1982_Mitsubishi_LSI 1982 Mitsubishi LSI

User Manual: 1982_Mitsubishi_LSI

Open the PDF directly: View PDF PDF.
Page Count: 910

Download1982_Mitsubishi_LSI 1982 Mitsubishi LSI
Open PDF In BrowserView PDF
MITSUBISHI DATA

BooK1982

LSI

,

MITSUBISHI

IIiw.. ELECTRIC

All values shown in this catalogue are subject to change for product improvement.
The information, diagrams and all other data included herein
are believed to be correct and reliable. However, no responsibility
is assumed by Mitsubishi Electric Corporation for their use, nor
for any infringements of patents or other rights belonging to
third parties which may result from their use.
MELPS and MELCS are registered trademarks of Mitsubishi
Electric Corporation.

* PARCOR System was developed by the Nippon Telegraph and
Telephone Public Corporation.

INDEXES
RANDOM-ACCESS MEMORIES
READ-ONL Y MEMORIES
MELPS 4 MICROCOMPUTERS
MELPS 41/42 MICROCOMPUTERS
MELPS 8-48 MICROCOMPUTERS
MELPS 8/85 MICROPROCESSORS
LSls FOR PERIPHERAL CIRCUITS
MELPS 86 MICROPROCESSORS
SPEECH SYNTHESIS LSls (PARCOR SYSTEM)
GENERAL-PURPOSE MOS LSls

D
D

D

ID
0
D
D

[l

D
ml

ED

MICROCOMPUTER SYSTEMS

[E

MICROCOMPUTER SUPPORT SYSTEMS

EEl

MICROCOMPUTER SOFTWARE

[I]

APPLICATIONS

EEl

MITSUBISHI LSls

PREFACE

Thank you for your continued patronage of Mitsubishi
Electric and our semiconductor products.
Semiconductor devices are a mainstay of the burgeoning electronics industry, where they are finding more and
more applications, .and meeting demands for increased
sophistication and diversification of performance and
function.
This data book has been compiled to be as complete
as possible, including data on large-scale IC memories,
single-chip microcomputers, peripheral LSls for 16-bit
parallel processing CPUs, speech synthesis LSls and microcomputer development support equipment, with the addition of a variety of originally developed MOS LSI devices.
We hope you will let us know of any mistakes or omissions that come to your attention, and any suggestions you
might have on improving the usefulness of this data book.
January, 1982

Kimio Sato, General Manager
Semiconductors Division
Mitsubishi Electric Corporation

• MITSUBISHI
"ELECTRIC

MITSUBISHI LSls

CONTENTS

D

INDEXES

Page

Index by Function .................................... .................................................................................
Index by Type Designation .......................................................................................................
Guide to Interchangeability .......................................................................................................
Guide to Selection of RAMs, PROMs, EPROMs and ROMs .......................................................
Ordering Information ................................................................................................................
Package Outlines ........................................................................................................................
Terminology ...... · .. · ......... ....... ........ ............... ............ ............ ...... ........................ ...... ..................
Letter Symbols for The Dynamic Parameters .... ·.............. · ................ · ........................ · .............. ·
Symbology ...... · .. · .... · ........... ........ ......................................................... ............ ....... ..................
Quality Assurance and Reliability Testing .................................................................................
Precautions in Handling MOS ICs ..... ....... ......................... ................. ........ ....... ................... .....

1-2
1-7
1-10
1-14
1-15
1-17
1-28

fJ M58725P,
RANDOM-ACCESS MEMORIES
P-15

16384-Bit (2048-Word by 8-Bit) Static RAM .......................................................

M58981 P-30, P-45
M5K4116P-2, P-3
M5K4164P-15, P-20
M5K4164NP-15,NP-20
M5K4164S-15, S-20
M5K4164NS-15, NS-20
M5L2114LP, P-2, P-3
M5L5101 LP-1
M5T4044P-20, P-30, P-45

B

D

D

4096-Bit (1024-Word by 4-Bit) CMOS Static RAM .................................................
16384-Bit (1 6384-Word by l-Bit) Dynamic RAM ...................................................
65536-Bit 165536-Word by l-Bit) Dynamic RAM· .................................................
65536-Bit (65536-Word by l-Bit) Dynamic RAM ...... • .... • .. • ............ • ........ • .. • .. • .... • .. •
65536-Bit (65536-Word by 1-Bit) Dynamic RAM ...................................................
65536-Bit(65536-Word by l-Bit) Dynamic RAM· .. • .................... • ............ • .. •.... • .. • ..
4096-Bit (1024-Word by 4-Bit) Static RAM ........................................................
l024-Bit (256-Word by 4-Bit) CMOS Static RAM· .. • .......................... • ................ •..
4096-Bit (4096-Word by l-Bit) Static RAM .. • ...... • .................. • .. • .. • .. • .. • .. • ............

1-33
1-36
1-39
1-44

2-3
2-9
2-13
2-25
2-41
2-55
2-71
2-85
2-89
2-93

READ-ONLY MEMORIES
Development of Mask-Programmable ROMs ..... ..........................................................................
M54700 P, S
1024-Bit (256-Word by 4-Bit) Field-Programmable ROM with Open-Collector Outputs .......
M54730P, S
256-Bit (32-Word by 8-Bit) Field-Programmable ROM with Open-Collector Outputs ..........
M54740AP, S/M54741AP, S 4096-Bit (1024-Word by 4-Bit) Field-Programmable ROM ..................................
M58653P
700-Bit (50-Word by l4-Bit) Electrically Alterable ROM ...........................................
M58735-XXXP
32768-Bit (4096-Word by 8-Bit) Mask-Programmable ROM ......................................
M5G1400P
l400-Bit (100-Word by l4-Bit) Electrically Alterable ROM ........................................
M5L2716K, K-65
l6384-Bit (2048-Word by 8-Bit) Erasable and Electrically Reprogrammable ROM ...............
M5L2732K, K-6
32768-Bit (4096-Word by 8-Bit) Erasable and Electrically Reprogrammable ROM ...............
M5L2764K, K-2, K-3
65536-Bit (8l92-Word by 8-Bit) Erasable and Electrically Reprogrammable ROM ...............

3-3
3-5
3-10
3-14
3-18
3-22
3-24
3-28
3-32

3-36

MELPS 4 MICROCOMPUTERS
M58840-XXXP, M58841-XXXSP Single-Chip 4-Bit Microoomputer with 8-Bit A/ D Converter .........................
M58842S
MELPS 4 System Evaluation Devioe .............................................................
M58843-XXXP, M58844-XXXSP Single-Chip 4-Bit Miorooomputer with 8-Bit A/D Converter· ........................
M58845-XXXSP
Single-Chip 4-Bit Microcomputer with 8-Bit A/D Conveter and Two Timer/Event Counter ..
M58846-XXXSP
Single-Chip 4-Bit Microcmputer with Two Timer IEvent Counter ...............................
M58847 -XXXSP
Single-Chip 4-Bit Microcomputer ...................................................................

4-2
4-13
4-18
4-29
4-41
4-53

MELPS 41 /42 MICROCOMPUTERS
M58494-XXXP
M58496-XXXP
M58497-XXXP

~ MELPS

5-3
5-17
Single-Chip 4-Bit CMOS Microcomputer· ...... • .... • .. • ............ • .. • ............ • ........ • .. • .. 5-32

Single-Chip 4-Bit CMOS Microcomputer ........ • ...................................... • .. • .. • .. • ..

Single-Chip 4-Bit CMOS Microcomputer .............................. • ........................ • .. •

8-48 MICROCOMPUTERS

ME LPS 8-48 Microcomputers Function of MELPS 8-48 Microcomputers ................ • ...... • .................. • .. •• .. ·
M5L8048-XXXP, M5L8035LP Single-Chip 8-Bit Microcomputer ..........................................................
M5L8049-XXXP, P-8, P-6, M5 L8039P-11, P-8, P-6 Single-Chip 8-Bit Microcomputer ............................
M5L8748S
Single-Chip 8-Bit Microcomputer with EPROM ...................................................
M5L8243P
Input/Output Expander .............................................................................

• MITSUBISHI
..... ELECTRIC

6-3
6-21
6-25
6-29
6-37

MITSUBISHI LSls

CONTENTS

o

Page

MELPS 8/85 MICROPROCESSORS
M5L8085AP, S
M5L82l2P
M5L82l6P, M5L8226P
M5L8l55P
M5L8l56P

D

7-3
7-17
4-Bit Parallel Bidirectional Bus Drivers ............................................................... 7-21
2048-Bit Static RAM with I/O Ports and Timer ..................................................... 7-25
2048-Bit Static RAM with I/O Ports and Timer ..................................................... 7-33

8-Bit Parallel Microprocessor .........................................................................

8-Bit Input/Output Port with 3- State Output .......................................................

LSls FOR PERIPHERAL CIRCUITS

M58990P
M5C6847P-l
M5L8041A-XXXP
M5L8251AP
M5L8253P-5
M5L8255AP-5
M5L8257P-5
M5L8259AP
M5L8279P-5
M5W179l-02P

m

8-Bit 8-Channel A-D Converter ........................................................................

8-3

8-7
8-17
Programmable Communication Interface .............................................................. 8-41
Programmable Interval Timer .................................... _.................................... 8-57
Programmable Peripheral Interface .................................................................... 8-65
Programmable DMA Controller· .. · .................................................................... 8-81
Programmable Interrupt Controller ..................................................................... 8-91
Programmable Keyboard/Display Interface ........................................................... 8-105
Floppy Disk Formatter/Controller .............. • .................................................... ·8-117
Video Display Generator .............. • ...... ••• .... •• ...... •• ............ • .... • ........ • ........ • ......
Universal Peripheral Interface .........................................................................

MELPS 86 MICROPROCESSORS
M5L8086S
M5L8282P, M5L8283P
M5L8284P
M5L8286P, M5L8287P
M5L8288P

[I!] SPEECH

9-3
9-35
Clock Generator and Driver for 8086, 8088, 8089 Processors ...................................... 9-39

16-Bit Parallel Microprocessor ........................................................................
Octal Latch ............................................................................................

Octal Bus Transceiver ................................................................................
Bus Controller for 8086, 8088, 8089 Processors .....................................................

9-46
9-50

SYNTHESIS LSls (PARCOR SYSTEM)

M588l7 AP
M588l8-XXXP
M588l9S

10-3
10-13
EPROM Interface ..................................................................................... 10-19

Speech Synthesizer ...................................................................................
128K-Bit Phrase ROM

..............................................................................

m

GENERAL-PURPOSE MOS LSls
M50ll0XP, M50ll5XP 30- OR 120-Function Remote-Control Transmitters' ...... •.. • .. ••• ........ • ...... • .. • ...... • ......
M50lll XP, M50ll6XP, M50ll7XP 30--120-Function Remote-Control Receiver ...................................
M50250P
Refrigerator Controller .. •• .. • ........ • .... • .................. • .......... • .... • .. • .. • ..................
M50401 P, M50402P, M50403P, M50404P, M50405P CMOS Analog Clock CirCUIts ..........................
M58412P, M584l3P
CMOS LCD Digital Alarm Clock Circuits ............................................................
M58435P, M58437-001P CMOS Analog Clock Circuits ........................................................................
M58478P, M50l21P, M50l22P 17-Stage Oscillator/Divider .............................................................
M58479P, M58482P
CMOS Counter/Timers ................ • .................... • .......... • ........ • .. • .. • ...............
M58480P, M58484P
30-Function Remote-Control Transmitters ..........................................................
M58481 P
30-Function Remote-Control Receiv·er .............................................................
M58485P
29-Function Remote-Control Receiver ... .......... .................. ..............................
M58486AP
Voltage Synthesizer ................................................................................
M58487 AP
24-Function Remote-Control Receiver .............................................................

11-3
11-9
11-15
11-19
11-23
11-31
11-35
11-39
11-43
11-47
11-51
11-55
11-65

[fl MICROCOMPUTER SYSTEMS
PCA8501 GOl , G02
PCA8506
PCA8507
PCA8520G01, G02
PGA8540G01, G02
PCA7002G01, G02

MELCS 85/2 Single-Board Computer ..............................................................
MELCS 85/2 Memory and Parallel I/O Expansion Board

......................................

12-3
12-7

12-11
12-15
M ELCS 85/2 Color TV Display Single-Board Computer .......................................... 12 -19
MELCS 70/2 Speech Synthesizer Single-Board Computer ....................................... 12-25
MELCS 85/2 Memory and Serial I/O Expansion Board· .... • .. • .......... • .... • ........ • ...... • ..

MELCS 85/3 Voice Generating Single-Board Computer ..........................................

• MITSUBISHI
"ELECTRIC

MITSUBISHI LSls

CONTENTS

[13. MICROCOMPUTER
PCA0803
PC4000
PC7000
PC8500, PCA8503
PC9000
PCA4Q(n
PCA4003
PCA4004
PCA4005
PCA4011
PCA4012
PCA4014
PCA8400
PC4100
PCA4301
PCA4303
PCA4304
PCA4305
PCA4101
PCA42011
PCA4202
PCA8402

~. MICROCOMPUTER

Page

SUPPORT SYSTEMS
13-3
13-5
Speeoh Synthesis Evaluation Unit •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 13-9
MELCS 85/1 Portable Miorooomputer Console ••••••••••••••••••••••••••••••••••••••••••••••••••••••• 13-11
Cross Assembler Machine ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 13-17
MELPS 4 Dedioated Board ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 13-20
MELPS 4 Dedioated Board ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 13-22
MELPS 4 Dedioated Board •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••~ ••••• 13-24
MELPS 4 Dedioated Board ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 13-26
MELPS 41 Dedioated Board.· •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 13-28
MELPS 42 Dedioated Board.· •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 13-30
MELPS 42 Dedioated Board •••••••••••••••••••••••••••••••••••••••••••••••••••••••• , ••••••••••••••••••• 13-32
MELPS 8-48 Dedioated Board ••••••••••.•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 13-34
M5L8748S Programming Adaptor ••••••••.•••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 13-36
MELPS 4 Evaluation Board •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 13-37
MELPS 4 Evaluation Board ............................................................................ 13-38
MELPS 4 Evaluation Board························ ••••••••• • •••••••••••••••••••••••••••••••••••••••••• 13-39
MELPS 4 Evaluation Board ............................................................................ 13-40
MELPS 41 Evaluation Board •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 13-42
MELPS 42 Evaluation Board .......................................................................... 13-44
MELPS 42 Evaluation Board .... • .............. • .. • .. • .. • .......... ••••• .. •• .... • ...................... 13-46
MELPS 8-48 Evaluation Board ....................................................................... 13-48
MELCS 8/2 Program Cheoker .........................................................................
Debugging Maohine ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

SOFTWARE

Software Codes .......................................................................................................................... 14-3
MELPS 4/41 Software Available Materials ....................................................................................... 14-4
MELPS 4/41 Software General Desoription ...................................................................................... 14-6
MELPS 4/41 Software Development of Applioation Programs .................................................................. 14-7
ME LPS 8/85 Software Available Materials ...... • ................................................................................ 14-8
ME LPS 8/85 Software General Desoription ...................................................................................... 14-9
MELPS 8/85 Software' Development of Applioation Programs .................................................................. 14-10
MELPS 4 Software
Cross Assembler ........................................................................................ 14-11
ME LPS 4 Software
Simulator ................................................................................................. 14-15
ME LPS 4 Software
Paper-Tape Generation Program for PROM Writers .................................................. 14-19
ME LPS 41 Software
Cross Assembler ........................................................................................ 14-21
ME LPS 41 Software
Simulator ................................................................................................. 14-25
MELPS 41 Software
Paper-Tape Generation Program for PROM Writers .................................................. 14-29
ME LPS 42 Software
Cross Assembler ........................................................................................ 14-31
MELPS 42 Software
Paper-Tape Generation Program for PROM Writers .................................................. 14-35
MELPS 8-48 Software Cross Assembler ........................................................................................ 14-37
MELPS 8-48 Software Paper-Tape Generation Program for PROM Writers ................................................... 14-41
ME LPS 8/85 Software PL/1/l Cross Compiler ................................................................................. 14-43
ME LPS 8/85 Software Cross Assembler.............................................. .......................................... 14 -47
ME LPS 8/85 Software Simulator ................................................................................................. 14-51
MELPS 8/85 Software Paper-Tape Generation Program for PROM Writers ........ • ......................................... • 14-55
MELPS 8/85 Software Self Assembler .......................................................................................... 14-57
MELPS Software
Editor .................................................................................................... 14-61
MELPS 8 BOM-PTS
Basio Operating Monitor-Paper-Tape System ....................................................... 14-63
ME LPS 8 BOM-B
Basio Operating Monitor-Basio System ............................................................... 14-65

• MITSUBISHI
.... ELECTRIC

MITSUBISHI LSls

CONTENTS

r1r=I

Page

~ APPLICATIONS
Memory Development Approaches ........................................................................................... 15-3
16K-Bit Dynamic RAM
(M5K4116P, S)···········································································15-9
64K-Bit Dynamic RAM
(M5K4164S, M5K4164NS)· .. • .... · .... •.... • .. •··• .. • .. ·• .... •·••·•••·•···· .. ··········15-21
Static RAM
(M58725P, M5L2114LP) ................................................................ 15-51
CMOS Static RAM
(M58981 p, M5L5101 LP-1 ) .............................................................. 15-56
EPROM
(M5L2716K, M5L2732K, M5L2764K)· .. •.. •·• .. ••·••··• .. •···•·• .. •·•••·•··•·•••···•• 15-67
Error Detecting and Correcting .............................................................................................. 15-79
MELPS 4 Program Library
Subroutines .. ··· ... · ........................................................................ 15-86
Application of MELPS 4 Single-Chip 4-Bit Microcomputer (M58840-xxxP) in a Microwave Oven ....... 15-98
MELPS 8/85 Program Library
Subroutines ................................................................................ 15-102
Application of MELCS 8/2 Single-Board Computer (PCA0801) in Data Transmission through a
Master-Slave Multicomputer System ........ 15-106

