

= 30 V

0.4

Vee = Min, VIL
10L = 300 rnA

= 0.8 V

0.5

0.7

9

Vee

IlL

Input LOW Current

8

Vee

leeH

Supply Current, Output HIGH

ICCL

Supply Current, Output LOW

Vcc

-1.5

0.25

Input HIGH Current

JiA75453A/B
AC Characteristics

V

= 0.8 V

Vee

Vee
Vce

Unit
V

0.8

Vee = Min, VIL
10L = 100 rnA

9

11

Typ
(Note) Max

V

= Max, VIN = 5.5 V
= Max, VIN = 2.4 V
= Max, VIN = 0.4 V
= Max, VIN = 5 V
= Max, VIN = 5 V

1.0

rnA

40
-1.6

JiA
rnA

8.0

11

rnA

54

68

rnA

Typ

Max

Unit

-1.0

= 5 V, TA = 25°C
JiA75453B

JiA75453A
Symbol Characteristic
tpLH

Propagation Delay
Time, LOW to HIGH

tPHL

Propagation Delay
Time, HIGH to LOW

tTLH

Transition Time,
LOW to HIGH

tTHL

Transition Time,
HIGH to LOW

VOH

HIGH Level Output
Voltage After
Switching

Test
Figure Condition

14

15

10
CL
RL

Vs
10

Min

= 200 rnA,
= 15 pF,
= 50 n

= 20 V,

= 300 rnA

Typ

Max

20

55

18

25

ns

20

40

16

25

ns

8

25

5

8

ns

12

25

7

12

ns

Vs - 6.5

Notes
1 All tYPical values are at Vee = 5 V. TA = 25°e
2 VOH = 30 V for IlA75453A and 8

3

Min

Vs - 6.5

Vs = 20 V for "A75452A and 8

6·107

---_.-

~

..

--

mV

•

,uA75450/60/70 Series
Characteristics Measurement Information

Fig.4

DC Test Circuit (Note)

Fig. 1

II. IIH
Vee

VIH, VOL
Vcc

VI-----r,

t

IOL

VIH

-=--..,

SUB

-"""f-.,-)c>--.....

I

OPEN

GND

Eaeh Input IS tested separately

1

Fig.5

lOS
Vee

Both Inputs are tested simultaneously

Fig. 2

VIL, VOH
Vce

SUB

i

GND

~IOS

IOH

VIL-----i

Eaeh gate IS tested separately

VOH

Fig. 6

11
-=

ICCH, ICCl

V I - -....- - i

SUB

Eaeh Input IS tested separately

Fig.3

OPEN
GND

Veo, IlL
4.5 V

Vee
Both gates are tested simultaneously
OPEN
Vee

~

A

CIRCUIT y
UNDER

VIH

VIL

B

TEST

~OL

t

Notes
1 Eaeh Input IS tested separately.
2

VOH

SEE
TEST
TABLE

VOL

1I

When testing V CD. Input not under test IS open

-=

Note
Arrows indicate actual direction of current flow Current Into a
terminal IS a posllive value

Note
Eaeh Input IS tested separately.
6-108

-=

/-LA75450/60/70 Series
Characteristics Measurement Information (Cont.)

Fig. 10

ICCH, ICCL for AND,
NAND Circuits

Test Table 2

Vee

Input
Under
Test

Other
Input

Apply

Measure

/LA754X1

VIH
VIL

VIH
Vee

VOH
IOL

IOH
VOL

/LA754X2

VIH
VIL

VIH
Vee

IOL
VOH

VOL
IOH

/LA754X3

VIH
VIL

GND

VOH
IOL

IOH
VOL

Circuit

Fig. 8

lceH ~

Output

VIL

OPEN

~leeL

1

I
I
I

V,--.--t---t

IL _ _ _

VCO, IlL
Vee
4.5

Both gates are tested simultaneously

v--~---.

Fig. 11
CIRCUIT Y
OPEN
UNDER
B,A TEST

ICCH, ICCL for OR, NOR Circuits
Vee
IceH+

~eCL

OPEN

r
V,----t--t

I

L ___

Notes
1 Each Input IS tested separately
2 When testing IlL IlA75400, the Input not under test
IS grounded For all other CirCUitS It IS at 4 5 V
3 When testing VCD, Input not under test IS open

Fig.9

Both gates are tested simultaneously

II,IIH
Vee

III hH

V,

-A,B

CIRCUIT y
UNDER
B,A TEST

OPEN

Each Input IS tested separately.

6-109

I

I
I
J

•

J,tA75450/60170 Series
Characteristics Measurement Information
Switching Characteristics
Fig. 12

Propagation Delay Times, Each Gate
(ILA55450, ILA75450 Only)

Test Circuit
INPUT

Vee

OUTPUT

5V

2.4 V

PULSE
GENERATOR~~__- {__~

(See Nole 1)

Voltage Waveforms

~~T. "" J r-_9 0'~_'1_0_n._:~
=1 __

IPLH

Jr
1/

-

OUTPUT _ _ _ _

Notes
1 The pulse generator has the fOllowing characteristics
PRR = 1 MHz, ZOUT = 50 II
2 CL Includes probe and Jig capacitance
3 All diodes are FD777

6-110

i-IPHL

~,,"v

___:::

~A75450/60/70

Series

Characteristics Measurement Information
Switching Characteristics (Cant.)
Fig. 13

Switching Times, Each Transistor
(,uA75450 Only)

Test Circuit
10 V

-1 V

INPUT

1 kll

RL

= 50

II

.----.----.--OUTPUT

O.lI'F
CL = 15 pF
(See Note 2)

62 II

Voltage Waveforms
------r.90~~~oW--r---------------3V

INPUT----~r-

:55 ns

j

1.5V

10%

~~----OV

_:55nsl_

~+-

~___________~
I /~10~%~-Notes

1 The pulse generator has the follOWing characteristics'
duty cycle :oS 1010, ZOUT "" 50!l
2 CL Includes probe and Jig capacitance

6·111

•

IlA75450/60170 Series
Characteristics Measurement Information
Switching Characteristics (Cont.)
Fig. 14 Switching Times of Complete Drivers
Test Circuit
INPUT

10V

2.4 V

.....-_-OUTPUT
PULSE
GENERATOR . -.....
(See Note 1)

CIRCUIT
UNDER
TEST
(See Note 2)

--+--1

GND

SUB

CL ~ 15 pF
(See Note 3)

0.4 V

Voltage Waveforms

-I
INPUT
"A75450
"A75451
"A75453

l

10%

:,..------3
V
90%

I
.I~~ -",.,

10%

~--------------~~-~.-------------OV

""
1I'!!9'!!'OO!!'k-----INPUT
"A75452

3V

90%

1.5V
~1~OO~~

______

OV

tPLH_1
VOH

OUTPUT

50%

-

I

10%
10%
''----------.;..".,j(-------VOL

tTLH_i I -

Noles

1 The pulse generator has the following charactenstlcs
PRR = 1 MHz, ZOUT "" 50!l
2 When testing I'A75450, connect output Y to transistor
base with a 500!! resistor to ground
3 CL Includes probe and Jig capaCitance

6·112

,uA75450/60/70 Series
Characteristics Measurement Information
SWitching Characteristics (Cont.)
Fig. 15

Latch-up Test of Complete Drivers

Test Circuit
Vs = 20 to 55 V
(See Table 2)

INPUT

5V

2.4 V

L---~~--~~OUTPUT

PULSE
GENERATOR
(See Note 1)

1-+----+---1

CIRCUIT
UNDER
TEST
(See Note 2)
GND

SUB

CL = 15 pF
(See Note 3)

0.4 V
Vs = 20 to 55 V
(see Table 2)

VOltage Waveforms

INPUT
"A75450
"A75451
"A75453

l

10%

~9~0~%----------3 V

I

~----------------------------~-~.---------------OV

~--------------40~S----------~.~!

~-----~90~,~~1_-_510ns

3V

1.B
~1_0_~_,___________

OUTPUT

\

Notes
The pulse generator has the following characteristics
PRR = 125kHz, ZOUT "" 50 n
2 When testing I'A 75450, connect output Y to transistor
base with a 500 II resistor from there to ground, and ground the
substrate terminal.
3 CL Includes probe and Jig capacitance

6·113

ov

•

JlA75491 • JlA75492
MOS to LED Segment
and Digit Drivers

FAIRCHILD
A Schlumberger Company

Interface Products

Description
The 75491 LED Quad Segment Digit Driver interfaces
MOS signals to common cathode LED displays. High
output current capability makes the devices ideal in
time multiplex systems using segment address or digit
scan method of driving LEDs to minimize the number of
drivers required.

Connection Diagrams
14-Pin DIP
ILA75491

The 75492 Hex LED/Lamp Driver converts MOS
signals to high output currents lor LED display digit
select or lamp select. The high output current
capability makes this device ideal in time multiplex
systems using segment address or digit scan
method of driving LEDs to minimize the number of
drivers required.
ILA75491
• 50 mA SOURCE OR SINK CAPABILITY
• LOW INPUT CURRENTS FOR
MOS COMPATIBILITY
• LOW STANDBY POWER
• FOUR HIGH GAIN DARLINGTON CIRCUITS

(Top View)

Order Information
Type
Package
ILA75491
Molded DIP

ILA75492
• 250 mA SINK CAPABILITY
• MOS COMPATIBLE INPUTS
• LOW STANDBY POWER
• SIX HIGH GAIN DARLINGTON CIRCUITS

Code
9A

Part No.
ILA75491PC

ILA75492
1Y
2Y

Truth Tables
GND

ILA75491
INPUTS
1A-4A

OUTPUTS
1E-4E

OUTPUTS
1C-4C

L

L

H

H

H

L

3A
3Y
4Y

(Top View)

ILA75492

H

INPUTS 1A-6A

OUTPUTS 1Y-6Y

L

H

H

L

Order Information
Type
Package
ILA75492
Molded DIP

= HIGH Level, L = LOW Level

6-114

Code
9A

Part No.
ILA75492PC

J.LA75491 e J.LA75492
Absolute Maximum Ratings
Supply Voltage
Input Voltage (Note 1)
Collector (Output) Voltage
(Note 2)
Collector (Output) to Input
Voltage
Emitter to Ground Voltage
(VIN ~ 5.0 V) 75491
Emitter to Input Voltage 75491
Continuous Collector Current
75491,
75492
Collector Output Current
(75492) all collectors
Continuous Total Power
Dissipation (Note 3)

10 V
-5.0 to VSS

Operating Temperature Range
Storage Temperature Range
Pin Temperature
Molded DIP (Soldering, 10 s)

10 V

O°C to 70°C
-55°C to +125°C

lOV
lOV
5.0 V
Noles
1 The Input IS the only device terminal which may be negative

50 mA
250 mA

with respect to ground
2 Voltage values are with respect to network ground terminal
unless otherWise noted
3 Above 60°C ambient temperature, derate linearly
at83mW/'C

600 rnA
800 mW

Equivalent Circuit (112 of IoIA75491)
COLLECTOR

INPUT

COLLECTOR

4kn

4kn

INPUT----.-~~--~_[

6kn

6kll

7kn

•

7kn

Vss----4~--------+_------~--~~._~

GND

EMITTER

EMITTER

Equivalent Circuit (1 13 of lolA 7 5492)
OUTPUT

INPUT

4.4kll
INPUT - - - -....--VVV--4.-i:

OUTPUT

4.4kll

7kll

7 kO

4301l

TO
NEXT
DRIVER

r-------4~.-~--_;--------.---~--~~

Vss----~------------~~----~

L -_ _ _..-_TO

NEXT
DRIVER

GND

6·115

TO NEXT
DRIVER

JLA75491 e JLA75492
~A75491

DC Characteristics

Vss

Symbol Characteristic

VCEL

ICH

= 10 V, TA = O°C to 70°C unless otherwise specified

Condition

LOW Level Collector
to Emitter Voltage

= 8.5 V through 1.0 kfl
= 50 mA, VE = 5.0 V
VE = 0,
VCH = 10 V
VIN = 0.7 V
VE = 0,
VCH = 10 V
liN = 40 ~A

VIN
IOL

Collector HIGH Current

II

Input Current at Maximum
VIN
Input Voltage

IER

Reverse Biased
Emitter Current

Iss

Supply Current

~A75491

AC Characteristics

Min

VIN = 8.5 V through 1.0 kfl
IOL = 50 mA, VE = 5.0 V,
TA = 25°C

IC

= 10 V

IOL

= 200 fl, VINH = 4.5 V
CL = 15 pF, VE = 0

Propagation Delay Time

tpLH

RL

= 6.5 V through 1.0 kfl
= 250 mA, TA = 25°C
VIN = 6.5 V through 1.0 kfl
IOL = 250 mA
VOH = 10 V
liN = 40 ~A
VOH = 10 V
VIN = 0.5 V

II

Input Current at Maximum
VIN
Input Voltage

ISS

Supply Current
Vss

= 10 V

V

0.9

1.5

V

100

~A

100

~A

3.3

mA

100

~A

1.0

mA

Typ

Max

Unit

20

ns

100

ns

Condition

tpHL

RL

Propagation Delay Time

IOL

Typ

Max

Unit

0.9

1.2

V

0.9

1.5

V

200

~A

200

~A

2.0

= 20 mA

3.3
1.0

mA

Min

= 39 fl, VIN = 7.5 V
CL = 15 pF

Typ

Max

Unit

30

ns

300

ns

Test Circuit
7.SV

PULSE
1k1l
GENERATOR 1----'\1"""'........
(SEE NOTE 1)

mA

= 7.5 V, TA = 25°C

Symbol Characteristic
tpLH

Min

VIN
IOL

Output HIGH Current

AC Characteristics

Min

Condition

Output LOW Voltage

~A75492

1.2

Vss = 10 V, TA = O°C to 70°C unless otherwise specified

Symbol Characteristic

IOH

0.9

Vss = 7.5 V, TA = 25°C

tpHL

VOL

Unit

= 0, VIN = 0, VE = 5.0 V

Condition

DC Characteristics

Max

2.0

= 20 mA

Symbol Characteristic

~A75492

Typ

>C:>--+-_-VOUT
Notes
1 The pulse generator has the following characteristics.

n.

ZOUT = 50
PRR = 100 kHz. tw = 1 ,",S
2 CL Includes probe and ilg capacitance.

6-116

p;A75491 • p;A75492
Waveform

VOL _ _ _ _ _ ' -_ _ _ _ _ _ _- J

Typical Application
to twelve digits of a 7-segment display plus decimal
point may be displayed using only three 75491 and
two 75492 drivers.

Interfacing Between MOS Calculator Circuit and
LED Multi-Digit Display
This example of time multiplexing the individual digits in
a visible display minimizes display circuitry. Up

,--.1:----,
I
.1. II
I
IVSS

I

Vss

~r_4r----------------------------------_,

I

I

RL

I

I
I

RL

Vss

""1

.1

:175491

I
I
I

I

QUAD SEGMENT
DRIVER
I (3 PACKAGES)

I
I
I

I
I
I
I
I

I
I
I

I
I
I

L!!4!! _____ _

....J
.". GND

,, ,,
"

"

-0

,-:-,

"

-0

,,
"

-0

"

II

-0

"

I_ 0I

""

-0

,,

'I

II

I- 0
I

-0

v.,!S_ _ _ _ _ _ _ _

"I

..L

I

,

D11
I

'75482

I

DIGIT
II HEX
DRIVER

I

,I

I (2 PACKAGES)

I
I

I

I

J..

L7~48.!. ~

_______ ..JI

____ _
.".GND

L--r---....I
.".GND

6·117

6

~A438

FAIRCHILD

Serial Input LCD Driver

A Schlumberger Company
Interface Products

Connection Diagram
4Q-Pin DIP

Description
The ILA438 is a CMOS/LSI circuit that drives an LCD
display, usually under microprocessor control. The
part acts as a "smart" peripheral that drives up to 32
LCD segments. It needs only three control lines due to
its serial input construction. It latches the data to be
displayed and relieves the microprocessor from the
task of generating the required waveforms. The ILA438
can drive any standard or custom parallel drive LCD
display whether it be field effect or dynamic
scattering, 7, 9, 13 or 16 segment characters,
decimals, leading + or -, or special symbols. Several
ILA438s can be cascaded. The ac frequency of the
LCD waveforms can be supplied by the user or can be
generated by attaching a capacitor to the LCD ~ input,
which controls the frequency of an internal oscillator.

+VDD
LOAD
SEG 32
SEG31
SEG 30
SEG29

7
SEG 28
$&.G27

The ILA438 can also be used as a column driver in a
multiplexed LCD display. In this application it acts
as a "dumb" peripheral since timing and refresh must
be 'supplied externally.

• DRIVES UP TO 32 LCD SEGMENTS OF
ARBITRARY CONFIGURATION
• CMOS CONSTRUCTION FOR
WIDE SUPPLY VOLTAGE RANGE
LOW-POWER OPERATION
HIGH-NOISE IMMUNITY
WIDE TEMPERATURE RANGE
• CMOS, NMOS, AND TTL COMPATIBLE INPUTS
• CASCADABLE
• CHOICE OF ON-CHIP OR
EXTERNAL OSCILLATOR
• REQUIRES ONLY 3-CONTROL LINES
Absolute Maximum Ratings
Supply Voltage, VOO
Input Voltage, (CLK, Data In,
Load Inputs)

SEG 19

SEG10
SEG11
SEG12

-0.3Vto 15V
SEG 14

+Voo -15 V to
+VOO + 0.3 V
Input Voltage (LCD ~ Input)
-0.3 V to +VOO
+0.3 V
Storage Temperature Range
-65°C to +125°C
Operating Temperature Range
-40°C to +70°C
Pin Temperature (Soldering, 60 s) 300°C

(Top View)

Order Information
Type
Package
ILA438
Ceramic DIP

6-118

Code
61

Part No.
1LA438JC

,uA438
Block Diagram
CLK-----.

32-BIT STATIC SHIFT REGISTER

DATAIN--....

LOAD--....

DATA OUT

32 LATCHES

32 SEGMENT DRIVERS

LCD

32 OUTPUTS


Electrical Characteristics

~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _~

~~~~~~ANE

Voo = +5 V unless otherwise specified

Symbol

Characteristics

Voo

Supply Voltage

Condition

1001
1002

Supply Current

VIH

Input HIGH Level

VIL
IL

Input LOW Level
Input Current

CI

Input Capacitance

RON

Segment Output Impedance

RON

Backplane Output
Impedance

RON

Data Out Output
Impedance

f

Clock Rate

50% Duty Cycle

dc

tos

Data Set-up Time

Data change to
Clock falling edge

150

LCDc/> Osc at
LCDc/> Driven

Min

Max

3

13

< 15 kHz

60
10
0.5 VOO

Clock
Data
Load

VOO-15

IL = 10 J.LA

Voo
0.2 Voo
5

Unit
V
J.LA
J.LA
V
V

5

J.LA
pF

40

kfl

3

kfl

3

kfl

1.5

MHz
ns

tOH

Data Hold Time

100

ns

tpw

Load Pulse Width

200

ns

tpd

Data Out Propagation Delay

VIH

LCDc/> Input HIGH Level

VIL
IL

LCDc/> Input LOW Level
LCDc/> Input Current

CL = 15 pF

500
0.1 VOO
5

Driven

6·119

ns
V

0.9 VOO

V
J.LA

•

JLA438
Applications
1. The shift register loads, shifts, and outputs on the
falling edge of Clock.
2. A logic 1 on Data In causes a segment to be visible.
3. A logic 1 on Load causes a parallel load of the data
in the shift register into the latches that control the
segment drivers.
4. If LCD  is driven it is in phase with the
Backplane Output.
5. To cascade units, (a) connect the Data Out of one
chip to Data In of next chip, and (b) either connect
Backplane of one chip to LCD  of all other chips
(thus one capacitor provides frequency control for
all chips) or connect LCD  of all chips to a
common driving signal. If the former is chosen,
don't tie all backplanes together Gust use one of
them) and drive LCD  with a Backplane output that
doesn't go to the actual backplane. (This reduces
the dc component of driving signals).
6. The supply voltage of the ,uA438 is equal to half the
peak-to-peak driving voltage of the LCD. If the
,uA438 supply voltage is less than the swing of the
controlling logic signals, the positive supply leads
of the logic circuitry and the ,uA438 should be tied
in common, not the ground (or negative) supply
leads. Be careful that input level specifications
are met.

7. The LCD  pin can be used in two modes, driven
or oscillating. If LCD  is driven, the circuit will
sense this condition and pass the LCD  input to
the backplane output. If the LCD  pin is allowed to
oscillate, its frequency is inversely proportional to
capacitance and the LCD driving waveforms have a
frequency 28 slower than the oscillator itself. The
approximate relationship is fout(Hz) = 2500/ c(pF).
8. Avoid changing Data In when clock is falling. Avoid
changing Load when clock is falling.
9. The number of a segment corresponds to how many
clock pulses have occurred since its data was
present at the input. For example, the data on
SEG 19 was the Data In 19 clock pulses earlier.

6-120

F=AIRCHILO
A Schlumberger Company

YOItage ReguJatcus .•......•

.Hybti

I '"

•

1.31

•

.

•

i"-,

1.300

9

1.29

~

o

~~

""

ill

~ 075

;!:
0."

;!:

50 - 25

0

25, 50

75

TA - AMBIENT TEMPERATURE -

0.2

1.6

.1-- I--

100 125

V
TS
r

= Tin (2 EourfLSB)
=10pFRL

LOAD RESISTANCE - kO

Full Scale Output Current
Drift as a Function of
Ambient Temperature

~

I--

,/

10

rnA

-

~

0.004

a:
o

0.002

"
!;

V- = -15V

,.,/

~

~ -000 2

::l
~

o

1.28s

1 rnA MSe CURRENT

_v+ = 5.0 V

~.

.

1.290

V

---

r-

/

-0.00 4

•

;!. -000

4.'
-1'

"C

0

2.0

./
,/

~ /'
!V

•

1.280

0.25

A/'
~V

U)

0.00

I 1.30

~

,,~

S

TA = 25"C

1.31 0

>

~ P'"

,«

0.6

>=

Input Logic Threshold
Voltage as a Function of
Supply Voltage

91.00

75

1.6

1.4

1.2

V

:E

k.•'T
MSB CURRENT -

V+ "" 5.0 V

"" ""

1.0

~~

'!l.

~

I--

10·81

2.0

v- = -15V

.......

1.2

-

12'81T

"~ 0.4

0

o
1.2

Input Logic Threshold
Voltage as a Function of
Ambient Temperature

~

l - I- t -

•
1.0

~

-

"z •
U)

0

!;1

=

>=

0

.

•

I

1 rnA MSB CURRENT
rV+ = S.OV
V - "" 15V
0.8 f--TA "" 25"C

= 5.0V
= 15V
TA 25"C

v-

~ 12

.

1.0

SUMMING JUNCTION LOAD

•

15

I

'"
>= 4

• v+

17

SUMMING JUNCTION LOAD

60

Settling Time as a
Function of Load Resistance
(0 to FSI Output ± 112 LSB)

...

'.0
-15

-1.

SUPPLYVQlTAGE - V

-0,008

-75 -50 -25
0
25
SO
75
TEMPERATURE - ·C

100 125

Typical DC Test Circuit
BIT INPUTS

R8

100k ±O.P/o;>

5,

ZERO
ADJUST

.•• e F

1

100

t----.¥v---s5 k

R'

10k

R4
8Dk

Notes
1. Required resistor ratio tolerances of R 1-R5 to test the various
grades are as follows:
9650-1C, R5 to R2 to R 1- ±0.005%, R3 to R 1- ±0.01%,
R4 to R 1- ±0.02%.
9650-2C, R5 to R2 to R 1- ± 0.025%, R3 to R 1- ± 0.05%,
R4 to R 1- ± O. 1%.

R3
40k

R2
20k

R1
10k

5k

9650-3C, R5 to R2 to R 1- ±0.1%, R3 to R 1-±0.2%,
R4 to R 1-±0.4%.
2. S1 closed and S2 open for output current (all Bits off)
tests only.

7-6

,uA9650
Typical Applications
Voltage to Frequency Converter
+5V

J1::::::fl
CP

15k

FREQUENCY
OUT
50 kHz MAX

FD333
DC

20k

IN
OTO +10V

12

10 k

10 k

1

Ax

'O "F

v-

a-Bit d / a Converter

EOUT

15k

10 V
VREF

7-7

2k

•

~A9650
Typical Applications (Cont.)
8-Blt aid Converter
SERIAL DATA
CLOCKOUTPUT

J. I I I I

-

-

0, A, 03

CLOCK

Y

~

~.

1/4:,'"

CEP 9318 UP
l 4 J 0CET BINARY TC
CP
CP COUNTER
8
-< K A a 0 - -

MR

1/.1002

~.

PE Po P1 P2 P3

II

f"]

a

;-- J

....

.... r.-

l

co NVERSION
co MPLETE
SE RIAL DATA
OUTPUT

CP

~KBOp--.... 8

8

...

1/4:00~

,,.

II.::;;'

E

D

Ao

AI

u

A,

833.
8-BIT ADDRESSABLE LATCH
C01,3'

5

8

h

7

---.:t

L....-

LSB

PARALLEL
DATA
OUTPUT
10V
FULL SCALE ADJ

VREF

11

MSB
,MA728
31'

5k

L....---

-

8k
+5V
"'- 6 4

~~8

'Q I"
-

"'- 18 •

1

3C

10

3

,

J.LA9650
3C

""::-7

1
10

-12

5

14 13 11 5
10k 20k 40k 80k

15

k f 8 1510k" 20k1340k11BOk

30pF

-=-

I'A9850

L,

lOol

~

. r==

~8

-:F'7

8

,

3

~~
1 'A:34:

-15V

10k
-15V

QUAD2°~D

FD777:2

s::

J

::s ~FD777
5k
ANALOG
INPUT

Note
Digital GND indicated by
Analog GND indicated by

lOOk

...L..

7-8

15k

100n

'k

-=1k

220k

-15V

f.LA9706 a-Channel,
12-Bit D / A Converters

I=AIRCHILO
A Schlumberger Company

Data Aquisition Products

Connection Diagram
14-Pin DIP

Description
The jJ.A9706 is a d / a converter which allows a
microprocessor system to interface and control
analog systems. The jJ.A9706 is programmed by 9-bit
words, accepted in a serial format, providing
conversions on all channels simultaneously and
continuously as long as the oscillator signal is
present. Digital-to-analog conversion is accomplished
using a pulse-width ratio technique for directly
contrOlling the duty cycle of the output pulse streams.
Each channel, when appropriately filtered, supplies
6-bit resolution, or 64 discrete analog levels.
By properly summing two outputs, the resolution
may be controlled up to 12 bits, or 4096 discrete
levels. Each channel output maintains 12-bit, or
± .01% full-scale, accuracy.
•
•
•
•
•
•
•
•
•

14

W/R

DATA CLOCK

05

VDD (+V)

00

(Top View)

Order Information
Type
Package
jJ.A9706
Molded DIP
jJ.A9706
Ceramic DIP

Absolute Maximum Ratings
Digital Input Range
Output Sink or
Source Current
Operating Temperature
Storage Temperature
Pin Temperature (Soldering)
Ceramic DIP (60 s)
Molded DIP (10 s)

06

DATA INPUT

MICROPROCESSOR COMPATIBLE
CMOS TECHNOLOGY
LOW COST
INDEPENDENT CHANNEL OPERATION
LINEARITY ±O.01%
EXPANDABLE TO 12-BIT RESOLUTION
INTERNAL MEMORY
SINGLE SUPPLY +5 V
EXCELLENT STABILITY NO ADJUSTMENTS

Voo Relative to VSS

OSC INPUT

(-V) Vss

-0.3 V to 5.5 V
-0.3 V to Voo +0.3 V
25 mA
O°C to 85°C
-65°C to +150°C

7·9

Code
9A
7A

Part No.
jJ.A9706PC
jJ.A9706DC

•

JLA97 06
Functional Diagram
OSC
INPUT

DISABLE

a:

....
'"

'"

(;

'"....a:

II.

i
'"
....

'"a:

...::>'"
II.

iii
d>

III
oil

6 x 8 RAM

z

OUTPUTS

a::

J:

(J

'"
'"CCJ
'"

0

oJ

(J

DATA

DATA
INPUT

8

Cl

..:

>I:

DATA
CLOCK

DATA
OUT

wiR"

Functional Description
The /lA9706 consists of seven functional blocks: a
6-bit binary counter, a pulse distributor called a
priority encoder, 6 x 8 RAM, 1-of-8 channel address
decoder, 6-to-1 channel-data multiplexer, 9-bit input
shift register, and a set of eight output buffers.

open-collector TTL or CMOS logic that produces a
square-wave signal with a frequency in the range of
50 kHz to 2 MHz. The time intervals (binary-weighted
pulse widths) generated by the counter are decoded
by the priority encoder which serves two functions.
First, it ensures that each of the six time intervals
(control pulses) is used once during the conversion
cycle. Second, it distributes the control pulses to both
the channel-data multiplexer and to the columnaddress inputs of the 6 x 8 RAM.

The pulse-width-ratio conversion scheme divides the
conversion cycle into binary-weighted time intervals
and associates each time interval with a bit position in
the 6-bit control word. The control word residing in
RAM is then addressed, bit by bit, each bit addressed
for the associated time interval. The value of each bit,
"1" or "0," controls the output, HIGH or LOW, during
this time interval (see Figure 1). In this manner, an
output pulse stream is generated with a duty cycle
defined by the control word. When the pulse stream is
filtered, a dc value is extracted that is proportional to
the duty cycle of the pulse stream and, hence,
proportional to the control word.

The channel-data multiplexer is enabled during the
write mode so that the 6-bit control word may be
written. The 6 x 8 RAM provides the storage capability
required for the converter to operate independently of
the microprocessor, once the control information has
been transferred. Since the control information is
stored in RAM, simultaneous conversions continue on
all eight channels, unaided by the microprocessor
unless changes are required. This is accomplished by
addressing a single bit in each of the control words
and reading the results out in parallel during each time

The 6-bit counter generates the fundamental time
intervals for the system and may be driven by any
7·10

1LA9706
interval in the conversion cycle. The total cycle time,
which is the sum of the six binary-weighted time
intervals plus a unit interval (64 clock periods),
requires 128 oscillator periods, since the basic
oscillator frequency is divided by a factor of two
before driving the counter. Conversions may be
completed in as little as 64 J.LS when operating at a
2 MHz clock rate. The control words read from the
RAM are directed to the output buffers, six of which
have 1 kO and two have 50 0 output impedances. In
general, these buffers should drive load impedances
larger than the output impedance to reduce the errors
caused by the finite output impedance.

control word (channel data) and the 3-bit channel
address are serially transferred to the 9-bit shift
register on the HIGH-to-LOW transitions of the data
clock (Figure 2). The data clock has a maximum
frequency of 125 kHz with a minimum HIGH and LOW
time of 4 J.Ls. Once the nine bits of data have been
transferred into the shift register, the data clock must
remain static until the write operation is completed to
prevent the data from being shifted out of the register.
The write mode may be selected after a minimum
setup time of 1 J.LS and is enabled by a HIGH-going
W IR control pulse. This sets an internal latch that
enables the channel-address decoder, which decodes
the 3-bit binary channel address, therefore effecting
the transfer of the 6-bit control word from the input
register to RAM via the channel-data multiplexer at
the beginning of the next conversion cycle. The W IR
pulse has two restrictions: first, it must be equal to
or greater than 4 J.Ls in duration; second, it must be
less than 128/fosc . This latter restriction is necessary
to eliminate the possibility of multiple loads occurring
from a single W IR pulse that could lead to incorrect
control-word transfers under certain conditions.

Each output is capable of providing 64 discrete output
levels representing 6-bit resolution. Since each output
pulse stream is accurate to 12 bits, it is possible to
sum two outputs and expand the resolution to 12 bits,
providing 4096 discrete output levels. This may be
easily accomplished by weighing one of the outputs by
a factor of 1/64 before summing.
Loading data is a simple procedure that does not
affect the conversion cycle. For the J.LA9706, the 6-bit
Fig. 1

Output Cycle Example

LSB

MSB

o

o

o

(DECIMAL 21) = RAM CONTENT
ONE OUTPUT CYCLE

i

~r------------------------------------~~,------------------------------------~,
II

::.Izl. . .

_4_......

8 OSC CYCLES

16 OSC CYCLES

II

32 OSC CYCLES

I

64 OSC CYCLES

...
- ------...I~

~14--------------------------------------128CYCLES------------------------------~.I

TIME

Fig. 2

OUTPUT
VOLTS

1

J.LA9706 Input Timing and Format

FIRST BIT
IN

LAST BIT
CHANNEL ADDRESS IN

CHANNEL DATA

DATA INPUT

DATA
CLOCK

Fl.,:/R

----------------------------------------------------------------------------~
TIME_

7·11

I
I

•

1LA97 06
/LA9706
Electrical Characteristics

Voo = +5 V, Vss = 0 V, TA = O°C to +70°C, lose = 100 kHz

Symbol

Characteristic

Typ

Max

Unit

Ro

Output Resistance (Channels 4 & 5)

30

50

Ro

Output Resistance (Channels 0, 1, 2, 3, 6, 7)

300

1000

n
n

Min

lose

Oscillator Frequency

50

tH

Data Clock HIGH Time

4

tL

Data Clock LOW Time

4

tW/R

W / R Pulse Width

4

Error

2000

kHz
/LS
/LS

128/fose

/LS

Linearity

0.01

%

VIH

Voltage Input HIGH

2.7

V

VIL

Voltage Input LOW

100

Power Supply Current

200

/LA

liN

Input Current

50

/LA

CIN

Input Capacitance

tr

Input Rise Time

1.0

/LS

0.8

V
40
8

pF

t,

Input Fall Time

1.0

/LS

ts

Input Set-up Time

1.0

/LS

Typical Applications
+5 V

+Voo

~

5 V

00
t---~W/R

0,

DATA
1/0 PORT

"P

{

CLOCK
DATA
INPUT

02

03

TYPICAL OF EIGHT CHANNELS

"A9706

50 k

50 k

o4t--------~~-,-~~,-----~~P~~A~~~LOAD

C2LO
MCHKZ t---~ OSC 05
INPUT

06
07
Vss

7-12

J.LA9706
Typical Applications (Cont.)
Fa Object Code Subroutine
Enter with Ro = data to be output to 9706
Rl
address to be output to 9706
entry
H'100'

=

=

Ml00 - 130
M0100 = 20
M0108 = BO
MOllO = 24
MOl18 = 50
M0120 = 43
M0128 = 94
M0130 = lC

F8 Object Code

Exit

= return.

20
20
OC
42
52
E3

52
OF
BO
12
70
20

20
BO
24
52
51
OB

04
40
02
94
53
BO

53
22
BO
EF
40
20

20
FE
40
41
18
OF

07
18
12
50
18
BO

Port
Port
Port
Port

0
0
0
0

bit
bit
bit
bit

0
1
2
3

= Data Input
= Data Clock
= W /R'
= Scope Trigger

destroyed Ro. R 1. R2. R3. Acc

Varactor Tuned 12-Bit Receiver System
VDD

"0

,o"'{

~

5 V

W/R

.........

DATA
CLOCK
DATA
INPUT

TO
OTHER
CONTROLS

~A9706

~p

CLOCK

OSC
INPUT V

t--.JV'.t'It-_- AUDIO LEVEL

CONTROL

I

7-13

TO
VARACTOR

~A9708
8-Bit ~p

6-Channel
Compatible AID
Converter

FAIRCHILD
A Schlumberger Company

Data Aquisition Products

Description
The ~A9708 is a single slope 8-bit, 6-channel ADC
subsystem that provides all of the necessary analog
functions for a microprocessor-based data control
system. The device uses a microprocessor system
like the F3870 or F6800 to provide the necessary
addressing, timing and counting functions and includes
a 1-of-8 decoder, 8-channel analog multiplexer,
sample and hold, ramp integrator, precision ramp
reference, and a comparator on a single
monolithic chip.
•
•
•
•
•
•
•
•
•

Connection Diagram
16·Pln DIP

MPU COMPATIBLE
EXCELLENT LINEARITY OVER FULL
TEMPERATURE RANGE ±O.20/0 MAXIMUM
TYPICAL 300 ~s CONVERSION TIME
PER CHANNEL
WIDE DYNAMIC RANGE INCLUDES GROUND
AUTO·ZERO AND FULL·SCALE
CORRECTION CAPABILITY
RATIOMETRIC CONVERSION-NO PRECISION
REFERENCE REQUIRED
SINGLE·SUPPLY OPERATION
TTL COMPATIBLE
DOES NOT REQUIRE ACCESS TO DATA BUS OR
ADDRESS BUS

(Top View)

Order Information
Type
Package
~A9708
Ceramic DIP
~A9708
Ceramic DIP
~A9708
Molded DIP

Code
7B
7B
9B

Block Diagram
RAMP START

(FROM MPU)

r---------------------- ------------------1
3

I
I

h

II

1
15 1

SAMPLE

7 RAMP STOP
(TO MPU)

I IREF
+

AND RAMP
AMPLIFIER

COMPARATOR

ANALOG

INPUTS
CONSTANT
CURRENT
SOURCE

-=-

VeE

1-0F-8
AODRESS DECODER

I

I

c______
• Patent Pending

--r·-----------· -. _

I

~~. ----~ ~-;-.;;.;.;;;.:;;;;."'

Vee

VREF +Vcc

7·14

-

Part No.
~A9708DM
~A9708DC

~A9708PC

JLA9708
Absolute Maximum Ratings
Supply Voltage (VeC>
Comparator Output (Ramp Stop)
Analog Input Range
Digital Input Range
Output Sink Current
Operating Temperature Range
#A9708PC,#A9708DC
#A9708DM
Storage Temperature Range
Continuoua Total Dissipation
Ceramic DIP Package
Molded DIP Package
Pin Temperature,
Ceramic DIP (Soldering, SO s)
Molded DIP (Soldering, 10 s)

For applications that require auto-zero or autocalibration, (See Figures 2-5) line select address
0, 0, 0 and 1, 1, 1 may be used in conjunction with the
arithmetic capability of the microprocessor to provide
ground and scaling factors. Address 0, 0, 0 internally
connects the input of the ramp generator to ground
and may be used for zero offset correction in
subsequent conversions. Address 1, 1, 1 internally
connects the input of the ramp generator to the
voltage reference, VREF, and may be used for scale
factor correction in subsequent conversions. For the
following, refer to the Functional Block Diagram.

18 V
-0.3 V to +18 V
-0.3 V to 30 V
-0.3 V to 30 V
10 mA
O°C to 70°C
-55°C to 125°C
-S5°C to +150°C
900mW
1000 mW

Recommended Operating Conditions
Characteristic
Min Typ
Supply Voltage (VeC>
4.75 5.0
Reference Voltage (VREF)" 2.8
Ramp Capacitor (CH)
300
Reference Current (IR)
12
Analog Input Range
0
Ramp Stop
Output Current

Six separate external analog voltage inputs may come
into terminals 11-16 and the specific analog input to be
converted is selected via address terminals Ao-A2.
The analog input voltage level is transferred to the
external ramp capacitor connected to pin 4 when the
input to the ramp start terminal (pin 3) is at a logic 0
(See Figure 1). The time to charge the capacitor is the
acquisition time which is a function of the output
impedance of an amplifier internal to the a/ d converter
and the value of the capaCitor. After charging the
external capacitor the ramp start terminal is switched
to a logic 1 which introduces a high impedance
between the analog input voltage and the
external capacitor.

Max Unit
15
V
5.25 V
pF
50
#A
VREF V
1.S

mA

Note
'2 V :$ VREF:$ (Vee -2 V)

The capacitor begins to discharge at a controlled
rate. The controlled rate of discharge (ramp) is
established by the external reference voltage, the
external reference resistor, the value of the external
capacitor and the internal leakage of the a/ d
converter. Connected to the capaCitor terminal is a
comparator internal to the a/ d converter with its
output going to the ramp stop terminal (pin 7). The
comparator output is a logic one when the capacitor is
charged and switches to a logic 0 when the capacitor
is in a discharged state. The ramp time is from the
time when ramp start goes HIGH (logic "1") to when
ramp stop goes LOW (logic "0"). The microprocessor
must be programmed to determine this conversion
time. The ideal (no undesirable internal source
impedances, leakage paths, errors on levels where
comparator switches or delay time) conversion time is
calculated as follows:

Channel Selection
Input Address Line
A2

A1

Ao

Selected
Analog Input

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

Ground
11
12
13
14
15
16
VREF

Functional Description
This Analog to Digital Converter is a single-slope 8-bit,
S-channel a/ d converter that provides all of the
necessary analog functions for a microprocessorbased data/control system. The device uses the
processor system to provide the necessary
addressing, timing and counting functions and includes
a 1-of-8 decoder, 8-channel analog multiplexer,
sample and hold, precision current reference, ramp
integrator and comparator on a single monolithic chip.

CH

Ramp Time
Where

VI

= VI IR

= Analog Input Voltage being measured

CH = External Ramp Capacitor
Vee - VREF
RREF
Where

= Power Supply Voltage
VREF = Reference Voltage

Vee

RREF

= Reference Resistor

In actual use the errors due to a nonideal aId
converter can be minimized by using a microprocessor
to make the calculations. (See Figures 1 through 4 )

7·15

JLA9708
Auto-Zero and Full-Scale Features

Fig. 3

Fig. 1 Ideal Transfer Function

Transfer Functions with
Zero-Correction Added

COUNT

COUNT

2561--------"71
N"Fs 1----------....",.......--

N'I-------:;:oo......-

12.1--------,.('

.--

INPUT

VREF

VI"
VREF

INPUT

VREF

n' = n - nz
n' Has Full·Scale Error

No Zero Offset
No Full·Scale Error

Fig. 4

VIN

Count (n) = -V-- x 256
REF

Transfer Function with both Zero and
Full-Scale Correction Added

COUNT

Fig. 2

Transfer Function with Zero and
Full-Scale Error
N"FS

1-----------:".....

COUNT

NI------",r"
NFSI-_ _ _ _ _ _ _ _

~~~

N I------:".,..~
VI"

Nz

256
nil = (n - nz)
VIN

VREF

INPUT

nF.S. -:/= 256
nZ -:/= 0
(n) Has Both Full·Scale and Zero Errors

7-16

x (nF.S. - nz)

VREF

INPUT

~A9708
Electrical Characteristic

Over recommended operating conditions, -55°C:S TA:S +125°C, for /LA970BDM and
O°C :S TA:S +70°C for /LA970BDC or /LA970BPC; unless otherwise specified.

Symbol Characteristic

Min

Condition

Typ

Max Unit
±0.3 %

EA

Conversion Accuracy

Over entire temperature range
(Note 1)

ER

Linearity

Applies to anyone channel
(Note 2)

±O.OB ±0.2 %

VOSM

Multiplexer Input Offset Voltage

Channel ON

2.0

4.0

mV

te

Conversion Time Per Channel

Analog Input = 0 V to VREF
CH = 300 pF, IREF = 50/LA

296

350

/LS

tA

Acquisition Time

CH

20

40

/LS

IA

Acquisition Current

to

Ramp Start Delay Time

= 1000 pF

±0.2

150

tM

Multiplexer Address Time

VIH

Digital Input HIGH Voltage

Ao, Al, A2, ramp start

VIL

Digital Input LOW Voltage

Ao, Al, A2, ramp start

IS

Analog Input Current

Channel ON or OFF

IlL

Input LOW Current

Ao, Al, A2, ramp start
Ao,

100

/LA
ns

1.0

/LS

2.0

V

O.B

= 0.4 V
A 1, A2, ramp start = 5.5 V

-3.0

-1.0

-15

-5

V
/LA
/LA

IIH

Input HIGH Current

1.0

lOS

Input Offset Current

/LA

3.0

10H

Comparator Logic "1" Output
Leakage Current

/LA

VOH

= 15 V

10

/LA

VOL

Comparator Logic "0"
Output Voltage

10L

= 1.6 mA

0.4

V

PSRR

Power Supply Rejection Ratio

(Note 3)

40

dB

Cross Talk Between Any
Two Channels

(Note 4)

60

dB

lee

Power Supply Current

Vee

CIN

Input Capacitance

3.0

pF

COUT

Comparator Output Capacitance

5.0

pF

1.0

= 5 V to

Notes
1. ConversIon accuracy is defined as the deviations from a
straight lone drawn between the points defined by channel
address 000 (0 scale) and channel address 111 (full scale) for
all channels.
2. Linearoty IS defined as the deVIation from a straight line drawn
between the a and full scale points for each channel.

