1982_Fujitsu_Memory_Data_Book 1982 Fujitsu Memory Data Book
User Manual: 1982_Fujitsu_Memory_Data_Book
Open the PDF directly: View PDF
.
Page Count: 276
| Download | |
| Open PDF In Browser | View PDF |
FUJITSU
MICROELECTRONICS
Fujitsu Microelectronics' manufacturing facility in San Diego, California
FUJITSU MICROELECTRONICS, INC,A U,S, ORGANIZATION
Fujitsu Microelectronics Inc, (FMI) is aU,S,
subsidiary of Fujitsu Limited of Tokyo. A
California Corporation, FMI is responsible
for the marketing and sales of all semiconductor products in North, Central and South
America.
Fujitsu Limited manufactures and markets .
advanced data processing and telecommunIcations systems, semiconductors and electronic components on a worldwide scale.
Fujitsu Limited is ranked as Japan's number
one computer manufacturer with sales in the
$2 billion range.
A LEADER IN ICs
Fujitsu is one of the world's largest electronic companies with development and
manufacturing capabilities utilizing the most
modern and innovative technical skills.
Fujitsu Microelectronics remains at the
leading edge of semiconductor technology
as exemplified by its offering of the world's
first mass-produced 64K-bit MOS RAM. Process technologies include both MOS and
bipolar; products include static and dynamic
memories, RAMs, EPROMs and PROMs; as
well as LSI logic including microprocessors
and gate arrays.
ABOUT FUJITSU MICROELECTRONICS
Fujitsu Microelectronics has completed a
new assembly and test facility in order to
better service our North American customers. The 66,000 square-foot facility is
located in Kearny Mesa Industrial Park near
downtown San Diego. The building was dedicated in June 1981 and is now fully operational.
ABOUT FUJITSU MIKROELEKTRONIK GmbH
Fujitsu Mikroelektronik GmbH was formed in
June 1980 as a wholly owned subsidiary of
Fujitsu Limited of Tokyo. From headquarters
in Frankfort, West Germany, it supervises
the sales and marketing of Fujitsu semiconductor products throughout Western Europe.
Fujitsu plans to construct a factory in
Ireland to further increase its ability to provide high quality semiconductor devices to
its European customers.
FUJITSU
MICROELECTRONICS
MEMORY DATA BOOK
APRIL 1982
Fujitsu Microelectronics, Inc. makes no warranty for the use of its products described herein.
Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor
applications, consequently, complete information sufficient for construction purposes is not necessarily
given The information has been carefully checked and is believed to be entirely reliable. However, no
responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the pur·
chaser of the semiconductor devices described herein any license under the patent rights of Fujitsu
Limited or others. Fujitsu Limited reserves the right to change device specifications.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Fujitsu MicroelectrOnics, Inc.
Additional copies of this manual or other Fujitsu Microelectronics literature may be obtained from,
Literature Department
Fujitsu Microelectronics
2985 Kifer Road
Santa Clara, CA 95051
FUJITSU MICROELECTRONICS' CROSS REFERENCE GUIDE
AMD
FMI
INMOS
FMI
AM2716 ...................
AM2732 ...................
AM9016 ...................
AM9147 ...................
AM27S28 ..................
AM27S29 ..................
AM27S32 ..................
AM27S33 ..................
AM27S180 .................
AM27S181C ...............
AM27S185C ...............
AM27S191C ...............
MBM2716
MBM2732
MB8116
MBM2147
MB7123
MB7124
MB7121
MB7122
MB7131
MB7132
MB7128
MB7138
IMS1400 ...................
IMS1420 ................ : ..
IMS2600 ...................
IMS2600 ...................
MB8167
MB8168
MB8264
MB8266A
INTEL
FMI
ELECTRONIC ARRAYS
FMI
2117 ......................
2118 ......................
2147 ......................
2148 ......................
2149 ......................
2164 ......................
2167 ......................
2168 ......................
2716 ......................
2732 ......................
2732A .....................
2764 ......................
3608 ......................
3616 ......................
3628 ......................
3632 ......................
3636-1 ....................
MB8116
MB8118
MBM2147
MBM2148
MBM2149
MB8264
MB8167
MB8168
MBM2716
MBM2732
MBM2732A
MBM2764
MB7131
MB7137
MB7132
MB7142
MB7138
INTERSIL
FMI
EA2716 ................... MBM2716
FAIRCHILD
FMI
F2764 .....................
F4116 .....................
F4164 .....................
F10415 ....................
F10422 ....................
F10470 ....................
F10474 ....................
F93419 ....................
F93450 ....................
F93451 ....................
F93452 ....................
F93453 ....................
F93511 ....................
F98510 ....................
F100422 ...................
F100470 ...................
MBM2764
MB8116
MB8264
MBM10415
MBM10422
MBM10470A
MBM10474
MBM93419
MB7131
MB7132
MB7121
MB7122
MB7138
MB7137
MBM100422
MBM100470
HARRIS
FMI
HM7642 ...................
HM7643 ...................
HM7648 ...................
HM7649 ...................
HM7680 ...................
HM7681 ...................
HM7684 ...................
HM7685 ...................
HM76160 ..................
HM76161 ..................
HM76321 ..................
MB7121
MB7122
MB7123
MB7124
MB7131
MB7132
MB7127
MB7128
MB7137
MB7138
MB7142
HITACHI
FMI
HM4716A ..................
HM4816 ...................
HM4847 ...................
HM4864 ...................
HM6116L ..................
HM6147 ...................
HN25044 ..................
HN25045 ..................
HN25088 ..................
HN25089 ..................
HN25169 ..................
HN462716 .................
HN462732 .................
MB8116
MB8118
MBM2147
MB8264
MB8416
MBM2147
MB7121
MB7122
MB7131
MB7132
MB7138
MBM2716
MBM2732
IM5626 .................... MB7122
MITSUBISHI
FMI
M5L2716 ..................
M5L2732K .................
M5K4116 ..................
M5K4164NS ...............
M5K4164S .................
M58725 ...................
MBM2716
MBM2732
MB8116
MB8264
MB8265
MB8128
MONOlJTHlC
MEMORIES
FMI
6352 ......................
6353-1 ....................
6380 ......................
6381-1 ....................
63100 .....................
63101 .....................
63S1681 ...................
MB7121
MB7122
MB7131
MB7132
MB7127
MB7128
MB7138
MOSTEK
FMI
MK2147
MK2716
MK4116
MK4164
MK4167
MK4516
MK4564
MK4802
...................
...................
...................
...................
...................
...................
............. " ....
...................
MBM2147
MBM2716
MB8116
MB8265
MB8167
MB8117
MB8264
MB8128
MOTOROLA
FMI
MCM2147
MCM2167
MCM2716
MCM4016
MCM4116
MBM2147
MBM8167
MBM2716
MB8128
MB8116
.................
.................
.................
.................
.................
CROSS REFERENCE GUIDE
MOTOROLA (Cont'd)
MCM4516 .................
MCM4517 .................
MCM6664 .................
MCM6665 .................
MCM7642 .................
MCM7643 .................
MCM7681 .................
MCM7685 .................
MCM10146 ................
MCM65116 ................
NATIONAL
FMI
MBM10415
MB7124
MB7123
MB7121
MB7122
MB7132
MB7127
MB7128
MB7137
MB7138
MBM2147
MB8116
MBM2716
MBM2732
MBM27C32
MB8264
MB8118
NEe
FYI
IIPB406 ....................
IIPB426 ....................
IIPB429 ....................
IIPD416 ...................
IIPD446 ...................
IIPD447 ...................
IIPD2118 ..................
IIPD2147 ..................
IIPD2167 ..................
IIPD2716 ..................
IIPD2732 ..................
IIPD4164 ..................
MB7121
MB7122
MB7138
MB8116
MB8416
MB8417
MB8118
MBM2147
MB8167
MBM2716
MBM2732
MB8264
OXI
FYI
M5M2128
M5M2716
M5M2732
M5M2764
M5M3764
M5M5128
.................
.................
.................
.................
.................
.................
PANASONIC
RAYTHEON (Cont'd)
FMI
29651 ..................... MB7128
29653 ..................... MB7128
29681 ..................... MB7138
FMI
MB8117
MB8118
MB8265
MB8264
MB7121
MB7122
MB7132
MB7128
MBM10415
MB8416
DM10415 ..................
DM745472 .................
DM748473 .................
DM745572 .................
DM745573 .................
DM875181 .................
DM875184 .................
DM875185 .................
DM878190 .................
DM875191 .................
MM2147 .........•.........
MM5290 ...................
NMC2716 ..................
NMC2732 ..................
NMC27C32 ................
NMC4164 ..................
NMC5295 ..................
SIGNETICS
FMI
2716 ......................
10415 .....................
10422 .....................
10470 .....................
10474 .....................
100422 ....................
100470 ....................
828137 ....................
825147 ....................
825180 ....................
825181 ....................
825184 ....................
825185 ....................
828190 ....................
825191 ....................
825321 ....................
MBM2716
MBM10415
MBM10422
MBM10470
MBM10474
MBM100422
MBM100470
MB7122
MB7124
MB7131
MB7132
MB7127
MB7128
MB7138
MB7138
MB7142
SUPERTEX
FYI
5M828180 ................. MB7131
5M825181 ................. MB7132
5M828191 ................. MB7138
SYNERTEK
FYI
5Y2128 .................... MB8128
5Y2716 .................... MBM2716
MB8128
MBM2716
MBM2764
MBM2764
MB8264
MB8416
FYI
MN2716 ..............•.... MBM2716
RAYTHEON
(Continued)
FYI
29631 ..................... MB7132
29641 ..................... MB7122
29650 ..................... MB7127
TI
FYI
TBP24541 .................
TBP24581 .................
TBP28542 .................
TBP28586 .................
TBP285166 ................
TM82147H .................
TM52149 ..................
TM52716 ..................
TM54016 ..................
TM84116 ..................
TM84164 ..................
MB7122
MB7128
MB7124
MB7132
MB7138
MBM2147H
MBM2149
MBM2716
MB8128
MB8116
MB8264
TOSIDBA
FYI
TC5516 ...................
TC5517 ...................
TC5518 ...................
TMM315D .................
TMM323C .................
TMM416 ...................
TMM2016 ..................
TMM2732 ..................
TMM4164 ..................
MB8417
MB8416
MB8418
MBM2147
MBM2716
MB8116
MB8128
MBM2732
MB8264
FYI
UM2147 ................... MBM2147
ii
TABLE OF CONTENTS
Cross Reference .............................................................. .
Chapter 1
NMOS Dynamic RAMS
NMOS Dynamic RAM Product Listing ......................................... 1·1
MB8116,16K(16Kx1)NMOSDynamicRAM .................................... 1·2
MB8117, 16K(16Kx 1) NMOS Dynamic RAM ... " ....... '" .................... 1·12
MB8118, 16K(16Kx 1) NMOS Dynamic RAM ... " .............................. 1-24
MB8264,64K(64Kx 1) NMOS Dynamic RAM .................................... 1-33
MB8264A, 64K (64K x 1) NMOS Dynamic RAM .................................. 1-44
MB8265,64K(64Kx1)NMOSDynamicRAM ................................... 1·45
MB8265A,64K(64Kx 1) NMOS Dynamic RAM .................................. 1·58
MB8266A, 64K(64K x 1) NMOS Dynamic RAM ................................ 1·59
Chapter 2
NMOS Static RAMS
NMOS Static RAM Product Listing ............................................ 2·1
MBM2147, 4K (4K x 1) NMOS Static RAM ....................................... 2·2
MBM2148,4K(1Kx4)NMOSStaticRAM ....................................... 2·7
MBM2149, 4K(1 Kx4) NMOS Static RAM ...................................... 2-12
MB8128, 16K(2Kx8) NMOS Static RAM ....................................... 2-17
MB8167, 16K(16 x 1) NMOS Static RAM ....................................... 2-22
MB8167A, 16K(16Kx 1) NMOS Static RAM ..................................... 2-27
MB8168, 16K(4Kx4) NMOS Static RAM ....................................... 2-28
Chapter 3
CMOS Static RAMS
CMOS Static RAM Product Listing ............................................ 3·1
MB8416, 16K(2Kx8) CMOS Static RAM ........................................ 3·2
MB8416·X, 16K(2Kx8) CMOS Static RAM, Extended Temperature Range ............. 3-2
MBB416A, 16K(2Kx 8) CMOS Static RAM ....................................... 3·8
MB8417, 16K(2Kx8)CMOSStatic RAM ............ " .................. , ....... 3-9
MB8417-X, 16K (2K x 8) CMOS Static RAM, Extended Temperature Range ............. 3·9
MB8417A, 16K(2Kx 8) CMOS Static RAM ...................................... 3-15
MB8418, 16K(2Kx8)CMOSStaticRAM ....................................... 3·16
MBB418-X, 16K(2Kx8)CMOSStatic RAM, Extended Temperature Range ............ 3-16
MB8418A, 16K(2Kx8)CMOS Static RAM ...................................... 3-21
Chapter 4
EPROMS
EPROM Product Listing ......................................... " .......... 4·1
MBM2716, 16K(16Kx1) NMOSUV EPROM .......... " .......................... 4·2
MBM2716-X, 16K (16K x 1) NMOS UV EPROM, Extended Temperature Range .......... 4·2
M BM2732, 32K (4K x 8) NMOS UV EPROM ...................................... 4·7
MBM2732A,32K(4Kx8) NMOS UV EPROM .................................... 4·14
MBM2732A-X, 32K (4K x 8) NMOS UV EPROM, Extended Temperature Range ......... 4·14
MBM27C32, 32K(4Kx 8) CMOS UV EPROM .................................... 4·20
MBM2764, 64K (8K x 8) NMOS UV EPROM ..................................... 4·21
MBM2764-X, 64K(8K x 8) NMOS UV EPROM, Extended Temperature Range .......... 4·21
MBM27C64, 64K (8K x 8) CMOS UV EPROM .................................... 4·28
iii
TABLE OF CONTENTS
(Continued)
Chapter 5
Bipolar RAMS
Bipolar RAM Product Listing ................................................ 5·1
MB7072, 1K(256x4) EClBipolar RAM ......................................... 5·2
MBM10415AH, 1K(1Kx 1) ECl Bipolar RAM ..................................... 5·7
MBM10422, 1K(256x4) ECl Bipolar RAM ...................................... 5·12
MBM10422A, 1K (256 x 4) ECl Bipolar RAM .................................... 5·17
MBM10470A, 4K(4Kx 1) ECl Bipolar RAM ..................................... 5·18
MBM10474,4K(1Kx 4) ECl Bipolar RAM ...................................... 5·23
MBM10474A,4K(1Kx4) EClBipolar RAM ..................................... 5·28
MBM10480, 16K (16K x 1) ECl Bipolar RAM .................................... 5-29
MBM93419, 576 (64 x 9) TIL Bipolar RAM ...................................... 5-30
MBM100422, 1K(256x4) ECl BipolarRAM ..................................... 5-34
MBM100422A, 1K (256 x 4) ECl Bipolar RAM ................................... 5·39
MBM100470, 4K (4K x 1) ECl Bipolar RAM ..................................... 5-40
MBM100474, 4K (1 K x 4) ECl Bipolar RAM ..................................... 5-45
Chapter 6
Bipolar PROMS
Bipolar PROM Product Listing ............................................... 6·1
Bipolar PROM Programming Procedures ....................................... 6·2
Bipolar PROM Cross Reference Guide ......................................... 6·7
MB7121,4K(1Kx4)BipolarPROM ......................... , .................. 6-8
MB7122, 4K (1K x 4) Bipolar PROM ............................................ 6-8
MB7123, 4K(512 x8) Bipolar PROM ........................................... 6·15
MB7124, 4K(512 x8) Bipolar PROM ........................................... 6·15
MB7127,8K(2Kx4)BipolarPROM ........................................... 6·18
MB7128, 8K(2Kx4) Bipolar PROM ........................................... 6·18
MB7130, 8K(1K x8) Bipolar PROM ........................................... 6·25
MB7131, 8K(1Kx8) Bipolar PROM ........................................... 6·30
MB7132, 8K (1 K x 8) Bipolar PROM ........................................... 6·30
MB7134,16K(4Kx4)BipolarPROM .......................................... 6·37
MB7137,16K(2Kx8)BipolarPROM .......................................... 6-42
MB7138, 16K (2K x 8) Bipolar PROM .......................................... 6·42
MB7141, 32K(4Kx8) Bipolar PROM .......................................... 6·49
MB7142, 32K (4K x 8) Bipolar PROM .......................................... 6·49
Chapter 7
Generallnformation ......................................................... 7·1
Quality and Reliability Data ............................................... 7·2
Ordering Information ....................................................... 7·6
Package Information ....................................................... 7·7
Representative Listings .................................................... 7·15
Distributor Listings ....................................................... 7·15
iv
Device
MB8116E
MB8116H
MB8117-12
MB8117-10
MB8118-12
MB8118-10
MB8264-2O
MB8264-15
MB8264A-12
MB8264A-10
MB8265-2O
MB8265-15
MB8265A-12
MB8265A-10
MB8266A-12
MB8266A-10
Organization
16K x 1
16K x 1
16K x 1
16K x 1
16K x 1
16K x 1
64K x 1
64K x 1
64K x 1
64K x 1
64K x 1
64Kx 1
64K x 1
64K x 1
64K x 1
64Kx 1
Ac:ce8s
Time
P-
Power
(max)
Supply
Volts
Dissipation
2OOn5
150n5
12On5
100n5
12On5
100n5
2OOn5
150n5
12On5
100n5
2OOn5
150n5
12On5
100n5
12On5
100n5
+12, ±5
+12, ±5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
46O/2OmW
46O/2OmW
190/20mW
190120mW
170/20mW
170/20mW
24B122mW
24B122mW
33O/22mW
3OO/22mW
24B122mW
24B122mW
33O/25mW
3OO/25mW
330123mW
33O/23mW
Package
Page
16-pin
16-pln
16-pin
16-pin
16-pin
16-pin
16-pin
16-pln
16-pin
16-pin
16-pln
16-pin
16-pin
16-pin
16-pln
16-pin
1-2
1-2
1-12
1-12
1-24
1-24
1-33
1-33
1-44
1-44
1-45
1-45
1-58
1-58
1-59
1-59.
FUJITSU
:MB8116E
:MB8116H·
MICROELECTRONICS
MOS 16,384·BIT DYNAMIC
RANDOM ACCESS MEMORY
DESCRlPTION
The Fujitsu MB8116 Is a fully
decoded dynamic NMOS random
access memory organized as
16,384 one-blt words. The design
Is optimized for high speed, high
performance applications such
as mainframe memory, buffer
memory, peripheral storage and
environments where low power
dissipation and compact layout
are required.
Multiplexed row and column address inputs permit the MB8116
to be .housed in a standard 16-pln
DIP. Pin-outs conform to the accepted industry standard.
The MB8116 is fabricated using
sillcon-gate NMOS and Fujitsu's
advanced Double-Layer PolysilIcon process. This process,
coupled with single-transistor
memory storage cells, permits
maximum circuit density and
minimal chip size. Dynamic circuitry Is employed in the design,
including the sense amplifiers.
CERDIP PACKAGE
Dlp·16C·C03
Clock timing requirements are
non-critical, and power supply tolerances are 10%. All Inputs are
TTL compatible; the output is
three-state TTL.
FEATURES
• 18,384 x 1 RAM, 18 pin
package
• Stllconlllate, double-poly
NMOS,slngle transistor cell
• Row access tlnie:
200 ns max. (MB8118E)
.150 ns max. (MB8118H)
• Cycle time:
375 n8 min.
• Low power
4$2mW active,
20 mW standby (max.)
• ~10% tolerance on + 12V,
:t 5V supplies
• All Inputs TTL compatible, low
capaCitive load
• Three-atate TTL compatible
output
• "Gated" ~
.128 refresh cycles
• Common UO capability using
"Early Write" operation
• Output unlatched at cycle end
allows extended page
boundary and twOodlmenslonal
chip select
• Read-Modlfy-Wrlte, RA5-0nly
refresh, and Page-Mode
capability
• On-chlp latches for Addresses
and Data-In
• Compatible with MK4118
MB81l6 BLOCK DIAGRAM
PLASTIC PACKAGE
Dlp·16P·M01
PIN ASSIGNYmn'
Vaa
Vss
DIN
CA§
WE
RAS
As
Ao
A3
A2
A4
Al
AS
VDD
.
A,
A,
AI
....
A.
DUMMY CELlS
:
<4
'!
U
t
Vec
D,.
---------- - ---
i.SS
DOUT
This device contains circuitry to protect the
inputs against damage due to high static
voltages or electric fields. However, it Is ad·
vised that normal precautions be taken to
avoid application of any voltage higher than
maximum rated voltages to this high 1m·
pedance circuit.
MEMORY ARRAY
SEN.SE'REFRESH AMPS
MEMORY ARRAY
OUMMYCELLS
1-2
MBSll6E/MB8ll6H
ABSOLUTE MA.XD4OM RATINGS
(see Note)
Symbol
Value
Unit
VIN, VOUT
Voo, Vcc
-0.5 to +20
-0.5 to +15
0
-55 to +150
-40 to +125
V
V
V
Rating
Voltage of any pin relative to VBB
Voltage on VOO, Vcc supplies relative to Vss
VBB·VSS (Voo-Vss
>
-
OV)
ICerdip
I Plastic
Storage Temperature
Tstg
Power Dissipation
Short circuit output current
·C
1.0
50
Po
-
W
mA
RECOMMENDED OPERATING CONDITIONS
(Referenced to VSS)
Parameter
I NOTESI
Symbol
Min
Typ
Max
Unit
V
III
Voo
10.8
12.0
IIJI2l
VCC
4.5
5.0
13.2
5.5
III
ill
III
ill
Vss
VBB
0
-4.5
0
-5.0
0
-5.5
VIHC
VIH
l1J
VIL
2.7
2.4
-1.0
Supply Voltage
Input High Voltage MS, CAS, WE
Input High Voltage except RAS, CAS, WE
Input Low Voltage, all inputs
-
V
V
V
6.5
6.5
V
V
0.8
V
Operating Temperature
O·C to +70·C
STATIC CHARACTERISTICS
(Recommended operating conditions unless otherwise noted.)
INOTES I
Parameter
Min
Max
Units
1001
IBB1
-
35
300
mA
pA
1002
IBB2
1.5
100
mA
pA
25
mA
300
pA
27
mA
IBB4
-
300
pA
ICC
-10
10
pA
IlL
-10
10
pA
OUTPUT LEAKAGE CURRENT
(Data out is disabled, OV oS VOUT oS 5.5V)
IOL
-10
10
pA
OUTPUT LEVELS
Output high voltage (IOH = -5mA)
Output low voltage (IOL = 4.2mA)
VOH
VOL
2.4
0.4
V
V
OPERATING CURRENT
Average power supply current RAS,CAS cycling;tRC
STANDBY CURRENT
Power supply current (RAS
Symbol
= min)
= CAS = VIHC)
REFRESH CURRENT
Average power supply current
(RAS cycling,CAS = VIHC;tRC = min)
1003
PAGE MODE CURRENT
Average power supply current
(RAS VIL, CAS cycling; tpc = 225ns)
10D4
IBB3
=
Vee POWER SUPPLY CURRENT
(Data out is disabled)
INPUT LEAKAGE CURRENT
Input leakage current,any input (VBB
all other pins not under test = OV)
rID
= -5V,OVoS VIN oS 7V,
Notes: 1. All voltages are reference to Vss.
2. Output voltage will swing from Vss to Vee when activated with no current loading. For purposes of maintaining data In the
standby mode, Vee may be reduced to Vss without affecting refresh operations or data retention. However, the VOH(min)
specification Is not guaranteed in this mode.
3. When Data out is enabled, Vee power supply current depends upon output loading; Vee Is connected to the output buffer
only.
1-3
MB8ll6E/MBSll6H
CAPACITANCE
(TA = 25°C)
Parameter
Symbol
Input Capacitance Ao - As, DIN
Input Capacitance RAS, CAS, WE
Output Capacitance DOUT
CIN1
CIN2
COUT
DYNA:MIC CHARACI'ERISTICS
I
Typ
Max
Unit
-
5
10
pF
pF
pF
7
I
NOTES 4, 5, 6
(Recommended Operating Conditions unless otherwise noted.)
MB8118H
MB8118E
INOTES I
Parameter
Units
Symbol
Min
Time between Refresh
tREF
Random ReadlWrite Cycle Time
tRC
Read-Write Cycle Time
tRWC
tpc
Page Mode Cycle Time
Access Time from RAS
!1JrnJ
Access Time from CAS
[]][ID
tRAC
tCAC
Max
-
2
375
375
225
-
-
200
135
50
50
Transition Time
tOFF
tT
RAS Precharge Time
tRP
0
3
120
RAS Pulse Width
tRAS
200
32000
CAS Precharge Time
tRSH
tcp
135
-
CAS Pulse Width
tCAS
CAS Hold TIme
tCSH
Output Buffer Turn Off Delay
RAS
Hold Time
80
CAS to RAS Precharge Time
tCRP
Row Address Set Up Time
tASR
Row Address Hold Time
tRAH
Column Address Set Up Time
tASC
135
200
30
-20
0
25
-5
Column Address Hold Time
tCAH
55
tAR
twcs
120
0
10
-10
tWCH
55
tWCR
twp
120
55
RAS Lead Time
tRWL
Write Command to CAS Lead Time
tCWL
80
80
Data In Set Up Time
tos
L10J
RAS to CAS Delay Time
Column Address Hold Time Referenced to
RAS
tRCO
Read Command Set Up Time
tRCS
Read Command Hold Time
tRCH
!III
Write Command Set Up Time
Write Command Hold Time
Write Command Hold TIme Referenced to
RAS
Write Command Pulse Width
Write Command to
Data In Hold Time
Data In Hold Time Referenced to
tOH
RAS
tOHR
CAS to WE Delay
[11]
tcwo
RAS to WE Delay
!TIl
tRWO
1-4
0
55
120
95
160
-
10000
65
-
Min
-
Max
2
ms
375
375
170
-
ns
-
150
100
50
35
ns
-
ns
32000
ns
-
ns
10000
ns
-
ns
50
ns
-
ns
0
3
100
150
100
60
100
150
25
-20
0
20
-5
45
95
0
10
-10
45
95
45
60
60
0
45
95
70
120
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
MB81l.6E/MB81l6H
Not••: 4. Several cycles are required after power up before proper device operation Is achieved. Any 8 cycles which perform
refresh are adequate for this purpose.
5. Dynamic measurements assume tT
5ns.
6. VIHC(mln) or VIH(min) and Vldmax) are reference levels for measuring timing of Input signals. Also, transition times
are measured between VIHC or VIH and VIL.
=
7. Assumes that tRCO :s; tRCO(max). If tRCO Is greater than the maximum recommended value shown In this table, tRAC
will Increase by the amount that tRCO exceeds the value shown.
8. Assumes that tRCO .. tRCO(max).
9. Measured with a load equivalent to 2 TIL loads and 100pF.
10. Operation within the tRCD(max) limit Insures that tRCO(max) can be met. tRCO(max) Is specified as a reference point
only; If tRCO Is greater than the specified tRCO(max) limit, then access time Is controlled exclusively by tCAC.
11. twos, tcwo and tRWO are not restrictive operating parameters. They are Included In the data sheet as electrical
characteristics only. If twcs .. twos (min), the cycle Is an early write cycle and the data out pin will remain open clr·
cult (high Impedance) throughout entire cycle.
If tcwo .. tcwo(mln) and tRWo .. tRWO(mln), the cycle Is a read·wrlte cycle and data out will contain data read from
the selected cell. If neither of the above sets of conditions is satisfied the condition of the data out Is Indeterminate.
TIMING DIAGRAMS
READ CYCLE
RAS
CAS
ADDRESSES
WE
DOUT
V'L-
V'L-
V'HV'L-
V'L-
VOHVOL-
. . Don't Care
1-5
MB8l16E/MB8U6H
TIMING DIAGRAMS (Continued)
WRITE CYCLE (EARLY WRITE)
VOH-_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ OPEN _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __
DOUT
VOL
•
Don't Car.
READ-WRITE/READ-MODIFY·WRITE CYCLE
ADDRESSES VI
DOUT
VOH- - - - , . . . - - - - - - - - - - - D F ' E N - - - < I
VOL~--~--=~~---~
£III Don't Care
1-6
MB8ll6E/YB8U6H
TIMING DIAGRAMS (Continued)
''RAS-ONLY'' REFRESH CYCLE
NOTE:
CAS
= VIHC, WE = Don't Care
ADDRESSES
VOH- __________________________ OPEN _______________________________
VOL-
e.,.
•
Don't
•
Don't Ca,.
PAGE-MODE READ CYCLE
RAS
V'HCV'L-
CAS
V'HCV'L-
1-7
MB81l6E/MB8ll6H
TIMING DIAGRAMS
(Continued)
PAGE-MODE WRITE CYCLE
_Don't Car.
DESCRIPTION
Address Inputs:
A total of fourteen binary Input
address bits are required to
decode anyone of 16,384 storage
cell locations within the MB8116.
Seven row-address bits are established on the Input pins (Ao
through As) anq latched with the
Row Address Strobe (RAS). The
seven column-address bits are
established on the input pins and
latched with the Column Address
Strobe (CAS). All input addresses
must be stable on or before the
falling edge of RAS. CAS is internal~ inhibited (or "gated")~
RA to permit triggering of CAS
as soon as the Row Address Hold
Time (tRAH) specification has
been satisfied and the address inputs have been changed from
row-addresses to column-addresses.
Write Enable:
The read mode or write mode is
selected with the WE input. A
logic high (1) on WE dictates read
mode; logic low (0) dictates write
mode. Data Input is disabled
when read mode is selected. WE
can be driven by standard TTL circuits without a pull-up resistor.
Data Input:
Data is written into the MB8116
during a write or read-write~cle.
The last falling edge of WE or
CAS is a strobe for the Data In
(DIN) register. In a write cycle, if
WE is brought low (write mode)
before CAS, DIN is strobed by
CAS, and the set-up and hold
times are referenced to CAS. In a
read-write cycle WE will be
has made its
delayed until
negative transition. Thus DIN is
strobed by WE, and set-up and
hold times are referenced to WE.
CAS
Data Output:
The output buffer is three-state
TTL compatible with a fan-out of
two standard TTL loads. Data-out
is the same polarity as data-In.
The output is in a high impedance
state until CAS is brought low. In
1-8
a read cycle, or a read-write cycle,
the output is valid after tRAC from
transition of RAS when tRCO
(max) is satisfied, or after tCAC
from transition of CAS when the
transition occurs after tRCO
@lax). Data remains valid until
S is returned to a high level. In
a write cycle the identical sequence occurs, but data is not
valid.
Page-Mode:
Page-mode operation permits
strobing the row-address Into the
MB8116 while maintaining RAS at
a logic low (0) throughout all successive memory operations in
which the row address doesn't
change. Thus the power disSipated by the negative going
edge of RAS is saved. Futher, access and cycle times are decreased because the time normally required to strobe a new
row-address is eliminated.
MB8ll6E/MBSU6H
Refresh:
Refresh of the dynamic memory
cells Is accomplished by performing a memory cycle at each of the
128 row-address at least every
two mill i-seconds. Any operation
in which RAS transits accomplishes refresh. RAS-only refresh
avoids any output during refresh
because the output buffer is in
the high impedance state unless
CAS is brought low. Strobing
each of the 128 row-addresses
with RAS will cause all bits in
each row to be refreShed. RASonly refresh results in a substanlal reduction in power
dissipation.
sipation depends mostly on
operating frequency.
Power Conslderetlons:
The output buffer of the MB8116
can be powered via Vee from the
supply voltage (normally 5 volts)
to which the memory is interfaced. In standby operation, Vee
may be removed without affecting refresh. Thus standby power
is conserved because all the
power supplies for the peripheral
circuitry with the exception of
RAS timing and refresh address
is turned off. Most of the MB8116
circuitry, including sense
amplifiers, is dynamic, and most
of the power drain comes from an
address strobe (FiAS or CAS)
edge. Thus, dynamic power dis-
Power Up:
No particular supply sequencing
is required for the MB8116.
However, absolute maximum
ratings must be adhered to. Thus,
VeB should be turned on first and
turned off last, and Voo is turned
on. After power is applied, several
cycles are required before proper
operation is assured. About eight
refresh cycles should be suffi·
cient to accomplish this.
CUrrent Waveforms
= 13.2V, Vee = -4.5V, T.A = 25°e
NOTE: Voo
m
liAS ONLY CYCLE
LONG RASICAS CYCLE
RASICAS CYCLE
r-
M
PAGE MODE CYCLE
- '-r---T_~_lTl
rr-h'
f-I-J '
CAS f-M
-"""\
10
10
,
1\
\
11\
r
IDD
40
(mAl2O
-
o
II
1\
~-
20
0
1/
1'1\ II
\
--to,+: ""1-
-t -+"1--
40
~+=H-
y ..
t
_-t-~
iii
\
20
0
I
--~~
-t
10
10
(mAl
--
-h
100
Iss
Ir \
I'r'
lJ
I.J
J
J
-...j.I
--
+
rr
_0.
""' I'\.
I'
-r--
r- -
I-
I\,.
1"'-
r-~r-
-r~
-- -+
--t
k---
- f-----
-1\ I
,j
-
1\
J\
f---t-i
--- ~H-
---~
1\
III
-,.-.+---'-- --1-
--
II
-1
1 -+ -4+
v
(mAI-2O
-40
"':
-t-- -L f---
r-- -
1\
11\
1\
Il
40
II_
!
I
100
--
i'-I.L
_A
1"--.....
I'
5OnalDIVISION
TYPICAL CHARACTERIS'1'ICS CURVES
NORMALIZED ACCESS TIME
vs VOO SUPPLY VOLTAGE
1 1
1 1
TYPICAL
+!I I~-
I
1.2
..'\
~
51.1
1"\
5j.
I
I.....
r-...' ...... I
i
N
::i 1.0
«::;;
a:
~ 0.9
0.8
1
I
11
12
13
f-
! I
r-I-
I
i--
Voo.SUPPLY VOLTAGE IV)
1
I
u
"
+JrL.1.1
c
1
N
I
w
«
,
14
i
I
::;;
a:
~·O.9
I
f-
t
1.2
!
W
N
r---
::;;
a:
1
,
,
-5
~
, ,
,
,
I
i
1
~ 0.9
:
i
I
i
~ 1.0
0.8
i
,
...a= 1. 1
I
1
,
I
I
I
VBB.SUPPLY VOLTAGE IV)
1-9
i
c
i
4
i
I
~
1
0.8
I
I
TYPICAL
1
::; 1.0
:
i I
:
1.2
NORMALIZED ACCESS TIME
Vee SUPPLY VOLTAGE
'5
I
TYPICAL
i
I'--. J
I
10
NORMALIZED ACCESS TIME
vs VBB SUPPLY VOLTAGE
I
I
I
4
5
V cc' SUPPLY VOLTAGE IV)
I
1
I
6
:MB8ll6E/MB8l16H
TYPICAL CHARACTERISTICS ctJRV!S
NORMALIZED ACCESS TIME
v. Tj JUNCTION TEMPERATURE
1001 (AVERAGE)
VI CYCLE RATE
TYPICAL
50 -
:(
1.2
!
I-
u
"
.J
II""
:l
"'.
~
'"0
50
!
~
/
>
.J
"""
~
II:
40
z
w
u
l....o'
N
(Continued)
20
....
.
i--'~
_.... """"
......
0
,/
E
10
0.8
o
40
20
60
80
T j • JUNCTION TEMPI'RATURE ('CI
4
1001 (AVERAGE)
.5 Tj JUNCTION TEMPERATURE
50
TYPICA~I.
f-f-! 40 1-I:(
2.0
:(
!
!i;
I
_0
~
0.8
'"N
.. ....
50
:(
II:
II:
:l
u
..
TYPICAL
Voo = 13.2V
40 l - TA
50
:(
!
=25'C
I-
z
~
l....o'
>
.J
:l
20
'".;
0
_0 10
"....
~
'"
4
CYCLE RATE (MHzl
II:
II:
:l
u
...
"....
40
20
VI
I
'".;0
_0
10
..
10
zI-
u
30
:l
20
!
12
13
14
11
Voo' SUPPLY VOLTAGE (VI
HO
I
50 I- Voo -13.2V
I- Vee =-4.5V
40 I- 'RC = 375".
W
II:
II:
:l
--
-...
1003 ~-ONL Y)
Tj JUNCTION TEMPERATURE
TYPICAL
:(
.... i"""" i""""-
~
60
BO
o
20
40
T j • JUNCTION TEMPERATURE ('CI
TA =25'C
t AC = 375n5
r-
... ....
1i
2 0 .4
1003 ~-ONL Y)
Voo SUPPL Y VOLTAGE
TYPICAL
r-- ~
~ 0.8
30
:l
5
1.2
..
hVBB =-4.5V
)-
>
.J
l....o' ....
g;
~
w
30
a:
u
11
12
13
14
Voo. SUPPLY VOLTAGE (VI
VI
I- Vea = -4.5V
i-"
10
1003 (!tQ-ONLY)
VI CYCLE RATE
zwI-
-
.... ~~
i--'
_80.4
10
C--' Vss = -4.5V
E
z
w
>
20
.l
2.0 )-. V
oo =13.2V
;: 1.6
1.2
20
o
40
80
60
T j • JUNCTION TEMPERATURE ('CI
!
TYPICAL
:(
II:
:l
'"0
I
Vee = -4.5V
I--TA =25'C
1.6
a
30
U
..
p~ICAL i
11
12
13
14
Voo.SUPPLY VOLTAGE (VI
1002 (STANDBY)
vs Tj JUNCTION TEMPERATURE
1002 (STANDBY)
Voo SUPPLY VOLTAGE
w
w
>
.J
VI
L
Voo = 13.2V
Vee =-4.5V
' RC =375n$
Z
II:
II:
:l
10
CYCLE RATE (MHzl
....
>
.J
~
en
..;
0
_0 10
o
40
20
60
80
Tj. JUNCTION TEMPERATURE ('CI
MB8U6E/MB8U6H
TYPICAL CHARACTERIS'l1CS CURVlS
<
S
I-
zw
u
vs Tj JUNCTION TEMPERATURE
--of T A
30r- - -
"250 C
--r--
t---------- --
>-
:J
1004 (PAGE-MODE)
vsVoo SUPPLY VOLTAGE
1---_+1-
.J
""-
1004 (PAGE-MODE)
vs CYCLE RATE
I Voo" 13.2V
-"-tV eB = -4.5V
40
0:
0:
:J
1004 (PAGE-MODE)
TYPICAL~ ___ -- ----
50
..- -
r--
-
--
---,
--"
-
---
i-'"
,.... ..... ~ ------
if;
"'0;,
10
12
13
~f:
1 I
I
-t--t-
i
"i lTt
5
-- -
I--- -
-
I
-- - - -
>.J
:J
"'..
0
_0
l-
--
r
-+-
r
I-
1- --
----
I--- I---
--
I---
1--
--- -- 1-- r- --1------ -- --- 1-- I--- I - I--r-- - 10
I- -- -I-I--- -I--I-
-
20
-ir~
14
0
20
40
60
80
Tj. JUNCTION TEMPERATURE (OC)
I
TYPICAL
I
,I
Voo = 13.2Vfor V 1HC
3.0 f--- voo '" 10.BVfor V I LC l -I--- r--+-.J
I
W
- TA "250 C '
'
I
>
?
w
V ,HC (MIN)
~.
---
VILc'(Mlx)
~
>-
I - I- - I---
12
1-- -- f-
X
>-
-i
V IH • V IL INPUT LEVLES
?
.J
2.0
'
'J'\-I\~\~""'~
..... ~~~
...... ,....
'J,L
\~p.)<.\- --
l
1--- I---
?.J
__ ~YPICALI
_II
Voo = 13.2Vfor V 1H !
3.0 VoO=10.8VforV"L -r-
-I---t--- -+
w
-
~
- - - - - ._--
-
>
w
.J
I-
~
TAFfk-H
- - r--
.
::
,
, ,
VIle (MAX)
:>
c- ~
---
--
-
20
-t-
40
60
-
80
3.0
----
>
UJ
i
I
!
.J
I- 2.0
:J
"~
V
IH
I I
! '
-++
(MIN)i
i
I, '
,
V'L (MAX)
1-+_
Ii
,
>: 1.0
:t
-'-
I I 1_
TYPICAL
I : , 1
'V OD = 13.2V,V BB '" -5.5Vfor VIH-~
VOO '" 10.8V,V BB '" -4.5Vfor V 1L -
H
r__ --+--1--+t+
:.,
-4.5
-5.0
-5.5
-6.0
V BB • SUPPLY VOLTAGE (VI
Hi
?
.J
~L =--
--
--
VIH. V IL INPUT LEVELS
vs Tj JUNCTION TEMPERATURE
w
T
r--
r - I- 0
--
_. --
+-
1.0
T j • JUNCTION TEMPERATURE lOCI
V'L (MAXI
1.0
-4.0
-+
t--
1
t---13
14
11
12
10
Voo' SUPPLY VOLTAGE (V)
U
:t
'
V ,H IMIN)._
2.0
~
>.
X
>-
V ,HC (MIN)
~
V IH • VIL INPUT LEVELS
vs VBB SUPPLY VOLTAGE
-r I--- I-
+-H-t
>
w
._
r----. Voo = lO.BV,V as = -4.5Vfor VILe
~ I I'
I
I
,
I
"-
-6_0
-4.5
-4.0
-5.0
-5.5
V BB • SUPPLY VOLTAGE IV)
vs Voo SUPPLY VOLTAGE
±_
>
>
I
14
VDO' SUPPLY VOLTAGE (V)
_J_,LL_
W
.J
-
U 1.0
13
_ T:PICAL
I Vas = -5.5Vfor V1H.
3.0 - - VB." -4.5Vlor V,L
__
TA "25°C
.J
w
3.0
.J
U
-11
?
I I I I I I
I
.J
I- 2.0
:J
I
"-
--- f - -- --- ---- ---
TYPICAL
t=t~OD = 13.2V,V SB = -S.5Vfor V'HC
W
.J
I-
:J 2.0
:t
10
u
""-
--
---I--- r-
:J
---
--- -- ----
VIHC. VILe INPUT LEVELS
>-
>1: 1.0
>-
11
I---
I---
r-
=
vs Tj JUNCTION TEMPERATURE
.J
.J
L
- -- 1-1---.+- t----
z
w
0:
0:
V OD • SUPPLY VOLTAGE (VI
VLILC (M~X)
"~
--
..... ~~
tpc
vs VBBSUPPLY VOLTAGE
"~
u
!;
--
-;;-
--
!
c---- -- -- -- --+--
5
VIHC (MIN)
1.0 -
-
"'--
I-
---
VIHC. VILC INPUT LEVELS
l:J 2.0
:>(;
20
+
tl:
--
•• "-4.5V
s< 40 r--iV
r'225n5
VIHC. V ILC INPUT LEVELS
1TA
.J
- -I- I -
301--------
>.J
""-
:J
--
-- ---tT-- i -
Ves = -S.5Vfor V 1HC
3.0 - - V Ba = -4.5Vfor V I LC
t----
u
-
1--
50 _TYPICAL
I
V oo =13.2V
--
vs Voo SUPPLY VOLTAGE
TYPICAL
W
:J
I ~r--
14--
-
-----
S 001 - t pc : 22:,ns
I- 40 -- T A - 25 C
z
w
1--- f
0:
_0 10 -
1
2
3
4
CYCLE RATE (MHz)
?.J
'j~::~.~"t
<
0:
r--
--
".
_0 10
--1-- -
--t
-=r-=~'~
- - --- -,-- -
20t---- -
"'0..
(Continued)
i
>
-
0
20
40
60
80
Tj. JUNCTION TEMPERATURE 1°C)
FUJITSU
MB8117·10
MB8117·12
MICROELECTRONICS
NMOS 16,384·BIT DYNAlVIIC
RANDOM ACCESS :MEMORY
DESCRIPTION
The Fujitsu MB8117 is a fully
decoded, dynamic NMOS random access memory organized
as 16,384 one-bit words. The
design is optimized for highspeed, high performance applications such as mainframe
memory, buffer memory peripheral storage and environments
where low power dissipation and
compact layout are required.
Multiplexed row and column address inputs permit the MB8117
to be housed in a standard 16-pin
DIP. Pin outs conform to the
JEDEC approved pin out.
The MB8117 Is fabricated using
silicon-gate NMOS and FUjitsu's
advanced Double-Layer Polysilicon process. This process,
coupled with single-transistor
memory storage cells, permits
maximum circuit density and
minimal chip size. Dynamic circuitry is employed In the design,
including the sense amplifiers.
Clock timing requirements are
non-critical, and power supply
tolerance Is very wide. All inputs
are TIL compatible; the output is
three-state TIL.
CERDIP PACKAGE
DIP-16C-C03
FEATURES
• 16,384 x 1 RAM, 16 pin
package
e Silicon-gate, Double Poly
NMOS single-transistor cell
• Address access time
100 ns max (MB8117-10)
120 ns max (MB8117-12)
• Cycle time,
235 ns min (MB8117-10)
270 ns min (MB8117-12)
• Low power:
182 mW max (MB8117-10)
160 mW max (MB8117-12)
19_5 mW max (Standby)
• +5V single power supply,
:t 10% tolerance
• On-chip substrate bias
generator
• All Inputs TTL compatible,
low capacitive load
• Thre.state TTL
compatible output
• Pin 1 auto refresh
capability
• Common 110 capability
using "Early Write"
operation
• Output unlatched at cycle
end allows extended
page boundary and twodimensional chip select
• Read-Modlfy-Wrlte, RA5only refresh, and PageMode capability
• On-chip latches for
Address and Data-In
• Offers two variations of
hidden refresh
• Pin compatible with
MK4516 and MCM4516
MBSH7
"'--r=l~.!:J--~
BLOCK DIAGRAM "'--t-----t--9n
PLASTIC PACKAGE
DIP-16P-M01
PIN ASSIGNMENT
RFSH
Vss
DIN
CAS
WE
3
RAS
""
~I:
....
.='"
:!2
"'III
DOUT
A6
Ao
5
A3
A2
6
A4
AI
7
As
Vee
8
N.C.
0,"
A,
DOUT
A,
A.
A,
-VSS
1-12
This device contains circuitry to protect
the inputs against damage due to high
static voltages or electric fields. However,
It is advised that normal precautions be
taken to avoid application of any voltage
high .than maximum rated voltages to this
high impedance circulI.
MBSl17-10/MBSl17-12
ABSOLUTE MAXIMUM RATINGS
(See Note)
Rating
Symbol
Value
Unit
Voltage on any pin relative to vss
Voltage on VCC pin relative to VSS
I Cerdip
Storage Temperature
I Plastic
Power dissipation
Short circuit output current
VIN, VOUT
VCC
-1 to +7
-1 to +7
-55 to +150
-40 to +125
1.0
50
V
V
Tstg
PD
-
·C
W
mA
NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operational should be
restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability.
RECOMMENDED OPERATING CONDITIONS
(Referenced to VSS)
Parameter
Supply Voltage
Input High Voltage, all inputs
Input Low Voltage, all inputs
Symbol
Min
Typ
Max
Unit
Vcc
Vss
VIH
VIL
4.5
0
2.4
-1.0
5.0
0
5.5
0
6.5
0.8
V
V
V
V
-
Operating
Temperature
O·C to +70·C
CAPACITANCE (TA = 25·C)
Parameter
Symbol
Input CapaCitance Ao - As, DIN
Input CapaCitance RAS, CAS, WE, RFSH
Output CapaCitance DOUT
Typ
Max
Unit
-
5
8
7
pF
pF
pF
CIN1
CIN2
COUT
STATIC CHARACTERISTICS
(Recommended Operating Conditions unless otherwise noted.)
Parameter
INOTES I
OPERATING CURRENT Average Power
Supply Current (RAS, CAS cycling; tRC = Min)
STANDBY CURRENT Power
Supply Current (RAS = CAS = VIH,
DOUT = High Impedance)
REFRESH CURRENT 1 Average Power
~IY Current (RAS cycling,
CA = VIH; tRc = Min)
PAGE MODE CURRENT Average Power
~IY Current 1 (RAS = VIL,
CA cycling, tpc = Min)
REFRESH CURRENT 2 Average Power Supply
Cu~rent (RFSH cycling, RAS = CAS = VIH; tFC =
INPUT LEAKAGE CURRENT
Current, any input (OVs VINS 5.5V)
Input pins not under test = OV,
4.5Vs Vccs 5.5V, Vss = OV
OUTPUT LEAKAGE CURRENT (Data
out is disabled, OV < VOUT <5.5V
OUTPUT LEVEL Output Low Voltage
(lOL= 4.2 mAl
OUTPUT LEVEL Output High Voltage
(lOH = -5 mAl
Notes:
[I
Symbol
MB8117·10
Min
Max
ICC2
-
[I]
ICC3
[I]
[J
m
in)
MB8117·12
Min
Max
Unit
29
mA
3.5
-
3.5
mA
-
25
-
22
mA
ICC4
-
25
-
22
mA
Ices
-
28
-
25
mA
ICC1
33
IlL
-10
10
-10
10
pA
IOL
-10
10
-10
10
pA
VOL
-
0.4
-
0.4
V
VOH
2.4
-
2.4
-
V
Icc Is dependent on output loading. Specified values are obtained with the output open.
1-13
MBS1l7-10/MBS1l7-12
DYNAMIC CHARACTERISTICS 1NOTES 1, 2, 31
(Recommended operating conditions unless otherwise noted.)
Parameter
[@ill
MB 8117·12
MB 8117·10
Symbol
Min
Max
Min
-
Unit
Max
Time Between Refresh
tREF
-
Random Read/Write Cycle Time
235
-
270
-
ns
Read·Write Cycle Time
tRC
t RWC
285
320
-
ns
Page Mode Cycle Time
t pc
125
-
145
-
ns
2
2
ms
Access Time from RAS
@I[§]
t RAC
-
100
-
120
ns
Access Time from CAS
[§]I§]
t CAC
-
55
-
65
ns
Output Buffer Turn Off Delay
tOFF
0
45
0
50
ns
Transition Time
tT
3
50
3
50
ns
-
120
-
ns
RAS Pulse Width
tRP
t RAS
110
115
10000
140
RAS Hold Time
t RSH
70
-
CAS Prechange Time (all cycles except page mode)
t CPN
50
CAS Precharge Time (Page mode only)
tcp
60
-
CAS Pulse Width
tCAS
55
10000
65
CAS Hold Time
tCSH
100
25
CAS to RAS Precharge Time
tRCO
t CRP
0
-
Row Address Set Up Time
t ASR
0
Row Address Hold Time
15
Column Address Set Up Time
tRAH
t ASC
0
Column Address Hold Time
tCAH
15
Column Address Hold Time Referenced to RAS
Read Command Set Up Time
tAR
t RCS
Read Command Hold Time
RAS Precharge Time
-
10000
ns
85
--
ns
55
-
ns
70
-
ns
10000
ns
-
ns
55
ns
0
-
ns
-
0
-
ns
15
-
ns
0
-
ns
15
70
0
-
0
tRcH
0
-
0
-
ns
60
-
0
-
0
30
-
35
-
ns
Write Command Hold Time
twcs
t WCH
Write Command Hold Time Referenced to RAS
t WCR
75
-
90
ns
Write Command Pulse Width
twp
30
35
Write Command to RAS Lead Time
t RWL
60
65
-
ns
Write Command to CAS Lead Time
tcwL
45
-
-
50
-
ns
Data In Set Up Time
tos
0
-
0
-
ns
Data In Hold Time
tOH
30
-
35
-
ns
Data In Hold Time Referenced to RAS
75
-
90
-
ns
55
-
65
-
ns
-
120
-
25
-
ns
ns
RAS to CAS Delay Time
Write Command Set Up Time
iZ]1ill
~
120
25
45
ns
ns
ns
ns
ns
CAS to WE Delay
~
tOHR
t cwo
RAS to WE Delay
~
t Rwo
100
20
RFSH Set Up Time Referenced to RAS
tRRH
t FSR
110
-
120
-
ns
RAS to R FSH Delay
t RFO
110
-
120
-
RFSH Cycle Time
t FC
235
-
270
ns
ns
Read Command Hold Time Referenced to RAS
RFSH Pulse Width
RFSH Hold Time Referenced to RAS
[Q]
RFSH Precharge Time
RFSH to RAS Delay
[Q]
t FP
100
-
120
tFHR
0
-
0
-
tF I
110
-
120
-
ns
tFRO
55
-
65
-
ns
1-14
ns
ns
MBSl17-10/MBSl17-12
Notes:
ill
[]J
ill
An initial pause of 200,.s is required. Then several cycles
are required after power up before proper device operation Is achieved. Any 8 cycles which perform refresh are
adequate for this purpose.
If Internal refresh counter is to be effective, a minimum
of 64 active RFSR Initialization cycles Is required. The
Internal refresh counter must be activated a minimum of
128 times every 2 ms if the RFSH refresh function Is used.
Besides RFSH must be held high even If the RFSH
refresh function is not used.
Dynamic measurements assume tT
Assumes that tRCO
> tRCO(max).
Measured with a load equivalent to 2 TTL loads and
100pF.
Operation within the tRCO(max) limit insures that
tRAC(max) can be met. tRCO(max) is specified as a
reference pOint only; if tRCO Is greater than the specified
tRCO(max) limit, then access time is controlled exclusively by tCAC.
tRAC(mln)
= tRAH(min) + 2IT + tASC(mln).
twcs, tcwo and tRWO are not restrictive operating
parameters. They are included In the data sheet as electrical characteristics only. If twcs > twcs(min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout entire
cycle. If tcwo > tcwo(min) and tRWO > tRWO(min), the
cycle Is a read-write cycle and data out will contain data
read from the selected cell. If neither of the above sets
of conditions Is satisfied the condition of the data out Is
indeterminate.
=5ns.
VIH(min) and Vldmax) are reference levels for measurIng timing of Input signals. Also, transition times are
measured between VIH and VIL'
Assumes that tRCO < tRCO(max). If tRCO is greater than
the maximum recommended value shown In this table,
tRAC will increase by the amount that tACO exceeds the
value shown.
Test mode write cycle only.
READ CYCLE
VIH- - - - - ' " I-----'AR-----o
OJ
~ 2.0/----1---+--+---1
20
I-
en
N
10
~
u
5.0
"
200
a:
a:
w
4.0
10
o
80
Q.
0
20
I.
E
Q.
u
~
30
~
::J
U
~
~
f=
OPERATING CURRENT (TYPICAL)
vs AMBIENT TEMPERATURE
tRc=235ns_
40
30
40
TA=25'C-
::J
U
o
o
;;(
w
o
V
0.8
TA=2~'C
::J
U
l?
a:
a:
T A • AMBIENT TEMPERATURE I'C)
tRAS=115ns
w
~
V
w
«
!!-
OPERATING CURRENT
(TYPICAL) vs SUPPLY VOLTAGE
E
50
Q.
Vee. SUPPLY VOLTAGE IV)
;;(
I-
zw
0
z
Vee~5.0V
E
/"
:J
0.8
4.0
1.2
0
N
;;(
Vee~4.5V
:;;
T A=1 70, C
f=
OPERATING CURRENT
(TYPICAL) vs CYCLE TIME
1.01----1---+--+----1
0
0
20
40
60
80
T A • AMBIENT TEMPERATURE ('C)
1-21
4.0
5.0
Vee. SUPPLY VOLTAGE (V)
6.0
MBS117-10/MBS117-12
TYPICAL CHARACTERISTICS CURVES,
STANDBY CURRENT (TYPICAL)
vs AMBIENT TEMPERATURE
;;(
E
f-
zw
c:
c:
::> 3.0 ~
u
>-
CD
Cl
~
2.0
f-
'"OJ
-----
fZ
w
c:
c:
3
I
'"~
20
40
60
'"
20
'"
a
400
w
c:
c:
i3
'"
o
4.0
6.0
5.0
REFRESH CURRENT 2
(TYPICAL) vs SUPPLY VOLTAGE
50
;;(
tRc=235ns_
tRAS=115ns
50
N
fZ
c:
c:
::>
u
30
V Cd=5.0V
T A =25'C-
E
w
40
'"~
20
40
~
30
::>
u
,
20
w
o
o
20
40
60
80
..........
'"~
u.
~=~ons
I'--
200
400
600
800
1000
40
~
OUTPUT HIGH CURRENT
OUTPUT LOW CURRENT
vs OUTPUT HIGH VOLTAGE
vs OUTPUT LOW VOLTAGE
T)25'C
Vcc=4.5V_
w
80
20
t:.i
40
~
f-
6
u
0
60
0..
u.
20
I
o
20
40
60
80
T A. AMBIENT TEMPERATURE ('CI
2
fZ
TA=125 ,C
Vcc=4.5V-
100
0
c:
c:
80
~
60
::>
u
I
"
E
w
c:
I
6.0
Vcc SUPPLY VOLTAGE IVI
;;(
50
u
5.0
4.0
tRC. CYCLE TIME Insl
fZ 100
tFP=115ns
20
c: 10
.;,
u
.50' 0
tFP-r5ns
E
30
30
w
0
;;(
VC~=5V
----
40
I
c: 10
.;,
u
.50'
tRC=235nstFP=115ns
50
c:
u.
10
TA~25'C
N
fZ
I
w
c: 10
.;,
.50'
1000
-
REFRESH CURRENT 2
(TYPICAL) vs CYCLE TIME
I
'"~
10
REFRESH CURRENT 1 (TYPICAL)
vs AMBIENT TEMPERATURE
;;(
fZ
rr:
u
800
600
~
w
u
200
20
u.
_tRAs=500ns
tRAi115ns
REFRESH CURRENT 2 (TYPICAL)
vs AMBIENT TEMPERATURE
N
'"~
'-.....r-
T A • AMBIENT TEMPERATURE ('CI
E
30
VCC. SUPPLY VOLTAGE IVI
w
u
i3
tRC. CYCLE TIME (nsl
u.
.50'
40
I
10
80
c:
c:
30
c:
.50'
w
c:
c:
tRc=235nstRAS=115ns
T A • AMBIENT TEMPERATURE ('CI
fZ
3
I
'"~
40
w
VCC~5.0V
~
TA=~5'C
50
fZ
u.
u
o
REFRESH CURRENT 1
(TYPICAL) vs SUPPLY VOLTAGE
V CCI=5.0V
T A =25'C-
~ 1.0
_
REFRESH CURRENT 1
(TYPICAL) vs CYCLE TIME
V CCI=5.5V
4.0
(Continued)
o
1
...J
.......
t:.i
'"
1.0
40
/
0..
f-
~
2.0
3.0
6
4.0
V OH • OUTPUT HIGH VOLTAGE IVI
1-22
20
.:,
2
0
V
0
/
1.0
2.0
3.0
4.0
VOL. OUTPUT LOW VOLTAGE IVI
MBSl17-10/MBSl17-12
TYPICAL SUPPLY CURRENT vs SUPPLY VOLTAGE DURING POWER UP
1)
RAS =VIL• CAS =V IL
Vee
5.0
~
~
.§
I'0j
u 2.0
>0.
g. 0
2) RAS
5.0
2:
4.0
"'"ro
~
3.0
.§
>0. 2.0
c.
! .OJ
~
0
u 2.0
>0.
g. 0
Vee
4.0
3.0
>0. 2.0
c.
~
0
U
..Y
..Y
5001ls/Division
500,/..LsJDivision
1-23
FUJITSU
MB8118·10
MB8118·12
MICROELECTRONICS
NMOS 16,384·BIT DYNAMIC
RANDOM ACCESS MEMORY
DESCRIPTION
The Fujitsu MB8118 is a fully decoded dynamic NMOS random access memory organized as 16,384
one-bit words. The design is optimized for high-speed, high performance applications such as
mainframe memory, buffer memory
peripheral storage and environments where low power dissipation
and compact layout are required.
Multiplexed row and column address inputs permit the MB8118 to
be housed in a standard 16-pin DIP.
Pin outs conform to the JEDEC approved pin out.
The MB8118 is fabricated using
silicon-gate NMOS and Fujitsu's advanced Double-Layer Polysilicon
process. This process, coupled with
single-transistor memory storage
cells, permits maximum circuit density and minimal chip size. Dynamic
circuitry is employed in the design,
including the sense amplifiers.
Clock timing requirements are noncritical, and power supply tolerance
is very wide. All inputs are TTL
compatible; the output is threestate TTL.