Contact Address for Further Information

• MITSUBISHI
.... ELECTRIC

INDEXES

D

MITSUBISHI LSls

INDEX BY FUNCTION

Electrical characteristics
Circuit function and organization

Type

Supply
Structure
voltage
(Note 1)
(V)

Typ pwr Max
diss;access
pasion
time
(mW)
(ns)

Min.
cycle
(ns)

Max.
frequency
(MHz)

tIme

Package Interchangeable
products
(Note 2)

Page

• Static RAMs
I 2114L-2
TMS4045-20

2-85

12114L-3
TMS4045-30

2-85

-

12114L
TMS4045-45

2-85

200

-

TMS4044-20

2-93

300

300

-

TMS4044-30

2-93

200

450

450

-

TMS4044-45

2-93

200

150

150

-

TMS4016-15

2-3

200

200

200

-

TMS4016

2-3

12±100/0 280
5±100/0

150

375

-

200

375

-

300

200

200

-

250

300

300

-

M5L2114LP

200

450

450

M5T4044P-20

300

200

250

M5L2114LP-2
M5L2114LP-3

M5T4044P-30

I

i

4096-Bit (1024X4) Static RAM

N,SI, ED 5 ±100/0

N,SI,ED 5±10%

4096-Blt (4096x 1) Static RAM

M5T4044P-45

r----

M58725P-15
M58725P

N, SI,ED 5±100/0

16384-Bit(2048x8)Statlc RAM

18P4

18P4

24P1

• Dynamic RAMs
M5K4116P-2
16384- Bit (16384 xl) DynamiC RAM

N. SI

M5K4116P-3
65536-Blt(65536x1)Dynamlc RAM
Pin 1 (RFE) function

N, SI

M5K4164NP-15
M5K4164NP-20

65536- Blt(65536 xl) DynamiC RAM
Pin 1 rlU connection

N, SI

M5K4164S-20
M5K4164NS-15
M5K4164NS-20

280

-5.7

M5K4164P-15
M5K4164P-20

M5K4164S-15

-4.5~

65536-Blt(65536x1)Dynamlc RAM
Pin 1 (REF) function
65536- Bit(65536 Xl) DynamiC RAM
Pin 1 no connection

N, SI

5±100/0
5±100/0
5±100/0

N, SI

5±100/0

C. SI

5±100/0

MK4116-2

2-13

MK4116-3

2-13

16P4

200

150

260

-

170

200

330

-

200

150

260

-

170

200

330

-

200

150

260

-

1f3P4
16P4
16S1

170

200

330

-

200

150

260

-

170

200

330

-

75

450

450

-

75

300

300

-

75

450

480

-

200

20/1s

-

16.8kH

14P4
14P4

16S1

-

2-25

-

2-41

2-25
2-41

MK4164

2-55

MCM6664

2-55

12164

2-71

MCM6665

2-71

15101 L-1

2-89

.CMOS Static RAMs
M5L5101LP-1
M58981 P-30
M58981 P-45

1024-Blt (256x4) CMOS Static RAM
4096- Bit (1024 X 4) CM OS Static RAM

C. SI

5±100/0

22P1

-

2-9

-

2-9

18P4

.Mask ROM
M58735-XXXP

32768-Blt (4096x8) Mask
Programmable ROM

.Field-Programmable ROMs
M58653P
M5G1400P
M5L2716K
M5L2716K-65
M5L2732K
M5L2732K-6

700-Bit(50X 14)
Electrically Alterable ROM
1400-Bit (100x 14)
Electrically Alterable ROM

P, AI

5±50/0

P, AI

5±50/0

16384-Bit (2048x8) Erasable and
Electrically Reprogrammable ROM

1'{Si,FA

5±'50/0

32768-Bit (4096x8) Erasable and
Electrically Reprogrammable ROM

N,SLFA

5±50/0

200

20/1s

-

16.8kH

300

450

-

-

300

650

-

-

400

450

-

-

400

550

-

-

200

-

-

250
!300

-

-

-

-

M5L2764K-2
M5L2764K
M5L2764K-3

65536-Bit (8192x8) Erasable and
Electrically Reprogrammable ROM

N,Si,FA

5±50/0

I

500

24K10
24K10

28K10

-

GI1400

3-18
3-24

i 2716

3--28

i 2716-6

3-28

i 2732

3-32

I 2732-6

3-32

i 2764-2

3-36

i 2764

3-36

i 2764-3

3-36

M54700P,S

1024-Blt (256x4) Fleld-Programmable ROM with Open-Collector

B

5±50/0

430

60

60

-

16P4
16S1

MM6300

3-5

M54730P,S

256-Blt (32x 8) Field-Programmable
ROM with Open-Collector

B

5±50/0

430

50

60

-

16P4
16S1

MM6330

3-10

M54740AP,S

4096-Bit(1 024X4) Field- Programmable ROM with Open-Collector

B, S

5±50/0

600

55

55

-

18P4
18S1

93452

3-14

M54741 AP, 5

4096-Blt (1024x4) Fleld-ProgrammaB, S
ble ROM with 3-State Outputs

55

55

-

18P4
18S1

93453

3-14

1-2

5±50/0

600

• MITSUBISHI
li"&ELECTRIC

MITSUBISHI LSls

INDEX BY FUNCTION

Type

Circuit function and organization

Electrical characteristics
Supply
Structure voltage 'Typ pwr Max
Max
Min
Package Interchangeable
dISSIfreaccess cycle
(Note 1)
products
(V)
pasion
quency (Note 2)
time
time
(ns)
(mW)
(ns)
(MHz)

Page

.Single-Chip Microcomputers
M68840-XXXP

Single-Chip 4-Bit Microcomputer
with 8-Bit A/D Converter

P,AI,ED -15±10%

500

M68841-XXXSP

Single-Chip 4-Bit Microcomputer
with 8-Blt A/D Converter

P,AI.ED -15±10%

M68842S

MELPS 4 System Evaluation Device

P,AI.ED -15±100/o

Sin~le-ChiP 4-Bit Microcomputer

-

10,us 0.6

42P1

-

4-2

500

-

10,us

0.6

42P4B

-

4-2

500

-

10,us

0.6

64S1

-

4-13

P.AI.ED -15±10%

400

-

10,us

0.6

29P4

-

4-18

-

4-18

M68843-XXXP

Wit

M68844-XXXSP

Single-Chip 4-Bit Microcomputer
with 8-Blt A/D Converter

P.AI.ED -15±10%

400

-

10,us

0.6

40P4B

M68846-XXXSP

Single-Chip 4-Bit Microcomputer
with 8-Blt A/D Converter

P,AI,ED -15±10%

350

-

10,us

0.6

40P4B

-

4-29

M68846-XXXSP

Single-Chip 4-Blt Microcomputer

P.AI.ED -12± 10%

280

-

10,us

0.6

40P4B

-

4-41

M68847-XXXSP

Single-Chip 4-Bit Microcomputer

P.AI,ED -12±10%

10

-

15,us

0.4

40P4B

-

4-53

MS8494-XXXP

Single-Chip 4- Bit CMOS
Microcomputer

C. AI

5± 5 %

5

-

8.8,us 0.455

72P2

-

5-3

MS8496-XXXP

Single-Chip 4-Bit CMOS
Mlcrocom puter

C. AI

5± 5%

5

-

7.7,us

72 P2

-

5-17

M S8497 -XXXP

Single-Chip 4-Blt CMOS
Microcomputer

C, AI

3-5.5%

2

-

15.4,us 0.455

72P2

-

5-32

MSL8048-XXXP

Single-Chip 8-Blt Microcomputer

N. Si.ED 5±10%

325

-

M5L8035LP
MSL8049-XXXP
M5L8049-XXXP-8
M5L8049-XXXP-6

Single-Chip 8-Blt Microcomputer

N, Si.ED

5±10%

325

-

N. SI.ED

5±10%

500
500
500
500

-

Single-Chip 8-Blt Mlcrocorr:puter

500
5()()

-

500

-

8-Blt A/D Converter

M5L8039P-"
M5L8039P-8
M5L8039P-6

Single-Chip 8-Bit Microcomputer

M5L8748S

Single-Chip 8- Bit Microcomputer
with EPROM

N.SI.ED

5±10%

N.SI.ED 5±10%

-

-

4.2

2500

6

40P1

i 8048

6-21

2500

6

40P1

6-21

1360
1875
2500
1360

11
8
6
11

i 8035L
i 8049

-

6-25

1875

8

2500

6

2500

6

40P1

i 8039
40P1

-

6-25

i 8039-6
i 8748

6-29

28P4

ADC0808

8

3

40P1

MC6847-1

8

7
17

40S10

• Microprocessors
M 5L8085AP, S

8-Blt Parallel Microprocessor

M5L80865

16-Blt Parallel Microprocessor

• LS Is for Peripheral Circuits
5+10%

M58990P
M5C6847P-1

8-Bit 8-Channel A-D Converter

C. SI

Video Display Generator

N. SI.ED 5±5%

500

M5L8041A-XXXP

Universal Peripheral Interface

N. SI. ED 5+10%

300

M5L8155P

2048- Bit Static RAlVi Wit h I/O Ports
and Timer (U="L"actlve)

N.SI.ED

5±5%

M5L8156P

2048-Blt Static RAM with I/O Ports
and Timer (CE="H"active)

N.SI.ED

3.58
6

40P1

18041A

8

500

-

-

-

40P1

I 8155

7-25

5±5%

500

-

-

-

40P1

i 8156

7-33

M5L8212P

8-Blt Input/Output Port

B. S

5+5%

450

35u

24P1

i 8212

7

M5L8216P

4-Blt Parallel Bidirectional Bus
Driver (Non Invertl ng)

B. S

5±5%

475

25u

-

-

16P4

18216

7-21

M5L8226P

4-Blt Parallel Bidirectional Bus
Driver (Inverting)

B, S

5±5%

425

25u

-

-

16P4

18226

7-21

50

-

-

-

24P1

i 8243

6

-

-

3

28P4

i 8251A

8-41

2

24Pl

I 8253-5

8

57

40P1

i 8255A-5

8

65

N.Si.ED 5+10%

M5L8243P

Input/Output Expander

M5L8251AP

Programmable Communication
Interface

N.Si.ED 5±5%

300

M5L8253P-5

Programmable Interval Timer

N.Si.ED 5+5%

300

M 5L8255AP- 5

Programmable Peripheral Interface

N.Si,ED 5+5%

250

• MITSUBISHI
"ELECTRIC

17

37

1 -- 3

II

MITSUBISHI LSls

INDEX BY FUNCTION

Electrical characteristics
Type

Circuit function and organization

Supply
Structure
voltage
(Note 1)
(V)

Typ pwr Max.
d,ss,access
pasion
time
ImW)
Ins)

Min
cycle
time

Ins)

Max.
frequency
1M Hz)

Package Interchangeable
(Note 2)
products

Page

.LSls for Peripheral Circuits (Continued)
M5L8257P-5

Programmable DMA Controller

N,Si,ED 5±50/0

300

-

-

3

40P1

i 8257- 5

8-81

M5L8259AP

Programmable I nterrupt Controller

N,Si,ED 5±100/0

275

-

-

-

28P4

i 8259A

8-91

M5L8279P-5

Programmable Keyboard/Display
Interface

N,Si,ED 5±100/0

650

-

-

3

40P1

i 8279- 5

8-105

M5L8282P

8-Bit Latch(Non Inverting)

B, S

5±100/0

500

-

-

-

20P4

i 8282

M5L8283P

8- Bit Latch (I nvertl ng)

B, S

5±100/0

500

-

-

-

20P4

18283

9-35
9-35

M5L8284P

Clock Generator and Driver for
M5L8086S CPU

B, S

5±1 (]l/o

490

-

-

-

18P4

i 8284

9-39

M5L8286P

Octal Bus Transceiver
(Non Inverting)

B, S

5±100/0

560

-

-

-

20P4

i 8286

9-46

M5L8287P
M5L8288P

Octal Bus Transceiver (I nvertlng)

B, S

5±100/0

90

-

-

-

20P4

i 8287

Bus Controller for M 5L8086S CPU

B, S

5±1 (]l/o

800

-

-

-

20P4

i 8288

9-46
9-50

M5W1791-02

Floppy Disk Formatter/Controller

I\LSi ,ED

5±50/0

300

-

-

-

40P1

FD1791-02B

8-117

300

-

-

0.66

28P4

-

10-3

80

-

-

0.17

24Pl

-

10-13

150

-

-

0.17

40S1

-

10-19

16P4

-

11-3
11-3

.Speech Synthesis (PARCOR SYSTEM)
M58817AP
M 5881 8-XXXP

Speech Synthesizer

M58819S

EPROM Interface

128K-Bit Phrase ROM

P,AI,ED -10±10%
P,AI,ED -10±10%
P,AI,ED -10±lOro
-5±50/0

.LSls for Remote-Control Receiver and Transmitter
M50110XP

30-Function Remote-Control
Transmitter

C, AI

2.2-8

-

-

-

-

M50115XP

120-F unction Remote-Control
Transmitter

C, AI

2.2-8

-

-

-

-

18P4

-

M50111XP

120-Functlon Remote-Control
Receiver

C, AI

4.5-8

-

-

-

-

16P4

-

11-9

M50116XP

120-Functlon Remote-Control
Receiver

C, AI

4.5-8

-

-

-

-

18P4

-

11-9

M50117XP

120-F unction Remote- Control
Receiver

C, AI

4.5-8

-

-

-

-

18P4

-

11-9

M58480P

30-F unct ion Remote- Control
Transmitter

C, AI

22-8

-

-

-

-

16P4

-

11-43

M58484P

30-Functlon Remote-Control
Transmitter

C, AI

2.2-8

-

-

-

-

16P4

-

11-43

M58481P

3D-Function Remote-Control
Receiver

C, AI

45-8

-

-

-

-

28P4

-

11-47

M58485P

29-Function Remote-Control
Receiver

C, AI

8-14

-

-

-

-

28P4

-

11-51

M58487AP

24-F unction Remote- Control
Receiver

C, AI

8-14

-

-

-

-

28P4

-

11-65

1.1-1.8

-

-

-

-

8P4

-

11-19

11-18

-

-

-

-

8P4

-

11-19

11-18

-

-

-

-

8P4

-

11-19

1.1-1.8

-

-

-

--

8P4

-

11-19

-

-

-

8P4

-

11-19
11-23

_.

.LSls for Clock Circuits
M50401P

CMOS Analog Clock Circuit

C. Si

M50402P

CMOS Analog Clock Circuit

C, Si

M50403P

CMOS Analog Clock Circuit

C, Si

M50404P

CMOS Analog Clock Circuit

C. Si

M50405P

CMOS Analog Clock Circuit

C, Si

1.1-1.8

-

M58412P

CMOS LCD Digital Alarm Clock
Circuit

C, AI

-1.2
--1.9

-

-

-

-

60P2

-

M58413P

CMOS LCD Digital Alarm Clock
Circuit

C, AI

-1.1
--2

-

-

-

-

60P2

-

11-23

M58435P

CMOS Analog Clock Circuit

1.2-1.9

-

-

-

-

8P4

-

M58437-001 P

CMOS Analog Clock Circuit

C. Si
C. AI

1.1-1.9

-

-

-

-

8P4

-

11-31
11-31

1-4

• MITSUBISHI
"'ELECTRIC

MITSUBISHI LSls

INDEX BY FUNCTION

Type

Circuit function and organization

Structure
(Note 1)

Electrical characteristics
Supply
Max
Min
Package Interchangeable
voltage Typ pwr Max
fredISSIaccess cycle
products
(V)
quency (Note 2)
pasion
time
time
(MHz)
(ns)
(mW)
(ns)

II
Page

.General-Purpose MOS LSls
M50121 P

17-Stage Osclilator/ Divider

C, AI

4.75-8.5

-

-

-

-

BP4

-

M50122P

17-Stage Oscillator/Divider

C, AI

4.75-8.5

-

-

--

-

BP4

-

M50250P

Refrigerator Controller

-

-

-

-

16P4

-

17-Stage Oscillator/DIvider

C. AI
C. AI

7-9

M58478P

4.75-85

-

-

-

-

BP4

-

M58479P

CMOS Counter/Timer

C, AI

7.9-9

-

-

-

-

14P4

-

M58482P

CMOS Counter/Timer

C, AI

3-9

-

-

-

-

14P4

-

M58486AP

Voltage SyntheSIZer

C. AI

11-13

-

-

-

-

42P1

-

Note 1: AI =Alumlnum gate
N=N-channel

B=Bipolar.
P =P-channe!

C=CMOS
S =Schottkey

ED=Enhancement depletion mode.
SI =SlIlcon gate

11-35
11-35
11-15
11-35
11-39
11-39
11-55

FA=FAMOS.