15 V, 10

=0

7.5

15

mA

3 Power supply reiec.tion ratio is defined as the conversIon
error controbuted by power supply voltage variations while
resolving mId scale on any channel.
LlVCH
4 Cross Talk between channels = 20 log ~

7-17

•

~A9708
Fig. 3

Test Circuits
Fig. 1

linearity/Acquisition Time/Conversion
Time Test Circuit

Equivalent Timing Waveform for Test
Circuits and Applications

475 V

I-IA-1

"~m::

Ao

h

Vee

IJ

12

14

Is

16

Ii----iff-f- - - - - -

+2V - - - ,

~r-'

V,"+07V~
I
I

CAPACITOR
VOLTAGE

OV

vcc~
0.4 V

+4.75 V +4.75 V

f~

I

Fig. 4

~IR-I~-

RAMP STOP

I.

-

-

---+----~
I
I '--------------

0.7V---

Static Measurements

1 - - - - , c - - -...·-11
Ao

Fig. 2

11

Vee

12

b

14

15

Is

pA9708

Slow Speed Evaluation Circuit for
Ratlometrlc Operation
ANALOG INPUTS

~

__

~A~

_ _ _ _ _ __

ALL COMPONENTS

'------y------J +5 V

±10%

+5 V +15 V

VIL, VIH. IIL,IIH

Ao

11

Vee

12

b

14

15

16

+5 V

}.IA970B

Al

RAMP
RAMP
A2 STARTCH GND RREFSTOPVREF

Typical Applications

2>

Application Suggestions and Formulas
1. The capacitor node impedance is approximately
30 J,LQ and should have no parallel resistance for
proper operation.
2. tR when VIN = 0 V will be finite (Le., the
comparator will always toggle for VIN 2:: 0 V).
3. The ramp stop output is open collector, and an
external pull-up resistor is required.
4. All digital inputs and outputs are TTL compatible.
5. For proper operation, timing commences on the
o to 1 transition of ramp start and terminates on
the 1 to 0 transition of ramp stop.
CH
6. tA 2: 150 J,LA _ IR x VREF

33>

CONTROL 1/0 FROM MPU
(TIMING COMPATIBLE WITH FIGURE 1)

Input Timing:
tA> 400
VREF
IR

=

=

J,LS

kQ
)
( 2 kQ3.3
+ 3.3 kQ 5 V

5-3.1
100 kQ

tR Imax

= 3.1

= 19 J,LA

7. tR (ramp time)

= full scale ramp time

8. IR =

0.01 x 10- 6
19 x 10 6 x 3.1 = 1.6 ms

CH

= -IR

x VIN tR I
'max

CH

= -IR

x VREF

Vee - VREF
RREF

9. 2 V ::5 VREF ::5 (Vee - 2 V)
10. Address lines Ao, A1, A2 must be stable
throughout the sampling interval, tAo
11. Pin 6 (RREF) should be bypassed to ground via a
0.02 J,LF capacitor

Note
For evaluation purposes, the ramp start timing generation can be
Implemented with a IlA555 timer (astable operation) or MPU
evaluation kit, and a time Interval meter for ramp time
measurement. The TIM meter will measure the time between
the 0 to 1 transition of the ramp start and the 1 to 0 transition of
the ramp stop. The ramp stop is open collector, and must have an
external pull· up resistor to Vee.
7·18

p;A9708
Typical Applications (Cont.)
Microprocessor Considerations
Several alternatives exist from a hardware/software
standpoint in microprocessor based systems using
the I'A9708.

a. The subtractions are single
op code instructions.
b. The full scale correction uses a multiply by 256
and can be accomplished by a shift left 8 bits
(usually one instruction) or placing (n - nz) in
the MSB register and setting the LSB register to
zero, for the double precision divide.
c. The divisor (nF.S. - nz) of the MSB register will
always be zero.

1. The ramp time measurement may be implemented
in software using a register increment, followed by
a branch back depending on the status of the
ramp stop.
2. Alternately, the ramp stop may be tied into the
interrupt structure in systems containing a
programmable binary timer. This scheme has the
following advantages:

These schemes have the following advantages:
a. No access to the data bus or address bus is
required, by the aId system.
b. 4110 bits completely support the aId system.
c. Since auto full scale/auto zero are implemented
in software and long term drift (aging) effects
are eliminated.
d. Software overhead is minimal (typically
30 bytes).
e. Where ratiometric operation is permissible, the
4 external components may be ± 5% tolerance,
including the power supply.

a. The CPU is not committed during the ramp
time interval.
b. It requires only 4 bits of an I/O port for
control signals.
3. The auto-zero / auto-full-scale (see Figures 2-5)
should use double precision, rounded (as opposed
to truncated) arithmatics. Several points are
worth noting:
Fig. 1

Ratlometrlc Strain Gage Sensor/Controller

Vcc+

Fa
SYSTEM

RAMP
START

'2

COMP
A3

Ia

.,

p.A970B

'5

A,

..,

3851
I/O POAT

A,
CAP

"

1-1>--'1iV'r-- Vcc+

VREF

A2
-::'

OUTPUT

Note
~VI

= (Applied Force) and can be Linearized (if necessary) in Fa Software.

7-19

JLA9708
Typical Applications (Cont.)
Fig. 2

Opaque Solution Controller
SENSOR

Vee"

Vcc+

.-J

.3

vr+

F8
SYSTEM

N

h

RAMP
START

_'2

COMP

PHOTO
RESISTOR

-(

D·,

-"

-"

.,

vcc+

-::-

A3
~A9708

1-'5

A,

,-'6

CAP
IREF

VREF

GND

.2

J-

3851
I/O PORT

A2

'R-

F

Vcc+

CONTROL

CIRCUITS

Applications
Ramp Current
Beverage Brewers / Dispensers
Chemical Solution Control
Automatic Liquid Mixing Control

VI

i~
= IR = Vee

(

R1

R1

+ R2

) (_1_)
Ra

= (RX ~ RS) Vee+

Ramp Time

7·20

= VI

(~:) = (RX ~ RS) (1 + :~) (CHRa)

f.,tA198/298/398

FAIRCHILO

Monolithic Sample and
Hold Amplifiers

A Schlumberger Company

Data Acquisition Products

General Description
The /-IA 198! 298! 398 are Monolithic Sample and
Hold Amplifiers which utilize BI-FET technology to
obtain ultra-high dc accuracy with fast acquisition of
signal and low droop rate. Operating as a unity gain
follower, dc gain accuracy is 0.002% typical and
acquisition time is typically 4 /-IS to 0.1 %. A bipolar
input stage is used to achieve low offset voltage and
wide bandwidth. Input offset adjust is accomplished
with a single pin and does not degrade input offset
drift. The wide bandwidth allows the /-IA 198 to be
included inside the feedback loop of 1 MHz op amps
without having stability problems. Input impedance of
10 10 Q allows high source impedances to be used
without degrading accuracy.

Connection Diagram
8-Pin Metal Package
LOGIC

OFFSET
ADJUST

v(Top View)

P-channel junction FETs are combined with bipolar
devices in the output amplifier to give droop rates as
low as 5 mV ! min with a 1 /-IF hold capacitor. The
JFETs have much lower noise than MOS devices used
in previous designs and do not exhibit high
temperature instabilities. The overall design
guarantees excellent feedthrough rejection from input
to output in the hold mode even for input signals equal
to the supply voltages.

Order Information
Type
Package
/-IA 198
Metal
/-I A 298
Metal
/-I A 398
Metal

Code
5W
5W
5W

Part No.
/-I A 198HM
/-IA298HC
/-IA398HC

Connection Diagram
8-Pin DIP
8

•
•
•

OPERATES FROM ±5 V TO ± 18 V SUPPLIES
ACQUISITION TIME TO .1% TYPICALLY 4 /-IS
TTL, PMOS, CMOS COMPATIBLE LOGIC INPUT
1.4 V DIFFERENTIAL THRESHOLD
• 0.5 mV TYPICAL HOLD STEP AT CH = 0.01 /-IF
• LOW INPUT OFFSET
• 0.002% GAIN ACCURACY
• LOW OUTPUT NOISE IN HOLD MODE
• HIGH SUPPLY REJECTION RATIO IN SAMPLE
OR HOLD
• WIDE BANDWIDTH

v+

LOGIC

OFFSET
ADJUST

LOGIC
REFERENCE

INPUT

v-

OUTPUT

(Top View)

Functional Diagram

Order Information
Type
Package
/-IA 198
Molded
/-IA298
Molded
/-IA398
Molded

OFFSET

2

~OUTPUT

LOGIC±=[>LOGIC 7
- - - -

300

REFERENCE
HOLD
CAPACITOR

7-21

Code
6T
6T
6T

Part No.
/-IA198RM
/-IA298RC
/-IA398RC

JLA 198 • JLA298 • JLA398
Absolute Maximum Ratings
Supply Voltage
Power Dissipation (Package
Limitation) (Note 1)
Operating Ambient Temperature
Range
j.tA198
j.tA298
j.tA398

Storage Temperature Range
Input Voltage

± 18 V
500 mW

-65°C to +150°C
Equal to Supply
Voltage

Logic-to-Logic Reference
Differential Voltage (Note 2)
Output Short Circuit Duration
Hold Capacitor Short Circuit
Duration
Pin Temperature (Soldering, 10 s)

-55°C to +125°C
-25°C to +85°C
O°C to +70°C

+7 V, -30 V
Indefinite
10 s
300°C

j.tA 198/j.tA 298/j.tA398
Electrical Characteristics
j.tA198/j.tA298

j.tA398

Min

Min

Typ

Max

Typ

Max

Unit

TJ = 25°C
Full Temperature Range

1

3
5

2

7
10

mV
mV

TJ = 25°C
Full Temperature Range

5

25
75

10

50
100

nA
nA

Input Impedance

TJ = 25°C

10 10

10 10

Q

Gain Error

TJ=25°C,RL=10k
Full Temperature Range

0.005
0.002
0.02

0.01
0.004
0.02

%
%

Feedthrough Attenuation
Ratio at 1 kHz

TJ = 25°C, CH = 0.01 j.tF
V7 = V8 = 0 V

90

dB

Output Impedance

TJ = 25°C, "HOLD" mode
Full Temperature Range

Characteristic

Conditions (Note 3)

Input Offset Voltage
(Note 6)
Input Bias Current
(Note 6)

86

TJ = 25°C, CH = 0.01 j.tF,
VOUT = 0
TJ ~ 25°C

"HOLD" Step (Note 4)
Supply Current (Note 6)

96

80

0.5

2
4

0.5

4
6

Q
Q

0.5

2.0

1.0

2.5

mV

4.5

5.5

4.5

6.5

mA

Logic and Logic Reference
Input Current

TJ = 25°C

2

10

2

10

j.tA

Leakage Current into Hold
Capacitor (Note 6)

TJ = 25°C (Note 5)
Hold Mode

30

100

30

200

pA

~VOUT

4

4

j.ts

CH = 0.01 j.tF

20

20

j.ts

Hold Capacitor Charging
Current

VIN - VOUT = 2 V

5

5

mA

Supply Voltage Rejection
Ratio

VOUT = 0

80

110

80

110

dB

Differential Logic Threshold

TJ = 25°C

0.8

1.4

0.8

1.4

Acquisition Time to 0.1 %

= 10 V, CH = 1000 pF

2.4

2.4

V

Notes
4 Hold step is sensitive to stray capacitive coupling between
mput logic signals and the hold capacitor. 1 pF, for instance,
Will create an additional 0 5 mV step with a 5 V logiC swing and
a 0.01 "F hold capacitor. Magnitude of the hold step IS
inversely proportional to capacitor value
5. Leakage current IS measured at a junction temperature of
25°C. The effects of junction temperature rise due to power
diSSipation or elevated ambient can be calculated by doubling
the 25°C value for each 11°C mcrease in chip temperature.
Leakage is guaranteed over full input Signal range.
6. These parameters guaranteed over a supply voltage range of
±5to ±18V.

1. The maximum junction temperature of the "A198IS 150°C, for
the "A298 IS 115°C, and for the "A398 IS 100·C. When
operating at elevated ambient temperature. the TO-5 package
must be derated based on a thermal resistance (0ja) of
150° C/W and the R package at (0ja) of 130· C/W.
2. Although the differential voltage may not exceed the limits
given, the common-mode voltage on the logiC pms may be
equal to the supply voltages Without causing damage to the
circuit. For proper logic operation, however, one of the logiC
pins must always be at least 2 V below the positive supply and
3 V above the negative supply.
3 Unless otherWise specified, the following conditions apply. Unit
is in "sample" mode, Vs = ± 15 V, TJ = 25°C, -11.5 V:'S VIN
:'S + 11.5 V, CH = 0.01 "F, and RL = 10 kfl. LogiC reference
voltage
0 V and logiC voltage
2.5 V.

=

=

7-22

~A198 • ~A298 • ~A398
Typical Performance Curves

250
22

L\jOUT::; 1 mY

175

NEGATIVE

!I!
~

INPUT

125

STEP

100
75
50
25

o

/

-

-50

V

~

-

25

V

V

V
t..VIN

=

HOLD MODE

0

10 V

/

1

V

MYLAR

/'

TIME
CONS TANT

'~ E:~5Y:~~:;':-~:EENE
HYSTERESIS

10-

,

POSITIVE

f--

INPUT
STEP

II IIIII

1

25

YOUT' 0

10

./

V

~

Vs - + 5

POLYPROPYLENE
AND POL VSTYR ENE
TIME CONSTANT

~ t='HYST~RVi~:

V

200

100

100

V

5f-V} ~ v_l~ 15 ~

150

Leakage Current
Into Hold Capacitor

Capacitor Hysteresis

Aperture Time

50

7S

125

JUNCTION TEMPERATURE -

Dynamic Sampling Error

100

,

II

01

150

SAMPLE TIME -

°C

10
-50

100

10

1/
-25

25

50

7S

100 125

JUNCTION TEMPERATURE -

ms

150

"C

Gain Error

Output Droop Rate

1

'E

I
w

~

5>
~

e:

"o~

0

,

TJ

~

2S C
Q

RL = 10 k

SAMPLE MODE

-

06
04
02

-- -

;::;:::;:-

;..-

-0 2

~ -0 4
g -0
... •

•

~ -08
i!!

1
-15

INPUT SLEW RATE -

Hold Step

V/ms

-10

-5

5

2
V+ ~ y. = 1S V
SETTLING TO 1 mY

!l!

6

I -5

4

2

~

0

,
6

--'"

~V

1

w

--

l--- j..---"

5

"

CH

75

100

JUNCTION TEMPERATURE -

7-23

125
'C

150

-0

...

CH

i!!

I

"
50

IIg~? 001

o

z

25

H!'~ lJ..~F1~

K

2

mm

~ -1 0

C

- 25

111m I

8

V

4

0
-50

0

1k

JJ.F

CH~O

v-

o

B

='6IH~

..,z

:i

6
o

c::

o ~

5

1~lrF

• ,.:l!

JJ.F

3o ~

iil

1I

I 111111

1/

10 k

,

,

7o

CH ~,?,1 /.IF

I

15

V

Phase and Gain
(Input to Output,
Small Signal)

"Hold" Settling Time
8

10

INPUT VOLTAGE -

HOLD CAPACITOR

2o
1

Cti
1M

100 k
FREQUENCY -

Hz

0
10M

E

J-LA 198 • J-LA298 • J-LA398
Typical Performance Curves (Cont.)

Output Short-Circuit Current

j.~I!I~5°C

'" v~ '"
vWll=ov

140HI-H+HI~+++1+IIII--Hv+

.....

4

"

2

1

ffi 10

8r-...

rr:
rr:

"u

•

4
2

0

-50

160

160 r-n-rmm--n.,.,.,,.,..-rTT1mm,.....,,,,TmII

•
~

Output Noise

Power Supply Rejection

0
8'

~OURCING

- -f',.

r--

SINKING

!g 120HI-H+HI~+++1+IIII-+tHttttt-t-tttttttt

120

IIII-t-tttttttt
01 1001ot-:+F*j.jjjt--t+!-!t!!II.",.!-±8I:1!!!f
~~~,IJ,l~E SUPPLY

100

t"-

~

80

~

60

~

40

~

....... .......

140

15 V

l~

t-H1-tf11,"",:±I-tf
NJ!Hti1IIt-1t+1tttttt--HifHtttI

~

~

NEGATIVE SUPPLY

w

I"

Z

AMPLE
MODE

'"0 40

t-H-I4+l!III-+++++lIII-+t+!lII.-l-#-HltII
~

o~+H~~~~~+mffi-~~

25

SO

75

100

125

20

10

150

cc

FREQUENCY -

1k

-130

5

.

~ 1.4

~

...........
0

.........

5

%

fil

r......

~ 08

.......

-....:r"~

0.2

o

- 25

25

50

75

100

125 150

JUNCTION TEMPERATURE - "C

-15

!g -100

~~
..........

~04

~

CH '"

...... ~"J"'7POo

rr:

0

Y7B '" 0

-110

,

1

08

- ••

o

..........

---

10

-10
INPUT VOLTAGE -

-1111 iTlII

S -80

...........

o~

-90

1"

c"

1000 pF

-70

-60

-so
1

15

10

100

1k

10 k

FREQUENCY - Hz

V

Typical Applications
Acquisition Time

X1 Sample and Hold
YIN

0

V+

O+10V

TJ '" 25"C

ANALOG
INPUT

5V-r
OV....J

looo.~~~iiiiiiji~~~~iiii
0,001

0.01

CH -

HOLD CAPACITOR -

1sl!y

p _p

YIN =

TJ '" 25°C

~ 1.2

f',.

v- '"
v+ '" 10
V

-120

~16
~

~ 10

100 k

10k
Hz

Feedthrough Rejection
Ratio (Hold Mode)

~ 1.8

0

-50

100

FREQUENCY -

5

-1 5

llillJIJ

Hz

Hold Step vs
Input Voltage

Input Bias Current

-1

"HOLD"

MODE

60

o

-25

JUNCTION TEMPERATURE _

5

80

01

",F

7-24

~~GIC

INPUT

v-

5 OUTPUT

100 k

1M

JlA198 • JlA298 • JlA398
Typical Applications (Cont.)
X1000 Sample and Hold

lN457
R3
1M

1%
15 V

10:~
OFFSET
ADJUST

f

R2

__...J1/2I/My-....._--t
R4
1k
1%

-15 V

VOUT

Notes
For lower gams, the /lA 108 must be frequency compensated
100
Use
~pF from comp 2 to ground

=

Sample and Difference Circuit
(Output Follows Input in Hold Mode)

Differential Hold

~

VB - - - - -

~

I
VOUT ::::: VB

I

VIN

~

(HOLD MODE)

0,01 pF

V,N

+>

Vs-=-

T

-----1 f-'W'v--I---'

I

1k

M

...J

r

RESET
'-TRACK

I
I

I

,..I.,

Capacitor Hysteresis Compensation
V+

, .,. /

, VCM \

V-

I

~

.....-OUTPUT

>~-

Rl
200 k
LOGIC

Notes
'Select for tome constant Cl

=

T

100 k

•• Adjust for amplitude

7-25

IL

Vs WHEN IN
HOLD MODE
(Vs + VCM)
WHEN IN
SAMPLE MODE

•

~A565

FAIRCHIL.O

Digital to Analog
Converter

A Schlumberger Company

Data Acquisition Products
Connection Diagram
24-Pin DIP

Description
The ItA565 is a fast 12-bit digital-to-analog converter
combined with a high stability voltage reference on a
single monolithic chip. The ItA565 chip uses 12
precision, high speed bipolar current steering
switches, control amplifier, laser-trimmed thin film
resistor network, and buried zener voltage reference
to produce a high accuracy analog output current.

24

The internal buried zener reference is laser-trimmed to
10.00 V with a ± 1% maximum error. The reference
voltage is available externally and can supply up to
1.5 mA beyond that required for the reference and
bipolar offset resistors.

•
•
•

NC

BIT21N

Vcc(+15V)

BIT31N

REFOUT(+10V ±1%)

BIT4IN

ANALOG COM

BIT51N
/LA565

BIT61N

VEE (-15V)

BIT7IN

BIPOLAR OFFSET IN

BlT81N

DAC OOT(-2 mA F.s.)

BIT91N

10VSPAN R

BIT lOIN

20 V SPAN R

BITlllN

DIGITAL COM

The ItA565 is available in four performance grades.
The ItA565J and K are specified for use over the 0 to
70°C temperature range and the ItA565S ancl T .
grades are specified for the -55 to + 125"C range.

•
•

BITl (MSB) IN

REFERENCE IN

The chip also contains additional SiCr thin film
resistors which can be used either with an external op
amp to provide a precision voltage output or as input
resistors for a successive approximation A / D
converter. The resistors are matched to the internal
ladder network to guarantee a low gain temperature
coefficient and are laser-trimmed for minimum full
scale and bipolar offset errors.

•
•

NC

BIT 12 (LSB) IN

(Top View)

Order Information
Type
Package
ItA565J Ceramic (Side
ItA565K Ceramic (Side
ItA565S Ceramic (Side
ItA565T Ceramic (Side

SINGLE CHIP CONSTRUCTION
VERY HIGH SPEED, SETTLES TO 1 12 LSB
in 200 ns
FULL SCALE SWITCHING TIME-30 ns
HIGH STABILITY BURIED ZENER REFERENCE
ON CHIP
MONOTONICITY GUARANTEED OVER
TEMPERATURE
LINEARITY GUARANTEED OVER
TEMPERATURE-1I2 LSB MAX (ItA565K, T)
LOW POWER, 225 mW INCLUDING REFERENCE

7-26

Brazed)
Brazed)
Brazed)
Brazed)

Code
7R
7R
7R
7R

Part No_
ItA565JJC
ItA565KJC
ItA565SJM
ItA565TJM

,uAS6S
Absolute Maximum Ratings
Vee to Digital Common
VEE to Digital Common
Analog Common to Digital
Common
Voltage on DAC Output (Pin 9)
Digital Inputs (Pins 13 to 24) to
Digital Com
Ref In to Analog Common
Bipolar Offset to Analog Common
10 V Span R to Analog Common

20 V Span R to Analog Common
± 12 V
Ref Out
Indefinite short to either Common
Momentary Short to Vee
Power Dissipation
1000 mW
Operating Temperature: J, K
O°C to +70°C
S, T
-55°C to +125°C
Storage Temperature
-65°C to +150°C
Pin Temperature (Soldering)
Ceramic DIP (60 s)
300°C

Oto+18V
Oto-18V
±1V
-3 to +12 V
-1.0
± 12
± 12
± 12

to +7.0 V
V
V
V

Block Diagram
Vee

REF OUT

4

BIPOLAR OFFSET

3

8

I'A565

10 V

9.95 k

.-_-+1;.;.1_

20 V SPAN

5k

~_--f..:.10,,--

19.95 k

DAC

ANA

-

10

.--=+-_-+..JVVv---i

lOUT = 4 x IREF x CODE

COM

5k
9
DAC

8k

12
DIG
VEE

COM

MSB
- - - - - - - - - _ _ LSB
INPUT BITS 1 - 12

Internal Simplified Schematic

7·27

10 V SPAN

OUT

•

~A565
~A565

Electrical Characteristics

Vee = +15 V , VEE = -15 V TA = +25°C , unless otherwise specified

Characteristic

Condition

~A565J,

Data Input
Voltage

Data Input
Current

Bit ON
Logic "1"

Min

S (Note 1)

Typ

+2.0

Bit OFF
Logic "0"

+5.5

+2.0

T (Note 1)

Typ

Max

Units

+5.5

V

+0.8

V

Bit ON
Logic "1"

+120

+260

+120

+260

~A

Bit OFF
Logic "0"

+35

+75

+35

+75

~A

12

Bits

Unipolar

All bits on

-1.6

-2.0

-2.4

12
-1.6

-2.0

-2.4

rnA

Bipolar

All bits on or off

±0.8

± 1.0

± 1.2

±0.8

± 1.0

± 1.2

rnA

6

8

10

6

8

10

kfl

0.01

0.05

0.01

0.02

% of F.S.

0.05

0.15

0.05

0.1

Output Resistance
(exclusive of span resistors)
Output Offset

Min

+0.8

Resolution
Output Current

~A565K,

Max

Unipolar
Bipolar

R2 = 50 fl fixed (Note 1)

25

Output Capacitance
Output Compliance Voltage

Imin to Imax

-1.5

+10
±%

±'h

(0.006) (0.012)

Accuracy (error relative to
full scale)

±l-2

Tmin to Tmax

Tmin to Tmax

±%

(0.012) (0.018)
±l-2

Differential Nonlinearity

25

±%

Monotonicity
Guaranteed

-1.5
±J.a

% of F.S.

pF
+10

V

±%

LSB

(0.003) (0.006) % of F.S.
±%

±l-2

LSB

(0.006) (0.012) % of F.S.
±%

±l-2

LSB

Monotonicity
Guaranteed

Temperature Coefficient of
Unipolar Zero

Tmin to Tmax

1

2

1

2

ppm! °C

Temperature Coefficient of
Bipolar Zero

Tmin to Tmax

5

10

5

10

ppm! °C

Temperature Coefficient of
Gain (Full Scale)

Tmin to Tmax

15

30

10

20

ppm! °C

Temperature Coefficient of
Differential Nonlinearity

Tmin to Tmax

2

Settling Time to l-2 LSB

All Bits ON-to-OFF
or OFF-to-ON

200

Note
1. Imin and 1m ax are -55°C and 125°C for I'A565S and I'A565T.
1m," and Imax are O°C and 70°C for I'A565J and I'A565K.

7-28

2
400

200

ppm! °C
400

ns

JLA565
Typical Performance Curve

used, excellent performance can be obtained in many
situations without trimming (an op amp with less than
0.5 mV max offset voltage should be used to keep
offset errors below 1-2 LSB). If a 50 n fixed resistor is
substituted for the 100 n trimmer, unipolar zero will
typically be within ± 1-2 LSB (plus op amp offset), and
full scale accuracy will be within 0.1 % (0.25% max).
Substituting a 50 n resistor for the 100 n bipolar offset
trimmer will give a bipolar zero error typically within
± 2 LSB (0.05%).

Typical Negative Compliance
Range vs. Negative Supply

J
IOUT-OmA/

The /.LA 771 is recommended for buffered voltage
output applications which require a settling time to
± 1-2 LSB of two microseconds. The feedback
capacitor is shown with the optimum value for each
application; this capacitor is required to compensate
for the 25 pF DAC output capacitance.

'y/
KUT=-2mA

Typical Applications

This unipolar configuration (Figure 1) will provide a
unipolar 0 to + 10 V output range. In this mode, the
bipolar terminal, pin 8, should be grounded if not used
for trimming.

Buffered Voltage
The standard current-to-voltage conversion
connections using an operational amplifier are shown
in Fig. 1 with the preferred trimming techniques. If a
low offset operational amplifier (/.LA714L, /.LA725A) is

Step I, Zero Adjust
Turn all bits OFF and adjust zero trimmer, R 1, until the
output reads 0.000 volts (1 LSB
2.44 mY). In most
cases this trim is not needed, but pin 8 should then be
connected to pin 5.

16.5V

13.5V

NEGAnVE SUPPLY - VEE

Fig_ 1

=

0 to +10 V Unipolar Voltage Output
+15V
100 kll

R1

50kll
+15V

100ll

vee
REF OUT

BIPOLAR OFF

4

R2
100n

3

8

10V

/LAS6S

-15V

-=

11

9.95k

20VSPAN

-=

5k
10

10 V SPAN

Sk

DAC
ANA
COM

lOUT

~

'0

= 4 x IREF x CODE

8k

2.4kll

CODE INPUT

7
VEE
-15V

·DIG
COM

12

24 -

-

-

-

-

-

-

-

-

13

MSB ------------------~.~ ~B

• DIgItal and analog common must have a common current return path.
See tYPIcal applicatIons continued for proper connections.
7-29

9
DAC
OUT

p,A565
Typical Applications (Cont.)

provided at the 20 V span R terminal, pin 11. For a 5 V
span (0 to +5 or ± 2.5), the two 5 k resistors are used
in parallel by shorting pin 11 to pin 9 and connecting
pin 10 to the op amp output and the bipolar offset
either to ground for unipolar or to REF OUT for the
bipolar range. For the ± 10 V range (20 V span) use
the 5 k resistors in series by connecting only pin 11 to
the op amp output and the bipolar offset connected as
shown. The ± 10 V option is shown in Figure 3.

Step II, Gain Adjust
Turn all bits ON and adjust 100 Q gain trimmer, R2,
until the output is 9.9976 V. (Full scale is adjusted to
1 LSB less than nominal full scale of 10.000 V.) If a
10.2375 V full scale is desired (exactly 2.5 mV / bit),
insert a 120 Q resistor in series with the gain resistor
at pin 10 to the op amp output.
Figure 2, bipolar configuration, will provide a bipolar
output voltage from -5.000 to +4.9976 V, with
positive full scale occurring with all bits ON (all" 1"s).

Internal/External Reference Use
The !lA565 has an internal low-noise buried zener
diode reference which is trimmed for absolute
accuracy and temperature coefficient. This reference
is buffered and optimized for use in a high speed DAC
and will give long-term stability equal or superior to
the best discrete zener reference diodes. The
performance of the !lA565 is specified with the
internal reference driving the DAC since all trimming
and testing (especially for full scale and bipolar) are
done in this configuration.

Step I, Offset Adjust
Turn OFF all bits. Adjust 100 Q trimmer R 1, to give
-5.000 V output
Step II, Gain Adjust
Turn ON all bits, adjust 100 Q gain trimmer to give a
reading of +4.9976 V.
Please note that it is not necessary to trim the op amp
to obtain full accuracy at room temperature. In most
bipolar situations, an op amp trim is unnecessary
unless the untrimmed offset drift of the op amp
is excessive.

The !lA565 can be used with an external reference,
but may not have sufficient trim range to
accommodate a reference which does not match the
internal reference.
The internal reference has sufficient buffering to drive
external circuitry in addition to the reference currents
required for the DAC (typically 0.5 mA to REF IN and
1.0 mA to BIPOLAR OFFSET IN, if used). A minimum of

The !lA565 can also be easily configured for a unipolar
o to +5 V range or ± 2.5 V and ± 10 V bipolar ranges
by using the additional 5 k application resistor

Fig_ 2

±5

V Bipolar Voltage Output

R1
100 n

+15 V

REF OUT

vee

4

BIPOLAR OFF

3

8

R2

100

n

10V

/LA565

9.95 k

.-_--t.;.;11--, 20 V SPAN

-=-

5k

10

19.95 k
REFIN

5k
DAC

ANA

COM

10 V SPAN

0.5 mA

-

10

,....::.5+--~_....."""1v-_-t

lOUT

=

4

x IREF x CODE

9
8k

DAC
OUT

1---4
2.4 kl!

7
VeE

-15 V

'DIG

12

COM
MSB

- - - - - - - - - _ . LSB

• Digital and analog common must have a common current return path
See typical applications continued for proper connections
7-30

~A565
can be separated by up to 200 mV without any loss in
performance. There may be some loss in linearity
beyond that level. Up to ± 1 V can be tolerated
between the ground lines without damage to the
device. If the /LA565 is to be used in a system in which
the two grounds will be ultimately connected at some
distance from the device, it is recommended that
parallel back-to-back diodes be connected between
the ground lines near the device to prevent a
fault condition.

Typical Applications (Cont.)
1.5 mA is available for driving external circuits. The
reference is typically trimmed to ± 0.2%, then tested
and guaranteed to ± 1.0% max error. The temperature
coefficient is comparable to that of the full scale TC
for a particular grade.
Digital Input Considerations
The /LA565 uses a standard positive true straight
binary code for unipolar outputs (all "l"s give full
scale output), and an offset binary code for bipolar
output ranges. In the bipolar mode, with all "O"s on the
inputs, the output will go to negative full scale; with
100 ... 00 (only the MSB on), the output will be 0.00 V;
with all "l"s, the output will go to positive full scale.

The analog common at pin 5 is the ground reference
point for the internal reference and is thus the "high
quality" ground for the /LA565: it should be connected
directly to the analog reference point of the system.
The digital common at pin 12 can be connected to the
most convenient ground reference pOint; analog power
return is preferred, but digital ground is acceptable. If
digital common contains high frequency noise beyond
200 mV, this noise may feed through the converter, so
that some caution will be required in applying
these grounds.

The threshold of the digital input circuitry is set at
1.4 V and does not vary with supply voltage. The input
lines can interface with any type of 5 V logic, TTLlDTL
or CMOS, and hl\ve sufficiently low input currents to
interface easily with unbuffered CMOS logic. The
configuration of the input circuit is shown in Figure 4.
The input line can be modelled as a 30 kO resistance
connected to -0.7 V rail.

Output Voltage Compliance
The /LA565 has a typical output compliance range from
-2 to +10 V. The current-steering output stages will
be unaffected by changes in the output terminal
voltage over that range. However, there is an
equivalent output impedance of 8 k in parallel with
25 pF at the output terminal which produces an

Application of Analog and Digital Commons
The /LA565 brings out separate analog and digital
grounds to allow optimum connections for low noise
and high speed performance. The two ground lines
Fig. 3

± 10 V Bipolar Voltage Output

A1

+15V
Vcc
3

4

100n
BlPOLAAOFF

8

A2

100n

p.A565

10V

11

9.95k

20VSPAN

5k

t-_-t...;10,- 10 V sPAN
5k

9
DAC

DAC

OUT
lOUT

= 4" IREF )( CODE

1---.1

CODE INPUT

7

VEe
-15V

'DIG
COM

12

LSB

MSB

'DIgital and analog common must have a common current return path.
See typical applications continued for proper connections.

7·31

JLA565
Fig. 4

Typical Applications (Cont.)
equivalent error current if the voltage deviates from
analog common. This is a linear effect which does not
change with input code. Operation beyond the
compliance limits may cause either output stage
saturation or breakdown which results in nonlinear
performance. Compliance limits are not affected by
the positive power supply. but are a function of output
current and negative supply. as shown in the Typical
Performance Curve.

Equivalent Digital Input Circuit

DIGITAL
INPUTS
(PlNS13T024)

I
DIGITAL
COM

7·32

I

5PF

-=-

1

30kfl
"",-O.7V
L-.._ _ _

""

TO LOGIC

JlA571
Analog to Digital
Converter

FAIRCHIL.O
A Schlumberger Company

Data Acquisition Products

Description
The /lA571 is a 10-bit successive approximation A / 0
converter consisting of a DAC, voltage reference,
clock, comparator, successive approximation register
and output buffers-all fabricated on a single chip. No
external components are required to perform a full
accuracy 10-bit conversion in 25 /ls.

Connection Diagram
18-Pin DIP

BIT 8
BIT 7

The device offers true 10-bit accuracy and exhibits no
missing codes over its entire operating temperature
range.

BIT 6
BIT 5
BIT 4

Operation is guaranteed with -15 V and +5 V to
+ 15 V supplies. The device will also operate with
a -12 V supply.

BIT 3
BIT 2

Operating on supplies of +5 V to ± 15 V, the /lA571
will accept analog inputs of 0 to +10 V, unipolar or
± 5 V bipolar, externally selectable. As the BLANK and
CONVERT input is driven LOW, the 3-state outputs will
be open and a conversion starts. Upon completion of
the conversion, the DATA READY line will go LOW and
the data will appear at the output. Pulling the BLANK
and CONVERT input HIGH blanks the outputs and
readies the device for the next conversion. The j.lA571
executes a true 10-bit conversion with no missing'
codes in approximately 25 /ls.
.

MS13 BIT 1

(Top VIew)

Order Information
Type
Package
/lA571 J
Ceramic DIP
j.tA571K
Ceramic DIP
/lA571 S
Ceramic DIP

The j.tA571 is available in two versions for the 0 to
+70°C temperature range, the /lA571J and K. The
/lA571 S guarantees 10-bit accuracy and no missing
codes from -55°C to +125°C. All three grades are
packaged in an 18-pin ceramic DIP.

•
•
•
•
•
•

V+

COMPLETE AID CONVERTER WITH REFERENCE
AND CLOCK
FAST SUCCESSIVE APPROXIMATION
CONVERSION-25/ls
NO MISSING CODES OVER TEMPERATURE
DIGITAL MULTIPLEXING-3-STATE OUTPUTS
18-PIN CERAMIC DIP
LOW COST MONOLITHIC CONSTRUCTION

7-33

Code
FD
FD
FD

Part No.
/lA571JJC
/lA571KJC
j.tA571SJD

J.LA571
Absolute Maximum Ratings
V+ to Digital Common
V- to Digital Common
Analog Common to Digital
Common
Analog Input to Analog Common
Control Inputs
Digital Outputs (Blank Mode)

o to + 7 V
o to -16.5 V

Power Dissipation
Operating Temperature
Storage Temperature
Pin Temperature (Soldering)
Ceramic DIP (60 s)

±lV
± 15 V
o to V+
Oto V+

800mW
O°C to +70°C
-55°C to +125°C
300°C

Block Diagram
V-

I

I

10

12

DIGITAL
COMMON

BLANK &
CONVERT CONTROL

I

I

16

111
B

ANALOG IN

13

+ C
9

r--

5k

L
L
.....
L
......

.....

I---

f-14

ANALOG
COMMON

#-14-

r0--

-

BIPOLAR
OFFSET
CONTROL

-

+

10 BIT
CURRENT
OUTPUT
DAC

-

COMPARATOR

-

15

---

-----

----

"A571

I

L
......
L

10 BIT
SAR

r-----..,

I
I

I
INT
I
CLOCK
I
I
L _____ J

7·34

8

7

6

5

DATA
OUTPUTS

4

L
L

.....

3

2

L
.....

TEMPERATURE COMPENSATED
BURIED ZENER REFERENCE
AND DAC CONTROL

MSB

t
I

L
.....
L

3 STATE
BUFFERS

17

1

18

LSB

p,A571
J.LA571
Electrical Characteristics

V+ = +5 V, V- = -15 V, TA = +25°C, all voltages measured with respect to digital
common unless otherwise specified

Characteristic
Resolution

J.LA571JJC
Typ
Min

Condition

Max

J.LA571KJC
Typ
Min

Max

Units
Bits

±1

±Y2

LSB

±1

±Y2

LSB

10

Relative Accuracy (Note 1)
Tmin to Tmax
Full Scale Calibration (Note 2) With 15 Q Resistor in Series
with Analog Input

10

±2

±2

LSB
LSB

Unipolar Offset

±1

±Y2

Bipolar Offset

±1

±Y2

LSB

10

Bits

10

Differential Nonlinearity
(Note 3)

10

9

Tmin to Tmax

Temperature Coefficient of
Unipolar Offset

Tmin to Tmax

Temperature Coefficient of
Bipolar Offset

Tmin to Tmax

Temperature Coefficient of
Full Scale Calibration

Tmin to Tmax with 15 Q
Resistor or 50 Q Trimmer

CMOS Pos. Supply ± 13.5 V :s V+ :s +16.5 V
Power
Supply
TTL Pos. Supply
+4.5 V :s V+ :s 5.5 V
Rejection Negative Supply
-16.5 V :s V+ :s -13.5 V

±1

44

22

±2

±1

44

22

LSB
ppm/oC
LSB
ppm/oC

±4

±2

88

44

LSB
ppm/oC

±1

LSB

±2

±1

LSB

±2

±1
7

LSB
kQ

Analog Input Resistance

3

Analog
Input
Ranges

Unipolar
Bipolar
Unipolar

Positive True
Binary

Positive True
Binary

Bipolar

Positive True
Offset Binary

Positive True
Offset Binary

3.2

3.2

rnA

0.5

0.5

rnA

Output
Coding

= 0.4 V max, Tmin to Tmax

Output Sink Current

VOUT

Output Source Current
(Bit Outputs) (Note 4)

VOUT = 2.4 V min, Tmin to Tmax

5

Bits

±2

7

3

0

10

0

10

V

-5

+5

-5

+5

V

Output Leakage When
Blanked

±40

o :s VIN :s

Blank & Convert Input

±40 J.LA

40

V+

Blank-Logic "1"

2.0

40
2.0

Convert-Logic "0"
15
+4.5
-12

IV+
Iv-

Notes
1. Relative accuracy is defined as the deviation of the code
transition points from the Ideal transfer point on a straight line
from zero to the full scale of the device.
2. Full scale calibration is guaranteed trimmable to zero with an
external 50 f! potentiometer 10 place of the 15 f! fixed resistor.
Full scale IS defined as 10 V minus 1 LSB, or 9.990 V.

25

30

15

+5.5 +4.5
-16.5 -12

J.LA

V

0.8

Conversion Time
Operating Range

5

25

0.8

V

30

J.LS

+16.5 V
-16.5 V

3. Info commg.
4. The data output lines have active pull· ups to source 0.5 rnA.
The DATA READY line IS open collector with a nominal 6 kf!
mternal pull·up resistor.

7·35

J.LA571
/LA571
Electrical Characteristics (Cont.)

V+ = +5 V, V- = -15 V, TA = +25°C, all voltages measured with respect to
digital common, unless otherwise specified
/LA571KDC

/LA571JDC

Typ

Max

V+ = +5 V

2

10

V+ = +15V

5

V-=-15V

9

V+ = +5 V

5

Condition

Characteristic
Operating Current-Blank
Mode

Operating Current-Convert
Mode

/LA571
Electrical Characteristics

Min

Typ

Max

Units

2

10

mA

10

5

10

mA

15

9

15

mA

Min

5

mA

V+ = +15 V

10

10

mA

V- = -15 V

10

10

mA

V+ = +5 V, V- = -15 V, TA = +25°C, all voltages measured with respect to digital
common, unless otherwise specified
/LA571SDM

Characteristic

Condition

Min

Resolution

Typ

Max

10

Relative Accuracy (Note 1)
Full Scale Calibration (Note 2)

T min to Tmax
With 15 Q Resistor in
Series with Analog Input

Units
Bits

±1

LSB

±1

LSB

±2

LSB

Unipolar Offset

±1

LSB

Bipolar Offset

±1

LSB

Differential Nonlinearity (Note 3)

10

Tmin to Tmax

Temperature Coefficient of
Bipolar Offset

Tmin to Tmax

Temperature Coefficient of
Full Scale Calibration

Tmin to Tmax, with 15 Q Fixed
Resistor or 50 Q Trimmer

20
±2
20

Output Coding

±5

LSB
ppm/oC
LSB
ppm/oC

50

LSB
ppm/oC

TTL Pos. Supply +4.5 V ::; V+ ::; 5.5 V

±2

LSB

Neg. Supply

±2

7

LSB
kQ

10
±5

V
V

-16.5 V::; V+ ::; -13.5 V

Analog Input Resistance
Analog Input
Ranges

Bits
±2

Temperature Coefficient of
Unipolar Offset

Power Supply
Rejection

Bits

10

Tmin to Tmax

3

5

Unipolar
Bipolar

0
-5

Unipolar

Positive True Binary

Bipolar

Positive True Offset
Binary

Output Sink Current

VOUT = 0.4 V max, Tmin to Tmax

3.2

mA

Output Source Current (Bit Outputs)
(Note 4)

VOUT = 2.4 V min, Tmin to Tmax

0.5

mA

Notes
1. Relative accuracy is defined as the deviation of the code
transition pomts from the Ideal transfer pOint on a straight line
from zero to the full scale of the device.
2. Full scale calibration is guaranteed tnmmable to zero with an
external 50 G potentiometer m place of the 15 n fixed resistor.
Full scale is defined as 10 V minus 1 LSB, or 9.990 V.

3. Info coming.
4. The data output lines have active pull-ups to source 0.5 mAo
The DATA READY line is open collector with a nominal 6 kG
mternal pull-up resistor.

7-36

IlA571
ttA571
Electrical Characteristics (Cont.)

V+ = +5 V, V- = -15 V, TA = +25°C, all voltages measured with respect to
digital common, unless otherwise specified
ttA571SDM

Characteristic

Condition

Min

Typ

Max

Unit

Output Leakage When Blanked

±40

Blank & Convert Input

±40

tt A
tt A
V
V

Blank-Logic" 1"

2.0

Convert-Logic "0"

0.8
15

Conversion Time
Operating Range

+4.5

IV+
Iv-

Operating Current-Convert Mode

30
+5.5
-16.5

-12

Operating Current-Blank Mode

V+ = +5 V

2

10

V+ = +15V
V- = -15V

5

10

9

15

V+ = +5 V

5

V+=+15V

10

V-=-15V

10

Typical Applications

tt S
V
V
mA
mA
mA
mA
mA
mA

inserted in series with the input signal, the input
current at the full scale input voltage can be trimmed
down to match the DAC full scale current as precisely
as desired. However, for many applications the
nominal 9.99 V full scale can be achieved to sufficient
accuracy by simply inserting a 15 Q resistor in series
with the analog input to pin 13. Typical full scale
calibration error will then be about ± 2 LSB or ± 0.2%.
If the more precise calibration is desired, a 50 Q
trimmer should be used instead. Set the analog input
at 9.990 V, and set ther trimmer so that the output
code is just at the transition between 1111111110 and
1111111111. Each LSB will then have a weight of
9.766 mY. If a nominal full scale of 10.24 V is desired
(which makes the LSB exactly 10.00 mY), a 100 Q
resistor in series with a 100 Q trimmer (or a 200 Q
trimmer with good resolution) should be used. Of
course, larger full scale ranges can be arranged by
using a larger input resistor, but linearity and full

Standard ttA571 Operation
The ttA571 contains all the active components
required to perform a complete AID conversion. For
most situations, all that is necessary is connection of
the power supply (+5 and -15), the analog input, and
the conversion start pulse. But, there are some
features and special connections which should be
considered for achieving optimum performance. The
functional pin-out is shown in the connection diagram.
Full Scale Calibration
The 5 kQ thin film input resistor is laser trimmed to
produce a current which matches the full scale current
of the internal DAC-plus about 0.3%-when a full
scale analog input voltage of 9.990 V (10 V-l LSB)
is applied at the input. The input resistor is trimmed in
this way so that if a fine trimming potentiometer is
Fig_ 1

25

Standard ttA571 Connections
18

DIGITAL COM
SHORT TO COMMON)
BIPOLAR ( FOR UNIPOLAR,
CONTROL
OPEN FOR BIPOLAR
ANALOG COM (TOLERATES 200mV)
TO DIGITAL COM
~----~~--r--o~ANALOGIN
RIN

150 FIXED OR
50 n VARIABLE
(SEE TEXT)
MSB
(Top View)

7-37

JLA571
Typical Applications (Cont.)

In normal operation the Analog Common terminal may
generate transient currents of up to 2 mA during a
conversion. In addition, a static current of about 2 mA
will flow into Analog Common in the unipolar mode
after a conversion is complete. An additional 1 mA will
flow in during a blank interval with zero analog input.
The Analog Common current will be modulated by the
variations in input signal.

scale temperature coefficient may be compromised if
the external resistor becomes a sizeable percentage
of 5 kQ.
Bipolar Operation
The standard unipolar 0 to + 10 V range is obtained by
shorting the bipolar offset control pin to digital
common. If the pin is left open, the bipolar offset
current will be switched into the comparator summing
node, giving a -5 V to +5 V range with an offset
binary output code. (-5.00 V in will give a 10-bit code
of 0000000000; an input of 0.00 V results in an output
code of 1000000000 and 4.99 V at the input yields the
1111111111 code). The bipolar offset control input is
not directly TTL compatible, but a TTL interface for
logic control can be constructed as shown in Figure 2.

The absolute maximum voltage rating between the two
commons is ± 1 V. We recommend the connection of a
parallel pair of back-to-back protection diodes between the commons if they are not connected locally.
Zero Offset
The apparent zero point of the /-lA571 can be adjusted
by inserting an offset voltage between the Analog
Common of the device and the actual signal return or
signal common. Figure 3 illustrates two methods of
providing this offset. Figure 3A shows how the
converter zero may be offset by up to ± 3 bits to
correct the device initial offset and / or input signal
offsets. As shown, the circuit gives approximately
symmetrical adjustment in unipolar mode. In
bipolar mode R2 should be omitted to obtain a
symmetrical range.

Common Mode Range
The /-lA571 provides separate Analog and Digital
Common connections. The circuit will operate properly
with as much as ± 200 mV of common mode range
between the two commons. This permits more flexible
control of system common bussing and digital and
analog returns.

Fig. 2

Bipolar Offset Controlled by Logic Gate
+5V

B +

C
DRt----!

AIN
AeOM
I

I

BIPOLAR
OFFSET
CONTROL

I
I

TTL
GATE

~A571

5 VCOM:

10 BITS

I
I

DATA

\

\

DeoM

15 V COM
30 k

Q

-15 V

Gate Output = 1 Unipolar 0-10 V Input
Range Gate Ouput = 0 Bipolar ± 5 V Input Range

7-38

JLA571
Typical Applications (Cont.)
Fig. 3a

Zero Offset ADJ ± 3-Bit Range

Fig. 3b

AIN

~

INPUT
'"\., SIGNAL

JI2-Bit Zero Offset
AIN

~

"A571

I,A571

INPUT
'"\., SIGNAL
ACOM

ACOM
R1
R1
10 Q

R2
7.5 k

R3
4.7 k

I

R4
10k

+ 15 V

I

-15V

Note
DUring a conversion. transient currents from the Analog Common
terminal will disturb the offset voltage. Capacitive decoupling
should not be used around the offset network. These transients
Will settle as appropriate during a conversion. Capacitive

Fig.4

COMMON

SIGNAL

S IGNAL COMMON

2.7H
OR 511
POT

decoupling will "pump up" and fall to settle resulting In converSion
errors. Power supply decoupling which returns to analog signal
common should go to the signal Input side of the resistive
offset network.

ILA571 Transfer Curve-Unipolar Operation (Approximate Bit Weights Shown for Illustration,
Nominal Bit Weights - 9.766 mY)
Offset Characteristics with 2.7 in series with
Analog Common

Nominal Characteristics referred to
Analog Common

r-----

.-I
I
I

I

0000000100

-

0000000011

c-

=> 0000000010

f-

0000000001

l-

0000000100 f-

UJ

c

0

UJ

c

000000001 1'-

0

0

0

....

....

=>

=>

II.

....=>

•

I
I

II.

....

0000000010 I -

0

0

000000000 11-

0000000000

I

oV

10 mV

I
30mV

I

I

OOOOOOOOOOOV

50mV

INPUT VOLTAGE

I
10mV

I

I
30mV

I

I
50mV

INPUT VOLTAGE

the transfer characteristics. The nominal 2 rnA Analog
Common current is not closely controlled in
manufacture. If high accuracy is required, a 5 11
potentiometer (connected as a rheostat) can be used
as R2. Additional negative offset range may be
obtained by using larger values of R2. Of course, if the
zero transition pOint is changed, the full scale
transition point will also move. Thus, if an offset of
Jl2LSB is introduced, full scale trimming as described
on previous page should be done with an analog input
of 9.985 V.

Figure 4 shows the nominal transfer curve near zero
for a ILA571 in unipolar mode. The code transitions are
at the edges of the nominal bit weights. In some
applications it will be preferable to offset the code
transitions so that they fall between the nominal bit
weights, as shown in the offset characteristics. This
offset can easily be accomplished as shown in
Figure 38. At balance (after a conversion)
approximately 2 rnA flows into the Analog Common
terminal. A 2.7 11 resistor in series with this terminal
will result in approximately the desired JI2 bit offset of
7·39

JLA571
allows the device to be easily operated in a variety of
systems with differing control modes. The two most
common control modes, the Convert Pulse Mode, and
the Multiplex Mode, are illustrated here.

Typical Applications (Cont.)
Control and Timing of the #A571
There are several important timing and control
features on the #A571 which must be understood
precisely to allow optimum interface to
microprocessor or other types of control systems. All
of these features are shown in the timing diagram in
Figure 5.

Convert Pulse Mode
In this mode, data is present at the output of the
converter at all times except when conversion is
taking place. Figure 6 illustrates the timing of this
mode. The BLANK and CONVERT line is normally LOW
and conversions are triggered by a positive pulse.

The normal stand-by situation is shown at the left end
of the drawing. The BLANK and CONVERT (B & C) line
is held HIGH, the output lines will be "open", and the
DATA READY (DR) line will be HIGH. This mode is the
lowest power state of the device (typically 150 mW).
When the B & C line is br2.!!9ht LOW, the conversion
cycle is initiated; but the DR and data lines do not
change state. When the conversion cycle is complete
(typically 25 #s), the DR line goes LOW, and within
500 ns, the data lines become active with the
new data.

Multiplex Mode
In this mode the outputs are blanked except when the
device is selected for conversion and readout; this
timing shown in Figure 7.
This operating mode allows multiple #A571 devices to
drive common data lines. All BLANK and CONVERT
lines are held HIGH to keep the outputs blanked. A
single #A571 is selected, its BLANK and CONVERT
line is driven LOW and at the end of conversion, which
is indicated by DATA READY going LOW, the
conversion result will be present at the outputs. When
this data has been read from the 10-bit bus, BLANK
and CONVERT is restored to the blank mode to clear
the data bus for other converters. When several
#A571's are multiplexed in sequence, a new
conversion may be started in one #A571 while data is
being read from another. As long as the data is read
and the first #A571 is cleared within 15 #s after the
start of conversion of the second #A571, no data
overlap will occur.

About 1.5 ~ after the B & C line is again brought
HIGH, the DR line will go HIGH and the data lines will
go open. When the B & C line is again brought LOW, a
new conversion will begin. The minimum pulse width
for the B & C line to blank previous data and start a
new conversion is 2 #s. If the B & C line is brought
HIGH du~ a conversion, the conversion will stop,
and the DR and data lines will not change. If a 2 #s or
longer pulse is applied to the B & C line during a
conversion, the converter will clear and start a new
conversion cycle.
Control Modes with BLANK and CONVERT
The timing sequence of the #A571 discussed above
Fig.5

#A571 Timing and Control Sequence
PULSE BLANKS
DATA OUTPUTS
ON RISING EDGE
AND STARTS
CONVERSION
ON FALLING EDGE

BLANKS DATA
OUTPUTS
BlK (CONV.)
INPUT

START-..

--~-J-!

CONVERSION ....
CONVERSION
TIME

DAT~~iADY

~

5oon5-1
(max)

DATA
OUT

1\ \
FU

11.5~S

INDICATES
DATA READY

NEW DATA READY

~~
BLANK
(OPEN)

ONE
OR
ZERO

7·40

BLANK
(OPEN)

ONE
OR
ZERO

BLANK
(OPEN)

,uA571
Typical Applications (Cont.)
Fig. 6

Convert Pulse Mode
CONVERSION
BlK (CONV.) _ _ _ _

~rtlSE
CONVERSION
INTERVAL

/'

OUTPUTS

Fig. 7

~'''YYm.___

PREVIOUS
__
D_AT_A__

BLANK

(~~E,,~~

NEW
....;D.;.A;..T,;.;A~_ _ __

Multiplex Mode
CONVERSION
STARTS

1/

CONVERSION
ENDS

r/
OUTPUTS

7·41

FENDDATA
READOUT

p,A0801 (DAC-08) Series
8-Bit Multiplying 0/ A
Converters

I=AIRCHILO
A Schlumberger Company

Data Aquisition Products
Description
The !LA0801, !LA0801E and !LA0801C are 8-bit
multiplying Digital-to-Analog Converters constructed
using the Fairchild Planar epitaxial process. Advanced
circuit design achieves very high speed performance
with outstanding applications capability and low cost.
The !LA0801 is specified for the military temperature
range (-55 ° C to + 125 ° C) and the !LA080 1E and
!LA0801C are specified for O°C to +70°C operation.
The !LA0801 series are pin-for-pin replacements of the
DAC-08 and DAC0800 series.

Connection Diagram
16-Pin DIP
VLe

lOUT
Vee-

lOUT
(MS6) 61

62

• FAST SETTLING TIME TO 1/2 LSB 85 ns
• FULL SCALE CURRENT PRE MATCHED
TO ±1 LSB
• DIRECT INTERFACE TO TTL, CMOS, ECL, HTL,
PMOS,DTL
• LINEARITY TO ± 0.19% MAX OVER
TEMPERATURE RANGE
• HIGH OUTPUT COMPLIANCE -10 V TO +18 V
• TRUE AND COMPLEMENTED OUTPUTS
• WIDE RANGE MULTIPLYING CAPABILITY
• LOW FULL SCALE CURRENT DRIFT
+10 ppm/DC TYP
• WIDE POWER SUPPLY RANGE ± 4.5 V TO
±18V
• LOW POWER CONSUMPTION 33 mW @ ± 5 V
• EXTERNAL COMPENSATION FOR
MAX BANDWIDTH
• LOWCOST

63

64

(Top View)

Order Information
Type
Package
!LA0801
Ceramic DIP
!LA0801E
Ceramic DIP
!LA080 1E
Molded DIP
!LA080 1C
Ceramic DIP
!LA080 1C
Molded DIP

Code
68
68
98
68
98

Part No.
!LA0801DM
!LA0801EDC
!LA0801EPC
!LA0801CDC
!LA0801CPC

Equivalent Circuit and Pin
Connection Diagram
MS6
61

LS6

62

63

5

65

66

67

68

