1982_National_Transistors_Databook 1982 National Transistors Databook
User Manual: 1982_National_Transistors_Databook
Open the PDF directly: View PDF
.
Page Count: 560
| Download | |
| Open PDF In Browser | View PDF |
TRANSISTOR
DATA BOOK
NPN Transistors
PN P Transistors
Junction Field Effect Transistors
Selection Guides
Pro Electron Series
Consumer Series
NA/NB/NR Series
Process Characteristics
Double-Diffused Epitaxial Trans~stors
Process Characteristics
Power Transistors
Proc~ss Characteristic$ JFETs
JFET Applications
N~t~s
Appendices
NationalSemiconduclorCorporation
2900 Semiconductor Drive
Sarita C'lara. California 95051
Tel: (408) 737·5000·
TWX: (910)339·9240
National does not assume any responsibility for use of any circuitry described, no circliit patent licenses are implied and National reserves the right at any, ~1_':Ie without notieeta change said circuitry.
* aftar June 6, 1982, call (408) 721·5000
LIFE SUPPORT POLICY
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVALOFTHE PRESIDENT OF NATIONAL SEMICONDUCTOR
CORPORATION. As used herein:
1. Life support devices or systems are devices or·systems
which, (a) are intended for surgical implant into the
body, or (b) support or sustain life, and whose failure to
perform, when properly used in accordance with in·
structions for use provided in the labeling,can be rea·
sonably expected to result in a significant injury to the
user.
2. A critical component is any component of a life support
device or syste'm whose failure to perform can be rea·
sonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
The National Anthem®, Datachecker®, Maxi·ROM® and
TRI·STATE® are registered trademarks of National
Semiconductor Corp.
MICROBUS™, MICROWIReM, MICRO·DAC™, MST™,
NURAM™, p2CMOS™, Positalker™, QUIKLOOK™,
Rat™, Starlink™, Starplex™, Starplex II™, TRI.CODe M,
TRI·POLy™, )(MOSTM, ZSTAR™, 883BIRETS™,
883SIRETS™, and XPU™ are trademarks of National
Semiconductor Corp.
Abuseable™, BI·FET™ BI.FET IITM COPS™
QIGITALKER™, DNR™, E.Z.L1NK™, HEX3000™, ISeM:
© National Semiconductor Corporation
2900 Semlconduct~r Drive, Santa Clara, California 95051, (408) 737·5000ITWX: (910) 339·9240
National does not assume any responsibility for use of any Circuitry described; no circuit patent licenses are implied, and National reserves the right, at any
time without notice, to change said circuitry.
Manufactured under on8.or more of the follo.wing U.S. patents:
3083262,3189758,3231797,3303356,3317671, 3323071, 3381071, 3408542, 3421025, 3426423, 3440498, 3518750, 3519897, 3557431, 3560765, 3566218:
3571630,3575609,3579059,3593069,3597640, 3607469; 3617859, 3631312, 3633052, 3638131, 36480i'1, 3651565, 3693248.
2
Introduction
If you know the application
National Semiconductor has added many new transistors
and product families since publication of the last databook_ Many have already been vyidely acclaimed by users_
Turn to the selector guide section that begins on page
4-1 and select a potential process type_ Selector guides
as follows:
In addition to small signal and power bipolar and field
effect transistors that have been the mainstay of our catalog, there is a section for multiple field effect transistors_
More part numbers will be added as market needs expand_
Guide
FET Application .... _............ _. . . . . . . ..
RFSelector ..................... _.. _. _....
NPNGeneralPurposeAmplifiers ... _.. _......
NPN-RFAmplifier ..........................
PNPGeneral Purpose Amplifiers .... _.. _. _....
HighSpeedSwitches. _........... _.........
Power Transistors ..................•.......
To keep current on all new National transistors, please
contact your National sales representative or franchised
distributor and ask to be placed on the customer mailing
list.
HOW TO USE THIS CATALOG
Page
4-5
4-13
4-14
4-15
4-16
4-17
4-18
Then refer to the applicable process sheet, which will
give the process/chip performance data and a common
reference part type.
If you know the part/type number
Turn to the standard parts listing which begins on page
8 and find the desired part number_ The electrical
specifications page number will be shown_ The list also
identifies the process number from which that product
is selected and the particular package code in which it
is assembled_ Package codes are cross-referenced to
JEDEC code on page 12-14_
Or one can also refer to the Table of Contents, which is
organized by general applications.
To convert a metal can transistor to a molded epoxy type,
see page 18.
To convert a TO-105/TO-106 product type to a TO-92, see
page 19. To convert a TO-18/TO-5 metal can product type to
a TO-92/TO-237 molded epoxy type, see page 19 .
If performance data is required
Turn to the process data sheet indicated in the standard parts listing_ Process data sheets are indexed in
their appropriate sections by numerical order and
begin on page 8-1,9-1 or 10-1_
Refer to the Package Outlines section beginning on page
12-14 for complete physical dimensions_
3
Table of Contents
Introduction-How to Use This Catalog . . .... ... . . . . . .. . .. .... . . . . . . . . . . . . . .. . .
Transistor Standard Parts List. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .
BipolarTransistor and FET Dice ................... '.' . : . . . .. . . . . . . . . . . . . . . . . . .
Conversion o'f Bipolar Metal Can to Plastic .....................................
Conversion ofTO-105/TO-106 to TO-92 .........................................
Reliability and Quality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
8
17
18
19
21
Section 1-NPN Transistors
Saturated Switches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. RF Amps and Oscillators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .
Low Level Amps ............................. ,...............................
GeneraIPurposeAmpsandSwitches ............ , .............................
Medium Power. . . . . . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Power. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Darlington. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. . . . . . . ..
1-2
1-6
1-10
1-13
1-27
1-41
1-47
Section 2-PNP Transistors
Saturated Switches ..................................... , . . . . . . . . . . . . . . . . . .
Low Level Amps ................ ; .......................... , . . . .... . . . . . . . . .
General Purpose Amps and Switches. . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .
Medium Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Darlington. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
2-2
2-6
2-8
2-19
2-25
2-30
Section 3-Junction Field Effect Transistors
N-Channel J FETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
P-ChannelJFETs ..................................... .....................
3-2
3-14
Section 4-Selection Guides
Choose the Proper FET .....................................................
FET Process Comparison Curves. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .
FET Application Guide. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Important Parameters by Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
JFETCross ReferenceGuide ................................................
RF Selector Guide ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Transistors NPN GPA Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Transistors NPN RF Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Transistors PN P G PA Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Transistors for High Speed Switching ............ " . . . . . . . . . . . . . . . . . . . . . . . . . . ..
TO·237 Type Power Transistor Selection Guide ............. . . . . . . . . . . . . . . . . . . . ..
TO-202 Type Power Transistor Selection Guide ............. . . . . . . . . . . . . . . . . . . . ..
TO-126 Type Power Transistor Selection Guide ............. . . . . . . . . . . . . . . . . . . . ..
TO-220 Type Power Transistor Selection Guide ............. . . . . . . . . . . . . . . . . . . . ..
Power Process Selection Guide ....... ;................. . . . . . . . . . . . . . . . . . . . ..
Substitution Guide for Non-Listed Power PartTypes ........... :". . . . . . . . . . . . . . . . ..
4
4-2
4-3
4·5
4-7
4-8
4-13
4-14
4-15
4-16
4-17
4-18
4-20
4-22
4-23
4-25
4-26
Table of Contents (Continued)
Section 5-Pro Electron Series
Pro Electron Series (Bipolar) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Pro Eleotron Series (J FET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
5·2
5·37
Section 6-Consumer Series
Consumer Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . .
6·2
Section 7-NA/NB/NR Series
NA/N B Transistor Series Selection Guide ......................................
NA01 (N PN), NA02 (PNP) 800 mA Complementary Power Transistors ................
NA11 (NPN), NA12 (PNP) 1 Amp Complementary Power Transistors .................
NA21 (N PN), NA22 (PN P) 1.5 Alilp Complementary Power Transistors. . . . . . . . . . . . . . ..
NA31 (NPN), NA32(PNP)2AmpComplementary Power Transistors .................
NA41 (N PN), NA42 (PN P) 2.5 Amp Complementary Power Transistors . . . . . . . . . . . . . . ..
NA51 (N PN), NA52 (PNP) 3.5 Amp Complementary Power Transistors . . . . . . . . . . . . . . ..
NA61 (NPN), NA62(PNP) 4.5 Amp Complementary Power Transistors . . . . . . . . . . .. . . ..
NA71 (N PN), NA72 (PNP) 3.5 Amp Complementary Power Transistors . . . . . . . . . . . . . . ..
NB011, 012(NPN), NB021, 022 (PNP)30 mA General Purpose Transistors . . . . . . . . . . . . ..
NB013, 014(NPN), NB023, 024 (PNP)30 mA Low Noise Transistors. . . . . . . . . . . . . . . . . ..
NB111, 112, 113 (NPN), NB121, 122,123 (PNP) 100 mA General Purpose
Transistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
NB211, 212, 213 (NPN), NB221,222, 223 (PNP) 500 mA Medium Current Driver
Transistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
NB311, 312, 313 (NPN), NB321, 322, 323 (PNP) 1.5 Amp Complementary Power
Drivers ................................... '.' . . . . . . . . . . . . . . . . . . . . . . . . . . ..
NR041 (NPN) Low·Level Signal Switching Transistor . . . . . . . . . . . . . . . . . . . . . . . . .. . ...
N R421 (N PN) VH F Ampl ifier/FM Converter Transistor. . . . . . . . . . . . . . . . . . . . . . . . . . . ..
NR431 (NPN) HF Amplifier/FM Converter Transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
NR461 (NPN) Low·Noise RF/IFTransistor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . ..
7·2
7·4
7·8
7·12
7·16
7·20
7·24
7·28
7·32·
7·36
7·40
7·44
7·48
7·52
7·56
7·60
7·64
7·68
Section 8-Process Characteristics Double-Diffused
Epitaxial Transistors
Process02NPNSmaiiSignai ......................•....................... ,.
Process 04 N PN Small Signal ................................................
Process 05 NPN Darlington. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . .
Process 07 NPN Small Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . ..
Process 09 NPN Medium Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . ..
Process 12 NPN MediumPower ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . ..
Process 13 NPN Medium Power ............. : . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . ..
Process 14 NPN Medium Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . ..
Process 16 N PN High Voltage ................... ; . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 17 N PN High Voltage Video Output. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . ..
Process 18 NPN Medium Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. . . ..
Process 19 NPN Medium Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . ..
Process21 NPN HighSpeedSwitch ............ r ...............................
5
8·2
8·4
8·7
8·10
8·13
8·15
8·18
8·20
8·22
8·24
8·26
8·28
8·31
I'
Table of Contents (Continued)
Process 22 N PN Small Sig nal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8·35
Process 23 NPN Small Signal ................................................ 8-38
Process 25 N PN Memory Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8·41
Process 27 N PN Small Signal ................................................ 8-44
Process 37 NPN Medium Power. . . . . . . . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . . .. . . .. 8-47
Process 38 NPN Medium Power. . . . . . . . . . . . . . .. . . . . . . . ... . . . . . . . . . . . . . . . . .. .. 8-50
Process 39 NPN Medium Power. . . . . . . .. . . . . . .. .. . . . . . . . . . .. . . . . . . . . . . . . . . . .. 8·53
Process 40 N PN RF Amp . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8·56
Process 41 NPN UHFAmp/Mixer ............... . . .. . . . . . . . .. . . . . . . . . . . . . . . . .. 8·58
Process 42 NPN RF Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . ... 8·60
Process 43 NPN VHF/UHFOscillator .................................... '" .. .. 8-64
Process 44 NPN AGC-RF Amp ................................................. 8-67
Process45NPNAGC·IFAmp .............................................. :. 8-73
Process 46 NPN RF·IFAmp . . . . . . . . . . . .. . . . .. . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . .. 8-77
Process 47 NPN RF-IFAmp . . . . . . . . . . ... . . . . . .. . • . . . . . . . . . . . . . . . . . .. . . . .... .. 8-80
Process 48 NPN H ighVoltage Video Output. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. 8·84
Process 49 NPN RF Amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-87
Process61 PNP Darlington. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . .. 8-90
Process 62 PNP Small Signal ........ : ..................................... '. .. 8-91
Process 63 PNP Medium Power. . . .. . . . . . . . . . . .. . . . . . . .. . . .. . . . . . . . . . . . . . .. . .. 8-94
Process 64 PN PH igh Speed Switch ......... . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .. 8-97
Process 65 PN PH igh Speed Switch ... . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. 8-100
Process66PNPSmaIiSignal. ....................................... ; ........ 8·103
Process 67 PNP Medium Power. .............................................. 8-106
Process68 PNP Medium Power ............................................... 8-108
Process 70 PNPMemory Driver ............................................... 8-110
. Process71 PNPSmaIiSignal. ................................................ 8-113
Process74PNPHighVoitage ................................................ 8~115
Process 76 PN PH igh Voltage Video Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-117
Process 77 PNP Medium Power ............................................... 8-119
Process 78 PNP Medium Power ............................................... 8·122
Process 79 PNP Medium Power ............................................... 8-125
Section 9-Process Characteristics Power Transistors
Process 34 NPN Epitaxial Planar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .
Process 36 N PN Planar High Voltage Epitaxial .............................. '. . . . . .
Process 4A NPN Mesa Epitaxial . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Process4E NPN Mesa Epitaxial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . .. ..
Process4FNPN Mesa Epitaxial .......•......... .......... .... ..... ........ ...
Process 4H N PN Mesa Epitaxial . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process4J NPN Mesa Epitaxial Darlington ......................................
Process 4K N PN Mesa EpitaxialDarlington . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 4P N PN Planar Epitaxial ...............................................
Process 4Q N PN Planar Epitaxial ................' . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
, Process 4R N PN Planar Epitaxial ..............................................
Process5A PNP Mesa Epitaxial ......................... , ................... '.'
Process 5E PN P Mesa Epitaxial ...............................................
Process 5F PNP Mesa Epitaxial ...............................................
6
9·2
9·4
9·7
9-10
9·13
9-16
9-18
9·21
9-23
9·26'
9-28
9-30
9·33
9·36
Table of Contents (Continued)
Process 5J PNP Mesa Epitaxial Darlington. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 5K PN P Mesa Epitaxial Darlington ........................ .............
Process 5P PN P Planar Epitaxial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process5Q PNP Planar Epitaxial ..............................................
Process 5R PNP Planar Epitaxial ..............................................
9-39
9-42
9-44
9-47
9-49
Section 10-Process Characteristics JFETs
Process 50 N-Channel .... . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . ..
Process 51 N-Channel .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process52N-Channel ......................................................
Process 53 N-Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 55 N-Channel ......................................................
Process 58 N-Channel ......................................................
Process 83 N-Channel Monolithic Dual. ........................................
Process 84 N-Channel Monolithic Dual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 86 N-Channel Monolithic Dual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 87 N-Chan nel Analog Switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 88 P-Channel ......................................................
Process 89 P-Channel ......................................................
Process 90 N-Channel .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 92 N-Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 93,N-Channel Monolithic Dual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 94 N-Channel Monolithic Dual. ........ , ...............................
Process 95 N-Channel Monol ithic Dual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 96 N-Channel Monolithic Dual .........................................
Process 98 N-Channel Monolithic Dual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
10-2
10-5
10-7
10-9
10-11
10-13
10-15
10-17
10-19
10-20
10-22
10-24
10-26
10-28
10-30
10-32
10-34
10-36
10-38
-Section 11-JFET Applications Notes
FET Application Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Monolithic Dual FETs vs 2-Chip Dual FETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Why Use Cascode Dual FETs? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
SimpleVHFAnalogSwitches ................................................
Noise of Sources, ................................ ',' . . . . . . . . . . . . . . . . . . . . . . ..
The Noise Figure Fallacy ....................................................
Low Noise FETAmplifiers ...................................................
The Low Noise J FET-The Noise Problem Solver . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . ..
FETCircuitApplications ....................................................
A Novel FET MicropowerVoltage Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ..
A Linear Multiple Gain-Controlled Amplifier. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . ..
Binary/BCD Gain Programmed Amplifiers .... ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
FET Curve Tracer ........ " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
11-2
11-3
11-7
11-9
11-11
11-14
11-16
11-19
11-25
11-36
11-38
11-46
11-49
Section 12-Appendices
Transistor Glossary of Symbols .. : .................... , . . . . . . . . . . . . . . . . . . . . . .. 12-2
JFETGlossaryofSymbols. . . . .. . . . .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. 12-9
NSCPackageCodetoJEDECCode ........................................... 12-14
Package Outlines .......................................................... 12-14
7
Transistor Standard Parts List
Device
Page
Process Pkg
DE!vice
Page
2N2712
2N2714
2N2857
2N2890
2N2891
2N2894
2N2894A
2N2897
2N2904
2N2904A
2N2905
2N2905A
2N2906
2N2906A
2N2907
2N2907A
2N2923
2N2924
2N2925
2N2926
2N3009
2N3011
2N3012
2N3013
2N3015
2N3019
2N3020
2N3053
2N3070
2N3071
2N3072
2N3073
2N3107
2N3108
2N3109
2N3110
2N3115
2N3116
2N3117
2N3120
2N3121
2N3133
2N3134
2N3135
2N3136
2N3209
2N3244
2N3245
2N3246
2N3248
2N3249
2N3250
2N3251
2N3252
2N3253
2N3299
2N3300
2N3301
2N3302
2N3304
2N3329
2N3330
2N3331
2N3332
1-25
1-25
1-6
1-31
1-32
2-2
2-2
1-19
2-8
2-8
2-8
2-8
2-8
2-8
2-8
2-9
1-14
1-14
1-14
1-14
1-4
1-2
2-2
1-4
1-4
1-28
1-28
1-28
3-7
3-7
2-9
2-9
1-28
1-28·
1-29
1-29
1-20
1-20
1-10
2-9
2-9
2-9
2-9
2-9
2-9
2-2
2-4
2-4
1-10
2-2
2-2
2-14
2-14
1-4
1-4
1-20
1,20
1-20
1-20
2:3
3-15
3-15
3-15
3-15
Process Pkg
Device
Page
Process Pkg
,.
2N696
2N697
2N699
2N706
2N708
2N718
2[':1718A
2N722
2N743
2N744
2N753
2N760
2N760A
2N8;34
2N869
2N869A
2N915
2N916
2N9i7
2N!lHi
2N929
2N929A
2N930
2N956
2N995
2N995A
2N1132
2N1420
2N1566
2N1613
2N1711
2N2017
2N2102
2N21Q2.
2N2192A
2N2193
2N2193A
2N2195
2N2195A
2N2218 .
2N2218A
2N2219
2N2219A
2N2221
2N2221A
2N2222
2N2222A
2N2243
2N2243A
2N2270
2N2369
2N2369A
2Ng484
2N2509
2N2510
2N2511
2N2586
2N2ElO4
2N2605
2N2608
2N2609
2N2657
2N2658
2N2696
1-18
1-18
1-27
1-2
1-3
1-18
1-18
2-8
1-2
1-2
1-2
1-10
1-10
1-2
2-2
2-2
1-23
1-23
1-7
1-7
1-10
1-10
1-10
1-18
2-2
2-2
2-8
1-18
1-18
1-27
1-27
1-27
1-27
1-27
1-27
1-27
1-28
1-28
1-28
1-18
1-18
1-19
1-19
1-19
1-19
1-19
1-19
1-28
1-28
1-28
1-2
1-2
1-10
1-10
1-10
i-tO
1-10
2-6
2-6
3-15
3-15
1-31 .
1-31
2-8
19
19
12
21
22
19
19
63
21
21
21
07
07
21
64
64
23
23
43
43
07
07
07
19
64
64
63
19
19
12
12
12
12
12
12
.12
12
12
12
19
19
19
19
19
19
19
19
12
12
12
21
21
07
07
07
07
07
62
62
89
88
34
34
63
10
10
10
18
18
02
02
02
18
18
18
02
02
18
18
18
02
02
25
25
02
02
02
02
18
18
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
02
02
02
02
10
10
10
18
18
02
02
02
02
02
06
06
11
11
10
10
02
8
27
27
42
34
34
64
64
19
63
63
63
63
63
63
63
63
04
04
04
04
22
21
64
22
25
12
12
12
52
52
63
63
12
12
12
14
19
19
07
63
63
63
63
63
63
64
70
70
07
64
.64
66
66
25
25
19
19
19
19
65
89
89
89
89
94
94
25
10
10
18
18
02
10
10
10
10
02
02
02
02
94
94
. 94
94
18
18
18
18
17
10
10
10
02
02
10
10
10
10
10
10
02
02
02
02
02
02
02
02
02
18
17
17
02
18
18
02
02
17
17
10
10
02
02
18
23
23
23
23
2N3368
2N3369
2N3370
2N3390
2N3391
2N3391A
2N3392
.2N3393
2N3394
2N3395
2N3396
2N3397
2N3398
2N3414
2N3415
2N3416
2N3417
2N3440
2N3444
2N3451
2N3458
2N3459
2N3460
2N3467
2N3468
2N3478
2N3502
2N3503
2N3504
2N3505
2N3545
2N3546
2N3547
2N3548
2N3549.
2N3550
2N3563
2N3564
2N3565
2N3566
2N3567
2N3568
2N3569
2N3576
2N3600
2N3605
2N3606
2N3607
2N3638
2N3638A
2N3639
2N3640
2N3641
2N3642
·2N3643
2N3644
2N3645
2N3646
·2N3662
2N3663
2N3665
2N36~6
2N3678
2N3684
3-7
3-7
3-7
1-14
1-14
1-14
1-14
1-14
1-25
1-14
1-14
1-14
1-15
1-20
1-15
1-15
1-15
1-32
1-4
2-3
3-7
;3-7
3-7
2-4
2"5
1-6
2-9
2-10
2-10
2-10
2-2
2-3
2-6
2-6
2-6
2-6
1-7
1-7
1-11
1-30
1-30
1-29
1-3·0
2-3
1-6
1-2
1-2
1-2
2-10
2-10
2-3
2-3
1-20
1-20
1-20
2-10
2-10
1-4
1-7
1-7
1-29
1-29
1-20
3-7
52
52
52
04
04
04
04
04
27
04
04
04
04
19
04
04
04
36
25
65
52
52
52
70
70
42
63
- 63
63
63
64
64
62
62
62
62
43
43
07
13
13
12
13
64
42
21
21
21
63
63
65
65
19
19
19
63
63
22
43
43
12
12
19
52
02
02
02
94
94
94
94
94
94
94
94
94
94
94
94
94
94
10
17
18
02
02
02
17
17
25
10
10
02
02
18
18
02
02
02
02
92
92
92
92
92
92
92
18
25
94
94
94
92
92
92
92
92
92
92
92
92
92
94
94
10
10
10
25
Transistor Standard Parts List (Continued)
Device
2N3685
2N3686
2N3687
2N3691
2N3692
2N3693
2N3694
2N3700
2N3702
2N3703
2N3704
2N3705
2N3706
2N3707
2N3708
2N3709
2N3710
2N3711
2N3721
2N3724
2N3724A
2N3725
2N3725A
2N3742
2N3794
2N3799
2N3819
2N3820
2N3821
2N3822
2N3823
2N3824
2N3825
2N3827
2N3858
2N3858A
2N3859
2N3859A
2N3860
2N3877
2N3877A
2N3900
2N3900A
2N3901
2N3903
2N3904
2N3905
2N3906
2N3921
2N3922
2N3932
2N3933
2N3934
2N3935
2N3945
2N3946
2N3947
2N3954
2N3954A
2N3955
2N3955A
2N3956
2N3957
2N3958
Page
3-7
3-7
3-7
1-23
1-23
1-25
1-25
1-29
2-10
2-10
1-16
1-16
1-16
1-11
1-11
1-11
1-11
1-11
1-25
1-4
1-4
1-4
1-5
1-38
1-16
2-6
3-4
3-15
3-7
3-7
3-4
3-2
1-7
1-25
1-2.5
1-11
1-26
1-11
1-26
1-11
1-11
1-15
1-11
1-11
1-23
1-23
2'14
2-15
3-10
3-10
1-6
1-6
3-10
3-10
1-29
1-23
1-24
3-10
3-10
3-10
3-10
3-10
3-10
3-10
Process Pkg
52
52
52
23
23
27
27
12
63
63
13
13
13
07
07
07
07
07
27
25
25
25
25
48
13
62
50
89
55
55
50
55
43
27
27
07
27
07
27
07
07
04
07
07
23
23
66
66
83
83
42
42
83
83
12
23
23
83
83
83
83
83
83
83
25
25
25
92
92
92
92
02
94
94
94
94
94
94
94
94
94
94
94
17
17
17
17
10
94
02
94
94
25
25
29
25
94
94
94
94
94
94
94
94
94
94
94
94
92
92
92
92
12
12
25
25
12
12
10
02
02
12
12
12
12
12
12
12
Device
Page
2N3966
2N3967
2N3967A
2N3968
2N3968A
2N3969
2N3969A
2N3970
2N3971
2N3972
2N4013
2N4014
2N4030
2N4031
2N4032
2N4033
2N4036
2N4037
2N4047
2N4058
2N4059
2N4061
2N4062
2N4082
2N4083
2N4084
2N4085
2N4091
2N4092
2N4093
2N4117
2N4117A
2N4118
2N4118A
2N4119
2N4119A
2N4121
2N4122
2N4123
2N4124
2N4125
2N4126
2N4134
2N4135
2N4140
2N4141
2N4142
2N4143
2N4208
2N4209
2N4220
2N4220A.
2N4221
2N4221A
2N4222
2N4222A
2N4223
2N4224
2N4237
2N4248
2N4249
2N4250
2N4250A
2N4258
3-2
3-7
3-7
3-7
3-7
3-7
3-7
3-2
3-2
3-2
1-5
1-5
2-19
2-19
2-19
2-19
2-19
2-19
1-5
2-6
2-6
2-6
2-6
3-10
3-10
3-10
3-10
3-2
3-2
3-2
3-6
3-6
3-6
3-6
3-6
3-6
2-15
2-15
1-24
1-24
2-15
2-15
1-8
1-8
1-20
1-21
2-10
2-10
2-3
2-3
3-7
3-7
3-7
3-7
3-7
3-7
3-4
3-4
1-30
2-6
2-6
2-6
2-7
2-3
9
Process Pkg
Device
29
25
25
25
25
25
25
02
02
02
02
02
10
10
10
10
10
10
17
94
94
94
94
12
12
12
12
02
02
02
25
25
25
25
25
25
92
92
92
92
92
92
25
25
92
92
92
92
18
18
25
25
25
25
25
25
29
29
10
92
92
92
92
92
2N4258A
2N4259
2N4274
2N4275
2N4286
2N4287
2N4288
2N4289
2N4290
2N4291
2N4292
2N4293
2N4294
2N4295
2N4314
2N4338
2N4339
2N4340
2N4341
2N4354
2f'14355
2N4356
2N4381
2N4384
2N4386
2N4391
2N4392
2N4393
2N4400
2N4401
2N4402
2N4403
2N4409
2N4410
2N4416
2N4416A
2N4424
2N4856
2N4856A
2N4857
2N4857A
2N4858
2N4858A
2N4859
2N4859A
2N4860
2N4860A
2N4861
2N4861A
2N4916
2N4917
2N4918
2N4919
2N4920
2N4921
2N4922
2N4923
2N4924
2N4926
2N4927
2N4944
2N4945
2N4946
2N495i
50
55
55
55
55
55
55
51
51
51
25
25
67
67
67
67
67
67
25
62
62
62
62
83
83
83
83
51
51
51
53
53
53
53
53
53
66
66
23
23
66
66
44
44
19
19
63
63
65
65
55
55
55
55
55
55
50
50
14
62
62
62
62
65
Page
2-3
1-6
1-2
1-2
1-11
1-11
2-7
2-7
2-10
2-11
1-7
1-7
1-2
1-2
2-19
3-7
3-7
3-7
3-7
2-17
2-17
2-17
3-15
1-11
1-11
3-2
3-2
3-2, 3-5, 3-6
1-16
1-16
2-11
2-11
1-11
1-12
3-4
3-4
1-15
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-2
2-15
2-15
2-26
2-26
2-26
1-44
1-45
1-45
1-29
1-38
1-38
1-16
1-29
1-16
1-16
Process Pkg
65
42
21
21
07
07
62
62
63
63
43
43
21
21
67
52
52
52
52
67
67
67
89
07
07
51
51
51
13
13
63
63
07
07
50
50
04
51
51
51
51
51
51
51
51
51
51
51
51
66
66
5F
5F
5F
4H
4H
4H
12
48
48
13
12
13
13
92
25
92
92
94
94
94
94
94
94
94
94
94
94
10
02
02
02
02
92
92
92
11
02
02
02
02
02
92
92
92
.92
92
92
29
29
94
02
02
02
02
02
02
02
02
02
02
02
02
92
92
58
58
58
58
58
58
10
10
10
92
92
92
94
Transistor Standard Parts List (Continued)
Device
2N4952
2N4953
2N4954
2N4964
2N4965
2N4966
2N4967
2N4968
2N4969
2N4970
2N4971
2N4972
2N5018
2N5019
2N5020
2N5021
2N5022
2N5023
2N5030
2N5045
2N5046
2N5047
2N5056
2N5057
2N5078
2N5086
2N5087
2N5088
2N5089
2N5103
2N5104
2N5105
2N5114
2N5115
2N5116
2N5127
2N5128
2N5129
2N5130
2N5131
2N5132
2N5133
2N5134
2N5135
2N5136
2N5137
2N5138
2N5139
2N5140
2N5142
2N5143
2N5148
2N5150
2N5172
2N5179
2N5180
2N5189
2N5190
2N5191
2N5192
2N5193
2N5194
2N5195
2N5196
Page
1-16
1-16
1-16
2-7
2-7
1-12
1-12
1-12
1-21
1-21
2-11
2-11
3-14
3-14
3-15
3-15
2-5
2-5
1-2
3-10
3-10
3-10
2-3
2-3
3-4
2-7
2-7
1-12
1-12
3-7
3-7
3-8
3-14
3-14
3-14
1-26
1-21
1-21
1-7
1-26
1-26
1-12
1-2
1-21
1-21
1-21
2-15
2-15
2-3
2-11
2-11
1-32
1-32
1-15
1-6
1-6
1-6
1-43
1-43
1-43
2-26
2-26
2-26
3-10
Process Pkg
13
13
13
62
62
07
07
07
19
19
63
63
88
88
89
89
70
70
21
83
83
83
64
64
50
62
62
07
07
50
50
50
88
88
88
27
19
19
43
27
27
07
21
19
19
19
66
66
65
63
63
34
34
04
42
42
25
4E
,4E
4E
5E
5E
5E
83
94
94
94
92
92
92
92
92
92
92
92
92
11
11
11
11
17
17
94
12
12
12
18
18
29
92
92
92
92
29
29
29
11
11
11
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
10
10
94
25
25
17
58
58
58
58
58
58
12
Device
2N5197
2N5198
2N5199
2N5209
2N5210
2N5219
2N5220
2N5221
2N5223
2N5224
2N5225
2N5226
2N5227
2N5232
2N5232A
2N5245
2N5246
2N5247
2N5248
2N5294
2N5296
2N5298
2N5305
2N5306
2N5307
2N5308
2N5336
2N5338
2N5354
2N5355
2N5358
2N5359
2N5360
2N5361
2N5362
2N5363
2N5364
2N5365
2N5366
2N5397
2N5398
2N5400
2N5401
2N5432
2N5433
2N5434
2N5447
2N5448
2N5449
2N5452
2N5453
2N5454
2N5457
2N5458
2N5459
2N5460
2N5461
2N5462
2N5484
2N5485
2N5486
2N5490
2N5492
2N5494
Page
3-10
3-10
3-10
1-12
1-12
1-26
1-16
2-11
1-26
1-2
1-16
2-11
2-7
1-12
1-12
3-4
3-4
3-4
3-4
1-43
1-43
1-43
1-47
1-47
1-47
1-47
1-32
1-32
2-11
2-11
3-8
3-8
3-8
3-8
3-8
3-8
3-8
2-11
2-11
3-4
3-4
2-18
2-18
3-2
3-2
3-2
2-12
2-17
1-35
3-10
3-10
3-10
3-8
3-8
3-8
3-15
3-15
3-15
3-4
3-4
3-4
1-43
1-43
1-43
10
Process Pkg
83
83
83
07
07
27
13
63
27
21
13
63
62
07
07
90
90
90
50
4E
4E
4E
05
05
05
05
34
34
63
63
55
55
55
55
55
55
55
63
63
90
90
74
74
58
58
58
63
67
38
83
83
83
55
55
55
89
89
89
50
50
50
4E
4E
4E
12
12
12
92
92
92
92
92
92
92
92
92
92
94
94
97
97
97
94
57
57
57
94
94
94
94
10
10
94
94
25
25
25
25
25
25
25
94
94
29
29
92
92
07
07
07
97
97
97
12
12
12
92
92
92
91
91
91
92
92
92
57
57
57
Device
2N5496
2N5515
2N5516
2N5517
2N5518
2N5519
2N5520
2N5521
2N5522
2N5523
2N5524
2N5545
2N5546
2N5547
2N5550
2N5551
2N5555
2N5556
2N5557
2N5558
2N5561
2N5562
2N5563
2N5564
2N5565
2N5566
2N5638
2N5639
2N5640
2N5653
2N5654
2N5655
2N5656
2N5657
2N5668
2N5669
2N5670
2N5769
2N5770
2N5771
2N5772
2N5817
2N5830
2N5902
2N5903
2N5904
2N5905
2N5906
2N5907
2N5908
2N5909
2N5910
2N5911
2N5912
2N5949
2N5950
2N5951
2N5952
2N5953
2N6034
2N6035
2N6036
2N6037
2N6038
Page
1-43
3-11
3-11
3-11
3-11
3-11
3-11
3-11
3-11
3-11
3-11
3-10
3-10
3-10
1-17
1-17
3-2
3-8
3-8
3-8
3-10
3-10
3-10
3-12
3-12
3-12
3-2
3-2
3-2
3-3
3-3
1-41
1-41
1-41
3-4
3-4
3-4
1-3
1-7
2-4
1-3
2-12
1-17
3-13
3-13
3-13
3-13
3-13
3-13
3-13
3-13
2-4
3-12
3-12
3-4
3-4
3-4
3-4
3-4
2-30
2-30
2-30
1-49
1-49
Process Pkg
4E
95
95
95
95
95
95
95
95
95
95
83
83
83
16
16
50
50
50
50
98
98
98
96
96
96
51
51
51
51
51
36
36
36
50
50
50
21
43
65
22
63
16
84
84
84
84
84
84
84
84
65
93
93
50
50
50
50
50
5J
5J
5J
4J
4J
57
12
12
12
12
12
12
12
12
12
12
12
12
12
92
92
92
29
29
29
12
12
12
12
12
92
92
92
92
92
92
58
58
58
92
92
92
92
92
92
92
97
92
24
24
24
24
24
24
24
24
92
24
24
97
97
97
97
97
58
58
58
58
58
Transistor Standard Parts List (Continued)
Device
2N6039
2N6040
2N6041
2N6042
2N6043
2N6044
2N6045
2N6076
2N6099
2N6101
2N6103
2N6107
2N6109
2N6110
2N6111
2N6121
2N6122
2N6123
2N6124
2N6125
2N6126
2N6129
2N6130
2N6131
2N6132
2N6133
2N6134
2N6288
2N6290
2N6292
2N6386
2N6387
2N6388
2N6426
2N6427
2N6473
2N6474
2N6475
2N6476
2N6483
2N6484
2N6485
2N6486
2N6487
2N6488
2N6489
2N6490
2N6491
2N6548
2N6549
2N6551
2N6552
2N6553
2N6554
2N6555
2N6556
2N6591
2N6592
2N6593
2N6705
2N6706
2N6707
2N6708
Page
1-49
2-30
2-30
2-31
1-49
1-49
1-49
2-18
1-42
1-42
1-42
2-26
2-26
2-26
2-26
1-43
1-43
1-43
2-26
2-26
2-26
1-43
1-43
1-43
2-26
2-26
2-26
1-43
1-43
1-43
1-49
1-49
1-49
1-47"
1-47
1-44
1-44
2-27
2-27
3-11
3-11
3-11
1-42
1-42
1-42
2-25
2-25
2-25
1-47
1-47
1-35
1-35
1-37
2-21
2-21
2-21
1-32
1-32
1-32
1-35
1-35
1-35
2-21
Process Pkg
4J
5J
5J
5K
4K
4K
4K
71
4A
4A
4A
5E
5E
5E
5E
4E
4E
4E
5E
5E
5E
4E
4E
4E
5E
5E
5E
4E
4E
4E
4J
4K
4K
05
05
4F
4F
5F
5F
95
95
95
4A
4A
4A
5A
5A
5A
05
05
38
38
39
78
78
78
36
36
36
38
38
38
78
58
57
57
57
57
57
57
94
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
92
92
57
57
57
57
12
12
12
57
57
57
57
57
57
55
55
55
55
55
55
55
55
55
55
55
90
90
90
90
Device
2N6709
2N6710
2N6711
2N6712
2N6713
2N6714
2N6715
2N6716
2N6717
2N6718
2N6719
2N6720
2N6721
2N6722
2N6723
2N6724
2N6725
2N6726
2N6727
2N6728
2N6729
2N6730
2N6731
2N6732
2N6733
2N6734
2N6735
2N6737
40235
40236
40237
40238
40239
40240
40242
40314
40319
40321
92PE37A
92PE37B
92PE37C
92PE77A
92PE77B
92PE77C
92PE487
92PE488
92PE489
92PU01
92PU01A
92PU05
92PU06
92PU07
92PU10
92PU36
92PU36A
92PU36B
92PU36C
92PU45
92PU45A
92PU51
92PU51A
92PU55
92PU56
Page
2-21
2-21
1-38
1-38
1-38
1-34
1-35
1-35
1-37
1-37
1-38
1-32
1-32
1-32
1-32
1-47
1-47
2-20
2-20
2-23
2-23
2-23
1-37
2-23
1-38
1-39
1-39
1-6
1-6
1-6
1-6
1-6
1-6
1-7
1-7
1-29
2-19
1-39
1-35
1-35
1-35
2-21
2-21
2-21
1-39
1-39
1-39
1-34
1-34
1-37
1-37
1-37
1-39
1-33
1-33
1-33
1-33
1-47
1-47
2-20
2-20
2-24
2-24
"All suffixes
11
Process Pkg
78
78
48
48
48
37
38
38
39
39
48
36
36
36
36
05
05
77
77
79
79
79
39
79
48
48
48
25
42
42
42
42
42
42
42
12
67
48
38
38
38
78
78
78
48
48
48
37
37
39
39
39
48
36
36
36
36
05
05
77
77
79
79
90
90
90
90
90
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
25
25
25
25
25
25
25
10
10
10
90
90
90
90
90
90
90
90
90
90
90
90
90
91
91
91
91
91
91
91
91
91
91
91
91
Device
Page
92PU57
92PU100
92PU200
92PU391
92PU392
92PU393
AM1000H
AM1001H
AM1002H
BC10r
BC108*
BC109"
BC140"
BC141 *
BC143
BC146"
BC160"
BC161"
BC16r
BC168"
BC169"
BC177"
BC178"
BC179"
BC182"
BC183"
BC184"
BC204
BC207
BC212"
BC213"
BC214"
BC23r
BC238"
BC239"
BC261 "
BC262"
BC263"
BC264"
BC30r
BC308"
BC309"
BC31r
BC318"
BC319"
BC327"
BC328"
BC337*
BC338"
BC415"
BC485"
BC547*
BC548"
BC549"
BC550"
BC557"
BC558"
BC559"
BC560"
BCX58"
BCX59"
BCX78"
BCX79"
2-24
1-37
2-24
1-39
1-39
1-39
10-21
10-21
10-21
5-2
5-2
5-2
5-2
5-2
5-3
5-3
5-3
5-3
5-3
5-3
5-4
5-4
5-4
5-4
5-5
5-5
5-6
5-6
5-6
5-6
5-7
5-8
5-8
5-9
5-9
5-9
5-10
5-10
5-37
5-10
5-10
5-11
5-11
5-11
5-12
5-12
5-12
5-12
5-13
5-13
5-13
5-13
5-14
5-14
5-14
5-14
5-15
5-15
5-15
5-16
5-16
5-17
5-17
Process Pkg
79
39
79
48
48
48
87
87
87
04
04
04
14
14
61
61
67
67
04
04
04
71
71
71
04
04
04
71
04
63
63
63
04
04
04
71
71
71
50
71
71
71
04
04
04
67
67
38
38
71
38
04
04
04
04
71
71
71
71
04
04
71
71
91
91
91
91
91
91
25
25
25
02
02
02
10
10
10
10
10
10
94
94
94
02
02
02
97
97
97
92
92
97
97
97
97
97
97
02
02
02
97
97
97
97
92
92
92
97
97
97
97
97
97
97
97
97
97
97
97
97
97
97
97
97
97
Transistor Standard Parts List (Continued)
,
Device
Page
BCY56
BCY57
BCY58*
BCY59*
BCY70
BCY71
BCY71A
BCY72
B0135*
B0136*
B0137*
B0138*,
B0139*'
B0140*
B0157
B0158
B0159
B0185
B0186
B0187
B0188
B0189
B0190
B0201
B0202
B0203
B0204
B0220
B0221
B0222
B0223
B0224
B0225
B0233
B0234
B0235
B0236
B0237
BD238
B0239*
BD240*
B0241 *
B0242*
B0243*
B0244*
B0344
BD345 '
BD346
B0347
B0348
BD349
B0370*
B0371*
B0372*
B0373*
B0375*
B0376*
B0377*
B0378*
80379*
BD380*
BD433
B0434
5·18
5·18
5·18
5·18
5·19
5·19
5:19
5·19
5·19
5·19
5·19
5·20
5·20
5·20
5·20
5·20
5·20
5·20
5·20
5·20
5·20,
5·20
5·20
5·20
5·20
5·21
5·21
5·21
5·21
5·21
5·21
5·21
r
5·21
5·21
5·21
5·21
5·21
5·21
' 5·21
5'21
5·21
5·22
5·22
5·22
5·22
5·22
5·23
5·23
5·23
5·23
5·23
5·23
5·24
5·24
5·25
5·26
5·26
5·27
5·27
5·27 '
5·28
5·28
5:28
Process Pkg
04
04
04
04
71
71
71
71
37
77
38
78
39
79
36
36
36
4F
5F
4F
5F
4F
5F
4A
5A
4A
5A
4F
4F
4F
5F
5F
5F
4F
5F
4F
5F
4F
5F
4F
5F
4F
5E
4A
5A
78
38
5A
4A
79
39
78/79
38/39
78/79
38/39
38
78
38
78
39
79
4F
5F
02
02
02
02
02
02
02
02,
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
57
57
57
57
57
57
57
57
57
57
58
58
58
58
58
58
57
57
57
57
57
57
58
58
57
57
58
58
91
91
90
90
58
58
58
58
58
58
58
58
Device
B0435
B0436
B0437
B0438
B0439
B0440
B0441
B0442
B0533
B0534
B0535
B0536 ,
B0537
B0538
B0633
B0634
B0635
B0636
B0637
B0638
B0675*
B0676*
B0677*
B0678*
B0679*
B0680*
B0681
B0682
B0733
B0734
B0735
B0736
B0737
B0738
B0795
B0796
B0797
.BD798
B0799
B0800
B0801
B0802
B0895*
B0896*
B0897*
B0898*
BD899*
B 0900 *
B0901
BD902
BOX33*
BOX34*
BF167
BF180
BF181
BF194
BF195
BF196
BF197
BF198
BF199
BF200
BF233*
Page
5·28
5·28
5·28
5·28
5·28
5·29
5·29
5·29
5·29
5·29
5·29
5·29
5·29
5·29
5·29
5·29'
5·29
5·30
.5·30
5·30
5·30
5·30
5·30
5·30
5·30
5·30
5·30
5·30
5·30
5·30
5·30
5·30
5·30
5·30
5·30
5·30
5·30
5·31
5·31
5·31
5·31
5·31
5·31
5·31
5·31
5·31
5·31
5·31
5·31
5·31
5·31
5·31
5·32
5·32
5·32
5·32
5·32
5·32
5·32
5·32
5·32
5·32
5·32
*AII suffixes
12
Process Pkg
4F
5F
4F
5F
4E
5E
4E
5E
4E
5E
4E
5E
4E
5E
4F
5F
4F
5F
4F
5F
4J
5J
4J
5J
4J
5J
4J
5J
4F
5E
4F
5E
4F
5E
4E
5E
4E
5E
4E
5E
4E
5E
4K
5K
4K
5K
4K
5K
4K
5K
4K
5K
45
41
41
46
46
46
47
45
47
41
49
58
58
58
58
58
58
58
58
57
57
57
57
57
57
57
57
57
57
57
57
58
58
58
58
58
58
58
58
57
57
57
57
57
57
57
57
57
. 57
57
57
57
57
57
57
57.
57
57
57
57
57
57
57
28
25
25
98
98
98
98
98
98
25
' 96
Device
Page
Process .Pkg
BF237 ,
BF238
BF240
BF241
BF244* .
BF245*
BF246*
BF247*
BF254
BF255
BF256*
BF257
BF258
BF259
BF457
BF458
BF459
BFX13
BFX29
BFX30
BFX37
BFX65
BFX84
BFX85
BFX86
BFX87
BFX88
BFY39*
BFY50
BFY51
BFY52
BFY56
BFY72
BFY76
BSX21
BSX45*
BSX46 *
BSX48
BSX88
BSY38
BSY39
BSY51
BSY52
BSY53
BSY54
BSY95A
CS9011*
CS9012*
CS9013*
CS9014*
CS9015*
CS9016*
CS9018*
D40C*
0400*
040E*
040K* '
040N*
040P*
D41D*
041E*
041K*
042C*
5·32
5·32
5·32
5·32
5·37
5·37
5·37
5·37
5·33
5·33
5·37
5·33
5·33
5·33
5·33
5·33
5·33
5·33
5·33
5·33
5·33
5·33
5·34
5·34
5·34
5·34
5·34
5·34
5·34
5·34
5·34
5·34
5·35
5·35
5·35
5·35
5·35
5·35
5·35
5·35
5·35
5·35
5·35
5·35
5·36
5~36
6·2
6·2
6·2
6·2
6·2
6·2
6·2
1·47
1·36
1·36
1·48
1·39
1·33
2·22
2·22
2·30
1·34
47
98
47
98
47
98
47
98
94
50
50
97
51 . 94
51
'97
46
98
46
98
97
50
48
10
48
.10
48
10
48
58
48
58
48
58
66
02
63 . 10
63'
10
62
02
62
02
12
10
12
10
14
10
10,
63
10
63
23
02
14
10
14
10
14
10
14
10
19
04
07
02
07
02
14
10
12
10
19
02
21
18
21
18
21
18
19
10
19
10
19
10
19
10
21
92
27
92
68
92
09
92
04
92
71'
92
46
92
43
92
05
55
38
55
38
55
55
05
48
55
36
55
78
55
78
55
61
55
4P
56
Transistor Standard Parts List (Continued)
Device
D43C*
D44C*
D44W
D45C*
D45W
DH3467CD
DH3467CN
DH3468CD
DH3468CN
DH3724CD
DH3724CN
DH3725CD
DH3725CN
ED1402*
ED1502*
ED1602*
ED1702*
ED1802*
J108
J109
J 110
J111
J112
J113
J114
J174
J175
J176
J177
J201
J202
J203
J210
J211
J212
J270
J271
J300
J304
J305
J308
J309
J310
J401
J402
J403
J404
J405
J406
J410
J411
J412
MJE170
MJE171
MJE172
MJE180
MJE181
MJE182
MJE200
MJE210
MJE220
MJE221
MJE222
Page
2-22,2-27
1-45
1-46
2-28
2-29
2-5
2·5
2·5
2-5
1-5
1-5
1-5
1-5
6·2
6·2
6·2
6·2
6·2
3·3
3·3
3-3
3·3
3·3
3·3
3·3
3-14
3·14
3-14
3-14
3-8
3·8
3·8
3·8
3·8
3·8
3-15
3-15
3·4
3-4
3-4
3·4
3-4
3-4
3-10
3-10
3-10
3·10
3·10
3-10
3·10
3-11
3·11
2·25
2·25
2-25
1-42
1-42
1-42
1·45
2·29
1-45
1·45
1-45
Process Pkg
5P
4P
40
5P
50
70
70
70
70
25
25
25
25
07
46
62
37
77
58
58
58
51
51
51
90
88
88
88
88
52
52
52
90
90
90
88
88
90
90
50
50
92
92
92
98
98
98
98
98
83
83
83
77
78
79
37
38
39
4R
5R
4P
4P
4P
56
57
57
57
57
40
39
40
39
40
39
40
39
92
92
92
92
92
92
92
92
92
92
92
92
94
94
94
94
92
92
92
92
92
92
94
94
92
92
92
92
92
92
92
60
60
60
60
60
60
60
60
58
58
58
58
58
58
58
58
58
58
58
Device
Page
MJE223
MJE224
MJE225
MJE230
MJE231
MJE232
MJE233
MJE234
MJE235
MJE240
MJE241
MJE242
MJE243
MJE244
MJE250
MJE251
MJE252
MJE253
MJE254
MJE340
MJE341
MJE344
MJE370
MJE371
MJE520
MJE521
MJE700
MJE701
MJE702
MJE703
MJE710
MJE711
MJE712
MJE720
MJE721
MJE722
MJE800
MJE801
MJE802
MJE803
MJE280H
MJE290H
MJE2955T
MJE3055T
MJE3439
MJE3440
MJE5190J
MJE5191J
MJE5192J
MPF102
MPF103
MPF104
MPF105
MPF106
MPF107
MPF108
MPF109*
MPF110
MPF111
MPF112
MPF256
MPF820
MP03725
1-46
1·46
1-46
2-28
2·28
2·28
2·28
2-29
2-29
1-46
1-46
1-46
1-46
1-46
2-29
2·29
2·29
2-29
2-29
1-41
1·41
1-41
2-27
2-26
1-44
1-44
2-30
2-30
2·30
2-30
2-25
2-25
2-25
1-42
1·36
1-37
1-49
1-49
1-49
1-49
1-42
2-25
2-25
1-42
1-42
1-42
1-44
1·44
1-44
3-5
3-8
3·8
3-8
3·5
3·5
3-5
3·8
3·8
3·8
3-8
3-5
3-5
1-31
·AII suffixes
13
Process Pkg
4P
4P
4P
5P
5P
5P
5P
5P
5P
4P
4P
4P
4P
4P
5P
5P
5P
5P
5P
36
36
36
5F
5E
4F
4F
5J
5J
5J
5J
77
78
79
37
38
39
4J
4J
4J
4J
4A
5A
5A
4A
36
36
4E
4E
4E
50
55
55
55
50
50
55
55
50
50
55
90
51
25
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
57
57
57
57
58
58
58
58
58
92
92
92
92
92
92
92
92
92
92
92
92
92
39
Device
Page
MPS706
MPS834
MPS2369
MPS2711
MPS2712
MPS2713
MPS2714
MPS2716
MPS2923
MPS2924
MPS2925
MPS2926
MPS3392
MPS3393
MPS3394
MPS3395
MPS3396
MPS3397
MPS3398
MPS3563
MPS3638
MPS3638A
MPS3639
MPS3640
MPS3642
MPS3644
MPS3645
MPS3646
MPS3693
MPS3694
MPS3702
MPS3703
MPS3704
MPS3705
MPS3706
MPS3707
MPS3708
MPS3709
MPS3710
MPS3711
MPS3721
MPS3826
MPS3827
MPS3903
MPS3904
MPS3905
MPS3906
MPS4354
MPS4355
MPS4356
MPS5172
MPS6507
MPS6511
MPS6512
MPS6513
MPS6514
MPS6515
MPS6516
MPS6517
MPS6518
MPS6520
MPS6521
MPS6522
1-3
1-3
1·3
1·24
1-24
1-3
1·3
1-24
1·24
1-24
1·24
1-24
1·15
1·15
1·15
1·15
1-15
1·15
1-15
1·7
2-12
2-12
2·4
2·4
1-24
2-12
2-12
1-3
1-26
1·26
2-12
2-12
1-16
1-17
1-17
1·12
1-12
1-12
1-12
1-12
1·24
1-24
1·24
1·13
1·14
2-15
2·15
2-17
2·17
2-17
1-15
1-7
1-8
1-24
1-24
1·24
1·24
2-15
2·15
2·16
1-15
1-15
1-17
Process Pkg
21
21
21
23
23
21
21
23
23
23
23
23
04
04
27
04
04
04
04
43
63
63
65
65
19
63
63
22
27
27
63
63
13
13
13
07
07
07
07
07
23
23
23
02
02
66
66
67
67
67
04
43
43
23
23
23
27
66
66
66
04
04
66
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
Transistor Standard Parts List (Continued)
Device
Page
MPS6523
MPS6530
MPS6531
MPS6532
MPS6533
MPS6534
MPS6535
MPS6539
MPS6540
MPS6541
MPS6542
MPS6543
MPS6544
MPS6546
MPS6547
MPS6548
MPS6560
MPS6561
MPS6562
MPS6563
MPS6564
MPS6565
MPS6566
MPS6567
MPS6568A
MPS6569
MPS6570
MPS6571
MPS6573
MPS6574
MPS6575
MPS6576
MPS8098
MPS8099
MPSA05
MPSA06
MPSA09
MPSA10
MPSA12
MPSA13
MPSA14
MPSA20
MPSA42
MPSA43
MPSA55
MPSA56
MPSA62
MPSA63
MPSA64
MPSA65
MPSA66
MPSA70
MPSH10
MPSHll
MPSH19
MPSH20
MPSH24
MPSH30
MPSH31
MPSH32
MPSH34
MPSH37
MPSLOl
2·7
1·17
1·17
1·17
2·12
2·12
2·12
1·7
1·9
1·8
1·9
1·9
1·9
1·9
1·9
1·7
1·31
1·31
2·17
2·18
1·26
1·26
1·26
1·9
1·8
1·8
1·8
1·12
1·14
1·14
1·14
1·14
1·18
1·18
1·29
1·29
1·12
1·26
1·48
1·48
1·48
1·14
1-39
1·40
2·17
2·17
2·30
2·30
2·30
2·30
2·30
2·7
1·7
1·9
1·9
1·9
1·9
1·8
1·8
1·8
1·9
1·9
1·18
Process Pkg
66
13
13
13
63
63
63
42
49
43
47
47
49
47
47
42
14
14
67
60
27
27
27
49
44
44
44
07
02
02
02
02
18
18
12
12
07
27
05
05
05
02
48
48
67
67
61
61
61
61
61
62
42
47
47
49
"47
44
44
45
47
49
16
92
92
92
92
92
92
92
96
96
92
96
96
96
96
96
96
92
92
92
92
92
92
92
96
96
96
96
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92 .
92
92
96
96
96
96
96
96
96
96
96
96
92
Device
Page
MPSL51
MRF501
MRF502
NAOIE*
NAOIF*
NA02E*
NA02F*
NA 11 E*
NA 11 F*
NA12E*
NA12F*
NA21 E*
NA21 F*
NA21X*
NA21Y*
NA22E*
NA22F*
NA22X*
NA22Y*
NA31 K*
NA31M*
NA31X*
NA31Y*
NA32K*
NA32M*
NA32X*
NA32Y*
NA41U*
NA42U'
NA51U
NA51W
NA52U.
NA52W
NA61U
NA61W
NA62U
NA62W
NA71U
NA71W
NA72U
NA72W
NBOllE*
NBOllF'
NB012E'
NB012F*
NB013E'
NB013F'
NB014E*
NB014F'
NB021 E'
NB021 F*
NB022E'
NB022F*
NB023E*
NB023F*
NB024E*
NBlllE'
NBlllF*
NBl12E*
NBl12F'
NBl13E*
NBl13F*
NB121 E*
2·18
1·7
1·7
7·4
7·4
7·4
7·4
7·8
7·8
7·8
7-8
7-12
7-12
7-12
7-12
7·12
7·12
7·12
7-12
7·16
7·16
7·16
7·16
7·16
7·16
7-16
7·16
7·20
7-20
7·24
7·24
7·24
7·24
7-28
7·28
7·28
7-28
7·32
7·32
7·32
7·32
7·36
7·36
7·36
7·36
7·40
7·40
7·40
7-40
7·36
7·36
7·36
7·36
7·40
7·40
7·40
7·44
7·44
7·44
7·44
'7·44
7·44
7·44
*AII suffixes
14
Process Pkg
74
42
42
09
09
68
68
09
09
68
68
37
37
37
37
77
77
77
77
37
37
37
37
77
77
77
77
4F
5F
4F
4F
5F
5F
4E
4E
5E
5E
4E
4E
5E
5E
04
04
04
04
04
04
04
04
62
62
62
62
62
62
62
04
04
04
04
07
07
71
92
25
25
92
94
92
94
92
94
92
94
92
94
91
90
92
94
91
90
55
56
91
90
55
56
91
90
58
58
58
57
58
57
58
57
58
57
58
57
58
57
92
94
92
94
92
94
92
94
92
94
92
94
92
94
92
92
94
92
94
92
94
92
Device
Page
NB121F*
NB122E*
NB122F*
NB123E*
NB123F*
NB211 E*
NB211F*
NB211X*
NB211Y*
NB212E*
NB212F*
NB212X*
NB212Y*
NB213E*
NB213F*
NB213X*
NB213Y*
NB221 E*
NB221 F*
NB221X'
NB221Y*
NB222E*
NB222F'
NB222X*
NB222Y*
NB223E*
NB223F*
NB223X*
NB223Y'
NB311 E
NB311 F
NB311 K
NB311M
NB311X
NB311Y
NB312E
NB312F
NB312K
NB312M
NB312X
NB312Y
NB313E
NB313F
NB313K
NB313M
NB313X
NB313Y
NB321 E
NB321F
NB321 K
NB321M
NB321X
NB321Y
NB322E
NB322F
NB322K
NB322M
NB322X
NB322Y
NB323E
NB323F
NB323K
NB323M
7·44
7-44
7·44
7-44
7-44
7-48
7·48
7-48
7-48
7-48
7-48
7-48
7-48
7-48
7-48
7·48
7-48
7·48
7·48
7-48
7·48
7·48
7·48
7-48
7·48
7·48
7·48
7·48
7·48
7·52
7·52
7·52
7·52
7·52
7-52
7·52
7·52
7·52
7·52
7·53
7-53
7·53
7·53
7·53
7·53
7·53
7·53
7·53
7·53
7·53
7·53
7·53
7·52
7·52
7·52
7·52
7·52
7·52
7·52
7·52
7·52
7·52
7·52
Process Pkg
71
71
71
71
71
19
19
19
19
19
19
19
19
19
19
19
19
63
63
63
63
63
63
63
63
63
63
63
63
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
78
78
78
78
78
78
78
78
78
78
78
78
78
78
78
78
94
92
94
92
94
92
94
91
90
92
94
91
90
92
9'4
91
90
92
94
91
90
92
94
91
90
92
94
91
90
92
94
55
56
91
90
92
94
55
56
91
90
92
94
55
56
91
90
92
94
55
56
91
90
92
94
55
56
91
90
92
94
55
56
Transistor Standard ptarts List (Continued)
Device
NB323X
NB323Y
NCBT13
NCBV14
NDF9406
NDF9407
NDF9408
NDF9409
NDF9410
NF5101
NF5102
NF5103
NF5301'
NPD5564
NPD5565
NPD5566
NPD8301
NPD8302
NPD8303
NR041E
NR421 D'
NR421 F'
NR431 E'
NR431 F'
NR461 E'
NR461 F'
NS3762
NS3763
NS3903
NS3904
NS3905
NS3906
NS4234
NSD36'
NSD102
NSD103
NSD104
NSD105
NSD106
NSD131
NSD132
NSD133
NSD134
NSD135
NSD151
NSD152
NSD153
NSD154
NSD202
NSD203
NSD204
NSD205
NSD206
NSD457
NSD458
NSD459
NSD3439
NSD3440
NSD6178
NSD6179
NSD6180
NSD6181
NSDU01
Page
7·52
7·52
1-17
1·31
3·12
3·12
3·12
3·12
3·12
3·5
3·5
3·5
3·6
3·12
3·12
3·12
3·11
3·11
3·11
7·56
7·60
7·60
7·64
7·64
7·68
7·68
2·5
2·5
1·25
1·25
2·16
2·16
2·17
1·33
1·34
1·34
1·38
1·38
1·38
1·40
1·40
1·40
1·40
1·40
1·48
1·48
1·48
1·48
2·20
2·20
2·24
2·24
2·24
1·40
1·40
1-40
1·33
1·34
1·37
1·37
2·23
2·23
1·34
Process Pkg
78
78
13
14
94
94
94
94
94
51
51
51
53
96
96
96
83
83
83
04
42
42
43
43
46
46
70
70
23
23
66
66
67
36
38
38
39
39
39
48
48
48
48
48
05
05
05
05
77
77
79
79
79
48
48
48
36
36
38
38
78
78
37
91
90
92
55
12
12
12
12
12
29
29
29
25
67
67
67
67
67
67
92
96
94
92
94
92
94
17
17
02
02
02
02
10
55
55
55
55
55
55
55
55
55
55
55
55
55
·55
55
55
55
55
55
55
55
5~;
5!5
5!5
5!5
55
55
5~i
5t;
55
Device
Page
NSDU01A
NSDU02
NSDU05
NSDU06
NSDU07
NSDU10
NSDU45
NSDU45A
NSDU51
NSDU51A
NSDU52
NSDU55
NSDU56
NSDU57
NSDU95
NSDU95A
NSE170
NSE171
NSE180
NSE181
NSE457
NSE458
NSE459
NSE871
NSE872
P1086
P1087
PE3100
PE4010
PE5025
PE5029
PE5030B
PE5031
PF5101
PF5102
PF5103
PF5301'
PN918
PN930
PN2221
PN2221A
PN2222
PN2222A
PN2369
PN2369A
PN2484
PN2906
PN2906A
PN2907
PN2907A
PN3563
PN3564
PN3565
PN3566
PN3567
PN3568
PN3569
PN3638
PN3638A
PN3639
PN3640
PN3641
PN3642
1·34
1·35
1·37
1·38
1·38
1·40
1-48
1·48
2·20
2·20
2·21
2·23
2·24
2·24
2·30
2·30
2·21
2·23
1·35
1·37
1·40
1·40
1·40
1·31
2·20
3·14
3·14
1·9
1·13
1·8
1·9
1·9
1·9
3·6
3·6
3·6
3·6
1·8
1-13
1·21
1·21
1·21
1·22
1·3
1·3
1·13
2·12
2·12
2·12
2·13
1·8
1·8
1·13
1·17,1·30
1·17,1·30
1·29
1·17,1·30
2·13
2·13
2·4
2·4
1·22
1·22
'All suffixes
15
Process Pkg
38
38
38
39
39
48
05
05
77
77
77
78
79
79
61
61
77
78
38
38
48
48
48
17
76
88
88
47
07
46
47
47
47
51
51
51
53
43
07
19
19
19
19
21
21
07
63
63
63
63
43
43
07
13
13
12
13
63
63
65
65
19
19
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
56
56
56
56
56
56
56
51
51
91
91
96
92
92
96
96
96
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
Device
Page
PN3643
PN3644
PN3645
PN3646
PN3684
PN3685
PN3686
PN3687
PN3691
PN3692
PN3694
PN4091
PN4092
PN4093
PN4117"
PN4118'
PN4119'
PN4121
PN4122
PN4140
PN4141
PN4142
PN4143
PN4220
PN4221
PN4222
PN4223
PN4224
PN4248
PN4249
PN4250
PN4250A
PN4258
PN4258A
PN4274
PN4275
PN4302
PN4303
PN4304
PN4342
PN4354
PN4355
PN4356
PN4360
PN4391
PN4392
PN4393
PN4416
PN4856
PN4857
PN4858
PN4859
PN4860
PN4861
PN4916
PN4917
PN5019
PN5033
PN5127
PN5128
PN5129
PN5130
PN5131
1·22
2·13
2·13
1·4
3·8
3·8
3·8
3·8
1·25
1·25
1·26
3·3
3·3
3·3
3·6
3·6
3·6
2·16
2·16
1·22
1·22
2·13
2·13
3·9
3·9
3·9
3·5
3·5
2·7
2·7
2·7
2·7
2-4
2·4
1·3
1·3
3·9
3·9
3·9
3·15
2·17
2·17
2·18
3·15
3·3
3·3
3·3,3·6
3·5
3·3
3·3
3·3
3·3
3·3
3·3
2·16
2·16
3·14
3·15
1·26
1·22
1·22
1·8
1·26
Process Pkg
19
63
63
22
52
52
52
52
23
23
27
51
51
51
53
53
53
66
66
19
19
63
63
55
55
55
50
50
62
62
62
62
65
65
21
21
52
52
52
89
67
67
67
89
51
51
51
50
51
51
51
51
51
51
66
66
88
89
27
19
19
43
27
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
94
92
92
92
92
92
92
,
Transistor Standard Parts List (Continued)
Device
Page
PN5132
PN5133
PN5134
PN5135
PN5136
PN5137
PN5138
PN5139
PN5140
PN5142
PN5143
PN5163
PN5179
PN5432
PN5433
PN5434
PN5447
PN5449
PN5816
PN5910
PN7055
SE5020
SE5021
SE5022
SE5023
SE5024
SE5050
SE5051
SE5052
SE5055
SE7055
SE7056
SE9300
SE9301
SE9302
SE9400
SE9401
SE9402
ST3904
ST3906
ST5771
SV7056
TIP29*
TIP30*
TIP3l*
TIP32*
TIP41 *
TIP42*
TIP61 *
TIP62*
TIP100
TIP101
TIP102
TIP105
TIP106
TIP107
TIPll0
TIP111
TIP112
TIP115
TIP116
TIPl17
TIP120·
1-26
1:13
1-3
1-22
1-22
1-22
2-16
2-16
2-4
2-14
2-14
3-9
1-7
3-3
3-3
3-3
2-18
1-17
1-17
2-4
1-40
1-8
1-8
1-8
1-8
1-8
1-8
1-8
1-8
1-8
1-40
1-41
1-49·
1-50
1-50
2-31
2-31
2-31
1-25
2-16
2-4
1-41
1-44
2-27
1-44
2-27
1-42
2-25
1-44
2-27
1-50
1-50
1-50
2-31
2-31
2-31
1-49
1-49
1-49
2-31
2-31
2-31
1-49
Process Pkg
Device
Page
Process Pkg
92.
92
92
92
92
92
92
92
92
92
92
92
96
92
92
92
92
92
92
92
92
25
25
25
25
25
25
25
25
28
10
10
57
57
57
57
57
57
92
92
92
55
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
TIP121
TIP122
TIP125
TIP126
TIP127
TIP130
TIP131
TIP132
TIP135
TIP136
TlP137
TlS58 *
TlS59
TlS73
TIS74
TlS75
TIS86
TIS87
TIS90
TIS91
TIS92
TIS93
TIS97
TIS98
TIS99
TN1711
TN2017
TN2102
TN2218A
TN2219
TN2219A
TN2270
TN2904A
TN2905
TN2905A
TN3019
TN3020
TN3053
TN3244
TN3245
TN3252
TN3253
TN3440
TN3444
TN3467
TN3724
TN3725
TN3742
TN4030
TN4033
TN4036
TN4037
TN4234
TN4235
TN4236
TN4314
TN5022
TN5023
U231
U232
U233
U234
U235
1-49
1-49
2-31
2-31
2-31
1-50
1-50
1-50
2-31
2-31
2-31
3-9
3-9
3-3
3-3
3-3
1-9
1-9
'1-23
2-14
1-23
2-14
1-15
1-18
1-18
1-29
1-30
1-30
1-22
1-23
1-23
1-30
2-14
2-14
2-14
1-30
1-30
1-30
2-19
2-20
1-31
1-31
1-34
1-31
2-20
1-31
1-31
1-41
2-19
2-19
2-18
2-18
2-23
2-23
2-23
2-19
2-20
2-20
3-11
3-11
3-11
3-11
3-11
4J
57
4J
57
5J
57
57
5J
5J
57
4K
57
4K
57
4K
57
5K
57
5K
57
5K
57
94
50
50
94
51
97
51
97
51
97
47
98
47
98
94
19
63
94
19
97
63
97
04
97
18
97
18
97
91
12
12
91
12
91
19
91
91
19
91
19
12
91
91
63
91
63
91
63
12
91
12
91
12
91
91
70
70
91
91
25
25
91
36
91
25
91
70
912f}
91
25
.91
48
91
67· 91
67
91
67
91
67
91
78
91
78
91
78
91
67
91
70
91
91
70
83
12
12
83
83
12
83
12
83
12
27
07
21
19
19
19
66
66
65
63
63
50
42
58
58
58
£17
13
13
·65
48
44
44
44
44
44
44
44
44
45
48
48
4K
4K
4K
5K
5K
5K
23
66
65
48
4F
5F
4F
5F
4A
5A
4F
5F
4K
4K
41<
5K
5K
5K
4J
4J
4J
5J
5J
5J
4J
"All suffixes
16
DeviCe
U257
U308
U309
U3l0
U312
U401
U402
U403
U404
U405
U406
U421
U422
U423
U424
U425
U426
U1897
U1898
U1899
Page
-
3-12
3-5
3-5
3-5
3-5
3-11
3-11
3-11
3-11
3-11
3-11
3-13
.3-13
3-13
3-13
3-13
3-13
3-3
3-3
3-3
Process Pkg
93
92
92
92
90
98
98
98
98
98
98
86
86
86
86
86
86
51
51
51
24
07
07
07
07
12
12
12
12
12
12
24
24
24
24
24
24
92
92
92
CD
Bipolar Transistor and FET Dice
-S"
o
ar
...
::;I
Q)
::1
en
iii"
o...
Q)
::1
Q.
."
!!1
c
Dice
0"
Standard types from National's transistor families are available in unencapsulated die form
for use in hybrid circuits. Contact factory for conditions of sale.
17
eD
(,)
;:
U)
-
co
-
Conversion of Bipolar Metal Can to Plastic
Q..
0
I:
CO
(.)
-
-...
CO
CD
:iE
CO
(5
C.
.-
m
0
I:
.2
l!!
~
I:
0
(.)
Metal PIN
Plastic
Equivalent
2N697
2N706
2N708
2N718
2N722
2N744
2N753
2N760A
2N834
2N869A
2N915
2N917
2N918
2N929
2N930
2N956
2N995A
2N1132
2N1613
2N1711
2N2218
2N2218A
2N2219
2N2219A
2N2221
2N2221A
2N2222
2N2222A
2N2369
2N2369A
2N2483
2N2484
2N2604
2N2605
2N2894
2N2894A
2N2904
2N2904A
2N4400
MPS706
PN3646
2N4400
PN2906
PN2369
PN2369
2N4409
MPS834
PN3640
MPS6565
PN3563
PN918
2N4409
PN930
PN2222A
PN3640
PN2906
PN2221A
PN2222A
TN2218
TN2218A
TN2219
TN2219A
PN2221
PN2221A
PN2222
PN2222A
PN2369
PN2369A
2N5209
2N5210
2N5086
2N5086
PN3640
PN3639
TN2904
TN2904A
Electrical
Equivalency·
A
E
N
A
N
N
N
N
E
A
A
E
E
N
E
N
A
N
N
N
E
E
E
E
E
E
E
E
E
E
N
N
N
N
A
A
E
E
Process
Metal PIN
Plastic
Equivalent
Electrical
Equivalency·
13
21
22
13
63
21
21
07
21
65
27
43
43
07
07
19
65
63
19
19
19
19
19
19
19
19
19
19
21
21
07
07
62
62
65
65
63
63
2N290.5
2N2905A
2N2906
2N2906A
2N2907
2N2907A
2N3009
2N3011
2N3012
2N3013
2N3019
2N3020
2N3053
2N3117
2N3133
2N3134
2N3135
2N3136
2N3250
2N3251
2N3300
2N3301
2N3302
2N3304
2N3440
2N3724
2N3725
2N3944
2N3947
2N3962
2N3964
2N3965
2N4033
2N4036
2N4037
2N4208
2N4209
TN2905
TN2905A
PN2906
PN2906A
PN2907
PN2907A
PN3646
PN2369
PN3640
PN3646
TN3019
TN3020
2N3053
2N5210
MPS3703
. PN3645
MPS3703
PN3645
2N3905
2N3906
2N4401
2N4400
2N4401
PN3639
TN3440
TN3724
TN3725
2N3903
2N3904
2N5086
2N5087
2N5087
TN4033
TN4036
TN4037
PN3640
PN3640
E
E
E
E
E
E
N
N
A
E
E
E
E
N
N
N
N
N
A
A
A
A
A
A
E
E
E
N
N
N
N
N
E
E
E·
N
N
Process
63
63
63
63
63
63
22
21
65
22
12
12
12
07
63
63
63
63
66
66
13
13
13
65
36
25
25
23
23
62
62
62
67
67
67
65
65
* E = Exact electrical equivalent
N = Near electrical equivalent
A
=Approximate electrical equivalent
Nota: On "N" and "A" categories please refer to device specification section for deviation from metal can specifications.
This list is for use when an alternative to a metal can transistor is needed.
To facilitate conversions on the most popular types National i~ offering the "PN" series, TO-92 devices that use the same die type and are screened to same
electrical specifications. The TO-92 transistors produced by National Semiconductor are the most advanced Plastic Transistors ever manufactured. They
utilize epoxy B encapsulation and a copper lead frame to give a power dissipation of up t0625 mW @ TA
=25"C. These transistors provide electrical perform-
ance and reliability equivalent to their metal can versions In most applications where TJ does not exceed 150°C.
The same situation is applicable to the "TN" series, except that the National·origlnated TO·237 (TO·92 +) cas~ outline is used, which permits powerdisslpation of up to 1.0W @ TA 25"C.
=
18
o
o::l
Conversion of TO·105/TO·106 to TO·92
("PN and "J" in FETs) part numbers that have exactly the
same number as the original part; i.e., 2N3565 becomes a
PN3565. These PN types use the same chip and are
screened to the same electrical specification as the
original part. The original parts have a pin circle, TO·106 =
TO·18 and TO·105 = TO·5, so we will supply TO·92 lead
formed to the appropriate configuration at no extra
charge. If you enter an order to the old part number, our
computer will automatically convert it to the correct PN
number with the correct lead form; i.e., 2N3565 becomes
PN3565·18. In the case of some of the less popular types,
we have converted to the nearest part type using the same
chip. Please use the conversion chart on the next page as
a guide.
National has chosen to no longer produce the TO·105/106
plastic transistor line. The decision to drop this line was
based on two major factors: cost and performance.
The TO·92 is the most advanced transistor offered today.
With its automated assembly, it has the lowest potential
cost. By contrast, the TO·105/106 is a hand·assembled
product and its cost is tied to ever·increasing labor costs.
Our TO·92 is encapsulated in "Epoxy B" and has a copper
lead frame. This is the superior TO·92 available today. As
compared with TO·105/106, our TO·92 has better than
twice the power dissipation of either package.
We have done several things in order to make this conver·
sion as easy as possible. We are offering a series on "PN"
It is our intent to service our customers with the highest
quality and most cost·effective product avai lable.
TO·10S
TO·92 Device to TO·S Pin Circle
I"
0.305-0.325
17.747-8.2551
1
I
0.180 -l
14.5721 I--~
0.060~
I_ _
__~
I
'
I
0.140-0.250
-111~:~:~1 II L
11.5241
MIN
L'
I
13.556-6.3501
nnn
0.500
Pin
T
l~i~OOI
1
E
2
3,
C
0.016-0.019 --\1
(D.406-D.4aji
r-
~1~:~:~01
I
12.5401
MAX
O~O.18D
MAX
1
B
n)~"
I
0.190-0.210
-II-~
0.375
19.5251
NOM
10.432-0.4831
3 LEADS
,Q'
0.200 ±il.Ol0 ~
15.080 ±D.2541
DIA.PIN
CIRCLE
z
TO·92 Device to TO·18 Pin Circle
TO·106
r-
0.192-0.222
0.06f.1
114.877-5.6391
Q
'~~:;= ~ ~ ~
0.016-0.019
IOA06-0.4831
0.095-0.105
.Il-
.
--I- 0.160
,-
u
"
''''H,"'
Pin
FET
T
1
5
0
G
E
B
C
2.
3
0.500
112.7001
r~1
.
~45-0.055
0.180
1t-14.5721
0.180
145721
31
..ill!!..
12.5401
t- -
0.025
10.6351
MIN
MIN
114.0641
.
III-
MAX
II
0.D15
--I1--10.3Bl l NOM
3 LEADS
TYP BEFO·RE
BEFORE -~12.5401
LEAD FINISH
LEAD FINISH
OIA PIN CIRCLE
0.014-0.016
10.356-0.4061_
3LEAOS
11.143-1.3971
1 .... 2 .... 3
19
0,150-0.180
13.810-4.5721
0.100
~
!!!.
o
::l
o
-I
o
~
-o
~.
-I
~
o
en
-o
o
-I
cD
I\)
C\I
6
-
Conversion of TO·105/TO·106 to TO·92 (Continued)
tO
CO
o0r-
O
t-
L t)
o0r-
O
t-
o
c:
.2
~
~
r::::
o
(J
Bipolar
TO·105/106
TO·92
TO·105/106
TO·92
EN2222
EN2369A
EN2484
3N2907
EN918
EN930
SM3904
SM3906
2N3563
2N3564
2N3565
2N3566
2N3567
2N3568
2N3569
2N3638
2N3638A
2N3639
2N3640
2N3641
2N3642
2N3643
2N3644
2N3645
2N3646
2N3691
PN2222·18
PN2369A·18
PN2484·18
PN2907·18
PN918·18
PN930·18
2N3904·18
2N3906·18
PN3563·18
PN3564·18
PN3565·18
PN3566·5
PN3567·5
PN3568·5
PN3569·5
PN3638·5
PN3638A·5
PN3639·18
PN3640·18
PN3641·.5
PN3642·5
PN3643·5
PN3644·5
PN3645·5
PN3646·18
PN3691-18
2N3692
2N3693
2N3694
2N4121
2N4122
2N4140
2N4141
2N4142
2N4143 '
2N4248
2N4249
2N4250
2N4250A
2N4258
2N4258A
2N4274
2N4275
2N4354
2N4355
2N4356
2N4916
2N4917
2N4944
2N4945
2N4946
2N4964
PN3692·18
MPS3693·18
PN3694·18
PN4121·18
PN4122·18
PN4140·18
PN4141·18
PN4142·18
PN4143·18
PN4248·18
PN4249·18
PN4~50·18
PN4250A·18
PN4258·18
PN4258A·18
PN4274·18
PN4275·18
PN4354·5
PN4355·5
PN4356·5
PN4916·18
PN4917·18
PN2222A·18
PN2222A·18
PN2222A·18
MPSA70·18
TO·105/106
2N4965
2N4966
2N4967
2N4968
2N4969
2N4970
2N4971
2N4972
2N5127
2N5128
2N5129
2N5130
2N5131
2N5132
2N5133
2N5134
2N5135
2N5136
2N5137
2N5138
2N5139
2N5142
2N5143
2N5910
TO·92
2N5086·18
2N5209·18
2N5210·18
2N5209·18
PN2221·18
PN2222·18
PN2906·18
PN2907·18 .
PN5127·18
PN5128·5
PN5129·18
PN5130·18
PN5131·18
PN5132·18
PN5133·18
PN5134·18
PN5135·18
PN5136·5
PN5137·18
PN5138·18
PN5139·18
PN5142·18
PN5143·18
PN5910·18
FETs
TO·106
TO·92
TO·106
TO·92
TO·106
TO·92
E100
E101
E102
E103
E108
E109
E110
E111
E112
E113
E114
E174
E175
E176
E201
E202
E203
E210
E211
E212
E270
E271
J203·18
J201·18
J202·18
J203·18
J108·18
J109·18
J110·18
J.111·18
J112·18
J113·18
J114·18
J174·18
J175·18
J176·18
J201-18
J202·18
J203·18
J210·18
'J211·18
J212·18
J270·18
J271·18
E300
E304
E305
E308
. E309
E310
E311
E312
KE3684
KE3685
KE3686
KE3687
KE4091
KE4092
KE4093
KE4220
KE4221
KE4222
KE4223·
KE4224
KE4391
KE4392
J300·18
J304·18
J305·18
J308·18
J309·18
J310·18
J309·18
J310·18
PN3684·18
PN3685·18
PN3686·18
PN3687·18
PN4091·18
KE4092·18
PN4093·18
PN4220·18
PN4221·18
PN4222·18
PN4223·18
PN4224·18
PN4391·18
PN4392·18
KE4393
KE4416
KE4857
KE4858·
KE4859
KE4860
KE4861
ITE4391
ITE4392
ITE4393
P1086E
P1087E
U1897E
U1898E
U1899E
2N4302
2N4303
2N4304
2N4342
2N4343
2N4360
2N5033
2N5163
PN4393·18
PN4416·18
PN4857·18
PN4858·18
PN4859·18
PN4860·18
PN4861·18
PN4391·18
PN4392·18
PN4393·18
P1086·18
P1087·18
U1897·18
U1898·18
U1899·18
PN4302·18
PN4303·18
PN4304·18
PN4342·18
PN4343·18
PN4360·18
PN5033·18
PN5163·18
20
_.
C"
_.
Reliability and Quality
Q)
-
B+ PROGRAM
DOUBLE PASS + HOT SCREENING
The B + Program is a quality enhancement program intended primarily for users of transistors who either cannot
or choose not to perform incoming inspection of transistors, or desire significantly better than usual incoming
quality levels for their parts.
National's double pass + hot screen flow, B +, provides a
cost effective screening technique. By testing each B +
transistor at both room temperature and at + 125°C, the
following benefits are realized:
• Escapes caused by mishandling are reduced
significantly.
• Residual thermo·mechanical defects not detected
during normal room temperature testing or high
temperature lot buy·off are removed.
• Anomalous high temperature parametric effects that
may have been created during wafer fabrication are
removed.
• An AQL of 0.05% or better is guaranteed.
Transistor users who specify B + processed parts will find
that the program can:
• Eliminate incoming inspection
• Eliminate the need for, and thus the cost of, independent testing laboratories
• Reduce the cost of reworking assembled boardsl
assemblies
RELIABILITY VIS·A·VIS QUALITY
RELIABILITY THROUGH DESIGN
The words "reliability" and "quality" are often used inter·
changeably, as though they connote identical facets of a
product's merit. However, reliability and quality are differ·
ent, and discrete component users must understand the
essential difference between the two concepts in order to
properly evaluate the various vendors' programs for prod·
uct improvement that are generally available, and
National's B + program in particular.
With increased component density in modern electronic
products has come an increased concern with component
failures in such products. Virtually all equipment manufacturers thoroughly exercise their products before ship·
ment. This "system burn·in" is designed to simulate, as
closely as possible, field operating conditions. A high
failure rate of discrete components at the system burn·in
level can dramatically increase manufacturing costs.
The concept of quality gives us information about the
population of faulty components among good com·
ponents, and generally relates to the number of faulty
components that arrive at a user's plant. Looked at in
another way, quality can instead relate to the number of
faulty components that escape detection at the compo·
nent vendor's plant.
The most important factor affecting a component's
reliability is its construction; i.e., the materials used and
the method by which they are fabricated and assembled.
Reliability cannot be tested in per se. Yet most transistor
reliability enhancement programs utilize standardized
procedures (usually MIL·STD) for either screening or lot
acceptance. Frequently these standardized screening
methods have only a minor influence on transistor field
failure rates.
It is the function of a vendor's Quality Control arm to
monitor the degree of success of that vendor in reducing
the number of faulty components that escape detection.
QC does this by testing the outgoing parts on a sampled
basis. The Acceptable Quality Level (AQL) determines the
stringency of the sampling. As the AQL decreases, it
becomes more difficult for bad parts to escape detection,
thus the quality of the shipped parts increases.
NATIONAL'S ON·GOING RELIABILITY IMPROVEMENT
PROGRAM
Transistor reliability improvement
Semiconductor is a continuous program.
The concept of reliability, on the other hand, refers to how
well a part that is initially good will withstand its environ·
ment. Reliability is measured by the percentage of parts
that fail in a given period of time.
at
National
Implementation of a program for field reliability improve·
ment requires knowledge of field environments and their
influence on device performance. National's broad exper·
ience in commercial reliability programs has led to the
development of an extensive in·house reliability monitor·
ing program that permits us to monitor device perform·
ance under combinations of the following stresses:
• Thermal'
• Thermo·Mechanical
• Mechanical
• Voltage
• Humidity
QUALITY IMPROVEMENT
When purchasing a component or a system, it is expected
that each item delivered has been thoroughly tested and
will perform according to data sheet or detailed specifica·
tions. However, some test escapes do occur.
Additional screening programs can be implemented to
reduce the number of escapes. To be effective, however, a
screening program must not only reduce escapes but
must also be tai lored specifically to detect and remove the
types of residual defects that are predicted by process
and line monitor control data. A frequently used screening
procedure consists of a short, accelerated burn·in, but this
will not usually detect the primary historical failure
mechanism, which is thermo·mechanical in origin.
The data generated by these monitors is continually
ranked and analyzed to determine appropriate corrective
action necessary for any failure mechanisms noted. This
continuous cycle of testing, analysis, and corrective ac·
tion assures the continued improvement of transistor field
reliability.
21
~
Q)
::l
C-
O
c:
Q)
_.
'<
Reliability and Quality (Continued)
NATIONAL'S B + PROGRAM-A Logical Choice
A quality improvement program, the B + program actually
combines the benefits of National's on-going reliability
improvement program with the quality enhancement
benefits of double pass + hot screening. The practical
benefit realized from this program is a significant reduction in rework at the device and PC board levels. The
following flow chart shows how we do it, step by step:
EPOXY B PROCESSING FOR ALL MOLDED PARTS
150'C BAKE
QA LOT INSPECTION
100% ELECTRICAL TEST (BIN)
100% TEMPERATURE CYCLE
.100% ELECTRICAL TEST (HOT)
MARK
100% ELECTRICAL TEST (ROOM)
QA LOT ACCEPTANCE
SHIP PARTS
22
',
..
:
Section 1
N PN Transistors
Ii,
NPN Transistors
~.
Type
No.
SATURATED SWITCHES
Case
Style
VCES'
VCBO
(V)
Min
2N70S
TO-18
2N743
TO-52
2N744
r\>
TO-52
25
VCEO
(V)
VEBO
(V)
Min
Min
15
5
ICES'
ICBO @ VCB
(nA)
(V)
Max
12
5
12
20
@
VCE(SATI
VBE(SATI
(V)
(V)
&
Min
Max
Max
IC
& VCE
(rnA)
(V)
@
IC
(rnA)
IC
(lB~1O)
Cob
(pF)
Max
fT
(MHz)
Min
Max
@
IC
(rnA)
t(off)
(ns)
Max
Test
Conditions
Process
No.
500
15
20
10
1
0.7
0.9
10
S
200
10
75
20
10
20
10
1
0.35
0.25
0.S5
0.85
10
5
300
10
24
SO
100
10
1
2
1
21
lilA
1.5
100
20
40
20
1
0.35
0.25
0.S5
0.85
10
5
280
10
24
1
21
120
100
10
1
1.5
100
120
10
1
O.S
0.7
0.9
10
5
200
10
75
2
21
0.9
10
4
350
10
30
2
21
lilA
20
O.S
21
5
500
15
40
5
500
20
25
10
1
0.25
15
4.5
400
20
20
40
2
1
0.25
0.7
0.85
10
4
500
10
18
1
21
120
100
10
40
15
4.5
400'
20
20
30
40
40
120
120
120
120
100
30
10
10
1
0.4
1
0.35
0.2
0.25
0.7
0.85
1.5
10
30
4
500
10
18
1
21
1.S
100
30
12
5
400'
20
12
25
30
1
0.4
0.35
0.2
0.25
0.5
0.72
0.85
1.5
1.6
10
30
100
4
400
20
20
4
21
120
100
30
10
14
500
18
30
10
1
0.25
0.85
10
6
300
10
45
2
21
2N753
TO-52
25
2N834
TO-52
40
2N23S9
TO-52
40
2N2369A
TO-18
2N3011
TO-52
2N3S05
TO-92
15
hFE
Min Max
0.5
(94)
2N360S
TO-92
(94)
14
500
18
30
10
1
0.25
0.85
10
6
300
10
SO
2
21
2N3S07
TO-92
(94)
14
500
18
30
10
1
0.25
0.85
10
6
300
10
70
2
21
2N4274
TO-92
(92)
Same as PN4274, see page 1-3 for explanation
21
2N4275
TO-92
(92)
Same as PN4275, see page 1 ~3 for explanation
21
2N4294
TO-92
30
4.5
12
400
20
(94)
2N4295
TO-92
(94)
40
2N5030
TO-92
(94)
30
2N5134
TO-92
(92)
2N5224
TO-92
(92)
15
5
100
·4
12
250
20
20
20
30
100
10
2
1
0.25
0.6
0.9
10
5
400
10
20
1
21
120
20
40
100
10
2
1
0.25
0.6
0.9
10
4
500
10
15
1
21
120
10
1
0.25
0.72
0.87
10
4
400
10
30
9
21
30
Same as PN5134, see page 1-3 for explanation
12
25
5
15
500
1
1
21
115
40
100
100
10
1
1
1
0.35
10
11
250
1 4
1
----
0.9
1
10
1
60 1
21
~
SATURATED SWITCHES (Continued)
VCES'
VCBO
(VI
Min
vCEO
(VI
Min
VEBO
(VI
Min
TO-92
(921
40
15
4.5
400
2N5772
TO-92
(921
40
15
5
MPS706
TO-92
1921
15
15
MPS834
TO-92
1921
40
MPS2369
TO-92
1921
40'
MPS2713
TO-92
(921
18
15
5
500
MPS2714
TO-92
1921
18
15
5
.500
MPS3646
TO-92
(921
PN2369
TO-92
1921
40'
TO-92
(92)
40'
Type
No.
Case
Style
2N5769
w
PN2369A
15
ICES'
ICBO @ VCB
InA I
(VI
Max
IC
(mAl
IC
liB =101
Cob
IpFI
Max
fT
@
IC
IMHzl
ImAI
Min Max
t{offl
(nsl
Max
Test
Conditions
10
18
1
21
350
30
28
3
21
6
200
10
75
11
21
10
50
4
350
10
30
2
21
0.85
10
4
500
10
18
7
21
1.3
50
21
1.3
50
21
VCE
IVI
20
20
30
40
1
0.4
0.35
0.2
0.25
0.5
0.7
0.85
1.5
1.6
10
30
100
4
500
120
100
30
10
500
20
15
25
30
1
0.5
0.4
0.2
0.28
0.5
0.75
0.95
1.2
1.7
30
100
300
5
120
300
100
30
3
500
15
20
10
1
0.6
0.9
10
5
500
20
25
10
1
0.25
0.4
0.9
4.5
400
20
20
40
100
10
2
1
0.25
120
18
30
90
2
4.5
0.3
18
75
225
2
4.5
0.3
0.7
0.6
Same as PN3646, see page 1-4 for explanation
15
15
4.5
4.5
400
30
20
20
20
40
20
30
40
40
TO-92
(921
30'
12
4.5
500
20
18
30
35
PN4275
TO-92
(921
40'
15
4.5
500
20
18
30
35
PN5134
TO-92
1921
20'
10
3.5
100
15
15
20
TO-52
40
15
5
25
20
Process
No.
21
PN4274
2N708
VCE(SATI
VBE(SATI
@
(VI
(VI
&
Max
Min
Max
hFE
@
IC
&
Min
Max
(mAl
30
15
100
10
2
1
0.25
0.7
0.85
10
4
500
10
18
1
21
100
30
10
10
1
0.4
1
0.35
0.2
0.2
0.7
0.85
1.15
10
4
500
10
18
1
21
30
1.6
100
1
0.4
1
0.2
0.25
0.5
0.7
0.85
1.15
1.6
10
30
100
4
400
10
12
12
21
120
100
30
10
1
0.4
0.2
0.2.1)
0.72
10
12
12
21
0.5
10
30
100
400
1
0.85
1.15
1.(;
4
120
100
30
10
0.4
1
0.25
0.7
0.9
10
4
250
10
18
12
21
150
30
10
10
0.5
1
1
0.4
0.72
0.8
10
6
300
10
120
120
120
0.5
22
TEST CONDITIONS:
11) VCC = 3V, Ie = 10 mA, 18 ' = 3 mA, 18 2 = 1.5 mAo 121 Vee = 3V, Ie = 10 mA, 18 ' = 3 mA, 18 2 = 'I mAo (3) Vee = 10V, Ie = 300 mA, 18 ' = 18 2 = 30 mA.141 Vee = 2V, Ie = 30 mA, 18 ' = 18 2 = 3 mAo
(51 Vce = 25V, Ie = 300 mA, 18 1 = 18' = 30 mAo (61 Vce = 25V, Ie = 500 mA, 18 ' = 18 2 = 50 mAo (7) Vee = 30V, Ie = 500 mA, 18 ' = 18 2 = 50 mAo 181 Vee = 30V, Ie = lA, 18 ' = 18 2 = 100 mAo
(91 Vce = 3V, Ie = 10 mA, 18 ' = 18/. = 1 mA.ll01 Vee = 10.7V,le = lA, IB 1 = 18 2 = 100 mAo (111 Vee = 3V, Ie =10mA, IB 1 = 18 2 =.1 mAo (121 Vee = 3V, Ie = 10 mA, 18 ' = 18 2 = 3.3 mA_
SJOIS!SUBJ!·NdN
NPN Transistors
:1;,
~
Type
No.
.
SATURATED SWITCHES (Continued)
Case
Style
VCES'
VCBO
(V)
Min
2N3009
40
Min
Min
15
4
15
500'
Same'as PN3646, see below for explanation
TO·92
(921
40'
15
5
500'
20
2N3015
TO·39
60
30
5
200
30
2N3253
2N3444
2N3724
2N3724A
2N3725
--
TO·39
TO·39
TO·39
TO·39
TO·39
--
75
BO
50
50
80
30
40
50
30
30
50
5
5
5
6
6
6
300'
20
2N3646
PN3646
60
5
ICES'
ICBO @ VCB
(nAI
(VI
Max
TO·52
TO·39
40
VEBO
(VI
2N3013
2N3252
....
TO·52
vCEO
(VI
500
500
500
1.71lA
500
1.71lA
20
hFE
Min Max
15
25
30
15
25
30
@
IC
& VCE
(mAl
(VI
VCE(SAT)
VBE(SATI
(VI
(VI
&
Max
Min
Max
@
IC
(mAl
IC
(lB=1O)
fT
(MHz I
Max
Cob
(pFI
Max
Min
@
IC
(mAl
t(offl
(nsl
Max
Test
Conditions
Process
No.
300
100
30
1
0.5
0.4
0.18
0.28
0.5
0.75
0.95
1.2
1.7
30
100
300
5
350
30
25
3
22
120
1
0.5
0.4
0.18
0.28
0.5
0.75
0.95
1.2
1.7
30
100
300
5
350
30
25
3
22
120
300
100
30
1
0.5
0.4
0.2
0.28
0.5
0.75
0.95
1.2
1.7
30
100
300
5
350
30
28
3
22
120
300
100
30
300
150
0.7
10
0.4
1.0
1.2
1.6
150
500
8
250
50
60
5&6
25
120
22
40
60
60
40
40
60
15
20
30
10
30
25
30
30
1A
500
150
5
1
1
0.3
0.5
1.0
150
500
1A
200
50
70
7
25
0.7
1.0
1.3
1.8
12
90
20
25
25
750
375
150
5
1
1
0.35
0.6
1.2
150
500
1A
175
50
70
7
25
0.7
1.0
1.3
1.B
12
75
15
20
20
1A
500
150
0.35
0.6
1.2
0.32
1.0
1.3
1.B
150
500
1A
150
50
70
7
25
1A
BOO
500
300
100
10
5
1
1
5
2
1
1
1
1
12
60
1.1
300
500
300
50
60
7
25
0.75
1.7
1A
1.5A
1A
BOO
500
300
100
10
5
5
2
1
1
1
1
0.32
1.1
300
500
300
50
50
B
25
0.42
1.2
0.65
1.3
60
7
0.75
1.4
1A
1A
800
500
300
100
10
5
2
1
1
1
1
0.4
0.52
1.1
1.2
300
500
60
7
0.8
1.5
800
1A
0.95
1.7
30
25
35
40
60
30
25
30
30
35
40
60
30
25
20
35
40
60
30
150
150
150
0.42
0.65
0.9
0.9
1.2
1.5
12
BOO
12
BOO
10
300
50
25
-
--
!
~
Type
No.
\
SATURATED SWITCHES (Continued)
Case
Style
VCES'
VCBO
(V)
Min
·2N3725A
TO-39
DH3724CD Ceramic
DIP (40)
0.
80
50'
vCEO
(V)
Min
VEBO
(V)
Min
50
6
36
60
DH3724CN Molded
DIP (39)
Electrical same as DH3724CD
DH3725CD Ceramic
DIP (40)
BO'
DH3725CN Molded
DIP (39)
Electrical same as DH3725CD
2N4013
2N4014
TO-1B
TO-1B
50
80
50
30
50
6
6
6
ICES'
ICBO @ VCB
(nA)
(V)
Max
500
1.7J,lA
60
40
hFE
Min
Max
20
25
25
35
40
60
30
30
35
60
TO-39
80
50
6
150
IC
& VCE
(mA)
(V)
1.5A
lA
BOO
500
300
100
10
5
5
2
1
1
1
1
lA
500
100
5
1
1
VCE(SATl
VBE(SATl
(V)
(V)
&
Min Max
Max
@
Ic
(mA)
IC
(lB =10)
0.4
1. r
300
0.52
1.2
500
O.B
1.3
BOO
0.9
1.4
lA
0.75
1.7
500
0.45
1.2
lA
Cob
(pF)
Max
fT
(MHz)
Min
Max
10
12
300
@
IC
(mA)
I(off)
(ns)
Max
50
50
8
60
7
60
7
50
Test
Conditions
Process
No.
25
25
25
1.7J,lA
60
25
35
60
150
lA
500
100
5
1
1
0.95
1.7
500
0.52
1.2
lA
10
250
50
60
7
25
25
1.7 J,lA
1.7 J,lA
40
60
30
25
35
40
60
30
lA
BOO
500
300
100
10
5
2
1
1
1
1
0.25
0.2
0.32
0.42
0.65
0.75
30
lA
BOO
500
300
100
10
5
2
1
1
1
1
0.25
0.26
0.4
0.25
O.B
0.9
1.7J,lA
60
15
15
20
30
40
20
lA
BOO
500
300
100
10
5
2
1
1
1
1
0.4
150
25
20
35
40
60
2N4047
150
@
150
150
0.52
0.8
0.95
0.9
0.9
0.9
0.76
0.B6
1.1
1.2
1.5
1.7
10
100
300
500
BOO
lA
12
300
50
60
7
25
0.76
0.B6
1.1
1.2
1.5
1.7
10
100
300
500
BOO
lA
10
300
50
60
7
25
1.1
300
10
250
50
60
7
25
1.2
1.5
500
800
1.7
lA
TEST CONDITIONS:
(1) VCC = 3V,IC = 10 mA,IB 1 = 3 mA,IB 2 = 1.5 rnA. (2) Vce=3V,lc= 10mA,IB 1 =3mA,IB 2 = 1 rnA. (3) Vec= 10V,IC=300mA,IB 1 = IB 2 =30mA. (4) VCe=2V,le=30mA,IBl = IB 2 =3mA.
(5) Vee = 25V, IC = 300 rnA, IB 1 = IB2 = 30 rnA. (6) Vee = 25V, Ie = 500 mA,lB 1 = IB2 = 50 rnA. (7) Vee = 30V, Ie = 500 mA,lB 1 = IB2 = 50 rnA. (S) Vce = 30V, Ie = lA,lB 1 = IB2 = 100 rnA.
(9) Vee = 3V; Ie = 10 rnA, IB 1 = IB2 = 1 rnA. (10) Vcc = 10_7V,le = lA, IB 1 = IB2 = 100 mA_ (11) Vee = 3V,le.= 10 mA,lB 1 = IB2 = 3 rnA. (12) Vee = 3V,Ie = 10 mA,lB 1 = IB2 = 3.3 rnA.
---
SJOIS!SUBJl
NdN
NPN Transistors
~
SATURATED SWITCHES (Continued)
Type
No.
Case
Style
2N5189
TO·39
2N6737
TO·237
(ESCI
VCES'
VCBO
(VI
VCEO
(VI
VEBO
(VI
Min
Min
60
35
5
80
45
6
Min
ICES'
ICBO
(nAI
Max
hFE
Min
Max
500
30
15
35
30
lA
500
100
1
1
1
1.0
1.7/lA
60
35
500
1
0.52
@
IC
&
(mAl
VCE
(VI
VCE(SATI
VBE(SATI
&
IVI
IVI
Max
Min
Max
VCB
IVI
@
0.8
@
IC
(mAl
IC
liB ~iOl
Cob
(pFI
Max
fT
(MHzl
Min
Max
@
IC
ImAI
t(offl
Insl
Max
Test
Conditions
Process
No.
1.5
lA
12
250
50
70
10
25
1.1
500
10
300
50
60
7
25
TEST CONDITIONS;
111 VCC ~ 3V, IC ~ 10 mA,IB 1 = 3 mA,IB 2 ~ 1.5 rnA. 121 VCC~3V,IC = 10mA,IB 1 ~ 3 mA,IB2~ 1 rnA. (31 VCC= 10V,IC~300mA,IBl ~ IB2~30mA.141 VCC~ 2V,IC~30mA,IBl = IB2~3 rnA.
151 'VCC ~ 25V, IC ~ 300 rnA, IB 1 ~ IS2 ~ 30 rnA. 161 VCC = 25V, IC = 500 mA,lB 1 ~ IB2 = 50 mA.171 VCC ~ 30V,IC ~ 500 mA,lB 1 = IB2 = 50 rnA. lSI VCC = 30V,IC ~ lA,lB 1 = IB2 = 100 rnA.
(9) VCC~3V,IC~ 10mA,IB 1 = IB2~ 1 rnA. (10) VCC~ 10.7V,IC ~ lA,IBl = IB2~ 100mA.ll11 VCC=3V,IC= 10mA,IS 1 = IB 2 =3mA.1121 VCC=3V,IC= 10mA,IB 1 = IB2= 3.3 rnA.
~
a,
~
RF AMPS AND OSCILLATORS
Type
No.
Case
Style
2N2857
TO-72
2N3478
TO-72
2N3600
TO-72
VCES'
VCBO
(V)
IC
(rnA)
NF
(dBI
M
ax
1900
5
4.5
450
1600
5
4.5
200
42
1500
5
4.5
200
.42
750
1600
2
4.5
200
42
750
1600
2
4
200
42
fT
(MHz)
Min
Max
VEBO
(VI
Min
Min
30
15
2.5
10
15
30
150
3
1
1
1000
30
15
2
20
1
25
150
2
8
1
750
30
15
3
10
15
20
150
3
1
1
850
0.55
0.55
Min
ICBO
(nA)
Max
@
VCB
IV)
hFE
Max
Min
@
IC
&
ImA)
VCE
IVI
2N3932
TO-72
30
20
2.5
10
15
40
150
2
2N3933
TO-72
40
30
2.5
10
15
60
200
2
8
8
2N4259
TO-72
40
30
2.5
10
15
60
250
2
8
2N5179
TO-72
20
12
2.5
20
15
25
250
3
1
2N5180
TO-72
30
15
2
500
8
20
200
2
40235
TO-72
35
3
l/lA
20
35
1
40
170
40236
TO-72
35
3
lilA
20
35
1
40
40237
TO-72
35
3
l,IlA
20
35
1
40238
TO-72
35 .
3
lilA:
20
40239
TO-72
35
3
lilA
20
VBE(SAT)
VCEISATI
(VI
(VI
&
Max
Min
Max
Cob/Cre
(pFI
Min
Max
VCEO
(VI
@
IC
(rnA)
@
@
Freq
(MHz)
Process
No.