CERDIP PACKAGE
DIP-16C-C03
FEATURES
• 16,384 x 1 RAM, 16 pin package
• Silicon-gate, Double Poly
NMOS, single transistor cell
• Address access time:
100 ns max (MB8118-10)
120 ns max (MB8118-12)
• Cycle time:
235 ns min (MB8118-10)
270 ns min (MB8118-12)
• Low power:
182mW max (MB8118-10)
160mW max (MB8118-12)
16.5mW max (Standby)
• +5V single power supply, ± 10%
tolerance
• On chip substrate bias
generator
• All inputs TTL compatible, low
capacitive load
• Three-state TTL compatible
output
• Hidden refresh capability
• Common 1/0 capability using
"Early Write" operation
• Output unlatched at cycle end
allows extended page boundary and two-dimensional chip
select
• Read-Modify-Write, RAS-only
refresh, and Page-Mode
capability
• On-chip latches for Addresses
and Data-in
• Pin compatible with Intel 2118
and MCM4517
PLASTIC PACKAGE
DIP-16P-M01
PIN ASSIGNMENT
N.C.
Vss
DIN
CAS
WE
MB8118
BLOCK DIAGRAM
DouT
RAS
As
Ao
A3
A2
A.
A,
vcc
As
N.C.
Ao
This device contains circuitry to protect the
inputs against damage due to high static voltages or electric fields. However, it is advised
that normal precautions be taken to avoid
application of any voltage higher than maximum rated voltages tQ this high impedance
circuit.
1-24
MB8118-10/MB8118-12
ABSOLUTE MAXIMUM RATINGS (See NOTE)
Rating
Voltage on any pin relative to V ss
Symbol
Value
Unit
VIN, VOUT
-1 to +7
V
VCC
-1 to +7
V
to +150
40to+125
°C
Voltage on VCC pin relative to VSS
.rdlp
as Ie
Storage temperature
TSTG
Power dissipation
Po
1.0
W
Short circuit output current
-
50
mA
NOTE:
Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational
sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
RECOMMENDED OPERATING CONDITIONS
(Referenced to VSS)
Value
Parameter
Symbol
Min
Typ
Max
Unit
VCC
4.5
5.0
5.5
V
VSS
0
0
0
V
Input High Voltage, all inputs
VIH
2.4
6.5
V
Input Low Voltage, all inputs
Vil
-1.0
0.8
V
Supply Voltage
CAPACITANCE
-
Operating
Temperature
O°Cto +70°C
(TA = 25°C)
Value
Parameter
Symbol
Input Capacitance Ao - A6, DIN
CIN1
Input Capacitance RAS, CAS, WE
CIN2
Output Capacitance DOUT
COUT
Min
Typ
-
-
Max
Unit
5
pF
8
pF
7
pF
STATIC CHARACTERISTICS
(Recommended operating conditions unless otherwise noted.)
MB8118-10
Parameter
Notes Symbol
OPERATING CURRENT
Min
Max
MB8118-12
Min
Max
Unit
[j]
Average Power Supply Current (RAS, CAS cycling; tRC
= Min)
ICC1
-
33
-
29
mA
ICC2
-
3.0
-
3.0
mA
ICC3
-
25
-
22
mA
ICC4
-
25
-
22
mA
III
-10
10
-10
10
/LA
IOl
-10
10
-10
10
/LA
VOL
-
0.4
-
0.4
V
VOH
2.4
-
2.4
-
V
STANDBY CURRENT
Average Power Supply Current (RAS
High Impedance)
= CAS = VIH, DOUT =
[j]
REFRESH CURRENT
Average Power Supply Current (RAS cycling, CAS
= VIH; tRC = Min)
[j]
PAGE MODE CURRENT
Average Power Supply Current (RAS
= Vll, CAS cycling, tpc = Min)
INPUT LEAKAGE CURRENT
Input Leakage Current, any input (OV '" VIN .:; 5.5)
Input pins not under test = OV, 4.5V '" VCC '" 5.5V, VSS
= OV
OUTPUT LEAKAGE CURRENT
(Data out is disabled, OV '" VOUT '" 5.5V)
OUTPUT LEVEL
Output Low Voltage (IOl
= 4.2 mAl
OUTPUT LEVEL
Output High Voltage (IOH
Note:
[j]
= -5 mAl
Icc is dependent on output loading. Specified values are obtained with the output open.
1-25
MB8118-10/MB8118-12
DYNAMIC CHARACTERISTICS
NOTES 1,2,3
(Recommended operating conditions unless otherwise noted.)
MB8118-12
MB8118-10
Parameter
Notes
Max
Min
Typ
-
-
Symbol
Min
Typ
tREF
-
tRC
235
Read-Write Cycle Time
tRWC
285
-
-
320
Page Mode Cycle Time
tpc
125
-
-
145
-
100
-
-
55
-
45
0
50
3
-
Time Between Refresh
Random Read/Write Cycle Time
Access Time from RAS
Ii][ID
tRAC
Access Time from CAS
[IDI§J
tCAC
-
tOFF
0
tT
3
-
tRP
110
-
RAS Pulse Width
tRAS
115
-
RAS Hold Time
tRSH
70
tCPN
50
tcp
60
CAS Pulse Width
tCAS
55
CAS Hold Time
tCSH
100
Output Buffer Turn Off Delay
Transition Time
RAS Precharge Time
CAS Prechange Time (all cycles except page mode)
CAS Precharge Time (Page mode only)
RAS to CAS Delay Time
ml§J
-
2
-
55
-
-
70
10000
45
25
-
0
tCRP
Row Address Set Up Time
tASR
0
Row Address Hold Time
tRAH
15
-
Column Address Set Up Time
tASC
0
Column Address Hold Time
tCAH
15
-
tAR
60
Read Command Set Up Time
tRCS
0
-
Read Command Hold Time
tRCH
0
-
twcs
0
-
Write Command Hold Time
tWCH
30
Write Command Hold Time Referenced to RAS
tWCR
75
-
Write Command Pulse Width
twp
30
-
Write Command to RAS Lead Time
tRWL
60
-
Write Command to CAS Lead Time
tCWL
45
-
-
Data In Set Up Time
tDS
0
Data In Hold Time
tDH
30
-
-
-
tDHR
75
-
lID
ICWD
55
RAS to WE Delay
lID
tRWD
100
-
Read Command Hold Time Referenced to RAS
tRRH
Notes:
[j] An initial pause of 200"s is required. Then several cycles are
required after power up before proper device operation is
achieved. Any 8 cycles which perform refresh are adequate for this
purpose.
III Dynamic measurements assume tT=5ns.
rn VIH (min) and VIL (max) are reference levels for measuring timing
of input signals. Also, transition times are measured between VIH
and VIL.
I1l Assumes that tRCOtRCO (max).
I!] Measured with a load equivalent to 2 TTL loads and 100pF.
1-26
20
65
120
-
Data In Hold Time Referenced to RAS
140
-
0
CAS to WE Delay
-
85
25
lID
-
-
tRCD
Write Command Set Up Time
120
-
-
10000
CAS to RAS Precharge Time
Column Address Hold Time Referenced to RAS
270
-
-
0
15
0
-
ns
50
ns
50
ns
-
ns
10000
ns
-
ns
-
ns
10000
ns
ns
55
ns
-
0
-
35
-
50
ns
65
ns
-
0
65
120
ns
-
-
35
ns
-
0
90
ms
-
ns
0
35
Unit
2
-
-
15
70
Max
90
-
65
-
-
120
-
25
-
ns
ns
-
n$
-
ns
-
ns
-
ns
-
ns
ns
ns
-
ns
-
ns
-
-
ns
ns
ns
ns
ns
ns
ns
ns
ns
III Operation within the tRCO (max) limit insures that tRCO (max) can
be met. tRCO (max) is specified as a reference point only; iftRco is
greater than the specified tRCO (max) limit, then access time is
controlled exclusively by tCAC.
I!] tRCO(min}=tRAH(min}+2tT(tT=5ns)+tASc(min}.
I!l twcs, tcwo and tRWO are not restrictive operating parameters.
They are included in the data sheet as electrical characteristics
only. If tWCS>twcs (min), the cycle is an early write cycle and the
data out pin will remain open circuit (high impedance) throughout
entire cycle. Iftcwo>tcwo (min) and tRWO>tRWO (min), the cycle
is a read-write cycle and data out will contain data read from the
selected cell. If neither of the above sets of conditions is satisfied
the condition of the data out is indeterminate.
MB8118-10/MB8118-12
READ CYCLE
RAS
VIHV 1L -
CAS
VIHVIL-
ADDRESSES
DOUT
VIHVIL -
VOH- - - - - - - - - - - - O f ' E " I - - - - - - - < i
VALID
VOL'-_D~A~T_A~~
•
Don't Care
WRITE CYCLE (EARLY WRITE)
RAS
VIHV 1L-
CAS
VIHVIL -
DOUT
VOHV
O L - - - - - - - - - - - - - - - - - - - -O P E N - - - - - - - - - - - - - - - -
•
1-27
Don't Car.
MB8118-10/MB8118-12
READ-WRITE/READ-MODIFY-WRITE CYCLE
"RAS-ONLY" REFRESH CYCLE
NOTE: CAS = VIH, WE = Don't care
DOUT
VOH- _________________________ OPEN ______________________________
VOL-
Don't Care
1-28
MB8118-10/MB8118-12
PAGE-MODE READ CYCLE
RAS
VIHVIL-
CAS
VIHVIL-
.Don'teare
PAGE-MODE WRITE CYCLE
III Don't Care
1-29
MB8118-10/MB8118-12
HIDDEN RAS-ONLY REFRESH CYCLE
ADDRESSES
VOH-________________________
DOUT
~
~----------------------------------~
VOL-
•
Don't C...
DESCRIPTION
Address Inputs
A total of fourteen binary input address bits
are required to decode anyone of 16,384
storage cell locations within the MB8118,
Seven row-address bits are established on
the input pins (Ao through As) and latched
with the Row Address Strobe (RAS), Seven
column-address bits are established on the
input pins and latched with the Column Address Strobe (CAS). All input addresses must
be stable on or before the falling edge of RAS.
CAS is internally inhibited ~'gated") by
RAS to permit triggering of CAS as soon as
the Row Address Hold Time (tRAH) specification has been satisfied and the address inputs
have been changed from row-addresses to
column-addresses.
Write Enable
The read mode or write mode is selected with
the WE input. A logic "high" on WE dictates
read mode; logic "low" dictates write mode.
Data input is disabled when read mode is
selected. WE can be driven by standard
TTL circuits without a pull-up resistor.
Data Input:
Data is written into the MB8118 during a write
or read-write cycle. The last falling edge of
FIG. 1 HIDDEN REFRESH
WE or CAS is a strobe for the Data In (DIN)
register. In a write cycle, if WE is brought low
(;\tri1e mode) before CAS, DIN is strobed by
CAS, and the set-up and hold times are referenced to CAS. In a read-write cycle, WE will
be delayed until CAS has made its ~ative
transition. Thus DIN is strobed by WE, and
set-up and hold times are referenced to WE.
Data Output
The output buffer is three-state TTL compatible with a fan-out of two standard TTL loads.
Data-out is the same polarity as data-in. The
output is in a high impedance state until CAS
is brought low. In a read cycle, or a read-write
cycle, the output is valid after tRAC from transition of RAS when tRCD (maxl.i§..§.atisfied, or
after tCAC from transition of CAS when the
transition occurs after tRCD (max). Data remains valid until CAS is returned to a high
level. In a write cycle the identical sequence
occurs, but data is not valid.
Page-Mode
Page-mode operation permits latching the
row-address into the MB8118 and maintaining RAS at a logic "low" throughout all successive memory operations in which the
-4'-____
row-address doesn't change. This saves the
power required by a RAS cycle. Access and
cycle times are decreased because the time
normally required to strobe a new rowaddress is eliminated.
RAS-Only Refresh
Refresh of the dynamic memory is accomplished by performing a memory cycle at
each of the 128 row-addresses at least every
two milliseconds. RAS-only refresh prevents
any output during refresh because the output
buffer is in the high impedance state since
CAS is at VIH. Strobing each of the 128
row-addresses with RAS will cause all bits in
the memory to be refreshed. RAS-only refresh results in a substantial reduction in
power dissipation.
Hidden Refresh
RAS-ONLY REFRESH CYCLE may take
place while maintaining valid output data.
This feature is referred to as Hidden Refresh.
Hidden Refresh is performed by holding CAS
at VIL from a previous memory read cycle.
(See Figure 1 below)
R_A_S_O_N_L_Y..J~,..R_E_S_H_C_Y_C_LE_=t
R_E_A.JD;YCLE-----T'__
CAS
~~-------------------~/
DOUT -----OPEN------<:'-_ _ _ _ _ _ _ _V_A_L_ID_D_A_T_A_ _ _ _ _ _ _
1-30
..J:>~------
MB8118-10/MB8118-12
FIG. 2-CURRENT WAVEFORMS
v,"
I'lAS
V'L
(Vcc
=
RAS ONLY CYCLE
,
II
5.0V, TA
25'C)
=
LONG RAS/CAS CYCLE
II
V,"
CAS
V'L
V,"
WE
I
!
!
80
If
I
II
1\
V'L
1\
60
Icc
(mAl
40
20
\
IV" ~I"
...I
1\
I~
11/
A
,\
.....
~
II
1\
\
lA'
... 1/
"
~
,
J
Ii
IV
17\
~
I"
.....
50ns/Division
TYPICAL CHARACTERISTICS CURVES
NORMALIZED ACCESS TIME
vs SUPPL Y VOLTAGE
.s
w
w
~ 1.1
u
q;
o 1.0
w
N
~
0.9
::;;
a:
o
2
U
In
o
~
I-
w
o
I-
a:
a:
a.
10
<
E.
i3
::J
U
a.
u
30
2
STANDBY CURRENT
(TYPICAL) vs SUPPLY VOLTAGE
w
o
l!)
OPERATING CURRENT (TYPICAL)
vs AMBIENT TEMPERATURE
2
~a:
./
0.8
U
-
OJ
Cl
::;;
2.0
r--r--
I-
00
N
~ 1.0
a:
a:
--
20
40
VC~=5.0V
T A =25°C-
50
u
J:
30
J:
00
a:
a:
20
""-.."-
M 10
u
50
'RC=235nS_
IRAS=115nS
IZ
30
200
20
600
400
1000
800
o
4.0
'RC' CYCLE TIME Ins)
«
!2w
100
OUTPUT HIGH CURRENT
OUTPUT LOW CURRENT
vs OUTPUT LOW VOLTAGE
T)25°C
Vcc=4.5V-
a:
«
.s
zw
a:
a: 80
u
30
15
r
60
;:
::J
u
w
a:
u.
5
"6
20
w
a:
u
40
o
"- .......
I-
M 10
u
~
20
20
40
60
80
T A • AMBIENT TEMPERATURE 1°C)
.2
00
60
...J
5
I-
i5
"-....
2.0
1.0
40
"-
~
i
o
o
I °
T A =25 C
V CC=4.5V-
I- 100
80
J:
6.0
vs OUTPUT HIGH VOLTAGE
!5
00
5.0
VCC. SUPPLY VOLTAGE IV)
40
::J
--
u
~
a:
a:
w
~
a:
M 10
.s
VCC~5.0
u.
w
I ~RAs=5OOns
IRAs=:15ns
o
T A • AMBIENT TEMPERATURE 1°C)
«
.s
40
w
a:
80
T A =45°C
I RC=235nS'RAs=115nS
50
::J
U
00
u.
w
REFRESH CURRENT (TYPICAL)
vs AMBIENT TEMPERATURE
IZ
w
w
60
«
.s
a:
a:
40
::J
~
o
REFRESH CURRENT
(TYPICAL) vs SUPPLY VOLTAGE
REFRESH CURRENT
(TYPICAL) vs CYCLE TIME
«
.s
VC~=5.5V
I-
(continued)
20
:,
4.0
3.0
VO H • OUTPUT HIGH VOLTAGE IV)
.2
0
/
/
/
o
1.0
2.0
3.0
TYPICAL SUPPLY CURRENT vs SUPPLY VOLTAGE DURING POWER UP
1) RAS=V CC • CAS=VCC
5.0
~
«
.s
l"~
';.2.0
C.
c.
r.1l 0
t
"0
>
>
c.
c.
::l
2) RAS=VSS. CAS=Vss
5.0
Vcc
~
4.0
3.0
2.0
00
U 1.0
u
ICC
>
«
.s
>
!"~
00
~
VCC
4.0
"0 3.0
>
u 2.0
>
r.1l
0
'"
!!l"
0
C.
c. 2.0
::l
ICC
U 1.0
u
>
0
u
u
~
~
500,us/Oivision
500/Js/Division
1-32
4.0
VOL. OUTPUT LOW VOLTAGE IV)
FUJITSU
MB8264·15
MB8264·20
MICROELECTRONICS
NMOS 65,536·BIT DYNAMIC
RANDOM ACCESS MEMORY
DESCRIPTION
The Fujitsu MB8264 is a fully decoded, dynamic NMOS random access memory organized as 65536
one-bit words. The design Is optimized for high-speed, high performance
applications such as mainframe
memory, buffer memory, peripheral
storage and environments where low
power dissipation and compact layout are required.
Multiplexed row and column address
inputs permit the MB8264 to be housed In a standard 16-pln DIP. Pln-outs
conform to the JEDEC approved pin
out.
The MB8264 is fabricated using silicon-gate NMOS and Fujitsu's advanced Double-Layer Polysilicon process. This process, coupled with
single-transistor memory storage
cells, permits maximum circuit density and minimal chip size. Dynamic
Circuitry Is employed in the design,
including the sense amplifiers.
Clock timing requirements are noncritical, and power supply tolerance
is :!: 10%. All inputs/outputs are TTL
compatible.
CERDIP PACKAGE
DIP·16C·C04
FEATURES
.65,536 x 1 RAM,16-pln
package
• Sillcon-gate, Double Poly
NMOS, single transistor cell
• Row access time:
150ns Max (MB8264-15)
200ns Max (MB8264-20)
• Cycle time:
270ns Min (MB8264-15)
330ns Min (MB8264-20)
• Low power:
22 mW Max Standby
275 mW Max Active (MB8264-15)
248 mW Max Active (MB8264-20)
• :!:10% tolerance on +5V Supply
• On-chlp substrate bias generator
• All Inputs TTL compatible,
low capacitive load
• Three-state TTL compatible output
• "Gated" CAS
.128 refresh cycles
• Common 110 capability using
"Early Write" operation
• Output unlatched at cycle
end allows extended page
boundary and twodimensional chip select
• Read-Modlfy-Wrlte, RASonly refresh, and
Page-Mode capability
• On-chlp latches for
Addresses and Date·ln
• Hidden Refresh Capability
• Pin compatible with HM4864,
MK4164, TMS4164, MCM8665,
JL PD4164 and IMS2600
:MB8264 BLOCK DIAGRAM
liAs -------io-\
1·33
PIN ASSIGNMENT
N.C.
Vss
D'N
2
WE
3
RAs
4
Ao
5
A2
6
A,
7
As
Vee
8
A7
CAS
DOUT
~I:
i5
;:
A6
A3
A4
YB8264-15/YB8264-2 0
ABSOLUTE MAXIMUM· RATINGS (See NOTE)
Rating
Voltage on any Pin Relative to vss
Symbol
Value
Unit
V
V
VIN, VOUT
-1 to +7.0
Voltage on Vcc Supply relative to VSS
VCC
·-1 to +7.0
Operating Temperature
TOp
Storage Temperature
o to
·C
+70
·C
TSTG
-55 to +150
Power DIssipation
Po
1.0
W
Short Circuit Output Current
los
50
mA
NOTE:
Pennanent device damage may occur If ABSOLUTE MAXIMUM RA11NGS are exceeded. Functional operation should be restricted to the conditions as detailed In the
operational sections of this data sheet. This device contains circuitry 10 protect the Inputs against damage due to high static voltages or electric fieldS. However, it Is
advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high Impedance circuit.
RECOMMENDED OPERATING CONDmONS
(Referenced to Vss,)
Value
Parameter
Symbol
Min
Typ
Max
Unit
VCC
4.5
5.0
5.5
V
Supply Voltage
Vss
0
0
0
V
Input High Voltage, all Inputs
VIH
2.4
6.5
V
Input Low Voltage, all inputs
Vil
-1.0
-
0.8
V
CAPACITANCE
(TA
Temperature
O·C to +70·C
= 25·C)
Value
Parameter
Input CapaCitance
Ao -
A7, DIN
Symbol
Min
Typ
Max
Unit
CIN1
-
-
5
pF
Input CapaCitance RAS, CAS, WE
CIN2
Output Capacitance DOUT
CoUT
-
8
pF
7
pF
STATIC CHARACTERISTICS
(Recommended operating conditions unless otherwise noted.)
Symbol
Parameter
OPERATING CURRENT·
Average power supply current (RAS, CAS cycling; tRC
min)
STANDBY CURRENT
CAS
VIH)
Power supply current (RAS
REFRESH CURRENT·
Average power supply current (RAS cycling, CAS
VIH; tRC
IMB8264-20
MB8264-15
=
=
=
=
PAGE MODE CURRENT.·
Average power supply current (RAS
Vll, CAS cycling, tpc
INPUT LEAKAGE CURRENT
Input leakage current, any input (OV :s VIN :s 5.5V)
Input pins not under test OV, VCC 5.5V, VSS OV
=
=
=
=
OUTPUT LEAKAGE CURRENT
(Data out Is disabled, OV :s VOUT :s 5.5V)
OUTPUT LEVEL
Output low voltage (IOl
4.2mA)
OUTPUT LEVEL
Output high voltage (IOH
-5mA)
=
=
ICC1
=
= min)
-
Units
45
50
mA
mA
4
mA
rnA
-
42
mA
-
34
mA
III
-10
10
p.A
10l
-10
10
p.A
VOL
-
0.4
V
VOH
2.4
-
V
ICC3
ICC4
Note': Icc Is dependent on output loading and cycle rates. Specified values are obtained with the output open.
1-34
Max
36
ICC2
IMB8264-20
min) MB8264-15
Min
MB8264·1S/MB8264·20
DYNAMIC CHARACTERISTICS Notes 11,2,31
(Recommended operating conditions unless otherwise noted.)
Parameter
Notes
Symbol
Min
Time between Refresh
tREF
-
Random Read/Write Cycle Time
tRC
tRWC
tpc
330
375
225
tRAC
-
tCAC
-
tOFF
tT
0
3
120
200
135
80
30
135
200
30
0
0
20
0
55
120
0
0
-10
55
120
55
80
80
0
55
120
95
160
25
Read-Write Cycle Time
Page Mode Cycle Time
Access Time from RAS
m[ill
CAS
[§][§J
Access Time from
Output Buffer Turn Off Delay
Transition Time
RAS Precharge Time
tRP
RAS Pulse Width
tRAS
RAS Hold Time
CAS Precharge Time (Page
tRSH
tcp
Mode Only)
CAS Precharge Time (All Cycles Except Page Mode)
CAS Pulse Width
tCPN
CAS Hold Time
RAS to CAS Delay Time
CAS to RAS Precharge Time
tCSH
tCAS
[lI[ID
tRCO
tCRP
Row Address Set Up Time
tASR
Row Address Hold Time
tRAH
Column Address Set Up Time
tASC
Column Address Hold Time
tCAH
Column Address Hold Time Referenced to RAS
tAR
Read Command Set Up Time
Read Command Hold Time
Write Command Set Up Time
tRCS
[!QJ
[]]
tRCH
twcs
Write Command Hold Time
tWCH
Write Command Hold Time Reference to RAS
Write Command Pulse Width
tWCR
twp
Write Command to RAS Lead Time
tRWL
Write Command to CAS Lead Time
tCWL
Data In Set Up Time
tos
Data In Hold Time
tOH
Data In Hold Time Referenced to RAS
CAS to WE Delay
RAS to WE Delay
Read Command Hold Time Referenced to RAS
tOHR
[]]
[]]
[Q]
1-35
tcwo
tRwo
tRRH
MB8264-20
Typ
Max
-
-
-
-
-
-
Min
MB8264-15
Typ
Max
2
-
-
-
270
300
170
-
200
135
50
50
-
0
3
100
10000 150
100
60
25
10000 100
150
65
25
0
0
15
0
45
95
0
0
-10
45
95
45
60
-
-
-
-
Unit
2
ms
-
ns
150
100
40
35
ns
ns
ns
ns
ns
ns
-
ns
-
10000
ns
-
-
ns
ns
ns
10000
ns
-
ns
50
ns
-
ns
-
ns
-
ns
-
ns
-
ns
-
ns
ns
-
-
-
-
ns
ns
ns
ns
ns
ns
-
-
60
-
-
ns
-
ns
-
-
ns
-
-
-
-
-
0
45
95
70
120
20
-
ns
-
ns
-
ns
-
ns
MB8264·15/MB8264-20
reference point only; if tRCO Is greater than the
specified tRCO(max) limit, then access time Is controlled exclusively by tCAC.
Notes:
1. An initial pause of 200",s is required after·power-up
followed by any 8 RAS cycles before proper device
operation Is achieved.
2. Dynamic measurements assume tT
8. tRCO(min)
= 5ns.
=
+ 2tT(tT
tRAH(min)
tASC(min).
4. Assumes that tRCO oS tRco(max). If tRCO Is· greater
than the maximum recommended value shown in this
table, tRAC will increase by the amount that tRCO exceeds the value shown.
100 pF.
7. Operation within the tRCO(max) limit insures that
tRAC(max) can be met. tRCO(max) Is specified as a
10. Either tRRH or tRCH must be satisfied for a read cycle.
TIMING DIAGRAMS
READ CYCLE
CAS
VIHV'L-
ADDRESSES
WE
°OUT
+
If tcwo 2: tcwo(min) and tRWO 2: tRWO(min), the cy·
cle is a read-write cycle and data out will contain
data read from the selected cell. If neither of the
above sets of conditions is satisfied the condition of
the data out is indeterminate.
5. Assumes that tRCO 2: tRCo(max).
6. Measured with a load equivalent to 2 TTL loads and
VIHVIL-
5ns)
9. twcs, tcwo and tRWO are not restrictive operating
parameters. They are included in the data sheet as
electrical characteristics only. If twcs 2: twcs(min),
the cycle is an early write cycle and the data out pin
will remain open circuit (high impedance) throughout
the entire cycle.
3. VIH(mln) and Vldmax) are reference levels for
measuring timing of Input signals. Also, transition
times are measured between VIH(min) and Vldmax).
RAs
=
V'HVIL-
VIH
VIL
VOHVOL-
VALID
DATA
•
1-36
Oon'tCare
MB8264·1S/MB8264·20
WRITE CYCLE (EARLY WRITE)
VOH-_______________________________ OPEN ________________________________
DOUT
VOL-
Don't Car.
•
READ-WRITE/READ·MODIFY·WRITE CYCLE
RAS
VIHVIL-
CAS
VIHVIL-
ADDRESSES
VIHVIL-
WE
VIHVIL-
OOUT
DIN
VOHVOL-
VIHVIL-
•
1-37
Don't Car.
NB8264-1S/NB8264-20
PAGE-MODE READ CYCLE
RAS
V 1H VIL-
CAS
VIHVIL-
ADDRESSES VV IH IL-
VOHVOL- -----:--OF'EN
DDon'tCar.
~ValidD8ta
PAGE·MODE WRITE CYCLE
_Don't Car.
1·38
MB8264-1S/MB8264-20
"RAS-ONLY" REFRESH CYCLE
NOTE: CAS = VIH, WE = Don't care
V'H-
-----------1
V'L-
VOH- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
DOUT
OPEN
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __
VOL-
Don't Care
HIDDEN "RAS-ONLY" REFRESH CYCLE
V'H-
----++--....,h
V'L-
DOUT
III Don't Care
1-39
MB8264-1S/:MB8264-2IO
DESCRIPTION
state until CAS Is brought low. In a read cycle, or a readwrite cycle, the output is valid after tAAC from transition
of RAS when.!Bc.o (max) is satisfied, or after tCAC from
transition of ~ when the transition occurs after tACO
(max). Data remains valid until CAS Is returned to a high
level. In a write cycle the Identical sequence occurs, but
data is not valid.
Address Inputs
A total of sixteen binary input address bits are required
to decode any 1 of 65536 storage cell locations within
the MB8264. Eight row-address bits are established on
the input pins (Ao through A7) and latched with the Row
Address Strobe
Then eight column-address bits
are established on the input pins and latched with the
Column Address Strobe (eAS). All input addresses
must be stable on or before the falling edge of RAS.
CAS is internally Inhibited (or "gated") by RAS to permit
triggering of CAS as soon as the Row Address Hold
Time (tAAH) specification has been satisfied and the address Inputs have been changed from row-addresses to
column-addresses.
em).
Page-Mode
Page-mode operation permits strobing the row-address
Into the MB8264 while maintaining FIAS at a logic low
(0) throughout all successive memory operations In
which the row-address doesn't change. Thus the power
dissipated by the negative going edge of ~ is saved.
Further, access and cycle times are decreased because
the time normally required to strobe a new row-address
Is eliminated.
Write Enable
The read mode or write mode is selected with the WE input. A logic high (1) on WE dictates read mode; logic low
(0) dictates write mode. Data Input Is disabled when
read mode Is selected.
Refresh
Refresh of the dynamic memory cells is accomplished
by performing a memory cycle at each of the 128 rowaddresses (Ao"";Ae) at least every two milliseconds. DurIng refresh, either VIL or VIH is permitted for A7. Wonly refresh avoids any output during refresh because
the output buffer is in the high impedance state unless
eAS is brought low. Strobing each of 128 row-addresses with RAS will cause all bits in each row to be
refreshed. Further RAS-only refresh results In a
substantial reduction in power diSSipation.
Data Input
Data is written into the MB8264 during a write or readwrite cycle. The last falling-edge of WE or CAS Is a
strobe for the Data In (DIN) register. In a write cycle, if
WE is brought low (write mode) before CAS, DIN Is
strobed by CAS, and the set-up and hold times are
referenced to CAS. In a read-write cycle, WE will be
delayed until CAS has made its negative transition.
Thus DIN Is strobed by WE, and set-up and hold times
are referenced to WE.
Hidden Refresh
RAS-ONLY REFRESH CYCLE may take place while
maintaining valid output data. This feature is referred to
as Hidden Refresh.
Hidden Refresh is performed by holding CAS as VIL
from a previous memory read cycle.
Data Output
The output buffer Is three-state TTL compatible with a
fan-out of two standard TTL loads. Data-out is the same
polarity as data-in. The output Is In a high Impedance
1-40
MB8264-15/MB8264-20
CURRENT WAVEFORM (Vee = 5.5V, TA = 25°C)
READ CYCLE
WRiTE CYCLE
READ·MODiFY·WRiTE CYCLE
PAGE· MODE CYCLE
RAS·ONLY CYCLE
!lAS
CAS
\fJ!
""
I
80
I~
1\
<"
]40
I VI \
U1\
III
1'-
I"-
0
I-
+- c-
f-
,
I-'
I'-J
IIf!
\ !
r\
I-
1-'11......1
J
'-1..
I UI\
\
1- I-'
50ns/Division
"
-
~
I-'
'+-'
I"-
TYPICAL CHARACTERISTICS CURVES
NORMALIZED ACCESS TIME
vs AMBIENT TEMPERATURE
NORMALIZED ACCESS TIME
vs SUPPLY VOLTAGE
1.2
w
TA"125°C
::;;
;:::
'"'"w
"~
1.1
(J
(J
«
0
w
1.0
N
:J
«
::;;
0::
w
::;;
;:::
Vl
<.)
«
~
0.9
0
w
1.0
N
:J
«
::;; 0.9
0::
i'-
0
z
u
<0:
U
0.8
4.0
4.5
5.0
5.5
6.0
I!-
0.8
-20
OPERATING CURRENT
YS SUPPLY VOLTAGE
50
50
;t
.1
S
z
w
40
<.)
"
30
«
0::
w
0-
0
u
s
f-
~
~
,~C
:>
z
;:::
;t
T A "15°C
",,'l.1()t":J/'
0::
0::
20
.,./
,.......,.
-
~
10
4.0
.....1
.<:fl0os
-----r~
---
4.5
5.0
5.5
Vee. SUPPLY VOLTAGE (V)
/
V
/
1o
;t
V
T A "25 C
Vee"5.5V/
S
f-
z
w
40
0::
0::
VeC 5.OV
:>
<.)
";:::
LV
/
Z
30
/
«
0::
w
0-
0
20
0
20
40
60
80
10
100
z
w
40
0::
0::
:>
<.)
"z
;:::
30
«
0::
w
0-
0
20
YS
OPERATING CURRENT
AMBIENT TEMPERATURE
--
Vec 5.5V
1
r--
tRc=270ns
r--
tRe"i30nS
0
r--
tRc"'500ns
-
STANDBY CURRENT
SUPPLY VOLTAGE
I
°
T A "25 C
3
w
0::
0::
:>
J
~
tRC 1,us-
>-
2
"'0z
«f-
'"N
4.0
YS
S
f-
V
2.0
3.0
1.0
1/tRe • CYCLE RATE (MHz)
;t
<.)
............
~
..............
V
1
<.)
U
~
~
6.0
4
z
V
/
/
U
~
T A . AMBIENT TEMPERATURE (C)
Vee. SUPPLY VOLTAGE (V)
f-
V
(J
z
I!-
1.1
'"W
0
<0:
OPERATING CURRENT
vs CYCLE RATE
50
1.2
10
-20
80
100
0
20
40
60
T A . AM81ENT TEMPERATURE (OC)
1-41
0
4.0
4.5
5.0
5.5
Vee. SUPPLY VOLTAGE (V)
6.0
MB8264·15/MB8264-20
TYPICAL CHARACTERISTICS CURVES (Continued)
STANDBY CURRENT
vs AMBIENT TEMPERATURE
4
.V1cc =5.5V
.l
:{
E
fz
a:
a:
3
.......
"'
::l
()
>
co
2
, r- r-
:{
E
fz
a:
a:
-
()
fz
a:
a:
M
u
40
60
80
fzw
a:
a:
40
0
()
:I:
30
'"a:W
u.
w
a:
---r--r--
20
M
U
J?
fzW
a:
a:
W
°::;;
w
«0.
"
..
tRC=1,us
w
0
0
30
::;;
w
«
0.
(!)
..
20
u
10
-20
20
0
« >
'f::!::>
>0.
«
60
80
4.5
tl'C
5.0
5.5
50
6.0
I
°
T A =25 C
E
fzw
a:
a:
40
---
0
0
-
f.--
30
W
(!)
«
0.
teC
20~
.. V-~
u
J?
3.0
1.0
2.0
1/tRe, CYCLE RATE (MHz)
~
l.--'" ~
I-teC
::;;
~
tpC-
104.0 - 4.5
S.O
5.S
Vee, SUPPLY VOLTAGE (V)
4.0
6.0
ADDRESS AND DATA INPUT
VOLTAGE vs AMBIENT TEMPERATURE
ADDRESS AND DATA INPUT
VOLTAGE vs SUPPLY VOLTAGE
~.U
3.0
2.0
LO
;:>0
100
T A , AMBIENT TEMPERATURE (OC)
o_
z>
«",w
"'(!)
w«
a;f-
TA12soc
o~
z«
« fI«
tpc=500ns
40
.--
v'ec = slOV
z>
«"'w
"'''
w«
tpc=225ns
20
------~
-----
PAGE MODE CURRENT
vs SUPPLY VOLTAGE
W
0_
tpc==170ns
-
'I'C
()
0-'
00
i--I-
--:: ~ ~
~
.....
Vcc. SUPPLY VOLTAGE (V)
30
a:f-
--
20
10
4.0
4.0
00'
::l
4.0
J J
0
3.0
40
10
PAGE MODE CURRENT
vs AMBIENT TEMPERATURE
i--
J?
2.0
V cc =5.5V
J?
40
()
1.0
TAJ25°C
u
Vcc=5.5V
::l
M
u
50
0
t~c=5~ns
E
fz
W
a:
a:
a:
()
tRC=330ns
:{
t1
5000'
W
J?
E
10
20
100
-20
0
40
60
80
T A , AMBIENT TEMPERATURE (OC)
50
./'
'/tRC. CYCLE RATE (MHz)
«
1c=Jons
"-
30
'""'a:
u.
::l
!--
::l
40
PAGE MODE CURRENT
vs CYCLE RATE
.JV1cc=S'r
1
E
:I:
10
100
REFRESH CURRENT
vs AMBIENT TEMPERATURE
:{
7
/
T A, AMBIENT TEMPERATURE (OC)
50
()
V
20
J?
J?
I
TAj25"C
::l
./
30
u.
W
20
E
w
'"wa:
a:
0
:{
V c c=5.5V
40
:I:
1
0
-20
TA=~5°C
::l
z
'"Nu
vs SUPPLY VOLTAGE
50
"'
0
~
REFRESH CURRENT
REFRESH CURRENT
vs CYCLE RATE
50
0
4.0
---
0-'
00
\I\"'\~
« >
, f::!::l
>0.
o ~
z «
«f-
l--- ~\l>JIa')
~
4.5
3.0
~
«
2.0
LO
;00
>
5.0
5.5
Vee, SUPPLY VOLTAGE (V)
1-42
6.0
0
-20
V'H (Min)-
'" r'100
SO
40
60
20
0
TA, AMBIENT TEMPERATURE (OC)
MB8264-15/YB8264-20
TYPICAL CHARACTERISTICS CURVES (Continued)
RAS. CAS AND WE INPUT
VOLTAGE w SUPPLY VOLTAGE
RAS. CAS AND WE INPUT
VOLTAGE vs AMBIENT TEMPERATURE
4.0
4.0
T)25'C
C
z_
« >
;;;
I~
oel
V~e = 5!OV
C_
z >
«- 3.0
«el
I'0«
".
3.0
w
I~'a: ~0
. : . > 20
.
-
--
-I-
> ::>
Co.
z ii!:
~I~ 1.0
I~a:
VIH (Mi::,!.-
~
0
>
2.0
VIH (Mini
~~
>o.
cii!:
VIL (Ma.1
~ I~
->
VIL (Ma.1
1.0
:t
->
0
4.0
4.5
5.0
5.5
Vee. SUPPLY VOLTAGE (VI
0
-20
6.0
100
0
40
60
80
20
T A. AMBIENT TEMPERATURE ('CI
SUBSTRATE VOLTAGE VI SUPPLY
VOLTAGE DURING POWER UP
TYPICAL SUPPLY CURRENT vs SUPPLY VOLTAGE DURING POWER UP
>->
..1-
t~
~« 5 ' : 0
u~
uo
TA+5'C
~
.s
15
z
w
:>
u
..
>-..I
o.
::>
en
U
J}
.............
10
I
O~
0
RAS=CAS=Vee
I
~~
.1U..l
»uo
o.w
o.Cl
I B6
I I I
~I!:
»
TA+5'C
~
2w
15
'tl I I I I I I I
1\
0
Cl
a:
a:
:>
0
~
10
RAS=CAS=Vss
w
..
:>
en
u
;i
-'
o~
,
-3.0
I-
RAS=CAS-V ee
:g
-4.0
:>
.,
'"
0
100lJs/Division
:>
0
25,us/Division
III
>
SUPPLY CURRENT vs SUPPLY VOLTAGE DURING POWER UP (ON MEMORY BOARD)
>->
~i
tl6
»
~
.s
s'OM
0
>->
I I I
~~5·:t71 I I I I
I
»uo
T A=2S'C
tRc=270ns
"
80
~
.s
\
lZ
a: 60
a:
:>
0
>..I
..
40
'"U
20
o.
::>
I
\
tRc""270ns
w
a: 60
a:
:>
0
>- 40
..I
I~ 8264 + OecouplinR
Capaoitor
(O.l~FI
..
\
L
::>
'"U
I\:.0UPling Capacitor
~.l~FI OilY
J}
TA=25'C
80
IZ
w
J}
00
20~
MB 8264 + Oecoupling
Capacitor (O.l~FI t - -
1,1
oecouPlin g Capacit!' (0.1 ~rl only
o
l
0
100",/Division
10,us/Division
1-43
I _
CAS=RAS=Vee
'\.
I-
5
T~'25,lc
\
I!:
-1.0
0
> -2.0
..I
W
J}
10,us/Oivision
5':[71
IZ
RAS=CAS=jss -
sI
>->
..1-
o.w
.s
_-.1
l-
a:
a:
I
I I I
»
>->
..1-
FUJITSU
lV1B8264A·10
lV1B8264A·12
MICROELECTRONICS
NMOS 65,536-BIT DYNAMIC
RANDOM ACCESS MEMORY
DESCRIPTION
The Fujitsu MB8264A is a fully decoded, dynamic NMOS random access memory organized as 65,536
one-bit words. The deSign Is optimized
for high-speed, high performance applications such as mainframe memory, buffer memory, peripheral storage
and environments where low PQwer
dissipation and compact layout Is required.
Multiplexed row and column address
Inputs permit the MB8264A to be
housed In a standard 16 pin DIP. Pin·
outs conform to the Jj:DEC appr9V!KI
pin out.
The MB8264A Is fabricated using silicon-gate NMOS and FUjitsu's advanced Double-Layer Polysllicon process. This process, coupled with
single-transistor memory storage
cells, permits maximum circuit densi·
ty and minimal chip size. Dynamic clr·
cuitry Is employed In the design, In·
cluding the sense amplifiers.
Clock timing requirements are noncritical, and PQwer supply tolerance is
:1:10%. All Inputs/outputs are TTL
compatible.
FEATURES
• 65,538 x 1 RAM, 18 pi!,! package
• Slllcon-gate, Double Poly NMos,
single transistor cell
• Row acceas time:
• ()n.chlp substrate bias generator
• AlllnputalQUtputs m compatible,
low capacitive load
MB8284A·10
MB8284A-12
100 lIS Max
120 ns Max
• Cycle time:
MB8284A-10
MB8284A-12
• Three-atate output
• "Oated" CAS
• 128 refnHIh cycIea
200 ns Min
• Common 110 capability using
"Early Write" operation
• Low power:
MB8284A-10
MB8284A-12
230 lIS Min
330mW Max
(Active)
300mW Max
(Active)
22mWMax
(Standby)
• :1:10% tolerance on +5 volt supply
CERDIP PACKAGE
Dlp·16C·C04
• Output unlatched at cycle end
allows extencIid page boundary
and two
CII
1-44
lVIB8265·15
lVIB8265·20
FUJITSU
MICROELECTRONICS
NMOS 65,536·BIT DYNAMIC
RANDOM ACCESS lVIEM:ORY
DESCRIPTION
The Fujitsu MB8265 Is a fully decoded, dynamic NMOS random access memory organized as 65536
one-bit words. The design Is optimized for high-speed, high performance
applications such as mainframe
memory, buffer memory, peripheral
storage and environments where low
power dissipation and compact lay·
out are required.
Multiplexed row and column address
Inputs permit the MB8265 to be housed In a standard 16 pin DIP. Pln-outs
conform to the JEDEC approved pin
out.
The MB8265 is fabricated uSing silicon gate NMOS and Fujitsu's advanced Double-Layer Polysilicon process. This process, coupled with
single·translstor memory storage
cells, permits maximum circuit den·
slty and minimal chip size. Dynamic
circuitry Is employed In the design,
Including the sense amplifiers.
Clock timing requirements are non·
critical, and power supply tolerance
Is very wide. All inputs and output are
TTL compatible.
FEATURES
• 85,538 x 1 RAM, 18 pin
package
• Silicon-gete, Double Poly
NMos, single transistor cell
• Row acceaa time:
150na Max (MB8286-15)
200na Max (MB8286-2O)
• Cycle time:
270ns Min (MB8286-15)
330na Min (MB8286-2O)
• Low power:
275 mW ActIve, (MB8286-15)
248 mW ActIve, (MB8286-2O)
28 mW Standby (Max)
• +5V Supply, :t10% tolerance
• On chip subetrata bias generator
for high perfonnence
• Th,....tata TTL compatible output
• Allinputa TTL compatible,
low capacitive load
• ''Gated'' CAS
• 128 refreah cycles
• Pin 1 Refreah capability
• Common 110 capability using
"Earty Write" operation
• Output unlatched at cycle
end allows extended page
boundary and twodimensional chip select
• Read-Modlfy-Wrlte, RASonly refreah, and
Page-Mode capability
• On-chlp latches for
Addreases and Data-In
• Offe,. two variations of
hidden refresh
MB8265 BLOCK DIAGRAM
CERDIP PACKAGE
Dlp·16C·C04
PIN ASSIGNMENT
R'FSH
DIN
1-45
CAS
WE
DOUT
RAS
J:c
Ao
~I
A2
...-.---+---+---of""\
Vss
2
A6
illl
A3
11
A4
AI
As
Vee
A7
:MB826S·1S/MB8265·20
ABSOLUTE MAXIMUM RATINGS (See Note)
RatIng
Symbol
Value
UnIt
Voltage on any PIn RelatIve to Vss
Voltage on Vee Supply relatIve to VSS
Storage Temperature
Power DIssipation
Short Circut Output Current
VIN, VOUT
VCC
TSTG
Po
-1 to +7.0
-1 to +7.0
-55 to +150
1.0
50
V
lOS
V
·C
W
mA
NOTE: Permanent device aamage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be
restricted to the conditions as detailed in the operational sections of this data sheet. This device contains circuitry to pro·
tect the Inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions
be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.
RECOMMENDED OPERATING CONDITIONS
(Referenced to VSS)
Parameter
Symbol
Min
Supply Voltage
VCC
Vss
Input HIgh Voltage, all inputs
Input Low Voltage, all Inputs
VIH
Vil
4.5
0
2.4
-1.0
Value
Typ
5.0
0
-
Max
UnIt
Temperature
5.5
0
6.5
0.8
V
V
V
V
O·C to +70·C
CAPACITANCE (TA = 25·C)
Parameter
Input CapaCitance Ao - A7, DIN
Input CapaCitance RAS, ~, WE,
Output CapaCitance DOUT
Symbol
-
CINl
RFSR
Min
CrN2
GoUT
-
Value
Typ
Max
Unit
-
5
8
7
pF
pF
pF
STATIC CHARACTERISTICS
(Recommended operatIng conditions unless otherwise noted.)
Parameter
OPERATING CURRENT"
IMB8265-20
IMB8265-15
Average power supply current (RAS, CAS cycling; tRC = min)
STANDBY CURRENT
Powersupplycurrent(RAS = CAS = RFSH = VIH )
IMB8265-20
REFRESH CURRENT .1 'Average power current
IMB8265-15
(RAS cycling CAS = FiFS'R = VIH; tRC = min)
PAGE MODE CURRENT"
Average power supply current (RAS = Vll, CAS cycling, tpc = min)
REFRESH CURRENT 2 Average power supply current
(RFSH cycling; RAS = CAS = VIH, tFC = min)
INPUT LEAKAGE CURRENT
Input leakage current, any input (OV:s VIN :s 5.5V)
Input pins not under test = OV, VCC = 5.5V, VSS = OV
OUTPUT LEAKAGE CURRENT
(Data out is disabled, OV:s; VOUT:S 5.5V)
OUTPUT LEVEL
Output low voltage (IOl = 4.2mA)
OUTPUT LEVEL
Output high voltage (IOH = -5mA)
Symbol
MIn
ICCl
-
ICC2
ICC3
Max
Unit
45
50
rnA
rnA
5
rnA
36
rnA
42
-
34
rnA
46
rnA
III
-10
10
pA
10l
-10
10
pA
ICC4
Ices
VOL
-
0.4
V
VOH
2.4
-
V
Note·: ICC is dependent on output loading and cycle rates. Specified values are obtained with the output open.
1-46
MB8265·15/MB8265·20
DYNAMIC CHARACTERISTICS Notes ~
(Recommended operating conditions unless otherwise noted.)
Parameter
lNotesl
Symbol
Min
tREF
tRC
tRWC
tpc
-
Time between Refresh
Random Read/Write Cycle Time
Read-Write Cycle Time
Page Mode Cycle Time
Access Time from RAS
[ru
Access Time from CAS
00
Output Buffer Turn Off Delay
Transition Time
RAS Precharge Time
RAS Pulse Width
RAS Hold Time
CAS Precharge Time (Page Mode Only)
CAS Precharge Time (All Cycles Except Page Mode)
CAS Pulse Width
CAS Hold Time
[]]
RAS to CAS Delay Time
CAS to RAS Precharge Time
Row Address Set Up Time
Row Address Hold Time
Column Address Set Up Time
Column Address Hold Time
Column Address Hold Time Referenced to RAS
Read Command Set Up Time
Read Command Hold Time
[IQ]
Write Command Set Up Time
[]:I
Write Command Hold Time
Write Command Hold Time Referenced to RAS
Write Command Pulse Width
Write Command to ~ Lead Time
Write Command to CAS Lead Time
Data In Set Up Time
Data In Hold Time
Data In Hold Time Referenced to RAS
CAS to WE Delay
[~
RAS to WE Delay
~
Read Command Hold Time Referenced to RAS
l1Q]
RFSR Set Up Time Referenced to RAS
FOOl to RF'SR Delay
RF'SR Cycle Time
RFSH Pulse Width
RFSR Inactive Time
RFSH to FiAS Delay
RFSR Hold Time
lTII
RFSR Address Set Up Time
Fi'FSR Set Up Time Referenced to CAS
ITII
!!l
ffiJ
tRAC
tCAC
tOFF
tT
tRP
tRAS
tRSH
tcp
tCPN
tCAS
tCSH
tRCO
tCRP
tASR
tRAH
tASC
tCAH
tAR
tRCS
tRCH
III
twcs
tWCH
tWCR
twp
tRWL
tCWL
tos
tOH
tOHR
!TIl
!TIl
1-47
330
375
225
0
3
120
200
135
80
30
135
200
30
0
0
20
0
55
120
0
0
-10
55
120
55
80
80
0
55
120
lewD
95
tRWO
tRRH
tFSR
tRFO
tFC
tFP
tFI
tFRO
tFSH
tASF
tFSC
160
25
120
120
330
200
120
50
20
0
50
MB8265-20
Typ Max
-
--
2
200
135
50
50
10000
10000
65
-
Min
270
300
170
0
3
100
150
100
60
25
100
150
25
0
0
15
0
45
95
0
0
-10
45
95
45
60
60
0
45
95
70
120
20
100
100
270
150
100
MB8265-15
Typ Max
-
2
150
100
40
35
10000
-
-
10000
-
50
-
-
-
-
-
-
40
-
15
0
-
40
-
-
-
Unit
ms
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
MB8265·15/MB8265-20
Note.:
8. Measured with a load equivalent to 2 TTL loads and 100 pF.
7. Operation within the tRco(max) limit Insures that
tRAC(max) can be met.· tACO (max) Is specified as a
reference point only; If tACO is greater than the specified
tACO (max) limit, then access time Is controlled exclusively
by tCAC'
8. tRCO(mln)
tRAH(mln) + 2tT(tT
5ns) + tASC(mln).
9. twcs, tcwo and tAWO are not restrictive operating
parameters. They are Included in the data sheet as electrical characteristics only. If twcs :2: twcs(min), the cycle
is an early write cycle and the data out pin will remain open
circuit (high Impedance) throughout entire cycle.
If tcwo 2! tcwo(mln) and tAWO 2! tAWO(mln), the cycle Is a
read-write cycle and data out will contain data read from
the selected cell. If neither of the above sets of conditions
Is satisfied the condition of the data out Is Indeterminate.
1. An Initial pause of 2001'8 is required after power-up followed by any 8 ~ cycles before proper device operation Is
achieved. If internal refresh counter Is to be effective, a
minimum of 8 active ~ Initialization cycles required.
The Internal refresh counter must be activated a minimum
of 128 times every 2ms If the RFSH refresh function is
used. The RFSR must be held at V'H if the RFSH function
Is not used.
2. Dynamic measurements assume tT
=
=5ns.
3. V'H(mln) and V,Llmax) are reference levels for measuring
timing of input Signals. Also, transition times are
measured between V'H(min) and V,Llmax).
4. Assumes that tACO :S tRcO(max). If tRCO is greater than
the maximum recommended value shown in this table,
tRAC will Increase by the amount that tRCO exceeds the
value shown.
=
10. Either tRRH or tRCH must be satisfied for a read cycle.
11. RFSR counter test read/write cycle only.
5. Assumes. that tRCO "" tACO (max).
TIMING DIAGRAMS
READ CYCLE
V'HV'LtFSR
RAS
V'HV'L-
CAS
V'HVIL-
ADDRESSES
VIHVIL-
We
VIHVIL-
DOUT
VOHVOL•
1-48
Don'tCa..
MB8265-15/YB8265-20
WRITE CYCLE (EARLY WR1'1'I)
fi1!SFI
V IHVIL-
iiAS
VIHVIL-
CAS
VIHVIL-
VOH-______________________________ OPEN _______________________________
DOUT
VOL-
Don't Car.
•
READ-WRlTE/READ-MODIFY·WRITE CYCLE
WE
VIHVIL-
DOUT
VOHVOL-
DIN
VIHVIL-
•
1-49
Don't Care
MB8265·1S/MB8265·20
PAGE·MODE READ CYCLE
ADDRESSES
DOUT
III Don't Care
rmI Valid Data
PAGE·MODE WRITE CYCLE
Don't Car.
1-50
MB8265·1S/MB8265·20
"RAS.ONLY" REFRESH CYCLE
NOTE: RFSH
=VIH, CAS =VIH, WE =Don't Care
VOH- __________________________
DOUT
OPEN
_______________________________
VOLDon't Car.
RFSH REFRESH CYCLE
NOTE: CAS
=VIH, WE = Don't Care
RAS
RFSH
ADDRESSES
~:~z~~lt~t~t'li{tt}t 'i:~11tf~!~~i~t~ i'~¥;~1 ~~tll}l}tlt~jittl~tZtt!!lt 'ii~t~t£I}~$J~}\f'z,t~W ~gr:. . ~
IDDDEN "RAS-ONLY" REFRESH CYCLE
III Don't c.r.
1-51
MB8265·1S/MB8265·20
lDDDEN RFSH REFRESH CYCLE
RAS
CAS
VIHVIL-
RFSH
VIHVIL-
DOUT
VO H-
VOL_----IJPE:N----<~i------------------------------------------~
•
Don·tear.
RFSH COUNTER 'miT READ/WRITE CYCLE
Note:
RFSH
RAS
Dour is the waveform in Read-Modify-Write Cycles
VILV1H V1L -
CAS
DOUT
V OH -
VOL_---------------()PE:N---------------+
(J
:::>
u
";::z
";::z
<0:
w
..
30
a:
w
o
0
V CC =5.5V
I
20
YS
:(
STANDBY CURRENT
AMBIENT TEMPERATURE
..........
..s
...z
r-....
w
a:
a:
:::>
u
J ·5.L
tRcLs-
~
r-. r---
-
II:
20
r---
/
.!d
.!d
20
40
60
80
10
100
o
T A • AMBIENT TEMPERATURE rC)
50
YS
)ICC'5.LI
..s
...z
40
w
a:
a:
:::>
(J
J:
30
-
50
..s
...
V cc ""5.5V
'a:w"
40
II:
II:
:::>
u
w
a
30
40
a
30
0
:;:
w
<0:
TA=2SoC
a:
:::>
u
w
0
"..
PAGE MODE CURRENT
vs SUPPLY VOLTAGE
:(
T A=125o C
..s
w
'""-
(J
'/tRC, CYCLE RATE (MHz)
REFRESH CURRENT 1
AMBIENT TEMPERATURE
<
TA=2SoC
40
:::>
/'
30
()
()
o
...z
w
M
N
4.5
5.0
5.5
Vee. SUPPLY VOLTAGE (V)
a:
a:
w
-20
..s
V ee =5.5V
co
a
z
"
1
REFRESH CURRENT 1
vs SUPPLY VOLTAGE
II:
:::>
u
/
.!d
REFRESH CURRENT 1
YS CYCLE RATE
..s
>-
>a
z
aJ
1
:(
ee
(J
0
20
40
60
80
100
T A. AMBIENT TEMPERATURE rC)
50
,.~
:::>
I
U
10
-20
/
w
II:
II:
tRc=500ns
.!d
Vee. SUPPLY VOLTAGE (V)
T A =25°C
1
>z
t Ac J30ns
...
II:
STANDBY CURRENT
vs SUPPLY VOLTAGE
t Rc=270ns
r--
<0:
.
OPERATING CURRENT
AMBIENT TEMPERATURE
YS
50
20
-
~
.;
u
.!d
10
o
f..--
-
:;:
w
"~
20
.;
u
.!d
3.0
2.0
1.0
litRe. CYCLE RATE (MHz)
1-55
4.0
Vee. SUPPLY VOLTAGE (V)
6.0
YB8265-15/:MB8265-20
TYPICAL CHARACTERISTICS CURVES (Continued)
<
50
VI
PAGE MODE CURRENT
AMBIENT TEMPERATURE
J
.§
zW
:;)
U
W
30
:;
W
"~
20
•
u
.9
10
-20
0
X
13
6
20
60
40
80
100
<
.§
50
N
~ 40
zW
II:
II:
:;)
u
x 30
'"W
II:
u..
W
II: 20
,;,
u
.9
REFRESH CURRENT 2
AMBIEIllT TEMPERATURE
tcco5~5V
--
-- r-- t-r-- t-r-- I r--
1
tFC=2~ons
tFc=33om_
tFC';;&;:
tFC~
4.0
u..
~2O
«>
2.0
~~
>Q.
o~
z«
«~
r«
1.0
>0
0
H)(
80
-20
0
20
40
60
TA,AMBIENT TEMPERATURE rCI
---
0
4.0
vl~
5.5
0
z
«
T)25°C
IX>
"'-W
r>
u..
I'~~«
~ 2.0
~
:;)
~~
> IW
~ ;:
«
r
>
JCC=5~OV
3.0
<. ~
2.0
V ,H (MinI-
' 'r'-
1.0
0
-20
40
80
100
20
60
0
T A , AMBIENT TEMPERATURE (OCI
JCC-5.~V
3.0
II: "
II: "
«
II:
z>
«::l ~
W«
II:~
RAS, CAS, RFSH AND WE INPUT
VOLTAGE VI AMBIENT TEMPERATURE
4.0
'" - 3.0
u.. W
1")
4.0
=:;)
>Q.
o~
Z«
« ~
r«
6.0
VCC,SUPPLY VOLTAGE (VI
4.0
0
ADDRESS AND DATA INPUT
VOLTAGE VI AMBIENT TEMPERATURE
>0
5.0
1.0
0
4.0
I""u«
-
V'H"(Mi::!.-
-
2.0
Ii
1.0
«~
V ,H (MinI
II: :;)
=z
V'C (MaxI
z~
«
r
>
4.5
5.0
5.5
VCC, SUPPLY VOLTAGE (VI
!:i«0
I"". >Q.
6.0
1-56
0
-20
6.0
0-'
00
~ ~~
~'~
4.5
"5.5
4.5
5.0
VCC,SUPPLY VOLTAGE (VI
o_
1
RAS, CAS, RFSH AND WE INPUT
VOLTAGE VI SUPPLY VOLTAGE
Z
«
10
4.0
4.0
ADDRESS AND DATA INPUT
VOLTAGE VI SUPPLY VOLTAGE
0-'
00
~~
,;,
u
.9
T)25°C
3.0
_'\~,
II:
0_
z>
«en w
"'''
W«
II:~
-;:::. ~
..:p
.---- ~
x
'"W
1.0
2.0
3.0
l/tFC' CYCLE RATE (MHzl
TA' AMBIENT TEMPERATURE (OCI
••
u 30
.9
10
0
' fc
:;)
./
, .....
II:
~ 20
tpc=500ns
II:
II:
V
u..
~'HP.....-
W
/
u 30
--
1.1 0" ' -
Z
:;)
tpC=22Sns
'1
~40
II:
II:
tpC=170ns
TA~25°C
->
~
>->
...1-
5,00
~o
15
...Z
w
0::
0::
:::J
............
10
RAS = CAS
»
T )25°C
~
i
,-
15
...Z
JRFSH
w
I
10
0::
0::
:::J
,= VSS
U
I I I I
5':0
U...J
uo
TA=~5°C
,-
~
i
~~
.f-
I I I I
0
»
"w
RAS = CAS = RFSH
U
.
>...I
5~
:::J
'"u
00
2
.
>...I
RAS = CAS = RFSH = Vee
I
I
O~
:::J
I
'"u
2
10,us/Division
0
=
VSS
I
I
5
RAS = CAS = RFSH = Vee
I
100.us/Division
SUBSTRATE VOLTAGE vs SUPPLY
VOLTAGE DURING POWER UP
>-S:
...1"w
.. <:)
5°r---I
~~
u...l
uO
»
I I
0
~
w
0
~
-1.0
1\
...I
0
> -2,0
I
I
I I
~=25olc
T
I
CAS = RAS = RFSH = Vee
,
\
<:)
!
