1982_National_Transistors_Databook 1982 National Transistors Databook

User Manual: 1982_National_Transistors_Databook

Open the PDF directly: View PDF PDF.
Page Count: 560

Download1982_National_Transistors_Databook 1982 National Transistors Databook
Open PDF In BrowserView PDF
TRANSISTOR
DATA BOOK

NPN Transistors
PN P Transistors
Junction Field Effect Transistors
Selection Guides
Pro Electron Series
Consumer Series
NA/NB/NR Series
Process Characteristics
Double-Diffused Epitaxial Trans~stors
Process Characteristics
Power Transistors
Proc~ss Characteristic$ JFETs
JFET Applications

N~t~s

Appendices
NationalSemiconduclorCorporation

2900 Semiconductor Drive

Sarita C'lara. California 95051

Tel: (408) 737·5000·

TWX: (910)339·9240

National does not assume any responsibility for use of any circuitry described, no circliit patent licenses are implied and National reserves the right at any, ~1_':Ie without notieeta change said circuitry.

* aftar June 6, 1982, call (408) 721·5000

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVALOFTHE PRESIDENT OF NATIONAL SEMICONDUCTOR
CORPORATION. As used herein:
1. Life support devices or systems are devices or·systems
which, (a) are intended for surgical implant into the
body, or (b) support or sustain life, and whose failure to
perform, when properly used in accordance with in·
structions for use provided in the labeling,can be rea·
sonably expected to result in a significant injury to the
user.

2. A critical component is any component of a life support
device or syste'm whose failure to perform can be rea·
sonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.

The National Anthem®, Datachecker®, Maxi·ROM® and
TRI·STATE® are registered trademarks of National
Semiconductor Corp.

MICROBUS™, MICROWIReM, MICRO·DAC™, MST™,
NURAM™, p2CMOS™, Positalker™, QUIKLOOK™,
Rat™, Starlink™, Starplex™, Starplex II™, TRI.CODe M,
TRI·POLy™, )(MOSTM, ZSTAR™, 883BIRETS™,
883SIRETS™, and XPU™ are trademarks of National
Semiconductor Corp.

Abuseable™, BI·FET™ BI.FET IITM COPS™
QIGITALKER™, DNR™, E.Z.L1NK™, HEX3000™, ISeM:

© National Semiconductor Corporation
2900 Semlconduct~r Drive, Santa Clara, California 95051, (408) 737·5000ITWX: (910) 339·9240
National does not assume any responsibility for use of any Circuitry described; no circuit patent licenses are implied, and National reserves the right, at any
time without notice, to change said circuitry.
Manufactured under on8.or more of the follo.wing U.S. patents:
3083262,3189758,3231797,3303356,3317671, 3323071, 3381071, 3408542, 3421025, 3426423, 3440498, 3518750, 3519897, 3557431, 3560765, 3566218:
3571630,3575609,3579059,3593069,3597640, 3607469; 3617859, 3631312, 3633052, 3638131, 36480i'1, 3651565, 3693248.

2

Introduction

If you know the application

National Semiconductor has added many new transistors
and product families since publication of the last databook_ Many have already been vyidely acclaimed by users_

Turn to the selector guide section that begins on page
4-1 and select a potential process type_ Selector guides
as follows:

In addition to small signal and power bipolar and field
effect transistors that have been the mainstay of our catalog, there is a section for multiple field effect transistors_
More part numbers will be added as market needs expand_

Guide
FET Application .... _............ _. . . . . . . ..
RFSelector ..................... _.. _. _....
NPNGeneralPurposeAmplifiers ... _.. _......
NPN-RFAmplifier ..........................
PNPGeneral Purpose Amplifiers .... _.. _. _....
HighSpeedSwitches. _........... _.........
Power Transistors ..................•.......

To keep current on all new National transistors, please
contact your National sales representative or franchised
distributor and ask to be placed on the customer mailing
list.
HOW TO USE THIS CATALOG

Page
4-5
4-13
4-14
4-15
4-16
4-17
4-18

Then refer to the applicable process sheet, which will
give the process/chip performance data and a common
reference part type.

If you know the part/type number
Turn to the standard parts listing which begins on page
8 and find the desired part number_ The electrical
specifications page number will be shown_ The list also
identifies the process number from which that product
is selected and the particular package code in which it
is assembled_ Package codes are cross-referenced to
JEDEC code on page 12-14_

Or one can also refer to the Table of Contents, which is
organized by general applications.
To convert a metal can transistor to a molded epoxy type,
see page 18.
To convert a TO-105/TO-106 product type to a TO-92, see
page 19. To convert a TO-18/TO-5 metal can product type to
a TO-92/TO-237 molded epoxy type, see page 19 .

If performance data is required
Turn to the process data sheet indicated in the standard parts listing_ Process data sheets are indexed in
their appropriate sections by numerical order and
begin on page 8-1,9-1 or 10-1_

Refer to the Package Outlines section beginning on page
12-14 for complete physical dimensions_

3

Table of Contents
Introduction-How to Use This Catalog . . .... ... . . . . . .. . .. .... . . . . . . . . . . . . . .. . .
Transistor Standard Parts List. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .
BipolarTransistor and FET Dice ................... '.' . : . . . .. . . . . . . . . . . . . . . . . . .
Conversion o'f Bipolar Metal Can to Plastic .....................................
Conversion ofTO-105/TO-106 to TO-92 .........................................
Reliability and Quality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3
8
17
18
19
21

Section 1-NPN Transistors
Saturated Switches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. RF Amps and Oscillators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .
Low Level Amps ............................. ,...............................
GeneraIPurposeAmpsandSwitches ............ , .............................
Medium Power. . . . . . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Power. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Darlington. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. . . . . . . ..

1-2
1-6
1-10
1-13
1-27
1-41
1-47

Section 2-PNP Transistors
Saturated Switches ..................................... , . . . . . . . . . . . . . . . . . .
Low Level Amps ................ ; .......................... , . . . .... . . . . . . . . .
General Purpose Amps and Switches. . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .
Medium Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Darlington. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

2-2
2-6
2-8
2-19
2-25
2-30

Section 3-Junction Field Effect Transistors
N-Channel J FETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
P-ChannelJFETs ..................................... .....................

3-2
3-14

Section 4-Selection Guides
Choose the Proper FET .....................................................
FET Process Comparison Curves. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .
FET Application Guide. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Important Parameters by Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
JFETCross ReferenceGuide ................................................
RF Selector Guide ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Transistors NPN GPA Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Transistors NPN RF Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Transistors PN P G PA Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Transistors for High Speed Switching ............ " . . . . . . . . . . . . . . . . . . . . . . . . . . ..
TO·237 Type Power Transistor Selection Guide ............. . . . . . . . . . . . . . . . . . . . ..
TO-202 Type Power Transistor Selection Guide ............. . . . . . . . . . . . . . . . . . . . ..
TO-126 Type Power Transistor Selection Guide ............. . . . . . . . . . . . . . . . . . . . ..
TO-220 Type Power Transistor Selection Guide ............. . . . . . . . . . . . . . . . . . . . ..
Power Process Selection Guide ....... ;................. . . . . . . . . . . . . . . . . . . . ..
Substitution Guide for Non-Listed Power PartTypes ........... :". . . . . . . . . . . . . . . . ..
4

4-2
4-3
4·5
4-7
4-8
4-13
4-14
4-15
4-16
4-17
4-18
4-20
4-22
4-23
4-25
4-26

Table of Contents (Continued)
Section 5-Pro Electron Series
Pro Electron Series (Bipolar) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Pro Eleotron Series (J FET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

5·2
5·37

Section 6-Consumer Series
Consumer Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . .

6·2

Section 7-NA/NB/NR Series
NA/N B Transistor Series Selection Guide ......................................
NA01 (N PN), NA02 (PNP) 800 mA Complementary Power Transistors ................
NA11 (NPN), NA12 (PNP) 1 Amp Complementary Power Transistors .................
NA21 (N PN), NA22 (PN P) 1.5 Alilp Complementary Power Transistors. . . . . . . . . . . . . . ..
NA31 (NPN), NA32(PNP)2AmpComplementary Power Transistors .................
NA41 (N PN), NA42 (PN P) 2.5 Amp Complementary Power Transistors . . . . . . . . . . . . . . ..
NA51 (N PN), NA52 (PNP) 3.5 Amp Complementary Power Transistors . . . . . . . . . . . . . . ..
NA61 (NPN), NA62(PNP) 4.5 Amp Complementary Power Transistors . . . . . . . . . . .. . . ..
NA71 (N PN), NA72 (PNP) 3.5 Amp Complementary Power Transistors . . . . . . . . . . . . . . ..
NB011, 012(NPN), NB021, 022 (PNP)30 mA General Purpose Transistors . . . . . . . . . . . . ..
NB013, 014(NPN), NB023, 024 (PNP)30 mA Low Noise Transistors. . . . . . . . . . . . . . . . . ..
NB111, 112, 113 (NPN), NB121, 122,123 (PNP) 100 mA General Purpose
Transistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
NB211, 212, 213 (NPN), NB221,222, 223 (PNP) 500 mA Medium Current Driver
Transistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
NB311, 312, 313 (NPN), NB321, 322, 323 (PNP) 1.5 Amp Complementary Power
Drivers ................................... '.' . . . . . . . . . . . . . . . . . . . . . . . . . . ..
NR041 (NPN) Low·Level Signal Switching Transistor . . . . . . . . . . . . . . . . . . . . . . . . .. . ...
N R421 (N PN) VH F Ampl ifier/FM Converter Transistor. . . . . . . . . . . . . . . . . . . . . . . . . . . ..
NR431 (NPN) HF Amplifier/FM Converter Transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
NR461 (NPN) Low·Noise RF/IFTransistor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . ..

7·2
7·4
7·8
7·12
7·16
7·20
7·24
7·28
7·32·
7·36
7·40
7·44
7·48
7·52
7·56
7·60
7·64
7·68

Section 8-Process Characteristics Double-Diffused
Epitaxial Transistors
Process02NPNSmaiiSignai ......................•....................... ,.
Process 04 N PN Small Signal ................................................
Process 05 NPN Darlington. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . .
Process 07 NPN Small Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . ..
Process 09 NPN Medium Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . ..
Process 12 NPN MediumPower ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . ..
Process 13 NPN Medium Power ............. : . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . ..
Process 14 NPN Medium Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . ..
Process 16 N PN High Voltage ................... ; . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 17 N PN High Voltage Video Output. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . ..
Process 18 NPN Medium Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. . . ..
Process 19 NPN Medium Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . ..
Process21 NPN HighSpeedSwitch ............ r ...............................
5

8·2
8·4
8·7
8·10
8·13
8·15
8·18
8·20
8·22
8·24
8·26
8·28
8·31

I'

Table of Contents (Continued)
Process 22 N PN Small Sig nal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8·35
Process 23 NPN Small Signal ................................................ 8-38
Process 25 N PN Memory Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8·41
Process 27 N PN Small Signal ................................................ 8-44
Process 37 NPN Medium Power. . . . . . . . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . . .. . . .. 8-47
Process 38 NPN Medium Power. . . . . . . . . . . . . . .. . . . . . . . ... . . . . . . . . . . . . . . . . .. .. 8-50
Process 39 NPN Medium Power. . . . . . . .. . . . . . .. .. . . . . . . . . . .. . . . . . . . . . . . . . . . .. 8·53
Process 40 N PN RF Amp . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8·56
Process 41 NPN UHFAmp/Mixer ............... . . .. . . . . . . . .. . . . . . . . . . . . . . . . .. 8·58
Process 42 NPN RF Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . ... 8·60
Process 43 NPN VHF/UHFOscillator .................................... '" .. .. 8-64
Process 44 NPN AGC-RF Amp ................................................. 8-67
Process45NPNAGC·IFAmp .............................................. :. 8-73
Process 46 NPN RF·IFAmp . . . . . . . . . . . .. . . . .. . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . .. 8-77
Process 47 NPN RF-IFAmp . . . . . . . . . . ... . . . . . .. . • . . . . . . . . . . . . . . . . . .. . . . .... .. 8-80
Process 48 NPN H ighVoltage Video Output. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. 8·84
Process 49 NPN RF Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-87
Process61 PNP Darlington. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . .. 8-90
Process 62 PNP Small Signal ........ : ..................................... '. .. 8-91
Process 63 PNP Medium Power. . . .. . . . . . . . . . . .. . . . . . . .. . . .. . . . . . . . . . . . . . .. . .. 8-94
Process 64 PN PH igh Speed Switch ......... . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .. 8-97
Process 65 PN PH igh Speed Switch ... . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. 8-100
Process66PNPSmaIiSignal. ....................................... ; ........ 8·103
Process 67 PNP Medium Power. .............................................. 8-106
Process68 PNP Medium Power ............................................... 8-108
Process 70 PNPMemory Driver ............................................... 8-110
. Process71 PNPSmaIiSignal. ................................................ 8-113
Process74PNPHighVoitage ................................................ 8~115
Process 76 PN PH igh Voltage Video Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-117
Process 77 PNP Medium Power ............................................... 8-119
Process 78 PNP Medium Power ............................................... 8·122
Process 79 PNP Medium Power ............................................... 8-125

Section 9-Process Characteristics Power Transistors
Process 34 NPN Epitaxial Planar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .
Process 36 N PN Planar High Voltage Epitaxial .............................. '. . . . . .
Process 4A NPN Mesa Epitaxial . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Process4E NPN Mesa Epitaxial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . .. ..
Process4FNPN Mesa Epitaxial .......•......... .......... .... ..... ........ ...
Process 4H N PN Mesa Epitaxial . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process4J NPN Mesa Epitaxial Darlington ......................................
Process 4K N PN Mesa EpitaxialDarlington . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 4P N PN Planar Epitaxial ...............................................
Process 4Q N PN Planar Epitaxial ................' . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
, Process 4R N PN Planar Epitaxial ..............................................
Process5A PNP Mesa Epitaxial ......................... , ................... '.'
Process 5E PN P Mesa Epitaxial ...............................................
Process 5F PNP Mesa Epitaxial ...............................................
6

9·2
9·4
9·7
9-10
9·13
9-16
9-18
9·21
9-23
9·26'
9-28
9-30
9·33
9·36

Table of Contents (Continued)
Process 5J PNP Mesa Epitaxial Darlington. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 5K PN P Mesa Epitaxial Darlington ........................ .............
Process 5P PN P Planar Epitaxial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process5Q PNP Planar Epitaxial ..............................................
Process 5R PNP Planar Epitaxial ..............................................

9-39
9-42
9-44
9-47
9-49

Section 10-Process Characteristics JFETs
Process 50 N-Channel .... . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . ..
Process 51 N-Channel .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process52N-Channel ......................................................
Process 53 N-Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 55 N-Channel ......................................................
Process 58 N-Channel ......................................................
Process 83 N-Channel Monolithic Dual. ........................................
Process 84 N-Channel Monolithic Dual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 86 N-Channel Monolithic Dual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 87 N-Chan nel Analog Switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 88 P-Channel ......................................................
Process 89 P-Channel ......................................................
Process 90 N-Channel .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 92 N-Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 93,N-Channel Monolithic Dual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 94 N-Channel Monolithic Dual. ........ , ...............................
Process 95 N-Channel Monol ithic Dual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 96 N-Channel Monolithic Dual .........................................
Process 98 N-Channel Monolithic Dual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

10-2
10-5
10-7
10-9
10-11
10-13
10-15
10-17
10-19
10-20
10-22
10-24
10-26
10-28
10-30
10-32
10-34
10-36
10-38

-Section 11-JFET Applications Notes
FET Application Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Monolithic Dual FETs vs 2-Chip Dual FETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Why Use Cascode Dual FETs? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
SimpleVHFAnalogSwitches ................................................
Noise of Sources, ................................ ',' . . . . . . . . . . . . . . . . . . . . . . ..
The Noise Figure Fallacy ....................................................
Low Noise FETAmplifiers ...................................................
The Low Noise J FET-The Noise Problem Solver . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . ..
FETCircuitApplications ....................................................
A Novel FET MicropowerVoltage Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ..
A Linear Multiple Gain-Controlled Amplifier. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . ..
Binary/BCD Gain Programmed Amplifiers .... ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
FET Curve Tracer ........ " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

11-2
11-3
11-7
11-9
11-11
11-14
11-16
11-19
11-25
11-36
11-38
11-46
11-49

Section 12-Appendices
Transistor Glossary of Symbols .. : .................... , . . . . . . . . . . . . . . . . . . . . . .. 12-2
JFETGlossaryofSymbols. . . . .. . . . .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. 12-9
NSCPackageCodetoJEDECCode ........................................... 12-14
Package Outlines .......................................................... 12-14
7

Transistor Standard Parts List
Device

Page

Process Pkg

DE!vice

Page

2N2712
2N2714
2N2857
2N2890
2N2891
2N2894
2N2894A
2N2897
2N2904
2N2904A
2N2905
2N2905A
2N2906
2N2906A
2N2907
2N2907A
2N2923
2N2924
2N2925
2N2926
2N3009
2N3011
2N3012
2N3013
2N3015
2N3019
2N3020
2N3053
2N3070
2N3071
2N3072
2N3073
2N3107
2N3108
2N3109
2N3110
2N3115
2N3116
2N3117
2N3120
2N3121
2N3133
2N3134
2N3135
2N3136
2N3209
2N3244
2N3245
2N3246
2N3248
2N3249
2N3250
2N3251
2N3252
2N3253
2N3299
2N3300
2N3301
2N3302
2N3304
2N3329
2N3330
2N3331
2N3332

1-25
1-25
1-6
1-31
1-32
2-2
2-2
1-19
2-8
2-8
2-8
2-8
2-8
2-8
2-8
2-9
1-14
1-14
1-14
1-14
1-4
1-2
2-2
1-4
1-4
1-28
1-28
1-28
3-7
3-7
2-9
2-9
1-28
1-28·
1-29
1-29
1-20
1-20
1-10
2-9
2-9
2-9
2-9
2-9
2-9
2-2
2-4
2-4
1-10
2-2
2-2
2-14
2-14
1-4
1-4
1-20
1,20
1-20
1-20
2:3
3-15
3-15
3-15
3-15

Process Pkg

Device

Page

Process Pkg

,.

2N696
2N697
2N699
2N706
2N708
2N718
2[':1718A
2N722
2N743
2N744
2N753
2N760
2N760A
2N8;34
2N869
2N869A
2N915
2N916
2N9i7
2N!lHi
2N929
2N929A
2N930
2N956
2N995
2N995A
2N1132
2N1420
2N1566
2N1613
2N1711
2N2017
2N2102
2N21Q2.
2N2192A
2N2193
2N2193A
2N2195
2N2195A
2N2218 .
2N2218A
2N2219
2N2219A
2N2221
2N2221A
2N2222
2N2222A
2N2243
2N2243A
2N2270
2N2369
2N2369A
2Ng484
2N2509
2N2510
2N2511
2N2586
2N2ElO4
2N2605
2N2608
2N2609
2N2657
2N2658
2N2696

1-18
1-18
1-27
1-2
1-3
1-18
1-18
2-8
1-2
1-2
1-2
1-10
1-10
1-2
2-2
2-2
1-23
1-23
1-7
1-7
1-10
1-10
1-10
1-18
2-2
2-2
2-8
1-18
1-18
1-27
1-27
1-27
1-27
1-27
1-27
1-27
1-28
1-28
1-28
1-18
1-18
1-19
1-19
1-19
1-19
1-19
1-19
1-28
1-28
1-28
1-2
1-2
1-10
1-10
1-10

i-tO
1-10
2-6
2-6
3-15
3-15
1-31 .
1-31
2-8

19
19
12
21
22
19
19
63
21
21
21
07
07
21
64
64
23
23
43
43
07
07
07
19
64
64
63
19
19
12
12
12
12
12
12
.12
12
12
12
19
19
19
19
19
19
19
19
12
12
12
21
21
07
07
07
07
07
62
62
89
88
34
34
63

10
10
10
18
18
02
02
02
18
18
18
02
02
18
18
18
02
02
25
25
02
02
02
02
18
18
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
02
02
02
02
10
10
10
18
18
02
02
02
02
02
06
06
11
11
10
10
02

8

27
27
42
34
34
64
64
19
63
63
63
63
63
63
63
63
04
04
04
04
22
21
64
22
25
12
12
12
52
52
63
63
12
12
12
14
19
19
07
63
63
63
63
63
63
64
70
70
07
64
.64
66
66
25
25
19
19
19
19
65
89
89
89
89

94
94
25
10
10
18
18
02
10
10
10
10
02
02
02
02
94
94
. 94
94
18
18
18
18
17
10
10
10
02
02
10
10
10
10
10
10
02
02
02
02
02
02
02
02
02
18
17
17
02
18
18
02
02
17
17
10
10
02
02
18
23
23
23
23

2N3368
2N3369
2N3370
2N3390
2N3391
2N3391A
2N3392
.2N3393
2N3394
2N3395
2N3396
2N3397
2N3398
2N3414
2N3415
2N3416
2N3417
2N3440
2N3444
2N3451
2N3458
2N3459
2N3460
2N3467
2N3468
2N3478
2N3502
2N3503
2N3504
2N3505
2N3545
2N3546
2N3547
2N3548
2N3549.
2N3550
2N3563
2N3564
2N3565
2N3566
2N3567
2N3568
2N3569
2N3576
2N3600
2N3605
2N3606
2N3607
2N3638
2N3638A
2N3639
2N3640
2N3641
2N3642
·2N3643
2N3644
2N3645
2N3646
·2N3662
2N3663
2N3665
2N36~6

2N3678
2N3684

3-7
3-7
3-7
1-14
1-14
1-14
1-14
1-14
1-25
1-14
1-14
1-14
1-15
1-20
1-15
1-15
1-15
1-32
1-4
2-3
3-7
;3-7
3-7
2-4
2"5
1-6
2-9
2-10
2-10
2-10
2-2
2-3
2-6
2-6
2-6
2-6
1-7
1-7
1-11
1-30
1-30
1-29
1-3·0
2-3
1-6
1-2
1-2
1-2
2-10
2-10
2-3
2-3
1-20
1-20
1-20
2-10
2-10
1-4
1-7
1-7
1-29
1-29
1-20
3-7

52
52
52
04
04
04
04
04
27
04
04
04
04
19
04
04
04
36
25
65
52
52
52
70
70
42
63
- 63
63
63
64
64
62
62
62
62
43
43
07
13
13
12
13
64
42
21
21
21
63
63
65
65
19
19
19
63
63
22
43
43
12
12
19
52

02
02
02
94
94
94
94
94
94
94
94
94
94
94
94
94
94
10
17
18
02
02
02
17
17
25
10
10
02
02
18
18
02
02
02
02
92
92
92
92
92
92
92
18
25
94
94
94
92
92
92
92
92
92
92
92
92
92
94
94
10
10
10
25

Transistor Standard Parts List (Continued)
Device
2N3685
2N3686
2N3687
2N3691
2N3692
2N3693
2N3694
2N3700
2N3702
2N3703
2N3704
2N3705
2N3706
2N3707
2N3708
2N3709
2N3710
2N3711
2N3721
2N3724
2N3724A
2N3725
2N3725A
2N3742
2N3794
2N3799
2N3819
2N3820
2N3821
2N3822
2N3823
2N3824
2N3825
2N3827
2N3858
2N3858A
2N3859
2N3859A
2N3860
2N3877
2N3877A
2N3900
2N3900A
2N3901
2N3903
2N3904
2N3905
2N3906
2N3921
2N3922
2N3932
2N3933
2N3934
2N3935
2N3945
2N3946
2N3947
2N3954
2N3954A
2N3955
2N3955A
2N3956
2N3957
2N3958

Page
3-7
3-7
3-7
1-23
1-23
1-25
1-25
1-29
2-10
2-10
1-16
1-16
1-16
1-11
1-11
1-11
1-11
1-11
1-25
1-4
1-4
1-4
1-5
1-38
1-16
2-6
3-4
3-15
3-7
3-7
3-4
3-2
1-7
1-25
1-2.5
1-11
1-26
1-11
1-26
1-11
1-11
1-15
1-11
1-11
1-23
1-23
2'14
2-15
3-10
3-10
1-6
1-6
3-10
3-10
1-29
1-23
1-24
3-10
3-10
3-10
3-10
3-10
3-10
3-10

Process Pkg
52
52
52
23
23
27
27
12
63
63
13
13
13
07
07
07
07
07
27
25
25
25
25
48
13
62
50
89
55
55
50
55
43
27
27
07
27
07
27
07
07
04
07
07
23
23
66
66
83
83
42
42
83
83
12
23
23
83
83
83
83
83
83
83

25
25
25
92
92
92
92
02
94
94
94
94
94
94
94
94
94
94
94
17
17
17
17
10
94
02
94
94
25
25
29
25
94
94
94
94
94
94
94
94
94
94
94
94
92
92
92
92
12
12
25
25
12
12
10
02
02
12
12
12
12
12
12
12

Device

Page

2N3966
2N3967
2N3967A
2N3968
2N3968A
2N3969
2N3969A
2N3970
2N3971
2N3972
2N4013
2N4014
2N4030
2N4031
2N4032
2N4033
2N4036
2N4037
2N4047
2N4058
2N4059
2N4061
2N4062
2N4082
2N4083
2N4084
2N4085
2N4091
2N4092
2N4093
2N4117
2N4117A
2N4118
2N4118A
2N4119
2N4119A
2N4121
2N4122
2N4123
2N4124
2N4125
2N4126
2N4134
2N4135
2N4140
2N4141
2N4142
2N4143
2N4208
2N4209
2N4220
2N4220A.
2N4221
2N4221A
2N4222
2N4222A
2N4223
2N4224
2N4237
2N4248
2N4249
2N4250
2N4250A
2N4258

3-2
3-7
3-7
3-7
3-7
3-7
3-7
3-2
3-2
3-2
1-5
1-5
2-19
2-19
2-19
2-19
2-19
2-19
1-5
2-6
2-6
2-6
2-6
3-10
3-10
3-10
3-10
3-2
3-2
3-2
3-6
3-6
3-6
3-6
3-6
3-6
2-15
2-15
1-24
1-24
2-15
2-15
1-8
1-8
1-20
1-21
2-10
2-10
2-3
2-3
3-7
3-7
3-7
3-7
3-7
3-7
3-4
3-4
1-30
2-6
2-6
2-6
2-7
2-3

9

Process Pkg

Device

29
25
25
25
25
25
25
02
02
02
02
02
10
10
10
10
10
10
17
94
94
94
94
12
12
12
12
02
02
02
25
25
25
25
25
25
92
92
92
92
92
92
25
25
92
92
92
92
18
18
25
25
25
25
25
25
29
29
10
92
92
92
92
92

2N4258A
2N4259
2N4274
2N4275
2N4286
2N4287
2N4288
2N4289
2N4290
2N4291
2N4292
2N4293
2N4294
2N4295
2N4314
2N4338
2N4339
2N4340
2N4341
2N4354
2f'14355
2N4356
2N4381
2N4384
2N4386
2N4391
2N4392
2N4393
2N4400
2N4401
2N4402
2N4403
2N4409
2N4410
2N4416
2N4416A
2N4424
2N4856
2N4856A
2N4857
2N4857A
2N4858
2N4858A
2N4859
2N4859A
2N4860
2N4860A
2N4861
2N4861A
2N4916
2N4917
2N4918
2N4919
2N4920
2N4921
2N4922
2N4923
2N4924
2N4926
2N4927
2N4944
2N4945
2N4946
2N495i

50
55
55
55
55
55
55
51
51
51
25
25
67
67
67
67
67
67
25
62
62
62
62
83
83
83
83
51
51
51
53
53
53
53
53
53
66
66
23
23
66
66
44
44
19
19
63
63
65
65
55
55
55
55
55
55
50
50
14
62
62
62
62
65

Page
2-3
1-6
1-2
1-2
1-11
1-11
2-7
2-7
2-10
2-11
1-7
1-7
1-2
1-2
2-19
3-7
3-7
3-7
3-7
2-17
2-17
2-17
3-15
1-11
1-11
3-2
3-2
3-2, 3-5, 3-6
1-16
1-16
2-11
2-11
1-11
1-12
3-4
3-4
1-15
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-2
2-15
2-15
2-26
2-26
2-26
1-44
1-45
1-45
1-29
1-38
1-38
1-16
1-29
1-16
1-16

Process Pkg
65
42
21
21
07
07
62
62
63
63
43
43
21
21
67
52
52
52
52
67
67
67
89
07
07
51
51
51
13
13
63
63
07
07
50
50
04
51
51
51
51
51
51
51
51
51
51
51
51
66
66
5F
5F
5F
4H
4H
4H
12
48
48
13
12
13
13

92
25
92
92
94
94
94
94
94
94
94
94
94
94
10
02
02
02
02
92
92
92
11
02
02
02
02
02
92
92
92
.92
92
92
29
29
94
02
02
02
02
02
02
02
02
02
02
02
02
92
92
58
58
58
58
58
58
10
10
10
92
92
92
94

Transistor Standard Parts List (Continued)
Device
2N4952
2N4953
2N4954
2N4964
2N4965
2N4966
2N4967
2N4968
2N4969
2N4970
2N4971
2N4972
2N5018
2N5019
2N5020
2N5021
2N5022
2N5023
2N5030
2N5045
2N5046
2N5047
2N5056
2N5057
2N5078
2N5086
2N5087
2N5088
2N5089
2N5103
2N5104
2N5105
2N5114
2N5115
2N5116
2N5127
2N5128
2N5129
2N5130
2N5131
2N5132
2N5133
2N5134
2N5135
2N5136
2N5137
2N5138
2N5139
2N5140
2N5142
2N5143
2N5148
2N5150
2N5172
2N5179
2N5180
2N5189
2N5190
2N5191
2N5192
2N5193
2N5194
2N5195
2N5196

Page

1-16
1-16
1-16
2-7
2-7
1-12
1-12
1-12
1-21
1-21
2-11
2-11
3-14
3-14
3-15
3-15
2-5
2-5
1-2
3-10
3-10
3-10
2-3
2-3
3-4
2-7
2-7
1-12
1-12
3-7
3-7
3-8
3-14
3-14
3-14
1-26
1-21
1-21
1-7
1-26
1-26
1-12
1-2
1-21
1-21
1-21
2-15
2-15
2-3
2-11
2-11
1-32
1-32
1-15
1-6
1-6
1-6
1-43
1-43
1-43
2-26
2-26
2-26
3-10

Process Pkg

13
13
13
62
62
07
07
07
19
19
63
63
88
88
89
89
70
70
21
83
83
83
64
64
50
62
62
07
07
50
50
50
88
88
88
27
19
19
43
27
27
07
21
19
19
19
66
66
65
63
63
34
34
04
42
42
25
4E
,4E
4E
5E
5E
5E
83

94
94
94
92
92
92
92
92
92
92
92
92
11
11
11
11
17
17
94
12
12
12
18
18
29
92
92
92
92
29
29
29
11
11
11
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
10
10
94
25
25
17
58
58
58
58
58
58
12

Device

2N5197
2N5198
2N5199
2N5209
2N5210
2N5219
2N5220
2N5221
2N5223
2N5224
2N5225
2N5226
2N5227
2N5232
2N5232A
2N5245
2N5246
2N5247
2N5248
2N5294
2N5296
2N5298
2N5305
2N5306
2N5307
2N5308
2N5336
2N5338
2N5354
2N5355
2N5358
2N5359
2N5360
2N5361
2N5362
2N5363
2N5364
2N5365
2N5366
2N5397
2N5398
2N5400
2N5401
2N5432
2N5433
2N5434
2N5447
2N5448
2N5449
2N5452
2N5453
2N5454
2N5457
2N5458
2N5459
2N5460
2N5461
2N5462
2N5484
2N5485
2N5486
2N5490
2N5492
2N5494

Page

3-10
3-10
3-10
1-12
1-12
1-26
1-16
2-11
1-26
1-2
1-16
2-11
2-7
1-12
1-12
3-4
3-4
3-4
3-4
1-43
1-43
1-43
1-47
1-47
1-47
1-47
1-32
1-32
2-11
2-11
3-8
3-8
3-8
3-8
3-8
3-8
3-8
2-11
2-11
3-4
3-4
2-18
2-18
3-2
3-2
3-2
2-12
2-17
1-35
3-10
3-10
3-10
3-8
3-8
3-8
3-15
3-15
3-15
3-4
3-4
3-4
1-43
1-43
1-43
10

Process Pkg

83
83
83
07
07
27
13
63
27
21
13
63
62
07
07
90
90
90
50
4E
4E
4E
05
05
05
05
34
34
63
63
55
55
55
55
55
55
55
63
63
90
90
74
74
58
58
58
63
67
38
83
83
83
55
55
55
89
89
89
50
50
50
4E
4E
4E

12
12
12
92
92
92
92
92
92
92
92
92
92
94
94
97
97
97
94
57
57
57
94
94
94
94
10
10
94
94
25
25
25
25
25
25
25
94
94
29
29
92
92
07
07
07
97
97
97
12
12
12
92
92
92
91
91
91
92
92
92
57
57
57

Device

2N5496
2N5515
2N5516
2N5517
2N5518
2N5519
2N5520
2N5521
2N5522
2N5523
2N5524
2N5545
2N5546
2N5547
2N5550
2N5551
2N5555
2N5556
2N5557
2N5558
2N5561
2N5562
2N5563
2N5564
2N5565
2N5566
2N5638
2N5639
2N5640
2N5653
2N5654
2N5655
2N5656
2N5657
2N5668
2N5669
2N5670
2N5769
2N5770
2N5771
2N5772
2N5817
2N5830
2N5902
2N5903
2N5904
2N5905
2N5906
2N5907
2N5908
2N5909
2N5910
2N5911
2N5912
2N5949
2N5950
2N5951
2N5952
2N5953
2N6034
2N6035
2N6036
2N6037
2N6038

Page

1-43
3-11
3-11
3-11
3-11
3-11
3-11
3-11
3-11
3-11
3-11
3-10
3-10
3-10
1-17
1-17
3-2
3-8
3-8
3-8
3-10
3-10
3-10
3-12
3-12
3-12
3-2
3-2
3-2
3-3
3-3
1-41
1-41
1-41
3-4
3-4
3-4
1-3
1-7
2-4
1-3
2-12
1-17
3-13
3-13
3-13
3-13
3-13
3-13
3-13
3-13
2-4
3-12
3-12
3-4
3-4
3-4
3-4
3-4
2-30
2-30
2-30
1-49
1-49

Process Pkg

4E
95
95
95
95
95
95
95
95
95
95
83
83
83
16
16
50
50
50
50
98
98
98
96
96
96
51
51
51
51
51
36
36
36
50
50
50
21
43
65
22
63
16
84
84
84
84
84
84
84
84
65
93
93
50
50
50
50
50
5J
5J
5J
4J
4J

57
12
12
12
12
12
12
12
12
12
12
12
12
12
92
92
92
29
29
29
12
12
12
12
12
92
92
92
92
92
92
58
58
58
92
92
92
92
92
92
92
97
92
24
24
24
24
24
24
24
24
92
24
24
97
97
97
97
97
58
58
58
58
58

Transistor Standard Parts List (Continued)
Device
2N6039
2N6040
2N6041
2N6042
2N6043
2N6044
2N6045
2N6076
2N6099
2N6101
2N6103
2N6107
2N6109
2N6110
2N6111
2N6121
2N6122
2N6123
2N6124
2N6125
2N6126
2N6129
2N6130
2N6131
2N6132
2N6133
2N6134
2N6288
2N6290
2N6292
2N6386
2N6387
2N6388
2N6426
2N6427
2N6473
2N6474
2N6475
2N6476
2N6483
2N6484
2N6485
2N6486
2N6487
2N6488
2N6489
2N6490
2N6491
2N6548
2N6549
2N6551
2N6552
2N6553
2N6554
2N6555
2N6556
2N6591
2N6592
2N6593
2N6705
2N6706
2N6707
2N6708

Page
1-49
2-30
2-30
2-31
1-49
1-49
1-49
2-18
1-42
1-42
1-42
2-26
2-26
2-26
2-26
1-43
1-43
1-43
2-26
2-26
2-26
1-43
1-43
1-43
2-26
2-26
2-26
1-43
1-43
1-43
1-49
1-49
1-49
1-47"
1-47
1-44
1-44
2-27
2-27
3-11
3-11
3-11
1-42
1-42
1-42
2-25
2-25
2-25
1-47
1-47
1-35
1-35
1-37
2-21
2-21
2-21
1-32
1-32
1-32
1-35
1-35
1-35
2-21

Process Pkg
4J
5J
5J
5K
4K
4K
4K
71
4A
4A
4A
5E
5E
5E
5E
4E
4E
4E
5E
5E
5E
4E
4E
4E
5E
5E
5E
4E
4E
4E
4J
4K
4K
05
05
4F
4F
5F
5F
95
95
95
4A
4A
4A
5A
5A
5A
05
05
38
38
39
78
78
78
36
36
36
38
38
38
78

58
57
57
57
57
57
57
94
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
92
92
57
57
57
57
12
12
12
57
57
57
57
57
57
55
55
55
55
55
55
55
55
55
55
55
90
90
90
90

Device
2N6709
2N6710
2N6711
2N6712
2N6713
2N6714
2N6715
2N6716
2N6717
2N6718
2N6719
2N6720
2N6721
2N6722
2N6723
2N6724
2N6725
2N6726
2N6727
2N6728
2N6729
2N6730
2N6731
2N6732
2N6733
2N6734
2N6735
2N6737
40235
40236
40237
40238
40239
40240
40242
40314
40319
40321
92PE37A
92PE37B
92PE37C
92PE77A
92PE77B
92PE77C
92PE487
92PE488
92PE489
92PU01
92PU01A
92PU05
92PU06
92PU07
92PU10
92PU36
92PU36A
92PU36B
92PU36C
92PU45
92PU45A
92PU51
92PU51A
92PU55
92PU56

Page
2-21
2-21
1-38
1-38
1-38
1-34
1-35
1-35
1-37
1-37
1-38
1-32
1-32
1-32
1-32
1-47
1-47
2-20
2-20
2-23
2-23
2-23
1-37
2-23
1-38
1-39
1-39
1-6
1-6
1-6
1-6
1-6
1-6
1-7
1-7
1-29
2-19
1-39
1-35
1-35
1-35
2-21
2-21
2-21
1-39
1-39
1-39
1-34
1-34
1-37
1-37
1-37
1-39
1-33
1-33
1-33
1-33
1-47
1-47
2-20
2-20
2-24
2-24

"All suffixes

11

Process Pkg
78
78
48
48
48
37
38
38
39
39
48
36
36
36
36
05
05
77
77
79
79
79
39
79
48
48
48
25
42
42
42
42
42
42
42
12
67
48
38
38
38
78
78
78
48
48
48
37
37
39
39
39
48
36
36
36
36
05
05
77

77
79
79

90
90
90
90
90
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
25
25
25
25
25
25
25
10
10
10
90
90
90
90
90
90
90
90
90
90
90
90
90
91
91
91
91
91
91
91
91
91
91
91
91

Device

Page

92PU57
92PU100
92PU200
92PU391
92PU392
92PU393
AM1000H
AM1001H
AM1002H
BC10r
BC108*
BC109"
BC140"
BC141 *
BC143
BC146"
BC160"
BC161"
BC16r
BC168"
BC169"
BC177"
BC178"
BC179"
BC182"
BC183"
BC184"
BC204
BC207
BC212"
BC213"
BC214"
BC23r
BC238"
BC239"
BC261 "
BC262"
BC263"
BC264"
BC30r
BC308"
BC309"
BC31r
BC318"
BC319"
BC327"
BC328"
BC337*
BC338"
BC415"
BC485"
BC547*
BC548"
BC549"
BC550"
BC557"
BC558"
BC559"
BC560"
BCX58"
BCX59"
BCX78"
BCX79"

2-24
1-37
2-24
1-39
1-39
1-39
10-21
10-21
10-21
5-2
5-2
5-2
5-2
5-2
5-3
5-3
5-3
5-3
5-3
5-3
5-4
5-4
5-4
5-4
5-5
5-5
5-6
5-6
5-6
5-6
5-7
5-8
5-8
5-9
5-9
5-9
5-10
5-10
5-37
5-10
5-10
5-11
5-11
5-11
5-12
5-12
5-12
5-12
5-13
5-13
5-13
5-13
5-14
5-14
5-14
5-14
5-15
5-15
5-15
5-16
5-16
5-17
5-17

Process Pkg
79
39
79
48
48
48
87
87
87
04
04
04
14
14
61
61
67
67
04
04
04
71
71
71
04
04
04
71
04
63
63
63
04
04
04
71
71
71
50
71
71
71
04
04
04
67
67
38
38
71
38
04
04
04
04
71
71
71
71
04
04
71
71

91
91
91
91
91
91
25
25
25
02
02
02
10
10
10
10
10
10
94
94
94
02
02
02
97
97
97
92
92
97
97
97
97
97
97
02
02
02
97
97
97
97
92
92
92
97
97
97
97
97
97
97
97
97
97
97
97
97
97
97
97
97
97

Transistor Standard Parts List (Continued)

,

Device

Page

BCY56
BCY57
BCY58*
BCY59*
BCY70
BCY71
BCY71A
BCY72
B0135*
B0136*
B0137*
B0138*,
B0139*'
B0140*
B0157
B0158
B0159
B0185
B0186
B0187
B0188
B0189
B0190
B0201
B0202
B0203
B0204
B0220
B0221
B0222
B0223
B0224
B0225
B0233
B0234
B0235
B0236
B0237
BD238
B0239*
BD240*
B0241 *
B0242*
B0243*
B0244*
B0344
BD345 '
BD346
B0347
B0348
BD349
B0370*
B0371*
B0372*
B0373*
B0375*
B0376*
B0377*
B0378*
80379*
BD380*
BD433
B0434

5·18
5·18
5·18
5·18
5·19
5·19
5:19
5·19
5·19
5·19
5·19
5·20
5·20
5·20
5·20
5·20
5·20
5·20
5·20
5·20
5·20,
5·20
5·20
5·20
5·20
5·21
5·21
5·21
5·21
5·21
5·21
5·21
r
5·21
5·21
5·21
5·21
5·21
5·21
' 5·21
5'21
5·21
5·22
5·22
5·22
5·22
5·22
5·23
5·23
5·23
5·23
5·23
5·23
5·24
5·24
5·25
5·26
5·26
5·27
5·27
5·27 '
5·28
5·28
5:28

Process Pkg
04
04
04
04
71
71
71
71
37
77
38
78
39
79
36
36
36
4F
5F
4F
5F
4F
5F
4A
5A
4A
5A
4F
4F
4F
5F
5F
5F
4F
5F
4F
5F
4F
5F
4F
5F
4F
5E
4A
5A
78
38
5A
4A
79
39

78/79
38/39
78/79
38/39
38
78
38
78
39
79
4F
5F

02
02
02
02
02
02
02
02,
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
57
57
57
57
57
57
57
57
57
57
58
58
58
58
58
58
57
57
57
57
57
57
58
58
57
57
58
58
91
91
90
90
58
58
58
58
58
58
58
58

Device
B0435
B0436
B0437
B0438
B0439
B0440
B0441
B0442
B0533
B0534
B0535
B0536 ,
B0537
B0538
B0633
B0634
B0635
B0636
B0637
B0638
B0675*
B0676*
B0677*
B0678*
B0679*
B0680*
B0681
B0682
B0733
B0734
B0735
B0736
B0737
B0738
B0795
B0796
B0797
.BD798
B0799
B0800
B0801
B0802
B0895*
B0896*
B0897*
B0898*
BD899*
B 0900 *
B0901
BD902
BOX33*
BOX34*
BF167
BF180
BF181
BF194
BF195
BF196
BF197
BF198
BF199
BF200
BF233*

Page
5·28
5·28
5·28
5·28
5·28
5·29
5·29
5·29
5·29
5·29
5·29
5·29
5·29
5·29
5·29
5·29'
5·29
5·30
.5·30
5·30
5·30
5·30
5·30
5·30
5·30
5·30
5·30
5·30
5·30
5·30
5·30
5·30
5·30
5·30
5·30
5·30
5·30
5·31
5·31
5·31
5·31
5·31
5·31
5·31
5·31
5·31
5·31
5·31
5·31
5·31
5·31
5·31
5·32
5·32
5·32
5·32
5·32
5·32
5·32
5·32
5·32
5·32
5·32

*AII suffixes
12

Process Pkg
4F
5F
4F
5F
4E
5E
4E
5E
4E
5E
4E
5E
4E
5E
4F
5F
4F
5F
4F
5F
4J
5J
4J
5J
4J
5J
4J
5J
4F
5E
4F
5E
4F
5E
4E
5E
4E
5E
4E
5E
4E
5E
4K
5K
4K
5K
4K
5K
4K
5K
4K
5K
45
41
41
46
46
46
47
45
47
41
49

58
58
58
58
58
58
58
58
57
57
57
57
57
57
57
57
57
57
57
57
58
58
58
58
58
58
58
58
57
57
57
57
57
57
57
57
57
. 57
57
57
57
57
57
57
57.
57
57
57
57
57
57
57
28
25
25
98
98
98
98
98
98
25
' 96

Device

Page

Process .Pkg

BF237 ,
BF238
BF240
BF241
BF244* .
BF245*
BF246*
BF247*
BF254
BF255
BF256*
BF257
BF258
BF259
BF457
BF458
BF459
BFX13
BFX29
BFX30
BFX37
BFX65
BFX84
BFX85
BFX86
BFX87
BFX88
BFY39*
BFY50
BFY51
BFY52
BFY56
BFY72
BFY76
BSX21
BSX45*
BSX46 *
BSX48
BSX88
BSY38
BSY39
BSY51
BSY52
BSY53
BSY54
BSY95A
CS9011*
CS9012*
CS9013*
CS9014*
CS9015*
CS9016*
CS9018*
D40C*
0400*
040E*
040K* '
040N*
040P*
D41D*
041E*
041K*
042C*

5·32
5·32
5·32
5·32
5·37
5·37
5·37
5·37
5·33
5·33
5·37
5·33
5·33
5·33
5·33
5·33
5·33
5·33
5·33
5·33
5·33
5·33
5·34
5·34
5·34
5·34
5·34
5·34
5·34
5·34
5·34
5·34
5·35
5·35
5·35
5·35
5·35
5·35
5·35
5·35
5·35
5·35
5·35
5·35
5·36
5~36
6·2
6·2
6·2
6·2
6·2
6·2
6·2
1·47
1·36
1·36
1·48
1·39
1·33
2·22
2·22
2·30
1·34

47
98
47
98
47
98
47
98
94
50
50
97
51 . 94
51
'97
46
98
46
98
97
50
48
10
48
.10
48
10
48
58
48
58
48
58
66
02
63 . 10
63'
10
62
02
62
02
12
10
12
10
14
10
10,
63
10
63
23
02
14
10
14
10
14
10
14
10
19
04
07
02
07
02
14
10
12
10
19
02
21
18
21
18
21
18
19
10
19
10
19
10
19
10
21
92
27
92
68
92
09
92
04
92
71'
92
46
92
43
92
05
55
38
55
38
55
55
05
48
55
36
55
78
55
78
55
61
55
4P
56

Transistor Standard Parts List (Continued)
Device
D43C*
D44C*
D44W
D45C*
D45W
DH3467CD
DH3467CN
DH3468CD
DH3468CN
DH3724CD
DH3724CN
DH3725CD
DH3725CN
ED1402*
ED1502*
ED1602*
ED1702*
ED1802*
J108
J109
J 110
J111
J112
J113
J114
J174
J175
J176
J177
J201
J202
J203
J210
J211
J212
J270
J271
J300
J304
J305
J308
J309
J310
J401
J402
J403
J404
J405
J406
J410
J411
J412
MJE170
MJE171
MJE172
MJE180
MJE181
MJE182
MJE200
MJE210
MJE220
MJE221
MJE222

Page
2-22,2-27
1-45
1-46
2-28
2-29
2-5
2·5
2·5
2-5
1-5
1-5
1-5
1-5
6·2
6·2
6·2
6·2
6·2
3·3
3·3
3-3
3·3
3·3
3·3
3·3
3-14
3·14
3-14
3-14
3-8
3·8
3·8
3·8
3·8
3·8
3-15
3-15
3·4
3-4
3-4
3·4
3-4
3-4
3-10
3-10
3-10
3·10
3·10
3-10
3·10
3-11
3·11
2·25
2·25
2-25
1-42
1-42
1-42
1·45
2·29
1-45
1·45
1-45

Process Pkg
5P
4P
40
5P
50
70
70
70
70
25
25
25
25
07
46
62
37

77
58
58
58
51
51
51
90
88
88
88
88
52
52
52
90
90
90
88
88
90
90
50
50
92
92
92
98
98
98
98
98
83
83
83

77
78
79
37
38
39
4R
5R
4P
4P
4P

56
57
57
57
57
40
39
40
39
40
39
40
39
92
92
92
92
92
92
92
92
92
92
92
92
94
94
94
94
92
92
92
92
92
92
94
94
92
92
92
92
92
92
92
60
60
60
60
60
60
60
60
58
58
58
58
58
58
58
58
58
58
58

Device

Page

MJE223
MJE224
MJE225
MJE230
MJE231
MJE232
MJE233
MJE234
MJE235
MJE240
MJE241
MJE242
MJE243
MJE244
MJE250
MJE251
MJE252
MJE253
MJE254
MJE340
MJE341
MJE344
MJE370
MJE371
MJE520
MJE521
MJE700
MJE701
MJE702
MJE703
MJE710
MJE711
MJE712
MJE720
MJE721
MJE722
MJE800
MJE801
MJE802
MJE803
MJE280H
MJE290H
MJE2955T
MJE3055T
MJE3439
MJE3440
MJE5190J
MJE5191J
MJE5192J
MPF102
MPF103
MPF104
MPF105
MPF106
MPF107
MPF108
MPF109*
MPF110
MPF111
MPF112
MPF256
MPF820
MP03725

1-46
1·46
1-46
2-28
2·28
2·28
2·28
2-29
2-29
1-46
1-46
1-46
1-46
1-46
2-29
2·29
2·29
2-29
2-29
1-41
1·41
1-41
2-27
2-26
1-44
1-44
2-30
2-30
2·30
2-30
2-25
2-25
2-25
1-42
1·36
1-37
1-49
1-49
1-49
1-49
1-42
2-25
2-25
1-42
1-42
1-42
1-44
1·44
1-44
3-5
3-8
3·8
3-8
3·5
3·5
3-5
3·8
3·8
3·8
3-8
3-5
3-5
1-31

·AII suffixes

13

Process Pkg
4P
4P
4P
5P
5P
5P
5P
5P
5P
4P
4P
4P
4P
4P
5P
5P
5P
5P
5P
36
36
36
5F
5E
4F
4F
5J
5J
5J
5J

77
78
79
37
38
39
4J
4J
4J
4J
4A
5A
5A
4A
36
36
4E
4E
4E
50
55
55
55
50
50
55
55
50
50
55
90
51
25

58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
57
57
57
57
58
58
58
58
58
92
92
92
92
92
92
92
92
92
92
92
92
92
39

Device

Page

MPS706
MPS834
MPS2369
MPS2711
MPS2712
MPS2713
MPS2714
MPS2716
MPS2923
MPS2924
MPS2925
MPS2926
MPS3392
MPS3393
MPS3394
MPS3395
MPS3396
MPS3397
MPS3398
MPS3563
MPS3638
MPS3638A
MPS3639
MPS3640
MPS3642
MPS3644
MPS3645
MPS3646
MPS3693
MPS3694
MPS3702
MPS3703
MPS3704
MPS3705
MPS3706
MPS3707
MPS3708
MPS3709
MPS3710
MPS3711
MPS3721
MPS3826
MPS3827
MPS3903
MPS3904
MPS3905
MPS3906
MPS4354
MPS4355
MPS4356
MPS5172
MPS6507
MPS6511
MPS6512
MPS6513
MPS6514
MPS6515
MPS6516
MPS6517
MPS6518
MPS6520
MPS6521
MPS6522

1-3
1-3
1·3
1·24
1-24
1-3
1·3
1-24
1·24
1-24
1·24
1-24
1·15
1·15
1·15
1·15
1-15
1·15
1-15
1·7
2-12
2-12
2·4
2·4
1-24
2-12
2-12
1-3
1-26
1·26
2-12
2-12
1-16
1-17
1-17
1·12
1-12
1-12
1-12
1-12
1·24
1-24
1·24
1·13
1·14
2-15
2·15
2-17
2·17
2-17
1-15
1-7
1-8
1-24
1-24
1·24
1·24
2-15
2·15
2·16
1-15
1-15
1-17

Process Pkg
21
21
21
23
23
21
21
23
23
23
23
23
04
04
27
04
04
04
04
43
63
63
65
65
19
63
63
22
27
27
63
63
13
13
13
07
07
07
07
07
23
23
23
02
02
66
66
67
67
67
04
43
43
23
23
23
27
66
66
66
04
04
66

92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92

Transistor Standard Parts List (Continued)
Device

Page

MPS6523
MPS6530
MPS6531
MPS6532
MPS6533
MPS6534
MPS6535
MPS6539
MPS6540
MPS6541
MPS6542
MPS6543
MPS6544
MPS6546
MPS6547
MPS6548
MPS6560
MPS6561
MPS6562
MPS6563
MPS6564
MPS6565
MPS6566
MPS6567
MPS6568A
MPS6569
MPS6570
MPS6571
MPS6573
MPS6574
MPS6575
MPS6576
MPS8098
MPS8099
MPSA05
MPSA06
MPSA09
MPSA10
MPSA12
MPSA13
MPSA14
MPSA20
MPSA42
MPSA43
MPSA55
MPSA56
MPSA62
MPSA63
MPSA64
MPSA65
MPSA66
MPSA70
MPSH10
MPSHll
MPSH19
MPSH20
MPSH24
MPSH30
MPSH31
MPSH32
MPSH34
MPSH37
MPSLOl

2·7
1·17
1·17
1·17
2·12
2·12
2·12
1·7
1·9
1·8
1·9
1·9
1·9
1·9
1·9
1·7
1·31
1·31
2·17
2·18
1·26
1·26
1·26
1·9
1·8
1·8
1·8
1·12
1·14
1·14
1·14
1·14
1·18
1·18
1·29
1·29
1·12
1·26
1·48
1·48
1·48
1·14
1-39
1·40
2·17
2·17
2·30
2·30
2·30
2·30
2·30
2·7
1·7
1·9
1·9
1·9
1·9
1·8
1·8
1·8
1·9
1·9
1·18

Process Pkg
66
13
13
13
63
63
63
42
49
43
47
47
49
47
47
42
14
14
67
60
27
27
27
49
44
44
44
07
02
02
02
02
18
18
12
12
07
27
05
05
05
02
48
48
67
67
61
61
61
61
61
62
42
47
47
49
"47
44
44
45
47
49
16

92
92
92
92
92
92
92
96
96
92
96
96
96
96
96
96
92
92
92
92
92
92
92
96
96
96
96
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92 .
92
92
96
96
96
96
96
96
96
96
96
96
92

Device

Page

MPSL51
MRF501
MRF502
NAOIE*
NAOIF*
NA02E*
NA02F*
NA 11 E*
NA 11 F*
NA12E*
NA12F*
NA21 E*
NA21 F*
NA21X*
NA21Y*
NA22E*
NA22F*
NA22X*
NA22Y*
NA31 K*
NA31M*
NA31X*
NA31Y*
NA32K*
NA32M*
NA32X*
NA32Y*
NA41U*
NA42U'
NA51U
NA51W
NA52U.
NA52W
NA61U
NA61W
NA62U
NA62W
NA71U
NA71W
NA72U
NA72W
NBOllE*
NBOllF'
NB012E'
NB012F*
NB013E'
NB013F'
NB014E*
NB014F'
NB021 E'
NB021 F*
NB022E'
NB022F*
NB023E*
NB023F*
NB024E*
NBlllE'
NBlllF*
NBl12E*
NBl12F'
NBl13E*
NBl13F*
NB121 E*

2·18
1·7
1·7
7·4
7·4
7·4
7·4
7·8
7·8
7·8
7-8
7-12
7-12
7-12
7-12
7·12
7·12
7·12
7-12
7·16
7·16
7·16
7·16
7·16
7·16
7-16
7·16
7·20
7-20
7·24
7·24
7·24
7·24
7-28
7·28
7·28
7-28
7·32
7·32
7·32
7·32
7·36
7·36
7·36
7·36
7·40
7·40
7·40
7-40
7·36
7·36
7·36
7·36
7·40
7·40
7·40
7·44
7·44
7·44
7·44
'7·44
7·44
7·44

*AII suffixes

14

Process Pkg
74
42
42
09
09
68
68
09
09
68
68
37
37
37
37

77
77
77
77
37
37
37
37

77
77

77
77
4F
5F
4F
4F
5F
5F
4E
4E
5E
5E
4E
4E
5E
5E
04
04
04
04
04
04
04
04
62
62
62
62
62
62
62
04
04
04
04
07
07
71

92
25
25
92
94
92
94
92
94
92
94
92
94
91
90
92
94
91
90
55
56
91
90
55
56
91
90
58
58
58
57
58
57
58
57
58
57
58
57
58
57
92
94
92
94
92
94
92
94
92
94
92
94
92
94
92
92
94
92
94
92
94
92

Device

Page

NB121F*
NB122E*
NB122F*
NB123E*
NB123F*
NB211 E*
NB211F*
NB211X*
NB211Y*
NB212E*
NB212F*
NB212X*
NB212Y*
NB213E*
NB213F*
NB213X*
NB213Y*
NB221 E*
NB221 F*
NB221X'
NB221Y*
NB222E*
NB222F'
NB222X*
NB222Y*
NB223E*
NB223F*
NB223X*
NB223Y'
NB311 E
NB311 F
NB311 K
NB311M
NB311X
NB311Y
NB312E
NB312F
NB312K
NB312M
NB312X
NB312Y
NB313E
NB313F
NB313K
NB313M
NB313X
NB313Y
NB321 E
NB321F
NB321 K
NB321M
NB321X
NB321Y
NB322E
NB322F
NB322K
NB322M
NB322X
NB322Y
NB323E
NB323F
NB323K
NB323M

7·44
7-44
7·44
7-44
7-44
7-48
7·48
7-48
7-48
7-48
7-48
7-48
7-48
7-48
7-48
7·48
7-48
7·48
7·48
7-48
7·48
7·48
7·48
7-48
7·48
7·48
7·48
7·48
7·48
7·52
7·52
7·52
7·52
7·52
7-52
7·52
7·52
7·52
7·52
7·53
7-53
7·53
7·53
7·53
7·53
7·53
7·53
7·53
7·53
7·53
7·53
7·53
7·52
7·52
7·52
7·52
7·52
7·52
7·52
7·52
7·52
7·52
7·52

Process Pkg
71
71
71
71
71
19
19
19
19
19
19
19
19
19
19
19
19
63
63
63
63
63
63
63
63
63
63
63
63
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
78
78
78
78
78
78
78
78
78
78
78
78
78
78
78
78

94
92
94
92
94
92
94
91
90
92
94
91
90
92
9'4
91
90
92
94
91
90
92
94
91
90
92
94
91
90
92
94
55
56
91
90
92
94
55
56
91
90
92
94
55
56
91
90
92
94
55
56
91
90
92
94
55
56
91
90
92
94
55
56

Transistor Standard ptarts List (Continued)
Device
NB323X
NB323Y
NCBT13
NCBV14
NDF9406
NDF9407
NDF9408
NDF9409
NDF9410
NF5101
NF5102
NF5103
NF5301'
NPD5564
NPD5565
NPD5566
NPD8301
NPD8302
NPD8303
NR041E
NR421 D'
NR421 F'
NR431 E'
NR431 F'
NR461 E'
NR461 F'
NS3762
NS3763
NS3903
NS3904
NS3905
NS3906
NS4234
NSD36'
NSD102
NSD103
NSD104
NSD105
NSD106
NSD131
NSD132
NSD133
NSD134
NSD135
NSD151
NSD152
NSD153
NSD154
NSD202
NSD203
NSD204
NSD205
NSD206
NSD457
NSD458
NSD459
NSD3439
NSD3440
NSD6178
NSD6179
NSD6180
NSD6181
NSDU01

Page
7·52
7·52
1-17
1·31
3·12
3·12
3·12
3·12
3·12
3·5
3·5
3·5
3·6
3·12
3·12
3·12
3·11
3·11
3·11
7·56
7·60
7·60
7·64
7·64
7·68
7·68
2·5
2·5
1·25
1·25
2·16
2·16
2·17
1·33
1·34
1·34
1·38
1·38
1·38
1·40
1·40
1·40
1·40
1·40
1·48
1·48
1·48
1·48
2·20
2·20
2·24
2·24
2·24
1·40
1·40
1-40
1·33
1·34
1·37
1·37
2·23
2·23
1·34

Process Pkg
78
78
13
14
94
94
94
94
94
51
51
51
53
96
96
96
83
83
83
04
42
42
43
43
46
46
70
70
23
23
66
66
67
36
38
38
39
39
39
48
48
48
48
48
05
05
05
05
77
77
79
79
79
48
48
48
36
36
38
38
78
78
37

91
90
92
55
12
12
12
12
12
29
29
29
25
67
67
67
67
67
67
92
96
94
92
94
92
94
17
17
02
02
02
02
10
55
55
55
55
55
55
55
55
55
55
55
55
55
·55
55
55
55
55
55
55
55
5~;

5!5
5!5
5!5
55
55
5~i

5t;
55

Device

Page

NSDU01A
NSDU02
NSDU05
NSDU06
NSDU07
NSDU10
NSDU45
NSDU45A
NSDU51
NSDU51A
NSDU52
NSDU55
NSDU56
NSDU57
NSDU95
NSDU95A
NSE170
NSE171
NSE180
NSE181
NSE457
NSE458
NSE459
NSE871
NSE872
P1086
P1087
PE3100
PE4010
PE5025
PE5029
PE5030B
PE5031
PF5101
PF5102
PF5103
PF5301'
PN918
PN930
PN2221
PN2221A
PN2222
PN2222A
PN2369
PN2369A
PN2484
PN2906
PN2906A
PN2907
PN2907A
PN3563
PN3564
PN3565
PN3566
PN3567
PN3568
PN3569
PN3638
PN3638A
PN3639
PN3640
PN3641
PN3642

1·34
1·35
1·37
1·38
1·38
1·40
1-48
1·48
2·20
2·20
2·21
2·23
2·24
2·24
2·30
2·30
2·21
2·23
1·35
1·37
1·40
1·40
1·40
1·31
2·20
3·14
3·14
1·9
1·13
1·8
1·9
1·9
1·9
3·6
3·6
3·6
3·6
1·8
1-13
1·21
1·21
1·21
1·22
1·3
1·3
1·13
2·12
2·12
2·12
2·13
1·8
1·8
1·13
1·17,1·30
1·17,1·30
1·29
1·17,1·30
2·13
2·13
2·4
2·4
1·22
1·22

'All suffixes

15

Process Pkg
38
38
38
39
39
48
05
05
77
77
77
78
79
79
61
61
77
78
38
38
48
48
48
17
76
88
88
47
07
46
47
47
47
51
51
51
53
43
07
19
19
19
19
21
21
07
63
63
63
63
43
43
07
13
13
12
13
63
63
65
65
19
19

55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
56
56
56
56
56
56
56
51
51
91
91
96
92
92
96
96
96
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92

Device

Page

PN3643
PN3644
PN3645
PN3646
PN3684
PN3685
PN3686
PN3687
PN3691
PN3692
PN3694
PN4091
PN4092
PN4093
PN4117"
PN4118'
PN4119'
PN4121
PN4122
PN4140
PN4141
PN4142
PN4143
PN4220
PN4221
PN4222
PN4223
PN4224
PN4248
PN4249
PN4250
PN4250A
PN4258
PN4258A
PN4274
PN4275
PN4302
PN4303
PN4304
PN4342
PN4354
PN4355
PN4356
PN4360
PN4391
PN4392
PN4393
PN4416
PN4856
PN4857
PN4858
PN4859
PN4860
PN4861
PN4916
PN4917
PN5019
PN5033
PN5127
PN5128
PN5129
PN5130
PN5131

1·22
2·13
2·13
1·4
3·8
3·8
3·8
3·8
1·25
1·25
1·26
3·3
3·3
3·3
3·6
3·6
3·6
2·16
2·16
1·22
1·22
2·13
2·13
3·9
3·9
3·9
3·5
3·5
2·7
2·7
2·7
2·7
2-4
2·4
1·3
1·3
3·9
3·9
3·9
3·15
2·17
2·17
2·18
3·15
3·3
3·3
3·3,3·6
3·5
3·3
3·3
3·3
3·3
3·3
3·3
2·16
2·16
3·14
3·15
1·26
1·22
1·22
1·8
1·26

Process Pkg
19
63
63
22
52
52
52
52
23
23
27
51
51
51
53
53
53
66
66
19
19
63
63
55
55
55
50
50
62
62
62
62
65
65
21
21
52
52
52
89
67
67
67
89
51
51
51
50
51
51
51
51
51
51
66
66
88
89
27
19
19
43
27

92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
94
92
92
92
92
92
92

,

Transistor Standard Parts List (Continued)
Device

Page

PN5132
PN5133
PN5134
PN5135
PN5136
PN5137
PN5138
PN5139
PN5140
PN5142
PN5143
PN5163
PN5179
PN5432
PN5433
PN5434
PN5447
PN5449
PN5816
PN5910
PN7055
SE5020
SE5021
SE5022
SE5023
SE5024
SE5050
SE5051
SE5052
SE5055
SE7055
SE7056
SE9300
SE9301
SE9302
SE9400
SE9401
SE9402
ST3904
ST3906
ST5771
SV7056
TIP29*
TIP30*
TIP3l*
TIP32*
TIP41 *
TIP42*
TIP61 *
TIP62*
TIP100
TIP101
TIP102
TIP105
TIP106
TIP107
TIPll0
TIP111
TIP112
TIP115
TIP116
TIPl17
TIP120·

1-26
1:13
1-3
1-22
1-22
1-22
2-16
2-16
2-4
2-14
2-14
3-9
1-7
3-3
3-3
3-3
2-18
1-17
1-17
2-4
1-40
1-8
1-8
1-8
1-8
1-8
1-8
1-8
1-8
1-8
1-40
1-41
1-49·
1-50
1-50
2-31
2-31
2-31
1-25
2-16
2-4
1-41
1-44
2-27
1-44
2-27
1-42
2-25
1-44
2-27
1-50
1-50
1-50
2-31
2-31
2-31
1-49
1-49
1-49
2-31
2-31
2-31
1-49

Process Pkg

Device

Page

Process Pkg

92.
92
92
92
92
92
92
92
92
92
92
92
96
92
92
92
92
92
92
92
92
25
25
25
25
25
25
25
25
28
10
10
57
57
57
57
57
57
92
92
92
55
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57

TIP121
TIP122
TIP125
TIP126
TIP127
TIP130
TIP131
TIP132
TIP135
TIP136
TlP137
TlS58 *
TlS59
TlS73
TIS74
TlS75
TIS86
TIS87
TIS90
TIS91
TIS92
TIS93
TIS97
TIS98
TIS99
TN1711
TN2017
TN2102
TN2218A
TN2219
TN2219A
TN2270
TN2904A
TN2905
TN2905A
TN3019
TN3020
TN3053
TN3244
TN3245
TN3252
TN3253
TN3440
TN3444
TN3467
TN3724
TN3725
TN3742
TN4030
TN4033
TN4036
TN4037
TN4234
TN4235
TN4236
TN4314
TN5022
TN5023
U231
U232
U233
U234
U235

1-49
1-49
2-31
2-31
2-31
1-50
1-50
1-50
2-31
2-31
2-31
3-9
3-9
3-3
3-3
3-3
1-9
1-9
'1-23
2-14
1-23
2-14
1-15
1-18
1-18
1-29
1-30
1-30
1-22
1-23
1-23
1-30
2-14
2-14
2-14
1-30
1-30
1-30
2-19
2-20
1-31
1-31
1-34
1-31
2-20
1-31
1-31
1-41
2-19
2-19
2-18
2-18
2-23
2-23
2-23
2-19
2-20
2-20
3-11
3-11
3-11
3-11
3-11

4J
57
4J
57
5J
57
57
5J
5J
57
4K
57
4K
57
4K
57
5K
57
5K
57
5K
57
94
50
50
94
51
97
51
97
51
97
47
98
47
98
94
19
63
94
19
97
63
97
04
97
18
97
18
97
91
12
12
91
12
91
19
91
91
19
91
19
12
91
91
63
91
63
91
63
12
91
12
91
12
91
91
70
70
91
91
25
25
91
36
91
25
91
70
912f}
91
25
.91
48
91
67· 91
67
91
67
91
67
91
78
91
78
91
78
91
67
91
70
91
91
70
83
12
12
83
83
12
83
12
83
12

27
07
21
19
19
19
66
66
65
63
63
50
42
58
58
58
£17
13
13
·65
48
44
44
44
44
44
44
44
44
45
48
48
4K
4K
4K
5K
5K
5K
23
66
65
48
4F
5F
4F
5F
4A
5A
4F
5F
4K
4K
41<
5K
5K
5K
4J
4J
4J
5J
5J
5J
4J

"All suffixes

16

DeviCe
U257
U308
U309
U3l0
U312
U401
U402
U403
U404
U405
U406
U421
U422
U423
U424
U425
U426
U1897
U1898
U1899

Page

-

3-12
3-5
3-5
3-5
3-5
3-11
3-11
3-11
3-11
3-11
3-11
3-13
.3-13
3-13
3-13
3-13
3-13
3-3
3-3
3-3

Process Pkg
93
92
92
92
90
98
98
98
98
98
98
86
86
86
86
86
86
51
51
51

24
07
07
07
07
12
12
12
12
12
12
24
24
24
24
24
24
92
92
92

CD

Bipolar Transistor and FET Dice

-S"
o

ar
...

::;I

Q)

::1

en

iii"

o...
Q)

::1
Q.

."

!!1
c

Dice

0"

Standard types from National's transistor families are available in unencapsulated die form
for use in hybrid circuits. Contact factory for conditions of sale.

17

eD

(,)

;:
U)

-

co

-

Conversion of Bipolar Metal Can to Plastic

Q..

0

I:
CO

(.)

-

-...
CO
CD

:iE
CO

(5

C.
.-

m
0

I:

.2

l!!
~

I:

0
(.)

Metal PIN

Plastic
Equivalent

2N697
2N706
2N708
2N718
2N722
2N744
2N753
2N760A
2N834
2N869A
2N915
2N917
2N918
2N929
2N930
2N956
2N995A
2N1132
2N1613
2N1711
2N2218
2N2218A
2N2219
2N2219A
2N2221
2N2221A
2N2222
2N2222A
2N2369
2N2369A
2N2483
2N2484
2N2604
2N2605
2N2894
2N2894A
2N2904
2N2904A

2N4400
MPS706
PN3646
2N4400
PN2906
PN2369
PN2369
2N4409
MPS834
PN3640
MPS6565
PN3563
PN918
2N4409
PN930
PN2222A
PN3640
PN2906
PN2221A
PN2222A
TN2218
TN2218A
TN2219
TN2219A
PN2221
PN2221A
PN2222
PN2222A
PN2369
PN2369A
2N5209
2N5210
2N5086
2N5086
PN3640
PN3639
TN2904
TN2904A

Electrical
Equivalency·
A

E
N
A
N
N
N
N

E
A
A

E
E
N

E
N
A
N
N
N

E
E
E
E
E
E
E
E
E

E
N
N
N
N
A
A
E
E

Process

Metal PIN

Plastic
Equivalent

Electrical
Equivalency·

13
21
22
13
63
21
21
07
21
65
27
43
43
07
07
19
65
63
19
19
19
19
19
19
19
19
19
19
21
21
07
07
62
62
65
65
63
63

2N290.5
2N2905A
2N2906
2N2906A
2N2907
2N2907A
2N3009
2N3011
2N3012
2N3013
2N3019
2N3020
2N3053
2N3117
2N3133
2N3134
2N3135
2N3136
2N3250
2N3251
2N3300
2N3301
2N3302
2N3304
2N3440
2N3724
2N3725
2N3944
2N3947
2N3962
2N3964
2N3965
2N4033
2N4036
2N4037
2N4208
2N4209

TN2905
TN2905A
PN2906
PN2906A
PN2907
PN2907A
PN3646
PN2369
PN3640
PN3646
TN3019
TN3020
2N3053
2N5210
MPS3703
. PN3645
MPS3703
PN3645
2N3905
2N3906
2N4401
2N4400
2N4401
PN3639
TN3440
TN3724
TN3725
2N3903
2N3904
2N5086
2N5087
2N5087
TN4033
TN4036
TN4037
PN3640
PN3640

E
E
E
E
E
E
N
N
A

E
E
E
E
N
N
N
N
N
A
A
A
A
A
A
E
E
E
N
N
N
N
N
E
E
E·
N
N

Process
63
63
63
63
63
63
22
21
65
22
12
12
12
07
63
63
63
63
66
66
13
13
13
65
36
25
25
23
23
62
62
62
67
67
67
65
65

* E = Exact electrical equivalent
N = Near electrical equivalent
A

=Approximate electrical equivalent

Nota: On "N" and "A" categories please refer to device specification section for deviation from metal can specifications.

This list is for use when an alternative to a metal can transistor is needed.
To facilitate conversions on the most popular types National i~ offering the "PN" series, TO-92 devices that use the same die type and are screened to same
electrical specifications. The TO-92 transistors produced by National Semiconductor are the most advanced Plastic Transistors ever manufactured. They

utilize epoxy B encapsulation and a copper lead frame to give a power dissipation of up t0625 mW @ TA

=25"C. These transistors provide electrical perform-

ance and reliability equivalent to their metal can versions In most applications where TJ does not exceed 150°C.

The same situation is applicable to the "TN" series, except that the National·origlnated TO·237 (TO·92 +) cas~ outline is used, which permits powerdisslpation of up to 1.0W @ TA 25"C.

=

18

o
o::l

Conversion of TO·105/TO·106 to TO·92
("PN and "J" in FETs) part numbers that have exactly the
same number as the original part; i.e., 2N3565 becomes a
PN3565. These PN types use the same chip and are
screened to the same electrical specification as the
original part. The original parts have a pin circle, TO·106 =
TO·18 and TO·105 = TO·5, so we will supply TO·92 lead
formed to the appropriate configuration at no extra
charge. If you enter an order to the old part number, our
computer will automatically convert it to the correct PN
number with the correct lead form; i.e., 2N3565 becomes
PN3565·18. In the case of some of the less popular types,
we have converted to the nearest part type using the same
chip. Please use the conversion chart on the next page as
a guide.

National has chosen to no longer produce the TO·105/106
plastic transistor line. The decision to drop this line was
based on two major factors: cost and performance.
The TO·92 is the most advanced transistor offered today.
With its automated assembly, it has the lowest potential
cost. By contrast, the TO·105/106 is a hand·assembled
product and its cost is tied to ever·increasing labor costs.
Our TO·92 is encapsulated in "Epoxy B" and has a copper
lead frame. This is the superior TO·92 available today. As
compared with TO·105/106, our TO·92 has better than
twice the power dissipation of either package.
We have done several things in order to make this conver·
sion as easy as possible. We are offering a series on "PN"

It is our intent to service our customers with the highest
quality and most cost·effective product avai lable.

TO·10S

TO·92 Device to TO·S Pin Circle

I"

0.305-0.325
17.747-8.2551

1

I

0.180 -l
14.5721 I--~

0.060~
I_ _
__~
I
'
I
0.140-0.250

-111~:~:~1 II L

11.5241
MIN

L'

I

13.556-6.3501

nnn

0.500

Pin

T

l~i~OOI

1

E

2
3,

C

0.016-0.019 --\1

(D.406-D.4aji

r-

~1~:~:~01
I

12.5401
MAX

O~O.18D

MAX

1

B

n)~"

I

0.190-0.210

-II-~

0.375
19.5251
NOM

10.432-0.4831
3 LEADS

,Q'

0.200 ±il.Ol0 ~
15.080 ±D.2541
DIA.PIN
CIRCLE

z

TO·92 Device to TO·18 Pin Circle

TO·106

r-

0.192-0.222
0.06f.1

114.877-5.6391

Q

'~~:;= ~ ~ ~
0.016-0.019
IOA06-0.4831
0.095-0.105

.Il-

.

--I- 0.160
,-

u

"

''''H,"'

Pin

FET

T

1

5
0
G

E
B
C

2.
3

0.500
112.7001

r~1
.

~45-0.055

0.180

1t-14.5721

0.180
145721

31
..ill!!..
12.5401

t- -

0.025
10.6351
MIN

MIN

114.0641

.

III-

MAX

II

0.D15
--I1--10.3Bl l NOM
3 LEADS
TYP BEFO·RE
BEFORE -~12.5401
LEAD FINISH
LEAD FINISH
OIA PIN CIRCLE

0.014-0.016
10.356-0.4061_
3LEAOS

11.143-1.3971

1 .... 2 .... 3

19

0,150-0.180
13.810-4.5721
0.100

~

!!!.
o

::l

o

-I

o
~

-o
~.

-I

~

o
en

-o
o

-I

cD
I\)

C\I

6

-

Conversion of TO·105/TO·106 to TO·92 (Continued)

tO

CO

o0r-

O
t-

L t)

o0r-

O
t-

o

c:
.2
~

~

r::::

o

(J

Bipolar
TO·105/106

TO·92

TO·105/106

TO·92

EN2222
EN2369A
EN2484
3N2907
EN918
EN930
SM3904
SM3906
2N3563
2N3564
2N3565
2N3566
2N3567
2N3568
2N3569
2N3638
2N3638A
2N3639
2N3640
2N3641
2N3642
2N3643
2N3644
2N3645
2N3646
2N3691

PN2222·18
PN2369A·18
PN2484·18
PN2907·18
PN918·18
PN930·18
2N3904·18
2N3906·18
PN3563·18
PN3564·18
PN3565·18
PN3566·5
PN3567·5
PN3568·5
PN3569·5
PN3638·5
PN3638A·5
PN3639·18
PN3640·18
PN3641·.5
PN3642·5
PN3643·5
PN3644·5
PN3645·5
PN3646·18
PN3691-18

2N3692
2N3693
2N3694
2N4121
2N4122
2N4140
2N4141
2N4142
2N4143 '
2N4248
2N4249
2N4250
2N4250A
2N4258
2N4258A
2N4274
2N4275
2N4354
2N4355
2N4356
2N4916
2N4917
2N4944
2N4945
2N4946
2N4964

PN3692·18
MPS3693·18
PN3694·18
PN4121·18
PN4122·18
PN4140·18
PN4141·18
PN4142·18
PN4143·18
PN4248·18
PN4249·18
PN4~50·18

PN4250A·18
PN4258·18
PN4258A·18
PN4274·18
PN4275·18
PN4354·5
PN4355·5
PN4356·5
PN4916·18
PN4917·18
PN2222A·18
PN2222A·18
PN2222A·18
MPSA70·18

TO·105/106
2N4965
2N4966
2N4967
2N4968
2N4969
2N4970
2N4971
2N4972
2N5127
2N5128
2N5129
2N5130
2N5131
2N5132
2N5133
2N5134
2N5135
2N5136
2N5137
2N5138
2N5139
2N5142
2N5143
2N5910

TO·92
2N5086·18
2N5209·18
2N5210·18
2N5209·18
PN2221·18
PN2222·18
PN2906·18
PN2907·18 .
PN5127·18
PN5128·5
PN5129·18
PN5130·18
PN5131·18
PN5132·18
PN5133·18
PN5134·18
PN5135·18
PN5136·5
PN5137·18
PN5138·18
PN5139·18
PN5142·18
PN5143·18
PN5910·18

FETs
TO·106

TO·92

TO·106

TO·92

TO·106

TO·92

E100
E101
E102
E103
E108
E109
E110
E111
E112
E113
E114
E174
E175
E176
E201
E202
E203
E210
E211
E212
E270
E271

J203·18
J201·18
J202·18
J203·18
J108·18
J109·18
J110·18
J.111·18
J112·18
J113·18
J114·18
J174·18
J175·18
J176·18
J201-18
J202·18
J203·18
J210·18
'J211·18
J212·18
J270·18
J271·18

E300
E304
E305
E308
. E309
E310
E311
E312
KE3684
KE3685
KE3686
KE3687
KE4091
KE4092
KE4093
KE4220
KE4221
KE4222
KE4223·
KE4224
KE4391
KE4392

J300·18
J304·18
J305·18
J308·18
J309·18
J310·18
J309·18
J310·18
PN3684·18
PN3685·18
PN3686·18
PN3687·18
PN4091·18
KE4092·18
PN4093·18
PN4220·18
PN4221·18
PN4222·18
PN4223·18
PN4224·18
PN4391·18
PN4392·18

KE4393
KE4416
KE4857
KE4858·
KE4859
KE4860
KE4861
ITE4391
ITE4392
ITE4393
P1086E
P1087E
U1897E
U1898E
U1899E
2N4302
2N4303
2N4304
2N4342
2N4343
2N4360
2N5033
2N5163

PN4393·18
PN4416·18
PN4857·18
PN4858·18
PN4859·18
PN4860·18
PN4861·18
PN4391·18
PN4392·18
PN4393·18
P1086·18
P1087·18
U1897·18
U1898·18
U1899·18
PN4302·18
PN4303·18
PN4304·18
PN4342·18
PN4343·18
PN4360·18
PN5033·18
PN5163·18

20

_.
C"
_.

Reliability and Quality

Q)

-

B+ PROGRAM

DOUBLE PASS + HOT SCREENING

The B + Program is a quality enhancement program intended primarily for users of transistors who either cannot
or choose not to perform incoming inspection of transistors, or desire significantly better than usual incoming
quality levels for their parts.

National's double pass + hot screen flow, B +, provides a
cost effective screening technique. By testing each B +
transistor at both room temperature and at + 125°C, the
following benefits are realized:
• Escapes caused by mishandling are reduced
significantly.
• Residual thermo·mechanical defects not detected
during normal room temperature testing or high
temperature lot buy·off are removed.
• Anomalous high temperature parametric effects that
may have been created during wafer fabrication are
removed.
• An AQL of 0.05% or better is guaranteed.

Transistor users who specify B + processed parts will find
that the program can:
• Eliminate incoming inspection
• Eliminate the need for, and thus the cost of, independent testing laboratories
• Reduce the cost of reworking assembled boardsl
assemblies
RELIABILITY VIS·A·VIS QUALITY

RELIABILITY THROUGH DESIGN

The words "reliability" and "quality" are often used inter·
changeably, as though they connote identical facets of a
product's merit. However, reliability and quality are differ·
ent, and discrete component users must understand the
essential difference between the two concepts in order to
properly evaluate the various vendors' programs for prod·
uct improvement that are generally available, and
National's B + program in particular.

With increased component density in modern electronic
products has come an increased concern with component
failures in such products. Virtually all equipment manufacturers thoroughly exercise their products before ship·
ment. This "system burn·in" is designed to simulate, as
closely as possible, field operating conditions. A high
failure rate of discrete components at the system burn·in
level can dramatically increase manufacturing costs.

The concept of quality gives us information about the
population of faulty components among good com·
ponents, and generally relates to the number of faulty
components that arrive at a user's plant. Looked at in
another way, quality can instead relate to the number of
faulty components that escape detection at the compo·
nent vendor's plant.

The most important factor affecting a component's
reliability is its construction; i.e., the materials used and
the method by which they are fabricated and assembled.
Reliability cannot be tested in per se. Yet most transistor
reliability enhancement programs utilize standardized
procedures (usually MIL·STD) for either screening or lot
acceptance. Frequently these standardized screening
methods have only a minor influence on transistor field
failure rates.

It is the function of a vendor's Quality Control arm to
monitor the degree of success of that vendor in reducing
the number of faulty components that escape detection.
QC does this by testing the outgoing parts on a sampled
basis. The Acceptable Quality Level (AQL) determines the
stringency of the sampling. As the AQL decreases, it
becomes more difficult for bad parts to escape detection,
thus the quality of the shipped parts increases.

NATIONAL'S ON·GOING RELIABILITY IMPROVEMENT
PROGRAM

Transistor reliability improvement
Semiconductor is a continuous program.

The concept of reliability, on the other hand, refers to how
well a part that is initially good will withstand its environ·
ment. Reliability is measured by the percentage of parts
that fail in a given period of time.

at

National

Implementation of a program for field reliability improve·
ment requires knowledge of field environments and their
influence on device performance. National's broad exper·
ience in commercial reliability programs has led to the
development of an extensive in·house reliability monitor·
ing program that permits us to monitor device perform·
ance under combinations of the following stresses:
• Thermal'
• Thermo·Mechanical
• Mechanical
• Voltage
• Humidity

QUALITY IMPROVEMENT

When purchasing a component or a system, it is expected
that each item delivered has been thoroughly tested and
will perform according to data sheet or detailed specifica·
tions. However, some test escapes do occur.
Additional screening programs can be implemented to
reduce the number of escapes. To be effective, however, a
screening program must not only reduce escapes but
must also be tai lored specifically to detect and remove the
types of residual defects that are predicted by process
and line monitor control data. A frequently used screening
procedure consists of a short, accelerated burn·in, but this
will not usually detect the primary historical failure
mechanism, which is thermo·mechanical in origin.

The data generated by these monitors is continually
ranked and analyzed to determine appropriate corrective
action necessary for any failure mechanisms noted. This
continuous cycle of testing, analysis, and corrective ac·
tion assures the continued improvement of transistor field
reliability.

21

~
Q)

::l
C-

O
c:
Q)

_.

'<

Reliability and Quality (Continued)
NATIONAL'S B + PROGRAM-A Logical Choice

A quality improvement program, the B + program actually
combines the benefits of National's on-going reliability
improvement program with the quality enhancement
benefits of double pass + hot screening. The practical

benefit realized from this program is a significant reduction in rework at the device and PC board levels. The
following flow chart shows how we do it, step by step:

EPOXY B PROCESSING FOR ALL MOLDED PARTS

150'C BAKE

QA LOT INSPECTION

100% ELECTRICAL TEST (BIN)

100% TEMPERATURE CYCLE

.100% ELECTRICAL TEST (HOT)

MARK

100% ELECTRICAL TEST (ROOM)

QA LOT ACCEPTANCE

SHIP PARTS

22

',

..

:

Section 1

N PN Transistors

Ii,

NPN Transistors

~.
Type
No.

SATURATED SWITCHES
Case
Style

VCES'
VCBO
(V)
Min

2N70S

TO-18

2N743

TO-52

2N744

r\>

TO-52

25

VCEO
(V)

VEBO
(V)

Min

Min

15

5

ICES'
ICBO @ VCB
(nA)
(V)
Max

12

5

12

20

@

VCE(SATI
VBE(SATI
(V)
(V)
&
Min
Max
Max

IC
& VCE
(rnA)
(V)

@

IC
(rnA)
IC

(lB~1O)

Cob
(pF)
Max

fT
(MHz)
Min
Max

@

IC
(rnA)

t(off)
(ns)
Max

Test
Conditions

Process
No.

500

15

20

10

1

0.7

0.9

10

S

200

10

75

20

10
20
10

1
0.35
0.25

0.S5

0.85

10

5

300

10

24

SO

100
10
1

2
1

21

lilA

1.5

100

20
40
20

1
0.35
0.25

0.S5

0.85

10

5

280

10

24

1

21

120

100
10
1

1.5

100

120

10

1

O.S

0.7

0.9

10

5

200

10

75

2

21

0.9

10

4

350

10

30

2

21

lilA

20

O.S

21

5

500

15

40

5

500

20

25

10

1

0.25

15

4.5

400

20

20
40

2
1

0.25

0.7

0.85

10

4

500

10

18

1

21

120

100
10

40

15

4.5

400'

20

20
30
40
40

120
120
120
120

100
30
10
10

1
0.4
1
0.35

0.2
0.25

0.7

0.85
1.5

10
30

4

500

10

18

1

21

1.S

100

30

12

5

400'

20

12
25
30

1
0.4
0.35

0.2
0.25
0.5

0.72

0.85
1.5
1.6

10
30
100

4

400

20

20

4

21

120

100
30
10

14

500

18

30

10

1

0.25

0.85

10

6

300

10

45

2

21

2N753

TO-52

25

2N834

TO-52

40

2N23S9

TO-52

40

2N2369A

TO-18

2N3011

TO-52

2N3S05

TO-92

15

hFE
Min Max

0.5

(94)

2N360S

TO-92
(94)

14

500

18

30

10

1

0.25

0.85

10

6

300

10

SO

2

21

2N3S07

TO-92
(94)

14

500

18

30

10

1

0.25

0.85

10

6

300

10

70

2

21

2N4274

TO-92
(92)

Same as PN4274, see page 1-3 for explanation

21

2N4275

TO-92
(92)

Same as PN4275, see page 1 ~3 for explanation

21

2N4294

TO-92

30

4.5

12

400

20

(94)

2N4295

TO-92
(94)

40

2N5030

TO-92
(94)

30

2N5134

TO-92
(92)

2N5224

TO-92
(92)

15

5

100

·4

12

250

20
20

20
30

100
10

2
1

0.25

0.6

0.9

10

5

400

10

20

1

21

120

20
40

100
10

2
1

0.25

0.6

0.9

10

4

500

10

15

1

21

120

10

1

0.25

0.72

0.87

10

4

400

10

30

9

21

30

Same as PN5134, see page 1-3 for explanation
12

25

5

15
500

1

1

21
115
40

100

100
10

1

1
1

0.35

10

11
250

1 4
1

----

0.9

1

10

1

60 1

21

~

SATURATED SWITCHES (Continued)
VCES'
VCBO
(VI
Min

vCEO
(VI
Min

VEBO
(VI
Min

TO-92
(921

40

15

4.5

400

2N5772

TO-92
(921

40

15

5

MPS706

TO-92
1921

15

15

MPS834

TO-92
1921

40

MPS2369

TO-92
1921

40'

MPS2713

TO-92
(921

18

15

5

500

MPS2714

TO-92
1921

18

15

5

.500

MPS3646

TO-92
(921

PN2369

TO-92
1921

40'

TO-92
(92)

40'

Type
No.

Case
Style

2N5769

w

PN2369A

15

ICES'
ICBO @ VCB
InA I
(VI
Max

IC
(mAl
IC
liB =101

Cob
IpFI
Max

fT
@
IC
IMHzl
ImAI
Min Max

t{offl
(nsl
Max

Test
Conditions

10

18

1

21

350

30

28

3

21

6

200

10

75

11

21

10
50

4

350

10

30

2

21

0.85

10

4

500

10

18

7

21

1.3

50

21

1.3

50

21

VCE
IVI

20

20
30
40

1
0.4
0.35

0.2
0.25
0.5

0.7

0.85
1.5
1.6

10
30
100

4

500

120

100
30
10

500

20

15
25
30

1
0.5
0.4

0.2
0.28
0.5

0.75

0.95
1.2
1.7

30
100
300

5

120

300
100
30

3

500

15

20

10

1

0.6

0.9

10

5

500

20

25

10

1

0.25
0.4

0.9

4.5

400

20

20
40

100
10

2
1

0.25

120

18

30

90

2

4.5

0.3

18

75

225

2

4.5

0.3

0.7

0.6

Same as PN3646, see page 1-4 for explanation
15
15

4.5
4.5

400
30

20
20

20
40
20
30
40
40

TO-92
(921

30'

12

4.5

500

20

18
30
35

PN4275

TO-92
(921

40'

15

4.5

500

20

18
30
35

PN5134

TO-92
1921

20'

10

3.5

100

15

15
20

TO-52

40

15

5

25

20

Process
No.

21

PN4274

2N708

VCE(SATI
VBE(SATI
@
(VI
(VI
&
Max
Min
Max

hFE
@
IC
&
Min
Max
(mAl

30
15

100
10

2
1

0.25

0.7

0.85

10

4

500

10

18

1

21

100
30
10
10

1
0.4
1
0.35

0.2
0.2

0.7

0.85
1.15

10

4

500

10

18

1

21

30

1.6

100

1
0.4
1

0.2
0.25
0.5

0.7

0.85
1.15
1.6

10
30
100

4

400

10

12

12

21

120

100
30
10

1
0.4

0.2
0.2.1)

0.72

10

12

12

21

0.5

10
30
100

400

1

0.85
1.15
1.(;

4

120

100
30
10

0.4
1

0.25

0.7

0.9

10

4

250

10

18

12

21

150

30
10
10
0.5

1
1

0.4

0.72

0.8

10

6

300

10

120

120

120

0.5

22

TEST CONDITIONS:
11) VCC = 3V, Ie = 10 mA, 18 ' = 3 mA, 18 2 = 1.5 mAo 121 Vee = 3V, Ie = 10 mA, 18 ' = 3 mA, 18 2 = 'I mAo (3) Vee = 10V, Ie = 300 mA, 18 ' = 18 2 = 30 mA.141 Vee = 2V, Ie = 30 mA, 18 ' = 18 2 = 3 mAo
(51 Vce = 25V, Ie = 300 mA, 18 1 = 18' = 30 mAo (61 Vce = 25V, Ie = 500 mA, 18 ' = 18 2 = 50 mAo (7) Vee = 30V, Ie = 500 mA, 18 ' = 18 2 = 50 mAo 181 Vee = 30V, Ie = lA, 18 ' = 18 2 = 100 mAo
(91 Vce = 3V, Ie = 10 mA, 18 ' = 18/. = 1 mA.ll01 Vee = 10.7V,le = lA, IB 1 = 18 2 = 100 mAo (111 Vee = 3V, Ie =10mA, IB 1 = 18 2 =.1 mAo (121 Vee = 3V, Ie = 10 mA, 18 ' = 18 2 = 3.3 mA_

SJOIS!SUBJ!·NdN

NPN Transistors

:1;,

~
Type
No.

.
SATURATED SWITCHES (Continued)
Case

Style

VCES'
VCBO
(V)
Min

2N3009

40

Min

Min

15

4

15

500'

Same'as PN3646, see below for explanation

TO·92
(921

40'

15

5

500'

20

2N3015

TO·39

60

30

5

200

30

2N3253

2N3444

2N3724

2N3724A

2N3725

--

TO·39

TO·39

TO·39

TO·39

TO·39

--

75

BO

50

50

80

30

40

50

30

30

50

5

5

5

6

6

6

300'

20

2N3646
PN3646

60

5

ICES'
ICBO @ VCB
(nAI
(VI
Max

TO·52

TO·39

40

VEBO
(VI

2N3013

2N3252

....

TO·52

vCEO
(VI

500

500

500

1.71lA

500

1.71lA

20

hFE
Min Max
15
25
30
15
25
30

@

IC
& VCE
(mAl
(VI

VCE(SAT)
VBE(SATI
(VI
(VI
&
Max
Min
Max

@

IC
(mAl
IC
(lB=1O)

fT
(MHz I
Max

Cob
(pFI
Max

Min

@

IC
(mAl

t(offl
(nsl
Max

Test
Conditions

Process

No.

300
100
30

1
0.5
0.4

0.18
0.28
0.5

0.75

0.95
1.2
1.7

30
100
300

5

350

30

25

3

22

120

1
0.5
0.4

0.18
0.28
0.5

0.75

0.95
1.2
1.7

30
100
300

5

350

30

25

3

22

120

300
100
30

1
0.5
0.4

0.2
0.28
0.5

0.75

0.95
1.2
1.7

30
100
300

5

350

30

28

3

22

120

300
100
30
300
150

0.7
10

0.4
1.0

1.2
1.6

150
500

8

250

50

60

5&6

25

120

22

40

60

60

40

40

60

15
20
30
10
30
25
30
30

1A
500
150

5
1
1

0.3
0.5
1.0

150
500
1A

200

50

70

7

25

0.7

1.0
1.3
1.8

12

90

20
25
25

750
375
150

5
1
1

0.35
0.6
1.2

150
500
1A

175

50

70

7

25

0.7

1.0
1.3
1.B

12

75

15
20
20

1A
500
150

0.35
0.6
1.2
0.32

1.0
1.3
1.B

150
500
1A

150

50

70

7

25

1A
BOO
500
300
100
10

5
1
1
5
2
1
1
1
1

12

60

1.1

300
500

300

50

60

7

25

0.75

1.7

1A

1.5A
1A
BOO
500
300
100
10

5
5
2
1
1
1
1

0.32

1.1

300
500

300

50

50

B

25

0.42

1.2

0.65

1.3

60

7

0.75

1.4

1A

1A
800
500
300
100
10

5
2
1
1
1
1

0.4
0.52

1.1
1.2

300
500

60

7

0.8

1.5

800
1A

0.95

1.7

30
25
35
40
60
30
25
30
30
35
40
60
30
25
20
35
40
60
30

150

150

150

0.42
0.65

0.9

0.9

1.2
1.5

12

BOO

12

BOO

10

300

50

25

-

--

!

~
Type
No.

\

SATURATED SWITCHES (Continued)
Case
Style

VCES'
VCBO
(V)

Min
·2N3725A

TO-39

DH3724CD Ceramic
DIP (40)

0.

80

50'

vCEO
(V)
Min

VEBO
(V)
Min

50

6

36

60

DH3724CN Molded
DIP (39)

Electrical same as DH3724CD

DH3725CD Ceramic
DIP (40)

BO'

DH3725CN Molded
DIP (39)

Electrical same as DH3725CD

2N4013

2N4014

TO-1B

TO-1B

50

80

50

30

50

6

6

6

ICES'
ICBO @ VCB
(nA)
(V)
Max
500

1.7J,lA

60

40

hFE
Min
Max

20
25
25
35
40
60
30
30
35
60

TO-39

80

50

6

150

IC
& VCE
(mA)
(V)

1.5A
lA
BOO
500
300
100
10

5
5
2
1
1
1
1

lA
500
100

5
1
1

VCE(SATl
VBE(SATl
(V)
(V)
&
Min Max
Max

@

Ic
(mA)
IC
(lB =10)

0.4

1. r

300

0.52

1.2

500

O.B

1.3

BOO

0.9

1.4

lA

0.75

1.7

500

0.45

1.2

lA

Cob
(pF)
Max

fT
(MHz)
Min
Max

10

12

300

@

IC
(mA)

I(off)
(ns)
Max

50

50

8

60

7

60

7

50

Test

Conditions

Process
No.
25

25

25
1.7J,lA

60

25
35
60

150

lA
500
100

5
1
1

0.95

1.7

500

0.52

1.2

lA

10

250

50

60

7

25

25
1.7 J,lA

1.7 J,lA

40

60

30
25
35
40
60
30

lA
BOO
500
300
100
10

5
2
1
1
1
1

0.25
0.2
0.32
0.42
0.65
0.75

30

lA
BOO
500
300
100
10

5
2
1
1
1
1

0.25
0.26
0.4
0.25
O.B
0.9

1.7J,lA

60

15
15
20
30
40
20

lA
BOO
500
300
100
10

5
2
1
1
1
1

0.4

150

25
20
35
40

60
2N4047

150

@

150

150

0.52
0.8
0.95

0.9

0.9

0.9

0.76
0.B6
1.1
1.2
1.5
1.7

10
100
300
500
BOO
lA

12

300

50

60

7

25

0.76
0.B6
1.1
1.2
1.5
1.7

10
100
300
500
BOO
lA

10

300

50

60

7

25

1.1

300

10

250

50

60

7

25

1.2
1.5

500
800

1.7

lA

TEST CONDITIONS:
(1) VCC = 3V,IC = 10 mA,IB 1 = 3 mA,IB 2 = 1.5 rnA. (2) Vce=3V,lc= 10mA,IB 1 =3mA,IB 2 = 1 rnA. (3) Vec= 10V,IC=300mA,IB 1 = IB 2 =30mA. (4) VCe=2V,le=30mA,IBl = IB 2 =3mA.
(5) Vee = 25V, IC = 300 rnA, IB 1 = IB2 = 30 rnA. (6) Vee = 25V, Ie = 500 mA,lB 1 = IB2 = 50 rnA. (7) Vee = 30V, Ie = 500 mA,lB 1 = IB2 = 50 rnA. (S) Vce = 30V, Ie = lA,lB 1 = IB2 = 100 rnA.
(9) Vee = 3V; Ie = 10 rnA, IB 1 = IB2 = 1 rnA. (10) Vcc = 10_7V,le = lA, IB 1 = IB2 = 100 mA_ (11) Vee = 3V,le.= 10 mA,lB 1 = IB2 = 3 rnA. (12) Vee = 3V,Ie = 10 mA,lB 1 = IB2 = 3.3 rnA.
---

SJOIS!SUBJl

NdN

NPN Transistors

~

SATURATED SWITCHES (Continued)

Type
No.

Case
Style

2N5189

TO·39

2N6737

TO·237
(ESCI

VCES'
VCBO
(VI

VCEO
(VI

VEBO
(VI

Min

Min

60

35

5

80

45

6

Min

ICES'
ICBO
(nAI
Max

hFE
Min
Max

500

30

15
35
30

lA
500
100

1
1
1

1.0

1.7/lA

60

35

500

1

0.52

@

IC
&
(mAl

VCE
(VI

VCE(SATI
VBE(SATI
&
IVI
IVI
Max
Min
Max

VCB
IVI

@

0.8

@

IC
(mAl
IC
liB ~iOl

Cob
(pFI
Max

fT
(MHzl
Min
Max

@

IC
ImAI

t(offl
Insl
Max

Test

Conditions

Process
No.

1.5

lA

12

250

50

70

10

25

1.1

500

10

300

50

60

7

25

TEST CONDITIONS;
111 VCC ~ 3V, IC ~ 10 mA,IB 1 = 3 mA,IB 2 ~ 1.5 rnA. 121 VCC~3V,IC = 10mA,IB 1 ~ 3 mA,IB2~ 1 rnA. (31 VCC= 10V,IC~300mA,IBl ~ IB2~30mA.141 VCC~ 2V,IC~30mA,IBl = IB2~3 rnA.
151 'VCC ~ 25V, IC ~ 300 rnA, IB 1 ~ IS2 ~ 30 rnA. 161 VCC = 25V, IC = 500 mA,lB 1 ~ IB2 = 50 mA.171 VCC ~ 30V,IC ~ 500 mA,lB 1 = IB2 = 50 rnA. lSI VCC = 30V,IC ~ lA,lB 1 = IB2 = 100 rnA.
(9) VCC~3V,IC~ 10mA,IB 1 = IB2~ 1 rnA. (10) VCC~ 10.7V,IC ~ lA,IBl = IB2~ 100mA.ll11 VCC=3V,IC= 10mA,IS 1 = IB 2 =3mA.1121 VCC=3V,IC= 10mA,IB 1 = IB2= 3.3 rnA.

~

a,

~

RF AMPS AND OSCILLATORS

Type
No.

Case
Style

2N2857

TO-72

2N3478

TO-72

2N3600

TO-72

VCES'
VCBO
(V)

IC
(rnA)

NF
(dBI
M
ax

1900

5

4.5

450

1600

5

4.5

200

42

1500

5

4.5

200

.42

750

1600

2

4.5

200

42

750

1600

2

4

200

42

fT
(MHz)
Min
Max

VEBO
(VI

Min

Min

30

15

2.5

10

15

30

150

3

1

1

1000

30

15

2

20

1

25

150

2

8

1

750

30

15

3

10

15

20

150

3

1

1

850

0.55
0.55

Min

ICBO
(nA)
Max

@

VCB
IV)

hFE
Max

Min

@

IC
&
ImA)

VCE
IVI

2N3932

TO-72

30

20

2.5

10

15

40

150

2

2N3933

TO-72

40

30

2.5

10

15

60

200

2

8
8

2N4259

TO-72

40

30

2.5

10

15

60

250

2

8

2N5179

TO-72

20

12

2.5

20

15

25

250

3

1

2N5180

TO-72

30

15

2

500

8

20

200

2

40235

TO-72

35

3

l/lA
20

35
1

40

170

40236

TO-72

35

3

lilA
20

35
1

40

40237

TO-72

35

3

l,IlA
20

35
1

40238

TO-72

35 .

3

lilA:
20

40239

TO-72

35

3

lilA
20

VBE(SAT)
VCEISATI
(VI
(VI
&
Max
Min
Max

Cob/Cre
(pFI
Min
Max

VCEO
(VI

@

IC
(rnA)

@

@

Freq
(MHz)

Process
No.

42

0.55

750

1600

2

5

450

42

1

900

2000

5

4.5

200

42

8

1

650

1700

2

1

6

0.65.

42

275

1

6

0.65

42

27

275

1

6

0.8'

42

35
1

40

170

1

6

0.65

42

35
1

27

100

1

6

0.65

42

1.0

0.4

-

-

--

10

42

~
Type
No.

RF AMPS AND OSCILLATORS (Continued)
Case
Style

VCES'
VCBO
(VI
Min

.:..

VCEO
(V)
Min

40240

TO-72

35

40242

TO-72

35

MPS6539

TO-92
(911

20

20

MPS6548

TO-92
(911

30

25

MPSH10

TO-92
(911

30

vEBO
(V)
Min

ICBO
(nA)
M
ax

@

VCB
(VI

hFE
Max

@

Min

IC
&
(rnA)

VCE
(VI

VCE(SATl
VBE(SAT)
(VI
(VI
&
Max
Min Max

3

l/"A
20

35
1

27

275

3

20

1

40

170

50

15

20

3

100

25

25

4

10

0.5

25

3

100

25

60

4

10

0.5

@

Ic
(mAl

Cob/Cre
(pFI
Min
Max

IT
(MHzl
Min
Max

@

IC
(mAl

NF
(dBI
Max

@

Freq
(MHz)

Process
No.

1

6

0.65

1

6

0.65

4

10

0.7

500

4

0.7

650

4

42

0.65

650

4

42
42

0.95

4
4

0.35

42
42
4.5

100

42

MRF501

TO-72

25

15

3.5

50

1

30

250

1

6

600

5

MRF502

TO-72

35

15

3.5

20

1

40

170

1

6

800

5

PN5179

TO-92
(911

20

15

2.5

2

15

25

250

3

1

0.4

1.0

10

2N917

TO-72

30

15

3

1

15

20

3

1

0.5

0.87

3

3

2N918

TO-72

30

15

3

10

15

20

3

1

0.4

1.0

10

3

2N3563

TO-92
(921

Same as PN3563, see page 1-8 for explanation

43

2N3564

TO-92
(921

Same as PN3564, see page 1-8 lor explanation

43

2N3662

TO-92
(941

18

12

3

500

15

20

8

10

0.8

1.7

700

2100

5

6.5

60

43

2N3663

TO-92
(941

30

12

3

500

15

20

8

10

0.8

1.7

700

2100

5

6.5

60

43

2N3825

TO-92
(941

30

15

4

100

15

20

2

10

0.25

2

3.5

200

800

2

5.5

1

43

2N4292

TO-92
(941

30

15

3

500

15

20

3

1

0.6

10

3.5

600

4

6

60

43

2N4293

TO-92
(941

30

15

3

500

15

20

3

1

0.6

10

3.5

600

4

6

60

43

2N5130

TO-92
(921

Same as PN5130, see page 1-8 for explanation

2N5770

TO-92
(921

30

MPS3563

TO-92
(92)

Same as PN3563, see page 1-8 for explanation

MPS6507

TO-92
(921

30'

--

15

20

4.5

10

5

15

15

1.0

900

2000

42

5

4.5

200

42

500

4

6

60

43

600

4

6

60

43

43
50
20

200

8
3

10
1

0.4

1.0

10

0.7

1.1

900

1800

8

6

60

43
43

25

2

10

2.5

700

10

43

- - - _ .. -

SJOIS!SUeJl

NdN

NPNTransistors
-

~
Type
No.

RF AMPS AND OSCILLATORS (Continued)
Case

Style

TO-92
1921
MPSS541
TO-92
1921
PN918
TO-92
1921
PN3563
TO-92
1921
PN3564
TO-92
1921
PN5130
TO-92
1921
2N4134
TO-72
2N4135
TO-72
MPSS568A TO-92
1911
MPS6569
TO-92
1911
MPS6570
TO-92
1911
MPSH30
TO-92
1911
MPSH31
TO-92
1911
SE5020
TO-72
SE5021
TO-72
TO-72
SE5022
SE5023
TO-72
SE5024
TO-72
SE5050
TO-72
SE5051
TO-72
SE5052
TO-72
MPSS511

~

00

MPSH32
SE5055
PE5025

TO-92
1961
TO-72
TO-92
1921

vCES'
VCBO
IVI
Min

vCEO
IVI
Min

VEBO
IVI
Min

ICBO
InA I
Max

@

VCB
IVI

hFE
Min Max

@

IC & VCE
ImAI
IVI

VCEISATI VBEISATI
IVI
&
IVI
Min Max
Max

@

IC
ImAI

Cob/Cre
IpFI
Min Max

tr
IMHzl
Min
Max

@

IC
1m AI

NF
IdBI
Max

@

Freq
IMHzl

Process
No.

50

15

25

10

10

2.5

4

50

15

25

4

10

1.7

SOO

15

3

10

·15

20

3

1

1.7

600

30

15

2

50

15

20

200

8

10

1.7

600

1500

8

43

30

15

4

50

15

20

500

15

10

0.3

0.97

20

3.5

400

1200

15

43

30

12

1

50

10

15

250

8

10

O.S

1.0

10

1.7

450

8

43

30
30
20

30
30
20

3
3
3

50
50
50

10
10
10

25
25
20

200
200
200

4
4
4

5
5
5.

0.3

0.96

10

0.5
0.5
0.S5

350
425
375

800
800
800

4
4
4

20

20

3

50

10

20

200

4

5

3

0.96

10

0.25

0.5

300

800

20

20

3

50

10

20

200

4

5

3

0.96

10

0.25

0.5

300

20

20

3

50

10

20

200

4

5

0.3

0.96

10

0.65

20

20

3

50

10

20

200

4

5

0.3

0.96

10

20
20

20
20

3

50
50

10
10

3.0
3.0

50
50
50
50
50
50

5
5
5
5
5

0.96
0.96
0.96
0.96

30

50

27

200

4

5

3.0.
3.0
3.0
3.0
3.0
3.0
0.3

10
10
10

20
20
20
20

4
4
4
4
4

0.96
0.96
0.96

30

10
10
10
10
10
10
10

200
200
200
200
200
200
200

5
5

20
20
20
20
20
20

20
20
20

4
4

20
20
20
20
20
20

3
3
3
3
3
3
3
4

10
10
10
10
10
10

20
30

20
30

3
3

50
50

20
30

20

220
100

2
10

10
10

2.75
0.6

30'

20

30'

20

30

20

0.4·

1.0

1.2

10

10
20

43
1500

4
4

43
S

60

43

3.3

60
450
20()'

44
44
44

4

6

45

44

800

4

6

45

44

300

800

4

6

45

44

0.65 . 300

800

4

6

45

44

0.25

0.5

800

4

0.25
0.25
0.25
0.25
0.25
0.25

0.5
0.5
0.5
0.5
0.5
0.5

800
800

4
4
4

3.3
4

200
200

44
44
44

6
6
4

45
45
100

44
44

4

200

0.22
0.6

375
375
300
300
300
300
300
375

0.22

300

1

300
300

800
800

4
4
4
4

2.5
5

4

700

2
10

44
44
44
45

5

.-

45

45
46

I

-

~
Typo
No.

RF AMPS AND OSCILLATORS (Continued)
Case
Style

VCES'
VCBO
(V)
Min

;b

vCEO
(V)
Min

VEBO
(V)
Min

ICBO
(nA)
Max

@

VCB
(V)

hFE
Min Max

@

IC
& VCE
(rnA)
(V)

VCE(SATl VBE(SATl
(V)
(V)
&
Min Max
Max

30'

20

,

50·

15

25

2

10

TO-92
(96)

35

20

3

100

25

25

4

10

0.35

MPS6546

TO-92
(96)

35

25

3

100

25

20

2

·10

MPS6547

TO-92
(96)

35

25

3

100

25

20

2

MPSH11

TO-92
(96)

30

25

3

100

25

60

MPSH19

TO-92
(96)

30

25

3

100

15

MPSH24

TO-92
(96)

40

30

4

50

MPSH34

TO-92
(96)

45

45

4

PE3100

TO-92
(96)

·30'

30

PE5029

TO-92
(96)

30

PE5030B

TO-92
(96)

45

PE5031

TO-92
(96)

40

30

TIS86

TO-92
(98)

30

TIS87

TO-92
(98)

MPS6540

MPS6542

TO-92
(96)

MPS6543

@

IC
(rnA)

Cob/Cre
(pF)
Min Max

fT
(MHz)
Max
Min

@

Ic
(rnA)

NF
(dB)
M
ax

@

Freq
(MHz)

Process
No.

1.5

700

10

47

10

1

750

4

47

0.35

10

0.45

600

2

47

5

0.35

10

0.35

600

2

47

4

10

0.5

4

0.9

650

45

4

10

0.65

300

4

47

15

30

8

10

0.36

400

8

47

50

30

15
40

20
7

2
15

0.32

500

15

47

3

200

30

30

225

5

10

0.8

500

5

47

30

3

200

30

30

225

5

10

0.4

500

5

40

4.5

100

30

45

150

7

15

0.4

600

7

0.95

0.5

0.6

20

3
0.92

20
10

0.25

47

4

6

45

47
47

100

30

30

180

5

10

1

10

0.4

500

5

4.5

200

47

30

100

15

40

200

4

10

0.5

15

0.45

500

4

5

200

47

45

45

100

15

30

150

12

12

0.5

15

0.45

500

12

47

TO-92
(911

30

30

4

100

25

25

2

10

0.5

10

0.65

350

2

49

MPS6544

TO-92
(911

60

45

4

500

35

20

30

10

0.5

30

0.65

49

MPS6567

TO-92
(911

40

5

500

35

25

10

5

0.5

10

0.7

49

MPSH20

TO-92
(91)

30

4

50

15

25

4

10

10

0.65

400

4

49

MPSH37

TO-92
(91)

40

5

500

35

25

5

10

10

0.7

300

5

49

40

4

0.95
0.5

SJOIS!SueJl

Nd N

NPN Transistors

~

.LOW LEVEL AMPS
ICBO
(nA)
Max

fT
(MHz)
Min
Max

1.1

10

8

50

1.0

07

1.1

10

8

50

1;0

07

0.6

1.0

10

B

30

0.5

4

0.5

0.7

0.9

10

6

45

0.5

4

5
5
5

1.0

0.6

1.0

10

8

30

0.5

3

1

07

1
500jl.A
100jl.A
10jl.A
ljl.A

5
5
5
5
5

0.35

1

10

15

0.05

3

1

07

10
10jl.A

5

1.0

0.9

5

6

45

5

1

1

07

VCBO
(V)
Min

VCEO
(V)

VEBO
(V)

Min

Min

2N760

TO·18

45

45

8

200

30

76

1
300
(1 kHz)

5

1.0

2N760A

TO·18

60

60

8

100

30

76
40

1
333
(1 kHz) 10 jl.A

5
5

1.0

2N929

TO·18

45

45

5

10

45

350

10
500jl.A
10jl.A

5
5
5

1.0

10
500jl.A
10jl.A
ljl.A

5
5
5
5

10
500jl.A
lOjl.A

hFE

VCB

IV)

Min

60
40
2N929A

TO·18

60

45

6

2

45

2N930

TO·1B

45

45

5

10

45

2N2509

TO·1B

·TO·1B

60

125

60

80

6

7

10

5

45

100

.'.2N2510

TO·18

100

65

7

. 5

2N2511

TO·18

80

50

7

5

60

2N2586·

TO·18

60

45

6

2

45

120

120
600

150
100
2N24B4

@

Max

350
60
40
25

......
o

Cob
(pF)
Max

Case
Style

@

250
200
175
100
30

300

500

40
25

NF
Test
(dB)
Conditions
Max

IC
(mA)

VCE(SAT)
VBE(SAT)
(V)
(V)
&
Max
Min Max

Type
No.

IC
(mA)

& VCE
(V)

0.6

@

@

IC
(mA)

s---

1

Process

No.

07

07

I

80

150
75

500

10
10jl.A

5
5

1.0

0.9

5

6

45

5

4

2

07

240
120
80

750

10
10jl.A
ljl.A

5
5
5

1.0

0.9

5

6

45

5

4

2

07

600

10
·500jl.A
10jl.A
1

5
5
5
5

0.5

0.9

10

7

45

0.5

3.5

2

07

400
300
250 "'500
100

1
100jl.A
10jl.A
ljl.A

5
5
5
.5

0.35

1

4.5

60

0.5

1

2

07

800

10
1
500jl.A
l00jl.A
10jl.A
ljl.A

·5
5
5
5
5

0.5

5

5

60

1

2

1

07

150
120
80
2N3117

TO·18

60

60

6

10

45

2N3246

TO·18

60

40

10

1

40
400
350
300
200
150

360

600

5

0.7

0.7

0.9

180

I

W

LOW LEVEL AMPS (Continued)
VCBO
(V)

VCEO
(V)

Min

Min

VEBO
(V)
Min

ICBO
(nA)
Max

VCE(SAT)
VBE(SAT)
(V)
(V)
&
Min
Max
Max

cob

IT
(MHz)
Min
Max

NF
(dB)
Max

Test

Type
No.

Case
Style

2N3565

TO-92
(92)

Same as PN3565, see page 1-13 for explanation

2N3707

TO-92
(94)

30

30

6

100

20

100

400

lOO/lA

5

1.0

10

2N3708

TO·92
(94)

30

30

6

100

20

45

660

1

5

1.0

10

07

2N3709

TO-92
(94)

100

20

45

165

1

5

1.0

10

07

2N37lO

TO-92
(94)

30

30

6

100

20

90

330

1

5

1.0

10

07

2N3711

TO-92
(94)

30

30

6

100

20

180

660

1

5

1.0

10

07

2N3858A

TO·92
(94)

60

60

6

500

18

60
45

120

10
1

1
1

4

90

250

2

07

2N3859A

TO-92
(94)

60

60

6

500

18

100
75

200

10
1

1
1

4

90

250

2

07

2N3877

TO-92
(94)

70

70

4

500

70

20

250

2

4.5

0.5

0.9

10

07

2N3877A

TO-92
(94)

85

85

4

500

70

20

250

2

4.5

0.5

0.9

10

07

2N3900A

TO-92
(94)

18

18

5

100

18

250

500

2

4.5

2N3901

TO-92
(94)

18

18

5

100

15

350

700

2

4.5

2N4286

TO-92
(94)

30

25

6

50

25

150
100

600

1
100/lA

5
5

0.35

0.8

1

6

40

1

2N4287

TO-92
(94)

45

45

7

10

30

150
100

600

1
100/lA

5
5

0.35

0.8

1

6

40

1

5

1

07

2N4384

TO-18

40

30

5

10

30

150
120
100
60

10
1
10/lA
l/lA

5
5
5
5

0.2

0.65

0.8

10

8

30

120

0.5

2

1

07

10
1
10/lA

5
5
5
1
1

0.2

0.65

0.8

10

8

30

120

0.5

3

1

07

0.8

1

12

60

300

10

~

30

@

VCB
(V)

~

hFE
Min

@

Max

IC
(rnA)

& VCE
(V)

@

IC
(rnA)

(pF)
Max

@

IC
(rnA)

Conditions

Process
No.
07

2N4386

TO-18

40

30

5

10

30

120
100
40

2N4409

TO-92
(92)

80

50

5·

10

60

60
60

500

500
400

10
1

5

12

0.2

1

07

5

4

07

5

4

07
07

07

TEST CONDITIONS:

i

(1) Ie = 10 /lA, VeE = 5V, I = 10 Hz-15.7 kHz. (2) IC = 10 /lA, VeE = 5V, 1=1 kHz. (3) Ie = 5 /lA, VCE = 5V, I = 1 kHz. (4) Ie = 100 /lA, VeE = 5V, 1= 10 Hz-15.7 kHz. (5) Ie = 10 /lA, VeE = 5V, I = 10 kHz.
(6) Ie = 100 /lA, VCE = 5V, I = 5 kHz.

,

SJOIS!SueJl

,

Nd N

NPN Transistors

~
Type
No.

,

LOW LEVEL AMPS (Continued)
Case
Style

VCBO
(V)

VEBO
(V)

Min

VCEO
(V)
Min

Min

ICBO
(nA) @ VCB
(V)
Max

hFE

IC
(rnA)

@

Min

Max

&

VCE
(V)

VCE(SAT)
(V)
&
Max

VBE(SAT)
(V)
Min
Max

IC
(rnA)

fT
(MHz)

Cob
(pF)
Max

Min

Max

1

12

60

300

@

IC
(rnA)

NF
(dB)
Max

Test
Conditions

Process
No.

2N4410

TO·92
(92)

120

80

5

10

100

60
60

400

10
1

1
1

0.2

2N4966

TO·92
(92)

50

40

6

25

25

40
50

200

0.01
10

5
5

0.4

10

6

2N4967

TO-92
(92)

50

40

6

25

25

100
120

600

0.01
10

5
5

0.4

10

6

2N4968

TO-92
(92)

30

25

6

50

25

40
50

200

0.01
10

5
5

0.4

10

6

2N5088

TO-92
(92)

35

30

50

20

300
350
300

10
1
100 "A
10
1
100"A
1 rnA

5
5
5

0.5

10

4

3

3

07

5
5
5

0.5

10

4

2

3

07

5

0.4

1

5

5
5
5

0.7

10

4

30

0.5

4

5

07

5
5
5

0.7

10

4

30

0.5

3

4

07

5

0.125

10

4
4

2N5089

TO·92
(92)

30

25

2N5133

TO·92
(92)

20

18

2N5209

TO·92
(92)

50

2N5210

TO·92
(92)

50

2N5232

10

07

40

1

07

40

1

07
07

I

50

15

50

15

50

50

35

150
150
100

50

50

35

600

TO-92
(94)

50

30

50

250
250
200
250

500

10
1
100"A
10
1
100 "A
2

2N5232A

TO·92
(94)

50

30

50

250

500

2'

5

0.125

10

MPS3707

TO·92
(92)

30

100

20

100

400

100"A

5

1.0

10

MPS3708

TO·92
(92)

30

100

20

45

660

1

5

1.0

10

07

MPS3709

TO·92
(92)

30

100

20

45

165

1

5

1.0

10

07

MPS3710

TO·92
(92)

30

100

20

90

330

1

5

1.0

10

07

MPS3711

TO·92
(92)

30

100

20

180

660

1

5

1.0

10

07

MPS6571

TO·92
(92)

25

20

50

20

250

1000

100"A

5

0.5

10

4.5

50

0.5

07

MPSA09

TO·92
(92)

50

50

100

25

100

600

100"A

5

0.9

10

5

600

0.5

07

3

400
450
400
60

900

0.8

@

1200
1000

07

~

I\)

3

300

07

--

5

2

07

5

4

07

~

LOW LEVEL AMPS (Continued)

Type
No.

Case
Style

VCBO
(V)

VCEO
(V)

VEBO
(V)

Min

Min

Min

PE4010

TO·92
(92)

30

25

6

200

5

PN930

TO·92
(92)

45

45

5

10

45

TO·92
(92)

60

PN2484

ICBO
(nA) @ VCB
(V)
Max

hFE

6

10

& VCE
(V)

fT
@
(MHz)
Max
Min

IC
(rnA)

4

20
60

0.05
1

10

8

30

0.5

0.35

10

6

VBE(SATI
VCE(SATI
(V)
(V)
&
Min
Max
Max

Max

200

1000

1

10

0.35

600

10
500p.A
10p.A

5
5
5

1.0

10
1
500p.A
100p.A
10p.A
1 p.A

5
5
5
5
5
5

150
100
60

IC
(rnA)

@

Min

45

300
800

250
200
175
100
30

500

@

IC
(rnA)

Cob
(pF)
Max

1
1.0

0.6

NF
(dB)
Max

Test
Conditions

Process
No.
07

3

1

07

07

PN3565

TO·92
(92)

30

25

6

50

25

150

600

1

10

0.35

1

4

40

240

1

07

PN5133

TO·92
(92)

20

18

3

50

15

60

1000

1

5

0.4

1

5

40

240

1

07

~
~

TEST CONDITIONS:

(,)

(1) IC= 10 p.A, VCE = 5V, f = 10 Hz-15.7 kHz. (2) IC = 10 p.A, VCE = 5V, f = 1 kHz. (3) IC = 5 p.A, VCE = 5V, f = 1 kHz. (4) IC = 100 p.A, VCE = 5V, f = 10 Hz-15.7 kHz. (5) IC = 10 p.A, VCE = 5V, f = 10 kHz.
(6) IC= 100 p.A, VCE = 5V, f = 5 kHz.

~
Type
No.

GENERAL PURPOSE AMPS AND SWITCHES
Case
Style

VCBO
(V)

VCEO
(V)

Min

Min

VEBO
(V)
Min

ICBO
(nA) @ VCB
(V)
Max

hFE
@
IC
& VCE
Min
Max
(rnA)
(V)

VCE(SAT)
VBE(SAT)
@
Ic
(V)
(V)
&
(rnA)
Max
Min
Max

Cob
(pF)
Max

fT
IC
(MHz)
@ (rnA)
Min
Max

4

200

toft
(ns)
Max

NF
(dB)
Max

Test
Conditions

Process

5

8

02

No.

~

MPS3903

TO·92
(92)

60

40

6

20
35
50
30
15

150

0.1
1
10
50
100

1
1
1
1
1

0.2

0.3

0.65

0.85

10

1.0

50

10

TEST CONDITIONS:
(1) IC = 300 p.A, VCE = 10V, f = 1 kHz. (2) IC = 150 mA, VCC = 30V, ISl = IS2= 15 mA. (3) IC= 100p.A, VCE = 10V,f= 1 kHz. (4) Ic=300mA, VCC= 25V,ISl = IB 2 =30mA. (5) IC= 100p.A,
VCE = 4.5V, f = 15.7 kHz. (6) IC = 10 mA, VCC = 3V,ISl = IS2 = 1 mA.m IC= 100p.A, VCE=5V,f= 15.7 kHz.(S) IC= 250p.A, VCE=5V,f= 10 Hz-15.7 kHz. (9) Ic=3mA, VCE= 10V,f= 1 MHz.
(10) IC = 10 p.A, VCE = 5V, f = 15.7 kHz.
- - - _ .. -

--

SJOIS!SUBJl

NdN

NPN Transistors

~

-

Type
No.

Case
Style

VCBO
(V)
Min

MPS3904

. TO-92
(92)

60

vCEO
(V)

VEBO
(V)

Min

Min

40

6

ICBO
(nA)
Max

@

VCB
(V)

hFE
Min Max
40
70
100
60
30

100

35

100
200

300

@

IC
& VCE
(rnA)
(V)

VCE(SAT) VBE(SAT)"
(V)
(V)
&
Min Max
Max

0.1
1
10
50
100

1
1
1
1
1

0.2

100"A
10

5
5

0.5

0.3

0.65

@

IC
(rnA)

0.85

10

1.0

50

Cob
(pF)
Max

fT
(MHz).
Min Max

@

IC
(rnA)
10

toff
(ns)
Max

NF
(dB)
Max

Test
Conditions

Process
No.

5

8

02

4

200

10

12

100

300

10

02

TO-92
(92)

35

MPS6574

TO-92
(92)

35

100

35

100
300
(4 Groups)

1

5

0.5

10

12

100

300

.10

02

MPS6575

TO-92
(92)

45

100

45

100
200

100"A
10

5
5

0.5

10

12

100

300

10

02

MPS6576

TO-92
(92)

45

0.5

10

12

100

300

10

02

MPSA20

TO-92
(92)

40

125

5

02

2N2923

TO-92
(94)

25

2N2924

TO-92
(94)

2N2925

MPS6573

~

GENERAL PURPOSE AMPS AND SWITCHES (Continued)

500

500

100

45

100
300
(4 Gr.oups)

1

5

4

100

30

40

400

5

10

4

25

5

100

25

90

180
2
(1 kHz)

10

10

04

25

25

5

100

25

150

300
2
(1 kHz)

10

10

04

TO-92
(94)

25

25

5

100

25

235

470
2
(1 kHz)

10

10

04

2N2926

TO-92
(94)

18

18

5

500

18

35

470
2
(1 kHz)

10

10

04

2N3390

TO-92
(94)

25

25

5

100

18

400

800

2

4.5

10

04

2N3391

TO-92

. 25

25

5

100

18

250

500

2

4.5

10

5

5

04

5

5

04

....
~

(94)

2N3391A

TO-92
(94)

25

25

5

100

18

250

500

2

4.5

10

2N3392

TO-92
(94)

25

25

5

100

18

150

300

2

4.5

10

04

2N3393

TO-92

25

25

5

100

18

90

180

2

4.5

10

04

(94)

2N3395

TO-92
(94)

25

25

5

100

18

150

500

2

4.5

10

04

2N3396

TO-92
(94)

25

25

5

100

18

90

500

2

4.5

10

04

2N3397

TO-92
(94)

25

25

5

100

18

55

500

2

4.5

10

04

-

~

GENERAL PURPOSE AMPS AND SWITCHES (Continued)
VCEO
IV)

ICBO
InA) @ VCB
IV)
Max

Cob
IpF)
Max

IT
IMHz)
Max
Min

toll
Ins)
Max

NF
IdB)
Max

Type
No.

Case
Style

VCBO
IV)
Min'

Min

VEBO
IV)
Min

2N3398

TO-92
(94)

25

25

5

100

18

55

800

2

4.5

2N3415

TO-92
(94)

25

25

5

100

25

180

540

2

4.5

0.3

0.6

1.3

50

04

2N3416

TO-92
(94)

50

50

5

100

25

75

225

2

4.5

0.3

0.6

1.3

50

04

2N3417

TO-92
194)

50

50

5

100

25

180

540

2

4.5

0.3

0.6

1.3

50

04

2N3900

TO-92
(94)

18

18

5

100

18

250

500

2

4.5

2N4424

TO-92
(94)

40

40

5

100

25

180

540

2

4.5

0.3

2N5172

TO·92
(94)

25

25

5

100

25

100

500

10

10

0.25

MPS3392

TO·92
192)

25

25

5

100

18

150

300

2

MPS3393

TO-92
(92)

25

100

18

90

180

MPS3394

TO-92
(92)

25

100

18

55

MPS3395

TO-92
(92)

25

100

18

MPS3396

TO-92
192)

25

100

MPS3397

TO-92
192)

25

MPS3398

TO-92
192)

25

MPS5172

TO-92
(92)

hFE
@
IC
Min Max
ImA) &

VCE
IV)

VBEISAT)
VCEISATI
IV)
IV)
&
Max
Min Max

@

IC
ImA)

@

IC
ImA)

Test
Conditions

04

10

12
0.6

1.3

04

50
10

Process
No.

04
10

04

4.5

10

04

2

4.5

3.5

04

110

2

4.5

3.5

04

150

500

2

4.5

3.5

04

18

90

500

2

4.5

3.5

04

100

18

55

500

2

4.5

3.5

04

100

18

55

800

2

4.5

3.5

04

100

25

100

500

10

10

0.25

10

10

04

~

(J1

25

25

5
...

MPS6520

TO-92
192)

25

4

50

30

200
100

400

2
100!,A

10
10

0.5

50

3.5

3

10

04

MPS6521

TO-92
192)

25

4

50

30

200
150

600

2
100!,A

10
10

0.5

50

3.5

3

10

04

TlS97

TO·92
(97)

40

10

40

250

700

0.1

5

3

7

04

TEST CONDITIONS:
(1) IC ~ 300 !'A, VCE ~ 10V,f ~ 1 kHz. (2) IC~ 150 mA, Vce ~ 30V, 18 1 ~ 182~ 15 mA. (3) le~ 100!,A, VeE~ 10V,f ~ 1 kHz. (4) le~300mA, Vee~ 25V, 18 1 ~ 182~30mA. IS) le~ 100!,A,
VeE ~ 4.5V, f ~ 15.7 kHz. (6) Ie ~ 10 mA, Vee ~ 3V, 18 1 ~ 18 2 ~ 1 mA.17l le~ 100!,A,VeE~5V,f~ 15.7 kHz. (B) le~250JlA, VeE~5V,f~ 10 Hz-15.7 kHz. (9) le~3mA,VeE~ 10V,f~ 1 MHz.
(10) IC ~ 10 !,A, VeE ~ 5V, f ~ 15.7 kHz.

SJOIS!SueJl

Nd N

NPN Transistors

~

GENERAL PURPOSE AMPS AND SWITCHES (Continued)

100

12

100

50

13

2

0.8

100

12

100

50

13

50

2

1.0

100

12

100

50

13

100
10
1
500
150
10
1
500
150
10
1
100jLA

10
10
10
2
1
1
1

0.4

10

10

100

10

13

0.95

150

6.5

200

20

255

2

13

1.2

500

0.95

150

6.5

250

20

255

2

13

1.2

500

VCEO
(VI

vEBO
(VI

Min

Min

ICBO
(nAI
Max

2N3704

TO·92
(941
TO·92
(941

50

30

5

100

20

100

300

50

2

50

30

5

100

20

50

150

50

TO·92
(941.
TO·92
(941

40

20

5

100

20

30

600

40

20

5

500

15

TO·92
(921

60

100
100
35
20
50
40
20
40
100
80
40
20
40
40
100
100
60
40
20

2N3705
2N3706
2N3794

2N4400

2N4401

........
0>

TO·92
(92)

60

40

40

6

6

TO·92
(921
TO·92
(921

80

40

5

50

40

80

40

5

50

40

2N4951

TO·92
(941

60

30

5

50

40

2N4952

TO·92
(941

60

30

5

50

40

TO·92
(941

60

2N4944
2N4946

2N4953

30

5

50

40

2N4954

TO·92
(941

40

30

5

50

30

2N5220

TO·92
(921
TO·92
(921

15

15

3

100

10

25

25

4

300

15

50

30

5

100

20

2N5225
MPS3704

TO·92
(921

hFE
Min Max

100
75
50
200
150
75
60
40
20
30
25
30
25
100

600

150

300

120
300
200

300

600

@

IC & VCE
(mAl
(V)

600
600
300

VCE(SATI VBE(SATI
(VI
(VI
&
Min Max
Max

0.4

0.75

0.75

(MHzI
Min Max

600

@

IC
(mAl

(dBI
Max

Test
Conditions

Process
No.

0.4'

1

0.25

150

60

900

50

13

1

0.25

150

60

900

50

13

10
10
10

0.3

1.3

150

8

250

20

400

2

13

150
10
1

10
10
'10

0.3

1.3

150

8

250

20

400

2

13

150
10

10
10
10
10
10
10
10
10
10
10
2

0.3

1.3

150

8

250

20

400

2

13

0.3

1.3

150

8

250

20

400

2

13

0.5

1.1

150

10

100

20

13

0.8

1.0

100

20

50

20

13

100

12

100

50

13

150
30
150
30
150
10
1

150
10
1
50
10
50
50
50

0.75

0.75

@

2
1
1
1
1

1
600

NF

0.6

VCBO
(VI
Min

VCB
(VI

toft
(nsl
Max

Cob
(pFI
Max

Case
Styl.

@

for

IC
(mAl

Type
No.

I

0.6

I

~

I

fT
IC
(MHz)
@ (rnA)
Min
Max

100

12

100

50

13

1.0

100

12

100

50

13

10
10

0.5

50

4

13

500
100
10

10
1
1

0.5

1.0

100

5

13

500
100
10

10
1
1

0.3

1.0

100

5

13

30

100

1

0.5

1.2

100

5

13

30

40

20

1

0.15

100

6

150

20

BO
150

2
10

10
10

1

100

25

40

120

30
150

1
1

0.25
1

150

20

100
100

300

150
30

1
1

0.25

20

100

300

50

2

0.6

100

25

100

200

2

2

0.75

100

100

20
60
60

250

50
10
1

5
5
5

250

50
10
1

5
5
5

500

1
10
50

5
5
5

vCEO
(V)
Min

vEBO
(V)
Min

TO·92
(92)

50

30

"' MPS3706

TO·92
(92)

40

MPS6522

TO·92
(92)

MPS6530

TO·92
(92)

60

TO·92
(92)

60

MPS6532

TO·92
(92)

50

30

5

100

30

NCBT13

TO·92
(92)

BJl

40

4

100

PN3566

TO·92
(92)

40

30

5

50

PN3567

TO·92
(92)

BO

40

5

50

40

40
40

PN3569

TO·92
(92)

BO

40

5

50

40

PN5449

TO·92
(92)

50

30

5

100

PN5B16

TO·92
(92)

50

40

5

2N5550

TO·92
(92)

160

140

6

TO·92
(92)

180

TO·92
(92)

120

MPS3705

2N5551

2N5830

NF
(dB)
Max

Cob
(pF)
Max

vCBO
(V)
Min

Case
Style

~
~

GENERAL PURPOSE AMPS AND SWITCHES (Continued)

Type
No.

MPS6531

....

I

ICBO
(nA) @ VCB
(V)
Max

VCE(SAT)
VBE(SAT)
@
IC
(V)
(V)
&
(rnA)
Max
Min Max

hFE
@
IC
& VCE
Min Max
(rnA)
(V)

5

100

20

50

150

50

2

O.B

20

5

100

20

30

600

50

2

25

4

50

20

100
200

400

0.1
2

40

5

50

40

25
40
30

120

50
90
60

270

toff
(ns)
Max

Test

Process

Conditions

No.
I

I

40

160

100

5

6

5

50

50

50

40

120

100

30
BO
BO
60
BO
BO

600

20

13

700

30

13

60

900

50

13

150

60

900

50

13

100

100

50

13

1.2

500

100

50

13

0.15

1.0

10

0.25

1.2

50

0.15

1.0

10

0.2

1.0

50

0.15
0.2
0.25

O.B
1
1

1
10
50

6

100

300

10

10

B

16

6

100

300

10

B

B

16

100

500

10

16

TEST CONDITIONS:
(1) IC = 300 IlA. VCE = 10V. f = 1 kHz. (2) IC = 150 rnA. Vcc = 30V. 18 1 =18 2 = 15mA.(3) Ic= lOOIlA.VCE= 10V.I= 1 kHz. (4) Ic=300mA.Vcc=25V.ISl = IS 2 =30mA.(5) IC= lOOIlA.
VCE = 4.5V, I = 15.7 kHz. (61 IC = 10 rnA, Vcc = 3V, 18 1 = IB2 = 1 rnA. (7) IC= 1001lA. VCE =5V,I= 15.7 kHz. (B) IC= 250IlA. VCE=5V,I= 10 Hz-15.7 kHz. (9) Ic=3mA. VCE = 10V,I= 1 MHz.
(10) IC = 10 IlA, VCE = 5V, I = 15.7 kHz.

SJO~S!sut:U!

Nd N

NPN Transistors

:~

~
~

GENERAL PURP'()SE AMPS AND SWITCHES (Continued)
VCBO
(V)
Min

VCEO
(V)
Min'

VEBO
(V)
Min

TO·92
(92)

140

120

6

1 p.A

40

50

300

10

5

0.2
0.2

MPS809B

TO-92
(92)

60

0

6

100

60

300

MPS8099

TO-92
(92)

80

80

6

100

60

300

1
10
100
1
10
100
1

5
5
5
5
5
5
5

Type
No.

Case
Style

MPSLOl

ICBO
(nA) @ VCB
Max
(V)

. hFE
Mon Max

@

IC
&
(rnA)

VCE
(V)

VCE(SATl VBE(SAT)
(V)
&
(V)
Max
Min Max

1.2
1.4

@

IC
(rnA)

Cob
h'iF)
Max

fT
(MHz)
Min Max

@

IC
(rnA)

toft
(ns)
Max

NF
(dB)
Max

Te~.
Cond,t,ons

Process
'No.

10
50

8

60

10

16

0.3

100

6

150

10

lB

0.3

100

6

150

10

18

0.5

100

2

10

lB

100

2

10

lB
19
19

,-TIS98

TO-92
(97)

60

10

40

100
100
75
100
100
75
100

TIS9S

TO-92
(97)

65

10

40

55

300

100

5

'0.5

2N696
2N697

TO-5
TO-5

60
60

5
5

1 p.A
1 p.A

30
30

20
40

60
120

150
150

10
10

1.5
1.5

1.3
1.3

150
150

20
35

40
50

50
50

2N718
2N718A

TO-1B
TO-18

60
75

5
7

1 p.A
10

30
60

40
20
40
35
20
40
100
75
35
20

120

150
500
150
10
100p.A
500
150
10
100p.A
10p.A

10
10
10
10
10
10
10
10
10
10

1.5
1.5

1.3
1.3

150
150

35
25

50
60

15
50

12

1

19
I
19·

1.5

1.3

150

25

70

50

8

1

19

150
5

10
5

1.5
1.0

1.3

150
10

35
10

50
60

50
5

19
19

500
150
150
10
1
l00p.A

10
1
10
10
10
10

0.4

1.3

150

B

250

20

19

1.6

2.6

500

500
150
150
10
1
100p.A

10
1
10
10
10
10

0.3

1.2

150

8

250

20

45
30

CD

,

2N956

TO-18

75

35

7

10

60

300

120

300

2N1420
2N1566

TO-5
TO-5

60
80

30
60

5
5

1 p.A
1 p.A

30
40

100 300
80200

2N221B

TO-5

60

30

5

10

50

20
20
40
35
25
20

(1 kHz)

2N2218A

TO-5

75

40

6

---

10

-

60

--

-

25
20
40
35
25
20

--

----

120

120

---------

0.6

285

2

19

I

~

GENERAL PURPOSE AMPS AND SWITCHES (Continued)

Type
No.

Style

2N2219

TO·5

Case

2N2219A

2N2221

TO·5

TO·18

VCBO
(V)
Min

vCEO
(V)
Min

vEBO
(V)
Min

ICBO
(nA)
Max

60

30

5

10

75

60

40

30

6

5

10

10

@

VCB
(V)
50

60

50

~

co
2N2221A

2N2222

2N2222A

2N2897

TO·18

TO·18

TO·18

TO·18

75

60

75

40

30

40

60

6

5

6

7

10

10

10

50

60

50

60

60

hFE

Min
30
50
100
75
50
35
40
50
100
75
50
35
20
20
40
35
25
20
25
40
35
25
20
30
50
100
75
50
35
40
50
100
75
50
35
35
50

@

Max

IC
&
(rnA)

300

500
150
150
10
1

300

100 "A
500
150
150
10
1
100"A

120

120

300

300

200

VCE
(V)
10
1
10
10
10
10

VCE(SAT)
VBE(SAT)
(V)
(V)
&
Min
Max
Max

@

IC
(rnA)

cob
(pF)
Max

IT
(MHz)
Min
Max

8

250

20

@

IC
(rnA)

0.4

1.3

150

1.6

2.6

500

1.2
2

150
500

8

300

20

8

250

20

8

250

20

8

250

20

8

250

20

0.6

10
1
10
10
10
10

500
150
150
10
1
100"A

10
1
10
10
10
10

0.4

1.3

150

1.6

2.6

500

500
150
10
1

0.3

1.2

150

1.0

2.0

500

100"A

10
10
10
10
10

500
150
150
10
1
100"A

10
1
10
10
10
10

0.4

1.3

150

1.6

2.6

500

500
150
150
10
1
100"A

10
1
10
10
10
10

0.3

1.2

150

1

2

500

1
150

10
10

1

1.3

150

0.6

0.6

toll
(ns)
Max

NF

(dB)
Max

Test
Conditions

Process
No.
19

285

2

19

19

285

2

19

19

285

4

2/3

15

19

19

TEST CONDITIONS:
(1) IC = 300 "A, VeE = 10V, I = 1 kHz. (2) Ie = 150 rnA, Vee = 30V, IB 1 = IB2 = 15 rnA. (3) Ie = 100 "A, VeE = 10V, f = 1 kHz. (4) Ie = 300 rnA, Vee = 25V, 18 1 = IB2 = 30 rnA. (5) Ie = 100 "A,
VCE = 4.5V, I = 15.7 kHz. (6) Ie = 10 rnA, Vee = 3V, IB 1 = 18 2 = 1 rnA. (7) Ie = 100 "A, VeE = 5V, f = 15.7 kHz. (8) Ie = 250 "A, VeE = 5V, I = 10 Hz-15.7 kHz. (9) Ie = 3 rnA, VeE = 10V, 1= 1 MHz.
(10) Ie

= 10 "A, VeE = 5V, I = 15.7 kHz.
---

SJOIS!SUIUl

Nd N

NPN Transistors

~

GENERAL PURPOSE AMPS AND SWITCHES (Continued)
VCBO'

VCEO

VEBO

(V)

(V)

(V)

Min

Min

Min

TO·18

60

20

TO·18

60

20

TO·5

60

30

5
5
5

Type
No.

Case
Style

2N3115
2N3116
2N3299

2N3300

2N3301

TO-5

60

TO·18

60

30

30

5

5

ICBO
(nA)
Max

@

VCB
(V)

2N3414

TO-92
(94)

2N3641

TO-92
(92)

2N3642

TO·92
(92)

2N3643

TO·92
(92)

2N3678

TO·5

2N4140

TO·92
(92)

60

25

I

I

30

25

5

5

IC & VCE
(rnA)
(V)

)/CE(SAT)
(V)

Max

VBE(SATI
&

(V)

Min

IC
@

A)

(

Max

m

50

40

120

150

10

0.5

1.3

150

25

50

100

300

150

10

0.5

1.3

150

10'

50

20
20
40
35
25
20

500
150
150
10

10

0.22

1.1

150

0.6

1.5

500

10
1
10
10
10
10

0.22

1.1

150

0.6

1.5

500

10

0.22

1.1

150

10
10
10
10

6.6

1.5

500

10

0.22

1.1

150

10
10
10
10

0.6

1.5

500

4.5

0.3

1.3

50

10'

10'

50

50

~
TO-18

@

25

~

2N3302

hFE
Min Max

10'

100

50

25

50
50
100
75
50
35
20
20
40
35
25
20
50
50
100
75
50
35
75

120

100llA

300

500
150
150
10
100llA

120

500
150
150
10
100llA

300

225

500
150
150
10
1
100 IlA
2

10
10
10
10

0.6

Cob
(pF)
Max

fT
(MHz)

Min

Max

@

IC
(rnA)

toff
(ns)
Max

NF
(dB)

Max

Test
Conditions

Process
No.

19

8
8
8

250

20

500

2

250

20

500

2

19

250

50

150

4

19

8

250

50

150

4

19

8

250

50

150

4

19

8

250

50

150

4

19

19

Same as PN3641, see page 1-22 for explanation

19

Same as PN3642, see page 1-22 for explanation

19

Same as PN3643, see page 1·22 for explanation

19

75

55

6

10

60

Same as PN4140, see 'page 1-22 for explanation

25
20
40
35
25
20

120

500
150
150
10
100llA

10

0.4

10
10
10
10

1.0

0.6

1.2

150

2.0

500

250

2

19

19

--

~

~

~

GENERAL PURPOSE AMPS AND SWITCHES (Continued)
VCBO
(V)
Min

VCEO
(V)
Min

VEBO
(V)
Min

ICBO
(nA)
Max

VBE(SATI
VCE(SATI
(V)
(V)
&
Min
Max
Max

cob
(pF)
Max

fT
(MHz)
Max
Min

toff
(ns)
Max

NF
(dB)
Max

Test
Conditions

Process

Type
No.

Case
Style

2N4141

TO·92
(92)

Same as PN4141, see page 1·22 for explanation

19

2N4969

TO-92
(92)

Same as PN2221, see below for explanation

19

2N4970

TO·92
(92)

@

VCB
(V)

hFE
Min Max

@

IC
&
(rnA)

VCE
(V)

@

IC
(rnA)

@

IC
(rnA)

No.

I

50

30

100
70
50

5

350

150
10
150

10
10
1

0.4

0.6

1.2

150

8

200

19

20

2N5128

TO·92
(92)

Same as PN5128, see page 1-22 for explanation

19

2N5129

TO·92
(92)

Same as PN5129, see page 1-22 for explanation

19

2N5135

TO·92
(92)

Same as PN5135, see page 1·22 for explanation

19

2N5136

TO-92
(92)

Same as PN5136, see page 1-22 for explanation

19

2N5137

TO·92
(92)

Same as PN5137, see page 1-22 for explanation

19

PN2221

TO-92
(92)

PN2221A

PN2222

TO·92
(92)

TO·92
(92)

,

I
I

I
I

i

60

75

60

30

40

30

5

6

5

10

10

10

50

60

50

20
20
40
35
25
20
25
20
40
35
25
20
30
50
100
75
50
35

120

120

300

500
150
150
10
1
lOO/lA

10
1
10
10
10
10

0.4

1.3

150

1.6

2.6

500

500
150
150
10
1
100/lA

10
1
10
10
10
10

0.3

500
150
150
10
1
100/lA

10
1
10
1
1
1

8

250

19

20

I

1.2

150

1.0

2.0

500

0.4

1.3

150

1.6

2.6

500

0.6

8

250

20

8

250

20

285

2

19

19

TEST CONDITIONS:
(t) IC = 300 /lA, VCE = 10V, f = 1 kHz. (2) IC = 150 rnA, Vce = 30V, IB 1 = IB2 = 15 rnA. (3) Ie = 100 /lA, VCE = 10V, f = 1 kHz. (4) Ie = 300 rnA, Vee ~ 25V, IS 1 = Is2 = 30 rnA. (S) Ie = 100 /lA,
VCE = 4.5V, f = 15.7 kHz. (6) Ie = 10 rnA, VCC = 3V,IS' = IS2 = 1 rnA.m Ie = 100/lA, VeE=5V,f= 15.7 kHz.(S} le= 250/lA, VCE=5V,f= 10 Hz-15.7 kHz.(9} Ie =3 rnA, VeE= 10V,f= 1 MHz.
(10) Ie = -10 /lA, VeE = 5V, f = 15.7 kHz.

---

-

SJOIS!SUBJl

NdN

NPN Transistors

~

GENERAL PURPOSE AMPS AND SWITCHES (Conlinued)

Type
No.

Case
Styl.

PN2222A

TO·92
(92)

PN3S41
PN3642
PN3643
PN4140

~

Min

VCEO
(V)
Min

VEBO
(V)
Min

ICBO
(nA)
Max

75

40

6

10

VCBO
(V)

TO·92
(92)

SO'

TO·92
(92)

60

TO·92
(92)

60

TO-92
(92)

60

30
45
30
30

5
5
. 5

50'
50'
50'

@

VCB
(V)
60

50
50
50

5

TO-92
(92)

60

30

IC
&
(rnA)

VCE
(V)

IC
(rnA)

Cob
(pF)
Max

fT
(MHz)
Min
Max

1.2

150

8

2.0

500

VCE(SAT)
VBE(SATl
(V)
(V)
&
Max
Min
Max

@

Ic
(rnA)

toff
(ns)
Max

300

20

285

@

NF
(dB)
Max

Test
Conditions

Process
No.