Package code 24 S 1

T

3:

*

Number of pins
Package structure
K=Glass-sealed ceramiC: P=Molded plastic: S=Metal-sealed ceramic
Package outline
1 =DIL Without fin
2=Flat Without fin.
4=DIL without fin (Improved)
10=DIL w/o fin. and w/quartz lid
4B=Shrink DI L without fin

I ndlcates propagation time

• MITSUBISHI
.... ELECTRIC

1-5

MITSUBISHI LSls

INDEX BY FUNCTION

I/O
port
(bits)

Ambient
operating
temp
Ta('C)

Supply
voltage

48

0-55

5

125x 145x 17

12-3

12K

48

0-55

5

125x145x17

12-7

12K

1
(serial)

0-55

12,5,-12

125x145x17

12-11

22

5-40

5, -5

125x145x20

12-19

8K or
16K

-

0-55

5, -5

125x145x25

12-25

16K

24

0-55

5, -5

125x145x20

12-15

Memory capacity
Type

Circuit function and organization

RAM
(bytes)

I

ROM
(bytes)

(V)

Dimensions
(Ixwxh)

Page

(mm)

.Micromputer Systems
PCA8501 G01
PCA8501 G02

MELCS 85/2 Single-Board
Computer

PCA8506

MELCS 85/2 Memory and Parallel
i/O Expa nsion Boa rd

PCA8507

MELCS 85/2 Memory and Serial
I/O Expansion Board

PCA8540 G01
PCA8540 G02

MELCS 82/2 Video Display
Single-Board Computer

1K

256

I

I

4K

4K

• Speech Synthesize Single- Board Computers
PCA7002 G01
PCA7002 G02

MELCS 70/2 Speech Synthesizer
Board

PCA8520 G01
PCA8520 G02

MELCS 85/3 Voice Generating
Single-Board Computer

1-----

-

256

• Microcomputer Support Systems
PCA0803

MELCS 8/2 Program Checker

-

-

-

0-55

5

170x200x27

13-3

PC4000

Debugging Machine

-

-

-

10-40

AC100

364x257x85

13-5

PC7000

Speech Synthesis Evaluation Unit

-

-

-

10-40

AC10C

390x 212x 73

13-9

PC8500

MELCS 85/1 Portable Mlcrocomputer Console

-

-

-

10-40

AC100

350x 370x 140

13-11

PC9000

Cross Assemble Machine

-

-

-

10-40

AC100

500x470x287

13-17

• Dedicated Board
PCA4001

Emulator Boad for M58840, M58841

-

-

-

10-40

13-20

PCA4003

Emulator Board for M58843

-

-

-

10-40

13-22

PCA4004

Emulator Board for M58844

-

-

-

10-40

PCA4005

Emulator Board for M58845

-

-

-

10-40

PCA4011

Emulator Board for M58494

-

-

-

10-40

13-24
Supplied
from
PC4000

210x230x20

13-26
13-28

PCA4012

Emulator Board for M58496

-

-

-

10-40

PCA4014

Emulator Board for M58497

-

-

-

10-40

13-32

PCA8400

Emulator Board for MELPS 8-48

-

-

-

10-40

13-34

PC41 00

M5L8748S Programming Adaptor

-

-

-

10-40

13-30

165x105x37

13-36

• Evaluation Board
PCA4301

Evaluation Board for M5884Q, M58841

-

-

-

0-55

-15

125x110x20

13-37

PCA4303

Evaluation Board for M58843

-

-

--

0-55

-15

125x110x20

13-38

PCA4304

Evaluation Board for M58844

-

-

-

0-55

-15

125x110x20

13-39

PCA4305

Evaluation Board for M58845

-

-

-

0-55

-15

210x230x20

13-40

PCA4101

Evaluation Board for M58494

-

-

-

0-55

5

150x 200x20

13-42

PCA4201
PCA4202

Evaluation Board for M58496

-

-

-

0-55

5

150x 200x20

13-44

Evaluation Board for M58497

-

-

-

5

Evaluation Board for MELPS 8-48

-

-

-

150x 200X 20
150x 58 X 27

13-46

PCA8402

0-55
0--55

1-6

• MITSUBISHI
.... ELECTRIC

5

13-48

MITSUBISHI LSls

INDEX BY TYPE DESIGNATION

Type

Structure

!

I

M50110XP

Function

C, AI

Remo-con

Circuit function
30-function remote-control transmitter

Page

11-3

M50111 XP

C, AI

Remo-con

120-function remote-control receiver

11-9

M50115XP

C, AI

Remo-con

120-function remote-control transmitter

11-3

M50116XP

C, AI

Remo-con

120-function remote-control receiver

11-9

M50117XP

C, AI

Remo-con

M50121 P

C, AI

Counter

M50122P

C, AI

M50250P

C, AI

M50401 P
M50402P

I

120-function remote-control receiver

11-9

17 -stage oscillator / divider

11-35

Counter

17 -stage oscillator/divider

11-35

Counter

Refrige rator counter

11-15

C, AI

Clock

CMOS analog clock circuit

11-19

C, AI

Clock

CMOS analog clock circuit

11-19

M50403P

C, AI

Clock

CMOS analog clock circuit

11-19

M50404P

C, AI

Clock

CMOS analog clock circuit

11-19

M50405P

C, AI

Clock

CMOS analog clock circuit

11-19

B

PROM

B

PROM

B, S

PROM

4096-bit (1.024-wordX4-bit) field-programmable ROM
with open-collector

3-14

B, S

PROM

4096-bit (1024-wordX4-bit) field-programmable ROM
with 3-state

3-14

M58412P

C, AI

Clock

CMOS LCD degital alarm clock circuit

11-23

M58413P

C, AI

Clock

CMOS LCD digital alarm clock circuit

11-23

M58435P

C, Si

Clock

CMOS analog clock circuit

11-31

M58437-001 P

C, AI

Clock

CMOS analog clock circuit

11-31

M58478P

C, AI

Counter

17 -stage osciliatGl / divider

11-35

M58479P

C, AI

Counter

CMOS counter/timer

11-39

M58480P

C, AI

Reme-con

30-function remote-control transmitter

11-43

M58481 P

C, AI

Remo-con

30-function remote-contr01 receiver

11-47

M58482P

C, AI

Counter

CMOS counter/timer

11-39

M58484P

C, AI

Remo-con

30-function remote-control transmitter

11-43

M58485P

C, AI

Remo-con

29-function remote-control receiver

11-51

M58486AP

C, AI

Counter

Voltage synthesizer

11-55

M58487AP

C, AI

Remo-con

22-function remote-control receiver

11-65

M58494-XXXP

C, AI

CPU

Single-chip 4-bit CMOS microcomputer

5-3

M58496-XXXP

C, AI

CPU

Single-chip 4-bit CMOS microcomputer

5-17

M58497-XXXP

C, AI

CPU

Single-chip 4-bit CMOS microcomputer

5-32

M58653P

p, AI

EEPROM

700-bit (50-word by 14-bit) electrically alterable ROM

3-18

N, Si ED

RAM

16384-bit (2048-word X 8-bit) static RAM

2-3

M54700P
M54700S
M54730P

~---------------

M54730S
M54740AP
M54740AS
M54741 AP
M54741 AS

M58725P

+

1024-bit (256-wordX4-bit) field-programmable ROM
with open- collector

3-5

256-bit (32-wo'dXB-bitJ '"Id-pm9"mm,bl, RO'

3-10

with open- collector

M58725P-15
M58735-XXXP

N, Si

ROM

32768-blt (4096-wordX8-bit) mask-programmable ROM

3-22

M58817AP

p, AI. ED

Speech

Speech synthesizer

10-3

M58818-XXXP

p, AI, ED

Speech

131072-bit phrase ROM

10--13

M58819S

p, AI, ED

Speech

EPROM interface

10-19

M58840-XXXP

p, AI, ED

CPU

Single-chip 4-bit microcomputer with 8-bit A/Dconverter

4-2

M58841-XXXSP

p, AI. ED

CPU

Single-chip 4-bit microcomputer with 8-bit A/D converter

4-2

M58842S

P, AI, ED

CPU

MELPS 4-system evaluation device

4-13

M58843-XXXP

p, AI, ED

CPU

Single-chip 4-bit microcomputer with 8-bit A/D converter

4-18
4-18

~-

M58844-XXXSP

p, AI, ED

CPU

Single-chip 4-bit microcomputer with 8-bit A/D converter

M58845-XXXSP

P, AI, ED

CPU

I Single-chip 4-bit microcomputer with 8-bit A/D converter

M58846-XXXSP

p, AI. ED

CPU

Single-chip 4-bit microcomputer

4-41

p, AI. ED

CPU

Single-chip 4-bit microcomputer

4-53

M58847-XXXSP

I

• MITSUBISHI
.... ELECTRIC

4-29

1-7

II

MITSUBISHI LSls

INDEX BY TYPE DESIGNATION

Type
M&S9S1 P-30
M&S9S1 P-4&

Structure
C. Si

Circuit function

Function
RAM

4096-bit (1024-wordX4-bit) CMOS static RAM

Page
2-9

M&S990P

C. Si

I/O

8-bit 8-channel A/D converter

8-3

M&C6S47P-1

N. Si. ED

I/O

Video display generator

8-7

M&G1400P

p. AI

EEPROM

1400-bit (1 OO-wordX 14-bit) electrically alterable ROM

3-24

N. Si

RAM

16384-bit (16384-word X 1-bit) dynamic RAM

2-13

N. Si

RAM

65536-bit (65536-word X 1-bit) dy namic RAM
Pin 1 (RFE) function

2-25

N. Si

RAM

65536-bit (65536-word X 1-bit) dynamic RAM
Pin 1 no connection

2-41

N. Si

RAM

65536-bit (65536-wordX 1-bit) dynamic RAM
Pin 1 (REF) function

2-55

N. Si

RAM

65536-bit (65536-wordX 1-bit) dynamic RAM
Pin 1 no connection

2-71

N. Si. ED

RAM

4096-bit (1024-wordX4-bit) static RAM

2-85

N. Si. FA

EPROM

16384-bit (2048-wordX8-bit) erasable and electrically
repJogrammable ROM

3-28

N. Si. FA

EPROM

32768-bit (4096-wordX8-bit) erasable and electrically
reprogram mabie ROM

3-32

N. Si. FA

EPROM

65536-bit (8192-wordX8-bit) erasable and electrically
reprogram mabie ROM

3-36

N. Si. ED

CPU

Single-chip 8-bit microcomputer

6-25

M&K4116P-2
M&K4116P-3
M6K4164P-1 &
M&K4164P-20
M&K4164NP-1 &
M&K.4164NP-20
M&K4164S-1 &
M&K4184S-20
M&K4184NS-16
M5K4184NS-20
M&L2114LP
M&L2114LP-2
M&L2114LP-3
M&L2718K
M&L2718K-8&
M&L2732K
M&L2732K-8
M&L2784K
M&L2784K-2
M&L2784'K-3
M&LS039P-8
M&LS039P-S
M&LS039·P-11
M&LS041 A-XXXP

N. Si. ED

I/O

Universal peripheral interface

8-17

M&LS04S-XXXP

N. Si. ED

CPU

Single-chip 8-bit microcomputer

6-21

N. Si. ED

CPU

Single-chip 8-bit microcomputer

6-25

N. Si. ED

CPU

8-bit parallel CPU

7-3

M&LSOS8S

N. Si. ED

CPU

16-bit parallel microprocessor

9-3

M&LS1&&P

N. Si. ED

I/O

2048-bit static RAM with I/O ports and timer (CE=low active)

7-25

M&LS1 &8P

N. Si. ED

I/O

2048-bit static RAM with I/O ports and timer (CE= high active)

7-33

M&LS212P

B. S

I/O

8-bit input/ output port

7-17

M&LS049-XXXP
M6LS049-XXXP-8
M&LS049-XXXP-S
M&LSOS&AP
M&LSOS&AS

M&LS218P

B. S

I/O

4-bit parallel bidirectional bus driver (non invert outputs)

7-21

M&LS228P

B. S

I/O

4-bit parallel bidirectional bus driver (invert outputs)

7-21

M&LS243P

N. Si. ED

I/O

Input/ output expander

6-37

M&LS2&1AP

N. Si. ED

I/O

Programmable communication interface

8-41

M&LS2&3P-5

N. Si. ED

I/O

Programmable interval timer

8-57

M&LS266AP-5

N. Si. ED

I/O

Programmable peripheral interface

8-65

M6LS267P-6

N. Si. ED

I/O

Programmable DMA controller

8-81

M6LS269AP

N. Si. ED

I/O

Programmable interrupt controller

8-91
8-105

M&LS279P-6

N. Si. ED

I/O

Programmable keyboard/ display interface

M5LS2S2P

B. S

I/O

8-bit latch (non inverting)

9-35

M6LS2S3P

B. S

I/O

8-bit latch (inverting)

9-35

M&LS2S4P

B. S

I/O

Clock generator and driver for 8086. 8088. 8089 processors

9-39

M6LS21i8P

B. S

I/O

Octal bl,Js transceiver (non inverting)

9-46

1-8

• MITSUBISHI
"ELECTRIC

MITSUBISHI LSls

INDEX BY TYPE DESIGNATION

Type

Structure

Function

Circuit function

Page

9-46

B, S

I/O

M6L8288P

B, S

I/O

Bus controller for 8086, 8088, 8089 processors

9-50

M6L8748S

N, SI, ED

I/O

Single-chip 8-bit microcomputer with EPROM

6-29

N, Si, ED

RAM

4096-bit (4096-word X 1 -bit) static RAM

2-93

N, Si, ED

I/O

Floppy disk formatter/controller

8-117

M6L8287P

Octal bus transceiver (inverting)

M6T4044P-20
M5T4044P-30
M6T4044P-45
M6W1791-02P

Note 1 . AI=Aluminum gate,
B= Bipolar,
C = CMOS,
ED = Enhancement depletion mode.
FA= FAMOS.
N=N-channel.
P=P-channel.
S=Schottkey.
Si=Silicon gate
2. CPU=Central processing unit.
I/O=input/output device.
PROM=Programmable read-only memory.
RAM = Random-access memory.
Remo-con = Remote controller.
ROM = Read-only memory. Speech=Speech Synthesizer

Type
PC4000

Function

Page

Debugging Machine

13-5

PC4100

M5L8748S programming adaptor

13-36

PC7000

Speech synthesis evaluation unit

13-9

PC8500

MELCS 85/1 portable microcomputer console

13-11

PC9000

Cross assembler machine

13-17

PCA4001

MELPS 4 dedicated board

13-20

PCA4003

MELPS 4 dedicated board

13-22

PCA4004

MELPS 4 dedicated board

13-24

PCA4005

MELPS 4 dedicated board

13-26

PCA4011

MELPS 41 dedicated board

13-28
13-30

PCA4012

MELPS 42 dedicated board

PCA4014

MELPS 42 dedicated board

13-32

PCA4101

MELPS 41 evaluation board

13-42

PCA4201

MELPS 42 evaluation board

13-44

PCA4202

MELPS 42 evaluation board

13-46

PCA4301

MELPS 4 dedicated board

13-37

PCA4303

MELPS 4 evaluation board

13-38

PCA4304

MELPS 4 evaluation board

13-39

PCA4305

MELPS 4 evaluation board

13-40

MELCS 70/2 speech synthesizer single-board computer

12-25

PCA7002G01
PCA7002G02
PCA8400

MELPS 8-48 dedicated board

13-34

PCA8402

MELPS 8-48 evaluation board

13-48

MELCS 85/2 single-board computer

12-3

PCA8501G01
PCA8501G02
PCA8506

MELCS 85/2 memory and parallel I/O expansion board

12-7

PCA8507

MELCS 85/2 memory and serial I/O expansion board

12-11

MELCS 85/3 voice generating single-board computer

12-15

MELCS 85/2 color TV display single-board computer

12-19

PCA8520G01
PCA8520G02
PCA8540G01
PCA8540G02

• MITSUBISHI
.... ELECTRIC

1-9

MITSUBISHI LSls

GUIDE TO INTERCHANGEABI!LITY

Functlon

Mitsubishi

Advanced
Micro

Electric

Devices

American
Microsystems

Fairchild

Fujitsu

Hitachi

Intel

Semiconductor

MB2114A-20L

M5L2114LP-2

HM472114A-2

P2114L-2

M5L2114LP-3

HM472114A-3

P2114L-3

~

M5L2114LP

HM472114A-4

P2114L

0:

M5T4044P-20

MB8144EL

M5T4044P-30

MB8144NL


Z

0

~
(/)

FINAL

a:

1-,

z

a:

I--

'\

UJ

<:J

h

,

6
g:

u

r

PURCHASING SPEC S

Il

Az
(/)

~

=lIN-LINE
L
EVALUATION
;lIN-LINE
EVALUATION

0

u

~

f-

r-.",

Z

Q

(/)

.I

t

f--

ARRANGE FOR )
.\
TOOLS

"

SPECS.

a:

r

II~

PRODUCT INSPECT rON

'-,0

'\,. MANUFACTURE

r

( TEST PLANNING

INCOMING MATERIALS

u

r"o

)

,

\N SUBCONTRACTING FAC"foRIES

V

PURCHASING SPE CS.

If PLANNING OF )

PJ>.

STOREROOM

SHIPPING SPECS.

\'STANDARDS

I(

(

PRODUCT SPECS

. tREGIS1~A TIO

1
,-...