42
0.55
750
1600
2
5
450
42
1
900
2000
5
4.5
200
42
8
1
650
1700
2
1
6
0.65.
42
275
1
6
0.65
42
27
275
1
6
0.8'
42
35
1
40
170
1
6
0.65
42
35
1
27
100
1
6
0.65
42
1.0
0.4
-
-
--
10
42
~
Type
No.
RF AMPS AND OSCILLATORS (Continued)
Case
Style
VCES'
VCBO
(VI
Min
.:..
VCEO
(V)
Min
40240
TO-72
35
40242
TO-72
35
MPS6539
TO-92
(911
20
20
MPS6548
TO-92
(911
30
25
MPSH10
TO-92
(911
30
vEBO
(V)
Min
ICBO
(nA)
M
ax
@
VCB
(VI
hFE
Max
@
Min
IC
&
(rnA)
VCE
(VI
VCE(SATl
VBE(SAT)
(VI
(VI
&
Max
Min Max
3
l/"A
20
35
1
27
275
3
20
1
40
170
50
15
20
3
100
25
25
4
10
0.5
25
3
100
25
60
4
10
0.5
@
Ic
(mAl
Cob/Cre
(pFI
Min
Max
IT
(MHzl
Min
Max
@
IC
(mAl
NF
(dBI
Max
@
Freq
(MHz)
Process
No.
1
6
0.65
1
6
0.65
4
10
0.7
500
4
0.7
650
4
42
0.65
650
4
42
42
0.95
4
4
0.35
42
42
4.5
100
42
MRF501
TO-72
25
15
3.5
50
1
30
250
1
6
600
5
MRF502
TO-72
35
15
3.5
20
1
40
170
1
6
800
5
PN5179
TO-92
(911
20
15
2.5
2
15
25
250
3
1
0.4
1.0
10
2N917
TO-72
30
15
3
1
15
20
3
1
0.5
0.87
3
3
2N918
TO-72
30
15
3
10
15
20
3
1
0.4
1.0
10
3
2N3563
TO-92
(921
Same as PN3563, see page 1-8 for explanation
43
2N3564
TO-92
(921
Same as PN3564, see page 1-8 lor explanation
43
2N3662
TO-92
(941
18
12
3
500
15
20
8
10
0.8
1.7
700
2100
5
6.5
60
43
2N3663
TO-92
(941
30
12
3
500
15
20
8
10
0.8
1.7
700
2100
5
6.5
60
43
2N3825
TO-92
(941
30
15
4
100
15
20
2
10
0.25
2
3.5
200
800
2
5.5
1
43
2N4292
TO-92
(941
30
15
3
500
15
20
3
1
0.6
10
3.5
600
4
6
60
43
2N4293
TO-92
(941
30
15
3
500
15
20
3
1
0.6
10
3.5
600
4
6
60
43
2N5130
TO-92
(921
Same as PN5130, see page 1-8 for explanation
2N5770
TO-92
(921
30
MPS3563
TO-92
(92)
Same as PN3563, see page 1-8 for explanation
MPS6507
TO-92
(921
30'
--
15
20
4.5
10
5
15
15
1.0
900
2000
42
5
4.5
200
42
500
4
6
60
43
600
4
6
60
43
43
50
20
200
8
3
10
1
0.4
1.0
10
0.7
1.1
900
1800
8
6
60
43
43
25
2
10
2.5
700
10
43
- - - _ .. -
SJOIS!SUeJl
NdN
NPNTransistors
-
~
Type
No.
RF AMPS AND OSCILLATORS (Continued)
Case
Style
TO-92
1921
MPSS541
TO-92
1921
PN918
TO-92
1921
PN3563
TO-92
1921
PN3564
TO-92
1921
PN5130
TO-92
1921
2N4134
TO-72
2N4135
TO-72
MPSS568A TO-92
1911
MPS6569
TO-92
1911
MPS6570
TO-92
1911
MPSH30
TO-92
1911
MPSH31
TO-92
1911
SE5020
TO-72
SE5021
TO-72
TO-72
SE5022
SE5023
TO-72
SE5024
TO-72
SE5050
TO-72
SE5051
TO-72
SE5052
TO-72
MPSS511
~
00
MPSH32
SE5055
PE5025
TO-92
1961
TO-72
TO-92
1921
vCES'
VCBO
IVI
Min
vCEO
IVI
Min
VEBO
IVI
Min
ICBO
InA I
Max
@
VCB
IVI
hFE
Min Max
@
IC & VCE
ImAI
IVI
VCEISATI VBEISATI
IVI
&
IVI
Min Max
Max
@
IC
ImAI
Cob/Cre
IpFI
Min Max
tr
IMHzl
Min
Max
@
IC
1m AI
NF
IdBI
Max
@
Freq
IMHzl
Process
No.
50
15
25
10
10
2.5
4
50
15
25
4
10
1.7
SOO
15
3
10
·15
20
3
1
1.7
600
30
15
2
50
15
20
200
8
10
1.7
600
1500
8
43
30
15
4
50
15
20
500
15
10
0.3
0.97
20
3.5
400
1200
15
43
30
12
1
50
10
15
250
8
10
O.S
1.0
10
1.7
450
8
43
30
30
20
30
30
20
3
3
3
50
50
50
10
10
10
25
25
20
200
200
200
4
4
4
5
5
5.
0.3
0.96
10
0.5
0.5
0.S5
350
425
375
800
800
800
4
4
4
20
20
3
50
10
20
200
4
5
3
0.96
10
0.25
0.5
300
800
20
20
3
50
10
20
200
4
5
3
0.96
10
0.25
0.5
300
20
20
3
50
10
20
200
4
5
0.3
0.96
10
0.65
20
20
3
50
10
20
200
4
5
0.3
0.96
10
20
20
20
20
3
50
50
10
10
3.0
3.0
50
50
50
50
50
50
5
5
5
5
5
0.96
0.96
0.96
0.96
30
50
27
200
4
5
3.0.
3.0
3.0
3.0
3.0
3.0
0.3
10
10
10
20
20
20
20
4
4
4
4
4
0.96
0.96
0.96
30
10
10
10
10
10
10
10
200
200
200
200
200
200
200
5
5
20
20
20
20
20
20
20
20
20
4
4
20
20
20
20
20
20
3
3
3
3
3
3
3
4
10
10
10
10
10
10
20
30
20
30
3
3
50
50
20
30
20
220
100
2
10
10
10
2.75
0.6
30'
20
30'
20
30
20
0.4·
1.0
1.2
10
10
20
43
1500
4
4
43
S
60
43
3.3
60
450
20()'
44
44
44
4
6
45
44
800
4
6
45
44
300
800
4
6
45
44
0.65 . 300
800
4
6
45
44
0.25
0.5
800
4
0.25
0.25
0.25
0.25
0.25
0.25
0.5
0.5
0.5
0.5
0.5
0.5
800
800
4
4
4
3.3
4
200
200
44
44
44
6
6
4
45
45
100
44
44
4
200
0.22
0.6
375
375
300
300
300
300
300
375
0.22
300
1
300
300
800
800
4
4
4
4
2.5
5
4
700
2
10
44
44
44
45
5
.-
45
45
46
I
-
~
Typo
No.
RF AMPS AND OSCILLATORS (Continued)
Case
Style
VCES'
VCBO
(V)
Min
;b
vCEO
(V)
Min
VEBO
(V)
Min
ICBO
(nA)
Max
@
VCB
(V)
hFE
Min Max
@
IC
& VCE
(rnA)
(V)
VCE(SATl VBE(SATl
(V)
(V)
&
Min Max
Max
30'
20
,
50·
15
25
2
10
TO-92
(96)
35
20
3
100
25
25
4
10
0.35
MPS6546
TO-92
(96)
35
25
3
100
25
20
2
·10
MPS6547
TO-92
(96)
35
25
3
100
25
20
2
MPSH11
TO-92
(96)
30
25
3
100
25
60
MPSH19
TO-92
(96)
30
25
3
100
15
MPSH24
TO-92
(96)
40
30
4
50
MPSH34
TO-92
(96)
45
45
4
PE3100
TO-92
(96)
·30'
30
PE5029
TO-92
(96)
30
PE5030B
TO-92
(96)
45
PE5031
TO-92
(96)
40
30
TIS86
TO-92
(98)
30
TIS87
TO-92
(98)
MPS6540
MPS6542
TO-92
(96)
MPS6543
@
IC
(rnA)
Cob/Cre
(pF)
Min Max
fT
(MHz)
Max
Min
@
Ic
(rnA)
NF
(dB)
M
ax
@
Freq
(MHz)
Process
No.
1.5
700
10
47
10
1
750
4
47
0.35
10
0.45
600
2
47
5
0.35
10
0.35
600
2
47
4
10
0.5
4
0.9
650
45
4
10
0.65
300
4
47
15
30
8
10
0.36
400
8
47
50
30
15
40
20
7
2
15
0.32
500
15
47
3
200
30
30
225
5
10
0.8
500
5
47
30
3
200
30
30
225
5
10
0.4
500
5
40
4.5
100
30
45
150
7
15
0.4
600
7
0.95
0.5
0.6
20
3
0.92
20
10
0.25
47
4
6
45
47
47
100
30
30
180
5
10
1
10
0.4
500
5
4.5
200
47
30
100
15
40
200
4
10
0.5
15
0.45
500
4
5
200
47
45
45
100
15
30
150
12
12
0.5
15
0.45
500
12
47
TO-92
(911
30
30
4
100
25
25
2
10
0.5
10
0.65
350
2
49
MPS6544
TO-92
(911
60
45
4
500
35
20
30
10
0.5
30
0.65
49
MPS6567
TO-92
(911
40
5
500
35
25
10
5
0.5
10
0.7
49
MPSH20
TO-92
(91)
30
4
50
15
25
4
10
10
0.65
400
4
49
MPSH37
TO-92
(91)
40
5
500
35
25
5
10
10
0.7
300
5
49
40
4
0.95
0.5
SJOIS!SueJl
Nd N
NPN Transistors
~
.LOW LEVEL AMPS
ICBO
(nA)
Max
fT
(MHz)
Min
Max
1.1
10
8
50
1.0
07
1.1
10
8
50
1;0
07
0.6
1.0
10
B
30
0.5
4
0.5
0.7
0.9
10
6
45
0.5
4
5
5
5
1.0
0.6
1.0
10
8
30
0.5
3
1
07
1
500jl.A
100jl.A
10jl.A
ljl.A
5
5
5
5
5
0.35
1
10
15
0.05
3
1
07
10
10jl.A
5
1.0
0.9
5
6
45
5
1
1
07
VCBO
(V)
Min
VCEO
(V)
VEBO
(V)
Min
Min
2N760
TO·18
45
45
8
200
30
76
1
300
(1 kHz)
5
1.0
2N760A
TO·18
60
60
8
100
30
76
40
1
333
(1 kHz) 10 jl.A
5
5
1.0
2N929
TO·18
45
45
5
10
45
350
10
500jl.A
10jl.A
5
5
5
1.0
10
500jl.A
10jl.A
ljl.A
5
5
5
5
10
500jl.A
lOjl.A
hFE
VCB
IV)
Min
60
40
2N929A
TO·18
60
45
6
2
45
2N930
TO·1B
45
45
5
10
45
2N2509
TO·1B
·TO·1B
60
125
60
80
6
7
10
5
45
100
.'.2N2510
TO·18
100
65
7
. 5
2N2511
TO·18
80
50
7
5
60
2N2586·
TO·18
60
45
6
2
45
120
120
600
150
100
2N24B4
@
Max
350
60
40
25
......
o
Cob
(pF)
Max
Case
Style
@
250
200
175
100
30
300
500
40
25
NF
Test
(dB)
Conditions
Max
IC
(mA)
VCE(SAT)
VBE(SAT)
(V)
(V)
&
Max
Min Max
Type
No.
IC
(mA)
& VCE
(V)
0.6
@
@
IC
(mA)
s---
1
Process
No.
07
07
I
80
150
75
500
10
10jl.A
5
5
1.0
0.9
5
6
45
5
4
2
07
240
120
80
750
10
10jl.A
ljl.A
5
5
5
1.0
0.9
5
6
45
5
4
2
07
600
10
·500jl.A
10jl.A
1
5
5
5
5
0.5
0.9
10
7
45
0.5
3.5
2
07
400
300
250 "'500
100
1
100jl.A
10jl.A
ljl.A
5
5
5
.5
0.35
1
4.5
60
0.5
1
2
07
800
10
1
500jl.A
l00jl.A
10jl.A
ljl.A
·5
5
5
5
5
0.5
5
5
60
1
2
1
07
150
120
80
2N3117
TO·18
60
60
6
10
45
2N3246
TO·18
60
40
10
1
40
400
350
300
200
150
360
600
5
0.7
0.7
0.9
180
I
W
LOW LEVEL AMPS (Continued)
VCBO
(V)
VCEO
(V)
Min
Min
VEBO
(V)
Min
ICBO
(nA)
Max
VCE(SAT)
VBE(SAT)
(V)
(V)
&
Min
Max
Max
cob
IT
(MHz)
Min
Max
NF
(dB)
Max
Test
Type
No.
Case
Style
2N3565
TO-92
(92)
Same as PN3565, see page 1-13 for explanation
2N3707
TO-92
(94)
30
30
6
100
20
100
400
lOO/lA
5
1.0
10
2N3708
TO·92
(94)
30
30
6
100
20
45
660
1
5
1.0
10
07
2N3709
TO-92
(94)
100
20
45
165
1
5
1.0
10
07
2N37lO
TO-92
(94)
30
30
6
100
20
90
330
1
5
1.0
10
07
2N3711
TO-92
(94)
30
30
6
100
20
180
660
1
5
1.0
10
07
2N3858A
TO·92
(94)
60
60
6
500
18
60
45
120
10
1
1
1
4
90
250
2
07
2N3859A
TO-92
(94)
60
60
6
500
18
100
75
200
10
1
1
1
4
90
250
2
07
2N3877
TO-92
(94)
70
70
4
500
70
20
250
2
4.5
0.5
0.9
10
07
2N3877A
TO-92
(94)
85
85
4
500
70
20
250
2
4.5
0.5
0.9
10
07
2N3900A
TO-92
(94)
18
18
5
100
18
250
500
2
4.5
2N3901
TO-92
(94)
18
18
5
100
15
350
700
2
4.5
2N4286
TO-92
(94)
30
25
6
50
25
150
100
600
1
100/lA
5
5
0.35
0.8
1
6
40
1
2N4287
TO-92
(94)
45
45
7
10
30
150
100
600
1
100/lA
5
5
0.35
0.8
1
6
40
1
5
1
07
2N4384
TO-18
40
30
5
10
30
150
120
100
60
10
1
10/lA
l/lA
5
5
5
5
0.2
0.65
0.8
10
8
30
120
0.5
2
1
07
10
1
10/lA
5
5
5
1
1
0.2
0.65
0.8
10
8
30
120
0.5
3
1
07
0.8
1
12
60
300
10
~
30
@
VCB
(V)
~
hFE
Min
@
Max
IC
(rnA)
& VCE
(V)
@
IC
(rnA)
(pF)
Max
@
IC
(rnA)
Conditions
Process
No.
07
2N4386
TO-18
40
30
5
10
30
120
100
40
2N4409
TO-92
(92)
80
50
5·
10
60
60
60
500
500
400
10
1
5
12
0.2
1
07
5
4
07
5
4
07
07
07
TEST CONDITIONS:
i
(1) Ie = 10 /lA, VeE = 5V, I = 10 Hz-15.7 kHz. (2) IC = 10 /lA, VeE = 5V, 1=1 kHz. (3) Ie = 5 /lA, VCE = 5V, I = 1 kHz. (4) Ie = 100 /lA, VeE = 5V, 1= 10 Hz-15.7 kHz. (5) Ie = 10 /lA, VeE = 5V, I = 10 kHz.
(6) Ie = 100 /lA, VCE = 5V, I = 5 kHz.
,
SJOIS!SueJl
,
Nd N
NPN Transistors
~
Type
No.
,
LOW LEVEL AMPS (Continued)
Case
Style
VCBO
(V)
VEBO
(V)
Min
VCEO
(V)
Min
Min
ICBO
(nA) @ VCB
(V)
Max
hFE
IC
(rnA)
@
Min
Max
&
VCE
(V)
VCE(SAT)
(V)
&
Max
VBE(SAT)
(V)
Min
Max
IC
(rnA)
fT
(MHz)
Cob
(pF)
Max
Min
Max
1
12
60
300
@
IC
(rnA)
NF
(dB)
Max
Test
Conditions
Process
No.
2N4410
TO·92
(92)
120
80
5
10
100
60
60
400
10
1
1
1
0.2
2N4966
TO·92
(92)
50
40
6
25
25
40
50
200
0.01
10
5
5
0.4
10
6
2N4967
TO-92
(92)
50
40
6
25
25
100
120
600
0.01
10
5
5
0.4
10
6
2N4968
TO-92
(92)
30
25
6
50
25
40
50
200
0.01
10
5
5
0.4
10
6
2N5088
TO-92
(92)
35
30
50
20
300
350
300
10
1
100 "A
10
1
100"A
1 rnA
5
5
5
0.5
10
4
3
3
07
5
5
5
0.5
10
4
2
3
07
5
0.4
1
5
5
5
5
0.7
10
4
30
0.5
4
5
07
5
5
5
0.7
10
4
30
0.5
3
4
07
5
0.125
10
4
4
2N5089
TO·92
(92)
30
25
2N5133
TO·92
(92)
20
18
2N5209
TO·92
(92)
50
2N5210
TO·92
(92)
50
2N5232
10
07
40
1
07
40
1
07
07
I
50
15
50
15
50
50
35
150
150
100
50
50
35
600
TO-92
(94)
50
30
50
250
250
200
250
500
10
1
100"A
10
1
100 "A
2
2N5232A
TO·92
(94)
50
30
50
250
500
2'
5
0.125
10
MPS3707
TO·92
(92)
30
100
20
100
400
100"A
5
1.0
10
MPS3708
TO·92
(92)
30
100
20
45
660
1
5
1.0
10
07
MPS3709
TO·92
(92)
30
100
20
45
165
1
5
1.0
10
07
MPS3710
TO·92
(92)
30
100
20
90
330
1
5
1.0
10
07
MPS3711
TO·92
(92)
30
100
20
180
660
1
5
1.0
10
07
MPS6571
TO·92
(92)
25
20
50
20
250
1000
100"A
5
0.5
10
4.5
50
0.5
07
MPSA09
TO·92
(92)
50
50
100
25
100
600
100"A
5
0.9
10
5
600
0.5
07
3
400
450
400
60
900
0.8
@
1200
1000
07
~
I\)
3
300
07
--
5
2
07
5
4
07
~
LOW LEVEL AMPS (Continued)
Type
No.
Case
Style
VCBO
(V)
VCEO
(V)
VEBO
(V)
Min
Min
Min
PE4010
TO·92
(92)
30
25
6
200
5
PN930
TO·92
(92)
45
45
5
10
45
TO·92
(92)
60
PN2484
ICBO
(nA) @ VCB
(V)
Max
hFE
6
10
& VCE
(V)
fT
@
(MHz)
Max
Min
IC
(rnA)
4
20
60
0.05
1
10
8
30
0.5
0.35
10
6
VBE(SATI
VCE(SATI
(V)
(V)
&
Min
Max
Max
Max
200
1000
1
10
0.35
600
10
500p.A
10p.A
5
5
5
1.0
10
1
500p.A
100p.A
10p.A
1 p.A
5
5
5
5
5
5
150
100
60
IC
(rnA)
@
Min
45
300
800
250
200
175
100
30
500
@
IC
(rnA)
Cob
(pF)
Max
1
1.0
0.6
NF
(dB)
Max
Test
Conditions
Process
No.
07
3
1
07
07
PN3565
TO·92
(92)
30
25
6
50
25
150
600
1
10
0.35
1
4
40
240
1
07
PN5133
TO·92
(92)
20
18
3
50
15
60
1000
1
5
0.4
1
5
40
240
1
07
~
~
TEST CONDITIONS:
(,)
(1) IC= 10 p.A, VCE = 5V, f = 10 Hz-15.7 kHz. (2) IC = 10 p.A, VCE = 5V, f = 1 kHz. (3) IC = 5 p.A, VCE = 5V, f = 1 kHz. (4) IC = 100 p.A, VCE = 5V, f = 10 Hz-15.7 kHz. (5) IC = 10 p.A, VCE = 5V, f = 10 kHz.
(6) IC= 100 p.A, VCE = 5V, f = 5 kHz.
~
Type
No.
GENERAL PURPOSE AMPS AND SWITCHES
Case
Style
VCBO
(V)
VCEO
(V)
Min
Min
VEBO
(V)
Min
ICBO
(nA) @ VCB
(V)
Max
hFE
@
IC
& VCE
Min
Max
(rnA)
(V)
VCE(SAT)
VBE(SAT)
@
Ic
(V)
(V)
&
(rnA)
Max
Min
Max
Cob
(pF)
Max
fT
IC
(MHz)
@ (rnA)
Min
Max
4
200
toft
(ns)
Max
NF
(dB)
Max
Test
Conditions
Process
5
8
02
No.
~
MPS3903
TO·92
(92)
60
40
6
20
35
50
30
15
150
0.1
1
10
50
100
1
1
1
1
1
0.2
0.3
0.65
0.85
10
1.0
50
10
TEST CONDITIONS:
(1) IC = 300 p.A, VCE = 10V, f = 1 kHz. (2) IC = 150 mA, VCC = 30V, ISl = IS2= 15 mA. (3) IC= 100p.A, VCE = 10V,f= 1 kHz. (4) Ic=300mA, VCC= 25V,ISl = IB 2 =30mA. (5) IC= 100p.A,
VCE = 4.5V, f = 15.7 kHz. (6) IC = 10 mA, VCC = 3V,ISl = IS2 = 1 mA.m IC= 100p.A, VCE=5V,f= 15.7 kHz.(S) IC= 250p.A, VCE=5V,f= 10 Hz-15.7 kHz. (9) Ic=3mA, VCE= 10V,f= 1 MHz.
(10) IC = 10 p.A, VCE = 5V, f = 15.7 kHz.
- - - _ .. -
--
SJOIS!SUBJl
NdN
NPN Transistors
~
-
Type
No.
Case
Style
VCBO
(V)
Min
MPS3904
. TO-92
(92)
60
vCEO
(V)
VEBO
(V)
Min
Min
40
6
ICBO
(nA)
Max
@
VCB
(V)
hFE
Min Max
40
70
100
60
30
100
35
100
200
300
@
IC
& VCE
(rnA)
(V)
VCE(SAT) VBE(SAT)"
(V)
(V)
&
Min Max
Max
0.1
1
10
50
100
1
1
1
1
1
0.2
100"A
10
5
5
0.5
0.3
0.65
@
IC
(rnA)
0.85
10
1.0
50
Cob
(pF)
Max
fT
(MHz).
Min Max
@
IC
(rnA)
10
toff
(ns)
Max
NF
(dB)
Max
Test
Conditions
Process
No.
5
8
02
4
200
10
12
100
300
10
02
TO-92
(92)
35
MPS6574
TO-92
(92)
35
100
35
100
300
(4 Groups)
1
5
0.5
10
12
100
300
.10
02
MPS6575
TO-92
(92)
45
100
45
100
200
100"A
10
5
5
0.5
10
12
100
300
10
02
MPS6576
TO-92
(92)
45
0.5
10
12
100
300
10
02
MPSA20
TO-92
(92)
40
125
5
02
2N2923
TO-92
(94)
25
2N2924
TO-92
(94)
2N2925
MPS6573
~
GENERAL PURPOSE AMPS AND SWITCHES (Continued)
500
500
100
45
100
300
(4 Gr.oups)
1
5
4
100
30
40
400
5
10
4
25
5
100
25
90
180
2
(1 kHz)
10
10
04
25
25
5
100
25
150
300
2
(1 kHz)
10
10
04
TO-92
(94)
25
25
5
100
25
235
470
2
(1 kHz)
10
10
04
2N2926
TO-92
(94)
18
18
5
500
18
35
470
2
(1 kHz)
10
10
04
2N3390
TO-92
(94)
25
25
5
100
18
400
800
2
4.5
10
04
2N3391
TO-92
. 25
25
5
100
18
250
500
2
4.5
10
5
5
04
5
5
04
....
~
(94)
2N3391A
TO-92
(94)
25
25
5
100
18
250
500
2
4.5
10
2N3392
TO-92
(94)
25
25
5
100
18
150
300
2
4.5
10
04
2N3393
TO-92
25
25
5
100
18
90
180
2
4.5
10
04
(94)
2N3395
TO-92
(94)
25
25
5
100
18
150
500
2
4.5
10
04
2N3396
TO-92
(94)
25
25
5
100
18
90
500
2
4.5
10
04
2N3397
TO-92
(94)
25
25
5
100
18
55
500
2
4.5
10
04
-
~
GENERAL PURPOSE AMPS AND SWITCHES (Continued)
VCEO
IV)
ICBO
InA) @ VCB
IV)
Max
Cob
IpF)
Max
IT
IMHz)
Max
Min
toll
Ins)
Max
NF
IdB)
Max
Type
No.
Case
Style
VCBO
IV)
Min'
Min
VEBO
IV)
Min
2N3398
TO-92
(94)
25
25
5
100
18
55
800
2
4.5
2N3415
TO-92
(94)
25
25
5
100
25
180
540
2
4.5
0.3
0.6
1.3
50
04
2N3416
TO-92
(94)
50
50
5
100
25
75
225
2
4.5
0.3
0.6
1.3
50
04
2N3417
TO-92
194)
50
50
5
100
25
180
540
2
4.5
0.3
0.6
1.3
50
04
2N3900
TO-92
(94)
18
18
5
100
18
250
500
2
4.5
2N4424
TO-92
(94)
40
40
5
100
25
180
540
2
4.5
0.3
2N5172
TO·92
(94)
25
25
5
100
25
100
500
10
10
0.25
MPS3392
TO·92
192)
25
25
5
100
18
150
300
2
MPS3393
TO-92
(92)
25
100
18
90
180
MPS3394
TO-92
(92)
25
100
18
55
MPS3395
TO-92
(92)
25
100
18
MPS3396
TO-92
192)
25
100
MPS3397
TO-92
192)
25
MPS3398
TO-92
192)
25
MPS5172
TO-92
(92)
hFE
@
IC
Min Max
ImA) &
VCE
IV)
VBEISAT)
VCEISATI
IV)
IV)
&
Max
Min Max
@
IC
ImA)
@
IC
ImA)
Test
Conditions
04
10
12
0.6
1.3
04
50
10
Process
No.
04
10
04
4.5
10
04
2
4.5
3.5
04
110
2
4.5
3.5
04
150
500
2
4.5
3.5
04
18
90
500
2
4.5
3.5
04
100
18
55
500
2
4.5
3.5
04
100
18
55
800
2
4.5
3.5
04
100
25
100
500
10
10
0.25
10
10
04
~
(J1
25
25
5
...
MPS6520
TO-92
192)
25
4
50
30
200
100
400
2
100!,A
10
10
0.5
50
3.5
3
10
04
MPS6521
TO-92
192)
25
4
50
30
200
150
600
2
100!,A
10
10
0.5
50
3.5
3
10
04
TlS97
TO·92
(97)
40
10
40
250
700
0.1
5
3
7
04
TEST CONDITIONS:
(1) IC ~ 300 !'A, VCE ~ 10V,f ~ 1 kHz. (2) IC~ 150 mA, Vce ~ 30V, 18 1 ~ 182~ 15 mA. (3) le~ 100!,A, VeE~ 10V,f ~ 1 kHz. (4) le~300mA, Vee~ 25V, 18 1 ~ 182~30mA. IS) le~ 100!,A,
VeE ~ 4.5V, f ~ 15.7 kHz. (6) Ie ~ 10 mA, Vee ~ 3V, 18 1 ~ 18 2 ~ 1 mA.17l le~ 100!,A,VeE~5V,f~ 15.7 kHz. (B) le~250JlA, VeE~5V,f~ 10 Hz-15.7 kHz. (9) le~3mA,VeE~ 10V,f~ 1 MHz.
(10) IC ~ 10 !,A, VeE ~ 5V, f ~ 15.7 kHz.
SJOIS!SueJl
Nd N
NPN Transistors
~
GENERAL PURPOSE AMPS AND SWITCHES (Continued)
100
12
100
50
13
2
0.8
100
12
100
50
13
50
2
1.0
100
12
100
50
13
100
10
1
500
150
10
1
500
150
10
1
100jLA
10
10
10
2
1
1
1
0.4
10
10
100
10
13
0.95
150
6.5
200
20
255
2
13
1.2
500
0.95
150
6.5
250
20
255
2
13
1.2
500
VCEO
(VI
vEBO
(VI
Min
Min
ICBO
(nAI
Max
2N3704
TO·92
(941
TO·92
(941
50
30
5
100
20
100
300
50
2
50
30
5
100
20
50
150
50
TO·92
(941.
TO·92
(941
40
20
5
100
20
30
600
40
20
5
500
15
TO·92
(921
60
100
100
35
20
50
40
20
40
100
80
40
20
40
40
100
100
60
40
20
2N3705
2N3706
2N3794
2N4400
2N4401
........
0>
TO·92
(92)
60
40
40
6
6
TO·92
(921
TO·92
(921
80
40
5
50
40
80
40
5
50
40
2N4951
TO·92
(941
60
30
5
50
40
2N4952
TO·92
(941
60
30
5
50
40
TO·92
(941
60
2N4944
2N4946
2N4953
30
5
50
40
2N4954
TO·92
(941
40
30
5
50
30
2N5220
TO·92
(921
TO·92
(921
15
15
3
100
10
25
25
4
300
15
50
30
5
100
20
2N5225
MPS3704
TO·92
(921
hFE
Min Max
100
75
50
200
150
75
60
40
20
30
25
30
25
100
600
150
300
120
300
200
300
600
@
IC & VCE
(mAl
(V)
600
600
300
VCE(SATI VBE(SATI
(VI
(VI
&
Min Max
Max
0.4
0.75
0.75
(MHzI
Min Max
600
@
IC
(mAl
(dBI
Max
Test
Conditions
Process
No.
0.4'
1
0.25
150
60
900
50
13
1
0.25
150
60
900
50
13
10
10
10
0.3
1.3
150
8
250
20
400
2
13
150
10
1
10
10
'10
0.3
1.3
150
8
250
20
400
2
13
150
10
10
10
10
10
10
10
10
10
10
10
2
0.3
1.3
150
8
250
20
400
2
13
0.3
1.3
150
8
250
20
400
2
13
0.5
1.1
150
10
100
20
13
0.8
1.0
100
20
50
20
13
100
12
100
50
13
150
30
150
30
150
10
1
150
10
1
50
10
50
50
50
0.75
0.75
@
2
1
1
1
1
1
600
NF
0.6
VCBO
(VI
Min
VCB
(VI
toft
(nsl
Max
Cob
(pFI
Max
Case
Styl.
@
for
IC
(mAl
Type
No.
I
0.6
I
~
I
fT
IC
(MHz)
@ (rnA)
Min
Max
100
12
100
50
13
1.0
100
12
100
50
13
10
10
0.5
50
4
13
500
100
10
10
1
1
0.5
1.0
100
5
13
500
100
10
10
1
1
0.3
1.0
100
5
13
30
100
1
0.5
1.2
100
5
13
30
40
20
1
0.15
100
6
150
20
BO
150
2
10
10
10
1
100
25
40
120
30
150
1
1
0.25
1
150
20
100
100
300
150
30
1
1
0.25
20
100
300
50
2
0.6
100
25
100
200
2
2
0.75
100
100
20
60
60
250
50
10
1
5
5
5
250
50
10
1
5
5
5
500
1
10
50
5
5
5
vCEO
(V)
Min
vEBO
(V)
Min
TO·92
(92)
50
30
"' MPS3706
TO·92
(92)
40
MPS6522
TO·92
(92)
MPS6530
TO·92
(92)
60
TO·92
(92)
60
MPS6532
TO·92
(92)
50
30
5
100
30
NCBT13
TO·92
(92)
BJl
40
4
100
PN3566
TO·92
(92)
40
30
5
50
PN3567
TO·92
(92)
BO
40
5
50
40
40
40
PN3569
TO·92
(92)
BO
40
5
50
40
PN5449
TO·92
(92)
50
30
5
100
PN5B16
TO·92
(92)
50
40
5
2N5550
TO·92
(92)
160
140
6
TO·92
(92)
180
TO·92
(92)
120
MPS3705
2N5551
2N5830
NF
(dB)
Max
Cob
(pF)
Max
vCBO
(V)
Min
Case
Style
~
~
GENERAL PURPOSE AMPS AND SWITCHES (Continued)
Type
No.
MPS6531
....
I
ICBO
(nA) @ VCB
(V)
Max
VCE(SAT)
VBE(SAT)
@
IC
(V)
(V)
&
(rnA)
Max
Min Max
hFE
@
IC
& VCE
Min Max
(rnA)
(V)
5
100
20
50
150
50
2
O.B
20
5
100
20
30
600
50
2
25
4
50
20
100
200
400
0.1
2
40
5
50
40
25
40
30
120
50
90
60
270
toff
(ns)
Max
Test
Process
Conditions
No.
I
I
40
160
100
5
6
5
50
50
50
40
120
100
30
BO
BO
60
BO
BO
600
20
13
700
30
13
60
900
50
13
150
60
900
50
13
100
100
50
13
1.2
500
100
50
13
0.15
1.0
10
0.25
1.2
50
0.15
1.0
10
0.2
1.0
50
0.15
0.2
0.25
O.B
1
1
1
10
50
6
100
300
10
10
B
16
6
100
300
10
B
B
16
100
500
10
16
TEST CONDITIONS:
(1) IC = 300 IlA. VCE = 10V. f = 1 kHz. (2) IC = 150 rnA. Vcc = 30V. 18 1 =18 2 = 15mA.(3) Ic= lOOIlA.VCE= 10V.I= 1 kHz. (4) Ic=300mA.Vcc=25V.ISl = IS 2 =30mA.(5) IC= lOOIlA.
VCE = 4.5V, I = 15.7 kHz. (61 IC = 10 rnA, Vcc = 3V, 18 1 = IB2 = 1 rnA. (7) IC= 1001lA. VCE =5V,I= 15.7 kHz. (B) IC= 250IlA. VCE=5V,I= 10 Hz-15.7 kHz. (9) Ic=3mA. VCE = 10V,I= 1 MHz.
(10) IC = 10 IlA, VCE = 5V, I = 15.7 kHz.
SJO~S!sut:U!
Nd N
NPN Transistors
:~
~
~
GENERAL PURP'()SE AMPS AND SWITCHES (Continued)
VCBO
(V)
Min
VCEO
(V)
Min'
VEBO
(V)
Min
TO·92
(92)
140
120
6
1 p.A
40
50
300
10
5
0.2
0.2
MPS809B
TO-92
(92)
60
0
6
100
60
300
MPS8099
TO-92
(92)
80
80
6
100
60
300
1
10
100
1
10
100
1
5
5
5
5
5
5
5
Type
No.
Case
Style
MPSLOl
ICBO
(nA) @ VCB
Max
(V)
. hFE
Mon Max
@
IC
&
(rnA)
VCE
(V)
VCE(SATl VBE(SAT)
(V)
&
(V)
Max
Min Max
1.2
1.4
@
IC
(rnA)
Cob
h'iF)
Max
fT
(MHz)
Min Max
@
IC
(rnA)
toft
(ns)
Max
NF
(dB)
Max
Te~.
Cond,t,ons
Process
'No.
10
50
8
60
10
16
0.3
100
6
150
10
lB
0.3
100
6
150
10
18
0.5
100
2
10
lB
100
2
10
lB
19
19
,-TIS98
TO-92
(97)
60
10
40
100
100
75
100
100
75
100
TIS9S
TO-92
(97)
65
10
40
55
300
100
5
'0.5
2N696
2N697
TO-5
TO-5
60
60
5
5
1 p.A
1 p.A
30
30
20
40
60
120
150
150
10
10
1.5
1.5
1.3
1.3
150
150
20
35
40
50
50
50
2N718
2N718A
TO-1B
TO-18
60
75
5
7
1 p.A
10
30
60
40
20
40
35
20
40
100
75
35
20
120
150
500
150
10
100p.A
500
150
10
100p.A
10p.A
10
10
10
10
10
10
10
10
10
10
1.5
1.5
1.3
1.3
150
150
35
25
50
60
15
50
12
1
19
I
19·
1.5
1.3
150
25
70
50
8
1
19
150
5
10
5
1.5
1.0
1.3
150
10
35
10
50
60
50
5
19
19
500
150
150
10
1
l00p.A
10
1
10
10
10
10
0.4
1.3
150
B
250
20
19
1.6
2.6
500
500
150
150
10
1
100p.A
10
1
10
10
10
10
0.3
1.2
150
8
250
20
45
30
CD
,
2N956
TO-18
75
35
7
10
60
300
120
300
2N1420
2N1566
TO-5
TO-5
60
80
30
60
5
5
1 p.A
1 p.A
30
40
100 300
80200
2N221B
TO-5
60
30
5
10
50
20
20
40
35
25
20
(1 kHz)
2N2218A
TO-5
75
40
6
---
10
-
60
--
-
25
20
40
35
25
20
--
----
120
120
---------
0.6
285
2
19
I
~
GENERAL PURPOSE AMPS AND SWITCHES (Continued)
Type
No.
Style
2N2219
TO·5
Case
2N2219A
2N2221
TO·5
TO·18
VCBO
(V)
Min
vCEO
(V)
Min
vEBO
(V)
Min
ICBO
(nA)
Max
60
30
5
10
75
60
40
30
6
5
10
10
@
VCB
(V)
50
60
50
~
co
2N2221A
2N2222
2N2222A
2N2897
TO·18
TO·18
TO·18
TO·18
75
60
75
40
30
40
60
6
5
6
7
10
10
10
50
60
50
60
60
hFE
Min
30
50
100
75
50
35
40
50
100
75
50
35
20
20
40
35
25
20
25
40
35
25
20
30
50
100
75
50
35
40
50
100
75
50
35
35
50
@
Max
IC
&
(rnA)
300
500
150
150
10
1
300
100 "A
500
150
150
10
1
100"A
120
120
300
300
200
VCE
(V)
10
1
10
10
10
10
VCE(SAT)
VBE(SAT)
(V)
(V)
&
Min
Max
Max
@
IC
(rnA)
cob
(pF)
Max
IT
(MHz)
Min
Max
8
250
20
@
IC
(rnA)
0.4
1.3
150
1.6
2.6
500
1.2
2
150
500
8
300
20
8
250
20
8
250
20
8
250
20
8
250
20
0.6
10
1
10
10
10
10
500
150
150
10
1
100"A
10
1
10
10
10
10
0.4
1.3
150
1.6
2.6
500
500
150
10
1
0.3
1.2
150
1.0
2.0
500
100"A
10
10
10
10
10
500
150
150
10
1
100"A
10
1
10
10
10
10
0.4
1.3
150
1.6
2.6
500
500
150
150
10
1
100"A
10
1
10
10
10
10
0.3
1.2
150
1
2
500
1
150
10
10
1
1.3
150
0.6
0.6
toll
(ns)
Max
NF
(dB)
Max
Test
Conditions
Process
No.
19
285
2
19
19
285
2
19
19
285
4
2/3
15
19
19
TEST CONDITIONS:
(1) IC = 300 "A, VeE = 10V, I = 1 kHz. (2) Ie = 150 rnA, Vee = 30V, IB 1 = IB2 = 15 rnA. (3) Ie = 100 "A, VeE = 10V, f = 1 kHz. (4) Ie = 300 rnA, Vee = 25V, 18 1 = IB2 = 30 rnA. (5) Ie = 100 "A,
VCE = 4.5V, I = 15.7 kHz. (6) Ie = 10 rnA, Vee = 3V, IB 1 = 18 2 = 1 rnA. (7) Ie = 100 "A, VeE = 5V, f = 15.7 kHz. (8) Ie = 250 "A, VeE = 5V, I = 10 Hz-15.7 kHz. (9) Ie = 3 rnA, VeE = 10V, 1= 1 MHz.
(10) Ie
= 10 "A, VeE = 5V, I = 15.7 kHz.
---
SJOIS!SUIUl
Nd N
NPN Transistors
~
GENERAL PURPOSE AMPS AND SWITCHES (Continued)
VCBO'
VCEO
VEBO
(V)
(V)
(V)
Min
Min
Min
TO·18
60
20
TO·18
60
20
TO·5
60
30
5
5
5
Type
No.
Case
Style
2N3115
2N3116
2N3299
2N3300
2N3301
TO-5
60
TO·18
60
30
30
5
5
ICBO
(nA)
Max
@
VCB
(V)
2N3414
TO-92
(94)
2N3641
TO-92
(92)
2N3642
TO·92
(92)
2N3643
TO·92
(92)
2N3678
TO·5
2N4140
TO·92
(92)
60
25
I
I
30
25
5
5
IC & VCE
(rnA)
(V)
)/CE(SAT)
(V)
Max
VBE(SATI
&
(V)
Min
IC
@
A)
(
Max
m
50
40
120
150
10
0.5
1.3
150
25
50
100
300
150
10
0.5
1.3
150
10'
50
20
20
40
35
25
20
500
150
150
10
10
0.22
1.1
150
0.6
1.5
500
10
1
10
10
10
10
0.22
1.1
150
0.6
1.5
500
10
0.22
1.1
150
10
10
10
10
6.6
1.5
500
10
0.22
1.1
150
10
10
10
10
0.6
1.5
500
4.5
0.3
1.3
50
10'
10'
50
50
~
TO-18
@
25
~
2N3302
hFE
Min Max
10'
100
50
25
50
50
100
75
50
35
20
20
40
35
25
20
50
50
100
75
50
35
75
120
100llA
300
500
150
150
10
100llA
120
500
150
150
10
100llA
300
225
500
150
150
10
1
100 IlA
2
10
10
10
10
0.6
Cob
(pF)
Max
fT
(MHz)
Min
Max
@
IC
(rnA)
toff
(ns)
Max
NF
(dB)
Max
Test
Conditions
Process
No.
19
8
8
8
250
20
500
2
250
20
500
2
19
250
50
150
4
19
8
250
50
150
4
19
8
250
50
150
4
19
8
250
50
150
4
19
19
Same as PN3641, see page 1-22 for explanation
19
Same as PN3642, see page 1-22 for explanation
19
Same as PN3643, see page 1·22 for explanation
19
75
55
6
10
60
Same as PN4140, see 'page 1-22 for explanation
25
20
40
35
25
20
120
500
150
150
10
100llA
10
0.4
10
10
10
10
1.0
0.6
1.2
150
2.0
500
250
2
19
19
--
~
~
~
GENERAL PURPOSE AMPS AND SWITCHES (Continued)
VCBO
(V)
Min
VCEO
(V)
Min
VEBO
(V)
Min
ICBO
(nA)
Max
VBE(SATI
VCE(SATI
(V)
(V)
&
Min
Max
Max
cob
(pF)
Max
fT
(MHz)
Max
Min
toff
(ns)
Max
NF
(dB)
Max
Test
Conditions
Process
Type
No.
Case
Style
2N4141
TO·92
(92)
Same as PN4141, see page 1·22 for explanation
19
2N4969
TO-92
(92)
Same as PN2221, see below for explanation
19
2N4970
TO·92
(92)
@
VCB
(V)
hFE
Min Max
@
IC
&
(rnA)
VCE
(V)
@
IC
(rnA)
@
IC
(rnA)
No.
I
50
30
100
70
50
5
350
150
10
150
10
10
1
0.4
0.6
1.2
150
8
200
19
20
2N5128
TO·92
(92)
Same as PN5128, see page 1-22 for explanation
19
2N5129
TO·92
(92)
Same as PN5129, see page 1-22 for explanation
19
2N5135
TO·92
(92)
Same as PN5135, see page 1·22 for explanation
19
2N5136
TO-92
(92)
Same as PN5136, see page 1-22 for explanation
19
2N5137
TO·92
(92)
Same as PN5137, see page 1-22 for explanation
19
PN2221
TO-92
(92)
PN2221A
PN2222
TO·92
(92)
TO·92
(92)
,
I
I
I
I
i
60
75
60
30
40
30
5
6
5
10
10
10
50
60
50
20
20
40
35
25
20
25
20
40
35
25
20
30
50
100
75
50
35
120
120
300
500
150
150
10
1
lOO/lA
10
1
10
10
10
10
0.4
1.3
150
1.6
2.6
500
500
150
150
10
1
100/lA
10
1
10
10
10
10
0.3
500
150
150
10
1
100/lA
10
1
10
1
1
1
8
250
19
20
I
1.2
150
1.0
2.0
500
0.4
1.3
150
1.6
2.6
500
0.6
8
250
20
8
250
20
285
2
19
19
TEST CONDITIONS:
(t) IC = 300 /lA, VCE = 10V, f = 1 kHz. (2) IC = 150 rnA, Vce = 30V, IB 1 = IB2 = 15 rnA. (3) Ie = 100 /lA, VCE = 10V, f = 1 kHz. (4) Ie = 300 rnA, Vee ~ 25V, IS 1 = Is2 = 30 rnA. (S) Ie = 100 /lA,
VCE = 4.5V, f = 15.7 kHz. (6) Ie = 10 rnA, VCC = 3V,IS' = IS2 = 1 rnA.m Ie = 100/lA, VeE=5V,f= 15.7 kHz.(S} le= 250/lA, VCE=5V,f= 10 Hz-15.7 kHz.(9} Ie =3 rnA, VeE= 10V,f= 1 MHz.
(10) Ie = -10 /lA, VeE = 5V, f = 15.7 kHz.
---
-
SJOIS!SUBJl
NdN
NPN Transistors
~
GENERAL PURPOSE AMPS AND SWITCHES (Conlinued)
Type
No.
Case
Styl.
PN2222A
TO·92
(92)
PN3S41
PN3642
PN3643
PN4140
~
Min
VCEO
(V)
Min
VEBO
(V)
Min
ICBO
(nA)
Max
75
40
6
10
VCBO
(V)
TO·92
(92)
SO'
TO·92
(92)
60
TO·92
(92)
60
TO-92
(92)
60
30
45
30
30
5
5
. 5
50'
50'
50'
@
VCB
(V)
60
50
50
50
5
TO-92
(92)
60
30
IC
&
(rnA)
VCE
(V)
IC
(rnA)
Cob
(pF)
Max
fT
(MHz)
Min
Max
1.2
150
8
2.0
500
VCE(SAT)
VBE(SATl
(V)
(V)
&
Max
Min
Max
@
Ic
(rnA)
toff
(ns)
Max
300
20
285
@
NF
(dB)
Max
Test
Conditions
Process
No.
2
19
15
40
120
15
40
500
150
10
10
0.22
150
8
250
50
19
120
20
100
500
150
10
10
0.22
150
8
250
50
19
300
500
150
150
10
1
10
1
10
10
10
10
0.4
1.3
150
8
250
20
310
2
19
1.6
2.6
500
500
150
150
10
1
100"A
50
10
10
1
10
10
10
10
0.4
1.3
150
8
250
20
310
2
19
1.6
2.6
500
10
10
0.25
1.1
150
10
200
800
50
19
30
50
100
75'
50
35
5
@
500
150
150
10
1
100"A
500
150
40
50
100
75
50
35
20
20
40
35
25
20
e
PN4141
hFE
Min Max
300
120
100 "A
300
10
1
10
1
1
1
0.3
10
10
0.22
150
8
250
50
19
O.S
1.0
PN5128
TO-92
(92)
15
12
3
50
10
35
20
350
PN5129
TO·92
(92)
15
12
3
50
10
35
20
350
50
10
10
10
0.25
1.1
150
10
200
800
50
19
PN5135
TO-92
(92)
30
25
4
300
15
50
15
SO'
10
2
10
10
1.0
1.0
100
25
40
500
30
19
PN5136
TO-92
(92)
30
20
3
100
20
20
20
400
150
30
1
1
0.25
1.1
150
35
40
400
50
19
PN5137
TO·92
(92)
30
20
3
100
20
20
20
400
150
30
1
1
'0.25
1.1
150
35
40
400
50
19
TN2218A
TO-237
(91)
75
40
6
10
60
25
20
40
35
25
20
500
150
150
10
1
100 "A
10
1
10
10
10
10
1.2
150
8
250
---
120
0.3
0.6
20
-
-
--
285
2
19
~
Type
No.
TN2219
TN2219A
TIS90
TIS92
~
~
2N915
2N916
2N3691
2N3692
2N3903
2N3904
2N3946
GENERAL PURPOSE AMPS AND SWITCHES (Continued)
Case
Style
TO-237
(91'
TO·237
(91'
TO-92
(94'
TO·92
(97'
TO-1S
TO-18
TO-92
(92'
TO·92
(92'
TO-92
(92'
TO-92
(92'
TO·18
VCBO
(V,
Min
VCEO
(V,
Min
VEBO
Min
ICBO
(nA'
Max
60
30
5
10
(VI
@
VCB
(V,
IC & VCE
(mA'
(V,
VCE(SAT' VBE(SATI
(V,
(V,
&
Max
Min Max
40
40
5
100
20
100
300
40
40
5
100
20
100
300
50
2
0.25
70
45
50
25
5
5
10
10
60
30
50
50
200
200
10
10
5
1
1.0
0.5
40
6
10
60
30
50
100
75
50
35
40
50
100
75
50
35
@
500
150
150
10
1
0.1
500
150
150
10
1
0.1
50
75
50
hFE
Min Max
300
300
@
fT
(MHz'
Min
Max
IC
(mA'
Cob
(pF'
Max
8
50
20
8
60
20
@
Ic
(mA'
toff
(ns'
Max
NF
(dB'
Max
Test
Conditions
Process
No.
19
0.4
1.3
150
1.6
2.6
500
1.2
150
2.0
500
0.6
1
50
19
0.6
1
50
19
0.9
0.9
10
10
10
1
10
10
10
10
10
1
10
10
10
10
2
0.25
0.3
0.6
4
3
19
!
1.0
3.5
6
250
300
23
23
10
10
Same as PN3691, see page 1-25 for explanation
23
Same as PN3692, see page 1-25 for explanation
23
60
60
60
40
40
40
6
6 .
6
30
15
30
50
35
20
30
60
100
70
40
20
50
45
30
150
300
150
100
50
10
1
100!'A
100
50
10
1
100!,A
50
10
1
100!,A
1
1
1
1
1
0.2
1
1
1
1
1
1
1
1
1
0.2
0.6
0.3
0.65
0.3
0.2
0.3
0.6
0.85
10
0.95
50
0.85
10
0.95
50
0.9
10
1.0
50
4
250
10
225
6
6/7
23
4
300
10
250
5
6/7
23
4
250
10
375
5
6/7
23
TEST CONDITIONS:
(1) IC = 300 !'A, VCE = 10V, f = 1 kHz. (2) Ic = 150 mA, VCC = 30V, ISl = IS2 = 15 mAo (3'IC = 100!,A, VCE = 10V, f = 1 kHz. (4'IC = 300 mA, Vce = 25V,IS 1 = Is2 = 30 mAo (5'IC = 100 !,A,
VCE = 4.5V, f = 15.7 kHz. (611c = .10 mA, VCC = 3V,ISl = IS2 = 1 mA.I7IIC= 100!,A, VCE=5V,f= 15.7 kHz.(S) IC=250!,A, VCE=5V,f= 10Hz-15.7kHz.(9'lc=3mA,VCE= 10V,f= 1 MHz.
(10'IC = 10!,A, VCE = 5V, f = 15.7 kHz.
.SJOIS!SUeJ!
Nd N
NPN Transistors
...•..~
GENERAL PURPOSE AMPS AND SWITCHES (Continued)
Type
No.
Case
Style
VCBO
2N3947
TO-18
2N4123
Min
Min
VEBO
(V)
Min
60
40
6
ICBO
V
(nA). @
CB
Max
(V)
. hFE
@
IC
&
Min Max
(mA)
40
100
90
60
300
VCE
(V)
50
10
1
lOOILA
1
1
1
1
VCE(SAT) VBE(SAT)
IC
(V)
(V)
&
@ (mA)
Max
Min
Max
0.9
10
0.3
1.0
50
0.2
0.6
Cob
(pF)
Max
fT
IC
(MHz)
@ (mA)
Min Max
(ns)
Max
NF
(dB)
Max
4
300
10
450
taft
Conditions
Process
No.
5
617
23
Test
25
50
50
2
1
1
0.3
0.95
50
4
250
10
6
7
23
150
60
120
50
2
1
1
0.3
0.95
50
4
300
10
5
7
23
360
18
30
90
2
4.5
4
23
500
18
75
225
2
4.5
4
23
5
500
18
75
225
2
4.5
3.5
23
25
5
500
25
90
180
2
(1 kHz)
10
12
23
25
25
5
500
25
150
2
300
(1 kHz)
10
12
23
TO-92
(92)
25
25
5
500
25
235
470
2
(1 kHz)
10
12
23
MPS2926
TO-92
(92)
25
25
5
500
18
35
470
2
(1 kHz) (5 Groups)
10
3.5
23
MPS3642
.TO-92
(92)
MPS3721
TO-92
(92)
MPS3826
TO-92
(92)
60
45
MPS3827
TO-92
(92)
60
MPS6512
TO-92
(92)
40
TO-92
(92)
40
TO-92
(92)
40
TO·92
(92)
30
MPS2711
TO-92
(92)
18
18
5
500
MPS2712
TO-92
(92)
18
18
5
MPS2716
TO-92
(92)
18
18
MPS2923
TO-92
(92)
25
MPS2924
TO-92
(92)
MPS2925
MPS6513
MPS6514
MPS6515
TO-92
(92)
30
25
5
50
40
~
....
VCEO
(V)
TO·92
(92)
2N4124
r\>
(VI
5
50
20
20
Same as PN3642, see page 1-22 for explanation
40
I
23
500
18
60
660
2
(1 kHz)
10
3.5
4
100
30
40
160
10
10
3.5
200
800
10
23
45
4
100
30
100
400
10
10
3.5
200
800
10
23
30
4
50
30
30
50
100
2
10
10
0.5
50
3.5
23
100
10
10
50
3.5
23
180
100
2
0.5
90
90
150
100
2
10
10
0.5
50
3.5
23
300
150
250
100
2
10
10
0.5
50
3.5
23
500
30
25
25
4
4
4
50
50
50
30
30
30
60
23
,
.-
~
GENERAL PURPOSE AMPS AND SWITCHES (Conlinued)
VCBO
VCEO
VEBO
No.
Case
Style
(V)
(V)
(VI
Min
Min
Min
NS3903
TO-18
60
40
6
Type
NS3904
TO·18
60
40
ICBO
(nA)
Max
@
VCB
(V)
hFE
Min Max
15
30
50
35
20
6
150
@
Ic
&
(rnA)
VCE
(V)
100
50
10
VCE(SAT)
VBE(SAT)
(V)
& . (V)
Max
Mm
Max
0.2
@
IC
(rnA)
0.85
10
0.95
50
0.85
10
0.3
0.95
50
0.65
0.3
Cob
(pF)
Max
fT
(MHz)
Min Max
IC
(rnA)
toft
(ns)
Max
4
250
10
4
300
10
@
NF
Conditions
Process
No.
225
6
23
250
6
23
(dB)
Max
Test
100ILA
30
60
100
70
40
300
100
50
10
0.2
0.65
100ILA
PN3691
TO·92
(92)
35
20
4
50
15
40
160
10
0.7
0.9
10
3.5 1 200
500
10
23
PN3692
TO·92
(92)
35
20
4
50
15
100
400
10
0.7
0.9
10
3.5 1 200
500
10
23
ST3904
TO-92
(92)
60
40
6
40
70
100
60
30
0.1
0.2
0.85
10
4
300
10
50
100
0.95
50
~
~
0.65
0.3
2N2712
TO·92
(94)
18
18
5
500
18
75
225
2
4.5
2N2714
TO·92
18
18
5
500
18
75
225
2
4.5
25
5
100
18
55
110
2
4.5
12
0.3
0.6
1.2
300
1 80
10
300
8
23
27
2
27
50
(94)
2N3394
TO·92
(94)
25
2N3693
TO-92
(92)
Same as MPS3693."see page 1-26 for explanation
27
2N3694
TO·92
(921
Same as PN3694. see page 1·26 for explanation
27
2N3721
TO·92
(94)
18
18
5
500
18
60
660
2
(1 kHz)
10
12
2N3827
TO·92
(94)
60
45
4
100
30
100
400
10
10
3.5 1 200
800
10
27
2N3858
TO·92
(94)
30
30
4
500
18"
60
120
2
4.5
4
250
2
27
27
10
27
90
TEST CONDITIONS:
(1) IC ~ 300 ILA, VeE ~ 10V, f ~ 1 kHz. (2) Ie ~ 150 rnA, Vee ~ 30V, 18 1 ~ IB2~ 15mA.(3) le~ 1001LA, VeE~ 10V,f~ 1 kHz. (4) le~300mA, Vee~ 25V, 18 1 ~ 182~30mA. (51Ie~ 1001LA,
VeE ~ 4.5V, f ~ 15.7 kHz. (6) Ie ~ 10 rnA, Vee ~ 3V, 18 1 ~ 18 2 ~ 1 rnA. (7) le~ 1001LA, VeE~5V,f~ 15.7 kHz. (B) le~ 250ILA, VeE ~5V,f~ 10 Hz-15.7 kHz. (9) Ie ~3mA, VeE~ 10V,f~ 1 MHz.
(10) Ie ~ 10 ILA, VeE ~ 5V, f ~ 15.7 kHz.
SJOIS!SUeJl
Nd N
NPN Transistors
~
Type
No.
Case
Style
VCBO
(V)
Min
VCEO
(V)
Min
VEBO
(V)
Min
ICBO
(nA) @ VCB
(V)
Max
hFE
@
IC
& VCE
Min Max
(mA)
(V)
VCE(SAT) VBE(SAT)
IC
(V)
(V)
&
@ (mA)
Max
Min Max
Cob
(pF)
Max
fT
IC
(MHz)
@ (mA)
Min Max
toff
(ns)
Max
NF
(dB)
Max
Test
Conditions
Process
No.
2N3859
TO-92
(94)
30
30
4
500
18
100
200
2
4.5
4
90
250
2
27
2N3860
TO-92
(94)
30
30
4
500
18
150
300
2
4.5
4
90
250
2
27
2N5127
TO-92
(92)
Same as PN5127, see below .for e~planation
27
2N5131
TO-92
(92)
Same as PN5131. see below for explanation
27
2N5132
TO-92
(92)
Same as PN5132, see below for explanation
27
2N5219
TO-92
(92)
20
15
3
100
10
35
500
2
10
0.4
1.0
10
4
150
10
27
2N5223
TO-9.2
(92)
25
20
3
100
10
50
800
2
10
0.7
1.2
10
4
150
10
27
MPS3693
TO-92
(92)
45
45
4
50
35
40
160
10
10
3.5
200
10
4
9
27
MPS3694
TO-92
(92)
45
45
4
50
35
100
400
10
10
3.5
200
10
4
9
27
MPS6564
TO-92
(92)
45
5
500
40
25
10
5
0.5
10
4
27
MPS6565
TO-92
(92)
60
45
4
100
30
40
160
10
10
0.4
10
3.5
27
MPS6566
TO-92
(92)
60
45
4
100
30
100
400
10
10
0.4
10
3.5
200
10
27
MPSA10
TO-92
(92)
40
4
100
30
40
400
5
10
4
50
5
27
PN3694
TO-92
(92)
45
45
4
50
30
100
400
10
1
6
200
10.
27
- PN5127
TO-92
(92)
20
12
3
-50
10
15
300
2
10
0.3
10
3.5
150
2.
27
PN5131
TO-92
(92)
20
15
3
50
10
35
500
10
1
1.0
10
6
100
10
27
PN5132
TO-92
(92)
20
20
3
50
10
30
400
10
10
2.0.
10
3.5
200
10
27
-"
~
GENERAL PURPOSE AMPS AND SWITCHES (Continued)
i
-
1.0
0.9
TEST CONDITIONS:
(1) IC = 300 "A, VCE = 10V, f = 1 kHz. (2) IC = 150 mA, Vcc = 30V, IB 1 = IB2 = 15 mAo (3) IC = 100 "A, VCE = 10V, f = 1 kHz. (4) IC = 300 mA, Vcc = 25V,IB 1= IB2 = 30 mAo (5) IC = 100 "A,
VCE = 4.5V, f = 15.7 kHz. (6) IC = 10 mA. Vcc = 3V,IB 1 = IB2 = 1 mA.17l IC= 100"A,VCE=5V,f= 15.7 kHz. (SliC = 250 "A, VCE =5V,f= 10 Hz-15.7 kHz. (9) IC=3mA,VCE= 10V,f= 1 MHz.
(10)IC = 10 /LA, VCE = 5V, f = 15.7 kHz.
- --
------
~
MEDIUM POWER
VCER'
VCEO
(V)
VEBO
(V)
Min
ICES'
ICBO @ VCB
(nA)
(V)
Max
Case
Style
VCBO
(V)
Min
2NS99
TO·39
120
SO
5
2
SO
40
2N1S13
TO·5
75
35 .
7
10
SO
20
40
35
20
Type
No.
2N1711
2N2017
2N2102
TO·5
TO·39
TO·39
75
SO
120
Min
35
SO
65
7
8
7
10
10JJ.A
2
SO
30
60
,\)
.....
2N2192
2N2192A
2N2193
TO-39
TO-39
TO-39
SO
SO
80
40
40
50
5
5
8
10
10
10
30
30
80
hFE
@ IC
& VCE
Min
Max
(rnA)
(V)
40
100
75
35
20
20
50
20
10
20
35
40
25
10
15
75
100
70
35
15
15
75
100
70
35
15
15
30
40
30
20
15
120
120
300
200
120
300
300
120
VCE(SAT) VBE(SAT)
IC
(V)
(V)
&
@ (rnA)
Max
Max
Min
Cob
(pF)
Max
IT
IC
(MHz)
@ (rnA)
Min
Max
toll
(ns)
Max
NF
(dB)
Max
Test
Conditions
Process
No.
150
10
5.0
1.3
150
20
50
50
500
150
10
100JJ.A
10
10
10
10
1.5
1.3
150
25
SO
50
12
1
12
500
150
10
100JJ.A
10JJ.A
10
10
10
10
10
1.5
1.3
150
25
70
50
8
1
12
10
200
lA
10
10
15
2.0
om
10
10
10
10
10
10
0.5
1.1
150
15
so
50
12
0.1
10
150
500
lA
0.01
0.1
10
150
500
lA
10
10
10
10
10
10
0.35
1.3
150
10
50
50
12
om
10
10
10
10
0.25
1.3
150
20
50
50
12
0.35
1.3
150
20
50
50
12
0.1
10
150
500
lA
10
0.Q1
0.1
10
150
500
lA
10
10
10
10
10
10
12
12
200
10
TEST CONDITIONS:
(1) Ie = 50 rnA, Vee = 100V, lSI = IS 2 =5mA.(2) le= 500JJ.A, VeE = 10V,f= 1 kHz. (3) le= 500mA, Vee=30V,ISl = IB2= 50mA. (4) le= 150mA, Vee= 30V,IB 1 = IB2= 15mA. (5) le= 100JJ.A,
Vce = 10V, f = 1 kHz. (S) Ie = 500 mA, Vee = 30V, IB 1 = IB2 = 50 mAo (7) Ie = 2A, Vee = 40V, IB 1 = IB2 = 200 mAo
~----.------
---------
------
SJOIS! SUeJl
Nd N
N PN Transistors
~,
Typs
No.
2N2193A
~
~
MEDIUM
Case
Styls'
TO-39
POWER(Continued)
VCBO
(V)
Min
80
VCER'
VCEO
(V)
Min
50
VEBO
(V)
Min
8
ICES'
ICBO @ VCB
(nA)
(V)
Max
10
60
hFE
@ IC
& VCE
Min Max
(mA)
(V)
15
30
46
30
;10
15
120
VCE(SATI VBE(SATI
IC
(V)
(VI &
@ (mA)
Max
Min
Max
Cob
(pF)
Max
fT
IC"
(MHt)
@ (mA)
Min Max
toff
(nsl
Max
NF
(dBI
Max
Test
Conditions
Process
No.
0.1
10
150
150
500
lA
10
10
10
1
10
10
0.25,
1.3
150
20
50
50
12
2N2195
TO-39
45
25
5
100
30
10
20
150
150
1
10
0.35
1.3
150
20
50
50
12
2N2195A
TO-39
45
25
5
100
30
150
150
1
10
0.25
1.3
150
20
50
50
12
2N2243
TO-39
120
80
7
10
60
10
20
15
30
40
30
15
10
10
10
1
10
0.35
1.3
150
15
50
50
12
120
0.1
,10
150
150
500
10
10
10
. ·1
10
0.25
1.3
150
15
50
50
12
120
0.1
10
150
150
500
1.2
150
15
100
50
12,
150
10
10
0.9
200
10
10'
10
10
10
0.2
1.1
150
12
100
50
12
300
0.1
10
150
500
lA
0.1
10
150
500
lA
10
10
10
'10
10
0.2
1.1
150
12
80
50·
12
150
150
2.5
10
1.4
1.7
150
15
100
50
12
0.1
150
500
10
10
10
0.25
1.1
150
20
70
50
1000
7
1.0
2.0
lA
5/6
(See page
1·271
12
300
10
10
10
0.25
1.1
150
20
60
50
600
7
1.0
2.0
lA
5/6
(See page
1-271
12
120
0.1
150
500
2N2243A
2N2270'
2N3019
2N3020
2N3053
2N3107
2N3108
TO-39
TO-39
TO-39
TO-39
TO-39
TO-39
TO-39
120
60
140
140
60
100
100
80
45
80
80
40
60
60
7
7
7
7
5
7
7
10
50 '
10
10
250
10
10
60
60
90
90
30
60
60
15
30
40
30
15
30
50
50
90
100
50
15
30
40
40
30
15
25
50
35
100
40
20
40
25
r
100 120
120
100 '
250
500
0.5
,
~
MEDIUM POWER (Continued)
Type
No.
Case
Style
VCBO
(V)
Min
2N3109
TO-39
SO
2N3110
TO-39
2N356S
TO-92
. (92)
2N3665
TO-39
2N3666
2N3700
TO-39
TO-IS
SO
VCER'
VCEO
(V)
Min
40
40
VEBO
(V)
Min
ICES'
ICBO
(nA)
Max
7
10'
7
10'
@
VCB
(V)
60
60
TO-39
35
100
40
300
20
40
25
120
@
VCE(SAT)
VBE(SATl
(V)
(V)
&
Max
Min Max
IC
(mA)
IC
&
(mA)
VCE
(V)
0.1
150
500
10
10
10
0.25
1.0
2.0
lA
0.1
150
500
10
10
10
0.25
1.1
150
1.0
1.1
2.0
@
150
Max
IT
(MHz)
Min
Max
25
70
Cob
(pF)
@
IC
(rnA)
50
Max
NF
(dB)
Max
1000
7
toll
(ns)
Test
Conditions
5/6
120
120
140
SO
SO
SO
10
10
7
50
50
10
60
60
90
70
50
S
40
60
Process
No.
12
I
I
(See page
1·27)
25
60
50
600
7
5/6
12
(See page
1-27)
lA
12
Same as PN3568, see below for explanation
~
2N3945
hFE
Max
Min
30
40
25
10
150
500
10
10
10
0.5
1.2
150
120
1.2
1.S
500
10
10
10
0.5
1.2
150
300
10
150
500
1.2
1.8
500
50
90
100
50
15
10
10
10
10
10
0.2
1.1
150
300
1
10
150
500
lA
25
40
20
10
150
500
10
10
10
0.5
1.2
150
250
1.S
I.S
500
1
10
150
10
10
10
0.25
10
0.4
50
0.25
150
70
100
50
0.5
12
60
50
12
12
60
50
12
12
100
5
12
12
60
50
12
10
10
500
20
12
60
900
50
12
200
500
2N4924
TO-39
100
100
5
100
50
25
35
40
2N4945
TO-92
(92)
80
60
5
50
40
40
40
120
150
30
1
40314
TO-39
40
250
15
70
350
50
4
1.4
150
MPSA05
TO-92
(92)
60
4
100
60
50
50
10
100
1
1
0.25
100
100
100
12
MPSA06
TO-92
(92)
80
4
100
SO
50
50
10
100
1
1
0.25
100
100
100
12
PN3568
TO-92
(92)
SO
60
5
50
40
40
40
30
150
1
1
0.25
150
20
50
12
120
TO-237
(91)
75
10
10
10
10
10
1.5
150
150
25
300
0.01
0.1
10
150
500
TN1711
7
10
60
20
35
75
100
40
120
12
60
600
12
1.3
SJOtS!SUBJl
Nd N
NPN Transistors
Ii
Type
No.
TN2017
TN2102
TN2270
TN3019
MEDIUM POWER (Continued)
Case
Style
vCBO
(V)
Min
TO-237
(91)
60
TO·237
(91)
120
TO-237
(91)
60
TO-237
(91)
140
VCER'
VCEO
(V)
Min
60
65
45
80
VEBO
(V)
Min
8
7
7
7
ICES'
ICBO @ VCB
(nA)
(V)
Max
1OI'A
10
50
10
30
60
60
90
~
~
TN3020
TN3053
TO-237
(911
140
80
'40
7
5
10
250
90
30
hFE
@ IC
&
Min Max. (rnA)
35
50
20
10
20
35
40
25
10
30
50
50
90
100
50
15
30
40
40
30
15
25
50
200
120
200
300
100
120
120
100
VCE
(V)
VCE(SAT)
VBE(SAT)
IC
(V)
(V)
&
@ (rnA)
Max
Min
Max
Cob
(pF)
Max
fT
IC
(MHz)
@ (rnA)
Max
Min
toff
(ns)
Max
NF
(dB)
Max
Test
Conditions
Process
'No.
10
200
lA
10
10
10
0.Q1
0.1
10
150
500
lA
10
10
10
10
10
10
0.5
1.1
150
15
60
50
12
1
150
10
10
0.9
1.2
150
15
100
50
12
1
10
150
500
lA
10
10
10
10
10
0.2
1.1
150
12
100
50
12
1
10
150
500
lA
10
10
10
10
10
0.2
12
80
50
12
150
150
2.5
10
1.4
150
15
100
50
12
12
0.5
500
1.1
0.5
150
500
1.7
TO-237
(91)
60
2N3566
TO-92
(92)
40
30
5
50
20
150
80
600
10
2
10
10
1.0
100
25
4
100
30
13
2N3567
TO-92
(92)
80
40
5
50
40
40
40
120
150
30
1
1
0.25
150
20
60
600
50
13
2N3569
TO·92
(92)
80
40
5
50
40
100
100
300
150
30
1
1
0.25
150
20
60
600
50
13
PN3566
TO·92
(92)
Same as 2N3566, see above for explanation
13
PN3567
TO·92
(92)
Same as 2N3567. see above for explanation
13
PN3569
TO-92
(92)
Same as 2N3569, see above for explanation
13
2N4237
TO·39
40
100l'A
50
15
30
30
250
150
lA
500
250
1
4
1
0.6
0.3
1.5
1A
100
1
100
14
500
-
~
Type
No.
~
MEDIUM POWER (Continued)
Case
Style
VCBO
(V}
Min
VCER'
VCEO
(V}
Min
VEBO
(VI
Min
ICES'
ICBO @ VCB
(nA}
(V}
Max
hFE
@ IC
& VCE
Min Max
(mA}
(V}
MPS6560
TO-92
(92}
25
25·
5
100
20
35
50
50
MPS6561
TO-92
(92}
20
20
5
100
20
35
50
50
NCBV14
TO-202
(55}
60
40
4
100
30
NSES71
TO-202
(51}
300
100
MPQ3725
TO-39
TN3252
TO-237
(911
60
TO-237
(911
75
TO-237
(91}
SO
TO-237
(91}
50
TO-237
(91}
SO
TO-39
SO
TN3253
TN3444
TN3724
TN3725
2N2657
2N265S
2N2S90
TO-39
TO-39
40
100
100
6
30
40
50
30
50
50
SO
SO
5
5
6
6
S
S
5
VCE(SAT} VBE(SAT}
IC
(V}
(V}
&
@ (mA}
Max
Min Max
Cob
(pF}
Max
fT
IC
(MHz}
@ (mA}
Min Max
toff
(ns}
Max
NF
(dB}
Max
Test
Conditions
Process
No.
1
1
1
0.5
1.2'
500
30
60
10
14
200
10
100
500
1
1
1
0.5
1.2'
350
30
60
10
14
200
10
100
500
75
50
1
0.4
500
10
125
50
14
200
50
25
20
60
10
17
500
40
35
25
100
500
1
2
0.45
O.S
1.0
500
10
250
50
25
500
40
30
30
25
150
500
lA
1
1
5
0.3
0.5
150
500
200
50
25
0.7
1.0
1.3
12
90
25
25
20
150
375
750
1
.1
5
0.35
1.0
150
12
75
20
20
15
150
500
lA
1
1
5
0.35
1.0
150
12
60
0.6
1.3
500
10 150
300
500
SOO
lA
1
1
1
1
2
5
0.25
0.76
10
12
60
6
(See page
1·27}
25
10
150
300
500
SOO
lA
1
1
1
1
2
5
0.25
0.76
10
10
60
6
(See page
1-27}
25
150
500
500
1.7jJA
1.7jJA
100
100
50jJA
60
60
40
60
60
60
60
30
60
40
35
25
30
30
60
40
35
20·
25
200
150
150
15
40
120
5A
lA
6
2
0.5
3.0
1.5
2.5
lA
5A
15
40
120
5A
lA
6
2
0.5
3.0
1.5
2.5
lA
5A
2A
lA
100
5
2
2
0.5
1.2
lA
25
30
20
90
70
25
150
50
25
20
200
15
2 (See
page 1-27
34
20
200
15
2 (See
page 1-27
34
30
200
15
3
(See page
1-27}
34
SJOIS!SueJl.
Nd N
~"
~
MEDIUM POWER (Continued)
Type
No.
Case
Style
vCBO
(VI
2N2S91
TO-39
100
2N5148
2N5150
2N5336
NPN Transistors
'H-_,
Min
TO-39
VCER·
VCEO
(V)
Min
80
VEBO
(V)
Min
5
SO
TO-39
50"A
l"A
SO
TO'39
ICES·
ICBO
InA)
Max
l"A
80
10"A
@
VCB
(V)
60
60
60
SO
~
c.,
I\)
2N533S
100
TO-39
10"A
250
100
hFE
Min Max
50
36
50
40
20
30
15
5
60
70
30
15
30
30
20
300
150
90
200
120
@
IC & VCE
{mAl
(V)
10
VCE(SAT) VBE(SAT)
(V)
(V)
&
Max
Min
Max
0.5
1.2
@
IC
{mAl
Cob
{pFI
Max
lA
70
50
100
lA
2A
2
5
0.75
1.3
2A
50
lA
2A
3A
5
5
5
5
0.46
1.2
100
0.S5
1.5
200
50
lA
2A
3A
600
2A
5A
5
5
5
5
0.46
1.2
100
2
2
2
fT
(MHz)
Min
Max
30
@
IC
{mAl
200
toff
(nsl
Max
15
NF
(dB)
Max
Test
Conditions
3
Process
No.
34
(See page
2
2
2
5.0
0.7
1-27)
70
60
200
34
70
60
200
34
30
500
3A
1.2
2A
2200
7
34
(See page
1.2
0.7
1.S
5A
1.2
2A
1-27)
30
30
20
120
600
2A
5A
30
500
2200
. 300
40
160
20
10
100
40
40
250
200
10
100
10
10
0.8
200
36
7
34
(See page
1.2
1.8
5A
1-27)
2N3440
TO-39
2N6591
TO-202
(55)
150
150
5
20"A*
200
2N6592
TO-202
(55)
200
200
5
200
150
30
40
250
200
10
100
10
10
0.8
200
36
2N6593
TO-202
(55)
250
250
5
200
200
30
30
250
200
10
10
0.8
200
36
2N6720
TO-237
(91)
175
150
6
l"A
150
25
30
15
10
10
100
50
100
250
500
10
10
10
10
0.5
100
30
300
50
36
2N6721
TO-237
(91)
225
200
6
l"A
200
0.5
100
30
300
50
36
TO-237
(91)
275
250
6
l"A
250
10
10
10
10
0.5
100
30
300
50
36
50
50
100
250
500
50
100
250
500
10
10
10
10
2N6722
25
30
15
10
25
30
15
10
2N6723
TO-237
{911
325
300
6
l"A
300
10
10
10
10
0.5
100
30
300
50
36
50
50
100
250
500
25
30
15
10
50
50
36
~
Type
No.
92PU36
92PU36A
92PU36B
92PU36C
.....
~
MEDIUM POWER (Continued)
Case
Style
TO·237
(91)
VCBO
(V)
Min
175
TO·237
(91)
225
TO·237
(91)
275
TO·237
(91)
325
VCER'
VCEO
(V)
Min
150
200
250
300
VEBO
(VI
Min
6
6
6
6
ICES'
ICBO @ VCB
(nA)
(V)
Max
lILA
lILA
lILA
lILA
150
200
250
300
hFE
@ IC
& VCE
Min Max
(rnA)
(V)
25
30
15
10
25
30
15
10
25
30
15
10
25
30
15
10
300
300
300
300
VCE(SAT) VBE(SAT)
Ic
(V)
(V)
&
@ (rnA)
Max
Min Max
Cob
(pF)
Max
fT
IC
(MHz)
@ (rnA)
Max
Min
toff
(ns)
Max
NF
(dB)
Max
Test
Conditions
100
Process
No.
36
50
100
250
500
10
10
10
10
0.5
50
100
250
500
10
10
10
10
0.5
100
36
50
100
250
500
10
10
10
10
0.5
100
36
50
100
250
500
10
10
10
10
0.5
100
36
100
15
10
80
36
I
D40Pl
TO·202
(55)
120
10'ILA
200'
20
40
2
80
10
10
1.0
D40P3
TO·202
(55)
180
10ILA
250
20
40
2
80
10
10
1.0
1.5
100
15
10
80
36
D40P5
TO·202
(55)
225
10ILA
300
20
40
2
80
10
10
1.0
1.5
100
15
10
80
36...
NSD36
TO·202
(55)
175
fILA
150
25
30
15
10
50
100
250
500
10
10
10
10
0.5
15
10
50
36
TO·202
(55)
225
50
100
250
500
10
10
10
10
0.5
15
10
50
36
TO·202
(55)
275
50
100
250
500
10
10
10
10
0.5
15
10
50
36
TO·202
(55)
325
50
100
250
500
10
10
10
10
0.5
15
10
50
36
2
20
10
10
0.5
20
15
10
36
NSD36A
NSD36B
NSD36C
NSD3439
TO·202
(55)
150
200
250
300
350
6
6
6
6
lILA
lILA
lILA
20ILA
200
250
300
300
25,
30
15
10
25
30
15
10
25
30
15
10
30
40
300
300
300
300
160
- 1.3
50
SJOIS!SUeJl
Nd N ,
N PN Transistors
~
Type
No.
NSD3440
TN3440
C~se
Style
vCBO
(V)
Min
VCER'
VCEO
(V)
Min
VEBO
(V)
Min
250
TO·202
(55)
ICES'
ICBO
(nA)
Max
500llA
@
VCB
(V)
200
\
250
TO·237
(91)
250
@
IC & VCE
(rnA)
(V)
VCE(SAT) VBE(SAT)
(V)
(V)
&
Max
Min
Max
@
fT
NF
(dB)
Max
IC
(mAl
Cob
(pF)
Max
(MHz)
Min
Max
20
15
10
36"
10
36
50
37
30
40
2
20
10
10
0.5
1.3
50
160
30
40
2
20
10
10
0.5
1.3
50
15
160
1
1
1
0.5
100
50
250
10
100
lA
IC
(rnA)
toff
(ns)
Max
Test
Conditions
Process
No.
100
40
55
60
50
TO-237
(90)
30
5
100
40
55
60
50
10
100
lA
1
1
1
0.5
lA
30
100
50
37
92PU01A
TO-237
(90)
40
5
100
50
55
60
50
10
100
lA
1
1
1
0.5
lA
30
100
50
37'"
D42C1
TO-202
(56)
30
lilA
30
25
10
200
lA
1
1
0.5
1.3
lA
30
37
D42C2"
TO-202
(56)
30
lilA
30
40
20
200
lA
1
1
0.5
1.3
lA
30
37
D42C3
TO-202
(56)
30
lilA
30
40
20
200
2A
1
1
0.5
1.3
lA
30
37
D42C4
TO-202
(56)
45
lilA
45
25
10
200
lA
1
1
0.5
1.3
lA
30
37
D42C5
TO-202
(56)
45
lilA
45
40
20
200
lA
1
1
0.5
1.3
lA
30
37
D42C6
TO-202
(56)
45
lilA
45
40
20
200
2A
1
1
0.5
1.3
lA
30
37
NSD102
TO-202
(55)
100
60
40
50
40
25
10
100
500
lA
5
5
5
5
0.2
0.9
100
30
60
50
37
0.4
1.2
500
10
100
500
lA
5
5
5
5
0.2
0.9
100
30
60
50
37
0.4
1.2
500
92PUOl
NSD103
TO-202
(55)
60
60
45
45
5
5
100
60
50
120
50
30
120
120
150
360
500
@
5
TO·237
(91)
40
20llA
hFE
Min Max
30
2N6714
~
....w
MEDIUM POWER (Continued)
TO-202
(55)
40
30
5
100
30
55
60
50
10
100
lA
1
1
1
0.5
1.2
lA
30
50
50
37
NSDU01A TO-202
(55)
50
40
5
100
40
55
60
50
10
100
lA
1
1
1
0.5
1.2
lA
30
50
50
37
NSDUOl
-
---"
~
Type
No.
NSDU02
MEDIUM POWER (Continued)
Case
Style
vCBO
(VI
Min
60
TO·202
(551
VCER"
VCEO
(VI
Min
VEBO
(VI
Min
40
5
100
@
VCB
(VI
hFE
Min Max
40
60
50
30
NSE180
TO·202
(551
2N5449
TO·92
(971
50
30
2N6551
TO·202
(551
60
60
TO·202
(551
80
TO·237
(901
60
TO·237
(901
80
TO·237
(901
100
2N6715
TO·237
(911
50
40.
5
100
50
55
60
50
2N6716
TO·237
(911
60
60
5
100
40
80
50
20
2N6552
40
ICES"
ICBO
(nAI
Max
2N6706
"2N6707
92PE37A
TO·237
(901
92PE37B
TO·237
(901
92PE37C
TO·237
(901
10
150
500
10
10
10
0.4
Max
1.3
IC
(mAl
Cob
(pFI
Max
150
20
fT
(MHzI
Max
Min
@
IC
(mAl
toft
(nsl
Max
NF
(dBI
Max
Test
Conditions
Process
No.
50
20
37
50
100
37
5
50
38
0.3
5
100
20
100
300
50
2
0.6
100
5
100
40
60
80
60
25
10
50
250
500
1
1
1
1
0.5
500
1.0
lA
10
50
250
500
1
1
1
1
1.0
lA
75
250
100
38
50
250
500
2
2
2
·0.5
500
50
400
200
38
250
2
2
2
1.0
0.5
lA
500
50
400
200
38
250
50
250
500
1.0
lA
2
2
2
0.5
500
50
400
200
38
250
50
250
500
1.0
lA
10
100
lA
50
250
500
1
1
1
0.5
lA
50
400
50
38
1
1
1
0.35
250
50
500
50
38
2
2
2
0.5
500
1.0
lA
2
2
2
0.5
500
1.0
lA
2
2
2
0.5
500
1.0
lA
5
100
60
100
100
100
60
80
100
60
80
60
25
40
40
25
40
40
25
40
40
25
250
250
250
250
100
60
50
250
500
60
- : -....
100
25
40
40
80
25
40
40
80
100
100
25
40
40
50
250
500
'50
250
500
..•
Min
@
1
1
1.5
45
..
(VI
100
500
lA
5
80
Max
VBE(SATI
&
250
5
60
(VI
50
30
12
U1
45
VCE(SAT)
60
c"
2N6705
Ic
& VCE
(mAl
(VI
100
5
80
300
@
-~
'
.
0.9
500
1.5
1.5A
38
I
30
50
200
38
30
50
200
38
30
50
200
38
SJOIS!SueJl NdN
NPN Transistors
.~
MEDIUM POWER (Continued)
~
VCER"
VCEO
(VI
VEBO
(VI
Min
Type
No.
Case
Style
vCBO
(VI
80137-6
TO-126
60
60
5
B0137-10
TO-126
60
60
80345
TO-126
60
60
Min
Min
ICES"
leBO
(nAI
Max
Ie & VCE
(mAl
(VI
VCE(SATI VBE(SATI
(VI
(VI
&
Max
Min
Max
IC
(mAl
Cob
(pFI
Max
fT
(MHzl
Min
Max
IC
ImAI
toff
(nsl
Max
NF
(dBI
Max
Test
Conditions
Process
No.
VCB
(VI
hFE
Min Max
100
30
40
25
100
150
500
2
2
0.5
500
50
50
38
5
100
30
63
25
160
150
500
2
2
0.5
500
50
50
38
5
500
60
60
40
50
200
1
1
0.4
200
50
50
38
@
250
@
@
@
I
15
04001
TO-202
(551
30
100'
45
50
10
150
100
lA
0.5
1.5
500
38
04002
TO-202
(551
30
100'
45
120
20
360
100
lA
0.5
1.5
500
38
04003
TO-202
(551
30
100'
45
290
10
1.5
500
38
04004
TO-202
(551
46
100'
60
50
10
150
100
lA
0.5
1.5
500
38
04005
TO-202
(551
45
100'
60
120
10
360
100
lA
0.5
1.5
500
38
04006
TO-202
(551
45
100'
60
50
10
150
100
lA
1.0
1.5
500
38
04007
TO-202
(551
60
100'
60
50
10
150
100
lA
1.0
1.5
500
38
04008
TO-202
(551
60
100'
75
120
10
360
100
lA
2
2
1.0
1.5
500
38
040010
TO-202
(551
75
100'
90
50
10
150
100
lA
2
2
1.0
1.5
500
38
040011
TO-202
(551
75
100'
90
120
10
360
100
lA
2
2
1.0
1.5
500
38
040013
TO-202
(551
75
100'
90
50
150
100
2
1.0
1.5
500
38
040014
TO-202
(551
75
100'
90
120
360
100
2
1.0
1.5
500
38
040El
TO-202
(551
30
100'
40
50
10
100
lA
2
2
1.0
1.3
lA
38
040E5
TO-202
(551
60
100'
70
50
10
100
lA
2
2
1.0
1.3
lA
38
040E7
TO-202
(551
80
100'
90
50
10
100
lA
2
2
1.0
1.3
lA
38
MJE721
TO-126
(581
60
40
20
8
150
500
lA
1
1
1
1.0
0.15
0.4
1.3
1.5A
150
500
38
-
100
lA
-
--
II
Type
No.
NSD6178
NSD6179
MEDIUM POWER (Continued)
Case
Style
VCBO
(VI
Min
VCER"
VCEO
(V)
Min
TD-202
1551
75
TO-202
1551
50
NSDU05
TO-202
(551
NSE181
TO-202
1561
2N6553
TO-202
(551
100
TO-237
(911
80
TO-237
(911
100
TO·237
1911
100
60
60
VEBO
(VI
Min
500p.A
500p.A
4
60
100
ICES'
ICBO
(nA)
Max
5
@
2N6717
2N6718
2N6731
80
100
80
5
5
5
Process
No.
0.5
1.2
500
38
30
40
10
500
500
lA
2
2
2
0.5
1.2
500
38
250
50
250
500
1
1
1
0.35
250
10
500
lA
1
1
1.5
0.3
500
10
50
250
500
1
1
1
1
1.0
lA
75
60
100
80
50
30
12
100
80
60
80
60
25
60
80
80
250
250
0.9
.1.5
@
30
@
50
200
38
50
100
38
250
100
39
1.5A
80
50
20
50
250
500
1
1
1
0.35
250
50
500
200
39
250
80
50
20
50
250
500
1
1
1
0.35
350
50
500
200
39
250
10
350
2
2
0.35
350
50
500
200
39
50
250
500
1
1
1
0.35
250
30
50
200
39
500
250
50
1
1
1
0.35
250
30
50
200
39
50
250
500
1
1
1
0.35
250
30
50
200
39
10
100
lA
5
5
5
0.35
350
20
50
100
39
150
500
lA
1
1
1
1.0
0.15
0.4
100
100
100
80
80
50
20
92PU06
TO-237
1901
100
100
80
20
50
80
92PU07
TO·237
1911
100
100.
80
80
50
20
92PU100
TO-237
1911
80
100
80
20
50
10
80
Test
Conditions
2
2
2
100
TO-126
1581
NF
(dB)
Max
50
500
lA
TO-237
(901
MJE722
toft
(ns)
Max
250
92PU05
100
IC
(mAl
30
40
10
80
50
20
100
fT
IMHzI
Min Max
80
60
100
Cob
(pFI
Max
VCE
(V)
100
100
IC
(mAl
hFE
@ IC
&
(mA)
Min Max
~
!:3
VCE(SATl VBE(SATl
(VI
(VI
&
Max
Min
Max
VCB
IV)
40
20
8
300
500
250
50
150
1.3
1.5A
150
500
39
--_._---
--
SJOIS!SUeJl
Nd N
NPN Transistors
~
Type
No.
Case
Style
, NSD104
TO-202
(55)
NSD105
vCBO
(VI
Min
100
VCER"
VCEO
(VI
Min
80
VEBO
(V)
Min
7
7
ICES'
ICBO @ VCB.
(nA)
(V)
Max
100
100
100
hFE
@ IC
&
Min
Max
(rnA)
VCE
(VI
0.2
0.9
100
0.5
1.2
500
5
5
5
0.2
0.9
100
0.5
1.2
500
10
100
500
5
5
5
0.2
0.9
100
0.5
1.2
10
100
1A
5
5
5
360
10
100
1A
150
20
50
10
150
10
120
10
VCE(SATI
VBE(SATI
IC
(VI
(VI
&
@ (mAl
Max
Min
Max
Cob
(pFI
Max
fT
IC
(MHz)
@ (mAl
Min
Max
toff
(nsl
Max
NF
(dB)
Max
Test
Conditions
Process
No.
30
60
50
39
30
60
50
39
30
60
50
39
TO-202
(55)
100
TO-202
(55)
140
500
50
NSDU06
TO-202
(55)
80
80
4
100
80
80
50
20
50
250
500
1
1
1
0.35
250
30
50
200
39
NSDU07
TO-202
(55)
100
100
4
100
100
80
50
20
50
250
500
1
0.35
250
30
50
200
39
1
1
TO-39
300
10
15
20
20
3
10
30
5ci
10
10
10
20
6
60
10
48
3
10
30
50
10
10
10
20
6
30
300
20
48
3
10
30
50
10
10
10
20
6
30
300
20
48
10
10
10
40
200
10
48
200
1
10
30
10
10
10
40
200
10
48
200
1
10
30
10
10
10
40
200
10
48
30
300
15
48
50
200
10
48
NSD106
~
MEDIUM POWER (Continued)
2N3742
2N4926
2N4927
TO-39
TO-39
80
100
300
200
200
250
250
7
7
7
7
100
200
100
100
100
140
200
100
150
20
50
25
10
15
20
20
10
15
20
30
200
200
200
2N6711
TO-237
(90)
160
160
7
50
100
15
15
30 .
2N6712
TO-237
(90)
250
250
7
50
200
15
15
30
2N6713
TO-237
(90)
300
300
7
50
250
15
15
30
200
1
10
30
2N6719
TO-237
(91)
300
300
7
100
200
25
40
40
200
1
10
30
10
10
10
2N6733
TO-237
(91)
200
200
6
100
160
25
40
200
1
10
10
10
-
0.75
1.0
10
1.0
1.2
30
2.0
20
~
Type
No.
2N6734
2N6735
40321
~
MEDIUM POWER (Continued)
Case
Style
TO-237
1911
TO-237
1911
TO-39
VCBO
IVI
Min
250
300
VCER"
VCEO
IVI
Min
250
300
VEBO
IVI
Min
6
6
ICES"
ICBO
InAI
Max
100
100
@
VeB
IVI
200
260
hFE
Max
Min
25
40
25
40
@
Ie
& VCE
ImAI
IVI
200
1
10
1
10
10
10
10
10
200
200
VCEISAT) VBEISATI
IVI
&
IVI
Min
Max
Max
@
Ie
ImAI
Cob
IpFI
Max
2.0
fT
IMHzl
Min
Max
@
Ie
ImAI
toff
Insl
Max
NF
IdBI
Max
Test
Conditions
Process
No.
50
200
10
48
50
200
10
48
30
300
20
48
100
150
25
20
10
92PE487
TO-237
1901
160
160
7
50
100
15
15
30
1
10
30
10
10
10
1.0
30
6
3
92PE488
TO-237
(90)
250
250
7
50
100
15
15
30
10
10
30
10
10
10
1.0
30
3
48
92PE489
TO-237
(90)
300
300
7
50
200
15
15
30
1
10
30
10
10
10
1.0
30
3
48
92PU10
TO-237
(91)
100
200
25
40
40
1
10
30
10
10
10
0.75
30
3.5
48
92PU391
TO·237
1911
200
200
6
100
160
25
40
1
10
10
10
2.0
2.0
20
2.5
50
10
48
92PU392
TO-237
(91)
250
250
6
100
200
25
40
1
10
10
10
2.0
2.0
20
2.5
50
10
48
92PU393
TO-237
191)
300
300
6
100
260
25
40
1
10
10
10
2.0
2.0
20
2.5
50
10
48
D40Nl
TO-202
155)
10IlA
250
20
30
20
4
20
40
10
10
10
50
20
48
90
30
60
30
10
10
10
20
48
20
30
20
10
10
10
10
10
10
50
20
48
90
4
20
40
4
20
40
4
20
40
50
180
50
20
48
1
10
30
10
_ 10
10
50
10
48
300
300
250
...
D40N2
D40N3
D40N4
MPSA42
TO-202
155)
250
TO-202
155)
300
TO-202
155)
300
TO-92
(92)
300
300
lOIlA
10llA
10 "A
6
100
250
300
300
200
30
60
30
25
40
40
180
48
I
0.(;
0.9
20
3
,
-
SJOIS!SUeJl
NdN
NPN Transistors
~
Type
No.
~
MEDIUM POWER (Continued)
Casa
Style
vCBO
(V)
Min
VCER"
VCEO
(V)
Min
VEBO
(V)
Min
ICES'
ICBO @VCB
(nA)
(V)
Max
VCE(SAT) VBE(SAT)
IC
(V)
(V)
&
@ (rnA)
Max
Min
Max
hFE
@ IC . & VCE
Min Max
(rnA)
(V)
MPSA43
TO·92
(92)
200
200
6
100
160
25
40
50
NSD131
TO-202
(55)
250
250
7
100
150
15
15
30
NSD132
TO-202
(55)
250
250
7
100
150
15
30
60
NSD133
TO-202
(55)
300
300
7
100
150
15
15
30
N )0134
TO·202
(55)
300
300
7
100
150
15
30
60
Cob
(pF)
Max
fT
IC
(MHz)
@ (rnA)
Min
Max
10
NF
(dB)
Max
Test
Process
Conditions
No.
10
10
10
0.4
0.9
20
4
200
1
10
30
10
10
10
1.0
0.85
20
3
48
90
1
10
30
10
10
10
1.0
0.85
20
3
48
180
1
10
30
10
10
10
1.0
0.85
20
3
48
90
1
10
30
10
10
10
1.0
0.85
20
3
48
180
1
10
30
~
50
toff
(ns)
Max
48
I
I
NSD135
TO-202
(55)
375
375
7
100
150
15
30
30
1
10
30
10
10
10
1.0
NSD457
TO-202
(55)
160
160
5
50
100
25
30
10
1.0
30
48
NSD458
TO·202
(55)
250
250
5
50
200
25
30
10
1.0
30
48
NSD459
TO-202
(55)
300
300
5
50
250
25
30
10
1.0
30
48
NSDU10
TO·202
(55)
300
300
8
200
200
25
40
40
1
10
30
15
15
10
1.5
NSE457
TO·202
(56)
160
160
5
50
100
25
30
10
1.0
30
48
NSE458
TO-202
(56)
250
250
5
50
200
25
30
10
1.0
30
48
NSE459
TO-202
(56)
300
300
5
50
250
25
30
10
1.0
30
48
PN7055
TO·92
(92)
220
220
7
100
150
20
40
40
1
10
30
20
20
20
1.0
0.85
20
3.5
50
15
48
SE7055
TO·39
220
220
7
100
150
20
40
40
1
10
30
20
20
20
1.0
0.85
20
3.5
50
15
48
-
0.85
0.8
20
20
48
3
3
60
48
~
Type
No.
~
~
MEDIUM POWER (Continued)
0,
vCBO
(V)
Case
Style
Min
VCER"
VCEO
(V)
Min
VEBO
(V)
Min
ICES'
ICBO
(nA)
Max
@
VCB
(V)
hFE
Min
Max
@
VCE(SAT)
VBE(SAT)
(V)
(V)
&
Min
Max
Max
IC
& VCE
(rnA)
(V)
@
IC
(rnA)
Cob
(pF)
Max
3.5
SE7056
TO·39
300
300
7
100
200
20
40
40
1
10
30
20
20
20
1.0
0.85
20
SV7056
TO·202
(55)
300
300
7
100
200
20
40
40
1
10
30
20
20
20
1.0
0,85
20
TN3742
TO·237
(91)
300
300
7
200
200
10
15
20
20
3
10
30
50
10
10
10
20
0.75
1.0
10
1.0
1.2
30
~
Case
Styl.
2N5655
TO·126
TO·126
VCBO
(V)
Min
VCEO
(V)
VEBO
(V)
Min
Min
250
300
ICEX'
ICEBt
ICBO
(1lA)
Max
10
10
@
VCB
(V)
hFE
Min
275
25
30
15
5
350
2N5657
toff
(ns)
Max
IC
(rnA)
NF
(dB)
Max
Process
No.
Test
Conditions
50
15
48
50
15
48
30
10
48
TO·126
350
10
375
25
30
15
5
25
30
15
5
Max
250
250
250
@
IC
(A)
&
VCE
(V)
VCE(SAT)
(V)
&
Max
VBE(SAT)
(V)
Max
@
IC
(A)
Min
Process
No.
0.05
0.1
0.25
0.5
10
10
10
10
1.0
2.5
10.0
0.1
0.25
0.5
25
10
0.05
36
0.05
0.1
0.25
0.5
10
10
10
10
1.0
2.5
10.0
0.1
0.25
0.5
25
10
0.05
36
1.0
0.05
15
15
0.05
36
15
15
0.05
36
300
100
300
30
240
0.05
10
150
300
175
20
25
20
200
0.01
0.05
0.15
10
10
10
2.3
0.15
30
300
0.05
10
1.0
0.05
200
IC
(A)
0.1
0.25
0.5
TO·126
100
@
1.0
2.5
10.0
TO·126
200
fT
(MHz)
Max
Min
10
10
10
10
MJE341
TO·126
Cob
(pF)
Max
0.05
0.1
0.25
0.5
MJE340
MJE344
@
POWER
Type
No.
2N5656
200
6
fT
(MHz)
Min
Max
36
36
-
---
-
SJOIS!SUeJl
NdN
NPN Transistors
~
I
POWER (Continued)
Type
No.
Style
MJE3439
TO-126
MJE3440
MJE180
MJE720
MJE181
...
~
Case
VCBO
(V)
VCEO
(V)
VEBO
(V)
Min
Min
Min
360
250
TO-126
40
TO-126
40
TO-126
60
TO-126
ICEX'
ICEBt
ICBO
("AI
Max
20
20
0.1
100'
0.1
@
VCB
(V)
hFE
360
250
@
40
80
1.3
0.05
10
0.5
1.3
0.05
1
1
1
0.3
0.9
1.7
1.5
2.0
0.5
1.5
3.0
0.15
0.5
1
1
1
1
0.15
0.4
1.0
1.3
0.15
0.5
1.5
0.1
0.5
1.5
1
1
1
0.3
0.9
1.7
0.5
1.5
3.0
30
50
0.1
38
1.5
2.0
30
50
0.1
39
2.0
500
1.5A
3A
30
40
0.002
0.02
10
10
0.5
160
AO
160
0.002
0.02
10
10
50
30
12
250
0.1
0.5
1.5
40
20
8
50
30
12
250
IT
(MHz)
Max
Min
Cob
(pF)
Max
Max
30
60
VCE(SAT)
VBE(SAT)
(V)
(V)
&
Max
Min Max
IC
(AI
Ie & VCE
(A)
(V)
Min
@
IC
(A)
Process
No.
15
0.01
36
10
15
0.01
36
30
50
0.05
37
50
0.1
@
37
MJE182
TO-126
(58)
80
100
100
50
30
12
250
100
500
1.5A
1
1
1
0.3
0.9
1.7
2N6099
TO-220
60
2mA
50
20
5
80
4
10
4
4
2.5
10
4A
2N6101
TO-220
70
2mA
60
20
5
80
5
10
4
4
2.5
10
4A
2N6103
TO-220
40
2mA
40
15
5
60
8
i6
4
4
2.5
16
4A
2N6486
TO-220
40
100
35
20
150
5
15
4
4
1.3
3.5
5
15
5
1
4A
2N6487
TO-220
60
100
55
20
150
5
15
4
4
1.3
3.5
5
15
5
1
4A
2N6488
TO-220
80
100
75
20
150
5
15
4
4
1.3
3.5
5
15
5
1
4A
MJE280n
MJE3055T
TO-220
TO-220
60
25
100
1 mA
70
20
5
70
3
4
10
2
60
4A
TO-220
40
400'
40
30.
15
6
4A
75
0.3
3
1.1
8
1.5
4
10
TIP41
4
4
4
4
30
15
0.3
3
4
4
1.5
6
4A
75
30
15
0.3
3
4
4
1.5
6
4A
75
30
0.3
1!1 ___ J!1 _ _3
4
4
1.5
6
4A
'"
TIP41A
TIP41B
TIP41C
TO-220
TO-220
TO-220
---
60
80
400'
400'
60
80
,
100
400'
-- - - - - - - - - - -
100
-------- -
-
4A
I
~
~
....
'"
POWER (Continued)
VCBO
(V)
VCEO
(V)
Min
VEBO
(V)
Min
ICEX'
ICEBt
ICBO
(IlA)
Max
Type
No.
Style
2N5190
TO·126
40
100
2N5191
TO·126
60
2N5192
TO-126
2N5294
Case
@
VCB
(V)
hFE
@
IC
VCE
(A) & (V)
VCE(SAT)
VBE(SAT)
(V)
(V)
&
Max
Max
Min
@
IC
(A)
Cob
(pF)
Max
IT
(MHz)
Min
Max
@
IC
(A)
Process
No.