2

19

15
40

120

15
40

500
150

10
10

0.22

150

8

250

50

19

120

20
100

500
150

10
10

0.22

150

8

250

50

19

300

500
150
150
10
1

10
1
10
10
10
10

0.4

1.3

150

8

250

20

310

2

19

1.6

2.6

500

500
150
150
10
1
100"A
50
10

10
1
10
10
10
10

0.4

1.3

150

8

250

20

310

2

19

1.6

2.6

500

10
10

0.25

1.1

150

10

200

800

50

19

30
50
100
75'
50
35

5

@

500
150
150
10
1
100"A
500
150

40
50
100
75
50
35

20
20
40
35
25
20

e

PN4141

hFE
Min Max

300

120

100 "A

300

10
1
10
1
1
1

0.3

10
10

0.22

150

8

250

50

19

O.S

1.0

PN5128

TO-92
(92)

15

12

3

50

10

35
20

350

PN5129

TO·92
(92)

15

12

3

50

10

35
20

350

50
10

10
10

0.25

1.1

150

10

200

800

50

19

PN5135

TO-92
(92)

30

25

4

300

15

50
15

SO'

10
2

10
10

1.0

1.0

100

25

40

500

30

19

PN5136

TO-92
(92)

30

20

3

100

20

20
20

400

150
30

1
1

0.25

1.1

150

35

40

400

50

19

PN5137

TO·92
(92)

30

20

3

100

20

20
20

400

150
30

1
1

'0.25

1.1

150

35

40

400

50

19

TN2218A

TO-237
(91)

75

40

6

10

60

25
20
40
35
25
20

500
150
150
10
1
100 "A

10
1
10
10
10
10

1.2

150

8

250

---

120

0.3

0.6

20

-

-

--

285

2

19

~
Type
No.
TN2219

TN2219A

TIS90
TIS92
~

~

2N915
2N916
2N3691
2N3692
2N3903

2N3904

2N3946

GENERAL PURPOSE AMPS AND SWITCHES (Continued)
Case

Style
TO-237
(91'

TO·237
(91'

TO-92
(94'
TO·92
(97'
TO-1S
TO-18
TO-92
(92'
TO·92
(92'
TO-92
(92'

TO-92
(92'

TO·18

VCBO
(V,
Min

VCEO
(V,
Min

VEBO
Min

ICBO
(nA'
Max

60

30

5

10

(VI

@

VCB
(V,

IC & VCE
(mA'
(V,

VCE(SAT' VBE(SATI
(V,
(V,
&
Max
Min Max

40

40

5

100

20

100

300

40

40

5

100

20

100

300

50

2

0.25

70
45

50
25

5
5

10
10

60
30

50
50

200
200

10
10

5
1

1.0
0.5

40

6

10

60

30
50
100
75
50
35
40
50
100
75
50
35

@

500
150
150
10
1
0.1
500
150
150
10
1
0.1
50

75

50

hFE
Min Max

300

300

@

fT
(MHz'
Min
Max

IC
(mA'

Cob
(pF'
Max
8

50

20

8

60

20

@

Ic
(mA'

toff
(ns'
Max

NF
(dB'
Max

Test
Conditions

Process
No.

19

0.4

1.3

150

1.6

2.6

500

1.2

150

2.0

500

0.6

1

50

19

0.6

1

50

19

0.9
0.9

10
10

10
1
10
10
10
10
10
1
10
10
10
10
2

0.25

0.3

0.6

4

3

19
!

1.0

3.5
6

250
300

23
23

10
10

Same as PN3691, see page 1-25 for explanation

23

Same as PN3692, see page 1-25 for explanation

23

60

60

60

40

40

40

6

6 .

6

30

15
30
50
35
20
30
60
100
70
40
20
50
45
30

150

300

150

100
50
10
1
100!'A
100
50
10
1
100!,A
50
10
1
100!,A

1
1
1
1
1

0.2

1
1
1
1
1
1
1
1
1

0.2

0.6

0.3

0.65

0.3

0.2
0.3

0.6

0.85

10

0.95

50

0.85

10

0.95

50

0.9

10

1.0

50

4

250

10

225

6

6/7

23

4

300

10

250

5

6/7

23

4

250

10

375

5

6/7

23

TEST CONDITIONS:
(1) IC = 300 !'A, VCE = 10V, f = 1 kHz. (2) Ic = 150 mA, VCC = 30V, ISl = IS2 = 15 mAo (3'IC = 100!,A, VCE = 10V, f = 1 kHz. (4'IC = 300 mA, Vce = 25V,IS 1 = Is2 = 30 mAo (5'IC = 100 !,A,
VCE = 4.5V, f = 15.7 kHz. (611c = .10 mA, VCC = 3V,ISl = IS2 = 1 mA.I7IIC= 100!,A, VCE=5V,f= 15.7 kHz.(S) IC=250!,A, VCE=5V,f= 10Hz-15.7kHz.(9'lc=3mA,VCE= 10V,f= 1 MHz.
(10'IC = 10!,A, VCE = 5V, f = 15.7 kHz.

.SJOIS!SUeJ!

Nd N

NPN Transistors
...•..~

GENERAL PURPOSE AMPS AND SWITCHES (Continued)
Type
No.

Case
Style

VCBO

2N3947

TO-18

2N4123

Min

Min

VEBO
(V)
Min

60

40

6

ICBO
V
(nA). @
CB
Max
(V)

. hFE
@
IC
&
Min Max
(mA)
40
100
90
60

300

VCE
(V)

50
10
1
lOOILA

1
1
1
1

VCE(SAT) VBE(SAT)
IC
(V)
(V)
&
@ (mA)
Max
Min
Max
0.9

10

0.3

1.0

50

0.2

0.6

Cob
(pF)
Max

fT
IC
(MHz)
@ (mA)
Min Max

(ns)
Max

NF
(dB)
Max

4

300

10

450

taft

Conditions

Process
No.

5

617

23

Test

25
50

50
2

1
1

0.3

0.95

50

4

250

10

6

7

23

150

60
120

50
2

1
1

0.3

0.95

50

4

300

10

5

7

23

360

18

30

90

2

4.5

4

23

500

18

75

225

2

4.5

4

23

5

500

18

75

225

2

4.5

3.5

23

25

5

500

25

90

180
2
(1 kHz)

10

12

23

25

25

5

500

25

150

2
300
(1 kHz)

10

12

23

TO-92
(92)

25

25

5

500

25

235

470
2
(1 kHz)

10

12

23

MPS2926

TO-92
(92)

25

25

5

500

18

35
470
2
(1 kHz) (5 Groups)

10

3.5

23

MPS3642

.TO-92
(92)

MPS3721

TO-92
(92)

MPS3826

TO-92
(92)

60

45

MPS3827

TO-92
(92)

60

MPS6512

TO-92
(92)

40

TO-92
(92)

40

TO-92
(92)

40

TO·92
(92)

30

MPS2711

TO-92
(92)

18

18

5

500

MPS2712

TO-92
(92)

18

18

5

MPS2716

TO-92
(92)

18

18

MPS2923

TO-92
(92)

25

MPS2924

TO-92
(92)

MPS2925

MPS6513
MPS6514
MPS6515

TO-92
(92)

30
25

5

50

40

~

....

VCEO
(V)

TO·92
(92)

2N4124

r\>

(VI

5

50

20
20

Same as PN3642, see page 1-22 for explanation

40
I

23

500

18

60

660
2
(1 kHz)

10

3.5

4

100

30

40

160

10

10

3.5

200

800

10

23

45

4

100

30

100

400

10

10

3.5

200

800

10

23

30

4

50

30

30
50

100
2

10
10

0.5

50

3.5

23

100

10
10

50

3.5

23

180

100
2

0.5

90
90
150

100
2

10
10

0.5

50

3.5

23

300

150
250

100
2

10
10

0.5

50

3.5

23

500

30
25
25

4
4
4

50
50
50

30
30
30

60

23

,
.-

~

GENERAL PURPOSE AMPS AND SWITCHES (Conlinued)
VCBO

VCEO

VEBO

No.

Case
Style

(V)

(V)

(VI

Min

Min

Min

NS3903

TO-18

60

40

6

Type

NS3904

TO·18

60

40

ICBO
(nA)
Max

@

VCB
(V)

hFE
Min Max
15
30
50
35
20

6

150

@

Ic
&
(rnA)

VCE
(V)

100
50
10

VCE(SAT)
VBE(SAT)
(V)
& . (V)
Max
Mm
Max
0.2

@

IC
(rnA)

0.85

10

0.95

50

0.85

10

0.3

0.95

50

0.65

0.3

Cob
(pF)
Max

fT
(MHz)
Min Max

IC
(rnA)

toft
(ns)
Max

4

250

10

4

300

10

@

NF

Conditions

Process
No.

225

6

23

250

6

23

(dB)

Max

Test

100ILA

30
60
100
70
40

300

100
50
10

0.2

0.65

100ILA

PN3691

TO·92
(92)

35

20

4

50

15

40

160

10

0.7

0.9

10

3.5 1 200

500

10

23

PN3692

TO·92
(92)

35

20

4

50

15

100

400

10

0.7

0.9

10

3.5 1 200

500

10

23

ST3904

TO-92
(92)

60

40

6

40
70
100
60
30

0.1

0.2

0.85

10

4

300

10
50
100

0.95

50

~

~

0.65

0.3

2N2712

TO·92
(94)

18

18

5

500

18

75

225

2

4.5

2N2714

TO·92

18

18

5

500

18

75

225

2

4.5

25

5

100

18

55

110

2

4.5

12
0.3

0.6

1.2

300

1 80

10

300

8

23

27

2

27

50

(94)

2N3394

TO·92
(94)

25

2N3693

TO-92
(92)

Same as MPS3693."see page 1-26 for explanation

27

2N3694

TO·92
(921

Same as PN3694. see page 1·26 for explanation

27

2N3721

TO·92
(94)

18

18

5

500

18

60

660
2
(1 kHz)

10

12

2N3827

TO·92
(94)

60

45

4

100

30

100

400

10

10

3.5 1 200

800

10

27

2N3858

TO·92
(94)

30

30

4

500

18"

60

120

2

4.5

4

250

2

27

27

10

27

90

TEST CONDITIONS:
(1) IC ~ 300 ILA, VeE ~ 10V, f ~ 1 kHz. (2) Ie ~ 150 rnA, Vee ~ 30V, 18 1 ~ IB2~ 15mA.(3) le~ 1001LA, VeE~ 10V,f~ 1 kHz. (4) le~300mA, Vee~ 25V, 18 1 ~ 182~30mA. (51Ie~ 1001LA,
VeE ~ 4.5V, f ~ 15.7 kHz. (6) Ie ~ 10 rnA, Vee ~ 3V, 18 1 ~ 18 2 ~ 1 rnA. (7) le~ 1001LA, VeE~5V,f~ 15.7 kHz. (B) le~ 250ILA, VeE ~5V,f~ 10 Hz-15.7 kHz. (9) Ie ~3mA, VeE~ 10V,f~ 1 MHz.
(10) Ie ~ 10 ILA, VeE ~ 5V, f ~ 15.7 kHz.

SJOIS!SUeJl

Nd N

NPN Transistors

~
Type
No.

Case
Style

VCBO
(V)
Min

VCEO
(V)

Min

VEBO
(V)
Min

ICBO
(nA) @ VCB
(V)
Max

hFE
@
IC
& VCE
Min Max
(mA)
(V)

VCE(SAT) VBE(SAT)
IC
(V)
(V)
&
@ (mA)
Max
Min Max

Cob
(pF)
Max

fT
IC
(MHz)
@ (mA)
Min Max

toff
(ns)
Max

NF
(dB)
Max

Test
Conditions

Process
No.

2N3859

TO-92
(94)

30

30

4

500

18

100

200

2

4.5

4

90

250

2

27

2N3860

TO-92
(94)

30

30

4

500

18

150

300

2

4.5

4

90

250

2

27

2N5127

TO-92
(92)

Same as PN5127, see below .for e~planation

27

2N5131

TO-92
(92)

Same as PN5131. see below for explanation

27

2N5132

TO-92
(92)

Same as PN5132, see below for explanation

27

2N5219

TO-92
(92)

20

15

3

100

10

35

500

2

10

0.4

1.0

10

4

150

10

27

2N5223

TO-9.2
(92)

25

20

3

100

10

50

800

2

10

0.7

1.2

10

4

150

10

27

MPS3693

TO-92
(92)

45

45

4

50

35

40

160

10

10

3.5

200

10

4

9

27

MPS3694

TO-92
(92)

45

45

4

50

35

100

400

10

10

3.5

200

10

4

9

27

MPS6564

TO-92
(92)

45

5

500

40

25

10

5

0.5

10

4

27

MPS6565

TO-92
(92)

60

45

4

100

30

40

160

10

10

0.4

10

3.5

27

MPS6566

TO-92
(92)

60

45

4

100

30

100

400

10

10

0.4

10

3.5

200

10

27

MPSA10

TO-92
(92)

40

4

100

30

40

400

5

10

4

50

5

27

PN3694

TO-92
(92)

45

45

4

50

30

100

400

10

1

6

200

10.

27

- PN5127

TO-92
(92)

20

12

3

-50

10

15

300

2

10

0.3

10

3.5

150

2.

27

PN5131

TO-92
(92)

20

15

3

50

10

35

500

10

1

1.0

10

6

100

10

27

PN5132

TO-92
(92)

20

20

3

50

10

30

400

10

10

2.0.

10

3.5

200

10

27

-"

~

GENERAL PURPOSE AMPS AND SWITCHES (Continued)

i

-

1.0

0.9

TEST CONDITIONS:
(1) IC = 300 "A, VCE = 10V, f = 1 kHz. (2) IC = 150 mA, Vcc = 30V, IB 1 = IB2 = 15 mAo (3) IC = 100 "A, VCE = 10V, f = 1 kHz. (4) IC = 300 mA, Vcc = 25V,IB 1= IB2 = 30 mAo (5) IC = 100 "A,
VCE = 4.5V, f = 15.7 kHz. (6) IC = 10 mA. Vcc = 3V,IB 1 = IB2 = 1 mA.17l IC= 100"A,VCE=5V,f= 15.7 kHz. (SliC = 250 "A, VCE =5V,f= 10 Hz-15.7 kHz. (9) IC=3mA,VCE= 10V,f= 1 MHz.
(10)IC = 10 /LA, VCE = 5V, f = 15.7 kHz.
- --

------

~

MEDIUM POWER
VCER'
VCEO
(V)

VEBO
(V)
Min

ICES'
ICBO @ VCB
(nA)
(V)
Max

Case
Style

VCBO
(V)
Min

2NS99

TO·39

120

SO

5

2

SO

40

2N1S13

TO·5

75

35 .

7

10

SO

20
40
35
20

Type
No.

2N1711

2N2017

2N2102

TO·5

TO·39

TO·39

75

SO

120

Min

35

SO

65

7

8

7

10

10JJ.A

2

SO

30

60

,\)

.....

2N2192

2N2192A

2N2193

TO-39

TO-39

TO-39

SO

SO

80

40

40

50

5

5

8

10

10

10

30

30

80

hFE
@ IC
& VCE
Min
Max
(rnA)
(V)

40
100
75
35
20
20
50
20
10
20
35
40
25
10
15
75
100
70
35
15
15
75
100
70
35
15
15
30
40
30
20
15

120
120

300

200

120

300

300

120

VCE(SAT) VBE(SAT)
IC
(V)
(V)
&
@ (rnA)
Max
Max
Min

Cob
(pF)
Max

IT
IC
(MHz)
@ (rnA)
Min
Max

toll
(ns)

Max

NF
(dB)
Max

Test
Conditions

Process
No.

150

10

5.0

1.3

150

20

50

50

500
150
10
100JJ.A

10
10
10
10

1.5

1.3

150

25

SO

50

12

1

12

500
150
10
100JJ.A
10JJ.A

10
10
10
10
10

1.5

1.3

150

25

70

50

8

1

12

10
200
lA

10
10
15

2.0

om

10
10
10
10
10
10

0.5

1.1

150

15

so

50

12

0.1
10
150
500
lA
0.01
0.1
10
150
500
lA

10
10
10
10
10
10

0.35

1.3

150

10

50

50

12

om

10
10
10
10

0.25

1.3

150

20

50

50

12

0.35

1.3

150

20

50

50

12

0.1
10
150
500
lA

10

0.Q1
0.1
10
150
500
lA

10
10
10
10
10
10

12

12

200

10

TEST CONDITIONS:
(1) Ie = 50 rnA, Vee = 100V, lSI = IS 2 =5mA.(2) le= 500JJ.A, VeE = 10V,f= 1 kHz. (3) le= 500mA, Vee=30V,ISl = IB2= 50mA. (4) le= 150mA, Vee= 30V,IB 1 = IB2= 15mA. (5) le= 100JJ.A,
Vce = 10V, f = 1 kHz. (S) Ie = 500 mA, Vee = 30V, IB 1 = IB2 = 50 mAo (7) Ie = 2A, Vee = 40V, IB 1 = IB2 = 200 mAo
~----.------

---------

------

SJOIS! SUeJl

Nd N

N PN Transistors

~,
Typs
No.
2N2193A

~

~

MEDIUM
Case
Styls'

TO-39

POWER(Continued)

VCBO
(V)

Min
80

VCER'
VCEO
(V)
Min
50

VEBO
(V)

Min
8

ICES'
ICBO @ VCB
(nA)
(V)
Max
10

60

hFE
@ IC
& VCE
Min Max
(mA)
(V)
15
30
46
30
;10
15

120

VCE(SATI VBE(SATI
IC
(V)
(VI &
@ (mA)
Max
Min
Max

Cob
(pF)
Max

fT
IC"
(MHt)
@ (mA)
Min Max

toff
(nsl
Max

NF
(dBI
Max

Test
Conditions

Process
No.

0.1
10
150
150
500
lA

10
10
10
1
10
10

0.25,

1.3

150

20

50

50

12

2N2195

TO-39

45

25

5

100

30

10
20

150
150

1
10

0.35

1.3

150

20

50

50

12

2N2195A

TO-39

45

25

5

100

30

150
150

1
10

0.25

1.3

150

20

50

50

12

2N2243

TO-39

120

80

7

10

60

10
20
15
30
40
30
15

10
10
10
1
10

0.35

1.3

150

15

50

50

12

120

0.1
,10
150
150
500

10
10
10
. ·1
10

0.25

1.3

150

15

50

50

12

120

0.1
10
150
150
500

1.2

150

15

100

50

12,

150

10
10

0.9

200

10
10'
10
10
10

0.2

1.1

150

12

100

50

12

300

0.1
10
150
500
lA
0.1
10
150
500
lA

10
10
10
'10
10

0.2

1.1

150

12

80

50·

12

150
150

2.5
10

1.4

1.7

150

15

100

50

12

0.1
150
500

10
10
10

0.25

1.1

150

20

70

50

1000

7

1.0

2.0

lA

5/6
(See page
1·271

12

300

10
10
10

0.25

1.1

150

20

60

50

600

7

1.0

2.0

lA

5/6
(See page
1-271

12

120

0.1
150
500

2N2243A

2N2270'
2N3019

2N3020

2N3053
2N3107

2N3108

TO-39

TO-39
TO-39

TO-39

TO-39
TO-39

TO-39

120

60
140

140

60
100

100

80

45
80

80

40
60

60

7

7
7

7

5
7

7

10

50 '
10

10

250
10

10

60

60
90

90

30
60

60

15
30
40
30
15
30
50
50
90
100
50
15
30
40
40
30
15
25
50
35
100
40
20
40
25

r

100 120
120
100 '

250

500

0.5
,

~

MEDIUM POWER (Continued)

Type
No.

Case
Style

VCBO
(V)
Min

2N3109

TO-39

SO

2N3110

TO-39

2N356S

TO-92
. (92)

2N3665

TO-39

2N3666

2N3700

TO-39

TO-IS

SO

VCER'
VCEO
(V)
Min
40

40

VEBO
(V)
Min

ICES'
ICBO
(nA)
Max

7

10'

7

10'

@

VCB
(V)
60

60

TO-39

35
100
40

300

20
40
25

120

@

VCE(SAT)
VBE(SATl
(V)
(V)
&
Max
Min Max

IC
(mA)

IC
&
(mA)

VCE
(V)

0.1
150
500

10
10
10

0.25
1.0

2.0

lA

0.1
150
500

10
10
10

0.25

1.1

150

1.0

1.1

2.0

@

150

Max

IT
(MHz)
Min
Max

25

70

Cob
(pF)

@

IC
(rnA)

50

Max

NF
(dB)
Max

1000

7

toll
(ns)

Test
Conditions

5/6

120

120

140

SO

SO

SO

10

10

7

50

50

10

60

60

90

70

50

S

40

60

Process
No.
12
I
I

(See page
1·27)
25

60

50

600

7

5/6

12

(See page
1-27)

lA

12

Same as PN3568, see below for explanation

~

2N3945

hFE
Max
Min

30
40
25

10
150
500

10
10
10

0.5

1.2

150

120

1.2

1.S

500

10
10
10

0.5

1.2

150

300

10
150
500

1.2

1.8

500

50
90
100
50
15

10
10
10
10
10

0.2

1.1

150

300

1
10
150
500
lA

25
40
20

10
150
500

10
10
10

0.5

1.2

150

250

1.S

I.S

500

1
10
150

10
10
10

0.25

10

0.4

50

0.25

150

70
100
50

0.5

12

60

50

12

12

60

50

12

12

100

5

12

12

60

50

12

10

10

500

20

12

60

900

50

12

200

500

2N4924

TO-39

100

100

5

100

50

25
35
40

2N4945

TO-92
(92)

80

60

5

50

40

40
40

120

150
30

1

40314

TO-39

40

250

15

70

350

50

4

1.4

150

MPSA05

TO-92
(92)

60

4

100

60

50
50

10
100

1
1

0.25

100

100

100

12

MPSA06

TO-92
(92)

80

4

100

SO

50
50

10
100

1
1

0.25

100

100

100

12

PN3568

TO-92
(92)

SO

60

5

50

40

40
40

30
150

1
1

0.25

150

20

50

12

120

TO-237
(91)

75

10
10
10
10
10

1.5

150
150

25

300

0.01
0.1
10
150
500

TN1711

7

10

60

20
35
75
100
40

120

12

60

600

12

1.3

SJOtS!SUBJl

Nd N

NPN Transistors

Ii
Type
No.
TN2017

TN2102

TN2270
TN3019

MEDIUM POWER (Continued)
Case

Style

vCBO
(V)
Min

TO-237
(91)

60

TO·237
(91)

120

TO-237
(91)

60

TO-237
(91)

140

VCER'
VCEO
(V)
Min
60

65

45
80

VEBO
(V)

Min
8

7

7
7

ICES'
ICBO @ VCB
(nA)
(V)
Max
1OI'A

10

50
10

30

60

60
90

~

~

TN3020

TN3053

TO-237
(911

140

80

'40

7

5

10

250

90

30

hFE
@ IC
&
Min Max. (rnA)
35
50
20
10
20
35
40
25
10
30
50
50
90
100
50
15
30
40
40
30
15
25
50

200

120

200

300

100
120
120
100

VCE
(V)

VCE(SAT)
VBE(SAT)
IC
(V)
(V)
&
@ (rnA)
Max
Min
Max

Cob
(pF)
Max

fT
IC
(MHz)
@ (rnA)
Max

Min

toff
(ns)
Max

NF
(dB)
Max

Test
Conditions

Process

'No.

10
200
lA

10
10
10

0.Q1
0.1
10
150
500
lA

10
10
10
10
10
10

0.5

1.1

150

15

60

50

12

1
150

10
10

0.9

1.2

150

15

100

50

12

1
10
150
500
lA

10
10
10
10
10

0.2

1.1

150

12

100

50

12

1
10
150
500
lA

10
10
10
10
10

0.2

12

80

50

12

150
150

2.5
10

1.4

150

15

100

50

12

12

0.5

500

1.1

0.5

150
500

1.7

TO-237
(91)

60

2N3566

TO-92
(92)

40

30

5

50

20

150
80

600

10
2

10
10

1.0

100

25

4

100

30

13

2N3567

TO-92
(92)

80

40

5

50

40

40
40

120

150
30

1
1

0.25

150

20

60

600

50

13

2N3569

TO·92
(92)

80

40

5

50

40

100
100

300

150
30

1
1

0.25

150

20

60

600

50

13

PN3566

TO·92
(92)

Same as 2N3566, see above for explanation

13

PN3567

TO·92
(92)

Same as 2N3567. see above for explanation

13

PN3569

TO-92
(92)

Same as 2N3569, see above for explanation

13

2N4237

TO·39

40

100l'A

50

15
30
30

250

150

lA
500
250

1
4
1

0.6
0.3

1.5

1A

100

1

100

14

500

-

~
Type
No.

~

MEDIUM POWER (Continued)
Case
Style

VCBO
(V}
Min

VCER'
VCEO
(V}
Min

VEBO
(VI

Min

ICES'
ICBO @ VCB
(nA}
(V}
Max

hFE
@ IC
& VCE
Min Max
(mA}
(V}

MPS6560

TO-92
(92}

25

25·

5

100

20

35
50
50

MPS6561

TO-92
(92}

20

20

5

100

20

35
50
50

NCBV14

TO-202
(55}

60

40

4

100

30

NSES71

TO-202
(51}

300

100

MPQ3725

TO-39

TN3252

TO-237
(911

60

TO-237
(911

75

TO-237
(91}

SO

TO-237
(91}

50

TO-237
(91}

SO

TO-39

SO

TN3253

TN3444

TN3724

TN3725

2N2657
2N265S
2N2S90

TO-39
TO-39

40

100
100

6

30

40

50

30

50

50
SO
SO

5

5

6

6

S
S
5

VCE(SAT} VBE(SAT}
IC
(V}
(V}
&
@ (mA}
Max
Min Max

Cob
(pF}
Max

fT
IC
(MHz}
@ (mA}
Min Max

toff
(ns}
Max

NF
(dB}
Max

Test
Conditions

Process
No.

1
1
1

0.5

1.2'

500

30

60

10

14

200

10
100
500

1
1
1

0.5

1.2'

350

30

60

10

14

200

10
100
500

75

50

1

0.4

500

10

125

50

14

200

50

25

20

60

10

17

500

40

35
25

100
500

1
2

0.45

O.S

1.0

500

10

250

50

25

500

40

30
30
25

150
500
lA

1
1
5

0.3
0.5

150
500

200

50

25

0.7

1.0
1.3

12

90

25
25
20

150
375
750

1
.1
5

0.35

1.0

150

12

75

20
20
15

150
500
lA

1
1
5

0.35

1.0

150

12

60

0.6

1.3

500

10 150
300
500
SOO
lA

1
1
1
1
2
5

0.25

0.76

10

12

60

6
(See page
1·27}

25

10
150
300
500
SOO
lA

1
1
1
1
2
5

0.25

0.76

10

10

60

6
(See page
1-27}

25

150

500

500

1.7jJA

1.7jJA

100
100
50jJA

60

60

40

60

60
60
60

30
60
40
35
25
30
30
60
40
35
20·
25

200

150

150

15
40

120

5A
lA

6
2

0.5
3.0

1.5
2.5

lA
5A

15
40

120

5A
lA

6
2

0.5
3.0

1.5
2.5

lA
5A

2A
lA
100

5
2
2

0.5

1.2

lA

25
30
20

90

70

25

150

50

25

20

200

15

2 (See
page 1-27

34

20

200

15

2 (See
page 1-27

34

30

200

15

3
(See page
1-27}

34

SJOIS!SueJl.

Nd N

~"

~

MEDIUM POWER (Continued)

Type
No.

Case
Style

vCBO
(VI

2N2S91

TO-39

100

2N5148

2N5150

2N5336

NPN Transistors

'H-_,

Min

TO-39

VCER·
VCEO
(V)
Min

80

VEBO
(V)
Min

5

SO

TO-39

50"A

l"A

SO

TO'39

ICES·
ICBO
InA)
Max

l"A

80

10"A

@

VCB
(V)
60

60

60

SO

~

c.,
I\)

2N533S

100

TO-39

10"A

250

100

hFE
Min Max
50
36
50
40
20
30
15
5
60
70
30
15
30
30
20

300
150

90

200

120

@

IC & VCE
{mAl
(V)
10

VCE(SAT) VBE(SAT)
(V)
(V)
&
Max
Min
Max
0.5

1.2

@

IC
{mAl

Cob
{pFI
Max

lA

70

50
100
lA
2A

2
5

0.75

1.3

2A

50
lA
2A
3A

5
5
5
5

0.46

1.2

100

0.S5

1.5

200

50
lA
2A
3A
600
2A
5A

5
5
5
5

0.46

1.2

100

2
2
2

fT
(MHz)
Min
Max
30

@

IC
{mAl
200

toff
(nsl
Max
15

NF
(dB)
Max

Test
Conditions

3

Process
No.
34

(See page

2
2
2

5.0
0.7

1-27)
70

60

200

34

70

60

200

34

30

500

3A
1.2

2A

2200

7

34

(See page

1.2
0.7

1.S

5A

1.2

2A

1-27)

30
30
20

120

600
2A
5A

30

500

2200

. 300

40

160

20

10

100

40
40

250
200

10
100

10
10

0.8

200

36

7

34

(See page

1.2

1.8

5A

1-27)

2N3440

TO-39

2N6591

TO-202
(55)

150

150

5

20"A*
200

2N6592

TO-202
(55)

200

200

5

200

150

30
40

250
200

10
100

10
10

0.8

200

36

2N6593

TO-202
(55)

250

250

5

200

200

30
30

250
200

10
10

0.8

200

36

2N6720

TO-237
(91)

175

150

6

l"A

150

25
30
15
10

10
100
50
100
250
500

10
10
10
10

0.5

100

30

300

50

36

2N6721

TO-237
(91)

225

200

6

l"A

200

0.5

100

30

300

50

36

TO-237
(91)

275

250

6

l"A

250

10
10
10
10

0.5

100

30

300

50

36

50

50
100
250
500
50
100
250
500

10
10
10
10

2N6722

25
30
15
10
25
30
15
10

2N6723

TO-237
{911

325

300

6

l"A

300

10
10
10
10

0.5

100

30

300

50

36

50

50
100
250
500

25
30
15
10

50

50

36

~
Type
No.
92PU36

92PU36A

92PU36B

92PU36C

.....
~

MEDIUM POWER (Continued)
Case

Style
TO·237
(91)

VCBO
(V)
Min
175

TO·237
(91)

225

TO·237
(91)

275

TO·237
(91)

325

VCER'
VCEO
(V)

Min
150

200

250

300

VEBO
(VI

Min
6

6

6

6

ICES'
ICBO @ VCB
(nA)
(V)
Max
lILA

lILA

lILA

lILA

150

200

250

300

hFE
@ IC
& VCE
Min Max
(rnA)
(V)
25
30
15
10
25
30
15
10
25
30
15
10
25
30
15
10

300

300

300

300

VCE(SAT) VBE(SAT)
Ic
(V)
(V)
&
@ (rnA)
Max
Min Max

Cob
(pF)
Max

fT
IC
(MHz)
@ (rnA)
Max
Min

toff
(ns)
Max

NF
(dB)
Max

Test
Conditions

100

Process
No.
36

50
100
250
500

10
10
10
10

0.5

50
100
250
500

10
10
10
10

0.5

100

36

50
100
250
500

10
10
10
10

0.5

100

36

50
100
250
500

10
10
10
10

0.5

100

36

100

15

10

80

36

I

D40Pl

TO·202
(55)

120

10'ILA

200'

20
40

2
80

10
10

1.0

D40P3

TO·202
(55)

180

10ILA

250

20
40

2
80

10
10

1.0

1.5

100

15

10

80

36

D40P5

TO·202
(55)

225

10ILA

300

20
40

2
80

10
10

1.0

1.5

100

15

10

80

36...

NSD36

TO·202
(55)

175

fILA

150

25
30
15
10

50
100
250
500

10
10
10
10

0.5

15

10

50

36

TO·202
(55)

225

50
100
250
500

10
10
10
10

0.5

15

10

50

36

TO·202
(55)

275

50
100
250
500

10
10
10
10

0.5

15

10

50

36

TO·202
(55)

325

50
100
250
500

10
10
10
10

0.5

15

10

50

36

2
20

10
10

0.5

20

15

10

36

NSD36A

NSD36B

NSD36C

NSD3439

TO·202
(55)

150

200

250

300

350

6

6

6

6

lILA

lILA

lILA

20ILA

200

250

300

300

25,
30
15
10
25
30
15
10
25
30
15
10
30
40

300

300

300

300

160

- 1.3

50

SJOIS!SUeJl

Nd N ,

N PN Transistors

~
Type
No.
NSD3440
TN3440

C~se

Style

vCBO
(V)
Min

VCER'
VCEO
(V)
Min

VEBO
(V)
Min

250

TO·202
(55)

ICES'
ICBO
(nA)
Max
500llA

@

VCB
(V)
200

\

250

TO·237
(91)

250

@

IC & VCE
(rnA)
(V)

VCE(SAT) VBE(SAT)
(V)
(V)
&
Max
Min
Max

@

fT

NF
(dB)
Max

IC
(mAl

Cob
(pF)
Max

(MHz)
Min
Max

20

15

10

36"

10

36

50

37

30
40

2
20

10
10

0.5

1.3

50

160

30
40

2
20

10
10

0.5

1.3

50

15

160

1
1
1

0.5

100

50

250

10
100
lA

IC
(rnA)

toff
(ns)
Max

Test
Conditions

Process
No.

100

40

55
60
50

TO-237
(90)

30

5

100

40

55
60
50

10
100
lA

1
1
1

0.5

lA

30

100

50

37

92PU01A

TO-237
(90)

40

5

100

50

55
60
50

10
100
lA

1
1
1

0.5

lA

30

100

50

37'"

D42C1

TO-202
(56)

30

lilA

30

25
10

200
lA

1
1

0.5

1.3

lA

30

37

D42C2"

TO-202
(56)

30

lilA

30

40
20

200
lA

1
1

0.5

1.3

lA

30

37

D42C3

TO-202
(56)

30

lilA

30

40
20

200
2A

1
1

0.5

1.3

lA

30

37

D42C4

TO-202
(56)

45

lilA

45

25
10

200
lA

1
1

0.5

1.3

lA

30

37

D42C5

TO-202
(56)

45

lilA

45

40
20

200
lA

1
1

0.5

1.3

lA

30

37

D42C6

TO-202
(56)

45

lilA

45

40
20

200
2A

1
1

0.5

1.3

lA

30

37

NSD102

TO-202
(55)

100

60

40
50
40
25

10
100
500
lA

5
5
5
5

0.2

0.9

100

30

60

50

37

0.4

1.2

500

10
100
500
lA

5
5
5
5

0.2

0.9

100

30

60

50

37

0.4

1.2

500

92PUOl

NSD103

TO-202
(55)

60

60

45

45

5

5

100

60

50
120
50
30

120

120

150

360

500

@

5

TO·237
(91)

40

20llA

hFE
Min Max

30

2N6714

~

....w

MEDIUM POWER (Continued)

TO-202
(55)

40

30

5

100

30

55
60
50

10
100
lA

1
1
1

0.5

1.2

lA

30

50

50

37

NSDU01A TO-202
(55)

50

40

5

100

40

55
60
50

10
100
lA

1
1
1

0.5

1.2

lA

30

50

50

37

NSDUOl

-

---"

~
Type
No.
NSDU02

MEDIUM POWER (Continued)
Case

Style

vCBO
(VI
Min

60

TO·202
(551

VCER"
VCEO
(VI
Min

VEBO
(VI
Min

40

5

100

@

VCB
(VI

hFE
Min Max

40

60
50
30

NSE180

TO·202
(551

2N5449

TO·92
(971

50

30

2N6551

TO·202
(551

60

60

TO·202
(551

80

TO·237
(901

60

TO·237
(901

80

TO·237
(901

100

2N6715

TO·237
(911

50

40.

5

100

50

55
60
50

2N6716

TO·237
(911

60

60

5

100

40

80
50
20

2N6552

40

ICES"
ICBO
(nAI
Max

2N6706

"2N6707

92PE37A

TO·237
(901

92PE37B

TO·237
(901

92PE37C

TO·237
(901

10
150
500

10
10
10

0.4

Max
1.3

IC
(mAl

Cob
(pFI
Max

150

20

fT
(MHzI
Max
Min

@

IC
(mAl

toft
(nsl
Max

NF
(dBI
Max

Test
Conditions

Process
No.

50

20

37

50

100

37

5

50

38

0.3

5

100

20

100

300

50

2

0.6

100

5

100

40

60
80
60
25

10
50
250
500

1
1
1
1

0.5

500

1.0

lA

10
50
250
500

1
1
1
1

1.0

lA

75

250

100

38

50
250
500

2
2
2

·0.5

500

50

400

200

38

250

2
2
2

1.0
0.5

lA
500

50

400

200

38

250

50
250
500

1.0

lA

2
2
2

0.5

500

50

400

200

38

250

50
250
500

1.0

lA

10
100
lA
50
250
500

1
1
1

0.5

lA

50

400

50

38

1
1
1

0.35

250

50

500

50

38

2
2
2

0.5

500

1.0

lA

2
2
2

0.5

500

1.0

lA

2
2
2

0.5

500

1.0

lA

5

100

60

100

100

100

60

80

100

60
80
60
25
40
40
25
40
40
25
40
40
25

250

250

250
250

100

60

50
250
500

60

- : -....
100

25
40
40

80

25
40
40

80

100

100

25
40
40

50
250
500
'50
250
500

..•

Min

@

1
1
1.5

45

..

(VI

100
500
lA

5

80

Max

VBE(SATI
&

250

5

60

(VI

50
30
12

U1

45

VCE(SAT)

60

c"
2N6705

Ic
& VCE
(mAl
(VI

100

5

80

300

@

-~

'

.

0.9

500
1.5

1.5A

38

I

30

50

200

38

30

50

200

38

30

50

200

38

SJOIS!SueJl NdN

NPN Transistors

.~
MEDIUM POWER (Continued)

~

VCER"
VCEO
(VI

VEBO
(VI
Min

Type
No.

Case
Style

vCBO
(VI

80137-6

TO-126

60

60

5

B0137-10

TO-126

60

60

80345

TO-126

60

60

Min

Min

ICES"
leBO
(nAI
Max

Ie & VCE
(mAl
(VI

VCE(SATI VBE(SATI
(VI
(VI
&
Max
Min
Max

IC
(mAl

Cob
(pFI
Max

fT
(MHzl
Min
Max

IC
ImAI

toff
(nsl
Max

NF
(dBI
Max

Test
Conditions

Process
No.

VCB
(VI

hFE
Min Max

100

30

40
25

100

150
500

2
2

0.5

500

50

50

38

5

100

30

63
25

160

150
500

2
2

0.5

500

50

50

38

5

500

60

60
40

50
200

1
1

0.4

200

50

50

38

@

250

@

@

@

I

15

04001

TO-202
(551

30

100'

45

50
10

150

100
lA

0.5

1.5

500

38

04002

TO-202
(551

30

100'

45

120
20

360

100
lA

0.5

1.5

500

38

04003

TO-202
(551

30

100'

45

290
10

1.5

500

38

04004

TO-202
(551

46

100'

60

50
10

150

100
lA

0.5

1.5

500

38

04005

TO-202
(551

45

100'

60

120
10

360

100
lA

0.5

1.5

500

38

04006

TO-202
(551

45

100'

60

50
10

150

100
lA

1.0

1.5

500

38

04007

TO-202
(551

60

100'

60

50
10

150

100
lA

1.0

1.5

500

38

04008

TO-202
(551

60

100'

75

120
10

360

100
lA

2
2

1.0

1.5

500

38

040010

TO-202
(551

75

100'

90

50
10

150

100
lA

2
2

1.0

1.5

500

38

040011

TO-202
(551

75

100'

90

120
10

360

100
lA

2
2

1.0

1.5

500

38

040013

TO-202
(551

75

100'

90

50

150

100

2

1.0

1.5

500

38

040014

TO-202
(551

75

100'

90

120

360

100

2

1.0

1.5

500

38

040El

TO-202
(551

30

100'

40

50
10

100
lA

2
2

1.0

1.3

lA

38

040E5

TO-202
(551

60

100'

70

50
10

100
lA

2
2

1.0

1.3

lA

38

040E7

TO-202
(551

80

100'

90

50
10

100
lA

2
2

1.0

1.3

lA

38

MJE721

TO-126
(581

60

40
20
8

150
500
lA

1
1
1

1.0
0.15
0.4

1.3

1.5A
150
500

38

-

100
lA

-

--

II
Type
No.
NSD6178

NSD6179

MEDIUM POWER (Continued)
Case

Style

VCBO
(VI
Min

VCER"
VCEO
(V)
Min

TD-202
1551

75

TO-202
1551

50

NSDU05

TO-202
(551

NSE181

TO-202
1561

2N6553

TO-202
(551

100

TO-237
(911

80

TO-237
(911

100

TO·237
1911

100

60

60

VEBO
(VI
Min

500p.A

500p.A

4

60

100

ICES'
ICBO
(nA)
Max

5

@

2N6717

2N6718

2N6731

80

100

80

5

5

5

Process
No.

0.5

1.2

500

38

30
40
10

500
500
lA

2
2
2

0.5

1.2

500

38

250

50
250
500

1
1
1

0.35

250

10
500
lA

1
1
1.5

0.3

500

10
50
250
500

1
1
1
1

1.0

lA

75

60

100

80

50
30
12

100

80

60
80
60
25

60

80

80

250

250

0.9

.1.5

@

30

@

50

200

38

50

100

38

250

100

39

1.5A

80
50
20

50
250
500

1
1
1

0.35

250

50

500

200

39

250

80
50
20

50
250
500

1
1
1

0.35

350

50

500

200

39

250

10
350

2
2

0.35

350

50

500

200

39

50
250
500

1
1
1

0.35

250

30

50

200

39

500
250
50

1
1
1

0.35

250

30

50

200

39

50
250
500

1
1
1

0.35

250

30

50

200

39

10
100
lA

5
5
5

0.35

350

20

50

100

39

150
500
lA

1
1
1

1.0
0.15
0.4

100
100

100

80

80
50
20

92PU06

TO-237
1901

100

100

80

20
50
80

92PU07

TO·237
1911

100

100.

80

80
50
20

92PU100

TO-237
1911

80

100

80

20
50
10

80

Test
Conditions

2
2
2

100

TO-126
1581

NF
(dB)
Max

50
500
lA

TO-237
(901

MJE722

toft
(ns)
Max

250

92PU05

100

IC
(mAl

30
40
10

80
50
20

100

fT
IMHzI
Min Max

80

60

100

Cob
(pFI
Max

VCE
(V)

100

100

IC
(mAl

hFE
@ IC
&
(mA)
Min Max

~

!:3

VCE(SATl VBE(SATl
(VI
(VI
&
Max
Min
Max

VCB
IV)

40
20
8

300

500
250
50

150

1.3

1.5A
150
500

39

--_._---

--

SJOIS!SUeJl

Nd N

NPN Transistors

~
Type
No.

Case
Style

, NSD104

TO-202
(55)

NSD105

vCBO
(VI
Min

100

VCER"
VCEO
(VI
Min
80

VEBO
(V)
Min
7

7

ICES'
ICBO @ VCB.
(nA)
(V)
Max
100

100

100

hFE
@ IC
&
Min
Max
(rnA)

VCE
(VI

0.2

0.9

100

0.5

1.2

500

5
5
5

0.2

0.9

100

0.5

1.2

500

10
100
500

5
5
5

0.2

0.9

100

0.5

1.2

10
100
1A

5
5
5

360

10
100
1A

150

20
50
10

150

10
120
10

VCE(SATI
VBE(SATI
IC
(VI
(VI
&
@ (mAl
Max
Min
Max

Cob
(pFI
Max

fT
IC
(MHz)
@ (mAl
Min
Max

toff
(nsl
Max

NF
(dB)
Max

Test
Conditions

Process
No.

30

60

50

39

30

60

50

39

30

60

50

39

TO-202
(55)

100

TO-202
(55)

140

500

50

NSDU06

TO-202
(55)

80

80

4

100

80

80
50
20

50
250
500

1
1
1

0.35

250

30

50

200

39

NSDU07

TO-202
(55)

100

100

4

100

100

80
50
20

50
250
500

1

0.35

250

30

50

200

39

1
1

TO-39

300

10
15
20
20

3
10
30
5ci

10
10
10
20

6

60

10

48

3
10
30
50

10
10
10
20

6

30

300

20

48

3
10
30
50

10
10
10
20

6

30

300

20

48

10
10
10

40

200

10

48

200

1
10
30

10
10
10

40

200

10

48

200

1
10
30

10
10
10

40

200

10

48

30

300

15

48

50

200

10

48

NSD106

~

MEDIUM POWER (Continued)

2N3742

2N4926

2N4927

TO-39

TO-39

80

100

300

200

200

250

250

7

7

7

7

100

200

100

100

100

140

200

100

150

20
50
25

10
15
20
20
10
15
20
30

200

200

200

2N6711

TO-237
(90)

160

160

7

50

100

15
15
30 .

2N6712

TO-237
(90)

250

250

7

50

200

15
15
30

2N6713

TO-237
(90)

300

300

7

50

250

15
15
30

200

1
10
30

2N6719

TO-237
(91)

300

300

7

100

200

25
40
40

200

1
10
30

10
10
10

2N6733

TO-237
(91)

200

200

6

100

160

25
40

200

1
10

10
10

-

0.75

1.0

10

1.0

1.2

30

2.0

20

~
Type
No.
2N6734
2N6735
40321

~

MEDIUM POWER (Continued)
Case

Style
TO-237
1911
TO-237
1911
TO-39

VCBO
IVI
Min

250
300

VCER"
VCEO
IVI
Min

250
300

VEBO
IVI
Min

6
6

ICES"
ICBO
InAI
Max
100
100

@

VeB
IVI
200
260

hFE
Max

Min

25
40
25
40

@

Ie
& VCE
ImAI
IVI

200

1
10
1
10

10
10
10
10

200

200

VCEISAT) VBEISATI
IVI
&
IVI
Min
Max
Max

@

Ie
ImAI

Cob
IpFI
Max

2.0

fT
IMHzl
Min
Max

@

Ie
ImAI

toff
Insl
Max

NF
IdBI
Max

Test
Conditions

Process
No.

50

200

10

48

50

200

10

48

30

300

20

48

100

150

25

20

10

92PE487

TO-237
1901

160

160

7

50

100

15
15
30

1
10
30

10
10
10

1.0

30

6
3

92PE488

TO-237
(90)

250

250

7

50

100

15
15
30

10
10
30

10
10
10

1.0

30

3

48

92PE489

TO-237
(90)

300

300

7

50

200

15
15
30

1
10
30

10
10
10

1.0

30

3

48

92PU10

TO-237
(91)

100

200

25
40
40

1
10
30

10
10
10

0.75

30

3.5

48

92PU391

TO·237
1911

200

200

6

100

160

25
40

1
10

10
10

2.0

2.0

20

2.5

50

10

48

92PU392

TO-237
(91)

250

250

6

100

200

25
40

1
10

10
10

2.0

2.0

20

2.5

50

10

48

92PU393

TO-237
191)

300

300

6

100

260

25
40

1
10

10
10

2.0

2.0

20

2.5

50

10

48

D40Nl

TO-202
155)

10IlA

250

20
30
20

4
20
40

10
10
10

50

20

48

90

30
60
30

10
10
10

20

48

20
30
20

10
10
10
10
10
10

50

20

48

90

4
20
40
4
20
40
4
20
40

50

180

50

20

48

1
10
30

10
_ 10
10

50

10

48

300

300

250
...

D40N2

D40N3

D40N4

MPSA42

TO-202
155)

250

TO-202
155)

300

TO-202
155)

300

TO-92
(92)

300

300

lOIlA

10llA

10 "A

6

100

250

300

300

200

30
60
30
25
40
40

180

48

I

0.(;

0.9

20

3

,

-

SJOIS!SUeJl

NdN

NPN Transistors

~
Type
No.

~

MEDIUM POWER (Continued)
Casa
Style

vCBO
(V)
Min

VCER"
VCEO
(V)
Min

VEBO
(V)
Min

ICES'
ICBO @VCB
(nA)
(V)
Max

VCE(SAT) VBE(SAT)
IC
(V)
(V)
&
@ (rnA)
Max
Min
Max

hFE
@ IC . & VCE
Min Max
(rnA)
(V)

MPSA43

TO·92
(92)

200

200

6

100

160

25
40
50

NSD131

TO-202
(55)

250

250

7

100

150

15
15
30

NSD132

TO-202
(55)

250

250

7

100

150

15
30
60

NSD133

TO-202
(55)

300

300

7

100

150

15
15
30

N )0134

TO·202
(55)

300

300

7

100

150

15
30
60

Cob
(pF)
Max

fT
IC
(MHz)
@ (rnA)
Min
Max
10

NF
(dB)
Max

Test

Process

Conditions

No.

10
10
10

0.4

0.9

20

4

200

1
10
30

10
10
10

1.0

0.85

20

3

48

90

1
10
30

10
10
10

1.0

0.85

20

3

48

180

1
10
30

10
10
10

1.0

0.85

20

3

48

90

1
10
30

10
10
10

1.0

0.85

20

3

48

180

1
10
30

~

50

toff
(ns)
Max

48

I
I

NSD135

TO-202
(55)

375

375

7

100

150

15
30
30

1
10
30

10
10
10

1.0

NSD457

TO-202
(55)

160

160

5

50

100

25

30

10

1.0

30

48

NSD458

TO·202
(55)

250

250

5

50

200

25

30

10

1.0

30

48

NSD459

TO-202
(55)

300

300

5

50

250

25

30

10

1.0

30

48

NSDU10

TO·202
(55)

300

300

8

200

200

25
40
40

1
10
30

15
15
10

1.5

NSE457

TO·202
(56)

160

160

5

50

100

25

30

10

1.0

30

48

NSE458

TO-202
(56)

250

250

5

50

200

25

30

10

1.0

30

48

NSE459

TO-202
(56)

300

300

5

50

250

25

30

10

1.0

30

48

PN7055

TO·92
(92)

220

220

7

100

150

20
40
40

1
10
30

20
20
20

1.0

0.85

20

3.5

50

15

48

SE7055

TO·39

220

220

7

100

150

20
40
40

1
10
30

20
20
20

1.0

0.85

20

3.5

50

15

48

-

0.85

0.8

20

20

48

3

3

60

48

~
Type
No.

~

~

MEDIUM POWER (Continued)

0,

vCBO
(V)

Case
Style

Min

VCER"
VCEO
(V)
Min

VEBO
(V)

Min

ICES'
ICBO
(nA)
Max

@

VCB
(V)

hFE
Min
Max

@

VCE(SAT)
VBE(SAT)
(V)
(V)
&
Min
Max
Max

IC
& VCE
(rnA)
(V)

@

IC
(rnA)

Cob
(pF)
Max
3.5

SE7056

TO·39

300

300

7

100

200

20
40
40

1
10
30

20
20
20

1.0

0.85

20

SV7056

TO·202
(55)

300

300

7

100

200

20
40
40

1
10
30

20
20
20

1.0

0,85

20

TN3742

TO·237
(91)

300

300

7

200

200

10
15
20
20

3
10
30
50

10
10
10
20

0.75

1.0

10

1.0

1.2

30

~

Case
Styl.

2N5655

TO·126

TO·126

VCBO
(V)
Min

VCEO
(V)

VEBO
(V)

Min

Min

250

300

ICEX'
ICEBt
ICBO
(1lA)
Max
10

10

@

VCB
(V)

hFE
Min

275

25
30
15
5

350

2N5657

toff
(ns)
Max

IC
(rnA)

NF
(dB)
Max

Process
No.

Test

Conditions

50

15

48

50

15

48

30

10

48

TO·126

350

10

375

25
30
15
5
25
30
15
5

Max

250

250

250

@

IC
(A)

&

VCE
(V)

VCE(SAT)
(V)
&
Max

VBE(SAT)
(V)
Max

@

IC
(A)

Min

Process
No.

0.05
0.1
0.25
0.5

10
10
10
10

1.0
2.5
10.0

0.1
0.25
0.5

25

10

0.05

36

0.05
0.1
0.25
0.5

10
10
10
10

1.0
2.5
10.0

0.1
0.25
0.5

25

10

0.05

36

1.0

0.05

15

15

0.05

36

15

15

0.05

36

300

100

300

30

240

0.05

10

150

300

175

20
25
20

200

0.01
0.05
0.15

10
10
10

2.3

0.15

30

300

0.05

10

1.0

0.05

200

IC
(A)

0.1
0.25
0.5

TO·126

100

@

1.0
2.5
10.0

TO·126

200

fT
(MHz)
Max

Min

10
10
10
10

MJE341

TO·126

Cob
(pF)
Max

0.05
0.1
0.25
0.5

MJE340

MJE344

@

POWER

Type
No.

2N5656

200

6

fT
(MHz)
Min
Max

36

36

-

---

-

SJOIS!SUeJl

NdN

NPN Transistors

~

I

POWER (Continued)

Type
No.

Style

MJE3439

TO-126

MJE3440
MJE180

MJE720

MJE181

...
~

Case

VCBO
(V)

VCEO
(V)

VEBO
(V)

Min

Min

Min

360
250

TO-126

40

TO-126

40

TO-126

60

TO-126

ICEX'
ICEBt
ICBO
("AI
Max
20
20
0.1

100'

0.1

@

VCB
(V)

hFE

360
250

@

40

80

1.3

0.05

10

0.5

1.3

0.05

1
1
1

0.3
0.9
1.7

1.5
2.0

0.5
1.5
3.0

0.15
0.5
1

1
1
1

0.15
0.4
1.0

1.3

0.15
0.5
1.5

0.1
0.5
1.5

1
1
1

0.3
0.9
1.7

0.5
1.5
3.0

30

50

0.1

38

1.5
2.0

30

50

0.1

39

2.0

500
1.5A
3A

30
40

0.002
0.02

10
10

0.5

160

AO

160

0.002
0.02

10
10

50
30
12

250

0.1
0.5
1.5

40
20
8
50
30
12

250

IT
(MHz)
Max
Min

Cob
(pF)
Max

Max

30

60

VCE(SAT)
VBE(SAT)
(V)
(V)
&
Max
Min Max

IC
(AI

Ie & VCE
(A)
(V)

Min

@

IC
(A)

Process
No.

15

0.01

36

10

15

0.01

36

30

50

0.05

37

50

0.1

@

37

MJE182

TO-126
(58)

80

100

100

50
30
12

250

100
500
1.5A

1
1
1

0.3
0.9
1.7

2N6099

TO-220

60

2mA

50

20
5

80

4
10

4
4

2.5

10

4A

2N6101

TO-220

70

2mA

60

20
5

80

5
10

4
4

2.5

10

4A

2N6103

TO-220

40

2mA

40

15
5

60

8
i6

4
4

2.5

16

4A

2N6486

TO-220

40

100

35

20

150

5
15

4
4

1.3
3.5

5
15

5

1

4A

2N6487

TO-220

60

100

55

20

150

5
15

4
4

1.3
3.5

5
15

5

1

4A

2N6488

TO-220

80

100

75

20

150

5
15

4
4

1.3
3.5

5
15

5

1

4A

MJE280n
MJE3055T

TO-220
TO-220

60

25

100

1 mA

70

20
5

70

3
4
10

2

60

4A

TO-220

40

400'

40

30.
15

6

4A

75

0.3
3

1.1
8
1.5

4
10

TIP41

4
4
4
4

30
15

0.3
3

4
4

1.5

6

4A

75

30
15

0.3
3

4
4

1.5

6

4A

75

30
0.3
1!1 ___ J!1 _ _3

4
4

1.5

6

4A

'"

TIP41A
TIP41B
TIP41C

TO-220
TO-220
TO-220
---

60
80

400'
400'

60
80

,

100

400'
-- - - - - - - - - - -

100
-------- -

-

4A

I

~

~

....
'"

POWER (Continued)
VCBO
(V)

VCEO
(V)
Min

VEBO
(V)
Min

ICEX'
ICEBt
ICBO
(IlA)
Max

Type
No.

Style

2N5190

TO·126

40

100

2N5191

TO·126

60

2N5192

TO-126

2N5294

Case

@

VCB
(V)

hFE
@

IC
VCE
(A) & (V)

VCE(SAT)
VBE(SAT)
(V)
(V)
&
Max
Max
Min

@

IC
(A)

Cob
(pF)
Max

IT
(MHz)
Min
Max

@

IC
(A)

Process
No.

Min

Max

40

25
10

100

1.5
4

2
2

0.6
1.4

1.5
4

2

1

4E

100

60

25

100

1.5
4

2
2

0.6
1.4

1.5
4

2

1

4E

80

100

80

20
7

80

1.5
4

2
2

0.6
1.4

1.5
4

2

1

4E

TO-220

70

500t

50
(lOOn)

30

120

0.5

4

1

0.5

2

0.2

4E

2N5296

TO-220

40

100

35

30

120

1

4

1.0

1

2

0.2

4E

2N5298

TO-220

60

500 t

50
(lOOn)

20

80

1.5

1

1.0

1.5

2

0.2

4E

2N5490

TO-220

40

5 rnA'

55

20
5

100

2
6.5

4
4

2.0

0.5

4E

2N5492

TO-220

55

1 rnA'

70

20
5

100

2.5
6.5

4
4

2.0

0.2

4E

2N5494

TO-220

40

1 rnA'

55

20
5

100

3
6.5

4
4

2.0

0.5

4E

2N5496

TO-220

70

1 mA*

85

20
5

100

3.5
7

4
4

2.0

7

4E

2N6121

TO-220

45

100

45

25
10

100

1.5
4

2
2

0.6
1.4

1.5
4

2.5

1

4E

2N6122

TO-220

60

100

60

25
10

100

1.5
4

2
2

0.6
1.4

1.5
4

2.5

1

4E

2N6123

TO-220

80

100

80

20
7

80

1.5
4

2
2

0.6
1.4

1.5
4

2.5

1

4E

2N6129

TO-220

40

100

40

20
7

100

2.5
7

4
4

1.4

7

4E

2N6130

TO-220

60

100

60

20
7

100

2.5
7

4
4

1.4

7

4E

2N6131

TO-220

80

100

80

20
5

100

2.5
7

4
4

2.0

7

4E

2N6288

TO-220

30

100'

37.5

30
5

150

3
6.5

4
4

1.0
2.0

3
6.5

250

4

0.5

4E

2N6290

TO-220

50

100'

56

30
5

150

3
6.5

4
4

1.0
2.0

2.5
6.5

250

4

0.5

4E

2N6292

TO-220

70

100'

75

30
5

150

2
6.5

4
4

1.0
2.0

2
6.5

250

4

0.5

4E

Min

i

SJOIS!SUeJ! ·NdN

N PN Transistors

~

VCBO
(V)

VCEO
(V)

VEBO
(V)

Min

Min

Min

ICEX'
ICEBt
ICBO
(IlA)
Max

Type
No.

Ca..
Style

MJE5190J

TO·126

40

100

MJE5191J

TO·126

60

MJE5192J

TO·126

@

VCB
(V)

hl'E
@

IC
VCE
(A) & (V)

VBE(SATI
VCE(SATI
(V)
(V)
&
Ma-x
Min
Max

@

IC
(A)

Cob
(pI')
Max

fT
(MHz)
Min
Max

@

IC
(A)

Process
No.

Min

Max

40

25
10

250

1.5
4

2
2

0.6

1.5

4E

100

60

25
10

250

1.5
4

2
2

0.6

1.5

4E

80

100

80

50
7

250

1.5
4

2
2

0.6

1.5

4E

2N6473

TO-220

100

100'

100

15

150

1.5

4

1.2

1.5

250

4F

2N6474

TO·220

120

100'

120

15

150

1.5

4

1.2

1.5

250

4F

MJE520

TO·220

30

100

30

25

1

1

4F

MJE521

TO·220

40

100

40

1

1

4F

TIP29

TO·220

40

200'

40
40

TIP29A

t

POWER (Continued)

TIP298
TIP29C
TIP31
TIP31A

TO-220
TO-220
TO-220
TO·220
TO·220

60
80
40
40
60

200'
200'
200'
200'
200'

60
80
40
40
60

40
15

0.2
1

4
4

0.7

1

3

0.2

41'

75

40
15

0.2
1

4
4

0.7

1

3

,0.2

4F

75

40
15

0.2
1

4
4

0.7

1

3

0.2

4F

75

25
10

1
3

4
4

0.7

1

3

0.2

4F

50

25
10

1
3

4
4

1.2

3

3

0.5

4F

50

25
10

1
3

4
4

1.2

3

3

0.5

4F

50

4
4

1.2

3

3

0.5

4F

!

TIP318

TO·220

80

200'

80

25
10

50

1
3

TIP31C

TO-220

100

200'

100

25
10

1
3

4
4

1.2

3

3

0.5

4F

50

40
15

0.05
0.5

4
4

0.7

0.5

3

0.05

4F

100

40
15

0.05
0.5

4
4

0.7

0.5

3

0.05

4F

100

40
15

0.05
0.5

4·
4

0.7

0.5

3

0.05

4F

100

40
15

0.05
0.5

4
4

0.7

0.5

3

0.05

4F

100

0.05
0.5
1

1
1
1

0.6

300

0.25

4H

TIP61
TIP61A
TIP618
TIP61C
2N4921

TO·220
TO·220
TO·220
TO·220
TO-220

40
60
80
100
40

200'
200'
200'
200'
100

40
60
80
100
40

40
20
10

100

I

1.3

-

1

100

I

~
Type
No.

Style

2N4922

TO·220

2N4923

.;,.
01

POWER (Continued)

Case

TO·220

VCBO

VCEO

(V)

(V)

VEBO
(V)

Min

Min

Min

60

100

SO

D44Cl

TO·220

30

D44C2

TO·220

D44C3

ICEX'
ICEBt
ICBO
(IlA)
Max

100

-

@

VCB
(V)

60

SO

hFE
@

fT
(MHz)
Min
Max

Max

1
1
1

0.6

1.3

1

100

300

0.25

4H

0.05
0.5
1

1
1
1

0.6

1.3

1

100

300

0.25

4H

0.2
1

1
1

0.5

1.3

1

100

3

0.02

4P

0.2
1

1
1

0.5

1.3

1

100

3

0.02

4P

Max

40
20
10

100

0.05
0.5
1

40
20
10

100

VCE(SAT)

Cob
(pF)
Max

VBE(SAT)
(V)
Min
Max

Ic
VCE
(A) & (V)

Min

(V)

&

@

IC
(A)

@

IC
(A)

Process

No.

10'

40

25
10

30

10'

40

40
20

TO·220

30

10'

40

40
20

0.2
2

1
1

0.5

1.3

1

100

3

0.02

4P

D44C4

TO·220

45

10'

55

25
10

0.2
1

1
1

0.5

1.3

1

100

3

0.02

4P

D44C5

TO·220

45

100

55

40
20

0.2
1

1
1

0.5

1.3

1

100

3

0.D2

4P

D44C6

TO·220

45

10'

55

40
20

0.2
2

1
1

0.5

1.3

1

100

3

0.02

4P

D44C7

TO·220

60

100

75

25
10

0.2
1

1
1

0.5

1.3

1

100

3

0.02

4P

D44CS

TO·220

60

100

70

40
20

0.2
1

1
1

0.5

1.3

1

100

3

0.02

4P

D44C9

TO·220

60

10'

70

40
20

0.2
2

1
1

0.5

1.3

1

100

3

0.02

4P

D44Cl0

TO·220

SO

100

90

25
10

0.2
1

1
1

0.5

1.3

1

100

3

0.02

4P

D44Cll

TO·220

SO

10'

90

40
20

0.2
1

1
1

0.5

1.3

1

100

3

0.02

4P

D44C12

TO·220

SO

10'

90

40

0.2

1

0.5

1.3

1

100

3

0.02

4P

MJE200

TO·220

25

0.1

40

70
45
10

0.5
2
5

1
1
2

0.3
0.75
1.S

0.5
2
5

SO

65

0.1

4P

120

120

120

120

lS0

MJE220

TO·220

100

0.1

60

40
20

200

0.2
2

1
1

0.3

0.5

SO

50

0.1

4P

MJE221

TO·220

40

0.1

60

40
20

150

0.2
1

1
1

0.3
0.6

0.5
1.0

50

50

0.1

4P

MJE222

TO·220

40

0.1

60

25
10

0.2
1

1
1

0.3

0.5
2

50

50

0.1

4P

1.S

SJOIS!SueJl

Nd N

NPN Transistors
"

~
Tvpe
No.

MJE223

POWER (Continued)
Case
Style

TO-220

VCBO
(V)
Min

VCEO
(V)

Min
60

VEBO
(V)
Min

ICEX'
ICEBt
ICBO
",A)
Max
0.1

@

VCB
(V)

BO

hFE
Min

Max

40
20.

200
150

4P

0.2
1

1
1

0.3

0.5

50

50

0.1

4P

0.2
2

1
1

0.3
O.B

0.5
2

50

40

0.1

4P

0.2

1

0.3
0.6

50

40

100

4P

20

1

1

2.5

0.5
1
2
4

25

0.2

1

0.3

50

40

100

4P

1.B
10

1

1

2.5

0.5
2
4

0.2

1

0.3
O.B
2.5

0.5
2
4

50

40

100

4P

1.8

0.5
2

50

100

'4P

BO

25
10

MJE240

TO-220

BO

0.1

BO

40
15

200

40

120

1.B

1.B

loB

--'

~

MJE243

MJE244

TO-126

TO-126

100

100

0.1

0.1

100

100

4P

0,1

·0.1

BO

0.1

50

60

0.1

50

Process
No.

50

to-220

BO

50

IC
(A)

0.5
1

MJE225

TO-126

0.5
2

@

0.3
0.6

40
20

MJE242

'T
(MHz)
Max
Min

1
1

BO

BO

Cob
(pF)
Max

IC
(A)

0.2
1

0.1

0.1

@

0.3
O.B

60

BO

VCE(SAT)
VBE(SAT)
(V)
(V)
8.
Max
Min
Max

1
1

TO-nO

TO-126

IC
VCE
(A) 8. (V)

0.2
2

MJE224

MJE241

@

40

25

120

0.2

0.3

,

I

I

!

40

I
I

10

1

D44Hl

TO-220

30

10

30

35
20

2
4

1
1

1.0

1.5

8

40

D44H2

To-no

30

10

30

60
40

2
4

1
1

1.0

1.5

8

40

D44H4

TO-220

45

10

45

35
20

2
4

1
1

1.0

1.5

B

40

D44H5

TO-220

45

10

45

60
40

2
4

1
1

1.0

1.5

8

40

D44H7

TO-220

60

10

60

2
4

1
1

1.0

1.5

8

40

D44HB

TO-220

60

JO

60

35
20
. 60
40

2
4

.1
1

1.0

1.5

8

40

D44Hl0

TO-220

80

10

80

35
20

2
4

1
1

1.0

1.5

8

40

D44Hll

TO-220

80

10

80

60
40

' 2
4

1
1

1.0

1.5

8

40

2.5

4

-

I

I
I

~

~

DARLINGTON
VCBO
(V)
Min

VCEO
IV)
Min

VEBO
(V)
Min

ICES'
ICBO
(IlA)
Max

IC
@ (rnA)

Cob
IpF)
Max

1.4

200

10

5

1.4

200

2

5

1.4

70,000

2

5

20,000
30,000
20,000

200,000
300,000
300,000

10
100
500

5
5
5

30

10,000
20,000
14,000

100,000
200,000
140,000

10
100
500

5
5
5

0.1

30

25,000
15,000
5000

150,000

200
500
lA

0.1

30

15,000
10,000
3000

150,000

60

2

05

10

60

2

05

200

10

60

2

05

1.4

200

10

60

2

05

1.2

50

7

150

10

05

7

130

10

05

5
5
5

7

1

200

05

200
500
lA

5
5
5

7

1

200

05

5
5
5

1.0

200

1

10

200

05

40,000

200
500
lA

5
5
5

1.0

200

1

10

200

05

40,000

200
500
lA

4000
15,000
25,000

lA
500
200

5
5
5

1.5

lA

100

200

05

lA
500
200
200

5
5
5

1.5

100

200

05

5

2N5305

TO·92
(94)

0.1

25

2000

20,000

2

5

2N5306

TO-92
(94)

0.1

25

7000

70,000

2

2N5307

TO-92
(94)

0.1

40

2000

20,000

2N5308

TO-92
(94)

0.1

40

7000

2N6426

TO-92
(92)

40

40

12

0.05

30

2N6427

TO-92
(92)

40

40

12

0.05

2N6548

TO-202
(55)

50

40

12

2N6549

TO-202
(55)

50

40

12

2N6724

TO-126

50

12

2N6725

TO-126

60

12

0.1

40

25,000
15,000
4000

92PU45

TO-237
(91)

50

12

0.1

30

J,.
....,

VCB
IV)

fT

Process
No.

Case
Style

@

VCE(SAT)
VBEISAT)
IV)
IV)
&
Min
Max
Max

IC
@ (rnA)

Type
No.

hFE
Min

Max

IC
VCE
@ (mA)@ (V)

(MHz)
Min
Max

I
I

92PU45A

TO-237
(91)

60

D40Cl

TO-202
(55)

,

D40C2

25,000
15,000
4000

0.1

40

30

0.5'

30

4000
15,000
25,000
10,000

TO-202
(55)

30

0.5'

30

40,000

200

D40C3

TO-202
(55)

30

0.5'

30

90,000

D40C4

TO-202
(55)

40

0.5'

40

10,000

12

60,000

60,000

1.5

2

1.5

500
50

1.2
2

2.0

500

200

1.0
2.0

lA

1.5

2.0

500

10

05

5

1.5

2.0

500

10

05

200

5

1.5

2.0

500

10

05

200

5

1.5

2.0

500

10

05

--

I

200

1.0

-

SJOIS!SUBJl

Nd N

NPN Transistors

~

DARLINGTON (Continued)

Type
No.

VCEO
(V)
Min

VEBO
(V)
Min

ICES'
ICBO
(jLA)
Max

@

VCB
(V)

hFE
Min

Max

IC
VCE
@(mA)@ (V)

VCE(SAT)
(V)
Max

~

VBE(SAT)
(V)
Min Max

IC
@(mA)

Cob
(pF)
Max

fT
(MHz)
Max
Min

IC
@(mA)

Process

No.

200

5

1.5

2.0

500

10

05

200

5

1.5

2.0

500

10

05

40.000

200

5

1.5

2:0

500

10

05

10,000
1000
1000

200
1.5A
lA

10

05

5

10,000
1000
1000

200
1.5A
lA

5
5
5

05

30

10,000
1000
1000

200
1.5A
lA

5
5
5

05

50

10,000
1000
1000

200
1.5A
lA

5
5
5

05

15

20,000

10

5

1.0

10

0.1

30

10,000
5000

100
10

5
5

1.5

100

125

10

05

0.1

30

20,000
10,000

100
10

5
5

1.5

100

125

10

05

D40C5

TO·202
(55)

40

0.5'

40

40,000

D40C7

TO-202
(55)

50

0.5'

50

10,000

D40C8

TO-202
(55)

50

0.5'

5

D40Kl

TO-202
(55)

30

TO-202
(55)

- 50

D40K3

TO-202
(55)

D40K4

TO-202
(55)

MPSA12

TO-92
(92)

20

0.1

MPSA13

TO-92
(92)

30

MPSA14

TO-92
(92)

30

NSD151

TO-202
(55)

D40K2

t;,

VCBO
(V)
Min

Case
Style

30

12

60,000

5
5

I

05

5000
10,000

10
100

5
5

1.5

100

8

5

10

05

150,000

5000
10,000

10
100

5
5

1.5

100

8

5

10

05

25,000

TO-202
(55)

12

NSD153

TO-202
(55)

12

20,000
5000

10
100

5
5

1.5

100

8

5

10

05

NSD154

TO-202
(55)

12

20,000
5000

10
100

5
5

1.5

100

8

5

10

05

NSDU45

TO-202
(55)

50

12

25,000
15,000
4000

150,000

200
500
lA

5
5
5

1.0

200

8

1

200

05

NSOU45A

TO-202
(55)

60

12

25,000
15,000
4000

150,000

200
500
lA

5
5
5

1.0

200

8

1

200

05

NSD152

"

-

0.1

10

~
Type
No.
2N6037

2N603B

2N6039

2N63B6

~



SWITCHES/CHOPPERS

(Continued)

Case
Style

BVGSS
IGSS
lo(off)
BVGoO
'lOGO
(nA) @ VoS VGS
(V)@IG (nA) @ VoG
Max (V)
(V)
Min IJ919S 13.:1r

JFET Selection Guide

~
Type
No.

'"

,j,.

N·Channel JFETs
RF, VHF, UHF AMPLIFIERS
Case
Style

BVGSS
(V)@IG
Min IJalas 13:1r

JFET Selection Guide

~

N·Channel JFETs
LOW FREQUENCY- LOW NOISEAMPLIFIERS
BVGSS
(V)
IG
Min IJ919S 13:Jr

JFET Selection Guide

~

~

N·Channel J FETs
GENERAL PURPOSEAMPS(Conlinued)
BVGSS
"BVGoO
(V)@IG
Min {}tAl

en

c rss

Process
No.

Type
No.

Case
Style

2N5105

TO-72

25

1

0.1

15

0.5

4

15

1

5

15

15

5

10

15

100

15

5

15

0

1

15

0

50

I

25

2N5358

TO-72

40

1

0.1

20

0.5

3

15

100

0.5

1

15

1

3

15

10

15

6

15

0

2

15

0

115

100

55

TO-72

40

1

0.1

20

0.8

4

15

100

0.6

1.6

15

1.2

3.6

15

10

15

6

15

0

2

15

0

115

100

55

I

25

2N5359
2N5360

TO-72

40

1

0.1

20

0.8

4

15

100

1.5

3.0

15

1.4

4.2

15

20

15

6

15

0

2

15

0

115

100

55

25

2N5361

TO·72

40

1

0.1

20

1

6

15

100

2.5

5

15

1.5

4.5

15

20

15

6

15

0

2

15

0

115

100

55

25

2N5362

, TO-72

40

1

0.1

20

2

7

15

100

4

8

15

2

5.5

15

40

15

6

15

0

2

15

0

115

100

55

25

2N5363

TO-72

40

1

0.1

20

2.5

8

15

100

7

14

15

2.5

6

15

40

15

6

15

0

2

15

0

115

100

55

25

2N5364

TO-72

40

1

0.1

20

2.5

8

15

100

9

18

15

2.7

6.5

15

60

15

6

15

0

2

15

0

115

100

55

25

2N5457

TO-92

25

1

1

15

0.5

6

15

10

1

5

15

2

5

15

50

15

7

15

0

3

15

0

55

92

2N5458

TO-92

25

1

1

15

1

7

15

10

2

9

15

1.5

5.5

15

50

15

7

15

0

3

15

0

55

92

2N5459

TO-92

25

1

1

15

2

8

15

10

4

16

15

2

6

15

50

15

7

15

0

3

15

0

55

92

2N5556

TO-72

30

1

0.1

15

0.2

4

15

1

0.5

2.5

15

1.5

6.5

15

20

15

6

15

0

3

15

0

35

10

50

25

2N5557

TO-72

30

1

0.1

15

0.8

5

15

1

2

5

15

1.5

6.5

15

20

15

6

15

0

3

15

0

35

10

50

25

2N5558

TO-72

30

1

0_1

15

1.5

6

15

1

4

10

15

1.5

6.5

15

20

15

6

15

0

3

15

0

35

10

50

25

J201

TO·92

40

1

0.1

20

0.3

1.5

20 '

10

0.2

1

20

0.5

20

11

20

15

20

0

12

20

0

110

1000

52

92

J202

TO-92

40

1

0.1

20

0.8

4

20

10

0.9

4.5

20

1

20

13.5

20

15

20

0

12

20

0

110

1000

52

92

J203

TO-92

40

1

0.1

20

2

10

20

10

4

20

20

1.5

20

110

20

15

20

0

12

20

0

110

1000

52

92

,J210

TO-92

25

1

0.1

15

1

3

15

1

2

15

15

4

12

15

150

15

15

15

0

11.5

15

0

110

1000

90

92

J211

TO-92

25

1

0_1

15

2.5

4.5

15

1

7

20

15

7

12

15

200

15

15

15

0

11.5

15

0

110

1000

90

92

J212

TO-92

25

1

0.1

15

4

6

15

1

15

40

15

7

12

15

200

15

15

15

0

11.5

15

0

110

1000

90

92

MPF103

TO-92

25

1

1

15

6

15

1

1

5

15

1

5

15

50

15

7

15

0

3

15

0

55

92

MPF104

TO-92

25

1

1

15

7

15

1

2

9

15

1.5

5.5

15

50

15

7

15

0

3

15

0

55

92

MPF105

TO-92

25

1

1

15

8

15

1

4

16

15

2

6

15

50

15

7

15

0

3

15

0

55

92

MPF109

TO-92

25

10

1

15

0_2

8

15

10

0.5

24

15

0.8

6

15

75

15

7

15

0

3

15

0

55

92

MPF110

TO-92

20

10

100

10

0.5

10

10

1

0.5

20

10

0_5

10

50

92

MPF111

TO-92

20

10

100

10

0.5

10

10

1000

0_5

20

10

0.5

10

200

10

50

92

MPF112

TO-92

25

10

100

10

0.5

10

10

1000

1

25

10

1

7.5

10

PN3684

TO-92

50

1

0.1

30

2

5

20

1

2.5

7.5

20

2

3

20

50

20

4

20

0

1.2

20

0

150

PN3685_

TO-92

50

1

0.1

30

1

3.5

20

1

1

3

20

1.5

2.5

20

25

20

4

20

0

1.2

20

0

PN3686

TO-92

50

1

0_1

30

0.6

2

20

1

0.4

1.2

20

1

2

20

10

20

4

20

0

1.2

20

0

-----------

IGSS
(nA)@VoG
Max (V)

vp
(V) @ {lOS
Min Max (V)

10
(nA)

lOSS
(rnA) @ VoS
Min Max (V)

. Goss
GIs
(mmho)@ VoS {}tmho)@VoS
(V)
Min Max (V)
Max

Ciss
(pF)@Vos VGS
(V)
Max (V)

(pF)@Vos VGS (;)@Freq
Max (V) (V)
Max
(Hz)

115

1000

Pkg.
No.

25

55

92

20

52

92

150

20

52

150

20

52

92

I

92

~
Type
No.

;b

N-Channel JFETs
GENERAL PURPOSEAMPS(Continued)
Case
Style

BVGSS
*BVGOO
(V)@IG
Min !J.A)

en
IGSS
(nA)@VOG
Max (V)

vp
(V) @ VOS
Min Max (V)
0.3

10
(nA)

lOSS
(mA) @ VOS
Min Max (V)

Goss
GIs
(mmho) @ VOS {umho)@VOS
(V)
Min Max (V)
Max

Clss
(pF)@Vos VGS
(V)
Max (V)

Crss
(pF)@VOS· VGS
Max (V) (V)

Max

. Process Pkg.
No.
No.
(Hz)

150

20

(NV)

.,1Hz @Freq

PN3687

TO·92

50

1

0.1

30

1.2

20

1

0.1

0.5

20

0.5

1.5

20

5

20

4

20

0

1.2

20

0

PN4220

TO·92

30

10

0.1

15

4

15

1

0.5

3

15

1

4

15

10

15

6

15

0

2

15

0

55

92

PN4221

TO·92

30

10

0.1

15

6

15

1

2

6

15

2

5

15

20

15

6

15

0

2

15

0

55

92

PN4222

TO·92

30

10

0.1

15

8

15

1

5

15

15

2.5

6

15

40

15

6

15

0

2

15

0

55

92

PN43Q2

TO·92

30

1

1

10

4

20

10

0.5

5

20

1

20

50

20

6

20

0

3

20

0

100

1000

52

92

PN4303

TO·92

30

1

1

10

6

20

10

4

10

20

2

20

50

20

6

20

0

3

20

0

100

1000

52

92

PN4304

TO·92

30

1

1

10

10

20

10

0.5

15

20

1

20

50

20

6

20

0

3

20

0

125

1000

52

92

PN5163

TO·92

25

1

10

15

0.4

8

15

1000

1

40

15

2

9

15

200

15

12

15

0

3

15

0

50

1000

50

92

TIS58

TO·92

25

1

4

15

0.5

5

15

20

2.5

8

15

1.3

4

TlS59

TO·92

25

1

4

15

1

9

15

20

6

25

15

1.3

• 10 = 1 rnA; t 10
I = typical value.

= 500 pA; tt 10 =

40 "A; * •. 10

52

92

15

6

15

2 rnA

3

15

2 rnA

50

94

15

6

15

2 rnA

3

15

2 rnA

50

94

= 100 "A; 110 = 250 "A.

ap!n~

UO!I:>alas !3:1r

·JFET Selection Guide

~.

N·Channel JFETs
GENERAL PURPOSE DUAL JFETs
OperaUng Conditions For The.. Charactarlstlcs

IVOS1.21
Type
No.

VOS
(mY)

Orlft
(,N/oCr 10
"VOS (pA)
Max Max

0 0 .. CMRR
!.mho) (dB)
Max Mdx
Min

0,.

"mhos

~
Min· Max

~

0,.
Clss Cra•
Go••
lOSS
(mmho) !.mho) (PA)@ VOO (pF) (PF)
Max Min Max Max Max M Max' Max

lOSS
(mA)

en

BV

lOSS

0,.

0 0 ••1.2 101.102
125°C
(nA)

M (hVl.jHz)@, Match Match !.mho)
%

Procell Pkg.
No.

I

Min

Max (Hz)

18

6

50

100

1000

5

83

12

18

6

50

100 1000

5

83

12

%

M

(pAl

Max

Max

Min

10

700

5

10

250 1500

20

-3.0

1

2N3922
2N3934

TO·71

10

700

5

25

250 1500

20

10

200

5

10

100

300

5

2N3935

TO·71
T().71

1000
-3.0 1
10
1.5 7.5
35
See 2N3954-6 as an improved replacement

10

200

5

25

100

300

5

2N3954A

TO·71

20

200

5

5

50

0.5

4

1

See 2N3954·6 as an improved replacement
3.
1
100
4.5 0.5
5
35

30

4

1.2

50

150

100

5

3

10

TO·71
TO·71
T().71

20

200

5

10

50

0.5

4

1

4.5

0.5

5

1

3

35

100

30

4

1.2

50

150

100

5

3

10

83
83

12

2N3954

20

200

15

50

0.5

4.5

0.5

5

1

3

0.5

5

1

3

50

150
150

83

4.5

1.2
1.2

10

1

4
4

3

0.5

30
30

5

50

100
100

100

25

35
35

50

200

4
4

1

20

5
10

100

5

5

10

12
12

2N3956 •

TO·71

20

200

15

50

50

0.5

4

1

4.5

75

0.5

4

1

35

30

1.2
1.2

50

150

100
100

5
10

200

25

0.5

4

1.

0.5

5

1

3

35

100

30

4

1.2

50

150

100

15

TO-71
T().71

10
10

200

15

100
10

4.5
4.5

1

20

50
50

4
4

150

20

100
100

50

200

3
3

30

20

5
5

35

TO·71
TO-71

0.5
0.5

1

2N3957

200

15

10

700

10

700

15
15

100

2N4085

TO-71
TO-71

100

1000
1000

2N5045
2N5046

TO-71

15
15
15

200

5.0

TO-71

200
200

10
15

20

200

5

TO-71
T()'71
T().71

20
20

200
200

20

2N5453

TO·71
T()'71

2N5454

T()'71

2N5545
2N5546
2N5547

TO-71
TO-71

2N5561
2N5562

TO-71
T().71

2N5563

T().71

2N3958
2N4082
2N4083
2N4084

2N5047
2N5196
2N5197
2N5196
2N519B
2N5452

TO·71
T()'71

J402
J404
J405
J408
J410

25

300

10

100 300
250 1500
250 1500

20
20

100

5

15
15

10
15

20
40

15

200

20

200

5

20

200

10

5
10

20
15

200

15

25

200

10

17

5

10
'10

700

10

700

15

10

200

5

10

200

10

10

10

200

10

25

DIP

10
10

200

15

25

100

200 .

40

10

200

20
40

a-Pin

20

200

10

8-Pln
Mlnl-

1000

30
30

I

12
12

5

10

83
83

10
15

10

83

10

83

7.5

35

1000

30

18

6

3

1

10

1.5

7.5

35

1000

18

6

0.5

4.5

0.5

8

1.5

8

4

50

200

10

4.5
4.5

0.5
0.5

8

-8

1.5

25
25

250

0.5
0.5

6
6

30
30

50
50

8

4

50

200.

10

1.5

6

25

250

30
30

8

4

50

200

10

250

12

5

83

12
12
12

83
83
20

3

3.8

0.7

4.5

0.7

7

1

4

50

25

30

6

2

50

20

1000

5

3

1

5

700 1500

4

3.8

0.7

4.5

0.7

7

30

6

2

50

4.5

0.7

7

30

6

2

50

5

1

0.7

7

1

4

25
25

5
5

4.5

50
50

3
5

1

0.7
0.7

20 1000
20 1000

5

3.8
3.8

4
4

25

4
4

1
1

50

700 1500
700 1500

0.2
0.2
0_2

5

1

5

1

4.5

O.S

5

1

3

3

100

50
50·

5

4.2

2
1.2

1000

0.2

6
4

20

1

30
30

20

1000

5

3

1

0.2

4.2

1

4.5

0.5

5

1

3

3

100

30

4

1.2

50

20

1000

1

0.2

4.2

1

4.5
4.5

0.5
0.5

5
8

1
1.5

3

3
25

100
100

30

4

1.2

50

20

6

180

100
100

6

50

200

10

4.5

0.5
0.5

2
2

50

4.5

30
30

1000
10

5
5·

30

6

2

50

2.7t 0.8
2.7t 0.8

3
3

1
1

100

30

50
50

10
10

1

30
30

50
50

3
2.5

100
100

4
4

2.7t 0.8
2.3 0.5

15
.15
15

4

50

10

0.5

.100

30

8

3

50
·50

20

4

0.2

10

2000 3000

4

0.2

25
10

2000 3000
100 1000 1600

4

0.2

8

1.5

6

25

·1.5

6

25

10
10

2

7

20

·12
12

83

0.2

8
10
10

12
12

5

4

6

12

12

1.5

700 1500

2000 3000

80
10

35

10

0.5

700

40
5

7.5

1

50

10

20

1.5

3

4

0.5
0.5

200

200

0.5

50
50

15
15

TO-71

10

See 2N3954-6 as an improved replacement

10

200

5
10

Min

See 2N3954-6 as an improved replacement

67
133

5
10
15

J401
J403

25
10

Min

5
10

12

83
83
83

12

12

83

12

83

12

0.25

83

12

3

0.25

12

5

0.25
1

83
83
83

12
12
12

3
5
·10

5

2

5

83

3

5
10

83

12
12

10

98
98

10

98

12

10

98

60

10
5
5
.5

3
3

0.3·
0.4

3

0.5

12

2

95

100 1000 1600
100 1000 1600

2

95

2.3

0.5

2.5

0.5

10

2

7

20

100

30

8

3

50

20

60

95

2.3

0.5

2.5

0.5

10

2

7

20

100

30

a

3

50

20

10
10

98

2

98·

60

1000 1600

2

95

2.3

0.5

2.5

0.5

10

2

7

20

100

8

3

50

20

10

98

60

100 1000 1600
100 1000 1600
250 600 1200

2

90

2.3

0.5

2.5

0.5

8

3

10

98

60

0.5

20

100

a

4

0.5

3.5

0.5

6

1

4

20

250

3
1.2

50
50
40

20

2.5

7
7

100

0.5

2
2

20

2.3

10
10

30
30

60
60

2
5

0.3

30
20

4.5

,

No.

TO·71

2N3955

o:

Op. Char.
Voo 10

2N3921

2N3955A

,
'fJ

Ca ..
Style

20

10

98

50

100

83

I

~

N·Channel JFETs
GENERAL PURPOSE DUAL JFETs

(Continued)

Operating Conditions For These Characteristics

Type
No.

~
~

Case

Op. Char.

Slyi.

VOG 10
(V) "A)

VGS1.2
VOS
(mV)
Max

Orlft
"V/·C) IG
<1VGS (pA)
Max
Max

G,s

G05S

~mhos

Min

"mho)
Max
Max

CMRR
(dB)
Min

"<8:

~

lOSS
(mA)
Min Max

G,s
Goss
IGSS
Ciss erss
(mmho)
"mho) (pA) @ VOG (pF) (pF)
Min Max Max Max (V) Max Max

en
BV
lOSS
(VI (nV/·iHz)@, Match
Max·
(Hz)
Min
%

Goss1 .2
G,s
Match (.mho)
%

IG1· IG2
125·C
(nA)

No.

Pkg.
No.

Process

Min

Max

Min

J411

Mini.

20

200

25

25

250

600 1200

5

0.3

4

0.5

3.5

0.5

6

1

4

20

250

20

4.5

1.2

40

50

100

83

60

J412

OIP

20

200

40

SO

250

600 1200

5

0.3

4

0.5

3.5

0.5

6

1

4

20

250

20

4.5

1.2

40

50

100

83

60

NPD8301

B-Pin

20

200

5

10

100

700 1200

5

0.3

4

0.5

3.5

0.5

6

1

4

20

100

20

4.5

1.2

40

50

100

83

67

NPD8302

Mini·

20

200

10

15

100

700 1200

5

0.3

4

0.5

3.5

0.5

6

1

4

20

100

20

4.5

1.2

40

50

100

83

67

NPD8303

DIP

20

200

15

25

100

700 1200

5

0.3

4

0.5

3.5

0.5

6

1

4

20

100

20

4.5

1.2

40

50

100

83

67

U231

TO·71

20

200

5

10

50

600

10

0.3

4

See 2N3954 as an improved replacement

83

12

U232

TO·71

20

200

10

25

50

600

10

0.3

4

See 2N3955 as an improved replacement

83

12

U233

TO·71

20

200

15

50

50

600

10

0.3

4

See 2N3956 as an improved replacement

83

12

U234

TO·71

20

200

20

75

50

600

10

0.3

4

See 2N3957 as an improved replacement

83

12

U235

TO·71

20

200

25

100

50

600

10

0.3

4

See 2N3958 as an improved replacement

83

12

U401

TO·71

10

200

5

10

15

1000 1600

2

95

2.3

0.5

2.5

0.5

10

2

7

20

25

30

8

3

50

20

10

98

12

U402

TO·71

10

200

10

10

15

1000 1600

2

95

2.3

0.5

2.5

0.5

10

2

7

20

25

30

8

3

50

20

10

98

12

U403

TO·71

10

200

10

25

15

1000 1600

2

95

2.3

0.5

2.5

0.5

10

2

7

20

25

30

8

3

50

20

10

98

12

U404

TO·71

10

200

15

25

15

1000 1600

2

95

2.3

0.5

2.5

0.5

10

2

7

20

25

30

8

3

50

20

10

98

12

U405

TO·71

10

200

20

40

15

1000 1600

2

90

2.3

0.5

2.5

0.5

10

2

7

20

25

30

8

3

50

20

10

98

12

80

15

1000 1600

2

2.3

0.5

2.5

0.5

10

2

7

20

25

30

8

3

50

20

10

98

12

U406

TO·71
40
10
200
tiD - 100 ,A for VGS for 2N556112/3 only.

~

70

Mo.

-

LOW FREQUENCY-LOW NOISE DUAL JFETs
Operating Conditions For These Characteristics

Type
No.

Casa

Slyi.

Op. Char.
VOG 10
(V) (,

Oper.
Condo

VGS1.2 L1VGS
Drift
VOS
(mV) (PV/OC)
10
I,ttA)
Max
Max

IG1· IG2
C rss BVGSS @ 125°C Process
(V)
(nA)
(pF)
No.
Max
Min
Max

Type
No.

Case
Style

2N5902

TO·78

10

30

5

5

3

50

JL

1

4

0.6

4.5

30

JL

0.5

70

JL

0.25

5

5

20

3

1.5

40

2

84

24

2N5903

TO-78

10

30

5

10

3

50 JL

1

4

0.6

4.5

30 JL

0.5

70 JL

0.25

5

5

20

3

1.5

40

2

84

24

VOG
(V)

IG
GIs
Goss VGS
(pA) (mmho) (pmho) (V)
Max
Min
Max
Max

Min

~

Max

lOSS
(mA)
Min Max

GIs
(mmho)
Min Max

Goss
(pmho)
Max

IGSS
(pA)@VGS
Max
(V)

Ciss
(pF)
Max

Pkg.
No.

2N5904

TO-78

10

30

10

20

3

50 JL

1

4

0.6

4.5

30 JL

0.5

70

JL

0.25

5

5

20

3

1.5

40

2

84

24

2N5905

TO-78

10

30

15

40

3

50 JL

1

4

0.6

4.5

30 JL

0.5

70 JL

0.25

4

5

20

3

1.5

40

2

84

24

2N5906

TO-78

10

30

5

5

1

50

JL

1

4

0.6

4.5

30 JL

0.5

70 JL

0.25

5

2

20

3

1.5

40

0.2

84

24

2N5907

TO-78

10

30

5

10

1

50 JL

1

4

0.6

4.5

30 JL

0.5

70

I'

0.25

5

2

20

3

1.5

40

0.2

84

24

2N5908

TO-78

10

30

10

20

1

50

JL

1

4

0.6

4.5

30 JL

0.5

70

JL

0.25

5

2

20

3

1.5

40

0.2

84

24

2N5909

TO-78

10

30

15

40

1

50 JL

1

4

0.6

4.5

30 JL

0.5

70 JL

0.25

5

2

20

3

1.5

40

0.2

84

24

U421

TO-78

86

24

U422

TO-78

86

24

U423

TO-78

86

24

U424

TO-78

86

24

U425

TO-78

86

24

U426

TO-78

86

24

Process In Development

ap!nD UO!I:>alas 13.:1 r

JFET Selection Guide

~

w

....:.:

P-Channel JFETs
SWITCHES
BVGSS
BVGOO
(V)@IG
Min l/tA)

Type
No.

Case
Style

2N5018

TO·18

30

1

2

15

10

-15

12

10

-15

1

10

20

75

45

-15

0

10

0

12

35

2N5019

TO·18

30

1

2

15

10

-15

7

5

-15

1

5

20

150

45

-15

0

10

0

7

90

2N5114

TO·18

30

1

0.5

20

0.5

-15

12

5

10

- 15 0.001

30

90

18

75

1

25

-15

0

7

0

12

16

21

88

11

2N5115

TO·18

30

1

0.5

20

0.5

-15

7

3

6

-15 0.001

16

60

15

100

1

25

-15

0

7

0

7

30

38

88

11

10(011)
'GSS
(nA)@VOG (nA)@VoS VGS
(V)
Max (V) Max (V)

vp
(V) @ VOS
Min Max (V)

10
l/tA)

2N5116

TO·18

30

1

0.5

20

0.5

-15

5

1

4

-15 0.001

J174

TO·92

30

1

1

20

1

-15

10

5

10

- 15 0.01

J175

TO·92

30

1

1

20

1

-15

10

3

6

J176

TO·92

30

1

1

20

1

-15

10

1

4

J177

TO·92

30

1

1

20

1

-15

10

0.8

2.25

P1086

TO·92

30

1

2

15

10

-15

12

P1087 .

TO·92

30

1

2

15

10

-15

7

lOSS
(rnA) @ VOS
Min Max (V)

rds
(n) @ 10
Max (rnA)

Ciss
(pF)@Vos VGS
Max (V)
(V)

Crss
(pF)@VOS VGS
Max (V)
(V)

ton
(ns)
Max

Process
No.

Pkg.
No.

65

88

11

125

88

11

\011
(ns)
Max

5

25

15

150

1

25

-15

0

7

0

5

42

60

88

1i

20

,100

15

85

1

11

0

10

5.5

0

10

2

5

88

94

-15 0.01

7

60

15

125

0.5

11

0

10

5.5

0

10

5

10

88

94

-15 0.01

.2

25

15

250

0.25

11

0

10

5.5

0

15

15

88

94

-150.01

1.5

20

15

300

0.1

11

0

10

5.5

0

19
1(j

20

20

88

94

10

-15

1

10

20

75

1

45

-15

0

10

0

12

35

65

88

92

5

-15

1

5

20

150

1

45

-15

0

10

0

7

90

125

88

92

-----

~
fype
No.

~

01

P-Channel J FETs
AMPLIFIERS

Case
Style

BVGSS
BVGOO
(V)@IG
Min !itA)

en
IGSS
(nA)@VOG
Max (V)

Vp
(V) @ VOS 10
Min Max (V) !itA)

lOSS
(mA) @ VOS
Min Max (V)

G,s
(mmho) @ VOS
(V)
Min Max

Process Pkg.
C rss
Goss
Ciss
No.
No.
~mhq VOS (pF) VOS VGS (pF) VOS VGS (;')@FreQ
(V) Max (V) (V)
Max (Hz)
Max (V) Max (V)

2N2608

TO·18

30

1

10

30

1

4

-5

1

0.9

4.5

5

1

5

17

-5

1

125

1000

89

2N2609

TO·18

30

1

30

30

1

4

-5

1

2

10

5

2.5

5

30

-5

1

125

1000

88

11
11

2N3329

TO·72

20

10

10

10

5

-15

10

1

3

10

1

2

10/1 mA

20

10

20

-10

1

125

1000

89

23

2N3330

TO·72

20

10

10

10

6

-15

10,

2

6

10

1.5

3

10/2 mA

40

10

20

-10

1

125

1000

89

23

2N3331

TO·72

20

10

10

10

8

-15

10

5

15

10

2

4

10/5 rnA

100

10

20

-10

1

155

1000

89

23

2N3332

TO·72

20

10

10

10

6

-15

10

1

6

10

1

2.2

10/1 rnA

20

10

20

-10

1

65

1000

89

23

2N3820

TO·92

20

10

20

10

8.0

-10

10

0.3

15

10

0.8

5

10

200

10

32

-10

0

16

-10

0

2N4381

TO·18

25

1

1

15

1

5

-15

1

3

12

15

2

6

15

75

15

20

-15

0

5

-15

0

20

2N5020

TO·18

25

1

1

15

0.3

1.5

-15

1

0.3

1.2

15

1

3.5

15

20

15

25

-15

0

7

-15

0

2N5021

TO·18

25

1

1

15

0.5

2.5

-15

1

1

3.5

15

1.5

6

15

20

15

25

-15

0

7

-15

0

2N5460

TO·92

40

10

5

20

0.75

6

-15

1

1

5

15

1

4

15

50

15

7

-15

0

2

-15

2N5461

TO·92

40

10

5

20

1

7.5

-15

1

2

9

15

1.5

5

15

50

15

7

-15

0

2

2N5462

TO·92

40

10

5

20

1.8

9

-15

1

4

16

15

2

6

15

50

15

7

-15

0

2

J270

TO·92

30

1

0.2

20

0.5

2.0

-15 0.001

2

15

15

6.0

15

15

J271

TO·92

30

1

0.2

20

1.5

4.5

-15 0.001

6

50

15

8.0

18

PN4342

TO·92

25

10

10

15

5.5

-10

1

4

12

10

2

6

PN4360

TO·92

20

10

10

15

0.7

10

-10

1

3

30

10

2

PN5033

TO·92

20

10

10

15

0.3

2.5

-10

1

0.3

3.5

10

1

89

94

1000

89

11

30

1000

89

11

30

1000

89

11

0

115

100

89

92

-15

0

115

100

89

92

-15

0

115

100

89

92
94

200

15

120

-15

0

15

-15

0

110

1000

88

500

15

120

-15

0

15

-15

0

110

1000

88

94

10

75

10

20

-10

0

5

-10

0

80

100

89

92

8

10

100

10

20

-10

0

5

-10

0

190

100

89

92

5

10

20

10

25

-10

0

7

-10

0

100

1000

89

92

1 = Iypical value.

ap!n~

UO!I:>alas 13.:1r

Section 4

Selection Guides

'

....W

LL

...
c.
...Q.o

Choose The Proper FET

Q)

Q)

.s::

Q)

National Semiconductor utilizes 17 different F ET geometries to cover, without compromise, the full spectrum
of applications. Detailed data on each process, along with a list of all part numbers manufactured from each
'
process, is to be found in Section 9.
To further simplify the selection procedure, the FET Family Tree is included for quick identification. After
narrowing down the process types, it is suggested that the 'process sheets and specific part number characteristics be consulted.

en

o

o
.s::

(J

FET FAMILY TREE
N·CHANNEL SINGLES

P·CHANNEL SINGLES

N·CHANNEL DUALS

I

J

I

GENERAL PURPOSE AMP
P50 - g" 3-7 mmhos
loss 1-20 mA
P52 - !Its 0.5-3 mmhos
loss 0.1-10 mA
P55 - !II. 0.8-5 mmhos
loss 0.5-17 mA

I

GENERAL PURPOSE AMP

GENERAL PURPOSE

P88 - !Its 4-17 mmhos
loss 5-90 mA
P89 - !lts 1-4mmhos
loss 0.3-20 mA

P83 -IG 3 pA@20V
!Its 0.85 mmho @0.2 mA
P94 - IG 1 pA@35V
CMRR 125 dB

I

--,

1

RF!VHF/UHF
P50 - Gps 12 dB @400MHz
!Its 5.5 mmhos
P90 - Gpt 11 dB@450MHz
g" 8 mmhos
P92 - Go. 12 dB@450MHz
!Its 19 mmhos

SWITCH/CHOPPER
P88 - 'os 50-200 ohms
lo(oFF) 5~ pA
P89 - 'os 450 ohms
lo(oFF) 20 pA

I

UL TRA·LOW INPUT CUR
P84 - 1 pA@25V
9fs 175l'mho
P86 - IG 0.1 pA
9fs 500l'mho

I

ULTRA·LOW LEAKAGE AMP

WIDE BANO·LOW NOISE

P50 - IGSS 5 pA @20V
g,,3-7 mmhos
P53 - IGSS 0.3 pA @20V
g" 0.08-0.3 mmhos

P93 - g,,6 mmhos@5 mA
C.4.2 pF
P96 - !Its 9 mmhos@ 2 mA
C.l0 pF

I

I

LOW FRED·LOW NOISE AMP

LOW FRED·LOW NOISE

P50 - en 8 nV/v'ilZ@ 10 Hz
C.3 pF
P51 - en 6 nV/v'ilZ@ 10 Hz
!Its 20 mmhos

P95 - en 8 nV/v'ilZ@ 10 Hz
!Its 1-4 mmhos
P96 - en 7 nV/v'Hz@ 10 Hz
!Its 10-22 mmhos

I
SWITCH/CHOPPER
P50 - 'os 100-500 ohms
IOIOFF) 5 pA
P51 - 'os 20-100 ohms
IOIOFF) 15 pA
P58 - 'os 3-20 ohms
lo(oFF) 50 pA
All values are typical

4-2

"T1

m

FET Process Comparison Curves
Dual FET Drain Saturation Current vs
Cutoff Voltage
C(

~
f-

2:

w

0::
0::

..,

C(

100
-T A ='25°1:
50
~P96
./
".~

:J

2:

10

,;'

/
'f 1/

Q

j::

(
I§



1000
500

P50(N).t P5~ (N)P90(N) IJ /

I

100
50 -P92(Nj

UJ

'"
e(

::.0:
e(

w
-'
w

0.5
0.1

I-

c:;;
UJ
a:

88 (P)

100

~

a:
=>

./

/1

UJ

5

..,.V
10

15

eI)

20

25

30

100
50

2:

a:
=>

9'"

0.5

eI)

2

100

50 ~TA-25°C
10
5

2

P52J

o
i=
e(
a:
=>

IiI

0.5

le(

eI)

2
e(

:5

0.1
0.05

I

~

0.01
5 10

50 100

~r

I2

a:

a::

:::>

100

c..:I

2

.1'

I

a:

:::>

0.5

e(

en

~

:5

0.1
0.05

~

P96

/P98

~J~.-'1',.P8G
P84
I

I

~

~ 7'

'J
P"/~AI
JJD,

o
i=
e(
l-

P~4,±

IpJ3

0.01
0.1

0.5

5

1

10

50 100

g" - TRANSCONOUCTANCE (mmho)
4-4

P50

r'

0.5 1

Monolithic Dual FET Process Distribution
lOSS vs 9fs

10
5

~ ~~~HO

.1

0.01
0.1

50

P51

I-'

g" -

w

V rlfff.

rL~53

g" - TRANSCONDUCTANCE (mmho)

<
.§

P581N)

P92

J55!"J

a:
a:
=>
c..:I

0.1

0.5 1

-

UJ

I

0.01

P51 IN), P961D)

Single N-Channel FET Process Distribution
lOSS vs 9fs

I2

o

~

P901N). P93(D)
P881P) P971f)
1'-00. :::::-P92IN)

o -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

<
.§

~ 0.05
I

~

11-

P521N)
P55IN) .1.
J P50IN) _ _

VGSIOFFI - GATE-SOURCE CUTOFF VOLTAGE (V)

~89

e(

r---

..

rr-

P - P·Channel
D - Du.1 N·Ch.nnel
o - Ouad P·Channel

'"I

II

l-

.......

~

a:

35

f"""iiOl

...,..;;; ~

5 - N - N·Ch.nnel

;;;:

V P8~-

10
5

.......

10

0

Single P-Channel FET ProcesS Distribution
lOSS vs 9fs

2

o
i=
e(

......

UJ

TA =25°C
N - N·CHANNEl
P - P-CHANNEl

I2

a:
a:
=>
c..:I

."'l1lI

50

VOG - DRAIN-GATE VOLTAGE (V)

W
La..

.§

'"
~ ~ t"--

c..:I

o

<

~~

e(

eI)

P89(PZ

e(

..!:

, " -:e

TA ='2soC-

.....

500

I-

2
0

l-

'"I

UJ

c..:I

IJ

/

ON Resistance vs Cutoff Voltage

1000

2

~ ;....--: ~

V

10
5

:s

P;,3(N)

P55

I

c..:I

(Continued)

5 10

50 100

TRANSCor~DUCTANCE (mmho)

."

m
-t

FET Application Guide

»

'C
'C

-

National Semiconductor manufactures a broad line of silicon Junction Field Effect Transistors (JFETs).
National's JFETs provide excellent performance in many areas such as RF amplifiers, analog switching, low
input current amplifiers, low noise high impedance amplifiers and outstanding matched duals for operational
amplifiers input applications.

C=;'

Q)

O·

The following FET guides enable the user to determine when to use F ETs and where to look for the best choice.

::l

C)
C
M

M

",,,
• I

POPULAR PROOUCT
TYPES

onN
co 0
"M
on"

I

,!. c;;

'"
"2 2"
M

M

No..

22

....

N

....

N

"

I
" "I
'"2 " N
~~ "2
I
co
M

N
on

N

;

cn~

'I

I

N
N'",

on

'" on
~ M
on

N

NN

2

'"2
N

=>

22

58

83

84

86

S

P

P

P

5

P

52

53

55

Low Current Amplifier

S

p

Low Freq Ampli ~ 100 Hz

S

.,.2

PROCESS DESIGNATION

50

51

High Freq Ampli

> 100 MHz

General Purpose Amplifier
Low Noise Amp (10 Hz en)
Low Noise Amp> 50 MHz
High Frequency Mixer

No..

P
P

5
P
P

M
M
N

N

N

I

I

....
Non

~

Mon
N

N

P
5
5

P

5

a,

'"
"=>I
N
.,.

2

22

;;:

N

co ...

22

No..

0

2

22



0

N

'"2N

'j
(;

M

'"onM

N

NN

'j

"'"2
,,'

co

0

",on

0

N

on

P

P

P

P

P

P

P

P

'"u.

N

'"

2

M

'"I
'"

on
on

2

N

N

96

98
P

P
P

P

P

P

Electrometer Preamp

P

P

P

Microvolt Amplifier

P

P

P

Low Leakage Diode

P
P

P

Dill/Angle Ended Inp. Stag.

P

Active Filter

P

Oscillator

P

Voltage Variable Resistor

P

Hybrid Chips

P

P
.P

P

P

P

P

P

P

P
P

5

P

P
P
P

P

5
5
5

P

P

P
P
5

P

P

S
P

P

P

S

P

P

Choppers

N

",'

en

I
M
co

0

'j

P

P

Analog/Digital Switch

~::!
o ~

0

P

P

Multiplexing

N'"
I I

'"I
"'""'2

C.

on

P

5

Dual Diff Pair
AGe Amplifier

N
0
on

N

N

P

P

P

P
5
P

P

S
P

P

P

P

P
P

P

P

S

S

P
P

P

Nixie Drivers
p

Reed Relay Replacement
Sub pA Dual Diff Pair

P

P

Sample-Hold

P

5

P
p

Buffer Interface to CMOS
Matched Switch
HF

P

5

P

P

5

5

2 400 MHz Prime

Current Limiter

Current Source

P - Prime Choice

P
P

P
P

5

P

5

S - Secondary (Alternate) Choice

4-5

P

5

P

P

CI)

:2. FET Application Guide
:::s

(Continued)

CJ

c:

o
:;:;
CO

ADVANl'AGES OF USING FIELD-EFFECT TRANSISTORS

.~

Q.

c.



c

c:

CD

Industry

PIN
T05909
T05909A
TD5910
TD5910A
T05911
TD5911 A
T05912
TD5912A

TIS25
TIS26
TIS27
TIS34
TIS41
TIS42
TIS58
TIS59
TIS73
TIS74
TIS75
TIS88A
TP5114
TP5115
TP5116
U110
U112
U146

U147
U148
U149
U183
U184
U197
U198

U199
U200
U201
U202
U231
U232
U233
U234
U235
U257
U300
U301
U304
U305
U308
U309
U310

Polarity

N
N
N
N
N
N
N
-N
N
N
N
N
N
N
N
N
N
N
N
N
P
P
P
P
P
P
P
P
P
N
N
N
N
N
N
N
N
N
N
N
N
N
N
P
P
P
P
N
N
N

Package

Direct
Replacement

Closest
Equivalent
Replacement

Process
Package

Package

Industry

Type

PIN

2N5020

8424
8424
8424
8424
9324
9324
9324
9324
9812
9812
9812
5072
5172
5172
5074
5074
5177
5177
5177
5072
8811
8811
8811
8911

TO·18

2N4318

8911

TO-18
TO-18
TO-18
TO-18
TO-72
TO-72
TO-18
TO-18
TO-18
TO-18
TO-18
TO-18
TO-71
TO-71
TO-71
TO-71
TO-71
TO-78
TO-18
TO-18
TO-18
TO-18
TO-52
TO-52

2N5020
2N5020
2N2608
2N2609
2N3823
2N4416
2N4338
2N4340
2N4341
2N4393
2N4392
2N4391

8911
8911
8911
8811
5025
5025
5202
5202
5202
5102
5102
5102
8312
8312
8312
8312

TO-78
TO-78
TO-78
TO-78
TO-78
TO-78
TO-78
TO-78
TO-71
TO-71
TO-71
TO-92
TO-92
TO-92
TO-92
TO-92
TO-92
TO-92
TO-92
TO-92
TO-18
TO-18
TO-18
TO-18
TO-18
TO-18
TO-18
TO-18
TO-18
TO-72
TO-72
TO-18
TO-18
TO-18
TO-18
TO-18
TO-18
TO-71
TO-71
TO-71
TO-71

8312

TO-71

UC714

9324
8811
8811
8811
8811
9207
9207
9207

TO-78
TO-18
TO-18
TO-18
TO-18
TO-52
TO-52
TO-52

UC734
UC734E
UC755
UC756
UC805
UeS07
UC814
UC851

TO-1818
TO-1818
TO-1818
TO-1818
TO-1818
TO-1818
TO-1818
TO-1818
TO-516
TO-516
TO-516
TO-92
TO-18
TO-92
TO-92
TO-92
TO-18
TO-18
TO-18
TO-18
TO-18
TO-18
TO-18
TO-18

TO-52

2N5909
2N5909
2N5910
2N5910
2N5911
2N5911
2N5912
2N5912

U401
U402
U403
2N5486
2N4859
PN4392
TIS58
TIS59
TIS73
TIS74
TIS75
2N5486
2N5114
2N5115
2N5116

U231
U232
U233
U234
U235
U257
2N5114
2N5145
2N5114
2N5116
U308
U309
U310

U312
U316
U317
U320
U321
U322
U401
U402

U403
U404
U405
U406
U440
U441

U1837E
U1897
U1897E
U1898
U1898E
U1899
U1899E
U1994

U1994E
U2047
U2047E

UC155
UC2DD
UC201
UC210
UC220
UC241
UC250
UC251
UC400
UC401
UC410
UC420
UC588
UC703
UC705
UC707

~

4-12

Polarity

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
P
P
P
P
N
N
N
N
N
N
N
N
N
P
P
P
P

Package

TO-18
8-69
8-69
TO-5
TO-5
TO-5
TO-71
TO-71
TO-71
TO-71
TO-71
TO-71
TO-71
TO-71
TO-106
TO-106
TO-106
TO-106
TO-106
TO-106
TO-106
TO-106
TO-106
TO-92
TO-106

TO-72
TO-72

TO-72
TO-72
TO-72
TO-72
TO-18
TO-18
TO-72
TO-72
TO-72
TO-72
TO-106
TO-72
TO-72
TO-18

Direct
Replacement

Closest
Equivalent
Replacement

U312
U309
U310
2N5433
2N5433
2N5432
U401
U402
U403
U404
U405
U406
2N5911
2N5912
2N5486-18
U1897
U1897-18
U1898
U1898-18
U1899
U1899-18
PN4416-18

PN4416-18
PN4416
PN4416-18
2N4416
2N4393
2N4416

2N3822
2N4220
2N3822

2N4391
2N4392

2N2609
2N5019
2N2609
2N3329
PN4416-18
2N3822
2N3824
2N4391

TO·72

2N4416

TO-72
TO-106
TO-18
TO-18
TO-72
TO-72
TO-72
TO-18

2N4416
PN4416-18
2N4391
2N4224
2N3331
2N4861
2N3331
2N2608

Process
Package

Package

9007
9207
9207
5807
5807
5807
9812
9812
9812
9812
9812
9812
9324
9324
5072
5172
5172
5172
5172
5172
5172
5072
5072
5072

TO-52
TO-52
TO-52
TO-52
TO-52
TO-52
TO-71
TO-71
TO-71
TO-71
TO-71
TO-71
TO-78
TO-78
TO-92
TO-92
TO-92
TO-92
TO-92
TO-92
TO-92
TO-92
TO-92
TO-92
TO-92
TO-72
TO-18

5072

5025
5102
5025
5525
5525
5525
5102
5102
8811
8811
8811

8923
5072
5525
5525
5102
5025
5025
5072
5102
5025
8923
5102
8923
8911

Type

TO-72

TO-72
TO-72
TO-72

TO-18
TO·18

TO-18
TO-18
TO-18
TO-72
TO-92
TO-72
TO-72
TO-18
TO-72
TO-72
TO-92
TO-18
TO-72
TO-72
TO-18
TO-72
TO-18

RF Selector Guide

C)
C

JFETs

BIPOLARS
40
Preamplifiers
> 500 MHz
> 500 MHz with AGe
200-500 MHz
200-500 MHz with AGe
50-250 MHz
50-250 MHz with AGe
20-120 MHz

,

42

43

•

•

•

•
•
•

•

•
•

Loc Osc
> 500 MHz Mech. Tuned
> 500 MHz Varactor
200-500 MHz Mech. Tuned
200-500 MHz Varactor
50-250 MHz
20-120 MHz

•
•

•

•

•
•

45

46

47

90

49

50

•

•
•
•

•
•

•
•

•
•
•

•
•
•

•

•

•

•

•

92

•
•
•

•

•
•

with AGe
with AGe
Last Stage
Last Stage

•

•

•
•
•
•

•

•

•

•
•

•
•

•

•

•

•

Special Uses
200-500 MHz < 1.0 rnA Bias
50-250 MHz < 1.0 rnA Bias
200-500 MHz 5-15 rnA Linear IF
50-250 MHz 5-15 rnA Linear IF
< 120 M Hz/15 rnA Wideband RF
VHF Freq. Generator and/or
Multiplier to 75 mW Levels

44

•

Mixers
Input> 500 MHz
Input 200-500 MHz
Input 50-250·MHz
Input 20-120 MHz

IF Amps
< 75 MHz
< 15 MHz
< 75 MHz
< 15 MHz
< 75 MHz
< 15 M Hz

41

•
•

•
•

•

•

•
•

•

•
•

•

•
•

•

•

•
•
•

•

•

,

4-13

•
•

•
•

c:
CD

Transistors NPN GPA Devices

P37GPA
DRIVER

120mA

P38 GPA
DRIVER

SOmA

P09GPA

P14 GPA
P39 GPA-HIGH
VOLTAGE DRIVER

P13 GPNSW

SOmA

P36 HIGH
VOLTAGE

P12 GPA
P19 GPNSW

30mA

~I

CONTINUOUS
OPERATION
TYPICAL
COLLECTOR
CURRENT

20mA
1S mA
10 mA

8mA

,-

P18GPNSW

--.

__ -, "'."

P23 GPNSW

.

SEE NPN-RF

I

P48 HIGH VOLTAGE
VIDEO DRIVER

P27GPA

I

I
I
I

P04 LOW
LEVEULOW
NOISE AMP

P17 HIGH
VOLTAGE
P16 GPA-HIGH
VOLATAGE

I

SmA

I
I

2mA

P07LOW
LEVEULOW NOISE
AMP

I
I

25V

40V

45V

SOV

80 V

100 V

120V

COLLECTOR BREAKDOWN VOLTAGE
BVCEO

220 V

300 V

15mA

P23 RF·GPA
400 MHz

P27 RF·GPA
400 MHz
P46 RF·IF
450 MHz

12mA

P43 RF·AMP/OSC
900 MHz

P40 RF·AMP/OSC
1300 MHz
P49 RF·VHF
600 MHz

i:01

CONTINUOUS
OPERATION
TYPICAL
COLLECTOR
CURRENT

9mA

P47 RF·IF
900 MHz

SmA

P42 RF·VHF/UHF
1000 MHz
P41 RF·IJHF
800 MHz

P44 RF·VHF AGC
450 MHz

3mA
P45 RF·IF AGC
400 MHz

10 V

15 V

20 V

25 V

30 V

35 V

COLLECTOR BREAKDOWN VOLTAGE
BVCEO

SaO!Aaa .:U:I Nd N SJO~S!SUeJl

Transistors PNP GPA Devices

P77 GPA
DRIVER

120 rnA
80 rnA

P78 GPA
DRIVER

P68GPA

50 rnA

P67 GPA

"30 rnA

~I

CONTINUOUS
OPERATION

20 rnA

TYPICAL
COLLECTOR
CURRENT

15mA

P79 GPA-HIGH
VOLTAGE DRIVER

P63 GPNSW

P66 GPNSW

10mA

P74 GPA-HIGH
VOLTAGE

P71 LOW
LEVEULOW
NOISE AMP

8mA

P76 HIGH
VOLTAGE

5mA
P62 LOW
LEVEULOW
NOISE AMP

2mA

-20V

-40V

-60V

-80 V

-100V

-120 V

.

COLLECTOR BREAKDOWN VOLTAGE
BVCEO

-180 V

-250V

1500 rnA

P70 HSS

1000 rnA

MAXIMUM
COLLECTOR
CURRENT

!....,

40 V PNP

P12 GPNSW
NPN 80 V

. P25 HSS
40 V NPN

P67 GPNSW
PNP 60 V

750 rnA
P13 GPNSW
NPN 35 V
P22 HSS
15 V NPN

SATURATED 500 rnA'
MODE

P19 GPNSW
NPN 40 V
P63 GPNSW
PNP 40 V

300 rnA I

P64 HSS
12 V PNP

200 rnA

P21 HSS
15 VINPN

150 rnA

P65 HSS
12 V PNP

20 ns
GPNSW - General Purpose Amplifier/Switch
HSS - High Speed Switch

P66 GPNSW P23 GPNSW
PNP 40 V

25 ns

30 ns

40 ns

60 ns

MAXIMUM T OFF

NPN 40 V

300 ns

200 ns

500 ns

•

SEE DATA BOOK FOR CIRCUIT CONDITIONS

6u!4 3 1!MS paads 46!H JOJ SJOIS!SUeJJ.

TO·237 Type Power Transistor Selection Guide

NPN

Part Number
PNP

92PE869
92PE871

92PE870
92PE872

2N67111

Ic
(A)

VCEO

(V)

Min

0.1
0.1

250
300

50
50

25
25

20
20

0.1

160

30

30

10

1

0.1

200

40

10

10

0.1

250

30

30

0.1

250

40

0.1

300

0.1

300

@

hFE

Po

IT

(W)

(MHz)

Process
(NPN/PNP)

*

60
60

17/76
17/76

30

50

48

2

20

50

48

10

1

30

50

48

10

10

2

20

50

48

30

30

10

1

30

50

48

40

10

10

2

20

50

48

50

48

Max

lc(mA) VCE (V)

Max VCE (SAT) .
(V) @ Ic(mA)

92PE487
2N67331

92PU391
2N67121

92PE488
2N67341

*

92PU392
2N67731

92PE489
2N67351

92PU393
2N67191

0.1

300

40

92PU10
TN2219

0.5

30

TN2218A

0.5

40

0.5

40

100
30
40
25
100

TN2219A

TN3053
2N6737

TN2905
TN2904A

0.5

60

TN2905A

0.5

60

TN4037

1
1

40
45

TN3726
TN2102

. TN4036

TN3019
TN3020
TN4033
2N67201

1

50

1

65

40
40
100
50

300
120
300
120
300

*

30

10

0.75

30

150
500
150
500
150

10
10
10
10
10

0.4

150'

250

19

0.3

150

250

19

0.31

150

300

19163

200

63

*

0.4
0.4

150

0.4

150

200

63

1.4
0.4

150
300

100
300

12/63

300

25

60

12167

100
100
150

12
12
67

150
500
150
500

10
10
10
10

150
100
300
100
300

10
1
1

0.4

300

10
10
10
10
5

0.51

150

0.65
0.2
0.2
0.15

150
150
150

50
60
40
60
40

250
150

120
300
120
300

150
500
150
150
100

300

100

10

0.5

100

10

36

00

10

0.5

00

10

36

10

36

10

36

300

25

1
1
1

80
80
80

40
25
100
40
100

1

150

30

1

200

0

1

250

150

*

*

25

92PU36
2N67211

92PU36A
2N67221

*

92PU36B
2N67231

1

92PU36C
TN3724

1.5

300
30

60
40

150

100
300

*AII TO·237: 850 mW. free air ITA = 25'C)
2.0W, coli ector lead at 25'C
1W-1 ~W mounted flush in PC board

4·18

1
1

0.2
0.32

100
300

I

TO·237 Type Power Transistor Selection Guide (Continued)

NPN

Part Number
PNP

2N67141
92PU01
2N67151
92PU01A
2N67241
92PU45
2N67051
92PE37A
2N6725
92PU45A

2N67261
92PU51
2N67271
92PU51A

2N67061
92PE37B
2N67161
92PU05
2N67311
92PU100
2N67071
92PE37C
2N67171
92PU06

2N67091
92PE77B
2N67281
92PU55
2N67321
92PU200
2N67101
92PE77C
2N67201
92PU56

2N67081
92PE77A

Ic

VCEO

(A)

(V)

2

30

2

40

@

hFE

Min

Max

40

2

45

2

50

Max VCE (SAT)
(V)
@ lc(mA)

Po
(W)

fr
(MHz)

Process
(NPN/PNP)

1
1
1
1
5
5
2

0.5

1000

50

37/77

0.5

1000

50,

37/77

25k
4k
40

100
1000
100
1000
200
1000
500

1
1.5
0.5

200
1000
500

25k
4k

200
1000

5
5

1
1.5

60
55
60

55
2

lc(mA) VCE (V)

100

05

50

38/78

200
1000

100

05

*

2

60

40

500

2

0.5

500

50

38/78

2

60

20

500

1

0.35

250

50

38/78

2

80

100

350

2

0.35

350

50

39/79

2

80

40

500

2

0.5

500

50

39/79

2

80

20

500

1

0.35

250

50

39/79

300

_.

tJ)

*

o""'I
en
(D

-

(D
(")

=

o::::s

G)

c

Pinout: 92PE
92PU, TN

c:

ECS
ESC

(D

*AII TO·237: 850 mW, free air (TA = 25'C)

2.0W. collector lead at 25'C
1W-1.2W mounted flush in PC board

4-19

TO·202 Type Power Transistor Selection Guide

,

Part Number
PNP

IT

Ic(A) VCE (V)

MaxVCE(SAn
(V) @ Ic(A)

PD
(W)

(MHz)

Process
(NPN/PNP)

25
25

0.03
0.03

10
10

1
1

0.03
0.03

1.75
1.75

50
50

48
_48

250
250
250
250
250
250
250
300

25
25
30
60
30
60
50
50

0.03
0.03
0.02
0.020.03
0.03
25m
25m

10
10
10
10
10
10
20
20

1
1

0.03
0.03

50
50
50
50

1
1

0.02
0.02

1.75
1.75
1.67
1.67
1.75
1.75
1.8
1.8

60
60

48
48
48
48
48
48 _
17176
17/76

0.1
0.1
0.1
0.1
0.1
0,1
0.1
0.1
0.1

300
300
300
300
300
300
300
375
375

30
60
30
60
25
25
40
20
30

90
180
90
180

0.02
0.02
0.03
0.03
0.03
0.03
0.03
0.02
0.03

10
10
10
10
10
10
10
10
10

1
1
1
1
1.5

0.02
0.02
0.03
0.03
0.02

1

0.02

1.67
1.67
1.75
1.75
1.75
1.75
1.75
1.67
1.75

50
50
50
50
50
50
60
50
50

48
48
48
48
48

040C1
040C2
040C3
040C4
040C5
040C7
040C8

0.5
0.5
0.5
0.5
'0.5
0.5
0.5

30
30
30
40
40
50
50

10k '
40k
90k
10k
40k
10k
40k

60k

0.2
0.2
0,2
0.2
0.2
0.2
0.2

5
5
5
5
5
5
5

1.5
1.5
1.5
1.5
1.5
1.5
1.5

0.5
0.5
0.5
0.5
0.5
0.5
0.5

1.33
1.33
1.33
1.33
1.33
1.33
1.33

75
75
75
75
75
75
75

05
05
05
05
05
05
05

040P1
040P3
040P5

0.5
0.5
0.5

120
180
225

40
40
40

0.08
0.08
0.08

10
10
10

1
1
1

0.1
0.1
0.1

1.67
1.67
1.67

50
50
50

36
36
36

Ic
(A)

VCEO

(II)

Min

NS0457
NSE457

0.1
0.1

160
160

NS0458
NSE458
040N1
040N2
NS0131
NS0132
NSE869
NS0871

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

040N3
040N4
NS0133
NS0134
NS0459
NSE459
NSOU10
040N5
NS0135

NPN

NSE870
NSE872

@

hFE
Max

90
180
90
180

90

60k
60k

48
48
48
48

04001
04002
04003

04101
04102

1
1
1

30
30
30

50
120
290

150
300

0.1
0.1
0.1

2
2
2

0.5
0.5

0.5
0.5

1.67
1.67
1.67

200
200
200

38/78
38/78

04004
04005
NS0102
NS0103

04104
04105
NS0202
NS0203

1
1
1
1

45
45
45
45

50
120
50
120

150
360
150
360

0.1
0.1
0.1
0.1

2
2
5
5

0.5
0.5
0.2
0.2

0.5
0.5
0.1
0.1

1.67
1.67
1.75
1.75

200
200
60
60

38/78
38/78
.38/78

04007
04008
2N6551

04107
04108
2N6554

1
1
1

60
60
60

50
120
80

150
360
250

0.1
0.1
0.05

22
1

1
1
0.5

0.5
0.5
0.25

1.67
1.67
2.0

200
200
75

38/78
38/78
38/78

040010
040011
040013
040014

041010
041011
041013
041014

1
1
1
1

75
75
75
75

50
120
50
120

150
360
150
360

0.1
0.1
0.1
0.1

2
2
2
2

1
1
1
1

0.5
0.5
0.5
0.5

1.67
1.67
1.67
1.67

200
200
200
200

38/78
·38178

2N6552
NS0104
NS0105
NS0106
2N6553

2N6555
NS0204
NS0205NS0206
2N6556

1
1
1
1
1

80
80
80
100
100

80
50
120
50
80

250
150
360
150
250

0.05
0.1
0.1
0.1
0.05

1
5
5
5
1

0.5
0.2
0.2
0.2
0.5

0.25
0.1
0.1
0.1
0.25

1.75
1.75
1.75

75
60
60
60
75

39179
39179
39179
39179
39179

NS036
NS036A

1
1

150
200

30
30

300
300

0.1
0.1

10
10

0.5
0.5

0.1
0.1

1.75
1.75

10
10

36
.36

NS036B
NS036C

1
1

250
300

30
30

300
300

0.1
0.1.

10
10

0.5
0.5

0.1
0.1

1.75
1.75

10
10

36
36

4·20

38

38/78

38/78
38/78

a

TO·202 Type Power Transistor Selection Guide(continUed)
Part Number

NPN

PNP

NSDU01
NSD151
NSD153
D40E1
D40K1
D40K3

NSDU51

NSDU01A
NSDU02
2N6548
2N6549
NSDU45
NSD152
NSD154
. D40K2
D40K4
NSDU45A

D41E1
D41K1
D41K3
NSDU51A
NSDU52.

Ic
(A)

VCEO
(V)

Min

2
2
2
2
2
2

30
30
30
30
30
30

60
10k
5k
50
10k
10k

2
2
2
2
2
2

40
40
40
40
40
40
40

60
50
15k
25k
25k
10k
5k

2
2
2

50
50
50

10k
10k
25k

2
D41K2
D41K4

250k

300

150k
250k

150k

Process
(NPN/PNP)

IdA)

Po
(W)

0.5
1.5
1.5
1
1.5
1.5

1
0.1
0.1
1
1.5
1.0

1.75
1.75
1.75
1.3
1.67
1.67

50
100
100
75
75

05/61
05/61

1
10
5
5
5
5
5

0.5
0.4
1.5
1.5
1
1.5
1.5

1
0.15
·1
1
0.2
1
1

1.75
1.75
1.75
1.75
1.75
1.75
1.75

50
50
100
100
100
100
100

37177
37177

0.2
0.2
0.2

5
5
5

1.5
1.5
1

1.5
1.0
0.2

1.67
1.67
1.75

75
75
100

05/61
05/61
05

0.05
0.1
0.05
0.1
0.05

1
2
1
2
1

0.5
1
0.5
1
0.5

0.25
1
0.25
1
0.25

1.75
1.3
1.75
1.3
1.75

50

38178

50

39179

50

38/78
39/79

@

hFE

Max

~

IdA)

Max VCE (SAT)

VCE (V)

(V)

0.1
0.1
0.1
0.1
0.2
0.2

1
5
5
2
5
5

0.1
0.15
0.2
0.2
0.2
0.1
0.1

@

fT

(MHz)

37177
05
05

37177

05
05
05
05
05

NSDU05
D40E5
NSDU06
D40E7
NSDU07

NSDU55
D41E5
NSDU56
D41E7
NDSU57

2
2
2
2
2

60
60
80
80
100

80
50
80
50
80

D42C1
D42C2
D42C3

D43C1
D43C2
D43C3

3
3
3

30
30
30

25
100
40

220
120

0.2
0.2
0.2

1
1
1

0.5
0.5
0.5

1
1
1

2.1
2.1
2.1

50
50
50

4P/5P
4P/5P
4P/5P

D42C4
D42C5
D42C6

D43C4
D43C5
D43C6

3
3
3

45
45
45

25
100
40

220
120

0.2
0.2
0.2

1
1
1

0.5
0.5
0.5

1
1
1

2.1
2.1
2.1

50
50
50

4P/5P
4P/5P
4P/5P

D42C7
D42C8
D42C9

D43C7
D43C8
D43C9

3
3
3

60
.60
60

25
100
40

220
120

0.2
0.2
0.2

1
1
1

0.5
0.5
0.5

1
1
. 1

2.1
2.1
2.1

50
50
50

4P/5P
4P/5P
4P/5P

D42C10
D42C11
D42C12

D43C10
D43C11
D43C12

3
3
3

80
80
80

25
100
40

220
120

0.2
0.2
0.2

1
1
1

0.5
0.5
0.5

1
1
1

2.1
2.1
2.1

50
50
50

4P/5P
4P/5P
4P/5P

Pinout: EBC, NSOU, NSO, 040, 041
BCE, NSE, 042, 043

4-21

38/78

~

"'C
CD

"'C

...~

;f
:::J

o

...

iii"

o
....

(J)

CD

CD

...s·

n

:::J

C)

c
is:
CD

TO· 126 Type Power Transistor Selection Guide

NPN

Part Number
PNP

MJE3440
MJE3439
MJE341
MJE344
2N5655
MJE340
2N5656
2N5657

Ic

VCEO
(V)

Min

hFE
Max

IdA) VCE (V)

0.3
0.3
0.5
0.5
0.5
0.5
0.5
0.5

250
350
150
200
250
300
300
350

40
40
25
30
30
30
30
30

160
160
200
300
250
240
250
250

0.02
0.02
0.05
0.05
0.1
0.05
0.1
0.1

100
100
100

2N4921
2N4922
2N4923

2N4918
2N4919
2N4920

1
1
1

40
60
80

20
20
20

MJE720
BD345
MJE721
BD349
MJE722

MJE710
BD344
MJE711
BD348
MJE712

1.5
1.5
1.5
1.5
1.5

40
60
60
80
80

40
40
40
50
40

MJE520
MJE180
MJE181
MJE182

MJE370
MJE170
MJE171
MJE172

3
3
3
3

30
40
60
80

25
50
50
50

MJE220
MJE221
MJE222

MJE230
MJE231
MJE232

4
4
4

40
40
40

20
20
25

MJE521
2N5190
2N6037

MJE371
2N5193
2N6034

4
4
4

40
40
40 .

2N5191

2N5194

4

60

250·
250
250

0.5
0.5
1
1
1

0.05
0.05
0.05
0.05
0.1

1
1

0.5
0.5
0.5

1
1
1

0.15
0.2
0.15
0.25
0.15

fr
(MHz)

Process
(NPN/PNP)

15
15
15
15
10

0:1
0.1

15
15
20
30
20
20
20
20

10
10

36
36
36
36
36
36
36
36

0.6
0.6
0.6

1
1
1

30
30
30

3
3
3

4H/5F
4H/5F
4H/5F

1
1
1
1
1

0.15
0.4
0.15
0.5
0.15

0.15
0.2
0.15
0.25
0.15

20
20
20
20
20

1
0.1
0.1
0.1

1
1
1
1

0.3
0.3
0.3

0.5
0.5
0.5

25
12.5
12.5
12.5

50
50
50

37177
38/78
39/79

2
1
1

1
1
1

0.8
0.6
0.3

2
1
0.5

15
15
15

50
50
50

4P/5P
4P/5P
4P/5P
4F/5F
4E/5E
4J/5J

50
50

37177
38/78
38/78
39/79
39/79
4F/5F

0.1
1.5
2

1
2
3

0.6
2

1.5
2

40
40
40

2

25

100

1.5

2

0.6

1.5

40

2

4E/5E

50
50
50

4P/5P
4P/5P
4P/5P

4
4
4

60
60
60

20
20
25

MJE800
MJE861
2N6038

MJE700
MJE701
2N6035

4
4
4

60
60
60

750
750
750

MJE240
MJE241
MJE242

MJE250
MJE251
MJE252

4
4
4

80
80
80

15
20
10

MJE802
MJE803
2N5192
2N6039

MJE702
MJE703
2N5195
2N6036

4
4
4
4

80
80
80

750
750
20
750

MJE243
MJE244
MJE200

MJE253
MJE254
MJE210

4

4

100
100
25

20
10
45

5

250

10
10
10
10
1Q
.10
10
10

Po

(W)

100
15k

MJE233
MJE234
MJE235

80

250

Max VCE (SAT)
(V) @ IdA)

40
25
750

MJE223
MJE224
MJE225

Pinout:

@

(A)

2
1
1

1
1
1

0.8
0.6
0.3

2
1
0.5

15
15
15

1.5
2
2

3
3
3

2.5
2.8
2

1.5
2
2

40
40
40

2
1
1

1
1
1

0.8
0.6
0.3

2
1
0.5

15
15
15

80
15k

1.5
2
1.5
2

3
3
2
3

2.5
2.8
0.6
2

1.5
2
1.5
2

40
40
40
40

180

1
1
2

1
1
1

0.6
0.3
0.75

1
0.5
2

15
15
15

15k

,

ECB

4-22

' 4J/5J
4J/5J
4J/5J
40
40
40

2
40
40
65

4P/5P
4P/5P
4P/5P

4J/5J
4J/5J
4E/5E
4J/5J
4P/5P
4P/5P
4R15R

-I

o•

TO·220 Type Power Transistor Selection Guide
Part Number

NPN

PNP

Ic
(A)

VCEO
(V)

TIP61
TIP61A
TIP61 B
TIP61C

TIP62
TIP62A
TIP62B
TIP62C

0.5
0.5
0.5
0.5

40
60
80
100

hFE
Min
15
15
15
15

100
100
100
100

IdA)
0.5
0.5
0.5
0.5

VCE (V)
4
4
4
4

h

Max VCE (SAT)
@ IdA)

Po
(W)

(MHz)

Process
(NPN/PNP)

0.7
0.7
0.7
0.7

20
20
20
20

3
3
3
3

4F/5F
4F/5F
4F/5F
4F/5F

(V)

0.5
0.5
0.5
0.5

1
1
1
1

4
4
4
4

0.7
0.7
0.7
0.7

1
1
1
1

30
30
30
30

3
3
3
3

4F/5F
4F/5F
4F/5F
4F/5F

1
1
1

4
4
4

2.5
2.5
2.5

2
2
2

50
50
50

1
1
1

4J/5J
4J/5J
4J/5J

3
3
3
3

4
4
4
4

1.2
1.2
1.2
0.2

3
3
3
3

40
40
40
40

3
3
3
3

4F/5F
4F/5F
4F/5F
4F/5F

120
120

0.2
0.2
0.2

1
1
1

0.5
0.5
0.5

1
1
1

30
30
30

50
50
50

4P/5P
4P/5P
4P/5P

30

120

1

4

1

1

36

2

25
40
40

120
120

0.2
0.2
0.2

1
1
1

0.5
0.5
0.5

1
1
1

30
30
30

50
50
50

TIP29
TIP29A
TIP29B
TIP29C

TIP30
TIP30A
TIP30B
TIP30C

1
1
1
1

40
60
80
100

15
15
15
15

TIP110
TlP111
TIP112

TIP115
TIP116
TIP117

2
2
2

60
80
100

1000
1000
1000

TIP31
TIP31A
TIP31 B
TIP31C

TIP32
TIP32A
TIP32B
TIP32C

3
3
3
3

40
60
80
100

10
10
10
10

D44C1
D44C2
D44C3

D45C1
D45C2
D45C3

3
3
3

30
30
30

25
40
40

4

40

3
3
3

45
45
45

2N5296

@

Max

N

75
75
75
75

50
50
50
50

4E
4P/5P
4P/5P
4P/5P

D44C4
D44C5
D44C6

D45C4
D45C5
D45C6

2N6121

2N6124

4

45

25

100

1.5

2

0.6

1.5

40

D44C7
D44C8
D44C9

D45C7
D45C8
D45C9

3
3
3

60
60
60

25
40
40

120
120

0.2
0.2
0.2

1
1
1

0.5
0.5
0.5

1
1
1

30
30
30

2N5298
2N6122
2N5294

2N6125

4
4
4

60
60
70

20
25
30

80
100
120

1.5
1.5
0.5

4
2
4

1
0.6
1

1.5
1.5
0.5

36
40
36

D44C10
D44C11
D44C12

D45C10
D45C11
D45C12

3
3
3

80
80
80

25
100
40

220
120

0.2
0.2
0.2

1
1
1

0.5
0.5
0.5

1
1
1

30
30
30

2N6123
MJE105T

2N6126
MJE205T

4
5

80
50

20
25

80
100

1.5
2

2
2

0.6

1.5

40
65

2.5

4E/5E
4A/5A

TIP120
TIP121
TIP122

TIP125
TIP126
TIP127

5
5
5

60
80
100

1000
1000
1000

3
3
3

3
3
3

2
2
2

3
3
3

65
65
65

1
1
1

4J/5K
4K/5K
4K/5K

TIP41
TIP41A

TIP42
TIP42A

6
6

40
60

15
15

75
75

3
3

4
4

1.5
1.5

6
6

65
65

3
3

4A/5A
4A/5A

TIP130
TIP41 B
TIP131
TIP41C
TIP132

TIP135
TIP42B
TIP136
TIP42C
TIP137

6
6
6
6
6

60
80
80
100
100

1000
15
1000
15
1000

15,000
75
15,000
75
15,000

4
3
4
3
4

4
4
4
4
4

2
1.5
2
1.5
2

4
6
4
6
4

65
65
65
65
65

1
3
1
3
1

4K/5K
4A/5A
4K/5K
4A/5A
4K15K

2N6288
2N5494

2N6111

7
7

30
40

30
20

150
100

3
2

4
4

1
1

3
0.2

40
50

4
0.8

4E/5E
4E

7
7
7
7

40
40
50
55

20
20
30
20

100
100
150
100

3
2.5
2.5
2.5

4
4
4
4

1
1.4
1
1

0.3
7
2.5
0.25

50
50
40
50

0.8
2.5
4
0.8

4E
4E/5E
4E/5E
4E

2N5494
2N6129
2N6290
2N5492

2N6132
2N6109

4·23

2.5
50
50
50
2
2.5
2
50
50
50

4E/5E
4P/5P
4P/5P
4P/5P
4E
4E/5E
4E
4P/5P
4P/5P
4P15P

~
~

"C
CD
"'CJ

~

CD

""'I

~

Q)

::l

tJ)

iii"

o""'I

(J)

~
CD

(")

o::l·

G)
C

c:
CD

TO·220 Type Power Transistor Selection Guide(continued)

NPN

Part Number
PNP

2N6130
2N5496
2N6292
2N6131

Ic
(A)

VCEO
(V)

hFE
Min

2N6107
2N6134

7
7
7
7

60
70
70
80

2N6386
BD347

BD346

8
8

40
60

1000
40

D44H1
D44H2
D44H4
D44H5

D45H1
D45H2
D45H4
D45H5

10
10
10
10

30
30
45
45

35
60
35
60

2N6099
D44H7
D44H8
SE9300
2N6101

D45H7
D45H8
SE9400

10
10
10
10
10

60
60
60
60
70

20
35
60
1000
20

D44H10
D44H11

D45H10
D45H11

10
10

80
80

35
60

MJE2801T
MJE3055T

MJE2901T
MJE2955T

10
10

60
60

25
20

TIP100
TIP101
TIP102
SE9301
SE9302

TIP105
TIP106
TIP107
SE9401
SE9402

10
10
10
10
10

60
80
100
80
100

1000
1000
1000
1000
1000

2N6486
2N6487
2N6488

2N6489
2N6490
2N6491

15
15
15

40
60
80

20
20
20

Pinout:

2N6133

20
20
30
20·

@

Max
100
100
150
100
20,000
140

80

80

100
70

150
150
150

IclA) VCE (V)

Max VCE (SAT)
(V) @ IclA)

fr
(MHz)

Process
(NPN/PNP)

50
50
40
50

2.4
0.8
4
2.5

4E15E
4E
4E/5E
4E/5E

2.5
3.5
2
2.5

4
4
4
4

2

7
0.35
2
7

3
2

3
2.5

2
0.6

3
4

40
60

20
4

4J
4A/5A

2
2
2
2

1
1
1
1

1
1
1
1

8
8
8
8

50
50
50
50

50
50
50
50

40/50
40/50
40/50
40/50

4
2
2
4
5

4
1
1
3
4

2.5
1
1
2
2.5

10
8
8
4
10

75
50
50
70
75

0.8
50
50
1
0.8

4A
40/50
40/50
4K15K
AA

2
2

1
1

1
1

8
8

50
50

50
50

40/50
40/50

3
4

2
4

1.1

4

60
60

2

4A/5A
4A/5A

3
3
3
4
4

4
4
4
3
3

2
2
2
2
2

3
3
3
4
4

60
60
60
70
70

1
1

4K15K
4K15K
4K15K
4K15K
4K15K

5
5
5

4
4
4

1.3
1.3
1.3

5
5
5

75
75
75

5
5
5

4A15A
4A15A
4A15A

BeE

4·24

1.4
1

PD
(W)

1

HIGH VOLTAGE
PLANAR

GEN. PURPOSE
PLANAR
(FAST)

1-----,
1

I

I

I
I

I

400-

,----.
1
1

300-

-

"'0

DARLINGTON
MESA
PLANAR
(SUPER
(RUGGED)
HIGH
BETA)

---,

~

...
"'0
a
n

CD

1
I

1

I

GEN. PURPOSE
MESA
(RUGGED)

I

,

r----I

CD
en
en

en
CD

200-

!I)

!:i
>

0

I

140120-

17
76

48

-------.----.
I

36

100:.....

0

39
79
r----

III

~

...i\>

01

I

IX!

38
78

I

50-

180

28°
--

0.1A

0.1A

45°

-

----

1A

I

I
I

I
1

I

1

:

:

I

I

1
I

'
I
1
1

I

---,

I
1

I

1

I

I

1

I
I

I

1

:

1
I

I

CD
n

r----r----,
I,

c~i"

1

Ii

1
i

G)

c
0:

4P
SP

CD

40
50

4H

37
77

4R
SR

31°

60° 96x90

2A

j"---T---""---

4F
SF

4E
SE

4A
SA

~
s

4J
5J

I

4K -t-PROCESSNPN
SK
PNP

61

480

7A

SA

10A

8A

59x55 88x67
8A

98°

250

10A

2A

84x64
100X701 111°t-DIE SIZE (MIL)
8A

10A

I40l
50 I

60

MAXie

DISSIPATION (WATTS)

Package
TO·92 (Note 1)
TO·237 (Note 2)
TO·202 (Note 3)
TO·126 (Note 3)
TO·220 (Note 3)

Notes: 1) TA ",25"C

I
I

2
8

ro:s

I
I

2
10

2
15
25

0.6
2
10
15

15
30
40

~

I

I
I

2) TCOll lEAD = 25"C, will do·1-1.2 W in PC board

60

I

I

30

I

-T4Ol
I

30
r 40 - r 50

tJtj
60

I

3) TC =25"C

9Pl nO UOII:)919S SS9:)OJd J9MOd

-

"C
0)

en
...J
C
o

z

~

o

0)

:2
en
:::so)

,,0..

c~
.2
't:
-n3
:::Sa..

-

.--0 )
~

~;:
:::so

cna..

Substitution Guide for Non·Listed Power Part Types
Industry
Part No.
2N2102
2N2218A
2N2219A
2N2905
2N3019
2N3020
2N3053
2N3054
2N3724
2N3725
2N3735
2N3740
2N3741
2N4033
2N4037
2N4063
2N4064
2N5974
2N5975
2N5976
2N5977
2N5978
2N5979
2N5980
2N5981
2N5982
2N5983
2N5984
2N5985
2N6021
2N6022
2N6023
2N6024
2N6025
2N6026
2N6040
2N6041
2N6042
2N6043
2N6044
2N6045
2N6098
2N6100
2N6101
2N6102
2N6103
2N6106
2N6108
2N6109
2N6110
2N6111
2N6175
2N6176
2N6177
2N6178
2N6179
2N6180
2N6181
2N6406
2N6407
2N6408
2N6409
2N6410

Package

NSC
Part No.

Package

TO-39
TO-18
TO·18
TO-18
TO-39
TO·39
TO-39
TO-66
TO-39
TO·39
TO-39
TO·66
TO·66
TO·39
TO·39
TO·37
TO·37
TO·127
TO·127
TO·127
TO·127
TO·127
TO·127
Mot Case 90
Mot Case 90
Mot Case 90
Mot Case 90
Mot Case 90
Mot Case 90
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
Plastic TO·5
Plastic TO·5
Plastic TO·5
Plastic TO·5
Plastic TO·5
Plastic TO·5
Plastic TO·5
TO·126 (rev)
TO·126 (rev)
TO·126 (rev)
TO·126 (rev)
TO·126 (rev)

TN2102
TN2218A
TN2219A
TN2905
TN3019
TN3020
TN3053
NSP3054
TN3724
TN3725
TN3735
NSP3740
NSP3741
TN4033
TN4037
MJE3439
MJE3440
NSP5974
NSP5975
NSP5976
NSP5977
NSP5978
NSP5979
2N6489
MJE2955T
2N6491
MJE3055T
MJE3055T
2N6488
2N6126
2N6126
2N6124
2N6124
2N6125
2N6125
TIP125
TIP126
TIP127
TIP120
TIP121
TIP122
2N6099
2N6101
2N6101
2N6102
2N6103
2N6107
2N6109
2N6109
2N6111
2N6111
2N5656
2N5656
2N5657
MJE182
MJE181
MJE172
MJE171
MJE171
MJE172
MJE181
MJE182
MJE200

TO-237
TO-237
TO·237
TO-237
TO-237
TO-237
TO-237
TO-220
TO·237
TO·237
TO·237
TO·220
TO·220
TO·237
TO·237
TO·126
TO·126
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·126
TO·126
TO·126
TO·126
TO·126
TO·126
TO·126
TO·126
TO·126
TO,126
TO·126
TO·126

Industry
Part No.
2N6411
2N6412
2N6413
2N6414
2N6415
2N6416
2N6417
2N6418
2N6419
2N6465
2N6530
2N6531
B0575
B0576
B0577
B0578
B0579
B0579
B0580
B0581
B0582
B0585
B0586
B0587
B0588
B0589
B0590
B0595
BD596
B0597
B0601
B0602
B0603
B0604
B0605
B0606
B0607
BD608
B0609
B0610
B0695
B0695A
B0700
B0700A
B0701
B0702
045El
045E2
045E3
FT2955
FT3055
MJE29
MJE29A
MJE29B
MJE29C
MJE30
MJE30A
MJE30B
MJE30C
MJE33
MJE33A
MJE33B
MJE33C

4·26

Package

NSC
Part No.

Package

TO-126 (rev)
TO-126 (rev)
TO-126 (rev)
TO-126 (rev)
TO-126 (rev)
TO-126 (rev)
TO-126 (rev)
TO-126 (rev)
TO·126 (rev)
TO-66
TO·220
TO·220
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
TO·220
TO·220
TO·220
TO·220
TO·220
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199

MJE210
MJE180
MJE181
. MJE170
MJE171
MJE241
MJE243
MJE251
MJE253
TIP41C
TIP101
TIP102
NSP575
NSP576
NSP577
NSP578
NSP579
NSP578
NSP580
NSP581
NSP582
NSP585
NSP586
NSP587
NSP588
NSP589
NSP590
NSP595
NSP596
NSP597
NSP601
NSP602
NSP603
NSP604
NSP605
NSP606
NSP607
NSP608
NSP609
NSP610
NSP695
NSP695A
NSP700
NSP700A
NSP701
NSP702
TIP125
TIP125
TIP126
MJE2955T
MJE3055T
TIP29
TlP29A
TIP29B
TIP29C
TIP30
TIP30A
TIP30B
TIP30C
TIP41
TIP41A
TIP41B
TIP41C

TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO·126
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO-220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220

Substitution Guide for Non-Listed Power Part Types (Continued)
Industry

Part No.
MJE34
MJE34.A.
MJE34B
MJE34C
MJE41
MJE41A
MJE41B
MJE41C
MJE42
MJE42A
MJE42B
MJE42C
MJE105K
MJE105
MJE170
MJE171
MJE172
MJE180
MJE181
MJE182
MJE200
MJE205
MJE205K
MJE345
MJE370K
MJE371 K
MJE482
MJE483
MJE484
MJE492
MJE493
MJE494
MJE520K
MJE521 K
MJE2010
MJE2011
MJE2020
MJE2021
MJE2090
MJE2091
MJE2092
MJE2093
MJE2100
MJE2101
MJE2102
MJE2103
MJE2150
MJE2370
MJE2371
MJE2480
MJE2481
MJE2482
MJE2483
MJE2490
MJE2491
MJE2520
MJE2801 K
MJE2901K
MJE2955K
MJE2955
MJE3055K
MJE3055
MJE3370

Package
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
. TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
Mot Case 199
Mot Case 199
TO-126
Mot Case 199
Mot Case 199
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
TO-126 (rev)
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 90
Mot Case 199
Mot Case 90
TO-126 (rev)

NSC
Part No.