-

~~~__-r~__;-~__~__-+~__;-~-+.-__+-4

..--11--+.......-r-+-~++-~I-+~-+-+-......+-+-ri+-.-~2

VAEF( -)

15

16

3

COMPlvee-

7-42

lOUT
lOUT

JLA0801 SERIES
Absolute Maximum Ratings
Vee+ to Vce36 V
Logic Inputs
Vee- to Vee- plus 36 V
VLC
Vee- to Vee+
Reference Inputs
(V14, V15)
Vec- to Vee+
Reference Input
Differential Voltage
(V14toV15)
±18V
Reference Input
Current IREF (14)
5.0 mA
Power Dissipation
500 mW
Derate above 90°C
(Ceramic DIP)
8.3 mW/oC

Operating
Temperature Range
~A0801
~A0801E, ~A0801C

Storage Temperature
Range
Pin Temperature
Ceramic DIP,
(Soldering, 60 s)
Molded DIP
(Soldering, 10 s)

-55°C to +125°C
O°C to +70°C
-65°C to +150°C
300°C
260°C

Electrical Characteristics
These specifications apply for Vee = ± 15 V, IREF = 2.0 mA, TA = -55°C to +125°C for ~A0801,
TA = O°C to 70°C for ~A0801E, ~A0801C. Output characteristics refer to both lOUT and lOUT.
Symbol

ts

Min

Typ

Max

Unit

Resolution

8

8

8

bits

Monotonicity

8

8

8

bits

±0.19
±0.39

%FS

Characteristic

Condition

Non-linearity

~A0801,~A0801E
~A0801C

Settling Time

To ±M. LSB,
all bits
switched ON
or OFF
TA = 25°C

~A0801

~A0801E,~A0801C

85

150

Each bit

35

60

All bits switched

35

60

ns
ns

±10

±50

ppm/oC

+18

V

1.990

2.040

mA

~A0801,~A0801E

± 1.0

±8.0

~A0801C

±2.0

±16

~A0801,~A0801E

0.2

2.0

~A0801C

0.2

4.0

Propagation Delay

TCIFS

Full Scale Temperature
Coefficient

Voe

Output Voltage Compliance

Full scale current change
ROUT> 20 mSl

IFS4

Full Scale Current

VREF
= 10.000 V,
R14, R15
= 5.000 kSl
TA = 25°C

IFSS

Full Scale Symmetry

IFS4 -IFS2

IzS

Zero Scale Current

= 25°C

135
ns

tpLH,
tpHL

TA

85

< M. LSB, -10

~A0801E
~A080 1, ~A080 1C

7·43

1.940

~A

~A

JLA080 1 SERIES
Electrical Characteristics (Cont.)
These specifications apply for Vee = ± 15 V, IREF = 2.0 rnA, TA = -55°C to +125°C for ~A0801,
TA = O°C to 70°C for ~A0801E, ~A0801C. Output characteristics refer to both lOUT and lOUT.
Symbol
IFSR

Characteristic

Condition

Output Current Range

R14, 15 = 5.000 kO
VREF = +15.00 V, Vee- = -10 V
VREF = +25.0 V, Vee- = -12 V

Typ

Min

Max

Unit

2.1

rnA

4.2

rnA

0.8

V
V

-10
10

~A
~A

VIL
VIH

Logic Input LOW Voltage
Logic Input HIGH Voltage

VLe = 0 V

IlL
IIH

Logic Input LOW Current
Logic Input HIGH Current

VLe = 0 V, VIN = -10 V to +0.8 V
VIN = 2.0 V to 18 V

VIS

Logic Input Swing

Vee- = -15 V

-10

+18

V

VTHR

Logic Threshold Range

Vee = ± 15 V

-10

+13.5

V

115
dlldt

Reference Bias Current

-3.0

~A

2.0
-2.0
0.002

-1.0

Reference Input Slew Rate

8.0

4.0

rnA/~s

PSSIFS+ Power Supply Sensitivity
PSSIFS-

Vee+ = 4.5 V to 18 V
Vee- = -4.5 V to -18 V
IREF = 1.0 rnA

0.0003
0.002

0.01
0.01

1+
1-

Vee = ±5.0 V, IREF = 1.0 rnA

2.3
-4.3

3.8
-5.8

Vee+ = +5.0 V, Vee- = -15 V,
IREF = 2.0 rnA

2.4
-6.4

3.8
-7.8

Vee = ± 15 V, IREF = 2.0 rnA

2.5
-6.5

3.8
-7.8

Vee = ±5.0 V, IREF = 1.0 rnA

33

48

Vee+ = +5.0 V, Vee- = -15 V,
IREF = 2.0 rnA

108

136

Vee = ± 15 V, IREF = 2.0 rnA

135

174

1+
1-

Power Supply Current

1+
1-

Power Dissipation

Po

0f010f0
0f010f0

rnA

rnW
rnW
rnW

Typical Performance Curves

Full Scale Current as a
Function of Reference Current
5.
TAl '" T~IN 16 TMIAX
f-~

4.

ALL BITS "HIGH"

i 2.

V

~

,.
V

/

/

/

V

3.2

ICC-

LARGE SIGNAL ~
r-YIN '" 2 0 Vpk-pk
CENTERED AT +1 0 y

•
f-- f-~1

~1

2.0

30

40

REFERENCE CURRENT - mA

1

o I- ~1! = ~15 '" 1.0 kH
Rl:55OQU
ALL BITS MON"

50

4
01

02

1\

'I

1St

05

10

FREQUENCY -

20
MHz

2.4

O
~

1\
50

I

II

IREr-2~mA

I

12
IREF

.8

I

.4
10

I

Ycc- - -5.0 V

I ..

,

,\

vcJ~ ~ +j5 V

vcJ~ ~ -J5 V

..I 2.

\

I

I-VRi5~tVi C~
10

ALL BITS "ON"

28

./ \

/""\

VLlMITFOA
= -15 Y

I

TA = TMIN TO TMAX

~EN=T~~~~~;:P!200 mY -

1..1

I"'-UMIT FOR
iCC ~I ~5·IV

Reference AMP
Common Mode Range

SMALL SIGNAL

1'1 I

I

!i 3.

o

Reference Input
Frequency Response

10mA

I

IREF -O.2mA

•

-14

-10

-6

-2 0 2

&

10

Note
Positive common mode renge is

always (Vee-l +1.5V
7·44

14

18

Y15, REFERENCE COMMON MODE VOLTAGE - Y

~A080 1

SERIES

Typical Performance Curves (Cont.)
Output Current as a
Function of Output Voltage
(Output Voltage Compliance)
32
TA

>=

~

24

..~
"

.0

I

Vcc-

-15

vvcc~ =

I

vcr

-5.0 Y

~

0

1.
O.

-14

-10

-6

~

r--..
t--...

1.2

> ,.
I
w •0

~

r--...

~

~

IREF

D2mA

RANGE FOR Vcc- = 15 Y
IREF520mA

(FOR OTHER Vcc- OR 'REF,
SEE FIGURE 12)

0

0_ 4 •0

I

10

r- ~ERjl••'~LE ~U,.l,UT~OL+AG~_

4. 0

~

0

1.0mA

-2 0 2

,.

l •

IREF

I

04

o

+15Y

I

u

20

•

'REr=2imA

r

16

2.0

I

TMIN TO TMAX

ALL BITS "ON"
2.'

Output Voltage Compliance as a
Function of Temperature

VTH - VLcas a
Function of Temperature

04

14

18

o

-.
-50

150

100

50
TEMPERATURE _

OUTPUT VOLTAGE - V

0

0

-1 2

-50

50

c

100

150

TEMPERATURE _ °C

Note
Positive common mode range is
always (Vcc+l -1.5V

Bit Transfer
Characteristics

Power Supply Current as a
Function of VCC-

4

0
ALL BITS "HIGH" OR "LOW"

IRE; = .01mA

•
~

0

81

0

I

I•

•

u

~

!;
o

0

0

82

>

>

'I'

II

• >s- f--- +-8

84

'i

-40

0

83

II

o.

-1'

I I I
IR'i 'IOj

1-

I I I

t

IRE -1 0mj

I

0

I I I

,.

40

III

20

LOGIC INPUT VOLTAGE - V

-40

-8.0

...I

•.0

I-

Ycc- '" -15 V
'REF

~

50

"!:;
0

40

..~

30

I

1+

-1'

70r-~-r-+--r-t-~-t~--~
20mA

a:

1-

1

ALL BITS "HIGH" OR "LOW"

.

E

IREF - D2mA

0 4 ~- f--- 1--'"

0

Power Supply Current as a
Function of Temperature

-1.

Vcc- - NEGATIVE POWER SUPPLY - Vile

-20

Vcc+

=

+15 v

1+

.0
10
-50

50

100

150

TEMPERATURE _ °C

See Note below.

Power Supply Current as a
Function of VCC+
ALL BITS "HIGH" OR "LOW"

40

•0

.

,

18

Note
B 1 through B8 have identical transfer characteristics. Bits are
fully switched, with less than 1/2 LSB error. At less than ± 100
mV from actual threshold, these switching points are guaranteed
to lie between 0.8 and 2.0 V over the operating temperature range
(VLC = 0.0 V)

.0

Ycc+ - POSmVE POWER SUPPLY - Ydc

7·45

•

~A0801

SERIES

Test Circuits
Fig. 1

Settling Time Measurement
+5V
FOR TURN-ON, Vl = 2.7 V
FOR TURN-OFF, Vl = 0.7 V ...._ _.....,

VCl
0.7 V

15 k
RREF
+VREF
100 k

-15 V
TO D.U.T.

"A0801

R15
15
13

2
16

3

"":"

0.01"F"":"

0.1"F

0.1"F

-15 V

:t

J

+15 V

Typical Applications
Fig. 1

Basic Positive Aeference Operation
MSB

LSB

IFS "'"

B1 B2 B3 B4 B5 B6 B7 B8

-

+ iO = IFS
For all logic states

10

IREF
+VREF

+VREF
255
RREF X 256

VREF(')

5 6 7

89101112

14

RREF
(R14)

"A0801
VREF(-)
15 3

R15

16

0.1"F

t

10

iO

For fixed reference, TTL operation,
typical values are:
VREF
+10.000 V
RREF
6.000 k
R15"'" RREF
Cc = O.OlIlF

=
=

13
COMP

"":"

4
,2

Cc

VlC
0.1"F

VLC

"":"

Vcc-

Vcc,

7·46

=0 V (GROUND)

JLA080 1 SERIES
Typical Applications (Cont.)
Fig. 2

Recommended Full Scale Adjustment Circuit

Fig. 3

Basic Negative Reference Operation

LOW T.C.
4.5 k

RREF

-

IREFI-) ~ 2 mA
~1

R15

Y

<~--.---I15

-YREF ---'"","-115

APPROX
5k

'---.~

IFS "'"

-VREF
255
RREF X 256

Note
RREF sets IFS; R15 is for bias current cancellation.

Fig. 4

Basic Unipolar Negative Operation
MSB
LSB
B1 B2 B3 B4 B5 B6 B7 B8

4

IREF
~

2.000 mA

Eo

5.000 kll

10

-::-

MA0801

14

10

5.000kll

2

Eo
B1

B2

B3

B4

B5

B6

B7

B8

lornA

lornA

1
1

1
1

1
1

1
1

1
1

1
0

1.992
1.984

.000
.008

Eo
-9.960
-9.920

EO

1
1
1
1
0

0
0
1

0
0
1

0
0
1

0
0
1

0
0
1

0
0
1

1
0
1

1.008
1.000
.992

.984
.992
1.000

-5.040
-5.000
-4.960

-4.920
-4.960
-5.000

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

.008
.000

1.984
1.992

.040
.000

-9.920
-9.960

Full Scale
Full Scale - LSB
Half Scale + LSB
Half Scale
Half Scale - LSB
Zero Scale
Zero Scale

+ LSB

7·47

-

.000
.040

~A080 1 SERIES
Typical Applications (Cont.)
Fig. 5

High Noise Immunity Current To Voltage Conversion
B1 B2 B3 B4 B5 B6 B7 B8
5k
5k

+10 V -""V'''''''---f
10

">....- -

"A0801

Eo

10
VREFI-I

Vcc+

VLC

5k

5k

-=•
•
•
•
•

+15 V

-=-

-15 V

ECM

Provides isolation from ground loops
Symmetrical ± 10 V output
Useful within systems between boards
True complementary / differential current transmission
High speed analog signal transmission
81

Pos Full Scale
Pos Full Scale - LSB

82

83

84

1
1

1
1

1
1

(+) Zero Scale
(-) Zero Scale

1
0

0
1

0
1

0
1

Neg Full Scale + LSB
Neg Full Scale

0
0

0
0

0
0

0
0

Fig. 6

85

o
1

o

o

86

87

88

EO

1
1

1
1

1
0

+9.920
+9.840

0
1

0
1

0
1

+0.040
-0.040

0
0

0
0

1
0

-9.840
-9.920

Basic Bipolar Output Operation
+10.000

v

10.000 kll
10
IREF(+ I

~

2.00

~

14

4

Eo

10

EO

"A0801
10.000 kll

2

81
Pos Full Scale
Pos Full Scale - LSB

B2

B3

B4

85

1
1

1

B6

87

1

88

EO

EO

1
0

9.920
9.840

+10.000
+ 9.920

Zero Scale + LSB
Zero Scale
Zero Scale - LSB

1
1
0

0
0
1

0
0
1

0
0
1

0
0
1

0
0

0
0
1

1
0
1

0.080
0.000
+ 0.080

+ 0.160
+ 0.080
0.000

Neg Full Scale + LSB
Neg Full Scale

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

+ 9.920
+10.000

9.840
9.920

7-48

,uA0801 SERIES
Typical Applications (Cont.)
Fig. 7

Positive Low Impedance Output Operation
RL

Eo

"A0801

IFS

~

255 IAEF
256

For complementary output (operation as negative logic DAC),
connect inverting input of Op-Amp to iQ (Pin 2); connect 10 (Pin 4)
to ground.

Fig. 8

Negative Low Impedance Output Operation

>-<11>--- Eo

41----_-1
--10
"A0801

--10
2

RL
255
IFS ~ 256 IAEF

For complementary output (operation as negative logic DAC),
connect inverting input of Op-Amp to iQ (Pin 2); connect 10 (Pin 4)
to ground.

Fig. g

Pulsed Reference Operation
+VAEF

I

I:>

~ RAEF

i

RIN

ov

I

OPTIONAL RESISTOR
FOR OFFSET INPUTS

JL -~M"-""----<""'-I14
Rp

REO
~ 200

15
TYPICAL VALUES:
RIN = 5 k
+VIN = 10 V - = - - : : NO CAP

7-49

lOUT

,uA0801 SERIES
Typical Applications (Cont.)
Fig. 10 Accommodating Bipolar References
+VREF

RREF

~IRrE_F_ _ _ _ _ _ _ _.,
RREF

......'Mr----t 14

+VREF

~

"""W.,..---t

14

R'5 (OPTIONAL)

15

HIGH INPUT _
IMPEDANCE
RREF ~ R'5

+VREF must be above peak positive swing of VIN

IREF 2: peak negative swing of liN

Fig. 11

Interfacing With Various Logic Families
VTH ~ VLe + 1.4 V
+15 V CMOS, HTL, HNIL
VTH ~ +7.5 V

TTL,DTL
VTH ~ +1.4 V

+12 V TO
+15 V

PMOS
VTH ~ 0 V

+15 V
1N4148

9.1 k

VLe

6.2 V
ZENER

6.2 k

10 k

-5 V TO -10 V

-- -

-

-

-+-;-V-;;-M~
VTH

---+--- ----- -

~ +2.8 V

I
I
I

VTH ~ +5.0 V

I

I

+10 V

I

-1OkECL--- - - -

~ -1.29 V

VTH

1.3 k

I

I
VLe

T- ~ I
I
I

+10 V CMOS

I

6.2 k

I
I

I
I

I

3.6 k

I
I

V~
0.1 MF

1N4148

I

I
I
I

VLe

3.9 k

1k

I
I

-= -=

I

I

-5.2 V

Note
Do not exceed negative logic input range of DAC

Cross Reference Information
Part No.

Temperature Range

Nonlinearity

~AOSO 1DM (DAC-OSQ)
~AOSO 1EDC (DAC-OSEQ)

-55°C to
O°C 10
O°C 10
O°C 10
O°C 10

±O.19%
±O.19%
±O.19%
±O.39%
±O.39%

~AOSO 1EPC
~AOSO 1CDC
~AOS01CPC

(DAC-OSEP)
(DAC-OSCQ)
(DAC-OSCP)

+125°C
+70°C
+70°C
+70°C
+70°C
7·50

-- -

---

~AOS02

(MC150Sf140S)
Series S-Bit Multiplying
Of A Converter

FAIRCHILD
A Schlumberger Company

Data Aquisition Products

Connection Diagram
16-Pin DIP

Description
The ILA0802, ILA0802A, ILA08028 , and
ILA0802C are monolithic 8-bit multiplying
Digital-to-Analog Converters constructed using the
Fairchild Planar Epitaxial process. It is designed for
use where the output current is a linear product of an
8-bit digital word and an analog input voltage. The
ILA0802 is specified for the military temperature range
(-55°C to +125°C) and the ILA0802A, ILA08028
and ILA0802C are specified for O°C to 70°C operation.
The ILA0802 series are pin-for- pin replacements for the
MC 1508 / 1408 and SSS 1408 devices.
•
•
•
•
•
•
•
•
•
•
•

VeelOUT

(MSB)

VREF(-

(Top View)

Order Information
Type
Package
ILAOS02
Ceramic DIP
ILAOS02A
Ceramic DIP
ILAOS02A
Molded DIP
ILAOS028
Ceramic DIP
ILAOS028
Molded DIP
ILAOS02C
Ceramic DIP
ILAOS02C
Molded DIP

l-'!.:!4hr-------,

VREF(-)

16

COMP

REFERENCE
CURRENT
AMPLIFIER

15

Code
68
68
98
68
98
68
98

Part No_
ILA0802DM
ILA0802ADC
ILA0802APC
ILAOS028DC
ILAOS028PC
ILAOS02CDC
ILA0802CPC

Additional Order Information
Relative
Temperature
Type
Range
Accuracy
ILAOS02
(MC 150SL -S)
-55°C to +125°C ±0.19%
ILAOS02A
±0.19%
(MC140SL-S)
O°C to +70°C
ILAOS028
±0.39%
(MC140SL-7)
O°C to +70°C
ILA0802C
±0.7S%
(MC 140SL-6)
O°C to +70°C

GND

Vcc~

(LSB)

As

1

'3

A,

A6

Equivalent Circuit

R-2R LADDER

COMP

GND

RELATIVE ACCURACY ± 0_ 1% ERROR
MAXIMUM ILA0802H
RELATIVE ACCURACY ±0_19% ERROR
MAXIMUM ILA0802, ILA0802A
7 AND 6-BIT ACCURACY AVAILABLE
ILA0802B,ILA0802C
FAST SETTLING TIME TO 1/2 LSB-85 ns
NON-INVERTING DIGITAL INPUTS ARE TTL AND
CMOS COMPATIBLE
OUTPUT VOLTAGE SWING +0_5 V to -5_0 V
HIGH-SPEED MULTIPLYING INPUT SLEW RATE
4_0 mAIlls
STANDARD SUPPLY VOLTAGES +5_0 V AND
-5_0 V TO -15 V
LOW FULL SCALE CURRENT DRIFT
+10 PPM/oC TYPICALLY
LOW POWER CONSUMPTION 33 mW @ ± 5 V
LOWCOST

RANGE
CONTROL

16

RANGE
CONTROL

-Vcc.CURRENT SOURCE PAIR

7-51

•

~A0802

=

Absolute Maximum Ratings

Electrical Characteristics
Symbol
Er

Operating Temperature Range

TA
+25°C unless
otherwise noted
5.5 V
-16.5 V

Vee+
VeeDigital Input Voltage
(5 V to 12 V)
Applied Output Voltage
Reference Current (114)
Reference Amplifier Inputs
(V14, V15)

Series

~A0802

-55°C to +125°C

~A0802A, ~A0802B,
~A0802C

O°C to +70°C

Storage Temperature Range
Pin Temperatures
Ceramic DIP
(Soldering, 60 s)
Molded DIP (Soldering, 10 s)

+5.5 "
0.5 V to -5.2 V
5.0 mA

300°C
260°C

5.5 V, -16.5 V
Vee+ = +5.0 V, Vee- = -15 V, VREF/R14 = 2.0 mA,
All digital inputs at HIGH logic level.

Characteristic

Figure

Relative Accuracy (Error Relative to Full Scale 10)

3

Min

~A0802

Typ

Max

Unit
%

~A0802,~A0802A
~A0802B (Note 1)
~A0802C (Note 1)

±0.19
±0.39
±0.78

ts

Setting Time to Within ~ LSB
(includes tpLH) (T A +25°C) ( Note 2)

=

= +25°C

4

85

135

4

30

100

tpLH, tpHL

Propagation Delay Time TA

TClo

Output Full Scale Current Drift
Digital Input Logie Levels (MSB)
HIGH Level, Logie "1"
LOW Level, Logic "0"

2

VIH
VIL

2

IIH
IlL

Digital Input Current (MSB)
HIGH Level, VIH - 5.0 V
LOW Level, VIL - 0.8 V

115

Reference Input Bias Current (Pin 15)

2
2

lOR

Output Current Range
Vee = -5.0 V
Vee = -6.0 to -15 V

10

Output Current
VREF = 2.000 V, R14 = 1000 Q

2

10(min)

Output Current (All bits LOW)

2
2

Va

Output Voltage Compliance
(Er.:5 0.19% at T A +25°C)
Vee-5 V
Vee- below -10 V

SR IREF
PSRR(-)

Reference Current Slew Rate

5

lee+
lee-

Power Supply Current
(All bits LOW)

2

VeeR+
VeeR-

Power Supply Voltage Range
(TA = +25°C)

2
2

PD

Power Dissipation
All bits LOW
Vee-5.0 V
Vee- = -15 V
All bits HIGH
Vee- = -5.0 V
Vee-15 V

=

TA = -55°C to 125°C.

ns
ns
PPMloC

±20

V
2.0
0.8

=

mA
0
-0.4

0.04
-0.8

-1.0

-5.0

~A

0
0

2.0
2.0

2.1
4.2

mA

1.9

1.99

2.1

mA
mA

0

4.0

~A

V
-0.55, +0.4
-5.0, +0.5
4.0

Output Current Power Supply Sensitivity

+4.5
-4.5

=

0.5

2.7

~A!V

+13.5
-7.5

+22
-13.0

mA

+5.0
-15

+5.5
-16.5

V
mW

105
190
90
160

=

Notes
1. All current switches are tested to guarantee at least 50% of
rated output current.

2. All bits switched.

7·52

mA//.Ls

170
305

JLA0802 Series
Test Circuits
Fig. 1

Notation Definitions
Vee

lice I
13

Notes
Typical Values' R14 = R15 = 1 k

t

t

-

VREF = +20 V
C = 15 pF

I"

A,

"

A2
A3
DIGITAL
INPUTS

A,

MA0802
SERIES

As

-

,.

VREF(-)

R1'

V 1 and 11 apply to Inputs Al thru AS

"s

R1'

Vo

11

M

A8

The resistor tied to pin 15 IS to temperature compensate the bias
current and may not be necessary for all applications.

10

A6

OUTPUT

12

10 = K [

.-

+

+h

V'i

AI

A3

A5

A6

A7

32 + 64 + "'i28 +

+

Icc-t

A2

A4

"'2 + 4"' + ""'8 + 16
AS
256

J

VREF

Vcc-

where K '"

""R'i'4

and AN = "1" If AN is at HIGH level
AN = "0" If AN IS at LOW level

Fig. 2

Relative Accuracy Test Circuit
MSB
A,
A2
A3
A4
As

-

A6

-

12-81T
D/A
CONVERTER
(±O.02 %)
ERROR MAX)

!..!£..+10 V OUTPUT
5k

A,

-

A8
A9 Ai0A11 A12

LSB
VREF

100

I I I I
=2 V
1

W 101 • F

950
R1'

MSB

,.

vy+
13

5
6
7
8

8-BIT COUNTER

9

MA0802
SERIES

to

11

12

LS:k!~11
Vcc-

7-53

~

50 k

e-~
:A714

-=-

ERROR
(1 V= 1%)

~A0802

Series

Test Circuits (Cont.)
Fig. 3

Transient Response and Settling Time

24V
•.4Vt==q..________
2.V

Ycc+

+2.0 V

1.4 V
+~==

tr = ti::; 10 ns

0.1

,.

~F

SETTLING TIME
FOR FIGURE 4

~A0802

FOR SETTLING TIME

SERIES

MEASUREMENT.
(ALL BITS SWI1CHES
LOW TO HIGH)

'"

. 16

Is = 300 ns TYPICAL
TO :t1/2 LBS

Your

12

5.1 + - - - l l f -......- - - -.. 15 pF

-=

TRANSIENT
RESPONSE

1_ co:;; 25 pF

RL = 50!l
PIN 4 TO GND

mV -100

- L'PLH

0.1 ;.tF
VCC~

Applications
• Tracking aId Converters
• Successive Approximation aId Converters
• 2 1/2 Digit Panel Meters and DVMs
• Waveform Synthesis
• Sample and Hold
• Peak Detector
• Programmable Gain and Attenuation
• CRT Character Generation
• Audio Digitizing and Decoding
\.. Programmable Power Supplies
"'iI Analog·Digital Multiplication
• Digital·Digital Multiplication
• Analog-Digital Division
• Digital Addition and Subtraction
• Speech Compression and Expansion
• Stepping Motor Drive
Fig. 1

USE RL TO GND FOR
TURN OFF
MEASUREMENT

Positive VREF
Vcc+
R14 '" R15

(+)

VREF

..l"\..

Vcc-

7-54

~A0802

Series

Applications (Cont.)
Use with Current-to-Voltage Converting
OPAMP

Fig. 3

20Vdc
R14 "" R15 "" 1 0 kJl
Ro -= SO kn

VREF =

Vee'

MSB

A,

13

5

,.

VREF

R1'

A2
A3
A,
As
As
A,
As

,.

/-IA0802
SERIES

Ro

Adjust VREF R14 or RO so that
level is equal to 9.961 Volts.

11
12
Vo

LSe

V

o

=

3.Y...
1k

(5

Vo with

kl...!. + ...!. + ...!. + ....!...
L2

4

8

+....!...+....!...+ _1_+ _1_1
32

VCC~

64

128

= 10V 255 = 9.961 V
256

7-55

256J

16

all digital inputs at HIGH

FAIRCHILD
A Schlumberger Company

;

"

Telecommunications

- ....

,'

8-2

JLA3680 Quad
Telephone Relay Driver

FAIRCHIL.O
A Schlumberger Company

Telecommunication Products
Description
The 3680 relay driver is a monolithic integrated circuit
designed to interface -48 V relays to TTL or other
logic systems in telephony applications. The device
has a 50 mA source capability and operates from
-48 V battery power. The quad configuration
increases board density in typical line card
applications. Since there can be considerable noise
and IR drop between logic ground and battery ground,
these drivers are designed to operate with a high
common-mode range (± 20 V referenced to battery
ground~. Also, each driver has common-mode range
sepafn\te from the other drivers in the package. low
differ.ential input current (typically 100 p,A) draws low
power from the driving circuit. Differential inputs
permit either inverting or non-inverting operation. A
clamp network is incorporated in the driver outputs,
eliminating the need for an external network to quench
the high voltage inductive backswing caused when the
relay is turned off. A fail-safe feature is incorporated
to insure that the driver will be off if the VIN+ input or
both inputs are open. Standby power (driver off) is
very low, typically 50 p,W per driver.

Connection Diagram
14-Pin DIP

A+

BAT NEG
Input Voltage
(BAT NEG ~ -50 V)
Differential Input Voltage
(VIN+ - VIN-)
Output Current (ll :::; 5 H)
Output Current (Rl)
Power Dissipation
(85°C still air with package
soldered in PC board)
Ceramic DIP
Molded DIP
Pin Temperature (soldering)
Ceramic DIP (60 s)
Molded DIP (10 s)
Storage Temperature

A-

AOUT

B-

BOUT

B+
c+

COUT
DOUT

c-

BAT NEG

D+

D-

(Top View)

Order Information
Type
Package
p,A3680
Ceramic DIP
p,A3680
Molded DIP

• -48 V BATTERY OPERATION
• 50 mA OUTPUT CAPABILITY
• TTL/CMOS-COMPATIBLE COMPARATOR INPUT
• HIGH COMMON-MODE INPUT VOLTAGE RANGE
• VERY LOW INPUT CURRENT
• FAIL-SAFE DISCONNECT FEATURE
• BUILT-IN OUTPUT CLAMP DIODE
Absolute Maximum Ratings

BATGND

Code
6A
9A

Part No.
p,A3680DC
p,A3680PC

Logic Diagram

A+=C>-

AOUT

A-

(Notes 1 and 2)
Max
Min
+0.5 V
-70 V
+20 V
BAT NEG -0.5 V

B+=C>c+=C>-

±20 V
50 mA
100 mA

BOUT

B-

COUT

c-

D+=C>-

650 mW
930mW

D-

300°C
260°C
-65°C to +150°C

Notes on following pages.