MAIN
STANDARDS

I'DEVELOPMENT"\
\!,LANNING
..J

(PRE-PRODUCTION ORDER)

(

MANUFUCTURING
CONTROL
DIV,

QUALITY
ASSURANCE
DIV

QUALITY
CONTROL
DIV

PURCHASING SPEC S.

r,

l

l

WAFER AND
ASSEMBLY
DIV

ENGINEERING

PRODUCTION PLANNING

MARKET

f-

Z

0

~

a:

0
~

INSPECTION
INSTRUCTIONS

~
Z

0
f=
0

::2:

SHIPPING SPECS

go:

INSPECTION

0

]

INSTRUCTIONS

REPORT

MAIN DIVISION

1-40

o

CONCERNED DIVISION

-

FLOW OF MATERIALS, PARTS, AND PRODUCTS

• MITSUBISHI
.... ELECTRIC

-

FLOW OF INFORMATION

MITSUBISHI LSls

QUALITY ASSURANCE AND RELIABILITY TESTING

4. TYPICAL RESULTS OF RELIABILITY TESTS AND
FAILURE ANALYSES
4.1 Results of Reliability Test

~--~II

Formerly, sufficient reliability for memory MOS LSls was
obtained by using metal-sealed ceramic packages, but with
the development of high-reliability plastic molding technology, production has been shifted to plastic molded
memory MOS LSls.
The following tests are performed:
1. Operating life test: Durability is tested at high tempera-

GND

ture under operating state conditions by applying clock
pulse inputs as shown in Fig. 2.
2. DC biased test: Durability is tested at high temperature

Fig. 3 DC biased test procedure (for M5L2114 LP 4K-bit
static RAM)

biasing DC Voltage, as shown in Fig. 3.
3. High temperature storage: The durability of devices
stored at high temperatures is tested.
Typical results of memory MOS LSI life tests are shown
in Table 3. The failure rate computed from this reliability
data using an appropriate acceleration factor is 0.1 F IT or
less (1 FIT=10-9/hour) per bit, about the same as, or less
than, for core memories.

PIN CONFIGURATION (TOP VIEW)

vss DIN R/W RAS Ao A2 A, Voo
DIN =DATA IN
RAS -ROW ADDRESS STROBE
CAS'-COLUMN ADDRESS STROBE
RjW =READjWRITE
DOUT=DATA OUT

OPERATING LIFE TEST CONDITIONS
600ns
200ns

2S0ns

CAS

Ao-As

RjW

All addresses including the Ao to A6 row addresses and
column addresses are cycled through in binary sequence
such that the entire 16K bits are accessed,

Vss =-S.SV. VSS =VIL= OV. Voo=13,2V
Vee =S,SV. VIH =S.OV

Fig. 2 Operating life test procedure (for M5 K4116 P, S
16K-bit dynamic RAM)

• MITSUBISHI
"'ELECTRIC

1-41

MITSUBISHI LSls

QUALITY ASSURANCE AND RELIABIL TY TESTIN'G

Table 3 Examples of Endurance Test Results
Type No.

16- pin metal-seald
ceramic OIL

M5K41645

M5K4116P

16-pin plastic - molded
OIL

24-pin plastic- molded
DIL

M58725P

M5L2114LP

18- pin plastic - molded
DIL

18- pin plastic - molded
DIL

M58981 P

M5L 5101 LP

M5L2716K

M5L2732K

Number
of
samples

Test category

Package

22- pin plastic - molded
DIL

24-pin metal-sealed ceramic
DIL with quartz lid
24-pin metal-sealed ceramic
DIL With quartz lid

Oomponent
hours

Number
of
failures

Operating life

125'0

350

350,000

1

High-temperature storage

150'0

150

150,000

0
0

Operating life

125'0

334

334,000

DO biased

125'0

88

132,000

0

High-temperature storage

150'0

132

132,000

0

Operating life

125'0

114

114,000

0

High-temperature storage

150'0

38

38,000

0

Operating life

125'0

176

198,000

0

DO biased

125'0

22

22,000

0

High-temperature storage

150'0

88

132,000

0

Operating life

125'0

110

110,000

0

DO biased

125'0

22

22,000

0

High-temperature storage

150'0

44

66,000

0

Operating life

125'0

444

544,000

1

DO biased

125'0

94

94,000

0

High-temperature storage

150'0

94

94,000

0

Operating life

125'0

274

362,000

0

High-temperature storage

150'0

66

88,000

0

OP.erating life

125'0

264

308,000

0

High-temperature storage

150'0

44

66,000

0

Remarks
Functional failure

Functional failure

Table 4 Examples of Environmental Test Results
T est category
c

-~
<0 c

Test conditions

Soldering heat

260'C,

Type No.

lOs

Thermal shock

- 40°C-125°C, 10min/cycle, 15 cycles

M5L2114LP

'Temperature cycling

- 65°C-150°C, 1h/cycle, 100 cycles

M5L5101LP

-

Soldering heat

260'C,

~~

Thermal shock

- 55°C-125°C, 1Omin/cycle, 15 cycles

Temperature cycling

- 65°C-150°C, 1h/cycle, 100 cycles

Eg>

Temperature cycling
_c


2ffi

1-42

-

Number of
failures

M5K4116P

~.~

E2

Number of
samples

330

0

M5K41645

1,000

0

M5K4116P
M5L2114LP
M5L5101 LP

1,500

0

M5K41645

1,000

0

lOs

65°C-150°C 1h/cycle, 10 cycles

Shock

1,500G,0.5ms in Xl ,Yl,and Zl directions, 3 times

Vibration

20G, 20-2000Hz, in X, Y, and Z directions

Constant acceleration

30,000G, Y 1 direction for 1min

• MITSUBISHI
.... ELECTRIC

Remarks

MITSUBISHI LSls

QUALITY ASSURANCE AND RELIABILITY TESTING

II

5. CONCLUSION
Mitsubishi Electric's Quality Assurance System is baing
expanded to provide stronger emphasis on the following
points:
1. Establishment of quality and reliability levels that
satisfy customers' requirements.
2. Expansion of the reliability tests of wafers and assembly
processes for better evaluation, and standardization of
circuit and design rules.
3. Establishment of procedures for speeding up the introduction of new technology and improved methods that
raise reliability and to improve the accelerated life tests
for better failure analysis.
4. Establishment of a system for collecting data on failures
in the field, which will then be analyzed to develop
improved methods for increasing reliability.
We welcome and appreciate the cooperation of our
customers in developing design specifications, establ ish ing
quality levels, controlling incoming inspections, developing
assembly and adjusting processes and collecting field data.
Mitsubishi is anxious to work with its customers to develop
ICs of increased reliability that meet their requirements.

• MITSUBISHI
.... ELECTRIC

1-43

MITSUBISHI LSls

PRECAUTIONS IN HANDLING MOS ICs

A MOS transistor has a very thin oxide insulator under the
gate electrode on the silicon substrate. It is operated by
altering the conductance (gm) between source and drain to
control mobile charges in the channel formed by the
applied gate voltage.
If a high voltage were applied to a gate terminal, the
insulator-film under the gate electrode could be destroyed,
and all Mitsubishi MOS IC/lSls contain internal protection
circuits at each input terminal to prevent this. It is inherently necessary to apply reverse bias to the P-N junctions of a
MOS IC/lSI.
Under certain conditions, however, it may be impossible
to completely avoid destruction of the thin insulator-film
due to the application of unexpected Iy high voltage or
thermal destruction due to excessive current from a
forward biased P-N junction. The following recommendations should be followed in handling MOS devices.

1. KEEPING VOLTAGE AND CURRENT TO EACH
TERMINAL BELOW MAXIMUM RATINGS
1. The recommended ranges of operating conditions
provide adequate safety margins. Operating within these
limits will assure maximum equipment performance and
quality.
2. Forward bias should not be applied to any terminal since
excessive current may cause thermal destruction.
3. Output terminals should not be connected directly to
the power supply. Short-circuiting of a terminal to a
power supply having low impedance may cause burn-out
of the internal leads or thermal destruction due to
excessive current.

2. KEEPING ALL TERMINALS AT THE SAME
POTENTIAL DURING TRANSPORT AND
STORAGE
When MOS IC/lSls are not in use, both input and output
terminals can be in a very high impedance state so that they
are easily subjected to electrostatic induction from AC
fields of the surrounding space or from charged objects
in their vicinity. For this reason, MOS IC/lSls should be
protected from electrostatic charges while being transported
and stored by conductive rubber foam, aluminum foil,
shielded boxes or other protective precautions.

3. KEEPING ELECTRICAL EQUIPMENT, WORK
TABLES AND OPERATING PERSONNEL AT
THE SAME POTENTIAL
1. All electric equipment, work table surfaces and operat-

1-44

ing personnel should be grounded. Work tables should
be covered with copper or alum inum plates of good
conductivity, and grounded. One method of grounding
personnel, after making sure that there is no potential
difference with electrical equipment, is by the use of a
wristwatch metallic ring, etc. attached around the wrist
and grounded in series with a 1M
resistor. Be sure that
the grounding meets national regulations on personnel
safety.
2. Current leakage from electric equipment must be
prevented not only for personnel safety, but also to
avert the destruction of MOS IC/lSls, as described
above. Items such as testers, curve-tracers and synchroscopes must be checked for current leakage before being
grounded.

n

4. PRECAUTIONS FOR MOUNTING OF MOS
IC/LSls
1. The printed wiring lines to input and output terminals
of MOS IC/lSls should not be close to or parallel to
high-voltage or high-power signal lines. Turning power
on while the device is short-circuited, either by a solder
bridge made during assembly or by a probe during
adjusting and testing, may cause maximum ratings to be
exceeded, which may result in the destruction of the
device.
2. When inputloutput, or input andlor output, terminals
of MOS le/lSls (now open-circuits) are connected,
we must consider the possibility of current leakage and
take precautions similar to §2 above. To reduce such
undesirable trouble, it is recommended that an interface
circuit be inserted at the input or output terminal, or a
resistor with a resistance that does not exceed the
output driving capability of the MOS IC/lSI be inserted
between the power supply and the ground.
3. A filter circuit should be inserted in the AC power
supply line to absorb surges which can frequently be
strong enough to destroy aMOS IC/lSI.
4. Terminal connections should be made as described in the
catalog while being careful to meet specifications.
5. Ungrounded metal plates should not be placed near
input or output terminals of any MOS IC/lSls, since
destruction of the insulation may result if they become
electrostatically charged.
6. Equipment cases should provide shielding from electrostatic charges for more reliable operation. When a plastic
case is used, it is desirable to coat the inside of the case
with conductive paint and to ground it. This is considered
necessary even for battery-operated equipment.

• MITSUBISHI
r..ELECTRIC

RANDOM-ACCESS MEMORIES

MITSUBISHI LSls

M58725P, P-15
16 384-BIT(2048-WORD BY 8-BIT) STATIC RAM

DESCRIPTION
This is a family of 2048-word by 8-bit static RAMs, fabricated with the N-channel silicon-gate MOS process and
designed for simple interfacing. These devices operate
on a single 5V supply, as does TTL, and are directly TTL-

PIN CONFIGURATION (TOP VIEW)

As
A9

compatible.
The input and output terminals are common, and an
OE terminal is provided.
ture.

S

controls the power-down fea-

}ADDRESS
INPUTS

<--W

ADDRESS
INPUTS

~

FEATURES

1]

• Fast access time:
M58725P
M58725 P-15

II

Vee (5V)

WRITE CONTROL INPUT

<--OE

OUTPUT
ENABLE INPUT

<-- A10

ADDRESS
INPUT

<--5

CHIP SELECT
INPUT

17

200ns (max)
150ns (max)

• Low power dissipation:
Active:
Stand by:

DATA
INPUTS/
OUTPUTS

DQl
-.... DO")
DO, ....

DQ6

250mW (typ)

DATA
INPUTS/
OUTPUTS

DOs

25mW (typ)

(OV) GND

D04

• Power down by S
• Single 5V supply voltage (± 10% tolerance)
• Requires neither external clock nor refreshing

Outline 24P1

• All inputs and outputs are directly TTL compatible

During a read cycle, when a location is designated by

• All outputs are three-state, with OR-tie capability
• Easy memory expansion by chip-select (5) input
.Common data DO terminals.
.Same pin configuration as M5L2716K 16 384-bit EPROM

APPLICATION

address signals Ao"'AlO the OE signal is kept low to keep
the DO terminals in the output mode, signal W goes high,
and the data of the designated address is available at the
I/O terminals.
When signal S is high, the chip is in the non-selectable
state, disabling both reading and writing. In this case the
output is in the floating (h igh-impedance) state, useful for

• Small-capacity memory units

FUNCTION
These devices provide common data input and output
terminals. During a write cycle, when a location is designated by address signals Ao"'AlO the OE signal is kept high
to keep the DO terminals in the input mode, signal W goes
low, and the data of the DO signal at that time is written.

OR-ties with other output terminals.
Signal S controls the power down feature. When

S

goes high power dissipation is reduced to 1/10 of active
power. The access time from
access time.

5 is

equivalent to the address

BLOCK DIAGRAM

IOUTPUT
ENABLE INPUT

)
a:
w

LL

128

2048-WORDx8-BIT
(128 ROWSx
128 COLUMNS)

-'

~

«

w

Vl

~

DATA
INPUTS/OUTPUTS

ADDRESS INPUTS

16

CHIP SELECT INPUT
WRITE CONTROL
INPUT

• MITSUBISHI
.... ELECTRIC

2-3

MITSUBISHI LSls

M58725P, P-15
16 384-BIT(2048-WORD BY 8-BIT) STATIC RAM
FUNCTION TABLE
S

OE

W

DQ,-DQs

Mode

H

X

X

Hi-Z

Deselect

L

X

L

DIN

Write

L

L

H

DOUT

Read

L

H

H

Hi-Z

-

ABSOLUTE MAXIMUM RATINGS
Symbol

Parameter

Vee

Supply voltage

VI

Input voltage

Vo

Output voltage

Test conditions

Unit

Limits
-0.5-7

With respect to GND

Pd

Maximum power dissipation

Topr

Operating free-air ambient temperature range

Tstg

Storage temperature range

Ta=2S"C

V

-0.S-7

V

-0.5-7

V

1000

mW

0-70

"C

-6S-1S0

RECOMMENDED OPERATING CONDITIONS

"C

(Ta=0-70"C unless otherwise noted.)
Limits
Unit

Parameter

Symbol

Min

Nom

Max
S .S

5

V

Supply voltage

4.5

VIL

Low-level input voltage

-1

0.8

V

VIH

High-level input voltage

2

6

V

Vee
-~

ELECTRICAL CHARACTERISTICS

(Ta=0-70"C, Vee=5V+ 10%, unlessotherwisenoted)
Limits

Symbol

Parameter

Unit

Test conditions
Min

Typ

Max

VIH

High-level input voltage

2

6

V

VIL

Low-level input voltage

-1

0.8

V

VOH

High-level output voltage

IOH=-lmA, Vee=4.SV

VOL

Low-level output voltage

IOL=3.2mA

0.4

V

II

I nput current

VI=O-S.SV

10

J..I.A

IOZH

Off-state high-level output current

VI(S)=2V, Vo=2 .4V -Vee

10

J..I.A

IOZL

Off-state

-10

J..I.A

Icc,

Supply current from Vee

lee2

10w~level

output current

2.4

V

VI(S)=2V, VO=0.4V
VI=S.SV, VI(S)=0.8V,

Ta=2S"C

outputs open

Ta=O"C

VI=S.SV, VI(S)=2V

Ta=2S"C

outputs open

Ta=70"C

80

mA

90

mA

S

10

mA

7

15

mA

50

Stand by cu rrent

Ci

Input capacitance, all inputs

VI=GND, Vi=25mVrms, f=lMHz

3

5

pF

Co

Output capacitance

Vo=GND, Vo=25mVrms, f=lMHz

5

8

pF

Note 1: Current flowing into an I C is positive, out is negative.