Package

Industry

TIP42
TIP42A
TIP42B
TIP42C
TIP41
TIP41A
TIP41 B
TIP41C
TIP42
TIP42A
TIP42B
TIP42C
TIP42A
MJE105T
MJE170
MJE171
MJE172
MJE180
MJE181
MJE182
MJE200
MJE205T
TIP41A
MJE3439
NSP370
NSP371
2N5190
2N5191
2N5192
2N5193
2N5194
2N5195
TIP31
TIP31
NSP2010
NSP2011
NSP2020
NSP2021
NSP2090
NSP2091
NSP2092
NSP2093
NSP2100
NSP2101
NSP2102
NSP2103
MJE210
NSP2370
TIP32A
TIP31
TIP32A
TlP41
TIP41A
NSP2490
NSP2491
NSP2520
NSP280H
MJE290H
MJE2955T
MJE2955T
MJE3055T
MJE3055T
MJE370

TO·220
TO·220
TO·220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO·220
TO-220
TO-220
TO-126
TO·126
TO-126
TO-126
TO·126
TO-126
TO-126
TO-220
TO-220
TO-126
TO·220
TO-220
TO·126
TO-126
TO·126
TO·126
TO·126
TO·126
TO-220
TO·220
TO-220
TO·220
TO-220
TO-220
TO-220
TO-220
TO-220
TO,220
TO·220
TO-220
TO-220
TO-220
TO-126
TO-220
TO-220
TO·220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-126

MJE3371
MJE3520
MJE3521
MJE4918
MJE4919
MJE4920
MJE4921
MJE4922
MJE4923
MJE5190
MJE5191
MJE5192
MJE5193
MJE5194
MJE5195
MJE5974
MJE5975
MJE5976
MJE5977
MJE5978
MJE5979
MJE5980
MJE5981
MJE5982
MJE5983
MJE5984
MJE5985
MPSU01
MPSU01
MPSU01A
MPSU01A
MPSU02
MPSU02
MPSU03
MPSU04
MPSU05
MPSU05
MPSU06
MPSU06
MPSU07
MPSU07
MPSU10
MPSU10
MPSU31
MPSU45
MPSU45
MPSU45A
MPSU45A
MPSU51
MPSU51
MPSU51A
MPSU52
MPSU52
MPSU55
MPSU55
MPSU56
MPSU56
MPSU57
MPSU57
RCA1C05
RCA1C06
RCA1C07
RCA1C08

Part No.

4-27

Package
TO-126 (rev)
TO-126 (rev)
TO-126 (rev)

Mot Case
Mot Case
Mot Case
Mot Case
Mot Case
Mot Case
Mot Case
Mot Case
Mot Case
Mot Case
Mot Case
Mot Case
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
TO-220
TO-220
TO-220
TO-220

199
199
199
199
199
199
199
199
199
199
199
199

NSC
Part No.
MJE371
MJE520
MJE521
TIP30
TIP30A
TIP30B
TIP29
TIP29A
TIP29B
2N6121
2N6122
2N6123
2N6124
2N6125
2N6126
NSP5974
NSP5975
NSP5976
NSP5977
NSP5978
NSP5979
NSP5980
NSP5981
NSP5982
NSP5983
NSP5984
NSP5985
NSDU01
92PU01
NSDU01A
92PU01A
NSDU02
TN2219A
92PU391
92PU319
NSDU05
92PU05
NSDU06
92PU06
NSDU07
92PU07
NSDU10
92PU10
TN2102
NSDU45
92PU45
NSDU45A
92PU45A
NSDU51
92PU51
NSDU51A
NSPU52
92PU51A
NSDU55
92PU55
NSDU56
92PU56
NSDU57
92PU57
2N6130
2N6133
MJE3055T
MJE2955T

Package
TO-126
TO-126
TO-126

z
o:J
TO·220
TO-220
TO·220
TO-220
TO·220
TO-220
TO-220
TO-220
TO-220
TO-220
TO·220
TO·220
TO·202
TO-237
TO·202
TO-237
TO-202
TO-237
TO-237
TO-237
TO-202
TO-237
TO-202
TO-237
TO·202
TO-237
TO·202
TO·237
TO-237
TO-202
TO-237
TO-202
TO-237
TO-202
TO-237
TO-202
TO-202
TO-237
TO-202
TO-237
TO-202
TO·237
TO-202
TO-237
TO-220
TO-220
TO-220
TO-220

•
r~I

CD

Q,

-

"C
(I)

.~

...J

C:
o

z...

o

( I)

"Ccn

. - (I)

::lc.

Cl~

c

01:::

..-.a 0....

. . CO
-(I)

cn~
.gO
(1)0.

Substitution Guide for Non·Listed Power Part Types (Continued)
Industry
Part No.
RCAtC09
RCA1C10
RCA1C11
RCA1C14
RCA1C15
RCA29
RCA29A
RCA298
RCA29C
RCA30
RCA30A
RCA308
RCA30C
RCA31
RCA31A
RCA318
RCA31C
RCA32
RCA32A
RCA328
RCA32C
RCA41
RCA41A
RCA418
RCA41C
RCA42
RCA42A
RCA428
RCA42C
RCA120
RCA121
RCA122
RCA125
RCA126
RCA3054
RCA3055
RCP115
RCP117
RCP131A
RCP1318
RCP133A
RCP1338
RCP135
RCP137
RCP700A
RCP7008
RCP700C
RCP700D
RCP701A
RCP7018
RCP701C
RCP701D
RCP702A
RCP7028
RCP702C
RCP702D
RCP703A
RCP7038
RCP703C
RCP703D
RCP704

Package
TO·220
TO·220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202

NSC
Part No.

Package

MJE3055T
2N6292
2N6107
2N6290
2N6388
TIP29
TIP29A
TIP298
TIP29C
TIP30
TIP30A
TIP308
TIP30C
TIP31
TIP31A
TIP318
TIP31C
TIP32
TIP32A
TIP328
TIP32C
TIP41
TIP41A
TlP418
TIP41C
TIP42
TIP42A
TIP428
TIP42C
TIP120
TIP121
TIP122
TIP125
TIP126
2N6122
2N6487
2N6591
2N6591
2N6592
2N6593
2N6592
2N6593
2N6553
2N6553
2N6554
2N6554
2N6555
2N6556
2N6551
2N6551
2N6552
2N6553
2N6554
2N6554
2N6555
2N6556
2N6551
2N6551
2N6552
2N6553
2N6554

TO·220
TO·220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202

Industry
Part No.
RCP7048
RCP705
RCP7058
RCP706
RCP7068
RCP707
RCP7078
TIP33
TIP33A
TIP338
TIP33C
TIP34
TIP34A
TIP348
TIP34C
TIP73
TIP73A
TIP738
TIP74
TIP74A
TIP748
TIP2955
TIP3055
40513
40514
40613
40618
40621
40622
40624
40627
40629
40630
40631
40632
40871
40872
40873
40874
40875
40876
41500
41501
41504
2SA496
2SA505
2SA623
2SA624
2SA633
2SA634
2SA635
2SA636
2SA645
2SA646
2SA647
2SA681
2SA682
2SA699
2SA700
2SA703

4-28

Package
TO·202
TO·202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
'TO-220
TO-220
TO-220
TO-220
TO-126
TO-126
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-126
TO-126
TO-202
TO-220
TO-220

NSC
Part No.
2N6554
2N6551
2N6551
2N6554
2N6554
2N6551
2N6551
TIP41
TIP41A
TIP418
TIP41C
TIP42
TIP42A
TIP428
TIP42C
2N6486
2N6487
2N6488
2N6489
2N6490
2N6491
- MJE2955T
MJE3055T
MJE3055T
MJE3055T
TIP31
TIP31
TIP31
TIP31
TIP41A
TIP41A
TIP31
TIP31
TIP31A
TIP41A
TIP41C
TIP42C
TIP418
TIP418
TIP41C
TIP41A
TIP29
TIP30
TIP31
2N4918
2N4919
D41E1
D41E5
D41E1
D41E5
D41D7
2N6556
D41D10
2N6556
2N6556
MJE253
MJE253
D41E5
TIP30
D41E1

Package
TO·202
TO·202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-126
TO-126
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-126
TO-126
TO-202
TO-220
TO-202

Section 5

Pro Electron Series

Pro Electron Series

~
Type
No.

PRO ELECTRON SERIES (Bipolar-see page 5-37 for JFET)
Case
Style

VCES'
VCBO
(V)
Min

BC107

TO·1S

50

vCEO
(V)
Min

45

ICES'
ICBO @ VCB
(nA)
(V)
Max

VEBO
(V)
Min
6

15'

50

HFE
Ic
VCE
hfe
@(mA)& (V)
1 kHz*
Min
Max

VBE(SAT)
VCE(SATI
& VBE(ON)* @ Ic
(V)
(V)
(mA)
Max
Min
Max

40
125
40

500'

0.01
2
0.01

5
5
5

0.6
0.2

260'

2

5

0.6
0.2

500'

0.01
2

5
5

0.6
0.2

900'

0.01
2

5
5

0.6
0.2

260'

0.01
2

5
5

0.6
0.2

500'

am
2

5
5

0.6
0.2

900'

0.01
2

5
5

0.6
0.2

900'

0.01
2

5
5

0.6
0.2

500'

0.01
2

5
5

0.6
0.2

0.01

5
5

0,6
0.2

BC107A

TO·1S

50

45

6

IS'

50

125

BC107B

TO·18

50

45

6

IS'

50

40
240

0.55

0.55

0.55
8C108

TO·18

30

20

5

IS'

30

40
125

0.55
BC10BA

TO·18

30

20

5

15'

30

40
125

0.55

:c

BC10BB

TO-18

30

20

5

15'

30

40
240

0.55
BC10BC

TO-IB

30

20

5

15'

30

40
450

0.55
BC109

TO-IB

30

20

5

15'

30

100
240

0.55
BC109B

BC109C

TO-IB

TO-IB

30

30

20

20

5

5

15'

IS'

30

30

100
240
100
450

900'

2

NF
(dB)
Max

Cob
(pF)
Max

fT
IC
(MHz)
@(mA)
Min
Max

4.5

150

10

10

0.7*

100
10
2

4.5

150

10

0.7'

100
10
2

4.5

150

0.7'

100
10
2

4.5

0.7'

100
10
2

4.5

0.7'

100
100
2

4.5

0.7*

100
10
2

4.5

0.7'

100
10
2

4.5

150

10

0.7'

100
10
2
100
10

4.5

150

toff
(ns)
Max

Test
Conditions

I

Process
No.

1

04

10

1

04

10

10

1

04

150

10

10

1

04

150

10

10

I

I

1

I
150

I

04

1

04

1

04

4

,1

04

10

4

1

04

10

4

1

04

14

10

10

I
150

10

10
I

I

0.55

0,7*

2

150

0,7'

100
10
2

4.5

0,55
BC140

TO-39

80'

40

7

100'

60

40

250

100

1

1.0

1.8*

lA

25

50

50

850

2

BC140-6

TO·39

80'

40

7

laO'

60

40

100

100

1

1.0

1.8'

lA

25

50

50

850

2

14

BC140·10

' TO-39

80'

40

7

100'

60

63

160

100

1

1,0

1.8'*

lA

25

50

50

850

2

14

BC140-16

TO-39

80'

40

7

lOa'

60

100

250

100

1

1.0

1.8'

lA

25

50

50

850

2

14

BC141

TO-39

100*

60

7

loa'

60

40

250

100

1

1.0

1.8'

lA

25

50

50

850

2

14

BC141-6

TO-39

100'

60

7

lOa'

60

40

100

100

1

1.0

1.8*

lA

25

50

50

850

2

14

BC141-10

TO-39

100'

60

7

100'

60

63

160

100

1

1.0

1,8*

lA

25

50

50

850

2

, 14

--_ .. _--

I

I

~
Type

No.

U1

c.,

PRO ELECTRON SERIES (Continued)
Case
Style

VCES'
VCBO
IVI
Min

VCEO
IVI

VEBO
IVI

Min

Min

ICES'
ICBO @ VCB
InAI
IVI
Max

HFE
hie
1 kHz*
Min
Max

BC143

TO·5

60 .

60

5

50

40

20

BC146·1

TO·92
(94)

20

20

4

50

40

100
80

BC146·2

TO·92
(94)

20

BC146-3

TO-92
(94)

20

20
20

4
4

50
50

40
40

IC
VCE
@lmAI& IVI

VBEISATI
VCEISATI
& VBEIONI' @ IC
IVI
IVI
ImAI
Max
Min
Max

Cob
IpFI
Max

IT
IC
IMHzl
@lmAI
Min
Max

toff
Insl
Max

NF
IdBI
Max

Test

Process

Conditions

No.

200

2

1.5

1.5

500
200

20

60

50

63

2
0.2

1
0.2

1.5

1.5

500
200

20

60

50

04

200

140
140

1
0.2

1.5

1.5

500
200

20

60

50

04

350

2
0.2

280
280

2
0.2

1
0.2

1.5

1.5

500
200

20

60

50

04

550

i
I

BC160

TO-39

40'

5

40

100

40

40

250

100

1

1.0

1.7'

lA

30

50

50

650

2

67

BC160-6

TO-39

40'

5

40

100

40

40

100

100

1

1.0

1.7'

lA

30

50

50

650

2

67

BC160-10

TO-39

40'

5

40

100

40

63

160

100

1

1.0

1.7'

lA

30

50

50

650

2

67

BC160-16

TO-39

40'

5

40

100

40

100

250

100

1

1.0

1.7'

lA

30

50

50

650

2

67

BC161

TO-39

60'

5

60

100

60

40

250

100

1

1.0

1.7'

lA

30

50

50

650

2

67

BC161-6

TO·39

60'

5

60

100

60

40

100

100

1

1.0

1.7'

lA

30

50

50

.650

2

67

BC161-10

TO·39

60'

5

60

100

60

63

160

100

1

1.0

1.7·

lA

30

50

50

650

2

67

BC161'16

TO-39

60'

5

60

100

60

100

250

100

1

1.0

1.7-

lA

30

50

50

650

2

67.

BC167

TO-92
1941

60'

45

6

15'

50

110
125

5
5

0.2
0.6

150

10

10

1

04

0.7'

10
100
2

4.5

500-

2
2

BC167A

TO-92
194)

60'

45

6

15'

50

110
125

260'

2
2

5
5

0.2
0.6

4.5

150

10

10

1

04

0.7·

10
100
2

BC167B

TO-92
(94)

60'

45

6

15-

50

110
240

500'

2
2

5
5

0.2
0.6

4.5

150

10

10

.1

04

0.7'

10
100
2

BC168

TO-92
(94)

20

5

15'

30

110
125

5
5

0.2
0.6

150

10

10

1

04

0.70'

10
100
2

4.5

900'

2
2

TO-92
194)

20

5
5

0.2
0.6

150

10

10

1

04

0.70'

10
100
2

4.5

260'

2
2

TO-92
194)

20

5
5

0.2
0.6

150

10

10

1

04

0.70'

10
100
2

4.5

500'

2
2

0.55

0.55

0.55

0.55
BC168A

5

15'

30

110
125

0.55
BC168B

5

15'

30

110
240

0.55

I

TEST CONDITIONS:
(1) IC ~ 200 ",A, VCE ~ 5V, I ~ 1 kHz. (2) IC ~ 100 rnA, VCC ~ 20V, IB 1 ~ IB2 ~ 5 rnA. 1311c ~ 200 ",A, VCE ~ 2V, I ~ 1 kHz. (4) IC ~ 100 rnA, VCC ~ 10V, IB 1 ~ IB2 ~ 10 rnA. (5) IC ~ 10 rnA, VCC ~ 3V,
IB 1 ~ IB2 ~ 1 rnA. (6) IC ~ 100 ",A, VCE ~ 5V, I ~ 1 kHz. 171 IC ~ 1 rnA, VCE ~ 10V, I ~ 200 kHz. (8) IC ~ 1 rnA, VCE ~ 5V, I ~ 1 kHz. (9) IC ~ 150 rnA, VCC = 6V, IB 1 ~ IB2 ~ 15 rnA. 1101lc = 10 ",A,
VCE ~ 5V, I ~ WB.
-----

sa!Jas uOJIOal3 OJd

Pro Electron Series .

~
Type
No.

PRO ELECTRON SERIES (Continued)
Case
Style

VCES'
VCBO
(V)
Min

BC168C

TO-92

vCEO
(V)

VEBO
(V)

Min

Min

20

5

ICES'
ICBO @ VCB
(V)
(nA)
Max
15"

30

(94)

HFE
hie
1 kHz*
Min

110
450

IC
VCE
@(mA)& (V)

Max

VBE(SAT)
VCE(SAT)
& VBE(ON)" @ IC
IV)
(V)
(rnA)
Max
Min

TO-92
(94)

20

TO-92

20

5

15'

30

5

15'

30

(94)

TO-92

20

5

15'

30

(94)

CJlI

J,.

BC177A

BCI77B

BC177VI

BC178

BC178A

BC178B

BC179

BC179A

TO-IB

TO-18

TO-18

TO-18

TO·18

TO-18

TO-18

TO-18

TO-18

50

50

50

50

30

30

30

25

25

45

45

45

45

25

25

25

20

20

----

5

5

5

5

5

5

5

5

5

100

100

100

100

100

100

100

100

100

20

20

20

20

20

20

20

20

20

10

10

1

04

4.5

150

10

4

1

04

0.70'

10
100
2

4.5

150

10

4

1

04

0.70'

10
100
2 ..

4.5

150

10

4

1

04

Process

No.

0.2
0.6

900'

2
2

5
5

0.2
0.6

500'

2
2

5
5

0.2
0.6

900'

2
2

5
5

0.2
0.6
0.70'

10
100
2

110
125

5
5

0.18

0.78
0.75'
1.0"

10
2
100

4.5

150

10

10

1

71

500"

2
2

110
125

2
2

5
5

0.18

0.78
0.75"
1.0"

10
2
100

4.5

150

10

10

1

71

260'

110
240

2
2

5
5

0.18

0.78
0.75'
1.0'

10
2
100

4.5

150

10

10

1

71

500'

110
75

2
2

5
5

0.18

0.78
0.75'
1.0'

10
2
100

4.5

150

10

10

1

71

150'

110
125

2
2

5
5

0.18

0.78
0.75"
1.0'

10
2
100

4.5

150

10

10

1

71

900"

110
125

2
2

5
5

0.18

0.78
0.75'

150

10

10

1

71.

1.0*

10
2
100

4.5

260'

110
240

5
5

0.18

0.78
0.75'
1.0'

10
2
100

4.5

150

10

10

1

71

500"

2
2

110
125

2
2

5
5

0.18

0.78
0.75"
1.0"

10
2
100

4.5

150

10

4

1

71

900'

110
125

2
2

5
5

0.18

0.78
0.75'
1.0"

10
2
100

4.5

150

10

4

1

71

260"

110
240
110
240
110
450

0.55
BCl77

150

Test
Conditions

5
5

0.55
BC169C

4.5

0.70'

10
100
2

Max'.

toff
(ns)
Max

2
2

0.55
BC169B

IT
@ IC
IMHz)
(rnA)
Min
Max

900'

0.55
BC169

NF
IdB)
Max

Cob
IpF)
Max

_._-

~

PRO ELECTRON SERIES (Continued)

Type

Case

No.

Style

VCES'
VCBO
(VI
Min

BC179B

BC182

01

0.

TO·18

25

TO·92
1971

60

BC182A

TO·92
(971

60

BC182B

TO·92
(971

BC182L

VCEO
(VI

VEBO
(VI

Min

Min

20

5

ICES'
ICBO
{nAI
Max
100

@

VCB
{VI
20

HFE
hie
1 kHz*
Min
Max

110
240

5

15

50

40
80
125

50

5

15

50

40
80
125

60

50

5

15

50

40
80
240

TO·92
(941

60

50

5

15

50

40
80
125

BC182LA

To.·92
(941

60

50

5

15

50

40
80
125

BC182LB

TO·92
(941

60

50

5

15

50

40
80
240

50

-

BC183

TO·92
(971

45

30

5

15

30

40
80
125

BC183A

TO·92
(971

45

30

5

15

30

40
80
125

BC183B

TO·92
1971'

45

30

5

15

30

40
80
240

BC183C

TO·92
(971

45

30

5

15

30

@

40
80
450

IC & VCE
{mAl
{VI

VBE(SATI
VCE{SATI
& VBE{ONI" @
IC
{VI
{VI
{mAl
Max
Min
Max

cob
{pFI
Max

IT
{MHzl
Min
Max

@

Ic
{mAl

toff

{nsl
Max

NF
{dBI
Max

Test
Conditions

Process

No.

2
2

5
5

0.18

0.78
0.75'
1.0'

10
2
100

4.5

150

10

4

1

71

500'

5
5
5

0.6
0.25

1.2

100
10
2

5

150

10

10

1

04

500'

0.01
100
2

5
5
5

0.6
0.25

100
10
2

5

150

10

10

1

04

260"

0.01
100
2

5
5
5

0.6
0.25

100
10
2

5

150

10

10

1

04

500'

0.01
100
2

5
5
5

0.6
0.25

100
10
2

5

150

10

10

1

04

500'

0.01
100
2

5
5
5

0.6
0.25

100
10
2

5

150

10

10

1

04

260'

0.01
100
2

5
5
5

0.6
0.25

100
10
2

5

150

10

10

1

04

500'

0.01
100
2

5
5
5

0.6
0.25

100
10
2

5

150

10

10

1

04

900'

0.01
100
2

5
5
5

0.6
-0.25

100
10
2

5

150

10

10

1

04

260'

0.01
100
2

5
5
5

0.6
0.25

100
10
2

5

150

10

10

1

04

5PO'

0.01
100
2

5
5
5

0.6
0.25

100
10
2

5

150

10

10

1

04

900'

0.01
100
2

0.55

0.70'
1.2

0.55

0.70'
1.2

0.55

0.70'
1.2

0.55

0.70'
1.2

0.55

0.70'
1.2

0.55

0.70'
1.2

0.55

0.70'
1.2

0.55

0.70'

0.55

0.70'

1.2

1.2
0.55

0.70'

TEST CONDITIONS:
(1) IC ~ 200 p.A. VCE ~ 5V. f ~ 1 kHz. (2) IC ~ 100 rnA, VCC ~ 20V, IB 1 ~ IB2 ~ 5 rnA. (3) IC ~ 200 p.A, VCE ~ 2V, I ~ 1 kHz. (4) IC ~ 100 rnA, VCC ~ 10V, IB 1 ~ IB2 ~ 10 rnA. (5) IC ~ 10 rnA, VCC ~ 3V,
IB 1 ~ IB;2 ~ 1 rnA. (S) IC ~ 100 p.A, VCE ~ 5V, I ~ 1 kHz. (7) IC ~ 1 rnA, VCE ~ 10V, I ~ -200 kHz. (8) IC ~ 1 rnA, VCE ~ 5V, I ~ 1 kHz. (9) IC ~ 150 rnA, VCC ~ SV, IB 1 ~ IB2 ~ 15 rnA. (10)'IC ~ 10 p.A,
VCE ~ 5V, I ~ WB.

'S9!J9S UOJI:l913 0J d

.,.' Pro Electron Series

.~
Type
No.

. PRO ELECTRON SERIES (CooII""",
VCES'
VCBO
IVI

Ca ..
lityl.
TO-92

TO-92

Min

45

30

5

15

30

40
80
. 125

0.01
100
900' .2

5
5
5

0,6
0.25

45

30

5

15

30

40
80
125

5
5
5

0.6
0.25

260'

0.01
100
2

45

30.

5

15

30

40
80
240

5
5
5

0.6
0.25

500'

0.01
100
2

(94)

BC183LB

TO-92
(94)

BC183LC

TO-92

~

TO-92
(97)

BC184B

TO-92
(97)

BC184C

BC184L

1 kHz*
Min
Max

Ic
VCE
@lmAI8o IV)

30

5

15

30

40
80
450

5
5
5

0.6
0.25

900'

0.01
100
2

45

30

5

15

30

100
130
240

0.01
_100
900' 2

5
5
5

0.6
0.25

5
5
5

0.6
0.25

500'

0.01
100
2

5
5
5

0.6
0.25

900'

0.01
100
2

5
5
5

0.6
0.25

900'

0.01
100
2

5
5
5

0.6
0.25

5
5
1>

0.6
0.25

45

30

5

15

30

100
130
240

TQ-92
(97)

45

30

50

15

30

100
130
450

TO-92

45

30

50

15

30

100
130
240

45

30

50

15

30

100
1.30
240

45

30

50

15

30

100
130
450

.

(94)

1.2
0.55

45

(94)

BCl84

VllEISATI
VCEISAT)
& VBEIONI' @
IC
IVI
IVI
ImAI
Max
Min
Max

Min

(94)

BC183LA

HFE
hte

VEBO
IVI

Min

BC183L

ICES'
ICBO @ VCB
InA)
IVI
Max

VCEO
IVI

0_70'
1.2

0_55

0.70'

0.55

0.70'

1.2

1.2
0.55

0.70'
1.2

0.55

0.70'
1.2

0.55

0.70'
1.2

0.55

0.70'
1.2

0.55

0.70'

tT
IC
IMHzl
@lmAI
Min
Max

100
10
2

5

150

10

10

1

04

100
10
2

5

150

10

10

1

04

100
10
2

5

150

10

10

·1

04

100
10
2

5

150

10

10 .

1

04.

100
10
2

5

150

10

4

1

04

100
10
2

5

150

10

4

1

04

100
10
2

5

150

10

4

1

04

100
10
2

5

150

10

4

1

04

100
10
2

5

150

10

4

1

04

100
10
2

5

150

10

4

1

04

10

1

71

10

1

d4

10

1

63

900'

BC204

TO:92
(92)

50

45

5

50

45

50

450

2

5

0.3

10

BC207

TO-92
(92)

50

45

5

15

40

110

450

2

5

0.25
0.6

10
100

6

BC212

TO-92
(97)

60

50

5

15

30

100
10
2

10

TO-92
(94)

BC184LC

TO-92
194}

500'

1.2
0.55

1.2
0.55

0.6
0_25
60

400'

2

5

0.70'

0.70'

1.1
0.6

0.72'

'ott
Insl
Max

Tes'

Process

Conditions

No.

I

0.01
100
2·
0,01
100
2

BC184LB

NF
IdBI
Max

Cob
IpF)
Max

200

10

I

._-

~
Type
No.

PRO ELECTRON SERIES (Continued)
Ca..
Style

vCES'
VCBO
(V)
Min

VCEO
(V)

VEBO
(V)

Min

Min

ICES'
ICBO @ VCB
(nA)
(V)
Max

BC212A

TO-92
(97)

60

50

5

15

30

BC212B

TO-92
(97)

60

50

5

15

30

BC212L

TO-92
(94)

60

50

5

15

30

TO-92

60

HFE
hfe
1 kHz*
Min
Max

200

50

5

15

30

(94)

~

40
60
60'
40
60
100

BC212LB

TO-92
(94)

60

50

5

15

30

40
60
200

BC213

TO-92
(97)

45

30

5

15

30

40
60
80

8C213A

TO-92
(97)

45

30

5

15

30

40
60
100

BC213B

TO-92
(97)

45

30

5

15

30

40
60
200

BC213C

TO-92
(97)

45

30

5

15

30

40
60
350

BC213L

TO.92

45

30

5

15

30·

40
80
80'

(94)

BC213LA

TO-92
(94)

45

30

5

15

30

VBE(SAT)
VCE(SATI
& VBE(ON)' @ IC
(V)
(V)
(mA)
Max
Min
Max

40
80
100

300'

2

400'

0.Q1
100
2

5

0.01
2
2

5
5
5

0.6
0.25

0.01

0.6
0.25

300

5

0.6

0.6

300'

2

5
5
5

0.6
0.25

400'

0.Q1
2
2

5
5
5

0.6
0.25

600'

0.01
2
2

5
5
5

0.6
0.25

300'

0.Q1
2
2

5
5
5

0.6
0.25

400'

0.01
2
2

5
5

0.6
0.25

600'

0.01
2
2

400

0.01
2

5
5
5

0.6
0.25

5
5
5

·0.6
0.25

2

2
0.Q1
2
300'

2

0.6

0.6

10

200

10

10

1

63

100
10
2

10

200

10

10

1

63

100
10
2

10

200

10

10

1

63

1.1

100
10

10

200

10

10

1

63

0.72"

2

1.1

100
10
2

10

200

10

10

1

63

100
10
2

10

200

10

10

1

63

100
10
2

10

200

10

10

1

63

1.1

100
10

10

200

10

10

1

63

0.72'

2

1.1

100
10
2

10

200

10

10

1

63

1.1

100
10

10

200

10

10

1

63

0.72'

2

1.1

100
10

10

200

10

10

1

63

0.72'

2

0.72'

0.72'

0.72'

0.72'
1.1

0.6

0.72'
1.1

0.6

0.6

0.6

5

100
10
2

1.1
0.6

5
5
5

fT
IC
(MHz)
@(mA)
Min
Max

1.1

0.6
0.25

0.6

0.6

0.72'

0.72'

toff

NF
(dB)
Max

Cob
(pF)
Max

1.1

0.6
0.25
100

BC212LA

Ic
VCE
@(mA)& (V)

(nsi

Max

Test
Conditions

Process
No.

TEST CONDITIONS:

(1) IC = 200jLA, VCE = 5V,f = 1 kHz. (2) IC = 100 rnA, VCC = 20V, IBI = IB2 = 5 rnA. (3) IC=200jLA, VCE=2V,f= 1 kHz. (41IC= lOOmA, VCC= 10V, IBI = IB2= lOrnA. (51IC= lOrnA, VCC=3V,
IB 1 = IB2 = 1 rnA. (61 IC = 100 JLA, VCE = 5V, f = 1 kHz. (71 IC = 1 rnA, VCE = 10V, f = 200 kHz. (81 IC = 1 rnA, VCE = 5V, f = 1 kHz. (911C = 150 rnA, VCC = 6V, IB 1 = IB2 = 15 rnA. (1011C = 10jLA,
VCE = 5V, f = WB.

S9IJ9S UOJI:>913 0J d

Pro Electron Series

~
Type
No.

PRO ELECTRON SERIES (Continued)
Case

Style

VCES'
VCBO
(VI
Min

BC213LB

'"
0>

TO-92
(941

45

VCEO
(VI

VEBO
(VI

Min

Min

30

5

ICES'
ICBO @ VCB
(nAI
(VI
Max
15

30

HFE
hie
1 kHz*
Min
Max

40
80
200

BC213LC

TO-92
(94)

45

30

5

15

30

40
80
350

BC214

TO-92
(971

45

30

5

15

30

40
80
140

BC214A

TO-92
(971

45

30

5

15

30

40
80
100

BC214B

TO-92
(971

45

30

5

15

30

40
80
200

BC214C

TO-92
(971

45

30

5

15

30

40
80
350

BC214L

TO-92
(941

45

30

5

15

30

100
140
120
140'

BC214LB

BC214LC

TO-92
(941

45

45

TO-92
(941

30

30

5

5

15

15

30

30

BC237-92

TO-92·
(971

50

45

6

50

20

BC237A-92

TO-92
(971

50

45

6

50

20

-

100
140
120
200
100
140
120
350
100
140
120
125
100
140
120
125

IC
VCE
@(mAI& (VI

VBE(SATI
VCE(SATI
& VBE(QNI" @ Ic
(VI
(VI
(mAl
Max
Max
Min

5
5
5

0.6
0.25

400"

0.01
2
2

5
5
5

0.6
0.25

600'

0.01
2
2

5
5
5

0.6
0.25

600'

0.01
2
2

5
5
5

0.6
0.25

300'

0.Q1
2
2

5
5
5

0.6
0.25

400"

0.01
2
2

5
5
5

0.6
0.25

600'

0.01
2
2
0.01
2
100
2

5
5
5
5

0.6
0.25

0.01
2
100
2
0.Q1
2
100
2

5
5
5
5

0.6
0.25

5
5
5
5

0.6
0.25

0.01
2
100
2
0.Q1
2
100
2

5
5
5
5
5
5
5
5

0.25

400

400'

600'

500'

500'

1.1
0.6

100
10
2

10

200

10

10

1

63

100
10
2

10

200

10

2

1

63

100
10
2·

10

200

10

2

1

63

100
10
2

10

200

10

2

1

63

100
10
2

10

200

10

2

1

63

100
10
2

lQ

200

10

2

1

63

100
10
2·

10

200

10

2

1

63

10

0.72'

100
10
2

0.77'
0.6

10
100

0.70'
0.77'
0.6

2
10
100

0.70'

2

0.72'

0.72'

0.72'

0.72'

0.72'

0.72'

0.6

.0.72'

1.1

1.1

0.55

0.55

- -

No.
63

0.6

0.25

Process

1

t.1

0.6

Test
Conditions

10

1.1
0.6

NF
(dBI
Max

10

1.1
0.6

(nsl
Max

200

1.1
0.6

toff

10

1.1
0.6

IT
IC
(MHzl
@(mAI
Min
Max

100
10
2

0.72'
1.1

0.6

Cob
(pFI
Max

I
,

200

10

2

1

63

4.5

10

1

04

4.5

10

1

04

~
Type
No.

PRO ELECTRON SERIES (Continued)
Case

Style

VCES"
VCBO
IV)
Min

'"cO

VCEO
IV)

VEBO
IV)

Min

Min

ICES"
ICBO @ VCB
InA)
IV)
Max

HFE
hf.
1 kHz*
Min
Max

BC237B.g2

TO-92
(97)

50

45

6

50

20

100
140
120
240

BC238-92

TO-92
197)

30

20

5

50

20

100
140
120
125

BC238A-92

TO-92
(97)

30

20

5

50

20

100
140
120
125

BC238B-92

TO-92
197)

30

20

5

50

20

100
140
120
240

BC238C-92

TO-92
(97)

30

20

5

50

20

BC239-92

TO-92
(97)

30

20

5

50

8C239B-92

)0-92
(97)

30

20

5

BC239C-92

TO-92
(97)

30

20

5

BC261A

TO-18

45

Ic
VCE
@lmA)& IV)

VBEISAT)
VCEISAT)
& VBEION)" @ Ic
IV)
IV)
ImA)
Max
Min
Max

5
5
5
5

0.25

500"

0.01
2
100
2

5
5
5
5

0.25

900"

0.01
2
100
2

5
5
5
5

0.25

260'

0.01
2
100
2

5
5
5
5

0.25

500"

0.01
2
100
2

100
140
120
450

0.01
2
100
900" 2

5
5
5
5

0.25

20

100
·140
120
240

5
5
5
5

0.25

900'

0.01
2
100
2

50

20

100
140
120
240

5
5
5
5

0.25

500"

0.01
2
100
2

50

20

100
140
120
450

5
5
5
5

0.25

900'

0.01
2
100
2

50

45

100
"140
120
125

5
5
5
5

0.25
0.6

260"

0.01
2
100
2

0.77"
0.6
0.55

0.55

0.55

0.55

0.55

0.55

0.55

0.55

10
100

0.70"

2

0.77"
0.6

10
100

0.70"

2

0.77'
0.6

10
100

0.70"

2

0.77"
0.6

10
100

0.70"

2

0.77"
0.6

10
100

0.70"

2

0.77"
0.6

10
100

0.70

2

0.77"
0.6

10
100

0.70

2

0.77"
0.6

10
100

0.70

2

0.9

10
100

Cob
IpF)
Max

fT
IC
IMHz)
@lmA)
Min
Max

toft
Ins)
Max

NF
IdB)
Max

Test

Process

Conditions

No.

4.5

10

1

04

4.5

10

1

04

4.5

10

1

04

4.5

10

1

04

4.5

10

1

04

4.5

4

1

04

4.5

4

1

04

4.5

4

1

04

4.5

6

3

71

TEST CONDITIONS:
(1) IC = 200 /lA, VCE = 5V, f = 1 kHz. (2) IC = 100 rnA, VCC = 20V, 18 1 = IB2 = 5 rnA. (3) IC = 200 /lA, VCE = 2V, f = 1 kHz. (4) IC = 100 rnA, VCC = 10V, IBl = IB2 = 10 rnA. (5) IC = 10 rnA, VCC = 3V,
18 1 = 18 2 = 1 rnA. (6) )e = 100 /lA, VeE = 5V, f = 1 kHz. (7J )e = 1 rnA, VCE = 10V, f = 200 kHz. (8) Ic = 1 rnA, VCE = 5V, f = 1 kHz. (9) Ic = 150 rnA, Vce = 6V, IB 1 = IB2 = 15 rnA: (10) Ie = 10/lA,
VeE = 5V, f = WB.
- - - -

--_.-

_.

S9!J9S UOJI:l913 OJd

Pro Electron Series

~
Type
No.

PRO ELECTRON SERIES (Continued)
Case

Style

VCES"
VCBO
IV)
Min

~

o

VCEO
IV)

VEBO
IV)

Min

Min

ICES'
ICBO @ VCB
InA)
IV)
Max

HFE
hie

BC261B

TO-18

45

BC262A

TO-18

20

5

50

20

100
140
120
125

BC262B

TO-18

20

5

50

20

100
140
120
240

BC263A

TO-18

20

5

50

20

100
140
120
125

BC263B

TO-18

20

5

50

20

100
140
120
240

BC307-92

TO-92
(97)

50

45

5

100

20

100
140
120
75

BC307A·92

TO-92
(97)

50

45

5

100

20

100
140
120
125

BC307B-92

TO-92
(97)

50

45

5

100

20

100
140
120
240

BC308·92

TO-92
(97)

30

25

5

100

20

100
140
120
125

BC308A-92

TO-92
(97)

30

25

5

100

20

100
140
120
·125

50

45

IC

@lmA)&
1 kHz*
Min
Max
100
140
120
240

VCE
IV)

VBEISAT)
VCEISAT)
& VBEION)" @ IC
IV)
IV)
ImA)
Max
Max
Min

IT
@ IC
IMHz)
ImA)
Max
Min

Cob
IpF)
Max

toff
Ins)
Max

NF
IdB)
Max

Test

Process

Conditions

No.

5
5
5
5

0.25
0.6

0.9

10
100

6

3

71

500'

0.01
2
100
2

5
5
5
5

0.25

0.9

10

6

3

71

260'

0.01
2
100
2

5
5
5
5

0.25

0.9

10

6

3

71

500'

0.01
2
100
2

5
5
5
5

2.5

3

71

260"

0.01
2
100
2

5
5
5
5

0.25

2.5

3

71

500'

0.01
2
100
2

5
5
5
5

0.18

10

1

71

500'

0.01
2
100
2

5
5
5
5

0.18

10

1

71

260'

0.01
2
100
2

5
5
5
5

0.18

10

1

71

500'

0.01
2
100
2

5
5
5
5

0.18

10

1

71

900'

0.01
2
100
2

5
5
5
5

0.18

10

1

71

260'

0.01
2
100
2

0.75'

2

100

0.6

0.6
0.25

100
0.9

10

100

0.6

10

0.9

0.6

100
0.78
1.0'

10
100

0.75'

2

0.78
1.0'

10
100

0.75'

2

0.78
1.0'

10
100

0.75'

2

0.78
1.0'

10
100

0.75'

2

0.78
1.0'

10
100

-

-

-

--

I

~
Type
No.

PRO ELECTRON SERIES (Continued)
Case
Style

VCES'
VCBO
(V)
Min

BC308B-92

BC308C-92

~

30

TO-92
(97)

30

VEBO
(V)

Min

Min

25

5

25

5

ICES'
ICBO
(nA)
Max
100

100

@

VCB
(V)
20

20

HFE
hie
@ IC & VCE
(rnA)
(V)
1 kHz·
Min
Max
100
140
120
240
100
140
120
450
100
140
120
125

400
500"

VBE(SAT)
VCE(SAT)
& VBE(ON)' @
IC
(V)
(V)
(rnA)
Max
Min
Max

0.01
2
100
2

5
5
5
5

0.18

0.01

0.18

10
100

toff
(ns)
Max

NF
(dB)
Max

Test

Process

Conditions

No.

10

1

71

10

1

71

4

1

71

4

1

71

4

1

71

100
2

0.75'

2

5
5
5
5

0.18

0.78
1.0

10
100

900"

0.01
2
100
2

0.75

2

5
5
5
5

0.18

0.78
1.0

10
100

500"

0.01
2
100
2

0.75

2

5
5
5
5

0.8

0.78
1.0

10
100

0.75'

2

0.77'

10
100
2

4

6

1

04

10
100
2

4

6

1

04

10
100
2

4

6

1

04

10
100
2

4

6

1

04

10
100
2

4

6

1

04

25

20

5

100

20

100
140
120
240

BC309C-92

TO-92
(97)

25

20

5

100

20

100
140
120
450

900'

0.01
2
100
2

BC317

TO-92
(92)

50

45

6

30

20

110
125

450
500'

2
2

5
5

0.2
0.5

BC317A

TO-92
(92)

50

45

6

30

20

110
125

220
260"

2
2

5
5

0.2
0.5

BC317B

TO-92
(92)

50

45

6

30

20

200
240

450
500'

2
2

5
5

0.2
0.5

20

2

0.78
1.0'

IC
(rnA)

900"

TO-92
(97)

100

0.75'

@

2

BC309B-92

5

10
100

IT
(MHz)
Min
Max

400

25

20

0.78
1.0'

Cob
(pF)
Max

5
5
5
5

TO-92
(97)

BC309-92

~

TO-92
(97)

VCEO
(V)

400

400

0.57

BC318

TO-92
(92)

30

20

5

30

20

110
125

800
900"

2
2

5
5

0.2
0.5

BC318A

TO-92
(92)

30

20

5

30

20

110
125

220
260'

2
2

5
5

0.2
0.5

0_72'
0.77'

0.57

0.72'

0.57

0.72'

0.77*

0.77"
0.57

0.72"
0.77"

0.57

0.72"

TEST CONOITIONS:
(1) IC = 200 J.lA, VCE = 5V, I = 1 kHz. (2) IC = 100 rnA, VCC = 20V, IB 1 = IB2 = 5 rnA. (3) Ie = 200 J.lA, VeE = 2V, 1= 1 kHz. (4) Ie = 100 rnA, Vee = 10V, 18 1 = 18 2 = 10 rnA. (5) Ie = 10 rnA, Vee = 3V,
IB 1 = IB2 = 1 rnA. (6) IC = 100 J.lA, VCE = 5V, 1= 1 kHz. (7) Ic = 1 rnA, VCE = 10V, f = 200 kHz. (8) IC = 1 rnA, VCE = 5V, 1= 1 kHz. (9) IC = 150 rnA, VCC = 6V, IB 1 = 18 2 = 15 rnA. (10) IC = 10 J.lA,
VCE = 5V, 1= WB.
-

-

-

-

-

sa!Jas UOJIOal3 OJd

Pro Electron Series

c~
Type
No.

PRO ELECTRON SERIES (Continued)
Case

Style

vCES'
VCBO
IV)
Min

BC31BB

TO-92
192)

30

VCEO
IV)

VEBO
IV)

Min

Min

20

5

ICES'
ICBO @ VCB
InA)
IV)
Max
30

20

HFE
hIe
1 kHz*
Max
Min

200
240

450
500'

IC .. VCE
@lmA)& IV)
2
2

VBEISAT)
VCEISAT)
& VBEION)' @ IC
(V)
IV)
ImA)
Max
Min
Max

5
5

0.2
0.5

0.77'
0.57

BC318C

BC319

BC319B

TO-92
(92)

30

TO-92
(92)

30

TO-92
192)

30

20

20

20

5

5

5

30

30

30

20

20

20

BOO
900'

0.01
2
2

5
5
5

0.2 •
0.5

40
200
240

BOO
900'

0.01
2
2

5
5
5

0.2
0.5

200
240

450
500*

2
2

5
5

0.2
0.5

100
450
450

BC319C

~

BC327

""
BC327·1O
BC327-16
BC327-25
BC328
BC328-10
BC328-16
BC32B-25
BC337
BC337-10
BC337-16
BC337·25

TO-92
(92)

30

TO-92
(91)

50 t

TO-92
197)

50t

TO-92
197)

50 t

TO-92
197)

50t

TO-92
(97)

30t

TO-92
197)

30 t

TO-92
(97)

30 t

TO-92
(97)

30t

TO-92·
(97)

50 t

TO-92
(97)

50 t

TO-92
(97)

50 t

TO-92
(97)

50 t

20

45
45
45
45
25
25
25
25
45
45
45
45

5

5
5
5
5
5
5
5
5
5
5
5
5

30

lOOt
lOOt
100 t
lOOt
100 t
'100 t
100 t
100 t
100 t
100 t
100t
100 t

20

45
45
45
45
25
25
25
25
45
45
45
45

800
900'

0.Q1
2
2

5
5
5

0.2
0.5

40
100

1
1

0.7

600

300
100

40
63

300
100

1
1

0.7

160

40
100

300
100

1
1

0.1

250

40
160

300
100

1
1

0.7

400

40
100

300
100

1
1

0.7

600

40
63

300
100

1
1

0.7

160

40
100

300
100

1
1

0.7

250

40
160

300
100

1
1

0.7

400

40
100

300
100

1
1

0.7

600

40
63

300
100

1
1

0.7

160

40
100

300
100

1
1

0.7

250

40
160

~OO

1
1

0.7

400

100
420
450

100

--

-

-

Test

Process

Conditions

No.

1

04

10
100
2

4

6

1

04

10
100
2

4

4

1

04

10
100
2

4

4

1

04

4

4

1

04

0.72'

10
100
2
500
300

4

4

1

67

12'

500
300

4

4

1

67

1.2*

500
300

4

4

1

67

1.2*

500
300

4

4

1

67

1.2*

500
300

4

4

1

67

1.2

500
300

4

4

1

67

1.2

500
300

4

4

1

67

1.2

500
300

4

4

1

67

1.2

500
300

4

4

1

14

1.2'

500
300

4

4

1

14

1.2*

500
300

4

4

1

14

1.2*

500
300

4

4

1

14

1.2*

0.72'

0.72'

0.72'
0.77'

0.57

NF
IdB)
Max
6

0.72'

0.77'
0.57

toll
(ns)
Max

4

0.77*
0.57

IT
@ IC
(MHz)
ImA)
Min
Max

10
100
2

0.77*
0.57

Cob
IpF)
Max

~
Type
No.

VCES'
VCBO
(V)
Min

VCEO
(V)
Min

VEBO
(V)
Min

ICES'
ICBO@ VCB
(nA)
(V)
Max

HFE
hfo
1 kHz"
Min Max

100t

40
100

300
100

1
1

0.7

600

40
63

300
100

1
1

0.7

160

40
100

300
100

1
1

0.7

250

40
160

300
100

1
1

0.7

400

40
120

800

0,01
2

5
5

0.25
0.6

40
120

220

0,01
2

5
5

100
180

460

0.Q1
2

100
380

800

30 t

TO·92
(97)

30 t

TO·92
(97)

30 t

TO·92
(97)

30 t

TO-92
(97)

45

TO·92
(97)

45

TO·92
(97)

45

TO·92
(97)

45

BC485

TO-92
(97)

45

45

5

100

30

15
40
60

BC485A

TO-92
(97)

45

45

5

100

30

15
40
100
15
40
160

BC338·10
BC338·16
BC338·25
BC415
BC415A
BC415B

c.>

Case
Style

TO-92
(97)

BC338

~

PRO ELECTRON SERIES (Continued)

BC415C

BC485B

BC485 I.

TO-92
(97)
TO-92
(97)

45

45

25
25
25
25
35
35
35
35

45

45

5
5
5
5
5
5
5
5

5

5

100t
lOOt
100t
15
15
15
15

100

100

25
25
25
25
30
30
30
30

30

30

BC547

TO-92
(97)

50

45

6

10

20

BC547A

TO·92
(97)

50

45

6

10

20

15
40
60

@

IC
VCE
(rnA) & (V)

VBE(SAT)
VCE(SAT)
& VBE(ON)' @ Ic
(V)
(V)
(rnA)
Max
Min Max

@

IC
(rnA)

toff
(ns)
Max

NF
(dB)
Max

Test
Conditions

Process
No.

500
300

4

4

1

14

500
300

4

4

1

14

1.2"

500
300

4

4

1

14

1.2'

500
300

4

4

1

14

1.2'

10
100

2

10

71

0.25
0.6

10
100

2

10

71

5
5

0.25
0.6

10
100

2

10

71

0.01
2

5
5

0.25
0.6

10
100

2

10

71

5
2
2

0.5

1.2
1.2'

500
300

4

4

1

14

400

lA
10
100

5
2
2

0.5

1.2
1.2*

500
300

4

4

1

14

250

lA
10
100
lA
10
100

5
2
2

0.5

1.2
1.2'

500
300

4

4

1

14

400

5
2
2

0.5

1.2
1.2*·

500
300

4

4

1

14

150

lA
10
100

0.77'

10
100
2

4.5

10

1

04

10
100
2

4.5

10

1

04

i

500'

2

5

0.55

260"

2

5

0.70"
0.77'

0.25
0.6
125

fT
(MHz)
Min Max

1.2'

0.25
0.6
125

Cob
(pF)
Max

0.55

0.70'

i

TEST CONDITIONS:
(1) IC = 200 /lA, VCE = 5V, f = 1 kHz. (2) IC = 100 rnA, VCC = 20V, IB 1 = IB2 = 5 rnA. (3) IC = 200 /lA, VCE = 2V, f = 1 kHz. (4) Ic = 100 rnA, VCC'= 10V, IB 1 = 182 = 10 rnA, (5) IC = 10 rnA, VCC = 3V,
IB 1 ='IB 2 = 1 rnA. (6) IC = 100 /lA, VCE = 5V, f = 1 kHz. (7) Ic = 1 rnA. VCE = 10V, f = 200 kHz. (8) IC = 1 rnA, VCE = 5V, f = 1 kHz. (9) IC'; 150 rnA, VCC = 6V, IB 1 = 18 2 = 15 rnA. (10) Ic = 10/lA,
VCE = 5V, f = WB.

S9!J9S UOJI:>913 OJd

Pro Electron· Series

.~
Type
No.

PRO ELECTRON
Case
Style

VCES'
VCBO
(VI
Min

SERIES(Continued}

VCEO
(VI

VEBO
(VI

Min

Min

ICES'
ICBO
(nAI
Max

@

VCB
(VI

BC547B

TO·92
(971

50

45

6

10

20

BC547C

TO·92
(97)

50

45

6

10

20

BC548

TO-92
(97)

30

20

5

10

20

BC548A

TO·92
(971

30

20

5

10

20

BC548B

TO·92
(97)

30

20

5

10

20

BC548C

TO·92
(97)

30

20

5

10

20

HFE
hie

5

10

20

BC549B

TO-92
(97)

30

20

5

10

20

30

20

5

10

50

45

5

10

45

BC550B

TO-92
(97)

50

45

5

10

45

BC550C

TO-92
(97)

50

45

5

10

45

100

5

0.55

260'

2

5

500'

2

0.55

5

900'

2

900'

2

500'

2

900'

2

900'

2

500'

2

900'

2

20
260'

2

5

0.70
0.77'

0.55

0.70
0.82'

0.3
0.65
75

0.70
0.77'

0.55

5

0.70
0.77'

0.55

5

0.70
0.77'

0.55

5

0.70
0.77'

0.55

5

0.70'
0.77'

0.55

5

0.70'
0.77'

0.55

5

0.70'
0.77'

0.55

5

0.70'
0.77'

0.25
0.6
450

'5

2

0.25
0.6
240

45

900'

0.70'
0.77'

0.25
0.6
240

50

0.55

0.25
450

TO·92
(97)

TO-92
(97)

5

20

BC550

BC557

2

0.25
0.6
240

TO-92
(97)

900'

0.70'
0.77'

0.25
0.6
240

BC549C

0.55

0.25
0.6
450

20

5

0.25
0.6
240

30

2

0.25
0.6
125

TO-92
(971

500'

0.77'

0.25
0.6
125

BC549

VBE(SATI
VCE(SATI
& VBEIONI' @
IC
(VI
(VI
(mAl
Max
Min
Max

0.25
0.6
450

~

VCE
(VI

0.25
0.6
240

'"
-I>-

IC

@(mAI&
1 kHz*
Min
Max

0.6

0.75'

Cob
(pFI
Max

IT
IC
(MHzl
@(mAI
Max

Min

toff

(nsl
Max

NF
(dBI
Max

Test

Process

Conditions

No.

4.5

10

1

04

4.5

10

1

04

10
100 .
2

4.5

10

1

04

10
100
2

4.5

10

1

·04

10
100
2

4.5

10

1

04

10
100
2

4.5

10

1

04

10
100
2

4.5

4

1

04

10
100
2

4.5

4

1

04

10
100
2

4.5

4

1

04

10
100
2

3

1

04

10
100
2

3

1

04

10
100
2

3

1

04

10
100
'2

10

1

71

10
100
2
10
100
2

I

-

--

-

I

~

PRO ELECTRON SERIES (Continued)
VCES'
VCBO
(V)
Min

VCEO
(V)

ICES"
ICBO @ VCB
(nA)
(V)
Max

VEBO
(V)
Min

Type
No.

Case
Style

BC557A

TO-92
(97)

50

45

5

100

20

BC557B

TO-92
(97)

50

45

5

100

20

BC558

TO-92
(97)

30

25

5

100

20

BC558A

TO-92
(97)

30

25

5

100

20

BC558B

TO-92
(97)

30

25

5

100

20

BC558C

TO-92
(97)

30

25

5

100

20

BC559

TO.-92
(97)

25

20

5

100

20

Min

HFE
IC
VCE
hIe
@(mA)& (V)
1 kHz*
Min
Max

260-

2

0.6

5

500-

2

5

0.6

500-

2

5

0.6

260'

2

0.75
0.82-

0.3
0.65
125

0.750.82-

0.3
0.65
75

0.750.82-

0.3
0.65
240

0.6

5

0.75

Cob
(pF)
Max

IT
@ IC
(MHz)
(rnA)
Min
Max

toft

(ns)
Max

NF
(dB)
Max

Process
No.

Test
Conditions

10
100
2

10

1

71

10
100
2

10

1

71

10
100
2

10

1

71

10
100
2

10

1

71

10
100
2

10

1

71

10
100
2

10

1

71

10
100
2

4

1

71

10
100
2

4

1

71

10
100
2

4

1

71

10
100
2

4

1

71

10
100
2

2

1

71

I

500-

900-

25

20

5

100

20

BC559B

TO-92
(97)

25

20

5

100

20

BC559C

TO-92
(97)

25

20

5

100

20

BC560

TO-92
(97)"

50

45

5

100

45

5

0.6

2

500-

2

0.6

5

260'

2

5

0.6

500-

2

5

0.6

900'

2

5

0.6

500-

2

0.75"
0.82-

5

0.6

0.750.82-

0.3
0.65
125

0.750.82-

0.3
0.65
450

0.750.82-

0.3
0.65
240

0.75
0.82-

0.3
0.65
125

0.75
0.82-

0.3
0.65
125

TO-92
(97)

2

0.3
0.65
450

BC559A

0.82-

0.3
0.65
240

':!:.

0.82-

0.3
0.65
125

en

VBE(SAT)
VCE(SAT)
& VBE(ON)" @ IC
(V)
(V)
(rnA)
Max
Min
Max

5

0.6

0.75-

TEST CONDITIONS:

(1) Ie = 200 /lA, VeE = 5V, I = 1 kHz. (2) Ie = 100 rnA, Vee = 20V, )B 1
IB 1

=

IB2

=

VeE = 5V, I

1 rnA. (6) Ie = 100 /lA, VeE = 5V, I

=

=

IB2 = 5 rnA. (3) Ie = 200 /lA, VeE

= 2V, 1= 1

kHz. (4) Ie = 100 rnA, Vee

= 10V, IB 1 =

IB2 = 10 rnA. (5) Ie

1 kHz. (7) Ie = 1 rnA, VeE = 10V, I = 200 kHz. (8) Ie = 1 rnA, VeE = 5V, I = 1 kHz. (9) Ie = 150 rnA, Vee = 6V, IB 1

= IB2 =

= 10 rnA,

= 3V,
= 10 /lA,

Vee

15 rnA. (10) Ie

= WB.

---

--

S9!J9S UOJI~913 OJd

Pro Electron Series

~

,

PRO ELECTRON SERIES (Continued)
VCES'
VCBO
(VI
Min

vCEO
(VI
Min

VEBO
(VI
Min

ICES'
ICBO@ VCB
(nAI
(VI
Max

Type
No.

Case
Style

BC560A

TO·92
(971

50

45

5

100

45

BC560B

TO-92
(971

50

45

5

100

45

HFE
hfe
@ IC
& VCE
1 kHz*
(mAl
(VI
Min Max

0.3.
0.65
125

~

en

TO-92
(971

BCX58

260'

0.6

5

2

0.82'

0.3
0.65
240

BC560C

VBE(SATI
VCE(SATI
& VBE(ONI' @ IC
(VI
(VI
(mAl
Max
Min
Max

500'

2

0.82'
0.6

5

0.75'

0.75'

Cob
(pFI
Max

fT
@ IC
(MHzl
(mAl
Min
Max

taff
(n51
Max

NF
(dB I
Max

Test

Conditions

Process
No.

10
100
2

2

1

71

10
100
2

2

1

71

10
100
2

2

1

71

45

5

100

45
450

900'

2

5

TO-92
(971

32

7

10

32

120
80
40

630
1000

2
10
100

5
1
1

125

10

800

6

3/4

04

BCX58-7

TO-92
(97)

32

7

10

32

120
80
40

220

2
10
100

5
1
1

125

10

800

6

3/4

04

BCX58-8

TO-92
(971

32

7

10

32

20
180
120
45

0.01
2
10
100

5
5
1
1

125

10

800

6

3/4

04

310
400

TO-92
(971

32

40
250
160
60

0.01
2
10
100

5
5
1
1

125

10

800

6

3/4

04

460
630

TO-92
(971

32

100
380
240
60

0.01
2
10
100

5
5
1
1

125

10

800

6

3/4

04

630
1000

BCX59.

TO-92
(971

45

7

120
80
40

630
1000

2
10
100

5
1
1

0.5

1.0

100

125

10

800

5

04

BCX59-7

TO-92
(971

45

7

120
80
40

220

2
10
100

5
1
1

0_5

1.0

100

125

10

800

5

04

BCX59-8

TO-92
(971

45

7

0.01
2
10
100

5
5
1
1

0_5

1.0

100

125

10

800

5

04

310
400

TO-92
(971

45

20
180
120
45
40
250
160
60

5
5
1
1

0.5

1.0

100

125

10

800

5

04

460
630

0.01
2
10
100

BCX58·9

BCX58·10

BCX59-9

50

-

7

7

7

10

10

32

32

0.3
0;65

.

-

0.82'
0.6

-

0.75"

-

~
Type
No.

PRO ELECTRON SERIES (Continued)
VCES'
VCBO
(VI

Case
Styl.

Min

BCX59·10

VCEO
(VI

Min

VEBO
(VI
Min

HFE
hf.
IC
@ (mA) &
1 kHz'
Min
Max

VCE
(V)

100
380
240
60

0.01
2
10
100

5
5
1
1

0.5

1.0

100

VBE(SAT)
VCE(SAT)
& VBE(ONI' @ IC
(V)
(mA)
(V)
Max
Min
Max

Cob
(pF)
Max

fT
IC
(MHz)
@ (mA)
Min Max

toff
(ns)
Max

NF
(dB)
Max

Test
Conditions

Process
No.

TO·92
(97)

45

BCX78

TO-92
(97)

32

5

120
80
40

630
1000

2
10
100

5
1
1

0.6

1.0

100

71

BCX78·7

TO-92
(97)

32

5

120
80
40

220

2
10
100

5
1
1

0.6

1.0

100

71

BCX78·8

TO-92
(97)

32

5

30
180
120
45

0.01
2
10
100

5
5
1
1

0.6

1.0

100

71

310
400

40
250
160
60

0.01
2
10
100

5
5
1
1

0.6

1.0

100

71

460
630

100
380
240
60

0.01
2
10
100

5
5
1
1

0.6

1.0

100

71

630
1000

1
1
5

0.6

1.0

100

71

BCX78·9

~
.....

TO·92
(97)

32

7

ICES'
ICBO@ VCB
(nAI
(V)
Max

5

,
BCX78-10

125

10

800

5

04

TO·92
(97)

32

BCX79

TO·92
(97)

45

5

80
40
120

630

10
100
2

BCX79·7

TO-92
(97)

45

5

120

220

2

5

0.6

1.0

100

71

BCX79·8

TO-92
(97)

45

5

120
45
30
180

400

10
100
0.01
2

1
1
5
5

0.6

1.0

100

71

BCX79·9

TO-92
·(97)

45

5

160
60
40
250

630

10
100
0.01
2

1
1
5
5

0.6

1.0

100

71

-

5

630
1000

1000

310

460

TEST CONDITIONS:
(1) IC= 200l'A, VeE = 5V,f = 1 kHz. (2) Ie = 100 rnA, Vee = 20V, 18 1 = 182 = 5mA. (3) le=200I'A, VeE=2V,f= 1 kHz. (41Ie= 100 rnA, VCC= 10V,I8 1 = IB2= lOrnA. (5) le= lOrnA, VCC = 3V.
18 1 = IB2 = 1 rnA. (6) IC = 100 I'A, VCE = 5V, f = 1 kHz. (7J Ie = 1 rnA, VCE = 10V, f = 200 kHz. (8) IC = 1 mA, VCE = 5V, f = 1 kHz. (9) IC = 150 rnA, VCC = 6V, IBI = IB2 = 15 rnA. (10) Ic = 1OI'A,
VCE = 5V, f = WB.

S8IJ8 S UOJI:»813 OJd

Pro Electron Series

~
Type
No.

PRO ELECTRON SERIES (Continued)
Ca..
Style

VCES"
VCBO
(VI
Min

BCX79-10

TO·92
(971

BCY56

TO-18

BCY57

BCY58

~

BCY58-7

TO-18

VCEO
(VI
Min

45

25

45

5

45

5

20

TO-1S

32

TO-18

VEBO
(VI
Min

32

5

7

7

ICES"
ICBO @ VCB
(nAI
(VI
Max

100

100

lOt

lOt

20

20

32

32

913 OJd

Pro Electron Series

~
Type
No.

PRO ELECTRON SERIES (Continued)
Case

Style

VCES*
VCBO
IVI
Min

B03700
B03700-6
803700-10
80371A
80371A-l0
80371A-16
B0371A-25

(J1

~

B03718
B0371B-l0
B0371B-16
B0371B-25
B0371C
B0371C-6
B0371C-l0
B0371C-16
803710
B03710-6
B0371O-10
B0372A

TO-237
1911
TO-237
1911
TO-237
1911
TO-237
1911
TO-237
1911
TO-237
1911
TO-237
1911
TO-237
1911
TO-237
1911
TO-237
1911
TO-237
1911
TO-237
1911
TO:237
1911
TO-237
1911
TO-237
1911
TO-237
1911
TO-327
1911
TO-237
1911
TO-Z17
1901

VCEO
IVI
Min

80

100

80

100

80

100

80

45

80

45
45

80

45

80
80

60

80

60

80

60
60

80

80

80

80

80

80

80

80

80

100

80

100

80

100

80

45

80

.-

vEBO
IVI
Min

ICES*
ICBO @ VCB
InAI
IVI
Max
100
100
100
100
lOa
100
100
100
100
100
100
100
100
100
100
100
100
100
100

80
80
80
45
45
45
45
60
60
60
60
80
80
80
80
100
100
100
45

-------_._---

HFE
hfe
1 kHz*
Max
Min

Ic
VCE
@lmAI& IVI

VBEISATI
vCEISAT)
& VBEIONI* @ IC
IVI
IVI
ImAI
Max
Min
Max

cob
IpFI
Max

fT
IC
IMHzl
@lmAI
Min
Max

Insl
Max

NF
IdBI
Max

toff

Test

Process

Conditions

No.

25
40

500
100

2
1

0.7

1.2*

lA

30

50

200

420

6

5/6

79

400

25
40

500
100.

1.2*

lA

30

50

200

420

6

5/6

79

25
63

500
100

0.7

1.2*

lA

30

50

200

420

6

5/6

79

160

2
1
2
1

0.7

100

25
40

500
100

2
1

0.7

1.2*'

lA

30

50

200

420

6

5/6

38

400

25
63

500
100
500
100
500
100
50G
100
500
100
500
100

2
1

0.7

1.2*

lA

30

50

200

420

6

5/6

38

160

2
1

0.7

1.2*

lA

30

50

200

420

6

5/6

38

2
1

0.7

1.2*

lA

30

50

200

420

6

5/6

38

2
1
2
1

0.7

1.2*

lA

30

50

200

420

6

5/6

38

0.7

1.2'

lA

30

50

200

420

6

5/6

38

2
1

0.7

1.2'

lA

30

50

200

420

6

5/6

38

2

0.7

1.2'

lA

30

50

200

420

6

5/6

38

2
1

0.7

1.2'

lA

30

50

200

420

6

5/6

38

25
100
25
180
25
40
25
63
25
100

250
400
400
160
250

25
160

400

25
40

400

500
100
500
100
500
100

2
1

0.7

1.2'

lA

30

50

200

420

6

5/6

38

100

2
1
2
1

0.7

1.2'

lA

30

50

200

420

6

5/6

38

0.7

1.2'

lA

30

50

200

420

6

5/6

38

25
40
25
63
25
100

250

500
100
500
100

25
40

500
100

2
1

0.7

1.2'

lA

30

50

200

420

6

5/6

39

400

25
40

500
100

2
1

0.7

1.2'

lA

30

50

200

420

6

5/6

39

100

25
63

500
100

2
1

0.7

1.2'

lA

30

50

200

420

6

5/6

39

160

25
40

500
100

2
1

0.7

1.2'

lA

30

50

200

420

6

5/6

78

400

160

----

---

II
Type
No.

PRO ELECTRON SERIES (Continued)
Ca..
Styl.

VCES'
VCBO
(V)
Min

~

VEBO
(V)
Min

ICES'
ICBO @ VCB
(nA)
(V)
Max

B0372A-l0 TO-237
(SO)

80

B0372A·16 TO-237
(SO)

80

B0372A-25 TO-237
(SO)

80

B0372B

TO-237
(SO)

80

60

100

60

B0372B-l0

TO-237
(SO)

80

60

100

60

TO-237
(SO)
B0372B-25 TO-237
(SOl
TO-237
B0372C
(SOl
TO-237
BD372C-6
(SOl
B0372C-l0 TO-237
(SO)

80

B0372B-16

U1

VCEO
(V)
Min

BD372C-16
BD372D

BO
80
80
80

TO-237
(SO)

80

TO-237

80

45
45
45

60
60
80
80
80
100
100

100
100
100

100
100
100
100
100
100
100

45
45
45

60
60
80
80
80
100
100

(SO~

TO-237
(90)

80

B03720-10 TO-237
(90)

80

TO·237
(90)

80

B0373A-l0 TO-237
(90)

80

B0373A-16 TO-237
(90)

80

B03720-6

B0373A

100

100
45
45
45

100
100
100
100
100

100
100
45
45
45

HFE
hfe

Ic

VCE

@(mA)& (V)
1 kHz*
Min
Max
25
63
25
100
25
160
25
40
25
63
25
100
25
160
25
40
25
40
25
63

160
250
400
400
160
250
400
400

VBE(SAT)
VCE(SAT)
& VBE(ON)' @ IC
(V)
(V)
(rnA)
Max
Max
Min

Cob
(pF)
Max

fT
IC
(MHz)
@(mA)
Min
Max

(ns)
Max

NF
(dB)
Max

toft

Process
Test
No.
Conditions

500
100

2
1

0.7

1.2'

lA

30

50

200

420

6

5/6

78

500
100
500
100
500
100
500
100

2
1
2
1
2
1

0.7

1.2'

lA

30

50

200

420

6

5/6

78

0.7

1.2'

lA

30

50

200

420

6

5/6

78

0.7·

1.2'

lA

30

50

200

420

6

5/6

78

2
1
2
1
2
1
2
1

0.7

1.2'

lA

30

50

200

420

6

5/6

78

0.7

1.2'

lA

30

50

200

420

6

5/6

78

0.7

1.2'

lA

30

50

200

420

6

5/6

78

0.7

1.2'

lA

30

50

200

420

6

5/6

78

·2
1

0.7

1.2'

lA

30

50

200

420

6

5/6

78

2
1

0.7

1.2'

lA

30

50

200

420

6

5/6

78

2
1
2
1

0.7

1.2'

lA

30

50

200

420

6

5/6

78

0.7

1.2'

lA

30

50

200

420

6

5/6

7S

500
100
500
100
500
100

I

25
100
25
40

400

500
100
500
100
500
100
500
100

25
40

500
100

2
1

0.7

1.2'

lA

30

50

200

420

6

5/6

79

100

25
63

500
100

2
1

0.7

1.2'

lA

30

50

200

420

6

5/6

79

160

25
40

2
1

1.2'

lA

30

50

200

420

6

5/6

38

25
63

2
1

0.7

1.2'

lA

30

50

200

420

6

5/6

38

160

500
100
500
100

0.7

400

25
100

500
100

2
1

0.7

1.2'

lA

30

50

200

420

6

5/6

38

250

100

160
250

TEST CONOITIONS:
(1) IC = 200 I'A, VCE = 5V, f = 1 kHz. (2) IC = 100 rnA, VCC = 20V, IB 1 = IB2 = 5 rnA. (3) IC = 200 I'A, VCE = 2V, f = 1 kHz. (4) IC = 100 rnA, VCC = 10V, IB 1 = IB2 = 10 rnA. (5) IC = 10 rnA, VCC = 3V,
IB 1 = IB2 = 1 rnA. (61 IC = 100 I'A, VCE = 5V, f = 1 kHz. (7) IC = 1 rnA, VCE = 10V, f = 200 kHz. (8) IC = 1 rnA, VCE = 5V, f = 1 kHz. (9) IC = 150 rnA, Vee = 6V, IB 1 = IB2 = 15 rnA. (10) Ie = 10 I'A,
VeE = 5V, f = WB.

Ii

S9!J9S UOJI:»913 OJd

Pro Electron Series

~
Type
No.

PRO ELECTRON SERIES (Continued)
Case
Style

VCES"
VCBO
(V)
Min

B0373A-25 TO-237
(90)

80

TO-237
(90)

80

TO-237
(90)

80

TO-237
(90)

80

TO-237
(90)

80

TO-237
(90)

80

TO-237
(90)

80

TO-237
(90)

80

TO-237
(90)

80

TO-237
(90)

80

TO-237
(90)

80

TO-237
(901

80

TO-126

50

B0373B
B0373B-10
B0373B-16
B0373B-25
B0373C
B0373C-6

(11

~

B0373C-10
B0373C-16
B03730
B03730-6
B03730-10
B0375
B0375·6
B0375-10
B0375-16
B0375-25
B0376
B0376-6

TO-126
TO-126
TO-126
TO-126
TO-126
TO-126

50
50
50
50
50
50

vCEO
(V)
Min
45
80
60
60
60
80
80
80
80
100
100
100
45
45
45
45
45
45
45

VEBO
(V)
Min

ICES"
ICBO @ VCB
(nA)
(V)
Max
100
100
100
100
100
100
100
100
100
100
100
100
2/lA
2/lA
2/lA
2/lA
2/lA
2/lA
2/lA

45
80
80
60
60
80
80
80
80
100
100
100
45
45
45
45
45
45
45

HFE
Ic
VCE
hfe
@ (mA)& (V)
1 kHz·
Min
Max

VBE(SAT)
VCE(SAT)
& VBE(ON)"'@
IC
(V)
(V)
(mA)
Max
Min
Max

Cob
(pF)
Max

fT
IC
(MHz)
@(mA)
Min
Max

toft
(ns)
Max

NF
(dB)
Max

Test

Conditions

Process
No.

25
160

500
100

2
1

0.7

1.2*

1A

30

50

200

420

6

5/6

38

400

25
40

500
100

2
1

0.7

1.2*

1A

30

50

200

420

6

5/6

38

400

25
63

500
100

2
1

0.7

1.2*

1A

30

50

200

420

6

5/8

38

160

25
100

500
100

2
1

0.7

1.2*

1A

30

50

200

420

6

5/8

38

250

25
1150

500
100

2
1

0.7

1.2*

1A

30

50

200

420

6

5/6

38

400

25
40

500
100

2
1

0.7

1.2*

1A

30

50

200

420

6

5/6

38

400

25
40

500
100

2
1

0.7

1.2*

1A

30

50

200

420

6

5/6

38

100

25
63

500
100

2
1

0.7

1.2*

1A

30

50

200

420

6

5/6

38

160

25
100

500
100

2
1

0.7

1.2-

1A

30

50

200

420

6

5/6

38

250

25
40

500
100

2
1

0.7

1.2*

1A

30

50

200

420

6

5/6

39

400

25
40

500
100

2
1

0.7

1.2-

1A

30

50

200

420

6

5/6

39

100

25
63

500
100

2
1

0.7

1.2'

1A

30

50

200

420

6

5/6

39

160

20
40

1A
150

2
2

1.0

1.5*

1A

30

50

200

420

6

5/6 _.

38

375

20
40

1A
150

2
2

1.0

1.5*

1A

30

50

200

420

6

5/6

38

100

20
63

1A
150

2
2

1.0

1.5-

1A

30

50

200

420

6

5/6

38

160

20
100

1A
150

2
2

1.0

1.5'

1A

30

50

200

420

6

5/6

38

250

20
150

1A
150

2
2

1.0

1.5*

1A

30

50

200

420

6

5/6

38

375

20
40

1A
150

2
2

1.0

1.5*

1A

30

50

200

420

6

5/6

78

375

20
40

1A
150

2
2

1.0

1.5*

1A

30

50

200

420

6

5/6

78

100

-

D
Type
No.

PRO ELECTRON'SERIES(Continued)
Case
Style

VCES"
VCBO
IV)
Min

80376·10
80376-16
80376-25
80377
B0377-6
80377-10
80377-16

~
....

80377-25
80378
80378-6
80378-10
80378-16
80378-25
80379
80379-6

TO·126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
'TO-126
TO-126

50
50
50
75
75
75
75
75
75
75
75
75
75
100
100

VCEO
IVI

VEBO
IVI

Min

Min

45
45
45
60
60
60
60
60
60
60
60
60
60
80
80

ICES"
ICBO @ VCB
InA)
IVI
Max
2/lA
2/lA
~/lA

2/lA
2/lA
2/lA
2/lA
2/lA
2/lA
2/lA
2'/lA
2/lA
2/lA
2/lA
2/lA

45
45
45
60
60
60
60
60
60
60
60
60
60
80
80

HFE
IC
VCE
hfe
@lrnA)& IVI
1 kHz"
Min
Max

VBEISAT)
VCEISAT)
& VBEION)" @ Ic
IV)
IV)
IrnA)
Max
Min
Max

Cob
IpF)
Max

,fT'
IC
.IMHz)
@ 1m A)
Mm
Max

toff
Ins)
Max

NF
IdB)
Max

Test

Process

Conditions

No.

20
63

lA
150

2
2

1.0

1.5"

lA

30

50

200

420

6

5/6

78

160

20
100

lA
150

2
2

1.0

1.5"

lA

30

50

200

420

6

5/6

78

200

20
150

lA
150

2
2

1.0

1.5"

lA

30

50

200

420

6

5/6

78

375

20
40

lA
150

2
2

1.0

1.5"

lA

30

50

200

420

6

5/6

38

375

20
40

lA
150

2
2

1.0

1.5"

lA

30

50

200

420

6

5/6

38

100

20
63

lA
150

2
2

1.0

1.5"

lA

30

50

200

420

6

5/6

38

160

20
100

lA
150

2
2

1.0

1.5"

lA

30

50

200

420

6

5/6

38

250

20
150

lA
150

2
2

1.0

1.5"

lA

30

50

200

420

6

5/6

38

375

20
40

2
2

1.5"

lA

30

50

200

420

6

5/6

78

20
40

2
2

1.0

1.5"

lA

30

50

200

420

6

5/6

78

100

lA
150
'lA
150

1.0

375

20
63

lA
150

2
2

1.0

1.5"

lA

30

50

200

420

6

5/6

78

160

20
100

lA
150

2
2

1.0

1.5"

lA

30

50

200

420

6

5/6

78

250

20
150

lA
150

2
2

1.0

1,5"

lA

30

50

200

420

6

5/6

78

375

20
40

lA
150

1.5"

lA

30

50

200

420

6

5/6

39

20
40

lA
150

1.0

1.5"

lA

30

50

200

420

6

5/6

39

100

2
2
2'
2

1.0

375

TEST CONDITIONS:
(111,C = 200 /lA, VCE = SV, f = 1 kHz. (2) IC = 100 rnA, Vcc = 20V, 18 1 = 18 2 = 5 rnA. (311c = 200 !lA, VCE =2V, f;= 1 kHz. (411c = 100 rnA, Vcc = 10V, 18 1 = 18 2 = 10 rnA. (Sllc = 10 rnA, Vce = 3V,
18 ' = 18 2 = 1 rnA. (61 IC;= 100 !lA, VCE = SV, f = 1 kHz. (71 IC = 1 rnA, VCE = 10V, f = 200 ,kHz. (81 Ie = i rnA, VCE = SV, f = 1 kHz. (911c = 150 rnA, Vce = 6V, 18 I = 18 2 = 15 rnA. (1011C = 10 /lA,
VCE = 5V, f = W8.
,

. :

,
------

S9!J9S UOJI::'913 OJd

Pro Electron Series

~
Typo
No.

, PRO ELECTRON SERIES (Continued)
Case
Style

vCES'
VCBO
(VI
Min

B0379-10
B0379-16
B0379·25
B03S0
B03S0-6
B03S0-10
B03S0·16

~

B03S0·25
B0433

B0434

B0435

B0436

B0437

B043S

B0439

TO-126
TO-126
TO·126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126

TO-126

TO-126

TO-126

TO-126

TO-126

' TO-126

100
100
100
100
100
100
100
100
22t ,

22t

32 T

32 t

45t

45 t

60t

VCEO
(VI
Min

VEBO
(VI
Min

SO

2JlA

SO

2JlA

SO

2JlA
2JlA

SO
SO

2JlA

SO

2JlA

SO

2JlA
2JlA

SO
22

22

32

32

45

45

60

ICES'
ICBO @ VCB
(nAI
(VI
Max.

5

5

5

5

5

5

5

100JlA

100JlA

100JlA

100JlA

100JlA

100JlA

100JlA

SO
SO
SO
SO
SO
SO
SO
SO
22

22

32

32

45

45

60

HFE
V
VBE(SATI
VBE(ONI'
IC
hf.
IC
VCE 'CE(SATI
&
(VI
@ (mAl
(VI
1 kHz'
@ (mAl & (VI
Max
Min
Max
Min
Max

Cob
(pFI
Max

fT
IC
(MHzl
@(mAI
Min
Max

toff
(nsl
Max

NF
(dBI
Ma.

Tost
Conditions

Process

No,

20
63

lA
150

2
2

1.0

1.5"

lA

30

50

200

420

6

5/6

39

160

20
100

lA
150

2
2

1.0

1.5"

lA

30

50

200

420

6

5/6

39

250

20
150

lA
150

2
2

1.0

1.5"

lA

30

50

200

420

6

5/6

39

375

20
40

lA
150

2
2

1.0

1.5*

lA

30

50

200

420

6

5/6

79

375

20
40

lA
150

2
2

1.0

1.5"

lA

30

50

200

420

6

5/6

79

100

20
63

lA
150

2
2-

1.0

1.5"

lA

30

50

200

420

6

5/6

,79

160

20
100

lA
150

2
2

1.0

1.5"

lA

30

50

200

420

6

5/6

79

250

20
150

lA
150

2
2

1.0

1.5"

lA

30

50

200

420

6

5/6

79

375

2A
500
10

1
1
5

0.5

1.1"

2A

3

250

420

6

5/6

4E

475

2A
500
10

1
1
5

0.5

1.1"

2A

30

3

250

420

6

5/6

5E

475

2A
500
10

1
1
5

0.5

1.1"

2A

30

3,

250

420

6

5/6

4E

475

50
S5
40

2A
500
10

1
1
5

0.5'

1.1'

2A

30

3

250

420

6

5/6

5E

475

40
40
30

2A
500
10

1
1
5

0.6

1.2'

2A

30

3

250

420

6

5/6

4E

236

40
40
30

2A
500
10

1
1
5

0.6

1.2"

2A

30

3

250

420

6

5/6

5E

236,

25
40
20

2A
500
10

1
1
5

O.S

1.5'

2A

30

3

250

420

6

5/6

4E

236

50
S5
40
50
S5
40
50',
S5
40

~
Type
No.

PRO ELECTRON SERIES (Continued)
Case
Style

vCES'
VCBO
(V)

Min
B0440

B0441

B0442

fu

TO-126

TO·126

TO-126

60 t

BOt

BOt

VCEO
(V)

VEBO
(V)

Min

Min

60

5

BO

BO

5

5

ICES'
ICBO @ VCB
(nA)
(V)
Max
100/lA

100/lA

100/lA

60

BO

BO

HFE
hie
IC
VCE
@(mA)8< (V)
1 kHz·
Min
Max

,

VBE(SAT)
VCE(SAT)
8< VBE(ON)" @ IC
(V)
(mA)
(V)
Max
Max
Min

Cob
(pF)
Max

IT
IC
(MHz)
@(mA)
Min
Max

toll
(nsl
Max

NF
(dB)
Max

Test

Process

Conditions

No.

25
40
20

2A
500
10

1
1
5

O.B

1.5'

2A

BO

3

250

420

6

5/6

5E

236

15
40
15

2A
500
10

1
1
5

O.B

1.5'

2A

30

3

250

420

6

5/6

4E

236

15
40
15

2A
500
10

1
1
5

O.B

1.5"

2A

30

3

250

420

6

5/6

5E

236

B0533

TO-220

BOt

45

5

100/lA

45

25
40
20

2A
500
10

2
2
5

O.B

1.5'

2A

30

3

250

420

6

5/6

4E

B0534

TO·220

BOt

45

5

100/lA

45

25
40
20

2A
500
10

2
2
5

O.B

1.5*

2A

30

3

250

420

6

5/6

5E

B0535

TO·220

BOt

60

5

100/lA

60

25
40
20

2A
500
10

2
2
5

O.B

1.5'

2A

30

3

250

420

6

5/6

4E

B0536

TO·220

Bot

60

5

100/lA

60

25
40
20

2A
500
10

2
2
5

O.B

1.5"

2A

30

3

250

420

6

5/6

5E

B0537

TO·220

BOt

BO

5

100/lA

BO

15
40
15

2A
500
10

2
2
5

O.B

1.5"

2A

30

3

250

420

6

5/6

4E

I

I

I

B053B

TO·220

BOt

BO

5

100/lA

80

15
40
15

2A
500
10

2
2
5

0.8

1.5'

2A

30

3

250

420

6

5/6

5E

B0633

TO·220

45

45

5

2oo/lAt

45

25
40

lA
25

2
2

0.6

1.3'

lA

30

3

250

420

6

5/6

4F

B0634

TO-220

45

45

5

200/lAt

45

25
40

lA
25

2
2

0.6

1.3"

lA

30

3

250

420

6

5/6

5F

B0635

TO·220

60

60

5

200/lAt

60

25
40

lA
25

2
2

0.6

1.3'

lA

30

3

250

420

6

5/6

4F

TEST CONDITIONS:
(1) Ie = 200 /lA, VeE = 5V, I = 1 kHz. (2) Ie = 100 mA, Vec = 20V, IB 1 = IB2 = 5 mAo (3) Ie = 200 /lA, VeE = 2V, 1= 1 kHz. (4) Ie = 100 rnA, Vee = 10V, IB 1 = IB2 = 10 rnA. (5) Ie = 10 rnA, Vee = 3V,
IB 1 = IB2 = 1 rnA. (6) Ie = 100 /lA, VeE = 5V, f = 1 kHz. (7) Ie = 1 rnA, VeE = 10V, f = 200 kHz. (8) Ie = 1 rnA, VeE = 5V, f = 1 kHz. (9) Ie = 150 rnA, Vee = 6V, IB 1 = IB2 = 15 rnA. (10) Ie = 10 /lA,
VeE = 5V, f = WB.

-

._--

--- - - - - - - -

salJas uOJI:»aI3 OJd

Pro Electron Series

~.
Tvpe
No.

Case
Style

VCES"
VCBO
(V)
Min

BD636

TO-220

60

60

5

200 fol At

60

BD637

TO·220

100

BO

5

200folAt

100

B0638

'!'
~

PRO ELECTRON SERIES (Continued)

TO-220

...

100

VCEO
(V)
Min

VEBO
(V)
Min

80

5

ICES"
ICBO @ VCB
(nA)
(V)
Max

200folAt

100

"

HFE
hIe
IC
1-kHz* @ (mA) &
Max
Min

.-

VCE
(V)

VBE(SAT)
VCE(SAT)
& VBE(ON)* @
IC
(V)
(V)
(mA)
Max
Min
Max

Cob
(pF)
Max

IT
IC
(MHzI
@ (mA)
Max
Min

(ns)

NF
(dB)

Max

Max'

toll

Test
Conditions

Process
No.

25
40

1A
25

2
2

0.6

1.3*

1A

30

3

250

420

6

5/6

5F

25

1A
25

.2
2

0.6

1.3"

1A

30

3

250

420

6

5/6

4F.

40
25
40

lA
25

2
2

0.6

1.3

1A

30

3

250

420

6

5/6

5F

B0675

TO·126

45

200.folA

45

750

1.5A

3

2.5

2.S*

1:SA

1

l.SA

4J

80675A

TO-l;16

45

iOPfolA

4S

7S0

2A

3

2.B

2,S*

2A.

1

1.SA

4J

81:)676

TO·126

4S

200folA

4S

7S0

1.SA

3V

2.5

2.S"

1,SA

1

l.SA

SJ

B0676A

1'0-126

45

200folA

45

750

2A

3V

2.8

.2.5*

2A

1.5A

SJ

B0677

TO-126

60

200folA

60

7S0

1.5A

3V

2.5

2.S*

1.5A

1
-1

1.5A

4J

B0677A

TO-126

60

200folA

60

750

2A

3V

2.8

2.5*

2A

1

1.5A

4J

B067B

TO-126

60

200folA

60

750

1.5A

3V

2.5

2.5*

1.5A

1

1.5A

5J

B067BA

TO-126

60

B0679

TO-126

80
..

200folA

60

7S0

2A

3V

2.8

1

1.SA

SJ

80

7S0

1.5A

3V

2.S

2.S*
..... 2:S*

2A

200folA

1.SA

1

1.SA

4J

80679A

TO-126

80

200folA

80

7S0

2A

3V

2.8

2.S*

2A

1

1.SA

4J

B0680

TO-126 .

80

200folA

80

7S0

1.SA

3V

2.S

2.S*

1.SA

1

1.SA

SJ

80680A

TO-126

80

200 folA

80

7S0

2A

3V'

2.8

2.S*

2A

1

1.SA

SJ

80681

TO·126

100

200folA

100

7S0

1.SA

3V

2.S

2.S*

1.SA

1

1.5A

4J

. 7S0

B0682

TO-126

200folA

100

1.5A

3V

2.5

2.S"

1.SA

1

1.5A

SJ

B0733

TO-220

25

2S

100
5

200 folAt

25

SO
40

2A
20

1
4

0.6

1;1*

2A

1

1.SA

4F

Bo734

TO-220

2S

25

5

200 folAt

2S

50
40

2A
20

1
4

0.6

1.1*

2A

1

1.5A

5E

Bo73S

TO-220

35

3S

S

200 folAt

3S

40
40

2A
20

1
4

0.6

1.1'

2A

1

1.5A

4F

Bo736

TO-220

35

3S

5

200 folAt

35

40
40

2A
20

1
4

0.6

1.1*

2A

1

1.SA

5E

Bo737

TO-220

45

45

5

200 folAt

4S

40
40

2A
20

1
4

0.8

1.1*

2A

1

1.SA

4F

80738

TO-220

45

45

5

200 folAt

45

40
40

2A
20

1
4

0.8

1.1*

2A

1

1.5A

5E

80795

TO-220

45

100

45

40
25

1A
3A

2
2

1.0

1.6*

3A

3

250

4E

B0796

TO-220

45

100

45

40
25

1A
3A

2
2

1.0

1.6*

2A

3

250

5E

80797

TO-220

60

100folA

60

40
25

1A
3A

2
2

1.0

1.6*

3A

3

250

4E

---

~

PRO ELECTRON SERIES (Continued)

Type
No.

~

Case
Style

VCES'
VCBO
(V)
Min

vCEO
(V)
Min

VEBO
(V)
Min

ICES'
ICBO @ VCB
(nA)
(V)
Max

HFE
IC
VCE
hie
@ (rnA) &
(V)
1 kHz*
Min
Max

VBE(SATl
VCE(SATl
& VBE(ON)' @
IC
(V)
(V)
(rnA)
Max
Min
Max

Cob
(pF)
Max

IT
IC
(MHz)
@ (rnA)
Min
Max

toll
(ns)
Max

NF
Test
(dB)
Conditions
Max

Process
No.

B079S .

TO·220

SO

100 "A

SO

40
25

lA
3A

2
2

1.0

1.6*

3A

3

250

5E

B0799

TO·220

SO

100"A

SO

30
15

lA
3A

2
2

1.0

1.S*

3A

3

250

4E

BOSOO

TO·220

SO

100"A

SO

30
15

lA
3A

2
2

1.0

1.6*

3A

3

250

5E

BOSOI

TO·220

100

100 "A

100

30
15

lA
3A

2
2

1.0

1.S·

3A

3

250

4E

B0802

TO-220

100

100"A

100

30
15

lA
3A

2
2

1.0

1.S·

3A

3

250

5E

BOS95

TO·220

45

200 "A

45

750

3A

3

2.5'

3A

1

3A

4K

BOS95A

TO·220

45

200 "A

45

750

4A

3

2.5*

4A

1

3A

4K

B0896

TO-220

45

200 "A

45

750

3A

3

2.5'

3A

1

3A

5K

BOS96A

TO·220

45

200 "A

45

750

4A

3

2.5*

4A

1

3A

5K

B0897

TO·nO

60

200 "A

SO

750

3A

3

2.5'

3A

1

3A

4K

BOS97A

TO·220

SO

200 "A

SO

750

4A

3

2.5*

4A

1

4A

4K

BOS9S

TO·220

SO

200 "A

SO

750

3A

3

2.5'

3A

1

3A

5K

B0898A

TO·220

SO

200 "A

60

750

4A

3

2.5'

4A

1

4A

5K

B0S99

TO-220

SO

200 "A

80

750

31'

3

2.5*

3A

1

3A

4K

B0899A

TO-220

SO

200 "A

80

750

4A

3

2.5'

4A

1

4A

4K

B0900

TO-nO

SO

200 "A

80

750

3A

3

2.5*

3A

1

3A

5K

B0900A

TO·220

80

200 "A

80

750

4A

3

2.5'

4A

1

4A

5K

B0901

TO·220

100

200 "A

100

750

3A

3

2.5*

3A

1

3A

4K

B0902

TO-220

100

750

4A

3

2.5*

4A

1

4A

4K

TO·220

45

200 "A
1 rnA

100

BOX33

45

750

4A

3

2.5'

4A

20

lA

4K

BOX33A

TO·220

60

1 rnA

60

750

4A

3

2.5*

4A

20

lA

4K

BOX33B

TO·220

80

lmA

SO

750

3A

3

2.5*

3A

20

lA

4K

BOX33C

TO·220

100

lmA

100

750

3A

3

2.5*

31'

20

lA

4K

BOX330

To-no

120

1 rnA

120

750

3A

3

2.5'

3A

20

lA

4K

BOX34

TO-220

45

1 rnA

45

750

4A

3

2.5*

4A

20

lA

5K

BOX34A

TO·220

60

1 rnA

60

750

4A

3

2.5*

4A

20

lA

5K

BOX34B

TO·220

SO

1 rnA

SO

750

3A

3

2.5'

3A

20

lA

5K

TEST CONOITIONS:
(1) Ie = 200 "A, VeE = 5V, f = 1 kHz. (2) Ie = 100 rnA, Vee = 20V, IB 1 = IB2 = 5 rnA. (3) Ie = 200 /-lA, VeE = 2V, 1= 1 kHz. (4) Ie = 100 rnA, Vee = 10V, IB 1 = IB2 = 10 rnA. (5) Ie = 10 rnA, Vee = 3V,
IB 1 = IB2 = 1 rnA. (S) Ie = 100 /-lA, VeE = 5V, I = 1 kHz. (7) Ie = 1 rnA, VeE = 10V, I = 200 kHz. (S) Ie = 1 rnA, VeE = 5V, I = 1 kHz. (9) Ie = 150 rnA, Vee = SV, IB 1 = IB2 = 15 rnA. (10) Ie = 10 "A,
VeE = 5V, 1= WB.

---------

savas UOJt38Il .Jed

Pro Electron Series

~

VCES'
VCBO(V)
Min

ICES'
ICBO@ VCB
(nA)
(V)
Max

HFE
.
Ic
VCE
hfe
1 kHz' @ (mA) & (V)
Min Max

100

lmA

100

750 •

3A

3

2.5'

3A

20

lA

120

120

750

3A

3A

20

lA

30

26

4

~
10

2.5'

4

lmA
lOOt

,0.84*

4

20

3

100

20

13
6

2
12

10
7

41

20

3

100

20

13
6

2
12

10
7

41

VCEO
(V)

VEBO·
(V)
Min

Cob
(pF)
Max

fT
IC
(MHz)
@ (mA)
Min Max

toff
(ns)
Max

NF
Test
(dB)
Conditions
Max

Case
Styl.

BDX34C

TO-220

BOX340

TO·220

BF167

TO-72
(28)

40

30

BF180

TO-72
(25)

30

BF181

TO·72
(25)

30

BFI94

TO-92
(981

Same as BF254, see page 5-33 for explanation

46

TO-92
(98)

Same as BF255. see page 5-33 for explanation

46

BF196

TO-92
(98)

Same as BF198,.see below for explanation

45

BF197

TO-92
(98)

Same as BF199, see below"for explanation

B·F198

TO-92
(98)

40

30

4

100

40

26
6

4
12

10
7

BF199

TO-92
(98)

40

25

4

100

40

36
6

7
12

10
7

BF200

TO-72
(25r

30

20

3

100

40

15
6

3
12

10
7

BF233-2

TO-92

30

30

4

100

10

40
6

70

1
12

10
7

0.65

0.74"

1

1.0

150

1

49

,

Min

(96)

Process
No.
5K
5K
45

,

47
0.85'

4

45
1100 typ

7

47
41

BF233-3

TO-92
(96)

30

30

4

100

10

60
6.

100

1
12

10
7

0.65

0.74'

1

1.0

150

1

49

BF233-4

TO-92
(961

30

30

4

100

10

150

1
12

10
7

0.65

0.74'

1

1.0

150

1

49

BF233-5

TO-92

30

30

4

100

10

90
6
140
6

220

1
12

10
7

0.65

0.74"

1

1.0

150

1

49

(96)

BF237

TO-92
(981

45

30

'4

100

20

0.25

10

47

BF238

TO-92
(98)

45

30

4

100

20

0.25

10

47

BF240

TO-92
(98)

40

40

4

100

20

TO-92
(98)

40

BF241

.

VBE(SAT)
VCE(SAT)
& VBE(ON)' @ IC
(V)
(V)
(mA)
Max
Min Max

Typ.
No.

8F195

~

PRO ELECTRON SERIES (Continued)

40

4

100

20

67
6

222

36
6

125

1
12

10
7

0.65

1
12

10
7

0.65

-

0.74"

1

0.34

1

3.5

7

i

47
I

-

0.74"

-

1

0.34

1

3.5

7

47

~

(J1

8

PRO ELECTRON SERIES (Continued)
VCES"
VCBO
(V)
Min

vCEO
(V)

VEBO
(V)
Min

ICES"
ICBO
(nA)

HFE
IC
VCE
hie
@ (mAl &
(VI
1 kHz*
Min
Max

VBE(SAT)
VCE(SAT)
& VBE(ONI' @
IC
(V)
(V)
(mA)
Max
Min
Max

Cob
(pF)
Max

IT
Ie
(MHz)
@ (mA)
Min
Max

'off
(ns)
Max

NF
Test
(dB)
Conditions
Max

Process
No.

Type
No.

Case
Style

8F254

TO-92
(98)

30

20

5

100

20

67
6

220

1
12

10
7

0.65

0.74"

1

0.34

1

3.5

7

46

8F255

TO·92
(981

30

20

·5

100

20

36
6

125

1
12

10
7

0.65

0.74'

1

0.34

1

3.5

7

46

BF257

TO-39

100

100

5

50

100

25
6

30
12

10
7

1.0

0.65

0.74"

30

0.34

1

3.5

7

48

8F258

TO-39

250

250

5

50

200

25
6

30
12

10
7

1.0

0.65

0.74"

30

0.34

1

3.5

7

48

BF259

TO-39

300

300

5

50

250

25
6

30
12

10
7

1.0

0.65

0.74*

30

0.34

1

3.5

7

48

BF457

TO-126

100

100

5

50

100

25
6

30
12

10
7

1.0

0.65

0.74"

30

0.34

1

3.5

7

48

BF458

TO-126

250

200

5

50

200

25
6

30
12

10
7

1.0

0.65

0.74*

30

0.34

1

3.5

7

48

BF459

TO-126

300

300

5

50

250

25
6

30
12

10
7

1.0

0.65

0.74"

30

0.34

1

3.5

7

48

8FX13

TO-18

20

15

5

50

15

10
50
18

100
10
1

2
0.35
2

0.2
0.25
1.5

0.78
0.9
1.5

1
10
100

6

10

10

8

66

0.7

40
50
50
40
20

150
50
10
1
0.1

10
10
10
10
10

10
20
50
40

150
50
10
1

0.4
0.4
0.4
0.4

10
1
0.1
0.01

5
5
5
5

10
1
0.1
0.D1

5
5
5
5

8FX29

8FX30

8FX37

8FX65

TO-5

TO-5

TO-18

TO-18

20

65

60

45

Min

15

65

60

45

5

5

6

6

@

VCB
(V)

Max

50

50

20t

10*

50

50

50

40

100
100
0.85
70
100
'100
100
40

250

200

300

1.3
0.9

150
30

0.9
1.3

30
150

0.4

1.0

50

0.25

0.9

10

0.25

0.9

10

I

I
I

12
0.4

150

100

50

12

6

40

150

9

63

~90

4

63

3

1

62

3

1

62

0.5

6.5

TEST CONDITIONS:
(11 Ie ~ 200 /lA, VeE ~ 5V, I ~ 1 kHz. (2) Ie ~ 100 rnA, Vee ~ 20V, 18 1 ~ 182 ~ 5 rnA. (31 Ie ~ 200 /lA, VeE ~ 2V, I ~ 1 kHz. (41 Ie ~ 100 rnA, Vee ~ 10V, 18 1 ~ 182 ~ 10 rnA. (51 Ie ~ 10 rnA, Vee ~ 3V,
18 1 ~ 18 2 ~ 1 rnA. (6) Ie ~ 100 /lA, VeE ~ 5V, f ~ 1 kHz. (7) Ie ~ 1 rnA, VeE ~ 10V, f ~ 200 kHz. (8) Ie ~ 1 rnA, VeE ~ 5V, I ~ 1 kHz. (9) Ie ~ 150 rnA, Vee ~ 6V, 18 1 ~ 18 2 ~ 15 rnA. (10) Ie ~ 10 /lA,
VeE ~ 5V, f ~ W8.
-

--

--

--

sapas UOJIOal3 OJd

Pro Electron Series

~

PRO ELECTRON SERIES (Continued)
VCES'
VCBO
(V)

ICES'
ICBO
(nA)
Max

VBE(SAT)
VCE(SATl
& VBE(ON)*
(V)
(V)
Max
Min
Max

Min

Min

45

45

6

500

100

15
20
30
20

lA
500
150
10

10
10
10
10

0.15
0.35
1.0
1.6

1.2
1.3
1.5
2.0

10
150
500
lA

12

50

50

TO-39

45

45

6

50

80

15
30
70
50

lA
500
150
10

10
10
10
10

0.15
0.35
1.0
1.6

1.2
1.3
1.5
2.0

10
150
500
lA

12

50

TO-39

45

45

6

50

30

15
30
70
50

lA
500
150
10

10
10
10
10

0.15
0.35
1.0
1.6

1.2
1.3
1.5
2.0

10

12

150
500
lA

25
40
40

10
10
10
10

0.4

1.3
0.9

150
30

40

500
150
10
1

25
40
40
40

500
150
10
1

10
10
10
10

0.4

1.3
0.9

150
30

BFX84

TO-39

BFX85

BFX86

@

VCB
(V)

@
1 kHz*
Min
Max

Ic
VCE
(rnA) & (V)

@

IC
(rnA)

Cob
(pF)
Max

fT
(MHz)
Max
Min

VEBO
(V)

Case
Style

Min

toff
(ns)
Max

NF
(dB)
Max

Test
Conditions

Process
No.

360

9

14

50

360

9

14

50

50

360

9

14

12

100

50

150

9

63

12

100

50

150

9

63

@

IC
(rnA)

BFX87

TO-5

45

50

6

50

40

BFX88

TO-5

45

40

6

50

30

BFY39

TO-18

45

25

5

50

30

35

400

10

10

1.0

1.0

10

150

10

23

BFY39-1

TO-18

45

25

5

50

30

35

110

10

10

1.0

1.0

10

150

10

23

BFY39-2

TO-18

45

25

5

50

30

100

200

10

10

1.0

1.0

10

150

10

23

BFY39-3

TO-18

45

25

5

50

30

180

400

10

10

1.0

1.0

10

150

10

BFY50

TO-18

80

35

6

500

80

20
30
20
15

10
150
500
lA

10
10
10

0.1

1.2

10

12

60

50

360

9

14

BFY51

TO-39

60

30

6

500

60

30
40
25
15

10
150
500
lA

10
10
10
10

0.1

1.2

10

12

60

50

360

9

14

BFY52

TO-39

40

20

6

500

60

30
60
30
15

10
150
500
lA

10
10
10
10

0.1

1.2

10

12

60

50

360

9

14

15
20
30

1
500
150

10
10
1

0.3

1.5

150

1.2

2.5

lA

01

~

HFE
hfe

VCEO
(V)

Type
No.

BFY56

TO-39

80

45

5

50

50

150

23

10

i

25

40

50

14

---

II
Type
No.

Case
Style

vCES·
VCBO
(V)
Min

BFY72

TO·39

50

SFY76

TO-18

SSX21

TO·18 ,

BSX45-6

TO·39

SSX45-10
SSX45-16

z;

PRO ELECTRON SERIES (Continued)

SSX46-6

TO·39
TO·39
TO·39

VCEO
(V)

Min

VEBO
(V)
Min

28

5

45

45

6

80'

80
40

7

80'
80'
100'

40
40
60

7
7
7

ICES'
ICBO @ VCB
(nA)
(V)
Max
40'

20

HFE
IC
VCE
hie
@(rnA)8o (V)
1 kHz·
Min
Max
15
20
30
40
15

20

30

500

50

20

10"

60

40

60

10'
10'

60

10'

60

30
80
140

63
100
40

150
200

100
160
250
100

VBE(SAT)
VCE(SAT)
& VBE(ON)· @
IC
(V)
(V)
(rnA)
Max
Min
Max

0.1
1
10
150
500

10
10
10
10
10

0.25

1.2

0.7

1.6

0.01
0.5
1

5
5
5

0.35

4

3

100

1

100
100
100

1
1
1

BSX46·16

TO-39
TO·39

100'
100'

60
60

7
7

10'

60

10'

60

63
100

160
250

100
100

1
1

Mm

8

50

IT
.(MHZ)

I

@

(rn~)

Max

toll
(ns)
Max

NF
(dB)
Max

Test
Conditions

Process
No.

50

19

500
1

6

0.9

4

60

4

07

20

60

50

14

2.0

500
lA
500
lA

20

60

50

14

2.0

500
lA

20

60

50

14

2.0

500
lA

25

60

50

12

2.0

500
lA

25

60

50

12

2.0

500
lA

25

60

50

12

2.0

1.0
1.0
1.0
1.0

01

BSX46·10

150

Cob
(pF)
Max

1.0
1.0

BSX48

TO·1S

50

25

5

120

50

17

100

1

1.5

1.5

500

6

250

30

19

BSX88

TO·18

40

15

5

25

20

15

0.5

1

0.5

0.72

0.8

10

6

300

10

21

BSY38

TO·18

20

12

5

100

20

30
15

60
45

10
100

0.35
1

0.25
0.6

0.7

0.85
1.5

10
100

5

200

10

45

16

21

BSY39

TO·1S

20

12

5

100

20

40
20

120
70

10
100

0.35
1

0.25
0.6

0.7

0.85
1.5

10
100

5

200

10

45

16

21

BSY51

TO'lS

60

35

5

100

30

40

120

150

10

1.0

1.3

150

9

130

50

19

BSY52

TO·1S

60

25

5

100

30

100

300

150

10

1.0

1.3

150

9

130

50

19

BSY53

TO-IS

75

30

7

10

60

20
35
40
20

0.1
10
150
500

10
10
10
10

0.6

1.3

150

9

150

50

19

120

2.0

500

TEST CONDITIONS:
(1) Ie = 200 !lA, VeE = 5V, f = 1 kHz. (2) Ie = 100 rnA, Vee = 20V, 18 1 = 18 2 = 5 rnA. (3) Ie = 200 !lA, VeE = 2V, f = 1 kHz. (4) Ie = 100 rnA, Vee = 10V, IS 1 = IS2 = 10 rnA. (5) Ie = 10 rnA, Vee = 3V,
IS 1 = Is2 = 1 rnA. (6) Ie = 100 !lA, VeE = 5V, 1= 1 kHz. (7) Ie = 1 rnA, VeE = 10V, f = 200 kHz. (8) Ie = 1 rnA, VeE = 5V, f = 1 kHz. (9) Ie = 150 rnA, Vee = 6V, IS 1 = Is2 = 15 rnA. (10) Ie = 10 !lA,
VeE= 5V, I = WB.

-

sa!Jas UOJI:>9a OJd

Pro Electron Series:
PRO ELECTRON SERIES (COot,,,,,,

"

Case
Style

Type
No.

VCES'
VCBO
(VI

VCEO
(VI
Min

VEBO
(VI
Min

Min
BSY54

TO-18

BSY95A

TO-18

75

20

ICES'
ICBO @ VCB
(nAI
(VI

Max
30

15

7

5

10

50

HFE
hie
1 kHz'

Min
60

16

35
75
100
4Q
30
50

@

IC & VCE
(mAl
(VI

VCE(SAT)
VBE(SAT!
I
(VI
& VBE(ONI @
C
Max
. (VI
(mAl

Max

300

200

Mm
0.1
10
150
500

10
10
10
10

0.6

1
10

0.35
0.35

0.35.

Cob
(pFI
Max

IT
I
toff
(MHzl
@
C
(nsl
Min
Max. (mAl Max

NF
(dBI
Max

Test
..
Cond,t,ons

Process
No.

Max
1.3

2.0

150

9

150

50

19

6

200

10

21

50
0.67

0.87

10

TEST CONDITIONS:
(1) IC ~ 200 /lA, VeE ~ 5V, I ~ 1 kHz. (21 Ie ~ 100 rnA, Vee ~ 20V, Is 1 ~ IS2 ~ 5 rnA. (3) Ie ~ 200 /lA,VeE ~ 2V, I ~ 1 kHzc (4) Ie ~ 100 rnA, Vee ~ 10V;IS 1 ~ Is2 ~ 10 rnA. (Slle ~ 10 rnA, Vee ~ 3V,
IS 1 ~ IS2 ~ 1 rnA. (6) Ie ~ 100 /lA, VeE ~ 5V, f ~ 1 kHz. (7) Ie ~ 1 rnA, VeE ~ 10V, f ~ 200 kHz. (8) Ie ~ 1 rnA,VeE ~ 5V, I ~ 1 kHz. (9) Ie ~ 150 rnA, Vee ~ 6V, IS 1 ~ Is2 ~ 15 rnA. (10) Ie ~ 10 /lA,
VeE

~

5V, I

~

ws.

~

I

~
Type No.

~

PRO ELECTRON SERIES (JFET)
Case

Style

BVGSS
IGSS
BVGOO
lOGO
(V)@IG (nA)@VGO
Min (I'A) Max (V)

Vp

VGS
10
(V) @VGS 10
(V)
@ VOS (nA)
Min Max (V) (I'A)
(V)
Min Max

Crss
Re(YFS)
loss
Ciss
VGS
(rnA) @VOS (mmho)@
f
(pF)@VOS
(pF)@VOS VGS
(V)
(V)
Typ (V)
Min Max (V) Min Max (MHz) Typ (V)

NF
(dB) @ RG
e n"
Max

Typ

= 1k
f

(Hz)"
(MHz)

Process Pkg.

No.

No.

BF244A

TO·92

30

1

5

20

.5

8

15

10

.4

2.2

15

200

2

6.5

15

3

6.5

.001

4

20

-1

1.1

20

-1

1.5

100

50

74

BF244B

TO·92

30

1

5

20

.5

8

15

10

1.6

3.8

15

200

6

15

15

3

6.5

.001

4

20

-1

1.1

20

-1

1.5

100

50

74

BF244C

TO·92

30

1

5

20

.5

8

15

10

3.2

7.5

15

200

12

25

15

3

6.5

20

-1

1.1

20

-1

1.5

100

50

74

TO·92

30

1

5

20

.5

8

15

10

.4

2.2

15

200

2

6.5

15

3

6.5

.001
.001

4

BF245A

4

20

-1

1.1

20

-1

50

77

BF245B

TO-92

30

1

5

20

.5

8

15

10

1.6

3.8

15

200

6

15

15

3

6.5

.001

4

20

-1

1.1

50

77

TO·92

30

1

5

20

.5

8

15

10

3.2

7.5

15

ioo

12

25

15

3

6.5

.001

4

20

-1

1.1

20
20

-1

BF245C

-1

50

77

BF246A

TO·92

25

1

5

15

.6

14.5

15

10

1.5

4.0

15

200

30

80

15

8

.001

11

15

a

3.5

15

51

74

BF246B

TO-92

25

1

5

15

.6

14.5

15

10

3.0

7.0

15

200

60

140

15

BF246C

TO·92

25

1

5

15

.6

14.5

15

10

5.5

12

15

200

110

BF247A

TO·92

25

1

5

15

.6

14.5

15

10

1.5

4.0

15

200

30

BF247B
BF247C

TO·92

25

1

5

15

.6

14.5

15

10

3.0

7.0

TO·92

25

1

5

15

.6

14.5

15

10

5.5

BF256A

TO·92

30

1

5

20

BF256B

TO-92

30

1

5

BF256C

TO·92

30

1

5

BC264A

TO·92

30

1

10

20

.5

15

10

BC264B

TO·92

30

1

10

20

.5

15

10

BC264C

TO·92

30

1

10

20

.5

15

BC2640

TO·92

30

1

10

20

.5

15

8

.001

11

15

a

3.5

15

15 8

.001

11

15

3.5

15

15

.001

11

15

3.5

15

15 200

60

80
140

.001

11

15

15

200

110 250

15

.001

11

15

15

.5

7.5

15

200

3

15

8
4.5

3.5
3.5

15

12

a
a
a
a

a
a
a
a
a
a

.001

.7

20

-1

7.5

20

.5

7.5

15

200

6

13

15

4.5

.001

.7

20

-1

20

.5

7.5

15

200

11

18

15

4.5

.001

.7

20

-1

.2

1.2

15

1000

2

4.5

15

2.5

.001

4.0

15

-1

1.2

15

.4

1.4

15

1500

3.5

6.5

15

3.0

.001

4.0

15

-1

1.2

15

10

.5

1.5

15

2500

5.0

8.0

15

3.5

.001

4.0

15

-1

1.2

10

.6

1.6

15 3500

7.0

12.0

15

4.0

.001

4.0

15

-1

1.2

250

7

15

8
8

51

74

51

74

51

77

51

77

51

77

800

50

77

7.5

800

50

77

7.5

800

50

77

-1

40"

10'

50

77

-1

40'

10'

50

77

15

~1

40'

10'

50

77

15

-1

40'

10'

50

77

dfJ9S UG4:)813 OJ"

Section 6

Consumer Series

Consumer Series

~
Type
No.

Case
Style

VCES'
VCBO
IVI
Min

VCEO
IVI
Min

VEBO
IVI
Min

ICES'
ICBO @ VCB
InAI
IVI
Max

HFE
hfe
IC
@ ImAi &
1 kHz*
Min
Max

VCE
IVI

VBEISATl
VCEISAT)
& VBEIONI' @
IC
IVI
IVI
ImAI
Max
Min. Max

Cob
IpFI
Max

fT
IC
IMHzl
@ ImAI
Min
Max

toff
Insl
Max

NF
IdB)
Max

Test
Condition

Process

No.

CS9011

TO·92
1921

20

18

3

50

18

28

198

1

5

1.0

1

CS9012

TO·92
1921

25

25

3

500

18

64

350

50

1

1.0

250

60

CS9013

TO·92
1921

25

25

3

500

18

64

350

50

1

1.0

250

09

CS9014

TO·92
1921

20

18

3

50

18

60

600

1

5

0.5

1

04

CS9015

TO·92
(92)

20

18

3

50

18

60

600

1

5

0.5

1

71

CS9016

TO·92
1921

20

20

3

50

18

28

146

1

5

3

CS9018

TO-92
1921

20

12

2

50

15

28

146

1

5

0.6

ED1402

TO-92
1921

35

30

4

10

10

110

810

2

5

ED1502

TO-92
(92)

25

20

4

10

10

36

210

1

10

ED1602

TO-92
(92)

35

30

4

10

10

70

475

2

5

ED1702

TO-92
(92)

30'

25

5

100'

20

40
106

0.5A
100

1
1

0.4

300

TO-92
1921

30'

40
106

0.5A
100

1
1

0.4

300

OJ

r\>

CONSUMER SERIES

ED1802

25

5
-

1. __ -

___

100'
-- - - -

20
-

1

3.5

10

27

1.6

44

10

43
10
250

5

--------

1

62
37

500
----

07
46

10
500

1

77
-

-

~

CONSUMER SERIES (Continued)
HFE BINS

B

e

F

G

H

39-60

54-80

72-108

97-146

132-198

64-91

78-112

96-135

118-166

144-202

180-350

64-91

78-112

96-135

118-166

144-202

180-350

28-45
28-45

39-60
39-60

54-80
54-80

72-108

97-146

410-810
105-210

0

E

eS9011

28-45

e59012
C59013

A

C59014
C59015

60-150

100-300

200-600

60-150

100-300

200-600

CS9016
CS9018
ED1402
ED1502

110-165
36-55

150-225

202-318

290-450

48-75

66-100

ED1602

70-105

90-140

125-190

84-127
170-260

I

K

L

M

N

106-150

132-188

106-150

132-188

170-233
170-233

213-300
213-300

72-108

223-475

ED1702
ED1802
Note: Orders must contain at least two adjacent bins.

(J)

w

- -

-

S9IJ9S J9WnSUOO

'.

Section 7

NA/N BIN R Series

~NatiOnal

Semiconductor
NAI NB TRANSISTOR SERIES SELECTION GUIDE

GENERAL DESCRIPTION

a-

S

.~

o
c

f!

ICO
Z
"-

The NA series of transistors are complementary power series which provide minimum collector saturation voltages at low drive
conditions and feature matched HFE, guaranteed VBE (on), VBE (sat), VCE (sat), etc, for estimating circuit performance at
limit conditions. They are ideal for use with the N B series in complementary audio power amplifier applications. In addition,
the collector breakdown voltages range from 20 to 60 Volts, which allows great flexibility in other power applications, such
as converters/inverters, 'servo amplifiers, etc. The NB series of transistors are complementary general·purpose devices which
cover a wide range of applications from low·noise equalizer preamplifiers to 1.5 Amp class B drivers. This series provides low
leakage, low VCE (sat), high HFE and three different types of collector breakdown voltages (35, 50 and 65 Volts) for multipurpose usage and total flexibility.

NA - APPLICATIONS

NB - APPLICATIONS

to 25 Watts fu lIy complementary
• 0.1
audio power amplifiers

•

•

Low noise equalizer preamplifiers

A general purpose amplifiers
• Class
B drivers
• Class
• Oscillators
circuits
• Control/Switching
Display/line drivers
• Servo
amplifiers
•

Converters/I nverters

• Power control circuits
regulators
• Switching/linear
High current switching circuits
• Servo
amplifiers
•



o

Tc = 25°C

~

SYMBOL

PARAMETER
Collector-Emitter
Sustaining Voltage

RVCEO

TYP

MIN

CONDITIONS

MAX

V

20

Ic = 1 mA

UNIT

Z

"'C

Z

~

Bllc80

Collector-Base
Breakdown Voltage

Ic=100J-LA

25

V

BVE80

Emitter-Base
Breakdown Voltage

IE = 10J-LA

5

V

ICEO

Collector-Emitter
Leakage Current

VCE ; 15V

100

J-LA

IC80

Collector-Base
Leakage Current

VC8; 20V

1

IJA

VSE (on)

Base-Emitter Voltage

Ic;10mA,VCE;3V

680

730

mV

VSE (sat)

Base-Emitter
Saturation Voltage

IC = 500 mA, 18 = 50 mA

0_95

1.5

V

VCE (sat)

Collector-Emitter
Saturation Voltage

IC = 500 mA, 18 ; 50 mA

0_2

0_5

V

Cob

Collector Output Capacitance
NPN types
PNP types

Ve8; 10V, f; 1 MHz

Current Gain Bandwidth
Product

Ic; 100 mA, VCE ; 3V

ft

@]. HFE

PARAMETER

G
H
I

QC
DC
DC
DC
DC
DC

J
X

y

~

Current
Current
Current
Current
Current
Current

Gain
Gain
Gain
Gain
Gain
Gain

physical dimensions

630

50

4_5
7_0

pF
pF

200

MHz

CONDITIONS
Ic =
Ic =
Ic =
Ie;
Ic =
Ic =

100 mA, VeE;
100 mA, VCE .;
100 mA, VCE ;
100 mA, VeE =
100 mA, VeE;
100 mA, VeE;

[2J

3V
3V
3V
3V
3V
3V

MIN

TYP

MAX

RATIO

68
100
140
200
30
100

85
127
180
260

110
160
240
350
110
350

1: 1.6
1 :1.6
1:1.6
1: 1.6
1 :3.5
1:3.5

58
190

max power dissipation

TO-92
~

..L
.185
. 115

-----1
I
I

,

.-.
.
"

[0

,,

T

:8~~~-

.594

tvo

L

,018 typ

,.:.

'~:"i-..-

:g:~ -

-

I
I

.

)( 1.2

E

c 1.0

e.
z

c 0.8
~

~ 0.6

--,

.135

;g:g

l>

o
N

"'C

Z

groupings

GROUPING

Z

i:i
i5

'w~"'

0.4

...c

0.2

:::>

0

.:Ii!
:Ii!

X

:i
7-5

~V T = CAfE TE1MPE,ATU,E
T = ~MBI~NT iEMP~RATURE
"'-K ~
~
"""" ~

I"

25

50

'"

75

100 125

150 175

TEMPERATURE (T) - - DC

200

"'C

~

Q.

Z

-~
Q.

r-------------------------------------------------------__________________________--,

00 typical

performance characteristics

N

Z

I
I

~

Z

-~,..
Z

Z

dc safe operating area

c(

...

Q.

u..
"I
I

SOA

I2

I
1 !:::==

~
a::

0.5

<.>

0.2

::>

I

20

.......

o

0.1
0.05

8

0.02

t;

...J
...J

30

<.>

20 ~

~

C3

1""0

f

~

...........

3

a::

·2

o

t;
W

0.5

...J

5

2

10

20 30

COLLECTOR TO EMITTER VOLTAGE (VCE) - - V

0.1

2

w
u..

::::;
c(

::E

a::
0
2

0.5

l'~l'

......

~~

.l
~

~
a::

2

:J:

~

0
W
N

Pil'p i-'---

::::;

r---l'~l'

c(

0.3

0
2

0.2
0.1

0.02

0.05

0.1

0.2

0.5 O.B 1

2

0.01

I

I

TEST TIME = 300j.lS

W



0.5 O.B 1

2

IF)

base f o emitter saturation vo tage
TEST TIME

=300j.lS

3
2

o

>

~ ~~'"

a::
w

~

~

~~

::E

w

i::::::==f""

a::

o

~

l..oo

0.5

a::

:=

0.2

Cl

...J

:i
w,

0.1

a>

'1-

w.

0.05

VSE(sat)

>

(E)

collector to emitter saturation voltage

0.02

COL.LECTOR CURRENT (lc) - - A

VCE(Sat)



7

N~N.~

u..

::E

0.01

Cl

5

3

(0)

w

0.1

w

2

VCE = 10V

a::

:

.0.5

0

0.2

'B

-

current gain linearity ratio

0.3

>

r- r-

HFE1/HFE2
VCE = IV

r---

0.2

Ie)

0

0
W
N

--

COLLECTOR TO BASE VOLTAGE (VCB) - - V

i=
c(
:J:

""'" r- t';;p;;-- r-

1

~
<.>

HFE1/HFE2
current gain linearity ratio

a::

-

5

o

I-

0.2

r- r""'" ~

t---

<.>

w

..........

0.01
0.1

'10

,

EMITTER-OPEN

c(

......

a::

w

w

·2

IB}

collector to base capacitance

§

Te = 25°C

t:::::.800~A

Cob

::a

(A)

o

I-

0.5

--

\\f~""O _ ~I-'

i-"~

w

~

0.02

0.05

0.1

0.2

0.5 O.B 1

2

a>

COLLECTOR CURRENT (lc) - - A

0.3
0.01

0.02

0;05

0.1

0.2

0.5 O.B

COLLECTOR CURRENT (I C) - - A

7-6

1

2

z

~

~ typical applications

~

Vee

•

::g 200~F ~~JJJ--+--~
47K

r1
\J

0

Vee'12V

6V

r--1----------~------~

Z
Z

-.
."

z

Rl

8!l

(1 Rl

~2~l

~

N
."

Z

."

01 NB111EH/J
02 NROOIE

03 NA01EG/J
04 NA01EG/J

01 NB111EH/J
02 NROOI E

03 NAOIEG/J
04 NA01EG/J

Figure B. 650mW 12V/25n. OTL Amplifier

Figure A. 3S0mW 6V ISn. OTL Amplifier

Vee

~

TOROID
TRANSFORMER

9V

INPUT

o..--j

01 NBlllEH/J

02 NA01EG/J

01 NA01EX

03 NA01EG/J

02 NBlllEY

Figure D. Typical Converter Circuit

Figure C. 1 :ZW Audio Amplifier

Vee ~ 6V

6V
LAMP

2000P
TOUCH

OFF
roUCH
ON

01 NB021 EY
02 NB021EY

03 NB021EY
04 NA01EX

01 NA01EX

Figure F. 40KHz Ultrasonic Transmitter

Figure E. Touch-on/Touch-off Electronic Switch

7·7

~ ~------------------------------------------------------------------------,

0..
Z
0..

~National

-,...

a

Z

NA11 (NPN)
NA 12 (PNP) 1 Amp complementary power transistors

N

Semiconductor


a:

...-:;""""

w

1=
~

-

~

:E

~

0.5

-

\\fE" ,I)

i""1-"""'"~
\\fE" ~I)

-

1--'"

1

I-

w

0.05

0.5 0.81

W

ell

I
0.02

0.2



1=

I
I

2!

a::

0.05

VBE(sad

>

(EI

2

1

r---

COLLECTOR CURRENT Ocl- - A

TEST TIME = 300118

0.5

NPl

~

0.5

0.1
0.01

2

VCE(sat)

I
I'

LiJ

(01

PNP
NPN

COLLECTOR CURRENTllcl- - A

>

10

VCE = 10V

w

cc
~

0.05

7

2

N

0

0.02

5

0

::E

0.1
0.01

2 ,3

current gain linearity ratio

VCE =1V
2

6

0.5

HFE1/HFE2
(el

~

,

r- r~ r- I--. t-

COLLECTOR TO BASE VOLTAGE (VcBI-.,.. V

0

0
Z

r- ~

l- I'-

3

HFE1/HFE2

::;

I-

0.02

current gain linearity ratio

...:z:

-

5

COLLECTOR Til EMITTER VOLTAGE (VcEI- - V

w

r- r-

2

0.0 1
0.1

a:

EMITTER-OPEN

10 r--

"

::;)

o

30

20 ~

0.5

(81

collector to base capacitance

:c

1 Amp

I-

Cob

I
I

(AI

2

~

a.

CL

de safe operating area

I
I

..

...

SOA

'P'"



Tc = 25°C

PARAMETER

MIN

CONDITIONS

TYP

MAX

UNIT

BVCEO

Coliector·Emitter
Sustaining Voltage

Ic = 1 mA

20

V

BVCBO

Collector· Base
Breakdown Voltage

IC = lOOIlA

25

V

BVEBO

Emitter·Base
Breakdown Voltage

IE= lO IlA

5

V

ICEO

Collector· Emitter
Leakage Current

VCE = 15V

100

IlA

ICBO

Collector· Base
leakage Current

VCB = 20V

1

IlA

VSE (on)

Base·Emitter Voltage

IC = 10 mA, VCE = 3V

670

730

mV

VSE (sat)

Base·Emitter
Saturation Voltage

Ic = 700 mA, I B = 14 mA

0.9

1.0

V

VCE' (sat)

Collector· Emitter
Saturation Voltage
NPN types
PNP types

IC =700 mA,lB = 14 mA
0.35
0.65

0.5
1

V
V

Collector Output Capacitance
NPN types
PNP types

VCB = 10V, f = 1 MHz

Current Gain Bandwidth
Product

Ie = 100 mA, VCE = 3V

Cob

ft

[I]

G
I

J
X
Y

0

600

0.45
0.7

pF
pF

200

MHz

50

CONDITIONS

Gain
Gain
Gain
Gain
Gain
Gain

Ic
Ie
Ie
Ie
Ie
Ie

= 100 mA,
= 100 mA,
= 100 mA,
= 100 mA,
= 100 mA,
='100 mA,

VCE
VCE
VCE
VeE
VeE
VCE

=
=
=
=
=
=

3V
3V
3V
3V
3V
3V

MIN

TYP

MAX

RATIO

68
100
140
200
30
100

85
127
180
260
58
190

110
160
240
350
110
350

1: 1.6
1: 1.6
1 :1.6
1: 1.6
1 :3.5
1 :3.5

[2] heatsink information

T.k~lI.~

T0-92 PLUS

[0

.185 I ,-,
.175: '.'

:8U:- -

0.3
- :::--l
-L- ~

l~;~O:mI;
T.ts!!:.~
[0
T'

- ' -,

I!:T-L
0,4

.•••. n., '.' ,

0.030
STEEL SHEET

:8m--

'.0

solder
tab here

' - 0.126

.59~

'.0

.01 • • .,.

~

>
N
N

."

physical dimensions

T0-92

Z

."

Z

PARAMETER
DC Current
DC Current
DC Current
DC Current
DC Current
DC Current

H

.....

Z

HFE groupings
GROUPING

N

Ij_--L-

•

.01. ty.,

.O.~~A

, .1415
- .1315

.,..--

055
:0"0 -

.0151
.001 a

TO·92 PLUS package with heat·
sink shown on right permits 1.6
Watts power dissipation and
combined Thermal Resistance
I)JA = 7SoC/W. If used without
heatsink and PCB land area at
collector lead
1 sq. inch,
Po = 1.2W.

>

7·13

Z

."

~ r-----~--~----------------------------------------------------------------------__,

Q.

Z

Q.

[!] typical

N
N

«
Z

~

I
I

(A)

I

Q.

I
2

Z

I-

ti5

0.5

N

B

0.2

Z

~

0.1

t;

a:
a:

TC=25°C

,+

I

"

~1"0.9
"'"
,,~p(VJ'
1"09; - ' "

w 0.05

....J
....J

o

30

w
~

20

~
~

I-

10

I I

~II'"

w
en

w

>

t::::~~~""~k:::::=~

~

....J
....J

o
U

o

w
~
co

0.01 '-----'--''---'----'---"'---'--'----'----'-.....
0.01 0.02
0.05 0.1
0.2
0.5
2 3

COLLECTOR CURRENT (I C) - - A

II I
I

I-IfE'" 10

L~

I-- ~

~

w

~

3

(F)

base to emitter saturation voltage

I
I

~
w

'"

IE)

3

w

0.2

COLLECTOR CURRENT (I C) - - A

VCE (sat)

>

0.05 0.1

~

~

0.3
0.01

-

I-IfE'" SO
I

I

II
0.02

0.05

0.1

0.2

0.5

COLLECTOR CURRENT (lc) - - A

7·14

2 3

~

z
»
N

typical applications

-"

t.

t.

Vec· IV

Z
Z

."

-»z
N
N

-

."

Z

."

os
as

NBOllEY 03 NROOIE os NA22EG/J
02 NBlllEH/J 04 NA21EG/J

NBOll EY
02 NBOll EY

Figure A. 700mW 6V/4r1. OTL Amplifier

Figure B. 950mW 6V /4r1. OTL Amplifier

Q1

Q1

.

03 NROOI E
Q4 NBlll EY

NA21 EG/J
NA22EG/J

Vee-14V

3.3K

2.71(

Vee·IV

+

47J1.F~

41PFI-

3.2K

2.7K

47K

GND

01 NBOllEY
02 NB011 EY

03 NROOIE as NA21EG/J
04 NBlll EY 06 NA22EG/J

01 NBOllEY 03 NROOIE OS NA22EG/J
02 NBlll EH/J Q4 NA21 EG/J

Figure D. 2.2W 14VI8r1. OTL Amplifier

Figure C. 2W 9V/4r1. OTL Amplifier

Vee

TOROIO
TRANSFORMER

Vee· 'V

+

-:r...

lIP

0--1

...
Q1

NA21EX

01 NBlllE 02 NA21YG/J

02 NBlllEY

Q3 NA21YG/J

Figure F. 2W Audio Amplifier

Figure E. Tvpical Convertor Circuit

7·15

~ r-----------~----------------------------------------------------------------,

Q;.

Z

-«

~National

N

a

z..

NA31 (NPN) 2 Amp complementary power transistors
NA32 (PNP)

Z

features

Q;.

Semiconductor

('I)

~

Q;.

Z

,('I)...
«z

(I) packages and lead coding

• 30 Volt/2 Amp rating
• 1.2 Watts practical power dissipation (TO·92 PLUS™.)
• 1.75 Watts free air power dissipation (TO·202)

TO.92 PLUS ™

TO·202

• Low VeEls.tl and V8EIs.t) characteristics at
Ie

= 1.2A, 18 =30 mA

• Matched HFE groupings for complementary applications
• "Epoxy B" packaging concept for excellent reliability

applications
• 4·Watt audio power amplifiers
• Medium power switching circuits

PACKAGE CODE
TO·92 PLUS

• Converter II nverter ci rcuits
• TV receivers

00 maximum

ratings

PARAMETER

SYMBOL

Coliector·Emitter Voltage
Collector·Base Voltage
Emitter·Base Voltage
Collector Current (continuous)
Power Dissipation (T f'. = 25°C)
TO·92 PLUS
TO·202
Power Dissipation (Te = 25°C)
TO·92 PLUS
TO·202
Thermal Resistance
TO·92 PLUS
TO·202
Temperature, Junction and Storage

VeEO
Ve8
VE8
Ie (max)
Po

LEAD

TO·202

1

2

3

X
y

K
L

B

Z

M

E
E
B

e
8
E

e
e

UNIT

RATING
30
35
5.0
2.0

Voe
Voe
Voe
A

0.75
1.75

W
W

2.5
10

W

Po

fJJA/fJJC
fJJAI fJJe
Tj; Tstg

W

°CIW
°CIW
°c

167/50
,72112.5
-55to + 150

(I) ordering information
.------------------------POLARITY

!

"1" for NPN
"2" for PNP

.-----------PACKAGE/LEAD CODE

~

N A 3 X . X• X

re f er to L!J

+

HFE GROUPING
refer to [[]

7·16

@

Z

SYMBOL

»

Tc~25°C

electrical characteristics
PARAMETER

V

-"
-

100

}.lA

~

1

}.lA

650

700

mV

30 mA

0.95

1.2

V

30 mA

0.5

1

V

1.0

1.4

V

0.25

0.5

V

~

CONDITIONS

MIN

TYP

UNIT

MAX

BVCEO

Collector-Emitter
Sustaining Voltage

Ic

~

1 mA

30

V

BVCBO

Collector-Base
Breakdown Voltage

IC

~

100}.lA

35

V

BVEBO

Emitter-Base
Breakdown Voltage

IE

ICED

Collector-Emitter
Leakage Current

VCE

~

25V

ICBO

Collector-Base
Leakage Current

VCB

~

30V

VBE(on)

Base-Emitter Voltage

Ic

~

15 mA, VCE

VBE(sat)

Base-Emitter
Saturation Voltage

Ic

~

1.2A, Is

~

VCE(sat)

Collector-Emitter
Saturation Voltage

Ic

~

1.2A, Is

~

VBE(sad

Base-Emitter
Saturation Voltage

Ic ~ 1.2A, Is ~ 120 mA

VCE(sat)

Collector-Emitter
Saturation Voltage

Ie

Cob

Collector Output Capcitance
NPN types
PNP types

VeB

Current Gain Bandwidth
Product

Ie

ft

[ID

G
H
I

J
X
Y

[ID

10}.lA

~

~

1.2A,Is

5

~

~ 10V,f~

~

5V

600

Gain
Gain
Gain
Gain
Gain
Gain

120mA
1 MHz

~

~

300 mA, VCE

5V

CONDITIONS
Ie
Ie
Ic
Ie
Ie
Ie

~
~

~
~
~
~

300
300
300
300
300
300

mA,
mA,
mA,
mA,
mA,
mA,

VeE
VeE
VeE
VeE
VeE
VeE

o

physical dimensions

pF
pF
MHz

20

~
~

~
~
~
~

5V
5V
5V
5V
5V
5V

MIN

TYP

MAX

RATIO

68
100
140
200
30
100

85
127
180
260
58
190

110
160
240
350
110
350

1: 1.6
1: 1.6
1:1.6
1: 1.6
1:3.5
1:3.5

heatsink information

T0-202
T0-92 PLUS

Z

•

TO-92 PLUS package
with heatsink shown on
right permits 1.6 Watts
power dissipation and
combined Thermal Resistance 8 JA ~ 78°CIW.
If used without heatsink and PCB land area
at collector lead> 1 sq.
inch, Po ~ 1.2W.

Ta.~I:~j

....L

-~ solder

- - -,

tab here

IT
0.4
J...L

0.030
STEEL SHEET

I'
~~~: ::~~0.7S
j
=-

0.125

~

• TO-202 package with
heatsink shown on right
permits 3 Watts PD and
8JA ~ 42°CIW.

0.34

"0. I

ALUMINIUM
SHEET

7-17

0.25
/OIA

-t-

-

t I
0.040

Z

»

-"
N

-"
Z

10
17

PARAMETER
DC Current
DC Current
DC Current
DC Current
DC Current
DC Current

Z

~

HFE groupings
GROUPING

~

41

'L

......

0.55

-L

~~--------------------------------~----------------------------------------------------,

a.
z
a.

-«

00

typical performance characteristics

N

M

Z

~

~

z

a.

-«
z
,..

M

Z

u..

SOA
dc safe operating area

«
I
I
I2:

0.5

::>

0.3
0.2

a::

0.1

0
I-

e..>

w

...J
...J

0

e..>

w

e..>

"">J

........

2:

~d~ r;;;;
0\9

EMITTER·OPEN
70

;:

60

t3

50

f

""
w

o

o

0.01
0.2 0.3 0.5

2

3

30

10

5

o

...J
...J

o

e..>

VCE = lV

0

w

u..

a::

0.3

~~~

"""i;

PN)

N

::::;

0.5

a::

0.3

«
::;:

~

0
2:

'\.

0.2

0.01

0.2 0.03

0.05 0.1

2

w

~NPN

0.2 0.3 0.5

2

Ie
IB

w

~w

...J
...J

40

0.1
0.05
Ie

0.03
0.02
0.01
0.01

IB

P~
0.2 0.3

0.5

(F)

TEST TIME = 300 ILS



a::
w

t:

~
w

:10

Ie

0.5

IB

0.3

- 40

o

I-

~

0.02 0.03 0.05

0.1

0.20.3 0.5

;i1i

2

0.1
0.01 0.02 0.03 0.05

0.1

0.2 0.3

0.5

o

e..>

2

C

~VY/'

0.3
0.2

'"""'Ill ~PN

W

1.0

0.5

...J

a::

(0)

. base to emitter saturation voltage

I

TEST TIME =300 ILS

w

~
w

40

VBE (sat)

>

(E)

collector to emitter saturation voltage

(!l

o

35

COLLECTOR CURRENT (I C) -- A

VCE (sat)

I

I-

30

0.2

COLLECTOR CURRENT (lC) -- A

.>

-

0'.1
0.01 0.02 0.03 0.05 0.1

0.1

t:

25

VCE = 10V

:l:
0

0.5

a::

20

0

2

W
N

>

NPN

15

i=

::::;

o

10

«
a::

:l:
0

;:

5

PNP

HFE1/HFE2

«a::

2:

" ...........

current gain linearity ratio

(e)

i=

0

\

COLLECTOR TO BASE VOLTAGE (VCB) -- V

HFE1/HFE2
current gain linearity ratio

«::;:

\

I-

COLLECTOR TO EMITTER VOLTAGE (VCE) -- V

w

'\
\

w

~

0.1

u..

(8)

output capacitance

~

TC = 25 0 C
2

::::

e..>

I
I

:E
o

U

w
a::
a::

Cob

Q.

(A)

COLLECTOR CURRENT (I C) -- A

COLLECTOR CURRENT (I C) -- A

7·18

2

(ID

Z
l>

typical applications

GI)
~

Z

"tJ

Z

a
an
Rl

Ql

NB021 EY

Q2

NB211EY

Q3

NR001 E

Q4

NA31YG/1

Q5

NA32YG/1

1000",F

a

Rl
.n

GNO

Figure B. 4 Watt/ 4 Ohm OTL Amplifer

Vcc- 12V

~

47K

Figure C. Relay Driver

Figure D. Cassette Bias Oscillator

7·19

N

"tJ

Z

~t5V

~t---f..

w

"tJ

Figure A. 4 Watt/ 8 Ohm OTL Amplifier

+

Z
l>

Q,

NBOllEU

Q2

NB211EH/J

Q3

N ROOI E

Q4

NA31YG/1

Q5

NA32YG/1

~ r-------------------~--------------------------------------------------------,

a..
z
a..

C\I

~National

~ Semiconductor

~

0"-

un

iJl_D.020

1I.(111~'

J_

i1

O.045-.J
0.055

l

MAX

RATIO

68
100
140
30
100

85
127
180
58
190

110
160
240
110
350

1: 1.6
1: 1.6.

1: 1.6
1:3.5

1 :3.5

heatsink information

9.4°CIW.

or
0.&05

LD,015~~_

0.05 inch aluminium sheet

~ 01151:=-

D.025 RAD.

-----'-1

T

I

Q.026 0.0950.025
o.1D5

E3'C1

TYP

The TO-126 and TO-220 packages used
with heatsink shown below permits about
8.7 Watts Power Dissipation,and eCA ;

O'~20~O:'OS'~
lm.O~IA~'--;Ln lm
~ +

0.100 r O l " -

UJ5

,-t
0.015

10V
10V
10V
10V
10V

MIN

3' TYP

123-..1.

0.0"'

;
=
;
;
;

TO-220

11- /~:gg
11/.
1

0.097

CONDITIONS

physical dimensions

0.145""*1

Z

"'C

Z
Z

»
~
I\)

."

Z

W HFE groupings
GROUPING

~

TC; 25°C

r===

til!

~
1 m"

D.soa MAX

0.250

3

'"
ZPlAcls

4d~~~~lm

D.SU

0,1110

l3li

0.210

l

.J

Mount transistor
under heatsink
and apply thermally conductive
compound between
contact
surfaces.

-I gm

0.110

7-21

"'C

"r-----------------------------------------------------~----~----------------__.

Q.

-.
Z

~ typical performance characteristics

Q.

N

~

c(

Z

"Z -

<

Z

U

Q.

,....

~

"Co
I
I

SOA
I
I

dc safe operating area

w

2

c(

I:
I:

Z

:::I
I:

w
.....

.....

EMITTER·OPEN

~
W 300
e.;,

2.5 Amp

Z

~

..........
TO·126 .....
and
TO·220

e.;,

0
le.;,

(BI

collector to base capacitance

o

Te = 25°C
3

Cob

1>

5

I-

Z

(AI

0.5

~ 100

""'-

5

I--

w

~

0.3
0.2

200

c::;

PNp
-~ i'!!o

50

'"

30

::

20

-r-

NPN

1

I:

0
e.;,

C

t

0.1
2

3

10

5

20

30

~
.....

50

10
0.1

:3

COLLECTOR TO EMITTER VOLTAGE (VCEI- - V

0.2

0.5·

2

5

10

20

HFE1/HFE2
(el

(0 I

current ain linearjty ratio

VCE = 10V

VCE = IV
0

<

I:

3

0

2

<
I:

...

j::

w

f-

:c
c
w

N

:::;

<
::;;

0.5

3
2

PNP

W

PNP

"-

:c

.1"'" I" NPN
r--...

2:
.....
F- NPN

"

0.3
0.2

0

w

N

0.5

<
::;;

0.3

:::;

I'

;Nf'

I:

0
Z

f\

~N

0

z

0.02

0.05 0.1

0.2

0.5

235

:E

>

(E)

w

.z.w

0.02

t
:l

.W

oe.;,

~

r-......
0.1
0.03
0.02

ell

~
o

1/1/

0.2

235

""

HFE =10

>

~

W

I:

0.7

W

0.5

~

o

W

0.1

0.2

0.5

2

3

~

5

COLLECTOR CURRENT II C) - - A

(FI

1

2
1.5

p-

Ll~

1/

0.3

0.01 0.02

~ I-

-::: Ft::"20
""""

I-

0.05

0.5

TEST TIME = 300JlS
.:j

I:

HFE-IO -

0.01
0.01 0.02

0.05 0.1

w

~

i/

0.3
0.2

g;

I-

HFE = 20

0.5

0.05

r'

base to emitter saturation voltaga

I
I

TEST TIME = 300JlS .

2

o

P~ ,...

VBE(sat)

collector to emitter saturation voltage

ell

~

~

COLLECTOR CURRENT II C) - - A

5

~

IN t-

I

0.01

VCE(sat)
3

o
~

s:

0.2

COLLECTOR CURRENT IIc) - - A

w

f'

0.1

0.01

I
I

........

I:

0.1

>

50 70

COLLECTOR TO BASE VOLTAGE (VCBI- - V

HFE1/HFE2
current gain linearity ratio
j::

-

0.05 0.1

0.2

0.5

COLLECTOR CURRENT II c) - - A

7·22

2

3

z
»
~

~ typical applications

.....

Z

vee = 24V
180K

Z

~

l"F
T35V

47K

-::-

120K

"tJ

Z

»
~

I~~~____-l__~~~~--~--r----r---t----~
0.1

D2

d

lOOP

8n
RL

01

NB021EY

02

NB211YY

03

NROOIE

04

NA41U

05

NA42U

01

NB021EY

02

NB211YY

Figure A. 6 Watt, 8 Ohm OTL Amplifier

r-__t-__~__________~L-________~~________. -__-e___V~C~C=18V
120K

+

10j.lF

33K
120K

+

lpF

T

25V

IN~~~____~~~-4~~~--t----t---t--~~~--~
0.1

r1
~4n
RL

390

03

NROOIE

04

NA41U

05

NA42U

Figure B. 6 Watt, 4 Ohm OTL Amplifier

Figure D. Switching Regulator Circuit

Figure C. Linear Regulator Circuit

7·23

N

"tJ

Z

"tJ

.~ r---------------------------------------------------~--------------------_,

C.

Z

C.
N

~NaHonal

~ Semiconductor

It)



45
4
3.5

VOC
Voc
Voc
A

1.8
2.0

W
W

30

W
W

,

~

50

Po

30

8J1:i.l8 JC
8JA/8JC
Tj. Tstg

°C/W -

69.4/4.17
62.5/4.17
-55to+150

°C/W
°c

ordering information
"1" for NPN

~,--------------------- POLARITY "2" for PNP

NA5XX

t' - - - - - - - - - - - PACKAGE/LEAD
CODE .
refer to OJ

7·24

~ electrical characteristics

z
»

TC = 25'C

U1

-'"

SYMBOL

PARAMETER

CONDITIONS

MIN

TYP

MAX

UNIT

BVCER

Collector-Emitter
SU$1:aining Voltage

IC = 10 inA, R = lK

45

V

BVCBO

Collector-Base
Breakdown Voltage

Ic= 10Oj.tA

50

V

BVEBO

Emitter-Base
Breakdown Voltage

IE = 100llA

4

V

ICER

Collector-Emitter
Leakage Current

VCE = 35V, R = lK

ICBO

Collector-Base
Leakage Current

VCB =40V

VBE (on)

Base-Emitter Voltage

Ic = 15 mA, VCE = 10V

VBE (sat)

Base-Emitter
Saturation Voltage

Ic = 2A, IB

VBE (sat)

Base-Emitter
Saturation Voltage

VCE (sat)

-.z.
Z

»
U1

N

1

mA

0_5

mA

680

mV

1.3

V

Ic = 3A, IB = 160 mA

1.6

V

Collector-Emitter
Saturation Voltage

Ic = 2A, IB = 80 mA

1.5

V

VCE (sat)

Collector-Emitter
Saturation Voltage

Ic = 3A,IB = 160mA

5

V

HFEl

DC Current Gain

Ic = 500 mA, VCE = 10V

Cob

Collector Output Capacitance
NPN types
PNP types

VCB

~ physical dimensions

Z

"'C

"'C

Z

520

600

=80 mA

30

100

ratio

35
65

pF
pF

= 10V,f= 1 MHz

[!]

heats ink information.
The TO-126 .and TO-220 packages
used with heatsink shown below
permits about 9.2 Watts power
dissipation and 6cA = 9.4'CIW.

0.05 inch aluminium sheet

Mount· transistor under heatsink and
apply thermally conductive compound
betwean contact surfaces.

TO-220
7-25

-

"'C

~ r-------------------------~~--------------~--------------~--------------,

Q;.

Z

Q.

I1J typical performance characteristics

N

LI)

~
Z
"""
Q..

Z

....
It)


oc.

236

...... ~ ~r-

~

0.7

~
o

0.5

~

0.01

TEST TIME = 300JlS

o

HFE = 10 -

~

coLLECTOR CURRENT (I C) --A

HFE = 20

........

0.3
0.01

0.02

-"
....

~Lll

11
0.06

0.1

0.2

0.6

COLLECTOR CURRENT (I c) - - A

7-26

(F)

base to emitter saturation voltage

>

TEST TI ME = 300JlS

-'

~

(E)

collector to emitter saturation voltage

~

w

0.05

COLLECTOR CURRENT (lC) --A

VBE(sat)

I
I

W

>

P~~ 1'1"
f'

0.1
5

>

I!I

F:r:;: t'..... NPN
1

COLLECTOR CURRENT (I c) ~ - A

I

--..

2

3

5

z

o

»
C1I

-

typical applications

~

Z

~

+

-»
Z

1O.F

d

NB021EY

02

NB122EY

03

NROO1E

04

NBl12EY

05

NB312E

06

NB322E

~

Q7

NA52W

08

NA51W

RL
8n

Figure A. 12 Watt, B Ohm OTL Amplifier
Vee = 24V

82K

33K

INPUT

o---=j 1-'+.....-1---[0 1

d

RL
412

01

NB021EY

02

NB122EY

03

NROO1E

04

NBl12EY

05

NB312E

06

NB322E

07

NA52W

08

NA51W

Figure B. 12 Watt, 4 Ohm OTL Amplifier

NA52U
VOUT

+

+

GNO

Figure D. Switching Regulator Circuit

Figure C. Linear Regulator Circuit

7·27

'"

01

Z

C1I
N

~

Z

-'

~

Q.

Z

Q.

C\I

.-----------------------------------------------------------------------------,

~Nat1onal

~ Semiconductor

co




o

0.02.03.05

2

base to emitter saturation voltage

w

C!l

.....
«

1-

0.05

U

[-

W

a>
~

~

:!'w:

.....
o

,01-,0

I

TEST TI ME = 300!lS

0.1

~1-

1

0.01 0.02

=;'

(E)

w

>

~\'~

O. 1
3

C!l

o

I-

VBE(sat)

~

;::.....

I""'l

COLLECTOR CURRENT (I C) - - A

collector to emitter saturation voltage

W

5070

(0)

0.2

VCE(sat)

I

I

20

VCE = 10V

COLLECTOR CURRENT !lC)- - A

>

10

I--\,~\,

o
w

I
0.1

5

3

::c

,o;)~

1-[
0.05

2

to BASE VOLTAGE (VCB)- - V

w

~" ~1-,o-t

V1~\,~

0.1
0.01 0.02

0.5

«ex:

I

I---\,~\'

w

0.2

current gain linearity ratio

1. t--

2

0

l"- t--

HFE1/HFE2
VCE = IV

::c

r""

'""'"

COLLECTOR

(e)

3

w
u.