Min
Max
40
25
10
100
1.5
4
2
2
0.6
1.4
1.5
4
2
1
4E
100
60
25
100
1.5
4
2
2
0.6
1.4
1.5
4
2
1
4E
80
100
80
20
7
80
1.5
4
2
2
0.6
1.4
1.5
4
2
1
4E
TO-220
70
500t
50
(lOOn)
30
120
0.5
4
1
0.5
2
0.2
4E
2N5296
TO-220
40
100
35
30
120
1
4
1.0
1
2
0.2
4E
2N5298
TO-220
60
500 t
50
(lOOn)
20
80
1.5
1
1.0
1.5
2
0.2
4E
2N5490
TO-220
40
5 rnA'
55
20
5
100
2
6.5
4
4
2.0
0.5
4E
2N5492
TO-220
55
1 rnA'
70
20
5
100
2.5
6.5
4
4
2.0
0.2
4E
2N5494
TO-220
40
1 rnA'
55
20
5
100
3
6.5
4
4
2.0
0.5
4E
2N5496
TO-220
70
1 mA*
85
20
5
100
3.5
7
4
4
2.0
7
4E
2N6121
TO-220
45
100
45
25
10
100
1.5
4
2
2
0.6
1.4
1.5
4
2.5
1
4E
2N6122
TO-220
60
100
60
25
10
100
1.5
4
2
2
0.6
1.4
1.5
4
2.5
1
4E
2N6123
TO-220
80
100
80
20
7
80
1.5
4
2
2
0.6
1.4
1.5
4
2.5
1
4E
2N6129
TO-220
40
100
40
20
7
100
2.5
7
4
4
1.4
7
4E
2N6130
TO-220
60
100
60
20
7
100
2.5
7
4
4
1.4
7
4E
2N6131
TO-220
80
100
80
20
5
100
2.5
7
4
4
2.0
7
4E
2N6288
TO-220
30
100'
37.5
30
5
150
3
6.5
4
4
1.0
2.0
3
6.5
250
4
0.5
4E
2N6290
TO-220
50
100'
56
30
5
150
3
6.5
4
4
1.0
2.0
2.5
6.5
250
4
0.5
4E
2N6292
TO-220
70
100'
75
30
5
150
2
6.5
4
4
1.0
2.0
2
6.5
250
4
0.5
4E
Min
i
SJOIS!SUeJ! ·NdN
N PN Transistors
~
VCBO
(V)
VCEO
(V)
VEBO
(V)
Min
Min
Min
ICEX'
ICEBt
ICBO
(IlA)
Max
Type
No.
Ca..
Style
MJE5190J
TO·126
40
100
MJE5191J
TO·126
60
MJE5192J
TO·126
@
VCB
(V)
hl'E
@
IC
VCE
(A) & (V)
VBE(SATI
VCE(SATI
(V)
(V)
&
Ma-x
Min
Max
@
IC
(A)
Cob
(pI')
Max
fT
(MHz)
Min
Max
@
IC
(A)
Process
No.
Min
Max
40
25
10
250
1.5
4
2
2
0.6
1.5
4E
100
60
25
10
250
1.5
4
2
2
0.6
1.5
4E
80
100
80
50
7
250
1.5
4
2
2
0.6
1.5
4E
2N6473
TO-220
100
100'
100
15
150
1.5
4
1.2
1.5
250
4F
2N6474
TO·220
120
100'
120
15
150
1.5
4
1.2
1.5
250
4F
MJE520
TO·220
30
100
30
25
1
1
4F
MJE521
TO·220
40
100
40
1
1
4F
TIP29
TO·220
40
200'
40
40
TIP29A
t
POWER (Continued)
TIP298
TIP29C
TIP31
TIP31A
TO-220
TO-220
TO-220
TO·220
TO·220
60
80
40
40
60
200'
200'
200'
200'
200'
60
80
40
40
60
40
15
0.2
1
4
4
0.7
1
3
0.2
41'
75
40
15
0.2
1
4
4
0.7
1
3
,0.2
4F
75
40
15
0.2
1
4
4
0.7
1
3
0.2
4F
75
25
10
1
3
4
4
0.7
1
3
0.2
4F
50
25
10
1
3
4
4
1.2
3
3
0.5
4F
50
25
10
1
3
4
4
1.2
3
3
0.5
4F
50
4
4
1.2
3
3
0.5
4F
!
TIP318
TO·220
80
200'
80
25
10
50
1
3
TIP31C
TO-220
100
200'
100
25
10
1
3
4
4
1.2
3
3
0.5
4F
50
40
15
0.05
0.5
4
4
0.7
0.5
3
0.05
4F
100
40
15
0.05
0.5
4
4
0.7
0.5
3
0.05
4F
100
40
15
0.05
0.5
4·
4
0.7
0.5
3
0.05
4F
100
40
15
0.05
0.5
4
4
0.7
0.5
3
0.05
4F
100
0.05
0.5
1
1
1
1
0.6
300
0.25
4H
TIP61
TIP61A
TIP618
TIP61C
2N4921
TO·220
TO·220
TO·220
TO·220
TO-220
40
60
80
100
40
200'
200'
200'
200'
100
40
60
80
100
40
40
20
10
100
I
1.3
-
1
100
I
~
Type
No.
Style
2N4922
TO·220
2N4923
.;,.
01
POWER (Continued)
Case
TO·220
VCBO
VCEO
(V)
(V)
VEBO
(V)
Min
Min
Min
60
100
SO
D44Cl
TO·220
30
D44C2
TO·220
D44C3
ICEX'
ICEBt
ICBO
(IlA)
Max
100
-
@
VCB
(V)
60
SO
hFE
@
fT
(MHz)
Min
Max
Max
1
1
1
0.6
1.3
1
100
300
0.25
4H
0.05
0.5
1
1
1
1
0.6
1.3
1
100
300
0.25
4H
0.2
1
1
1
0.5
1.3
1
100
3
0.02
4P
0.2
1
1
1
0.5
1.3
1
100
3
0.02
4P
Max
40
20
10
100
0.05
0.5
1
40
20
10
100
VCE(SAT)
Cob
(pF)
Max
VBE(SAT)
(V)
Min
Max
Ic
VCE
(A) & (V)
Min
(V)
&
@
IC
(A)
@
IC
(A)
Process
No.
10'
40
25
10
30
10'
40
40
20
TO·220
30
10'
40
40
20
0.2
2
1
1
0.5
1.3
1
100
3
0.02
4P
D44C4
TO·220
45
10'
55
25
10
0.2
1
1
1
0.5
1.3
1
100
3
0.02
4P
D44C5
TO·220
45
100
55
40
20
0.2
1
1
1
0.5
1.3
1
100
3
0.D2
4P
D44C6
TO·220
45
10'
55
40
20
0.2
2
1
1
0.5
1.3
1
100
3
0.02
4P
D44C7
TO·220
60
100
75
25
10
0.2
1
1
1
0.5
1.3
1
100
3
0.02
4P
D44CS
TO·220
60
100
70
40
20
0.2
1
1
1
0.5
1.3
1
100
3
0.02
4P
D44C9
TO·220
60
10'
70
40
20
0.2
2
1
1
0.5
1.3
1
100
3
0.02
4P
D44Cl0
TO·220
SO
100
90
25
10
0.2
1
1
1
0.5
1.3
1
100
3
0.02
4P
D44Cll
TO·220
SO
10'
90
40
20
0.2
1
1
1
0.5
1.3
1
100
3
0.02
4P
D44C12
TO·220
SO
10'
90
40
0.2
1
0.5
1.3
1
100
3
0.02
4P
MJE200
TO·220
25
0.1
40
70
45
10
0.5
2
5
1
1
2
0.3
0.75
1.S
0.5
2
5
SO
65
0.1
4P
120
120
120
120
lS0
MJE220
TO·220
100
0.1
60
40
20
200
0.2
2
1
1
0.3
0.5
SO
50
0.1
4P
MJE221
TO·220
40
0.1
60
40
20
150
0.2
1
1
1
0.3
0.6
0.5
1.0
50
50
0.1
4P
MJE222
TO·220
40
0.1
60
25
10
0.2
1
1
1
0.3
0.5
2
50
50
0.1
4P
1.S
SJOIS!SueJl
Nd N
NPN Transistors
"
~
Tvpe
No.
MJE223
POWER (Continued)
Case
Style
TO-220
VCBO
(V)
Min
VCEO
(V)
Min
60
VEBO
(V)
Min
ICEX'
ICEBt
ICBO
",A)
Max
0.1
@
VCB
(V)
BO
hFE
Min
Max
40
20.
200
150
4P
0.2
1
1
1
0.3
0.5
50
50
0.1
4P
0.2
2
1
1
0.3
O.B
0.5
2
50
40
0.1
4P
0.2
1
0.3
0.6
50
40
100
4P
20
1
1
2.5
0.5
1
2
4
25
0.2
1
0.3
50
40
100
4P
1.B
10
1
1
2.5
0.5
2
4
0.2
1
0.3
O.B
2.5
0.5
2
4
50
40
100
4P
1.8
0.5
2
50
100
'4P
BO
25
10
MJE240
TO-220
BO
0.1
BO
40
15
200
40
120
1.B
1.B
loB
--'
~
MJE243
MJE244
TO-126
TO-126
100
100
0.1
0.1
100
100
4P
0,1
·0.1
BO
0.1
50
60
0.1
50
Process
No.
50
to-220
BO
50
IC
(A)
0.5
1
MJE225
TO-126
0.5
2
@
0.3
0.6
40
20
MJE242
'T
(MHz)
Max
Min
1
1
BO
BO
Cob
(pF)
Max
IC
(A)
0.2
1
0.1
0.1
@
0.3
O.B
60
BO
VCE(SAT)
VBE(SAT)
(V)
(V)
8.
Max
Min
Max
1
1
TO-nO
TO-126
IC
VCE
(A) 8. (V)
0.2
2
MJE224
MJE241
@
40
25
120
0.2
0.3
,
I
I
!
40
I
I
10
1
D44Hl
TO-220
30
10
30
35
20
2
4
1
1
1.0
1.5
8
40
D44H2
To-no
30
10
30
60
40
2
4
1
1
1.0
1.5
8
40
D44H4
TO-220
45
10
45
35
20
2
4
1
1
1.0
1.5
B
40
D44H5
TO-220
45
10
45
60
40
2
4
1
1
1.0
1.5
8
40
D44H7
TO-220
60
10
60
2
4
1
1
1.0
1.5
8
40
D44HB
TO-220
60
JO
60
35
20
. 60
40
2
4
.1
1
1.0
1.5
8
40
D44Hl0
TO-220
80
10
80
35
20
2
4
1
1
1.0
1.5
8
40
D44Hll
TO-220
80
10
80
60
40
' 2
4
1
1
1.0
1.5
8
40
2.5
4
-
I
I
I
~
~
DARLINGTON
VCBO
(V)
Min
VCEO
IV)
Min
VEBO
(V)
Min
ICES'
ICBO
(IlA)
Max
IC
@ (rnA)
Cob
IpF)
Max
1.4
200
10
5
1.4
200
2
5
1.4
70,000
2
5
20,000
30,000
20,000
200,000
300,000
300,000
10
100
500
5
5
5
30
10,000
20,000
14,000
100,000
200,000
140,000
10
100
500
5
5
5
0.1
30
25,000
15,000
5000
150,000
200
500
lA
0.1
30
15,000
10,000
3000
150,000
60
2
05
10
60
2
05
200
10
60
2
05
1.4
200
10
60
2
05
1.2
50
7
150
10
05
7
130
10
05
5
5
5
7
1
200
05
200
500
lA
5
5
5
7
1
200
05
5
5
5
1.0
200
1
10
200
05
40,000
200
500
lA
5
5
5
1.0
200
1
10
200
05
40,000
200
500
lA
4000
15,000
25,000
lA
500
200
5
5
5
1.5
lA
100
200
05
lA
500
200
200
5
5
5
1.5
100
200
05
5
2N5305
TO·92
(94)
0.1
25
2000
20,000
2
5
2N5306
TO-92
(94)
0.1
25
7000
70,000
2
2N5307
TO-92
(94)
0.1
40
2000
20,000
2N5308
TO-92
(94)
0.1
40
7000
2N6426
TO-92
(92)
40
40
12
0.05
30
2N6427
TO-92
(92)
40
40
12
0.05
2N6548
TO-202
(55)
50
40
12
2N6549
TO-202
(55)
50
40
12
2N6724
TO-126
50
12
2N6725
TO-126
60
12
0.1
40
25,000
15,000
4000
92PU45
TO-237
(91)
50
12
0.1
30
J,.
....,
VCB
IV)
fT
Process
No.
Case
Style
@
VCE(SAT)
VBEISAT)
IV)
IV)
&
Min
Max
Max
IC
@ (rnA)
Type
No.
hFE
Min
Max
IC
VCE
@ (mA)@ (V)
(MHz)
Min
Max
I
I
92PU45A
TO-237
(91)
60
D40Cl
TO-202
(55)
,
D40C2
25,000
15,000
4000
0.1
40
30
0.5'
30
4000
15,000
25,000
10,000
TO-202
(55)
30
0.5'
30
40,000
200
D40C3
TO-202
(55)
30
0.5'
30
90,000
D40C4
TO-202
(55)
40
0.5'
40
10,000
12
60,000
60,000
1.5
2
1.5
500
50
1.2
2
2.0
500
200
1.0
2.0
lA
1.5
2.0
500
10
05
5
1.5
2.0
500
10
05
200
5
1.5
2.0
500
10
05
200
5
1.5
2.0
500
10
05
--
I
200
1.0
-
SJOIS!SUBJl
Nd N
NPN Transistors
~
DARLINGTON (Continued)
Type
No.
VCEO
(V)
Min
VEBO
(V)
Min
ICES'
ICBO
(jLA)
Max
@
VCB
(V)
hFE
Min
Max
IC
VCE
@(mA)@ (V)
VCE(SAT)
(V)
Max
~
VBE(SAT)
(V)
Min Max
IC
@(mA)
Cob
(pF)
Max
fT
(MHz)
Max
Min
IC
@(mA)
Process
No.
200
5
1.5
2.0
500
10
05
200
5
1.5
2.0
500
10
05
40.000
200
5
1.5
2:0
500
10
05
10,000
1000
1000
200
1.5A
lA
10
05
5
10,000
1000
1000
200
1.5A
lA
5
5
5
05
30
10,000
1000
1000
200
1.5A
lA
5
5
5
05
50
10,000
1000
1000
200
1.5A
lA
5
5
5
05
15
20,000
10
5
1.0
10
0.1
30
10,000
5000
100
10
5
5
1.5
100
125
10
05
0.1
30
20,000
10,000
100
10
5
5
1.5
100
125
10
05
D40C5
TO·202
(55)
40
0.5'
40
40,000
D40C7
TO-202
(55)
50
0.5'
50
10,000
D40C8
TO-202
(55)
50
0.5'
5
D40Kl
TO-202
(55)
30
TO-202
(55)
- 50
D40K3
TO-202
(55)
D40K4
TO-202
(55)
MPSA12
TO-92
(92)
20
0.1
MPSA13
TO-92
(92)
30
MPSA14
TO-92
(92)
30
NSD151
TO-202
(55)
D40K2
t;,
VCBO
(V)
Min
Case
Style
30
12
60,000
5
5
I
05
5000
10,000
10
100
5
5
1.5
100
8
5
10
05
150,000
5000
10,000
10
100
5
5
1.5
100
8
5
10
05
25,000
TO-202
(55)
12
NSD153
TO-202
(55)
12
20,000
5000
10
100
5
5
1.5
100
8
5
10
05
NSD154
TO-202
(55)
12
20,000
5000
10
100
5
5
1.5
100
8
5
10
05
NSDU45
TO-202
(55)
50
12
25,000
15,000
4000
150,000
200
500
lA
5
5
5
1.0
200
8
1
200
05
NSOU45A
TO-202
(55)
60
12
25,000
15,000
4000
150,000
200
500
lA
5
5
5
1.0
200
8
1
200
05
NSD152
"
-
0.1
10
~
Type
No.
2N6037
2N603B
2N6039
2N63B6
~
SWITCHES/CHOPPERS
(Continued)
Case
Style
BVGSS
IGSS
lo(off)
BVGoO
'lOGO
(nA) @ VoS VGS
(V)@IG (nA) @ VoG
Max (V)
(V)
Min IJ919S 13.:1r
JFET Selection Guide
~
Type
No.
'"
,j,.
N·Channel JFETs
RF, VHF, UHF AMPLIFIERS
Case
Style
BVGSS
(V)@IG
Min IJalas 13:1r
JFET Selection Guide
~
N·Channel JFETs
LOW FREQUENCY- LOW NOISEAMPLIFIERS
BVGSS
(V)
IG
Min IJ919S 13:Jr
JFET Selection Guide
~
~
N·Channel J FETs
GENERAL PURPOSEAMPS(Conlinued)
BVGSS
"BVGoO
(V)@IG
Min {}tAl
en
c rss
Process
No.
Type
No.
Case
Style
2N5105
TO-72
25
1
0.1
15
0.5
4
15
1
5
15
15
5
10
15
100
15
5
15
0
1
15
0
50
I
25
2N5358
TO-72
40
1
0.1
20
0.5
3
15
100
0.5
1
15
1
3
15
10
15
6
15
0
2
15
0
115
100
55
TO-72
40
1
0.1
20
0.8
4
15
100
0.6
1.6
15
1.2
3.6
15
10
15
6
15
0
2
15
0
115
100
55
I
25
2N5359
2N5360
TO-72
40
1
0.1
20
0.8
4
15
100
1.5
3.0
15
1.4
4.2
15
20
15
6
15
0
2
15
0
115
100
55
25
2N5361
TO·72
40
1
0.1
20
1
6
15
100
2.5
5
15
1.5
4.5
15
20
15
6
15
0
2
15
0
115
100
55
25
2N5362
, TO-72
40
1
0.1
20
2
7
15
100
4
8
15
2
5.5
15
40
15
6
15
0
2
15
0
115
100
55
25
2N5363
TO-72
40
1
0.1
20
2.5
8
15
100
7
14
15
2.5
6
15
40
15
6
15
0
2
15
0
115
100
55
25
2N5364
TO-72
40
1
0.1
20
2.5
8
15
100
9
18
15
2.7
6.5
15
60
15
6
15
0
2
15
0
115
100
55
25
2N5457
TO-92
25
1
1
15
0.5
6
15
10
1
5
15
2
5
15
50
15
7
15
0
3
15
0
55
92
2N5458
TO-92
25
1
1
15
1
7
15
10
2
9
15
1.5
5.5
15
50
15
7
15
0
3
15
0
55
92
2N5459
TO-92
25
1
1
15
2
8
15
10
4
16
15
2
6
15
50
15
7
15
0
3
15
0
55
92
2N5556
TO-72
30
1
0.1
15
0.2
4
15
1
0.5
2.5
15
1.5
6.5
15
20
15
6
15
0
3
15
0
35
10
50
25
2N5557
TO-72
30
1
0.1
15
0.8
5
15
1
2
5
15
1.5
6.5
15
20
15
6
15
0
3
15
0
35
10
50
25
2N5558
TO-72
30
1
0_1
15
1.5
6
15
1
4
10
15
1.5
6.5
15
20
15
6
15
0
3
15
0
35
10
50
25
J201
TO·92
40
1
0.1
20
0.3
1.5
20 '
10
0.2
1
20
0.5
20
11
20
15
20
0
12
20
0
110
1000
52
92
J202
TO-92
40
1
0.1
20
0.8
4
20
10
0.9
4.5
20
1
20
13.5
20
15
20
0
12
20
0
110
1000
52
92
J203
TO-92
40
1
0.1
20
2
10
20
10
4
20
20
1.5
20
110
20
15
20
0
12
20
0
110
1000
52
92
,J210
TO-92
25
1
0.1
15
1
3
15
1
2
15
15
4
12
15
150
15
15
15
0
11.5
15
0
110
1000
90
92
J211
TO-92
25
1
0_1
15
2.5
4.5
15
1
7
20
15
7
12
15
200
15
15
15
0
11.5
15
0
110
1000
90
92
J212
TO-92
25
1
0.1
15
4
6
15
1
15
40
15
7
12
15
200
15
15
15
0
11.5
15
0
110
1000
90
92
MPF103
TO-92
25
1
1
15
6
15
1
1
5
15
1
5
15
50
15
7
15
0
3
15
0
55
92
MPF104
TO-92
25
1
1
15
7
15
1
2
9
15
1.5
5.5
15
50
15
7
15
0
3
15
0
55
92
MPF105
TO-92
25
1
1
15
8
15
1
4
16
15
2
6
15
50
15
7
15
0
3
15
0
55
92
MPF109
TO-92
25
10
1
15
0_2
8
15
10
0.5
24
15
0.8
6
15
75
15
7
15
0
3
15
0
55
92
MPF110
TO-92
20
10
100
10
0.5
10
10
1
0.5
20
10
0_5
10
50
92
MPF111
TO-92
20
10
100
10
0.5
10
10
1000
0_5
20
10
0.5
10
200
10
50
92
MPF112
TO-92
25
10
100
10
0.5
10
10
1000
1
25
10
1
7.5
10
PN3684
TO-92
50
1
0.1
30
2
5
20
1
2.5
7.5
20
2
3
20
50
20
4
20
0
1.2
20
0
150
PN3685_
TO-92
50
1
0.1
30
1
3.5
20
1
1
3
20
1.5
2.5
20
25
20
4
20
0
1.2
20
0
PN3686
TO-92
50
1
0_1
30
0.6
2
20
1
0.4
1.2
20
1
2
20
10
20
4
20
0
1.2
20
0
-----------
IGSS
(nA)@VoG
Max (V)
vp
(V) @ {lOS
Min Max (V)
10
(nA)
lOSS
(rnA) @ VoS
Min Max (V)
. Goss
GIs
(mmho)@ VoS {}tmho)@VoS
(V)
Min Max (V)
Max
Ciss
(pF)@Vos VGS
(V)
Max (V)
(pF)@Vos VGS (;)@Freq
Max (V) (V)
Max
(Hz)
115
1000
Pkg.
No.
25
55
92
20
52
92
150
20
52
150
20
52
92
I
92
~
Type
No.
;b
N-Channel JFETs
GENERAL PURPOSEAMPS(Continued)
Case
Style
BVGSS
*BVGOO
(V)@IG
Min !J.A)
en
IGSS
(nA)@VOG
Max (V)
vp
(V) @ VOS
Min Max (V)
0.3
10
(nA)
lOSS
(mA) @ VOS
Min Max (V)
Goss
GIs
(mmho) @ VOS {umho)@VOS
(V)
Min Max (V)
Max
Clss
(pF)@Vos VGS
(V)
Max (V)
Crss
(pF)@VOS· VGS
Max (V) (V)
Max
. Process Pkg.
No.
No.
(Hz)
150
20
(NV)
.,1Hz @Freq
PN3687
TO·92
50
1
0.1
30
1.2
20
1
0.1
0.5
20
0.5
1.5
20
5
20
4
20
0
1.2
20
0
PN4220
TO·92
30
10
0.1
15
4
15
1
0.5
3
15
1
4
15
10
15
6
15
0
2
15
0
55
92
PN4221
TO·92
30
10
0.1
15
6
15
1
2
6
15
2
5
15
20
15
6
15
0
2
15
0
55
92
PN4222
TO·92
30
10
0.1
15
8
15
1
5
15
15
2.5
6
15
40
15
6
15
0
2
15
0
55
92
PN43Q2
TO·92
30
1
1
10
4
20
10
0.5
5
20
1
20
50
20
6
20
0
3
20
0
100
1000
52
92
PN4303
TO·92
30
1
1
10
6
20
10
4
10
20
2
20
50
20
6
20
0
3
20
0
100
1000
52
92
PN4304
TO·92
30
1
1
10
10
20
10
0.5
15
20
1
20
50
20
6
20
0
3
20
0
125
1000
52
92
PN5163
TO·92
25
1
10
15
0.4
8
15
1000
1
40
15
2
9
15
200
15
12
15
0
3
15
0
50
1000
50
92
TIS58
TO·92
25
1
4
15
0.5
5
15
20
2.5
8
15
1.3
4
TlS59
TO·92
25
1
4
15
1
9
15
20
6
25
15
1.3
• 10 = 1 rnA; t 10
I = typical value.
= 500 pA; tt 10 =
40 "A; * •. 10
52
92
15
6
15
2 rnA
3
15
2 rnA
50
94
15
6
15
2 rnA
3
15
2 rnA
50
94
= 100 "A; 110 = 250 "A.
ap!n~
UO!I:>alas !3:1r
·JFET Selection Guide
~.
N·Channel JFETs
GENERAL PURPOSE DUAL JFETs
OperaUng Conditions For The.. Charactarlstlcs
IVOS1.21
Type
No.
VOS
(mY)
Orlft
(,N/oCr 10
"VOS (pA)
Max Max
0 0 .. CMRR
!.mho) (dB)
Max Mdx
Min
0,.
"mhos
~
Min· Max
~
0,.
Clss Cra•
Go••
lOSS
(mmho) !.mho) (PA)@ VOO (pF) (PF)
Max Min Max Max Max M Max' Max
lOSS
(mA)
en
BV
lOSS
0,.
0 0 ••1.2 101.102
125°C
(nA)
M (hVl.jHz)@, Match Match !.mho)
%
Procell Pkg.
No.
I
Min
Max (Hz)
18
6
50
100
1000
5
83
12
18
6
50
100 1000
5
83
12
%
M
(pAl
Max
Max
Min
10
700
5
10
250 1500
20
-3.0
1
2N3922
2N3934
TO·71
10
700
5
25
250 1500
20
10
200
5
10
100
300
5
2N3935
TO·71
T().71
1000
-3.0 1
10
1.5 7.5
35
See 2N3954-6 as an improved replacement
10
200
5
25
100
300
5
2N3954A
TO·71
20
200
5
5
50
0.5
4
1
See 2N3954·6 as an improved replacement
3.
1
100
4.5 0.5
5
35
30
4
1.2
50
150
100
5
3
10
TO·71
TO·71
T().71
20
200
5
10
50
0.5
4
1
4.5
0.5
5
1
3
35
100
30
4
1.2
50
150
100
5
3
10
83
83
12
2N3954
20
200
15
50
0.5
4.5
0.5
5
1
3
0.5
5
1
3
50
150
150
83
4.5
1.2
1.2
10
1
4
4
3
0.5
30
30
5
50
100
100
100
25
35
35
50
200
4
4
1
20
5
10
100
5
5
10
12
12
2N3956 •
TO·71
20
200
15
50
50
0.5
4
1
4.5
75
0.5
4
1
35
30
1.2
1.2
50
150
100
100
5
10
200
25
0.5
4
1.
0.5
5
1
3
35
100
30
4
1.2
50
150
100
15
TO-71
T().71
10
10
200
15
100
10
4.5
4.5
1
20
50
50
4
4
150
20
100
100
50
200
3
3
30
20
5
5
35
TO·71
TO-71
0.5
0.5
1
2N3957
200
15
10
700
10
700
15
15
100
2N4085
TO-71
TO-71
100
1000
1000
2N5045
2N5046
TO-71
15
15
15
200
5.0
TO-71
200
200
10
15
20
200
5
TO-71
T()'71
T().71
20
20
200
200
20
2N5453
TO·71
T()'71
2N5454
T()'71
2N5545
2N5546
2N5547
TO-71
TO-71
2N5561
2N5562
TO-71
T().71
2N5563
T().71
2N3958
2N4082
2N4083
2N4084
2N5047
2N5196
2N5197
2N5196
2N519B
2N5452
TO·71
T()'71
J402
J404
J405
J408
J410
25
300
10
100 300
250 1500
250 1500
20
20
100
5
15
15
10
15
20
40
15
200
20
200
5
20
200
10
5
10
20
15
200
15
25
200
10
17
5
10
'10
700
10
700
15
10
200
5
10
200
10
10
10
200
10
25
DIP
10
10
200
15
25
100
200 .
40
10
200
20
40
a-Pin
20
200
10
8-Pln
Mlnl-
1000
30
30
I
12
12
5
10
83
83
10
15
10
83
10
83
7.5
35
1000
30
18
6
3
1
10
1.5
7.5
35
1000
18
6
0.5
4.5
0.5
8
1.5
8
4
50
200
10
4.5
4.5
0.5
0.5
8
-8
1.5
25
25
250
0.5
0.5
6
6
30
30
50
50
8
4
50
200.
10
1.5
6
25
250
30
30
8
4
50
200
10
250
12
5
83
12
12
12
83
83
20
3
3.8
0.7
4.5
0.7
7
1
4
50
25
30
6
2
50
20
1000
5
3
1
5
700 1500
4
3.8
0.7
4.5
0.7
7
30
6
2
50
4.5
0.7
7
30
6
2
50
5
1
0.7
7
1
4
25
25
5
5
4.5
50
50
3
5
1
0.7
0.7
20 1000
20 1000
5
3.8
3.8
4
4
25
4
4
1
1
50
700 1500
700 1500
0.2
0.2
0_2
5
1
5
1
4.5
O.S
5
1
3
3
100
50
50·
5
4.2
2
1.2
1000
0.2
6
4
20
1
30
30
20
1000
5
3
1
0.2
4.2
1
4.5
0.5
5
1
3
3
100
30
4
1.2
50
20
1000
1
0.2
4.2
1
4.5
4.5
0.5
0.5
5
8
1
1.5
3
3
25
100
100
30
4
1.2
50
20
6
180
100
100
6
50
200
10
4.5
0.5
0.5
2
2
50
4.5
30
30
1000
10
5
5·
30
6
2
50
2.7t 0.8
2.7t 0.8
3
3
1
1
100
30
50
50
10
10
1
30
30
50
50
3
2.5
100
100
4
4
2.7t 0.8
2.3 0.5
15
.15
15
4
50
10
0.5
.100
30
8
3
50
·50
20
4
0.2
10
2000 3000
4
0.2
25
10
2000 3000
100 1000 1600
4
0.2
8
1.5
6
25
·1.5
6
25
10
10
2
7
20
·12
12
83
0.2
8
10
10
12
12
5
4
6
12
12
1.5
700 1500
2000 3000
80
10
35
10
0.5
700
40
5
7.5
1
50
10
20
1.5
3
4
0.5
0.5
200
200
0.5
50
50
15
15
TO-71
10
See 2N3954-6 as an improved replacement
10
200
5
10
Min
See 2N3954-6 as an improved replacement
67
133
5
10
15
J401
J403
25
10
Min
5
10
12
83
83
83
12
12
83
12
83
12
0.25
83
12
3
0.25
12
5
0.25
1
83
83
83
12
12
12
3
5
·10
5
2
5
83
3
5
10
83
12
12
10
98
98
10
98
12
10
98
60
10
5
5
.5
3
3
0.3·
0.4
3
0.5
12
2
95
100 1000 1600
100 1000 1600
2
95
2.3
0.5
2.5
0.5
10
2
7
20
100
30
8
3
50
20
60
95
2.3
0.5
2.5
0.5
10
2
7
20
100
30
a
3
50
20
10
10
98
2
98·
60
1000 1600
2
95
2.3
0.5
2.5
0.5
10
2
7
20
100
8
3
50
20
10
98
60
100 1000 1600
100 1000 1600
250 600 1200
2
90
2.3
0.5
2.5
0.5
8
3
10
98
60
0.5
20
100
a
4
0.5
3.5
0.5
6
1
4
20
250
3
1.2
50
50
40
20
2.5
7
7
100
0.5
2
2
20
2.3
10
10
30
30
60
60
2
5
0.3
30
20
4.5
,
No.
TO·71
2N3955
o:
Op. Char.
Voo 10
2N3921
2N3955A
,
'fJ
Ca ..
Style
20
10
98
50
100
83
I
~
N·Channel JFETs
GENERAL PURPOSE DUAL JFETs
(Continued)
Operating Conditions For These Characteristics
Type
No.
~
~
Case
Op. Char.
Slyi.
VOG 10
(V) "A)
VGS1.2
VOS
(mV)
Max
Orlft
"V/·C) IG
<1VGS (pA)
Max
Max
G,s
G05S
~mhos
Min
"mho)
Max
Max
CMRR
(dB)
Min
"<8:
~
lOSS
(mA)
Min Max
G,s
Goss
IGSS
Ciss erss
(mmho)
"mho) (pA) @ VOG (pF) (pF)
Min Max Max Max (V) Max Max
en
BV
lOSS
(VI (nV/·iHz)@, Match
Max·
(Hz)
Min
%
Goss1 .2
G,s
Match (.mho)
%
IG1· IG2
125·C
(nA)
No.
Pkg.
No.
Process
Min
Max
Min
J411
Mini.
20
200
25
25
250
600 1200
5
0.3
4
0.5
3.5
0.5
6
1
4
20
250
20
4.5
1.2
40
50
100
83
60
J412
OIP
20
200
40
SO
250
600 1200
5
0.3
4
0.5
3.5
0.5
6
1
4
20
250
20
4.5
1.2
40
50
100
83
60
NPD8301
B-Pin
20
200
5
10
100
700 1200
5
0.3
4
0.5
3.5
0.5
6
1
4
20
100
20
4.5
1.2
40
50
100
83
67
NPD8302
Mini·
20
200
10
15
100
700 1200
5
0.3
4
0.5
3.5
0.5
6
1
4
20
100
20
4.5
1.2
40
50
100
83
67
NPD8303
DIP
20
200
15
25
100
700 1200
5
0.3
4
0.5
3.5
0.5
6
1
4
20
100
20
4.5
1.2
40
50
100
83
67
U231
TO·71
20
200
5
10
50
600
10
0.3
4
See 2N3954 as an improved replacement
83
12
U232
TO·71
20
200
10
25
50
600
10
0.3
4
See 2N3955 as an improved replacement
83
12
U233
TO·71
20
200
15
50
50
600
10
0.3
4
See 2N3956 as an improved replacement
83
12
U234
TO·71
20
200
20
75
50
600
10
0.3
4
See 2N3957 as an improved replacement
83
12
U235
TO·71
20
200
25
100
50
600
10
0.3
4
See 2N3958 as an improved replacement
83
12
U401
TO·71
10
200
5
10
15
1000 1600
2
95
2.3
0.5
2.5
0.5
10
2
7
20
25
30
8
3
50
20
10
98
12
U402
TO·71
10
200
10
10
15
1000 1600
2
95
2.3
0.5
2.5
0.5
10
2
7
20
25
30
8
3
50
20
10
98
12
U403
TO·71
10
200
10
25
15
1000 1600
2
95
2.3
0.5
2.5
0.5
10
2
7
20
25
30
8
3
50
20
10
98
12
U404
TO·71
10
200
15
25
15
1000 1600
2
95
2.3
0.5
2.5
0.5
10
2
7
20
25
30
8
3
50
20
10
98
12
U405
TO·71
10
200
20
40
15
1000 1600
2
90
2.3
0.5
2.5
0.5
10
2
7
20
25
30
8
3
50
20
10
98
12
80
15
1000 1600
2
2.3
0.5
2.5
0.5
10
2
7
20
25
30
8
3
50
20
10
98
12
U406
TO·71
40
10
200
tiD - 100 ,A for VGS for 2N556112/3 only.
~
70
Mo.
-
LOW FREQUENCY-LOW NOISE DUAL JFETs
Operating Conditions For These Characteristics
Type
No.
Casa
Slyi.
Op. Char.
VOG 10
(V) (,
Oper.
Condo
VGS1.2 L1VGS
Drift
VOS
(mV) (PV/OC)
10
I,ttA)
Max
Max
IG1· IG2
C rss BVGSS @ 125°C Process
(V)
(nA)
(pF)
No.
Max
Min
Max
Type
No.
Case
Style
2N5902
TO·78
10
30
5
5
3
50
JL
1
4
0.6
4.5
30
JL
0.5
70
JL
0.25
5
5
20
3
1.5
40
2
84
24
2N5903
TO-78
10
30
5
10
3
50 JL
1
4
0.6
4.5
30 JL
0.5
70 JL
0.25
5
5
20
3
1.5
40
2
84
24
VOG
(V)
IG
GIs
Goss VGS
(pA) (mmho) (pmho) (V)
Max
Min
Max
Max
Min
~
Max
lOSS
(mA)
Min Max
GIs
(mmho)
Min Max
Goss
(pmho)
Max
IGSS
(pA)@VGS
Max
(V)
Ciss
(pF)
Max
Pkg.
No.
2N5904
TO-78
10
30
10
20
3
50 JL
1
4
0.6
4.5
30 JL
0.5
70
JL
0.25
5
5
20
3
1.5
40
2
84
24
2N5905
TO-78
10
30
15
40
3
50 JL
1
4
0.6
4.5
30 JL
0.5
70 JL
0.25
4
5
20
3
1.5
40
2
84
24
2N5906
TO-78
10
30
5
5
1
50
JL
1
4
0.6
4.5
30 JL
0.5
70 JL
0.25
5
2
20
3
1.5
40
0.2
84
24
2N5907
TO-78
10
30
5
10
1
50 JL
1
4
0.6
4.5
30 JL
0.5
70
I'
0.25
5
2
20
3
1.5
40
0.2
84
24
2N5908
TO-78
10
30
10
20
1
50
JL
1
4
0.6
4.5
30 JL
0.5
70
JL
0.25
5
2
20
3
1.5
40
0.2
84
24
2N5909
TO-78
10
30
15
40
1
50 JL
1
4
0.6
4.5
30 JL
0.5
70 JL
0.25
5
2
20
3
1.5
40
0.2
84
24
U421
TO-78
86
24
U422
TO-78
86
24
U423
TO-78
86
24
U424
TO-78
86
24
U425
TO-78
86
24
U426
TO-78
86
24
Process In Development
ap!nD UO!I:>alas 13.:1 r
JFET Selection Guide
~
w
....:.:
P-Channel JFETs
SWITCHES
BVGSS
BVGOO
(V)@IG
Min l/tA)
Type
No.
Case
Style
2N5018
TO·18
30
1
2
15
10
-15
12
10
-15
1
10
20
75
45
-15
0
10
0
12
35
2N5019
TO·18
30
1
2
15
10
-15
7
5
-15
1
5
20
150
45
-15
0
10
0
7
90
2N5114
TO·18
30
1
0.5
20
0.5
-15
12
5
10
- 15 0.001
30
90
18
75
1
25
-15
0
7
0
12
16
21
88
11
2N5115
TO·18
30
1
0.5
20
0.5
-15
7
3
6
-15 0.001
16
60
15
100
1
25
-15
0
7
0
7
30
38
88
11
10(011)
'GSS
(nA)@VOG (nA)@VoS VGS
(V)
Max (V) Max (V)
vp
(V) @ VOS
Min Max (V)
10
l/tA)
2N5116
TO·18
30
1
0.5
20
0.5
-15
5
1
4
-15 0.001
J174
TO·92
30
1
1
20
1
-15
10
5
10
- 15 0.01
J175
TO·92
30
1
1
20
1
-15
10
3
6
J176
TO·92
30
1
1
20
1
-15
10
1
4
J177
TO·92
30
1
1
20
1
-15
10
0.8
2.25
P1086
TO·92
30
1
2
15
10
-15
12
P1087 .
TO·92
30
1
2
15
10
-15
7
lOSS
(rnA) @ VOS
Min Max (V)
rds
(n) @ 10
Max (rnA)
Ciss
(pF)@Vos VGS
Max (V)
(V)
Crss
(pF)@VOS VGS
Max (V)
(V)
ton
(ns)
Max
Process
No.
Pkg.
No.
65
88
11
125
88
11
\011
(ns)
Max
5
25
15
150
1
25
-15
0
7
0
5
42
60
88
1i
20
,100
15
85
1
11
0
10
5.5
0
10
2
5
88
94
-15 0.01
7
60
15
125
0.5
11
0
10
5.5
0
10
5
10
88
94
-15 0.01
.2
25
15
250
0.25
11
0
10
5.5
0
15
15
88
94
-150.01
1.5
20
15
300
0.1
11
0
10
5.5
0
19
1(j
20
20
88
94
10
-15
1
10
20
75
1
45
-15
0
10
0
12
35
65
88
92
5
-15
1
5
20
150
1
45
-15
0
10
0
7
90
125
88
92
-----
~
fype
No.
~
01
P-Channel J FETs
AMPLIFIERS
Case
Style
BVGSS
BVGOO
(V)@IG
Min !itA)
en
IGSS
(nA)@VOG
Max (V)
Vp
(V) @ VOS 10
Min Max (V) !itA)
lOSS
(mA) @ VOS
Min Max (V)
G,s
(mmho) @ VOS
(V)
Min Max
Process Pkg.
C rss
Goss
Ciss
No.
No.
~mhq VOS (pF) VOS VGS (pF) VOS VGS (;')@FreQ
(V) Max (V) (V)
Max (Hz)
Max (V) Max (V)
2N2608
TO·18
30
1
10
30
1
4
-5
1
0.9
4.5
5
1
5
17
-5
1
125
1000
89
2N2609
TO·18
30
1
30
30
1
4
-5
1
2
10
5
2.5
5
30
-5
1
125
1000
88
11
11
2N3329
TO·72
20
10
10
10
5
-15
10
1
3
10
1
2
10/1 mA
20
10
20
-10
1
125
1000
89
23
2N3330
TO·72
20
10
10
10
6
-15
10,
2
6
10
1.5
3
10/2 mA
40
10
20
-10
1
125
1000
89
23
2N3331
TO·72
20
10
10
10
8
-15
10
5
15
10
2
4
10/5 rnA
100
10
20
-10
1
155
1000
89
23
2N3332
TO·72
20
10
10
10
6
-15
10
1
6
10
1
2.2
10/1 rnA
20
10
20
-10
1
65
1000
89
23
2N3820
TO·92
20
10
20
10
8.0
-10
10
0.3
15
10
0.8
5
10
200
10
32
-10
0
16
-10
0
2N4381
TO·18
25
1
1
15
1
5
-15
1
3
12
15
2
6
15
75
15
20
-15
0
5
-15
0
20
2N5020
TO·18
25
1
1
15
0.3
1.5
-15
1
0.3
1.2
15
1
3.5
15
20
15
25
-15
0
7
-15
0
2N5021
TO·18
25
1
1
15
0.5
2.5
-15
1
1
3.5
15
1.5
6
15
20
15
25
-15
0
7
-15
0
2N5460
TO·92
40
10
5
20
0.75
6
-15
1
1
5
15
1
4
15
50
15
7
-15
0
2
-15
2N5461
TO·92
40
10
5
20
1
7.5
-15
1
2
9
15
1.5
5
15
50
15
7
-15
0
2
2N5462
TO·92
40
10
5
20
1.8
9
-15
1
4
16
15
2
6
15
50
15
7
-15
0
2
J270
TO·92
30
1
0.2
20
0.5
2.0
-15 0.001
2
15
15
6.0
15
15
J271
TO·92
30
1
0.2
20
1.5
4.5
-15 0.001
6
50
15
8.0
18
PN4342
TO·92
25
10
10
15
5.5
-10
1
4
12
10
2
6
PN4360
TO·92
20
10
10
15
0.7
10
-10
1
3
30
10
2
PN5033
TO·92
20
10
10
15
0.3
2.5
-10
1
0.3
3.5
10
1
89
94
1000
89
11
30
1000
89
11
30
1000
89
11
0
115
100
89
92
-15
0
115
100
89
92
-15
0
115
100
89
92
94
200
15
120
-15
0
15
-15
0
110
1000
88
500
15
120
-15
0
15
-15
0
110
1000
88
94
10
75
10
20
-10
0
5
-10
0
80
100
89
92
8
10
100
10
20
-10
0
5
-10
0
190
100
89
92
5
10
20
10
25
-10
0
7
-10
0
100
1000
89
92
1 = Iypical value.
ap!n~
UO!I:>alas 13.:1r
Section 4
Selection Guides
'
....W
LL
...
c.
...Q.o
Choose The Proper FET
Q)
Q)
.s::
Q)
National Semiconductor utilizes 17 different F ET geometries to cover, without compromise, the full spectrum
of applications. Detailed data on each process, along with a list of all part numbers manufactured from each
'
process, is to be found in Section 9.
To further simplify the selection procedure, the FET Family Tree is included for quick identification. After
narrowing down the process types, it is suggested that the 'process sheets and specific part number characteristics be consulted.
en
o
o
.s::
(J
FET FAMILY TREE
N·CHANNEL SINGLES
P·CHANNEL SINGLES
N·CHANNEL DUALS
I
J
I
GENERAL PURPOSE AMP
P50 - g" 3-7 mmhos
loss 1-20 mA
P52 - !Its 0.5-3 mmhos
loss 0.1-10 mA
P55 - !II. 0.8-5 mmhos
loss 0.5-17 mA
I
GENERAL PURPOSE AMP
GENERAL PURPOSE
P88 - !Its 4-17 mmhos
loss 5-90 mA
P89 - !lts 1-4mmhos
loss 0.3-20 mA
P83 -IG 3 pA@20V
!Its 0.85 mmho @0.2 mA
P94 - IG 1 pA@35V
CMRR 125 dB
I
--,
1
RF!VHF/UHF
P50 - Gps 12 dB @400MHz
!Its 5.5 mmhos
P90 - Gpt 11 dB@450MHz
g" 8 mmhos
P92 - Go. 12 dB@450MHz
!Its 19 mmhos
SWITCH/CHOPPER
P88 - 'os 50-200 ohms
lo(oFF) 5~ pA
P89 - 'os 450 ohms
lo(oFF) 20 pA
I
UL TRA·LOW INPUT CUR
P84 - 1 pA@25V
9fs 175l'mho
P86 - IG 0.1 pA
9fs 500l'mho
I
ULTRA·LOW LEAKAGE AMP
WIDE BANO·LOW NOISE
P50 - IGSS 5 pA @20V
g,,3-7 mmhos
P53 - IGSS 0.3 pA @20V
g" 0.08-0.3 mmhos
P93 - g,,6 mmhos@5 mA
C.4.2 pF
P96 - !Its 9 mmhos@ 2 mA
C.l0 pF
I
I
LOW FRED·LOW NOISE AMP
LOW FRED·LOW NOISE
P50 - en 8 nV/v'ilZ@ 10 Hz
C.3 pF
P51 - en 6 nV/v'ilZ@ 10 Hz
!Its 20 mmhos
P95 - en 8 nV/v'ilZ@ 10 Hz
!Its 1-4 mmhos
P96 - en 7 nV/v'Hz@ 10 Hz
!Its 10-22 mmhos
I
SWITCH/CHOPPER
P50 - 'os 100-500 ohms
IOIOFF) 5 pA
P51 - 'os 20-100 ohms
IOIOFF) 15 pA
P58 - 'os 3-20 ohms
lo(oFF) 50 pA
All values are typical
4-2
"T1
m
FET Process Comparison Curves
Dual FET Drain Saturation Current vs
Cutoff Voltage
C(
~
f-
2:
w
0::
0::
..,
C(
100
-T A ='25°1:
50
~P96
./
".~
:J
2:
10
,;'
/
'f 1/
Q
j::
(
I§
1000
500
P50(N).t P5~ (N)P90(N) IJ /
I
100
50 -P92(Nj
UJ
'"
e(
::.0:
e(
w
-'
w
0.5
0.1
I-
c:;;
UJ
a:
88 (P)
100
~
a:
=>
./
/1
UJ
5
..,.V
10
15
eI)
20
25
30
100
50
2:
a:
=>
9'"
0.5
eI)
2
100
50 ~TA-25°C
10
5
2
P52J
o
i=
e(
a:
=>
IiI
0.5
le(
eI)
2
e(
:5
0.1
0.05
I
~
0.01
5 10
50 100
~r
I2
a:
a::
:::>
100
c..:I
2
.1'
I
a:
:::>
0.5
e(
en
~
:5
0.1
0.05
~
P96
/P98
~J~.-'1',.P8G
P84
I
I
~
~ 7'
'J
P"/~AI
JJD,
o
i=
e(
l-
P~4,±
IpJ3
0.01
0.1
0.5
5
1
10
50 100
g" - TRANSCONOUCTANCE (mmho)
4-4
P50
r'
0.5 1
Monolithic Dual FET Process Distribution
lOSS vs 9fs
10
5
~ ~~~HO
.1
0.01
0.1
50
P51
I-'
g" -
w
V rlfff.
rL~53
g" - TRANSCONDUCTANCE (mmho)
<
.§
P581N)
P92
J55!"J
a:
a:
=>
c..:I
0.1
0.5 1
-
UJ
I
0.01
P51 IN), P961D)
Single N-Channel FET Process Distribution
lOSS vs 9fs
I2
o
~
P901N). P93(D)
P881P) P971f)
1'-00. :::::-P92IN)
o -1 -2 -3 -4 -5 -6 -7 -8 -9 -10
<
.§
~ 0.05
I
~
11-
P521N)
P55IN) .1.
J P50IN) _ _
VGSIOFFI - GATE-SOURCE CUTOFF VOLTAGE (V)
~89
e(
r---
..
rr-
P - P·Channel
D - Du.1 N·Ch.nnel
o - Ouad P·Channel
'"I
II
l-
.......
~
a:
35
f"""iiOl
...,..;;; ~
5 - N - N·Ch.nnel
;;;:
V P8~-
10
5
.......
10
0
Single P-Channel FET ProcesS Distribution
lOSS vs 9fs
2
o
i=
e(
......
UJ
TA =25°C
N - N·CHANNEl
P - P-CHANNEl
I2
a:
a:
=>
c..:I
."'l1lI
50
VOG - DRAIN-GATE VOLTAGE (V)
W
La..
.§
'"
~ ~ t"--
c..:I
o
<
~~
e(
eI)
P89(PZ
e(
..!:
, " -:e
TA ='2soC-
.....
500
I-
2
0
l-
'"I
UJ
c..:I
IJ
/
ON Resistance vs Cutoff Voltage
1000
2
~ ;....--: ~
V
10
5
:s
P;,3(N)
P55
I
c..:I
(Continued)
5 10
50 100
TRANSCor~DUCTANCE (mmho)
."
m
-t
FET Application Guide
»
'C
'C
-
National Semiconductor manufactures a broad line of silicon Junction Field Effect Transistors (JFETs).
National's JFETs provide excellent performance in many areas such as RF amplifiers, analog switching, low
input current amplifiers, low noise high impedance amplifiers and outstanding matched duals for operational
amplifiers input applications.
C=;'
Q)
O·
The following FET guides enable the user to determine when to use F ETs and where to look for the best choice.
::l
C)
C
M
M
",,,
• I
POPULAR PROOUCT
TYPES
onN
co 0
"M
on"
I
,!. c;;
'"
"2 2"
M
M
No..
22
....
N
....
N
"
I
" "I
'"2 " N
~~ "2
I
co
M
N
on
N
;
cn~
'I
I
N
N'",
on
'" on
~ M
on
N
NN
2
'"2
N
=>
22
58
83
84
86
S
P
P
P
5
P
52
53
55
Low Current Amplifier
S
p
Low Freq Ampli ~ 100 Hz
S
.,.2
PROCESS DESIGNATION
50
51
High Freq Ampli
> 100 MHz
General Purpose Amplifier
Low Noise Amp (10 Hz en)
Low Noise Amp> 50 MHz
High Frequency Mixer
No..
P
P
5
P
P
M
M
N
N
N
I
I
....
Non
~
Mon
N
N
P
5
5
P
5
a,
'"
"=>I
N
.,.
2
22
;;:
N
co ...
22
No..
0
2
22
0
N
'"2N
'j
(;
M
'"onM
N
NN
'j
"'"2
,,'
co
0
",on
0
N
on
P
P
P
P
P
P
P
P
'"u.
N
'"
2
M
'"I
'"
on
on
2
N
N
96
98
P
P
P
P
P
P
Electrometer Preamp
P
P
P
Microvolt Amplifier
P
P
P
Low Leakage Diode
P
P
P
Dill/Angle Ended Inp. Stag.
P
Active Filter
P
Oscillator
P
Voltage Variable Resistor
P
Hybrid Chips
P
P
.P
P
P
P
P
P
P
P
P
5
P
P
P
P
P
5
5
5
P
P
P
P
5
P
P
S
P
P
P
S
P
P
Choppers
N
",'
en
I
M
co
0
'j
P
P
Analog/Digital Switch
~::!
o ~
0
P
P
Multiplexing
N'"
I I
'"I
"'""'2
C.
on
P
5
Dual Diff Pair
AGe Amplifier
N
0
on
N
N
P
P
P
P
5
P
P
S
P
P
P
P
P
P
P
P
S
S
P
P
P
Nixie Drivers
p
Reed Relay Replacement
Sub pA Dual Diff Pair
P
P
Sample-Hold
P
5
P
p
Buffer Interface to CMOS
Matched Switch
HF
P
5
P
P
5
5
2 400 MHz Prime
Current Limiter
Current Source
P - Prime Choice
P
P
P
P
5
P
5
S - Secondary (Alternate) Choice
4-5
P
5
P
P
CI)
:2. FET Application Guide
:::s
(Continued)
CJ
c:
o
:;:;
CO
ADVANl'AGES OF USING FIELD-EFFECT TRANSISTORS
.~
Q.
c.
c
c:
CD
Industry
PIN
T05909
T05909A
TD5910
TD5910A
T05911
TD5911 A
T05912
TD5912A
TIS25
TIS26
TIS27
TIS34
TIS41
TIS42
TIS58
TIS59
TIS73
TIS74
TIS75
TIS88A
TP5114
TP5115
TP5116
U110
U112
U146
U147
U148
U149
U183
U184
U197
U198
U199
U200
U201
U202
U231
U232
U233
U234
U235
U257
U300
U301
U304
U305
U308
U309
U310
Polarity
N
N
N
N
N
N
N
-N
N
N
N
N
N
N
N
N
N
N
N
N
P
P
P
P
P
P
P
P
P
N
N
N
N
N
N
N
N
N
N
N
N
N
N
P
P
P
P
N
N
N
Package
Direct
Replacement
Closest
Equivalent
Replacement
Process
Package
Package
Industry
Type
PIN
2N5020
8424
8424
8424
8424
9324
9324
9324
9324
9812
9812
9812
5072
5172
5172
5074
5074
5177
5177
5177
5072
8811
8811
8811
8911
TO·18
2N4318
8911
TO-18
TO-18
TO-18
TO-18
TO-72
TO-72
TO-18
TO-18
TO-18
TO-18
TO-18
TO-18
TO-71
TO-71
TO-71
TO-71
TO-71
TO-78
TO-18
TO-18
TO-18
TO-18
TO-52
TO-52
2N5020
2N5020
2N2608
2N2609
2N3823
2N4416
2N4338
2N4340
2N4341
2N4393
2N4392
2N4391
8911
8911
8911
8811
5025
5025
5202
5202
5202
5102
5102
5102
8312
8312
8312
8312
TO-78
TO-78
TO-78
TO-78
TO-78
TO-78
TO-78
TO-78
TO-71
TO-71
TO-71
TO-92
TO-92
TO-92
TO-92
TO-92
TO-92
TO-92
TO-92
TO-92
TO-18
TO-18
TO-18
TO-18
TO-18
TO-18
TO-18
TO-18
TO-18
TO-72
TO-72
TO-18
TO-18
TO-18
TO-18
TO-18
TO-18
TO-71
TO-71
TO-71
TO-71
8312
TO-71
UC714
9324
8811
8811
8811
8811
9207
9207
9207
TO-78
TO-18
TO-18
TO-18
TO-18
TO-52
TO-52
TO-52
UC734
UC734E
UC755
UC756
UC805
UeS07
UC814
UC851
TO-1818
TO-1818
TO-1818
TO-1818
TO-1818
TO-1818
TO-1818
TO-1818
TO-516
TO-516
TO-516
TO-92
TO-18
TO-92
TO-92
TO-92
TO-18
TO-18
TO-18
TO-18
TO-18
TO-18
TO-18
TO-18
TO-52
2N5909
2N5909
2N5910
2N5910
2N5911
2N5911
2N5912
2N5912
U401
U402
U403
2N5486
2N4859
PN4392
TIS58
TIS59
TIS73
TIS74
TIS75
2N5486
2N5114
2N5115
2N5116
U231
U232
U233
U234
U235
U257
2N5114
2N5145
2N5114
2N5116
U308
U309
U310
U312
U316
U317
U320
U321
U322
U401
U402
U403
U404
U405
U406
U440
U441
U1837E
U1897
U1897E
U1898
U1898E
U1899
U1899E
U1994
U1994E
U2047
U2047E
UC155
UC2DD
UC201
UC210
UC220
UC241
UC250
UC251
UC400
UC401
UC410
UC420
UC588
UC703
UC705
UC707
~
4-12
Polarity
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
P
P
P
P
N
N
N
N
N
N
N
N
N
P
P
P
P
Package
TO-18
8-69
8-69
TO-5
TO-5
TO-5
TO-71
TO-71
TO-71
TO-71
TO-71
TO-71
TO-71
TO-71
TO-106
TO-106
TO-106
TO-106
TO-106
TO-106
TO-106
TO-106
TO-106
TO-92
TO-106
TO-72
TO-72
TO-72
TO-72
TO-72
TO-72
TO-18
TO-18
TO-72
TO-72
TO-72
TO-72
TO-106
TO-72
TO-72
TO-18
Direct
Replacement
Closest
Equivalent
Replacement
U312
U309
U310
2N5433
2N5433
2N5432
U401
U402
U403
U404
U405
U406
2N5911
2N5912
2N5486-18
U1897
U1897-18
U1898
U1898-18
U1899
U1899-18
PN4416-18
PN4416-18
PN4416
PN4416-18
2N4416
2N4393
2N4416
2N3822
2N4220
2N3822
2N4391
2N4392
2N2609
2N5019
2N2609
2N3329
PN4416-18
2N3822
2N3824
2N4391
TO·72
2N4416
TO-72
TO-106
TO-18
TO-18
TO-72
TO-72
TO-72
TO-18
2N4416
PN4416-18
2N4391
2N4224
2N3331
2N4861
2N3331
2N2608
Process
Package
Package
9007
9207
9207
5807
5807
5807
9812
9812
9812
9812
9812
9812
9324
9324
5072
5172
5172
5172
5172
5172
5172
5072
5072
5072
TO-52
TO-52
TO-52
TO-52
TO-52
TO-52
TO-71
TO-71
TO-71
TO-71
TO-71
TO-71
TO-78
TO-78
TO-92
TO-92
TO-92
TO-92
TO-92
TO-92
TO-92
TO-92
TO-92
TO-92
TO-92
TO-72
TO-18
5072
5025
5102
5025
5525
5525
5525
5102
5102
8811
8811
8811
8923
5072
5525
5525
5102
5025
5025
5072
5102
5025
8923
5102
8923
8911
Type
TO-72
TO-72
TO-72
TO-72
TO-18
TO·18
TO-18
TO-18
TO-18
TO-72
TO-92
TO-72
TO-72
TO-18
TO-72
TO-72
TO-92
TO-18
TO-72
TO-72
TO-18
TO-72
TO-18
RF Selector Guide
C)
C
JFETs
BIPOLARS
40
Preamplifiers
> 500 MHz
> 500 MHz with AGe
200-500 MHz
200-500 MHz with AGe
50-250 MHz
50-250 MHz with AGe
20-120 MHz
,
42
43
•
•
•
•
•
•
•
•
•
Loc Osc
> 500 MHz Mech. Tuned
> 500 MHz Varactor
200-500 MHz Mech. Tuned
200-500 MHz Varactor
50-250 MHz
20-120 MHz
•
•
•
•
•
•
45
46
47
90
49
50
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
92
•
•
•
•
•
•
with AGe
with AGe
Last Stage
Last Stage
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Special Uses
200-500 MHz < 1.0 rnA Bias
50-250 MHz < 1.0 rnA Bias
200-500 MHz 5-15 rnA Linear IF
50-250 MHz 5-15 rnA Linear IF
< 120 M Hz/15 rnA Wideband RF
VHF Freq. Generator and/or
Multiplier to 75 mW Levels
44
•
Mixers
Input> 500 MHz
Input 200-500 MHz
Input 50-250·MHz
Input 20-120 MHz
IF Amps
< 75 MHz
< 15 MHz
< 75 MHz
< 15 MHz
< 75 MHz
< 15 M Hz
41
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
,
4-13
•
•
•
•
c:
CD
Transistors NPN GPA Devices
P37GPA
DRIVER
120mA
P38 GPA
DRIVER
SOmA
P09GPA
P14 GPA
P39 GPA-HIGH
VOLTAGE DRIVER
P13 GPNSW
SOmA
P36 HIGH
VOLTAGE
P12 GPA
P19 GPNSW
30mA
~I
CONTINUOUS
OPERATION
TYPICAL
COLLECTOR
CURRENT
20mA
1S mA
10 mA
8mA
,-
P18GPNSW
--.
__ -, "'."
P23 GPNSW
.
SEE NPN-RF
I
P48 HIGH VOLTAGE
VIDEO DRIVER
P27GPA
I
I
I
I
P04 LOW
LEVEULOW
NOISE AMP
P17 HIGH
VOLTAGE
P16 GPA-HIGH
VOLATAGE
I
SmA
I
I
2mA
P07LOW
LEVEULOW NOISE
AMP
I
I
25V
40V
45V
SOV
80 V
100 V
120V
COLLECTOR BREAKDOWN VOLTAGE
BVCEO
220 V
300 V
15mA
P23 RF·GPA
400 MHz
P27 RF·GPA
400 MHz
P46 RF·IF
450 MHz
12mA
P43 RF·AMP/OSC
900 MHz
P40 RF·AMP/OSC
1300 MHz
P49 RF·VHF
600 MHz
i:01
CONTINUOUS
OPERATION
TYPICAL
COLLECTOR
CURRENT
9mA
P47 RF·IF
900 MHz
SmA
P42 RF·VHF/UHF
1000 MHz
P41 RF·IJHF
800 MHz
P44 RF·VHF AGC
450 MHz
3mA
P45 RF·IF AGC
400 MHz
10 V
15 V
20 V
25 V
30 V
35 V
COLLECTOR BREAKDOWN VOLTAGE
BVCEO
SaO!Aaa .:U:I Nd N SJO~S!SUeJl
Transistors PNP GPA Devices
P77 GPA
DRIVER
120 rnA
80 rnA
P78 GPA
DRIVER
P68GPA
50 rnA
P67 GPA
"30 rnA
~I
CONTINUOUS
OPERATION
20 rnA
TYPICAL
COLLECTOR
CURRENT
15mA
P79 GPA-HIGH
VOLTAGE DRIVER
P63 GPNSW
P66 GPNSW
10mA
P74 GPA-HIGH
VOLTAGE
P71 LOW
LEVEULOW
NOISE AMP
8mA
P76 HIGH
VOLTAGE
5mA
P62 LOW
LEVEULOW
NOISE AMP
2mA
-20V
-40V
-60V
-80 V
-100V
-120 V
.
COLLECTOR BREAKDOWN VOLTAGE
BVCEO
-180 V
-250V
1500 rnA
P70 HSS
1000 rnA
MAXIMUM
COLLECTOR
CURRENT
!....,
40 V PNP
P12 GPNSW
NPN 80 V
. P25 HSS
40 V NPN
P67 GPNSW
PNP 60 V
750 rnA
P13 GPNSW
NPN 35 V
P22 HSS
15 V NPN
SATURATED 500 rnA'
MODE
P19 GPNSW
NPN 40 V
P63 GPNSW
PNP 40 V
300 rnA I
P64 HSS
12 V PNP
200 rnA
P21 HSS
15 VINPN
150 rnA
P65 HSS
12 V PNP
20 ns
GPNSW - General Purpose Amplifier/Switch
HSS - High Speed Switch
P66 GPNSW P23 GPNSW
PNP 40 V
25 ns
30 ns
40 ns
60 ns
MAXIMUM T OFF
NPN 40 V
300 ns
200 ns
500 ns
•
SEE DATA BOOK FOR CIRCUIT CONDITIONS
6u!4 3 1!MS paads 46!H JOJ SJOIS!SUeJJ.
TO·237 Type Power Transistor Selection Guide
NPN
Part Number
PNP
92PE869
92PE871
92PE870
92PE872
2N67111
Ic
(A)
VCEO
(V)
Min
0.1
0.1
250
300
50
50
25
25
20
20
0.1
160
30
30
10
1
0.1
200
40
10
10
0.1
250
30
30
0.1
250
40
0.1
300
0.1
300
@
hFE
Po
IT
(W)
(MHz)
Process
(NPN/PNP)
*
60
60
17/76
17/76
30
50
48
2
20
50
48
10
1
30
50
48
10
10
2
20
50
48
30
30
10
1
30
50
48
40
10
10
2
20
50
48
50
48
Max
lc(mA) VCE (V)
Max VCE (SAT) .
(V) @ Ic(mA)
92PE487
2N67331
92PU391
2N67121
92PE488
2N67341
*
92PU392
2N67731
92PE489
2N67351
92PU393
2N67191
0.1
300
40
92PU10
TN2219
0.5
30
TN2218A
0.5
40
0.5
40
100
30
40
25
100
TN2219A
TN3053
2N6737
TN2905
TN2904A
0.5
60
TN2905A
0.5
60
TN4037
1
1
40
45
TN3726
TN2102
. TN4036
TN3019
TN3020
TN4033
2N67201
1
50
1
65
40
40
100
50
300
120
300
120
300
*
30
10
0.75
30
150
500
150
500
150
10
10
10
10
10
0.4
150'
250
19
0.3
150
250
19
0.31
150
300
19163
200
63
*
0.4
0.4
150
0.4
150
200
63
1.4
0.4
150
300
100
300
12/63
300
25
60
12167
100
100
150
12
12
67
150
500
150
500
10
10
10
10
150
100
300
100
300
10
1
1
0.4
300
10
10
10
10
5
0.51
150
0.65
0.2
0.2
0.15
150
150
150
50
60
40
60
40
250
150
120
300
120
300
150
500
150
150
100
300
100
10
0.5
100
10
36
00
10
0.5
00
10
36
10
36
10
36
300
25
1
1
1
80
80
80
40
25
100
40
100
1
150
30
1
200
0
1
250
150
*
*
25
92PU36
2N67211
92PU36A
2N67221
*
92PU36B
2N67231
1
92PU36C
TN3724
1.5
300
30
60
40
150
100
300
*AII TO·237: 850 mW. free air ITA = 25'C)
2.0W, coli ector lead at 25'C
1W-1 ~W mounted flush in PC board
4·18
1
1
0.2
0.32
100
300
I
TO·237 Type Power Transistor Selection Guide (Continued)
NPN
Part Number
PNP
2N67141
92PU01
2N67151
92PU01A
2N67241
92PU45
2N67051
92PE37A
2N6725
92PU45A
2N67261
92PU51
2N67271
92PU51A
2N67061
92PE37B
2N67161
92PU05
2N67311
92PU100
2N67071
92PE37C
2N67171
92PU06
2N67091
92PE77B
2N67281
92PU55
2N67321
92PU200
2N67101
92PE77C
2N67201
92PU56
2N67081
92PE77A
Ic
VCEO
(A)
(V)
2
30
2
40
@
hFE
Min
Max
40
2
45
2
50
Max VCE (SAT)
(V)
@ lc(mA)
Po
(W)
fr
(MHz)
Process
(NPN/PNP)
1
1
1
1
5
5
2
0.5
1000
50
37/77
0.5
1000
50,
37/77
25k
4k
40
100
1000
100
1000
200
1000
500
1
1.5
0.5
200
1000
500
25k
4k
200
1000
5
5
1
1.5
60
55
60
55
2
lc(mA) VCE (V)
100
05
50
38/78
200
1000
100
05
*
2
60
40
500
2
0.5
500
50
38/78
2
60
20
500
1
0.35
250
50
38/78
2
80
100
350
2
0.35
350
50
39/79
2
80
40
500
2
0.5
500
50
39/79
2
80
20
500
1
0.35
250
50
39/79
300
_.
tJ)
*
o""'I
en
(D
-
(D
(")
=
o::::s
G)
c
Pinout: 92PE
92PU, TN
c:
ECS
ESC
(D
*AII TO·237: 850 mW, free air (TA = 25'C)
2.0W. collector lead at 25'C
1W-1.2W mounted flush in PC board
4-19
TO·202 Type Power Transistor Selection Guide
,
Part Number
PNP
IT
Ic(A) VCE (V)
MaxVCE(SAn
(V) @ Ic(A)
PD
(W)
(MHz)
Process
(NPN/PNP)
25
25
0.03
0.03
10
10
1
1
0.03
0.03
1.75
1.75
50
50
48
_48
250
250
250
250
250
250
250
300
25
25
30
60
30
60
50
50
0.03
0.03
0.02
0.020.03
0.03
25m
25m
10
10
10
10
10
10
20
20
1
1
0.03
0.03
50
50
50
50
1
1
0.02
0.02
1.75
1.75
1.67
1.67
1.75
1.75
1.8
1.8
60
60
48
48
48
48
48
48 _
17176
17/76
0.1
0.1
0.1
0.1
0.1
0,1
0.1
0.1
0.1
300
300
300
300
300
300
300
375
375
30
60
30
60
25
25
40
20
30
90
180
90
180
0.02
0.02
0.03
0.03
0.03
0.03
0.03
0.02
0.03
10
10
10
10
10
10
10
10
10
1
1
1
1
1.5
0.02
0.02
0.03
0.03
0.02
1
0.02
1.67
1.67
1.75
1.75
1.75
1.75
1.75
1.67
1.75
50
50
50
50
50
50
60
50
50
48
48
48
48
48
040C1
040C2
040C3
040C4
040C5
040C7
040C8
0.5
0.5
0.5
0.5
'0.5
0.5
0.5
30
30
30
40
40
50
50
10k '
40k
90k
10k
40k
10k
40k
60k
0.2
0.2
0,2
0.2
0.2
0.2
0.2
5
5
5
5
5
5
5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
1.33
1.33
1.33
1.33
1.33
1.33
1.33
75
75
75
75
75
75
75
05
05
05
05
05
05
05
040P1
040P3
040P5
0.5
0.5
0.5
120
180
225
40
40
40
0.08
0.08
0.08
10
10
10
1
1
1
0.1
0.1
0.1
1.67
1.67
1.67
50
50
50
36
36
36
Ic
(A)
VCEO
(II)
Min
NS0457
NSE457
0.1
0.1
160
160
NS0458
NSE458
040N1
040N2
NS0131
NS0132
NSE869
NS0871
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
040N3
040N4
NS0133
NS0134
NS0459
NSE459
NSOU10
040N5
NS0135
NPN
NSE870
NSE872
@
hFE
Max
90
180
90
180
90
60k
60k
48
48
48
48
04001
04002
04003
04101
04102
1
1
1
30
30
30
50
120
290
150
300
0.1
0.1
0.1
2
2
2
0.5
0.5
0.5
0.5
1.67
1.67
1.67
200
200
200
38/78
38/78
04004
04005
NS0102
NS0103
04104
04105
NS0202
NS0203
1
1
1
1
45
45
45
45
50
120
50
120
150
360
150
360
0.1
0.1
0.1
0.1
2
2
5
5
0.5
0.5
0.2
0.2
0.5
0.5
0.1
0.1
1.67
1.67
1.75
1.75
200
200
60
60
38/78
38/78
.38/78
04007
04008
2N6551
04107
04108
2N6554
1
1
1
60
60
60
50
120
80
150
360
250
0.1
0.1
0.05
22
1
1
1
0.5
0.5
0.5
0.25
1.67
1.67
2.0
200
200
75
38/78
38/78
38/78
040010
040011
040013
040014
041010
041011
041013
041014
1
1
1
1
75
75
75
75
50
120
50
120
150
360
150
360
0.1
0.1
0.1
0.1
2
2
2
2
1
1
1
1
0.5
0.5
0.5
0.5
1.67
1.67
1.67
1.67
200
200
200
200
38/78
·38178
2N6552
NS0104
NS0105
NS0106
2N6553
2N6555
NS0204
NS0205NS0206
2N6556
1
1
1
1
1
80
80
80
100
100
80
50
120
50
80
250
150
360
150
250
0.05
0.1
0.1
0.1
0.05
1
5
5
5
1
0.5
0.2
0.2
0.2
0.5
0.25
0.1
0.1
0.1
0.25
1.75
1.75
1.75
75
60
60
60
75
39179
39179
39179
39179
39179
NS036
NS036A
1
1
150
200
30
30
300
300
0.1
0.1
10
10
0.5
0.5
0.1
0.1
1.75
1.75
10
10
36
.36
NS036B
NS036C
1
1
250
300
30
30
300
300
0.1
0.1.
10
10
0.5
0.5
0.1
0.1
1.75
1.75
10
10
36
36
4·20
38
38/78
38/78
38/78
a
TO·202 Type Power Transistor Selection Guide(continUed)
Part Number
NPN
PNP
NSDU01
NSD151
NSD153
D40E1
D40K1
D40K3
NSDU51
NSDU01A
NSDU02
2N6548
2N6549
NSDU45
NSD152
NSD154
. D40K2
D40K4
NSDU45A
D41E1
D41K1
D41K3
NSDU51A
NSDU52.
Ic
(A)
VCEO
(V)
Min
2
2
2
2
2
2
30
30
30
30
30
30
60
10k
5k
50
10k
10k
2
2
2
2
2
2
40
40
40
40
40
40
40
60
50
15k
25k
25k
10k
5k
2
2
2
50
50
50
10k
10k
25k
2
D41K2
D41K4
250k
300
150k
250k
150k
Process
(NPN/PNP)
IdA)
Po
(W)
0.5
1.5
1.5
1
1.5
1.5
1
0.1
0.1
1
1.5
1.0
1.75
1.75
1.75
1.3
1.67
1.67
50
100
100
75
75
05/61
05/61
1
10
5
5
5
5
5
0.5
0.4
1.5
1.5
1
1.5
1.5
1
0.15
·1
1
0.2
1
1
1.75
1.75
1.75
1.75
1.75
1.75
1.75
50
50
100
100
100
100
100
37177
37177
0.2
0.2
0.2
5
5
5
1.5
1.5
1
1.5
1.0
0.2
1.67
1.67
1.75
75
75
100
05/61
05/61
05
0.05
0.1
0.05
0.1
0.05
1
2
1
2
1
0.5
1
0.5
1
0.5
0.25
1
0.25
1
0.25
1.75
1.3
1.75
1.3
1.75
50
38178
50
39179
50
38/78
39/79
@
hFE
Max
~
IdA)
Max VCE (SAT)
VCE (V)
(V)
0.1
0.1
0.1
0.1
0.2
0.2
1
5
5
2
5
5
0.1
0.15
0.2
0.2
0.2
0.1
0.1
@
fT
(MHz)
37177
05
05
37177
05
05
05
05
05
NSDU05
D40E5
NSDU06
D40E7
NSDU07
NSDU55
D41E5
NSDU56
D41E7
NDSU57
2
2
2
2
2
60
60
80
80
100
80
50
80
50
80
D42C1
D42C2
D42C3
D43C1
D43C2
D43C3
3
3
3
30
30
30
25
100
40
220
120
0.2
0.2
0.2
1
1
1
0.5
0.5
0.5
1
1
1
2.1
2.1
2.1
50
50
50
4P/5P
4P/5P
4P/5P
D42C4
D42C5
D42C6
D43C4
D43C5
D43C6
3
3
3
45
45
45
25
100
40
220
120
0.2
0.2
0.2
1
1
1
0.5
0.5
0.5
1
1
1
2.1
2.1
2.1
50
50
50
4P/5P
4P/5P
4P/5P
D42C7
D42C8
D42C9
D43C7
D43C8
D43C9
3
3
3
60
.60
60
25
100
40
220
120
0.2
0.2
0.2
1
1
1
0.5
0.5
0.5
1
1
. 1
2.1
2.1
2.1
50
50
50
4P/5P
4P/5P
4P/5P
D42C10
D42C11
D42C12
D43C10
D43C11
D43C12
3
3
3
80
80
80
25
100
40
220
120
0.2
0.2
0.2
1
1
1
0.5
0.5
0.5
1
1
1
2.1
2.1
2.1
50
50
50
4P/5P
4P/5P
4P/5P
Pinout: EBC, NSOU, NSO, 040, 041
BCE, NSE, 042, 043
4-21
38/78
~
"'C
CD
"'C
...~
;f
:::J
o
...
iii"
o
....
(J)
CD
CD
...s·
n
:::J
C)
c
is:
CD
TO· 126 Type Power Transistor Selection Guide
NPN
Part Number
PNP
MJE3440
MJE3439
MJE341
MJE344
2N5655
MJE340
2N5656
2N5657
Ic
VCEO
(V)
Min
hFE
Max
IdA) VCE (V)
0.3
0.3
0.5
0.5
0.5
0.5
0.5
0.5
250
350
150
200
250
300
300
350
40
40
25
30
30
30
30
30
160
160
200
300
250
240
250
250
0.02
0.02
0.05
0.05
0.1
0.05
0.1
0.1
100
100
100
2N4921
2N4922
2N4923
2N4918
2N4919
2N4920
1
1
1
40
60
80
20
20
20
MJE720
BD345
MJE721
BD349
MJE722
MJE710
BD344
MJE711
BD348
MJE712
1.5
1.5
1.5
1.5
1.5
40
60
60
80
80
40
40
40
50
40
MJE520
MJE180
MJE181
MJE182
MJE370
MJE170
MJE171
MJE172
3
3
3
3
30
40
60
80
25
50
50
50
MJE220
MJE221
MJE222
MJE230
MJE231
MJE232
4
4
4
40
40
40
20
20
25
MJE521
2N5190
2N6037
MJE371
2N5193
2N6034
4
4
4
40
40
40 .
2N5191
2N5194
4
60
250·
250
250
0.5
0.5
1
1
1
0.05
0.05
0.05
0.05
0.1
1
1
0.5
0.5
0.5
1
1
1
0.15
0.2
0.15
0.25
0.15
fr
(MHz)
Process
(NPN/PNP)
15
15
15
15
10
0:1
0.1
15
15
20
30
20
20
20
20
10
10
36
36
36
36
36
36
36
36
0.6
0.6
0.6
1
1
1
30
30
30
3
3
3
4H/5F
4H/5F
4H/5F
1
1
1
1
1
0.15
0.4
0.15
0.5
0.15
0.15
0.2
0.15
0.25
0.15
20
20
20
20
20
1
0.1
0.1
0.1
1
1
1
1
0.3
0.3
0.3
0.5
0.5
0.5
25
12.5
12.5
12.5
50
50
50
37177
38/78
39/79
2
1
1
1
1
1
0.8
0.6
0.3
2
1
0.5
15
15
15
50
50
50
4P/5P
4P/5P
4P/5P
4F/5F
4E/5E
4J/5J
50
50
37177
38/78
38/78
39/79
39/79
4F/5F
0.1
1.5
2
1
2
3
0.6
2
1.5
2
40
40
40
2
25
100
1.5
2
0.6
1.5
40
2
4E/5E
50
50
50
4P/5P
4P/5P
4P/5P
4
4
4
60
60
60
20
20
25
MJE800
MJE861
2N6038
MJE700
MJE701
2N6035
4
4
4
60
60
60
750
750
750
MJE240
MJE241
MJE242
MJE250
MJE251
MJE252
4
4
4
80
80
80
15
20
10
MJE802
MJE803
2N5192
2N6039
MJE702
MJE703
2N5195
2N6036
4
4
4
4
80
80
80
750
750
20
750
MJE243
MJE244
MJE200
MJE253
MJE254
MJE210
4
4
100
100
25
20
10
45
5
250
10
10
10
10
1Q
.10
10
10
Po
(W)
100
15k
MJE233
MJE234
MJE235
80
250
Max VCE (SAT)
(V) @ IdA)
40
25
750
MJE223
MJE224
MJE225
Pinout:
@
(A)
2
1
1
1
1
1
0.8
0.6
0.3
2
1
0.5
15
15
15
1.5
2
2
3
3
3
2.5
2.8
2
1.5
2
2
40
40
40
2
1
1
1
1
1
0.8
0.6
0.3
2
1
0.5
15
15
15
80
15k
1.5
2
1.5
2
3
3
2
3
2.5
2.8
0.6
2
1.5
2
1.5
2
40
40
40
40
180
1
1
2
1
1
1
0.6
0.3
0.75
1
0.5
2
15
15
15
15k
,
ECB
4-22
' 4J/5J
4J/5J
4J/5J
40
40
40
2
40
40
65
4P/5P
4P/5P
4P/5P
4J/5J
4J/5J
4E/5E
4J/5J
4P/5P
4P/5P
4R15R
-I
o•
TO·220 Type Power Transistor Selection Guide
Part Number
NPN
PNP
Ic
(A)
VCEO
(V)
TIP61
TIP61A
TIP61 B
TIP61C
TIP62
TIP62A
TIP62B
TIP62C
0.5
0.5
0.5
0.5
40
60
80
100
hFE
Min
15
15
15
15
100
100
100
100
IdA)
0.5
0.5
0.5
0.5
VCE (V)
4
4
4
4
h
Max VCE (SAT)
@ IdA)
Po
(W)
(MHz)
Process
(NPN/PNP)
0.7
0.7
0.7
0.7
20
20
20
20
3
3
3
3
4F/5F
4F/5F
4F/5F
4F/5F
(V)
0.5
0.5
0.5
0.5
1
1
1
1
4
4
4
4
0.7
0.7
0.7
0.7
1
1
1
1
30
30
30
30
3
3
3
3
4F/5F
4F/5F
4F/5F
4F/5F
1
1
1
4
4
4
2.5
2.5
2.5
2
2
2
50
50
50
1
1
1
4J/5J
4J/5J
4J/5J
3
3
3
3
4
4
4
4
1.2
1.2
1.2
0.2
3
3
3
3
40
40
40
40
3
3
3
3
4F/5F
4F/5F
4F/5F
4F/5F
120
120
0.2
0.2
0.2
1
1
1
0.5
0.5
0.5
1
1
1
30
30
30
50
50
50
4P/5P
4P/5P
4P/5P
30
120
1
4
1
1
36
2
25
40
40
120
120
0.2
0.2
0.2
1
1
1
0.5
0.5
0.5
1
1
1
30
30
30
50
50
50
TIP29
TIP29A
TIP29B
TIP29C
TIP30
TIP30A
TIP30B
TIP30C
1
1
1
1
40
60
80
100
15
15
15
15
TIP110
TlP111
TIP112
TIP115
TIP116
TIP117
2
2
2
60
80
100
1000
1000
1000
TIP31
TIP31A
TIP31 B
TIP31C
TIP32
TIP32A
TIP32B
TIP32C
3
3
3
3
40
60
80
100
10
10
10
10
D44C1
D44C2
D44C3
D45C1
D45C2
D45C3
3
3
3
30
30
30
25
40
40
4
40
3
3
3
45
45
45
2N5296
@
Max
N
75
75
75
75
50
50
50
50
4E
4P/5P
4P/5P
4P/5P
D44C4
D44C5
D44C6
D45C4
D45C5
D45C6
2N6121
2N6124
4
45
25
100
1.5
2
0.6
1.5
40
D44C7
D44C8
D44C9
D45C7
D45C8
D45C9
3
3
3
60
60
60
25
40
40
120
120
0.2
0.2
0.2
1
1
1
0.5
0.5
0.5
1
1
1
30
30
30
2N5298
2N6122
2N5294
2N6125
4
4
4
60
60
70
20
25
30
80
100
120
1.5
1.5
0.5
4
2
4
1
0.6
1
1.5
1.5
0.5
36
40
36
D44C10
D44C11
D44C12
D45C10
D45C11
D45C12
3
3
3
80
80
80
25
100
40
220
120
0.2
0.2
0.2
1
1
1
0.5
0.5
0.5
1
1
1
30
30
30
2N6123
MJE105T
2N6126
MJE205T
4
5
80
50
20
25
80
100
1.5
2
2
2
0.6
1.5
40
65
2.5
4E/5E
4A/5A
TIP120
TIP121
TIP122
TIP125
TIP126
TIP127
5
5
5
60
80
100
1000
1000
1000
3
3
3
3
3
3
2
2
2
3
3
3
65
65
65
1
1
1
4J/5K
4K/5K
4K/5K
TIP41
TIP41A
TIP42
TIP42A
6
6
40
60
15
15
75
75
3
3
4
4
1.5
1.5
6
6
65
65
3
3
4A/5A
4A/5A
TIP130
TIP41 B
TIP131
TIP41C
TIP132
TIP135
TIP42B
TIP136
TIP42C
TIP137
6
6
6
6
6
60
80
80
100
100
1000
15
1000
15
1000
15,000
75
15,000
75
15,000
4
3
4
3
4
4
4
4
4
4
2
1.5
2
1.5
2
4
6
4
6
4
65
65
65
65
65
1
3
1
3
1
4K/5K
4A/5A
4K/5K
4A/5A
4K15K
2N6288
2N5494
2N6111
7
7
30
40
30
20
150
100
3
2
4
4
1
1
3
0.2
40
50
4
0.8
4E/5E
4E
7
7
7
7
40
40
50
55
20
20
30
20
100
100
150
100
3
2.5
2.5
2.5
4
4
4
4
1
1.4
1
1
0.3
7
2.5
0.25
50
50
40
50
0.8
2.5
4
0.8
4E
4E/5E
4E/5E
4E
2N5494
2N6129
2N6290
2N5492
2N6132
2N6109
4·23
2.5
50
50
50
2
2.5
2
50
50
50
4E/5E
4P/5P
4P/5P
4P/5P
4E
4E/5E
4E
4P/5P
4P/5P
4P15P
~
~
"C
CD
"'CJ
~
CD
""'I
~
Q)
::l
tJ)
iii"
o""'I
(J)
~
CD
(")
o::l·
G)
C
c:
CD
TO·220 Type Power Transistor Selection Guide(continued)
NPN
Part Number
PNP
2N6130
2N5496
2N6292
2N6131
Ic
(A)
VCEO
(V)
hFE
Min
2N6107
2N6134
7
7
7
7
60
70
70
80
2N6386
BD347
BD346
8
8
40
60
1000
40
D44H1
D44H2
D44H4
D44H5
D45H1
D45H2
D45H4
D45H5
10
10
10
10
30
30
45
45
35
60
35
60
2N6099
D44H7
D44H8
SE9300
2N6101
D45H7
D45H8
SE9400
10
10
10
10
10
60
60
60
60
70
20
35
60
1000
20
D44H10
D44H11
D45H10
D45H11
10
10
80
80
35
60
MJE2801T
MJE3055T
MJE2901T
MJE2955T
10
10
60
60
25
20
TIP100
TIP101
TIP102
SE9301
SE9302
TIP105
TIP106
TIP107
SE9401
SE9402
10
10
10
10
10
60
80
100
80
100
1000
1000
1000
1000
1000
2N6486
2N6487
2N6488
2N6489
2N6490
2N6491
15
15
15
40
60
80
20
20
20
Pinout:
2N6133
20
20
30
20·
@
Max
100
100
150
100
20,000
140
80
80
100
70
150
150
150
IclA) VCE (V)
Max VCE (SAT)
(V) @ IclA)
fr
(MHz)
Process
(NPN/PNP)
50
50
40
50
2.4
0.8
4
2.5
4E15E
4E
4E/5E
4E/5E
2.5
3.5
2
2.5
4
4
4
4
2
7
0.35
2
7
3
2
3
2.5
2
0.6
3
4
40
60
20
4
4J
4A/5A
2
2
2
2
1
1
1
1
1
1
1
1
8
8
8
8
50
50
50
50
50
50
50
50
40/50
40/50
40/50
40/50
4
2
2
4
5
4
1
1
3
4
2.5
1
1
2
2.5
10
8
8
4
10
75
50
50
70
75
0.8
50
50
1
0.8
4A
40/50
40/50
4K15K
AA
2
2
1
1
1
1
8
8
50
50
50
50
40/50
40/50
3
4
2
4
1.1
4
60
60
2
4A/5A
4A/5A
3
3
3
4
4
4
4
4
3
3
2
2
2
2
2
3
3
3
4
4
60
60
60
70
70
1
1
4K15K
4K15K
4K15K
4K15K
4K15K
5
5
5
4
4
4
1.3
1.3
1.3
5
5
5
75
75
75
5
5
5
4A15A
4A15A
4A15A
BeE
4·24
1.4
1
PD
(W)
1
HIGH VOLTAGE
PLANAR
GEN. PURPOSE
PLANAR
(FAST)
1-----,
1
I
I
I
I
I
400-
,----.
1
1
300-
-
"'0
DARLINGTON
MESA
PLANAR
(SUPER
(RUGGED)
HIGH
BETA)
---,
~
...
"'0
a
n
CD
1
I
1
I
GEN. PURPOSE
MESA
(RUGGED)
I
,
r----I
CD
en
en
en
CD
200-
!I)
!:i
>
0
I
140120-
17
76
48
-------.----.
I
36
100:.....
0
39
79
r----
III
~
...i\>
01
I
IX!
38
78
I
50-
180
28°
--
0.1A
0.1A
45°
-
----
1A
I
I
I
I
1
I
1
:
:
I
I
1
I
'
I
1
1
I
---,
I
1
I
1
I
I
1
I
I
I
1
:
1
I
I
CD
n
r----r----,
I,
c~i"
1
Ii
1
i
G)
c
0:
4P
SP
CD
40
50
4H
37
77
4R
SR
31°
60° 96x90
2A
j"---T---""---
4F
SF
4E
SE
4A
SA
~
s
4J
5J
I
4K -t-PROCESSNPN
SK
PNP
61
480
7A
SA
10A
8A
59x55 88x67
8A
98°
250
10A
2A
84x64
100X701 111°t-DIE SIZE (MIL)
8A
10A
I40l
50 I
60
MAXie
DISSIPATION (WATTS)
Package
TO·92 (Note 1)
TO·237 (Note 2)
TO·202 (Note 3)
TO·126 (Note 3)
TO·220 (Note 3)
Notes: 1) TA ",25"C
I
I
2
8
ro:s
I
I
2
10
2
15
25
0.6
2
10
15
15
30
40
~
I
I
I
2) TCOll lEAD = 25"C, will do·1-1.2 W in PC board
60
I
I
30
I
-T4Ol
I
30
r 40 - r 50
tJtj
60
I
3) TC =25"C
9Pl nO UOII:)919S SS9:)OJd J9MOd
-
"C
0)
en
...J
C
o
z
~
o
0)
:2
en
:::so)
,,0..
c~
.2
't:
-n3
:::Sa..
-
.--0 )
~
~;:
:::so
cna..
Substitution Guide for Non·Listed Power Part Types
Industry
Part No.
2N2102
2N2218A
2N2219A
2N2905
2N3019
2N3020
2N3053
2N3054
2N3724
2N3725
2N3735
2N3740
2N3741
2N4033
2N4037
2N4063
2N4064
2N5974
2N5975
2N5976
2N5977
2N5978
2N5979
2N5980
2N5981
2N5982
2N5983
2N5984
2N5985
2N6021
2N6022
2N6023
2N6024
2N6025
2N6026
2N6040
2N6041
2N6042
2N6043
2N6044
2N6045
2N6098
2N6100
2N6101
2N6102
2N6103
2N6106
2N6108
2N6109
2N6110
2N6111
2N6175
2N6176
2N6177
2N6178
2N6179
2N6180
2N6181
2N6406
2N6407
2N6408
2N6409
2N6410
Package
NSC
Part No.
Package
TO-39
TO-18
TO·18
TO-18
TO-39
TO·39
TO-39
TO-66
TO-39
TO·39
TO-39
TO·66
TO·66
TO·39
TO·39
TO·37
TO·37
TO·127
TO·127
TO·127
TO·127
TO·127
TO·127
Mot Case 90
Mot Case 90
Mot Case 90
Mot Case 90
Mot Case 90
Mot Case 90
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
Plastic TO·5
Plastic TO·5
Plastic TO·5
Plastic TO·5
Plastic TO·5
Plastic TO·5
Plastic TO·5
TO·126 (rev)
TO·126 (rev)
TO·126 (rev)
TO·126 (rev)
TO·126 (rev)
TN2102
TN2218A
TN2219A
TN2905
TN3019
TN3020
TN3053
NSP3054
TN3724
TN3725
TN3735
NSP3740
NSP3741
TN4033
TN4037
MJE3439
MJE3440
NSP5974
NSP5975
NSP5976
NSP5977
NSP5978
NSP5979
2N6489
MJE2955T
2N6491
MJE3055T
MJE3055T
2N6488
2N6126
2N6126
2N6124
2N6124
2N6125
2N6125
TIP125
TIP126
TIP127
TIP120
TIP121
TIP122
2N6099
2N6101
2N6101
2N6102
2N6103
2N6107
2N6109
2N6109
2N6111
2N6111
2N5656
2N5656
2N5657
MJE182
MJE181
MJE172
MJE171
MJE171
MJE172
MJE181
MJE182
MJE200
TO-237
TO-237
TO·237
TO-237
TO-237
TO-237
TO-237
TO-220
TO·237
TO·237
TO·237
TO·220
TO·220
TO·237
TO·237
TO·126
TO·126
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·126
TO·126
TO·126
TO·126
TO·126
TO·126
TO·126
TO·126
TO·126
TO,126
TO·126
TO·126
Industry
Part No.
2N6411
2N6412
2N6413
2N6414
2N6415
2N6416
2N6417
2N6418
2N6419
2N6465
2N6530
2N6531
B0575
B0576
B0577
B0578
B0579
B0579
B0580
B0581
B0582
B0585
B0586
B0587
B0588
B0589
B0590
B0595
BD596
B0597
B0601
B0602
B0603
B0604
B0605
B0606
B0607
BD608
B0609
B0610
B0695
B0695A
B0700
B0700A
B0701
B0702
045El
045E2
045E3
FT2955
FT3055
MJE29
MJE29A
MJE29B
MJE29C
MJE30
MJE30A
MJE30B
MJE30C
MJE33
MJE33A
MJE33B
MJE33C
4·26
Package
NSC
Part No.
Package
TO-126 (rev)
TO-126 (rev)
TO-126 (rev)
TO-126 (rev)
TO-126 (rev)
TO-126 (rev)
TO-126 (rev)
TO-126 (rev)
TO·126 (rev)
TO-66
TO·220
TO·220
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
TO·220
TO·220
TO·220
TO·220
TO·220
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
MJE210
MJE180
MJE181
. MJE170
MJE171
MJE241
MJE243
MJE251
MJE253
TIP41C
TIP101
TIP102
NSP575
NSP576
NSP577
NSP578
NSP579
NSP578
NSP580
NSP581
NSP582
NSP585
NSP586
NSP587
NSP588
NSP589
NSP590
NSP595
NSP596
NSP597
NSP601
NSP602
NSP603
NSP604
NSP605
NSP606
NSP607
NSP608
NSP609
NSP610
NSP695
NSP695A
NSP700
NSP700A
NSP701
NSP702
TIP125
TIP125
TIP126
MJE2955T
MJE3055T
TIP29
TlP29A
TIP29B
TIP29C
TIP30
TIP30A
TIP30B
TIP30C
TIP41
TIP41A
TIP41B
TIP41C
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO·126
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO-220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
TO·220
Substitution Guide for Non-Listed Power Part Types (Continued)
Industry
Part No.
MJE34
MJE34.A.
MJE34B
MJE34C
MJE41
MJE41A
MJE41B
MJE41C
MJE42
MJE42A
MJE42B
MJE42C
MJE105K
MJE105
MJE170
MJE171
MJE172
MJE180
MJE181
MJE182
MJE200
MJE205
MJE205K
MJE345
MJE370K
MJE371 K
MJE482
MJE483
MJE484
MJE492
MJE493
MJE494
MJE520K
MJE521 K
MJE2010
MJE2011
MJE2020
MJE2021
MJE2090
MJE2091
MJE2092
MJE2093
MJE2100
MJE2101
MJE2102
MJE2103
MJE2150
MJE2370
MJE2371
MJE2480
MJE2481
MJE2482
MJE2483
MJE2490
MJE2491
MJE2520
MJE2801 K
MJE2901K
MJE2955K
MJE2955
MJE3055K
MJE3055
MJE3370
Package
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
. TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
Mot Case 199
Mot Case 199
TO-126
Mot Case 199
Mot Case 199
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
TO-126 (rev)
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 199
Mot Case 90
Mot Case 199
Mot Case 90
TO-126 (rev)
NSC
Part No.
Package
Industry
TIP42
TIP42A
TIP42B
TIP42C
TIP41
TIP41A
TIP41 B
TIP41C
TIP42
TIP42A
TIP42B
TIP42C
TIP42A
MJE105T
MJE170
MJE171
MJE172
MJE180
MJE181
MJE182
MJE200
MJE205T
TIP41A
MJE3439
NSP370
NSP371
2N5190
2N5191
2N5192
2N5193
2N5194
2N5195
TIP31
TIP31
NSP2010
NSP2011
NSP2020
NSP2021
NSP2090
NSP2091
NSP2092
NSP2093
NSP2100
NSP2101
NSP2102
NSP2103
MJE210
NSP2370
TIP32A
TIP31
TIP32A
TlP41
TIP41A
NSP2490
NSP2491
NSP2520
NSP280H
MJE290H
MJE2955T
MJE2955T
MJE3055T
MJE3055T
MJE370
TO·220
TO·220
TO·220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO·220
TO-220
TO-220
TO-126
TO·126
TO-126
TO-126
TO·126
TO-126
TO-126
TO-220
TO-220
TO-126
TO·220
TO-220
TO·126
TO-126
TO·126
TO·126
TO·126
TO·126
TO-220
TO·220
TO-220
TO·220
TO-220
TO-220
TO-220
TO-220
TO-220
TO,220
TO·220
TO-220
TO-220
TO-220
TO-126
TO-220
TO-220
TO·220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-126
MJE3371
MJE3520
MJE3521
MJE4918
MJE4919
MJE4920
MJE4921
MJE4922
MJE4923
MJE5190
MJE5191
MJE5192
MJE5193
MJE5194
MJE5195
MJE5974
MJE5975
MJE5976
MJE5977
MJE5978
MJE5979
MJE5980
MJE5981
MJE5982
MJE5983
MJE5984
MJE5985
MPSU01
MPSU01
MPSU01A
MPSU01A
MPSU02
MPSU02
MPSU03
MPSU04
MPSU05
MPSU05
MPSU06
MPSU06
MPSU07
MPSU07
MPSU10
MPSU10
MPSU31
MPSU45
MPSU45
MPSU45A
MPSU45A
MPSU51
MPSU51
MPSU51A
MPSU52
MPSU52
MPSU55
MPSU55
MPSU56
MPSU56
MPSU57
MPSU57
RCA1C05
RCA1C06
RCA1C07
RCA1C08
Part No.
4-27
Package
TO-126 (rev)
TO-126 (rev)
TO-126 (rev)
Mot Case
Mot Case
Mot Case
Mot Case
Mot Case
Mot Case
Mot Case
Mot Case
Mot Case
Mot Case
Mot Case
Mot Case
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
Mot 152
TO-220
TO-220
TO-220
TO-220
199
199
199
199
199
199
199
199
199
199
199
199
NSC
Part No.
MJE371
MJE520
MJE521
TIP30
TIP30A
TIP30B
TIP29
TIP29A
TIP29B
2N6121
2N6122
2N6123
2N6124
2N6125
2N6126
NSP5974
NSP5975
NSP5976
NSP5977
NSP5978
NSP5979
NSP5980
NSP5981
NSP5982
NSP5983
NSP5984
NSP5985
NSDU01
92PU01
NSDU01A
92PU01A
NSDU02
TN2219A
92PU391
92PU319
NSDU05
92PU05
NSDU06
92PU06
NSDU07
92PU07
NSDU10
92PU10
TN2102
NSDU45
92PU45
NSDU45A
92PU45A
NSDU51
92PU51
NSDU51A
NSPU52
92PU51A
NSDU55
92PU55
NSDU56
92PU56
NSDU57
92PU57
2N6130
2N6133
MJE3055T
MJE2955T
Package
TO-126
TO-126
TO-126
z
o:J
TO·220
TO-220
TO·220
TO-220
TO·220
TO-220
TO-220
TO-220
TO-220
TO-220
TO·220
TO·220
TO·202
TO-237
TO·202
TO-237
TO-202
TO-237
TO-237
TO-237
TO-202
TO-237
TO-202
TO-237
TO·202
TO-237
TO·202
TO·237
TO-237
TO-202
TO-237
TO-202
TO-237
TO-202
TO-237
TO-202
TO-202
TO-237
TO-202
TO-237
TO-202
TO·237
TO-202
TO-237
TO-220
TO-220
TO-220
TO-220
•
r~I
CD
Q,
-
"C
(I)
.~
...J
C:
o
z...
o
( I)
"Ccn
. - (I)
::lc.
Cl~
c
01:::
..-.a 0....
. . CO
-(I)
cn~
.gO
(1)0.
Substitution Guide for Non·Listed Power Part Types (Continued)
Industry
Part No.
RCAtC09
RCA1C10
RCA1C11
RCA1C14
RCA1C15
RCA29
RCA29A
RCA298
RCA29C
RCA30
RCA30A
RCA308
RCA30C
RCA31
RCA31A
RCA318
RCA31C
RCA32
RCA32A
RCA328
RCA32C
RCA41
RCA41A
RCA418
RCA41C
RCA42
RCA42A
RCA428
RCA42C
RCA120
RCA121
RCA122
RCA125
RCA126
RCA3054
RCA3055
RCP115
RCP117
RCP131A
RCP1318
RCP133A
RCP1338
RCP135
RCP137
RCP700A
RCP7008
RCP700C
RCP700D
RCP701A
RCP7018
RCP701C
RCP701D
RCP702A
RCP7028
RCP702C
RCP702D
RCP703A
RCP7038
RCP703C
RCP703D
RCP704
Package
TO·220
TO·220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
NSC
Part No.
Package
MJE3055T
2N6292
2N6107
2N6290
2N6388
TIP29
TIP29A
TIP298
TIP29C
TIP30
TIP30A
TIP308
TIP30C
TIP31
TIP31A
TIP318
TIP31C
TIP32
TIP32A
TIP328
TIP32C
TIP41
TIP41A
TlP418
TIP41C
TIP42
TIP42A
TIP428
TIP42C
TIP120
TIP121
TIP122
TIP125
TIP126
2N6122
2N6487
2N6591
2N6591
2N6592
2N6593
2N6592
2N6593
2N6553
2N6553
2N6554
2N6554
2N6555
2N6556
2N6551
2N6551
2N6552
2N6553
2N6554
2N6554
2N6555
2N6556
2N6551
2N6551
2N6552
2N6553
2N6554
TO·220
TO·220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
Industry
Part No.
RCP7048
RCP705
RCP7058
RCP706
RCP7068
RCP707
RCP7078
TIP33
TIP33A
TIP338
TIP33C
TIP34
TIP34A
TIP348
TIP34C
TIP73
TIP73A
TIP738
TIP74
TIP74A
TIP748
TIP2955
TIP3055
40513
40514
40613
40618
40621
40622
40624
40627
40629
40630
40631
40632
40871
40872
40873
40874
40875
40876
41500
41501
41504
2SA496
2SA505
2SA623
2SA624
2SA633
2SA634
2SA635
2SA636
2SA645
2SA646
2SA647
2SA681
2SA682
2SA699
2SA700
2SA703
4-28
Package
TO·202
TO·202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
'TO-220
TO-220
TO-220
TO-220
TO-126
TO-126
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-126
TO-126
TO-202
TO-220
TO-220
NSC
Part No.
2N6554
2N6551
2N6551
2N6554
2N6554
2N6551
2N6551
TIP41
TIP41A
TIP418
TIP41C
TIP42
TIP42A
TIP428
TIP42C
2N6486
2N6487
2N6488
2N6489
2N6490
2N6491
- MJE2955T
MJE3055T
MJE3055T
MJE3055T
TIP31
TIP31
TIP31
TIP31
TIP41A
TIP41A
TIP31
TIP31
TIP31A
TIP41A
TIP41C
TIP42C
TIP418
TIP418
TIP41C
TIP41A
TIP29
TIP30
TIP31
2N4918
2N4919
D41E1
D41E5
D41E1
D41E5
D41D7
2N6556
D41D10
2N6556
2N6556
MJE253
MJE253
D41E5
TIP30
D41E1
Package
TO·202
TO·202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-126
TO-126
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-202
TO-126
TO-126
TO-202
TO-220
TO-202
Section 5
Pro Electron Series
Pro Electron Series
~
Type
No.