2-4

• MITSUBISHI
;"'ELECTRIC

MITSUBISHI LSls

MS8725P, P-15
16384·BIT (2048.WORD BY 8·BIT) STATIC RAM
SWITCHING CHARACTERISTICS (For Read Cycle)

(Ta=0-70°C, Vcc=5V ± 10%, unless otherwise noted)
M58725P-15

Symbol

M58725P
Limits

Limits

Parameter
·Min

Typ

Max

Min

Typ

Unit
Max

tc (R)

Read cycle time

ta (A)

Address access time

150

200

ta (5)

Chip select access time

150

200

ns

ta(OE)

Output enable access time

50

60

ns

tv (A)

Data valid time after address

tpXZ(S)

Output disable time after ch'ip select

tpZX(S)

Output active time after chip select

10

20

tpu

Power up time after chip selection

0

0

tpD

Power down time after chip deselect ion

200

150

ns

ns

20

20

60

50

ns
ns
ns

80

60

TIMING REQUIREMENTS (For Write Cycle)

ns

(Ta=0-70°C, Vcc=5V±10%, unlessotherwisenoted)
M58725P-15

Symbol

ns

M58725P

Limits

Parameter
Min

Typ

Limits
Max

Min

Typ

Unit
Max

tC(W)

Write cycle time

150

200

ns

tsu(S)

Chip select setup time

100

120

ns

tsu (A)

Address setup time

20

20

ns

tw (W)

Write pulse width

80

100

ns

twr

Write recovery time

10

10

ns

tsu (OE)

Output enable setup time

40

40

ns

tsu (D)

Data setup time

60

60

ns

th (D)

Data hold time

10

10

tpXZ(OE)

Output disable time after output enable

40

40

ns

tpXZ(W)

Output disable time after write enable

40

40

ns

• MITSUBISHI
.... ELECTRIC

ns

2-5

MITSUBISHI LSls

M58725P, P-15
16 384-BIT (2048-WORD BY8-BIT) STATIC RAM
TIMING DIAGRAMS
Read Cycle 1

(Note 21

to

(R)

Ao -AlO

ta

ta

tv

DO
(DATA OUTPUTSI

(OE)

(A)

(A)

PREVIOUS DATA VALID

DATA VALID

W; high level
S ; low level

Read Cycle 2
to

(R)

\

II

r\

/
ta (S)

nl

DO
(DATA OUTPUTSI

f

ICC

\'

NOT
VALID / \

DATA VALID

tPD

leOl

\
1\

W; high level
BE ; low level

2-6

R

• MITSUBISHI
..... ELECTRIC

MITSUBISHI LSls

MS8725P, P-15
16 384-BIT (2048-WORD BY 8-BIT) STATIC RAM

Write Cycle (W Control Mode)
tc

(w)

Ao -AlO

tsu (s)

S
tw(W)

tsu (A)

w

tsu (D)

DO (NOTE 4)
(OAT A INPUTS) - - - - - - - - + - - - - - - {

DO
(OAT A OUTPUTS)

Write Cycle 2

DATA IN STABLE

»»»»»»);

(S Control Mode)
tc

(W)

AO -AlO

tsu (s)

twr

tw(w)

w
tsu (D)

DO

-r__-+-___

(NOTE__
4)_ _ _ _ _ _ _

~

(DATA INPUTS)

DATA IN STABLE

tpzx( S) ---;;*--+~-~1

DO

(NOTE~5~)_ _ _ _ _ _ _ _ _~~_+4_~~-----------------------

(DATA OUTPUTS)

OE = low level
Note 2. Testconditions
Input pulse level
Input pulse rise time
Input pulse fall time
Reference level
Load

O.4-2.4V
lOns
10ns
1 .5 V

lTTL, CL

Note 3. Either the high or low state is possible.
4. When the DO pin is in the output state, a reverse phase signal should not be
applied externally.
5 When the falling edge of W is simultaneous to or prior to the falling edge of S
the output is maintained in the high·impedance state.

= 100pF

• MITSUBISHI
;"ELECTRIC

2-7

MITSUBISHI LSls

M58725P,P-15
16384-BIT (2048-WORD BY 8-BIT) STATIC RAM
TYPICAL CHARACTERISTICS
NORMALIZED ACCESS TIME VS.
AMBIENT TEMPERATURE

NORMALIZED ACCESS TIME VS.
OUTPUT LOAD CAPACITANCE

I

I

Vcc=4.S V

VCC=4.S V

1.1

w

0

:;;;
f=

~
~ 1.0

/

(/)

~

V

u
u

0.8

~

/

/

w

u
u

<1:

~

1.0

<1:

:;;;
a::

~ 0.9

20

40

60

80

E

VCC=14.SV

...J

Ta=2S"C

~

a::
a::
::J

/
/

u

f-

::J

10

o

52

0.

10

Z
w

a::
a::

f-

::J

~
o

S

W

~

1\

i

LJ

0.6

0.8

HIGH·LEVEL OUTPUT VOLTAGE VOH (V)

VOL (V)

SUPPLY CURRENT VS.
AMBIENT TEMPERATURE

-S

-s

'"0

60
ICCI

80

0

.9

60

f-

40

~

~

a::
a::

--"-

-

ICCI

40

::J
U

::J

~

0

0..
0..

20

::J

Vl

ICC2

i7i
4.S

S .s

S.o
SUPPLY VOLTAGE VCC

2-8

Vcc=S.sv

.9

a::
a::

~

1

~

Ta=2S'C
 - - t w r

R/W

tsu(es)

tSU(DAl

1/01- 1/ 0 4

DATA IN VALID

(INPUT MODE)
tPXZ(WR)

1/01- 1/ 0 4

DATA OUT INVALID

(DATA OUTPUTS)

Note 2: Hatching indicates the state is unknown

• MITSUBISHI
"'ELECTRIC

2-11

MITSUBISHI LSls

.M58981 P-30, P-45
4096-BIT (1024-WORD BY 4-BIT) CMOS STATIC RAM
POWER-DOWN OPERATION
Electrical Characteristics

(Ta=O-70·C. unless otherwise noted)
Limits

Parameter

Symbol

Test conditions

VCC(PO)

Power-down supply voltage

VI(as)

Power - down chip select input voltage

Min

VI (es)=Vee

2

2. 2V;;;; Vee(po);;;; Vee

2.2

Power-down supply current from

Vee

Vee=2V, all inputs=2V

(Ta=O-70·C.

Vee=5V ±10%. unless otherwise noted)
Limits

Symbol

Parameter
Min

tSU(PD)

Power-down setup time

t R(PD)

Power -down recovery time

Typ

Unit
Max

0

ns

tC(RD)

ns

Timing Diagram
Vee-----~

2.2V

2-12

• MITSUBISHI
"ELECTRIC

Unit
V
V
V

15

Note 3 : Current flowing Into an IC IS positive; out IS negative.

Timing Requirements

Max

Vee(po)

2 V;;;; Vee(PD);;;;2. 2V
lee(po)

Typ

/-LA

MITSUBISHI LSls

MSK4116P-2, P-3
16 384-BIT (16 384-WORD BY I-BIT) DYNAMIC RAM
DESCRIPTION

PIN CONFIGURATION (TOP VIEW)

This is a family of 16 384-word by 1-bit dynamic RAMs,
fabricated with the N-channel silicon-gate MOS process, and
is ideal for large-capacity memory systems where high
speed, low power dissipation, and low costs are essential.
The use of double-layer poly-silicon process technology and
a single-transistor dynamic storage cell provide high circuit
density at reduced costs, and the use of dynamic circuitry
including sense amplifiers assures low power dissipation.
Multiplexed address inputs permit both a reduction in pins
to the standard 16-pin package configuration and an increase in system densities.

( -5V)

VBB

Vss

(OV)
COLUMN ADDRESS
STROBE INPUT

DATA INPUT
READ/WRITE
CONTROL INPUT

II

14 -+DOUT DATA OUTPUT

ROW ADDRESS
STROBE INPUT

ADDRESS INPUTS
ADDRESS INPUTS

(12V)

VOD

Vee

(5V)

FEATURES
•

Performance ranges
Type name

Outline 16P1

Access time
(max)
(ns)

Cycle time
(min)
(ns)

Power dissipation
(typ)
(mW)

150

320
375

330
280

M5K 4116 P-2
M5K 4116P-3

200

•

Interchangeable with Mostek's MK4116 in both electrical
characteristics and pin configuration

APPLICATION

•

Standard 16-pin package

•

Voltage range on all power supplies

•

Main memory unit for computers

FUNCTION

(Voo, Vee, VBB):

±10%

•

Low standby power dissipation:

19.8mW (max)

•

Low operating power dissipation: 462mW (max)

•

Unlatched output enables two-dimensional chip selec-

The M5K4116P provide, in addition to normal read, write,
and read-modify-write operations, a number of other
functions, e.g., page mode, RAS-only refresh, and delayedwrite. The input conditions for each are shown below.

tion and extended page boundary
•
•

Inputs

Early-write operation gives common I/O capability

Operation

•

RAS

Read-modify-write, RAS-only refresh, and page-mode
capabilities
All input terminals have low input capacitance and are
directly TTL-compatible

•

Output is three-state and directly TTL-compatible

•

128 refresh cycles

--

CAS

R W

Output
Re-

Row Columr

D,N

Read

ACT

ACT

NAC

DNC

APD

APD

VLD

YE~

ACT

ACT

ACT

VLD

APD

APD

OPN

YES

Read-modifyACT
write
RAs-only refresh ACT

ACT

ACT

VLD

APD

APD

VLD

YES

NAC

DNC

DNC

APD

DNC

OPN

YES

DNC

DNC

DNC

DNC

DNC

OPN

NO

NAC

Remarks

fresh
address addres~ DouT

Write

Standby
Note

--

ACT: active; NAC : nonact,ve; DNC : don't care; VLD

Page mode
identical
except
refresh IS
NO

valid; APD : applied; OPN

open

BLOCK DIAGRAM
DATA INPUT
READ/WRITE INPUT

VOO(12V)

COLUMN ADDRESS _ _
STROBE INPUT CAS
ROW ADDRESS RA S
STROBE INPUT

4 H------~---L___,,..._--.,..------J

Vee (5V)
Vss (Ov)
Vss (-5V)

ADDRESS INPUTS

DOUT

•

DATA OUTPUT

MITSUBISHI

.... ELECTRIC

?-1~

MITSUBISHI LSls

MSK4116P-2, P-3
16 384·BIT (16 384·WORD BY I-BIT) DYNAMIC RAM

SUMMARY OF OPERATIONS
Addressing
To select one of the 16384 memory cells in the M5K 4116 P
the 14-bit address signal must be multiplexed into 7
address signals, which are then latched into the on-chip
latch by two externally-applied clock pulses. First, the
negative-going edge of the row-address-strobe pulse (RAS)
latches the 7 row-address bits; next, the negative-going edge
of the column-address-strobe pulse (CAS) latches the 7
column-address bits. Timing of the RAS and CAS clocks
can be selected by either of the following two methods:
1. The delay time from RAS to CAS td (RAS-CAS) is set
between the minimum and maximum values of the
limits. In this case, the internal CAS control signals are
inhibited almost until td (RAS-CAS) max ('gated CAS'
operation). The external CAS signal can be applied with
a margin not affecting the on-chip circuit operations,
e.g. access time, and the address inputs can be easily
changed from row address to column address.
2. The delay time td (RAS-CAS) is set larger than the
maximum value of the limits. In this case the internal
inhibition of CAS has already been released, so that
the internal CAS control signals are controlled by the
externally applied CAS, which also controls the access
time.
Data Input
Data to be written into a selected cell is strobed by the
later of the two negative transitions of R/W input and
CAS input. Thus when the R/W input makes its negative
transition prior to CAS input (early write), the data input
is strobed by CAS, and the negative transition of CAS is set
as the reference point for set-up and hold times. In the
read-write or read-modify-write cycles, however, when the
R/W input makes its negative transition after CAS, the
R/W negative transition is set as the reference point for
set-up and hold times.

Data Output Control
The output of the M5K 4116P is in the high-impedance
state when CAS is high. When the memory cycle in
progress is a read, read-modify-write, or a delayed-write
cycle, the data output will go from the high-impedance
state to the active condition, and the data in the selected
cell will be read. This data output will have the same
polarity as the input data. Once the output has entered
the active condition, this condition will be maintained
until CAS goes high, irrespective of the condition of RAS
(for a maximum of lOllS).
The output will remain in the high-impedance state
throughout the entire cycle in an early-write cycle.
These output conditions, of the M5K 4116P which can
readily be changed by controlling the timing of
the write pulse in a write cycle, and the width of the CAS

2- 14

pulse in a read cycle, offer capabilities for a number of
applications, as follows.
1. Common 1/0 Operation
If all write operations are performed in the early-write
mode, input and output can be connected directly to give
a common I/O data bus.
2. Data Output Hold
The data output can be held between read cycles, without
lengthening the cycle time, until the next cycle commences.
This enables extremely flexible clock-timing settings for
RAS and CAS.
3. Two Methods of Chip Selection
Since the output is not latched, CAS is not required to keep
the outputs of selected chips in the matrix in a highimpedance state. This means that CAS and/or RAS can
both be decoded for chip selection.
4. Extended-Page Boundary
By decoding CAS, the page boundary can be extended
beyond the 128 column locations in a single chip. In this
case, RAS must be applied to all devices.
Page-Mode Operation
This operation allows for multiple-column addressing at the
same row address, and eliminates the power dissipation
associated with the negative-going edge of RAS, because
once the row address has been strobed, RAS is maintained.
Also, the time required to strobe in the row address for
the second and subsequent cycles is eliminated, thereby
decreasing the access and cycle times.
Refresh
The refreshing of the dynamic cell matrix is accomplished
by performing a memory operation at each of the 128
row-address locations within a 2ms time interval. Any
normal memory cycle will perform the refreshing, and
RAS-only refresh offers a significant reduction in operating
power.
Power Dissipation
Most of the circuitry in the M5K 4116P is dynamic,
and most of the power is dissipated when addresses are
strobed. Both RAS and CAS are decoded and applied to
the M5K4116P as chip-select in the memory system,
but if RAS is decoded, all unselected devices go into standby independent of the CAS condition, minimizing system
power dissipation.
Power Supplies
Although the M5K 4116P require no particular powersupply sequencing so long as the devices are used
within the limits of the absolute maximum ratings, it is
recommended that the V BB supply be applied first and
removed last. VBB should never be more positive than
Vss "-,,hen power supply is applied to V DD .
Some eight dummy cycles are necessary after power is
applied to the device before memory operation is achieved.

• MITSUBISHI
"ELECTRIC

MITSUBISHI LSls

MSK4116P-2, P-3
16 384-BIT (16 384-\YORD BY 1-BIT) DYNAMIC RAM
ABSOLUTE MAXIMUM RATINGS
Symbol

Parameter

Conditions

Limits

Unit

VOO

Supply voltage

Vee

Supply voltage

VSS

Supply voltage

VI

Input voltage

-0.5--20

V

Vo

Output voltage

--0.5-20

V

Voo

Supply voltage

-1 -15

V

Vee

Supply voltage

-1-15

V

VBS--VSS

Supply voltage

10

Output current

-With respect to

With respect to V s s

I

Pd

Power dissipation

Topr

Operating free-air temperature range

Tstg

Storage temperature range

V

-0.5 -20

V

Voo-VSS>O

0

V

50

mA

700

mW

0-70

'C

-65 -150

Limits

Parameter

Unit
Nom

Max

Voo

Supply voltage

VCC

Supply voltage (Note 2)

4.5

5

5.5

V

Vss

Supply voltage

a

0

a

V

10.8

12

13.2

-4 5

VBS

Supply voltage

VIHt

High-level input voltage. RAS,

VIH2

High-level input voltage. AO - A6,

VIL

low-level input voltage. all inputs

"C

(Ta=O-70"C. unless otherwise noted. Note 1)

Min

Note 1

V

-0.5 -20

Ta =25C

RECOMMENDED OPERATING CONDITIONS
Symbol

-0.5 -20

CAS,

-5

-5.7

V

7

V

7

V

0.8

V

2 7

RW

2 4

DIN

V

-1

All voltages with respect to Vss . Apply VSS power supply first. prior to other power supplies. and remove last.
The output voltage will swing from V SS to V CC when output loading current is zero. In standby mode V CC may be reduced to V ss
without affecting refresh operations or data retention. but the VOH min specification is not guaranteed in this mode.

ELECTRICAL CHARACTERISTICS
(Ta=0-70"C,

Voo -12V±10%,

Vcc=5V±10%,

Vss=OV, -5.7V,,;:Vss,,;:-4.5V.unlessotherwisenoted)

Parameter

Symbol

Test conditions

limits
Min

VOH

High-level output voltage (Note 2)

IOH= -5 mA

2.4

VOL

low-level output voltage (Note 2)

IOL=4.2mA

0

loz

Off -state output current

II

Input current

10Ol(AV)

Average supply current from VOO . operating

ICC1(AV)

Average supply current from

IBB1(AV)

Average supply current from Vss. operating

1002

Supply current from VOO . standby

ICC2

Supply current from V CC . standby

ISS2

Supply current from VSS . standby

1003(AV)

Average supply current from VOO . refreshing

ICC3(AV)

Average supply current from V CC . refreshing

DOUT floating
OV~Voun;;5 5V

Vss=-5V. OV~VIN~7V
All other pins =OV

-10
-10

RAS. CAS cycling

. operating (Note 4)

-10

--

tC(REF) = min

Average supply current from V SS . refreshing
Average supply current from V DO . page mode

ICC4(AV)

Average supply current from V CC . page mode (Note 4)

ISS4(AV)

Average supply current from V SS . page mode

--

--

RAS = VIL, CAS
tC(PG) = min

Ci(AO)

Input capacitance. address inputs

Ci(DA)

Input capacitance. data input

VI =Vss

Ci(R W)

Input capacitance. read/write control input

f= lMHz

Ci(RAS)

Input capacitance. R A S input

Vi=25mVrms

Ci(CAS)

Input capacitance. CAS input

Co

Output capacitance

VO=VSS. f= lMHz, VI=25mVrms

V
V

0.4
10

/-lA

10

/-lA

35

mA

1.5

RAS cycling CAS=VIH

Unit

Vcc

200

--

RAS = VIH
DOUT = floating

ISB3(AV)

Max

-

tC(RO) .~ tC(WR) = min

1004(AV)

Typ

-10

/-lA
mA--

10

/-lA

100

/-lA

27

mA

10

/-lA

200

/-lA

27

mA

200

/-lA

5
5

pF

7

pF

10

pF

-

pF

10

pF

7

pF

Note 3 Except for Iss. current flowing into an Ie is positive; out is negative
4

V CC is connected only to the output buffer. so that IcC 1 and I CC4 depend upon output loading.