~

NPN

0.1

U

HFE1/HFE2
current gain linearity ratio

ex:

-

10

o

COLLECTOR TO EMITTER VOLTAGE (VCE) - - V

0

r-. t- r- ....
t- r- 1"-1"r- tf~ t-- r- .....

o

0

i=

(B)

collector to base capacitance

~

5

u

u
w

I

(A)

CI

ex:
ex:

ex:

Cob

Co

5

~
a>

COLLE.CTOR CURRENT !I C) - - A

0.3
0.01 0.02

0.05

0.1

0.2

I--I-

HFE = 20 - ; I I I

--

II
0.5

COLLECTOR CURRENT (I C) - - A

7·30

-

2

3

o

z

l>

typical applications

lOpF

+
:;r::

~

~

35V

150K

d

4n
RL

2.9K

01

NB022EY

02

NB123EY

03

NROOIE

04

NBl13EY

05

NBlllEY

06

NB121EY

07

NB313Y

08

NB323Y

09

NA62W

010

NA61W

01

NB022EY

Figure A. 25 Watt OTL Amplifier
Vee

~

30V

d

RL
4n

-=-

02

NB122EY

03

NROOIE

04

NBl12EY

05

NBlllEY

06

NB121EY

07

NB313Y

08

NB323Y

09

NA62W

010

NA61W

Figure B. 18 Watt OTL Amplifier

10

'pF
TO
OISTRIBlHOR

+

0.01

IGNITION

COIL

JO
39<

14V

0)

Vee

Q1

rB~ER
POINT

Figure C. Capacitor Discharge Ignition System

7·31

NA61W

02 NA61W
03 NB111EY

Z

-"
Z

Z

l>

0)

-"
-"
N

Z

~

c.
z
a.

-«
N

.....

z

...

~

Z

,-----------------------------------------------------------------------------,
~National

a

NA71 (NPN)
NA72 (PNP) 3.5 Amp complementary power transistors

C.

-«,...
z

[I]

features

Z

.....

Semiconductor

• 60 Volt/3.5 Amp rating
• Available ilJ TO-126 and TO-220 packages
• Low VC E (sat! and VB E (sat) characteristics at
IC = 2 A, IB = 100mA
• Guaranteed VCE (sat) and VBE (sat) at
Ic = 3A, IB =200m A for improved short
circuited protection design in audio amplifiers
• "Epoxy B" packaging concept for excellent reliability

TO-126

TO-220

//

applications
•
•
•
•

packages and lead coding

10-25 Watt 8 Ohm audio power amplifiers
High current switching circuits
Converter/Inverter circuits
TV receivers

PACKAGE CODE
TO 126

m

I

U

maximum ratings
PARAMETER

SYMBOL

Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
Collector Current (continuous)
Power Dissipation (T A = 25°C)
TQ-126
TO-220
Power Dissipation (T C = 25°C)
TQ-126
TQ-220
Thermal Resistance
TQ-126

8 JA/8JC

TO-220
Temperature, Junction and Storage

8 JA/8 JC
Tj, Tstg

VCE
VCB
VEB
Ic (max)
Po

I

RATING

TO 220

W
UNIT

60
65
4
3.5

Voc
VOC
VOC
A

1_8
2_0

W
W

40
40

W
W

69.413.125
62_5/3.125
-55 to + 150

°CIW
°CIW

Po

°c

[]] ordering information
"1" for NPN
" r - - - - - - - - - - - - - - P O L A R I T Y "2" for PNP

j

lr-----------PACKAGE/LEAD CODE
refer to [IJ
,

NA7XX

7-32

~ electrical characteristics
SYMBOL
BVCER

PARAMETER
Collector-Emitter
Sustaining Voltage

z
»
.....

TC = 25·C

....

CONDITIONS

MIN

IC=10mA,R=1K

TYP

MAX

UNIT

v

60

Z

"tJ

-z
»
.....
Z

~

BVCBO

Collector-Base
Breakdown Voltage

IC =

1oo~A

65

V

BVEBO

Emitter-Base
Breakdown Voltage

IE =

100~A

4

V

ICER

Collector-Emitter
Leakage Current

VCE = 50V, R = 1K

ICBO

Collector-Base
Leakage Current

VCB = 55V

VBE (on)

Base-Emitter Voltage

IC = 20 mA, VCE = 10V

VBE (sat)

Base -Emitter
Saturation Voltage

VBE (sat)

N

2

mA

Z

mA
680

mV

IC=2A,IB=100mA

1.5

V

Base-Emitter
Saturation Voltage

IC = 3A, IB = 200 mA

2

V

VCE (sat)

Collector-Emitter
Saturation Voltage

IC = 2A, IB = 100 mA

2

V

VCE (sat)

Collector-Emitter
Saturation Voltage

IC = 3A, IB = 200 mA

5

V

HFEI

DC Current Gain

IC = 500 mA, VCE = 10V

Cob

Collector Ouput Capacitance
NPN types
PNPtypes

VCB = 10V, f = 1 MHz

~ physical dimensions

H t/
;; .t.. .,100121
liZ.

~l:!

~

~-.=

..... 1..!JI.'u,

I.DlI.J

•••

I

520

30

600

100

ratio

40

pF
pF

70

[]] heatsink information

_,'j

The TO-126 and TO-220 packages
used with heatsink shown below
permits about 10 Watts power
dissipation and 8CA = 9.4·CIW.

l-

t

.11.JI-

1.121 ...,IIZI

.... ..lJ:'.I11

E3~
::::1 l'

"tJ

TO-126

0.05 inch aluminium sh_

Mount lransmor under heallink end
apply thermally conductive compound
batween contect surfaces.

TO-220
7-33

"tJ

~

0.

Z

0.
......,
N

r-------------------------------------------------------------------------------,

[1J typical

performance characteristics

.....

c;:C

~

..

SOA

~

Z

0.

Z
......
~

l"'-

e:(

Z

CI.

de safe operating area


I
I

VCI; (sat)

"0

VBE(sat)

COllector to emitter saturation voltage

....

~

~

O.5

'"w~

O.3
O.2

~
w

O. 1 ..........

~

0.05 ..........
0.03
0.0?

~

t;
~

...6

lI'

g

......

-

0.01
0.01 0.02 O.CBO.C6' 0.1

".-.

~ !...-

W
CI

~

.L.

C

HFE = 10

>

1

w

o.7

~

o

o
....

o.3

a:

~

i.o-'"

w

0.2

0.5

COLLECTOR CURRENT (lC) - - A

3

~

~
HFE = 20

TEST TIME = 300)1S

w
CD

1

o

,>

I
I

TEST TIME = 300)1S

2

(F)

base to emitter saturation voltage

>

'

w
C!I

(E)

3

~

w

......

applications

.....
Z

VCC=40V

"'C

180K

47K

68K

d

RL
8n

100
P
150

GNO

at

NB022EY

02

NB123EY

03

NRODIE

04

NB113EY

05

NBlllEY

06

NB121EY

Q7

NB313Y

08

NB323Y

09

NA7'lN

010

NA71W

01
02

NBD22EY
NB123EY

Figure A. 25 Watt OTL Amplifier

+
lOT

I'F~

ORL
8n
2.9K

03

NRDOIE

04

NBl13EY

05

NB111EY
NB121EY
NB313Y

06
07
08

NB323Y
09
NA7'lN
OlD NA71W

GNO

Figure B. 18 Watt OTL Amplifier
VIM

-

FLOURESCENT
LAMP

NA72U

+

II

II

I2V

II
II

__. . . . ....J::

VOUT

II

L...,Wo-+-...

11

"---U.:"---4l-..r

I I

II

II

TOROID
TRANSFORIIER

Figure D. Battery Lantern Circuit

Figure C. Switching Regulator Circuit

7·35

Z

'"

Z

>
......

N

"'C

Z

"'C

~

0..

Z

0..
C\I
C\I

o

,...
C\I

o

r---------------------------------------------------------------------------------~

~National

~ Semiconductor
NB011.012(NPN)·
.
NB021 022 (PNP) 30mAgenerai purpose transistors

£Xl

Z

~

[]] package and lead coding

features

~

Z

0..

Z

,...
,...
,...

C\I

o

• 35 to 50 Volt at 30 mA collector ratings
• 300 mV guaranteed VCE (sat) characteristics ,at
Ic = 10 mA and 18 = 0.5 mA
•
•

Matched HFE groupings for complementary applications
"Epoxy B" packaging concept for excellent reliability

~

o

£Xl
Z

applications
•

Small signal amplifier circuits

•
•

Equalizer preamplifiers
Low current switching circuits

•

TV receivers

o

PACKAGE CODE
TO-92
E

E
E
C

F
H

8
C
8

C
8
E

maximum ratings

PARAMETER
Collector-Emitter Voltage

NBOll
NB021

NB012

SYMBOL

UNIT

NB022

VCEO

35

50

VDC

Collector-Base Voltage

VC8

40

55

VDC

Emitter-Base Voltage

VEB

5

5

VDC

Collector Current (continuous)

Ic (max)

30

30

mADc

Power Dissipation (T A = 25°C)

PD

0,6

0_6

W

Power Dissipation (T C = 25° C)

PD

1.0

1.0

W

Thermal Resistance

°JA

208

208

°CIW

°JC
Tj, Tstg

125

°CIW

-55 to + 150

Temperature, Junction and Storage

o

LEAD
2
3

1

125

-55'to

+ 150

°c

-

ordering information

l

"1" for NPN

r----------------------- POLARITY "2" for PNP
Ir--~--------

t

VOLTAGE RATING
refe r to

III

NBOXXXX

t lL_______

PACKAGE/LEAD
CODE
refer to
IT]
HFE GROUPING
refer to [[]

7-36

~

z

electrical cha racteristics

SYMBOL
BVCEO

BVCBO

m

Tc = 25°C

PARAMETER

CONDITIONS

Collector-Emitter Sustaining Voltage
NBOll/021
NB012/022

Ic = 1 mA

Collector-Base Breakdown Voltage
NBOll/021
NB012/022

Ic = 100/-LA

MIN

MAX

TYP

UNIT

35
50

V
V

40
55

V
V

BVEBO

Emitter-Base Breakdown Voltage

IE = 10/-LA

ICEO

Collector-Emitter Leakage Current

VCE = 30V NBOll
45V NB012

1
1

/-LA
/-LA

ICES

Collector-Emitter Leakage Current

VCE = 30V NB021
45V NB022

0_5
0_5

J.l-A
/-LA

ICBO

Collector-Base Leakage Current

VCB = 35V NBOll/021
50V NB012/022

0.1
0_1

/-LA
/-LA

lEBO

Emitter-Base Leakage Current

VEB=4V

0_1

/-LA

5

V

VBE (sat)

Base-Emitter Saturation Voltage

Ic = 10mA,Ie = 0_5mA

0_75

0_95

V

VCE (sat)

Collector-Emitter Saturation Voltage

Ic = 10 mA, Ie = 0_5 mA

0.1

0_3

V

Cob

Collector Output Capacitance
NPN types
PNP types

Vce = 10V, f = 1 MHz

Current Gain Bandwidth Product

IC = 1 mA, VCE =5V

ft

~

pF
pF

120

MHz

HFE groupings

GROUPING

PARAMETER

I

DC Current Gain
DC Current Gain
DC Current Gain
DC Current Gain
DC Current Gain
DC Current Gain
DC Current Gain
DC Current Gain
DC Current Gain

J
K
L
T

U
V
Y

Z

00

50

2
3

physical dimensions

CONDITIONS
IC = 1 rnA, VCE
Ic = 1 rnA, VCE
IC = 1 mA, VCE
Ic= 1 mA, VCE
Ic = 1 rnA, VCE
Ic = 1 mA, VCE
Ic = 1 mA, VCE
Ic = 1 rnA, VCE
Ic = 1 mA, VCE

[I]

=
=
=
=
=
=

5V
5V
5V
5V
5V
5V
= 5V
= 5V
= 5V

MIN

TYP

MAX

RATIO

140
200
300
450
100
200
450
100
300

180
260
380
580
150
320
700
190
580

240
350
500
750
240
500
1100
350
1100

1 :1.6
1 :1_6
1 :1_6
1:1.6
1:2_4
1:2_4
1:2_4
1:3_5
1 :3_5

max power dissipation
~

-L
,185
.176

t---I
I

,-'

~ _'

[J
-

I
I

I

T

:81~~-

.594

tv.

l

--,
.O~8

typ

·~:"jl.'~'
--,.---

:8:g -

.136

:8:~

I
I

.

;c 1_2
E
~ 1_0

z
o_e
1=
0

~
in 0_6
en

is

a: 0_4
w

'"
...........

vT = CASEI TEMPERATURE
I
I
I

r'\
~

~
0 0_2
~

X
c

=e

7-37

0

~MBI~NT~EMP~RATURE

I'\.

~~

.......

0.

=e
=e

I--T=

25

50

75

100

~150

125

TEMPERATURE (T) - - DC

175

200

o
.....
.....
..
o
.....

I\)

Z

."Z.

z
m
o

I\)

.....
o
I\)

-"
I\)

-"
Z

~

C.

Z

C.
C\I
C\I

r---------------------------------------------------------------------------------------~

[~1

typical performance characteristics

,...

0

o

a:

C\I

m

z

"'

2

f=

...... ~J

UJ

u..

::J:

0
UJ

0.5

~

N

c.
z

::;;:
a:



w
c..J
C

veE (sat)

I
I

W

C

t!l

f!

UJ

o

>

-r-.
"'r-.

~

0.1

::;;:
UJ

o
I-

a:

0.03

o

I~

j
o

f!

e.>

0.1

, base to emitter saturation voltage
3

(0)

TEST TIME = 300l-lS
2

HFE = 10

1.5

....J

--

HFE = 50

>

a:

I I

~
::;;:

0.6

UJ

0.5

o

I-

en

0.03

30

o

UJ

0.01
0.01

10

3

t!l

-- --

0.3

a:

UJ

0.3

CD

UJ

....J

0.1

VBE(sat)

>

(C)
collector to emitter saturation voltage
TEST TI ME = 300l-lS

2

~

~ .....

COLLECTOR CURRENT (lC) - - rnA

COLLECTOR.CURRENT (lc) - - rnA

I
I

(B)

current gain linearity ratio

0

::;;:
a:

0.1
0.01

o

2

VCE = 1V



UJ
....J
....J

o

c..J

UJ

z

I'--!"---.. r--.t--.. ~

PNP

~r..

..........

c

0.01

t--.

3

"""

10

~

-

.... '"

~

.,



i'ooo..

TN'"

a:
l-

1"'-

common emitter output admittance

E
E

e.>

z

hoe

o
.z=

(E)

100

COLLECTOR TO BASE VOLTAGE (Vcil) - - V

o

0.001
0.01

0.03

0.1

0.3

3

COLLECTOR CURRENT (lc) - - rnA

7-38

10

30

Vee

~41Qof

410K

REe

PHONO

AUX

~

02

\I

~

"

"I

68K

-

'·"7'
22K

330K

0--

R,

10K

..

10K

I.

~

1
1'"
a,

4~~

04

\I

21K

-

10K
41K·

10}JF

I."f '"
12K

J

RA+ RB= 8.2K

I
'ti
I [-f1

°i~'

SK

~

41'

~'~

'"

*

0;~22

O·~f2

·11

47K

JtJf':
07

-:-!j8AI(
lO}JF

f---10jJf

~

0.~~33

'"'

1M

10""
" 331lF

SGO

41

,--<>.... O;~'

~f-'--

12K

.,

1

R,

20pF

lOOK

~

~'"'

Be

0'

~

PLAY
BACK

IK

§]

25V

~

...

-<-

~

;

•

I}JF

•
471(

15K

15K
"
•

';~'

It"

000l:?4.7K

'"

<

'C

18K

-;-

. \I

15K

n

f--tos

III
aUI pur

III

1M

,...-- 08

lOjJF

10Ilf

12K

'C
'C
10K

n

~y~

10K'
82K

10

1801(

1"'""1

"
22K

III

82

~.

o

"

:::l

02 NB013EU
05 NB021EY
08 NR051E8

01 NB013EU
04 NB013EU
07 NBOllEY

I/)

03 NB011EY
06 NB011EY
09 NBOllEY

Figure A. High Quality Preamplifier with Tone Control Circuit

."

~

Vce

IIV

-<

3mA

~

OUTPUT

AEt/PB

~

HEAD

:: TOKO
II CAN
II lA418

II VEl

o

"

RL

II

N2.""J

IIIIC.

01 NB013EY

•

Gain = 6DK V!V

Q2 NB023EY

•

Input impedance
= lK Ohm

03 NB011EY
Q4 NB011EY
OS NB011EY

01 NR041E

02 NB013EU

•

Output noise
=

10mV rms

-l

,. 8mH

QjJ

= 50

N1

=

40T

N2

=

360T

N3 = 4DT

03 NBOllEY

Figure B. Battery Operated Racording/PIayback Cassette Circuit

Figure C. High Gain Ultrasonic Amplifier

(dNd)~~O' ~~OBN '(NdN)~ ~O '~~OBN

~

Q.

Z

-o
Q.

V

.-----------------------------------------------------------------------------,
~National
~ Semiconductor

N

('I)"'

N

~

NB013, 014 (NPN) 30mA low noise transistors
NB023,024{PNP)

Z

"'

~

Z

Q.

-ov
Z

~

('I)"'
~

[I]

features
• 35 to 50 Volt at 30mA collector ratings

/

• 300mV guaranteed VCE (sat) characteristics at
Ic = 1 OmA and Is = 0.5mA
•

ldB typical wide-band Noise Figure

~~

~'.

• "Epoxy B" packaging concept for excellent reliability

3 21

o

applications

z

•

Low noise amplifier circuits

•

Equalizer. preamplifiers

m

package and lead coding

PACKAGE CODE
TO-92

1

LEAD
2
3

E

E

B

C

F

E
C

C

B
E

H

B

~ maximum ratings
PARAMETER
Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
Collector Current (continuous)
Power Dissipation (T A = 25°C)
Power Dissipation (T C = 25°C)
Thermal Resistance
Temperature, Junction and Storage

[II ordering

NB013

NB014

SYMBOL

NB023

NB024

VCEO

35

50

VDC

VCB
VEB
Ic (max)

40
5
30

55
5
30

PD

0.6

PD

1.0

0.6
1.0

VDC
VDC
mADC
W
W

()JA
()JC
Tj, Tstg

208
125
-55 to + 150

208
125
-55 to + 150

information
r--------------------- POLARITY

j

"1" for NPN
"2" for PNP

I r - - - - - - - - - V O L T A G E RATING
refer to

t

rn

t-________

NBOXXXX

t

I___ PACKAGE/LEAD
CODE
refer to OJ
HFE GROUPING
refer to I]]

7-40

UNIT

°CIW
°CIW
°c

z

[!]

electrical characteristics

SYMBOL

PARAMETER

o
.....

CONDITIONS

Collector-Emitter Sustaining Voltage
NB013/023
NB014/024

BVCEO

OJ

TC = 2Soc
TYP

MIN

MAX

UNIT

Ic = 1 mA
V
V

3S
SO
Ic = lOOIlA

BVEBO

Emitter-Base Breakdown Voltage

IE = lOllA

'CEO

Collector-Emitter Leakage Current

VCE = 30V NB013
4SV NB014

1
1

IlA
IlA

ICES

Collector-Emitter Leakage Current

VCE = 30V NB023
4SV NB024

O.S
O.S

IlA
IlA

ICB9

Collector-Base Leakage Current

VCB = 3SV NB013/023
SOV NB014/024

SO
SO

nA
nA

lEBO

Emitter-Base Leakage Current

VEB = 4V

0.1

IlA

VBE (sat)

Base-Emitter Saturation Voltage

Ic = 10 mA, IB = O.S.mA

0.7S

0.9S

V

VCE (sat)

Coliector·Emitter Saturation Voltage

Ic = 10 mA, 'B = O.S mA

0.1

0.3

V

Cob

Collector Output Capacitance
NPN types
PNP types

VCB=10V,f=lMHz

ft

Current Gain Bandwidth Product

Ic = 1 mA, VCE = SV

NF

Noise Figure

Ic = 101lA, VCE = SV
Rs = 10 K, BW = lS.7 KHz

I]]

40
SS

V
V

S

V

PARAMETER

I

DC Current Gain
DC Current Gain
DC Current Gain
bc Current Gain
DC Current Gain
DC Current Gain
DC Current Gain
DC Current Gain
DC Current Gain

J

pF
pF

2
3

K
L
T
U
V
Y
Z

CONDITIONS
Ic =
Ic. =
Ic =
!c =
Ic =
Ic =
Ic =
Ic =
Ic =

1001lA, VCE
1001lA, VCE
1001lA, VCE
1001lA; VCE
1001lA, VCE
100.uA, VCE
1001lA, VCE
lOOIlA, VCE
loollA, VCE

~ physical dimensions

SO

MHz

120
4

1

dB

=
=
=
=
=
=
=
=
=

SV
SV
SV
SV
SV
5V
SV
SV
5V

[1J

MIN

TYP

MAX

RATIO

140
200
300
4S0
100
200
450
100
300

180
260
380
S80
ISO
320
700
190
580

240
3S0
SOO
7S0
240
500
1100
3S0
1100

1:1.6
1:1.6
1:1.6
1:1.6
1:2.4
- 1:2.4
1 :2.4
1:3.5
1:3.5

max power dissipation

;;::

-L

I
I

,- .... _,

,185 I

,-,

I

.175 :

'_'

I

)(

e

z

,0

i=

<
a..

.594
'Yo

j
.090R
typ

en

:g:~ -

O.B

a: 0.4
w

;;::

I

0
a.. 0.2

• . 145

-

0.8

'"C

,018 typ

j

1.2

~ 1.0

T
.135

::IE

--,---,--

:::>

::IE

:g~~

X

<

::IE

7-41

~

0

""C

Z

OJ

o
N

W

~

o
N

~

""C

Z

""C

HFE groupings

GROUPING

-z
Z

Collector-Base Breakdown Voltage
NB013/023
NB014/024

BVCBO

w
o
.....

~

~ ~ T =CASE TEMPERATURE
~ .-- T =AMBIENT TEMPERATURE
~
~
"'-~.......
. 25 50 75 100 125~150 175 200
I

,

TEMPERATURE (T) - - DC

I

~.-----------------------------------------------------------------------~

a.
Z
a.

-

~

typical performance characteristics

~

HFE1/HFE2

C\I

o

C\I

o

al
Z

0

u...

0.5 ~

'"

z
a.
z
~
,..

-

N

::::;
«
::;;:
a:

0
2:

PNP ~~

1---"'"

0.5

NPN

0.01

0.03

::::;

«
::;;:

0.3

0
2:

0.2

a:

0.2

"'c::.

I.,..o~ ~

V

N

~

NPN

....

~

0.1

0.01

0.03

0.1

0.3

10

3

30

COLLECTOR CURRENT (lc) - - mA

>

al

W

VCE(sat)

C

collector to emitter saturation voltage

Z

0

w

0.3

,..

o

w

u...
::t:

0.1

o

C")'"

~

I"'"

~ NPN

LU

~

H::

~~ ~

I

i=
«
a:

NPN

LU

(8)

VCE - 10V

0

I

i=
::t:
0

2

VCE -IV

«
a:

current gain linearity ratio

(A)

2

~

C")

HFE1/HFE2

current gain linearity ratio

0.1

0.3

3

10

30

COLLECTOR CURRENT (lc) - - mA

I

I
u

LU

2

.<=

«

I
I

I...J

a:

l-

:£
w

0

I~ 0.03
Iu

2:

g

1-1- ~

HFE; 50

-

HFE; 10

,. .,.

::;;:

.... ~

.... ......

0.03
0.01

o

«

~.

I:::l

0.003

0..

w

:j
o

0.1

u

r-_
r- -r-

0.1

LU

u

0.3

o

--

0.3

LU

t::

::;;:

(0)

VCE; 10V, f; 1 KHz

Q;

0

>

common emitter output admittance

E
E

TEST TIME; 300j.tS

t!>

hoe

o

(e)

0.01
0.01

I-

:::l

0.03

0.1

0.3

COLLE~TOR

10

3

o

30

0.001
0.01

0.03

CURRENT (lC) - - mA

0.1

0.3

3

10

30

COLLECTOR CURRENT (lC) - - mA

u...

':I'"

:g
~

w

Cob
30

NF
(E)

output capacitance

10

EMITTER-OPEN
20

~

u

10

;it

«

u

5

r-.... .....

t"'--- t" r-- t"-"", 1"'-0..
1"" .....

w

~
cc
o

I-

3

2

u:

r--..... ......
" PNP
...... "'t"-"",
NPN

I

o

o

a:

r-

Iu

U

8

~
w

a:

W
...J
...J

9

I
I

"C

u

2:

cc

0.1

0.3

3

-- .

5
4

w

3

~
0
2:

-l-

6

:::l
t!>

u::

1' ....

7

WI'd e band nOIse figure

(F)

VCE; 5V, BW; 15.7 KHz

'"

~~
r-.......{)

ABCI- 0 -

PNP types, IC; 10j.tA
PNP types, I C ; 100j.tA
NPN types, I C ; 10j.tA
NPN types, IC; 100j.tA- t--

...... i'....
....... i"-o... I'...: ~
I"" ~ "..... i"'--.

2
1

~

t;/'

I-'.:

:z

..... ~

~~ ~

C-

0
10

30

100

COLLECTOR TO BASE VOLTAGE (VCB) - - V

lK

3K

10K

30K

SOURCE RESISTANCE (RS) - - Ohm

7-42

100;,

Vee· 25v

~
....

220

-<
n

"0
PLAY
BACK
OUTPUT

III

lO).JF

"0
"0

22K '<::10K
AUX

III

n

81K

12K

....

III

81

o

Q1 NB013EU
Q4 NB013EU
07 NBOllEY

Q2 NB013EU
Q5 NB021EY
Q8 NR051EB

:::l

Q3 NB011EY
Q6 NB011EY
Q9 NB011EY

fJl

Figure A. High Quality Rreamplifierwith Tone Control Circuit

.....

~

810

r----.---.--_~~-----~>--Jm-A':::Cb· 12V

~

OUTPUT

RECiP8
HEAD

•

0
:: ;01(0

1/

11 CAN
l11A478

II YEZ

o

"

"'

II N2+N3

4!J

."

01 NB013EY

• Gain'" 60K V/V

02 NB023EY

•

Input impedance

•

Output noise

03 NBOll EY
04 NB011EY
05 NBOllEY

01 NR041E

02 NB013EU

'" lK Ohm

'" lOmV rms

• l

= BmH

all '" 50
Nl = 40T
N2 '" 360T
N3 "40T

03 NBOllEY

Figure B. Battery Operated Recording/Playback Cassette Circuit

Figure C. High Gain Ultrasonic Amplifier

(dNd)PZO 'EZ08N '(NdN)v~O'E~08N

"

a.
z
a.

M
N

r---------------~----------------------------~----------------------~

~National

~ Semiconductor

"t"-

N

N

NB111,112,113(NPN) 100mA general purpose transistors
NB121,122,123(PNP)

W package and lead coding

features

...

• 35 to 65 Volt at 100mA collector ratings

TO-92

"z

• 400m V guaranteed VCE (sat) characteristics at
Ic = 20mA and IB = O.4mA

-

• "Epoxy B" packaging concept for excellent reliability

a.

z

• Matched HFE groupings for complementary applications,.

"2,

M

"t""t"-

.

applications
PACKAGE CODE
TO-92
E

• Small signal amplifier circuits
• Medium current level switching circuits
•

F

LE D drivers

H

• TV receivers

LEAD
2 3
E B e
E e B
e B E
1

~ maximum ratings
PARAMETER
Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage

VCEO
VCB
V EB
Ie (max)

Collector Current (continuousl
Power Dissipation (T A = 25°C)
Power Dissipation (T C = 25°C)
Thermal Resistance

NB113
NB123

35
40

50
55

65
70

6

6
100
0_6

6
100
0_6

VOC
Voc
mADe
W

1.0
208
125

1.0
208
125

W
°CIW
°CIW

100.
0_6

Po
Po

1.0
208

()JA
()JC

Temperature, Junction
and Storage

NB112
NB122

NB111
NB121

SYMBOL

125

-55 to + 150 -55 to + 150

Tj, Tstg

-55 to + 150

~ ordering information
.------------POLARITY

! ~..---------~I

"1" for NPN
"2" for PNP

---VOLTAGE RATING

l____,___

NB1X X X X

tl

~.

refer to

PACKAGE/LEAD CODE
refer to [IJ
HFE GROUPING
refer to []]

7-44

rn

UNIT
Voe

°c

~

electrical'characteristics

Tc = 25°C

PARAMETER

SYMBOL

TYP

MIN

CONDITIONS

MAX

UNIT

Collector-Emitter Sustaining Voltage
NBlll/121
NB112/122
NBl13/123

IC = 1 mA

Collector-Base Breakdown Voltage
NBlll/121
NBl12/122
NBl13/123

Ic = 100J.LA

BVEBO

Emitter-Base Breakdown Voltage

IE = 1OJ.LA

ICEO

Collector.-Emitter Leakage Current

VCE = 30V NB111/121
45V NBl12/122
60V NB113/123

2
2
2

J.LA
!,-A
J.LA

ICBO

Collector-Base Leakage Current

VCB = 35V NBlll/121
50V NBl12/122
65V NB113/123

0.1
0.1
0.1

J.LA
!,-A
J.LA

lEBO

Emitter-Base Leakage Current

VEB = 5V

0.1

J.LA

VBE(sat)

Base-Emitter Saturation Voltage

Ie = 20 mA, IB = 0.4 rnA

0.8

0.95

VeE(sat)

Collector-Emitter Saturation Voltage

IC = 20 rnA, IB = 0.4 rnA

0.15

0.4

BVCEO

BVCBO

HFEl

DC Current Gain

Ie = 100!,-A, VCE = 5V

Cob

Collector Ouput Capacitance
NPN types
PNP types

VCB = 10V, f = lMHz

Current Gain Bandwidth Product

IC = 15 rnA, VCE = 5V

ft

lID

HFE

V
V
V

40
55
70

V
V
V

6

V

V
ratio

50

pF
pF

2
3

MHz

100

CONDITIONS

PARAMETER

MIN

TYP

MAX

RAno

H

DC Current Gain

Ie = 15mA, VCE =5V

100

127

160

1: 1.6

I

DC Current Gain

IC = 15 rnA, VCE = 5V

140

180

240

1 :1.6

J
y

DC Current Gain

IC = 15 mA, VCE = 5V

200

260

350

1: 1.6

DC Current Gain

Ic = 15mA, VCE =5V

100

190

350

1 :3.5

W

physical dimensions

max power dissipation

::
I
I

-L ,------.

[J

:~~~.: C..'. :
I

T

.0165_
.0145

.694

tvo

L
.~::"j I':'

.018 typ

:8:1-

1.2

E

~ 1.0

..,
0

i=

O.B

<
"-

ii; 0.6

--,

-

-

x...

.136

-rr:8:g

~
0

c: 0.4
w

::
0

0.2

=>

a

":IE

:IE

x

<
:IE

7-45

"'- ~

/ T = CAS1E TE~PER1TURf

I

I

" K t'~-...~

........

25

50

I

I

T = AMBIENT TEMPERATURE

75

100

~

125 150

TEMPERATURE (T) - - DC

175

200

.....
.....

W

Z

"tJ

Z

'"

V

groupings

GROUPING

00

35
50
65

.....

N
W

"tJ

Z

"tJ

-....
0..

Z

0..

00

typical performance characteristics

( 'I)

HFE1/HFE2

N

N '"
N

....
,....

....
m
N

z

HFE1/HFE2
IAI

current gain linearity ratio
2

0

~

a:
w

u.
%

0

w
N

0.6

:::;

«

--

ro-,

PNP

.... ;"" -,.......
~
.... ~ NPN

.....

,

u.
%
C
W

N

«

::E

W
t.)

VCE(sat)

~

collector to emitter saturation voltage

0.5

~

:::;

0.3

........
........
....
m

r-I-

W

::: No
p7:

-........
'"

0
Z

i=

«
a:

N~N

::E

a:

2

0

I

.....

IBI

current gain linearity ratio

VCE = IV

a:

c

0.2

Z

VCE = 10V

Jp

NPN

~ --

r-

~fo""

~

0.3
0.2

Z

0..

0.1
0.1

Z

( 'I)

N '"

z

0.1
0.3

3

10

20

50

100

0.1

COLLECTOR CURRENT IICI- - rnA

0.3

1

3

10 20

50

100

COLLECTOR CURRENT IICI - - rnA

>

1
1

W
t!l

2

~

W

0.3

2W

0.1

o
Ia:
o

to
W

HFE = 50

I..;.

,

-'

'1'

1

........

ot.). 0.01 0.1

~

'w

'"'"

20

1=

0.5

2W

0.3

o

0.2

I-

HFE - 50

~
CD

0.1

0.1

COLLECTOR CURRENT IICI- - rnA

...1

=10

W

100

50

HFE

a:

I

10

2

>

~
"1

i

3

3

TEST TI ME =300l-lS

W

t!l

I
0.3

~

~
C

~FE ~ 11)

0.03

6

PNPA
L..; NPN
PNP "",10""

101

base to emitter saturation voltage

W

CD

I

o

1=

1
1

TEST TI ME = 300l-lS

>

a:

VBE(sat)

>

lei

0.3

3

10 20

50

100

COLLECTOR CURRENT IICI- - rnA

u.

Cob

1

""
!:
W

Z

30

EMITIER - OPEN

10

«
CD

en

5

o
a:

3

I-

o

....
....
ot.)

2

VCE = 10V, f = 1 KHz

1

1

""r-..

I"- '""" r-..

Q

:;
W

t.)

""r-- ,....,
.....

z

r---... ~,
NPN"",

2

~

1"'-1--

1-1"-

1

0.1

0.3

3

«'
2
c
«

1=

to
W

IFI

common emitter output admittance

a;

5
W

E
E

20

t3

~

.z::

lEI

t.)

~

hoe

Q

output capacitance

Q

10

20

-

50

I-

::I

0.6
0.3
0.2

~
~

,

0.1

.......

0.03

~

a..

!:;

100

COLLECTOR TO BASE VOLTAGE IVCBI- - V

C

.... ... "

........ 1-'"

"""'

0.01
0.1

0.3

3

10

20

COLLECTOI'! CURRENT IIcl- - rnA

7-46

50

100

~

z

a:J

typical applications

~
~
~

~
~

Vee " 24V
180K

N

+

1"F
J:35V

47K

~

01 NB021EV
02 NB211VV
03 NROOIE

'~

04 NA41U

0.1

D2
100P

~

7

120K

d

56

05 NA42U

(,J

Z
Z

."

Z

a 1 sq. inch,
PD = 1.2W.

"tJ

~.---------------------------------------------~-------------------------.

za.

-

~

typical performance characteristics
u..

(W)

N
N



1

...

W
~
W
Cl:I

~
o

10
5

>

'I

w

1=

0.5
0.3
0.2

::

0.1

a::

t~
.....
...
o

~:~:

1

'"

¥l~~J/i

/.

~

r-- 'r-- -

0.001

w

t::;:

0.1

0.2

0.5

1

COLLECTOR CURRENT (lc) - - A

liFE = 50

0.6

w

0.5

'"

HFIE = lp

.003

2

1.5

o

~

(F)

lIase to emitter saturation voltage

-'

1'/ 1/1/ .''-.-

HFE = 50

0.20.30.5

TEST TIME = 300j.tS

w

Cl:I

~~
~

3

W

q;

a::

:iii
w

1

TEST TI ME = 300j.lS

3
2

0.01 .02.030.05 0.1

"

VSE(sat)



2

a:
~

0.5

:E

0.3

IC =10
IB
IC = 40
IB

I

w

0.2 0.3 0.5

o
Iw

2

en

I

0.1
0.01

0.02.03 .05

0.1

0.2 0.3 0.5

:i
COLLECTORCURRENTUC)--A

COLLECTOR CURRENT (I C) - - A

7·54

IF)

TEST TI ME = 3001-18

~

. / ~~

IC = 40
lB

0.01 0.02 .03 .05

0.2 0.3 0.5

base to emitter saturation voltage

I

a
~ '\\"7:
,

~

t.l

~

IE)

TEST TIME = 300l-lS

0.3
0.2

0.1

VBE(sat)

collector to emittel· saturation voltage

W

t;
w
.....

~

COLLECTOR CURRENT (I C) - - A

VCE(sat)

I
I

w

NPN

0.1

0.1

>

>

40

(0)

C

COLLECTOR CURRENT (I C) --A

~

35

:I:

0.01 0.02.03 0.05

W
C!l

30

VCE = 10V

u..

o

z

25

0

a:
w

--

0.5

N

:;:
a:

20

 '


2000

II

c::

LLl>

...., E
t::1

500

au:.


~w

780 m V...

30
20

2:

VSE (SAT) HFE = 10
I

1'51

Cob

::0

collector /base to emitter saturation voltage

!'oo.... I"--

r-..


I

SEE TEST CI RCUIT


output d istortlon and contro vo t~e
TEST CIRCUIT A
VIN =20mV r.m.s.

1\ I;ESTI CIRCUIT
I I I
1\1\.\
B

2:

a

4

I

~

I-----

"'~o"~\

I\,

....,
LLl

\ j'...

50

0,3

.........

~IIICU:TA

1\

60
0.1

10

3

30

100

CONTROL VOLTAGE (Vcont) - - V

T,HO'V~

THO·Vo
TEST CI RCUIT B
VIN =50mV r.mi/

0,02 0.03

-

1'-..

0.05

0.1

h

......V
0.2

0.3

0.5

OUTPUT VOLTAGETO INPUT VOLTAGE RATIO

Dynamic range

Test circuits

maximJm input voltage vs THO


( A

10

K

20
30

2:

LLl

~

40

60

B(-\CI~

Yin

0

K-(
'\'...: "- " ~....... ............

t-,-

A THO = 0.5%
BTHO = 1%

t-,-

~ ~~g:!~

--'-"N'r-T...JV'rv-:F--\E'-t-~_~--"N\-2-,60mv I l. ' r '
11K

10K
INPUT 2

,,,
SQUELCH

.

OJ

PROGRAMj:

S

o

CJ

SELECT

10K

C

Figure C. Squelch Circuit

c

.v

10K

010

0----\

PROGRAM
LOAD

Q1 - - 011 NR041E

Figure B. 10 Channel Program Selector

Fig~re D. Ringing Tone Generator

7·59

~ r-------~----------------------~--------------------------------~----------~

Z

Q.

-,...
Z

~National

a

Semiconductor

N

~

a:

z

NR421(NPN) VHF amplifier/FM converter transistQr:

IT] package and ·Iead coding

features

,
•

•

0.65pF, typical f~edback capacitance for excellent
RF stability
Guaranteed collector·base time constant and
R F output resistance

TO-92

•

150mV typical VCE (sat) charac:teristics at
Ic = 10 mA, and IB = 0.5 mA
• 2 dB typical noise figure at 200 MHz
• "Epoxy B" packaging concept for excelient reliability

applications
•
~

VHF RF amplifiers/converters
CB radios

•

Low-power R F oscillators

LEAD

PACKAGE CODE
T0-92

o
F

~

1

2

3

B
E

E
C

C
B

maxjmum ratings
PARAMETER

SYMBOL

RATING

UNIT

VCEO

30

Voc

Collector-Base Voltage

VCB

35

Voc

Emitter-Base Voltage

VEB

3

VOC

Collector Current (continllous) ,

Ic (max)

30

m,c,oc

Power Dissipation (TA = 25°C)

Po

0.6

W

Po

1.0

W

6JA

208

°C/W

6JC

125

°C/W

Tj, Tstg

-55 to + 150

°c

Collector-Emitter Voltage

Power Dissipation (Tc = 25°C)
Thermal Resistance
Temperature, Junction and Storage

m

-

ordering information
rr--------,--PACKAGE/LEAD CODE

~

refer to

NR421XX

f. . ----'-----HFE GROUPING
refer to

7-60

I]]

IT]

~ electrica I characteristics

i

Tc" 25°C

~

BVCEO

Collector-Emitter Sustaining Voltage

Ic = 1 mA

30

V

-

BVCBO

Collector-Base Breakdown Voltage

Ic = 100ilA

35

V

Z

BVEBO

Emitter-Base Breakdown Voltage

IE=10IlA

3

ICBO

Collector-Base Leakage Current

Vcs = 30V

VSE (satl

Base-Emitter Saturation Voltage

Ic = 10mA, Is =0.5mA

VCE (satl

Collector-Emitter Saturation Voltage

Ccb

N

PARAMETER

SYMBOL

MAX

TYP

MIN

CONDITIONS

UNIT

5_5

V
0.1

IlA

830

950

mV

Ic = 10mA, Is =0.5mA

150

300

mV

Common Emitter Collector
Feedback Capacitance

VCB = 10V, f= 1 MHz

0.65

0.9

pF

Cob

Collector Output Capacitance

VCB = 10V,f= 1 MHz

0.9

1.3

pF

rb'Cc

Collector Base Time Constant

IC = 2 mA, VCE = 5V

8

20

pS

Roep

Common Emitter Output Resistance

Ic = 2 mA, VCE = 5V
f = 200 MHz

5

Ic=2mA,VCE=5V

450

Current Gain Bandwidth Product

ft

KOhm
MHz

700

~HFE groupings
PARAMETER

GROUPING
E
F
G
H
R
S
T

DC Current
DC Current
DC Current
DC Current
DC Current
DC Current
DC Current

Gain
Gain
Gain
Gain
Gain
Gain
Gain

CONDITIONS
IC = 2 mA, VeE
Ie = 2 mA, VeE
Ie = 2 mA, VeE
Ie = 2mA, VeE
Ie = 2mA, VeE
Ic = 2 mA, VeE
Ic = 2 mA, VeE

~ physical dimen'sions
TO-92

J..., _

"8:[J
T: '., [J
:81:1-

.59.
tvP

L

--,

"~j"i

'

I .1 ••
-.1315

--,--r-

:g:~ -

.

[1]

:8:1

TYP

MAX

RATIO

30
45
68
100
20
45
100

38
58
85
127
32
70
150

50
75
110
160
50
110
240

1:1.6
1:1.6
1:1.6
1:1.6
1:2.4
1:2.4
1:2.4

max power dissipation

!t

..
I
I

•E

1.2

~ 1.0

z0

O.B

If

0.6

i=

~

.018 typ

= 5V
= 5V
= 5V
= 5V
= 5V
= 5V
= 5V

MIN

is

... 0.4
!t
...:IE 0.2
II:

I\.

K

:IE

x
:i

7-61

0

l/T = AMBIENT TEMPERATURE

I"- ~

0

::;)

/,T = CASE TEMPERATURE

25

50

""'-

75

~

.......

~

100 125 150 176 200

TEMPERATURE (Tl- - DC

"""
Z

"1iJ

-

a: (]]

~

r-------------------------------------------------------------------------------------~

-,..

typical performance characteristics

Z

>

C\I

I
I

'lilt

W

Z

<:.w

a::

a>

HFE1/HFE2
1:1

~

w
u..

:I:

e

w

N

:::l
<
:;;
a:
1:1

2:

0.5

C!l

I---

~

1:1

-

>

I- ~

~i""

""

(8)

collector/base to emitter voltage

w

VCE =5V

2

<
a:

VeE (sat)/VBE(on)

u

2-

(A)

current linearity ratio

a:
w

~.

0.5

1:1

0.2

w

0.1

I-

0.3

~

0.2

I

VBE (ON)

1=
:ij
w

VBE (ON) - - VCE = 5V
VCE (SAT) - - HFE = 20

5
3
2

-~

I
VCE (SAT)

L-

0.05

a:

o

0.1
0.1

0.3

3

10

0.02
Iu 0.01
w
0.1
-'

50

o

E
E
I
I

30

I

.c

E
E
I
I

20

300MHz - I-- 500MHz -

10

I~

I

I

a;

-

...

I-

2

3

5

7

10

20

:::>

30

1:1

common emitter forward transfer admittance (E)

I

I

0.05 0.1

0.20.30.5

2

3

5

10

OUTPUT CONDUCTANCE (goe) - - rnrnho

e

w

3

2:

2

en
a::

w

100MHz

a:

a:

l-

I-

50MH\
10
10

20

30

50

70

0.7
0.5

I

u..

'"2:

INPUT CONDUCTANCE (gie) - mrnho

!

'":::>

:::>
'"

-

500MHz

l"A

~~
./

u·

I

E
E
I
I

~w

2

2:

50MHz

Q

w

II

tw

5

.c

3

u

(0)

VCE = 5V,IC = 2rnA
5

Q

e

~oOMHlz
1

common emitter output admittance

Q

VCE = 5V,IC = 2rnA

2

50

10

Yoe
(e)

common emitter input admittance

3 -

3

COLLECTOR CURRENT (lc) - - rnA

u

Vie

Q

.c

0.3

-'

COLLECTOR CURRENT (I C) - - rnA

0.3

0.2

"

o

100

FORWARD TRANSFER CONDUCTANCE (gfe) - - rnrnho

7-62

w
a:
w
>
w
a:

'"

5~OMHZ

300M Hz

100MHz

50MHz

I

0.1
0.3

0.5

0.7

2

3

5

REVERSE TRANSFER CONDUCTANCE (-gre)· - J.LI11ho

NR1,210S

NRli21DS

NR461ES

NR461ES

NR.461ES

~
~

L,

~a::G
II

IT

SWG026, 011

~I

j .

- .

FM

- - - - - -- - - - - - -

j

--

- -

.~;

----

1/-

I' -1 I . ~.~ I~ ~"] ~ I ~ __ n

I

~"- ~

L,

_

-<

~

"'C

2T

::

(")

3".",

OJ
OJ
"'C
"'C

~

--

o------J

NR1061EF NR461ES

SWG,12, 0"'4",m

(")

OJ

l3

SWGU2.IrI·H.O .. -3m",

llo

SWG'1I.Ji·2DT.O"·~.l·D.J~H

LS

151 2T.l·4~1i.a..·1OO

L6,~;:€c"

'"O"~~ II
'M

LI

-"'--.lL.3

I'
,I

2T EMIT

1[1

ir=
T,T4

'"
c,
T8

[[e:

T9

•

30dB quieting sensitivity: 2J1.V
limiting sensitivity:
7J1.V
AM rejection:
40dB
AFC holding range:
800KHz
40dB

AM performance (525-1650 KHz)

•
•
•
•
•

maximum sensitivity:
20dB quieting sensitivity:

selectivity ±10KHz:
AGC figure of merit:

overload distortion:

100J1.V/M
280J1.V/M
-2&1B
52dB
3%

::
~:

IT

T5
T6

::~

lOKOl1WAC-JA5CUVI'f'f

IWC-.... SJ4lf11

"
ffi I'E

7

--0

JIT

II

1IT

::

T

3ST

~"E

lilT

11

3ZT

::

,I

IT

TOlO,RZC-l,uU411

TOKD~YHC-l ... cmOx

FM performance (88-108 MHz)

11

"ID'" Ilion
:: r--<'
1m

i

'EB"€
TO'l(O,MAC-'''I2''''

TOI(O'nC ........ ]lSEI(

•
•
•• stereo separation:

••

TDkD'"IIIIO_ZAUtoil

0,

~.

6T

(/)

GO,
I

.....

U~'1

::

~

0
:::l

AUDIO performance

•• frequency response:
separation:
• channel
• tone control range:
•

10% TH D output power:

typical system dist:

3W+:iW
50Hz - 15KHz
45dB
±lOdB
0.5%

Figure A. AM/FM/Cassette Home Stereo Circuit

(NdN) ~Z't7l:1N

"

Z
C.
Z

-,...

r-------------------------------------------------------~----------------_,

~National

a

Semiconductor

('I)
~

a:

z

NR431 (NPN) HF amplifier/FM converter transistor

IT]

features
•

1.1 pF typical collector feedback capacitance

•

5K Ohm minimum RF output resistance at 100 MHz

•

package and lead coding

150mV typical VeE (sat) charaetersistics at
Ie = 10 rnA, and Is = 0.5 rnA

•

"Epoxy B" packaging concept for excellent reliability

applications
•

High frequency amplifiers/converters

•

CB radios

•

Low power RF oscillators

~ maximum

PACKAGE CODE
TO-92
E
F
H

LEAD
1

2

3

E
E
e

B
C
B

C
B
E

ratings
SYMBOL

RATING

UNIT

V eEO

15

Voe

Collector-Base Voltage

VeB

18

Voe

Emitter·Base Voltage

VEB

3

Voe

Collector Current (continuous)

Ie (max)

30

mADe

Power Dissipation (TA =-25°C)

Po

0.6

W

Power Dissipation (TC = 25°C)

Po

1.0

W

6JA

208

°C/W

6Je

125

°C/W

Tj, Tstg

-55 to + 150

°c

PARAMETER
Collector·Emitter Voltage

Thermal Resistance

Temperature, Junction and .Storage

m

ordering information

1

r-- - - - - - - - - - -

PACKAGE/LEAD CODE
refer to

NR431XX

tL--'-_______ HFE GROUPING
refer to []]

7-64

ill

~ electrical c.haracteristics

Z

TC = 25°C

PARAMETER

SYMBOL

,.

l:J

CONDITIONS

TYP

MIN

MAX

UNIT

BVCEO

Collector-Emitter Sustaining Voltage

Ic = 1 rnA

15

V

BVCBO

Collector-Base Breakdown Voltage

Ic = 100J,lA

18

V

BVEBO

Emitter-Base Breakdown Voltage

IE = 10J,IA

3

ICBO

Collector-Base Leakage Current

VCB = 15V

VBE (sat)

Base-Emitter Saturation Voltage

Ic = 10 rnA, IB = 0.5 rnA

VCE (sat)

Collector-Emitter Saturation Voltage

Ccb

Common Emitter Collector

V

5_6
0.1

J,lA

830

950

mV

Ic = 10 rnA, IB = 0.5 rnA

150

300

mV

VCB = 10V, f = 1 MHz

1.1

1.4

pF

1.4

1.7

pF

Feedback Capacitance
Cob

Collector Output Capacitance

VCB = 10V, f = 1 MHz

Roep

Common Emitter Output Resistance

Ic = lmA, VCE = 5V
f= 100MHz

Current Gain Bandwidth Product

ft

[§J HFE

~

KOhm

5
350

IC = 1mA, VCE = 5V

MHz

600

groupings

GROUPING

PARAMETER

E

DC Current Gain

F

DC Current Gain

G

DC Current Gain

Ic = 1 rnA, VCE = 5V

R

DC Current Gain

Ic = 1 rnA, VCE = 5V

S.

DC Current Gain

Ic = 1 rnA, VCE = 5V

CONDITIONS

.186 I

,176

--

I

C)

I

I

T

:81:~-

.694

tvo

l

-,

[ZJ

-

x•
E
zCI
i=

f

12
is

·'::"j,.L

III

:g~g_

0.8
0.6

a: 0.4
~
CI
Do.

.135

:Ii

~

:Ii

:8:;

1 :1.6

75

1 :1.6

68

85

110

1 :1.6

20

32

50

1:2.4

45

70

110

1:2.4

max power disSipation

1.2

~ 1.0

.018 'tVP

-

50

58

30
45

I
I

[lJ

I

38

Ic = 1 rnA, VCE = 5V
Ic = 1 rnA, VCE = 5V

~

TO-92
0

RATIO

TYP

physical dimensions

...L

MAX

MIN

::I

x
<

:Ii

7-65

[¥' T= CASE TEMPERATURe

"

l'\c

.......... ~

~

0.2
0

T = AMBIENT TEMPE1RATURE

~

~~

.......

25

50

75

~

100 125 150 175

TEMPERATURE (T) - - DC

200

W
...10

Z

"tJ

Z

~

Z
a..
Z

r---------------------------------------------------------------------------------------,
Ir;l
~

typical performance characteristics
>
I
I

W

HFE1/HFE2
current linearity ratio
0

~
a::
w
"-

:t:
0
W
N

::;

«

:E

a::

0
Z

~

0.5

~~

.........

~

collector/base to emitter voltage

w

VCE = 5V .

2

VeE (sat)/VBE(on)

2

c.>

(A)

I

<-'"w
t:J

5

o

3
2

«
!:i

~

~

liE
w
o

0.3

I-

0.3

50

10

3

J
VilE (ON)

0.2

VCE (SAT)

0.05

'"

0.02

~

0.01
0.1

c.>

./

'" '"

I

0.1

w

w
-'

COLLECTOR CURRENT IIC) - - mA

0.5

~

~

0.2

0.1
0.1

VBE (ON) - - VCE = 5V
VCE (SATI- - HFE = 20

>

a::
w

(B)

I

T

-'

~

J i
0.3

10

3

50

COLLECTOR CURRENT IIC) - - mA

-'

o

c.>

Vie
o
.c

e
e

100

I

60

I
0;

30
20

8

10

w

c.>

z

t

w
en
~

I

L..A

~CI

6
3
2

a..

~

-'

L

c.>

!;

(e)

_

300MHz

-

tw

c.>

en
=>
en
l-

1

=>
a..

o!;

0.3

0.5

2

3

5

10

60

t

30

w

z

w
en
=>
en
c.>

20

a::
w

10

Z

6

"en

«a::

I-

o

a::

~
a::

o

"-

I

VCe: 5V.IC= lmA

I

c.>

z

.. I

t

I

0.3
0.2

~

0.1

•

0.05
0.005

0.01

w
"en

.

\

10

common emitter reverse transfer admittance (F)
VCE=5V.lc=lmA·

5
3

~ 3DOMHz

2

/

0.5

z

I-

0.1

~

30

50

70

a::
w
>
w
a::

100

FORWARD TRANSFER CONDUCTANCE (gfe) - - mmho

7·66

0.2 0.3 0.5

Vre

0.05
0.3

/ 100M Hz

1/

30M Hz

I

o

2

0.1

OUTPUT CONOUCTANCE (goe) - - mmho

0.3
0.2

«
a::

10MHz
.

0.020.03.05

en

30MHz _,

20

I

110~HZ I

w

=>
en
a::

V 100MHzr-30~M~Z

/L30MHZ

c.>

'-.100MHZ

3

1/ ""'"

0.5

I
I

e
1w

300MHz

7

10

2

e
e

common emitter forward transfer admittance·IE)

c.>

..,

3

o
.c

Vfe
10

VCE=5V.lc=.lmA

z

100MHz

'/'

INPUT CONDUCTANCE (gie) - - mmho

100

5

(0)

common emitter output admittance

c.>

e

~
..!.

I
I

w

10MHz

o
.c

I
I

10

!
e

30MHz

oJ

0.1
0.2

e

~
e·

VCE = 5V.IC = lmA

0.5
0.3
0.2

Voe

o

common eMitter input admittance

0.5

'1

I

1OMH

0.7

i
2

3

5

REVERSE TRANSFER CONDUCTANCE (-gre) - - J,lmho

NR431ES

NR431ES

~~f-r--.~II

NR~61ES

NR461EF

"

I

I

I" I

8,...

NR1,61ES

-<

l

"0

t

C1
III
K
CI 2"56

III

.,'

f

_ _---.-JI

n~

~W
."

~t060

~

I,,.

'"

"0
"0
C1
III

,...

o

::J
III

""I

."

~
Ll SWG#22,N-6.ST,Oia-4mm

SWGft2B, N" 2OT, Dill '" 3mm L -0.75JlH
L5 9ST: 8T, L - 600PH, Op - 300
L7 N -loST, PHILIPS #4312-020-34401

L4

L2 SWG #22, N - 4T, Dia - 4mm
L3 SWGI/22, N· 4T, Dia - 3mm

Tl-T3

L6

T5

T4

T6

'> ::8 U ::EE'
~:' ::G :;:TI::G ~
:3
~I
11

2T

II

8T

II

TOKOO vMO - 2Al88R

1.5T

TOKO~!HAC

-7A121A

II

TOKOU7AS068VPPF

FM performance (88-108 MHzl
•

30dB quieting sensitivity:

•

limiting sensitivity:
AM rejection:

•
•

•

AFC holding range:
Bandwidth:

5JlV
20JlV
40dB
800KHz
180KHz

5.5T

2T

"

~"G ffi(~

ffi::(Z
II

II

32T

H

JT

II

'"

TO"OU 154FC - 8A574JN

UT

II

1m

:;

o maximum sensitivity:
•
0

o

20dB quieting sensitivity:
selectivity ± 10KHz:
AGC figure of merit:
over! cad distortion:

l00JlV/M
280JlV/M
-2BdB
40dB
6%

5T

I

lIT

TOKO"VCC - 4A31SEK

TOKon RlC- 1A6414N

AM performance (525-1650 KHz!

e

T8

T7

lIT

:1

TOKO" YHe - IA099DX

AUDIO performance
•

gain at 1 KHz:
10% THO output power:

• frequency response:
••

typi~al

system dist:

• alann tone frequency:

200
900mW
70Hz -12KHz
0.8%
600Hz

Figure A. AM/FM clock radio

(NdN)~£t~N

~

Z

a.
z
,...
co

-

r---------------------------------------------------------------------------------,

~National

~ Semiconductor

~

a::

z

NR461 (NPN) low-noise RFIIF transistor

features

II)

•

Low Ccb for excellent RF stability

•

High Roep for simplified RF coupling designs

•

70mV typical V C E (sat) characteristics at

package and lead coding
TO-92

Ic = 10 mA, and IB = 0.5 mA
•

1.1 dB typical noise figure at 1 MHz

•

"Epoxy B" packaging concept for excellent reliability

applications
PACKAGE CODE
TO-92

•

MW/SW/CB radios

•

0.1 to 50 MHz frequency converters

•

455KHz to 10.7 MHz I F stages

F

•

Low-power R F oscillators

H

1

E
·E
C

E

LEAD
3
2
B
C
B

C
B
E

~ maximum ratings
' UNIT

SYMBOL

RATING

Collector-Emitter Voltage.

VCEO

30

VDC

Collector-Base Voltage

VCB

35

VDC

PARAMETER

Emitter-Base Voltage

VEB

4

VDC

Collector Current (continuous)

Ic (max)

30

mADC

Power Dissipation (T A = 25°C)

W

PD

0.6

Power DissiJ)ation (TC = 25°C)

PD

1.0

W

Thermal Resistance

()JA

208
125

°CIW
°CIW

-55 to + 150

°c

()JC
Temperature, Junction and Storage

Tj, Tstg

~ ordering information

r----------

PACKAGE/LEAD CODE

1

refer to

NR461XX
tL-________ HFE GROUPING
refer to

7-68

lID

OJ

Z

[i] electrical

ch a racteristics

::D

Tc; 25°C

~

0)

PARAMETER

SYMBOL

CONDITIONS

MIN

MAX

TYP

UNIT

BVCEO

Collector-Emitter Sustaining Voltage

Ic; 1 rnA

30

V

BVCBO

Collector-Base Breakdown Voltage

Ic; 100pA

35

V

BVEBO

Emitter-Base Breakdown Voltage

IE; 10pA

4

ICBO

Collector-Base Leakage Current

VCB ; 30V

VBE (sat)

Base-Emitter Saturation Voltage

Ic; 10 rnA, IB ; 0.5 rnA

VCE (sat)

Collector-Emitter Saturation Voltage

Ccb

Roep

5.5

V
0.1

pA

760

950

mV

Ic; 10 rnA, IB ; 0.5 rnA

70

300

mV

Common Emitter Collector
Feedback Capacitance

VCB; 10V,f; 1 MHz

0.9

1.1

pF

Common Emitter Output Resistance

Ic; 1 rnA, VCE ; 5V
f; 455 KHz
f; 10.7 MHz

100
20

Ic ; 1 rnA, VCE ; 5V

180

Current Gain Bandwidth Product

ft

KOhm
KOhm
300

MHz

~HFE groupings
GROUPING

PARAMETER

E
F
G
H
R
S
T

DC
DC
DC
DC
DC
DC
DC

Current
Current
Current
Current
Current
Current
Current

Gain
Gain
Gain
Gain
Gain
Gain
Gain

CONDITIONS

MIN

TYP

MAX

RATIO

Ic; 1 rnA, VCE = 5V
Ic = 1 rnA, VCE = 5V
Ic; 1 rnA, VCE = 5V
Ic;lmA,VCE=5V
IC = 1 rnA, VCE = 5V
Ic; 1 rnA, VCE = 5V
Ie = 1 rnA, VCE = 5V

30
45
68
100
20
45
100

38
58
85
127
32
70
150

50

75
110
160
50
110
240

1:1.6
1:1.6
1: 1.6
1:1.6
1:2.4
1:2.4
1:2.4

[2]

[]] physical dimensions
J:

TO-92

..L

[0

, C' ,

• 185 I

.176

I

T

:8~~g-

.594

tvo

L

-,
,018 typ

"::"j I'~'
-

.135

~-

·g~B -

:g~~

max power dissipation

-

.
I
I

1.2

~

~ 1.0

z

0

0.8

i=
~ 0.6

~

is
co: 0.4
w
J:
0

~

~

/ , T; CASE TEMPERATURE

'\.
..........
K r'\.

T = AMBIENT TEMPERATURE

i'.~
.......

0.2

:Ii

::)

:Ii

X
~

7-69

0

26

60

76

~150

100 125

TEMPERAT1JRE (T) - -

°c

175

200

""'"

Z
"'0
Z

-

"
Z
a..

Z

r-------------------~--------------------------------------------------------~,

[!] typical

performance characteristics
>

,..

I

I

co

W

a:

z

co

HFE1/HFE2

~

IA)

current linearity ratio

~
w

VCE = 5V

2

tll



a:

10

o

I-

0.3

3

10

50

w 0.0
en
£e. 0.02
0.01
t; 0.1

Z

«

tw

(,3

en
::>
en

100

VCE
30

o
..c

Ie)

5.

= 5V,IC = lrnA

I
I

45MHz

3

10MHz

1

2MHz

0.3
O. 1

~

~.

,

t.l

en

::>

en

455KHz L

I-

::>
a..
I::>

l
0.5

o

0.7

3K

:
100

en

3

I-

o

a:

«

;;:
a:
o
L.L-

I

1
3

1

I.

3

5

7

455KHz
I

I

10

20

30

50

70 100

200

300

0.3

10

30

en
a:
w

0

50

I

J

I

I

Z

~
Iw

__.l

30

t.l

en

455KHz
~
20

,1/

L.L-

t

0.1

100

~

10MHz
2MHz

-.

45MHz - , -

«

tw
I

1

Vre
common emitter reverse transfer admittance IF)
.1
1
VeE =5V,IC =lmA
30 0

w

Z

1\

Z

«a:

10MHz

2MHz

10

(,3

45MHz

-.l.

e

""
J.

VeE = 5V,IC = 1rnA

..1

30
10

a:
w
L.Len

./

30

[

.common emitter forward transfer admittance IE)

w
t.l
en

::>

,

100

I

45MHz

......

OUTPUT CONOUCTANCE (goe) - -:- /HI1ho

Vfe

~

t

I

300

o

E

Z

(0)

VCE = 5V, IC = lrnA

Z

t

w

0.3

common emitter output admittance

lK

,

10

o
..c
E

(,3

50

10K

INPUT CONOUCTANCE (gie) - - rnrnho

""

10

Voe

common emitter input admittance

::> 0.03
a..
Z 0.0 1
0.2

w

3

COLLECTOR CURRENT Oc)- - rnA

o(,3

I-

J.

1

0.3

w

Vie

(,3

1

...J
...J

COLLECTOR CURRENT (I C) - - rnA

ew

-

L

VeE (SAT)

O•II--,

g;

0.1

E
E
I
I
'"

VBE (ON)
.J.

0 .2


w
a:

3
1
0.1

10MHz

I

2MHz

1 .
1
455KHz

I
0.2

0.3

._-----0.5

0.7

2

REVERSE TRANSFER CONOUCTANCE (-gre) - .- /.AIlIho

NR.I;210S

N~461ES

NR421DS

8...

NR461ES

NR461ES

'"'~'~~

"'~,

Leo,

-<

'B"[~G

'C

L2~

'C
'C

L,

(')
Q)

JT

SWGIZS,Di.-3_

~I

ul

FM

AVC

1.5T

Q)
COL

n

SWG,22, Oil_""'"
LJ
L

SWG9n,II-n
_ ' 0 ia-Jlllm

4
LS

SWGOza.II -ZOT

...O·
Q)

o·

15T'2T'l-'~H .. ·!mIll.l·Q.l~H
,~-300

:l
(J)

L6

'"'"~; ~ I! .
lM_

..

LI

.lL.;Y

I' III
I

n

I

".

...,
:j

vJo

t

NO

,•

TB

'lie:

T5
T6

::€

"ffi'"
1m
::
II

5T

T91m:;.~

I'

lill!l~

FM performance (88-108 MHz)

30dB quieting senSitivity
limiting sensitivity:
AM rejection:
AFC holding range:
stereo separation:

2JN
7JN
40dB
800KHz
40dB

AM performance (525-1650 KHz)

•

••.
•

•

maximum sensitivity:
20dB quieting sensitivity:
selectivity ±10KHz:
AGe figure of merit:
overload distortion:

100JN/M
280JN/M
-28dB
52dB
3%

II

I'

TBKB,M"C-JAUIA

TOkO "MAC_1AS05.V,"""

ffj"€

7

T

TOKO'VHC_IA0'990X

•
•
•
•
•

1+

JT

TBKB, YlC-tAlIUK

~

::E

COL

ffi:;€

1T

T,
T4

0,

-'I
=,

EMIT
GNB

"II

TOKBURII0_2AUIQII

r;::::=

I

~

loaT

lilT

II
II

m

;:

3T

TOKO ~RlC-IAS"4N

AUDIO performance

•
••

•
•

10% THO output power:
frequency response:
channel separation:
tone control range:
typical system dist:

3W+3W
50Hz -15KHz
45dB
±IOdB
0.5%

Figure A. AM/FM/Cassette Home Stereo Circuit

(NdN)l9t~N

Section 8

Process
Characteristics
Double-Diffused
Epitaxial Transistors

~National

Process 02 NPN Small Signal

D Semiconductor
0,006

DESCRIPTION

-(P,152)-

Process 02 is a non-overlay, double-diffused, silicon
epitaxial device.
APPLICATION

,•

0,0035
(0,0889)

An economical device, good for all-around applications
from DC to low radio frequencies. Ideal for use in general
amplifier and control functions in consumer, industrial
and automotive environments up to 100mA.

0,016

(0,406)

PRINCIPAL DEVICE TYPE
TO·92, EBC: MPS-A20

Parameter

Conditions

Min

Typ

Max

Units

BV CEO

Ic=10 rnA

40

V

BVCBO

Ic =10"A

45

V

BV EBO

6,0

ICBO

IE=10"A
V cB =40V

lEBO

V EB =5V

hFE
hFE

Ic= 100 I'A, VCE = 10V
Ic= 5 rnA, VCE = 10V

60

hFE

Ic = 100 rnA, VCE = 10V

25

VBE(ON)

Ic=5 rnA, VCE = 10V

0.85

VCE(SAT)

Ic= 10 rnA, IB= 1 rnA

0.25

IT
C ib

Ic= 5 rnA, VCE = 10V, 1= 100 MHz
V EB = 0.5V, f = 1 MHz

Cob

VCB =10V,I E =0,f=1 MHz

V
100

nA

100

nA

35

125

180

225
2,0

8-2

480
V
V
MHz
10

pF

4,0

pF

Notes

""CJ

Process 02

a
n

(I)

DC Current Gain vs
Collector Current
lk

1.4

lk

veE'" lOV
z

~

....z

VCE" 10V

500

500

300

300

111111
1111II

VrEI(~1T11 ~ IC/IIB c..1O

w

w

~

100

c

50

I-

'"

~

/

..<'

>
~

50

3D

30

10

10

111111 ......

'"~"'

......

100

I

u

I

Satur!ltlon and ON Voltages
vs Collector Current

Bandwidth Product vs
Collector Current

~

VBE(ONi~IVc~

0.5

'"
0.1 f0.1

0.5

1

510

50100

10

170

....... r-,.

~

Cib

160

iiic:

Cob

"'cz

i
~

'r-...
4 6

10

20

150

0.51

5 10

50 100

Base Spreading Resistance
vs Collector Current

1

"

in

........

...........

1

0.1

IC - COLLECTOR CURRENT (rnA)

VCE = 10V
f'" 1kHz

u

0.40.6

100

Output Admittance vs
Collector Current

S

1

50

IC - COLLECTOR CURRENT (mAl

10

VCE(SATI@IC/IB"10=

o

IC - COLLECTOR CURRENT (mAl

Capacitance vs Reverse
Voltage

III

VCE 10V
f= 1 kHz

0.5

u

140

....
'"
....
~

z

0.2

'"....

"....
"I

0.05

~

0.1

0

130

0.02

-r-

I

40

'"

~

120

0.01
0.1

VR - REVERSE VOLTAGE (VI

0.2

2 3

0.5

5

10

Maximum Power
Dissipation vs
Ambient Temperature

;::

.s
:5

~

ill

C

'"~
~

800
700
600
500
400

\.
I\.
TO·92

~ 300

"x

'""
I

x

;p"'"

200

'\

100

I'\.
50

100

150

TA - AMBIENTTEMPERATURE (OCI

8-3

0.1

0.2

0.5

IC - COLLECTOR CURRENT (mAl

IC - COLLECTOR CURRENT (mAl

200

10

tn
tn

oN

Process 04 NPN Small Signal

J?'A National

~ Semiconductor

r.- .

0.011
1-----:--(0.4321-----0-1
0.0035
(0.08891

--

DESCRIPTION

0.0045
- - (0.11431
.
0.0025
(0.06351

Process 04 is a noli-overlay, double-diffused, silicon
epitaxial device. Complement to Process 71.
APPLICATION
This device was designed for low noise, high gain, general
purpose amplifier applications from 10 pA to 100 mA
collector current.
PRINCIPAL DEVICE TYPES

10·18:

-SC107 Series
TO·92, ECB: 2N2923 Series
2N5172
TO·92, EBC: MPS2923 Series

0.0026
(0.06601

Parameter

Typ

Max

Units

Notes

NF (spot)

Ic = 200 /LA, VCE = 5V,
f = 1 kHz, Rs=2k

2.0

4.0

dB

TO-18

Cob
C ib

VCS= 10V, f = 1 MHz

2.5

3.5

pF

fT

VcE =5V,l c = 10 mA

hFE

VCE=5V,lc=100/LA

50

hFE

VCE=5V,l c =2 mA

75

hFE

VCE = 5V, Ic = 100 mA

40

hFE

VCE = 1V,lc= 100 mA

25

VCE(SAT)

Ic= 10 mA,ls= 1 mJl:

0.2

V

VCE(SAT)

Ic= 100 mA,ls= 10 mA

0.5

V

Conditions

Min

10

V Es =0.5V, f=.1 MHz.
250

125

250

pF
MHz

600

Ic= 10 mA,ls= 1 mA

0.85

V

VSE(SAT)

Ic= 100 mA,ls= 10 mA

0.95

V

BVcso
BVCEO

Ic= 10/LA

45

V

Ic= 10 mA

35

V

BV ESO

IE= 10 /LA

7.0

Icso

Vcs=40V

100

nA

IESO

V Es =6V

100

nA

. VSE(SAT)

V

8-4

"tJ

Process 04
DC Current Gain vs
Collector Current
rT11T-rTT1r.-nrr-t-rnr-,

1000

5~ t+tt-H-ttt-+-+l-tt--l

~

BOO

H+tt-+-l-l-tt-+-HtH-+t+t-l

~

600

H+tt-+-l-l-tt-+-HtH-+t+t-l
H+tt-t-++tt-I- TA = 125"C
H+tt-+-l-l-tt-::J;;..H'fR"oI;tt-l

VeE =

z

;;:

......
ffi

Base·Emitter ON Voltage vs
Collector Current

'"

..~

400

=

200 H+tt-t~-+i"'q:..H+H-t+lf~

..,
1

TA • 25"C

i-HtH-+t+t-l
10

w

0.8

.B

= 0.6

.6

iA'J

~

~

"~

0.4

.4

I

0.2

.2

~

II

~~

.1

.01

!i~

~~
~~
..,&55!...

.OB

1<

-'"
.=
~!;:

JVJ

.

w

~z

TA=12~~

I I

III

I I
10

.1

100

Ie - COLLECTOR CURRENT (mA)

Input Capacitance vs
Reverse Bias Voltage

r-r--

.

CI

~

6.0
5.0

I-HttI-t-tl-t+l-l""'~tfl-l

;;;

4.0

I-HttI:-t-tttt\

~

3.0

I-HttlHt--tl\:!;!:-;;;Io.;;~frIrl'll

8

2.0 l-H-fH:!:!:~fi"t

1

.04

=

IE 0
f= 1.0MHz

"

T.-25·C

1111

o
.01

1.0
10

.1

I -.......a...LJ...JU->L..U.-'

Ie - COLLECTOR CURRENT (mA)

ffi

1.0

~~~ ~ 5~

...

>
.1

.01

1.0

Base·Emitter Saturation
Voltage vs Collector Current

a

(')

.01
Ie - COII.ECTOR CURRENT (mA)

10

Process. 04
Contours of Constant
Narrow Band Noise Figure

~
...

~
w

..,z

"In

10

rii0:
..,w
g;
g

ffi
~

~

700 r.:--=TTTTITr-,,,-,-rnm

~

50,0

1---t-++t-tt+tt-++t+t+ttI

!;:

400

~-+-+~H+~-1-1-rrH+H

~"

300

""'~~:j:l+lm::::::~-kW-WW
f--'-+--++I+++tt-++I+Hfji

co

100

1--+-++I+++tt-++l+t+ttI

>

10

20
16

I ' 1kHz

r-..

12

w

~

co

.J

o
10

1

Ie - COLLECTOR CURRENT (rnA)

Output Admittance

Input Admittance
14

s

VeE =5V
Freq=1 kHz

1\
\

VeE ::5V

24

IC - COLLECTOR CURRENT (rnA)

Ie - COLLECTOR CURRENT (rnA)

z

~

28

I

100

10

"1=

0:

200

I

12

co·

j

.i

..,w

.

rE.~ ~~~ -t-l-ttItt--+-+-I-HH+f1

600

~;;;
~'

I

.£

g

Voltage Feedback Ratio

Small Signal Current Gain

100

1000
VeE = 5V
1-1 kHz

1..,
w

g

~

1..-

V

i!!i 100

"

5"

~
..

~

co

I

I

.......

~

J

,

10
Ie - COLLECTOR CURRENT

1

100

10

imA)

10
le- COLLECTOR CURRENT (rnA)

8·6

100

100

Process 05 NPN Darlington

~National

a

Semiconductor

o

DESCRIPTION
Process OS is a monolithic, double-diffused, silicon epitaxial Darlington_ Cqmplement to Process 61_
APPLICATION
This device is designed for applications requiring extremely high current gain at collector currents to 1.SA_
PRINCIPAL DEVICE TYPES
TO·202, EBC: D40C1-8
D40K1-4
NSD1S1-4
NSDU4S,4SA
TO·237, EBC: 2N6724, S
(92PU4S, 4SA)
TO.·92, EBC: MPSA12-14
TO·92, ECB: 2NS30S-08

0.026
1------10.660)-----

Conditions

NF

Ic=1 rnA, VCE=SV,
Rs = 100k, f = 1 kHz

CCB

VCB = 10V, IE = 0, f= 1 MHz

hFE

Ic= 10 rnA, VCE=SV

Typ

Min

Ic = 100 rnA, VCE = SV

8,000

Ic= 1A, VCE=SV
10 rnA, 0_01 rnA

3,000

VBE(ON)
hIe

100 rnA, SV

6

40,000

200,000

1.2
1_2S

Ic= 100 pA.

pF

1_0

V

1_S

V

1.4
1_8

V
V

60,000

Ic = 10 rnA, VCE = S_OV,
f = 1 kHz

BVCES

dB

4

100 rnA, 0_1 rnA

VBE(ON)

Units

4,000

hFE

10 rnA, SV

Max

2

hFE
VCE(SAT)
VCE(SAT)

V
V

40
12

BVEBO

IE=10pA.

ICES

VCE = 1SV, VBE = 0

100

nA

ICBO

VCB=30V,IE=0
VEB=10V,lc';"0

100

nA

100

nA

lEBO
PD(max)
TO-202

Tc=2SoC
TA=2SoC

10
2

W

TO-237

TCOLLECTOR LEAD = 2SoC
TA=2SoC

2
8S0

W
mW

TO-92

TA=2SoC

600

mW

8JC
TO-202

Tc=2SoC

12_S

°C/W

TCOLLECTOR LEAD = 2SoC

62_S

°C/W

8JA
TO-202

TA=2SoC

62_S

°C/W

TO-237

TA=2SoC

147

TO-92

TA=2SoC

208

°C/W
°C/W
·C

TO-237

TJ(max)

All Plastic Parts

~

tn

0.007
10.178) -

Parameter

"

1S0
8-7

Notes

c.n

Process 05
DC Pulsed Current Gain vs
Collector Current

i

100

B
z

~

E
0:
0:

i:l
o

it

"",
~

1::i~

+1~5lcl

.....1L
/1""1

1.0

0.8

II

100

o

lQQQ

~~

100

~~
!I~

1.2

I!;!

0..

I:~

...
I='C
~
w...

::':5

~

.... '"
i-""

-4I1"C

-tT
~
~

~

i--"

E

10

w

60

26

75

,1

10

VeE .tOV......

o
10

"1

"...

V

Safe Operating Area TO-202

--

YCE =1V

III

1

I

0.01

10

L.-....L.-'-_ _ _ _...:;.;.:.L.L.I.J..LU

'10

tOO 200

Ie - COllECTOR CURRENT (mAl

10

i

8.0

a:

7.0
6.0

~

s

~

I
D.I

I'\.

-

100

VCE - COLLECTOR·EMITTER VOLTAGE (VI

i

,f'

0

26'

60

76

1.4

I

"- I'\.

1.0
0

o

~
=

"'\.

,

10'

1,8
1.6

~

\.

~

~

..

" ' \ . )'TC

5.0
4.0
i! 3.0
;
2.0

co
I:;

Thermal Derating Curve
2,0

I'\.

D.D

100

125

TC - CASE TEMPERATURE ("CI

100

VCE - COllECTOR VOLTAGE (VI

Maximum Power
Dissipation TO-202 vs Case
Temperature

~

100

REVERSE VOLTAGE (VI

10~.

e

;;

10

125

f"'100MHz

:;c

Safe Operating Area TO-237

co

100

Small Signal Current Gain
vs Collector Current

REVERSE BIAS VOLTAGE (V)

....E'".
.
:l
.,

I'.. .....
o

o

i:l

1

f= 1 MHz

10

"'",
J

1/

~
.1

""e
Ii

12

~

.1

.E..
..
......

.....

o

Output Capacitance vs
Reverse Bias Voltage

T. - JUNCTION TEMPERATURE ("CI

....

1000

"5

1I11III

f~I~.I.

100

10

;

IC - COLLECTOR CURRENT (mAl

10

S

IC - COllECTOR CURRENT (mAl

i:l

Input Capacitance VB .
Reverse Bias Voltage

f-'"

+125°C

0,8

>

~

10

.01
100

1000

1/

j
10

100

.

II il
IIII
IIII

..... f-'"

0.4

0:
0:

:li
~,

-

Z

'= ve• -3DV

!

TC =+125°C

0.4

~ r~

1.2

Collector-Base Diode
Reverse Current vs
Temperature

2.0
IB

II

-4I1"C

;, -

II
1

VCE =5V

1.6

IC - COllECTOR CURRENT (mAl

Base-Emitter Saturation
Voltage vs Collector Current

!& -1000

~

./

TC 1
' tI2 CI

>

10

""

r

0.4

IC - COLLECTOR CURRENT (mAl

1,6

.....

+25°C

,e

;:g;
~!c
Wen

~
>

'f

...

2.0

w

co

~

. -4Q"C

3j:

~40"C

0

... >
;j~

0'"
1:;6

+25°C

20

1.2

o:e

i"'

'"V

.r;;

60

.

IB I

......
,

~

II

!& = 1000

0:

Til
HI

80

4Q

~

1.6

VCE' 5V

Base-Emitter ON Voltage vs
Collector Current

Collector-Emitter Saturation
Voltage vs Collector Current

,
,f'

"

160

I

\.~COllECTOR LEAO
(TO·237)

1.2

TAMBIENT

-

1.0 ~37)
0.8
0.6
0.4
0,2

o

I
I

'\..

I\.
TAMBIENT
'\.. ~0.2021

......

t-....

""-

t:-.........
r--r-- TAMB~
(TO·921
o

25

50

75

100

~

125

T - TEMPERATURE ("CI

150

"tJ

Process 05

a
(")

CD
(f)
(f)

Thermal Response in TO·202 Package
~§
:;'"

~~

......w1;"'"

0.7
0.5
0.3
0.2

,,0

;:Ow

"u
"""
.......
"'""
12l

0.1
0.07
0.05

-.:f:3 0.03

"''''

o

C1I

0- 0.5
0.2

HEATS UNK

.:.;Iiii

0.1

FREE AIR

o.Ds"
~~.:s0.02
H 0.01
SINGLEPU~

LnJl

PI,kl

I--

SINGLE PULSE

I

0.02

~l

-tl-

I

t2-

0.01
0.01 0.02

0.05

0.1

0.2

0.5

10

20

50

11 - TIME Imsl

8·9

100 200

500 lk

°Jclll·,It!,oJC
OJC DC THERMAL RESISTA NCE
T,k-TC+P,k·OJcltl
t1

DUTY CYCLE D· -.
t2
2k

5k

10k

20k

50k

lOOk

,....

o

(/)
(/)
CI)

(.)

e

~National

Process 07 N PN Small Signal

D Semiconductor
0.018
....- - - - 1 0 . 4 5 7 ) - - - - - -

c..

DESCRIPTION
Process 07 a non-overlay, double-diffused, silicon epitax-.
ial device. Complement to Process 62.

0.0035
10.0889)

APPLICATION
This device was designed lor low noise, high gain, general
purpose amplilier applications Irom 1 p.A to 25 mA collector current.
0.018
10.457)

PRINCIPAL DEVICE TYPES
TO-18:
2N930
TO-92, EBC: 2N5088
TO-92, ECB: 2N3392

Parameter

Conditions

Min

Typ

Max

Units

Notes

3

10

dB

TO-18

NF (spot)

Ic= 10 p.A, VcE =5V,
Rs = 10k, 1= 100 kHz.

NF (spot)

Ic=10!,A, V cE =5V,
Rs = 10k, 1=1 kHz

3

dB

TO-18

NF (spot)

Ic=10!'A, VcE =5Y,
Rs= 10k, 1= 10 kHz

3

dB

TO-18

NF (wideband)

Ic=10!,A, V cE =5V,
Rs = 10k, P BW = 15.7 kHz

3

dB

TO-18

hfe

IC=500!,A, V cE =5V,
1=20 MHz

Cob
C eb

VcB =5V,I=1 MHz

3.0

pF

8.0

pF

hFE

Ic=1!,A, VcE =5V

35

hFE

Ic=10!,A, V cE =5V

50

hFE

Ic=100!,A, V cE =5V

70

hFE

Ic=500!'A, V cE =5V

80

hFE

Ic=1 mA, VcE =5V

90

hFE

Ic =20mA,V CE =5V

50

VCE(SAT)

Ic= 1 mA, I B =0.10 mA

0.10

V

VCE(SAT)

Ic= 10 mA, IB= 1 mA

0.15

V

VBE(SAT)

Ic=1 mA, I B =0.1 rnA

0.75

V

VBE(SAT)
BVCEO

Ic= 10 rnA, IB= 1 rnA

0.85

V

Ic=1 rnA

60

V

BVCBO

Ic= 10!,A

60

V

BV EBO

I E=10!,A

8

ICBO

VcB =45V

100

nA

lEBO

V EB =6V

100

nA

3

6
1.7

V EB =0.50V, 1=1 MHz

8-10

360

1,000

V

'"tJ

Process 07
DC Current Gain vs
Collector Current
1000
"

~

""~

400

H+H-+--H-+t-+-t+tH-++tt-i

"~
~

BOO

~~-+--H-+t-+-t+tH~~-i

~

zoo H+H-+--H-+t-+-HlH-+-I*-j
100
0.001

H+H-+--H-+t-+-HlH-l--W+-j
VeE:::: 5V
H+H-+--H-+t-+-Htt TA = 25'C

a:

"~

.1

10

I

0.2

~

;;;

o
.01

.1

10

100

-

~

-l-

10

1.0

100

Ie - COLLECTOR CURRENT (rnA)

Contours of Constant Gain
Bandwidth Product (f T)

?:
w

"'"~

-

I IIII
I IIII

;;

10

0.1

'DO

1.0

10

N

~
;::

w

=>

"

>
Q

8.0

12.0

iii
C
a:

w

>
Cob
Ie"" 0

~

~

'"t:l

16.0

20.0

v

10

~

1.0

50

75

100

125

150

"
"'",x

Ie = 100 !'A

2k

!1ia:

lk

...
~
at

!\

500

VeE - 5.0V
200

5k

10k

20k

SDk

R, - SOURCE RESISTANCE (m

lOOk

100

150

"

200

TA .- AMBIENT TEMPERATURE I'C)

~

f - 100cps

~~~~Wllmll'0

...g;

12

'\

I

I,

2k

1'\

lk

£

f-'

500

1000

3

6
VeE::: S.OV
B
f= 1 kHz
BANOWIDTH = 200 cps

200

III

100
100

2

4

w

g

Ie - COLLECTOR CURRENT (!'A)

8·11

ia:1i

~

1

i:

5k

w

{. V
B

100
2k

50

i'-.

I"

Contours of Constant
Narrow Band Noise Figure

...
"I;;"

"-

w

I

t'-.

'\.

100

,<

~

4

\

"'"

I;;

TO·1B

."-

10k
3

5k

w

~

TO·92
300

10k

...

~

400

Contours of Constant
Narrow Band Noise Figure
~

'\.\:

600
500

.f

TA - AMBIENT TEMPERATURE ('C)

Wideband Noise Figure vs
Source Resistance

100

BOO

200

~

/
25

"5

10

100

Ii:

x

§

REVERSE BIAS VOLTAGE (V)

~

t;

~
4.0

~

100

0-

--

1.0

Maximum Power
Dissipation vs
Ambient Temperature

~

1000

~

IeC"
=0

~

Ie - COLLECTOR CURRENT (rnA)

Normalized Collector Cutoff
Current vs Ambient
Temperature

...

!,[""
'"

m'i:l:tj
0.1

100 •

-

125MHI

2.0

Ie - COLLECTOR CURRENT (rnA)

~

1.0

1\

1.0

F = 1 MHz

~

~

I'\'MJ,

I

5.0

2.0

4.0
3.0

8

Input and Output
Capacitance vs Reverse
Bias Voltage

I\.

7.0
6.0
5.0

>
a:

Q

::.{""= +25'C
I A I III

1.0

lk

D.'

Base·Emitter Saturation
Voltage vs Collector Current

Ie - COLLECTOR CURRENT (rnA)

3.0

::

Ie - COLLECTOR CURRENT (rnA)

I
TA::::+10~

~

100'C

10

III
-=10
1- 1•

4.0

-

i-'

I'[C

r-

ZOO

I

100

I-I~

~

11111

0.4

~

VeE - 5~OV

11111

0.6

~

i"

IIIII

o.B

~

Collector Saturation
Voltage vs Collector Current

5'"

Q

1.0

400

Ie - COLLECTOR CURRENT (rnA)

""
5

'"
>
~

TA=215°~

*"

w...l.l.l---L...l.JJ.L.L.l.ll~-'-.w.L-I

.01

w

'"

!:;

~
~

I

...

w

VeE = 5V
f= 1 kHz

T! =I,Wc

B 600

300

?:

IIII
IIII

'"

B
~

Base·Emitter ON Voltage vs
Collector Current

Small Signal Current Gain
vs Collector Current

1

10

100

Ie - COLLECTOR CURRENT (!'A)

1000

a
o
CD

en
en

o
......

......

o

Process 07

U)
U)

CI)
(,)

e
a.

Contours of Constant
Narrow Band Noise Figure

Contours of Constant
Narrow Band Noise Figure

10k

Ci

Ci

5k
1

.

~

u

z

\

2k

3'

"-

~

u

'"=

rE

~

4

u

6

'"=

VeE = 5.OV

200

I"-

lk
VeE

500

~

10

4
~

7

200 kHz

1000

Ie - COLLECTOR CURRENT (pAl

1.0

0.1

0.01

'ri;-I
I

I

R, = soon

II

\lc=1.0mA
~ = 5 k~1

I IJ
1/ VeE

10-4

10

l

II

Ic =1.0mA

o

100

100

~

rt\

6

BANDW~I~III-

r!!! 200

~

BANDWIDTH = 2 kHz

R,=loknl

3

=

5.0V
f-1MHz

Ie = 200pA
R,= lokn

le=lo0pA~:I

\

2

1\

I

f= 10kHz

100

\

2k

~

500

~
I

~

I
I

5k

u

z

lk

10

~

2

~

~

Noise Figure vs Frequency

10k

10-3 10-2 10- 1

5.ov

10

102

f - FREQUENCY (MHzl

Ie - COLLECTOR CURRENT (mAl

SMALL SIGNAL CHARACTERISTICS (I =1.0 kHz)
Symbol

Characteristic

Units

Typ

Conditions

hie

Input Resistance

15

kn

Ie = 1.0mA, VeE =5.0V

hoe

Output Conductance

15

!,mho

Ie = 1.0 rnA, VeE =5.0V

h re

Voltage Feedback Ratio

425

x 10- 6

Ie = 1.0 rnA, VeE =5.0V

hre

Small Signal Current Gain

400

h ib

Input Resistance

27

n

Ie =1.0 rnA, VeE =5.0V

Ie = 1.0 rnA, VeE =5.0V

TYPICAL COMMON EMITTER CHARACTERISTICS (f =1.0 kHz)

..

i!:
.,;

"
~

E

Q

t.4

I

~

1.3

boo

;;

1.2

,...

,...o
~

>

/'

~=

1.0

~

0.9

~

/'

1.1

b,,~
b,. ,

l:l

~
t
;;'i

b::;...

~

bl •

~

1.4

.

~

~

1.3

~

1.2

.>

~

1.1

V

'- f-1""
le=1.o~A

fi
cc

boo

~

=25°C

ti

cC

0

10

15

20

Vee - COLLECTOR VOLTAGE (VI

25

VeE =

s.nv

.1

hie

IC=1.0mA

>

g ~::

TA

0.8

1.5

"'p
.......

L."

~

or

~

L~

.,

~

b"
b..

~

::3

:;

boo

0.5

~.,.

g> '.0~11~
~

~. ~~II~'lfmll

-t" li~I'
-50

-100
TJ

-

1;;
~
;;'i
~

0.1

t; 0.01
50

100

JUNCTION TEMPERATURE lOCI

8-12

10

o
,...

0.8 -boo
1..1.
0,7 -"hh

0.6

100

k-L

150

0.1 0.2

0.5 1.0 2.0

~o

10 20

50100

Ie - COllECTOR CURRENT (mAl

"'C

~National

Process 09 N PN Medium Power

~ Semiconductor

a
o
CD

O.OZO

DESCRIPTION

1-.---------10.50BI--------~1

Process 09 is a non-overlay, double-diffused, silicon epitaxial device_ Complement to Process 68.

0.010
-{0.2541--

en
en
o
(0

APPLICATION
This device was designed lor general purpose audio
amplifier applications at collector currents to 1A_

0.004Z5
10.101951

PRINCIPAL DEVICE TYPES
O.OZO
10.5081

TO-92, EBC: CS9013

t

0.010
10'r

Parameter

Conditions

Min

COb
C ib

Vcs =10V,f=1 MHz

NF

VcE =10V, Ic=1 rnA,
Rs = 100n, 1= 1 kHz

IT

VCE = 10V, Ic= 50 rnA

200

hFE

VCE =1.0V, Ic=1 rnA

40

Typ

Max

Units

6

8

pF

V Es =0.5V, 1=1 MHz

35
2.0

hFE

VCE = 1.0V, Ic = 100 rnA

60

hFE

VcE =1.0V, Ic=500 rnA

35

VCE(SAT)

Ic= 150 rnA, Is= 15 mA

VCE(SAT)

Ic=500 rnA, Is=50 rnA

Notes

pF
dB
MHz

180

360
0.2

V

0.4

V

VSE(SAT)

Ic= 150 rnA, Is= 15 mA

1.0

V

VSE(SAT)

Ic=500 rnA, Is=50 mA

1.2

V

BVcso
BVCEO

Ic= 100 p.A
Ic= 10 mA

25

BV ESO

IE=10p.A

6.0

0.25

45

Icso

Vcs=40V

100

nA

IESO

V ES = 4.0V

100

nA

8-13

[;)I

0)

0

Process 09

U)
U)

B

e
c..

Base-Emitter ON Voltage vs
Collector Current

DC Pulsed Current Gain vs
Collector Current
240

z

~

i
Q

200
Ve ,

1.4

1111111

~

IlllIIl

"

1.2

>

1.0

~

';"10V"

160

z

120

~
Q

~

I

~
I

40

~

"~

100

10

1000

"

~

1.2

>
~
;::

1.0

0.1

1.0

~
~

100

~....

~

0.8

~ 0.4

50

150

100

200

1/

0.6

r-T"1"TT1l1Ir-TTTTTT1!r-TTTTTTTIr-nI"""'
1111111"

0.5

H+++llIII--H.fjjjfH+++HlI-++1lJlIII

0.4

H+H.JllII--f-fffillll-++IfIlHIf-+l

w

0.3

H-ttHllll--++H1ltIf--f-l-tttlllt--H

~

0.2

H+H.JllII--f-fH!IlIII-++IfIlHIHl++HlII

0

0.1

H+ltIl1l!-++t!llIIH+ltHlll.l4+1lJlIII

Jl
.01

0.2
0.1

1.0

25

1000

10
100
Ie - COLLECTOR CURRENT ImA)

14

-

'"

u

1\

w



=0

t~~ ~~':-lI1

'"
0

1"\

Co"

14JO

i1'

5.0

~~; H:
,.P.H
II '1~~~50MHrtr"

~.

~

I

~

;!:
1.0

10
f

100

= FREOUENCY 1kHz)

1000

Contours of Constant Gain
Bandwidth Product (IT)

o
.1

100

Ie - COLLECTOR CURRENT (rnA)

30
24

=>
~

75

Capacitance vs Reverse
Bias Voltage

Ic=1 rnA

10

u:
"

50

T, - JUNCTION TEMPERATURE I'C)

Je , I=I,~V

12
w

0

Collector-Emitter Saturation
Voltage vs Collector Current

1--_ VCB =30V

10

Noise Figure vs Frequency

~

0

TA - AMSIENTTEMPERATURE I'c)

~

I--

~

~
>

1000

B

I-'
O.S

100

10

~
~

Collector-Base Diode
Reverse Current vs
Temperature

111111

Ie
-=10
I.

;)j

1

'\J.
1,\

Ie - COllECTOR CURRENT ImA)

Base-Emitter Saturation
Voltage vs Collector Current
1.4

,\TO.39 ISTEEL) I-200

I

Ie - COLLECTOR CURRENT ImA)

z:

I\.

"X

0.4

~
.;: 0.2

1'\

400

II

0.6

Z

~

600

'"

....

SO

800

.~

5.0V

ffi o.s
....

I

U
Q

I

=

Q

~

"

VeE

§:
:

11111111[

w

Maximum Power
Dissipation vs
Ambient Temperature

10

1000

REVERSE BIAS VOLTAGE IV)

8-14

50

1.0

10

100

Ie - COLLECTOR CURRENT ImA)

1000

Process 12 N PN Medium Power

~National

~ ,Semiconductor
DESCRIPTION
Process 12 is a non-overlay, double-diffused, silicon epitaxial device, Complement to Process 67,
APPLICATION
This device was designed for general purpose medium
power amplifiers and switches requiring collector currents up to 1A and collector voltages up to 80V.
PRINCIPAL DEVICE TYPES
TO-92, EBC:
TO-39:
TO-202:
TO-237:

Min

Conditions

Parameter

MPSA05
2N3019
NSD106
TN3019
TN3020

Typ

Max

Units

Notes

Figure 1
Figure 1

tON

Ic=150 mA, I B,=15 mA

50

ns

tOFF

Ic=150 mA, IB2=15 mA

400

ns

hie

Ic = 50 mA, VCE = 10V,
f=20 MHz

COb
C eb

Vcs= 10V, f= 1 MHz

hFE

30

hFE

Ic=l rnA, VcE =10V
Ic~ 10 mA, VCE = 10V

hFE

Ic= 150 mA, VCE = 10V

40

hFE

Ic = 500 mA, VeE = 10V

30

VCE(SAT)

Ic= 100 mA, Is=10 mA

0.2

VCE(SAT)

Ic=500 mA, Is=50 mA

0.5

V

VBE(SAT)

Ic= 100 mA, Is= 10 mA

0.90

V

VBE(SAT)
BVCEO

Ic=500 mA, I B=50 mA
Ic='10 mA

65

BVCBO

Ic=1001'A

100

V

BV EBO

Ic= lO I'A

7

V

ICBO

Vcs=80V

100

nA

lEBO

V EB =6V

100

nA

4,0

6,5

VEB =0.5V,f=1 MHz

i
~

!
"

co
,

Z60 rT"ITT""1rTTrrr"T1Tn--:-----,
I111 I VeE '10V
200
150

IIII I II

I-HfH-ItH-f T~ ~ +~5·~

..~
co

,8

H++t--H-+tt++++f-+-+t1H

co

,6

TA • Z5~·C:J.!*",i"'fm-+-l-H+~

~

"I

50~1IH--H1f1+-IH1H-ttlI-+44+H

~~

O~~-W~~...J...~~~

~
,;:

10

100

1,000 10,000

Ie - COLLECTOR CURRENT (mAl

V

V

V

w

~

1,0

pF

320

160

Base-Emitter ON Voltage vs
Collector Current

0:

0.1

pF

1.20

>
z

100 I"HIIH--H1f1+-IH1H-ttlI-\f-f4+H

10
60

35

Pulsed DC Current Gain vs
Collector Current
z

6.5

A

~~~~~~~~~~
T ' 100·C
A

lllT

2~~~lT+m~~~~~

lllT

0 Ll.llL.J..,l..uJ....J....u.uL-J....l.l.LLJ
.1
1
10
100
1000
Ie - COLLECTOR CURRENT (AMPS)

i600

Maximum Power
Dissipation vs
Ambient Temperature
,-,-,-,--,-...,---.--r-,

~ 1400

f-+-+-+-+-+--+--+--1

!
....

2:

lZo0 t-",!'--+-+--+-f-I--+---I

ag:

"
1000 1--!02~+++++--I

ffi

~ 800

i1i
~

600
400

~

200

~

0

~

J!

r....... ~TO.ZJ1*
~
I-,..,.....,-+-+~"",--I~I-I-H

f-t-'-+
~",T.l:0'9_Z-fI\~:~T""O._J9I--+---I

I'-+-+-,"",,+~'\l,*,"l-P>'-.d---I
50

~"
150
ZOO

100

TA - AMBIENT TEMPERATURE (·CI

* One squarE! inch of copper run
8-15

Process 12
Maximum Power
Dissipation vs
Case TE!.mperature

Collector Reverse Current
vs Ambient Temperature
1000

"-

"I'\. "-

o

50

~
~

11111

a:

"

"-1'\

100

~8
I

I\.

150

1~

z

1

J
25

!"'--VeE "0V

..'"
c

~
~

c

A

1\

.

100

a:

"

40

24

1111

20

I

20

Rs '10k!l

...~

~

gj

a

~

a:

R.· iOO!l

~8

4.0

Rs 'I.0k!l
0.1

1.0

10

100

lDOD

VI
II

lA

::0

u

.

a:

~

.

I--

I

I

10 mA
1.

TA "25"C

~"

"'"

P.W. AS INDICATED
DUTY CYCLE < 2%

.9

:!

CSECOND

REAkDOWfI

PW-ISEC-r--

~lo0m A

8

f-:

I

10

100

0.9

!ii. .

:i

0.7

I

0.5

1,000 10,000

TA" +100"&

a
;:

111111 I

IIIIII

0.3
0.1

1.0

BOD

600

!

-

,\

600

..

200

~

Ie - COLLECTOR CURRENT (mAl

8-16

"-

;: 400

100

10

1.000 10,000

IS1 -182 =Ie/l D
Vee = SOV

'~

"

100

Turn On and Turn Off Times
vs Collector Current

800

~

10

Ie - COLLEC'TOR CURRENT (mAl

1000

200

"

!-1
.Y

lk

400

11

TA=+Z5D C

Ie - COLLECTOR CURRENT (mAl

o

VeE - COLLECTOR EMITTER VOLTAG.E (VI

100

5.0 10.0

I.

Switching Times vs
Collector Current

~~~,+-

~~

10

B.W.' 2.0 kHz
1.0

1~"0

1.1

~

II I llil I 1111
1.0

:;

a:

il il+llDL~

0.1

1.3

~

....

TA =+25"C

a

.

::0

T

0.2

0.5

Base Saturation Voltage vs
Collector Current

">z
;:
"c

0.6

J

IcMAXIIOMSJ

a:
a:

0.1

~
Ie "'10
I.

0.4

f'" t.OMHz

Ie - COLLECTOR CURRENT (mAl

1.0
D.B

150

VeE "tOV

llU

50

Collector Saturation
Voltage vs Collector Current

Safe Operating Area TO-39
with "Wake Field" Type
296-4 Heat Sink

Ie MAX
CONTINUOUS

N+Ff!1

2.0

1111

10

I

,- FREQUENCY (kHz)

SA

1.0

"

~

o

z

Ccb IE" 0

0.1

">z
;:
"c

::0

~

Z

REVERSE BIAS VOLTAGE (VI

Ie =300l1li_
VeE ::10V

8.0

4.0

"
T'"'"+4.

III

:!!

~

Ie =0

~

Ie - COLLECTOR CURRENT (mAl

I

ii:

eel)

125

~Is"('y
• l~kri
fL
~ Rs'I.0k!l I?-1'I

6.0

~

.......

,100

II 11
I~s' I~OJ

"'"

B.O

§

60

SOD

Noise Figure vs Frequency

75

Noise' Figure vs Collector
Current

..

DO

I
10

50

To - AMBIENTTEMPERATURE (OCI

~

\ VeE' I.DV

1.0

I

25

10

::!

o

12

0.1

150

'=1.0MHz

5
::

u;

a:

125

Collector-Base and EmitterBase Capacitance vs
Reverse Bias Voltage

z
c

~

ii:

100

TA - AMBIENT TEMPERATURE (OCI

u

16

75

50

100

~

~

1.0

I

0.1

I I II

a:

.
....
s.
..

~

l/

1.0

"20MHz

9

::i
a:

=

10

a:

200

10

il

ili
I
1

~

./

Small Signal Current Gain
at 20 MHz
;;:

100

~
~

TC - CASE TEMPERATURE i"CI .

......

VEa - 4.0V

il

a:

il

TO·39

o

1 '000

!....

::i
a:

Emitter Cutoff Current vs
Ambient Temperature

1lIII0

o

) - - r--Io.

10

"

'l'i

100

Ie - COLLECTOR CURRENT (mAl

1000

"'C

Process 12
Maximum Power
Dissipation TO·202 vs Case
an? Ambient Temperature

Sale Operating Area TO·202
5.0

~
5-

"....

1.0 -

z

w

-

'"'"
'"u
'"'"

~

~~ ~~;t=
~
">h~tJ "":~i~
"',/bt"/

9.0

~

.2

6.0

~

4.0

10

2.0

I"\,

-r--

0

25

RL

150 rnA

3140

3300

300 rnA

1570

1670

500 rnA

940

1000

75

125

100

150

50V

-4V

Rb

50

"\.

r-- ~

T - TEMPERATURE l'C)

VeE - COLLECTOR TO EMITTER VOLTAGE (V)

Ie

"\

I;;;.T'TA

=

1.0

•
.E

100

"\

l.O

~

1.0

I"\.

5.0

I

0.01

"\. T'Te

'"

"x..
"

.....
I\,)

'\

7.0

~

CD

fA
fA

I"\,

8.0

Q

I"

I

10

~

gj

r-...

0.1

~

R,

1.0 K

TO SAMPLING SCOPE
~ RISE TIME ~ 1.0 ns
.1 ";

10V

INPUT Z

Rb

r

~

100 Kn

~

50

*

PULSE SOURCE

~

RISETIME,s5.0ns

OV

FALL TIME 510.0

ns

FIGURE 1. tON. tOFF Test Circuit

SMALL SIGNAL CHARACTERISTICS (I
Symbol

=1.0 kHz)

Units

Conditions

3000

0

8.0

I'mhos
xl0- 4

=1.0 mA, VeE = 5.0V
=1.0 rnA, VeE =5.0V
Ie =1.0 rnA, VeE = 5.0V
Ie =1.0 rnA, VeE =5.0V

Characteristic

Typ

hie

Input Resistance

hoe
h re

Output Conductance
Voltage Feedback Ratio

2.1

hie

Small Signal Current Gain

100

TYPICAL COMMON EMITTER CHARACTERISTICS (I

'"
"
.2

.

"

lO

w

'"

TA

10

''""

:>

l.O

::

;::

!3

t;;

ffi

t;

..5

'"'"

1.0

O.l

~

h••

:>

V

~""'

"-

'"w

"

...... hi.-

T"
O.l

1.0

l.O

10

h,.

I

1.1

~

0.8

lO 50

Ie - COLLECTOR CURRENT (rnA)

t;;

ffi

t;

..'"'"
5

....<
....

"

l.O

w

2.5

'"

I c =1.0mA

hie

:>

hi.1;I#J "

VeE:: 5.DV
f = 1.0 kHz

~

1.0
0.9

'"
!3

=1.0 kHz)

.
.

J

1.2

:>

;::

h"

0.1
0.1

1.l

'"

2.0

;::

1.5

!Z h,.

'U l./lh••

l-

I-

~f.-

Ie

~

w

I.....

w
:>

~a:

;!;

I-

25Q C

f=1.0kHz

~

I-

..
'"..

VeE = 5,OV

....

Ie

u

~

'"
E

w
:>

"-

.....

Cr-

Ie = 1.DmA

0.7

~a:

h"

r--. ..... _

!3

t;;

TA = 25°C
0.6

a;

f= 1.0 kHz

~

0.5
0

5

10

15

20

25

VeE - COLLECTOR VOLTAGE (V)

8·17

lO

..
5
;i§

~ '/

·1.0 I - 0.5

h,.

,

h"

p

~

~

h,,~ ~I

hie

0
-100

-50

an

0

50

100

150

TA - AMBIENTTEMPERATURE lOCi

,
Semiconductor

Process 13 NPN Medium Power

~National

a

DESCRIPTION

Process 13 is a non-overlay, double-diffused, silicon epitaxial device_
APPLICATION

t

This device was designed for use as medium power amplifiers and switches requiring collector currents of 100 I'A to
500 mA_

0.020
(0.508)

PRINCIPAL DEVICE TYPES
TO·92, ESC: 2N440T
TO·92, ECS: 2N3704

Parameter

tON

Conditions

Min

Ic = 150 rnA, IB1 = 15 rnA

Typ

Max

Units

35

ns

250

ns

tOFF

Ic=150 rnA, IB2=15 rnA

hIe

Ic=20 rnA, VcE =20V,
f=100MHz

NF (spot)

Ic = 100 I'A, VCE = 10V,
Rs = 1 krl, f = 1 kHz

1.2

Cob

VcB =10V,f=1 MHz

4.5

C ib

V EB = 0.5V, f = 1 MHz

hFE

VCE = 1.0V,!c = 1.0 rnA

30

hFE
hFE

VCE = 1.0V, Ic= 10 rnA
Vd= 1.0V, Ic= 100 rnA

50

hFE

VCE = 1.0V, Ic = 500 rnA

25

VCE(SAT)

Ic= 150 rnA, 18= 15 rnA

0.2

V

VCE(SAT)

Ic=500 rnA, I B =50 rnA

0.5

V

VBE(SAT)

Ic= 150 rnA, IB= 15 rnA

1.0

V

VBE(SAT)
BVCBO

Ic=500 rnA, I B =50 rnA

1.2

V

Ic= 1OO I'A

60

V

BVCEO

Ic= 10 rnA

35

V

BV EBO

Ic= 10 I'A

6.0

ICBO

VcB =40V
V EB =4V

lEBO

2.0

3.0
dB
8.0

pF

35

pF

40

8-18

150

300

V
100

nA

100

nA

Notes

"tJ

Process 13
Base·Emitter ON Voltage vs
Collector Current

DC Pulsed Current Gain vs
Collector Current
240

~

2!
w

I~~E .10V

2

'"~
=

200

I-

~
~
co
w

~

"coI

1.0

!=

800

.8

2i

600

co

l.:::

>

160

~
:;:'"

120
80

~

40

Z

.6

J
10

.1

1000

100

11m

.1

1/

32

w

24

"'"

1/

'"<:;
5'"

I-

O:~

=0:
1-0:

""
~"

.

.

.s-

~

C~

~

.1

11~

100

1"\
o

12

w

'"

20
16
12

125

"-

F'" 1 MHz

"2

"f\.

'"<:;
~

.....

!;

::
I

...;

o
.1

.1
REVERSE BIAS VOLTAGE IVI

10

REVERSE BIAS VOLTAGE (VI

Base·Emitter Saturation
Voltage vs Collector Current

Coliector·Emitter Saturation
Voltage vs Collector Current

1.0 r-T"TTI-r"T"T-rr-""""TTI-r..,..,,.......,
Ie
10.

.22

!£
• 10
I.
.18

r,; •
.9l-+ttt-t-Htt-t-+tjH----M9t-l

.14

.8

"'~

~~
o~

1:;=

H+tt-++ttt-H+ttA--+ttH

w>
~2

~=

0_

"I;:
'0:

i~
won

.10

I)

.06

.7

II

.6

~

.5

.02
.1

10

200

"=

TJ -JUNCTION TEMPERATURE (OCI

0:

150

ID

I-

.........

100

Output Capacitance vs
Reverse Bias Voltage
~

t--.;...

50

TA - AMBIENT TEMPERATURE eCI

o

0.1

~2!

'\

o

.s-

...;
75

,TO.92

200

f= 1.MHz

30

I

50

'~"
'"

1000

100

~

1/

25

!!i

Input Capacitance vs
Reverse Bias Voltage

VeB '" 30V
10

1\

400

Ie - COLLECTOR CURRENT (rnA)

100

=11-2

10

~

I

I 1111 I IIII
I 1111

o

Coliector·Base Diode
Reverse Current vs
Temperature

g~
"I",

VeE ·,V, TA • 25°~=I VeE = 10V, TA = 25"C
VeE = 10V, TA = 125"C

.2

Ie - COLLECTOR CURRENT (rnA)

"oS

\1

Q

~

~cc

~

.....

[\.

ffi

I

~
.4

en
en

w

Ci

i'"

2

=
0:

~

100

.1

1000

Ie - COLLECTOR CURRENT (rnA)

10

100

Ie - COLLECTOR CURRENT (mAl

8·19

g
CD

Maximum Power
Dissipation vs
Ambient Temperature

1000

50

,....

IIIIIt
fI)
fI)

CI)
()

e

~National

.
U Semiconductor

Process 14 NPN Medium Power
DESCRIPTION

a..

Process 14 is a non·overlay, double·diffused, silicon epi·
taxial device.
APPLICATION
This device was designed for general 'purpose amplifier
applications at collector currents·to 1A.
PRINCIPAL DEVICE TYPES
BFY50
TO·39:
TO·92, EBC: MPS6560

Parameter

Conditions

Min

Max

Units

12

pF

65

pF

8

COb

VCS= 10V, f = 1 MHz

C ib

V Es =0.5V,f=1 MHz

hIe

Ic = 50 mA, VCE = 10V,
f=20,MHz

NF

Ic=100I'A, VcE =5V,
Rs=1 kO,f=1 kHz

hFE

Ic=1 mA,VCE=1V

40

hFE

Ic=10 mA, VCE =1V
Ic= 150 mA, VCE = 1V

60

hFE

Typ

5

10
1.2

dB

50
180

360

30

VCE(SAT)

Ic=500 mA, VCE = 1V
Ic= 10 mA, Is= 1 mA

0.10

v

VCE(SAT)

Ic= 150 mA, Is= 10 mA

0.15

V

VSE(SAT)

Ic =10mA,l s =1 mA

0.85

V

VSE(SAT)
BVCEO

Ic= 150 mA, Is= 10 mA

1.0

V

Ic=10 mA

35

V

BVcso
BV ESO

Ic=1001'A

60

V

Icso

Vcs=40V

100

nA

lEBO

V Es =5V

100

nA

hFE

7

I E", 1O I'A

240

iu

200
160

::

~...

1111 I

to

~

~ 1~00 r-r-,--r--.--r-r-,--,

1--t1*"",H-11lir
~I ~L~
2~.~tt:;;io"fJ.lt--i

~

IliLA'"

i!i
'"

~

0.6

bIol'IF'I-I-!:I;I.""""'F+HH--H1fH

trr J.I.

~

1000

~

800

~

600

40 r~IIIII~I-ttH~~~~+ffiH
0.1

I

0.8

~

1111

80

III

1O

:;

~ 120~
~
J1r;Vmr~~mrr-ttH-i
I

1.0 r--".-rTTr-'-rTTI-'-"''''''
Ve E"I.0V

Maximum Power
Dissipation vs
Ambient Temperature

IIII I

Ii ~~'= 10"AVof1t-:J..oI'IFIH~IH--ttH-i

Q

V

Base·Emitter ON Voltage vs
Collector Current

DC Pulsed Current Gain vs
Collector Current
z

1

10

100

lk

Ie - COLLECTOR CURRENT (rnA)

10k

Notes

;
I

~

~

7. .ll0~·~t-t-+t~

0.4

1-+Ht-+-t-ttt+ttt1H-+HfH

0.2

H-Ht-+-t-ttt-t-t+HH--H1fH

1400

:i

f-t--t-++-+-+-t-l
f-t--t-++-+-+-t-l
I-ol.:,-t-t-t-+-+--+--i

I-i--l'-<;+-+-I--I--+-I
I-!.;.........
-+-t~:-,-TlT+-O.3-9t-+-l

400 t-t-.p>..J--t-"'-"'I.c-!--t-t

TO.92~

"

I'

~ 2001-i-+--t-~~-f~-I

Z

Jo

::

~ 1200

0 LLLIL..l..4..1.1l...L..LJ..IJL.J...J..JJLL.J

0.1

1.0

10

100

Ie - COLLECTOR CURRENT (mAl

8·20

1000

~
~

'f....

0 0

50

100

150

TA - AMBIENT TEMPERATURE (OC)

200

."

Process 14
Maximum Power
Dissipation vs
Case Temperature
~

Safe Operating Area TO·39
with "Wake Field" Type
296·4 Heat Sink

8

15
;::

7

gj

6

~

e

5A

"

5

'"

~

4

::>

3

'"
'"
"'"
X

;;:
I

"
~

~
~

"

'"~

TO·39

~

1

"'"~100mA -

""

50

100

150

10

1.2

~

I!;

i

~

'10

J

1

'-'

5"

0.8

§
10

"20MHz

100

7

'"'"fl

6

~
I

.J

II!

lk

0.1

/

5
4

II

V
V

~

I

~

'"u'"
::>
'"

Ie

=0

.."

VeE'" tOV

~

~

12

'"~

.."'"'~
~

Q

>

VeE

100

"

I

,;
10

1.0

10

0.1

100

1.0

Output Admittance vs
Collector Current
500

VeE'" TOV
'·1.0kHz

I
W

u

...
I::>

1\
\

4

Vee= t.DV
"1.0 kHz
200

/

100

~

::>
Q

I

50

~~

.J

0
0.1

1.0

10

""

20

100

0.1

Ie - COLLECTOR CURRENT (rnA)

1.0

10

Ie - COLLECTOR CURRENT (rnA)

8·21

10

Ie - COLLECTOR CURRENT (rnA)

Ie - COLLECTOR CURRENT (rnA)

""iil~

8

=tOV

f .. 1,OkHz

~
~

I

.J

500

"ill

Voltage Feedback Ratio vs
Collector Current

16

125

rc)

in

\

0.1

\

100

"~

0

Q

:ii"I-

~:...

£

Ie - COLLECTOR CURRENT (rnA)

75

JUNCTION TEMPERATURE

~

2

50D

-

Small Signal Current Gain
vs Collector Current

4

1

50

25
TJ

6

I

20

0

B

~

.

/

50

i

100

1

.1

10

1

!5

1.

I

10

j

f= 1.0 kHz

'"

~EI.~

10

~

--

I t ~o

10

31h
2
1

..'"

/

Input Admittance vs
Collector Current

~
z
.~

10k

lk

100

REVERSE BIAS VOLTAGE (V)

I

100

EVeo-30V

!

W

20

e

10

Coliector·Base Diode
Reverse Current vs
Temperature

f'.

0.1

J

1

Ie - COLLECTOR CURRENT (rnA)

30

10k

~E=~

9

8

0

I-

0

10
Z

0.2

100

",elba

40

Small Signal Current Gain
at 20 MHz vs Collector
Current

I-

~

~

F =1 MHz

I~ .1'

10

1

II

0.4

I

10

Ie - COLLECTOR CURRENT (rnA)

C

~"

1000

&0

0.4

..

~~

fl>

r-....

611

~
w

0.1

0.6

1-'"

Capacitance vs Reverse
Bias Voltage

0.6

>

-nt'

"'cow
wI'-'"

I--

70

!£

..~;

.

10

0.8

VeE - COLLECTOR EMITTER VOLTAGE (V)

1.4

WW

LIMITED

1

Base·Emitter Saturation
Voltage vs Collector Current

§!;;~

~

CD

tn
tn

.....

~

l-

tOmA

200

TC - CASE TEMPERATURE ('C)

"";::

~

SECOND BREAKDOWN

IIIII I

-E. = 10

:5;;

PULSE WIDTH
AS INDICATED
DUTY CYCLE <2%

I
.J}

I'\.

0

-

1

"";::

~~ ~~
CDNTINUDU:,~
~~IIPATION
_
LIMITED
~ -

lA

I-

2

0

Ic MAX 110MSI

r...../.

l-

"

0.1

1.0

~

1.2

'"~"

1.0

150MHI

I'--

c

,

~

:i:

~

u

1.0
0.1

~

Ill.!

100MHz

;;l

,

l\i"ii"iIJ
10

0.6

w

0,30
0.25

~

0.15

1/

'"c

0.1

l-

0.5

I--

;:

1.0

>

100

10

1.000

g

'" 220
g
:5'"g; 200
,

0::

~

"
'"'"=>
u

240

30
FRED,: 20MHz

~

25

12

1/

v

.e

./

20

w

u

::<3"
~

17

H-H1fttt11--+tttlttlt'''t-I-HliIllf-+ttttttll

";:j,

f= 1.0JUz

VeE" IOV

~
v;

180

1.000

100

10

Ie - COLLECTOR CURRENT (rnA)

Input and Output
Capacitance vs Reverse
Bias Voltage

16

"

~

1.0

>

Small Signal Current Gain
vs Collector Current

...

I.

I

Ie - COllECTOR CURRENT (rnA)

260

200

re)

.!£.. = 10

"...~

~

0.2

150

AMBIENT TEMPERATURE

Collector· Emitter Saturation
Voltage vs Collector Current

"~

~

;:

100

-

~ 0.20
>=

l-

i-

0,4

Coliector·Emitter Breakdown
Voltage with Resistance
Between Emitter·Base

c
>

I'\.
100

50

~

>

V'

0.8

.I e - COllECTOR CURRENT (mAl

t:I

'\

100

~

~

~

1.0

300

TA

Ie
=10
I.

0

'"c>=
...~

200M~Vj
'"

u

1,000

100

10

Base·Emitter Saturation
Voltage vs Collector Current

>

II

...c'"

200

1\
TO·92

~

w

5.0

x

.

I\.

Ie - COLLECTOR CURRENT (rnA)

10

25a~J

~

":;;,

.....

0')

500
400

1i:;;

0.2

Contours of Constant Gain
Bandwidth Product (f T)

~

600

'"

Ie - COLLECTOR CURRENT (rnA)

~

>=

~

Q

CD

o
o

800
700

~

u

c

"

S

1.2 "'"TT1'TT111"-rrmmrTTTTTT~ve-E~=M5~.0""'V

Maximum Power
Dissipation vs
Ambient Temperature

::l

l7

r--

15

I"

Cib

10
5.0
Cob

i'ti1

~

160
0.1

1.0

10

100

RESISTANCE (knl

10

1,000

Ie - COLLECTOR CURRENT (mM

8·23

50

"'tJ

a
o

0.1

1.0

10

VeE - COLLECTOR VOLTAGE (VI

100

.....
.....

o
o
CI)

e

~National

U Semiconductor

f-__ : : -:

O•01B:, _ _ _

c..

Process 17
NPN High Voltage Video Output

!

DESCRIPTION

(0.457)

Process 17 is a non-overlay, planar epitaxial silicon transistor with a field plate.

~

v/m'////////

~ V
/' V

.

G

APPLICATION

~ ~

.

/' '/

This device was designed as video output to drive color
CRT, mainly in complementary configurations. Complement to Process 76.

n
rD
n-'
r;v~lDr;/l
/' V / , /

~

J/J

:.u///////L.

omB

PRINCIPAL DEVICE TYPES

~

TO·202, ECB: NSE869
NSE871

~

TO·237, ECB: 92PE869
92PE871

t ; ; . / / / / / / / / / / / / / / / / '/

Parameter

Conditions

Min

Typ

Max

Units

220

280

v

400

V

BV CEO

Ic= 1 mA (Note 1)

BV CES

Ic= 100 p.A

BV EBO

IE=10p.A

ICES

V CE = 150V

lEBO

V EB =5V

hFE1

VcE =15V, Ic=0.1 mA

hFE2

VCE = 15V, Ic = 25 mA

hFE3

VcE =15V,l c =50mA

VCE(SAT)

Ic=10mA,IB=1 mA

0.1

VBE(SAT)

Ic= 10 mA, IB= 1 mA

0.7

V

fT

VCE =15V, Ic= 10 mA, f=20 MHz

90

MHz

Ccb

VCB = 10V, f= 1 MHz

1.6

pF

C ib

V EB = 1V, f = 1 MHz

2.7

pF

PD(max)
TO-202
TO-237

V

6
200

nA

100

nA

60
40

80

200

25

Tc=25'C
TA =25'C
TCOLLECTOR LEAD = 25·C
TA =25'C

1.0

V

8
1.8

W

2
0.85

W

(JJC

TO-202

15.6

'C/W

TO-237

69.4

'C/W

(JJA
TO-202

62.5

'C/W

TO-237

147

'C/W

150

'C

TJ(max)

All Plastic Parts

Note 1: Pulsed measurement, 300.s pulse width

8-24

"'C

Process 17
DC Current Gain vs
Collector Current
1000

DC Current Gain vs
Collector Current
1000

VCE'15V

~
~,

iI

100

+25°C
40°C

VCE' 2V

z

~I

~

100

.....,

....

+25:C

i,

10

,-41
10

~

~

1
0.1

10

0.1

100

10

IC - COLLECTOR CURRENT (mA)

?:

,.~

,.!_

1.2

..
~g

t:~

"'w ....

I
I

,0

Tc ,l-4oo c

~z

0.8

Te:: -40"C

l--f-

0.6

~
~g;

.-~

+25°C

0.0

~

0.4

Ie

~

~
:5

aD

if

"6
~

z

60

~,

0.1

100

Safe Operating Area TO·202

,

..l.-I-

Safe Operating Area TO·237

VCE'15V

;.,
.§.

.§.

....z
w

"'"'
'"
"''"'

100

~,

1\

20

f - - LIMIT DETERMINED
BY BVCEO

10

100

IC - COLLECTOR CURRENT (mA)

~
;::

;::
Eic;

1.0

"-

ill
'x"

..

20

40

60

~
;::

1.4

:l:!,
c

~

;;:

1.6

'"
~

"-.r\.

'"'",

~

;::
Eic;

"-

o

Hi

~

100
VCE - COLLECTOR VOLTAGE (V)

~

~

I

'\.

"

TCOLLECTOR LEAD

~TO.2J7)

TAMBIENT
~J7)

0.0

........

0.6

........

0.4

I
TAMalENT
"\. [(TO'202)

'\

.......

0.2 f - - f - - TAMB;;;rr:: t.-......
(TO·92)
0

......

~

aD 100 120 140 160

W

H

100

T - TEMPERATURE rc)

TC - CASE TEMPERATURE rc)

8·25

'~"'I'~;;:"I~

II
10

1.2
1.0

"%c::

~

Thermal Derating Curve
2.0

J'

1:tJ"-',

<$"

10

VCE - COLLECTOR VOLTAGE IV)

'"
~

e'"

t--~~;/f.

1000

12
10

F=S()"~

8,

100

Maximum Power
Dissipation vs
Case Temperature
~

~

UllNl'r:I..

100

'"

DC
"

10

1
10

i

1 ms
5ms

~

.t'

OC TCOLLECTOR LEAD" 25°C

....

I~

0

40

100

1000

;.,

1"\

10
VR - REVERSE BIAS VOLTAGE (V)

Ie - COLLECTOR CURRENT (rnA)

1000

;;l
z

0.1
10

COLLECTOR CURRENT (rnA)-

V~

;;;

.-r-

100

Gain Bandwidth Product vs
Collector Current
100

I-'"

!---

I

0.4
10

~

~5°C

Co:

Cjb

I'

0.6

,.~

......

+125°C

11"-.

t-

.. t,;

w ....

I--

10

10

w2.

1.2

;;l
I

10

!J;"
",-

~

~

Junction Capacitance vs
Reverse Bias Voltage

1.4

VCE'15V

"'~

IC - COLLECTOR CURRENT (mA)

Base·Emitter Saturation
Voltage vs Collector Current

1.4

'"

0.01 '--'-'...I.JJ.wJ..-'--"-'-='--'--'-=.w
0.1
10
100

100

IC - COLLECTOR CURRENT (mA)

Base·Emitter ON Voltage vs
Collector Current

(")

CD

en
en

......

"""

Tc'+125°C

TC' +125°C

z

~
....

Collector· Emitter Saturation
Voltage vs Collector Current

a

'\.

~

1~

lW

1000

~National

Process 18 NPN Medium Power

~ Semiconductor
==,0'7::018= _ _ _ _ _
~_ _ _ _ 10.457)

DESCRIPTION

11

Process 18 is a non·overlay, double·diffused, silicon epi·
taxial device.

1'//////////////////
~
........
V
~
'//////////,
~

vrm····.

v:~ V .
~~V~ VV~
v:r:;~ Vv: []Q
.
V V
r:; ;;

~

APPLICATION

~'"

This device was designed lor use in general purpose am·
plilier and switching applications operating in the range
01 100 ",A to 100 mAo

0.018

~~UJV:~l
... '.
% '/
V
r/

v.~

~

~/J

L////////L.

V

~

~//////////////////

parameter
IT
CCB
C EB
NF

PRINCIPAL DEVICE TYPES
TO·92, CBE: TIS98
TO·92, !=BC: MPS8098

.

Conditions

Min

Ic=' 10 mA, VcE =5V, 1=100 MHz
VcB =5V,I=1 MHz
V EB = 0.5V, 1=1 MHz

150

Typ

Max

MHz
5.0
20

2

IC= 1P0 ",A, VcE =5V,
Rs =10 kG, PBW = 15.7 kHz

hFE

Ic=100I'A, VcE =5V

40

hFE

Ic= 1 mA, VCE=5V

50

~FE

Ic = 10 m'A, VCE =5V

60

Ic=100 mA, VCE=5V

40

VBE(ON)

Ic= 10 mA, VCE=5V

0.85

VCE(SAT)
BVCBO
BVCEO
BV EBO

Ic= 100 mA, IB~ 10 mA

0.50

ICBO
lEBO

60
50

IE=10~

5

VCB = 40V
VEB =4V
..

8·26

180

pF
pF
dB

hFE

Ic= 1Ol'A
Ic= 10 mA

Units

360
V
V
V
V
V
100

nA

100

nA

"'C

Process 18

2

~

w
u

k:

111111111

VaE{SAT)@lcl'a" 10
l-jjiiil'l ...)...!,:t
0.6

«
"
>

::"

I 11111111

11111111

o.a

IV @V

<3

;;:
;:;

"5.0V

11111111 III
IIIIIIII III

0.2

""L

:,:;:u:

0
0.2

a I--..
7

u

TA"WC

6
4

u
u

50 100 200

.:;

f= 1 MHz

~

~

0.5 1.0 2.0 5.0 10 20

lE"O
9

5

~,

VCE'{:~T) @'CI'B" 10

10

~

;;;

1illlltlll

0.4

0.1

~

~

"'"i=

1

2

VeE'" 5V
foo IDOMHz

~
w

300

~

"

I

6

1\ \lli I111I1111

1
0
0.1

~_ Nif\RG"
. "., ..5, kn
.. "

3
2

100

.!C

BOG

"'"i=

70G

~

600

;;:

c

~

1

~

IC-_ 1O ,uA

1!j

I~GI"I;I~II;nl

"«x
"x

10

100

I

300

1

'\j

100

~

0

~

1000

"\[0.92

200

0

50

100

--- - - --- --

VCE" 5.0V

"
~

~
B 100
u

~
_55°C

'"wI

~

~

TJ" li5 c C

'\
~

1\ \

f---

-

\

40
0.2

0.3

0.5

0.7

1.0

2.0

3.0

5.0

7.0

10

IC - COLLECTOR CURRENT ImA)

8·27

150

TA - AMBIENT TEMPERATURE (OC)

DC Current Gain vs Collector Current
400

20

4

2

\,.

f - FREOUHJCY (kHz)

Ie - COLLECTOR CURRENT (rnA)

1

r\.

50l]

400

«

0.1

0.7

0.4

Maximum Power
Dissipation vs
Ambient Temperature

§:

11111111111111

1

0.2

VEB - EMITTER·BASE VOLTAGE IV)

.i~~lljl~O"A

0
0.01

0
10

RG" Zkn

~
I

.):"

li~"" \ ~I!III

J

5
4

~
100

a

~
u:

...

200

1

2

40

VCE" 5V
TA" 25°C

111111111111111

9

TA" 25°C

0.1

20

Noise Figure vs Frequency

~

~

0.4

10

t; 400

3

~,

VCB - COLLECTOR·BASE VOLTAGE IV)

Transition Frequency vs
Collector Current

'"~

4

w
u

10

~

5

~

4

..........

6

:::

0

TA" 25°C

7

3D

50

70

100

200

en
en

.....

CO

f= 1 MHz

a

;;;
ffi

I'

lC" 0

-I--..

9

..."«<3

"

3

10

;;:
;:;

2
1

IC - COLLECTOR CURRENT (rnA)

500

Emitter·Base Capacitance
vs Reverse Voltage

Coliector·Base Capacitance
vs Reverse Voltage

1.0
TJ" 25°C

8
(I)

Coliector·Emiller and
Base·Emiller Voltage vs
Collector Current

200

en
,....

'"'"
Q)

u

e

~National

Process 19 NPN Medium Power

~ Semiconductor
0.018

DESCRIPTION

1~---------IO.457}--------~1

c..

0.003

Process 19 is a non-overlay, double-diffused, gold doped,
silicon epitaxial device. Complement to Process 63.
APPLICATION

This device was designed lor use as a medium power
amplilier and switch requiring collector currents 01
0.1 mA to 500 mAo
PRINCIPAL DEVICE TYPES
0.018

10.457)++-r-t---IL.J-

TO-S:

2N2219

TO-1S:

2N2222

TO-92,EBC: MPS3642
PN2222
TO-237:

Parameter

Conditions

tON

Ic= 150 mA, IS1 = 15 mA

Min

tOFF

Ic= 150 mA, IS2= 15 mA

hIe

Ic=20 mA, VcE =20V,
1=100 MHz

Cob

VCS= 10V, 1=1 MHz

C ib

V ES = 0.5V, 1=1 MHz

NF (spot)

IC= 100 J'A, VCE = 10V,
Rs = 1 k(J, 1= 1 kHz

hFE
hFE

Ic= 100 J'A, VCE = 10V
Ic=1 mA, VCE =10V

hFE

Ic= 10 mA, VCE = 10V

50

hFE

Ic = 150 mA, VCE = 10V

60

hFE

Ic = 500 mA, VCE = 10V

30

2.0

TN2219

Typ

Max

Units

25

35

ns

200

285

ns

6.0

pF

3.5
4.0

25
1.2

pF
dB

30
40
180

420

VCE(SAT)

Ic= 100 mA, Is=10 mA

0.50

V

VCE(SAT)

Ic=500 mA, Is=50 mA

1.0

V

VSE(SAT)

Ic= 100 mA, Is= 10 mA

1.2

V

VSE(SAT)
BVCEO

Ic=500 mA, Is=50 mA

1.5

V

Ic= 10 mA

35

V

BVcso
BV ESO

Ic= 100 J'A

60

V

IE= 10 J'A

6

Icso

Vcs=40V

100

nA

lEBO

V Es =4V

100

nA

V

8-28

Notes

"C

Process 19
DC Pulsed Current Gain vs
Collector Current

~

500 rTTTTrrnr-n-rrnnr-"'-mT!r-T-rnm
VeE
-t-ttttttHH+Htm-+t-H1itt

;'~~'V

z

~

~ 0.8

r-T_UTTTUlIrTTTr"I""'-11'I"m
1I1!IIrr-lL--rTll"TTl
VeE '10V
IIII1111
U
I--'nm1ll-++:T .)1,±I:'5I;cc+tH-tttl

~"

l=H-mFAt---+~~oc

1.0

;:

~

400

::

300

1-++t+11t1t-+t++l1lIt-t-++l1lllI-++++HlI
1-++t+11t1t-+t++l1lIt-t-++l1lllI-++++HlI

o

~

200
1DO

I

0,6

~

H-tffiiltt±:tmFFFI*lIctttt!ffi

~

0.4

1-+tH11t1t-+ttHtrt-++l1lllIH-HI!IIl

'"~

0.2

u

o

Collector Reverse Current
vs Ambient Temperature

Base-Emitter ON Voltage vs
Collector Current
~ 200

§ 100

.....

-

20

~

10

~ 5.0

J-"Htthlttt---t-+tirttttt-H-tHlii

~ 2.0
~1.Q

~ 0.5

z

c.:

o

J

OL-LJ..1.lJ.lIIL...LJ.=Ul-J...J..J.JJllJJ'-l..J...llWl

0.1

10

100

0.1

1.0

Ie - COllECTOR CURRENT (mAl

;: 100

i=

I ::

~

V

1.0

/

~ 0.5

J.ev

VEe'"

700

50

75

100

125

TA - AMBIENT TEMPERATURE

~

C"

18

~
iii
x"

200

"

100

~

w

...U'"

1l:

I~' b

300

150

10

.....

:')

6.0

50

C,b

I

~

1600

~

1200

~

2.0

10

1.0

100

10

~

150

Q

Q

~

~~~

200

20

:\,;

16
12

~

8.0

~~il'11011

Rs'
ki9- Rs.'

I

"TO.5

50

13
VCE

I

" 0-,
"\

100

150

11
w

a:

9.0

'"

7.0

~RsIJ!J{

=10V

-

f= 1.0 me

0;

:s

J Ih

~~

w

~

C
z

5.0

I
~

z

3.0

"'"f:R V

s = lOOn

Rsl-tiP
I--'

II

1.0
2.0

5.0

10

20

200

=>

50

0.1

100 200

0.2

0.5

1.0

2.0

5.0

10

Ie - COLLECTOR CURRENT (mAl

Collector Saturation
Voltage vs Collector Current

Base Saturation Voltage _vs
Collector Current
1.6

0.5 r-l-r-rr-r---rTT"--r-r,,-,

Ie" 10 Is

= lOV

2:

w
w'"

1.0 kn

~'"

~=

loon

1.4
1.2

:...~

1.0

<0

0.8

>-z

It;

~~
:::g;

~

~

z

'\

Noise Figure vs Collector
Current
.

0.2
1.0

150

Tc - CASE TEMPERATURE (OC)

Q

1\ \

1.0
0.5

125

'\

TOr

AMBIENT TEMPERATURE ('C)

I \ 'i
NL
N
'" '" '" '" i\~
"- " " " "

100

r"--

Ie - COLLECTOR CURRENT (rnA)

Ic=300}1A

VeE

"
f-

" BOD
"k 400
'""
~

0.1

~

~

100

2000

~

~

I

24

~

5.0

~

Noise Figure vs Frequency

w

2:
w
'"~

_

REVERSE BIAS VOL TAGE (VI

w

20

F'" 1 MHz

I'
0.1

a:

-

~

Contours of Constant Gain
Bandwidth Product (fTl

2.0

~

.'\

'\
TA

~~

.....

"-"
'\

~

f'c)

1,\

14

~

75

f-

'"~ 2400

~

'\

~

z

~~

i= 2800

400

Emitter Transition and
Output Capacitance vs
Reverse Bias Voltage

u

-

;3

~

25

'"

N05

TO·92

I

~ 0.2

50

Maximum Power
Dissipation vs
Case Temperature

..s 3200

800

500

'"

I

~ 0.1

25

TA - AMBIENT TEMPERATURE ('CI

Maximum Power
Dissipation vs
Ambient Temperature

600

C
a:

10

E 5.0
~

'"
;3

..s

c: 2.0

..r:

100

Ie - COLLECTOR CURRENT (mA)

~ 200

o

10

0.2

t:l 0.1

0 L-L..Lllll!.lL...l...Ll.l.lllJJ---'....LWW

lk

Emitter Cutoff Current vs
Ambient Temperature

1/
1/

~ 50

o

A

VCE ::' 50V

S

4.0

o

0.6
0.4

-5S0C

.....

25'C

l - f-

~

1-1-""

-

...-::~

,/

0.2

0.1

1.0

10

100

f - FREQUENCY (kHzl

1000

5.0 10

50 100

Ie - COLLECTOR CURRENT (rnA)

8-29

500

1.0

5.0 10

50 100

le- COLLECTOR CURRENT (mAl

500

a
(')

CD

en
en
.....
co

.,..
o
m
u

0)

Process 19
Turn On and Turn Off Times
vs Collector Current

Switching Times vs
Collector Current

e

400

400

0..

~~~~nw--~~~nn

·Ie

1st'" 182 "'iii

320

.'"

:!

Vee

IS1

=Z5V

.,.oS

240

~

;:: 160
80

;::

.......

t,/I

-

Vee' 26V-t-H-ttt---H-H-ttt-H

240

1--t--t-H'l.ttH---t--t-t+t+tti

r-...

160

\'

-

=IS2 '" :!;~~if+fiI---t-+-If-H+Hl

320

.. .
- "0-

-..!r'
l
~"

80
0

10

100

10

1000

100

Ie - COLLECTOR CURRENT (mAl

1000

Ie - COLLECTOR CURRENT (mAl

SMALL SIGNAL CHARACTERISTICS (I:;:: 1.0 kHz)
Characteristic

S¥mbol

Typ

Units

Conditions

=10 rnA, VeE =10V
=10V
Ie = 10 rnA, VeE =10V
Ie ='10 rnA, VeE =10V

hie

Input Resistance

700.

n

hoe

Output Conductance

120

I'mhos

hIe

Small Signal Current Gain

240

h,e

Voltage Feedback Ratio

460

..:=
E

>

6.0

~

"

..

.!i

....

V

4.0

~

hj'/

.

~~.

:l
c
>

....

.
.S~"

VeE =lOV
TA =25°C

2.0

1\

o l.0

10

""
20

~

1.6

~

1.2

.
~~
....
a:~

5~

~
hi.

30

:~

!o! ....

~

2.4

1.]0 .
1.25 c-1.20 ' - -

V

V

V

.."

~~

!.-

,......

"

~ 1.15

hi'

K,

j..o1':

j...oo ho~_

40

50

60

..

1.0

..

.95

~

....

0.4

0

20

40

60

BO

TA - AMBIENT TEMPERATURE ('CI

8·30

100

le=10mAh"
TA "'25°C'

f

hie

\

lP'
-? ill..

,r.....

5.0

10

15

I--

h;. I--

\'

.90
.85
.BO
.75
0

I--

/

\\

1.10

w

c
>

0

Ie - COLLECTOR CURRENT (mAl

"~

~ 1.05

=>

i"'"

0.8

= 1.0 kHz)

h,

Ic"'10mA
VeE "l~V

2.0

Ie = 10 rnA, VeE

x1O- 6

TYPICAL COMMON EMITTER CHARACTERISTICS (f
8.0

Ie

h••

r-- ~ I-20

25

]0

VeE - COLLECTOR VOLTAGE (VI

]5

Process 21
NPN High Speed Switch

~National

a

Semiconductor

DESCRIPTION
Process 21 is an overlay, double-diffused, gold doped,
silicon epitaxial device. Complement to Process 65.

Note: Metallized
circle identifies

base pad.

APPLICATION
This device was designed lor high speed saturated switching at collector currents of 10 rnA to 100 rnA.

PRINCIPAL DEVICE TYPES
TO-18:
TO-92, EBC:

Parameter
ts

Conditions

Min

I B1 = IB2= Ic= 10 rnA

2N2369
PN2369

Typ

Max

Units

Notes

7

13

ns

Figure 1

tON

Ic=10 rnA, IB1=3 rnA

9

12

ns

Figure 2

tOFF

Ic=10 rnA, I B2 =1.50 rnA

12

20

ns

Figure 2

hIe

I c =10mA,VCE =10V,
f=100MHz

Cob
C ib

VCB = 5V, 1=1 MHz
VEB =0.5V, 1= 1 MHz

hFE
hFE

Ic=1 rnA, VcE =1V
IC= 10 rnA, VCE = 1V

35

70

150

hFE

Ic=50 rnA, VCE = 1V

30

55

150

hFE

Ic = 100 rnA, VCE = 1V

20

hFE

Ic = 10 rnA, VCE = 0.35V

30

hFE

Ic=30 rnA, VCE =O.4V

30

VCE(SAT)

Ic= 10 rnA, IB=1 rnA

0.2

V

VCE(SAT)

Ic= 100 rnA, IB= 10 rnA

0.5

V

VBE(SAT)

Ic= 10 rnA, IB= 1 rnA

0.85

V

VBE(SAT)
BVCEO

Ic= 100 rnA, IB= 10 rnA

1.5

V

Ic=10mA

12

V

BVCBO
BV EBO

Ic=101'A

30

V

4.5

ICBO

I E= 1O I'A
VCB =20V

lEBO

V EB =3V

4.5

6.5
2.0

4.0

pF

5.0

pF

30

V

8-31

100

nA

100

nA

~

Process 21

U)
U)

CD

u

Switching Times vs
Collector Current

e

100

0.

Vee'::

g
'"~

20

'"z
;;

10

;::
~

."

I'

~

~

20

.s

Storage Time vs Turn On
and Turn Off Base Currents

;,

E
-8.0
a:
a:

"~

ts =3.0 os

~

i'"'"

I-""

6.0 ns

-3.0

0

-2.0

I

~

... -2.0

'"~
c

"ott

-6.0
-5.0

2.0

-1.0

*

,:

Ic=30mA

~ -5

.v

B.O~

;I

V

~

V
6.0

!,

Y

~

/1/ /

4.0

40

J

B.O

1/
V

=J.DV
10

1,

16

l..-

12

V
10

15

20

25

30

Fall Time vs Turn On and
Turn OFF Base Current

Fall Time vs Turn On and
Turn Off Base Current

Fall Time vs Turn On and
Turn Off Base Current

-12

Vee'" l.OV

'"

'f

15 -10

....

0

"".

;'

8~

~

;'

....

le~I°~~11
Vee

=3.0

IV

/'" 1Blol.~

II

10.:-

"'"

/

~

z

~,

V

.s
I-

5'

::;

4j

=2.0 ns

1/'1

/

5!0

'7

'":Ii

-15

0

I

6.0

tf

-20

.

4.0

B.O

10

50

8.0 ns

-10

V

-5

V

.s

V

1li
a:

10 -U21L,

~w

I::t!'IT

z

~"""

~

0
Z
0:

I

L 311
50

.

1.0

"I

l-

k+-'
tOns

//

iO

:1:

~
i5

V

'"

500

~

400

,.'x"

200

~

~

TO·92

25

30

TO·1B

.''\

'\

100

1,\

~

Ie -COllECTOR CURRENT (mAl

8-32

600

a:

,.

100

20

800

~ lOO

III
10

15

Maximum Power
Dissipation vs
Ambient Temperature

w

.... 1-'20.'

I

"'"
10

I

0.1

i-'"

0
;:: 700

L

I-

~~,

/

IS1 - TURN ON BASE CURRENT {mAl

.sz

Vet;_~·~v

.,IV

17 h_-;~4.0/

=2.0 ns

12

Rise Time vs Turn On Base
Current and Collector
Current
;,

Ie::: 100 mA_ V~.O
Vice 1= 3·IOV

~
~

-2.0

2.0

-25

~

~
o

-lO

w

.~-

~

/

-4.0

;,

1. , - TURN ON BASE CURRENT (mAl

I

1., - TURN ON BASE CURRENT (mAl

10

~

o

/4.0., I

II

tf

i r 13

-6.0

I

5.ons/

/

ViC

a:
~ -8.0
~

I

y

Ic=JOmA

~

-- --

~

1

'"~ -15
0_10

V

t,~3.0';1

w

9.0 os

t- ~.O ~'L

IS1 - TURN ON BASE CURRENT (rnA)

a:

~

v.:

=3.0V

I I I

'a1 - lURN ON BASE CURRENT (rnA)

-4.0

~

6-

I

Delay Time vs Base·Emitter
Off Voltage and Turn On
Base Current
w

~ -20

1.1 V

-4.0

181 - TURN ON BASE CURRENT {mAl

2:

a:

Vee

IS1 - TURN ON BASE CURRENT (rnA)

-I-- ~ 7.0.~

-1.0

::;

,/

o

~
~

.

;: -25

J

Vee

Ic=10mA

~

~I

+-=

l- t-

/

Ic =100mA

~

x.o~

6.0.,/

t,~4.0.;1

_ -30

V7.0 •.j..I'

I I

~

*
z

I

-6.0

-6.0

w

I

~

.......

4.0 os

::l

z

-10

.s

-6.0

-4.0

10

Storage Time vs Turn On
and Turn Off Base Currents

l- I--

~

o

Storage Time vs Turn On
and Turn Off Base Currents

-8.0

-5.0

o
100

75

50

..... ~-

I-""f-'"

Vee - SUPPLY VOL TAGE (VI'

le:= 10 mA

I-

Vee'" l,OV
25

-

~

AVERAGED OVER TEN STAGES
SEE PROPAGATION DELAY CIRCUIT

Ie ;:,;10mA,I B1 ""3.0mA,IB2 ""'1.SmA

o

-12

o

'"

"

2.0

300

1

"..,

Ie - COLLECTOR CURRENT (mAl

a:
~ -2.0
I

;,

50 100

;,.

fo-'"'"

~

-10 I- Vee ~ 3.~V

.

4.0

-

;-f..- I--"'"

TA - AMBIENTTEMPERATURE (OCI

-4.0

z

I-

J

'i .......
5.0 10

'"z

6.0

~

......

~

0

I-

'f

2.0

::la:

!

t,.

~

8.0

'"

1.0

I-

10

oS

2.0

.s

12

J.ov

5.0

~

;,

Switching Times vs
Ambient Temperature

Ie - 10 IS1 ~ 10 192

50

Average Propagation Delay
per Transistor vs Collector
Voltage

500

;

50
TA

-

100

"""

150

"

200

AMBIENT TEMPERATURE ("el

"'0

Process 21
DC Current Gain vs
Collector Current

c

S

i
i!:'"

...

100
80

60

~

B

40

c

I'"
I

z:

!.III I•• !
. ~Ielj "~v

"'"

~

1I\l....I--

>

111111

li~

a::

0,6

liiU1'

~

0.4

I

0.2

li:
;a

O.Ot

~
5.0

>
~

2.0

~
~

1.0

~
§

~
_

to

~_

~
w

>
~
;:

~

;;i
w

~ ~Jc=125QC
o.t

I

;
tOO

500

lVCES

Ic=10mA

::

\

:!;
w

...'"'"

~
~
I
"
0

-

O.J

tOO

w
u

z

U

O.t

:

5 to

0.5 t

tOO

tk

tOk

Rs - SOURCE RESISTANCE (OHMSI

tOOk

ITA =2SoC
50 too

III
'f.J II
Il'}....
CibQ Ie '" 0

J.O

JOO

F = 1 MHz

I'

t::H-J.L

t-

CObo IE =0

2.0

500

-

O.t

5.0 to

0.5 1.0

50

Collector Cutoff Current vs
Reverse Bias Voltage

Collector Cutoff Current vs
Ambient Temperature

TA " 25'C

1:7

1

to
Ves = 20V

~

i-"

~

u

~

V

t.O

c

§

V

'"c

V

~

I

"Htt-

50

20

o
50tOO

ill

~

to

1.0

~

LVCEO

5.0

REVERSE BtAS VOLTAGE (VI

::

l'\

I

2.0

te - COLLECTOR CURRENT ImAi

1:... 1000

to

f/

:'5

I I
I I
I I

IIII
I !II

'"c

60

~
JO MHZ
1

Emitter Transition and
Output Capacitances vs
Reverse Bias Voltage

;:

25"C

~

70

::

1.0

i-"

~

IIJ

Ie - COLLECTOR CURRENT {mAl

f....+-HtoI

~

>

~M.$-

0.1

.....

V

v

I

o

0

~ 0.01

0

t6

24

·J2

40

Vee -COLLECTOR TO BASE VOLTAGE (VI

8·33

25

50

75

TA - AM81ENTTEMPERATURE (OCI

CD

CJ)
CJ)

~

400 MHz

4.0

0.9 f- _55°C
0.6

"

600~

l\

0.2 I--

5.0

'"
B
tOO

\

80

to

t.2

Lower Limiting Voltage vs
Source Resistance
PULSE

0.5

[IIC = 10 18

~

to

\

1.0

,

' III

650MHz

o.t
1.0

t.5

Ie - COLLECTOR CURRENT (mAl

90

i

5.0
2.0

Base Saturation Voltage vs
Collector Current

;a

T~I " -55:mi"T

>

0

'"

/I

~OD

I

I

0.1

'"'"~

Te- Z5"C

0.1

f11i'.: "tIO~"C

-~

I

to

Ie - COLLECTOR CURRENT {mAl

Ie'" 10 IB

I

>

o

too 500

0.5

0.2

'"'"~

>

O.t

Collector Saturation'
Voltage vs Collector Current

w

~

IIIIII J.l..

~

Ie - COLLECTOR CURRENT ImAI

'"~

VeE'" lOV

0

IIIII I

o

20

II

~

-

0.8

z

't~IJ5JC

20

1.0

c

~

Contours 01 Constant Gain
Bandwidth Product (IT)

Base·Emitter On Voltage vs
Collector Current

ao

tOO

.~

process 21

U)
U)

CD.

u

+6V

e
a..

10% Pulse Waveform
Point 'A'

lit

-10

=rr

_4V

0.1 pF
VOUT
V,N

(Qot--+--t t-.....-W_-t
To sampling oscilloscope
input impedance = 500

. Pulse generator
VIN rise lime < 1 ns

Rise Time ~ 1 ns

Source Impedance = 500
P\N",300 ns
Duty cycle<2%

FIGURE 1. Charge Storage Time Meas!!rement Circuit
V,N

-1--\------10%

_--'L..-:J:,---'------ 10"

'-If

--...;.;.;""'""--..... ·---=;:.:--90%

t •• - -

90%

VOUT

VBB =+12.0V
VIN =-20.9V

V,N

To sampling oscilloscope
Input Impedance = 500

~~::;'~~25V

Rise Time", 1 ns

Pulse generator
VIN rise lime < 1 ns
Source impedance = 500
PW '" 300 ns
Dutycycle<2%

-.:FIGURE 2. tON. tOFF Measurement Circuit

+Vcc
51 gil

51011

,

lKIl
PULSE
GENERATOR

t;<0.5n5

5011

51011

. 51011
t.