"-
...w
~ -3.0
...
~ -4.0
:::J
'"
"'
;:)
>'"
0
25J.1s/Division
SUPPLY CURRENT vs SUPPLY VOLTAGE DURING POWER UP (ON MEMORY BOARD)
>-S:
~i
~o
> >
~
i
50
0
0
80
0::
0::
:::J
60
.
40 I
'"u
20
U
>...I
1
1
1
~~
1
:::J
tAc"'270ns
"\
~
i
~ 8265
+ Decoupt;ng
00
I
1
T A =25°C
tRc"'270ns
80
0::
0::
:::J
60
>-
40
u
Capacitor (O.l.uFI
..
~
MB 8265 + Oecoupling
Capacitor (O.l.uF) f - -
:::J
'"u 201
\::oupt;n g Capacitor
~,1"FI Oi'Y
2
1
...z
w
\\
5:[71
uo
> >
T A"'25°C
...z
w
>->
2
o ~~OUPl;ng:capac+
0
10J.ls/Division
1-57
101"t only
100,u.s/Division
I
FUJITSU
MB8265A·IO
MB8265A·12
MICROELECTRONICS
NMOS 65,536·BIT DYNAMIC
RANDOM ACCESS MEMORY
DESCRIPTON
The Fujitsu MB8265A Is a fully decoded, dynamic NMOS random access memory organized as 65,536
one-bit words. The design is optimized
for high-speed, high performance applications such as mainframe memory, buffer memory, peripheral storage
and environments where low power
dissipation and compact layout are required.
Multiplexed row and column address
inputs permit the MB8265A to be
housed in a standard 16-pin DIP. Pinouts conform to the JEDEC approved
pin out.
The MB8265A is fabricated using
silicon gate NMOS and Fujitsu's advanced Double-Layer Polysilicon precess. This process, coupled with
single-transistor memory storage
cells, permits maximum circuit density and minimal chip size. Dynamic circuitry is used in the design, including
the sense amplifiers.
Clock timing requirements are noncritical, and power supply tolerance is
±10%. All inputs/outputs are TIL
compatible.
FEATURES
• Organized as 65,536 x 1 RAM,
16 pin package
• SlIiconllate, Double Poly NMOS
Single transitor cell
• Row Access Time:
MB8265A-10 100ns Max.
MB8265A·12 120ns Max.
• Cycle Time:
MB8265A-10 200 ns Min.
MB8265A-12 230 ns Min.
• Low Power:
MB8265A-10 330mW
Max. (Active)
MB8265A-12 300mW
Max_ (Active)
25mW Max (Standby)
• ±10% tolerance on a +5 volt
supply
• On·chlp substrate bias generator
• All Inputs/outputs TIL compatible,
low capacitive load
• Three-state output
• "Gated" CAS
• Pin 1 refresh capability
• Common 110 capability using
"Early Write" operation
• Output unlatched at cycle end
allows extended page boundary
and two-dImensional chip select
• Read·Modlfy·Wrlte, RAS-Only
refresh capebillty
• Page-Mode capability
• On·chlp latches for addresses
and Data-In
• Offers two variations of hidden
refresh
MB8265A BLOCK DIAGRAM
CERDIP PACKAGE
DIP·16C·C04
PIN ASSIGNMENT
RFSH
DIN
WE
AAs
AO
A2
A1
Vee
VSS
CAS
[)OUT
AS
A3
A4
A5
A7
This device contains clrpuitry to protect the
inputs against damage due to high static
voltages or electric fields. However, It Is ad·
vised that normal precautions be taken to
avoid application of any voltage higher than
maximum rated voltages to this high 1m·
pedance Circuit.
-Vee
L.==:::::'--=~====:.J
_GND
1-58
FUJITSU
MB8266A·IO
MB8266A·12
MICROELECTRONICS
NMOS 65,536·BIT DYNAMIC
RANDOM ACCESS MEMORY
DESCRIPTION
The Fujitsu MB8266A is a fully
decoded dynamic NMOS random
access memory organized as
65,536 one-bit words. The design
is optimized for high speed, high
performance applications such
as mainframe memory, buffer
memory, peripheral storage and
environments where low power
dissipation and compact layout
are required.
Multiplexed row and column address inputs permit the MB8266A
to be housed in a standard 16-pin
dual in·line package. The
MB8266A offers new functional
enhancements that make it more
versatile than previous dynamic
RAMs. CAS-before RAS refresh
provides an on-chip refresh
capability that is acceptable up-
ward to 256K dynamic RAMs as
pin 1 is left as a no connect. The
MB8266A also features "nibble
mode" which allows high speed
serial access to up to 4-bits of
data.
The MB8266A is fabricated using
silicon gate NMOS and Fujitsu's
advanced Double-Layer Polysilicon process. This process coupled with single transistor
memory storage cells, permits
maximum circuit density and
minimal chip size. Dynamic circuitry is used in the design, including the sense amplifiers.
Clock timing requirements are
noncritical, and power supply tolerance is very wide. All inputs are
TTL compatible.
CERiDIP PACKAGE
Dlp·16C·C04
PIN ASSIGNMENT
Vss
N.C.
CAS
FEATURES
• Organized as 65,536 x 1,
16-pln package, JEDEC
approved pin-out
• Silicon-gate, Double Poly
NMOS, single transistor cell
• Row Access Time:
MB8266A-10 100ns max_
MB8266A-12 120ns max.
• Cycle Time:
MB8266A-10 200 ns min.
MB8266A-12 230 ns min_
• Low Power:
330mW max (Active)
23mW max (Standby)
• ±10% tolerance on a +5V
supply
• On-chip substrate bias
generator
• All Inputs TTL compatible, low
capacitive load
• Three-state output
• Common 110 capability using
"Early Write" operation
• Output unlatched at cycle end
allows extended page
boundary and two-dimensional
chip select
• CA5-before-RAS refresh
capability
• Nibble mode capab!!!!l.
• Read-Modify-Write, RA5-only
refresh capability
• On-chip latches for addresses
and DIN
• Offers "CAS-before-RAS"
hidden refresh
Vcc
MB8266A BLOCK DIAGRAM
WE
D,.
.
"
"
"
'.
DOUT
..
"A,
1-59
Device
Organization
Access
Time
(max)
Power
Supply
Volts
Power
DIssipation
Package
Page
MBM2147H-70
MBM2147H-55
MBM2147H-45
MBM2147H-35
MBM2148-70L
MBM2148-55L
MBM2149-70L
MBM2149-55L
MBM2149-45
MB8128-15
MB8128-10
MB8167-70
MB8167-55
MB8167A-55
MB8167A-45
MB8168-70 ..
MB8168-55
4K x 1
4K x 1
4K x 1
4K x 1
1K x 4
1K x 4
1K x 4
1K x 4
1K x 4
2Kx8
2Kx 8
16K x 1
16K x 1
16K x 1
16K x 1
4Kx4
4Kx4
70nS
55nS
45nS
35nS
70nS
55nS
70nS
55nS
45nS
150nS
100nS
70nS
55nS
55nS
45nS
70nS
55nS
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
8401110mW
9451110mW
9901165mW
9901165mW
6901110mW
6901110mW
690mW
690mW
990mW
385185mW
5501110mW
9901165mW
9901165mW
6601140mW
6601140mW
8251220mW
8251220mW
18-pin
18-pin
18-pin
18-pin
18-pin
18-pin
18-pin
18-pin
18-pin
24-pin
24-pin
20-pin
20-pin
20-pin
20-pin
20-pin
20-pin
2-2
2-2
2-2
2-2
2-7
2-7
2-12
2-12
2-12
2-17
2-17
2-22
2-22
2-27
2-27
2-28
2-28
FUJITSU
MBM2147H·70
!JIBM2147H·55
MBM2147H·45
MBM2147H·35
MICROELECTRONICS
MOS 4096·BIT STATIC
RANDOM ACCESS MEMORY
DESCRIPTION
single +5V DC supp~For ease
of use, chip select (CS) permits
the selection of an individual
package when outputs are OR·
tied, and automatically powers
down the MBM2147H. All devices
offer the advantage of low power
dissipation, low cost and high
performance.
The Fujitsu MBM2147H is a 4096
words by 1 bit static random ac·
cess memory fabricated using
N·channel silicon gate MOS
technology. Separate inpullout·
put pins are provided. All devices
are fully compatabile with TTL
logic families in all respects: in·
puts, outputs and the use of a
FEATURIS
• Single +5V DC supply
voltage
• TTL compatible Input/output
• 3·state output with OR·tle
capability
• Chip select with automatic
power down
• Standard 18 pin DIP package
• Pin compatible with Intel
• Organization: 4096 words X 1
bit
• Static operation, no clocks
or refresh required
• Fast Access Time:
MBM2147H·70: 70 ns Max
MBM2147H·55: 55 ns Max
MBM2147H·45: 45 ns Max
MBM2147H·35: 35 ns Max
2147/2147H
MBM2147B BLOCK DIAGRAM
A.=~
",,-Vcc
A,
A2
ROW
SELECT
_ v..
CELLARRAV
"ROWS
64 COLUMNS
A4-----1~~=~
---1
DIN - - - - - ; .::___
COLUMN I/O CIRCUITS
DOUT
COLUMN SELECT
cs-_->
<'
3000
MBM2147H-45
Input Pulse Levels:
Input Pulse Rise and Fall Times:
Timing Measurement Reference Levels:
OV to 3_0V
5 ns
Inputs: 1_5V
Output: 0_8 to 2_0V
OUTPUT LOAD
FOR 1HZ. ILZ. IWZ and low
Vcc
> 51011
-<
MBM2147H-35
Input Pulse Levels:
Input Pulse Rise and Fall Times:
Timing Measurement Reference Levels:
DOUT -----1~---_.
1
OV to 3_0V
5 ns
Inputs: 1_5V
Output: 1_5V
5pF
(Including
I~
Scope and Ji9~
2-5
>
~ 30011
-c;
MBM2l47B
DESOIPTION
The MBM2147 family from Fujitsu
are high performance parts. They
are designed for high speed and
low system power requirements.
The high speed is obtained byadvanced NMOS processing. The
low system power requirements
are achieved by the use of the
MBM2147's chip select (active
low). The MBM2147 automatically
enters standby (drawing only Iss>
whenever the chip select is high.
Upon activation of chip select
(OS"
LOW) the MBM2147
automatically powers up and
draws Icc.
This automatic power up/down Is
an extremely useful feature.
However, care must be used as
proper decoupling and PC board
layout is required to minimize
power line glitches.
PC boarcllayout with proper Vee
decoupling will minimize power
line glitches.
=
Input and data bus lines are an
additional area of concern.
Unless bus lines are properly
designed and terminated, cross
coupling, cross talk and reflections can occur. Of particular importance is the undershoot on address lines. Once again, careful
attention to good PC board layout
and proper termination techniques will yield a well designed
and reliable memory system.
TYPICAL CHARACTERISTICS CURVES
SUPPLY CURRENT
VI SUPPLY VOLTAGE
TYPICAL POWER·ON CURRENT
SUPPLY VOLTAGE
SUPPLY CURRENT
VI AMBIENT TEMPERATURE
t. 2
v.
2.0
1. 2
T A125°c
"
!P
<.i
::
o
1. 0
~
:::;
ISB
i"""
"
~
N
2 1.0
o
ISB
~~
w
[;,...-0 ~
N
:::;
~c
:;;
a:
~
"
.!P 1. 5
"'"
U
TA =1250 C
,.....""
~
a:
o
1.0
~
O. 5
--
/
0./
V CC=S.OV
z o.8
O. 8
:J
:;;
"a:
r-
Vee, SUPPLY VOLTAGE (V)
4.5
20
40
60
80
T A. AMBIENT TEMPERATURE (" Cl
5.5
Vee. SUPPLY VOLTAGE (V)
<"
i...
~
a:
a:
::>
"
~
OUTPUT SOURCE CURRENT
vs OUTPUl VOLTAGE
50
.s<"
I
40
Vcc~Min
T A =>25°C
30
6
10
o
j
40
Vcc~Min
a:
a:
a
TA=-25"C
30
~
is
::i
0
1. 0
;
0.9
o
~
~
O.8
~~
~
~
10
4.5
VOL. OUTPUT VOLTAGE: (V)
ACCESS TIME CHANGE
VI OUTPUT LOADING
0
~
O. 7
60
80
0
ACCESS TIME CHANGE
~
20..-,----,VS_IN..,Pr U.,.T_V_O_L.,..T_AG.:.E-,-_....
:J:
~
T A. AMBIENT lEMPERATURE ('C)
5.5
Vee. SUPPLY VOLTAGE (V)
'"z
"
0
VCCjMin
40
T A=,25°C
0.7
~
IAA
20
0.8
2
jill'"
a:
~
0.9
"a:
v,
lACS
...o!I
lACS
:;;
NORMALIZED ACCESS TIME
AMBIENT TEMPERATURE
~
~
IAA
1.0
~
VOH. OUTPUT VOLTAGE (V)
1. 1
ffi
NORMALIZED ACCESS TIME
vs SUPPLY VOLTAGE
OUTPUT SINK CURRENT
vs OUTPUT VOLTAGE
0
j
o
V
~V
Vcc=5V
T~~C
101--1----If-JJ-I.--4--.:.4=:...:...-l
ljl
w
tl
Vcc=Min
T A"}O'C
~
100
~
:;;
>=
"~
~
O~~~~~--. .--~--~
.(
200
300
400
CL. OUTPUT LOADING (,F)
2-6
"
~
1.0
2.0
3.0
4.0
V,N. INPUT VOLTAGE (V)
FUJITSU
MBM2148·55L
MBM2148·70L
MICROELECTRONICS
MOS 4096·BIT STATIC
RANDOM ACCESS lVIEl.\(ORY
DfSCRIPTION
The Fujitsu MBM2148L is a 1024
word by 4 bit static random access memory with automatic
power down. It is fabricated us·
ing N·channel silicon gate MOS
technology. The memory is fully
static and requires no clock or
timing strobe. All pins are TIL
compatible and a single 5V
power supply is required.
A separate chip select (CS) pin
simplifies multipackage systems
design. It permits the selection
of an individual package when
outputs are OR·tied, and furthermore ·on selecting a single
package by CS the other deselected packages automatically
power
down.
Fujitsu's
MBM2148L offers the advantages of low power dissipation,
low cost and high performance.
FEATURES
• Organization: 1024 words x
4 bits
• Static operation; no clock or
timing strobe required
• Fast access time:
MBM2148-55L: 55 ns max.
MBM2148·70L: 70 ns max.
• Low power consumption:
Icc = 125mA max.
IS8 = 20mA max.
• Single +5V DC supply voltage
(±10% tolerance)
• Common data input/output
• TIL compatible inputs/outputs
• Three·state output with OR·tie
capability
• Chip select for simplified
memory expansion, automatic
power down
• Standard 1S-pin DIP package
• Pin compatible with
Intel 2148
MBM2148 BLOCK DIAGRAM
A4~---j~=r-1
A5
A.~---D!::=:::l
A6
Vee
As
A7
~vcc
A4
As
MEMORY ARRAY
---=:ovss'
A3
Ag
Ao
1101
648~~~U~~S
ROW
A. ~---D!::=:::l
A.~--~==1
COLUMN
I/O, ~~-tr--r-1:3 I/O CIRCUITS
DATA
WE
TRUTH TABLE
Mode
Not Selected
Write
Read
1102
A2
1103
Vss
~tit-Hr--jc'ONTRO
WE
A1
CS
COLUMN
SELECT
INPUT
CS
H
PIN ASSIGNMENT
r-----,
A7 ~--~==1 SELECT
1/02~+Hr----j
CERDIP PACKAGE
Dlp·18C·C01
110
High Z
DIN
Dour
Power
Standby
Active
Active
2-7
1/04
WE
This device contains circuitry to protect the
inputs against damage due to high static
voltages or electric fields. However, it Is advised that normal precautions be taken to
avoid application of any voltage higher than
maximum rated voltages to this high Impedance circuit.
MBM2148·55L I MBM2148·7 0 L
ABSOLUTE MAXIMUM RATINGS
(See Note)
Rating
Voltage On Any Pin with respect to vss
Short Circuit Output Current
Temperature Under Bias
Storage Temperature
Power Dissipation
Symbol
Value
Unit
VIN, VOUT, Vee
-3.5 to +7
20
-10 to +85
-65 to +150
1.2
V
mA
·C
·C
TA
Tstg
Po
W
NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be
restricted to the conditions as detailed in the operations sections of this data sheet. Exposure to absolute maximum
rating conditions for extended periods may affect device reliability.
CAPACITANCE (1)
(TA = 25·C; f= 1 MHz)
Parameter
Address/Control Capacitance (VIN =OV)
Input/Output Capacitance (VOUT = OV)
Symbol
Typ
CIN
CliO
-
Max
5
7
-
Unit
pF
pF
NOTE: 1) This parameter is sampled and not 100% tested.
RECOMMENDED OPERATING CONDmONS
(Referenced to VSS)
Parameter
Supply Voltage
Input Low Voltage
Input High Voltage
Symbol
Vee
VIL
VIH
Min
4.5
-3.0
2.1
Typ
5.0
Max
5.5
0.8
6.0
-
Ambient(1)
Temperature
Unit
V
V
V
O·C to +70·C
NOTE: 1. The operating ambient temperature range is guaranteed with transverse airflow exceeding 400 linear feet per minute.
DC CHARACTERISTICS
(Recommended operating conditions unless otherwise noted)
Parameter
Input Leakage Current
(VIN = VSS to Vee, Vee = Max)
Output Leakage Current
(CS = VIH, VOUT = Vss to 4.5V, Vee = Max)
Power Suppl~urrent
(Vee = Max, CS = VIL, lOUT = Om A)
Output Low Voltage (IOL = 8mA)
Output High Voltage (IOH = -4mA)
Standby Current
(Vee = Min to Max, CS = VIH, lOUT = OmA)
Peak Power-On Current
(Vee = Vss to Vee,Min CS = Lower of Vee or VIH Min)
Output Short Circuit Current
(VOUT = Vss to Vee>
Symbol
Min
Max
Unit
III
-10
10
pA
ILO
-50
50
pA
Icc
VOL
VOH
-
125
0.4
2.4
-
mA
V
V
20
mA
IpO
-
30
mA
los
-200
200
mA
ISB
2-8
MBM2148·55L/MBM2148·70 L
AC CHARACTERISTICS
(Recommended operating conditions unless otherwise noted.)
READ CYCLE
Parameter
/NOTESI
Read Cycle Time
Address Access Time
Chip Select Access Time
Chip Select Access Time
Previous Read Data Valid
After Change of Address
Chip Select to Power Up
Chip Select to Output Active
Chip Select to Output Three-State
Chip Select to Power Down
MBM2148·55L
Symbol
tRC
tAA
[1]
~
tACS1
tACS2
[3J
tOH
tpu
tLZ
l3J
Min
Typ
55
-
-
5
0
20
0
tHZ
tpD
-
MBM2148-70L
Max
Min
Typ
-
70
-
55
55
65
-
-
5
20
30
-
0
20
0
-
-
-
Max
70
70
80
20
30
NOTE: 1. Chip deselected for greater than 55 ns prior to selection
2. Chip deselected for a finite time that is less than 55 ns prior to selection. (If the deselect time is 0 ns, the chip is by
definition selected and access occurs according to Read Cycle: Address Changing.)
3. Transition is measured ±500 mV from high impedance voltage with LOAD B. This parameter is sampled and not 100%
tested.
READ CYCLE
-+
(1)
READ CYCLE: ADDRESS CHANGING(2)
ADDRESSES
IRC------i~
______
DATA OUT
-J~-to-H==:I..-IAA--1-:- - PREVIOUS DATA VALID$ X X ~
DATA VALID
READ CYCLE:
CS CHANGING(3)
IRC
~
lACS
DATA OUT
~~;PLY
CURRENT
r-tHZ-
I~~ X X
HIGH IMPEDANCE
HIGH
IMPEDAN CE
DATA VALID
I
r---lpD
------),.---------------------=L
I--lpU
:csac
NOTE: 1. WE is high for Read Cycle.
2. Device is continuously selected, CS = VIL'
3. Address valid prior to or coincindent with CS low transition.
2-9
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
MBM2148-55L/MBM2148-70 L
AC CHARACTERISTICS
(Recommended operating conditions unless otherwise noted.)
WRITE CYCLE
Parameter
IfiQID]
Write Cycle Time
Address Valid to End of Write
Chip Select to End of Write
Data Valid to End of Write
Data Hold Time
Write Pulse Width
Write Recovery Time
Address Setup Time
Output Active From End of Write
Write Enabled to Output Three-State
rn
rn
Symbol·
twe
tAW
tew
tow
tOH
twp
tWR
tAS
tow
twz
MBM2148·55L
Min
Typ
Max
55
50
50
20
0
40
5
0
0
0
20
-
-
-
-
-
-
-
Min
70
65
65
25
0
50
5
0
0
0
MBM2148·70L
Typ
Max
-
-
25
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
NOTE: 1. Transition is measured ±500 mV from high impedance voltage with LOAD B. This parameter is sampled and not 100% tested.
WRITE CYCLE
WRITE CYCLE: WE CHANGING
IWC
ADDRESSES
CS1)
---"
--'
~
ICW
K
II
lAW
lAS
WE
IWp-
I
)---IWR-
\I \
IDH
IDW
DATA IN
DATA IN VALID
---------------?=:)I
c---IWZ
DATA OUT
IIII
DATA UNDEFINED
~
-low
~
HIGH IMPEDANC-;1 . - - - - -
NOTE: 1. if CS goes high simulataneously with WE high, the output remains in a high liTlpedance state.
2-10
MBM2148-55LI MBM2148-70 L
WRITE CYCLE
WRITE CYCLE: CS CHANGING
twe
ADDRESSES~
-'
-- r{
CS
tAS
tew
tAW
tWR~
twp
~//
'\.'\.'\.'\.'\.'\.'\.'\.
//L// / / / /
tDH
tDw
DATA IN
DATA IN VALID
twz
~
HIGH IMPEDANCE
DATA OUT
AC TEST CONDITIONS
Input Pulse Level:
Input Pulse Rise and Fall Times:
Timing Measurement Reference Levels:
OV to 3.0V
5ns
Inputs:
1.5V
Outputs: 1.5V
Vee
Vee
4800
4800
DOUT--......- -...
DOUT-->---......
(1/0)
(1/0)
225n
2550
OVERVIEW
The MBM2148 family from Fujitsu are high performance parts. They are designed for high speed and low
power system requirements.
The high speed is obtained by advanced NMOS processing. The low power system requirements are
achieved by the use of the MBM2148's chip select (active low). The MBM2148 automatically enters stand·
by (drawing only ISB) whenever the chip select is high. Upon activation of chip select (CS = LOW) the
MBM2148 automatically powers up and draws IcC.
This automatic power up/down is an extremely useful feature. PC board layout with proper Vee decoupl·
ing will minimize power line glitches.
Input and data bus lines are an additional area of concern. Unless bus lines are properly designed and ter·
minated, cross coupling, cross talk and reflections can occur. Of particular importance is the undershoot
on address line. Once again, careful attention to good PC board layout and proper termination techni·
ques will yield a well designed and reliable memory system.
2-11
FUJITSU
MBM2149·45
MBM2149·55L
MBM2149·70L
MICROELECTRONICS
MOS 4096·BIT STATIC
RANDOM ACCESS MEMORY
DESCRIPTION
The Fujitsu MBM2149 is a 1024
word by 4-bit static random access memory fabricated using
N-channel silicon gate MOS technology. The memory is fully static
and requires no clock or timing
strobe. All pins are TIL compatible and a single 5V power supply
is required.
A separate chip select (CS) pin
simplifies multi package systems
design by permitting the selection of an individual package
when outputs are OR-tied. Fujitsu's MBM2149 offers the advantages of low power dissipation,
low cost and high performance.
FEATURES
• Organization: 1024 words x 4 bits
• Static operation; no clocks or
timing strobe required
• Single +5V DC supply voltage
(±10% tolerance)
CERDIP PACKAGE
Dlp·18C·C01
• Common data Input/output
• Address Access Time:
MBM2149-45: 45 ns max.
MBM2149·55L: 55 ns max.
MBM2149-70L: 70 ns max.
• TTL compatible Inputs/outputs
• Three·state output with OR-tie
capability
• Chip Select Access Time:
MBM2149-45: 20 ns max.
MBM2149-55L: 25 ns max.
MBM2149-70L: 30 ns max.
• Chip select for simplified
memory expansion
• Standard 18-pin DIP package
• Low Power Consumption:
MBM2149-45: 180mA
MBM2149·55U·70L: 125mA
PIN ASSIGNMENT
• Pin compatible with
Intel 2149
Ae
Vcc
As
A7
~
Ae
A3
Ag
Ao
1101
A1
1/02
A8 o----~===:::l
A2
1/0 3
A9,~~::;J
~
1/04
Vss
WE
MBM2149 BLOCK DIAGRAM
A4~----~===i----l
A5~---C~===::J
A6~--~===:::l
MEMORY ARRAY
64 ROWS •
64 COLUMNS
ROW
A7 ~----t,:;l=====l SELECT
FL.:-:==~~
TRUTH TABLE
cs
WE
2-12
cs
WE
H
L
L
X
L
H
Mode
Not Selected
Write
Read
1/0
High Z
DIN
DOUT
MBM2149
ABSOLUTE MAXIMUM RATINGS (See Note)
Rating
Voltage On Any Pin with respect to vss
Short Circuit Output Current
Temperature Under Bias
Storage Temperature
Power Dissipation
Symbol
Value
Unit
VIN, VOUT, Vee
-3.5 to +7
20
-10 to +S5
-65 to +150
1.2
V
mA
·C
·C
TA
Tstc
Po
W
NOTE: Permanent device damage may occur If ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be
restricted to the conditions as detailed in the operations sections of this data sheet. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability. This device contains circuitry to protect the inputs against
damage due to high static voltages or electric fields. It is advised that normal precautions be taken to avoid application of
any voltage higher than maximum rated voltages to this high impedance circuit.
CAPACITANCE (1)
(TA = 25·C;f= 1 MHz)
Parameter
Address/Control Capacitance (VIN =OV)
Input/Output Capacitance C'JI/O = OV)
Symbol
Typ
CIN
CliO
-
Max
5
7
-
Unit
pF
pF
NOTE: 1. This parameter is sampled and not 100% tested.
RECOMMENDED OPERATING CONDITIONS
(Referenced to VSS)
Parameter
Supply Voltage
Input Low Voltage
Input High Voltage
Symbol
Vee
VIL
VIH
Min
4.5
-3.0
2.1
Typ
5.0
-
-
Ambient(1)
Temperature
Unit
Max
5.5
O.S
6.0
V
V
V
O·C to +70·C
NOTE: 1. The operating ambient temperature range is guaranteed with transverse airflow exceeding 400 linear feet per minute.
DC CHARACTERISTICS
(Recommended operating conditions unless otherwise noted)
Parameter
Input Leakage Current
(VIN = VSS to Vee, Vee = Max)
l!!£?utlOutput Leakage Current
(CS = VIH, VI/O = Vss to 4.5V, Vee = Max)
Power SupplY..f:urrent
I MBM2149-45
(Vee = Max, CS = VIL, lOUT = OmA) I MBM2149-55L I -70L
Output Low Voltage (IOL - SmA)
Output High Voltage (lOH = -4mA)
Output Short Circuit Current
C'JOUT = VSS to Vee)
2-13
Symbol
Min
Max
Unit
III
-10
10
p.A
p.A
mA
mA
V
V
ILO
-50
lee
lee
VOL
VOH
-
50
1S0
125
0.4
2.4
-
los
-
±200
mA
MBM2149
AC CHARACIERISnCS
(Recommended Operating Conditions unless otherwise noted.)
READCYCLE
INOTES I
Parameter
Read Cycle Time
-
tRC
tAA
tACS
Address Access Time
Chip Select Access Time
Previous Read Data Valid
After Change of Address
Chip Select to Output Active
Chip Select to Output Three·State
MBM2149·45
Max
Min
45
45
20
Symbol
rII
rII
-
tOH
5
tLZ
tHZ
5
0
-
MBM2149·55L
Min
Max
55
55
25
-
5
15
5
0
-
15
MBM2149·70L
Min
Max
70
70
30
-
-
Unit
ns
ns
ns
5
-
ns
0
15
ns
5
ns
NOTE: 1. Transition is measured ±500 mV from high impedance voitage with LOAD B. This parameter is sampled and not 100% tested.
READ CYCLE (1)
READ CYCLE: ADDRESS CHANGING(2)
~_
ADD""'''
DATA OUT
READ CYCLE:
i '" . . "\
_~......---
_t R _ C
PREVIOUS DATA:o:]
X X~:============D:A=T=A=V=A=LI~D=============
CS CHANGING
ADDRESSES
LIIIIIIIIIII
\.\.\.\.\.\.
i-----tAcs----1
r-.-tLZ
DATA OUT
------------~rK~xxX>Xrx~roD;,ATiA~VA~LIDID~------------
Note: 1. WE is high for Read Cycle.
2. Device is continuously selected,
CS = VI L'
2-14
MBM2149
AC CHARACTERISTICS
(Recommended operating conditions unless otherwise noted.)
WRITE CYCLE
Parameter
INOTESI
Write Cycle Time
Address Valid to End of Write
Chip Select to End of Write
Data Valid to End of Write
Data Hold Time
Write Pulse Width
Write Recovery Time
Address Setup Time
Output Active From End of Write
Write Enabled to Output Three-State
rn
rn
MBM2149-45
Max
Min
Symbol
-
45
40
40
20
0
35
5
0
0
0
twc
tAW
tcw
tow
tOH
twp
tWR
tAS
tow
twz
-
15
MBM2149-55L
Min
Max
55
50
50
20
0
40
5
0
0
0
-
-
20
MBM2149-70L
Min
Max
70
65
65
25
0
50
5
0
0
0
-
25
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
NOTE: 1. Transition is measured ±500 mV Irom high impedance voltage with LOAD B. This parameter is sampled and not 100% tested.
WRITE CYCLE
WRITE CYCLE: WE CHANGING
IWC
ADDRESSES ~
---'
cs1)
~
Icw
~
II
lAW
lAS
WE
Iwp
I
-IWR-
\I \
low
IOH
DATA IN VALID
DATA IN
--------------------------------~
=:)I HIGHIMPEDAN~---------~
-Iwz
DATA OUT
IIII
I--Iow
DATA UNDEFINED
NOTE: 1. II CSgoes high simulalaneously with WE high. the output remains in a high Impedance state.
2-15
MBM2149
WRITE CYCLE
WRITE CYCLE: CS CHANGING
twe
ADDRESSES~
--I
--
tAS
tew
N
tAW
twp
-'\.~"'"-\..\..\..\..\..
tWR-
r// / / / / / / / / /
I\,.
tDH
tDW
DATA IN
DATA IN VALID
twz
~
HIGI'I IMPEDANCE
DATA OUT
AC TEST CONDmONS
Input Pulse Level:
Input Pulse Rise and Fall Times:
Timing Measurement Reference Levels:
OV to 3.0V
5ns
Inputs:
1.SV
Outputs: 1.5V
Vee
Vee
4800
4800
Dour
Dour
(1/0)
(1/0)
22511
2550
OVERVIEW
The MBM2149 family from Fujitsu are high performance parts. They are designed for high speed and low
power system requirements. The high speed Is obtained by advanced NMOS processing.
Input and data bus lines are an area of concern. Unless bus lines are properly designed and terminated,
cross coupling, cross talk and reflections can occur. Of particular importance is the undershoot on address line. Careful attention to good PC board layout and proper termination techniques will yield a well
d~slgned and reliable memory system.
2-16
FUJITSU
MB8128·10
MB8128·15
. MICROELECTRONICS
NMOS 16,384·BIT STATIC
RANDOM ACCESS MEMORY
DESCIUPTION
The MB8128 is fabricated using
N-channel silicon gate MOS tech·
nology. It uses fully static clr·
cuitry throughout and therefore
requires no clocks or refreshing
to operate.
MB8128 is designed for memory
applications where high perfor·
mance, low cost, large bit
storage, and simple interfacing
are required. The MB8128 is com·
patlble with TTL logic families in
all respects; inputs, outputs and a
single +5V supply.
FEATURES
• 2048 words X 8-blt
organization
• Static operation: no clocks
or refresh required
• Fast access time:
MB8128-10 100 ns Max.
MB8128-15 150 ns Max.
• Single +5V supply voltage
• Common data Inputs and
outputs
• TTL compatible Inputs and
outputs
• Three-state output with
OR·tle capability
• Chip Enable for simplified
memory expansion
• Automatic power down
• Industry standard 24-pln
DIP package
• Pin compatible with MB8416
(CMOS Static RAM) and
MBM2716 (EPROM)
CERDIP PACKAGE
DIP·24C·C03
PLASTIC PACKAGE
Dlp·24p·M01
MB8128 BLOCK DIAGRAM
T
ROW
SELECT
MEMORY ARRAY
128 ROWS BY
128 COLUMNS
A,----~==I
I/O CIRCUITS
1/01,--------_---1
INPUT
DATA
COLUMN SELECT
CONT.
PIN ASSIGNMENT
A,
Vee
A6
As
As
A4
A3
WE
A9
OE
A2
Alo
AI
Ao
CE
I/Os
11O,
lloo,--------..-t-H
1/0 1
110 2
1/0 6
C!'E-_----k==============DA==T=A=V=A==L=ID==============
CONTROLLED3 )
OE
CE
1/0
Vee
SUPPLY
CURRENT 158,----------/
III : Don't Care
m:
Note:
1) WE is high for Read Cycle.
2) Device is continuously selected, CE = V IL , OE = V 1L •
3) Addresses valid prior to or coincident with CE transition low.
2-19
Undefined O.ta
MB8J.28..10 IMB8128-1S
WRITECYCLE
Symbol
Parameter
Write Cycle Time
Address Valid to End of Write
Chip Select to End of Write
Data Valid to End of Write
Data Hold Time
Write Pulse Width
Write Recovery Time
Address Setup Time
Output Active From End of Write
Write Enable to Output in High Z
Min
twc
tAW
tcw
tow
!tIDH
100
twp
tWR
tAS1
tAS2
tow
twz
85
MB8128·10
Typ
Max
95
95
40
5
5
0
0
10
-
-
40
MB8128-15
Typ
Max
Min
-
150
140
140
60
5
130
10
0
0
10
-
WRlTECYCLE
WRITE CYCLE:
WE
cn.,TR{lLum-·
~-----------twc·----------~
ADDRESSES
DOUT
.:Don·tC....
m:
Undefined Data
WRITE CYCLE:
~ CONTROLLE0 2 )
ADDRESS
B:Don'tCire
Note: 1) If ~ goes low simultaneously with WE low, the outputs remain in a
high impedance state.
2) ~ or WE must be high during address transitions.
.2-20
•
: Undefined Dati
60
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
MBS128-10 /MBS128·15
OVERVIEW
The MB8128 from Fujitsu Is a
high performance part, designed
for high speed and low system
power requirements.
The high speed Is obtained byadvanced NMOS processing. The
low system power requirements
are achieved by the use of the
MB8128 chip-enable (active low).
The MB8128 automatically enters standby operation drawing
only ISB whenever the chip enable
Is high. Qpon activation of chip
enable (CE LOW) the MB8128
automatically powers up. This
automatic power up/down is an
extremely useful feature. Care
must be used as proper decoupling will minimize power line glitches.
=
Input and data bus lines are an
additional area of concern. Unless bus lines are properly de-
2-21
signed and terminated, cross
coupling, cross talk and reflections can occur. Of particular importance is the undershoot on
address lines. Once again, careful attention to good PC board
layout and proper termination
techniques will yield a well
designed and reliable memory
system.
FUJITSU
MB8167·55
MB8167·70
MICROELECTRONICS
NMOS 16,384 BIT STATIC
RANDOM ACCESS MEMORY
NOT RECOMMENDED FOR NEW
DESIGNS. SEE PART NtJMBER
MB8167A-S5/MB8167A-CS.
DESCRIPTION
The Fujitsu MB8167 is a 16384
words by 1 bit static random access memory fabricated using
N-channeJ silicon gate MOS
technology. Separate Input/output pins are provided. All
devices are fully compatible
with TTL logic families In all
respects: inputs, output and the
use of a single +5V DC supply.
For ease of use, chip enable (CE)
permits the selection of an individual package when outputs
are OR-tied, and automatically
powers down the MB8167. This
device offers the advantages of
low power dissipation, low cost,
and high performance.
FEATt1RES
• Organized as 16384 words
x 1 Bit
• Static operation: no clocks
or refresh required
• Fast Acee•• Time:
MB8167-55 55 ns Max.
MB8167-70 70 ns Max.
• Single +5V DC supply Yoltage
• Separate data Input and
output
• TTL compatible Inputs and
output
CERAMIC PACKAGE
(METAL SEAL)
Dlp·20C·A01
• Three-atate output with OR·tle
capability
• Chip enable for simplified
memory expansion and
automatic power down
• All Inputs and output have
protection against static
charge
• Standard 2().pln DIP package
• Pin compatible with Intel 2167
PIN ASSIGNMENT
MB8l67 BLOCK DIAGRAM
PJN-------l
Vee
A1
A13
A2
A12
Aa
A11
A4
As·
At
A10
At!
At
Dour
Ao---~==:l1
ROW
SELECT
Ao
CELL ARRAY
128 ROWS
128 COLUMNS
COLUMN I/O CIRCUITS
A7
WE
DIN
Vss
CE
This device contains circuitry to protect the
Inputs against damage due to high static
voltages or electric fields. However, it is ad·
vised that normal precautions be taken to
avoid application of any voltage higher than
maximum rated voltages to this high 1m·
pedance circuit.
Dour
COLUMN SELECT
INPUT
DATA
CONT.
TRUTBTABLE
Ci-__- . q
WE--_-t
2-22
H
X
L
L
H
MODE
OUTPUT
POWER
NOT SELECTED
WRITE
READ
HIGH Z
HIGH Z
D T
STANDBY
ACTIVE
ACTIVE
NOT RECOMMENDED FOR NEW
DESIGNS. SEE PART NUMBER
MB8167A-55/MB8167A-45.
MBS167-55/MBS167-710
ABSOLUTE MAXIMUM RATINGS (See Note)
Value
Unit
-3.5 to +7
V
·C
·C
Symbol
Rating
Voltage On Any Pin with Respect to vss
VIN, VOUT, Vee
TA
Temperature Under Bias
Storage Temperature
Power Dissipation
-10 to +85
-65 to +150
1.2
Tstg
Po
W
NOTE: Permanent device damage may occur If ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be
restricted to the conditions as detailed in the operations sections of this data sheet. Exposure to absolute maximum
rating conditions for extended periods may affect device reliability.
RECOMMENDED OPERATING CONDITIONS
(Referenced to Vss I)
Parameter
Supply Voltage
Input Low Voltage
Input High Voltage
Symbol
Min
Vee
Vil
VIH
4.5
-3.0
2.0
Typ
5.0
-
Max
Unit
5.5
O.S
6.0
V
V
V
Amblent1)
Temperature
O·C to +70·C
NOTE: (1) The operating ambient temperature range is guaranteed with transverse airflow exceeding 400 linear feet per minute.
CAPACITANCE
(TA
= 25·C, f = 1 MHz)
Parameter
=
Symbol
Typ
Max
Unit
CIN
COUT
-
5
6
pF
pF
Input CapaCitance (VIN
OV)
Output Capacitance (VOUT
OV)
=
-
DC CHARACTERISTICS
(Recommended operating conditions unless otherwise noted)
Parameter
Input Leakage Current
(VIN = Vss to Vee, Vee = Max)
Output Leakage Current
(eE = VIH, VOUT = VSS to Vee Min, Vee = Max)
Power Supply Current
I TA = 25·C
(Vee = Max, CE = Vll, lOUT = OmA) I TA = O·C
Output Low Voltage (IOl = SmA)
Output High Voltage (IOH = -4mA)
Standby Current
(Vee = Min to Max, CE = VIH
Peak Power-On Current
(Vee = Vss to Vee Min, CE = Lower of Vee or VIH Min)
Symbol
Min
Max
Unit
III
-10
10
p.A
ILO
-50
50
170
lS0
0.4
p.A
lee
2-23
-
mA
VOL
VOH
2.4
-
V
V
ISB
-
30
mA
IpO
-
30
mA
NOT RECOMMENDED FOR NEW
DESIGNS. SEE PART NVMBER
MB8167A-55/MB8167A-45.
MBS167-55/MBS167-70
AC TEST CONDmONS
Input Pulse Levels:
Input Pulse Rise and Fall Times:
Timing Measurement Reference Levels:
O.SV to 2.2V
10 ns
Inputs: 1.5V
Output: 1.5V
Vcc
Vcc
$
>
5101l
1
DOUT
30pF
(Including
Scope and Jig)
5100
DOUT-----4~------_+
I
5pF
(Including
Scope and Jig)
Fig. 1: OUTPUT LOAD
I1
~3001l
Fig. 2: OUTPUT LOAD
for tHZ, tLZ, twz, tow
AC CHARACTERISTICS
(Recommended operating conditions unless otherwise noted)
READ CYCLE
Parameter
INOTESI
Symbol
Min
tRC
tAA
tACS
tOH
tLZ
tHZ
tpu
tpD
55
Read Cycle Time
Address Access Time
Chip Enable Access Time
Output Hold from Address Change
Chip Enable to Output Active
Chip Enable to Output in High Z [1.] I]J
Chip Enable to Power Up Time
Chip Enable to Power Down Time
mrn
MB8167·55
Max
Typ
Min
MB8167·70
Typ
Max
70
70
70
55
55
5
10
0
0
30
30
5
10
0
0
40
35
READ CYCLE 3
READ CYCLE: ADDRESS CONTROLLED4
ADDRESSES
DATA OUT
~-: tAA-~----,·~1:;:11:::ti!:::ii:M[11~:
t-OH
PREVIOUS DATA::l
X X *=============D=A=T=A=V=A=L=ID===========
•
Don't Care
~ Undefined Data
2-24
Unit
ns
ns
ns
ns
ns
ns
ns
ns
NOT RECOMMENDED FOR NEW
DESIGNS_ SEE PART NUMBER
MB8167A-55 /MB8167A-45_
MBS167-55/MBS167-70
READ CYCLE 3 (Confd)
READ CYCLE: CE CONTROLLEDS
tRC
~
tACS
tLZ
HIGH IMPEDANCE
DATA OUT
4
tHZ
~X
X
DATA VALID
HIGH
IMPEDAN CE
~
I--tpu
-tpD
VCC
I C C - - - - - - ? - - - - - - - - -_ _ _ _ _ _ _ _ _ _ _ _
SUPPLY
I _____
50%
50 %
CURRENT S8
.=1
Notes: 1. Transition is measured at the point of ±500mV from steady state voltage.
2. This parameter is measured with specified loading in Fig.2.
3. WE is high for Read Cycle.
4. Device is continuously selected, CE = V1L.
5. Addresses valid prior to or coincident with CE transition low.
l&ZI Undefined Data
WRITE CYCLE
Parameter
INOTESI
Symbol
Min
twc
tAW
tcw
tow
tOH
twp
tWR
tAS1
tAS2
tow
twz
55
45
50
35
0
35
5
5
0
Write Cycle
Address Valid to End of Write
Chip Enable to End of Write
Data Valid to End of Write
Data Hold Time
Write Pulse Width
Write Recovery Time
Address Setup Time
Output Active From End of Write
Write Enable to Output in High Z
~[ID
L1JLID
MB8167·55
Max
Typ
a
0
-
-
-
-
-
-
-
-
-
-
.-
-
-
-
-
-
30
Min
70
50
60
45
0
45
10
10
0
0
0
WRITE CYCLE
WRITE CYCLE: WE .CONTROLLED9
ADDRESSES·....... •••.
'I~
______________________________-JI_
DATA IN
Et;1 Don't Care
~
Undefined Data
2-25
MB8167·70
Typ
Max
-
-
-
-
-
-
-
-
-
35
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
NOT RECOMMENDED FOR NEW
MB8167·55 I MB8167·70
DESIGNS. SEE PART NUMBER
WRITE CYCLE (Cont'd)
WRITE CYCLE:
MB8167A-55 /MB8167A-45.
CE CONTROLLED9
~-------------ICW------------~
DATA IN
HIGH IMPEDANCE
DATA OUT
I:II) Don't Care
Notes: 6.
1.
8.
9.
~
Undefined Data
If CE goes high simultaneously with WE high, the output remains in a high impedance state.
Transition is measured at the point of ±500mV from steady state voltage.
This parameter is measured with specified loading in Fig. 2.
CE or WE must be high during address transitions.
DESCRIPTION
The MB8167 from Fujitsu is a
high performance part. It is designed for high speed and low
power system requirements.
The high speed is obtained by
advanced NMOS processing.
The power requirements are
achieved by the use of MB8167
chip enable (active low). The
MB8167 automatically enters
standby drawing only ISB
whenever the chip enable is
high. Upon activation of chip
enable (CE = LOW) the MB8167
automatically powers up and
draws ICC.
This automatic power up/down
is an extremely useful feature.
PC board layout with proper Vee
decoupling will minimize power
line glitches.
Input and data bus lines are an
additional area of concern.
Unless bus lines are properly
designed and terminated, cross
2-26
coupling, cross talk and reflections can occur. Of particular
importance is the undershoot on
address lines. Once again, careful attention to good PC board
layout and proper termination
techniques will yield a well
designed and reliable memory
system.
FUJITSU
MB8167A·45
MBS167A·55
MICROELECTRONICS
NMOS 16,384 BIT STATIC
RANDOM ACCESS lVIElVlORY
DESCRIPTION
The Fujitsu MB8167A is a 16,384
words by 1-bit static random access memory fabrication using
N-channel silicon gate MOS technology. Separate input/output
pins are provided. All devices are
fully compatible with TIL logic
families in all respects: inputs,
output and the use of a single
+5V DC supply.
For ease of use, chip enable (CE)
permits the selection of an individual package when outputs
are OR-tied, and automatically
powers down the MB8167A. This
device offers the advantages of
low power dissipation, low cost,
and high performance.
FEATURES
• Organized as 16,384 words
x 1 Bit
• Static operation: no clocks
or refresh required
• Fast Access Time:
MB8167A·45: 45ns Max.
MB8167A·55: 55ns Max.
• Separate data input and output
• TIL compatible inputs and
output
• Single +5V DC supply voltage
• Three·state output with OR·tie
capability
• Chip enable for simplified
memory expansion and
automatic power down
• All inputs and output have
protection against static
charge
• Standard 2O·pin DIP package
• Pin compatible with Intel 2167
~Vcc
CELL ARRAY
128 ROWS
128 COLUMNS
A12--------l~====:j
A13 --------C6===t___~
D,N
-------1
A,
VCC
A'3
A4
As
A'2
A11
A'0
Ag
A6
A8
Dour
A7
WE
D'N
Vss
CE
This device contains circuitry to protect the
inputs against damage due to high static
voltages or electric fields. However, it is advised that normal precautions be taken to
avoid application of any voltage higher than
maximum rated voltages to this high impedance circuit.
CE-__.--q
TRUTH TABLE
CE WE
L
Ao
Dour
INPUT
DATA
CON·
TROL
H
L
PIN ASSIGNMENT
A2
A3
MB8167A BLOCK DIAGRAM
A" ---------c6==:=j
CERDIP PACKAGE
DIP·20C·C03
X
L
H
MODE
OUTPUT
POWER
NOT SELECTED
WRITE
READ
HIGH Z
STANDBY
HIGH Z
ACTIVE
DOUl
ACTIVE
2-27
FUJITSU
MBSl68·55
MBSl68·70
MICROELECTRONICS
NMOS 16,384·BIT STATIC
RANDOM ACCESS MEMORY
DESCRIPTION
The Fujitsu MB8168 is a 4096
word by 4-bit static random access memory fabricated using
N-channel silicon gate MOS
technology. The memory is fully
static and requires no clock or
timing strobe. All pins are TTL
compatible and a single 5V power
supply is required.
A separate chip select (CS) pin
simplifies multi package system
design. It permits the selection of
an individual package when outputs are OR-tied. Furthermore,
when selecting a single package
by CS, the other deselected packages automatically power down.
All Fujitsu devices offer the advantages of low power dissipation, low cost and high performance.
FEATURES
• Organized as 4096 x 4
• Fully Static Operation, no
clocks or timing strobe
required
• Fast Access Time:
MB8166-55 55 ns Max.
MB8166-70 70 ns Max.
• Low Power Consumption:
IcC = 150mA Max. (Active)
ISB = 40mA Max. (Standby)
• Single +5V DC Supply
Voltage, ±10% tolerance
• Common data Input and output
• Three-state output with OR-tie
capability
• Chip select for simplified
memory expansion, automatic
power-down
• Standard 20-pin DIP package
• Pin compatible with Intel 2168
MBSl68 BLOCK DIAGRAM
" <>---Dc=:r-..., ,..-----,
----aVec
--.oVss
MEMORY ARRAY
128 ROWS
128 COLUMNS
2-28
CERDIP PACKAGE
DIP-20C·C03
PIN ASSIGNMENT
A7
Vcc
A6
A5
As
Ag
A4
A3
A10
A2
"°1
A1
AO
1103
A11
1/°2
CS
1/°4
GND
WE
MBSI68·55 IMBSI68· 70
ABSOLUTE MAXIMUM RATINGS (See Note)
Rating
Voltage On Any Pin with Respect to vss
Unit
Symbol
Value
VIN, VOUT, Vee
-3.5 to +7
-
Short Circuit Output Current
Temperature Under Bias
Storage Temperature
·C
·C
-10 to +85
-65 to +150
1.2
TA
Tstg
Po
~bissipation
V
mA
20
W
Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be
restricted to the conditions as detailed In the operational sections of this data sheet. Exposure to absolute maximum rating
conditions for extended periods may effect device reliability. This device contains circuitry to protect the inputs against
damage due to high static voltages or electric fields. It is advised that normal precautions be taken to avoid application of any
voltage higher than maximum rated voltages to this high impedance circuit.
RECOMMENDED OPERATING CONDITIONS
(Referenced to Vss )
Symbol
Parameter
Supply Voltage
Input Low Voltage
Input High Voltage
Min
4.5
-3.0
2.0
Vee
Vil
VIH
Typ
5.0
Max
5.5
0.8
6.0
-
Amblent 1)
Temperature
Unit
V
V
V
O·C to +70·C
NOTE: (1) The operating ambient temperature range is guaranteed with transverse airflow exceeding 400 linear feet per minute.
CAPACITANCE
(TA
25·C, f
1 MHz, this parameter is sampled, not 100% tested.)
Parameter
Symbol
Typ
Max
Unit
Input Capacitance Address, WE: VIN = OV
Input Capacitance CS: VIN = OV
Output Capacitance Data 110, VOUT = OV
CIN
Ccs
COUT
-
7
8
8
pF
pF
pF
-
DC CHARACTERISTICS
(Recommended operating conditions unless otherwise noted.)
Parameter
Symbol
Input Leakage Current
(VIN = VSS to Vee, Vee = Max)
Output Leakage Current
(CS = VIH, VOUT = VSS to 4.5V, Vee = Max)
Power Supply Current
(Vee = Max, CS = VIL, lOUT = OmA)
Output Low Voltage (IOl = 8mA)
Output High Voltage (lOH = -4mA)
Standby Current
(Vee = Min to Max, CS = VIH, lOUT = OmA)
Peak Power-On Current
(Vee = Vss to Vee Min, CS = Lower of Vee or VIH Min)
Output Short Circuit Current
(VOUT = Vss to Vecl
Min
Max
Unit
III
-10
10
p.A
IlO
-50
50
p.A
Icc
-
150
mA
VOL
VOH
-
0.4
2.4
-
V
V
19B
-
40
mA
IpO
-
50
mA
200
mA
los
2-29
-200
:MB8168·55 IMB8168·70
AC TEST CONDmONS
Input Conditions:
Input Pulse Levels:
Input Pulse Rise/Fail Times:
Input Timing Reference Level:
OV to 3.0V
5 ns
1.5V
Output Conditions:
Output Timing Reference Level:
Output Load:
C
°OUT
(110)
O.SV to 2.0V
--c-,l----..<.
I
~ R2
(Includes
Scope and Jig)
Parameters Measured
ILoad I 4800 2550 30pF except tLZ. tHZ. twz and tow
ILoad II 4800 2550 5pF tLZ. tHZ. tWZ. and tow
OUTPUT LOAD
AC CHARACTERISTICS
(Recommended operating conditions unless otherwise noted)
READ CYCLE
Parameter
INOTESI
Symbol
Min
tRC
tAA
tACS
tOH
ILZ
1HZ
tpu
IPD
55
Read Cycle Time
Address Access Time
Chip Select Access Time
Output Hold from Address Change
Chip Select to Output Active
Chip Select to Output in High Z
Chip Select to Power Up Time
Chip Select to Power Down Time
rnm
rnrn
MBS168-55
Typ
Max
Min
MBS168-70
Typ
Max
70
70
70
55
55
5
5
10
0
0
30
10
0
0
55
Notes: 1. Transition is measured at the pOint of ±500mV from steady state voltage.
2. This parameter is measured with specified loading in Fig. 2. This parameter is sampled and not 100% tested.
READ CYCLE 3
Notes: 3. WE is high for Read Cycle.
4. Device is continuously selected. CS
[]I Don't Care
=VIL.
~
2-30
Undefined Data
40
70
Unit
ns
ns
ns
ns
ns
ns
ns
ns
MB8168-55 / MB8168-70
READ CYCLE 3 (Confd)
READ CYCLE:
CS CHANGING5
tRC
~
tHZ
tACS
~
tLZ
HIGH IMPEDANCE 1
DATA OUT
r--
XX
HIGH
DATA VALID
IMPEDAN CE
~~~PLY :CC------)~5-00-YO-------------------5:L
~tpu
CURRENT
f--tpD
58-----
Notes: 3. WE is high for Read Cycle.
4. Device is continuously selected. CS = VIL.
5. Addresses valid prior to or coincident with
~ Undefined Data
CS transition low.
WRITE CYCLE
MB8168·70
MB8168·55
Parameter
Write Cycle Time
Address Valid to End of Write
Chip Select to End of Write
Data Valid to End of Write
Data Hold Time
Write Pulse Width
Write Recovery Time
Address Setup Time
Output Active From End of Write
Write Enable to Output in High Z
NOTES
rnJlIl
[§J[lJ
Symbol
Min
Typ
Max
Min
twc
tAW
tcw
tDW
tDH
twp
55
55
55
25
-
0
-
55
-
tWR
tAS
tow
twz
0
0
0
0
-
30
70
70
70
30
0
70
0
0
0
0
-
-
-
-
Typ
Max
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
40
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Notes: 6. Transition is measured at the point of +500mV from steady state voltage.
7. This parameter is measured with specified loading in Fig. 2.
WRITE CYCLE
WRITE CYCLE: WE CONTROLLED9
cg8
DATA IN
DATAOUT~~lQ~~~~~~~~~~~~~~~~~~~~~~~~~~
Note: *If CS goes high simultaneously with WE high transition,
DATA OUT remains in a high impedance state.
2-31
IJGd Don't Care
~
Undefined Data
MBS168·55/MBSl68·70
WRITE CYCLE (Cont'd)
WRITE CYCLE: CS CHANGING9
ADDRESSES
(i •.•· L
______~~~~~_______'
f--------Icw -------1
DATA IN
{
HIGHZ
DATA OUT
LX~~~~~~~~~~~~~
I;il Don'l Care
Notes: 6.
7.
8.
9.
~
Undefined Dala
Transition is measureed at the point of ±500 mV from steady state voltage.
This parameter is measured with specified loading in Fig. 2.
If CS goes high simultaneously with WE high, the output remains in a high impedance state.
CS or WE must be high during address transitions.
DESCRIPTION
The MB8168 from Fujitsu Is a high
performance part. It is designed
for high speed and low power
system requirements.
is high. '!!pon activation of chip
select (OS LOW) the MB8168
automatically powers up and
draws ICC.
The high speed is obtained by advanced NMOS processing. The
power requirements are achieved
by the use of MB8168 chip select
(active low). The MB8168 automatically enters standby drawing
only ISB whenever the chip select
This automatic power up/down is
an extremely useful feature. PC
board layout with proper Vee decoupling will minimize power line
glitches.
=
Input and data bus lines are an
2-32
additional area of concern. Unless bus lines are properly de·
signed and terminated, cross
coupling, cross talk and reflections can occur. Of particular importance is the undershoot on address lines. Once again, careful
attention to good PC board layout
and proper termination techniques will yield a well designed
and reliable memory system.
Device
MB8416
MB8416-X
MB8416A-15
MB8416A-12
MB8417
MB8417-X
MB8417A-15
MB8417A-12
MB8418
MB8418-X
MB8418A-15
MB8418A-12
Organization
2K
2K
2K
2K
2K
2K
2K
2K
2K
2K
2K
2K
x
x
x
x
x
x
x
x
x
x
x
x
8
8
8
8
8
8
8
8
8
8
8
8
Access
Time
(max)
Power
Supply
Volts
Power
Dissipation
Package
200n5
200n5
150n5
120n5
200n5
200n5
150n5
120n5
2oon5
2oon5
150n5
120n5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
330mW/55,.W
33OmW/55,.W
330mW111mW
330mW111mW
330mW/55,.W
330mW/55,.W
330mW/11mW
330mW/11mW
33OmW/55,.W
33OmW/55,.W
33OmW/11mW
33OmWI11mW
24-pin
24-pin
24-pin
24-pin
24-pin
24-pin
24-pin
24-pin
24-pin
24-pin
24-pin
Page
FUJITSU
MB8416
MB8416·X
MICROELECTRONICS
CMOS 16,384·BIT STATIC
RANDOM ACCESS MEMORY
DESCRIPTION
The Fujitsu MB8416/MB8416-X is
a 2048 word by 8-bit static random
access memory fabricated with
high density, high reliability Complementary MOS silicon-gate
technology.
The memory utilizes asynchronous circuitry and may be
maintained in any state for an indefinite period of time. All input
and output pins are TTL-compatible, and a single 5 volt power sup-
FEA:l"UmS
• Organized as 2048 words by
8 bits
• Fast Access Time: 200ns Max_
• Low Power: 55JLW Max_
Standby
• Completely Static Operation,
no clocks required
• Extended temperature range
(MB8416-X): -40°C to +85°C
ply is used. It is possible to retain
data at low power supply voltage.
The MB8416/M88416-X can be optimized for high performance applications such as microcomputer systems where fast access
time and ease of use are required.
Output Enable (OE) input permits
the disable of all outputs when
outputs are OR-tied. The MB84161
MB8416-X is packaged in an industry standard 24-pin dual in-line
package.
CERDIP PACKAGE
Dlp·24C·C03
• Single +5 Volt Power
Supply, +10% tolerance
• TTL compatible
Inputs/Outputs
• Low Voltage Data
Retention: 2_0V Min_
• MB8416 is pin compatible with
HM6116, TC5517, JLPD446
PLASTIC PACKAGE
Dlp·24p·M01
MB8416/MB8416-X BLOCK DIAGRAM
PIN ASSIGNMENT
BUFFER
ROW
DEC.
MEMORY MATRIX
128 x 16 x 8
A7
A6
AS
A4
A3
A2
A1
Vcc
As
Ag
WE
OE
A10
CE
1/07
1/06
1/0 1
1105
1/0 4
1100
Vss
"07
TRUTH TABLE
SUPPLY
CE OE WE
MODE
H
X
X
Not Selected
l
H
H
DOUT Disable
l
l
H
Read
l
X
l
Write
3-2
CURRENT 110 PIN
's.
'cc
'cc
'cc
High.Z
High·Z
DOUT
DIN
1/0 3
This device contains circuitry to protect the
inputs against damage due to high static
voltages or electric fields. However, it is
advised that normal precautions be taken to
avoid application of any voltage higher than
maximum rated voltages to this high
impedance circuit.
MB84l6/MB8416-X
ABSOLUTE MAXIMUM RATINGS
Parameter
Storage Temperature
Symbol
Min
Max
Unit
Tstg
-65
-40
150
125
°c
I Ceramic
I
Plastic
Tbias
Vee
-40
85
°c
-0.5
8.0
V
Input Voltage
VIN
-0.5
Vee + 0.5
V
Output Voltage
VI/O
-0.5
Vee + 0.5
V
Temperature Under Bias
Supply Voltage
NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceedeo. Functional operation should be
restricted to the conditions as detailed in the operational sections of this data sheet. This device contains circuitry to protect
the Inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be
taken to avoid applications of any voltage higher than maximum rated voltages to this high impedance circuit.