8·3

DOUT

•

}1A3680
Circuit Schematic (1 /4 of circuit shown)

...----..--......--..---- ~~~

R1
VIN+

-_t_--"">/\r----,

VIN-

-+---..--C

05

06

06

07
R6

Vour

03
R3

L-_ _

Electrical Characteristics

~-~---~~----------~-:~~

Over Recommended Operating Conditions unless specified otherwise.
Typical values for BAT NEG = -52 V, and TA = 25°C.
Min

Conditions

Typ

Max

Unit

1.3

2.0

V

Symbol

Characteristic

VIH

Logic "1" Differential Input
Voltage

VIL

Logic "0" Differential Input
Voltage

IINH

Logic "1" Input Current

IINL

Logic "0" Input Current

VOL

Output On Voltage

IOFF

Output Leakage

IFS

Fail-Safe Output Leakage

= 2 V, VIN- = 0
= 7 V, VIN- = 0
VIN+ = 0.4 V, VIN- = 0
VIN+ = -7 V, VIN- = 0
IOL = 50 mA
VOUT = BAT NEG
VOUT = BAT NEG (Inputs open)

ILC

Output Clamp Leakage
Current

VOUT

Vc

Output Clamp Voltage

Vp

Positive Output Clamp Voltage

ICLAMP = -50 mA, Referenced to
BAT GND

0.9

1.2

IB(ON)

Supply Current

All drivers On

-2

-4.4

mA

IB(OFF)

Supply Current

All drivers Off

-1

-100

IlA

tpD(ON)

Propagation Delay to
Driver On

L

= 1H, RL = 1k, VIN = 3 V pulse

1

10

IlS

Propagation Delay to
tpD(OFF) Driver Off

L

= 1H, RL = 1k, VIN = 3 V pulse

1

10

IlS

0.8

40
375

VIN+
VIN+

= BAT GND
ICLAMP = +50 mA, Referenced to
BAT NEG

Notes
1. Absolute Maximum Ratings are those values beyond which the
safety of the device cannot be guaranteed. Except for
operating temperature range, they are not meant to imply that

1.3

-2.1

-1.2

V
100
1000

Il A
IlA

+0.01 +5
-1
-100

IlA
IlA

-1.6

V

+2

+100

IlA

+2

+100

IlA

-2

-100

IlA

-0.9

V
V

the device should be operated at these limits. The electrical
characteristic table includes conditions for actual device
operation.
2. All voltages are with respect to BAT GND.
8-4

~A3680
Recommended Operating Conditions
Characteristic

Min

Max

Unit

Battery Voltage (BAT NEG)

-60

-10

V

Input Voltage

-10

+10

V

Logic On Voltage (VIN+ - VIN-)

+10

V

Logic Off Voltage (VIN+ - VIN-)

+2
-10

+0.8

V

Temperature Range

-25

+85

°C

DC Test Circuit

t
liN

VIN

9

BAT NEG

-52 V

8·5

•

JLA3680
AC Test Circuit and Waveforms

r--r:::,

1
1 13

VIN {

~-+~----~--Vo

--_--=..,,-1

=1k

RL

L = 1H

L _ _ _ _ ...l
9
BAT NEG

-52 V

" d
ov

\

~------------------~

+3V

I-

I

__

I

tpd(on)

__

,:~",,}C
-52V

'--f---tPd-(O-ff)-

'\~

•

-

Typical Applications
+5V

i--'~-i
11

...::;

1

10-----'-1--1

113

2

1
1

1

114 "A3680

1

1

L ____ -.J
9
~---------'

-48 V

8-6

---r
L

48 VRELAyi
COIL.
50 mAo MAX

JLA5116
JL255-Law Companding
Codec

FAIRCHILD
A Schlumberger Company

Telecommunication Products

Description
The 5116 is a monolithic CMOS Companding Codec
containing both an analog-to-digital converter and a
digital-to-analog converter which have transfer
characteristics conforming to the ~255-Law
companding code. This device performs a coderdecoder function designed to meet the needs of the
telecommunications industry for per-channel voicefrequency codecs used in PCM systems. Digital input
and output are in serial format using sign-plusmagnitude coding. Actual transmission and reception
of a-bit data words containing the analog information
is done at a 64 kb / s to 2.1 Mb / s rate with analog
signal sampling occurring at an a kHz rate. A SYNC
pulse input is provided for synchronizing transmission
and reception of multichannel information being
multiplexed over a single transmission line.
•
•
•
•
•
•
•
•

Connection Diagram
16-Pin DIP
16

ANALOG
INPUT

VREF(+)

15

v+

VREF(-)

14

ANALOG
13 GROUND
ANALOG
12 OUTPUT
DIGITAL
INPUT
11
DIGITAL
GROUND
10 RCV
_ CLOCK
9
RCV
SYNC

vNC
MASTER 5
CLOCK
XMIT
SYNC
XMIT
CLOCK
DIGITAL
OUTPUT

EXCEEDS 03 CHANNEL BANK SPECIFICATIONS
LOW POWER DISSIPATION 30 mW TYPICAL
SYNCHRONOUS/ASYNCHRONOUS OPERATION
ON-CHIP S/H CIRCUIT
ON-CHIP OFFSET NULL CIRCUIT
SEPARATE ANALOG AND DIGITAL GROUNDS
64 kb/s to 2.1 Mb/s SERIAL DATA RATE
±5V POWER SUPPLY OPERATION

(Top View)

Order Information
Type
Package
~A5116
Ceramic DIP
~A 5116
Ceramic DIP
(Side Brazed)

Code

Part No.
DC

FW

~A5116

FB

~A5116

JC

Block Diagram
TRANSMIT (ENCODE)

•

RECEIVE (DECODE)

CONTROL

8-13
BIT
DIGITAL
COMPANDER

ENe/DEC
SWITCHES

DIGITAL
INPUT
ENe/DEC

CONTROL
DIGITAL
OUTPUT

TRANSMIT
CLOCK

6
TRANSMIT
SYNC

5
MASTER
CLOCK

PIn 4 = not connected

8-7

1.
RECEIVE
CLOCK

9
RECEIVE
SYNC

JLA5116
Absolute Maximum Ratings (Note)
Supply Voltage (V+)
+6
Supply Voltage (V-)
-6
Analog Input Range
V- :5 VIN :5 V+
Digital Input Range
-0.5 V :5 VIN :5 V+
Reference Voltage
VREF(+)
-0.5 V :5 VREF (+) :5 V+
Reference Voltage
V- :5 VREF(-) :5 0.5 V
VREF(-)
Operating Temperature
O°C to 70°C
Range
Storage Temperature
Range
-65°C to +125°C
Pin Temperature
260°C
(Soldering, 10 s)

Note
Stresses above those listed under" Absolute Maximum Ratings"
may cause permanent damage to the device. This is a stress
rating only and functional operation of the device at these or any
other conditions beyond those indicated in the operational
sections of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability. Standard CMOS handling procedures should be
employed to avoid possible damage to device.

Functional Description (Refer to Block Diagram)

edge of XMIT Clock, XMIT SYNC will determine
when the first positive edge of the internal clock will
occur. In this event, the hold time for the first clock
pulse is measured from the positive edge of
XMIT SYNC.

Positive and Negative Reference Voltages,
(VREF(+) and VREF(-) Pins 16 and 15)
These inputs provide the conversion references for
the digital-to-analog converters in the 5116. VREF(+)
and VREF(-) must maintain 100 ppM/oC regulation
over the operating temperature range. Variation of the
reference directly affects system gain.

RCV SYNC, Pin 9 (Refer to Figure 3 for the Timing
Diagram)
This input is synchronized with RCV Clock, and serial
data is clocked in by RCV Clock. Duration of the RCV
SYNC pulse is approximately eight RCV Clock
periods. The conversion from digital-to-analog starts
after the negative edge of RCV SYNC pulse (refer to
Figure 6). The negative edge of RCV SYNC should
occur before the 9th positive clock edge to insure that
only eight bits are clocked in. RCV SYNC must stay
LOW for 17 Master Clocks (minimum) before the next
digital word is to be received (Refer to Figure 11).

Analog Input, Pin 1
Voice-frequency analog signals which are bandwidthlimited to 4 kHz are input at this pin. Typically, they are
then sampled at an a kHz rate (Refer to Figure 6). The
Analog Input must remain between VREF(+) and
VREF(-) for accurate conversion.
Master Clock, Pin 5
This signal provides the basic timing and control
signals required for all internal conversions. It does
not have to be synchronized with RCV SYNC, RCV
Clock, XMIT SYNC or XMIT Clock and is not internally
related to them.
XMIT SYNC, Pin 6 (Refer to Figure 2 for the Timing
Diagram)
This input is synchronized with XMIT Clock. When
XMIT SYNC goes HIGH, the Digital Output is activated
and the AID conversion begins on the next positive
edge of Master Clock. The conversion by Master
Clock can be asynchronous with XMIT Clock. The
serial output data is clocked out by the positive edges
of XMIT Clock. The negative edge of XMIT SYNC
causes the Digital Output to become 3-state. XMIT
SYNC must go LOW for at least 1 Master Clock prior
to the transmission of the next digital word. (Refer to
Figure 10.)

RCV Clock, Pin 10 (Refer to Figure 3 for Timing
Diagram)
The on-chip a-bit shift register for the 5116 is
loaded at the clock rate present on this pin. Clock
rates of 64 kHz to 2.1 MHz can be used for RCV Clock.
Valid data should be applied to the digital input before
the positive edge of the internal clock (refer to
Figure 7). This set-up time, trds allows the data to be
transferred into the Master of a' master-slave flip-flop.
The positive edge of the internal clock transfers the
data to the slave of the master-slave flip-flop. A hold
time, trdh, is required to complete this transfer. If
the rising edge of RCV SYNC occurs after the first
riSing edge of RCV Clock, RCV SYNC will determine
when the first positive edge of internal clock will
occur. In this event, the set-up and hold times for the
first clock pulse should be measured from the positive
edge of RCV SYNC.

XMIT Clock, Pin 7 (Refer to Figure 2 for the Timing
Diagram)
The on-chip a-bit output shift register of the 5116 is
unloaded at the clock rate present on this pin. Clock
rates of 64 kHz to 2.1 MHz can be used for XMIT
Clock. The positive edge of the internal clock
transfers the data from the master to the slave of a
master-slave flip-flop (refer to Figure 7). If the
positive edge of XMIT SYNC occurs after the positive

Digital Output, Pin 8
The 5116 output register stores the a-bit encoded
sample of the Analog Input. This a-bit word is shifted
out under control of XMIT SYNC and XMIT Clock.
When XMIT SYNC is LOW, the Digital Output is an
open circuit. When XMIT SYNC is HIGH, the state of
the Digital Output is determined by the value of the
output bit in the serial shift register. The output is
composed of a sign bit, 3 chord bits, and 4 step bits.
8-8

,uA5116
The sign bit indicates the polarity of the Analog Input
while the chord and step bits indicate the magnitude.
In the first chord, the step bit has a value of 0.6 mV. In
the second chord, the step bit has a value of 1.2 mV.
This doubling of the step value continues for each of
the next six successive chords.

Table 1
1.
2.
3.
4.
5.
6.
7.
8.

Each chord has a specific value and the step bits,
16 in each chord, specify the displacement from that
value (refer to Table 1. Thus the output, which
follows the J.L255-Law, has resolution that is
proportional to the input level rather than to full
scale. This provides the resolution of a 12-bit a / d
converter at low input levels and that of a 6-bit
converter as the input approaches full scale. The
transfer characteristic of the a / d converter (J.L255-Law
Encoder) is shown in Figure 8.

Digital Output Code for 5116

Chord Code

Chord Value

Step Value

000
001
010
011
100
101
110
111

0.0 mV
10.11 mV
30.3 mV
70.8 mV
151.7 mV
313 mV
637 mV
1.284 V

0.613 mV
1.226 mV
2.45 mV
4.90 mV
9.81 mV
19.61 mV
39.2 mV
78.4 mV

Example:
1
011
Sign Bit Chord

0010 = +70.8 mV + (2 x 4.90 mV)
Step Bits

If the sign bit were a zero, then both plus signs would
be changed to minus signs.

Digital Input, Pin 12
The 5116 input register accepts the 8-bit sample of an
analog value and loads it under control of RCV SYNC
and RCV Clock. The timing diagram is shown in Figure
3. When RCV SYNC goes HIGH, the 5116 uses RCV
Clock to clock the serial data into its input register.
RCV SYNC goes LOW to indicate the end of serial
input data. The eight bits of the input data have the
same functions described for the Digital Output. The
transfer characteristic of the d / a converter (J.L255-Law
Decoder) is shown in
Figure 9.
Analog Output, Pin 13
The Analog Output is in the form of voltage steps
(100% duty cycle) having amplitude equal to the
analog sample which was encoded. This waveform
is then filtered with an external low-pass filter with
(sin x) / x correction to recreate the sampled
voice signal.

•

Operation of Codec With 64 kHz XMIT IRCV
Clock Frequencies
XMIT / RCV SYNC must not be allowed to remain at a
logic "1" state. XMIT SYNC is required to be at a logic
"0" state for one Master Clock period (minimum)
before the next digital word is transmitted. RCV SYNC
is required to be at a logic "0" state for 17 Master
Clock periods (minimum) before the next digital word
is received (refer to Figures 10 and 11).
Offset Null
The offset null feature of the 5116 eliminates longterm drift errors and conversion errors due to
temperature changes by going through an offset
adjustment cycle before every conversion, thus
guaranteeing accurate a / d conversion for inputs near
ground. There is no offset adjust of the output
amplifier since the output is intended to be ac-coupled
to the external filter and the resultant dc error
(VOFFSET /0) will have no effect. The sign bit is not
used to null the Analog Input. Therefore, for an Analog
Input of 0 V, the sign bit will be stable.

8-9

J.LA5116
Electrical Operating Characteristics
Power Supply Requirements
Symbol

Characteristic

Min

Typ

Max

Unit

V+

Positive Supply Voltage

4.75

5.0

5.25

V

V-

Negative Supply Voltage

-5.25

-5.0

-4.75

V

VREF(+)

Positive Reference Voltage (Note 1)

2.375

2.5

2.625

V

VREF(-)

Negative Reference Voltage (Note 1)

-2.625

-2.5

-2.375

V

Max

Unit

DC Characteristics

V+

= 5 V. V- = -5 v. VREF(+) = 2.5 V. VREF (-) = -2.5 V.

Characteristic

R,NAS

Analog Input Resistance During
Sampling (Note 2)

2

R'NANS

Analog Input Resistance Non-Sampling

100

C'NA

Analog Input Capacitance

150

250

VOFFSETII

Analog Input Offset Voltage

±1

±8

mV

ROUTA

Analog Output Resistance

20

50

n

IOUTA

Analog Output Current

VOFFSET/O

Analog Output Offset Voltage

±200

±850

mV

IlL

Logic Input LOW Current (V,N = 0.8 V)
Digital Input, Clock Input. SYNC Input
(Note 3)

±0.1

±10

/LA

I'H

Logic Input HIGH Current (V,N = 2.4 V)
Digital Input. Clock Input, SYNC Input
(Note 3)

-0.25

-0.8

mA

COO

Digital Output Capacitance

8

12

pF

±0.1

±10

/LA

IDOL

Digital Output Leakage Current

VOL

Digital Output LOW Voltage (Note 4)

VOH

Digital Output HIGH Voltage (Note 4)

1+

Min

Typ

Symbol

0.25

kn
Mn

0.5

pF

mA

0.4

V
V

3.9

Positive Supply Current

4

10

1-

Negative Supply Current

2

6

mA

IREF+

Positive Reference Current

4

20

/LA

IREF-

Negative Reference Current

4

20

/LA

8-10

mA

JLA5116
AC Characteristics

Refer to Figures 2 and 3.

Symbol

Characteristic

Min

Typ

Max

Unit

fm

Master Clock Frequency

1.5

1.544

2.1

MHz

fr, fx

RCV, XMIT Clock Frequency

0.064

1.544

2.1

MHz

PWclk

Clock Pulse Width (MASTER, XMIT, RCV)

200

trc, tfc

Clock Rise, Fall Time (MASTER, XMIT, RCV

25% of
PWclk

ns

t rs , tfs

SYNC Rise, Fall Time (XMIT, RCV)

25% of
PWclk

ns

tOlr, tOlf

Data Input Rise, Fall Time

25% of
PWclk

ns

ns

twsx, twsr

SYNC Pulse Width (XMIT, RCV)

8
fx(fr)

tps

SYNC Pulse Period (XMIT,RCV)

125

hcs
t xcsn

XMIT Clock-to-XMIT SYNC Delay (Note 5)
XMIT Clock-to-XMIT SYNC

ILs
ILS

50% of
tfcCtrs)

ns

200

ns

(Negative Edge) Delay
t xss

XMIT SYNC Set-Up Time

200

txdd

XMIT Data Delay (Note 4)

0

200

ns
ns

txdp

XMIT OAT A Present (Note 4)

0

200

ns

txdt

XMIT Data Three State (Note 4)

150

ns

tdof

Digital Output Fall Time (Note 4)

50

ns

tdor

Digital Output Rise Time (Note 4)

50

ns

RCV SYNC-to-RCV Clock Delay (Note 5)

50%
trcCtfs)

trds

RCV Data Set-Up Time (Note 6)

50

ns

trdh

RCV Data Hold Time (Note 6)

200

ns

trcs

RCV Clock-to-RCV SYNC Delay

200

ns

trss

RCV SYNC Set-Up Time (Note 6)

200

tsao

RCV SYNC-to-Analog Output Delay

7

Slew+

Analog Output Positive Slew Rate

1

Slew-

Analog Output Negative Slew Rate

1

ILS
V/ILS
V/ILS

Droop

Analog Output Droop Rate

25

ILV IllS

tsrc

Notes
1. +VREF and -VREF must be matched within ± 1% in order
to meet system requirements.
2. Sampling is accomplished by charging the internal capacitor to
within 1/2 LSB (::s 300 /LV) in 20 /Ls. Therefore, the external
source resistance must be 3 kO or less. The equivalent circuit
during sampling is shown in Figure 1.
3. The 5116 will source current through an internal 6 kO
resistor to help pull up the TTL output. When a transition from a

ns

ns

"1" to a "0" takes place, the user must sink the "1" current
until reaching the "0" level.
4. Driving one 74L or 74LS TTL load plus 30 pF with
IOH = -100 /LA, IOL = 500/LA.
5. This delay is necessary to avoid overlapping Clock and SYNC.
6. The first bit of data is loaded when SYNC and Clock are both
"1" during bit time 1 as shown on RCV timing diagram.

8·11

•

pA5116
System Characteristics

Refer to Figures 4 and 5

Symbol

Characteristic

Min

Typ

SID

Signal-to-Distortion

35
29
24

39
34
29

GT

Gain Tracking

NIC
TLP
Fig. 1

Max

Unit

Condition

dB
dB
dB

Analog Input
Analog Input
Analog Input

±0.1
±0.1
±0.2

±0.4
±0.8
±2.5

dB
dB
dB

Idle Channel Noise

10

18

dBrnCO

= 0 to -30 dBmO
= -40 dBmO
= -45 dBmO
Analog Input = +3 to -37 dBmO
Analog Input = -37 to -50 dBmO
Analog Input = -50 to -55 dBmO
Analog Input = 0 V

Transmission Level Point

+4

dB

600 fl

Equivalent Circuit During Sampling
CODEC

SAMPLE
SOURCE
1 GATE
RES'STANcer RESISTANCE

~3k

L

~5k

I

150 OFt

Fig. 2

Transmitter Section Timing

2.4 V
1.4 V

INITIAL DATA
NOT VALID

~--------------------~v~----------------------~
PCM DATA PRESENT

Note
All rise and fall times are measured from 0.4 V and 2.4 V. All delay
times are measured from 1.4 V.

8·12

~A5116
Fig. 3

Receiver Section Timing

RCV

SYNC

.:A~N~A~L~O~G~O~U~T;P~U~T

______________________________________________________________________________________________

~~
\.

Note
All rise and fall times are measured from 0.4 V and 2.4 V. All delay
times are measured from 1.4 V.

Fig. 4

SID Ratio vs Input Level

Fig. 5

Gain Tracking Performance

0

4

0

3

I 60

2

'l!
z
o

;:: 5 0

a:

o

Iii

1i
o

.

I-

....

'3l-J-

+1

1 --'05

42 40

42
40

40

3h

~9----,

30
3i

~ 2Of-

~

t- 03

iii

"z
..g 0 t-- tFi'---':2f'

51161--t--

::t<34

2

CHANNEL BANK

a:

I-

Z

......"""23

r;;

"

SPECIFICATIONS

0

-10

-20

-30

-os

-2

r

g~ANNEt BANIK

01_

-01

~,;\l

,L t--t-5116-

Spr'FlrTIOr
-3

-3

0

+3 0

1

;;:

N5-

-40

-50

t--

I

4

-60

+'0

INPUT LEVEL - dBmO

-10

-20

-30

-40

INPUT lEVEL - dBmO

8-13

50

-60

-70

•

~A5116
Fig.6

AID, DIA Conversion Timing

~

~------------------------------------------_125"'------------------------------------."i~

_

1-

:;SYNC \ ' - - -_ _ _ _ _ _

"" 15-20 IJ.I
SAMPLE AND HOLD
SAMPLE TIME
• 32 MASTER CLOCKS

ENABLE SAA

SAR
CONTINUES

SAR REQUIRES
• 128 MASTER CLOCKS

----------------/

Rev SYNC

----------------------------~/
Fig.7

Data Input/Output Timing

Fig. 8

I~ 200 n.~
REQUIRED FOR DATA TO TRANSFER
• - FROM MASTER TO SLAVE

XMIT
INTERNAL
CLOCK

I

I!!

::>

I!:

\/VALIDDATA

_I

-..,

~-~200n.
~.

AID Converter (J,£255-Law Encoder)
Transfer Characteristic for 5116
11111111
11110000
11100000
11010000
11000000
10110000

,,-

10100000
10010000

5..J ~-00000000 00010000

REQUIRED TO TRANSFER DATA
FROM MASTER TO SLAVE

j!

S

==~I~~----==~~~-

1...-50 na

ANALOG OUTPUT UPDATED

REQUIRED TO LOAD MASTER

00100000
0011 0000
01000000
01010000
01100000
011100bO

VALID INCOMING DATA

01111111

5116

DIGITAL
OUT
XMIT SYNC
XMIT CLOCK

DIGITAL IN
RCV SYNC
RCV CLOCK

8-14

./

-

ANALOG INPUT

f-""

JLA5116
Flg.9

D/A Converter (1'255·Law Decoder)
Transfer Characteristic for 5116
F

II
+O.5VREF

IJ

/

V
II

DIGITAL INPUTS

Fig. 10 64 kHz Operation, Transmitter Section Timing
~1·~-------------------------------------125"·----------------------------------~·~1________

~

:::JI
XMIT

---.J
I

-1

~PWClk

,----

1 MASTER
CLOCK
PERIOD
(MIN)

WORD)

~--------------------------~v~--------------------------------~
PCM DATA PRESENT

Note
All rise and fall times are measured from 0.4 V and 2.4 V. All delay
times are measured from 1.4 V.

8-15

•

ILA5116
Fig. 11

64 kHz Operation, Receiver Section Timing

\"".o--______________

u
--.j.\

'2$.S _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

i---

::J

I

'7 MASTER
CLOCK PERIODS~
(MIN)

~

Note
All rise and fall limes are measured from 0.4 V and 2.4 V. All delay
limes are measured from 1.4 V.

Performance Evaluation

When all the above requirements are met, the set-up
of Figure 12 permits the measurement of synchronous
system performance over a wide range of Analog
Inputs. The data register and ideal decoder provide a
means of checking the encoder portion of the 5116
independently of the decoder section. To test the
system in the asynchronous mode, Master Clock
should be separated from XMIT Clock, and Master
Clock should be separated from RCV Clock. XMIT
Clock and RCV Clock are separated also.

The equipment connections shown in Figure 12
can be used to evaluate the performance of the
5116. An analog signal provided by the HP3551 A
Transmission Test Set is connected to the Analog
Input (Pin 1) of the 5116. The Digital Output of the
codec is tied back to the Digital Input and the Analog
Output is fed through a low-pass filter to the HP3551 A.
Remaining pins of the 5116 are connected as follows:
1. RCV SYNC is tied to XMIT SYNC.
2. XMIT Clock is tied to Master Clock. The signal is
inverted and tied to RCV Clock.
The following timing signals are required:
1. Master Clock
2.048 MHz
2. XMIT SYNC repetition rate
8 kHz
3. XMIT SYNC width = 8 XMIT Clock periods

=

=

8·16

JlA5116
Fig. 12 System Characterlstlca Teat Configuration

-------,
I
1.004 kHz
SIGNAL
SOURCE

I
I
I

114 DIGITAL
INPUT
1

DIGITAL

8

IDEAL
DECODER
(NOTE)

DATA
REGISTER

OUTPUT

ANALOG
INPUT
ANALOG 13
OUTPUT

I
I
I

SYSTEM

5118

.\

JODER
ONLY

I

I
I
IL _ _ _ _ _

..,
I

I

:

1.004 kHz

NOUT -

L~

NOTCH
FILTER

FILTER

I

I
I

3851A

I
I

------------ I-...J
SOUT

+ NOUT

Note
The ideal decoder consists DI a digital decDmpander and a 13·bit
precIsion DAC

•

8·17

JLA5151
JL255-Law Companding
Codec

FAIRCHILD
A Schlumberger Company

Telecommunications Products
Connection Diagram
24-Pin DIP

Description
The 5151 is a monolithic CMOS Companding Codec
which contains two sections: (1) an analog-to-digital
converter which has a transfer characteristic
conforming to the standard 1'255 companding Law,
and (2) a digital-to-analog converter which also
conforms to the 1'255 companding Law.

OIGITAL
OUTPUT
XMIT
CLOCK
AlB SEL
(XMIT)
B SIGNAL
IN
A SIGNAL
IN

These two sections form a coder-decoder which is
designed to meet the needs of the telecommunications industry for per-channel voice-frequency codecs
used in 03 Channel Bank and PBX systems. Digital
input and output are in serial format. Actual
transmission and reception of a-bit data words
containing the analog information is done at a 64 kb/s
to 2.1 Mb/s rate with analog signal sampling occurring
at an a kHz rate. A SYNC pulse input is provided for
synchronizing transmission and reception of
multichannel information being multiplexed over a
single transmission line.

2

3
4

5
6

RCVSYNC
RCV 7
CLOCK
AlB SEL 8
(RCV)
A SIGNAL 9
OUT
B SIGNAL 10
OUT
DIGITAL 11
INPUT
DIGITAL 12
GROUND

• EXCEEDS D3 CHANNEL BANK SPECIFICATIONS
• LOW POWER DISSIPATION 30 mW TYPICAL
• SYNCHRONOUS/ASYNCHRONOUS OPERATION
• ON-CHIP S/H CIRCUIT
• ON-CHIP OFFSET NULL CIRCUIT
• SEPARATE ANALOG AND DIGITAL GROUNDS
• 64 kb/s TO 2.1 Mb/s SERIAL DATA RATE
• ZERO CODE SUPPRESSION
• ±5 V POWER SUPPLY OPERATION

(Top View)

Order Information
Type
Package
I'A~151
Ceramic DIP
I'A:5151
Ceramic DIP
(Side Brazed)

Code
7L

Part No.
I'A5151DC

7R

I'A5151JC

Block Diagram
TRAfIISMiT (ENCODE)

RECEIVE (DECODE)

CONTROL

8-13
BIT
DIGITAL
COMPANDER

,.
ANALOG
OUTPUT

11
DIGITAL
INPUT

A
g~G,!~~~_':t-

9

,.

_____-I

B SIGNAL
OUTPUT

A SIGNAL 5

INPUT-=t--<>"1---_ _ _--.J

B

s~:=~~

4

22

7

MASTER
CLOCK

Pins 15. 16, and 24

SIGNAL
OUTPUT

=not connected.
8·18

RECEIVE
CLOCK

6
RECEIVE
SYNC

8 AlB
SELECT

RECEIYE

J.LAi5151
Absolute Maximum Ratings (Note)
Supply Voltage (V+)
+6 V
-6 V
Supply Voltage (V-)
V- ::5 VIN ::5 V+
Analog Input Range
Digital Input Range
-0.5 V ::5 VIN ::5 V+
Reference Voltage
VREF(+)
-0.5 V ::5 VREF(+)::5 V+
Reference Voltage
VREF(-)
V- ::5 VREF(-) ::5 0.5 V
Operating Temperature
Range
O°C to 70°C
Storage Temperature
Range
-55°C to +125°C
Pin Temperature
(Soldering, 10 s)
260°C

Note
Stresses above those listed under" Absolute Maximum Ratongs"
may cause permanent damage to the device. This is a stress
ratong only and functional operation 01 the device at these or any
other conditions beyond those indicated in the operational
sections of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability. Standard CMOS handling procedures should be
employed to avoid possible damage to device.

Functional Description (Refer to Block Diagram)

XMIT Clock, XMIT SYNC will determine when the first
positive edge of the Internal Clock will occur. In this
event, the hold time for the first clock pulse is
measured from the positive edge of XMIT SYNC.

Positive and Negative Reference Voltages
(VREF(+) and VREF(-) Pins 19 and 18)
These inputs provide the conversion references for
the digital-to-analog converters in the 5151. VREF( +)
and VREF(-) must maintain 100 ppM/ °C regulation
over the operating temperature range. Variation of the
reference directly affects system gain.

RCV ISYNC, Pin 6 (Refer to Figure 3 for the
Timing Diagram)
This input is synchronized with RCV Clock, and
serial data is clocked in by RCV Clock. Duration of the
RCV SYNC pulse is approximately eight RCV Clock
periods. The conversion from digital-to-analog
starts after the negative edge of RCV SYNC pulse
(refer to Figure 6). The negative edge of RCV SYNC
should occur before the 9th positive clock edge to
insure that only eight bits are clocked in. RCV SYNC
must stay LOW for 17 Master clocks (minimum) before
the next digital word is to be received. (refer to Figure 11)

Analog Input, Pin 20
Voice-frequency analog signals which are bandwidthlimited to 4 kHz are input at this pin. Typically, they
are then sampled at an S kHz rate (Refer to Figure 6 ).
The analog input must remain between VREF(+) and
VREF(-) for accurate conversion.
Master Clock, Pin 22
This signal provides the basic timing and control
signals required for all internal conversions. It does
not have to be synchronized with RCV SYNC, RCV
Clock, XMIT SYNC or XMIT Clock and is not internally
related to them.

RCV Clock, Pin 7 (Refer to Figure 3 for
Timing Diagram)
The on-chip S-bit shift register for the 5151 is loaded
at the clock rate present on this pin. Clock rates of
64 kHz to 2.1 MHz can be used for RCV Clock. Valid
data should be applied to the Digital Input before
the positive edge of the internal clock (refer to
Figure 7). This set-up time, trds, allows the data to be
transferred into the master of a master-slave flip-flop.
The positive edge of the Internal Clock transfers the
data to the slave of the master-slave flip-flop. A hold
time, trdh, is required to complete this transfer. If the
rising edge of RCV SYNC occurs after the first rising
edge of RCV Clock, RCV SYNC will determine when
the first positive edge of Internal Clock will occur. In
this event, the set-up and hold times for the first clock
pulse should be measured from the positive edge of
RCV SYNC.

XMIT SYNC, Pin 23 (Refer to Figure 2 for the Timing
Diagram)
This input is synchronized with XMIT Clock. When
XMIT SYNC goes HIGH, the digital output is activated
and the a / d conversion begins on the next positive
edge of Master clock. The conversion by Master
Clock can be asynchronous with XMIT Clock. The
serial output data is clocked out by the positive edges
of XMIT Clock. The negative edge of XMIT SYNC
causes the digital output to become 3-state. XMIT
SYNC must go LOW for at least 1 master clock
prior to the transmission of the next digital word.
(Refer to Figure 10.)

Digital Output, Pin 1
The 5151 output register stores the S-bit encoded
sample of the analog input. This S-bit word is shifted
out under control of XMIT SYNC and XMIT Clock.
When XMIT SYNC is LOW, the Digital Output is an
open circuit. When XMIT SYNC is HIGH, the state of
the Digital Output is determined by the value of the
output bit in the serial shift register. The output is
composed of a sign bit, 3 chord bits, and 4 step bits.
The sign bit indicates the polarity of the Analog

XMIT Clock, Pin 2 (Refer to Figure 2 for the
Timing Diagram)
The on-chip S-bit output shift register of the 5151 is
unloaded at the clock rate present on this pin. Clock
rates of 64 kHz to 2.1 MHz can be used for XMIT
Clock. The positive edge of the Internal Clock
transfers the data from the master to the slave of a
If the positive
master-slave flip-flop (refer to Figure
edge of XMIT SYNC occurs after the positive edge of

n.

8-19

•
:

(RCV) routes the signal bit to A Signal Out while a
negative transition routes the signal bit (bit B) to B
Signal Out. Refer to Figure 12.

Input while the chord and step bits indicate the
magnitude. In the first chord, the step bit has a value
of 0.6 mY. In the second chord, the step bit has a
value of 1.2 mY. This doubling of the step value
continues for each of the six successive chords.

AlB SEL (RCV), Pin 8
This input routes the signalling bit, bit 8, either to A
Signal Out or to B Signal Out as described in the AlB
Signal Out paragraph above, and should be changed
only at the start of the 6th and 12th frames as shown
in Figure 13.

Each chord has a specific value and the step bits, 16
in each chord, specify the displacement from that
value (refer to Table 1). Thus the output, which follows
the /J255·Law, has resolution that is proportional to
the input level rather than to full scale. This provides
the resolution of a 12-bit a I d converter at low input
levels and that of a 6-bit converter as the input
approaches full scale. The transfer characteristic
of the aid converter (WLaw Encoder) is shown
in Figure 8.

AlB SEL (XMIT), Pin 3
This input selects either A Signal In or B Signal In as
described in the AlB Signal In paragraph above, and
should be changed only at the start of the 6th and
12th frames as shown Figure 13.
Offset Null
The offset null feature of the 5151 eliminates longterm drift errors and conversion errors due to
temperature changes by going through an offset
adjustment cycle before every conversion, thus
guaranteeing accurate a I d conversion for inputs
near ground. There is no offset adjust of the
output amplifier. Since the output is intended to be
ac-coupled to the external filter, the resultant dc error
(VOFFSET /0) will have no effect. The sign bit is not
used to null the Analog Input. Therefore, for an Analog
Input of 0 V, the sign bit will be stable.

Digital Input, Pin 11
The 5151 input register accepts the 8-bit sample of an
analog value and loads it under control of RCV SYNC
and RCV Clock. The timing diagram is shown in
Figure 3. When RCV SYNC goes HIGH, the 5151 uses
RCV Clock to clock the serial data into its input
register. RCV SYNC goes LOW to indicate the end of
serial input data. The eight bits of the input data have
the same functions described for the Serial Output.
The transfer characteristic of the d I a converter
(wLaw Decoder) is shown in Figure 9.
Analog Output, Pin 14
The Analog Output is in the form of voltage steps
(100% duty cycle) having amplitude equal to the
analog sample which was encoded. This waveform
is then filtered with an external low-pass filter
with (sin x) I x correction to recreate the sampled
voice signal. When the Bth bit of the word is a
signalling bit, it is assigned a value of 1/2 step. This
results in a lower system quantization error rate than
would result if the bit were arbitrarily set to 0 (no step)
or,1 (full step).

Table 1

\~

Operation of Codec With 64 kHz XMIT IRCV
Clock Frequencies
XMIT IRCV SYNC must not be allowed to remain at a
logic" 1" state. XMIT SYNC is required to be at a logic
"0" state for 1 master clock period (minimum) before
the next digital word is transmitted. RCV SYNC is
required to be at a logic "0" state for 17 master clock
periods (minimum) before the next digital word is
received (refer to Figures 10 and 11).

Digital Output Code: wLaw

Chord Code

Chord Value

Step Value

1.
2.
3.
4.
5.
6.
7.
B.

O.OmV
10.11 mV
30.3mV
70.8mV
151.7 mV
313 mV
637mV
1.284 V

0.613
1.226
2.45
4.90
9.81
19.61
39.2
7B.4

111
110
101
100
011
010
001
000

Example:
1
100
Sign Bit Chord

mV
mV
mV
mV
mV
mV
mV
mV

1101 = +70.8 mV + (2 x 4.90 mY)
Step Bits

If the sign bit were a zero, then both plus signs would

be changed to minus signs.

AlB Signal In, Pins 4 and 5
These two pins allow insertion of signalling information
into the transmitted data stream. The inserted
information occurs as the Bth bit (LSB) in the
transmitted word. A positive transition occurring on
A I B SEL (XMIT) selects A Signal In while a negative
transition selects B Signal In.
AlB Signal Out, Pins 9 and 10
These two pins are provided to output received
signalling information. A positive transition on AlB SEL

8-20

ILA5151
Electrical Operating Characteristics
Power Supply Requirements
Symbol

Characteristic

Min

Typ

Max

Unit

V+

Positive Supply Voltage

4.75

5.0

5.25

V

V-

Negative Supply Voltage

-5.25

-5.0

-4.75

V

VREF(+)

Positive Reference Voltage (Note 1)

2.375

2.5

2.625

V

VREF(-)

Negative Reference Voltage (Note 1)

-2.625

-2.5

-2.375

V

DC Characteristics
Symbol

V+

= 5.0 V, V- = -5.0 V, VREF(+) = 2.5 V, VREF (-) = -2.5 V.
Min

Characteristic

Typ

Max

Unit

RINAS

Analog Input Resistance During
Sampling (Note 2)

2

RINANS

Analog Input Resistance Non-Sampling

100

CINA

Analog Input Capacitance

150

VOFFSET/I

Analog Input Offset Voltage

±1

±8

mV

ROUTA

Analog Output Resistance

20

50

Q

kQ
MQ

250

pF

IOUTA

Analog Output Current

VOFFSET/O

Analog Output Offset Voltage

±200

±850

mV

III

Logic Input LOW Current (VIN = 0.8 V)
Digital Input, Clock Input, SYNC Input
(Note 3)

±0.1

±10

J.l.A

IIH

Logic Input HIGH Current (VIN = 2.4 V)
Digital Input, Clock Input, SYNC Input
(Note 3)

-0.25

-0.8

mA

0.25

mA

0.5

COO

Digital Output Capacitance

8

12

pF

IDOL

Digital Output Leakage Current

±0.1

±10

J.l.A

VOL

Digital Output LOW Voltage (Note 4)

0.4

V

VOH

Digital Output HIGH Voltage (Note 4)

1+

Positive Supply Current

4

10

mA

V

3.9

1-

Negative Supply Current

2

IREF+

Positive Reference Current

4

6
20

J.l.A

IREF-

Negative Reference Current

4

20

J.l.A

8-21

mA

..

•

JLA5151
AC Characteristics

Reier to Figures 2 and 3.

Symbol

Characteristic

Min

Typ

Max

Unit

1m

Master Clock Frequency

1.5

1.544

2.1

MHz

fr, Ix

RCV, XMIT Clock Frequency

0.064

1.544

2.1

MHz

PWeik

Clock Pulse Width (MASTER, XMIT, RCV)

200

tre , tie
t rs , tis
tdir, tdil

Clock Rise, Fall Time (MASTER, XMIT, RCV)

ns

SYNC Rise, Fall Time (XMIT, RCV)

25% 01
PWeik

ns

Digital Input Rise, Fall Time

25% 01
PWeik

ns

t wsx , twsr

SYNC Pulse Width (XMIT RCV)

tps

SYNC Pulse Period (XMIT,RCV)

t xes
t xesn

ns

25% 01
PWeik

8
jlS

Ix(fr)

125

XMIT Clock-to-XMIT SYNC Delay (Note 5)
XMIT Clock-to-XMIT SYNC

jlS

50% 01
tle(trs)

ns

200

ns

(Negative Edge) Delay
hss

XMIT SYNC Set-Up Time

200

txdd

XMIT Data Delay (Note 4)

0

200

ns

txdp

XMIT DATA Present (Note 4)

0

200

ns

150

ns

ns

txdt

XMIT Data Three State (Note 4)

tdol

Digital Output Fall Time (Note 4)

50

ns

tdor

Digital Output Rise Time (Note 4)

50

ns

tsre

RCV SYNC-to-RCV Clock Delay (Note 5)

50% 01
tre(tls)

trds

RCV Data Set-Up Time (Note 6)

50

ns

trdh

RCV Data Hold Time (Note 6)

200

ns

tres

RCV Clock-to-RCV SYNC Delay

200

ns

trss

RCV SYNC Set-Up Time (Note 6)

200

ns

7

ns

tsao

RCV SYNC-to-Analog Output Delay

tAIBI

AlB Signalling Input Set-Up Time

tAIB SH

AlB Select Hold Time

200

ns

tAIBSS

AlB Select Setup Time

400

ns

tAIBO

AlB Signalling Output Delay

200

Slew+

Analog Output Positive Slew Rate

1

V/jls

Slew-

Analog Output Negative Slew Rate

1

V I IlS

Droop

Analog Output Droop Rate

25

jlV/jls

jlS

200

Notes
1. +VREF and -VREF must be matched within ± 1% in order to
meet system requirements.
2. Sampling is accomplished by charging the internal capacitor to
within 1/2 lSB (:5 300 /lV) in 20 /lS. Therefore, the external
source resistance must be 3 kf! or less. The equivalent circuit
during sampling is shown in Figure 1.
3. The 5156 will source current through an internal 6 kf! resistor
to help pull up the TTL output. When a transition from" 1 " to "0"

300

ns

ns

takes place, the user must sink the" 1" current until reaching
the "0" level.
4. Driving one 74l or 74lS TTL load plus 30 pF with
IOH = -100 /lA, IOl = 500/lA.
5. This delay is necessary to avoid overlapping Clock and SYNC.
6. The first bit of data is loaded when SYNC and Clock are both
"1" during bit time 1 as shown on RCV timing diagram.

8·22

~A5151
System Characteristics

Refer to Figures 4 and 5.

Symbol

Characteristic

Min

Typ

SID

Signal-to-Distortion

35
29
24

39
34
29

GT

Gain Tracking

NIC
TLP

Max

Unit

Condition

dB
dB
dB

Analog Input
Analog Input
Analog Input

Analog
Input = +3 to -37 dBmO
Analog
Input = -37 to -50 dBmO
Analog
Input = -50 to -55 dBmO

±0.1

±0.4

dB

±O.1

±O.B

dB

±0.2

±2.5

dB

Idle Channel Noise

10

18

dBrnCO

Analog Input

Transmission Level Point

+4

dB

eoon

= 0 to -30 dBmO
= -40 dBmO
= -45 dBmO

=0 V

Fig_ 1 Equivalent Circuit During Sampling
CODEC

SAMPLE

SOURCE
20 GATE
RESISTANceF RESISTANCE

~3k

Fig. 2

L.

~5k

1

150 PFi

Transmitter Section Timing

2.4 V
1.4 V

•
PCM OAT A PRESENT

Note
All rise and fall times are measured from 0.4 V and 2.4 V. All delay
times are measured from 1.4 V.

8·23

~A5151
Fig. 3

Receiver Section Timing

24 V
14 V

Rev

SYNC

~A~N~A~L~O~G~O~U~T~P~U~T

--11.-

______________________________________________________________________________________________

\.
Note
All rise and fall times are measured from 0.4 V and 2.4 V. All delay
times are measured from 1.4 V

Fig.4

SID Ratio

VB

Fig. 5

Input Level

Gain Tracking Performance

80

.."

70

+3

r-L r-

I 60
Z

g 50
II:

o

t;

is
~

....

42 40

42

40

40

313

3

~ 2C I-

.

i~SlSlr-r-

CHANNEL BANK

Z

+3 0

-10

-20

-30

INPUT LEVEL -

1 -05

;;

2jl:;;I-~_

"

SPECIFICATIONS

0

----..bF!!~~i~

(J

II:
I-

~ ~3

1-03

+1

1 +05

Z

34

30

u;

";;

-2

~~~NNEl BANIK

-01

-0.1_

~1;\1
5151-

)

SPjC'F'iAT'OjS
-3

-3
-40

-so

4

-60

+10

dBmO

-10

-20

-30

INPUT LEVEL -

8-24

-40

-so

dBmO

I
-60

-70

,uA5151
Fig.6

AID, DIA Conversion Timing

~~~-------------------------------------------125"'------------------------------------.'l~

-t=~::_2~\.-_----

_____--Jl"""--

SAMPLE AND HOLD
SAMPLE TIME
"" 32 MASTER CLOCKS

ENABLE SAR
SAR REQUIRES
"" 128 MASTER CLOCKS

--------------~/

SAR
CONTINUES

RCVSYNC

------------------------------~I
Fig. 7

Data InputlOutput Timing

Ir- 200 ns-,. --

XMIT
INTERNAL
CLOCK

I

Fig. 8

ANALOG OUTPUT UPDATED

AID Converter (wLaw Encoder)
Transfer Characteristic
10000000
10001111
10011111
10101111
10111111
'1001111
11011111

REQUIRED FOR DATA TO TRANSFER
FROM MASTER TO SLAVE

.,I~

IL

.....

.L.

l-

E11111111 l11101111

\KVALID DATA
_ _-..,._--J

........l

--"-'I

~_

-200"$

r----'

..J

~

REQUIRED TO TRANSFER DATA
FROM MASTER TO SLAVE

a

==~rl--~---===~==~

1....--50

is

ns REQUIRED TO LOAD MASTER

01111111

01101111
01011111
01001111
00111111
00101111
00011111

00001111
OOOOOOXX

VALID INCOMING DATA

-YREF

-0.5 VREF
YIN -

Signalling = 1.XX = 01
Signalling = O.XX = 10
No Signalling, XX = 10

5151
DIGITAL
OUT

XMIT SYNC
XMIT CLOCK

DIGITALIN

RCV SYNC
RCV CLOCK

8-25

+0.5 VREF

ANALOG INPUT -

V

+VAEF

,uA5151
Fig. g

D / A Converter (wLaw Decoder)
Transfer Characteristic
+VREFt-H-t-t-+++++-hH-t-t-+-i

~

+0 5 VAEF

.

t-H-t-t-+++++-hH-t-tJ4 -l

!:;

....
:::>

o

9

V

~ -0.5 VREFhf-V+++-+-H-+-+-+++++-H
I

-VREFf-hHH-t-+++++-hHH-t-l

DIGITAL INPUTS

Signalling = LXX = 01
Signalling
o.XX
10
No Signalling
XX
10

=

Fig. 10

=

=
=

64 kHz Operation, Transmitter Section Timing
~1~'-------------------------------------------125pS'----------------------------------------'"i~1

XMITI~------------~U~

::::J

-1 r'~~~~~
(MIN)

f----PWClk

~------------------------------yr------------------------------------PCM DATA PRESENT

Note
All nse and fall times are measured from 0.4 V and 2.4 V All delay
times are measured from 1.4 V.

8-26

,uA5151
Fig. 11

64 kHz Operation, Receiver Section Timing

fool·I----------------'25"·----------------.j~1

Ui---

~

!

17 MASTER
CLOCK PERIODS-,
(MIN)

~

Note
All rise and fall times are measured from 0.4 V and 2.4 V. All delay
times are measured from 1.4 V.