L

U
WAVEFORM 1

la= 5011

8 STAGES

WAVEFORM 2

Waveforms 1and 2 are superimposed

tpd= tA+t El
20
tpd = Average propagation per transistor

FiGURE 3. Circ!!it for Measur~ment of Propagation Delay

"tJ

Process 22 N PN Small Signal

~NatiOnal

Semiconductor

CD

r---K~
~J~
!fr~r

DESCRIPTION

0,015

Process 22 is an overlay, double·diffused, gold doped,
silicon epitaxial device. Complement to Process 64.
APPLICATION
This device was designed for high speed logic and core
driver applications to 300 mA.

EJ
Parameter

PRINCIPAL DEVICE TYPES
TO·52:
TO·92,EBC:

Conditions

Min

2N3013
2N5772

Typ

Max

Units

Notes

Is

Ic=10 mA, IB1 = IB2= 10 mA

12

18

ns

Figure 1

tON

Ic=300 mA, IB1 = I B2 =30 mA

10

18

ns

Figure 2

10FF

Ic= 300 mA, IB1 = IB2 = 30 mA

18

30

ns

Cob
C ib

VcB =5V,f=1 MHz
V EB = O.5V, f = 1 MHz

3.0

5.0

pF

8.0

pF

hie

Ic= 30 mA, VCE = 10V,
f= 100 MHz

3.5

hFE

VCE = 1V, 10 mA

20

hFE

VCE = 1V, Ic= 30 mA
VcE =1V, Ic=100 mA

25

60

150

20

45

150

VcE =1V, Ic=300 mA
VCE =O.4V, Ic=30 mA

15

hFE
hFE
hFE

7.0

20

VCE(SAT)

VcE =0.5V, Ic=100 mA
Ic=30 mA, IB= 3 mA

0.20

V

VCE(SAT)

Ic= 100 mA, IB= 10 mA

0.30

V

VCE(SAT)

Ic=300 mA, IB= 30 mA

0.50

V

VBE(SAT)

Ic=30 mA, IB=3 mA

0.95

V

VBE(SAT)

Ic= 100 mA, IB= 10 mA

1.2

V

VBE(SAT)
BVCBO

Ic=300 mA, I B =30 mA

1.7

V

Ic= 10 I'-A

35

V

BV CEO

Ic= 10 mA

15

V

BV EBO

I E= 1O I'-A

5.0

ICBO

VcB =25V
V EB =3V

hFE

lEBO

20

DC Current Gain vs
Collector Current
~

VeE

80

6nj...

V

60

Z5°C

.~
w

=5.0V

.......

100

nA

~

:\.

'"

~
~

W

~
I

20

~
w

0
100

Ie - COLLECTOR CURRENT (mAl

500

~

Base Satllration Voltage vs

1.6

1111
O.B

>

40

10

nA

,Collector Current

1.0

'"

I---'

1.0

V
100

Base·Emitter Oli Voltage vs
Collector CUfrent

100

(")

en
en

iOTsli
0.0015
1·-III.1S05i--

_

a

0.6
0.4

--

III

1111 III
TA =25°C

r. =

Ie

VeE = 5V

'"
~

I-

III
III

=10 18

1.2

i

100°C

:1:
~

I-

.i

O.B

I

~

0.2

~

25°C/7

~

0.4

-

~-

>

0

0
0.1

1.0

10

Ie - COLLECTOR CURRENT (mAl

8·35

100

10

20

50

100

200

Ie - COLLECTOR CURRENT (mAl

500

I\)
I\)

C\I
C\I

Process 22

U)
U)

CI)
(J

ColIE>ctor Saturation
Voltage vs Collector Current

0
10.
Q.

~

1.0

r- 1c=10I a

'"

~>

0.8

"'''
"'"'

0.6

~:-

01I-~

uo
w>

g~

UI-

"
-'"
 .....

,......

,/

V

~ -4.0

1/

8.0 ns

t, = 7.0 ns

~

/'

~

12~;;;;;;

i,....- ,.......

~ """' .......

~

"E~
~

-25

t~4.01", ./I

5.0 ns

-15

/

-10

4.0

6.0

8.0

1., - TURN ON BASE CURRENT (mAl

10

~

V
10 ns

i,....-f_f-

-5.0

o
2.0

~

V

Ie"'" 300 rnA
-80

Vee

.-i-"':::::

~- ~f" ~.O J,/

-60

/

15", : :

5.0

10

15

,

IS1 - TURN ON BASE CURRENT (rnA)

8·36

z
'"=>
lI

20

25

-40

0

.

- f - f0- r-

o

:Ii
~
~

-20

I

=15V

~

I

o

I-

w

~

i=

-2.0

"E

1/

Vee'" 15V

-20

-100

/

Ie ""'100mA

~
o

I

o

i=

'\

181 - TURN ON BASE CURRENT (rnA)

-6.0

i=

15

.'\.

181 -: TURN ON BASE CURRENT (rnA)

l-

-8.0

~

MHz
l°iMri 11 1

-25

-B -15

Ic:10ls1 =101 S2
Vee =15V

IS1 - TURN ON BASE CURRENT (rnA)

-10

"iE

6.0

20

il' /
300

0.1 1.0

o
2.0.

510

400 MHz

~ -20

100

Switching Times vs
Collector Current

Storage Time vs Turn On
and Turn Off Base Currents

1

Y

I

:Ii

"'"·1

I

75

50

T. - AMBIENTTEMPERATURE lOCI

Ie - COLLECTOR CURRENT (mAl

-10

Ic ""30mA
Vee =15V

25

0.5

Storage Time vs Turn On
and Turn Off Base Currents
E

0.01

40

25

REVERSE BIAS VOLTAGE IVI

I2

30

30

0.2

~

0.02

V

550 MHz

I

I

1.0

0.1

~

~

~

_

10

5.0

!
iii

Cabo - OUTPUT CAPACITANCE

2.0

"

20

>

_1,"0--

;3

10

"'
"

0.05

j

500

F" 1 MHz

V

~
I

Contours of Constant Gain
Bandwipth Product 'fTl

I I
II

V

0,1

'"

0.01

Input and Output
Capacitance vs Reverse
Bias Voltage

III
iel " 0 I

0.2

~

jO.OOl
200

V

~

I

100

i-'"

VeE'" lOV

0.5

~

Ve, - COLLECTOR·EMITTER VOLTAGE IVI

"

~
;.0

'*B
2

Ie - COLLECTOR CURRENT (rnA)

10
8.0

50

1.0

I-

=25°C

~

1-

0.2

;:

U

TA

ili

I/J

Collector Reverse Current
vs Ambient Temperature

~

0.5

~

I

~~

Collector Reverse Current
vs Reverse Bias Voltage

V

......
20

V
/

5.0;/ L __
:,....-

./

'/

V

40

60

80

100

IB1 - TURN ON BASE CURRENT (rnA)

Process 22
Delay Time vs Base·Emitter
Off Voltage and Turn On
Base Current
~ -5.0

r:--=,..-,,.-,.-,...-.,rr-"T'7'I""T""17n

C[

-4.0

!--'---'/---Jf-+l+-W--4'!

>
~

~ -3.0 f--+-H'-1f-F--hll-t.'I--t-bo1

=
~
iE

~

:IiI

-2.0

.s...

8=
5
w

f-+--fhf-J17't-+--H'++I

=

r.r-7-t-.r-I-7''l--Y-+-t+H

!S
~

0'-"'_""'-'~-l.,£J'-''''''''..J....Jc...u

1.0

2.0

5.0

12

Vee = 15V
50

I

20
10

'>="

...

III

10

20

50

100

zoo

Z5

ill

600

400

'"

~

TO·92

i'"

JOO

x

"'"

200

I

100

.e

100

800

500
=
~

S
~

15

100

c

2

50

TA -AMBIENT TEMPERATURE 1°C)

Maximum Power
Dissipation vs
Ambient Temperature

~

::

==JOmA,I B2 ""'-3DmA
VBEIOI::: -D.SV, Vee = 15V

o

500

Ie - COLLECTOR CURRENT ImAI

.sz
'">=

.... t--::" r--

t---- 1--101

!"T

z.o

I-"

f-t;" r--;e ~ JOO mA

20ns

1.0

1., - TURN ON BASE CURRENT ImAI

w

V

10ns

l,....-

~

/

...t"

r--

~

./
5.Dns

t, '"

5.0

10

:,....--- ~

10

ill

z

-1.0

Switching Times vs
Ambient Temperature

100

:<

~

'"~

Rise Time vs Collector and
Turn On Base Currents

TO·18

."
'\

'\
50

100

"

1,\ i'-..
150

200

TA - AMBIENT TEMPERATURE I"CI

Vsa

=-l.OV

3m

lKU

JO.051'f

"---0

+7.6V

Pulse widlh",240 ns

....fL

1,.lf;I.Ons
ZIN ;500

Vee'" +10V

To Sampling Scope
Rise Time < 1.0 ns
Input Z =:: 100 Kn

FIGURE 1. tON. tOFF Test Circuit

0==rr
~'N

+6V
VOUT

10% Pulse Waveform
at Point 'A'

V,N

-10

Pulse generator

VIN rise time< 1 ns
Source impedance = 500

To sampling oscilloscope

ZIN=I00 kO
RlseTlmesl ns

PW '" 300 ns
Duly cycle < 2%

FIGURE 2. Charge Storage Time Measurement Circuit

8·37

~NatiOnal

Process 23 NPN Small Signal

Semiconductor

t
0.015
10.3811

.

0.Ot34
10.08641

•I

~~

~~

Process 23 is an overlay, double-diffused, gold doped,
silicon epitaxial device. Complement to Process 66.
APPLICATION

+

~t ;;;;t~

Parameter

I'

DESCRIPTION

0.018
10.4571

I·

This device is designed as a general purpose amplifier and
switch. The useful dynamic range extends to 100 mA as a
switch and to 100 MHz as an amplifier.

O.J034
10.08641

PRINCIPAL DEVICE TYPES

Conditions

TO-18:

NS3904

TO-92,EBC:

2N3904

Min

Typ

Units

Max

Notes

tON

Ic=10 mA, IBl =1 mA

30

70

ns

Figure. 1

tOFF

Ic=10mA,IB2=1 mA

150

250

ns

Figure 2

COb
C ib

VCB = 5V, f = 1 MHz

2.7

4.0

pF

NF

VCE = 5V, Ic = 100 p.A,
Rs = 1 kD, P BW = 15.7 kHz

hIe

Ic = 10 mA, VCE
f= 100 MHz

V EB = 0.5V, f = 1 MHz

pF

8.0
2.0

=20V,

2.5

dB

4.5

40

hFE

Ic = 100 p.A, VCE = 5V

hFE

Ic=1 mA, VCE=5V

90

hFE

Ic = 10 mA, liCE = 5V

60

hFE

Ic = 50 mA, VCE = 5V

40
20

150

360

hFE

Ic = 100 mA, VCE = 5V

VCE(SAT)

Ic = 10 mA, IB = 1 mA

0.15

V

VBE(SAT)

Ic = 10 mA, IB = 1 rriA

0.80

V

VCE(SAT)

Ic=50 mA, IB=5 mA

0.25

V

VBE(SAT)
BVCBO

Ic=50 mA, IB=5 mA

0.85

Ic

=10 p.A

V
V

60

BVCEO

Ic= 1 mA

30

V

BV EBO

I E =10p.A

6.0

V

ICBO

VcB =30V

100

nA

lEBO

V EB =4V

100

nA

.
i

DC Current Gain vs
Collector Current

i= 200

VeE

;2

I"";

120

w

'"<~

,

160

<
0:

>>-

~

=5.DV

..
i5

1\

0:

w

~

~~

~
t

0.2

40

~

;;;

0
0.1

1.0

10

Ie - COllECTOR CURRENT ImAI

100

,:

,VeE

I
I

I-

TA = 25°C

,....

-t

0.6
0.4

!

111111
111111

O.B

>>-

BO

0:

<
;:

1.0

>

"0:w

B
.

Maximum Power
Dissipation vs
Ambient Temperature

Base-Emitter ON Voltage vs
Collector Current

=5V

=

~1

10

Ie - COllECTOR CURRENT ImAI

8-38

:::
~

500
400

f

300

'x<"
'"x

200

~

,I
I
1.0

700
600

0:

i

0

i5

iliQ

100°C

r-

.§.

i=

i--'"

n

§' , 800

.

,

.~

TO·18

TO·92

"
'\ "-

100

'\.

t

100

~

0

50

100

r--...

150

TA - AMBIENT TEMPERATURE lOCI

200

Process 23
Contours 01 Constant Gain
Bandwidth Product (h)
12

.200

I1I

10

-

,!!

I;

-

0

:;:

w>

:0;

~~
~z

c5!:
<.> ....
I~

;~
.;;

$n ~~I

!l

I

.~

-$

0.1

10

~

z

4.0

....
'"

3.0

~

2.0

U

.050

~

10

u

40

z

35

....
'"

30
25

B

15

,;

10

:;:

/

10

I

1.0

50

75

100

10

1/
"

""

I

I I
f= 1.0 kHz

o

o

0.1

IIKI

t - FREQUENCY 1kHz!

1.0

10

=10 VOC, 1=1.0 kHz, TA =2S0C)

Output Admittance
f::: 1.0 kHz

TA

::;

25°C

w
<.>

Z

~

B

T~ - 25°C

TA "'2 5°C
~

.1

co

z

./

10

e:=>

I

VeE - loV

t= 1.0 kHz

f= 1.0 kHz

'"~
....=>'"

Input Impedance
100

Vee - 10V

z

~-

100

Rs - SOURCE RESISTANCE Ik nl

H PARAMETERS (VCE

.., 100
1

1111

"'e' 50"A
,l e -l00,uA

:ii

50pA

VeE::; lOV

......

10

~
~
~

1.0

!'
I

I

:.,'

10
0.1

1.0
Ie - COLLECTOR CURRENT ImAI

10

1000

I\,

Z

Current Gain

100

1/

w
~
C;

C;

SOD

10

t - FREQUENCY IMHzl

Ie::: 5.0mA

u:

10

140
160

"\

1.0

I i III I

~

'"

=>

~
::I

1.0

100
120

125

11111

w

0.1

0

80

V

Ic=1.0mA

=

H+HtItt-t-H+tllfl

w

~~,

60

8

Noise Figure vs Source
Resistance
12

I

I-""

180
25

Rs '" 200n

20

o

P.ie 1,1 \:~lmAt+I+Itttt--t--H+ttttI

"

h•• ~

TA - AMBIENTTEMPERATURE lOCI

I--

0
40

'\

20

/

12 ..-n-nnnr.,,-rnmr::--:~

:ii

VeE -lOY
Ie::; lOrnA

=

~

I\-+-+-+I-!+Jj
1IIIcIl-l+l-HilllI-VCE ::; S.OV

100

Current Gain and Phase
Angle vs Frequency

/

100

10

100

Ie - COLLECTOR CURRENT ImAI

50

100

I

0

10

.1

100

~

m

V""'"

r--

.65

Noise Figure vs Frequency

~
....
ffi
c:

.70

~

;"

45

REVERSE BIAS VOLTAGE IVI

~

}~

1000

~

tt

10

.75

Collector Cutoff Current vs
Ambient Temperature

~

1.0

.80

i=~

~~

.025

e

1.0
0.1

_/

§

"-

.85

·10-

TA""25°C

Ie - COLLECTOR CURRENT 1m AI

Cib

I"'-

~~
we

I!:

I,

.90

=z

~>

.075

1.0

~

r--.

/

Ie

.95

.60

F 1 MHz

--

.... '"

.100

Capacitance vs Reverse
Bias Voltage

5.0

~~

"
TA ::; 25"C

.125

Ie - COLLECTOR CURRENT (rnA)

-

r-

'lO-

I

100

10

Ie

",0:

~

Base Saturation Voltage vs
Collector Current
1.00

II

.175

:;;w .150
w'"

IW

,!!

0

'"

~~

~~

>!

:E

,!!

'"
11l

-

J

Collector Saturation
Voltage vs Collector Current

1.0 L........L.....L..-W..L.LI.ll.--l-J...l..LllW
0.1
1.0
10
Ie - COLLECTOR CURRENT ImAI

8·39

1111

0.1
0.1

1.0
Ie - COLLECTOR CURRENT ImAI

10

..;::
I

co

m

fJ:

Process 23

H PARAMETERS (V CE = 10 Voc,l =1.0 kHz, TA =25°C)(Continued)

Voltage Feedback Ratio
10

Charge Data
5000

10V
f= 1.0 kHz
TA = 25°C
VeE

\

3000
2000

..'"
~

700
500

~I=

d

1.0
0.1

,.;::

100

100

III

Vee - 40V
leila = 10

,

I-- I-

TJ "125°C

!
~ 100
;::

F=== F

g

Tr 25°C

"I"

100

~

TJ = 125°C

~

to

10
5.0
10

TJ ;;2SoC

10

IS1 - 182

-Ie/le = 10

1.0

100

~

...,

';=1,-1/8',

5.0

5.0
100

1.0

Ie - COLLECTOR CURRENT (mAl

Ie - COLLECTOR CURRENT (mAl

10
Ie - COllECTOR CURRENT (mAl

TRANSIENT CHARACTERISTICS (- TJ = 25"C - TJ = 125°C)
+3.0V

a

-O.5V

275

~ +10.6V

300 os -j
OUTY CYCLE = 2%

~
I
_.J

1j.-

<1.0 ns

C,<4.0pF

FIGURE 1. Delay and Rise Time Equivalent Test Circuit
+3.0V

\

.~ 275

Q

10 <', < 500 '" -.j "
DUTY CYCLE = 2:

-9.1V

Vee =40V
lelia = 10

~
~

'"'"co

10

IS1 -l s2

;::

In,

~

100

~

LlU
•-rtJItj r--,..

TJ= 125°ri
~-t--

J

1.0

10

Fall Time

~

~

-?

500

III

I~\. 25JC

3.0V

Ie - COLLECTOR CURRENT (mAl

500

w

~

r---

,,@Voa

1.0

Storage Time

.~

w

10

~

~ ~p

2m

10

Ie - COLLECTOR CURRENT (mAl

Rise Time
500

~

I

5.0
1.0

Ie - COLLECTOR CURRENT (mAl

~

t,@ Vee

0..~

50
10

15V

TJ -25°C

Q.

1.0

40V

,.;::'"

f-- ~ ~

100

r--.. i-'"

~":\

lli

!

TJ ;;' 12Soe

V

200

leila = ,0

I'\."~
100

g, 300

1\

~

lelle '" 10

g 1000

1\

]

Turn On Time
500

Vee - 40V

::l

I--

*

+10.9V

JU.o

10K
.A

~r ~

C,<4.0pF

~~'N916

os

.. ~

I

~_.J

'"="
FIGURE 2. Storage and Fall Time Equivalent Test Circuit

8·40

100

~National

Process 25 N PN Memory Driver

~ Semiconductor
0.Ol9

-------1
0.0145
-(0.36831~
0.004

DESCRIPTION

(0.731)

I

Process 25 is an overlay, double·diffused, gold doped,
silicon epitaxial device. Complement to Process 70.

~(D.1021-

APPLICATION
This device was designed for high speed core driver
applications.
PRINCIPAL DEVICE TYPES
0.Ol6
-f--r'-tiIHtH-RtHlftH.HItlIHl1H-H-HH-IHl-IH7'--7i--.L:. (0.660)

TO·18:
TO.39:

2N4014
2N3725

TO·237: TN3725

--0.004
(0.10l)

Parameter

Conditions

Min

Typ

Max

Units

Notes

tON

Ic=500 mA, I B1 =50 mA

12

35

ns

Figure 1

tOFF

Ic=500 rnA, I B2 =50 mA

50

60

ns

Figure 1

hfe

Ic = 50 rnA, VCE = 10V,
f= 100 MHz

Cob

VCB = 10V, f = 1 MHz

S

pF

C 1b

V EB = 0.5V, f = 1 MHz

55

pF

hFE

Ic= 10 rnA, VCE = 1V

40

hFE

Ic = 100 mA, VCE = 1V

45

hFE

.l c =300 rnA, VcE =1V

35

hFE

Ic=500 mA, VcE =1V

25

hFE

Ie = SOO rnA, VCE= 1V

20

hFE

Ic=1A, VcE·=1V

15

hFE

25

2.5

4.25

6

90

150

hFE

Ic=SOO mA, VcE =2V
Ic =1A,VCE =5V

VCE(SAT)

Ic= 10 rnA, IB= 1 rnA

0.20

V

VCE(SAT)

Ic= 100 rnA, IB= 10 rnA

0.20

VCE(SAT)

Ic=300 rnA, I B =30 rnA

0.40

VCE(SAT)

Ic=500 rnA, I B =50 rnA

0.50

VCE(SAT)

Ic = SOO rnA, SO rnA

O.SO

VCE(SAT)

Ic= 1A, IB= 100 rnA

1.20

V
V
V
V
V

VBE(SAT)

Ic=10 rnA, IB=1 rnA

0.70

V

VBE(SAT)

Ic= 100 rnA, IB= 10 rnA

0.S5

25

VBE(SAT)

Ic=300 rnA, I B =30 rnA

1.20

V
V

VBE(SAT)

Ic=500 rnA, I B =50 rnA

1.20

V

VBE(SAT)

Ic=SOO rnA, IB=SO rnA

1.50

V

VBE(SAT)
BVCEO

Ic= 1A, IB= 100 rnA

1.70

Ic= 10 rnA

40

V
V

BVCBO

Ic= 100 p.A

SO

V

BV EBO

Ic=10p.A

6

ICBO

VCB=40V

lEBO

V EB =4V

V

S·41

100

nA

100

nA

Ell

II)

C\I
0
0

Process 25

CD

e

0..

120

2w

VeE:c 1.OV

z

;;:

~'"
">z
"

100

.'"
>-

ill
~.

~

..~

SO
60 . /

."
~

1.0

0.2

10

1000

100

Collector Saturation
Voltage vs Collector Current

2w

'"'" O.S
">=
z
";:: 0.6

Ie'" lOla

III
ll0Jc

:i

0.4

~
8

0.2

;:

"iA

I

~

1.0

10

ill
~

o

e

.
"

8

III

o

50

Ves::: 40V

w

~

~
~

10

~

..

1.0

~

r'"

II'!'r

1.0 •

0.1

50

75

100

~

0.2

:::

0.1

20

REVERSE BIAS VOLTAGE (VI

100

450 MHz I

400~

fT1il1lT
100

Maximum Power
Dissipation vs
Case Temperature
50

1000

..~

600

II!

400

..x
II!

-......; ~TO.237·

~

...... r-..

TO·1B

~ 200

~~t

i

.E

- r--

~........

'\ -....;: ~

I

x

'"

"\.

50

100

150

200

TA - AMBIENT TEMPERATURE ('CI

r--

\. ",.39

ZO

- '""

i

TO lB

l-

100

50

-

8·42

10

I- ~

ISO

-

t,

..... .....

It
I,

.

I""\,

Te - CASE TEMPERATURE ('CI

* One square Inch of copper run

1000

Switching Times vs
Ambient Temperature
100

"

100
Ie - COLLECTOR CURRENT (mAl

1400

.. SOD

r-- .:'
I

10

SOD 1000

1600

1200

.........

ZO
lorm

~

~
!a

toff

40

~ 350 MHz
~OMrzlllllll
50

30r

"-

60

./.

=
10

SO

=182 = Ie '10

Vee'"

80

~

oS

60

Turn On and Turn Off Times
vs Collector Current

Ie - COLLECTOR CURRENT (mAl

Maximum Power
Dissipation vs
Ambient Temperature

40

Vep - COLLECTOR·BASE VOLTAGE (VI

"1111 I I

1.0

0.1
50.

"

".-

"

l/'

ISl

1\

I

10

./

125

1--\ -

~

III

1.0

0.3

j

0.01

8

e---

TA =25°C

0.4

I

. 1\ \

5

1000

100

0.5

~

10

'"~
">
"

10

~

2w

10

:f

i>-

Contours cif Constant
Bandwidth Product (tTl

-

I

1.0

TA - AMBIENT TEMPERATURE ('CI

r--

Cibo

"""

1000 e

ill

Input and Output
Capacitance vs Reverse
Bias

ii:

-

Collector Cutoff Current vs
Reverse Bias Voltage

25

F::: 1 MHz

-

~~

~

Collector Cutoff Current vs
Ambient Temperature

Ie - COLLECTOR CURRENT (mAl

.!!

O:B

S
! 0.4
~ 0
~

'/

l- f-'""

Ie - COLLECTOR CURRENT (mAl

I

;

~

-55'C
25'C,

Ie - COLLECTOR CURRENT (mAl

1000

50

100

~ 0.1
=

I-II

100

100

10

1.0

~
~

~

1.2

I

0.1

i

Ie'" lOla

w

>-

A~J -

:::::;

~

I

Tr~
25'C~

I

.."
..

g;

~~~lll~~~C

Ie - COLLECTOR CURRENT (mAl

>-

~

"~

Z

1.0

w

'"~
z

f-tT flllll
I 1J.U.I!+-

Q

20

...'"
.."

Wi.-

A

I

Ve,=5V

_ITI ~~~!~_

0.6
0.4

~ 1.6

II 111111

O.S·

i
~

~

40

I

~

Base Saturation Voltage vs
Collector Current

Base·Emitter ON Voltage vs
Collector Current

DC Pulsed Current Gain vs
Collector Current

(.)

zoo

le= 500 mA
IB1'" IS2 '" le/lO
Vcc=lOV

-50

·50

100

TA- AMBIENT TEMPERATURE ('CI

150

"tI

Process 25
Delay Time vs Turn On Base
Current and Reverse Base·
Emitter Voltage

Switching Times vs
Collector Current
50

I III
I i I rTl

40

;<

.s

t,

iii

l'

~

Vee"' 30V

§

30

~

t=

20
10

~--=F=r,I

1
I

H=-'I
I

o

-LlH
Ii!

I'...

w

I

II'

I I,

I,

ITtm
100

1000

30

30

~

c

"
~
I

.

;<

i
w

o

jl

".-

10

80~
100 rnA

0I

~

40

=500 rnA

2y

1 "3:V l(

V
150

ts

=20 ns

/

100

V

V

V/

50

50

50

V

;<

I.

.l
I-- ,=1205/
t

t--20

l-

/

V

15 ns

;li 100

V

~ [;:;;;

"

a:
=>

0-

50

I

-

20

30

40

50

lS1 - TURN ON BASE CURRENT (rnA)

o

I
/

z

6 ns

PW~

1 ~s

ZIN ;500

;<

Duty cycle<2%

~

iii
a:

V

B 200

Ie

=000 rnA

_

t~"'0"IS /
J

w

~

I--

c

"a:

I

100

Ie = BOO rnA

Ie = 500 rnA
=

200

300

0-

I

jl

30V

100

200

~VOUT

t r <1 ns

ZIN20100 kO

_6211

FIGURE 1. Ic=500 rnA, 181 =50 rnA, 182= - 50 rnA

191 -

V
/
15 ns

./

V
r-- --;;'"'

-

V/ /

=>

150

/

TURN ON BASE CURRENT (rnA)

Vee = 30V

0-

To sampling scope

8·43

300

.s

+30V

~'N1

/

/

Fall Time vs Turn On and
Turn Off Base Currents

luF

VIN;+9.7

45 ns

100

SWITCHING TIME TEST CIRCUIT

tr and tf.$1 ns

II

I

Vee = 30V

191 -

ISl - TURN-ON B.ASE CURRENT (rnA)

lKu

35 ns

/

200

l V

100

-3.BV

100

g;

X

-

50

[I

I

Vee

o

/
/

200

jl

...... V 10":
~ I-- f-

c

/

10

[I /

~

V-

--o

tl~5"~ J

150

w

V

/

10

I

,/

1

30

200

.s

~w
c

150

300 400500

/

t.=20ns/

iii
a:

0-

100

Vee = 30V

200

300

~

50 ns

:..-

V

k:::: :..- I--

~

Storage Time vs Turn On
and Turn Off Base Currents

0-

Fall Time vs Turn On and
Turn Off Base Currents

=30V

/'

.s

I-- r -

40ns~

/

,/

15 ns

100

50

;<

V

Fall Time vs Turn On and
Turn Off Base Currents

Vee

V
V

10 - COLLECTOR CURRENT ImA)

V

'I

~

Vee = JDV
30

/
8 "S

10

60 70 8090100

ISl - TURN ON BASE CURRENT (mAl

I

o

~
c

.- V =
Ie

20

Ie = 100 rnA
40

/'

50

lel - TURN ON BASE CURRENT {mAl

50

;li

"
~
I

60 ns

V
o

Ie

~

V

40",

/.
10

~

c

~

20

.s
0-

it--

200

.s

I
II
-

;li

40

Storage Time vs Turn On
and Turn Off Base Currents
;<

~w

/

V

IBl - TURN ON BASE CURRENT (mAl

;<

40

20

.

Storage Time vs Turn On
and Turn Off Base Currents

iii
a:

g;

/.

5 "S

0I

Ie - COllECTOR CURRENT (rnA)

.s....

30

/

....

40

;li
~
z

11H4

I

10

50

t,=3ns

~

r--..:: ::J....H1'

1--""'"

-

0-

(")

CD
CJ)
CJ)

I\)
(J1

'100

III

=182 =le/lO

ISl

Rise Time vs Collector and
Turn On Base Currents

a

200

300

TURN ON BASE CURRENT (rnA)

to-

N

en
en
CI)
(.)

e

~'National

a

.Process 27 NPN Small Signal

Semiconductor

0.018
------(0.457)-------"-

0...

DESCRIPTION
Process 27 is a non-overlay, double-diffused, silicon
epitaxial device.

0.0035
(0.0889)

APPLICATION
This device is designed for general purpose amplifier and
switch applications, useful from audio to RF frequencies.
PRINCIPAL DEVICE TYPES

0.018
(0.451)

TO·18:
2N915
TO·92, EBC: PN3694
TO·92, ECB: 2N3394

Parameter
NF (wideband)

Conditions

Min

Typ

Max

Units

VCE = 5V, Ic=100!'A,
PBW = 15.7 kHz
VcE =5V,l c =100!,A,
f = 1 kHz, Rs = 1k

1.5

dB

1.5

dB

Cob
Cib

VCB = 10V, f= 1 MHz
VEB = 0.50V, f = 1 MHz

2.5 .

IT

VcE =10V, Ic= 10 mA
VCE = iOV, Ic= 100!,A

250

VCE '=10V, Ic=1 mA
V CE = 10V, Ic= 10 mA

50

NF (spot)

hFE
hFE
hFE
hFE
VCE(SAT)
VBE(SAT)
BVCBO

VCE = 10V, Ic=50 mA
Ic= 10 mA, IB= 1 mA

3.5
7.0

pF
pF
MHz

450

40

60

180

360

45

Ic= 1 mA, IB= 1 mA

0.20

V

0.85

V

Ic=100!,A

50

V

BV CEO
. BV EBO

Ic=10 mA

35

V

IE=10!,A

5.0

ICBO

VcB =40V

100

nA

'EBO

VEB=4.0V

100

nA

8·44

V

Notes

Process 27
DC Current Gain vs
Collector Current

Base·Emitter ON Voltage vs
Collector Current
~

400

VeE = lOV

~

z

....z~

~

0,9

~

~

200

'"

V
100

uJ

r....

~

i

0.1

1.0

10

.....

~

0.4

~

~>
z

'"

~

IB

10

tlttf-H++I1Itt-1+f+H'II

0.3 f-H++IfIIj--++l-+++Ill-+++-~

~

f-H++ItHt--+-H-t+tIll-+1l+HttIl

/

~

~

""
~

~
"'"~

'"....w
....

8

'"

~

w
I

~

1.0

ton

~ !-.

to,,1 81 ::1 82

.....

w
:E

V

>=

0.7

100

V

,

.

"

0.6

~

1,," ::

r--

0.9

1.0

10

o.s
10

Switching Times vs
Collector Current
Vee = f5V
181 :: 102 =

1000

. "....,. t--t:-

g

>:>=

t,-

.....

100

'"

20

60

100

Ie - COLLECTOR CURRENT (rnA)

Noise Figure vs Collector
Current
10

VeE'" S.OV

16

1

VeE::

-

s.nv

f = 1.0 kHz

'"'"

'!!
w

~

1,_

10

1.0

t= 1.0kHz
m

r-

1.0

Noise Figure vs Source
Resistance

s.nv

t~

.....

Ie - COLLECTOR CURRENT (rnA)

Noise Figure vs Frequency

=---

Id=

t-10

~~

=

10

1.0

100

Ie - COLLECTOR CURRENT (rnA)

10000

'~

10

100

f - FREQUENCY (MHz)

z~

Vee = 15V

VeE:;:

1.0

100

~ VBEIOI ;; O.5V

) - - t-

r- t1000

10

I

..c

10

tON and tOFF vs Collector
Current

IB

1.0

........

Ie - COLLECTOR CURRENT (rnA)

5000

0.1

l'

8"

11.
0.1

~

10

z

I· ""
..E.::
10

0.8

100

~

Ie - COLLECTOR CURRENT (rnA)

~

VeE = lOV
Ie = 10 rnA

~

5.0

'"'"

1.1

200

w

100

1.0

~

150

500

~

~

10

100

....z

w

Base Saturation Voltage vs
Collector Current

?
z
'">=

50

i"-,

~

Small Signal Current Gain
vs Frequency
z

?

1.0
1.0

•

~

Small Signal Current Gain
vs Collector Current

0.1
0.1

~

100

TA - AMBIENT TEMPERATURE ( C)

I

I

-

100

10

>

0.2

\

200

Ie - COLLECTOR CURRENT (rnA)

~

'"o

1.0

10
=

300

10·18

,"-

~

0.1

Collector· Emitter Saturation
Voltage vs Collector Current

~

TO·92

I

0.5

100

I'-

500
400

,."x

,.......

Ie - COLLECTOR CURRENT (rnA)

?

600

~
1l,.

./

0.7

Z

:>~

ill

'"

I

V

700

0

~

'"

800

'"
>=
;;:

>

300

'"
I

VeE = lOV

"

l<

.sz

1.1

w

Maximum Power
Dissipation vs
Ambient Temperature

/

'"
"

12

~

u:
w

..

~

0

100

lk

f - FREQUENCY (Hz)

IRs

~

Z

1.0 H2

V-

-'!±!(

o
lOOk

=

~11117-

Ie '100"A

I
10k

-

I

~

=1 kn

III I IIII
10

~

1\

I

Ie:: 100~ Rs

10

100

lk

10k

Rs -SOURCE RESISTANCE,(Il)

8-45

lOOk

0.001

0.01

0.1

1.0

Ie - COllECTOR CURRENT (rnA)

10

Process 27

COMMON EMITTER Y PARAMETERS
.. Output Admittance vs
Collector Current

Input Admittance vs
Collector Current
3.0

~

.!

.S

VeE::: 5.nv
'.10.7 MHz

-;
2.5

~

2.0

ico

1.5

....
'"
....

'"
,

....

~

.

2.4

VeE· .5.0V

.!

2:0

"z

·1.B

ico

1.2

=
~
=

0.8

I

b.,
1.0

!!!

0.5

,!

~

rI--

1

/

....
'"
....

/
/

/

....
'"

",

r:t

>~

1.0

/

::!r
i:~~

~~
~

0.4

...........

~

~!

boo

160

VeE = 5.0V

'·r·
11./

1MHZ

120

/

80

40

V

,!

V

V

-'l

~~.

io'"

o

o
1.0

50

10

.~!

~J-

'·10.1MHz

w

w

"z

Forward Transfer
Admittance vs
Collector Current

10

50

1.0

Ie - COLLECTOR CURRENT (mAl

Ie - .COLLECTOR CURRENT (mAl

10

50

Ie - COLLECTOR CURRENT (mAl

Reverse Transfer
Admittance vs Collector
Current
0.3 r-'---'-'-,.-,...,..TTMn-."..-..-.....,
VeE::: 5.0V

1--t-t-t-t-HftH- ,. 10.7 MHz

II:

$!

:-b!.

i

0.2

f.,--I..:...t+++-1H+1-+++t

i~
~g
.. '"

0.1

I--t-t+t-HH-H--j--j-+r

~

....

-

'co

~ftI.

.....

...c.""""....,

O __....I........I..Io~.....
1.0

Ie - COLLECTOR CURRENT (mAl

COMMON EMITTER H PARAMETERS
Small Signal Input
Resistance vs Collector
Current

..

Small Signal Output
Conductance vs Collector
Current

100

Cl

I

VC"E = 10V

"-

'·1.0kHz

w

"
Z

'"
In

.

i1i

....

~,
A

1.0

200

,,~

150

"::

I

100

,

"

10

""'

-

50

o

20

0.1

Ie - COLLECTOR CURRENT (mAl

1.0

~

....
:5

..
:Ii

..~~
w

">,

80

0;

L

~
~

iJi'",
10

20

f= 1.0kHz

40

""- r-...

,;

0.1

1.0

10 20

Ie - COLLECTOR CURRENT (mAl

8·46

300
200

100

~

BO

20

-

400

~

VeE'" 10V

1\
\

VeE::: 10V
'·1.0kHz

500

i:l

Small Signal Voltage
Feedback Ratio vsCollector .
Current
100

BOD

.. ....;;'"

I

Ie - COLLECTOR CURRENT (mAl

~
;:
"
'"
. 1:l

Small Signal Current Gain
vs Collector Current
z

VeE -10V
f= 1.0kHz

'~

1.0
0.1

250

~

2:
z

"""

10

50

10

1.0

10

Ie - COLLECTOR CURRENT (mAl

50

Process 37 N PN Medium Power

~National

a

Semiconductor
DESCRIPTION

0.031
1-----(0.7B1I - - - - -

Process 37 is a double-diffused, silicon epitaxial planar
device. Complement to Process 77.
APPLICATION
This device was designed for general purpose medium
power amplifiers and switching circuits that require
collector currents to 2A.
PRINCIPAL DEVICE TYPES
TO-202, EBC: NSD102, 103
NSDU01,01A
NSDU02
TO·202, BCE: NSE180
TO·237, EBC: 2N6714, 15
(92PU01, 01 A)
TO·237, ECB: NA21/31 Series
TO·126, ECB: MJ E180
MJE720
TO·92, EBC: ED1702
Parameter

Conditions

Min

Typ

Max

Units

BVCEO

Ic=10mA

25

V

BVCBO

Ic= 100p.A

40

V

BVEBO

IE= 10 p.A

5

ICBO

VCB=20V

lEBO

VEB=4V

hFE

Ic = 100 rnA, VCE = 1V

60

hFE

Ic=1A, VCE=1V

40

VCE(SAT)

Ic = 1A, IB = 0.1A

0.5

VBE(SAT)

Ic=1A,IB=0.1A

1.25

V

fT

Ic = 100 rnA, VCE = 10V

Cob

VCB = 10V, f = 1 MHz

20

MHz
pF

PD(max)
TO·126
TO·202
10·237
TO·92

150

V

160

100

nA

100

nA

360

300
17

V

Tc=25·C
TA=25·C

15
1.5

W

Tc=25·C
TA =25·C

10

W,

2
2

TCOLLECTOR LEAD = 25·C
TA =25·C

850

W
mW

TA =25·C

600

mW

liJC

TO·220

Tc=25·C .

TO-126

Tc=25·C

TO-202

Tc=25·C

12.5

TO-237

TCOLLECTOR LEAD = 25·C

62.5

liJA
TO-126

TA=25·C

83.3

TO-202

TA=25·C

62.5

8.33

TO-237

TA =25·C

147

TO-92

TA =25 PC
All Plastic Parts

208

TJ(max)

150
8-47

·C/W
·C/W
·C/W
·C/W
·C/W
·C/W
·C/W
·C/W
·C

•

Process 37
Typical Pulsed Current Gain
vs Collector Current

...Efi~

Typical Pulsed Current Gain
.vs Collector Current

.....

1000

I°FuBmE.

1000

ii

_

2

_

2

f5

100

0:
0:

Coliector·Emitter Saturation
Voltage vs Collector Current

100

0:

.

~

~

i ~'II~;II;III.

:;l

~

10

if
I

10

0.1

1
0.01

10

IC - COLLECTOR CURRENT (A)

Base·Emitter ON Voltage vs
Collector Current
1.2

Vc!.~,I,~ (25"~)

~~

i'li

...

l-VcE -l0V(25°C)

~

~ !:;
="
,>
zre

0.8

,:

0.4

--I-'

~

"'>

..,.~

:i~

100

~

0.6

i=!C
~o:

JS

VC! ~ 1,~ .(.I.~,50C! -: t
VeE -10V (125°C)
10

r-T"TTTTn1r-,,..,..rrmr-rTTTI1r111

O.B

w"

t

0.2

1.

100

10

Ie - COLLECTOR CURRENT (rnA)

Gain Bandwidth Product vs
Collector Current

o

Safe Operating Area TO·202

i!
:E

"ill

...

~\\

ill
0:
0:

0:

1m,
S'ms
O'C

"

0.1

8

-

I
~

0.01

LIMIT DETERMINED
BY BVCEO

'I

lk

~

z

...

ill
0:

ilic;

~0:

0:

i!!i

"

0.1

24
22
20
lB
16
14
12
10

0.01
100

100

VCE - COLLECTOR·EMITTER VOLTAGE (V)

~

"

~ ~'126

1.6

i

1.2

" ......................

lA

c;

1.0

0:

0.8

- -

~
~

0.6

e

0.4

~

I

TD·202

0

~
z

"

I

~
'~

Thermal Derating Curve
I.B

1i
0.01 '--"'_ _ _ _.....::.:=..I...L-L.J.J..w

100

10

VeE - COLLECTOR·EMITTER VOLTAGE (V)

2.0

;!!

I
~

THIS LIMIT
DETERMINED
BVceo

I

.!!

Maximum Power
Dissipation vs
Case Temperature

"
~

3:

~

0.1

8

VCE - COLLECTOR VOLTAGE (V)

Safe Operating Area TO·237

10

0:

"

=f

10

IC - COLLECTOR CURRENT (rnA)

~

m
1m'

DC

..'"

~

100

EI00",

5

0:
0:

10

30

10

.s...

~

20

10

Veo - COLLECTOR·BASE VOLTAGE (V)

Safe Operating Area TO·126

VCE -10V

1

OL..J.....L....J-I..-'-'-!..-'-'-!..-'-'-!..-'-'

l'

10

~

I-++t-++H++-l-++I-+-I

10

0.4

Ie - COLLECTOR CURRENT (rnA)

~8

Coliector:Base Capacitance
vs·Coliector·Base Voltage

wI:~

:ill::

1-

::::

10

IC - COLLECTOR CURRENT (A)

0:>

~II~

.-

0.6

~p

0.1

10

Base·Emitter Saturation
Voltage vs Collector Current
1.2

cf.;E_~:~.:=:::~:~
I", ,

0:

0.1
IC - COLLECTOR CURRENT (A)

0.2
0

0

20 40

60

BO 100 120 140 160

TC- CASETEMPERATURE (OC)

8·48

0

25

50

75

100

T _ TEMPERATURE (OC)

125

150

Process 37
Thermal Response in TO·126 Package

~~

0.1
0.5

D = 0.5

0.3

O.Z

.... '"
......

O.Z

0.1

w!;
u;w

0.1
0.01
0.05

~~

.. co

...... ""

.... 1;;

1-

:g~

I,,;I1II

0.05

ITInoJC(.I=r(.I.OJC
P(okl
0JC DC THERMAL RESISTANCE
L
TOk = TC + POk .0Jc('1

~ -5T O'OZ
I-- \_ 0.01

~';

0.03
0.02

-1"-·zLJ

I-- \ O(SINGLE PULSE)

0.01

O.OZ

0.05

O.Z

0.1

0.5

10

DUTVCYCLED=~

zo

50

zoo

100

'1 - TIME (m.)

Thermal Response in TO·202 Package

~~
ffi:i

~;
......

0.1
0.5

ID =

0.3

10.:

O.Z

Zco

w!;
u;w

....
........

0.1
z"" 0.01
0.05
l!a
... ffi 0.03
.".

..

O.OZ

I:~II

m~

.l...-r.t!l-

~ ~tsnn •
1'51 :LE~

,O~l

I~

!N(

-I-:-:.z:,:"

0.01
0.01 O.OZ

0.05

0.1

O.Z

0.5

10

ZO

50

'I - TIME (nul

8·49

100

zoo

500 lk

°Jc(')=r(t).OJC
0JC DCTHERMAL n ••••• K" ••
TOk=TC+POk .0Jc(l1
DUTY CYCLE 0 = ~

Zk

5k

10k

20k

50k

100k

Process 38 NPN Medium Power

~National

~ Semiconductor
DESCRIPTION
Process 38 is a double·diffused, silicon epitaxial planar
device. Complement to Process 78.
APPLICATION
This device was designed for general purpose medium
power amplifier and switching circuits that require
collector currents to 1.5A.
PRINCIPAL DEVICE TYPES
TO·202, EBC: 2N6551
D40D1-14
D40E5,7
NSD102,103
NSDU05
TO·202, BCE: NSE180, 181
TO·237, EBC: 2N6716
(92PU05)

Parameter

Min

Typ

Max

Units

BVCEO

Ic= 10 mA

40

V

BVCBO
BV EBO

Ic= 100 p.A

65

V

ICBO

VCB=40V

IE=10p.A

V

5

lEBO

VEB =4V

hFE

Ic = 100 mA, VCE = 1V

60
20

160

100

nA

100

nA

360

hFE

Ic=1A, VCE=1V

VCE(SAT)

Ic=500 mA, I B =50 mA

0.5

VBE(SAT)

Ic=500 mA, IB =50 mA

1.25

fT

Ic = 100 mA, VCE = 10V

COb

VCB = 10V, f = 1 MHz

PD(max)
TO·126

I

Conditions

TO·237, ECB: 2N6705,6
(92PE37A, B)
TO·126, ECB: BDE345
MJ E181
MJE721

125

V
MHz

250
14

V

18

pF

Tc=25'C
TA =25'C

15
1.5

W

TO·202

Tc=25'C
TA =25'C

10
2

W

TO·237

TCOLLECTOR LEAD = 25'C
TA = 25'C

2
850

W
mW

TO·92

Tc =25'C

600

mW

(JJC

'C/W

TO·220

Tc = 25'C

TO·126

Tc=25'C

8.33

'C/W

TO·202

Tc=25'C

12.5

'C/W

TO·237

TCOLLECTOR LEAD = 25'C

62.5

'C/W

(JJA
TO·126

TA =25'C

83.3

'C/W

TO·202

TA = 25'C

62.5

'C/W

TO·237

TA =25'C

147

'C/W

TO·92

TA =25'C
All Plastic Parts

208

'C/W

TJ(max)

150
8·50

'c

Process 38
Typical Pulsed Current Gain
vs Collector Current

Typical Pulsed Current Gain
vs Collector Current

1000

Coliector·Emitter Saturation
Voltage vs Collector Current
10

1000

10.,,_

0.1

10

0.1

IC - COLLECTOR CURRENT (AI

Base·Emitter ON Voltage vs
Collector Current

?

If

1.2

VeE" IV (-40 CI~.!lll
Ve , "10V (-40
Ve, "10 (25 cll

'"

,.~
~

'"

0.6

I-

~

0.4

g

0.1

I

J~
c~

I-

~

1.2

i=

~

~.'" ~

;;a

Ve, "IV (125
Ve , "10V (125 Clm

Z

100

30

~
",
1"2::.5"~C.-I"fF-ftti,If---HftttttH

20

L-

r

ti

o
Ik

"

~

200

1=
C>

g
~

lk

10

"'oS

Safe Operating Area TO·202
~

~

100

J---'

10

100

LIMIT OETERMINE:m
BY BVCEO

Ik

10

IC - COLLECTOR CURRENT (mAl

1m.

~

~THIS LIMIT OETERMINE~ff

I

BY BV CEO

.!i

0.01
I

100

10

100

VeE - COLLECTOR·EMITTER VOLTAGE IV)

Maximum Power
Dissipation vl!
Case Temperature
24
22
20
18
16
14
12

~

0.1

VCE - COLLECTOR VOLTAGE (VI

Safe Operating Area TO·237

OC

C>

\NIl

0.01

F==

'"
~
'"

100JlS

0.1

I
~

~

I-

1li

DC

C>

I

5

-0

'"

r-

100,us

::!

1m.

~
~

./

30

10

1--1-

I-

20

Veo - COLLECTOR·BASE VOLTAGE IVI

Safe Operating Area TO·126

VCE - 10V

'"
-=-

100

10

C>

300

10

I

Ie - COLLECTOR CURRENT (mAl

400

f

Il.

10

Gain Bandwidth Product vs
Collector Current
;;
'"

Tc ::

0.2

Ie - COLLECTOR CURRENT (mAl

500

40

111111

UJlL i I!~~IIC-

I IIIIUL....
c
t- Tc=-40"CI-l~Ljjjj,_'1"'1'-~oIIl
o.B 1-f--tH"T:I:l;l"'TII~I""I"'R-Hffil;;.o1'9-+t.If'fH

0.6

10

Coliector·Base Capacitance
vs Coliector·Base Voltage

I

1I111! IIII
10

-10

1.0

0.4

11111

,.~

1111

Ie

i;;

~~
~~g~

lJor

......

0.1

IC - COLLECTOR CURRENT IAI

Base·Emitter Saturation
Voltage vs Collector Current '

.oJ

0.8

l-

~

Ve'"IV(25~

I-

10

IC - COLLECTOR CURRENT (AI

Thermal Derating Curve
2.0
1.8

~

1.6

15

1.4

i=

I-r-...

:::

i:i

1.2
1.0

'"

0.8

I

0.4

Q

......

10

8

......

r-...

~'126

-

-

TO·202 N"'..

........

2

~

~

0.6
0.2

o
o
VCE - COLLECTOR·EMITTER VOLTAGE (VI

20

40

60

BO 100 120 140 160

TC - CASE TEMPERATURE lOCI

8·51

25

50'

75

100

T - TEMPERATURE lOCI

125

150

co

("I)

Process 38

(/)
(/)
Q)

(J

...
a..

Thermal Response in TO·126 Package

0

~§
"N

~~

>-"
>-'"
,,0

w;;o

0.7
0.5

D 0.5

0.3

0.2

0.2
0.1

~~ 0.07
0:'"

:=~

,,,,

0.05

~~

0.03

"''''

0,02

I--

0.1
0.05

I
Plpkl

~+~0.02
r0.01

f-f

I

O(SINGLE PULSE)

JLJL
.

--!

I,

nJCIII~rlll·OJC

OJC DC THERMAL RESISTANCE
Tpk - TC + Ppk .nJclll

~UTY CYCLE ~

l- I

0

-t2-

*

0.01

0.02

0.05

0.1

0.2

10

0.5

20

50

100

200

I1-TIMElmsl

Thermal Response in TO·202 Package
~Q

O:w

"N

~:::i

zO:

>-"
>-'"

0.7
0.5

0- 0.5

0.3
0.2

0.2

",0

w;;o

0.1
0.07
~~ 0.05

~~

0:"

,,,,

~t:l

"'oo

0.03
0.02

~

HEATSUNK

i-

0.1

FREE AIR

'ii.il5'
~~::;0.02
H
0.01

SINGLEPU~

........

LJlJl oJcltI~rltl·oJC

II

Plpkl

i--'

I

SINGLE PUL,S,\

I

--- t1 --

III

~12-

OJC DC THERMAL RESISTA NCE

Tpk~TC+Ppk"JCIII
DUTY CYCLE 0'" !!

12

0.01
0.01 0.02

0.05

0.1

0.2

0.5

10

20

50

t1 -TIME (ms)

8·52

100 200

500 lk

2k

5k

10k

20k

50k

lOOk

"'C

~National·

a

Process 39 N PN Medium Power

Semiconductor
DESCRIPTION

0.031
1 - - - - - ( 0 . 1 8 7 ) ----~

Process 39 is a double·diffused, silicon epitaxial planar
device. Complement to Process 79.

APPLICATION
This device was designed for general purpose medium
power amplifier and switching circuits that require
collector currents to 1A.

PRINCIPAL DEVICE TYPES
TO·202, EBC: 2N6552, 3
NSD104-106
NSDU07
TO·237, EBC: 2N6717, 18
(92PU06, 07)
TO·237, ECB: 2N6707
(92PE37C)

Parameter

Conditions

Min

Typ

Max

Units

BVCEO

Ic= 10 rnA

80

V

BVCBO

Ic=100p.A

100

V

BVEBO

IE=10p.A

ICBO

VCB=80V

lEBO

VEB=4V

hFE

Ic = 100 rnA, VCE = 1V

50

hFE

Ic = 500 rnA, VCE = 1V

20

VCE(SAT)

Ic= 500 rnA, IB = 50 rnA

0.8
1.3

VBE(SAT)

Ic = 500 rnA, I B =50 rnA

fT

Ic = 100 rnA, VCE = 10V

COb

VCB=10V, f=1 MHz

PD(max)
TO·126

V

5

80

100

nA

100

nA

300

150
10

V
V
MHz

15

pF

Tc=25°C
TA=25°C .

15
1.5

W

TO·202

Tc=25·C
TA =25·C

10
2

W

TO·237

TCOLLECTOR LEAD = 25·C
TA =25·C

2
850

W
mW

TO·92

TA =25·C

600

mW

OJC

·C/W

TO·220

Tc=25·C

TO·126

Tc=25·C

8.33

·C/W

TO·202

Tc=25·C

12.5

·C/W

TO·237

TCOLLECTOR LEAD = 25·C

62.5

·C/W

TA=25·C

83.3

·C/W

TA =25·C
TA =25·C

62.5

·C/W

147

·C/W

TA =25·C
All Plastic Parts

208

·C/W

OJA
TO·126
TO·202
TO·237
TO·92
TJ(rhax)

150
8·53

·C.

a

n
CD
en
en

~

Process 39
Typical Pulsed Current Gain
vs Collector Current

Typical Pulsed Current Gain
vs Collector Current

1000

10

1000

...ffi -

z

...~
:::i
'"

'"
B
~

.

E

...

!::~

......
:lEw

"'...0'"
"''''
w>
:::2

100

~

....
~...'" l~mll~!I~!11
jS
... ;::

10

I

,0.1

w

~
~

0.1

10

0.1

IC - COLLECTOR CURRENT (AI

1.2

r-rr.,.,.,mrr....,.."..--=-=0'"7.="TTT1I

w

'"~
o

~

a:

~
~

~I

0.8

0.6

SHml311
1--±-I.~III!f=-

0.2

f--H+fjiHH--f+1ftHtlt-+1#H+llI

1.2

z
0
;::

..g;
...

0.8

"'w

0.6

ffi~

i~
I

~C

r~

~

......

10

100

500

~
8
10

100

C

0

~

0

200

J.,...

Safe Operating Area TO·202

I

o

1

'"

0.1

10

.I'.

1== THIS LIMIT oET~RMINEill

I

BY BVCEO

100

1

100

VeE - COLLECToR·EMITTER VOLTAGE (Vl

Thermal Derating Curve
1.8

~
z

.....

......

I

To·202

o

~.'26 l - f--

~
........ ~

1.6

t--t--"t--t--t--t---l

o

1.4 f---t""':-t~:-t--t-+--I

~

1.0

~

f-

..!'

o

10

2.0

r-....

VeE - COLLECToR·EMITTER VOLTAGE (VI

1 ms/

..!'

24
22
20
18
16
14
12
10

1\

DC

0.1

Maximum Power
Dissipation vs
Case Temperature
~

0

..
~

VCE - COLLECTOR VOLTAGE (VI

Safe Operating Area TO·237

1.0

"==

'"
B
'"

0.01

Ie - COLLECTOR CURRENT (mAl

5
~

:::i

r DE :E~
BY BVCEO

_LI
0.01

lk

lOOps

...

0.1

.=>

I

3D

20

:;

..
~
8

10

Ve• - CoLLECToR·BASE VOLTAGE (VI

J--t-

'"
'"

~

~

.0

i!
:IE

."

'"
B

j

10

:::i

100

1-

Safe Operating Area TO·126

'"
B

10

lk

10

300

1

[\

10

Ie - COLLECTOR CURRENT (mAl

g:%

100

20

I

...oS

~

~



0.4

~

~

10

IC - COLLECTOR CURRENT (AI

Base·Emltter ON Voltage vs
Collector Current
~

Collector· Emitter Saturation
Voltage vs Collector Current

'"

1.2
0.8

~.

0.6

I

0.4

~

F-f""".,-t---f.........-+--I
1-....,,,,,,,,::-+"""0;;:1---'1<""-+--1

0.2 t--t--r--j---f'""o~~ci
L.....--'-_-'-_'----'-_-'---=s
25
50
75
100 125 150

o.

20

40

60

80

100 120 140 160

TC - CASE TEMPERATURE ('CI

8·54

T - TEMPERATURE I'CI

Process 39
Thermal Response in TO·126 Package

~~

....~~
:;
....
'"
ZC

I
0.1
0.5
0.3
0.2

D= 0.5
0.2
0.1

0.1 0.05
0.01


0.9

~~E:2~~~ ++++-H-+++-+CH-Il-l
H-Hf--f-+HH-+lfH-H+tf--l

i!5
a: 0.8 H++t-f-+HH-+lH+:iI"'F+tf--l

~

~

0.7

H++t+:l>H'f-t-+ftt-H+tt-l

~I

0.6

i'9-+++--Hf+H-++H+-+-++fH

i

10
IC - COLLECTOR CURRENT (mAl

100

Current Gain at 100 MHz vs
Collector Current

100 "'V""CE-_"7,0;c.:v-,-...,rrr...,.....,rrr,

z

v

0.2

DC Current Gain vs
Collector Current

TO·72

>

0.5

L....J..J.ll....J....Jw.l.I...J....J..J.1l...J....J..I.U-I

0.01

0.1

1.0

10

'C - COLLECTOR CURRENT (mAl

100

"0

Process 40
Maximum Power
Dissipation vs
Ambient Temperature

§:

..sz

Reverse Transfer
Capacitance vs Reverse
Bias Voltage

800

......

0

;:: 700
~

~ 600

:5

a:

z

0

~

~

500

i'..

400

~ 300
>< 200

.......

."

"x
;p"

.
I

.

.9

I-

U
~

~

r--..

100

;:;

NO-92

I

TO-~

Jl

"-

.7

-

TO-72 .

.5

100

150

~
~r..

......
~

....

0.8

~
I

0.4

;:;
~

"-

- -.................

~

u
u

1_0

TA - AMOIENT TEMPERATURE (OCI

~

f= 1 MHz

TO-~
TO.J

U

III

0.1

1.2

I-

III

200

.
z

Freq:: 1 MHz

.3

-

-

u

III

~ ...............
50

1.6

TO·92

CD

(J)
(J)

Input Capacitance vs
Reverse Bias Voltage

II

........

10.

0.1

50

0.5

0.2

1.0

2.0

REVERSE 81AS VOLTAGE (VI

REVERSE 81ASVOLTAGE (VI

Base·Emitter Saturation
Voltage vs Collector Current

~

1.0

~

0.9

.

.'.!; = 10

'8

L2

V

>

i!!i

;::

V

0.8

~

OUTPUT

~~~-------tI------~--~~--~<>}50n

INPUT

~

SOn

0.7

w

~I

0.6

~=

Cl, C2, C3, C7, C8 - 0.8 pF-l0 pF
0.5

:>

variable capacitor
0.1

1.0

10

20

C3 - Plastic tubular trimmer
capacitor [adjusted and fixed for a
transistor having a typical value of

'r. - COLLECTOR CURRENT (rnA)

Ccb (0.35 pFll
C4 - 200 pF button-type feed-

Collector· Emitter Saturation
Voltage vs Collector Current
0.20

r-~"""'-r--r----',.,..,..,--'-----.

0.16

-'1-" =10 ++-+--+--++1-+--1
0
1--"--r-;--I+----i-+-+4+---i--l

through capacitor

C5 - 1000 pF feedthrough capacitor

R2

C6 - 470 pF leadless ceramic disc
capacitor

Rl

Ll, L3 -1 inch length of 114 inch
diameter copper bar stock

0.12

1-++4+---i-++4+---1--1

L2 - 1/2 loop No. 14 AWG enameled
wire parallel to and approximately
1/4 inch·from L3
Rt - 5 kn potentiometer

0.04

R2-1.2kG

1-++4+----1-+-+4+---1--1

R3 - 2 kG

FIGURE 1. Neutralized 450 MHz Gain and Noise Figure Circuit
0.1

10 20
'C - COLLECTOR CURRENT (mAl

diLL " "'.

50 pF

INTO SOnOUTPUT

Note 1: 2 turns No. 16 AWG wire, 3/8 inch 00,
11/4 inch long.

RFC

Note 2: 9 turns No. 22 AWG wire, 3/16 inch OD,
1/2 inch long.

1000 pF

-VEE

"'"1 " 1
Vee

FIGURE 2. 500 MHz Oscillator Circuit
8·57

a

(')

~

~Nationai

Process 41
NPN UHF Amp/Mixer

'
Semiconductor

I

0.013

0.013

(0.3301

(0.3301

I

~

!.,
~

~

This device was designed lor use in extremely low noise
UHFIVHF preamplifiers operated common emitter or com·
mon base, and in UHF mixers.
PRINCIPAL DEVICE TYPES
TO·72
TO·92

Min

Typ

1=800 MHz, VCB = 10V, Ic = 2 mA,
Common Base,lYsl = Optimum

5.5

NF

1=800 MHz, VcB =10V,lc=2 mA,
Common Base,lYsl = 10 ± iO mmhos

7.0

PG

1=800 MHz, VCB = 10V, Ic = 2 mA,
Common Base, RL = 5000

NF

Units

. Max
'\

Notes

dB

TO·72

dB

TO·72

9.0

dB

TO·72

1=450 MHz, VCE = 10V, Ic = 2 mA,
Common Emitter, Rs = 750

2.0

dB

TO·72

NF

1=200 MHz, VCB = 10V, Ic = 3 mA,
Common Base, Rs = 1000

2.5

dB

Figure 1

PG

1=200 MHz, VCB=10V, Ic=3 mA,
Common Base, RL = 1 kO

dB

Figure 1

5.0

ps

TO·72

7.5

13

16

7.0

8.5

9.5

3.0

rb'Cc

1=79.8 MHz, VCB=10V, Ic=3 mA

hie

1= 100 MHz, VCE = 10V, Ic = 3 mA

CCB

1=1.0MHz, VCB=10V, IE=O

0.28

0.35

pF

TO·72

CCE

1=1.0 MHz, VCE = 10V, IB = 0

0.12
0.19

0.20
0.30

pF
pF

. TO·72
TO·92

75

200

2.5

hFE

VCE= 10V,lc=3 mA

30

BVCEO

Ic=1 mA

20

V

BVCBO

Ic=10p.A

30

V

. IE = 1 p.A

3.0

V

ICBO

VCB=20V

100

nA

lEBO

VEB=2V

100

nA

160

100

ApPLICATION

%~

Conditions

DC Current Gain vs
Collector Current

120

Process 41 is an overlay, double·diffused, silicon epitaxial
device.

NF

BVEBO

~

I

.:

Parameter

140

~~

~~

~

z

DESCRIPTION

,

II I

VCE'"'OV

1111
TA"''::.;

..... ~

.0

Common Base Noise
Figure vs Frequency at
OplimumlYsl
VeB .. tov
IE'"2mA

Sr4

i'

.! 400
f

OPTIMUM 1VsI

MH,
10
50
100
200
'DO
.00

INmmho
3
6.5
8

-it

1D.5-j4

18 -j4

20 -i11

0.1

I

Ie - COLLECTOR C~RRENT (rnA)

10

~

t

'"

~
1i

-

'"
"'",
x
"
~

200

;:: 100

0

0

2

5111 20

50100200 5001000

8·58

t;

TO~2ITO·72

~,

\.

'\

w

~

50

100

1.50

'\

\

~~

\

6

4

...... 6'OIMH!

I\,
\..

"

2

>

'\
0'

\

>

TA - AM'IENT TEMPERATURE 1°C)

f - FREQUENCY (MHz)

10

:;
"

I\.

Q

2

1

.
.. ,
.'"

~

!:! 300

20
0
0.01

12

z

"

60
40

Contours 01 Constant
Gain Bandwidth
Product (IT)

Maximum Power
Dissipation vs
Ambient Temperature

'OOMJ.

p

0
200

I

2

4

1

Ie - COLLECTOR CURRENT.(mA)

10

"tJ

Process 41
Input Admittance vs
Frequency
1000

"E
~

-l-

~

50

I

'"

Vee - 10V

IE

IE "'2 rnA

r-

/'

9"

I

=2 rnA

=f=

r-t-

r- <"Y

./
-

f:=lv,,1

bib
I

.1

-

1

I

I

f---lVfb

1

II

20

!

II

10
10

20

I

I

50

100

200

20

500 1000

50

100

200

500 1000

-'

10
10

20

50

100

200

500 1000

1 - FREOUENCY (MH,)

1 - FREQUENCY (MH,)

1 - FREOUENCY (MH,)

Output Admittance vs
Frequency
1000

E

500

...'"..."

200

-"

Vee IDV
I, 2 III A
go>

~

100

'"

~

I

~

1,1
"

50

0

I

I

20

~

10
10

20

50

100

200

500 1000

1 - FREOUENCY (MH,)

CONTOURS OF CONSTANT NOISE FIGURES
Common Base Noise Figure
vs Source IYsl

Common Base Noise Figure
vs Source IYsl

IE'" 3 rnA
Vcs=lOV

50

50

Common Base Noise Figure
vs Source IYsl
IE

IE=2-3mA
Vcs=10V

f--+--+--+-I" 50 MH,

E

=3 rnA

VeB '" tDV

-"-

f--+--+--+f" too MH:z

50

u

"

~

f---f--+---+-I" 200 MH,
1

25

w

u
or

=>
o

~

I

-50 '-_-'--_-'-_-'-_-'-_...J
25
50
100
75

-50
25

50

75

100

-25

-50

Gs - SOURCE CONDUCTANCE (mmho)

Gs - SOURCE CONDUCTANCE (mmho)

510
Vee" 11lV

25

50

75

1000

200MH, OUTPUT
INTO 50"

1000

2001\~HZ~
INPUT

1

L 1 ~ Ohmite Z·235 RF choke

I

L2 - 6 turns No. 14 wire, 1 inch Lx 1/4 inch
ID tapped 1 1/2 turns from cold side.
All capacitance in pF, all resistance in ohms.
Faraday shield techniques used in jig
construction.

Ik

FIGURE 1. Common Base 200 MHz PG and NF Circuit

8·59

100

G, - SOURCE CONDUCTANCE (mmho)

o--II/'VV-"::::=:--,

.I---@
I

tJ)
tJ)

~

1000

Vee - 10V

200
100

.-

~

.~

~

'"

Forward Transfer
Admittance vs Frequency

.E.

~

500

-"-

u

"

CD

Reverse Transfer
Admittance vs Frequency

Vcs- 1DV
IE =,2 rnA ,!li1b

""'I

o
n

~·National

Process 42 NPN RF Amp

~ Semiconductor
DESCRIPTION
Process 42 is an overlay, double·diffused, silicon epitaxial
device.
APPLICATION
This device was designed lor use in low noise UHFIVHF
ampliliers with collector current in the 100 p.A to 10 mA
range in common emitter or common base mode 01 op·
eration, and in low Irequency drilt, high output UHF
oscillators.
PRINCIPAL DEVICE TYPES
2N5179
TO·72:
TO·92, ECB: 2SG535
TO·92, BEC: MPS·H10

Parameter

Conditions

Min

Typ

10

13

Max

Units

Notes

dB

Figure 1

dB

Figure 1

mW

TO·92
Figure 3

dB

Figure 2

dB

Figure 2

PG
NF

1=450 MHz, VCE=10V, Ic=2 mA

POUT

1=500 MHz, Vce= 15V, IE,:,8 mA

30

PG
NF

1=200 MHz, VCE = 10V, Ic = 2 rnA

22

hIe·
rb'Gc

1=100 MHz, VcE =10V, Ic=5 mA
1=79.8 MHz, VCE= 10V, Ic=5 mA

10

ps

Gce

1=1.0 MHz, Vce = 10V, IE = 0

0.4

0.5

pF

TO·72

GCE

f=1.0 MHz, VCE=10V, le=O

0.2

0.3

pF

TO·72

GEe

1= 1.0 MHz, VEB=0.5V, Ic=O

0.8

1.5

pF

TO·72

hFE

VCE= 10V, Ic=5 mA

40

90

200

30

1=450 MHz, VCE = 10V, Ic = 2 rnA,
RG=500

3.0
50
27
2.0

1'7200 MHz, VCE = 10V, Ic = 2 mA,
Rs=1200
6

5.0

3.5

10

hFE

VCE= 6V, Ic=.1 mA

VCE(SAT)

Ic=10 mA, IB=5 mA

BVCEO

Ic=1 rnA

30

V
V·

BVCBO

Ic= 10 p.A

35

V

BVEBO

IE= 10 p.A

4

ICBO

VCB=30V

100

nA

lEBO

VEB=3V

100

nA

0.2

8·60

V

Process 42
DC Current Gain vs
Collector Current
100
80

60

~

40

......

~

~

">

10

~

~

I+-Htt\-~~~

1.0

0.1
100

10

Maximum Power
Dissipation vs
Ambient Temperature

&00

:5

cr

500

l'l
z

400

~

~

300

~

........

200

~

5:::

~

5

r--. NO.92

J
~ r---. r-....

0

0

50

150

100

.8
.&

c~

0.9

I'<

c- TO·72 . 1/

.4

D.B

~

0.7

~

'"!:i
:::
...5

.8

E!!
I

50

....,.. r-

0.2

0.5

I

I

J..-

~

""'"

I

/

Ie
1.-10

w

~

:

I

~=

>

0.6

o

0.5
0.1

1.0

10

20

.1

IC - COLLECTOR CURRENT (mAl

1.

10

Ie - COLLECTOR CURRENT (mAl

8·61

...

1.0

2.0

REVERSE BIAS VOLTAGE (VI

Coliector·Emltter Saturation
Voltage vs Collector Current

L

..........

F"yl'IM~Z

.20

10

r--....

-

TO.72/

A

0.1

REVERSE OIAS VOLTAGE (VI

........

~

J
10.

1

. / TO·92

1'1--

1.2

~

........

III
III

~:10

I--'"

~

u

r-...

./

j:

~
z

1.0

100

10

Input Capacitance vs
Reverse Bias Voltage

......

III

0.1

1.0

0.1

Ie - COLLECTOR CURRENT (mAl

Fraq'" 1 MHz

.2
.1

200

>

15

0.01

-

Base·Emitter Saturation
Voltage vs Collector Current
1.0

0.5

1.&

TO·92

f""-.

TA - AMOIENTTEMPERATURE (OCI

~

;:

100

II

........

I

To.i~

'~" 100
~
~

10

1.0

......

700

~

0.6

Reverse Transfer
Capacitance vs Reverse
Bias Voltage

i:i

C

~I

Ie - COLLECTOR CURRENT (mAl

oS 800
z

"
:::>=

0.7

~
=--:'::"':""-L..:==-L-L..L.LLJ

0.1

Ie - COLLECTOR CURRENT (rnA)

~

.

TA = 2SOC

e
~

I

1.

0.8

!

20

o

11

0.9

0:

">or
"

C

0.1

1.0

~

u

I

..,

..,

~

VeE = tOV
TA : 25"C

V

Base·Emltter ON Voltage vs
Collector Current
~

I II

.J,...I....IJ.

z

§~

Contours of Constant Gain
Bandwidth Product (fT)

20

5.

Process 42
COMMON BASE Y PARAMETERS VS FREQUENCY
Input Admittance vs
Frequency

.
.s

IZO

z
<

40

..,w
~

CI

<

-40

~
I

•

..........

80

:!

~

lZ0

........

S

-80

~

Forward Transfer
Admittance vs Frequency

Reverse Transfer
Admittance vs Frequency
VeE

B;;

........

lOV

'"

80

w

~

~."

K

Vee =10V
Ic "'5mA

2

•

"'~
'" E
E
...

40

,,"'w

-

-

r-...
bib

",'"

V

;:2

Ib~

1
~

zoo

o
500

1000

g;~

zoo

100

f - FREQUENCY (MHz)

.<

~~
€

1',/

~

bib

I

-IZ0
100

=

Ic"'5mA

t\::::
1000

500

V

/ " I'-BIb

-40

./

-80

VeE -lOY

./

-IZ0 / '
100

f - FREQUENCY (MHz)

Ie :SmA

zoo

500

1000

f - FREQUENCY (MHz)

Output Admittance vs
Frequency
S

"l!

.sw
..,

IZ
VeE::: lOV
Ic =5mA

10

Z

'"
1=
~
'"

!;

~

",

1

'"

o

--

100

/
~t>-"

B}.:
500

200

1000

f = FREQUENCY (MHz)

COMMON EMITTER Y PARAMETERS VS FREQUENCY
Input Admittancevs
Frequency
Z4

I.Z

I.s

zo

1.0

z

16

..,w

'"
1=

;;

"'"

~
~

'€

J
r---b;,')...

IZ

~

-

./

100

-J~V

Ic=2mA

500

1000

/

.Z

o
100

ZO

f - FREQUENCY (MHz)

-ZO
VeE = lOV

T\

Icn'tl

zoo

500

1000

f - FREQUENCY (MHz)

VeE:: 10V
Ic =2mA

~/

,/
o

/

100

Boo

zoo

~
500

f - FREQUENCY (MHz)

8·62

-40

i-- Ll'

-80
100

zoo

500

f - FREQUENCY (MHz)

Output Admittance vs
Frequency

b o,

VeE::: lOV

r---l .........
L/ ....... 1"-

Ic=2mA

40

V

.4

Vee'" lOV

/

J

.6

V 1\

zoo

60

.8

I- 6(

~l·

Forward Transfer
Admittance vs Frequency

Reverse Transfer
Admittance vs Frequency

1000

1000

Process 42

INPUT
SOn

/1>r-----..- - -..-....,;~:..--_k))

OUTPUT
SOil

ICH---...,,-n----. .- - - H

C3 - Plastic tubular trimmer capacitor [adjusted and fixed for a transistor
having a typical value of Ccb (0.35 pFI]
C4 - 200 pF button-type feedthrough capacitor

..1.,---1)

C5

C5 - 1000 pF feedthrough capacitor

~

C6 - 470 pF leadless ceramic disc capacitor
L1, L3 - 1 inch length of 1/4 inch diameter copper bar stock

C4

L2 - 112 loop No. 14 AWG enameled wire parallel to and approximately
1/4 inch from L3

R2

R1 - 5 kG potentiometer

R2-1.2kn

-=

R3-2kG

FIGURE 1. Neutralized 450 MHz Gain and Noise Figure Circuit
2K

10K

r---'V'.f\r--........----Jow......- - - . - o Vee " 12V

11000
11000
.8-10

lie!
1000

I

~OUTPUT
I

":"

INPUT~
50n

1000

11000

I

r--1I

680

IOOO

I

50.11

L1 - 3 turns No. 16 wire, 1/2 inch Lx 1/4 inch 10 tapped 11/2 turns from
cold side

L2 - 6 turns No. 14 wire, 1 inch Lx 1/4 inch 10 tapped 11/2 turns from cold
side
T1 - Pri. 1 turn No. 16 wire }
Sec. 1 turn No. 18 wire

Core is Indiana General PIN F·684-Q3

All capacitance in pF, all resistance in ohms.

FIGURE 2. Neutralized 200 MHz PF and NF Circuit

c1L " "'" " '

50 pF
INOTE 2)

INTO 50.11

Note 1: 2 turns No. 16 AWG w'ire, 3/8 inch 00, 1 114 inch long.
RFC

Note 2: 9 turns No. 22 AWG wire, 3/16 inch 00, 1/2 inch long.

Vee

FIGURE 3. 500 MHz Oscillator Circuit

8-63

~NatiOnal

Process 43
NPN VHF/UHF Oscillator

Semiconductor
0.015
10.3811

I'

Process 43.is an overlay, double·diffused, silicon epitaxial
device.

0.0075
-10.1905)-

\"

-

DESCRIPTION

~'~
~\~
~~//~

APPLICATION

0,0031.1
10.0187)

1

This device was designed for use as RF amplifiers, oscilla·
tors and multipliers with collector current in the1 mA to
2 mA range.

0.0015
10.19051

~

0.015
10.3811

PRINCIPAL DEVICE TYPES

t

TO·72:
2N918
TO·92, EBC: PN3563
PN5130
TO·92, ECB: 2N3663

0.00405
10'T 871

0.0035

10.08891

Parameter

Conditions

Min

Typ

Max

. Units

Notes

dB

Neutralized

GpE

f=200 MHz,lc=5 mA, VCE=10V

NF

f = 60 MHz, Ic = 1 mA, VCE = 10V,

PO

f = 500 MHz, Ic = 8 mA, VCE = 15V

20

35

mW

PO

f=900 MHz, Ic=8 mA, VCE=15V

3.0

8.0

mW

hIe
rb'Gc

Ic = 5 mA, VCE = 10V, f = 100 MHz

6.0

9.0

f = 79.8 MHz, VCE = 10V, IE = 8 mA

10

25

ps

GCB

VCB=10V,IE=0

1.2

1.7

pF

GEB

VEB = 0.5V, Ic = 0

1.4

2.0

pF

hFE

Ic=1 mA, VcE =1V

80

200

14

18
3.5

6.0

dB

Rs=2000

25

hFE

Ic=5 mA, VCE= 10V

40

hFE

Ic = 30 mA, VCE = 10V

30

VCE(SAT)

Ic= 10 mA, IB= 1 mA

0.25

V

VBE(SAT)
BVcEO

Ic= 10 mA, IB= 1 mA

0.9

V
V

Ic=3 mA

15

BVCBO
BV EBO

Ic=10 /LA

30

V

IE=10/LA

4

V

ICBO

VCB = 20V

100

nA

lEBO

VCB=3V

100

nA

DC Current Gain vs
Collector Current

C>

;:
~

100

~
z

80

~
>>-

~
~

~

60

~~

""

>>-

iscc
~

60

1/

V

.....

0
0.01

~
I

0.1

1

10

Ie - COLLECTOR CURRENT ImAI

100

~

15

"

>

a:

!

1/

50

?
w
'"

I

~
:;;

12

'" :;;'"

'" '"
'"

~

It :!
~~
~ I

6
. 3.

I
\

I

0

40
0

2

4

6

8

Ie - COLLECTOR CURRENT ImA)

8·64

10

i/!!Jn
~ ~

9

~



;:
~

VeE'" lOV

Figure 1

0.1 0.2

0.5 1

5 10 20

rlf~
/I~

1m
~

50 100

Ie - COLLECTOR CURRENT ImAI

Process 43
a

:::
;!

Base-Emitter ON Voltage vs
Collector Current
1.0 r -........-r-!"n.,..",r--r.."..,~-=-o
11111
YeE -lOY

g

o.B

:

0.6

e

Collector-Base Diode
Reverse Current vs
Temperature
100 r-r-r-r-r-r-r-""-'''''-'r-I
VeB =20V

)JIll

I IIIU
1-+-t+FTA • 2~ -t1TIJ.:
---

I

•

0.2

.1

1-+-HI-+++Ill--+-++-l++Ill

o

;;;

,:

1.0

HHA-t+++-+-H

.01 '-'--'--'--'--'--'--'--'--'--'
o
25
50
75
100
125

o'---'-.L....L..LJ.J.JW----L--'-Ll...1.LW
II

10

TJ

Ie - COLLECTOR CURRENT ImAI

Collector Saturation
Voltage vs Collector Current

~
~

~

..~
!.i
g;

sg;
8~

0.5

r-r-rrmnr,,-mmr-:'-e -"',"'0"',."

0.4

l-t+HttHl-~-ttl1ttt--h~fttflltl

-

5.0

Output Capacitance vs
Reverse Bias Voltage
r-r-ro-,-,-,-r-r........,

4.0

I-t-t-t-t-t-t-t-I-H

3.0

l-t-t-t-t-t-t-l-l-H

.,

1--!-+-+--1I--!-+-+--1

500

1--t-+-r--1l-+-+-r--1

0.3 l-t+HttHl-~-ttl1lJl';'j.Lj~+ttflltl

~

t--~~~'io~oo~C~~~ttnnm
F
250C

u

. ~i'

~

20

.,

1.0 1-t-t-I-I-~j::::f=:'t=1-I

I

0.1 l-t+HttHl-~-ttl1ttt-++ttflltl

~
~

400
Joo

ZOO

o

50 100

I--!-+~~~~
"l--!-+-+--1

TO.~
~ 100 l-+-+-r--1~~~~--1

:;

;pi

50

~".,'

500
1000

12

16

INOTE21

4 5 6

200...,1\.",'J>!d+++H-l-lJ.JmIH-H-+Ill1ll

!
g;

100
50

~

20

~

20

§11t-11;1
I-

10

l-H-lilt1~111~tI1l1'S_E-jFI-jI~-r·IIt1;~ttllt-l. 6oMH.
111111

1IIIi

10
Ie - COLLECTOR CURRENT ImAI

75pF

..
_
.,......________
_...:....
_
__--'''"' INT050n

~

INOTE 11

(

~~1PF

l

Vee

Note 1: 2 turns No. 16 AWG wire, 3/8 inch 00, 11/4 Inch long.

Note 2: 9 turns No. 22 AWG wire, 3116 inch 00, 1/2 inch long.

=

FIGURE 1. 500 MHz Oscillator Circuit

8-65

VeE = 6V

'-~wwm-~~~~~~

0.1

I,' ~
r---+-I:
I ~ ... ~....".
~

200

7=
~III~~~~II
.'\

50 OF

~L

150

100

~

REVERSE BIAS VOLTAGE IVI

'e,- COLLECTOR CURRENT ImAI

I". . . ""

~

O'--~---L~--'-~-'-~~

0.1 0.2 0.51.0 2.0 5.0 10 20

l-+I\.~t-+--r-r--l-+--l
r-+o.::
....."::-->.c-,-TT+O-'9Z+--+-+---1

Contours of Constant
Noise Figure

~

~

,';

600

TA - AMBIENT TEMPERATURE lOCI

I

is

~

JUNCTION TEMPERATURE rCI

'Ie'" 0
F= 1 MHz

~

0.2

BOO r - . -........-.--;r-.--r-,.-...,

~

(')

CD

~ 700

'"

/

"a
(/)
(/)

..
c

;::t:'70J0I~

r~-t-rHt~--r+~~
!w l4 l--r~H+~---r~++~

:i

~z

Maximum Power
Dissipation vs
Ambient Temperature

100

~

C")

'Id"
0
0

CI)
(.)

e

Q.

Process 43

COMMON EMITTER Y PARAMETERS VS FREQUENCY
Input Admittance vs
Collector Current·Output
Short Circuit
2.0

=E

.§

f= 10.7 MHz

VeE::: lOV

1.6

~

u

z

!::,."

.

e

~
==I

..

-

......
,/

10

I I

.
~

Vel"
II- VCE=S!!
~-

Z

~

.

bie

~

~

;r::

fg: ~

,:

....

......

..e
.§

..
..~

15
10

~20

f'10.7MH,

.§
~

~~

..

~
0:
I-

~

i

,0

>'!

:=1="
10

~

;:l
e

20

......

i

-bt•

~

I

I

o

~. ;

o

Reverse Transfer
Admittancevs Collector
Current·lnput Short Circuit

I

0.10

f'10.1MH,

..e
.§.
c..1

0.5

..

0.2

~

~
~

~

~

0.1

~

0.05

~

0.04

0:
I-

/
I-

0.02

1--+--+-+-+-+-+-+++-1
-gr.

..
..~

0.25

VeE::: lOV
boo .......

z

0.20

V

~

0.15

= 0.10
~
I

~

..... ~

..~
~

C>

0:

-btl'

~

>-

10
Ie -- COLLECTOR CURRENT (rnA)

40
20

-bt.

10

20

100

200

500 1000

Reverse Transfer
Admittance vs ColI!!ctor
Current·lnput Short Circuit

Reverse Transfer
Admittance vs FrequencyInput Short Circuit

II

Ie =5.DmA

-b'l=;;t=::r:;:;;"'(.:- -r- VeE -10V
I-- Ve, ' 5.0V

VeE:: 10V

-b re

-

Vce=5.0V- -

/
./

e..

I

V

-gre

~

If '100MH,
10

20

200

500

1000

10

e
E

I

Ie:: 5.0mA
VeE = lOV

boo

~

boo
I-- ~

u

z

!::'"

VeE = 10'1

I I
VeE:::

...... """'I
H~

100

Output Admittance vs
FrequencY·lnput Short
Cii9i!it

f-l00 MH,

0.4

50

f -- FREQUENCY (MHz)

V~' _1 5.0 Iv_

0.8

o

50

!l"H
1'\ !If, II
1'1.11

f - FREQUENCV (MHz)

1.6
1.2

'\

/'

o

10

2.0

I

/'

o

~
~

Output Admittance vs
Collector Current·lnput
Short Circuit

~

~

90.

L

0.05

o

......

60

0:

e

IVe 'I'I

Z

'"

.......

~

!'=C

l-

0.01

u

lI-

V

,

I-

.§

500 1000

Ie - 5.0 rnA
VeE = lOV

\

80

10

..e

200

~

u

z
~

Ie -- COLLECTOR CURRENT (rnA)

-

foo 10.7 MHz

~

u

_ VeE::: lOV

10

0.30

100

Ie - COllECTOR CURRENT (rnA)

Ie -- COLLECTOR CURRENT (mA)

Output Admittance vs
Colle!)tor Current·lnput
Short Circuit

50

1100 ~

~

a: 0.02
I

.)

.§

10V

VeE::: S.DV

o

l-

~
~

~

I

I

.e

t'Vc"

I-

~

20

Forward Transfer
Admittance vs Frequency·
Output Open Circuit

1.0

~

I--t-t-t-t-t-I-HHH

e;.

r-~

(m~1

0.06

~

20

10

..~
ffi

40

l-

e '..,'_1_0V
0.08 f-+--;:"'::"+--I--I--I-..,V_
H

~

/. V

60

~

:i!
0:

80

0:

40

-

~

u

e
..

/

60

o

f=100MHz
II
I I
......r
VeE =5.0V 1'.....1--"'

~

II

f -- FREQUENCY (MHz)

Forward Transfer
Admittance vs Collector
Curr~rt.Output S~ort Circuit

i

80

Ie - COLLECTOR CURRENT

!

jlllO
~

91,

~
I

.-

VeE'" lOV

100

..

b,.

I

10

E

~

.#'

!!!

Ie -- COLLECTOR CURRFNT (rnA)

Forward Transfer
Adtnittance vs Collector
Current.Output Short Circuit

g"

~

I I

Ie -- COLLECTOR CURRENT (rnA)

Ie = S.OmA
Vc~ '" 10V

20

~

z

Ve,'10V~

25

u

lI-

~~5V

I--

==I

0.4

lov

b,._ :JL!...., . . . .
I-

~

V
II: ~

0.8

f'100MH,

I I

e
.§
u

1.2

Input Admittance vs
Frequency·Output
Short Circuit

Input Admittance vs
CoHector Current·Output
S'hort Circuit

~ foo'"'

"'"e

s.nv

-+-

VeE'" 10V

I I

o

10
Ie -- COLLECTOR CURRENT (rnA)

8·66

~--"

I-

~

/

/

1/

I

goo

~

11

o
10

20

·50

100

200

f -- FREQUENCY (MH,)

500 1000

...
oC')

"'0

Process 44 NPN AGC·RF Amp

~National

DSemiconductor

CD
tn
tn
DESCRIPTION
Process 44 is an overlay, double·diffused, silicon device.

APPLICATld~
This device iNas designed for use.as a low noise VHF
amplifier with forward AGC capability.
PRINCIPAL DEVICE TYPES
TO·72:
SE5020
TO·92, BEC: MPS6568
MPS·H30

0.00Z4
-(0.0610)-

Parameter

Conditions

NF

f=200 MHz, Ic=2 inA, VcE =10V,
Rs =50{l

PG

f=200 MHz, Ic=2 rnA, VcE =10V,
Rs =50{l

NF

. 1=45 MHz, Ic=4 rnA, VcE =10V,
Rs =50{l

PG

f.=45 MHz, Ic=4 rnA, VcE =10V,
Rs ';'50{l

Min

20

Typ

Max

Units

Notes

2.0

3.0

dB

Figure 1

dB

Figure 1

dB

Figure 2

dB

Figure 2

24

3.0
23

5.0

26

AGC

f = 200 MHz, VAGC at 30 dB Down

3.9

4.5

5.2

Y

Figure 1

AGC

i = 45 MHz, YAGC at 30 dB Down

4.0

5.0

6.0

V

Figure 2

Ccb

Yc il=10Y,I E=0

0.35

0.50

pF

TO·72

0.45

0.55

pF

TO·92

hie

YcE =10Y, Ic=4 rnA, f=100 MHz

4.0
30

5.5
70

200

hFE

Ic=4 rnA, YCE=5V

YCE(SA1)

Ic=10 rnA, IB=5 rnA

0.5

2.0

V

YBE(SA1)
BYCEO

Ic=10 rnA, IB=5 rnA

0.85

0.95

Y

Ic= 1 rnA

30

V

BYCBO

Ic =10",A

30

Y

BY EBO

I E=10",A

4.0

ICBO

VcB =20Y
YEB =3Y

lEBO

8-67

Y
100

nA

100

nA

t

Process 44
";::
;:;

'"
";:;

Pulsed DC Current Gain vs
Collector Current

i

~

75
VeE:: 5V

60

ff-

45

:J:

---

i-'

V

~

O.B r-IT

I 11111
~ ! ~Ii!~

Z

"co

0.6

.....

~

t::

i'ii
~
::;

lO
15

VeE

-

>

"
«

~

1.0

«

co

s:

Base·Emitter ON Voltage vs
Collector Current

TA

=:

Power Gain vs Frequency
50

lOV

~

"

;
"
~

100°i:-

40

~
~

0.2

~

20

UNNEUTRALIZED "'-.
COMMON EMITTER

10

II
II

~

I

W

0
~

0.1

1

10

::

0

0
0.1

1.0

oS
z

Maximum Power
Dissipation vs
Ambient Temperature

~

BOO

":;:

600

'"

500

c

~
''x""
«
:0

.

w

~

::;

300

"

l"-

........

50

I

100

150

200

0.24

I......

co

~
8
I

J

u

0.12

I

0

B.O

0.1

~

~

'"

r-.

12

16

20

!
,;;

2.0

I

\
\

500~

~

0.20

"

"'"

~

~

..
cz

w

II
2.0

l.o 4.0 5.0

7.0

10

=

~

lOV

I

16

20

Ves = 10V

u

Ie = 0
0.45

f= 1.0 MHz

:;:
w

TO·72
0.40

~

::;

~

:=
g;

~

j.

I

2

10

lo 50 70

90

9B 99.B

U

i-'

~35

O.lO
0.25
0.2

C

2

10

lO 50 70

90

98 99.B

PERCENTILE DISTRIBUTION (%)

PERCENTILE DISTRIBUTION (%)

Noise Figure and Source
Resistance vs Frequency

Noise Figure vs Source
Resistance and Collector
Current
1000

600

Ves = 15V
Ie = 1.0 rnA

NOISE FIGURE
AT OPTIMUM SOURCE

500

.l'

400

gz

I

S
w

1.0

300

.

5.010

'"

u

°r~~s~~!~~~iE

100

§

.£

50 100

f - FREQUENCY (MH,)

8·68

50

,.

0
1.0

100

g;

~

0
5001000

~ lilI

"

r--i.OdB
r-2.S i dB
I
l.O dB

'"m ~w

!!j

Vea = 15V
f:: 60MHz

500

~ In

200

II

~

z

12

0.50

u

2.0

B.O

z

4.0
l.O

4.0

u

«
f-

;3

0.2

~

Ie - COLLECTOR CURRENT (mA)

0

Distribution 01 Collector·
Base Capacitance

0.10

5.0

20 MH,
;;r150'M H,

400 MHz

0.2

Ves - COLLECTOR TO BASE VOLTAGE (V)

f=1.0 MH,
TO.72 ' I

0.15

I

//

0
1.0

VeE

d

~

'- ->-

u

f-

/

~/

100

Is = 0

0.25

g

~

BO

60

0.l5

6.0

5~1

6.0

40

r-

\

Distribution 01 Collector·
Emitter Capacitance

'"

\ 1I

B.o

4.0

20

0

:;:

VeE - COllECTOR TO EMITTER VOLTAGE (V)

10

~

U O.lO

O.OB
4.0

0.6

"co
"

ff-

I'

«
>

;3

1.0

f-

r--.

12
w

u

TO·72

:;:

0.4

"«

......

0.16

0

v

f-

Contours 01 Constant Gain
Bandwidth Product (ITl
~

IE=O
f= 1.0 MHz

O.B

~

;3

:=
"'"

V

w

u

-

TO·72

;3

~

1.0

T. - AMBIENT TEMPERATURE (CC)

Is - 0
f= 1.0MHz

z

0.20

Collector· Base Capacitance
vs Coliector·Base Voltage

10

ec)

Coliector·Emitter
Capacitance vs Collector·
Emitter Voltage

«
f-

ff-

~
.
0

0

T. - AMBIENT TEMPERATURE

:;:

100

«
f-

co

""

200

U

500 1000

100

u

§

I

u

~

1000

B

400

~

50

z

'"x 100

.E•

~

UNkEUTRALlZED'L"
COMMON BASE

f - FREQUENCY (MHd

Collector Cutoff Current vs
Ambient Temperature

i

;:: 700

2i

10

100

Ic.- COLLECTOR CURRENT (mA)

, Ie - COLLECTOR CURRENT (rnA)

~

10

COMMON EMITTER

['\.

w

~I

Vea '" 15V
Ie =3.DmA

'NEUT~Al,iE~

"

lO

co

0.4

I

I
I

}

F~·5'dB

~::~~:

-r-

I

I

10
0.1

0.5

1.0

5.0

IE - EMITIER CURRENT (mA)

10

"tJ

Process 44

COMMON EMITTER PERFORMANCE
Power Gain and Noise
Figure vs Automatic Gain
Control Voltage
5.0
f

1200 MH, i,,,t',,l1
~

;;;

os

~25°C

P~15°;;'

-5.0

Power Gain and Noise
Figure vs Collector Current
16

20

I.

15

12

z

;::
I

~

'"

~
I

.;:

-10

10

~

-15

B.O

~

-20

6.0

85°C

I--NF~

-25

-

10

~

5.0

Z

Z
C

'"~

-

;::

~ -5.0

=

.;:

1.0

2.0

3.0

4.0

5.0

O·

6.0

VAGe - AUTOMATIC GAIN CONTROL VOLTAGE (VI

f

PG
-5.0

'"z

1~

10

-10

'"

-15

~
I

-20

.;:

LV
~NF

8.0
6.0

~

4.0

25'C

-30
1.0

2.0

3.0

4.0

~

I

5,0

-5.0

z

~

6.0

20

-

;;:

'"
~ ~
~

;::

\
2.0

B.O

10

;;:
'"
- '"'"
I

-10

'"'"

-20

'"

0
12

2.0

25°C I
~ P~
B5°C

\ \/

-10

1\

~ -15

1)( )
,...,.

~

;::

I

.;:

=

-20

2.0

-25

0

-30

6.0

f- f- B5°C

2.0

VAGe - AUTOMATIC GAIN CONTROL VOLTAGE IVI

T

NF

~

4.0

6.0

\

14

m

12

z

8.0

II

;:: ~
I

4.0

~

2.0
0
10

~
~
~

~ :3
~ ;;:
>
~

6.0

Ie - COLLECTOR CURRENT (mAl

6.D

B.O

10

f=45MHz

30
20

'"

10

'"'"
'"'"
'"

-10

~ ~
; ;;:'"

=12V

VeE

"""

40

I

2.0

4.0

6.0

B.O

10

Ie - COLLECTOR CURRENT (mAl

Vcc=12V

2.2 KD

270.\1

1000pFI~

4pF-30pF
T,

81.'0 pF

~50.\1

~OUTPUT

1000pFI~

50D

INPUT

~

390n
112W

820pF

270n.
1I2W

Vee = 12V

Tl-Ferrite Core Indiana Gen. Corp. F·6B4·Q3

Tl- Q3 Toroid 4:1 ratio
}N 22 .
Wire
8 turns.Pri..2 turns-Sec. o.

T2-6 turns No. 16 buss wire ID = 1/4 inch L = 3/4 inch

FIGURE 2. 45 MHz, AGC, Power Gain and
Noise Figure Test Jig

FIGURE 1. 200 MHz, AGC, Power Gain and
Noise Figure Test Jig

8·69

12

Maximum Available Gain vs
Collector Current

10

8.0

4.0

Ie - COLLECTOR CURRENT (mAl

f= 45 MHz see figure 2)

I(

f= 200 MHz

~ >

PG

'"

~

-B5'C

-25

;::
~
~

B5'C

~

5.0

12

2n

4.0

~

:3

z

1\

2.0

~

I

c

Power Gain and Noise
Figure vs Collector Current
14

=45 MHz (see ~Uj 21

I \

;:: ~

30

(")

CD

tJ)
tJ)

~
~

VeE'" 12V

z

Ie - COLLECTOR CURRENT ImAI

Power Gain and Noise
Figure vs Automatic Gain
Control Voltage
5.0

12

-20

2.0
o

/

t-- V

-15

25°C

-30

=zoo MHz

-

-10

4.0

14

" \I

Vee - lOV

I

;

16

NFl

J

f

Maximum Available Gain vs
Collector Current

a

12

Process 44
COMMON EMITTER Y PARAMETERS VS FREQUENCY

100

~

.sw

.swE

VeE" 12V
,,, 45 MHz

~

'"

i,
I

,..

VeE

~
:E
::i

II

60

'i.j
J

40

~

:i

20

4.0

6.0

8.0

10

12

::"'"

0.6

o

I

~

1/

~

0

J
b••

o

2.0

-

1/

I--

±.,.

0.2

o

4.0

~ 120

6.0

8.0

10

40

1/]A '11

r-~

Vel,

,1'5~

~
~

-40

1

lit.

b,.

~

V

0

~

-80

'"

i

.:

4.0

6.0

/

vrv~
Oi.

V

~

2.4

~

0.8

~

2.0

4.0

2.0

6.0

8.0

10

...=>'"

Y

I

12

2.0
goa

VeE -

12

0.4

R\:~f-r
2.0

4.0

g"
VeE

'"

*~

1

-0.1

1

1

1

I

b" '
-b5 ~~e,

ffi

-0.3

--ivi' " 5,v~'1"'I::

I

-0.4

~

>

o

2.0

4.0

6.0

I

15~-t-

8.0

10

VeE" 12V

f=200MHz

100

u

50

~
~

J-..I-1'

J.,..

~
b,•

'"~

b..

t-

r-.

'"

-50

,:
-100

8.0

10

12

Input Admittance vs
Collector Current·Output
Short Circuit

.sw

5V

I, - EMITTER CURRENT (mAl

8·70

"'s.nv, 15V

-0.2

I

6.0

12

TT1T

;;

~

VeE - s.nv

~

10

I, - EMITTER CURRENT (mAl

s.nv

Ve, ' 15~

8.0

f=80MHz

0.1

~

"......'"
f-+-

6.0

0.2

Z

150

1.6

4.0

Reverse Transfer
Admittance vs Emitter
Current·lnput Short Circuit

u

f=GOMHz

u

"......'"

,..

I, - EMITTER CURRENT (mAl

0

Output Admittance vs
Emitter Current·lnput Short
Circuit

~

LA"
VeE = S.OV

10

-50

~

'N ~i'

o

y
b,.

-100

~

...

b,•

Ve , '5V-";;'

1.2

8.0

-,.......

o

I

I"

I

2.0

g/o

I-..;.

1

~/I-

LU

,;.-

.s

Nb".x

u. -120

~

f2V

Ie - COLLECTOR CURRENT (rnA)

VCEi 15V

~~ rr"I'

Ve , ' 15V Y

0

I

12

=

1

50

I, - EMITTER CURRENT (mAl

Ve , -_ 15V

'"'"w

"...'"
'"
'"'"

10

I.....

40

12

.i-'"" ""i"'--J. f-60MH,

80

8.0

f'6oMH,

80

Forward Transfer
Admittance vs Emitter
Current·Output Short Circuit

~

..."...'"

6.0

-40

.s
~

4.0

120

Ie - COLLECTOR CURRENT (mAl

u

2.0

~

..."...'"
;;

;;

~

100

I.L.

u

0.4

~

~
o

160

.sw

u

...=>'"

VeE

f:4~MHz

::"'"

Input Admittance vs Emitter
Current·Output Short Circuit

VeE = f2V
f=45MHz

0

150

Ie - COLLECTOR CURRENT (mAl

Output Admittance vs
Collector Current· Input
Short Circuit
1.0

~

~

Ie - COLLECTOR CURRENT (mAl

0.8

'\

-0.2

-0.4

200

w

$'"

~

'"
I

2.0

b,.

~ -0.3

~

o

r-

1
~

t-

g,.

...'"w

bie

.sw

f2V

-0.1

ffi

o

~

=

f=45MHz

Z

u

"......'"

0.1

u

80

Forward Transfer
Admittance vs Collector
Current·Output Short Circuit

Reverse Transfer
Admittance vs Collector
Current·lnput Short Circuit

Input Admittance vs
Collector Current·Output
Short Circuit

12

o

2.0

4.0

6.0

8.0

10

Ie - COLLECTOR CURRENT (mAl

12

Process 44
COMMON EMITTER Y PARAMETER VS FREQUENCY (Continued)

Reverse Transfer
Admittance vs Collector
Current-Input Short Circuit
~
.!

D.Z

u

~

~
...'"

t-..

Z

,.'"

::

l'

-0.2

50

'"
~

b"

~

~

6.0

8.0

10

w
u

z

,.

'"

~

J.

2.0

25

...'"~
I

b,•
5.0

J.;t"
1.0

5.0 10

Ie "2.0mA
Veo '" lOV

1.0

50 100

'"
!

0.6

~

0.4

::;

ffi

~

'"
I

500 1000

~

b,.

t-

0.2

V

V
gnt-

o
5.0 10

50 100

500 1000

6.0

Ie -2.0mA

Vel" -10V

5.0

w

u

z

'"~

4.0

~

3.0

:-

2.0

...'"
~

Q

I

2.0

4.0

6.0

B.O

10

12

Ie -2.0mA
VeB

i~'"

b~.

1.0

i[

".

1.0

5.0 10

R••

.....r

50 100

f - FREQUENCY (MHz)

8-71

"

10V

r-t-

11<.

40
20 t-

r--b,.

'"
lL

~

V

~

I"""
-20
1.0

5.0 10

50 100

f - FREQUENCY (MHz)

Output Admittance vs
Frequency-Input Short
Circuit
~

...
I

1.0

f - FREQUENCY {MHd

-g

100

Q

f - FREQUENCY (MHz)

,g

1

"""

60

~

~

o

~

Forward Transfer
Admittance vs FrequencyInput Short Circuit

BO

w

g't

....

~

1.2

0.8

...

o

o

Doe"

~

Ie - COLLECTOR CURRENT (rnA)

'"
~
;i

l

~

0.5

12

z

II.

10

".

10

~~

20

!O
,;:

-g

Ll

Q

I

Reverse Transfer
Admittance vs FrequencyOutput Short Circuit

w

15

B.O

6.0

c

b••
1.0

Ie - COLLECTOR CURRENT {mAl

I
11

4.0

I
I

1.5

Q

'"
!;
:=g

I

II

2.0

Z

I

12

Ie = 2.0 rnA
VeB :; lOV

w

f - 200 MHz

u

b"

~ -100

4.0

Input Admittancevs
Frequency-Output Short
Circuit

,g

V

.\

VeE" 12V

~

...,....'"

Y

1\

-50

Ie - COLLECTOR CURRENT {mAl

~

,g

Q

-0.8

2.0

-g

'0

I
g••

~

~

2.5

VeE" lZV

I

z

-0.4

Output Admittance vs
Collector Current-Input
Short Circuit

f ;200 MHz

V 1-1"-

Q

::::; -0,6

~I

100

w

u

f"'200MHz

g,.

Z

:i

~
.§.

Vee'" 12V

w

~
ex

Forward Transfer
Admittance vs Collector
Current-Output Short Circuit

500 1000

500 1000

Process 44

COMMON BASE Y PARAMETERS VS FREQUENCY
Input Admittance vs
Collector Current·Output
Short Circuit

Reverse Transadmittance vs
Collector Current·lnput
Short Circuit
=.=

0 ~~~~r-~~~~~
Ve.=IOV
..... 1

~ -50
z
~

Forward Transadmittance
vs Collector Current·Output
Short Circuit

I = 200 MH'~_t-I-f-I-j>,
'".-+-+-1

~~

-100 I-I-I-HH--I--ICC-Jrl---l

~ -'50 I-I-I-I--I~-l--l--l--l--\-f\-I

i~ -200 ~~F=~b~'b~~~~j1ltj
~ -250

ffi

~

~ -350 L.....L.....L.....L.....L...J--'--'--'--'--'

-10 '-''-''-'--'--'--'--'--'--'-'

o

2.0

4.0

6.0

1.0

I-f-f-f-H--I--I--I-I-\-I

-300 1--t-t-I-H-I--I--I--I-1

10

.:

0

2.0

Ie - COLLECTOR CURRENT (mAl

Output Admittance vs
Collector Current·lnput
Short Circuit

_ 2.0

;!

r-r-r-r-r-'r-r-""'Ve-.~.""IO"'"v:-t

m

~';'

;;

~

1.8

~

U I--t-t-t-t-bt-0b++++-I
OJ

~

ii

f-+-+-+-+-+--+--f-+--h~""

~

o

2.0

i

1.0

Ie - COLLECTOR CURRENT (mAl

30 r<-.-.-.-r-r~V~e~.~=~IO~V
H--I--I--I--II---I-I = 200 MH,
25 r-I-I~~~--I--I-f~--I--I

~/~~~-rT~~
;

20~~~-+~~~1\-I

Common Base Configuration
Stability Factor·k vs
Collector Current


2.0

t
TO·92

2.0

4.0

7.0

Ie - COLLECTOR CURRENT (rnA)

Ves - COLLECTOR BASE VOLTAGE (VI

8-74

f-: ~

Tr

50 7080 90 95 9899

PERCENTILE 0lSTR1BUTION (%1

12

=0

1\

0

1.0

Contours of Constant Gain
Bandwidth Product (IT)

f= 1.0 MHz

0.Z5

20

Ie - COLLECTOR CURRENT (mAl

z 0.35

"<:;

-

J

Collector· Base Capacitance
vs Collector·Base Voltage

I-

0.15

I

4.0

200

"'

\/

0

150

r-

;Ii

V

Ie - COLLECTOR CURRENT (mAl

~

=

Vee 10V
f: 1.0 MHz

~

0.8 2

::

20

IE" 0

-;3

,/
0.9 4

100

Distribution 01 Collector·
Base Capacitance

",.,

2 Ie

50

TA - AMBIENT TEMPERATURE rCI

;Ii

12

-50

f - FREQUENCY (MHzl

=

8.0

0.01
~O.OOl

lBo

10

1.0

0.1

0.01

2.4

4.0

0.1

-

o

zoo

150

:::;

0

~"
.......

100

:>

I

§

0.1

I

3.2

0.8

F

Ie - COLLECTOR CURRENT (mAl

.........

Ie

_

~

~T:rl~Ic

g;

Collector Saturation
Voltage vs Collector Current

1.6

I-""

o

Noise Figure vs Frequency

Ie

4.0

~R

~ J510h

0.2

>

10

1.0

TA - AMBIENT TEMPERATURE (,CI

>

TA

11"11

Ie - COLLECTOR CURRENT (rnA)

VeE = lOV

I

t:I

0.4

~

0.1

10

a: 500

~

!

.............
8.0

jill
jill
jill

~ 400
~ 300
'x" 200
"'"
x< 100
•
~

0.6

=5V

~

800

:::;

:::;
ffi

20

Maximum Power
Dissipation vs
Ambient Temperature

;::
;1;

0,8

~I

40

~

Ie - COLLECTOR CURRENT (mAl

~
~

~

::

I

6.0

VeE

r-

>

100

~

1\

~

I

120

~

1.0

w

VeE:;: lOV

V

z

~

..

~

160

=S.ov

140

70

~

Base·Emitter ON Voltage V5
Collector Current

DC Current Gain vs
Collector Current

10

Process 45

COMMON EMITTER Y PARAMETERS VS FREQUENCY
Input Admittance vs
Collector Current-Output
Short Circuit
)0

V

VeE" lOV

"l1

.!'
w
u

z

....
"
....

~

60

/

50

ZD

z

'0

--

,:

-'0 o

..... 1'6.0

4"0

Z"O

r-;-;-.,.-.,.--,-..,....~V-eE~"-'~DV-,

:

0.02

J-j--j--j--j--j--j-- f = 45 MHz

8.0

10

-0.04

i=I=l'=1"**'T"-kd-'-+-r-..--1

~

-0.06

J-j--+-I+-+--+-+-+-++'''''

i£

-0.08

~ -0.10

w
u

0.5

"........

0.4 I---

!.
z

~

0.3

~

"

02

!;

D.'

0

J

"0

-

I

,

-D.'

.1

-..!f-I
~~

0
>

/

"l1

.!'

4B

~

U

40

~

Z4

"

i

'6

~

"l1

.!'
u

z

"........

b"

!;

02

~

8.0

-0.2

10

~

1l

j

~

-b" /

~ 0.04

....
w

V

~

0:

~ 0.02

o

"

I
/

~

,

"l1

w
u

~ 0.06

V

Y

./
10

ZD

3D 40 50

100

f - FREQUENCY (MHz)

-0.03

!....

-0.05

4~

6.0

8.0

Ie

=

200

55
50

\

2.0 rnA

ZD

"

15

I

'0
5.0

~

.;

~

19

Ie" 2.0 rnA
f=45MHz

-

V
/

-D.DB

o

2.0

4.0

6.0

Z5

B.D

10

Ie:::: 2.0 mA

~

"l1

"'t ~
\

1

'-'!"

VeE:::: lOV

ZD

o

"........

z

15

~

"

'0

i,

5.0

b;./

o
Z.D

4.0

-~,

6.0

B.D

10

10

-

,/
-h"
10

ZD

.......
3D 4050

.!'

8-75

zoo

'00

Ie

=2.0mA
=10V

VeE

1.6

w
u
Z

::"

'.2
D.B

Ie'" 2.0 rnA

,

0.4

VeE = 10V

~

/

0

!;
0

f - FREQUENCY (MHz)

3D 4050

Z.O

"~"

100

ZD

A

Output Admittance vs
Frequency-Input Short
Circuit

"l1

""" '\. '\.

/

f - FREQUENCY (MHz)

~

/\
/'

----r

--

./

/"'/

,;.-

3D

~

B.O

w
u

35

0
0:

6.0

Input Admittance vs
Frequency·Output Short
Circuit

1

40

;:

4.0

VeE - COLLECTOR VOLTAGE (V)

.!'

45

Z5

......,

b,;..- ~

10

Forward Transadmittance
vs Frequency-Output Short
Circuit
.!'

VeE'" lDV

~

-0.02

~

Vo< - COLLECTOR EMITTER VOLTAGE (V)

I

Ie = 2.0 rnA

~

I

2.0

f= 45 MHz

0.4

Reverse Transadniittance vs
Frequency-Input Short
Circuit
E

J-

~ -0.07

I

D.B

VeE - COLLECTOR VOLTAGE (V)

.!'
~ 0.08

Z.D

~ -0.06

1.0

~

,

]' 0.10

"-

"" ......

---

r-.,

z

1"

0

---t-

"-

"~ -0.04

l.Z

0.6

"~

/

6.0

I

~ -0.01

MHz

\.

o

.,
\

'5

Output Admittance vs
Collector Voltage-Input
Short Circuit
~

.,

4.0

*
z

0:

1/

3D

VeE - COLLECTOR EMITTER VOLTAGE (V)

1

2.0

4~

.......b..

'0

I
I

,;:

1=

1.4

2.0mA

"
"....

11

45

Reverse Transfer
Admittance vs .Collector
Voltage-Input Short Circuit

\1

B.D

Forward Transfer Admittance
vs Collector Voltage-Output
Short Circuit
Ie

)5

Ie - COLLECTOR CURRENT (rnA)

9ie

32

Ie - COLLECTOR CURRENT (rnA)

f=45MHz

BO

Ie -2.0 rnA

I
\ I

u

::""

-B.O

2~

~

VeE = 10V
1=45 MHz

b"

1\

,;:

I
o

90

f--f--f--I-I-f--

56

/

i

105

~
"

Input Admittance vs
Collector Voltage-Output
Short Circuit

VeE" lDV

t.: 4S HZ

i

Ie - COLLECTOR CURRENT (rnA)

D.)

"l1

a

, -0.' Z '--'--.L-.L-.L--'--'--'--'--"--'
B.D
,0
Z.O
4.0
o
6.0

Output Admittance vs
Collector Current-Input
Short Circuit
0.6

Forward Transfer
Admittance vs Collector
Current-Output Short Circuit

::

J-t-j--7b,-,t-

Ie - COLLECTOR CURRENT (rnA)

~

I

g"

"*

bie

I::;::

0.04

~ -0.02

",;,J

3D

I
::"

IL

40

"....

=>

f=45MHz

Reverse Transfer
Admittance vs Collector
Current-Input Short Circuit

zoo

-"

o >-'0

I--

20

/

::::>':::...

30 4C SO

I

I

~
~

lDO

f - FREQUENCY (MHz)

2DO

Lt)
~

Process 45

U)
U)

COMMON EMITTER PERFORMANCE

Q)

0
0

...

a.

Maximum Available Gain vs
Frequency

Maximum Available Gain vs
Collector Current
;;;

50

'"~'"

40

w

'"
S

"''"

30

"\

:5

"'

20

"=
x"

10

I

-10
-20

1\

~

i"

"'
2.0

4.0

45

6.0

8.0

10

~--+----j-+-+-"--"IT-----j

25

~--+----l-+-+----j-"""""'---"'J

a:

=
:l:
>

S
;;

'"

I;;

S~ABILT~

f::::=

r-

1.0

/

0.5
0.3
02

-- '--

/

2.0

4.0

~

-

i

CONDITIONALLY
STA8LE

6.0

......

/

8.0

Ie - COLLECTOR CURRENT (mAl

10

-30

I

20

o

-50

'"

-60

"

~O

I
u

~

'\

~ rNr ~ /
VAGC

2.0
-

30

/

!

1.0

~

4.0

6.0

8.0

3.0

"-

20

"I '"

20

16

1:1 ~

10

12

gj

8.0

~

4.0

'"

~

'"

1/

5.0

6.0

Vee = 12V
FIGURE 1

PG

Z

~ a:

V

~

12

;:;
I

=
~
Z

8.0

I

~ -10

~

-20

0
4.0

10

COLLECTOR CURRENT (rnA)

Power Gain and Noise
Figure vs Collector Current

24

I\V

I

o

2.0
Ie

f= 45 MHz

-40

~

"

I

25

Ol"

Vee'" 12\1

\.

....
8 -20 I

"'-

I

30

28

VPG\

-10

z

VeE'" lOV
f:45MHz

o

'"'"~
u

0.1

.A-

Automatic Gain Control and
Noise Figure vs Automatic
Gain Control Voltage

~
f::::=
~NC~N~1TI6NL~
~ ;=
f--- STABLE
-

10 f---5.0
FACTOR-k
3.0
2.0

"x
"'"

=lOV

-f- ~

35

f - FREQUENCY (MHzI

Stability Factor" vs
·Collector Current

t;

VeE

f=45MHz

'"

~
1l

15 '-----'---'--'---'-,----'-----'
10
20
30 40 50
100
200

Ie - COLLECTOR CURRENT (mAl

100
50
30
20

~

I-~---"=j-..t::-+-t----------t----~---j

35

I

"~

'""

.....

>

'\
o

40

---~

f= 45 MHz

>

"'"
"
"'"

65 r---'--'-,-r--~--~
Ie =2.0 rnA
- - -- VeE = lOV
55 ~---~-~-+-+--~r-~

VeE'" lOV

i'

Maximum Stable Gain vs
Collector Currerit

NF

2.0

7.0

4.0

......

J-t4.0

6.0

8.0

10

12

~
'"

Ie - COLLECTOR CURRENT (mAl

AUTOMATIC GAIN CONTROL
VOLTAGE (VI

* Rollet stability factor "k" is defined as R= 2g igo- Re(YfYr)
IYfYrl

8 pF-25 pF

BNt
OUTPUT

50n

22 pF
BpF-25 pf

L1 - 7 turns No. 16 buss wire 5/8 inch
Lx5/16inchi0
.
L2 - 4 turns No. 16 buss wire 1/2 inch
Lx 1/2 inch 10
All resistance 1/2W, 1 % tot.
Erie tunables PIN N300

270n

Erie feedthrough PIN 370CB102J
RS = 120n
RL=750n

Vee

+12V

FIGURE 1. SE5055 45 MHz Gain; Noise Figure, AGC Circuit

8·76

"'C

~National

Process 46 NPN RF·IF Amp

U Semiconductor

CD

U)
U)

DESCRIPTION

,&::10

Process 46 is an overlay, double-diffused, silicon epitaxial
device.
0.008
.......4y~'-+-,4-,.-10.203)

0.0020
10.0508)

APPLICATION
This device was designed for linear RF amplifier applications up to 100 MHz with collector current in the 1 mA to
30 mA range.
PRINCIPAL DEVICE TYPES

0.0019
10.0483)

TO-92, EBC: CS9016
PE5025

~ ~I::::::)

0.013
10.330)------1

. Parameter
G pe
CCB
goe
hIe
hFE
VCE(SAl)
BVCEO
BVCBO

Conditions

Min

f=45 MHz, VcE =10V, Ic=10 mA
VcB =10V

25

f=45 MHz, VcE =10V, Ic=10 mA
Ic=10 mA, VCE=10V, f=100 MHz

ao

Typ

Max

28
0.8

Units
dB

1.1

pF

200

/,mho

3.0

4.5

Ic=10 mA, VcE =10V
Ic=20 mA, IB= 1 mA

30

100

250

0.2

0.5

Ic=1 mA

35

V

Ic=10/,A

45

V

4.0

V

V

BV EBO

Ic=10/,A

ICBO

VCB=30V

100

nA

lEBO

VEB=3V

100

nA

8-77

Notes

C)

co

~
U)
U)

Process 46

Q)
(,)

e

0...

Base·Emitter ON Voltage vs
Collector Current

DC Current Gain vs
Collector Current

2:
w
'"
~

100
VeE'" lOV

'"

~

I-'"

5
~
w

80

Q

I-""

1\
\

60

~

=>
~
I

"'"a:

;;
I

I1TTlfII I

~

20
10

0.1

100

>

0.2

;:0

f= 1 MHz

1200

U

z

§

'" "-"-1"'-

i

TO·92

600
400
200

50

.?

100

;;:I-

0.24

~I

"'-

150

1.2

~

~

0.08

8

~

1.2
1.0

"~

g;,

0.8

~

0.6

~
~

0.4

~

0.04

1.0

0.1

'10

5.0

~

20

I

1.0

~

0.6

uW»~
"/
1.0

50

100

Ie - COLLECTOR CURRENT (mAl

i

5.0

10

T

~=lD

o

"-

"Coo.

""'"'+--l

I

1

>

.1

100

10

100

Cibo

1.0

50

'=1 MH2'

I

"

I-

0.2

0.1

20

Capacitance vs Reverse
Bias Voltage

I.

-

2.0

Ie - COLLECTOR CURRENT (mAl

Base·Emitter Saturation
Voltage vs Collector Current

;;

"'

I

~

REVERSE BIAS VOLTAGE (VI

-

0.12

\~O;rHZ

20
10

i'-.. . . . .
10

'"~

200

300 MHz

3D

"'~

0.4

w

150

;;

0.8

~

"

100

Contours of Constant Gain
Bandwidth Product (IT)

.........

200

I.

~ '0.16
....

::\
w
"'
....
....
;;

50

TA - AMBIENT TEMPERATURE rCI

~
>

~

_I~~~:I

0.20

'\

~

'"

w

ffi

Collector· Emitter Saturation
Voltage vs Collector Current

w

'"
15;::

200
100

.?

1.6

Te - CASE TEMPERATURE rCI

~

I\. TO·92

300

60
IE'" 0

"

100

2.4
u

BOD

\.

Reverse Transfer
Capacitance vs Reverse
Bias Voltage

1400

I

10

1.0

Ie - COLLECTOR CURRENT (mAl

1600

~ 1000

I\.

~

0.1

..5



~

u

"

Maximum Power
Dissipation vi;
Ambient Temperature

1.

r10

50

REVERSE BIAS VOLTAGE (VI

Ie - COLLECTOR CURRENT (mAl

u

>

Collector· Base Diode
Reverse Current vs
Temperature
100

~....

~
~

24

V~. - Jov

11

20

w
u

16

VcE "'lDV
f,:45 MHz

..5

10

z

~


"

I

,:
.01

I---'"

400

'
10

Ie - COLLECTOR CURRENT (mAl

8-78

50

100

-

1.0

VeE = lOV

I-

f=45MHz
10

Ic ,- COLLECTOR CURRENT (rnA)

100

Process 46
Forward Transfer
Admittance vs Collector
Current
~

24D

....

200

ffi

160

~
~

V

~

~

-

1

VeE'" tOV
f=45MHz

a:
....
~

'"
~

~~

2~ r---r-~~tH~--~_+~

*
:

....

.,II/v

40

t;:/

~

1-----I-H4-++I++--

~
a:
50

,,!

~

1 1000
~

~
~

90,

100

160

-

VeE = lOV
Ie'" 5.0 rnA

Ib.~ b.L

I

z

'"~

.s

'"f=

10

Small Signal Input
Resistance vs Collector
Current

,

VeE =

\

"
w

u

tov

f·I.0kHz

'"

~

90

....

ED

o
0.1

"

r-...

c

3D

1.0

~

'1k,

0

100

10

1.0

Small Signal Output
Conductance vs Collector
Current

Small Signal Current Gain
vs Collector Curre.nt
z

VeE .= lOV
f = 1.0 kHz

100
VeE

;;:

I
I
1/
II

....
'"
10
a:

B

=tOV

........

f::: 1.0 kHz

80

L

60

~

'"
'"
'"
ili
z

in

/'

40

~
~

I

I

I -' -

>

V

f - FREQUENCY IMHzl

1 120
z
~

~
!!,

I

150

'"

!:ia:

~
a:

f - FREQUENCY IMHzl

w

'"

w

100

Z

Z

~

a:

T

u

I;;

]I

200

w

I ~••

10

100

f - FREQUENCY IMHzl

a

~

~ 400

'"

10

1\

VeE - lOV
Ie =5.0mA

$z
/

10

1600
z

V

//

C
I

1.0

Reverse Transfer
Admittance vs Frequency

-

w
u

1'1

~.

V

~

100

f - FREQUENCY IMHzl

Forward Transfer
Admittance vs Frequency

VeE::: lOV
Ie::: 5.0 rnA

/111/

10

1.0

50

Ie - COLLECTOR CURRENT ImAI

Output Admittance vs
Frequency
5000

V

o
10

1.0

Ie - COLLECTOR CURRENT ImAI

a

V ~

VeE:;: 10V

!'45MHz

-g"

I

10

1.0

bV

I-----I-H+++I++---+-+-H

100

w

I III

0

VeE = tOV
Ic =5.0mA

-b,.

z

80

I

Z

300 '----'---'-rT'T"Trr""----'---'-'''

'"

~.

120

Input Admittance.vs
Frequency

!
~

-b••

/

Reverse Tra nsfer
Admittance vs Collector
Current

20

I

J!

1

o
10

1.0

0.1

10 20

20

Ie - COLLECTOR CURRENT ImAI

Ie - COLLECTOR CURRENT ImAI

Small Signal Voltage
Feedback Ratio vs Collector
Current
~

20

c

16

;::
.~
~

I

12

VeE

=lOV

f= 1.0kHz

1\
\
/1

w

'"~
c

V

>
I

.1

0
0.1

1.0

10 20

Ie . COLLECTOR CURRENT ImAI

8·79

o
0.1

1.0

10 20

Ie - COLLECTOR CURRENT ImAI

~National

a

Process 47 NPN RF·IF Amp

Semiconductor
DESCRIPTION
. Process 47 is an overlay, double-diffused, silicon epitaxial
device, with a Faraday shield diffusion.
APPLICATION
This device was designed for common-emitter low noise
amplifier and mixer applications in the 100 JlA to 15 mA
range to 300 MHz, and low frequency drift common-base
VHF oscillator applications with high output levels for
driving FET mixers.
PRINCIPAL DEVICE TYPES
TO-92, BEC: MPSH11
MPSH24
PE5030

Parameter

Conditions

Min

Typ

Max

Units

Notes

f=45 MHz, VcE =10V, Ic=4 mA
f=200 MHz, VcE =10V, Ic=2 mA

29

33

dB

Figure 1

17

19.5

dB

Un neutralized
Figure 3

3.5

dB

Figure 3

15.0

ps

NF

f=200 MHz, VCE =10V, Ic=2 mA,
Rs=50n

rb'Cc

f = 79.8 MHz, VCB = 10V, IE= 5 mA

hfe
G ib

f = 100 MHz, VCE = 15V, Ic= 7 mA
VEB=0.5V,l c =0

2.0

3.0

pF

TO-92

G CB

VCB=10V,I E=0

0.33

0.40

pF

TO-92

goe
roep

f=45 MH'z, VcE =15V, Ic=7 mA

125

Jlmho

hFE

VCE=15V, Ic=7 mA

VCE(SAT)

Ic=20 mA, IB= 1 mA

VBE(SAT)
BVCEO

Ic= 10 mA, IB= 5 mA

BVCBO

Ic= 10 JlA

40

BV EBO

I E=10JlA

4.0

ICBO

VcB =30V
VEB =3V

lEBO

2.0

6

f = 10.7 MHz, VCE = 10V, Ic= 2 mA

10

n

100k
100

40

200
1.0

0.3

0.95

Ic= 1 mA

V

l~OPFI J.
1/2W

V

V
V

35

390n

V

~1
':"

nA

100

nA

[111~:·"'
1000 pF

I h_-_ ~ _
:-1

03 Toroid 4:1 ralio } N 22 .
8 turns Pri. 2 turns Sec.
o.
wire

270n

1/2W

Vee

vAGC FIGURE 1_ 45 MHz Power Gain Circuit
8-80

100

=

12V

'"'C

Process 47
DC Current Gain vs
Collector Current

Base·Emitter ON Voltage vs
Collector Current
~

100

"~

VeE = lDV
TA = 25°C

~

80

....

"

~

60

V
1\

~

40

u

'"I

20

0.8

:=w

0.7

:>

0.1

~

0.6

0.01

Maximum Power
Dissipation vs
Case Temperature

800

~

600

~

400

'"~

'\
-

u

z

1"\TO-92

........
TO·72

200

.::

....
""

50

U

~

1"-

r-- ~
100

200

100

"w

60

'"'"

I--

f= 1 MHz

1.8

~

10

1.2

I

1.0

/

C"O

w

r-

j
10

1.

/

50

25

50

75

100

125

T, - JUNCTION TEMPERATURE ('CI

Maximum Stable Gain vs
Collector Current
40

"~

r---

=
""
in

30

",-

20

x

40

"""

c

I
~

/

=

~

u
u

200

0.1

.1

Contours of Constant Gain
Bandwidth Product (IT)

-

150

~

-fl"

VeE =lDV
TA ::;25Q C

I--""

~ r---. r-...

100

VeB = 30V

REVERSE BIAS VOLTAGE (VI

DC Current Gain vs
Collector Current

BO

50

Collector· Base Diode
Reverse Current vs
Temperature

o

150

Te - CASE TEMPERATURE (OC)

"

.::

TA - AMBIENT TEMPERATURE ('CI

r--

.6

I,\: r--.

~

1000

2.4

-

~

....~

100

10

I\.

100

1
~ 100
B

.......

""~ 1200
1000

1.0

3.0

1600
z
~ 1400

~

0.1

t\. TO-92

r- -~I~

~

Capacitance vs Reverse
Bias Voltage

5

~

200

Ie - COLLECTOR CURRENT (mAl

Ie - COLLECTOR CURRENT (rnA)

§:

300

~

~

L-.J...U-L-.J-'-.J.JJ.--'-...J..J-"--'-.L.U-'-J

'\.

400

~

'"I

0.5

100

10

.......

600
C
c: 500

z

i

~

~

800

;;:
ill

f-f-ttHH+tt-++H++++t+I-l'

0,9

~
~

CD

o

~

1\
\

~z

I

~

20

10

~

o
16

12

20

Ie - COllECTOR CURRENT (mAl

VeE = 15V
FREQUENCY

o

12

=

45 MHz

16

20

Ie - COLLECTOR CURRENT (rnA)

Ie - COLLECTOR CURRENT (mAl

200 MHz

50n

0'-----; I-~~-.....-__t

RF,"

C

LO,"

(0-----;

T,

:llnJ'~'
~

(

-----------l

245MH'f
50n . .-...

Ll - Ohmile RFC Z235

~VBB---~VCE~

Vee =15V

FIGURE 2. 200 MHz Conversion Gain Test Circuit

8·81

(')

en
en

i= 100

:>

w

~

1.0 ,rITr-lrTTTT-r-,rrr.-TTrr-l

Maximum Power
Dissipation vs
Ambient Temperature

a

T1 - Primary 5 turns No. 34 wire
114 inch diameter. Secondary 2 turns
No. 34 wire close wound over a Q100
core (10.7 MHz), When terminated on
secondary side with 50n primary
measures 1,5k, - 25 pF.

.......

~
tJ)
tJ)

Process 47
COMMON·EMITTER VS FREQUENCYY PARAMETERS

CJ)

Input Admittance vs
Collector Current

CJ

e

CL.

14
~

-g

.§
w

Input Admittance vs
Collector Current
24

VeE, =15V
f=45MHz

12

""....
....

...... ~ i-""

~

"

-g

/

10

'"

w

UI' ....

'"

16

~

12

'i

"

8.0

I

4.0

"........"

'/

I

o
16

12

....... /
/

20

-

-g

.§
w

'"

""........

~

"~

r-....
"- ......

o

2.0

4.0

6.0

8.0

Ie

:>!

16
12

4

....
f- b"

vCE =15V ----f--+-j-+H-H1
Ie = 7 rnA

M-rtt-r-----f--+--hH-+t+i

12 H--H-++----b-oCf--+++-++H

E

.§

250

12

w

'"

"~

100

~

~

E

~

0:
....

10

120

1=45MHz

~

100

~

so

"

60

VeE =lOV
f=20QMHz

w

~

~

"

~

I/-bfo

bf ,,..-

40

I"-

0:

~~LL

50

___ J_ _L-L-~~~

100

20

i

~

o

1.0

12

500

f - FREQUENCY (MHz)

~
140

o

120

~

E

.§

I

w

gfo

....~ 100
~

!

120

....

100

~

"

~
"c~

80

z

60

"
~

40

~
....

i~

20

Z

I

o

.;

;
0:

=7 rnA

f:45MHl

o

12

16

20

VeE - COLLECTOR VOLTAGE (V)

Reverse Transfet
Admittance vs Collector
Current

~

I~

0.6

'"

0.5

~

0.4

~
~

0.3

~

:!
1=

VeE·.= lOV

0.2

-f-+--+-+++-I

f-+--+-++-+-t-ff---r-!
I-+--+++-+-+---ff---r-!
I-+--+++-+-+---ff-,--r-!

0.1 f-+--+--+-+-+-+-+++..,
f-I-+-+--U"f-f-f---If---I----I
OLJ
........-..;;.;,I.,..I,,;,........._
4.0

6.0

8.0

Ie - COllECTOR CURRENT (rnA)

I

.§

Ie = 7 rnA

'"z

.24

ic

.20

10

.§

40

o

"
~
z
"....w
0:

~
~

~
....
w

I'

0:

w

~

10

VeE = 15V
FREQUENCY = 45 MHz

I

-b ..

.16
.12
.08

.04
-gr.

0:

500

.40

.28
.24

8.0

~

..!::. 1-'-

100

1000

.,:

12

Ie

=7 ~A

i\

I"--

-b"

].

1.4
12

-f-f-

Vee

Ie

=15V

=7 rnA

II

.8

.16

.6

.12

.4

.08

-b,i'

V

.2

.04

-9r.

2

4

6

8

10 12 14 16 18 20

VeE - COLLECTOR VOLTAGE (V)

8·82

20

Reverse Transfer
Admittance vs Frequency

j

1.0

.20

16

Ie - COllECTOR CURRENT (rnA)

f=45MHz

0:
I

.,:

"
~z

Reverse Transfer
Admittance vs Collector
Voltage

~

6.0

.28

f - FREQUENCY (MHz)

.32

4.0

I

50

.36

~

'" ,-b.

'\.

20

w

'"z

-g

w

"~
r.....

60

.;

-g

~b"

2.0

2.0

Reverse Transfer
Admittance vs Collector
Current

VeE = 15V

80

~

I = too MHz._t-++++-+--I

o

o

Ie - COllECTOR CURRENT (rnA)

-;

C

Ie

24

Forward Transfer
Admittance vs Frequency
140

IU

~

-bfe

0:

20

I-

Ie - COLLECTOR CURRENT (rnA)

Forward Transfer
Admittance vs Collector
Voltage

1

16

-

-!:

C

o

20

Forward Transfer
Admittance vs Collector
Current

.§

-~,
1'/

16

VeE - COLLECTOR VOLTAGE (V)

=15V

VeE

9ie

10

Forward Transfer
Admittance vs Collector
Current

~~~---r-,-,-rTTTn

1 mA

20

!!'
I

=

f=45MHz

24

Ie - COLLECTOR CURRENT (rnA)

Input Admittance vs
Frequency

16

....

~

biB

f'.

Ie - COLLECTOR CURRENT (rnA)

20

1/

.;!

"

,;:

20

.§

II

b;e

/'

i

VeE =lOV
Ii 200 MHz

~

Input Admittance vs
Collector Voltage

-gra

o
50

100

500

F - FREQUENCY (MHz)

1000

"C

Process 47
Output Admittance vs
Collector Current
1000

.1

I

boo

w
u

z

100

....
'"
....

r-

;;;

go.

V

5.0

-;;
1l
~

2.0

~

1.0

10000

VeE =lOV
f:: ZOO MHz

~

!;

10

~

I

~

VeE:: 15V

fi4j Mi'

I

,;
1.0
12

16

20

~I

0.2

>

0.1

35

I
~
'"t:

boo

1000

'"

!;

~0
,;

~

-

30

w

'"

~
«
....
:>

~

100

'"

25

~

20

c

z

15

'"z

~

10

'"~

,
100

50

>4.0

0.0

6.0

500

1000

goo

10
12

16

20

VeE - COLLECTOR VOLTAGE (VI

Conversion Gain vs
Collector Current
28

Vee:: 12V
f:: 200 MHz

~ r--

"
~
"

PG

26

24

0

V

ffi

~
0

2.0

4.0

22
flF ::

fa
20

u

6.0

0.0

~

f-'"

f- f-

I

!/,V

NF

5.D

f - FREOUENCY (MHz)

I'

10

45 MHz

=200 MHz
=245 MHz

flO

VcE =15V

18

100

r- r-

boo

I-

~

10

t"

I

FIG.2

:>

go'"

~

1000

Power Gain and Noise
Figure vs Collector Current

10000

=7 rnA

f-45MHz

Ie - COLLECTOR CURRENT (mAl

Output Admittance vs
Frequency
Ie

,....- ,o . 2.0

24

Ie - COLLECTOR CURRENT (rnA)

VeE:: 15V

goo-

0.5

Ie = 7 rnA

I

boo

~

c
1.t

FIG. 1

10

Ie - COLLECTOR CURRENT (mAl

Ie - COLLECTOR CURRENT (mAl

Vee:: 12V

270

l----to') 200 MHz 0 UTPUT
I

I

INTO 50 OHMS

100

200MH'~.
INPUT

1

'
390

2.2K

L1 - Ohmite Z·235 RFC

Vss

CD

Output Admittance vs
Collector Voltage

Output Admittance vs
Collector Current

L2 - 6 turns No.14 wire, 1 inch Lx 1/4 inch ID tapped 11/2 turns from cold side
All capacitance in pF, all resistance in ohms.

FIGURE 3. Unneutralized 200 MHz PG NF Test Circuit

8·83

an

24

o
o
~

~National

a

Process 48
NPN High Voltage Video Output

Semiconductor

DESCRIPTION
Process 48 is a non·overlay, triple·diffused, silicon device
with a field plate.
APPLICATION
This device was designed for application as a video output
to drive color CRT.
0.028
(0.711)

PRINCIPAL DEVICE TYPES
TO·202, EBC: D40N1-5
NSD131-5
NSD457·9
NSE457-9
TO·202, BCE: NSE457-9
TO·237, EBC: 2N6733·5 (92PU391·3)
TO·237, ECB: 2N6711·13 (92PE487·9)
2N6719 (92PU10)

0.028
1-------(0.711)---~--

TO·39 (Steel): SE7056
MPSA42
TO·92: .

Parameter

Conditions

BVCEO

Ic=1 rnA

BVCBO

Ic=100!,A

BV EBO

I E=10!,A

ICES

VcB =150V

Max

Units

Min

Typ

300

370

V

500

V
V

7.0
100

nA

100

nA

lEBO

VEB =6V

hFE

Ic=1 rnA,VCE =10V

30

hFE

Ic = 10 rnA, VCE = 10V

40

hFE
VCE(SAT)

Ic=100 rnA, VcE =10V
Ic=20 rnA,I B =2 rnA

0.25

1.0

VBE(SAT)

Ic=20 rnA,I B =2 rnA

0.74

1.0

V

CCB
C ib

VCB=20V

1.9

3.5

pF

70

pF

hIe

Ic= 15 rnA, VCE = 100V,
Ic=15 rnA, f=20 MHz

2.5

Tc=25°C
TA=25°C

10
2

W

TA=25~C

2
850

W
rnW

TA=25°C

600

rnW

I
PD(maxl
TO-202
TO'237
TO-92
OJC
TO·202

90

200

20

VEB =0.5V

TCOLLECTOR LEAD = 25°C

V

4.0

TC=25°C

12.5

°C/W

TCOLLECTOR LEAD = 25°C

62.5

°C/W

OJA
TO·202

TA=25°C

62.5

°C/W

TO·237

TA=25°C

147

°C/W

TO·92

TA=25°C

208

°C/W

TO·237

TJ(max)

All Plastic Parts

Notes

°C

150
8-84

TO·92

"tI

Process 48
DC Current Gain vs
Collector Current
1000

1000

z

"~

~
~

I-

100

i

co

B

u

u

Q

10

I

Coliector·Emitter Saturation
Voltage vs Collector Current

Typical Pulsed Current Gain
vs Collector Current

Q

IC "10
IBI I

TJ - +125°C

100

II

~+25 C-

40"C

+25°C

+125'C

U

-
Q

~

;a
I

w

1111111

lJ..I.Ijj.

TA

0.4

"

1.0

~>

-

Tc
0.6

;a

0.4

;)j

0.2

I

~

g

~

~

>

0.1

1.0

10

100

>

......

I--'"

:;

~

1IIII

100

TA

125°C I--

1.0

TA =25°C

"«,..

20

-

u

~

;3

5.0

~

-

150

200

250

IIII
1.0

300

~

~

10

~
100

200

)}

..

50

Safe Operating Area TO·202

\

/

/ VI

10 5.0

10

20

50

Guaranteed Maximum DC
Power Dissipation vs
Collector· Emitter Voltage TO·39

I

"co
co

i 01M!"'.~

I I
Te

=25°C

1\

\

Tc=50°C

I I
ITe:::

\

',oooe

~ Ie (MAX) "0.25A

0.01

I

o

0.001
100

1000

VeE - COLLECTOR TO EMITTER VOLTAGE (V)

\

Te:: 150°C

!:

10

100

Ie - COLLECTOR CURRENT (rnA)

5:
,..

1.0

i!

I IIff_
I I 'j

20

Safe Operating Area TO·237

8

\ -~l/i~
I

REVERSE BIAS VOL TAGE (V)

Veu - COLLECTOR TO BASE VOLTAGE (V)

125

I Te:: 25°C
~I ...
~!~
~-c:;, ~~

I

1000

100

Contours of Constant Gain
Bandwidth Product

~

I i'j..jJ

75

'"~

",..

~b!Etlol

1.0
100

~

50

JUNCTION TEMPERATURE (OC)

~

....... Ceb Ie:: 0

'"1 ill

10

U

c

50

25
-

co

2.0

o

o

~ 100

0.1

0.01

/

TJ

50

-

I---

1.0

1

100

Collector· Base and Emitter·
Base Capacitance vs
Reverse Bias Voltage

-

10

'"~

10

0.1
10

1.0

I

JJ

f-

Te - 25°C

"

~

w

«
'"

100

,..
~
~

V

/

100

Ie - COLLECTOR CURRENT (rnA)

~ 500

B

i

=25°C

IIII

0.1

VeB :: 50V

~,..

~l~~oC_

0.2

Collector Cutoff Current vs
Collector Voltage

co

= 10 Is

I-++tf
II Jl... V

~

Ie - COLLECTOR CURRENT (rnA)

ffi

Ie

IIII

0.8

§

,..~

1000

IIII

«
'"

1~~:~-

Collector· Base Diode
Reverse Current vs
Temperature

Base Saturation Voltage vs
Collecter Current
~

1.0
0.8

«
'"

100

Ie - COLLECTOR CURRENT (rnA)

IC - COLLECTOR CURRENT (rnA)

Base·Emitter ON Voltage vs
Collector Current
~

10

0.1

100

1

10

_ 100

1000

VCE - COLLECTOR·EMITTER VOLTAGE (V)

8·85

Te;; 200°C

o

(')

CD

en
en

&

10

VCE" 2V

a

100

200

300

VeE - COLLECTOR EMITTER VOLTAGE (V)

Process 48
Maximum Power
Dissipation
vs Case Temperature

Maximum Power
Dissipation vs
Ambient Temperature

~

12

z

o

~

10

ill

"\
f-

k::
.........

15

ffi

No.202

~
!§

""-J\.

!~

.....,..."
TO·39 (KOVAR)

i
"

~TO·39 (STEEL)

'\.1.'"

J\.~

\l

o
o

25

50

l".

2.4
2.2

1.B
1.6 f-TA (TO·202!
1.4
TCOLlECTOR lEAD
1.2 TA (T0·39)""""'
(TO·237)
1
-l~
"\ TA (To.m\O.B
0.6

....:'I

1'1.

J"""!... "-

I

0.4

~

0.2

~

75 100 125 150 175 200

J I

2.0

TJ~

!""loJ..

-....;;~I\.'j...
~

0 0

25

50

75

J"'-..

100 125 150 175 200

TA - AMBIENT TEMPERATURE (OC)

TC - CASE TEMPERATURE rc)

Thermal Response in TO-202 Package

~~

f!:;::::i

:"

"

....
....
'"
ZC

~~
Zu
"z

"'''
........
1!<1

~.t3

""",,,

1
0.7
0.5

0

0.3
0.2

0.2

0.1
0.07
0.05
0.03
0.02

~

0.5
HEATS UNK

~
0.05

fREE AIR

~~~~.02
I- 0.01
SINGlEPU~

...

LJlJl

P(pk)
SINGLE PUlSE

CI.1

I
-

0.01
0.01 0.02

0.05

0.1

0.2

0.5

10

20

50

tl - TIME (ms)

8-86

100

zoo

tl t2500 lk

°Jc(t) 0 rlt) ·OJC
0JC DC THERMAL RESISTA NCE
Tpk - TC + Ppk .OJc(t)
DUTY CYCLE D ~
t2
0

2k

5k

10k

20k

50k

lOOk

~National

a

Process 49 NPN RF Amp

Semiconductor
DESCRIPTION
Process 49 is an overlay, double-diffused, silicon epitaxial
device_
APPLICATION
This device was designed lor general RF ampliler and
mixer applications to 250 MHz with collector current in the
1 mA to 20 mA range.
PRINCIPAL DEVICE TYPES
TO-92, BEC: MPS6544
MPSH20

Parameter

Conditions

PG

1= 45 MHz, VCE = 10V, Ic = 10 mA

IT

VcE =10V,l c = 10mA

Min

Max

Units

25

30

dB

400

700

MHz

rb'Cc

1= 79.8 MHz, VCE = 10V, Ic = 8 mA

CCB

1= 1.0 MHz, VCB = 10V, IE = 0

hFE

VcE =10V, Ic=10 mA

40

hFE

VcE =10V, Ic= =4 mA
VcE =10V,l c =10mA

30

VBE(ON)

Typ

Ic=30 mA, Ic=3 mA

20.0

ps

0.55

0.65

pF

100

250

0.80

0.90

0.15

0.50

V
V

VCE(SAT)
roep

1=4.5 MHz, VcE =10V, Ic=2 mA

80k

fl

BV CEO

Ic=1 mA

35

V

BV CBO

Ic=10!'A

45

V

BV EBO

I E=10!,A

4.0

ICBO

VcB =30V
VEB =3.0V

lEBO

8-87

V
100

nA

100

nA

Notes

Process 49
DC Current Gain vs
Collector Current

Input Admittance vs
Collector Current

Input Admittance vs
Frequency
32

16

.1

Il,

"",.

'".l!e

........ ,....

oS

.Y

w

,

.;'

V-

~
:e
'"'"

b,.1

VeE

50

12

i!i

.

~"i

~l
w

,

~

'a:"

~1

.10

w

.05

~,

-

'"
a: E

....

VeE'" 20V
f=45MHz
T. =2S'C- t-'I
1

>"

12

,~,

.6

/

16

240

~

200

'"a:

160

~

r-- r-Illf.

t::!-;;;
~

0

:ia: Ee
....

-

120

I

BO

if

.<

/

I

40

o

-

k"

100

'"

BO

.3

5.0

=10V

F'" 1 MHz

-

- ~:

T. = 25'C

-

w

1.0

....
'"

0.5

'"z
;:;

:1:

5

E

COO

II
I

oS

2.0
1.6

i!i

1.2

'"~

lOV

f= 45 MHz

....
'"

.2

~

- r-,I\'

'"'",

.1

>
12
Ie - COLLECTOR CURRENT (rnA)

16

~
....
::ii

/

.B
.4

o
50

l-

6.0

V
,..........

B

."''"
~

4.0

f=100MHz
VeE = 10V
T.=25'C

;;;

goo

~
~

'>'

ill'",

,.

~
100
f - FREQUENCY (MHz)

8-88

B.D

~

b,,\/

/
V

100

10

Small Signal Current Gain
vs Collector Current
z

T. =25'C

w

=

1.

.1

REVERSE BIAS VOLTAGE (V)

Ic=4mA

'"z

C~

-

0.3

500

100

VeE'" 10V

1l

200

150

100

Capacitance vs Reverse
Bias Voltage

Output Admittance vs
Frequency

1-

o

1,\
50

f - FREQUENCY (MHz)

TA =25°C

o

'\

0.1

50

2.4

-'

~0.92

.

o
16

.5

VeE

l'...

~ 400
~
"x 200
"'"x,
;p'"

TA - AMBIENT TEMPERATURE rC)

\

20

Output Admittance vs
Collector Current

-

g.. - -

-b,.~

,,;
40

Ie - COLLECTOR CURRENT (rnA)

•4

I'\.

Ie = 4 rnA

A-

60

-b'i- r-12

r-- b'I'

600

Forward Transfer
Admittance vs Frequency

f=45MHz
TA = 25°C

o

500

VeE

V

BOO

f - FREQUENCY (MHz)

VeE - 20V

,V

V

120

I-'

Maximum Power
Dissipation vs
Ambient Temperature

a:

100

50

f-""

I'

/

illc;

" -\

.2

Forward Transfer
Admittance vs Collector
Current
z
'"

:1:

-b",",

,!

500

>=

.B

Ie - COLLECTOR CURRENT ImA)

w

100

Q

J

.4

ffi

if\ r-- -

~
.§
z

VeE = 10V
Ic =4mA
TA '" 25"C

1.0

~

~

ffi

10

f - FREQUENCY (MHz)

1.2

'"

Ib"

.15

'"ffi

o
16

Reverse Transfer
Admittance vs Frequency

w

'"~

,

,,:

= 25"C

Ie-COLLECTOR CURRENT (rnA)

.2

'"z

~

~b;.

!';

=20V

f= 45 MHz

TA

Reverse Transfer
Admittance vs Collector
Current

/
Diu

16

~

I

Ie - COLLECTOR CURRENT (rnA)

Ie'" 4 rnA

T.=2S'C

'"Z

IV
10

V~EI= M

24

500

2.0

II

o

1.0

II
0.3
Ie - COLLECTOR CURRENT (rnA)

10

"'CJ

Process 49
Conversion Gain vs
Collector Current

;-

50

r---------~~~~,-,

40

-t--t--t--I

~

~

>

~

VeE:; lOV
Osc INJECTION - 200 mV
lose = 250 MHz
f lill

2:

."