• MITSUBISHI
"'ELECTRIC

?-1t;

MITSUBISHI LSls

MSK4116P-2, P-3
16 384-BIT (16 384-WORD BY I-BIT) DYNAMIC RAM
TIMING REQUIREMENTS (For Read, Write, Read-Modify-Write, Refresh, and Page-Mode Cycles)
Voo= 12V ± 10%. VCC = 5V ± 10%. v ss = OV. -5. 7V :5:. V ss:5:. -4. 5V. unless otherwise noted. See notes 5. 6. and 7.)

(Ta ~ 0 - 70"C.

M5K4116P-2
Alternative
Symbol

Parameter

Symbol

M5K4116P-3
Limits

Limits
Max

Min

Unit
Max

Min

tC(REF)

Refresh cycle time

tREF

tW(RASH)

R A 5 high pulse width

tRP

100

tW(RASL)

R A S low pulse width

tRAS

150

10000

200

10000

tW(CASL)

CAS low pulse width (Note 8)

tCAS

100

10000

135

10000

th(RAS'CAS)

CAS hold time with respect to R A S

tCSH

150

th(CAS-RAS)

R A S hold time with respect to CAS

tRSH

100

td(RA S-CAS)

Delay time. R A S to CAS (Note 9)

tRCO

20

2

2

ms

120

I1S
I1S
I1S

200

ns

135

I1S

25

50

65

ns

td(ffi-RAS)

Delay time. CAS to RAS

tCRP

-20

-20

ns

tsu (RA-RAS)

Row address setup time with respect to R A S

tASR

0

0

I1S

tsu (CA-CAS)

Column address setup time with respect to CAS

tASC

-10

-10

I1S

th(RAS-RA)

Row address hold time with respect to R A S

tRAH

20

25

ns

th(CAS-CA)

Column address hold time with respect to CAS

tCAH

45

55

ns

th(RAS-CA)

Column address hold time with respect to R A S

tAR

95

120

11S

trHL
tTLH

Transition time

tT

3

35

50

3

--

ns

-

Note 5 After power supply is applied. some eight dummy cycles are required before memory operation is achieved. RAS/CAS refresh cycles or RAS read-only cycles are sUitable
as dummy cycles. Once power is applied. it is also recommended to keep the RAS at high-level for more than 3p.s before the dummy cycles. or to keep the RAS high
pulse width tW(RASH) more than 3p.s for a minimum of one dummy cycle
The switching characteristics are defined as t T HL = tTL H = 5n s .
7

Reference levels of input signals are V,Hl mil1.VIH2 min and VIL max· Reference levels for transition time are also betweenVIHl or VIH2 and VIL

8

Assumes that td (RAS-CA§);;': td (RAS-CAS) max.1f td (RAS-CAS) <-- td (RAS-CAS) Ina x . tW(CASL) will be increased by the amount that td (RAS-CAS)
has decreased.
The maximum value of td(RAS-CAS) does not define the limit of operation. but is specified as a reference point only; if td(RAS-CAS) is greater than the specified
td (RAS-CAS) max limit. then access time is controlled exclusively by ta (CAS).

SWITCHING CHARACTERISTICS
Read Cycle

(Ta =0-70"(;.

VOO= 12V

±

10%.

VCC=5V

±

10%.

M5K4116P-2

-_ .. -

Alternative
Symbol

Parameter

Symbol

Vss=OV. -5_ 7V -S;:Vss-s;: -4_5V. unless otherwise noted

M5K4116P-3

--

---

Min

- - --

Limits

Limits
Max

Min

Unit
Max

tC(RD)

Read cycle time

tRC

320

375

ns

tsu (RD-CAS)

Read set-up time With respect to CAS

tRCS

0

0

ns

th(CAS-RD)

Read hold time with respect to CAS

tRCH

0

th(CAS'QUT)

Data-out hold time

tOFF

0

ta(CAS)

CAS access time (Note 10)

tCAC

100

135

I1S

ta(RAS)

RA S access time (Note 11)

tRAC

150

200

ns

Note 10
11

0
40

ns

0

50

ns

ThiS IS the value when td(RAS-CAS);;': td (RAS-CAS)max. Test conditions; Load = 2TT L .CL=100pF
This is the value when td (RAS-CAS) < td (RAS-CAS)max. When td (RAS-CAS);;': td(RAS-CAS) max
ta(RAS)increases by the amount of increase of td(RAS-CAS)

Test conditions; Load

=

2TTL . CL=100pF

Write Cycle
M5K4116P-2
Symbol

Parameter

Alternative
Symbol

M5K4116P-3
Limits

Limits
Min

Max

Min

Unit
Max

tc(WR)

Write cycle time

tRC

320

375

ns

tsu(wR-ffi)

Write set -up time with respect to CAS (Note 12)

twcs

-20

-20

ns

th(CAS-WR)

Write hold time with respect to CAS

tWCH

45

55

ns

th(RAS-WR)

Write hold time with respect to R A S

tWCR

95

120

ns

th(WR-RAS)

R A S hold time with respect to write

tRwL

50

70

ns

th(WR-CAS)

CAS hold time with respect to write

tCWL

50

70

ns

tW(WR)

Write pulse width

twp

45

55

ns

tsu (DA-CAS)

Data-in setup time with respect to CAS

tos

0

0

ns

th(CAS'DA)

Data-in hold time with respect to CAS

tOH

45

55

ns

th(RAS-DA)

Data-in hold time with respect to R A S

tOHR

95

120

ns

2· 16

• MITSUBISHI
"'ELECTRIC

MITSUBISHI LSls

MSK4116P-2, P-3
16 384-BIT (16 384-WORD BY I-BIT) DYNAMIC RAM

Read-Write and Read-Modify-Write Cycles
M5K4116P-2
Parameter

Symbol

Alternative
symbol

M5K4116P-3
Limits

Limits
Min

Max

Min

tc(RMW)

Read-modify-write cycle time

tRWC

320

405

ns

tC(RW)

Reed-write cycle time

tRWC

320

375

ns

th(WR-RAS)

R A S hold time with respect to write

tRWL

50

70

ns

th(WR-CAS)

CAS hold time with respect to write

tCWL

50

70

ns

tW(WR)

Write pulse width

twp

45

55

ns

tSU(RD-CAS)

Read setup time with respect to CAS

tRCS

0

0

ns

td(RAS-WR)

Delay time. RAS to write (Note 12)

tRWO

110

145

ns

td(CAS-WR)

Delay time. CAS to write (Note 12)

tcwo

60

80

ns

tSU(DA-WR)

Data-in set-up time with respect to write

tos

0

0

ns

th(WR-DA)

Data-in hold time with respect to write

tOH

45

55

th (CAS-OUT)

Data-out hold time with respect to CAS

tOFF

ta(CAS)

CAS access time (Note 10)

tCAC

ta(RAS)

R A S access time (Note 11)

tRAC

Note 12: tSU(WR-CAS).

0

ns

50

ns

100

135

ns

150

200

ns

40

II

Unit
Max

0

td(RAS-WR). and td(CAS-WR)do not define the limits of operation. but are included as electrical characteristics only.

When tsu (WR-CAS) £ tsu (WR-CAS) mill. an early-write cycle is performed. and the data output keeps the high-impedance state.
When td(RAS-WR) ::£ td (RAS-WR)mlll and td(CAS-WR) ~ td(CAS-WR) mlrl. a read-modify-write cycle is performed. and the data
of the selected address will be read out on the data outputs.
For all conditions other than those described above the condition of data output is not defined.

Page-Mode Cycle
M5K4116P-2

Symbol

Parameter

Alternative
symbol

--

M5K4116P-3

Limits
Min

Limits
Max

Min

Unit
Max

tC(PG)

Page-mode cycle time

tpc

170

225

ns

tW(CASH)

CAS high pulse width

tcp

60

80

ns

• MITSUBISHI
"ELECTRIC

2--17

MITSUBISHI LSls

MSK4116P-2, P-3
16 384~BIT (16 384·WORD BY I.BIT) DYNAMIC RAM

TIMING DIAGRAMS
Read Cycle

~~------------------------tO(RD)------------------------------~

~------------------tW(RASL)------------------~-4

VIHl

_------1

VIL

-

I - - - - - - - - - - - - - - - - - t h (RAS-CAS)

-------------------11

~-------th(RAS-CA)----------to--l1

,__--I-+-_------I-

t h (CAS- RAS

)---------I..-{

t-------:---tW(CASL)--------~

VIH2 -

COLUMN
ADDRESS

AO- A6

VIH1-

L-ta(CAS)------~

R W

-+----I__ th (CAS-OUT)

1---------------- ta (RAS) ------------------1
VOH -

- - - - - - - - - - HIGH-IMPEDANCE STATE -------~~I

DOUT

DATA VALID

VOL -

Write and Early Write Cycles
r-~-------------------------tC(WR)----------------------------~~

I - - - - - - - - - - - - - - - - - - t W(RASL)-------------------~
f----------------th
~-----ttl(RAS-CA)

RAS

(RAS-1CAS)--------------I1
.

I - - - - ' - - - - - t h (CAS- R A S ) - - - - - : . . - I
- - - - - + - - - - ' - - - t W ( C A S L ) ----~

AO - A6

VIH1-

RW
VIL

+-___~~~~~~~~~~~~~~~~~~~~~~~~

-~~~~~~~~~~~_ _~_ _

VIH2 VIL

\A,~A,A,~AJ\)'\/',/\J'\/\

-~~~~~~~~~~~~
~-------th(RAS-DA)-----~

DOUT

2-18

VOH VOL _ - - - - - - - - - - - - - - - - H I G H - I M P E D A N C E STATE - - - - - - - - - - - - - - - - - - - -

• MITSUBISHI
.... ELECTRIC

MITSUBISHI LSls

MSK4116P-2, P-3
16 384-BIT (16 384-WORD BY I-BIT) DYNAMIC RAM
Read-Write and Read-Modify-Write Cycles

~~------------------------------tC(RMW)------------------------------------__~
~---------------------------tW(RASL)------------------------------~

1 - - - - - - - - - - - - - - - - - - - - - - - - - - th (RAS- CAS)-----------------------------l
1-~-----th(RAS-CA)----_l

~----~~---------th(CAS-RAS)------------------~
--~-+~----------------tW(CASL)--------~

Ao-A6

VIH2VIL -

td(CAS-WR)
R W

VIH1VIL -

L",c'S,

th(CAS-OUT)

VOH DOUT

I.

VOL -

HIGH-IMPEDANCE STATE
ta(RAS)

VIH2DIN

VIL -

RAS-Only Refresh Cycle

~~--------------------tc (RD) - - - - - - - - - - - - - - - - - - - - - - - - - - - l
t - - - - - t W(RASLl----------l

RAS

V IH2 -

VI L

- ........lI..l"'-lo;.~""'""~.lI...il"""""',Q""Ii..,

VOH DOUT

VOL -

- - - - - - - - - - - - - - - - - - HIGH-IMPEDANCE STATE - - - - - - - - - - - - - - - - - -

Note 13 : CAS=VIH1.

R/W=don'tcare,

• MITSUBISHI
.... ELECTRIC

2-19

MITSUBISHI LSls

MSK4116P-2, P-3
16 384-BIT (16 384-WORD BY 1-BIT) DYNAMIC RAM
Page-Mode Read Cycle
~~----------------------------tW(RASL)----------------------------------~

VIH1VIL -

AO-A6

VIH2 VIL -

DOUT

VIH1_~~~~~~----------------~~~~------------------r/FC--------------~~~~~~~~~~
R/W

VIL _~~~~'"

Page-Mode Write Cycle
~-------------------------------tW(RASL)--------------------------------~

VIH1VIL

AO-A6

VIH2VIL -

R/W

DIN

VIH1VIL

-

VIH2 VIL -,.jj.,\,Qo.,io,~~

Note 14;
Indicates the don't care input.

The center-line indicates the high-impedance state.

2-20

• MITSUBISHI
"'ELECTRIC

MITSUBISHI LSls

MSK4116P-2, P-3
16 384·BIT (16 384·WORD BY I·BIT) DYNAMIC RAM
TYPICAL CHARACTERISTICS
NORMALIZED ACCESS TIME VS.
SUPPLY VOLTAGE Voo

NORMALIZED ACCESS TIME VS.
AMBIENT TEMPERATURE
1.4

1.4

Voo= 12V
Vcc=5V

Ta=25'C

Vss=-5V
2

"~

~

1=
(/)

12
1. 0
u
~

63

N

~O.s

----

~

~

1=

~ 1.0

r--

~

«

63
~

:::2

«

a:

~

~

V

o.s

:::2

oz

a:

oz
0.6
10

11

12

13

14

25

50

75

AMBIENT TEMPERATURE Ta Cc

SUPPLY VOLTAGE VOO(V)

NORMALIZED ACCESS TIME VS.
SUPPLY VOLTAGE Vee

AVERAGE SUPPLY CURRENT FROM Voo,
OPERATING MODE VS. SUPPLY VOLTAGE

1. 4 ...---...,....-----,------..,,....------,

40r---,----.--~--__,

Ta

o
o

,(ij'

'~ 1. 2 1 - - - - - ! - - - - + - - - - - I - - - - ;
:J

100

)

~
a:

= 25"C

V ss= -4.5V

>

30~--+_---t---__!--____i
~

LL«

§~

~

1=

~ 1.0

§u-8 20f-'--=f----+-----,:::::;;;o-i-"'-------1

u
u

..JO

)-UJ

«

63
~

«

~~

(/)(9

O. Sl----l---------+----+-----I

:::2
a:

UJ

Z

~~
UJa:

101-----=4----+-----+-----1

>~

oz

. . . . . . ___
-5.5

0.6~_ _~----I..--

-4.0

-4.5

-5.0

«0
-~

0~10~-~11----,-~1~2--~13~-~14

-6.0

SUPPLY VOLTAGE Voo(V)

SUPPLY VOLTAGE V SS( V)

NORMALIZED ACCESS TIME VS.
SUPPLY VOLTAGE Vee
1. 4 ,...---...,....-----,------..,------,

AVERAGE SUPPLY CURRENT FROM Voo,
OPERATING MODE VS. AMBIENT TEMPERATURE
40
o
o

I~I~ 1. 2t----+----+--__!--____i
:J

I.

VDD= 13.2V

>

Vss= -4.5V

:::2

o

fE~

30

tc = 375ns

~ E
UJ

~

I

~

~

1=

0

a
.9
)-UJ

~ 1.0
u

tc =500ns

20

1

..JO

u

~~

«

63

tc = 750ns

(/)(9

~ O. st-----+_---t---__!I------f

«
:::2
a:

oz

UJ

Z

~~
~~
«0

O. 6.'-::-~:_'_=_--.."...".....--=".."...-......"..J
4.0

4.5

5.0

5.5

6.0

10

o
o

25

50

75

100

AMBIENT TEMPERATURE Ta('C)

SUPPLY VOLTAGE Vcc(V)

• MITSUBISHI
.... ELECTRIC

2-21

MITSUBISHI LSls

MSK4116P-2, P-3
16 384-BIT (16 384-WORD BY I-BIT) DYNAMIC RAM

AVERAGE SUPPLY CURRENT FROM Voo,
REFRESH MODE VS. SUPPLY VOLTAGE

AVERAGE SUPPLY CURRENT FROM Vo o ,
OPERATING MODE VS. FREQUENCY
40

20r-----~----~--~----~~_,

I

Ta=25°C
Voo= 13.2V

0""""
0<1:

>E
~

-00

20

~~

/

Ul<.!j

UJZ

~~
~~
«0

10

/

~
EE

/

>-UJ

Ta =25"C

..,.

/

Vss= -4.5V
30

0
cr:
u....JO

oo

151-------!..~=--___l-

1-""""

z<1:

~~g
a

10~--~--~-~~~~-~

~-

o..UJ
0..0
=>0
Ul~

~V5

51----+----+----+-----1

ffitf
~~

11

13

14

SUPPLY VOLTAGE Voo(V)

SUPPLY CURRENT FROM Voo,
STANDBY MODE VS. SUPPLY VOLTAGE

AVERAGE SUPPLY CURRENT FROM Voo,
REFRESH MODE VS. AMBIENT TEMPERATURE

1.4

25

I

Ta = 25°C

Vss= -4.5V

0,.......

0

EE
I-~
r5cr:~E

~~

ON
0

u. ..9

-

I-

ZUJ
~
1.0
!5~
u>>-al
..J O
o..Z
0..«
~~ 0.8

g

".

V

V

/

ee
=>
u

I

Voo= 13.2V
Vss= -- 5. 5V

~

g~ 1.2
ee

12

FREQUENCY f(~)(MHz)

20

1

M

0
0

= 375n5

tc (REF)

15

= 500n5

tC(REF)

~-

0.. UJ
0..0
=>0

I

Ul~

~V5

tC(REF)

10

ffi~
>UJ

= 750n5

«cr:

0.6
10

11

12

25

14

13

SUPPLY VOLTAGE Voo(V)

I

Ta = 25°C

0

Voo= 13.2V
Vss= -4.5V

>
~

0

~~

EE

cr:

I-

ON
I-

ZUJ
~

g 1.0

!5~
u>>-al
..J o
o..Z

~ ~0.8

Voo= 13.2V

0

0<1:
> E 1.2

u..9

---- -----...