PRO ELECTRON SERIES (Bipolar-see page 5-37 for JFET)
Case
Style
VCES'
VCBO
(V)
Min
BC107
TO·1S
50
vCEO
(V)
Min
45
ICES'
ICBO @ VCB
(nA)
(V)
Max
VEBO
(V)
Min
6
15'
50
HFE
Ic
VCE
hfe
@(mA)& (V)
1 kHz*
Min
Max
VBE(SAT)
VCE(SATI
& VBE(ON)* @ Ic
(V)
(V)
(mA)
Max
Min
Max
40
125
40
500'
0.01
2
0.01
5
5
5
0.6
0.2
260'
2
5
0.6
0.2
500'
0.01
2
5
5
0.6
0.2
900'
0.01
2
5
5
0.6
0.2
260'
0.01
2
5
5
0.6
0.2
500'
am
2
5
5
0.6
0.2
900'
0.01
2
5
5
0.6
0.2
900'
0.01
2
5
5
0.6
0.2
500'
0.01
2
5
5
0.6
0.2
0.01
5
5
0,6
0.2
BC107A
TO·1S
50
45
6
IS'
50
125
BC107B
TO·18
50
45
6
IS'
50
40
240
0.55
0.55
0.55
8C108
TO·18
30
20
5
IS'
30
40
125
0.55
BC10BA
TO·18
30
20
5
15'
30
40
125
0.55
:c
BC10BB
TO-18
30
20
5
15'
30
40
240
0.55
BC10BC
TO-IB
30
20
5
15'
30
40
450
0.55
BC109
TO-IB
30
20
5
15'
30
100
240
0.55
BC109B
BC109C
TO-IB
TO-IB
30
30
20
20
5
5
15'
IS'
30
30
100
240
100
450
900'
2
NF
(dB)
Max
Cob
(pF)
Max
fT
IC
(MHz)
@(mA)
Min
Max
4.5
150
10
10
0.7*
100
10
2
4.5
150
10
0.7'
100
10
2
4.5
150
0.7'
100
10
2
4.5
0.7'
100
10
2
4.5
0.7'
100
100
2
4.5
0.7*
100
10
2
4.5
0.7'
100
10
2
4.5
150
10
0.7'
100
10
2
100
10
4.5
150
toff
(ns)
Max
Test
Conditions
I
Process
No.
1
04
10
1
04
10
10
1
04
150
10
10
1
04
150
10
10
I
I
1
I
150
I
04
1
04
1
04
4
,1
04
10
4
1
04
10
4
1
04
14
10
10
I
150
10
10
I
I
0.55
0,7*
2
150
0,7'
100
10
2
4.5
0,55
BC140
TO-39
80'
40
7
100'
60
40
250
100
1
1.0
1.8*
lA
25
50
50
850
2
BC140-6
TO·39
80'
40
7
laO'
60
40
100
100
1
1.0
1.8'
lA
25
50
50
850
2
14
BC140·10
' TO-39
80'
40
7
100'
60
63
160
100
1
1,0
1.8'*
lA
25
50
50
850
2
14
BC140-16
TO-39
80'
40
7
lOa'
60
100
250
100
1
1.0
1.8'
lA
25
50
50
850
2
14
BC141
TO-39
100*
60
7
loa'
60
40
250
100
1
1.0
1.8'
lA
25
50
50
850
2
14
BC141-6
TO-39
100'
60
7
lOa'
60
40
100
100
1
1.0
1.8*
lA
25
50
50
850
2
14
BC141-10
TO-39
100'
60
7
100'
60
63
160
100
1
1.0
1,8*
lA
25
50
50
850
2
, 14
--_ .. _--
I
I
~
Type
No.
U1
c.,
PRO ELECTRON SERIES (Continued)
Case
Style
VCES'
VCBO
IVI
Min
VCEO
IVI
VEBO
IVI
Min
Min
ICES'
ICBO @ VCB
InAI
IVI
Max
HFE
hie
1 kHz*
Min
Max
BC143
TO·5
60 .
60
5
50
40
20
BC146·1
TO·92
(94)
20
20
4
50
40
100
80
BC146·2
TO·92
(94)
20
BC146-3
TO-92
(94)
20
20
20
4
4
50
50
40
40
IC
VCE
@lmAI& IVI
VBEISATI
VCEISATI
& VBEIONI' @ IC
IVI
IVI
ImAI
Max
Min
Max
Cob
IpFI
Max
IT
IC
IMHzl
@lmAI
Min
Max
toff
Insl
Max
NF
IdBI
Max
Test
Process
Conditions
No.
200
2
1.5
1.5
500
200
20
60
50
63
2
0.2
1
0.2
1.5
1.5
500
200
20
60
50
04
200
140
140
1
0.2
1.5
1.5
500
200
20
60
50
04
350
2
0.2
280
280
2
0.2
1
0.2
1.5
1.5
500
200
20
60
50
04
550
i
I
BC160
TO-39
40'
5
40
100
40
40
250
100
1
1.0
1.7'
lA
30
50
50
650
2
67
BC160-6
TO-39
40'
5
40
100
40
40
100
100
1
1.0
1.7'
lA
30
50
50
650
2
67
BC160-10
TO-39
40'
5
40
100
40
63
160
100
1
1.0
1.7'
lA
30
50
50
650
2
67
BC160-16
TO-39
40'
5
40
100
40
100
250
100
1
1.0
1.7'
lA
30
50
50
650
2
67
BC161
TO-39
60'
5
60
100
60
40
250
100
1
1.0
1.7'
lA
30
50
50
650
2
67
BC161-6
TO·39
60'
5
60
100
60
40
100
100
1
1.0
1.7'
lA
30
50
50
.650
2
67
BC161-10
TO·39
60'
5
60
100
60
63
160
100
1
1.0
1.7·
lA
30
50
50
650
2
67
BC161'16
TO-39
60'
5
60
100
60
100
250
100
1
1.0
1.7-
lA
30
50
50
650
2
67.
BC167
TO-92
1941
60'
45
6
15'
50
110
125
5
5
0.2
0.6
150
10
10
1
04
0.7'
10
100
2
4.5
500-
2
2
BC167A
TO-92
194)
60'
45
6
15'
50
110
125
260'
2
2
5
5
0.2
0.6
4.5
150
10
10
1
04
0.7·
10
100
2
BC167B
TO-92
(94)
60'
45
6
15-
50
110
240
500'
2
2
5
5
0.2
0.6
4.5
150
10
10
.1
04
0.7'
10
100
2
BC168
TO-92
(94)
20
5
15'
30
110
125
5
5
0.2
0.6
150
10
10
1
04
0.70'
10
100
2
4.5
900'
2
2
TO-92
194)
20
5
5
0.2
0.6
150
10
10
1
04
0.70'
10
100
2
4.5
260'
2
2
TO-92
194)
20
5
5
0.2
0.6
150
10
10
1
04
0.70'
10
100
2
4.5
500'
2
2
0.55
0.55
0.55
0.55
BC168A
5
15'
30
110
125
0.55
BC168B
5
15'
30
110
240
0.55
I
TEST CONDITIONS:
(1) IC ~ 200 ",A, VCE ~ 5V, I ~ 1 kHz. (2) IC ~ 100 rnA, VCC ~ 20V, IB 1 ~ IB2 ~ 5 rnA. 1311c ~ 200 ",A, VCE ~ 2V, I ~ 1 kHz. (4) IC ~ 100 rnA, VCC ~ 10V, IB 1 ~ IB2 ~ 10 rnA. (5) IC ~ 10 rnA, VCC ~ 3V,
IB 1 ~ IB2 ~ 1 rnA. (6) IC ~ 100 ",A, VCE ~ 5V, I ~ 1 kHz. 171 IC ~ 1 rnA, VCE ~ 10V, I ~ 200 kHz. (8) IC ~ 1 rnA, VCE ~ 5V, I ~ 1 kHz. (9) IC ~ 150 rnA, VCC = 6V, IB 1 ~ IB2 ~ 15 rnA. 1101lc = 10 ",A,
VCE ~ 5V, I ~ WB.
-----
sa!Jas uOJIOal3 OJd
Pro Electron Series .
~
Type
No.
PRO ELECTRON SERIES (Continued)
Case
Style
VCES'
VCBO
(V)
Min
BC168C
TO-92
vCEO
(V)
VEBO
(V)
Min
Min
20
5
ICES'
ICBO @ VCB
(V)
(nA)
Max
15"
30
(94)
HFE
hie
1 kHz*
Min
110
450
IC
VCE
@(mA)& (V)
Max
VBE(SAT)
VCE(SAT)
& VBE(ON)" @ IC
IV)
(V)
(rnA)
Max
Min
TO-92
(94)
20
TO-92
20
5
15'
30
5
15'
30
(94)
TO-92
20
5
15'
30
(94)
CJlI
J,.
BC177A
BCI77B
BC177VI
BC178
BC178A
BC178B
BC179
BC179A
TO-IB
TO-18
TO-18
TO-18
TO·18
TO-18
TO-18
TO-18
TO-18
50
50
50
50
30
30
30
25
25
45
45
45
45
25
25
25
20
20
----
5
5
5
5
5
5
5
5
5
100
100
100
100
100
100
100
100
100
20
20
20
20
20
20
20
20
20
10
10
1
04
4.5
150
10
4
1
04
0.70'
10
100
2
4.5
150
10
4
1
04
0.70'
10
100
2 ..
4.5
150
10
4
1
04
Process
No.
0.2
0.6
900'
2
2
5
5
0.2
0.6
500'
2
2
5
5
0.2
0.6
900'
2
2
5
5
0.2
0.6
0.70'
10
100
2
110
125
5
5
0.18
0.78
0.75'
1.0"
10
2
100
4.5
150
10
10
1
71
500"
2
2
110
125
2
2
5
5
0.18
0.78
0.75"
1.0"
10
2
100
4.5
150
10
10
1
71
260'
110
240
2
2
5
5
0.18
0.78
0.75'
1.0'
10
2
100
4.5
150
10
10
1
71
500'
110
75
2
2
5
5
0.18
0.78
0.75'
1.0'
10
2
100
4.5
150
10
10
1
71
150'
110
125
2
2
5
5
0.18
0.78
0.75"
1.0'
10
2
100
4.5
150
10
10
1
71
900"
110
125
2
2
5
5
0.18
0.78
0.75'
150
10
10
1
71.
1.0*
10
2
100
4.5
260'
110
240
5
5
0.18
0.78
0.75'
1.0'
10
2
100
4.5
150
10
10
1
71
500"
2
2
110
125
2
2
5
5
0.18
0.78
0.75"
1.0"
10
2
100
4.5
150
10
4
1
71
900'
110
125
2
2
5
5
0.18
0.78
0.75'
1.0"
10
2
100
4.5
150
10
4
1
71
260"
110
240
110
240
110
450
0.55
BCl77
150
Test
Conditions
5
5
0.55
BC169C
4.5
0.70'
10
100
2
Max'.
toff
(ns)
Max
2
2
0.55
BC169B
IT
@ IC
IMHz)
(rnA)
Min
Max
900'
0.55
BC169
NF
IdB)
Max
Cob
IpF)
Max
_._-
~
PRO ELECTRON SERIES (Continued)
Type
Case
No.
Style
VCES'
VCBO
(VI
Min
BC179B
BC182
01
0.
TO·18
25
TO·92
1971
60
BC182A
TO·92
(971
60
BC182B
TO·92
(971
BC182L
VCEO
(VI
VEBO
(VI
Min
Min
20
5
ICES'
ICBO
{nAI
Max
100
@
VCB
{VI
20
HFE
hie
1 kHz*
Min
Max
110
240
5
15
50
40
80
125
50
5
15
50
40
80
125
60
50
5
15
50
40
80
240
TO·92
(941
60
50
5
15
50
40
80
125
BC182LA
To.·92
(941
60
50
5
15
50
40
80
125
BC182LB
TO·92
(941
60
50
5
15
50
40
80
240
50
-
BC183
TO·92
(971
45
30
5
15
30
40
80
125
BC183A
TO·92
(971
45
30
5
15
30
40
80
125
BC183B
TO·92
1971'
45
30
5
15
30
40
80
240
BC183C
TO·92
(971
45
30
5
15
30
@
40
80
450
IC & VCE
{mAl
{VI
VBE(SATI
VCE{SATI
& VBE{ONI" @
IC
{VI
{VI
{mAl
Max
Min
Max
cob
{pFI
Max
IT
{MHzl
Min
Max
@
Ic
{mAl
toff
{nsl
Max
NF
{dBI
Max
Test
Conditions
Process
No.
2
2
5
5
0.18
0.78
0.75'
1.0'
10
2
100
4.5
150
10
4
1
71
500'
5
5
5
0.6
0.25
1.2
100
10
2
5
150
10
10
1
04
500'
0.01
100
2
5
5
5
0.6
0.25
100
10
2
5
150
10
10
1
04
260"
0.01
100
2
5
5
5
0.6
0.25
100
10
2
5
150
10
10
1
04
500'
0.01
100
2
5
5
5
0.6
0.25
100
10
2
5
150
10
10
1
04
500'
0.01
100
2
5
5
5
0.6
0.25
100
10
2
5
150
10
10
1
04
260'
0.01
100
2
5
5
5
0.6
0.25
100
10
2
5
150
10
10
1
04
500'
0.01
100
2
5
5
5
0.6
0.25
100
10
2
5
150
10
10
1
04
900'
0.01
100
2
5
5
5
0.6
-0.25
100
10
2
5
150
10
10
1
04
260'
0.01
100
2
5
5
5
0.6
0.25
100
10
2
5
150
10
10
1
04
5PO'
0.01
100
2
5
5
5
0.6
0.25
100
10
2
5
150
10
10
1
04
900'
0.01
100
2
0.55
0.70'
1.2
0.55
0.70'
1.2
0.55
0.70'
1.2
0.55
0.70'
1.2
0.55
0.70'
1.2
0.55
0.70'
1.2
0.55
0.70'
1.2
0.55
0.70'
0.55
0.70'
1.2
1.2
0.55
0.70'
TEST CONDITIONS:
(1) IC ~ 200 p.A. VCE ~ 5V. f ~ 1 kHz. (2) IC ~ 100 rnA, VCC ~ 20V, IB 1 ~ IB2 ~ 5 rnA. (3) IC ~ 200 p.A, VCE ~ 2V, I ~ 1 kHz. (4) IC ~ 100 rnA, VCC ~ 10V, IB 1 ~ IB2 ~ 10 rnA. (5) IC ~ 10 rnA, VCC ~ 3V,
IB 1 ~ IB;2 ~ 1 rnA. (S) IC ~ 100 p.A, VCE ~ 5V, I ~ 1 kHz. (7) IC ~ 1 rnA, VCE ~ 10V, I ~ -200 kHz. (8) IC ~ 1 rnA, VCE ~ 5V, I ~ 1 kHz. (9) IC ~ 150 rnA, VCC ~ SV, IB 1 ~ IB2 ~ 15 rnA. (10)'IC ~ 10 p.A,
VCE ~ 5V, I ~ WB.
'S9!J9S UOJI:l913 0J d
.,.' Pro Electron Series
.~
Type
No.
. PRO ELECTRON SERIES (CooII""",
VCES'
VCBO
IVI
Ca ..
lityl.
TO-92
TO-92
Min
45
30
5
15
30
40
80
. 125
0.01
100
900' .2
5
5
5
0,6
0.25
45
30
5
15
30
40
80
125
5
5
5
0.6
0.25
260'
0.01
100
2
45
30.
5
15
30
40
80
240
5
5
5
0.6
0.25
500'
0.01
100
2
(94)
BC183LB
TO-92
(94)
BC183LC
TO-92
~
TO-92
(97)
BC184B
TO-92
(97)
BC184C
BC184L
1 kHz*
Min
Max
Ic
VCE
@lmAI8o IV)
30
5
15
30
40
80
450
5
5
5
0.6
0.25
900'
0.01
100
2
45
30
5
15
30
100
130
240
0.01
_100
900' 2
5
5
5
0.6
0.25
5
5
5
0.6
0.25
500'
0.01
100
2
5
5
5
0.6
0.25
900'
0.01
100
2
5
5
5
0.6
0.25
900'
0.01
100
2
5
5
5
0.6
0.25
5
5
1>
0.6
0.25
45
30
5
15
30
100
130
240
TQ-92
(97)
45
30
50
15
30
100
130
450
TO-92
45
30
50
15
30
100
130
240
45
30
50
15
30
100
1.30
240
45
30
50
15
30
100
130
450
.
(94)
1.2
0.55
45
(94)
BCl84
VllEISATI
VCEISAT)
& VBEIONI' @
IC
IVI
IVI
ImAI
Max
Min
Max
Min
(94)
BC183LA
HFE
hte
VEBO
IVI
Min
BC183L
ICES'
ICBO @ VCB
InA)
IVI
Max
VCEO
IVI
0_70'
1.2
0_55
0.70'
0.55
0.70'
1.2
1.2
0.55
0.70'
1.2
0.55
0.70'
1.2
0.55
0.70'
1.2
0.55
0.70'
1.2
0.55
0.70'
tT
IC
IMHzl
@lmAI
Min
Max
100
10
2
5
150
10
10
1
04
100
10
2
5
150
10
10
1
04
100
10
2
5
150
10
10
·1
04
100
10
2
5
150
10
10 .
1
04.
100
10
2
5
150
10
4
1
04
100
10
2
5
150
10
4
1
04
100
10
2
5
150
10
4
1
04
100
10
2
5
150
10
4
1
04
100
10
2
5
150
10
4
1
04
100
10
2
5
150
10
4
1
04
10
1
71
10
1
d4
10
1
63
900'
BC204
TO:92
(92)
50
45
5
50
45
50
450
2
5
0.3
10
BC207
TO-92
(92)
50
45
5
15
40
110
450
2
5
0.25
0.6
10
100
6
BC212
TO-92
(97)
60
50
5
15
30
100
10
2
10
TO-92
(94)
BC184LC
TO-92
194}
500'
1.2
0.55
1.2
0.55
0.6
0_25
60
400'
2
5
0.70'
0.70'
1.1
0.6
0.72'
'ott
Insl
Max
Tes'
Process
Conditions
No.
I
0.01
100
2·
0,01
100
2
BC184LB
NF
IdBI
Max
Cob
IpF)
Max
200
10
I
._-
~
Type
No.
PRO ELECTRON SERIES (Continued)
Ca..
Style
vCES'
VCBO
(V)
Min
VCEO
(V)
VEBO
(V)
Min
Min
ICES'
ICBO @ VCB
(nA)
(V)
Max
BC212A
TO-92
(97)
60
50
5
15
30
BC212B
TO-92
(97)
60
50
5
15
30
BC212L
TO-92
(94)
60
50
5
15
30
TO-92
60
HFE
hfe
1 kHz*
Min
Max
200
50
5
15
30
(94)
~
40
60
60'
40
60
100
BC212LB
TO-92
(94)
60
50
5
15
30
40
60
200
BC213
TO-92
(97)
45
30
5
15
30
40
60
80
8C213A
TO-92
(97)
45
30
5
15
30
40
60
100
BC213B
TO-92
(97)
45
30
5
15
30
40
60
200
BC213C
TO-92
(97)
45
30
5
15
30
40
60
350
BC213L
TO.92
45
30
5
15
30·
40
80
80'
(94)
BC213LA
TO-92
(94)
45
30
5
15
30
VBE(SAT)
VCE(SATI
& VBE(ON)' @ IC
(V)
(V)
(mA)
Max
Min
Max
40
80
100
300'
2
400'
0.Q1
100
2
5
0.01
2
2
5
5
5
0.6
0.25
0.01
0.6
0.25
300
5
0.6
0.6
300'
2
5
5
5
0.6
0.25
400'
0.Q1
2
2
5
5
5
0.6
0.25
600'
0.01
2
2
5
5
5
0.6
0.25
300'
0.Q1
2
2
5
5
5
0.6
0.25
400'
0.01
2
2
5
5
0.6
0.25
600'
0.01
2
2
400
0.01
2
5
5
5
0.6
0.25
5
5
5
·0.6
0.25
2
2
0.Q1
2
300'
2
0.6
0.6
10
200
10
10
1
63
100
10
2
10
200
10
10
1
63
100
10
2
10
200
10
10
1
63
1.1
100
10
10
200
10
10
1
63
0.72"
2
1.1
100
10
2
10
200
10
10
1
63
100
10
2
10
200
10
10
1
63
100
10
2
10
200
10
10
1
63
1.1
100
10
10
200
10
10
1
63
0.72'
2
1.1
100
10
2
10
200
10
10
1
63
1.1
100
10
10
200
10
10
1
63
0.72'
2
1.1
100
10
10
200
10
10
1
63
0.72'
2
0.72'
0.72'
0.72'
0.72'
1.1
0.6
0.72'
1.1
0.6
0.6
0.6
5
100
10
2
1.1
0.6
5
5
5
fT
IC
(MHz)
@(mA)
Min
Max
1.1
0.6
0.25
0.6
0.6
0.72'
0.72'
toff
NF
(dB)
Max
Cob
(pF)
Max
1.1
0.6
0.25
100
BC212LA
Ic
VCE
@(mA)& (V)
(nsi
Max
Test
Conditions
Process
No.
TEST CONDITIONS:
(1) IC = 200jLA, VCE = 5V,f = 1 kHz. (2) IC = 100 rnA, VCC = 20V, IBI = IB2 = 5 rnA. (3) IC=200jLA, VCE=2V,f= 1 kHz. (41IC= lOOmA, VCC= 10V, IBI = IB2= lOrnA. (51IC= lOrnA, VCC=3V,
IB 1 = IB2 = 1 rnA. (61 IC = 100 JLA, VCE = 5V, f = 1 kHz. (71 IC = 1 rnA, VCE = 10V, f = 200 kHz. (81 IC = 1 rnA, VCE = 5V, f = 1 kHz. (911C = 150 rnA, VCC = 6V, IB 1 = IB2 = 15 rnA. (1011C = 10jLA,
VCE = 5V, f = WB.
S9IJ9S UOJI:>913 0J d
Pro Electron Series
~
Type
No.
PRO ELECTRON SERIES (Continued)
Case
Style
VCES'
VCBO
(VI
Min
BC213LB
'"
0>
TO-92
(941
45
VCEO
(VI
VEBO
(VI
Min
Min
30
5
ICES'
ICBO @ VCB
(nAI
(VI
Max
15
30
HFE
hie
1 kHz*
Min
Max
40
80
200
BC213LC
TO-92
(94)
45
30
5
15
30
40
80
350
BC214
TO-92
(971
45
30
5
15
30
40
80
140
BC214A
TO-92
(971
45
30
5
15
30
40
80
100
BC214B
TO-92
(971
45
30
5
15
30
40
80
200
BC214C
TO-92
(971
45
30
5
15
30
40
80
350
BC214L
TO-92
(941
45
30
5
15
30
100
140
120
140'
BC214LB
BC214LC
TO-92
(941
45
45
TO-92
(941
30
30
5
5
15
15
30
30
BC237-92
TO-92·
(971
50
45
6
50
20
BC237A-92
TO-92
(971
50
45
6
50
20
-
100
140
120
200
100
140
120
350
100
140
120
125
100
140
120
125
IC
VCE
@(mAI& (VI
VBE(SATI
VCE(SATI
& VBE(QNI" @ Ic
(VI
(VI
(mAl
Max
Max
Min
5
5
5
0.6
0.25
400"
0.01
2
2
5
5
5
0.6
0.25
600'
0.01
2
2
5
5
5
0.6
0.25
600'
0.01
2
2
5
5
5
0.6
0.25
300'
0.Q1
2
2
5
5
5
0.6
0.25
400"
0.01
2
2
5
5
5
0.6
0.25
600'
0.01
2
2
0.01
2
100
2
5
5
5
5
0.6
0.25
0.01
2
100
2
0.Q1
2
100
2
5
5
5
5
0.6
0.25
5
5
5
5
0.6
0.25
0.01
2
100
2
0.Q1
2
100
2
5
5
5
5
5
5
5
5
0.25
400
400'
600'
500'
500'
1.1
0.6
100
10
2
10
200
10
10
1
63
100
10
2
10
200
10
2
1
63
100
10
2·
10
200
10
2
1
63
100
10
2
10
200
10
2
1
63
100
10
2
10
200
10
2
1
63
100
10
2
lQ
200
10
2
1
63
100
10
2·
10
200
10
2
1
63
10
0.72'
100
10
2
0.77'
0.6
10
100
0.70'
0.77'
0.6
2
10
100
0.70'
2
0.72'
0.72'
0.72'
0.72'
0.72'
0.72'
0.6
.0.72'
1.1
1.1
0.55
0.55
- -
No.
63
0.6
0.25
Process
1
t.1
0.6
Test
Conditions
10
1.1
0.6
NF
(dBI
Max
10
1.1
0.6
(nsl
Max
200
1.1
0.6
toff
10
1.1
0.6
IT
IC
(MHzl
@(mAI
Min
Max
100
10
2
0.72'
1.1
0.6
Cob
(pFI
Max
I
,
200
10
2
1
63
4.5
10
1
04
4.5
10
1
04
~
Type
No.
PRO ELECTRON SERIES (Continued)
Case
Style
VCES"
VCBO
IV)
Min
'"cO
VCEO
IV)
VEBO
IV)
Min
Min
ICES"
ICBO @ VCB
InA)
IV)
Max
HFE
hf.
1 kHz*
Min
Max
BC237B.g2
TO-92
(97)
50
45
6
50
20
100
140
120
240
BC238-92
TO-92
197)
30
20
5
50
20
100
140
120
125
BC238A-92
TO-92
(97)
30
20
5
50
20
100
140
120
125
BC238B-92
TO-92
197)
30
20
5
50
20
100
140
120
240
BC238C-92
TO-92
(97)
30
20
5
50
20
BC239-92
TO-92
(97)
30
20
5
50
8C239B-92
)0-92
(97)
30
20
5
BC239C-92
TO-92
(97)
30
20
5
BC261A
TO-18
45
Ic
VCE
@lmA)& IV)
VBEISAT)
VCEISAT)
& VBEION)" @ Ic
IV)
IV)
ImA)
Max
Min
Max
5
5
5
5
0.25
500"
0.01
2
100
2
5
5
5
5
0.25
900"
0.01
2
100
2
5
5
5
5
0.25
260'
0.01
2
100
2
5
5
5
5
0.25
500"
0.01
2
100
2
100
140
120
450
0.01
2
100
900" 2
5
5
5
5
0.25
20
100
·140
120
240
5
5
5
5
0.25
900'
0.01
2
100
2
50
20
100
140
120
240
5
5
5
5
0.25
500"
0.01
2
100
2
50
20
100
140
120
450
5
5
5
5
0.25
900'
0.01
2
100
2
50
45
100
"140
120
125
5
5
5
5
0.25
0.6
260"
0.01
2
100
2
0.77"
0.6
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
10
100
0.70"
2
0.77"
0.6
10
100
0.70"
2
0.77'
0.6
10
100
0.70"
2
0.77"
0.6
10
100
0.70"
2
0.77"
0.6
10
100
0.70"
2
0.77"
0.6
10
100
0.70
2
0.77"
0.6
10
100
0.70
2
0.77"
0.6
10
100
0.70
2
0.9
10
100
Cob
IpF)
Max
fT
IC
IMHz)
@lmA)
Min
Max
toft
Ins)
Max
NF
IdB)
Max
Test
Process
Conditions
No.
4.5
10
1
04
4.5
10
1
04
4.5
10
1
04
4.5
10
1
04
4.5
10
1
04
4.5
4
1
04
4.5
4
1
04
4.5
4
1
04
4.5
6
3
71
TEST CONDITIONS:
(1) IC = 200 /lA, VCE = 5V, f = 1 kHz. (2) IC = 100 rnA, VCC = 20V, 18 1 = IB2 = 5 rnA. (3) IC = 200 /lA, VCE = 2V, f = 1 kHz. (4) IC = 100 rnA, VCC = 10V, IBl = IB2 = 10 rnA. (5) IC = 10 rnA, VCC = 3V,
18 1 = 18 2 = 1 rnA. (6) )e = 100 /lA, VeE = 5V, f = 1 kHz. (7J )e = 1 rnA, VCE = 10V, f = 200 kHz. (8) Ic = 1 rnA, VCE = 5V, f = 1 kHz. (9) Ic = 150 rnA, Vce = 6V, IB 1 = IB2 = 15 rnA: (10) Ie = 10/lA,
VeE = 5V, f = WB.
- - - -
--_.-
_.
S9!J9S UOJI:l913 OJd
Pro Electron Series
~
Type
No.
PRO ELECTRON SERIES (Continued)
Case
Style
VCES"
VCBO
IV)
Min
~
o
VCEO
IV)
VEBO
IV)
Min
Min
ICES'
ICBO @ VCB
InA)
IV)
Max
HFE
hie
BC261B
TO-18
45
BC262A
TO-18
20
5
50
20
100
140
120
125
BC262B
TO-18
20
5
50
20
100
140
120
240
BC263A
TO-18
20
5
50
20
100
140
120
125
BC263B
TO-18
20
5
50
20
100
140
120
240
BC307-92
TO-92
(97)
50
45
5
100
20
100
140
120
75
BC307A·92
TO-92
(97)
50
45
5
100
20
100
140
120
125
BC307B-92
TO-92
(97)
50
45
5
100
20
100
140
120
240
BC308·92
TO-92
(97)
30
25
5
100
20
100
140
120
125
BC308A-92
TO-92
(97)
30
25
5
100
20
100
140
120
·125
50
45
IC
@lmA)&
1 kHz*
Min
Max
100
140
120
240
VCE
IV)
VBEISAT)
VCEISAT)
& VBEION)" @ IC
IV)
IV)
ImA)
Max
Max
Min
IT
@ IC
IMHz)
ImA)
Max
Min
Cob
IpF)
Max
toff
Ins)
Max
NF
IdB)
Max
Test
Process
Conditions
No.
5
5
5
5
0.25
0.6
0.9
10
100
6
3
71
500'
0.01
2
100
2
5
5
5
5
0.25
0.9
10
6
3
71
260'
0.01
2
100
2
5
5
5
5
0.25
0.9
10
6
3
71
500'
0.01
2
100
2
5
5
5
5
2.5
3
71
260"
0.01
2
100
2
5
5
5
5
0.25
2.5
3
71
500'
0.01
2
100
2
5
5
5
5
0.18
10
1
71
500'
0.01
2
100
2
5
5
5
5
0.18
10
1
71
260'
0.01
2
100
2
5
5
5
5
0.18
10
1
71
500'
0.01
2
100
2
5
5
5
5
0.18
10
1
71
900'
0.01
2
100
2
5
5
5
5
0.18
10
1
71
260'
0.01
2
100
2
0.75'
2
100
0.6
0.6
0.25
100
0.9
10
100
0.6
10
0.9
0.6
100
0.78
1.0'
10
100
0.75'
2
0.78
1.0'
10
100
0.75'
2
0.78
1.0'
10
100
0.75'
2
0.78
1.0'
10
100
0.75'
2
0.78
1.0'
10
100
-
-
-
--
I
~
Type
No.
PRO ELECTRON SERIES (Continued)
Case
Style
VCES'
VCBO
(V)
Min
BC308B-92
BC308C-92
~
30
TO-92
(97)
30
VEBO
(V)
Min
Min
25
5
25
5
ICES'
ICBO
(nA)
Max
100
100
@
VCB
(V)
20
20
HFE
hie
@ IC & VCE
(rnA)
(V)
1 kHz·
Min
Max
100
140
120
240
100
140
120
450
100
140
120
125
400
500"
VBE(SAT)
VCE(SAT)
& VBE(ON)' @
IC
(V)
(V)
(rnA)
Max
Min
Max
0.01
2
100
2
5
5
5
5
0.18
0.01
0.18
10
100
toff
(ns)
Max
NF
(dB)
Max
Test
Process
Conditions
No.
10
1
71
10
1
71
4
1
71
4
1
71
4
1
71
100
2
0.75'
2
5
5
5
5
0.18
0.78
1.0
10
100
900"
0.01
2
100
2
0.75
2
5
5
5
5
0.18
0.78
1.0
10
100
500"
0.01
2
100
2
0.75
2
5
5
5
5
0.8
0.78
1.0
10
100
0.75'
2
0.77'
10
100
2
4
6
1
04
10
100
2
4
6
1
04
10
100
2
4
6
1
04
10
100
2
4
6
1
04
10
100
2
4
6
1
04
25
20
5
100
20
100
140
120
240
BC309C-92
TO-92
(97)
25
20
5
100
20
100
140
120
450
900'
0.01
2
100
2
BC317
TO-92
(92)
50
45
6
30
20
110
125
450
500'
2
2
5
5
0.2
0.5
BC317A
TO-92
(92)
50
45
6
30
20
110
125
220
260"
2
2
5
5
0.2
0.5
BC317B
TO-92
(92)
50
45
6
30
20
200
240
450
500'
2
2
5
5
0.2
0.5
20
2
0.78
1.0'
IC
(rnA)
900"
TO-92
(97)
100
0.75'
@
2
BC309B-92
5
10
100
IT
(MHz)
Min
Max
400
25
20
0.78
1.0'
Cob
(pF)
Max
5
5
5
5
TO-92
(97)
BC309-92
~
TO-92
(97)
VCEO
(V)
400
400
0.57
BC318
TO-92
(92)
30
20
5
30
20
110
125
800
900"
2
2
5
5
0.2
0.5
BC318A
TO-92
(92)
30
20
5
30
20
110
125
220
260'
2
2
5
5
0.2
0.5
0_72'
0.77'
0.57
0.72'
0.57
0.72'
0.77*
0.77"
0.57
0.72"
0.77"
0.57
0.72"
TEST CONOITIONS:
(1) IC = 200 J.lA, VCE = 5V, I = 1 kHz. (2) IC = 100 rnA, VCC = 20V, IB 1 = IB2 = 5 rnA. (3) Ie = 200 J.lA, VeE = 2V, 1= 1 kHz. (4) Ie = 100 rnA, Vee = 10V, 18 1 = 18 2 = 10 rnA. (5) Ie = 10 rnA, Vee = 3V,
IB 1 = IB2 = 1 rnA. (6) IC = 100 J.lA, VCE = 5V, 1= 1 kHz. (7) Ic = 1 rnA, VCE = 10V, f = 200 kHz. (8) IC = 1 rnA, VCE = 5V, 1= 1 kHz. (9) IC = 150 rnA, VCC = 6V, IB 1 = 18 2 = 15 rnA. (10) IC = 10 J.lA,
VCE = 5V, 1= WB.
-
-
-
-
-
sa!Jas UOJIOal3 OJd
Pro Electron Series
c~
Type
No.
PRO ELECTRON SERIES (Continued)
Case
Style
vCES'
VCBO
IV)
Min
BC31BB
TO-92
192)
30
VCEO
IV)
VEBO
IV)
Min
Min
20
5
ICES'
ICBO @ VCB
InA)
IV)
Max
30
20
HFE
hIe
1 kHz*
Max
Min
200
240
450
500'
IC .. VCE
@lmA)& IV)
2
2
VBEISAT)
VCEISAT)
& VBEION)' @ IC
(V)
IV)
ImA)
Max
Min
Max
5
5
0.2
0.5
0.77'
0.57
BC318C
BC319
BC319B
TO-92
(92)
30
TO-92
(92)
30
TO-92
192)
30
20
20
20
5
5
5
30
30
30
20
20
20
BOO
900'
0.01
2
2
5
5
5
0.2 •
0.5
40
200
240
BOO
900'
0.01
2
2
5
5
5
0.2
0.5
200
240
450
500*
2
2
5
5
0.2
0.5
100
450
450
BC319C
~
BC327
""
BC327·1O
BC327-16
BC327-25
BC328
BC328-10
BC328-16
BC32B-25
BC337
BC337-10
BC337-16
BC337·25
TO-92
(92)
30
TO-92
(91)
50 t
TO-92
197)
50t
TO-92
197)
50 t
TO-92
197)
50t
TO-92
(97)
30t
TO-92
197)
30 t
TO-92
(97)
30 t
TO-92
(97)
30t
TO-92·
(97)
50 t
TO-92
(97)
50 t
TO-92
(97)
50 t
TO-92
(97)
50 t
20
45
45
45
45
25
25
25
25
45
45
45
45
5
5
5
5
5
5
5
5
5
5
5
5
5
30
lOOt
lOOt
100 t
lOOt
100 t
'100 t
100 t
100 t
100 t
100 t
100t
100 t
20
45
45
45
45
25
25
25
25
45
45
45
45
800
900'
0.Q1
2
2
5
5
5
0.2
0.5
40
100
1
1
0.7
600
300
100
40
63
300
100
1
1
0.7
160
40
100
300
100
1
1
0.1
250
40
160
300
100
1
1
0.7
400
40
100
300
100
1
1
0.7
600
40
63
300
100
1
1
0.7
160
40
100
300
100
1
1
0.7
250
40
160
300
100
1
1
0.7
400
40
100
300
100
1
1
0.7
600
40
63
300
100
1
1
0.7
160
40
100
300
100
1
1
0.7
250
40
160
~OO
1
1
0.7
400
100
420
450
100
--
-
-
Test
Process
Conditions
No.
1
04
10
100
2
4
6
1
04
10
100
2
4
4
1
04
10
100
2
4
4
1
04
4
4
1
04
0.72'
10
100
2
500
300
4
4
1
67
12'
500
300
4
4
1
67
1.2*
500
300
4
4
1
67
1.2*
500
300
4
4
1
67
1.2*
500
300
4
4
1
67
1.2
500
300
4
4
1
67
1.2
500
300
4
4
1
67
1.2
500
300
4
4
1
67
1.2
500
300
4
4
1
14
1.2'
500
300
4
4
1
14
1.2*
500
300
4
4
1
14
1.2*
500
300
4
4
1
14
1.2*
0.72'
0.72'
0.72'
0.77'
0.57
NF
IdB)
Max
6
0.72'
0.77'
0.57
toll
(ns)
Max
4
0.77*
0.57
IT
@ IC
(MHz)
ImA)
Min
Max
10
100
2
0.77*
0.57
Cob
IpF)
Max
~
Type
No.
VCES'
VCBO
(V)
Min
VCEO
(V)
Min
VEBO
(V)
Min
ICES'
ICBO@ VCB
(nA)
(V)
Max
HFE
hfo
1 kHz"
Min Max
100t
40
100
300
100
1
1
0.7
600
40
63
300
100
1
1
0.7
160
40
100
300
100
1
1
0.7
250
40
160
300
100
1
1
0.7
400
40
120
800
0,01
2
5
5
0.25
0.6
40
120
220
0,01
2
5
5
100
180
460
0.Q1
2
100
380
800
30 t
TO·92
(97)
30 t
TO·92
(97)
30 t
TO·92
(97)
30 t
TO-92
(97)
45
TO·92
(97)
45
TO·92
(97)
45
TO·92
(97)
45
BC485
TO-92
(97)
45
45
5
100
30
15
40
60
BC485A
TO-92
(97)
45
45
5
100
30
15
40
100
15
40
160
BC338·10
BC338·16
BC338·25
BC415
BC415A
BC415B
c.>
Case
Style
TO-92
(97)
BC338
~
PRO ELECTRON SERIES (Continued)
BC415C
BC485B
BC485 I.
TO-92
(97)
TO-92
(97)
45
45
25
25
25
25
35
35
35
35
45
45
5
5
5
5
5
5
5
5
5
5
100t
lOOt
100t
15
15
15
15
100
100
25
25
25
25
30
30
30
30
30
30
BC547
TO-92
(97)
50
45
6
10
20
BC547A
TO·92
(97)
50
45
6
10
20
15
40
60
@
IC
VCE
(rnA) & (V)
VBE(SAT)
VCE(SAT)
& VBE(ON)' @ Ic
(V)
(V)
(rnA)
Max
Min Max
@
IC
(rnA)
toff
(ns)
Max
NF
(dB)
Max
Test
Conditions
Process
No.
500
300
4
4
1
14
500
300
4
4
1
14
1.2"
500
300
4
4
1
14
1.2'
500
300
4
4
1
14
1.2'
10
100
2
10
71
0.25
0.6
10
100
2
10
71
5
5
0.25
0.6
10
100
2
10
71
0.01
2
5
5
0.25
0.6
10
100
2
10
71
5
2
2
0.5
1.2
1.2'
500
300
4
4
1
14
400
lA
10
100
5
2
2
0.5
1.2
1.2*
500
300
4
4
1
14
250
lA
10
100
lA
10
100
5
2
2
0.5
1.2
1.2'
500
300
4
4
1
14
400
5
2
2
0.5
1.2
1.2*·
500
300
4
4
1
14
150
lA
10
100
0.77'
10
100
2
4.5
10
1
04
10
100
2
4.5
10
1
04
i
500'
2
5
0.55
260"
2
5
0.70"
0.77'
0.25
0.6
125
fT
(MHz)
Min Max
1.2'
0.25
0.6
125
Cob
(pF)
Max
0.55
0.70'
i
TEST CONDITIONS:
(1) IC = 200 /lA, VCE = 5V, f = 1 kHz. (2) IC = 100 rnA, VCC = 20V, IB 1 = IB2 = 5 rnA. (3) IC = 200 /lA, VCE = 2V, f = 1 kHz. (4) Ic = 100 rnA, VCC'= 10V, IB 1 = 182 = 10 rnA, (5) IC = 10 rnA, VCC = 3V,
IB 1 ='IB 2 = 1 rnA. (6) IC = 100 /lA, VCE = 5V, f = 1 kHz. (7) Ic = 1 rnA. VCE = 10V, f = 200 kHz. (8) IC = 1 rnA, VCE = 5V, f = 1 kHz. (9) IC'; 150 rnA, VCC = 6V, IB 1 = 18 2 = 15 rnA. (10) Ic = 10/lA,
VCE = 5V, f = WB.
S9!J9S UOJI:>913 OJd
Pro Electron· Series
.~
Type
No.
PRO ELECTRON
Case
Style
VCES'
VCBO
(VI
Min
SERIES(Continued}
VCEO
(VI
VEBO
(VI
Min
Min
ICES'
ICBO
(nAI
Max
@
VCB
(VI
BC547B
TO·92
(971
50
45
6
10
20
BC547C
TO·92
(97)
50
45
6
10
20
BC548
TO-92
(97)
30
20
5
10
20
BC548A
TO·92
(971
30
20
5
10
20
BC548B
TO·92
(97)
30
20
5
10
20
BC548C
TO·92
(97)
30
20
5
10
20
HFE
hie
5
10
20
BC549B
TO-92
(97)
30
20
5
10
20
30
20
5
10
50
45
5
10
45
BC550B
TO-92
(97)
50
45
5
10
45
BC550C
TO-92
(97)
50
45
5
10
45
100
5
0.55
260'
2
5
500'
2
0.55
5
900'
2
900'
2
500'
2
900'
2
900'
2
500'
2
900'
2
20
260'
2
5
0.70
0.77'
0.55
0.70
0.82'
0.3
0.65
75
0.70
0.77'
0.55
5
0.70
0.77'
0.55
5
0.70
0.77'
0.55
5
0.70
0.77'
0.55
5
0.70'
0.77'
0.55
5
0.70'
0.77'
0.55
5
0.70'
0.77'
0.55
5
0.70'
0.77'
0.25
0.6
450
'5
2
0.25
0.6
240
45
900'
0.70'
0.77'
0.25
0.6
240
50
0.55
0.25
450
TO·92
(97)
TO-92
(97)
5
20
BC550
BC557
2
0.25
0.6
240
TO-92
(97)
900'
0.70'
0.77'
0.25
0.6
240
BC549C
0.55
0.25
0.6
450
20
5
0.25
0.6
240
30
2
0.25
0.6
125
TO-92
(971
500'
0.77'
0.25
0.6
125
BC549
VBE(SATI
VCE(SATI
& VBEIONI' @
IC
(VI
(VI
(mAl
Max
Min
Max
0.25
0.6
450
~
VCE
(VI
0.25
0.6
240
'"
-I>-
IC
@(mAI&
1 kHz*
Min
Max
0.6
0.75'
Cob
(pFI
Max
IT
IC
(MHzl
@(mAI
Max
Min
toff
(nsl
Max
NF
(dBI
Max
Test
Process
Conditions
No.
4.5
10
1
04
4.5
10
1
04
10
100 .
2
4.5
10
1
04
10
100
2
4.5
10
1
·04
10
100
2
4.5
10
1
04
10
100
2
4.5
10
1
04
10
100
2
4.5
4
1
04
10
100
2
4.5
4
1
04
10
100
2
4.5
4
1
04
10
100
2
3
1
04
10
100
2
3
1
04
10
100
2
3
1
04
10
100
'2
10
1
71
10
100
2
10
100
2
I
-
--
-
I
~
PRO ELECTRON SERIES (Continued)
VCES'
VCBO
(V)
Min
VCEO
(V)
ICES"
ICBO @ VCB
(nA)
(V)
Max
VEBO
(V)
Min
Type
No.
Case
Style
BC557A
TO-92
(97)
50
45
5
100
20
BC557B
TO-92
(97)
50
45
5
100
20
BC558
TO-92
(97)
30
25
5
100
20
BC558A
TO-92
(97)
30
25
5
100
20
BC558B
TO-92
(97)
30
25
5
100
20
BC558C
TO-92
(97)
30
25
5
100
20
BC559
TO.-92
(97)
25
20
5
100
20
Min
HFE
IC
VCE
hIe
@(mA)& (V)
1 kHz*
Min
Max
260-
2
0.6
5
500-
2
5
0.6
500-
2
5
0.6
260'
2
0.75
0.82-
0.3
0.65
125
0.750.82-
0.3
0.65
75
0.750.82-
0.3
0.65
240
0.6
5
0.75
Cob
(pF)
Max
IT
@ IC
(MHz)
(rnA)
Min
Max
toft
(ns)
Max
NF
(dB)
Max
Process
No.
Test
Conditions
10
100
2
10
1
71
10
100
2
10
1
71
10
100
2
10
1
71
10
100
2
10
1
71
10
100
2
10
1
71
10
100
2
10
1
71
10
100
2
4
1
71
10
100
2
4
1
71
10
100
2
4
1
71
10
100
2
4
1
71
10
100
2
2
1
71
I
500-
900-
25
20
5
100
20
BC559B
TO-92
(97)
25
20
5
100
20
BC559C
TO-92
(97)
25
20
5
100
20
BC560
TO-92
(97)"
50
45
5
100
45
5
0.6
2
500-
2
0.6
5
260'
2
5
0.6
500-
2
5
0.6
900'
2
5
0.6
500-
2
0.75"
0.82-
5
0.6
0.750.82-
0.3
0.65
125
0.750.82-
0.3
0.65
450
0.750.82-
0.3
0.65
240
0.75
0.82-
0.3
0.65
125
0.75
0.82-
0.3
0.65
125
TO-92
(97)
2
0.3
0.65
450
BC559A
0.82-
0.3
0.65
240
':!:.
0.82-
0.3
0.65
125
en
VBE(SAT)
VCE(SAT)
& VBE(ON)" @ IC
(V)
(V)
(rnA)
Max
Min
Max
5
0.6
0.75-
TEST CONDITIONS:
(1) Ie = 200 /lA, VeE = 5V, I = 1 kHz. (2) Ie = 100 rnA, Vee = 20V, )B 1
IB 1
=
IB2
=
VeE = 5V, I
1 rnA. (6) Ie = 100 /lA, VeE = 5V, I
=
=
IB2 = 5 rnA. (3) Ie = 200 /lA, VeE
= 2V, 1= 1
kHz. (4) Ie = 100 rnA, Vee
= 10V, IB 1 =
IB2 = 10 rnA. (5) Ie
1 kHz. (7) Ie = 1 rnA, VeE = 10V, I = 200 kHz. (8) Ie = 1 rnA, VeE = 5V, I = 1 kHz. (9) Ie = 150 rnA, Vee = 6V, IB 1
= IB2 =
= 10 rnA,
= 3V,
= 10 /lA,
Vee
15 rnA. (10) Ie
= WB.
---
--
S9!J9S UOJI~913 OJd
Pro Electron Series
~
,
PRO ELECTRON SERIES (Continued)
VCES'
VCBO
(VI
Min
vCEO
(VI
Min
VEBO
(VI
Min
ICES'
ICBO@ VCB
(nAI
(VI
Max
Type
No.
Case
Style
BC560A
TO·92
(971
50
45
5
100
45
BC560B
TO-92
(971
50
45
5
100
45
HFE
hfe
@ IC
& VCE
1 kHz*
(mAl
(VI
Min Max
0.3.
0.65
125
~
en
TO-92
(971
BCX58
260'
0.6
5
2
0.82'
0.3
0.65
240
BC560C
VBE(SATI
VCE(SATI
& VBE(ONI' @ IC
(VI
(VI
(mAl
Max
Min
Max
500'
2
0.82'
0.6
5
0.75'
0.75'
Cob
(pFI
Max
fT
@ IC
(MHzl
(mAl
Min
Max
taff
(n51
Max
NF
(dB I
Max
Test
Conditions
Process
No.
10
100
2
2
1
71
10
100
2
2
1
71
10
100
2
2
1
71
45
5
100
45
450
900'
2
5
TO-92
(971
32
7
10
32
120
80
40
630
1000
2
10
100
5
1
1
125
10
800
6
3/4
04
BCX58-7
TO-92
(97)
32
7
10
32
120
80
40
220
2
10
100
5
1
1
125
10
800
6
3/4
04
BCX58-8
TO-92
(971
32
7
10
32
20
180
120
45
0.01
2
10
100
5
5
1
1
125
10
800
6
3/4
04
310
400
TO-92
(971
32
40
250
160
60
0.01
2
10
100
5
5
1
1
125
10
800
6
3/4
04
460
630
TO-92
(971
32
100
380
240
60
0.01
2
10
100
5
5
1
1
125
10
800
6
3/4
04
630
1000
BCX59.
TO-92
(971
45
7
120
80
40
630
1000
2
10
100
5
1
1
0.5
1.0
100
125
10
800
5
04
BCX59-7
TO-92
(971
45
7
120
80
40
220
2
10
100
5
1
1
0_5
1.0
100
125
10
800
5
04
BCX59-8
TO-92
(971
45
7
0.01
2
10
100
5
5
1
1
0_5
1.0
100
125
10
800
5
04
310
400
TO-92
(971
45
20
180
120
45
40
250
160
60
5
5
1
1
0.5
1.0
100
125
10
800
5
04
460
630
0.01
2
10
100
BCX58·9
BCX58·10
BCX59-9
50
-
7
7
7
10
10
32
32
0.3
0;65
.
-
0.82'
0.6
-
0.75"
-
~
Type
No.
PRO ELECTRON SERIES (Continued)
VCES'
VCBO
(VI
Case
Styl.
Min
BCX59·10
VCEO
(VI
Min
VEBO
(VI
Min
HFE
hf.
IC
@ (mA) &
1 kHz'
Min
Max
VCE
(V)
100
380
240
60
0.01
2
10
100
5
5
1
1
0.5
1.0
100
VBE(SAT)
VCE(SAT)
& VBE(ONI' @ IC
(V)
(mA)
(V)
Max
Min
Max
Cob
(pF)
Max
fT
IC
(MHz)
@ (mA)
Min Max
toff
(ns)
Max
NF
(dB)
Max
Test
Conditions
Process
No.
TO·92
(97)
45
BCX78
TO-92
(97)
32
5
120
80
40
630
1000
2
10
100
5
1
1
0.6
1.0
100
71
BCX78·7
TO-92
(97)
32
5
120
80
40
220
2
10
100
5
1
1
0.6
1.0
100
71
BCX78·8
TO-92
(97)
32
5
30
180
120
45
0.01
2
10
100
5
5
1
1
0.6
1.0
100
71
310
400
40
250
160
60
0.01
2
10
100
5
5
1
1
0.6
1.0
100
71
460
630
100
380
240
60
0.01
2
10
100
5
5
1
1
0.6
1.0
100
71
630
1000
1
1
5
0.6
1.0
100
71
BCX78·9
~
.....
TO·92
(97)
32
7
ICES'
ICBO@ VCB
(nAI
(V)
Max
5
,
BCX78-10
125
10
800
5
04
TO·92
(97)
32
BCX79
TO·92
(97)
45
5
80
40
120
630
10
100
2
BCX79·7
TO-92
(97)
45
5
120
220
2
5
0.6
1.0
100
71
BCX79·8
TO-92
(97)
45
5
120
45
30
180
400
10
100
0.01
2
1
1
5
5
0.6
1.0
100
71
BCX79·9
TO-92
·(97)
45
5
160
60
40
250
630
10
100
0.01
2
1
1
5
5
0.6
1.0
100
71
-
5
630
1000
1000
310
460
TEST CONDITIONS:
(1) IC= 200l'A, VeE = 5V,f = 1 kHz. (2) Ie = 100 rnA, Vee = 20V, 18 1 = 182 = 5mA. (3) le=200I'A, VeE=2V,f= 1 kHz. (41Ie= 100 rnA, VCC= 10V,I8 1 = IB2= lOrnA. (5) le= lOrnA, VCC = 3V.
18 1 = IB2 = 1 rnA. (6) IC = 100 I'A, VCE = 5V, f = 1 kHz. (7J Ie = 1 rnA, VCE = 10V, f = 200 kHz. (8) IC = 1 mA, VCE = 5V, f = 1 kHz. (9) IC = 150 rnA, VCC = 6V, IBI = IB2 = 15 rnA. (10) Ic = 1OI'A,
VCE = 5V, f = WB.
S8IJ8 S UOJI:»813 OJd
Pro Electron Series
~
Type
No.
PRO ELECTRON SERIES (Continued)
Ca..
Style
VCES"
VCBO
(VI
Min
BCX79-10
TO·92
(971
BCY56
TO-18
BCY57
BCY58
~
BCY58-7
TO-18
VCEO
(VI
Min
45
25
45
5
45
5
20
TO-1S
32
TO-18
VEBO
(VI
Min
32
5
7
7
ICES"
ICBO @ VCB
(nAI
(VI
Max
100
100
lOt
lOt
20
20
32
32
913 OJd
Pro Electron Series
~
Type
No.
PRO ELECTRON SERIES (Continued)
Case
Style
VCES*
VCBO
IVI
Min
B03700
B03700-6
803700-10
80371A
80371A-l0
80371A-16
B0371A-25
(J1
~
B03718
B0371B-l0
B0371B-16
B0371B-25
B0371C
B0371C-6
B0371C-l0
B0371C-16
803710
B03710-6
B0371O-10
B0372A
TO-237
1911
TO-237
1911
TO-237
1911
TO-237
1911
TO-237
1911
TO-237
1911
TO-237
1911
TO-237
1911
TO-237
1911
TO-237
1911
TO-237
1911
TO-237
1911
TO:237
1911
TO-237
1911
TO-237
1911
TO-237
1911
TO-327
1911
TO-237
1911
TO-Z17
1901
VCEO
IVI
Min
80
100
80
100
80
100
80
45
80
45
45
80
45
80
80
60
80
60
80
60
60
80
80
80
80
80
80
80
80
80
100
80
100
80
100
80
45
80
.-
vEBO
IVI
Min
ICES*
ICBO @ VCB
InAI
IVI
Max
100
100
100
100
lOa
100
100
100
100
100
100
100
100
100
100
100
100
100
100
80
80
80
45
45
45
45
60
60
60
60
80
80
80
80
100
100
100
45
-------_._---
HFE
hfe
1 kHz*
Max
Min
Ic
VCE
@lmAI& IVI
VBEISATI
vCEISAT)
& VBEIONI* @ IC
IVI
IVI
ImAI
Max
Min
Max
cob
IpFI
Max
fT
IC
IMHzl
@lmAI
Min
Max
Insl
Max
NF
IdBI
Max
toff
Test
Process
Conditions
No.
25
40
500
100
2
1
0.7
1.2*
lA
30
50
200
420
6
5/6
79
400
25
40
500
100.
1.2*
lA
30
50
200
420
6
5/6
79
25
63
500
100
0.7
1.2*
lA
30
50
200
420
6
5/6
79
160
2
1
2
1
0.7
100
25
40
500
100
2
1
0.7
1.2*'
lA
30
50
200
420
6
5/6
38
400
25
63
500
100
500
100
500
100
50G
100
500
100
500
100
2
1
0.7
1.2*
lA
30
50
200
420
6
5/6
38
160
2
1
0.7
1.2*
lA
30
50
200
420
6
5/6
38
2
1
0.7
1.2*
lA
30
50
200
420
6
5/6
38
2
1
2
1
0.7
1.2*
lA
30
50
200
420
6
5/6
38
0.7
1.2'
lA
30
50
200
420
6
5/6
38
2
1
0.7
1.2'
lA
30
50
200
420
6
5/6
38
2
0.7
1.2'
lA
30
50
200
420
6
5/6
38
2
1
0.7
1.2'
lA
30
50
200
420
6
5/6
38
25
100
25
180
25
40
25
63
25
100
250
400
400
160
250
25
160
400
25
40
400
500
100
500
100
500
100
2
1
0.7
1.2'
lA
30
50
200
420
6
5/6
38
100
2
1
2
1
0.7
1.2'
lA
30
50
200
420
6
5/6
38
0.7
1.2'
lA
30
50
200
420
6
5/6
38
25
40
25
63
25
100
250
500
100
500
100
25
40
500
100
2
1
0.7
1.2'
lA
30
50
200
420
6
5/6
39
400
25
40
500
100
2
1
0.7
1.2'
lA
30
50
200
420
6
5/6
39
100
25
63
500
100
2
1
0.7
1.2'
lA
30
50
200
420
6
5/6
39
160
25
40
500
100
2
1
0.7
1.2'
lA
30
50
200
420
6
5/6
78
400
160
----
---
II
Type
No.
PRO ELECTRON SERIES (Continued)
Ca..
Styl.
VCES'
VCBO
(V)
Min
~
VEBO
(V)
Min
ICES'
ICBO @ VCB
(nA)
(V)
Max
B0372A-l0 TO-237
(SO)
80
B0372A·16 TO-237
(SO)
80
B0372A-25 TO-237
(SO)
80
B0372B
TO-237
(SO)
80
60
100
60
B0372B-l0
TO-237
(SO)
80
60
100
60
TO-237
(SO)
B0372B-25 TO-237
(SOl
TO-237
B0372C
(SOl
TO-237
BD372C-6
(SOl
B0372C-l0 TO-237
(SO)
80
B0372B-16
U1
VCEO
(V)
Min
BD372C-16
BD372D
BO
80
80
80
TO-237
(SO)
80
TO-237
80
45
45
45
60
60
80
80
80
100
100
100
100
100
100
100
100
100
100
100
100
45
45
45
60
60
80
80
80
100
100
(SO~
TO-237
(90)
80
B03720-10 TO-237
(90)
80
TO·237
(90)
80
B0373A-l0 TO-237
(90)
80
B0373A-16 TO-237
(90)
80
B03720-6
B0373A
100
100
45
45
45
100
100
100
100
100
100
100
45
45
45
HFE
hfe
Ic
VCE
@(mA)& (V)
1 kHz*
Min
Max
25
63
25
100
25
160
25
40
25
63
25
100
25
160
25
40
25
40
25
63
160
250
400
400
160
250
400
400
VBE(SAT)
VCE(SAT)
& VBE(ON)' @ IC
(V)
(V)
(rnA)
Max
Max
Min
Cob
(pF)
Max
fT
IC
(MHz)
@(mA)
Min
Max
(ns)
Max
NF
(dB)
Max
toft
Process
Test
No.
Conditions
500
100
2
1
0.7
1.2'
lA
30
50
200
420
6
5/6
78
500
100
500
100
500
100
500
100
2
1
2
1
2
1
0.7
1.2'
lA
30
50
200
420
6
5/6
78
0.7
1.2'
lA
30
50
200
420
6
5/6
78
0.7·
1.2'
lA
30
50
200
420
6
5/6
78
2
1
2
1
2
1
2
1
0.7
1.2'
lA
30
50
200
420
6
5/6
78
0.7
1.2'
lA
30
50
200
420
6
5/6
78
0.7
1.2'
lA
30
50
200
420
6
5/6
78
0.7
1.2'
lA
30
50
200
420
6
5/6
78
·2
1
0.7
1.2'
lA
30
50
200
420
6
5/6
78
2
1
0.7
1.2'
lA
30
50
200
420
6
5/6
78
2
1
2
1
0.7
1.2'
lA
30
50
200
420
6
5/6
78
0.7
1.2'
lA
30
50
200
420
6
5/6
7S
500
100
500
100
500
100
I
25
100
25
40
400
500
100
500
100
500
100
500
100
25
40
500
100
2
1
0.7
1.2'
lA
30
50
200
420
6
5/6
79
100
25
63
500
100
2
1
0.7
1.2'
lA
30
50
200
420
6
5/6
79
160
25
40
2
1
1.2'
lA
30
50
200
420
6
5/6
38
25
63
2
1
0.7
1.2'
lA
30
50
200
420
6
5/6
38
160
500
100
500
100
0.7
400
25
100
500
100
2
1
0.7
1.2'
lA
30
50
200
420
6
5/6
38
250
100
160
250
TEST CONOITIONS:
(1) IC = 200 I'A, VCE = 5V, f = 1 kHz. (2) IC = 100 rnA, VCC = 20V, IB 1 = IB2 = 5 rnA. (3) IC = 200 I'A, VCE = 2V, f = 1 kHz. (4) IC = 100 rnA, VCC = 10V, IB 1 = IB2 = 10 rnA. (5) IC = 10 rnA, VCC = 3V,
IB 1 = IB2 = 1 rnA. (61 IC = 100 I'A, VCE = 5V, f = 1 kHz. (7) IC = 1 rnA, VCE = 10V, f = 200 kHz. (8) IC = 1 rnA, VCE = 5V, f = 1 kHz. (9) IC = 150 rnA, Vee = 6V, IB 1 = IB2 = 15 rnA. (10) Ie = 10 I'A,
VeE = 5V, f = WB.
Ii
S9!J9S UOJI:»913 OJd
Pro Electron Series
~
Type
No.
PRO ELECTRON SERIES (Continued)
Case
Style
VCES"
VCBO
(V)
Min
B0373A-25 TO-237
(90)
80
TO-237
(90)
80
TO-237
(90)
80
TO-237
(90)
80
TO-237
(90)
80
TO-237
(90)
80
TO-237
(90)
80
TO-237
(90)
80
TO-237
(90)
80
TO-237
(90)
80
TO-237
(90)
80
TO-237
(901
80
TO-126
50
B0373B
B0373B-10
B0373B-16
B0373B-25
B0373C
B0373C-6
(11
~
B0373C-10
B0373C-16
B03730
B03730-6
B03730-10
B0375
B0375·6
B0375-10
B0375-16
B0375-25
B0376
B0376-6
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
50
50
50
50
50
50
vCEO
(V)
Min
45
80
60
60
60
80
80
80
80
100
100
100
45
45
45
45
45
45
45
VEBO
(V)
Min
ICES"
ICBO @ VCB
(nA)
(V)
Max
100
100
100
100
100
100
100
100
100
100
100
100
2/lA
2/lA
2/lA
2/lA
2/lA
2/lA
2/lA
45
80
80
60
60
80
80
80
80
100
100
100
45
45
45
45
45
45
45
HFE
Ic
VCE
hfe
@ (mA)& (V)
1 kHz·
Min
Max
VBE(SAT)
VCE(SAT)
& VBE(ON)"'@
IC
(V)
(V)
(mA)
Max
Min
Max
Cob
(pF)
Max
fT
IC
(MHz)
@(mA)
Min
Max
toft
(ns)
Max
NF
(dB)
Max
Test
Conditions
Process
No.
25
160
500
100
2
1
0.7
1.2*
1A
30
50
200
420
6
5/6
38
400
25
40
500
100
2
1
0.7
1.2*
1A
30
50
200
420
6
5/6
38
400
25
63
500
100
2
1
0.7
1.2*
1A
30
50
200
420
6
5/8
38
160
25
100
500
100
2
1
0.7
1.2*
1A
30
50
200
420
6
5/8
38
250
25
1150
500
100
2
1
0.7
1.2*
1A
30
50
200
420
6
5/6
38
400
25
40
500
100
2
1
0.7
1.2*
1A
30
50
200
420
6
5/6
38
400
25
40
500
100
2
1
0.7
1.2*
1A
30
50
200
420
6
5/6
38
100
25
63
500
100
2
1
0.7
1.2*
1A
30
50
200
420
6
5/6
38
160
25
100
500
100
2
1
0.7
1.2-
1A
30
50
200
420
6
5/6
38
250
25
40
500
100
2
1
0.7
1.2*
1A
30
50
200
420
6
5/6
39
400
25
40
500
100
2
1
0.7
1.2-
1A
30
50
200
420
6
5/6
39
100
25
63
500
100
2
1
0.7
1.2'
1A
30
50
200
420
6
5/6
39
160
20
40
1A
150
2
2
1.0
1.5*
1A
30
50
200
420
6
5/6 _.
38
375
20
40
1A
150
2
2
1.0
1.5*
1A
30
50
200
420
6
5/6
38
100
20
63
1A
150
2
2
1.0
1.5-
1A
30
50
200
420
6
5/6
38
160
20
100
1A
150
2
2
1.0
1.5'
1A
30
50
200
420
6
5/6
38
250
20
150
1A
150
2
2
1.0
1.5*
1A
30
50
200
420
6
5/6
38
375
20
40
1A
150
2
2
1.0
1.5*
1A
30
50
200
420
6
5/6
78
375
20
40
1A
150
2
2
1.0
1.5*
1A
30
50
200
420
6
5/6
78
100
-
D
Type
No.
PRO ELECTRON'SERIES(Continued)
Case
Style
VCES"
VCBO
IV)
Min
80376·10
80376-16
80376-25
80377
B0377-6
80377-10
80377-16
~
....
80377-25
80378
80378-6
80378-10
80378-16
80378-25
80379
80379-6
TO·126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
'TO-126
TO-126
50
50
50
75
75
75
75
75
75
75
75
75
75
100
100
VCEO
IVI
VEBO
IVI
Min
Min
45
45
45
60
60
60
60
60
60
60
60
60
60
80
80
ICES"
ICBO @ VCB
InA)
IVI
Max
2/lA
2/lA
~/lA
2/lA
2/lA
2/lA
2/lA
2/lA
2/lA
2/lA
2'/lA
2/lA
2/lA
2/lA
2/lA
45
45
45
60
60
60
60
60
60
60
60
60
60
80
80
HFE
IC
VCE
hfe
@lrnA)& IVI
1 kHz"
Min
Max
VBEISAT)
VCEISAT)
& VBEION)" @ Ic
IV)
IV)
IrnA)
Max
Min
Max
Cob
IpF)
Max
,fT'
IC
.IMHz)
@ 1m A)
Mm
Max
toff
Ins)
Max
NF
IdB)
Max
Test
Process
Conditions
No.
20
63
lA
150
2
2
1.0
1.5"
lA
30
50
200
420
6
5/6
78
160
20
100
lA
150
2
2
1.0
1.5"
lA
30
50
200
420
6
5/6
78
200
20
150
lA
150
2
2
1.0
1.5"
lA
30
50
200
420
6
5/6
78
375
20
40
lA
150
2
2
1.0
1.5"
lA
30
50
200
420
6
5/6
38
375
20
40
lA
150
2
2
1.0
1.5"
lA
30
50
200
420
6
5/6
38
100
20
63
lA
150
2
2
1.0
1.5"
lA
30
50
200
420
6
5/6
38
160
20
100
lA
150
2
2
1.0
1.5"
lA
30
50
200
420
6
5/6
38
250
20
150
lA
150
2
2
1.0
1.5"
lA
30
50
200
420
6
5/6
38
375
20
40
2
2
1.5"
lA
30
50
200
420
6
5/6
78
20
40
2
2
1.0
1.5"
lA
30
50
200
420
6
5/6
78
100
lA
150
'lA
150
1.0
375
20
63
lA
150
2
2
1.0
1.5"
lA
30
50
200
420
6
5/6
78
160
20
100
lA
150
2
2
1.0
1.5"
lA
30
50
200
420
6
5/6
78
250
20
150
lA
150
2
2
1.0
1,5"
lA
30
50
200
420
6
5/6
78
375
20
40
lA
150
1.5"
lA
30
50
200
420
6
5/6
39
20
40
lA
150
1.0
1.5"
lA
30
50
200
420
6
5/6
39
100
2
2
2'
2
1.0
375
TEST CONDITIONS:
(111,C = 200 /lA, VCE = SV, f = 1 kHz. (2) IC = 100 rnA, Vcc = 20V, 18 1 = 18 2 = 5 rnA. (311c = 200 !lA, VCE =2V, f;= 1 kHz. (411c = 100 rnA, Vcc = 10V, 18 1 = 18 2 = 10 rnA. (Sllc = 10 rnA, Vce = 3V,
18 ' = 18 2 = 1 rnA. (61 IC;= 100 !lA, VCE = SV, f = 1 kHz. (71 IC = 1 rnA, VCE = 10V, f = 200 ,kHz. (81 Ie = i rnA, VCE = SV, f = 1 kHz. (911c = 150 rnA, Vce = 6V, 18 I = 18 2 = 15 rnA. (1011C = 10 /lA,
VCE = 5V, f = W8.
,
. :
,
------
S9!J9S UOJI::'913 OJd
Pro Electron Series
~
Typo
No.
, PRO ELECTRON SERIES (Continued)
Case
Style
vCES'
VCBO
(VI
Min
B0379-10
B0379-16
B0379·25
B03S0
B03S0-6
B03S0-10
B03S0·16
~
B03S0·25
B0433
B0434
B0435
B0436
B0437
B043S
B0439
TO-126
TO-126
TO·126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
' TO-126
100
100
100
100
100
100
100
100
22t ,
22t
32 T
32 t
45t
45 t
60t
VCEO
(VI
Min
VEBO
(VI
Min
SO
2JlA
SO
2JlA
SO
2JlA
2JlA
SO
SO
2JlA
SO
2JlA
SO
2JlA
2JlA
SO
22
22
32
32
45
45
60
ICES'
ICBO @ VCB
(nAI
(VI
Max.
5
5
5
5
5
5
5
100JlA
100JlA
100JlA
100JlA
100JlA
100JlA
100JlA
SO
SO
SO
SO
SO
SO
SO
SO
22
22
32
32
45
45
60
HFE
V
VBE(SATI
VBE(ONI'
IC
hf.
IC
VCE 'CE(SATI
&
(VI
@ (mAl
(VI
1 kHz'
@ (mAl & (VI
Max
Min
Max
Min
Max
Cob
(pFI
Max
fT
IC
(MHzl
@(mAI
Min
Max
toff
(nsl
Max
NF
(dBI
Ma.
Tost
Conditions
Process
No,
20
63
lA
150
2
2
1.0
1.5"
lA
30
50
200
420
6
5/6
39
160
20
100
lA
150
2
2
1.0
1.5"
lA
30
50
200
420
6
5/6
39
250
20
150
lA
150
2
2
1.0
1.5"
lA
30
50
200
420
6
5/6
39
375
20
40
lA
150
2
2
1.0
1.5*
lA
30
50
200
420
6
5/6
79
375
20
40
lA
150
2
2
1.0
1.5"
lA
30
50
200
420
6
5/6
79
100
20
63
lA
150
2
2-
1.0
1.5"
lA
30
50
200
420
6
5/6
,79
160
20
100
lA
150
2
2
1.0
1.5"
lA
30
50
200
420
6
5/6
79
250
20
150
lA
150
2
2
1.0
1.5"
lA
30
50
200
420
6
5/6
79
375
2A
500
10
1
1
5
0.5
1.1"
2A
3
250
420
6
5/6
4E
475
2A
500
10
1
1
5
0.5
1.1"
2A
30
3
250
420
6
5/6
5E
475
2A
500
10
1
1
5
0.5
1.1"
2A
30
3,
250
420
6
5/6
4E
475
50
S5
40
2A
500
10
1
1
5
0.5'
1.1'
2A
30
3
250
420
6
5/6
5E
475
40
40
30
2A
500
10
1
1
5
0.6
1.2'
2A
30
3
250
420
6
5/6
4E
236
40
40
30
2A
500
10
1
1
5
0.6
1.2"
2A
30
3
250
420
6
5/6
5E
236,
25
40
20
2A
500
10
1
1
5
O.S
1.5'
2A
30
3
250
420
6
5/6
4E
236
50
S5
40
50
S5
40
50',
S5
40
~
Type
No.
PRO ELECTRON SERIES (Continued)
Case
Style
vCES'
VCBO
(V)
Min
B0440
B0441
B0442
fu
TO-126
TO·126
TO-126
60 t
BOt
BOt
VCEO
(V)
VEBO
(V)
Min
Min
60
5
BO
BO
5
5
ICES'
ICBO @ VCB
(nA)
(V)
Max
100/lA
100/lA
100/lA
60
BO
BO
HFE
hie
IC
VCE
@(mA)8< (V)
1 kHz·
Min
Max
,
VBE(SAT)
VCE(SAT)
8< VBE(ON)" @ IC
(V)
(mA)
(V)
Max
Max
Min
Cob
(pF)
Max
IT
IC
(MHz)
@(mA)
Min
Max
toll
(nsl
Max
NF
(dB)
Max
Test
Process
Conditions
No.
25
40
20
2A
500
10
1
1
5
O.B
1.5'
2A
BO
3
250
420
6
5/6
5E
236
15
40
15
2A
500
10
1
1
5
O.B
1.5'
2A
30
3
250
420
6
5/6
4E
236
15
40
15
2A
500
10
1
1
5
O.B
1.5"
2A
30
3
250
420
6
5/6
5E
236
B0533
TO-220
BOt
45
5
100/lA
45
25
40
20
2A
500
10
2
2
5
O.B
1.5'
2A
30
3
250
420
6
5/6
4E
B0534
TO·220
BOt
45
5
100/lA
45
25
40
20
2A
500
10
2
2
5
O.B
1.5*
2A
30
3
250
420
6
5/6
5E
B0535
TO·220
BOt
60
5
100/lA
60
25
40
20
2A
500
10
2
2
5
O.B
1.5'
2A
30
3
250
420
6
5/6
4E
B0536
TO·220
Bot
60
5
100/lA
60
25
40
20
2A
500
10
2
2
5
O.B
1.5"
2A
30
3
250
420
6
5/6
5E
B0537
TO·220
BOt
BO
5
100/lA
BO
15
40
15
2A
500
10
2
2
5
O.B
1.5"
2A
30
3
250
420
6
5/6
4E
I
I
I
B053B
TO·220
BOt
BO
5
100/lA
80
15
40
15
2A
500
10
2
2
5
0.8
1.5'
2A
30
3
250
420
6
5/6
5E
B0633
TO·220
45
45
5
2oo/lAt
45
25
40
lA
25
2
2
0.6
1.3'
lA
30
3
250
420
6
5/6
4F
B0634
TO-220
45
45
5
200/lAt
45
25
40
lA
25
2
2
0.6
1.3"
lA
30
3
250
420
6
5/6
5F
B0635
TO·220
60
60
5
200/lAt
60
25
40
lA
25
2
2
0.6
1.3'
lA
30
3
250
420
6
5/6
4F
TEST CONDITIONS:
(1) Ie = 200 /lA, VeE = 5V, I = 1 kHz. (2) Ie = 100 mA, Vec = 20V, IB 1 = IB2 = 5 mAo (3) Ie = 200 /lA, VeE = 2V, 1= 1 kHz. (4) Ie = 100 rnA, Vee = 10V, IB 1 = IB2 = 10 rnA. (5) Ie = 10 rnA, Vee = 3V,
IB 1 = IB2 = 1 rnA. (6) Ie = 100 /lA, VeE = 5V, f = 1 kHz. (7) Ie = 1 rnA, VeE = 10V, f = 200 kHz. (8) Ie = 1 rnA, VeE = 5V, f = 1 kHz. (9) Ie = 150 rnA, Vee = 6V, IB 1 = IB2 = 15 rnA. (10) Ie = 10 /lA,
VeE = 5V, f = WB.
-
._--
--- - - - - - - -
salJas uOJI:»aI3 OJd
Pro Electron Series
~.
Tvpe
No.
Case
Style
VCES"
VCBO
(V)
Min
BD636
TO-220
60
60
5
200 fol At
60
BD637
TO·220
100
BO
5
200folAt
100
B0638
'!'
~
PRO ELECTRON SERIES (Continued)
TO-220
...
100
VCEO
(V)
Min
VEBO
(V)
Min
80
5
ICES"
ICBO @ VCB
(nA)
(V)
Max
200folAt
100
"
HFE
hIe
IC
1-kHz* @ (mA) &
Max
Min
.-
VCE
(V)
VBE(SAT)
VCE(SAT)
& VBE(ON)* @
IC
(V)
(V)
(mA)
Max
Min
Max
Cob
(pF)
Max
IT
IC
(MHzI
@ (mA)
Max
Min
(ns)
NF
(dB)
Max
Max'
toll
Test
Conditions
Process
No.
25
40
1A
25
2
2
0.6
1.3*
1A
30
3
250
420
6
5/6
5F
25
1A
25
.2
2
0.6
1.3"
1A
30
3
250
420
6
5/6
4F.
40
25
40
lA
25
2
2
0.6
1.3
1A
30
3
250
420
6
5/6
5F
B0675
TO·126
45
200.folA
45
750
1.5A
3
2.5
2.S*
1:SA
1
l.SA
4J
80675A
TO-l;16
45
iOPfolA
4S
7S0
2A
3
2.B
2,S*
2A.
1
1.SA
4J
81:)676
TO·126
4S
200folA
4S
7S0
1.SA
3V
2.5
2.S"
1,SA
1
l.SA
SJ
B0676A
1'0-126
45
200folA
45
750
2A
3V
2.8
.2.5*
2A
1.5A
SJ
B0677
TO-126
60
200folA
60
7S0
1.5A
3V
2.5
2.S*
1.5A
1
-1
1.5A
4J
B0677A
TO-126
60
200folA
60
750
2A
3V
2.8
2.5*
2A
1
1.5A
4J
B067B
TO-126
60
200folA
60
750
1.5A
3V
2.5
2.5*
1.5A
1
1.5A
5J
B067BA
TO-126
60
B0679
TO-126
80
..
200folA
60
7S0
2A
3V
2.8
1
1.SA
SJ
80
7S0
1.5A
3V
2.S
2.S*
..... 2:S*
2A
200folA
1.SA
1
1.SA
4J
80679A
TO-126
80
200folA
80
7S0
2A
3V
2.8
2.S*
2A
1
1.SA
4J
B0680
TO-126 .
80
200folA
80
7S0
1.SA
3V
2.S
2.S*
1.SA
1
1.SA
SJ
80680A
TO-126
80
200 folA
80
7S0
2A
3V'
2.8
2.S*
2A
1
1.SA
SJ
80681
TO·126
100
200folA
100
7S0
1.SA
3V
2.S
2.S*
1.SA
1
1.5A
4J
. 7S0
B0682
TO-126
200folA
100
1.5A
3V
2.5
2.S"
1.SA
1
1.5A
SJ
B0733
TO-220
25
2S
100
5
200 folAt
25
SO
40
2A
20
1
4
0.6
1;1*
2A
1
1.SA
4F
Bo734
TO-220
2S
25
5
200 folAt
2S
50
40
2A
20
1
4
0.6
1.1*
2A
1
1.5A
5E
Bo73S
TO-220
35
3S
S
200 folAt
3S
40
40
2A
20
1
4
0.6
1.1'
2A
1
1.5A
4F
Bo736
TO-220
35
3S
5
200 folAt
35
40
40
2A
20
1
4
0.6
1.1*
2A
1
1.SA
5E
Bo737
TO-220
45
45
5
200 folAt
4S
40
40
2A
20
1
4
0.8
1.1*
2A
1
1.SA
4F
80738
TO-220
45
45
5
200 folAt
45
40
40
2A
20
1
4
0.8
1.1*
2A
1
1.5A
5E
80795
TO-220
45
100
45
40
25
1A
3A
2
2
1.0
1.6*
3A
3
250
4E
B0796
TO-220
45
100
45
40
25
1A
3A
2
2
1.0
1.6*
2A
3
250
5E
80797
TO-220
60
100folA
60
40
25
1A
3A
2
2
1.0
1.6*
3A
3
250
4E
---
~
PRO ELECTRON SERIES (Continued)
Type
No.
~
Case
Style
VCES'
VCBO
(V)
Min
vCEO
(V)
Min
VEBO
(V)
Min
ICES'
ICBO @ VCB
(nA)
(V)
Max
HFE
IC
VCE
hie
@ (rnA) &
(V)
1 kHz*
Min
Max
VBE(SATl
VCE(SATl
& VBE(ON)' @
IC
(V)
(V)
(rnA)
Max
Min
Max
Cob
(pF)
Max
IT
IC
(MHz)
@ (rnA)
Min
Max
toll
(ns)
Max
NF
Test
(dB)
Conditions
Max
Process
No.
B079S .
TO·220
SO
100 "A
SO
40
25
lA
3A
2
2
1.0
1.6*
3A
3
250
5E
B0799
TO·220
SO
100"A
SO
30
15
lA
3A
2
2
1.0
1.S*
3A
3
250
4E
BOSOO
TO·220
SO
100"A
SO
30
15
lA
3A
2
2
1.0
1.6*
3A
3
250
5E
BOSOI
TO·220
100
100 "A
100
30
15
lA
3A
2
2
1.0
1.S·
3A
3
250
4E
B0802
TO-220
100
100"A
100
30
15
lA
3A
2
2
1.0
1.S·
3A
3
250
5E
BOS95
TO·220
45
200 "A
45
750
3A
3
2.5'
3A
1
3A
4K
BOS95A
TO·220
45
200 "A
45
750
4A
3
2.5*
4A
1
3A
4K
B0896
TO-220
45
200 "A
45
750
3A
3
2.5'
3A
1
3A
5K
BOS96A
TO·220
45
200 "A
45
750
4A
3
2.5*
4A
1
3A
5K
B0897
TO·nO
60
200 "A
SO
750
3A
3
2.5'
3A
1
3A
4K
BOS97A
TO·220
SO
200 "A
SO
750
4A
3
2.5*
4A
1
4A
4K
BOS9S
TO·220
SO
200 "A
SO
750
3A
3
2.5'
3A
1
3A
5K
B0898A
TO·220
SO
200 "A
60
750
4A
3
2.5'
4A
1
4A
5K
B0S99
TO-220
SO
200 "A
80
750
31'
3
2.5*
3A
1
3A
4K
B0899A
TO-220
SO
200 "A
80
750
4A
3
2.5'
4A
1
4A
4K
B0900
TO-nO
SO
200 "A
80
750
3A
3
2.5*
3A
1
3A
5K
B0900A
TO·220
80
200 "A
80
750
4A
3
2.5'
4A
1
4A
5K
B0901
TO·220
100
200 "A
100
750
3A
3
2.5*
3A
1
3A
4K
B0902
TO-220
100
750
4A
3
2.5*
4A
1
4A
4K
TO·220
45
200 "A
1 rnA
100
BOX33
45
750
4A
3
2.5'
4A
20
lA
4K
BOX33A
TO·220
60
1 rnA
60
750
4A
3
2.5*
4A
20
lA
4K
BOX33B
TO·220
80
lmA
SO
750
3A
3
2.5*
3A
20
lA
4K
BOX33C
TO·220
100
lmA
100
750
3A
3
2.5*
31'
20
lA
4K
BOX330
To-no
120
1 rnA
120
750
3A
3
2.5'
3A
20
lA
4K
BOX34
TO-220
45
1 rnA
45
750
4A
3
2.5*
4A
20
lA
5K
BOX34A
TO·220
60
1 rnA
60
750
4A
3
2.5*
4A
20
lA
5K
BOX34B
TO·220
SO
1 rnA
SO
750
3A
3
2.5'
3A
20
lA
5K
TEST CONOITIONS:
(1) Ie = 200 "A, VeE = 5V, f = 1 kHz. (2) Ie = 100 rnA, Vee = 20V, IB 1 = IB2 = 5 rnA. (3) Ie = 200 /-lA, VeE = 2V, 1= 1 kHz. (4) Ie = 100 rnA, Vee = 10V, IB 1 = IB2 = 10 rnA. (5) Ie = 10 rnA, Vee = 3V,
IB 1 = IB2 = 1 rnA. (S) Ie = 100 /-lA, VeE = 5V, I = 1 kHz. (7) Ie = 1 rnA, VeE = 10V, I = 200 kHz. (S) Ie = 1 rnA, VeE = 5V, I = 1 kHz. (9) Ie = 150 rnA, Vee = SV, IB 1 = IB2 = 15 rnA. (10) Ie = 10 "A,
VeE = 5V, 1= WB.
---------
savas UOJt38Il .Jed
Pro Electron Series
~
VCES'
VCBO(V)
Min
ICES'
ICBO@ VCB
(nA)
(V)
Max
HFE
.
Ic
VCE
hfe
1 kHz' @ (mA) & (V)
Min Max
100
lmA
100
750 •
3A
3
2.5'
3A
20
lA
120
120
750
3A
3A
20
lA
30
26
4
~
10
2.5'
4
lmA
lOOt
,0.84*
4
20
3
100
20
13
6
2
12
10
7
41
20
3
100
20
13
6
2
12
10
7
41
VCEO
(V)
VEBO·
(V)
Min
Cob
(pF)
Max
fT
IC
(MHz)
@ (mA)
Min Max
toff
(ns)
Max
NF
Test
(dB)
Conditions
Max
Case
Styl.
BDX34C
TO-220
BOX340
TO·220
BF167
TO-72
(28)
40
30
BF180
TO-72
(25)
30
BF181
TO·72
(25)
30
BFI94
TO-92
(981
Same as BF254, see page 5-33 for explanation
46
TO-92
(98)
Same as BF255. see page 5-33 for explanation
46
BF196
TO-92
(98)
Same as BF198,.see below for explanation
45
BF197
TO-92
(98)
Same as BF199, see below"for explanation
B·F198
TO-92
(98)
40
30
4
100
40
26
6
4
12
10
7
BF199
TO-92
(98)
40
25
4
100
40
36
6
7
12
10
7
BF200
TO-72
(25r
30
20
3
100
40
15
6
3
12
10
7
BF233-2
TO-92
30
30
4
100
10
40
6
70
1
12
10
7
0.65
0.74"
1
1.0
150
1
49
,
Min
(96)
Process
No.
5K
5K
45
,
47
0.85'
4
45
1100 typ
7
47
41
BF233-3
TO-92
(96)
30
30
4
100
10
60
6.
100
1
12
10
7
0.65
0.74'
1
1.0
150
1
49
BF233-4
TO-92
(961
30
30
4
100
10
150
1
12
10
7
0.65
0.74'
1
1.0
150
1
49
BF233-5
TO-92
30
30
4
100
10
90
6
140
6
220
1
12
10
7
0.65
0.74"
1
1.0
150
1
49
(96)
BF237
TO-92
(981
45
30
'4
100
20
0.25
10
47
BF238
TO-92
(98)
45
30
4
100
20
0.25
10
47
BF240
TO-92
(98)
40
40
4
100
20
TO-92
(98)
40
BF241
.
VBE(SAT)
VCE(SAT)
& VBE(ON)' @ IC
(V)
(V)
(mA)
Max
Min Max
Typ.
No.
8F195
~
PRO ELECTRON SERIES (Continued)
40
4
100
20
67
6
222
36
6
125
1
12
10
7
0.65
1
12
10
7
0.65
-
0.74"
1
0.34
1
3.5
7
i
47
I
-
0.74"
-
1
0.34
1
3.5
7
47
~
(J1
8
PRO ELECTRON SERIES (Continued)
VCES"
VCBO
(V)
Min
vCEO
(V)
VEBO
(V)
Min
ICES"
ICBO
(nA)
HFE
IC
VCE
hie
@ (mAl &
(VI
1 kHz*
Min
Max
VBE(SAT)
VCE(SAT)
& VBE(ONI' @
IC
(V)
(V)
(mA)
Max
Min
Max
Cob
(pF)
Max
IT
Ie
(MHz)
@ (mA)
Min
Max
'off
(ns)
Max
NF
Test
(dB)
Conditions
Max
Process
No.
Type
No.
Case
Style
8F254
TO-92
(98)
30
20
5
100
20
67
6
220
1
12
10
7
0.65
0.74"
1
0.34
1
3.5
7
46
8F255
TO·92
(981
30
20
·5
100
20
36
6
125
1
12
10
7
0.65
0.74'
1
0.34
1
3.5
7
46
BF257
TO-39
100
100
5
50
100
25
6
30
12
10
7
1.0
0.65
0.74"
30
0.34
1
3.5
7
48
8F258
TO-39
250
250
5
50
200
25
6
30
12
10
7
1.0
0.65
0.74"
30
0.34
1
3.5
7
48
BF259
TO-39
300
300
5
50
250
25
6
30
12
10
7
1.0
0.65
0.74*
30
0.34
1
3.5
7
48
BF457
TO-126
100
100
5
50
100
25
6
30
12
10
7
1.0
0.65
0.74"
30
0.34
1
3.5
7
48
BF458
TO-126
250
200
5
50
200
25
6
30
12
10
7
1.0
0.65
0.74*
30
0.34
1
3.5
7
48
BF459
TO-126
300
300
5
50
250
25
6
30
12
10
7
1.0
0.65
0.74"
30
0.34
1
3.5
7
48
8FX13
TO-18
20
15
5
50
15
10
50
18
100
10
1
2
0.35
2
0.2
0.25
1.5
0.78
0.9
1.5
1
10
100
6
10
10
8
66
0.7
40
50
50
40
20
150
50
10
1
0.1
10
10
10
10
10
10
20
50
40
150
50
10
1
0.4
0.4
0.4
0.4
10
1
0.1
0.01
5
5
5
5
10
1
0.1
0.D1
5
5
5
5
8FX29
8FX30
8FX37
8FX65
TO-5
TO-5
TO-18
TO-18
20
65
60
45
Min
15
65
60
45
5
5
6
6
@
VCB
(V)
Max
50
50
20t
10*
50
50
50
40
100
100
0.85
70
100
'100
100
40
250
200
300
1.3
0.9
150
30
0.9
1.3
30
150
0.4
1.0
50
0.25
0.9
10
0.25
0.9
10
I
I
I
12
0.4
150
100
50
12
6
40
150
9
63
~90
4
63
3
1
62
3
1
62
0.5
6.5
TEST CONDITIONS:
(11 Ie ~ 200 /lA, VeE ~ 5V, I ~ 1 kHz. (2) Ie ~ 100 rnA, Vee ~ 20V, 18 1 ~ 182 ~ 5 rnA. (31 Ie ~ 200 /lA, VeE ~ 2V, I ~ 1 kHz. (41 Ie ~ 100 rnA, Vee ~ 10V, 18 1 ~ 182 ~ 10 rnA. (51 Ie ~ 10 rnA, Vee ~ 3V,
18 1 ~ 18 2 ~ 1 rnA. (6) Ie ~ 100 /lA, VeE ~ 5V, f ~ 1 kHz. (7) Ie ~ 1 rnA, VeE ~ 10V, f ~ 200 kHz. (8) Ie ~ 1 rnA, VeE ~ 5V, I ~ 1 kHz. (9) Ie ~ 150 rnA, Vee ~ 6V, 18 1 ~ 18 2 ~ 15 rnA. (10) Ie ~ 10 /lA,
VeE ~ 5V, f ~ W8.
-
--
--
--
sapas UOJIOal3 OJd
Pro Electron Series
~
PRO ELECTRON SERIES (Continued)
VCES'
VCBO
(V)
ICES'
ICBO
(nA)
Max
VBE(SAT)
VCE(SATl
& VBE(ON)*
(V)
(V)
Max
Min
Max
Min
Min
45
45
6
500
100
15
20
30
20
lA
500
150
10
10
10
10
10
0.15
0.35
1.0
1.6
1.2
1.3
1.5
2.0
10
150
500
lA
12
50
50
TO-39
45
45
6
50
80
15
30
70
50
lA
500
150
10
10
10
10
10
0.15
0.35
1.0
1.6
1.2
1.3
1.5
2.0
10
150
500
lA
12
50
TO-39
45
45
6
50
30
15
30
70
50
lA
500
150
10
10
10
10
10
0.15
0.35
1.0
1.6
1.2
1.3
1.5
2.0
10
12
150
500
lA
25
40
40
10
10
10
10
0.4
1.3
0.9
150
30
40
500
150
10
1
25
40
40
40
500
150
10
1
10
10
10
10
0.4
1.3
0.9
150
30
BFX84
TO-39
BFX85
BFX86
@
VCB
(V)
@
1 kHz*
Min
Max
Ic
VCE
(rnA) & (V)
@
IC
(rnA)
Cob
(pF)
Max
fT
(MHz)
Max
Min
VEBO
(V)
Case
Style
Min
toff
(ns)
Max
NF
(dB)
Max
Test
Conditions
Process
No.
360
9
14
50
360
9
14
50
50
360
9
14
12
100
50
150
9
63
12
100
50
150
9
63
@
IC
(rnA)
BFX87
TO-5
45
50
6
50
40
BFX88
TO-5
45
40
6
50
30
BFY39
TO-18
45
25
5
50
30
35
400
10
10
1.0
1.0
10
150
10
23
BFY39-1
TO-18
45
25
5
50
30
35
110
10
10
1.0
1.0
10
150
10
23
BFY39-2
TO-18
45
25
5
50
30
100
200
10
10
1.0
1.0
10
150
10
23
BFY39-3
TO-18
45
25
5
50
30
180
400
10
10
1.0
1.0
10
150
10
BFY50
TO-18
80
35
6
500
80
20
30
20
15
10
150
500
lA
10
10
10
0.1
1.2
10
12
60
50
360
9
14
BFY51
TO-39
60
30
6
500
60
30
40
25
15
10
150
500
lA
10
10
10
10
0.1
1.2
10
12
60
50
360
9
14
BFY52
TO-39
40
20
6
500
60
30
60
30
15
10
150
500
lA
10
10
10
10
0.1
1.2
10
12
60
50
360
9
14
15
20
30
1
500
150
10
10
1
0.3
1.5
150
1.2
2.5
lA
01
~
HFE
hfe
VCEO
(V)
Type
No.
BFY56
TO-39
80
45
5
50
50
150
23
10
i
25
40
50
14
---
II
Type
No.
Case
Style
vCES·
VCBO
(V)
Min
BFY72
TO·39
50
SFY76
TO-18
SSX21
TO·18 ,
BSX45-6
TO·39
SSX45-10
SSX45-16
z;
PRO ELECTRON SERIES (Continued)
SSX46-6
TO·39
TO·39
TO·39
VCEO
(V)
Min
VEBO
(V)
Min
28
5
45
45
6
80'
80
40
7
80'
80'
100'
40
40
60
7
7
7
ICES'
ICBO @ VCB
(nA)
(V)
Max
40'
20
HFE
IC
VCE
hie
@(rnA)8o (V)
1 kHz·
Min
Max
15
20
30
40
15
20
30
500
50
20
10"
60
40
60
10'
10'
60
10'
60
30
80
140
63
100
40
150
200
100
160
250
100
VBE(SAT)
VCE(SAT)
& VBE(ON)· @
IC
(V)
(V)
(rnA)
Max
Min
Max
0.1
1
10
150
500
10
10
10
10
10
0.25
1.2
0.7
1.6
0.01
0.5
1
5
5
5
0.35
4
3
100
1
100
100
100
1
1
1
BSX46·16
TO-39
TO·39
100'
100'
60
60
7
7
10'
60
10'
60
63
100
160
250
100
100
1
1
Mm
8
50
IT
.(MHZ)
I
@
(rn~)
Max
toll
(ns)
Max
NF
(dB)
Max
Test
Conditions
Process
No.
50
19
500
1
6
0.9
4
60
4
07
20
60
50
14
2.0
500
lA
500
lA
20
60
50
14
2.0
500
lA
20
60
50
14
2.0
500
lA
25
60
50
12
2.0
500
lA
25
60
50
12
2.0
500
lA
25
60
50
12
2.0
1.0
1.0
1.0
1.0
01
BSX46·10
150
Cob
(pF)
Max
1.0
1.0
BSX48
TO·1S
50
25
5
120
50
17
100
1
1.5
1.5
500
6
250
30
19
BSX88
TO·18
40
15
5
25
20
15
0.5
1
0.5
0.72
0.8
10
6
300
10
21
BSY38
TO·18
20
12
5
100
20
30
15
60
45
10
100
0.35
1
0.25
0.6
0.7
0.85
1.5
10
100
5
200
10
45
16
21
BSY39
TO·1S
20
12
5
100
20
40
20
120
70
10
100
0.35
1
0.25
0.6
0.7
0.85
1.5
10
100
5
200
10
45
16
21
BSY51
TO'lS
60
35
5
100
30
40
120
150
10
1.0
1.3
150
9
130
50
19
BSY52
TO·1S
60
25
5
100
30
100
300
150
10
1.0
1.3
150
9
130
50
19
BSY53
TO-IS
75
30
7
10
60
20
35
40
20
0.1
10
150
500
10
10
10
10
0.6
1.3
150
9
150
50
19
120
2.0
500
TEST CONDITIONS:
(1) Ie = 200 !lA, VeE = 5V, f = 1 kHz. (2) Ie = 100 rnA, Vee = 20V, 18 1 = 18 2 = 5 rnA. (3) Ie = 200 !lA, VeE = 2V, f = 1 kHz. (4) Ie = 100 rnA, Vee = 10V, IS 1 = IS2 = 10 rnA. (5) Ie = 10 rnA, Vee = 3V,
IS 1 = Is2 = 1 rnA. (6) Ie = 100 !lA, VeE = 5V, 1= 1 kHz. (7) Ie = 1 rnA, VeE = 10V, f = 200 kHz. (8) Ie = 1 rnA, VeE = 5V, f = 1 kHz. (9) Ie = 150 rnA, Vee = 6V, IS 1 = Is2 = 15 rnA. (10) Ie = 10 !lA,
VeE= 5V, I = WB.
-
sa!Jas UOJI:>9a OJd
Pro Electron Series:
PRO ELECTRON SERIES (COot,,,,,,
"
Case
Style
Type
No.
VCES'
VCBO
(VI
VCEO
(VI
Min
VEBO
(VI
Min
Min
BSY54
TO-18
BSY95A
TO-18
75
20
ICES'
ICBO @ VCB
(nAI
(VI
Max
30
15
7
5
10
50
HFE
hie
1 kHz'
Min
60
16
35
75
100
4Q
30
50
@
IC & VCE
(mAl
(VI
VCE(SAT)
VBE(SAT!
I
(VI
& VBE(ONI @
C
Max
. (VI
(mAl
Max
300
200
Mm
0.1
10
150
500
10
10
10
10
0.6
1
10
0.35
0.35
0.35.
Cob
(pFI
Max
IT
I
toff
(MHzl
@
C
(nsl
Min
Max. (mAl Max
NF
(dBI
Max
Test
..
Cond,t,ons
Process
No.
Max
1.3
2.0
150
9
150
50
19
6
200
10
21
50
0.67
0.87
10
TEST CONDITIONS:
(1) IC ~ 200 /lA, VeE ~ 5V, I ~ 1 kHz. (21 Ie ~ 100 rnA, Vee ~ 20V, Is 1 ~ IS2 ~ 5 rnA. (3) Ie ~ 200 /lA,VeE ~ 2V, I ~ 1 kHzc (4) Ie ~ 100 rnA, Vee ~ 10V;IS 1 ~ Is2 ~ 10 rnA. (Slle ~ 10 rnA, Vee ~ 3V,
IS 1 ~ IS2 ~ 1 rnA. (6) Ie ~ 100 /lA, VeE ~ 5V, f ~ 1 kHz. (7) Ie ~ 1 rnA, VeE ~ 10V, f ~ 200 kHz. (8) Ie ~ 1 rnA,VeE ~ 5V, I ~ 1 kHz. (9) Ie ~ 150 rnA, Vee ~ 6V, IS 1 ~ Is2 ~ 15 rnA. (10) Ie ~ 10 /lA,
VeE
~
5V, I
~
ws.
~
I
~
Type No.
~
PRO ELECTRON SERIES (JFET)
Case
Style
BVGSS
IGSS
BVGOO
lOGO
(V)@IG (nA)@VGO
Min (I'A) Max (V)
Vp
VGS
10
(V) @VGS 10
(V)
@ VOS (nA)
Min Max (V) (I'A)
(V)
Min Max
Crss
Re(YFS)
loss
Ciss
VGS
(rnA) @VOS (mmho)@
f
(pF)@VOS
(pF)@VOS VGS
(V)
(V)
Typ (V)
Min Max (V) Min Max (MHz) Typ (V)
NF
(dB) @ RG
e n"
Max
Typ
= 1k
f
(Hz)"
(MHz)
Process Pkg.
No.
No.
BF244A
TO·92
30
1
5
20
.5
8
15
10
.4
2.2
15
200
2
6.5
15
3
6.5
.001
4
20
-1
1.1
20
-1
1.5
100
50
74
BF244B
TO·92
30
1
5
20
.5
8
15
10
1.6
3.8
15
200
6
15
15
3
6.5
.001
4
20
-1
1.1
20
-1
1.5
100
50
74
BF244C
TO·92
30
1
5
20
.5
8
15
10
3.2
7.5
15
200
12
25
15
3
6.5
20
-1
1.1
20
-1
1.5
100
50
74
TO·92
30
1
5
20
.5
8
15
10
.4
2.2
15
200
2
6.5
15
3
6.5
.001
.001
4
BF245A
4
20
-1
1.1
20
-1
50
77
BF245B
TO-92
30
1
5
20
.5
8
15
10
1.6
3.8
15
200
6
15
15
3
6.5
.001
4
20
-1
1.1
50
77
TO·92
30
1
5
20
.5
8
15
10
3.2
7.5
15
ioo
12
25
15
3
6.5
.001
4
20
-1
1.1
20
20
-1
BF245C
-1
50
77
BF246A
TO·92
25
1
5
15
.6
14.5
15
10
1.5
4.0
15
200
30
80
15
8
.001
11
15
a
3.5
15
51
74
BF246B
TO-92
25
1
5
15
.6
14.5
15
10
3.0
7.0
15
200
60
140
15
BF246C
TO·92
25
1
5
15
.6
14.5
15
10
5.5
12
15
200
110
BF247A
TO·92
25
1
5
15
.6
14.5
15
10
1.5
4.0
15
200
30
BF247B
BF247C
TO·92
25
1
5
15
.6
14.5
15
10
3.0
7.0
TO·92
25
1
5
15
.6
14.5
15
10
5.5
BF256A
TO·92
30
1
5
20
BF256B
TO-92
30
1
5
BF256C
TO·92
30
1
5
BC264A
TO·92
30
1
10
20
.5
15
10
BC264B
TO·92
30
1
10
20
.5
15
10
BC264C
TO·92
30
1
10
20
.5
15
BC2640
TO·92
30
1
10
20
.5
15
8
.001
11
15
a
3.5
15
15 8
.001
11
15
3.5
15
15
.001
11
15
3.5
15
15 200
60
80
140
.001
11
15
15
200
110 250
15
.001
11
15
15
.5
7.5
15
200
3
15
8
4.5
3.5
3.5
15
12
a
a
a
a
a
a
a
a
a
a
.001
.7
20
-1
7.5
20
.5
7.5
15
200
6
13
15
4.5
.001
.7
20
-1
20
.5
7.5
15
200
11
18
15
4.5
.001
.7
20
-1
.2
1.2
15
1000
2
4.5
15
2.5
.001
4.0
15
-1
1.2
15
.4
1.4
15
1500
3.5
6.5
15
3.0
.001
4.0
15
-1
1.2
15
10
.5
1.5
15
2500
5.0
8.0
15
3.5
.001
4.0
15
-1
1.2
10
.6
1.6
15 3500
7.0
12.0
15
4.0
.001
4.0
15
-1
1.2
250
7
15
8
8
51
74
51
74
51
77
51
77
51
77
800
50
77
7.5
800
50
77
7.5
800
50
77
-1
40"
10'
50
77
-1
40'
10'
50
77
15
~1
40'
10'
50
77
15
-1
40'
10'
50
77
dfJ9S UG4:)813 OJ"
Section 6
Consumer Series
Consumer Series
~
Type
No.
Case
Style
VCES'
VCBO
IVI
Min
VCEO
IVI
Min
VEBO
IVI
Min
ICES'
ICBO @ VCB
InAI
IVI
Max
HFE
hfe
IC
@ ImAi &
1 kHz*
Min
Max
VCE
IVI
VBEISATl
VCEISAT)
& VBEIONI' @
IC
IVI
IVI
ImAI
Max
Min. Max
Cob
IpFI
Max
fT
IC
IMHzl
@ ImAI
Min
Max
toff
Insl
Max
NF
IdB)
Max
Test
Condition
Process
No.