Conversion Gain vs
Oscillator Injection Level

30

20

=213 MHz

'IF = 45

40
VeE

..

a;-

MHz

~~~r-~~~~~~~~~

:;!

30

~
i!l

20

in

r--

ffi

>

~

10 ~~I-I-I-+-+-+-+-H

Ie - COLL.ECTOR CURRENT (mAl

10

=

~

/

-

-

/

V; - OSCILLATION INJECTION (mVI

~'iir1~

.m

1000 PFI
2701l

h_- ':"
:.

1/2W

1

Vee "12V

Tl - 03 Toroid 4:1 ratio } N 22 .
8 turns-Pri. 2 turns Sec.
o.
wire

FIGURE 1. 45 MHz Power Gain Circuit

200MH,

son

RF I •

tt ..bPF ~II
. .?~ 1,1 II
I~

(O'-----il't-......._-......- - f
(
2.0~F

r 1 )

fl"':'

Lol.col
L, ~
------------11(: 1000pF

-::,"1...

47 Kll

C)

C

---V8B~~VCE~

Vee -15V

FIGURE 2. 200 MHz Conversion Gain Test Circu.it

889

CD
tJ)

o

~

=tOV

Ie =4mA
fsig 213 MHz
fl. F • = 45 MHz

a
n

.....

co
fI)
fI)

Q)
(.)

e

~National

Process 61 PNP Darlington

D Semiconductor

PRELIMINARY
DESCRIPTION

n.

Process 61 is a monolithic, double-diffused, silicon epitaxial Darlington. Complement to Process 05.

0.007 --11_--1
10.1781 1

APPLICATION
This device is designed for applications requiring extremely high current gain at collector currents to 1.5A.
PRINCIPAL DEVICE TYPES
0.025
(0.6351

TO-202, EBC: D41K1-4
NSDU95,95A
TO-237, EBC: 92PU95,95A
TO-92, EBC:

1_ _

0.026
(0.660)

Parameter

MPSA62-66

--I I
Conditions

Min

NF

Ic = 1 rnA, VCE = 5V, Rs = 100k,
f = 1 kHz

CCB

VcB =10V, IE=O, f=1 MHz

hFE

Ic=10 rnA, VcE =5V

5,000

hFE

Ic = 100 mA, VCE = 5V

5,000

hFE

Ic=1A, VcE =5V

1500

VCE(SAT)

10 mA, 0.01 mA
100 mA, 0.1 mA

VBE(ONI

10 mA, 5V
100 mA, 5V

Typ

Max

2

/

dB

5

8

40,000

200,000

1.2
1.25

Units

pF

1.0
1.5

V

1.4
2.0

V

50,000

hfe

Ic = 10 mA, VCE = 5.0V, f =1 kHz

BV CES

Ic= 1OO I'A

40

BV EBo

I E= 1O I'A

12

ICES

VcE =15V, VBE=O

100

nA

ICBO

VcB =15V,I E =0

100

nA

lEBO

V EB =10V,l c =0

100

nA

PD(maxl
TO-202

V
V

Tc=25°C
TA=25°C

10
·2

W

TO-237

TCOLLECTOR LEAD = 25°C
TA=25°C

2
850

W
mW

TO-92

TA=25°C

600

mW

OJC
TO-202

Tc=25°C

12.5

'C/W

TCOLLECTOR LEAD = 25°C

62.5

'C/W

OJA
TO-202

T A= 25°C

62.5

'C/W

TO-237

T A=25'C

147

'C/W

TO-92

TA=25°C

208

'C/W

TO-237

TJ(max)

All Plastic Parts

150
8-90

. °C

Notes

~National

Process 62 PNP Small Signal

D Semiconductor
0.018
- - - - - - 1 0 . 4 5 7 1 - - - - - - . ...

-1

v

DESCRIPTION
Process 62 is a non·overlay, double·diffused, silicon
epitaxial device. Complement to Process 07.

--/~~
~.

APPLICATION

~""

These devices are designed for low level, high gain, low
noise general purpose amplifier applications to 20 mA collector current.

0.018

PRINCIPAL DEVICE TYPES

10.4571

2N3550
TO-18:
TO-46:
2N2605
T0,92, ECB: 2N4058
TO·92, EBC: 2N5086

"
Parameter

Conditions

Min

Typ

Max

Units

1

3

dB

8

pF

5

pF

NF

VcE =5V, Ic=10"A, Rs=10kfl,
PBW = 15.70 kHz

hfe
C ib

VCE =5V, Ic =500"A, f=20 MHz
VEB =0.5V

Cob

V CB =5V

hFE

Ic=1"A, VcE =5V

hFE

I c =10"A, VcE =5V

60

hFE

I c =100"A, VcE =5V
Ic=500!,A, VcE =5V

75
90

270

90

270

hFE

Ic=1 mA, VcE =5V
Ic=10 mA, VcE =5V

VCE(SAT)

Ic=1 mA, I B =0.1 mA

0.10

VCE(SAT)

Ic=10 mA, IB=1 mA

0.15

V

VBE(SAT)

Ic=1 mA, I B=0.1 mA

0.75

V

VBE(SAT)
BV CEO
BV CBO

Ic=1 mA

50

V

Ic=10/'A

60

V

BV EBO

IE= 10 /,A

8

ICBO

VcB =40V
VEB =6V

hFE
hFE

lEBO

3

6
3.5

45

630

75

0.90

I c =10mA,I B =1mA

8-91

V

V

V
100

nA

100

nA

Notes

Process 62
DC Current Gain vs
Collector Current
500

z

VeE

~

~

~5V

o~

i5
~

II III

It "12;o~1

L-

O.B

I

100

o
0.001

0.01

0.1

10

50

>

C

TA '" 100 t

o
1.0

10

100

-1.0

rVcs=-40V
;
:5 " 5 . 0 .

1.0

~

§

~ i~I~~~~!~i~~
0.001
0.01

TA

-

75

100

125

i5-

-0.4

~

-0.2

~

~

c:

-10

N

~

""
==
~

N

~w

~

~
8

"

\ \

-1.0

I

~ -0.1 0.1

.."'"

1.0

6:~

s

-?o";;!e

~
~

10k

w

'"'!5

.

~

lk

IS
I" 6:~"e
~e",

I

=:

150 Hz

.......

.......
.J

0.1

Ie - COLLECTOR CURREN1 (rnA)

1.0

!5

V

;~.::= VeE - :-5.0V

10k

~
I

1.0k

.£

o

50

25
-

75

100

100
0.001

125

JUNCTION TEMPERATURE I'C)

B

......

lOOk

10k

lk

<,'''e
~
~~);it'e
~Q de
~t1e
"e"" . . .
-s.ov
~

Vc~ ~
~

10 kHz

BANDWIDTH
" 1.5kHz

0.01

1M

./

f

100
0.001

-20

c:

1M

I

'"

-16

u

c:

~

-12

Contours 01 Constant
Narrow Band Noise Figure

100
0.001

"'

0.01

;=.

'O..

~
"e
K:-

......

r-...
r-...

"'

Ie - COLLECTOR CURRENT (rnA)

8-92

10k

Ci

5k

1.0

..to

2k

1\1:~,,~

~t>~ ~~

w

'"'z

~

lk

!5'"'

500

w

.

"-

1\

~

1\

r"<;
1"-1\
I"-

ill

B

\

~"~

f---

1\

t'N

~

VeE --5.0V

I

1.0

0.1

Contours 01 Constant
Narrow Band Noise Figure

'"
0.1

0.01

Ie - COLLECTOR CURRENT ImA)

Contours 01 Constant
Narrow Band Noise Figure

~w
'"'"'

-B.O

~

~

"

-4.0

w

j

~

I
o

V'B. VeB - REVERSE BIAS VOLTAGE IV)

~

I

z

1b·~rl-

"::'<'

~ lOOk

TJ

~O ..~ ~NOWIDTH

~ tOOk

50

10

10

.1

VeE - -5.nV
f=I.0kHz

Cibo Ie = 0

z

Contours 01 Constant
Narrow Band Noise Figure
lQqb

4.0

V~B .150V

Ie - COLLECTOR CURRENT ImA)

1M

:3

100

100

10

--

=:25"C

~

V.

I'..

=1.0 MHz

B.O

Collector-Base Diode
Current vs Temperature

~

0

200

12

....

o

~

~

'co"

w

z

Ie - COLLECTOR CURRENT ImA)

li: "" li:
0

.'"'

1.0

1000

,. ,.

>

-

I I

TA=25°C

>!

f

I III

0.1

"

150

16

o

150

100

50

;t

VCEISATI TA

~ -100

>!

I'\.

;p

;:;

AMBIENTTEMPERATURE eC)

1

'\11---.

20

VBi'Wi TAl" 25;C

Contours 01 Constant Gain
Bandwidth Product (IT)

'"

100

"'

I--- I--TO.9~ ~181~ -

Input and Output
Capacitance vs Reverse
Bias Voltage

-I--

-0.6

>

50

I

K--

TA - AMBIENT TEMPERATURE (OC)

".

w

co

JO.OOOl 25

200

Ie -10 Is

~ -0.8

'"

0.1

~

300

Collector and Base
Saturation Voltage vs
Collector Current

Collector Cutoff Current vs
Ambient Temperature

~o

1',.:

x

Ie - COllECTOR CURRENT (rnA)

Ie - COllECTOR CURRENT (rnA)



lIJj~,J

300

g

:=

UJ1U

400

i

Base-Emitter ON Voltage vs
Collector Current

Maximum Power
Dissipation vs
Ambient Temperature

200

I

~

1.0 MHz

BANDWIDTH
~ 2.0 kHz

100
0.01

"'
0.1

1.0

Ie - COLLECTOR CURRENT (rnA)

10

Process 62
Equivalent Input Noise
Voltage and Noise Current
ys Collector Current

~

~

10

~
a:

5.0

1:11 I

~ 2.0 -

~-

....

.,"'

g

.... 1.0
~

VeE

..

....
~

=-S.OV

"of'

-

....'1:-""

~

~

0.02 "....
~
I- 0.01 =i
0.005

'".'~O~~z

VeE = 5V

BANDWIDTH =15.1 kHz
m

~

..=

6.0

"'a:

;;:

.,"'

"'"~ c;
< "I
'"~ "
~

,=(6kHZ
0.002
">5 0.2 ~
11II In. f'" 10 kHz 0.001 ;
ffi 0.1
0.001
0.01
0.1
1.0
I
Ie - COLLECTOR CURRENT ImAI
~

"i

Noise Figure vs Frequency
5r-rTTT1mr-T"T1mnn---rTTT1n---......

VeE = -S.DV

§

I""

V.

B.O

I
m

0.05 <:

~

~

0.5

:!

0.1

Wideband Noise Figure vs
Source Resistance

~

-"'

~

4.0 ~

"e

a:

~

=10~A

'!...

2.0

I

I ,lc-250pA R,=5kn
111111111
I,
~',Ie-500pA R,=1 kn
~',"11I11I

"
I

le=100pA

~

"

0
I.Dk 2.0k 5.Dk 10k ZDk 5Dk lOOk
R, - SOURCE RESISTANCE In I

~

31--\-t+HtH-tHiIllll--++tHHll--H+tlHII

.,
"'c;

'!~'.

II

I I Ii III

II

o Ie ~~~~~ Rs =,),~,kn 11111111 II
100

1M

lk
10k
lOOk
,- FREQUENCY 1Hz!

SMALL SIGNAL CHARACTERISTICS (f = 1.0 kHz)

Symbol

Characteristic
Input Resistance

hie

. Output Conductance

hoe
h re

Min

Typ

Max

Conditions
Ic=1.0 mA, VCE = -5.0V
Ic= 1.0 mA, VCE = - 5.0V
Ic= 1.0 mA, VCE = -5.0V

2.5

8.0

20

kG

5.0

19

50

,",mho
x1O- 4

100

250

800

Voltage Feedback Ratio

10

Small Signal Current Gain

hre

Units

Ic = 1.0 mA, VCE = - 5.0V

TYPICAL COMMON EMITTER CHARACTERISTICS (f = 1.0 kHz)

Common Emitter
Characteristics vs
Coliector·Emitter Voltage

;
"•

~

!;<

3
~~

1.5

I:

t!

~

a:

i~

~

~

""" ......

".

F-HN...
:-l-l-l-l-l-l-j
1-"""

:

hOI

0.1 r=I.0kHz -+-+-++++-1
Ie =1.0 mA-+-+-++++-1
TA "'2Soc
0.5 ,"-,-,_~-..J-..J-..J--'--'--'--'
o -5.0 -10 -15 -20 -Z5
Ve, - COLLECTOR·EMITTER VOL TAGE·IVI

Z.O '"y-e-,-._-5"".OV::-r-,-.,........,..---r-,
1.•

1.&

~ 1.4
~ 1.2

1.1 I-HI-".t.-F-t--t--t--t--t--i

0.9

Common Emitter
Characteristics vs
Ambient Temperature

.
III

"
~

, ....

1.3 H-t-t-+_hf.lndh::,,-~F-

>

~

I I

~

Common Emitter
Characteristics vs
Collector Current

0.5 1.0 2.0 5.0 10
Ie - COLLECTOR CURRENT ImAI

8·93

1.0

.. O.B
~ 0.6
~ OA
~

~

Ic=1.DmA

'i

+-+-l'---t-+-.I

-I--I--I--t-hr
1---I-1+-1+-+--I--t-/t~h..I-./--l
I l
;'~
' = 0 kHj

c

ht'rd~~

hol, -

'hi.
I I

-ZO 0 20 40 60 60 100
T. - AMBIENTTEMPERATURE I'CI

-60 -40

~National

Process 63 PNP Medium Power

~ Semiconductor
o.ozo

"
I

DESCRIPTION

10.5081----1
0.003
j'EMITTER

Process 63 is a non-overlay, double-diffused, silicon
epitaxial device. Complement to Process 19.

Bi E
----,////vy //1/ 1/
~

(0.076)

~

~
/
V
V
V

~

I
I

.J1f
~ r-~

/

~

/

-+

APPLICATION

I

This device was designed for use as general purpose
amplifiers and switches requiring collector currents to
500 mAo
0003.1,
iD.0761

~

/ ,

t1f]

/

PRINCIPAL DEVICE TYPES

0007

iDi7aj

~

TO-5:
TO-18:
TO-92, EBC:
TO-92, ECB:
TO-237:

o.ozo

~////y//v~ J"
-

0.003
10.0761

Parameter

2N2905
2N2907
2N4403
2N3702
TN2905

f--

Conditions

Min

Typ

Max

Units

Notes

tON

Ic=150 mA, IB1=15 mA

30

45

ns

Figure 1

tOFF

Ic=150 mA, IB2=15 mA

220

290

ns

Figure 2

GCB
GEB

VcB =10V

6

8

pF

20

pF

hfe

Ic = 20 mA, VCE = 20V,
f=100 MHz

NF (spot)

Ic= 100 I'A, VCE = 10V, Rs= 1k
f = 1 kHz

hFE

Ic=1niA, VCE = 10V

50

hFE

50

hFE

Ic= 10 mA, VCE = 10V
Ic = 150 mA, VCE = 10V

hFE

Ic=500 mA, VCE = 10V

30

VCE(SAT)

Ic=150 mA, IB=15 mA

0.5

V

VCE(SAT)

Ic=500 mA, I B =50 mA

1.2

V

VSE(SAT)

Ic= 150 mA, IB= 15 mA

1.3

V

VBE(SAT)
BV CEO

Ic=500 mA, I B =50 mA

1.6

V

Ic=10mA

35

V

BV CBO

Ic=1001'A

50

V

BV EBO

I E = 1O I'A

6

ICBO

VcB =35V
VEB =4V

lEBO

V EB =0.50V
1.5

2.5
1.5

50

8-94

150

dB

400

V
100

nA

100

nA

Process 63
Base·Emitter ON Voltage vs
Collector Current

DC Pulsed Current Gain vs
Collector Current

1:::11111111111
~

80 ~~-r++rr-~~~~~

"

~

40

~~~++H-~~4-}H~

OL.J...LlL--L.J...l..ll-L.l..ilLL...LJ.:lLJ
100

10

0.1

~

1.0

"~

0.8

c:

0.6

>

;,::""""
:: 1000 t

~
~

0.4

I

0.2

,:

111111

0

1000

0.1

i= 2800

....
~

c: 2000

"

1600

f'..

::;;

~

1200

~::;;

800

'"

"\,

I--

TO·18

k 400
"
l'"

100

TA

~

'\TO.5

1'-.. '\
f'.. L'\
150

100

,,,

5.0

_

,

2.0

u

1.0

>

o

.....
::~

-0.7

u

'J

""u....

,......

;C

f.<5'C

V

I-'

;:;
u

'!-J

Ie

12

l,"'I'
En

8.0

-500

Vee

-

150

;::

100

=

400

\

10

e

E~
-50

I,

300

"
;::

Ie - COllECTOR CURRENT (rnA)

~/J

-0.2
-0.1

I 'IM"I' It"r"'1 l'i'IM"j lOtI'
-10

-1.0

-0.1

-100

Rise Time vs Collector and
Turn On Base Currents

"....

i

I
1

v

-20

~ -10

"'"

~

~

]'\.

I

~or/,

I

10

"'"
"....
I

I,: 15':;:"'l--

Ie - COLLECTOR CURRENT (mAl

8-95

V~

V 1.1
./

lOos

-2.0

,

1000

V

-5.0

-1.0
100

10

-500

-50

I
1000

11'11

50MHz

Ie - COllECTOR CURRENT (rnA)

I

,.tr
100

1/

~

200

I
II--:J

150MH'lTV-~

u

>

v

l~)V

-1.0

,

u

-10

100

Ltl'

-2.0

2QOMHz

~
~

Is:?:: IcllD

::

-

1\"

50

I S1

1\

::;;

-5.0

::'"

\ \WI

u

Vee:: 15V

15V

\ \1111

-10

~>

'"....e

1.0

-20

W

Turn On and Turn Off Times
vs Collector Current
500

W

Contours of Constant Gain
Bandwidth Product (f T)

~

crinANi

-500

Ie - COLLECTOR CURRENT (mAl

"'"

......

-100

-10

REVERSE 81AS VOLTAGE (VI

III

Ic/19

-1.0

?

I

.....

IlrT

-0.1

IN.

IBl :: 182 ::

'I

-0.01

-60

I'-..

I I

4.0

Switching Times vs
Collector Current

200

III

II

Ie - COLLECTOR CURRENT (mAl

250

-50

C,bo -INPUT CAPACITANCE

"-J.I

-0.5
-100

-40

= 0 i'....

Cor
-10

-30

TT1

,

I

./

-1.0

-20

Input and Output
Capacitances vs Reverse
Bias Voltage

-

~"

~"

-10

VeE - COLLECTOR TO EMITTER VOLTAGE (V)

JIJ
.25'C/

I

B~

16

,,,,
-;::

25'C

......"

200

ffi~ -1.1
.... W

65°C

;:~

20

We

1=

c: ....~ -0.05

Ic= lD1 a

!;l> -0.9

-0.1

u

~

-1.3

t:",

~ ~
w>

~

~

~~
",,,
~z

Pulsed Base Saturation
Voltage vs Collector Current

::;;"
~~

r-l c =10I B

~S

::;;-

/

10

200

rc)

-0.5

7'

20

150

AMBIENT TEMPERATURE

-

Pulsed Collector Saturation
Voltage vs Collector Current

'"

'"e
~

50

./

100

50

TA

+-

V

25°c

50

W

Te - CASE TEMPERATURE ("el

."
.",

::

B

"\,

is
~

~

'\

~ 2400

100

Collector Reverse Current
vs Reverse Bias Voltage

I--

;C

JOO

200

Ie - COLLECTOR CURRENT (mAl

Maximum Power
Dissipation vs
Case Temperature

:3200

TO.92'!\.'-

~,

100

10

1.0

r- ~~1\.

400

~

",
,~

111111

I\.T05

500

x
::;;

;;

VeE:: 10V

~

600

0

111111
111111

;;;

100

;C
~

'"

I IIIII

.....

";::e
is

TA

Ie - COLLECTOR CURRENT (mA)

"

~

E 800
1111111

TAI~ l~o~:~

::

Maximum Power
Dissipation vs
Ambient Temperature

V

./

6~ ~
-10

-20

-50

-100

-200

Ie - COLLECTOR CURRENT (rnA)

-500

Process 63
}

-30V

~
200n
--0

LP)

lK

°"L£v

--I

~

~

50n

1
S200NSL
"::"

FIGURE 1. Saturated Turn On Switching Time Test Circuit

lm~

+15V

lK

f9

lK

O~v
50n

--I 1-

."

S 200 NS

"::"

FIGURE 2. Saturated Turn Off Switching Time Test Circuit

SMALL SIGNAL CHARACTERISTICS (I = 1.0 kHz)
Symbol

Characteristic

Min

Typ

Max

Units

Conditions

480

2000

rl

I c =10mA,V CE = -10V

I'mhos
x10 -6

Ic= 10 mA, VCE = -10V

hie

Input Resistance

hoe
h re

Output Conductance

80

1200

Voltage Feedback Ratio

162

1500

hfe

Small Signal Current Gain

Ic=10mA, VCE = -10V

100

Ic=10mA, VCE = -10V

TYPICAL COMMON EMITTER CHARACTERISTICS (I = 1.0 kHz)
5.0

"e

2.0

-""

1.0

w

0.5

",
i;;:

:l

">
">-

0.2

"-

h,.
~
rh
.

l"-

r

rho.

V

0.1
-1.0

1.3

ho.~

~hi'

~

i'-...

V

-2.0

-

~

t7

/. (1.
I

h"

i;;:
w

1.0

">

0.9

\..
h;.//

-10

Ie -COLLECTOR CURRENT (mAl

-50

-4.0

-

~~

~~

I/'

~

~

>-"

-12

-8.0

-16

VeE - COLLECTOR VOLTAGE (V)

8·96

1.4
u

1!l
"

~
>-

"
">

w
=>
~

Ic "'-10mA
lA" 25°C

, h,.

25°C

-20

r....

,

0.8
-5.0

hf:~
hOI::::!.'

\ hra and hoe

1.1

:l

VeE'" -10V
"

"

\

~

h::'1--

TA

~

1.2

1.5

h':~
h::~

I
I

-20

">-

Ic=-10mA
VeE =-10V-

1.3

•

1.2
1.1
1.0

ho•

0.9

~

0.8

hi.

0.7
0.6

~

~

-~':~I-)::;~
...

-

~

~

~

~

iIP'

0.5
-40 -20

0

20

40

60

80

TA - AMBIENT TEMPERATURE (Oe)

100

"'tJ

~National

Process 64
PNP High Speed Switch

~ Semiconductor

Process 64 is an overlay, double-diffused, gold doped,
silicon epitaxial device_ Complement to Process 22.
APPLICATION·
This device was designed for high speed saturated switching applications at collector currents to 200 mAo
PRINCIPAL DEVICE TYPES
2N2894

TO-92, ESC: PN4313

Parameter

Conditions

Min

Typ

Max

Units

Notes

tON

Ic=30 mA, IS1=3 mA

10

20

ns

Figure 1

tOFF

Ic=30 mA, IS2=3 mA

21

30

ns

Figure 1

ts

Ic=ls1=ls2=10mA

15

20

ns

Cob

VcE =5V

3_0

4_5

pF

6_0

pF

C ib

V Es =0_5V

hIe

f= 100 MHz, Ic=30 mA,
VCE = 10V

8

hFE

Ic=1 mA, VCE =1V

20

hFE

Ic= 10 mA, VCE = 1V

30

hFE

Ic=30 mA, VCE = 1V

40

hFE

Ic = 100 mA, VCE = 1V

30

12

90

150

VCE(SAT)

I c =10mA,l s =1 mA

0_15

V

VCE(SAT)

Ic= 30 mA, Is=3 mA

0.2

V

VCE(SAT)

Ic=100 mA, I B =10 mA

0_5

V

VSE(SAT)

Ic =10mA,l s =1mA

0_90

V

VBE(SAT)

Ic=30 mA, IB=3 mA

1_20

V

VSE(SAT)
BV CEO

Ic= 100 mA, Is= 10 mA

1_50

V

Ic=10mA

12

V

BV CBO

Ic=10!'A

12

V

BV ESO

I E =10!,A

4.5

ICBO

VCE = 10V

100

nA

lEBO

VEs =3V

100

nA

8-97

CD

t/)
t/)

en

DESCRIPTION

TO-52:

an

V

.,a:::..

Proc~~s
DC Current Gain vs
Collector Current

c

5
~
~

..I!:

5

200

PULSE WIDTH

=300 I"

160

I \~5'~

I,

40

rli ~
J r-~

I
-55 C

-0.1

-1.0

O.B
0.6

!
~
I

-

-200

~
g

-0.1

Ie =10 IB

-0.1

i3

0.1

5 .400

~

-1

-0.1

-10

-100-200

8,

....

~
~

...
to:

..

f

5.0

l-~

r-

3.0

CDbo

Cibo

Ie "0

./

o
w

./

-1.0 -2.0

~

iii

20

2.0

5.0

-'"

~

yo
.~

...... 1-.0

2.0

10

20

~

2i

60P

a:

500

5.0

Ie

'"~

10

20

50 100 200

:!

...

50

100 200

Ie - COLLECTOR CURRENT (mAl

100

125

150

'z"

;::
co

~

~

. To·92
300

200

To·52

,-""

1\

100

D-.

:!i

.E

50
TA

-

100

i".

.150

~
200

AMBIENT TEMPERATURE ("CI

Delay Time vs Turn On Base
Current and Reverse Base·
Emitter V

T"'--

-100-200

t:;

"'~

·I E =0

-10

~

~
~

.. -5.0 1I-++t-t--t\-H~~-t1'-1

"

t--... .......

-1

0:

F: 1 MHz

4.0

1.1

8.,

Input and Output
Capacitance vs Reverse
Bias Voltage
6.0

~

/

o

.!r

Ie - COLLECTOR CURRENT (mAl

-n

1-""r;'25'C

r-

Coliector·Base Diode
Reverse Current vs
Temperature

5
/

100

f-'"
i--"

-I

Ie - COLLECTOR CURRENT (mAl'

TA =25°C

3110

il":

~

~ru

-0.1

100

Collector· Base Reverse
Current vs Reverse Bias
Voltage

i

~
c

I

S-0.01
> .

10

1.0

~ 200

. ~~'IC

't -0.02

-55'C

~
25
!''"", -0.4 ~

0:
0:

-55'C

c

-1.2

-O.B

t:;

0:

~ -0.05

~

r;

VL

o

,:

!"'

IL:
V'

1~5 C

c

B

~=.1'0~1~

il

c

:;!l

I"

~, -1.6

0.2

0:
0:

z

-0.2

i

-2.0

!e - COLLECTOR CURRENT (mAl

-0.5

5

~

11111

;;

-10

Base Saturation Voltage vs
Collector Current

...
c
>

0

Co!lector Saturation
Voltage vs Collector Current

~

~

a

~m

0.4

Ie - COLLECTOR CURRENT (mAl

CJ

=-5V

2

III

.it

VeE

z
a:

II

w

1.0

c

C

BO

.~
>

III'

a:
a:

a...
c

"Ii(

I-

120

il
~

VCE=-1V

DUTY CYCLE =1%

Base·Emitter ON Voltage vs
Collector Current

64

-50

50

100

TA - AMBIENT TEMPERATURE ('CI

8·98

150 '

~

,:

2.0

5.0

I., - TURN·ON BASE CURRENT (mAl

10

"'C

Process 64
Rise Time vs Collector and
Turn On Base Currents

1
~

::

~
~

1,;; 20 ns

2.5

10

ZO

50

~

1.0

';"

0.5

Z.5

2.0

15 ~~~~+~~~+"0~n~'~~
10

~~~~~~~~~~~

z

~

1.0

5.0

H-+~4++Hlel~100mA

~

0.5

Vee'" -J.OV
o L...L--L-L-.LJ----'.--L-L-~~...J

lO

TURN·OFF BASE CURRENT (mAl

1.0

1.5

Z.5

~
::l

:a

~

§
';"
CD

11

'r-f-II
I

:a"'

~

~

~

z.~/7"'~

/

II

2.0

o

'

I

t=~/~t=~/=!~1=1=-t,e-~-tl-0-mf:-A--i
Vee'" -J.DV

L....J---'----'.---L---L--'-......:.::........~__'

o

l.O

/

I
01.
3.oni'..;....~~~~-l

4.0 f-I-,,I+f-+-++/l
......+-+--;

I., - TURN·OFF BASE CURRENT (mAl

Z.O

4.0

6.0

B.O

-3.0V

VB.

25 HC-+--j---fj4-+~-+/--A--+-+-1
94n

15 H--+--1-+4.0 ns-A--+~-h-H
H-+-It-~~t--3.D ns ~
10

H---.Jj4-+++..y.A+-+-H -l

5.0

/

V,N

Vee;; -2.0V

..........

O'--'--'---'--'---'----'--L....,..:..:c~

o

5.0
' .2 -

10

15

20

25

TURN·OFF BASE CURRENT (mAl

lO

r-

°"

v""" ·ie~100mA

Pulse generator

tr :$1.0 ns
PW~400

~VOUT

lK

LI

2K

To sampling scope

tr :s:1.0 ns
ZIN",100k

50n

ns

PPs ~ 150
ton VBB ~ 0, VIN ~ - 6.85V
toffvBB~

-9.85V, VIN~ +11.7V

FIGURE 1. Switching Time Test Circuit

8-99

10

IB2 - TURN·OFF BASE CURRENT (rnA)

~
~

10

6.0 H--tJI-+--t7'-t--t--+--t-t-/-,j

Fall Time vs Turn On and
Turn Off Base Currents

1~

B.O

6.0

III
I{-S.Ons

ffi B.O

I c l"'10mA

2.0

Ie ~lOmA
Vee;; -J.OV

TURN·OFF BASE CURRENT (rnA)

10

;.

° tj=j~I:LJtj=±:1LV....:e~e_~~-l~.o~v
0.5

4.0

_-1"

Fall Time vs Turn On and
Turn Off Base Currents

:1

o

f-'"

Z.O
'. 2 -

~1-1t---t,f+-Y+-~B-t:!~~

~

v

V

l.O

h~ n;-I+~+-M-+-l

r-

V

~
I

H-I-It-+-lf++-bf-H-l
H-tH-+-Jt-9.0 ~;t"7f-+-t-H
1.5 ~---bI-+--lJ'+-t/~'+-++-+-1

"'
~

'. 2 -

Z.O

10n,/

/

4.0 Hf-J.I'-H-b'f-+-+- 5.0 oS-

<

B 2.0

25

1.5

15

1/

:§
t-

~ ~ 15 nstl-H~'+++-b4--1

2.5

ffia:

ZO

1.0

r-17 ~7VI'-t-t-t7f-V-;

6.0

Fall Time vs Turn On and
Turn Off Base Currents

I-

15

~

H--J.A-""4-+-Hlel~ 10 rnA
I-+£t-"F-~+-t-++-+Vee ~ -l,OV
0.5

HI-'t,_~t-ZO_nr.sRJI'--j--,I\/-j-f--H

'.2 - TIlRN·OFF BASE CURRENT (mAl

1

10

>'"

HIH/-j;4--b"j"-H~-+-+-l

100

10 ~~-r-rl/~~~~~
8.0

"'

V

Storage Time vs Turn On
and Turn Off Base Currents

5.0

1~I",hVf-t-t-+-i

/

Ie - COLLECTOR CURRENT (mAl

o

~

15'nsHYH-+7f-+-H

1.5 H-ft-t..I'-t--tI-ii
/L'-t--B.O ns

0.1 L-...L...L.LL_..L---1....:V
:::.e!:.e_~-..:l: .O. :.JV
5.0

<

5

II
I

r-

Z.O

:§

1.0 2.0

Storage Time vs Turn On
and Turn Off Base Currents

Storage Time vs Turn On
and Turn Off Base Curreiils

a
n

CD

o
o

~

Lt)
U)

en
en
CD

(.)

e

~National

a

Process 65
PNP High Speed Switch

Semiconductor
0.015

DESCRiPTION

------(0.3BlI----~

a..

Process 65 is an overlay, double diffused, gold doped,
silicon epitaxial device. Complement to Process 21.
APPLICATION
This device was designed jor very high speed saturate
switching at collector currents to 50 mAo
PRINCIPAL DEVICE TYPES
TO·18:
2N4208
TO·92, ESC: 2N5771
MPS3640

Parameter

Conditions

Min

Typ

Max

Units

Notes

tOFF

le= 10 mA, IB2= 1 mA

18

25

ns

Figure. 1

tON

le=10mA,IB1=1 mA

11

15

ns

Figure 1

ts

le=IB1=IB2=10mA
VeB =5V

15

20

ns

3

pF

3.!i

pF

COb
C ib
hFE

VeE =10V, le= 10 mA,
f=100 MHz

hFE

le=1 mA, VeE = 1V
le=10 mA, VeE = 1V

hFE
hFE
hFE
hFE
hFE

2

VEB =0.5V
6.5

9

20
30

85

le=50 mA, VeE = 1V
le=100 mA, VeE =1V

25

75

le=1 mA, VeE =0.5V
le=10 mA, VeE=0.3V·

20

150

20
20
0.15

V

VeE(SAn

le=1 mA, I B=0.1 mA
le= 10 mA, IB= 1 mA

0.20

V

VeE(SAn

le=50 mA, IB=5 mA

0.50

V

VBE(SAn

le=1 mA, I B=0.1 mA

0.8

V

VBE(SAn

le= 10 mA, IB= 1 mA

0.95

V

VBE(SAn
BV eEo
BV eBo

le=O mA, IB=5 mA

1.5

V

le=3 mA

12

V

le=100/,A

15

V

BV EBO

le=10/,A

4.5

leBo

VeB =10V
VEB =3V

VeE(SAn

lEBO

8-.100

V
100

nA

100

nA

""C

Process 65
DC Current Gain vs
Collector Current
200
180

z

160

~

/-- ~IWIII-.III
T "125'C
P-

120

~

'"'"

f-

40

~

i""

-0,1

-1

VeE = 10

D,B

0.6

~

-10

-100

!

>

w

~ -1.0

I

o

~
~

~o ~.1

i
....

TA

~

~

-

TA =25°C

0.2

I -0,02

II

-0,01
-0.1

J

-1.0

-0.1

2.6
~

w
u

2.2

U

It
;3

100

BO

60

Cobo Ie ; 0 -

B

C", le"O l"-

t:

>

I I
-6.0

-8.0

-10

-3.0

~

5.0

-7.0

-2.0

20

=10 182

1200

f\

1

'~~

.'"

1\1

500 MHz

t,

z

-10

~

r-....

2.0
1.0
5.0

10

20

le- COLLECTOR CURRENT (rnA)

1,

;:r58

~

:0<

25

.....

~
.§:

'"

~
~
x"
"'"

"'"i,i""""

75

100

125

150

Maximum Power
Dissipation vs
Ambient Temperature
800

600
500
400

~

~

TO-92
JOo

TO·18
"

'\

200

J".,.

'\

100

1,\
so

d:

~

100

I"-..

150

1'.
200

4.0

Delay Time vs Turn On Base
Current and Reverse BaseEmitter Voltage
r--.--,--,-....-,--r,

3.0

f-+-+-+:-:--1+-+l--+-1

2.0

f-f---f----jr-+I-:-4---tiy

.1.0

f7<-----,f---+-+--1f--+-1

~
~

~

:;

..,...V
t,

5.0

50

T. - AMBIENT TEMPERATURE ('C)

~

V

r--t,

7L; Vv~E "1_3.oV

T. - AMBIENTTEMPERATURE ('C)

lOrnA
= 182 ::: 1 rnA

"."

IZ

0.01

~

-100

VBe'(OI = 0

10

AL

~

Vee = -1.5V

:;;

~

~

u

I

Hzt-_~Hz ~~~'+1'oo J(.

;::

...

,
VeE:: -6.0V

0.1

z

lor MHJI-

w

z

2.0

15

-100

0
;:: 700

5OO '

=

IS1

.s

~

1.0

~MIHZ

-1.0

Ie

-10

10

~

~
C

200

-1.0

100

1.0

It

t-

~b.1-""

Ie - COLLECTOR CURRENT (rnA)

~

-11

-9.0

II ,

I

V'

~

TA =2S"C

-0.1

Ie - COLLECTOR CURRENT (rnA)

VBE!

0.4

Collector Saturation
Voltage vs Collector Current

.

....

I-'

Ie - COLLECTOR CURRENT (mAl

~

VIUl J II 11111 II
TA "'25"C r i l l
tIMII

:;

IIIIIIIIII
1111111 III

20

1.0

~

II~I~II" -~5!C

0

60

~

I'-.

IIIIIII II

80

u

o
>

11~1~11"25" c'

f-

100

~

.~

2:

VeE -lV

fmffi-w

140

....z

Base-Emitter ON Voltage vs
Collector Current

a
o

1.0

2.0

3.0

4.0 5.0

1., - TURN ON BASE CURRENT (rnA)

CJ'1

an

(0

Process 65

(J)
(J)

Q)
(,)

e

0...

Rise Time vs Collector and
Turn On Base Currents
;<

..

.§

10

~
~
w

2.0

~

1.0

15

0.5

I

0.2

~

--

..~ =
-

0.1

-

1.0

0.5

I II

Vee- -1.5~

5.0

..~

.§

1J,1 V

f-

I-

V

20:,-

5.0

V
V

0.1

20

·

50

o

o

'e - COllECTOR CURRENT (rnA)

10

.

8.0

~

6.0

.§

~
w

JL
ILl
r--7 15:~

z
9

4.0

.

2.0

.~
I

o

.'B2 -

~

0.3

w

.
I

0.3

0.4

"

/'

2.0

.~

~

;<

~

6.0

8.0

I

10

V

I

/
/

o

0.1

'B2

0.2

0.3

.=

1.0

I

0.4

0.5

-TURN·OFF 8ASE CURRENT (rnA)

10

.~

.§

~

r-l

~
z
9
z

.
I

o

1/

V

J

J

2.0

·

II

I

4.0

g;

II

6.00~J

J

3.0 ns

",'"
......

Vcc =-1.5V

u

u

~

~

Vee = -1.5V

non

2.2K

son

1, ::;;:1.0 ns

1°'

10

TURN·OFF BASE CURRENT (rnA)
VBB

PW"
,N 240 ns

P

Ie = 50 rnA

o
'B2 -

ZIN'"
V

V

4.0 ns

6.0

w

J

!1.'80»
8.0

TO SAMPLING
SCOPE
ZIN 2.100 K!1
t, <1.0 ns

I
"F

51n

Ion
VBB

toff
~Ground

VBB~

VIN = - 5.BV
IC~

10 rnA, 181

VIN
~

1.0 rnA,

IB2~

~

-8.0V
+9.8V

1.0·rnA

FIGURE 1. tON and tOFF Test Circuit

8·102

'"

~

J!.? ....

I-.2.0

3.0

4.0

5.0

TURN·OFF 8ASE CURRENT (rnA)

o

/
I

!/

5.00'/

J
J
/ V
J ~

/
.,t!! 0
-

%
Vee

=

-t.5V

Ic=10mA

o
'B2 -

Fall Time vs Turn On and
Turn Off Base Currents
;<

10 ns

/

I

3.0
2.0

.

Ie = 1.0mA

TURN·OFF 8ASE CURRENT (rnA)

/

".6.00'/

4.0

.,~

co
z
a:

40 ns
Vee = -1.5V

o

"
I.--'

1.0

5.0

.§

V
1/450,

/

0.1

·

Vee:: -1.5V

o

"

/

Fall Time vs Turn On and
Turn Off Base Currents

~w

1/

0.2

15

~ ?i-"'

4.0

o

:..-:
'B2 -

I

II
50 ns

/
1/

~

'/

1.0

0.5

~

Ie = 50 rnA

o

0.4

I
lj =

~

J

~

0.5

;<

.

.§

V'

10!~

/

..g;"

J

15::;--

/

J

2.0

Fall Time vs Turn On and
Turn Off Base Currents

I

ts = 20 ns

3.0

~
15

.-

.- ~

0.2

~

Ie = lOrnA

r- -!~.}O 0'

TURN·OFF 8ASE CURRENT (rnA)

'B2 -

Storage Time vs Turn On
and Turn Off Base Currents
;<

0.1

4.0

w

3.0 ns

...... .-

I

10

......

./

..
~

V

/'

Vee --1.5V

;<

.§

Ie:: 1.0 rnA

5.00'.......

1/

0.2

~

III

2.0

/

C.3

5.0

Vee· -1.5V

V

8.00;/

.,~
9
.,
a:

V

II

0.4

~
w

V

J'

t,}12~J

;<

1.- '" 2 ns

II- fio1J

Storage Time vs Turn On
and Turn Off Base Currents

Storage Time vs Turn On
and Turn Off Base Currents

1.0

2.0

J.U

4.0

5.0

TURN·OFF BASE CURRENT (rnA)

~National

Process 66 PN P Small Signal

~ Semiconductor

1------13 MILS~I
o

DESCRIPTION

Process 66 is an overlay, double-diffused, silicon epitaxial
device. Complement to Process 23.
APPLICATION

This device was designed for general purpose amplifier
and switching applications at collector currents of 10 p.A
to 100 mA.

22 MILS

PRINCIPAL DEVICE TYPE
TO·92, EBC: 2N3906

Parameter

Conditions

Min

Typ

Max

Units

ns

tOFF

Ic= 10 mA, IS2= 1 mA

150

300

tON

Ic= 10 mA, lSI = 1 mA

30

70

ns

Cob
C ib

Vcs=5V

3.0

4.5

pF

15

pF

nl e

f = 100 MHz, VCE = 20V,
Ic=10mA

NF (wideband)

Ic=100I'A, VcE =5V,

V ES =0.5V
2.5

Notes

4.5
2.0

dB

Rs= 1 kO
50

hFE

Ic=0.1 mA, VCE = 1V
Ic=1 mA, VcE =1V
Ic= 10 rnA, VCE = 1V

hFE

Ic=50mA,VCE=1V

40

hFE

Ic=100 mA, VcE =1V
I c =10mA,l s =1 mA

20

VCE(SAT]

0.25

V

VCE(SAT]

Ic=50 mA, Is=5 mA

0.40

V

VSE(SAT]

Ic= 10 mA, Is= 1 mA

0.85

V

VSE(SAT]
BV CEO

Ic=50 mA, Is=5 mA

0.95

V

le= 1 mA

35

V

BVcso
BV ESO

Ic= 1O I'A

45

V

Ic= 1O I'A

5.0

Icso

Vcs=25V

100

nA

IESO

VEs =4V

100

nA

hFE
hFE

40
50

8-103

150

350

V

[;]I

<0
<0

Process 66

U)
U)

CD

DC Current Gain vs
Collector Current

(.)

e

200

"
'"

Base·Emitter ON Voltage vs
Collector Current

VcE =1.0V

0..

160

i
""I

~

~

1.0

~
=

0.8

>
z



Ie - COLLECTOR CURRENT (rnA)

20
18

...~

I

;:
~

150

Contours of Constant Gain
Bandwidth Product (IT)

>

i--"

100

TA - AMBIENT TEMPERATURE

a:

~

i

50

'"
~
c

V

a:

1000

w

II\.

~
09

2w

leIla =10
TA =2SoC

Collector·Base Diode
Reverse Current vs
Temperature

'"
;;l

100

1.2

= 0.8

~

13

"\

100

Base·Emitter Saturation
Voltage vs Collector Current

2w
c
>
~

I

ffi

10

Ie - COLLECTOR CURRENT (rnA)

1l

~...

200

I

0.8

~

,

300

!i

Collector·Emitter Saturation
Voltage va Collector Current

0.6

1\

400

~

Ie - COLLECTOR CURRENT (mA)

"
">=

I\.

500

2i
a:

~
0.1

>
c

600

ill

o

2w
'"
~

700

~

~

TA - 2SQ C

I'

80

800

§:

s.nv

~100'C

c

120

Maximum Power
Dissipation vs Ambient
Temperature TO·92

0.1

10
Ie - COLLECTOR CURRENT (rnA)

8·104

0.1

1.0
Ie - COLLECTOR CURRENT (rnA)

10

"'C

Process 66

a
(')

CD
Current Gain

Voltage Feedback Ratio

~

1000
VeE" H]V
f = 1.0 kHz

500

~I-

200

~ 100

o

'"

:--1-

!

1\
10

w

I

'"
'~"
:-

50
20

tan 181 = Ic/IO

l'..

L
0.1

1.0

1.0
0.1

10

VBE(OFFI" D.5V

'"

I

10

1.0

foll'B1 = 182 =

10

Ie - COLLECTOR CURRENT (rnA)

Ie - COllECTOR CURRENT (mAl

500

181
;:0;;:".

-

.......

w

";::

........

10

t,

d

r--....

t,

..,

"'"

'"

I--

1.0
1.0

IcllO

~ r--

........ t"

""

IB2

I-I

10

Ie - COLLECTOR CURRENT IrnAI

8-105

1.0

lc/10-J.-+++---1
10

Ie - COLLECTOR CURRENT 1m AI

Switching Times vs
Collector Current

100

en
en

CJ)
CJ)

100

;::
a:
~

z

:0

Turn On and Turn Off Times
vs Collector Current

100

100

.....
CD

en

m

~Nationai

Process 67 PNP Medium Power

Semiconductor

(.)

e

0.030

0..

_
~

0.005
(0.127)

i

0.004
(0.102)

(~2)

rl

DESCRIPTION
0.0035
(0.0889)

Process 67 is a non-overlay, ·double-diffused, silicon
epitaxial device. Complement to Process 12.

r~

APPLICATION
0.009
(0.229)
I 0.030
(0.762)

~

~

:; ~
0

t

PRINCIPAL DEVICE TYPES

I

;:;

Parameter

This device is designed lor general purpose amplifier and
switching applications at currents to 1A and collector
voltages up to 70V.

I

'"

w

::;

TO-39:

Min

Conditions

2N4033 TO-92:

Max

Typ

tON

Ic=500 mA, I S1 =50 mA

35

tOFF

(c=500 mA, I S2 =50 mA

250

Cob
C ib

VCS= 10V

hfe

VCE =10V, Ic=50 mA,
1=100 MHz

NF (spot)

Ic=100!,A, Rs=1k, VCE =10V,
1=1 kHz

hFE

Ic=0.10 mA, VCE = 10V
Ic=1.0 mA, VCE = 10V

40

hFE
hFE

Ic =10mA,VCE =10V

50

hFE

50

hFE

'IC= 100 mA, VCE = 10V
Ic=500 mA, VcE =10V

Units

ns

V Es =0.50V

15

pF

90

pF

2
1

dB

45
150

350

35

VCE(SAT)

Ic= 150 mA, Is= 15 mA

0.2

VCE(SAT)

Ic=500 mA, Is=50 mA

0.6

V

VSE(SAT)

Ic= 150 mA, Is= 15 mA

1.0

V

VSE(SAT)
BV CEO

Ic=500 mA, Is=50 mA
IC= 10 mA

60

V

BVcso
BV ESO

Ic=100!,A

70

V

Icso

Vcs=50V

100

nA

IESO

VEs =5V

100

nA

i

120

~

100

u

1.0

III
In

"e

1400

~

1200

8110~!C

5

1000

'"

:;
"c o.e
>

I'

~

'"Il!!
~w

l-

~25°C

0.6

~

0.4

1i

~

c

::;

I

I

80

"x
""

0.2

Z

~

I

0

~

60
0.1

1

10

100

Ie - COLLECTOR CURRENT (rnA)

lk

Maximum Power
Dissipation vs
Ambient Temperature
§:
.§. 1600

III

~

160

c

V

Base-Emitter ON Voltage vs
Collector Current

?:

VeE -10V

140

V

7

DC Pulsed Current Gain vs
Collector Current

"~

V

1.2

I E=10!,A

180

Notes

ns

11
1

TO-237: TN4033

MPS4356
MPSA55

>

0.1
0.1

1.0

10

Ie - COLLECTOR CURRENT (rnA)

100

~
~
.E

800
600

I\.
l ' N'0.237*
I'

400

TO.92'1 ~TO.39

1': ~

200
0

""

50

~

100

150

"200

TA - AMBIENTTEMPERATURE rC)

* One square inch of copper run
8-106

"0

Process 67
Safe Operating Area TO·39
with "Wake Field"
Type 296·4 Heat Sink

Maximum Power
Dissipation vs
Case Temperature
5A

I I
1'\ I I

Ie MAX (iOMS)

f'-.I
f-...f'-.

........

6Cor~~,~~~~
POWE1R DI~SI~J~ " \

TO-39 (KOVAR!'-.

LIMITED

50

100

150

P.W. AS INDICATED

-D.1

'"w

Ie

100

al '"w

z

50

;3

20

~

"z
0

lC(bO Ie =0

I

;::
;2

~~

CObol~ l"-.

10

?:

;

r--. 1"--..
.......



'";;:w

1.0

Z

I

LI

~

0.5

r
r 111m

0.1

1.0

10

0.01

100

0.1

1.0

10

100

lllm

I II

400

1lll1Tl
101 = 102

]

300

'"

200

t=

Vee

t,,1f

=lellD

=-3DV

100

too

o
10

100
Ie - COLLECTOR CURRENT (rnA)

8·107

10

tf

to
100
Ie - COLLECTOR CURRENT (mA)

Turn On and Turn Off Times
vs Collector Current
500

J'I

o

f - FREQUENCY (kH,)

Ie - COLLECTOR CURRENT (rnA)

1\

ZOO

100

111111111 1111
111111111 II

111111

o
0.01

'"
t=

1\ Ie = 1.0mA, Rs =1.0kn
'mIlrLlIIIII[ llll

~

c;

500 1000

Ie - COLLECTOR CURRENT (mA)

Noise Figure vs Frequency

I

TA '" 125°C

~ -0.2

II

I--

1Y/
i--"'U
~"n I

--

+-

Ie - COllECTOR CURRENT (rnA)

Rs -l.Okn

T~ • 25lC
l--""

-0.3

REVERSE BIAS VOLTAGE (V)

100 200

20

Ie - COLLECTOR CURRENT (mA)

II

10

-1.0V

VeE

/

100

-0.5

-0.1

=-lDV

=10 10

,,~

~

VeE

I-160

..,.I

I

-0.6

6.0
-0.1 -0.2 -0.5. -1.0 -2.0 -5.0 -10 -20 -50

f= 1.0 kHz

0
0

0')

Collector· Emitter Saturation
Voltage vs Collector Current

~
w
U
~

u
:>

1000

CD

tn
tn

......

V

Q

~

10

200

~

200

VeE - COLLECTOR EMITTER VOLTAGE (V)

F'" 1 MHz

~

~~T;Y2~YCCLEI

200

II-

u

I"'I\~<-------

1\ ,\.

10m A

240

I-

go

LIMITED
1 SEC

Common Base Open Circuit
Input and Output
Capacitance vs Reverse
Bias Voltage

;:

j--------

PW~

CASE TEMPERATURE ("e)

500

~,

SECOND BREAKDOWN

I I . . . . t\..
~
I I
Tc: -

.,J

A

t'\

¥

~

,'0",;-'

['\.TO-39 (STEEL)

Gain Bandwidth Product vs
Collector Current

a
n

1000

~
U)
U)

Q)

(J

~National

Process 68 PNP Medium Power

~ Semiconductor

e

DESCRIPTION

a..

Process 68 is a non·overlay, double·diffused, silicon
epitaxial device. Complement to Process 09.
0.00425

APPLICATION

=!)A--I4--l7'I-±--'- /D.iD795)
---1C~~4--+4...L'-T" ,.'"

t

This device waS designed lor general purpose amplilier
applications at collector currents to lA.

(11.508)

PRINCIPAL DEVICE TYPES
TO·92; EBC: CS9012

.MPS6563

Parameter

Conditions

Cob
Cib

Vcs =10V,I=1 MHz

NF

VcE =10V, Ic=l mA, Rs =100{J,
1=1 kHz

Min

Typ
9

V ES = 0.5V, 1=1 MHz

Max

Units

12

pF

35
1.0

IT

VeE = 10V, Ie = 50 mA

175

hFE

VeE=lV,le=lmA

50

hFE

VeE = W, le= 100 mA
VeE = W, le=500 mA

50

hFE
VeE(SAT)

Ic=150 mA, Is=15

VeE(SAT)

le=500 mA, Is=50 mA

VSE(SAT)

pF
dB
MHz

150

30

300

-

0.2

V

0.5

V

le= 150 rnA, Is= 15 mA

1.0

V

VSE(SAT)

le=500 mA, Is=50 mA

1.2

V

leso

VeE =30V
VEs =5V

100

nA

100

nA

IESO

0.3

BVeso
BV ESO

le=100!'A

35

V

I E=10!,A

7

V

BV eEo

le= 10 mA

25

V

8·108

Notes

"'0

Process 68
DC Pulsed Current Gain vs
Collector Current

Collector· Emitter Saturation
Voltage vs Collector Current
.5

240 r-="",,-rnrrnmr-rTTTTmrTTlrmm

vCE " 1OV ++HllIli-l-+ltlllfH-H1'IJIH
~ 200 H++l-lll!f--+mlllll-+1+Hllll-++lll1IH

1.25

z

....

1

160

~ 120
~

u

TA

"

I,

.4

~+I1I::j:mt~Im;UI1

'" 2:
~ «'"w

~

.3

.2

>
z
c
_i=

~

80 H++l-lll!f--tmlllll--H+Hl4H-++-HfItI

I-+++t-+-j-H++++tl-+-HH-l

.95
.B5

a~

.75

J~

40 H++l-lll!f--tmlllll--H+Hl~++

II

1.05

I

V
V

.65

TA "25'C

~

o

OW..LJ..UJIlL...L.LWIIlL.L.LWlllL...L.L
0.1
10
100 1000

~~~~~ilL~ilU
1000
.1
10
100

lC - COLLECTOR CURRENT (mAl

Base·Emitter ON Voltage vs
Collector Current
~

1.2

40

w

u

z

V

.9

«
....
;;;

-:.0

;:;

32

.7

a:

F = 1 MHz
w

.6

l'\.

30

20

~

10

;:;

16

'"

8

.5

u

«
....
U
:i'

z

I'..

~

I-'

Input Capacitance vs
Reverse Bias Voltage

~

~

;li

j..o'

I

t:::--1'"

J"..
I'

=

u

I

.1

10

100

1000

Ie - COLLECTOR CURRENT (rnA)

Jl

1

100

10

.5

50

REVERSE BIAS VOLTAGE (V)

Coliector·Base Diode
Reverse Current vs
Temperature

~

VCB = 30V

Contours of Constant Gain
Bandwidth Product (iT)

V

2:
w
'"
«
~>

V~E 1"ll~V
le"'l mA

=
os
w

20

..

l'.

~

;;;

\

"i

c:
c

Rs '" loon

"

..

~

I

~

R1sIJU

8
I

o
25

50

75

100

.1

125

10

TJ -JUNCT10N TEMPERATURE ('C)

100

1000

f - FREQUENCY (kHzl

c

~

BOO
700

~ 600

;;;

'"

~

,.
,.«x
x«
,.

500
400

'\.
I\.

'i.

~ 300
I

~

I\. o.921

200

'\J.

100

I'\.

50

100

150

TA - AMBIENTTEMPERATURE eCI

8·109

~
I\~

/

.1

UI 1
10

100

Ie - COLLECTOR CURRENT (rnA)

Maximum Power
Dissipation vs
Ambient Temperature

~

.sz

J

1

~\f~
,>Jfi I-" r.L;
"\"\ " ~t.1 / ~

:;

1\

~

o

I

10

c:

c:

'"=
w

1

REVERSE BIAS VO LTAGE (VI

Noise Figure vs Frequency

1/

.01

1000

100

40

r-....

24

10

Ie - COLLECTOR CURRENT (mAl

F -1 MHz

w

.8

.1

Collector· Base Capacitance
vs Reverse Bias Voltage

~

VeE:::: 10V

1.1
1.0

.55

Ie - COLLECTOR CURRENT (mAl

200

CD

en
en

0)

!:;

W c

H+tI-t1ItI--++++HllI--+1-Ht1*-B/-tt1IH

1.15

(')

en

~~Ijo
I.

25'C ++fI-+-H-tf- ..:;Ie " 10

c

~

Base·Emitter Saturation
Voltage vs Collector Current

a

500

~
en

gJ.

(,)

e

~ National

a

Process 70 PN P Memory Driver

Semiconductor

a.

0.030
(0.762)

,-

0.004
(0.102) - -

1--

0.0035

(0.088~--

I--

L/,/

L

/0

D.ESCRIPTION

L

/r(
~

/

?)

l
a:

w

0.005

t

(

,)

/,

)....

~

/

/

Parameter

Process 70 is a non·overlay, double·diffused, gold doped,
silicon epitaxial device. Complement to Process 25.

~

APPLICATION
This device was designed primarily for high speed
saturated switching applications.
PRINCIPAL DEVICE TYPES

0.009 0.030
(0.229) (0.762)

~
') ~

~

(0.1271

-,

/

Conditions

TO·39: 2N3467
. TO·237: TN3467

J
Min

Typ

Max

Units

Notes

tON

Ic=500 rnA, I S1 =50 rnA

20

40

ns

Figure 1

tOFF

Ic=500 rnA, I S2 =50mA

60

90

ns

Figure 2

Cob
C ib

Vcs =-10V
VES = -0.5V

15

20

pF

80

pF

hFE

Ic= 100 rnA, VCE=-1V

40

hFE

Ic=500 rnA, VCE= -1V

30

hFE

Ic=1A, VCE=-1V

15

VCE(SAT)

Ic=150 rnA, Is= 15 rnA

0.3

V

VCE(SAT)

Ic=500 rnA, Is=50 rnA

0.6.

V

VCE(SAT)

Ic= 1A, Is= 100 rnA

1.0

V

VSE(SAT)

Ic= 150 rnA; Is=50 rnA

1.2

V

VSE(SAT)

Ic=500 rnA, Is=50 rnA

1.2

V

VSE(SAT)
BV CEO

Ic= 1A, Is= 100 rnA

1.7

V

Ic= 10 rnA

40

V

BV C60

ic =100p.A

50

V

6

100

200
120

BV ESO

I E=10p.A

Icso

Vcs=30V

100

nA

IESO

VEs =4V

100

nA

8·110

V

""C

Process 70
Collector-Emitter Saturation
Voltage vs Collector Current

DC Pulsed Current Gain vs
Collector Current
160

~

....

~

VeE I"

",

II 'i~'" lC'rr-- T}"IJll v /

Ie

Ie =10

5V

VCE" IV

....... r-...

80

ffi

I1111

120

B
"
"u

1.4

0.6

TA" 25"C

z

Base-Emitter Saturation
Voltage vs Collector Current
~

....

, I~ II" 100'c.1

I- Cl

1.0

'1111

~ §!

0.8

=z

~~

0.6

~

40

~

~

~~

arJ

TA "25'C \.

'"j "1-ITrl
,

~'"

i=

~

>;Ji

o

II~ II
18 = 10

o

10

Ie - COLLECTOR CURRENT (rnA)

IC - COLLECTOR CURRENT (mAl

Input and Output
Capacitance vs Reverse
Bias Voltage
.

BVCER vs RBE, IC
120

BO

I'-...

60

H-I-t-J",.t-:J CE.+I+-++-H
f-H--H---,-ti-!''''''H-1EFO -

1

110

~CES

Delay Time vs Turn On Base
Current and Reverse BaseEmitter Voltage

=10 mA

TA "J5'C- r--

'"\

100

BO

4.0
~

r--r-----'l'--++-+-+--t--HH

-

~:;

3.0

~"

"'~"

~

....
~~

BVCEO

~ ~

a:

2.0

1L-+41---h"-"'r-++-+-Ji<-l

1.0

f--¥'-t-}'+-,I'--+-:i'--H-l

,

70

;
>

60
50

50

10

tk

100

10k

lOOk

1M

-50

-30

R (n)

REVERSE BIAS VOLTAGE (V)

Storage Time vs Turn On
and Turn Oil Base Currents

1000

100

5.0

90

10

50

Ie - COLLECTOR CURRENT (rnA)

130

100 r-rT-rr--r-r-r-r-I-F-"-I-M-'H,

fA ~ll~rIC'

0.2

1000

100

10

/

1---

-70

Fall Time vs Turn On and
Turn 011 Base Currents
50

"5....

i
~
~

/ 1// IIY
H'--j,I'-V~Cf--+-..k1+-:yq--l

20
10

o

t--f~V-t-+-..../'-t--:)joo;,
V- Ie " 100 m1----Lf-f-/-+---t:;;."'9Vee = -30V;

o

-10

-20

-30

~

1 1 1 1

f-+--*--tr-+--Y':-':='c:-:J

"z

'"
....

"I

-50 .

-50

IS1 - TURN ON BASE CURRENT (rnA)

-100

-150

-200

t,:->...~

,r
~

"z

g;

....

100

.....-

rl-'

tf"20nf_~

50

!

,
o

V

-- .....-

o

Ie = SOD mAl
Vee = -30\1

50

.

]:
i=

20

"z

10

....
~

5.0

1]

2.0
1.0

-50

-100

-150

-

I Ic"'100mA

o

-10

-20

-30

-40

-50

TURN ON BASE CURRENT (mAl

-

5"

i
I-

100

~~~~~~~~~~~
=
tr

12 ns

50

I-.J-"""''l----~,___t___+Ii

20

I---_t__--=""""-+-_+--J

~
~

;;'i
z

-

",.r- ~

z

~

Vee = -30V

50

-200

1., - TURN ON BASE CURRENT (rnA)

"""

o

Ie ""SODmA
IS1 ""1 82 ""SOmA

50 ns

Rise Time vs Collector
Current and Turn On Base
Current

tp ;;;;;;;
I

-

.l.-i;I- -

1 1 Vee =-30V
'B1 -

100

vY1tf"L~ y

1

tf"

I

Switching Times vs
Ambient Temperature

~tf=10ns

_f-

10

181 - TURN ON BASE CURRENT (rnA)

'---

1

......+-1"

...-

20

o

,/

ti" 25 nj> ;;;;;;-"...,

./

I

-40

V

30

100 f-+t'-+rt-cY--t---t--7"F--l

"z
'"....
",

V
YI

t,-20",:'"

40
150

-100

IS1 - TURN ON BASE CURRENT (rnA)

Storage Time vs Turn On
and Turn 011 Base Currents

100

TA - AMBIENT TEMPERATURE ('C)

8-111

150

-50

-100

CD

U)
U)

......

o

-55

~

0.4

T

O'-----L-LL.LLlLlL---1.-L.LLl.JJ.lJ
10
100
1000

i

1.2

a
o

-200

Ie - COLLECTOR CURRENT (rnA)

-500

Process 70
Turn On and Turn Off Times
vs Collector Current

Switching Times vs
Collector Current

100 r.1.-,-::-=';""IB2~="';I-e'';'';,::"0--.l"T""T"T"T"Tl'
Vee = -30V-j-_j_
It-IH--H-I

80

;0

60r71.-,=~I-.2~_~le~"~0-',,-rrrn
50 ~V~ee~=_-~3rOV~+--r~~~A

~.~~-r--t-7tl~OF~FI-t~HH

..... ft:

!

q

1400 I--+--t-I+-+-+-I-t--I
1200 I-+-r-+-I--+-++-I

l"'~

~~ 600
~

~
~

20 I----I---+~~~
1+1~

-L
Ie - COLLECTOR CURRENT ImAI

~

iii

::

~ 800

r~~~_r-_j__r_r~_rr
I - -.......
--'f"'oo....
..".,.....-+ ~ONI

100

~ 1600 .-...,,..--,-.-...,..,,..-..

~ 1000 I-~ ITOo2~7'+--r-t--+--1

j80r----+--+-~~HrHH

"'

Maximum Power
Dissipation vs
Ambient Temperature

1000

100

Ie - COLLECTOR CURRENT ImAI

1000

g

~

"-

t--.JO 39
o

'\I. 'i-.

400

~

200
0
0

50

100

l"-..

150

200

TA - AMBIENTTEMPERATURE I'CI

* One square inch of copper run

Maximum Power
Dissipation vs
°Case Temperature

~TOo39

50

100·

150

200

iC - CASE TEMPERATURE I'CI

-30V

PW=200 ns
Rise time:s:2 ns

59n

Duly cycle = 2%

+2V

:,11
FIGURE 1. tON Equivalent Test Circuit

-30V
(

59n

~SCOPE
200n

+3V

2<1, <500 ••
12<5 ns
13>1 ••
Duly cycle = 2%

FIGURE 2. tOFF Equivalent Test Circuit
8·112

"tJ

~National

Process 71 PN P Small Signal

~ Semiconductor

1

CD

0.018

DESCRIPTION
Process 71 is a non-overlay, double-diffused, silicon
epitaxial device. Complement to Process 04.

-

APPLICATION
This device was designed lor general purpose amplilier
applications at collector currents to 50 mA.
PRINCIPAL DEVICE TYPES
BC177 Series
TO·18:
TO·92, CBE: BC560 Series

Parameter
NF (spot)

Conditions

Min

IC=200I'A, Vc =5V, Rs=2k,
I =1 kHz
2.0

Typ

Max

Units

1.0

4.0

dB

6

pF

12

pF

hIe

Ic = 10 mA, VCE = 5V, 1= 100 MHz

Cob

Vcs=10V

C ib

70

hFE

VEs =0.50V
Ic=100I'A, VcE =5V
Ic=1 mA, VcE =5V

hFE

Ic= 10 mA, VCE = 5V

70

hFE

Ic= 50 mA, VcE =5V
Ic=1 mA, Is=0.10 mA

50

VCE(SAl)

0.10

v

VCE(SAl)

Ic= 10 mA, Is= 1 mA

0.11

V

0.95

V
V
V

hFE

VBE(SAl)

Ic=1 mA,l s =0.10mA
Ic=10mA,ls=1 mA

BV EBO

200

80

560

1.0

Ic= 1 mA

30

Ic= 10 I'A

40

V

6

V

ICBO

I E= 10 I'A
VcB =30V

IESO

VEs =5V
DC Current Gain vs
Collector Current
200

z

~

~

'"'"
B
u

c

Base·Emitter ON Voltage vs
Collector Current
~

V~E ~ 1,10v

w

~

>
z
co
a:

~

~
~
~

80

I

=

II
II

'"

160
120

1.0

40

1

0.8

r0.6

0.4
0.2

--

L

~o~~

VeE

~
>
0.1

1.0

10

Ie - COLLECTOR CURRENT (mAl

100

0.1

;t

Ei
c

"'

~
il'"

x
'"",

=1.DV

I II
I II

0
1.0

10

Ie - COLLECTOR CURRENT (mAl

8·113

nA

100

nA

Maximum Power
Dissipation vs
Ambient Temperature
800

>= 100

"""'"

Z

o

...

-

~

100

~

.sz

I
I

II

Notes

4.0
4

VBE(SAl)
BV CEO
BV CBO

(")

CJ)
CJ)

-·~----(0'4511-------'>0.0035
(0.08891

a

.

600
500
400

"

~

10,92

300
200

10·18

."
'\ i'..

100

).

~

100

~

50

TA

-

100

b..

150

AMBI ENT TEMPERATURE ( C)

200

........

.,..

1'0

Process 71

en
en
CI)

e
a..

Capacitance vs Reverse
Bias Voltage

Collector· Emitter Saturation
Voltage vs Collector Current

(.)

0.20

'"

~~

;;w
w"

12

lel/l~ ~ll0

I
II

0.16

g;~
....
u>

'"

0.12

~'"

0.08

''''
-'"
i!;i

0.04

10

1000

~~

~

II

"

....

Ic II

I"

I'..

~z

8~

Collector· Base Diode
Reverse Current vs
Temperature

I-

Cibo

~

it'

~
~w

ob.

">-..'

'"'"
'"~

f= 1 MHz

'\

II
II
II

0.1

1.0

10

Small Signal Current Gain
vs Collector Current

~
....
iii

~

500

~

100

"
iii'",

;;;

V

~

r--...
o
10

1.0

100

100

Small Signal Input
Resistance vs Collector
Current

Small Signal Output
Conductance vs Collector
Current

!

VeE = lOV

e

'"

I'LkHz

w

u

w

z

..

'"

'"'"

........

t;

~

C
z

~,

~

z

1.0

0.01

1.0

10

FREQUENCY (kHz)

100

0.1

1.0

10

;

"~

100

200

~:j:~$~~~~tj:d

'"

80

150

1--+-H+----1r-+-+-++---+----I

'"u

60

100

1--+-H+----1r-+-+-++---+----I

~

I
w

~
~

'"I

.z

,

60

I
/
1.0

Small Signal Voltage
Feedback Ratio vs Collector
Current

z

~

120

'"'"

VeE = lOV

~>

50

,

VeE - lOV
f'" 1.0 kHz
0L.--'-'...L.J.._'--L..L.LL........l----'
0.1
1.0
10 20

-+-+-++-+-+---1

I' 1.0 kHz

~

\

1\

40
20

o
0.1

Ie - COLLECTOR CURRENT (rnA)

1.0

10

Ie - COLLECTOR CURRENT (rnA)

8·114

10

Ie - COLLECTOR CURRENT (rnA)

;;:

~

8....

0.1

20

Ie - COLLECTOR CURRENT (rnA)

Small Signal Cutri!nt Gain
vs Collector Current

~
~
;;;

I
I
I

o

0.1
0.1

180

~'"

r-..

.E

o

VeE = lOV

1'1.0 kHz
240

~

'"'"z

....

1\

,

300

z

10

::ia:

w

10k

lk
Rs - SOURCE RESISTANCE (U)

100

'"

Ie = 200 pA
f: 1 kHz

'f-'

Noise Figure vs Frequency

~

VeE'" 5V

i\.

I - FREQUENCY (MHz)

RB=2kn

125

Noise Figure vs Source
Resistance

1.0

100

VeE = 5V

100

1\

10

Ie - COLLECTOR CURRENT (mAl

Ie '200"A

75

50

......

~

VeE'" 5.0V
1'100MHz

=

25

TJ -JUNCTION TEMPERATURE eCI

r-.-.

'"

I

1\

o

50

VeE = S.OV
Ic =10mA

I"'-

z

10

./

1.

.1
10

~

10

./

Capacitance vs Reverse
Bias Voltage
z

V

1.0

V

10

REVERSE BIAS VOLTAGE (VI

Ie - COLLECTOR CURRENT (mAl

Ve~' Jov

c-

j
1.

100

100

20

20

~National

a

Process 74 PNP High Vqltage

Semiconductor

-

DESCRIPTION

0.004

~iO.l02)
/////

~

,-,

Process 74 is a non-overlay, double-diffused, silicon
epitaxial device. Complement to Process 16.
APPLICATION
This device was designed as a general purpose amplifier
and switch for applications requiring high voltages.
PRINCIPAL DEVICE TYPES
TO·92, ESC: 2N5401
MPSL51

Parameter
fT
COb

hFE
hFE
hFE
VBE(SAT)
VCE(SAT)
BV CEO
BV CBO

Conditions

Min

Typ

Ic=10 mA, VcE =10V, f=100 MHz
VCB = 10V, f = 1 MHz

100

160

Ic=1 mA, VcE =5V
Ic= 10 mA, VCE = 5V

40

Ic=50 mA, VcE =5V
Ic=50 mA, IB=5 mA

20

50

Ic=50 mA, IB=5 mA

Max

Units
MHz

1\

12

120

250

pF

0.95

v

0.50

V

Ic=1 mA

120

V

Ic= 10 I'A

140

V

I E= 1O I'A
VcB =100V

6

ICBO
!L..u .....

";:3=4V

BV EBO

,

8-115

V
100

nA

100

nA

Notes

Process 74
DC Current Gain vs
Collector Current

Base·Emitter ON Voltage vs
Collector Current
~

160

'"

120

~>

100

c

80

::

140

"~

e-

i
u

Q

I

1.0

15
i=

;;:

.6

~

iii

....

z

60

~

.g 800

v;, '~'5~

.8



'""

210

z

200

~

190

"

180

~
>

~
~

10

I-t-+++-+-+-Ht-+-++bj,.o£j

.4

I-H++--t---t-t-tt-t-H++--l

.2

I-+-t-tt---t--t-Ht-t-+t+t--

o
1000

§

10

I.

80

/

V

o
.1

~

60
u

'"~

z

"e-o:;

0;

5i'"

/

I

I"'

;3

10

50

I In

Ccb Ie:: 0
20

I"'H-I
I III r.1

Ie - COllECTOR CURRENT (rnA)

I III

J~JI

40

;;:

V

f:: 1 MHz

""Ceb IE:::: 0

o
1

10
Ie - COLLECTOR CURRENT {mAl

I IU

~
w

V

10
REVERSE BIAS VOLTAGE (V)

8·116

i

II
Il

100

f" 20 MHz
VeE:: 10V

10

Input and Output
Capacitance vs Reverse
Bias Voltage

12

~

.

.!£ ::

Ie - COLLECTOR CURRENT (rnA)

10

200

Coliector·Emitter Saturation
Voltage vs Collector Current

~~~~~~~~~~

.1

Small Signal Current Gain
vs Collector Current

~

150

T A - AMBIENT TEMPERATURE ("C)

.8

RESISTANCE (kn)

z

100

.20

1\

100

50

~I. ~ 10 -t-t-H+-+-+tt1---l

I'
I'

~

;p"'"

100

Base·Emitter Saturation
Voltage vs Collector Current

I~ ~11'!h

170

"\

Ie - COLLECTOR CURRENT (rnA)

Coliector·Emitter Breakdown
Voltage with Resistance
Between Base·Emitter
220

10

.1

Ie - COLLECTOR CURRENT (rnA)

Z

200

X

"

100

"\.

400

I

~

10

~

<
'"
~

100
VCE - COLLECTOR VOLTAGE {VI

Thermal Derating Curve.

12

1,4

ill

1.2
I,D

C

.a:

"-

~,

I'\.

:;;

"

"-

I.B

~

'\..

1.6

z
e
;::

:::

a:

~

1000

Maximum Power
Dissipation vs
Case Temperature
10

lo~.

Itt

VCE - COLLECTOR VOLTAGE {VI

IC - COLLECTOR CURRENT {mAl

ill
c

LIMIT DETERMINED
BY BVCEO

10

100

:::

1.ILLlU

I'

100

.}:-

;::

Safe Operating Area TO·237

~

\

:!5

100

oS

\

~

10
VR.- REVERSE BIAS VOLTAGE {VI

Safe Operating Area TO·202

1\
1\ \
\

;li
z
20
~.

0.1

1000

I---...

40

100

IC - COLLECTOR CURRENT {mAl

Gain Bandwidth Product vs
Collector Current

lMHz
&ib

0.4
10

F

I

IC -'COLLECTOR CURR~NT {mAl

g

10

10

1.0
0.9
O.B
0.7

~'"
>~

10

.!!; :

1.2

:;;'"

0.7

~

Junction Capacitance vs
Reverse Bias Voltage

1.4

ffi~
;:~

100

IC - COLLECTOR CURRENT {mAl

Base·Emitter Saturation
Voltage vs Collector Current

VCE - 15V

0.9
o.B

10

100

IC - COLLECTOR CURRENT {mAl

,

'-.,JCOLLECTOR LEAO
(T0·237)
TAMBIENT
~37'

O,B

TAMBIENT
'\. ~0-2021

........

0.6

I'\.

I-...

0.4

t'-... I'\.

0.2

~

o
20 40

60 BO 100 120 140 160

o

Te - CASE TEMPERATURE (OC)

25

50

75

100

125

T - TEMPERATURE rCI

8·118

150

1000

."

Process 77 PNP Medium Power

~National

D Semiconductor
DESCRIPTION

1-I

Process 77 is a double·diffused, silicon epitaxial planar
device, Complement to Process 37,

0 031
.

a

n
CD
en
en
......
......

(0.787)

APPLICATION
This device was designed for general purpose medium
power amplifier and switching circuits that require collector currents to 2A.
PRINCIPAL DEVICE TYPES
TO-202, EBC: D41 E7
NSDU51, -A
NSDU52

0.031

~J'

TO-202, BCE: NSE170
TO-237, EBC: 2N6726, 7
(92PU51, -A)
TO-237, ECB: NA22/32 Series
TO·92, EBC: ED1802
TO·126, ECB: MJE170
MJE710

I
Min

Conditions

Parameter
BVCEO

Ic= 10 mA

25

BVCBO

Ic =100"A

35

BV EBO

IE=10"A

5

ICBO

VcB =20V

lEBO

VEB =4V

hFE

I c =100A, VcE =IV

50

hFE

35

\I~-,~ ,~

Ic=lmA, VcE =1V
1~=n~A In=~n rnA

VBE(SAT)

Ic =0,5A, 16=50 rnA

fT

Ic=100 mA, VcE =10V

COb

VcE =10V, f=1 MHz

PD(maxl
TO-126
TO-202
TO-237
TO-92

Typ

Max

v
V
V
100

nA

10

100

nA

150

300
0.5
1.3

100

Units

MHz

200
28

V
V

35

pF

Tc=25°C
. TA=25°C

15
1.5

W

Tc=25°C
TA=25°C

10

W

2

TCOLLECTOR LEAD =25°C
TA=25°C

850

W
mW

TA = 25°C

600

mW

2

IIJC
TO-220

Tc=25°C

TO-126

Tc=25°C

8.33

°C/W

TO-202

Tc=25°C

12.5

°C/W

TCOLLECTOR LEAD = 25°C

62.5

°C/W

TO-237

°C/W

IIJA
TO-126

TA=25°C

83.3

°C/W

TO-202

TA=25°C

62,5

°C/W

TO-237

TA=25°C

147

°C/W

TO-92

T A = 25°C

208

°C/W

TJ(maxl

150

All Plastic Parts
8-119

°C

Process 77
DC Pulsed Current Gain vs
Collector Current

DC Pulsed Current Gain vs
Collector Current

Collector-Emitter Saturation
Voltage vs Collector Current

1000

10

"~

~

100

B
e
W

~
~

"u

~

10 _ _

u

e

"I

0.1

10 _ _

I

W

0.01

0.1

1 L-.L.l.J.lllllL...L.J..Lll.l.llL...L.J..i.LU.w
0.01
0.1
10

10

IC - COLLECTOR CURRENT (A)

1.2

'"'"~

'"g;
....

e

~

a:

~-

0.8

ffiZ

....

0.6

'"

~~

0.6

0.4

~

0.2

r~

:i:

~>

0.4

t-- T~" 125

Q

We

~

I W!~

"....'"

rTle!
0.8

.... w

::

-

Ie

i; .

10

>

100

~

~

200

,.....~

150

~

100

g
100

lk

50

,\\

I

J:.-

,...- LIMIT DETERMINED
BY BVCED

0.01

to

IC - COLLECTOR CURRENT (mAl

e

~

=f

DETERMINED

5
....

15to

B
'"

VeE - COLLECTOR;EMITTER VOLTAGE (VI

Thermal Derating Curve
1.8

~

"c
~

-

~
Ci

.....
TO·202

I
~

~.126

-

-

'-.f'...

....... ~

100

VCE - COLLECTOR·EMITTER VOLTAGE (VI

o

100

10

1

2.0

0.1

0.01 '---'-_ _ _ _-":.::.l...J....JUJ.w

BVCEO

0.01
100

Maximum Power
Dissipation vs
Case Temperature
24
22
20
18
16
14
12
10

10

THIS LIMIT

I

VCE - COllECTOR VOLTAGE (VI

Safe Operating Area TO-237

\

0.1

..!:

10

1

~

B

1.m,s
5m,
DC

'--

lk

30

1 m,

DC

15to

0.1

~

20

COLlECTOR·BASE VOLTAGE (V)

clOD",

....

to

I

-

Safe Operating Area TO-202

is

e

~

10

0

10

to

"
::i

1

0

.J

VCB

B

V

100

10

Safe Operating Area TO-126

'15"

r-

I'-

I

10

.s....

10

20

:!i

10

VCE'10V

e

~

::i

Ie - COLLECTOR CURRENT {mAl

~

"~

~

~

lk

Gain Bandwidth Product vs
Collector Current

e

....

C

0.2

Ie - COLLECTOR CURRENT (mAl

250

30

U

>

~

F'" 1 MHz

;3

~

Z
9

40

u

I

~

I

10

Collector-Base Capacitance
vs Collector-Base Voltage

1111
10 1111

1.2

0.1
IC - COLLECTOR CURRENT (AI

Base-Emitter Saturation
Voltage vs Collector Current
~
;::

W

>

0.01

IC - COLLECTOR CURRENT (A)

Base-Emitter ON Voltage vs
Collector Current
~

0.01

.....

o

20

40

60

80 100 120 140 160

TC - CASE TEMPERATURE (OCI

8·120

1.6
1.4
1.2

1.D

c:

0.8

I

0.6
0.4

~

e

f---I-""':-f"",d----''''k~-f--l

0.2 I--+-+--t--==~~&-l
25

50

15

100

T - TEMPERATURE (OCI

125

150

"'C

Process 77

a
n
CD

o

o

Thermal Response in TO·126 Package

~~

0.7
0.5

~~

0.3
0.2

~~

0.1
0.01
0.05

'"

....
.... '"
,,0

'"'''
:=;:

.......
.......

-

D ~ 0.5
0.2
0.1

~ =:::

~ ~\J'0.02
~~001

,,'"

TIll

I
P(pk)

L

,e! 0.03
t-~~
"-D(SINGlE PULSE)
0.02

r--

-l I..-J
tl
-t2

0.01
0.02

0.05

0.1

OJC(t)~,(tI'OJC

OJC DC THERMAL RESISTANCE
Tpk ~ TC + Ppk 'OJC(t)

0.2

0.5

10

DUTY CYCLE D
20

~

50

*

100

200

11 - TIME Ims)

Thermal Response in TO·202 Package
~c

"'N
~~
....
.... '"
'"
,,0
'"'w

w~

~~

0.7
0.5
0.3
0.2
0.1
0.07

'"'''
........
"''"'
,e!

0.05

"'"

0.03
0.02

-;::-tJ

0.01

D 0.5
0.2

HEATS UNK

b::::;

f-

0.1

FREE AIR

ii.05

~~f02
0.01

SI7GllE~

...

L
P(pk)

I

SINGLE PUlSE

fill
II I
-- 11--

I
0.01 0.02

Tpk-TC+Ppk'OJClt)
DUTY CYCLE 0

-t2-

1111

0.05

OJcItJ-,ltI,oJC
OJC DC THERMAL RESISTANCE

0.1

0.2

0.5

10

20

50

t1- T1ME (ms)

8-121

100 200

500 lk

=!!

t2

2k

5k

10k

20k

SDk

lOOk

co
......
en
en
CI)
CJ

~National

Process 78 PNP Medium Power

~ Semiconductor

e

DESCRIPTION

a..

0.031

------j

Process 78 is a double-diffused, silicon epitaxial planar
device. Complement to Process 38.

I

(0.787) .

APPLICATION
This device was designed for general purpose medium
power amplifier and switching circuits that require collector currents to 1.5A_
PRINCIPAL DEVICE TYPES
TO-202, EBC: 2N6554
D41D1-14
D41E5,7
NSDU55,56
TO-202, BCE: NSE170, 171

0.031
(0.787)

~J
Parameter

TO-237, EBC: 2N6728 (92PU55)
TO-237, ECB: 2N6708, 9 (92PE77A, B)
TO-126, ECB: BD344
MJE171
MJE711

Conditions

Min

Typ

Max

Units

Ic=10mA

40

v

Ic=100!'A

50

V

I E=10!,A
VcB =40V

5

ICBO
IESO

VEs =4V

hFE

Ic=100 rnA, VcE =1V

50
35

BVCEO
BVCBO
BV EBO

V

150

100

nA

100

nA

300

hFE

Ic=500 rnA, VcE =1V

VCE(SAT)

Ic=500 rnA, Is=50 rnA

0.6

VSE(SAT)

Ic=500 rnA, Is=50 rnA

1.3

fT

Ic=100 rnA, VcE =10V

Cob

Vcs=10V

PD(max)
TO-126
TO-202
TO-237
TO-92

80

TC=25°C
TA=25°C

15
1.5

TC=25°C
TA=25°C

10

MHz

150
20.

V
V

25

pF

W

W

2

TCOLLECTOR LEAD = 25"C
T A =25"C

2
850

mW

TA=25°C

600

mW

W

°JC
TO-220

TC=25"C

TO-126

TC=25°C

8.33

°C/W

TO-202

TC=25°C
TCOLLECTOR LEAD = 25"C .

12.5
62.5

°C/VII

TO-237
TO-126

T A =25"C

83.3

°C/W

TO-202

TA=25"C

TO-237

TA=25°C

°C/W

TO-92

T A =25"C

62.5
147
208

"C/W

"C/W

OJA

TJ(max)

All Plastic Parts

150
8-122

"C/W
°C/W
°C

"'C

Process 78
Pulsed Current Gain
vs Collector Current
1000

~

1000

VCE - 5V

";:;
'"....

TC"+125"C

B

' ~125bc'

~

1100

-40"C

1-'

+25 °C ..3Io...

"
"u
"I

~

"u

10

IVCE -IV

l.:£

....

100

C

Collector-Emitter Saturation
Voltage vs Collector Current

Pulsed Current Gain
vs Collector Current

10

~

c

I

f-

.,

i"C

I-

0.1

10

~

0.01

0.1

1
0.01

10

IC - COLLECTOR CURRENT (AI

1.2

VeE -10V (25 CI~
VeE -10V (125'"CI~"

~

"
~
or

........

O.B
0.6

~
w

0.4

:il

0.2

11111

rv;-I~
111111111
11111
11111

Z

~

"

250

;;l
~~

;:~

"'"
~"
"':I~

lk

0.4

f-'" ~~"C

;t
;3

V

:il

;

11111111
1111
11111

0.2

"

I

10

100

lk

Ie - COLLECTOR CURRENT (mAl

IC - COllECTOR CURRENT (mAl

Gain Bandwidth Product vs
Collector Current

Safe Operating Area TO-126

Ivcr~jW;111

111111111 111111111

10

I I 1110111
.

~

150

~

B
or

100

z

~

50

"
0;

11II

DC

lOOps

"

"
:il

I
~

I

.,t100

lk

~

i

100

VCE - COLLECTOR·EMITTER VOLTAGE (VI

~~~~II~t~~1
BY BV CEO
L -..............J....J'-W.J.U.._-'--'-L..J...LJ..I..IJ

1

100

10

VeE - COLLECTOR·EMITTER VOLTAGE (V)

Thermal Derating Curve
1.8

~

1.6

5

1.4

~

I--r-,.

~
a::

-

.......

o

11111\lL 111II1111

THIS LIMIT DETERMINED

0.01

TO·202 f',.,'
0.01 L-......1._ _ _ _--"'=..J....Ju..LW

1

2.0

.,ze.126 -

10

01

I

Maximum Power
Dissipation vs
Case Temperature
24
22
20
lB
16
14
12
10

30

~

B
or

VCE - COLLECTOR VOLTAGE (VI

Safe Operating Area TO-237

1

10

100

10

20

10

Safe Operating Area TO-202

0.01
10

o

....

LIMIT DETERMINED
BY OVCEO

IC - COLLECTOR CURRENT (mAl

OLL~-LLJ-L~-LLL~~

5

1\

0.1

j

VeB - COLLECTOR·BASE VOLTAGE (VI

, I 11111111

"'~

....

~

~

u

11111

f.....- ~c

~

100

u

0.6

I

;;l

Collector-Base Capacitance
vs Collector-Base Voltage

";::

;- ~ clJ ~~~"C

;::

I

"c

;:
c

O.B

III

'

10

~

'.f -10 '1111
10

:il"

10

u

~

~
VeE -IV 1125"CI

I

~

-

VeE" lV (-40'C)

1.2

!5'"
....

0.1
IC - COLLECTOR CURRENT (AI

Base-Emitter Saturation
Voltage vs Collector Current
z
c
;:

~VCE "10V (-4oCI~

'"

0.01
0.01

10

lC - COLLECTOR CURRENT (AI

Base-Emitter ON Voltage vs
Collector Current

?:

0.1

o

W

~

W

~

lM1W

~

TC - CASE TEMPERATURE rCI

8-123

lW

1.2

1.0
0.8

~

0.6

I

0.4

rP

0.2

25

50

75

100

T - TEMPERATURE (OCI

125

150

a

2en
en

......
co

co

.....

Process 78

U)
U)

u
u

e
0-

Thermal Response in TO·126 Package

~~

...~~:;;
... "'

0.7
0.5

D= 0.5

0.3
O.Z

o.z
0.05

0.1
;;;~
zu 0.07
"z 0.05

......
"'''
,!!!

:g~

--

0.1

ZO

~;;

I
Plpk)

~~~O.OZ
),-J:'--0.01

0.03
O.OZ

L

I--f OISINGLE PULSE)
0.05

0.1

--I LJ

DUTYCYCLED=~

tl
-tz

0.01
o.oz

nn.OJc(t)-rltl-OJC
oJC DC THERMAL RESISTANCE
Tpk-TC+Ppk-OJClt)

O.z

0.5

10

ZO

50

100

zoo

tl - TIME 1m.)

Thermal Response in TO-202 Package

~~
:"
... :;;
ffi:::i

.I-~

~3
w~

zu

"z
"'''
......
I!!!

:g~

1
0.7
0.5
0.3
02
0.1
0.07
0.05
0.03
O.OZ

DC
0.:

!IIi

.0.

"ii!

~

~

~hl:-n.. °Jc(t)-rlt)-OJC

:!':p;.;}~;

.~

PU~

N~

'..:: I

.,",L,'

-

I:-:tz~

0JC DC THERMAL
Tpk=TC+Ppk -'Jclt)
DUTY CYCLE D= ~

.D.Ol
0.01 o.oz

0.05

0.1

o.z

0.5-'

10

ZO

50

t1 - TIME (msl

8·124

100 zoo 500 lk

Zk

5k

10k ZOk

SDk

lOOk

~National

Process 79 PN P Medium Power

~ Semiconductor
DESCRIPTION
Process 79 is a double-diffused, silicon epitaxial planar
device. Complement to Process 39.

j-----0.D31

I

(0.787)

APPLICATION
This device was designed for general purpose medium
power amplifier and switching circuits that require collector currents to lA.

PRINCIPAL DEVICE TYPES
TO-202, EBC: 2N6555-56
NS0204-6
NSOU57

0.031

TO·237, EBC: 2N6729,30
(92PU56, 57)
TO·237, ECB: 2N6710
(92PE77C)
TO-126, ECB: B0348
MJE172
MJE712

Parameter

Conditions

Min

Typ

Max

Units

BVCEO

Ic=10 rnA

70

v

BVCBO

Ic= 100 p.A

80

V

BV EBO

IE=10p.A

5

ICBO

VCB=60V

V
100

nA

100

nA

lEBO

VEB =4V

hFE

Ic= 100 rnA, VCE = 1V

40

hFE

Ic=500 rnA, VcE =1V

20

vCE(SAl)

lC=OUU rnA, IB=OU rnA

U.1i

v.

VBE(SAl)

Ic=500 rnA, I B =50 rnA

1.4

V

fT

Ic = 100 rnA, VCE = 10V

Cob

VcB =10V

PO(max)
TO-126
TO-202
TO-237
TO-92

70

120

125
14

Tc=25°C
TA=25°C

15
1.5

TC=25°C
TA=25°C

10

240

MHz
18

W
W

2
2

TCOLLECTOR LEAD = 25'C
TA = 25°C

850

TA = 25°C

600

pF

W

mW
mW

OJC
TO-220

Tc=25'C

TO-126

Tc=25°C

8.33

°C/W

TO-202

Tc=25°C

12.5

°C/W

TO-237

TCOLLECTOR LEAD= 25'C

62.5

°C/W

T A =25'C
T A =25'C

83.3

°C/W

TO-202

62.5

°C/W

TO-237

T A =25'C

147

°C/W

TO-92

T A =25'C

208

'C/W

OJA
TO-126

TJ(max)

'C/W

All Plastic Parts

150
8-125

'C

Process 79
Pulsed Current Gain
vs Collector Current

Pulsed Current Gain
vs Collector Current

1000

1000

z

>-

~

TC"'+125°C

~

_40°C

i

100

!::2.

"w

10

,,,,

10

-"'
"'>>-~

0

,

~

H~

0.1

0.01

1
0.01

10

0.1

'C - COLLECTOR CURRENT (AI

1.1

"

~

'"

>>-

~

VeE" lV (-40"C)

0.6

~"l~,:irCI

0.4

~5~\

;;;
0.1

~

~_

"""

~~
~ ~

wO

VeE -lOY (125 C)
Q

~:>

I III11111 I
I

0.8

0.4

10

100

<3

lk

,..,

w

~

2

~
8

11111

Gain Bandwidth Product vs
Collector Current

0

100

lk

.J

~

150

1-f-j-t+ftt1t-t-ttttjJ:l!;-.t::-H-tttftl

~

100

f--f-j-t+ftt1t-bi''FIttttt---t-f'ltffiftl

z

;;;
2

~,

"

I--f-

DC ~

i

10D}.1S

'"0

=

',{

1m,?

0

~

LIMIT OETERMINED
8Y BVCED
10

lk

0.1
=THIS LIMIT OETERMINE~rf

.Cd

BY BVCEO

0.01
1

100

VCE - COLLECTOR VOLTAGE (VI

~

~
Q

'"

~
~
"~
"x,
;:
100

VeE - COllECT9R.EMITTER VOL TAGE (V)

~

Thermal Derating Curve

24
22

2.0
1.B

. 20
18
16
14
12
10
8

100

10

VCE - COllECTOR-EMITTER VOLTAGE (V)

Maximum Power
Dissipation vs
Case Temperature
~

\

1= oc

"'

0.1

Ie - COLLECTOR CURRENT (rnA)

10

100/.1S

"

",

:.....

~

Safe Operating Area TO-237

30

Safe Operating Area TO-202

0.01
100

10

COllECTOR-BASE VOLTAGE (V)

f

1 m,

~

~,

-

10

~

10

10
VeB

Safe Operating Area TO-126

.5

I-t-I-tttttll-t-ttttttlt-++ltltHl

I--

,

10

10

200

1\
10

Ie - COLLECTOR CURRENT (rnA)

Ie - COLLECTOR CURRENT (rnA)

I

10

g;

IIIIIIII
1

3D

;;:

III1IIII

o

=1 MHz

1\

;3

F= ~ll~~;C

0.1

11111

;:

ri ,;;i

T

f

Z

r- T~ 1"1~~ll,c
~

40

u

11111
0.6

10

Collector-Base Capacitance
vs Collector-Base Voltage

-

11111
10 11111

"'?

11111

~

~

>

Ie

i; "

i=

111111111 I
0.8

1.1

o

VeE "10V(15"CI I

0.1
'C - COLLECTOR CURRENT (AI

Base-Emitter SatuTation
Voltage vs Collector Current
z

I III illllv,," 10V (-WC:~
1I111

0.01

10

'C - COLLECTOR CURRENT (AI

Base-Emitter ON Voltage vs
Collector Current
w

0.1,,_

>

~

0.D1

~

w>

::iz
00
ui=

u

,

~

0>t;~

-40'C
+25°C'

w
~
~
~
~

"'"
"''''

100

0

u
0

::;

z

~

I

Collector-Emitter Saturation
Voltage vs Collector Current

~

1.6

~

1.4

i=

I-

..... ~.116

t-...

TO·202

;;:
ili

1.2

"'

0.8

i5

I-- r--

N"'--.

........ ~

~
0

~

1.0
0.6
0.4
0.2

0
0

20

40

60

80 100 120 140 160

Tc - CASE TEMPERATURE lOCI

8-126

25

50

75

100

T - TEMPERATURE lOCI

125

150

."

Process 79

CD
en
en
......
co

Thermal Response in TO-126 Package

~2

0.7
0.5

D" 0.5

-

"'w

::;;N

or::;

0.3

0.2

~~

0.2

0.1

~~

0.1
0.07
0.05

w",

"'0
5~
"'''
~;::

0.05

I
Plpk)

~~~002
\-~-0.01

I

,!O 0.03
0.02 ~ 0ISING\E{J\5E)

'O~

":Cor

JUL

0.05

0.1

°JCII)",II)-OJC
OJC DC THERMAL RESISTANCE
Tpk" Tc + Ppk -oJcll)

-l l..J
II
-12

0.01
0.02

0.2

0.5

DUTV CVCLE D"

10

50

20

g

100

200

tl- TlME (ms)

Thermal Response in TO-202 Package
~2

"'w

::;;N
or::;
w",

~~

"'0

~~

u;w

"u

"'''
or",
......
,!O

0.7 10" .
0.5

~
ro~

0.1
0.07
h
0.05

~

-::;-~
":Cor 0.03
0.02

t'Si

.-

.H

0.3 10.:
0.2

I::::ii
I

b..

~
~~Il 'Jcll)-,II)-OJC

f?
.LE~

i-'" SiNG.LI

. ""'.

f--=:

_I_

OJC DC THERMAL RESISTANCE

I I

- -;':12.":"

Tpk"TC+PPk-O~CII)
DUTY CVCLE D"..!
12

0.01
0.01 0.02

0.05

0.1

0.2

0.5

10

g

20

50

t,-TlME (ms)

100 200

500 Ik

2k

5k

10k

20k

50k

lOOk

Section 9

Process
Characteristics
Power Transistors

~National

Process 34 NPN

PI~Hlar

Power

D Semiconductor

--

0.087
12.210)

0.008

~10.203)

V

This device is a nonoverlay double-diffused, silicon epitax- .
ial planar transistor_

//////////

V

1\

/
/
0.056 /
11.422)
/
0.070
/
11.178)
/

DE~CRIPTION

~I

\J

~

~

V
V

'n

APPLICATION

,

0_008
10.203)

N

V

::n

V t

V

:U

This device was designed for general purpose amplifier
applications utilizing collector currents to 5A.
PRINCIPAL DEVICE TYPES

TO·39, ESC: 2N2891
TO·237, ESC: TN3440

~ V
V

/ / / / / / / / / / /"/
0.060
~-------I~1.5=24o)-------~.-1

Typ

Max

Units

Ic=1 A, I S1 =0.1A

90

120

ns

tOFF

Ic=1A,ls2=0.1A

200

260

ns

GOb

Vcs =10V, f=1 !:'1Hz
V ES = 0.5V, f = 1MHz

60

70

pF

500

pF

Parameter

tON

G ib

Conditions

Min

hfe

IC=200 mA, VCE =10V,
f=20 MHz

4.0

hFE

Ic=1 mA, VcE =5V
IC =10mA,VCE =5V

40
40

hFE

IC=100 mA, VcE =5V
IC=500 mA, VcE =5V

hFE

Ic=1A, VcE =5V

20
15

hFE
hFE

Notes

5.0

40
40

80

150

hFE

Ic=5A, VcE =5V

VCE(SAT)

Ic=100 mA, Is=10mA

0.05

0.10

V

TO-39

VCE(SAT) .

Ic=1A,ls=100mA

0.20

0.30

V

TO·39

VSE(SAT)

Ic=100 mA, Is=10 mA

0.70

0.85

V

TO-39

VSE(SAT)
BVCEO

Ic=1A,ls=100mA

0.90

1.10

V

TO-39

IC'710 mA

80

BVcso
BV ESO

Ic= 100 /LA

100

I E=10/LA.

8

Icso

Vcs=60V

100

nA

IESO

V Es =6V

100

nA

9·2

Process 34
Base·Emitter ON Voltage vs
Collector Current

Pulsed DC Current Gain vs
Collector Current
120

Ir~~e ~ s.ov

z

~
....

~

..,w

'"~

100

i
w

60

'"u

40

"I

'"

J~:

.

~

~

'"w

~

~

u:..

I-"

~

5.0V

1.4

i:i

1.2

1200
Ci
cr:: 1000

1.0

~

800

~

600

I)

0.8

0.001

0.01

0.1

1.0

;:

10

0.4
0.001

0.01

0.1

...z
'"'"
ui=

f'...

",0

NO-39

100

" "-"I\-

80

150

"''''
"''''
~~
o~

~z

I~

'I.~I-

VeE

20

~

300

~~

200

-50

-100

100

50

Collector· Emitter Saturation
Voltage vs Collector Current

I

~

t.O

~

0.8

'"

0.5

c
>
z

~
~

0.01

j
10

~

1.4

~

1.2

!;;
g;
~
~
;a

~
::

0.4

0.2

0.001

51H1

100

0.01

Safe Operating Area

I

""
..£ = 10
I,

1.0

i

V

10_~

I

.2

0.8
0.6
0.4
0.001

OC

0.01

0.1

1.0

10

0.1

Ie - COLLECTOR CURRENT (AMPS)

10
VeE -(VOLTS)

9·3

0.1

1.0

Ie - COLLECTOR CURRENT(AMPS)

Ie - COLLECTOR CURRENT (rnA)

Base·Emitter Saturation
Voltage vs Collector Current

'">

~

8
I

o

TJ - JUNCTION TEMPERATURE ("C)

1.6

50

Small Signal Current Gain
vs Collector Current

0.1 -f---- VCB '" 5DV,/

~

10

REVERSE BIAS VOLTAGE (V)

§

125

1.

0.1

150

Vel: = 1.0V

100

I n---.

TA - AM81ENT TEMPERATURE ('C)

a:

75

,/ COBO

TIT

I

0.001

f= 1 MHz

Duty Cycle '" 1%

[j'i

50

200

1

Cilia

100

Pulse Width'" 300 ~ec

o

200

=5.0V

t=;WMHz

25

t'-...

150

100

50

;'\

i--i-Hf+.I'ft-ttVeE • 10V

o

~

0

Capacitance vs Reverse
Bias Voltage

z

I I

~
...
~

'- I"'"

400

40

Collector· Base Diode
Reverse Current vs
Temperature

::l
~\

~

500 ........
~"T"T"r-r-I-nrr-.,.-..,.,lrn

/I
./ Ie =10·mA

60

TC-CASE TEMPERATURE (OC)

~

0

A"

0'"

100

~

,p

A~P 17 ~ ~

f-- f-- f-- lei. 110

w

50

200

Pulsed DC Current Gain vs
Ambient Temperature
120

o

10

1.0

'~"
Ie - COLLECTOR CURRENT (AMPS)

Maximum Power
Dissipation vs
Case Temperature

o

"

TO-39

"r-...

TO·237

>< 400

Ie - COLLECTOR CURRENT (AMPS)

f'...

I - ('..

oct

9

o

1600

~ 14DO

~ 0.6

20

:

>

aD

~

~

1.6

Maximum Power
Dissipation vs
Ambient Temperature

100

10

~National

Process 36 NPN High Voltage Power

~'Semiconductor
~~~~_ 0.045 _~~~_

DESCRIPTION

(1.1431

Process 36 is a non-overlay double-diffused silicon epitaxial planar device with a field plate.

APPLICATION
This device is designed for use in horizontal driver, class A
off-line amplifier and off-line switching applications.

0.045
(1.1431

PRINCIPAL DEVicE TYPES
TO-202, ESC: D40P1, 3, 5
NSD36-36C

TO-126, ECS: 2N5655-57
MJE340-44
MJE3439-40
TO-237, ESC: 2N6720-23 (92PU36-36C)

Parameter

Conditions

Max

Units

Min

Typ

BVCEO

ICE = 1 rnA (Note 1)

200

300

V

BVcso
BV ESO

Ics=1001'A

225

325

V

I ES = 1O I'A
VcE =200V

6

ICEO
Icso

Vcs=225V

I'A

IESO

V Es =5V

I'A

hFE

Ic=50 rnA, VCE = 10V (Note 1)
Ic = 100 rnA, VCE = 10V (Note 1)
Ic = 250 rnA, VCE = 10V (Note 1)
Ic= 500 rnA, VCE = 10V (Note 1)

V
50

30

110
120
60
25

I'A

300

VCE(SATI

Ic= 100 rnA, Is= 10 rnA (Note 1)

0.2

0.5

V

VCE(SAT)

Ic=500 rnA, Is= 100 rnA (Note 1)

0.3

0.7

V

VSE(SAT)

Ic= 500 rnA, Is= 100 rnA (Note 1)

0.9

1.2

V

VSE(ON)
ft

Ic = 100 rnA, VCE = 10V (Note 1)

0.7

1.0

Cob
C ib

Vcs =10V,f=1MHz

15

pF

V sE =0.5V, f=1 MHz

125

pF

PD(max)
TO-126

20

Ic = 50 rnA, VCE = 10V

V
MHz

60

Tc=25°C
TA = 25°C

25
1.5

W

TO-202

Tc= 25°C
TA = 25°C

15
2

W

TO-237

TCOLLECTOR LEAD = 25°C
TA = 25°C

2
850

W
mW

TO-39

Tc=25°C
TA = 25°C

10
1

W

OJC

°C/W

TO-126

Tc=25°C

5.0

TO-202

Tc=25°C

8.33

°C/W

TO-237

TCOLLECTOR LEAD = 25°C

62.5

°C/W

TO-39

TC=25°C

17.5

°C/W

OJA
TO-126

TA=25°C

83.3

°C/W

TO-202

TA = 25°C

62.5.

°C/W

TO-237

TA=25°C

147

°C/W

TO-39

TA=25°C

175

°C/W

TJ(max)
All Plastic Parts
TO-39

150
200

• Pulse lest, pulse widlh = 300 "s

9-4

°C
°C

Process 36
Typical Pulsed Current Gain
vs Collector Current

Collector· Emitter Saturation
Voltage vs Collector Current

E

1
O.B
0.6
0.4

w

'"'"
~

0.1
0.08
0.06
0.04

TC = 25"C

O.B

..'"~

0.6

...~
~

..'"
1

0.02
0.01
100

~

>
z

0.2

10

Base·Emitter ON Voltage vs
Collector Current

10

1000

100

lk

~

>

z

lk

800
600
400

E

200

!:;
>

'"

O.B

~
ffi~ 0.6

.'"

~~

wI-

g>
1

;::

I-

U

0.4

::

:I

100
80
60
40

0.2

~

20

>

10

w

I-

'"'"
'"
'"

lk

I11fl1t'"
10

100

REVERSE BIAS VOLTAGE (VI

Typical Switching Time vs
Collector Current

Safe Operating Area TO·126

fMJ,""Ij ~
10

100

lk

IC - COLLECTOR CURRENT (mAl

Safe Operating Area TO·202
1 I

~

II

II

I 1111111

$
I::l

~

]

g;

,.;::
w

~

0.1~.

~

LIMIT DETERMINED
BY BVCEO

0.01

100

10

0.01
1000

~

~ III

iii;;

.

B

To~12~

TA
il~
~ 1.6 ~261
z

5o Jtwl-

'"
~

20

~

~
~

10

!

1
~

1

o

..'"

~

10

,.'"><

1

o
10

100

lk

VCE - CoLLECToR·EMITTER VOLTAGE (VI

..
c

TO·202 B.33°Ctw

1

bvc~o

" I\.

I.B

S

I I II II I
o

50

100

Tc - CASE TEMPERATURE (OCI

9·5

1000

Thermal Derating Curve
2.0

30

l!i

~

.s

100
VCE - COLLECTOR VOLTAGE (VI

Maximum Power
Dissipation vs Case
Temperature

Safe Operating Area TO·237
lk

100

10

VCE - COLLECTOR VOLTAGE (VI

IC - COLLECTOR CURRENT (mAl

I-

0.1

1

0.01 L---'--L.l..ULWL--L..LUJ.i.W
10
100
l00G

~
:'1

\
20Mtk:-

illi

>

.. '" ±lU
10~._

.~
.'"

-

1

..,w

0.1

iifii

\I

~
:'1

IC - COLLECTOR CURRENT (mAl

= 30V

[16OMH ,

.

~b.IE=O

~ Cob : :f,,= 0

10

100

Ik

10

~

..9
~

100

Contours of Constant Gain
Bandwidth Product (It)

;::

,.'"
wi5

10

IC - COLLECTOR CURRENT (mAl

Collector· Base and Emitter·
Base Capacitance vs
Reverse Bias Voltage

Base·Emltter Saturation
Voltage vs Collector Current

I-

0.2

IC - COLLECTOR CURRENT (mAl

IC - COLLECTOR CURRENT (mAl

'":1l

0.4

150

."

1.4
1.2
1.0
0.8

~

0.6

f-.

0.4

TCOLLECTOR LEAO(TO·2371

'\

1"-1\.

T?,
(TO·2371

'\ TA (TO·2021
I\..

"

r-.. 1"-.'\

"'~
~

0.2
25

50

75

100

T - TEMPERATURE lOCI

125

150

CD
Ct)

Process 36

en
en
CI)
CJ

e

Q.

Thermal Response in TO-202 Package

~~
~~

>-"
>-'"
ZO

0.7
0.5
0.3
0.2

~~

0.1

"'""
>->,e?

0.05

"'"

0.03
0.02

zu
""z 0.07

-;:-~

D' 0.5
HEATS UNK

0.2

i-

::::Iiiii'

0.1

FREE AIR

o.Os
~~f'~.02
r- 0.01
SINGLEPU~

LJlJl
I II I

I--

~ 11-

--t2-

0.01
0.010.02

0.05

'Jc(t)·,(t)-oJC
0JC DC THERMAL RESISTANCE

P(pk) .
SINGLE PULSE

0.1

0.2

0.5

10

20

50

t,-TIME(ms)

9-6

100 200

SOD lk

Tpk'TC+Ppk-OJC(t)
DUTY CYCLE D'!!

,

2k

t2
5k

10k

20k

SDk

lOOk

~National

a

Process 4A Epitaxial Power

Semiconductor
DESCRIPTION

w//
v:~
v
v

Process 4A is a double epitaxial silicon NPN mesa device
with diffused emitter. Complement to Process 5A.
//

/7>.

/P'
~

~

'/

//

///«

/~
(/

v

~
~
~
~
~
~

~

~
v~
v

f0

~
~

~
//

~

...

This device was designed for general purpose power
amplifier and switching circuits where a large safe
operating area is required.
PRINCIPAL DEVICE TYPES
0.100
(2.540

TO·220, BCE: 2N6099
2N6101
2N6486-88
BD347
MJE280n
MJE3055T
TIP41-41C

~

// 'LL/////

Parameter

APPLICATION

f'7<~
v ~
~

Conditions

Min

Typ

Max

Units

120

V

BVCEO

Ic= 200 mA (Note 1)

40

BVCBO

Ic=1 mA

60

BV EBO

IE=1 mA

5

ICEO
lEBO

VCE = BV CEO -'10V
VCB = BVCEO
V EB =5V

h~~

I~ =

VCE(SAT)

Ic=4A, I B=O.4A (Note 1)

0.4

0.6

VSE(ON)

Ic = 5A, VCE = 2V (Note 1)

1.1

1.3

It

Ic = 0.5A, VCE = 5V

td

Ic= 5A, IBI = IS2= 0.5A,
VCC= 40V

0.07

P.s

tr

Ic= 5A, IBI = IB2= 0.5A,
Vcc=40V

0.8

P.s

ts

Ic= 5A, IBI = IB2= 0.5A,
Vcc=40V

0.4

P.s

tf

Ic=5A,IB1=ls2=0.5A,
Vcc=40V

0.5

P.s

ICBO

-

2.5A.

V~c =

2V INote 1)

V
V

7

20

200

p.A

20

p.A

500

p.A

160

2

V
V
MHz

po(max)

Tb-220

Tc=25°C
TA=25°C

60
2

W

OJC
TO-220

Tc=25°C

2.08

°C/W

OJA
TO-220

TA =25°C

62.5

°C/W

TJ(max)
All Plastic Parts

150

Notel: Pulsed measurement = 300 ~s pulse width.

9-7

°C

Process4A
Typical Pulsed Current Gain
vs Collector Current

Typical Pulsed Current Gain
vs Collector Current

Collector· Emitter Saturation
Voltage vs Collector Current
10

z 1000

~
>ffi
..,

Ie 10
10

~ 100

ffi

~
~

::!

"..

TJ= .JIO"

10

~,

TJ:c+25"C

TJ=+125'C

0.01
0.1

10

0.1

Base·Emitter ON Voltage vs
Collector Current
.
VeE

,1.6

..,~
~~
i~
w""

~~
:!,>
..

~

:

Base·Emitter Saturation
Voltage vs Collector Current

~~
~~

1.2

~

0.4

..

1.4

~

u

1.2

-

~..,

;~

-

--

O.B
0.6
0.4

0.1

10

~

150

z

100

..
~

+125'C

0.1

50

10

10
VR

Safe Operating Area
TO·220

~

100
50

1--+-+-t1f++ttt---t--t-'H-I1++H

5

>-

20

ffi
..,

..,

10

..

5

B
..,

-

~
8

,

~

x

0.2

~ 2.4
z

iiic;

..,'

;:

~

1i:;;

50

100

Maximum Power
Dissipation vs
Ambient Temperature

2.2
I.B
1.6
1.4
1.2

"- -

"-TO·220 "-

O.B
0.6
0.4
)( 0.2
0
~

x

I\.

'",

:;;

'"

J:

40

'",

'I\.
o

20

40

BO BO 100 120 140 160

TA -AMBIENTTEMPERATURE I'CI

9·8

'"
~

20

100

REVERSE OIASVOLTAGE IVI

I\.
\.
\.

30 I--I-- I- TO·220 \.
20

\.

:;;

VeE - COLLECTOR·EMITTER VOLTAGE IVI

~

..,

1i:;;
x

10

>=

50

~

10

..

~

iiic;

0.5

Ie - COLLECTOR'CURRENT (AI

60

z

-

Maximum Power
Dissipation vs
Case Temperature

..
>=

0.1

0~-'--"-L.LJJ.U,'--...1..-'-'-'-'.L.UJ

I~

~

+25~ .....

i-1"I'1 'III

"r{'.
r-.,i'

::!

Ie - COLLECTOR CURRENT IAI

VeE = 5V

0.5

~

,,~O'C

III .....

0..01

Gain Bandwidth' Product vs
Collector Current

0.1

200

I\.

11111

Ie - COLLECTOR CURRENT IAI

10

z

5'"

,e

->.'"

mriTif,

0.01

.:: 250
~

~>

+25"C

I-"

I•

:!z

-40'C

P

!£. = 10

1.6

..,;;

1.4

0.6

Junction Capacitance vs
Reverse Bias Voltage
300

=2V

O.B

10

IC - COLLECTOR CURRENT IAI

IC - COLLECTOR CURRENT IAI

IC - COLLECTOR CURRENT (AI

111111
0.1

0.01

10

10

20

40

60

BO 100 120140 160

TC - CASE TEMPERATURE rCI

Process4A
Thermal Response in TO·220 Package

~~
~~

.... :z

....
'"
ZO

~~

0.7
0.5
0.3

0.2

i.-

0.1

""z
"'""
........
-;::'"

0.02

I!!?
-=-~

0.5

0.2
0.1
0.07
0.05
0.03

Zu

0

0.05

t

0.02

Plpk)

D.01

I

~r-

.....+-"SINGLE PULSE

0.01
0.01

0.02

0.05

0.1

0.2

0.5

10

11 - TIME

(ms)

9·9

TIn
\1
\
-- tl ---1220

IiJChl - tIt) -uJC
oJC DC THERMAL RESISTANCE
TpkoTC+Ppk·OJclt)

DUTY CYCLE D =!!
t2
50

100

200

500

lk

w
qo
o
oQ)
(,)

Process 4E NPN Epitaxial Power

~National

z.- Semiconductor

e

DESCRIPTION

a..

Process 4E is a double epitaxial silicon mesa device with
diffused emitter. Complement to Process 5E.

V#////////////~

/:
~
~

(

V
~

(

v:
V
~

J1

~

V

iJ

YJ

APPLICATION
This device was designed for general purpose power
amplifier and switching circuits where a large safe operat·
ing area is required.

0.067

iUl

PRINCIPAL DEVICE TYPES

~

TO·220, BCE: 2N5294, 96, 98

t/

2N5490, 92, 94, 96
2N6121-23
2N6129-31
2N6288, 90, 92
TO·126, ECB: 2N5190-92

t//////L///////~

Conditions

Parameter

Min

Typ

Max

Units

120

V

BVCEO

Ic= 100 mA (Note 1)

30

BVeBo

le= 1 mA

50

BV EBO

IE= 1 rnA

5

leEO

VeE = BV eEO -10V

300

leBo

VeB = BVeEO
V EB =5V

100

p.A

lEBO

1000

p.A

hFE

le= 1.5A, VeE = 2.0V (Note 1)

VeE(SAT)

le=4.0A, I B =O.4A(Note 1)

1.0

VBE(ON)
ft

le= 4.0A, VeE = 2.0V (Note 1)
Ie = 0.5A, VeE = 2V

1.3

td

le=1.0A, I B1 =0.1A, I B2 =0.1A,
Vee=30V

0.10

P.s

tr

le=1.0A, I B1 =0.1A, I B2 =0.1A,
Vee=30V

0.25

P.s

ts

Ic=1.0A, I S1 =0.1A, I B2 =0.1A,
Vee=30V

0.35

1'5

If

le=1.0A, I B1 =0.1A, I B2 =0.1A,
Vee=30V

0.23

I'S

V
V

8

p.A

200

20

V
V

MHz

4

po(max)

TO·220

Te=25°C
TA = 25°C

50
2

W

TO·126

Tc=25°C
TA = 25°C

40
1.5

W

ojc
TO-220

Tc = 25°C

2.5

°C/W

TO·126

Tc=25°C

3.12

°C/W

OJA
TO-220

TA=25°C

62.5

°C/W

TO-126

TA = 25°C

83.3

°C/W

1j(max)

,

All Plaslic ParIs

Note 1: Pulsed measurement'= 300

flS

150

pulse width.

9-10

°C

Process4E
Typical Pulsed Current Gain
vs Collector Current

Coliector·Emitter Saturation
Voltage vs Collector Current

Typical Pulsed Current Gain
vs Collector Current
10

0.01

0.1

10

0.1

0.01

lC - COLLECTOR CURRENT (A)

Base·Emitter ON Voltage vs
Collector Current

.."

2w

0.8

~

0.6

III

0.4

~
I

>

c1s
a:-'

-

O.Z

~

i

~
VeE =2V

0.01

Gain Bandwidth Product vs
Collector
Cumint
I
._

i

I\..

Q

~
1l

Ie = 10
I.

I

j

0.1

...

ZO

Q

~

10

i!:

B
a:

g;
Q

~

30

Safe Operating Area TO·126

~ I
50 O O I l i ' & 1

t;
§:

ZO

10

Ve • - COLLECTOR·BASE VOL lAGE (V)

Safe Operating Area TO·220

10 r-T"'l''''"T',mllimll-,jn-1r,,mnm"rl-'-"I"TIT1ijml nn
V~E ;,; z.v _+#I#tIt-+-t+Jjttttt

...

50

Ie - COLLECTOR CURRENT (AMPS)

Ie - COLLECTOR CURRENT (AMPS)

~

100

0:

Iilill

0.01

0.1

~

111111

o

1\

::i

w

I- Tel 111~rc

O.Z

11111

Tc'" 5'C

150

:;:

111111
IJ.II1Ir

0.4

zoo

Z

~

I

11111

...;:;""

I- ~eI2~~h

0.6

~~

~

w

: ::::: Te =Z 5°Cll-

D.B

~~

F==te -IZ5'C

Z

I.Z

:>

Te - _40°C

9

~

~

...

",

a:

Typical Coliector·Base
Capacitance vs Collector·
Base Voltage

Iilill
Iilill

a:

Te=Z5"C

~

1"

~

1A

Z

Q

I.Z

10

IC - COLLECTOR CURRENT (A)

Base·Emitter Saturation
Voltage vs Collector Current

1.4

~
,>z

0.1

10

Ic - COLLECTOR CURRENT (A)

ZO~
SM

10

~ F~~~~~~~~~

!z

8

~

,

I

_u

0.1

1

0.01

0.5
0.2

r--r-r-r.
10

Z

Maximum Power
Dissipation vs
Case Temperature
~

60

z

0::

=
:;:

50

i1i
c

40

~

3D

:>

ZO

a:

.""x
"

~

TO~22~

"0::
Q

:;:
i1i

I I '!I..
TO·126

"1'0.

ZO

50

10

·100

C

!'J5'CIW

a:

!!:

~

3.125'CIW'"

".."x
"
"""
~
:>

I

,
10

I

,

I

50

100

150

Maximum Power
Dissipation vs
Ambient Temperature
Z.4
Z.Z
1.8
1.6
1.4
I.Z
1
0.8
0.6
0.4
0.2
0

"

1--....

I"
,,0.220 -

I--

TO·126"1\.

f'..:
~

o ro

~

~

~

1~lro~

TA - AMBIENT TEMPERATURE ('C)

Te - CASE TEMPERATURE ('C)

9·11

ZO

50

100

VeE - COLLECTOR·EMITTER VOLTAGE (V)

VeE - COLLECTOR·EMITTERVOLTAGE (V)

Ie - COLLECTOR CURRENT (AMPS)

~

w

~
f/)
f/)
CI)

Process4E

8

Thermal

Respo~se

in TO·220 Package

,a-

Il.

:;:§

"N
~~

t-:E

ffi~
o;w

0,7
0.5

O' 0,5

0.3

0,2

0.2

I

0,05 '

,,~

""
"'''

~~

kl-:::

0,1

0.1
0,07
0,05
0-1"
I!z

-"
~~

0,1
0,07
0,05

0.1
0,05

,

0,01

~w

w",
I~

-<

-E~

=
0-

0,03
0,02

JlJl

-::

0,02

0JCW' ,(t) ·OJC
, 0JC DC THERMAL RESISTANCE
Tpk-TC+Ppk·OJC(t)

"

,

SINGLE PULSE

'--\11

I III

0,01
0,01

I

0,02 0,03 0,05

0,1

0,2 0,3

~'\

0.5

10

20 3D

50

DUTY CYCLE 0 - 11
PEAK PULSE
100

200 300 500

11 - TIME (m.)

SwitchingCir~uit
'Vee =35V

Ie = fA
181 z:: 100 mA
182'" 100 mA

15VIl
OV
DUTY CYCLE '1.0%

VEE "'5V

PW'" 5-10,us

GENERATOR,' HP1900A
TC1'5mFd@50V

9·12

POW~R' p.
lk

"'0

~National

Process 4F N PN Epitaxial Power

~ Semiconductor

a
(')

CD

o
o
DESCRIPTION

~

Process 4F is a double epitaxial silicon mesa device with
diffused emitier. Complement to Process 5F.

0.059
- - - - 11.5) - - - - -

"TI

APPLICATION
This device was designed for general purpose power
amplifier and switching circuits where a large safe
operating area is required.
PRINCIPAL DEVICE TYPES

0.055

""iiAI

Conditions

Parameter

TO·220, BCE: TIP29-29C
TIP31-31C
TIP61-61C
TO·126, ECB: 2N4921-23
MJE520,21

Min

Typ

Max

Units

BVCEO

Ic = 100 mA (Note 1)

30

120

V

BVcso

Ic=1 mA

60

240

V

5

300

p.A

10

p.A

100

p.A

V

8

BVESO

IE= 1 mA

ICEO

VCE = BVCEO -10V

Icso

Vcs= BVCEO

IESO

VEs=5V

hFE

Ic = 1.0A, VCE= 1V (Note 1)

VCE(SAT)

Ic = 2.0A, Is = 0.2A (Note 1)

1.0

VSE(ON)
ft

Ic = 2.0A, VCE = 2.0V (Note 1)

1.0

td

Ic = 1A, IS1 = 162 =0.1A,
VCC= 30V

u.uo

I'"~

tr

Ic= 1A, IS1 = IS2=0.1A,
Vcc=30V

0.25

p's

ts

Ic= 1A, IS1 = IS2=0.1A,
VCC= 30V

0.75

p's

tf

Ic = 1A, IS1 = IS2 =0.1A,
Vcc=30V

0.25

p's

PO(max)
TO·220
TO·126

15

200
V
MHz

4

Ic=0.5A, VCE=2V

·V

Tc=25°"C
TA = 25°C

40
2

W

Tc = 25°C
TA=25°C

30
1.5

W

(lJC
TO·220

Tc=25°C

3.12

°C/W

TO·126

Tc = 25°C

4.16

°C/W

(lJA
TO·220

TA = 25°C

62.5

·C/W

TO·126

TA=25°C

83.3

°C/W

TJ(max)
All Plastic Parts

150

Note 1: Pulsed measurement = 300 .s pulse width.

9·13

°C

I

LL
-.::t

Process4F

tn
tn

CI)
(.)

e

a..

Typical Pulsed Current Gain
vs Collector Current

.

2

1000



\

I-

0.4

10

IC - COLLECTOR CURRENT (AI

~.

0.2

!

>

oL-Jc...u.,U,WL-J-U.J..WI.I..-JWJ..LW1I
0.01
0.1
10

o

'"

10

10

Safe Operating Area TO-220
10

VeE "'2V

-'."

~

~

§e
if

5

...

~,

iii
0:

D;--

B

'"

~

~~

.

...'"

5

l\

~

,

~

1'\1\

'-- f-liMIT DETERMINED

2

10

~
e

~-

20

I-

J

iii
0:

TO.l~ I\.

3:

~

",'\

50

100

10

"
50

100

150

10

1

1.8
1.6
1.4
1.2

"

r .....

'"
"

{0.220-

~

TO.126" '\.

"
o

20

40

60

~

80 100 120 140 160

TA - AMBIENTTEMPERATURE ('C)

Te - CASE TEMPERATURE eCI

9-14

20

50

100

VCE - COLLECTOR·EMITTERVOLTAGE (VI

..

~

f-IIIIHr BViEO

2.4
Z.Z

0.8
0.6
\
0.4
0.2
:E.
0

~

rUMIT DETERMINED

Maximum Power
Dissipation vs
Ambient Temperature

'x~"
..,
'x"

"l,

I~

~c

i=

C

~:5

x-

i5

r--'

• 0.1

:;

'\ ~okzo

~~

.....
"':;

l;

[\

30

ZO

O.Z

VCE - COLLECTOR·EMITTER VOLTAGE (V)

Maximum Power
Dissipation vs
Case Temperature
40

r'\

0.5

E

f--lllllliiBVT

10

Ie - COLLECTOR CURRENT (AMPS)

0:

S,

,--

O.Z
0.1

1

~

0.5

E
0.1

DC

0:

...:'

0.02

,,[,\

iii
e

~,

z

;.,

~i'C ~

~

e

ie

3D

Safe Operating Area TO-126
10

'0:

:li

20

Ve , - COLLECTOR·BASE VOLTAGE (V)

Ie - COLLECTOR CURRENT (AMPS)

Gain Bandwidth Product vs
Collector Current
10

n.l

0.01

Ie - COLLECTOR CURRENT (AMPSI

""C

Process 4F

ao

C'D

en
en

Thermal Response in TO·220 Package
~Q

"'w

:;;N

CO"

w."

i=~

"'0
~!;;:
~~

~~
,,,,
-=~

"'"

0.7
O.S
0.3
0.2

=--

H'::t-l'-=I=

0-0.5

,

, ;

0.2

0.02
0.01

+=

0.05
0.02
0.01.,.-

iU+-t

-r

I I

..--rSINGLE PULSE
0.01

0.02 .

0.05

I

,

-i:-

C--TT

I

-j

Ii
P(pkl

I

I

nn
II I

-- t1 ---

-

I

O.S

0.2

0.1

"T1

,

I
,

0.1
0.1
0.07
O.OS
0.03

--

~

I~-

10

t

i

'I

I

II

I

0Jc(t) - r(t) ·oJC

I)JC OC THERMAL RESISTA NCE

Tpk"TC'Ppk·"Jclll
DUTY CYCLE 0"

2-

so

20

100

t

J

12

SOO

200

lk

11 - TIME (ms)

Thermal Response in TO·126 Package
~Q

"'w
:;;N
w."
"'''
~~
"'0
t':E3

~h~~

."z

~;::

,,,,

-.:t3

"'"

0.7
O.S

0-0.5

0.3

0.2

0.2
0.1
0.07
O.OS
0.03
0.02

0.01

0.1

O.OS

I-'""

0.01

, ,

I
Plpkl

•

~GLE PULSE

Htl
0.01

0.02 O.OJ 0.05

R S L " J C l 1I o d11. UJC
I!JC OC THERMAL RESISTANCE
Tpk'" Te + Ppk °OJc(t)

I I, I~

i
0.1

0.2

0.3

0.5

10

I
20

DUTY CYCLE 0 - :'
2
30

50

100

200 300

11 - TIME (ms)

Switching Circuit
Vee =35V

Ie =lA
IB1 = 100 rnA
IB2 =100mA

ISVn.
OV
DUTY CYCLE 1.0%
PW=5-10j.1s
GENERATOR 0 HPI900A

"J'"

9·15

Cl

0

S mFd@SOV

500

1k

~·National

Process 4H NPN Epitaxial Power

~ Semiconductor
DESCRIPTION

I

0.048
(1.221

I

Process 4H is a double epitaxial silicon mesa transistor
with diffused emitter.
APPLICATION
This device was designed for general purpose power
amplifier and switching circuits where a large safe
operating area is required.
PRINCIPAL DEVICE TYPES
TO·126, ESC: 2N4921-3

Parameter

Conditions

Min

BVCEO
BVCBO

Ic = 50 mA (Note 1)

30

Ic= 1 mA

60

BV EBO

IE=1 mA

5

I CEO

VCE = BVCEO-10V
VCB = BVCEO
V EB =5V

ICBO
lEBO
VCE(SAT)

Ic= 100 mA, VcE =5V
Ic=0.5A, I B=50 mA

VBE(SAT)
ft

Ic=0.5A, I B=50 mA
VCE = 10V, Ic=250 mA

COB

VcB =10V

hFE

po(max)
TO·126

30

Typ

Max

Units

120

V
V

8

80

V
300

/LA

10

/LA

100

/LA

200
V

0.3

V

0.86

MHz

3

pF

20
30
1.5

Tc=25'C
TA =25'C

W

8JC
TO·126

Tc=25'C

4.16

'C/W

8JA
TO·126

TA =25'C

83.3

'C/W

TJ(max)
150

All Plastic Parts
Nota 1: Pulse test. pulse width =300 pS

9·16

'C

Process4H
Typical Pulsed Current Gain
vs Collector Current

Collector· Emitter Saturation
Voltage vs Collector Current

Base·Emitter Voltage vs
Collector Current

2:

1.4

TC - Z5'C
IC
-'10
IS

w

'"~

1.2

>

I I
I I

a:

~
~

W

~

0.8

I

;= 0.6

~
>

0.01
0.1

10

0.01

IC - COLLECTOR CURRENT (A)

'C" 0
18
30V
_VCC'
1;-

If

5
...::;

'"
~
'"'"

~

0.1

8
I

!:!
0.01
0.01

I 11111111

0.4
0.01

10
1

~

DC

~

I"

~

1

2 3

5 1 10

15 I--I-- TO-126 '\.

~
;:;

10

'\.

..

I
;(

~
~

20 30 5010100

o

ZO

40

60 80 100 lZo 140 160

TC - CASE TEMPERATURE ('C)

VCE - COLLECTOR·TO·EMITTER VOLTAGE (V)

IC - COLLECTOR CURRENT (mA)

'\.

~

..""

LIMIT DETERMINED
8Y 8VCEO

0.1
0.1

'\.

zo

'"

1\

'\.

Z5

iiic;

0.1
0.5
0.3
0.2

30

'"

1m,

"

Maximum Power
Dissipation vs
Case Temperature

z
;::

100",~

5m

0.1
IC - COLLECTOR CURRENT (A)

Safe Operating Area TO·126

10

:::::::

10

IC

iB' lo~ ......

~C'EIJL

IC - COLLECTOR CURRENT (A)

Typical Switching Time vs
Collector Current
.

~ ~

0.1

VSE(SAT)

Maximum Power
Dissipation vs
Ambient Temperature

~
c;

~

iii
c;
'"

~

2.4
Z.Z

r-,--,--r-r---r-r-r-,

1---t---1--t--t---1f---t--t---f
21---t---1--t--t---1f--+--t-~

I-+++-+-I-I-t--l

I.B
1.6 1---t---1-+--t---1f--+--t-~
1.4 1---t-"'d-+--t---1I-+--t-~

1.2

f---+--i""":l--+--,I-+--+---l

"~

O.B

I

0.6
0.4

I-I-::::t:::j::::~::::t:::~;~::::t::j

;( O.Z

1---t---1f---t--t--f---t-'......~

i

~
~

TO·126i-"":-+-I-+---I

ZO

40 60 80 100 120 140 160

TA - AMBIENTTEMPERATURE ('C!

Thermal Response in TO·126 Package

~~
ffi~

","

...... "'"
,,'"
wS

..""
"' .."
;Ow

"'1;;

i~

0.1
0.5

D· 0.5

0.3
O.Z

o.z
0.1

0.1 D.ii5
0.01
0.05 0.01

I

P(~

R.JL

0.03 -s;;;\;LE PULSE
o.oz
0.01

~

-ttl
0.01

O.OZ 0.03 0.05

.

0.1

O.Z 0.3

0.5

•
10

'I - TIME (m,)

9·17

. I
ZO

°JC(I)-r(I)'OJC
0JC DC THERMAL RESISTA NCE
Tpk' TC + Ppk 'OJC(I)
DUTY CYCLE 0. '1

•

30

50

100

ZOO 300 500

lk

""')

-: ~National
m
D Semiconductor
CJ

,
Proces~4J
NPN Epitaxial Power Darlington

e

DESCRIPTION

a..

Process 4J is a double epitaxial silicon mesa device. Complement to Process 5J.

~----------~~----------~

APPLICATION
This device was designed for use in driver and output
stages otcomplementary audio amplifier circuits. It is
also well sUiiedfor solenoid driver applications.
PRINCIPAL DEVICE TYPES
TO·220, BCE: 2N6386
NSP2100-03
TIPll0-12
TO-126, ECB: 2N6037-39
MJE800-03

Parameter

Conditions

Min

BVCEO

Ic= 100 mA (Note 1)

40

BVCBO
BV EBO

Ic =100"A

70

IE=2 mA

5

ICEO

Typ

Max
120

V

lEBO
hFE

Ic=2A, VCE =3V (Note 1)

VCE(SAT)

Ic = 5A, I,B = 20 rnA (Note 1)

3.0

VBE(ON)

Ic= 5A, VCE = 3V (Note 1)
VCB = 10V

2.5
30

tON

Ic= lA, VCE = 3V, f = 1 MHz
Ic=6A, VcE =30V

1.25

tOFF

Ic=6A, VcE =30V

2.75

COBO
Ihle !

PO(max)
TO-220
TO-126

Tc=25'C
TA =25'C
TC'=25'C
TA =25'C

V
V

VCE = 1/2 BVCEO
VCB = BVCEO
VEB =5V

ICBO

Units

0.5

750

mA

20

pA

2.0

rnA

20,000
V
V
pF

9
"s
"S

sb

W

2
40
1.5

W

OJC

TO-220

Tc =25'C

2.5

TO-126

Tc=25'C

3'.12

TA =25'C
TA =25'C

62.5

OiA
TO-220
TO-126

83.3

'C/W
'C/W
'C/W
'C/W

TJ(max)
All Plastic Parts

150

Not.1: Pulsed measurement", 300 ~s pulse width,

9-18

'C

""0

Process4J
Typical Pulsed Current Gain
vs Collector Current

f~~~!III~11

~

I
z

1Uk

z
;;:

2.4
IVcE. '

~

"
"

;3 100

(3

~,

0:

I--

00

h~
"0-

100

>

~"
>

Ben

,

0-

10

2.4

0.1

10

~

~-II--I-+cI+ttft--ftfH'lltt+H
!
I

1.8

1.6 *'~A~I't-Htlit-+
,-'I-+-J'Irft+tH
1.4
1.2 IC=3A
rfIc=2A
lC

0,8

IC

0

0'15A

lA

=-~

~.II-t+1ttrr--t-+HII+llllfttjI

0,6
0.4

10k

lk

hFE - DC CURRENT GAIN

0.1

0.01

?

"'"

~

2.4

z

1:~ I
30

"G

20

:i"

5
:3

10
7
5

~

3
2

0-

t

~
1.6

~

1.2

~

~ 0.8

~

~7"ll5)c
.....

,~

20

~

z

~

0-

~ei ~ ~~

-rll

2
1

10

Maximum Pliwer
Dissipation vs
Ambient Temperature

i~;I_]1111111

V

I;

"-

r-I0.1

0.5

1

2

5

10

""x,
""
~

f"\ ~Oi20
1,\
TO'I~ "\

,~
50

75

100

125

"'- ,,\0.220- f-To·m,-"

"

50

~

50

I

~
B

20

::

5 ms IF

10

1~;

5

0
'"
0-

"

150

2

;

oc

1

,

0.5

f--I-

0.2
0.1

20

40

60

~

80 100 120 140 160

Safe Operating Area TO·126

20

~,

'\.

100

0

"'-l"\

Tc - CASE TEMFEiiA'i.!RE ("CJ

-

TA - AMBIENT TEMPERATURE 1°C)

~

a:

a

"-

0

Safe Operating Area TO·220

~

25

0.2

ri1

100

10

0

~
~
"x

I.B
1.6
1.4
1.2
1
O.B
0.6
0.4
0.2
0

Ie - COLLECTOR CURRENT lAMPS)

"\

xC

'"

0.5

100

1,\

t-

C

1

0.1
10

1ii

I;

0.2

'"

10
Ie - COLLECTOR CURRENT (AMPS)

i,l

~

~

0

j

./

l:h"2501111111

i=

40

"''''
"'!:

V

1/

.3

""

50

"

I

Switching Times vs
Collector Current

Cob

1

10

Base·Emitter Saturation
Voltage vs Collector Current

Ie - COLLECTOR CURRENT (AMPS)

Maximum Power
Dissipation vs
Case Temperat4r~

30

t--"TC" +125'C
0.1

hk

JJ,.

VR - REVERSE BIAS VOLTAGE IV)

~~

I

I

0.1

>

111111111 111111111 111111111

::.,...-

Te" +Z5°C

IC - COLLECTOR CURRENT IA)

r--- Gib

0.1

""
x i=

IIIII

IIIII
li~ ~ 25'C
Te '" -40"C

'"
l:

1

'"
~

r--ru

O.B
0.6

10

,

>

,

""'-:f1

TC" 40'C

2.8

w

Junction Capacitance \/s
Reverse Bia~ Voltage

u

1/

1.2

Base·Emitter ON Voltage vs
Collector Current

I
~~~~H*-*~/4H&H~

100

-=
w

1.4

IC - COLLECTOR CURRENT IA)

TC=25 0 C

~

~,

I.B
1.6

0.4

,,2.2

§

::"

TC" -40 'c,

ui=

Collector Saturation
Region - Typical Vatues

~
;;

"'"

"'''
~~
w>

f--i1

LIMIT OETERMINEO
BY BVCEO
III
10

::

$.",

5

""l

2

OC

1
0.5

LIMIT DETERMINED
BY BVCEO

0.1
100

VCE -'cOLLECTOR·TO,EMITTER VOLTAGE IV)

9·19

1 ms

10

0.2
1

en
en

~

"w

TC" +25'C

~

lC - COLLECTOR CURRENT IA)

g
e;

W

'11

CD

c..

lC
-"250
lB

2.2

t::2.

ITC .,"
1:(

"

0.01

~

'"w
0--

0-

"w

~

jOk

"

B

lk

Collector· Emitter Saturation
Voltage vs Collector Current

Typical Pulsed Current Gain
vs Collector Current

a
o

10

100

VCE - COLLECTOR·TO·EMITTER VOL TAGE IV)

...,
~

Process4J

(/)
(/)

CI)
(,)

...
c..

Thermal Response in TO·220 Package

0

~Q

0,7
0.5

ffi:::;

0.3

'"

0.2

""w
"'N

",""
....
....
'"
2°

0·0.5

0.1

~~

0,05

"'""

0.02

0.1
",,2 0.07
........ 0.05
l!!l 0.03
~~

"''''

-

0.2

0.02
0.01

0.01_

.,'

I

nnOJC(t):cr{t)oOJC
Plpk).
IIJC DC THERMAL RESISTANCE

-

,. II I

0,02

DUTY CYCLE 0 =

t

-

. ....+-'"SINGLE PULSE
0.01

Tpk·TC+Ppk·(JJclt)

-- '1 --

0.05

0.1

0.2

10

0.5

2-

t

J

t2

20.

50

100

200

.
lk

500

t1- T1ME (ms)

Thermal Response in TO·126 Package
0.7
0.5

D·0.5

"':::

0.3

0.2

'"

0.2

;ic

~~

....
....
'"
2°

wg

",W
2'"

""'"
"'""
.... ~

i~

0.1

0.1 7.05
0.07
0.05 0.01
0.03
0.02
0.01

'RnIlJClt)-rltl'OJC
Plpk)
IIJC DC THERMAL RESISTANCE
I
.
Tpk - TC + Ppk ·OJClt)

~GLEPULSE

~

H-ti
0,01

0,02 0.03 0.05

0.1

0,2 0.3

0.5

'2
10

t1-TIMElms)

9-20

I

20

DUTY CYCLE D. tl

t2
30

50

100

200 300 500

lk

""C

~National

Process 4K
NPN Epitaxial Power Darlington

~ Semiconductor

-1=10

Process 4K is a double epitaxial silicon mesa Darlington
transistor. Complement to Process 5K.

"

APPLICATION
The 4K was designed for general purpose amplifier and
low-speed switching applications.

I
~J

PRINCIPAL DEVICE TYPES
TO-220, BCE: SE9300-02
TIP121,22
TIP130-32

(1.111

Parameter

Conditions

Min

Typ

Max

Units

120

V

BV CEO

Ic= 100 mA (Note 1)

40

BVcso
BV ESO

Ic=200 I,A

70

IE=5 mA

5

ICEO

VCE = 1/2 BV CEO

0.5

'cso

vCs= DVCEO
VSE = 5V

lOU

jJ.A

2.0

mA

IESO

V
V
mA

18,000

hFE

Ic = 4A, VCE = 3V (Note 1)

750

hFE

Ic=8A, VcE =3V (Note 1)

100

VCE(SAT)

Ic = 4A, Is = 16 mA (Note 1)

2

V

VCE(SAT)

Ic=8A, Is=80 mA (Note 1)

3

V

VSE(SAT)

Ic=8A, Is=80 mA (Note 1)

4

V

VSE(ON)

Ic = 4A, VCE = 3V (Note 1)

2.8

V

Coso

Vcs = 10V

200

pF

I hIe!

Ic=3A, VcE =3V, f=1 MHz

4

Tc=25'C
TA=25'C

60
2

PD(rnax)

TO-220

W

OJC
TO-220

Tc=25'C

2.08

'C/W

OJA
TO-220

TA = 25'C

62.5

'C/W

lj(max)

All Plastic Parts

150

Note 1: Pulsed measurement = 300 p,s pulse width.

9-21

CD

U)
U)

DESCRIPTION

I~---------- ~i~Il'2'1
r7":T"T;'7777T7"7"l

ao

'C

~

-.::r

Process 4K

C/)
C/)

CI)
(,)

Collector· Emitter Saturation

Typical Pulsed Current Gain
vs Collector Current

E
a.

:2

10k

~

'"

Z
W

~~

+125~C

"''''
~~
u"

"w

~>

~

~"

'"
~

100

V

~I
~

00

u>=

'~TJ~'25"C

~~

0--",
"'0--

, B~

TJ- 40 c C

1111111

10

>

III

U

'"~

2,0

z

1.4
1.2

~

2,8

"

1.0
'0,8

'"

~

0-

'",..

0--

~
i;
;,l

>

~

~

'"

100

DC

o

0--

w

-

8

0,5

Maximum Power
Dissipation vs
Ambient Temperature
--

~
~

i---

illQ

--

~
1!l,.

I
\.
\.

c-

---

I

~

i-

\.
f---- '-- T~'220 \.

20

~-

'"

,.'"x,

-:-

---

10

x

I
20

40

60

50

"'"
~

80 100 120 140 160

Te - CASE TEMPERATURE

2.4
U

\.

1.8
1.6
1.4

\..

1.2

1
0,8
0,6
0,4
0,2

-

1--- f-- TO,220 \..

r--,.
- - f---

'\.

--120

eel

40

60

80 100 120 140 160

TA - AMBIENT TEMPERATURE

re)

Thermal Response in TO·220 Package
~Q

"'w
2N
~~
;=~

0,7
0,5
OJ
0,'

0-- 0

0,1
~~ 0,07
0,05
~~

"'''

,,,,

'Z'~

"'"

,
0,2 I

om

t;;io

f::t;
i

,

:

:'1

nIT
1--tt1 I -1,,1-1
!--+I
Ii
~~trputSE H-H----;-+-t- t- ·-H-+i rH
~

0.05

-'-f--t--

0,02

-H-

Hp';k)

I

0.01

0.D2

--

,

0.1 I

~5

,

0-0.5

I

i

-- t2--

0,01

0.01

0.02

0'.05

0.1

0.7.

0,5

10
tl - TIME (ms)

9·22

100

VeE - COLLECTOR EMITTER VOLTAGE (V)

VR - REVERSE BIAS VO l TAGE (V)

50

-

10

100

Maximum Power
, Dissipation vs
Case Temperature

I 1"1i

I11111

0,1
10

Ie - COLLECTOR CURRENT (A)

40

LIMIT DETERMINED
BY BVCEO

1>
0,1

\.

1m,

U

10

60

5m,

10

10
0,1

10

20

0-Z
W

'"
'"u
'"

i

1.2

-

0,1

0.01

5

"

30

1-+1"

0,6

7

.J.,.
125'C

Safe Operating Area TO·220

-

0

1.6

25C

Ie - COLLECTOR CURRENT (A)

;3

1,8

1.0

t:;;FF

10

z

2,0

"

100
50

-

2,2

>

~

i

1.0

:

-4OC

1000

,u

~

1.4

Junction Capaciti!nce vs
Reverse Bias Voltage

2.4

1.4

~

'C - COLLECTOR CURRENT (A)

~

0

~

'",
>

0,1

10

2,6

'"
:;;
0--

22
1.8

~

Base·Emitter Saturation
Voltage vs Collector Current
3,0

2,6

"'"

0-0--

1.6

Ie - COLLECTOR CURRENT (A)

z

VeE'" 3V

3,0

>

1.8

0,6

0,1

0,01

3.4

~

2.4

0--_
0-->

0--

TJ -

~

2,6

VCE - 5V

'"BlOOD

Base·Emitter ON Voltage vs
Collector Current

Voltage vs Collector Current

20

50

°Jc(t)-r(t)·oJC
OJC DC THERMAL RESISTA NCE
Tpk::: Te + Ppk .OJc(t)
DUTY CYCLE D"'!!

'2
100

200

500

lk

"'C

Process 4P NPN Planar Power

~National

D Semiconductor

CD

en
en
~

DESCRIPTION

1-

0.01i0
(1.521

·1 A

~

'/

Process 4P is a double-diffused silicon epitaxial planar
device. Complement to Process 5P.
I

APPLICATION

]

This device was designed for power amplifier, regulator
and switching circuits where speed is important.

))
0.060
0.52)

))
))
h

PRINCIPAL DEVICE TYPES

J

Conditions

Parameter

TO·220, BCE: D44C1-12
TO·126, ECB: MJE220-25
MJE240-44
TO·202,BCE: D42C1-12

Min

BVCEO

Ic= 100 mA (Note 1)

50

BVCEs

Ic=1 mA

75

BV EBO

IE=1 mA

5

ICES

VcE =50V

lEBO

VEB =5V

hFE

VcE =5V,lc=20 mA

30

hFE

VCE = 5V, Ic = 0.5A

50

hFE

VCE = 5V, Ic = 5A (Note 1)

10

VCE(SAT)

Ic:= 3A, IB = 0.3A

VBE(SAT)
ft

Ic = 3A, IB = 0.3A

~u"

VCE = 5V, Ic = 0.5A
'''"'0 -

VEB=1V

t, }
ts

Ic = 2A, VCE = 30V

tf

Typ

Max

Units

120

V
V
V

8

80

5

p.A

5

p.A

200
V

0.5

V
MHz

50

of

.....

CIB

IB1 = IB2 = 0.2A

PD(max)
TO-220

Tc=25'C

40

TO-126

Tc=25'C

30
15

400

pF

60

ns

750

ns

80

ns

W
W
W

TO-202

Tc=25'C

OJC
TO-220

Tc=25'C

3.2

TO-126

Tc=25'C

4.16

TO-202

Tc=25'C

8_33

OJA
TO·220

TA =25'C

62.5

TO-202

TA =25'C

62.5

TO-126

TA =25'C

83.3

'C/W
'C/W
'C/W
'C/W
'C/W
'C/W

TJ(max)
All Plastic Parts

an

150

Note 1: Pulsed measurement:;: 300 its pulse width.

9·23

'C

"'C

Process 4P
Typical Pulsed Current Gain
vs Collector Current

Typical Pulsed Current Gain
vs Collector Current

iii

"..

~ 100

~ 100

z 1000

~

z 1000

iii

0:

"~
~
...

50:

.

10

10

5
0:

~
I

0.01

0.1

mmm

~
I.B
1.4

"
0:

I.Z

~

~

O.B

..
5
z

!
I

i

0.6
0.4
0.2

-40°C

;...

+25°C

I--

5
z

0.1

j

10

F
f::::

0:
0:

B
0:

10.us

=0 C
=5

~

0.01

.
ill
0:

\\\
LIMIT OETERMINE~~
BY BVCEO
10

~8

40

.......

\\\
LIMIT DETERMINE~~
10

iii
"
0:

~

2
~

";c..

";c

.
I

~

10

r- ...... ~O.126

Maximum Power
DIssipation vs
Ambient Temperature
2.4
Z.Z

"-

I.B
1.6
1.4 r-~
I.Z
1
O.B
0.6
0.4
O.Z
0
o 20 40

1""

{o.zzo. TO·ZOZ

TO·126'"

'"
60

~

80 100 120 140 160

TA - AMBIENT TEMPERATURE (OCI

9·24

~'Z2o-

-

"b....'-

TO·2oZ,........,

~

~

100

VCE - COLLECTOR·TO·EMITTER VOLTAGE (VI

S

20

......

BY BVCEO
1

z

"- I,

30

...,;
~

0.1

0.01

c

100

,·Maximum Power
Dissipation vs
Case Temperature

r\

10,u$
-DC
=50 ...

~

~

10

VCE - COLLECTOR·TO·EMITTER VOLTAGE (VI

50

I

VCE - COLLECTOR·TO·EMITTERVOLTAGE (VI

LIMIT DETERMINE'
BY BVCED

100

1 ""!'00"'* 1 "'
10

100

0.1

60

S

0:
C

~\

0.1

I
~

10

Safe Operating Area TO·202

B

I:::::.

"

8

t-\"

~=

0.01

100

0:

Oms

I
~

VR - REVERSE BIAS VOLTAGE (VI

'm'!'00"'~ 1 ~s

10}Js~
DC
SUms

t:=:==:::

~

r-

Safe Operating Area TO·126

'm'!'00,.::::ij 1 P'
10

:5
8

10 '-0.1

10

S

ill
:l!
B

CD~=

tiz
=:

J

100

..S

Cib

100

Ie - COLLECTOR CURRENT IAI

..ill

Safe Operating Area TO·220

c

~

0

>

::

10

100

rrr-

~

0.1
IC - COLLECTOR CURRENT (AI

Junction Capacitance vs
ReversE! Bias Voltage

VCE =5V

~

0.01

10

1000

1.6

>
z

0.01

Ie - COLLECTOR CURRENT (AI

Base·Emitter ON Voltage vs
Collector Current
.

....

it
r-rml

0.1

0.1

10

IC - COLLECTOR CURRENT (AI

"

IC_ l0
lB

~

ill

~...

I

~

10

~mnlll

0:

>

.."'

Coliector·Emitter Saturation
Voltage vs Collector Current

ZO

40

60

80 100 120 140 160

TC - CASE TEMPERATURE rCI

"'tJ

Process 4P

a
(')

CD

en
en

Thermal Response in TO·220 Package

~

1
~c

"w

"'N
Woo

0.7
0.5

~:o

0.3

~~
0-

0.2

u;w
",u

0.1
0,0)
0.05
0.03

I

!

0.2

0

~:;

"'"
::;;:
,,,,
-;~

-='"

"'tJ

Do 0.5

-l-

I I

0.1

1

I

~

0.05

t

0.02

......

0.01-

0.02

l-

I
I

I

"'ySINGlE PULSE'

0.01
0.01

0.05

0.02

I

I

I
I

I

i
0.1

0.2

P(pk)

,
II I
I

I

I

i

nJL

IJJc(t) - r{t) 'IIJC
IIJC DC THERMAL RESISTANCE

-- 1, t--

DUTY CYCLE [)"'"

II I

II

10

0.5

I

I

TpkoTC+Ppk'''JC(I)

2-

20

~

12
50

100

200

1k

500

11 - TIME (r.15)

Thermal Response in TO·126 Package

~c

"w

"'~~N

0-'"
0-'"

0.7
0.5

Do 0.5

0.3

0.2

0.2

0.1

",0

wi';

0.1

"'"
"'"

0.05

~~

0-0-

~~

-='"

0.07

-

0.05

I

~ t:;TOOf
~-;; 0.01

0.03 I--0.02 f--

P(pk)
,

O:SI~G\EtmE)

TIll
-I

L

"JC(I)·,(I)·"JC

1

'1
-12-

ilJC DC THERMAL RESISTANCE
Tpk:: Te + Ppl( ollJe(t)

DUTY CYCLE DoH

0.01

0.02

0.05

0.1

0.2

10

0.5

11 - TIME (ms)

9·25

20

50

100

200

o
oqU)
U)

Q)
(.)

Process 4Q NPN Planar Power

~National

a

Semiconductor

e
a...

DESCRIPTION

I

0.090
(2.290)

Process 4q is a dou~le diffused silicon epitaxial planar
device_ Complement to Process 5Q_

I

1

APPLICATION
This device was designed for power amplifier, regulator
and switching circuits where speed is important

0.096

(2.440)

PRINCIPAL DEVICE TYPES
TO-220, BCE: D44H1
D44H2
D44H4
D44H5
D44H7
D44H8
D44H10
D44H11
Paramet~r

Conditions

Min

BVCEO

Ic= 100 rnA (Note 1)

50

BVCES

Ic= 1 rnA

75
5

BV EBO

IE= 1 rnA

ICES

VcE =50V

lEBO

V EB =5V

hFE

VcE =5V, Ic=20 rnA

30

hFE

VCE = 5V, Ic = 1A (Note 1)

50

hFE

VCE = 5V, Ic = 8A (Note 1)

20

Typ

Max

Units

120
8
5
5
100

300
1

v

VCE(SAT)

I c =8A,I B =0.8A(Note1)

0_6

VBE(SAT)

Ic= 8A, IB= 0.8A (Note 1)

1.2

h

VcE =5V,l c =0.5A

COB

VCB = 10V

110

CIB

V EB = 1V

730

pF
pF

tr

Ic=5A, VcE =30V

ts

161

if
PD(max)
TO-220

= IB2= 0.5A

Tc=25'C

V
MHz

50

30

ns

500

ns

60

ns
W

60

OJC

TO-220

Tc=25'C

2.08

'C/W

OJA
TO-220

TA = 25'C

62.5

'C/W

TJ(max)
All Plastic Parts
Note 1:

150

Pulsed measurement = 300 ~s pulse width.

9-26

'C

"'C

Process 4Q
Typical Pulsed Current Gain
vs Collector Current
:2

1000

~

600

Typical Pulsed Current Gain
vs Collector Current

~

400

=

200

"

u.J

"

1000

2

~

r

!2

'"

'"
B

+125"C

1\

+25'C

100

"
"

Vol

-40"C

60
40

Collector·Emitter Saturation
Voltage vs Collector Current
10

VCE - 5V

IC

~ 10
18 1 II

~r:>
:E;:

600
400

.,.'"

II

"'0:

200

Or

100

0.6

t;~

+2S"C

w:>

::32

-40'"C

0.2

,,00

ui=

60
40

k~

0.1
O:r 0.06

B~

20

20

10

10 '---'---LU.LLW_LL.LUWL-L...LlJ.illlJ
0.1

10

100

0.1

~

TC

25"C

'"0:

~

'"
0

~

I

:>

~

1.4

u

2

V

~m

I

1.2

;;l

0.0

I

~

II

0.1

"'"
r
r

10

"
r

TJ~

2

20

'"
"'"u
'"

10

00

~

0.2

20

100

0.1

'"
~

30

~

!

"~:;

20

I

10

BY BVCEO

x0:

10

"
~

0.1
100

~ 2.4

"

0

r

Bi

C

"I---

~

'"

r-- TD.22~

~
:;

"-

~

~
:;

I

I-- -_.

I

x0:

!
I

:;

0
0

20

VCE - COLLECTOR·EMITTER VOLTAGE (VI

40

60

~

00 100 120 140 160

U:=LLJ

'"
-

I

'\
-TO·22O '"

'\.
20

40

60 00 100 120 140 160

TA - AMOIENT TEMPERATURE (OCI

TC - CASE TEMPERATURE eCI

Thermal Response in TO·220 Package
~o

O:w

"N

~~

r"
r'"

1
0.7
0.5
0.3
0.2

w;O
u;w

I~

0.1
0.07
0.05
0.03

-='"

0.02

2U
0:2

~;::

-;;~

0:= 0.5

0.2

-::::

I

0.1

2"

~

-

0.05
0.02
0.01

.'

t
P(pkl

I

I - r-,

D.Ol

0.02

nnI!Jc(t)::r(t)'OJC
{!JC DC THERMAL RESISTANCE

I

I

--- t1 --

-

......r-SINGLE PULSE

0.01

0:05

0.1

0.2

0.5

1

2

5

11 -TIME (ms)

9·27

10

100

Maximum Power
Dissipation vs
Ambient Temperature

2
1.0
1.6
1.4
1.2
1 0.0
0.6
0.4
0.2
0
0

~

"- )..

40

10
VR - REVERSE OIAS VOLTAGE (V)

,

50

C

LIMIT DETERMINED
1

C,b

100
60

10
10

Bi

1 m,

i

0.1

i

+~

Maximum Power
Dissipation vs
Case Temperature

DC

I-I--

;3 200
2

"

0.1

;;.:

1

Cjb

;:; 600

,./

~

1111

1k

IC - COLLECTOR CURRENT (AI

150C

II

;:

-

-40'C

==

....::

~

'"F¥!#!!lFFmllll

2

I

!,'

__

10k
6k

2

0.4

:>

1000

100

0.6

Safe Operating Area TO·220
_... _-_._---

2V

II

hFE - DC CURRENT GAIN

100 ITC:25"C

~

~

0.6 f - OA
0.4 f - 4A
f - 2A
0.2 f -

I

u

1.0
1.6

VCE

100

Junction Capacitance vs
Reverse Bias Voltage

'"0:

:>

'"rr

10
IC - COLLECTOR CURRENT (A)

i!
~

~:>

0.1

100

Base·Emitter ON Voltage vs
Collector Current

Collector Saturation Region
10

III

0.01

Ie - COLLECTOR CURRENT (A)

IC - COLLECTOR CURRENT (AI

i!
w

10

V

~25<'>C

0.02

:>
~

-40'C

~

20

t

I

Tpk

TC + Ppk ·"JC(11
t

DUTY CYCLE 0".1.

2-

t2

50

100

200

500

1k

a

(")

(I)
tJ)
tJ)

o

~National

.
~ Semiconductor

Process 4R NPN Planar Power
DESCRIPTION

Process 4R is a double diffused silicon epitaxial planar
device. Complemflnt to Process 5R.
APPLICATION

This device was designed for power amplifier, regulator
and switching circuits where speed is important.
PRINCIPAL DEVICE TYPES
TO·126, ECB: MJE200
0.060

~~~~/-l

9-28

"tJ

Process 4R
Typical Pulsed Current Gain
vs Collector Current

"~

i

1000

2

VCE'IV

;;:

+125 C

"~

I

100
-40 C

"

~

=>
~

~

Typical Pulsed Current Gain
vs Collector Current

10

~

1000

Coliector·Emitter Saturation
Voltage vs Collector Current
10

~

I+125j
100

"

1-40.