Vss= -4.5V
20

r5

cr:
cr:
=>
u
>..J
o..UJ
0..0
=>0

r-

15

Ul~

UJ I

~~
cr:ee

10

UJu...
>UJ
«ee

0.6

o

25

50

75

100

50

2

3

FREQUENCY f(~) (MHz)

AMBIENT TEMPERATURE Ta (OC )

2-22

100

25r-----~----~------~----_,

1.4

0

75

AVERAGE SUPPLY CURRENT FROM V oo ,
REFRESH MODE VS. FREQUENCY

SUPPLY CURRENT FROM Vee'
STANDBY MODE VS. AMBIENT TEMPERATURE

0,.......

50

AMBIENT TEMPERATURE Ta (oC )

• MITSUBISHI
.... ELECTRIC

MITSUBISHI LSls

MSK4116P-2, P-3
16 384-BIT (16 384-WORD BY I-BIT) DYNAMIC RAM

AVERAGE SUPPLY CURRENT FRC~JI Voo.
PAGE MODE VS. SUPPLY VOLTAGE
20r------r----~------._----~

oo

Ta =25"C

>
~

tC(PG)=250ns

15~----~--~~~----+-----~

B:

RAS, CAS, R/W INPUT VOLTAGE
VIH It VIL I VS. SUPPLY VOLTAGE
;- 2.5
...J

Ta=25"C

->
! 2.0
>

I
~l(min)

-~

f--

d'i~
~ ~

3~ 10~--~~~--~~~~J-----~

>-

0:
tL

5~----~----~------~----~

W
l?

!!:
"a: 1.0

Ij

>
« «
tL

11

13

12

14

SUPPLY VOLTAGE VOO(V)

ui

l«a:

0.5

20
Voo= 13.2V, VBB= -4.5V

o
o

::2;

~

15
tC(PG; =375ns

f-

i5~

"T-

§~

tC(PG)-500ns

u ~ 10
>- 0

...J

13

14

~IH1(mint

LJ.J
l?

«
f-

LJ.J

?;

-

LJ.J

0

LJ.J

l?

~

tL

--

VIL l(max)

B

=>

I

Voo= 12V

> 1.5

(/) 0

!!:

;r:

5

> «
tL
«

1.0

Ij
o
o

50

25

75

100

AMBIENT TEMPERATURE Ta ("C)

Ta =25"C I

>

Voo=13.2V

::2;

VBB= -4.5V

15

i5~

§~

u'-;;; 10
>- 0

~.9

V

/

V

./
V

-4.5

-5.0

-5.5

-6.0

~

RAS, CAS, R/W INPUT VOLTAGE
V 1H1, VIL1 VS. AMBIENT TEMPERATURE

->

Voo= 12J
VBB= -5V

t---.

VIH1(min)

LJ.J
l?

T

«

f-

B

VIL1(max)

> 1.5

f-

~

'/

LJ.J

0.5
-4.0

...J

f-

(/)0

«

2:. 2.5

20

o
o

ui
l a:

SUPPLY VOLTAGE VBB(V)

AVERAGE SUPPLY CURRENT FROM Voo.
PAGE MODE VS. FREQUENCY

~ ~

Ta=25"C'

->
! 2.0
>

a:E

~

12

RAS, CAS, R/W INPUT VOLTAGE
VIHI, VILI VS. SUPPLY VOLTAGE

f-

~ ~

11

;- 2.5

,

tc (PG) - 250ns

>

10

SUPPLY VOLTAGE VOO(V)

AVERAGE SUPPLY CURRENT FROM Voo.
PAGE MODE VS. AMBIENT TEMPERATURE

=>

VIL1(max)
i--

0
0

iii ~
LJ.J

......-

-

~ ~
Cl:

I

VBB= -5V

?;

!!:

;r:

5

a::

LJ.J
LJ.Jl?

1.0

Ij

> «
«
tL

o
o

ui 0.5

2

«

l a:

0

25

50

75

100

AMBIENT TEMPERATURE Ta( "C)

FREOUENCY f(¢» (MHz)

• MITSUBISHI
.... ELECTRIC

2-23

MITSUBISHI LSls

MSK4116P-2, P-3
16 384-BIT (16 384-WORD BY 1-BIT) DYNAMIC RAM

INPUT VOLTAGE Ao-As. DIN VS.
SUPPLY VOLTAGE VIH2. VIL2

2

2 .5

INPUT VOLTAGE Ao - As. DIN VS.
AMBIENT TEMPERATURE VIH2. VIL2
;-2.5

I

~

Ta=25"C

->

N

.J

->

Vss= -5V

~2.0

->w

.IVIL2(max)

ir
~

VIH2(min)

~

~
~ 1.5

----

-

f-

->
w

~2(min)

-

~~ 1.5

~2.0

j
Voo= 12V
\/ss= -5V

VIL2(max)

f-

::::>
0..

~

61. 0

61.0

~
I
~0.5

iI
10

11

12

~o. 5

13

14

SUPPLY VOLTAGE VOO(V)

25

75

50

AMBIENT TEMPERATURE Ta ( °C )

SUPPLY CURRENT VS. TIME
RAS/CAS CYCLE
LONG RAS/CAS CYCLE

INPUT VOLTAGE Ao - As. DIN VS.
SUPPLY VOLTAGE VIH2. VIL2

RAS ONLY CYCLE

2.5

2:-

Ta=25"C

~

->

I

Voo= 12V

RAS

E

CAS

U;

.:; 2.0

->

VIH2(min)

w

~

g

100

(mA)

VIL2(max)

::::>

c.
~

0
0
0
rE ISS
0
(mA)-2 0
u
-4 0
f-

~

z 1. 0

0'

10 0
~ 00
(mA) ~ 0
0
0

§; I ss

~

(f)

~O. 5
-4.0

--4.5

-5.0

-5.5

-6.0

NORMALIZED ACCESS TIME VS.
LOAD CAPACITANCE
1.2

I~

51. 1

1.0

~

~

----

~

0.9

o. 8

50

100

150

SOns/DIVISION
TIME t

SUPPLY VOLTAGE VSS(V)

200

LOAD CAPACITANCE (pF)

2-24

~g
~g

§

I-

• MITSUBISHI
..... ELECTRIC

M+H-

lJplUL

o

I

1.5

en
~

II

t-tt-I't-t-t-t100

(f)

I

«

«

100

MITSUBISHI LSls

MSK4164P-1S, P-20
65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

DESCRIPTION

PIN CONFIGURATION (TOP VIEW)

This is a family of 65 536-word by 1-bit dynamic RAMs,
fabricated with the high performance N-channel silicon-gate
MOS process, and is ideal for large-capacity memory
systems where high speed, low power dissipation, and low
costs are essential. The use of double-layer polysilicon
process technology and a single-transistor dynamic storage
cell provide high circuit density at reduced costs, and the
use of dynamic circuitry including sense amplifiers assures
low power dissipation. Multiplexed address inputs permit
both a reduction in pins to the standard 16-pin package
configuration and an increase in system densities. The
M5K4164P operates· on a 5V power supply using the
on-chip substrate bias generator.

VSS

REFRESH INPUT

(QV)

15 +-CAS ~~~g~EN 1~~8~ESS

DATA INPUT
WRITE
CONTROL INPUT

14 -+ Q

DA T A OUTPUT

ROW ADDRESS
STROBE INPUT

ADDRESS INPUTS

(5vl

ADDRESS INPUTS

Vee

• If the pin 1 (REF) function is not used, pin 1 may be left open (not connect).

FEATURES

Outline 16P4

• Performance ranges
Access time
(max)
(ns)

Cycle time
(min)
(ns)

Power dissipation
(typ)
(mW)

M5K4164P-15

150

260

200

M5K4164P-20

200

330

170

Type name

•
•
•

• Standard 16-pin package
• Single 5V ±10% supply
• Low standby power dissipation:
22mW (max)
• Low operating power dissipation:
M5K4164P-15
275mW (max)
M5K4164P-20
250mW (max)
• Unlatched output enables two-dimensional chip selection and extended page boundary
• Early-write operation gives common I/O capability
• Read-modify-write, RAS-only refresh, and page-mode
capabi lities

•
•
•
•

All input terminals have low input capacitance and are
directly TTL-compatible
Output is three-state and directly TTL-compatible
128 refresh cycles every 2ms
(16K dynamic RAMs M5K4116P, S compatible)
Pin 1 controls automatic- and self-refresh mode
CAS controlled output allows hidden refresh, hidden
automatic refresh and hidden self-refresh
Output data can be held infinitely by CAS
Interchangeable with
Mostek's
MK4164
and
Motorola's MCM 6664 in pin configuration

APPLICATION
•

Main memory unit for computers

BLOCK DIAGRAM
DATA INPUT
WRITE CONTROL INPUT

COL~~R~:f?~~0f

Vee (5V)

CAS

ROW ADDRESS
STROBE INPUT

V 55 (OV)

REFRESH INPUT
MEMORY CELL
(64 ROWS X 256 COLUMNS)
SENSE REFRESH AMPLIFIER
MEMORY CELL
(64 ROWS X 256 COLUMNS)
COLUMN DECODER
MEMORY CELL
(64 ROWS X 256 COLUMNS)

ADDR ESS INPUTS

SENSE REFRESH AMPLIFIER

MEMORY
(64 ROWS
X 256 CELL
COLUMNS)
ADDRESS
MULTIPLEX

COLUMN DECODER

14

Q

DATA OUTPUT

J'

L-_______________ _________________ ________________ _

• MITSUBISHI
"'ELECTRIC

2-25

II

MITSUBISHI LSls

MSK4164P-15, P-20
65 536·BIT (65 536·WORD BY I-BIT) DYNAMIC RAM
FUNCTION
The M5K4164P provides, in addition to normal read, write,
and read-modify-write operations, a number of other
functions, e.g., page mode, RAS-only refresh, and delayedwrite. The input conditions for each are shown in Table 1.

Table 1 I nput conditions for each mode
inputs
Operation

RAS

CAS

W

0

Output
Row
address

Column
address

REF

Q

Refresh

Read

ACT

ACT

NAC

ONC

APO

APO

NAC

VLO

YES

Write

ACT

ACT

ACT

VLO

APO

APO

NAC

OPN

YES

Read-modify-write

ACT

ACT

ACT

VLO

APO

APO

NAC

VLO

YES

RAS"-only refresh

ACT

NAC

ONC

ONC

APO

ONC

NAC

OPN

YES
YES

Hidden refresh

ACT

ACT

ONC

ONC

APO

ONC

NAC

VLD

Automatic refresh

NAC

ONC

ONC

ONC

ONC

ONC

ACT

OPN

YES

Self refresh

NAC

ONC

ONC

ONC

ONC

ONC

ACT

OPN

YES

I

Hidden automatic refresh

NAC

ACT

ONC

ONC

ONC

ONC

ACT

VLO

YES

Hidden self refresh

NAC

ACT

ONC

ONC

ONC

ONC

ACT

VLO

YES

Standby

NAC

ONC

ONC

ONC

ONC

ONC

NAC

OPN

NO

I

Remarks

Page mode
identical except
refresh is NO.

Note: ACT: active, NAC : nonactive, ONC: don't care, VLO : valid, APO : applied, OPN : open.

SUMMARY OF OPERATIONS
Addressing
To select one of the 65 536 memory cells in the M5K4164P
the 16-bit address signal must be multiplexed into 8 address
signals, which are then latched into the on-chip latch by
two externally-applied clock pulses. First, the negativegoing edge of the row-address-strobe pulse (RAS) latches
the 8 row-address bits; next, the negative-going edge of the
column-address-strobe pulse (CAS) latches the 8 columnaddress bits. Timing of the RAS and CAS clocks can be
selected by either of the following two methods:
1. The delay time from RAS to CAS td (RAS-CAS) is set
between the minimum and maximum values of the
limits. In this case, the internal CAS control signals are
inhibited almost until td(RAS-CAS)max ('gated CAS'
operation), The external CAS signal can be applied with
a margin not affecting the on-chip circuit operations, e.g.
access ti me, and the address inputs can be easily changed
from row address to column address.
2. The delay time td(RAS-CAS) is set larger than the
maximum value of the limits. In this case the internal
inhibition of CAS has already been released, so that the
internal CAS control signals are controlled by the
externally applied CAS, which also controls the access
timp.,

Data Input
Date to be written into a selected cell is strobed by the later.
of the two negative transitions of W input and CAS input.
Thus when the W input makes its negative transition prior
to CAS input (early write), the data input is strobed by
CAS, and the negative transition of CAS is set as the
reference point for set-up and hold times. In the read-write

•

2 -26

or read-modify-write cycles, however, when the W input
makes its negative transition after CAS, the W negative
transition is set as the reference point for setup and hold
times.

Data Output Control
The output of the M5K4164P IS In the high-impedance
state when CAS is high. When the memory cycle in progress
is a read, read-modify-write, or a delayed-write cycle, the
data output will go from the high-impedance state to the
active condition, and the data in the selected cell will be
read. This data output will have the same polarity as the
input data. Once the output has entered the active
condition, this condition will be maintained until CAS goes
high, irrespective of the condition of RAS.
The output will remain in the high-impedance state
throughout the entire cycle in an- early-write cycle.
These output conditions, of the M5K4164P, which can
readily be changed by controlling the timing of the write
pulse in a write cycle, and the width of the CAS pulse in a
read cycle, offer capabilities for a number of applications,
as follows.

1. Common I/O Operation
If all write operations are performed in the early-write
mode, input and output can be connected directly to give a
common I/O data bus.

2. Data Output Hold
The data output can be held between read cycles, without
lengthening the cycle time. This enables extremely flexible
clock-timing settings for RAS and CAS.

MITSUBISHI

~ELECTRIC

MITSUBISHI LSls

MSK4164P-15, P-20
65 536-BIT (65 536-WORD BY I-BIT) DYNAMIC RAM

3. Two Methods of Chip Selection

4. Self-Refresh

Since the output is not latched, CAS is not required to keep
th8 outputs of selected chips in the matrix in a highimpedance state. This means that CAS and/or RAS can
both be decoded for chip selection.

The other function of pin 1 (REF) is self-refresh. Timing
for self-refresh is quite similar to that for automatic refresh.
As long as RAS remains high and REF remains low, the
M5K4164P will refresh itself. This internal sequence repeats
asynchronously every 12 to 16 /J.S. After 2 ms, the on-chip
refresh address counter has advanced through all the row
addresses and refreshed the entire memory. Self-refresh is
primarily intended for trouble free power-down operation.
For example, when battery backup is used to maintained
data integrity in the memory. REF may be used to place
the device in the self-refresh mode with no external timing
signals necessary to keep the information alive.
In summary, the pin 1 (REF) refresh function gives the
user a feature that is free, save him hardware on the board,
and in fact, will simplify his battery backup procedures,
increase his battery life, and save him overall cost while
giving him improved system performance.
There is an internal pullup resister (~ 3Mr2) on pin 1, so
if the pin 1 (REF) function is not used, pin 1 may be left
open (not connect) without affecting the normal operations.

4. Extended-Page Boundary
By decoding CAS, the page boundary can be extended
beyond the 256 column locations in a single chip. In this
case, RAS must be applied to all devices.

Page-Mode Operation
This operation allows for mUltiple-column addressing at the
same row address, and eliminates the power dissipation
associated with the negative-going edge of RAS, because
once the row address has been strobed, RAS is maintained.
Also, the time required to strobe in the row address for the
second and subsequent cycles is eliminated, thereby decreasing the access and cycle times.

Refresh
Each of the 128 rows (Ao '" A 6 ) of the M5 K4164P must be
refreshed every 2 ms to maintain data. The methods of
refreshing for the M5K4164P are as follows.

1. Normal Refresh
Read cycle and Write cycle (early write, delayed write or
read-modify-write) refresh the selected row as defined by
the low order (RAS) addresses. Any write cycle, of course,
may change the state of the selected cell. Using a read,
write, or read-modify-write cycle for refresh is not recommended for systems which utilize "wire-OR" outputs since
output bus contention will occur.

2. RAS Only Refresh
A RAS-only refresh cycle is the recommended technique
for most applications to provide for data retention. A
RAS-only refresh cycle maintains the output in the
high-impedance state with a. typical power reduction of
20% over a read or write cycle.

3. Automatic Refresh
Pin 1 (R EF) has two special functions. The M5K4164P
has a refresh address counter, refresh address multiplexer
and ,refresh timer for these operations. Automatic refresh is
initiated by bringing REF low after RAS has precharged
and is used during standard operation just like RAS-only
refresh, except that sequential row addresses from an
external counter are no longer necessary.
At the end of automatic refresh cycle, the internal
refresh address counter will be automatically incremented.
The output state of the refresh address counter is initiated
by some eight REF, RAS or RAS/CAS cycle after power is
appl ied. Therefore, a special operation is not necessary to
initiate it.
RAS must remain inactive during REF activated cycles.
Likewise, REF must remain inactive during RAS generated
cycle.

5. Hidden Refresh
A features of the M5K4164P is that refresh cycle may be
performed while maintaining valid data at the output pin
by extending the CAS active time from a previous memory
read cycle. This feature is refered to as hidden refresh.
Hidden refresh is performed by holding CAS at V 1L and
taking RAS high and after a specified precharge period,
executing a RAS-only cycling, automatic refresh and
self-refresh, but with CAS held low.
The advantage of this refresh mode is that data can be
held valid at the output data port indefinitely by leaving
the CAS asserted. In many applications this eliminates the
need for off-chip latches.