RECOMMENDED OPERATING CONDmONS
Parameter
Symbol
Min
Ambient Temperature
Supply Voltage
Input High Voltage
Input Low Voltage
TA
Vee
VIH
VIL
0
4.5
2.2
-0.3
(VSS = GND)
MB8416
Typ
5.0
-
Max
Min
+70
5.5
-40
4.5
2.2
-0.3
Vee +0.3
0.8
-
MB8416-X
Typ
Max
Unit
5.0
+85
5.5
-
Vee + 0.3
0.8
°c
V
V
V
-
CAPACITANCE
(fA = 25°C,f=1 MHz)
Parameter
Input Capacitance
Input / Output Capacitance
Min
Symbol
-
CIN
CliO
-
Max
Unit
Condition
7
10
pF
pF
VIN =OV
Vila = OV
STATIC CHARACTERISTICS
(Recommended operating conditions unless otherwise noted.)
Parameter
Condition
Symbol
Standby Supply Current
CE = Vee - 0.2 to Vee +0.2V
VIN = -0.2V to Vee +0.2V
ISB1
Standby Supply Current
CE = VIH
VIN = -0.2V to Vee +0.2V
Active Supply Current
CE = VIL
VIN = VIL or VIH; lOUT = 0
Cycle = Min, Duty = 100%
Operating Supply Current
Max
Units
-
10
p.A
ISB2
-
2
mA
lee1
-
60
mA
-
60
mA
III
-1.0
1.0
p.A
VI/a = OV to Vee
CE = VIH
ILO
-1.0
1.0
p.A
lOUT = -1.0 mA
VOH
2.4
-
V
lOUT = 4.0 mA
VOL
-
0.4
V
Input Leakage Current
lOUT = 0
VIN = OV to Vee
Output Leakage Current
Output High Voltage
Output Low Voltage
Min
lee2
3-3
MB8416/MB8416-X
AC TEST CONDmONS
0.6V to 2.4V
10 ns
0.8V to 2.2V
0.8V to 2.2V
1 TTL Gate and CL = 100 pF
Input Pulse Levels:
Input Pulse Rise and Fall Times:
Input Timing Reference Level:
Output Timing Reference Level:
Output Load:
D
o---------][.---------
Output
~------o
r
CL
DYNAMIC CHARACIERb"TICS
Parameter
Read Cycle Time
Write Cycle Time
Address Access Time
Chip Enable Access Time
Output Hold from Address Change
Output Low Z from CE
Output High Z from ~
Output Low Z from OE
Output High Z from OE
Output Low Z from WE
Output High Z from WE
Output Enable to Output Valid
Address Set Up Time
Read Set Up Time
Read Hold Time
Write Set Up Time
Write Hold Time
Address Valid to End of Write
Chip Enable to End of Write
Write Pulse Width
Write Recovery Time
Data Set Up Time
Data Hold Time
3-4
Symbol
Min
Max
Unit
tRC
twc
tM
tACE
tOH
tCLZ
tCHZ
tOLZ
tOHZ
twLZ
tWHZ
tOE
tAS
tRS
tRH
tws
tWH
tAW
tCEW
twp
tWR
tos
tDH
200
200
-
-
200
200
15
15
-
-
60
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
-
-
15
-
-
60
15
-
-
60
100
0
0
0
0
0
160
160
140
10
60
0
-
-
-
-
!4B84l6/1!B8416·X
WAVEFORMS
MODE 1: WE Controlled: (CE = Low, OE = Low)
Read Cycle
~------------------tRC------------------~
ADD
"~_-X--. .~~~~~~~_tAA_
DOUT _ _ _ _ _ _ _
;X~___
-_-_-_-_-_-_-_-_-_-_
HIGH·Z
Write Cycle
~------------------twc----------------~~
ADD
DIN
--------------<
3-5
k=
DO_U_T_V_A_Ll_D_t_O_"
~/1IB84l6·X
WAVEFORMS (Continued)
MODE 2. CE Controlled, (OE
=Low)
Read Cycle
ADD
DOUT-------------o(
DOUT VALID
DIN _ _ _ _ _ _..;.;.HI;,;;G.;,;H..;;;oZ_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Write Cycle
~~~----------------twc------------------~
ADD----1-tA-S--r--..
- _-_-_-_-_-_-_-------t-c-EW-_-_-_-_-_-_-_-_-_-_-_-- ; - - -
WE
------------------++--------HIGHoZ
DOUT- - - - -
---------------------------~~--------~I ~-----
- -- - ---------------------'
3·6
DIN VALID
MB84l6/UB8416-X
WAVEFORMS
(Continued)
Enable/Disable OE Controlled; (CE
= Low, WE = High)
OE_~~~~~ {''"':J
DOUT-------~
DOUTVALID
) ..- - - -
DYNAMIC CHARACTERISTICS
Data Retention Characteristics,
Parameter
Data Retention Supply Voltage
Data Retention Supply Current
Data Retention Set Up Time
Recovery Time
Notes jgJ
Notes
ITI
~
Symbol
Min
Max
Unit
VOR
lOR
tORS
tR
2.0
-
5.5
10
p.A
60
60
-
ns
ns
NOTES:
DATA RETENTION
MODE
[I]vcc =VOR, CE =VOR -0.2 V to VOR +0.2 V, VIN = -0.2 V to VOR +0.2 V
[;jWhen VOR =2.5V to 5.5V,
C'E
= 2.2V to VDR + 0.3V
,
4.5V' 1<'_
When VOR =2.0V to 2.5V
CE =VOR-0.3V to VOR+0.3V
_
~DRS
CE
3-7
V
~--(VOR)--J
,." ' 4.5V
~R
2.2V ,
, 2.2V
--------
FUJITSU
MB8416A·12
MB8416A·15
MICROELECTRONICS
CMOS 16,384·BIT STATIC
RANDOM ACCESS MEMORY
DESCRIPTION
is used. It is possible to retain
data at low power supply voltage.
The Fujitsu MB8416A is a 2048
word by 8-bit static random access memory fabricated with
high density, high reliability
Complementary MOS silicongate technology.
The MB8416A can be optimized
for high performance applications such as microcomputer
systems where fast access time
and ease of use are required.
Output Enable (0 E) input permits
the disable of all outputs when
outputs are OR-tied. The
MB8416A is packaged in an in·
dustry standard 24-pin dual in·
line package.
The memory utilizes asynchronous circuitry and may be maintained in any state for an indefinite period of time. All input and
output pins are TIL-compatible,
and a single 5 volt power supply
CERDIP PACKAGE
DIP·24C·C03
FEATURES
• TTL compatible
inputs/outputs
• Data Retention:
2.0V Min.
• Equal Access and Cycle
Times
• Output timing reference
levels:
O.8V to 2.2V
• Plug·in compatible with 16K
EPROMs
• Pin compatible with
HM6116, TC5517, /LPD446
• Organized as 2048 words
by 8-bits
• Address Access Time:
MB8416A-12 120ns Max.
MB8416A·15 150ns Max.
• Low Power Dissipation:
ICC (Active) = 60mA Max.
ISB (Standby) = 4mA Max.
lOR (Data Retention)
= 2mA Max.
• Completely static
operation, no clocks required
• Single +5 Volt Power
Supply, ±10% tolerance
TRUTH TABLE
MB8416A
DEVICE NUMBER
PIN NUMBER
~
MODE
WRITE
READ
OUTPUT DISABLE
STANDBY
9·11
13·17
18
20
21
24
CE
OE
WE
SUPPLY
CURRENT
1/0
Icc
Icc
Icc
ISB
DIN
DOUT
HIGHZ
HIGHZ
L
L
L
H
X
L
H
X
L
H
H
X
3-8
PLASTIC PACKAGE
DIP·24C·M01
PIN ASSIGNMENT
A7
As
As
A4
A3
A2
A1
Ao
vce
As
Ag
110 0
IIOs
110 1
110 2
110 5
110 4
Vss
110 3
WE
BE
A10
CE
110 7
This device contains circuitry to protect the
inputs against damage due to high static
voltages or electric fields. However, it is ad·
vised that normal precautions be taken to
avoid application of any voltage higher than
maximum rated voltages to this high im·
pedance circuit.
FUJITSU
MB8417
MB8417-X
MICROELECTRONICS
CMOS 16,384-BIT STATIC
RANDOM ACCESS !JIEM:ORY
DfSCRIPTION
The Fujitsu MB84171MB8417-X is
a 2048 word by 8-bit static random
access memory fabricated with
high density, high reliability Complementary MOS silicon-gate
technology_
The memory utilizes asynchronous circuitry and may be maintained in any state for an indefinite period of time. All input
and output pins are TIL-compatible, and a single 5 volt power sup-
• Organized as 2048 words by
8-blts
• Fast Access Time:
200 ns Max_ (CE Controlled)
100 ns Max. (CS Controlled)
• Low Power: 55JLW Max.
Standby
• Completely Static Operation,
no clocks required
ply is used. It is possible to retain
data at low power supply voltage.
The MB8417/MB8417-X can be optimized for high performance applications such as microcomputer systems where fast access
time and ease of use are required.
Chip Select (CS) permits fast access time. The device is packaged
in an industry standard 24-pin
dual in-line package.
• Extended temperature range
(MB8417·X): _40° to +85°C
• Single +5 Volt Power
Supply
• TIL Compatible
Inputs/Outputs
• Low Data Retention
2.0V Min.
• MB8417 is pin compatible with
TC5516, JLPD447
MB84l7/MB8417-X BLOCK DIAGRAM
CERDIP PACKAGE
Dlp·24C·C03
PLASTIC PACKAGE
Dlp·24P-M01
- - 0 Vee
A"
PIN ASSIGNMENT
--Qvss
BUFFER
ROW
DEC.
MEMORY MATRIX
128 It 16" 8
A.
A7
Vcc
As
As
Ag
AS
A4
A3
A2
A1
TRUTH TABLE
CE
csWE
MODE
X
Not Selected
H
X
Not Selected
L
H
Read
L
L
Write
H
X
L
L
L
3-9
SUPPLY
CURRENT 110 PIN
High-Z
ISB
Icc
Icc
Icc
High-Z
Dour
D,N
WE
CS
A10
CE
Ao
1/07
1100
II0a
1/0 1
1/0 2
1105
110 4
Vss
1/0 3
ThiS -device contains cirCUitry to protect the
Inputs against damage due to high static
Yoltages or electric fields. However, it is
advised that normal precautions be taken to
aVOid application of any Yoltage higher than
maximum rated Yoltages to this high
impedance circuit.
MB8417/MB8417·X
ABSOLUTE MA.XIMtJ.M RATINGS
Parameter
Storage Temperature
:
Symbol
Min
Max
Unit
Tstg
-65
-40
150
125
·C
-40
85
·C
-0.5
8.0
V
+ 0.5
Vee + 0.5
V
Ceramic
Plastic
Temperature Under Bias
Tbias
Vee
Supply Voltage
Input Voltage
VIN
Output Voltage
VI/O
-0.5
-0.5
Vee
V
NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be
restricted to the conditions as detailed in the operational sections of this data sheet. This device contains circuitry to protect
the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be
taken to avoid applications of any voltage higher than maximum rated voltages to this high impedance circuit.
RECOMMENDED OPERATING CONDmONS,
Parameter
Symbol
Min
Ambient Temperature
Supply Voltage
Input High Voltage
Input Low Voltage
TA
Vee
VIH
VIL
0
4.5
2.2
-0.3
Vss = GND
MB8417
Typ
5.0
-
Max
Min
+70
5.5
-40
4.5
2.2
-0.3
Vee + 0.3
0.8
-
MB8417·X
Typ
5.0
-
Max
Unit
+85
5.5
Vee +0.3
0.8
·C
V
V
V
CAPACITANCE
(TA = 25·C,f=1 MHz)
Parameter
Input Capacitance
Input / Output Capacitance
Symbol
Min
Max
Unit
Condition
CIN
CliO
-
7
10
pF
pF
VIN =OV
VI/O = ov
STATIC CHARACTERISTICS
(Recommended operating conditions unless otherwise noted.)
Condition
Symbol
Min
Max
Units
Standby Supply Current
CE = Vee - 0.2VtoVee +0.2V
VIN = -0.2V to Vee + 0.2V
ISBl
-
10
p.A
Standby Supply Current
CE = VIH
VIN = -0.2V to Vee +0.2V
ISB2
-
2
rnA
Active Supply Current
CE= VIL
VIN = VIL or VIH; lOUT = 0
Cycle = Min, Duty = 100%
leel
-
60
rnA
Operating Supply Current
lOUT = 0
lee2
-
60
rnA
Input Leakage Current
VIN = OV to Vee
III
-1.0
1.0
p.A
Output Leakage Current
VI/O = OV to Vee
CE = VIH
ILO
-1.0
1.0
p.A
Output High Voltage
lOUT = -1.0 rnA
VOH
2.4
-
V
Output Low Voltage
lOUT = 4.0 rnA
VOL
-
0.4
V
Parameter
3-10
MB8417/MB8417-X
AC TEST CONDmONS
Input Pulse Levels:
Input Pulse Rise and Fall Times:
Input Timing Reference Level:
Output Timing Reference Level:
Output Load:
0.6V to 2.4V
10 ns
0.8V to 2.2V
0.8V to 2.2V
1 TTL Gate and CL
D
Output
0~-------4][~---------
~----~o
r
CL
=100 pF
DYNAMIC CHARACTERISTICS
Parameter
Read Cycle Time
Write Cycle Time
Address Access Time
Chip Enable Access Time
Chip Select Access Time
Output Hold from Address Change
Output Low Z from CE or CS
Output High Z from CE or CS
Output Low Z from WE
Output High Z from WE
Address Set Up Time
Read Set Up Time
Read Hold Time
Write Set Up Time
Write Hold Time
Address Valid to End of Write
Symbol
Min
Max
Unit
tRC
twc
tAA
200
200
-
-
tACE
tACS
tOH
-
-
200
200
100
15
15
-
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
tcLZ
tCHZ
twLZ
tWHZ
tAS
tRS
tRH
tws
tWH
tAW
tCEW
tcsw
twp
tWR
loS
tOH
Chip Enable to End of Write
Chip Selection to End of Write
Write Pulse Width
Write Recovery Time
Data Set Up Time
Data Hold Time
-
60
15
-
-
60
0
0
0
0
0
160
160
100
140
10
60
0
-
-
-
DYNAMIC CHARACTERISTICS
Data Retention Characteristics,
Parameter
Data Retention Supply Voltage
Data Retention Supply Current
Data Retention Set Up Time
Recovery Time
Notes ~
Notes
Symbol
Min
Max
Unit
[I
VOR
lOR
tORS
tR
2.0
-
5.5
10
60
60
-
V
/LA
ns
ns
~
NOTES:
[Dvcc
DATA RETENTION
MODE
= VOR, CE = VOR -0.2 V to VOR + 0.2 V, VIN = - 0.2 V to VOR +0.2 V
~When VOR = 2.5V to 5.5V,
When
CE = 2.2V
VOR = 2.0V
4.5V'
to VOR + 0.3V
?
to.2.5V
CE = VOR - 0.3V to VOR + 0.3V
_
CE
3-11
,
,"
.. 4.5V
'"--IVDR)--J
~R
DRS
2.2V ,
,
--------
2.2V
MB84l7/MB84l7·X
WAVEFORMS
MODE I. WE Controlled. (CE
= Low, CS = Low)
Read Cycle
~------------------~'RC------------------~
~_:.-)(- ~-_-_-_-_-_-_- '_AA_-_-_-_-_-_-_-_-_-_-~~);t~-----D-OU-T--VA-L-ID---'-O-H~
DouT....__________
___
HIGH·Z
Write Cycle
~-------------------'WC-------------------~~
ADD
-'::-'A-W---:"-:"-:"-:"-:"-:"-:"-:"-:"-:"-:"-:"-:"~-.;!---'W-,j'---------
f-o-"----------------------------
~------------'WP-----------;~
DIN
----------------------------<
DIN VALID
3-12
MB84l7/MB8417·X
WAVEFORMS (Continued)
MODE 2. CE Controlled, (CS = Low)
Read Cycle
vf""----------tRC----------XIO-!
A D D _ l t - t A S-
-
-
WE
tClZ
DOUT--------------------------~
DIN-----
DOUT VALID
HIGH·Z
-----
Write Cycle
twc
{M
ADD
tcEW
~j
WE
DOUT- - - -
-
HIGH·Z
--...;.;;.;;;.;.;.;;..------------------------------+~-----
-- - - - ----------------'
-------------~ ~----_I
3-13
- - - --
__---
MB84l7/MB84l7-X
WAVEFORMS (Continued)
MODE 3, CS Controlled.
Read Cycle
(CE
=Low)
{
ADD
,
CS J
IRC
X
~IAS-
1\
/
WE
I...
DOUT - - - -
DIN
I
IRH
-1
I_IRS~
I
\
..
_lACS
~"~-D
L
ICHZ
I
---
DOUTVA:
----- HIGH·Z
---
Write Cycle
t'd~
ADD
CSJ
DOUT----
.
lAW
IcSW
:1 .. ... ..
~
~f-
f'
{ ...-
WE
~
IwC
IWH
L
}
II
~b
HIGH·Z
f':·VAUD l<
---DIN
---3-14
---
----
FUJITSU
MB8417A·12
MB8417A·15
MICROELECTRONICS
CMOS 16,384·BIT STATIC
RANDOM ACCESS MEMORY
DESCRIPTION
The Fujitsu MB8417A is a 2048
word by 8-bit static random access memory fabricated with
high density, high reliability
Complementary MOS silicon·
gate technology.
is used. It is possible to retain
data at low power supply voltage.
The MB8417A can be optimized
for high performance applica·
tions such as microcomputer
systems where fast access time
and ease of use are required.
Chip Selects (CS) permits fast access time. The MB8417A is pack·
aged in an industry standard
24·pin dual in·line package.
The memory utilizes asynchro·
nous circuitry and may be main·
tained in any state for an inde·
finite period of time. All input and
output pins are TIL-compatible,
and a single 5 volt power supply
CERDIP PACKAGE
Dlp·24C·C03
FEATURES
• Organized as 2048 words
by 8-bits
• Address Access Time:
MB8417A·12 120ns Max.
MB8417A·15 150ns Max.
• Low Power Dissipation:
IcC (Active) = 60mA Max.
ISB (Standby) = 4mA Max.
lOR (Data Retention)
=2mA Max.
• Completely Static
Operation, no clocks required
• Single +5 V Power
Supply, ::1:10% tolerance
• TTL Compatible
Inputs/Outputs
• Data Retention
2.0V Min.
• Equal Access and Cycle
Times
• Output Timing reference
levels: 0.8V to 2.2V
• Pin compatible with
TC5516, /LPD447
PLASTIC PACKAGE
Dlp·24C·M01
PIN ASSIGNMENT
TRUTH TABLE
MB8417A
DEVICE NUMBER
PIN NUMBER
~
18
CE
20
CS
21
WE
MODE
Vee
A7
A6
9·11
13·17
24
SUPPLY
CURRENT
1/0
As
A9
As
A4
3
A3
A2
5
",3:
CS
6
~:
Ala
AI
7
.2!~
CE
WE
4
om
.....
WRITE
L
L
L
Icc
DIN
Ao
8
READ
L
L
H
Icc
110 7
110 6
L
H
Icc
STANDBY 2
H
X
X
X
110 0
110 1
9
CHIP DESELECT
DOUT
HIGHZ
IS6
HIGHZ
110 2
11
110 5
110 4
vss
12
1/0 3
This device contains circuitry to protect the inputs against damage due to high static
voltages or electric fields. However, it is advised that normal precautions be taken to avoid
application of any voltage higher than max·
imum rated voltages to this high impedance
circuit.
3-15
MB8418
MB8418·X
FUJITSU
MICROELECTRONICS
CMOS 16,384·BIT STATIC
RANDOM ACCESS MEMORY
DESCRIPTION
The Fujitsu MB8418/MB8418-X is
a 2048 word by 8-bit static random
access memory fabricated with
high density, high reliability Complementary MOS silicon-gate
technology.
The memory utilizes asynchronous circuitry and may be maintained in any state for an indefinite period of time. All input and
output pins are TIL-compatible,
and a single 5 volt power supply is
used. It is possible to retain data
at low power supply voltage.
The MB8418/MB8418-X can be optimized for high performance applications such as microcomputer systems where fast access
time and ease of use are required.
Two chip selects (CE2 and CE1)
permit the selection of an individual package when outputs are
OR-tied, and the device automatically powers down. The
MB8418/MB8418-X is packaged in
an industry standard 24-pin dual
in-line package.
CERDIP PACKAGE
DIP-24C·C03
FEATURES
• Organized as 2048 words
by 8-blts
• Fast Access Time: 200ns Max.
• Low Power: 55/LW Max_ Standby
• Completely Static
Operation, no clocks required
• Extended Temperature Range
(MB8418-X): -40°C to +85°C
• Single +5 Volt Power
Supply
• TTL Compatible
Inputs/Outputs
• Low Data Retention
Voltage: 2_0V Min_
• MB8418 is compatible with
TC5518
PLASTIC PACKAGE
Dlp·24p·M01
MB84l8/MB84l8-X BLOCK DIAGRAM
~vcc
A"
~Vss
BUFFER
ROW
MEMORY MATRIX
DEC.
128x16x8
PIN ASSIGNMENT
Vcc
Ar
A.
At!
2
23
As
A4
A3 •
A2
A1
Ao
3
22
As
Ae
21
WE
20
19
Cl1
A10
Cl2
1/00
4
5
8
7
MODE
Not Selected
Read
ISB
ISB
Icc
Write
Icc
Not Selected
L
L
L
3-16
SUPPLY
CURRENT I/O PIN
High-Z
High-Z
Dour
D,N
~!
it~
"III
8
9
)(
~
18
17
IIOr
110.
1/05
1/0 1
Vss
III
55:
1/0.
1/02
TRUTH TABLE
i:
12
1/0 3
This device contains circuitry to protect the
inputs against damage due to high static
Yoltages or electric fields. However. it is
advised that normal precautions be taken to
avoid application of any voltage higher than
maximum rated Yoltages to this high
impedance circuit.
MB841S/MB84l8-X
ABSOLUTE MAXlMOM RATINGS
Parameter
Storage Temperature
I
Symbol
Min
Max
Unit
Tstg
-65
-40
150
125
·C
Ceramic
Plastic
Tbias
Vee
-40
85
·C
-0.5
8.0
V
Input Voltage
VIN
-0.5
Vee + 0.5
V
Output Voltage
VIIO
-0.5
Vee + 0.5
V
Temperature Under Bias
Supply Voltage
NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be
restricted to the conditions as detailed in the operational sections of this data sheet. This device contains circuitry to protect
the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be
taken to avoid applications of any voltage higher than maximum rated voltages to this high impedance circuit.
RECOMMENDED OPERATING CONDmONS,
Parameter
Symbol
Min
Ambient Temperature
Supply Voltage
Input High Voltage
Input Low Voltage
TA
Vee
VIH
VIL
0
4.5
2.2
-0.3
(Referenced to VSS = GND)
MB8418
Typ
MB8418-X
Typ
Max
Unit
5.0
+85
5.5
-
Vee + 0.3
0.8
·C
V
V
V
Max
Min
+70
5.5
-40
-
5.0
-
Vee +0.3
0.8
4.5
2.2
-0.3
-
CAPACITANCE
(TA = 25·C, f= 1 MHz)
Parameter
Input CapaCitance
Input {Output CapaCitance
Symbol
Min
Max
Unit
Condition
CIN
CliO
-
7
10
pF
pF
VIN = OV
VIIO = ov
STATIC CHARACI'ERISTICS
(Recommended operating conditions unless otherwise noted.)
Condition
Symbol
Standby Supply Current
CE = Vee - 0.2VtoVee +0.2V
VIN = -0.2V to Vee + 0.2V
ISB1
Standby Supply Current
CE= VIH
VIN = -0.2V to Vee +0.2V
Active Supply Current
CE = VIL
VIN = VIL or VIH; lOUT = 0
Cycle = Min, Duty = 100%
Parameter
Operating Supply Current
Min
Max
Units
-
10
p.A
ISB2
-
2
rnA
lee1
-
60
rnA
lee2
-
60
rnA
Input Leakage Current
lOUT = 0
VIN = OV to Vee
III
-1.0
1.0
p.A
Output Leakage Current
VIIO = OV to Vee
CE1 or CE2 = VIH
ILO
-1.0
1.0
p.A
Output High Voltage
lOUT = -1.0 rnA
VOH
2.4
-
V
Output Low Voltage
lOUT = 4.0 rnA
VOL
-
0.4
V
3-17
MB84l8/MB8418·X
AC TEST CONDmONS
0.6V to 2.4V
10 ns (Between 0.8V to 2.2V)
0.8V to 2.2V
0.8V to 2.2V
1 TTL Gate and CL = 100 pF
Input Pulse Levels:
Input Pulse Rise and Fall Times:
Input Timing Reference Level:
Output Timing Reference Level:
Output Load:
D
Output
O~-------][~---------
~------o
r
CL
DYNAMIC CHARACI'ERISTICS
Parameter
Read Cycle Time
Write Cycle Time
Address Access Time
Chip Enable Access Time
Output Hold from Address Change
Output Low Z from CE2 or CEI
Output High Z from CE2 or CEI
Output LowZ from WE
Output High Z from WE
Address Set Up Time
Read Set Up Time
Read Hold Time
Write Set Up Time
Write Hold Time
Address Valid to End of Write
Chip Enable to End of Write
Write Pulse Width
Write Recovery Time
Data Set Up Time
Data Hold Time
Symbol
Min
tRC
twc
tAA
tACE
tOH
tCLl
tCHZ
tWLl
tWHZ
tAS
tRS
tRH
tws
tWH
tAW
tCEW
twp
200
200
-
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
-
-
200
200
-
tWR
tos
tOH
Unit
Max
15
15
-
-
60
15
-
-
60
0
0
0
0
0
160
160
140
10
-
-
-
60
-
0
-
ns
ns
ns
ns
DYNAMIC CHARACTERISTICS
Data Retention Characteristics,
Parameter
Data Retention Supply Voltage
Data Retention Supply Current
Data Retention Set Up Time
Recovery Time
Notes ~
Notes
Symbol
Min
Max
Unit
~
VOR
lOR
tORS
tR
2.0
-
5.5
10
60
60
-
V
p.A
ns
ns
ill
NOTES:
[Dvcc = VOR. CE2 = VOR - 0.2 V 10 VOR + 0.2 V. VIN = -0.2 V 10 VOR +0.2 V
DATA RETENTION
MODE
,
[IjWhen VOR = 2.5V 10 5.5V,
(cE1) CE2
4.SV
= 2.2V 10 VOR + 0.3V
When VOR = 2.0V 10 2.5V
3
( CE1) CE2 =V DR -0.3V I o V OR+O.V
_J;,
,
,
3-18
4.SV
,;1'R
tORS
ceJ2.2V
,
'- --(VOR)--""
_______
~
2.2V~
MB8418/MB8418·X
WAVEFORMS
MODE 1, WE Controlled, (CE2 = LOW, CEl = LOW)
Read Cycle
~-------------------tRC------------------~
WE
DOUT _ _ _ _ _
::~X--. .~~~~~~~_t_AA_-:_-_-_-_ -_X--J~___
-_-_-_-_
to
k=
DO_U_T_V_A_Ll_D_ __"
HIGH·Z
Write Cycle
~~~----------------twc
ADD_ _ _ _ _
/~,,,
--~--~-~
WE
~
' •• ______________ ..
!
~-----------twp----------~
-----------~
DOUT
DIN
___ _
_ _ _ _ _ _ _--J
--------------<
DIN VALID
3-19
,w,~-
~----~---
MB8418/MB84l8-X
WAVEFORYS (Continued)
MODE 2, CEI or CE2 Controlled. (CE2
=LOW or CEt =LOW)
Read Cycle
-_tR_c~~~~~~~~~~~~~~---lX~
1-4-_-_-_-_-_-_-_-_-_-_-_-_-_-_
ADD
_ _ __
WE
DOUT- - - -
-
DOUT VALID
----------(
HIGH·Z
-----
D1N - - - - -
Write Cycle
twc
ADD
t.u
~~
tcEW
-------------------++-----HIGH·Z
DOUT- - - - -
-- - - - --------------".
----------------3-20
DIN VALID
FUJITSU
MB8418A-12
MB8418A-15
MICROELECTRONICS
CMOS 16,384-BIT STATIC
RANDOM ACCESS MDAORY
DESCRIPTION
retain data at low power supply
voltage.
The Fujitsu MB8418A is a 2048
word by B-bit static random access memory fabricated with
high density, high reliability
Complementary MOS silicongate technology.
The MB8418A can be optimized
for high performance applications such as microcomputer
systems where fast access time
and ease of use are required.
Two chip selects (CE2 and CE1)
permit the selection of an individual package when outputs are
OR-tied, and the device automatically powers down. The
MB841BA is packaged in an industry standard 24-pin dual inline package.
The memory utilizes asynchronous circuitry and may be maintained in any state for an indefinite period of time. All input
and output pins are TTL-compatible, and a single 5 volt power
supply is used. It is possible to
CERDIP PACKAGE
Dlp·24C·C03
FEATURES
• Organized as 2048 words
by 8-bits
• Address Access Time:
MB8418A-12 120ns Max_
MB8418A-15 150ns Max.
• Low Power Dissipation:
Icc (Active) = 60mA Max.
ISB (Standby) = 4mA Max.
lOR (Data Retention) =
2mA Min.
• Completely static
operation, no clocks required
• Single +5V Power Supply,
%10% tolerance
• TTL compatible
inputs[ outputs
• Data Retention:
2.0V Min.
• Equal Access and Cycle
Times
• Output timing reference
levels: 0.8V to 2.2V
• Both CE2 and CE1 (Pins 18
and 20) provide powerdown capability
• Pin compatible with
TC5518
TRUTH TABLE
DEVICE NUMBER
MB8418A
18
WRITE
READ
OUTPUT DISABLE
CHIP SELECT
STANDBY 1
STANDBY 2
20
21
9-11
13-17
24
CE2
CE1
WE
SUPPLY
CURRENT
1/0
L
L
L
L
L
H
Icc
I
DIN
DOUT
X
H
H
X
X
X
HIGHZ
HIGHZ
ISB
ISB
3-21
PLASTIC PACKAGE
Dlp·24C·M01
PIN ASSIGNMENT
vce
A7
As
23
A5
A4
22
21
Aa
A2
Al
Ao
110 0
110 1
110 2
20
19
Al0
18
CE2
17
11°7
16
15
14
IIOs
Vss
II
"
...
~;
As
Ag
WE
GEl
110 5
110 4
1I0a
This device contains circuitry to protect the
inputs against damage due to high static
voltages or electric fields. However, It Is advised that normal precautions be taken to
avoid application of any voltage higher than
maximum rated voltages to this high im·
pedance circuit.
DevIce
Technology
Organization
Access
Time
(max)
Power
Supply
Volts
Power Dissipation
Active Standby
Package
Page
MBM2716
MBM2716H
MBM2716-X
MBM2732-45
MBM2732-35
MBM2732A·35
MBM2732A-35X
MBM2732A-30
MBM2732A·25
MBM2732A·2Q
MBM27C32·25
MBM27C32-30
MBM2764-30
MBM2764-30X
MBM2764-25
MBM2784·2Q
M BM27C84-30
MBM27C64-25
NMOS
NMOS
NMOS
NMOS
NMOS
NMOS
NMOS
NMOS
NMOS
NMOS
CMOS
CMOS
NMOS
NMOS
NMOS
NMOS
CMOS
CMOS
2Kx8
2Kx8
2Kx 8
4Kx8
4Kx8
4Kx8
4Kx8
4Kx8
4Kx 8
4Kx8
4Kx8
4Kx8
8Kx8
8Kx8
8Kx8
8Kx8
8Kx8
8Kx 8
450nS
350nS
450nS
450nS
350nS
350nS
350nS
300nS
250nS
200nS
250nS
300nS
300nS
300nS
250nS
200nS
300nS
250nS
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
4-5
+5
+5
+5
+5
+5
525 132mW
550 138mW
525 132mW
788 158mW
825 165mW
825 165mW
825 165mW
788 184mW
788 184mW
788 184mW
40mW/MHz
40mW/MHz
788 184mW
788 184mW
788 184mW
788 184mW
40mW/MHz
40mW/MHz
24-pin
24-pin
24-pin
24-pin
24-pin
24-pin
24·pin
24·pin
24-pin
24·pin
24·pin
24-pin
28-pin
24-pin
28-pin
28-pin
28-pin
28-pln
4-2
4·2
4·2
4·7
4-7
4·14
4·14
4·14
4-14
4·14
4·20
4·20
4·21
4·21
4·21
4·21
4·28
4·28
FUJITSU
:MBM2716
:MBM2716H
:MBM2716·X
MICROELECTRONICS
UV ERASABLE 16,384·BIT
READ ONLY MEMORY
DJiSCRlPTION
The Fujitsu MBM2716 Is a high
speed 16,384-blt static N-channel
MOS erasable and electrically
reprogram mabie read only memo
ory (EPROM). It is especially well
suited for applications where
rapid turn-around and/or bit pat·
tern experimentation are impor·
tant.
A 24-pln dualln·llne package with
a transparent lid Is used to
package theMBM2716. The trans·
parent lid allows the user to ex·
pose the device to ultraviolet light
In order to erase the memory bit
pattern previously programmed.
At the completion of erasure, a
new pattern can then be written
into the memory.
The MBM2716 is fabricated using
N·channel double polysilicon
gate technology with single tran·
sitor stacked gate cells. It is
organized as 2048 words by 8 bits
for use In microprocessor ap·
pllcatlons. Single + 5V operation
greatly facilitates its use In
systems.
FEA'l'URE
• No clocks required, fully
static operation
• TTL compatible Inputs
and outputs
• Three·state output with
OR·TIE capablll~
• Output Enable (OE) pin for
simplified memory
expansion and bus control
• Single +5V Operation
• Standard 24-pln DIP
package
• MBM2718/MBM2718H are
compatible with Intel 2718
• MBM2718-X Is compatible
with Intel 12718
• Organized as 2048 words
by 8-blts, fully decoded
• Fast Access Time:
MBM2716
450ns Max.
MBM2718H 350ns Max.
MBM2718-X 450ns Max.
• MBM2718-X: Extended
temperature range
-40°C to +85°C
• Fast programmmlng:
100 sec. for all 18,384 bits
• Low power requirement
525 mW Active
132 mW Standby
MBM2'll6 BLOCK: DIAGRAM
CERDIP PACKAGE
DIP·24C·C02
PIN ASSIGNMENT
A7
Vee
As
Ag
~
Vpp
A3
A2
A,
OE
CE/PGM
Ao
00
07
06
A,o
05
04
03
---------
'.
v.
"
COLUMN
GATING
v"
..
',.
x.
128X128
CELL MATRIX
X,27
I
v"
!
Vee
I
Vss
4-2
This device contains circuitry to protect the
Inputs against damage due to high static
voltages or electric fields. However, it Is advised that normal precautions be taken to
avoid application of any voltage higher than
maximum rated voltages to this high im·
pedance circuit.
MBM2716/MBM2716H/MBM27l6·X
ABSOLU'I'E MAXIMUM RATINGS
(see Note)
Symbol
Rating
IMBM2716/MBM2716H
Temperature Under Bias
TA
IMBM2716·X
Storage Temperature
Inputs/Outputs (Except Vpp) with Respect to VSS
Program Input with Respect to VSS
Tstg
VIN, VOUT
Vpp
VCC with Respect to VSS
Power Dissipation
VCC
Po
Value
Unit
-25 to +85
-50 to +95
-65 to +125
-0.3 to +7
-0.3 to +26.5
-0.3 to +7
1.6
·C
·C
·C
V
V
V
W
Note: Permanent device damage may occur If ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be
restricted to the conditions as detailed In the operational sections of this data sheet. Exposure to absolute maximum rating
conditions for extended periods may effect device reliability.
RECOMMENDED OPERATING CONDmONS
(Referenced to VSS
=GND)
Parameter
Supply Voltage(1)
IIMBM2716·X
MBM2716
Symbol
Typ
Max
4.75
5.0
5.25
4.5
5.0
GND
5.0
5.5
Unit
Vss
Vpp
VIH
VIL
0.0
2.0
-0.1
-
V
V
V
V
VCC +0.6
VCC +1
0.8
-
Operating Temperature
MBM2716/MBM2716H
O·C to +70·C
V
Vcc
MBM2716H
Supply Voltage
Vpp Power Supply(2)
Input High Voltage
Input Low Voltage
Min
MBM2716·X
-40·C to +85·C
Note: (1) Vce must be applied either before or coincident with Vpp and removed either after or coincident with Vpp.
(2) During read operation, Vpp may be connected either to Vec or Vss.
When connected to Vee, Vee current would be the sum of Icc and IpPl'
FUNcrIONS AND PIN CONNECTIONS
~
(Pin No.)
Mode
Read
Output Disable
Stand By
Program
Program Verify
Program Inhibit
VCC(24) = +5V, VSS(12) = GND
Address
Input
(1 - 8, 19, 22, 23)
Data 110
(9 - 11, 13 -17)
CElPGM
(18)
AIN
AIN
Don'tCare
DOUT
High Z
High Z
AIN
DIN
VIL
VIL
VIH
Pulsed
VIL to VIH
AIN
Don't Care
DOUT
HighZ
VIL
VIL
(20)
Vpp
Supply
(21)
Icc
Supply
(24)
VIL
VIH
Don't Care
+5
+5
+5
ICC2
ICC2
ICC1
VIH
VIL
VIH
+25
+25
+25
ICC2
ICC2
ICC2
OE
CAPACITANCE (fA = 25·C; f = 1MHz)
Parameter
Input CapaCitance (VIN = OV)
Output CapaCitance (VOUT = OV)
Symbol
Min
-
CIN
COUT
-
4·3
Typ
4
8
Max
6
12
Unit
pF
pF
MBM2716/MBM2716H/MBM2716·X
DC CHARACTERISTICS
(Recommended Operating Conditions unless otherwise noted.)
Parameter
Input Load Current (VIN 5.25V)
Output Leakage Current (VOUT 5.25V)
Vpp Supply Current (Vpp 5.B5V)
VCC Supply Current (Standby)
VCC Supply Current (Active)
Output Low Voltage (IOL 2.1mA)
Output High Voltage (IOH
400p.A)
=
=
=
Symbol
Min
Typ
III
ILO
IpP1
-
-
-
-
ICC1
ICC2
VOL
VOH
=
=-
Max
10
10
5
25
100
0.45
-
-
-
2.4
-
Unit
p.A
p.A
rnA
rnA
rnA
V
V
-
AC TEST CONDmONS (INCLUDING PROGRAMMING)
Input Pulse Levels:
Input Rise and Fall Time:
O.BV to 2.2V
:5 20nS
Timing Measurement Reference Levels:
1.0V and 2.0V for inputs
O.BV and 2.0V for outputs
1 TTL gate and CL 100pF
~
r
CL
--
=
Output Load:
AC CHARACTERISTICS
(Recommended Operating Conditions unless otherwise noted.)
MBM2716
Parameter
Unit
Min
Address Access Time
Chip Enable to Output Delay
Output Enable to Output Delay
Address to Output Hold
Output Enable High to Output Float
MBM2716·X
MBM2716H
Symbol
-
tACC
tCE
tOE
tOH
tDF
0
0
Max
Min
Max
Min
450
450
120
-
350
350
120
-
450
450
150
-
0
0
100
0
0
130
100
-
-
Max
-
ns
ns
ns
ns
ns
OPERATION TIMING DIAGRAM
ADDRESSES
~
ADDRESSES
VALID
\V
11\
I--tOH-
\
CE
1\
I----- tc E-----
OE
tOE~
(1)
t-,,,~
I-
IACC-----
(1)
OUTPUT
Note:
HIGH Z
III!J
\.\.\.\:
VALID OUTPUT
~
~HIGH Z -
(1) OE may be delayed up to tACC·tOE after the falling edge of CE without impact on tACC'
(2) tOF is specified from OE or CE, whichever occurs first.
4-4
MBM2716/MBM2716H/MBM2716-X
PROGRAMMING/ERASING INFORMATION
MEMORY CELL DESCRIPTION
The MBM2716 is fabricated using a single-transistor stacked
gate cell construction, implemented via double-layer polysilicon technology_ The individual
cells consist of a bottom floating gate and top select gate (see
Fig. 14). The top gate is connected to the row decoder, while
the floating gate is used for
charge storage. The cell is programmed by the injection of
high energy electrons through
the oxide and onto the floating
gate. The presence of the
charge on the floating gate
causes a shift in the. cell
threshold (refer to Fig. 15). In the
initial state, the cell has a low
threshold (VTH1) which will
enable the transistor to be turned on when the cell is selected
(via the top select gate).
Programming
shifts
the
threshold to a higher level
(VTHO), thus preventing the cell
transistor from turning on when
selected. The status of the cell
(Le., whether programmed or
not) can be determined by examining its state at the sense
threshold (VTHS), as indicated
by the dotted line in Fig. 15.
PROGRAMMING
Upon delivery fr"om Fujitsu, or
after each erasure (see Erasure
section), the MBM2716 has all
16,384 bits in the "1", or high,
state. "a's" are loaded into the
MBM2716 through the procedure of programming.
The programming mode is
entered when +25V is ~lied
to the Vpp pin and when OE is at
VIH. The address to be programmed is applied to the proper address pins. 8-bit patterns are
placed on the respective data
outputs pins. The voltage levels
should be standard TTL levels.
When both the address and data
are stable, a 50 msec, TTL Highlevel pulse is applied to the
CE/PGM input to accomplish
the programming.
Fig. 14 - MEMORY CELL
SELECT GATE
~
~
:
DRAIN
FLOATING GATE
SOURCE
Fig. 15 - MEMORY CELL 'l'HlmiHOLD SHIFT
-'
NOT PROGRAMMED
UJ
U
"'"
-'
Ia:
PROGRAMMED
"0"
"0
::JrOU)
a:IU)
r-Z
!I:
)C
~
cow
-N
OENpp
A10
CE
Ao
Os
01
07
O2
Os
03
05
Vss
04
• Standard 24·pln DIP
package
• Pin compatible with Intel
2132
4-7
This device contains circuitry to protect the
inputs against damage due to high static
voltages or electric fields. However, it is advised that normal precautions be taken to
avoid application of any voltage higher than
maximum rated voltages to this high im·
pedance circuit.
NOT RECOMMENDED FOR NEW
DESIGNS. SEE PART NUMBER
MBM2732A.
MBM2732-35 / MBM2732-45
Fig. 1 - MBM2732 BLOCK DIAGRAM
0,
Os
--------OE
OUTPUT ENABLE &
CHIP ENABLE
LOGIC
CE
~
OUTPUT
BUFFER
!
DO
DATA INPUT
BUFFER &
PROGRAMMING
CONTROL
I
1
D7
1------1 t
COLUMN
GATING
Yo
AO
COLUMN
DECODER
I
I
A3
t----------
Os
0,
I
I
I
/
Y'5
A4
I
ROW
DECODER
I
A11
I
•
256x128
CELL MATRIX
Xo
I
I
X 255
I
t
1
VpplOE PIN)
Vss
Vee
CAPACITANCE
(TA
= 25°C; f = 1MHz)
Parameter
Input Capacitance (Except OElVpp, VIN
OElVpp Input Capacitance (VIN - OV)
Output Capacitance (VOUT
= OV)
= OV)
Symbol
Min
TYR
-
4
Max
6
Unit
CIN1
CIN2
-
14
20
pF
COUT
-
8
12
pF
4-8
pF
·NOT RECOMMENDED FOR NEW
DESIGNS. SEE PART NUMBER
MBM2732A.
MBM2732·35 / MBM2732-45
ABSOLUTE MAXIMUM RATINGS
(See Note)
Rating
Symbol
Value
TA
-25 to +85
Unit
·C
TSIll
VIN, VOUT
OEJVpp
-65 to +125
·C
-0.3 to +7
V
-0.3 to +26.5
V
Vcc
-0.3 to +7
V
Temperature Under Bias
Storage Temperature
Inputs/Outputs (Except OEJVpp) with Respect to Vss
Output Enable/Program Input with Respect to Vss
Vcc with Respect to Vss
NOTE: Permanent device damage may occur If ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be
restricted to the conditions as detailed In the operations sections of this data sheet. Exposure to absolute maximum
rating conditions for extended periods may affect device reliability.
FUNCTIONS AND PIN CONNECTIONS
~
(Pin No.)
Vcc(24)
= +5, VsS(12) = GND
Address
Input
(1- 8,19,21- 23)
Data 110
(9-11,13-17)
(18)
DOUT
High Z
VIH
VIL
Don't Care
ICC2
Stand By
AIN
Don't Care
Program
AIN
DIN
VIL
Vpp
ICC2
AIN
Don't Care
DOUT
High Z
VIL
VIL
Vpp
ICC2
Mode
Read
Program Verify
Program Inhibit
Icc
Supply
(24)
~pp
(20)
CE
VIL
VIH
ICC1
ICC1
RECOMMENDED OPERATING CONDmONS
(Referenced to Vss = GND)
Parameter
Symbol
Min
Typ
Max
4.5
5.0
5.5
4.75
5.0
5.25
-
MBM2732·35
Supply Voltage(1)
V
VCC
MBM2732·45
Vss
-
GND
Input High Voltage
VIH
2.0
-
Input Low Voltage
VIL
-0.1
-
Supply Voltage
Operating
Temperature
Unit
O·C to +70·C
V
V
VCC+ 1
0.8
V
Note: (1) Vce must be applied either before or coincident with Vpp and removed either after or coincident with Vpp.
DC CHARACTERISTICS
(Recommended operating conditions unless otherwise noted)
Parameter
= 5.5V)
Output Leakage Current (VOUT = 5.5V)
Input Load Current (VIN
Symbol
Min
Typ
Max
Unit
-
10
p.A
-
10
p.A
-
30
rnA
150
mA
VOL
-
-
0.45
V
VOH
2.4
-
-
V
III
ILO
VCC Supply Current (Standby)
ICC1
Vcc Supply Current (Active)
ICC2
= 2.1mA)
Output High Voltage (IOH = -400p.A)
Output Low Voltage (IOL
4-9
NOT RECOMMENDED FOR NEW
DESIGNS. SEE PART NUMBER
MBM2732A.
MBM2732·35 / MBM2732·45
Fig. 2 -
AC TEST CONDmONS (Including Programming)
Input Pulse Levels:
Input Rise and Fall Time:
O.BV to 2.2V
~
Timing Measurement Reference Levels:
:s 20ns
1.0V and 2.OV for inputs
O.BV and 2.OV for outputs
Output Load:
1 TTL gate and CL = 100pF
r
CL
--
AC CHARACTERISTICS
(Recommended operating conditions unless otherwise noted)
MBM2732·35
MBM2732·45
Unit
Symbol
Parameter
Min
Typ
Max
Min
-
350
-
Output Enable to Output Delay
tOE
-
Address to Olttput Hold
tOH
0
Output Enable High to Output Float
tOF
0
Address to Output Delay
Chip Enable to Output Delay
tACC
tCE
350
120
-
0
100
0
Typ
Max
-
450
-
450
ns
120
ns
-
ns
100
ns
-
~OP~TIONTIMmGD~~
ADDRESSES
)
ADDRESSES
VALID
,
CE
1\
I----tCE-
'\
OE
)1
1\
r--
tOE-(1)
tACC ___
(2)
I-tOF-
(1)
OUTPUT
Note: (1)
(2)
HIGH Z
II//,
\.\.\.\:
OE
VALID OUTPUT
~HIGHZ---
may be delayed up to tACC - tOE after the falling edge of CE without impact on tACC'
tOF is specified from OE or CE, whichever occurs first.
4-10
ns
NOT RECOMMENDED FOR NEW
MBM2732·35 / MBM2732-45
DESIGNS. SEE PART NUMBER
MBM2732A.
PROGRAMMING/ERASING INFORMATION
Memory Cell Description
The MBM2732 is fabricated using
a single-transistor stacked gate
cell construction, implemented
via double-layer polysilicon technology. The individual cells consist of a bottom floating gate and
a top select gate (see Fig. 14). The
top gate is connected to the row
decoder, while the floating gate is
used for charge storage. The cell
is programmed by the injection of
high energy electrons through the
oxide and onto the floating gate.
The presence of the charge on
the floating gate causes a shift in
the cell threshold (refer to Fig. 15).
In the initial state the cell has a
low threshold (VTH1) which will
enable the transistor to be turned
on when the cell is selected (via
the top select gate). Programming
shifts the threshold to a higher
level (VTHO), thus preventing the
cell transistor from turning on
when selected. The status of the
cell (i.e., whether programmed or
not) can be determined by examining its state at the sense
threshold (VTHS), as indicated by
the dotted line in Fig. 15.
Fig. 14 - MEMORY CELL
~
SELECT GATE
~:
DRAIN
FLOATING GATE
SOURCE
Fig. 15 - MEMORY CELL THRESHOLD SIUFT
NOT PROGRAMMED
...J
...J
W
U
PROGRAMMED
"'"
"0"
Io:
"0
:JfOU)
0:IU)
PROGRAM
f-Z
ERASE
-
\V
- /1\.
tOH
\
-CE
I
\
~'CE_
OE
/
'OE--"
III
'ACC_
121
~tDF- ~
III
OUTPUT
HIGH Z
///jj
\.\.\.~
VALID OUTPUT
Note: (1) OE may be delayed up to tACC-tOE after the falling edge of CE without impact on tACC'
(2) tOF is specified from OE or CE, whichever occurs first.
4-16
~,\
W~
Unit
Min
HIGH Z - -
MBM2732A
PROGRAMMING/ERASING INFORMATION
Memory Cell Description
The MBM2732A is fabricated using a single-transistor stacked
gate cell construction, implemented via double-layer
polysilicon technology. The individual cells consist of a bottom
floating gate and a top select gate
(see Fig. 1). The top gate is connected to the row decoder, while
the floating gate is used for
charge storage. The cell is programmed by the injection of high
energy electrons through the oxide and onto the floating gate. The
presence of the charge on the
floating gate causes a shift in the
cell threshold (refer to Fig. 2). In
the initial state the cell has a low
threshold (VTH1) which will
enable the transistor to be turned
on when the cell is selected (via
the top select gate). Programming
shifts the threshold to a higher
level (VTHO), thus preventing the
cell transistor from turning on
when selected. The status of the
cell (i.e., whether programmed or
not) can be determined by examining its state at the sense
threshold (VTHS), as indicated by
the dotted line in Fig. 2.
Programming
Upon delivery from Fujitsu, or
after each erasure (see Erasure
section), the MBM2732A has all
32,768 bits in the "1", of high,
state. "O's" are loaded into the
MBM2732A through the procedure of programming.
For MBM2732A-20/-25/-30, the programming mode is entered when
+21V is applied to the OE/Vpp
pin. For MBM2732A-35/-35X, the
programming mode is entered
when +25Vor +21V is applied to
the OE/Vpp pin. A 0.1pF capacitor
between OENpp and VSS is needed to prevent excessive voltage
transients, which could damage
the device. The address to be programmed is applied to the proper
address pins. 8-bit patterns are
placed on the respective data output pins. The voltage levels
should be standard TIL levels.
When both the address and data
Fig. 1 - MEMORY CELL
~~~=DRAIN
SELECT GATE
~:
FLOATING GATE
SOURCE
Fig. 2 - MEMORY CELL THRESHOLD SHIFT
PROGRAMMED
"0"
NOT PROGRAMMED
"'"
Icc
~ ~
PROGRAM
O(f)
~U5
>- ~
>-cc
z>UJ
a:
cc
ERASE
::J
U
V TH1
VTHS
(NOT PROGRAMMEDI
(SENSE THRESHOLDI
V THO
(PROGRAMMEDI
SELECT GATE VOLTAGE IVI
are stable, a 50 msec, TIL Lowlevel pulse is applied to the CE input to accomplish the programming.
The procedure can be done
manually, address by address,
randomly, or automatically via the
proper circuitry. All that is required is that one 50 msec program pulse be applied at each address to be programmed. It is
necessary that this program
pulse width not exceed 55 msec.
Therefore, applying a DC level to
the CE input is prohibited when
programming.
Erasure
In order to clear all locations of
their programmed contents, it is
necessary to expose the
MBM2732A to an ultraviolet light
source. A dosage of 15
W-second/cm2 is required to completely erase an MBM2732A. This
4-17
dosage can be
posure to an
(wavelength of
(A))
with
obtained by exultraviolet lamp
2537 Angstroms
intensity
of
12000pW/cm 2 for 15 to 20
minutes. The MBM2732A should
be about one inch from the
source and all filters should be
removed from the UV light source
prior to erasure.
It is important to note that the
MBM2732A and similar devices,
will erase with light sources having wavelengths shorter than
4000A. Although erasure times
will be much longer than with UV
sources at 2537 A, nevertheless
the exposure to fluorescent light
and sunlight will eventually erase
the MBM2732A, and exposure to
them should be prevented to
realize maximum system reliability. If used in such an environment, the package window
should be covered by an opaque
label or substance.
MBM2732A
PROGRAMMING/ERASING INFORMATION (continued)
DC Characteristics
(TA
= 25 ±3·C, VCC(1) = 5V
±5%, Vpp
= 21V
±0.5V, VSS
Parameter
= OV) (For MBM2732A·3S/·3SX: Vpp =21V or 2SV)
Symbol
Min
Typ
Max
Unit
III
-
-
10
p.A
Ipp
-
30
mA
150
mA
0.8
V
2.0
-
Vee +1
v
VOL
-
-
0.45
V
VOH
2.4
-
-
V
Input Leakage Current
(VIN = 5.25V/0.45V)
Vpp Supply Current During Programming Pulse
VIL, OElVpp Vpp)
(CE
VCC Supply Current
ICC2
Input Low Level
VIL
-0.1
Input High Level
VIH
=
=
=
=
Output Low Voltage During Verify
(IOL 2.1mA)
Output High Voltage During Verify
(IOH
-400p.A)
Note: (1) Vee must be applied either coincidently or before Vpp and removed either coincidently or after Vpp.
(2) Vpp must not be greater than 21.5 volts (26.5 Volts for MBM2732A·35/·35X) including overshoot. Permanent device damage
may occur if the device is taken out or putJ!!.to~ket remaining Vpp = (21 volts for MBM2732A·20/·25/·30, 21 volts or 25
volts for MBM2732A·35/·35X). Also, during eE, PGM = V1L, Vpp must not be switched from VIL to Vpp volts or vise·versa.
AC Characteristics
(TA
= 25 ± 3 ·C,
Vee(1)
= 5V
±5%, Vpp
Parameter
Address Setup Time
= 21V
±0.5V) (21V ±
o.sv or 2SV ± O.SV for MBM2732A·3S/·3SX)
Symbol
Min
Typ
tAS
2
-
tOES
2
Data Setup Time
tos
2
Address Hold Time
tAH
0
-
tOEH
2
tOH
2
Output Enable Setup Time
Output Enable Hold Time
Data Hold Time
Max
-
Unit
p's
p's
p's
-
-
-
-
p's
-
130
ns
p's
p's
Chip Enable to Output Float Delay
(OE VIU
Chip Enable to Data Valid Time
(CE VIL, OElVpp VIU
Program Pulse Width
tOF
0
tov
tpw
-
-
1
p's
45
50
55
ms
Program Pulse Rise Time
tpRT
50
-
tVR
2
-
-
ns
Vpp Recovery Time
=
=
=
4·18
p's
MBM2732A
PROGRAMMDlG WAVEFORMS
No.1
~--------------PROGRAM-----------------r-----
V1H
ADDRESSES
VALID ADDRESSES
VIL
HIGH Z
DATA
DATA IN STABLE
'OF
Vpp
OElVpp
V1L
'OEH
tVR
V1H
CE
V1L
No.2
~------------------------PROGRAM------------------------~~
V 1H
ADDRESSES
VALID ADDRESSES n + 1
VALID ADDRESSES n
V 1L
DATA
DATA IN STABLE
Vpp
OElVpp
V1H - - - - - - - - - - - - ,
Note:
In PROGRAMMING WAVEFORMS No.2, Address Hold Time tAH must be more than 21ls.
4-19
FUJITSU
MICROELECTRONICS
CMOS 32,768·BIT UV ERASABLE AND
ELECTRICALLY PROGRA!JIMABLE
READ ONLY MEMORY
MBM27C32·25
l\mM27C32·30
DESCRIPTION
The Fujitsu MBM27C32. is a high
speed 32,768-bit static Complementary MOS erasable and electrically reprogram mabie read only
memory (EPROM). It is especially
suited for applications where the
extremely low power consumption of CMOS is essential.
A 24-pin dual in-line package with
a transparent lid is used to package the MBM27C32. The transparent lid allows the user to expose the device to ultraviolet light
• CMOS Power Consumption:
SOOI'W max. (Standby)
4OmW/MHz (Active)
• Organized as 4096 words by
8-bits, fully decoded
• Utilizes the same simple
programming requirements as
MBM2732,A
• Single location programming
• Programming pulse may be
reduced to 25 ns to cut
programming time in half
• No clock required, fully' static
operation
in order to erase the memory bit
pattern previously programmed.
At the completion of erasure, a
new pattern can be programmed
into the memory.
The MBM27C32 is fabricated using CMOS double polysilicon gate
technology with single transistor
stacked gate cells. It is organized
as 4096 words by 8-bits for use in
microprocessor applications. Single +5V operation greatly facilitates its use in systems.
• TIL compatible inpuls/outputs
• Three·state output with OR-tie
capability
• Output Enable (OE) pin
simplifies memory expansion
• Fast Access Time:
MBM27C32,-25 250 ns max.
MBM27C32·30 300 nsmax.
• Single +5V operation
• Jedec standard 24-pln DIP
package
• Pin and function compatible
with 2732A·type devices
CERDIP PACKAGE
DIP·24C·C02
PIN ASSIGNMENT
A7
Ycc
As
As
Ag
A11
OENpp
A10
A5
A4
A3
A2
A1
Ao
00
01
02
Yss
THIS IS PRELIMINARY INFORMATION
FOR A NEW PRODUCT TO BE
INTRODUCED DURING 1982. THIS IS
NOT A FINAL SPECIFICATION.
PARAMETRIC LIMITS ARE SUBJECT
TO CHANGE.
4-20
~
07
06
05
04
03
This device contains circuitry to protect the
Inputs against damage due to high static
voltages or electric fields. However, It is ad·
vised that normal precautions be taken to
avoid application of any voltage higher than
maximum rated voltages to this high im·
pedance circuit.
FUJITSU
MBM2764·20
MBM2764·25
MBM2764-30
MBM2764-30X
MICROELECTRONICS
NMOS 65,536·BIT UV ERASABLE AND
ELECTRICALLY PROGRAl\OAABLE
READ ONLY 1mA:ORY
DESCRIPTION
The Fujitsu MBM2764 Is a highspeed 65,536-bit static N-channel
MOS erasable and electrically
reprogrammable read only memory (EPROM). It is especially
suited for applications where
rapid turn-around and/or bit pattern experimentation are important.
A 28-pln dual in-line package with
a transparent lid is used to
package the M BM2764. The transparent lid allows the user to expose the device to ultraviolet light
in order to erase the memory bit
pattern previously programmed.
At the completion of erasure, a
new pattern can then be written
into the memory.
The MBM2764 is fabricated using
N-channel double polysilicon
gate technology with single transistor stacked gate cells. It is
organized as 8,192 words by 8 bits
for use in microprocessor applications. Single + 5V operation
greatly facilitates its use in
systems.
CERDIP PACKAGE
Dlp·28C·C01
FEATURES
• Organized as 8,192 words
by B-bits, fully decoded
• Fast Access Time:
MBM2764-20
200 ns
MBM2764-25
250 ns
MBM2764-30
300 ns
MBM2764-30X 300 ns
• Simple programming
requirements
• Single location
programming
• Programs with one 50 mS
pulse
• Low power requirement:
788mW active
184mW standby
• Extended temperature
range: MBM2764-30X:
-40°C to +85°C
• No clocks required, Fully
static operation
• TIL compatible
inputs/outputs
• Three-state output
with OR·tie capability
• Output Enable (OE) pin for
simplified memory
expansion
• Single +5V Operation
• Standard 28·pin DIP
package
• Pin compatible with Intel 2764
YBM2764
BLOCK DIAGRAM
'"..