~

10

0.1

0:

~

)---

I

IIII

w

0.01

0.1

10

lC - COLLECTOR CURRENT IAI

1.3

~~
"'w
1::"

""
~g

1.2

~2

0.9

.:..~

0.8

... "
"'"
w ...
~=>

0.7

~"

0.6

>~

~

10/-IS

DC

"'"

VV

+25'~

~

V

+125'C

~t'i

I

0.01

0.1

I=f=

10

1

10
IC - COLLECTOR CURRENT IAI

40

"x

""X
I

tt=

LIMIT DETERMINED
BY BVCEO

50

~

0.1

60

;;::

~

1m.
510 m•

!:

10

Maximum Power
Dissipation vs
Case Temperature

ill
c

'"

I~OJ.ls

I

I

0.4

~

~

Vv

-40"C

0.5

~
i=

10

0.1
IC - COLLECTOR CURRENT IAI

Safe Operating Area TO·126

...

I

II

0.01

10

5

I
I

U;I~

0.1

100

lC
-~10
18

1.1

~

IC - COLLECTOR CURRENT IAI

Base·Emitter Saturation
Voltage vs Collector Current
1.4

.-

. -40
=+Z,5'~

0.01

1
0.01

....

30
20
10

I-- r-

TO·12

~

"
~

100

20

VCE - COLLECTOR-TO·EMITTER VOLTAGE IVI

40 60 80 100 120 140 160

TC - CASE TEMPERATURE lOCI

Maximum Power
Dissipation vs
Ambient Temperature

~
ill
C

'"

~

1i,.
~

"x
I

"
~

2
1.8
1.6
1.4 t1.2
1
0.8 )--0.6
0.4
0.2
0
0 20

r-

40

TO·126

"

I"

r...

60 80 100 120 140 160

TA - AM81ENTTEMPERATURE rCI

Thermal Response in TO·126 Package

~~

ffi::::i
i=~

... '"

2"

w~
;Ow
2<.>

""
......
"''''

1
0.7
0.5

0.2

0.2

0.1

0.1
0.07
0.05

,!!!
-:;:3 0.03

"'"

o ~ 0.5

0.3

....-

~

~ ~::.:~o.o~
-

I
Plpkl

I

~Ii 0.01
0.02 - ' -t-°iSI~G~Et~WI

TIll

"JC DC THERMAL RESISTANCE

-j

DUTY CYCLE 0

11

I-

/lJclll~rlll·/lJC

Tpk~TC+Ppk."JCIII

I

~~

,-t2---

0.01
0.02

0.05

0.1

O.Z

0.5·

1

2
t1 - TIME (ms)

9·29

5

10

20

50

CD

en
en

::D

=>
~

'\ +i5' C

(")

~

~~

illill

t'+i5'i'"

a

100

zoo



150

Note 1: Pulsed measurement = 300 P.s pulse width.

9·30

°C

"'C

Process 5A

a
n
(I)

Typical Pulsed Current Gain
vs Collector Current

~#~~Imlllil

~

VeE - 5V

z 1000

~T~J~_~+1~25]']C~III!11

.....
1,00
c

TJ" +25'C

w

TJ - -40'C

2

1000

10

VCE" 1V

~
~

TJ

2

~

~-

=+125"C

~

Tr

C~

40 C

w:>

~

5

10

CO

'I

10

u>=,

~~

,.."

~,

0.01

0.1

~;;;
0.01

1.2

,>

~

~~

~>

~ 18 I1II

1.6

--

~~

V

IIlJJJl.~c_

e"
~~

~~

1rll,~125c
1111111

o
0.01

10 I

-40"C

"c

I I I 111111

0.01

~

2

~,

'""

I

......

"

6

0

~
:;;

~
0-

0-

'"

0

I

10ms

10

,

Q

~

DC~"J'

0.5

111111

5

1

10

nm

LIMIT DETERMINED

10

50

100

VCE - COLLECTOR·EMITTER VOLTAGE (V)

Ie - COllECTOR CURRENT (A)

~ 2.4
z
0

>='

:i:

iiiQ
'"

~
~

"«x

"x,
«
"
~

100

20

REVERSE BIAS VOL lAGE (V)

1\1

50

\.
J.,.
\.
~ t- TO.221

40
30

-

~

I

0.1
1

60

~

I""

5

-

Maximum Power
Dissipation vs
Case Temperature

iii

20

-"

I

I
0.1

50 t-- 1-'-

10

i1:

1

0

"VR

':~ FF11WfFfMnnm

0

4

COBO

10

~

2

c" i'

100

Safe Operating Area TO·220

11111111

8

~

0.1

200

§" 150

~

II
II

'\l~

Ie - COLLECTOR CURRENT (A)

vY

0

2

"

2

0.4

10

~

250

~

c

I.

0.1

1----- .CEo -

~

I

0.8

Gain Bandwidth Product vs
Collector Current

0-

u

1111

Ie - COLLECTOR CURRENT (A)

u

iH----t-Htttllt-fIl:-i+l--!J+4I---

H-jl+11t++hl111-+--++tH;IH-J.1IHtftl

1.2

:;;2

_40UC

0.4

:>

= 10

10

Junction Capacitance vs
Reverse Bias Voltage
300

t- ~

I

0.1
IC - COllECTOR CURRENT (AI

,..~

0.8

0.01

10

Base·Emitter Saturation
Voltage vs Collector Current

~~

~;::

;:B(5

0.1
IC - COLLECTOR CURRENT (AI

V~EI"li0'

:;w

TJ" +125:~11

0.01

10

Base·Emitter ON Voltage vs
Collector Current

1.6

!TJ"

>

IC - COLLECTOR CURRENT (AI

i5
'"

~

I TJ" +2!,oC'

0.1

,,~

~

w~

CJ'1

W~

~

t:~

»

10

'""
t;(5

TJ - +25'"C

Q

I~

~:-

I

100

fJ)
fJ)

~:>

~

~

Coliector·Emitter Saturation
Voltage vs Collector Current

~2

~

:'l
0:
i':,

Typical Pulsed Current Gain
vs Collector Current

"x
""x,
""
~

20
--

\.

\.

----

10
-

t---t

I\,

0
0

20

40

60

80 100 120 140 160

TC - CASE TEMPERATURE ('CI

Maximum Power
Dissipation vs
Ambient Temperature

2.2
2
'\.
1.8
1.6
1.4
I'\.
1.2
I
1 ~
TO·220 '\.
0.8
I
0.6
0.4
0.2
0
0 20 40 60 80 100 120 140 160

I-'i-

\.

""

TA - AM81ENTTEMPERATURE ('CI

9·31

,

~

Process SA

LO
U)

en

CI)
(.)

e
a.

Thermal Response in TO·220 Package

~~
~~

... '"
... 0:

0.7
0.5

0-0.5

0.3
0.2

0.2

z'"

0.1

Zu

0.05

~::

0.1
«'" 0.07
"'« 0.05
I~ 0.03

......

'Z'~

-=0:

I
P(pk)

0.02
0.01

0.02
0.01

1-'-

I

I

0.02

0.05

0.2

I

TpkoTC+Ppk·"JC(t)

0.5

10
11 -TIME (ms)

9·32

DUTY CYCLE 0""

' -'2--

i
0.1

ilJC DC THERMAL RESISTANCE
11
-- 'I --

I

.....-t-'""SINGLE PULSE
0.01

~i!Jc(t)-r(t).I!JC

20

50

100

200

~

'2
500

lk

"'0

~National

a

Process 5E PN P Epitaxial, Power

Semiconductor

CD

0.088
------(2.235) - - - - - -

DESCRIPTION
Process 5E is a double epilaxial silicon mesa device wilh
diffused emitter. Complement to Process 4E.
APPLICATION
This device was designed for general purpose power
amplifier and switching circuils where a large safe opera·
ling area is required.

0.067

iUl

PRINCIPAL DEVICE TYPES
TO·220, BCE: 2N6107-09
2N6124-26
2N6132-34
TO·126, ECB: 2N5193-95
MJE371

Parameter
BVCEO

Conditions

Min

. Ic = 100 mA (Note 1)

Typ

30

Max

Units

120

V
V

BVcso

Ic= 1 mA

40

BV ESO

IE=1 mA

5

ICEO

VCE= BVCEO

300

p.A

Icso

VCS= BVCEO
VEs =5V

100

p.A

1000

p.A

IESO
hFE

. Ic = 1.5A, VCE = 2.0V (Note 1)

V

8

170

20

V

VCE(SAT)

Ic = 4.0A, Is = O.4A (Note 1)

1.0

VSE(ON)
ft

Ic = 4.0A, VCE = 2.0V (Note 1)

1.3

td

Ic = 1.0A, IS1 = 0.1A, IS2 = 0.1A,
Vcc= 30V

0.10

P.s

Ir

Ic= 1.0A, IS1 =0.1A, I s2 =0.1A,
Vcc= 30V

0.25

P.s

Is

Ic = 1.0A, IS1 = 0.1A, 182 = 0.1A,
Vcc= 30V

0.40

p's

If

IC = 1.0A, IS1 = 0.1A, 182 = 0.1A,
Vcc=30V

0.23

p.S

PD(max)
TO·220
TO·126

a

C)

V
MHz

4

Ic = 0.5A, VCE = 2V

Tc=25°C
TA=25°C

50
2

W

Tc = 25°C
TA ;= 25°C

40
1.5

W

OJC
TO·220

Tc = 25°C

2.5

°C/W

TO·126

Tc = 25°C

3.12

°C/W

,

OJA
TO·220

TA=25°C

62.5

°C/W

TO·126

TA=25°C

83.3

°C/W

lj(max)
All Plastic Paris

150

Note 1: Pulsed measurement = 300 jJs pulse width.

9·33

°C

en
en
(J1
m

w
Lt)

Process 5E

tn
U)
Q)

Typical Pulsed Current Gain
vs Collector Current

o

E

Q.

~

~z

~~~!!!II~"II
VeE

1000

Typical Pulsed Current Gain
vs Collector Current

~

TJ" +t25'C

C>
~

~
~

to

~
I

100

;3

10

~~!j.~l1imlli~'lt1W
:':~"+25'C-

ml!1I!I 1 ~1f!lml
O.Ot

O.t

to

~

1.4

I::::

1.2

C>

>

r-

~

0.8

:::"'

0.6

SS

0.4

::i

0.2

w

~
I

"

9
.}

,!~l~ -40"C

1.2

«

.,

i3"'

/.

S~

O.B

wc>

0.6

~~

",w

~~

w>
~

Tc=125°C

-

~

~

::::: Vj,t2V

g

;]

.I-I'T

!

11111 Ie

=10 Is

I

o

O.t

Sale Operating Area TO-220

i1!
,.

r-

5

...
~
"'~
"'

C>

\

..

~
::i
I

~

50

5

to

$""

.::

V
0.1

I

ei illl

;::

;;:
ili

0.1

10

C

.,.:;:"'
",.;::

,."

~
~
;::

TO·220
50

T~.~2t
l'.

:<
ili

C

\i5"C,w

.:;:'"

30

,.
,."
,.><«
~
;::

3.t25"C,w"
20
to

I

I

~

~

~

20

50

50

100

Ii

150

I";

10

I
u

DC .s:""

0.5

-

0.2

JIIIII

100

10

2.4
2.2

"I'\.
,0.220-

0.8
0.6
0.4
0.2

r-

10·126,[\1"
I"\.:
~

20

40

60

80 100 120 t40 160

TA - :..r:'OIENT TeMPERATURE (Oe)

9-34

20

BIVI'f
50

100

Ve , - COLLECTOR·EMITTER VOLTAGE IV!

Maximum Power
Dissipation vs
Ambient Temperature

1.8
1.6
1.4 I--......
1.2

r

LIMIT DETERMINED

0.1

50

100",

1111

VeE - COLLECTOR-EMiTTER VOLTAGE (V)

60

40

~

1B(1'1

_lLllll

Maximum Power
Dissipation vs
Case Temperature
C>

30

20

~
g;

LIMIT DETERMINED

0.2

Ie - COLLECTOR CURRENT lAMPS!

..

~

tOO '"

III

1 2

~

'''''

DC

~ -=
.2

20

Sale Operating Area TO-126

20

0.5

~

10

100

C>

z

o

Ves - COLLECTOR·BASE VOLTAGE (V)

tOO

~
'"...C>

'r-.

100

Ie - COLLECTOR CURRENT lAMPS!

10

,

C>

~

o.Ot

1\

200

en

.J.I

::

0.1

\

;;:

"-;e" t25" Cr-

Gain Bandwidth Product vs
Collector Current
.

"-

Z

g 300

0.4

, Ie - COLLECTOR CURRENT lAMPS!

::

400
w

u

--46

0.2

10

Collector-Base Capacitance
vs Collector-Base Voltage

I

11111

0

0.1
Ic - COLLECTOR CURRENT IA!

1111
1111
1111
=t+tH1tJTc = 25"C
tc.lJ.i.
- Te"

C>

....
0.01

1.4

";::
Te" 25"C

0.01

Base-Emitter Saluration
Voltage vsColiector Current

11111

I

~.+t'25:c

0.01

IC - COLLECTOR CURRENT IA!

Base-Emitter ON Voltage vs
Collector Current

V

ITJ

to

IC - COLLECTOR CURRENT IA!

~

I~

TJ = +125°C

~

I

w

0:

to

~ 1000 VeE =lV

=5V

~ 100 1..-......!±':'iII!",.+-

;]

Collector-Emitter Saturation
Voltage vs Collector Current

Process 5E

-c
n

a
CD

o
o
c.n

Thermal Response in TO·220 Package
~o

"N
CO"
"'w
w",

iO"

~'"
,,0
w;o

~~

"'''
~;:

,,,

~~

0.7
0.5
0.3
0.2

I

I

0.2

0.02

0.01

; I

I

0.1
0.1
0.07
0.05
0.03

m

o ~ 0.5

-

I

I

III

" 1

0.05

,

0.02

P(pk)

0.01~

I

I

...-f-""""SINGLE PULSE
0.01

0.05

0.02

0.1

J1JL

0Jchl = r(ll olJJC
IJJC DC THERMAL RESISTANCE

-

DUTY CYCLE 0

I

tl

'1 12-

I

0.2

0.5

10

'2

I

20

Tpk~TC+Pp •• IJJCIt)

~ '.!

12

100

50

200

500

lk

q -TIMElms)

Thermal Response in TO·126 Package

~

~~

0.7
0.5

0-0.5

w'"

0.3

0.2

z~

-"

~co

Zo

~~

0.2

>z

0.1
0.07
0.05

~~
~~

~~
-'"
~ffi
wO:
I~

x
....

0.1

0.03

JLJl

-::::::

--

0.05
0.02

0.01
SINGLE PULSE

I

0.02

I I II

0.01
0.01

0.02 0.03 0.05

0.1

0.2

O.~

q

I

0.5

I

tp

10

20

30

50

0Jcll) ~ ,It) 'OJC
OJC DC THERMAL RESISTA NCE
Tpk-TC+Ppk·OJCII)
DUTY CYCLE 0 PEAK PULSE
100

200 300

tl- TlME {ms)

Switching Circuit

Vee =35V

RL '" 30

OVU

Ie'" lA

15V

DUTY CYCLE

~

1.0%

GENERATOR

~

IB1

:1aOmA

162

= 100mA

VEE:: 5V

PW=5-10/.ls
HP1900A

":'

9·35

rCl::5mFd@50V

'!

POW~R

Pp

500

lk

LL

II)

en
en
CI)
(,)

~National

ProceSs SF PNP Epitaxial Power

~ Semiconductor

e

DESCRIPTION

0.

Process 5F is a double epitaxial silicon mesa device with
diffused emitter. Complement to Process 4F.

0.059

_

(1.51
1

APPLICATION
This device was designed for general purpose power
amplifier and switching circuits where a large safe
operating area is required.

PRINCIPAL DEVICE TYPES
0.055
(1.41

Parameter

Conditions

TO·220, BCE: TIP3O-30C
TIP32.:.32C
TIP62-62C
TO·126, ECB: 2N4918-20
MJE370

Min

Typ

Max

Units

120

V

BVCEO

Ic = 100.rnA (Note 1)

30

BVcso

Ic=1 mA

50

BVESO

IE=1 mA

5

ICEO

VCE = BVCEO -10V

Icso

Vcs= BVCEO

10

IESO

VEs=5V

100

V
6.5

V
300

10

120

hFE

Ic = 1.0A, VCE = 1.0V (Note 1)

VCE(SAT)

Ic = 2.0A, Is = 0;2A (Note 1)

1.0

VSE(ON)
ft

Ic = 2.0A, VCE = 2.0V (Note 1)

1.1

V
V

MHz

4

Ic=0.5A, VcE =2V

pA
pA
pA

0.03

ILS

t,

Ic= 1A, IS1 = I S2 =0.1A,

0.20

ILS

ts

Vcc=30V

0.26

ILS

0.20

JLs

td

If
po(max)
TO·220
TO·126

Tc = 25°C
TA=25°C

40
2

W

Tc = 25°C
TA;"25°C

30
1.5

W

OJC
TO·220

Tc=25°C

3.12

°C/W

TO·126

Tc=25°C

4.16

°C/W

OJA
TO·220

TA=25°C

62.5

°C/W

TO·126

TA=25°C

83.3

°C/W

TJ(max)
All Plastic Parts
Note 1: -Pulsed

measurem~nt

150

= 300 pS pulse width.

9-36

°C

""C

Process SF
Typical Pulsed Current Gain
vs Collector Current
z 1000

....~

"
~

!g

VCE

Collector· Emitter Saturation
Voltage vs Collector Current

'c _

"
'"

TJ=+125'C

O"~.
~

I

w

0.01

1
0.1

0.01

10

0.1

I

-

I

>

~

0,8

'"........

0.6

~

0.4

;:;

0.2

,

;

Tc

=

"
0.01

0.1

10

IC - COLLECTOR CURRENT (AI

Typical Collector
Capacitance vs Collector·
Base Voltage

Base·Emitter Voltage vs
Collector Current
200

=

-40 C

H1'

u
;:"

;;;9

I'

F:""~:
Te "-125 Cr--- .

150

;;:
;3

100

"

I' ,

'"....u

a

1111

w

1111
1111

u

25 C

--1-1-

r--

\
1\

"-

;:;

_~co25 C

!

TA

U

,/

__ "..H11

0.01

+25 J C

10

10

--H"

I

=:

TJ::: --4DoC

w

't'

~
a

."

~I

I

VCE = 1V
12

TJ

IC - COLLECTOR CURRENT (AI

Base·Emitter ON Voltage vs
Collector Current
14

;3

TJ '" +12SoC

IC - COLLECTOR CURRENT (AI

~

!

=+25"C

TJ

10

100

t-

50

a

I

01

3 5

Ie - COLLECTOR CURRENT (AMPS)

J

0.1

0.01

Ie - COLLECTOR CURRErH (AMPSI

Gain Bandwidth Product vs
Collector Current

10
VCB

-

20

30

COLLECTOR·BASE VOLTAGE (V)

Safe Operating Area TO·126

Safe Operating Area TO·220

12

10

.,

~
....

10

5

"
'"
"'"

0;;-'

....'"ua

D

-.- t-liMIT DETERMINED

r---

0.2
0.1

1

r-

10

~i3
~( i=

""
I~

30

20

1,\

01

50

100

10

I"

i

TO ,;;;--

10

D

1.6

~

100

~

0.8

~

0,6

x

,

I"
50

2.2

14
1.2

1'\.'

10

2.4 ,-,----,-,-,----,,--,-,---,

o

"\,

1',1\

~Ci

Maximum Power
Dissipation vs
Ambient Temperature

ili

0.4

~

"

"'"

~

150

0.2
20

40

60

80 100 120 140 160

TA - AMBIENT TEMPERATURE eCl

Te - CASE TEMPERATURE ('C)

9·37

20

50

100

Ve [ - COllECTOR EMITTER VOL TAGE (VI

~

~

~oL!

,,~

J

02

:

veE - COLLECTOR·EMITTER VOLTAGE (V)

Maximum Power
Dissipation vs
Case Temperature

'"
~~,,'"
,,-

20

0.5

a

I IIIII1I BVT

2

Ie - COllECTOR CURRENT (AMPS)

40

"
'"
'"'"
'"....

1,\

u

~

0.1

!....

0.5

a
u
,

O,I)?

100.us

'\

CD

en
en
CJ'I

VCE - 1V
TJ-+125°C

w

'"'"
u

0.01

1000

~
....

100

~
....

~

2:

1 0 R_ _
10
IB

5V

0

Typical Pulsed Current Gain
vs Collector Current

a
o

LL

Lt)

Process SF

o
oQ)
(.)

e
c..

Thermal Response in TO·220 Package
;i §

~~

~§
~g;
w

5

~~

0.5

0.3
0.2

I!O-IOi'51- !;!lIlIl!il .i1i1I1I1I!~;!~ I I!I!~:ri!:1!:"! i! ! ! ! ! ! I
0.2

..-

~

0.1

0.1

P"""

0.7

0.07

~; ~:~~
'? ~ 0.02

0.01

-n n
U L oJC
I I I Tpk' TC +Ppk .()JC(I)

0.05

0Jc(t) '" tit) 'OJC

0.02

P(Pk)...J

0.0' __ 1-'"

DC THERMAL RESISTANCE

- II OUTY CYCLE o.!!
"""'.....r--:::.L.:::S:;:INc::G:::LE:..:P.:::U:::LS:.:E-U-LL-....L-'-.....L--'--Ll...LLlL.....L--'----'.....L-U--L.~~_-~t2~-~~~~~~_..::t2~~~
0.0'

0.02

0.1

0.05

0.2

10

'0.5

50

20

100

200

500

11 - TIME (ms)

Thermal Response in TO·126 Package
~;;

"'w
~~

0.5 05
0.3 0.2. 7
0
. . _- - -

~~ 0.2 0.1
0.' 0.05
*~ 0.07

I

0.05

P(pk)

f-~

2°
Z

t.)

~ ~

f-f-

I

~

¥~

0.03

0.01

~GlE PULSE

0.02

0.01

=rLIL0JC(I)"(I)'()JC
()JC DC THERMAL ~ESISTANCE
·
Tpk,'TC+Ppk '()JcltI
I
OUTY CYCLE 0' II12
I 'I I t2
20 30 50 100 200 300 500 lk
'0

L--'-.L--'--'---'-J-W..J..W'---'-'--L-'--'-l-LJ..J..W_-'-~~~~~=-_~~~~~_~_~~_~

0.01 0.02 0.03 0.05

0.1

0.2

0.3

0.5

11 - TIME (ms)

Switching Circuit

Vcc=35V

o

RL '" 30

ovu

Rae

15V

=

140

P

Ie = lA
181 = 100 rnA

IS2 = 100 rnA

DUTY CYCLE = 1.0%

PW=5-10ps

GENERATOR' HP1900A

r

9-38

C1 = 5 mFd@SOV

lk

"'C

Process5J
PNP Epitaxial Power Darlington

~National

D Semiconductor

DESCRIPTION
Process 5J is a double epitaxial silicon mesa device. Com·
plement to Process 4J.
APPLICATION
This device was designed for use in driver and output
stages of complementary audio amplifier circuits. It is
also well suited for solenoid driver applications.

0.070

~~l

Conditions

Parameter

PRINCIPAL DEVICE TYPES
TO·126, ECB: 2N6034-36
MJE700-03
TO·220, BCE: NSP2090-93
TIP115-17

BVCEO
BVCBO

Ic = 100 mA (Note 1)

40

Ic= 2O I-'A

50

BVEBO

IE=2 mA

5

ICEO

VCE = 1/2 BVCEO

'--vuv

Typ

Min

-VEB=5V

Units

120

v
V
V

0.5

\/ __ = R\I ___

lEBO

Max

---

mA

200

~

2.0

mA

20,000

750

hFE

Ic = 2A, VCE = 3V (Note 1)

VCE(5AT)

Ic = 5A, IB = 20 mA (Note 1)

3.3

VBE(ON)
C OBO

Ic = 5A, VCE = 3V (Note 1)

2.8

Vcs= 10V

V
V
pF

35
4

Ihfel

Ic=1A, VCE=3V, f=1 MHz

tON

Ic = 6A, VCE = 30V

2.0

I-'s

tOFF

Ic = 6A, VCE = 30V

2.6

1-'5

PO(max)
TO-220
TO·126

Tc=25°C
TA=25°C

50
2

W

Tc=25°C
TA=25°C

40
1.5

W

OJC
TO·220

Tc=25°C

2.5

°C/W

TO·126

TC=25°C

3.12

°C/W

OJA
TO·220

TA=25°C

62.5

TO·126

TA=25°C

83.3

°C/W
°C/W

TJ(max)
All Plastic Parts
Note 1:

150

Pulse test, pulse width =300 pS
9·39

,

°C

an

CD

U)
U)

en
c..

Process5J
Typical Pulsed Current Gain
vs Collector Current

Typical Pulsed Current Gain
vs Collector Current
.

lOOk

2

"

lOOk

~



1.2
1

TJ- +25'C7,

IC - COLLECTOR CURRENT IA)

Base·Emitter Saturation
Voltage vs Collector Current

0:<
......
"''''
tiC:

"'i=
1<

"

0.1

IC - COLLECTOR CURRENT IA)

1.4

>

11111111

100
0.1

1.6

:::j2
_0:
....
< ....

I

I

w

~s

~

....

C· -40·

~
~

0:

0:<

"'>

lk

::l
0:
>
....

2
I.B

......
"''''
....
.....

~
:TC'

iie
tk

2.2

~>

:i;:

~~~'+125·C

~

iie

i:;

0:

ffi

B 10k

~

2.4

~VCI

0:

B 10k

Coliector·Emitter Saturation
Voltage vs Collector Current

L

t

I

aJcltI-rltl·OJC
aJC OC THERMAL RESISTA NCE
Tpk TC + Ppk .OJCltI
t'

OUTY CYCLE

250

100

o."!

200

t2
500

lk

"'C

Process5J

a

(")

CD

tn
tn

Thermal Response in TO·126 Package
0.1
0.5

0·0.5

ffi~

0.3

0.2

"

0.2

:iffi

"N

:'"
....
....
'"
z=

wi!:
;;;w
zu
",z

........
"''''
,!!!

;:;:3
-;'"

c...

0.1

0.1 1ii.05
0.01
0.05 0,01
0.03
0.02
0.01

en

I
P(ok)

I

~LEPULSE

n-.JL"JC(I)-

1.8

tB~

"

~"

~

~

oo

B~

I

100/

~

I

;::r

[~

I

w
10

~'-'l

TJol~~~~
0.01

>
0.1

10

1

'8:

~

1.2

g

1 - -40 C
0.8 - - -25C
125 C
0.6
0.1

=-"
LI;l~

wo

~::>
I

i=

~

>

I

2.4

1.4

i =ti-

I
-40 C

Safe Operating Area TO·220

"oo

1.6

-

0.1

I

"

;;:

I I

~ 2.4

I I

"
0

;;:

50

oo

~
~
'~"

'"
I

""'"
;p

iii
40

05

30

~

oo

~

'x"
"'"

20
10

I

o

20

40

60

"'""
;p

80 100 120 140 160

I lun

rllill
1

100

5

10

Maximum Power
Dissipation vs
Ambient Temperature

,I I

2.2

I

I ! I I I I

1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2

o

20

40

60

80 100 120 140 160

TA - AM81ENTTEMPERATURE (OC)

TC - CASE TEMPERATURE (' C)

Thermal Response in TO·220 Package
~§

0.7
0.5

~:::::i

0.3

"'N
x"
... 'oo"
,,0

we

0.2

I~

'Z'"~

roo

_r--::
::.....

0.1
0.1

~~ 0.07

""
~~

0=0.5

0.2

0.05
0.03
0.02
0.01

,I.'

\

0.05
0.020.01,.....

Plpk)

-

I

0.01

0.02

nIlIiJC(t)-r(t)oOJC
!)JC DC THERMAL RESISTANCE

I I I

Tpk

--- tl --

0.05"

0.1

0.2

10

0.5

q -TIME (ms)

9·43

20

TC + POk .,IJC(t)

DUTY CYCLE 0 =

-tz-

A""SINGLE PULSE

50

100

VCE - COLLECTOR EMITTER VOLTAGE (V)

VR - REVERSE BIAS VOL TAGE(V)

L~lJ

LIMIT DETERMINED
BY BV CEO

0.1
10

1

iii
05

0.5

10

Maximum Power
Dissipation vs
Case Temperature
60

1

_l,
0.1

1m,

DC

r
u
w
u

IC - COllECTOR CURRENT (A)

0

5m,

5

0

0

10

1

~

C,"

i

I

125 C

1.0

=

20
10

B
oo

~b

0

V

1.2

'-'

"

./

[-lSi"

r

100

10

100
50

~

;;:

1

0.1

Ie - COLLECTOR CURRENT (A)

u

~

1.8

I

I

~C

0.01

10

1

-t1"

0.6

>

I

25cIF
11--:- .

1.0

V,...,

r1ltlJ

/'1
il"11---T ~)
I
'!1
l«!!:

.1

,

~

"g

I

2.0

Ii ~,j, r[ -- Tni,i --: .
-40 C

Junction Capacit.mce vs
Reverse Bias Voltage

I

I

2.2

1.4

.... ~v.;

'"

~L

UI

1.8 -

2.2

Ie - COLLECTOR CURRENT (A)

Ie '" 250
IB

2.6

~

2.6

1k

2.8

~~
...

~

z

oo
r
r

~

t2

50

100

200

500

1k

CD

tn
tn

C11

_ VeE - 3V

If-=J:tt

3.0

0

1.4

3.0

:;;

3.4

~

1.6

Base·Emitter Saluration
Voltage vs Collector Current
0

?:

1~
250

2

IC - COLLECTOR CURRENT (AI

"i=
...~

Base·Emitter ON Voltage vs
Collector Current

a
o

0..
Lt')

tn
tn
Go)

o

~National

Process 5P PNP Planar Power

~ Semiconductor

e

DESCRIPTION

0..

0.060
(U2)

I

Process 5P is a double diffused silicon epitaxial planar
device. Complement to Process 4P.

-~

~
))

'/

APPLICATION

I

]

This device was designed for power amplifier, regulator
and switching circuits where speed is important.

0,060

PRINCIPAL DEVICE TYPES

(1.52)

))
))
h

Parameter

J

TO·220, BCE: D45C1-12
TO·126, ECB: MJE230-35
MJE250-54
TO·202, BCE: D43C1-12

Conditions

BV CEO

Ic = 100 mA (Note 1)

BV CES

Ic= 1 mA

BV EBO

IE= 1 mA

ICES

VcE =50V

Min

Typ

50

Max

Units

120

V
V

5

lEBO

VEB =5V

hFE

VcE =5V, Ic=20 mA

30

hFE

VCE = 5V, Ic = 0.5A

50

hFE

VCE = 5V, Ic = 5A (Note 1)

10

8

V
5

p.A

5

p.A

80

200
1

VCE(SAT)

Ic=3A,IB=0.3A

0.35

VSE(SAT)

Ic=3A,ls=0.3A

1.1

It

VCE = 5V, Ic = 0.5A

V
V

40

MHz

Cos

vCB= 10V

75

pF

CIS
t,

V EB = 1V

400

pF

60

ns

500

ns

50

ns

ts
tf

Ic=2A, VcE =30V
IB1 = IB2= 0.2A

PD(max)
TO·220

Tc=25'C

40

TO·126

Tc=25'C

30
15

W
W
W

TO·202

Tc=25'C

IIJC
TO·220

Tc=25'C

3.2

TO·126

Tc= 25'C

4.16

TO·202

Tc=25'C

8.33

IIJA
TO·220

TA = 25'C

62.5

TO·202

TA = 25'C

62.5

TO·126

TA = 25'C

83.3

'C/W
'C/W
'C/W
'C/W
'C/W
'C/W

TJ(max)
All Plastic Parts

150

Note 1: Pulsed measurement = 300 P.s pulse width.

9·44

'C

"'tJ

Process 5P
Typical Pulsed Current Gain
vs Collector Current

Typical Pulsed Current Gain
vs Collector Current

Collector·Emitter Saturation
Voltage vs Collector Current

;~_
~

·~."10

1--++1.111111-~

100

=t't

v

TJ "+2SC
10 _ _

:5

~,

w
~

1
0.01

l'--'--'-"..W-'W.....J.-'-'-UW,,--,-,-.u..u.w
0.1

10

0.01

lC - COllECTOR CURRENT (AI

:;;

~

t: ~
~~

~~

2.4
2.2

2

1.4

~~

O.B

0.6
0.4

...'"uo

'"o

...
'"w
'"'"=>

o

,

0.1

'--'-...LLLLLLiL.~....J....LL..U.l..U

10

10

'-~~~---~~~~

LIMIT DETERMINED\,:

60

100

veE - COLLECTOR·TO·EMITTER VOLTAGE (V)

Maximum Power
Dissipation vs
Case Temperature

I I 111 ..J,oo-5ML.1

BY BVCEO,",
10

Maximum Power
DisSipation vs
Ambient Temperature

i :~ I I I I I I I I I

I I I I I I I I I

50 r--r-r-~-T-r--r~~

f-+-"t--t-t-t_+-+---'

10

'"

;i

~

0.1

~
~

'-...L.....l.~_L-~...L~L-

,
L.....l......l....L'-~

_ _ _...::.;:=-.J

OW W M M

100

10

VCE - COllECTOR-TO·EMITTER VOLTAGE (VI

l00lW~

1.B
1.6 I--+-P<+-+-I-+-+~
1.4 f-+'l----'!~t-t_+-+1.2 I--+-f"'<.t-'V--I--t--+-t--+-t---J>orr,TO.220, TO·202
O.B 1--+-I--=T-;::0.:C12~6"'k--t--+-0.6 I--+-I-",~k:"q--+-0.4 I--+-I-+-+-t-"~c+-0.2 1--+-1-+-+-1-+"""--

~

!:
0.01

0.01

100

o

~,

1-+--t-t--t--j----j-t--HI~>\'rl

VCE - COLLECTOR-TO·EMITTER VOLTAGE (VI

Safe Operating Area TO·202

i

0.1

!:

LIMIT OETERMINEO~
BY BVCEo..~

0.01

IC - COLLECTOR CURRENT (Ai

100

~,

I--+-++-I--+--+-+-Hf\i~

!:

1--++++f-H-fl--+-++f+ttH
1

~

u

r--

0.1

...

w

1 f-+-~-+t+~~--~~HtH

10

Safe Operating Area TO·126

i

f--+-+-H+tH+--f-f-H-bI'I-H

~~

"'=>
w ...

0.1
IC - COllECTOR CURRENT (AI

~

10

1.2 1--+-++t-l+H+--+-+-17f.1-ItH

I 0

0.01

Safe Operating Area TO·220

f-.:,-.:t+H+ffl----+-f-1ffi1r++H
f-+--H-l-tttt+---j-++
II+t+tH
=

0.01

10

IC - COLLECTOR CURRENT (AI

Base·Emitter Saturation
Voltage vs Collector Current
r:T:-.c2::-:
S"c
C -n-m,,-,--r-n-mCT1

1.8 1--+-++t-l+H+----l ~
1.6
la

0.1

0

~

1M

20

Tc - CASE TEMPERATURE (OCI

40

60

80 100 120 140 160

TA - AMBIENT TEMPERATURE (OCI

Thermal Response in TO·220 Package
~Q

"'w

:;;N
"'::0
w",

i=~

"'0
5~

0.7
0.5
0.3
0.2

0" 0.5

0.1
0.1

~h:~ 0.07

0.05

0.05
0.03

0.02

"''''
"''''
,,,,

......

-=~

""",

-

0.2

0.01
0.02

"

I
P(pkl

I

~r-

%SINGLE PULSE

0.01
0.01

0.02

0.05

n.n.
II I
-- t1 --

0.1

0.2

0.5

10
11 - TIME (ms)

9·45

20

t

CJ)
CJ)

"'tJ

TJ = .. 125 C

TJ· 40C

CD

U1

~
"
, , VCE"IV
,::1000_

t;

ao

°Jc{t) '" r(t) oOJC
liJC DC THERMAL RESISTA NCE

Tpk" TC + Ppk .oJc(tl
t

DUTY CYCLE D".!
12

250

100

200

500

lk

a..
Lt)

-Process 5P

0
0

Q)

u

e
a..

Thermal Response in TO·126 Package
~§

:;N

...~~:;

0.7
0.5
0.3

0.2

0.2

0.1

... 0:

z"
w!!i

0.1
zu 0.07
o:z
0.05

o;w

"'''
......
I~

~~

D' 0.5

0.03
D.02

10-

r-nn

I:::i2""

~e

~ mo.o~
~

P(pkl

L

~7s1l0.01

r--t- O(SING~E,"l'.W'
0.05

. 0.1

.

L

I

'1
-t2-

0.01
0.02

--j

0.2

0.5

10
'1 - TIME

9·46

(m.I

°Jchl·r(tI·OJC
OJC DC THERMAL RESISTANCE
Tpk-TC+Ppk .oJchl·
DUTY CYCLE 0 •

~

.

20

50

100

20

"'tJ

~National

a

Process 5Q PN P Planar Power

Semiconductor

CD

en

Process 5Q is a double diffused silicon epitaxial planar
device. Complement to Process 4Q.
APPLICATION
This device was designed for power amplifier, regulator
and switching circuits where speed is important.
PRINCIPAL DEVICE TYPES
TO·220, BCE: D45H1
D45H2
D45H4
D45H5
D45H7
D45H8
D45H10
D45H11

Conditions

Min

BVCEO

Ic= 100 mA (Note 1)

50

BVCES

Ic= 1 mA

60
5

BV EBO

IE= 1 mA

ICES

VCE = 50V

lEBO

V EB =5V

hFE

VcE =5V, Ic=20 mA
..... ",. - ~

"r~

hFE

... ,
'/

-20

'l,...- " .

\"~

....

Typ

Max
120

Units
V
V
V

8
5

p.A

5

p.A

30

VCE = 5V, Ic= 8A (Note 1)

.. lJt:- ...... ,

~""

1

VCE(SAT)

Ic =8A,I B =0.8A(Note1)

0.6

VBE(SAT)

I c =8A,I B =0.8A(Note1)

1.2

ft

VcE =5V,l c =0.5A

COB

VCB= 10V

170

pF

CIB

V EB = 1V

870

pF

40

ns

500

ns

60

ns

tr

IB1=IB2=0.5A

tf

V
V
MHz

40

Ic = 5A, VCE = 30V

ts

(')

CJ)
CJ)
DESCRIPTION

Parameter

a

po(max)
TO·220

Tc=25'C

/1JC
TO·220

W

Tc=25'C

2.08

'C/W

/1JA
TO·220

TA = 25'C

62.5

'C/W

60

TJ(max)
All Plastic Parts

150

Note 1: Pulsed measurement =300 P.s pulse width.

9·47

'C

"

Process5Q
Typical Pulsed Current Gain
vs Collector Current
2

...~

1000

VCE< 5V

~

...~

Tj'::+125°C -

~

-

TJ = +25°C

100

TJ<-40'C

c

~

8
'"
;:;
~

I

1

10

11111111

1

~

0.1

100

0.1

10

IC - COLLECTOR CURRENT (A)

ffi~ 1.6
1::"

I::

TJ < -40'C

i=~

0.8

!!!",

0.6

~'"'
>~

0.4

w ...

~25;rl

~5'C

I

o

~

'">=

Te <25°C
SINGLE PULSE
TJ< 150'C

~
""

0.1

60

~

0.2

illc;
'"

1 m,
DC

~

3D

1=
0.1

IC - COLLECTOR CURREN! (A)

ZO

"x

10

I

LIMIT DETERMINED
BY BVCEO

"'"

~ 2.4
0

illc;
'"~
~

~
><

"'"'
"x
"'"'
~
I

2.2
2
1.8
1.6
1.4
1.2

\.
- TO·220 \.

\

20

VCE - COLLECTOR·EMITTER VOLTAGE (V)

">=

-

-

I\,

~

100

10

-\.

40

"><
'"'

0.1

10

~

\.

50

~

I

40

60

80

100 120 140 160

TC - CASE TEMPERATURE i'CI

Maximum Power
Dissipation vs
. Ambient T.emperature

'\.

I'\.

- -

-TO·220 '\.

0.8
0.6
0.4
0.2

'\.
0,

20

40

60 80 100 120 140 160

TA - AMBIENTTEMPERATURE I'C)

Thermal Response In TO·220 Package
~Q

0.7
0.5

0<0.5

",'"'

0.3
0.2

0.2

'"'w
"N
ffi:::i

...... "'"
w"


~

0.1

10

i:

I

w

w'"
"'"
we;

r--

TJ::; +25°C

0:

i:
~

4oc£ffi

t~25C
+125~C

~

I~

10

lC
< 10
18

TJ < 40'C

~

0:

~

100

w

~

10

VCE - 1V
TJ '" +125°C

c

w

5

1000

2

~

'I1

Coliector·Emitter Saturation
Voltage vs Collector Current

Typical Pulsed Current Gain
vs Collector Current

I

I

Tpk < TC + Pok "JC(I)
DUTY CYCLE D<~
t2

II 1220

"Jcll) < ,It) .oJC
0JC DC THERMAL RESISTA NCE

50

100

200

500

lk

""C

~National

a

Process SR PN P Planar Power

Semiconductor

CD
(J)
(J)
DESCRIPTION

CJ1

Process 5R is a double diffused silicon epitaxial planar
device. Complement to Process 4R.
APPLICATION

----~;~::)----·-11

This device was designed for power amplifier, regulator
and switching circuits where speed is important.

I

PRINCIPAL DEVICE TYPES
TO·126, ECB: MJE210

0.060

~l
Parameter

Conditions

Min

BVCEO

Ic = 100 mA (Note 1)

20

BVCES

Ic=1 mA

25

BVEBO

IE= 1 mA

5

1- __

\1 __ _ 'In\l

V"V

Typ

v_

VEB=5V

hFE

VCE = 5V, Ic = 20 mA

50

180

hFE

VCE = 5V, Ic = 0.5A

50

180

hFE

VCE = 5V, Ic = 10A (Note 1)

25

50

Ic=3A,IB=0.3A

VBE(SAT)
ft

. Ic=3A, IB=0.3A

Max

Units

40

v

5

V
V
uA

5

p.A

7

lEBO

VCE(SAT)

a

(')

0.35

350
8

MHz

50

VCE = 5V, Ic = 0.5A

V
V

1

COB

VCB = 10V

95

pF

CIB

VEB=1V

450

pF

PD(m~x)

W

TO·126

Tc =25·C

OJC
TO·126

Tc=25·C

4.16

·C/W

OJA
TO·126

.TA ~25·C

83.3

·C/W

30

TJ(max)
150

All Plastic Parts
Note 1: Pulsed measurement = 300"s pulse width.

9-49

·C

::c

a:
U')

Process 5R

(/)

us
Q)

~

c..

Typical Pulsed Current Gain
vs Collector Current
2:

1000

~

=
~ 100

2:

VCE" 5V

1000

10

Q

=
~ 100

Ito."',

~

TJ" 40'C

'"
~

:0
~
~

;'l

10

I

llli U

1
0.01

10

0.01
0.1

IC - COLLECTOR CURRENT IAI

Base·Emitter Saturation
Voltage vs Collector Current

1.2

"'"
~g

1.1

~"

0.9

~
~~

0.8

~'"

0.6

w>-

>~

0.7
0.5

~

";'l

.......-: /V

~

"'/
V

,
100

z

Safe Operating Area TO·126

>-

I

Cob

~

i

I II

8

10

is

40

i=
~

~

'"

~

~

is

"'

30

~

~

......

~

20

"x
'"X"
"'"
~

"x

r-- I-- -TO·12

""

10

I

LIMIT DETERMINED
BY BVCEO

1= ~

10

1

I

x

20
TC

40
~

60

2.2
2
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2

- ,.- TOi'~

""

~

80 100 120 140 160

20

CASE TEMPERATURE 1°C)

40

60

"'

........

80 100 120 140 160

TA - AM81ENTTEMPERATURE 1°C)

Thermal Response in TO·126 Package
~c

"w
"'N
~~
>-'"
>-'"
ZC

0.7
0.5

0" 0.5

0.3

0.2

0.2

0.1

~~
0.1
~~ 0.07
"''' 0.05

""

>->I~

-

0.05

I

~~~002

_
-::-[:3 0.03
0.02

PI,k)

I

0.01

--f °iSI~G\E,'mE)

"""'

0.05

0.1

0.2

0.5

. 1

I

10

tl- TIME (ms)

9·50

°Jclt)" ,It),oJC
0JC DC THERMALBESISTANCE

T,k-TC+P,k 'OJclt)

L

DUTY CYCLE 0"

tl
-t2--

0.01
0,02

TIll
--I

i=
100

VCE - COLLECTOR·TO·EMITTER VOLTAGE IV)

~ 2.4

z
C

~

510 ms

Maximum Power
Dissipation vs
Ambient Temperature

60
50

l~OJ.ls

0.1

100

VR - REVERSE BIAS VOLTAGE IV)

Maximum Power
Dissipation vs
Case Temperature
~

~

1 ms

0.01
0.1

IC - COLLECTOR CURRENT IA)

i=

DC

::

10

~

lOps

'

I

10

0.1

..

10

g;

C

TJ '" +125°C

0.4

10

5

-

w
u

TJ"~

g!

0.1

100
Cib

;:"

L"~

IC - COLLECTOR CURRENT IA)

1000

I
I

~
0.01

Junction Capacitance vs
Reverse Bias Voltage

IC
-"10
18

1.3

~~

10

Ie - COLLECTOR CURRENT (A)

1.4

~

TJ"

0.1

TJ I

~

0.1

0.01

I'"

t,,~~

I

w

w>-

I~" 10

;:'"

>-

r=~

10

TJ-+125 C

>-

TJ" -40'C

Coliector·Emitter Saturation
Voltage vs Collector Current

VCE" IV

~

TJ=+125°C

'"

;'l
~

Typical Pulsed Current Gain
vs Collector Current

20

50

*
100

200

Section 10

Process
Characteristics JFETs

o

Ln
(/)
(/)
Q)

.
Semiconductor
I"

~National

a

CJ

o
c..
~

Process 50 N-Channel JFET

DESCRIPTION
Process 50 is designed primarily for R F amplifier
and mixer applications. It will operate up to
450 MHz with low noise figure and good power
gain. These devices offer outstanding performance
at VHF aircraft and communications frequencies.
Their major advantage is low crossmodulation and
intermodulation, low noise figure and good power
gain. The device is also a good choice for analog
switching where low capacitance is very important.

GATE IS ALSO BACKSIOE CONTACT

CHARACTERISTIC

PARAMETER

TEST CONDITIONS

MIN

Gate·Source Breakdown
Voltage

BV GSS

VOS =OV, IG =-l!J.A

Zero Gate Voltage
Drain Current

loss

Vos= 15V, V GS = OV

1.0

Forward Trans·
conductance

gts

VOS = 15V, V GS = 0

3.0

Forward Trans·
conductance

gts

VOG = 15V, 10 = 200!J.A

Reverse Gate Leakage

IGSS

V GS = -20V, Vos = 0

"ON" Resistance

ros

Vos = 100 mY, V GS = 0

-25

TYP

MAX

-40
10
5.5

V

20
7.0

100

175

-100
500

Pinch Off Voltage

VGS(OFF)

Vos=15V,lo=lnA

Output Conductance

gos

VOG = 15V, 10 = 1 mA, f = 1 kHz

Feedback Capacitance

Crss

VOG = 15V, V GS = 0

0.7

0.9

I nput -Capacitance

C iss

Vos = 15V, V GS = 0

3.5

4.0

Noise Voltage

en

VOG = 15V, 10 = lmA, f= 100 Hz

8.0

Noise Figure

NF

VOG = 15V, 10 = 5 mA,
RG= 1 kQ, f = 400 MHz

2.2

Power Gain

Gps

VOG = 15V, 10 = 5 mA, f = 400 MHz

-0.7

This process is available in the following device types. 'Denotes preferred parts.
TO·72 (CASE 25)
2N3823
2N3966
2N4223
2N4224
2N4416
*2N4416A
2N5078
2N5103
2N5104
2N5105
2N5556
2N5557
2N5558
TO-92 (CASE 92)
*2N5484
*2N5485

*2N5486
2N5555
2N5668
2N5669
2N5670
* J304
* J305
PN4223
PN4224
*PN4416
PN5163
MPF102
MPF106
MPF107
MPFll0
MPFlll

TO-92 (CASE 94)
2N3819
2N5248
BF244A
BF244B
BF244C
TIS58
TIS59
TO-92 (CASE 97)
2N5949
2N5950
2N5951
2N5952
2N5953
BC264A
BC264B
10-2

BC264C
BC264D
BF245A
BF245B
BF245C
BF256A
BF256B
BF256C

-3.5

-6.0

10

12

mA
mmhos
mmhos

1.1
-5.0

UNITS

pA
Q

V

!J.mhos
pF
pF
nV/v'Hz
4.0

dB
dB

...

""C

Process 50
20

:;;

.s....

16

iG

12

;;:

B.D·

.

I

Vos

\

-

.~

TA = +Z5"C

~~
.E 4.0
I

'l'

"

TA =+25·'C

~TA

-3.0

--4.0

-5.0

-75

....

4.0

~

~
....

2.0

I

.li

1

4.0

~
a:

3,0

~

lass

f=

"'::Iass

~

TA = +25 C

4.0

175

8.0

12

16

20

VDa - DRAIN·GATE VOLTAGE (V)

Output Conductance vs
Drain Current

~~GSIOfFI"-3.0V=

I

1,0

g

-

.""

-2.0

-3.0

-4.0

-5.0

0.2

0.4

0.6

O.B

0.01

Transconductance vs Drain
Current
100

~

~~
'""
o.

'DS

50

••

:JlI

./

I

."

V
10
-1.0

10

f~,~,G.,,:~5~.

tnl.=tRU" 1RRU ..

mmi

~

~ ;:.cl--'"

:5

1.0

Noise Voltage vs Frequency
1000

lDss

100

11111111

0.1

ID -DRAIN CURRENT (rnA)

VGSIOFFI @I Ves = 15V, 10 '" 1.0 nA

...........

11111111

0.1

1.0

VDS - DRAIN·SOURCE VOLTAGE (V)

~ gfs,loss@Vos= 15V, Vas:: 0 PU~SED=1
~'n.,{iil Vn., = 100 mV. V,...", =0
=1

In

§

0.01 ~:o '" 2.0 rnA
10 = 0.2 rnA

1.0

1000

;;:

_1

2;.:+85 C

:5

Parameter Interactions

.

ID=2.0mA~
I? = 0.2 mArr

.2 0.001

o

~ss §

ZD~·'0.
hV !1"H-H.l!!l'-;"·11

Vas - GATE·SOURCE VOLTAGE (V)

~

125

'c .. ,

0.1

2.0

.E

-1.0

~

75

(J1

=0.2mA

TA = +125

5.0

5.0

..

25

~ID'2.0I11A~
10

1.0

Common Drain-Source
Characteristics

"z

3.0

-25

tJ)
tJ)

10

~

j

Leakage Current vs Voltage

TA ···AM81ENTTEMPERATURE ( C)

.s

~

~
....
;;

Ves = 100 mV
Vas::: 0

7.0

"
~z

'"~

10

6.0

~

_f-

I

Transconductance
Characteristics

E

-~

i
I

Vas - GATE·SOURCE VOLTAGE (V)

]

-

§

I...,....,

-2.0

-2.5V

::;;~ =-B.OV

50

.~

'+125"C

= 1.0V

~~ ......-:.~

100

"'"

TA.-55"C

.1, ~
p~ ~5V
-1.0

VGSIOFFI

,......

ic:1i

TA ::: +125"C

:s~ "H
~,

500

"

TA = -55'C

K-

1....

1000

=15V

VGS(OFFI = -4.5V!

V

:5

I

100M.1

10llimMI

1.0
-5.0

-2.0

-10

0.1

VaSlD'" - GATE CUTOFF VOLTAGE (V)

Noise Figure Frequency

Capacitance vs Voltage
5.0

10

Vos:: 15V

0.1 -1.D MH,

10
~

."

"

I'

!::

I'.

;

....

1.0

C.

Iv D:" I~V) -

r-

Ra -1.0 kn++++-+-+-I~f++H
TA =25°C

3.0

f----+-+-H+tttt--t--H-J+tttl

.

2.0

f----+-+-H+tttt--t--H++tttl

~

1.0

I=~~~tti#==:::!=-.l-J+ltw

~

:
ii:

I
CI'I (Vos = 0)

I

= f=

~

2i
I

~

u

0.1

o

o
-4.0

-B.O

-12

-16

-20

=5.0 mA-

4.0

~

~

10

20

50

100

200

f - FREQUENCY (MHz)

Vas - GATE·SOURCE VOLTAGE (V)

10·3

1.0

10

f - FREQUENCY (kif,)

lD - DRAIN CURRENT (rnA)

f

n

CO

Channel Resistance vs
Temperature

Transfer Characteristics

o

500 1000

100

0

Process 50

LO
(J)
(J)
Q)

0

0

-g

'-

COMMON SOURCE

COMMON GATE

Input Admittance

Input Admittance

10

Q.

]"

Vos '" 15V
0
(CS),

'E

.5

z

«

~

::

~~

1.0

~

«

~

-b,,,

i

J,

7r

1

1

c;

(CG)

w
u

2

~

Vos '" 15V
=0

VGS

.5

u

«

100

E

VGS '"

0.1

100

10

~,,,

I·

J

200

1.0

1000

500

b..

./"
,/
100

200

f - FREQUENCY (MHz)

500

1000

f - FREQUENCY (MHz)

Forward Transadmittance

Fo rward' T ransadmittan ce
10

10

~

2.

W

«
~

r---------- +gfs

f--'
./

0'.5
«

'"

5;

~

...

-bl.

/

W
u

0' ...
~

gig

0

~

... E

1.0

+b'g

V

I;;

1~
..!-

"

./

Vos=15V- - - VGS " 0

Vos=15V
VGS = 0
(CG)

(CS)
0.1

0.1
100

500

200

1000

100

200

f - FREQUENCY (MH')

Output Admittance
~

'E

1000

Output Admittance

S

1.0

'E

1.0

.5

.5

=-~~10)

u

z

«

~

8

500

f - FREQUENCY. (MHz)

.,../

0.1

~

u

z

/'

~

go.

8

...

=-

~

,.

VGS '"

f!.

~

100

/'

'og>

r-Vos=15V
f-- Vas = 0
(CG)

1

0

1

(CS)

J ,0.01

./

.,../

0.1

~

V Ds '"'15V

1

r---bo~(Xl0)

«

200

j

1000

500

0.0\00

200

500

1000

f - FREQUENCY (MHz)

f - FREQUENCY (MHz)

Reverse Transadmittance

Reverse Transadmittance

10

1.0

-Vos""15V.
VGS 0
(CS)

Vos'" 15V
VGS = 0
(CG)

-by I-'

V

'''l

V

0.1

====-b~
,,, (X 0.11

0.1
100

200

,/

II

J
500

/

0.01

1000

100

f - FREOUENCY (MHz)

200

\
500

f - FREQUENCY (MHz)

10-4

1000

Process 51 N·Channel JFET

~National

~ Semiconductor

a
"n
(I)

(J)
(J)

~
DESCRIPTION
Process 51 is designed primarily for electronic switching
applications such as low ON resistance analog switching.
It features excellent C iss RDSION) time constant. The in·
herent zero offset voltage and low leakage current make
these devices excellent for chopper stabiiized amplifiers,
sample and hold circuits, and reset switches. Low feed·
through capacitance also allows them to handle video
signals to 100 MHz.
GATE IS ALSO BACKSIDE CONTACT

Characteristic

Parameter

Gate·Source Breakdown

Test Conditions

BV GSS

VDS=OV, IG= -11'A

Zero Gate Voltage
Drain Current

loss

VDS = 20V, VGS = 0

Reverse Gate Leakage

IGSS

Min

Typ

Max

Units

V

-30

-45

5.0

65

170

mA

-15

-200

pA

20

35

100

fl

8.5

mmhos

-0.5

-4.5

-g.O

V
pA

Voltage

Pulse Test
VGs= -20V, Vos=O

ON Resistance

rDS

V DS = 100 mV, VGs=O

Forward Transconductance

gfs

VOG=15V,ID=2mA

Pinch Off Voltage

VGSIOFF)

V os =20V,I D=1 nA

Drain OFF Current

IDIOFF)

Vos=20V. VGs= -10V

15

200

Feedback Capacitance

C rss

V DG = 15V, ID=5 mA, f= 1 MHz

3.5

4.0

pF

Input Capacitance

C iss

V DG =15V,I D =5mA,f=1 MHz

10

16

pF

Noise Voltage

en

V DG = 15V, ID= 1 mA, f=100 Hz

6.0

Turn·On Time

ton

V DD = 10V, ID = 6.6 mA

12

20

ns

Turn·Off Time

tOil

V DD = 10V, ID = 6.6 mA

40

80

ns

This process is available in the following device types. 'Denotes preferred parts.
TO·18 (CASE
2N3970
2N3971
2N3972
'2N4091
'2N4092
'2N4093
'2N4391
'2N4392
'2N4393
*2N4856
2N4856A
'2N4857
2N4857A
*2N4858
2N4858A
2N4859
2N4859A

02)
2N4860
2N4860A
2N4861
2N4861A

TO·72 (CASE 25)
' NF5101
' NF5102
' NF5103

TO·92 (CASE 92)
'2N5638
'PN4856
'2N5639
'PN4857
'2N5640
'PN4858
'PN4859
2N5653
'PN4860
2N5654
'J111
'PN4861
• J112
U1897
' J113
U1898
' PF5101
U1899
• PF5102
MPF820
'PF5103
'PN4091
'PN4092
'PN4093
'PN4391
'PN4392
'PN4393
10·5

TO·92 (CASE 94)
BF246A
BF246B
BF246C
TO·92 (CASE 97)
BF247A
BF247B
BF247C
*TIS73
*TIS74
*TIS75

nVly Hz

Process 51
Transfer Characteristics

Common Drain·Source
Characteristics

Parameter Interactions

Transfer Characteristics

g<"

.§

B.O

:;;

z
~
~

2D

2D

z

~ 10

,
.E

10

~

I

6.0 I-t-/I,b<1,..r'9'+++t-i

::l

~

4.0

hW;b;I-4,,'1;'""""'r-t-r...,

~ 2.0

hlI'7"'1H=I.........-'t--t-'+'-i

=

~

-0.5
Vas - GATE·SOURCE VOLTAGE (V)

-2.0

-3.0

-0.5

VaS - GATE·SOURCE VOLTAGE (V)

VaG "15V
TA "'25°&

f=,

kHz

~

10

VGS!OFF)=

z
z

I

1.4V

I-

",

III

v

11111

II

J

10

0.1

Noise Voltage vs
Frequency

~

100

i

1.0

;:

10

~

I'

1.0

10

20

511

0.2

100

10

J

0.1

10

0.01

~TA~· i125.~Ci'D'15'01: : 'i~

1.0

I I I
C.. IVos =0)
C.. (Vos"20)-

'OIOFFI

1.0
16

24

'rrr11l

c

IGSS

8.0

0.8

f=0.l-1.0MHz

f- 1
-4.0

32

-8.0

-12

-16

-20

Ves - GATE·SOURCE VOLTAGE (pF)

VOG (Vosl- DRAIN·GATE (SOURCE) VOLTAGE (V)

Noise Voltage vs
Current

0.6

toss

~S.OmA

o

2.0

100

5.0myj '/jIOFF

TA"+ZS"C

.i

0.1 L..J=LlllJJLLl.J.Ww.....Ll.lllJ1llI
0.01
0.1

0.4

~~.2mA

j

1.6

Capacitance vs
Voltage

.-::---:==-,-..--,""''''''''''''"
VDs=10V(FaRIDIOFF:)~~

T,.. "-+B5~C

1.2

IVcsIVcSlOFFII- NORMALIZED GATE·
TO·SOURCE VOLTAGE (V)

Urn

1£

Turn·On Switching

Turn·Off Switching

25 r-r;--------~~~
Voo=l.OV

tODD

~
~

5.0

0.8

Normalized Drain
Resistance vs Bias
Voltage

Leakage Current vs
Voltage

'0 - DRAIN CURRENT (mAl

10 - DRAIN CURRENT (rnA)

0.4

Vas - DRAIN·SOUACE VOLTAGE (V)

10 - DRAIN CURRENT (rnA)

~~~

VCS!OFFI=-lV

~

1.02.0

Output Conductance vs
Drain Current

:i'

z

-10

-5

CUTOFF VOLTAGE (V)

Resistance vs Drain
Current

-1.5

."oo~.
j
~

100

e
.§

-2

VOS(OFF) - GATE

VGS - GATE·SOURCE VOLTAGE (V)

Transconductance vs
Drain Current
~

-1

-1

-0.5

-1.5

Transfer Characteristics

Transfer Characteristics

-1.0

-1.0

Ves - GATE·SOURCE VOLTAGE (V)

]

20

t'iAPPROX.lo INDEPENDENT

]

z

;;

i,

tOO

15

~H~~-++++~

0.1

1.0

10

f - FREQUENCY (kHz)

100

"J 5.0 f--HH"""'~d--"'!.d--t-i
-2.0

10 - DRAIN CURRENT (mAl

-4.0

-6.0

-B.O

-10

VCSIOfFI - GATE·SOURCE CUTOFF VOLTAGE (V)

10·6

~

60

I-H~~~+4-+-t-i

j 40

~

f = 10 kHz"1"t\:Wll!t-I4I!!!!!I
f ~ 100 kHz
1.0 L....L.J.JL.WlJl.....w.J..Ww......u.J.Ul1lD
0.01
0.1
1.0
10

80

z
;c

~

20~H-+-+~~d

J

2.0

4.0

6.0

B.O

10 - DRAIN CURRENT (rnA)

10

-0

~National

Process 52 N-Channel JFET

~ Semiconductor

a
n
CD

en
en

en

I\)

DESCRIPTION
Process 52 is designed primarily for low level audio and
general purpose applications. These devices provide excellent performance as input stages for piezoelectric
transducers or other high impedance signal sources.
Their high output impedance and high voltage breakdown
lend them to high gain audio and video amplifier applications. Source and drain are interchangeable.

GATE IS ALSO BACKSIDE CONTACT

Characteristic
Gate-Source Breakdown
Voltage

Parameter

Test Conditions

BV GSS

VDS=OV, IG= -1 p.A

Min
-40

Typ

Max

-70

Units
V

Drain Saturation Current

IDSS

VDs =20V, VGs=OV

0.2

1.5

12

mA

Forward Transconductance

gts

VDS = 20V, VGS = OV

1.0

2.5

5.0

mmho

Forward Transconductance

gts

VDs =20V, ID=200 p.A

Reverse Gate Leakage
Current

IGSS

VGs= -30V, VDS=OV

Drain ON Resistance

rDS

VDS = 100 mV, VGS = OV

Gate Cutoff Voltage

VGS(OFF)

VDS = 15V, ID= 1 nA

p.mho

700

pA

-10
250

400

-0.3

1.0

2000
-8.0

Output Conductance

gas

VDG = 15V, ID = 200 p.A

2.0

Feedback Capacitance

C rss

VDG = 15V, VGS = OV, f = 1 MHz

1.3

1.8

Input Capacitance

C iss

V DG = 15V, VGs=OV, f= 1 MHz

5

6

en

V DG = 15V, ID=200 p.A, f= 100 Hz

10

Noise Voltage

This process is available in the following device types. * Denotes preferred parts.
TO-18 (CASE 02)

TO-72 (CASE 25)

TO-92 (CASE 92)

2N3069
2N3070
2N3071
2N3368
2N3369
2N3370
2N3458
2N3459
2N3460
*2N4338
*2N4339
*2N4340
*2N4341

*2N3684
*2N3685
*2N3686
*2N3687

* J201
*J202
*J203
*PN3684
*PN3685
*PN3686
*PN3687
*PN4302
*PN4303
*PN4304

10-7

n
V
p.mho
pF
pF
nV/..jHz

Process 52
Transfer Characteristics

Common Drain·Source
G/laracteristics

Transfer Characteristics

6.0

2.0
VGS ~ 10;-

1.8

"<

.s....

5.0

~

4.0

~

3.0

~

.s....

z

:;:

~

10.0

~

8,0

~

6.0

.s

-=I

2.0

~

E

1.0 P'R:~~"'F~....:I~!.-t-H

E

1.4

5a: 1.2
1.0
B
z

z

a:

:;:

g;

l--l"'-d"'d""i-?r"-t-

4,0

I

I

E

2.0

i-"'"

1.6

0.8

t- bVvGS ~ -o.hv

t-

0.2

"I-

VGS ~ -0.5V

'T

0.6
0.4

TVP VGSIOFFI ~ 1.8V
TA ~ 25'C

vGS ~ -0.75V

lJ

vGS- -1.5V_

o

1.0

VGS~-1.0V

vGS" -~V

o
0.5

1.0

1.5

2.0

2.5

·0.6

1.2

1.8

2.4

3.0

VGS - GATE·SOURCE VOLTAGE iVI

VGS - GATE·SOURCE VOLTAGE IVI

Transfer Characteristics

Transfer Characteristics

2.0

3.0

4.0

5.0

VOS - ORAIN·SOURCE VOLTAGE IVI

Parameter Interactions
1.0

10

~

.sw

4.0

Ff"''k+-:++-t--+--j-H

'-'

i
"'"

3.0

~

2.0

;l!
I-

.s"i:

5.oF""'!-~-

0.5

~

4,0

0.2

I
z

~~~~~~

I

2.0

1.0

30

~

1.0

1.0

100

~

5
~
co

~~.

VGSIOFFI ~ 4.3V/

10

'-'

'"'"

I

1~~

10V

20V

15~

5.0

,

I

V1.0

V

VGSIOFFI ~ 2.35V

0.1

1.0

w

'-'

1.0

lh'

~

i

lk

'"~

100

'"'"

10 ~ 100"A

10

w

"

I
~

~

~"ID'

100

10

E
lk

10k

I - FREQUENCY 1Hz!

lOOk

25

25

75

125

175

TA - AMBIENT TEMPERATURE I'CI

Capacitance vs Voltage

IGSS
~

"''-'"
...<:;
:::

.
w

2!

IGSS
11 10 ~ 0.1 rnA

==

5.0
4.0

I

J

TA ~ 25'C
IGSS

1.0

2.0

yg

5 10 15 20 25 30 35 40 45 50
VOG - ORAIN·GATE VOLTAGE IVI

10·8

Ciss IV OS - 15VI_ -

\

II

o

I

Crn IVos ~ OVI-

"Cr.. IVOS"5V

1.0
o

.......

3.0

:3

f= 1,0 - ,1.0 ~A

~

11'111111
10

-75

10

O.lmA

TA - 85'C

I

11111111

1.0

1.0

TA-125'C

w

1 0 ~I :i:U;A
1

~

i5

0.1

10

w

w

,.

OS

~GS~ 0 I

100

Leakage Current vs Voltage

"'"

~
:;

I
J ~ 10~ m~

10 - ORAIN CURRENT ImAI

10k

".

1IJ

200

E'

0.01

"<

V

V V
,,'" ".V VGSIOFFI ~ 4.3V

~

0.1

Noise Voltage vs Frequency

co

VGSloFFI" 2.35V

co

'"g;

:;:

10

500

~
z

VGSIOFFI ~ 4.3V

10 - ORAIN CURRENT ImAI

.."

"'"~

I-VGSIO~';'; ~ 0.72V

2.0

;;;

100

10

lk

I

I

5.0

g

5.0

";l!....

20V

2.0

Channel Resistance vs·
Temperature

10

.s

1.0

VGSIOFFI- GATE CUTOFF VOLTAGE IVI

~

"i:

5V

0.5

3.0

Transconductance vs Drain
Current

5V

'-'

2.0

VGS - GATE·SOURCE VOLTAGE IVI

Output Conductance vs
Drain Current

"~
'"-=

~

P""'t-ooitx--\t-""-,(t--'l:+--l

2.0

3.0

"i:
-"
w

~

!/!

VGS - GATE·SOURCE VOLTAGE IVI

~

;;
co

z
0.1

;l!

....I

.

,.

'"

1.0

co
~
co

-2

.. -4

eros IV OS" 20VI
-6

-8

-10

VGS - GATE·SOURCE VOLTAGE IVI

..,

"tJ

Process 53 N-Channel JFET

~National

~ Semiconductor

(J1

eN

Process 53 is designed primarily for low current
DC and audio applications. These devices provide
excellent performance as input stages for sub picoamp instrumentation or any high impedance signal
sou rces.

GATE IS ALSO BACKSIDE CONTACT

PARAMETER
BV GSS

V DS = OV, IG = -1 !lA

Zero Gate Voltage
Drain Current

I Dss

V DS = lOV, V GS = 0

Forward Transconductan ce

gl,

V DS = lOV, V GS = 0

Forward Transconductance

gt,

V DG = 15V, ID = 50!lA

..

'Lib:::'

~~

~~~~

-~~"~::l"'"

MIN

TEST CONDITIONS

Gate-Source Breakdown
Voltage

~.~.

~<..:iS

':"'vv,

"DS

MAX

TYP

UNITS

-60

-40
0.02

V

0.25

mA

1.0
350

250

80

!lmho

120

v

!lmho

V.V

Pinch Off Voltage

V GS(OFF)

V DS = 10V, ID = 1 nA

Feedback Capacitance

Crss

V DG = 15V, V GS = 0, f = 1 MHz

-0.5

Input Capacitance

Ciss

V Ds =15V,V Gs =0,f=1 MHz

Output Conductance

go,

V DG = 10V, ID

Noise Voltage

en

-2.2

= 5O!lA

V DG = 10V, ID = 50 !lA,

f-'~

IV

-6.0

V
pF

0.85

1.0

2.0

2.5

pF

0.9

5.0

!lmhos

150

45

nV Iy'Hz

f= 100 Hz

This process is available in
the following device types.
* Denotes preferred parts.

Parameter Interactions

Leakage Current vs Voltage

1000

TO-72 (CASE 25)
2N4117
*2N4117A
2N4118
*2N4118A
2N4119
*2N4119A
., NF5301
NF5301-1
NF5301-2
NF5301-3

TO-92 (CASE 92)
PN4117
PN4117A
PN4118
PN4118A
PN4119
PN4119A
PF5301
PF5301-1
PF5301-2
PF5301-3

E
_3

100

'=111

500

"'w

3u

V;I

0- "" ,
"

wo",u
0: =>
=> C

100

u1!i
"u

50

ct~

«

0:
Co:

lO~

I

.EJi

o(I)

en
en

DESCRIPTION

CHARACTER ISTIC

o

c
50

,.""

~7:

;;
10

'os

.,...

5.0

VGSIOFFI @Vos" TOY, 10" 1.0 nA

VGS(OFfJ -

1.0

-0.5 -1.0

-5.0 -10

GATE CUTOFF VOLTAGE (V)

10·9

~
"m
~

!!j
,.

~

91<. loss @Vos:: TOY, VGS '" 0
rDS @Vos '" 100 mY, V GS '" 0

10
-0.1

I

B

1

1000

FF'F Ie ~ 30 OR 100"A

0-

~

B

IGSS

100

=:o-100PA
It!:: 30pA -

w

~

'"'"
~

10

0-

I

dP'rL

+85°C

-IGSS

Ie -30"A~

1.0

TA"+25~C

.§
.2

TA

f=f=i=~D -lDOp~

w

;.'l

~

TA:: +125"C

:GSS
0.1
0

5.0
VOG -

10

15

20

DRAIN·GATE VOLTAGE IV)

25

\

C")

L!)

Process 53

(/)
(/)

Q)

Transfer Characteristics

0

...

100

0

c..

90

80 . 70

~

60

~

40

z

z

.P

A :=

tT A

"

30
'0
10

0.6

u

j

0.4

"

"

.5

.3
0-

~/

'<:~
I~

'"

:i 200

'5°C

~":h~" 125"C

50

Transfer Characteristics
0.8

---ti~GSlO'"
"-lV
T
-55"C

'..."

.3

Transfer Characteristics

"~

0-

150

~

1,\

"'"I"ro-..

VaSIOFF)" -O.75V
TA = 125 u C
~,/I TA "25°C'- IVfr)\(~ "-55"C- f--

_

~

100

.E

50

~r.-1'i~-+-r--t---cI-t-i--l

I

~

P'cr'...-'k--t--t-t----+-I--l

0.2

I

.P

...... y~

-0.2

-0.4

-0.6

-1

-0.8

-0.2

Vas - GATE-SOURCE VOLTAGE (V)

-0.6

VGS

-1

-1.4

-1.B

-1.0

GATE-SOURCE VOLTAGE (V)

-

Transfer Characteristics

Transfer Characteristics

-3.0

-2.0

-4.0

VGS - GATE·SOURCE VOLTAGE (V)

Transfer Characteristics
400 . .:0-:::::1-,;;---::--:;-;;;;'

300

E

E 250

.3

~

1.-."..,+-++/

250

~

.3
~

200

-

iii·

~

S

12

IY

"~
I

VGS = -0.15V- l -I -

...Il"

.E

-2

vas = -O.SV

'/-

C>

-I

J. ! _0'25V_ I -

~

-3

-I

Vas - GATE·SOU~CE VOLTAGE (V)

-3

-2

-5

-4

VOS - DRAIN·SOURCE VOLTAGE (V)

VGS - GATE·SOURCE VOLTAUE (V)

Transfer Characteristics

r

VGS - -IV
. Vas - 1.25V

Parameter Interaction

Transfer Characteristics

9" 'oss@Vos

=

10

15V, VGS - OV,~

c

'os@l o = 0.5 rnA, Vas" OV

'vasloFF;@Nos

I

=15V, 10 = 1 nA

c

,' .•'-

'"";;

9"

'"'"m
!!i

V r~

c

~

~L

/'
",
-2

-I

Vas - GATE-SOURCE VOLTAGE (V)

Output Conductance
Drain Current
~

100

TA

~
z

B

10

5V

25"C

u

~OG = lv

I

«

~
C>

Transconductance vs Drain
Current

f-1 kHz

.3

Vas~~FF~

10

~

g

V

J1

0.1

aS

1'5V
=-3 .IV ~ b'
20V

V

. . . Ior

/'

~

'0 - DRAIN CURRENT 1m A)

0.1
0.01

10

«
'"

"""
(IWl111-;:r

I;;

11l

1111111

>-

iii

~

w

10

1"

'-'
«

'";

10

10

I

of

-llml~

~
I
j

~D=D.1rnA
TA=125"C
~

"

l11IIt'-++ItI

IIIIIIIII IIIIIIII

I

0.1

10

f - fREUUENCY 1kHz)

j
100

,...

-w

~~ IGss~
"':I¥

TA _85 c C
100

10

Capacitance vs Voltage
10

TA=25°C

~

lass=

;3

J

1 MHz

......

:

t-

1\

"11:

I

f

I,

u

z
«
>-

~~
ID - 0.1 rnA

w

I D =100pA

~

TA - AM81ENTTEMPERATURE I"C)

-lass

w

'-'

w

I

leakage Current vs Voltage

Vos -15V

§i

100

1l

1111.

0.1

%10k

TA = 25°C

0.01

"'"c
'"
~

10 - DRAIN CURRENT (rnA)

~

~,.

u

11,111

b rF1W" =-3.IV

j

VaS(OFFI = -1.6V

Noise Voltage vs
Frequency
100

Ik

§

C:IOV
15V

/"

I

f '" 1 kHz

"- .......

I

l"-

j

10

20

30

40

10·12

50

llLLL
T

ern (Vas

I
VDa - DRAIN·GATE VOLTAGE (V)

Ciss (V es '" 15V)

t-

10 = 1 rn'f-=f=

1

o

0.1
-10

-5

Channel Resistance vs
Temperature

Vos -15V
TA=25°C

Wv

- rr

E

VGS~OFF) - GATE CUTOFF VOLTAGE (VI

VGS - GATE·SOURCE VOLTAGE IV)

YS

"~

I

-2

-I

-3

-

o

-2

-4

-6

=15V)

-8

-10

Vas - GATE-SOURCE VOLTAGE (V)

~National

Process 58 N-Channel JFET

~ Semiconductor

en
en

01

Q)

0.039

If-..4 - - - - - - - I O . 0 9 1 I - - - - - - - - - I

Process 58 was developed for analog or digital
switching applications where very low rDSION) is
mandatory. Switching times are very fast and
RDSION) C;ss time constant is low. The 6Q typical
on resistance is very useful in precision multiplex
systems where switch resistance must be held to an
absolute minimum. With rDS increasing only
O.7%/oC, accuracy is retained over a wide temp-

,

0.006

(O.15J)

erature excursion.

GATE IS ALSO BACKSIDE CONTACT

PARAMETER

Gate-Source Breakdown
Voltage

BV GSS

Zero Gate Voltage
Drain Current

IDSS

TEST CONDITIONS
VDS

~

OV, IG

~-1

VDS~5V,VGS~0

Pulse Test

Reverse Gate Leakage

IGSS

VGs~-15V,VDs~0

rDS

VDS

~

100 mV, V GS

Pinch Off Voltage

VGSIOFF)

VDS

~

5V, ID

Drain "OFF" Current

IDIOFF)

VDS

~

5V, V GS

~

~

0

3 nA
~

-10V

-30

100

400

1000

mA

-50

-500

pA

V

3.0

6.0

20

-0.5

-5.0

-12
20

Q
V
nA

1 MHz

12

25

pF

25

50

pF

15V. In

~

2 mAo f

V DG

~

15V, ID

~

2 mA,

Forward Transconductance

gfs

V DG

~

10V, ID

~

2 mA

Output Conductance

gos

V DG

~

10V, ID

~

2 mA

Noise Voltage

en

V DG

~

15V, ID

~

2 mA,

10-13

-25

1 MHz

Vn~ ~

Ciss

TO-92 (CASE 92)

UNITS

~

C.

*Jl08
* Jl09
* Jll0
PN5432
PN5433
PN5434

MAX

f~

Feedback Capacitance

This process is available in the following device
types. *Denotes preferred parts.

TYP

0.05

Input Capacitance

*2N5432
*2N5433
*2N5434

MIN

MA

"ON" Resistance

TO-52 (CASE 07)

n

CD

DESCRIPTION

CHARACTER ISTIC

...o"'C

10
100
f~

100 Hz

6.0

mmhos
Mmhos
nV/yHz

co

II)

Process 58

en
en
C1)

Common Drain-Source

()

Characteristics

..
0

0-

100

.

~2.0~-

Vos =DV .

J /'-,1.

80

.§

....
:5

40

<1

'"I
Q

20

.E

-1:0V

I
./
'1i/ V

60

'"
~
z

HON" Resistance vs
Drain Current

Parameter Interactions

p"

:i:

100

S
..,w
z

"In

~z

<1

0.8

1.2

1.6

I

r'v

10

100

5.0

50
loss

a:
c

.!1

s..,
w

100

Z

VG~(OFF) '" -l.OV

"In

I - - +125'C

~

10

'"~
"....
"3

"<1

5.0

~

+25°C

l5

-0.1

-0.5 -1.0

""!,, ii j Il

1.0

5O

G
V

J

.!1

Vos - DRAIN·SOURCE VOLTAGE (VI

55'C~

+25°&

I

10
-5.0 -10

II

r.-·}izt{

1---

'"

=

=0

Vas

50

M

~

I

2.0

f

"»'"
Z

1.0
0.4

500

s.nv, 10 '" 3.0 nA

VGSIOFFI @Vos '"

~
a:

Ii IIV
- I - -

w

~

~ I

l-

I

.Ii

100
.,;
~

10

5

0.01 0.03 0.1

,.....

O!;:

6.0

:l:

4.0

N

!5
I-

~

2.0

~

-16

VGS - GATE·SOURCE VOLTAGE (VI

-20

-2.0

40

Voo '" 1.5V
VaS(OFFJ = -1ZV

!!l
~

I- -

:l:a:

30

N..T'-

"I

20

I =1 10;;;'A--01 '1- "j

.9

10

100

1'-'

_ VGS(OFFI =-B.5~_
=-s.sv
~-:- VaS(OFFI = -3.5V~I~ VastOFFI

~ i'.. ......

l-

...... ;::0-

r-

I

-4.0-6.0

-8.0

-10

VastOFFI - GATE·SOURCE CUTOFF VOLTAGE (VI

10·14

I

TA' 25'C

;:

10 .130 ~A

I
-12

]

I

z

10

Switching Turn-On
Time vs Drain Current
50

g

I'

0.51.02.0

1- FREQUENCY (kHz)

Voo "'1.5V
VGS(OfFl'" -1ZV
TA"'+Z5°C

8.0

c.. (Vos = 5.0V) - -

-8.0

lU II

1.0
10

10

F E ::::.c~ (Vos ' 0)

-4.0

10'10~

.'

Switching Turn~On vs
Gate·Source Voltage

. . . r-- f-l

o

5.0

I

1.0

I

1'0<.10 '1.0 rnA

10 - DRAIN CURRENT (mAl

I

1.0

10

F

1==
J--

I I

II

Z

VaS(OFfl ", -5.DV

0.1

1-0.l-l.0MHz

~ ..... ~

"'z

0

1.0

Capacitance vs Voltage

~

w

~~

~ VGSlO'''' -1.0V
) d- VGSlOFF! ", -3.0V

a:

1--"7I<-++I+1+1+--!- TA • +25'C
1= 1.0 kHz
1.0 '--'--'-.L.J..I..llJ.I...--'--'-J...J..I.J.W
0.1
1.0
10

II

oS

>

10 - DRAIN CURRENT (rnA)

~

>

~

10

Voa '" 10V
BW' 6.0 Hz@f'10Hz, 100 Hz
"'D.Zt@t;?:1.0kHz

50

~

1;!

!;
I

Ii

C>

1';
.I

.."..,
..g
.
"

f·I.0 kHz

100

TA' -55'C ~
TA '" +25°C ;:r
TA ' +125'C'"

~

~

C

VOG::: 10V
TA "'+25°C

w

Z

C
Z

100

S
"l!

.§

..,

~

Noise Voltage vs
Frequency

Transconductance vs
Drain Cu.-rent

5.0

10

15

20

10 - DRAIN CURRENT (mAl

25

~National

a

Process 83 N·Channel
Monolithic Dual JFET

Semiconductor

0.022
f-------(0.5591--------I

DESCRIPTION
Process 83 is a monolithic dual J FET with a diode isolated
substrate. It is intended for operational amplifier input
buffer applications. Processing results in low input bias
current and virtually unmeasurable offset current. likewise matching characteristics are virtually independent
of operating current and voltage, providing design flexibility. Most GP 2N types are sorted from this family.

0.024
(0.6101

Characteristic

Min

Test Conditions

Parameter

Gate-Source Breakdown
Voltage
Zero Gate Voltage
Drai n Current

loss

Forward Transconductance

gfs

VoS =15V, VGs=O

Pinch Off Voltage

VGS(OFF)

VOS =15V, 10=1 nA

Gate Current

IG

VOG =20V, 10 =0.2 rnA

t: .................... T ............................................ ...
• UI.,;I

• -

"

•

u

Typ

0.5

2.5

8.0

rnA

1.0

2.5

5.0

mmho

-0.5

-2.0

-4.5

V

3.0

50

pA

5.0

I'mhos

nV/-.jHz

_._.0 ...

gas

VOG = 15V, 10= 0.2 rnA

1.0

rOS

VOS = 100 mV, VGS = 0

450

IVGS1-VGS21

v

-70

ON Resistance

Differential Match

Units

-50

Output Conductance

Noise Voltage

Max

II

VoG =15V, 10 =0.2 rnA, f= 100 Hz

10

50

VOG= 15V, 10 =0.2 rnA

7.0

25

mV

50

I'V/oC

Differential Match

t.V GSl -2

VOG=15V,10=0.2mA

Common-Mode Rejection

CMRR

VOG=15V,10=0.2mA

10
80

dB

95

Feedback Capacitance

VOG= 15V, 10 =0.2 rnA, f = 1 MHz

1.0

1.2

pF

Input Capacitance

V oG =15V,1 0 =0.2mA,f=1 MHz

3.4

4.0

pF

This process is available in the following device types. 'Denotes preferred parts.
TO-71 (CASE 12)
2N3921
2N3922
'2N3954
'2N3954A
'2N3955
'2N3955A
'2N3956
'2N3957
'2N3958
2N4084

2N4085
2N5045
2N5046
2N5047
'2N5196
'2N5197
'2N5198
'2N5199
2N5452
2N5453

2N5454
'2N5545
'2N5546
'2N5547
U231
U232
U233
U234
U235

S-Pin MinlDIP (CASE 60)

S-Pin MiniDIP (CASE 67)

J410
J411
J412

'NPD8301
'NPD8302
'NPD8303

10-15

('I)

co

Process 83

en
en

CD

u

e

0...

Common Drain·Source
Characterisiics

Transfer Characteristics
'.0

1

i

l

4.of-l.HH...-i

2D

.E

I.Q

i

l'o?io-1A\-t":;'-i'4'-..,..+-l

3D

z
~
,

z

~,

HI=i-t""'''d~

.E

3.D

-1.0

-1.5

-2.0

TYP VasloFFI = -z.ZV

I

t-t-HH-·v~Jov~
-rJ.BV

1.0

-2:5

-1.2V
~!i!!~-ClE·'~V~EB
·-1.5V

~

Vas - GATE·SOURCE VOLTAGE (V)

1.0

2.0

3.0

10

C..§

VaSIOFFI@Ves =20V·=tJ

=~
~ti

'o-I.OnA

4.0

....
c~

10k

§§§~~~~"*::;;;;j

I...

10'

I

-1.5

-2.0

-2.5

.i

o

VGS -.GATEoSOURCE VOL TA~E IV)

:,1

!i:

~,
J

~t

"

,.
0-111

'.1

1.0

f - FREQUENCY 1kHz)

0.1

'!.J;

11TIW

FI

~ l"rItii

100

'.1 L...J..u.wooJ....I...1.I.J.lJJw....u.wLW
0.01
10
0.1
1.0

1000

10 - DRAIN CURRENT {rnA}

Dillerential Ollset

aE
l00~~

lOD

I·D.l-1.OMH,

-'iffflil

1.'

0.1

0.01

1.0

~,
J

VoG ·,5V

~~

TA = +25"&

LOOSE

ffi~

g

s

lOD

g

TIGH1-

;:::

oJ

I

1.0
0.01

10

10 - DRAIN CU~~ENT (mAl

0.1

VGS - GATE·SOURCE VOL lAGE (V)

Differential Drift

10 - DRAIN CURRENT {mAl

CMRR vs Drain Current
~ 110

1111

§"o

100

~

90

"z

"

,

70

~

60

t.vDo = IOV - 20V

1111

I..

IIII
IIII
111111

r0.01

10 - DRAIN' CURRENT {mAl

-r-t--I-

i+~

f--

o
o

I.DD.L"-'-.l...Ll,,J,,.'fi..ofL.,":"',.1..-L.l..lJ.llU
, •D

eMAn,. 20 log tr.V DG
1111
.o.VG~',11

0.1
10 - DRAIN CURRENT (rnA)

10·16

rei

D·

10

100

T,."D.'m'
10 "".OmA

"

r-

40

·D.2f@f~1.OkHz

~

~

32

TA - AMBIENT TEMPERATURE

DV;ZP . 20V

f--

Noise Volt"ge vs
Current

V•• -15V
..
BW= ~.o Hz@f"ID Hz. 100 Hz

~

24

V~GI.5.0V .

1.0

VOG -DRAIN·GATE VOLTAGE (V)

Noise Voltage vs
Frequency
100

16,

0.1 L...L...J-'-'-"-...J.....J..-"--"--'
-15
-25
+25
+75
+125
+175

VGSCOfFI • -J.DY

-less

8.0

,!l

'-100kHz

~

"'''·c
~j ~~~I!~~~~~~
..,
-1.0

E:

10

i!l

T.

0.1
-10

Output Conductance vs
Drain Current

~ ~~~~~_~~~~
-0',5

II
-1.0

VGSIOFFI - GATE CUTOFF VOLTAGE (V)

il

o0

ros

0.1
-0.1

5.0

1,.Ok f=1=1=1=1=

10
1.0

I.D~g
~ z O.5~
~
~ ,

=

o~

_~~a

5.0

~ z~

1.0

Z

Leakage Current vs
Voltage·
.
~

, -

0

;: :;
z In

,,8

Vos - DRAIN-SOURCE VOLTAGE (V)

Transfer Characteristics
5.' rlrr-r-r-,-,--,---,-.,.,

~.

!Its.A'

rrr;,,,.,

~=
=0 1.0

u

10

a..,loss (fIVos=15V, Vas"OPULSED
ros@Vos=IOOmV,Vas· O

J

E~

'.0 I-Hi0'9I'::;;I;;;oI.;;-CI::r·3:,:Vt-+-H

o
-0.5

r:T=""-'""!"=5..TC ..,-..,....,.,.,...."

4.0

Channel Resistance vs
Temperature

Parameter Interactions

1.0

1.0

~National

Process 84 N-Channel
Monolithic Dual JFET

~ Semiconductor
.1

DESCRIPTION
Process 84 is a monolithic dual JFET with a diode
isolated substrate. It is designed for the most
critical operational amplifier input stages or elec·
trometer single ended preamp. Ideal for medical
applications and instrumentation inputs where
sUbpicoamp inputs are important. Device design
considered high CMRR, sUbpicoamp leakage over
wide input swings, low capacitance, and tight
match over wide current range.

l"--L-'i7'Y'.,f-----t0.0040

(0.1016)

~~~~d~.,LA+,-

0.022

CHARACTERISTIC

MIN

TYP

Vas =OV, IG =-1 /lA

-40

-60
300

1000

/lA

180

300 .

/lmhos

.umhos

PARAMETER

Gate·Source Breakdown Voltage

CONDITIONS

BV GSS

Drain Saturation Current

lass

Vas = 1 5V, V GS = OV

20

Forward Transconductance

g"

Vas = 15V, V GS = OV

90

= 30 /lA

50

120

150

2

4.5

9t,

Vas = 15V, 10

VGS(OFFj

Vas=15V,la=1nA

Reverse Gate Leakage Current

IGSS

Vas = OV, V GS = -20V

Gate Leakage Current

IG

VaG = 1OV, I a = 30 /lA

Feedback Capacitance

Crss

Vas = 15V, V GS = 0, 1= 1 MHz

Input Capacitance

C iss

Vas = 15V, V GS = 0, 1=1 MHz

Noise Voltage

en

Vas = 15V, la

Noise Voltage

en

Vas = 15V, I a = 30 /lA, 1= 10Hz

180

Vas = 1OV, I a = 30 /lA

0.01

Output Conductance

gos

n;·q:" ... " .... +; ... 1 r- . . +nC .... " ... ,..." " .... 1.. ., ... "

-

1\/

-- . ---

~"

1(\\1

I

1= 1 kHz

pA

0.5

3

pA

0.3

0.4

pF

2

3

pF

30

50

_ ':In "/\

1~

Vos = 10V, 10

= 30/lA

10

Common-Mode Rejection

nV/..jHz
0.1

CMRR

Vos

= 10V, 10

= 30/lA

112

This process is available in the following device types.

50

* Denotes preferred parts.

*2N5906
*2N5907
*2N5908
*2N5909
Leakage Current vs
Voltage and Drain Current

Parameter Interactions
lk P=~~~~~~~EBIffi

lk

:ov ::::t::t:

~

InA ~

i

"

TA

=1'25"~==t=lr30L 100,A

100

10 -30,A=

w

'"
;2

10

~

I D =10DpA¥; 1

TA - 25°C

I

10

0.1
VGS(OFFi ~

101 30,~

.OJ

l--'.-'...L.l..LU.li..._L..J....LLlil.!J

i=::::

TA=85"C ~lo-l00"A§ !§

~
;3

0.1

10

0

VOL TAGE GATE·TO·SOURCE (V)

10

20

30

40

50

60

VOG - DRAIN GATE VOLTAGE IV)

10·17

/lvtc
dB

TO·78 (CASE 24)

rr/

/lmhos
~\I

Ratio

VGSIOFFI Ql Vas' 15V, 10:

nV/..jHz

~

D. V GSI-2

Uls. los5@V as :15V.VGs

V

5

Differential Gate-Source
Voltage Drilt

2N5902
2N5903
2N5904
2N5905

UNITS
V

0.5

Forward Transconductance

Gate Cutoll Voltage

= 30/lA,

MAX

=
70

~

co

·Process 84

en
en
Q)

Common Drain-Source

Transfer C.haracteristics

CJ

e
c..

Leakage Current vs
Voltage

Characteristics

360

500

~ 300

....

~
~

~~~~~--+

180
120

~
,.,

100

300

~w

10

..'"

0.5 0.75

1

1.25 1.5

1.75

-

1--

'!§ 300

.3

..~

VGS(OFFI"

w

u

z

240

.,z

180

,

:3
I

..

60

TA

0.75

1

_

200
100

.,- 'I:;

'"

!i0

~z
~

I"

1.25 1.5

300

z

""'XTA =125°C
1.

"~
I

125~C~ ~VGS(OFFI;:: 1.2V----'

0.25 0.5

VDG

f= 1 kHz

TA =25'C"
TA = 125'C I

~

TA =-55'C

"

VGS(OFF'- 2V

TA = -55"C

"§
.3

il:
z
:3

J

co

..~

.

2!

100

1 rnA

200

Capacitance vs Voltage

..E

100

>

100 Hz

0

1 kHz

5
I

.;

0

1 kHz

10 kHz

100 kHz

"J
J

10kHz.:;:::: 100 kHz

10

100

30

Differential' Offset

Differential Drift

VOG '" 15V

'"

30
iOIOJl
MED

= -55'C to 25,',~.

10 - DRAIN CURRENT IpAI

....'"
:3

10

50

100

10 - DRAIN CURRENT (pAl

10-18

16

20

24

1

r--"VOG =10-20V

115

105

r::t:- ....

b----- "VDG =3-10V

1--- r--.
1

100
95

~

1 rnA

i:i

90

!'

I

I

"T = 25°C to 125'C
= -55'C to 25'C
lk

125

a: 110
w

i=TIGHT

III

100

;:;J

I

10

TIGHT

~
.,
!iz

I
MEO

12

CMRR vs Drain Current
~

:s
z 120

VOG -15V

1

""

VGS - GATE·SOURCE VOLTAGE (VI

100

6 T" 25°C to 125°C

CASS (Vos = 15VI

10 - DRAIN CURRENT (pAl

100

10

0.4
0.3
0.2
0.1

10

f - FREQUENCY (kHz)

I-""

CiSS (V os '" 1!iVI

Z

I

i 1mr\

10

30 50

10

2!

I

20

15V

10 - DRAIN CURRENT (pAl

~Hz

co

0

100

1~~,

vr IIIII

10
10

w

10

~

w
u

w

100

11 0 1

1

~

:s

w

10

10V

VGSIOFFI-

200

~

10 =3DIJA

.;

2V

1

VOG = 1!iV

I

w

F

I

VOG -15V

:s

70

10V
100

~

lk

~
>

- f-.l ~!.!

Noise Voltage vs
Current

YS

60

VaS(OFFI-

5V

10 - DRAIN CURRENT (pAl

lk

:;
"

.~

..-HII

100

50

5V

w
u

VGSIOFFI = 1.2V

20 30 50

40

!

10

Frequency

.'"

-g

15V

J
10

30

lk

!;

VGS - GATE·SOURCE VOLTAGE (VI

Noise Voltage

;;

30
20

1.75

20

Output Conductance vs
Drain Current

!ioo

~

2V

~: :;:o5~C

\

.li

10

VOG - DRAIN GATE VOLTAGE (VI

Transconductance vs
Drain Current

"
-'" .,: VVTA=2-tc~~

~ 120

a:
....

......

I-.

..

v

=25°C

0.2
0

lk

"

TA

VOS - DRAIN SOURCE VOLTAGE IVI

Transfer Characteristics

-g

....-

I

J

VDS " GATUO·SOURCE VOLTAGE (VI

360

85~C

:li

.E 100

OL-~~~~~~~~

0.25

TA '"

....

I

o

L

co

:5

60 t-...l'~?--+---f'''oIl---+---1

-

TA ", 125°C

a:

~ 200

I

.E

.::

~

f-.3oj,,-",,,c-'II--+

z

.,~

400

....

::a::

240

~

VGSIOFFJ = 2.25V

j

Zk
lk

!....

TA = 25' C

CMRR = 20 Log

6VOG
6VGS1-2

85
10

20

30

40 50 60

10 - DRAIN CURRENT (pAl

80 100

~National

Process 86 N-Channel
Monolithic Dual JFET

~ Semiconductor

DESCRIPTION
Process 86 is a monolithic dual JFET with a diode
isolated substrate. It is intended for critical amplifier
input stages requiring low noise, sub picoamp bias
currents and high gain. Exacting process control results
in consistent parameter distribution with tight match
and low drift.
This process is available in the following device types.
'Denotes preferred parts.

0.022

TO·78 (CASE 24)

'T'

U421
U422
U423
U424
U425
U426

t

PROCESS IN DEVELOPMENT

10-19

~National

Process 87 Analog Switches

~ Semiconductor
0.030
1-------(0.7621-------1

minimum of circuit board area. Switching transients are
greatly reduced by a monolithic integrated circuit process. The resulting analog switch devics provides the
following features:
•
•
•
•
•
•

301l
100 MHz
4MHz
250pA
±15V

Low ON Resistance
High Analog Signal Frequency
High Toggle Rate
Low Leakage Current
Large Analog Signal Swing
Break Before Make Action

Note: Pin 4 is also backside gate

DESCRIPTION

The AM1000 series of analog switches are particularly
suitable for the following applications:

The AM1000 series are junction FET integrated circuit
analog switches. These devices commutate faster and
with less voltage spiking than any other analog switch
presently available. By comparison, discrete JFET
switches require elaborate drive circuits to obtain
reasonable performance for high toggle rates. Encapsulated in a four pin TO-72 package, these units require a

•
•
•
•
•

SCHEMATIC AND CONNECTION DIAGRAM

High Speed Commutators
Multiplexers
Sample and Hold Circuits
Reset Switching
Video Switching

EQUIVALENT CIRCUIT

TO·72 Package

ANALOG~ANAlOG

INPUT....

"":"0

...,

OUTPUT

EXTERNAL
DIODE REQUIRED

TOPV1EW

TYPICAL APPLICATIONS
± 10 Volt Swing Analog Switch 0.5% Accuracy

± 15 Volt Swing Analog Switch

,--AMIDDo']
ANALOG
INPUTS

[O----=()----

10

a:

0:=
C>:;l
12

5.0

.E

.E ....

-16

~

K t7 ..-

-ZO

~

~ -8.0

100

_0:

Ilk, loss @V os ::: -15V, VGS:: 0 PULSED

I

los@Vos:::-100mV,Vas=0
VGS(OFFI@VOS '" -:'5V,l o '" -1.0$lA

I

1.0

Z.O

3.0

1.0

4.0

GATE·SoURCE VOLTAGE IVI

z~

Z.O

tL

_

~ -4.0

.4~

10

-1.0

Leakage Current vs
Voltage

-

E

"2

.!
Z

i0:1i

~

~

Z

....

500

"In

w

"

2

4.0

~-

.... t:';1v

-~

.,.

+Z.5V.1 +3.0V +3.5V

-Z.O

-3.0

-4.0

-5.0

Channel Resistance vs
Temperature
1000

~

~-

Vo, - DRAIN·SoURCE VOLTAGE IVI

!

!;l

+0.5V

+1.0V

......t""

E

VGS(OFFI- GATE CUTOFF VOLTAGE (V)

Transfer Characteristics

~

.........

1
.y

I.
~::
i""""
1'/ ..... ......

0:
C>

I

5.0

r-t-JG,l ov~

-IZ

~ -8.0

~
10

TA :: 25'C
TYP VGS(OFFI:: 4.5V
-16

l-

f'

1.0
-

i

"In;;;

!It.

50 z

-"

VG,

.!

2

<12

z
<1

~

;;:

I-+-"!~a--+---'l"\,d---l--l

100

r-

VOS
100 mV
VGS 0
VGSlDFFI· Z.5V ~ . .l.

I-

t-VGSlDFFI.4.5V~
~ lt-- VGS(OFF! :: B.OV ~~
1---1""" ~ I-

50

:5
I

I

!i

.5

10
1.0
VG ,

-

Z.O

3.0

-6.0

4.0

GATE-5oURCE VOLTAGE IVI

-1 Z

-18

-Z4

-30

-75

Output Conductance vs
Drain Current
'

Transconductance vs
Drain Current

]

_1:

.3

-25

+25

+75

+125

TA - AMBIENT TEMPERATURE

VOG - DRAIN·GATE VOLTAGE (V)

+175

(~C)

Noise Voltage vs
Frequency

!~G"~~lp Z.5vlll~

I:' 1:~ RIIIIIIIIIIIIIII

11111111

w

"z

"t;

100

~

l3

~

:>

1 . 0 _ .
0.5

10

Hfl...r-t"~lo '" -0.2 rnA

~ ~1i'ilJ::m~.s

'"z
C>

~

!;

Voo:: -15V
BW::: 6.0 HZ@f"'10Hz,10oHz

I

C>

.c

1-+-I-ttI!tt!-H-tttttVOG '" -15V

I

J

f::: 1.0 kHz

• 0.Z'@';'1.0kHz
1.0 L-L...L.J.-'-...I...L-'-~:'-'-:,:"..u..........,
0.01 0.03 0.1
0.51.0Z.0
10
100

0.1 L-LLJ.J.J.JJJL....I-LllWJJ.-l...I..J.J.LWI
-0.1
-1.0
-10
-100
10 - DRAIN CURRENT ImAI

Normalized Drain
Resistance vs
Bias Voltage

Capacitance vs Voltage
100

"z

50

w

"In
i0:1i

I I I I

"2

0;

:i:

10

I

5.0

ZO

w
N

C.LU5VI!=

:;

10

C. IV Ds - 15VI:=

"'"

=
z

5.0

!i

Z.O

0:

"

IIII

1.0
4.0
-

8.0

lZ

16

I- rOSb-

rr-

1

1.0
ZO

.." t::::"
O.Z

GATE·SoURCE VOLTAGE IVI

'DS
VGS
VGS(OFFI

I

I

I I I I I

VG ,

50

C>

.....

;'\

J,

VGS(OFFI @ 5V, 10~A

w

f-D.l-l.0MHz

;:!

• - FREoUENCY IkHzl

10 - DRAIN CURRENT ImAI

100

-

10 -5.DmA

10
5.0

......... . /
0.4

0.6

0.8

1.0

IVGs/VGS(OFFII- NORMALIZED GATE-

To·SoURCE VOLTAGE IVI

10-23

o
n

CD

, Common Drain-Source
Characteristics

Parameter Interactions

...

"'C

en
en

(X)
(X)

0')

co
tJ)
tJ)

(I>

~National

Process 89 P-Channel JFET

~ Semiconductor

(,)

o...

I~

Q.

i1

1:::::)-----1>

DESCRIPTION
Process 89 is designed primarily for low level
amplifier applications. This device is the comple·
ment to Process 52. Commonly used in voltage
variable resistor applications.

0.020
10.508)

~~~/1
CHARACTERISTIC

TEST CONDITIONS

PARAMETER

MIN

TYP

Gate-Source Breakdown
Voltage

BV Gss

Vos = OV, IG = lilA

20

40

Zero Gate Voltage
Drain Current

loss

V os =-15V,V Gs =0

-0.3

-4.0

Forward Transconductance

gfs

Vos = -15V, V GS = 0

1.0

2.5

Forward Transconductance

gfs

VOG = -15V, 10 = -0.2 mA

Gate Leakage

IGSS

V GS = 20V, Vos = 0

Pinch Off Voltage

VGSIOFF)

Vos =-15V,l o ·=-1 nA

Feedback Capacitance

C rss

VOG = -15V, V GS = 0, f = 1 MHz

Input Capacitance

Cis

VOS = -15V, 10 = -2 mA, f = 1 MHz

"ON" Resistance

ros

Vos = -100 mV, V GS = 0

Output Conductance

gas

VOG = -15V, 10 = -0.2 mA

Noise Voltage

en

VOG =-15V,10 =-0.2mA,
f = 100 Hz

This process is available in the following device
types. * Denotes preferred parts.
TO-18 (CASE 11)

TO·92 (CASE 92)

TO-92 (CASE 94)

2N2608
2N4381
2N5020
2N5021

*2N5460
*2N5461
*2N5462
PN4342
PN4360
PN5033

2N3820

TO-72 (CASE 23)
2N3329
2N3330
2N3331
2N3332

10-24

MAX

V
-20
4.0

700

0.5

UNITS

mA
mmhos
Ilmhos
nA

0.02

1.0

3.0

9.0

V

2.0

2.5

pF

7.0

8.5

pF

n

450
5.0
30

15

Ilmhos
nV/v'Hz

""C

Process 89
Transfer Characteristics

.s....

.s .s
;<

-6.0

....

~

'"~
z

I

.E

~

z

z

i

~

-2.0

I

g".lpss@Vps:-15V,VGs-OPUlSED
'os@Vos:l00mV.VGs:o
VGS!ofF!@VOS: -15V,lp ~ 1.011A

5.0

~

1.0

'DS

~

,£
0.1
0.1

V GS - GATE·SOURCE VOL TAGE (V)

II~rs

I

IIII

I

0.5

z

~

~

0.1

.s....

j
'"

-0.4

~
I

"

IGSS

~

2.0

d- l o"0.1-1.0rnA=

ID"O.1
TA "+125°C

'"

1.0mA

~ ~

1.0

~

T

0.01

r-

V GS - GATE·SOURCE VOLTAGE (V)

~

TA " +25"C
-6.0

-12

-3.0

-4.0

-5.0

VGSIOFFI-l.0V . . . . . .

'"

VG"OFFI"1.8V~
VGSIOFFI '" 5.0V

-18

-24

I

i--"

~~

1.0

=

0.5

......

~
I

.e

0.1

-75

-30

-25

25

75

175

125

TA - AMBIENT TEMPERATURE eC)

VDG - DRAIN·GATE VOLTAGE (V)

Output Conductance vs
Drain Current

-2.0

Vos =-100 mV
Vas - 0

«

IGSS

FF-ID-0.l-l.0mA~

4.0

-1.0

10
5.0

z
i;;

~
~
z

z

I

0.6V

0.BV+--.1.0V- 1.2V -

VDS - ORAIN·SOURCE VOL TAGE (V)

w
u

f'-.

TA '" +85°C=t= IGSS

§

-

r- r- r-

0.4V

Channel Resistance vs
Temperature

3.0

z

3.0

j

9

0.2V

_I'"'"

...-

Leakage Current vs
Voltage

E

2.0

/

-0.8

g

1.0

I-

z

.E

(X)
(0

VGS '" OV

/

-1.2

10

5.0

1.0

4.0

'"'"....

0.5

I

~

~
z

~

TA"25"C
T¥P VGSIOFFI = 1.8V

;< -1.6

VGS(OFFI - GATE CUTOFF VOL TAGE (V)

Transfer Characteristics

:

-uw

1.0

J,-

0.5

~'-:•
o

1"

5.0

z

u

13 ~

-4.0

«

'"'"

E

(J)
(J)

-2.0

10

10

;<

(1)

Common Drain-Source
Characteristics

Parameter Interactions

Noise Voltage vs
Frequency

Transconductance vs
Drain Current
10

I~

5.0

?

w
u

z

w
u

'"

z

~

~10~

S

5.0

• • •

~

'"

~

I

J

I: §~III~~~~~m~
VOG '" -15V
f =1.0 kHz

I

1.0 l.-JL....UO-WU-J...J-.UJ.J.1ll-..L.I...LLl.Wl
-1.0
-0.1
-10
-0.01

;;:
0.1
-0.01

ID - DRAIN CURRENT (rnA)

-0.1

-1.0

-10

Capacitance vs Voltage
100

f=0.1-1.0MHz
50

w
u

z

;::

u
:l:

10

:3
I

,
u

is ~ E

C, (V DS " -15V)=

==

5.0

- ~ ~rOI

u

Crs (Vos

1.0

o

4.0

-15V)
B.O

12

16

. 20

VGS '- GATE·SOURCE VOL TAGE (V)

10-25

~

~

~

I
.c

10
5.0

Vo a"'-15V
BW =6.0 Hz@f'" 10 Hz, 100 Hz
"0.2t@f;;:::1.0kHz
1.0 l....J..J..l.....L..Ll.-LL..J...Ll....L..Ll.-'-l
0.01 0.03 0.1

0.51.02.0

10

1- FREQUENCY (kH,)

10 - DRAIN CURRENT (rnA)

-

-w
'"
~,.

~

o
n

50 100

o0')
r.n
r.n

Q)
(.)

~National

Process 90 N-Channel JFET

~ Semiconductor

o
~

DESCRIPTION

c.

Process 90 is designed for VHF/UHF mixer/
amplifier and applications where Process 50 is not
adequate.' Has sufficient gain and low noise, common gate configuration at 450 MHz, for sensitive
receivers. The high transconductance and square
law characteristics insures low crossmodulation
and intermodulation distortions. Common-gate
operation simplifies circuitry. Consider Process
92 for even higher performance.
GATE IS ALSO BACKSIDE CONTACT

CHARACTERISTIC

PARAMETER

TEST CONDITIONS

MIN

TYP

...,20

-30

MAX

UNITS

Gate-Source Breakdown
Voltage

BV GSS

Vos = OV, IG = -1 /lA

Zero Gate Voltage
Drain Current

loss

Vos = 10V, V GS = 0

3

18

40

mA

Forward Transconductance

gfs

Vos = 10V, V GS = 0

5.5

8.0

10

mmhos

Forward Transconductance

gfs

Vos = 10V, 10 = 5 mA

4.5

5.8

mmhos

-5.0

Reverse Gate Current

IGSS

V GS =-.15V, Vos = 0

"ON" Resistance

ros

Vos = 100 mV, V GS = 0

Pinch Off Voltage

VGS(OFF)

Vos = 10V,I o = 1 nA

Output Conductance

gas

VOG=10V,10=5mA

Feedback Capacitance

Crs

Input Capacitance

V

-100

pA

fl

90
-1.5

-3.5

-6.0

V

45

100

/lmhos

VOG = 10V, 10 = 5 mA

1.0

1.2

pF

4.0

5.0

pF

Gis

VOG = 10V, 10 = 5 mA

Noise Voltage

en

VOG = 10V,I 0 = 5 mA,f= 100 Hz

13

nV/YHZ

Noise Figure

NF

VOG = 10V, 10 = 5 mA, f = 450 MHz

3.0

dB

Power Gain

Gpg (CG)

VOG = 10V, 10 = 5 mA, f = 450 MHz

11

dB

This process is available in the following device types. * Denotes preferred parts.
TO-52 (CASE 07)

TO-72 (CASE 29)

TO-92 (CASE 92)

TO-92 (CASE 97)

U312

* 2N5397
2N5398

J114
*J210
* J211
*J212
*J300
MPF256

*2N5245
*2N5246
*2N5247

Common Drain-Source
50
;t

.5
I-

:;;

-1.5V 11-1_ '1_
-2.0V

~

30

~

20 f---3.0;;

.E

10

Z

e---

-2~V

--If-I-

JC~~Jj::::~

t:::-/.I-""-

I

o

-','l"eI

100

~~; ~::~O'FlI. J.5v~-tL .Iov

40

Qt!.

"jg

E
E

50

;tW
Eu
_
I- z
z«
wI",u

",=>
=>c
u

10

gf

2.0

3.0

4.0

5.0

Z

.5

100

~

"
f'

Z

c'"

~

.,P';;

E

I

1.0
1,0

"jg

«

I I~ I

Vos - DRAIN·SOURCE VOLTAGE (V)

S

500 uw

50

5.0

10

1000

loss

r~ ~V

Z

~~
«z

loss@Vos::1OV,VGs=OPULSED

ros@Vos=100mV. VGS =0
VaS[OFFJ @Vos =tOY, 10 =1.0 nA

"'«

~H'

o

Transconductance vs
Drain Current

Parameter Interactions

Characteristics

10
-0.1

-1.0

-5.0 -10

VGS(OFFI - GATE CUTOFF VOL TAGE (V)

10-26

E

5.0

w

~~r·
55"C ;:::..
T +25°C
A "

TA·+125'Cr';;:;J~

VGS[OFF} '"

u

Z

~~

«

t;

I

1.0

-2.SVt$lP'"

Ill

GSlo " , .

-5.5V

0.5

~

l-

VOG '"

I

.li

lOV

f.lyrl'

0.1
0.1

1.0

'0 - DRAIN CURRENT (mAl

10

Process 90

...

"tJ

o
n

(T)
CJ)
CJ)

COMMON SOURCE
Transfer Characteristics
J5~~~-.-.-r-r-r-r,

~ 10k

30

Input Admittance
1i

~:0-10rnA

~

,

~
.2

~

1
:i

.

~

VGSIDfFl ~ -2.6V

lGSS~
5.0

~

I"-i=!~"""d>':"""~;~:: ~~~ ~
I-hH-4~-+-+"i~"i--H

10
5.0

I
..t:.

0 L.J--L-LJ-,--'1lIo..L..J-ll1.......
tII..J
o
-1.0
-2.0
-3.0
-4.0
-s.o

2.0

1.0

"

1"

"''"

VOG -IOV
10 " lOrnA
(CS)

.
z

1..

1.0

100

f= 0.1 -1.IIMH2

0.1
-4.0

-8.0

-12

-16

Vc;s - GATE·SOUACE VOLTAGE (VI

g"

~

.
z

b,·

F='

l

/'
I

~,

/

1.0

50100

1000

500

100

k:.

1.0

1:

VOG " 10V
10" 10 rnA
(CG)

0.1

500

100

.;

1- FREQUENCY (MHz)

10110

f - FREQUENCY (MHz)

Output Admittance

~

Output Admittance

..
~

VOG" 10V
10" 10mA
(CS)

~-:---.-

VOG = IOV
10=10 rnA
(CG)

.
z

boo,

I

1.0

I .......

/b

1.0

o•

~

'.0

J

10

~

g"

~

go,," x (0".1)

0

~,

.J

Forward Transadmittance

E

~

z

z

(V os " IOV)

1000

=

1

.

c" (Vos" 0)

~

10

..
~

=

Output Conductance
VS Drai n Current

CII (VDS = 5.DV)

0

Forward Transadmittance

10

,--~'~0.~11_.~1C,-·'~.O~kH~'~~.J..L.l..J
0.51.02.0

500

100

f - FREQUENCY (MHz)

100

10 " lOrnA

VOG" 10V
8W=6.0Hz@f"IIIHz,100Hz

1.0 (../_---'-------.JL-l---'--LL.Ll.J

1000

f - FREQUENCY (MHz)

f - FREQUENCY (kHz)

10

J
500

100

~~d-~~~+-~++~

0.01 0.03 0.1

Capacitance vs Voltage

1i,

20

15

~ ~~~~~'i'~·~1.0~m~A~!!~

VGS - GATE·SOURCE VOLTAGE (V)

It

10

J

f

0.1

1.0 0

,

g.

J

TA - +25°C

10

b.

,

10

TA~+125e-

~

2.0

=

~~:::::~

B.O

6.0

~

10

1.0 rnA

Noise Voltage vs
Frequency

z

~

~

VOG - DRAIN·GATE VQL TAGE (V)

TA = +125 e

~

~

l)lO~A

"r-r-r>~~~~~-r,
~ VDS ~ 10V - VGSIDFfI ~ -41,{=E5V

10'~

lOO8EmI
VaG ~ 10V
10 - lamA
(eG)

-I GSS,::::

+85·C

10

Transfer Characteristics

'0

lOV

-10 mA
(CS)

.§

IDa

VGS - GATE·SOURCE VOLTAGE (V)

V"

z
T,

~

to

I nput Admittance

10

E

10 -1.0 rnA

\.Ok

~

COMMON GATE

o

Leakage Current vs
Voltage

-g.,IJIX(o.l)

1

~

J

1
0.1

-20

>00

100
10 - QRAIN CURRENT (rnA)

1000

J

y

0.1

tOO

500

Reverse Transadmittance

!,
i
r
10·27

..

VOG" 1GV
10 ~ 10 mA
(CS)

y

=
~

Reverse Transadmittance
1i

10

~

./

1.0

f---.

0'\00

1.0

E

-V oG =10V

z

~-

'0 =lOrnA

~

LII

~

~

/"-b"

~,

g",J

1- FREQUENCY (MHz)

+g'g

0.1

r-"

!

1000

K

-~~ ~

/"

"'

~
500

11100

f - FREQUENCY (MHz)

f - FREQUENCY (MHz)

.

y

0.01

V
tOO

\1/
500
1- FREQUENCY (MHz)

~II
1000

Process 92 N·Channel JFET

~National

~ Semiconductor
~___________ iOi·0~23 -----------1
. 0.0038

DESCRIPTION
Process 92 is designed for VHF/UHF amplifier, oscillator,
.and mixer applications. As a common gate amplifier,
16 dB at 100 MHz and 12 dB at 450 MHz can be realized.
Worst case 75 ohm input impedance provides ideal input
match.

0.015
{0.3811

GATE IS ALSO BACKSIDE CONTACT

Characteristic

Test Conditions'

Parameter

Gate-Source Breakdown
Voltage

BVGSS

Vos=OV, IG= -1 p.A

Zero Gate Voltage
Drain Current

loss

Yos = 10V, VGS = 0, Pulsed

Forward Transconductance

gts

Vos= 10V, VGs=O, Pulsed

Forward Transconductance

gts

VOG=10V,10=10mA

Reverse Gate Current

IGSS

VGs= -15V, Vos=O

Min

Typ

-20

-30

10

38

Max

Units
V

80

mA

13

18

mmhos

-15

-100

35

45

80

-1.5

19
10

mmhos

pA

ON Resistance

ros

Vos=100mV,VGs=0

Pinch Off Voltage

VGS(OFF)

Vos=10V, 10=1 nA

-4.0

-:6.5

Output Conductance

gas

VOG= 10V, 10= 10 mA

160

250

p.mhos
pF

0

V

Feedback Capacitance

Cgd

VOG=10V,10=10mA,f=1 MHz

2.0

2.5

Input Capacitance

Cgs

VOG = 10V, 10 = 10 IT\A, f = 1 MHz

4.1

5.0

Noise Voltage

en

VOG = 10V, 10= 10 mA, f = 100 Hz

6.0

nV/-JHz

Noise Figure

NF

VOG= 10V, 10= 10 mA, f=450 MHz

3.0

dB

Gpg

VOG= 10V, 10= 10 mA, f=450 MHz

12

dB

Power Gain

pF

This process Is available in the following device types. *Denotes preferred parts.
TO·52 (CASE 07)

TO·92 (CASE 92)

U308
*U309
*U310

J308
*J309
*J310
Transconductance vs Drain
Current

Parameter Interactions

".

.5..,
,..0
~

wE
",E

lk

100
50

:oW

~~
~B

.~

10

~

~~

l'

1In,loss@VDs"'OV,Yes"DV.PULSED
ros@lo"l rnA, Ves = OV
VGSIOFFI iI Vos" IOV, II:!," 1 nA
TA "2!i C

~~
-1

-3

-5

t

"
100
50

:{~,

~~
c,

.
~
.

c
c

10

=

:;l
z

,..,
.Ii

.. VGS'O'F! - GATE CUTOFF VOLTAGE (V)

==

IVGSIOFFI;; -2.BV

~I

~

10
-10

Leakage Current vs Voltage

VOG =10V
f-1 kHz
T.-25·C

i.5
w

I

""
~~

500

loss-

",-

100

1

~

~~

1
""' '_5 2V

ImJil' i

0.1

10

10 - DRAIN CURRENT {mAl

10-28

VOG - DRAIN·GATE VOLTAGE (V)

""0

Process 92
Transfer Characteristics

~

50

en
en
co
I\)

100

lOV
10 = 10 rnA
ICGI

VOG -

~

.s
u

z

«

::

~«

g~

""

10

....
=>

b

j

'"

1
J

-1

-1

-3

-2

-2

-3

-4

-5

V
1.0

-6

100

Transfer Characteristics

Transfer .Characteristics

·1.s

Forward Transadmittance

'"

;

='lOV
10 rnA

=

~

15

10

VOG

10

ICGI

~

u

~

1000

100

u

'"
«

500
f - FREQUENCY IMHd

VGS - GATE·SOURCE VOLTAGE IVI

VGS - GATE·SOURCE VOLTAGE IVI

~
;;;

1'"-....±--""~~'"1

-g.
10

....
0

'"
g

«
'"

~

I

"

-2

-1

-1

-3

Common Drain·Source
Characteristics

40

-4

-5

-6

I

~

i -i - ~

1

100

LII~IIIfi]

I

J

5.0

4.0

3.0

Capacitance vs Voltage

lDV)-

r-- ~ K C,~ltt

IN-

crn
-4

I-

:s
~

ICG)

10

10 = 1.0 rnA

>

=

b,.

~

C
I

'rll1i

of

I

VGS - GATE·SOURCE VOLTAGE IVI

-lOY

lo=10mA

I I I I

w
Z

~8

VOG

I II

0

r-_

10VI

-6

::c
'"«

10
FV OG -10V
~BW' 6,0 H,@f'10H,.100H,
'0.2f@f>1.0kH,

I~

1000

Reverse Transadmittance

Noise Voltage vs Frequency

--

500

f - FREQUENCY IMH,I

100

10

=

100

10 - DRAIN CURRENT 1m AI

VOS - DRAIN·SOURCE VOLTAGE IVI

-2

VoG =·10V

10 = lOrnA
ICGI

u

J

f"'\

10~~

'"

10

Ci;:s (Vos

1000

Output Admittance

1000~.

....=>
~o

~ f;;:

500

«

v~s' ov

2.0

100

>

f - FREQUENCY (MHz)

.3
w

I
I

1.0

iJ:

Output Conductance vs
Drain Current

t- TA = 25°C
I- VGS(OFFI = -2.7V

30

-3

,,/

1.0

VGS - GATE-SOURCE VOLTAGE tV)

Vas - GATE-SOURCE VOLTAGE tV)

50

-2

§

-10

1.0
0.01 0.03 0.1

A

r-

II
0.5

2.0

10

f - FREQUENCY IkH,1

50 100

ao
CD

Input Admittance

Transfer Characteristics

II

/
500
f - FREQUENCY IMH,I

it
1000

~National

Process 93 N-Channel
Monolithic Dual JFET

~ Semiconductor
0.OZ3

1----:-~-10.584) - - - - - 1
0.0038

DESCRIPTION
Process 93 is a monolithic dual JFET with a diode
isolated substrate. It is intended for wide band,
low noise, single ended video amplifier input
stages, and high slew rate op amps. Monolithic
structure eliminates thermal transient errors, and
provides freedom to pick operating current and
voltage.

CHARACTERISTIC

PARAMETER

TEST CONDITIONS

Gate·Source Breakdown
Voltage

BV GSS

V DS =OV,I G =-1 p.A

Zero Gate Voltage
Drain Current

IDSS

V DS = 10V, V GS = 0, Pulsed

Forward Trans·
conductance

'gfs

Forward Trans·
conductance

gfs

V DG = 1OV, I D = 5 mA

MIN

TYP

-25

-30

3.0

MAX

18

V DS = lOV, V GS = 0, Pulsed

V
40

6.0

-1.5

-3.5

Output Conductance

gos

V DG = 10V, ID = 5 mA

Pinch Off Voltage

VGSIDFF)

V DS = 10V, ID = 1 nA

50

"ON" Resistance

rDS

V DS = 100 mV, V GS = 0

100·

Gate Current

10

IG

V DG = 10V, ID = 5 mA

Noise Voltage

en

V DG = 10V, ID ='5 mA, f = 100 Hz

Differential Match

IVGS1,VGS21

V DG = 10V, ID = 5 mA

9.0
9.0

mA
mmhos

8.0
5.0

UNITS

10

mmhos

100

p.mhos

-'6.0

V

n
100

pA

30

nV/y'HZ

30

mV

40

p.V/oC

Differential Match

AVGSl -2

V DG = 10V, ID = 5 mA

15

Common Mode
Rejection

CMRR

V DG = 10V,I D = 5mA

90

Feedback Capacitance

C"

V DG = 10V, ID = 5 mA, f.= 1 MHz

1.0

1.2

pF

Cis

V DG = 10V, ID = 5 mA, f = 1 MHz

4.2

5.0

pF

Input Capacitance

dB

This process is available in the following device types. *Denotes pniferrei{parts.
TO·78 (CASE 24)
*2N5911
*2N5912
U257

Transconductance
vs Drain Current

Parameter Interactions

1

;:-;
~ 'i

....
....=62!
....
...."'l!::'i.
"''''
.., .,
r

"'E

lk

100
50

II..

d

IA

"'=w
=z

1/ I

500

.......
10

~

V

_I.
100

50

lit., loss (II VOl = 10V. Ves = OV, PULSED
'DS@ID =1 rnA, Ves =OV
VOSIOFFIIJ Vos "10V,lo = 1 nA
1
-1

-3

-5

10

.!
l!J
z

z

'os

",t-

-;
E

g

,
,..'"

loss

I-- VaslOFFI = -~
~

~

:::::

..~
.,
g

"i

VesCOFFI = -4.7V

z

'"

III

!!l,.
~

a:

t-

.

§
10

VaG" 10V

T."Z5°C
'·1 kHz

0.1

10

0.1

-10

10 - DRAIN CURRENT ImA)

VGSlOFFI- GATE CUTOFF VOLTAGE IV)

10·30

Process 93

"'C
..,
o(")
CD

Transfer Characteristics

SO

ZO .--r:-:-----::-:::c:-r---r-,

-"....
"

~

12

;;:

;;:

16

-"....

I"

IT~~<+-

"

~

;;:

-"....
"w
'"'"=>
"
"

30

zo

:5

I

I

.E

-z

-1
VGS

-

-1

-Z

-3

-4

-S

~
~

-"w

"«"

i~
"~....

10

-6

-3

I"-E::

o

~
....

1.0k

~

100

~

w
....

:3

Z.S

0

-1

-Z

-3

-4

-S

10

= 1.0 rnA

10
IGss~

TA

1.0

+25°C

5.0

10

15

lOLL!

I III II [£1 11EffiE

ZO

II
C1SS (Vos

~

Z5

Id

= 10V)

w

;:""

w

'"«

,=

I Gss

Capacitance vs Voltage

~

~

I r l jomA

VOG - DRAIN·GATE VOLTAGE (V)

::c

w

Z

5.0

10 ,110 ~A

-6

I';:

"

4.0

TA - +85°C

Noise Voltage vs Frequency
100

3.0

I

J

'"

100 f==¥:#VMIOFFI =-4.0V)liM

Z.O

~~10'10mA

=

"w
'"'"=>

VGS - GATE·SOURCE VOLTAGE IVI

E

1.0

10k

"w

7.S

VGS - GATE·SOURCE VOLTAGE IVI

.3

""'-

t:.-I' .....
~f-/.

Leakage Current vs Voltage



80

-r-

~VI_I~!U~i"

1°IGI-II·III- ;1111111

70 -CMRR:20Iog

~VGSl_2

1111111

60
0.1

I
~VDG

I

1.0
10 - DRAIN CURRENT ImAi

10

to

(,J

v

m
(fJ
(fJ

C1)

Process 94 N-Channel
Monolithic Dual JFET

~National

~ Semiconductor

(J

...o
0..

DESCRIPTION
Process 94 is a monolithic dual JFET. It is strictly
intended .for operational amplifier input buffer
applications. Special processing results in ex·
tremely low input bias current and virtually
unmeasureable offset current. It is important to
note that the <5 pi co ampere bias current is
measured at 35 volts.· Typical CM R R is 125 dB.
Performance superior to electrometer tubes can
be readily achieved with low offset· voltage and
almost zero long term drift.

CHARACTERISTIC

TEST CONDITIONS

PARAMETER

MIN

UNITS

MAX

TYP

Gate·Source Breakdown
Voltage

BV GSS

Vos = OV, IG = -1 /lA

Zero Gate Voltage
Drain Current

loss

Vos = 15V, V GS = 0

0.5

3.0

Forward Trans·
conductance

gfs

Vos = 15V, V GS = 0

1.5

3.5

7.0

mmho

Forward Trans·
conductance

gfs

VOG = 15V, 10 = 0.2 mA

0.7

1.2

1.S

mmhos

Pinch Off Voltage

V GS(OFF)

Vos = 15V, 10 = 1 nA

-0.5

-2.0

~6.0

V

Gate Current

IG

VOG = 35V, 10 = 0.20 mA

2.0

15

pA

Feedback Capacitance

erss

Vos = 15V, V GS =0, f= 1 MHz

0.01

0.02

pF

Ciss

VOS = 15V, V GS =0, f= 1 MHz

4.0

5.0

pF

Input Capacitance

-70

-40

V

I

mA

10

Noise Voltage

en

VOG = 15V, 10 = 0.2 mA, f = 10 Hz

Output Conductance

gas

VOG = 15V, 10 = 0.2 mA

<0.1

Differential Match

IVGS"VGS21

VOG = 15V, 10 = 0.2 mA

5.0

25

mV

Differential Match

~VGS'.2

VOG = 15V, 10 = 0.2 mA

6.0

50

jJ.V/oC

Common Mode
Rejection

CMRR

VOG = 15V, 10 = 0.2 mA

This process is available in
the following device types.
* Denotes preferred parts.

12

50

nV/YHZ
/lmhos

dB

125

Common Drain-Source

Characteristics

Parameter Interactions
5.0

TO-71 (CASE 12)
*NDF9406
*NDF9407
*NDF940S
*NDF9409
*NDF9410

"..
.!l

J

TA '25'C
TVP VGSIOFFl '" -2.5V

4.0

0-

"'a:a:

3.0

;;:

2.0

.,

17

jL.,..o

E

0.1

-0.1
VGS!OFFJ -

-5.0

··0.5 -1.0

-10

GATE-SOURCE VOLTAGE (V)

10-32

1.0

o

ijc,...
o

1.0

.-

i J v I-

-0.9V

~i--'

I

.E

-

-;;]; VI-I-

(/
}v

:5
gk. loss @Vas '" 20V, VGS '" 0 PULSED
VGS(OFFJ @V as '" 20V, 10 '" 1.0 nA

1/

1-1G~~=

1.2V

I

-1.5vLJ.
2.0

3.0

-l.RV
4.0

Vos - DRAIN·SDURCE VOLTAGE (V)

5.0

"tJ

Process 94

~

o(")
CD

Transfer Characteristics
~

1

4.0

~u

t-'I.t-'rl--+-+

:

§

~
~

3.0
2.0

f

-1 m,s

I-+---P~\t-+

...

~

1.0

III

1

-1.0

-1.5

-2.0

1.0

20

"

~

15V
0.1

50

0.1

.sw

4.1l

w

10

u

~1

f=.H+0

05

-1.5

-1.1l

-2.0

w

20

:s
'"

b~~

-2.5

10

~

5.0

u.u

nl \",

50 100

0.01

f - FREQUENCY IkHzl

0.1

w
u

'"
5G
~'-

~~

1.0

ME~

"'"

~

'"'"'"

_

~

I~

.'=

~'"

'"
S

TIGHT

~

11.01

I

"'"

"':'"

I

1.0
0.1

0.01

10 -DRAIN CURRENT (rnA)

0.1

130
~VOG

'"
i:l'"

1.0

I

I

lID

~I-l!v

100

90

~VeG

CMRR = 20 log - -

I I I I 111~1S1'

80
0_01

io - DRAIN CURRENT (rnA)

I
- 10 - 20V

120

1

II

1.0

TlGHT-

5.0

10

~

10

"w
"",
:>w

:>

""

.w

CMRR vs Drain Current

~~E

w:>

..."'~"
"',::;

0.1

10 - DRAIN CURRENT (rnA)

10-33

-20

MEO

10 - DRAIN CURRENT ImAI

VoG -15V
L'.T=+25°CTO+I 25"C
- _55°C TO +25°C

Mr'

-16

IA '" t::fl,;

"~

Differential Drift
100

-12

1'<'

'111m

1.0
0.5 1 2.0

f" 0.1 -1.0

-8.0

10

'w

10 Hz

f.... IOkH~:

"1

\

LOOSE

~~
"':>

:>

2.0

'"

"':>

:s

I diD ~ 0.03 rnA

oi

Differential Offset

:?

~

~

-4.0

-

Cgb (VG,a)

VGS - GATE·SOURCE VOLTAGE (V)

I~

~ I F:t 10 " 0.2 rnA

C" IVos" 15Vi-+-

IVOSI"

0.1

Noise Voltage vs
Current

:>

1

0.5

,

10 - DRAIN CURRENT (rnA)

0.2f@f::;::1.0kHz

.....

'"~

-

1

u

--

u

Noise Voltage vs
Frequency

50

1.0

0.1 L-LLLWllL-LLllWJL-,-,-,.w.JJ
1.0
0.01
0.1
10

VGS - GATE·SOURCE VOLTAGE (V)

~

;;:
;:;

-

~C"

;:;

1

-1l.S

r-...

";::

~
§" 1.0~~
s=m
"~

k: I---

u

"

1.0 t--t--'\'--t----j--+--f~--l-H

5.0

-

u

"'"

!

5.0

10

Capacitance vs
Voltage

~10~~

I

1.0
10 - DRAIN CURRENT (mAt

Transconductance vs
Drain Current

E

lIT
,m

/

"'"

VeG - DRAIN·GATE VOLTAGE (V)

Transfer Characteristics

-1.0V

. ll1V

1

40

30

r~~

I

1= 10V

...

-~I~" 01,,,,

1.0

GATE·SOURCE VOLTAGE (V)

-

!

-1.0 rnA

10

3.0V

VOG '" 5.IIV

~

.2

-2.5

IL

V_GSIIOFFJ -

u

"

10 " 0.11.0 rnA

TA - +25"(;

j
VGS

:.;.:;SS

CJ)
CJ)

V5

=loll kHz

E
.3

10 ~ 0.11.0 rnA

TA"+125~C

1.0k

TA - +B5"C

1

-0.5

10

10k

l-+-,d'o,,)'r4-1-f---+-+-+--j

'"
.E

Output Conductance
Drain Current

Leakage Current vs
Voltage

1.0

1.0

U)
~

~National

Process 95 N-Channel
Monolithic Dual JFET

~ Semiconductor

DESCRIPTION
0.038

'~~~~~10.9651~~~~~--1

CHARACTERISTIC

PARAMETER

Process 95 is a monolithic dual JFET with a diode
isolated substrate. It is intended for operational
amplifier input buffer applications. Processing
results in low input bias current and virtually un·
measureable offset current. Low noise voltage
and high CMRR for critica.1 1/f applications.

TEST CONDITIONS

MIN

TYP

MAX

UNITS

Gate·Source Breakdown
Voltage

BV GSS

Vos :OV, IG :-1 /J.A

Zero Gate Voltage
Drain Current

loss

Vos: 15V, VGs: 0

0.5

3.0

8.0

mA

Forward Trans·
conductance

gfs

Vos: 15V, VGs: 0

1.0

2.5

4.0

mmhos

Forward Trans·
conductance

gfs

VOG: 15V, 10: 0.2 mA

0.5

0.7

Gate Lea kage

IGSS

V GS :-20V,V os :0

Pinch Off Voltage

VGSIOFFI

Vos:15V,10:1nA

Input Capacitance

C jss

Vos: 15V, VGs: 0, f: 1 MHz

Noise Voltage

en

Vos: 15V,!",: 0.2 mA,
f: 10 Hz

Noise Voltage

en

Output Conductance
Feedback Capacitance

-40

-70

-5.0
-0.5

V

mmhos
-100

pA

-2.5

-4.0

V

10

14

pF

8.0

30

nV/VHz

Vos: 15V, 10: 0.2 mA,
f: 100 Hz

6.0

10

nV/vHz

gas

VOG : 15V, 10 : 0.2 mA

0.3

1.0

/J.mhos

Crss

V os :15V,V Gs :0,f:1 MHz

3.5

5.0

pF

Differential Match

IVGS1,VGS21

VOG : 20V, 10 : 0.2 mA

6.0

25

mV

Differential Match

tl.V GS1 .2

VOG : 20V, 10 : 0.2 mA

9.0

60

/J.V/oC

Common Mode
Rejection

CMRR

VOG : 20V, 10 : 0.2 mA

This process is available in the following device
types. * Denotes preferred parts.
TO-71 (CASE 12)
2N5515
2N5516
2N5517
2N5518
2N5519
*2N5520
*2N5521

*2N5522
*2N5523
*2N5524
*2N6483
*2N6484
*2N6485

10-34

86

115

dB

Process 95

Transfer Characteristics

Common Drain-Source
Characteristics

Transfer Characteristics

-2:0V,

~

i-t::

zl.~ --J-- -'.6V

--\-

H1~j1~,~·,sV-~-=1+~

1.'
:

Z.O

~

1).6

I

0.4

~

1.0

z

.!?
'.2

-0.5

-1.0

-1.5

-1.0

-3.0

-4.0

o

-5.0

VGS - GATE-SOURCE VOLTAGE lV)

VGS - GATE·SOURCE VOLTAGE lV)

Transconductance
Characteristics
~

~

E

.
.

z

2.'

!

z

1.0

,

,

Z.O

l.o

4.0

VGSIOfFl -

.
-

""

Leakage Current vs Voltage

'"

5.'

z

..

in

3.'

~

1.0

'.5

~,

~

J
j

0.1

-25

-15

VGS - GATE·SOURCE VOL rAGE jV)

TA

Ves - GATE·SOURCE VOL TAGE (V)

Output Conductance vs
Drain Current
10

rv::WvE!ttf!~

E

E

I~ ~!II§~g~ml
~
0.1

~~~ij!j'jl:fu~~~~~

0.01 '-...L..Ll...lllJlL_Ll...LJ.J..!.l.lJ
0.1

1.0
10 - DRAIN CURRENT (rnA!

25

125

75

100

~VOG

'.1

0.01

'" '"

30

40

50

VaG - DRAIN·GATE VOL TAGE (V)

.

M

100

F

Vor;

~ 15V

11IIIIIttttll

'--"'iff

20

"

10 '" 1I.0l rnA

'0 ~ 0.2 rnA

'1~1!1~'0~'~1.~om~A~

"

2' 1-t+++H-I-t-+++H-t+-I

1.'

1.,

1.,

'.1 c..::=:.c...""::::.:..LilllllL.L1illJJJJ

'"

1.fi

115

Noise Voltage vs
Current

15V
0.21@i21.0kHz

bll

I,.~,

"

AMBIENT TEMPERATURE (" C)

~ "~

,
J

'i
~o:>

1.0

~

-

Inn

Noise Voltage vs
Frequency

Transconductance vs
Drain Current
_

1.0k

u

2.'
1.0

GATE CUTOFF VOLTAGE (V)

~ In"

~

~

'--'--.ll_,l..5llil
_1L.O_Ll..Llillll_100.1

5.0

Channel Resistance
vs Temperature

5'

E

1.0

Vos" DRAIN·SOURCE VOLTAGE lV)

Transconductance
Characteristics

• 3.'

.

-2.0

H/~!J...,+,,-l;-:+--:::':;'·BV:.,..;!::-!-::::!
1.OV 1.2V 1.4V 1.6V-1.HV

,~g

H"~-t,,1Iot

Ll.l.l.-'--LLLl...ll..LLLLL.J
0.51.0 3.0 10
50 100

0.01 0.03 0.1

L.JLl.l.,WJ;"-LLLl.WlL.-LLUJ.llJJ
10 - DRAIN CURRENT (mAl

(~Hz)

i-FREQUENCY

10 - DRAIN CURRENT (rnA)

~
~

Capacitance vs Voltage

'"0

-

i

~

0.1 -1.0 MHz

Voa
TA

50

C: IV" ,115VI, I

10

5'

~

20V
25 C

I !

,
U1DSE

I

.,...,.

LOOSE

I I

"

o

-4.0

-B.O

~
-12

-16

Vas - GATE·SOURCE VOLTAGE (V)

V,,'2nV

TlGHTJ

C.. (Vos ~ al
15V)

-2n

I

j

11

1.0
0.01

0.1
10 - DRAIN CURRENT (rnA)

~T"'25

1.'

0.01

10-35

,m

CTO+12S"C
'" -55'CTD +25 C

1.,

'"

~,b

TIGHT

~f,.. t::-- CG. SUBS (VG,SUBS)
~

CMRR

'"

100

C

11
MED

(Vas

1.'

;

~

,

I

z

4

Differential Drift

Differential Offset
ct

:!
;:;

~,

100

0.1
10 - DRAIN CURRENT (rnA)

CMRR '"

-

YS

Drain Current

2~ lag

;:+

olVOG
olVGS1 .2

mllll,I15V -25V

C--

vLI,'~

Inn

"
"

0.01

0.1
10 - DRAIN CURRENT (mAl

o

o(1)
en
en
(0
(J1

-J

t, oJ'.2V

1).8

;:;>

Parameter Interactions

...

"'C

1.'

CD

0)
U)
U)
Q)

e

Process 96 N·Channel
Monolithic Dual JFET

~National

ZIII Semiconductor
0.031

a..

DESCRIPTION
Process 96 Is a monolithic dual JFETwith a diode isolated
substrate. It is intended for wide band, low noise, single
ended video amplifier input stages. Also ideal for matched
voltage variable resistor applications over 60 dB tracking
range.

Characteristic

V

-55

VOS= 15V, VGS = 0

5.0

15

30

mA

g,s

Vos =15V, VGs=O

9.0

18

30

mmhos

7.5

9.0

BV GSS

Vos=OV, IG= -1 p.A

Zero Gate Voltage
Drain Current

loss

Forward Transconductance
Forward Transconductance

g,s.

VoG =15V,1 0 =2mA

Output Conductance

gas

V oG =15V,1 0 =2mA

Pinch Off Voltage

VGS(OFF)

Vos=15V,10=1 nA

ON Resistance

ros

Vos =100mV,VGs =0

Gate Current

IGSS

VGs= -20V, Vos=O

Gate Current

IG

mmhos
p.mhos

15

45

-0.5

-1.8

-3.0

35

70

120

-8.0

-100

VoG =15V,1 0 =2mA

15

200

pA

10

nV/,jHz

V
{J

pA

VOG= 15V, 10=2 mA, f = 100 Hz

4_5

C,s

V OG =15V, 10=2 mA, f= 1 MHz

2.5

3.0

pF

.C is

V OG =15V, 10=2 mA, f= 1 MHz

10

12

pF

,en

Feedback Capacitance
Input Capacitance

Units

Max

Typ

-40

Gate·Source Breakdown
Voltage

Noise Voltage

Min

Test Conditions

Parameter

Differential Voltage

IVGS1-VGS21

V OG =15V,1 0 =2mA

8.0

25

mV

Differential Voltage

cNGS

VOG=15V,10=2r'nA

9.0

50

p.V/oC

Common-Mode Rejection

CMRR

VOG= 15V, 10=2 mA

76

dB

95

This process is available in the following device types. 'Denotes preferred parts.
TO·71 (CASE 12)

a·Pin DIP (CASE 67)

*2N5564
*2N5565
*2N5566

'NPD5564
'NPD5565
'NPD5566

Transconductance vs Drain
Current

Parameter Interactions
100

fpSU~S~Df Vas = 15V, VGS - OV~
.L

10

i-'""'"""/

~

loss

,,,

100

-

VGS(OFFI - ~ATE

8"

co

I

.,

..

.sw

iii

d

'"

'~"

.,m"1
!l

~

'os

res@1 0 '" 1 rnA
VGS(OFFI@ Ves" 15V, 10 = 1 nA

-2

Ii"

~

§:
10

1

-l

100

lk

-10
CUTOFF VOLTAGE (V)

~
5a: 1.0k ~~ F l o "0.2mA/l/i

VOG =15V

T, -25"C
f= 1 kHz

"l!

~Io

~

u

Ii
8

Leakage Current vs Voltage
10k

VGS(OFFI

.'"'"