CS9011
TO·92
1921
20
18
3
50
18
28
198
1
5
1.0
1
CS9012
TO·92
1921
25
25
3
500
18
64
350
50
1
1.0
250
60
CS9013
TO·92
1921
25
25
3
500
18
64
350
50
1
1.0
250
09
CS9014
TO·92
1921
20
18
3
50
18
60
600
1
5
0.5
1
04
CS9015
TO·92
(92)
20
18
3
50
18
60
600
1
5
0.5
1
71
CS9016
TO·92
1921
20
20
3
50
18
28
146
1
5
3
CS9018
TO-92
1921
20
12
2
50
15
28
146
1
5
0.6
ED1402
TO-92
1921
35
30
4
10
10
110
810
2
5
ED1502
TO-92
(92)
25
20
4
10
10
36
210
1
10
ED1602
TO-92
(92)
35
30
4
10
10
70
475
2
5
ED1702
TO-92
(92)
30'
25
5
100'
20
40
106
0.5A
100
1
1
0.4
300
TO-92
1921
30'
40
106
0.5A
100
1
1
0.4
300
OJ
r\>
CONSUMER SERIES
ED1802
25
5
-
1. __ -
___
100'
-- - - -
20
-
1
3.5
10
27
1.6
44
10
43
10
250
5
--------
1
62
37
500
----
07
46
10
500
1
77
-
-
~
CONSUMER SERIES (Continued)
HFE BINS
B
e
F
G
H
39-60
54-80
72-108
97-146
132-198
64-91
78-112
96-135
118-166
144-202
180-350
64-91
78-112
96-135
118-166
144-202
180-350
28-45
28-45
39-60
39-60
54-80
54-80
72-108
97-146
410-810
105-210
0
E
eS9011
28-45
e59012
C59013
A
C59014
C59015
60-150
100-300
200-600
60-150
100-300
200-600
CS9016
CS9018
ED1402
ED1502
110-165
36-55
150-225
202-318
290-450
48-75
66-100
ED1602
70-105
90-140
125-190
84-127
170-260
I
K
L
M
N
106-150
132-188
106-150
132-188
170-233
170-233
213-300
213-300
72-108
223-475
ED1702
ED1802
Note: Orders must contain at least two adjacent bins.
(J)
w
- -
-
S9IJ9S J9WnSUOO
'.
Section 7
NA/N BIN R Series
~NatiOnal
Semiconductor
NAI NB TRANSISTOR SERIES SELECTION GUIDE
GENERAL DESCRIPTION
a-
S
.~
o
c
f!
ICO
Z
"-
The NA series of transistors are complementary power series which provide minimum collector saturation voltages at low drive
conditions and feature matched HFE, guaranteed VBE (on), VBE (sat), VCE (sat), etc, for estimating circuit performance at
limit conditions. They are ideal for use with the N B series in complementary audio power amplifier applications. In addition,
the collector breakdown voltages range from 20 to 60 Volts, which allows great flexibility in other power applications, such
as converters/inverters, 'servo amplifiers, etc. The NB series of transistors are complementary general·purpose devices which
cover a wide range of applications from low·noise equalizer preamplifiers to 1.5 Amp class B drivers. This series provides low
leakage, low VCE (sat), high HFE and three different types of collector breakdown voltages (35, 50 and 65 Volts) for multipurpose usage and total flexibility.
NA - APPLICATIONS
NB - APPLICATIONS
to 25 Watts fu lIy complementary
• 0.1
audio power amplifiers
•
•
Low noise equalizer preamplifiers
A general purpose amplifiers
• Class
B drivers
• Class
• Oscillators
circuits
• Control/Switching
Display/line drivers
• Servo
amplifiers
•
Converters/I nverters
• Power control circuits
regulators
• Switching/linear
High current switching circuits
• Servo
amplifiers
•
o
Tc = 25°C
~
SYMBOL
PARAMETER
Collector-Emitter
Sustaining Voltage
RVCEO
TYP
MIN
CONDITIONS
MAX
V
20
Ic = 1 mA
UNIT
Z
"'C
Z
~
Bllc80
Collector-Base
Breakdown Voltage
Ic=100J-LA
25
V
BVE80
Emitter-Base
Breakdown Voltage
IE = 10J-LA
5
V
ICEO
Collector-Emitter
Leakage Current
VCE ; 15V
100
J-LA
IC80
Collector-Base
Leakage Current
VC8; 20V
1
IJA
VSE (on)
Base-Emitter Voltage
Ic;10mA,VCE;3V
680
730
mV
VSE (sat)
Base-Emitter
Saturation Voltage
IC = 500 mA, 18 = 50 mA
0_95
1.5
V
VCE (sat)
Collector-Emitter
Saturation Voltage
IC = 500 mA, 18 ; 50 mA
0_2
0_5
V
Cob
Collector Output Capacitance
NPN types
PNP types
Ve8; 10V, f; 1 MHz
Current Gain Bandwidth
Product
Ic; 100 mA, VCE ; 3V
ft
@]. HFE
PARAMETER
G
H
I
QC
DC
DC
DC
DC
DC
J
X
y
~
Current
Current
Current
Current
Current
Current
Gain
Gain
Gain
Gain
Gain
Gain
physical dimensions
630
50
4_5
7_0
pF
pF
200
MHz
CONDITIONS
Ic =
Ic =
Ic =
Ie;
Ic =
Ic =
100 mA, VeE;
100 mA, VCE .;
100 mA, VCE ;
100 mA, VeE =
100 mA, VeE;
100 mA, VeE;
[2J
3V
3V
3V
3V
3V
3V
MIN
TYP
MAX
RATIO
68
100
140
200
30
100
85
127
180
260
110
160
240
350
110
350
1: 1.6
1 :1.6
1:1.6
1: 1.6
1 :3.5
1:3.5
58
190
max power dissipation
TO-92
~
..L
.185
. 115
-----1
I
I
,
.-.
.
"
[0
,,
T
:8~~~-
.594
tvo
L
,018 typ
,.:.
'~:"i-..-
:g:~ -
-
I
I
.
)( 1.2
E
c 1.0
e.
z
c 0.8
~
~ 0.6
--,
.135
;g:g
l>
o
N
"'C
Z
groupings
GROUPING
Z
i:i
i5
'w~"'
0.4
...c
0.2
:::>
0
.:Ii!
:Ii!
X
:i
7-5
~V T = CAfE TE1MPE,ATU,E
T = ~MBI~NT iEMP~RATURE
"'-K ~
~
"""" ~
I"
25
50
'"
75
100 125
150 175
TEMPERATURE (T) - - DC
200
"'C
~
Q.
Z
-~
Q.
r-------------------------------------------------------__________________________--,
00 typical
performance characteristics
N
Z
I
I
~
Z
-~,..
Z
Z
dc safe operating area
c(
...
Q.
u..
"I
I
SOA
I2
I
1 !:::==
~
a::
0.5
<.>
0.2
::>
I
20
.......
o
0.1
0.05
8
0.02
t;
...J
...J
30
<.>
20 ~
~
C3
1""0
f
~
...........
3
a::
·2
o
t;
W
0.5
...J
5
2
10
20 30
COLLECTOR TO EMITTER VOLTAGE (VCE) - - V
0.1
2
w
u..
::::;
c(
::E
a::
0
2
0.5
l'~l'
......
~~
.l
~
~
a::
2
:J:
~
0
W
N
Pil'p i-'---
::::;
r---l'~l'
c(
0.3
0
2
0.2
0.1
0.02
0.05
0.1
0.2
0.5 O.B 1
2
0.01
I
I
TEST TIME = 300j.lS
W
0.5 O.B 1
2
IF)
base f o emitter saturation vo tage
TEST TIME
=300j.lS
3
2
o
>
~ ~~'"
a::
w
~
~
~~
::E
w
i::::::==f""
a::
o
~
l..oo
0.5
a::
:=
0.2
Cl
...J
:i
w,
0.1
a>
'1-
w.
0.05
VSE(sat)
>
(E)
collector to emitter saturation voltage
0.02
COL.LECTOR CURRENT (lc) - - A
VCE(Sat)
7
N~N.~
u..
::E
0.01
Cl
5
3
(0)
w
0.1
w
2
VCE = 10V
a::
:
.0.5
0
0.2
'B
-
current gain linearity ratio
0.3
>
r- r-
HFE1/HFE2
VCE = IV
r---
0.2
Ie)
0
0
W
N
--
COLLECTOR TO BASE VOLTAGE (VCB) - - V
i=
c(
:J:
""'" r- t';;p;;-- r-
1
~
<.>
HFE1/HFE2
current gain linearity ratio
a::
-
5
o
I-
0.2
r- r""'" ~
t---
<.>
w
..........
0.01
0.1
'10
,
EMITTER-OPEN
c(
......
a::
w
w
·2
IB}
collector to base capacitance
§
Te = 25°C
t:::::.800~A
Cob
::a
(A)
o
I-
0.5
--
\\f~""O _ ~I-'
i-"~
w
~
0.02
0.05
0.1
0.2
0.5 O.B 1
2
a>
COLLECTOR CURRENT (lc) - - A
0.3
0.01
0.02
0;05
0.1
0.2
0.5 O.B
COLLECTOR CURRENT (I C) - - A
7-6
1
2
z
~
~ typical applications
~
Vee
•
::g 200~F ~~JJJ--+--~
47K
r1
\J
0
Vee'12V
6V
r--1----------~------~
Z
Z
-.
."
z
Rl
8!l
(1 Rl
~2~l
~
N
."
Z
."
01 NB111EH/J
02 NROOIE
03 NA01EG/J
04 NA01EG/J
01 NB111EH/J
02 NROOI E
03 NAOIEG/J
04 NA01EG/J
Figure B. 650mW 12V/25n. OTL Amplifier
Figure A. 3S0mW 6V ISn. OTL Amplifier
Vee
~
TOROID
TRANSFORMER
9V
INPUT
o..--j
01 NBlllEH/J
02 NA01EG/J
01 NA01EX
03 NA01EG/J
02 NBlllEY
Figure D. Typical Converter Circuit
Figure C. 1 :ZW Audio Amplifier
Vee ~ 6V
6V
LAMP
2000P
TOUCH
OFF
roUCH
ON
01 NB021 EY
02 NB021EY
03 NB021EY
04 NA01EX
01 NA01EX
Figure F. 40KHz Ultrasonic Transmitter
Figure E. Touch-on/Touch-off Electronic Switch
7·7
~ ~------------------------------------------------------------------------,
0..
Z
0..
~National
-,...
a
Z
NA11 (NPN)
NA 12 (PNP) 1 Amp complementary power transistors
N
Semiconductor
a:
...-:;""""
w
1=
~
-
~
:E
~
0.5
-
\\fE" ,I)
i""1-"""'"~
\\fE" ~I)
-
1--'"
1
I-
w
0.05
0.5 0.81
W
ell
I
0.02
0.2
1=
I
I
2!
a::
0.05
VBE(sad
>
(EI
2
1
r---
COLLECTOR CURRENT Ocl- - A
TEST TIME = 300118
0.5
NPl
~
0.5
0.1
0.01
2
VCE(sat)
I
I'
LiJ
(01
PNP
NPN
COLLECTOR CURRENTllcl- - A
>
10
VCE = 10V
w
cc
~
0.05
7
2
N
0
0.02
5
0
::E
0.1
0.01
2 ,3
current gain linearity ratio
VCE =1V
2
6
0.5
HFE1/HFE2
(el
~
,
r- r~ r- I--. t-
COLLECTOR TO BASE VOLTAGE (VcBI-.,.. V
0
0
Z
r- ~
l- I'-
3
HFE1/HFE2
::;
I-
0.02
current gain linearity ratio
...:z:
-
5
COLLECTOR Til EMITTER VOLTAGE (VcEI- - V
w
r- r-
2
0.0 1
0.1
a:
EMITTER-OPEN
10 r--
"
::;)
o
30
20 ~
0.5
(81
collector to base capacitance
:c
1 Amp
I-
Cob
I
I
(AI
2
~
a.
CL
de safe operating area
I
I
..
...
SOA
'P'"
Tc = 25°C
PARAMETER
MIN
CONDITIONS
TYP
MAX
UNIT
BVCEO
Coliector·Emitter
Sustaining Voltage
Ic = 1 mA
20
V
BVCBO
Collector· Base
Breakdown Voltage
IC = lOOIlA
25
V
BVEBO
Emitter·Base
Breakdown Voltage
IE= lO IlA
5
V
ICEO
Collector· Emitter
Leakage Current
VCE = 15V
100
IlA
ICBO
Collector· Base
leakage Current
VCB = 20V
1
IlA
VSE (on)
Base·Emitter Voltage
IC = 10 mA, VCE = 3V
670
730
mV
VSE (sat)
Base·Emitter
Saturation Voltage
Ic = 700 mA, I B = 14 mA
0.9
1.0
V
VCE' (sat)
Collector· Emitter
Saturation Voltage
NPN types
PNP types
IC =700 mA,lB = 14 mA
0.35
0.65
0.5
1
V
V
Collector Output Capacitance
NPN types
PNP types
VCB = 10V, f = 1 MHz
Current Gain Bandwidth
Product
Ie = 100 mA, VCE = 3V
Cob
ft
[I]
G
I
J
X
Y
0
600
0.45
0.7
pF
pF
200
MHz
50
CONDITIONS
Gain
Gain
Gain
Gain
Gain
Gain
Ic
Ie
Ie
Ie
Ie
Ie
= 100 mA,
= 100 mA,
= 100 mA,
= 100 mA,
= 100 mA,
='100 mA,
VCE
VCE
VCE
VeE
VeE
VCE
=
=
=
=
=
=
3V
3V
3V
3V
3V
3V
MIN
TYP
MAX
RATIO
68
100
140
200
30
100
85
127
180
260
58
190
110
160
240
350
110
350
1: 1.6
1: 1.6
1 :1.6
1: 1.6
1 :3.5
1 :3.5
[2] heatsink information
T.k~lI.~
T0-92 PLUS
[0
.185 I ,-,
.175: '.'
:8U:- -
0.3
- :::--l
-L- ~
l~;~O:mI;
T.ts!!:.~
[0
T'
- ' -,
I!:T-L
0,4
.•••. n., '.' ,
0.030
STEEL SHEET
:8m--
'.0
solder
tab here
' - 0.126
.59~
'.0
.01 • • .,.
~
>
N
N
."
physical dimensions
T0-92
Z
."
Z
PARAMETER
DC Current
DC Current
DC Current
DC Current
DC Current
DC Current
H
.....
Z
HFE groupings
GROUPING
N
Ij_--L-
•
.01. ty.,
.O.~~A
, .1415
- .1315
.,..--
055
:0"0 -
.0151
.001 a
TO·92 PLUS package with heat·
sink shown on right permits 1.6
Watts power dissipation and
combined Thermal Resistance
I)JA = 7SoC/W. If used without
heatsink and PCB land area at
collector lead
1 sq. inch,
Po = 1.2W.
>
7·13
Z
."
~ r-----~--~----------------------------------------------------------------------__,
Q.
Z
Q.
[!] typical
N
N
«
Z
~
I
I
(A)
I
Q.
I
2
Z
I-
ti5
0.5
N
B
0.2
Z
~
0.1
t;
a:
a:
TC=25°C
,+
I
"
~1"0.9
"'"
,,~p(VJ'
1"09; - ' "
w 0.05
....J
....J
o
30
w
~
20
~
~
I-
10
I I
~II'"
w
en
w
>
t::::~~~""~k:::::=~
~
....J
....J
o
U
o
w
~
co
0.01 '-----'--''---'----'---"'---'--'----'----'-.....
0.01 0.02
0.05 0.1
0.2
0.5
2 3
COLLECTOR CURRENT (I C) - - A
II I
I
I-IfE'" 10
L~
I-- ~
~
w
~
3
(F)
base to emitter saturation voltage
I
I
~
w
'"
IE)
3
w
0.2
COLLECTOR CURRENT (I C) - - A
VCE (sat)
>
0.05 0.1
~
~
0.3
0.01
-
I-IfE'" SO
I
I
II
0.02
0.05
0.1
0.2
0.5
COLLECTOR CURRENT (lc) - - A
7·14
2 3
~
z
»
N
typical applications
-"
t.
t.
Vec· IV
Z
Z
."
-»z
N
N
-
."
Z
."
os
as
NBOllEY 03 NROOIE os NA22EG/J
02 NBlllEH/J 04 NA21EG/J
NBOll EY
02 NBOll EY
Figure A. 700mW 6V/4r1. OTL Amplifier
Figure B. 950mW 6V /4r1. OTL Amplifier
Q1
Q1
.
03 NROOI E
Q4 NBlll EY
NA21 EG/J
NA22EG/J
Vee-14V
3.3K
2.71(
Vee·IV
+
47J1.F~
41PFI-
3.2K
2.7K
47K
GND
01 NBOllEY
02 NB011 EY
03 NROOIE as NA21EG/J
04 NBlll EY 06 NA22EG/J
01 NBOllEY 03 NROOIE OS NA22EG/J
02 NBlll EH/J Q4 NA21 EG/J
Figure D. 2.2W 14VI8r1. OTL Amplifier
Figure C. 2W 9V/4r1. OTL Amplifier
Vee
TOROIO
TRANSFORMER
Vee· 'V
+
-:r...
lIP
0--1
...
Q1
NA21EX
01 NBlllE 02 NA21YG/J
02 NBlllEY
Q3 NA21YG/J
Figure F. 2W Audio Amplifier
Figure E. Tvpical Convertor Circuit
7·15
~ r-----------~----------------------------------------------------------------,
Q;.
Z
-«
~National
N
a
z..
NA31 (NPN) 2 Amp complementary power transistors
NA32 (PNP)
Z
features
Q;.
Semiconductor
('I)
~
Q;.
Z
,('I)...
«z
(I) packages and lead coding
• 30 Volt/2 Amp rating
• 1.2 Watts practical power dissipation (TO·92 PLUS™.)
• 1.75 Watts free air power dissipation (TO·202)
TO.92 PLUS ™
TO·202
• Low VeEls.tl and V8EIs.t) characteristics at
Ie
= 1.2A, 18 =30 mA
• Matched HFE groupings for complementary applications
• "Epoxy B" packaging concept for excellent reliability
applications
• 4·Watt audio power amplifiers
• Medium power switching circuits
PACKAGE CODE
TO·92 PLUS
• Converter II nverter ci rcuits
• TV receivers
00 maximum
ratings
PARAMETER
SYMBOL
Coliector·Emitter Voltage
Collector·Base Voltage
Emitter·Base Voltage
Collector Current (continuous)
Power Dissipation (T f'. = 25°C)
TO·92 PLUS
TO·202
Power Dissipation (Te = 25°C)
TO·92 PLUS
TO·202
Thermal Resistance
TO·92 PLUS
TO·202
Temperature, Junction and Storage
VeEO
Ve8
VE8
Ie (max)
Po
LEAD
TO·202
1
2
3
X
y
K
L
B
Z
M
E
E
B
e
8
E
e
e
UNIT
RATING
30
35
5.0
2.0
Voe
Voe
Voe
A
0.75
1.75
W
W
2.5
10
W
Po
fJJA/fJJC
fJJAI fJJe
Tj; Tstg
W
°CIW
°CIW
°c
167/50
,72112.5
-55to + 150
(I) ordering information
.------------------------POLARITY
!
"1" for NPN
"2" for PNP
.-----------PACKAGE/LEAD CODE
~
N A 3 X . X• X
re f er to L!J
+
HFE GROUPING
refer to [[]
7·16
@
Z
SYMBOL
»
Tc~25°C
electrical characteristics
PARAMETER
V
-"
-
100
}.lA
~
1
}.lA
650
700
mV
30 mA
0.95
1.2
V
30 mA
0.5
1
V
1.0
1.4
V
0.25
0.5
V
~
CONDITIONS
MIN
TYP
UNIT
MAX
BVCEO
Collector-Emitter
Sustaining Voltage
Ic
~
1 mA
30
V
BVCBO
Collector-Base
Breakdown Voltage
IC
~
100}.lA
35
V
BVEBO
Emitter-Base
Breakdown Voltage
IE
ICED
Collector-Emitter
Leakage Current
VCE
~
25V
ICBO
Collector-Base
Leakage Current
VCB
~
30V
VBE(on)
Base-Emitter Voltage
Ic
~
15 mA, VCE
VBE(sat)
Base-Emitter
Saturation Voltage
Ic
~
1.2A, Is
~
VCE(sat)
Collector-Emitter
Saturation Voltage
Ic
~
1.2A, Is
~
VBE(sad
Base-Emitter
Saturation Voltage
Ic ~ 1.2A, Is ~ 120 mA
VCE(sat)
Collector-Emitter
Saturation Voltage
Ie
Cob
Collector Output Capcitance
NPN types
PNP types
VeB
Current Gain Bandwidth
Product
Ie
ft
[ID
G
H
I
J
X
Y
[ID
10}.lA
~
~
1.2A,Is
5
~
~ 10V,f~
~
5V
600
Gain
Gain
Gain
Gain
Gain
Gain
120mA
1 MHz
~
~
300 mA, VCE
5V
CONDITIONS
Ie
Ie
Ic
Ie
Ie
Ie
~
~
~
~
~
~
300
300
300
300
300
300
mA,
mA,
mA,
mA,
mA,
mA,
VeE
VeE
VeE
VeE
VeE
VeE
o
physical dimensions
pF
pF
MHz
20
~
~
~
~
~
~
5V
5V
5V
5V
5V
5V
MIN
TYP
MAX
RATIO
68
100
140
200
30
100
85
127
180
260
58
190
110
160
240
350
110
350
1: 1.6
1: 1.6
1:1.6
1: 1.6
1:3.5
1:3.5
heatsink information
T0-202
T0-92 PLUS
Z
•
TO-92 PLUS package
with heatsink shown on
right permits 1.6 Watts
power dissipation and
combined Thermal Resistance 8 JA ~ 78°CIW.
If used without heatsink and PCB land area
at collector lead> 1 sq.
inch, Po ~ 1.2W.
Ta.~I:~j
....L
-~ solder
- - -,
tab here
IT
0.4
J...L
0.030
STEEL SHEET
I'
~~~: ::~~0.7S
j
=-
0.125
~
• TO-202 package with
heatsink shown on right
permits 3 Watts PD and
8JA ~ 42°CIW.
0.34
"0. I
ALUMINIUM
SHEET
7-17
0.25
/OIA
-t-
-
t I
0.040
Z
»
-"
N
-"
Z
10
17
PARAMETER
DC Current
DC Current
DC Current
DC Current
DC Current
DC Current
Z
~
HFE groupings
GROUPING
~
41
'L
......
0.55
-L
~~--------------------------------~----------------------------------------------------,
a.
z
a.
-«
00
typical performance characteristics
N
M
Z
~
~
z
a.
-«
z
,..
M
Z
u..
SOA
dc safe operating area
«
I
I
I2:
0.5
::>
0.3
0.2
a::
0.1
0
I-
e..>
w
...J
...J
0
e..>
w
e..>
"">J
........
2:
~d~ r;;;;
0\9
EMITTER·OPEN
70
;:
60
t3
50
f
""
w
o
o
0.01
0.2 0.3 0.5
2
3
30
10
5
o
...J
...J
o
e..>
VCE = lV
0
w
u..
a::
0.3
~~~
"""i;
PN)
N
::::;
0.5
a::
0.3
«
::;:
~
0
2:
'\.
0.2
0.01
0.2 0.03
0.05 0.1
2
w
~NPN
0.2 0.3 0.5
2
Ie
IB
w
~w
...J
...J
40
0.1
0.05
Ie
0.03
0.02
0.01
0.01
IB
P~
0.2 0.3
0.5
(F)
TEST TIME = 300 ILS
a::
w
t:
~
w
:10
Ie
0.5
IB
0.3
- 40
o
I-
~
0.02 0.03 0.05
0.1
0.20.3 0.5
;i1i
2
0.1
0.01 0.02 0.03 0.05
0.1
0.2 0.3
0.5
o
e..>
2
C
~VY/'
0.3
0.2
'"""'Ill ~PN
W
1.0
0.5
...J
a::
(0)
. base to emitter saturation voltage
I
TEST TIME =300 ILS
w
~
w
40
VBE (sat)
>
(E)
collector to emitter saturation voltage
(!l
o
35
COLLECTOR CURRENT (I C) -- A
VCE (sat)
I
I-
30
0.2
COLLECTOR CURRENT (lC) -- A
.>
-
0'.1
0.01 0.02 0.03 0.05 0.1
0.1
t:
25
VCE = 10V
:l:
0
0.5
a::
20
0
2
W
N
>
NPN
15
i=
::::;
o
10
«
a::
:l:
0
;:
5
PNP
HFE1/HFE2
«a::
2:
" ...........
current gain linearity ratio
(e)
i=
0
\
COLLECTOR TO BASE VOLTAGE (VCB) -- V
HFE1/HFE2
current gain linearity ratio
«::;:
\
I-
COLLECTOR TO EMITTER VOLTAGE (VCE) -- V
w
'\
\
w
~
0.1
u..
(8)
output capacitance
~
TC = 25 0 C
2
::::
e..>
I
I
:E
o
U
w
a::
a::
Cob
Q.
(A)
COLLECTOR CURRENT (I C) -- A
COLLECTOR CURRENT (I C) -- A
7·18
2
(ID
Z
l>
typical applications
GI)
~
Z
"tJ
Z
a
an
Rl
Ql
NB021 EY
Q2
NB211EY
Q3
NR001 E
Q4
NA31YG/1
Q5
NA32YG/1
1000",F
a
Rl
.n
GNO
Figure B. 4 Watt/ 4 Ohm OTL Amplifer
Vcc- 12V
~
47K
Figure C. Relay Driver
Figure D. Cassette Bias Oscillator
7·19
N
"tJ
Z
~t5V
~t---f..
w
"tJ
Figure A. 4 Watt/ 8 Ohm OTL Amplifier
+
Z
l>
Q,
NBOllEU
Q2
NB211EH/J
Q3
N ROOI E
Q4
NA31YG/1
Q5
NA32YG/1
~ r-------------------~--------------------------------------------------------,
a..
z
a..
C\I
~National
~ Semiconductor
~
0"-
un
iJl_D.020
1I.(111~'
J_
i1
O.045-.J
0.055
l
MAX
RATIO
68
100
140
30
100
85
127
180
58
190
110
160
240
110
350
1: 1.6
1: 1.6.
1: 1.6
1:3.5
1 :3.5
heatsink information
9.4°CIW.
or
0.&05
LD,015~~_
0.05 inch aluminium sheet
~ 01151:=-
D.025 RAD.
-----'-1
T
I
Q.026 0.0950.025
o.1D5
E3'C1
TYP
The TO-126 and TO-220 packages used
with heatsink shown below permits about
8.7 Watts Power Dissipation,and eCA ;
O'~20~O:'OS'~
lm.O~IA~'--;Ln lm
~ +
0.100 r O l " -
UJ5
,-t
0.015
10V
10V
10V
10V
10V
MIN
3' TYP
123-..1.
0.0"'
;
=
;
;
;
TO-220
11- /~:gg
11/.
1
0.097
CONDITIONS
physical dimensions
0.145""*1
Z
"'C
Z
Z
»
~
I\)
."
Z
W HFE groupings
GROUPING
~
TC; 25°C
r===
til!
~
1 m"
D.soa MAX
0.250
3
'"
ZPlAcls
4d~~~~lm
D.SU
0,1110
l3li
0.210
l
.J
Mount transistor
under heatsink
and apply thermally conductive
compound between
contact
surfaces.
-I gm
0.110
7-21
"'C
"r-----------------------------------------------------~----~----------------__.
Q.
-.
Z
~ typical performance characteristics
Q.
N
~
c(
Z
"Z -
<
Z
U
Q.
,....
~
"Co
I
I
SOA
I
I
dc safe operating area
w
2
c(
I:
I:
Z
:::I
I:
w
.....
.....
EMITTER·OPEN
~
W 300
e.;,
2.5 Amp
Z
~
..........
TO·126 .....
and
TO·220
e.;,
0
le.;,
(BI
collector to base capacitance
o
Te = 25°C
3
Cob
1>
5
I-
Z
(AI
0.5
~ 100
""'-
5
I--
w
~
0.3
0.2
200
c::;
PNp
-~ i'!!o
50
'"
30
::
20
-r-
NPN
1
I:
0
e.;,
C
t
0.1
2
3
10
5
20
30
~
.....
50
10
0.1
:3
COLLECTOR TO EMITTER VOLTAGE (VCEI- - V
0.2
0.5·
2
5
10
20
HFE1/HFE2
(el
(0 I
current ain linearjty ratio
VCE = 10V
VCE = IV
0
<
I:
3
0
2
<
I:
...
j::
w
f-
:c
c
w
N
:::;
<
::;;
0.5
3
2
PNP
W
PNP
"-
:c
.1"'" I" NPN
r--...
2:
.....
F- NPN
"
0.3
0.2
0
w
N
0.5
<
::;;
0.3
:::;
I'
;Nf'
I:
0
Z
f\
~N
0
z
0.02
0.05 0.1
0.2
0.5
235
:E
>
(E)
w
.z.w
0.02
t
:l
.W
oe.;,
~
r-......
0.1
0.03
0.02
ell
~
o
1/1/
0.2
235
""
HFE =10
>
~
W
I:
0.7
W
0.5
~
o
W
0.1
0.2
0.5
2
3
~
5
COLLECTOR CURRENT II C) - - A
(FI
1
2
1.5
p-
Ll~
1/
0.3
0.01 0.02
~ I-
-::: Ft::"20
""""
I-
0.05
0.5
TEST TIME = 300JlS
.:j
I:
HFE-IO -
0.01
0.01 0.02
0.05 0.1
w
~
i/
0.3
0.2
g;
I-
HFE = 20
0.5
0.05
r'
base to emitter saturation voltaga
I
I
TEST TIME = 300JlS .
2
o
P~ ,...
VBE(sat)
collector to emitter saturation voltage
ell
~
~
COLLECTOR CURRENT II C) - - A
5
~
IN t-
I
0.01
VCE(sat)
3
o
~
s:
0.2
COLLECTOR CURRENT IIc) - - A
w
f'
0.1
0.01
I
I
........
I:
0.1
>
50 70
COLLECTOR TO BASE VOLTAGE (VCBI- - V
HFE1/HFE2
current gain linearity ratio
j::
-
0.05 0.1
0.2
0.5
COLLECTOR CURRENT II c) - - A
7·22
2
3
z
»
~
~ typical applications
.....
Z
vee = 24V
180K
Z
~
l"F
T35V
47K
-::-
120K
"tJ
Z
»
~
I~~~____-l__~~~~--~--r----r---t----~
0.1
D2
d
lOOP
8n
RL
01
NB021EY
02
NB211YY
03
NROOIE
04
NA41U
05
NA42U
01
NB021EY
02
NB211YY
Figure A. 6 Watt, 8 Ohm OTL Amplifier
r-__t-__~__________~L-________~~________. -__-e___V~C~C=18V
120K
+
10j.lF
33K
120K
+
lpF
T
25V
IN~~~____~~~-4~~~--t----t---t--~~~--~
0.1
r1
~4n
RL
390
03
NROOIE
04
NA41U
05
NA42U
Figure B. 6 Watt, 4 Ohm OTL Amplifier
Figure D. Switching Regulator Circuit
Figure C. Linear Regulator Circuit
7·23
N
"tJ
Z
"tJ
.~ r---------------------------------------------------~--------------------_,
C.
Z
C.
N
~NaHonal
~ Semiconductor
It)
45
4
3.5
VOC
Voc
Voc
A
1.8
2.0
W
W
30
W
W
,
~
50
Po
30
8J1:i.l8 JC
8JA/8JC
Tj. Tstg
°C/W -
69.4/4.17
62.5/4.17
-55to+150
°C/W
°c
ordering information
"1" for NPN
~,--------------------- POLARITY "2" for PNP
NA5XX
t' - - - - - - - - - - - PACKAGE/LEAD
CODE .
refer to OJ
7·24
~ electrical characteristics
z
»
TC = 25'C
U1
-'"
SYMBOL
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNIT
BVCER
Collector-Emitter
SU$1:aining Voltage
IC = 10 inA, R = lK
45
V
BVCBO
Collector-Base
Breakdown Voltage
Ic= 10Oj.tA
50
V
BVEBO
Emitter-Base
Breakdown Voltage
IE = 100llA
4
V
ICER
Collector-Emitter
Leakage Current
VCE = 35V, R = lK
ICBO
Collector-Base
Leakage Current
VCB =40V
VBE (on)
Base-Emitter Voltage
Ic = 15 mA, VCE = 10V
VBE (sat)
Base-Emitter
Saturation Voltage
Ic = 2A, IB
VBE (sat)
Base-Emitter
Saturation Voltage
VCE (sat)
-.z.
Z
»
U1
N
1
mA
0_5
mA
680
mV
1.3
V
Ic = 3A, IB = 160 mA
1.6
V
Collector-Emitter
Saturation Voltage
Ic = 2A, IB = 80 mA
1.5
V
VCE (sat)
Collector-Emitter
Saturation Voltage
Ic = 3A,IB = 160mA
5
V
HFEl
DC Current Gain
Ic = 500 mA, VCE = 10V
Cob
Collector Output Capacitance
NPN types
PNP types
VCB
~ physical dimensions
Z
"'C
"'C
Z
520
600
=80 mA
30
100
ratio
35
65
pF
pF
= 10V,f= 1 MHz
[!]
heats ink information.
The TO-126 .and TO-220 packages
used with heatsink shown below
permits about 9.2 Watts power
dissipation and 6cA = 9.4'CIW.
0.05 inch aluminium sheet
Mount· transistor under heatsink and
apply thermally conductive compound
betwean contact surfaces.
TO-220
7-25
-
"'C
~ r-------------------------~~--------------~--------------~--------------,
Q;.
Z
Q.
I1J typical performance characteristics
N
LI)
~
Z
"""
Q..
Z
....
It)
oc.
236
...... ~ ~r-
~
0.7
~
o
0.5
~
0.01
TEST TIME = 300JlS
o
HFE = 10 -
~
coLLECTOR CURRENT (I C) --A
HFE = 20
........
0.3
0.01
0.02
-"
....
~Lll
11
0.06
0.1
0.2
0.6
COLLECTOR CURRENT (I c) - - A
7-26
(F)
base to emitter saturation voltage
>
TEST TI ME = 300JlS
-'
~
(E)
collector to emitter saturation voltage
~
w
0.05
COLLECTOR CURRENT (lC) --A
VBE(sat)
I
I
W
>
P~~ 1'1"
f'
0.1
5
>
I!I
F:r:;: t'..... NPN
1
COLLECTOR CURRENT (I c) ~ - A
I
--..
2
3
5
z
o
»
C1I
-
typical applications
~
Z
~
+
-»
Z
1O.F
d
NB021EY
02
NB122EY
03
NROO1E
04
NBl12EY
05
NB312E
06
NB322E
~
Q7
NA52W
08
NA51W
RL
8n
Figure A. 12 Watt, B Ohm OTL Amplifier
Vee = 24V
82K
33K
INPUT
o---=j 1-'+.....-1---[0 1
d
RL
412
01
NB021EY
02
NB122EY
03
NROO1E
04
NBl12EY
05
NB312E
06
NB322E
07
NA52W
08
NA51W
Figure B. 12 Watt, 4 Ohm OTL Amplifier
NA52U
VOUT
+
+
GNO
Figure D. Switching Regulator Circuit
Figure C. Linear Regulator Circuit
7·27
'"
01
Z
C1I
N
~
Z
-'
~
Q.
Z
Q.
C\I
.-----------------------------------------------------------------------------,
~Nat1onal
~ Semiconductor
co
o
0.02.03.05
2
base to emitter saturation voltage
w
C!l
.....
«
1-
0.05
U
[-
W
a>
~
~
:!'w:
.....
o
,01-,0
I
TEST TI ME = 300!lS
0.1
~1-
1
0.01 0.02
=;'
(E)
w
>
~\'~
O. 1
3
C!l
o
I-
VBE(sat)
~
;::.....
I""'l
COLLECTOR CURRENT (I C) - - A
collector to emitter saturation voltage
W
5070
(0)
0.2
VCE(sat)
I
I
20
VCE = 10V
COLLECTOR CURRENT !lC)- - A
>
10
I--\,~\,
o
w
I
0.1
5
3
::c
,o;)~
1-[
0.05
2
to BASE VOLTAGE (VCB)- - V
w
~" ~1-,o-t
V1~\,~
0.1
0.01 0.02
0.5
«ex:
I
I---\,~\'
w
0.2
current gain linearity ratio
1. t--
2
0
l"- t--
HFE1/HFE2
VCE = IV
::c
r""
'""'"
COLLECTOR
(e)
3
w
u.
~
NPN
0.1
U
HFE1/HFE2
current gain linearity ratio
ex:
-
10
o
COLLECTOR TO EMITTER VOLTAGE (VCE) - - V
0
r-. t- r- ....
t- r- 1"-1"r- tf~ t-- r- .....
o
0
i=
(B)
collector to base capacitance
~
5
u
u
w
I
(A)
CI
ex:
ex:
ex:
Cob
Co
5
~
a>
COLLE.CTOR CURRENT !I C) - - A
0.3
0.01 0.02
0.05
0.1
0.2
I--I-
HFE = 20 - ; I I I
--
II
0.5
COLLECTOR CURRENT (I C) - - A
7·30
-
2
3
o
z
l>
typical applications
lOpF
+
:;r::
~
~
35V
150K
d
4n
RL
2.9K
01
NB022EY
02
NB123EY
03
NROOIE
04
NBl13EY
05
NBlllEY
06
NB121EY
07
NB313Y
08
NB323Y
09
NA62W
010
NA61W
01
NB022EY
Figure A. 25 Watt OTL Amplifier
Vee
~
30V
d
RL
4n
-=-
02
NB122EY
03
NROOIE
04
NBl12EY
05
NBlllEY
06
NB121EY
07
NB313Y
08
NB323Y
09
NA62W
010
NA61W
Figure B. 18 Watt OTL Amplifier
10
'pF
TO
OISTRIBlHOR
+
0.01
IGNITION
COIL
JO
39<
14V
0)
Vee
Q1
rB~ER
POINT
Figure C. Capacitor Discharge Ignition System
7·31
NA61W
02 NA61W
03 NB111EY
Z
-"
Z
Z
l>
0)
-"
-"
N
Z
~
c.
z
a.
-«
N
.....
z
...
~
Z
,-----------------------------------------------------------------------------,
~National
a
NA71 (NPN)
NA72 (PNP) 3.5 Amp complementary power transistors
C.
-«,...
z
[I]
features
Z
.....
Semiconductor
• 60 Volt/3.5 Amp rating
• Available ilJ TO-126 and TO-220 packages
• Low VC E (sat! and VB E (sat) characteristics at
IC = 2 A, IB = 100mA
• Guaranteed VCE (sat) and VBE (sat) at
Ic = 3A, IB =200m A for improved short
circuited protection design in audio amplifiers
• "Epoxy B" packaging concept for excellent reliability
TO-126
TO-220
//
applications
•
•
•
•
packages and lead coding
10-25 Watt 8 Ohm audio power amplifiers
High current switching circuits
Converter/Inverter circuits
TV receivers
PACKAGE CODE
TO 126
m
I
U
maximum ratings
PARAMETER
SYMBOL
Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
Collector Current (continuous)
Power Dissipation (T A = 25°C)
TQ-126
TO-220
Power Dissipation (T C = 25°C)
TQ-126
TQ-220
Thermal Resistance
TQ-126
8 JA/8JC
TO-220
Temperature, Junction and Storage
8 JA/8 JC
Tj, Tstg
VCE
VCB
VEB
Ic (max)
Po
I
RATING
TO 220
W
UNIT
60
65
4
3.5
Voc
VOC
VOC
A
1_8
2_0
W
W
40
40
W
W
69.413.125
62_5/3.125
-55 to + 150
°CIW
°CIW
Po
°c
[]] ordering information
"1" for NPN
" r - - - - - - - - - - - - - - P O L A R I T Y "2" for PNP
j
lr-----------PACKAGE/LEAD CODE
refer to [IJ
,
NA7XX
7-32
~ electrical characteristics
SYMBOL
BVCER
PARAMETER
Collector-Emitter
Sustaining Voltage
z
»
.....
TC = 25·C
....
CONDITIONS
MIN
IC=10mA,R=1K
TYP
MAX
UNIT
v
60
Z
"tJ
-z
»
.....
Z
~
BVCBO
Collector-Base
Breakdown Voltage
IC =
1oo~A
65
V
BVEBO
Emitter-Base
Breakdown Voltage
IE =
100~A
4
V
ICER
Collector-Emitter
Leakage Current
VCE = 50V, R = 1K
ICBO
Collector-Base
Leakage Current
VCB = 55V
VBE (on)
Base-Emitter Voltage
IC = 20 mA, VCE = 10V
VBE (sat)
Base -Emitter
Saturation Voltage
VBE (sat)
N
2
mA
Z
mA
680
mV
IC=2A,IB=100mA
1.5
V
Base-Emitter
Saturation Voltage
IC = 3A, IB = 200 mA
2
V
VCE (sat)
Collector-Emitter
Saturation Voltage
IC = 2A, IB = 100 mA
2
V
VCE (sat)
Collector-Emitter
Saturation Voltage
IC = 3A, IB = 200 mA
5
V
HFEI
DC Current Gain
IC = 500 mA, VCE = 10V
Cob
Collector Ouput Capacitance
NPN types
PNPtypes
VCB = 10V, f = 1 MHz
~ physical dimensions
H t/
;; .t.. .,100121
liZ.
~l:!
~
~-.=
..... 1..!JI.'u,
I.DlI.J
•••
I
520
30
600
100
ratio
40
pF
pF
70
[]] heatsink information
_,'j
The TO-126 and TO-220 packages
used with heatsink shown below
permits about 10 Watts power
dissipation and 8CA = 9.4·CIW.
l-
t
.11.JI-
1.121 ...,IIZI
.... ..lJ:'.I11
E3~
::::1 l'
"tJ
TO-126
0.05 inch aluminium sh_
Mount lransmor under heallink end
apply thermally conductive compound
batween contect surfaces.
TO-220
7-33
"tJ
~
0.
Z
0.
......,
N
r-------------------------------------------------------------------------------,
[1J typical
performance characteristics
.....
c;:C
~
..
SOA
~
Z
0.
Z
......
~
l"'-
e:(
Z
CI.
de safe operating area
I
I
VCI; (sat)
"0
VBE(sat)
COllector to emitter saturation voltage
....
~
~
O.5
'"w~
O.3
O.2
~
w
O. 1 ..........
~
0.05 ..........
0.03
0.0?
~
t;
~
...6
lI'
g
......
-
0.01
0.01 0.02 O.CBO.C6' 0.1
".-.
~ !...-
W
CI
~
.L.
C
HFE = 10
>
1
w
o.7
~
o
o
....
o.3
a:
~
i.o-'"
w
0.2
0.5
COLLECTOR CURRENT (lC) - - A
3
~
~
HFE = 20
TEST TIME = 300)1S
w
CD
1
o
,>
I
I
TEST TIME = 300)1S
2
(F)
base to emitter saturation voltage
>
'
w
C!I
(E)
3
~
w
......
applications
.....
Z
VCC=40V
"'C
180K
47K
68K
d
RL
8n
100
P
150
GNO
at
NB022EY
02
NB123EY
03
NRODIE
04
NB113EY
05
NBlllEY
06
NB121EY
Q7
NB313Y
08
NB323Y
09
NA7'lN
010
NA71W
01
02
NBD22EY
NB123EY
Figure A. 25 Watt OTL Amplifier
+
lOT
I'F~
ORL
8n
2.9K
03
NRDOIE
04
NBl13EY
05
NB111EY
NB121EY
NB313Y
06
07
08
NB323Y
09
NA7'lN
OlD NA71W
GNO
Figure B. 18 Watt OTL Amplifier
VIM
-
FLOURESCENT
LAMP
NA72U
+
II
II
I2V
II
II
__. . . . ....J::
VOUT
II
L...,Wo-+-...
11
"---U.:"---4l-..r
I I
II
II
TOROID
TRANSFORIIER
Figure D. Battery Lantern Circuit
Figure C. Switching Regulator Circuit
7·35
Z
'"
Z
>
......
N
"'C
Z
"'C
~
0..
Z
0..
C\I
C\I
o
,...
C\I
o
r---------------------------------------------------------------------------------~
~National
~ Semiconductor
NB011.012(NPN)·
.
NB021 022 (PNP) 30mAgenerai purpose transistors
£Xl
Z
~
[]] package and lead coding
features
~
Z
0..
Z
,...
,...
,...
C\I
o
• 35 to 50 Volt at 30 mA collector ratings
• 300 mV guaranteed VCE (sat) characteristics ,at
Ic = 10 mA and 18 = 0.5 mA
•
•
Matched HFE groupings for complementary applications
"Epoxy B" packaging concept for excellent reliability
~
o
£Xl
Z
applications
•
Small signal amplifier circuits
•
•
Equalizer preamplifiers
Low current switching circuits
•
TV receivers
o
PACKAGE CODE
TO-92
E
E
E
C
F
H
8
C
8
C
8
E
maximum ratings
PARAMETER
Collector-Emitter Voltage
NBOll
NB021
NB012
SYMBOL
UNIT
NB022
VCEO
35
50
VDC
Collector-Base Voltage
VC8
40
55
VDC
Emitter-Base Voltage
VEB
5
5
VDC
Collector Current (continuous)
Ic (max)
30
30
mADc
Power Dissipation (T A = 25°C)
PD
0,6
0_6
W
Power Dissipation (T C = 25° C)
PD
1.0
1.0
W
Thermal Resistance
°JA
208
208
°CIW
°JC
Tj, Tstg
125
°CIW
-55 to + 150
Temperature, Junction and Storage
o
LEAD
2
3
1
125
-55'to
+ 150
°c
-
ordering information
l
"1" for NPN
r----------------------- POLARITY "2" for PNP
Ir--~--------
t
VOLTAGE RATING
refe r to
III
NBOXXXX
t lL_______
PACKAGE/LEAD
CODE
refer to
IT]
HFE GROUPING
refer to [[]
7-36
~
z
electrical cha racteristics
SYMBOL
BVCEO
BVCBO
m
Tc = 25°C
PARAMETER
CONDITIONS
Collector-Emitter Sustaining Voltage
NBOll/021
NB012/022
Ic = 1 mA
Collector-Base Breakdown Voltage
NBOll/021
NB012/022
Ic = 100/-LA
MIN
MAX
TYP
UNIT
35
50
V
V
40
55
V
V
BVEBO
Emitter-Base Breakdown Voltage
IE = 10/-LA
ICEO
Collector-Emitter Leakage Current
VCE = 30V NBOll
45V NB012
1
1
/-LA
/-LA
ICES
Collector-Emitter Leakage Current
VCE = 30V NB021
45V NB022
0_5
0_5
J.l-A
/-LA
ICBO
Collector-Base Leakage Current
VCB = 35V NBOll/021
50V NB012/022
0.1
0_1
/-LA
/-LA
lEBO
Emitter-Base Leakage Current
VEB=4V
0_1
/-LA
5
V
VBE (sat)
Base-Emitter Saturation Voltage
Ic = 10mA,Ie = 0_5mA
0_75
0_95
V
VCE (sat)
Collector-Emitter Saturation Voltage
Ic = 10 mA, Ie = 0_5 mA
0.1
0_3
V
Cob
Collector Output Capacitance
NPN types
PNP types
Vce = 10V, f = 1 MHz
Current Gain Bandwidth Product
IC = 1 mA, VCE =5V
ft
~
pF
pF
120
MHz
HFE groupings
GROUPING
PARAMETER
I
DC Current Gain
DC Current Gain
DC Current Gain
DC Current Gain
DC Current Gain
DC Current Gain
DC Current Gain
DC Current Gain
DC Current Gain
J
K
L
T
U
V
Y
Z
00
50
2
3
physical dimensions
CONDITIONS
IC = 1 rnA, VCE
Ic = 1 rnA, VCE
IC = 1 mA, VCE
Ic= 1 mA, VCE
Ic = 1 rnA, VCE
Ic = 1 mA, VCE
Ic = 1 mA, VCE
Ic = 1 rnA, VCE
Ic = 1 mA, VCE
[I]
=
=
=
=
=
=
5V
5V
5V
5V
5V
5V
= 5V
= 5V
= 5V
MIN
TYP
MAX
RATIO
140
200
300
450
100
200
450
100
300
180
260
380
580
150
320
700
190
580
240
350
500
750
240
500
1100
350
1100
1 :1.6
1 :1_6
1 :1_6
1:1.6
1:2_4
1:2_4
1:2_4
1:3_5
1 :3_5
max power dissipation
~
-L
,185
.176
t---I
I
,-'
~ _'
[J
-
I
I
I
T
:81~~-
.594
tv.
l
--,
.O~8
typ
·~:"jl.'~'
--,.---
:8:g -
.136
:8:~
I
I
.
;c 1_2
E
~ 1_0
z
o_e
1=
0
~
in 0_6
en
is
a: 0_4
w
'"
...........
vT = CASEI TEMPERATURE
I
I
I
r'\
~
~
0 0_2
~
X
c
=e
7-37
0
~MBI~NT~EMP~RATURE
I'\.
~~
.......
0.
=e
=e
I--T=
25
50
75
100
~150
125
TEMPERATURE (T) - - DC
175
200
o
.....
.....
..
o
.....
I\)
Z
."Z.
z
m
o
I\)
.....
o
I\)
-"
I\)
-"
Z
~
C.
Z
C.
C\I
C\I
r---------------------------------------------------------------------------------------~
[~1
typical performance characteristics
,...
0
o
a:
C\I
m
z
"'
2
f=
...... ~J
UJ
u..
::J:
0
UJ
0.5
~
N
c.
z
::;;:
a:
w
c..J
C
veE (sat)
I
I
W
C
t!l
f!
UJ
o
>
-r-.
"'r-.
~
0.1
::;;:
UJ
o
I-
a:
0.03
o
I~
j
o
f!
e.>
0.1
, base to emitter saturation voltage
3
(0)
TEST TIME = 300l-lS
2
HFE = 10
1.5
....J
--
HFE = 50
>
a:
I I
~
::;;:
0.6
UJ
0.5
o
I-
en
0.03
30
o
UJ
0.01
0.01
10
3
t!l
-- --
0.3
a:
UJ
0.3
CD
UJ
....J
0.1
VBE(sat)
>
(C)
collector to emitter saturation voltage
TEST TI ME = 300l-lS
2
~
~ .....
COLLECTOR CURRENT (lC) - - rnA
COLLECTOR.CURRENT (lc) - - rnA
I
I
(B)
current gain linearity ratio
0
::;;:
a:
0.1
0.01
o
2
VCE = 1V
UJ
....J
....J
o
c..J
UJ
z
I'--!"---.. r--.t--.. ~
PNP
~r..
..........
c
0.01
t--.
3
"""
10
~
-
.... '"
~
.,
i'ooo..
TN'"
a:
l-
1"'-
common emitter output admittance
E
E
e.>
z
hoe
o
.z=
(E)
100
COLLECTOR TO BASE VOLTAGE (Vcil) - - V
o
0.001
0.01
0.03
0.1
0.3
3
COLLECTOR CURRENT (lc) - - rnA
7-38
10
30
Vee
~41Qof
410K
REe
PHONO
AUX
~
02
\I
~
"
"I
68K
-
'·"7'
22K
330K
0--
R,
10K
..
10K
I.
~
1
1'"
a,
4~~
04
\I
21K
-
10K
41K·
10}JF
I."f '"
12K
J
RA+ RB= 8.2K
I
'ti
I [-f1
°i~'
SK
~
41'
~'~
'"
*
0;~22
O·~f2
·11
47K
JtJf':
07
-:-!j8AI(
lO}JF
f---10jJf
~
0.~~33
'"'
1M
10""
" 331lF
SGO
41
,--<>.... O;~'
~f-'--
12K
.,
1
R,
20pF
lOOK
~
~'"'
Be
0'
~
PLAY
BACK
IK
§]
25V
~
...
-<-
~
;
•
I}JF
•
471(
15K
15K
"
•
';~'
It"
000l:?4.7K
'"
<
'C
18K
-;-
. \I
15K
n
f--tos
III
aUI pur
III
1M
,...-- 08
lOjJF
10Ilf
12K
'C
'C
10K
n
~y~
10K'
82K
10
1801(
1"'""1
"
22K
III
82
~.
o
"
:::l
02 NB013EU
05 NB021EY
08 NR051E8
01 NB013EU
04 NB013EU
07 NBOllEY
I/)
03 NB011EY
06 NB011EY
09 NBOllEY
Figure A. High Quality Preamplifier with Tone Control Circuit
."
~
Vce
IIV
-<
3mA
~
OUTPUT
AEt/PB
~
HEAD
:: TOKO
II CAN
II lA418
II VEl
o
"
RL
II
N2.""J
IIIIC.
01 NB013EY
•
Gain = 6DK V!V
Q2 NB023EY
•
Input impedance
= lK Ohm
03 NB011EY
Q4 NB011EY
OS NB011EY
01 NR041E
02 NB013EU
•
Output noise
=
10mV rms
-l
,. 8mH
QjJ
= 50
N1
=
40T
N2
=
360T
N3 = 4DT
03 NBOllEY
Figure B. Battery Operated Racording/PIayback Cassette Circuit
Figure C. High Gain Ultrasonic Amplifier
(dNd)~~O' ~~OBN '(NdN)~ ~O '~~OBN
~
Q.
Z
-o
Q.
V
.-----------------------------------------------------------------------------,
~National
~ Semiconductor
N
('I)"'
N
~
NB013, 014 (NPN) 30mA low noise transistors
NB023,024{PNP)
Z
"'
~
Z
Q.
-ov
Z
~
('I)"'
~
[I]
features
• 35 to 50 Volt at 30mA collector ratings
/
• 300mV guaranteed VCE (sat) characteristics at
Ic = 1 OmA and Is = 0.5mA
•
ldB typical wide-band Noise Figure
~~
~'.
• "Epoxy B" packaging concept for excellent reliability
3 21
o
applications
z
•
Low noise amplifier circuits
•
Equalizer. preamplifiers
m
package and lead coding
PACKAGE CODE
TO-92
1
LEAD
2
3
E
E
B
C
F
E
C
C
B
E
H
B
~ maximum ratings
PARAMETER
Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
Collector Current (continuous)
Power Dissipation (T A = 25°C)
Power Dissipation (T C = 25°C)
Thermal Resistance
Temperature, Junction and Storage
[II ordering
NB013
NB014
SYMBOL
NB023
NB024
VCEO
35
50
VDC
VCB
VEB
Ic (max)
40
5
30
55
5
30
PD
0.6
PD
1.0
0.6
1.0
VDC
VDC
mADC
W
W
()JA
()JC
Tj, Tstg
208
125
-55 to + 150
208
125
-55 to + 150
information
r--------------------- POLARITY
j
"1" for NPN
"2" for PNP
I r - - - - - - - - - V O L T A G E RATING
refer to
t
rn
t-________
NBOXXXX
t
I___ PACKAGE/LEAD
CODE
refer to OJ
HFE GROUPING
refer to I]]
7-40
UNIT
°CIW
°CIW
°c
z
[!]
electrical characteristics
SYMBOL
PARAMETER
o
.....
CONDITIONS
Collector-Emitter Sustaining Voltage
NB013/023
NB014/024
BVCEO
OJ
TC = 2Soc
TYP
MIN
MAX
UNIT
Ic = 1 mA
V
V
3S
SO
Ic = lOOIlA
BVEBO
Emitter-Base Breakdown Voltage
IE = lOllA
'CEO
Collector-Emitter Leakage Current
VCE = 30V NB013
4SV NB014
1
1
IlA
IlA
ICES
Collector-Emitter Leakage Current
VCE = 30V NB023
4SV NB024
O.S
O.S
IlA
IlA
ICB9
Collector-Base Leakage Current
VCB = 3SV NB013/023
SOV NB014/024
SO
SO
nA
nA
lEBO
Emitter-Base Leakage Current
VEB = 4V
0.1
IlA
VBE (sat)
Base-Emitter Saturation Voltage
Ic = 10 mA, IB = O.S.mA
0.7S
0.9S
V
VCE (sat)
Coliector·Emitter Saturation Voltage
Ic = 10 mA, 'B = O.S mA
0.1
0.3
V
Cob
Collector Output Capacitance
NPN types
PNP types
VCB=10V,f=lMHz
ft
Current Gain Bandwidth Product
Ic = 1 mA, VCE = SV
NF
Noise Figure
Ic = 101lA, VCE = SV
Rs = 10 K, BW = lS.7 KHz
I]]
40
SS
V
V
S
V
PARAMETER
I
DC Current Gain
DC Current Gain
DC Current Gain
bc Current Gain
DC Current Gain
DC Current Gain
DC Current Gain
DC Current Gain
DC Current Gain
J
pF
pF
2
3
K
L
T
U
V
Y
Z
CONDITIONS
Ic =
Ic. =
Ic =
!c =
Ic =
Ic =
Ic =
Ic =
Ic =
1001lA, VCE
1001lA, VCE
1001lA, VCE
1001lA; VCE
1001lA, VCE
100.uA, VCE
1001lA, VCE
lOOIlA, VCE
loollA, VCE
~ physical dimensions
SO
MHz
120
4
1
dB
=
=
=
=
=
=
=
=
=
SV
SV
SV
SV
SV
5V
SV
SV
5V
[1J
MIN
TYP
MAX
RATIO
140
200
300
4S0
100
200
450
100
300
180
260
380
S80
ISO
320
700
190
580
240
3S0
SOO
7S0
240
500
1100
3S0
1100
1:1.6
1:1.6
1:1.6
1:1.6
1:2.4
- 1:2.4
1 :2.4
1:3.5
1:3.5
max power dissipation
;;::
-L
I
I
,- .... _,
,185 I
,-,
I
.175 :
'_'
I
)(
e
z
,0
i=
<
a..
.594
'Yo
j
.090R
typ
en
:g:~ -
O.B
a: 0.4
w
;;::
I
0
a.. 0.2
• . 145
-
0.8
'"C
,018 typ
j
1.2
~ 1.0
T
.135
::IE
--,---,--
:::>
::IE
:g~~
X
<
::IE
7-41
~
0
""C
Z
OJ
o
N
W
~
o
N
~
""C
Z
""C
HFE groupings
GROUPING
-z
Z
Collector-Base Breakdown Voltage
NB013/023
NB014/024
BVCBO
w
o
.....
~
~ ~ T =CASE TEMPERATURE
~ .-- T =AMBIENT TEMPERATURE
~
~
"'-~.......
. 25 50 75 100 125~150 175 200
I
,
TEMPERATURE (T) - - DC
I
~.-----------------------------------------------------------------------~
a.
Z
a.
-
~
typical performance characteristics
~
HFE1/HFE2
C\I
o
C\I
o
al
Z
0
u...
0.5 ~
'"
z
a.
z
~
,..
-
N
::::;
«
::;;:
a:
0
2:
PNP ~~
1---"'"
0.5
NPN
0.01
0.03
::::;
«
::;;:
0.3
0
2:
0.2
a:
0.2
"'c::.
I.,..o~ ~
V
N
~
NPN
....
~
0.1
0.01
0.03
0.1
0.3
10
3
30
COLLECTOR CURRENT (lc) - - mA
>
al
W
VCE(sat)
C
collector to emitter saturation voltage
Z
0
w
0.3
,..
o
w
u...
::t:
0.1
o
C")'"
~
I"'"
~ NPN
LU
~
H::
~~ ~
I
i=
«
a:
NPN
LU
(8)
VCE - 10V
0
I
i=
::t:
0
2
VCE -IV
«
a:
current gain linearity ratio
(A)
2
~
C")
HFE1/HFE2
current gain linearity ratio
0.1
0.3
3
10
30
COLLECTOR CURRENT (lc) - - mA
I
I
u
LU
2
.<=
«
I
I
I...J
a:
l-
:£
w
0
I~ 0.03
Iu
2:
g
1-1- ~
HFE; 50
-
HFE; 10
,. .,.
::;;:
.... ~
.... ......
0.03
0.01
o
«
~.
I:::l
0.003
0..
w
:j
o
0.1
u
r-_
r- -r-
0.1
LU
u
0.3
o
--
0.3
LU
t::
::;;:
(0)
VCE; 10V, f; 1 KHz
Q;
0
>
common emitter output admittance
E
E
TEST TIME; 300j.tS
t!>
hoe
o
(e)
0.01
0.01
I-
:::l
0.03
0.1
0.3
COLLE~TOR
10
3
o
30
0.001
0.01
0.03
CURRENT (lC) - - mA
0.1
0.3
3
10
30
COLLECTOR CURRENT (lC) - - mA
u...
':I'"
:g
~
w
Cob
30
NF
(E)
output capacitance
10
EMITTER-OPEN
20
~
u
10
;it
«
u
5
r-.... .....
t"'--- t" r-- t"-"", 1"'-0..
1"" .....
w
~
cc
o
I-
3
2
u:
r--..... ......
" PNP
...... "'t"-"",
NPN
I
o
o
a:
r-
Iu
U
8
~
w
a:
W
...J
...J
9
I
I
"C
u
2:
cc
0.1
0.3
3
-- .
5
4
w
3
~
0
2:
-l-
6
:::l
t!>
u::
1' ....
7
WI'd e band nOIse figure
(F)
VCE; 5V, BW; 15.7 KHz
'"
~~
r-.......{)
ABCI- 0 -
PNP types, IC; 10j.tA
PNP types, I C ; 100j.tA
NPN types, I C ; 10j.tA
NPN types, IC; 100j.tA- t--
...... i'....
....... i"-o... I'...: ~
I"" ~ "..... i"'--.
2
1
~
t;/'
I-'.:
:z
..... ~
~~ ~
C-
0
10
30
100
COLLECTOR TO BASE VOLTAGE (VCB) - - V
lK
3K
10K
30K
SOURCE RESISTANCE (RS) - - Ohm
7-42
100;,
Vee· 25v
~
....
220
-<
n
"0
PLAY
BACK
OUTPUT
III
lO).JF
"0
"0
22K '<::10K
AUX
III
n
81K
12K
....
III
81
o
Q1 NB013EU
Q4 NB013EU
07 NBOllEY
Q2 NB013EU
Q5 NB021EY
Q8 NR051EB
:::l
Q3 NB011EY
Q6 NB011EY
Q9 NB011EY
fJl
Figure A. High Quality Rreamplifierwith Tone Control Circuit
.....
~
810
r----.---.--_~~-----~>--Jm-A':::Cb· 12V
~
OUTPUT
RECiP8
HEAD
•
0
:: ;01(0
1/
11 CAN
l11A478
II YEZ
o
"
"'
II N2+N3
4!J
."
01 NB013EY
• Gain'" 60K V/V
02 NB023EY
•
Input impedance
•
Output noise
03 NBOll EY
04 NB011EY
05 NBOllEY
01 NR041E
02 NB013EU
'" lK Ohm
'" lOmV rms
• l
= BmH
all '" 50
Nl = 40T
N2 '" 360T
N3 "40T
03 NBOllEY
Figure B. Battery Operated Recording/Playback Cassette Circuit
Figure C. High Gain Ultrasonic Amplifier
(dNd)PZO 'EZ08N '(NdN)v~O'E~08N
"
a.
z
a.
M
N
r---------------~----------------------------~----------------------~
~National
~ Semiconductor
"t"-
N
N
NB111,112,113(NPN) 100mA general purpose transistors
NB121,122,123(PNP)
W package and lead coding
features
...
• 35 to 65 Volt at 100mA collector ratings
TO-92
"z
• 400m V guaranteed VCE (sat) characteristics at
Ic = 20mA and IB = O.4mA
-
• "Epoxy B" packaging concept for excellent reliability
a.
z
• Matched HFE groupings for complementary applications,.
"2,
M
"t""t"-
.
applications
PACKAGE CODE
TO-92
E
• Small signal amplifier circuits
• Medium current level switching circuits
•
F
LE D drivers
H
• TV receivers
LEAD
2 3
E B e
E e B
e B E
1
~ maximum ratings
PARAMETER
Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
VCEO
VCB
V EB
Ie (max)
Collector Current (continuousl
Power Dissipation (T A = 25°C)
Power Dissipation (T C = 25°C)
Thermal Resistance
NB113
NB123
35
40
50
55
65
70
6
6
100
0_6
6
100
0_6
VOC
Voc
mADe
W
1.0
208
125
1.0
208
125
W
°CIW
°CIW
100.
0_6
Po
Po
1.0
208
()JA
()JC
Temperature, Junction
and Storage
NB112
NB122
NB111
NB121
SYMBOL
125
-55 to + 150 -55 to + 150
Tj, Tstg
-55 to + 150
~ ordering information
.------------POLARITY
! ~..---------~I
"1" for NPN
"2" for PNP
---VOLTAGE RATING
l____,___
NB1X X X X
tl
~.
refer to
PACKAGE/LEAD CODE
refer to [IJ
HFE GROUPING
refer to []]
7-44
rn
UNIT
Voe
°c
~
electrical'characteristics
Tc = 25°C
PARAMETER
SYMBOL
TYP
MIN
CONDITIONS
MAX
UNIT
Collector-Emitter Sustaining Voltage
NBlll/121
NB112/122
NBl13/123
IC = 1 mA
Collector-Base Breakdown Voltage
NBlll/121
NBl12/122
NBl13/123
Ic = 100J.LA
BVEBO
Emitter-Base Breakdown Voltage
IE = 1OJ.LA
ICEO
Collector.-Emitter Leakage Current
VCE = 30V NB111/121
45V NBl12/122
60V NB113/123
2
2
2
J.LA
!,-A
J.LA
ICBO
Collector-Base Leakage Current
VCB = 35V NBlll/121
50V NBl12/122
65V NB113/123
0.1
0.1
0.1
J.LA
!,-A
J.LA
lEBO
Emitter-Base Leakage Current
VEB = 5V
0.1
J.LA
VBE(sat)
Base-Emitter Saturation Voltage
Ie = 20 mA, IB = 0.4 rnA
0.8
0.95
VeE(sat)
Collector-Emitter Saturation Voltage
IC = 20 rnA, IB = 0.4 rnA
0.15
0.4
BVCEO
BVCBO
HFEl
DC Current Gain
Ie = 100!,-A, VCE = 5V
Cob
Collector Ouput Capacitance
NPN types
PNP types
VCB = 10V, f = lMHz
Current Gain Bandwidth Product
IC = 15 rnA, VCE = 5V
ft
lID
HFE
V
V
V
40
55
70
V
V
V
6
V
V
ratio
50
pF
pF
2
3
MHz
100
CONDITIONS
PARAMETER
MIN
TYP
MAX
RAno
H
DC Current Gain
Ie = 15mA, VCE =5V
100
127
160
1: 1.6
I
DC Current Gain
IC = 15 rnA, VCE = 5V
140
180
240
1 :1.6
J
y
DC Current Gain
IC = 15 mA, VCE = 5V
200
260
350
1: 1.6
DC Current Gain
Ic = 15mA, VCE =5V
100
190
350
1 :3.5
W
physical dimensions
max power dissipation
::
I
I
-L ,------.
[J
:~~~.: C..'. :
I
T
.0165_
.0145
.694
tvo
L
.~::"j I':'
.018 typ
:8:1-
1.2
E
~ 1.0
..,
0
i=
O.B
<
"-
ii; 0.6
--,
-
-
x...
.136
-rr:8:g
~
0
c: 0.4
w
::
0
0.2
=>
a
":IE
:IE
x
<
:IE
7-45
"'- ~
/ T = CAS1E TE~PER1TURf
I
I
" K t'~-...~
........
25
50
I
I
T = AMBIENT TEMPERATURE
75
100
~
125 150
TEMPERATURE (T) - - DC
175
200
.....
.....
W
Z
"tJ
Z
'"
V
groupings
GROUPING
00
35
50
65
.....
N
W
"tJ
Z
"tJ
-....
0..
Z
0..
00
typical performance characteristics
( 'I)
HFE1/HFE2
N
N '"
N
....
,....
....
m
N
z
HFE1/HFE2
IAI
current gain linearity ratio
2
0
~
a:
w
u.
%
0
w
N
0.6
:::;
«
--
ro-,
PNP
.... ;"" -,.......
~
.... ~ NPN
.....
,
u.
%
C
W
N
«
::E
W
t.)
VCE(sat)
~
collector to emitter saturation voltage
0.5
~
:::;
0.3
........
........
....
m
r-I-
W
::: No
p7:
-........
'"
0
Z
i=
«
a:
N~N
::E
a:
2
0
I
.....
IBI
current gain linearity ratio
VCE = IV
a:
c
0.2
Z
VCE = 10V
Jp
NPN
~ --
r-
~fo""
~
0.3
0.2
Z
0..
0.1
0.1
Z
( 'I)
N '"
z
0.1
0.3
3
10
20
50
100
0.1
COLLECTOR CURRENT IICI- - rnA
0.3
1
3
10 20
50
100
COLLECTOR CURRENT IICI - - rnA
>
1
1
W
t!l
2
~
W
0.3
2W
0.1
o
Ia:
o
to
W
HFE = 50
I..;.
,
-'
'1'
1
........
ot.). 0.01 0.1
~
'w
'"'"
20
1=
0.5
2W
0.3
o
0.2
I-
HFE - 50
~
CD
0.1
0.1
COLLECTOR CURRENT IICI- - rnA
...1
=10
W
100
50
HFE
a:
I
10
2
>
~
"1
i
3
3
TEST TI ME =300l-lS
W
t!l
I
0.3
~
~
C
~FE ~ 11)
0.03
6
PNPA
L..; NPN
PNP "",10""
101
base to emitter saturation voltage
W
CD
I
o
1=
1
1
TEST TI ME = 300l-lS
>
a:
VBE(sat)
>
lei
0.3
3
10 20
50
100
COLLECTOR CURRENT IICI- - rnA
u.
Cob
1
""
!:
W
Z
30
EMITIER - OPEN
10
«
CD
en
5
o
a:
3
I-
o
....
....
ot.)
2
VCE = 10V, f = 1 KHz
1
1
""r-..
I"- '""" r-..
Q
:;
W
t.)
""r-- ,....,
.....
z
r---... ~,
NPN"",
2
~
1"'-1--
1-1"-
1
0.1
0.3
3
«'
2
c
«
1=
to
W
IFI
common emitter output admittance
a;
5
W
E
E
20
t3
~
.z::
lEI
t.)
~
hoe
Q
output capacitance
Q
10
20
-
50
I-
::I
0.6
0.3
0.2
~
~
,
0.1
.......
0.03
~
a..
!:;
100
COLLECTOR TO BASE VOLTAGE IVCBI- - V
C
.... ... "
........ 1-'"
"""'
0.01
0.1
0.3
3
10
20
COLLECTOI'! CURRENT IIcl- - rnA
7-46
50
100
~
z
a:J
typical applications
~
~
~
~
~
Vee " 24V
180K
N
+
1"F
J:35V
47K
~
01 NB021EV
02 NB211VV
03 NROOIE
'~
04 NA41U
0.1
D2
100P
~
7
120K
d
56
05 NA42U
(,J
Z
Z
."
Z
a 1 sq. inch,
PD = 1.2W.
"tJ
~.---------------------------------------------~-------------------------.
za.
-
~
typical performance characteristics
u..
(W)
N
N
1
...
W
~
W
Cl:I
~
o
10
5
>
'I
w
1=
0.5
0.3
0.2
::
0.1
a::
t~
.....
...
o
~:~:
1
'"
¥l~~J/i
/.
~
r-- 'r-- -
0.001
w
t::;:
0.1
0.2
0.5
1
COLLECTOR CURRENT (lc) - - A
liFE = 50
0.6
w
0.5
'"
HFIE = lp
.003
2
1.5
o
~
(F)
lIase to emitter saturation voltage
-'
1'/ 1/1/ .''-.-
HFE = 50
0.20.30.5
TEST TIME = 300j.tS
w
Cl:I
~~
~
3
W
q;
a::
:iii
w
1
TEST TI ME = 300j.lS
3
2
0.01 .02.030.05 0.1
"
VSE(sat)
2
a:
~
0.5
:E
0.3
IC =10
IB
IC = 40
IB
I
w
0.2 0.3 0.5
o
Iw
2
en
I
0.1
0.01
0.02.03 .05
0.1
0.2 0.3 0.5
:i
COLLECTORCURRENTUC)--A
COLLECTOR CURRENT (I C) - - A
7·54
IF)
TEST TI ME = 3001-18
~
. / ~~
IC = 40
lB
0.01 0.02 .03 .05
0.2 0.3 0.5
base to emitter saturation voltage
I
a
~ '\\"7:
,
~
t.l
~
IE)
TEST TIME = 300l-lS
0.3
0.2
0.1
VBE(sat)
collector to emittel· saturation voltage
W
t;
w
.....
~
COLLECTOR CURRENT (I C) - - A
VCE(sat)
I
I
w
NPN
0.1
0.1
>
>
40
(0)
C
COLLECTOR CURRENT (I C) --A
~
35
:I:
0.01 0.02.03 0.05
W
C!l
30
VCE = 10V
u..
o
z
25
0
a:
w
--
0.5
N
:;:
a:
20
'
2000
II
c::
LLl>
...., E
t::1
500
au:.
~w
780 m V...
30
20
2:
VSE (SAT) HFE = 10
I
1'51
Cob
::0
collector /base to emitter saturation voltage
!'oo.... I"--
r-..
I
SEE TEST CI RCUIT
output d istortlon and contro vo t~e
TEST CIRCUIT A
VIN =20mV r.m.s.
1\ I;ESTI CIRCUIT
I I I
1\1\.\
B
2:
a
4
I
~
I-----
"'~o"~\
I\,
....,
LLl
\ j'...
50
0,3
.........
~IIICU:TA
1\
60
0.1
10
3
30
100
CONTROL VOLTAGE (Vcont) - - V
T,HO'V~
THO·Vo
TEST CI RCUIT B
VIN =50mV r.mi/
0,02 0.03
-
1'-..
0.05
0.1
h
......V
0.2
0.3
0.5
OUTPUT VOLTAGETO INPUT VOLTAGE RATIO
Dynamic range
Test circuits
maximJm input voltage vs THO
( A
10
K
20
30
2:
LLl
~
40
60
B(-\CI~
Yin
0
K-(
'\'...: "- " ~....... ............
t-,-
A THO = 0.5%
BTHO = 1%
t-,-
~ ~~g:!~
--'-"N'r-T...JV'rv-:F--\E'-t-~_~--"N\-2-,60mv I l. ' r '
11K
10K
INPUT 2
,,,
SQUELCH
.
OJ
PROGRAMj:
S
o
CJ
SELECT
10K
C
Figure C. Squelch Circuit
c
.v
10K
010
0----\
PROGRAM
LOAD
Q1 - - 011 NR041E
Figure B. 10 Channel Program Selector
Fig~re D. Ringing Tone Generator
7·59
~ r-------~----------------------~--------------------------------~----------~
Z
Q.
-,...
Z
~National
a
Semiconductor
N
~
a:
z
NR421(NPN) VHF amplifier/FM converter transistQr:
IT] package and ·Iead coding
features
,
•
•
0.65pF, typical f~edback capacitance for excellent
RF stability
Guaranteed collector·base time constant and
R F output resistance
TO-92
•
150mV typical VCE (sat) charac:teristics at
Ic = 10 mA, and IB = 0.5 mA
• 2 dB typical noise figure at 200 MHz
• "Epoxy B" packaging concept for excelient reliability
applications
•
~
VHF RF amplifiers/converters
CB radios
•
Low-power R F oscillators
LEAD
PACKAGE CODE
T0-92
o
F
~
1
2
3
B
E
E
C
C
B
maxjmum ratings
PARAMETER
SYMBOL
RATING
UNIT
VCEO
30
Voc
Collector-Base Voltage
VCB
35
Voc
Emitter-Base Voltage
VEB
3
VOC
Collector Current (continllous) ,
Ic (max)
30
m,c,oc
Power Dissipation (TA = 25°C)
Po
0.6
W
Po
1.0
W
6JA
208
°C/W
6JC
125
°C/W
Tj, Tstg
-55 to + 150
°c
Collector-Emitter Voltage
Power Dissipation (Tc = 25°C)
Thermal Resistance
Temperature, Junction and Storage
m
-
ordering information
rr--------,--PACKAGE/LEAD CODE
~
refer to
NR421XX
f. . ----'-----HFE GROUPING
refer to
7-60
I]]
IT]
~ electrica I characteristics
i
Tc" 25°C
~
BVCEO
Collector-Emitter Sustaining Voltage
Ic = 1 mA
30
V
-
BVCBO
Collector-Base Breakdown Voltage
Ic = 100ilA
35
V
Z
BVEBO
Emitter-Base Breakdown Voltage
IE=10IlA
3
ICBO
Collector-Base Leakage Current
Vcs = 30V
VSE (satl
Base-Emitter Saturation Voltage
Ic = 10mA, Is =0.5mA
VCE (satl
Collector-Emitter Saturation Voltage
Ccb
N
PARAMETER
SYMBOL
MAX
TYP
MIN
CONDITIONS
UNIT
5_5
V
0.1
IlA
830
950
mV
Ic = 10mA, Is =0.5mA
150
300
mV
Common Emitter Collector
Feedback Capacitance
VCB = 10V, f= 1 MHz
0.65
0.9
pF
Cob
Collector Output Capacitance
VCB = 10V,f= 1 MHz
0.9
1.3
pF
rb'Cc
Collector Base Time Constant
IC = 2 mA, VCE = 5V
8
20
pS
Roep
Common Emitter Output Resistance
Ic = 2 mA, VCE = 5V
f = 200 MHz
5
Ic=2mA,VCE=5V
450
Current Gain Bandwidth Product
ft
KOhm
MHz
700
~HFE groupings
PARAMETER
GROUPING
E
F
G
H
R
S
T
DC Current
DC Current
DC Current
DC Current
DC Current
DC Current
DC Current
Gain
Gain
Gain
Gain
Gain
Gain
Gain
CONDITIONS
IC = 2 mA, VeE
Ie = 2 mA, VeE
Ie = 2 mA, VeE
Ie = 2mA, VeE
Ie = 2mA, VeE
Ic = 2 mA, VeE
Ic = 2 mA, VeE
~ physical dimen'sions
TO-92
J..., _
"8:[J
T: '., [J
:81:1-
.59.
tvP
L
--,
"~j"i
'
I .1 ••
-.1315
--,--r-
:g:~ -
.
[1]
:8:1
TYP
MAX
RATIO
30
45
68
100
20
45
100
38
58
85
127
32
70
150
50
75
110
160
50
110
240
1:1.6
1:1.6
1:1.6
1:1.6
1:2.4
1:2.4
1:2.4
max power dissipation
!t
..
I
I
•E
1.2
~ 1.0
z0
O.B
If
0.6
i=
~
.018 typ
= 5V
= 5V
= 5V
= 5V
= 5V
= 5V
= 5V
MIN
is
... 0.4
!t
...:IE 0.2
II:
I\.
K
:IE
x
:i
7-61
0
l/T = AMBIENT TEMPERATURE
I"- ~
0
::;)
/,T = CASE TEMPERATURE
25
50
""'-
75
~
.......
~
100 125 150 176 200
TEMPERATURE (Tl- - DC
"""
Z
"1iJ
-
a: (]]
~
r-------------------------------------------------------------------------------------~
-,..
typical performance characteristics
Z
>
C\I
I
I
'lilt
W
Z
<:.w
a::
a>
HFE1/HFE2
1:1
~
w
u..
:I:
e
w
N
:::l
<
:;;
a:
1:1
2:
0.5
C!l
I---
~
1:1
-
>
I- ~
~i""
""
(8)
collector/base to emitter voltage
w
VCE =5V
2
<
a:
VeE (sat)/VBE(on)
u
2-
(A)
current linearity ratio
a:
w
~.
0.5
1:1
0.2
w
0.1
I-
0.3
~
0.2
I
VBE (ON)
1=
:ij
w
VBE (ON) - - VCE = 5V
VCE (SAT) - - HFE = 20
5
3
2
-~
I
VCE (SAT)
L-
0.05
a:
o
0.1
0.1
0.3
3
10
0.02
Iu 0.01
w
0.1
-'
50
o
E
E
I
I
30
I
.c
E
E
I
I
20
300MHz - I-- 500MHz -
10
I~
I
I
a;
-
...
I-
2
3
5
7
10
20
:::>
30
1:1
common emitter forward transfer admittance (E)
I
I
0.05 0.1
0.20.30.5
2
3
5
10
OUTPUT CONDUCTANCE (goe) - - rnrnho
e
w
3
2:
2
en
a::
w
100MHz
a:
a:
l-
I-
50MH\
10
10
20
30
50
70
0.7
0.5
I
u..
'"2:
INPUT CONDUCTANCE (gie) - mrnho
!
'":::>
:::>
'"
-
500MHz
l"A
~~
./
u·
I
E
E
I
I
~w
2
2:
50MHz
Q
w
II
tw
5
.c
3
u
(0)
VCE = 5V,IC = 2rnA
5
Q
e
~oOMHlz
1
common emitter output admittance
Q
VCE = 5V,IC = 2rnA
2
50
10
Yoe
(e)
common emitter input admittance
3 -
3
COLLECTOR CURRENT (lc) - - rnA
u
Vie
Q
.c
0.3
-'
COLLECTOR CURRENT (I C) - - rnA
0.3
0.2
"
o
100
FORWARD TRANSFER CONDUCTANCE (gfe) - - rnrnho
7-62
w
a:
w
>
w
a:
'"
5~OMHZ
300M Hz
100MHz
50MHz
I
0.1
0.3
0.5
0.7
2
3
5
REVERSE TRANSFER CONDUCTANCE (-gre)· - J.LI11ho
NR1,210S
NRli21DS
NR461ES
NR461ES
NR.461ES
~
~
L,
~a::G
II
IT
SWG026, 011
~I
j .
- .
FM
- - - - - -- - - - - - -
j
--
- -
.~;
----
1/-
I' -1 I . ~.~ I~ ~"] ~ I ~ __ n
I
~"- ~
L,
_
-<
~
"'C
2T
::
(")
3".",
OJ
OJ
"'C
"'C
~
--
o------J
NR1061EF NR461ES
SWG,12, 0"'4",m
(")
OJ
l3
SWGU2.IrI·H.O .. -3m",
llo
SWG'1I.Ji·2DT.O"·~.l·D.J~H
LS
151 2T.l·4~1i.a..·1OO
L6,~;:€c"
'"O"~~ II
'M
LI
-"'--.lL.3
I'
,I
2T EMIT
1[1
ir=
T,T4
'"
c,
T8
[[e:
T9
•
30dB quieting sensitivity: 2J1.V
limiting sensitivity:
7J1.V
AM rejection:
40dB
AFC holding range:
800KHz
40dB
AM performance (525-1650 KHz)
•
•
•
•
•
maximum sensitivity:
20dB quieting sensitivity:
selectivity ±10KHz:
AGC figure of merit:
overload distortion:
100J1.V/M
280J1.V/M
-2&1B
52dB
3%
::
~:
IT
T5
T6
::~
lOKOl1WAC-JA5CUVI'f'f
IWC-.... SJ4lf11
"
ffi I'E
7
--0
JIT
II
1IT
::
T
3ST
~"E
lilT
11
3ZT
::
,I
IT
TOlO,RZC-l,uU411
TOKD~YHC-l ... cmOx
FM performance (88-108 MHz)
11
"ID'" Ilion
:: r--<'
1m
i
'EB"€
TO'l(O,MAC-'''I2''''
TOI(O'nC ........ ]lSEI(
•
•
•• stereo separation:
••
TDkD'"IIIIO_ZAUtoil
0,
~.
6T
(/)
GO,
I
.....
U~'1
::
~
0
:::l
AUDIO performance
•• frequency response:
separation:
• channel
• tone control range:
•
10% TH D output power:
typical system dist:
3W+:iW
50Hz - 15KHz
45dB
±lOdB
0.5%
Figure A. AM/FM/Cassette Home Stereo Circuit
(NdN) ~Z't7l:1N
"
Z
C.
Z
-,...
r-------------------------------------------------------~----------------_,
~National
a
Semiconductor
('I)
~
a:
z
NR431 (NPN) HF amplifier/FM converter transistor
IT]
features
•
1.1 pF typical collector feedback capacitance
•
5K Ohm minimum RF output resistance at 100 MHz
•
package and lead coding
150mV typical VeE (sat) charaetersistics at
Ie = 10 rnA, and Is = 0.5 rnA
•
"Epoxy B" packaging concept for excellent reliability
applications
•
High frequency amplifiers/converters
•
CB radios
•
Low power RF oscillators
~ maximum
PACKAGE CODE
TO-92
E
F
H
LEAD
1
2
3
E
E
e
B
C
B
C
B
E
ratings
SYMBOL
RATING
UNIT
V eEO
15
Voe
Collector-Base Voltage
VeB
18
Voe
Emitter·Base Voltage
VEB
3
Voe
Collector Current (continuous)
Ie (max)
30
mADe
Power Dissipation (TA =-25°C)
Po
0.6
W
Power Dissipation (TC = 25°C)
Po
1.0
W
6JA
208
°C/W
6Je
125
°C/W
Tj, Tstg
-55 to + 150
°c
PARAMETER
Collector·Emitter Voltage
Thermal Resistance
Temperature, Junction and .Storage
m
ordering information
1
r-- - - - - - - - - - -
PACKAGE/LEAD CODE
refer to
NR431XX
tL--'-_______ HFE GROUPING
refer to []]
7-64
ill
~ electrical c.haracteristics
Z
TC = 25°C
PARAMETER
SYMBOL
,.
l:J
CONDITIONS
TYP
MIN
MAX
UNIT
BVCEO
Collector-Emitter Sustaining Voltage
Ic = 1 rnA
15
V
BVCBO
Collector-Base Breakdown Voltage
Ic = 100J,lA
18
V
BVEBO
Emitter-Base Breakdown Voltage
IE = 10J,IA
3
ICBO
Collector-Base Leakage Current
VCB = 15V
VBE (sat)
Base-Emitter Saturation Voltage
Ic = 10 rnA, IB = 0.5 rnA
VCE (sat)
Collector-Emitter Saturation Voltage
Ccb
Common Emitter Collector
V
5_6
0.1
J,lA
830
950
mV
Ic = 10 rnA, IB = 0.5 rnA
150
300
mV
VCB = 10V, f = 1 MHz
1.1
1.4
pF
1.4
1.7
pF
Feedback Capacitance
Cob
Collector Output Capacitance
VCB = 10V, f = 1 MHz
Roep
Common Emitter Output Resistance
Ic = lmA, VCE = 5V
f= 100MHz
Current Gain Bandwidth Product
ft
[§J HFE
~
KOhm
5
350
IC = 1mA, VCE = 5V
MHz
600
groupings
GROUPING
PARAMETER
E
DC Current Gain
F
DC Current Gain
G
DC Current Gain
Ic = 1 rnA, VCE = 5V
R
DC Current Gain
Ic = 1 rnA, VCE = 5V
S.
DC Current Gain
Ic = 1 rnA, VCE = 5V
CONDITIONS
.186 I
,176
--
I
C)
I
I
T
:81:~-
.694
tvo
l
-,
[ZJ
-
x•
E
zCI
i=
f
12
is
·'::"j,.L
III
:g~g_
0.8
0.6
a: 0.4
~
CI
Do.
.135
:Ii
~
:Ii
:8:;
1 :1.6
75
1 :1.6
68
85
110
1 :1.6
20
32
50
1:2.4
45
70
110
1:2.4
max power disSipation
1.2
~ 1.0
.018 'tVP
-
50
58
30
45
I
I
[lJ
I
38
Ic = 1 rnA, VCE = 5V
Ic = 1 rnA, VCE = 5V
~
TO-92
0
RATIO
TYP
physical dimensions
...L
MAX
MIN
::I
x
<
:Ii
7-65
[¥' T= CASE TEMPERATURe
"
l'\c
.......... ~
~
0.2
0
T = AMBIENT TEMPE1RATURE
~
~~
.......
25
50
75
~
100 125 150 175
TEMPERATURE (T) - - DC
200
W
...10
Z
"tJ
Z
~
Z
a..
Z
r---------------------------------------------------------------------------------------,
Ir;l
~
typical performance characteristics
>
I
I
W
HFE1/HFE2
current linearity ratio
0
~
a::
w
"-
:t:
0
W
N
::;
«
:E
a::
0
Z
~
0.5
~~
.........
~
collector/base to emitter voltage
w
VCE = 5V .
2
VeE (sat)/VBE(on)
2
c.>
(A)
I
<-'"w
t:J
5
o
3
2
«
!:i
~
~
liE
w
o
0.3
I-
0.3
50
10
3
J
VilE (ON)
0.2
VCE (SAT)
0.05
'"
0.02
~
0.01
0.1
c.>
./
'" '"
I
0.1
w
w
-'
COLLECTOR CURRENT IIC) - - mA
0.5
~
~
0.2
0.1
0.1
VBE (ON) - - VCE = 5V
VCE (SATI- - HFE = 20
>
a::
w
(B)
I
T
-'
~
J i
0.3
10
3
50
COLLECTOR CURRENT IIC) - - mA
-'
o
c.>
Vie
o
.c
e
e
100
I
60
I
0;
30
20
8
10
w
c.>
z
t
w
en
~
I
L..A
~CI
6
3
2
a..
~
-'
L
c.>
!;
(e)
_
300MHz
-
tw
c.>
en
=>
en
l-
1
=>
a..
o!;
0.3
0.5
2
3
5
10
60
t
30
w
z
w
en
=>
en
c.>
20
a::
w
10
Z
6
"en
«a::
I-
o
a::
~
a::
o
"-
I
VCe: 5V.IC= lmA
I
c.>
z
.. I
t
I
0.3
0.2
~
0.1
•
0.05
0.005
0.01
w
"en
.
\
10
common emitter reverse transfer admittance (F)
VCE=5V.lc=lmA·
5
3
~ 3DOMHz
2
/
0.5
z
I-
0.1
~
30
50
70
a::
w
>
w
a::
100
FORWARD TRANSFER CONDUCTANCE (gfe) - - mmho
7·66
0.2 0.3 0.5
Vre
0.05
0.3
/ 100M Hz
1/
30M Hz
I
o
2
0.1
OUTPUT CONOUCTANCE (goe) - - mmho
0.3
0.2
«
a::
10MHz
.
0.020.03.05
en
30MHz _,
20
I
110~HZ I
w
=>
en
a::
V 100MHzr-30~M~Z
/L30MHZ
c.>
'-.100MHZ
3
1/ ""'"
0.5
I
I
e
1w
300MHz
7
10
2
e
e
common emitter forward transfer admittance·IE)
c.>
..,
3
o
.c
Vfe
10
VCE=5V.lc=.lmA
z
100MHz
'/'
INPUT CONDUCTANCE (gie) - - mmho
100
5
(0)
common emitter output admittance
c.>
e
~
..!.
I
I
w
10MHz
o
.c
I
I
10
!
e
30MHz
oJ
0.1
0.2
e
~
e·
VCE = 5V.IC = lmA
0.5
0.3
0.2
Voe
o
common eMitter input admittance
0.5
'1
I
1OMH
0.7
i
2
3
5
REVERSE TRANSFER CONDUCTANCE (-gre) - - J,lmho
NR431ES
NR431ES
~~f-r--.~II
NR~61ES
NR461EF
"
I
I
I" I
8,...
NR1,61ES
-<
l
"0
t
C1
III
K
CI 2"56
III
.,'
f
_ _---.-JI
n~
~W
."
~t060
~
I,,.
'"
"0
"0
C1
III
,...
o
::J
III
""I
."
~
Ll SWG#22,N-6.ST,Oia-4mm
SWGft2B, N" 2OT, Dill '" 3mm L -0.75JlH
L5 9ST: 8T, L - 600PH, Op - 300
L7 N -loST, PHILIPS #4312-020-34401
L4
L2 SWG #22, N - 4T, Dia - 4mm
L3 SWGI/22, N· 4T, Dia - 3mm
Tl-T3
L6
T5
T4
T6
'> ::8 U ::EE'
~:' ::G :;:TI::G ~
:3
~I
11
2T
II
8T
II
TOKOO vMO - 2Al88R
1.5T
TOKO~!HAC
-7A121A
II
TOKOU7AS068VPPF
FM performance (88-108 MHzl
•
30dB quieting sensitivity:
•
limiting sensitivity:
AM rejection:
•
•
•
AFC holding range:
Bandwidth:
5JlV
20JlV
40dB
800KHz
180KHz
5.5T
2T
"
~"G ffi(~
ffi::(Z
II
II
32T
H
JT
II
'"
TO"OU 154FC - 8A574JN
UT
II
1m
:;
o maximum sensitivity:
•
0
o
20dB quieting sensitivity:
selectivity ± 10KHz:
AGC figure of merit:
over! cad distortion:
l00JlV/M
280JlV/M
-2BdB
40dB
6%
5T
I
lIT
TOKO"VCC - 4A31SEK
TOKon RlC- 1A6414N
AM performance (525-1650 KHz!
e
T8
T7
lIT
:1
TOKO" YHe - IA099DX
AUDIO performance
•
gain at 1 KHz:
10% THO output power:
• frequency response:
••
typi~al
system dist:
• alann tone frequency:
200
900mW
70Hz -12KHz
0.8%
600Hz
Figure A. AM/FM clock radio
(NdN)~£t~N
~
Z
a.
z
,...
co
-
r---------------------------------------------------------------------------------,
~National
~ Semiconductor
~
a::
z
NR461 (NPN) low-noise RFIIF transistor
features
II)
•
Low Ccb for excellent RF stability
•
High Roep for simplified RF coupling designs
•
70mV typical V C E (sat) characteristics at
package and lead coding
TO-92
Ic = 10 mA, and IB = 0.5 mA
•
1.1 dB typical noise figure at 1 MHz
•
"Epoxy B" packaging concept for excellent reliability
applications
PACKAGE CODE
TO-92
•
MW/SW/CB radios
•
0.1 to 50 MHz frequency converters
•
455KHz to 10.7 MHz I F stages
F
•
Low-power R F oscillators
H
1
E
·E
C
E
LEAD
3
2
B
C
B
C
B
E
~ maximum ratings
' UNIT
SYMBOL
RATING
Collector-Emitter Voltage.
VCEO
30
VDC
Collector-Base Voltage
VCB
35
VDC
PARAMETER
Emitter-Base Voltage
VEB
4
VDC
Collector Current (continuous)
Ic (max)
30
mADC
Power Dissipation (T A = 25°C)
W
PD
0.6
Power DissiJ)ation (TC = 25°C)
PD
1.0
W
Thermal Resistance
()JA
208
125
°CIW
°CIW
-55 to + 150
°c
()JC
Temperature, Junction and Storage
Tj, Tstg
~ ordering information
r----------
PACKAGE/LEAD CODE
1
refer to
NR461XX
tL-________ HFE GROUPING
refer to
7-68
lID
OJ
Z
[i] electrical
ch a racteristics
::D
Tc; 25°C
~
0)
PARAMETER
SYMBOL
CONDITIONS
MIN
MAX
TYP
UNIT
BVCEO
Collector-Emitter Sustaining Voltage
Ic; 1 rnA
30
V
BVCBO
Collector-Base Breakdown Voltage
Ic; 100pA
35
V
BVEBO
Emitter-Base Breakdown Voltage
IE; 10pA
4
ICBO
Collector-Base Leakage Current
VCB ; 30V
VBE (sat)
Base-Emitter Saturation Voltage
Ic; 10 rnA, IB ; 0.5 rnA
VCE (sat)
Collector-Emitter Saturation Voltage
Ccb
Roep
5.5
V
0.1
pA
760
950
mV
Ic; 10 rnA, IB ; 0.5 rnA
70
300
mV
Common Emitter Collector
Feedback Capacitance
VCB; 10V,f; 1 MHz
0.9
1.1
pF
Common Emitter Output Resistance
Ic; 1 rnA, VCE ; 5V
f; 455 KHz
f; 10.7 MHz
100
20
Ic ; 1 rnA, VCE ; 5V
180
Current Gain Bandwidth Product
ft
KOhm
KOhm
300
MHz
~HFE groupings
GROUPING
PARAMETER
E
F
G
H
R
S
T
DC
DC
DC
DC
DC
DC
DC
Current
Current
Current
Current
Current
Current
Current
Gain
Gain
Gain
Gain
Gain
Gain
Gain
CONDITIONS
MIN
TYP
MAX
RATIO
Ic; 1 rnA, VCE = 5V
Ic = 1 rnA, VCE = 5V
Ic; 1 rnA, VCE = 5V
Ic;lmA,VCE=5V
IC = 1 rnA, VCE = 5V
Ic; 1 rnA, VCE = 5V
Ie = 1 rnA, VCE = 5V
30
45
68
100
20
45
100
38
58
85
127
32
70
150
50
75
110
160
50
110
240
1:1.6
1:1.6
1: 1.6
1:1.6
1:2.4
1:2.4
1:2.4
[2]
[]] physical dimensions
J:
TO-92
..L
[0
, C' ,
• 185 I
.176
I
T
:8~~g-
.594
tvo
L
-,
,018 typ
"::"j I'~'
-
.135
~-
·g~B -
:g~~
max power dissipation
-
.
I
I
1.2
~
~ 1.0
z
0
0.8
i=
~ 0.6
~
is
co: 0.4
w
J:
0
~
~
/ , T; CASE TEMPERATURE
'\.
..........
K r'\.
T = AMBIENT TEMPERATURE
i'.~
.......
0.2
:Ii
::)
:Ii
X
~
7-69
0
26
60
76
~150
100 125
TEMPERAT1JRE (T) - -
°c
175
200
""'"
Z
"'0
Z
-
"
Z
a..
Z
r-------------------~--------------------------------------------------------~,
[!] typical
performance characteristics
>
,..
I
I
co
W
a:
z
co
HFE1/HFE2
~
IA)
current linearity ratio
~
w
VCE = 5V
2
tll
a:
10
o
I-
0.3
3
10
50
w 0.0
en
£e. 0.02
0.01
t; 0.1
Z
«
tw
(,3
en
::>
en
100
VCE
30
o
..c
Ie)
5.
= 5V,IC = lrnA
I
I
45MHz
3
10MHz
1
2MHz
0.3
O. 1
~
~.
,
t.l
en
::>
en
455KHz L
I-
::>
a..
I::>
l
0.5
o
0.7
3K
:
100
en
3
I-
o
a:
«
;;:
a:
o
L.L-
I
1
3
1
I.
3
5
7
455KHz
I
I
10
20
30
50
70 100
200
300
0.3
10
30
en
a:
w
0
50
I
J
I
I
Z
~
Iw
__.l
30
t.l
en
455KHz
~
20
,1/
L.L-
t
0.1
100
~
10MHz
2MHz
-.
45MHz - , -
«
tw
I
1
Vre
common emitter reverse transfer admittance IF)
.1
1
VeE =5V,IC =lmA
30 0
w
Z
1\
Z
«a:
10MHz
2MHz
10
(,3
45MHz
-.l.
e
""
J.
VeE = 5V,IC = 1rnA
..1
30
10
a:
w
L.Len
./
30
[
.common emitter forward transfer admittance IE)
w
t.l
en
::>
,
100
I
45MHz
......
OUTPUT CONOUCTANCE (goe) - -:- /HI1ho
Vfe
~
t
I
300
o
E
Z
(0)
VCE = 5V, IC = lrnA
Z
t
w
0.3
common emitter output admittance
lK
,
10
o
..c
E
(,3
50
10K
INPUT CONOUCTANCE (gie) - - rnrnho
""
10
Voe
common emitter input admittance
::> 0.03
a..
Z 0.0 1
0.2
w
3
COLLECTOR CURRENT Oc)- - rnA
o(,3
I-
J.
1
0.3
w
Vie
(,3
1
...J
...J
COLLECTOR CURRENT (I C) - - rnA
ew
-
L
VeE (SAT)
O•II--,
g;
0.1
E
E
I
I
'"
VBE (ON)
.J.
0 .2
w
a:
3
1
0.1
10MHz
I
2MHz
1 .
1
455KHz
I
0.2
0.3
._-----0.5
0.7
2
REVERSE TRANSFER CONOUCTANCE (-gre) - .- /.AIlIho
NR.I;210S
N~461ES
NR421DS
8...
NR461ES
NR461ES
'"'~'~~
"'~,
Leo,
-<
'B"[~G
'C
L2~
'C
'C
L,
(')
Q)
JT
SWGIZS,Di.-3_
~I
ul
FM
AVC
1.5T
Q)
COL
n
SWG,22, Oil_""'"
LJ
L
SWG9n,II-n
_ ' 0 ia-Jlllm
4
LS
SWGOza.II -ZOT
...O·
Q)
o·
15T'2T'l-'~H .. ·!mIll.l·Q.l~H
,~-300
:l
(J)
L6
'"'"~; ~ I! .
lM_
..
LI
.lL.;Y
I' III
I
n
I
".
...,
:j
vJo
t
NO
,•
TB
'lie:
T5
T6
::€
"ffi'"
1m
::
II
5T
T91m:;.~
I'
lill!l~
FM performance (88-108 MHz)
30dB quieting senSitivity
limiting sensitivity:
AM rejection:
AFC holding range:
stereo separation:
2JN
7JN
40dB
800KHz
40dB
AM performance (525-1650 KHz)
•
••.
•
•
maximum sensitivity:
20dB quieting sensitivity:
selectivity ±10KHz:
AGe figure of merit:
overload distortion:
100JN/M
280JN/M
-28dB
52dB
3%
II
I'
TBKB,M"C-JAUIA
TOkO "MAC_1AS05.V,"""
ffj"€
7
T
TOKO'VHC_IA0'990X
•
•
•
•
•
1+
JT
TBKB, YlC-tAlIUK
~
::E
COL
ffi:;€
1T
T,
T4
0,
-'I
=,
EMIT
GNB
"II
TOKBURII0_2AUIQII
r;::::=
I
~
loaT
lilT
II
II
m
;:
3T
TOKO ~RlC-IAS"4N
AUDIO performance
•
••
•
•
10% THO output power:
frequency response:
channel separation:
tone control range:
typical system dist:
3W+3W
50Hz -15KHz
45dB
±IOdB
0.5%
Figure A. AM/FM/Cassette Home Stereo Circuit
(NdN)l9t~N
Section 8
Process
Characteristics
Double-Diffused
Epitaxial Transistors
~National
Process 02 NPN Small Signal
D Semiconductor
0,006
DESCRIPTION
-(P,152)-
Process 02 is a non-overlay, double-diffused, silicon
epitaxial device.
APPLICATION
,•
0,0035
(0,0889)
An economical device, good for all-around applications
from DC to low radio frequencies. Ideal for use in general
amplifier and control functions in consumer, industrial
and automotive environments up to 100mA.
0,016
(0,406)
PRINCIPAL DEVICE TYPE
TO·92, EBC: MPS-A20
Parameter
Conditions
Min
Typ
Max
Units
BV CEO
Ic=10 rnA
40
V
BVCBO
Ic =10"A
45
V
BV EBO
6,0
ICBO
IE=10"A
V cB =40V
lEBO
V EB =5V
hFE
hFE
Ic= 100 I'A, VCE = 10V
Ic= 5 rnA, VCE = 10V
60
hFE
Ic = 100 rnA, VCE = 10V
25
VBE(ON)
Ic=5 rnA, VCE = 10V
0.85
VCE(SAT)
Ic= 10 rnA, IB= 1 rnA
0.25
IT
C ib
Ic= 5 rnA, VCE = 10V, 1= 100 MHz
V EB = 0.5V, f = 1 MHz
Cob
VCB =10V,I E =0,f=1 MHz
V
100
nA
100
nA
35
125
180
225
2,0
8-2
480
V
V
MHz
10
pF
4,0
pF
Notes
""CJ
Process 02
a
n
(I)
DC Current Gain vs
Collector Current
lk
1.4
lk
veE'" lOV
z
~
....z
VCE" 10V
500
500
300
300
111111
1111II
VrEI(~1T11 ~ IC/IIB c..1O
w
w
~
100
c
50
I-
'"
~
/
..<'
>
~
50
3D
30
10
10
111111 ......
'"~"'
......
100
I
u
I
Satur!ltlon and ON Voltages
vs Collector Current
Bandwidth Product vs
Collector Current
~
VBE(ONi~IVc~
0.5
'"
0.1 f0.1
0.5
1
510
50100
10
170
....... r-,.