....------,'--~;::::::==~
PIN ASSIGNMENT
Vpp
A12
AT
Vee
27
2
As
As
5
A4
A3
A2
7
8
Al
'iii!:
-III
lSi!:
.
S:
~
Poi
26
NC
25
As
24
As
23
All
Oe
21
Al0
20
CE
19
07
Au
10
00
01
02
11
12
Os
13
Vss
14
04
03
08
D,
.
v,
COLUMN
GATING
I
V"
"
A.
A"
I
V"
.
"""
CELL MATRIX
"..
I
V"
Vsa
4-21
This device contains circuitry' ') protect the
inputs against damage due to high static
voltages or electric fields. However, it Is ad·
vised that normal precautions be taken to
avoid application of any voltage higher than
maximum rated voltages to this high im·
pedance circuit.
MBM2764
ABSOLUTE MAXIMUM RATINGS
(see NOTE)
Parameter
Symbol
I MBM2764-20/-25/30
Temperature Under Bias
Value
-25 to +85
-50 to +95
-65 to +125
-0.6 to +7
-0.6 to +7
- 0.6 to + 26.5
TA
I MBM2764-30X
Storage Temperature
Inputs/Outputs with Respect to VSS
VCC with Respect to Vss
Vpp with Respect to Vss
Unit
Tstg
VIN, VOUT
VCC
Vpp
·C
·C
V
V
V
Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be
restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may effect device reliability.
FUNCTIONS AND PIN CONNECTIONS
~
VCC (28) = +5, Vss (14) = GND
Address Input
(2 -10,21,23 - 25)
Data 110
(11 -13,15 -19)
CE
(20)
OE
(22)
PGM 1
(27)
Read
AIN
DOUT
VIL
Output Disable
AIN
High Z
VIL
VIH
Don't Care
Don't Care
High Z
AIN
AIN
Don't Care
DIN
DOUT
High Z
VIH
VIL
VIL
VIH
VIL
VIH
Don't Care
Don't Care
Don't Care
(Pin No_).
ICC
Supply
(28)
Vpp
(1)
ICC2
Vcc
ICC2
VCC
ICC1
ICC2
ICC2
ICC1
Vcc
Vpp
Vpp
Vpp
Mode
Stand By
Program
Program Verify
Program Inhibit
VIL
Don't Care
VIL
Don't Care
VIL
VIH
Don't Care
Note: 1. PGM works as if OE (output enable) during reading operation. (Vpp = Vccl.
CAPACITANCE
(TA = 25·C, f = 1 MHz)
Parameter
Symbol
Typ
Max
Unit
Input Capacitance (VIN = OV)
Ouput Capacitance (VOUT = OV)
CIN
COUT
4
8
6
12
pF
pF
RECOMMENDED OPERATING CONDmONS
(Referenced to VSS
=GND)
Operating Temperature
Parameter
Supply Voltage(2)
Supply Voltage
Supply Voltage
Input High Voltage
Input Low Voltage
Symbol
Min
Typ
Max
Vee
Vpp
4.75
Vce- 0.6
5.0
5.25
-
Vcc + 0.6
Vss
VIH
VIL
-
GND
2.0
-0.1
-
Vcc+ 1
0.8
4-22
Unit
V
V
V
V
V
MBM2764-2OI-251-30
MBM2764-30X
O·C to + 70·C
-40·C to +85·C
MBM2764
DC CHARACTERISTICS
(Recommended operating conditions unless otherwise noted.)
Parameter
Conditions
Input Load Current
Output Leakage Current
Vpp Supply Current
Vcc Standby Current
Vcc Supply Current (Active)
Input Low Voltage
Input High Voltage
Output Low Voltage
Output High Voltage
VIN = 5.25V
Your = 5.25V
Vpp - VCC ±0.6V
CE = VIH
CE =VIL
Symbol
Min
-
III
ILO
Ipp
ICC1
ICC2
VIL
VIH
VOL
VOH
IOL = 2.1mA
IOH = -400",A
-0.1
2.0
Max
Unit
10
10
15
35
150
+0.8
",A
",A
mA
mA
mA
V
V
V
V
Vcc+ 1
0.45
-
-
2.4
AC CHARACTERISTICS
(Recommended operating conditions unless otherwise noted.)
Symbol
Parameter
Address to Output Delay
c-E to Output Delay
OE to Output Delay
Output Enable High to Output Float
Address to Output Hold
tACC
tCE
tOE
tDF
tOH
MBM2764·30
MBM2764-20 MBM2764·25 MBM2764·30X
Min
Max
Min
Max
Min
Max
-
200
200
70
60
-
250
250
100
90
-
300
300
150
130
10
0
0
-
10
0
0
10
0
0
-
ns
ns
ns
ns
ns
Test Conditions
CE = OE = VIL
CE - VIL
CE=VIL
CE = VIL
CE= OE= VIL
Output Load:
AC TEST CONDmONS
Input Pulse levels:
Input Rise and Fall Time:
Timing Measurement Reference Levels:
-
Unit
~
O.BV to 2.2V
520nsec
1.0V and 2.0V for inputs
O.BV and 2.0V for outputs
1 TTL gate and CL = 100 pF
r
CL
OPERATION TIMING DIAGRAM
ADDRESSES
K
ADDRESSES
VALID
>-
-.. tOH
....
/
CE
tCE_
DE
J
V
tOE ....
(3)
~tACC_
(3)
OUTPUT
Notes:
3.
4.
HIGH Z
LL1L
'\'\'\'\
(4)
...-tDF
f---
VALID OUTPUT)
~
~HIGH
Z--
OE may be delayed up to tAC C - tOE after the falling edge of CE without impact on I ACC '
tOF is specified from OE or CE, whichever occurs first.
4-23
TYPICAL CHARACTERISTICS CURVES
SUPPLY CURRENT (STANDBY)
vs SUPPLY VOLTAGE
fZ
w
~ 1.2
~
g;
w
~ 1.2
TA = 25°C
:;)
(.)
SUPPL Y CURRENT (ACTIVE)
vs SUPPLY VOLTAGE
fZ
~ 1.1
1.1
:;)
III
o 1.0
w
-
N
::;
~ 0.9
a:
CL
CL
:;)
III
1,...0- I-" ""'"
1,...0- ~
o 1.0
w
N
::;
~ 0.9
N O.S
u
u
.!:J
5
4
.2
6
4
SUPPL Y CURRENT (STANDBY)
vs AMBIENT TEMPERATURE
~w
SUPPLY CURRENT (ACTIVE)
vs AMBIENT TEMPERATURE
fZ
w
a: 1.2
a:
~ 1.2
Vee=5V
::)
(.)
~ 1.1
'"
8:::)
III
1.0
CL
CL
:::>
.......
o
r-....
w
o
Z.o.S
~ 0.9
II:
o
I'
..... .......
U
.2
0
T A. AMBIENT TEMPERATURE (OC)
50
100
T A • AMBIENT TEMPERATURE (OC)
ADDRESS ACCESS TIME
vs SUPPLY VOLTAGE
w
::0
ADDRESS ACCESS TIME
vs AMBIENT TEMPERATURE
j:
(I)
(I)
lJ!
w
~
«
T A =25°C
~
Vee=5V
«
~ 1.5
gj 1.5
II:
II:
w
w
o
o
o
o
«
«
ow
w
t.- ~
::;
1.0
1,..000 I--'"
'-
N
::;
«
:;;
~
II:
oZ
Z
o
r-....
o
~
N
~
gj
""'r-.,.
N
100
50
t'-.
Z.o.S
k
o
'"
::;
r-...
a:
1.0
N
I'
~ 0.9
j:
r--..
(I)
::;
w
:;;
Vce=5V
:;)
u
~ 1.1
N
U
6
5
Vee. SUPPLY VOLTAGE (V)
vee.SUPPLY VOLTAGE (V)
.!:J
I-" ~
Z
Z.O.S
w
.....
- ~i"'"
gj
o
o
T A =25°C
:;)
(.)
U
-~
100
T A • AMSIENT TEMPERATURE (OC)
50
4-24
1.0
r-...
......
'" ......1'-10..
4 5 6
Vee. SUPPLY VOLTAGE (V)
TYPICAL CHARACTERISTICS CURVES
C! TO OUTPUT DELAY
>-
VI
::5
w
VI
TO OUTPUT DE LAY
AMBIENT TEMPERATURE
w
o
o
I-
Vee=5V
:;)
:;)
5 1.5
5o
a..
I-
~
It!
o
w
1,...00 ~
N
:J
«
a:
o
z
w
y
0
~
W
100
50
T A • AMBIENT TEMPERATURE (OC)
50
100
T A. AMBIENT TEMpERATURE (OC)
OUTPUT SOURCE CURRENT
<"
I-
.E
:;)
~
0
9
'- """'~
1-.....
~ 1.0
a:
o
z
OE HIGH TO OUTPUT FLOAT
vs AMBIENT TEMPERATURE
9u.
10E~ ~ ~
~
:J
~ io-"'"
.,.,. io-"'"
1.5
~
I~
o
.,.,.
:; 1.0
Vee=5V
I-
a..
vs OUTPUT HIGH VOLTAGE
10
""
I-
Vee=5V
Z
w
o
~ 1.5
a:
a:
J:
CI
c.>
w
:;)
:i:
li!
I~
5l
""
J
ect5J TA = 25°C_
"
5
"'
......
:;)
o
........
5
w
~ 1.0
~
:;)
o
a:
0
u.
9
~
50
100
TA. AMBIENT TEMPERATU~E (OC)
OUTPUT SINK CURRENT
OUTPUT LOW VOLTAGE
~
w
, /'
a:
a:
:;)
./
I-
!l!
w
V'
~
..:.
.9 0 1/
tJ5JT A =25°C_
c.>
c.> 1.5
«
en
en
w
a:
c
c
«
cw
vee =5VTA = 25°C_
N
:J 1.0
«
:;
/
o
ADDRESS ACCESS TIME
vs LOAD CAf>ACITANCE
i=
/
:;)
3.0
2.5
w
:;
c.>
~ 10
in
0
VO H• OUTPUT HIGH VOLTAGE (V)
VI
20
g
....
~
i"'"""
-'
~
DE
~
AMBIENT TEMPERATURE
(Continued)
I.... ~
.... ~
L.,..o ~
~
.....
a:
/
0
z
U
o
u
~
0.5
1.0
VOL. OUTPUT LOW VOLTAGE (V)
4-25
o
200
400
CL • LOAD CAPACITANCE (pF)
MB:M2764
PROGRAMMING/ERASING INFORMATION
MEMORYCELL
DESCRIPTION
The MBM2764 is fabricated using a
single-transistor stacked gate cell
construction, implemented via
double-layer polysilicon technology.
The individual cells consist of a bottom floating gate and a top select
gate (see Fig. 1). The top gate is connected to the row decoder, while the
floating gate is used for charge
storage. The cell is programmed by
the injection of high energy electrons
through the oxide and onto the floating gate. The presence of the charge
on the floating gate causes a shift in
the cell threshold (refer to Fig. 2). In
the initial state, the cell has a low
threshold (VTH1) which will enable the
transistor to be turned on when the
cell is selected (via the top select
gate). Programming shifts the threshold to a higher level (VTHO), thus
preventing the cell transistor from
turning on when selected. The status
of the cell (i.e., whether programmed
or not) can be determined by examining its state at the sense threshold
(VTHS), as indicated by the dotted line
in Fig. 2.
Fig_ 1 - MEMORY CELL
SELECT GATE
~
~
:
DRAIN
FLOATING GATE
SOURCE
Fig. 2 - MEMORY CELL THRESHOLD SHIFT
NOT PROGRAMMED
PROGRAMMED
"0"
"1"
PROGRAM
ERASE
PROGRAMMING
Upon delivery from Fujitsu, or after
each erasure (see Erasure section), the
MBM2764 has all 65536 bits in the "1"
or high state. "O's" are loaded into the
MBM2764 through the procedure of
programming.
The programming mode is entered
whelJ....j-21V ~plied to the Vpp pin
and CE and F'GM are both at VIL. During programming, CE is kept at VIL. A
0.1/LF capacitor between Vpp and GND
is needed to prevent excessive voltage
transients, which could damage the
device. The address to be programmed
is applied to the proper address pins.
Eight bit patterns are placed on the
respective output pins. The voltage
levels should be standard TTL levels.
When both the address and data are
stable, 50 msec, TTL low level pulse is
applied to the i5G'M input to accomplish the programming.
The procedure can be done manually,
address by address, randomly, or
automatically via the proper circuitry.
All that is required is that one 50 msec
program pulse be applied at each address to be programmed. It is
i
V TH1
(NOT PROGRAMMED)
V HS
(SENSE THRESHOLD)
VTHO
(PROGRAMMEO)
SELECT GATE VOLTAGE IV)
necessary that this program pulse
width not exceed 55 msec. Therefore,
applying a DC level to the PGM input
is prohibited when programming.
ERASURE
In order to clear all locations of their
programmed contents, it is necessary
to expose the MBM2764 to an
ultraviolet light source. A dosage of
15W-seconds/cm 2 is required to completely erase an MBM2764. This
dosage can be obtained by exposure
to an ultraviolet lamp (wavelength of
2537 Angstroms (A) with Intensity of
12,000/LW/cm2 for 15 to 20 minutes.
4-26
The MBM2764 should be about one
inch from the source and all filters
should be removed from the UV light
source prior to erasure.
It is important to note that the
MBM2764 and similar devices, will
erase with light sources having
wavelengths shorter than 4000 A.
Although erasure times will be much
longer than with UV sources at 2537
A, nevertheless, the exposure to
fluorescent light and sunlight will
eventually erase the MBM2764 and
such exposure should be prevented to
realize maximum system reliability. If
used in such an environment, the
package windows should be covered
by an opaque label or substance.
YBM2764
PROGRAMMING/ERASING INFORMATION
DC CHARACTERISTICS
(Continued)
(TA = 25±3°C, Vee = 5V ±5%, Vpp = 21V ±0.5V)
Parameter
Symbol
Input Leakage Current
Output Low Voltage
Output High Voltage
Vee Supply Current
Input Low Voltage
Input High Voltage
Vpp Supply Current
III
VOL
VOH
lee2
VIL
VIH
Ipp
Min
Max
Unit
Test Conditions
-
10
0.45
pA
V
V
mA
V
V
mA
VIN = 0.45V-5.25V
IOL= 2.1 mA
IOH = -400pA
-
2.4
-
150
0.8
-0.1
2.0
Vee +1
30
-
CE= PGM =VIL
AC CHARACTERISTICS
-(TA = 25±3°C, Vee = 5V ±5%, Vpp = 21V ±0.5V)
Parameter
Symbol
Address Setup Time
CE Setup Time
Data Setup Time
Address Hold Time
Data Hold Time
Chip Enable to Output Float Delay
Vpp Setup Time
PGM Pulse Width
OE Setup Time
Data Valid from CfE
tAS
teES
tos
tAH
tOH
tOF
tvs
tpw
Min
Typ
Max
2
2
2
0
2
-
-
2
45
2
tOES
tOE
-
130
-
50
55
-
150
-
PROGRAMMING WAVEFORM
ADDRESSES
)(
K
ADDRESS N
r
I--tASHigh Z
DATA
DATA IN STABLE
__ tos_
__ tOF __
I--tOE-
I--tOH-
Vpp
vpp
vcc
j
--tvs_
V IH
CE
V IL
\
-tCES--
V IH
PGM
V IL
i--tpw-
I--tOES--j
V IH
~
DE
V IL
4-27
tAH - -
DATA OUT
VALID
/
Unit
p.S
,.s
p.S
,.s
,.s
ns
p.S
ms
,.s
ns
FUJITSU
MBM27C64·25
MBM27C64·30
MICROELECTRONICS
CMOS 65,536·BIT UV ERASABLE AND
ELECTRICALLY PROGRAMMABLE
READ
omY MElVIORY
DESCRIPTION
The Fujitsu MBM27C64 is a high
speed 65,536-bit static Complementary MOS erasable and electrically reprogrammable read only
memory (EPROM). It is especially
suited for applications where the
extremely low power consumption of CMOS is essential. The
device dissipates only 40
mW/MHz when active, typically
5p.W when in standby, yet it provides the same high performance
as the NMOS MBM2764-type
devices.
A 28-pin dual in-line package with
a transparent lid is used to pack-
age the MBM27C64. The transparent lid allows the user to expose
the device to ultraviolet light in
order to erase the memory bit pattern previously programmed. At
the completion of erasure, a new
pattern can be programmed into
the memory.
The MBM27C64 is fabricated using CMOS double polysilicon gate
technology with single transistor
stacked gate cells. It is organized
as 8192 words by 8-bits for use in
microprocessor applications. Single +5V operation greatly facilitates its use in systems.
PIN ASSIGNMENTS
FEATURES
• CMOS Power Consumption:
5OOp.W max. (Standby)
5p.W typ.(Standby)
4OmW/MHz (Active)
• Organized as 8192 words by
8-blts, fully decoded
• Utilizes the same simple
programming requirements as
MBM2764
• Single location programming
• Programming pulse may be
reduced to 25 ns to cut
programming time in half
• No clock required, fully static
operation
CERDIP PACKAGE
DIP-28C·C01
ALSO AVAILABLE IN 32-PAD
CERAMIC LEADLESS CHIP CARRIER
LCC-32C-A01
• TTL compatible Inputs/outputs
• Three-state output with OR·tle
capability
Vpp
• Output Enable (OE) pin
simplifies memory expansion
• Fast Access Time:
MBM27C64-25 250 ns max.
MBM27C64-30 300 ns max.
• Single +5V operation
• Jedec .standard 28-pin DIP
package
• Pin and function compatible
with 2764-type devices
0,
0,
MB:M2'lC64
BLOCK DIAGRAM
A12
2
27
A7
3
26
NC
As
4
25
As
As
24
A9
A4
23
All
,&:1:
... 111
A3
A2
8
IS!
......
.. 0
22
OE
21
20
Al0
CE
Ao
10
19
07
00
11
18
01
12
02
13
04
vss,
14
'03
-Z!
Al
Vpp Vee
r--r-r-Y--Y--r--Y--l
v"
1
1
v"
GNO
4-28
06
,Os
11.'115 ' 111'17"""'20'
1'1'01",( Ttl.18 Ii; j"l",d~~.illti<.~~.
M ~h~"ll't.
ABSOLUTE MAXIMUM RATINGS (See Note)
Parameter
Symbol
Temperature Under Bias
Storage Temperature
TA
Inputs/Outputs with Respect to Vss
Tstg
VIN, VOUT
VCC with Respect to Vss
Vpp with Respect to VSS
VCC
Vpp
Value
Unit
-25 to +85
-65 to +125
-0.6 to +7
-0.6 to +7
-0.6 to +22
·C
·C
V
V
V
Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be
restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating
conditions for extended periods may effect device reliability. This device contains circuitry to protect the inputs against
damage due to high static voltages or electric fields. It is advised that normal precautions be taken to avoid application of any
voltage higher than maximum rated voltages to this high impedance circuit.
FUNCTIONS AND PIN CONNECTIONS (Vcc(28) = +5, Vss(14) =GND)
~
(Pin No.).
Address Input
(2 -10,21,23 - 25)
Data I/O
(11 -13,15 -19)
CE
(20)
OE
(22)
PGM
VIL
VIH
Don't Care
VIH
Don't Care
(2n
ICC
Supply
(28)
Vpp
(1)
Mode
Read
AIN
DOUT
VIL
Output Disable
AIN
HighZ
VIL
Stand By
Program
Don't Care
HighZ
AIN
AIN
Don't Care
DIN
VIH
VIL
VIL
VIH
Program Verify
Program Inhibit
DOUT
HighZ
Don't Care
Don't Care
VIL
Don't Care
VIL
Don't Care
VIL
VIH
Don't Care
ICC1
VCC
ICC1
Vcc
ISB1
ICC1
VCC
Vpp
Vpp
Vpp
ICC1
ISB1
CAPACITANCE
(TA '= 25·C, f
= 1 MHz)
Parameter
=
Symbol
Typ
Max
Unit
CIN
COUT
4
8
6
12
pF
pF
Input Capacitance (YIN OV)
Output Capacitance (YOUT OV)
=
RECOMMENDED OPERATING CONDmONS
(Referenced to Vss = GND)
Parameter
Supply Voltage 1
Supply Voltage
Supply Voltage
Input High Voltage
Input Low Voltage
Max
Unit
5.0
5.25
-
Vcc +0.6
V
V
V
V
V
Symbol
Min
Typ
Vee
Vpp
4.75
Vcc -0.6
Vss
-
VIH
VIL
2.0
-0.1
GND
-
Vcc+ 0.3
0.8
Note: 1. Vee must be applied either before or coincident with Vpp and removed either after or coincident with Vpp.
4-29
Operating
Temperature
O·C to +70·C
MBM27C64-2S/MBM27C64-30
DC CHARACTERISTICS
(Recommended operating conditions unless otherwise noted.)
=
Input Load Current (VIN 5.25V)
Output Leakage Current (VOUT 5.25V)
Vpp Supply Current
Vcc Standby Current (CE
Vcc Standby Current
=
Min
Typ
Max
Unit
III
ILO
IpP1
-
-
pA
pA
pA
ISB1
-
-
10
10
100
1
mA
ISB2
-
1
100
pA
-
-
30
30
0.45
mA
mA
V
V
Symbol
Parameter
=
= VIH)
=
(CE Vcc -0.3V to Vcc + 0.3V, lOUT OmA)
Vcc Active Current (CE VII)
Vcc Operation Current (f 4MHz, lOUT OmA)
Output Low Voltage (IOL 2.1mA)
Output High Voltage (lOH
-4oopA)
=
=
=
=
ICC1
=
1
-
ICC2
VOL
VOH
2.4
-
AC CHARACTERISTICS
(Recommended operating conditions unless otherwise noted.)
Parameter
Symbol
Min
Address Access Time
=
=
=
(CE OE VIL, PGM VIH)
CE to Output Delay (CE VIL, PGM VIH)
OE to Output Delay (CE VIL, PGM VIH)
PGM to Output Delay (CE OE VII)
Output Enable High to Output Float
(See Note)
Address to Output Hold
=
=
=
=
=
=
MBM27C64-30
Max
Min
MBM27C64-25
Max
Min
tACC
-
-
250
tCE
tOE
tpGM
-
-
10
10
-
250
100
tOF
tOH
Max
-
-
300
ns
-
300
150
150
ns
ns
ns
100
0
-
10
10
90
0
-
130
ns
0
-
-
0
-
-
ns
Note: tOF is specified from CE, OE, or PGM, whichever occurs first.
Output Load:
AC TEST CONDmONS
Input Pulse levels:
Input Rise and Fall Time:
Timing Measurement Reference Levels:
0.8V to 2.2V
s20nsec
1.0V and 2.0V for inputs
0.8V and 2.0V for outputs
1 TTL gate and CL 100 pF
=
OPERATION TIMING DIAGRAM
AOOREssEs____
~Jf----------A-O-O-R-E-SS-E-S--VA-L-I-O----------~~~
_________________
-
'ACC
'OH-
V
\
'CE
V
\
-'OE-
r\
I
-'PGM-
OUTPUT
High Z
Unit
II
~~
f---'OF- t--OUTPUT VALID
Notes: 1. OE may be delayed up to tACC - tOE after the falling edge of CE without impact on tACC.
4-30
~ !r-High Z -
MBM27C64·25/MBM27C64·30
TYPICAL CHARACTERISTICS CURVES
OPERATION CURRENT
vs FREQUENCY
I-
z
z
w
a::
a::
:::> 1.4 I--TA=21oc
u
I--CE=Vee
VJe=5V
TA=25°C
10 ~ V 1N =VeelVss
>CD
0
w
0..
0
w
N
1
V
'"
::<
a::
0
z
N
u
0.1
.:!
z
..:
V
/
0
::::i
I-
en
w
a::
a::
:;;
a::
0
z
1
"'
10
4.0
~
STANDBY CURRENT
0
1.0
~
:;;
,,/
::::>
u
./
/
UJ
>CD
0
z
I-
en
N
-'"'"
0.6
1
en
1.
en 1.4 t- V ee=5V
w
..:
en
en 1.2
w
~
a:
..:
1.0
0
w
en
en
w 1.4
U
u
-vee =15V
u 1.4
N
u
---~
!::!
i--'"
::J
..: 0.8
OPERATION CURRENT
vs SUPPLY VOLTAGE
z
z
1.0
0
w
f. FREQUENCY (MHz)
I-
0
1.2
0
i=
..:
a::
..:
VI
z
w
a::
a::
:::>
u
STANDBY CURRENT
SUPPLY VOLTAGE
I-
U
u
50
100
T A , AMBIENT TEMPERATURE (oC)
j
4-31
4.0
5.0
Vee, SUPPLY VOLTAGE (V)
6.0
MB:M2'1C64-25/MB:M2'1C64-30
TYPICAL CHARACTERISTICS CURVES (Continued)
><
..J
VI
CE TO OUTPUT DELAY
AMBIENT TEMPERATURE
I- Vcc=5V
Q,
I-
0
0
1.2
I-
I~
1.0
~
0
w
~ O.B
::;)
1=
5 1.2
-"
~
vs AMBIENT TEMPERATURE
I- 1.4 r-vcc=kv
.,.,.,.
::;)
::;)
~
w
o
1
W
0
1.4
I-
OE TO OUTPUT DELAY
>-
---
~
I~ 1.0
~
o
~ 0.8
::;
<
----
...- ....
<
::2
:;
~ 0.6
~ 0.6
z
W
z
o
o
w
W
100
TA. AMBIENT TEMPERATURE (OC)
:;
50
100
TA. AMBIENT TEMPERATURE (OC)
9
I-
<
OE
HIGH TO OUTPUT FLOAT
vs AMBIENT TEMPERA TURE
9u.
OUTPUT SOURCE CURRENT
vs OUTPUT HIGH VOLTAGE
~
E
I-
zw
VCC!5V TA=25°C_
20
a:
a:
:::>
:r
()
:i:
()
1.0
a:
:::>
0
I~
iil
O.B
"
:;)
0.6
0
:i:
0
2
50
100
T A. AMBIENT TEMPERATURE (OC)
OUTPUT SINK CURRENT
vs OUTPUT LOW VOLTAGE
~
E
-V~C=5J
20
_
o
, ,....-
o
w
I-
:::>
:::>
o
<
::2
/
~
z
V
o
/'
....... - '
~ 1.0
/
1=
..:.
2 0
1.4
~ 1.2
/
10
~
a:
/
~
1.6 f-- Vcc=5V
f-- T A=25°C
w
./
:::>
I
u
~
./
/
..........
ADDRESS ACCESS TIME
vs LOAD CAPACITANCE
j::
:il'"
r--..
4.0
3.0
5.0
VOH. OUTPUT HIGH VOLTAGE (V)
:;
./
()
0
w
T A =25°C
a:
a:
~
..........
Q,
I-
9
zw
:......
:;)
N
I-
10 r--
'"
I-
::;
<
::2
a:
0
z
....
\
w
Cl
0.2
0.4
0.6
0.8
1.0
8
1.2
~
VOL. OUTPUT LOW VOLTAGE (V)
4-32
0.8
0
200
400
C L • LOAD CAPACITANCE (pF)
MBM27C64-25/MBM27C64-30
PROGRAMMING/ ERASING INFORMATION
MEMORYCELL
DESCRIPTION
The MBM27C64 Is fabricated using a
single-transistor stacked gate cell
construction, implemented via
double-layer polysilicon technology.
The individual cells consist of a bottom floating gate and a top select
gate (see Fig. 1). The top gate is connected to the row decoder, while the
floating gate is used for charge storage. The cell Is programmed by the injection of high energy electrons
through the oxide and onto the
floating gate. The presence of the
charge on the floating gate causes a
shift in the cell threshold (refer to Fig.
2). In the initial state, the cell has a low
threshold (VTH1) which will enable the
transistor to be turned on when the
ceil is selected (via the top select
gate). Programming shifts the threshold to a higher level (VTHO), thus
preventing the cell transistor from
turning on when selected. The status
of the cell (i.e., whether programmed
or not) can be determined by examining its state at the sense threshold
(VTHS), as indicated by the dotted line
in Fig. 2.
Fig. 1 - MEMORY CELL
.L...._--DRAIN
SELECT
GAT~ ...; ...1------
FLOATING GATE
SOURCE
Fig. 2 - MEMORY CELL THRESHOLD SHIFI'
..J
..J
W
NOT PROGRAMMED
PROGRAMMED
"0"
"1"
U
PROGRAM
ERASE
V TH1
VTHS
(NOT PROGRAMMED)
(SENSE THRESHOLD}
VTHO
(PROGRAMMED)
SELECT GATE VOLTAGE (V)
PROGRAMMING
Upon delivery from Fujitsu, or after
each erasure (see Erasure section),
the MBM27C64 has all 65,536 bits in
the "1" or high state. "O's" are loaded
into the MBM27C64 through the procedure of programming.
The programming mode is entered
when +21V is applied to the Vpp pin
and CE and PGM are both at VIL' During programming, CE is kept at VIL' A
0.1JLF capacitor between Vpp and
GND is needed to prevent excessive
voltage transients, which could damage the device. The address to be programmed is applied to the proper address pins. Eight bit patterns are placed on the respective output pins. The
voltage levels should be standard TTL
levels. When both the address and
data are stable, 50 msec, TTL low level
pulse is applied to the PGM input to
accomplish the programming.
The procedure can be done manually,
address by address, randomly, or automatically via the proper circuitry. All
that is required is that one 50 msec
program pulse be applied at each address to be programmed. It is necessary that this program pulse width not
exceed 55 msec. Therefore, applying a
DC level to the PGM input is prohibited when programming,
ERASURE
In order to clear all locations of their
programmed contents, it is necessary
to expose the MBM27C64 to an ultraviolet light source. A dosage of
15W-seconds/cm 2 is required to completely erase an MBM27C64. This dosage can be obtained by exposure to an
ultraviolet lamp (wavelength of 2537
4-33
Angstroms (A) with intensity of
12,OOOJLW/cm 2) for 15 to 20 minutes.
The MBM27C64 should be about one
inch from the source and all filters
should be removed from the UV light
source prior to erasure.
It is important to note that the
MBM27C64 and similar devices, will
erase with light sources having wavelengths shorter than 4000 A, Although
erasure times will be much longer
than with UV sources at 2537 A, nevertheless, the exposure to fluorescent
light and sunlight will eventually erase
the MBM27C64 and such exposure
should be prevented to realize maximum system reliability. If used in
such an environment, the package
windows should be covered by an
opaque label or substance,
MBM27C64-25/MBM27C64-30
PROGRAMMING/ERASING INFORMATION (Continued)
DC CHARACTERISTICS
(TA = 25 ±3 ·C, Vee = 5V ±5%, Vpp = 21V ±0.5V)
Parameter
Symbol
Input Leakage Current
Output Low Voltage During Verify
Output High Voltage During Verify
Vee Supply Current
Input Low Voltage
Input High Voltage
Vpp Supply Current During Progamming Pulse
III
VOL
VOH
lee1
VIL
VIH
IpP2
Min
Max
Unit
Test Conditions
-
10
0.45
pA
V
V
rnA
V
V
rnA
VIN = 0.45V-5.25V
IOL=2.1 rnA
IOH - -400pA
-
2.4
-
30
0.8
Vee +0.3
30
-0.1
2.0
-
OE - PaM" = VIL
Note: 1. Vee must be applied either coincidently or before Vpp and removed either coincidently or after Vpp.
2. Vpp must not be greater than 21.5 volts Including overshoot. Permanent device damage may occur If the device Is taken out or
put Into socket remaining Vpp =21 volts. Also, during ~ = PGM = VIL. Vpp must not be switched from 5 volts to 21 volts or
vise-versa.
AC CHARACTERISTICS
(TA = 25 ±3 ·C. Vee = 5V ±5%, Vpp = 21V ±0.5V)
Parameter
Symbol
Address Setup Time
Min
Typ
Max
2
2
2
0
2
0
2
25
2
-
-
tAS
teES
tos
tAH
tOH
tOF
tvs
tpw
CE Setup Time
Data Setup Time
Address Hold Time
Data Hold Time
Chip Enable to Output Float Delay
Vpp Setup Time
PGM Pulse Width
OE Setup Time
Data Valid from OE
tOES
tOE
-
130
=>
I---'OH-
-
150
-
DATA OUT
VALID
t---'OF-
t--'OE-
Vpp
Vpp
VCC
---.J
-'VS-
V'H
CE
~
V'L
-'CESV'H
PGM
V'L
DE
~
~
~,pw~
/---'OES--j
V'H
~
V'L
4-34
pS
ns
pS
r'AH-
/---'OS-
pS
ms
~
High Z
pS
-
I--'ASDATA IN STABLE
pS
55
ADDRESS N
DATA
pS
50
PROGRAMMING WAVEFORM
ADDRESSES
Unit
j
pS
ns
Device
Technology
Organization
Access
Time
(max)
Power
Supply
Volts
Power
Dissipation
Package
Page
MB7072E
MBM10415AH
MBM10422
MBM10422A-7
MBM10470A-20
MBM10474
MBM10474A-15
MBM10480
MBM93419
MBM100422
MBM100422A-7
MBM100470
MBM100474-15
EeL
EeL
EeL
EeL
EeL
EeL
EeL
EeL
TTL
EeL
EeL
EeL
EeL
256 x 4
1K x 1
256 x 4
256 x 4
4K x 1
1K x 4
1K x 4
16K x 1
64 x 9
256 x 4
256 x 4
4K x 1
1K x 4
12n5
20n5
10n5
7n5
20n5
25n5
15n5
20n5
45n5
10n5
7n5
20n5
15n5
-5.2
-5.2
-5.2
-5.2
-5.2
-5.2
-5.2
-5.2
+5
-4.5
-4.5
-4.5
-4.5
1040mW
780mW
1040mW
1040mW
1040mW
1040mW
1040mW
700mW
1000mW
900mW
900mW
900mW
900mW
22-pin
16-pin
24-pin
24-pin
18-pin
24-pin
24-pin
20-pin
28-pin
24-pin
24-pin
24-pin
24-pin
5-2
5-7
5-12
5-17
5-18
5-23
5-28
5-29
5-30
5-34
5-39
5-40
5-45
FUJITSU
MB7072E
MICROELECTRONICS
ECL 256 X 4-BIT BIPOLAR
RANDOM ACCFSS MEMORY
DiSCRIPTION
con), as well as lOP (Isolation by
Oxide and Polysilicon) processing. As a result, very fast access
time with high yields and outstanding device reliability are
achieved in volume production.
Operation for the MB7072 is
specified over a temperature
range of O·C to 75·C (ambient).
The Fujitsu MB7072 is a fully
decoded 1024-bit ECl read/write
random access memory designed
for high-speed scratch pad, con·
trol and buffer storage applica·
tions. The M B7072 offers extremely small cell and chip sizes, realized through the use of Fujitsu's
patented DOPOS (Doped Polysili-
FEA'1"Um
• Organized as 256 words by
4-bits
• On·chip voltage
compensation for improved
noise margin
• Fully compatible with
industry standard 10K·series
Eel families
• Address Access Time:
MB7072E 12ns Max.
• DOPOS and lOP Processing
• Two block select pins for
flexibility in organization
CERAMIC PACKAGE
Dlp·22C·F01
Fig. 1·MB7072.E BLOCK DIAGRAM
PIN ASSIGNMENT
I
I
A,
I
BS1
WE
BSo
VCC
A3
256 X 4 BITS CELL ARRAY
AI)
A2
I
I
VCCO
I
Al
000
A,
BlOCKO
I
I
I
I
BLOCK1
AD
BLQCK3
BLOCK2
WE
DOD
DID
DO,
BSO
DI,
002
Dl2
as,
003
01 3
A2
001
A3
002
A.4
003
AS
01 0
As
011
A7
01 2
VEE
01 3
TRUTH TABLE
INPUT
BS
WE
H
L
L
L
X
L
L
H
01
X
H
L
X
OUTPUT
L
L
L
DO
MOOE
DISABLE
WRITE"H"
WRITE"L"
READ
H
L
X
= HIGH VOLTAGE LEVEL
= LOW VOLTAGE LEVEL
= DON'T CARE
5-2
Small geometry bipolar Integrated circuits
are occasionally susceptible to damage
from static voltages or electric fields. It is
therefore advised that normal precautions
be taken to avoid application of any voltage
higher than maximum rated voltages to this
device.
MB7072E
ABSOLUTE MAXIMUM RATINGS (see Note)
Symbol
Rating
VEE Pin Potential to Ground Pin (Vccl
Input Voltage
Output Current (DC, Output High)
Temperature Under Bias
Storage Temperature
VEE
VIN
lOUT
TA
Value
Unit
+0.5 to -7.0
V
V
mA
·C
·C
+0.5 to VEE
-30
-25 to +125
-65 to +150
Tstg
Note: Permanent device damage may occur If ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted
to the conditions as detailed In operational sections of this data sheet.
GUARANTEED OPERATING RANGES
Supply Voltage (VEE>
Part Number
MB7072 E
Ambient Temperature
Min
Typ
Max
-5.46V
-5.2V
-4.94V
O·C to 75·C
CAPACITANCE
Parameter
Symbol
Min
Typ
Max
Unit
"Input Pin Capacitance
Output Pin Capacitance
CIN
COUT
-
-
8
8
pF
pF
"BS Capacitance = 12pF (max)
DC CHARACTERISTICS
(VCC = VCCO = OV, VEE = -5.2V, Output Load = 500 to -2.0V, with transverse airflow 2: 2.5 mIs, unless otherwise noted.)
Parameter
Symbol
Min
-1000
Output High Voltage
(VIN = VIHmax or VILmin)
VOH
Output Low Voltage
(VIN = VINmax or VILmin)
VOL
Output High Voltage
(VIN = VIHmin or VILmax)
VOHC
Output Low Voltage
(VIN = VIHmin or VILmax
VOLC
VIH
Input Low Voltage (Guaranteed Input
Voltage Low for All Inputs)
VIL
"Input High Current (VIN = VIHmax)
""Input Low Current (VIN = VILmin)
Power Supply Current
(All Inputs and Output Open)
-
-960
-900
-
-1870
-1850
-1830
-1020
-
-980
-920
Input High Voltage (Guaranteed Input
Voltage High for All Inputs)
Typ
-1145
-1105
-1045
-1870
-1850
-1830
-
-
IIH
IlL
-
-
0.5
-
lEE
-200
-
"Bs Input High Current = 3OOpA(max)
"" BS Input Low Current = 240pA(max)
5-3
Max
-840
-810
-720
-1665
-1650
-1625
Unit
p.A
p.A
O·C
25·C
75·C
O·C
25·C
75·C
O·C
25·C
75·C
O·C
25·C
75·C
O·C
25·C
75·C
O·C
25·C
75·C
O· to 75·C
O· to 75·C
mA
O· to 75·C
mV
mV
-
-1645
-1630
-1605
-840
-810
-720
-1490
-1475
-1450
220
170
-
TA
mV
mV
mV
mV
MB7O'72E
AC CHARACTERIS'11CS
=
=
=
=
Nee Veeo OV, VEE
-5.2V ±5%, TA O· to +75·C with transverse airflow 2: 2.5 mis, Output Load
and 15 pF to GND, unless otherwise noted.)
=500 to
-2V
Fig. 2 - AC TEST CONDlTIONS
GI
-O.9V -
VCC·VCCO
-1.7V
---r-------"""\.
-4
80%
I\"\- 20%
-i -I,
If-
j---
I, = If = 2.5n5 typo
OUTPUT LOAD: RL = son
CL = 15 pF
!INCLUDING JIG AND STRAY CAPACITANCE)
READ CYCLE
MB7072E
Unit
Symbol
Parameter
Address Access Time
Block Select Access Time
Block Select Recovery Time
tM
tAB
tRB
Min
Typ
Max
-
3.0
3.0
12
5.0
5.0
ns
ns
ns
READ CYCLE
AO"'~
r--IRB-'
DO
50%
-
=1_
-3c----:-----
50
_%_,- - tAA
80%
50%
DO
~20%
-------
f-If
-5-4
MB7072E
WRITE CYCLE
MB7072E
Parameter
Unit
Symbol
Write Pulse Width
Write Recovery Time
Write Disable Time
Address Set Up Time
Block Select Set Up Time
Data Set Up Time
Address Hold Time
Block Select Hold Time
Data Hold Time
Min
Typ
Max
9.0
-
5.5
6.0
3.0
9.0
5.0
3.0
2.0
2.0
2.0
2.0
2.0
-
tww
tWR
tws
tSA
isB
tso
tHA
tHB
tHO
-
ns
ns
ns
ns
ns
ns
ns
ns
ns
-
-
-
WRlTECYCLE
~
7
1\
~~
/1\
~~
/1\
AOORESS
~~
/1\
I.(
-
J~
-
-
tso
~
I--
jr=.-tHA-
r--tS A
tww
--------- -----
\
tSB
°OUT
tHO
'I
-
tws
tHB-
50%
-
J
150%
! - - tWR -
RISE TIME AND FALL TIME
MB7072E
Parameter
Ouput Rise Time
Output Fall TIme
Symbol
tr
tf
Unit
Min
Typ
Max
-
3.0
3.0
-
-
5-5
-
ns
ns
MB'J072E
APPLICA'110N INFOR'MA'110N
lustrates one application; a 4K word x a-bit
memory. As with all ECL memory systems, extreme care must be taken In PC board layout and
bussing to minimize reflections and crosstalk.
The Fujitsu M87072 E is a fully decoded 256 word
by 4-bitsECL memory. High speed makes them
ideally suited to mainframe applications, Including
cache and microprogram control. Figure 3 II-
Fig. 3 - 4K WORD X 8-BlT MEMORY SYSTEM
COLUMN 0 - - - - - - - -
-
-
----COLUMN3
COLUMN 0
COLUMN 1
COLUMN 2
COLUMN 3
TO AOORESS
INPUTS OF
MB7072IN
SAME COLUMN
5~gW4
r;::+==+:j::+::;:=~========:j::=t+=+:;::+t::::::;~-2VWE
ROW 5
.-L.---l........ 50n
I'-'::===+:j::+;=~==========tt=+::;:+t::::::~-2V
ROW6
ROW7
son
50n
-2V
-2V
50n
-2V
5-6
-2V
r--, }
fil
I
I
l
... ___ J
COLUMN
COLUMN
COLUMN
COLUMN
0
1
2
3
TO _WE
INPUT OF
MB7072 IN
SAME COLUMN
FUJITSU
MBMl0415AH
MICROELECTRONICS
ECL 1024·BIT BIPOLAR
RANDOM ACCESS .MEMORY
DESCRIPTION
The Fujitsu MBM10415AH is a fully decoded 1024-bit ECl read!
write random access memory
designed for high-speed scratch
pad, control and buffer storage
applications_ It is organized as
1024 words by one bit, and
features on-chip voltage compensation for improved noise margin.
The MBM10415AH offers extremely small cell and chip sizes,
realized through the use of
Fujitsu's patented DOPOS
(Doped Polysilicon), as well as
lOP (Isolation by Oxide and Polysilicon) processing. As a result,
very fast access time with high
yields and outstanding device
reliability are achieved in volume
production.
Operation for the MBM10415AH
is specified over a temperature
range of from 0 °C 75°C (ambient).
It also features frit-sealed 16-pin
dual in-line packaging, and is fully
compatible with industrystandard 10K-series ECl families.
CERAMIC PACKAGE
Dlp·16C·F01
FEATURES
• 1024 words x 1-bit organization
• On·chip voltage compensation
for improved noise margin
• Fully compatible with industry·
standard 10K·series ECl
families
• Address access time:
MBM10415AH: 20 ns Max.
• Chip select access time:
MBM10415AH: 8 ns Max.
• Open emitter output for ease
of memory expansion
• low power dissipation of
0.5mW!bit
• DOPOS and lOP processing
• Pin compatible with
F10415 and MCM10146
PIN ASSIGNMENT
Oour
Vec'
AO
MBMl0415AH
BLOCK DIAGRAM
DIN
Al
cs
A2
WE
A3
A9
A4
AS
AS
A7
VEE
A6
*Vcc grounded
Small geometry bipolar integrated circuits are
occasionally susceptible to damage from static
voltages or electric fields. It is therefore advised
that normal precautions be taken to avoid application of any voltage higher than maximum
rated voltages to this device.
32 x 32
MEMORY CELL ARRAY
TRUTH TABLE
INPUT
DISABLED
L
L
L
L
WRITE"L"
L
L
H
L
WRITE"H"
L
H
X
DOUT
READ
=
5-7
MODE
L
WE
X
DIN
X
H HIGH VOLTAGE LEVEl.
L= LOW VOLTAGE LEVEL
X = DON'T CARE
Dour
OUTPUT
CS
H
MBMl0415AH
ABSOLUTE :M.AXIMUM RATINGS (See Note)
Rating
Symbol
Value
Unit
VEE Pin Potential to Ground Pin (Vcc)
Input Voltage
Output Current (DC, Output High)
Temperature Under Bias
Storage Temperature
VEE
VIN
lOUT
TA
Tstg
+0.5 to -7.0
+0.5 to VEE
V
V
rnA
°C
°C
-30
-55 to +125
-65 to +150
Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be
restricted to the conditions as detailed in the operational sections of this data sheet.
GUARANTEED OPERATING CONDmONS
(Referenced to Vee>
Parameter
Symbol
Supply Voltage
VEE
Min
Typ
Max
-5.46
-5.2
-4.94
Unit
Ambient Temperature
V
O°C to + 75°C
CAPACITANCE
Parameter
Symbol
Input Pin Capacitance
Output Pin Capacitance
Min
Typ
Max
Unit
-
4
7
5
8
pF
pF
CiIN
COUT
DC CHARACTERISTICS
(Vee
= OV, VEE = -5.2V, Output load = 500 to -2.0V and Airflow;;,; 2.5 mls unless otherwise noted.)
Unit
TA
-
- 840
- 810
- 720
mV
O°C
25°C
75°C
-1870
-1850
-1830
-
-1665
-1650
-1625
mV
O°C
25°C
75°C
VOHC
-1020
- 980
- 920
-
mV
O°C
25°C
75°C
VOLC
-
-
-1645
-1630
-1605
mV
O°C
25°C
75°C
Input High VOltage
(Guaranteed Input Voltage High for All Inputs)
VIH
-1145
-1105
-1045
-
- 840
- 810
- 720
mV
O°C
25°C
75°C
Input Low Voltage
(Guaranteed Input Voltage Low for All Inputs)
VIL
-1870
-1850
-1830
-
-1490
-1475
-1450
mV
O°C
25°C
75°C
220
p.A
0° to 75°C
-
p.A
0° to 75°C
p.A
0° to 75°C
rnA
75°C
O°C
Parameter
Output High Voltage
(VIN =VIH max. or VIL min.)
Symbol
Min
VOH
-1000
- 960
- 900
Output Low Voltage
(VIN =VIH max. or VIL min.)
VOL
Output High Voltage
(VIN = VIH min. or VIL max.)
Output Low Voltage
(VIN =VIH min. or VIL max.)
Input High Current (VIN
=VIH max.)
Input Low Current (V IN = VIL min.)
CS Input Low Current (VIN
=VIL min.)
Power Supply Current
(All Inputs and Outputs Open)
IIH
-
IlL
-50
IlL
0.5
lEE
-125
-150
5-8
Typ
-
Max
-
170
-
MBMl0415AH
AC CHARACTERISTICS
(Full Guaranteed Operating Ranges, Output Load = 50n to -2.0V and 30pf to GND and Airflow
otherwise noted.)
~
2.5 m/s unless
AC TEST CONDmONS
GND
-0.9V-
-
i\0%
20%
-1.7V---...1
Vee
Dour
VEE
~
VEE
:)
- 2.0V
n
I--
-----.- tr
Rl
~
t,
--
----.. t, ....--
Output Load: RL = son
C l = 30pF
(including jig and stray capacitance)
lcl
I
=tf =2.5ns typ
NOTE: All timing measurements referenced to 50% input levels.
READ CYCLE
MBM10415AH
Parameter
Symbol
Typ
Max
Unit
Address Access Time
Chip Select Access Time
Chip Select Recovery Time
tAA
tAC
tRB
13
5
5
20
ns
ns
ns
READ CYCLE
cs
Address
8
8
*
-----J
I~
_________________
~--tAA~--~
~.,..,.-~
VIH MIN
DOUT
5-9
~
________________--'
~VILMAX
MBMI0415AH
WRITE CYCLE
MBM10415AH
Symbol
Parameter
Write Pulse Width
Write Disable Time
Write Recovery Time
Address Set Up Time
Chip Select Set Up Time
Data Set Up Time
Address Hold Time
Chip Select Hold Time
Data Hold Time
Unit
tww
tws
tWR
tSA
tsc
tso
tHA
tHC
tHO
Min
Typ
14
9
-
-
5
5
3
0
0
0
0
0
10
10
5
4
4
3
4
4
Max
ns
ns
ns
ns
ns
ns
ns
ns
ns
-
-
-
WRITE CYCLE
-t\
7f\
11\
Address
\
/\
~r
-?
-
.'J r
WE
---------
-
;-
tSD
tHD
tsc
!=--tHA-
\
-
-
7
tww
I----tSA
-----
°OUT
J
tws
tHC-
}
V1LMAX
I-
V 1H MIN
!---tWR-
RISE TIME AND FALL TIME
Parameter
Symbol
Min
MBM10415AH
Typ
Output Rise Time
Output Fall Time
tr
tf
-
5
5
5-10
Max
Unit
-
ns
ns
-
MBMI0415AH
APPLICATIONS INFORMATION
LARGE SYSTEM APPLICATION
16K WORDS x n BIT
MEMORY SYSTEM
':0
i.
------------
ADDRESS BUS
WE
~
~
r-- ~WE
[
Ci
[
DOUT
CS
~
,,-
A
CHIP
SELECT
{
,,-
A
,,,-
~
-
~
I-
r-
r--
DOUT
~
~WE
[CS
DIN
L--
L--
>--
~
~WE
DIN ----4
~WE
DIN~
[
DOUT
DIN
W- CS D
L
u-..,
r-- ~WE
r-
CS Dour
U-
L-
L-
~WE
CS
DIN
f--.
DIN --4
DL
4:18
DECODE
--r
BOARD
ENABLE
~
>--
- -
r
~WE
DIN ........
[
55 DOUT
[
DIN --4
WIt
-=>
[
CS 00UT
DIN
r-
~
CS Dour
L-
~
~
~
~WE
L-
U-
f--
~
DIN
WE
CS
DIN~
DL
DIN~
WE
[ as
CS Dour
L-
~WE
Dour
L
L-
---.:
Dour 0
°OUT1 •
DOUT N :
~
5DO
<;
5-11
SOO
500
-2.0Y
FUJITSU
MBMI0422
MICROELECTRONICS
ECL l024·BIT BIPOLAR
RANDOM ACCESS MEMORY
DESCRIPTION
The Fujitsu MBM10422 is a fully
decoded 1024-bit ECl read/write
random access memory designed
for high-speed scratch pad, control and buffer storage applications. This device is organized as
256 words by 4-bits and features
on-chip voltage compensation for
improved noise margin.
The MBM10422 offers extremely
small cell and chip size, realized
through the use of Fujitsu's patented DOPOS (Doped Polysili-
con), as well as lOP (Isolation by
Oxide and Polysilicon), processing. As a result, very fast access
time with high yields and outstanding device reliability are
achieved in volume production.
Operation for MBM10422 is specified over a temperature range of
O· to 75·C (ambient). It features
metal sealed 24-pin dual in-line
packaging, and is fully compatible with industry standard
10K-series ECl families.
CERAMIC PACKAGE
DIP·24C·A02
FEATURES
• 256 words x 4-bits organization
• On-Chip voltage compensation
for improved noise margin
• Fully compatible with Industrystandard 10K-series Eel
families
• Address access time: 10ns max.
pm ASSIGNMENT
• Block select access time:
5nsmax.
• Open emlHer output for easy
memory expansion
• Power dissipation of 0.7 mW /bit
• DOPOS and lOP processing
• Pin compatible with F10422
MBMl0422 BLOCK DIAGRAM
.
veeA
Vee
DO,
DO.
liS,
liS.
DO,
DO•
liS,
liS.
01,
01,
01,
01.
WE
A.
As
A.
lie
A,
A,
A,
VEE
A"
·Vcc Grounded
I
I
I
I
Small geometry bipolar integrated circuits
are occasionally susceptible to damage from
static voltages or electric field. It is therefore
advised that normal precautions be taken to
avoid appliclion of any voltage higher than
maximum rated voltages to this device.
MEMORY CELL ARRAY
TRUTH TABLE
INPUT
CS
WE
01
OUTPUT
MODE
H
X
X
L
DISABLED
L
L
H
L
WRITE"H"
L
L
L
L
WRITE"L"
L
H
X
DO
READ
H = HIGH VOLTAGE LEVEL
L= LOW VOLTAGE LEVEL
X = DON'T CARE
5-12
MBMl0422
ABSOLUTE MAXlMUM RATINGS (See Note)
Rating
Symbol
Value
Unit
Vee Pin Potential to Ground Pin (Vee>
Input Voltage
Output Current (DC, Output High)
Temperature Under Bias
Storage Temperature
VEE
VIN
lOUT
TA
Tstg
+0.5 to -7.0
+0.5 to VeE
V
V
mA
·C
·C
-30
-55 to +125
-65 to +150
Note: Permanent device damage may occur If ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be
restricted to the conditions as detailed in the operational sections of this data sheet.
GUARANTEED OPERATING CONDmONS
(Referenced to Vee)
Parameter
Symbol
Min
Typ
Max
Supply Voltage
VEE
-5.46
-5.2
-4.94
Unit
Ambient Temperature
V
O·C to + 75·C
CAPACITANCE
Parameter
Symbol
Min
Typ
Max
Unit
Input Pin Capacitance
Output Pin Capacitance
CIN
-
4
6
-
pF
COUT
pF
DC CHARACTERISTICS
(Vee
= OV, vee = -5.2V, Output load = 500 to
-2.OVand Airflow
2:
2.5 m/s unless otherwise noted.)
Typ
Max
Unit
VOH
-1000
- 960
- 900
-
- 840
- 810
- 720
mV
Output Low Voltage
(VIN = VIH max. or VIL min.)
VOL
-1870
-1850
-1830
-
-1665
-1650
-1625
mV
O·C
25·C
75·C
Output High Voltage
(VIN =VIH min. or VIL max.)
VOHC
-1020
- 980
- 920
-
mV
O·C
25·C
75·C
Output Low Voltage
(VIN =VIH min. or VIL max.)
VOLC
-
-
-1645
-1630
-1605
mV
O·C
25·C
75·C
Input High Voltage
(Guaranteed Input Voltage High for All Inputs)
VIH
-1145
-1105
-1045
-
- 840
- 810
- 720
mV
O·C
25·C
75·C
Input Low Voltage
(Guaranteed Input Voltage Low for All Inputs)
VIL
-1870
-1850
-1830
-
-1490
-1475
-14S0
mV
O·C
25·C
7SoC
-
Parameter
Output High Voltage
(VIN = VIH max. or VIL min.)
=VIH max.)
=VIL min.)
CS Input Low Current (VIN =VIL min.)
Symbol
Min
Input High Current (V IN
IIH
-
Input Low Current (VIN
IlL
-SO
IlL
O.S
-
lEE
-200
-
Power Supply Current
(All Inputs and Outputs Open)
5-13
-
220
170
TA
O·C
25·C
75°C
p.A
0° to 75°C
p.A
O· to 7S·C
p.A
0° to 7S·C
mA
0° to 7S·C
MBMl0422
AC CHARACTERISTICS
(Full Guaranteed Operating Ranges, Output Load
unless otherwise noted.)
=500
to -2.0V and 30pF to GND and Airflow:2!: 2.5m/s
AC TEST CONDmONS
GND
-0.9V-
-
r\0%
20%
- 1 . 7 V - - - JII! .
Vee
Dour
Vee
I,
~ 1L
Vee
I--
-[1,1....-.,= =
RL
-2.0V
1'1-
2.5ns Iyp -
Oulpul Load: RL = son
CL=30pF
(including jig and slray capacilance)
I
--
NOTE: All liming measuremenls referenced 10 50% inpul levels.
READCYCLE
Parameter
Address Access Time
Block Select Access Time
Block Select Recovery Time
Symbol
Min
Typ
tAA
tAB
-
-
tRB
Max
10
5
5
Unit
ns
ns
ns
READ CYCLE
Address _ _ _J)(50%
.II;
--tRB - -
\V-
1 80%
Dour
50%
50%
Dour ____________________-Jj~
------.Jj
~II,I-- -1,1..-\20%
-
..
5-14
MBMl0422
WRITE CYCLE
Parameter
Symbol
Min
Typ
Max
Unit
Write Pulse Width
tww
7
tws
ns
n5
Write Recovery Time
tWR
-
-
Write Disable Time
Address Set Up Time
tSA
-
Block Select Set Up Time
Data SetlUp Time
Address Hold Time
tSB
Iso
I HA
Block Select Sel Up Time
Dala Hold Time
tHB
tHO
1
1
1
2
2
5
10
-
-
-
2
n5
ns
ns
ns
ns
ns
ns
WRITE CYCLE
,~
~r.1'\
J
~'t
Jro...
~J 1\
~
Address
\t
--------DOUT
..
tSD
--.
~
~
tHD
14-
I[
-; ~tHA-
~
- t S A - - - t w w - - tH8 -
~'\ 50%
~
tS8
---
tws
4-
,i 50%
---twR ...........
RISE TIME AND FALL TIME
Parameter
Symbol
Min
Typ
Max
Unit
Oulput Rise Time
If
If
2
2
-
ns
Output Fall Time
-
5-15
ns
MBMlG422
TYPICAL CHARACTERISTICS CURVES
OUTPUT HIGH VOLTAGE
vs AMBIENT TEMPERATURE
~ -0. 7
~
w
CJ
"
~ -0.8
-0.9
~
-1.0
....
~
o
i
~
I-""
"
i=
-
~ -1. 5
"
~
IX:
IX:
~
20
40
60
"~
I-
~
:J
-1. 7
'"
50
12
-1.8
80
20
40
60
20
80
40
60
80
TA. AMBIENT TEMPERATURE (OCI
T A • AMBIENT TEMPERATURE (OCI
T A • AMBIENT TEMPERATURE (OCI
ADDRESS ACCESS TIME
vs AMBIENT TEMPERATURE
ADDRESS ACCESS TIME
vs SUPPLY VOLTAGE
WRITE PULSE WIDTH
vs AMBIENT TEMPERATURE
20
15
5
10
0
5
5
IX:
0
0
..... ~
>
~
-1 .1
r- l- I--
:J
u 100
-1.6
~
~
150
w
ffl'"
u
u
oS
....
z
..J
~..J
SUPPLY CURRENT
AMBIENT TEMPERATURE
200
CJ
o
o
!w
I-" I-"
VI
-1.4
w
1-1-""
~
'~"
OUTPUT LOW VOLTAGE
vs AMBIENT TEMPERATURE
-
-
3
".;
-
2
~
0
20
40
60
80
-4
T A. AMBIENT TEMPERATURE 1°C)
-4.5
-5
-5.5
-6
WRITE PULSE WIDTH
vs SUPPLY VOLTAGE
6
5
4
~
3
2
1
-4
-4.5
-5
-5.5
VEE. SUPPLY VOLTAGE (V)
5-16
1
20
40
60
80
T A. AMBIENT TEMPERATURE fOCI
VEE. SUPPLY VOLTAGE (V)
-6
FUJITSU
MBMl0422A·7
MICROELECTRONICS
ECL l024·BIT BIPOLAR
RANDOM ACCESS MEMORY
DESCRIPTION
The Fujitsu MBM10422A-7 is a fully decoded 1024-bit Eel
read/write random access
memory designed for high speed
scratch pad, microprocessor and
buffer storage applications.
The MBM10422A-7 offers extremely small cell and chip sizes,
realized through the use of
Fuj itsu 's patented DOPOS
(Doped Polysilicon), as well as
lOP (Isolation by Oxide and Polysilicon) processing. As a result,
very fast access time with high
yields and outstanding device
reliability are achieved in volume
production.
FEATURES
• Organized as 256 x 4
• Address Access Time:
7ns Max.
• Fully compatible with
industry standard 10K series
Eel families
• Open emitter for easy
memory expansion
• DOPOS and lOP processing
• Pin compatible with F10422
• low power dissipation:
1040mW
CERAMIC PACKAGE
DIP·24C·A01
PIN ASSIGNMENT
VCC'
VCCA
04
BS4
03
BS3
04
03
A4
A3
A2
A,
Ao
0,
85,
THIS IS PRELIMINARY INFORMATION
FOR A NEW PRODUCT TO BE
INTRODUCED DURING 1982. THIS IS
NOT A FINAL SPECIFICATION.