Fig. 12

AlB Select Timing

--------,

,..----------

lc..
~

TIME SLOT 2'

:~S:::.-

XMITSYNC
Y_ _ _ _ _ _T:E~::'" _ _ _ _

-

1.'·--------------,L
Y

RCV SYNC

TIME SLOT'

I~

XMIT
CLOCK

AlB SELECT (XMIT)

AlB SELECT (RCV)

1.4 V

_'A/9'-1

"oo_~ b=

'_'_YJ~

_A_/B_'N____________J)lr;-.-Y-----------

_A_S_'G_N_A_L_O_U_T_O_R_B_S_'_G_NA_L_O_UT
____________

8-27

JLA5151
Fig. 13

Signalling Timing Requirements for
Performance Evaluation

2. RCV SYNC is tied to XMIT SYNC.
3. XMIT Clock is tied to Master Clock. The signal is
inverted and tied to RCV Clock.

Rev SYNC

6

12

6

12

I IIIIIIIII II I II I III II IIII

The following timing signals are required:
1. Master Clock = 1.544 MHz
2. XMIT SYNC repetition rate = 8 kHz
3. XMIT SYNC width
8 Master Clock periods

(XMIT)

AlB SELECT (RCV)

=

I

Additional timing signals are shown in Figure 13.
A SIGNAL IN

When all the above requirements are met, the set-up
of Figure 14 permits the measurement of synchronous
system performance over a wide range of Analog
Inputs. The data register and ideal decoder provide a
means of checking the encoder portion of the 5151
independently of the decoder section. To test the
system in the asynchronous mode, Master Clock
should be separated from XMIT Clock and from RCV
Clock; XMIT Clock and RCV Clock are separated also.

B SIGNAL IN

Performance Evaluation
The equipment connections shown in Figure 14 can be
used to evaluate the performance of the 5151. An
Analog signal provided by the HP3551A Transmission
Test Set is connected to the Analog Input (Pin 20) of
the 5151. The Digital Output of the codec is tied back
to the Digital Input, and the Analog Output is fed
through a low-pass filter to the HP3551 A. Remaining
pins of the 5151 are connected as follow$:
1. AlB SEL (RCV) is tied to AlB SEL (XMIT).
Fig. 14

Some experimental results obtained with the 5151 are
shown in Figures 4 and 5. In each case, both the
measured results and the corresponding 03 Channel
Bank specifications are shown. The 5151 exceeds the
requirements for Signal-to-Distortion ratio (Figure 4)
and for Gain Tracking (Figure 5).

System Characteristics
Test Configuration

1"-

-------1
I
1.004 kHZ':
SIGNAL
SOURCE

I
I

.!!..
20

DIGITAL

DIGITAL
INPUT

1

INPUT
ANALOG
OUTPUT

I
I
I

,.
SYSTEM

5151

I

I
I
IL _ _ _ _ _ -,
I

~

(NOTE)

ANALOG

I

NOUT

IDEAL
DECODER

DATA
REGISTER

OUTPUT

I
I

1.004 kHz

1
I

NOTCH
FILTER

------------

3551A

SOUT

FiLTER

I
I
_..J

+ NOUT

Note
The ideal decoder consists of a digital decompander and a
13-bit precision DAC.

8-28

\

JODER
ONLY

J.lA5156
A-Law Companding
Codec

FAIRCHIL.D
A Schlumberger Company

Telecommunication Products
Description
The 5156 is a monolithic CMOS Companding Codec
which contains two sections: (1) an analog-to-digital
converter which has a transfer characteristic
conforming to the standard A-Law companding code,
and (2) a digital-to-analog converter which also
conforms to the A-Law code.

Connection Diagram
16-Pin DIP
ANALOG
INPUT

v+

VAEF(-)

14

ANALOG
13 GROUND
ANALOG
OUTPUT
12 DIGITAL
INPUT
11 DIGITAL
GROUND
10 RCV
CLOCK
9 RCV
SYNC

V-

These two sections form a coder-decoder which is
designed to meet the needs of the telecommunications industry for per-channel voice-frequency
codecs used in PCM systems. Digital input and output
are in serial format. Actual transmission and reception
of a-bit data words containing the analog information
is done at a 64 kb/s to 2.1 Mb/s rate with analog
signal sampling occurring at an a kHz rate. A SYNC
pulse input is provided for synchronizing transmission
and reception of multi-channel information being
multiplexed over a single transmission line.

NC
MASTER
CLOCK
XMIT 6
SYNC
XMIT 7
CLOCK
DIGITAL
OUTPUT

(Top View)

• EXCEEDS CCITT SPECIFICATIONS
• EVEN-ORDER BIT INVERSION DATA FORMAT
• LOW POWER DISSIPATION 30 mW TYPICAL
• SYNCHRONOUS/ASYNCHRONOUS OPERATION
• ON-CHIP S/H CIRCUIT
• ON-CHIP OFFSET NULL CIRCUIT
• SEPARATE ANALOG AND DIGITAL GROUNDS
• 64 kb/s TO 2.1 Mb/s SERIAL DATA RATE
• ±5 V POWER SUPPLY OPERATION

Order Information
Type
Package
~A5156
Ceramic DIP
~A5156
Ceramic DIP
(Side Brazed)

Code

Part No_

FW

~A5156DC

FB

I'A5156JC

•

Block Diagram
TRANSMIT (ENCODE)

1

CONTROL

RECEIVE (DECODE)

8-13

ANALOG

BIT
DIGITAL
COMPANDER

INPUT

DIGITAL
INPUT

DIGITAL
OUTPUT

5
TRANSMIT
CLOCK

TRANSMIT
SYNC

MASTER
CLOCK

Pin 4 = not connected
8-29

10
RECEIVE
CLOCK

9
RECEIVE
SYNC

JLA5156
Absolute Maximum Ratings (Note)
Supply Voltage (V+)
+6 V
Supply Voltage (V-)
-6 V
V- ~ VIN ~ V+
Analog Input Range
Digital Input Range
-0.5 V ~ VIN ~ V+
Reference Voltage
-0.5 V ~ VREF(+) ~ V+
VREF(+)
Reference Voltage
V- ~ VREF(-) ~ 0.5 V
VREF(-)
Operating Temperature
Range
O°C to 70°C
Storage Temperature
Range
-55°C to +125°C
Pin Temperature
(Soldering, 10 s)
260°C

Note
Stresses above those listed under "Absolute Maximum Ratings"
may cause permanent damage to the device. This IS a stress
rating only and functional operation of the device at these or any
other conditions beyond those indicated in the operational
sections of this specification is not implied. Exposure to absolute
maximum ratong conditions for extended periods may affect
device reliability. Standard CMOS handling procedures should be
employed to avoid possible damage to device.

XMIT Clock, XMIT SYNC will determine when the first
positive edge of the Internal Clock will occur. In this
event, the hold time for the first clock pulse is
measured from the positive edge of XMIT SYNC.

Functional Description (Refer to Block Diagram)
Positive and Negative Reference Voltages
(VREF(+) and VREF(-) Pins 16 and 15)
These inputs provide the conversion references for
the digital-to-analog converters in the 5156. VREF(+)
and VREF(-) must maintain 100 ppMI °C regulation
over the operating temperature range. Variation of the
reference directly affects system gain.

RCV SYNC, Pin 9 (Refer to Figure 3 for the
Timing Diagram)
This input is synchronized with RCV Clock, and serial
data is clocked in by RCV Clock. Duration of the RCV
SYNC pulse is approximately eight RCV Clock
periods. The conversion from digital-to-analog starts
after the negative edge of RCV SYNC pulse (refer to
Figure 6). The negative edge of RCV SYNC should
occur before the 9th positive clock edge to insure that
only eight bits are clocked in. RCV SYNC must stay
LOW for 17 Master Clocks (minimum) before the next
digital word is to be received. (refer to Figure 11).

Analog Input, Pin 1
Voice-frequency analog signals which are bandwidthlimited to 4 kHz are input at this pin. Typically, they are
then sampled at an S kHz rate (Refer to Figure 6). The
analog input must remain between VREF(+) and
VREF(-) for accurate conversion.
Master Clock, Pin 5
This signal provides the basic timing and control
signals required for all internal conversions. It does
not have to be synchronized with RCV SYNC, RCV
Clock, XMIT SYNC or XMIT Clock and is not internally
related to them.

RCV Clock, Pin 10 (Refer to Figure 3 for
Timing Diagram)
The on-chip S-bit shift register for the 5156 is loaded
at the clock rate present on this pin. Clock rates of
64 kHz to 2.1 MHz can be used for RCV Clock. Valid
data should be applied to the digital input before the
positive edge of the internal clock (refer to Figure
This set-up time, trds, allows the data to be
transferred into the master of a master-slave flip-flop.
The positive edge of the Internal Clock transfers the
data to the slave of the master-slave flip-flop. A
hold time, trdh, is required to complete this transfer.
If the rising edge of RCV SYNC occurs after the first
rising edge of RCV Clock, RCV SYNC will determine
when the first positive edge of Internal Clock will
occur. In this event, the set-up and hold times for the
first clock pulse should be measured from the positive
edge of RCV SYNC.

n.

XMIT SYNC, Pin 6 (Refer to Figure 2 for the
Timing Diagram)
This input is synchronized with XMIT Clock. When
XMIT SYNC goes HIGH, the digital output is activated
and the AID conversion begins on the next positive
edge of Master Clock. The conversion by Master
Clock can be asynchronous with XMIT Clock. The
serial output data is clocked out by the positive edges
of XMIT Clock. The negative edge of XMIT SYNC
causes the digital output to become 3-state. XMIT
SYNC must go LOW for at least 1 master clock prior
to the transmission of the next digital word.
(Refer to Figure 10.)

Digital Output, Pin 8
The 5156 output register stores the 8-bit encoded
sample of the analog input. This 8-bit word is shifted
out under control of XMIT SYNC and XMIT Clock.
When XMIT SYNC is LOW, the Digital Output is an
open circuit. When XMIT SYNC is HIGH, the state of
the Digital Output is determined by the value of the
output bit in the serial shift register. The output is
composed of a sign bit, 3 chord bits, and 4 step bits.
The sign bit indicates the polarity of the Analog Input

XMIT Clock, Pin 7 (Refer to Figure 2 for the
Timing Diagram)
The on-Chip S-bit output shift register of the 5156 is
unloaded at the clock rate present on this pin. Clock
rates of 64 kHz to 2.1 MHz can be used for XMIT
Clock. The positive edge of the Internal Clock
transfers the data from the master to the slave of a
master-slave flip-flop (refer to Figure 7). If the positive
edge of XMIT SYNC occurs after the positive edge of
8·30

~A5156
Table 1

while the chord and step bits indicate the magnitude.
In the first two chords, the step bit has a value of 1.2
mY. In the third chord, the step bit has a value of 2.4
mY. This doubling of the step value continues for each
of the five successive chords.

1.
2.
3.
4.
5.
6.
7.
8.

Each chord has a specific value and the step bits,
16 in each chord, specify the displacement from that
value (refer to Table 1). Thus the output, which follows
the A-Law, has resolution that is proportional to the
input level rather than to full scale. This provides the
resolution of a 12-bit a / d converter at low input levels
and that of a 6-bit converter as the input approaches
full scale. The transfer characteristic of the a / d
converter (A-Law Encoder) is shown in Figure 8.

Digital Output Code: A-Law

Chord Code

Chord Value

Step Value

101
100
111
110
001
000
011
010

0.0 mV
20.1 mV
40.3 mV
80.6 mV
161.1 mV
332 mV
645 mV
1.289 V

1.221 mV
1.221 mV
2.44 mV
4.88 mV
9.77 mV
19.53 mV
39.1 mV
78.1 mV

Example:
1
110
Sign Bit Chor.d

Digital Input, Pin 12
The 5156 input register accepts the 8-bit encoded
analog value and loads it under control of RCV SYNC
and RCV Clock. The timing diagram is shown in
Figure 3. When RCV SYNC goes HIGH, the 5156 uses
RCV Clock to clock the serial data into its input
register. RCV SYNC goes LOW to indicate the end of
serial input data. The eight bits of the input data have
the same functions described for the Digital Output.
The transfer characteristic of the d / a converter
(A-Law Decoder) is shown in Figure 9.

0111 = +80.6 mV + (2 x 4.88 mY)
Step Bits

If the sign bit were zero, then both plus Signs would be

changed to minus signs.

Analog Output, Pin 13
The Analog Output is in the form of voltage steps
(100% duty cycle) having amplitude equal to the
analog sample which was encoded. This waveform
is then filtered with an external low-pass filter
with (sin x) / x correction to recreate the sampled
voice signal.
Operation of Codec With 64 kHz XMIT fRCV Clock
Frequencies
XMIT /RCV SYNC must not be allowed to remain at a
logic "1" state. XMIT SYNC is required to be at a logic
"a .. state for 1 master clock period (minimum) before
the next digital word is transmitted. RCV SYNC is
required to be at a logic "a .. state for 17 master clock
periods (minimum) before the next digital word is
received (refer to Figures 10 and 11).
Offset Null
The offset null feature of the 5156 eliminates
long-term drift errors and conversion errors due to
temperature changes by going through an offset
adjustment cycle before every conversion, thus
guaranteeing accurate a / d conversion for inputs
near ground. There is no offset adjust of the output
amplifier. Since the output is intended to be
ac-coupled to the external filter, the resultant dc error
(VOFFSET /0) will have no effect. The sign bit is not
used to null the Analog Input. Therefore, for an Analog
Input of a v, the sign bit will be stable.

8-31

J.LA5156
Electrical Operating Characteristics
Power Supply Requirements
Symbol

Characteristic

Min

Typ

Max

Unit

V+
V-

Positive Supply Voltage

4.75
-5.25

5.0
-5.0

5.25
-4.75

V

VREF(+)

Positive Reference Voltage (Note 1)
Negative Reference Voltage (Note 1)

2.5
-2.5

2.625
-2.375

V

VREFh)

2.375
-2.625

Max

Unit

Negative Supply Voltage

DC Characteristics

V+

V
V

= 5.0 V. V- = -5.0 v. VREF(+) = 2.5 v. VREF(-) = -2.5 V.
Min

Symbol

Characteristic

RINAS

Analog Input Resistance During
Sampling (Note 2)

RINANS

Analog Input Resistance Non-Sampling

CINA

Analog Input Capacitance

VOFFSETJI

Analog Input Offset Voltage

ROUTA

Analog Output Resistance

IOUTA

Analog Output Current

0.25

Typ

2

kO

100
150

MO

250

pF

±1
20

±8
50

0

0.5

mV
mA

±200

±850

mV

±0.1

±10

p.A

-0.25

-0.8

mA

8
±0.1

12

pF

±10
0.4

p.A

VOFFSET/O

Analog Output Offset Voltage

IlL

Logic Input LOW Current (V IN 0.8 V)
Digital Input. Clock Input. SYNC Input
(Note 3)

IIH

Logic Input HIGH Current (VIN
2.4 V)
Digital Input. Clock Input. SYNC Input
(Note 3)

COO

Digital Output Capacitance

IDOL

Digital Output Leakage Current

VOL

Digital Output LOW Voltage (Note 4)

VOH

Digital Output HIGH Voltage (Note 4)

1+
1-

Positive Supply Current

4

10

mA

Negative Supply Current
Positive Reference Current

6
20

mA

IREF+

2
4

p.A

IREF-

Negative Reference Current

4

20

p.A

=
=

3.9

8-32

V
V

~A5156
AC Characteristics

Refer to Figures 2 and 3.

Symbol

Characteristic

Min

Typ

Max

Unit

fm

Master Clock Frequency

1.5

2.048

2.1

MHz

fr, fx

RCV, XMIT Clock Frequency

0.064

2.048

2.1

MHz

PWclk

Clock Pulse Width (MASTER, XMIT, RCV)

200

trc , tfc
trs, tfs
tdlr, tdlf

ns

25% of

Clock Rise, Fall Time (MASTER, XMIT, RCV)

PWclk

SYNC Rise, Fall Time (XMIT, RCV)

PWclk

SYNC Pulse Width (XMIT RCV)

tps

SYNC Pulse Period (XMIT RCV)

ns

25% of

Data Input Rise, Fall Time

twsx , twsr

ns

25% of

PWclk

8

ns

fx(fr)

/.IS

125

/.IS

50% of

t xcs

XMIT Clock-to-XMIT SYNC Delay (Note 5)

t xcsn

XMIT Clock-to-XMIT SYNC
(Negative Edge) Delay

t xss

XMIT SYNC Set-Up Time

200

txdd

XMIT Data Delay (Note 4)

0

200

ns

txdp

XMIT Data Present (Note 4)

0

200

ns

txdt

XMIT Data Three State (Note 4)

150

ns

tdof

Digital Output Fall Time (Note 4)

tdor

Digital Output Rise Time (Note 4)

ns

tfc(trs)

ns

200

ns

50

ns

50

ns

50%

tsrc

RCV SYNC-to-RCV Clock Delay (Note 5)

trds

RCV Data Set-Up Time (Note 6)

50

ns

trdh

RCV Data Hold Time (Note 6)

200

ns

trcs

RCV Clock-to-RCV SYNC Delay

200

ns

trss

RCV SYNC Set-Up Time (Note 6)

200

tsao

RCV SYNC-to-Analog Output Delay

7

/.IS

Slew+

Analog Output Positive Slew Rate

1

V//.Is

Slew-

Analog Output Negative Slew Rate

1

V//.Is

Droop

Analog Output Droop Rate

25

/.IV//.Is

ns

trc(tfs)

ns

Notes
takes ptace, the user must sink the" 1" current untli reaching
the "0" level.
4. Driving one 74L or 74LS TTL load plus 30 pF with

and -VREF must be matched within ± 1% in order to
meet system requirements.
2. Sampling is accomplished by charging the internal capacitor to
within 1/2 LSB (~ 300 !LV) in 20 !LS. Therefore, the external
source resistance must be 3 kf! or less. The equivalent circuit
during sampling is shown in Figure 1.
3. The 5156 will source current through an internal 6 kf! resistor
to help pull up the TTL output. When a transition from" 1" to "0"
1. +VREF

IOH = -100 !LA, IOL = 500 !LA.

5. This delay is necessary to avoid overlapping Clock and SYNC.
6. The first bit of data is loaded when SYNC and Clock are both
" 1" during bit time 1 as shown on ReV timing diagram.

8·33

J.LA5156
System Characteristics

Refer to Figures 4 and 5

Symbol

Characteristic

Min

Typ

SID

Signal-to-Distortion

35
29
24

39
34
29

GT

Gain Tracking

±0.1
±0.1
±0.2

±0.4
±O.S
±2.5

dB
dB
dB

NIC
TLP

Idle Channel Noise

-SO

-72

dBmO

= 0 to -30 dBmO
= -40 dBmO
= -45 dBmO
Analog Input = +3 to -40 dBmO
Analog Input = -40 to -50 dBmO
Analog Input = -5f) to -55 dBmO
Analog Input = 0 V

Transmission Level Point

+4

dBm

soon

Fig. 1

Max

Equivalent Circuit During Sampling
co DEC

SAMPLE
SOURCE
1 GATE
RESISTANCE
RESISTANCE

r

~3k

~

~5k
150

Fig. 2

T

PFI

Transmitter Section Timing

2.4 V
1.4 V

PCM DATA PRESENT

Note
All rise and fall times are measured from 0.4 V and 2.4 V. All delay
times are measured from 1.4 V.