~
Cib
160
iiic:
Cob
"'cz
i
~
'r-...
4 6
10
20
150
0.51
5 10
50 100
Base Spreading Resistance
vs Collector Current
1
"
in
........
...........
1
0.1
IC - COLLECTOR CURRENT (rnA)
VCE = 10V
f'" 1kHz
u
0.40.6
100
Output Admittance vs
Collector Current
S
1
50
IC - COLLECTOR CURRENT (mAl
10
VCE(SATI@IC/IB"10=
o
IC - COLLECTOR CURRENT (mAl
Capacitance vs Reverse
Voltage
III
VCE 10V
f= 1 kHz
0.5
u
140
....
'"
....
~
z
0.2
'"....
"....
"I
0.05
~
0.1
0
130
0.02
-r-
I
40
'"
~
120
0.01
0.1
VR - REVERSE VOLTAGE (VI
0.2
2 3
0.5
5
10
Maximum Power
Dissipation vs
Ambient Temperature
;::
.s
:5
~
ill
C
'"~
~
800
700
600
500
400
\.
I\.
TO·92
~ 300
"x
'""
I
x
;p"'"
200
'\
100
I'\.
50
100
150
TA - AMBIENTTEMPERATURE (OCI
8-3
0.1
0.2
0.5
IC - COLLECTOR CURRENT (mAl
IC - COLLECTOR CURRENT (mAl
200
10
tn
tn
oN
Process 04 NPN Small Signal
J?'A National
~ Semiconductor
r.- .
0.011
1-----:--(0.4321-----0-1
0.0035
(0.08891
--
DESCRIPTION
0.0045
- - (0.11431
.
0.0025
(0.06351
Process 04 is a noli-overlay, double-diffused, silicon
epitaxial device. Complement to Process 71.
APPLICATION
This device was designed for low noise, high gain, general
purpose amplifier applications from 10 pA to 100 mA
collector current.
PRINCIPAL DEVICE TYPES
10·18:
-SC107 Series
TO·92, ECB: 2N2923 Series
2N5172
TO·92, EBC: MPS2923 Series
0.0026
(0.06601
Parameter
Typ
Max
Units
Notes
NF (spot)
Ic = 200 /LA, VCE = 5V,
f = 1 kHz, Rs=2k
2.0
4.0
dB
TO-18
Cob
C ib
VCS= 10V, f = 1 MHz
2.5
3.5
pF
fT
VcE =5V,l c = 10 mA
hFE
VCE=5V,lc=100/LA
50
hFE
VCE=5V,l c =2 mA
75
hFE
VCE = 5V, Ic = 100 mA
40
hFE
VCE = 1V,lc= 100 mA
25
VCE(SAT)
Ic= 10 mA,ls= 1 mJl:
0.2
V
VCE(SAT)
Ic= 100 mA,ls= 10 mA
0.5
V
Conditions
Min
10
V Es =0.5V, f=.1 MHz.
250
125
250
pF
MHz
600
Ic= 10 mA,ls= 1 mA
0.85
V
VSE(SAT)
Ic= 100 mA,ls= 10 mA
0.95
V
BVcso
BVCEO
Ic= 10/LA
45
V
Ic= 10 mA
35
V
BV ESO
IE= 10 /LA
7.0
Icso
Vcs=40V
100
nA
IESO
V Es =6V
100
nA
. VSE(SAT)
V
8-4
"tJ
Process 04
DC Current Gain vs
Collector Current
rT11T-rTT1r.-nrr-t-rnr-,
1000
5~ t+tt-H-ttt-+-+l-tt--l
~
BOO
H+tt-+-l-l-tt-+-HtH-+t+t-l
~
600
H+tt-+-l-l-tt-+-HtH-+t+t-l
H+tt-t-++tt-I- TA = 125"C
H+tt-+-l-l-tt-::J;;..H'fR"oI;tt-l
VeE =
z
;;:
......
ffi
Base·Emitter ON Voltage vs
Collector Current
'"
..~
400
=
200 H+tt-t~-+i"'q:..H+H-t+lf~
..,
1
TA • 25"C
i-HtH-+t+t-l
10
w
0.8
.B
= 0.6
.6
iA'J
~
~
"~
0.4
.4
I
0.2
.2
~
II
~~
.1
.01
!i~
~~
~~
..,&55!...
.OB
1<
-'"
.=
~!;:
JVJ
.
w
~z
TA=12~~
I I
III
I I
10
.1
100
Ie - COLLECTOR CURRENT (mA)
Input Capacitance vs
Reverse Bias Voltage
r-r--
.
CI
~
6.0
5.0
I-HttI-t-tl-t+l-l""'~tfl-l
;;;
4.0
I-HttI:-t-tttt\
~
3.0
I-HttlHt--tl\:!;!:-;;;Io.;;~frIrl'll
8
2.0 l-H-fH:!:!:~fi"t
1
.04
=
IE 0
f= 1.0MHz
"
T.-25·C
1111
o
.01
1.0
10
.1
I -.......a...LJ...JU->L..U.-'
Ie - COLLECTOR CURRENT (mA)
ffi
1.0
~~~ ~ 5~
...
>
.1
.01
1.0
Base·Emitter Saturation
Voltage vs Collector Current
a
(')
.01
Ie - COII.ECTOR CURRENT (mA)
10
Process. 04
Contours of Constant
Narrow Band Noise Figure
~
...
~
w
..,z
"In
10
rii0:
..,w
g;
g
ffi
~
~
700 r.:--=TTTTITr-,,,-,-rnm
~
50,0
1---t-++t-tt+tt-++t+t+ttI
!;:
400
~-+-+~H+~-1-1-rrH+H
~"
300
""'~~:j:l+lm::::::~-kW-WW
f--'-+--++I+++tt-++I+Hfji
co
100
1--+-++I+++tt-++l+t+ttI
>
10
20
16
I ' 1kHz
r-..
12
w
~
co
.J
o
10
1
Ie - COLLECTOR CURRENT (rnA)
Output Admittance
Input Admittance
14
s
VeE =5V
Freq=1 kHz
1\
\
VeE ::5V
24
IC - COLLECTOR CURRENT (rnA)
Ie - COLLECTOR CURRENT (rnA)
z
~
28
I
100
10
"1=
0:
200
I
12
co·
j
.i
..,w
.
rE.~ ~~~ -t-l-ttItt--+-+-I-HH+f1
600
~;;;
~'
I
.£
g
Voltage Feedback Ratio
Small Signal Current Gain
100
1000
VeE = 5V
1-1 kHz
1..,
w
g
~
1..-
V
i!!i 100
"
5"
~
..
~
co
I
I
.......
~
J
,
10
Ie - COLLECTOR CURRENT
1
100
10
imA)
10
le- COLLECTOR CURRENT (rnA)
8·6
100
100
Process 05 NPN Darlington
~National
a
Semiconductor
o
DESCRIPTION
Process OS is a monolithic, double-diffused, silicon epitaxial Darlington_ Cqmplement to Process 61_
APPLICATION
This device is designed for applications requiring extremely high current gain at collector currents to 1.SA_
PRINCIPAL DEVICE TYPES
TO·202, EBC: D40C1-8
D40K1-4
NSD1S1-4
NSDU4S,4SA
TO·237, EBC: 2N6724, S
(92PU4S, 4SA)
TO.·92, EBC: MPSA12-14
TO·92, ECB: 2NS30S-08
0.026
1------10.660)-----
Conditions
NF
Ic=1 rnA, VCE=SV,
Rs = 100k, f = 1 kHz
CCB
VCB = 10V, IE = 0, f= 1 MHz
hFE
Ic= 10 rnA, VCE=SV
Typ
Min
Ic = 100 rnA, VCE = SV
8,000
Ic= 1A, VCE=SV
10 rnA, 0_01 rnA
3,000
VBE(ON)
hIe
100 rnA, SV
6
40,000
200,000
1.2
1_2S
Ic= 100 pA.
pF
1_0
V
1_S
V
1.4
1_8
V
V
60,000
Ic = 10 rnA, VCE = S_OV,
f = 1 kHz
BVCES
dB
4
100 rnA, 0_1 rnA
VBE(ON)
Units
4,000
hFE
10 rnA, SV
Max
2
hFE
VCE(SAT)
VCE(SAT)
V
V
40
12
BVEBO
IE=10pA.
ICES
VCE = 1SV, VBE = 0
100
nA
ICBO
VCB=30V,IE=0
VEB=10V,lc';"0
100
nA
100
nA
lEBO
PD(max)
TO-202
Tc=2SoC
TA=2SoC
10
2
W
TO-237
TCOLLECTOR LEAD = 2SoC
TA=2SoC
2
8S0
W
mW
TO-92
TA=2SoC
600
mW
8JC
TO-202
Tc=2SoC
12_S
°C/W
TCOLLECTOR LEAD = 2SoC
62_S
°C/W
8JA
TO-202
TA=2SoC
62_S
°C/W
TO-237
TA=2SoC
147
TO-92
TA=2SoC
208
°C/W
°C/W
·C
TO-237
TJ(max)
All Plastic Parts
~
tn
0.007
10.178) -
Parameter
"
1S0
8-7
Notes
c.n
Process 05
DC Pulsed Current Gain vs
Collector Current
i
100
B
z
~
E
0:
0:
i:l
o
it
"",
~
1::i~
+1~5lcl
.....1L
/1""1
1.0
0.8
II
100
o
lQQQ
~~
100
~~
!I~
1.2
I!;!
0..
I:~
...
I='C
~
w...
::':5
~
.... '"
i-""
-4I1"C
-tT
~
~
~
i--"
E
10
w
60
26
75
,1
10
VeE .tOV......
o
10
"1
"...
V
Safe Operating Area TO-202
--
YCE =1V
III
1
I
0.01
10
L.-....L.-'-_ _ _ _...:;.;.:.L.L.I.J..LU
'10
tOO 200
Ie - COllECTOR CURRENT (mAl
10
i
8.0
a:
7.0
6.0
~
s
~
I
D.I
I'\.
-
100
VCE - COLLECTOR·EMITTER VOLTAGE (VI
i
,f'
0
26'
60
76
1.4
I
"- I'\.
1.0
0
o
~
=
"'\.
,
10'
1,8
1.6
~
\.
~
~
..
" ' \ . )'TC
5.0
4.0
i! 3.0
;
2.0
co
I:;
Thermal Derating Curve
2,0
I'\.
D.D
100
125
TC - CASE TEMPERATURE ("CI
100
VCE - COllECTOR VOLTAGE (VI
Maximum Power
Dissipation TO-202 vs Case
Temperature
~
100
REVERSE VOLTAGE (VI
10~.
e
;;
10
125
f"'100MHz
:;c
Safe Operating Area TO-237
co
100
Small Signal Current Gain
vs Collector Current
REVERSE BIAS VOLTAGE (V)
....E'".
.
:l
.,
I'.. .....
o
o
i:l
1
f= 1 MHz
10
"'",
J
1/
~
.1
""e
Ii
12
~
.1
.E..
..
......
.....
o
Output Capacitance vs
Reverse Bias Voltage
T. - JUNCTION TEMPERATURE ("CI
....
1000
"5
1I11III
f~I~.I.
100
10
;
IC - COLLECTOR CURRENT (mAl
10
S
IC - COllECTOR CURRENT (mAl
i:l
Input Capacitance VB .
Reverse Bias Voltage
f-'"
+125°C
0,8
>
~
10
.01
100
1000
1/
j
10
100
.
II il
IIII
IIII
..... f-'"
0.4
0:
0:
:li
~,
-
Z
'= ve• -3DV
!
TC =+125°C
0.4
~ r~
1.2
Collector-Base Diode
Reverse Current vs
Temperature
2.0
IB
II
-4I1"C
;, -
II
1
VCE =5V
1.6
IC - COllECTOR CURRENT (mAl
Base-Emitter Saturation
Voltage vs Collector Current
!& -1000
~
./
TC 1
' tI2 CI
>
10
""
r
0.4
IC - COLLECTOR CURRENT (mAl
1,6
.....
+25°C
,e
;:g;
~!c
Wen
~
>
'f
...
2.0
w
co
~
. -4Q"C
3j:
~40"C
0
... >
;j~
0'"
1:;6
+25°C
20
1.2
o:e
i"'
'"V
.r;;
60
.
IB I
......
,
~
II
!& = 1000
0:
Til
HI
80
4Q
~
1.6
VCE' 5V
Base-Emitter ON Voltage vs
Collector Current
Collector-Emitter Saturation
Voltage vs Collector Current
,
,f'
"
160
I
\.~COllECTOR LEAO
(TO·237)
1.2
TAMBIENT
-
1.0 ~37)
0.8
0.6
0.4
0,2
o
I
I
'\..
I\.
TAMBIENT
'\.. ~0.2021
......
t-....
""-
t:-.........
r--r-- TAMB~
(TO·921
o
25
50
75
100
~
125
T - TEMPERATURE ("CI
150
"tJ
Process 05
a
(")
CD
(f)
(f)
Thermal Response in TO·202 Package
~§
:;'"
~~
......w1;"'"
0.7
0.5
0.3
0.2
,,0
;:Ow
"u
"""
.......
"'""
12l
0.1
0.07
0.05
-.:f:3 0.03
"''''
o
C1I
0- 0.5
0.2
HEATS UNK
.:.;Iiii
0.1
FREE AIR
o.Ds"
~~.:s0.02
H 0.01
SINGLEPU~
LnJl
PI,kl
I--
SINGLE PULSE
I
0.02
~l
-tl-
I
t2-
0.01
0.01 0.02
0.05
0.1
0.2
0.5
10
20
50
11 - TIME Imsl
8·9
100 200
500 lk
°Jclll·,It!,oJC
OJC DC THERMAL RESISTA NCE
T,k-TC+P,k·OJcltl
t1
DUTY CYCLE D· -.
t2
2k
5k
10k
20k
50k
lOOk
,....
o
(/)
(/)
CI)
(.)
e
~National
Process 07 N PN Small Signal
D Semiconductor
0.018
....- - - - 1 0 . 4 5 7 ) - - - - - -
c..
DESCRIPTION
Process 07 a non-overlay, double-diffused, silicon epitax-.
ial device. Complement to Process 62.
0.0035
10.0889)
APPLICATION
This device was designed lor low noise, high gain, general
purpose amplilier applications Irom 1 p.A to 25 mA collector current.
0.018
10.457)
PRINCIPAL DEVICE TYPES
TO-18:
2N930
TO-92, EBC: 2N5088
TO-92, ECB: 2N3392
Parameter
Conditions
Min
Typ
Max
Units
Notes
3
10
dB
TO-18
NF (spot)
Ic= 10 p.A, VcE =5V,
Rs = 10k, 1= 100 kHz.
NF (spot)
Ic=10!,A, V cE =5V,
Rs = 10k, 1=1 kHz
3
dB
TO-18
NF (spot)
Ic=10!'A, VcE =5Y,
Rs= 10k, 1= 10 kHz
3
dB
TO-18
NF (wideband)
Ic=10!,A, V cE =5V,
Rs = 10k, P BW = 15.7 kHz
3
dB
TO-18
hfe
IC=500!,A, V cE =5V,
1=20 MHz
Cob
C eb
VcB =5V,I=1 MHz
3.0
pF
8.0
pF
hFE
Ic=1!,A, VcE =5V
35
hFE
Ic=10!,A, V cE =5V
50
hFE
Ic=100!,A, V cE =5V
70
hFE
Ic=500!'A, V cE =5V
80
hFE
Ic=1 mA, VcE =5V
90
hFE
Ic =20mA,V CE =5V
50
VCE(SAT)
Ic= 1 mA, I B =0.10 mA
0.10
V
VCE(SAT)
Ic= 10 mA, IB= 1 mA
0.15
V
VBE(SAT)
Ic=1 mA, I B =0.1 rnA
0.75
V
VBE(SAT)
BVCEO
Ic= 10 rnA, IB= 1 rnA
0.85
V
Ic=1 rnA
60
V
BVCBO
Ic= 10!,A
60
V
BV EBO
I E=10!,A
8
ICBO
VcB =45V
100
nA
lEBO
V EB =6V
100
nA
3
6
1.7
V EB =0.50V, 1=1 MHz
8-10
360
1,000
V
'"tJ
Process 07
DC Current Gain vs
Collector Current
1000
"
~
""~
400
H+H-+--H-+t-+-t+tH-++tt-i
"~
~
BOO
~~-+--H-+t-+-t+tH~~-i
~
zoo H+H-+--H-+t-+-HlH-+-I*-j
100
0.001
H+H-+--H-+t-+-HlH-l--W+-j
VeE:::: 5V
H+H-+--H-+t-+-Htt TA = 25'C
a:
"~
.1
10
I
0.2
~
;;;
o
.01
.1
10
100
-
~
-l-
10
1.0
100
Ie - COLLECTOR CURRENT (rnA)
Contours of Constant Gain
Bandwidth Product (f T)
?:
w
"'"~
-
I IIII
I IIII
;;
10
0.1
'DO
1.0
10
N
~
;::
w
=>
"
>
Q
8.0
12.0
iii
C
a:
w
>
Cob
Ie"" 0
~
~
'"t:l
16.0
20.0
v
10
~
1.0
50
75
100
125
150
"
"'",x
Ie = 100 !'A
2k
!1ia:
lk
...
~
at
!\
500
VeE - 5.0V
200
5k
10k
20k
SDk
R, - SOURCE RESISTANCE (m
lOOk
100
150
"
200
TA .- AMBIENT TEMPERATURE I'C)
~
f - 100cps
~~~~Wllmll'0
...g;
12
'\
I
I,
2k
1'\
lk
£
f-'
500
1000
3
6
VeE::: S.OV
B
f= 1 kHz
BANOWIDTH = 200 cps
200
III
100
100
2
4
w
g
Ie - COLLECTOR CURRENT (!'A)
8·11
ia:1i
~
1
i:
5k
w
{. V
B
100
2k
50
i'-.
I"
Contours of Constant
Narrow Band Noise Figure
...
"I;;"
"-
w
I
t'-.
'\.
100
,<
~
4
\
"'"
I;;
TO·1B
."-
10k
3
5k
w
~
TO·92
300
10k
...
~
400
Contours of Constant
Narrow Band Noise Figure
~
'\.\:
600
500
.f
TA - AMBIENT TEMPERATURE ('C)
Wideband Noise Figure vs
Source Resistance
100
BOO
200
~
/
25
"5
10
100
Ii:
x
§
REVERSE BIAS VOLTAGE (V)
~
t;
~
4.0
~
100
0-
--
1.0
Maximum Power
Dissipation vs
Ambient Temperature
~
1000
~
IeC"
=0
~
Ie - COLLECTOR CURRENT (rnA)
Normalized Collector Cutoff
Current vs Ambient
Temperature
...
!,[""
'"
m'i:l:tj
0.1
100 •
-
125MHI
2.0
Ie - COLLECTOR CURRENT (rnA)
~
1.0
1\
1.0
F = 1 MHz
~
~
I'\'MJ,
I
5.0
2.0
4.0
3.0
8
Input and Output
Capacitance vs Reverse
Bias Voltage
I\.
7.0
6.0
5.0
>
a:
Q
::.{""= +25'C
I A I III
1.0
lk
D.'
Base·Emitter Saturation
Voltage vs Collector Current
Ie - COLLECTOR CURRENT (rnA)
3.0
::
Ie - COLLECTOR CURRENT (rnA)
I
TA::::+10~
~
100'C
10
III
-=10
1- 1•
4.0
-
i-'
I'[C
r-
ZOO
I
100
I-I~
~
11111
0.4
~
VeE - 5~OV
11111
0.6
~
i"
IIIII
o.B
~
Collector Saturation
Voltage vs Collector Current
5'"
Q
1.0
400
Ie - COLLECTOR CURRENT (rnA)
""
5
'"
>
~
TA=215°~
*"
w...l.l.l---L...l.JJ.L.L.l.ll~-'-.w.L-I
.01
w
'"
!:;
~
~
I
...
w
VeE = 5V
f= 1 kHz
T! =I,Wc
B 600
300
?:
IIII
IIII
'"
B
~
Base·Emitter ON Voltage vs
Collector Current
Small Signal Current Gain
vs Collector Current
1
10
100
Ie - COLLECTOR CURRENT (!'A)
1000
a
o
CD
en
en
o
......
......
o
Process 07
U)
U)
CI)
(,)
e
a.
Contours of Constant
Narrow Band Noise Figure
Contours of Constant
Narrow Band Noise Figure
10k
Ci
Ci
5k
1
.
~
u
z
\
2k
3'
"-
~
u
'"=
rE
~
4
u
6
'"=
VeE = 5.OV
200
I"-
lk
VeE
500
~
10
4
~
7
200 kHz
1000
Ie - COLLECTOR CURRENT (pAl
1.0
0.1
0.01
'ri;-I
I
I
R, = soon
II
\lc=1.0mA
~ = 5 k~1
I IJ
1/ VeE
10-4
10
l
II
Ic =1.0mA
o
100
100
~
rt\
6
BANDW~I~III-
r!!! 200
~
BANDWIDTH = 2 kHz
R,=loknl
3
=
5.0V
f-1MHz
Ie = 200pA
R,= lokn
le=lo0pA~:I
\
2
1\
I
f= 10kHz
100
\
2k
~
500
~
I
~
I
I
5k
u
z
lk
10
~
2
~
~
Noise Figure vs Frequency
10k
10-3 10-2 10- 1
5.ov
10
102
f - FREQUENCY (MHzl
Ie - COLLECTOR CURRENT (mAl
SMALL SIGNAL CHARACTERISTICS (I =1.0 kHz)
Symbol
Characteristic
Units
Typ
Conditions
hie
Input Resistance
15
kn
Ie = 1.0mA, VeE =5.0V
hoe
Output Conductance
15
!,mho
Ie = 1.0 rnA, VeE =5.0V
h re
Voltage Feedback Ratio
425
x 10- 6
Ie = 1.0 rnA, VeE =5.0V
hre
Small Signal Current Gain
400
h ib
Input Resistance
27
n
Ie =1.0 rnA, VeE =5.0V
Ie = 1.0 rnA, VeE =5.0V
TYPICAL COMMON EMITTER CHARACTERISTICS (f =1.0 kHz)
..
i!:
.,;
"
~
E
Q
t.4
I
~
1.3
boo
;;
1.2
,...
,...o
~
>
/'
~=
1.0
~
0.9
~
/'
1.1
b,,~
b,. ,
l:l
~
t
;;'i
b::;...
~
bl •
~
1.4
.
~
~
1.3
~
1.2
.>
~
1.1
V
'- f-1""
le=1.o~A
fi
cc
boo
~
=25°C
ti
cC
0
10
15
20
Vee - COLLECTOR VOLTAGE (VI
25
VeE =
s.nv
.1
hie
IC=1.0mA
>
g ~::
TA
0.8
1.5
"'p
.......
L."
~
or
~
L~
.,
~
b"
b..
~
::3
:;
boo
0.5
~.,.
g> '.0~11~
~
~. ~~II~'lfmll
-t" li~I'
-50
-100
TJ
-
1;;
~
;;'i
~
0.1
t; 0.01
50
100
JUNCTION TEMPERATURE lOCI
8-12
10
o
,...
0.8 -boo
1..1.
0,7 -"hh
0.6
100
k-L
150
0.1 0.2
0.5 1.0 2.0
~o
10 20
50100
Ie - COllECTOR CURRENT (mAl
"'C
~National
Process 09 N PN Medium Power
~ Semiconductor
a
o
CD
O.OZO
DESCRIPTION
1-.---------10.50BI--------~1
Process 09 is a non-overlay, double-diffused, silicon epitaxial device_ Complement to Process 68.
0.010
-{0.2541--
en
en
o
(0
APPLICATION
This device was designed lor general purpose audio
amplifier applications at collector currents to 1A_
0.004Z5
10.101951
PRINCIPAL DEVICE TYPES
O.OZO
10.5081
TO-92, EBC: CS9013
t
0.010
10'r
Parameter
Conditions
Min
COb
C ib
Vcs =10V,f=1 MHz
NF
VcE =10V, Ic=1 rnA,
Rs = 100n, 1= 1 kHz
IT
VCE = 10V, Ic= 50 rnA
200
hFE
VCE =1.0V, Ic=1 rnA
40
Typ
Max
Units
6
8
pF
V Es =0.5V, 1=1 MHz
35
2.0
hFE
VCE = 1.0V, Ic = 100 rnA
60
hFE
VcE =1.0V, Ic=500 rnA
35
VCE(SAT)
Ic= 150 rnA, Is= 15 mA
VCE(SAT)
Ic=500 rnA, Is=50 rnA
Notes
pF
dB
MHz
180
360
0.2
V
0.4
V
VSE(SAT)
Ic= 150 rnA, Is= 15 mA
1.0
V
VSE(SAT)
Ic=500 rnA, Is=50 mA
1.2
V
BVcso
BVCEO
Ic= 100 p.A
Ic= 10 mA
25
BV ESO
IE=10p.A
6.0
0.25
45
Icso
Vcs=40V
100
nA
IESO
V ES = 4.0V
100
nA
8-13
[;)I
0)
0
Process 09
U)
U)
B
e
c..
Base-Emitter ON Voltage vs
Collector Current
DC Pulsed Current Gain vs
Collector Current
240
z
~
i
Q
200
Ve ,
1.4
1111111
~
IlllIIl
"
1.2
>
1.0
~
';"10V"
160
z
120
~
Q
~
I
~
I
40
~
"~
100
10
1000
"
~
1.2
>
~
;::
1.0
0.1
1.0
~
~
100
~....
~
0.8
~ 0.4
50
150
100
200
1/
0.6
r-T"1"TT1l1Ir-TTTTTT1!r-TTTTTTTIr-nI"""'
1111111"
0.5
H+++llIII--H.fjjjfH+++HlI-++1lJlIII
0.4
H+H.JllII--f-fffillll-++IfIlHIf-+l
w
0.3
H-ttHllll--++H1ltIf--f-l-tttlllt--H
~
0.2
H+H.JllII--f-fH!IlIII-++IfIlHIHl++HlII
0
0.1
H+ltIl1l!-++t!llIIH+ltHlll.l4+1lJlIII
Jl
.01
0.2
0.1
1.0
25
1000
10
100
Ie - COLLECTOR CURRENT ImA)
14
-
'"
u
1\
w
=0
t~~ ~~':-lI1
'"
0
1"\
Co"
14JO
i1'
5.0
~~; H:
,.P.H
II '1~~~50MHrtr"
~.
~
I
~
;!:
1.0
10
f
100
= FREOUENCY 1kHz)
1000
Contours of Constant Gain
Bandwidth Product (IT)
o
.1
100
Ie - COLLECTOR CURRENT (rnA)
30
24
=>
~
75
Capacitance vs Reverse
Bias Voltage
Ic=1 rnA
10
u:
"
50
T, - JUNCTION TEMPERATURE I'C)
Je , I=I,~V
12
w
0
Collector-Emitter Saturation
Voltage vs Collector Current
1--_ VCB =30V
10
Noise Figure vs Frequency
~
0
TA - AMSIENTTEMPERATURE I'c)
~
I--
~
~
>
1000
B
I-'
O.S
100
10
~
~
Collector-Base Diode
Reverse Current vs
Temperature
111111
Ie
-=10
I.
;)j
1
'\J.
1,\
Ie - COllECTOR CURRENT ImA)
Base-Emitter Saturation
Voltage vs Collector Current
1.4
,\TO.39 ISTEEL) I-200
I
Ie - COLLECTOR CURRENT ImA)
z:
I\.
"X
0.4
~
.;: 0.2
1'\
400
II
0.6
Z
~
600
'"
....
SO
800
.~
5.0V
ffi o.s
....
I
U
Q
I
=
Q
~
"
VeE
§:
:
11111111[
w
Maximum Power
Dissipation vs
Ambient Temperature
10
1000
REVERSE BIAS VOLTAGE IV)
8-14
50
1.0
10
100
Ie - COLLECTOR CURRENT ImA)
1000
Process 12 N PN Medium Power
~National
~ ,Semiconductor
DESCRIPTION
Process 12 is a non-overlay, double-diffused, silicon epitaxial device, Complement to Process 67,
APPLICATION
This device was designed for general purpose medium
power amplifiers and switches requiring collector currents up to 1A and collector voltages up to 80V.
PRINCIPAL DEVICE TYPES
TO-92, EBC:
TO-39:
TO-202:
TO-237:
Min
Conditions
Parameter
MPSA05
2N3019
NSD106
TN3019
TN3020
Typ
Max
Units
Notes
Figure 1
Figure 1
tON
Ic=150 mA, I B,=15 mA
50
ns
tOFF
Ic=150 mA, IB2=15 mA
400
ns
hie
Ic = 50 mA, VCE = 10V,
f=20 MHz
COb
C eb
Vcs= 10V, f= 1 MHz
hFE
30
hFE
Ic=l rnA, VcE =10V
Ic~ 10 mA, VCE = 10V
hFE
Ic= 150 mA, VCE = 10V
40
hFE
Ic = 500 mA, VeE = 10V
30
VCE(SAT)
Ic= 100 mA, Is=10 mA
0.2
VCE(SAT)
Ic=500 mA, Is=50 mA
0.5
V
VBE(SAT)
Ic= 100 mA, Is= 10 mA
0.90
V
VBE(SAT)
BVCEO
Ic=500 mA, I B=50 mA
Ic='10 mA
65
BVCBO
Ic=1001'A
100
V
BV EBO
Ic= lO I'A
7
V
ICBO
Vcs=80V
100
nA
lEBO
V EB =6V
100
nA
4,0
6,5
VEB =0.5V,f=1 MHz
i
~
!
"
co
,
Z60 rT"ITT""1rTTrrr"T1Tn--:-----,
I111 I VeE '10V
200
150
IIII I II
I-HfH-ItH-f T~ ~ +~5·~
..~
co
,8
H++t--H-+tt++++f-+-+t1H
co
,6
TA • Z5~·C:J.!*",i"'fm-+-l-H+~
~
"I
50~1IH--H1f1+-IH1H-ttlI-+44+H
~~
O~~-W~~...J...~~~
~
,;:
10
100
1,000 10,000
Ie - COLLECTOR CURRENT (mAl
V
V
V
w
~
1,0
pF
320
160
Base-Emitter ON Voltage vs
Collector Current
0:
0.1
pF
1.20
>
z
100 I"HIIH--H1f1+-IH1H-ttlI-\f-f4+H
10
60
35
Pulsed DC Current Gain vs
Collector Current
z
6.5
A
~~~~~~~~~~
T ' 100·C
A
lllT
2~~~lT+m~~~~~
lllT
0 Ll.llL.J..,l..uJ....J....u.uL-J....l.l.LLJ
.1
1
10
100
1000
Ie - COLLECTOR CURRENT (AMPS)
i600
Maximum Power
Dissipation vs
Ambient Temperature
,-,-,-,--,-...,---.--r-,
~ 1400
f-+-+-+-+-+--+--+--1
!
....
2:
lZo0 t-",!'--+-+--+-f-I--+---I
ag:
"
1000 1--!02~+++++--I
ffi
~ 800
i1i
~
600
400
~
200
~
0
~
J!
r....... ~TO.ZJ1*
~
I-,..,.....,-+-+~"",--I~I-I-H
f-t-'-+
~",T.l:0'9_Z-fI\~:~T""O._J9I--+---I
I'-+-+-,"",,+~'\l,*,"l-P>'-.d---I
50
~"
150
ZOO
100
TA - AMBIENT TEMPERATURE (·CI
* One squarE! inch of copper run
8-15
Process 12
Maximum Power
Dissipation vs
Case TE!.mperature
Collector Reverse Current
vs Ambient Temperature
1000
"-
"I'\. "-
o
50
~
~
11111
a:
"
"-1'\
100
~8
I
I\.
150
1~
z
1
J
25
!"'--VeE "0V
..'"
c
~
~
c
A
1\
.
100
a:
"
40
24
1111
20
I
20
Rs '10k!l
...~
~
gj
a
~
a:
R.· iOO!l
~8
4.0
Rs 'I.0k!l
0.1
1.0
10
100
lDOD
VI
II
lA
::0
u
.
a:
~
.
I--
I
I
10 mA
1.
TA "25"C
~"
"'"
P.W. AS INDICATED
DUTY CYCLE < 2%
.9
:!
CSECOND
REAkDOWfI
PW-ISEC-r--
~lo0m A
8
f-:
I
10
100
0.9
!ii. .
:i
0.7
I
0.5
1,000 10,000
TA" +100"&
a
;:
111111 I
IIIIII
0.3
0.1
1.0
BOD
600
!
-
,\
600
..
200
~
Ie - COLLECTOR CURRENT (mAl
8-16
"-
;: 400
100
10
1.000 10,000
IS1 -182 =Ie/l D
Vee = SOV
'~
"
100
Turn On and Turn Off Times
vs Collector Current
800
~
10
Ie - COLLEC'TOR CURRENT (mAl
1000
200
"
!-1
.Y
lk
400
11
TA=+Z5D C
Ie - COLLECTOR CURRENT (mAl
o
VeE - COLLECTOR EMITTER VOLTAG.E (VI
100
5.0 10.0
I.
Switching Times vs
Collector Current
~~~,+-
~~
10
B.W.' 2.0 kHz
1.0
1~"0
1.1
~
II I llil I 1111
1.0
:;
a:
il il+llDL~
0.1
1.3
~
....
TA =+25"C
a
.
::0
T
0.2
0.5
Base Saturation Voltage vs
Collector Current
">z
;:
"c
0.6
J
IcMAXIIOMSJ
a:
a:
0.1
~
Ie "'10
I.
0.4
f'" t.OMHz
Ie - COLLECTOR CURRENT (mAl
1.0
D.B
150
VeE "tOV
llU
50
Collector Saturation
Voltage vs Collector Current
Safe Operating Area TO-39
with "Wake Field" Type
296-4 Heat Sink
Ie MAX
CONTINUOUS
N+Ff!1
2.0
1111
10
I
,- FREQUENCY (kHz)
SA
1.0
"
~
o
z
Ccb IE" 0
0.1
">z
;:
"c
::0
~
Z
REVERSE BIAS VOLTAGE (VI
Ie =300l1li_
VeE ::10V
8.0
4.0
"
T'"'"+4.
III
:!!
~
Ie =0
~
Ie - COLLECTOR CURRENT (mAl
I
ii:
eel)
125
~Is"('y
• l~kri
fL
~ Rs'I.0k!l I?-1'I
6.0
~
.......
,100
II 11
I~s' I~OJ
"'"
B.O
§
60
SOD
Noise Figure vs Frequency
75
Noise' Figure vs Collector
Current
..
DO
I
10
50
To - AMBIENTTEMPERATURE (OCI
~
\ VeE' I.DV
1.0
I
25
10
::!
o
12
0.1
150
'=1.0MHz
5
::
u;
a:
125
Collector-Base and EmitterBase Capacitance vs
Reverse Bias Voltage
z
c
~
ii:
100
TA - AMBIENT TEMPERATURE (OCI
u
16
75
50
100
~
~
1.0
I
0.1
I I II
a:
.
....
s.
..
~
l/
1.0
"20MHz
9
::i
a:
=
10
a:
200
10
il
ili
I
1
~
./
Small Signal Current Gain
at 20 MHz
;;:
100
~
~
TC - CASE TEMPERATURE i"CI .
......
VEa - 4.0V
il
a:
il
TO·39
o
1 '000
!....
::i
a:
Emitter Cutoff Current vs
Ambient Temperature
1lIII0
o
) - - r--Io.
10
"
'l'i
100
Ie - COLLECTOR CURRENT (mAl
1000
"'C
Process 12
Maximum Power
Dissipation TO·202 vs Case
an? Ambient Temperature
Sale Operating Area TO·202
5.0
~
5-
"....
1.0 -
z
w
-
'"'"
'"u
'"'"
~
~~ ~~;t=
~
">h~tJ "":~i~
"',/bt"/
9.0
~
.2
6.0
~
4.0
10
2.0
I"\,
-r--
0
25
RL
150 rnA
3140
3300
300 rnA
1570
1670
500 rnA
940
1000
75
125
100
150
50V
-4V
Rb
50
"\.
r-- ~
T - TEMPERATURE l'C)
VeE - COLLECTOR TO EMITTER VOLTAGE (V)
Ie
"\
I;;;.T'TA
=
1.0
•
.E
100
"\
l.O
~
1.0
I"\.
5.0
I
0.01
"\. T'Te
'"
"x..
"
.....
I\,)
'\
7.0
~
CD
fA
fA
I"\,
8.0
Q
I"
I
10
~
gj
r-...
0.1
~
R,
1.0 K
TO SAMPLING SCOPE
~ RISE TIME ~ 1.0 ns
.1 ";
10V
INPUT Z
Rb
r
~
100 Kn
~
50
*
PULSE SOURCE
~
RISETIME,s5.0ns
OV
FALL TIME 510.0
ns
FIGURE 1. tON. tOFF Test Circuit
SMALL SIGNAL CHARACTERISTICS (I
Symbol
=1.0 kHz)
Units
Conditions
3000
0
8.0
I'mhos
xl0- 4
=1.0 mA, VeE = 5.0V
=1.0 rnA, VeE =5.0V
Ie =1.0 rnA, VeE = 5.0V
Ie =1.0 rnA, VeE =5.0V
Characteristic
Typ
hie
Input Resistance
hoe
h re
Output Conductance
Voltage Feedback Ratio
2.1
hie
Small Signal Current Gain
100
TYPICAL COMMON EMITTER CHARACTERISTICS (I
'"
"
.2
.
"
lO
w
'"
TA
10
''""
:>
l.O
::
;::
!3
t;;
ffi
t;
..5
'"'"
1.0
O.l
~
h••
:>
V
~""'
"-
'"w
"
...... hi.-
T"
O.l
1.0
l.O
10
h,.
I
1.1
~
0.8
lO 50
Ie - COLLECTOR CURRENT (rnA)
t;;
ffi
t;
..'"'"
5
....<
....
"
l.O
w
2.5
'"
I c =1.0mA
hie
:>
hi.1;I#J "
VeE:: 5.DV
f = 1.0 kHz
~
1.0
0.9
'"
!3
=1.0 kHz)
.
.
J
1.2
:>
;::
h"
0.1
0.1
1.l
'"
2.0
;::
1.5
!Z h,.
'U l./lh••
l-
I-
~f.-
Ie
~
w
I.....
w
:>
~a:
;!;
I-
25Q C
f=1.0kHz
~
I-
..
'"..
VeE = 5,OV
....
Ie
u
~
'"
E
w
:>
"-
.....
Cr-
Ie = 1.DmA
0.7
~a:
h"
r--. ..... _
!3
t;;
TA = 25°C
0.6
a;
f= 1.0 kHz
~
0.5
0
5
10
15
20
25
VeE - COLLECTOR VOLTAGE (V)
8·17
lO
..
5
;i§
~ '/
·1.0 I - 0.5
h,.
,
h"
p
~
~
h,,~ ~I
hie
0
-100
-50
an
0
50
100
150
TA - AMBIENTTEMPERATURE lOCi
,
Semiconductor
Process 13 NPN Medium Power
~National
a
DESCRIPTION
Process 13 is a non-overlay, double-diffused, silicon epitaxial device_
APPLICATION
t
This device was designed for use as medium power amplifiers and switches requiring collector currents of 100 I'A to
500 mA_
0.020
(0.508)
PRINCIPAL DEVICE TYPES
TO·92, ESC: 2N440T
TO·92, ECS: 2N3704
Parameter
tON
Conditions
Min
Ic = 150 rnA, IB1 = 15 rnA
Typ
Max
Units
35
ns
250
ns
tOFF
Ic=150 rnA, IB2=15 rnA
hIe
Ic=20 rnA, VcE =20V,
f=100MHz
NF (spot)
Ic = 100 I'A, VCE = 10V,
Rs = 1 krl, f = 1 kHz
1.2
Cob
VcB =10V,f=1 MHz
4.5
C ib
V EB = 0.5V, f = 1 MHz
hFE
VCE = 1.0V,!c = 1.0 rnA
30
hFE
hFE
VCE = 1.0V, Ic= 10 rnA
Vd= 1.0V, Ic= 100 rnA
50
hFE
VCE = 1.0V, Ic = 500 rnA
25
VCE(SAT)
Ic= 150 rnA, 18= 15 rnA
0.2
V
VCE(SAT)
Ic=500 rnA, I B =50 rnA
0.5
V
VBE(SAT)
Ic= 150 rnA, IB= 15 rnA
1.0
V
VBE(SAT)
BVCBO
Ic=500 rnA, I B =50 rnA
1.2
V
Ic= 1OO I'A
60
V
BVCEO
Ic= 10 rnA
35
V
BV EBO
Ic= 10 I'A
6.0
ICBO
VcB =40V
V EB =4V
lEBO
2.0
3.0
dB
8.0
pF
35
pF
40
8-18
150
300
V
100
nA
100
nA
Notes
"tJ
Process 13
Base·Emitter ON Voltage vs
Collector Current
DC Pulsed Current Gain vs
Collector Current
240
~
2!
w
I~~E .10V
2
'"~
=
200
I-
~
~
co
w
~
"coI
1.0
!=
800
.8
2i
600
co
l.:::
>
160
~
:;:'"
120
80
~
40
Z
.6
J
10
.1
1000
100
11m
.1
1/
32
w
24
"'"
1/
'"<:;
5'"
I-
O:~
=0:
1-0:
""
~"
.
.
.s-
~
C~
~
.1
11~
100
1"\
o
12
w
'"
20
16
12
125
"-
F'" 1 MHz
"2
"f\.
'"<:;
~
.....
!;
::
I
...;
o
.1
.1
REVERSE BIAS VOLTAGE IVI
10
REVERSE BIAS VOLTAGE (VI
Base·Emitter Saturation
Voltage vs Collector Current
Coliector·Emitter Saturation
Voltage vs Collector Current
1.0 r-T"TTI-r"T"T-rr-""""TTI-r..,..,,.......,
Ie
10.
.22
!£
• 10
I.
.18
r,; •
.9l-+ttt-t-Htt-t-+tjH----M9t-l
.14
.8
"'~
~~
o~
1:;=
H+tt-++ttt-H+ttA--+ttH
w>
~2
~=
0_
"I;:
'0:
i~
won
.10
I)
.06
.7
II
.6
~
.5
.02
.1
10
200
"=
TJ -JUNCTION TEMPERATURE (OCI
0:
150
ID
I-
.........
100
Output Capacitance vs
Reverse Bias Voltage
~
t--.;...
50
TA - AMBIENT TEMPERATURE eCI
o
0.1
~2!
'\
o
.s-
...;
75
,TO.92
200
f= 1.MHz
30
I
50
'~"
'"
1000
100
~
1/
25
!!i
Input Capacitance vs
Reverse Bias Voltage
VeB '" 30V
10
1\
400
Ie - COLLECTOR CURRENT (rnA)
100
=11-2
10
~
I
I 1111 I IIII
I 1111
o
Coliector·Base Diode
Reverse Current vs
Temperature
g~
"I",
VeE ·,V, TA • 25°~=I VeE = 10V, TA = 25"C
VeE = 10V, TA = 125"C
.2
Ie - COLLECTOR CURRENT (rnA)
"oS
\1
Q
~
~cc
~
.....
[\.
ffi
I
~
.4
en
en
w
Ci
i'"
2
=
0:
~
100
.1
1000
Ie - COLLECTOR CURRENT (rnA)
10
100
Ie - COLLECTOR CURRENT (mAl
8·19
g
CD
Maximum Power
Dissipation vs
Ambient Temperature
1000
50
,....
IIIIIt
fI)
fI)
CI)
()
e
~National
.
U Semiconductor
Process 14 NPN Medium Power
DESCRIPTION
a..
Process 14 is a non·overlay, double·diffused, silicon epi·
taxial device.
APPLICATION
This device was designed for general 'purpose amplifier
applications at collector currents·to 1A.
PRINCIPAL DEVICE TYPES
BFY50
TO·39:
TO·92, EBC: MPS6560
Parameter
Conditions
Min
Max
Units
12
pF
65
pF
8
COb
VCS= 10V, f = 1 MHz
C ib
V Es =0.5V,f=1 MHz
hIe
Ic = 50 mA, VCE = 10V,
f=20,MHz
NF
Ic=100I'A, VcE =5V,
Rs=1 kO,f=1 kHz
hFE
Ic=1 mA,VCE=1V
40
hFE
Ic=10 mA, VCE =1V
Ic= 150 mA, VCE = 1V
60
hFE
Typ
5
10
1.2
dB
50
180
360
30
VCE(SAT)
Ic=500 mA, VCE = 1V
Ic= 10 mA, Is= 1 mA
0.10
v
VCE(SAT)
Ic= 150 mA, Is= 10 mA
0.15
V
VSE(SAT)
Ic =10mA,l s =1 mA
0.85
V
VSE(SAT)
BVCEO
Ic= 150 mA, Is= 10 mA
1.0
V
Ic=10 mA
35
V
BVcso
BV ESO
Ic=1001'A
60
V
Icso
Vcs=40V
100
nA
lEBO
V Es =5V
100
nA
hFE
7
I E", 1O I'A
240
iu
200
160
::
~...
1111 I
to
~
~ 1~00 r-r-,--r--.--r-r-,--,
1--t1*"",H-11lir
~I ~L~
2~.~tt:;;io"fJ.lt--i
~
IliLA'"
i!i
'"
~
0.6
bIol'IF'I-I-!:I;I.""""'F+HH--H1fH
trr J.I.
~
1000
~
800
~
600
40 r~IIIII~I-ttH~~~~+ffiH
0.1
I
0.8
~
1111
80
III
1O
:;
~ 120~
~
J1r;Vmr~~mrr-ttH-i
I
1.0 r--".-rTTr-'-rTTI-'-"''''''
Ve E"I.0V
Maximum Power
Dissipation vs
Ambient Temperature
IIII I
Ii ~~'= 10"AVof1t-:J..oI'IFIH~IH--ttH-i
Q
V
Base·Emitter ON Voltage vs
Collector Current
DC Pulsed Current Gain vs
Collector Current
z
1
10
100
lk
Ie - COLLECTOR CURRENT (rnA)
10k
Notes
;
I
~
~
7. .ll0~·~t-t-+t~
0.4
1-+Ht-+-t-ttt+ttt1H-+HfH
0.2
H-Ht-+-t-ttt-t-t+HH--H1fH
1400
:i
f-t--t-++-+-+-t-l
f-t--t-++-+-+-t-l
I-ol.:,-t-t-t-+-+--+--i
I-i--l'-<;+-+-I--I--+-I
I-!.;.........
-+-t~:-,-TlT+-O.3-9t-+-l
400 t-t-.p>..J--t-"'-"'I.c-!--t-t
TO.92~
"
I'
~ 2001-i-+--t-~~-f~-I
Z
Jo
::
~ 1200
0 LLLIL..l..4..1.1l...L..LJ..IJL.J...J..JJLL.J
0.1
1.0
10
100
Ie - COLLECTOR CURRENT (mAl
8·20
1000
~
~
'f....
0 0
50
100
150
TA - AMBIENT TEMPERATURE (OC)
200
."
Process 14
Maximum Power
Dissipation vs
Case Temperature
~
Safe Operating Area TO·39
with "Wake Field" Type
296·4 Heat Sink
8
15
;::
7
gj
6
~
e
5A
"
5
'"
~
4
::>
3
'"
'"
"'"
X
;;:
I
"
~
~
~
"
'"~
TO·39
~
1
"'"~100mA -
""
50
100
150
10
1.2
~
I!;
i
~
'10
J
1
'-'
5"
0.8
§
10
"20MHz
100
7
'"'"fl
6
~
I
.J
II!
lk
0.1
/
5
4
II
V
V
~
I
~
'"u'"
::>
'"
Ie
=0
.."
VeE'" tOV
~
~
12
'"~
.."'"'~
~
Q
>
VeE
100
"
I
,;
10
1.0
10
0.1
100
1.0
Output Admittance vs
Collector Current
500
VeE'" TOV
'·1.0kHz
I
W
u
...
I::>
1\
\
4
Vee= t.DV
"1.0 kHz
200
/
100
~
::>
Q
I
50
~~
.J
0
0.1
1.0
10
""
20
100
0.1
Ie - COLLECTOR CURRENT (rnA)
1.0
10
Ie - COLLECTOR CURRENT (rnA)
8·21
10
Ie - COLLECTOR CURRENT (rnA)
Ie - COLLECTOR CURRENT (rnA)
""iil~
8
=tOV
f .. 1,OkHz
~
~
I
.J
500
"ill
Voltage Feedback Ratio vs
Collector Current
16
125
rc)
in
\
0.1
\
100
"~
0
Q
:ii"I-
~:...
£
Ie - COLLECTOR CURRENT (rnA)
75
JUNCTION TEMPERATURE
~
2
50D
-
Small Signal Current Gain
vs Collector Current
4
1
50
25
TJ
6
I
20
0
B
~
.
/
50
i
100
1
.1
10
1
!5
1.
I
10
j
f= 1.0 kHz
'"
~EI.~
10
~
--
I t ~o
10
31h
2
1
..'"
/
Input Admittance vs
Collector Current
~
z
.~
10k
lk
100
REVERSE BIAS VOLTAGE (V)
I
100
EVeo-30V
!
W
20
e
10
Coliector·Base Diode
Reverse Current vs
Temperature
f'.
0.1
J
1
Ie - COLLECTOR CURRENT (rnA)
30
10k
~E=~
9
8
0
I-
0
10
Z
0.2
100
",elba
40
Small Signal Current Gain
at 20 MHz vs Collector
Current
I-
~
~
F =1 MHz
I~ .1'
10
1
II
0.4
I
10
Ie - COLLECTOR CURRENT (rnA)
C
~"
1000
&0
0.4
..
~~
fl>
r-....
611
~
w
0.1
0.6
1-'"
Capacitance vs Reverse
Bias Voltage
0.6
>
-nt'
"'cow
wI'-'"
I--
70
!£
..~;
.
10
0.8
VeE - COLLECTOR EMITTER VOLTAGE (V)
1.4
WW
LIMITED
1
Base·Emitter Saturation
Voltage vs Collector Current
§!;;~
~
CD
tn
tn
.....
~
l-
tOmA
200
TC - CASE TEMPERATURE ('C)
"";::
~
SECOND BREAKDOWN
IIIII I
-E. = 10
:5;;
PULSE WIDTH
AS INDICATED
DUTY CYCLE <2%
I
.J}
I'\.
0
-
1
"";::
~~ ~~
CDNTINUDU:,~
~~IIPATION
_
LIMITED
~ -
lA
I-
2
0
Ic MAX 110MSI
r...../.
l-
"
0.1
1.0
~
1.2
'"~"
1.0
150MHI
I'--
c
,
~
:i:
~
u
1.0
0.1
~
Ill.!
100MHz
;;l
,
l\i"ii"iIJ
10
0.6
w
0,30
0.25
~
0.15
1/
'"c
0.1
l-
0.5
I--
;:
1.0
>
100
10
1.000
g
'" 220
g
:5'"g; 200
,
0::
~
"
'"'"=>
u
240
30
FRED,: 20MHz
~
25
12
1/
v
.e
./
20
w
u
::<3"
~
17
H-H1fttt11--+tttlttlt'''t-I-HliIllf-+ttttttll
";:j,
f= 1.0JUz
VeE" IOV
~
v;
180
1.000
100
10
Ie - COLLECTOR CURRENT (rnA)
Input and Output
Capacitance vs Reverse
Bias Voltage
16
"
~
1.0
>
Small Signal Current Gain
vs Collector Current
...
I.
I
Ie - COllECTOR CURRENT (rnA)
260
200
re)
.!£.. = 10
"...~
~
0.2
150
AMBIENT TEMPERATURE
Collector· Emitter Saturation
Voltage vs Collector Current
"~
~
;:
100
-
~ 0.20
>=
l-
i-
0,4
Coliector·Emitter Breakdown
Voltage with Resistance
Between Emitter·Base
c
>
I'\.
100
50
~
>
V'
0.8
.I e - COllECTOR CURRENT (mAl
t:I
'\
100
~
~
~
1.0
300
TA
Ie
=10
I.
0
'"c>=
...~
200M~Vj
'"
u
1,000
100
10
Base·Emitter Saturation
Voltage vs Collector Current
>
II
...c'"
200
1\
TO·92
~
w
5.0
x
.
I\.
Ie - COLLECTOR CURRENT (rnA)
10
25a~J
~
":;;,
.....
0')
500
400
1i:;;
0.2
Contours of Constant Gain
Bandwidth Product (f T)
~
600
'"
Ie - COLLECTOR CURRENT (rnA)
~
>=
~
Q
CD
o
o
800
700
~
u
c
"
S
1.2 "'"TT1'TT111"-rrmmrTTTTTT~ve-E~=M5~.0""'V
Maximum Power
Dissipation vs
Ambient Temperature
::l
l7
r--
15
I"
Cib
10
5.0
Cob
i'ti1
~
160
0.1
1.0
10
100
RESISTANCE (knl
10
1,000
Ie - COLLECTOR CURRENT (mM
8·23
50
"'tJ
a
o
0.1
1.0
10
VeE - COLLECTOR VOLTAGE (VI
100
.....
.....
o
o
CI)
e
~National
U Semiconductor
f-__ : : -:
O•01B:, _ _ _
c..
Process 17
NPN High Voltage Video Output
!
DESCRIPTION
(0.457)
Process 17 is a non-overlay, planar epitaxial silicon transistor with a field plate.
~
v/m'////////
~ V
/' V
.
G
APPLICATION
~ ~
.
/' '/
This device was designed as video output to drive color
CRT, mainly in complementary configurations. Complement to Process 76.
n
rD
n-'
r;v~lDr;/l
/' V / , /
~
J/J
:.u///////L.
omB
PRINCIPAL DEVICE TYPES
~
TO·202, ECB: NSE869
NSE871
~
TO·237, ECB: 92PE869
92PE871
t ; ; . / / / / / / / / / / / / / / / / '/
Parameter
Conditions
Min
Typ
Max
Units
220
280
v
400
V
BV CEO
Ic= 1 mA (Note 1)
BV CES
Ic= 100 p.A
BV EBO
IE=10p.A
ICES
V CE = 150V
lEBO
V EB =5V
hFE1
VcE =15V, Ic=0.1 mA
hFE2
VCE = 15V, Ic = 25 mA
hFE3
VcE =15V,l c =50mA
VCE(SAT)
Ic=10mA,IB=1 mA
0.1
VBE(SAT)
Ic= 10 mA, IB= 1 mA
0.7
V
fT
VCE =15V, Ic= 10 mA, f=20 MHz
90
MHz
Ccb
VCB = 10V, f= 1 MHz
1.6
pF
C ib
V EB = 1V, f = 1 MHz
2.7
pF
PD(max)
TO-202
TO-237
V
6
200
nA
100
nA
60
40
80
200
25
Tc=25'C
TA =25'C
TCOLLECTOR LEAD = 25·C
TA =25'C
1.0
V
8
1.8
W
2
0.85
W
(JJC
TO-202
15.6
'C/W
TO-237
69.4
'C/W
(JJA
TO-202
62.5
'C/W
TO-237
147
'C/W
150
'C
TJ(max)
All Plastic Parts
Note 1: Pulsed measurement, 300.s pulse width
8-24
"'C
Process 17
DC Current Gain vs
Collector Current
1000
DC Current Gain vs
Collector Current
1000
VCE'15V
~
~,
iI
100
+25°C
40°C
VCE' 2V
z
~I
~
100
.....,
....
+25:C
i,
10
,-41
10
~
~
1
0.1
10
0.1
100
10
IC - COLLECTOR CURRENT (mA)
?:
,.~
,.!_
1.2
..
~g
t:~
"'w ....
I
I
,0
Tc ,l-4oo c
~z
0.8
Te:: -40"C
l--f-
0.6
~
~g;
.-~
+25°C
0.0
~
0.4
Ie
~
~
:5
aD
if
"6
~
z
60
~,
0.1
100
Safe Operating Area TO·202
,
..l.-I-
Safe Operating Area TO·237
VCE'15V
;.,
.§.
.§.
....z
w
"'"'
'"
"''"'
100
~,
1\
20
f - - LIMIT DETERMINED
BY BVCEO
10
100
IC - COLLECTOR CURRENT (mA)
~
;::
;::
Eic;
1.0
"-
ill
'x"
..
20
40
60
~
;::
1.4
:l:!,
c
~
;;:
1.6
'"
~
"-.r\.
'"'",
~
;::
Eic;
"-
o
Hi
~
100
VCE - COLLECTOR VOLTAGE (V)
~
~
I
'\.
"
TCOLLECTOR LEAD
~TO.2J7)
TAMBIENT
~J7)
0.0
........
0.6
........
0.4
I
TAMalENT
"\. [(TO'202)
'\
.......
0.2 f - - f - - TAMB;;;rr:: t.-......
(TO·92)
0
......
~
aD 100 120 140 160
W
H
100
T - TEMPERATURE rc)
TC - CASE TEMPERATURE rc)
8·25
'~"'I'~;;:"I~
II
10
1.2
1.0
"%c::
~
Thermal Derating Curve
2.0
J'
1:tJ"-',
<$"
10
VCE - COLLECTOR VOLTAGE IV)
'"
~
e'"
t--~~;/f.
1000
12
10
F=S()"~
8,
100
Maximum Power
Dissipation vs
Case Temperature
~
~
UllNl'r:I..
100
'"
DC
"
10
1
10
i
1 ms
5ms
~
.t'
OC TCOLLECTOR LEAD" 25°C
....
I~
0
40
100
1000
;.,
1"\
10
VR - REVERSE BIAS VOLTAGE (V)
Ie - COLLECTOR CURRENT (rnA)
1000
;;l
z
0.1
10
COLLECTOR CURRENT (rnA)-
V~
;;;
.-r-
100
Gain Bandwidth Product vs
Collector Current
100
I-'"
!---
I
0.4
10
~
~5°C
Co:
Cjb
I'
0.6
,.~
......
+125°C
11"-.
t-
.. t,;
w ....
I--
10
10
w2.
1.2
;;l
I
10
!J;"
",-
~
~
Junction Capacitance vs
Reverse Bias Voltage
1.4
VCE'15V
"'~
IC - COLLECTOR CURRENT (mA)
Base·Emitter Saturation
Voltage vs Collector Current
1.4
'"
0.01 '--'-'...I.JJ.wJ..-'--"-'-='--'--'-=.w
0.1
10
100
100
IC - COLLECTOR CURRENT (mA)
Base·Emitter ON Voltage vs
Collector Current
(")
CD
en
en
......
"""
Tc'+125°C
TC' +125°C
z
~
....
Collector· Emitter Saturation
Voltage vs Collector Current
a
'\.
~
1~
lW
1000
~National
Process 18 NPN Medium Power
~ Semiconductor
==,0'7::018= _ _ _ _ _
~_ _ _ _ 10.457)
DESCRIPTION
11
Process 18 is a non·overlay, double·diffused, silicon epi·
taxial device.
1'//////////////////
~
........
V
~
'//////////,
~
vrm····.
v:~ V .
~~V~ VV~
v:r:;~ Vv: []Q
.
V V
r:; ;;
~
APPLICATION
~'"
This device was designed lor use in general purpose am·
plilier and switching applications operating in the range
01 100 ",A to 100 mAo
0.018
~~UJV:~l
... '.
% '/
V
r/
v.~
~
~/J
L////////L.
V
~
~//////////////////
parameter
IT
CCB
C EB
NF
PRINCIPAL DEVICE TYPES
TO·92, CBE: TIS98
TO·92, !=BC: MPS8098
.
Conditions
Min
Ic=' 10 mA, VcE =5V, 1=100 MHz
VcB =5V,I=1 MHz
V EB = 0.5V, 1=1 MHz
150
Typ
Max
MHz
5.0
20
2
IC= 1P0 ",A, VcE =5V,
Rs =10 kG, PBW = 15.7 kHz
hFE
Ic=100I'A, VcE =5V
40
hFE
Ic= 1 mA, VCE=5V
50
~FE
Ic = 10 m'A, VCE =5V
60
Ic=100 mA, VCE=5V
40
VBE(ON)
Ic= 10 mA, VCE=5V
0.85
VCE(SAT)
BVCBO
BVCEO
BV EBO
Ic= 100 mA, IB~ 10 mA
0.50
ICBO
lEBO
60
50
IE=10~
5
VCB = 40V
VEB =4V
..
8·26
180
pF
pF
dB
hFE
Ic= 1Ol'A
Ic= 10 mA
Units
360
V
V
V
V
V
100
nA
100
nA
"'C
Process 18
2
~
w
u
k:
111111111
VaE{SAT)@lcl'a" 10
l-jjiiil'l ...)...!,:t
0.6
«
"
>
::"
I 11111111
11111111
o.a
IV @V
<3
;;:
;:;
"5.0V
11111111 III
IIIIIIII III
0.2
""L
:,:;:u:
0
0.2
a I--..
7
u
TA"WC
6
4
u
u
50 100 200
.:;
f= 1 MHz
~
~
0.5 1.0 2.0 5.0 10 20
lE"O
9
5
~,
VCE'{:~T) @'CI'B" 10
10
~
;;;
1illlltlll
0.4
0.1
~
~
"'"i=
1
2
VeE'" 5V
foo IDOMHz
~
w
300
~
"
I
6
1\ \lli I111I1111
1
0
0.1
~_ Nif\RG"
. "., ..5, kn
.. "
3
2
100
.!C
BOG
"'"i=
70G
~
600
;;:
c
~
1
~
IC-_ 1O ,uA
1!j
I~GI"I;I~II;nl
"«x
"x
10
100
I
300
1
'\j
100
~
0
~
1000
"\[0.92
200
0
50
100
--- - - --- --
VCE" 5.0V
"
~
~
B 100
u
~
_55°C
'"wI
~
~
TJ" li5 c C
'\
~
1\ \
f---
-
\
40
0.2
0.3
0.5
0.7
1.0
2.0
3.0
5.0
7.0
10
IC - COLLECTOR CURRENT ImA)
8·27
150
TA - AMBIENT TEMPERATURE (OC)
DC Current Gain vs Collector Current
400
20
4
2
\,.
f - FREOUHJCY (kHz)
Ie - COLLECTOR CURRENT (rnA)
1
r\.
50l]
400
«
0.1
0.7
0.4
Maximum Power
Dissipation vs
Ambient Temperature
§:
11111111111111
1
0.2
VEB - EMITTER·BASE VOLTAGE IV)
.i~~lljl~O"A
0
0.01
0
10
RG" Zkn
~
I
.):"
li~"" \ ~I!III
J
5
4
~
100
a
~
u:
...
200
1
2
40
VCE" 5V
TA" 25°C
111111111111111
9
TA" 25°C
0.1
20
Noise Figure vs Frequency
~
~
0.4
10
t; 400
3
~,
VCB - COLLECTOR·BASE VOLTAGE IV)
Transition Frequency vs
Collector Current
'"~
4
w
u
10
~
5
~
4
..........
6
:::
0
TA" 25°C
7
3D
50
70
100
200
en
en
.....
CO
f= 1 MHz
a
;;;
ffi
I'
lC" 0
-I--..
9
..."«<3
"
3
10
;;:
;:;
2
1
IC - COLLECTOR CURRENT (rnA)
500
Emitter·Base Capacitance
vs Reverse Voltage
Coliector·Base Capacitance
vs Reverse Voltage
1.0
TJ" 25°C
8
(I)
Coliector·Emiller and
Base·Emiller Voltage vs
Collector Current
200
en
,....
'"'"
Q)
u
e
~National
Process 19 NPN Medium Power
~ Semiconductor
0.018
DESCRIPTION
1~---------IO.457}--------~1
c..
0.003
Process 19 is a non-overlay, double-diffused, gold doped,
silicon epitaxial device. Complement to Process 63.
APPLICATION
This device was designed lor use as a medium power
amplilier and switch requiring collector currents 01
0.1 mA to 500 mAo
PRINCIPAL DEVICE TYPES
0.018
10.457)++-r-t---IL.J-
TO-S:
2N2219
TO-1S:
2N2222
TO-92,EBC: MPS3642
PN2222
TO-237:
Parameter
Conditions
tON
Ic= 150 mA, IS1 = 15 mA
Min
tOFF
Ic= 150 mA, IS2= 15 mA
hIe
Ic=20 mA, VcE =20V,
1=100 MHz
Cob
VCS= 10V, 1=1 MHz
C ib
V ES = 0.5V, 1=1 MHz
NF (spot)
IC= 100 J'A, VCE = 10V,
Rs = 1 k(J, 1= 1 kHz
hFE
hFE
Ic= 100 J'A, VCE = 10V
Ic=1 mA, VCE =10V
hFE
Ic= 10 mA, VCE = 10V
50
hFE
Ic = 150 mA, VCE = 10V
60
hFE
Ic = 500 mA, VCE = 10V
30
2.0
TN2219
Typ
Max
Units
25
35
ns
200
285
ns
6.0
pF
3.5
4.0
25
1.2
pF
dB
30
40
180
420
VCE(SAT)
Ic= 100 mA, Is=10 mA
0.50
V
VCE(SAT)
Ic=500 mA, Is=50 mA
1.0
V
VSE(SAT)
Ic= 100 mA, Is= 10 mA
1.2
V
VSE(SAT)
BVCEO
Ic=500 mA, Is=50 mA
1.5
V
Ic= 10 mA
35
V
BVcso
BV ESO
Ic= 100 J'A
60
V
IE= 10 J'A
6
Icso
Vcs=40V
100
nA
lEBO
V Es =4V
100
nA
V
8-28
Notes
"C
Process 19
DC Pulsed Current Gain vs
Collector Current
~
500 rTTTTrrnr-n-rrnnr-"'-mT!r-T-rnm
VeE
-t-ttttttHH+Htm-+t-H1itt
;'~~'V
z
~
~ 0.8
r-T_UTTTUlIrTTTr"I""'-11'I"m
1I1!IIrr-lL--rTll"TTl
VeE '10V
IIII1111
U
I--'nm1ll-++:T .)1,±I:'5I;cc+tH-tttl
~"
l=H-mFAt---+~~oc
1.0
;:
~
400
::
300
1-++t+11t1t-+t++l1lIt-t-++l1lllI-++++HlI
1-++t+11t1t-+t++l1lIt-t-++l1lllI-++++HlI
o
~
200
1DO
I
0,6
~
H-tffiiltt±:tmFFFI*lIctttt!ffi
~
0.4
1-+tH11t1t-+ttHtrt-++l1lllIH-HI!IIl
'"~
0.2
u
o
Collector Reverse Current
vs Ambient Temperature
Base-Emitter ON Voltage vs
Collector Current
~ 200
§ 100
.....
-
20
~
10
~ 5.0
J-"Htthlttt---t-+tirttttt-H-tHlii
~ 2.0
~1.Q
~ 0.5
z
c.:
o
J
OL-LJ..1.lJ.lIIL...LJ.=Ul-J...J..J.JJllJJ'-l..J...llWl
0.1
10
100
0.1
1.0
Ie - COllECTOR CURRENT (mAl
;: 100
i=
I ::
~
V
1.0
/
~ 0.5
J.ev
VEe'"
700
50
75
100
125
TA - AMBIENT TEMPERATURE
~
C"
18
~
iii
x"
200
"
100
~
w
...U'"
1l:
I~' b
300
150
10
.....
:')
6.0
50
C,b
I
~
1600
~
1200
~
2.0
10
1.0
100
10
~
150
Q
Q
~
~~~
200
20
:\,;
16
12
~
8.0
~~il'11011
Rs'
ki9- Rs.'
I
"TO.5
50
13
VCE
I
" 0-,
"\
100
150
11
w
a:
9.0
'"
7.0
~RsIJ!J{
=10V
-
f= 1.0 me
0;
:s
J Ih
~~
w
~
C
z
5.0
I
~
z
3.0
"'"f:R V
s = lOOn
Rsl-tiP
I--'
II
1.0
2.0
5.0
10
20
200
=>
50
0.1
100 200
0.2
0.5
1.0
2.0
5.0
10
Ie - COLLECTOR CURRENT (mAl
Collector Saturation
Voltage vs Collector Current
Base Saturation Voltage _vs
Collector Current
1.6
0.5 r-l-r-rr-r---rTT"--r-r,,-,
Ie" 10 Is
= lOV
2:
w
w'"
1.0 kn
~'"
~=
loon
1.4
1.2
:...~
1.0
<0
0.8
>-z
It;
~~
:::g;
~
~
z
'\
Noise Figure vs Collector
Current
.
0.2
1.0
150
Tc - CASE TEMPERATURE (OC)
Q
1\ \
1.0
0.5
125
'\
TOr
AMBIENT TEMPERATURE ('C)
I \ 'i
NL
N
'" '" '" '" i\~
"- " " " "
100
r"--
Ie - COLLECTOR CURRENT (rnA)
Ic=300}1A
VeE
"
f-
" BOD
"k 400
'""
~
0.1
~
~
100
2000
~
~
I
24
~
5.0
~
Noise Figure vs Frequency
w
2:
w
'"~
_
REVERSE BIAS VOL TAGE (VI
w
20
F'" 1 MHz
I'
0.1
a:
-
~
Contours of Constant Gain
Bandwidth Product (fTl
2.0
~
.'\
'\
TA
~~
.....
"-"
'\
~
f'c)
1,\
14
~
75
f-
'"~ 2400
~
'\
~
z
~~
i= 2800
400
Emitter Transition and
Output Capacitance vs
Reverse Bias Voltage
u
-
;3
~
25
'"
N05
TO·92
I
~ 0.2
50
Maximum Power
Dissipation vs
Case Temperature
..s 3200
800
500
'"
I
~ 0.1
25
TA - AMBIENT TEMPERATURE ('CI
Maximum Power
Dissipation vs
Ambient Temperature
600
C
a:
10
E 5.0
~
'"
;3
..s
c: 2.0
..r:
100
Ie - COLLECTOR CURRENT (mA)
~ 200
o
10
0.2
t:l 0.1
0 L-L..Lllll!.lL...l...Ll.l.lllJJ---'....LWW
lk
Emitter Cutoff Current vs
Ambient Temperature
1/
1/
~ 50
o
A
VCE ::' 50V
S
4.0
o
0.6
0.4
-5S0C
.....
25'C
l - f-
~
1-1-""
-
...-::~
,/
0.2
0.1
1.0
10
100
f - FREQUENCY (kHzl
1000
5.0 10
50 100
Ie - COLLECTOR CURRENT (rnA)
8-29
500
1.0
5.0 10
50 100
le- COLLECTOR CURRENT (mAl
500
a
(')
CD
en
en
.....
co
.,..
o
m
u
0)
Process 19
Turn On and Turn Off Times
vs Collector Current
Switching Times vs
Collector Current
e
400
400
0..
~~~~nw--~~~nn
·Ie
1st'" 182 "'iii
320
.'"
:!
Vee
IS1
=Z5V
.,.oS
240
~
;:: 160
80
;::
.......
t,/I
-
Vee' 26V-t-H-ttt---H-H-ttt-H
240
1--t--t-H'l.ttH---t--t-t+t+tti
r-...
160
\'
-
=IS2 '" :!;~~if+fiI---t-+-If-H+Hl
320
.. .
- "0-
-..!r'
l
~"
80
0
10
100
10
1000
100
Ie - COLLECTOR CURRENT (mAl
1000
Ie - COLLECTOR CURRENT (mAl
SMALL SIGNAL CHARACTERISTICS (I:;:: 1.0 kHz)
Characteristic
S¥mbol
Typ
Units
Conditions
=10 rnA, VeE =10V
=10V
Ie = 10 rnA, VeE =10V
Ie ='10 rnA, VeE =10V
hie
Input Resistance
700.
n
hoe
Output Conductance
120
I'mhos
hIe
Small Signal Current Gain
240
h,e
Voltage Feedback Ratio
460
..:=
E
>
6.0
~
"
..
.!i
....
V
4.0
~
hj'/
.
~~.
:l
c
>
....
.
.S~"
VeE =lOV
TA =25°C
2.0
1\
o l.0
10
""
20
~
1.6
~
1.2
.
~~
....
a:~
5~
~
hi.
30
:~
!o! ....
~
2.4
1.]0 .
1.25 c-1.20 ' - -
V
V
V
.."
~~
!.-
,......
"
~ 1.15
hi'
K,
j..o1':
j...oo ho~_
40
50
60
..
1.0
..
.95
~
....
0.4
0
20
40
60
BO
TA - AMBIENT TEMPERATURE ('CI
8·30
100
le=10mAh"
TA "'25°C'
f
hie
\
lP'
-? ill..
,r.....
5.0
10
15
I--
h;. I--
\'
.90
.85
.BO
.75
0
I--
/
\\
1.10
w
c
>
0
Ie - COLLECTOR CURRENT (mAl
"~
~ 1.05
=>
i"'"
0.8
= 1.0 kHz)
h,
Ic"'10mA
VeE "l~V
2.0
Ie = 10 rnA, VeE
x1O- 6
TYPICAL COMMON EMITTER CHARACTERISTICS (f
8.0
Ie
h••
r-- ~ I-20
25
]0
VeE - COLLECTOR VOLTAGE (VI
]5
Process 21
NPN High Speed Switch
~National
a
Semiconductor
DESCRIPTION
Process 21 is an overlay, double-diffused, gold doped,
silicon epitaxial device. Complement to Process 65.
Note: Metallized
circle identifies
base pad.
APPLICATION
This device was designed lor high speed saturated switching at collector currents of 10 rnA to 100 rnA.
PRINCIPAL DEVICE TYPES
TO-18:
TO-92, EBC:
Parameter
ts
Conditions
Min
I B1 = IB2= Ic= 10 rnA
2N2369
PN2369
Typ
Max
Units
Notes
7
13
ns
Figure 1
tON
Ic=10 rnA, IB1=3 rnA
9
12
ns
Figure 2
tOFF
Ic=10 rnA, I B2 =1.50 rnA
12
20
ns
Figure 2
hIe
I c =10mA,VCE =10V,
f=100MHz
Cob
C ib
VCB = 5V, 1=1 MHz
VEB =0.5V, 1= 1 MHz
hFE
hFE
Ic=1 rnA, VcE =1V
IC= 10 rnA, VCE = 1V
35
70
150
hFE
Ic=50 rnA, VCE = 1V
30
55
150
hFE
Ic = 100 rnA, VCE = 1V
20
hFE
Ic = 10 rnA, VCE = 0.35V
30
hFE
Ic=30 rnA, VCE =O.4V
30
VCE(SAT)
Ic= 10 rnA, IB=1 rnA
0.2
V
VCE(SAT)
Ic= 100 rnA, IB= 10 rnA
0.5
V
VBE(SAT)
Ic= 10 rnA, IB= 1 rnA
0.85
V
VBE(SAT)
BVCEO
Ic= 100 rnA, IB= 10 rnA
1.5
V
Ic=10mA
12
V
BVCBO
BV EBO
Ic=101'A
30
V
4.5
ICBO
I E= 1O I'A
VCB =20V
lEBO
V EB =3V
4.5
6.5
2.0
4.0
pF
5.0
pF
30
V
8-31
100
nA
100
nA
~
Process 21
U)
U)
CD
u
Switching Times vs
Collector Current
e
100
0.
Vee'::
g
'"~
20
'"z
;;
10
;::
~
."
I'
~
~
20
.s
Storage Time vs Turn On
and Turn Off Base Currents
;,
E
-8.0
a:
a:
"~
ts =3.0 os
~
i'"'"
I-""
6.0 ns
-3.0
0
-2.0
I
~
... -2.0
'"~
c
"ott
-6.0
-5.0
2.0
-1.0
*
,:
Ic=30mA
~ -5
.v
B.O~
;I
V
~
V
6.0
!,
Y
~
/1/ /
4.0
40
J
B.O
1/
V
=J.DV
10
1,
16
l..-
12
V
10
15
20
25
30
Fall Time vs Turn On and
Turn OFF Base Current
Fall Time vs Turn On and
Turn Off Base Current
Fall Time vs Turn On and
Turn Off Base Current
-12
Vee'" l.OV
'"
'f
15 -10
....
0
"".
;'
8~
~
;'
....
le~I°~~11
Vee
=3.0
IV
/'" 1Blol.~
II
10.:-
"'"
/
~
z
~,
V
.s
I-
5'
::;
4j
=2.0 ns
1/'1
/
5!0
'7
'":Ii
-15
0
I
6.0
tf
-20
.
4.0
B.O
10
50
8.0 ns
-10
V
-5
V
.s
V
1li
a:
10 -U21L,
~w
I::t!'IT
z
~"""
~
0
Z
0:
I
L 311
50
.
1.0
"I
l-
k+-'
tOns
//
iO
:1:
~
i5
V
'"
500
~
400
,.'x"
200
~
~
TO·92
25
30
TO·1B
.''\
'\
100
1,\
~
Ie -COllECTOR CURRENT (mAl
8-32
600
a:
,.
100
20
800
~ lOO
III
10
15
Maximum Power
Dissipation vs
Ambient Temperature
w
.... 1-'20.'
I
"'"
10
I
0.1
i-'"
0
;:: 700
L
I-
~~,
/
IS1 - TURN ON BASE CURRENT {mAl
.sz
Vet;_~·~v
.,IV
17 h_-;~4.0/
=2.0 ns
12
Rise Time vs Turn On Base
Current and Collector
Current
;,
Ie::: 100 mA_ V~.O
Vice 1= 3·IOV
~
~
-2.0
2.0
-25
~
~
o
-lO
w
.~-
~
/
-4.0
;,
1. , - TURN ON BASE CURRENT (mAl
I
1., - TURN ON BASE CURRENT (mAl
10
~
o
/4.0., I
II
tf
i r 13
-6.0
I
5.ons/
/
ViC
a:
~ -8.0
~
I
y
Ic=JOmA
~
-- --
~
1
'"~ -15
0_10
V
t,~3.0';1
w
9.0 os
t- ~.O ~'L
IS1 - TURN ON BASE CURRENT (rnA)
a:
~
v.:
=3.0V
I I I
'a1 - lURN ON BASE CURRENT (rnA)
-4.0
~
6-
I
Delay Time vs Base·Emitter
Off Voltage and Turn On
Base Current
w
~ -20
1.1 V
-4.0
181 - TURN ON BASE CURRENT {mAl
2:
a:
Vee
IS1 - TURN ON BASE CURRENT (rnA)
-I-- ~ 7.0.~
-1.0
::;
,/
o
~
~
.
;: -25
J
Vee
Ic=10mA
~
~I
+-=
l- t-
/
Ic =100mA
~
x.o~
6.0.,/
t,~4.0.;1
_ -30
V7.0 •.j..I'
I I
~
*
z
I
-6.0
-6.0
w
I
~
.......
4.0 os
::l
z
-10
.s
-6.0
-4.0
10
Storage Time vs Turn On
and Turn Off Base Currents
l- I--
~
o
Storage Time vs Turn On
and Turn Off Base Currents
-8.0
-5.0
o
100
75
50
..... ~-
I-""f-'"
Vee - SUPPLY VOL TAGE (VI'
le:= 10 mA
I-
Vee'" l,OV
25
-
~
AVERAGED OVER TEN STAGES
SEE PROPAGATION DELAY CIRCUIT
Ie ;:,;10mA,I B1 ""3.0mA,IB2 ""'1.SmA
o
-12
o
'"
"
2.0
300
1
"..,
Ie - COLLECTOR CURRENT (mAl
a:
~ -2.0
I
;,
50 100
;,.
fo-'"'"
~
-10 I- Vee ~ 3.~V
.
4.0
-
;-f..- I--"'"
TA - AMBIENTTEMPERATURE (OCI
-4.0
z
I-
J
'i .......
5.0 10
'"z
6.0
~
......
~
0
I-
'f
2.0
::la:
!
t,.
~
8.0
'"
1.0
I-
10
oS
2.0
.s
12
J.ov
5.0
~
;,
Switching Times vs
Ambient Temperature
Ie - 10 IS1 ~ 10 192
50
Average Propagation Delay
per Transistor vs Collector
Voltage
500
;
50
TA
-
100
"""
150
"
200
AMBIENT TEMPERATURE ("el
"'0
Process 21
DC Current Gain vs
Collector Current
c
S
i
i!:'"
...
100
80
60
~
B
40
c
I'"
I
z:
!.III I•• !
. ~Ielj "~v
"'"
~
1I\l....I--
>
111111
li~
a::
0,6
liiU1'
~
0.4
I
0.2
li:
;a
O.Ot
~
5.0
>
~
2.0
~
~
1.0
~
§
~
_
to
~_
~
w
>
~
;:
~
;;i
w
~ ~Jc=125QC
o.t
I
;
tOO
500
lVCES
Ic=10mA
::
\
:!;
w
...'"'"
~
~
I
"
0
-
O.J
tOO
w
u
z
U
O.t
:
5 to
0.5 t
tOO
tk
tOk
Rs - SOURCE RESISTANCE (OHMSI
tOOk
ITA =2SoC
50 too
III
'f.J II
Il'}....
CibQ Ie '" 0
J.O
JOO
F = 1 MHz
I'
t::H-J.L
t-
CObo IE =0
2.0
500
-
O.t
5.0 to
0.5 1.0
50
Collector Cutoff Current vs
Reverse Bias Voltage
Collector Cutoff Current vs
Ambient Temperature
TA " 25'C
1:7
1
to
Ves = 20V
~
i-"
~
u
~
V
t.O
c
§
V
'"c
V
~
I
"Htt-
50
20
o
50tOO
ill
~
to
1.0
~
LVCEO
5.0
REVERSE BtAS VOLTAGE (VI
::
l'\
I
2.0
te - COLLECTOR CURRENT ImAi
1:... 1000
to
f/
:'5
I I
I I
I I
IIII
I !II
'"c
60
~
JO MHZ
1
Emitter Transition and
Output Capacitances vs
Reverse Bias Voltage
;:
25"C
~
70
::
1.0
i-"
~
IIJ
Ie - COLLECTOR CURRENT {mAl
f....+-HtoI
~
>
~M.$-
0.1
.....
V
v
I
o
0
~ 0.01
0
t6
24
·J2
40
Vee -COLLECTOR TO BASE VOLTAGE (VI
8·33
25
50
75
TA - AM81ENTTEMPERATURE (OCI
CD
CJ)
CJ)
~
400 MHz
4.0
0.9 f- _55°C
0.6
"
600~
l\
0.2 I--
5.0
'"
B
tOO
\
80
to
t.2
Lower Limiting Voltage vs
Source Resistance
PULSE
0.5
[IIC = 10 18
~
to
\
1.0
,
' III
650MHz
o.t
1.0
t.5
Ie - COLLECTOR CURRENT (mAl
90
i
5.0
2.0
Base Saturation Voltage vs
Collector Current
;a
T~I " -55:mi"T
>
0
'"
/I
~OD
I
I
0.1
'"'"~
Te- Z5"C
0.1
f11i'.: "tIO~"C
-~
I
to
Ie - COLLECTOR CURRENT {mAl
Ie'" 10 IB
I
>
o
too 500
0.5
0.2
'"'"~
>
O.t
Collector Saturation'
Voltage vs Collector Current
w
~
IIIIII J.l..
~
Ie - COLLECTOR CURRENT ImAI
'"~
VeE'" lOV
0
IIIII I
o
20
II
~
-
0.8
z
't~IJ5JC
20
1.0
c
~
Contours 01 Constant Gain
Bandwidth Product (IT)
Base·Emitter On Voltage vs
Collector Current
ao
tOO
.~
process 21
U)
U)
CD.
u
+6V
e
a..
10% Pulse Waveform
Point 'A'
lit
-10
=rr
_4V
0.1 pF
VOUT
V,N
(Qot--+--t t-.....-W_-t
To sampling oscilloscope
input impedance = 500
. Pulse generator
VIN rise lime < 1 ns
Rise Time ~ 1 ns
Source Impedance = 500
P\N",300 ns
Duty cycle<2%
FIGURE 1. Charge Storage Time Meas!!rement Circuit
V,N
-1--\------10%
_--'L..-:J:,---'------ 10"
'-If
--...;.;.;""'""--..... ·---=;:.:--90%
t •• - -
90%
VOUT
VBB =+12.0V
VIN =-20.9V
V,N
To sampling oscilloscope
Input Impedance = 500
~~::;'~~25V
Rise Time", 1 ns
Pulse generator
VIN rise lime < 1 ns
Source impedance = 500
PW '" 300 ns
Dutycycle<2%
-.:FIGURE 2. tON. tOFF Measurement Circuit
+Vcc
51 gil
51011
,
lKIl
PULSE
GENERATOR
t;<0.5n5
5011
51011
. 51011
t.
L
U
WAVEFORM 1
la= 5011
8 STAGES
WAVEFORM 2
Waveforms 1and 2 are superimposed
tpd= tA+t El
20
tpd = Average propagation per transistor
FiGURE 3. Circ!!it for Measur~ment of Propagation Delay
"tJ
Process 22 N PN Small Signal
~NatiOnal
Semiconductor
CD
r---K~
~J~
!fr~r
DESCRIPTION
0,015
Process 22 is an overlay, double·diffused, gold doped,
silicon epitaxial device. Complement to Process 64.
APPLICATION
This device was designed for high speed logic and core
driver applications to 300 mA.
EJ
Parameter
PRINCIPAL DEVICE TYPES
TO·52:
TO·92,EBC:
Conditions
Min
2N3013
2N5772
Typ
Max
Units
Notes
Is
Ic=10 mA, IB1 = IB2= 10 mA
12
18
ns
Figure 1
tON
Ic=300 mA, IB1 = I B2 =30 mA
10
18
ns
Figure 2
10FF
Ic= 300 mA, IB1 = IB2 = 30 mA
18
30
ns
Cob
C ib
VcB =5V,f=1 MHz
V EB = O.5V, f = 1 MHz
3.0
5.0
pF
8.0
pF
hie
Ic= 30 mA, VCE = 10V,
f= 100 MHz
3.5
hFE
VCE = 1V, 10 mA
20
hFE
VCE = 1V, Ic= 30 mA
VcE =1V, Ic=100 mA
25
60
150
20
45
150
VcE =1V, Ic=300 mA
VCE =O.4V, Ic=30 mA
15
hFE
hFE
hFE
7.0
20
VCE(SAT)
VcE =0.5V, Ic=100 mA
Ic=30 mA, IB= 3 mA
0.20
V
VCE(SAT)
Ic= 100 mA, IB= 10 mA
0.30
V
VCE(SAT)
Ic=300 mA, IB= 30 mA
0.50
V
VBE(SAT)
Ic=30 mA, IB=3 mA
0.95
V
VBE(SAT)
Ic= 100 mA, IB= 10 mA
1.2
V
VBE(SAT)
BVCBO
Ic=300 mA, I B =30 mA
1.7
V
Ic= 10 I'-A
35
V
BV CEO
Ic= 10 mA
15
V
BV EBO
I E= 1O I'-A
5.0
ICBO
VcB =25V
V EB =3V
hFE
lEBO
20
DC Current Gain vs
Collector Current
~
VeE
80
6nj...
V
60
Z5°C
.~
w
=5.0V
.......
100
nA
~
:\.
'"
~
~
W
~
I
20
~
w
0
100
Ie - COLLECTOR CURRENT (mAl
500
~
Base Satllration Voltage vs
1.6
1111
O.B
>
40
10
nA
,Collector Current
1.0
'"
I---'
1.0
V
100
Base·Emitter Oli Voltage vs
Collector CUfrent
100
(")
en
en
iOTsli
0.0015
1·-III.1S05i--
_
a
0.6
0.4
--
III
1111 III
TA =25°C
r. =
Ie
VeE = 5V
'"
~
I-
III
III
=10 18
1.2
i
100°C
:1:
~
I-
.i
O.B
I
~
0.2
~
25°C/7
~
0.4
-
~-
>
0
0
0.1
1.0
10
Ie - COLLECTOR CURRENT (mAl
8·35
100
10
20
50
100
200
Ie - COLLECTOR CURRENT (mAl
500
I\)
I\)
C\I
C\I
Process 22
U)
U)
CI)
(J
ColIE>ctor Saturation
Voltage vs Collector Current
0
10.
Q.
~
1.0
r- 1c=10I a
'"
~>
0.8
"'''
"'"'
0.6
~:-
01I-~
uo
w>
g~
UI-
"
-'"
.....
,......
,/
V
~ -4.0
1/
8.0 ns
t, = 7.0 ns
~
/'
~
12~;;;;;;
i,....- ,.......
~ """' .......
~
"E~
~
-25
t~4.01", ./I
5.0 ns
-15
/
-10
4.0
6.0
8.0
1., - TURN ON BASE CURRENT (mAl
10
~
V
10 ns
i,....-f_f-
-5.0
o
2.0
~
V
Ie"'" 300 rnA
-80
Vee
.-i-"':::::
~- ~f" ~.O J,/
-60
/
15", : :
5.0
10
15
,
IS1 - TURN ON BASE CURRENT (rnA)
8·36
z
'"=>
lI
20
25
-40
0
.
- f - f0- r-
o
:Ii
~
~
-20
I
=15V
~
I
o
I-
w
~
i=
-2.0
"E
1/
Vee'" 15V
-20
-100
/
Ie ""'100mA
~
o
I
o
i=
'\
181 - TURN ON BASE CURRENT (rnA)
-6.0
i=
15
.'\.
181 -: TURN ON BASE CURRENT (rnA)
l-
-8.0
~
MHz
l°iMri 11 1
-25
-B -15
Ic:10ls1 =101 S2
Vee =15V
IS1 - TURN ON BASE CURRENT (rnA)
-10
"iE
6.0
20
il' /
300
0.1 1.0
o
2.0.
510
400 MHz
~ -20
100
Switching Times vs
Collector Current
Storage Time vs Turn On
and Turn Off Base Currents
1
Y
I
:Ii
"'"·1
I
75
50
T. - AMBIENTTEMPERATURE lOCI
Ie - COLLECTOR CURRENT (mAl
-10
Ic ""30mA
Vee =15V
25
0.5
Storage Time vs Turn On
and Turn Off Base Currents
E
0.01
40
25
REVERSE BIAS VOLTAGE IVI
I2
30
30
0.2
~
0.02
V
550 MHz
I
I
1.0
0.1
~
~
~
_
10
5.0
!
iii
Cabo - OUTPUT CAPACITANCE
2.0
"
20
>
_1,"0--
;3
10
"'
"
0.05
j
500
F" 1 MHz
V
~
I
Contours of Constant Gain
Bandwipth Product 'fTl
I I
II
V
0,1
'"
0.01
Input and Output
Capacitance vs Reverse
Bias Voltage
III
iel " 0 I
0.2
~
jO.OOl
200
V
~
I
100
i-'"
VeE'" lOV
0.5
~
Ve, - COLLECTOR·EMITTER VOLTAGE IVI
"
~
;.0
'*B
2
Ie - COLLECTOR CURRENT (rnA)
10
8.0
50
1.0
I-
=25°C
~
1-
0.2
;:
U
TA
ili
I/J
Collector Reverse Current
vs Ambient Temperature
~
0.5
~
I
~~
Collector Reverse Current
vs Reverse Bias Voltage
V
......
20
V
/
5.0;/ L __
:,....-
./
'/
V
40
60
80
100
IB1 - TURN ON BASE CURRENT (rnA)
Process 22
Delay Time vs Base·Emitter
Off Voltage and Turn On
Base Current
~ -5.0
r:--=,..-,,.-,.-,...-.,rr-"T'7'I""T""17n
C[
-4.0
!--'---'/---Jf-+l+-W--4'!
>
~
~ -3.0 f--+-H'-1f-F--hll-t.'I--t-bo1
=
~
iE
~
:IiI
-2.0
.s...
8=
5
w
f-+--fhf-J17't-+--H'++I
=
r.r-7-t-.r-I-7''l--Y-+-t+H
!S
~
0'-"'_""'-'~-l.,£J'-''''''''..J....Jc...u
1.0
2.0
5.0
12
Vee = 15V
50
I
20
10
'>="
...
III
10
20
50
100
zoo
Z5
ill
600
400
'"
~
TO·92
i'"
JOO
x
"'"
200
I
100
.e
100
800
500
=
~
S
~
15
100
c
2
50
TA -AMBIENT TEMPERATURE 1°C)
Maximum Power
Dissipation vs
Ambient Temperature
~
::
==JOmA,I B2 ""'-3DmA
VBEIOI::: -D.SV, Vee = 15V
o
500
Ie - COLLECTOR CURRENT ImAI
.sz
'">=
.... t--::" r--
t---- 1--101
!"T
z.o
I-"
f-t;" r--;e ~ JOO mA
20ns
1.0
1., - TURN ON BASE CURRENT ImAI
w
V
10ns
l,....-
~
/
...t"
r--
~
./
5.Dns
t, '"
5.0
10
:,....--- ~
10
ill
z
-1.0
Switching Times vs
Ambient Temperature
100
:<
~
'"~
Rise Time vs Collector and
Turn On Base Currents
TO·18
."
'\
'\
50
100
"
1,\ i'-..
150
200
TA - AMBIENT TEMPERATURE I"CI
Vsa
=-l.OV
3m
lKU
JO.051'f
"---0
+7.6V
Pulse widlh",240 ns
....fL
1,.lf;I.Ons
ZIN ;500
Vee'" +10V
To Sampling Scope
Rise Time < 1.0 ns
Input Z =:: 100 Kn
FIGURE 1. tON. tOFF Test Circuit
0==rr
~'N
+6V
VOUT
10% Pulse Waveform
at Point 'A'
V,N
-10
Pulse generator
VIN rise time< 1 ns
Source impedance = 500
To sampling oscilloscope
ZIN=I00 kO
RlseTlmesl ns
PW '" 300 ns
Duly cycle < 2%
FIGURE 2. Charge Storage Time Measurement Circuit
8·37
~NatiOnal
Process 23 NPN Small Signal
Semiconductor
t
0.015
10.3811
.
0.Ot34
10.08641
•I
~~
~~
Process 23 is an overlay, double-diffused, gold doped,
silicon epitaxial device. Complement to Process 66.
APPLICATION
+
~t ;;;;t~
Parameter
I'
DESCRIPTION
0.018
10.4571
I·
This device is designed as a general purpose amplifier and
switch. The useful dynamic range extends to 100 mA as a
switch and to 100 MHz as an amplifier.
O.J034
10.08641
PRINCIPAL DEVICE TYPES
Conditions
TO-18:
NS3904
TO-92,EBC:
2N3904
Min
Typ
Units
Max
Notes
tON
Ic=10 mA, IBl =1 mA
30
70
ns
Figure. 1
tOFF
Ic=10mA,IB2=1 mA
150
250
ns
Figure 2
COb
C ib
VCB = 5V, f = 1 MHz
2.7
4.0
pF
NF
VCE = 5V, Ic = 100 p.A,
Rs = 1 kD, P BW = 15.7 kHz
hIe
Ic = 10 mA, VCE
f= 100 MHz
V EB = 0.5V, f = 1 MHz
pF
8.0
2.0
=20V,
2.5
dB
4.5
40
hFE
Ic = 100 p.A, VCE = 5V
hFE
Ic=1 mA, VCE=5V
90
hFE
Ic = 10 mA, liCE = 5V
60
hFE
Ic = 50 mA, VCE = 5V
40
20
150
360
hFE
Ic = 100 mA, VCE = 5V
VCE(SAT)
Ic = 10 mA, IB = 1 mA
0.15
V
VBE(SAT)
Ic = 10 mA, IB = 1 rriA
0.80
V
VCE(SAT)
Ic=50 mA, IB=5 mA
0.25
V
VBE(SAT)
BVCBO
Ic=50 mA, IB=5 mA
0.85
Ic
=10 p.A
V
V
60
BVCEO
Ic= 1 mA
30
V
BV EBO
I E =10p.A
6.0
V
ICBO
VcB =30V
100
nA
lEBO
V EB =4V
100
nA
.
i
DC Current Gain vs
Collector Current
i= 200
VeE
;2
I"";
120
w
'"<~
,
160
<
0:
>>-
~
=5.DV
..
i5
1\
0:
w
~
~~
~
t
0.2
40
~
;;;
0
0.1
1.0
10
Ie - COllECTOR CURRENT ImAI
100
,:
,VeE
I
I
I-
TA = 25°C
,....
-t
0.6
0.4
!
111111
111111
O.B
>>-
BO
0:
<
;:
1.0
>
"0:w
B
.
Maximum Power
Dissipation vs
Ambient Temperature
Base-Emitter ON Voltage vs
Collector Current
=5V
=
~1
10
Ie - COllECTOR CURRENT ImAI
8-38
:::
~
500
400
f
300
'x<"
'"x
200
~
,I
I
1.0
700
600
0:
i
0
i5
iliQ
100°C
r-
.§.
i=
i--'"
n
§' , 800
.
,
.~
TO·18
TO·92
"
'\ "-
100
'\.
t
100
~
0
50
100
r--...
150
TA - AMBIENT TEMPERATURE lOCI
200
Process 23
Contours 01 Constant Gain
Bandwidth Product (h)
12
.200
I1I
10
-
,!!
I;
-
0
:;:
w>
:0;
~~
~z
c5!:
<.> ....
I~
;~
.;;
$n ~~I
!l
I
.~
-$
0.1
10
~
z
4.0
....
'"
3.0
~
2.0
U
.050
~
10
u
40
z
35
....
'"
30
25
B
15
,;
10
:;:
/
10
I
1.0
50
75
100
10
1/
"
""
I
I I
f= 1.0 kHz
o
o
0.1
IIKI
t - FREQUENCY 1kHz!
1.0
10
=10 VOC, 1=1.0 kHz, TA =2S0C)
Output Admittance
f::: 1.0 kHz
TA
::;
25°C
w
<.>
Z
~
B
T~ - 25°C
TA "'2 5°C
~
.1
co
z
./
10
e:=>
I
VeE - loV
t= 1.0 kHz
f= 1.0 kHz
'"~
....=>'"
Input Impedance
100
Vee - 10V
z
~-
100
Rs - SOURCE RESISTANCE Ik nl
H PARAMETERS (VCE
.., 100
1
1111
"'e' 50"A
,l e -l00,uA
:ii
50pA
VeE::; lOV
......
10
~
~
~
1.0
!'
I
I
:.,'
10
0.1
1.0
Ie - COLLECTOR CURRENT ImAI
10
1000
I\,
Z
Current Gain
100
1/
w
~
C;
C;
SOD
10
t - FREQUENCY IMHzl
Ie::: 5.0mA
u:
10
140
160
"\
1.0
I i III I
~
'"
=>
~
::I
1.0
100
120
125
11111
w
0.1
0
80
V
Ic=1.0mA
=
H+HtItt-t-H+tllfl
w
~~,
60
8
Noise Figure vs Source
Resistance
12
I
I-""
180
25
Rs '" 200n
20
o
P.ie 1,1 \:~lmAt+I+Itttt--t--H+ttttI
"
h•• ~
TA - AMBIENTTEMPERATURE lOCI
I--
0
40
'\
20
/
12 ..-n-nnnr.,,-rnmr::--:~
:ii
VeE -lOY
Ie::; lOrnA
=
~
I\-+-+-+I-!+Jj
1IIIcIl-l+l-HilllI-VCE ::; S.OV
100
Current Gain and Phase
Angle vs Frequency
/
100
10
100
Ie - COLLECTOR CURRENT ImAI
50
100
I
0
10
.1
100
~
m
V""'"
r--
.65
Noise Figure vs Frequency
~
....
ffi
c:
.70
~
;"
45
REVERSE BIAS VOLTAGE IVI
~
}~
1000
~
tt
10
.75
Collector Cutoff Current vs
Ambient Temperature
~
1.0
.80
i=~
~~
.025
e
1.0
0.1
_/
§
"-
.85
·10-
TA""25°C
Ie - COLLECTOR CURRENT 1m AI
Cib
I"'-
~~
we
I!:
I,
.90
=z
~>
.075
1.0
~
r--.
/
Ie
.95
.60
F 1 MHz
--
.... '"
.100
Capacitance vs Reverse
Bias Voltage
5.0
~~
"
TA ::; 25"C
.125
Ie - COLLECTOR CURRENT (rnA)
-
r-
'lO-
I
100
10
Ie
",0:
~
Base Saturation Voltage vs
Collector Current
1.00
II
.175
:;;w .150
w'"
IW
,!!
0
'"
~~
~~
>!
:E
,!!
'"
11l
-
J
Collector Saturation
Voltage vs Collector Current
1.0 L........L.....L..-W..L.LI.ll.--l-J...l..LllW
0.1
1.0
10
Ie - COLLECTOR CURRENT ImAI
8·39
1111
0.1
0.1
1.0
Ie - COLLECTOR CURRENT ImAI
10
..;::
I
co
m
fJ:
Process 23
H PARAMETERS (V CE = 10 Voc,l =1.0 kHz, TA =25°C)(Continued)
Voltage Feedback Ratio
10
Charge Data
5000
10V
f= 1.0 kHz
TA = 25°C
VeE
\
3000
2000
..'"
~
700
500
~I=
d
1.0
0.1
,.;::
100
100
III
Vee - 40V
leila = 10
,
I-- I-
TJ "125°C
!
~ 100
;::
F=== F
g
Tr 25°C
"I"
100
~
TJ = 125°C
~
to
10
5.0
10
TJ ;;2SoC
10
IS1 - 182
-Ie/le = 10
1.0
100
~
...,
';=1,-1/8',
5.0
5.0
100
1.0
Ie - COLLECTOR CURRENT (mAl
Ie - COLLECTOR CURRENT (mAl
10
Ie - COllECTOR CURRENT (mAl
TRANSIENT CHARACTERISTICS (- TJ = 25"C - TJ = 125°C)
+3.0V
a
-O.5V
275
~ +10.6V
300 os -j
OUTY CYCLE = 2%
~
I
_.J
1j.-
<1.0 ns
C,<4.0pF
FIGURE 1. Delay and Rise Time Equivalent Test Circuit
+3.0V
\
.~ 275
Q
10 <', < 500 '" -.j "
DUTY CYCLE = 2:
-9.1V
Vee =40V
lelia = 10
~
~
'"'"co
10
IS1 -l s2
;::
In,
~
100
~
LlU
•-rtJItj r--,..
TJ= 125°ri
~-t--
J
1.0
10
Fall Time
~
~
-?
500
III
I~\. 25JC
3.0V
Ie - COLLECTOR CURRENT (mAl
500
w
~
r---
,,@Voa
1.0
Storage Time
.~
w
10
~
~ ~p
2m
10
Ie - COLLECTOR CURRENT (mAl
Rise Time
500
~
I
5.0
1.0
Ie - COLLECTOR CURRENT (mAl
~
t,@ Vee
0..~
50
10
15V
TJ -25°C
Q.
1.0
40V
,.;::'"
f-- ~ ~
100
r--.. i-'"
~":\
lli
!
TJ ;;' 12Soe
V
200
leila = ,0
I'\."~
100
g, 300
1\
~
lelle '" 10
g 1000
1\
]
Turn On Time
500
Vee - 40V
::l
I--
*
+10.9V
JU.o
10K
.A
~r ~
C,<4.0pF
~~'N916
os
.. ~
I
~_.J
'"="
FIGURE 2. Storage and Fall Time Equivalent Test Circuit
8·40
100
~National
Process 25 N PN Memory Driver
~ Semiconductor
0.Ol9
-------1
0.0145
-(0.36831~
0.004
DESCRIPTION
(0.731)
I
Process 25 is an overlay, double·diffused, gold doped,
silicon epitaxial device. Complement to Process 70.
~(D.1021-
APPLICATION
This device was designed for high speed core driver
applications.