PARAMETRIC LIMITS ARE SUBJECT
TO CHANGE.
02
BS2
0,
02
WE
As
As
A7
VEE
'Vcc Grounded
Small geometry bipolar Integrated circuits
are occasionally susceptible to damage from
static voltages or electric field. It Is therefore
advised that normal precautions be taken to
avoid application of any voltage higher than
the'maximum rated voltages to this device,
5-17
FUJITSU
MBMI0470A·20·
MICROELECTRONICS
ECL 4096·BIT BIPOLAR
RANDOM ACCESS MEMORY
DESCRIPTION
The Fujitsu MBM10470A is a fully
decoded 1024-bit ECl readlwrite
random access memory designed
for high-speed scratch pad, control and buffer storage applications. This device is organized as
4096 words by one-bit and features on-chip voltage compensation for improved noise margin.
The MBM10470A offers extremely
small cell and chip size, realized
through the use of Fujitsu's patented DOPOS (Doped Polysili-
con), as well as lOP (Isolation by
Oxide and Polysilicon) processing. As a result, very fast access
time with high yields and outstanding device reliability are
achieved in volume production.
Operation for the MBM10470A is
specified over a temperature
range of from 0 DC to 75 DC (ambient). It features frit-sealed 18-pin
dual in-line packaging, and is fully
compatible with industrystandard 10K-series ECl families.
CERAMIC PACKAGE
Dlp·18C·F02
FEATURES
.4096 words x 1-bit organization
• On·chip voltage compensa·
tion for improved noise
margin
• Fully compatible with
industry-standard 10K·series
ECl families
• Address access time:
MBM10470A-20 20ns Max_
13ns Typ_
• Chip select access time:
15ns Max.
5ns Typ.
• Open emitter output for ease
of memory expansion
• low Power dissipation:
MBM10470A·20 0.19mWlbit
• DOPOS and lOP processing
• Pin compatible with the
F10470
CERAMIC PACKAGE
FPT·18C·C01
PIN ASSIGNMENT
Vee *
DOUT
lV1BMl0470A
BLOCK DIAGRAM
64 x 64 BITS
MEMORY
CELL ARRAY
Ao
D,N
A,
CS
A2
WE
A3
All
A4
AIO
As
A9
A6
As
A7
*V cc grou nded
Note: DIP and Flatpack Styles
both conform to this
pin assignment.
WE
D,N
TRUTH TABLE
CSo-;_--,
INPUT
Small geometry bipolar integrated circuits are
occasionally susceptible to damage from static
voltages or electric fields. It is therefore advised
that normal precautions be taken to avoid application of any voltage higher than maximum
rated voltages to this device.
DOUT
DISA8LED
WRITE "W
H
~
High Voltage Level
WRITE "L"
L
~
Low Voltage Level
x
~
Don't care
5-18
MBMl0470A·20
ABSOLUTE :MAXIMUM: RATINGS
(See Note)
Rating
Symbol
Value
Unit
VEE Pin Potential to Ground Pin (Vecl
Input Voltage
Output Current (DC, Output High)
Temperature Under Bias
Storage Temperature
VEE
VIN
lOUT
TA
T5 tg
+0.5 to -7.0
+0.5 to VEE
-30
-55 to +125
-65 to +150
V
V
mA
°C
°C
Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be
restricted to the conditions as detailed in the operational sections of this data sheet.
GUARANTEED OPERATING CONDITIONS
(Referenced to Veel
Parameter
Symbol
Supply Voltage
VEE
Mini
Typ
Max
-5.46
-5.2
-4.94
Unit
Ambient Temperature
V
O°C to + 75°C
CAPACITANCE
Parameter
Symbol
Min
Typ
Max
Unit
CIN
-
4
-
pF
Input Pin Capacitance
Output Pin Capacitance
COUT
7
pF
DC CHARACTERISTICS
(Vee = OV, VEE = -5.2V, Output load = 500 to -2.0V and Airflow;;, 2.5 m/s unless otherwise noted.)
Parameter
Symbol
Min
Unit
TA
-
- 840
- 810
- 720
mV
O°C
25°C
75°C
-1665
-1650
-1625
mV
O°C
25°C
75°C
mV
O°C
25°C
75°C
Typ
Max
Output High Voltage
(VIN = VIH max. or VIL min.)
VOH
-1000
- 960
- 900
Output Low Voltage
(VIN = VIH max. or VIL min.)
VOL
-1870
-1850
-1830
-
Output High Voltage
(VIN = VIH min. or VIL max.)
VOHC
-1020
- 980
- 920
-
Output Low Voltage
(VIN = VIH min. or VIL max.)
VOLC
-
-
-1645
-1630
-1605
mV
O°C
25°C
75°C
Input High Voltage
(Guaranteed Input Voltage High for All Inputs)
VIH
-1145
-1105
-1045
-
- 840
- 810
- 720
mV
O°C
25°C
75°C
Input Low Voltage
(Guaranteed Input Voltage Low for All Inputs)
VIL
-1870
-1850
-1830
-
-1490
-1475
-1450
mV
O°C
25°C
75°C
Input High Current (VIN = VIH
IIH
-
220
",A
0° to 75°C
-
",A
0° to 75°C
",A
0° to 75°C
mA
O°C
75°C
Input Low Current (VIN = VIL min.)
IlL
- 50
-
CS Input Low Current (V IN = VIL min.)
IlL
0.5
-
Power Supply Current
(All Inputs and Outputs Open)
lEE
-200
-180
-
max.)
5-19
-
170
-
:MBM10470A·20
AC CHARACTERISTICS
(Full Guaranteed Operating Ranges, Output Load
unless otherwise noted.)
=500
to -2.0V and 30pF to GND and Airflow ~ 2.5m/s
AC TEST CONDmONS
GND
-O.9V-
-
-
[\0%
/
DOUT
n
VEE
I--
VEE
20%
-1.7V-----'1
Vce
:>
Rl~
)
- 2.0V
----. tr
1l
~
---+- tf ~
I, = If = 2.5ns Iyp
Oulpul Load: RL = son
C l = 30pF
(including jig and slray capacilance)
I
--
NOTE: All timing measurements referenced to 50% input levels.
READ CYCLE
MBM10470A·2Q
Parameter
Symbol
Typ
Max
Unit
tAA
tAC
tRC
13
20
15
15
ns
ns
ns
Address Access Time
Chip Select Access Time
Chip Select Recovery Time
-
READ CYCLE
Address
DOUT
50%
I\i
""1'"2;;.;0:...;°1...:;.0_ _
~I,I-
---"I~
IAA----I~~I
DOUT---~-------~~
80%
50%
=-v._0_01._0______~---
-111-
5-20
MBMl0470A·20
WRITE CYCLE
Parameter
Symbol
Write Pulse Width
Write Disable Time
Write Recovery Time
Address Set Up Time
Chip Select Set Up Time
Data Set Up Time
Address Hold Time
Chip Select Hold Time
Data Hold Time
Min
tww
tws
tWR
tSA
tsc
tSD
tHA
tHC
tHD
MBM10470A·20
Typ
Max
15
6
-
-
-
15
15
3
2
2
2
2
2
0
0
0
0
0
0
-
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
-
-
WRITE CYCLE
~Ir
.~
~
J
~t
~/ r\f-
Address
/\.
\t\
.--..
~
WE
--------DOUT
--..
..-
tso
tHO
1"-
L
7-tHA-
t\
- t S A - --tww- - t H C -
-----
...
..
tsc
...
~I\ 50%
tws
..-
-.{.50%
--twR----
RISE TIME AND FALL TIME
Parameter
Output Rise Time
Output Fall Time
MBM10470A·20
Typ
Max
Symbol
3
3
tr
t,
5·21
-
Unit
ns
ns
MBMl0470A·20
TYPICAL CHARACTERISTICS CURVES
OUTPUT LOW VOLTAGE
vsAMBIENT TEMPERATURE
OUTPUT HIGH VOLTAGE
vs AMBIENT TEMPERATURE
~
..(J.7
MBM1047OA·20
w
~
~ ..(J.B
g
ai
!:i1=
..(J.9
~
~
- --
~ -1.4
~ -1.5
a
>
o
>
w
~o
20·
40
-1.S
o
20
40
60
so
-4
ADDRESS ACCESS TIME
vs SUPPLY VOLTAGE
MBM10470A-20
~
200
f-
-1.5
2· 150
w
a::
a::
:::>
i""'-
j
;:;> -1.S
-4
:::>
u 100
-4.5
--- --
MBM10470A·20
-'
"":::>
f=
r-
-5.5
U
u
"w
w
14
......
i..--"
r--
~
S
MBM10470A·20
!:
a::
;:
20
40
60
so
TA. AMBIENT TEMPERATURE (OC)
S
MBM10470A·20
....I-
w
~
6
j
}
o
~
!:
~
j
10
w
Ul
V
12
:z:
f-
f-
w
16
< 12
c
12
:z:
Ul
Ul
-
VEE. SUPPLY VOLTAGE (V)
a::
a
a
-6
SUPPLY CURRENT
vs AMBIENT TEMPERATURE
f-
;:
]
w
::.
-4.5
VEE. SUPPLY VOLTAGE (V)
!
:::>
:::>
1= -1.0
a
~ -1. 1
>
T A • AMSIENT TEMPERATURE (OC)
-1.4
o
..(J.g
:::>
so
60
MBM10470A-20
f-
j
o
"f- -1.7
:z:
:::>
5 -1. 1
..(J.7
:z:
~
-1.6
5
o
w
a
>
g
~
~
"~ ..(J.S
~
~ -1.7
-1.0
:::>
~
MBM10470A·20
w
OUTPUT HIGH VOLTAGE
vs SUPPL Y VOLTAGE
4
-4
-4.5
-5
-5.5
-6
VEE. SUPPLY VOLTAGE IV)
5-22
6
4
o
20
40
60
so
T A. AMBIENT TEMPERATURE (OC)
FUJITSU
MBMl0474
MICROELECTRONICS
ECL 4096·BIT BIPOLAR
RANDOM ACCESS MElVIORY
DESCRIPTION
The Fujitsu MBM10474 is a fully
decoded 4096-bit ECl read/write
random access memory designed
for high speed scratch pad, control and buffer storage applications.
The MBM10474 offers extremely
small cell and chip sizes, realized
through the use of Fujitsu's patented DOPOS (Doped Polysllicon), as well as lOP (Isolation by
Oxide and Polysillcon) process-
ing. As a result, very fast access
time with high yields and outstanding device reliability are achieved in volume production.
Operation for the MBM10474 is
specified over a temperature
range of O·C to 75·C ambient. It
features metal-sealed 24-pln dual
In-line packaging and is fully compatible with Industry-standard
10K-series ECl families.
CERAMIC PACKAGE
Dlp·24C·A02
FEATURES
• 1024 words x 4-bits
organization
• On·chlp voltage compensa·
tion for Improved noise margin
• Fully compatible with
Industry·standard 10K·series
ECl families
• Address access time:
25ns Max
18ns Typ
• Chip select time:
10ns Max
7ns Typ.
• Open emitter output for easy
memory expansion
• Low power dissipation:
O.2mW/bit
• DOPOS and lOP processing
• Pin compatible with F10474
pm ASSIGNMENT
VecA
003
004
Ao
MBMl0474 BLOCK DIAGRAM
TRUTRTAILE
a
A4
INPUT
'WE
DtN
MODE
OUTPUT
A5
DISABLED
WRITE"H"
NO
WRITE"L"
Doul
H",HIGH VOLTAGE LEVEl
L '" LOW VOLTAGE LEVEl.
A6
READ
VEE
X=DON'T CARE
~
a:
w
Q
8w
As
As
A7
,
,
I
Q
1024 x 4
:Iw
MEMORY CELL ARRAY
a:
Q
As
Q
C
><
At
A1
A2
A3
CS
WE
5-23
Small geometry bipolar integrated circuits are
occasionally susceptible to damage from static
voltages or elsctrlc fields. It Is therefore advised
that normal precautions be taken to avoid appll·
cation of any voltage higher than maximum
rated voltages to this device.
MBMl0474
ABSOLUTE MAXIMUM RATINGS
(See Note)
Rating
Symbol
Value
Unit
VEE Pin Potential to Ground Pin (Vee)
Input Voltage
Output Current (DC, Output High)
Temperature Under Bias
Storage Temperature
VEE
VIN
lOUT
TA
Tstg
+0.5 to -7.0
+0.5 to VEE
V
V
mA
°C
°C
-30
-55 to +125
-65 to +150
Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be
restricted to the conditions as detailed in the operational sections of this data sheet.
GUARANTEED OPERATING CONDmONS
(Referenced to Vee)
Parameter
Symbol
Min
Typ
Max
Supply Voltage
VEE
-5.46
-5.2
-4.94
Unit
Ambient Temperature
V
O°C to + 75°C
CAPACITANCE
Parameter
Input Pin Capacitance
Output Pin Capacitance
Symbol
Min
Typ
Max
Unit
CIN
-
4
-
pF
COUT
7
pF
DC CHARACTERISTICS
(Vee = OV, VEE = -5.2V ±5%, Output load = 500 to -2.0V and Airflow;;,: 2.5m/s unless otherwise noted.)
Typ
Max
Unit
TA
VOH
-1000
- 970
- 900
-
- 840
- 810
- 720
mV
O°C
25°C
75°C
Output low Voltage
(VIN =VIH max. or VIL min.)
VOL
-1870
-1850
-1830
-
-1665
-1650
-1625
mV
O°C
25°C
75°C
Output High Voltage
(VIN =VIH min. or VIL max.)
VOHC
-1020
- 980
- 920
-
mV
O°C
25°C
75°C
Output low Voltage
(VIN =VIH min. or VIL max.)
VOLC
-
-
-1645
-1630
-1605
mV
O°C
25°C
75°C
Input High Voltage
(Guaranteed Input Voltage High for All Inputs)
VIH
-1145
-1105
-1045
-
- 840
- 810
- 720
mV
O°C
25°C
75°C
Input low Voltage
(Guaranteed Input Voltage low for All Inputs)
VIL
-1870
-1850
-1830
-
-1490
-1475
-1450
mV
O°C
25°C
75°C
Parameter
Output High Voltage
(VIN =VIH max. or VIL min.)
=VIH max.)
=VIL min.)
CS Input low Current (V IN =VIL min.)
Symbol
Min
-
Input High Current (V IN
IIH
-
-
220
/LA
0° to 75°C
Input low Current (VIN
IlL
- 50
-
/LA
0° to 75°C
IlL
0.5
-
/LA
0° to 75°C
lEE
- 200
-
-
mA
0° to 75°C
Power Supply Current
(All Inputs and Outputs Open)
5-24
170
MBMl0474
AC CHARACTERISTICS
(Full Guaranteed Operating Ranges, Output Load
unless otherwise noted.)
=SOO
to -2.0V and 30pF to GND and Airflow i!: 2.5m/s
AC TEST CONDmONS
GND
-0.9V-
-
-
80%
\
Vee
20%
-1.7V---.JI'I!
-1',I-,,=,,=2.5n5
=
DOUT
OulpUI Load: RL
Iyp -
1'1"--
5011
CL = 30pF
(including jig and slray capacilance)
VEE
Ifi
--
VEE
NOTE: All timing measurements referenced to 50% input levels.
READ CYCLE
Symbol
Min
Typ
Max
Chip Select Recovery Time
tRC
-
18
7
7
25
Chip Select Access Time
tAA
tAC
Parameter
Address Access Time
10
10
Unit
ns
ns
ns
READ CYCLE
~_O_O/o_O
Address _ _ _
/t~
50%
50%
IAA---·I
DOUT----~--------~
80%
DOUT
_ _ _ _ _ _....,.._ __
\J
"It1'"2_0_0/o.,;.o__
-III~
5-25
MBMl0474
WRITECYCLE
Parameter
Symbol
Min
Typ
Max
tww
tws
15
-
-
Address Set Up Time
tWR
tSA
Chip Select Set Up Time
Data Set Up Time
Address Hold Time
Chip Select Hold Time
tsc
tso
tHA
tHC
-
Data Hold Time
tHO
Write Pulse Width
Write Disable Time
Write Recovery Time
8
5
5
5
5
5
8
15
-
-
-
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
WRITE CYCLE
,-,
,l
J
~Jt~
Address
~?
J\.
\~
-
II\.
--------Dour
.
tso
......
~
~r
\.
tHO I~
/
l~tHA-
- t S A - ---tww- - t H C -
.
tsc
---
,{.50%
\:50%
tws
~
---tWR-
RISE TIME AND FALL TIME
Parameter
Symbol
Min
Typ
Max
Unit
Output Rise Time
t,
tf
-
5
5
-
ns
ns
Output Fall Time
5-26
MBMl0474
TYPICAL CHARACTERISTICS CURVES
OUTPUT LOW VOLTAGE
vs AMBIENT TEMPERATURE
OUTPUT HIGH VOLTAGE
vs AMBIENT TEMPERATURE
~ -0. 7
w
~
~ -0.8
g
S?
:I:
-0.9
....
~o
I
o
>
~~
-
~
:I:
::l
-1.4
~
"~
200
.§
-1. 5
g
~
o
-1. 1
20
40
60
100
-1. 7
ill
50
~
20
20
80
-
~
20
~
a:
>=
j
ys
40
60
WRITE PULSE WIDTH
AMBIENT TEMPERATURE
"
~
w
~
~
0
ii'
w
....
a:
;:
10
~
J
j
20
80
....:I:
30
~
a:
..""..;
10
60
10
~
w
..""
40
]
W
:;
30
i--
T A. AMBIENT TEMPERATURE (OCI
40
c
:;
..""..;
60
ADDRESS ACCESS TIME
us SUPPLY VOLTAGE
40
..""
40
T A. AMBIENT TEMPERATURE (OC)
ADDRESS ACCESS TIME
vs AMBIENT TEMPERATURE
c
I'- I-- I--
-1.8
80
W
l-
~
T A • AMBIENT TEMPERATURE (OC)
>=
::l
">-
~
o
>
150
-1.6
::l
:=::l
....
zw
a:
a:
....
-1.0
SUPPLY CURRENT
AMBIENT TEMPERATURE
;;
w
:;l
v.
80
-4
T A. AMBIENT TEMPERATURE (OC)
-5
-4.5
-5.5
VEE. SUPPLY VOLTAGE (V)
WRITE PULSE WIDTH
..'SUPPLY VOLTAGE
0
8
r- f..,..
6
I'- i-
r- i -
4
2
-4
-4.5
-5
-5.5
VEE. SUPPLY VOLTAGE (V)
5-27
20
40
60
80
T A. AMBIENT TEMPERATURE 1°C)
FUJITSU
:MBMl0474A·15
MICROELECTRONICS
ECL 4096·BIT BIPOLAR
RANDOM ACC&$ lIJElVIORY
DESCRIPTION
The Fujitsu MBM10474A-15 Is a
fully decoded 4Q96.blt Eel readl
write random access memory designed for high speed scratch
pad, microprocessor and buffer
storage applications.
The MBM10474A-15 offers extremely small cell and chip sizes,
realized through the use of
Fujitsu's patented DOPOS (Doped
Polysllicon), as well as lOP (Isolation by Oxide and Polysilicon) processing. As a result, very fast access time with high yields and
outstanding device reliability are
achieved In volume production.
FEA'l'ORfS
• Organized as 1024 x 4
• Address Access Time:
15ns Max.
• Fully compatible with
industry standard 10K series
Eel families
• Open emitter for easy
memory expansion
• DOPOS 8nd lOP processing
• Pin compatible with F10474
• low power dissipation:
1040mW
CERAMIC PACKAGE
Dlp·24C·A02
PlN ASSIGNMENT
THIS IS PRELIMINARY INFORMATION
FOR A NEW PRODUCT TO BE
INTRODUCED DURING 1982. THIS IS
NOT A FINAL SPECIFICATION.
PARAMETRIC LIMITS ARE SUBJECT
TO CHANGE.
VCCA
vcc·
003
002
DO.
Ao
001
01.
01 3
01 2
011
Al
A2
A3
as
A.
A5
WE
NC
Ag
As
As
VEE
A7
·vee Grounded
Small geometry bipolar Integrated circuits
are occasionally susceptible to damage from
static voltages or electric field. It Is therefore
advised that normal precautions be taken to
avoid application of any voltage higher than
the maximum rated voltages to this device.
5-28
FUJITSU
MBMI0480
MICROELECTRONICS
ECL 16,384·BIT BIPOLAR
RANDOM ACCESS MEMORY
DESCRIPTION
The Fujitsu MBM10480 is a fully
decoded 16,384-bit ECl read/write
random access memory designed
for high speed scratch pad,
microprocessor and buffer
storage applications.
The MBM10480 offers extremely
small cell and chip sizes, realized
through the use of Fujitsu's
patented DOPOS (Doped Polysilicon), as well as lOP (Isolation by
Oxide and Polysilicon) processing. As a result, very fast access
time with high yields and outstanding device reliability are achieved in volume production.
FEATURES
• Organized as 16,384 x 1
• Address Access Time:
20ns Max_
• Fully compatible with
industry standard 10K series
ECl families
• Open emitter for easy
memory expansion
• DOPOS and lOP processing
• Pin compatible with F10480
• low power dissipation:
700mW
• -5_2 V power supply
• Will be available in
100K series Eel
Small geometry bipolar integrated circuits
are occasionally susceptible to damage from
static 'Voltages or electric field. It is therefore
advised that normal precautions be taken to
avoid application of any voltage higher than
the maximum rated voltages to this device.
THIS IS PRELIMINARY INFORMATION
FOR A NEW PRODUCT TO BE
INTRODUCED DURING 1982. THIS IS
NOT A FINAL SPECIFICATION.
PARAMETRIC LIMITS ARE SUBJECT
TO CHANGE.
5-29
MBM93419
FUJITSU
MICROELECTRONICS
TTL 576·BIT BIPOLAR
RANDOM ACCESS MEMORY
DESCRIPTION
The Fujitsu MBM93419 is a high
speed TTL read/write randomaccess memory, organized as 64
words by 9 bits, with opencollector outputs.
MBM93419 is packaged In a
28-pln dual-in-linepackage, and is
plug-in replaceable with F93419.lt
is ideally suited for scratchpad,
small buffer and other applications where the number of required words is small and the
number of required bits per word
is relatively large. The ninth bit
can provide parity for 8-blt word
systems.
FEATURES
• Chip Select Access Time:
40ns Max.
• Power Dissipation:
1.3mWlblt Typ.
• Compatible with F93419
• Organization:
64 words x a..bits
• +5V Single Power Supply
• TTL Inputs and Outputs
• Open Collector Outputs
• Address Access Time:
45ns Max.
MBM93419 BLOCK DIAGRAM
AS
A.
A3
A.
A,
ADDRESS
DECODER
PIN ASSIGNMENT
32 x 18
WORD
DRIVER
CELL
ARRAY
Ao
SENSE
AMP
WRITE
DRIVER
010_8
cs
000_ •
WE
CERAMIC PACKAGE
DIP·28C·A01.
x9
A3
A4
AS
01 0
01 1
01 2
01 3
01 4
015
01 6
01 7
01 8
Vee
WE
OOs
GNO
A2
A1
AO
000
001
002
003
004
005
DOS
007
cs
TRUTH TABLE
INPUT
OUTPUT
MODE
H
L
H
H
H
X
DOUT
DISABLED
WRITE"H"
WRITE"L"
READ
CS
WE
DI
H
L
L
L
X
X
L
L
H
H = HIGH VOLTAGE LEVEL
L = LOW VOLTAGE LEVEL
X DON'T CARe
·DATA OUTPUT IS THE
COMPLEMENT OF DATA INPUT
=
5-30
Small geometry bipolar integrated circuits
are occasionally susceptible to damage from
static voltages or electric field. It Is therefore
advised that normal precautions be taken to
avoid application of any voltage higher than
the maximum rated voltages to this device.
MBM93419
ABSOLUTE MAXIMUM RATINGS (See Note)
Rating
Power Supply Voltage
Input Voltage (DC)
Input Current (DC)
Output Voltage (VOUT = "H")
Output Current (~C, VOUT = "L")
Storage Temperature
Note:
Symbol
Value
Unit
Vee
VIN
liN
VOUT
lOUT
TSTG
-0.5 to +7.0
-0.5 to +5.5
-12.0 to +5.0
-0.5 to +5.5
+20.0
-65 to +150
V
V
mA
V
mA
·C
Permanent device damage may occur If ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be
restricted to the conditions as detailed In the operational sections of this data sheet.
GUARANTEED OPERATING RANGES
Parameter
Symbol
Min
Power Supply Voltage
Input High Voltage
Vee
VIH
4.75
2.1
Input Low Voltage
Vil
-
Typ
5.0
Max
5.25
Unit
V
Ambient Temperature
-
-
V
O°C to +7S·C
0.8
V
CUACITANCE
(TA = 25·C, Vee =5.0V, VIN = 2.0V, f = 1 MHz)
Min.
Symbol
Parameter
Input Pin Capacitance
Output Pin Capacitance
CIN
-
Cour
-
Typ.
-
Max.
S.O
Unit
pF
8.0
pF
DC CHARACTERISTICS
(Vee = 5V ±5%, TA = O°C to 75°C, Air Flow", 2.5m/sec, After Warm·up '" 2 min.)
Parameter
Output Low Voltage
Input High Voltage
Input Low Voltage
Input Low Current
Input High Current
Input High Current
Output Leakage Current
Input Clamp Diode Voltage
Power Supply Current
Symbol
Val
VIH
Vil
Test Condition
Vee
= Min,
Min
Typ
-
-
0.4
1.6
-
-
1.5
-250
IOl
= 12mA
ill
Vee - Max, VIN - 0.4V
-
ilH1
Vee
ilH2
leEx
Vee
= Max, VIN = 4.5V
= Max, VIN = 5.25V
Vee - Max, Your = 4.SV
Vee = Max, Your = 4.SV
Vee = Max, TA = 2SoC
-
VeD
Icc
All Input GND
5-31
1.0
-
Max
0.5
-
Unit
V
V
V
-400
!J.A
40
!J. A
mA
1.0
-1.0
1.0
100
-1.5
160
200
!J.A
V
mA
MBM93419
AC CHARACTERISTICS
(Vee = 5V
± 5%, TA
=O°C to 75°C, Air Flow 2!:
2.5 m/sec, After Warm-up 2!: 2 min)
Vee
Inpul Pulse Voltage:3.5Vp-p
Input Pulse Rise and Fall Time: 10ns
Output Load:
RL 1 = 450n
RL2 = 750n
CL = 30pF (Including Jig)
Timing Measurement Levels: Input = 1.5V
Output = 1.5V
GND
READ CYCLE
Symbol
Min
Typ
Max
Address Access Time
tAA
26
45
Unit
ns
Chip Select Access Time
tAC
-
ns
tRC
-
18
18
40
Chip Select Recovery Time
40
ns
Parameter
READ CYCLE
5-32
MBY93419
WRITE CYCLE
Parameter
Symbol
Write Pulse Width
tww
twR
Write Recovery Time
Write Delayed Time
Address Setup Time
tws
tSA
Chip Select Setup Time
tsc
Data Setup Time
Address Hold Time
tso
Max
7
-
ns
-
20
20
0
0
0
0
0
0
45
40
-
ns
-
ns
ns
-
ns
ns
5
5
5
5
5
5
tHC
tHO
Data Hold Time
Typ
-
tHA
Chip Select Hold Time
Min
35
Unit
ns
ns
ns
-
WRITE CYCLE
--
_L
~ ....
1\
1
)K
~?
11\
01
~~
~~
If\.
11\
~r
- --tso
tww
-tSA--"
_tsc
.-
-
-
tHO
r--
• -tHA--tHC-
~[-
~rt
J
tws
-l
I
\.
- f\.
~
5-33
tWR
FUJITSU
MBMI00422
MICROELECTRONICS
ECL l024·BIT BIPOLAR
RANDOM ACCESS MEMORY
DESCRIPTION
The Fujitsu MBM100422 is a fully
decoded 1024-bit ECl read/write
random access memory designed
for high speed scratch pad, control and buffer storage applications. This device is organized as
256 words by 4-bits, and it features on·chip voltage compensation for improved noise margin.
The MBM100422 offers extremely
small cell and chip sizes, realized
through the use of Fujitsu's patented DOPOS (Doped Polysilicon),
as well as lOP (Isolation by Oxide
and Polysilicon) processing. As a
result, very fast access time with
high yields and outstanding
device reliability are achieved in
volume production.
Operation for the MBM100422 is
specified over a temperature
range of O·C to 85·C (ambient). It
also features metal-sealed 24-pin
dual in-line packaging, and is fully
compatible with industry-standard 100K-series ECl families.
FEATURES
• 256 words x 4-bits organization
• On-chip voltage compensation
for improved noise margin
• Fully compatible with industry·
standard 100K-series ECl
families
• Address Access Time:
10ns max.
• Block Select Access Time:
5ns max.
• Open emitter output for easy
memory expansion
• Low power dissipation of
0.7mW/bit
• DOPOS and lOP processing
• Pin compatible with
the F100422
MBMl00422 BLOCK DIAGRAM
TRUTH TABLE
INPUT
BS
,
D"
DISABLED
WRITE"L
DOUT
CERAMIC PACKAGE
Dlp·24C·A02
ALSO AVAILABLE IN
FLAT PACKAGE
FPT·24C·F02
PIN ASSIGNMENT
01 4
BS3
003
BS4
0°4
01 3
A4
A3
A2
Al
Vce'
Ao
VeCA
VEE
001
88 1
A7
0°2
882
011
A5
As
WE
01 2
H = HIGH VOnAGE LEVEl
t = LOW VOLTAGE LEVEL
Ao
NOTE: DIP and Flat package styles con·
II:
form to the same pin assignment
W
0
A1
0
U
w
0
A2
III
III
I
I
256 x 4 BITS
MEMORY CELL ARRAY
W
II:
0
0
A3
~
A4
WE
5-34
Small geometry bipolar integrated circuits
are occasionally susceptible to damage
from static voltages or electric fields. it is
therefore advised that normal precautions
be taken to avoid application of any voltage
higher than maximum rated voltages to this
device.
MBMl00422
FUNCTIONAL DESCRIPTION
as
Enable (WE) input. With WE and
held low, the
data at DIN is written into the addressed location. To
read, WE is held high, while
is held low. Data at
the addressed location is then transferred to DOUT
and read out non-inverted. Open emitter outputs are
provided to allow for maximum flexibility in output
wired-OR connection,
The Fujitsu MBM100422 is fully decoded 1024-bit
read/write random access memory organized as 256
words by 4 bits. Memory cell selection is achieved
by means of a 8-bit address designated Ao - A7. The
active low Block Select (BS) input is provided for
memory expansion. The read and write operations
are controlled by the state of the active low Write
as
ABSOLUTE MAXIMUM RATINGS (See Note)
Rating
Symbol
Value
Unit
VEE Pin Potential to Ground Pin (Vcd
Input Voltage
Output Current (DC, Output High)
Temperature Under Bias
Storage Temperature
VEE
VIN
lOUT
TA
Tstg
+0.5 to -7.0
+0.5 to VEE
-30
-55 to +125
-65 to +150
V
V
rnA
°C
°C
Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be
restricted to the conditions as detailed in the operational sections of this data sheet.
GUARANI'EED OPERATING CONDmONS
(Referenced to Vcd
Parameter
Symbol
Min
Typ
Max
Unit
Ambient Temperature
Supply Voltage
VEE
-5.7
-4.5
-4.2
V
O°C to +85°C
CAPACITANCE
Parameter
Input Pin Capacitance
Output Pin Capacitance
Symbol
Min
Typ
Max
Unit
C IN
-
4
pF
COUT
-
6
-
pF
DC CHARACTERISTICS
(VCC
=OV, VEE =
-4.5V, Output Load
= 500 to
-2.0V, TA
=O°C to 85°C and Airflow;;,:
2.5 mis, unless otherwise noted.)
Symbol
Min
Typ
Max
Unit
VOH
-1025
-880
mV
=
VOL
-1810
-1620
mV
=
VOHC
-1035
=
VOLC
-
-
VIH
-1165
VIL
-1810
IIH
IlL
IlL
-50
0.5
lEE
-180
Parameter
Output High Voltage
(VIN = VIH max. or VILmin.l
Output Low Voltage
(VIN VIHmax. or VILmin.l
Output High Voltage
(VIN VIHmin. or VILmax.l
Output Low Voltage
(VIN VIHmin. or VILmax.l
Input High Voltage
(Guaranteed Input Voltage High for All Inputs)
Input Low Voltage
(Guaranteed Input Voltage Low for All Inputs)
Input High Current (VIN = VIH max.l
Input Low Current (VIN = VILmin.l
BS Input Low Current (VIN VILmin.l
Power Supply Current
(All Inputs and Outputs Open)
=
5-35
-
-
mV
-1610
mV
-
-880
mV
-
-1475
mV
-
220
-
170
pA
pA
pA
-
mA
MBMl·00422
AC CHARACTERISTICS
IYcc =OV, VEE = -4.5V ±5%, TA =O°C tp 85°C, Output Load
=500 to
-2.0V and 30pF to GND, and Airflow
2:
2.5 mIs,
unless otherwise noted.)
AC TEST CONDmONS
GND
0.9V-
-~
-
- 2.0V
-I
t,
1-
Output Load: RL = SOil
lcL
~'F[i
VEE
t , = t, = 2.5ns typ
t,
RL
VEE
~---
-I I-
Dour
--
TI80%
20%
-1.7V--~
Vee
CL = 30pF
I
(including jig and stray capacitance)
--
NOTE: All timing measurements referenced to 50% input levels.
READ CYCLE
Symbol
Parameter
Address Access Time
Block Select Access Time
tAA
tAB
Block Select Recovery Time
tRB
Min
Typ
Max
Unit
-
-
10
ns
5
ns
5
ns
-
-
READ CYCLE
BS
~~__________________________
Address
=-VS_O_OIo_D______. . ,.-___
- - IRB - -
,
Dour
50%
80%
50%
I
~I',I-
\20%
-1,1-
---1~
IAA---~ I
Dour---~-------~~
5-36
MBMl00422
WRITE CYCLE
Parameter
Symbol
Write Pulse Width
Write Disable Time
Write Recovery Time
Address Set Up Time
Block Select Set Up Time
Data Set Up Time
Address Hold Time
Block Select Hold Time
Data Hold Time
tww
tws
tWR
tSA
tSB
tSD
tHA
tHB
tHO
Min
Typ
7
-
-
-
-
5
-
10
1
1
1
2
2
2
Max
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
-
-
-
-
-
-
-
-
-
-
WRITE CYCLE
~It-
-l-
J
1\
t
~I 1\
Address
~t
/1\
\~
- -- -J 1\
IHO
Iso
-\
WE
.
J
- I S A - - - I w w - - IHB -
--------- ----DOUT
K
1--
L_
-IHA-
..
ISB
-.'1- 50%
\50%
-- -Iws
- - IWR----
RISE TIME AND FALL TIME
Parameter
Symbol
Min
Typ
Max
Unit
Output Rise Time
t,
2
tf
-
ns
Output Fall Time
-
2
5-37
ns
MBMl00422
TYPICAL CHARACTERISTICS CURVES
OUTPUT HIGH VOLTAGE
OUTPUT LOW VOLTAGE
SUPPLY CURRENT
vs AMBIENT TEMPERATURE
vs AMBIENT TEMPE RATURE
vs AMBIENT TEMPERATURE
~ ~.7
~
w
'"
!:i"
o
"<
!
'~" -1.5
-0.8
>
aO.9
I
>-
>- 150
ffi
~
,
:t
i
200
-1.4
w
I
i?
~
a:
It
:>
u 100
-1.6
>-
--
i?
5o -1.0
5o -t.7
i
o
> -1. 1
o
> -1.8
I
~
o
20
40
60
80
T A. AMBIENT TEMPERATURE ("Cl
VI
~
;::
u
'"
50
60
20
80
T A. AMBIENT TEMPERATURE (DCI
WRITE PULSE WIDTH
vs AMBI ENT TEMPE RATURE
15
10
~
It
a
a
5
t- r-
20
S
u
0
l"-
W
ADDRESS ACCESS TIME
vs SUPPLY VOLTAGE
]
-
w
20
40
60
BO
T A. AMBIENT TEMPERATURE (CCI
ADDRESS ACCESS TIME
AMBIENT TEMPERATURE
5
~
iil
r-
-
".(
~
0
60
20
40
80
T A. AMBIENT TEMPERATURE (DCI
-4
-4.5
-5
-5.5
-6
VEE,SUPPlY VOLTAGE (V)
WRITE PULSE WIDTH
vs SUPPLY VOLTAGE
5
3
2
-4
-4,5
-5.5
VEE. SUPPLY VOLTAGE (VI
5·38
20
40
60
T A. AMBIENT TEMPERATURE
6
1
1
·6
80
rei
MBMl00422A·7
FUJITSU
MICROELECTRONICS
ECL l024·BIT BIPOLAR
RANDOM ACCESS l\AEMORY
DESCRIP'110N
The Fujitsu MBM100422A·7 is a
fully decoded 1024·bit Eel
read/write random access
memory designed for high speed
scratch pad, microprocessor and
buffer storage applications.
The MBM100422A·7 offers ex·
tremely small cell and chip sizes,
realized through the use of
Fujitsu's patented DOPOS
(Doped Polysilicon), as well as
lOP (Isolation by Oxide and Poly·
silicon) processing. As a result,
very fast access time with high
yields and outstanding device
reliability are achieved in volume
production.
FEATURES
• Organized as 256 x 4
• Address Access Time:
7ns Max.
• Fully compatible with
industry standard 100K series
Eel families
• Open emitter for easy
memory expansion
• DOPOS and lOP processing
• Pin compatible with F100422
• low power dissipation:
900mW
• -4.5V power supply
CERAMIC PACKAGE
Dlp·24C·A01
CERAMIC PACKAGE
FPT·24C·C02
PIN ASSIGNMENT
THIS IS PRELIMINARY INFORMATION
FOR A NEW PRODUCT TO BE
INTRODUCED DURING 1982. THIS IS
NOT A FINAL SPECIFICATION.
PARAMETRIC LIMITS ARE SUBJECT
TO CHANGE.
04
BS3
03
BS4
04
03
A4
A3
A2
Al
Ao
Vcc'
VCCA
VEE
01
aSl
02
BS2
01
A7
A6
A5
WE
02
'Vee Grounded
Small geometry blpotar integrated circuits
are occasionally susceptibte to damage from
static vottages or etectric fletd. tt Is therefore
advised that normat precautions be taken to
avoid application of any voltage higher than
the maximum rated voltages to this device.
5·39
FUJITSU
MBMI00470
MICROELECTRONICS
ECL 4096·BIT BIPOLAR
RANDOM ACCESS MEMORY
DESCRIPTION
The Fujitsu MBM100470 is fully
decoded 4096-bit ECl read/write
random access memory designed
for high-speed scratch pad, control and buffer storage applications. The device is organized ad
4096 words by one bit, and it features on-chip voltage/temperature
compensation for improved noise
margin.
The MBM100470 offers extremely
small cell and chip size, realized
through the use of Fujitsu's patented DOPOS (Doped Polysilicon)
as well as lOP (Isolation by Oxide
and Polysilicon), processing.
Operation for the MBM100470 is
specified over a temperature
range of from O' to 85'C (TA for
DIP, TC for Flat Package). It also
features 18-pin Ceramic DIP and
Flat Package, and is fully compatible with industry-standard
100K-series ECl families.
CERAMIC PACKAGE
DIP-18C-F02
FEATURES
• 4096 words x 1-bit
organization
• On-chip voltage/temperature
compensation for improved
noise margin
• Address access time:
20ns Max.
14ns Typ.
• Chip select access time:
15ns Max_
5ns Typ_
• Open emitter output for ease
of memory expansion
• low power dissipation of
O_16mW/blt
• DOPOS and lOP processing
• Pin compatible with the
F100470
PIN ASSIGNMENT
MBMl00470 BLOCK DIAGRAM
Ao
A,
A.
A3
CERAMIC PACKAGE
FPT·18C·C01
A.
TRUTH TABLE
As
DOUT
1
INPUT
CS
H
WE
DIN
OUTPUT
X
MODE
DIN
DISABLED
C"S
WRITE"H"
WRITE"L
Dour
Vee·
WE
n
READ
All
H = HIGH VOLTAGE lEVEL
L;;; LOW VOLTAGE LEVEL
X", DON'T CARE
A'0
Ag
84X84
As
CELL ARRAY
A7
·Vee Grounded
NOTE: DIP and Flatpack Style. conform
to the same pin a•• lgrtment
This device contains circuitry to protect the
Inputs against damage due to high static
voltages or electric fields. However, it is advised that normal precautions be taken to
avoid application of any voltage higher than
maximum rated voltages to this high im·
pedance clu;uit.
cs
WE
DIN <>-L-_....I
Dour
5-40
MBMI00470
FUNCTIONAL DESCRIPTION
Enable (WE) input. With WE and CS held low, the
data at DIN is written into the addressed location. To
read, WE is held high, while CS is held low. Data at
the addressed location is then transferred to DOUT
and read out non-inverted. Open emitter outputs are
provided to allow for maximum flexibility in output
wired-OR connection.
The Fujitsu 100470 is fully decoded 4096-bit readl
write random access memory organized as 4096
words by one bit. Memory cell selection is achieved
by means of 12-bit address designated AO - A11.
The active low Chip Select (CS) input is provided for
memory expansion. The read and write operations
are controlled by the state of the active low Write
ABSOLUTE MAXIMUM RATINGS
(See Note)
Symbol
Value
Unit
VEE
VIN
lOUT
TA for DIP
TC for Flat Package
Tstg
+0.5 to -7.0
+0.5 to VEE
-30
-55 to +125
-55 to +125
-65 td + 150
V
V
mA
Rating
VEE Pin Potential to Ground
Input Voltage
Output Current (DC, Output High)
Temperature Under Bias
Storage Temperature
°C
°C
NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted
to the conditions as detailed in operational sections of this data sheet.
GUARANTEED OPERATING CONDmONS
(Referenced to Vccl
Parameter
Symbol
Min
Typ
Max
Unit
Ambient Temperature for DIP,
Case Temperature for Flat Package
Supply Voltage
VEE
-5.7
-4.5
-4.2
V
O°C to 85°C
CAPACITANCE
Parameter
Input Pin Capacitance
Output Pin Capacitance
Symbol
Min
Typ
CIN
COUT
-
4
7
-
DC CHARACTERISTICS
(VCC = OV, VEE = -4.5V, Output Load = 500 and 30pF to -2.0V, TA
Package, Airflow;;; 2.5 mis, unless otherwise noted.)
Parameter
Output High Voltage
(VIN = VIHmax. or VILmin.l
Output Low Voltage
(VIN = VIHmax. or VILmin.l
Output High Voltage
(VIN = VIHmin. or VILmax.l
Output Low Voltage
(VIN = VIH min. or VILmax.l
Input High Voltage
(Guaranteed Input Voltage High for All Inputs)
Input Low Voltage
(Guaranteed Input Voltage Low for All Inputs)
Input High Current (VIN = VIHmax.l
Input Low Current (VIN = VILmin.l
CS Input Low Current (VIN = VILmin.l
Power Supply Current
(All Inputs and Output Open)
Unit
Max
-
pF
pF
-
=O°C to 85°C for DIP, Tc =O°C to 85°C for Flat
Symbol
Min
Typ
Max
Unit
VOH
-1025
-
-880
mV
VOL
-1810
-
-1620
mV
VOHC
-1035
-
VOLC
-
-
mV
-
-1610
mV
VIH
-1165
-
-880
mV
VIL
-1810
-
-1475
mV
IIH
IlL
IlL
-
220
-50
0.5
170
JJA
JJA
JJA
lEE
-195
-
-
mA
5-41
-
-
MBMl00470
AC CHARACTERISTICS
~cc
TC
=QV, VEE = -4.5V
±5%, Output Load
=500 to
-2.QV and 30pF to GND, TA
=Q·C to 85·C for Flat Package, Airflow e; 2.5 mis, unless otherwise noted.)
=Q·C to 85·C for DIP,
AC TEST CONDmONS
GND
-0.9V-
-
-
80%
/
1\
-1.7V---..I1
Vee
-+- tr
Dour 1--_----,
VEE
~
~:
- 2.0V
r
1
4--
_____
tf
t,
20%
-4--
=tf =2.Sns typ
Output Load: RL = SOil
CL = 30pF
(including jig and stray capacitance)
-=
NOTE: All timing measurements referenced to 50% input levels.
READCYCLE
Parameter
Address Access Time
Chip Select Access Time
Chip Select Recovery Time
Symbol
Min
Typ
Max
Unit
-
14
20
15
15
ns
ns
ns
tAA
tAC
tRC
-
5
5
READ CYCLE
CS
ADDRESSES~.~W_%____________________
--.J~
tAA:;t
-------
DOUT
50%
5-42
MBMl00470
WRITE CYCLE
Parameter
Write Pulse Width
Write Disable Time
Write Recovery Time
Address Set Up Time
Chip Select Set Up Time
Data Set Up Time
Address Hold Time
Chip Select Set Up Time
Data Hold Time
Typ
Max
Unit
15
6
-
-
-
15
15
3
2
2
2
2
2
0
0
0
0
0
0
ns
ns
ns
ns
ns
ns
ns
ns
ns
Symbol
Min
tww
tws
tWR
tSA
tsc
tSD
tHA
tHC
tHD
-
-
WRITE CYCLE
II
\
CS
I
\.
\.V
ADDRESSES
\V
Jr-..
Ii\.
-J
-
i---
tso
1\
1\
f-----tSA
tww
------- ----
tsc
)f~
1/
Jr--tHAtHC-
/150%
50%
-
tws~
f--tWR-
RISE TIME AND FALL TIME
Parameter
Output Rise Time
Output Fall Time
Symbol
Min
Typ
Max
Unit
tr
tf
-
3
3
-
ns
ns
5-43
MBMl00470
TYPICAL CHARACTERISTICS CURVES
OUTPUT LOW VOLTAGE
vs TEMPERATURE
OUTPUT HIGH VOLTAGE
vs TEMPERATURE
?
t::;
o
>
w
?w
OJ
<{
?
-0.7
w
OJ
<{
OUTPUT HIGH VOLTAGE
vs SUPPLY VOLTAGE
-1.4
~ -0.8
I- -1.5
...J
-0.8
-0.7
OJ
<{
>
o
>
'" -0.9
S -1.6
0
...J
'" -0.9
I:::J
I::J
I::J
:::J
::J
0
I
I
f:
I
"I- -1.7
-1.0
:::J
o
~
>
I
~ -1.0
o
0
..:i
o
>
-1. 1
020406080
T A. AMBIENT TEMPERATURE lOCI fo' DIP
Te. CASE TEMPERATURE (C) for Flat Package
<{
S
g
(3
,
ADDRESS ACCESS TIME
vs SUPPL Y VOLTAGE
20
I-
r- t-
w
-1.6
;::
12w
t-
u
u
100
<{
>-
ii'
~
r- t-
en
w
w
..:i
;;? -1.8
-4
-4.5
-5
-5.5
a:
o
o
50
-<
o
j
ADDRESS ACCESS TIME
vs TEMPERATURE
-4
I-
o
~
w
U
U
<{
6
12w
a:
o
o
4
-<
2
<{
j
I-- .....
V
/
I
I-
o
0
~
::J
en
...J
8
::J
i
"-
w
I::
a:
6
I::
a:
;:
?
4
J
020406080
TA. AMBIENT TEMPERATURE lOCI fo' DIP
Tc. CASE TEMPERATURE lOCI foe Flat Package
8
"-
w
s
0
w
w
'j
-6
2t--t-
2
I
8
-5.5
WRITE PULSE WIDTH
vs TEMPERATURE
w
en
en
-4.5
VEE. SUPPLY VOLTAGE IVI
WRITE PULSE WIDTH
vs SUPPLY VOLTAGE
20
'\.
2
20
80
40
60
T A. AMBIENT TEMPERATURE lOCI fo, DIP
Te, CASE TEMPERATURE (oC) for Flat Package
VEE. SUPPLY VDLTAGE IVI
;::
14
<{
o
-6
:;;
16
w
"-
o
18
en
en
...J
I- -1.7
:::J
-5.5
:;;
a:
a:
l-
-5
w
~ 150
~ -1.5
o
>
-4.5
VEE. SUPPLY VOLTAGE IVI
200
.s
<{
-4
SUPPLY CURRENT
vs TEMPERATURE
-1.4
OJ
>
020406080
T A AMBIE·NT TEMPERATURE lOCI fo, DIP
Tc: CASE TEMPERATURE lOCI fo, Flat Package
OUTPUT LOW VOLTAGE
vs SUPPL Y VOLTAGE
?w
6 -1. 1
-1.81---+-++-+---+-1---+-++-1
s
6
;:
-4
-4.5
-5
-5.5
-6
VEE. SUPPLY VOLTAGE IVI
5-44
--
r-
4
020406080
T A • AMBIENT TEMPERATUoRE lOCI fo, DIP
Te. CASE TEMPERATURE ( C) for Flat Package
MBMIO:0474·15
FUJITSU
MICROELECTRONICS
ECL 4096·BIT BIPOLAR
RANDOM ACCESS MEMORY
DESCRIPTION
The Fujitsu MBM100474-15 is a
fully decoded 4096-bit Eel
read/write random access
memory designed for high speed
scratch pad, microprocessor and
buffer storage applications.
The MBM100474-15 offers extremely small cell and chip sizes,
realized through the use of
Fujitsu's patented DOPOS
(Doped Polysilicon), as well as
lOP (Isolation by Oxide and Polysilicon) processing. As a result,
very fast access time with high
yields and outstanding device
reliability are achieved in volume
production.
FEATURES
• Organized as 1024 x 4
• Address Access Time:
15ns Max_
• Fully compatible with
industry standard 100K series
Eel families
CERAMIC PACKAGE
Dlp·24C·A02
ALSO AVAILABLE IN
FLATPACK STYLE
• Open emitter for easy
memory expansion
• DOPOS and lOP processing
• Pin compatible with F100474
• low power dissipation:
900mW
• -4_5V power supply
PIN ASSIGNMENTS
01 1
01 2
01 3
01 4
cs
WE
0°1
Ag
0°2
VCC
As
A7
VEE
VCCA
003
004
Ao
A1
A2
THIS IS PRELIMINARY INFORMATION
FOR A NEW PRODUCT TO BE
INTRODUCED DURING 1982. THIS IS
NOT A FINAL SPECIFICATION.
PARAMETRIC LIMITS ARE SUBJECT
TO CHANGE.
As
NC
A5
A4
A3
J'J>~rn~t5
WE
CS
01 1
01 2
01 3
014!
3 MBM100474·15 16
(1024 x 4)
15
00«00
9.988129
1>
5-45
A5
A4
A3
A2
A1
Ao
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
QUICK GUIDE TO PRODUCTS IN THIS SECTION
Device
MB7121E
MB7121H
MB7122E
MB7122H
MB7123E
MB7123H
MB7124E
MB7124H
MB7127E
MB7127H
MB7128E
MB7128H
MB7131E
MB7131H
MB7132E
MB7132H
MB7134E
MB7134H
MB7137E
MB7137H
MB7138E
MB7138H
MB7141E
MB7141H
MB7142E
MB7142H
Organization
Access
Time
(max)
Power
Supply
Volts
Power
Dissipation
Package
1Kx 4
1K x 4
1Kx 4
1K x 4
512 x 8
512 x 8
512 x 8
512 x 8
2Kx4
2Kx4
2Kx 4
2Kx4
1Kx 8
1K x 8
1Kx 8
1K x 8
4Kx4
4Kx 4
2Kx8
2Kx8
2Kx8
2Kx8
4Kx8
4Kx8
4Kx8
4Kx8
45n5
35n5
45n5
35n8
45n5
35n5
45n5
35n5
55n5
45n5
55n5
45n5
55n5
45n5
55n5
45n5
55n5
45n5
55n5
45n5
55n5
45n5
65n5
55n5
65n5
55n5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
787mW
787mW
787mW
787mW
850mW
850mW
850mW
850'mW
820mW
820mW
820mW
820mW
920mW
920mW
920mW
920mW
895mW
895mW
950mW
950mW
950mW
950mW
1018mW
1018mW
1018mW
1018mW
18-pin
18-pin
18-pin
18-pin
20-pin
2O-pin
2O-pin
2().pln
18-pin
18-pin
18-pin
18-pln
24-pin
24-pln
24-pin
24-pin
2O-pin
20-pin
24-pln
24-pin
24-pin
24-pln
24-pln
24-pin
24-pin
24-pin
Page
6-8
6-8
6-8
6-8
6-15
6-15
6-15
6-15
6-18
6-18
6-18
6-18
6-30
6-30
6-30
6-30
6-37
6-37
6-42
6-42
6-42
6-42
6-49
6-49
6-49
6-49
FUJITSU PROY TECHNOLOGY
PROGRAMMED CELL (CROSS SECTION)
The Fujitsu MB 71XX series Schottky PROMs are fabricated using
Schottky TTL, passive Isolation
technology known as Isolation by
Oxide and Poly-silicon (lOP). The
Isolation Is achieved by a thinepitaxial and Shallow V-Grooving
(SVG), Diffused Eutectic Aluminum
Process (DEAPJ'M) technology with
fine emitter. It uses a pulse programming method which achieves
high-speed operation, high-speed
programming, high programmability
and high reliability.
The memory cell Is originally structured with an open-base NPN transistor and then programmed by
shorting the base-emltter junction,
i.e. shorted junction type cell which
Is achieved by eutectlcally melting
aluminum andsilicoil adjacent to
the P-N junction of the cell diode
with relatively low temperatures.
Fast programming time of typically
150l'8Ibit Is achieved with a fine
emitter cell which requires less programming energy. The result Is
negligible thermal stress. This high
reliability feature eliminates
aluminum migration In the programmed cell. Further, Fujitsu'S advanced technology allows very high programmability.·
.
r----------~'------Cover Glass
~ Programmed by Diffused Eutectic
Aluminum Process
INTERNAL PROGRAMMING CIRCU1T
OUTPUT
SPECIAL FACI'ORY TESTING
Extra rows and extra columns of
test cells, plus additional circuitry
built into the PROM chip, allow improved factory testing of DC, AC and
programming characteristics. These
test cells and test circuitry provide
enhanced correlation between programmed and unprogrammed circuits in order to guarantee high programmability and reliability.
Ax
~x~~~~~~~~~~~
CE
CE
6-2
The outputs where no programming current pulse is
being applied during programming, can be floated,
grounded or tied to any voltage less than Vee or PVee.
PROGRAMMING
The device is manufactured with outputs low (positive
logic "zero") in all storage cells, To make an output
high at a particular cell, a junction must be changed
from a blocking state to a conducting state. This procedure is called programming.
A logic "one" can be permanently programmed into a
selected bit location. The desired bit for programming
is selected using the address inputs to turn on transistors 01 and 02. By applying the PVeE pulse voltage,
the chip is disabled and transistor 03 is held off. Then,
a train of programming pulses applied to the appropriate output flows through the junction into transistor 01. This programming current changes the junction to the conducting state. The pulse train is stopped
as soon as the output voltage indicates that the
selected bit is in the logic one state.
To assure that the element is programmed properly,
two additional programming pulses are applied immediately after an output voltage indicates conduction in the programmed bit.
One output must be programmed at a time, since the
internal decoding circuit is capable of sinking only one
unit of programming current at a time.
DC SPECIFICATIONS (TA
VERIFICATION
After the device has been programmed, the correct
program pattern can be verified by taking chip enable
input active. To guarantee full supply voltage and full
temperature range operation, a programmed device
should source 2.4mA at VOH = 2.4V and Vee = 7V at
25 DC ambient temperature.
LIABILITY
Fujitsu utilizes an extensive testing procedure to ensure device performance prior to shipment. However,
100% programmability is not guaranteed, and it Is imperative that this specification be rigorously adhered
to in order to achieve a satisfactory programming
yield. Fujitsu will not accept responsibility for any
device found defective if it was not programmed according to this specification. Devices returned to
Fujitsu as defective must be accompanied by a complete truth table with clearly indicated locations of
supposedly defective memory cells.
= 25°e)
Parameter
Input Low Voltage
Input High Voltage
Power Supply Voltage
Symbol
VIL
VIH
PVcc I P:
Programming Pulse Current
PVCE Pulse Voltage
Programming Pulse Clamp Voltage
PVCE Pulse Clamp Current
Reference Voltage for a Prog. "1"
IPRG
PVCE
VPRG
PICE
VREF
IR:
6-3
Min
0
2.0
6.7
4.75
120
20
20
230
1.0
Typ
-
7.0
5.0
125
20
20
1.5
Max
0.8
5.25
7.5
5.25
130
22
22
260
2.0
-Unit
V
V
V
mA
V
V
mA
V
AC SPEClFICATlONS (TA
= 25°C)
Parameter
Symbol
Min
Typ
Max
Unit
tcvc
tpw(1)
t r(2)
t r(2)
t r(3)
t,(4)
40
50
11
60
,.s
,.s
,.s
,.s
,.s
,.s
,.s
,.s
,.s
,.s
,.s
,.s
,.s
,.s
,.s
,.s
,.s
Times
,.s/blt
Times
Programming Pulse Cycle Time
Programming Pulse Width
Programming Pulse Rise Time
PVCE Pulse Rise Time
PVcc Pulse Rise Time
Programming Pulse Fall Time
PVcc Set-up Time
PVCE Pulse Fall Time
PVCC Hold Time
PVcc Pulse Fall Time
Address Input Set-up Time
Chip Enable Input Set-up Time
PVCE Set-up Time
Address Input Hold Time
Chip Enable Input Hold Time
PVCE Hold Time
PVCE Pulse Trailing Edge to Read Strobe Time
Programming Pulse Number
Programming Time/Bit
Additional Programming Pulse Number
tHA
tHC
tHP(7)
tpR(8)
2
2
4
2
2
2
10
-
-
-
120
2
150
2
tsv
t,(4)
tHY
t,(5)
tSA
tsc
tSP(6)
(2) From tV to 19V (2000 load).
(3) From 5.2V to 6.BV (300 load).
(4) From 19V to IV (2000 lOad).
~:~i
=e,
"C" JUlJlJ1JWHJ
PULSE
-
I
2
2
100
6120
2
PV ee
IV
52V
tf
J=
ADDRESS
n
2
-
ONE DETAILED PROGRAMMING CYCLE
PVCC~~
PROGRAMMING
2
-
(6) From PVCE pulse 19V to programming pulse tV.
(7) From programming pulse tV to PVCE pulse 19V.
(8) From PVCE pulse tV to read strobe.
TYPICAL WAVEFORMS
tsc
-
12
2
2
2
2
(5) From 6.BV to 5.2V (300 load).
Notes: (1) Stipulated 2000 load and 15V
tSA
10
I
I
19V
19V
PV CE
tH
tv
tV
n n n n n
---.JU ~LJUUULtCYCF=:!PROG. PULSES,--I--ADDITIONAL
I
PROG.
READSTROB~~
,L
5V
tpw
I
PROGRAMMING
PULSE
ts-
READ STROBE
6-4
19V 19V
t
t,
tf
tHP
tPR:=!k
PROGRAMMING
PROCEDURE
PROGRAMMING FLOW CHART
1. Apply power; Vcc = PVcc,
GND
OV.
2. Select the desired bit.
3. Read the output to confirm
the voltage Vo low.
(In the case of Vo = high,
select the next desired bit.)
4. Apply a 20V pulse voltage to
the PVCE input.
5. Apply a programming pulse
with amplitude of
120 mA and duration of tpw
(101£S) after a delay of tsp
(41'S).
6. Read the output Vo after a
delay of tpR (10ps).
a) In the case of Vo
low,
repeat steps "4",
"5" and "6" with cycle
time of tCYC (SOps).
b) In the case of Vo = high,
apply 2 additional
programming pulses to
provide a highly reliable
memory cell.
7. Select the next desired bit
after a delay of tHA(2ps).
=
=
=
NOTE 1) Programming must be done
bit by bit.
2) Ambient temperature during
programming must be
room temperature. (25'C ±
2·C).
6-5
PRO~GSUPPORT
The Fujitsu MB71XX series is being supported by
several commercial PROM Programmer manufacturers. Fujitsu, in order to guarantee not only programmability but long term reliability has an active program
to qualify all PROM programmer manufacturer's products before they are approved. Data I/O, Toyo
Telesonics and Stag have passed this qualification
and information on their products which support the
MB71XX family follows.