8·34

Unit

Condition

dB
dB
dB

Analog Input
Analog Input
Analog Input

~A5156
Fig. 3

Receiver Section Timing

~~

~

~~~--------------------------------~~
Note
All rise and fall times are measured from 0.4 V and 2.4 V. All delay
times are measured from 1.4 V.

Fig. 4

SID Ratio

Input Level

V8

Fig. 5

Gain Tracking Performance

80

..
i

z
o

70

+3

60

~
I

j: 50

co:

o

~40
Q

.e...

42 40

42

4

3t:<~156_~

;3

34

30

3

:c

i7i'-,<3

~ 20
iii

CCITT
SPECIFICATIONS

0

+3 0

-10

-20

-30

+j)5

"z
~(_.o!'t~ -0.1
or
.::B 0 ~
-0.5
z

22f-~-

"

-1

celTT

-2

+1
-01_

"'":;;.l;\"i

-1 ~-5156-

SJECIFI~ATIJNS

-3

-3

-40

-50

-,+10

-60

INPUT LEVEL - dBmO

-10

-20

-30

-40

-50

INPUT LEVEL - dBmO

8-35

I

I
-60

-70

JLA5156
Fig. 6

A/D, 0/ A Conversion Timing

t;=====~'----------------------------------------------125".------------------------------------~"1

-t-=~~:-2~1....-------------I)'SAMPLE AND HOLD
SAMPLE TIME
• 32 MASTER CLOCKS

~------------------------------·80".--------------------~
ENABLE SAR
SAR REQUIRES

SAR
CONTINUES

. 128 MASTER CLOCKS

--------------~/

RCV SYNC

------------------------------~I
Fig.7

Data Input/Output Timing

I 200 ns~

r- --

XMIT
INTERNAL
CLOCK

J

Fig.8

ANALOG OUTPUT UPDATED

A/D Converter (A-Law Encoder) Transfer
Characteristic

,,-

10101010
10100101
10110101
10000101

REQUIRED FOR DATA TO TRANSFER
FROM MASTER TO SLAVE

10010101

11100101
11110101

'101010111100 0101

\VVALIDDATA

~I
----...,

___ 200 ns

~.

01010101 i 0100 0101
REQUIRED TO TRANSFER DATA
FROM MASTER TO SLAVE

01110101
01100101

==~~I--~--~==~~~

00010101
00000101

1.....--50 ns REQUIRED TO LOAD MASTER

00110101

00100101
00101010

VALID INCOMING DATA

- VREF

"

+0.5 VREF

0.5 VREF

+VREF

ANALOG INPUT

Fig.9

~A5156

0/ A Converter (A-Law Decoder) Transfer
Characteristic

DIGITAL
OUT

+VREFH,,-+-I-++++-+-H,-+-I--i

XMIT SYNC

XMIT CLOCK

..

~

+0.5 VREFHH-t-+-+++++-t-H-t-+-'I'.,

~

o

DIGITAL IN

"

o

i

Rev SYNC

Rev CLOCK

-0.5

VREFHH,-+-I-++++-+-H,-+-I--I

II
-VAEFH,,-+-I-++++-+-HH-+-I--I

00

°1°

00
o~

DIGITAL INPUTS

8·36

ILA5156
Fig. 10 64 kHz Operation, Transmitter Section Timing

~14::::::::::::::::::::::::::::::::::::::::~_1_25_"_.::::::::::::::::::::::::::::::::::::~~.~I_________

U

I
:::J
XMIT

1 r-1~~~~~

J.---PWClk

(MIN)

~----------------------------~yr------------------------------------~

3-STATE

PCM DATA PRESENT

Note
All nse and fall times are measured from 0.4 V and 2 4 V. All delay
times are measured from 1.4 V.

Fig. 11

64 kHz Operation, Receiver Section Timing

1-o14~-------______125"· ____----------~·1

Ur---

::J
17 MASTER

I

CLOCK PERIODS-+j

~

(MIN)

•
Note
All nse and fall times are measured from 0.4 V and 2.4 V. All delay
limes are measured from 1 4 V.

8-37

~A5156
Performance Evaluation
The equipment connections shown in Figure 12 can be
used to evaluate the performance of the 5156. An
analog signal provided by the HP3552A Transmission
Test Set is connected to the Analog Input (Pin 1) of
the 5156. The Digital Output of the codec is tied back
to the Digital Input and the Analog Output is fed
through a low-pass filter to the HP3552A. Remaining
pins of the 5156 are connected as follows:
1. RCV SYNC is tied to XMIT SYNC.
2. XMIT Clock is tied to Master Clock. The signal is
inverted and tied to RCV Clock.

When all the above requirements are met, the set-up
of Figure 12 permits the measurement of synchronous
system performance over a wide range of Analog
Inputs. The data register and ideal decoder provide a
means of checking the encoder portion of the 5156
independently of the decoder section. To test the
system in the asynchronous mode, Master Clock
should be separated from XMIT Clock and from RCV
Clock; XMIT Clock and RCV Clock are separated also.

The following timing signals are required:
1. Master Clock
2.048 MHz
2. XMIT SYNC repetition rate
8 kHz
3. XMIT SYNC width
8 XMIT Clock periods

=

=

Fig_ 12

=

System Characteristics Test Configuration

r-

----'---1

I
800 Hz
SIGNAL
SOURCE

I
I

.£..
1

DIGITAL

DIGITAL 8

INPUT

OUTPUT

ANALOG
OUTPUT

I

13
SYSTEM

5156

I

I
I
I

L _ _ _ _ _ ....,
I

NOUT

I

HP

---i

DECODER
(NOTE)

ANALOG
INPUT

I
I
I

I
I

IDEAL

DATA
REGISTER

I
I

800 Hz

NOTCH

FILTER

I

FILTER

L_ 3551A

-----------SOUT

I
I
_...J
+ Hour

Note
The ideal decoder consists of a digital decompander and a 13-bit
precision DAC.

8-38

JODER
ONLY

FAIRCHILO
A Schlumberger Company

,

'

,

Volltscle Regulaie>rs
HybridVohage Reg ..lators,'
C"

'

"

"',

(",,.

,

,Operational' Amplifiers
Cdmparators "

0... Acquisition', '
,Telecommunications
Special Functions

HiRe! Processing

,Fairchild Sales Offices '

9-2

~A555

FAIRCHILO

Single Timing Circuit

A Schlumberger Company
Special Function Products
Description
The ~A555 Timing Circuit is a very stable controller for
producing accurate time delays or oscillations. In the
time delay mode, the delay time is precisely controlled
by one external resistor and one capacitor; in the
oscillator mode, the frequency and duty cycle are both
accurately controlled with two external resistors and
one capacitor. By applying a trigger signal, the timing
cycle is started and an internal flip-flop is set,
immunizing the circuit from any further trigger signals.
To interrupt the timing cycle a reset signal is applied
ending the time-out.

Connection Diagrams
a-Pin DIP

GND

Vee

TRIGGER

DISCHARGE
THRESHOLD

OUT

CONTROL
VOL TAGE

RESET

The output, which is capable of sinking or sourcing
200 rnA, is compatible with TTL circuits and can drive
relays or indicator lamps.
•
•
•
•
•
•
•
•

(Top View)

Order Information
Type
Package
~A555
Molded DIP

TIMING CONTROL, NS TO HOURS
ASTABLE OR MONOSTABLE OPERATING MODES
ADJUSTABLE DUTY CYCLE
200 mA SINK OR SOURCE OUTPUT CURRENT
TTL OUTPUT DRIVE CAPABILITY
TEMPERATURE STABILITY OF 0.005% PER °C
NORMALLY ON OR NORMALLY OFF OUTPUT
DIRECT REPLACEMENT FOR SE555/NE555

Code
9T

Part No.
~A555TC

Block Diagram
~_-------------l

Vee5 kll
DISCHARGE
THRESHOLD"""T-+---I
CONTROL
VOLTAGE

R
FLIP-FLOP

5 kll

TRIGGER

-+-+--1

Q

5 INHIBIT/
RESET

Vee

__.__--.- OUTPUT

I
I

I

5 kll

I

r

RESET~----------------~

L-

I
I

------------1

9-3

•

p,A555
JLA555
Electrical Characteristics
Characteristic

TA = 25°C, Vee = +5.0 V to +15 V, unless otherwise specified
Min

Condition

Supply Voltage
Supply Current
Timing Error
Initial Accuracy
Drift with Temperature

mA
mA

10

15

RA, RS = 1 kQ to 100 kQ

1.0

%

50

ppm/oC

C = 0.1 JLF (Note 2)

0.1

%V

2/3

X Vee

Vee = 15 V

5.0

V

Vee = 5.0 V

1.67

V

0.5
0.4

Reset Voltage

0.7

JLA
1.0

0.1

Reset Current

Output Voltage Drop (LOW)

V

3.0

Trigger Current

Control Voltage Level

Unit

16

Vcc = 5.0 V, RL = cc
Vee=15V,RL=CC
LOW State (Note 1)

Threshold Voltage

Threshold Current

Max
6.0

Drift with Supply Voltage

Trigger Voltage

Typ

4.5

0.1

0.25

JLA

Vee = 15 V

9.0

10

11

V

Vee = 5.0 V

2.6

Note 3

3.33

4.0

V

Vee = 15 V, ISINK = 10 mA

0.1

0.25

V

ISINK = 50 mA

0.4

0.75

V

ISINK = 100 mA

2.0

2.5

V

ISINK = 200 mA

2.5

V
V

Vee = 5.0 V, ISINK = 8.0 mA

Output Voltage Drop (HIGH)

V
mA

ISINK = 5.0 mA

0.25

ISOUReE = 200 mA, Vee = 15 V

12.5

0.35

V
V

ISOURCE = 100 mA, Vcc = 15 V

12.75

13.3

V

Vee = 5.0 V

2.75

3.3

V

Rise Time of Output

100

ns

Fall Time of Output

100

ns

Notes
1. Supply Current is typically 1.0 rnA less when output is HIGH.
2. Tested at VCC = 5.0 V and VCC = 15 V.
3. This will determine the maximum value of RA + RS' For
15 V operation, the maximum total R = 20 MG.

4. For operating at elevated temperatures, the device must
be derated based on a + 125°C maximum junction
temperature and a thermal resistance of + 150 0 C/W
JunctIOn to ambient
9·4

ILA555
Absolute Maximum Ratings
Supply Voltage
Power Dissipation (Note 1)
Operating Temperature Range
Storage Temperature Range
Pin Temperature (Soldering, 10 s)

+18 V
600 mW
O°C to +70°C
-65°C to +150°C
260°C

Equivalent Circuit
FM
VCC~B

__

~

________

~

____________

~

__

~

________- .________

R4
1 k

~

__- .______- .____

RB
5 k

~

____

~

____- ,

R12
6B k

THRESHOLD 6
OUTPUT

TRIGGER

-=-------------+------_C"
_C"

-=-

RESET ...;4~______
DISCHARGE -'-------,

R5

10 k

R6

100 k

R7

R10
5k

100 k

GND~1______~___+~--------~--~~--~-------4--------~--~-------J

•
Note
1. Supply Current is typically 1.0 rnA less when output is HIGH.

9-5

ILA555
Typical Performance Curves

Minimum Pulse Width
Required for Triggering

Total Supply Current vs
Supply Voltage

150

10

~ 125

c 80
1

Q

~

50

i

25

'z"

. ,.",.

I...~

.....

o
o

~
$-~
~

il'"> 4.0

~

.,." 100e

01

02

V
./

t5

12

TA = 25 C
Q

0

/

c

5

~ 0,4

"0" t-s VIVI" 11' v
o

15

10

10

V

Vee'" 15 V

~

5.0

.

110

50

g

TA = 25°C

......-

SINK CURRENT -

> 1005

~

Q

~ 100 0

,

TA == 2S C
Q

,/"

V

50

10

100

10

mA

50

10

SINK CURRENT -

Delay Time vs
Ambient Temperature

50

100

mA

Propagation Delay vs
Voltage Level of Trigger Pulse

1015

250 f--t-+---1---1-+-t--I-+-l

1010

1.010
~

5.0

mA

'015

~

"5

.. 0 1

o

SINK CURRENT -

Delay Time vs Supply Voltage

...

V

00 1

0.01
1.0

100

J

"~

"~ 01

10

I

>

10

o

0.01
1.0

100

mA

Low Output Voltage vs
Output Sink Current

~

o

50

10

10

...

/'

50

SOURCE CUARENT -

g

o. 1

25°C

o

>

~

=

> 06

Vee'" 10 V

i-""

TA

!::j 08

Low Output Voltage vs
Output Sink Current

>

~

14

10

~

::;

16

~ 10

SUPPLY VOLTAGE -

o

~~

~
.g
~

5.0

Yee '" 5 V

1

,/

o

0

. ,.

> 18

V

x Vee - LOWEST VOLTAGE LEVEL
OF TRIGGER PULSE

Low Output Voltage vs
Output Sink Current

20

/'

2.0

0.'

0.3

V
1/

./

~60

i
75

T1=2~OC V /'

E

j!: 100
~
~

High Output Voltage vs
Output Source Current

-

\

\

~

~

099

1005
~~r--

~~

1000

--

r-

r--

0995

'"oz
0990

,

o

~ 150

~
:100~~~~~-~-~-+-+-~

o

if

0.990

098

~ 200 f---+-+~~,-+-~'-t-+-t
oj

50

0985
10
SUPPLY VOLTAGE -

15
V

20

-50

-25

0

25

50

7S

100

AMBIENT TEMPERATURE _ DC

9-6

125
x Vee - LOWEST VOLTAGE LEVEL
OF TRIGGER PULSE

,uA555
Typical Applications
Monostable Operation
In the monostable mode, the timer functions as a oneshot. Referring to Figure 1 the external capacitor is
initially held discharged by a transistor inside
the timer.

capacitor and causes the cycle to start over. The
timing cycle now starts on the positive edge of the
reset pulse. During the time the reset pulse is applied,
the output is driven to its LOW state.
When a negative trigger pulse is applied to pin 2,
the flip-flop is set, releasing the short circuit
across the external capacitor and driving the output
HIGH. The voltage across the capacitor increases
R 1C 1. When
exponentially with the time constant T
the voltage across the capacitor equals % Vee, the
comparator resets the flip-flop which then discharges
the capacitor rapidly and drives the output to its LOW
state. Figure 2 shows the actual waveforms generated
in this mode of operation.

The circuit triggers on a negative-going input signal
when the level reaches l1! Vee. Once triggered, the
circuit remains in this state until the set time has
elapsed, even if it is triggered again during this
interval. The duration of the output HIGH state is given
by t = 1.1 R 1C 1 and is easily determined by Figure 3.
Notice that since the charge rate and the threshold
level of the comparator are both directly proportional
to supply voltage, the timing interval is independent of
supply. Applying a negative pulse simultaneously to
the Reset terminal (pin 4) and the Trigger terminal
(pin 2) during the timing cycle discharges the external

=

When Reset is not used, it should be tied high to avoid
any possibility of false triggering.

Fig_ 1
+Vee

~

5 TO 15 V - - - - - - - - r - - - - - - ,

Rl

RESET---

TRIGGER----oJ
~A555

OUTPUT - - - - o J

r
Fig. 2

Fig.3

CONTROL
VOLTAGE
001 }.IF

Time Delay vs R1 and C1

•

1= 01 ms/DIV

!!:!.."'fL:il v~_ - n h

I

I

I

"i

~ 1.0

o
Z

;!

~ 01

OUTPUT YOLTAGE = 5.0 V/OIV

J

J

V

/
10- ',...l

-

CAPACITOR VOLTAGE
R1

=

I I

~

~

o 01

/

I+--+';---b'<--+>"'--I~-+---j

...J L_ i,J
2.0 VlDIY
TIME DELAY

91 kH, C1 = 001 }18

~ 16
~

V

0

o

>

I;;

_10QC

~

2

~

50

o
01
x Vee -

02

03

5.0

04

10
SUPPLY VOLTAGE -

LOWEST VOLTAGE LEVEL
OF TRIGGER PULSE

Low Output Voltage
Output Sink Current

"00

5 V

Vee

/ --

TA '" 25°C

I

w 10

~

=

10 V

>

>

~ 10r-~~~-r---r---r-r~r--1

w

~

TA

~25°C

50

10

50

TA = 25°C

/"'

o

OO~~0--~~~5~0--~10~~--~~570--7.'00

100

(

~
I;;
0.0 1
I;;

V

o

SINK CURRENT -

mA

Delay Time vs
Supply Voltage

00 1
10

300

'010

101 0

250

;;j

\

-

I-

r--

100 5

--

1000

099 5

~ 0995

~

---- - --

098 5

0985

10
SUPPLY VOLTAGE -

15
Y

20

-so

~
o

0

25

50

75

100

AMBIENT TEMPERATURE _ °C

9·12

100

I)

200

T'-O·~V

f-T,

~ 150

125

0

25·C

~

::'00
" ~v
~

'/

<

o

g;
o

-25

50
mA

I

50

099 0

0.990

10

Propagation Delay vs
Voltage Level of Trigger Pulse

101 5

\

/

SINK CURRENT -

Delay Time vs
Ambient Temperature

w

50

mA

1015

1000

100

J

"<~

~01r-~r-~~~~~---r-r-rr--1

-""

SINK CURRENT -

~

50
rnA

I 10

"~

,,/

00 1
10

~

10

Vee = 15 V

>

>- 1.005

50

Low Output Voltage vs
Output Sink Current

o

~
I-

::s
:!l

I' vr 11' v

10
Vee

'"

5 V

SOURCE CURRENT -

10

o

4

V

Low Output Voltage vs
Output Sink Current

VB

25°C

•
0
10

15

=

06

00 2

o
o

"~ 01
o"

1

TA

4

~1
~ 0

V

k::::: ~"-

1

trl

o

01

02

03

x Yee - lOWEST VOLTAGE LEVEL
OF TRIGGER PULSE

0.4

p,A556
Typical Applications
Monostable Operation
In the monostable mode, the timer functions as a
one-shot. Referring to Figure 1 the external capacitor
is initially held discharged by a transistor inside
the timer.

circuit remains in this state until the set time has
elapsed, even if it is triggered again during this
interval. The duration of the output HIGH state is given
by t = 1.1 R 1C 1 and is easily determined by Figure 3.
Notice that since the charge rate and the threshold
level of the comparator are both directly proportional
to supply voltage, the timing interval is independent of
supply. Applying a negative pulse simultaneously to
the Reset terminal (pin 4) and the Trigger terminal
(pin 6) during the timing cycle discharges the external
capacitor and causes the cycle to start over. The
timing cycle now starts on the positive edge of the
reset pulse. During the time the reset pulse is applied,
the output is driven to its LOW state.

When a negative trigger pulse is applied to pin 6, the
flip-flop is set, releasing the short circuit across the
external capacitor and drives the output HIGH. The
voltage across the capacitor, increases exponentially
with the time constant T = R 1C 1. When the voltage
across the capacitor equals 2/3 Vee, the comparator
resets the flip-flop which then discharges the
capacitor rapidly and drives the output to its LOW
state. Figure 2 shows the actual waveforms generated
in this mode of operation.

When Reset is not used, it should be tied high to avoid
any possibility of false triggering.

The circuit triggers on a negative-going input signal
when the level reaches 1/3 Vee. Once triggered, the

Fig. 1
+vcc

~ 5 TO 15 V ---------~----__.,

RESET---

4

R1

14

TRIGGER - - - 0 1

1/2 556
OUTPUT - - - 0 1 5

2
3

7

Fig. 2

I

CONTROL
VOLTAGE
0.Q1 "F

Fig. 3
t == Q1 mS/DIV

~".!-:lV~r-

l

h - I--11
l U

101--+-+--t7''--f7'''-+r--I
1.0

OUTPUT VOLTAGE'" 5.0 Y/DIV

J

'/

J

V

V1
I--

W

-

CAPACITOR VOLTAGE

..J

0.1

J

0.01 f7"--+r-~'---V---Ir--+--I

..... ..J

2.0 VlDIV

A1 '" 9 1 kll. C1 == 0.01 .... F, AL '" 1.0 kJl

TIME DELAY

9-13

•

JLA556
Typical Applications (Cont.)
Astable Operation
When the circuit is connected as shown in Figure 4
(pins 2 and 6 connected) it triggers itself and free runs
as a multivibrator. The external capacitor charges
through R1 and R2 and discharges through R2 only.
Thus the duty cycle may be precisely set by the ratio
of these two resistors.

and the discharge time (output LOW) by:

In the astable mode of operation, C 1 charges and
discharges between 1 / 3 Vee and 2/3 Vee. As in the
triggered mode, the charge and discharge times and
therefore frequency are independent of the
supply voltage.

The frequency of oscillation is then:
1
1.44
f = T = (R 1 + 2R2) C 1

Figure 5 shows actual waveforms generated in this
mode of operation.

The duty cycle is given by:
R2
0= R1 + 2R2

t2 = 0.693 (R2) C1
Thus the total period T is given by:
T = t1

and may be easily found by Figure 6.

The charge time (output HIGH) is given by:
t1 = 0.693 (R1

+ t2 = 0.693 (R1 + 2R2) C1

+ R2) C1

Fig. 4
+vcc

~

5 TO 15 V

Rl

1

14

4

5

OUTPUT

1

1/2556

co NTROL
vo

~.~~:~

r

I

-

R2

2
3

7

6

I

1

Cl

Fig. 6 Free Running Frequency vs
R1, R2 and C1

Fig. 5

1- 05 mS/OIV

outu) VOJAai ~ t vtv

...,

~,.~~~---t\~~---1~-+-4

I I I I

I 1\ V \; /
CAPACITOR VOLTAGE

,. ~-P~---t\;--~---1--+--l

u

!
~

.,

\, V \; V
~

1.0 VlDIV
FREE RUNNING FREQUENCY -

R1 '" A2 '" 4.' kfl, Cl '" 0 1 pf. RL '" 1 kn

9-14

Hz

f.lA726

F=AIRCHILO

Temperature-Controlled
Differential Pair

A Schlumberger Company

Special Function Products
Connection Diagram
10-Pin Metal Package

Description
The /LA726 is a Monolithic Transistor Pair in a high
thermal-resistant package, held at a constant
temperature by active temperature regulator circuitry.
The transistor pair displays the excellent matching,
close thermal coupling and fast thermal response
inherent in monolithic construction. The high gain and
low standby dissipation of the regulator circuit permits
tight temperature control over a wide range of ambient
temperatures. It is intended for use as an input stage
in very-low-drift dc amplifiers, replacing complex
chopper-stabilized amplifiers. It is also useful as the
nonlinear element in logarithmic amplifiers and
multipliers where the highly predictable exponential
relation between emitter-base voltage and collector
current is employed. The device is constructed on a
single silicon chip using the Fairchild Planar process.
Absolute Maximum Ratings
Operating Temperature Range
Military (/LA726)
Commercial (/LA726C)
Storage Temperature Range
Pin Temperature
( Soldering 60 s)
Supply Voltage
Internal Power Dissipation

E2

Bl

El

v(Top View)

Order Information
Type
Package
/LA726
Metal
/LA726C
Metal

Code
5U
5U

-55°C to +125°C
O°C to +85°C
-65°C to +150°C
300°C
± 18 V
500mW

Maximum Ratings for Each Transistor
Collector-to-Emitter Voltage,
VCEO
30 V
Collector-to-Base Voltage, VCBO 40 V
Collector-to-Substrate Voltage,
40 V
VCIO
Emitter-to-Base Voltage, VEBO
5V
Collector Current, IC
5 mA
~____~______~8~V+

Equivalent Circuit

TEMPADJ~6~--------~-------------------.----~
Rl
HIl

R2

21 kll

c134
Bl 2

Part No_
/LA726HM
/LA726HC

Dl
6.2 V

01

El 3

::~02
E2~

02
6.2 V

R3
4.8 kll

R4
2k1l

RS
lOll
~

__________

~

______

9-15

~

__________________

~~S~v_

•

J.LA726
",A726
Electrical Characteristics

Min:S TA:S Max, Vs =

± 15 V, Radj = 62 kn unless otherwise specified.
",A726

Characteristic

Condition

Input Offset Voltage

10 ",A :S Ic :S 100 ",A,
VCE = 5 V, Rs :S 50 n

",A726C
Typ

Max

Unit

1.0

3.0

mV

10

100

nA

50

400

nA

50

300

nA

500

250

1000

nA

0.3

6.0

0.3

6.0

mV

IC = 100 ",A, 5 V :S VCE :S 25 V,
Rs:S 10 kn

0.3

6.0

0.3

6.0

mV

Input Offset Voltage Drift

10 ",A :S Ic :S 100 ",A, VCE = 5 V,
Rs:S 50 n, +25OC :S TA :S Max

0.2

1.0

0.2

2.0

",V/oC

Input Offset Voltage Drift

10 ",A:S Ic :S 100 ",A, VCE = 5 V,
Rs :S 50 n, Min :S TA :S +25°C

0.2

1.0

0.2

2.0

",V/oC

Input Offset Current
Average Input Bias Current

Offset Voltage Change

Typ

Max

1.0

2.5

IC = 10 ",A, VCE = 5 V

10

50

IC = 100 ",A, VCE = 5 V

50

200

Ic = 10 ",A, VCE = 5 V

50

150

Ic = 100 ",A, VCE = 5 V
Ic = 10 ",A, 5 V :S VCE :S 25 V,
RS:S 100 kn

250

Min

Min

IC = 10 ",A, VCE = 5 V

10

10

pA/oC

IC = 100 ",A, VCE = 5 V

30

30

pA/oC

Supply Voltage
Rejection Ratio

10 ",A :S Ic :S 100 ",A, Rs :S 50 n

25

25

",V/V

Low Frequency Noise

Ic = 10 ",A, VeE =5V, RS:S 50 n
BW = .001 Hz to 0.1 Hz

4.0

4.0

",V pop

Broadband Noise

IC = 10 ",A, VeE = 5 V. RS:S 50 n
BW = 0.1 Hz to 10 kHz

10

10

",V pop

Long-term Drift

10 ",A :S Ie :S 100 ",A, VCE = 5 V,
Rs :S 50 n, TA = 25°C

5.0

5.0

",VI
week

High Frequency Current Gain

f=20 MHz,lc= 100 ",A, VCE = 5 V 1.5

3.5

Output Capacitance

IE = 0, Vce = 5 V

1.0

1.0

pF

Emitter Transition
Capacitance

IE

1.0

1.0

pF

Collector Saturation Voltage

Ie = 100 ",A, Ic = 1 mA

Input Offset Current Drift

= 100 ",A

1.5

0.5

3.5

1.0

0.5

Typical Performance Curves for ",A726
Current Gain as a
Function of
Collector Current
1000

Supply Current as a
Function of
Ambient Temperature

y~~ ~ s.oly

20

I III

=

800

.I

I

. .1.

Vs= ±15V_
RadJ =620

Vs= ±15V
RadJ
62kO

16

- 55°C:s; TA::S; + 125°C
600

400

",

V

V

12

"'"

t-...

"'

"

t-...
I"'

./
200

'100p.A

1 rnA

o

-60

10mA

20

20

60

TEMPERATURE _ °C

COLLECTOR CURRENT

9-16

r-...

100

140

1.0

V

JLA726
Typical Performance Curves for IlA726C (Cont.)

Supply Current as a
Function of
Ambient Temperature

Current Gain as a
Function of
Collector Current
1000

~CE ~
Vs

z
;;

..'"

=

±15V
RadJ :::: 75 kn
DOC ~ TA $ 85°C

800

600

10

5.0 ~ 1 1 1 _

-

8.0

0:
0:

400
::>

.
;'i

V

"

.......

" "'-

::>

"

i

4.0

::>

200

~
.........

~

L..-----15V
R7

75kn

R4
50n

C1

R8

5nF

1.5kn

R6

50kn
ALL RESISTORS 1 %

9·17

-15V

•

J.lA727
Temperature-Controlled
Differential Preamplifier

F=AIRCHILO
A Schlumberger Company

Special Function Products
Connection Diagram
10-Pin Metal Package

Description
The Ji,A727 is a monolithic, fixed gain, Differential
Input / Output Preamplifier, constructed with the
Fairchild Planar epitaxial process, mounted in a high
thermal resistance package, and held at constant
temperature by active regulator circuitry. The high
gain and low-standby dissipation of the regulator
circuit give tight temperature control over a wide
ambient temperature range. The device is intended for
use as a self-contained input stage in very low drift dc
amplifiers, replacing complex chopper-stabilized
amplifiers in such applications as thermo-couple
bridges, strain-gauge transducers, and
a / d converters.
•
•
•

FREQ COMP 1

..........-----+-"-<~ OUT 2

IN 2

IN 1

v(Top View)

VERY LOW OFFSET DRIFTS
HIGH INPUT IMPEDANCE 300 Mfl
WIDE COMMON MODE RANGE CMRR = 100 dB

Order Information
Type
Package
Ji,A727
Metal
Ji,A727C
Metal

Absolute Maximum Ratings
Operating Temperature Range
Military (Ji,A727)
-55°C to +125°C
Commercial (Ji,A727C)
-20°C to +85°C
Storage Temperature Range
-65°C to +150°C
Pin Temperature (Soldering, 60 s) 300°C
Internal Power Dissipation
500 mW
Supply Voltage
(Amplifier and Heater)
± 18 V
Differential Input Voltage
± 10 V
Common Mode Input Voltage
± 15 V

Code
5U
5U

Part No_
Ji,A727HM
Ji,A727HC

Equivalent Circuit
VA+

R2
21 kH

FREQ COMP 1

R1
1 kn

.22

300 Jl

,. --t---'lNV--1

D2

.3
48 kH

Q1. r-----fE--.::.:.:.-4::--=.::--~F'------...::::'_:31---'

••

10 kll

~------+--~--~-----~--+------+--~--~--~~
9-18

J-LA727
/LA727
Electrical Characteristics

-55°C:.5 TA:.5 +125°C, VH+
otherwise specified.

Characteristic

Condition

Input Offset Voltage

RS :.5 50 n

= +15 V, V- = -15 V, RADJ = 330 kn,
Min

unless

Typ

Max

Unit

2.0

10

mV
nA

Input Offset Current

2.5

15

Input Bias Current

12

40

nA

RS:.5 50 n, +25°C :.5 TA:.5 +125°C

0.6

1.5

/LV/oC

RS:.5 50 n, -55°C :.5 TA:.5 +25°C

0.6

1.5

/LV /oC

+25°C:.5 TA:.5 +125°C

2.0

pA/oC

-55°C :.5 TA:.5 +25°C

2.0

pA/oC

-55°C :.5 TA:.5 +125°C

15

pA/oC

Differential Input Resistance

300

Mn

Common-Mode Input Resistance

1000

Mn

Input Offset Voltage Drift
Input Offset Current Drift
Input Bias Current Drift

Input Voltage Range

±12

Supply Voltage Rejection Ratio

RS:.5 100 kn

Common-Mode Rejection Ratio

RS:.5 100 kn

80

Output Resistance
Output Common-Mode Voltage

-6.0

±13

V

80

/LV IV

100

dB

1.0

4.0

kn

-5.0

-4.0

V

Differential Output Voltage Swing

±5.0

±7.0

±10

V

Output Sink Current

10

30

80

/LA

5.0

10

/LV//LA

100

250

Differential Load Rejection
Differential Voltage Gain

60

= 10 Hz to 500 Hz, Rs :.5

Low Frequency Noise

BW

Long Term Drift

RS:.5 50 n

Amplifier Supply Current

TA

Heater Supply Current

TA

= +25°C
= +25°C

50 n

3.0

/LVrms

5.0

/LV /week

1.0

2.0

mA

10

15

mA

•
9-19

f.LA727
JlA727C
Electrical Characteristics

-20°C:::; TA:::; +85°C, VH+
otherwise specified.

= VA+ = +15 V, V- = -15 V, RADJ = 1 Mfl,

Characteristic

Condition

Min

Input Offset Voltage

Rs :::; 50 fl

unless

Typ

Max

Unit

2.0

10

mV

Input Offset Current

2.5

25

nA

Input Bias Current

12

75

nA

0.6

3.0

JlV 1°C

Input Offset Voltage Drift

RS:::; 50 fl

pA/oC

Input Offset Current Drift

2.0

Input Bias Current Drift

15

pA/oC

Differential Input Resistance

300

Mfl

Common Mode Input Resistance

1000

Mfl

±12

Input Voltage Range
Supply Voltage Rejection Ratio

Rs :::; 100 kfl

Common Mode Rejection Ratio

Rs:::; 100 kfl

70

± 13

V

80

JlV IV

100

Output Resistance

dB

1.0

4.0

kfl
V

Output Common Mode Voltage

-7.0

-5.0

-4.0

Differential Output Voltage Swing

±3.0

±7.0

±10

V

Output Sink Current

10

30

80

JlA

Differential Load Rejection

5.0

15

JlV I JlA

Differential Voltage Gain

100

250

50

Low Frequency Noise

BW

Long Term Drift
Amplifier Supply Current

TA

Heater Supply Current

= 10 Hz to 500 Hz, RS :::;

50 fl

3.0

JlVrms

Rs :::; 50 fl

5.0

JlV Iweek

= +25°C
TA = +25°C

1.0

2.0

mA

10

15

mA

Typical Performance Curves

Noise Voltage vs Frequency
10- 1

Noise Current vs Frequency

1 M

v; =I"JI) I
!

10 h

10 23

10 ,

10 '

H+t-H-H-++-+--++IH-+-tt++-1

10 24

16

100

1 k
FREQUENCY -

10 k
Hz

100 k

10-26
10

r--.

1k

"
100

100 k

10 k

......

10-25

"10

V

VS"'!15V
RADJ =- 330 kn

RADJ :; 330 k!!

10

Spot Noise Contours

,

1 k
FREOUENCY -

9·20

10 k
Hz

100 k

100
10

lA'1 II I
f

{

Vs = :!:15 Y
RAOJ "" 330 k! I

.d.± .....

I\,

"

......

• d.
10 dB

"

1~.

b

20 dB

i-

i
100

1k
FREQUENCY -

10 k
Hz

100 k

p,A727
Typical Performance Curves (Cont.)

Power Consumption vs
Ambient Temperature

Relative Chip Temperature vs
Ambient Temperature

Recommended RADJ
vs Maximum
Ambient Temperature

1000

2

8

1\

1

10

f-

I)

06

\

:
'0

30

'"

90

70

-

-

;!

"- I"-

;0

~ 200

Vs - 715 V

-60

130

-20

-00

·20

ac

AMBIENT TEMPERATURE _

C

>_i"""'

...

=0

68

-

IJ.A

-20

"

+20

+100

+140

AMBIENT TEMPERATURE-"C

Amplifier Current vs
Supply Voltage

IADJ '" 68

IADJ '" 68 iJ.A

.
".

>-

1

.

g

I-

o

o

,.

0

~ 12~~+-+-~-+-+~~~+-+-~-1

r--

'"'"

:J

r-- .......

,.,.
Z

o

I)

.......

oI)

..

ffi08~t-+-~-r-+-i~~t-+-~-r-1

r--

,.~

r-

l-

ii'

4

IJ.A

~ 16~+-+-~-+-+~r-~+-+-~-+-+

~

I)

"04~t-+-~-r-+-i~r-t-+-~-r-1

I-

:J

o

o

-10
9

10

11

12

13

14

SUPPLY VOLTAGE- ±V

Differential Voltage
Gain vs
Supply Voltage

.

ffi

""-

-10

z

~
;

Z

0400
I)

Output Common-Mode
Voltage vs
Supply Voltage
IAOJ

,.,.
o

:J

-10

20

o •

.,.
.

j: 600

o

110

~
1

z

...-r-

"-

o

-20

Input Common-Mode
Voltage Range vs
Supply Voltage

S
>

Y Y

~ ~ I--"

g

......

MAXIMUM AMBIENT TEMPERATURE -

." ,.
:!
.
" 12

-

z

~

I

02

~ 800
1

1'-1

>

l

RADJ ~ 330 kll

1M!!\

205 Mil

RAOJ

I-

\

:.

:J

RADJ ~

.'"
.
~
.z~
.

\

_, 14

~

20

v; ..:,v

--, 330 k!l

RADJ

+15 V

Vo

15

9

10

11

12

13

SUPPLY VOLTAGE -

14

15

Open Loop Frequency
Response for Various
Values of Compensation
0
VS~I~15V
I III 11111
NO COMPENSATION
1111
1 40
z
;;
11111
l1iN.
,

Required RADJ for Constant
IADJ vs Supply Voltage

I
I
I

IADJ '" 68 "A

u

~V

SUPPLY VOLTAGE -

~V

I;'"

".

.
S
.
"

l-

>

~

C1 = 005 I-'F, R1

0

2

=

20 k!l

I III IliN-.
I III

0

C1

~

1111

~I005

I-'F, R1 """ 0

~

'"~ -20
1i
-4 0

11
SUPPLY VOLTAGE -

-v

12

13

SUPPLY VOLTAGE -

9-21

14
-:!:.V

15

10

100

1 k

10k

FREQUENCY -

100 k
Hz

1 M

•

f.lA733
Differential Video
Amplifier

FAIRCHILO
A Sehlumberger Company

Linear Products

Description
The J.LA733 is a monolithic two-stage Differential Input,
Differential Output Video Amplifier constructed using
the Fairchild Planar epitaxial process. Internal
series-shunt feedback is used to obtain wide
bandwidth, low-phase distortion, and excellent gain
stability. Emitter follower outputs enable the device
to drive capacitive loads and all stages are
current-source biased to obtain high-power supply and
common-mode rejection ratios. It offers fixed gains of
10, 100 or 400 without external components, and
adjustable gains from 10 to 400 by the use of a single
external resistor. No external frequency compensation
components are required for any gain option. The
device is particularly useful in magnetic tape or disc
file systems using phase or NRZ encoding and in high
speed thin film or plated wire memories. Other
applications include general purpose video and pulse
amplifiers where wide bandwidth, low phase shift, and
excellent gain stability are required.

Connection Diagram
10-Pin Metal Package

•
•
•
•

Order Information
Type
Package
J.LA733
Metal
J.LA733C
Metal

G2A

GAIN SELECT

v+

G28

OUT 1

GAIN SELECT

v(Top View)
Note
Pm 5 connected to case

120 MHz BANDWIDTH
250 kQ INPUT RESISTANCE
SELECTABLE GAINS OF 10, 100, AND 400
NO FREQUENCY COMPENSATION REQUIRED

Absolute Maximum Ratings
Supply Voltage
Differential Input Voltage
Common Mode Input Voltage
Output Current
Internal Power Dissipation
(Note 1)
Metal Package
DIP
Operating Temperature Range
Military (IlA733)
Commercial (J.LA733C)
Storage Temperature Range
Pin Temperature (Soldering)
Metal Package (60 s)
Ceramic DIP (60 s)
Molded DIP (10 s)

IN 2

Code
5X
5X

Part No.
J.LA733HM
J.LA733HC

Connection Diagram
14-Pin DIP

±8V
±5V
±6V
10 rnA

IN 2
NC
G28

500 mW
670 mW

G,s

-55°C to +125°C
O°C to +70°C
-65°C to +150°C

v-

v+

NC

NC

OUT 2

OUT 1

(Top View)

Order Information
Type
Package
IlA733
Ceramic DIP
IlA733C
Ceramic DIP
J.LA 733C
Molded DIP

Note
1 Rating applies to ambient temperatures up to 70 o e. Above
70 0 e ambient derate linearly at 6.3 mW I °e for the Metal and
8.3 mW / °e for the DIP.
9·22

Code
6A
6A
9A

Part No.
J.LA733DM
J.LA733DC
J.LA733PC

JLA733
Equivalent Circuit
v+

GAIN

Rl

R2

2.4 kl!

2.4 kl!

G1A

SELECT /
G2A

v-

9·23

/-LA733
!LA733 and !LA733C
Electrical Characteristics
Characteristic

TA

= 25°C , Vs = +60
V unless otherwise specified
-

Condition

Differential Voltage Gain
Gain 1, Note 2
Gain 2, Note 3
Gain 3, Note 4
Bandwidth
Gain 1
Gain 2
Gain 3

RS

Risetime
Gain 1
Gain 2
Gain 3

RS

Propagation Delay
Gain 1
Gain 2
Gain 3

RS

Max

Min

Typ

Max

300
90
9.0

500
110
11

250
80
8.0

400
100
10

600
120
12

40
90
120

40
90
120

MHz
MHz
MHz

= 50 n, VOUT = 1 Vp_p
10.5
4.5
2.5

10

10.5
4.5
2.5

12

ns
ns
ns

7.5
6.0
3.6

10

7.5
6.0
3.6

10

ns
ns
ns

= 50 n, VOUT = 1 Vp_p

20
Gain 2

4.0
30
250

10

2.0

Input Offset Current
Input Bias Current
Input Noise Voltage

400
100
10

Unit

= 50 n

Input Resistance
Gain 1
Gain 2
Gain 3
Input Capacitance

!LA733C

!LA733
Typ
Min

RS = 50 n,
BW = 1 kHz to 10 MHz

2.0

=±
=±

Supply Voltage
Rejection Ratio
Gain 2

I1VS

= ±0.5 V

1 V, f :=:; 100 kHz
1 V, f = 5 MHz

pF

3.0

0.4

5.0

!LA

9.0

20

9.0

30

!LA

12

± 1.0

VCM
VCM

kn
kn
kn

0.4

12

Input Voltage Range
Common Mode
Rejection Ratio
Gain 2
Gain 2

4.0
30
250

!LV rms

± 1.0

V

60

86
60

60

86
60

dB
dB

50

70

50

70

dB

Output Offset Voltage
Gain 1
Gain 2 and Gain 3

0.6
0.35

1.5
1.0
3.4

0.6
0.35

1.5
1.5

V
V

2.4

2.9

3.4

V

Output Common Mode
Voltage

2.4

2.9

Output Voltage Swing

3.0

4.0

3.0

4.0

Output Sink Current

2.5

3.6

2.5

3.6

rnA

20

Q

Output Resistance

20

Power Supply Current

18

Notes
2. Gain Select pins G 1A and G 1B connected together.
3. Gam Select pins G2A and G2B connected together.
4. All Gain Select pins open.
9-24

24

18

Vpk-pk

24

rnA

J.LA733
/LA733 and /LA733C
Electrical Characteristics (Cont)
Characteristic
Differential Voltage Gain
Gain 1, Note 2
Gain 2, Note 3
Gain 3, Note 4
Input Resistance
Gain 2
Input Offset Current
Input Bias Current
Input Voltage Range
Common Mode
Rejection Ratio
Supply Voltage
Rejection Ratio
Output Offset Voltage
Gain 1
Gain 2 and Gain 3
Output Swing

The following specifications apply for min -< TA -< max

Condition

/LA733
Typ
Min

Max

/LA733C
Min Typ

Max

200
80
8.0

600
120
12

250
80
8.0

600
120
12

8.0

8.0

k!l

5.0
40

6.0
40

± 1.0

± 1.0

/LA
/LA
V

50

50

dB

50

50

dB

1.5
1.2

1.5

2.5

Output Sink Current
Positive Supply Current

Unit

2.8

2.2

V
Vpk-pk

2.5
27

mA
mA

27

Note&
2 Gain Select pins G 1A and G 18 connected together
3. Gam Select pins G2A and G2B connected together.
4. All Gain Select pins open.

Typical Performance Curves

Phase Shift vs Frequency
~

""

5

•

Phase Shift vs Frequency

•

GAIN 2
Ys "" ~6 V
TA " 2S e c

-so

f::: ~~

Vs '" ±6 V
TA -= 25°C

,

'I

\

•
•

-1.

"-

~

-2.•

I......

•o

-2

•
•

1

2

3

4

5

FREQUENCY -

&

7
MHz

8

9

10

-35

~

,.

50 100

FREQUENCY -

9-25

~

40

~

30

~

"I
"\~~. 5

Vs ~ ttl V
TA '" 25°C
GAN 1

GAIN 2

\\

g

~

-20

~50
Z

"~- -

-250

•

6.

.

~\

-15

i'..

5

Voltage Gain vs Frequency

MHz

i

500 1000

0"
i!l
~

10

~Ui

0

GAIN 3

.,.

-- ~~

1'\

50 100

FREQUENCY -

MHz

500 1000

•

J..tA733
Typical Performance Curves (eont.)

Output Voltage Swing
vs Frequency

Common Mode Rejection
Ratio vs Frequency
100
'II
0

j:

c
a:
Z
0

j:

0

~a:

00w
0',.Z"
"00

GAIN 2
Ys '" ±I V
TA ~ 2S"C

90

'0
70
60
50
.0
30
20
10
010 k

~

10 M

1 M

100 M

vs'=
I
>

~20
0
0

V

)t'
Io

-V

20

40

5

,.

"7

V

y

.5.

....-4.

..

GAIHa-

r-

~4 ...(.r-r~

TEMPERATURE _

30 35

±IV

...

v,

±ov

g 06~T_A,=__-5+50_C~-i"f-~T_A+=_'~'5rOC-+~

> 12~+--r-+~r-t-+-t-+-1-r~

Il.t=j~~~=t~~~~~~~~

V

~

~w

'40

DOC

,

TA "" 70 0

-021-1t--+hl-+--+~--+-+-+~
-5

0

5

10

15

20

25

30

35

TIME -

~ ~T~ t~i50C

0

•
•
•

14

III

2

~

TA

5

10

= 70"C

~=.oC

-"i ~1=1 ••o

IT! ~ 1,2SOC- III
50 100

FREQUENCY -

MHz

9-26

n.

Voltage Gain vs Supply Voltage

±6 V
RL == 1 kfl

4

,

~~'~5--~I.~-~5~~~5~'~.~'5~'~0~'~5~90-J"

ns

•
~90
o

TA

08

J
e
ii •'1-~-+-1rl..--t-~-+-1f-+--i

J

0

~
!

\
ac

25

+,

w

100

20

Vs

Gain Versus Frequency
vs Temperature
0
Ys ==

3

..

15

n.

Vs

z

20

10

TIME -

~ D.41-~-+-1h-..Jr/,+_T,A_=_'+5_0C~-+~

TIME -

I~ 11-

-

5

D.

2

-0 •
-0.•-15 -10

10 100 120 140 180 180 200

\
0."

0

Pulse Response
vs Temperature

r!

>

o

\

-10 -5

MHz

!:i04

-" \ ......

-0'
-0'-15

GAIN 2
TA = 25"C

1.

w

Vs = ±I V

"

500 1000

I RL'" 1 kJl

"~:.:

11

0'-

50 100

,..

>
I

Voltage Gain vs Temperature

-I-

o

1.'

DIFFERENTIAL INPUT VOLTAGE - mY

• \
I.'0

502

18

JV

V
10

.

\

0'0
01

A1N 1

I

5 04

1\

20

FREQUENCY -

./

;::

.

J ..<
II I....

>

Pulse Response vs
Supply Voltage

;60

~40
fil30

r

Hz

TA = 25"C
GAIN 2

260

GAIN 2

0 0.6

::>

100 k

GAN 3

w

I 10

g

.

>

~ O.

"!:ic 30
~

aoe

12

: 40

r-.,

Ys = ±6 Y
TA =
RL = 1 kn

14

I

70

,

TA = 25°C

1-+++t-+-+-HIt-+RL = 1kU

"z so

Differential Overdrive
Recovery Time

~

Ys=±6V

it 60
>

i

FREQUENCY -

~

Pulse Response
1.'

500 1000

TA '" 25°C
13

12

/'

1

f-

0 - 0 ..'M3
o\~_r--

,...

.:::: ~,
,.,4- I--.f+'

'5 /

"

V

•
SUPPLY VOLTAGE -

-tv

J.tA733
Typical Performance Curves (Cont.)
Output Voltage and
Current Swing vs
Supply Voltage

Output Voltage Swing
vs Load Resistance

Gain Versus Frequency
vs Supply Voltage
60r-'-rrr-~-;,,~-;~~~-,

0

GAIN 2

T, - 25°C

>

c

"Z

15 0

V

E

~

~ SOr-~r+r-+--r~+--r-T~'r~T2T5T'C-;

0

,/

0

~
;....-;
....~....'
.o~

0

o~

k:: c::::

V

Z

~ 40r-~t+r-+--t-H~-t--rtTT-;

V
,/

~ 3o~~~~~;f~~~~~++~

,/

ffi

c"

...

so

30

60

TA

80

FREQUENCY -

Input Resistance
vs Temperature

0

I

Vs = ±6 V

;;

"w

0

"~

g

0

~

ill

0

~is

V

20

1 20

10

0

I".

0/

f'.

,.

100

SOURCE RESISTANCE -

,.

0
10

10 •

100
R adj -

Jl

Supply Current
vs Temperature

10.

28

TA = 25'C

20
c

c

4

/

E

19

I

E 18
::: 1/
"o 17

........

~

t-..... .......

"a

I'

~

~

16

20

/
V

16

,/

12

15

/

14
~60

IL

~20

20

60

TEMPERATURE -

100
QC

140

•/
3

SUPPLY YOl TAGE -

9-27

±Y

l/'

/V
V

~60

-20

0

20

100

60

TEMPERATURE _

Jl

Ys = ±6 V

./

V

0

Supply Current vs
Supply Voltage

1

ILV

100

~
>=

0
30

0

i5!

GAIN 2
0

Z

c

SO

MHz

0

0

~

10 k

Q

2S"C

=

±8 V

h~~V

Vs = ±6 V
TA = 2S C

BW = 10 MHz

I-

"..
!;

5 k

VS'" :!:6 V

170

w

Vs

n

1000

i III

GAiN

w

'"oZ

500 1 k

Voltage Gain vs RADJ

100

6

100 200

LOAD RESISTANCE -

+V

Input Noise Voltage
vs Source Resistance
90

50

10

80

70

SUPPLY VOLTAGE -

~

r

"
Z
;;;

0

g

20r-~t+r-~-t-H~-t,.rtTT-;

f iw~ 10~1-ttr-+--t-H+--tI\~~~~

0

~

,,~

g

140

ac

•

Il A73 3
Typical Applications
Oscillator Frequency for Various Capacitor Values
10 7

,

106

IL

........

105

w
U 10'

z

«
t-

o
«

a.. 103

«
u
u

10 2

~

~

Q.

1 kn

t-

_____ MEASURED

~

CALCULATED

~~
620 n MA73~

~ ........

~~
f--T-I

~

""'" ~

IlJ
f

f

~

liT

~

2(Rl
10

~~

1

+ R2)CL, [AV ~-1]
Rl + R2

~r-.

~

f " 3.4 x 103C
1

100

1.0 k

100 k

10 k
FREQUENCY -

9-28

Hz

1 M

10 M

f.lA757
Gain-Controlled
IF Amplifier

FAIRCHIL.O
A Schlumberger Company

Special Function Products

Connection Diagram
14-Pin DIP

Description
The IlA757 is a monolithic high performance, Gain
Controlled IF Amplifier constructed using the Fairchild
Planar epitaxial process. The amplifier contains two
different sections which may be operated
independently, or in cascade, from audio frequencies
to 25 MHz. The IlA757 is intended primarily as a high
gain controlled, intermediate frequency amplifier in AM
or FM communications receivers. It also has excellent
performance when operated in FM receivers as a
limiting amplifier.

+IN A
DECOUPLE
AGC 1
AGC 2

GND
DECOUPLE

•
•
•
•
•

70 dB GAIN AT 10.7 MHz
70 dB AGC RANGE AT 10.7 MHz
300 mV INPUT SIGNAL CAPABILITY
CONSTANT I/O IMPEDANCE WITH AGC
STABLE GAIN WITH SUPPLY VOLTAGE AND
TEMPERATURE AT ALL LEVELS OF
GAIN REDUCTION

Absolute Maximum Ratings
Supply Voltage
Voltage at any Output Terminal
Voltage at either AGC Terminal
Note 1
Differential Voltage at either Input
(Pins 1 and 14, Pins 2 and 10)
Internal Power Dissipation
Note 2
Storage Temperature Range
Operating Temperature Range
Pin Temperature (Soldering, 60 s)

-OUT B

(Top View)

Order Information
Type
Package
IlA757C
Ceramic DIP

Code
6A

Part No.
IlA757DC

+15 V
+24 V

± 12 V
±5V
670 mW
-65°C to +150°C
O°C to +70°C
300°C

•
Noles
1. For supply voltages less than + 12 V, the absolute maximum
voltage at either AGC terminal IS equal to the supply voltage.
2 Rating applies to ambient temperatures up to 70°C. Above
70°C ambient derate linearly at 8.3 mW / °c.
9-29

jlA757
Equivalent Circuit
OUTPUT 8

+
OUTPUT A
'2

V+

SHIELD 9

INPUT B

'I'

I

'0

I

J'"

900 !l

.........

'"

700 !l

'3

DECO UPLE

"-.I

V

....

'"

5 kfl

.....
kn

r

[:l-rK
5 k!l

OECOUP LE

2

300

n

300

'--

n

3

3 kn

~

3 kll

200 Jl

11 k!l

200 Jl

400 !I

kn

~~

13

25

kn

kI'

11

>-

5 kH

3.5

r-

v

K

....-

5 k!l

-

.....

kn

~

>-

r--AGC 1

11

V
5

kn

,.
INPUT A

"-.I
",

5

V

~

15 kll

v

5

I
I
I

300

300

n

n

8kO

~

D-J-~
n

5 kn

T

~

11 kH

3 kll

~

.........
200 !l

200

n

40011

I

•

5

AGe 2

9-30

GROUND

V

1--..

1
6 kfl

4 k!l

150 !l

DECOUPLE

n

p,A757
/lA757
Electrical Characteristics
Characteristic
Supply Current

V+ = + 12 V, TA = 25 0 C , unless otherwise specified
Test
Circuit Min

Condition
VAGC 1,2 = +0.8 V
VAGC 12= +3.0 V

Internal Power Dissipation VAGC
VAGC
Voltage Gain at
VAGC
no Reduction
VAGC
Voltage Gatn at Partial
VAGC
Gain Reducjlion
VAGC
Voltage Galin at
VAGC
Full Gain Reduction
VAGC
Current into either
VAGC
AGC Terminal

1 2 = +0.8 V
1'2 = +3.0 V

Typ

Max

Typ

Max

Unit

1

13
17

17
20

14
18

17
22

mA
mA

1

170
200

210
240

170
220

210
270

mW
mW

1,2 = +0.8 V, f = 500 kHz 2
1 2 = +0.8 V, f = 10.7 MHz 2
1,2 = +1.7 V, f = 500 kHz 2
12= +1.7 V, f = 10.7 MHz 2

65
60

74
70

20

39
37

46

2.0
1.0

1

15

1,2 = +3.0 V, f = 500 kHz 2
12= +3.0 V, f = 10.7 MHz 2
1,2 = +3.0 V

Min

65
60

74
70

20

39
37

46

dB
dB

10
8

2.0
1.0

10
8

dB
dB

50

15

50

/lA

dB
dB

Gain Reduction
Sensitivity

VAGC 1,2 = +1.7 V, f = 500 kHz

2

50

50

dBIV

Input Voltage for -3 dB
Limiting at Output

VAGC 1,2 = +0.8 V, f = 500 kHz

2

0.5

0.5

mV

Intermodulation Products

Two-tone signal
f1 = 500 kHz, e1 = 100 mV
f2 = 510 kHz, e2 = 100 mV
lOUT = 1 mA pop

2

-50

-50

dB

5.0
4.5

kQ
kQ

2.5
2.2

2.5
2.2

pF
pF

Section 1
Input Resistance at either VAGC
Input Terminal
VAGC
Input Capacitance at
VAGC
either Input Terminal
VAGC

1 = +0.8 V, f = 10.7 MHz
1 = +3.0 V, f = 10.7 MHz
1 = +0.8 V, f = 10.7 MHz
1 = +3.0 V, f = 10.7 MHz

3.0

5.0
4.5

3.0

Output Resistance

VAGC 1 = +0.8 V, f = 10.7 MHz
VAGC 1 = +3.0 V, f = 10.7 MHz

100
100

100
100

kQ
kQ

Output Capacitance

VAGC 1 = +0.8 V, f = 10.7 MHz
VAGC 1 = +3.0 V, f = 10.7 MHz

2.6
2.2

2.6
2.2

pF
pF

Forward Transadmittance

VAGC 1 = +0.8 V, f = 500 kHz
VAGC 1 = +0.8 V, f = 10.7 MHz

14
13

14
13

mmho
mmho

Peak-to-Peak
Output Current

VAGC 1 = +3.0 V, f = 500 kHz
Output in full limiting

0.4

mA

Output Saturation Voltage lOUT = 0.1 mA, VAGC 1 = +3.0 V
RS = 1.0 kQ, f = 10.7 MHz
Noise Figure
RS = 1.0 kQ, f = 500 kHz
Interfering Signal Voltage Carrier signal, fc = 500 kHz
at Input for 1.0%
Interfering signal, fj = 510 kHz
Cross Modulation
lOUT = 0.5 mAp-p, VAGC 1 = +0.8 V

9-31

0.25 0.4
8.0

0.25
9.0

8.0

9.0

V

8.0
8.0

8.0
8.0

dB
dB

15

15

mV

•

p,A757
Section 2
Electrical Characteristics (Cont.)

V+

Characteristic

Condition

Input Resistance

VAGC 2
VAGC 2

Input Capacitance
Output Resistance at
either Output Terminal
Output Capacitance at
either Output Terminal
Forward Transadmittance
Quiescent Output Current
at either Output Terminal
Peak-to-Peak Current at
either Output Terminal

= + 12 V, TA = 25°C, unless otherwise specified
Test
Circuit Min

= +0.8 V, f = 10.7 MHz
= +3.0 V, f = 10.7 MHz
VAGC 2 = +0.8 V, f = 10.7 MHz
VAGC 2 = +3.0 V, f = 10.7 MHz
VAGC 2 = +0.8 V, f = 10.7 MHz
VAGC 2 = +3.0 V, I = 10.7 MHz
VAGC 2 = +0.8 V, f = 10.7 MHz
VAGC 2 = +3.0 V, f = 10.7 MHz
VAGC 2 = +0.8 V, f = 500 kHz
VAGC 2 = +0.8 V, f = 10.7 MHz
VAGC 2 = +3.0 V
VAGC 2 = +3.0 V, f = 500 kHz

3.0

Output in lull limiting

Vs

Characteristic
Supply Current
Internal Power Dissipation
Voltage Gain at no Gain
Reduction
Voltage Gain at Partial
Gain Reduction
Voltage Gain at Full Gain
Reduction
Current into either
AGC Terminal

Typ

3.0

5.0
4.5

kn
kr!

2.5
2.2

2.5
2.2

pF
pF

26
20

26
20

kn
kn

2.2
2.5

2.2
2.5

pF
pF

440
280

440
280

mmho
mmho

Max

3.5

1.7

2.4

3.5

mA

3.8

4.8

7.0

3.8

4.8

7.0

mA

5.0

6.0

5.0

6.0

V

o dB Gain Reduction

0.5
0.8
1.0

30 dB Gain Reduction
60 dB Gain Reduction

0.5
0.8
1.0

dB/V
dB/V
dBIV

V + = + 12 V, TA = + 125 ° C, unless otherwise specilied
Test
Circuit

Condition

= +0.8 V
= +3.0 V
VAGC 1,2 = +0.8 V
VAGC 1 2 = +3.0 V
VAGC 1,2 = +0.8 V, f = 500 kHz
VAGC 1 2 = +0.8 V, I = 10.7 MHz
VAGC 1,2 = +1.7 V, f = 500 kHz
VAGC 1.2 = +3.0 V, I = 500 kHz
VAGC 1 2 = +3.0 V, f = 10.7 MHz
VAGC 1,2 = +3.0 V
VAGC 1,2
VAGC 1 2

Typ

Max

Unit

1

14
17

17
20

mA
mA

1

170
200

210
240

mW
mW

Min

71
62

dB
dB

2

35

dB

2
2

2.0
-1.0

15

dB
dB

1

15

50

/LA

2
2

55

Section 1
Peak-to-Peak Output
Current

VAGC 1 = +3.0 V, f = 500 kHz
Output in lull limiting

Output Saturation Voltage

lOUT

= 0.1

0.2

mA, VAGC 1 = +3.0 V

mA

0.4
8.0

9.4

V

1.7

2.8

3.5

mA

3.8

5.6

7.0

mA

6.0

7.0

V

Section 2
Quiescent Output Current
at either Output Terminal

VAGC 2

Peak-to-Peak Current at
either Output Terminal

Output in full limiting

Output Saturation Voltage
at either Output Terminal

= +3.0 V
VAGC 2 = +3.0 V, f = 500 kHz
lOUT

= 1.0 mA, VAGC 2 = +3.0 V

9-32

Unit

2.4

= 1.0 mA, VAGC 2 = +3.0 V
= 12 V to 15 V

/LA757
Electrical Characteristics (Cont.)

Min

Max

1.7

Output Saturation Voltage
at either Output Terminal lOUT
Power Supply Sensitivity

Typ
5.0
4.5

I1 A757
/LA757
Electrical Characteristics

V+

Characteristic

Condition

Supply Current

VAGC 1,2 = +0.8 V
VAGC 1 2 = +3.0 V

1

Internal Power Dissipation

VAGC 1,2 = +0.8 V
VAGC 1 2 = +3.0 V

1

Voltage Gain at no Gain
Reduction

VAGC 1,2 = +0.8 V, I = 500 kHz
VAGC 12= +0.8 V, I = 10.7 MHz

2
2

Voltage Gain at Partial
Gain Reduction

VAGC 1,2 = +1.7 V, f = 500 kHz

Voltage Gain at Full
Gain Reduction
Current into either
AGC Terminal

= +12 V, TA = -55°C, unless otherwise specilied
Test
Circuit

Min

55

Typ

Max

Unit

10
14

17

20

mA
mA

120
170

210
240

mW
mW

68
64

dB
dB

2

28

dB

VAGC 1,2 = +3.0 V, f = 500 kHz
VAGC 1 2 = +3.0 V, f = 10.7 MHz

2
2

2.0
-3.0

15

dB
dB

VAGC 1,2 = +3.0 V

1

30

70

/LA

Section 1
Peak-to-Peak Output
Current

VAGC 1 = +3.0 V, I = 500 kHz
Output in lull limiting

Output Saturation Voltage

lOUT = 0.1 mA, VAGC 1 = +3.0 V

0.2

0.4

mA

8.0

9.0

V

Section 2
Quiescent Output Current
at either Output Terminal

VAGC 2 = +3.0 V

1.0

1.7

3.5

mA

Peak-to-Peak Current at
either Output Terminal

VAGC 2 = +3.0 V, f = 500 kHz
Output in lull limiting

2.3

3.4

7.0

mA

Output Saturation Voltage
at either Output Terminal

lOUT = 1.0 mA, VAGC 2 = +3.0 V

4.0

6.0

V

•
9-33

Il A757
Typical Performance Curves
Section 1
Forward Transadmittance
vs Frequency

I D dB REFERENCE
o dB

•
•

II

10 dB GAIN REDUCTION

~

10

I

"

II

•

20 dB GAIN REDUCTION

~ 20

I

z

"~

,lo

~ 14 mmho

GAtN REDUCTiON

I

w

U

II

•
•
•
••

30 dB GAIN REDUCTION

3D

w
>

;::

~

TA -= 25°C
V - ·12 V

40

50

10

20

50

"f

10

75

t

';

20

FREQUENCY -

f-f-50

100

~

--.. r-.....

lAPALTAN~E

40k

lJDU~
IG"'~N IRJDUC~ ['\

10 dS!

3

3. k

3. dBI ~A!N IRlouCT1:'
I'--

ro

W

~

~

•

2•

~
c:

I.
~ 20

I

z

o

~::>
iil

'"
z

;;c

+125°C-l

~ r--

f

."
~

"•::;
z
"onI
~

~

::>
0

8••

=1

+1

o

SOD

Jv

rz

"E

18

I

VAGC

16

'" 14
B

\\

>

~

ro

~

50

~

~~
}JA7S7

VAGC -

2.5
V

3D

3.5

40

3/

A"

12

./
V
8

2.0

f

V

~

I.

v·

I.

16•

•

~B

2.

POWER SUPPLY VOLTAGE -

9,34

14.

I ••

"C

I, = 510 kHz
V· '" ~12 V

---

13

6.

T, co +2SoC

•

t A757
12

"- 12 V
sao kHz

""I

2.

-6.

o

Two Tone 1M Distortion Products
vs Input Signal Level
I.
:, I " .:" k~'

TA = 25°C

11

100

Gt lN 7EoYCTlFN fT '15OC
TEMPERATURE _

V

V'

SO

MHz

;A7S~ I

20

dB

V

V

~A757

i'"

V f.--

VAGC = 1 /

~

t

+125°C

15

~

2.

~

55°C

10

2

I t 757

GAIN REDUCTION -

\

OS

g

•• k

>-

+25°C

w

--~

60

"~ 30

cAJAc'T1NcE

W

20

J I II I
I--+I'· dlB GflN ~Eo~CTli'N iT ~I'"ci
1
I L l J. I
3. dB GAIN REo'lCTIiN fT TOCI

z
;;:

20 k

•

10

•l-r

••
" 4.

.......... ~AICE

I. k f.-

-'- -12 V

Voltage Gain vs Temperature
8.
o dB GAIN REDUCTION AT +25°~ I

2S0~

>- 15k

SO

FREOUENCY -

!g

">-

20

MHz

~ 25 k

~

V

"-

6. 10

100

T,
'"
V' = +12 V
f = 107 MHz

z

~

TEST CIRCUIT 2

" 6.

r

50

20

22

3.

..
,.

10

25°C

~

Power Supply Current
vs Supply Voltage

v,l

~55·C

+2~·C- ~

40

50

2G

~

'\ "'"

40 dB

A7S7

dB

Gain Reduction vs
Gain Control Voltage

I 1h

I GAlN IR~OUCTIION

'\

~

1

ro

~

50

GAIN REDUCTION -

"

O2

TA

IRJDUCTI~N ' \

'\

IJ.A757

•

I

il

x 1°1-3

62

III'h.

20 dB GAiN

20 dB

3Sk

:

TA "'" 2S"C
Y-=+12V
f =1107 ~Hz

25k

GAlN

Section 2 Output
Resistance and Capacitance
vs Gain Reduction

0:

!t

o dB0Gd:'NR:~~~~~~~N=-

TA "- 25°C
V+ "'- +12 V

3. k

- r--

~ 35 k

jmio!

- 440

FREQUENCY -

4

I
w 45 k

!il
~

~EFERENCE

dB

GAIN REOUCTION

MHz

55k

!ESIJANcl

o dB

10

Section 1 and 2 Input
Resistance and Capacitance
vs Gain Reduction

SOk

Product of Sections 1 and 2
Forward Transadmittance
vs Frequency

Section 2
Forward Transadmittance
vs Frequency

14
V

15

•

10

30 mA pp

10

20mApp

./

rJ
/

I I

/

lo=10mApp

./

I I
50

"A757
10

INPUT LEVEL -

50

100

mV

•••

f.LA757
Test Circuit
Test Circuit 1 (Note)
+12 V

Note
For 10 7 MHz measurements, interstage capacItance and Section
2 output capacitMce are tuned out. Pm 9 should be connected
to GND.

Test Circuit 2 (Note)
INPUT A

+12V

~1'''' J

0.1 MF

14

0.1 MF

13

12

50 II

+----+....,
11

10

TOP VIEW

L..---- 7 V) and low values of timing capacitor
(C < 0.1 f,LF), the pulse width of TBO may be too
narrow to trigger the counter section. This can be
corrected by connecting a 300 pF capacitor from
TBO (pin 14) to ground (pin 9).

-55°C to +125°C
O°C to 70°C
300°C
260°C

Note

•

Reset (pin 10) stops the time-base oscillator.

•

Outputs 00 ... 0128 (pins 1-8) sink 2 mA current
with VOL:::; 0.4 V.

•