PRINCIPAL DEVICE TYPES
0.Ol6
-f--r'-tiIHtH-RtHlftH.HItlIHl1H-H-HH-IHl-IH7'--7i--.L:. (0.660)
TO·18:
TO.39:
2N4014
2N3725
TO·237: TN3725
--0.004
(0.10l)
Parameter
Conditions
Min
Typ
Max
Units
Notes
tON
Ic=500 mA, I B1 =50 mA
12
35
ns
Figure 1
tOFF
Ic=500 rnA, I B2 =50 mA
50
60
ns
Figure 1
hfe
Ic = 50 rnA, VCE = 10V,
f= 100 MHz
Cob
VCB = 10V, f = 1 MHz
S
pF
C 1b
V EB = 0.5V, f = 1 MHz
55
pF
hFE
Ic= 10 rnA, VCE = 1V
40
hFE
Ic = 100 mA, VCE = 1V
45
hFE
.l c =300 rnA, VcE =1V
35
hFE
Ic=500 mA, VcE =1V
25
hFE
Ie = SOO rnA, VCE= 1V
20
hFE
Ic=1A, VcE·=1V
15
hFE
25
2.5
4.25
6
90
150
hFE
Ic=SOO mA, VcE =2V
Ic =1A,VCE =5V
VCE(SAT)
Ic= 10 rnA, IB= 1 rnA
0.20
V
VCE(SAT)
Ic= 100 rnA, IB= 10 rnA
0.20
VCE(SAT)
Ic=300 rnA, I B =30 rnA
0.40
VCE(SAT)
Ic=500 rnA, I B =50 rnA
0.50
VCE(SAT)
Ic = SOO rnA, SO rnA
O.SO
VCE(SAT)
Ic= 1A, IB= 100 rnA
1.20
V
V
V
V
V
VBE(SAT)
Ic=10 rnA, IB=1 rnA
0.70
V
VBE(SAT)
Ic= 100 rnA, IB= 10 rnA
0.S5
25
VBE(SAT)
Ic=300 rnA, I B =30 rnA
1.20
V
V
VBE(SAT)
Ic=500 rnA, I B =50 rnA
1.20
V
VBE(SAT)
Ic=SOO rnA, IB=SO rnA
1.50
V
VBE(SAT)
BVCEO
Ic= 1A, IB= 100 rnA
1.70
Ic= 10 rnA
40
V
V
BVCBO
Ic= 100 p.A
SO
V
BV EBO
Ic=10p.A
6
ICBO
VCB=40V
lEBO
V EB =4V
V
S·41
100
nA
100
nA
Ell
II)
C\I
0
0
Process 25
CD
e
0..
120
2w
VeE:c 1.OV
z
;;:
~'"
">z
"
100
.'"
>-
ill
~.
~
..~
SO
60 . /
."
~
1.0
0.2
10
1000
100
Collector Saturation
Voltage vs Collector Current
2w
'"'" O.S
">=
z
";:: 0.6
Ie'" lOla
III
ll0Jc
:i
0.4
~
8
0.2
;:
"iA
I
~
1.0
10
ill
~
o
e
.
"
8
III
o
50
Ves::: 40V
w
~
~
~
10
~
..
1.0
~
r'"
II'!'r
1.0 •
0.1
50
75
100
~
0.2
:::
0.1
20
REVERSE BIAS VOLTAGE (VI
100
450 MHz I
400~
fT1il1lT
100
Maximum Power
Dissipation vs
Case Temperature
50
1000
..~
600
II!
400
..x
II!
-......; ~TO.237·
~
...... r-..
TO·1B
~ 200
~~t
i
.E
- r--
~........
'\ -....;: ~
I
x
'"
"\.
50
100
150
200
TA - AMBIENT TEMPERATURE ('CI
r--
\. ",.39
ZO
- '""
i
TO lB
l-
100
50
-
8·42
10
I- ~
ISO
-
t,
..... .....
It
I,
.
I""\,
Te - CASE TEMPERATURE ('CI
* One square Inch of copper run
1000
Switching Times vs
Ambient Temperature
100
"
100
Ie - COLLECTOR CURRENT (mAl
1400
.. SOD
r-- .:'
I
10
SOD 1000
1600
1200
.........
ZO
lorm
~
~
!a
toff
40
~ 350 MHz
~OMrzlllllll
50
30r
"-
60
./.
=
10
SO
=182 = Ie '10
Vee'"
80
~
oS
60
Turn On and Turn Off Times
vs Collector Current
Ie - COLLECTOR CURRENT (mAl
Maximum Power
Dissipation vs
Ambient Temperature
40
Vep - COLLECTOR·BASE VOLTAGE (VI
"1111 I I
1.0
0.1
50.
"
".-
"
l/'
ISl
1\
I
10
./
125
1--\ -
~
III
1.0
0.3
j
0.01
8
e---
TA =25°C
0.4
I
. 1\ \
5
1000
100
0.5
~
10
'"~
">
"
10
~
2w
10
:f
i>-
Contours cif Constant
Bandwidth Product (tTl
-
I
1.0
TA - AMBIENT TEMPERATURE ('CI
r--
Cibo
"""
1000 e
ill
Input and Output
Capacitance vs Reverse
Bias
ii:
-
Collector Cutoff Current vs
Reverse Bias Voltage
25
F::: 1 MHz
-
~~
~
Collector Cutoff Current vs
Ambient Temperature
Ie - COLLECTOR CURRENT (mAl
.!!
O:B
S
! 0.4
~ 0
~
'/
l- f-'""
Ie - COLLECTOR CURRENT (mAl
I
;
~
-55'C
25'C,
Ie - COLLECTOR CURRENT (mAl
1000
50
100
~ 0.1
=
I-II
100
100
10
1.0
~
~
~
1.2
I
0.1
i
Ie'" lOla
w
>-
A~J -
:::::;
~
I
Tr~
25'C~
I
.."
..
g;
~~~lll~~~C
Ie - COLLECTOR CURRENT (mAl
>-
~
"~
Z
1.0
w
'"~
z
f-tT flllll
I 1J.U.I!+-
Q
20
...'"
.."
Wi.-
A
I
Ve,=5V
_ITI ~~~!~_
0.6
0.4
~ 1.6
II 111111
O.S·
i
~
~
40
I
~
Base Saturation Voltage vs
Collector Current
Base·Emitter ON Voltage vs
Collector Current
DC Pulsed Current Gain vs
Collector Current
(.)
zoo
le= 500 mA
IB1'" IS2 '" le/lO
Vcc=lOV
-50
·50
100
TA- AMBIENT TEMPERATURE ('CI
150
"tI
Process 25
Delay Time vs Turn On Base
Current and Reverse Base·
Emitter Voltage
Switching Times vs
Collector Current
50
I III
I i I rTl
40
;<
.s
t,
iii
l'
~
Vee"' 30V
§
30
~
t=
20
10
~--=F=r,I
1
I
H=-'I
I
o
-LlH
Ii!
I'...
w
I
II'
I I,
I,
ITtm
100
1000
30
30
~
c
"
~
I
.
;<
i
w
o
jl
".-
10
80~
100 rnA
0I
~
40
=500 rnA
2y
1 "3:V l(
V
150
ts
=20 ns
/
100
V
V
V/
50
50
50
V
;<
I.
.l
I-- ,=1205/
t
t--20
l-
/
V
15 ns
;li 100
V
~ [;:;;;
"
a:
=>
0-
50
I
-
20
30
40
50
lS1 - TURN ON BASE CURRENT (rnA)
o
I
/
z
6 ns
PW~
1 ~s
ZIN ;500
;<
Duty cycle<2%
~
iii
a:
V
B 200
Ie
=000 rnA
_
t~"'0"IS /
J
w
~
I--
c
"a:
I
100
Ie = BOO rnA
Ie = 500 rnA
=
200
300
0-
I
jl
30V
100
200
~VOUT
t r <1 ns
ZIN20100 kO
_6211
FIGURE 1. Ic=500 rnA, 181 =50 rnA, 182= - 50 rnA
191 -
V
/
15 ns
./
V
r-- --;;'"'
-
V/ /
=>
150
/
TURN ON BASE CURRENT (rnA)
Vee = 30V
0-
To sampling scope
8·43
300
.s
+30V
~'N1
/
/
Fall Time vs Turn On and
Turn Off Base Currents
luF
VIN;+9.7
45 ns
100
SWITCHING TIME TEST CIRCUIT
tr and tf.$1 ns
II
I
Vee = 30V
191 -
ISl - TURN-ON B.ASE CURRENT (rnA)
lKu
35 ns
/
200
l V
100
-3.BV
100
g;
X
-
50
[I
I
Vee
o
/
/
200
jl
...... V 10":
~ I-- f-
c
/
10
[I /
~
V-
--o
tl~5"~ J
150
w
V
/
10
I
,/
1
30
200
.s
~w
c
150
300 400500
/
t.=20ns/
iii
a:
0-
100
Vee = 30V
200
300
~
50 ns
:..-
V
k:::: :..- I--
~
Storage Time vs Turn On
and Turn Off Base Currents
0-
Fall Time vs Turn On and
Turn Off Base Currents
=30V
/'
.s
I-- r -
40ns~
/
,/
15 ns
100
50
;<
V
Fall Time vs Turn On and
Turn Off Base Currents
Vee
V
V
10 - COLLECTOR CURRENT ImA)
V
'I
~
Vee = JDV
30
/
8 "S
10
60 70 8090100
ISl - TURN ON BASE CURRENT (mAl
I
o
~
c
.- V =
Ie
20
Ie = 100 rnA
40
/'
50
lel - TURN ON BASE CURRENT {mAl
50
;li
"
~
I
60 ns
V
o
Ie
~
V
40",
/.
10
~
c
~
20
.s
0-
it--
200
.s
I
II
-
;li
40
Storage Time vs Turn On
and Turn Off Base Currents
;<
~w
/
V
IBl - TURN ON BASE CURRENT (mAl
;<
40
20
.
Storage Time vs Turn On
and Turn Off Base Currents
iii
a:
g;
/.
5 "S
0I
Ie - COllECTOR CURRENT (rnA)
.s....
30
/
....
40
;li
~
z
11H4
I
10
50
t,=3ns
~
r--..:: ::J....H1'
1--""'"
-
0-
(")
CD
CJ)
CJ)
I\)
(J1
'100
III
=182 =le/lO
ISl
Rise Time vs Collector and
Turn On Base Currents
a
200
300
TURN ON BASE CURRENT (rnA)
to-
N
en
en
CI)
(.)
e
~'National
a
.Process 27 NPN Small Signal
Semiconductor
0.018
------(0.457)-------"-
0...
DESCRIPTION
Process 27 is a non-overlay, double-diffused, silicon
epitaxial device.
0.0035
(0.0889)
APPLICATION
This device is designed for general purpose amplifier and
switch applications, useful from audio to RF frequencies.
PRINCIPAL DEVICE TYPES
0.018
(0.451)
TO·18:
2N915
TO·92, EBC: PN3694
TO·92, ECB: 2N3394
Parameter
NF (wideband)
Conditions
Min
Typ
Max
Units
VCE = 5V, Ic=100!'A,
PBW = 15.7 kHz
VcE =5V,l c =100!,A,
f = 1 kHz, Rs = 1k
1.5
dB
1.5
dB
Cob
Cib
VCB = 10V, f= 1 MHz
VEB = 0.50V, f = 1 MHz
2.5 .
IT
VcE =10V, Ic= 10 mA
VCE = iOV, Ic= 100!,A
250
VCE '=10V, Ic=1 mA
V CE = 10V, Ic= 10 mA
50
NF (spot)
hFE
hFE
hFE
hFE
VCE(SAT)
VBE(SAT)
BVCBO
VCE = 10V, Ic=50 mA
Ic= 10 mA, IB= 1 mA
3.5
7.0
pF
pF
MHz
450
40
60
180
360
45
Ic= 1 mA, IB= 1 mA
0.20
V
0.85
V
Ic=100!,A
50
V
BV CEO
. BV EBO
Ic=10 mA
35
V
IE=10!,A
5.0
ICBO
VcB =40V
100
nA
'EBO
VEB=4.0V
100
nA
8·44
V
Notes
Process 27
DC Current Gain vs
Collector Current
Base·Emitter ON Voltage vs
Collector Current
~
400
VeE = lOV
~
z
....z~
~
0,9
~
~
200
'"
V
100
uJ
r....
~
i
0.1
1.0
10
.....
~
0.4
~
~>
z
'"
~
IB
10
tlttf-H++I1Itt-1+f+H'II
0.3 f-H++IfIIj--++l-+++Ill-+++-~
~
f-H++ItHt--+-H-t+tIll-+1l+HttIl
/
~
~
""
~
~
"'"~
'"....w
....
8
'"
~
w
I
~
1.0
ton
~ !-.
to,,1 81 ::1 82
.....
w
:E
V
>=
0.7
100
V
,
.
"
0.6
~
1,," ::
r--
0.9
1.0
10
o.s
10
Switching Times vs
Collector Current
Vee = f5V
181 :: 102 =
1000
. "....,. t--t:-
g
>:>=
t,-
.....
100
'"
20
60
100
Ie - COLLECTOR CURRENT (rnA)
Noise Figure vs Collector
Current
10
VeE'" S.OV
16
1
VeE::
-
s.nv
f = 1.0 kHz
'"'"
'!!
w
~
1,_
10
1.0
t= 1.0kHz
m
r-
1.0
Noise Figure vs Source
Resistance
s.nv
t~
.....
Ie - COLLECTOR CURRENT (rnA)
Noise Figure vs Frequency
=---
Id=
t-10
~~
=
10
1.0
100
Ie - COLLECTOR CURRENT (rnA)
10000
'~
10
100
f - FREQUENCY (MHz)
z~
Vee = 15V
VeE:;:
1.0
100
~ VBEIOI ;; O.5V
) - - t-
r- t1000
10
I
..c
10
tON and tOFF vs Collector
Current
IB
1.0
........
Ie - COLLECTOR CURRENT (rnA)
5000
0.1
l'
8"
11.
0.1
~
10
z
I· ""
..E.::
10
0.8
100
~
Ie - COLLECTOR CURRENT (rnA)
~
VeE = lOV
Ie = 10 rnA
~
5.0
'"'"
1.1
200
w
100
1.0
~
150
500
~
~
10
100
....z
w
Base Saturation Voltage vs
Collector Current
?
z
'">=
50
i"-,
~
Small Signal Current Gain
vs Frequency
z
?
1.0
1.0
•
~
Small Signal Current Gain
vs Collector Current
0.1
0.1
~
100
TA - AMBIENT TEMPERATURE ( C)
I
I
-
100
10
>
0.2
\
200
Ie - COLLECTOR CURRENT (rnA)
~
'"o
1.0
10
=
300
10·18
,"-
~
0.1
Collector· Emitter Saturation
Voltage vs Collector Current
~
TO·92
I
0.5
100
I'-
500
400
,."x
,.......
Ie - COLLECTOR CURRENT (rnA)
?
600
~
1l,.
./
0.7
Z
:>~
ill
'"
I
V
700
0
~
'"
800
'"
>=
;;:
>
300
'"
I
VeE = lOV
"
l<
.sz
1.1
w
Maximum Power
Dissipation vs
Ambient Temperature
/
'"
"
12
~
u:
w
..
~
0
100
lk
f - FREQUENCY (Hz)
IRs
~
Z
1.0 H2
V-
-'!±!(
o
lOOk
=
~11117-
Ie '100"A
I
10k
-
I
~
=1 kn
III I IIII
10
~
1\
I
Ie:: 100~ Rs
10
100
lk
10k
Rs -SOURCE RESISTANCE,(Il)
8-45
lOOk
0.001
0.01
0.1
1.0
Ie - COllECTOR CURRENT (rnA)
10
Process 27
COMMON EMITTER Y PARAMETERS
.. Output Admittance vs
Collector Current
Input Admittance vs
Collector Current
3.0
~
.!
.S
VeE::: 5.nv
'.10.7 MHz
-;
2.5
~
2.0
ico
1.5
....
'"
....
'"
,
....
~
.
2.4
VeE· .5.0V
.!
2:0
"z
·1.B
ico
1.2
=
~
=
0.8
I
b.,
1.0
!!!
0.5
,!
~
rI--
1
/
....
'"
....
/
/
/
....
'"
",
r:t
>~
1.0
/
::!r
i:~~
~~
~
0.4
...........
~
~!
boo
160
VeE = 5.0V
'·r·
11./
1MHZ
120
/
80
40
V
,!
V
V
-'l
~~.
io'"
o
o
1.0
50
10
.~!
~J-
'·10.1MHz
w
w
"z
Forward Transfer
Admittance vs
Collector Current
10
50
1.0
Ie - COLLECTOR CURRENT (mAl
Ie - .COLLECTOR CURRENT (mAl
10
50
Ie - COLLECTOR CURRENT (mAl
Reverse Transfer
Admittance vs Collector
Current
0.3 r-'---'-'-,.-,...,..TTMn-."..-..-.....,
VeE::: 5.0V
1--t-t-t-t-HftH- ,. 10.7 MHz
II:
$!
:-b!.
i
0.2
f.,--I..:...t+++-1H+1-+++t
i~
~g
.. '"
0.1
I--t-t+t-HH-H--j--j-+r
~
....
-
'co
~ftI.
.....
...c.""""....,
O __....I........I..Io~.....
1.0
Ie - COLLECTOR CURRENT (mAl
COMMON EMITTER H PARAMETERS
Small Signal Input
Resistance vs Collector
Current
..
Small Signal Output
Conductance vs Collector
Current
100
Cl
I
VC"E = 10V
"-
'·1.0kHz
w
"
Z
'"
In
.
i1i
....
~,
A
1.0
200
,,~
150
"::
I
100
,
"
10
""'
-
50
o
20
0.1
Ie - COLLECTOR CURRENT (mAl
1.0
~
....
:5
..
:Ii
..~~
w
">,
80
0;
L
~
~
iJi'",
10
20
f= 1.0kHz
40
""- r-...
,;
0.1
1.0
10 20
Ie - COLLECTOR CURRENT (mAl
8·46
300
200
100
~
BO
20
-
400
~
VeE'" 10V
1\
\
VeE::: 10V
'·1.0kHz
500
i:l
Small Signal Voltage
Feedback Ratio vsCollector .
Current
100
BOD
.. ....;;'"
I
Ie - COLLECTOR CURRENT (mAl
~
;:
"
'"
. 1:l
Small Signal Current Gain
vs Collector Current
z
VeE -10V
f= 1.0kHz
'~
1.0
0.1
250
~
2:
z
"""
10
50
10
1.0
10
Ie - COLLECTOR CURRENT (mAl
50
Process 37 N PN Medium Power
~National
a
Semiconductor
DESCRIPTION
0.031
1-----(0.7B1I - - - - -
Process 37 is a double-diffused, silicon epitaxial planar
device. Complement to Process 77.
APPLICATION
This device was designed for general purpose medium
power amplifiers and switching circuits that require
collector currents to 2A.
PRINCIPAL DEVICE TYPES
TO-202, EBC: NSD102, 103
NSDU01,01A
NSDU02
TO·202, BCE: NSE180
TO·237, EBC: 2N6714, 15
(92PU01, 01 A)
TO·237, ECB: NA21/31 Series
TO·126, ECB: MJ E180
MJE720
TO·92, EBC: ED1702
Parameter
Conditions
Min
Typ
Max
Units
BVCEO
Ic=10mA
25
V
BVCBO
Ic= 100p.A
40
V
BVEBO
IE= 10 p.A
5
ICBO
VCB=20V
lEBO
VEB=4V
hFE
Ic = 100 rnA, VCE = 1V
60
hFE
Ic=1A, VCE=1V
40
VCE(SAT)
Ic = 1A, IB = 0.1A
0.5
VBE(SAT)
Ic=1A,IB=0.1A
1.25
V
fT
Ic = 100 rnA, VCE = 10V
Cob
VCB = 10V, f = 1 MHz
20
MHz
pF
PD(max)
TO·126
TO·202
10·237
TO·92
150
V
160
100
nA
100
nA
360
300
17
V
Tc=25·C
TA=25·C
15
1.5
W
Tc=25·C
TA =25·C
10
W,
2
2
TCOLLECTOR LEAD = 25·C
TA =25·C
850
W
mW
TA =25·C
600
mW
liJC
TO·220
Tc=25·C .
TO-126
Tc=25·C
TO-202
Tc=25·C
12.5
TO-237
TCOLLECTOR LEAD = 25·C
62.5
liJA
TO-126
TA=25·C
83.3
TO-202
TA=25·C
62.5
8.33
TO-237
TA =25·C
147
TO-92
TA =25 PC
All Plastic Parts
208
TJ(max)
150
8-47
·C/W
·C/W
·C/W
·C/W
·C/W
·C/W
·C/W
·C/W
·C
•
Process 37
Typical Pulsed Current Gain
vs Collector Current
...Efi~
Typical Pulsed Current Gain
.vs Collector Current
.....
1000
I°FuBmE.
1000
ii
_
2
_
2
f5
100
0:
0:
Coliector·Emitter Saturation
Voltage vs Collector Current
100
0:
.
~
~
i ~'II~;II;III.
:;l
~
10
if
I
10
0.1
1
0.01
10
IC - COLLECTOR CURRENT (A)
Base·Emitter ON Voltage vs
Collector Current
1.2
Vc!.~,I,~ (25"~)
~~
i'li
...
l-VcE -l0V(25°C)
~
~ !:;
="
,>
zre
0.8
,:
0.4
--I-'
~
"'>
..,.~
:i~
100
~
0.6
i=!C
~o:
JS
VC! ~ 1,~ .(.I.~,50C! -: t
VeE -10V (125°C)
10
r-T"TTTTn1r-,,..,..rrmr-rTTTI1r111
O.B
w"
t
0.2
1.
100
10
Ie - COLLECTOR CURRENT (rnA)
Gain Bandwidth Product vs
Collector Current
o
Safe Operating Area TO·202
i!
:E
"ill
...
~\\
ill
0:
0:
0:
1m,
S'ms
O'C
"
0.1
8
-
I
~
0.01
LIMIT DETERMINED
BY BVCEO
'I
lk
~
z
...
ill
0:
ilic;
~0:
0:
i!!i
"
0.1
24
22
20
lB
16
14
12
10
0.01
100
100
VCE - COLLECTOR·EMITTER VOLTAGE (V)
~
"
~ ~'126
1.6
i
1.2
" ......................
lA
c;
1.0
0:
0.8
- -
~
~
0.6
e
0.4
~
I
TD·202
0
~
z
"
I
~
'~
Thermal Derating Curve
I.B
1i
0.01 '--"'_ _ _ _.....::.:=..I...L-L.J.J..w
100
10
VeE - COLLECTOR·EMITTER VOLTAGE (V)
2.0
;!!
I
~
THIS LIMIT
DETERMINED
BVceo
I
.!!
Maximum Power
Dissipation vs
Case Temperature
"
~
3:
~
0.1
8
VCE - COLLECTOR VOLTAGE (V)
Safe Operating Area TO·237
10
0:
"
=f
10
IC - COLLECTOR CURRENT (rnA)
~
m
1m'
DC
..'"
~
100
EI00",
5
0:
0:
10
30
10
.s...
~
20
10
Veo - COLLECTOR·BASE VOLTAGE (V)
Safe Operating Area TO·126
VCE -10V
1
OL..J.....L....J-I..-'-'-!..-'-'-!..-'-'-!..-'-'
l'
10
~
I-++t-++H++-l-++I-+-I
10
0.4
Ie - COLLECTOR CURRENT (rnA)
~8
Coliector:Base Capacitance
vs·Coliector·Base Voltage
wI:~
:ill::
1-
::::
10
IC - COLLECTOR CURRENT (A)
0:>
~II~
.-
0.6
~p
0.1
10
Base·Emitter Saturation
Voltage vs Collector Current
1.2
cf.;E_~:~.:=:::~:~
I", ,
0:
0.1
IC - COLLECTOR CURRENT (A)
0.2
0
0
20 40
60
BO 100 120 140 160
TC- CASETEMPERATURE (OC)
8·48
0
25
50
75
100
T _ TEMPERATURE (OC)
125
150
Process 37
Thermal Response in TO·126 Package
~~
0.1
0.5
D = 0.5
0.3
O.Z
.... '"
......
O.Z
0.1
w!;
u;w
0.1
0.01
0.05
~~
.. co
...... ""
.... 1;;
1-
:g~
I,,;I1II
0.05
ITInoJC(.I=r(.I.OJC
P(okl
0JC DC THERMAL RESISTANCE
L
TOk = TC + POk .0Jc('1
~ -5T O'OZ
I-- \_ 0.01
~';
0.03
0.02
-1"-·zLJ
I-- \ O(SINGLE PULSE)
0.01
O.OZ
0.05
O.Z
0.1
0.5
10
DUTVCYCLED=~
zo
50
zoo
100
'1 - TIME (m.)
Thermal Response in TO·202 Package
~~
ffi:i
~;
......
0.1
0.5
ID =
0.3
10.:
O.Z
Zco
w!;
u;w
....
........
0.1
z"" 0.01
0.05
l!a
... ffi 0.03
.".
..
O.OZ
I:~II
m~
.l...-r.t!l-
~ ~tsnn •
1'51 :LE~
,O~l
I~
!N(
-I-:-:.z:,:"
0.01
0.01 O.OZ
0.05
0.1
O.Z
0.5
10
ZO
50
'I - TIME (nul
8·49
100
zoo
500 lk
°Jc(')=r(t).OJC
0JC DCTHERMAL n ••••• K" ••
TOk=TC+POk .0Jc(l1
DUTY CYCLE 0 = ~
Zk
5k
10k
20k
50k
100k
Process 38 NPN Medium Power
~National
~ Semiconductor
DESCRIPTION
Process 38 is a double·diffused, silicon epitaxial planar
device. Complement to Process 78.
APPLICATION
This device was designed for general purpose medium
power amplifier and switching circuits that require
collector currents to 1.5A.
PRINCIPAL DEVICE TYPES
TO·202, EBC: 2N6551
D40D1-14
D40E5,7
NSD102,103
NSDU05
TO·202, BCE: NSE180, 181
TO·237, EBC: 2N6716
(92PU05)
Parameter
Min
Typ
Max
Units
BVCEO
Ic= 10 mA
40
V
BVCBO
BV EBO
Ic= 100 p.A
65
V
ICBO
VCB=40V
IE=10p.A
V
5
lEBO
VEB =4V
hFE
Ic = 100 mA, VCE = 1V
60
20
160
100
nA
100
nA
360
hFE
Ic=1A, VCE=1V
VCE(SAT)
Ic=500 mA, I B =50 mA
0.5
VBE(SAT)
Ic=500 mA, IB =50 mA
1.25
fT
Ic = 100 mA, VCE = 10V
COb
VCB = 10V, f = 1 MHz
PD(max)
TO·126
I
Conditions
TO·237, ECB: 2N6705,6
(92PE37A, B)
TO·126, ECB: BDE345
MJ E181
MJE721
125
V
MHz
250
14
V
18
pF
Tc=25'C
TA =25'C
15
1.5
W
TO·202
Tc=25'C
TA =25'C
10
2
W
TO·237
TCOLLECTOR LEAD = 25'C
TA = 25'C
2
850
W
mW
TO·92
Tc =25'C
600
mW
(JJC
'C/W
TO·220
Tc = 25'C
TO·126
Tc=25'C
8.33
'C/W
TO·202
Tc=25'C
12.5
'C/W
TO·237
TCOLLECTOR LEAD = 25'C
62.5
'C/W
(JJA
TO·126
TA =25'C
83.3
'C/W
TO·202
TA = 25'C
62.5
'C/W
TO·237
TA =25'C
147
'C/W
TO·92
TA =25'C
All Plastic Parts
208
'C/W
TJ(max)
150
8·50
'c
Process 38
Typical Pulsed Current Gain
vs Collector Current
Typical Pulsed Current Gain
vs Collector Current
1000
Coliector·Emitter Saturation
Voltage vs Collector Current
10
1000
10.,,_
0.1
10
0.1
IC - COLLECTOR CURRENT (AI
Base·Emitter ON Voltage vs
Collector Current
?
If
1.2
VeE" IV (-40 CI~.!lll
Ve , "10V (-40
Ve, "10 (25 cll
'"
,.~
~
'"
0.6
I-
~
0.4
g
0.1
I
J~
c~
I-
~
1.2
i=
~
~.'" ~
;;a
Ve, "IV (125
Ve , "10V (125 Clm
Z
100
30
~
",
1"2::.5"~C.-I"fF-ftti,If---HftttttH
20
L-
r
ti
o
Ik
"
~
200
1=
C>
g
~
lk
10
"'oS
Safe Operating Area TO·202
~
~
100
J---'
10
100
LIMIT OETERMINE:m
BY BVCEO
Ik
10
IC - COLLECTOR CURRENT (mAl
1m.
~
~THIS LIMIT OETERMINE~ff
I
BY BV CEO
.!i
0.01
I
100
10
100
VeE - COLLECTOR·EMITTER VOLTAGE IV)
Maximum Power
Dissipation vl!
Case Temperature
24
22
20
18
16
14
12
~
0.1
VCE - COLLECTOR VOLTAGE (VI
Safe Operating Area TO·237
OC
C>
\NIl
0.01
F==
'"
~
'"
100JlS
0.1
I
~
~
I-
1li
DC
C>
I
5
-0
'"
r-
100,us
::!
1m.
~
~
./
30
10
1--1-
I-
20
Veo - COLLECTOR·BASE VOLTAGE IVI
Safe Operating Area TO·126
VCE - 10V
'"
-=-
100
10
C>
300
10
I
Ie - COLLECTOR CURRENT (mAl
400
f
Il.
10
Gain Bandwidth Product vs
Collector Current
;;
'"
Tc ::
0.2
Ie - COLLECTOR CURRENT (mAl
500
40
111111
UJlL i I!~~IIC-
I IIIIUL....
c
t- Tc=-40"CI-l~Ljjjj,_'1"'1'-~oIIl
o.B 1-f--tH"T:I:l;l"'TII~I""I"'R-Hffil;;.o1'9-+t.If'fH
0.6
10
Coliector·Base Capacitance
vs Coliector·Base Voltage
I
1I111! IIII
10
-10
1.0
0.4
11111
,.~
1111
Ie
i;;
~~
~~g~
lJor
......
0.1
IC - COLLECTOR CURRENT IAI
Base·Emitter Saturation
Voltage vs Collector Current '
.oJ
0.8
l-
~
Ve'"IV(25~
I-
10
IC - COLLECTOR CURRENT (AI
Thermal Derating Curve
2.0
1.8
~
1.6
15
1.4
i=
I-r-...
:::
i:i
1.2
1.0
'"
0.8
I
0.4
Q
......
10
8
......
r-...
~'126
-
-
TO·202 N"'..
........
2
~
~
0.6
0.2
o
o
VCE - COLLECTOR·EMITTER VOLTAGE (VI
20
40
60
BO 100 120 140 160
TC - CASE TEMPERATURE lOCI
8·51
25
50'
75
100
T - TEMPERATURE lOCI
125
150
co
("I)
Process 38
(/)
(/)
Q)
(J
...
a..
Thermal Response in TO·126 Package
0
~§
"N
~~
>-"
>-'"
,,0
w;;o
0.7
0.5
D 0.5
0.3
0.2
0.2
0.1
~~ 0.07
0:'"
:=~
,,,,
0.05
~~
0.03
"''''
0,02
I--
0.1
0.05
I
Plpkl
~+~0.02
r0.01
f-f
I
O(SINGLE PULSE)
JLJL
.
--!
I,
nJCIII~rlll·OJC
OJC DC THERMAL RESISTANCE
Tpk - TC + Ppk .nJclll
~UTY CYCLE ~
l- I
0
-t2-
*
0.01
0.02
0.05
0.1
0.2
10
0.5
20
50
100
200
I1-TIMElmsl
Thermal Response in TO·202 Package
~Q
O:w
"N
~:::i
zO:
>-"
>-'"
0.7
0.5
0- 0.5
0.3
0.2
0.2
",0
w;;o
0.1
0.07
~~ 0.05
~~
0:"
,,,,
~t:l
"'oo
0.03
0.02
~
HEATSUNK
i-
0.1
FREE AIR
'ii.il5'
~~::;0.02
H
0.01
SINGLEPU~
........
LJlJl oJcltI~rltl·oJC
II
Plpkl
i--'
I
SINGLE PUL,S,\
I
--- t1 --
III
~12-
OJC DC THERMAL RESISTA NCE
Tpk~TC+Ppk"JCIII
DUTY CYCLE 0'" !!
12
0.01
0.01 0.02
0.05
0.1
0.2
0.5
10
20
50
t1 -TIME (ms)
8·52
100 200
500 lk
2k
5k
10k
20k
50k
lOOk
"'C
~National·
a
Process 39 N PN Medium Power
Semiconductor
DESCRIPTION
0.031
1 - - - - - ( 0 . 1 8 7 ) ----~
Process 39 is a double·diffused, silicon epitaxial planar
device. Complement to Process 79.
APPLICATION
This device was designed for general purpose medium
power amplifier and switching circuits that require
collector currents to 1A.
PRINCIPAL DEVICE TYPES
TO·202, EBC: 2N6552, 3
NSD104-106
NSDU07
TO·237, EBC: 2N6717, 18
(92PU06, 07)
TO·237, ECB: 2N6707
(92PE37C)
Parameter
Conditions
Min
Typ
Max
Units
BVCEO
Ic= 10 rnA
80
V
BVCBO
Ic=100p.A
100
V
BVEBO
IE=10p.A
ICBO
VCB=80V
lEBO
VEB=4V
hFE
Ic = 100 rnA, VCE = 1V
50
hFE
Ic = 500 rnA, VCE = 1V
20
VCE(SAT)
Ic= 500 rnA, IB = 50 rnA
0.8
1.3
VBE(SAT)
Ic = 500 rnA, I B =50 rnA
fT
Ic = 100 rnA, VCE = 10V
COb
VCB=10V, f=1 MHz
PD(max)
TO·126
V
5
80
100
nA
100
nA
300
150
10
V
V
MHz
15
pF
Tc=25°C
TA=25°C .
15
1.5
W
TO·202
Tc=25·C
TA =25·C
10
2
W
TO·237
TCOLLECTOR LEAD = 25·C
TA =25·C
2
850
W
mW
TO·92
TA =25·C
600
mW
OJC
·C/W
TO·220
Tc=25·C
TO·126
Tc=25·C
8.33
·C/W
TO·202
Tc=25·C
12.5
·C/W
TO·237
TCOLLECTOR LEAD = 25·C
62.5
·C/W
TA=25·C
83.3
·C/W
TA =25·C
TA =25·C
62.5
·C/W
147
·C/W
TA =25·C
All Plastic Parts
208
·C/W
OJA
TO·126
TO·202
TO·237
TO·92
TJ(rhax)
150
8·53
·C.
a
n
CD
en
en
~
Process 39
Typical Pulsed Current Gain
vs Collector Current
Typical Pulsed Current Gain
vs Collector Current
1000
10
1000
...ffi -
z
...~
:::i
'"
'"
B
~
.
E
...
!::~
......
:lEw
"'...0'"
"''''
w>
:::2
100
~
....
~...'" l~mll~!I~!11
jS
... ;::
10
I
,0.1
w
~
~
0.1
10
0.1
IC - COLLECTOR CURRENT (AI
1.2
r-rr.,.,.,mrr....,.."..--=-=0'"7.="TTT1I
w
'"~
o
~
a:
~
~
~I
0.8
0.6
SHml311
1--±-I.~III!f=-
0.2
f--H+fjiHH--f+1ftHtlt-+1#H+llI
1.2
z
0
;::
..g;
...
0.8
"'w
0.6
ffi~
i~
I
~C
r~
~
......
10
100
500
~
8
10
100
C
0
~
0
200
J.,...
Safe Operating Area TO·202
I
o
1
'"
0.1
10
.I'.
1== THIS LIMIT oET~RMINEill
I
BY BVCEO
100
1
100
VeE - COLLECToR·EMITTER VOLTAGE (Vl
Thermal Derating Curve
1.8
~
z
.....
......
I
To·202
o
~.'26 l - f--
~
........ ~
1.6
t--t--"t--t--t--t---l
o
1.4 f---t""':-t~:-t--t-+--I
~
1.0
~
f-
..!'
o
10
2.0
r-....
VeE - COLLECToR·EMITTER VOLTAGE (VI
1 ms/
..!'
24
22
20
18
16
14
12
10
1\
DC
0.1
Maximum Power
Dissipation vs
Case Temperature
~
0
..
~
VCE - COLLECTOR VOLTAGE (VI
Safe Operating Area TO·237
1.0
"==
'"
B
'"
0.01
Ie - COLLECTOR CURRENT (mAl
5
~
:::i
r DE :E~
BY BVCEO
_LI
0.01
lk
lOOps
...
0.1
.=>
I
3D
20
:;
..
~
8
10
Ve• - CoLLECToR·BASE VOLTAGE (VI
J--t-
'"
'"
~
~
.0
i!
:IE
."
'"
B
j
10
:::i
100
1-
Safe Operating Area TO·126
'"
B
10
lk
10
300
1
[\
10
Ie - COLLECTOR CURRENT (mAl
g:%
100
20
I
...oS
~
~
0.4
~
~
10
IC - COLLECTOR CURRENT (AI
Base·Emltter ON Voltage vs
Collector Current
~
Collector· Emitter Saturation
Voltage vs Collector Current
'"
1.2
0.8
~.
0.6
I
0.4
~
F-f""".,-t---f.........-+--I
1-....,,,,,,,,::-+"""0;;:1---'1<""-+--1
0.2 t--t--r--j---f'""o~~ci
L.....--'-_-'-_'----'-_-'---=s
25
50
75
100 125 150
o.
20
40
60
80
100 120 140 160
TC - CASE TEMPERATURE ('CI
8·54
T - TEMPERATURE I'CI
Process 39
Thermal Response in TO·126 Package
~~
....~~
:;
....
'"
ZC
I
0.1
0.5
0.3
0.2
D= 0.5
0.2
0.1
0.1 0.05
0.01
0.9
~~E:2~~~ ++++-H-+++-+CH-Il-l
H-Hf--f-+HH-+lfH-H+tf--l
i!5
a: 0.8 H++t-f-+HH-+lH+:iI"'F+tf--l
~
~
0.7
H++t+:l>H'f-t-+ftt-H+tt-l
~I
0.6
i'9-+++--Hf+H-++H+-+-++fH
i
10
IC - COLLECTOR CURRENT (mAl
100
Current Gain at 100 MHz vs
Collector Current
100 "'V""CE-_"7,0;c.:v-,-...,rrr...,.....,rrr,
z
v
0.2
DC Current Gain vs
Collector Current
TO·72
>
0.5
L....J..J.ll....J....Jw.l.I...J....J..J.1l...J....J..I.U-I
0.01
0.1
1.0
10
'C - COLLECTOR CURRENT (mAl
100
"0
Process 40
Maximum Power
Dissipation vs
Ambient Temperature
§:
..sz
Reverse Transfer
Capacitance vs Reverse
Bias Voltage
800
......
0
;:: 700
~
~ 600
:5
a:
z
0
~
~
500
i'..
400
~ 300
>< 200
.......
."
"x
;p"
.
I
.
.9
I-
U
~
~
r--..
100
;:;
NO-92
I
TO-~
Jl
"-
.7
-
TO-72 .
.5
100
150
~
~r..
......
~
....
0.8
~
I
0.4
;:;
~
"-
- -.................
~
u
u
1_0
TA - AMOIENT TEMPERATURE (OCI
~
f= 1 MHz
TO-~
TO.J
U
III
0.1
1.2
I-
III
200
.
z
Freq:: 1 MHz
.3
-
-
u
III
~ ...............
50
1.6
TO·92
CD
(J)
(J)
Input Capacitance vs
Reverse Bias Voltage
II
........
10.
0.1
50
0.5
0.2
1.0
2.0
REVERSE 81AS VOLTAGE (VI
REVERSE 81ASVOLTAGE (VI
Base·Emitter Saturation
Voltage vs Collector Current
~
1.0
~
0.9
.
.'.!; = 10
'8
L2
V
>
i!!i
;::
V
0.8
~
OUTPUT
~~~-------tI------~--~~--~<>}50n
INPUT
~
SOn
0.7
w
~I
0.6
~=
Cl, C2, C3, C7, C8 - 0.8 pF-l0 pF
0.5
:>
variable capacitor
0.1
1.0
10
20
C3 - Plastic tubular trimmer
capacitor [adjusted and fixed for a
transistor having a typical value of
'r. - COLLECTOR CURRENT (rnA)
Ccb (0.35 pFll
C4 - 200 pF button-type feed-
Collector· Emitter Saturation
Voltage vs Collector Current
0.20
r-~"""'-r--r----',.,..,..,--'-----.
0.16
-'1-" =10 ++-+--+--++1-+--1
0
1--"--r-;--I+----i-+-+4+---i--l
through capacitor
C5 - 1000 pF feedthrough capacitor
R2
C6 - 470 pF leadless ceramic disc
capacitor
Rl
Ll, L3 -1 inch length of 114 inch
diameter copper bar stock
0.12
1-++4+---i-++4+---1--1
L2 - 1/2 loop No. 14 AWG enameled
wire parallel to and approximately
1/4 inch·from L3
Rt - 5 kn potentiometer
0.04
R2-1.2kG
1-++4+----1-+-+4+---1--1
R3 - 2 kG
FIGURE 1. Neutralized 450 MHz Gain and Noise Figure Circuit
0.1
10 20
'C - COLLECTOR CURRENT (mAl
diLL " "'.
50 pF
INTO SOnOUTPUT
Note 1: 2 turns No. 16 AWG wire, 3/8 inch 00,
11/4 inch long.
RFC
Note 2: 9 turns No. 22 AWG wire, 3/16 inch OD,
1/2 inch long.
1000 pF
-VEE
"'"1 " 1
Vee
FIGURE 2. 500 MHz Oscillator Circuit
8·57
a
(')
~
~Nationai
Process 41
NPN UHF Amp/Mixer
'
Semiconductor
I
0.013
0.013
(0.3301
(0.3301
I
~
!.,
~
~
This device was designed lor use in extremely low noise
UHFIVHF preamplifiers operated common emitter or com·
mon base, and in UHF mixers.
PRINCIPAL DEVICE TYPES
TO·72
TO·92
Min
Typ
1=800 MHz, VCB = 10V, Ic = 2 mA,
Common Base,lYsl = Optimum
5.5
NF
1=800 MHz, VcB =10V,lc=2 mA,
Common Base,lYsl = 10 ± iO mmhos
7.0
PG
1=800 MHz, VCB = 10V, Ic = 2 mA,
Common Base, RL = 5000
NF
Units
. Max
'\
Notes
dB
TO·72
dB
TO·72
9.0
dB
TO·72
1=450 MHz, VCE = 10V, Ic = 2 mA,
Common Emitter, Rs = 750
2.0
dB
TO·72
NF
1=200 MHz, VCB = 10V, Ic = 3 mA,
Common Base, Rs = 1000
2.5
dB
Figure 1
PG
1=200 MHz, VCB=10V, Ic=3 mA,
Common Base, RL = 1 kO
dB
Figure 1
5.0
ps
TO·72
7.5
13
16
7.0
8.5
9.5
3.0
rb'Cc
1=79.8 MHz, VCB=10V, Ic=3 mA
hie
1= 100 MHz, VCE = 10V, Ic = 3 mA
CCB
1=1.0MHz, VCB=10V, IE=O
0.28
0.35
pF
TO·72
CCE
1=1.0 MHz, VCE = 10V, IB = 0
0.12
0.19
0.20
0.30
pF
pF
. TO·72
TO·92
75
200
2.5
hFE
VCE= 10V,lc=3 mA
30
BVCEO
Ic=1 mA
20
V
BVCBO
Ic=10p.A
30
V
. IE = 1 p.A
3.0
V
ICBO
VCB=20V
100
nA
lEBO
VEB=2V
100
nA
160
100
ApPLICATION
%~
Conditions
DC Current Gain vs
Collector Current
120
Process 41 is an overlay, double·diffused, silicon epitaxial
device.
NF
BVEBO
~
I
.:
Parameter
140
~~
~~
~
z
DESCRIPTION
,
II I
VCE'"'OV
1111
TA"''::.;
..... ~
.0
Common Base Noise
Figure vs Frequency at
OplimumlYsl
VeB .. tov
IE'"2mA
Sr4
i'
.! 400
f
OPTIMUM 1VsI
MH,
10
50
100
200
'DO
.00
INmmho
3
6.5
8
-it
1D.5-j4
18 -j4
20 -i11
0.1
I
Ie - COLLECTOR C~RRENT (rnA)
10
~
t
'"
~
1i
-
'"
"'",
x
"
~
200
;:: 100
0
0
2
5111 20
50100200 5001000
8·58
t;
TO~2ITO·72
~,
\.
'\
w
~
50
100
1.50
'\
\
~~
\
6
4
...... 6'OIMH!
I\,
\..
"
2
>
'\
0'
\
>
TA - AM'IENT TEMPERATURE 1°C)
f - FREQUENCY (MHz)
10
:;
"
I\.
Q
2
1
.
.. ,
.'"
~
!:! 300
20
0
0.01
12
z
"
60
40
Contours 01 Constant
Gain Bandwidth
Product (IT)
Maximum Power
Dissipation vs
Ambient Temperature
'OOMJ.
p
0
200
I
2
4
1
Ie - COLLECTOR CURRENT.(mA)
10
"tJ
Process 41
Input Admittance vs
Frequency
1000
"E
~
-l-
~
50
I
'"
Vee - 10V
IE
IE "'2 rnA
r-
/'
9"
I
=2 rnA
=f=
r-t-
r- <"Y
./
-
f:=lv,,1
bib
I
.1
-
1
I
I
f---lVfb
1
II
20
!
II
10
10
20
I
I
50
100
200
20
500 1000
50
100
200
500 1000
-'
10
10
20
50
100
200
500 1000
1 - FREOUENCY (MH,)
1 - FREQUENCY (MH,)
1 - FREOUENCY (MH,)
Output Admittance vs
Frequency
1000
E
500
...'"..."
200
-"
Vee IDV
I, 2 III A
go>
~
100
'"
~
I
~
1,1
"
50
0
I
I
20
~
10
10
20
50
100
200
500 1000
1 - FREOUENCY (MH,)
CONTOURS OF CONSTANT NOISE FIGURES
Common Base Noise Figure
vs Source IYsl
Common Base Noise Figure
vs Source IYsl
IE'" 3 rnA
Vcs=lOV
50
50
Common Base Noise Figure
vs Source IYsl
IE
IE=2-3mA
Vcs=10V
f--+--+--+-I" 50 MH,
E
=3 rnA
VeB '" tDV
-"-
f--+--+--+f" too MH:z
50
u
"
~
f---f--+---+-I" 200 MH,
1
25
w
u
or
=>
o
~
I
-50 '-_-'--_-'-_-'-_-'-_...J
25
50
100
75
-50
25
50
75
100
-25
-50
Gs - SOURCE CONDUCTANCE (mmho)
Gs - SOURCE CONDUCTANCE (mmho)
510
Vee" 11lV
25
50
75
1000
200MH, OUTPUT
INTO 50"
1000
2001\~HZ~
INPUT
1
L 1 ~ Ohmite Z·235 RF choke
I
L2 - 6 turns No. 14 wire, 1 inch Lx 1/4 inch
ID tapped 1 1/2 turns from cold side.
All capacitance in pF, all resistance in ohms.
Faraday shield techniques used in jig
construction.
Ik
FIGURE 1. Common Base 200 MHz PG and NF Circuit
8·59
100
G, - SOURCE CONDUCTANCE (mmho)
o--II/'VV-"::::=:--,
.I---@
I
tJ)
tJ)
~
1000
Vee - 10V
200
100
.-
~
.~
~
'"
Forward Transfer
Admittance vs Frequency
.E.
~
500
-"-
u
"
CD
Reverse Transfer
Admittance vs Frequency
Vcs- 1DV
IE =,2 rnA ,!li1b
""'I
o
n
~·National
Process 42 NPN RF Amp
~ Semiconductor
DESCRIPTION
Process 42 is an overlay, double·diffused, silicon epitaxial
device.
APPLICATION
This device was designed lor use in low noise UHFIVHF
ampliliers with collector current in the 100 p.A to 10 mA
range in common emitter or common base mode 01 op·
eration, and in low Irequency drilt, high output UHF
oscillators.
PRINCIPAL DEVICE TYPES
2N5179
TO·72:
TO·92, ECB: 2SG535
TO·92, BEC: MPS·H10
Parameter
Conditions
Min
Typ
10
13
Max
Units
Notes
dB
Figure 1
dB
Figure 1
mW
TO·92
Figure 3
dB
Figure 2
dB
Figure 2
PG
NF
1=450 MHz, VCE=10V, Ic=2 mA
POUT
1=500 MHz, Vce= 15V, IE,:,8 mA
30
PG
NF
1=200 MHz, VCE = 10V, Ic = 2 rnA
22
hIe·
rb'Gc
1=100 MHz, VcE =10V, Ic=5 mA
1=79.8 MHz, VCE= 10V, Ic=5 mA
10
ps
Gce
1=1.0 MHz, Vce = 10V, IE = 0
0.4
0.5
pF
TO·72
GCE
f=1.0 MHz, VCE=10V, le=O
0.2
0.3
pF
TO·72
GEe
1= 1.0 MHz, VEB=0.5V, Ic=O
0.8
1.5
pF
TO·72
hFE
VCE= 10V, Ic=5 mA
40
90
200
30
1=450 MHz, VCE = 10V, Ic = 2 rnA,
RG=500
3.0
50
27
2.0
1'7200 MHz, VCE = 10V, Ic = 2 mA,
Rs=1200
6
5.0
3.5
10
hFE
VCE= 6V, Ic=.1 mA
VCE(SAT)
Ic=10 mA, IB=5 mA
BVCEO
Ic=1 rnA
30
V
V·
BVCBO
Ic= 10 p.A
35
V
BVEBO
IE= 10 p.A
4
ICBO
VCB=30V
100
nA
lEBO
VEB=3V
100
nA
0.2
8·60
V
Process 42
DC Current Gain vs
Collector Current
100
80
60
~
40
......
~
~
">
10
~
~
I+-Htt\-~~~
1.0
0.1
100
10
Maximum Power
Dissipation vs
Ambient Temperature
&00
:5
cr
500
l'l
z
400
~
~
300
~
........
200
~
5:::
~
5
r--. NO.92
J
~ r---. r-....
0
0
50
150
100
.8
.&
c~
0.9
I'<
c- TO·72 . 1/
.4
D.B
~
0.7
~
'"!:i
:::
...5
.8
E!!
I
50
....,.. r-
0.2
0.5
I
I
J..-
~
""'"
I
/
Ie
1.-10
w
~
:
I
~=
>
0.6
o
0.5
0.1
1.0
10
20
.1
IC - COLLECTOR CURRENT (mAl
1.
10
Ie - COLLECTOR CURRENT (mAl
8·61
...
1.0
2.0
REVERSE BIAS VOLTAGE (VI
Coliector·Emltter Saturation
Voltage vs Collector Current
L
..........
F"yl'IM~Z
.20
10
r--....
-
TO.72/
A
0.1
REVERSE OIAS VOLTAGE (VI
........
~
J
10.
1
. / TO·92
1'1--
1.2
~
........
III
III
~:10
I--'"
~
u
r-...
./
j:
~
z
1.0
100
10
Input Capacitance vs
Reverse Bias Voltage
......
III
0.1
1.0
0.1
Ie - COLLECTOR CURRENT (mAl
Fraq'" 1 MHz
.2
.1
200
>
15
0.01
-
Base·Emitter Saturation
Voltage vs Collector Current
1.0
0.5
1.&
TO·92
f""-.
TA - AMOIENTTEMPERATURE (OCI
~
;:
100
II
........
I
To.i~
'~" 100
~
~
10
1.0
......
700
~
0.6
Reverse Transfer
Capacitance vs Reverse
Bias Voltage
i:i
C
~I
Ie - COLLECTOR CURRENT (mAl
oS 800
z
"
:::>=
0.7
~
=--:'::"':""-L..:==-L-L..L.LLJ
0.1
Ie - COLLECTOR CURRENT (rnA)
~
.
TA = 2SOC
e
~
I
1.
0.8
!
20
o
11
0.9
0:
">or
"
C
0.1
1.0
~
u
I
..,
..,
~
VeE = tOV
TA : 25"C
V
Base·Emltter ON Voltage vs
Collector Current
~
I II
.J,...I....IJ.
z
§~
Contours of Constant Gain
Bandwidth Product (fT)
20
5.
Process 42
COMMON BASE Y PARAMETERS VS FREQUENCY
Input Admittance vs
Frequency
.
.s
IZO
z
<
40
..,w
~
CI
<
-40
~
I
•
..........
80
:!
~
lZ0
........
S
-80
~
Forward Transfer
Admittance vs Frequency
Reverse Transfer
Admittance vs Frequency
VeE
B;;
........
lOV
'"
80
w
~
~."
K
Vee =10V
Ic "'5mA
2
•
"'~
'" E
E
...
40
,,"'w
-
-
r-...
bib
",'"
V
;:2
Ib~
1
~
zoo
o
500
1000
g;~
zoo
100
f - FREQUENCY (MHz)
.<
~~
€
1',/
~
bib
I
-IZ0
100
=
Ic"'5mA
t\::::
1000
500
V
/ " I'-BIb
-40
./
-80
VeE -lOY
./
-IZ0 / '
100
f - FREQUENCY (MHz)
Ie :SmA
zoo
500
1000
f - FREQUENCY (MHz)
Output Admittance vs
Frequency
S
"l!
.sw
..,
IZ
VeE::: lOV
Ic =5mA
10
Z
'"
1=
~
'"
!;
~
",
1
'"
o
--
100
/
~t>-"
B}.:
500
200
1000
f = FREQUENCY (MHz)
COMMON EMITTER Y PARAMETERS VS FREQUENCY
Input Admittancevs
Frequency
Z4
I.Z
I.s
zo
1.0
z
16
..,w
'"
1=
;;
"'"
~
~
'€
J
r---b;,')...
IZ
~
-
./
100
-J~V
Ic=2mA
500
1000
/
.Z
o
100
ZO
f - FREQUENCY (MHz)
-ZO
VeE = lOV
T\
Icn'tl
zoo
500
1000
f - FREQUENCY (MHz)
VeE:: 10V
Ic =2mA
~/
,/
o
/
100
Boo
zoo
~
500
f - FREQUENCY (MHz)
8·62
-40
i-- Ll'
-80
100
zoo
500
f - FREQUENCY (MHz)
Output Admittance vs
Frequency
b o,
VeE::: lOV
r---l .........
L/ ....... 1"-
Ic=2mA
40
V
.4
Vee'" lOV
/
J
.6
V 1\
zoo
60
.8
I- 6(
~l·
Forward Transfer
Admittance vs Frequency
Reverse Transfer
Admittance vs Frequency
1000
1000
Process 42
INPUT
SOn
/1>r-----..- - -..-....,;~:..--_k))
OUTPUT
SOil
ICH---...,,-n----. .- - - H
C3 - Plastic tubular trimmer capacitor [adjusted and fixed for a transistor
having a typical value of Ccb (0.35 pFI]
C4 - 200 pF button-type feedthrough capacitor
..1.,---1)
C5
C5 - 1000 pF feedthrough capacitor
~
C6 - 470 pF leadless ceramic disc capacitor
L1, L3 - 1 inch length of 1/4 inch diameter copper bar stock
C4
L2 - 112 loop No. 14 AWG enameled wire parallel to and approximately
1/4 inch from L3
R2
R1 - 5 kG potentiometer
R2-1.2kn
-=
R3-2kG
FIGURE 1. Neutralized 450 MHz Gain and Noise Figure Circuit
2K
10K
r---'V'.f\r--........----Jow......- - - . - o Vee " 12V
11000
11000
.8-10
lie!
1000
I
~OUTPUT
I
":"
INPUT~
50n
1000
11000
I
r--1I
680
IOOO
I
50.11
L1 - 3 turns No. 16 wire, 1/2 inch Lx 1/4 inch 10 tapped 11/2 turns from
cold side
L2 - 6 turns No. 14 wire, 1 inch Lx 1/4 inch 10 tapped 11/2 turns from cold
side
T1 - Pri. 1 turn No. 16 wire }
Sec. 1 turn No. 18 wire
Core is Indiana General PIN F·684-Q3
All capacitance in pF, all resistance in ohms.
FIGURE 2. Neutralized 200 MHz PF and NF Circuit
c1L " "'" " '
50 pF
INOTE 2)
INTO 50.11
Note 1: 2 turns No. 16 AWG w'ire, 3/8 inch 00, 1 114 inch long.
RFC
Note 2: 9 turns No. 22 AWG wire, 3/16 inch 00, 1/2 inch long.
Vee
FIGURE 3. 500 MHz Oscillator Circuit
8-63
~NatiOnal
Process 43
NPN VHF/UHF Oscillator
Semiconductor
0.015
10.3811
I'
Process 43.is an overlay, double·diffused, silicon epitaxial
device.
0.0075
-10.1905)-
\"
-
DESCRIPTION
~'~
~\~
~~//~
APPLICATION
0,0031.1
10.0187)
1
This device was designed for use as RF amplifiers, oscilla·
tors and multipliers with collector current in the1 mA to
2 mA range.
0.0015
10.19051
~
0.015
10.3811
PRINCIPAL DEVICE TYPES
t
TO·72:
2N918
TO·92, EBC: PN3563
PN5130
TO·92, ECB: 2N3663
0.00405
10'T 871
0.0035
10.08891
Parameter
Conditions
Min
Typ
Max
. Units
Notes
dB
Neutralized
GpE
f=200 MHz,lc=5 mA, VCE=10V
NF
f = 60 MHz, Ic = 1 mA, VCE = 10V,
PO
f = 500 MHz, Ic = 8 mA, VCE = 15V
20
35
mW
PO
f=900 MHz, Ic=8 mA, VCE=15V
3.0
8.0
mW
hIe
rb'Gc
Ic = 5 mA, VCE = 10V, f = 100 MHz
6.0
9.0
f = 79.8 MHz, VCE = 10V, IE = 8 mA
10
25
ps
GCB
VCB=10V,IE=0
1.2
1.7
pF
GEB
VEB = 0.5V, Ic = 0
1.4
2.0
pF
hFE
Ic=1 mA, VcE =1V
80
200
14
18
3.5
6.0
dB
Rs=2000
25
hFE
Ic=5 mA, VCE= 10V
40
hFE
Ic = 30 mA, VCE = 10V
30
VCE(SAT)
Ic= 10 mA, IB= 1 mA
0.25
V
VBE(SAT)
BVcEO
Ic= 10 mA, IB= 1 mA
0.9
V
V
Ic=3 mA
15
BVCBO
BV EBO
Ic=10 /LA
30
V
IE=10/LA
4
V
ICBO
VCB = 20V
100
nA
lEBO
VCB=3V
100
nA
DC Current Gain vs
Collector Current
C>
;:
~
100
~
z
80
~
>>-
~
~
~
60
~~
""
>>-
iscc
~
60
1/
V
.....
0
0.01
~
I
0.1
1
10
Ie - COLLECTOR CURRENT ImAI
100
~
15
"
>
a:
!
1/
50
?
w
'"
I
~
:;;
12
'" :;;'"
'" '"
'"
~
It :!
~~
~ I
6
. 3.
I
\
I
0
40
0
2
4
6
8
Ie - COLLECTOR CURRENT ImA)
8·64
10
i/!!Jn
~ ~
9
~
;:
~
VeE'" lOV
Figure 1
0.1 0.2
0.5 1
5 10 20
rlf~
/I~
1m
~
50 100
Ie - COLLECTOR CURRENT ImAI
Process 43
a
:::
;!
Base-Emitter ON Voltage vs
Collector Current
1.0 r -........-r-!"n.,..",r--r.."..,~-=-o
11111
YeE -lOY
g
o.B
:
0.6
e
Collector-Base Diode
Reverse Current vs
Temperature
100 r-r-r-r-r-r-r-""-'''''-'r-I
VeB =20V
)JIll
I IIIU
1-+-t+FTA • 2~ -t1TIJ.:
---
I
•
0.2
.1
1-+-HI-+++Ill--+-++-l++Ill
o
;;;
,:
1.0
HHA-t+++-+-H
.01 '-'--'--'--'--'--'--'--'--'--'
o
25
50
75
100
125
o'---'-.L....L..LJ.J.JW----L--'-Ll...1.LW
II
10
TJ
Ie - COLLECTOR CURRENT ImAI
Collector Saturation
Voltage vs Collector Current
~
~
~
..~
!.i
g;
sg;
8~
0.5
r-r-rrmnr,,-mmr-:'-e -"',"'0"',."
0.4
l-t+HttHl-~-ttl1ttt--h~fttflltl
-
5.0
Output Capacitance vs
Reverse Bias Voltage
r-r-ro-,-,-,-r-r........,
4.0
I-t-t-t-t-t-t-t-I-H
3.0
l-t-t-t-t-t-t-l-l-H
.,
1--!-+-+--1I--!-+-+--1
500
1--t-+-r--1l-+-+-r--1
0.3 l-t+HttHl-~-ttl1lJl';'j.Lj~+ttflltl
~
t--~~~'io~oo~C~~~ttnnm
F
250C
u
. ~i'
~
20
.,
1.0 1-t-t-I-I-~j::::f=:'t=1-I
I
0.1 l-t+HttHl-~-ttl1ttt-++ttflltl
~
~
400
Joo
ZOO
o
50 100
I--!-+~~~~
"l--!-+-+--1
TO.~
~ 100 l-+-+-r--1~~~~--1
:;
;pi
50
~".,'
500
1000
12
16
INOTE21
4 5 6
200...,1\.",'J>!d+++H-l-lJ.JmIH-H-+Ill1ll
!
g;
100
50
~
20
~
20
§11t-11;1
I-
10
l-H-lilt1~111~tI1l1'S_E-jFI-jI~-r·IIt1;~ttllt-l. 6oMH.
111111
1IIIi
10
Ie - COLLECTOR CURRENT ImAI
75pF
..
_
.,......________
_...:....
_
__--'''"' INT050n
~
INOTE 11
(
~~1PF
l
Vee
Note 1: 2 turns No. 16 AWG wire, 3/8 inch 00, 11/4 Inch long.
Note 2: 9 turns No. 22 AWG wire, 3116 inch 00, 1/2 inch long.
=
FIGURE 1. 500 MHz Oscillator Circuit
8-65
VeE = 6V
'-~wwm-~~~~~~
0.1
I,' ~
r---+-I:
I ~ ... ~....".
~
200
7=
~III~~~~II
.'\
50 OF
~L
150
100
~
REVERSE BIAS VOLTAGE IVI
'e,- COLLECTOR CURRENT ImAI
I". . . ""
~
O'--~---L~--'-~-'-~~
0.1 0.2 0.51.0 2.0 5.0 10 20
l-+I\.~t-+--r-r--l-+--l
r-+o.::
....."::-->.c-,-TT+O-'9Z+--+-+---1
Contours of Constant
Noise Figure
~
~
,';
600
TA - AMBIENT TEMPERATURE lOCI
I
is
~
JUNCTION TEMPERATURE rCI
'Ie'" 0
F= 1 MHz
~
0.2
BOO r - . -........-.--;r-.--r-,.-...,
~
(')
CD
~ 700
'"
/
"a
(/)
(/)
..
c
;::t:'70J0I~
r~-t-rHt~--r+~~
!w l4 l--r~H+~---r~++~
:i
~z
Maximum Power
Dissipation vs
Ambient Temperature
100
~
C")
'Id"
0
0
CI)
(.)
e
Q.
Process 43
COMMON EMITTER Y PARAMETERS VS FREQUENCY
Input Admittance vs
Collector Current·Output
Short Circuit
2.0
=E
.§
f= 10.7 MHz
VeE::: lOV
1.6
~
u
z
!::,."
.
e
~
==I
..
-
......
,/
10
I I
.
~
Vel"
II- VCE=S!!
~-
Z
~
.
bie
~
~
;r::
fg: ~
,:
....
......
..e
.§
..
..~
15
10
~20
f'10.7MH,
.§
~
~~
..
~
0:
I-
~
i
,0
>'!
:=1="
10
~
;:l
e
20
......
i
-bt•
~
I
I
o
~. ;
o
Reverse Transfer
Admittancevs Collector
Current·lnput Short Circuit
I
0.10
f'10.1MH,
..e
.§.
c..1
0.5
..
0.2
~
~
~
~
~
0.1
~
0.05
~
0.04
0:
I-
/
I-
0.02
1--+--+-+-+-+-+-+++-1
-gr.
..
..~
0.25
VeE::: lOV
boo .......
z
0.20
V
~
0.15
= 0.10
~
I
~
..... ~
..~
~
C>
0:
-btl'
~
>-
10
Ie -- COLLECTOR CURRENT (rnA)
40
20
-bt.
10
20
100
200
500 1000
Reverse Transfer
Admittance vs ColI!!ctor
Current·lnput Short Circuit
Reverse Transfer
Admittance vs FrequencyInput Short Circuit
II
Ie =5.DmA
-b'l=;;t=::r:;:;;"'(.:- -r- VeE -10V
I-- Ve, ' 5.0V
VeE:: 10V
-b re
-
Vce=5.0V- -
/
./
e..
I
V
-gre
~
If '100MH,
10
20
200
500
1000
10
e
E
I
Ie:: 5.0mA
VeE = lOV
boo
~
boo
I-- ~
u
z
!::'"
VeE = 10'1
I I
VeE:::
...... """'I
H~
100
Output Admittance vs
FrequencY·lnput Short
Cii9i!it
f-l00 MH,
0.4
50
f -- FREQUENCY (MHz)
V~' _1 5.0 Iv_
0.8
o
50
!l"H
1'\ !If, II
1'1.11
f - FREQUENCV (MHz)
1.6
1.2
'\
/'
o
10
2.0
I
/'
o
~
~
Output Admittance vs
Collector Current·lnput
Short Circuit
~
~
90.
L
0.05
o
......
60
0:
e
IVe 'I'I
Z
'"
.......
~
!'=C
l-
0.01
u
lI-
V
,
I-
.§
500 1000
Ie - 5.0 rnA
VeE = lOV
\
80
10
..e
200
~
u
z
~
Ie -- COLLECTOR CURRENT (rnA)
-
foo 10.7 MHz
~
u
_ VeE::: lOV
10
0.30
100
Ie - COllECTOR CURRENT (rnA)
Ie -- COLLECTOR CURRENT (mA)
Output Admittance vs
Colle!)tor Current·lnput
Short Circuit
50
1100 ~
~
a: 0.02
I
.)
.§
10V
VeE::: S.DV
o
l-
~
~
~
I
I
.e
t'Vc"
I-
~
20
Forward Transfer
Admittance vs Frequency·
Output Open Circuit
1.0
~
I--t-t-t-t-t-I-HHH
e;.
r-~
(m~1
0.06
~
20
10
..~
ffi
40
l-
e '..,'_1_0V
0.08 f-+--;:"'::"+--I--I--I-..,V_
H
~
/. V
60
~
:i!
0:
80
0:
40
-
~
u
e
..
/
60
o
f=100MHz
II
I I
......r
VeE =5.0V 1'.....1--"'
~
II
f -- FREQUENCY (MHz)
Forward Transfer
Admittance vs Collector
Curr~rt.Output S~ort Circuit
i
80
Ie - COLLECTOR CURRENT
!
jlllO
~
91,
~
I
.-
VeE'" lOV
100
..
b,.
I
10
E
~
.#'
!!!
Ie -- COLLECTOR CURRFNT (rnA)
Forward Transfer
Adtnittance vs Collector
Current.Output Short Circuit
g"
~
I I
Ie -- COLLECTOR CURRENT (rnA)
Ie = S.OmA
Vc~ '" 10V
20
~
z
Ve,'10V~
25
u
lI-
~~5V
I--
==I
0.4
lov
b,._ :JL!...., . . . .
I-
~
V
II: ~
0.8
f'100MH,
I I
e
.§
u
1.2
Input Admittance vs
Frequency·Output
Short Circuit
Input Admittance vs
CoHector Current·Output
S'hort Circuit
~ foo'"'
"'"e
s.nv
-+-
VeE'" 10V
I I
o
10
Ie -- COLLECTOR CURRENT (rnA)
8·66
~--"
I-
~
/
/
1/
I
goo
~
11
o
10
20
·50
100
200
f -- FREQUENCY (MH,)
500 1000
...
oC')
"'0
Process 44 NPN AGC·RF Amp
~National
DSemiconductor
CD
tn
tn
DESCRIPTION
Process 44 is an overlay, double·diffused, silicon device.
APPLICATld~
This device iNas designed for use.as a low noise VHF
amplifier with forward AGC capability.
PRINCIPAL DEVICE TYPES
TO·72:
SE5020
TO·92, BEC: MPS6568
MPS·H30
0.00Z4
-(0.0610)-
Parameter
Conditions
NF
f=200 MHz, Ic=2 inA, VcE =10V,
Rs =50{l
PG
f=200 MHz, Ic=2 rnA, VcE =10V,
Rs =50{l
NF
. 1=45 MHz, Ic=4 rnA, VcE =10V,
Rs =50{l
PG
f.=45 MHz, Ic=4 rnA, VcE =10V,
Rs ';'50{l
Min
20
Typ
Max
Units
Notes
2.0
3.0
dB
Figure 1
dB
Figure 1
dB
Figure 2
dB
Figure 2
24
3.0
23
5.0
26
AGC
f = 200 MHz, VAGC at 30 dB Down
3.9
4.5
5.2
Y
Figure 1
AGC
i = 45 MHz, YAGC at 30 dB Down
4.0
5.0
6.0
V
Figure 2
Ccb
Yc il=10Y,I E=0
0.35
0.50
pF
TO·72
0.45
0.55
pF
TO·92
hie
YcE =10Y, Ic=4 rnA, f=100 MHz
4.0
30
5.5
70
200
hFE
Ic=4 rnA, YCE=5V
YCE(SA1)
Ic=10 rnA, IB=5 rnA
0.5
2.0
V
YBE(SA1)
BYCEO
Ic=10 rnA, IB=5 rnA
0.85
0.95
Y
Ic= 1 rnA
30
V
BYCBO
Ic =10",A
30
Y
BY EBO
I E=10",A
4.0
ICBO
VcB =20Y
YEB =3Y
lEBO
8-67
Y
100
nA
100
nA
t
Process 44
";::
;:;
'"
";:;
Pulsed DC Current Gain vs
Collector Current
i
~
75
VeE:: 5V
60
ff-
45
:J:
---
i-'
V
~
O.B r-IT
I 11111
~ ! ~Ii!~
Z
"co
0.6
.....
~
t::
i'ii
~
::;
lO
15
VeE
-
>
"
«
~
1.0
«
co
s:
Base·Emitter ON Voltage vs
Collector Current
TA
=:
Power Gain vs Frequency
50
lOV
~
"
;
"
~
100°i:-
40
~
~
0.2
~
20
UNNEUTRALIZED "'-.
COMMON EMITTER
10
II
II
~
I
W
0
~
0.1
1
10
::
0
0
0.1
1.0
oS
z
Maximum Power
Dissipation vs
Ambient Temperature
~
BOO
":;:
600
'"
500
c
~
''x""
«
:0
.
w
~
::;
300
"
l"-
........
50
I
100
150
200
0.24
I......
co
~
8
I
J
u
0.12
I
0
B.O
0.1
~
~
'"
r-.
12
16
20
!
,;;
2.0
I
\
\
500~
~
0.20
"
"'"
~
~
..
cz
w
II
2.0
l.o 4.0 5.0
7.0
10
=
~
lOV
I
16
20
Ves = 10V
u
Ie = 0
0.45
f= 1.0 MHz
:;:
w
TO·72
0.40
~
::;
~
:=
g;
~
j.
I
2
10
lo 50 70
90
9B 99.B
U
i-'
~35
O.lO
0.25
0.2
C
2
10
lO 50 70
90
98 99.B
PERCENTILE DISTRIBUTION (%)
PERCENTILE DISTRIBUTION (%)
Noise Figure and Source
Resistance vs Frequency
Noise Figure vs Source
Resistance and Collector
Current
1000
600
Ves = 15V
Ie = 1.0 rnA
NOISE FIGURE
AT OPTIMUM SOURCE
500
.l'
400
gz
I
S
w
1.0
300
.
5.010
'"
u
°r~~s~~!~~~iE
100
§
.£
50 100
f - FREQUENCY (MH,)
8·68
50
,.
0
1.0
100
g;
~
0
5001000
~ lilI
"
r--i.OdB
r-2.S i dB
I
l.O dB
'"m ~w
!!j
Vea = 15V
f:: 60MHz
500
~ In
200
II
~
z
12
0.50
u
2.0
B.O
z
4.0
l.O
4.0
u
«
f-
;3
0.2
~
Ie - COLLECTOR CURRENT (mA)
0
Distribution 01 Collector·
Base Capacitance
0.10
5.0
20 MH,
;;r150'M H,
400 MHz
0.2
Ves - COLLECTOR TO BASE VOLTAGE (V)
f=1.0 MH,
TO.72 ' I
0.15
I
//
0
1.0
VeE
d
~
'- ->-
u
f-
/
~/
100
Is = 0
0.25
g
~
BO
60
0.l5
6.0
5~1
6.0
40
r-
\
Distribution 01 Collector·
Emitter Capacitance
'"
\ 1I
B.o
4.0
20
0
:;:
VeE - COllECTOR TO EMITTER VOLTAGE (V)
10
~
U O.lO
O.OB
4.0
0.6
"co
"
ff-
I'
«
>
;3
1.0
f-
r--.
12
w
u
TO·72
:;:
0.4
"«
......
0.16
0
v
f-
Contours 01 Constant Gain
Bandwidth Product (ITl
~
IE=O
f= 1.0 MHz
O.B
~
;3
:=
"'"
V
w
u
-
TO·72
;3
~
1.0
T. - AMBIENT TEMPERATURE (CC)
Is - 0
f= 1.0MHz
z
0.20
Collector· Base Capacitance
vs Coliector·Base Voltage
10
ec)
Coliector·Emitter
Capacitance vs Collector·
Emitter Voltage
«
f-
ff-
~
.
0
0
T. - AMBIENT TEMPERATURE
:;:
100
«
f-
co
""
200
U
500 1000
100
u
§
I
u
~
1000
B
400
~
50
z
'"x 100
.E•
~
UNkEUTRALlZED'L"
COMMON BASE
f - FREQUENCY (MHd
Collector Cutoff Current vs
Ambient Temperature
i
;:: 700
2i
10
100
Ic.- COLLECTOR CURRENT (mA)
, Ie - COLLECTOR CURRENT (rnA)
~
10
COMMON EMITTER
['\.
w
~I
Vea '" 15V
Ie =3.DmA
'NEUT~Al,iE~
"
lO
co
0.4
I
I
I
}
F~·5'dB
~::~~:
-r-
I
I
10
0.1
0.5
1.0
5.0
IE - EMITIER CURRENT (mA)
10
"tJ
Process 44
COMMON EMITTER PERFORMANCE
Power Gain and Noise
Figure vs Automatic Gain
Control Voltage
5.0
f
1200 MH, i,,,t',,l1
~
;;;
os
~25°C
P~15°;;'
-5.0
Power Gain and Noise
Figure vs Collector Current
16
20
I.
15
12
z
;::
I
~
'"
~
I
.;:
-10
10
~
-15
B.O
~
-20
6.0
85°C
I--NF~
-25
-
10
~
5.0
Z
Z
C
'"~
-
;::
~ -5.0
=
.;:
1.0
2.0
3.0
4.0
5.0
O·
6.0
VAGe - AUTOMATIC GAIN CONTROL VOLTAGE (VI
f
PG
-5.0
'"z
1~
10
-10
'"
-15
~
I
-20
.;:
LV
~NF
8.0
6.0
~
4.0
25'C
-30
1.0
2.0
3.0
4.0
~
I
5,0
-5.0
z
~
6.0
20
-
;;:
'"
~ ~
~
;::
\
2.0
B.O
10
;;:
'"
- '"'"
I
-10
'"'"
-20
'"
0
12
2.0
25°C I
~ P~
B5°C
\ \/
-10
1\
~ -15
1)( )
,...,.
~
;::
I
.;:
=
-20
2.0
-25
0
-30
6.0
f- f- B5°C
2.0
VAGe - AUTOMATIC GAIN CONTROL VOLTAGE IVI
T
NF
~
4.0
6.0
\
14
m
12
z
8.0
II
;:: ~
I
4.0
~
2.0
0
10
~
~
~
~ :3
~ ;;:
>
~
6.0
Ie - COLLECTOR CURRENT (mAl
6.D
B.O
10
f=45MHz
30
20
'"
10
'"'"
'"'"
'"
-10
~ ~
; ;;:'"
=12V
VeE
"""
40
I
2.0
4.0
6.0
B.O
10
Ie - COLLECTOR CURRENT (mAl
Vcc=12V
2.2 KD
270.\1
1000pFI~
4pF-30pF
T,
81.'0 pF
~50.\1
~OUTPUT
1000pFI~
50D
INPUT
~
390n
112W
820pF
270n.
1I2W
Vee = 12V
Tl-Ferrite Core Indiana Gen. Corp. F·6B4·Q3
Tl- Q3 Toroid 4:1 ratio
}N 22 .
Wire
8 turns.Pri..2 turns-Sec. o.
T2-6 turns No. 16 buss wire ID = 1/4 inch L = 3/4 inch
FIGURE 2. 45 MHz, AGC, Power Gain and
Noise Figure Test Jig
FIGURE 1. 200 MHz, AGC, Power Gain and
Noise Figure Test Jig
8·69
12
Maximum Available Gain vs
Collector Current
10
8.0
4.0
Ie - COLLECTOR CURRENT (mAl
f= 45 MHz see figure 2)
I(
f= 200 MHz
~ >
PG
'"
~
-B5'C
-25
;::
~
~
B5'C
~
5.0
12
2n
4.0
~
:3
z
1\
2.0
~
I
c
Power Gain and Noise
Figure vs Collector Current
14
=45 MHz (see ~Uj 21
I \
;:: ~
30
(")
CD
tJ)
tJ)
~
~
VeE'" 12V
z
Ie - COLLECTOR CURRENT ImAI
Power Gain and Noise
Figure vs Automatic Gain
Control Voltage
5.0
12
-20
2.0
o
/
t-- V
-15
25°C
-30
=zoo MHz
-
-10
4.0
14
" \I
Vee - lOV
I
;
16
NFl
J
f
Maximum Available Gain vs
Collector Current
a
12
Process 44
COMMON EMITTER Y PARAMETERS VS FREQUENCY
100
~
.sw
.swE
VeE" 12V
,,, 45 MHz
~
'"
i,
I
,..
VeE
~
:E
::i
II
60
'i.j
J
40
~
:i
20
4.0
6.0
8.0
10
12
::"'"
0.6
o
I
~
1/
~
0
J
b••
o
2.0
-
1/
I--
±.,.
0.2
o
4.0
~ 120
6.0
8.0
10
40
1/]A '11
r-~
Vel,
,1'5~
~
~
-40
1
lit.
b,.
~
V
0
~
-80
'"
i
.:
4.0
6.0
/
vrv~
Oi.
V
~
2.4
~
0.8
~
2.0
4.0
2.0
6.0
8.0
10
...=>'"
Y
I
12
2.0
goa
VeE -
12
0.4
R\:~f-r
2.0
4.0
g"
VeE
'"
*~
1
-0.1
1
1
1
I
b" '
-b5 ~~e,
ffi
-0.3
--ivi' " 5,v~'1"'I::
I
-0.4
~
>
o
2.0
4.0
6.0
I
15~-t-
8.0
10
VeE" 12V
f=200MHz
100
u
50
~
~
J-..I-1'
J.,..
~
b,•
'"~
b..
t-
r-.
'"
-50
,:
-100
8.0
10
12
Input Admittance vs
Collector Current·Output
Short Circuit
.sw
5V
I, - EMITTER CURRENT (mAl
8·70
"'s.nv, 15V
-0.2
I
6.0
12
TT1T
;;
~
VeE - s.nv
~
10
I, - EMITTER CURRENT (mAl
s.nv
Ve, ' 15~
8.0
f=80MHz
0.1
~
"......'"
f-+-
6.0
0.2
Z
150
1.6
4.0
Reverse Transfer
Admittance vs Emitter
Current·lnput Short Circuit
u
f=GOMHz
u
"......'"
,..
I, - EMITTER CURRENT (mAl
0
Output Admittance vs
Emitter Current·lnput Short
Circuit
~
LA"
VeE = S.OV
10
-50
~
'N ~i'
o
y
b,.
-100
~
...
b,•
Ve , '5V-";;'
1.2
8.0
-,.......
o
I
I"
I
2.0
g/o
I-..;.
1
~/I-
LU
,;.-
.s
Nb".x
u. -120
~
f2V
Ie - COLLECTOR CURRENT (rnA)
VCEi 15V
~~ rr"I'
Ve , ' 15V Y
0
I
12
=
1
50
I, - EMITTER CURRENT (mAl
Ve , -_ 15V
'"'"w
"...'"
'"
'"'"
10
I.....
40
12
.i-'"" ""i"'--J. f-60MH,
80
8.0
f'6oMH,
80
Forward Transfer
Admittance vs Emitter
Current·Output Short Circuit
~
..."...'"
6.0
-40
.s
~
4.0
120
Ie - COLLECTOR CURRENT (mAl
u
2.0
~
..."...'"
;;
;;
~
100
I.L.
u
0.4
~
~
o
160
.sw
u
...=>'"
VeE
f:4~MHz
::"'"
Input Admittance vs Emitter
Current·Output Short Circuit
VeE = f2V
f=45MHz
0
150
Ie - COLLECTOR CURRENT (mAl
Output Admittance vs
Collector Current· Input
Short Circuit
1.0
~
~
Ie - COLLECTOR CURRENT (mAl
0.8
'\
-0.2
-0.4
200
w
$'"
~
'"
I
2.0
b,.
~ -0.3
~
o
r-
1
~
t-
g,.
...'"w
bie
.sw
f2V
-0.1
ffi
o
~
=
f=45MHz
Z
u
"......'"
0.1
u
80
Forward Transfer
Admittance vs Collector
Current·Output Short Circuit
Reverse Transfer
Admittance vs Collector
Current·lnput Short Circuit
Input Admittance vs
Collector Current·Output
Short Circuit
12
o
2.0
4.0
6.0
8.0
10
Ie - COLLECTOR CURRENT (mAl
12
Process 44
COMMON EMITTER Y PARAMETER VS FREQUENCY (Continued)
Reverse Transfer
Admittance vs Collector
Current-Input Short Circuit
~
.!
D.Z
u
~
~
...'"
t-..
Z
,.'"
::
l'
-0.2
50
'"
~
b"
~
~
6.0
8.0
10
w
u
z
,.
'"
~
J.
2.0
25
...'"~
I
b,•
5.0
J.;t"
1.0
5.0 10
Ie "2.0mA
Veo '" lOV
1.0
50 100
'"
!
0.6
~
0.4
::;
ffi
~
'"
I
500 1000
~
b,.
t-
0.2
V
V
gnt-
o
5.0 10
50 100
500 1000
6.0
Ie -2.0mA
Vel" -10V
5.0
w
u
z
'"~
4.0
~
3.0
:-
2.0
...'"
~
Q
I
2.0
4.0
6.0
B.O
10
12
Ie -2.0mA
VeB
i~'"
b~.
1.0
i[
".
1.0
5.0 10
R••
.....r
50 100
f - FREQUENCY (MHz)
8-71
"
10V
r-t-
11<.
40
20 t-
r--b,.
'"
lL
~
V
~
I"""
-20
1.0
5.0 10
50 100
f - FREQUENCY (MHz)
Output Admittance vs
Frequency-Input Short
Circuit
~
...
I
1.0
f - FREQUENCY {MHd
-g
100
Q
f - FREQUENCY (MHz)
,g
1
"""
60
~
~
o
~
Forward Transfer
Admittance vs FrequencyInput Short Circuit
BO
w
g't
....
~
1.2
0.8
...
o
o
Doe"
~
Ie - COLLECTOR CURRENT (rnA)
'"
~
;i
l
~
0.5
12
z
II.
10
".
10
~~
20
!O
,;:
-g
Ll
Q
I
Reverse Transfer
Admittance vs FrequencyOutput Short Circuit
w
15
B.O
6.0
c
b••
1.0
Ie - COLLECTOR CURRENT {mAl
I
11
4.0
I
I
1.5
Q
'"
!;
:=g
I
II
2.0
Z
I
12
Ie = 2.0 rnA
VeB :; lOV
w
f - 200 MHz
u
b"
~ -100
4.0
Input Admittancevs
Frequency-Output Short
Circuit
,g
V
.\
VeE" 12V
~
...,....'"
Y
1\
-50
Ie - COLLECTOR CURRENT {mAl
~
,g
Q
-0.8
2.0
-g
'0
I
g••
~
~
2.5
VeE" lZV
I
z
-0.4
Output Admittance vs
Collector Current-Input
Short Circuit
f ;200 MHz
V 1-1"-
Q
::::; -0,6
~I
100
w
u
f"'200MHz
g,.
Z
:i
~
.§.
Vee'" 12V
w
~
ex
Forward Transfer
Admittance vs Collector
Current-Output Short Circuit
500 1000
500 1000
Process 44
COMMON BASE Y PARAMETERS VS FREQUENCY
Input Admittance vs
Collector Current·Output
Short Circuit
Reverse Transadmittance vs
Collector Current·lnput
Short Circuit
=.=
0 ~~~~r-~~~~~
Ve.=IOV
..... 1
~ -50
z
~
Forward Transadmittance
vs Collector Current·Output
Short Circuit
I = 200 MH'~_t-I-f-I-j>,
'".-+-+-1
~~
-100 I-I-I-HH--I--ICC-Jrl---l
~ -'50 I-I-I-I--I~-l--l--l--l--\-f\-I
i~ -200 ~~F=~b~'b~~~~j1ltj
~ -250
ffi
~
~ -350 L.....L.....L.....L.....L...J--'--'--'--'--'
-10 '-''-''-'--'--'--'--'--'--'-'
o
2.0
4.0
6.0
1.0
I-f-f-f-H--I--I--I-I-\-I
-300 1--t-t-I-H-I--I--I--I-1
10
.:
0
2.0
Ie - COLLECTOR CURRENT (mAl
Output Admittance vs
Collector Current·lnput
Short Circuit
_ 2.0
;!
r-r-r-r-r-'r-r-""'Ve-.~.""IO"'"v:-t
m
~';'
;;
~
1.8
~
U I--t-t-t-t-bt-0b++++-I
OJ
~
ii
f-+-+-+-+-+--+--f-+--h~""
~
o
2.0
i
1.0
Ie - COLLECTOR CURRENT (mAl
30 r<-.-.-.-r-r~V~e~.~=~IO~V
H--I--I--I--II---I-I = 200 MH,
25 r-I-I~~~--I--I-f~--I--I
~/~~~-rT~~
;
20~~~-+~~~1\-I
Common Base Configuration
Stability Factor·k vs
Collector Current
2.0
t
TO·92
2.0
4.0
7.0
Ie - COLLECTOR CURRENT (rnA)
Ves - COLLECTOR BASE VOLTAGE (VI
8-74
f-: ~
Tr
50 7080 90 95 9899
PERCENTILE 0lSTR1BUTION (%1
12
=0
1\
0
1.0
Contours of Constant Gain
Bandwidth Product (IT)
f= 1.0 MHz
0.Z5
20
Ie - COLLECTOR CURRENT (mAl
z 0.35
"<:;
-
J
Collector· Base Capacitance
vs Collector·Base Voltage
I-
0.15
I
4.0
200
"'
\/
0
150
r-
;Ii
V
Ie - COLLECTOR CURRENT (mAl
~
=
Vee 10V
f: 1.0 MHz
~
0.8 2
::
20
IE" 0
-;3
,/
0.9 4
100
Distribution 01 Collector·
Base Capacitance
",.,
2 Ie
50
TA - AMBIENT TEMPERATURE rCI
;Ii
12
-50
f - FREQUENCY (MHzl
=
8.0
0.01
~O.OOl
lBo
10
1.0
0.1
0.01
2.4
4.0
0.1
-
o
zoo
150
:::;
0
~"
.......
100
:>
I
§
0.1
I
3.2
0.8
F
Ie - COLLECTOR CURRENT (mAl
.........
Ie
_
~
~T:rl~Ic
g;
Collector Saturation
Voltage vs Collector Current
1.6
I-""
o
Noise Figure vs Frequency
Ie
4.0
~R
~ J510h
0.2
>
10
1.0
TA - AMBIENT TEMPERATURE (,CI
>
TA
11"11
Ie - COLLECTOR CURRENT (rnA)
VeE = lOV
I
t:I
0.4
~
0.1
10
a: 500
~
!
.............
8.0
jill
jill
jill
~ 400
~ 300
'x" 200
"'"
x< 100
•
~
0.6
=5V
~
800
:::;
:::;
ffi
20
Maximum Power
Dissipation vs
Ambient Temperature
;::
;1;
0,8
~I
40
~
Ie - COLLECTOR CURRENT (mAl
~
~
~
::
I
6.0
VeE
r-
>
100
~
1\
~
I
120
~
1.0
w
VeE:;: lOV
V
z
~
..
~
160
=S.ov
140
70
~
Base·Emitter ON Voltage V5
Collector Current
DC Current Gain vs
Collector Current
10
Process 45
COMMON EMITTER Y PARAMETERS VS FREQUENCY
Input Admittance vs
Collector Current-Output
Short Circuit
)0
V
VeE" lOV
"l1
.!'
w
u
z
....
"
....
~
60
/
50
ZD
z
'0
--
,:
-'0 o
..... 1'6.0
4"0
Z"O
r-;-;-.,.-.,.--,-..,....~V-eE~"-'~DV-,
:
0.02
J-j--j--j--j--j--j-- f = 45 MHz
8.0
10
-0.04
i=I=l'=1"**'T"-kd-'-+-r-..--1
~
-0.06
J-j--+-I+-+--+-+-+-++'''''
i£
-0.08
~ -0.10
w
u
0.5
"........
0.4 I---
!.
z
~
0.3
~
"
02
!;
D.'
0
J
"0
-
I
,
-D.'
.1
-..!f-I
~~
0
>
/
"l1
.!'
4B
~
U
40
~
Z4
"
i
'6
~
"l1
.!'
u
z
"........
b"
!;
02
~
8.0
-0.2
10
~
1l
j
~
-b" /
~ 0.04
....
w
V
~
0:
~ 0.02
o
"
I
/
~
,
"l1
w
u
~ 0.06
V
Y
./
10
ZD
3D 40 50
100
f - FREQUENCY (MHz)
-0.03
!....
-0.05
4~
6.0
8.0
Ie
=
200
55
50
\
2.0 rnA
ZD
"
15
I
'0
5.0
~
.;
~
19
Ie" 2.0 rnA
f=45MHz
-
V
/
-D.DB
o
2.0
4.0
6.0
Z5
B.D
10
Ie:::: 2.0 mA
~
"l1
"'t ~
\
1
'-'!"
VeE:::: lOV
ZD
o
"........
z
15
~
"
'0
i,
5.0
b;./
o
Z.D
4.0
-~,
6.0
B.D
10
10
-
,/
-h"
10
ZD
.......
3D 4050
.!'
8-75
zoo
'00
Ie
=2.0mA
=10V
VeE
1.6
w
u
Z
::"
'.2
D.B
Ie'" 2.0 rnA
,
0.4
VeE = 10V
~
/
0
!;
0
f - FREQUENCY (MHz)
3D 4050
Z.O
"~"
100
ZD
A
Output Admittance vs
Frequency-Input Short
Circuit
"l1
""" '\. '\.
/
f - FREQUENCY (MHz)
~
/\
/'
----r
--
./
/"'/
,;.-
3D
~
B.O
w
u
35
0
0:
6.0
Input Admittance vs
Frequency·Output Short
Circuit
1
40
;:
4.0
VeE - COLLECTOR VOLTAGE (V)
.!'
45
Z5
......,
b,;..- ~
10
Forward Transadmittance
vs Frequency-Output Short
Circuit
.!'
VeE'" lDV
~
-0.02
~
Vo< - COLLECTOR EMITTER VOLTAGE (V)
I
Ie = 2.0 rnA
~
I
2.0
f= 45 MHz
0.4
Reverse Transadniittance vs
Frequency-Input Short
Circuit
E
J-
~ -0.07
I
D.B
VeE - COLLECTOR VOLTAGE (V)
.!'
~ 0.08
Z.D
~ -0.06
1.0
~
,
]' 0.10
"-
"" ......
---
r-.,
z
1"
0
---t-
"-
"~ -0.04
l.Z
0.6
"~
/
6.0
I
~ -0.01
MHz
\.
o
.,
\
'5
Output Admittance vs
Collector Voltage-Input
Short Circuit
~
.,
4.0
*
z
0:
1/
3D
VeE - COLLECTOR EMITTER VOLTAGE (V)
1
2.0
4~
.......b..
'0
I
I
,;:
1=
1.4
2.0mA
"
"....
11
45
Reverse Transfer
Admittance vs .Collector
Voltage-Input Short Circuit
\1
B.D
Forward Transfer Admittance
vs Collector Voltage-Output
Short Circuit
Ie
)5
Ie - COLLECTOR CURRENT (rnA)
9ie
32
Ie - COLLECTOR CURRENT (rnA)
f=45MHz
BO
Ie -2.0 rnA
I
\ I
u
::""
-B.O
2~
~
VeE = 10V
1=45 MHz
b"
1\
,;:
I
o
90
f--f--f--I-I-f--
56
/
i
105
~
"
Input Admittance vs
Collector Voltage-Output
Short Circuit
VeE" lDV
t.: 4S HZ
i
Ie - COLLECTOR CURRENT (rnA)
D.)
"l1
a
, -0.' Z '--'--.L-.L-.L--'--'--'--'--"--'
B.D
,0
Z.O
4.0
o
6.0
Output Admittance vs
Collector Current-Input
Short Circuit
0.6
Forward Transfer
Admittance vs Collector
Current-Output Short Circuit
::
J-t-j--7b,-,t-
Ie - COLLECTOR CURRENT (rnA)
~
I
g"
"*
bie
I::;::
0.04
~ -0.02
",;,J
3D
I
::"
IL
40
"....
=>
f=45MHz
Reverse Transfer
Admittance vs Collector
Current-Input Short Circuit
zoo
-"
o >-'0
I--
20
/
::::>':::...
30 4C SO
I
I
~
~
lDO
f - FREQUENCY (MHz)
2DO
Lt)
~
Process 45
U)
U)
COMMON EMITTER PERFORMANCE
Q)
0
0
...
a.
Maximum Available Gain vs
Frequency
Maximum Available Gain vs
Collector Current
;;;
50
'"~'"
40
w
'"
S
"''"
30
"\
:5
"'
20
"=
x"
10
I
-10
-20
1\
~
i"
"'
2.0
4.0
45
6.0
8.0
10
~--+----j-+-+-"--"IT-----j
25
~--+----l-+-+----j-"""""'---"'J
a:
=
:l:
>
S
;;
'"
I;;
S~ABILT~
f::::=
r-
1.0
/
0.5
0.3
02
-- '--
/
2.0
4.0
~
-
i
CONDITIONALLY
STA8LE
6.0
......
/
8.0
Ie - COLLECTOR CURRENT (mAl
10
-30
I
20
o
-50
'"
-60
"
~O
I
u
~
'\
~ rNr ~ /
VAGC
2.0
-
30
/
!
1.0
~
4.0
6.0
8.0
3.0
"-
20
"I '"
20
16
1:1 ~
10
12
gj
8.0
~
4.0
'"
~
'"
1/
5.0
6.0
Vee = 12V
FIGURE 1
PG
Z
~ a:
V
~
12
;:;
I
=
~
Z
8.0
I
~ -10
~
-20
0
4.0
10
COLLECTOR CURRENT (rnA)
Power Gain and Noise
Figure vs Collector Current
24
I\V
I
o
2.0
Ie
f= 45 MHz
-40
~
"
I
25
Ol"
Vee'" 12\1
\.
....
8 -20 I
"'-
I
30
28
VPG\
-10
z
VeE'" lOV
f:45MHz
o
'"'"~
u
0.1
.A-
Automatic Gain Control and
Noise Figure vs Automatic
Gain Control Voltage
~
f::::=
~NC~N~1TI6NL~
~ ;=
f--- STABLE
-
10 f---5.0
FACTOR-k
3.0
2.0
"x
"'"
=lOV
-f- ~
35
f - FREQUENCY (MHzI
Stability Factor" vs
·Collector Current
t;
VeE
f=45MHz
'"
~
1l
15 '-----'---'--'---'-,----'-----'
10
20
30 40 50
100
200
Ie - COLLECTOR CURRENT (mAl
100
50
30
20
~
I-~---"=j-..t::-+-t----------t----~---j
35
I
"~
'""
.....
>
'\
o
40
---~
f= 45 MHz
>
"'"
"
"'"
65 r---'--'-,-r--~--~
Ie =2.0 rnA
- - -- VeE = lOV
55 ~---~-~-+-+--~r-~
VeE'" lOV
i'
Maximum Stable Gain vs
Collector Currerit
NF
2.0
7.0
4.0
......
J-t4.0
6.0
8.0
10
12
~
'"
Ie - COLLECTOR CURRENT (mAl
AUTOMATIC GAIN CONTROL
VOLTAGE (VI
* Rollet stability factor "k" is defined as R= 2g igo- Re(YfYr)
IYfYrl
8 pF-25 pF
BNt
OUTPUT
50n
22 pF
BpF-25 pf
L1 - 7 turns No. 16 buss wire 5/8 inch
Lx5/16inchi0
.
L2 - 4 turns No. 16 buss wire 1/2 inch
Lx 1/2 inch 10
All resistance 1/2W, 1 % tot.
Erie tunables PIN N300
270n
Erie feedthrough PIN 370CB102J
RS = 120n
RL=750n
Vee
+12V
FIGURE 1. SE5055 45 MHz Gain; Noise Figure, AGC Circuit
8·76
"'C
~National
Process 46 NPN RF·IF Amp
U Semiconductor
CD
U)
U)
DESCRIPTION
,&::10
Process 46 is an overlay, double-diffused, silicon epitaxial
device.
0.008
.......4y~'-+-,4-,.-10.203)
0.0020
10.0508)
APPLICATION
This device was designed for linear RF amplifier applications up to 100 MHz with collector current in the 1 mA to
30 mA range.
PRINCIPAL DEVICE TYPES
0.0019
10.0483)
TO-92, EBC: CS9016
PE5025
~ ~I::::::)
0.013
10.330)------1
. Parameter
G pe
CCB
goe
hIe
hFE
VCE(SAl)
BVCEO
BVCBO
Conditions
Min
f=45 MHz, VcE =10V, Ic=10 mA
VcB =10V
25
f=45 MHz, VcE =10V, Ic=10 mA
Ic=10 mA, VCE=10V, f=100 MHz
ao
Typ
Max
28
0.8
Units
dB
1.1
pF
200
/,mho
3.0
4.5
Ic=10 mA, VcE =10V
Ic=20 mA, IB= 1 mA
30
100
250
0.2
0.5
Ic=1 mA
35
V
Ic=10/,A
45
V
4.0
V
V
BV EBO
Ic=10/,A
ICBO
VCB=30V
100
nA
lEBO
VEB=3V
100
nA
8-77
Notes
C)
co
~
U)
U)
Process 46
Q)
(,)
e
0...
Base·Emitter ON Voltage vs
Collector Current
DC Current Gain vs
Collector Current
2:
w
'"
~
100
VeE'" lOV
'"
~
I-'"
5
~
w
80
Q
I-""
1\
\
60
~
=>
~
I
"'"a:
;;
I
I1TTlfII I
~
20
10
0.1
100
>
0.2
;:0
f= 1 MHz
1200
U
z
§
'" "-"-1"'-
i
TO·92
600
400
200
50
.?
100
;;:I-
0.24
~I
"'-
150
1.2
~
~
0.08
8
~
1.2
1.0
"~
g;,
0.8
~
0.6
~
~
0.4
~
0.04
1.0
0.1
'10
5.0
~
20
I
1.0
~
0.6
uW»~
"/
1.0
50
100
Ie - COLLECTOR CURRENT (mAl
i
5.0
10
T
~=lD
o
"-
"Coo.
""'"'+--l
I
1
>
.1
100
10
100
Cibo
1.0
50
'=1 MH2'
I
"
I-
0.2
0.1
20
Capacitance vs Reverse
Bias Voltage
I.
-
2.0
Ie - COLLECTOR CURRENT (mAl
Base·Emitter Saturation
Voltage vs Collector Current
;;
"'
I
~
REVERSE BIAS VOLTAGE (VI
-
0.12
\~O;rHZ
20
10
i'-.. . . . .
10
'"~
200
300 MHz
3D
"'~
0.4
w
150
;;
0.8
~
"
100
Contours of Constant Gain
Bandwidth Product (IT)
.........
200
I.
~ '0.16
....
::\
w
"'
....
....
;;
50
TA - AMBIENT TEMPERATURE rCI
~
>
~
_I~~~:I
0.20
'\
~
'"
w
ffi
Collector· Emitter Saturation
Voltage vs Collector Current
w
'"
15;::
200
100
.?
1.6
Te - CASE TEMPERATURE rCI
~
I\. TO·92
300
60
IE'" 0
"
100
2.4
u
BOD
\.
Reverse Transfer
Capacitance vs Reverse
Bias Voltage
1400
I
10
1.0
Ie - COLLECTOR CURRENT (mAl
1600
~ 1000
I\.
~
0.1
..5
~
u
"
Maximum Power
Dissipation vi;
Ambient Temperature
1.
r10
50
REVERSE BIAS VOLTAGE (VI
Ie - COLLECTOR CURRENT (mAl
u
>
Collector· Base Diode
Reverse Current vs
Temperature
100
~....
~
~
24
V~. - Jov
11
20
w
u
16
VcE "'lDV
f,:45 MHz
..5
10
z
~
"
I
,:
.01
I---'"
400
'
10
Ie - COLLECTOR CURRENT (mAl
8-78
50
100
-
1.0
VeE = lOV
I-
f=45MHz
10
Ic ,- COLLECTOR CURRENT (rnA)
100
Process 46
Forward Transfer
Admittance vs Collector
Current
~
24D
....
200
ffi
160
~
~
V
~
~
-
1
VeE'" tOV
f=45MHz
a:
....
~
'"
~
~~
2~ r---r-~~tH~--~_+~
*
:
....
.,II/v
40
t;:/
~
1-----I-H4-++I++--
~
a:
50
,,!
~
1 1000
~
~
~
90,
100
160
-
VeE = lOV
Ie'" 5.0 rnA
Ib.~ b.L
I
z
'"~
.s
'"f=
10
Small Signal Input
Resistance vs Collector
Current
,
VeE =
\
"
w
u
tov
f·I.0kHz
'"
~
90
....
ED
o
0.1
"
r-...
c
3D
1.0
~
'1k,
0
100
10
1.0
Small Signal Output
Conductance vs Collector
Current
Small Signal Current Gain
vs Collector Curre.nt
z
VeE .= lOV
f = 1.0 kHz
100
VeE
;;:
I
I
1/
II
....
'"
10
a:
B
=tOV
........
f::: 1.0 kHz
80
L
60
~
'"
'"
'"
ili
z
in
/'
40
~
~
I
I
I -' -
>
V
f - FREQUENCY IMHzl
1 120
z
~
~
!!,
I
150
'"
!:ia:
~
a:
f - FREQUENCY IMHzl
w
'"
w
100
Z
Z
~
a:
T
u
I;;
]I
200
w
I ~••
10
100
f - FREQUENCY IMHzl
a
~
~ 400
'"
10
1\
VeE - lOV
Ie =5.0mA
$z
/
10
1600
z
V
//
C
I
1.0
Reverse Transfer
Admittance vs Frequency
-
w
u
1'1
~.
V
~
100
f - FREQUENCY IMHzl
Forward Transfer
Admittance vs Frequency
VeE::: lOV
Ie::: 5.0 rnA
/111/
10
1.0
50
Ie - COLLECTOR CURRENT ImAI
Output Admittance vs
Frequency
5000
V
o
10
1.0
Ie - COLLECTOR CURRENT ImAI
a
V ~
VeE:;: 10V
!'45MHz
-g"
I
10
1.0
bV
I-----I-H+++I++---+-+-H
100
w
I III
0
VeE = tOV
Ic =5.0mA
-b,.
z
80
I
Z
300 '----'---'-rT'T"Trr""----'---'-'''
'"
~.
120
Input Admittance.vs
Frequency
!