In order to support customers, Fujitsu Microelectronics will pre-program parts for qualification. Contact
your local Fujitsu representative (see listing on page
7-11 for the location nearest you) for details.
DATA I/O REFERENCE CHART
Part
Number
MB7122
MB7128
MB7132
MB7138
MB7142
Programming
Module
Array
Size
*9091919·xxxx
Socket
Adapter
1024
1488
1305-5
2048
1488
1619
1488
1618-1
x4
x4
1024 x 8
2048 x 8
4096 x 8
1488
1618-2
1488
715'()()77-1
* Please note: Whether you use the 909 or 919 module is determined by which Data 1/0 model programmer you are using. (Contact
Data 1/0).
TOYO REFERENCE CHART
Part
Number
MB7122
MB7128
MB7132
MB7138
MB7142
Array
Size
Programmer
Personality
Module
1024
PKW·7000
AD-7211
2048
PKW·7000
AD-7211
PKW-7000
AD-7211
x4
x4
1024 x 8
2048 x 8
4096 x 8
PKW-7000
AD·7211
PKW-7000
AD-7211
STAG REFERENCE CHART
Part
Number
Array
Size
Code
Adapter
MB7122
1024 x 4
75
AM 140·2
MB7128
2048
x4
1024 x 8
2048 x 8
4096 x 8
75
AM 140-3
75
AM 100-4
75
AM 100-5
MB7132
MB7138
MB7142
75
6-6
-
FUJITSU lVIICROEI.ECTRONICS
PROM CROSS REFERENCE GUIDE
SIZE: 4088 BITS
ORGANIZATION: 1024 X 4
PINS: 18
OUTPUT: OPEN
COLLECTOR
SIZE: 8192 BITS
ORGANIZATION: 2048 X 4
PINS: 18
OUTPUT: OPEN
COLLECTOR
SIZE: 18384 BITS
ORGANIZAOON: 4098 X 4
PINS: 20
OUTPUT: 3-STATE
PART NUMBER
MANUFACTURER
PART NUMBER
MANUFACTURER
PART NUMBER
MANUFACTURER
FWITSU
MB7121
FUJITSU
MB7127
FUJITSU
MB7137
AMD
Fairchild
Harris
Hilachl
MMI
Motorola
Nallonal
NEC
AM27S32
Harris
MMI
Nallonal
Raytheon
Signetics
HM7864
63100
DM87S164
29650
82S164
Fairchild
Harris
Intel
National
98510
HM76160
3616
DM87S190
SIZE: 4088 BITS
ORGANIZATION: 1024 X 4
F93452
HM7642
HN25044
6352
MCM7642
DM74S572
.PB406
PINS: 18
OUTPUT: 3-STATE
MANUFACTURER
PART NUMBER
FUJITSU
MB7122
AMD
Fairchild
Harris
Hllachl
Inlel
Inlersi!
MMI
MOlorola
Nallonal
NEC
Raytheon
Signetic.
TI
AM27S33C
93453C
HM7643A
HN25045
3625A
IM5826
6353-1
MCM7643C
746573
SIZE: 4088 BITS
ORGANIZATION: 512 X 8
.PB428
29641
N82S137
TBP24S41
PINS: 20
OUTPUT: OPEN
COLLECTOR
MANUFACTURER
PART NUMBER
FWITBU
MB7123
Harris
Nallonal
HM7648
DM74S473
SIZE: 4088 BITS
ORGANIZATION: 512 X 8
PINS: 20
OUTPUT: 3-STATE
MANUFACTURER
PART NUMBER
FUJITBU
MB7124
AMD
Harris
Nallonal
Signetic.
TI
AM27S29
HM7648
DM74S472
B2S147
TBP2BS42
SIZE: 8192 BITS
ORGANIZATION' 2048 X 4
PINS: 18
OUTPUT' 3-STATE
SIZE: 18384 BITS
ORGANIZATION: 2048 X 8
PINS: 24
OUTPUT: 3-STATE
MANUFACTURER
PART NUMBER
MANUFACTURER
FUJITSU
MB7128
FUJITSU
MB7138
AMD
Harris
MMI
Motorola
Nallonal
Raytheon
Signetic.
TI
AM27S185C
HM7885
63101
MCM7885C
87S185
29851129853
NB2S185
TBP24S81
AMD
Fairchild
National
AM27S191C
93511C
HM76161
HN25169
3636
6381881
87S191
NEC
Raytheon
Signetlc.
Supertex
TI
.PB429
29881
N82S191
SM82S191
TBP28S188
SIZE: 8192 BITS
ORGANIZATION: 1024 X 8
MANUFACTURER
PINS: 24
OUTPUT: OPEN
COLLECTOR
Harris
Hitachi
Inlel
MMI
PART NUMBER
PART NUMBER
FUJITSU
MB7131
AMD
Fairchild
HarriS
Hllachl
Inlel
MMI
Signetic.
Supertex
AM27S180
F93450
HM7580
HN25088
SIZE: 32788 BITS
ORGANIZATION: 4088 X 8
PINS: 24
OUTPUT: 3-STATE
MANUFACTURER
PART NUMBER
FUJITSU
MB7142
Harris
Intel
Signetics
HM76321
3632
NB2S321
3808
6380
82S18O
5MB2S180
PINS: 24
OUTPUT: 3-STATE
SIZE: 8192 BITS
ORGANIZATION: 1024 X 8
MANUFACTURER
PART NUMBER
FWITSU
MB7132
AMD
Fairchild
HarriS
Hllachl
Inlel
MMI
Molorola
National
Raytheon
Signetics
Supertex
TI
AM27S181C
93451C
HM7881A
HN25089
3B28
6381·1
MCM7881C
87S181
29631
N82S181
5MB2S181
TBP28S88
6-7
FUJITSU
MB712lE/H
MB7122E/H
MICROELECTRONICS
IDGH SPEEI) SCHOTTKY
TTL 4096·BIT PROMS
DESCRIPTION
The Fujitsu MB7121 and MB7122
are high speed Schottky TTL electrically field programmable read
only memories. With open collector outputs on the MB7121 and
three-state outputs on the
MB7122, memory expansion is
simple.
The memory Is fabricated with all
logic "zeros" (positive logic).
Logic level "ones" can be pro-
grammed by the highly reliable
DEApTM (Diffused Eutectic Aluminum Process) during a simple programming procedure.
The sophisticated Schottky TTL
process enables small chip size
and fast access times.
The extra test cells and unique
testing methods provide extremely high programmability.
CERAMIC PACKAGE
DIP·18C·F02
FEArURES
e Organization as 1024 words
by 4-blts, fully decoded
e TTL compatible input/output
e Fast access time:
MB7121 ElMB7122E:
45ns Max_
25nsTyp_
MB7121H/MB7122H:
35ns Max_
25ns Typ_
e Low power dissipation:
150mA max.
e Single +5V supply voltage
e Proven high programmability
and reliability of DEApTM
(Diffused Eutectic Aluminum
Process)
e Low current PNP inputs
e Simplified and lower power
programming
eMB7121: Open collector
outputs
e MB7122:.Thre.state outputs
e Two chip enable leads for easy
memory expansion
e Jedec standard 18-pin
DIP package
e MB7121 pin compatible with
industry standard products:
27832,7642,6350,93452,
748477, 74S572,~PB406
e MB7122 pin compatible with
industry standard products:
82S137, 7643, 6353-1, 93453,
36453,3625, DM74S573, 29641,
PLASTIC PACKAGE
DIP·18p·M01
PIN ASSIGNMENT
~PB426
Vee (PVe e )
A,
MB7l2l/MB7l22 BLOCK DIAGRAM:
As
A9
4098 (84 x 84) BIT
MEMORY CELLS
01
02
03
CS2
04
CSl (PVCE)
Th)s device contains circuitry to protect
the Inputs against damage due to high
statiC voltages or electric fields. However,
It Is advised that normal precautions be
taken to avoid applications of any voltage
higher than maximum rated voltages to
this high Impedance circuit.
6-8
MB7l21/MB7122
ABSOLUTE MAXIMUM: RATINGS
(See Note)
Rating
Power Supply Voltage
Power Supply Voltage (during programming)
Input Voltage
Input Voltage (during programming)
Output Voltage (during programming)
I nput Current
Input Current (during programming)
Output Current
Output Current (during programming)
I Ceramic
Storage Temperature
I Plastic
Output Voltage
Symbol
Value
Unit
Vee
Vee
VIN
VIPRG
VOPRG
liN
IIPRG
lOUT
10PRG
-0.5 to +7.0
-0.5 to +7.5
-1.5 to +5.5
22.5
-0.5 to +22.5
-20
+270
+100
+150
-65 to +150
40 to +125
-0.5 to +Vee
V
V
V
V
V
mA
mA
mA
mA
Tstg
VOUT
·C
V
Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be reo
stricted to the conditions as detailed in the operational sections of this data sheet.
RECOMMENDED OPERATING CONDmONS
Parameter
Supply Voltage
Input Low Voltage
Input High Voltage
Ambient Temperature
Symbol
Vee
VIL
VIH
TA
Min
4.75
Typ
5.0
-
Max
5.25
0.8
Vee
75
-
2.0
0
-
Unit
V
V
V
·C
DC CHARACTERISTICS
Full guaranteed operating ranges unless otherwise noted.
Parameter
Symbol
Input Leakage Current (VIH = 4.5V)
Input Leakage Current (VIH = 5.5V)
Input Load Current (VIL = 0.45V)
Output Low Voltage (IOL = 16 mAl
MB7121
Output Leakage Current
MB7122
(Vo = 2.4V, chip disable from a low)
Output Leakage Current
MB7122
(Vo = 0.5V, chip disabled from a high)
Input Clamp Voltage (liN = -18mA)
Power Supply Current (VIN - OPEN or GND)
Output High Voltage (10 = -2.4mA)
MB7122
MB7122
Output Short Circuit Current (Vo = GND)
IR1
1R2
IF
VOL
10LK
10lH
lOlL
Vie
ICC
Vow
los·
Min
Typ
Max
-
-
40
1.0
-250
0.50
2.4
-15
Unit
pA
mA
pA
V
40
/LA
40
pA
-40
pA
105
-1.2
150
-
-60
V
mA
V
mA
-
• Note: Denotes guaranteed characteristics of the output high·level (ON) state when the chip is enabled (VeE = O.4V) and the pro·
grammed bit is addressed. These characteristics cannot be tested prior to programming, but are guaranteed by factory
'
testing.
AC CHARACTERISTICS
Full guaranteed operating ranges,unless otherwise noted.
MB7121E1MB7122E
Parameter
Address Access Time
Output Disable Time
Output Enable Time
Symbol
tAA
tDIS
tEN
Typ
25
Max
45
30
30
6-9
MB7121 H/MB7122H
Typ
25
-
Max
35
30
30
Unit
ns
ns
ns
MB7121/MB7122
AC TEST CONDmONS
INPUT CONDITIONS
Amplitude
OV to 3V
Rise and Fall Time
5 ns from 1V to 2V
Frequency
1 MHz
MB7121/MB7122
3000
I
6000
I
30DF
OPERATION TIMING DIAGRAM
\/r---------V ,H
)~.5V
ADDRESS INPUT
_ _ _ _ _-.J
/\5V
cs---.. . .
CHIP SELECT INPUT
'----I---------I----------V,L
-
\ ~tAA
-
'.irtAA
__________ J(s~-----)~~ ________::~
OUTPUT
\ ~5V
/ V, .5V
cs --------'
CHIP SELECT INPUT
tOIS-
~--------V'L
-
-
-tEN
----i\ \\,.1.5V
_ _ _ _ _-
OUTPUT
_ _ _ _ _ _ _ _.../.7<+O.5V
__
VOL
Notes: Output disable time is the time taken for the output to reach a high impedance state when either chip enable is
taken high. Output enable time is the time taken for the output to become active when both chip enables are
taken low. The high impedance state is defined as a point on the output waveform equal to a AV of 0.5Y from
the active output level.
CAPACITANCE
(f
=1MHz, Yee =
+5Y, YIN = +2V, TA = 25°C)
Parameter
Input Capacitance
Output Capacitance
Symbol
Min
Typ
Max
10
12
Co
6-10
Unit
pF
pF
MB7121/MB7122
TYPICAL CHARACTERISTICS CURVES
IINC INPUT CURRENT
VIVIN INPUT VOLTAGE
IINA INPUT CURRENT
VI VIN INPUT VOLTAGE
T A =2S·C
o
I-
...z:::>
-«
en E
f3;:
-10
~ ,-::
-20
""
II:Z
ew
ell:
«II:
;u
.:::>
T A =25°C
0 1--
I-
f.-:: ;:::;i
~
""
Z
~1
CD;: -10
'"
."". Vc:=4.SV
'-. Vcc-S.OV t - Vcc=S.SV
~z
U U
Ii
z
-20
o
1.0
-30
-1.0
2.0
!z
::!II:
.
o
-10
:::>
u -20
:J:
C>
i
-30
5
-40
~
o
:i
.2
.,- ~
rV
w
"'"
./
50
::;;
t-
Vcc=4.SVI'v cc -S.OV
vcc=S.sv - t--
7121122
i=
/
en
en
w
u 30
u
./
Vcc=S.SV~
/
""'"
/
~
~ 20
.2
~
60
::!
50
en
en
40
U
U
30
;::
w
2
3
o
so
70
tAA ACCESS TIME
vs AMBIENT TEMPERATURE
l/tJ.
5V
Vcc=5.0~:-:-
V 1//Vcc=5.5~ ~
'171j2
o
100
o
-50
TA• AMBIENT TEMPERATURE (·C)
los DISABLE TIME
VI AMBIENT TEMPERATURE
600
10
MB 7121
-SO
VOH.OUTPUT HIGH CURRENT (V)
MBI7121 22
400
-i
o
6
4
200
V
~ 20
10
~B 71~2
/
o
70
«
«
-so
o
j
If
5
w
vcc=s.ov
40
I
if.
VOL' OUTPUT LOW VOLTAGElmW)
-i 20
70
40
30
o
~
-60
a3:
2.0
/L=4.L
c
-9K
1.0
/
50
9
tAA ACCESS TIME
vs AMBIENT TEMPERATURE
70
60
~'/1
l
=2S.lC
V c=S.OV
II:
V,N.INPUT VOLTAGE (V)
IOH OUTPUT HIGH CURRENT
vii VOH OUTPUT HIGH VOLTAGE
TA=25°C
r---T
..; 10
MJ
V,N.INPUT VOLTAGE (V)
o
60
o
MJ 712,/22
-30
-1.0
70
;
::!
Vcc=4·SV
\. Vcc=S.OV I-Vcc=S.SV
~~
<
Z
:::::: P':: fSS:
l"".
Ww
:J::::>
I--" -::::1
IOL OUTPUT LOW CURRENT
VI VOL OUTPUT LOW VOLTAGE
50
100
TA• AMBIENT TEMPERATURE (·C)
tDIS DISABLE TIME
VI AMBIENT TEMPERATURE
70
tEN ENABLE TIME
VI AMBIENT TEMPERATURE
JB 7141
60
.sw
oS
w
::!
i=
w
SO
60
60
50
::!
40
..J
CD
/
0
/ /
~ 30
cii 20
g
Vc c=4·SV- I-Vcc=S.OV _
t-/Vcc=S.SV
..,,-
......:
/
~
10
o
~
~B71~1
-60
o
so
100
TA• AMBIENT TEMPERATURE (·C)
i=
w
..J
CD
~
40
30
0
cii 20
§
10
-
o-50
/
/ /
Vcc =4·SV-
-
Vcc=S.o~:-:- /vcc.~.SV
..,,-
/
.5w
50
i=
40
Vcc=4.~V_
::!
w
/
..J
~
Z
~
30
/
20
/
t-l/vcc=~.ov
VVcc-5.5V t - -
1!} 10
JB 7122
o
50
100
TA. AMBIENT TEMPERATURE rC)
6-11
o
-50
o
50
100
TA. AMBIENT TEMPERATURE I·C)
MB712l1MB7122
TYPICAL CHARACTERISTICS CURVES (Continued)
70
JB
71~2
60
50
i=
40
/
...J
«
z
Z
w
.'!'
]
'"«w
:;;
w
70
JB
DELAY TIME INCREASE
vs CL LOAD CAPACITANCE
70
71~1
60
w
c
w
co
DELAY TIME INCREASE
vs CL LOAD CAPACITANCE
tEN ENABLE TIME
vs AMBIENT TEMPERATURE
30
20 I'---
/
V CC =4·5V/V CC =5.0V
./VVCC=5t'
a:
~
:;; 30
w
0
10
\
w
i=
>
::5
0
-50
50
100
TAo AMBIENT TEMPERATURE lOCI
10
0
I
I
'"w«
50
U
;!;
I
ADD. to tEN DELAY
\
20
\ ......
V
V
0
~
i=
>
w
0
10
ADD. TO tAA DELAY
20
\
0
100
200
300
CLo LOAD CAPACITANCE IpFI
INPUT I OUTPUT
CIRCUIT INFORMATION
40
30
«
...J
1/' I-- ~ I--
MB 7122
0
60
a:
u 4 0 - I--ADD. to tAA DELAY-I--
;!;
I--
~
w
50
A~t ~O tE~ DE~AY
-.-
\
0
100
200
300
CLo LOAD CAPACITANCE IpFI
MB7121/MB7l22 INPUT CIRCUIT
Vcc
INPUT
In the input circuit, Schottky TTL circuit
technology is used to achieve highspeed operation. A PNP transistor in the
first stage of input circuit remarkably
improves input high/low current characteristics. Also, the input circuit includes
a protection diode for reliable operation.
~
*
~1
V-
'NPIITU
OPEN·COLLECTOR OUTPUT
The open-collector output is often utilized in high speed applications where
power dissipation must be minimized.
When the device is switched, there is no
current sourced from the supply rail.
Consequently, the current spike normally associated with TTL totem-pole outputs is eliminated. In high frequency applications, this minimizes noise problems (false triggering) as well as power
drain. For example, the transient current
(low impedance high-level to low impedance low-level) is typically 30mA for
the MB7122 (3-state) compared to OmA
for the MB7121 (open-collector).
J'
~
MB7121 OUTPUT CIRCUIT
OUTPUT
.A.
6-12
J
MB712l1MB7122
THREE·STATE OUTPUT
MB7l22 OUTPUT CIRCUIT
A "three-state" output is a logic element which has three distinct output
states of LOW, HIGH and OFF
(wherein OFF represents a high impedance condition which can neither
sink nor source current at a definable
logic leveL) Effectively, then, the
device has all the desirable features
of a totem-pole TIL output (e.g.,
greater noise immunity, good rise
time, line driving capacity), plus the
ability to connect to bus-organized
system.
---.--..--vcc
OUTPUT
In the case where two devices are on
at the same time, the possibility exists that they may be in opposite low
impedance states simultaneously;
thus, the short circuit current from
one enabled device may flow through
the other enabled device. While
physical damage under these conditions is unlikely, system noise problems could result. Therefore, the
system designer should consider
these factors to ensure that this condition does not exist.
Also in the output circuit, Schottky
TIL circuit technology is used to
achieve high-speed operation. Also, a
PNP transistor is provided in the output circuit to decrease the load on the
Chip Select circuit.
6-13
MB712l1MB7122
MB712l1MB7l22 BIT MAP
0
o
0 0
~
01
1 1 1 0
0
o
0 0
l
02
1 1 1 0
0
o
1
1 1 0
o 0 0
0 0
l
03
0
l
04
1 1 1 0
1
0
0
0
0
0
1
1
1
1
1
1
.......
Multiplexer
Decoderl Driver
A5
A2
A4
A1
Ao
A3
10011001
00111100
00001111
00000000
00000000
00000000
10011001
11000011
00001111
11111111
olloooooo
00000000
10011001
11000011
00001111
00000000
11111111
00000000
10011001
00111100
00001111
11111111
11111111
00000000
6-14
10011001
11000011
00001111
00000000
00000000
11111111
10011001
00111100
00001111
11111111
00000000
11111111
10011001
00111100
00001111
00000000
11111111
11111111
AS A7 A6 Ag
o 0 0 0
o 0 o 1
o 0 1 1
0 0 1 0
o 1 1 0
0 1 1 1
0 1 0 1
0 1 0 0
1 o 1 0
1 0 1 1
1 0 0 1
1 0 0 0
1 1 0 0
1 1 o 1
1 1 1 1
1 1 1 0
10011001
11000011
00001111
11111111
11111111
11111111
FUJITSU
MB7123E/H
MB7124E/H
MICROELECTRONICS
HIGH SPEED SCHOTTKY
TTL 4,096-BIT PROM
DESCRIPTION
The Fujitsu MB7123 and MB7124
are high speed Schottky TTL electrically field programmable read
only memories. Uncommited col·
lector outputs and three·state out·
puts are provided for easy memo
ory expansion.
The sophisticated passive isolation termed lOP (Isolation by Oxide and Polysilicon), and SVG
(Shallow V·Groove) with thin epitaxial layer and Schottky TTL process enable small chip size and
fast access time.
The memory is fabricated with all
logic "zeros" (positive logic).
Logic level "ones" can be programmed by the highly reliable
DEApTM (Diffused Eutetic Aluminum Process) during simple programming procedures.
The extra test cells and unique
testing methods provide enhanced correlation between programmed and unprogrammed circuits
in order to perform AC, DC, and
programming tests prior to shipment. This results in extremely
high programmability.
FEATURES
• Organization:
512 words by 8·bits
• TTL compatible input/output
• Fast access times:
MB7123E1MB7124E:
45 ns max.
MB7123H/MB7124H:
35 ns max.
• Low Power Dissipation:
170 mA Max.
• Open collector outputs on
MB7123
• Three·state outputs on MB7124
• Proven high programmability
and reliability of DEApTM
(Diffused Eutectic Aluminum
Process)
• Simplified and lower power
programming
• Low current PNP inputs
• One chip enable lead for easy
memory expansion
• Standard 20·pin DIP package
• MB7124 is pin compatible with
AM27S28 and N82S147
MB7123/MB7124 BLOCK DIAGRAM
An
A,
A,
A,
CERDIP PACKAGE
Dlp·20C·C01
PIN ASSIGNMENT
AO
Vcc(PVcc)
A1
A2
As
Ar
A6
As
CS
Os
A3
A4
01
°2
03
04
GND
ROW
64 x 64
ADDRESS
BUFFERS
MEMORY CELL
Or
06
Os
ARRAY
This device contains circuitry to protect
the inputs against damage due to high
static voltages or electric fields. However,
it is advised that normal precautions be
taken to avoid applications of any voltage
higher than maximum rated voltages to
this high impedance circuit.
A,
As
A,
A,
As
Cs
6-15
MB7123/MB7124
ABSOLUTE MAXIMUM RATINGS
(See Note)
Rating
Power Supply Voltage
Power Supply Voltage (during programming)
Input Voltage
Input Voltage (during programming)
Output Voltage (during programming)
Input Current
Input Current (during programming)
Output Current
Output Current (during programming)
Storage Temperature
Output Voltage
Symbol
Value
Unit
-0.5 to +7.0
V
Vee
-0.5 to +7.5
V
Vee
-1.5 to +5.5
V
VIN
V
22.5
VIPRG
V
-0.5 to +22.5
VOPRG
-mA
-20
liN
mA
+270
IIPRG
mA
+100
lOUT
mA
+150
10PRG
-65 to +150
'C
Tsta
V
-0.5 to +Vee
VOUT
Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be
restricted to the conditions as detailed in the operational sections of this data sheet.
RECOMMENDED OPERATING CONDmONS
Parameter
Supply Voltage
Input Low Voltage
Input High Voltage
Ambient Temperature
Symbol
Vee
VIL
VIH
TA
Typ
5.0
Min
4.75
0.0
2.0
0
Unit
V
V
V
°C
Max
5.25
0.8
Vce
75
-
-
DC CHARACTERISTICS
Full guaranteed operating ranges unless otherwise noted.
Parameter
Symbol
Min
Typ
Max
Unit
IR1
IR2
-
-
40
1.0
mA
IF
VOL
-
-
-250
0.50
pA
-
=
=
Input Leakage Current (VIH 4.5V)
Input Leakage Current (VIH 5.5V)
Input Load Current (Vil 0.45V)
=
=
Output Low Voltage (IOl 16mA)
Output Leakage Current (Vo 2.4V, chip
disabled from a low)
Output Leakage Current (Vo 0.45V, chip
disabled from a high)
Output Leakage Current (VO 2.4V, chip
disabled) (Open Collector)
Input Clamp Voltage (lIN
-18mA)
Power Supply Current (VIN OPEN or GND)
Output High Voltage (10
-2.4mA)
Output Short Circuit Current (Vo GND)
=
=
pA
V
=
MB7124
10lH
-
-
40
/LA
=
MB7124
lOll
-
-
-40
pA
=
MB7123
10lK
-
-
40
pA
120
-1.2
170
-
-60
V
mA
V
mA
=
-
VIC
Icc
=
-
Vow
MB7124
MB7124
2.4
-15
los'
-
• Note: Denotes guaranteed characteristics of the output high·level (ON) state when the chip is enabled (Vi5E = 0.4V) and the programmed
bit is addressed. These characteristics cannot be tested prior to programming, but are guaranteed by factory testing.
AC CHARACTERISTICS
Full guaranteed operating ranges unless othewise noted.
Parameter
Address Access Time
Output Disable Time
Output Enable Time
Symbol
tAA
tDIS
tEN
MB7123E1MB7124E
Typ
Max
25
15
15
45
30
30
6-16
MB7123H/MB7124H
Typ
Max
25
15
15
35
30
30
Unit
ns
ns
ns
lV1B7123 1lV1B7124
AC TEST CONDmONS
INPUT CONDITIONS
Amplitude
OV to 3V
Rlae and Fall Time
5 ns from 1V to 2V
Frequency
1 MHz
MB71231MB7124
3000
I
I
6000
30pF
OPERATION TIMING DIAGRAM
r----------vH
\/
ADDRESS INPUT
1.5V
!\.5V
_ _ _ _ _- - J
'-----------V,L
CHIP ENABLE INPUT
I
'----r-------~~---------V,L
\17..:.A~ __ .::!,.Ir-tA-A----VOH
OUTPUT
__________ J
,~.5V
1''
~:5V
.
~---------~L
~ 5-V---------~I,~
CHIP ENABLE INPUT _ _ _ _ _ _ _
tDls~d·
1.5V
--------VOL
OUTPUT
________~
tEN
Vo L+O.5V
Noter. Output disable time is the time taken for the output to reach a high impedance state when either chip enable Is
taken high. Output enable time is the time taken for the output to become active when both chip enables are
taken low. The high impedance state is defined as a point on the output waveform equal to a ;i V of 0.5V from
the active output level.
CAPACITANCE
(f
= 1MHz, Vee = +5V, VIN = +2V)
Parameter
Input Capacitance
Output Capacitance
Symbol
Min
Co
6-17
Typ
Max
10
12
Unit
pF
pF
FUJITSU
MB7127E/H
MB7128E/H
MICROELECTRONICS
HIGH SPEED SCHOTTKY
TrL 8192·BIT PROM
DESCRIPTION
The Fujitsu MB7127/MB7128 are
high speed Schottky TTL electrically field programmable read
only memories. With open collector outputs on the MB7127 and
three-state outputs on the
MB7128, memory expansion is
simple.
grammed by the highly reliable
DEApTM (Diffused Eutetic Aluminum Process) during a simple programming procedure.
The memory is fabricated with all
logic "zeros" (positive logic).
Logic level "ones" can be pro-
The extra test cells and unique
testing methods provide extremely high programmability.
The sophisticated Schottky TTL
process enables small chip size
and fast access time.
FEATURES
• Organization:
2048 words by 4-bits
• TTL compatible input/output
• Fast access time:
M B7127E1M B7128E:
55 ns Max.
30 ns Typ.
MB7127H/MB7128H:
45 ns Max.
30 ns Max.
• Low Power Dissipation:
155 mA Max.
• Single +5V supply voltage
• Proven high programmability
and reliability of DEApTM
(Diffused Eutectic Aluminum
Process)
• Simplified and lower power
programming
• Low current PNP inputs
• MB7127: Open collector
outputs
• MB7128: Three-state outputs
• Chip select leads for easy
memory expansion
• Standard 18-pin DIP package
• MB7128 pin is compatible with
industry standard products:
82S185, HM7685, 63S841,
27S185
• MB7127 pin compatible with
82S184, HM7684, 63S840,
27S184
MB7127/MB7128 BLOCK DIAGRAM
CERDIP PACKAGE
Dlp·18C·C01
PIN ASSIGNMENT
AS
As
vcc
A7
A4
As
A3
Ag
Ao
0,
A,
02
A2
03
A,o
04
GND
CS(PVce)
8192 (128 , 64) BIT
MEMORY CELLS
This device contains circuitry to protect
the inputs against damage due to high
static voltages or electric fields. However,
it is advised that normal precautions be
taken to avoid applications of any voltage
higher than maximum rated voltages to
this high impedance circuit.
cs
04
03
02
0,
6-18
MB7127/MB7128
ABSOLUTE MAXIMUM RATINGS (See Note)
Symbol
Vee
Vee
VIN
VIPRG
VOPRG
liN
IIPRG
lOUT
10PRG
Tsta
VOUT
Rating
Power Supply Voltage
Power Supply Voltage (during programming)
Input Voltage
Input Voltage (during programming)
Output Voltage (during programming)
Input Current
Input Current (during programming)
Output Current
Output Current (during programming)
Storage Temperature
Output Voltage
Value
-0.5 to +7.0
-0.5 to +7.5
-1.5 to 5.5
22.5
-0.5 to +22.5
-20
+270
+100
+150
-65 to +150
-0.5 to +Vee
Unit
V
V
V
V
V
mA
mA
mA
mA
·C
V
Nole: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be
restricted to the conditions as detailed in the operational sections of this data sheet.
RECOMMENDED OPERATING CONDmONS
Parameter
Supply Voltage
Input Low Voltage
Input High Voltage
Ambient Temperature
Symbol
Vcc
VIL
VIH
Min
4.75
0.0
2.0
0
TA
Typ
5.0
Max
5.25
0.8
Vee
75
-
Unit
V
V
V
°C
DC CHARACTERISTICS
Full guaranteed operating ranges unless otherwise noted.
Parameter
Symbol
Input Leakage Current (VIH = 4.5V)
IA1
Input Leakage Current (VIH = 5.5V)
IA2
Min
Typ
Max
-
-
40
p.A
-
mA
Unit
Input Load Current (VIL = 0.45V)
IF
-
Output Low Voltage (lOL = 16 mAl
VOL
-
1.0
-250
-
0.50
V
10lH
-
-
40
p.A
disabled from a high)
lOlL
VIC
-
-
-40
-1.2
p.A
Input Clamp Voltage (lIN - -18mA)
Power Supply Current
(VIN = OPEN or GNO)
Icc
-
110
155
mA
Output High Voltage (10 = -2.4mA)
VOH"
Output Short Circuit Current (Va = GNO)
los"
2.4
-1.5
p.A
Output Leakage Current (VOL = 2.4V, chip
disabled from a low)
Output Leakage Current (VO = 0.45V, chip
V
-
-
V
-
-150
mA
=
"Note: Denotes guaranteed characteristics of the output high·level (ON) state when the chip enabled (VC"E 0.4V) and the
programmed bit is addressed. These characteristics cannot be tested prior to programming, but are guar\lnteed by factory
testing.
AC CHARACTERISTICS
Full guaranteed operating ranges unless otherwise noted.
Parameter
Address Access Time
Output Disable Time
Output Enable Time
MB7127E1MB7128E
MB7127H/MB7128H
tAA
Typ
30
Typ
30
tDIS
tEN
-
Symbol
Max
55
40
40
6-19
-
Max
45
30
30
Unit
ns
ns
ns
MB7l27/MB7128
AC TEST CONDmONS
INPUT CONDITIONS
Amplitude
OV to 3V
Rise and Fall Time
5 ns from 1V to 2V
Frequency
1 MHz
MB7127/MB7128
3000
I
6000
I
30pF
O~TIONT.mfiNGDU~
, - - - - - - - - - V1H
ADDRESS INPUT
\(lSV
\j(l.SV
j !\."--._ _ _...I 1,\
_ _ _ _- - J
1H
'---+-------1---------- V
- \ 1;-_~A!
OUTPUT
___________ J
CS
CHIP SELECT INPUT
CS
.*.
Ii
1L
__ .::-:""\\\ .-,.........;.IA;;.;A_ _ _ _ _ _ VOH
1.SV
".l.SV
' - - - - - - - - - - - - - VOL
, - - - - - - - - - V1H
\V
_ _ _ _ _- JJ~ 1.SV
101S-
OUTPUT
V1L
,_--+-------1---------- V
CS
CHIP SELECT INPUT
CS
-
) (l.SV
-
-lEN
~\ 1\.....
1.SV
_ _ _ _ _ _ _ _,~K+o.sV
_______
I
-:-
-
VOL
Notes: Output disable time is the time taken for the output to reach a high impedance state when either chip enable is
taken to the inactive state. Output enable time is the time taken for the output to become active when both chip
enables are taken to the active state. The high impedance state is defined as a point on the output waveform
equal to a tN of 0.5V from the active output level.
CAPACITANCE (f = 1MHz, Vee =
Parameter
Input Capacitance
Output Capacilance
+5V, VIN
Symbol
=
+2V, TA
Min
= 25°C)
Typ
Max
10
15
Co
6-20
Unit
pF
pF
MB7127 IMB7l28
TYPICAL CHARACTERISTICS CURVES
liN INPUT CURRENT
IOH OUTPUT HIGH CURRENT
vs VIN INPUT VOLTAGE
vs VOH OUTPUT HIGH VOLTAGE
~
TA= 2SOC
.5
o
~
~R K
~
~
f-
TA=2S0C
o
~V
Z
w
0:
0:
:::l
L--'
u
~ Vcc=4.SV
-20
J:
S2
t---
vcc=s.ov
l"-vcc=s.SV
-10
J:
f:::l
0-
f:::l
-30
./
V
~ f'5.< K
"'"
yV
,/
~
V CC =4.SVVCC=S.OV_
'VCC=S.SV
I
-40
o -so
-30
-1.0
~
t
z
..J
30
IOL OUTPUT LOW CURRENT
~
T~=2S0b
o
..J
t
II
z
.~
l=2So~
40
..J
30
1=
:::l
o
..J
.2
MIB7T
L
v
20
/
10
60
w S0
::;
f=
~
tJ
u
4
/~ccJ4.SV
Vcc=S.OV
V/
Or--.- lL /
~S 71}8
tAA ACCESS TIME
70
.s
w
::;
Vcc:~
vs AMBIENT TEMPERATURE
60
tcJsv
so
f=
~
U)
U)
40
w
U
3 01--.
u
30
!-
20
..:
CD
r-----
10
o
o
-50
-
i
-+I
40
I
30
20
-~
-
1
DELAY TIME INCREASE
[[
I-
:::r-
vs CL LOAD CAPACITANCE
L1J
:;;
/ / V/V cc =S.5V
:::::-""-
o
100
70
(/)
Vcc=5.0V- f - -
............
10
T A. AMBIENT TEMPERATURE (CCI
vcc=~.ov
o
c
ENABLE TIME
60
40
30
tEN
!
50
L1J
----~------
This device contains circuitry to protect the
inputs against damage due to high static
voltages or electric fields. However, it is advised that normal precautions be taken to
avoid application of any voltage higher than
maximum rated voltages to this high impedance circuit.
~
A7
As
Ag
6-25
MB7130E/MB7130H
ABSOLUTE MAXIMUM RATINGS
(See Note)
Value
-0.5 to +7.0
-0.5 to +7.5
-1.5 to +Vee
22.5
-0.5 to +22.5
-20
+270
+100
+150
-65 to +150
-0.5 to +Vee
Symbol
Vee
Vee
VIN
VIPRG
VOPRG
liN
IIPRG
lOUT
10PRG
Tsta
VOUT
Rating
Power Supply Voltage
Power Supply Voltage (during programming)
Input Voltage
Input Voltage (during programming)
Output Voltage (during programming)
Input Current
Input Current (during programming)
Output Current
Output Current (during programming)
Storage Temperature
Output Voltage
Unit
V
V
V
V
V
rnA
rnA
rnA
rnA
°C
V
Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be
restricted to the conditions as detailed in the operational sections of this data sheet.
RECOMMENDED OPERATING CONDmONS
Parameter
Supply Voltage
Input Low Voltage
Input High Voltage
Ambient Temperature
Symbol
Min
4.75
0.0
2.0
0
Vee
V,L
V,H
TA
Typ
5.0
Max
5.25
0.8
Vee
75
-
Unit
V
V
V
°C
DC CHARACTERISTICS
Full guaranteed operating ranges unless otherwise noted.
Max
Unit
Input Leakage Current IVIH = 4.5V)
IRl
-
-
40
Input Leakage Current IVIH = 5.5V)
IR2
-
1.0
iJ. A
mA
-250
iJ. A
0.50
V
40
iJ. A
Parameter
Symbol
Min
Typ
Input Load Current IVIL = 0.45V)
IF
-
Output Low Voltage IIOL = 16 mAl
VOL
-
-
10lH
-
.-
disabled from a high)
lOlL
-
-
-40
iJ. A
Input Clamp Voltage IItN - -18mA)
VIC
-
-
-1.2
V
Icc
-
125
175
mA
Output High Voltage (10 = -2.4mA)
VOH'
2.4
-
-
V
Output Short Circuit Current IVa = GND)
los'
15
-
-60
mA
Output Leakage Current IVOL = 2.4V, chip
disabled from a low)
Output Leakage Current (VO = 0.45V, chip
Power Supply Current
IVIN = OPEN or GND)
'Note: Denotes guaranteed characteristics of the output high·level (ON) state when the chip enabled (VEE = OAV) and the
programmed bit is addressed. These characteristics cannot be tested prior to programming, but are guaranteed by factory
testing.
AC CHARACTERISTICS
Full guaranteed operating ranges unless otherwise noted.
MB7130E
Parameter
Address Access Time
Output Disable Time
Output Enable Time
Symbol
tAA
Typ
30
tDIS
tEN
-
MB7130H
Max
55
40
40
6-26
Typ
30
-
Max
45
30
30
Unit
ns
ns
ns
MB'1l3tOE I MB7130H
AC TEST CONDmONS
INPUT CONDITIONS
OV to 3V
Amplitude
Rise and Fall Time
5 n5 from 1V to 2V
Frequency
1 MHz
MB7130
300n
I
600n
I
30pF
O~TION~GD~~
ADDRESS INPUT
,.---------vH
\/.
!\.5V
\1,.5V
_ _ _ _ _--J
/\'----------V 1L
cs---"'\.
V 1H
CHIP SELECT INPUT
=" '.\r;:
'---~------~----------VIL
- \r,:~~--
OUTPUT
__________ J
~BV
~BV
~---------~L
J I 1.5V
CHIP SELECT INPUT
\ r\.5V
'----------V1L
CS-------'
OUTPUT
_tA_A_ _ _ _ _ VOH
-r.:EN
Ir---~ "-_
1.5V _ _ _ _ _ __
__ _ _ _ _ _ _ _ _
...... K.+O.5V
VOL
-
Notes: Output disable time is the time taken for the output to reach a high impedance state when either chip enable is
taken to the inactive state. Output enable time is the time taken for the output to become active when both chip
enables are taken to the active state. The high impedance state is defined as a point on the output waveform
equal to a AV of O.5V from the active output level.
CAPACITANCE (f = 1MHz. VCC =
Parameter
Input Capacitance
Output Capacitance
+5V. VIN
=
+2V. TA
Symbol
CI
Min
-
Co
-
6-27
= 25°C)
Typ
Max
10
15
Unit
pF
pF
MB7130E I MB7130H
TYPICAL CHARACTERISTICS CURVES
IINA INPUT CURRENT
vs VIN INPUT VOLTAGE
T A=25°C
o
r-
::l
~
Cl.
2-«
~ ~K
en.:o
~ r- -10
II: 2
o II:
«II:
~a
-20
~
0
Cl.
~ ;;;;.....: K
~:?
'" .:0 -10
~!2
V cc =5.5V-
«
W
'''V cc =4.5V_
!'Vc c =5.0V
~
V cc =5.5V-
-20
z
2
2.0
1.0
40
g
30
~
r-
20
g
10
.:,
0
.9
2.0
IOH OUTPUT HIGH CURRENT
VSVOH OUTPUT HIGH VOLTAGE
tAA ACCESS TIME
vs AMBIENT TEMPERATURE
/
/
/
/
,,/
0
200
400
600
VOL. OUTPUT LOW VOLTAGE (mV)
tOIS DISABLE TIME
vs AMBIENT TEMPERATURE
70
70
60
60
T A=25°C
0
~ /1
W
u -20 . /
I
-30
~ -40
..s
~ -5 -
20
...J
W
10
~
...,
0
-50
o
50
30
tAA DELAY
tr
«
10
o
40
Vcc=5.0V
100 150
100
T A. AMBIENT TEMPERATURE 1°C)
DIELAI~ r---1\
200
300
C L • LOAD CAPACITANCE (pF)
6-28
50
100
T A • AMBIENT TEMPERATURE 1°C)
DELAY TIME INCREASE
vs CL LOAD CAPACITANCE
tEN ENABLE TIME
vs AMBIENT TEMPERATURE
~ ::;.>'"
~
~
o
100
I'"
10
T A • AMBIENT TEMPERATURE 1°C)
VO H OUTPUT HIGH VOLTAGE (V)
V CC =4.5V
40
W
...J
0
o
7
..s
0
~ 10
g -50
6-60 0
W
::;;
~
Cl.
-
o
VIN.INPUT VOLTAGE IV)
II: -10
II:
::l
~
1.0
-30
-1.0
VIN.INPUT VOLTAGE IV)
~
..sr-
o
U
Cl.
u
-30
-1.0
\1
50
II:
::l
Cl.1I:
~.u!S
2
0::
'\
Ww
1=25
JC
T
60 -Vc c =5.0V
..sr-
k"" ~
~
r---V cc =5.0V
IOL OUTPUT LOW CURRENT
vs VOL OUTPUT LOW VOLTAGE
T A=25°C
~
['V cc =4.5V_
""
OW
z
IINC INPUT CURRENT
vs VIN INPUT VOLTAGE
MB7130E I MB7130H
INPUT I OUTPUT
CIRCUIT INFORMATION
Ma7l30 INPUT CIRCUlT
INPUT
In the input circuit, Schottky TIL circuit technology is used to achieve
high-speed operation. A PNP tran·
sistor in the first stage of input circuit
improves input high/low current
characteristics. Also, the input circuit
includes a protection diode for
reliable operation.
THREE·STATE OUTPUT
INPUT
A "three-state" output is a logic ele·
ment which has three distinct output
states of LOW, HIGH and OFF
(wherein OFF represents a high im·
pedance condition which can neither
sink nor source current at a definable
logic leveL) Effectively, then, the
device has all the desirable features
of a totem-pole TTL output (e.g.,
greater noise immunity, good rise
time, line driving capacity), plus the
ability to connect to bus·organized
systems.
In the case where two devices are on
at the same time, the possibility ex·
ists that they may be in opposite low
impedance states simultaneously;
thus, the short circuit current from
one enabled device may flow through
the other enabled device. While
physical damage under these condi·
tions is unlikely, system noise pro·
blems could result. Therefore, the
system designer should consider
these factors to ensure that this con·
dition does not exist.
Also in the output circuit, Schottky
TIL circuit technology is used to
achieve high-speed operation. Also, a
PNP transistor is provided in the out·
put circuit to decrease the load on the
Chip Enable circuit.
o----.--F---K 1-----1
Ma7l30 OUTPUT CIRCUIT
- - _ - -......-vcc
OUTPUT
6-29
FUJITSU
!a713lE/H
!a7132E/H
MICROELECTRONICS
IUGH SPERl) SCHOTrKY
TTL 8192·BIT PROMS
DESCRIPTION
The Fujitsu MB7131 and MB7132
are high speed Schottky TTL electrically field programmable read
only memories. With open collector outputs on the MB7131 and
three-state outputs on the
MB7132, memory expansion is
simple.
grammed by the highly reliable
DEApTM (Diffused Eutetic Aluminum Process) during simple programming procedure.
The memory is fabricated with all
logic "zeros" (positive logic).
Logic level "ones" can be pro-
The extra test cells and unique
testing methods provide extremely high programmability.
The sophisticated Schottky TTL
process enables small chip size
and fast access time.
FEATURES
• Organization: 1024 words
by 8-blts
• TTL compatible input/output
• Fast access time:
MB7131E1MB7132E:
55 ns Max_
30 ns Typ_
MB7131H/MB7132H:
45 ns Max.
30 ns Max_
• Low Power Dissipation:
175 mA Max_
• Single +5V supply voltage
• Proven high programmability
and reliability of DEApTM
(Diffused Eutectic Aluminum
Process)
• Simplified and lower power
programming
• Low current PNP inputs
• MB7131: Open collector outputs
• MB7132: Three-state outputs
• Chip select leads for easy
memory expansion
• Standard Upln DIP package
• MB7131 pin compatible with
82S180,6380, HM7680, 93450,
3808,27S180
• MB7132 pin Is compatible with
Industry standard products:
82S181, HM7681, 6381-1,
28888,93451,3628
MB713l1MB7132 BLOCK DIAGRAM
A2
A,
A.
ROW
ADDRESS
BUFFERS
PIN ASSIGNMENT
A7
As
As
8192 (128 x 64) BIT
~
CS4
es,(PVcEl
Ao
GND
MEMORY CELLS
Vee
As
As
A3
A2
A,
0,
02
03
A,
A,
CERAMIC pACKAGE
Dlp·24C·A01
CSa
CS2
08
~
06
Os
04
"-
A,
Ao
""-
8 x 8 INPUT MULTIPLEXERS
OS;
CSz
cs,
8 x OUTPUT BUFFERS
ClI.
6-30
This device contains circuitry to protect the
Inputs against damage due to high static
voltages or electric fields. However, It is ad·
vised that normal precautions be taken to
avoid application of any voltage higher than
maximum rated voltages to this high Impedance circuit.
MB7131/MB7132
ABSOLUTE MAXIMUM RATINGS (See Note)
Rating
Symbol
Value
Unit
Power Supply Voltage
Power Supply Voltage (during programming)
Input Voltage
Input Voltage (during programming)
Output Voltage (during programming)
Input Current
Input Current (during programming)
Output Current
Output Current (during programming)
Storage Temperature
Output Voltage
Vee
Vee
VIN
VIPRG
VOPRG
liN
IIPRG
lOUT
10PRG
Ts!g
VOUT
-0.5 to +7.0
-0.5 to +7.5
-1.5 to +5.5
22.5
-0.5 to +22.5
-20
+270
+100
+150
-65 to +150
-0.5 to +Vee
V
V
V
V
V
mA
mA
mA
mA
·C
V
Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be
restricted to the conditions as detailed in the operational sections of this data sheet.
RECOMMENDED OPERATING CONDmONS
Parameter
Supply Voltage
Input Low Voltage
Input High Voltage
Ambient Temperature
Symbol
Min
Typ
Max
Unit
Vee
VIL
VIH
TA
4.75
0.0
2.0
0
5.0
-
5.25
0.8
-
Vee
75
V
V
V
·C
DC CHARACTERISTICS
Full guaranteed operating ranges unless otherwise noted.
Parameter
=
=
Input Leakage Current (VIH 4.5V)
Input Leakage Current (VIH 5.5V)
Input Load Current (VIL 0.45V)
=
=
Output Low Voltage (IOL 16mA)
Output Leakage Current (Vo 2.4V, chip MB7131
disabled from a low)
MB7132
Output Leakage Current (Vo 0.5V, chip
MB7132
disabled from a low
Input Clamp Voltage (liN
-18mA)
Power Supply Current (VIN - OPEN or GND)
Output High Voltage(lo
-2.4mA
MB7132
Output Short Circuit Current (Vo GND) MB7132
Min
Typ
Max
Unit
IR1
IR2
-
-
-
-
40
1.0
p.A
p.A
IF
-
-
-
-
-250
0.50
40
40
p.A
V
p.A
p.A
lOlL
-
-
-40
p.A
Vie
lee
Vow
los·
-
-
-1.2
125
175
-
-60
V
mA
V
mA
VOL
10LK
10lH
=
=
=
=
Symbol
=
-
2.4
-15
-
• Note: Denotes guaranteed characteristics of output high-level (ON) state when the chip enabled and the programmed bit is addressed. These characteristics cannot be tested prior to programming, but are guaranteed by factory testing.
AC CHARACTERISTICS
Full guaranteed operating ranges unless otherwise noted.
MB7131 ElMB7132E
Parameter
Address Access Time
Output Disable Time
Output Enable Time
Symbol
tAA
tDIS
tEN
MB7131H/MB7132H
Typ
Max
Typ
Max
30
55
40
40
30
45
30
30
-
6-31
-
Unit
ns
ns
ns
MB71311MB7132
AC TEST CONDmONS
INPUT CONDITIONS
OV to 3V
Amplitude
Rise and Fall Time
5 ns from 1V to 2V
Frequency
1 MHz
MB7131/MB7132
3000
I
6000 ~ 30pF
OPERATION TIMING DIAGRAM
ADDRESS INPUT
r--------- V
IH
~K 1.5V
\V
_ _ _ _ _---Jjl\ 1.5V
,.----t-------t---------
CS
VIL
VIH
CHIP SELECT INPUT
---1--------+--------- V IL
- \I;-_~A~ __
Ii
-+-,..-_IA_A______ V
CS
-=-:'"'\\\
,~ 1.5V
OUTPUT
ft,1.5V
\ - - - - - - - - - - - - VOL
_ _ _ _ _ _ _ _ _ _ _ ...1
r---------
\1/
)1\ 1.5V
CS
CHIP SELECT INPUT
~I/ 1.5V_______
. JI\~
cs - - - - - - - '
1015 -
OUTPUT
-
_ _ _ _ _ _ _--'~
OH
-
~I'
+
VOL
O.5V
VIH
V
IL
-lEN
1\ 1.5V
. ,_ _ _ _ _ _ _ _ VOL
Notes: Output disable time is the time taken for the output to reach a high impedance state when either chip enable is
taken to the inactive state. Output enable time is the time taken for the output to become active when both chip
enables are taken to the active state. The high impedance state is defined as a point on the output waveform
equal to a eN of 0.5V from the active output level.
CAPACITANCE
(f
= 1MHz, Vee = +5V, VIN = +2V,
Parameter
Symbol
Input Capacitance
Output Capacitance
CI
Co
TA
= 25°C)
Min
Typ
Max
Unit
10
15
pF
pF
-6-32
MB7131/MB7132
TYPICAL CHARACTERISTICS CURVES
IINA INPUT CURRENT
vs V IN INPUT VOLTAGE
IOL OUTPUT LOW CURRENT
vs VOL OUTPUT LOW VOLTAGE
IINC INPUT CURRENT
VSVIN INPUT VOLTAGE
~
70r--.--~-.--'--.---r--'
I
~=~~
E
i= sol- Vee = 5.0V -+--+--+--+-+1
~ 501---+--+--+-4--4-~1;f~
~ 401---+--~~-~~~/~~
:;
g
17
301---+-+--+-4-;l~~~~
~ 201---+--+--+-~~-~~
~
MB71311MB7132
MB7131/MB7132
-30L-~--~~--~~-~~
-1.0
0
1.0
2.0
V,N.INPUT VOLTAGEIVI
1
f-
i5
E
70
I '60 I-J A=25 C -+-+---1-+-Jy
Vcc=5.0V
J
V
~
0
T A=25°C
I
f--+-+--j....,.-h-+-+-I
~
-10 _
~ 40 I--~-l-~'-l-~V"-l--j
-20
G
I
f-
!
I
---4---r-'
MB7132
VOH. OUTPUT HIGH VOLTAGE IVI
tAA ACCESS TIME
vs TA AMBIENT TEMPERATURE
70
70
_
601---+--+--J--...J-~l--+~
~
50
8<
I
~-
I,
I
I
-60 L-.....L.~_.....L.-.J
__--'--.J__..J
001234567
lAA ACCESS TIME
vs TA AMBIENT TEMPERATURE
w
"'-Vcc=5.5V;-' I
I!
I
VOL. OUTPUT LOW VOLTAGE ImVI
(J)
(J)
!
V/~:::-VCc=5.0V
-30 V
-50 -----i..-_
o
I
/r'X~VCC=4.5V ~
I'
:::J
10 1"'--+-+--+/++--+-+--1
.:,
MB7132
o 0 0L---'----20.L0-"-'--4..J.0-0~-6...J0c.,,0--'
/cc= 4.5V
40
f= 30
./
~ -40~
201"'--+-+--+-/-1~4---1"'-~
-
V./ if
-1--
:::J~~/,
~ 301---+-+--+-~1-'J'A--1---j
~
°O!:---L-"':2~00,...L..L--4,-10-:-0--1--S
"'OL"O---.J
IOH OUTPUT HIGH CURRENT
vs V OH OUTPUT HIGH VOLTAGE
«
u
~
~
VOL OUTPUT LOW VOLTAGE (mV)
~ 501---+-+--+-+-~--'~~~
2
",
is
10 I---+-+--+
/V-+--l--4-M-B7f--1-3---jl
V I N. INPUT VOLTAGE IVI
IOL OUTPUT LOW CURRENT
vs VOL OUTPUT LOW VOLTAGE
/
5
~
t::::-
II
II
-;;; 60 1"'--+-+--+-+--+-+--1
.I
jvec ~ 5 OV -~
Vce =5.5V
~
---"""'.L)
~
E
1
~
/ V cc=4.5V_+---+_--I
50 I---+-/-+I/"'-v cc=5.0V
./
40
Vcc=5.5V-+_...\..oo~
(j'J
.1_
~ ~""""d:~a;~~~=r-~~
I-"
u 30
u
«
~201---+-+--+-+-1--~~
201---+-+--+--+-+--+~
:!-
101---+--+--+--+-+--+~
0L---L__-L--L__~_~iM_B_7~li3~1~
-50
0
50
100
TA (0C) AMBIENT TEMPERATURE
101--~-+--+--l--4-~--I
MB7132
OL--L__L--L__L--L__L-~
-50
0
50
100
T A • AMBIENT TEMPERATURE I"CI
6-33
MB7131/MB7132
TYPICAL CHARACTERISTICS CURVES (Continued)
lOIS DISABLE TIME
tOIS DISABLE TIME
vs TA AMBIENT TEMPERATURE
70
.s TA AMBIENT TEMPERATURE
70
u;-
.s
60
§'"
50
UJ
::;;
f=
UJ
"
UJ
OJ
i5
:;; 50
Vee = 4,5V \
40
Vye = ~.OV \
30
Vee = 5,5V
...J
«
C/)
.5 60
20
~
Ul
0
I!. 50
TA ,
50
UJ
40
::;;
f=
30
UJ
]
1
UJ
60
~
UJ
IrVee =1 5.0V
40 t - -
...J
~ 30
z
~lli Vee,=5,5V
UJ
. 20
20
10
z
~
r
Vcc=S.OV
I/V cc =5,5V
-
a-50
-50
0
50
100
TA (0C) AMBIENT TEMPERATURE
a
100
50
T A. AMBIENT TEMPERATURE lOCI
DELAY TIME INCREASE
DELAY TIME INCREASE
vs CL LOAD CAPACITANCE
70
70
MB7131
MB7132
.s 60
60
UJ
Ul
50
UJ
::;;
f=
40
>«
...J
30
UJ
20
C
~
~VCC=4'5V
10
vs CL LOAD CAPACITANCE
u;-
t--
MB7132
B71 T1
a
.s
a
50
100
AMBIENT TEMPERATURE lOCI
~ 50
I Vee = 4,5V
...J
~
Z
>2
~~
tEN ENABLE TIME
vsTA AMBIENT TEMPERATURE
70
TEN ENABLE TIME
vs AMBIENT TEMPERATURE
as
f-
:--
MBl132
B71
0
60
....
20
E"' 10
-50
0
50
100
TA (0C) AMBIENT TEMPERATURE
u;-
Vc~=5.0V
Vc~=5,5V~
co
- 20
uj 10
o
a
o
300
DELAY\
tEN;DELfY\
w
.....
""-
7 .. iI:
""CD
8 -~
9
10
11
12
!;l
CS,(PVcEl
CS3
CS2
08
07
06
05
04
This device contains circuitry to protect
the inputs against damage due to high
static voltages or electric fields. However,
it is advised that normal precautions be
taken to avoid applications of any voltage
higher than maximum rated voltages to
this high impedance circuit.
cs, r>-.r----,
cs,
CS3
6-42
MB7137/MB7138
ABSOLUTE MAXIMUM RATINGS (See Note)
Rating
Power Supply Voltage
Power Supply Voltage (during programming)
Input Voltage
Input Voltage (during programming)
Output Voltage (during programming)
Input Current
Input Current (during programming)
Output Current
Output Current (during programming)
Storage Temperature
Output Voltage
Value
-0.5 to +7.0
-0.5 to +7.5
-1.5 to +5.5
22.5
-0.5 to +22.5
-20
+270
+100
+150
-65 to +150
-0.5 to +Vcc
Symbol
Vcc
Vcc
VIN
VIPRG
VOPRG
liN
IIPRG
lOUT
10PRG
Tstg
VOUT
Unit
V
V
V
V
V
mA
mA
mA
mA
·C
V
Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be
restricted to the conditions as detailed in the operational sections of this data sheet.
RECOMMENDED OPERATING CONDmONS
Symbol
Parameter
Supply Voltage
Input Low Voltage
Input High Voltage
Ambient Temperature
Min
4.75
0.0
VCC
Vil
VIH
TA
Typ
-
Max
5.25
0.8
-
Vcc
75
5.0
2.0
0
Unit
V
V
V
·C
DC CHARACTERISTICS
Full guaranteed operating ranges unless otherwise noted.
Parameter
Symbol
=
=
Input Leakage Current (VIH 4.5V)
Input Leakage Current (VIH 5.5V)
Input Load Current (Vil 0.45V)
Output Low Voltage (IOl 10mA)
Output Leakage Current (Vo 2.4V, chip
MB7137
disable from a low)
I MB7138
Output Leakage Current (Vo 0.5V, chip
disabled from a low)
Input Clamp Voltage (liN
-18mA)
Power Supply Current (VIN - OPEN or GND
Output High Voltage (10
-2.4mA)
I MB7138
Output Short Circuit Current (Vo GND
MB7138
=
=
=
IRl
IR2
IF
Val
10lK
IOIH
I
=
lOll
=
=
=
VIC
Icc
VOH'
los'
I
Min
Typ
Max
Unit
-
-
40
1.0
-250
0.50
/LA
mA
40
40
/LA
/LA
-
-40
p.A
V
mA
V
mA
-
-
-
-
-1.2
-
130
180
2.4
-15
-
-
-
-60
/LA
V
* Note: Denotes guaranteed characteristics of output high·level (ON) state when the chip enabled and the programmed bit is address·
ed. These characteristics cannot be tested prior to programming, but are guaranteed by factory testing.
AC CHARACTERISTICS
Full guaranteed operating ranges unless otherwise noted.
Parameter
Address Access Time
Output Disable Time
Output Enable Time
Symbol
tAA
tDIS
tEN
MB7137E1MB7138E
MB7137H/MB7138H
Typ
35
Max
55
Typ
35
-
40
40
-
6-43
Max
45
40
40
Unit
ns
ns
ns
MB7137/MB7l38
AC TEST CONDmONS
INPUT CONDITIONS
Amplitude
OV to 3V
5 ns from 1V to 2V
Rise and Fall Time
Frequency
1 MHz
MB7137/MB7138
4700 110000
I 30pF
OPERATION TIMING DIAGRAM
ADDRESS INPUT
\ il 15V_ _ _
_ _ _ _--'J~'__.
oJ
cs
V1L
1H
-
\I;--~':!--.=:""'\\
OUTPUT
___________ J
ts
.~ 1.5V
-
________,/K
I
+-.._...;.tA;.;.A------ VOH
, - - - - - - - - - - - - VOL
\v,.-.-------
\V
Jr\. 1.5V
1015 -
1L
Ii
'.1.5V
V1H
Jf\I.5V
_ _ _ _ _- J
CS
OUTPUT
I"
_--t-------j---------- V
'---t-------j---------- V
CHIP SELECT INPUT
CS
CHIP SELECT INPUT
- - - - - - - - - V1H
\/(1.5V
-
~\
+ O.5V
-tEN
1.5V
r\.'-_______
-
VOL
Notes: Output disable time is the time taken for the output to reach a high impedance state when either chip enable is
taken to the inactive state. Output enable time is the time taken for the output to become active when both chip
enables are taken to the active state. The high impedance state is defined as a point on the output waveform
equal to a IN of 0.5V from the active output level.