Power Dissipation
Most of the circuirty in the M5K4164P is dynamic, and
most of the power is dissipated when addresses are strobed.
Both RAS and CAS are decoded and applied to the
M5K4164P as chip-select in the memory system, but if
RAS is decoded, all unselected devices go into stand-by
independent of the CAS condition, minimizing system
power dissipation.

Power Supplies
The M5K4164P operates on a single 5V power supply.
A wait of some 500/J.s and eight or more dummy cycle is
necessary after power is applied to the device before
memory operation is ach ieved.

• MITSUBISHI
"ELECTRIC

2-27

II

MITSUBISHI LSls

MSK4164P-1S, P-20
65 536-BIT (65 536·WORD BY 1-BIT) DYNAMIC RAM
ABSOLUTE MAXIMUM RATINGS
Symbol

Paramater

Limits

Conditions

Unit

VCC

Supply voltage

VI

Input voltage

Vo

Output voltage

-1-7

V

10

Output current

50

mA

700

mW

0-70

·C

With respect to Vss

Pd

Power dissipation

Topr

Operating free-air temperature range

Tstg

Storage temperature range

Ta =25·C

VCC
Vss

Supply voltage

VIH

High·level input voltage, all inputs

VIL

Low-level input voltage, all inputs

V

·C

(Ta=0-7O"C. unless otherwise noted) (Note 1)
Limits

Parameter
Supply voltage

V

-1-7

-65-150

RECOMMENDED OPERATING CONDITIONS
Symbol

-1-7

Min

Unit

Nom

Max

4.5

5

5.5

V

0

0

0

V

2.4

6.5

V

-2

0.8

V

Note 1: All voltage values are with respect to Vss

ELECTRICAL CHARACTERISTICS
Symbol

± 10%.

(Ta =0-7O"C. Vcc=5V

Vss=OV. unless otherwise noted) (Note 2)

Test conditions

Parameter

Limits
Min

Typ

Max

Unit

VOH

High-level output voltage

10H = -5mA

2.4

VCC

VOL

Low·level output voltage

IOL=4.2mA

0

0.4

10Z

Off·state output current

Q floating

-10

10

).JA

II

Input current

I CCl(AV)

Average supply current from Vee,
operating (Note 3, 4)

OV~VOUT~5.5V

OV~VIN~6.5V • All other pins; OV

-10

V
V

10

).JA

M5K4164P- 15

RAS. CAS cycling

50

mA

M5K4164P-20

t CR =t CW = min output open

45

mA

4

mA

40

mA

ICC2

Supply current from Vee, standby

I CC3(AV)

Average supply current from Vee,
refreshing (Note 3)

M5K4164P- 15

RAS cycling

M5K4164P-20

t C (REF)= min, output open

35

mA

I CC4(AV)

Average supply current from Vee,
page mode (Note 3, 4)

M5K4164P-15

RAS = VIL. CA S cycling

40

mA

M5K4164P-20

tcpo=min. output open

35

mA

I CC5(AV)

Average supply current from Vee,
automatic refreshing (Note 3)

M5K4164P-15

RAS=VIH. REF cycling

40

mA

M5K4164P-20

tc (REF)=min. output open

35

mA

8

mA

RAS =VIH output open

ICC6(AV)

Average supply current from Vee, self refreshing

01 (A)

Input capacitance, address inputs

01

Input capacitance, data input

(0)

CAS=VIH

RAS=VIH. REF =VIL
output open

VI=VSS

01 (W)

Input capacitance, write control input

f=lMHz

01 (RAS)

I nput capacitance, RAS input

VI=25mVrms

01 (CAS)

5

pF

5

pF

7

pF

10

pF

Input capacitance, CAS input

10

pF

CI (REF)

Input capacitance, REF input

10

pF

Co

Output capacitance

7

pF

Note 2:
3:
4:

2

28

VO=VSS. f= 1MHz. VI=25mVrms

Current flowing into an IC is positive; out is negative.
I CCI (AV). I CC3(AV). I CC4(AV) and I CC5(AV) are dependent on cycle rate. Maximum current is measured at the fastest cycle rate.
I CC I (AV) and I CC4(AV) are dependent on output loading. Specified values are obtained with the output open.

• MITSUBISHI
.... ELECTRIC

MITSUBISHI LSls

MSK4164P-1S, P-20
65 536·BIT (65 536·WORD BY I-BIT) DYNAMIC RAM
TIMING REQUIREMENTS (For Read, Write, Read-Modify-Write, Refresh, and Page-Mode Cycle)
(Ta =0-70·C, Vcc=5V

± 10%,

VSS=OV,

unless otherwise noted, See notes 5, 6and 7)
M5K4164P-15

Symbol

Alternative

Parameter

M5K4164P-20

Limits

Symbol
Min

Unit

Limits
Max

Min

Max

tcRF

Refresh cycle time

t REF

t W(RASH)

RAS high pulse width

t RP

100

t W(RASL)

RAS low pulse width

t RAS

150

t W(CASL)

CAS low pulse width

tCAS

75

t W(CASH)

CAS high pulse width

t CPN

35

40

ns

t h (RAS-CAS)

CAS hold time after RAS

tCSH

150

200

ns

t h (CAS-RAS)

RAS hold time after CAS

t RSH

75

100

ns

td (CAS-RAS)

Delay time, CAS to RAS

(Note g)

tCRP

-20

-20

t d (RAS-CAS)

Delay time, RAS to CAS

(Note 10)

t RCD

25

(Note 8)

2

2
120

ms
ns

10000

200

10000

ns

00

100

00

ns

75

ns

30

100

ns

t su (RA-RAS)

Row address setup time before RAS

t ASR

0

0

t su (CA-CAS)

Column address setup time before CAS

tAsc

-5

-5

ns

t h (RAS-RA)

Row address hold time after RAS

t RAH

20

25

ns
ns

t h (CAS-CA)

Column address hold time after CAS

t CAH

25

35

t h (RAS-CA)

Column address hold time after RAS

tAR

95

120

Transition time

h

t THL
t TLH
Note 5:
6:
7:
8:
g.
10:

3

35

ns

ns

3

50

ns

An initial pause of 500ps is required after power-up followed by a.ny eight REF, RAS or RAS/CAS cycles before proper device operation is achieved.
The switching characteristics are defined as t THL = t TLH = 5n s.
Reference levels of input signals are VI H min. and VI L max. Reference levels for transition time are aiso between VI H and VI L.
Except for page-mode.
td(CAS-RAS) requirement is only applicable for RAS/CAS cycles preceeded by a CAS only cycle (i.e., For systems where CAS has not been decoded with RAS)
Operation within the td (RAS-CAS) max limit insures that ta (RAS) max can be met. td (RAS-CAS)maX is specified reference point only;if
td (RAS-CAS) is greater than the specified td (RAS-CAS) max limit. then access time is controlled exclusively by ta(CAS)'
td (RAS-CAs)mln = th (RAS-RA)min

+ 2t THL(t TLH) + t su (CA-CAS)min.

SWITCHING CHARACTERISTICS
Read Cycle

(Ta =0-70·C, Vcc=5V

10%, VSS=OV, unless otherwise noted)

Alternative

Parameter

Symbol

±

M5K4164P-15

M5K4164P-20

Limits

Limits

Symbol
Min

Max

Unit
Max

Min

tcR

Read cycle time

t RC

260

330

tsu (R-CAS)

Read setup time before CAS

t RCS

0

0

ns

th (CAS-R)

Read hold time after CAS

t RCH

0

0

ns

th(RAS-R)

Read hold time after RAS

(Note 11)

tRRH

20

tdls (CAS)

Output disable time

(Note 12)

t OFF

0

ta (CAS)

CAS access time

(Note 13)

t CAC

75

100

ns

ta (RAS)

RAS access time

(Note 14)

t RAC

150

200

ns

Note
Note
Note
Note

11
12:
13:
14'

(Note 11)

ns

25

40

ns

0

50

ns

Either t h (RAS- R) or t h (CAS- R) must be satisfied for a read cycle.
tdls (CAS)maX defines the time at which the output achieves the open circuit condition and is not reference to VOH or VOL.
This is the value when td (RAS-CAS)~td (RAS-CAS)max. Test conditions; Load = 2T TL, C L = 100pF
This is the value when td (RAS-CAS)< td (RAS-CAS)max. When td (RAS-CAS)~td (RAS-CAS)maX, ta (RAS) will increase by the amount that
td (RAS-CAS) exceeds the value shown Test conditions; Load = 2T TL, CL = 100pF

Write Cycle
Symbol

Alternative

Parameter

M5K4164P-15

M5K4164P-20

Limits

Unit

Limits

Symbol
Min
tcw

Write cycle time

tsu (W-CAS)

Write setup time before CAS

th (CAS-W)

Max

Min

Max

260

330

twcs

-10

-10

ns

Write hold time after CAS

tWCH'

45

55

ns

th (RAS-W)

Write hold time after RAS

t WCR

95

120

ns

th (W-RAS)

RAS hold time after write

t RWL

45

55

ns

th (W-CAS)

CAS hold time after write

tcwL

45

55

ns

tW(W)

Write pulse width

twp

45

55

ns

tsu (D-CAS)

Data-in setup time before CAS

t OS

0

0

ns

th (CAS-D)

Data-in hold time after CAS

t DH

45

55

ns

th (RAS-D)

Data·in hold time after RAS

tDHR

95

120

ns

t RC
(Note 17)

• MITSUBISHI
.... ELECTRIC

ns

2-29

II

MITSUBISHI LSls

MSK4164P-1S, P-20
65 536-BIT (65 536-WORD BY I-BIT) DYNAMIC RAM
Read-Write and Read-Modify-Write Cycles
Alternative
Symbol

Parameter

M5K4164P-15

M5K4164P-20

Limits

Symbol

limits
Max

Min

Min

Unit
Max

tCRW

Read-write cycle time

(Note 15)

tRWC

280

340

ns

tCRMW

Read-modify-write cycle time

(Note 16)

tRMWC

310

390

ns

th (W-RAS)

RAS hold time after write

tRWL

45

55

ns

th (W-CAS)

CAS hold time after write

tCWL

45

55

ns

tW(W)

Write pulse width

twp

45

55

ns

tsu (R-CAS)

Read setup time before CAS

td (RAS-W)

Delay time,

t RCS

0

0

ns

tRWO

120

150

ns

tcwo

60

80

ns

0

0

ns

45

55

RAS to write

(Note 17)

td (CAS-W)

Delay time, CAS to write

(Note 17)

tSU(O-W)

Data-in setup time before write

t os

th (W-O)

Data-in hold time after write

t OH

tdis (CAS)

Output disable time

tOFF

ta (CAS)

CAS access time

(Note 13)

t CAC

ta (RAS)

RAS access time

(Note 14)

t RAC

Note 15:

= td

t CRWmin is defined as tCRW min

0

40

ns

0

50

ns

75

100

ns

150

200

ns

+ th (W-RAS) + tw (RASH) + 3t TLH(tTHL)
= ta (RAs)max + th (W-RAS) + tw (RAS H) + 3t TLH (tTHL)
(RAS-W)

16:

t CRM W min is defined as t CRM W min

17:

tsu (W-CAS). td (RAS-W). and td (CAS-W) do not define the limits of operation, but are included as electrical characteristics only.
When tsu (W-CAS);;;;;tsu (W-CAS)min. an early-write cycle is performed, and the data output keeps the high-impedance state
When td (RAS-W);;;;;td (RAS-W)min. and td (CAS-W);;;;;tsU(W-CAS)min a read-write cycle is performed, and (he data of the selected address will be read out
on the data output.
For all conditions other than those described above, the condition of data output (at access time and until CAS goes back to VI H) is not defined.

Page-Mode Cycle
Alternative
Symbol

Parameter

M5K4164P-15

M5K4164P-20

Limits

Symbol
Min

Limits
Max

Unit
Max

Min

to PGR

Page-mode read cycle ti me

t PC

145

190

ns

to PGW

Page-Mode write cycle time

tpc

145

190

ns

to PGRW

Page-Mode read-write cycle time

-

180

230

ns

to PGRMW

Page-Mode read-modify-write cycle time

-

190

245

ns

tw (CASH)

CAS high pulse width

60

80

ns

t CP

Automatic Refresh Cycle
Alternative
Symbol

Parameter

M5K4164P-15

M5K4164P-20

limits

Symbol

Unit

Limits
Max

Min

Min

Max

to(REF)

Automatic Refresh cycle time

t FC

260

330

ns

td (RAS-REF)

Delay time, RAS to REF

t RFO

100

120

ns

tw (REFL)

REF low pulse width

tFP

60

tw (REFH)

REF high pulse width

t FI

30

30

td (REF-RAS)

Delay time, REF to RAS

t FSR

30

30

ns

tsu (REF-RAS)

REF pulse setup iime before RAS

tFRO

295

360

ns

8000

8000

60

ns
ns

Self-Refresh Cycle
Symbol

Parameter

Alternative

M5K4164P-15

Min
td (RAS-REF)

Delay time, RAS to REF

t RFO

100

tw (REFL)

REF low pulse width

t FBP

8000

td ('REF-RAS)

Delay time, REF to RAS

tFBR

295

2-30

• MITSUBISHI
.... ELECTRIC

M5K4164P-20

Limits

Symbol

Limits
Max

Min

co

8000

Unit
Max

120

360

ns
00

ns
ns

MITSUBISHI LSls

MSK4164P-1S, P-20
65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM
TIMING DIAGRAMS
Read Cycle

(Note 17)

(Note 18)
tOR

II

tW(RASL)
th (RAS-CAS)

-I

th (RAS-CA)

I

th (CAS-RAS)
tW(CASL)

COLUMN
ADDRESS

w

Lta(CAS)---~
--+--+---- tdiS(CAS)

I - - - - - - - - - t a (RAS) - - - - - - - - - - - 4
VOH -

Q

----------HIGH

IMPEDANCESTATE-------~~

DATA VALID

VOL -

Write Cycle (Early Write)

(Note 18)
tow
tW(RASL)

-I

th (RAS-CAS)
VIH

th(RAS-CA)

RAS

. I

VIL
th (CAS- RAS)

tW(RASH)

tW(CASL)

CAS

w

VIH

-

VIL

-

VIH

-

VIL

-~~~~~~~~~~~-----+_---~~~~~~~~~~~~~~~~~~~~~~~L

VIH

0

VIL
r - - - - - - t h (RAS-D)------I
VOH -

Q

VOL -

------------------HIGHIMPEDANCESTATE--------------------

• MITSUBISHI
"ELECTRIC

2-31

MITSUBISHI LSls

'MSK4164P-1S, P-20
65 536·BIT (65 536·WORD BY I-BIT) DYNAMIC RAM
Read-Write and Read-Modify-Write Cycles

(Note 18)

~~-----------------------------tORW/tORMW------------------------------------~

~--------------------------tW(RASL)------------------------------~

~------------------------_t h (RAS-CAS )-----------------------------1

~----_____c---------th (CAS- RAS) -----------------~

- -__~------~---------tW(CASL)----------------~

Ao-A7

w

V,H V,L

-~~~~~X~1I

Q

o

RAS-Only Refresh Cycle

(Note 19)

~---------------------tOR--------------------------~

t - - - - - - - - t W(RASL) ---------i

VOH -

Q

Note 17

VOL

_-----------------HIGH

~

IMPEDANCE

STATE------------------

Note 18, REF = V,H
Indicates the don't care input
19, CAS=REF=V,H,

~

2-32

The center-line indicates the high-impedance state

• MITSUBISHI
.... ELECTRIC

W, A7,

0 =don'tcare,

MITSUBISHI LSls

MSK4164P-1S, P-20
65 536-BIT (65 536-WORD BY I-BIT) DYNAMIC RAM

Page-Mode Read Cycle

(Note 18)

II

~-----------------------------tW(RASL)----------------------------------~

th(RAS-CAS)~

I

t h (RAS-CA)4

td (CAS-RAS)I

I

td (RAS-CAS)

Q

VOH VOL _---HIGH IMPEDANCE STATE

--t----t-.. t h (RA S- R )

~tW(RAS-R)
w

Page-Mode Write Cycle

(Note 18)

~-------------------------------tW(RASL)-------------------------------__~

th(RAS-CAS)--~
th (RAS-CA)i
td (CAS-RAS)

I

I
I.

td (RAS-CAS)

o

• MITSUBISHI
.... ELECTRIC

2-33

MITSUBISHI LSls

MSK4164P-1S, P-20
65 536-BIT (65 536-WORD BY 1-BIT) DYNAMIC RAM

Automatic Pulse Refresh Cycle (Multiple Pulse)

(Note 20)

td (REF-RAS)

Automatic Pulse Refresh Cycle (Single Pulse) (Note 20)

tsU(REF-RAS)

td ( RAS- REF)

td (REF-RAS)
tw( REFL)

REF

Self-Refresh Cycle
RAS

(Note 20)

VIH---4=
VIL -

: } -

~F-RAS)

td(RAS-REF)

REF

V,H V'L

-

~

c~----_tW_(REF_L)----~~Jf

_ __ _

__

~----------------------------------------~

Note 20. CAS, Addresses, D and Ware don't care.

Hidden Automatic Pulse Refresh Cycle
READ CYCLE

REFRESH CYCLE

REFRESH CYCLE

w

VIH

REF

-

-----t---t------~.~~~~

VIL
tdis(CAS)

ta(RAS)

Q

VOH VOL ----------~+