For use with external clock, minimum clock pulse
amplitude should be 3 V, with greater than 1 f,LS
pulse duration.

Above 25 ° C ambient derate Imearly at 6 2 mW 1 0 C for Package
Code 0 and at 5 3 mW I °c for Package Code P

Functional Description
(Figure 1 and Block Diagram, page 1)
When power is applied to the J,tA2240 with no trigger
or reset inputs, the circuit starts with all outputs HIGH.
Application of a positive-going trigger pulse to TRIG,
Pin 11, initiates the timing cycle. The Trigger input
activates the time-base oscillator, enables the
counter section and sets the counter outputs LOW.
The time-base oscillator generates timing pulses with
a period T = 1 RC. These clock pulses are counted by
the binary counter section. The timing sequence is
completed when a positive-going reset pulse is
applied to R, pin 10.

Fig_ 1

Logic Symbol

11

VCC
GND

Trigger TRIG (pin 11) sets all outputs LOW.

15

1

2

3

4

5

6

7

8

Timing Diagram of Output Waveforms
rn~~

INPUT
11
~_1...._ _ _ _ _ _ _ _ _ _ _ _ _ _ t PIN

I

TIME BASE

~I~T~~T

1111111111111111111 II III

hn.nnnn.rulnnn.

COUNTER
OUTPUTS
_tPIN1

h . . n n n . . n . . n . . . _ 1 PIN 2

h_. . .C]_
. ........_ ...CJ_--'-_...C]_--' _

h

1 PIN 3

'_IPIN4

h_....L.________......_ _ _ _ I PIN 5

Important Operating Information

•

VREG

= Pm 16
= Pin 9

Fig_ 2

In most timing applications, one or more of the counter
outputs are connected to the Reset terminal with S 1
closed (Figure 3). The circuit starts timing when a
trigger is applied and automatically resets itself to
complete the timing cycle when a programmed count
is completed. If none of the counter outputs are
connected back to the Reset terminal (switch S 1
open), the circuit operates in an astable or freerunning mode, following to a trigger input.

Reset R (pin 10) sets all outputs HIGH.

MOD
~A2240

Figure 2 gives the timing sequence of output
waveforms at various circuit terminals, subsequent to
a trigger input. When the circuit is in a Reset state,
both the time-base and the counter sections are
disabled and all the counter outputs are HIGH.

•

RC
TRIG

14

Ground connection is pin 9.

12

10

Once triggered, the circuit is immune from additional
trigger inputs until the timing cycle is completed
or a reset input is applied. If both the reset and
trigger are activated simultaneously, the trigger
takes precedence.

•

13

9-37

•

,uA2240
Fig. 3

Basic Circuit Connection for Timing Applications
Monostable: S 1 Closed Astable: S 1 Open
. . . - - - - - - - - - _ - - - Vee

TRIGGER

J1...
RESET

J1...

20 k
47 k

TRIGGER
.Jl
____

o--r~~-+~~~~~~--~_+--OUTPUT

SI

1 T < To < 255 T
WHERE T = RC

Fig. 4

~

-i To I+-

Operation with External Sync Signal
Tp...j

I-

0.3 T < Tp < 0.8 T

o~-±p

0.1

~F

~lt-J\I\I......_ _
12.... ~A2240
INPUT
5.1 k
SYNC

I-Ts-J

Circuit Controls
can be synchronized to an external clock by applying
a sync pulse to MOD, pin 12, as shown in Figure 4.
Recommended sync pulse widths and amplitudes are
also given.

Counter Outputs (00 ... 0128, pins 1 thru 8)
The binary counter outputs are buffered open-collector
type stages, as shown in the block diagram. Each
output is capable of sinking 2 mA at 0.4 V VOL. In the
Reset condition, all the counter outputs are HIGH or in
the non-conducting state. Following a trigger input, the
outputs change state in accordance with the timing
diagram of Figure 2. The counter outputs can be used
individually, or can be connected together in a
wired-OR configuration, as described in the
programming section.

The time base can be synchronized by setting the
time-base period T to be an integer multiple of the
sync pulse period, Ts. This can be done by choosing
the timing components Rand C at pin 13 such that:
T

Reset and Trigger Inputs (R and TRIG, pins
10 and 11)
The circuit is reset or triggered with positive'going
control pulses applied to pins 10 and 11 respectively.
The threshold level for these controls is approximately
two diode drops (""" 1.4 V) above ground. Minimum
pulse widths for reset and trigger inputs are shown in
the Performance Curves. Once triggered, the circuit is
immune to additional trigger inputs until the end of the
timing cycle.

= RC = (Ts/m)

where
m is an integer, 1 :5 m :5 10
Figure 5 gives the typical pull·in range for harmonic
synchronization for various values of harmonic
modulus, m. For m < 10, typical pull-in range is
greater than ± 4% of time-base frequency.

RC Terminal (pin 13)
The time-base period T is determined by the external
RC network connected to RC, pin 13. When the time
base is triggered, the waveform at pin 13 is an
exponential ramp with a period T = 1.0 RC.

Modulation and Sync Input (MOD, pin 12)
The oscillator time-base period, T, can be modulated
by applying a dc voltage to MOD, pin 12
(see Performance Curves). The time-base oscillator
9-38

~A2240
Fig. 5

Typical Pull-in Range for
Harmonic Synchronization

.e:
.=
."

o

±20

±16

'o~"
".I
j

is operated with an external time base. The counter
section triggers on the negative-going edge of the
timing or clock pulses generated at TBO, pin 14. The
trigger threshold for the counter section is "." + 1.4 V .
The counter section can be disabled by clamping the
voltage level at pin 14 to ground.

±12

~

~

8

4

\

'"

........

When using high supply voltages (Vee> 7 V) and a
small-value timing capacitor (C < 0.1 /IF), the pulse
width of the time-base output at pin 14 may be too
narrow to trigger the counter section. This can be
corrected by connecting a 300 pF capacitor from
pin 14 to ground.

I'--

"
10

12

Regular Output (VREG, pin 15)
The regulator output VREG is used internally to drive
the binary counter and the control logic. This terminal
can also be used as a supply to additional /lA2240
circuits when several timer circuits are cascaded
(see Figure
to minimize power dissipation. For
circuit operation with an external clock, VREG can be
used as the Vee input terminal to power down the
internal time base and reduce power dissipation.
When supply voltages less than 4.5 V are used with
the internal time-base, pin 15 should be shorted to
pin 16.

RATIO OF TIME-BASE PERIOD TO
SYNC·PULSE PERIOD - TfT!

Time-Base Output (TBO, pin 14)
The time·base output is an open-collector type stage
as shown in the block diagram, and requires a 20 kQ
pull-up resistor to pin 15 for proper circuit operation. In
the Reset state, the time·base output is HIGH. After
triggering, it produces a negative-going pulse train
with a period T Re, as shown in the diagram of
Figure 2. The time-base output is internally connected
to the binary-counter section and can also serve as
the input for the external clock signal when the circuit

n

=

Fig. 6

Cascaded Operation for Long Delays
vee

vee

vee
RL

47 k

R

10 k

c

I
TRIGGER

-~I-ITRIG

1 k

RC

RC

MOD

MOD

TRIG
"A2240 #1

VREG

"A2240 #2

VREG

R

RESET----~--_+--------------------~----~~~-4-4~~~~~+-4------4---0UTPUT

47 k

Vee = Pin 16
GND = Pin 9

9-39

•

JLA2240
Fig. 7

Low Power Operation of Cascaded Timers
Vee

Vee

R

Vee
RL

47 k

30 k

ric
I

TRIGGER

...n..
""'- TRIG

RC
~A2240

RESET

J'1...

#1

I

I

I

MOD

RC

MOD

-

TRIG

~A2240

VREG ~

R
TBO 00 02 04 08 0'6 032064 0'28

rlllllilL

.

...
N

#2

VREG

-R
TBO 00 02 04 080'6 032064 0,28

-I
150 k

=

Vee
Pm 16
GND = Pm 9

9-40

-

J,LA2240
/LA2240 and /LA2240C
Electrical Characteristics
Characteristic

Condition

Unit

General Characteristics
Supply Voltage

For Vee ~ 4.5 V, Short Pin 15
to Pin 16

Supply Current
Total Circuit

Vee
Vee

4.0

= 5 V, VTR = 0, VRS = 5 V
= 15 V, VTR = 0, VRS = 5 V

Measured at Pin 15, Vee
Vee
15 V

=

=5 V

4.1
6.0

4.0

6.0
16

3.5
12
1

Counter Only
Regulator Output, VReg

15

4.4
6.3

6.6

4.0
13
1.5
3.9
5.8

15

V

7.0
18

mA
mA
mA

4.4
6.3

6.8

V
V

5.0

%
ppm/oC
ppm/oC

0.3

%/V

Time Base Section
Timing Accuracy
Temperature Drift

= 0, VTR = 5 V (Note 1)
Vee = 5 V'looc ~ TJ ~ 750C
Vee = 15 V
VRS

~

Supply Drift

Vee

Max Frequency

R

Modulation Voltage Level

Measured at Pin 12
Vee 5 V
Vee
15 V

Recommended Range of
Timing Components
Timing Resistor, R
Timing Capacitor, C

8 V (See Curves)

= 1 kfl, C = 0.007 /LF

=
=

0.5

2.0

5.0

150
80

300

200
80

0.05

0.2

0.08

100

130

3.00

3.5
10.5

130
4.0

2.80

3.50
10.5

kHz
4.20

V
V

(See Performance Curves)
0.001
0.007

10
0.001
1000 0.01

10
Mfl
1000 /LF

Trigger/Reset Controls
Trigger
Trigger Threshold
Trigger Current
Impedance
Response Time

Measured at Pin 11, VRS

Reset
Reset Threshold
Reset Current
Impedance
Response Time

Measured at Pin 10, VTR

VRS

=0

= 0, VTR = 2 V

Note 2

VTR

1.4
8.0
25
1.0

2.0

1.4
10
25
1.0

2.0

V
/LA
kfl
/LS

1.4
8.0
25
0.8

2.0

1.4
10
25
0.8

2.0

V
/LA
kfl
/LS

=0

= 0, VRS = 2 V

Note 2

Counter Section
Max Toggle Rate

=

=

VRS 0, VTR
5V
Measured at Pin 14

0.8

Input Impedance
Input Threshold
Output
Rise Time
Fall Time
Sink Current
Leakage Current

1.0

1.5

1.5

MHz

20

20

kfl

1.4

V

180
180
4.0
0.01

ns
ns
mA
/LA

1.4

1.0

Measured at Pins 1 through 8
Rl

= 3 kfl, Cl = 10 pF

Val
VOH

~

3.0

0.4 V

= 15 V

Notes
1. Tlmmg error solely Introduced by I'A2240. measured as % of
Ideal time base period of T = 1.00 Re.

180
180
5.0
0.01

2.0
8.0

15

2. Propagallon delay from application of trigger (or reset) input to
corresponding state change in counter output at Pin 1.

9·41

--

--~
. . ~-----

-

- - - : . - - - --~--

-

•

JLA2240
Typical Performance Curves

Supply Current vs
Supply Voltage in Reset Condition

Recommended Range of
Timing Component Values

1/

1 ••

I"

/

i

/

V

V

~100

Iii

~
"z .0

I

!
8

10

12

SUPPLY VOLTAGE -

14

18

18

V

TIMING CAPACITOR -

Minimum Trigger Pulse Width
vs Trigger and Reset Amplitude

...

Time Base Period vs External RC

.0 M,.----,----:

11

TIME BASE PERIOD

IIF

Minimum Trigger /
Retrigger Timing vs
Timing Capacitor

Time Base Period Drift
vs Supply Voltage
+a.0

+7S-C

+25°C

.~

..

I +2.

!!;

i!i +•.

I

Ire

~

.......

+7S·C
+2I-C-

o·c

...'.0

'.5

1.5

!.
~

o
0

\

c

f'....

..

-0

I0-'.

Yee =1
I

I

:I 1.0

~

0.5

V
./'

/

+2.0

+2.0

vee! 15 V
C =~'"F

-

2

~

...............
-10

!.

~R=1kn

R='~

"-

~

-3 0
25

'00

I

...............

~ -2.0

Y

•

0+1.0

.

0
MODULATION VOLTAGE -

,

!

1:1 +1.0

~..
!

o.

TIMING CAPACITOR - p.F

V

Yee 5 Y
C=O.1pF

I

V

0.'!F"""-r1f--

Time Base Period
VB Temperature

I

yj

:I
:>

••

12

SUPPLY VOLTAGE -

..

I
i

10

Time Base Period
vs Temperature

2.1

2.0

- r---r---

E
II: •.01--~1,.t~~'1---+_-___j

~

TRIGGER OR RElET AMPLITUDE - V

Normalized Change in
Time Base Period
vs Modulation Voltage

= 0.1 pF
R = 10 kn

-2.0•

a.o

'01---t---417"-='"~+----t

~

0\

50

7.

TEMPERATURE _ ·C

9-42

'00

!

0--

~

-1.0

.

Rl,oM~

~ -2.0

~
-a.0

••

•0

TEMPERATURE _ DC

7•

.00

JLA2240
Monostable Operation

Astable Operation
The jLA2240 can be operated in its astable or freerunning mode by disconnecting the Reset terminal
(pin 10) from the counter outputs. Two typical circuits
are shown in Figures 8 and 9. The circuit in Figure 8
operates in its free-running mode with external trigger
and reset signals. It starts counting and timing
following a trigger input until an external reset pulse is
applied. Upon application of a positive-going reset
signal to pin 10, the circuit reverts back to its Reset
state. This circuit is essentially the same as that of
Figure 3 with the feedback switch S 1 open.

Precision Timing
In precision timing applications, the jLA2240 is used
in its monostable or self-resetting mode. The
generalized circuit connection for this application is
shown in Figure 3. The output is normally HIGH and
goes LOW following a trigger input. It remains LOW for
the time duration, TO, and then returns to the HIGH
state_ The duration of the timing cycle To is given as:
TO

= nT = NRC

=

where T
RC is the time-base period as set by the
choice of timing components at RC pin 13 (see
Performance Curves) and n is an integer in the range
of 1 :$ n :$ 255 as determined by the combination of
counter outputs 00 ... 0128, pins 1 through 8,
connected to the output bus.

The circuit of Figure 9 is designed for continuous
operation. It self-triggers automatically when the
power supply is turned on, and continues to operate in
its free-running mode indefinitely. In astable or freerunning operation, each of the counter outputs can be
used individually as synchronized oscillators, or
they can be interconnected to generate complex
pulse patterns.

Counter-Output Programming
The binary-counter outputs, 00 ... 0128, pins
1 through 8 are open-collector type stages and can be
shorted together to a common pull-up resistor to form
a wired-OR connection; the combined output will be
LOW as long as anyone of the outputs is LOW. The
time delays associated with each counter output can
be added together. This is done by simply shorting the
outputs together to form a common output bus as
shown in Figure 3. For example, if only pin 6 is
connected to the output and the rest left open, the
total duration of the timing cycle, TO, is 32 T. Similarly,
if pins 1, 5, and 6 are shorted to the output bus, the
total time delay is To = (1 + 16 + 32) T = 49 T. In this
manner, by proper choice of counter terminals
connected to the output bus, the timing cycle can be
programmed to be 1 T:$ TO :$ 255 T.

Binary Pattern Generation
In astable operation, as shown in Figure 8, the output
of the jLA2240 appears as a complex pulse pattern.
The waveform of the output pulse train can be
determined directly from the timing diagram of
Figure 2 which shows the phase relations between the
counter outputs. Figures 10 and 11 show some of the
complex pulse patterns that can be generated. The
pulse pattern repeats itself at a rate equal to the
period of the highest counter bit connected to the
common output bus. The minimum pulse width
contained in the pulse train is determined by the
lowest counter bit connected to the output.

Ultra Long Time-Delay Application
Two jLA2240 units can be cascaded as shown in
Figure 6 to generate extremely long time delays.
Total timing cycle of two cascaded units can be
256 RC to TO
65,536 RC in
programmed from To
256 discrete ~teps by selectively shorting one or more
of the counter outputs from Unit 2 to the output bus. In
this application, the Reset and the Trigger terminals of
both units are tied together and the Unit 2 time base is
disabled. Normally, the output is HIGH when the
system is reset. On triggering, the output goes LOW
where it remains for a total of (256)2 or 65,536 cycles
of the time-base oscillator.

=

=

In cascaded operation, the time-base section of Unit 2
can be powered down to reduce power consumption
by using the circuit connection of Figure 7. In this
case, the Vee terminal (pin 16) of Unit 2 is left open,
and the second unit is powered from the regulator
output of Unit 1 by connecting the VREG (pin 15) of
both units together.

9-43

~A2240
Fig. 8

Operation with Trigger and Reset Inputs
Vee
RL
10 k

R

0.01

C

l

l

TRIGGER

..I1.

~F

MOD

RC
TRIG
~A2240

VREG

RESET
20 k

..I1.

..................................- ...-+- OUTPUT
=

Vee
Pin 16
GND = Pin 9

Fig. 9

Free-Running or Continuous Operation
Vee

Vee
10 k

Vee
RL
10 k

R

C

MOD

RC

Vee = Pm 16
GND = Pin 9

TRIG
VREG

20 k

......6-6-......................-

-+- OUTPUT

...

Fig. 10 Binary Pulse Patterns Obtained by
Shorting Various Counter Outputs
A. 2 PIN PATTERNS

JUUUUl
Il111UL-Jl1l1Ul
--itt-j+- - t - -t
1-+13T
T = RC
PINS 1 AND 2 SHORTED

B. 3 PIN PATTERN

~~

--ITt-

8T

7T

______~M~__

3T 1--\+5T+\ ""'1-1-----:21T-----...,.,1Ooj1

PINS 1, 3, AND 5 SHORTED
()

,

'..l'

9-44

,uA2240
Fig. 11

Continuous Free-run Operation Examples of Output
Vee

Vee

AC

MOD
j.LA2240

YAEG

-Ii!:I-

AC WAVEFOAM

TIME-BASE OUTPUT

0, OUTPUT

1YYYYYY1/ /fYYYYYYYl
I I I I I I 1/ /

IIIIIIII

rlSUlJ/ / --uuuu-

I!__

'---~~"""""''''''''''''--+--1i
I......._--

256 AC

----trL.1

JUL/
/---IlIl.
I.
.1
256RC

t//--IL.1

j·~Fl ..
I.--

Vee = Pm 16
GND = Pin 9

256 AC

~//----FL
I..
.1
256 AC

9-45

------

~

-----

~A3086

FAIRCHILD

General-Purpose
Transistor Array

A Schlumberger Company

Special Function Products
Connection Diagram
14-Pin DIP

Description
contains a differentially connected pair and
three individually isolated transistors. The part is
designed for general-purpose, low-power applications
for consumer and industrial applications_

~A3086

Cl
Bl

•
•
•
•

LOW INPUT OFFSET VOLTAGE
WIDEBAND OPERATION
LOW NOISE
MATCHED DIFFERENTIAL AMPLIFIER

Absolute Maximum Ratings
Power Dissipation (Note 1)
At TA = 25°C
At TA = 25°C to 55°C
At TA = 25°C
At TA = 25°C to 55°C
Voltages and Currents
Collector-to-Emitter Voltage,
VCEO
Collector-to-Base Voltage,
VCBO
Collector-to-Substrate Voltage,
VCIO (Note 3)
Emitter-to-Base Voltage, VEBO
Collector Current, Ic
Temperature Range
Operating Temperature
Storage Temperature
Pin Temperature (Soldering)
Ceramic DIP (60 s)
Molded DIP (10 s)

El,2
B2
C2

Each Transistor

B3

300mW
300mW
750 mW (Note 2)
750 mW (Note 2)

E3

Order Information
Type
Package
Molded DIP
~A3086
Ceramic DIP
~A3086

15 V

Code
9A
6A

Part No_
~A3086PC

IlA3086DC

20 V
Logic Diagram
20 V
5V
50mA

C5
14

E5
SUBSTRATE B5
13

12

C4
11

E4
10

B4

9

-40°C to +85°C
-55°C to +125°C

5

Cl

Noles
1. Derate at 5 mW I·e for TA > 85·C.
2. Total package.
3. Substrate must be connected to the most negative voltage to
maintain normal operation.
9-46

Bl

El,2

B2

C2

B3

C3
8

~A3086
/-lA3086
Electrical Characteristics
Symbol

TA = 25°C unless otherwise specified

Characteristic

Condition

Min

Typ

= 10 /-lA, IE = 0

20

60

V

Ic

= 1 rnA, IB = 0

15

24

V

Ic

= 10 /-lA,

20

60

V

5.0

7.0

V

Collector-to-Base
V(BR)CBO Breakdown Voltage

IC

Collector-to-Emitter
V(BR)CEO Breakdown Voltage
V(BR)CIO

Collector-to-Substrate
Breakdown Voltage

Emitter-to-Base
V(BR)EBO Breakdown Voltage
ICBO

Collector Cutoff Current

Ic

=0

= 10 /-lA, IC = 0
VCB = 10 V, IE = 0
VCE = 10 V, IB = 0

IE

ICEO

Collector Cutoff Current

hFE

Static Forward CurrentTransfer Ratio
(Static Beta)

VCE

=3 V

Input Offset Current
for Matched Pair
01 and 0211101-11021

VCE

= 3 V, IC = 1 rnA

Base-to-Emitter Voltage

VCE

=3 V

Magnitude of Input Offset
Voltage for Differential
Pair IVBE1-VBE21

VCE

Magnitude of Input Offset
Voltage for Isolated
Transistors 1VBE3-VBE41
IVBE4-VBE51,lvBE5-VBE31

V CE

VBE

~VBE

-;rr

Temperature Coefficient of
VCE
Base-to-Emitter Voltage

VCE(sat)

Collector-to-Emitter
Saturation Voltage

I~VlOl
~T

NF

IB

= 10 rnA
= 1 rnA
= 10/-lA

40

Unit

0.002

100

nA

See
Curve

5.0

/-lA

100
100
54
0.3

/-lA

0.715
0.800

V

= 3 V, IC = 1 rnA

0.45

mV

= 3 V, IC = 1 rnA

0.45

mV

= 3 V,

-1.9

mV/oC

0.23

V

1.1

/-lV/oC

3.25

dB

IE
IE

Ic

= 1 rnA

= 1 rnA, IC = 10 rnA

Temperature Coefficient of
Magnitude of Input-Offset
VCE
Voltage
Low Frequency
Noise Figure

IC
Ic
IC

Max

= 3 V, IC = 1 rnA

f = 1 kHz, VCE = 3 V,
IC = 100 /-lA, RS = 1 kQ

9-47

= 1 rnA
= 10 rnA

•

JLA3086
f.tA3086 .
Electrical Characteristics
Symbol

Characteristic

hIe

Forward CurrentTransfer Ratio

TA

= 25

0

C unless otherwise specified
Condition

Typ

Min

Max

Unit

Low Frequency, Small-Signal Equivalent-Circuit Characteristics
110

hoe

Short-Circuit
Input Resistance
Open-Circuit
Output Conductance

hre

Open-Circuit Reverse
Voltage-Transfer Ratio

hie

f = 1 kHz, VeE

kQ

15.6

f.tmho

1.8 x 10- 4

Vie
Y oe

Admittance
Characteristics:
Forward Transfer
Admittance
Input Admittance
Output Admittance

Y re

Reverse Transfer
Admittance

fT

Gain-Bandwidth Product

VeE

CES

Emitter-to-Base
Capacitance

VES

Ces

Collector-to-Base
Capacitance

Cel

Collector-to-Substrate
Capacitance

Yle

3.5

= 3 V, Ie = 1 mA

31 - j1.5

f

= 1 MHz, VeE = 3 V, Ie = 1 mA

0.3

+ jO.04
+ jO.03

0.001

See
Curve

= 3 V, Ie = 3 mA
= 3 V, IE = 0

550

MHz

0.6

pF

Ves = 3 V, Ie = 0

0.58

pF

Ves = 3 V, Ie = 0

2.8

pF

300

Typical Performance Curves

Noise Figure vs
Collector Current
2.
V~E 13.~ V
!-- As

I«~

== SOD n
== 25°C

TA
15

,,~' r--

~<)

,.<>

,.

. 0/1

~---

•

V

o~

1r;:
[

0.01 0.02

= 1000 n
= 25°C

I

15

0 05

01

0.2

COLLECTOR CURRENT -

O.S
rnA

1.0

-~ r--.
/

,.~

,<

/

V

.,"

R<)

~

K

L

10

I~

~oo k~l

'" ~5°C

~./y

V

COLLECTOR CURRENT -

9-48

:

2.

,.

/ 1 kHz

V
005

r-- :~E
25 I--TA

15

10 kHz

001 002

Noise Figure vs
Collector Current
3.

•

/'
kHz

--...-r

10 kHz

I

0.01 002

0.05

01

02

COLLECTOR CURRENT -

I
05
mA

10

~A3086
Typical Performance Curves (Cent.)

Forward Transfer Admittance
vs Frequency

I

COMMON-EMITTER CIRCUIT, BASE INPUT
-~TA
== 25<1C
VeE'" 3.0 V
'" 1.0 mA

40

."

E
1

30

'"

.. 0
wZ

~~

,,-!e

1

~I

0",

\

0

~o

oz

z<

-

",

00
~Z

01 0.2

0.5

1

2

5

10

FREQUENCY -

20

~l

Ie

~

I

II

,I.) 

I~:~~IO~ j~:~~l

~

0

~'"
~o

09

0

V

~<

~~

/1

90

OZ

0:;:

."

Base-to-Emitter Voltage
Characteristic vs
Ambient Temperature for
Each Transistor
>
1

II

zZ

0<

AMBIENT TEMPERATURE _ °C

hV 1\

Q

0

Q"

I

10

Ves

MHz

1

vJ, ~ ~I. v

I

3

~'"
00

0

10-

Static Forward Current-Transfer
and Beta Ratio for
Transistors 01,02 vs
Emitter Current
120

5

1

1

~

!::

b o,

E

t;1

~

~
o

b co

-1.5

1

IJ
'I

== 10 mA

Ie

"'~
OE

:i

0

"

-05

Q

0

J,

COMMON-EMITTER CIRCUIT, BASE INPUT
TA '" 2S C
VeE == 30 V

;

Collector-to-Base Cutoff Current
vs Ambient Temperature
for Each Transistor

1.0 rnA
'gre IS SMALL AT FREQUENCIES
L SS THAN 500 MHz

~

05

FREQUENCY -

COMMON-EMITTER CIRCUIT, BASE INPUT
TA '" 25°C
VeE'" 3 0 V

'"o

~ g 05

0
0102

50 100 200

5

L

MH:z

Reverse Transfer Admittance
vs Frequency

~5
~~
'""
~

/

1

/

-20

(,)

ffi~

/

-z".o

I'

-10

~

15

/

~"
~~

~o

..!::

o

~

0i!i

o~

.;~
~

Output Admittance
vs Frequency

COMMON-EMITTER CIRCUIT, BASE INPUT
TA == 25°C
VeE'" 3.0 V
Ie
'" 1 0 rnA
b"

~
'" E
!;1E

20

<'"
..
0

~~

Input Admittance
vs Frequency

•

V"

/4

./
3

./

/

,I

Ii

Ii

1

INPU~ IOfFSET VOLTAGE . /

40.Q1 0.02

Ii0 05 0.1

o

:>

I I
0.2

0.5

EMITTER CURRENT -

•

1
rnA

10

o

J,LA3086
Typical Performance Curves (Cont.)
Input Offset Current for Matched
Transistor Pair 01, 02
vs Collector Current

Input Offset Voltage for
Differential Pair and
Paired Isolated Transistors
vs Ambient Temperature
4

VeE"" 3.0 V

5

.z.

a:
a:
:>
u

to
~

TA

- 25°C

3

'E
I

~

D.'

•

vc~

_I~.-

"3.J v

-

to

~

D.'

!;
z

.

0.05

t-

-

0.02

~

!

O.O~.':-D':-D:-'.D"""""D.':::05"'D~.'''--:D.::-.'"""'=D.':-,~,--:,-'-'C':--:-!'D
COLLECTOR CURRENT -

mA

0.1

25

vd, J.DJ
'" 25°C

TA
BOO

600

400

V

r-

"....

f

'00

o
0.1

2

3

4

5

8

1

COLLECTOR CURRENT -

8

75

AMBIENT TEMPERATURE -

Gain-Bandwidth Product
vs Collector Current
'000

50

9

10

mA

9·50

.-

-

mt

0.25

-25

'" 3.5 kn

hoe "" 15.6 J,lmho

..:.:..

'hr:'"

,~

-50

J

"110

TA " 'S'C : h" " 1.88 • 10-'

,

0
-75

vc't "'" 3.0
V h"
1 kHr:- hie
h

~ 0.50

V

100

~

> 0.7

D.'

Normalized h Parameters
vs Collector Current

100 125
GC

AT/t_
hoe

......
~V

1

/'

h"

ho,

D.'0.011/,;"
.0.02

hI,

~t-

V

h"
0.05 0.1 0.2

0.5

,

1

COLLECTOR CURRENT -

mA

10

,uA7392
DC Motor Speed
Control Circuit

I=AIRCHILO
A Schlumberger Company

Special Function

Description
The IlA7392 is designed for precision, closed-loop,
motor speed control systems. It regulates the speed
of capstan drive motors in automotive and portable
tape players and is useful in a variety of industrial and
military control applications, e.g., floppy disc drive
systems and data cartridge drive systems. The device
is constructed using the Fairchild Planar
epitaxial process.

Connection Diagram
14-Pin DIP

INPUTS

OUTPUT EMITTER
MOTOR DRIVE
OUTPUT
10
CLAMPING DIODE

V+

PULSE TIMING

REGULATOR
OUTPUT

PULSE OUTPUT

(Top View)

Order Information
Type
Package
IlA7392C
Ceramic DIP
IlA7392C
Molded DIP

Code
6A
9A

Part No.
IlA7392DC
IlA7392PC

Thermal Data
Thermal Resistance, Junction to Ambient
Molded (9A) 70°C/W Typ, 80°C/W Maximum
Ceramic (6A) 100°C/W Typ, 120°C/W Maximum

•

Absolute Maximum Ratings
Supply Voltage (V+), Vg,
V1Q, V11

N/C

TACH INPUT (+)

PRECISION PERFORMANCE
HIGH-CURRENT PERFORMANCE
WIDE RANGE TACHOMETER INPUT
THERMAL SHUTDOWN, OVER-VOLTAGE AND
STALL PROTECTION
INTERNAL REGULATOR
WIDE SUPPLY VOLTAGE RANGE 6_3 V TO 16 V

Regulator Output Current, 18
Voltage Applied to Pin 6
(Tachometer Pulse Timing)
Voltage Applied Between Pins 3
and 5 (Tachometer Inputs)
Continuous Current through
Pins 11 and 12 Motor Drive
Output ON
Repetitive Surge Current through
Pins 11 and 12 (Motor Drive ON)
Repetitive Surge Current through
Pins 10 and 11 (Motor
Drive OFF)
Power Dissipation
Storage Temperature Range
Operating Temperature Range
Pin Temperature (Soldering)
Ceramic DIP (60 s)
Molded DIP (10 s)

H

GND

Thermal and over-voltage shutdown are included for
self-protection, and a "stall-timer" feature allows the
motor to be protected from burn-out during extended
mechanical jams.

•
•

STALL TIMER

TACH INPUT (-)

The IlA7392 compares actual motor speed to an
externally presettable reference voltage. The motor
speed is determined by frequency to voltage
conversion of the input signal provided by the
tachometer generator. The result of the comparison
controls the duty cycle of the pulse width modulated
switching motor drive output stage to close the
system's negative feedback loop.

•
•
•
•

14

MOTOR
DRIVER (+)

24 V
15 rnA
7V
±6V

0.3 A
1.0 A

0.3 A
Internally Limited
-55°C to +150°C
-40°C to +85°C

9·51

~A7392
Block Diagram
SUPPLY
r-~~--~-----,--VOLTAGE

V+

I

SPEED
ADJUST

PULSE TIMING

t

MOTOR
DRIVER
INPUTS

I

PULS

V+

CLAMPING

r-________________~6~O~U~T~P~U~T~7--_T2~(~-,)--f(~+~)1~-----------------9~__-r1~O_,DIODE
TACHOMETER
INPUTS

(+)5

Y ..(
J;

rv

AJU
GENERATOR

(-::))331-....J>v'V'lf'r---;...._P_U_LS_E...,J

I
I
I
I

FREQUENCY TO
VOLTAGE CONVERTER

V+

8
REGULATOR
OUTPUT

I

I
I
I
I

PROTECTIVE
CIRCUITS

VOLTAGE REGULATOR
SECTION

I

~--~I---------------------------------------------------'STALLTIMER

IL_______________ I

~

9-52

_________

~

J.LA7392
#A7392
Electrical Characteristics

V+ = 14.5 V, TA = 25°C, unless otherwise noted

Voltage Regulator Section (Test Circuit 1)
Characteristic

Condition

Power Supply Current

Excluding Current into Pin 11

Min

Regulator Output Voltage

4.5

Typ

Max

Unit

7.5

10

rnA

5.0

5.5

V

20
50

mV
mV

Regulator Output Line
Regulation (.iVa)

V+ from 10 V to 16 V
V+ from 6.3 V to 16 V

6.0
12

Regulator Output Load
Regulation (.iVa)

la from 10 rnA to 0

40

Electrical Characteristics

mV

V + = 14.5 V, TA = 25 ° C, unless otherwise noted

Frequency to Voltage Converter Section (Test Circuit 2)
Characteristic

Condition

Min

Typ

Max

Unit

1.0

10

#A

10

25

50

mVpk

20

50

100

mVpk-pk

300

500

Q

50

55

%Va

Tachometer (-) Input Bias Voltage

2.4

Tachometer (+) Input Bias Current

V5 = V3

Tachometer Input Positive Threshold

(V5 - V3)

Tachometer Input Hysteresis
Pulse Timing ON Resistance

V6 = 1 V

Pulse Timing Switch Threshold

45

V

Output Pulse Rise Time

0.3

Output Pulse Fall Time

0.1

Pulse Output LOW Saturation (V7)

0.13

0.25

V

Pulse Output HIGH
Saturation (Va - V7)

0.12

0.2

V

-260

-180

#A

#s
#s

Pulse Output HIGH Source Current

V7 = 1 V

Frequency-to-Voltage Conversion
Supply Voltage Stability (Note 1)

VFV = 0.25 Va (Note 2)
V+ from 10 V to 16 V

0.1

%

Frequency-to-Voltage Conversion
Temperature Stability (Note 3)

VFV = 0.25 Va (Note 2)
TA from -40°C to +85°C

0.3

%

Electrical Characteristics

-340

V+ = 14.5 V, TA = 25°C, unless otherwise noted

Motor Drive Section (Test Circuit 3)
Characteristic

Condition

Min

Typ

Max
±20

mV

0.1

10

#A

2.5

V

1.6

V
#A

Input Offset Voltage
Input Bias Current
Common-Mode Range

0.8

Motor Drive Output Saturation

1.3

111 = 300 rnA

Unit

Motor Drive Output Leakage

V11 = Vl0 = 16 V

5

Flyback Diode Leakage

VlO= 16V,Vll =OV

30

#A

Flyback Diode Clamp Voltage

111 = 300 rnA
Motor Drive Output Off

1.3

V

Notes
1. Frequency·to-Voltage Conversion, Supply Voltage Stability IS
defined as.
VFV(16 V)
VS(16 V)

VFV(10 V)
VS(10V)

+

VFV(14.5 V)
VS(14 5 V)

1.1

3. Frequency-to·Voltage Conversion Temperature Stability is
defined as·
VFV(S5°C)
VS(S5°C)

x 100%

2 VFV IS the Integrated dc output voltage from the pulse
generator (Pin 7)

9·53

VFV(-40°C)
VS(-40°C)

VFV(25°C)
VS(25°C)

x 100%

•

,uA7392
~A7392

Electrical Characteristics (Cant.)

= 14.5 V, T~ = 25°C, unless otherwise noted

V+

Protective Circuits (Test Circuit 4)

;'

1

Typ

Min

Max

Unit

Characteristic

Condition

Thermal Shutdown
Junction Temperature

Note 4

Overvoltage Shutdown

Note 4

18

21

24

Stall Timer Threshold Voltage

Note 5

2.5

2.9

3.5

V

Stall Timer Threshold Current

Note 5

0.3

3.0

~A

160

°C
V

Notes
5. If stall timer protection
be grounded.

4 "Motor Drive" circuitry is disabled when these limits are
exceeded. If the condition continues for the duration set by the
external stall timer components, the circuit is latched off until
reset by temporanly opening the power supply input line.

not required, Pin 14 should

IS

Typical Performance Curves

Overvoltage Shutdown Voltage vs
Junction Temperature

Stall Timer Threshold Voltage vs
Junction Temperature

>
I 2

..

..

.
~
!:;

g

•

~22

,r-

~2

....

S 30

101

"-

"'

26

i
"~

i•
1

ii

ti

1

"-

24

-25

0

25

50

75

100

JUNCTION TEMPERATURE -

125

150

-25

25

50

75

ffi

Supply Current vs
Supply Voltage

'"
;::

"

100

JUNCTION TEMPERATURE -

"C

~

125

0:
0:

il

i

0

..

n

~

.
g
.
"
~

I

I

~

I

,/'

:3

o
16

SUPPLY VOLTAGE -

20
Y

24

'jF(5'f-

I

o

/

51

V

50

/

g

2

12

~

52

0:40

I

oj

m

54

I

•

~

Regulator Output Voltage vs
Junction Temperature
> 53

I-"'"

I

•

~

JUNCTION TEMPERATURE _ °C

0

..Ii

--

,

°C

~J ~125'~-

1
I

0

~

150

"- I.........

02

~

Regulator Output Voltage vs
Supply Voltage

'2

'\

04

~ 03

~

22
2D
-50

\

05

::!

:;I

•
~
,

ill,

06

g

;::
~

1\

~

~ 28

~

-50

i'-

Q

:
..15

y+ '" 145V

V+ '" 145

g~ 32

-

01

3•

" 34

23

Stall Timer Threshold Current vs
Junction Temperature

12

16

SUPPLY VOLTAGE -

9·54

20
V

24

48

""~ 47

4.

/
V

~

vi'" 14'j y~

0

..

~

n

~

m

JUNCTION TEMPERATURE _ "C

~

J.LA7392
Typical Performance Curves (Cont.)

Tachometer Input Hysteresis vs
Junction Temperature

Flyback Diode (03) Current vs
Flyback Diode Voltage

•

~

.00

I S6

~

VJ=14!SV I

4

::;

./

E52
~

~

50

~

::; 4

iU

/'"

• -----

~ 500

"

~
o
o

400

/

5300

U
""'200

.

t

4

Vj= 14 V-

42
-50

I

~

V

~

4

I &00

!z

V

"o 46

~

TJ == TA = 25°C-

'" 700
E

/"

-25

25

SO

75

100

125

I

~

~,oo

150

./

o

o

JUNCTION TEMPERATURE _ °C

FLYBACK DIODE VOLTAGE -

Motor Drive Output on Voltage vs
Ambient Temperature

Motor Drive Output on Current vs
Motor Drive Output on Voltage
"" 1600
E

~

"6

vI ,.Is v I

I
w 144

=

1400

TJ '" TA '" 25°C-

iii

!i
~ 142
g

~ 120'"

"Z 1000

U

o
~
!:;

~ 140

~

600
400

/

>

/

/

~

eo
'"

200

o

...
...~

/

800

a:Q

V

o

/

138

~"

136

~

134

./

~

o

15

/

132

'" 130

L

Test Circuit 1
14
13
12

-=-

11

5

10

6

9

7

8

REGULATOR VOLTAGE

V

-25

25

50

75

100

AMBIENT TEMPERATURE -

Test Circuits

4

V

,/""

-50
MOTOR DRIVE OUTPUT ON VOLTAGE - V

2

/'

":"

9-55

°C

125

150

ttA7392
Test Circuits (Cont.)
Test Circuit 2
20 kll

TACH INPUT
VOLTAGES
(-)

(+)

100 II

+

14

10 V-=-

10 kll
13
O.lI'F
100 II

TACH
INPUT
VOLTAGE
ADJUST

V = 0.3 Vp- p,
INOM

=

12

AC

4

11

5

10

6

9

1000 Hz

TACH
' - - - - - - - DC INPUT
100 kll

+

7
(INTEGRATED
FREQ-TO-VOLTAGE 111'F
CONVERTER
OUTPUT VOLTAGE)
PULSE
OUTPUT----...I
VOLTAGE
1 ·0025 1'F

8

100 kll

-= PULSE

14.5 V

1
'::"

TIMING
VOLTAGE

Typical Application Using Magnetic Tachometer
330 kll

9.1 kll

Rs

~

ch

SPEED
ADJUST
100 kll

10 kll
.01 I'F

::!:

J

2 kll

+

~

RF
100 kll

1

14

2

13

3

12

4
-5
-6

CF

"~~

l°h
9

I

~~

I
I
I

Rp
'::"
100 kll

I

7

r

-

CP

8~

o

1
5

10 V TO 16 V
F

1'

I

Typical Comp onent Values:

•

1

Cp = 4 RpF

=

CF
10 Cp to 1000 Cp depending on
system requirements
2 X stall time-out
Cs

=

RS

RMotor 2::: 5 Q
9-56

TACHOM ETER
(I = NOMI NAL
TACHOM ETER
FREQUEN CY)

FAIRCHILD
A Schlumberger Company

comp~ralO~>,.-,.",:. "<: " ::' ,:" :':~ .
,

,

,~' "

, ',.'

'

,---"t

,

,

T.lacornmunica~ons

"

Hi Rei Processing

i=ailchild SalH Q,ffrces "

,"

10-2

Hi Rei Processing

FAIRCHILD
A Schlumberger Company

JAN Qualified (MIL-M-38510) Level"B" Program
The JAN Program offers the customer a standard of
product processing, quality and reliability that is well
documented by the manufacturer and monitored by the
Defense Electronics Supply Center (DESC) of the U.S.
Government. The products are manufactured in the U.S.
in a government certified facility to the requirements of
MIL-M-38510 and individual product specifications as
called out in the MIL-M-38510 "Slash Sheets". The DESC
certification is based on standardized documentation for
design, processing, test methods, laboratory suitability
and personnel training. Facilities and documentation are
audited by DESC prior to certification and periodically
thereafter.

Hi Rei Processing
High Reliability (Hi Rei) processing to MIL-M-38510 & MILSTD-883 is performed by a totally dedicated Business
Unit within the Linear Division of Fairchild to serve the
unique Linear components requirements of our various
military customers. Fairchild Linear has been committed
to the Linear Hi Rei program for many years and intends to
continue to maintain a leadership position in that market
segment.
The Hi Rei program offers three levels of processing flows
as noted below that would normally satisfy a majority of
customer requirements.
• JAN-Level "B"-Full compliance to MIL-M-38510 JAN
program & OPL listings as published
by Defense Electronics Supply Center
(DESC), Ohio
• "OB" Flow -Conformance to Level "B" process
requirements of MIL-STD-883 to
Fairchild MIL temperature range data
sheet electricals.
-Compliance to Class "s" process
• Class "s"
requirements of MIL-M-38510 & MILSTD-883 including all wafer lot
acceptance criteria.

Fairchild Linear maintains a very active JM 3856 Oualified
Products List (OPL) Program and has maintained a
leadership position in the total number of Linear OPL's for
many years.
An outline of the JAN M38510 Class "B" flow is given in
Figure 1.

Linear 'QB' Flow (MIL-STD-883 Level "B")
Fairchild's 'OB' process flow can fill customer needs when
a desired product is not available on JAN OPL or when
system requirements call for a cost effective but reliable
alternative to the full JAN program. The product is processed to MIL-STD-883 methods as specified in Figure 3.
Electrical testing is performed to Fairchild data sheet limits
for appropriate electrical grade and Burn-In is performed
per Fairchild Standard Schematics.

Details of the above flows will be provided in the following
pages where each flow will be discussed separately.
• Custom Processing
-While the intent of the Linear Hi
Rei program is to standardize as
much as possible for cost
effective processing around
these three flows, certain
customer requirements may
dictate special processing. These
customer requirements are met
by "HL" specifications within the
Hi Rei organization. These HL's
reflect all the unique requirements of a customer drawing
and must be separately negotiated with our marketing department for acceptability of device
parameters and process requirements before an order is
entered by Fairchild.

Class "S" Flow
Fairchild Linear offers a complete capability to fulfill all
processing requirements of Class "s" at wafer fabrication,
assembly and environmental screening and test/finish on
selected popular devices. These acceptance criteria meet
all requirements called out in MIL-M-38510 and MIL-STD883 for Class "s" products. It is our intent to standardize
the processing of Class "s" products to the 'HS' flow
shown in Figures 4A-4C so that customer requirements
for Class "s" can be minimized.

10·3

HI Rei Processing
Fig. 1 JAN M38510 Process Flow
Class
8

MIL-STD-8838
Test Methods

Description

Preseal Visual
MTD2010

Condo B. Optimum Visual Criteria

Preseal Visual
Cond.B

Bond Strength
MTD2011

Bond strength is monitored on a sample
basis three times per shift per machine

Bond Strength
Cond.D

Seal

Devices are hermetically sealed for
compliance to MIL-STD-883 requirements

High Temp Storage
MTD 1008

Condo C Tstg

Seal
Bake
Cond.CMin
24 Hrs.

= 150°C

I
Condo C - 65°/150°C 10 cycles

Temp Cycle
Cond.C

Constant Acceleration
MTD 2001 (Note 1)

Condo E 30000 G's X" X", Y" Y2

Centrifuge
Condo E
Y,Only

Hermetic Seal
MTD 1014 (Note 1)

Condo B Fine-Radiflo 5x10- 8 cc/sec
Condo C Gross-FC43/Hot 10-3 cc/sec or
Gross-FC78Nacuum 10- 5 cc/sec

Hermeticity
Cond.AlB
Cond.C

Pre Burn-in
Electrical

25°C dc electrical testing
to remove rejects prior to
submission to burn-in screen

Pre B/I Elect
25°Cdc

Burn-in Screen
MTD 1015 (Note 2)

Cond A, Cond B, Cond C
Cond D, Cond E, Cond F

Post Burn-in
Electrical

Post Burn-in electrical screening to cull
out devices which failed as a result of
burn-in. Test Parameters may include
25°C dc, 125°C dc, 55°C dc, 25°C dc,
25°C ac and 25°C Functional tests

Quality Conformance
Inspection
MTD5005

Group A Electrical Characteristics
Group B Package oriented Tests
Group C Life Tests-Periodic Conformance
Group D: Environmental Tests Periodic Conformance

External Visual
MTD2009

3X, 10X magnification Verify dimensions,
configuration, lead structure, marking
and workmanship

Temperature Cycle
MTD1010

I

Reliability
Ordering

Burn In
160 Hrs 125°C

Figure of Merit
Part Number
Part Marking

Notes
1. Not Applicable for TO-3 Cans
2. Time Temperature Curve (method 1015) may be used.

Pst B/I Elect
25°C dc 10% PDA
OtherDC&AC
tests per slash
sheet requirement

1
Quality
Conformance
GpAandB
External
Visual
100%
15
JM38510/
10101BCB
JM38510/
10101BCB

3. RELIABILITY Figure of Merit is the Reliability Improvement
Factor from RADC Reliability Notebook, Vol. II,
RADC-TR-67-108, TableXII-6, page 419.
10·4

Hi Rei Processing
Fig. 2

JAN Part Numbering System

J

101

M 38510/

B

01

~

G

~

T

JAN Designator

Lead Finish

Defines
Device
Type

Cannot be marked with "J"
unless qualified on Part I
or Part II of QPL-38510

c

A Hot Solder DIP
B Tin Plate
C Gold Plate
X Any of the above

Processing Level

General Procurement Spec.

S
B
C

Refers to Detail Spec

Package Type

1010pAmps
102 Voltage Regulators
103 Comparators
104 Interface
106 Voltage Followers
1073-Terminal Voltage Regulators
108 Transistor Arrays
109 Timers
110 Quad Op Amps
1.12 Quad Comparators
113 D/A Converters
115 Negative Voltage Regulators
117 Adjustable Voltage Regulators

A 14-pin % x % Flatpak
B 14-pin % x 'Ie Flatpak
C 14-pin % x % DIP
D 14-pin % x % Flatpak
E 16-pin%x%DIP
F 16-pin % x % Flatpak
G 8-pin Can
H 10-pin % x % Flatpak
I 10-pin Can
J 24-pin V2 x 1% DIP
K 24-pin % x % Flatpak
L 24-pin % x '/2 Flatpak
X 3-pin TO-5 Can
Y 2-pin TO-3 Can
Z 24-pin % x % Flatpak

Linear JAN Generic Part Numbers-Examples
JM3851 01

01

02

03

04

101

741

747

101A

108A

9614

9615

78M12

78M15

102

723

103

710

104

55107

106

102

107

109

108

711

78M05

05

06

07

08

09

7805

7812

7815

7824

7912

7915

111

3045

109

555

556

110

148

149

112

139

113

DAC08

115

79M05

117

78MG

79M12

4136

79M15
117H

124

7905
117K

Note

Dated material. Please contact Fairchild for latest revisions.
10-5

10

•

Hi Rei Processing
Fig.3

QB Flow MIL-STD-883 Level-B
Class
B

MIL·STD·883B
Test Methods

Description

Preseal Visual
MTD2010

Condo B. Optimum Visual Criteria

Preseal Visual
Cond.B

Bond Strength
MTD2011

Bond strength is monitored on a sample
basis three times per shift per machine

Bond Strength
Cond.D

Seal

Devices are hermetically sealed for
compliance to MIL·STD-883 requirements

High Temp Storage
MTD 1008

Condo CTstg = 150°C

Bake
Cond.CMin
24 Hrs.

Condo C -65°/150°C 10 cycles

Temp Cycle
Cond.C

Constant Acceleration
MTD 2001 (Note 1)

Condo E 30000 G's X" X2, Y" Y2

Centrifuge
Condo E
Y,Only

Hermetic Seal
MTD 1014 (Note 1)

Cond. B Fine-Radiflo 5x10- s cclsec
Condo C Gross-FC43/Hot 10 -3 cc/sec or
Gross-FC78Nacuum 10-s cc/sec

Hermeticity
Cond.AlB
Cond.C

Pre Burn-in
Electrical

25°C dc electrical testing
to remove rejects prior to
submission to burn-in screen

Pre BII Elect
25°Cdc

Burn-in Screen
MTD 1015 (Note 2)

Cond A, Cond B, Cond C
Cond D, Cond E, Cond F

Post Burn-in
Electrical

Post Burn-in electrical screening to cull
out devices which failed as a result of
burn-in. Test Parameters may include
25°C dc, 125°C dc, 55°C dc, 25°C dc,
25°C ac and 25°C Functional tests

Quality Conformance
Inspection
MTD5005

Group A Electrical Characteristics
Group B Package oriented Tests
Group C Life Tests-Periodic Conformance
Group D: Environmental Tests Periodic Conformance

Quality
Conformance
Gp A and B

External Visual
MTD2009

3X, 10X magnification Verify dimensions,
configuration, lead structure, marking
and workmanship

Generic Data
Available
GpCandD

Seal

I
Temperature Cycle
MTD 1010

I

Burn In
160 Hrs 125°C
Post BII Elect
25°C dc & Funct
125°Cdc
-55°Cdc
25°C ac Sample if
apply per Data Sheet

I

Notes

1. Not applicable for T0-3 Cans.
2. Time Temperature Curve (method 1015) may be used.
10-6

Hi Rei Processing
Class "S" Processing
The Linear Division has designed a Class"S" flow for all
processing steps from Wafer Fabrication through
Assembly, Test, Burn-In and Finish that will meet the
requirements of majority of customers as well as the
applicable military specifications and thus reduce the need
for custom Level "s" process flows.

Fig.4A

The flow charts that follow provide the major steps and
acceptance criteria utilized for the processes and should
form the basis for any Level "s" business negotiations with
Linear Marketing. These flow charts will also provide a
prospective customer with Fairchild Linear's capabilities in
Level "s" processing.

Class S: Minimum Wafer Lot Acceptance Steps

CV TEST WAFERS FOR
EVAPORATOR
CLEANLINESS

AU THICKNESS
MEASUREMENT

TOP SIDE METAL
THICKNESS
MEASUREMENT

SAMPLE PROBE
TEST FOR
DIFFUSION
PARAMETERS

100% ELECT
DIE SORT
WAFERS

VISUAL INSPECTION"
ACCEPTANCE FOR DIE
BANK WITH FULL
TRACEABILITY

SEM ACCEPTANCE OF METAL
PATTERN; MIL-STD-883
METHOD 2018

CLASS "s" DIE
INVENTORY

•

GLASSIVATION THICKNESS
MEASUREMENT

Note
All wafer lot acceptance is done per MIL-STO-883 Method 5007,
Table I.

10-7

Hi Rei Processing
Fig.48

Class S Assembly Flow
INCOMING CLASS "S"
WAFERS WITH TRACE ABILITY

DIE VISUAL
CONDITION "A"
'-..,..~ METHOD 2010

DIE ATTACH

DIE SHEAR
MONITOR
METHOD 2019

BOND PULL
MONITOR
METHOD 2011 '-_~

WIRE BOND

NON-DESTRUCTIVE
BOND PULL
METHOD 2023

INTERNAL VISUAL
CONDITION "A"
METHOD 2010

QC INTERNAL VISUAL CONDITION "A"
CUSTOMER SOURCE PRE-CAP
IF REQUIRED

SEAL

Note
Piece part traceability maintained when required.

10-8

Hi Rei Processing
Fig.4C
Class S Test, Burn-In and
Final Acceptance

Class S Environmental and
Finish Processing
ASSEMBLED CLASS "S" LOT
600-1000 PIECE MAX. AT SERIALIZATION

PRE-BURN-IN ELECTRICAL
25°C READ AND RECORD (DC ONLY)
STABILIZATION BAKEMETHOD 1008
CONDITIONC

BURN-IN 240 HOURS AT 125°C OR
PER FIGURE 1015-1 OF MIL-STD-883

TEMPERATURE C'VCLlNGMETHOD 1010
CONDITIONC

POST-BURN-IN ELECTRICAL
25°C READ AND RECORD

CONSTANT ACCELERATIONMETHOD 2001-Y,
CONDITIONE

POST-BURN-IN ELECTRICAL
+ 125°C AND - 55°C SCREEN

VISUAL INSPECTIONMETHOD 2009
FINE AND GROSS LEAK TEST
METHOD 1014
PARTICLE IMPACT NOISE
DETECTION (PIND)METHOD 2020
CONDITION A ONLY

GROUP A-QUALITY CONFORMANCE
INSPECTION 25°C, +125°C, -55°C, AC
METHOD 5005

FINE AND GROSS LEAK TESTMETHOD 1014

RADIOGRAPHIC
(X-RAY) (2 VIEWS)
METHOD 2012

EXTERNAL VISUAL AND PACK
SERIALIZATION AND MARKING
(4 CHAR. MAX. AND ON FLATPACK
SERIALIZATION ON BonOM ONLY)

LOTQCI
INSPECTION
PER METHOD 5005

SHIP

•

Note
This is a general overview flow and specific packages may have
unique requirements other than specified.

10-9

FAIRCHILD
A Schlumberger Company

11·2

Package Outlines

FAIRCHIL.D
A Schlumberger Company

1o-Pin Flatpak
In Accordance with JEDEC TO-91

==:~~I:~:

':IF
~.___. . ~.370

:=1=1:::==:::11:
:~~~ ~~ ~~l+--I

(9 40)
.250 (6 35)

~

._L. L,"(O "" I--.~""~
.004 (0 102)

.020 (0 508)

3F
Notes
Pons are tin'plated alloy 42
HermetIcally sealed alumona package
Package weIght is 0.26 grams

f

.070 (1 78)
.050 (127)

.240 (6 10)

10-Pin Metal Package
Similar to JEDEC TO-3

.100 (2 54)

.380 (9 65)
.350 (8 90)

1 .08012 03)

J...

f-----CI+r~~~~;=~IJJ~~S~E~AT~IN~G

I

PLANE

.300 (7 26)

.250~r
35) _~ ~ ~ ~~

5H
Notes
Base IS heavy gold plated over
nickel plated steel
Can is nickel plated steel
Pons are heavy gold plated over
nickel plated alloy 52
All pins electrically isolated from
case wIth glass
Package weIght IS 17 grams
• Similar to JEDEC TO·3 except for number of
pons, pin length and pin diameter

II .033 (0 84)
I-- .028 (0 71) DIA

-+j

1.197 (30 40)
-1.177!2990)-1

.600 (15 24)
.580 (14 73)

GLASS
-(10 PLACES)
.161 (409)
.151 (384)DIA
2 HOLES
~.180(4

57)
.150 (3 81) R
2 PLACES

All dImensIons on onches bold and mIllimeters (parentheses)
11·3

Package Outlines
10-Pin Metal Package
In Accordance with JEDEC TO-100

S-Pin Metal Package
In Accordance with JEDEC TO-99

1-_____..... 370 (9 40)DIA

.370 (9 40)
.350 (8 89)
DIA

.350(889)

1- :~~~ l: g~:I J

.335 (8 51)DIA-1+_----j
.315 (8 00)

lOlA

+

.040 (102)
.020 (0 51)

+

t

== C:;;;:::;;:::;;::::;:;;:J~

=~i
I

.040(102)
.020 (0 51)

.185 (4 70)
REF.
.165(4YPLANE

~

[I]

SEATING
-r--i--PLANE
.040 (102) .565 (14 35)
.010 (0 25) .5.0 (12 70)

~

t

.185 (4 70)
165 (4 19)

-t 1

t
8 PINS
.019 (0 48)
.016 (0 41)
DIA

t

nn n nn

UU U

uu

REF PLANE
SEATING PLANE
.040 (102) .565 (14 35)
.010 (0 25) .500 (12 70)

t

GLASS

t.

T.P.

5U

5W

Notes
Pms are extra heavy gold-plated kovar
Ten pms
Eyelet is extra heavy gold-plated kovar, glass
foiled with ceramic standoff
Can is grade A nickel
High RTH package
Package weight is 1.32 grams

Notes
Pms are tin-plated over nickel plated kovar
Seven pms thru, pm no 4 connected to case
Eyelet IS nickel plated kovar, glass filled with
ceramic standoff, tm plated outside metal
surface
Can IS grade A nickel, tm plated outside
surface
Package weight IS 1 22 grams

5X
Notes
Pms are lin-plated over nickel-plated kovar
Nme pms thru, pm 5 IS connected to case
Eyelet IS nickel plated kovar, glass filled with
ceramic standoff, tin plated outside metal
surface
Can IS grade A nickel, tm plated outside
surface
Package weight IS 1.32 grams

5Y
Notes
Pms are tin-plated over nickel plated kovar
Ten pms
Eyelet IS nickel plated kovar, glass filled with
ceramiC standoff, tin plated outside metal
surface
Can IS grade A nickel, tm plated outside
surface
Package weight IS 1.32 grams

All dimensions in mches bold and millimeters (parentheses)

11-4

Package Outlines
14-Pin Ceramic Dual In-Line
In Accordance with JEDEC TO-116

.025 R (0 635)
"""-NOM

6A,8A
Noles
PinS are tin-plated alloy 42
Pms are Intended for insertIon In hole rows
on 300 (7 620) centers
They are purposely shipped with "positive"
misalignment to facilitate insertion
Board-drilling dimenSions should equal your
practice for 020 (0 508) diameter pin
Hermetically sealed alumina package
Package weight IS 2 0 grams

525)1~

1-.375 (9
NOM

0

15
00

16-Pin Ceramic Dual In-Line
.785 (19 939)
750 (19 050)

----I

I

:~;;;;i: : : : : : : J~~""~"
~ ~

r-

I

68,88
Noles
PinS are tin-plated alloy 42
PinS are Intended for Insertion

.065 (1651)
045 (1 143)

.320 (8 128)-1
..- 290 (7 366) I

.-~~''"'"'

200 (5 080)
MAX

+

.150 (3 840)
. 125 (3175)

J--

-_- - - - - - - -- - -

Il

I

I

~--

I

-1'"

.110 (2 794)
.090 (2 286)

.037 (0 940)
.029 (0 686)
STANDOFF
WIDTH

-

-

,---,---,---.1

.020 (0 508)
~

S~.4\TING

f PLANE
-',

---:1

~~

.020 (0 508)
.016 (0 406)

375 (9 525)
NOM

045 (1 143)
.015 (0 381)

All dimensions In Inches bold and millimeters (parentheses)
11-5

In

hole rows

on 300 centers (7 62)
Units are purposely shipped with "positive"
misalignment to faCilitate msertlon
Board-drlllmg dimenSions should equal your
practice for .020 (0 508) diameter pm
Hermetically sealed alumma package
Package weight IS 2 0 grams
• The 037 - 027 (0 940-0 686) dimenSion
does not apply to the corner pms

•

Package Outlines
40-Pin Ceramic Dual In-Line
Side Brazed

r---In n

1

2020 (55 880) ---.~
1980 (50 292)

20
025 (0 6350)

590 (14 986)

~

C,,2,,'. . . .....,"".,.....,.,;ffi....

R

L_
'i'R;r;!;.............-...,....

565