CAPACITANCE
Parameter
(f
= lMHz, Vee = +5V, VIN = +2V, TA = 25°C)
Symbol
Min
Input Capacitance
Output Capacitance
Typ
Max
Unit
10
pF
pF
15
6-44
MB7137/MB7138
TYPICAL CHARACTERISTICS CURVES
IINA INPUT CURRENT
vs VIN INPUT VOLTAGE
TA=25'C
I
0
f-
:::>
z_
-
«
(j)':'
~f- -10
a: Z
OW
Oa:
« a:
::::1'
~~.
If:::::;.
~VCC4.5V __
,
VCC5.0V
i
<>:u -20
1
I
I
•
-30
-1.0
0
«fZZ
-
ww
O-a:
-a:
-
I
z
-30
-1.0
2.0
,
0
;=25°~
a: 50
a:
:::>
u 40
I
30
:::> 20
0-
f-
:::>
0 10
~
.2
/
/
0
MB713~IMB7138
1.0
I'
Vcc
"'S-«
.s
w
::;:
F
U)
U)
w
u
U
«
50
__
II
-20
':2
-30
I
f-
:::>
=- N
40
Vv
~
V
"V cC5.0V
,~VcC=5.5V
I
I
I
-50
-60 0
.2
1
I
-
, MB7138
2
3
4
5
6
7
70
-;;; 60
.EO
!
----j--/VcC4.5V
~ 50
'--'"
~
40
r--
u 30
u
~
--;vc'c5.6v-- - Vc'C5.5V
"""'"
«
20
.;: 20
:I-
10
I
0_50
100
~
I
I
10
MB1\37
50
i
I
I
tAA ACCESS TIME
vsAMBIENT TEMPERATURE
30
0
,
V OH , OUTPUT HIGH VOLTAGE IVI
w
50
+--
I
I
i
!
... I
;~ 12·.~JCC45V-
f-
:::>
a
(j)
(j)
0
400
I
V./1
-40
0-
l 4.5J
'Vcc~5.5V
M B7(l7
200
a
I
MB7138
50
100
T A , AMBIENT TEMPERATURE I'C)
TA (OC) AMBIENT TEMPERATURE
6-45
600
VOL (mV) OUTPUT LOW VOLTAGE
!
-10
:::>
u
ycc~5.0V
J..
/
0
0
T A=25' C
tAA ACCESS TIME
vs AMBIENT TEMPERATURE
60
/
10
0
0
I
MB7138
/
IOH OUTPUT HIGH CURRENT
vS VO H OUTPUT HIGH VOLTAGE
a:
a:
J
V
20
2.0
fZ
0
0
200
400
600
VOL, OUTPUT LOW VOLTAGE ImVI
70
30
3:
....
:::>
a.
....
:::>
UJ
/
f-
r--
E
V
3:
a...J
40
...J
-«
J
T
I
w
a:
a:
U
V ,N , INPUT VOLTAGE IVI
T
60I- Vcc =5.0V
II
/
:::>
!
IOL OUTPUT LOW CURRENT
vsVOL OUTPUT LOW VOLTAGE
~ 70
fZ
zw
-20
V'N, INPUT VOLTAGE IVI
E
r--
"'. I \;CC 5.0V
----lV CC =5.5i-
MB71371MB7138
1.0
~
/
I
Vcc~5.0V
..9 50
....
I
U
i
.:
~
T A =25~C
I
60
..J
~ ~~KI
~
V CC =4.5V-
~<
",':' -10
i5 13
~
Z
:::>
"~
70
«
g
TA=25'C
0"-- - -
f-
~
0-
IOL OUTPUT LOW CURRENT
vs OUTPUT LOW VOLTAGE
IINC INPUT CURRENT
VSVIN INPUT VOLTAGE
MB7137/MB7138
TYPICAL CHARACTERISTICS CURVES
VB
tOIS DISABLE TIME
AMBIENT TEMPERATURE
tDiS DISABLE TIME
vs AMBIENT TEMPERATURE
70
70
-~
60
".s
w
~
::;
UJ
;::
UJ
UJ
50
~
40
Vcc=4.5V
f=
~cc=f'ov
UJ
...J
301-- r--Vcc=5.5V
ID
«
rn
is
20
~
10
0
~"
""......
...J
-50
0
50
40
<>:
30
Vl
~~
(5
• 20
~
~--
~
-
: 50
t AA
\
::;
>«
...J
20
a
10
0
t
E,\ DELAY
.1V
;::
0
/" !\
p~I -~
100
UJ
DELAY
40
30
UJ
E 60 t-------j---- t-------
60
~
UJ
0
DELAY TIME INCREASE
vs CL LOAD CAPACITANCE
I
UJ
a:
v Cc=5.5V
MB7138
M B7D7
«
V Cc=5.0V
,
10
DELAY TIME INCREASE
vs CL LOAD CAPACITANCE
U
I
'I
100
50
T A, AMBIENT TEMPERATURE I'CI
TA (OCi AMBIENT TEMPERATURE
rn
I.
J/
t-!
0
-50
100
70
)---
V c c=4.5V
rB71'
0
UJ
-
__
:
40
• 20
UJ
'"
.s
_,
<>: 3 0 '
20--"':
...J
«
z
UJ
,200
a::
./
~ 40
V
-
tAA DELAY
~ 30
i=
>-
\ tEN\DELAY
20
\I \
<>:
uj
10
Cl
0
300
C L (pF) LOAD CAPACITANCE
.6-46
0
-
I"":::
300
200
100
C L , LOAD CAPACITANCE IpFI
I
I
MB7137/MB7138
INPUTI OUTPUT
CIRCUIT INFORMATION
INPUT
MB7137/MB7138 INPUT CIRCUIT
In the input circuit, Schottky TIL circuit techology is used to achieve
high-speed operation. A PNP transistor in the first stage of the input circuit improves input high/low current
characteristics. Also, the input circuit
includes a protection diode for
reliable operation.
OPEN·COLLECTOR OUTPUT
INPUT 0-_.--t----1< 1-----1
The open-collector is often utilized in
high speed applications where power
dissipation must be minimized. When
the device is switched, there is no current sourced from the supply rail.
Consequently, the current spike normally associated with TIL totem-pole
outputs is eliminated. In high frequency applications, this minimizes noise
problems (false triggering) as well as
power drain. For example, the transient current (lOW impedance highlevel to low impedance low-level) is
typically 30mA for the MB7138
(3-state) compared to OmA for the
MB7137 (open-collector).
MB7137 OUTPUT CIRCUIT
THREE·STATE OUTPUT
A "three-state" output is a logic element which has three distinct output
states of LOW, HIGH and OFF
(wherein OFF represents a high impedance condition which can neither
sink nor source current at a definable
logic level.) Effectively, then, the
device has all the desirable features
of a totem·pole TTL output (e.g.,
greater noise immunity, good rise
time, line driving capacity), plus the
ability to connect to bus-organized
systems.
In the case where two devices are on
at the same time, the possibility exists that they may be in opposite low
impedance states simultaneously;
thus, the short circuit current from
one enabled device may flow through
the other enabled device. While
physical damage under these conditions is unlikely, system noise problems could result. Therefore, the
system designer should consider
these factors to ensure that this condition does not exist.
Also in the output circuit, Schottky
TIL circuit technology is used to
achieve high-speed operation. Also, a
PNP transistor is provided in the output circuit to decrease the load on the
Chip Enable circuit.
Output
MB7138 OUTPUT CIRCUIT
--_--_-Vcc
OUTPUT
6-47
MB7137/ MB7138
MB7137/MB7138 BIT MAP
0
o
0
0
1 1 1
0 o 0
0
0
l
01
l
02
1 1 1 0
0 o 0 0
l
03
1
o
1
0
1
1
l
04
0
0
0
1
0
0
0
1 0
0 0
......,
AS Ag A2 AlO
1 0
0
0
1
0
1
1
1
o a
0 0
0 0 0
0 o 1 1
Multiplexer
0
o
o
o
o
o
1 1 0
1 0
1 1 1
1 0
1
1 0 0
1 0
0
1 0
1 1
1 0 0 1
0 0 0
1 0 0
a
1
1 1
Decoderl Driver
1 1 1 0
A7
Ae
A5
A4
A,
Ao
A3
01100110
01100110
01100110
01100110
01100110
01100110
01100110
00111100
11000011
11000011
00111100
11000011
00111100
00111100
01100110
11000011
00001111
00001111
00001111
00001111
00001111
00001111
00001111
00001111
A7
Ae
A5
A4
A,
Ao
A3
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
00000000
00000000
11111111
11111111
00000000
00000000
11111111
11111111
00000000
00000000
00000000
00000000
11111111
11111111
11111111
11111111
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
01100110
01100110
01100110
01100110
01100110
01100110
01100110
01100110
11000011
00111100
00111100
11000011
00111100
11000011
11000011
00111100
00001111
00001111
00001111
00001111
00001111
00001111
00001111
00001111
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
00000000
00000000
11111111
11111111
00000000
00000000
11111111
11111111
00000000
00000000
00000000
00000000
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
6-48
FUJITSU
MB7141E/H
MB7142E/H
MICROELECTRONICS
lUGH SPEEI] SCHOTTKY
TTL 32,768·BIT PROM
DESCRIPTION
The Fujitsu MB7141 and MB7142
are high speed electrically field
programmable read only memories. With open collector outputs
on the MB7141 and three-state
outputs on the MB7142. memory
expansion is simple.
The memory is fabricated with all
logic "zeros" (positive logic).
Logic level "ones" can be programmed by the highly reliable
DEApTM (Diffused Eutectic Aluminum Process) during a simple programming procedure.
The sophisticated passive isolation termed lOP (Isolation by Oxide and Polysilicon) with thin
epitaxial layer and schottky TTL
process permits minimal chip
size and fast access time.
The extra test cell and unique
testing methods provide enhanced correlation between programmed and unprogrammed circuits
in order to perform AC, DC and
programming test prior to shipment. This results in extremely
high programmability.
CERAMIC PACKAGE
Dlp·24C·A01
FEATURES
• Organization: 4096 words
x 8 bits, fully decoded
• TTL compatible Input/output
• Fast Access Time:
MB7141E1MB7142E:
65 ns Max.
45 ns Typ_
MB7141 H/MB7142H:
55 ns Max.
45 ns Typ_
• Low power dissipation:
165mA max
• Single +5V supply voltage
• Simplified and lower power
programming
• Proven high programmability
and reliability of DEApTM
(Diffused Eutectic Aluminum
Process)
• Low current PNP Inputs
• MB7141: Open collector
outputs
• MB7142: Thre.state outputs
• Two chip select leads
for easy memory expansion
• Standard 24-pln DIP package
• MB7142 pin compatible with
N82S321, HM76321
and 3632
PIN ASSIGNMENT
MB7141/MB7142 BLOCK DIAGRAM
Ao
AI
A2
A3
ROW
ADDRESS
BUFFERS
32768 (256 x128) BIT
MEMORY CELLS
A7
Vcc(PVccl
As
As
A8
~
As
4
Al0
A3
CSl(PVCE)
As
A2
All
A6
AI
~
A7
Ao
08
01
07
A4
At
08
Ag
05
Al0
8 x 16 INPUT MULTIPLEXERS
04
A11
This device contains circuitry to protect the
Inputs against damage due to high static
voltages or electric fields. However, it is advised that normal precautions be taken to
avoid application of any voltage higher than
maximum rated voltages to this high impedance circuit.
CSI
CS2
6-49
MB7141/MB7142
ABSOLUTE MA.XIMUM: RATINGS
(See Note)
Rating
Power Supply Voltage
Power Supply Voltage (during programming)
Input Voltage
Input Voltage (during programming)
Output Voltage (during programming)
Input Current
Input Current (during programming)
Output Current
Output Current (during programming)
Storage Temperature
Output Voltage
Symbol
Value
-0.5 to +7.0
-0.5 to +7.5
-1.5 to +5.5
22.5
-0.5 to +22.5
-20
+270
+100
+150
-65 to +150
-0.5 to +Vee
Vee
Vee
VIN
VIPRG
VOPRG
liN
IIPRG
lOUT
IOPRG
Tsta
VOUT
Unit
V
V
V
V
V
rnA
mA
mA
rnA
·C
V
Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be
restricted to the conditions as detailed in the operational sections of this data sheet.
RECOMMENDED OPERATING CONDmONS
Parameter
Supply Voltage
Input low Voltage
Input High Voltage
Ambient Temperature
Symbol
Vee
VIL
VIH
TA
Min
4.75
0.0
2.0
0
Max
5.25
0.8
Vee
75
Typ
5.0
-
-
Unit
V
V
V
°C
DC CHARACTERISTICS
Full guaranteed ranges unless otherwise noted.
Parameter
Symbol
=
Input Leakage Current (VIH 4.5V)
Input Leakage Current (VIH - 5.5V)
Input Load Currel'lt (Vil 0.45V)
Output Low Voltage (IOl - 16 rnA)
Output Leakage Current
MB7141
(Vo 2.4V, chip disable from a low)
MB7142
Output Leakage Current
MB7142
(Vo 0.5V, chip disabled from a high)
Input Clamp Voltage (liN
-18mA)
Power SIlPply Current (VIN OPEN or GND)
Output High Voltage (10
-2.4mA)
Output Short Circuit Current (Vo - GND)
IR1
1R2
IF
VOL
IOlK
10lH
=
=
=
lOll
=
=
=
VIC
Icc
VOH*
lOS'
Min
Typ
Max
Unit
-
-
40
1.0
-250
0.50
40
40
pA
mA
pA
V
pA
pA
-40
pA
140
-1.2
185
-
-60
V
mA
V
rnA
2.4
-15
-
* Note: Denotes guaranteed characteristics of output high·level (ON) state when the chip is enabled and the programmed bit is ad·
dressed. These characteristics cannot be tested prior to programming, but are guaranteed by factory testing.
AC CHARACTERISTICS
Full guaranteed operating ranges unless otherwise noted.
Parameter
Symbol
Address Access Time
Output Disable Time
Output Enable Time
tAA
tDIS
tEN
MB7141E1MB7142E
Typ
Max
45
-
65
40
-
40
6-50
MB7141H1MB7142H
Typ
Max
45
-
55
40
40
Unit
ns
ns
ns
MB7141/MB7142
AC TEST CONDITIONS
Vcc
R1
:1
R2
INPUT CONDITIONS
MB7141IMB7142
OV to 3V
5 ns from 1V to 2V
1 MHZ
Amplitude
Rise and Fall Time
Frequency
3000
I
6000
I
30pF
T
OPERATION TIMING DIAGRAM
ADDRESS INPUT
CS
'----1-------1---------- V,L
CS
-
:. --_tA.A
. ______
\1;--~A!--~""\"li
OUTPUT
___________ J
CHIP SELECT INPUT
CS
I~ 1.SV
, , - - - - - - - - - - - - VOL
, _ - - - - - - - - V ,H
)(1.5V
--
-
--K
I
_ _ _ _ _ _ _ _ _r
VOH
fo,1.SV
\1
J\ 1.SV
-------'
t D1S -
OUTPUT
V,H
V ,L
-------'
,..---.j-------.j---------- V,H
CHIP SELECT INPUT
CS
\j-------J\ 1.SV
)'(.SV
-tEN
---\
+ O.SV
1.SV
\'--_ _ _ _ _ _ __
-
VOL
Notes: Output disable time is the time take'l for the output to reach a high impedance state when either chip enable is
taken to the inactive state. Output enable time is the time taken for the output to become active when both chip
enables are taken to the active state. The high impedance state is defined as a point on the output waveform
equal to a tN of 0.5V from the active output level.
CAPACITANCE (I = 1 MHz, Vee
Parameter
Input Capacitance
Output Capacitance
= +5V, VIN
Symbol
+2V, TA = 25°C)
Min
Co
6-51
Typ
Max
Unit
10
15
pF
pF
MB71411MB7142
TYPICAL CHARACTERISTICS CURVES
IINA INPUT CURRENT
vs VIN INPUT VOLTAGE
o
IINC INPUT CURRENT
vs VIN INPUT VOLTAGE
T A =25'C
~
~ ~ R'
~
~-
-
we(
..J.5
V e c=5.0V
«Z
Zw
Vec=5.5V~
1
'"
wo::
0::
C)
-20
r-
i
f---
-1.0
2.0
Y,N, INPUT VOLTAGE IV)
«
f-
z
UJ
a:
a:
o
C)
-,
3
;;:
S
f-
::>
40
20
is
10
~
0
i
a.
f-
z
1--
/
V
V ---
--V
~
o
200
-30
L
~
~ -40 --
----
~V
~ ~ I"VeC=4.5V
j--Ve e =5.0V"'V ee=5.5V- t - t~
t-
::> -50
o
I
.9
MB7142
-6 0
01234567
V OH OUTPUT HIGH VOLTAGE (V)
tAA ACCESS TIME
vs AMBIENT TEMPERATURE
70
g
50
f-
40
:;;
40
. r-
60
UJ
Ul
Ul
UJ
u
u
30
«
UJ
20
-d:
30
20
-
t-
"
1"1' V e c=4.5V
'- V ee =5.0VVee=5.5V
:f- lO
10
MB7141
o
-50
o
50
o
MB7142
100
o
50
150
-50
TA,AMBIENT TEMPERATURE (OC)
100
TA ("C) AMBIENT TEMPERATURE
6-52
V
I
0-
I Msr142
/
MB7141
400
f-
1---' - - - -
S-
«
o
T A=25'C
1--
0
I
Vee ' = 4.5'V
-Vee = 5.0V ,)
.J Vee = 5.5V
50
C)
C)
V
V
IOH OUTPUT HIGH CURRENT
vs V OH OUTPUT HIGH VOLTAGE
a: -10 I-a:
400
200
600
VOL,OUTPUT LOW VOLTAGE (mV)
60
>=
10
/
I
600
VOL (mV) OUTPUT LOW VOLTAGE
::>
u -20
0
.,E- r+«
::-.
(/l
(/l
20
0
UJ
70
UJ
I
30
f-
:;)
2.0
lAA ACCESS TIME
vs AMBIENT TEMPERATURE
::;
~
..J
1
f-
«
1--
I---~-
40
:;)
.s
1
0-
50
Y,N, INPUT VOLTAGE (V)
30
f-
.9
-t-
TAI=25!C
Vee = 5.0V
60
:;)
Vee=5.5V~
1.0
T A=25°C
60 I-V ee =5.0V- -50 f---.
W
0::
0::
I"Vee=5.0V
IOL OUTPUT LOW CURRENT
vs VOL OUTPUT LOW VOLTAGE
.s
fZ
MB71411MB7142
-30
1.0
..J
.!?
I
MB71411MB7142
o
.s
k'" ~
-:;)
is
<"
.......
t:::;: ~ R I"v
ee=4.5V ~
alf--l0
a.
70
T A=25°C
Z
Vec=4.5V~
1----
-30
-1.0
5a.
~
-1-
I
o
IOL OUTPUT LOW CURRENT
vs VOL OUTPUT LOW VOLTAGE
MB7141/MB7142
TYPICAL CHARACTERISTICS CURVES (Continued)
tOIS DISABLE TIME
vs AMBIENT TEMPERATURE
tOIS DISABLE TIME
VI AMBIENT TEMPERATURE
70
70
MB7141
'iii'
S.
.9'"
w
~
;:::
w
...J
III
c(
CI)
MB7142
l - f - e-- l - f--
60
60
S
w
50
::;:
=4.5V
40
Vee =5.0i\:,
I
I
I
30 t - - -Vee =5.5V
1\ 1,\'"
20
f:
Vee
w
...J
III
«
Q
10
o
o
-50
50
0
Cl
V cc=4.5V"
30
-
I- I- Vcc =5.0V"
20
-
f-
!!!
\ 'i ~
C
50
40
vcrrv
10
o-50
100
TA (OC) AMBIENT TEMPERATURE
o
50
vs AMBIENT TEMPERATURE
70
70
MB7142
MB7141
60
Vee ~
'iii'
50
/
w
40
;:::
30 r-...
w
...J
III
c(
zw
20
II
Vee =
o
60
4.5Y
5.0Y
S
w
~
fw
Vee ~ 5.5("
~ ~ ::t ~
...J
IXI
-
«
zw
Z
.'!'
1
10
o
-50
50
V cc =4.5V
40
30
20
....
/ 1/
:::~ ~ ~ IL
Vcc=5.0V
r--
Vcc=5.5V
r-
10
o
100
50
o
-50
50
DELAY TIME INCREASE
DELAY TIME INCREASE
VI CL LOAD CAPACITANCE
vs CL LOAD CAPACITANCE
70
70
MB7142
MB7141
'iii'
w
Ul
S
60
w
«
50
40
~
w
30
w
w
Q
()
~
\ t EN DELAY
\
20
10
o
./'
o
/'
100
w
~
V
~~
\
200
50
a:
tAA DELAY
;:::
5
60
(J)
~
a:
()
~
150
100
T A, AMBIENT TEMPERATURE ('CI
TA (0C) AMBIENT TEMPERATURE
S.
150
ENABLE TIME
tEN
tEN ENABLE TIME
::;:
100
T A , AMBIENT TEMPERATURE CCI
VI AMBIENT TEMPERATURE
S.
z
..!!'
'"
:..:: ~~
f-
>«
-
..J
w
0
300
40
30
tAA DELAY"
20 f - f - -tEN DELAY
10
I
r 'I
1
100
CL (pF) LOAD CAPACITANCE
1 1 ", ~
~
200
300
--
400
CL, LOAD CAPACITANCE (pFI
&53
MB7141/MB7142
INPUTI OUTPUT CIRCUIT INFORMATION
INPUT
MB7141/MB7142 INPUT CIRCUIT
In the input circuit, Schottky TTL circuit technology is used to achieve
high-speed operation. A PNP transistor in the first stage of input circuit
remarkably improves input high/low
current characteristics. Also, the input circuit includes a protection diode
for reliable operation.
OPEN COLLECTOR OUTPUT
The open-collector output is often utilized in high speed applications
where power dissipation must be minimized. When the device is switched,
there is no current sourced from the
supply rail. Consequently, the current
spike normally associated with TTL
totem-pole outputs is eliminated. In
high frequency applications, this
minimizes noise problems (false triggering) as well as power drain. For example, the transient current (low impedance high-level to low impedance
low-level) is typically 30mA for the
MB7142 (3-state) compared to OmA for
the MB7141 (open-collector).
INPUT
o---.--f---K r--.......- f
MB7141 OUTPUT CIRCUIT
THREE-STATE OUTPUT
Output
A "three-state" output is a logic element which has three distinct output
states of LOW, HIGH and OFF
(wherein OFF represents a high im·
pedance condition which can neither
sink nor source current at a definable
logic level.) Effectively, then, the
device has all the desirable features
of a totem-pole TTL output (e.g.,
greater noise immunity, good rise
time, line driving capacity), plus the
ability to connect to bus-organized
systems.
In the case where two devices are on
at the same time, the possibility ex·
ists that they may be in opposite low
impedance states simultaneously;
thus, the short circuit current from
one enabled device may flow through
the other enabled device. While
physical damage under these conditions is unlikely, system noise problems could result. Therefore, the
system designer should consider
these factors to ensure that this condition does not exist.
Also in the output circuit, Schottky
TTL circuit technology is used to
achieve high-speed operation. Also, a
PNP transistor is provided in the out·
put circuit to decrease the load on the
Chip Select circuit.
MB7142 OUTPUT CIRCUIT
----.--t-- Vcc
OUTPUT
6-54
MB7141/MB7142
MB7141/MB7l42 BIT MAP
~
Os
07
Oe
05
04
03
02
0,
0
0
0
0
0
Multiplexer
0
0
0
0
1
1
AeAg A'0A11
o 0 0 0
-
o
o
o
0 0 1
0
1 1 0
0
1
0
1
0
1 1 1
0
1
0
1
1
0
1 0
1 0
1 0
1 0
o
o
o
0
1 1 0
1
1 0
1 1
1
1
1
1
1
o
o
1 1
1 1
1
0
11
1 1 1 0
Decoderl Driver
AO
Al
As
A5
A7
A4
A3
A2
01100110
01100110
01100110
01100110
01100110
01100110
00111100
11110000
11000011
00111100
11000011
00111100
00000000
00111100
11110000
111 1 1 1 1 1
01100110
11000011
01100110
11000011
11110000
11110000
00000000
11110000
11 1 11111
00000000
111 1 1 11 1
00000000
00000000
00000000
00000000
00000000
00000000
1 11 1 1 11 1
11110000
00000000
111 1 1 1 11
11110000
11111111
00000000
11110000
1 1 111 1 1 1
1 111 1 1 1 1
11 1 111 1 1
111 1 11 11
11111111
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
Ao
Al
Ae
A5
A7
A4
A3
A2
01100110
01100110
01100110
01100110
01100110 01100110
01100110
00111100
00111100
11000011
00111100
00111100
11000011
11110000
11000011
11110000
11110000 11110000
11110000
11110000 11110000
11110000
00000000
1 11 11 1 11
00000000
11111111
00000000
111 1 1 1 11
00000000
11111111
00000000
00000000
00000000 11111111
00000000 00000000
1 11 111 1 1 11111111
0000('000 00000000
11111111
00000000
111 1 1 1 1 1
00000000
11111111
00000000
11111111
1 11 1 1 1 1 1
1 111 1 11 1
11111111
11111111
11111111
11111111
1 111 1 11 1
11111111
00000000
00000000
00000000 00000000
00000000
Ao
Al
Ae
A5
A7
A4
A3
A2
01100110
00111100
01100110
01100110
01100110
01100110
11000011
11110000
11000011 00111100
11110000 11110000
00000000
1 1111 1 1 1
00000000
1 1 111 1 1 1
00000000
00000000
11111111
11111111
111 111 1 1
00000000
00000000
00000000
00000000
1 1 11 1 1 1 1
00000000
00000000
11111111
11111111
1 1 1 1 1 11 1
00000000
11111111
00000000
11111111
00000000
11 1 11 1 11
00000000
11111111
00000000
11 1-1 1111
00000000
11111111
00000000
1 11 1 1 1 11
00000000
11111111
Ao
Al
Ae
As
A7
A4
A3
A2
01100110
01100110
01100110
01100110
01100110
01100110
00111100
00111100
11000011
11110000 11110000
00111100
11110000
01100110
11000011
01100110
11000011
11110000
11000011
00000000
00000000
1 1 1 1 1 1 11
00111100
11110000
1 1 11 1 1 1 1
l ' 11 1 1 1 1
00000000
11110000
00000000
11110000
1 11 11 1 1 1
00000000
01100110
11000'011
00000000
00000000
00000000
00000000
00000000
00000000
1 1 1 111 11
11111111
111 1 1 1 1 1
00000000
00000000
00000000
11 1 1 1111
1111 1 1 1 1
11111111
1 1 1 11 1 1 1
11 1 11 11 1
111 11 1 1 1
1 1 11 11 11
11 1 1 11 1 1
6-55
1 11 1 1 1 1 1
01100110 01100110 01100110
11000011 00111100 00111100 11000011
11110000 11110000 11110000 11110000
00000000 11 1 11 11 1 00000000 11 1 1 1 1 1 1
1 1 11 11 1 1
1 1 1 1 1 1 11
11110000 11110000
11 1 1 1 11 1 00000000
00000000 11111111
11 111 11 1 11111111
11111111
11 1 1 1 1 1 1
11111111
1 1 11 1 1 1 1
1 1 11 1 1 11
11111111
11111111
11111111
11111111
LOT ASSURANCE TESTS
Test'
Group
Test
Al
Static Tests at 25·C
A2
Dynamic Tests at 25·C
A3
Functional Tests at 25·C
A4
Static Tests at Max.
Rated Operating Temp.
A5
MIL·STD-883B
Method No.
Product
Dependent
Q'ty/Acceptance No. (LTPD)
Level A
Level B
Level
45/0 (5)
45/0 (5)
45/0
45/0 (5)
45/0 (5)
45/0
45/0 (5)
451 (5)
45/0
C
(5)
(5)
(5)
32/0 (7)
32/0 (7)
22/0 (10)
Dynamic Tests at Max.
Rated Operating Temp.
32/0 (7)
32/0 (7)
22/0 (10)
A6
Function Tests at Max.
Rated Operating Temp.
22/0 (10)
22/0 (10)
15/0 (15)
Bl
External Visual
2009.1
2/0
2/0
2/0
Physical Dimensions
2016
2/0
2/0
2/0
B2
2031.1'
10/0
Mechanical Shock
2002.2'
(Test Conditions A - G)
10/0
-
-
Vibration,
Variable Frequency
2007.1 3
(Test Conditions A - C)
10/0
-
-
Constant Acceleration
2001.23
(Test Conditions A - J)
2003.2
10/0
-
-
10/0
10/0
-
-
3/0
3/0
Thermal Shock
1011.2'
(Test Conditions A - F)
10/0
-
Temperature Cycling
1010.2'
(Test Conditions A - G)
10/0
-
Soldering Heat
B3
B4
B5
Solderability
Lead Integrity
2004.23
B6
Resistance to Solvents
2015.1
2/0
3/0
B7
Internal Visual and
Mechanical
2014
2/0
1/0
1/0
B8
Bond Strength
(10 Wires/Device)5
2011.2'
(Test Conditions A - H)
2/0
1.5/0
1.5/0
2019.1
1008.1 3,7
(Test Conditions A - H)
-
-
18/1
1005.2'·7
(Test Conditions A - F)
25/1
-
-
103B6
18/1
-
-
B9
Die Shear
Bl0
High Temperature
Storage
Bll
Steady State Life
B12
Steady State Humidity
(Plastic Package Only)
Notes
3/0
10/0
-
1. Test Groups denote individual tests employing individual samples; when several tests are grouped together
within the same test, the sample is used to perform all tests within that test group.
2. Values given denote the minimum size of sample to be tested to assure, with 90% confidence, that a lot having a
percent defective equal to the specified LTPD will not be accepted. Should the number of devices failing the
specified tests exceed the acceptance number shown, the sample size may be increased one time only; for these
cases, the LTPD value will be at least equivalent to (and in some cases may be more stringent than) that specified
in this table.
3. Specific Test Condition employed will depend on the type and expected application of device being tested.
4. Tested in accordance with MIL·STD·750B.
5. The figures shown (e.g., 2/0, etc.) represent groups of 10 wires pulled per device.
6. Tested In accordance with MIL·STD·202E but with the Fujitsu specific conditions.
7. If no failures oCGur during the first 128 hours of testing, the test may be stopped and the lot accepted.
7·2
PERIODIC QUALITY CONFORMANCE TESTS 7
Test'
Group
A1
A2
A3
C1
C2
Test
Static Tests at 25 'C
Dynamic Tests at 25'C
Functional Tests at 25'C
External Visual
Physical Dimensions
Thermal Shock
Temperature Cycling
C3
Soldering Heat
Mechanical Shock
Vibration,
Variable Frequency
Constant Acceleration
C4
C5
C6
C7
C8
D1
D2
Internal Visual
and Mechanical
Bond Strength'
(10 Wires/Device)
Die Shear
High Temperature
Storage
Steady State Life
External Visual
Physical Dimensions
Thermal Shock
Temperature Cycling
D3
D4
D5
D6
D7
D8
D9
D10
Soldering Heat
Mechanical Shock
Vibration,
Variable Frequency
Constant Acceleration
Solderability
Lead Integrity
Resistance to Solvents
High Temperature
Storage
Steady State Life
Steady State Humidity
(Plastic Package Only)
Salt Atmosphere
MIL·STO·883B
Method No.
Q'ty/Acceptance No. (LTPO)
Level B
Level A
Level C
45/0 (5)
45/0 (5)
45/0 (5)
45/0 (5)
45/0 (5)
45/0 (5)
45/0 (5)
45/0 (5)
45/0 (5)
210
210
210
210
2/0
2/0
10/0
10/0
Product Dependent
2009.1
2016
1011.2"
(Test Conditions A 1010.2"
(Test Conditions A 2031.14
2002.2"
(Test Conditions A 2007.1'
(Test Conditions A 2001.2'
(Test Conditions A 2014
2011.2"
(Test Conditions A 2019.1
1008.1'
(Test Conditions A 1005.2'
(Test Conditions A 2009.1
2016
1011.2"
(Test Conditions A 1010.2"
(Test Conditions A 2031.1
2002.2'
2007.1'
(Test Conditions A 2001:2"
(Test Conditions A 2003.2
2004.2'
2015.1
1008.1'1
(Test Cond1tions A 1005.2"
103B6
F)
-
10/0
10/0
-
-
10/0
10/0
10/0
10/0
-
10/0
10/0
10/0
10/0
10/0
10/0
3/0
210
2/0
3/0
210
2/0
-
3/0
3210 (7)
3/0
3210 (7)
-
3210 (7)
3210 (7)
15/0 (15)
15/0 (15)
15/0 (15)
15/0 (15)
15/0 (15)
15/0 (15)
15/0 (15)
15/0 (15)
15/0 (15)
G)
G)
C)
J)
H)
H)
F)
F)
Gl
15/0 (15)
15/0 (15)
15/0 (15)
15/0(15)
15/0 (15)
15/0 (15)
15/0 (15)
15/0 (15)
15/0 (15)
15/0 (15)
15/0 (15)
15/0 (15)
15/0 (15)
15/0 (15)
15/0 (15)
15/0 (15)
15/0
15/0
15/0
3210
15/0
15/0
15/0
3210
C)
J)
15/0 (15)
H)
1009.2'
(Test Conditions A - D)
-
-
15/0 (15)
(15)
(15)
(15)
(7)
(15)
(15)
(15)
(7)
3210 (7)
2210 (10)
3210 (7)
2210 (10)
15/0 (15)
15/0 (15)
Notes 1. Test Groups denote individual tests employing individual samples; when several tests are grouped together within the same test group, the sample
is used to perform all tests within that test group.
2. Values given denote the minimum size of sample to be tested to assure, with a 90% confidence, that a -lot having a percent defective equal to the
specified tests exceed the acceptance number shown, the sample size may be increased one time only; for these cases, the l TPD value will be at
least equivalent to (and In some cases may be more stringent than) that 8J)ecified in this table.
3. Specific Test Condition employed will depend on the type and expected application of device being tested.
4. Tested In accordance with MIL·STD-750B.
5. The figures shown (e.g., 2/0, etc.) represent groups of 10 wires pulled per device.
8. Tested in accordance with MIL·STD·202E but with the Fujitsu specific conditions.
7. Test Group C is for die·related testing performed every three months. Test Group 0 is for package·related testing and is performed every six months.
Test Group A Is performed each time either Test Group C or Test Group 0 is performed.
7-3
IC MANUFACTURING FLOW CHART
7-4
IC MANUFACTURING FLOW CHART
o
o
<>
Test/l nspection Process
Production Process
In-process QA Operation
Note: Flow sequence may vary slightly due to individual product characteristics.
7-5
PRODUCT MARKING
ORDERING INFORMATION
MB
L
8264-15 Z
PACKAGE
C-CERAMIC
M·PLASTIC
Z·CERDIP
PERFORMANCE VARIATIONS (WHEN USED)
E, H· OR DASH NUMBERS DENOTE ACCESS TIME VARIATIONS
L-DENOTES LOW POWER
' - - - - - DEVICE TYPE
' - - - - - - MANUFACTURER DESIGNATOR
MB·DEVICE TYPE IS FUJITSU INTERNAL NUMBER
MBM·DEVICE TYPE IS INDUSTRY STANDARD
MEMORY NUMBER
FUJITSU MICROELECTRONICS SALES OmCES
HEADQUARTERS
Fujitsu Microelectronics
2985 Kifer Road • Santa Clara, CA 95051 • (408) 727·1700 • Telex 1/11: 910·338·0190
NORTHERN CALIFORNIA
Fujitsu Microelectronics
595 Millich Drive
Suite 210
Campbell, CA 95008
(408) 866·5600
CHICAGO
Fujitsu Microelectronics
1833 Hicks Road
Suites B & C
Rolling Meadows, IL 60008
(312) 934·6400
BOSTON
Fujitsu Microelectronics
400 Hunnewell Street
Suite 6
Needham Heights, MA 02194
(617) 449·1603
fflX: 910-590-8003
fflX: 910·687·7378
fflX: 710·325·0605
SOUTHERN CALIFORNIA
DALLAS
Fujitsu Microelectronics
525 N. Cabrillo Park Drive
Suite 314
Santa Ana, CA 97201
(714) 547-9525
Fujitsu Microelectronics
1131 Rockingham Dr. @ Arapaho
Suite 204
Richardson, TX 75080
(214) 669-1616
fflX: 910·595-1587
fflX: 910·867·9434
NEW YORK
Fujitsu Microelectronics
350 Vanderbilt Motor Parkway
Suite 303
Hauppauge, NY 11787
(516) 273-6660
fflX: 510-227-1049
7-6
PACKAGE INFORMATION Dimensions in inches (millimeters)
I
R.050!1.27)REF
287(7,29)
Dlp·16C·A02
INDEX AREA
iV"~"""",_""";=;"""",S=",,,,;L,=lJ591
~
1----
.760119.30.!..._" _ _
.800(20.32)
=-:J
012(0.30)
16-LEAD CERAMIC
METAL SEAL
DUAL IN·L1NE PACKAGE
1]'""--'
120(3.05)
150(381)
.090(2.29)
110(2.79)
.020(0.51)
~-+-~~~=e~~
.043(1.09)
015lO.38)
023(0.58)
Dlp·16C·C03
--1~_.O_5_0I_1._27_'M_A_X_ _ _ _ _ ____
16-LEAD CERDIP
DUAL IN·LINE PACKAGE
.050(1.27)
DlP·16C·C04
..._m'"t ~ ~ ~ ~ ~ ~ ~13::!
I
.754119.15)
.788120.02)
16-LEAD CERDIP
DUAL IN·L1NE PACKAGE
7-7
f
i
PACKAGE INFORMATION Dimensions in inches (millimeters)
DIP·16C·F01
16-LEAD CERAMIC
FRIT SEAL
DUAL IN·LINE PACKAGE
J
.200j5.08)MAX
s-t:
12013.051
_----t-l15013.81 )
.°,',° ;',',1
0 ',', .
,
_--.j
032(0.81111
1-·0201'0.51)
REF~,'.04311.091
~--+---~.7~00"'1'~7.~78~'R~EF~
04211.07)
.o62d~571
:
----,
.015(0.38)
023(0.581
DIP·16C·F02
16-LEAD CERAMIC
FRIT SEAL
DUAL IN·LlNE PACKAGE
I
,
.30017.621 TYP.
DIP·16P·M01
16·LEAD PLASTIC
DUAL IN·LlNE PACKAGE
7-8
PACKAGE INFORMATION Dimensions in inches (millimeters)
Dlp·16p·M03
16-LEAD PLASTIC
DUAL IN·L1NE PACKAGE
Dlp·18C·C01
.912(23.16)
--j
16-LEAD CERDIP
DUAL IN·L1NE PACKAGE
r-
.056(1.43IMAX
"""~'~ ~DJ]~ ~~g:;:
INDEX AREA
Dlp·18C·F02
I
.890t22.61l
I
.910123.111
.00810.20)
.012(0.30)
18-LEAD CERAMIC
FRIT SEAL
DUAL IN·L1NE PACKAGE
~iJ·20015.0.'MAX
.120(3051
.15013.81)
.020(0.51)
.050(1.27)
7-9
PACICAGE INFORMATION Dimensions In Inches (millimeters)
Dlp·i8p·MOi
-f::::::B·:
I
I
.866(22.00)
.898122.81 )
is-LEAD PLASTIC
DUAL IN·LlNE PACKAGE
.,0012.541 1
TV'
r·
.435(11.051
.450111.43)
l
02SIO.64IMAX
FPT·i8C-C01
I .04511.141
.03010.76)
.2501!.351
.3000.621
~
.900(22.86IMIN
is-LEAD CERDIP
FLAT PACKAGE
~
PIN #1 IDE NT
.050(1.27ITYP
.395(10.03)
.405110.29)
Dlp·20C·AOi
.:~::~ ~
I
2O·LEAD CERAMIC
METAL SEAL
DUAL IN·LlNE PACKAGE
:J.351
.30011'621
~
.00&10.15)
I--.oaO(2.29IMAX
[:1 ]j~
1"_,,,
r~~
.29017.371
.310(7.87)
I
.970124.641
.990125.15)
.05011.27JMAX
~
.177(4.501MAX
.120(3.05)
.150(3.81)
--11
.090(2.29\
:~~~:~:!:;
.,'012.7911--_ _1----0===,----___-.1
7·10
.020(0.51)
.050{1.271
PACKAGE INFORMATION Dimensions in inches (millimeters)
Dlp·20C·C03
IH__
0501
_ _"_"M_A_'- - - - - - - - ,
20·LEAD CERDIP
DUAL IN·LINE PACKAGE
- n m m m .
090(22411._
!
r_
:
11OiTj~""'__
I
DIP·22C·F01
22·LEAD CERAMIC
FRIT SEAL
DUAL IN·LINE PACKAGE
·~.---~20015.08lM"
.:
: :I --+
'I'
,
~
---J
I
032.1081)
--'=---:-90012i86IR;P~~~~
jl
_."--
.120{3Q51
1 150{3811
I
_+---.1
1.02010,511
t-----.j .050(1
271
' .~;%~~ ~~;
~:~:iTst
] [ J+
.:~~{~c--=-~ ~ ~ ~ ~ ~
1.070(27181
1100127,94)
_
.---"....,..-==-J---.oo _9'
r
390(9.91)
.410(1041)
~
1I,·05011.271MAX
~~'.200(5'08IMAX
U
--I
I
~O~
.. 09012291j---I
.110(2.79)
,06211.571
.120(3.051
150(3.811
_H__
()!,510381
'.02010.5)1
.023(0,58)
.050(1.27)
1.000(25.40)REF
DIP·24C·A01
24·LEAD CERAMIC
METAL SEAL
DUAL IN·LlNE PACKAGE
·:,~:::i~ ~ [: ~~ ~ J:: ~hm
~__
1.186(30.12)
1.214(3084)
7-11
~
, __ ~=J---.O'-9"
I
590(1499)
61011549)
I
I
L_
.008(0.20Il
0121030)
PACKAGE INFORMATION Dimensions in inches (millimeters)
DIP·24C·A02
,~:~~~~=I~~~G~~
I
24-LEAD CERAMIC
METAL SEAL
DUAL IN·LlNE PACKAGE
.390{9.91)
.410{1O.41)
I
1.168(29,66)
1.212{30.78)
pj',
.056(1.42)MAX
177 14'501MAX
.120(3.05)
150(3.81)
.025(0.64)
045(1.14)
.06011.52)
.023(0.58)
R025!O.64)REF
600(15.24)TYP
Dlp·24C·C02
24-LEAD CERDIP
WITH TRANSPARENT LID
DUAL IN·LINE PACKAGE
1
.008(0.2011
014(0.36)
-j~~~-~";OO~I2;'~~I~M~AX~~~:S~~~~3
1=
-I
~ .2!30(S.84IMAX
-rt,l ·
_f._
I
I
.120(3.05)
150(3.81 1
,
020(051)
050(1.27)
.013(0,331
023(0.58)
DIP·24C·C03
24·LEAD CERDIP
DUAL IN·LlNE PACKAGE
~E;t;~'~'0~O~I2;'M~IM;A~X~~~~~~~~~
II,
L.
J
I
!
.032(0.811
TYP
1.042(1~~~GOoT27.94iREF
.062(1.58)
7-12
rI I~I
1.01310.331'
.023 (0,581
=p:,:::"
Ij.15013.Sll
.02010.5~1
05011.27)
PACKAGE INFORMATION Dimensions in inches (millimeters)
INDEX
FPT·24C·F01
24-LEAD CERAMIC
FRIT SEAL
FLAT PACKAGE
.050(1.27)
TVP
l-~~
550(13.97}TYPE
I
JSOI9.9l}
406(10.31 )
I
.....L=L
If
A.025W.64)"!.EF
I
I
.514(13.06) .600(15.24)
.600(15.24)TYP
FPT·24·C02
1.200(30.48)
1.300(33.02\
24·LEAD CERDIP
FLAT PACKAGE
014(0.36)
--,
---.100(2.54)MAX
l
INDEX
.524(13.31)
Dlp·24p·M01
fin=r=nF'FT"R=n=ff=rF"Ff''FFf'Fffl
1.171(29.74j
24-LEAD PLASTIC
DUAL IN·LlNE PACKAGE
1.197(30.40\
7-13
J379)
I.
PACICAC2 INFORMATION Dimensions in inches (millimeters)
Dlp·28C·A01
·"'~i;I::] ~ ~ ~ ~H~ ~:~I
I
28-LEAD CERAMIC
METAL SEAL
DUAL IN·LlNE PACKAGE
~----;..J.
!
1.386(35.20)
1.414(35.921
I
~
~
lJJ'l1U
"77(4'50IMAX
.120(3.05)
.150(3.81)
.09012.291 1
.110(2.791
.046(1.17)
.054(1.:m
!
--H-~
:g;g:~:~~l
.01510.38)
1.300(33.02)REF
R .026(0.641
REF
Dlp·28C·C01
28-LEAD CERDIP
WITH TRANSPARENT LID
DUAL IN·LlNE PACKAGE
1
1",. .rc"'~"'~"'~"'~"'~1.'4';~"t3;~.4r5",;=-rc"'~"'~"'~"'~ I]"
.570(14.481
1.500138,10)
--1
.100(2.64IMAX
-,
;:P.
--L23015.84IMAX
.,2013.0S)
.15013.811
.Q9012,291
.Q42(1.071
.03210.811
.020 0.51 I
.,1012.79If--_ _ _ _
.D6_2,,'(~o;;.~"'7:'"33".O;;;2t;oR..
EF,--R-EF--tr-- .05011.271
.01310.33)
.023(0.581
PIN NOL~
INDEX
LCC·32C·A01
32·PAD CERAMIC
METAL SEAL
LEAD LESS CHIP CARRIER
I
.445111.30\
.460111.68'-
I
LL.13013.30IMAX
7·14
REPRESENTATIVES
Arizona
Florida (cont'd)
Michigan
Thom Luke Sales, Inc.
2940 N. 67th Place
Suile H
Scottsdale, Al. 85251
(602) 941·1901
Dyne·A·Mark Corporation
P.O. Box 33
Mailland, FL 32751
(305) 831·2097
TWX: 810·853·5039
Dyne·A·Mark Corporation
P.O. Box 339
Palm Bay, FL 32905
API Associates
9660 E. Grand River
Brighton, MI 48116
(313) 229·6550
TWX: 810·242·1510
California
Reed Electronic Markeling
P.O. Box 206
Los Alamitos, CA 90720
(714) 821·9600
TWX: 910·341·7295
Reed Eleclronic Marketing
P.O. Box 964
Del Mar, CA 92014
(714) 452·1456
TWX: 910·322·1131
Straube Associates
2551 Casey Avenue
MI. View, CA 94043
(415) 969·6060
TWX: 910·379·6556
Straube Associates
1~~~r~a8;,; 9~[:S
(916) 885·0632
Colorado
Straube Associates
3699 W. 73rd Avenue
Westminster, CO 80030
(303) 426-D890
TWX: 910·938·0390
Connecticut
Camp Rep Associates
605 Washington Avenue
North Haven, CT 06473
(203) 239·9762
(305) 727-D192
TWX: 510·959·6000
g~re'~:chnical
Marketing
925 Main Street Suite 203
Stone Mountain, GA 30086
(404) 962·2530
TLX: 804·468
Tech·Mark/Upstate Assoc.
P.O. Box 173
Mendon, NY 14506
(716) 624·3840
illinois
Ohio
Del Steffen & Associates
69 Alpha Park Drive
Cleveland, OH 44143
(216) 461·8333
Del Steffen & Associates
1201 E. David Road
Dayton, OH 45429
(513) 293·3145
Del Steffen & Associates
173 Otterbein Drive
Lexington, OH 44904
(419) 884·2313
Indiana
Sieger Associates
6505 E. 82nd S1. Suite 107
Indianapolis, IN 46750
(317) 842·0373
TLX: 27·6258
Kansas
Sieger Associates
6328 Robin Hood Lane
Shawnee Mission, KS 66203
(913) 831·0133
Florida
Maryland
Component Sales, Inc.
3701 Old Court Rd. *14
Baltimore, MD 21208
(301) 484·3647
TWX: 710·862·0852
Ion Associates
8705 Shoal Creek Blvd.
Suite 213
Austin, TX 78758
(512) 458·2108
TWX: 910·874·1355
New York
Sieger Associates
1805 Hicks Road
Rolling Meadows, I L 60008
(312) 991·6161
TLX: 25·4022
Dyne-A·Mark Corporation
1001 NW 62nd Street
Suite 107
F1. Lauderdale, FL 33309
(305) 771-6501
TWX: 510·956·9872
Dyne·A·Mark Corporation
P.O. Box 6117
Clearwater, FL 33518
(813) 441·4702
TWX: 810·866·0438
Minnesota
11701 Menaul Blvd. NE
Suite E
Albuquerque, NM 87112
(505) 292·0428
TWX: 910·989·0629
2419 W. State Street, *10
Boise, 10 83702
(208) 343·9850
1504 109th Street
Grand Prairie, TX 75050
(214) 647·8225
TWX: 910·866·4645
Electromec Sales, Inc.
101 W. Burnsville Parkway
Burnsville, MN 55337
(612) 894·8200
TWX: 910·576·0232
New Mexico
Straube Associates
Idaho
Straube Associates
Texas
Ion Associates
Oklahoma
Ion Associates
9726 E. 42nd Street
Suite #125
Tulsa, OK 74145
(918) 664·0186
Ion Associates
10333 Northwest Freeway
Suite 412
Houston, TX 77092
(713) 681·6266
TWX: 910·881·3776
Utah
Straube Associates
3509 S. Main Street
Salt Lake City, UT 84115
(801) 263·2640
TWX: 910·925·4096
Washington
Olson, Ferree & Associates
12727 NE 20th
Suite 4
Bellevue, WA 98005
(206) 883·7792
TWX: 910·443·3003
Canada
Pipe·Thompson Ltd.
5468 Dundas Street West
Suite 206
ISlington, Ontario M9B 6E3
(416) 236·2355
TWX: 610·492·4367
Puerto Rico
Camp Rep AssOCiates
KQH8 Miradero
P.O. Box 724
Mayaguez, PR 00708
(809) 832·9529
TLX: 345·2062
MassachuaaHs
Pennsylvania
Camp Rep Associates
100 Everett Street
Westwood, MA 02090
(617) 329·3454
TWX: 710·348·1469
Omni Sales
1014 Bethlehem Pike
Erdenheim, PA 19118
(215) 233·4600
TWX: 510·661·9170
Alabama
California
California (conl'd)
Colorado
Marshall Industries
3313 South Memonal
Huntsville, AL 35801
(205) 881·9235
Marshall Industries
10105 Carroll Canyon Road
San Diego, CA 92131
(714) 578·9600
TWX: 910·322·1353
Marshall Industries
7000 N. Broadway
Denver, CO 80221
(303) 427·1818
TWX: 910·938·2902
Cetec
3617 N. 35th Avenue
Phoenix, Al. 85017
(602) 272·7951
Celee Electronics
721 Charcot Avenue
San Jose, CA 95131
(408) 263·7373
TWX: 910·338·0288
Cetee Electronics
5610 E. Imperial Hwy
Southgate, CA 90280
(213) 773·6521
TWX: 910·583·1947
Marshall Industries
835 West 22nd Street
Tempe, Al. 85281
(602) 968·6181
TWX: 910·950·1946
Celee Electronics
3940 Ruffin Street
Unit E
San Diego, CA 92123
(714) 278·5020
Marshall Industries
17321 Murphy Avenue
Irvine, CA 92714
(714) 556·6400
(213) 443·3724
TWX: 910·595·1969
DISTRIBUTORS
Arizona
Sterling Electronics
2001 East University Drive
Phoenix, Al. 85034
(602) 258·4531
TWX: 910·951·1555
TLX: 667·317
Time Electronics Arizona
1203 W. Geneva 0 rive
Tempe, Al. 85252
(602) 967·2000
Marshall Industries
788 Palomar Avenue
Sunnyvale. CA 94086
(408) 732·1100
Marshall Industries
8015 Deering Avenue
Canoga Park, CA 91304
(213) 999·5001
TWX: 910·494·4821
Time Electronics Norcal
1339 Moffett Park Drive
Sunnyvale, CA 94086
(406) 734·9888
TLX: 172·233
Marshall Industries
9674 Telstar Avenue
EI Monte, CA 91731
(213) 686·0141
TWX: 910·587·1565
TWX: 910·587·3448
Time Electronics West
19210 S. Van Ness
Torrance, CA 90501
(213) 320·0880
TWX: 910·349·6650
7-15
Connecticut
Marshall Industries
Village Lane
Barnes Industrial Park
Wallingford, CT 06492
(203) 265·3822
TWX: 710·476·0300
Milgray Connecticut
378 Boston Post Road
Orange, CT 06477
(203) 795·0711
Florida
Marshall Industries
4205 34th Street SW
Orlando, FL 32805
(305) 841·1878
Milgray Florida
1850 Lee Road, Suite 104
Winter Park, FL 32789
(305) 647·5747
DISTRIBUTORS
Flortda (conl'd)
Time ·Electronics Florida
(Continued)
M.s.achusetts (conl'd)
6610 NW 21st Avenue
F1. Lauderdale, FL 33309
(305) 974-4800
TWX: 5.10-956-9408
G""'lIla
Marshall Industries
4364B Shackelford Road
Norcross, GA 30093
(404) 923-5750
TWX: 810-766'3969
Milgray,Atlanta
17 Dunwoody Park
Suite 102
Atlanta, GA 30338
(404) 393-9666
illinois
ClassiC Component Supply
3328 Commercial Avenue
Northbrook, IL 60062
(312) 272-9650
TWX: 910-686-4783
Intercomp mc.
2200 N. Stonington
Hoffman Estates, IL 60195
(312) 843-2040
Marshall Industries
649 Thomas Drive
Bensenville, IL 60106
(312) 595-6622
TWX: 910-256-4185
Kansas
Milgray Kansas
6901 W. 63rd. Street
Overland Park, KS 66202
(913) 236-8800
Maryland
Marshall Industries
16760 Oakmont Avenue
Gaithersburg, MD 20760
(301) 840-9450
TWX: 710-828-9748
Milgray Washington
11820 Parklawn Drive
Room 102
Rockville, MD 20852
(301) 468-6400
TWX: 710-826-1126
Mas.achusetts
Cavalier Components, Inc.
220 Reservoir Street
Needham Heights, MA 02194
(617) 449-3112
Future Electronics Corp.
133 Flanders Road
Westboro, MA 01581
(617) 368-2400
TWX: 710-390-0374
Marshall Industnes
One Wilshire Road
BurlIngton. MA 01803
(617) 272-8200
TWX: 710-332-6359
r~lf~~ra~:~a~rgland
Burlington. MA 01803
(617) 272-6800
TWX: 710-332-6508
Sterling Electronics
11 Waverly Oaks Road
Waltham, MA 01254
(617) 894-6200
TLX: 923-438
Time Electronics New England
400 New Boston Park
Woodburn, MA 01801
(617) 935-8080
TWX: 710-393-0171
Michigan
Camelot Electronics
37045 Schoolcraft Hwy.
Livonia, MI 48150
(313) 591-0055
Reptron ElectroniCS
34403 Glendale
Livonia; MI 48150
(313) 525-2700
TWX: 810-242-1453
Minnesol.
Marshall Industries
13810 24th Avenue North
Suite 460
Plymouth, MN 55441
(612) 559-2211
New York (conl'd)
Texas (cont'd)
Marshall Industries
275 Oser Avenue
Hauppauge, NY 11788
(516) 273-2424
Marshall Inaustries
14205 Proton Road
Dallas, TX 75234
~4) 233-5200
X: 910-860-5472
Marshall Industries
3698 Westchase Dr.
Houston, TX 77042
(713) 789-6600
TWX: 910-881-6332
Marshall Industries
1260 Scottsville Road
Rochester, NY 14624
(716) 235-7620
TWX: 510-253-5526
Marshall Industries
6810 Ellicott Dr.
E. Syracuse, NY 13057
(315) 432-0644
Mast Distributors
215 Marcus Blvd.
Hauppauge, NY 11788
(516) 273-4422
Milgray Electronics
191 Hanse Avenue
Freeport, NY 11520
(516) 546-5600
TWX: 510-225-3673
Ohio
Camelot Electronics
3827 April Lane
Columbus, OH 43227
(614) 239-0056
Missouri
Time Electronics Midwest
330 Sovereign Court
S1. Louis, MO 63011
(3J4) 391-6444
TWX: 910-760-1893
New Jersey
Marshall Industries
1111 Paulison Avenue
Clifton, NJ 07015
(201) 340-1900
TWX: 710-989'7052
Marshall Industries
102 Gaither Drive
M1. Laurel, NJ 08054
(215) 627-1920
(609) 234-9100
TWX: 710- 7~-3969
Mast Distributors
21 Broadway
Danville, NJ 07834
(201)263-1180
TWX: 510-227-6622
~ci~~a~r~:~t~~~elxec. Campus
Suite B
Marlton, NJ 08053
(609) 983-5010
TWX: 7 t 0-896-0405
Sterling Electronics
774 Pleiffer Blvd.
~'i{~r 4~~~& NJ
08861
TLX: 138-679
NewYori<
Current Components
215 Marcus Blvd.
Hauppauge, NY 11788
(516) 273-2600
TWX: 510-227-6622
Marshall Industrires
10 Hooper Road
Endwell. NY 13760
(607) 754-1570
TWX: 510-252-0194
Marshall Industries
6212 Executive Blvd.
Dayton, OH 45424
(513) 236-8088
TWX: 810-459- 1604
Milgray Cleveland
6155 Rockside Road
Cleveland, OH 44131
(216) 447-1520
Oklahoma
Radio, Inc.
1000 South Main
Tulsa, OK 74119
(918) 587-9123
TLX: 492-429
Oragon
Parrott Electronics
15824 S.w. Upper Boones Ferry Rd.
Lake Oswego, OR 97034
(503) 684-3100
TWX: 910-467-8720
Pennsylvania
Time Electronics Mid Atlantic
520 Parkway Avenue
Broomall, PA 19008
(215) 359-1200
TLX: 845-317
Rhode I.hind
Edwards Electronics
P.O. Box 819
55 Electronics Dr.
Warwick, RI 02888
(401) 781-8000
TWX: 710-382-7655
Texas
Active Component Technology
15800 Addison Road
Addison, TX 75001
(214) 980-1888
7-16
Weatherford
4658 Sunbelt Drive
'Dallas, TX 75248
(214) 931-7333
TWX: 910-880-5544
Weatherford
3500 West T.C. Jester Blvd.
Houston, TX 77018
VJ.,~: 69Bfo!:a~6222
Weatherford
4861 Fredericksburg Road
San Antonio, TX 78229
(512) 340-3764
Washinglon
Bell Industries
1900 132nd NE
Bellevue, WA 98005
(206) 747-1515
TWX: 910-443-2482
Marshall Industries
1158 Inaustry Drive
Tukwila, WA 98188
(206) 575-3120
TWX: 910-444-2274
Wisconsin
Classic Components
2825 S. 160th Street
New Berlin, WI 53151
(414) 786-5300
Marsh Electronics
1563 S. 101 st Street
Milwaukee, WI 53214
(414) 475-6000
TWX: 910-262-3321
Canada
Future Electronics Corp.
237 Hymus Blvd.
Pointe Claire, Quebec H9R 5C7
~14) 694-7710
WX: 610-421 -3251
Carsten Electronics LTD
25 Howden Road, Unit 5
Scarborough, Ontario MIR 3E8
(416) 751-2371
TLX: 06-963748
FUJITSU
MICROELECTRONICS
2985 Kifer Rood
Santo Claro, California 95051
(408J 727-1700
Telex 1/11: 910-338-0190
PRINTED IN USA
FMI 2-82 50K
AD MEDIA SANTA CLAI=IA
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:56:37 Create Date : 2012:12:13 09:17:02-08:00 Modify Date : 2012:12:13 13:41:45-08:00 Metadata Date : 2012:12:13 13:41:45-08:00 Producer : Adobe Acrobat 9.52 Paper Capture Plug-in Format : application/pdf Document ID : uuid:b305a520-f793-47b6-a631-2ae79a659cc1 Instance ID : uuid:d0fa1dec-c4c4-43b0-83e3-1118f23b714d Page Layout : SinglePage Page Mode : UseNone Page Count : 276EXIF Metadata provided by EXIF.tools