=.~

VGS(OFFI ;;

~

2.3V

F: :c= 10 = 2.0 rnA

l:1li

100

10 - O.2mA

w

1r1

1.1

I-

'"a:

'"'"

A

l-

I

T

-IG';'~

TA - +85°C

w

10

= 2.0mA'·

10

-IGSS

I:;;;p

I

~

.;:

.E

1
10

0.1
10 - DRAIN CURRENT (rnA)

10-36

~

I--T, +25"C
1.0

o

8.0

16

24

32

VOG - DRAIN·GATE VDl TAGE (V)

40

Process 96
Common Drain-Source
Characteristics

Transfer Chara.cteristics

Transfer Characteristics

10

l~

'.

I\~ I VGS=O

t

IVP~,,,,,,,,.

.s"

~
B
z

15

".s....

i

10

30

".s....

i

zo

z

~

~

C

1

1

.E

z

;;:

I.....

8.0

I

1

.E

.E

Ivo,l =

1/

6.0

[I t - V I

I

GS '"

4.0

i"'"

~

10

1""11-1

f-

-h.zJ _ f-I=
I

-O.4V

I--J ,! -0!6V 1
G

Z.O

VG, = -O.BV I
v =-

0
0
Vas - GATE·SOURCE VOLTAGE (VI

VGS - GATE·SOURCE Val rAGE (V)

Transfer Characteristics

Transfer Characteristics

;
~

.s

-;
~

30

.sw

u

"
~
z
~
"....a:

"

~
~
z
"....a:

10

..
1

TA

50

zo

10

VGS -

~

§ht;111~

I~

111111111111111111

!~OH~z

1.0

10

5"

w

~

ID

Z.O

=
,..,..

0.2 mA_

I

VOG

w

w>
.... 3

III~EO

"'''

~~
Oa:

IIIII
10 - DRAIN CURRENT (rnA)

c
c

"~
""8

01

-8.0

-IZ

-16

-ZO°

10 - DRAIN CURRENT (mAl

f--

1

·lJl~lll0 _ l z o J r-+-.

100

aVoG·5.0-10~"'

90

80
70

a:

a:

I
1.0

10-37

-4.0

110

z
c

I
1.0

10

i

TIGHT=

~~

k

CMRR vs Drain Current

MEOI

;;

I Cgb (Vo,BI

C" (Vo,

o

~

15V

LOOSE

;;

III

1.0

10

"
r-I--

>w

HllHT

=

C. (Vo, = 15VI'

I

VG, - GATE·SOURCE VOLTAGE (VI

55°C TO +25°C

,,~

u

I

5.0

50100

Q

a:

LOOSE

I

1.0
10

.H '" +25 CTO +1 Z5"C

u

~~

0.1

10

,

I

0.51.0Z.0

=>-

1.0

,
u

Differential Drift

VOG = 15V
TA =25u C

-':::....

1

'1'i-4-

I I

100

~.~

V

10

f - FREQUENCY IkH,1

S;=
w",

5.0

= 2.0mA

1.0
0.01 0.03 0.1

10

Differential Offset

~~

10

5.0

z

I

Z

;:;

10 - DRAIN CURRENT (rnA)

10

I

w
u

zo

1

0.1

I.UIIMl

U

of

w

5.0

VOG = 15V
lin §EEEBW=6.0HZ@f=10HZ.l00HZ)
-U.l.I~I.::::

0=

50

1.0

Capacitance vs Voltage

Noise Voltage vs Frequency

~~~II~~!llf~=~I'O~k~H!'1II

100

0.5

10 - DRAIN CURRENT {mAl

100

f-H+H-Hll--t--t:!-K1!:

10

>c

. zov

-z

-1.5

-1

GATE·SOURCE VOLTAGE (VI

~

1

zov .

I-+-t-t-I~

m

111 100

-

.5.0V

10

Noise Voltage vs Current

~~
!:::c:
c>

LzHI

VOG - 5.0V .

1

-0.5

,,>

5.0

2S'C
1.0 kHz

I---

Vas - GATE·SOURCE VOLTAGE (V)

~-

4.0

=
100~~
f-

30

z

ZO

3.0

z.O

Output Conductance vs
Drain Current

u

z

1.0

Vo, - ORAIN·SOURCE VOLTAGE (VI

ii
10

60
0.1

1.0
ID - DRAIN CURRENT (rnA)

10

~National

a

Process 98 N·Channel JFET

Semiconductor
•
I

~ ""'Dl
(11.5591
0.0038
(0.09651

DESCRIPTION
Process 98 is a high gain, general purpose, monolithic
dual JFET with a diode isolated substrate. It is intended
for amplifier input stages requiring high gain, low noise
and low offset drift over temperature. Strict processing
controls result in low input bias currents and virtually immeasurable offset currents. Matching characteristics are
essentially independent of operating current and voltage.

Characteristic

Test Conditions

Parameter

Gate-Source
Breakdown Voltage

BV Gss

vos=ov, IG= -1 p.A

Gate Leakage
Current

IGSS

VGs= -30V, Vos=OV

Pinch-off Voltage

Min

Typ

50

75

Units

Max

V

2.0

100

pA

VGS(OFF)

Vos= 15V, 10= 1 nA

0.5

1.3 .

3.0

V

Zero Gate Voltage
Drain Current

loss

Vos= 10V, VGs=O

0.5

1.8

10

mA

Forward
Transconductance

g,o

Vos= 10V, VGs=O

2.0

4.5

7.0

mmhos

Output Conductance

8.0

20

"mhos

1.4

1.8

mmhos

VOG = 15V, 10= 200 p.A

1.3

2.0

p.mhos

VOG = 10V, 10 = 200 p.A

10

40

mV

gos

VOs= 10V, VGs=O

Forward
Transconductance

g,o

VOG = 15V, 10= 200 p.A

Output Conductance

goo

Differential
Offset Voltage

Vos

Feedback Capacitance

Crso

VOG= 15V, 10= 200 I'A, f = 1 MHz

1.7

3.0

pF

8.0

pF

50

1.0

Input Capacitance

C lso

VOG = 15V, 10= 200 I'A, f = 1 MHz

6.0

Noise Voltage

en

Vos= 15V, 10=200 p.A, f = 10 Hz

8.0

Common Mode
Rejection Ratio

CMRR

VOG = 5V-10V, 10= 200 I'A

90

nV~z
dB

108

This process is available in the following device types.
TO-71 (CASE 12)
8-PIN DIP (CASE 60)
2N5561
U401
U404
J401
J404
2N5562
U402
U405
J402
J405
2N5563
U403
U406
J403
J406
Gate Leakaga Current
vs Voltage

Forward Transconductance
vs Drain Current

Parameter Interactions
1.0

~

.'"
I

.."
co

z

0.1

'"m
!!i
~

"~

E:

'"

!_
z
-

~

10k

~co

8Eilill
TA"25'e
VOG -15V

z

~~ ~~IIII~~V;GSI(0~FFI),'2~'2I1V
i:'i!
lk

co

I

100 L-J...J.J..J.IJ.III.....I...I..L.WllI....J....U.
0.01
1.0
0.1

li1 .

10 - DRAIN CURRENT (mAl

10-38

10

...
.."'k~.
lDD~:~~~ I~
~

il!
a:

Tl

~w

....~

10

:;

1.0

<

~

§~GSS~~

...w
I

l:i

!:

E

0.1
0

4

8 12 16 20 24 28 32 36 40

VOG - DRAIN·GATE VOLTAGE (V)

Process 98
Transfer Characteristics

V~SI~~~~:II~~

VGISlo~~f: 21.~~

1\
;"

L'"

o

o

~

~~~

-0.8

-0.4

o

r-i-.:

1~5°C

~-

~1_55olc

"-\ ,

C

-1.0

125°(:

I

~::::;: ~

-0.75

'\

-1.5

t- VGSIOFF)" 2.3V

5

12

w

~

~

""'

-0.6

I

,J'

::--.

-1.0

100

-1.4

V

0.2V

'/

VGS::; -O.6V

~I-VGS " 1.0V;\;

VGS" -O.BV
12

10

16

""'-

---20

VOG -10V

z

o

~

~E

I

o
o

MEO

MEO

~

TIGHT

...,r- TiGH~
0.1
10 - DRAIN CURRENT (mA)

"

~

I

1.0
1.0

1
0.01

I

I

I

Ciss (Vas - 0)

=

c~" IVDIS" O}

-

'"'"
~

I
0.1
10 - DRAIN CURRENT (rnA)

10-39

-4

T

I

-6

-8

-10

CMRR vs Drain Current
~

aT: 25°C to 125°C
IH- 55°C to 25°C

LOOSE

I

VGS - GATE·SOURCE VOLTAGE (V)

Differential Drift
100

VOG" 10V
TA - 25°C

0.01

-2

Vas - DRAIN SOURCE VOLTAGE tV)

Differential Offset

I

100

VGS" -DAV

20

VOS - ORAIN·SOURCE VOLTAGE (V)

lOOk

10k

Capacitance vs Gate
Source Voltage

V~S"ot
VGS"

O.6V

Ik

f- FREQUENCY (Hz)

IIIIII

,

Vr,SInFFl" 1.4V

DAV

16

~¥

>

~

4

=

Noise Voltage vs Frequency
10

~
'"'"
~

I'.... 1,\

~ TA"" 25C

1.0

10 - DRAIN CURRENT ImA)

vJSIO~~~: i~~

VGS" 0.2V

VGS -

0.01

-1.25

Common Drain Source
Characteristics

i_v,GS~OU

VGS

0.1

VGS - GATE·SOURCE VOLTAGE IV)

Common Drain Source
Characteristics

I

0.1

'\

-0.2

-2.0

VGS - GATE·SOURCE VOLTAGE IV)

100

-1.0

IVIIIII 15V I

TA" 25'C

~

~

'"

w:;:ttJ

-0.5

--

~

-0.5

"

~J50C

N

VOG = lOV
VGSIOFF)" 1.5V

/

Transconductance vs Gate
Source Voltage

vLo~~~: ;.~~

,I~ YVOG" 15V

0

VGS - GATE·SOURCE VOLTAGE IV)

Transconductance vs Gate
Source Voltage

\

VOG" 5V

CD

(X)

III
VOG" 10V

-r

...=>

f~
-0.25

VGS - GATE·SOURCE VOLTAGE IV)

c-215°C

...=>

'I..."J\.

o

-1.6

-1.2

1.0

<>

en
en

VGSIOFF)" 1.9V
VOG" 5V

==

z

l:-' '"
r--.'\.
ff-

1
u

I\~

tV
~
N~

CD

10

I -r-:r

~

(')

Output Conductance vs
Drain Current

Transfer Characteristics

1.0

120

I

IIII

110

IV~G"0.z

100
90
BO

TA" 25'C

70

CMRR=20Iog--

~VDG

I I Ilfmr-

2

60
0.01

"'tJ

a

0.1
10 - DRAIN CURRENT ImA)

1.0

Section 11

JFET
Applications Notes

III

Q)

'tl

:::s
c:J

FET Application Guide

c

-o
.cu

.~

c.
c.

<

I-

National Semiconductor manufactures a broad line of
silicon Junction Field Effect Transistors (JFETs).
National's JFETs provide excellent performance in many
areas such as RF amplifiers, analog switching, low input
current amplifiers, ultra low noise amplifiers and outstanding matched duals for operational amplifiers
input appl ications.

Tlie following chart is a guide to enable the user to
determine what parameters are important in each
application.

UJ
LL

APPLICATIONS AND THEIR PARAMETERS
LISTED IN APPROXIMATE ORDER OF
IMPORTANCE
LOW
FREQUENCY
AMPLIFIER

SOURCE
FOLLOWER

ELECTROMETER
AMPLIFIERS

LOW ORIFT
AMPLIFIER

LOW
NOISE
AMPLIFIER

HIGH
FREQUENCY
AMPLIFIER

OSCILLATOR

DIFFERENTIAL
A~PLlFIER

ANALOGANO
DIGITAL
SWITCHING

Y!s

Y!s

IG

IDZ

en

ReIY!sl'

Y!s

IVGS1-VGS21

rDSIONI

lOSS

IG

Y!s

Y!s@IOZ

iG, in

RelY;sl

lOSS

,;IVGS1-V GS21

IDIOFFI

VGSIOFF)

Crss

IOZ

VGS@IOZ

Y!s

NF

Crss

Ciss
Crss
en

Ciss

en

IG

lOSS

Crss

Ciss

IIG1- IG21

Crss

IDSS

90S

BVGSS

VGSIOFFI

RelYos)

VGSIOFF)

IG

VGSIOFF)

lOSS

BVGSS

Y!s

BVGSS

,;T

BVGSS

VGSIOFFI
BVGSS

VGSIOFFI

Ciss

Y!sliY!s2
IYosl··Yos21
CMRR
VGSIOFF)

JFET Parameter Relationships
VGs)2
ID ~ IDSS ( 1 - - - - VGS(OFF)

Variation of drain cur·
rent with gate bias.
Squ
en
t-

W
LL

-co
j

C
.~

.c

-0

:t::

Unit.

The ~VGS temperature characteristics of the 2·chip
dual and the monolithic dual were then measured at
500.llA of drain current. The results are illustrated
in Figures 6 and 7.

C

0

::E

...§
...
'"'"

w

VoG - 20V
'oss'2mA

~V

~'e
w:>

~..s

"' ...
"'2
!:;~
0"

:> ..
w~
"w
",0

:z...

V

~ffi~

400

;:;

.'"

1n

~

600

800

0.5

:>
w

1.5

$;

.§

\.

g~u

-1

o

VoG·20V
IDSS= 2 mA

~E:i
!:;~~

/

'"'"

\

~~~
~~e

.V

i;"

g;!:

"'0
~u

0
o

1k

~'"

TYPICAL
DATA

-1.0
-1.5

200

400

600

800

lk

1.2k

FIGURE 2. Gate-Source Voltage Temper·
atu.ra Coefficient vs Drain Current (Single
Device)

'-=-'-'--~--'-=--'-....I

-50 -25

'0 - DRAIN CURRENT I.A)

'10 - DRAIN CURRENT I.A)

I-+---,ii<--r

1-'-"'-+-+--.
25

50

75

100

125

TEMPERATURE I'C)

FIGURE 3. Gate-Source Voltage Temp·
erature Coefficient Sensitivity to Drain
Current Change vs Drain Current (Single

FIGURE 4.Differential'Gate-Source
Voltage vs Temperature for a Typical
Monolithic Dual JFET

Device)

2.5

>"

1.5

.§

U

~
;:;

1.0

~

~
:>

.,

1.5

..

~

0.5 p.,cl-.....30~-+---,v..

2.5
'01' 500.A
VoG' 20V

r-+-!~2' J96.A

~t-'02·504.A

~ -0.5

E

i"""'F==-----jf-+

-1.5

1n

~

~

:>
-1
L-.::'::"'~~"7--J..--'-....L.--'

-50 -25

75

100

125

TEMPERATURE I'C)

FIGURE 5. Differential Gate·Source
Voltage vs Temperature for a Typical
2·Chip Dual JFET (10 IlVtC Unit)

-1.0

VoG = 20V
101" 500.A

IL

-1.5
-75 -50 -25

0

25

50

75 100 125

TEMPERATURE rC)

FIGURE 6. Differential Gate-Source·
Voltage vs Temperature for the Same
Monolithic JFET in Figure 4, Only the
Drain Current has been Changed to
5001lA.

11·4

0.5

E

-0.5

~
<1

-1.0

'

-1.5

/

#'
A

I

..

I

':jJ
/Jr)

~

~

it'1

~-O.5

:>
.., -1.0

d-:""'<;

,r---:.. V

;:;

/

f-1~2 .1496~A

'02' 500.A I
1.5 f-102·504.A~W

.§.

~

I

E

I

' 02' 500 "~:-:u

~ 0.5

I

$;

/.If
/J

"I

-2.0
-75 -50 -25 0

VOG·20V
'D1·500.A·
25 50 75 100 125 150

TEMP,ERATURE I'C)

FIGURE 7. Differential Gate·Source
Voltage vs'Temperature for the Sarrie
2·Chip Dual FET in Figure 5, Only the
Drain Current is 500 JJ.A

of the device. The L; VGS error will disappear once the
devices are again in thermal equilibrium. The time for
the 2·chip dual FET to reach thermal equilibrium, after
a thermal transient, is considerable since the FET chips
making up the 2·chip dual are located some distance
apart. On the other hand, the monolithic structure
recovers from thermal transients very rapidly because
the 2 FETs, constituting the chip, are in intimate contact.

Note that the monolithic dual exhibits good L;VGS
temperature characteristics (TC ~ 15 f.1V tc) while the
2·chip dual has a temperature coefficient greater than
50 f.1V tC. The data displayed in Figures 4-7 is for 2
specific devices; however, it is representative of the data
accumulated on a number of process 83 and 2·chip
dual FETs.
Another point that warrants discussion is the fast
thermal transient response of the monolithic dual FET.
This type device is generally employed as the input
stage for an operational amplifier; therefore, it may be
subjected to electrical overload such as input voltage
transients. This condition causes 1 side of the dual FET
to dissipate more power than the other, which in turn
results in a temperature differential between the 2 sides

APPLICATIONS

+

_.

n
C
c
Q)

A typical operational amplifier application is illustrated
in Figure 8. This circuit employs the 2N3954 monolithic
dual F ET as the input device. The drain current level
is set by F ET 02 and resistor R X. F ET 02 is a 2N5457.
This device exhibits a 0 TC drain current operating point

."

m
-I

(J)

<

(J)

15V
R3 ~ TEMPERATURE
500
COEFFICIENT
20T
ADJ

2V {

3:

o
::l
o

N
I
(")

=r
_.

Rl
15V

10k,l%
25 ppmrc

'C

~--+---"-I
OUTPUT
2N3954
IP831

C

C

-

Q)

."

m
-I
(J)

-15V
I'liote I;

I ne lemperawre eDelllClern can lyplcallY oe oUJU:iLt:U

(by R3 and R41 to less than 5 p.VrC from -25"C to +85"C.
Note 2: The common-mode rejection ratio is typically greater
than 100 dB for input voltage swings of 5V.
FIGURE 8. Low Temperature Coefficient Operational Amplifier

15V ±1%

500
0.1%

...____+

VOUT ~
VIN' VOFFSET

500
0.1%

-15V ±1%

FIGURE 9

11·5

..c

o
I

N

at about 400 /lA. In addition, the Q2-RX combination
exhibits an output impedance typically greater than
10 Mn. This characteristic, coupled with the high
output impedance of the 2N3954, contribute to a
CMRR of greater than 100 dB for this amplifier. Input
offset voltage can be adjusted to 0 with R4.. This control
exhibits sensitivity of 2 mV /turn. The temperature
coefficient can be compensated by R3 with an approximate sensitivity of 5 /lV fe/turn. The temperature performance of a typical amplifier of this type is illustrated
in Figure 10.
_

~

~

1.5

f!

">
!U
it
">-

0.5

co::s

!: -0.5

~
C

w

5pVfC

~

-

~

1- .-

r-

I

~ -1.0
> -1.5
-50 -25

Note 1 :

~

LIMITS

I- t-

~

25

50

75 100 125 150

TEMPERATURE rCI

Temperature

Definition of temperature coefficient:

(TC)L = I,WGS(TO) - 50V

<50 pA @ 20V 1200 /l-A

9f.10
1000@200/l-Ao

2N5196-2N5199

>50V

<15 pA@20V/200/l-A

>700@200/l-A

NOF9406-NOF9409

>50V'

<5 pA @ 35V 1200 p.A

>950@200p.A

* Limits not specified on the published data sheet.
11-7

The inherent matching of all devices because of monolithic construction further reduces the effects of
common-mpde
signals.
.
.

"§

110

11111

z
CI
;: 100

~94).

0;

II

z
;:
CI

...!!l

IfT--,...,..u

~

...
...'"

1<1~~G·5~

90

CI
CI

CI

:IE

80

:IE

CI

I

...'"

a:
::;;

<1VDG = 10V-20V

120

I I

I

110

I I:

~=5.0V- 10V

z
CI

100

...

90

...:IE'"

80

I

~

:IE

...

I

-L

CI
CI

:IE

z

130

:!!

<1VDG = 10V-20V

;;:

...'"

Figure 3 compares CMRR of a monolithic triode dual
FET (National P83) with a cascade structure (National

CI

70
CMRR = 20 log

CMRR = 20 log

a:

60
0.01

1

I

JVDG
<1 GSI-2

0.1

I
0.01

<1~VDG

111"lr-~
0.1

ID - DRAIN CURRENT (mill

ID - DRAIN CURRENT (mAl

FIGURE 3 •• Triode ConS!ruction

FIGURE 3b. Cascode

11-8

Con~trliction

1.0

Simple VHF
Analog Switches

en
_.

National Semiconductor
FET Brief 1
Mike Turner
February 1977

3

"C

cr

<

::t

Simple JFET switches like those in Figure 1. will toggle
at rates to about 10 MHz and switch analog signals with
frequencies to above 100 MHz. They accomplish this by
resolving in the gate-driver design the contradictory
performance goals that even the best switching transistors cannot meet.

proper gate driver. The drive circuit should have a low
impedance when the JFET is turned OFF and a high
impedance when the JFET is turned ON. The lowimpedance path is needed to prevent analog-signal
feedthrough and the high impedance to minimize
signal attenuation through the driver while the JFET
is conducting. A well-designed driver can do both.

VOUT

The relationships among JFET and driver characteristics
can be sorted out with the help of Figure 2, which shows
a typical series-pass switch and the equivalent circuits
of the JFET in its ON and OFF conditions. A JFET
operates best as a series-pass switch when the ON condition allows RON and shunt capacitance to be low, and
series-pass capacitance to be high.. But in the OFF
condition, it should exhibit low series-pass capacitance
and high series-pass resistance (ROFF). The JFET will
have these characteristics when properly matched to
the driver.

R2

."

»
::l
Q)

5"
c.c

en

:e

~

:r
CD

en

v-o-_--+--I
a. Series-Pass Switch

RS

Mr--OVOUT
R2

a. Series-Pass jFET Switch

SOURCE
CONTROL L-_ _ _--....I

r

RON

ORAIN

0--1'~""'NI..,...-",_O

T~

T"

GATE

v-o-~------~~

b. JFET On

L--

BYPlss -::!:b. With JFET Gate Diode

FIGURE 1. High-Frequency JFET Switching Circuits

To switch high-frequency signals, the JFET should have
low ON impedance, rds(on) or RON, and low input
capacitance, Ciss. The switch's RC time constant is
establ ished by these 2 parameters, and they also indicate
the bandwidth capability. JFETs have been developed
that come close to being ideal, but unfortunately the
real-world nature of semiconductor devices makes it
impossible to achieve optimum values of both parameters in the same device. Low RON calls for a physically
large JFET. On the other hand, the very low capacitance
needed for fast toggle rates implies small size.

GATE

c. JFET Off

drain-gate capacitance
gate-channel distributed capacitance
source-gate capacitance
9rain-source capacitance

Cdg
PgC

r;;,g

Cds
RON
ROFF

At a casual glance, gate drive impedance does not appear
very important. However, the JFET device conflict
between RON and Ciss may be overcome by using the

ON impedance

=

OFF impedance

FIGURE 2. Series-Pass Switch and JFET Equivalent Circuits

11-9

IIII

t/)
Q)

-

J:

o

'U)i

C)

.2
cu

c

<
LL

J:

>

.!!

Co

E
U)

or exceed RS in parallel with R L,.but then the toggle
rate would be kept down by the very high drive
impedance.

Getting down to a low RON when the gate is turned ON
is no problem. A JFET such as the 2N4391 has a maxi·
mum RON of 30[2 (see rds(on) in Table I). However, the
parallel capacitance in the signal path can become fairly
high-abbut15 pF when drain, source and gate have the
same potential (VDS = V GS = 0). The simple answer to
this dilemma is to drive the gate with a high AC impe·
dance when the switch is closed. The shunt capacitance
will be in series with a high impedance. Virtually all of
the signal will then go through the JFET, the path of
least resistance, rather than through the gate·to·ground
connection.

We prefer the circuits in Figure 1, which are fairly fast
and not tricky. When NPN transistor 02 is in saturation,
01 is biased OFF through a low·impedance path. The
diode is slightly forward·biased and exhibits high capa·
citance. When 02 turns OFF, D1's cathode is driven
positive by R 1. Now the diode is reverse·biased and
exhibits high impedance and low capacitance. The
charge that was stored on D1 discharges into the gate
of 01, allowing the JFET to be turned ON. Because
there is no good discharge path available to the charge
stored on 01 's. gate, the gate will "follow" any signal
swing in the analog input voltage. Adding R2 will
ensure that the gate follows the signal even during DC
conditions. Remember, however, that the R2/C sg time
constant will effect switching time and gate-source'
signal tracking.

Next problem. When the switch is OFF, high·frequency
attenuation is the name of the. game. It is depended
upon to prevent the signal at the input from reaching the
output. The JFET channel is, for all practical purposes,
an open circuit because ROFF of a quality JFET is over
10 12 [2 although this decreases as frequency goes up.
However, capacitive feedthrough is the most significant
route across the switch. From Figure 2c,

Don't expect just any diode to work well; D1 's capacitance is critieal and should match that of the JF ET
(CD1 = C01). One good way of making sure that the
JFET and the diode are well mated is to use the same.
type of JFET for both. The gate lead is 1 electrode of
the diode and the drain and source leads are simply
tied together to form the other electrode. The circuit in
Figure 1bwas oPtimize~ in this way.

Feedthrough capacitance can be significant if the gate is
not operated at AC ground, Minimizing the right·hand
term by operating the gate at AC ground allows Cds to
become the pacing factor. If the gate is grounded, Cds
will be approximately 0.2 pF. In other words, the
effective ROFF of the switch depends directly on
circuit design, not the JFET.

Excellent high-frequency series switches can be made
with 2N4091, 2N4092 and 2N4093 JFETs.· RC time
constants are short· because of their low rds(on) and
capacitance, and leakage is low. The 2N4391, 2N4392
and 2N4393 series is even better, having only 100 pA
leakage and lower Ciss. Even though the 2N4416 is
classed as an RF amplifier, it is also listed in .Table I to
illustrate that many of our other JFETs can solve
special switching problems. This one does well in circuits
requiring very low capacitance and leakage. Although
the RON of an RF transistor is not specified, it can be
estimated as rds(on) "" 0.85/Y fs, which IS typically
170[2 for the 2N4416.

Now to put these principles to work. The best high·
frequency switch is an N·channel JFET. Its gate should
be biased positive from a high·impedance source for
turn·on and biased negative through a low·impedance path
for turn·off. Driving the switch ON through an RF choke
sounds tempting, but it would be difficult to avoid
resonances and oscillation bursts during some switching
conditions. DC resistances could be increased to equal

TABLE I. JFETs for High-Frequency Analog Signal Switching

Crss

BVGSS
OR
BVOGO
(MAX)

IGSS
(MAX)

(MAX)

2N4091
2N4092
2N4093

40V
40V
40V

0.2 nA
0.2 nA
0.2 nA

2N4391
2N4392
2N4393

40V
40V
40V

2N4416
2N4416A

30V
35V

TYPE
NO,

OR
eOGO
(MAX)

rdslonl
(MAX)

ton
(MAX)

toll
(MAX)

16 pF
16 pF
16 pF

5 pF
5 pF
5 pF

30n
50n
80n

25 ns
35 ns
60 ns

40 ns
60 ns
80 ns

0.1 nA
0.1 nA
0.1 nA

14 pF
14 pF
14 pF

3.5 pF
3.5 pF
3.5 pF

30n
60n
100n

15 ns
15 ns
15 ns

20 ns
35 ns
50 ns

0.1 nA
0.1 nA

4 pF
4 pF

0.8 pF
0.8 pF

170n*
170n*

Ciss

*This value is not specified in RF amplifier JFETs; 170n is typical

11·10

Noise of Sources

z

o

National Semiconductor
John Maxwell
February 1977

Cir
CD

INTRODUCTION
The elimination or minimization of noise is one of the
most perplexing problems facing engineers today.
Many preamplifiers and components come with out·
standing noise specifications, only to disappoint the
user. The problem is the difference between specification and application, as the amplifiers are specified
under ideal conditions not the real conditions, (i.e.,
a transducer connected to the input). Many times the
transducer noise is as large or even greater than the
amplifier noise, degrading the signal to noise ratio.
Before amplifier or component noise can be considered,
familiarity with the source noise is essential.

Rapidly changing network impedance and amplifier
gain equalization combine to complicate the issue.
The total source noise in a non-ideal case can be calculated by breaking the noise spectrum into several small
bands where the noise (Re(Z)) is nearly white and
calculating th'e noise of each band. The total source
noise is the RMS sum of the noise in each of the bands
N1- Nn·

REVIEW OF NOISE BASICS

The expression does not take amplifier gain equalization
(like RIAA) into account, which will change the character of the noise at the amplifier output. By reflecting
the gain equalization to the amplifier input and normalizing the gain to 0 dB at 1 kHz, the equalized source
noise may then be calculated.

There are 3 types of transducers: resistive, capacitive and
inductive. The noise of a passive network is thermal
noise, generated by the real part of the complex impedance, as given by Nyquist's relation:

Vn2

Boltzmann's constant (1.38 x 10-23 VASt K)
Absolute temperature (oK)
Real part of complex impedance (n)
Noise bandwidth (Hz)

Re(Z)
llf

t/)

Where VEQ = equalized source noise (J.LV) and
IAnl = magnitude of the equalized gain at the center of
each noise band (VIV).

Mean square noise voltage (V2)
k

c::

n
CD

(1)

4kTRe(Z) llf

T

o
"""
en
o

SOURCE NOISE

The noise may be represented as a spectral density
(V2/Hz) or more commonly in J.LV/VHz, or nV/VHz,

Models are needed for capacitive and inductive systems
such that noise calculations can be made. Namely, the
real part of the impedance needs to be determined.
M IUlllfJt::U IIIUUI::H VI i:::I \,;afJ0l,;llIVt:: ::'UUIl,;t:, ::.UI,.;II d:::' liUIIUt:II:::'t::1

or electret microphone, consists of the microphone and
stray capacitance shunted by a load resistance.
(2)

i~""

={=c."

. lk
LU

'"

:;

L
(5)

R
Ro(ZI = 1 + w2R2C2

~~
2>
....

t'

,,;

IZI

10

= (

1+

w;~2C:i) 1/2

FIGURE 2. Lumped Model of a Capacitive Microphone

0

UJ

It should be noted that for any particular microphone,
the noise of the network ((C m + CS )//RU is reduced
by increasing R L because Re(Z) (the real part of the
impedance) is inversely proportional to R L (see equation 5).

I

~

V

1
100

lk

10k

lOOk

1M

RESISTANCE (il)

The inductive source (phono cartridges and tape heads)
is more complex to analyze because it has a much more
complex model. The simplified lumped model of a phono
cartridge or tape head consists of a series inductance
and resistance shunted by a small capacitor. Each phono
cartridge or tape head has a recommended load con-

FIGURE 1. Thermal Noise Voltage us Resistance

The total noise voltage in a frequency band can be
readily calculated if it is white noise (i.e., Re(Z). is frequency independent). This is not the case for capacitive
or inductive sources or most real world noise problems.
11-11

IiII

U>

Q)
(J

...

slstlng of a specified shunt resistance and capacitance.
A model for the inductive source and preamp input
network is shown in Figure 3.

o
CJ)

-------, r------

::l

-

EXAMPLES
Calculations of electret microphone noise with various
loads and R IAA equalized phono cartridge noise is done
using equations (1 )-(7). Center frequencies and frequency
bands must be chosen first. Values of the lumped cir·
cuit components calculated and noise calculated for
each band, then summed for the total noise. Octave
bandwidths starting at 25 Hz will be adequate for
approximating the noise.

I

o

I
I

LC

Q)

I

.~

o

I
I
I
I
I

Cc

z

_______

~

CA

RA
In this example, the microphone capacitance is 10 pF
loaded with 5 pF of amplifier and stray capacitance.
Two resistive loads will be used to illustrate the effect
R L has on the microphone noise. R L1 = 1 Gn (10 9 ),
RL2 = 10Gn (10 10 ). It is assumed that there is no
gain equalization in the amplifiers that follow. The
noise calculations are summarized in Table I.

L ______ _

INDUCTIVE
SDURCE

SPECIFIED
LOAD

The electret or condenser microphone noise (Re(Z)) is
reduced when the load resistance is increased. This is
one of the cases when a larger resistance means lower
noise, not more noise.

FIGURE 3. Phono Cartridge or Tape Head
and Preamp Input Network

This circuit is quite formidable to analyze and needs
further simplication. Through the use of Q equations,
a series L-R is transformed to a parallel L-R.

RS

~

LS

=

Q

Rp

Rp =

=

Lp

The second example is the calculation of the RIAA
equalized noise of an ADC 27 phono cartridge loaded
with CA = 250 pF and RA = 47k. The cartridge con·
stants are Rs = 1.13k and Ls = 0.75H (C c may be
neglected). The noise calculations are summarized in
Table II for this example.

(6)

wLs

Rs
Rs (1 + Q2)
L
s

The RIAA equalized noise of. the ADC 27 phono
cartridge and preamp input network was 0.73 IlV for the
audio band. Typical high quality preamps have noise
voltages less than 1 IlV, resulting in a 3 dB or more loss
in 'system SIN ratio when the cartridge noise is added to
the preamp noise (in an RMS fashion).

C

+Q2)
Q2

Simplifying the input network to:

CONCLUSIONS
Zero noise sources and amplifiers do not exist. Specifying amplifier noise under ideal conditions will only
lead to ideal specifications, not a measure of actual
performance. Methods of SIN ratio measurement should
be used that reflect the true performance instead of
hollow specifications.

R

R

C

L
C

REFERENCES
1. Fraim, F. and Murphy, P., "Miniature Electret Microphones". J. Audio Eng. So., Vol. 18, pp.511-517.
(Oct. 1970)

FIGURE 4. Simplified Inductive Source Network

Re(Z)
(RXL - RXC)2 +
RXLXC
Z

((RXL - RXc)2 +

xt X~)

2. Hallgren, B. I., "On the Noise Performance of a
Magnetic Phonograph Pickup". J. Audio Eng. Soc.,
Vol. 23, pp. 546-552. (Sep. 1975)

(7)

XI X~

3. Fristoe, H.T., "The Use of Q Equations to Solve
Complex Electrical Networks". Engineering Research
Bulletin, Oklahoma State University, 1964.

1/2

WL

4. Korn, G.A. and T.M., "Basic Tables in Electrical
Engineering". McGraw-Hili, New York, New York,
1965.

1/wC

The tools are now available to calculate the noise of a
variety of transducers and see how this unspecified noise
affects ampl ifier (SIN) performance.

5. Maxwell, J., "Hold Noise Down with JFETs". Electronic Design, Vol. 24, pp.146-152. (Feb. 16, 1976).

11-12

TABLE I Summary of Electret Microphone Calculations

f Range (Hz)

25-50

50-100

100-200

200-400

400-800

800-1600

1600-3200

3200-6400

9600-12.8k

12.8k-20k

f Center (Hz)

37.5
25

75
50

150
100

300
200

600
400

1200
800

2400

4800
3200

9600

16,400
7,200

1.25M

0.31M

78k

19k

35.4M

17.7M

8.8M

4.4M

4.9k
2.2M

18
0.72
0.52

fBw (Hz)
for RL = lGS1
Re(Z) (m

74.2M

19.6M

272M

140M

4.98M
70.6M

1100
5.5

560
3.96

280

140

71

36

Vnz(/N)

2.8

V~z (/N2)

30.2

15.7

7.84

1.98
3.92

1.42
2.0

1.02
1.04

8M
283M
320

2M
141M
180

0.5M
70.8M

125k

31.3k
17.7M

1.6
2.56

1.3
1.62

7.8k
8.8M
11.4
0.32
0.103

IZI(m
enz (nV/y'Hz)

1600

6400

9

1.1M
4.5

420
650
2.8

0.51
0.26

0.36
0.13

0.24
0.06

500
2.2M
2.9
0.16
0.025

122
1.1M
1.4
0.112
0.013

42
650k
0.84
0.07
0.005

1.22k

(~V~z) 1/2 = 7.9 /lV
RL = 10GS1
Re(Z) (m
IZI(m
enz (nV/y'Hz)
Vnz (/lV)
V~z (/lV2)
(~V~z) 1/2 = 2.4 /lV

90
0.9
0.81

35.4M
45
0.64
0.41

23
0.46
0.21

2k
4.4M
5.8
0.232
0.054

TABLI II. Summary of Phono Cartridge Calculations
~
~

c.>

f Range (Hz)

25-50

50-100

100-200

200-400

400-800

800-1.6k

1.6k-3.2k

3.2k-6.4k

6.4k-12.8k

12.8k-20k

f Center (Hz)

37.5

75

150

300

1200

fBw (Hz)
0= (wLs/Rs)
02

25
0.156
0.0244

50

100

2400
1600

16.4k
7.2k

0.625
0.391

4800
3200
20

9600
6400

0.313

200
1.25

600
400

40

400
401

1600
1601
1.0

68.4
4678.6
4679.6

1+02

1.0244

1 + 0 2 /0 2

42
1.16k

Rp(m
Lp (H)

0.098
1.098
11.24
1.24k
8.43

Rp//R (m
XL(S1)

31.5
1.13k
7.42k

Xc (m
Re(Z) (n)

17M
1.11k

IZI(m
enz (nV /y'Hz)
VN (nV)
V~ (nV2)
A2

1.12k
4.24
21.2

1.11k
1.15k
4.24
30

449.4
63.0
28.3k

900
29.5
26.6k

A2v~ (nV2)

1.21k
3.97k
8.48M

1.391
3.56
1.57k
2.67
1.52k
2.52k
4.24M
1.11k
1.3k
4.24
42.4
1798
10.7
19.2k

1.56
2.56
1.64
2.9k
1.23
2.74k
2.32k
2.12M
1.15k
1.77k
4.31

2.5
6.25
7.25
1.16
8.2k
0.87
7k
3.28k
1.06M

61
3721

1.26k
2.97k
4.51
90.2
8136

3.85
13.2k

1.66
13.5k

800

5
25
26
1.04
29.4k
0.78
18.1k
5.88k
0.53M
1.73k
5.59k
5.29
149.6
22.4k
0.85
19k

10
100
101
1.01
114k
0.76
32.9k
11.45k
0.265M
3.86k
l1.7k
7.9
316
99.9k
0.49
48.9k

1.0
454k
0.75
42.6k
22.6k
0.133M
12.4k
24.4k
14.2
803
645k
0.154
99.3k

1.8M
0.75
45.8k
45.2k
66.3k
41.5k
43.6k
26
2080
4.33M
0.043
186k

1.0
5.29M
0.75
46.6k
77.2k
38.8k
34k
40.1k
23.5
1994
3.98M
0.019
76k

(l:V~) 112 = 31lV unequalized noise
(l:1An 12V~) 1 /2

Ii

=

0.73 IlV RIAA equalized noise

sa:>Jnos jO as!ON

Q)
U)

'0

z

The Noise Figure Fallacy

National Semiconductor
John Maxwell
February 1977

Noise Figure (NF) can be one of the most misleading
specifications confronting the engineer today. Noise
Figure is defined as the ratio of total output noise power
to the output noise power of the sou rce.

with the spectral density given by e~
enR =

-

(V~/M)

1/2
(3)

lk

Total output noise power

NF = 10 Log

(1)

400

Output noise power of the source

Q)

.c
t-

A minimum NF exists for any amplifier, but is usually
far removed from the actual operating conditions. This is
where the problem begins. Lowering the NF doesn't
always lower the noise which is what the engineer is
really interested in. NF only gives the designer insight
into the ratio of the amplifier noise to thesource noise,
not the input noise of the amplifier or the signal to
noise ratio.

~>

100

.:.
~

40
./

,/
10

4

./

/'

'I'"

Amplifier noise performance is adequately described by
modeling the noise sources as a series voltage generator
and a shunt current generator with a series voltage
generator for the source. resistance noise.

100

10k

lk

lOOk

1M

RESISTANCE ([1)
FIGURE 2. Thermal Noise vs Resistance

Using the model of Figure 1, an expression of noise
figure in terms of the noise generators can be developed.

The noise power of the source' can be found by using
Nyquist's relation.

e~t = e~A + e~R + i~A R;
ent = total input noise voltage (nV /y'Hz1
enA = amplifier noise voltage (nV/y'Hz1
inA =

amplifier noise current (pA/y'Hz1

enA

source resistance thermal noise (nV /.JR'Z)

=

V2
Source Noise Power = ~
R2

FIGURE 1. Simiplified Amplifier Noise Model

e~RM

(4)

R2

with the total output noise power at the input of the
amplifier of:

The amplifier noise data is found on vendor data sheets
in the form of en and in vs frequency for bipolar transistors and en vs frequency for FETs and FET amplifiers.

.
ef.RM
e~AM
Total nOise power = ~ + ~ + i~A R2 M (5)

Current noise depends on amplifier input bias current
which is only a few picoamps for FETs and is therefore
negligible. However, bipolar transistor amplifiers have
bias currents into the microamp range where current
noise is significant.

Yielding
NF = 10 Log

(6)

The thermal noise of the source resistance is given by
Nyquist's relation.

V2
R

4kTRLlf

Noise figure has a minimum that occurs at an optimum
source resistance Ropt .

(2)

2
VR

mean square noise voltage (V 2 )

k

Boltzmann constant

Ropt =

T

absolute temperature (K)

R

resistance (rI.)

Llf

noise bandwidth (Hz)

(7)

inA

(1.38 x 10- 23 VAStK)

V~

enA

Artifically changing the source resistance for minimum
NF will generally increase the circuit noise as demon·
strated by the following example.
11-14

-I
source resistance (not affecting gain). The other case will
only have the transducer connected to the input.

Example:
An amplifier is needed to boost the signal from a
resistive transducer.

We will neglect the noise of the feedback resistors and
determine the input noise and NF for both configurations using equations (1 )-(6).

Amplifier requirements

Case A, minimum NF
Total input noise Vn = ent (.6.f)
NF= 0.06 dB

Z

o

(ii'
(D

"T1

1/2

Av = 100
f =10Hztol0kHz
Tr.ansducer = 10 kn

::r

(D

= 14 J1V

to

..,C

(D
Case B, minimum noise
Amplifier-LF356
Noise data, en = 12 nV 1$2 @ 1 kHz
in = 0.01 pA/yHZ @ 1 kHz

Vn = 1.7 J1V
NF = 3 dB
Noise figure is only a measurement of the amplifier
noise relative to the source noise. The example used
was radical, but it Illustrated a very important point.
Resistance should never be added in series with the
source to improve the NF. The NF will improve but the
input noise will suffer, degrading performance. Total
input noise should always be considered allowing
problem sources to be identified and minimized to meet
the system's specific noise requirements.

The optimum source resistance for the amplifier is
found to be 12M (using equation (7)). Using Figure 2,
the noise of the transducer is 12 nV 1$2 and the noise
of the optimum source resistance is 140 nV 1$2.
Using the non·inverting amplifier configuration, we'll
view the effect of Ropt. In one case, resistance will be
added to the source to equal the amplifier optimum

b. Minimum Noise

a. Minimum NF

FIGURE 3. 2 Amplifier Solutions

11-15

"T1

Q)
Q)

o

'<

~

Q)

5

Low Noise FET Amplifiers

Q.

National Semiconductor
.John Maxwell
March 1977

E


..:.

~

Rg.

400

~A3140

100

~LM741

........

"'" ...... .........
~

40

........

.

10
4

b. FET with IN Amplifier

- ..LF356
- -

PF5102
-(P51)
10

100

-

FIGURE 3. FET Gain Stages

OR NPD5565

lk

I
10k

-

lOOk

FREQUENCY (Hz)
FIGURE 2. Discrete JFET and Dp Amp Noise Comparison

The main problem with JFETs is that the voltage gain is
limited by the size of the load resistance which is limited
by. the power supply voltage and the F ET operating
current. The voltage gain can be increased by combining
the JFET (a transconductance amplifier) with an op amp

In the FET/op amp configuration, the FET AC drain
current is shunted to the op amp virtual ground and
through its feedback resistor, bypassing the FET drain
resistor, Rd. The drain resistor is used to bias the FET
in a linear region with the feedback resistor, Rf, used
to set the gain.
Biasing problems associated with lot and device to device
parameter variations are minimized by biasing the source
. through a large resistor to the negative supply of the op
amp. A portion of the source resistor should be unbypassed to minimize gain variations between FETs.
11-16

From a design standpoint, the maximum AC drain
current should be 1110 of the FET quiescent current
for low distortion. The unbypassed portion of the source
resistor should be limited to 220Sl for minimum noise
and to increase the op amp feedback resistor (decreased
AC current).

and a shunt current generator with a series voltage generator for the source resistance thermal noise. The thermal
noise of a resistor is given by Nyquist's relation and has a
spectral density given by e~ R.

Expressions for the single and differential amplifier
configurations are needed for optimizing the noise to
meet system noise requirements.
Ampl ifier noise performance is adequately described by
model ing the noise sources as a series voltage generator

(1)

k

T
R

mean square noise voltage per unit bandwidth (nV 2 /Hz)
Boltzmann constant (1.38 x 10- 23 VASI
oK)
absolute temperature (OK)
resistance (Sl)

r-

o

:e

z

o

en'

(1)

"TI

!!I

»
3

"C

15V

7.5k

>-....-oVo

Vi o-"'-I~

AV'" 1000

-15V
a. Single-Ended

240k
15V
7.5k

"lcr-4______---10-o-N-~-~~::-~-5-1-0-0------~
7.5k
AV '" -500

-15V
b. Differential Input

FIGURE 4. High Gain FET/Op Amp AC Amplifiers

11-17

III

...CI>

(/)

-

!E

The single ended and differential input amplifier input
noise (F ET noise current is negligible) is given by the
RMS sum of the- noise generators.

Q.

E


.~

o

z

~
o
...J

Practical low noise, high gain AC amplifiers can be built
using a low noise JFET and just about any op amp.
The op amp needs to meet the slew rate and bandwidth
requirements of the circuit, eliminating selected low
noise op amps or complex discrete amplifiers.

with
ent =
enf =
enA =
inA =
ens =
enR =
gm
R

total input noise voltage (nV Iy'Hz)
FET noise voltage (nV/y'HZ)
op amp noise voltage (nV/y'HZ)
op amp noise current (pA/y'RZ)
source resistor thermal noise (nV/y'HZ)
drain and feedback (RdIIRf) resistor thermal
noise (nV 1y'HZ)
FET transconductance at the FET operating
current (mmho)
parallel resistance of Rd and Rf (>2)

A note- of caution is in order for the op amp noise.
Virtually any JFET input or bip~lar input op amp can
be used without trouble, but MOSFET input op amps
should be avoided. MOSFET l/f noise is one or more
orders of magnitude greater than discrete JFETs, JFET
op amps or bipolar input op amps. MOSFETs have
l/f corner frequencies (where the noise power rises as
l/f) starting as high as 100 kHz. The other forms of
amplifiers have l/f corner frequencies of 1 kHz and less.
Ouite a difference.

The differential configuration has higher noise and lower
gain than the single-ended version, but is useful when
lk

400

~
~

100
40
./

a:
c

~

V

10

4

./

/'
,/'
1
100

lk

10k

lOOk

RESISTANCE (n)
FIGURE 5. Thermal Noise vs Resistance

FIGURE 6. Single-Ended Noise Model

11-18

1M

The Low Noise JFETThe Noise Problem Solver

The most versatile low noise active device available to
the designer today is the Junction Field-Effect Transistor
(JFET). JFETs are virtually free of the problems which
have plagued bipolar transistors-limited bandwidth,
popcorn noise, a complex design procedure to optimize
noise performance. In addition, JFETs offer low distortion and very high dynamic range.
Most designers think of JFETs for very high source
impedances. However, modern devices offer the designer
performance improvements over bipolar transistors in
NF for all but lowest impedance «500rl) sources and
even then may provide improved performance if popcorn
noise, bandwidth or circuit component noise is a
consideration (see Figure 1J.

-t
=r

National Semiconductor
Application Note 151
John Maxwell
January 1976

(l)

r

o

The noise of a resistor may be represented as a spectral
density (V 2 /Hz) or more commonly in IlV IVHz or
nV/y'Hz and is given by:

c...

m

enR

R

inR

=

(4

RkT) 1/2

(3)

1000

f-

~

>

~

~

0_

~

10

100

10

I"--

~

Ie

I-""

1/

I'.

N CHANNEL JFET

IPf510211P51)

o
lk

10k

-

0'

--<

lk

10k

( l)

1M

lOOk

3

RESISTANCE W)

Ie oO_lmA

0

...

"C

o

0.1

'"

ID

O.lk

.

FIGURE 2. Thermal Noise Voltage
and Current Densities vs Resistance.

en

The second basic form of noise, shot noise, is due to the
raridomness of current flow (discrete charge particles) in
semiconductor P-N junctions.

(l)

1 ,~A

I,

(l)

""
"2

12N9l01lPOJI

eN'

en

~lg
~

2<

5

<:

:c;::
~~
"---<

~l:g
~~
,,>

Z

o_.

in

0

100

12~S0861IP62)

I mA

lOOk

FIGURE 1. Bipolar and JFET Transistor

q

-o<
...

(4)

2q l oc6.f

Noise Comparison

-t
I
-t
=r

0-

UW

1

\

"'T1

(l)

100

~

:;::

10

(l)

It is sometimes more convenient to represent thermal
noise as noise current instead of a noise voltage. One
needs only to consider the Norton equivalent yielding a
noise current density.

Therefore, the purpose of this article is to review low
noise design procedures and indicate the simplicity of
designing high performance low noise amplifiers with
low cost JFETs.
f= 1 kHz
BW=200Hz

_.

en

(2)

>

12

:e
z
o

Mean square noise current
Charge of an electron (1.6 x 10- 19 AS)

IDe = dc current flowing through the junction (A)

REVIEW OF BASICS

6.f = Noise bandwidth (Hz)

Before guidelines are established for designing low noise
JFET amplifiers, a method of noise characterization
must be chosen. Designers are confronted with a multitude of different noise parameters such as Noise
Figure (N F), noise voltage and current densities, noise
temperature, noise resistance, etc. Designers are primarily
concerned with signal to noise (SIN) ratios preferring
noise voltage, (en) and current (in) density.

As with thermal noise, shot noise may be represented
as a current density (A 2 1Hz) or pA/y'Hz.
in

= (12/6.f)1/2

(5)

It should be noted that both thermal noise and shot
noise are IIwhite" noise sources, i.e., frequency independent.

Noise generally manifests itself in three forms: thermal
noise, shot noise and flicker or "1/f" noise. Thermal
noise arises from thermal agitation of electrons in a
conductor and is given by Nyquist's relation:

~.

V2 = 4k TR M
R

V~

(1 )

k

mean square noise voltage
Boltzmann constant
(1.38 x 10-23 VAS;oK)

T

Absolute temperature (oK)

R
6.f

Resistance in ohms

III
10

100

lk

10k

GATE LEAKAGE (pAl

FIGURE 3. Current Noise vs Gate Leakage Current

Noise bandwidth (Hz)

11-19

...
-o>
(1)

en
E
-.(1)c

...o

a.
(1)

en
.o
Z

(1)

..c

....

6) Stage gain
7) Power supply voltage and current limitations
8) Circuit configuration, single or dual device

The third basic noise source confronting designers is
flicker or "1 If" noise whose density is roughly inversely
proportional to frequency starting at about 1 kHz in
both JFETs and bipolar transistors and increasing as
frequency is decreased. Through careful processing,
flicker noise in JFETs has been reduced' to levels
nearly insignificant to the designer. Flicker noise in
JFETs is primarily a noise voltage and is source independent. Flicker noise in bipolar transistors is a function
of base and leakage currents increasing with increased
source impedance or operating currents.

The design procedure is dependent on the type of
source and each case must be considered separately.
Resistive sources will be considered first because they
are the least restrictive for th'e preamplifier .
Resistive Sciurces
Preamplifiers for resistive sources are typically voltage
amplifiers requiring a fixed input resistance and capacitance consistent with the maximum frequency of interest
and source resistance. In most cases a resistor of the
desired value connected between the gate and ground
will satisfy the input resistance requirement leaving the
maximum' input capacitance as the major concern .

A simple noise model of a JFET or any amplifying device
may be constructed using a thermal and shot noise
source which would adequately describe its noise perfor·
mance allowing signal to noise'ratios to be calculated
directly.

I

tuLL

The maximum amplifier input capac.itance is a function
of the JFET source resistor, input resistance, source
capacitance and maximum frequency. The maximum
allowable input capacitance will be used in eliminating
unsuitable JFET geometrics and optimizing the circuit
configuration. Sometimes the JFET geometry (or type)
with the lowest noise may also have an input capacitance
that makes it unsuitable. The JFET input capacitance
should be considered before noise in high source
resistance, wide band amplifier designs.

..,
(1)

.~

o

z

~

o

..J
(1)

FIGURE 4. Simple JFET Noise Model

The input noise per unit bandwidth at some frequency
may be calculated from the mean square sum of the
noise sources (assuming the JFET noise sources are
uncorrelated or independent of one another) ..

..c
....

Cin == C" (, + _g_m_R_O_)
\
1+gmR,

(9)

1 +gm R,

(6)

- The total noise in the same bandwidth Llf, where the
noise sources are independent of frequency, is simply:

c.

(7)

Practically, noise ·sources are not frequency independent
except resistor noise with no .dc bias. The total input
noise for the non ideal case may be calculated by
brea'dng the spectrum up into several small bands
and <:~Iculating the noise in each band where the noise
sour. e" are nearly frequency independent. The total
input noise would then be the RMS sum of the noise in
each of the bands N1 ... Nn.

FIGURE 5. ATypical Resistive Source
JFET Amplifier

If low input capacitance is required, a cascode configuration minimizes input capacitance and still allows high
gain within a device type. The cascode configuration
can also be used to reduce the voltage across a device,
reducing device heating (for high current operation) and
gate leakage currents when source impedances are very
high.

THE DESIGN PROCESS
The final circuit configuration and suitable J FET will be
determined by the external circuit constraints.
1) Minimum signal to noise ratio (maximum amplifier
noise)
2) Type and magnitude of source impedance (resistive
or reactive)
.

Once the basic circuit configuration has been decided
upon or dictated by gain, bandwidth and power supply
limitations, the final JFET selection will be on noise.
Redrawing the amplifier in Figure 4 with all of the noise
sources, the total amplifier noise per unit bandwidth can
be found.

3) Amplifier input impedance requirements
4) Bandwidth and maximum frequency of interest
5) Maximum operating temperature

11-20

-4

::r

from the signal source. Assuming the gate resistor, Rg, is
so large as to not load the capacitive source, the input
noise voltage is:

Ro

(D

r-

o
~

Z

o

where G = Gs + Gin

CJ)

(D
with an input signal of

FIGURE 6. A Typical Resistive Source JFET

~

Amplifier with Noise Sources

(14)

"-4m
I

where:

e~i9

The noise voltage of the JFET

e~s

The noise of the source resistor Rs

e~D
i~

The noise of the parallel connection of
Ri and Rg

e~f

Av 2

(R;lIR g )2

When the sou rce and input capacitance are matched, the
final JFET geometry will be selected on two criteria: the
noise voltage, en, and the current noise from the gate
leakage, IG(oN), to optimize the signal to noise ratio. As
in the resistive source case, the circuit configuration and
JFET selection is an iterative process using all of the
external circuit constraints and device parameters and
limitations.

The noise at the drain (thermal noise of
the load plus the second stage noise)

-4

::r

(D

Z

o

CJ)

(D

""C

The current noise contribution of the
JFET

"'"
o

Inductive Sources
Amplifiers designed for inductive sources (including
transformers) require fixed input resistances (as in the
resistive source case) and controlled input capacitance
(as in the capacitive source case). The input noise per
unit bandwidth will rise with increasing frequency to a
maximum value at resonance of the inductive source and
the input capacitance or when the shunt resistance of the
inductor is larger than the input resistance of the
amplifier.

When the amplifier is operated at room temperature and
moderate drain voltages, the current noise term is
usually negligible with source resistances as high as
10 MD.. Depending on the voltage gain of the stage, the
drain circuit noise may be negligible, simplifying the
input noise expression.
(11 )
The final JFET selection will be based on the noise
requirements from the maximum allowable noise V MAX.

C'"

(D

3

en

o

<

(D

"'"

(12)

Depending on V MAX and e~f the source resistor may
have to be bypassed to ground to eliminate noise of the
bias resistor.

R,

..J L _________ _
Capacitive Sources

FIGURE B. JFET Amplifier with an
Inductive Source

Preamplifiers for capacitive sources are primarily current
amplifiers requiring very high input resistance and
controlled input capacitance to match the source capacitance.

The inductive source amplifier is the most difficult to
analyze due to the complex input impedance. The
input noise per unit bandwidth is given by:

e~t

=

e~f + (i~f)( IZ in 12) + 4 kT (Re (Zin))

where
and Zin

L ________ _

(15)

Z = XCINllRg

= ZII(ZL + R L )

Usually the current noise of the JFET is negligible,
simplifying the expression a little, but not much. The
optimization process for inductive sources is very complex and it will require the spectrum to be'broken up
into several small bands to arrive at a final design. Generally, a JFET with a minimum noise voltage will be the
proper choice,

FIGURE 7. JFET Preamplifier with a
Capacitive Source

The source capacitance should equal the sum of the
preamplifier input capacitance and the stray capacitance
for maximum frequency response and power transfer
11-21

iii

...
-o>

Q)

en
E
Q)
.c
...o

c.

Q)

tn
.o

Transformers may be used with JFET amplifiers to
minimize noise with very low source impedances.
Transformers have both drawbacks and advantages and
both must be examined before a transformer design is
chosen. Poor frequency response, susceptibility to mech·
anical and magnetic pickup and thermal noise head the
list of disadvantages to be weighed against two very
important advantages. First, the noise voltage is transformed by the turns ratio N; second, the resistance is
transformed by N 2. These can be used to advantage by
matching very low values of source resistance to a
relatively noisy amplifier and still maintaining a good
signal to noise ratio, i.e., the total noise at the source
assuming an ideal transformer is

Z

SUMMARY
Low noise amplifier design concepts have been introduced for the three basic types of sources. Basic
parameters (C in , 'en' gm) were discussed that affect
both circuit configuration and JFET type. There is no
universal low noise JFET or circuit configuration that
solves all problems. Each low noise amplifier design is
different and must be considered within its own framework of performance requirements.
REFERENCES
A. Van der Ziel, "Noise," Prentice-Hall, 1954.
Richard S.C. Cobbold, "Theory and Applications of
Field-Effect Transistors," John 'Wiley & Sons, 1970.
C.D. Motchenbacher and F.C. Fitchen, "Low Noise
Electronic Design," John Wiley & Sons, 1973.

(16)

Q)

.c

....
I
tuLL
...,

SOME PRACTICAL LOW N91SE JFET INPUT CIRCUITS

Q)

tn
.-

o

z

+15V

o==

..J
Q)

.c

....

R,

-15V

Usable Bandwidth 1 MHz

a) Wide Band, Low Input Capacitance, Very Low Noise Preamplifier

+lSV
+lSV

R,

R,

AV;,,-~~(RC)

OUTPUT ':'

gm

-15V
10 MHl bandwidth with Rc = lk

b) Low Noise, Very Low I nptlt Capacitance Video Amplifier

11-22

-I
:::::r

APPENDIX A

(t)

r-

o

:e

z

Important National JFET Process Parameter Guide
Test Conditions
PROCESS

VDS

= 15V,

en @ 10 Hz
(nV/yHZ I

50

= 1 mA

ID

(V GS

en @ 1 kHz
(nV/yHZl

15

en

en @ 100 kHz
(nV/yHZl

5

o

= OV)*
gf,
(mmhol

2.5

IGIONI
(pAl
5V

3

2 pA

CGD
(pFI

CGS
(pFI

0.7

2.5

(t)

C-

."

~

10V 10 pA
15V

1 nA

I

51

5

3

1.3

7

30

3

9

55

10

4

2.5

2.4

5

2

4

92

10

4

1.5

4.5

2

4

(t)

o

10V 20 pA

-I
:::::r

1 nA

15V

Z

83

10

5

2.5

2

5

1

2.5

84*

50

15

9.

0.2

0.1

0.01

2

94

10

5

2.5

2

1-2

0.01

4

95

10

4

2.5

1.5

15

3.5

15

96

5

3

1.3

7

30

3

9

"C

93

15

7

2

3.5

10V 20 pA

1

3.2

o

en

(t)
""'II

1nA

15V

C"
(t)

3
CJ)

o
<
(t)
""'II

National JFET Process Low Noise Amplifier Gujde

PROCESS

50

Low Noise Application

51

55

92

83

84

Single JFET

Resistive Ultra- Low
en < 5 nV/.jHz@
10 Hz

X

Resistive Low Freq

X

93

94

95

96

Dual JFET
X

X

X

X

X

X

X

X

X

X

X

X

X

< 20 kHz
Resistive Wideband

< 10 MHz

X

Resistive Wide Band

X

Resistive Very High
Rs > 10 Mrl

X

Capacitive Low C

X

> 10 MHz

X

X

X

X

X

X
X

X

X

X

X

X
X

X

< 10 pF
Capacitive High C

X

X

X

X

> 20 pF
Inductive

X

X

11-23

X

X

X

X

III

...
-o>

Q)

CJ)

E
Q)
.c

...a..o

Q)

.-en

o

Z

Q)

Ik

APPENDIX B

I¥
~

'5

NOISE PARAMETER CONVERSION

'"!::;
<[

Noise Figure (NF) to an Effective en

">w

~

z
>

SOURCE RESISTANCE In)

FIGURE B1. Effective Noise Voltage lenE)
vs Noise Figure and Source Resistance (RS)

Noise Resistance

W

From equations 1 and 2, one finds the source noise
power to be

(Bl )

The effective noisevoltage density (en) and noise current
density (in) are found directly by referring to Figure 1,
and reading the values for the corresponding resistances.

en
.-

o
z
~

o

..J
Q)

J:

inR ;
(B2)

Source Noise Power

(1 )

enR ; (4 KTR)1/2

~

Q)

10

~

By definition:
Total Output Noise Power
NF; 10 log - - - - - _ - - - - - Output Noise Power of the Source

LL

Q

It is more convenient to present noise· data for bipolar
transistors in the form of contours of constant noise
figure at a fixed frequency or plots of noise figure
versus frequency at a fixed source resistance due to
large values of noise current (in). Noise figure must be
converted to an effective noise voltage (enE) for comparisians to be made between a BJT and a J F ET or for
signal to raise ratio calculations .

.J::

toI
to-

100

(4

:T)

1/2

(3)

APPENDIX C

for some source resistance Rs.

JFET Current Noise
Referring to Figure 4, the total output noise power at
the input of the amplifier would be:

Total Output Noise Power;

e~R M

Ai: low frequencies the current noise and voltage noise
~ources are uncorrelated in JFETs with the current noise
being pure shot noise due to gate leakage currents.
As frequency is increased, the current noise also increases
starting at frequencies as low as 50 kHz in some high
capacitance device types.

e~t M

+ --+
Rs

to-

(B3)

The noise figure (NF) can now be expressed in terms of
the noise source generators, enR, ent and i nt allowing
an expression to convert noise figure (NF) to an
effective noise voltage (enE).

NF; 10 log

~+

It has been suggested and experimentally verified that the
noise current at high frequencies is due to increased gate
input conductance.

_'

i~ ; 4 KT[Re (Y,,)1

(Cl)

Re· (Y 11) is available on high frequency JFET data
sheet as the real portion of the common source input
admittance parameters. In effect the channel noise is
coupling to the gate circuit through the source-gate and
drain gate capacitances. Hence low capacitance devices
exhibit lower values of noise current at high frequencies
than do high capacitan~e devices.

(B4)

yielding
(B5)

11-24

."

m

National Semiconductor
Application Note 32
April 1977

FET Circuit Applications

-I

...n

Q

--.
c_.

»

"C
"C

n

Q)

S·
::::J
en

~-----1~OV'
10M
OUTPUT

+--....--.......

INPUT 0-.....- - ,

10M

~--""'~-o OUTPUT

.,

INPUT

PNJ684 (P52)

o-J\I\(\r+--.....-~+,

PNJ686 (PS2)

SAMPLE

-, r

15V SAMPLE

b-J--15V HOLD

JFET AC Coupled Integrator

Samp!e and Hold With Offset Adjustment

This circuit utilizes the "tI-amp" technique to achieve
very high voltage gain. Using Cl in the circuit as a Miller
integrator, or capacitance multiplier, allows this simple
circuit to handle very long time constants.

The 2N4393 JFET was selected because of its low
IGSS «100 pAl, very low ID(OFFI «100 pAl and low
pinchoff voltage. Leakages of this level put the burden
of circuit performance qn cle~n, solder·resin free, low
.
leakage circuit layout.

.-----....-----ip-----o

JOV

10k

O.I/J F
2.2M

+ SUPPLY

0::-1

0.001 ~
~F

_____M

ZN5485 (P50)

RIN<:!:10DM
Gos" 5 IAmhos MAX

CIN $;O,25pF

10M

t---,--I
10k

r-+--OVDUT

2N3904(P2J)

O.IJ.1F

'--+---+---1 ! - -....1M

....--oDUTPUT

1k

Ultra·High ZIN AC Unity Gain Amplifier

Low Power Regulator Reference

This simple reference circuit provides a stable voltage
reference almost totally free of supply voltage hash.
Typical power supply rejection exceeds 100 dB.

Nothing is left to chance in reducing input capacitance.
The 2N5485, which has. low capacitance in the first
place, is operated as a source follower with bootstrapped
gate bias resistor and drain.
.

11·25

IiII

CJ)

s:::

....oCO

-.~c.

SHUNT

PEAKING COIL

JOV

v'
Rl
J.9k

c.

RFe



0.033 uF

'C
'C

10k

_.
_.

n
Q)

>4--0 OUTPUT

10k

o

::l

lOOk

O.00331-'F

0.00331-'F

HI-FI Tone Control Circuit (High Z Input)

The 2N5458 JFET provides the function of a high input
impedance and low noise characteristics to buffer an op
amp-operated feedback type tone control circuit.

RFe
12Vo--....- - '

BYPASS

T

RFe
BVPASS-,-

-4:-

AGe

100 MHz Converter

The 2N4416 JFET will provide noise figures of less than
3 dB and power gain of greater than 20 dB. The JFET's
outstanding low crossmodulation and low intermodulation distortion provides an ideal characteristic for an

input stage. The output feeds into an LM171 used as a
balanced mixer. This configuration greatly reduces L.O.
radiation both into the antenna and into the I F strip
and also reduces RF signal feedthrough.

11·27

en

U)

c

.....o
CO

o
.-

-

Q.
Q.

«

RS

DI,~~~~~NJ~:i
'NPUT

AS

:
\

OUTPUT

I

NPD5566

0-"",,""'---;".,

IP96..
) ...
, ~'H-4""","'-"'-I--I
/

'-

I

./

TOGGLE

DRIVE

(J

- - - TO ADDITIONAL
_ _ _ MULTIPLEX STAGES

....UJ
LL

RS

0----""',.,..---....

DIFFERENTIAL

INSTRUI~~~~

o-___'VIR/lS~-----...

RS - scaling resistors

Differential Analog Switch

ranges (-25°C to +125°C), this makes it an unusual but
ideal choice for an accurate multiplexer. This close
tracking greatly reduces errors due to common-mode
signals.

The NP05566 monolithic dual is used in a differential
multiplexer application where ROS(ON) should be
closely matched. Since ROS(ON) for the monolithic
dual tracks at better than ±1% over wide temperature

1k
I5V

150k

0.01

~F

i

+

tOk

O.Ol/-1F

5O

~OUTPUT

"

24k

-.-.,»-,

1M

'N'UT(O-l---.....

o.o04/JF

':'"

820k
1k

-=
+'

470
22k

T

5O
"

330k

...._ _ _ _ _ _ _---4~"IiI'(lk.,.....-o-15V

Magnetic Pickup Phono Preamplifier

This preamplifier provides proper loading to a,reluctance
phono cartridge. It provides approximately 35 dB of
gain at 1 kHz (2.2 mVinput for ,100 mV output), it
features S + N/N ratio of better'than -70 dB (referenced

to 10 mV input at 1 kHz) and has 11 dynamic range,of
84 dB (referenced to ',1 kHz). The feedback provides for
RIAA equalization.

"~

5V

R2

BIPOLAR

1k

LOGIC
ELEMENT

~-_~OUTPUT

'C
'C

V-

GAIN CONTROL

n

v-

OJ

Negative to Positive Supply Logic Level Shifter

Voltage Controlled Variable Gain Amplifier

This simple circuit provides for level shifting from any
logic function (such as MaS) operating from minus to
ground supply to any logic level (such as TTL) operating
from a plus to ground supply. The 2N5639 provides a
low rds(ON) and fast switching times.

The 2N5457 acts as a voltage variable resistor with an
RDS(ON) of BOOn max. Since the differential voltage
on the LM10l is in the low mV range, the 2N5457
JFET will have linear resistance over several decades of
resistance providing an excellent electronic gain control.

r-----~~-~V+

VIDEO

VIDEO
OUTPUl

INPUT

I-.....--OVOUT
-lOV

,,
-=,, IM>-I-r----....I
-=

IM~tr6--------;---t

J

2N36861P52)

V,N

O---+--.....---i~.,

OOD1P
•
'

500 typical

\....---J....o
\

Variable Attenuatar

'VVII

•

'u;:',UI\l1

Ultra-High Gain Audio Amplifier

\u:.a;)

Ulall

~UIIlt:lIlllt::::.

",""VIolo"I·

l;dllt:=U

lIl~

.Jrl:

I

,u-amp , InlS

CirCUit pro-

vides a very low power, high gain amplifying function.
·Since f.-I of a JFET increases as drain current decreases,
the lower drain current is, the more gain you get. You
do sacrifice input dynamic range with increasing gain,
however.

The tee attenuator provides for optimum dynamic
linear range for attenuation and if complete turn-off is
desired, attenuation of greater than 100 dB can be
obtained at 10 MHz providing proper RF construction
techniques are employed.

VIDEO INPUT

VIDEO OUTPUT

son

50n

Attenuation> 80 dB
Insertion loss '" 6 dB

@

100 MHz

1M

-10V

High Frequency Switch

The 2N4391 provides a low ON resistance of 30n and a
high OFF impedance «0.2 pF) when OFF. With proper

11-29

-_.
c_.

»

MOS
LOGIC
ELEMENT
WITH
NEGATIVE
SUPPLY

......... " ' .... ~ .. ...

...n_.

()

RI
V,N o--'W"","---<~--f

layout and an "ideal" switch, the performance stated
above can be readily achieved.

o

::J

CJ)

R'
V'N

c.
c.

 OV

Precision Current Sink

The 2N5457 and PN2222 bipolar serve as voltage
isolation devices between the output and the current
sensing resistor, Rl. The LM10l provides a large amount
of loop gain to assure that the circuit acts as a current
source. For small values of current «1 mAl, the
PN2222 and 10k resistor may be eliminated with the
output appearing at the source of the 2N5457.

The 2N5457 JFET and PN2222 bipolar have inherently
high output impedance. Using R 1 as a current sensing
resistor to provide feedback to the LM 101 op amp
provides a large amount of loop gain for negative feedback to enhance the true current sink nature of this
circuit. For small current values, the 10k resistor and
PN2222 may be eliminated if the source of the JFET
is connected to R 1.

OUTPUT

------'lr------,

O-....

V+

INPUT
JOV

FROM

r-I...------+~!:YY"'''--4~ V'DEO

r-1

DETECTOR

---I

W

r- 15V (SAMPLE)
-15V (HOLD)

*Polycarbonate dielectric capacitor

Low Drift Sample and Hold

JFET-Bipolar Cascade Circuit

The JFET-bipolar cascode circuit will provide full video
output for the CRT cathode drive. Gain is about 90.
The cascode configuration eliminates Miller capacitance
problems with the 2N4091 JFET, thus allowing direct
drive from the video detector. An m derived filter using
stray capacitance and a variable inductor prevents
4.5 MHz sound frequency from being amplified by the
video amplifier.

The JFETs,Ol and 02, provide complete buffering to
Cl, the sample and hold capacitor. During sample, 01
is turned ON and provides a path, rds(ON), for charging
Cl. During hold, 01 is turned OFF, thus leaving 01
ID(OFF) «100 pAl and 02 IGSS «100 pAl as the
only discharge paths. 02 serves a buffering function so
feedback to the LM10l and output current are supplied
from its source.

11·30

-, r

15V ON

W

-15V OFF

...

n

lN914

-_.
c:::

l>

2N4393
IPS1)

'C
'C

n

OUTPUT

Q)

o

~
tJ)

JFET Sample and Hold Circuit

Peak output voltage

Vp '" Vz + lV
Wien Bridge Sine Wave Oscillator

The major problem in producing a low distortion,
constant amplitude sine wave is getting the amplifier
loop gain just right. By using the 2N5457 JFET as a
voltage variable resistor in the amplifier feedback loop,
this can be easily achieved. The LM103 zener diode
provides the voltage reference for the peak sine wave
amplitude; this is rectified and fed to the gate of the

2N5457, thus varying its channel resistance and, hence,
loop gain.
The logic voltage is applied simultaneously to the sample
and hold JFETs. By matching input impedance and feedback resistance and capacitance, errors due to rds(ON)
of the JFETs is minimized.

r - -.......- O

...------1r--Q v'
100

VOUT
A2
10k

+----....-0 vQUT

10M

AI
lk

10M

1k

1k

High Impedance Low Capacitance Wideband Buffer

The 2N54B5 features low input capacitance which
makes this compound series-feedback buffer a wide-band.
unity gain amplifier.

High Impedance Low Capacitance Amplifier

This compound series-feedback circuit provides high
. input impedance and stable, wide-band gain for general
purpose video amplifier applications.

11-31

If)

r:::

-0

....CO

,---....- - - - - - - 1 r - - - - - - -...-

20V

2.2k

(.)
.-

c.
c.

r - - -....--~~--....--oOUTPUT

V,No-.....-+lh

....

::s

(.)

4.7k

6.8M

 -70 dB

47 pF

Low Distortion Oscillator

The 2N5485 JFET is capable of oscillating in a circuit
where harmonic distortion is very low. The JF ET

local oscillator is excellent when a low harmonic content'
is required for a good mixer circuit.

11-32

"T1

m
-I

-+---1:..1<=:""""10 1OUTPUT

n
..,

n

c_.

~

"C
"C

n

INPUTlOr-"'i-1......?

AGC range 59 dB
power gain 17 dB

Q)

=:
o
::::s

L 1 = 0.07 f.!Hy center tap
L2 = 0.07 f.!Hy tap 1/4 up from ground
200 MHz Cascode

This 200 MHz JFET cascade circuit features low crossmodulation, large signal handling ability, no neutralization, and AGC controlled by biasing the upper cascade

Amp~fier

JFET. The only special requirement of this circuit is
that lOSS of the upper unit must be greater than that of
the lower unit.

+

OUTPUT

3D pF

vFET Op Amp

The NP08301 monolithic-dual provides an ideal low
offset, low drift buffer function for the LM 101 A op
amp. The excellent matching characteristics of the

NP08301 track well over its bias current range, thus
improving common-mode rejection.

2NS45B
(P551

CONDTR~e~ o-......I--.............."'1k""..........HI4-O -10V
ON

111

OFF -20

=t..r:=-

lN914

1N914
FROM OS780D

tOO pF

High Toggle Rate High Frequen.cy Analog Switch

This
drive
OFF
ideal

commutator circuit provides low impedance gate
to the PN4091 analog switch for both ON and
drive conditions. This circuit also approaches the
gate drive conditions for high frequency signal

handling by providing a low AC impedance for OFF
drive and high AC impedance for ON drive to the
PN4091.

11·33

en

en
c

--

o
.-

2N4091 JFETs

(P51)

CO

.~

,--.--0

,-----,

INPUT 1

1M

I

Q,
Q,

c:(

INPUT 2

on
TTL

INPUTS

1M

I

L _____ ---.JI
INPUT 3

OS7800

U

VOLTAGE TRANSLATOR

I-

,-----1
I

W

1M

I

u..

ilNPUT 4

on

TTL

INPUTS

1M

L _____ ..JI

OUTPUT

057800
VOLTAGE TRANSLATOR

4-Channel Commutator

This 4-channel commutator uses the 2N4091 to achieve
low channel ON resistance «30£1) and low OFF current
leakage. The D57800 voltage translator is a monolithic

device wh ich provides from 10V to -20V gate drive to
the JFETs while at the same time providing DTL/TTL
logic compatability.

R5

OIFFERE~Jt~i o--'V""--t----------,

R'

>---<1"-0 Vo UT

"SCALING"
RESISTORS

R2
DIFFERENTIAL

INPUT

PN4392
(P51)

RJ

Rl

~

-15V

ADDITIONAL
CHANNELS

Wide Band Differential Multiplexer

This design allows high frequency signal handling and
high toggle rates simultaneously. ·Toggle rates up to
1 MHz and MHz signals are possible with this circuit.

11-34

."

m
-t

POSITIVE
INPUT
VOLTAGE

RI
0.1
1%

("')

o-.......-JVv..-..---o

...

TO LOAD

(')

C

»

R2
100

'tJ
'tJ

1%

-_.
(')
Q)

PN3684 (P52)
MONITOR
OUTPUT
5V/A
R1 R3
VOUT"'R2 IL

o

::::J

CJ)

R'

5k

1%

Current Monitor

R1 senses current flow of a power supply. The JFET is
used as a buffer because ID = IS, therefore the output

monitor voltage accurately reflects the power supply
current flow.

TO COMPANION CHANNEL
FOR STEREO CIRCUIT

.....~----_r--~--OI5V

r-----~------._--------._--

VOLUME

1.'

6Dk

15Dk

~

1k

10k
LINEAR
TAPER

1.2M

(I.02jJF

2N5457

INPUT~

1m)

OUTPUT

-=

-l-

1M

6Dk

O.I""I

2.2k
1DOjJF
1M

10k

:~:~~~--JVv..--~~~
I

I
I

100k

':"

I

2.2k
-15V

Low Cost High Level Preamp and Tone Control Circuit

This preamp and tone control uses the JFET to its
best advantage; as a low noise high input impedance
d~vice. All device parameters are non-critical, yet the
circuit achieves harmonic distortion levels of less than

0.05% with an SIN ratio of over 85 dB. The tone controls allow 18 dB of cut and boost; the amplifier has a
lV output for 100 mV'input at maximum level.

11-35

IIII

..

;o
c.
e

.~

:i

lij
LL
Q)

>
o

Z
 IVpl
VDG = VDS - VGS
It should be noted that N FET's can be paralleled for
higher load current requirements without matching the
devices.

R1
2.2M

R2

10M

VOUT

r

I
I

106

I

I
IL ____________ -'

Actual performance of the regulator is quite good. With
a 10V typical output, the line regulation is within
±0.05% for a range of VIN-VOUT of 0.3V to 10V.
The load regulation is 0.2% with a load range of 10 pA
to 10 mA (Zo"" 10n) and the temperature stability is
-o.ol%fC (-1 mVfC). The output voltage can be
easily trimmed by adding a pot at the Rl R202BASE
junction to eliminate BVEB variations or to make the
output adjustable over a limited range. Also, the temperature stability can be improved by replacing 03 with an
8.2V zener diode, because its temperature drift (- 4 mV 1
°C) would nearly match the combined VBE drift of
02 and 04. The regulator is good enough to be used as
a reference in low accuracy (6-7-bit) or limited temperature range applications if current drain is important.

Output Voltage
VOUT = VSE (2 + R1 ) + SVES (1
R2

+~)

REFERENCES

R2

Drift
aVOUT_ = aVSE

aT

aT

Quiescent Current

(2 + ~) + asvES
R2
aT
~

(1 + ~

4 JlA

FIGURE 1. Micropower Regulator

R2

1. "Voltage Regulator Handbook", National Semiconductor Corporation, May 1975.
2. "Zener Diode Handbook", Motorola, Inc., May 1967.
3. Williams, P., "D.C. Voltage-Reference Circuits with
Minimum Input·Output Differentials", Proc. IEEE
pp. 1280-1281, December, 1969.
11-36

»
z
o

<

~
~

IL = 10pA

""
Q

i=


....
""

~

-0.3

I
II

""
Q

-n
m

10
VIN = 10.8V
T A = 25" TO 85' C

-I

""

I--

Q

i=

V



I-

VO(TyP) = 10 .1V
VIN(TVP) = 10 .8V
TA=25'C

....
""

-30

I-

0.01

10

0.1

o

:e

"'"

""

Q

-40

-0.4

s:
a
"C
(;'

-10

0.1

INPUT·OUTPUT DIFFERENTIAL
VOLTAGE (VIN-VOUT)

IL - LOAD CURRENT (rnA)

FIGURE 2. Line Regulation vs Input·Output Differential

FIGURE 3. Load Regulation

10

::;

Q)

CC
CD

:D

CD
CC
C

or....
o
~

~

~

""
Q

i=


I-

....""
""

"'"

20

0.2

IQ

-80

-0.8
25

45

65

85

TEMPERATURE (OC)

FIGURE 4. Temperature Stability

11·37

...
-

-~
~
c.

E

A Linear Multiple GainControlled Amplifier

National Semiconductor
Appl ication Note 129
Jim Sherwin
August 1975

1

FIGURE 3. FET/Op Amp Gain Control Circuit

1200
1000

2N395B
IPB31

BOO

J

1000

Rl =JOOk
vp =2.6V

f600

f-

rr
30k

400

VI'
R2~3ki/. ~ V

k".L
V

Vp '" 3.7V
2N5524
IP951

BOO

I

600

V

>

"

/V

\(L,

/

/

400

~I

200

'"
"

OIl

200

~

o

-3.0

I

-2.5 -2.0 -1.5

-1.0

o

-0.5

-4.0

-3.2

-2.4

-1.6

-O.B

VGS IVI

VGS iVj

FIGURE 4. Gain vs Control
Voltage For Short Channel FET

FIGURE 5. Gain vs Control
Voltage For Long Channel FET

11·39

...
Q)

!E

1000

100

H=B

Co

E

0

10

100

.....,~
C



r_.
ID
IDmA
PER
DIV.

ID
SDIl.uA
PER
DIV.

:s:
c

_.

;::::;

"2Ves = D.SV/DIV.

CD
C)

VDS - D.SV/DIV.

Q)
.)

V~

= 2.BV

::s

b) V, =9V

n

o

.o::s..

'D

ID
10ll.uA
PER
DIV.

2mA
PER
DIV.

(5"

Co

J>

3

...

'C
VDS = 50 mV/DIV.

VDS = 50 mV/DIV.
,) V, =2.BV

~

CD'

d) V,=9V

FIGURE 9. AC Output Characteristics of FET with Feedback Linearization

ttlu

1000

III! IIII

".!

1ftmlJJ

IWI 1

1000ml1

."

100

1

~r

10.~

10

Av = 1-100
Vp "'S.2V

Vp =2.BV

1

PN4091 (P511

L-L.!-L-.L....l..........."'2N.:.:3"'95"'8"'(P.;;.83;;:.1.......J

-3.0 -2.5 -2.0 -1.5 -1.0

1 ' - - ' -................-'--'--'---'"'--""-'

-0.5

-9 -B -7 -6 -5 -4 -3 -2 -1

VGS(V)

Vos (V)

FIGURE 10. Distortion With
Vp = 2.BV

FIGURE 11. Distortion With
Vp= B.2V

1000

100

1000

§

2~0.8%
~WO.5%

rn
r/,

10

0.3%

o.I%I HOI-

I-

Av = 1-100Vp=2.8V -:
2N3958 (P83)

-3.0

FEEDBACK
Av = 1-100
Vp -8.2V
PN4091 (PSI)

1

-2.5 -2.0 -1.5 -1.0 -0.5

0.05% THO

I I

10

FEEOBAC~~

1

-

0.1% t::;;
=.0.0?-

100

-9 -8 -7 -6 -5 -4 -3 -2 -1

Vo, (V)

[II
0

Vos (V)

FIGURE 12. Distortion With
Vp = 2.BV, With Linearization

FIGURE 13. Distortion With
Vp = S.2V, With Linearization

11·41

...

C»

:e

Q.

E



3

-

"C

~

...

C1

Ci)'

r
I
R ~ 1M

Rl ~ 20k
R2 ~ 5k
RJ =240k
R4 ~ 10k
RS 10k

+10V

I

L_~5~_...J
R5 __

C2

+t--'VII'v--.....----+--IL..".
GAIN CONTROL lOOk
\ ..l..

+20V

FIGURE 17. Quad Gain Control

.-----'VIi'v----.....-o IlC OUT

IlII
"or 1/2 lM348

FIGURE 1B. Volume Expander/Compressor Block Diagram

FIGURE 19. Full Wave Linear Precision Peak Detector

11·43

..
Q)

-E
~

Q.

«

"0

--..o

Q)

.....
c:
o

U

c:
.CO

"
..
.!

Q.

CO

Q)

c:

r-----------------------------------------------------------------------------------~

audio attenuator to realize SIN about 100 dB or in a
60 dB attenuator to realize 80 dB SIN. Improvements
in SIN can be made by reducing system bandwidth in
fixed or low frequency operation. Minimum noise is also
achieved by using the minimum practical amplifier
source resistance. Values as low as 1 kn are advantageous.

half cycle (full-wave detector). The detector should,
therefore, be a full-wave precision linear peak detector
with low internal impedance; the requirements can be
met with the circuit of Figure 19.
The expander circuit shown in Figure 20 will perform as
desired. The gain control function is plotted in Figure 21;
distortion is below 0.1% at all levels. ,Resistors R3 and
R4 are added in order to modify the linear control curve
to the desired log curve. Note that the input signal is
attenuated prior to amplification in order to reduce
distortion and maintain an overall gain of approximately
o dB at midrange of expansion. The noise with the
LM124 over a 20 kHz bandwidth is, of course, a function
of signal; but the maximum signal to noise ratio is 80 dB.
The circuit could be adapted to stereo or quad sound
as in Figures 22-23. Questions for individual design
concern the method of control. Whether to expand all
channels together, and whether to derive the control
signals individually from each channel, a summation
from ,2 to 4 channels, or from a single channel (assuming
that high level from any channel indicates high levels
from all channels). Note that the FET is biased OFF
(minimum gain) for low signals, and increasing signals
progressively bias the FET ON (maximum gain).

The effect of temperature will be to change the gain
according to the temperature sensitivity of the FET.
This effect can be reduced by using a silicon resistor for
the feedback resistor, R1. If the FET were to be
integrated onto the op amp chip, an attempt should be
made to include R1 on the chip as well.
The application to a volume expander circuit is of
interest as the control is linear, the required control
range is only about 1:4, and the input signal is small
for the low gain condition when distortion would otherwise be most apparent. The elements of a volume
expander are indicated in Figure 18. The gai n controlled
amplifier need only exhibit a 12 dB variation in gain,
being lowest for small signals. The slope of gain versus
control should be linear, more specifically the slope
of (log) gain in dB versus (log) signal in dB should
be linear. A practical range is 12 dB gain change over a
30 dB input signal range. The peak detector should be
linear down to very small signals, exhibit a fast attack or
charge time of a millisecond or less, a discharg~ time
constant of about 2 seconds, and operate on the first

The volume compression circuit is a logical mate to the
expander. The only difference would be that the FET is
initially biased ON (maximum gain) for low signals, and

:i

«

+20V

'0

-=

10k

".

+lDV

"J

SIDk

"'

51k

4100

"2

4100

-=
1M

1M

+10V

1M

1M

-1 ",".".""
t1DV

1.---------.....

FIGURE 20. Volume Expander Circuit

11-44

I"'""

~~~io-,-----------~

/

~

..,>

3:

./

-I

c
;::;:

-3

-------+1

r-"

-5

F~~~i 0-....

-,

-7
-6

0

6 12 18 21 24 27 30 33 36
illig

(dB)

FIGURE 21. Expander Gain Characteristic

R~~:~ 0 - . - - - - - -....1

RIGHT 0 ....... . . . , . . - - - - - - - - - -....,

~::~ 0-...------+1

--

(D

Co
LEFT

»

----------_1

0-.....

FIGURE 22. Stereo Expander Block

increasing signals progressively bias the FET OFF (minimum gain). A disadvantage is that the circuit produces
greatest distortion in the low gain condition when signals
are highest. Maximum SIN is degraded by 24 dB over
that of the expander, minimum SIN is the same.

CONCLUSION
The combination of FET and op amp provides a linear
dc (voltage) control of gain over a range to 60 dB. As the
circuit realizes positive gain, rather than being a controlled attenuator, the input signal -is limited. Input

FIGURE 23. Four-Channol Expander Block

signal is further limited to several hundred millivolts by
the non·linearity of the FET (which sees the full input
signal). Because input signals will yenerally be in the
10-300 mV range, noise performance of the selected
op amp will be important. Even so, SIN of 60-100 dB is
obtainable with standard amplifiers. Track ing pair or
quad gain·control amplifiers are realizable with existing
monolithic dual or quad FET's, and the combination of
FET and op amp lends itself to simple integration. The
Circuit IS well-suited to remote and multiple linear gain
control and to volume expander/compressors. The volume
expander is especially interesting as the signal level and
gain conditions result in extremely low distortion and
more than adequate signal-to-noise ratio.

3

-

'C
=4\

(S'

...

IDI
11-45

...

U)

Q)

;,-

e.

Binary/BCD Gain
Programmed Amplifiers

National Semiconductor
John Maxwell
February 1977 .

Many systems require logic controlled gain programmable
amplifiers (GPA) for signal preconditioning, level control
.and dynamic range expansion. The system sets GPA
requirements for accuracy, speed and signal handling
capability, limiting the type used. Conventional CMOS
analog switches limit signal handling to ±7.5V and
accuracy to 1%. High voltage CMOS br JFET analog
switches increase both accuracy and signal handling
(±10V to ±15V) but at a greater cost. Programmable
amplifiers using current mode analog switches·have the
highest signal handling capability (±25V) with high
accuracy, speed and low cost.

A logic "0" turns the switch ON with a logic "I"
shutting the switch OFF by pinching the FET OFF. The
diode is used to clamp the source to drain voltage to
about 0.7V in the switch, OFF state. The series FET in
the feedback path is used to compensate for the ON
resistance of the switch FET.

E

.. converters can be built using monolithic
.current mode analog switches, an op amp and a few
resistors. '

A 4·bit multiplying DfA converter can be built using a
quad current mode switch, 4 binary weighted resistors
(R, 2R, 4R, 8R) and an op amp. The output voltage
will be a function of the feedback resistor, input resis·
tors and the logic state of the FET gates, GN.

Unlike conventional analog switches, only signal current
is switched at the'virtual ground of an op amp with cur·
reflt mode analog switch~s. Limiting the voltage across
the switch to a few hundred millivolts, power supplies,
logic interface and level translator circuits are eliminated
allowing the JFET switches to be 'driven directly by
standard logic.

The number of bits is expanded by c'ascading another
quad current switch and resistor array to the first.
Instead of continuing the binary progression of the input
resistors, (16R, 32R, etc). current splitting resistors·are
used such that the same resistor array (R, 2R, 4R, 8R)
is used for the additional bits, minimizing the number of
resistor values required for higher order converters.

G1

2R

4R

Vo

OR
VIN O-.....~""'.--+-...I

FIGURE 1. Current Mode Analog Switch

FIGURE 2. 4·Bit Multiplying D/A Converter

11-46

CD

:::s

r

R
10k

I
I

...

Q)

-AH5iilO-'"

'<
.......
CD

I
I
I
I

Gl

n
c

G')
Q)

2R
20k

:::s

...
...

"'C

RF

4R
40k

5k
(8k BCD)

o
(Q

Q)

3
3

8R
80k

CD
Q.

>
3

'C

:::;:

...

CD'
R
10k

(J)

2R
20k

4R
40k

AA _ _......._ - '

8R
80k

Vo

~ -VIN

RF [Gl 20 + G2 2- 1 + G3 2-2 + G4 2-3 + 1/16 (G5 20 + G6 2- 1 + G7 2-2 + G8 2-3 )]
R
(1 II for BCO)

°

FIGURE 3. a·Bit Multiplying D/A Using Cascaded 4·Bit Sections

Binary weighting requires a 1/16 current split for the
second switch quad while BCD weighting requires a
1/10 split.
There are 2 basic switch configurations available that
are optimized for a variety of logic drives: TTL or CMOS
Multiple independent switches 14 by SPSTI and a 4channel multiplex version with a series compensation
FET.

Practical limitations in using monolithic current mode
analog switches need consideration. Resistor values and
tolerance impacted by switch resistance is minimized by
increasing resistor values without regard, but limits
bandwidth and creates leakage errors at elevated temper·
atures. Using resistors that are too sma", increase switch
resistance errors. Current saturation lincreased switch
resistance I occurs when the switch current approaches
the FET saturation current, 'DSS. High currents also

11-47

IIII

f!

Q)

~

C.

E

«
"0
Q)

E
E
...COm

e

cause IG(ON), current lost through the gate, as the
diode and FET source to gate diode become forward
biased. An input resi~tor value of 10k limits the switch
current to less than 2 mA minimizing both leakage and
switch resistance problems. For example, the gain
accuracy at unity gain using the compensation FET is
less than 0.05% with R = R F= 10k.
The current shunt resistor used in cascading switches
should be kept small to minimize the voltage drop,
keeping the FET drains near ground. Values of RS
should be less than 100.11 (20 typ).

This works out to be ±0.2% for the 8·bit binary unit.
Errors in the feedback resistor directly affect the output
of the converter. The most significant resistor, R,
contributes 1/2 full-sca'e, reducing its error contribution
by a factor of 2. The same is true for the rest of the
resistors with contributions of 1/4, 1/8, etc. Using a
resistor tolerance of 0.1% for the feedback resistor,
0.2% for the 2 most significant resistors (R, 2R), 0.5%
for the 3rd and 1% for the 4th and 5th switches allows
5% resistors to be used in the 6th, 7th and 8th switch
positions.

0.

.5

CO

"

C
U
III
.......
~

Resistor tolerance will be determined by converter
resolution, i.e., the number if bits (N). For example,
an 8·bit binary D/A converter will have 2N_l or 255
steps- (99 for BCD) or different gains. The resolution or
smallest step is (least significant bit) 1/2 N of the full·
scale value (0.0039). Typical accuracy specifications
for D/A converters are stated as 1 LSB or ±1/2 LSB.

Using the above information, 4-bit or more binary/BCD
gain programmable amplifiers can be built with large
signal handling capability, few parts and easily adjustable
gain or attenuation. Figure 3 shows a practical 8-bit
binary/BCD GPA with gains of 0.996 (binary) with
RF = 5k and 0.99 (BCD) with RF = 8k. For other gains,
only the feedback resistor need be changed.

CO

r::

as

2"

22

2i1

% error = [ Ef2 + (ER) 2 + (E2R) 2 + - - - + (EnR) 2 ]1/2
(2)

or
[ 2 (0.2)2
(0.2) 2
( 5 )2]1/2
% error = (0.1) +"2
+
+ - - - + 256
= ±0.198%

'"'4

Ef = tolerance of feedback resistor
ER = tolerance of most significant resistor
EnR = tolerance of Nth resistor

11-48

"T1

m

National Semiconductor
John Maxwell
February 1977

FET Curve Tracer

-I

n
c::::

...<

CD

10

Junction field-effect transistors (JFETs), unlike bipolar
transistors, do not easily lend themselves to analytic
solutions of bias networks. By their very nature, JFETs
are voltage controlled devices. Gate to source voltage
(control voltage VGS) variations of several volts can
exist within a given part type at the same operating
conditions, causing the problem. Multiple suppliers and
inadequate or non-existent data sheet curves compound
the problem further, requiring data from the suppliers
or the use of a cu rve tracer.

V
/

o
-2.5

-2

V
-1.5

-1

A simple curve tracer, used with any oscilloscope, can be
built using a quad op amp and a handful of parts. The
circuit displays drain current versus gate voltage for both
P and N·channel JFETs at a constant drain voltage.

-0.5

FIGURE 1. Typical N·Channel FET Transfer Curve

The circuit consists of an op amp current to voltage
(I/V) amplifier with a positive or negative gate sweep

1k
1 mAN

100
5 mAN

100
10 mAN

15V
10k

OUT

10k

[0

VERTICAL

HORIZONTAL
D.SV/ms

10k

Dl-D2 Q2*
Q3*

150k

15V

I O-4-----~ • __--~~---4
I

fl

68k

499

-15V

750

'lW NPN, PNP

-15V

FIGURE 2. FET Curve Tracer

11·49

lN914
92PUOl IP37)
92PU51 IP77)

D)

o

...CD

V

VGS(V)

D2

...

-I
/

...
...co
IQ)

(J

Q)

...
>

::l

U
IW

u..

voltage. The I/V amplifier uses 1/4 of the quad op amp
and 3 switch able feedback resistors for drain current
scaling: 1k·for 1 mAIV, 200n for 5 mAIV and 100n
for 10 mAIV. An NPN·PNP emitter·follower buffer is
used with the IIV amplifier to handle high FET currents
(to 100 mAl. A unity gain inverting amplifier is used
for proper drain current polarity.

horizontal input is used for the gate voltage. The hori·
zontal sweep can be used if no horizontal input is
available where a sweep rate of 0.5 ms/cm corresponds
to 0.5V /ms, allowing the .curve tracer to be used with
any oscilloscope.

-r-----oRESET
The gate sweep generator consists of 2 parts, a linear
ramp generator with a reset and a window comparator.
The ramp generator is an op amp with a capacitor 'in
its feedback loop. The sweep rate is set by a constant
current supplied to the capacitor through a resistor tied
to either the plus or minus voltage supply.

0.1 ).JF

15Dk

i

1~3 o--'IIII'v-_-I
Vo

'lV/m~

The positive (P·channel) ramp mode uses the positive
reference on the plus input of the comparator with the
ramp connected to the minus input. The comparator
output stays.high (15V) pinching the FET OFF until the
input exceeds the reference (10V). At that point, the
output snaps to the negative supply, turning the FET
switch ON, discharging the capacitor. The reference
voltage at the plus input is set near ground using the
51k input resistor, 02 and 68k feedback resistor when
the comparator output is in the low state. When the
capacitor is discharged, the comparator resets, restarting
the ramp.

FIGURE 3. Linear Ramp Generator

20 , - - - - - , - - - - - - ,

2
Q

10

>

A negative sweep is more difficult to generate using the
same comparator. The reference (-10V) is on the
minus input with the ramp connected to the plus input.
As with the positive sweep, the comparator output is
high until the negative sweep exceeds the reference.
The difference is that the reference cannot be set to
ground for the reset sweep but to a negative voltage
such that when the ramp is at OV the comparator resets.
The function of Q2 is to short R 1, changing the reference voltage from -1 OV to -6V.

I------,;t------,I

10

20

TIME (ms)

FIGURE 4. Positive Sweep

In both cases, the sweep time is 10 ms. The resistor
attenuator on the FET gate terminal divides the voltage
in half, yielding a sweep rate of 0.5V /ms with a maximum gate voltage of ±5V. This should be adequate for
most FETs used as amplifiers but if additional gate
voltage is required, the attenuator can be switched out.

2

-10

1-----""''1-------''1

-20

L -_ _ _ _-'----'-_ _ _.....

Q

>

The circuit is limited to displaying 6nly the FET transfer
characteristic 10 vs V GS, but th!is is the curve most
needed by designers. It gives in'sight into parameter
variations of bias circuits and it c'an be used to observe
temperature effects on the FET. The oscilloscope
vertical input is used for the drain current and the

10

TIME (msl

FIGURE 5. Negative Sweep

11-50

20

Section 12

Appendices

!!l

o
.c
E

~

tn

'0

~National

D Semiconductor
DC PARAMETERS
BV CBO

-

Collector-Base' Breakdown Voltage
with Emitter Open-Circuited
The breakdown voltage of the collector-base
junction, measured at a specified current,
with the emitter open-circuited,

Collector-Emitter Breakdown Voltage
with the Base Open-Circuited

.en9

'iii

The collector-emitter breakdown voltage,
measured at a specified collector current,
with the base open-circuited.

c::

CO

I-

Transistor Glossary of Symbols

BV CER

Collector-Emitter Breakdown Voltage
with Resistance between Emitter and
Base
The collector-emitter breakdown voltage
measured at a specified current with a
specified resistance R connected between
the base and the emitter.

BV CES

Collector-Emitter Breakdown Voltage
with Base Shorted to Emitter
The collector-emitter breakdown, measured
at ,a specified current, with the base shorted
to the emitter.

BV CEX

BVCEX

'Collector-Emitter Breakdown Voltage
at a Specified Condition
The collector-emitter breakdown voltage
me'asured at a specified current with the
base-emitter junction forward or reverse
biased by a specified voltage or current.

BV EBO

Emitter-Base Breakdown Voltage
with Collector Open-Circuited
The
emitter-base
breakdown
voltage,
measured at a specified current, with the
collector open-circuited.

Common-Emitter DC Current Gain
The ratio of DC collector current to DC base
current measured at a specified collectoremitter voltage and a specified collector
current.

h,,-SETA

'"
-;--:::

CF....LI3"~

'$[0--5" of $::,
12-2

Inverse Collector-Base Current

ICBO

Iceo

The collector-base current with the junction
reverse biased by a specified Voltage, with
the emitter open-circuited_

Inverse Collector-Emitter Current at
a Specified Condition
The collector-emitter current measured at a
specified collector-emitter voltage with the
base forward or reverse biased by a specified
voltage or current, or with the base shorted
to the em itter_

Inverse Emitter-Base Current

lEBO

The emitter-base current with the junction
reverse biased by a specified voltage with the
collector open-circuited_

LV CEO '

Pulsed Limiting Breakdown Voltages

LV CER '

These are similar to the corresponding, above _
defined, BV parameters but are measured at
a specified high current point where
collector-emitter voltage is lowest. The duration of the pulse and its duty cycle must be
specified_ The letter L indicates LIMITING
Value and is measured outside the negative
resistance zone of the reverse characteristic.

LV CES'
LV CEX ' or,
V CEO(sust)
V CER(sust)

~.

VCES(sust)

",1

~

VCEX(sust)

o

VBE

(ON)

Unsaturated Base-Emitter Voltage
The base-emitter voltage measured in the
common-emitter connection at a specified
collector to emitter voltage and specified
collector current.

CNBEIONI:;:;.1t::: 1.8 mV/'C-2.4 mVrC

12-3

$~'ULSEO

en

0
.c

VBE(SAT)

E
~

The base-emitter voltage measured in the
common-emitter connection at a specified
collector and base saturation currents.

U)
'too

0

.~

CO

Base-Emitter Saturation Voltage

VeE (SAT)

VeeISATI. VCEISATI

Collector-Emitter Saturation Voltage
The collector·emitter voltage measured in
the common·emitter connection at specified
collector and base saturation currents.

en
en
0

G

...0

FORCED BETA

...

en

'Ci)

c

!

t-

Reach Through Voltage
Punch Through Voltage
The collector·base voltage above which· an
increase of applied voltage can be measured
in the emitter·base open circuit.

SMALL SIGNAL PARAMETERS
Common-Base Output Capacitance
The common· base output capacitance with
input ac open.

t)

CAPACITANCE

Cob

'J~iC
OPEN

8

MEASURE
OUTPUT

CAPACITANCE
8

Common-Emitter Reverse Transfer
Capacitance
This parameter is the imaginary part of Yr •.
When Ic = 0, Cr. is identical to CCB.

Base-Emitter Capacitance
The capacity of the base·emitter junction at
a specified inverse voltage with the collector
open.

Collector-Base Capacitance
Collector-base capacitance measured at some
specified collector·base voltage.

12·4

2) Cee

C~B ~ COb (WITH EMITTER GUARO'EO)

CONVERSION GAIN
11 SPECifY
Vc~
2) IRF • 'IF. LO LEVEL. CIRCUIT

Conversion Gain, Common-Emitter or
Common-Base

'c.

The ratio of the output power of a mixer, at
one specified frequency, to its input power,
at another specified frequency. This parameter is a function of oscillator injection
voltage and the mixer operating point.

C)

0'
tJ)
tJ)

IIF~IAF-flO

OJ

~-----------------------------------------+----------------------------~~
Common-Base Cut Off Frequency

So

The frequency at which the hlb (et) is
reduced to 0.707 of its low frequency value.

(J)

'<

Common-Emitter Cut Off Frequency

3
o

161-_ _,"

The frequency at which the hIe (~) is
reduced to 0.707 of its low frequency value.

Gain Band-Width Product

~"''''

I;

The common-emitter current gain bandwidth product in the frequency range where
the current gain is falling at approximately
6 db/octave.

~

1

'L-______

C"

'(ij

r\

~,~"~------+,,~

LDGI- _

Transition Frequency
The frequency at which the hIe (~) is equal
to 1.0. This is a device figure of merit that
is often specified at a VCE and Ie.
I

Maximum Frequency of Oscillation
Th is parameter is a device figure of merit
that is calculated from ft an'd rb'Cc.

GP e
PG

MAX FREOUENCY OF OSCILLATION
FREOUENCY AT WHICH MAG = 1

IMAX =

J

I)SPECIFYlc,Vcr
21Io ••,~.CIRCUIT.NEUTRALIZED?

Power Gain
Can be common-emitter or common-base.
gains involved,
transducer gain

~'1
_&_~
~
11;' H11: :;, ) Q )~ )S1
0,,,

Common-Emitter Transducer Gain
A test fixture must be specified.

GMA

8" It
,bee = I VIPG
ru

P(lW£R GAI",TRANSCONDUCER GAIN

Common-Emitter Power Gain

Usually stability-limited
thus are effectively a
measurement.

_
MAX -

Stability Limited Gain or Gain
Maximum Available

12-5

SO!!

r.7

G
_
POWER DELIVERED TO THE LOAD
TE - POWER AVAILABLE FROM THE SOURCE

GMA=10LOG

This parameter is a device figure of merit
and must be calculated from the two port
"y " parameters.

USUALLY

[lYle l
IY,.I

(K-~)]

NOT DEFINED FOR K < 1

UJ

'0
.c
E

h Parameters

h - PARAMETERS

··t ~L-,--'A_N~~ t·,

en>-

WHERE I,. i,. e2. i z ARE SMALL SIGNAL VOLTAGES AND CURRENTS

'I-

.

THE h - (HVBRID) PARA",ETERS ARE DEfiNED BY

0

e,=hl1 i,+h12 t z

iz=hz,i,+hzZIZ
AND FOR COMMON EMITTER OPERATION THESE E Q BECOME
='''.i,+h.. ez

>-

8,

CO

i2=h~i,

+h""ez

U)
U)

.2
~

....!0

..

h'e

Common-!=mitter Current. Gain

,,- PARAMETERS-COMMON EMITTER

The C1lmmon-ernitter forward current transfer ratio with output ac shorted. This is a
complex quan~ity ..

U)

c

·03h"'~'"''

CO

t-

hi~

Com!110n-EmittEl r Input Impedance

llh;"~"'"

The common-emitter input impedance with
the output ac shorted. This is a' comple~
quan~ity.

hoe

Common-Em,tt~r

Output AdfTlittance

The common-emitter output admittance
with the input ac open: This is a comple/<
quantity.

Common-i;:mitter Reverse Voltage
Transfer Ratio'
.
,
The' co~mcin-e~itter reverse voltage tran~fer
ratio with iifll.!lt' ac open. This is ~ complex
quantity.

M,AG

:

lIJIaximufTl Availabll! Gi,lin
Device figure, of merit that must be ca!cuhited from the ~w() port "'I" par~m~ters.

MSG

Maximum

S~ble

!la!!'

This Parameter is ,a device figure of merit
that is calculated from the two port "'I':

MSG =

IVf 1

10 LOG -"-'I
IV r "

par~meter~.

NF

Noise

Fi~flre

NOISE FIGURE MUST $!"ECIFY

Noise figure' = 10 1091 0 F. where F is the
ratio of t~tal outp'\Jt noise power to the·
output power due solely to the thermal
noise of the sourc~ impedance.
,

;:

12-6

11

VeE,Ie

2) Rs,fo.PBW

.,

Base «Spreading»

Resistance
Ib' MEASUREMENT

Equivalent to the real part of hie at some
specified very high frequency.

ti~

,
r~---'b'--~---"---~T'------R

\

Jw,

~~

-j~

rb'Cc

Collector Base Time Constant
This parameter is a device figu re tif merit
and is measured in a specified test Circuit.

'b' Cc

=

Common-Emitter Switching
Parameters

COLLECTOR BASE TIME CONSTANT
SPECIFY -Ie. VCE. FREQUENCY

SWITCHING PAAAMETERS

In the following, drive circuit conditions,and
collector circuit conditions must be specified.
The transitibn times of the i~put must be
negligible compared to the measured times.

Delay Time
The time interval during turn-on from the
point when the input pulse at the base
reaches 10% of its full amplitude to the
point when the collector pulse changes from
oto 10% of its maximum amplitude.

t,

TON

= t.! +!,

TOFF = '. + II

Rise Time

90%-rl
I

The time interval during turn·on in which
the collector pulse changes from 10% to 90%
OT 115

maximum

ampll1Uae.

14

Storage Time
The time interval during turn-off from the
point when the turn-off pulse at the base
changes from 100% to 90% of its full
amplitude to the time when the collector
current has changed from 100% to 90% of
its maximum amplitude.

I

1
1

1--..1

l __ tR

·"13'%

I

I I'

f ou ,

:

90%

I
I
I

:

I_
I I

I

I

~

--I,

Fall Time
The time interval during turn-off in which
the collector pulse decreases from 90% to
10% of its maximum amplitude.

Y Parameters
y

PARAMETERS

.'I~L-__LAN_-,~ I"
y PARAMETERS ARE DEFINED BY
i 1 =Yll e'+Y12 e2
i1 =YZl e'+Y22 ez
OR IN COMMON EMITTER NOTATION
i1 "V•• el+y,.eZ
'2 = VI. e, +yo.ez

12-7

-.co
tn

Yle

E

Common-Emitter Forward Transfer
Admittance
The common-emitter forward transfer admittance with output ac shorted_ This is a
complex quantity (gle + jble )·

>0
U)

,'",-"-I
l]}'
1

',$

Vb. V0

Yie

Common-Emitter Input Admittance
The common-emitter input admittance with
output ac shorted. This is a complex
quantity (gie + jb ie )·

tn
tn

o

Cl

...o

-...

Yoe

.~

Common-Emitter Output Admittance
The common-emitter output admittance
with input ac open_ This is a complex
quantity (goe + jboe )·

tn

c:::

m

....

v PARAMETERS-COMMON

EMITTER

l []

"~

0:3

"I

v•• = -

Vb.

v,,=D

···'2J. -"

,

Yre

Common-Emitter Reverse Transfer
Admittance
The common-emitter reverse transfer adm ittance with input ac shorted. This is a
complex quantity (gre + jb re ).

·03'"

•.. ';;;!..-"

LARGE SIGNAL PARAMETERS

'Y/

Collector Efficiency
This parameter applies to oscillators and
class C amplifiers, predominantly. It is
defined as the ratio of R F Power Out/DC
Power In.

Po

Power Out

THERMAL PARAMETERS
RTH

COLLECTOR EFFICIENCY

Po (RFI
1]=--PIN(DCI

vi

=---

IC

X

vCE

p,

This parameter applies to oscillators. The
units are watts and a test circuit must be
specified.

i

1]-

Internal Junction-to Case Thermal
Resistance
The rated increase of junction temperature
with respect to the case temperature per
unit of dissipated power. It is also called
Thermal Resistance with infinite heat sink.

BJC

Junction-to Case Thermal Rating

BJA

Junction-to Ambient Thermal Rating

12·8

~
METER

SPECIFV -Ie. VCE UNDER QUIESCENT CONDITIONS
- '0'

RlOAO

c...

~National

JFET Glossary of Symbols

~ Semiconductor

-t

C')

oen

DC PARAMETERS
BVDGO (V)
or BVGDO

en
Q)

...

Drain-Gate Breakdown Voltage with Source OpenCircuited

-

'<

o

The breakdown voltage of the drain-gate junction,
measured at a specified current with the source
open-circuited.
BVSGO (V)
or BVGSO

Source-Gate Breakdown
Open-Circuited

Voltage

with

en

'<

3

Drain

C"

o

-

The breakdown voltage of the source-gate junction,
measured at a specified current, with the drain
open-circuited.
BVGSS (V)
Dr BV, V(BR)GSS

SDurce-Gate Breakdown
Source Shorted

VDltage

with

en

Drain-

The breakdown voltage of the source-gate and
drain-gate junctions, measured at a specified
current with the drain-source shorted.
lOGO (pA)
or IGDO

Drain-Gate Leakage Current, Source Open-Circuited
The leakage current of the drain-gate junction,
measured at a specified voltage, with the source
open-circuited.

Drain ON Current
The drain current, measured at a specified drainID(OFF) (pA)

I

vos

Drain Cutoff Current

Drain Saturation Current

Gate Leakage Current with Drain Current FIDwing
The gate leakage current, measured at a specified
drain current and drain-gate voltage.

IGSS (pA)

T

lOSS

The drain current, measured at a specified drainsource voltage with the source shorted to the gate
(VGS = 0)
IG (pA)
Dr IG(ON)

*,vos

I

The drain cutoff current, measured at a specified
drain-source voltage and gate-source voltage.
lOSS (mA)

"m

Gate-Source Reverse Leakage Current with DrainSDurce Shorted
The gate-source reverse leakage current measured
at a specified gate-source voltage.

12-9

cG3
o

+

~vos

.!!l.
0

.c
E
~
en

ISGO(pA)
or IGSO

Source-Gate Reverse Leakage Current with .Drain
Open-Circuited .
The leakage current of the source-gate junction.
measured at a specified voltage. with the ·drain
open-circuited.

ISGO

~

.

· · L L J VSG

~

0

...CO

~

rDS (n)
or 'ds. RDS'
rDS(ON)

t/)
t/)

..2

VDS(ON) (~V)

e"

....

W
LL

-,

Drain-Source ON Resistance
The drain-source ON resistance. measured at a
specified gate-source voltage and drain current.
Drain-Source ON Voltage
The drain-source ON voltage. measured at a specified gate-source voltage and drain current.

VGS (V)
or VGS(ON).
VG

VGS(F) (V)

Operating Gate-Source V/?Itage

Vos
'os = ID

--10

The gate-source voltage. measured at a specified
drain current and drain-source voltage.

Forward Gate-Source Voltage
The forward gate-source voltage. measured at
specified current.

VGS(OFF) (V)
or Vp

Gate-Source Cutoff (Pinch-Off) Voltage
The gate-source cutoff voltage. measured at a
specified drain current and drain-source voltage.

--10

YOS

SMALL SIGNAL PARAMETERS
Ciss (pF)
or Ciss. Cgss

Common-Source Input Capacitance
The common-source input capacitance measured
between the gate and source with the drain A-C
shorted to the source at specified drain-source and
gate-source voltages.

Coss (pF)
or Cos. Cdss

Common-Source Output Capacitance
The common-source output capacitance, measured
between the drain and source with the source
A-C shorted to the gate at specified drain-source
and gate-sou rce voltages.

12-10

Yos

c...

C rss (pF)
or C rs , Cdg

."

Common-Source Reverse Transfer Capacitance

m
-I

The common-source reverse transfer capacitance,
measured between the drain and gate at specified
drain-source and gate source voltages.

VDS

-

G')
0

en
en

...
'<
Q)

en (nV/y'HZ)
or en, V n, En

-

Equivalent Input Noise Voltage

0

The equivalent input noise voltage per unit bandwidth, measured with the input A-C shorted to
the source at a specified operating condition.

en

'<

3

0"

9fg (mV) (m'U)
or Yfg

Common-Gate Forward Transconductance
The common-gate forward transconductance with
the output A-C shorted. This is a complex quantity (9fg + ibfgl.

9fs (mV) (m 'Ul
or gm, Vfs, .
RelVfsl

9iss (IlV) (J.L 'U)
or Vis

Common-Source Input Conductance

Common-Source Output Conductance
The common source output conductance with the
input A-C shorted. This is a complex quantity
(gas + ibosl.

Common-Gate Power Gain
The common-gate power gain is the ratio of output power to input power.
Common-Source Power Gain
The common-source power gain is the ratio of output power to input power.

in (pA/y'HZ)

YI

9

=ID
-

vGS

Yls= -ID-

The common source forward transconductance
with the output A-C shorted. This is a complex
quantity (9fs + ibfsi.

ur lOS

GPS (dB)

VGStl-YID

Common-Source Forward Transconductance

The common-source input conductance with the
output A-C shorted. This is a complex quantity
(9is + ibis)'

G pg (dB)

~

Equivalent Input Noise Current
The equivalent input noise current measured with
the input open-circuited under specified operating
conditions.

12-11

vGS

I

VDS=O

I
VDS= 0

0

ur

-.ceno

NF (dB)

Noise figure = 10 1091O F were F is noise factor
which is the ratio of the total output noise power
to the output noise power of the source. Measured
at specified operating conditions and source resistance.

E

~

U)

o

~

~S-ou-r-c-e~O~ut~p~u~t~N~o~ise~Po~w~e~r

In the following, drive circuit conditions and drain
circuit conditions must be specified. The transition
times of the input must be negligible compared to
the measured times.

en
en

.2

...

F = Total Output Noise Power

COMMON-SOURCE SWITCHINGPARAMETERS

...cu

CJ

Spot Noise Figure

td(ON)

W

..,

VOO Q--W."..... .oooQVOUT

Turn-On Delay Time

RIN

The time interval during turn-on from the point
when the input pulse at the gate reaches 10% of its
full amplitude to the point when the drain pulse
changes from 0 to 10% of its maximum amplitude.

LL

Rise Time

IOION)

VOO-VOSIONI

= --:::-R-L--

The time interval during turn-on in which the
drain current pulse changes from 10% to 90% of
its maximum amplitude.
td(OFF)

Turn-Off Delay Time

100
~F==::t:~
90 t-

The time interval during turn-off from the point
when the turn-off pulse at the gate changes from
100% to 90% of its full amplitude to the time
when the drain current has changed from 100% to
90% of its maximum amplitude.

IOION) (%)

1~ !;211==+=4=~~--

tdION)~

tON

VOS

The time interval during turn-off in which the
drain current pulse decreases from 90% to 10% of
its maximum amplitude.

I

Vp--.J

DUAL FET PARAMETERS
BVG1 G2 (V)
or BVG1-2

Gate to Gate Breakdown Voltage
The breakdown voltage of the gate to gate junctions, measured at a specified current.

Gl

~
SUB

02

CMRR (dB)
or CMR

I-tr
f-

+ 0-.----,

Fall Time

Common-Mode Rejection Ratio
The common-mode rejection ratio is the ratio of
the change in differential gate voltage with a
change in the drain to gate voltage.
CMRR = 20 log 10 AVDG
AVos

12-12

tf
td(OFF)

L----

c...

9fs1-2 (%)
or 9fs1/9fs2

."

m

Common-Source Forward Transconductance Ratio
(Match)

-4

The transconductance ratio = 9fsl/9fs2 x 100 (%)
measured at specified drain-gate voltage and drain
current_

C)

o

en
en

...

Q)

goss 1-2 (f.1V)
or gos1-2

Common-Source Output Conductance (Match)

-

'<

o

Output conductance match = Igosl-gos21 measured
at specified drain-gate voltage and drain current_

IOSS1-2 (%)
or IOS1-2,
IOSS1/ IOSS2

IG1-2(pA)

en

'<

3
C"
o

Drain Saturation Current Ratio (Match)
The drain saturation current ratio = 10SSl/
IOSS2 x 100% measured at specified drain-source
voltages_

en

Differential Gate Leakage Current
Differential gate leakage current = II G 1-1G21
measured at specified drain-gate voltage and drain
current_

IG1, G2 (pA)

Gate to Gate Reverse Leakage Current
The gate to gate reverse leakage measu red at a
specified voltage monolithic dual with diode isolation shown_

IG1.G2

r----""'l""'10-

--¥VG1.G2

1
VGS1-2 (mV)
or t.VGS, Vas,
IVGS1-VGS21

t.VGS1-2 (f.1 v tC)
or t.IVGS1VGS21/t.T
t.Vos/t:>.T

Differential Gate-Source Voltage
The differential gate-source voltage, measured ata
specified drain-gate voltage and drain current.

Differential Gate-Source Voltage Drift
The differential gate·source voltage drift is the
change in the differential gate-source voltage with
a change in device temperature at a specified
operating condition.
t.Vos = !(VGS1-V GS2)I T l - (VGS1- V GS2)1T2!
t.T
Tl-T 2

12-13

U)
Q)

c

.
~ Semiconductor
~National

Dimensions are in

Package Outlines

inches

(millimeters)

Numbers in parentheses behind package titles are NS internal package codes.

PACKAGES
Dual-In-Line Packages
(N)

Devices ordered with "N" suffix are supplied in plastic molded dual-in-line package. Molding material is a highly reliable
compound suitable for military as well as commercial temperature range applications. Lead maierial is copper or alloy42
with a hot solder dipped surface to allow ease of solderability.

(J)

Devices ordered with the "J" suffix are supplied in a cer-dip package (ceramic lid and base sealed with high temperature
vitreous glass). Lead material is solder dipped alloy 42.

(D)

Devices ordered with the "D" suffix are supplied in side braze, multi-layer ceramic dual-in-line packages. The leads are
Kovar or alloy 42 and either tin-plated, gold-plated, or solder-plated.

(Q)

Devices ordered with the "0" suffix are supplied in either a "D" or "J" package, but with a U.V. window.

Metal Can Packages
(H)

Devices ordered with the "H" suffix are supplied in a metal can package. The cap is nickel finish and the leads are gOldplated Kovar. Gold free construction using epoxy D/A is also available, with a tin-plated finish.

Flat Packages
(F)

Devices ordered with the "F" suffix are supplied in a multi,layer ceramic bottom brazed flat package. The lid is plated
alloy 42, and leads are gold-plated, tin-plated, or solder-plated alloy 42 or Kovar.
NS PACKAGE
CODE

JEDEC
CODE

NS PACKAGE
CODE

JEDEC
CODE

39
40

TO·116 14·Lead Ceramic DIP ICD)

02

TO-18 Glass

04

TO·5 Glass

05

TO·71 Glass DifL Amp. TO·18

41

06
07

TO·46 Solid
TO·52 Solid

42
51

09

TO·39 Sol id Kovar

55

10

TO·39 Solid Steel

11

TO·18 Glass

56
57

TO-116 14·Lead Molded DIP ICN)
TO·116 14·Lead Molded Array
TO·3
TO·202
TO·202
TO·202
TO·220
TO·126

12

TO·71 Glass TO·18 Ditt. Amp.

17

TO·39 Solid Steel Low Profile

58
60

18

TO·52 Glass

67

8·Lead Molded DIP ICN)
8·Lead Molded DIP leN)

19

TO·18 Solid

92

TO·92

23

TO·72 Glass 14·Lead TO·18)

94

TO·92

24

TO·78 Glass TO·5 Ditt. Amp.

96

TO·92 Faraday Shield

25

TO·72 Glass 14·Lead TO·18)

97

TO·92

27

TO·78 Ditt. Amp. TO·S

98

TO·92 Faraday Shield

28
29

TO·72 Glass 14·Lead TO·18)
TO·72 Glass 14·Lead TO·18)

90
91

TO·237
TO·237

30

TO·78 Glass DifL Amp. TO·5

TO-3 (42) .
1.177-1.197
129.896-30.404)

0.560-0.670

o210-0.220 ~

i"~~'~0
0.425-0.435
(10.795-11.049)

116.764-17.018)

:i __ I__ I~:;::~::;:) RTYP
01

'

20~~~~OT:~; HOLES
13.835-4.089) OIA

0.490-0.510 R
112.446-12.954)

Pin 1-8ase

Pin 2-Emitter

Case-Collector

12-14

TO·5(04)

PIN

TO·18 (02, 11, 19)

T

PIN
1

E

B

2

B

C

3

C

PIN

FET N (02)

fl ;"T'"

1

s

2

D

3

G

PIN

FET P(II)

2
1;;2::;05 ::2 1

0.175-0.195

.

0.170-0210

SEATlN:4p4:;::~5lIQ
'

r=

O.OlO
(0.7621

MAX
0.016-0.019 _
(0.406-0.48ll

TO·39 (09, 10)

PIN

T(02), (19)

E

ODD--r

II

_

1

S

2

G

3

D

0.500
ilUOl
MIN

TO·39 (17) LO·PROFILE

T

PIN

E

l __

(:::::=::::~I
1

E

B

B

C

C

F:mg!i1~

Q

~

0.160-0.180

;;;1

~

"., "

JPLANE

SEATING

1PlANE

0.500
(12.7001
MIN

~ ~ .~ -1l~
. 0.016-0.019
(0.406-0.4831

I (~:;~=~ ~i

(4'064_4'57:llr~''''~' ~;t.

0.045

0.500
(12.701
MIN

T

-OL.0-09-t_-0.1-25-

~ ~ II-~
__

(0.22B-l.1751

0.190-0.210

f-----f

12·15

0.016-0.019
1O.406-0.4Bll

0.190-0.210

CJ)

Q)

r:::

TO·46 (06)

PIN

SE:lT~~hl

8
mlH

PIN

T(18)

1

E

S

B
C

2
3

B

D

C

G

I"

R
""'~':::F~' ~r'
0.178-0.191

1 14.521-4.9531

-j f--

0.142-0.159

·1,11

0.075-0.095
11.905-2.4131
0.500

TIT
D0 0

0,030

iiUoi MIN

0.040
I1:Oi6I
MAX

FET (07)

0.209-0.219
(5.309_5.5631

0.209-0.219
(5.308-5.5631
0.178-0.195

D0 0_

0.012-0.019
(0.305-0.4831

TO·52 (07, 18)

E

T

(0.7621

I

L

MAX
0.016-0.019.-;,
(0.406-0.4831

0.500
(12.701

0.100

I--~-t--- (2.5401

TO·71 (08, 12)

A
n

(::~::=:~::I

0.178-0.191

0.030
(0.7621

(23, 25, 28, 29)

FET(12)

PIN

T(25)

1

SI

1

E

S

2

Dl

2

B

D

3
5
6
7

Gl

3

C

G

S2

4

GND

CASE

G2

I"'T'"

-1
JL0III

MAX
0.016-0.019
10.406-0.4831

.

[J]

_

FET N (25, 29)

D2
PIN

T(28)

1

B

S

2

E

G

0.188-0.210

'''''':::~f;~:
.

TO~72

PIN

0.175-0.195

3

C

D

4

GND

CASE

R~;2;:9-~;2::21
'

0.170-0'.210

'''''::::~ II: u;1 :"'C

0.500
(12.701
MIN

I L0500
o 0 0-l-1 ~i:OI

0.016-0.019 ~Il-10.406-0.4831

.

12·16

FET P(23)

0.030
(0.7621
MAX
0.100

"'tJ

I PINl T(30) I FET(~

TO·78 (24, 30)

1

E1

S1

2

81

D1

3

C1

G1

5

E2

S2

6

82

D2

7

C2

G2

Q)

TO·92 (92, 94, 96, 97, 98)

o

"
Q)

1

PIN

J

CO
CD

S

Drain-source
on most
interchangeable

2

8
C

G

JFET devices

3

E

D

1

oC

--_.

=:J

94
TJFET

~

J

CD

(J)

0.175 - 0.185

'--~-r (4445 _ 46901

~

nl~M

TlaM

Ii270i

~II

MIN

I

0.0145 - 0.0155 TYP

--II-- (0.3683 _ 0.39371

0.045 -0.055

~RNOM~m(1.143_1.3971
(2.2861

t
I~ j

r PIN

123

" ; NOM

1
2

0.135-0.145
(3.429 -3.6831

L3

10° NOM

"" See note regarding lea dform on 12·19

TO·237 (90, 91)

PIN

PACKAGE 90

TO·126 (58)

PACKAGE 91

Collector

Base

2

Collector

Base

3

Emiller

Emiller

~R
(0.5081
TYP
NOM

0.120-0.130
(3.048-3.3021

3

~

0.0155-0.0145

0085-0095

~

!

3" TYP

~0435

~110491
0605-0655
(15367-166371

(2159-Z4131~

0091-0097

--II---

III

0020-0026 - - ---

~R

0015-00Z5
IL (0381-06351

I

~IIULI

(Z 311-Z4641

10394-0.~~;

~

095

Q 105

IL0
- ·6671
o(0508-06601
OZ5-0 035 --I
(Z.413-Z

(2.2861
NOM

(0.635-0.8891

f~~j

0.045-0.055
\"1.143-1.3971

I

====I~=====-I
I

Pin 1- Emitter
0.055-0.045
(1.397-1.1431

Pin 2- Collector
Pin 3- Base
. e torque not to
When mounting the devle ,
exceed 6.0 ,in Ib,

If lead bending is

.' d use suitable

r~~~~r~eiween transis.

lamp or other supp

~or case and point of bend.
12·17

..".,

98
T
8
E

C

en

Q)

c:
.;:

TO·220(57)

TO·202 (51, 55, 56)
PIN

:::J

o

Q)

en

co

n
I L'

0.395-0.405
ll0.033_10.2871

~

(,)

co

0.100-0.120
12.540-3.0481

c..

~
0.560-0.625
114.224-15.8751

j.

I~:~:~=~:~~I

0.020-0.035

10.508-0.8891
0.090-0.110

"1

DIA

T

1

Emitter

2
3

Collector

Base

Colleclor

Base

Collector

Emitter

.-.--'-++-+-+-i

~10.762-1.3971

-,---

T
Base

·1I

0.030-0.055

PACKAGE 56

Emitter

0.175-0.185

~ ~

1::;::1
NOM

PACKAGE 55

T

~14'445-4'6991

0.139-0.147
13.531-3.7341

+

0.240-0.260'

16.096-6.6041
0.128-0.132
13.251-3.3531

0.480-0.520
112.192-13.2081

0.230-0.270

-.l;'

~

110;57000~10~5267251

J

PACKAGE 51

15.842-6.8581
0.285-0.315
17.237-8.0011

2 PLACES

0.012-0.025
10.305-0.6351

L

~

I~'::~I
-I

o405-0 4J5
110.287-10.7951

II

REF

0095-0105~111-1_

--I

12.413·26671

12.286-1.7941

I 12.413-2 6671
I--

106601
.

Pin I-Base

~
~

0170-0.190
-14.318-4.8261
0019-0.026

1

10.483-0.6601

~095-0105

0.026

0095-0.105
12.413-2.6671 •

Pin 2-Collector
Pin 3 - Emitter

W

L

~ ~I~~~I

o

0.060

"" "" '"

CAVITY DUAL·IN·LINE PACKAGE D (40)

MOLDED MINI· DIP (60,
1

Cl

8
9

C3

2

81

01

Bl

B3

3

01

NC

3

El

10

E3

4

Gl, Gl

4

NC

11

NC

82

82

5
6

E2

12

E4

5
6

02

02

B2

13

B4

7

G2

NC

7

C2

14

C4

8

NC

G2

0.400
0.092
12.3371
OIA
NOM

~

~11~i~911~1~~~1

R JmtVW

0.020-0.060
10.508-1.5241

0.008_0.015
10.203-0.3811

R:
0.300-0.320

0.030
10.7621

{7620.-:.128!

MAX

1-------1'

Lo.015-0.023
II
0.125
10.381-0.5841 -j!-" IJ.1751
0.100 ±0.010

NOM

8

7

6

5

I0.250 ±0.005
16.350 ±0.1271

0.1154

1~~7p21

0090
160IJ
' - { , J l l 0 .MAX
12.2861

PIN NO.1 IDENT

~~",r.n~~)~--L

REF

81

2

0.298
17.5691
MAX

0.050.0.010
Ij
11.270 ±0.2541-!-"

67

NC

T

"'' '1="'' ' ' ",-,,,,11,,,-,,,,'' '-1'::'',...'';' ..,I---.

I 0.300 I
I- 17.6201--i

60

1

PIN

iOl '" '"

0.485

PIN

T

0.760
119.3041-----1
MAX

6n

PIN

I•

+0025'
0325 -0 015

(8 255 +0 635)
.
-0 381

MIN

12.540 ±0.2541

12·18

0.045
{1.1431

¥.FiF.FF.~~

TYP

0.065

'JJ

0009-0015
{0.229-0.J80
0.045 -0.015
11.143 -0.3811

0.100
{2 5401
TVP

1:1:
0.130 ±O.OOS

,.,
MOLDED DUAL·IN·LINE PACKAGE N (39)

PIN

T

PIN

T

1

C1

C3

2

61

8
9

3

E1

10

E3

4

NC

11

NC

5
6
7

E2

12

E4

Q)

62

13

64

C2

14

C4

CD

--I

L..;,................,.,....,.,,......,.,.,r-r:'T"~-1

MIN

0.040

0.014-0.016
(0.356-0.4061-- -

l~tX

0.065

~f==T

I

0.325

I

II

~
(~~~I

~

---I1~0.D15
(0.381)

NOM

0.130 ±0.005

R . .-" IJU- L
I•

:::

0.180

,:i::,- . . ":]'

0.250 ±0.005

(6.350 ±0.121)

FI

I

1

or:::

0.160
(4.0641

(d:~1 ~I~~(:;;:I

---.

0.030
(0.162)

"

CO

_I

0.300-0.320
(1.620-8.128)

o

·18 OPTION

63

-

0.092

Q)

TO·92 (92, 94, 96)
TO·18 LEAD FORM

(1..51)

(0.229-0.381)
0015 '0 015
(1.905 '0.381)

~~

0.100

~:~~:

.w!L

~

-

- I ; - ' 0 NO!:\-(2.5401

~

OIA PIN CIRCLE

"J

-1 o.fzo

(0.508)
0.018 ±0.003 0.125 MIN
(0.451 ±0.016) (~~~5)

~y~40)

/8255 +0.635)
\.
-0.381

TO·92 (92, 94, 96)
TO·5 LEAD FORM

TO·92 (97, 98)
TO·18 LEAD FORM STD
FOR IN·LINE LEADS
L34Z OPTION

·5 OPTION

(~::::ll-1
-11 (~:::~I II L
D"80

~t

(4.5121

_II~_ 0.011-0.0019
(0.432-0.4831

0.200 ±0.010
(5.080 ±O.2541
OIA PIN
CIRCLE

-II1 r-

0.,60
(4.0641

~(~:::~Ol

(2.540)
MAX

t-~I~
-

MAX
I

0.180.
(4.5121

-l----=:!=

j~

0.180
(4.5121

0.100
(2.5401

"1MAX

~-

0.025
(0.6351
MIN

-

I~

0.315

0.014-0.016
(0.356-0.4061-

(9.5251
NOM

_

0.315
- - NOM
(9.5251

~

II 0.D15
---I f-- iDTaii

NOM

-I ;--'0' NOM .w!L
~~(2.5401

~~,
~

~

* Note:

2

OIA PIN CIRCLE

All package 97 or98 transistors are lead formed tothis

configuration prior to shipment.

12·19

oQ)

C
.-

+=
::::I

TO·92 (92, 94, 96)
0.100" SPACING LEAD FORM

o

TO·92 (92, 94, 96)
TO·18 LEAD FORM AND CROP

J61Z0PTION

0.195-0.205

-

Q)
C)

i4.95J:5.2oii -

~
(,)
ca

0..

J14Z0PTION

L 1-0

!

~
0.175-0.185

0'050~(
~--1t
11210~L--I
-1--0.425-0.450

0.090
-12.2861

1I0.195fl.430}

NOM

~

~

1--r~41::4}

.

~

'--

0.180

~~r-14'51Z}
..!!J..!!..

-

0.180
14.51Z}

IZ.540}

=f=- _ jMAX

~
10.6351
TYP

0.OZ5
10.635}
MIN

-

II

10.356-0.406}

~--ll10.356-0.4061

.1--2 .....3

L 9
tJ
1

1---'

~

2

3

_I

0.190-0.210

~-

TO~92 (92, 94, 96)
TO·S LEAD FORM AND CROP

. 0.135-0.145

t

13.4Z9.3.6831

0.16D

O.ZOO±!l.OIO

L

J22Z0PTION

0.160
_--114.0641

,I

II"

. ~~~ 'j' '111
15.0BO±!l.Z54}
DIA PIN
CIRCLE

TO,92 (92, 94, 96)
TO·18 LEAD FORM AND CROP

J2SZ0PTION

--r--l

114.064)

j

10.381}

0.045-0.055

0.0145-0.0155

I,

--II--~ NOM

_®;;-1
NOM
0 ' 12.540}
OIA PIN CIRCLE

10.3683-0.3931}

0.180
14.5721

II

0.150-0.180
13.810-4.51Z}
0.100

~_I--

1-~1
1

0.180

1r-14.5121

0.180
14 512}

..!!J..!!..

1- _jMAX.

1

0.025
10.6351.
MIN
• 0.014-0.016 _
10.356-0.4061

0.017-0.0019

0.130-0.180
~ 13.302-4.5121
HEADS

12.5401

.

I
0.120-0.150
II-i304a=iiiDi
..

~

II 0.015
--II-- iO:iiii

0.100
_®;;-1
NOM
0 . 12.540}
DIA PIN CIRCLE

3~'

1,2...3

~
,

'12·20

NOM

""C
TO·237 (90, 91)
0.100" SPACING LEAD FORM

Q)

o

J61Z OPTION

"
Q)

CC
CD

0.175-0.185

0.100
12.5401
NOM

oc

- - (4.445-4.699) 0.195-0.205

~l--

::.

0.020

-1---1T-===~==~rr=====~--105081
t
~~~
I

0

0.175-0.185
14.445-4.6991

RAO

I

j
0.050-0.100

11.270~

t~

0.425-0.450

12.2861

110.795f1.4301 NOM

~

~

~

0.014-0.016~1_
10.356-0.4061
TY,

0.045-0.055
11.143-1.3971

0.0145-0.0155

(o.3683_0.3937Ig~!--1

Ll

lJ

2

_I
3

0.190-0.2101_
14.826-5.3341

TO·237 (90, 91)
TO·18 LEAD FORM

·18 OPTION

1~44;-4.6991

-

12.5401
NOM

0.050

~~
10.5081

_1_-

I

-

0.195-0.205

1WOi-j~I-

j

0.17510.185
14.445-4.6991

I

IL

0

NOM RAD
TY,

-(

I

0.090
12.2861
NOM

_II-

0.135-0.145

~~=~_13_.4_29-,-t3.6831

0.014-0.016
10.356-0.4061

0.100
12.5401
DIA

'c
I

I 0.135-0.145
"--,-,"'---"--='.D-.-l 13.429-3.6831

I

WNDM

12·21

U)

CI)

c

TO·237 (90; 91)
TO·5 LEAD FORM

·5 OPTION

0.100
{Z.540}
NOM

0.175-0.; 85
{4.445-,1.699}
0.195-0.Z05

0.050

I
11.Z10}1~1
-L-----'-f
~
-I
I
I
{0.508}
NOM RAo
TYP

o

0.175-0.185

!

0.05d-0.l00
I1l10-Z.540}
~-=---0.315
j
0.090
I
{Z.Z86}
Ig.5Z5}
NOM.
NOM

-11~~
{0.356-0.406}
TYP
0.190-0.Z10
14.8Z6-5.334}
olA
PC

I

0.0145-0.0155
10.3683-0.3931}

L~1......I:::::II.

-,

I

0.045-0.055
0.045-0.055
{1.143-1.391l
-LI1.143-1.391l
0.045-0.055
11.143-1.391l - -

TO·202 (51, 55, 56)
TO·5 LEAD FORM, CROP AND TAB SHEAR

,

.~
10.16Z-1.Z10}

0.313-0.377

t

-0.365!

0.060
}
{1.5Z4}

/

/"")
,_/

0.\51 0.065
13.988} 11.651}

(

LL

~
Z11

{6096-6604}

I

0.Z85 -0.315
{1.Z39 -8.001}

0.300

rr

r{9A14-9.516}l
0.Z40-0.260

~r

-1 .l

J46Z0PTION

0.615
117.15}

)

___

NOM
1
j
~

l~ ~~'

jtl

0.041-0.049
11.194-1.245} - 0.OZ4-0.0Z8
10.610-0.111}
TYP
.
0.195-0.Z05
14.953-5.Z01l

NOM

TYP

---1

600 REF
0.OI95_b.OZ05-n
{0.4953-0.5Z01}

I

0.095-0.105

t=IZ.413-Z.861}

'<'""",I

0

45

}

0.065-0.015
{i.651-1.905}

~

~

12·22

0.090-0.110
{Z.286-Z.794}

"'0

TO·202 (51,55,56)
TO·5 LEAD FORM AND CROP

S»

TO·202 (51, 55, 56)
LEAD FORM
J52Z OPTION

J41Z OPTION

0095-0.105
(2:413-2.667)0.0195-0.0205

0.095-0.105

12.413_2.~671~1

10.4953-0.52071

0.170-0.190 .
(4.318-4.B26J - -

n

="
S»

CO
CD

I--

il - -

O. 170-0.190
14. 318-4.826)

1

0.435

(11.051

L

r- ""rI

.!2'!.

13~~il 0.157~,

I

13.988111.6511:

I
I

NOM

NaM

~Il~ I~~~:;I

\

0.020~ ~~

~RAO
TVP

0.5081

10.5081\
RAO
TVP

TVP

/

--I~160' REF

60' REF TVP
0.0195_0.0205
IQ.4953-0.52071

1-

0.090-0.110_
12.286-2.7941

~

~

U /

0.0195-0.0205
10.4953-0.52071

I

1.135
12 8.831 0.134 0.065
REF
13.4041 11.651)
NOM
NOM

~!-..L-

- IC

7' TVP

-

:- t--- ~

[
/
1

I

L

0.073-0.077 _
11.854-1.9561

0.380-0.400

~1-19.652-'0.'61~1
12.921)

0.240-0.260

II~I

-0-

-1

-

0.500

I

I

L~

t-

I

I

0.28 5-0.315

/

17.23 9-8.001)

\

LL

I -1

..... '~/

(1.5241
0.047-0.053

11.19~y~3461
0.024-0.028
10.610-0.7111
TVP

OIA

!

11.5241

0.047-0,049

(1.194-1.245

,dj I_I

0.024-0.028

10.610-0.711 I

0:095-0.105
I2.413-2.6671

0.195-0.205_

'0.373-0.377
(9.474-9.576)--

0.195-0.20 5

1

14.953-5.2071

-

-

-

-

~

450:

~

I

1-

I

'('

\

'-'

0.300-0.365!
17.620-9.2711
0.060

_

-

,..- -,

LL

rr---

14.953-5.20711

~
I
\

17.239-8.0011

I

JI

I

y

0.285-0.315

\

~
-0. 365

f2711
0.060

1::::=::::1

112.701

112.19-13.211

17.620

-

1 1

45'~

"" 0.373-0.377
-(9.474-9.576)

0.065-0.075
-11.651-1.9051

"'~I

.---~1l~2
;j

0.095-0.105

I2.413-2.667\

_

"

12·23

tiEd

0.065-0.075
11.651-1.905\

o
C

~

(J)
Q)

c

TO·202 (51, 55, 56)
TAB SHEAR
L43Z OPTION

TO·202 (51, 55, 56}
TAB FORM
L42Z OPTION

~f~ 14.318-4.8261
0.170-0.190

0.080

12.0321--

0.095-0.105
(2.413-2.667) --0.0195-0.0205

REF

f--

-

0.095-0.105
f-12.413-2.6671

10.4953-0.52071-

0.170-0.190

I ~-I

TAB

MOLDED 800Y - '

I

OF PACKAGE

I

0

J

I

'-

rr--l-

7 TYP

'I

0.655
116.641
REF

0.105-0.135
12.667-3.4291

'I-,
I

,

I

J.

,,-ll--,
I

,,

1.183

r -1

130.0481
REF

,

I
I

I

Go
'.

0.0195-0.0205 __11___
10.4953 0.52071

11-

0.0195-0.0205
10.4953-0.52071

0.240-0.260
16.096-6.6041 +-+~---I

0.373-0.377

0.030-0.050.
fO.762-1.270l

1-19.474-9.5761 ~I
0.240-0.260

13.048-3.4291+++~-1

~T1~ll

I

+'

I

0.2B5-0.315

17 .239-8.0011

I

0.085-0.095
12.159-2.4131

0.120-0.135

FULL

I

~~~

0.115-0.,35!

~I

..,.---r~0-....,,//+-+-+--~
I
II
t::,-

--,-

0.405-0.425)

I

oj65

i1.i51i

110.29-10.801
0.060

I

0.'65
111.)8111

11.5241

II

-I

0.047-0.049
I
11.194-1.24510.024-0.028
(0.610-0.7111- - : TYP

0.285-0.315
17.239-8.0011

0.047-0.049

0.195-0.205

I

I

II

11.19'-1.2'511
TYP

0.095-0.105
-12.413-2.6671

____

I~~.52'1

I

,-

1

i~

14.953-5.2071 -

~-H"-I '-0-1

10.610-0.7111
TYP

I

,-

j

l'j

0.095-0.105
12.413-2.6671
0.195-0205
1•. 953-52071

'<:'

45°""'-

~I

0.373-0.377
- - (9.474-9,576) - -

0.065-0.075
-11.651-1.9051

~

,;o/'5=--.1~.,:::::::::

~

1

2

3

[[]] [[]] [[l]

12·24

I

I

0.405-0.'25

"'0

TO·202 (51, 55, 56)
TO·66 LEAD FORM, CROP AND TAB FORM
J45Z OPTION

0.095-0.105
0.095-0.105

-I

(2.413-2.6671
0.0195-0.0205

-

(2.41l-2.6671
0.0195-0.0205
_

o 110-0.ll0
(2.794-l.l021

-

J68Z OPTION

1 -

(0'4953_0'52071~ -

1

(0.495l-0.520lJ

D)

TO·202 (51,55,56)
TO·5 LEAD FORM FOR FLUSH MOUNT

-

0.110-0.190
(4.l18-4.8261 -

0.110-0.190
(4.l18-4.8261 -

n

~
D)

CQ

CD

o
c:::

_.
=
:::s

CD

tn

r--=:----'---~]I
0.580-0.590

0.065-0.095

' 'T"'

(1.651-2.41l1

I

1

II

~
l

0'0195ru:::-t
(0.4953-0.520lJ

1_0.l7o:=!
(9.l981

0.0195-0.0205

I

0.58010.010
(14.7310.2541

0.68010.010

(0.495l-0.52071
0.l60-0.l80

I~ (9.144-9.6521-1
0.240-0.260

n-

1r
I

(~:~ Ol-

j-

MIN
0.200
(5.0BOI
MIN

n rrI
0.360-0.380

I-I
T

I~ (9.144-9.6521-1
0.240-0.260

(6.096-6.6041

0.120-0.1l5

(6.096-6.6041

(l.04B-l.4291

0.113-0.117
(2.870-2.9721

I

I

1

0.12B-0.ll5
(3.251-l.4291

1

0.425

0.465
(11.611
REF

(1.5241

l

I

~.~

I

0.285-0.l15
(7.2l9-B.001 I

I

1

0.060
(1.5241

0.285-0.315
(7.239-8.001 I

I
0.095-0.105

-I1--

(2.41l-2.66lJ--1
0.195-0.205
(4.95l-5.20lJ

I

~I

-I

.

t

0.l7l-0.377
. ~ (9.474-9.5761 -

0.024-0.028
(0.610-0.7111 -

0.046-0.050
(1.168-1.2701

I

1\~LEAD
~f I

0.060
(1.5241

CENTER
0.095-0.105

CUTOFF

~I-I- ~

(2.41l-2.6671
0.195-0.205

(4.953-5.2071
.

~
0.065-0.075

~ (1.651-1.9051

12-25

I I I

L'

0.37510.005
(9.52510.1271

0.024-0.028
(0.610-0.7111
BEFORE
LEAD FINISH
0.046-0.050

0.065-0.075

(1.168-1.2701

(1.651-1.9051

oCI)
C
.-

=
o

TO·220 (57)
TO·5 LEAD FORM

J69Z OPTION

~.

0.050iO.002
O.110±O.Dl0

CI)
C')

0.395-0.410

11.210iO.051) - ,
0.180±0.005

(2.194'0.Z541

14'512iO'1211~

r~-I~

co

r--

'+"

~

~

O.151±O.ODZ _ O.2S0l0.Dl0

~--~--'t'---~-~13~.8=35~iO~.0~511 {6~50±0.2541

(.)

co

I

DIA

a..

0.34olu.Ol0

O.130±O.025
13.302±0.6351

"~FtI-

brr=rM=r.,j~~

j"'"

j II-I

~ -I~
-

TAPERED I'
2 SIDES

-."",

n,..

(3.8101

MAX

O.OSO
{1.2101-

0.032';~:5

rrI

.

_

-0.002

fo 381 +0.Z54)J
\.
-0.05)

10.813+0.1211
TVP

0.105~~:~:~

15.080'0.2541

.
O.100±D.Dl0

L

a.200!D.01D ___

Q.lou±a.01D

~

fz 661 +0.254)

(2.54D!O.254) ---

\.

TO·220 (57)
. TO·5 LEAD FORM FOR FLUSH MOUNT

-0.381

J6720PTION

D.050±O.OD2
O.11D!D.Ol0

0.395-0.410

1-~1

11. 210±0.05I1l
a.laOlD.OOS

12.194±0.2541

®
+

I

(4.572±O.127) - - .

0.1511.0,002

I
il.250±O.010

~~--~t'-·~13~.8~35~!~0.0=5~1I.16.350±0.2541
UIA

+-1----'--I--=b~

I t

0.340±0.010

TAPERED 1~
2 SIDES

l'

(8.636r2541

lJ~t

. 0'032,...
1211
10.813±0.
TVP
D.200±O.01O

II

n

1

.

15.080±0.2541a.10U±O.OlD
(2.540±0.2541

.',.,!!::

J

12\. 661 -0.381
+0.254)

12-26

1
A

~8

_,~ I~~ I
I----o~1

+0.010
0.015_0.002
fo J81 +0.254)
\'
-0.051

TO·220(57)
TO·66 LEAD FORM AND CROP

J48Z0PTION

0.050+0.002

0.110'0.010
0.395-0.410

I~-I

0

11.270.0.0511-1
0.180'0.005
14.572'0.127)-

12.794 '.0.254)

I

,-+---,--

I

0.150±0.002
13.835±0.0511
DIA

I

11.250 1 0.010

(635T254)~
0.340'0.010

0.050

~UlI '""'I--W
---'I

I

(1.270)
MAX
O.20D±D.Ol0 ___
(5.080±0.254)

I""""""
)

~~~~:iD

7

0

1

~

--~~w"-=-=.J~=====I====~I'''"r''

18.636L(_·2_54_)

0.050

~L

1

(1.270)
MAX

0.105 ~~:~:~

f2 667 +0.254)-

\.

12·27

-0.381

0.340
-(8.636)MIN

0.015~:~:~

fo\. 3B1 -0.051
+0.254)



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.6
Linearized                      : No
Create Date                     : 2016:04:02 12:59:15-08:00
Modify Date                     : 2017:06:19 16:04:01-07:00
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Metadata Date                   : 2017:06:19 16:04:01-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:7df09e90-e453-a449-ae91-158a9fb99bf4
Instance ID                     : uuid:69c3038f-9d0a-ea44-b288-31e2d3837c9b
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 560
EXIF Metadata provided by EXIF.tools

Navigation menu