~~~;;~

060(1 524)
040(1016)

~~:~~NG j

61

L
II

Notes

610(15494)

590(14986)

;~g~~~~:;
11-dJ

PinS material nickel gold-plated kovar
Cap IS kovar
Base

F="1r=~

IS

ceramic

CavIty size IS 310 X 310
Package weIght IS 6 5 gram

~~~~~~~~~~~IIW~~~~~~~~~I!!~ ~ Lg~~~g;~~~) j
--J

175 (4 445)
125(3175)

,:

----J

-I

1I

110(2794)1

045 (1 143)
040(1016)

090 (2 286»)

TYP

'i
II

---

~

085 (2 159)
075(1905)

020 (0 508)
016 (0 406)
TVP

675(17145)

MAX

8-Pin Ceramic Dual In-Line
1.392 (9 957),

IA

.374 (9 500)

I'll

I

.261 (6629)
.243 (6 172)

.025 R (0 635)

NOM

-~ ~--.-.-.........rr!

6T,8P

15°
0°

.012 (0 305)
.009 (0 229)

STANDOFF
WIDTH
.110 (2 794)
.050 (2 286)

All dImensIons In Inches bold and millimeters (parentheses)

11-6

Notes
PinS are tin-plated alloy 42
PinS are Intended for Insertion in hole rows
on 300 centers
Units are purposely shIpped WIth "posItive"
mIsalignment to facIlitate Insertion
Board-drilling dImensions should equal your
practIce for 020 (0.508) dIameter pin
HermetIcally sealed alumina package
Package weight IS 1 0 grams

Package Outlines
14-Pin Ceramic Dual In-Line
Similar to JEDEC TO-116

r--.
I !\

I

!\

7B5 ( 1 9 . 9 3 9 ) - - 1

:750(19050),

A A

I

7

.025 R (0 635)

.2Bl (7.137)
.263 (6 680)

:;"'---NOM

7A
Notes
Pms are tm·plated alloy 42
Pms are lOt ended for msertlon 10 hole rows
on 300 (7.62) centers
Units are purposely shipped with "positive"
misalignment to facilitate insertion
Board·drillmg dimensions should equal your
practice for 020 (0 508) diameter pm
Hermetically sealed alumina package
Package weight IS 1522 grams
Similar to JEDEC TO·116 except for
package width

L~..,.....,.-.........,...........-........-r~
.065 (1651)_1
.045 (1 143)

16-Pin Ceramic Dual In-Line

78
Notes
Pms are tm-plated alloy 42
Pms are mtended for mserlion In hole rows
on 300 (7.62) centers
Units are purposely shipped with "posllive"
misalignment to faCilitate msertlon
Board-drilling dimensions should equal your
practice for 020 (0 508) diameter pm
Hermetically sealed alumma package
Package weight IS 2.2 grams
'The 037- 027 (0.940-0.686) dimension
does not apply to the corner pms

~ ~.065(1651)

.045 (1 143)

~
.200 (5 080) b=o;::=;=;:::::;==;:::r=;:::::;==;:::;=o;::=;=;;::::::r=;'::l
MAX

~

t--: ,
i

I

.150(3810)
.125(3175) ~

.110(2794)
.030 (2 286)

.037 (0940)
.027 (0686)
STANDOFF
WIDTH

All dimensions In mches bold and millimeters (parentheses)

11-7

Package Outlines
24-Pin Ceramic Dual In-line

r---

1.284 (32 61)
1.238 (3145)----j

11\1\1\1

(SEE NOTE)"

\1\1\1\

1

I

7L

.025 (064)
NOM

.546 (13 87)
.514 (13 06)
(SEE NOTE)"

~~~~~~~~
---I

L

.100 (2 54)
.060 (153)

~~;:;;;;;:;~~:;:;:;:;;l)
1=

618 (15 70)--1
1,.610 (15 49)

.050 (1
27)
.025
(064)

,~

f

.110 (2 79)
.090 (2.29)
TYP

1

-j

II

.037 (094)
.027 (068)
STANDOFF WIDTH
TYP

r·

SEATING
PLANE

,I

Notes
Pons are ton-plated alloy 42 or equivalent
Package material is alumona
Pons ontended for onsertion in hole rows on
.600 centers (15.24)
They are purposely shipped "positive"
misalignment to facilitate insertion
Cavity size is .245 X .245 (6.22 X 6.22)
Package weight IS 7.1 grams
These dimensions include misalignment and
glass over-run etc.
ThiS dimenSion is measured from centerline to
centerlone of pons

.020 (0 51)

-II-- .016 (0 41)

I.....

TYP

14-Pin Ceramic Dual In-Line

I----:~~g

.

1--_..

g: ~~~ - - - - · 1

450 (11 43)
.420 (1067)

D

--1I

-.--~~~~~~~~~~~~

.301 (765)
.275 (6 98)

V

.050(127)
RADIUS

7N

_t__ L....C8::.-..:::;;;:::::c:;::::;::::r:;:=r;:;:::.-,::::..~

L
'M" ~,~" '" ~.::::: ;~i
.065 (165)_1
.045(114)

rn

.110 (2 79)

.260 (6 60)
.045 (114)

~.025(064)

t--=l ¥ li~M
III II U--!- ~~:~~G :~~g~~~

.165 (419)
.125 (3 18)

I

,

1----1

__

.110 (2 79)

.037 (094)

.090 (2 29)

.027 (069)
STANDOFF
WIDTH

--III......020 (0 51)
.016 (0 41)

I\-.310 (7 87)-1I
.290 (7 37)

All dimensions in inches bold and millimeters (parentheses)
11-8

Notes
Pins are gold-plated kovar
Base is alumina
Lid is gold-plated kovar
Pins are ontended for insertion in hole rows
on .300" centers (7.62)
Board-drilling dimensions should equal your
practice for .020 (0.51) inch diameter pin
Package weight is 1.3 grams

Package Outlines
24-Pin Ceramic Dual In-Line
Side Brazed

r
"-

1.212 (30 785)
•
1.188(30175)--'-1

,

f

1211109 8 76 5 4 3 2 1
.025 (0635)

~R

590(14986)
.565 (14 351)

L__

7R

131415161718192021222324
[.500(12700)J
.480(12192)

....Il.060 (1 524) j.610 ( 1
494)
;t5
.040 (1016)
.590 (14 986)
.095 (2 413)
.065 (1 651)

,06011524)

SEATI~:0Ii01mmmm~q
*
T

PLANE

II

----T--+
I

·f· I

.125(3175)
MIN

I

~

.160 (4 064)
.110(2794)

Iii ~h

__

.110(2794)
.090 (2 286)
TYP

-.------1

.450 (11 43)
.250 (6 35)

I

r

.500 (12 700)
.480 (12192)

-

Base IS ceramic
Cavity size IS 250 X 250
Package weight IS 3 85 gram

.011 (0279)
.009 (0 229)

~.675J~~415)~

.045(1143) .020(0508)
.040 (1016) .016 (0 406)
TYP
TYP

a-Pin Metal Package
Similar to JEDEC TO-3

1--

Notes
Pms are nickel gold-plated kovar
Cap IS kovar

.875 (22 225) DlA MAX

1

I

.100(254)
.085 (216)

....l

,

+-~I=:~I==~====~~=~~=~~~~===~:::=t==::lt ~~:~~NG

.~~g l~ ~~~

.L.________

~ ~ -II~~

.042 (1 07) DIA 8 PLACES
.039 (0 99) TYP

BG
Notes
PinS are gold-plated kovar
7 pinS through. pin 4 connected to case
Package weight IS 1 22 grams

. 188 (4 78) R MAX.
2 PLACES

All dimenSions In Inches bold and millimeters (parentheses)
11-9

•

Package Outlines
4-Pin Molded Single Wing
.405 (10 29)
.365 (9 27)

.265 (6 73)
.235 (5 97)
.150 (3 81)
.100 (2 54)

8Z

II

;;;;==W==>===::::I..-l
T [

'---....l,---I...u ;:;

060 (1 52)
.045 (114)

.030 (0 76)
.023 (0 58)

.024 (0 61)
.018 (046)

Package matenal IS plastic
Package weight IS 1 2 grams

::~g ~~ ~~~ ==F=~fj'l-!*(,-~=-=!~",!=:...=-,=l)!_I~_;;;_;;;_;;;-;;;-~;;;-~;;;-;;;-;;;-;;;-~=+t-*L--.

r

Notes
Pins are tin plated copper alloy
Mounting tab IS electrically Insulated from pinS
Mounting tab IS tin plated copper alloy
Board-drilling dimenSions should equal your
practice for 033 (0 84) d,ameler pinS
This package IS Intended to be mounted With
the tab flush With the top of the P C board or
heat sink A no 4 screw may be used to
secure the package Thermal compound IS
recommended

.068(173)
.038 (097)

14-Pin Molded Dual In-Line
In Accordance with JEDEC TO-116

1-----.

760 (19 3 0 ) - - - - 1

I

A A >740(1880)~ 1\ 1\ I

~l:~ ::::::: ~~:'"'"'"
II
---I I--

'.060 (1 52)
.040 (1 02)

SEATING
PLANE

[020 (0 51)
MIN

9A
Notes
PinS are solder dipped copper alloy
PinS are Intended for insertion In hole rows
on 300 (7 62) centers
Units are purposely shipped With "positive"
misalignment to faCilitate insertion

Board-drilling dimensions should equal your
prachce for 020 (0 51) diameter pin
Package material IS plastic
Package weight IS a 9 grams

All dimensions In Inches bold and millimeters (parentheses)
11-10

Package Outlines
16-Pin Molded Dual In-Line
.760 (19 3 0 ) - - - - - 1
.740 (18 80)

1

r"-I r'\ !l I

8

.260 (6 60)
.240 (610)

.030 (0 76)

NOM

~~9~~~"=T~~=T~~1~6~

~

.180 (4 57) hr-r-r-.-.-.-r-r-r---.r-r--r-r---.--.-r-1
MAX
SEATING
PLANE

.150 (3 81)
.125 (318)

98
Notes
Pms are solder dIpped copper alloy
PIns are Intended for msertlon m hole rows
on 300 (7 62) centers
Unots are purposely shIpped with "poslllve"
mIsalignment to facilitate mserllon
Board-drilling dImensIons should equal your
practIce for 020 (0 51) dIameter pIn
Package material IS plastIc
Package weIght IS 1 0 grams

All dImensIons In mches bold and mIllimeters (parentheses)
11-11

Package Outlines
a-Pin Molded Dual In-Line

f

.030 (0 76) R
NOM

.260 (6 60)

.240 (610)

!

5

060 (1 52)

9T
Notes
PinS are solder dipped copper alloy
PinS are Intended for insertion In hole rows
on 300 (7 62) centers
Units are purposely shipped With "positive"
misalignment to facilitate insertion
Board-dniling dimenSions shOlJld equal your
practice for 020 (0 51) diameter pin
Package matenal IS plastic
Package weight IS 0.6 gram

8

I

.040(102) ....

t

/::::r,"""",..=r-,:;::r-.::l~130(330)
.110 (2 79)

SEATING

PLANE
===-.-1-50-(3-8-1-)
f---"Y,
.125 (318)

f

.020 (0 51)

MIN

.050 (127)
.025 (0 64)

L.375 (9 53)_1
NOM

I

I

3-Pin Molded Package
Similar to JEDEC TO-92

I..-.195 (4 95)-i
I .175 (4 45) I

T

.190 (4 83)
.170 (4 32)

,,

/

I
\

I
-~,

SEATING
PLANE

EI
.055
.045
.105
.095

(140)
(114)
(2 67)
(2 41)

Notes
PinS are solder dipped copper alloy
Pin no 2 connected to die pad
Package matenalls plastic
Package weight IS 0 19 gram
• Similar to JEDEC TO-92 except for pin
dimenSions

--4----~

I-' 185 (4 70)-1
I .155 (3 94) I

-,----- r-----;.

.019 (0 48)
---.i.015 (0 38)

-+

LEAD NO.3
LEAD NO.2
LEAD NO. 1
.105 (2 67)
.080 (2 03)

All dimenSions In Inches bold and millimeters (parentheses)
11-12

Package Outlines
16-Pin Ceramic Dual In-Line
- - - - . 8 0 8 (20 532) _ _ _ _ _ 1
.792 (20 117)

1_ _

I

L·510 (12 954)
.490(12446)-

1_

.100(2540)

:c:~:]: ~~

FB
Notes
Pms are nIckel alloy 42 or kovar
Base IS alumma
Cap IS alumma
Pms are mtended for msertion in hole rows
on .300" centers
Board drilling dimenSIons should equal your
practice for .020" dIameter lead
Pm finIshes avallable-tlO or gold plate
Cavity size is .220 X 280

.310 (7 874)
.290 (7 366)
.283 (7 188)

.166 (4 216) .094 (2 388)

""1"':£ "!."'! ~~:::';:;~~=;:~::;;:;;;::=;"",.0:f3;~~~~NG
~I ~I:,,(O..,
.125(3175)

.110 (2 794)
.090 (2 286)
TYP & NONACCUM

MIN

~

~.016 (0 406)

.065 (1 651)
.045 (1.143)

1.277 (7 036)'1

L-...J
.012 (0 305~ .....
.010 (0 254)

\ •. 310 (7 874)
.290 (7 366)

,I

--

t·

2-Pin Metal Package
Similar to JEDEC TO-39
3 70 (940)
.350 (8 8 9 ) DIA

I_:~~~ ~~ g~~I .1
DIA

.034 (0 864)
.017 (0432)

+

=:::t== t::;::::::;;::::::;:~

--,-t.185 (4 70)
.165 (419)

--+'

Fe

-SEATING PLANE

Notes
PIOS are gold plated kovar
Pins 1 and 2 are electrically isolated
WIth glass
Pm no 3 connected to case
Eyelet is gold plated kovar
Can IS grade A nickel
Package weight is 1.23 grams
• SImilar to JEDEC TO-39 except for
can height

.565 (14.35)
3 PINS_
.500 (12 70)
0.19 (0 48)
0.16(041)
U
DIA
1+-----+-.200 (5 08)
T.P.

n

O_ _t<--

GLASS

All dimenSIons m inches bold and millimeters (parentheses)

11-13

•

Package Outlines
18·Pin Ceramic DIP
Side-Brazed

GI-

'910(23114)
.890 (22.606)
.434(11.024)
.428 (10.8712)-1

.155 (3 937) .090 (2 286)
.110 (2 794) .070 (1.778)

.045 (1.143)

-t---:=t=F====================::L-----. .025 (0 635)
~

.160 (4.064)

.140 (3 556)

~~

~~

FD
Notes
Pons are nickel alloy 42 or kovar
Base IS alumona
Cap IS alumona
Pons are ontended for onsertion on hole rows on
.300" centers
Board dnillng dimenSIons should equal your
practIce for .020" dIameter lead
Pon fonlshes avaIlable-tin or gold plate
Cavity sIze IS 220 X 280

All dImenSIons In Inches bold end mllhmeters (parentheses)
11·14

SEATING
PLANE

t
.054 (1372)
TYP

.020 (0 508) TYP
.016 (0 406)

.012 (0.305)
.009 (0.229)_ ......
TYP
I

1-.310 (7 874!_
.290 (7 366)

Package Outlines
16-Pin Ceramic Dual In-Line

.025 R (0 635)
NOM

.320 (8 128)
.290 (7 366)

~I

.040 (1 016)

---------------..

.20~~5X080)
.150 (3 810)
.125 (3

1~:)10

(2 794) ,

.090 (2 286)

.O~O (0 5~:~ TING
..J..... PLANE

It

~
..,

.020 (0 508)

~016 (0 406)
.045 (1 143)
.015 (0 381)

~ .375 (9 525)~
1NOM
15'

./

0'

FW
Notes
PinS are tin·plated alloy 42
PinS are Intended for Insertion In hole rows
on 300" centers
They are purposely shipped with "positive"
misalignment to facIlitate insertion
Board·drilling dimenSions should equal your
practice for .020 Inch diameter Pin
Hermetically sealed alumina package
Package weight is 2 2 grams
'The 037 - .027 (0 940-0 686) dimension
does not apply to the corner pinS

•
All dimenSions in Inches bold and millimeters (parentheses)

11·15

Package Outlines
3-Pin Molded Package
Similar to JEDEC TO-220

610(1549)~t

_

580(1473)
120 (3 05)
100 (254) -

I

250 (6 35)
200 (5 08) •

--t..------I

«(

415(1054)
395
03)

540(1372)_
.500(1270)

•

I
110 (2 79)

~~~.090~(2

rt

:iii:

29j)
1.210(533)

320(813)
300
62)

0

190 (4 83)

060 (1 52)
045 (1 14)

145 (3 68) DIA
141 (358)
265 (6 73)
, .235 (5 97)
1

~~~ ~: ;~-~-'-----f----+!I
_ _ _--L_ _ _. -

SEATING
PLANE

b:4c::::J.~

-

)'"=====:=J=*'="

115 (2 92)

___..J_____~::::~_ __._iL .085 (2 16)

.055 (140)
045 (1 14)

030 (0 76)
013 (0 33)

t

-....--~

1_

t .....J
. -I

SECTION

.040 (102)
.025 (0 64)

x-x

GH
Notes
Pins are solder dipped over nickel plated
copper alloy
Pin 2 IS electncal contact with the
mounling tab
Mounting tab IS nickel plated copper alloy
Package matenal IS plastic
Package weight IS 2.0 grams

All dimenSions In Inches bold and millimeters (parentheses)
11-16

Package Outlines
4-Pin Metal Package
Similar to JEDEC TO-3

r-

~:::g~~~)~
.835 (2121)
.805 (20 45)
OIA

.325 (8 26)
.275 (6 98)

-.I:

.125 (318)
105 (2 67)

::::=I4:I==::;;=:;;:=='~'

C'

TSEATING PLANE

GK
Notes
Base IS nickel plated alummum
Can IS alummum
Pms are gold plated over nickel plated
alloy 52
All pms electrically isolated from case
with glass
Package weight IS 7 4 grams
• Similar to JEDEC TO·3 except for number
of pms

II .043 (1 09) OIA
---i I-- .038 (0 97)
1--___-1-_.675 (17

14)
.655 (16 64)

PIN 2
2 HOLES
.161 (409)
.151 (384)
.180 (4 57) R
.150 (381)

'---.--',,---- 525 (13 34) R
.480 (12 19)

2-Pin Metal Package
Similar to JEDEC TO-3

1_.

56)_1

.'"r~ rr+-r.L..------',-+,,~:{
.293 (7 44)
)

t

770 (19
MAX OIA

SEATING PLANE

70)

f

.400 (10 16) MIN

~

GN
Notes
Pms 1 and 2 electrically Isolated from case
Case IS third electrical connections

PIN 2
161 (409) OIA
.151 (384)
2 PLACES

.188 (4 78) MAX
2 PLACES

All dimensions m mches bold and millimeters (parentheses)
11·17

Package Outlines
2-Pin Metal Package
In Accordance with JEDEC TO-3
.295 (7 49)
.265 (6 73)

_

~

SEATlN~

r·

780 (19.81)1
.7600(IAI930)
.057(1.45)
.037 (094)

PL....
A-NE----O"'-+..,.....,=*

HJ

.450 (1143)
.400 (10 16)

Notes
Base IS nickel plated steel
Can IS nickel plated steel
Pins are solder dipped over nickel plated
alloy 52
Pins 1 and 2 electrically isolated from case
with glass
Case is third electrical connection
Package weight IS 9 2 grams

t

.161 (409) OIA
.151 (384)
2 HOLES

.180 (4.57) R
.150 (3.81)
2 PLACES
.525 (13 34) R
.480 (12 19)

4-Pin Metal Package
Similar to JEDEC TO-3

~_I

.770 (19 56)
MAX

r

.293 (7 44)
.273 (693)
.421 (10 69)!
MIN
_

~;~~g~~g;-

Ii

Ii

~ ~

f..1
I

:

_III--

I
+

SEATING

ii ITa6:~;;0~
MAX

.041 (1 04) OIA

.037 ( 940)

JA

_ _ 1.197 (30 4 0 ) _
1 177 (29 90)
PIN 1

Notes
PinS are solder dipped alloy 52
All pinS electrically Isolated from case

1_---""·675(1714)
.655 (16 64)
PIN 2
2 HOLES
161 (409)
.151 (384)

177(45)R
2 PLACES

.470 (1194)

PIN 3

DIA PIN
CIRCLE

525(1334)
MAX

All dimenSions In Inches boid ana millimeterS (parenthesesi
11-18

I=AIRCHIL.D
A Schlumberger Company

I

Fairchild Sales Offices

12-2

A Schlumberger Company

Sales
Offices

United States and
Canada

Alabama
Huntsville Office
500 Wynn Drive, SUite 511
Huntsville, Alabama 35805
Tel 205-837-8960

Indiana
Ft Wayne Office
2118 Inwood Drive, SUite 111
Ft Wayne, Indiana 46815
Tel 219-483-6453 TWX 810-332-1507

North Carolina
Raleigh Office
1100 Navaho Drive. SUite 112
Raleigh, North Carolina 27609
Tel 919-876-9643

Arizona
Phoenix Office
2255 West Northern Road, SUite Bl12
Phoenix, Arizona 85021
Tel 602-864-1000 TWX 910-951-1544

Indianapolis OffIce
7202 N Shadeland, Room 205
Castle POint
Indianapolis, Indiana 46250
Tel 317-849-5412 TWX 810-260- t 793

Ohio
Dayton Office
5045 North Main Street, SUite 105
Dayton, OhiO 45414
Tel 513-278-8278 TWX 810-459-1803

Kansas
Kansas City Office

8600 West 110th Street, SUite 209
Overland Park, Kansas 66210
Tel 913-649-3974

Oklahoma
Tulsa Office
9810 East 42nd Street, SUite 127
Tulsa, Oklahoma 74145
Tel 918-627-1591

Maryland
Columbia Office
1000 Century Plaza, SUite 225
Columbia, Maryland 21044
Tel 301-730-1510 TWX 710-826-9654

Oregon
Portland Office
8285 S W Nimbus Avenue. SUite 138
Beaverton, Oregon 97005
Tel 503-641-7871 TWX 910-467-7842

Massachusetts
Framingham Office
5 Speen Street
Framingham, Massachusetts 01701
Tel 617-872-4900 TWX 710-380-0599

Pennsylvania
Philadelphia Office'
2500 Office Center
2500 Maryland Road
Willow Grove, Pennsylvania 19090
Tel 215-657-2711

FAIRCHILD

California
Los Angeles Office'
Crocker Bank Bldg
15760 Ventura Blvd, SUite 1027
Encino, California 91436
Tel 213-990-9800 TWX 910-495-1776
San Diego Office'
7867 Convoy Court, SUite 312
San Diego, California 92111
Tel 714-279-7961 TWX 910-335-1512
Santa Ana Office'
1570 Brookhollow Drive, SUite 206
Santa Ana, California 92705
Tel 714-557-7350 TWX 910-595-1109

Santa Clara Office'
3333 Bowers Avenue, SUite 299
Santa Clara, California 95051
Tel 408-987-9530 TWX 910-338-0241
Colorado
Denver Office
7200 East Hampden Avenue, SUite 206
Denver, Colorado 80224
Tel 303-758-7924
Connecticut
Danbury Office
57 North Street, #206
Danbury, Connecticut 06810
Tel 203-744-4010

Florida
Ft Lauderdale Office

Michigan
Detroit Offlce*
21999 Farmington Road
Farmington Hills, Michigan 48024
Tel 313-478-7400 TWX 810-242-2973
Minnesota
Minneapolis Office'
4570 West 77th Street, Room 356
Minneapolis, Minnesota 55435
Tel 612-835-3322 TWX 910-576-2944
New Jersey
New Jersey Office
Vreeland Plaza
41 Vreeland Avenue
Totowa, New Jersey 07511
Tel 201-256-9006

Tennessee
Knoxville Office
Executive Square II
9051 Executive Park Drive. SUite 502
Knoxville. Tennessee 37923
Tel 615,691-4011
Texas
Austin Office
9027 North Gate Blvd, SUite 124
Austin. Texas 78758
Tel 512-837-8931

Dallas Office
1702 North Collins Street, SUite 101
Richardson. Texas 75081
Tel 214-234-3391 TWX 910-867-4757

Executive Plaza, SUIte 112

1001 Northwest 62nd Street
Ft Lauderdale, Florida 33309
Tel 305-771-0320 TWX 510-955-4098
Orlando OfficeCrane's Roost Office Park
399 Whooping Loop
Altamonte Springs, Flonda 32701
Tel 305-834-7000 TWX 810-850-0152

Georgia
Atlanta Sales Office
Interchange Park, Bldg
4183 N E Expressway
Atlanta, Georgia 30340
Tel 404-939-7683
illinois
Itasca Office
500 Park Blvd, SUite 575
Itasca, IllinOIS 60143
Tel 312-773-3300

New Mexico
Albuquerque Office
North Budding
2900 LouIsiana N E South G2
Albuquerque, New MexICO 87110
Tel 505-884-5601 TWX 910-379-6435

New York
Fairport Office
815 Ayrault Road
Fairport, New York 14450
Tel 716-223-7700
MelVille Office
275 Broadhollow Road, SUite 219
MelVille, New York 11747
Tel 516-293-2900 TWX 510-224-6480
Poughkeepsie Office
19 DavIs Avenue
Poughkeepsie, New York 12603
Tel 914-473-5730 TWX 510-248-0030

'Field Application Engineer
12-3

Houston Office
9896 Blssonnet-2 .. SUite 470
Houston, Texas 77036
Tel 713-771-3547 TWX 910-881-8278

Canada
Toronto Regional Office
2375 Steeles Avenue West, SUite 203
Downsvlew, Ontario M3J 3A8. Canada
Tel 416-665-5903 TWX 610-491-1283

I=AIRCHILC
A Schlumberger Company

Australia
Fairchild Australia Pty Ltd
Branch Office Third Floor
F A I Insurance BUilding
619 Pacific Highway
St Leonards 2065
New South Wales, Australia
Tel ,02,-439-5911
Telex AA20053
Austria and Eastern Europe
Fairchild Electronics
A-1010 W,en
Schwedenplatz 2
Tel 0222 635821 Telex 75096
Benelux
Fairchild Semiconductor
Ruysdaelbaan 35
5613 Dx Eindhoven
The Netherlands
Tel 00-31-40-446909 Telex 00-1451024
Brazil
Fairchild Sernlconductores Uda
Calxa Postal 30407
Rua Alagoas, 663
01242 Sao Paulo, Brazil
Tel 66-9092 Telex 011-23831
Cable FAIRLEC
France
Fairchild Camera & Instrument S A
121, Avenue d'italle
75013 Pans, France
Tel 331-584-55 66
Telex 0042 200614 or 260937
Germany
Fairchild Camera and Instrument GmBH
Dalmlerstrasse 15

International

Sales
Offices
Hong Kong
Fairchild Semiconductor I HK Ltd
135 HOI Bun Road
Kwun Tong
Kowloon, Hong Kong
Tel 3-440233 and 3-890271
Telex HKG-531
I

Italy
Fairchild Semlconductton, SPA
Via Flamem8 Veechla 653
00191 Roma, Italy
Tel 06 327 4006 Telex 63046 I FAI R ROM,
Fairchild Semlconducttorl SPA
Vlale Corsica 7

20133 Milano, Italy
Tel 296001-5 Telex 843-330522
Japan
Fairchild Japan Corporation
Pol a Bldg
1-15-21, Shlbuva
Shlbuya-Ku, Tokyo 150, Japan
Tel 034008351 Telex 242173
Fairchild Japan Corporation

Yotsubashl Chua Bldg
1-4-26, Shlnmachl
NIShl-Ku, Osaka 550, Japan
Tel 06-541-6138/9
Korea
Fairchild Semlkor Ltd
K2 219-6 Gar! Bong Dong
Young Dung Po-Ku
Seoul 150-06, Korea
Tel 85-0067 Telex FAIRKOR 22705
I

mailing address',

Munich, Germany

Fairchild Camera and Instrument GmBH
Oeltzenstrasse 15
3000 Hannover
W Germany
Tel 0511 17844 Telex 0922922

Singapore
Fairchild Semiconductor Pty Ltd
No 11, Lorong 3
Toa Payoh
Singapore 12
Tel 531-066 Telex FAIRSIN-RS 21376
Taiwan
Fairchild Semiconductor Ltd
HSletsu Bldg, Room 502
47 Chung Shan North Road
Sec 3 Taipei, Taiwan
Tel 573205 thru 573207
United Kingdom
Fairchild Camera and Instrument Ltd
Semiconductor DIvISion
230 High Street
Potters Bar
Hertfordshlre EN6 5BU
England
Tel 070751111 Telex 262835
Fairchild Semiconductor Ltd

17 Victoria Street
Cralgshlll
LIvingston

West Lothian, Scotland - EH54 5BG
Tel LIvingston 050632891 Telex 72629
GEC-Falrchlld Ltd
Chester High Road
Neston

Central POBox 2806

8046 Garchlng Hochbruck
Tel ,089,320031 Telex 524831 fair d

Scandinavia
Fairchild Semiconductor AB
Svartengsgatan 6
S-11620 Stockholm
Sweden
Tel 8-449255 Telex 17759

Mexico
Fairchild Mexlcana SA
Blvd Adolofo Lopez Mateos No 163
MexIco 19, D F
Tel 905-563-5411 Telex 017-71-038

Fairchild Camera and Instrument GmBH
Poststrasse 37

7251 Leonberg
W Germany

Tel 0715241026 Telex 07245711

12-4

South Wlrral L643UE
Cheshire, England
Tel 051-336-3975 Telex 629701



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:56:37
Create Date                     : 2013:08:20 17:56:21-08:00
Modify Date                     : 2013:08:20 22:18:16-07:00
Metadata Date                   : 2013:08:20 22:18:16-07:00
Producer                        : Adobe Acrobat 9.55 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:37d9b422-c19a-ea46-a07b-03030295470e
Instance ID                     : uuid:8ecb0448-1d90-e04c-9b71-0fb176539e8e
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 716
EXIF Metadata provided by EXIF.tools

Navigation menu