~
-b••
/
Reverse Tra nsfer
Admittance vs Collector
Current
20
I
J!
1
o
10
1.0
0.1
10 20
20
Ie - COLLECTOR CURRENT ImAI
Ie - COLLECTOR CURRENT ImAI
Small Signal Voltage
Feedback Ratio vs Collector
Current
~
20
c
16
;::
.~
~
I
12
VeE
=lOV
f= 1.0kHz
1\
\
/1
w
'"~
c
V
>
I
.1
0
0.1
1.0
10 20
Ie . COLLECTOR CURRENT ImAI
8·79
o
0.1
1.0
10 20
Ie - COLLECTOR CURRENT ImAI
~National
a
Process 47 NPN RF·IF Amp
Semiconductor
DESCRIPTION
. Process 47 is an overlay, double-diffused, silicon epitaxial
device, with a Faraday shield diffusion.
APPLICATION
This device was designed for common-emitter low noise
amplifier and mixer applications in the 100 JlA to 15 mA
range to 300 MHz, and low frequency drift common-base
VHF oscillator applications with high output levels for
driving FET mixers.
PRINCIPAL DEVICE TYPES
TO-92, BEC: MPSH11
MPSH24
PE5030
Parameter
Conditions
Min
Typ
Max
Units
Notes
f=45 MHz, VcE =10V, Ic=4 mA
f=200 MHz, VcE =10V, Ic=2 mA
29
33
dB
Figure 1
17
19.5
dB
Un neutralized
Figure 3
3.5
dB
Figure 3
15.0
ps
NF
f=200 MHz, VCE =10V, Ic=2 mA,
Rs=50n
rb'Cc
f = 79.8 MHz, VCB = 10V, IE= 5 mA
hfe
G ib
f = 100 MHz, VCE = 15V, Ic= 7 mA
VEB=0.5V,l c =0
2.0
3.0
pF
TO-92
G CB
VCB=10V,I E=0
0.33
0.40
pF
TO-92
goe
roep
f=45 MH'z, VcE =15V, Ic=7 mA
125
Jlmho
hFE
VCE=15V, Ic=7 mA
VCE(SAT)
Ic=20 mA, IB= 1 mA
VBE(SAT)
BVCEO
Ic= 10 mA, IB= 5 mA
BVCBO
Ic= 10 JlA
40
BV EBO
I E=10JlA
4.0
ICBO
VcB =30V
VEB =3V
lEBO
2.0
6
f = 10.7 MHz, VCE = 10V, Ic= 2 mA
10
n
100k
100
40
200
1.0
0.3
0.95
Ic= 1 mA
V
l~OPFI J.
1/2W
V
V
V
35
390n
V
~1
':"
nA
100
nA
[111~:·"'
1000 pF
I h_-_ ~ _
:-1
03 Toroid 4:1 ralio } N 22 .
8 turns Pri. 2 turns Sec.
o.
wire
270n
1/2W
Vee
vAGC FIGURE 1_ 45 MHz Power Gain Circuit
8-80
100
=
12V
'"'C
Process 47
DC Current Gain vs
Collector Current
Base·Emitter ON Voltage vs
Collector Current
~
100
"~
VeE = lDV
TA = 25°C
~
80
....
"
~
60
V
1\
~
40
u
'"I
20
0.8
:=w
0.7
:>
0.1
~
0.6
0.01
Maximum Power
Dissipation vs
Case Temperature
800
~
600
~
400
'"~
'\
-
u
z
1"\TO-92
........
TO·72
200
.::
....
""
50
U
~
1"-
r-- ~
100
200
100
"w
60
'"'"
I--
f= 1 MHz
1.8
~
10
1.2
I
1.0
/
C"O
w
r-
j
10
1.
/
50
25
50
75
100
125
T, - JUNCTION TEMPERATURE ('CI
Maximum Stable Gain vs
Collector Current
40
"~
r---
=
""
in
30
",-
20
x
40
"""
c
I
~
/
=
~
u
u
200
0.1
.1
Contours of Constant Gain
Bandwidth Product (IT)
-
150
~
-fl"
VeE =lDV
TA ::;25Q C
I--""
~ r---. r-...
100
VeB = 30V
REVERSE BIAS VOLTAGE (VI
DC Current Gain vs
Collector Current
BO
50
Collector· Base Diode
Reverse Current vs
Temperature
o
150
Te - CASE TEMPERATURE (OC)
"
.::
TA - AMBIENT TEMPERATURE ('CI
r--
.6
I,\: r--.
~
1000
2.4
-
~
....~
100
10
I\.
100
1
~ 100
B
.......
""~ 1200
1000
1.0
3.0
1600
z
~ 1400
~
0.1
t\. TO-92
r- -~I~
~
Capacitance vs Reverse
Bias Voltage
5
~
200
Ie - COLLECTOR CURRENT (mAl
Ie - COLLECTOR CURRENT (rnA)
§:
300
~
~
L-.J...U-L-.J-'-.J.JJ.--'-...J..J-"--'-.L.U-'-J
'\.
400
~
'"I
0.5
100
10
.......
600
C
c: 500
z
i
~
~
800
;;:
ill
f-f-ttHH+tt-++H++++t+I-l'
0,9
~
~
CD
o
~
1\
\
~z
I
~
20
10
~
o
16
12
20
Ie - COllECTOR CURRENT (mAl
VeE = 15V
FREQUENCY
o
12
=
45 MHz
16
20
Ie - COLLECTOR CURRENT (rnA)
Ie - COLLECTOR CURRENT (mAl
200 MHz
50n
0'-----; I-~~-.....-__t
RF,"
C
LO,"
(0-----;
T,
:llnJ'~'
~
(
-----------l
245MH'f
50n . .-...
Ll - Ohmile RFC Z235
~VBB---~VCE~
Vee =15V
FIGURE 2. 200 MHz Conversion Gain Test Circuit
8·81
(')
en
en
i= 100
:>
w
~
1.0 ,rITr-lrTTTT-r-,rrr.-TTrr-l
Maximum Power
Dissipation vs
Ambient Temperature
a
T1 - Primary 5 turns No. 34 wire
114 inch diameter. Secondary 2 turns
No. 34 wire close wound over a Q100
core (10.7 MHz), When terminated on
secondary side with 50n primary
measures 1,5k, - 25 pF.
.......
~
tJ)
tJ)
Process 47
COMMON·EMITTER VS FREQUENCYY PARAMETERS
CJ)
Input Admittance vs
Collector Current
CJ
e
CL.
14
~
-g
.§
w
Input Admittance vs
Collector Current
24
VeE, =15V
f=45MHz
12
""....
....
...... ~ i-""
~
"
-g
/
10
'"
w
UI' ....
'"
16
~
12
'i
"
8.0
I
4.0
"........"
'/
I
o
16
12
....... /
/
20
-
-g
.§
w
'"
""........
~
"~
r-....
"- ......
o
2.0
4.0
6.0
8.0
Ie
:>!
16
12
4
....
f- b"
vCE =15V ----f--+-j-+H-H1
Ie = 7 rnA
M-rtt-r-----f--+--hH-+t+i
12 H--H-++----b-oCf--+++-++H
E
.§
250
12
w
'"
"~
100
~
~
E
~
0:
....
10
120
1=45MHz
~
100
~
so
"
60
VeE =lOV
f=20QMHz
w
~
~
"
~
I/-bfo
bf ,,..-
40
I"-
0:
~~LL
50
___ J_ _L-L-~~~
100
20
i
~
o
1.0
12
500
f - FREQUENCY (MHz)
~
140
o
120
~
E
.§
I
w
gfo
....~ 100
~
!
120
....
100
~
"
~
"c~
80
z
60
"
~
40
~
....
i~
20
Z
I
o
.;
;
0:
=7 rnA
f:45MHl
o
12
16
20
VeE - COLLECTOR VOLTAGE (V)
Reverse Transfet
Admittance vs Collector
Current
~
I~
0.6
'"
0.5
~
0.4
~
~
0.3
~
:!
1=
VeE·.= lOV
0.2
-f-+--+-+++-I
f-+--+-++-+-t-ff---r-!
I-+--+++-+-+---ff---r-!
I-+--+++-+-+---ff-,--r-!
0.1 f-+--+--+-+-+-+-+++..,
f-I-+-+--U"f-f-f---If---I----I
OLJ
........-..;;.;,I.,..I,,;,........._
4.0
6.0
8.0
Ie - COllECTOR CURRENT (rnA)
I
.§
Ie = 7 rnA
'"z
.24
ic
.20
10
.§
40
o
"
~
z
"....w
0:
~
~
~
....
w
I'
0:
w
~
10
VeE = 15V
FREQUENCY = 45 MHz
I
-b ..
.16
.12
.08
.04
-gr.
0:
500
.40
.28
.24
8.0
~
..!::. 1-'-
100
1000
.,:
12
Ie
=7 ~A
i\
I"--
-b"
].
1.4
12
-f-f-
Vee
Ie
=15V
=7 rnA
II
.8
.16
.6
.12
.4
.08
-b,i'
V
.2
.04
-9r.
2
4
6
8
10 12 14 16 18 20
VeE - COLLECTOR VOLTAGE (V)
8·82
20
Reverse Transfer
Admittance vs Frequency
j
1.0
.20
16
Ie - COllECTOR CURRENT (rnA)
f=45MHz
0:
I
.,:
"
~z
Reverse Transfer
Admittance vs Collector
Voltage
~
6.0
.28
f - FREQUENCY (MHz)
.32
4.0
I
50
.36
~
'" ,-b.
'\.
20
w
'"z
-g
w
"~
r.....
60
.;
-g
~b"
2.0
2.0
Reverse Transfer
Admittance vs Collector
Current
VeE = 15V
80
~
I = too MHz._t-++++-+--I
o
o
Ie - COllECTOR CURRENT (rnA)
-;
C
Ie
24
Forward Transfer
Admittance vs Frequency
140
IU
~
-bfe
0:
20
I-
Ie - COLLECTOR CURRENT (rnA)
Forward Transfer
Admittance vs Collector
Voltage
1
16
-
-!:
C
o
20
Forward Transfer
Admittance vs Collector
Current
.§
-~,
1'/
16
VeE - COLLECTOR VOLTAGE (V)
=15V
VeE
9ie
10
Forward Transfer
Admittance vs Collector
Current
~~~---r-,-,-rTTTn
1 mA
20
!!'
I
=
f=45MHz
24
Ie - COLLECTOR CURRENT (rnA)
Input Admittance vs
Frequency
16
....
~
biB
f'.
Ie - COLLECTOR CURRENT (rnA)
20
1/
.;!
"
,;:
20
.§
II
b;e
/'
i
VeE =lOV
Ii 200 MHz
~
Input Admittance vs
Collector Voltage
-gra
o
50
100
500
F - FREQUENCY (MHz)
1000
"C
Process 47
Output Admittance vs
Collector Current
1000
.1
I
boo
w
u
z
100
....
'"
....
r-
;;;
go.
V
5.0
-;;
1l
~
2.0
~
1.0
10000
VeE =lOV
f:: ZOO MHz
~
!;
10
~
I
~
VeE:: 15V
fi4j Mi'
I
,;
1.0
12
16
20
~I
0.2
>
0.1
35
I
~
'"t:
boo
1000
'"
!;
~0
,;
~
-
30
w
'"
~
«
....
:>
~
100
'"
25
~
20
c
z
15
'"z
~
10
'"~
,
100
50
>4.0
0.0
6.0
500
1000
goo
10
12
16
20
VeE - COLLECTOR VOLTAGE (VI
Conversion Gain vs
Collector Current
28
Vee:: 12V
f:: 200 MHz
~ r--
"
~
"
PG
26
24
0
V
ffi
~
0
2.0
4.0
22
flF ::
fa
20
u
6.0
0.0
~
f-'"
f- f-
I
!/,V
NF
5.D
f - FREOUENCY (MHz)
I'
10
45 MHz
=200 MHz
=245 MHz
flO
VcE =15V
18
100
r- r-
boo
I-
~
10
t"
I
FIG.2
:>
go'"
~
1000
Power Gain and Noise
Figure vs Collector Current
10000
=7 rnA
f-45MHz
Ie - COLLECTOR CURRENT (mAl
Output Admittance vs
Frequency
Ie
,....- ,o . 2.0
24
Ie - COLLECTOR CURRENT (rnA)
VeE:: 15V
goo-
0.5
Ie = 7 rnA
I
boo
~
c
1.t
FIG. 1
10
Ie - COLLECTOR CURRENT (mAl
Ie - COLLECTOR CURRENT (mAl
Vee:: 12V
270
l----to') 200 MHz 0 UTPUT
I
I
INTO 50 OHMS
100
200MH'~.
INPUT
1
'
390
2.2K
L1 - Ohmite Z·235 RFC
Vss
CD
Output Admittance vs
Collector Voltage
Output Admittance vs
Collector Current
L2 - 6 turns No.14 wire, 1 inch Lx 1/4 inch ID tapped 11/2 turns from cold side
All capacitance in pF, all resistance in ohms.
FIGURE 3. Unneutralized 200 MHz PG NF Test Circuit
8·83
an
24
o
o
~
~National
a
Process 48
NPN High Voltage Video Output
Semiconductor
DESCRIPTION
Process 48 is a non·overlay, triple·diffused, silicon device
with a field plate.
APPLICATION
This device was designed for application as a video output
to drive color CRT.
0.028
(0.711)
PRINCIPAL DEVICE TYPES
TO·202, EBC: D40N1-5
NSD131-5
NSD457·9
NSE457-9
TO·202, BCE: NSE457-9
TO·237, EBC: 2N6733·5 (92PU391·3)
TO·237, ECB: 2N6711·13 (92PE487·9)
2N6719 (92PU10)
0.028
1-------(0.711)---~--
TO·39 (Steel): SE7056
MPSA42
TO·92: .
Parameter
Conditions
BVCEO
Ic=1 rnA
BVCBO
Ic=100!,A
BV EBO
I E=10!,A
ICES
VcB =150V
Max
Units
Min
Typ
300
370
V
500
V
V
7.0
100
nA
100
nA
lEBO
VEB =6V
hFE
Ic=1 rnA,VCE =10V
30
hFE
Ic = 10 rnA, VCE = 10V
40
hFE
VCE(SAT)
Ic=100 rnA, VcE =10V
Ic=20 rnA,I B =2 rnA
0.25
1.0
VBE(SAT)
Ic=20 rnA,I B =2 rnA
0.74
1.0
V
CCB
C ib
VCB=20V
1.9
3.5
pF
70
pF
hIe
Ic= 15 rnA, VCE = 100V,
Ic=15 rnA, f=20 MHz
2.5
Tc=25°C
TA=25°C
10
2
W
TA=25~C
2
850
W
rnW
TA=25°C
600
rnW
I
PD(maxl
TO-202
TO'237
TO-92
OJC
TO·202
90
200
20
VEB =0.5V
TCOLLECTOR LEAD = 25°C
V
4.0
TC=25°C
12.5
°C/W
TCOLLECTOR LEAD = 25°C
62.5
°C/W
OJA
TO·202
TA=25°C
62.5
°C/W
TO·237
TA=25°C
147
°C/W
TO·92
TA=25°C
208
°C/W
TO·237
TJ(max)
All Plastic Parts
Notes
°C
150
8-84
TO·92
"tI
Process 48
DC Current Gain vs
Collector Current
1000
1000
z
"~
~
~
I-
100
i
co
B
u
u
Q
10
I
Coliector·Emitter Saturation
Voltage vs Collector Current
Typical Pulsed Current Gain
vs Collector Current
Q
IC "10
IBI I
TJ - +125°C
100
II
~+25 C-
40"C
+25°C
+125'C
U
-
Q
~
;a
I
w
1111111
lJ..I.Ijj.
TA
0.4
"
1.0
~>
-
Tc
0.6
;a
0.4
;)j
0.2
I
~
g
~
~
>
0.1
1.0
10
100
>
......
I--'"
:;
~
1IIII
100
TA
125°C I--
1.0
TA =25°C
"«,..
20
-
u
~
;3
5.0
~
-
150
200
250
IIII
1.0
300
~
~
10
~
100
200
)}
..
50
Safe Operating Area TO·202
\
/
/ VI
10 5.0
10
20
50
Guaranteed Maximum DC
Power Dissipation vs
Collector· Emitter Voltage TO·39
I
"co
co
i 01M!"'.~
I I
Te
=25°C
1\
\
Tc=50°C
I I
ITe:::
\
',oooe
~ Ie (MAX) "0.25A
0.01
I
o
0.001
100
1000
VeE - COLLECTOR TO EMITTER VOLTAGE (V)
\
Te:: 150°C
!:
10
100
Ie - COLLECTOR CURRENT (rnA)
5:
,..
1.0
i!
I IIff_
I I 'j
20
Safe Operating Area TO·237
8
\ -~l/i~
I
REVERSE BIAS VOL TAGE (V)
Veu - COLLECTOR TO BASE VOLTAGE (V)
125
I Te:: 25°C
~I ...
~!~
~-c:;, ~~
I
1000
100
Contours of Constant Gain
Bandwidth Product
~
I i'j..jJ
75
'"~
",..
~b!Etlol
1.0
100
~
50
JUNCTION TEMPERATURE (OC)
~
....... Ceb Ie:: 0
'"1 ill
10
U
c
50
25
-
co
2.0
o
o
~ 100
0.1
0.01
/
TJ
50
-
I---
1.0
1
100
Collector· Base and Emitter·
Base Capacitance vs
Reverse Bias Voltage
-
10
'"~
10
0.1
10
1.0
I
JJ
f-
Te - 25°C
"
~
w
«
'"
100
,..
~
~
V
/
100
Ie - COLLECTOR CURRENT (rnA)
~ 500
B
i
=25°C
IIII
0.1
VeB :: 50V
~,..
~l~~oC_
0.2
Collector Cutoff Current vs
Collector Voltage
co
= 10 Is
I-++tf
II Jl... V
~
Ie - COLLECTOR CURRENT (rnA)
ffi
Ie
IIII
0.8
§
,..~
1000
IIII
«
'"
1~~:~-
Collector· Base Diode
Reverse Current vs
Temperature
Base Saturation Voltage vs
Collecter Current
~
1.0
0.8
«
'"
100
Ie - COLLECTOR CURRENT (rnA)
IC - COLLECTOR CURRENT (rnA)
Base·Emitter ON Voltage vs
Collector Current
~
10
0.1
100
1
10
_ 100
1000
VCE - COLLECTOR·EMITTER VOLTAGE (V)
8·85
Te;; 200°C
o
(')
CD
en
en
&
10
VCE" 2V
a
100
200
300
VeE - COLLECTOR EMITTER VOLTAGE (V)
Process 48
Maximum Power
Dissipation
vs Case Temperature
Maximum Power
Dissipation vs
Ambient Temperature
~
12
z
o
~
10
ill
"\
f-
k::
.........
15
ffi
No.202
~
!§
""-J\.
!~
.....,..."
TO·39 (KOVAR)
i
"
~TO·39 (STEEL)
'\.1.'"
J\.~
\l
o
o
25
50
l".
2.4
2.2
1.B
1.6 f-TA (TO·202!
1.4
TCOLlECTOR lEAD
1.2 TA (T0·39)""""'
(TO·237)
1
-l~
"\ TA (To.m\O.B
0.6
....:'I
1'1.
J"""!... "-
I
0.4
~
0.2
~
75 100 125 150 175 200
J I
2.0
TJ~
!""loJ..
-....;;~I\.'j...
~
0 0
25
50
75
J"'-..
100 125 150 175 200
TA - AMBIENT TEMPERATURE (OC)
TC - CASE TEMPERATURE rc)
Thermal Response in TO-202 Package
~~
f!:;::::i
:"
"
....
....
'"
ZC
~~
Zu
"z
"'''
........
1!<1
~.t3
""",,,
1
0.7
0.5
0
0.3
0.2
0.2
0.1
0.07
0.05
0.03
0.02
~
0.5
HEATS UNK
~
0.05
fREE AIR
~~~~.02
I- 0.01
SINGlEPU~
...
LJlJl
P(pk)
SINGLE PUlSE
CI.1
I
-
0.01
0.01 0.02
0.05
0.1
0.2
0.5
10
20
50
tl - TIME (ms)
8-86
100
zoo
tl t2500 lk
°Jc(t) 0 rlt) ·OJC
0JC DC THERMAL RESISTA NCE
Tpk - TC + Ppk .OJc(t)
DUTY CYCLE D ~
t2
0
2k
5k
10k
20k
50k
lOOk
~National
a
Process 49 NPN RF Amp
Semiconductor
DESCRIPTION
Process 49 is an overlay, double-diffused, silicon epitaxial
device_
APPLICATION
This device was designed lor general RF ampliler and
mixer applications to 250 MHz with collector current in the
1 mA to 20 mA range.
PRINCIPAL DEVICE TYPES
TO-92, BEC: MPS6544
MPSH20
Parameter
Conditions
PG
1= 45 MHz, VCE = 10V, Ic = 10 mA
IT
VcE =10V,l c = 10mA
Min
Max
Units
25
30
dB
400
700
MHz
rb'Cc
1= 79.8 MHz, VCE = 10V, Ic = 8 mA
CCB
1= 1.0 MHz, VCB = 10V, IE = 0
hFE
VcE =10V, Ic=10 mA
40
hFE
VcE =10V, Ic= =4 mA
VcE =10V,l c =10mA
30
VBE(ON)
Typ
Ic=30 mA, Ic=3 mA
20.0
ps
0.55
0.65
pF
100
250
0.80
0.90
0.15
0.50
V
V
VCE(SAT)
roep
1=4.5 MHz, VcE =10V, Ic=2 mA
80k
fl
BV CEO
Ic=1 mA
35
V
BV CBO
Ic=10!'A
45
V
BV EBO
I E=10!,A
4.0
ICBO
VcB =30V
VEB =3.0V
lEBO
8-87
V
100
nA
100
nA
Notes
Process 49
DC Current Gain vs
Collector Current
Input Admittance vs
Collector Current
Input Admittance vs
Frequency
32
16
.1
Il,
"",.
'".l!e
........ ,....
oS
.Y
w
,
.;'
V-
~
:e
'"'"
b,.1
VeE
50
12
i!i
.
~"i
~l
w
,
~
'a:"
~1
.10
w
.05
~,
-
'"
a: E
....
VeE'" 20V
f=45MHz
T. =2S'C- t-'I
1
>"
12
,~,
.6
/
16
240
~
200
'"a:
160
~
r-- r-Illf.
t::!-;;;
~
0
:ia: Ee
....
-
120
I
BO
if
.<
/
I
40
o
-
k"
100
'"
BO
.3
5.0
=10V
F'" 1 MHz
-
- ~:
T. = 25'C
-
w
1.0
....
'"
0.5
'"z
;:;
:1:
5
E
COO
II
I
oS
2.0
1.6
i!i
1.2
'"~
lOV
f= 45 MHz
....
'"
.2
~
- r-,I\'
'"'",
.1
>
12
Ie - COLLECTOR CURRENT (rnA)
16
~
....
::ii
/
.B
.4
o
50
l-
6.0
V
,..........
B
."''"
~
4.0
f=100MHz
VeE = 10V
T.=25'C
;;;
goo
~
~
'>'
ill'",
,.
~
100
f - FREQUENCY (MHz)
8-88
B.D
~
b,,\/
/
V
100
10
Small Signal Current Gain
vs Collector Current
z
T. =25'C
w
=
1.
.1
REVERSE BIAS VOLTAGE (V)
Ic=4mA
'"z
C~
-
0.3
500
100
VeE'" 10V
1l
200
150
100
Capacitance vs Reverse
Bias Voltage
Output Admittance vs
Frequency
1-
o
1,\
50
f - FREQUENCY (MHz)
TA =25°C
o
'\
0.1
50
2.4
-'
~0.92
.
o
16
.5
VeE
l'...
~ 400
~
"x 200
"'"x,
;p'"
TA - AMBIENT TEMPERATURE rC)
\
20
Output Admittance vs
Collector Current
-
g.. - -
-b,.~
,,;
40
Ie - COLLECTOR CURRENT (rnA)
•4
I'\.
Ie = 4 rnA
A-
60
-b'i- r-12
r-- b'I'
600
Forward Transfer
Admittance vs Frequency
f=45MHz
TA = 25°C
o
500
VeE
V
BOO
f - FREQUENCY (MHz)
VeE - 20V
,V
V
120
I-'
Maximum Power
Dissipation vs
Ambient Temperature
a:
100
50
f-""
I'
/
illc;
" -\
.2
Forward Transfer
Admittance vs Collector
Current
z
'"
:1:
-b",",
,!
500
>=
.B
Ie - COLLECTOR CURRENT ImA)
w
100
Q
J
.4
ffi
if\ r-- -
~
.§
z
VeE = 10V
Ic =4mA
TA '" 25"C
1.0
~
~
ffi
10
f - FREQUENCY (MHz)
1.2
'"
Ib"
.15
'"ffi
o
16
Reverse Transfer
Admittance vs Frequency
w
'"~
,
,,:
= 25"C
Ie-COLLECTOR CURRENT (rnA)
.2
'"z
~
~b;.
!';
=20V
f= 45 MHz
TA
Reverse Transfer
Admittance vs Collector
Current
/
Diu
16
~
I
Ie - COLLECTOR CURRENT (rnA)
Ie'" 4 rnA
T.=2S'C
'"Z
IV
10
V~EI= M
24
500
2.0
II
o
1.0
II
0.3
Ie - COLLECTOR CURRENT (rnA)
10
"'CJ
Process 49
Conversion Gain vs
Collector Current
;-
50
r---------~~~~,-,
40
-t--t--t--I
~
~
>
~
VeE:; lOV
Osc INJECTION - 200 mV
lose = 250 MHz
f lill
2:
."
Conversion Gain vs
Oscillator Injection Level
30
20
=213 MHz
'IF = 45
40
VeE
..
a;-
MHz
~~~r-~~~~~~~~~
:;!
30
~
i!l
20
in
r--
ffi
>
~
10 ~~I-I-I-+-+-+-+-H
Ie - COLL.ECTOR CURRENT (mAl
10
=
~
/
-
-
/
V; - OSCILLATION INJECTION (mVI
~'iir1~
.m
1000 PFI
2701l
h_- ':"
:.
1/2W
1
Vee "12V
Tl - 03 Toroid 4:1 ratio } N 22 .
8 turns-Pri. 2 turns Sec.
o.
wire
FIGURE 1. 45 MHz Power Gain Circuit
200MH,
son
RF I •
tt ..bPF ~II
. .?~ 1,1 II
I~
(O'-----il't-......._-......- - f
(
2.0~F
r 1 )
fl"':'
Lol.col
L, ~
------------11(: 1000pF
-::,"1...
47 Kll
C)
C
---V8B~~VCE~
Vee -15V
FIGURE 2. 200 MHz Conversion Gain Test Circu.it
889
CD
tJ)
o
~
=tOV
Ie =4mA
fsig 213 MHz
fl. F • = 45 MHz
a
n
.....
co
fI)
fI)
Q)
(.)
e
~National
Process 61 PNP Darlington
D Semiconductor
PRELIMINARY
DESCRIPTION
n.
Process 61 is a monolithic, double-diffused, silicon epitaxial Darlington. Complement to Process 05.
0.007 --11_--1
10.1781 1
APPLICATION
This device is designed for applications requiring extremely high current gain at collector currents to 1.5A.
PRINCIPAL DEVICE TYPES
0.025
(0.6351
TO-202, EBC: D41K1-4
NSDU95,95A
TO-237, EBC: 92PU95,95A
TO-92, EBC:
1_ _
0.026
(0.660)
Parameter
MPSA62-66
--I I
Conditions
Min
NF
Ic = 1 rnA, VCE = 5V, Rs = 100k,
f = 1 kHz
CCB
VcB =10V, IE=O, f=1 MHz
hFE
Ic=10 rnA, VcE =5V
5,000
hFE
Ic = 100 mA, VCE = 5V
5,000
hFE
Ic=1A, VcE =5V
1500
VCE(SAT)
10 mA, 0.01 mA
100 mA, 0.1 mA
VBE(ONI
10 mA, 5V
100 mA, 5V
Typ
Max
2
/
dB
5
8
40,000
200,000
1.2
1.25
Units
pF
1.0
1.5
V
1.4
2.0
V
50,000
hfe
Ic = 10 mA, VCE = 5.0V, f =1 kHz
BV CES
Ic= 1OO I'A
40
BV EBo
I E= 1O I'A
12
ICES
VcE =15V, VBE=O
100
nA
ICBO
VcB =15V,I E =0
100
nA
lEBO
V EB =10V,l c =0
100
nA
PD(maxl
TO-202
V
V
Tc=25°C
TA=25°C
10
·2
W
TO-237
TCOLLECTOR LEAD = 25°C
TA=25°C
2
850
W
mW
TO-92
TA=25°C
600
mW
OJC
TO-202
Tc=25°C
12.5
'C/W
TCOLLECTOR LEAD = 25°C
62.5
'C/W
OJA
TO-202
T A= 25°C
62.5
'C/W
TO-237
T A=25'C
147
'C/W
TO-92
TA=25°C
208
'C/W
TO-237
TJ(max)
All Plastic Parts
150
8-90
. °C
Notes
~National
Process 62 PNP Small Signal
D Semiconductor
0.018
- - - - - - 1 0 . 4 5 7 1 - - - - - - . ...
-1
v
DESCRIPTION
Process 62 is a non·overlay, double·diffused, silicon
epitaxial device. Complement to Process 07.
--/~~
~.
APPLICATION
~""
These devices are designed for low level, high gain, low
noise general purpose amplifier applications to 20 mA collector current.
0.018
PRINCIPAL DEVICE TYPES
10.4571
2N3550
TO-18:
TO-46:
2N2605
T0,92, ECB: 2N4058
TO·92, EBC: 2N5086
"
Parameter
Conditions
Min
Typ
Max
Units
1
3
dB
8
pF
5
pF
NF
VcE =5V, Ic=10"A, Rs=10kfl,
PBW = 15.70 kHz
hfe
C ib
VCE =5V, Ic =500"A, f=20 MHz
VEB =0.5V
Cob
V CB =5V
hFE
Ic=1"A, VcE =5V
hFE
I c =10"A, VcE =5V
60
hFE
I c =100"A, VcE =5V
Ic=500!,A, VcE =5V
75
90
270
90
270
hFE
Ic=1 mA, VcE =5V
Ic=10 mA, VcE =5V
VCE(SAT)
Ic=1 mA, I B =0.1 mA
0.10
VCE(SAT)
Ic=10 mA, IB=1 mA
0.15
V
VBE(SAT)
Ic=1 mA, I B=0.1 mA
0.75
V
VBE(SAT)
BV CEO
BV CBO
Ic=1 mA
50
V
Ic=10/'A
60
V
BV EBO
IE= 10 /,A
8
ICBO
VcB =40V
VEB =6V
hFE
hFE
lEBO
3
6
3.5
45
630
75
0.90
I c =10mA,I B =1mA
8-91
V
V
V
100
nA
100
nA
Notes
Process 62
DC Current Gain vs
Collector Current
500
z
VeE
~
~
~5V
o~
i5
~
II III
It "12;o~1
L-
O.B
I
100
o
0.001
0.01
0.1
10
50
>
C
TA '" 100 t
o
1.0
10
100
-1.0
rVcs=-40V
;
:5 " 5 . 0 .
1.0
~
§
~ i~I~~~~!~i~~
0.001
0.01
TA
-
75
100
125
i5-
-0.4
~
-0.2
~
~
c:
-10
N
~
""
==
~
N
~w
~
~
8
"
\ \
-1.0
I
~ -0.1 0.1
.."'"
1.0
6:~
s
-?o";;!e
~
~
10k
w
'"'!5
.
~
lk
IS
I" 6:~"e
~e",
I
=:
150 Hz
.......
.......
.J
0.1
Ie - COLLECTOR CURREN1 (rnA)
1.0
!5
V
;~.::= VeE - :-5.0V
10k
~
I
1.0k
.£
o
50
25
-
75
100
100
0.001
125
JUNCTION TEMPERATURE I'C)
B
......
lOOk
10k
lk
<,'''e
~
~~);it'e
~Q de
~t1e
"e"" . . .
-s.ov
~
Vc~ ~
~
10 kHz
BANDWIDTH
" 1.5kHz
0.01
1M
./
f
100
0.001
-20
c:
1M
I
'"
-16
u
c:
~
-12
Contours 01 Constant
Narrow Band Noise Figure
100
0.001
"'
0.01
;=.
'O..
~
"e
K:-
......
r-...
r-...
"'
Ie - COLLECTOR CURRENT (rnA)
8-92
10k
Ci
5k
1.0
..to
2k
1\1:~,,~
~t>~ ~~
w
'"'z
~
lk
!5'"'
500
w
.
"-
1\
~
1\
r"<;
1"-1\
I"-
ill
B
\
~"~
f---
1\
t'N
~
VeE --5.0V
I
1.0
0.1
Contours 01 Constant
Narrow Band Noise Figure
'"
0.1
0.01
Ie - COLLECTOR CURRENT ImA)
Contours 01 Constant
Narrow Band Noise Figure
~w
'"'"'
-B.O
~
~
"
-4.0
w
j
~
I
o
V'B. VeB - REVERSE BIAS VOLTAGE IV)
~
I
z
1b·~rl-
"::'<'
~ lOOk
TJ
~O ..~ ~NOWIDTH
~ tOOk
50
10
10
.1
VeE - -5.nV
f=I.0kHz
Cibo Ie = 0
z
Contours 01 Constant
Narrow Band Noise Figure
lQqb
4.0
V~B .150V
Ie - COLLECTOR CURRENT ImA)
1M
:3
100
100
10
--
=:25"C
~
V.
I'..
=1.0 MHz
B.O
Collector-Base Diode
Current vs Temperature
~
0
200
12
....
o
~
~
'co"
w
z
Ie - COLLECTOR CURRENT ImA)
li: "" li:
0
.'"'
1.0
1000
,. ,.
>
-
I I
TA=25°C
>!
f
I III
0.1
"
150
16
o
150
100
50
;t
VCEISATI TA
~ -100
>!
I'\.
;p
;:;
AMBIENTTEMPERATURE eC)
1
'\11---.
20
VBi'Wi TAl" 25;C
Contours 01 Constant Gain
Bandwidth Product (IT)
'"
100
"'
I--- I--TO.9~ ~181~ -
Input and Output
Capacitance vs Reverse
Bias Voltage
-I--
-0.6
>
50
I
K--
TA - AMBIENT TEMPERATURE (OC)
".
w
co
JO.OOOl 25
200
Ie -10 Is
~ -0.8
'"
0.1
~
300
Collector and Base
Saturation Voltage vs
Collector Current
Collector Cutoff Current vs
Ambient Temperature
~o
1',.:
x
Ie - COllECTOR CURRENT (rnA)
Ie - COllECTOR CURRENT (rnA)
lIJj~,J
300
g
:=
UJ1U
400
i
Base-Emitter ON Voltage vs
Collector Current
Maximum Power
Dissipation vs
Ambient Temperature
200
I
~
1.0 MHz
BANDWIDTH
~ 2.0 kHz
100
0.01
"'
0.1
1.0
Ie - COLLECTOR CURRENT (rnA)
10
Process 62
Equivalent Input Noise
Voltage and Noise Current
ys Collector Current
~
~
10
~
a:
5.0
1:11 I
~ 2.0 -
~-
....
.,"'
g
.... 1.0
~
VeE
..
....
~
=-S.OV
"of'
-
....'1:-""
~
~
0.02 "....
~
I- 0.01 =i
0.005
'".'~O~~z
VeE = 5V
BANDWIDTH =15.1 kHz
m
~
..=
6.0
"'a:
;;:
.,"'
"'"~ c;
< "I
'"~ "
~
,=(6kHZ
0.002
">5 0.2 ~
11II In. f'" 10 kHz 0.001 ;
ffi 0.1
0.001
0.01
0.1
1.0
I
Ie - COLLECTOR CURRENT ImAI
~
"i
Noise Figure vs Frequency
5r-rTTT1mr-T"T1mnn---rTTT1n---......
VeE = -S.DV
§
I""
V.
B.O
I
m
0.05 <:
~
~
0.5
:!
0.1
Wideband Noise Figure vs
Source Resistance
~
-"'
~
4.0 ~
"e
a:
~
=10~A
'!...
2.0
I
I ,lc-250pA R,=5kn
111111111
I,
~',Ie-500pA R,=1 kn
~',"11I11I
"
I
le=100pA
~
"
0
I.Dk 2.0k 5.Dk 10k ZDk 5Dk lOOk
R, - SOURCE RESISTANCE In I
~
31--\-t+HtH-tHiIllll--++tHHll--H+tlHII
.,
"'c;
'!~'.
II
I I Ii III
II
o Ie ~~~~~ Rs =,),~,kn 11111111 II
100
1M
lk
10k
lOOk
,- FREQUENCY 1Hz!
SMALL SIGNAL CHARACTERISTICS (f = 1.0 kHz)
Symbol
Characteristic
Input Resistance
hie
. Output Conductance
hoe
h re
Min
Typ
Max
Conditions
Ic=1.0 mA, VCE = -5.0V
Ic= 1.0 mA, VCE = - 5.0V
Ic= 1.0 mA, VCE = -5.0V
2.5
8.0
20
kG
5.0
19
50
,",mho
x1O- 4
100
250
800
Voltage Feedback Ratio
10
Small Signal Current Gain
hre
Units
Ic = 1.0 mA, VCE = - 5.0V
TYPICAL COMMON EMITTER CHARACTERISTICS (f = 1.0 kHz)
Common Emitter
Characteristics vs
Coliector·Emitter Voltage
;
"•
~
!;<
3
~~
1.5
I:
t!
~
a:
i~
~
~
""" ......
".
F-HN...
:-l-l-l-l-l-l-j
1-"""
:
hOI
0.1 r=I.0kHz -+-+-++++-1
Ie =1.0 mA-+-+-++++-1
TA "'2Soc
0.5 ,"-,-,_~-..J-..J-..J--'--'--'--'
o -5.0 -10 -15 -20 -Z5
Ve, - COLLECTOR·EMITTER VOL TAGE·IVI
Z.O '"y-e-,-._-5"".OV::-r-,-.,........,..---r-,
1.•
1.&
~ 1.4
~ 1.2
1.1 I-HI-".t.-F-t--t--t--t--t--i
0.9
Common Emitter
Characteristics vs
Ambient Temperature
.
III
"
~
, ....
1.3 H-t-t-+_hf.lndh::,,-~F-
>
~
I I
~
Common Emitter
Characteristics vs
Collector Current
0.5 1.0 2.0 5.0 10
Ie - COLLECTOR CURRENT ImAI
8·93
1.0
.. O.B
~ 0.6
~ OA
~
~
Ic=1.DmA
'i
+-+-l'---t-+-.I
-I--I--I--t-hr
1---I-1+-1+-+--I--t-/t~h..I-./--l
I l
;'~
' = 0 kHj
c
ht'rd~~
hol, -
'hi.
I I
-ZO 0 20 40 60 60 100
T. - AMBIENTTEMPERATURE I'CI
-60 -40
~National
Process 63 PNP Medium Power
~ Semiconductor
o.ozo
"
I
DESCRIPTION
10.5081----1
0.003
j'EMITTER
Process 63 is a non-overlay, double-diffused, silicon
epitaxial device. Complement to Process 19.
Bi E
----,////vy //1/ 1/
~
(0.076)
~
~
/
V
V
V
~
I
I
.J1f
~ r-~
/
~
/
-+
APPLICATION
I
This device was designed for use as general purpose
amplifiers and switches requiring collector currents to
500 mAo
0003.1,
iD.0761
~
/ ,
t1f]
/
PRINCIPAL DEVICE TYPES
0007
iDi7aj
~
TO-5:
TO-18:
TO-92, EBC:
TO-92, ECB:
TO-237:
o.ozo
~////y//v~ J"
-
0.003
10.0761
Parameter
2N2905
2N2907
2N4403
2N3702
TN2905
f--
Conditions
Min
Typ
Max
Units
Notes
tON
Ic=150 mA, IB1=15 mA
30
45
ns
Figure 1
tOFF
Ic=150 mA, IB2=15 mA
220
290
ns
Figure 2
GCB
GEB
VcB =10V
6
8
pF
20
pF
hfe
Ic = 20 mA, VCE = 20V,
f=100 MHz
NF (spot)
Ic= 100 I'A, VCE = 10V, Rs= 1k
f = 1 kHz
hFE
Ic=1niA, VCE = 10V
50
hFE
50
hFE
Ic= 10 mA, VCE = 10V
Ic = 150 mA, VCE = 10V
hFE
Ic=500 mA, VCE = 10V
30
VCE(SAT)
Ic=150 mA, IB=15 mA
0.5
V
VCE(SAT)
Ic=500 mA, I B =50 mA
1.2
V
VSE(SAT)
Ic= 150 mA, IB= 15 mA
1.3
V
VBE(SAT)
BV CEO
Ic=500 mA, I B =50 mA
1.6
V
Ic=10mA
35
V
BV CBO
Ic=1001'A
50
V
BV EBO
I E = 1O I'A
6
ICBO
VcB =35V
VEB =4V
lEBO
V EB =0.50V
1.5
2.5
1.5
50
8-94
150
dB
400
V
100
nA
100
nA
Process 63
Base·Emitter ON Voltage vs
Collector Current
DC Pulsed Current Gain vs
Collector Current
1:::11111111111
~
80 ~~-r++rr-~~~~~
"
~
40
~~~++H-~~4-}H~
OL.J...LlL--L.J...l..ll-L.l..ilLL...LJ.:lLJ
100
10
0.1
~
1.0
"~
0.8
c:
0.6
>
;,::""""
:: 1000 t
~
~
0.4
I
0.2
,:
111111
0
1000
0.1
i= 2800
....
~
c: 2000
"
1600
f'..
::;;
~
1200
~::;;
800
'"
"\,
I--
TO·18
k 400
"
l'"
100
TA
~
'\TO.5
1'-.. '\
f'.. L'\
150
100
,,,
5.0
_
,
2.0
u
1.0
>
o
.....
::~
-0.7
u
'J
""u....
,......
;C
f.<5'C
V
I-'
;:;
u
'!-J
Ie
12
l,"'I'
En
8.0
-500
Vee
-
150
;::
100
=
400
\
10
e
E~
-50
I,
300
"
;::
Ie - COllECTOR CURRENT (rnA)
~/J
-0.2
-0.1
I 'IM"I' It"r"'1 l'i'IM"j lOtI'
-10
-1.0
-0.1
-100
Rise Time vs Collector and
Turn On Base Currents
"....
i
I
1
v
-20
~ -10
"'"
~
~
]'\.
I
~or/,
I
10
"'"
"....
I
I,: 15':;:"'l--
Ie - COLLECTOR CURRENT (mAl
8-95
V~
V 1.1
./
lOos
-2.0
,
1000
V
-5.0
-1.0
100
10
-500
-50
I
1000
11'11
50MHz
Ie - COllECTOR CURRENT (rnA)
I
,.tr
100
1/
~
200
I
II--:J
150MH'lTV-~
u
>
v
l~)V
-1.0
,
u
-10
100
Ltl'
-2.0
2QOMHz
~
~
Is:?:: IcllD
::
-
1\"
50
I S1
1\
::;;
-5.0
::'"
\ \WI
u
Vee:: 15V
15V
\ \1111
-10
~>
'"....e
1.0
-20
W
Turn On and Turn Off Times
vs Collector Current
500
W
Contours of Constant Gain
Bandwidth Product (f T)
~
crinANi
-500
Ie - COLLECTOR CURRENT (mAl
"'"
......
-100
-10
REVERSE 81AS VOLTAGE (VI
III
Ic/19
-1.0
?
I
.....
IlrT
-0.1
IN.
IBl :: 182 ::
'I
-0.01
-60
I'-..
I I
4.0
Switching Times vs
Collector Current
200
III
II
Ie - COLLECTOR CURRENT (mAl
250
-50
C,bo -INPUT CAPACITANCE
"-J.I
-0.5
-100
-40
= 0 i'....
Cor
-10
-30
TT1
,
I
./
-1.0
-20
Input and Output
Capacitances vs Reverse
Bias Voltage
-
~"
~"
-10
VeE - COLLECTOR TO EMITTER VOLTAGE (V)
JIJ
.25'C/
I
B~
16
,,,,
-;::
25'C
......"
200
ffi~ -1.1
.... W
65°C
;:~
20
We
1=
c: ....~ -0.05
Ic= lD1 a
!;l> -0.9
-0.1
u
~
-1.3
t:",
~ ~
w>
~
~
~~
",,,
~z
Pulsed Base Saturation
Voltage vs Collector Current
::;;"
~~
r-l c =10I B
~S
::;;-
/
10
200
rc)
-0.5
7'
20
150
AMBIENT TEMPERATURE
-
Pulsed Collector Saturation
Voltage vs Collector Current
'"
'"e
~
50
./
100
50
TA
+-
V
25°c
50
W
Te - CASE TEMPERATURE ("el
."
.",
::
B
"\,
is
~
~
'\
~ 2400
100
Collector Reverse Current
vs Reverse Bias Voltage
I--
;C
JOO
200
Ie - COLLECTOR CURRENT (mAl
Maximum Power
Dissipation vs
Case Temperature
:3200
TO.92'!\.'-
~,
100
10
1.0
r- ~~1\.
400
~
",
,~
111111
I\.T05
500
x
::;;
;;
VeE:: 10V
~
600
0
111111
111111
;;;
100
;C
~
'"
I IIIII
.....
";::e
is
TA
Ie - COLLECTOR CURRENT (mA)
"
~
E 800
1111111
TAI~ l~o~:~
::
Maximum Power
Dissipation vs
Ambient Temperature
V
./
6~ ~
-10
-20
-50
-100
-200
Ie - COLLECTOR CURRENT (rnA)
-500
Process 63
}
-30V
~
200n
--0
LP)
lK
°"L£v
--I
~
~
50n
1
S200NSL
"::"
FIGURE 1. Saturated Turn On Switching Time Test Circuit
lm~
+15V
lK
f9
lK
O~v
50n
--I 1-
."
S 200 NS
"::"
FIGURE 2. Saturated Turn Off Switching Time Test Circuit
SMALL SIGNAL CHARACTERISTICS (I = 1.0 kHz)
Symbol
Characteristic
Min
Typ
Max
Units
Conditions
480
2000
rl
I c =10mA,V CE = -10V
I'mhos
x10 -6
Ic= 10 mA, VCE = -10V
hie
Input Resistance
hoe
h re
Output Conductance
80
1200
Voltage Feedback Ratio
162
1500
hfe
Small Signal Current Gain
Ic=10mA, VCE = -10V
100
Ic=10mA, VCE = -10V
TYPICAL COMMON EMITTER CHARACTERISTICS (I = 1.0 kHz)
5.0
"e
2.0
-""
1.0
w
0.5
",
i;;:
:l
">
">-
0.2
"-
h,.
~
rh
.
l"-
r
rho.
V
0.1
-1.0
1.3
ho.~
~hi'
~
i'-...
V
-2.0
-
~
t7
/. (1.
I
h"
i;;:
w
1.0
">
0.9
\..
h;.//
-10
Ie -COLLECTOR CURRENT (mAl
-50
-4.0
-
~~
~~
I/'
~
~
>-"
-12
-8.0
-16
VeE - COLLECTOR VOLTAGE (V)
8·96
1.4
u
1!l
"
~
>-
"
">
w
=>
~
Ic "'-10mA
lA" 25°C
, h,.
25°C
-20
r....
,
0.8
-5.0
hf:~
hOI::::!.'
\ hra and hoe
1.1
:l
VeE'" -10V
"
"
\
~
h::'1--
TA
~
1.2
1.5
h':~
h::~
I
I
-20
">-
Ic=-10mA
VeE =-10V-
1.3
•
1.2
1.1
1.0
ho•
0.9
~
0.8
hi.
0.7
0.6
~
~
-~':~I-)::;~
...
-
~
~
~
~
iIP'
0.5
-40 -20
0
20
40
60
80
TA - AMBIENT TEMPERATURE (Oe)
100
"'tJ
~National
Process 64
PNP High Speed Switch
~ Semiconductor
Process 64 is an overlay, double-diffused, gold doped,
silicon epitaxial device_ Complement to Process 22.
APPLICATION·
This device was designed for high speed saturated switching applications at collector currents to 200 mAo
PRINCIPAL DEVICE TYPES
2N2894
TO-92, ESC: PN4313
Parameter
Conditions
Min
Typ
Max
Units
Notes
tON
Ic=30 mA, IS1=3 mA
10
20
ns
Figure 1
tOFF
Ic=30 mA, IS2=3 mA
21
30
ns
Figure 1
ts
Ic=ls1=ls2=10mA
15
20
ns
Cob
VcE =5V
3_0
4_5
pF
6_0
pF
C ib
V Es =0_5V
hIe
f= 100 MHz, Ic=30 mA,
VCE = 10V
8
hFE
Ic=1 mA, VCE =1V
20
hFE
Ic= 10 mA, VCE = 1V
30
hFE
Ic=30 mA, VCE = 1V
40
hFE
Ic = 100 mA, VCE = 1V
30
12
90
150
VCE(SAT)
I c =10mA,l s =1 mA
0_15
V
VCE(SAT)
Ic= 30 mA, Is=3 mA
0.2
V
VCE(SAT)
Ic=100 mA, I B =10 mA
0_5
V
VSE(SAT)
Ic =10mA,l s =1mA
0_90
V
VBE(SAT)
Ic=30 mA, IB=3 mA
1_20
V
VSE(SAT)
BV CEO
Ic= 100 mA, Is= 10 mA
1_50
V
Ic=10mA
12
V
BV CBO
Ic=10!'A
12
V
BV ESO
I E =10!,A
4.5
ICBO
VCE = 10V
100
nA
lEBO
VEs =3V
100
nA
8-97
CD
t/)
t/)
en
DESCRIPTION
TO-52:
an
V
.,a:::..
Proc~~s
DC Current Gain vs
Collector Current
c
5
~
~
..I!:
5
200
PULSE WIDTH
=300 I"
160
I \~5'~
I,
40
rli ~
J r-~
I
-55 C
-0.1
-1.0
O.B
0.6
!
~
I
-
-200
~
g
-0.1
Ie =10 IB
-0.1
i3
0.1
5 .400
~
-1
-0.1
-10
-100-200
8,
....
~
~
...
to:
..
f
5.0
l-~
r-
3.0
CDbo
Cibo
Ie "0
./
o
w
./
-1.0 -2.0
~
iii
20
2.0
5.0
-'"
~
yo
.~
...... 1-.0
2.0
10
20
~
2i
60P
a:
500
5.0
Ie
'"~
10
20
50 100 200
:!
...
50
100 200
Ie - COLLECTOR CURRENT (mAl
100
125
150
'z"
;::
co
~
~
. To·92
300
200
To·52
,-""
1\
100
D-.
:!i
.E
50
TA
-
100
i".
.150
~
200
AMBIENT TEMPERATURE ("CI
Delay Time vs Turn On Base
Current and Reverse Base·
Emitter V
T"'--
-100-200
t:;
"'~
·I E =0
-10
~
~
~
.. -5.0 1I-++t-t--t\-H~~-t1'-1
"
t--... .......
-1
0:
F: 1 MHz
4.0
1.1
8.,
Input and Output
Capacitance vs Reverse
Bias Voltage
6.0
~
/
o
.!r
Ie - COLLECTOR CURRENT (mAl
-n
1-""r;'25'C
r-
Coliector·Base Diode
Reverse Current vs
Temperature
5
/
100
f-'"
i--"
-I
Ie - COLLECTOR CURRENT (mAl'
TA =25°C
3110
il":
~
~ru
-0.1
100
Collector· Base Reverse
Current vs Reverse Bias
Voltage
i
~
c
I
S-0.01
> .
10
1.0
~ 200
. ~~'IC
't -0.02
-55'C
~
25
!''"", -0.4 ~
0:
0:
-55'C
c
-1.2
-O.B
t:;
0:
~ -0.05
~
r;
VL
o
,:
!"'
IL:
V'
1~5 C
c
B
~=.1'0~1~
il
c
:;!l
I"
~, -1.6
0.2
0:
0:
z
-0.2
i
-2.0
!e - COLLECTOR CURRENT (mAl
-0.5
5
~
11111
;;
-10
Base Saturation Voltage vs
Collector Current
...
c
>
0
Co!lector Saturation
Voltage vs Collector Current
~
~
a
~m
0.4
Ie - COLLECTOR CURRENT (mAl
CJ
=-5V
2
III
.it
VeE
z
a:
II
w
1.0
c
C
BO
.~
>
III'
a:
a:
a...
c
"Ii(
I-
120
il
~
VCE=-1V
DUTY CYCLE =1%
Base·Emitter ON Voltage vs
Collector Current
64
-50
50
100
TA - AMBIENT TEMPERATURE ('CI
8·98
150 '
~
,:
2.0
5.0
I., - TURN·ON BASE CURRENT (mAl
10
"'C
Process 64
Rise Time vs Collector and
Turn On Base Currents
1
~
::
~
~
1,;; 20 ns
2.5
10
ZO
50
~
1.0
';"
0.5
Z.5
2.0
15 ~~~~+~~~+"0~n~'~~
10
~~~~~~~~~~~
z
~
1.0
5.0
H-+~4++Hlel~100mA
~
0.5
Vee'" -J.OV
o L...L--L-L-.LJ----'.--L-L-~~...J
lO
TURN·OFF BASE CURRENT (mAl
1.0
1.5
Z.5
~
::l
:a
~
§
';"
CD
11
'r-f-II
I
:a"'
~
~
~
z.~/7"'~
/
II
2.0
o
'
I
t=~/~t=~/=!~1=1=-t,e-~-tl-0-mf:-A--i
Vee'" -J.DV
L....J---'----'.---L---L--'-......:.::........~__'
o
l.O
/
I
01.
3.oni'..;....~~~~-l
4.0 f-I-,,I+f-+-++/l
......+-+--;
I., - TURN·OFF BASE CURRENT (mAl
Z.O
4.0
6.0
B.O
-3.0V
VB.
25 HC-+--j---fj4-+~-+/--A--+-+-1
94n
15 H--+--1-+4.0 ns-A--+~-h-H
H-+-It-~~t--3.D ns ~
10
H---.Jj4-+++..y.A+-+-H -l
5.0
/
V,N
Vee;; -2.0V
..........
O'--'--'---'--'---'----'--L....,..:..:c~
o
5.0
' .2 -
10
15
20
25
TURN·OFF BASE CURRENT (mAl
lO
r-
°"
v""" ·ie~100mA
Pulse generator
tr :$1.0 ns
PW~400
~VOUT
lK
LI
2K
To sampling scope
tr :s:1.0 ns
ZIN",100k
50n
ns
PPs ~ 150
ton VBB ~ 0, VIN ~ - 6.85V
toffvBB~
-9.85V, VIN~ +11.7V
FIGURE 1. Switching Time Test Circuit
8-99
10
IB2 - TURN·OFF BASE CURRENT (rnA)
~
~
10
6.0 H--tJI-+--t7'-t--t--+--t-t-/-,j
Fall Time vs Turn On and
Turn Off Base Currents
1~
B.O
6.0
III
I{-S.Ons
ffi B.O
I c l"'10mA
2.0
Ie ~lOmA
Vee;; -J.OV
TURN·OFF BASE CURRENT (rnA)
10
;.
° tj=j~I:LJtj=±:1LV....:e~e_~~-l~.o~v
0.5
4.0
_-1"
Fall Time vs Turn On and
Turn Off Base Currents
:1
o
f-'"
Z.O
'. 2 -
~1-1t---t,f+-Y+-~B-t:!~~
~
v
V
l.O
h~ n;-I+~+-M-+-l
r-
V
~
I
H-I-It-+-lf++-bf-H-l
H-tH-+-Jt-9.0 ~;t"7f-+-t-H
1.5 ~---bI-+--lJ'+-t/~'+-++-+-1
"'
~
'. 2 -
Z.O
10n,/
/
4.0 Hf-J.I'-H-b'f-+-+- 5.0 oS-
<
B 2.0
25
1.5
15
1/
:§
t-
~ ~ 15 nstl-H~'+++-b4--1
2.5
ffia:
ZO
1.0
r-17 ~7VI'-t-t-t7f-V-;
6.0
Fall Time vs Turn On and
Turn Off Base Currents
I-
15
~
H--J.A-""4-+-Hlel~ 10 rnA
I-+£t-"F-~+-t-++-+Vee ~ -l,OV
0.5
HI-'t,_~t-ZO_nr.sRJI'--j--,I\/-j-f--H
'.2 - TIlRN·OFF BASE CURRENT (mAl
1
10
>'"
HIH/-j;4--b"j"-H~-+-+-l
100
10 ~~-r-rl/~~~~~
8.0
"'
V
Storage Time vs Turn On
and Turn Off Base Currents
5.0
1~I",hVf-t-t-+-i
/
Ie - COLLECTOR CURRENT (mAl
o
~
15'nsHYH-+7f-+-H
1.5 H-ft-t..I'-t--tI-ii
/L'-t--B.O ns
0.1 L-...L...L.LL_..L---1....:V
:::.e!:.e_~-..:l: .O. :.JV
5.0
<
5
II
I
r-
Z.O
:§
1.0 2.0
Storage Time vs Turn On
and Turn Off Base Currents
Storage Time vs Turn On
and Turn Off Base Curreiils
a
n
CD
o
o
~
Lt)
U)
en
en
CD
(.)
e
~National
a
Process 65
PNP High Speed Switch
Semiconductor
0.015
DESCRiPTION
------(0.3BlI----~
a..
Process 65 is an overlay, double diffused, gold doped,
silicon epitaxial device. Complement to Process 21.
APPLICATION
This device was designed jor very high speed saturate
switching at collector currents to 50 mAo
PRINCIPAL DEVICE TYPES
TO·18:
2N4208
TO·92, ESC: 2N5771
MPS3640
Parameter
Conditions
Min
Typ
Max
Units
Notes
tOFF
le= 10 mA, IB2= 1 mA
18
25
ns
Figure. 1
tON
le=10mA,IB1=1 mA
11
15
ns
Figure 1
ts
le=IB1=IB2=10mA
VeB =5V
15
20
ns
3
pF
3.!i
pF
COb
C ib
hFE
VeE =10V, le= 10 mA,
f=100 MHz
hFE
le=1 mA, VeE = 1V
le=10 mA, VeE = 1V
hFE
hFE
hFE
hFE
hFE
2
VEB =0.5V
6.5
9
20
30
85
le=50 mA, VeE = 1V
le=100 mA, VeE =1V
25
75
le=1 mA, VeE =0.5V
le=10 mA, VeE=0.3V·
20
150
20
20
0.15
V
VeE(SAn
le=1 mA, I B=0.1 mA
le= 10 mA, IB= 1 mA
0.20
V
VeE(SAn
le=50 mA, IB=5 mA
0.50
V
VBE(SAn
le=1 mA, I B=0.1 mA
0.8
V
VBE(SAn
le= 10 mA, IB= 1 mA
0.95
V
VBE(SAn
BV eEo
BV eBo
le=O mA, IB=5 mA
1.5
V
le=3 mA
12
V
le=100/,A
15
V
BV EBO
le=10/,A
4.5
leBo
VeB =10V
VEB =3V
VeE(SAn
lEBO
8-.100
V
100
nA
100
nA
""C
Process 65
DC Current Gain vs
Collector Current
200
180
z
160
~
/-- ~IWIII-.III
T "125'C
P-
120
~
'"'"
f-
40
~
i""
-0,1
-1
VeE = 10
D,B
0.6
~
-10
-100
!
>
w
~ -1.0
I
o
~
~
~o ~.1
i
....
TA
~
~
-
TA =25°C
0.2
I -0,02
II
-0,01
-0.1
J
-1.0
-0.1
2.6
~
w
u
2.2
U
It
;3
100
BO
60
Cobo Ie ; 0 -
B
C", le"O l"-
t:
>
I I
-6.0
-8.0
-10
-3.0
~
5.0
-7.0
-2.0
20
=10 182
1200
f\
1
'~~
.'"
1\1
500 MHz
t,
z
-10
~
r-....
2.0
1.0
5.0
10
20
le- COLLECTOR CURRENT (rnA)
1,
;:r58
~
:0<
25
.....
~
.§:
'"
~
~
x"
"'"
"'"i,i""""
75
100
125
150
Maximum Power
Dissipation vs
Ambient Temperature
800
600
500
400
~
~
TO-92
JOo
TO·18
"
'\
200
J".,.
'\
100
1,\
so
d:
~
100
I"-..
150
1'.
200
4.0
Delay Time vs Turn On Base
Current and Reverse BaseEmitter Voltage
r--.--,--,-....-,--r,
3.0
f-+-+-+:-:--1+-+l--+-1
2.0
f-f---f----jr-+I-:-4---tiy
.1.0
f7<-----,f---+-+--1f--+-1
~
~
~
:;
..,...V
t,
5.0
50
T. - AMBIENT TEMPERATURE ('C)
~
V
r--t,
7L; Vv~E "1_3.oV
T. - AMBIENTTEMPERATURE ('C)
lOrnA
= 182 ::: 1 rnA
"."
IZ
0.01
~
-100
VBe'(OI = 0
10
AL
~
Vee = -1.5V
:;;
~
~
u
I
Hzt-_~Hz ~~~'+1'oo J(.
;::
...
,
VeE:: -6.0V
0.1
z
lor MHJI-
w
z
2.0
15
-100
0
;:: 700
5OO '
=
IS1
.s
~
1.0
~MIHZ
-1.0
Ie
-10
10
~
~
C
200
-1.0
100
1.0
It
t-
~b.1-""
Ie - COLLECTOR CURRENT (rnA)
~
-11
-9.0
II ,
I
V'
~
TA =2S"C
-0.1
Ie - COLLECTOR CURRENT (rnA)
VBE!
0.4
Collector Saturation
Voltage vs Collector Current
.
....
I-'
Ie - COLLECTOR CURRENT (mAl
~
VIUl J II 11111 II
TA "'25"C r i l l
tIMII
:;
IIIIIIIIII
1111111 III
20
1.0
~
II~I~II" -~5!C
0
60
~
I'-.
IIIIIII II
80
u
o
>
11~1~11"25" c'
f-
100
~
.~
2:
VeE -lV
fmffi-w
140
....z
Base-Emitter ON Voltage vs
Collector Current
a
o
1.0
2.0
3.0
4.0 5.0
1., - TURN ON BASE CURRENT (rnA)
CJ'1
an
(0
Process 65
(J)
(J)
Q)
(,)
e
0...
Rise Time vs Collector and
Turn On Base Currents
;<
..
.§
10
~
~
w
2.0
~
1.0
15
0.5
I
0.2
~
--
..~ =
-
0.1
-
1.0
0.5
I II
Vee- -1.5~
5.0
..~
.§
1J,1 V
f-
I-
V
20:,-
5.0
V
V
0.1
20
·
50
o
o
'e - COllECTOR CURRENT (rnA)
10
.
8.0
~
6.0
.§
~
w
JL
ILl
r--7 15:~
z
9
4.0
.
2.0
.~
I
o
.'B2 -
~
0.3
w
.
I
0.3
0.4
"
/'
2.0
.~
~
;<
~
6.0
8.0
I
10
V
I
/
/
o
0.1
'B2
0.2
0.3
.=
1.0
I
0.4
0.5
-TURN·OFF 8ASE CURRENT (rnA)
10
.~
.§
~
r-l
~
z
9
z
.
I
o
1/
V
J
J
2.0
·
II
I
4.0
g;
II
6.00~J
J
3.0 ns
",'"
......
Vcc =-1.5V
u
u
~
~
Vee = -1.5V
non
2.2K
son
1, ::;;:1.0 ns
1°'
10
TURN·OFF BASE CURRENT (rnA)
VBB
PW"
,N 240 ns
P
Ie = 50 rnA
o
'B2 -
ZIN'"
V
V
4.0 ns
6.0
w
J
!1.'80»
8.0
TO SAMPLING
SCOPE
ZIN 2.100 K!1
t, <1.0 ns
I
"F
51n
Ion
VBB
toff
~Ground
VBB~
VIN = - 5.BV
IC~
10 rnA, 181
VIN
~
1.0 rnA,
IB2~
~
-8.0V
+9.8V
1.0·rnA
FIGURE 1. tON and tOFF Test Circuit
8·102
'"
~
J!.? ....
I-.2.0
3.0
4.0
5.0
TURN·OFF 8ASE CURRENT (rnA)
o
/
I
!/
5.00'/
J
J
/ V
J ~
/
.,t!! 0
-
%
Vee
=
-t.5V
Ic=10mA
o
'B2 -
Fall Time vs Turn On and
Turn Off Base Currents
;<
10 ns
/
I
3.0
2.0
.
Ie = 1.0mA
TURN·OFF 8ASE CURRENT (rnA)
/
".6.00'/
4.0
.,~
co
z
a:
40 ns
Vee = -1.5V
o
"
I.--'
1.0
5.0
.§
V
1/450,
/
0.1
·
Vee:: -1.5V
o
"
/
Fall Time vs Turn On and
Turn Off Base Currents
~w
1/
0.2
15
~ ?i-"'
4.0
o
:..-:
'B2 -
I
II
50 ns
/
1/
~
'/
1.0
0.5
~
Ie = 50 rnA
o
0.4
I
lj =
~
J
~
0.5
;<
.
.§
V'
10!~
/
..g;"
J
15::;--
/
J
2.0
Fall Time vs Turn On and
Turn Off Base Currents
I
ts = 20 ns
3.0
~
15
.-
.- ~
0.2
~
Ie = lOrnA
r- -!~.}O 0'
TURN·OFF 8ASE CURRENT (rnA)
'B2 -
Storage Time vs Turn On
and Turn Off Base Currents
;<
0.1
4.0
w
3.0 ns
...... .-
I
10
......
./
..
~
V
/'
Vee --1.5V
;<
.§
Ie:: 1.0 rnA
5.00'.......
1/
0.2
~
III
2.0
/
C.3
5.0
Vee· -1.5V
V
8.00;/
.,~
9
.,
a:
V
II
0.4
~
w
V
J'
t,}12~J
;<
1.- '" 2 ns
II- fio1J
Storage Time vs Turn On
and Turn Off Base Currents
Storage Time vs Turn On
and Turn Off Base Currents
1.0
2.0
J.U
4.0
5.0
TURN·OFF BASE CURRENT (rnA)
~National
Process 66 PN P Small Signal
~ Semiconductor
1------13 MILS~I
o
DESCRIPTION
Process 66 is an overlay, double-diffused, silicon epitaxial
device. Complement to Process 23.
APPLICATION
This device was designed for general purpose amplifier
and switching applications at collector currents of 10 p.A
to 100 mA.
22 MILS
PRINCIPAL DEVICE TYPE
TO·92, EBC: 2N3906
Parameter
Conditions
Min
Typ
Max
Units
ns
tOFF
Ic= 10 mA, IS2= 1 mA
150
300
tON
Ic= 10 mA, lSI = 1 mA
30
70
ns
Cob
C ib
Vcs=5V
3.0
4.5
pF
15
pF
nl e
f = 100 MHz, VCE = 20V,
Ic=10mA
NF (wideband)
Ic=100I'A, VcE =5V,
V ES =0.5V
2.5
Notes
4.5
2.0
dB
Rs= 1 kO
50
hFE
Ic=0.1 mA, VCE = 1V
Ic=1 mA, VcE =1V
Ic= 10 rnA, VCE = 1V
hFE
Ic=50mA,VCE=1V
40
hFE
Ic=100 mA, VcE =1V
I c =10mA,l s =1 mA
20
VCE(SAT]
0.25
V
VCE(SAT]
Ic=50 mA, Is=5 mA
0.40
V
VSE(SAT]
Ic= 10 mA, Is= 1 mA
0.85
V
VSE(SAT]
BV CEO
Ic=50 mA, Is=5 mA
0.95
V
le= 1 mA
35
V
BVcso
BV ESO
Ic= 1O I'A
45
V
Ic= 1O I'A
5.0
Icso
Vcs=25V
100
nA
IESO
VEs =4V
100
nA
hFE
hFE
40
50
8-103
150
350
V
[;]I
<0
<0
Process 66
U)
U)
CD
DC Current Gain vs
Collector Current
(.)
e
200
"
'"
Base·Emitter ON Voltage vs
Collector Current
VcE =1.0V
0..
160
i
""I
~
~
1.0
~
=
0.8
>
z
Ie - COLLECTOR CURRENT (rnA)
20
18
...~
I
;:
~
150
Contours of Constant Gain
Bandwidth Product (IT)
>
i--"
100
TA - AMBIENT TEMPERATURE
a:
~
i
50
'"
~
c
V
a:
1000
w
II\.
~
09
2w
leIla =10
TA =2SoC
Collector·Base Diode
Reverse Current vs
Temperature
'"
;;l
100
1.2
= 0.8
~
13
"\
100
Base·Emitter Saturation
Voltage vs Collector Current
2w
c
>
~
I
ffi
10
Ie - COLLECTOR CURRENT (rnA)
1l
~...
200
I
0.8
~
,
300
!i
Collector·Emitter Saturation
Voltage va Collector Current
0.6
1\
400
~
Ie - COLLECTOR CURRENT (mA)
"
">=
I\.
500
2i
a:
~
0.1
>
c
600
ill
o
2w
'"
~
700
~
~
TA - 2SQ C
I'
80
800
§:
s.nv
~100'C
c
120
Maximum Power
Dissipation vs Ambient
Temperature TO·92
0.1
10
Ie - COLLECTOR CURRENT (rnA)
8·104
0.1
1.0
Ie - COLLECTOR CURRENT (rnA)
10
"'C
Process 66
a
(')
CD
Current Gain
Voltage Feedback Ratio
~
1000
VeE" H]V
f = 1.0 kHz
500
~I-
200
~ 100
o
'"
:--1-
!
1\
10
w
I
'"
'~"
:-
50
20
tan 181 = Ic/IO
l'..
L
0.1
1.0
1.0
0.1
10
VBE(OFFI" D.5V
'"
I
10
1.0
foll'B1 = 182 =
10
Ie - COLLECTOR CURRENT (rnA)
Ie - COllECTOR CURRENT (mAl
500
181
;:0;;:".
-
.......
w
";::
........
10
t,
d
r--....
t,
..,
"'"
'"
I--
1.0
1.0
IcllO
~ r--
........ t"
""
IB2
I-I
10
Ie - COLLECTOR CURRENT IrnAI
8-105
1.0
lc/10-J.-+++---1
10
Ie - COLLECTOR CURRENT 1m AI
Switching Times vs
Collector Current
100
en
en
CJ)
CJ)
100
;::
a:
~
z
:0
Turn On and Turn Off Times
vs Collector Current
100
100
.....
CD
en
m
~Nationai
Process 67 PNP Medium Power
Semiconductor
(.)
e
0.030
0..
_
~
0.005
(0.127)
i
0.004
(0.102)
(~2)
rl
DESCRIPTION
0.0035
(0.0889)
Process 67 is a non-overlay, ·double-diffused, silicon
epitaxial device. Complement to Process 12.
r~
APPLICATION
0.009
(0.229)
I 0.030
(0.762)
~
~
:; ~
0
t
PRINCIPAL DEVICE TYPES
I
;:;
Parameter
This device is designed lor general purpose amplifier and
switching applications at currents to 1A and collector
voltages up to 70V.
I
'"
w
::;
TO-39:
Min
Conditions
2N4033 TO-92:
Max
Typ
tON
Ic=500 mA, I S1 =50 mA
35
tOFF
(c=500 mA, I S2 =50 mA
250
Cob
C ib
VCS= 10V
hfe
VCE =10V, Ic=50 mA,
1=100 MHz
NF (spot)
Ic=100!,A, Rs=1k, VCE =10V,
1=1 kHz
hFE
Ic=0.10 mA, VCE = 10V
Ic=1.0 mA, VCE = 10V
40
hFE
hFE
Ic =10mA,VCE =10V
50
hFE
50
hFE
'IC= 100 mA, VCE = 10V
Ic=500 mA, VcE =10V
Units
ns
V Es =0.50V
15
pF
90
pF
2
1
dB
45
150
350
35
VCE(SAT)
Ic= 150 mA, Is= 15 mA
0.2
VCE(SAT)
Ic=500 mA, Is=50 mA
0.6
V
VSE(SAT)
Ic= 150 mA, Is= 15 mA
1.0
V
VSE(SAT)
BV CEO
Ic=500 mA, Is=50 mA
IC= 10 mA
60
V
BVcso
BV ESO
Ic=100!,A
70
V
Icso
Vcs=50V
100
nA
IESO
VEs =5V
100
nA
i
120
~
100
u
1.0
III
In
"e
1400
~
1200
8110~!C
5
1000
'"
:;
"c o.e
>
I'
~
'"Il!!
~w
l-
~25°C
0.6
~
0.4
1i
~
c
::;
I
I
80
"x
""
0.2
Z
~
I
0
~
60
0.1
1
10
100
Ie - COLLECTOR CURRENT (rnA)
lk
Maximum Power
Dissipation vs
Ambient Temperature
§:
.§. 1600
III
~
160
c
V
Base-Emitter ON Voltage vs
Collector Current
?:
VeE -10V
140
V
7
DC Pulsed Current Gain vs
Collector Current
"~
V
1.2
I E=10!,A
180
Notes
ns
11
1
TO-237: TN4033
MPS4356
MPSA55
>
0.1
0.1
1.0
10
Ie - COLLECTOR CURRENT (rnA)
100
~
~
.E
800
600
I\.
l ' N'0.237*
I'
400
TO.92'1 ~TO.39
1': ~
200
0
""
50
~
100
150
"200
TA - AMBIENTTEMPERATURE rC)
* One square inch of copper run
8-106
"0
Process 67
Safe Operating Area TO·39
with "Wake Field"
Type 296·4 Heat Sink
Maximum Power
Dissipation vs
Case Temperature
5A
I I
1'\ I I
Ie MAX (iOMS)
f'-.I
f-...f'-.
........
6Cor~~,~~~~
POWE1R DI~SI~J~ " \
TO-39 (KOVAR!'-.
LIMITED
50
100
150
P.W. AS INDICATED
-D.1
'"w
Ie
100
al '"w
z
50
;3
20
~
"z
0
lC(bO Ie =0
I
;::
;2
~~
CObol~ l"-.
10
?:
;
r--. 1"--..
.......
'";;:w
1.0
Z
I
LI
~
0.5
r
r 111m
0.1
1.0
10
0.01
100
0.1
1.0
10
100
lllm
I II
400
1lll1Tl
101 = 102
]
300
'"
200
t=
Vee
t,,1f
=lellD
=-3DV
100
too
o
10
100
Ie - COLLECTOR CURRENT (rnA)
8·107
10
tf
to
100
Ie - COLLECTOR CURRENT (mA)
Turn On and Turn Off Times
vs Collector Current
500
J'I
o
f - FREQUENCY (kH,)
Ie - COLLECTOR CURRENT (rnA)
1\
ZOO
100
111111111 1111
111111111 II
111111
o
0.01
'"
t=
1\ Ie = 1.0mA, Rs =1.0kn
'mIlrLlIIIII[ llll
~
c;
500 1000
Ie - COLLECTOR CURRENT (mA)
Noise Figure vs Frequency
I
TA '" 125°C
~ -0.2
II
I--
1Y/
i--"'U
~"n I
--
+-
Ie - COllECTOR CURRENT (rnA)
Rs -l.Okn
T~ • 25lC
l--""
-0.3
REVERSE BIAS VOLTAGE (V)
100 200
20
Ie - COLLECTOR CURRENT (mA)
II
10
-1.0V
VeE
/
100
-0.5
-0.1
=-lDV
=10 10
,,~
~
VeE
I-160
..,.I
I
-0.6
6.0
-0.1 -0.2 -0.5. -1.0 -2.0 -5.0 -10 -20 -50
f= 1.0 kHz
0
0
0')
Collector· Emitter Saturation
Voltage vs Collector Current
~
w
U
~
u
:>
1000
CD
tn
tn
......
V
Q
~
10
200
~
200
VeE - COLLECTOR EMITTER VOLTAGE (V)
F'" 1 MHz
~
~~T;Y2~YCCLEI
200
II-
u
I"'I\~<-------
1\ ,\.
10m A
240
I-
go
LIMITED
1 SEC
Common Base Open Circuit
Input and Output
Capacitance vs Reverse
Bias Voltage
;:
j--------
PW~
CASE TEMPERATURE ("e)
500
~,
SECOND BREAKDOWN
I I . . . . t\..
~
I I
Tc: -
.,J
A
t'\
¥
~
,'0",;-'
['\.TO-39 (STEEL)
Gain Bandwidth Product vs
Collector Current
a
n
1000
~
U)
U)
Q)
(J
~National
Process 68 PNP Medium Power
~ Semiconductor
e
DESCRIPTION
a..
Process 68 is a non·overlay, double·diffused, silicon
epitaxial device. Complement to Process 09.
0.00425
APPLICATION
=!)A--I4--l7'I-±--'- /D.iD795)
---1C~~4--+4...L'-T" ,.'"
t
This device waS designed lor general purpose amplilier
applications at collector currents to lA.
(11.508)
PRINCIPAL DEVICE TYPES
TO·92; EBC: CS9012
.MPS6563
Parameter
Conditions
Cob
Cib
Vcs =10V,I=1 MHz
NF
VcE =10V, Ic=l mA, Rs =100{J,
1=1 kHz
Min
Typ
9
V ES = 0.5V, 1=1 MHz
Max
Units
12
pF
35
1.0
IT
VeE = 10V, Ie = 50 mA
175
hFE
VeE=lV,le=lmA
50
hFE
VeE = W, le= 100 mA
VeE = W, le=500 mA
50
hFE
VeE(SAT)
Ic=150 mA, Is=15
VeE(SAT)
le=500 mA, Is=50 mA
VSE(SAT)
pF
dB
MHz
150
30
300
-
0.2
V
0.5
V
le= 150 rnA, Is= 15 mA
1.0
V
VSE(SAT)
le=500 mA, Is=50 mA
1.2
V
leso
VeE =30V
VEs =5V
100
nA
100
nA
IESO
0.3
BVeso
BV ESO
le=100!'A
35
V
I E=10!,A
7
V
BV eEo
le= 10 mA
25
V
8·108
Notes
"'0
Process 68
DC Pulsed Current Gain vs
Collector Current
Collector· Emitter Saturation
Voltage vs Collector Current
.5
240 r-="",,-rnrrnmr-rTTTTmrTTlrmm
vCE " 1OV ++HllIli-l-+ltlllfH-H1'IJIH
~ 200 H++l-lll!f--+mlllll-+1+Hllll-++lll1IH
1.25
z
....
1
160
~ 120
~
u
TA
"
I,
.4
~+I1I::j:mt~Im;UI1
'" 2:
~ «'"w
~
.3
.2
>
z
c
_i=
~
80 H++l-lll!f--tmlllll--H+Hl4H-++-HfItI
I-+++t-+-j-H++++tl-+-HH-l
.95
.B5
a~
.75
J~
40 H++l-lll!f--tmlllll--H+Hl~++
II
1.05
I
V
V
.65
TA "25'C
~
o
OW..LJ..UJIlL...L.LWIIlL.L.LWlllL...L.L
0.1
10
100 1000
~~~~~ilL~ilU
1000
.1
10
100
lC - COLLECTOR CURRENT (mAl
Base·Emitter ON Voltage vs
Collector Current
~
1.2
40
w
u
z
V
.9
«
....
;;;
-:.0
;:;
32
.7
a:
F = 1 MHz
w
.6
l'\.
30
20
~
10
;:;
16
'"
8
.5
u
«
....
U
:i'
z
I'..
~
I-'
Input Capacitance vs
Reverse Bias Voltage
~
~
;li
j..o'
I
t:::--1'"
J"..
I'
=
u
I
.1
10
100
1000
Ie - COLLECTOR CURRENT (rnA)
Jl
1
100
10
.5
50
REVERSE BIAS VOLTAGE (V)
Coliector·Base Diode
Reverse Current vs
Temperature
~
VCB = 30V
Contours of Constant Gain
Bandwidth Product (iT)
V
2:
w
'"
«
~>
V~E 1"ll~V
le"'l mA
=
os
w
20
..
l'.
~
;;;
\
"i
c:
c
Rs '" loon
"
..
~
I
~
R1sIJU
8
I
o
25
50
75
100
.1
125
10
TJ -JUNCT10N TEMPERATURE ('C)
100
1000
f - FREQUENCY (kHzl
c
~
BOO
700
~ 600
;;;
'"
~
,.
,.«x
x«
,.
500
400
'\.
I\.
'i.
~ 300
I
~
I\. o.921
200
'\J.
100
I'\.
50
100
150
TA - AMBIENTTEMPERATURE eCI
8·109
~
I\~
/
.1
UI 1
10
100
Ie - COLLECTOR CURRENT (rnA)
Maximum Power
Dissipation vs
Ambient Temperature
~
.sz
J
1
~\f~
,>Jfi I-" r.L;
"\"\ " ~t.1 / ~
:;
1\
~
o
I
10
c:
c:
'"=
w
1
REVERSE BIAS VO LTAGE (VI
Noise Figure vs Frequency
1/
.01
1000
100
40
r-....
24
10
Ie - COLLECTOR CURRENT (mAl
F -1 MHz
w
.8
.1
Collector· Base Capacitance
vs Reverse Bias Voltage
~
VeE:::: 10V
1.1
1.0
.55
Ie - COLLECTOR CURRENT (mAl
200
CD
en
en
0)
!:;
W c
H+tI-t1ItI--++++HllI--+1-Ht1*-B/-tt1IH
1.15
(')
en
~~Ijo
I.
25'C ++fI-+-H-tf- ..:;Ie " 10
c
~
Base·Emitter Saturation
Voltage vs Collector Current
a
500
~
en
gJ.
(,)
e
~ National
a
Process 70 PN P Memory Driver
Semiconductor
a.
0.030
(0.762)
,-
0.004
(0.102) - -
1--
0.0035
(0.088~--
I--
L/,/
L
/0
D.ESCRIPTION
L
/r(
~
/
?)
l
a:
w
0.005
t
(
,)
/,
)....
~
/
/
Parameter
Process 70 is a non·overlay, double·diffused, gold doped,
silicon epitaxial device. Complement to Process 25.
~
APPLICATION
This device was designed primarily for high speed
saturated switching applications.
PRINCIPAL DEVICE TYPES
0.009 0.030
(0.229) (0.762)
~
') ~
~
(0.1271
-,
/
Conditions
TO·39: 2N3467
. TO·237: TN3467
J
Min
Typ
Max
Units
Notes
tON
Ic=500 rnA, I S1 =50 rnA
20
40
ns
Figure 1
tOFF
Ic=500 rnA, I S2 =50mA
60
90
ns
Figure 2
Cob
C ib
Vcs =-10V
VES = -0.5V
15
20
pF
80
pF
hFE
Ic= 100 rnA, VCE=-1V
40
hFE
Ic=500 rnA, VCE= -1V
30
hFE
Ic=1A, VCE=-1V
15
VCE(SAT)
Ic=150 rnA, Is= 15 rnA
0.3
V
VCE(SAT)
Ic=500 rnA, Is=50 rnA
0.6.
V
VCE(SAT)
Ic= 1A, Is= 100 rnA
1.0
V
VSE(SAT)
Ic= 150 rnA; Is=50 rnA
1.2
V
VSE(SAT)
Ic=500 rnA, Is=50 rnA
1.2
V
VSE(SAT)
BV CEO
Ic= 1A, Is= 100 rnA
1.7
V
Ic= 10 rnA
40
V
BV C60
ic =100p.A
50
V
6
100
200
120
BV ESO
I E=10p.A
Icso
Vcs=30V
100
nA
IESO
VEs =4V
100
nA
8·110
V
""C
Process 70
Collector-Emitter Saturation
Voltage vs Collector Current
DC Pulsed Current Gain vs
Collector Current
160
~
....
~
VeE I"
",
II 'i~'" lC'rr-- T}"IJll v /
Ie
Ie =10
5V
VCE" IV
....... r-...
80
ffi
I1111
120
B
"
"u
1.4
0.6
TA" 25"C
z
Base-Emitter Saturation
Voltage vs Collector Current
~
....
, I~ II" 100'c.1
I- Cl
1.0
'1111
~ §!
0.8
=z
~~
0.6
~
40
~
~
~~
arJ
TA "25'C \.
'"j "1-ITrl
,
~'"
i=
~
>;Ji
o
II~ II
18 = 10
o
10
Ie - COLLECTOR CURRENT (rnA)
IC - COLLECTOR CURRENT (mAl
Input and Output
Capacitance vs Reverse
Bias Voltage
.
BVCER vs RBE, IC
120
BO
I'-...
60
H-I-t-J",.t-:J CE.+I+-++-H
f-H--H---,-ti-!''''''H-1EFO -
1
110
~CES
Delay Time vs Turn On Base
Current and Reverse BaseEmitter Voltage
=10 mA
TA "J5'C- r--
'"\
100
BO
4.0
~
r--r-----'l'--++-+-+--t--HH
-
~:;
3.0
~"
"'~"
~
....
~~
BVCEO
~ ~
a:
2.0
1L-+41---h"-"'r-++-+-Ji<-l
1.0
f--¥'-t-}'+-,I'--+-:i'--H-l
,
70
;
>
60
50
50
10
tk
100
10k
lOOk
1M
-50
-30
R (n)
REVERSE BIAS VOLTAGE (V)
Storage Time vs Turn On
and Turn Oil Base Currents
1000
100
5.0
90
10
50
Ie - COLLECTOR CURRENT (rnA)
130
100 r-rT-rr--r-r-r-r-I-F-"-I-M-'H,
fA ~ll~rIC'
0.2
1000
100
10
/
1---
-70
Fall Time vs Turn On and
Turn 011 Base Currents
50
"5....
i
~
~
/ 1// IIY
H'--j,I'-V~Cf--+-..k1+-:yq--l
20
10
o
t--f~V-t-+-..../'-t--:)joo;,
V- Ie " 100 m1----Lf-f-/-+---t:;;."'9Vee = -30V;
o
-10
-20
-30
~
1 1 1 1
f-+--*--tr-+--Y':-':='c:-:J
"z
'"
....
"I
-50 .
-50
IS1 - TURN ON BASE CURRENT (rnA)
-100
-150
-200
t,:->...~
,r
~
"z
g;
....
100
.....-
rl-'
tf"20nf_~
50
!
,
o
V
-- .....-
o
Ie = SOD mAl
Vee = -30\1
50
.
]:
i=
20
"z
10
....
~
5.0
1]
2.0
1.0
-50
-100
-150
-
I Ic"'100mA
o
-10
-20
-30
-40
-50
TURN ON BASE CURRENT (mAl
-
5"
i
I-
100
~~~~~~~~~~~
=
tr
12 ns
50
I-.J-"""''l----~,___t___+Ii
20
I---_t__--=""""-+-_+--J
~
~
;;'i
z
-
",.r- ~
z
~
Vee = -30V
50
-200
1., - TURN ON BASE CURRENT (rnA)
"""
o
Ie ""SODmA
IS1 ""1 82 ""SOmA
50 ns
Rise Time vs Collector
Current and Turn On Base
Current
tp ;;;;;;;
I
-
.l.-i;I- -
1 1 Vee =-30V
'B1 -
100
vY1tf"L~ y
1
tf"
I
Switching Times vs
Ambient Temperature
~tf=10ns
_f-
10
181 - TURN ON BASE CURRENT (rnA)
'---
1
......+-1"
...-
20
o
,/
ti" 25 nj> ;;;;;;-"...,
./
I
-40
V
30
100 f-+t'-+rt-cY--t---t--7"F--l
"z
'"....
",
V
YI
t,-20",:'"
40
150
-100
IS1 - TURN ON BASE CURRENT (rnA)
Storage Time vs Turn On
and Turn 011 Base Currents
100
TA - AMBIENT TEMPERATURE ('C)
8-111
150
-50
-100
CD
U)
U)
......
o
-55
~
0.4
T
O'-----L-LL.LLlLlL---1.-L.LLl.JJ.lJ
10
100
1000
i
1.2
a
o
-200
Ie - COLLECTOR CURRENT (rnA)
-500
Process 70
Turn On and Turn Off Times
vs Collector Current
Switching Times vs
Collector Current
100 r.1.-,-::-=';""IB2~="';I-e'';'';,::"0--.l"T""T"T"T"Tl'
Vee = -30V-j-_j_
It-IH--H-I
80
;0
60r71.-,=~I-.2~_~le~"~0-',,-rrrn
50 ~V~ee~=_-~3rOV~+--r~~~A
~.~~-r--t-7tl~OF~FI-t~HH
..... ft:
!
q
1400 I--+--t-I+-+-+-I-t--I
1200 I-+-r-+-I--+-++-I
l"'~
~~ 600
~
~
~
20 I----I---+~~~
1+1~
-L
Ie - COLLECTOR CURRENT ImAI
~
iii
::
~ 800
r~~~_r-_j__r_r~_rr
I - -.......
--'f"'oo....
..".,.....-+ ~ONI
100
~ 1600 .-...,,..--,-.-...,..,,..-..
~ 1000 I-~ ITOo2~7'+--r-t--+--1
j80r----+--+-~~HrHH
"'
Maximum Power
Dissipation vs
Ambient Temperature
1000
100
Ie - COLLECTOR CURRENT ImAI
1000
g
~
"-
t--.JO 39
o
'\I. 'i-.
400
~
200
0
0
50
100
l"-..
150
200
TA - AMBIENTTEMPERATURE I'CI
* One square inch of copper run
Maximum Power
Dissipation vs
°Case Temperature
~TOo39
50
100·
150
200
iC - CASE TEMPERATURE I'CI
-30V
PW=200 ns
Rise time:s:2 ns
59n
Duly cycle = 2%
+2V
:,11
FIGURE 1. tON Equivalent Test Circuit
-30V
(
59n
~SCOPE
200n
+3V
2<1, <500 ••
12<5 ns
13>1 ••
Duly cycle = 2%
FIGURE 2. tOFF Equivalent Test Circuit
8·112
"tJ
~National
Process 71 PN P Small Signal
~ Semiconductor
1
CD
0.018
DESCRIPTION
Process 71 is a non-overlay, double-diffused, silicon
epitaxial device. Complement to Process 04.
-
APPLICATION
This device was designed lor general purpose amplilier
applications at collector currents to 50 mA.
PRINCIPAL DEVICE TYPES
BC177 Series
TO·18:
TO·92, CBE: BC560 Series
Parameter
NF (spot)
Conditions
Min
IC=200I'A, Vc =5V, Rs=2k,
I =1 kHz
2.0
Typ
Max
Units
1.0
4.0
dB
6
pF
12
pF
hIe
Ic = 10 mA, VCE = 5V, 1= 100 MHz
Cob
Vcs=10V
C ib
70
hFE
VEs =0.50V
Ic=100I'A, VcE =5V
Ic=1 mA, VcE =5V
hFE
Ic= 10 mA, VCE = 5V
70
hFE
Ic= 50 mA, VcE =5V
Ic=1 mA, Is=0.10 mA
50
VCE(SAl)
0.10
v
VCE(SAl)
Ic= 10 mA, Is= 1 mA
0.11
V
0.95
V
V
V
hFE
VBE(SAl)
Ic=1 mA,l s =0.10mA
Ic=10mA,ls=1 mA
BV EBO
200
80
560
1.0
Ic= 1 mA
30
Ic= 10 I'A
40
V
6
V
ICBO
I E= 10 I'A
VcB =30V
IESO
VEs =5V
DC Current Gain vs
Collector Current
200
z
~
~
'"'"
B
u
c
Base·Emitter ON Voltage vs
Collector Current
~
V~E ~ 1,10v
w
~
>
z
co
a:
~
~
~
~
80
I
=
II
II
'"
160
120
1.0
40
1
0.8
r0.6
0.4
0.2
--
L
~o~~
VeE
~
>
0.1
1.0
10
Ie - COLLECTOR CURRENT (mAl
100
0.1
;t
Ei
c
"'
~
il'"
x
'"",
=1.DV
I II
I II
0
1.0
10
Ie - COLLECTOR CURRENT (mAl
8·113
nA
100
nA
Maximum Power
Dissipation vs
Ambient Temperature
800
>= 100
"""'"
Z
o
...
-
~
100
~
.sz
I
I
II
Notes
4.0
4
VBE(SAl)
BV CEO
BV CBO
(")
CJ)
CJ)
-·~----(0'4511-------'>0.0035
(0.08891
a
.
600
500
400
"
~
10,92
300
200
10·18
."
'\ i'..
100
).
~
100
~
50
TA
-
100
b..
150
AMBI ENT TEMPERATURE ( C)
200
........
.,..
1'0
Process 71
en
en
CI)
e
a..
Capacitance vs Reverse
Bias Voltage
Collector· Emitter Saturation
Voltage vs Collector Current
(.)
0.20
'"
~~
;;w
w"
12
lel/l~ ~ll0
I
II
0.16
g;~
....
u>
'"
0.12
~'"
0.08
''''
-'"
i!;i
0.04
10
1000
~~
~
II
"
....
Ic II
I"
I'..
~z
8~
Collector· Base Diode
Reverse Current vs
Temperature
I-
Cibo
~
it'
~
~w
ob.
">-..'
'"'"
'"~
f= 1 MHz
'\
II
II
II
0.1
1.0
10
Small Signal Current Gain
vs Collector Current
~
....
iii
~
500
~
100
"
iii'",
;;;
V
~
r--...
o
10
1.0
100
100
Small Signal Input
Resistance vs Collector
Current
Small Signal Output
Conductance vs Collector
Current
!
VeE = lOV
e
'"
I'LkHz
w
u
w
z
..
'"
'"'"
........
t;
~
C
z
~,
~
z
1.0
0.01
1.0
10
FREQUENCY (kHz)
100
0.1
1.0
10
;
"~
100
200
~:j:~$~~~~tj:d
'"
80
150
1--+-H+----1r-+-+-++---+----I
'"u
60
100
1--+-H+----1r-+-+-++---+----I
~
I
w
~
~
'"I
.z
,
60
I
/
1.0
Small Signal Voltage
Feedback Ratio vs Collector
Current
z
~
120
'"'"
VeE = lOV
~>
50
,
VeE - lOV
f'" 1.0 kHz
0L.--'-'...L.J.._'--L..L.LL........l----'
0.1
1.0
10 20
-+-+-++-+-+---1
I' 1.0 kHz
~
\
1\
40
20
o
0.1
Ie - COLLECTOR CURRENT (rnA)
1.0
10
Ie - COLLECTOR CURRENT (rnA)
8·114
10
Ie - COLLECTOR CURRENT (rnA)
;;:
~
8....
0.1
20
Ie - COLLECTOR CURRENT (rnA)
Small Signal Cutri!nt Gain
vs Collector Current
~
~
;;;
I
I
I
o
0.1
0.1
180
~'"
r-..
.E
o
VeE = lOV
1'1.0 kHz
240
~
'"'"z
....
1\
,
300
z
10
::ia:
w
10k
lk
Rs - SOURCE RESISTANCE (U)
100
'"
Ie = 200 pA
f: 1 kHz
'f-'
Noise Figure vs Frequency
~
VeE'" 5V
i\.
I - FREQUENCY (MHz)
RB=2kn
125
Noise Figure vs Source
Resistance
1.0
100
VeE = 5V
100
1\
10
Ie - COLLECTOR CURRENT (mAl
Ie '200"A
75
50
......
~
VeE'" 5.0V
1'100MHz
=
25
TJ -JUNCTION TEMPERATURE eCI
r-.-.
'"
I
1\
o
50
VeE = S.OV
Ic =10mA
I"'-
z
10
./
1.
.1
10
~
10
./
Capacitance vs Reverse
Bias Voltage
z
V
1.0
V
10
REVERSE BIAS VOLTAGE (VI
Ie - COLLECTOR CURRENT (mAl
Ve~' Jov
c-
j
1.
100
100
20
20
~National
a
Process 74 PNP High Vqltage
Semiconductor
-
DESCRIPTION
0.004
~iO.l02)
/////
~
,-,
Process 74 is a non-overlay, double-diffused, silicon
epitaxial device. Complement to Process 16.
APPLICATION
This device was designed as a general purpose amplifier
and switch for applications requiring high voltages.
PRINCIPAL DEVICE TYPES
TO·92, ESC: 2N5401
MPSL51
Parameter
fT
COb
hFE
hFE
hFE
VBE(SAT)
VCE(SAT)
BV CEO
BV CBO
Conditions
Min
Typ
Ic=10 mA, VcE =10V, f=100 MHz
VCB = 10V, f = 1 MHz
100
160
Ic=1 mA, VcE =5V
Ic= 10 mA, VCE = 5V
40
Ic=50 mA, VcE =5V
Ic=50 mA, IB=5 mA
20
50
Ic=50 mA, IB=5 mA
Max
Units
MHz
1\
12
120
250
pF
0.95
v
0.50
V
Ic=1 mA
120
V
Ic= 10 I'A
140
V
I E= 1O I'A
VcB =100V
6
ICBO
!L..u .....
";:3=4V
BV EBO
,
8-115
V
100
nA
100
nA
Notes
Process 74
DC Current Gain vs
Collector Current
Base·Emitter ON Voltage vs
Collector Current
~
160
'"
120
~>
100
c
80
::
140
"~
e-
i
u
Q
I
1.0
15
i=
;;:
.6
~
iii
....
z
60
~
.g 800
v;, '~'5~
.8
'""
210
z
200
~
190
"
180
~
>
~
~
10
I-t-+++-+-+-Ht-+-++bj,.o£j
.4
I-H++--t---t-t-tt-t-H++--l
.2
I-+-t-tt---t--t-Ht-t-+t+t--
o
1000
§
10
I.
80
/
V
o
.1
~
60
u
'"~
z
"e-o:;
0;
5i'"
/
I
I"'
;3
10
50
I In
Ccb Ie:: 0
20
I"'H-I
I III r.1
Ie - COllECTOR CURRENT (rnA)
I III
J~JI
40
;;:
V
f:: 1 MHz
""Ceb IE:::: 0
o
1
10
Ie - COLLECTOR CURRENT {mAl
I IU
~
w
V
10
REVERSE BIAS VOLTAGE (V)
8·116
i
II
Il
100
f" 20 MHz
VeE:: 10V
10
Input and Output
Capacitance vs Reverse
Bias Voltage
12
~
.
.!£ ::
Ie - COLLECTOR CURRENT (rnA)
10
200
Coliector·Emitter Saturation
Voltage vs Collector Current
~~~~~~~~~~
.1
Small Signal Current Gain
vs Collector Current
~
150
T A - AMBIENT TEMPERATURE ("C)
.8
RESISTANCE (kn)
z
100
.20
1\
100
50
~I. ~ 10 -t-t-H+-+-+tt1---l
I'
I'
~
;p"'"
100
Base·Emitter Saturation
Voltage vs Collector Current
I~ ~11'!h
170
"\
Ie - COLLECTOR CURRENT (rnA)
Coliector·Emitter Breakdown
Voltage with Resistance
Between Base·Emitter
220
10
.1
Ie - COLLECTOR CURRENT (rnA)
Z
200
X
"
100
"\.
400
I
~
10
~
<
'"
~
100
VCE - COLLECTOR VOLTAGE {VI
Thermal Derating Curve.
12
1,4
ill
1.2
I,D
C
.a:
"-
~,
I'\.
:;;
"
"-
I.B
~
'\..
1.6
z
e
;::
:::
a:
~
1000
Maximum Power
Dissipation vs
Case Temperature
10
lo~.
Itt
VCE - COLLECTOR VOLTAGE {VI
IC - COLLECTOR CURRENT {mAl
ill
c
LIMIT DETERMINED
BY BVCEO
10
100
:::
1.ILLlU
I'
100
.}:-
;::
Safe Operating Area TO·237
~
\
:!5
100
oS
\
~
10
VR.- REVERSE BIAS VOLTAGE {VI
Safe Operating Area TO·202
1\
1\ \
\
;li
z
20
~.
0.1
1000
I---...
40
100
IC - COLLECTOR CURRENT {mAl
Gain Bandwidth Product vs
Collector Current
lMHz
&ib
0.4
10
F
I
IC -'COLLECTOR CURR~NT {mAl
g
10
10
1.0
0.9
O.B
0.7
~'"
>~
10
.!!; :
1.2
:;;'"
0.7
~
Junction Capacitance vs
Reverse Bias Voltage
1.4
ffi~
;:~
100
IC - COLLECTOR CURRENT {mAl
Base·Emitter Saturation
Voltage vs Collector Current
VCE - 15V
0.9
o.B
10
100
IC - COLLECTOR CURRENT {mAl
,
'-.,JCOLLECTOR LEAO
(T0·237)
TAMBIENT
~37'
O,B
TAMBIENT
'\. ~0-2021
........
0.6
I'\.
I-...
0.4
t'-... I'\.
0.2
~
o
20 40
60 BO 100 120 140 160
o
Te - CASE TEMPERATURE (OC)
25
50
75
100
125
T - TEMPERATURE rCI
8·118
150
1000
."
Process 77 PNP Medium Power
~National
D Semiconductor
DESCRIPTION
1-I
Process 77 is a double·diffused, silicon epitaxial planar
device, Complement to Process 37,
0 031
.
a
n
CD
en
en
......
......
(0.787)
APPLICATION
This device was designed for general purpose medium
power amplifier and switching circuits that require collector currents to 2A.
PRINCIPAL DEVICE TYPES
TO-202, EBC: D41 E7
NSDU51, -A
NSDU52
0.031
~J'
TO-202, BCE: NSE170
TO-237, EBC: 2N6726, 7
(92PU51, -A)
TO-237, ECB: NA22/32 Series
TO·92, EBC: ED1802
TO·126, ECB: MJE170
MJE710
I
Min
Conditions
Parameter
BVCEO
Ic= 10 mA
25
BVCBO
Ic =100"A
35
BV EBO
IE=10"A
5
ICBO
VcB =20V
lEBO
VEB =4V
hFE
I c =100A, VcE =IV
50
hFE
35
\I~-,~ ,~
Ic=lmA, VcE =1V
1~=n~A In=~n rnA
VBE(SAT)
Ic =0,5A, 16=50 rnA
fT
Ic=100 mA, VcE =10V
COb
VcE =10V, f=1 MHz
PD(maxl
TO-126
TO-202
TO-237
TO-92
Typ
Max
v
V
V
100
nA
10
100
nA
150
300
0.5
1.3
100
Units
MHz
200
28
V
V
35
pF
Tc=25°C
. TA=25°C
15
1.5
W
Tc=25°C
TA=25°C
10
W
2
TCOLLECTOR LEAD =25°C
TA=25°C
850
W
mW
TA = 25°C
600
mW
2
IIJC
TO-220
Tc=25°C
TO-126
Tc=25°C
8.33
°C/W
TO-202
Tc=25°C
12.5
°C/W
TCOLLECTOR LEAD = 25°C
62.5
°C/W
TO-237
°C/W
IIJA
TO-126
TA=25°C
83.3
°C/W
TO-202
TA=25°C
62,5
°C/W
TO-237
TA=25°C
147
°C/W
TO-92
T A = 25°C
208
°C/W
TJ(maxl
150
All Plastic Parts
8-119
°C
Process 77
DC Pulsed Current Gain vs
Collector Current
DC Pulsed Current Gain vs
Collector Current
Collector-Emitter Saturation
Voltage vs Collector Current
1000
10
"~
~
100
B
e
W
~
~
"u
~
10 _ _
u
e
"I
0.1
10 _ _
I
W
0.01
0.1
1 L-.L.l.J.lllllL...L.J..Lll.l.llL...L.J..i.LU.w
0.01
0.1
10
10
IC - COLLECTOR CURRENT (A)
1.2
'"'"~
'"g;
....
e
~
a:
~-
0.8
ffiZ
....
0.6
'"
~~
0.6
0.4
~
0.2
r~
:i:
~>
0.4
t-- T~" 125
Q
We
~
I W!~
"....'"
rTle!
0.8
.... w
::
-
Ie
i; .
10
>
100
~
~
200
,.....~
150
~
100
g
100
lk
50
,\\
I
J:.-
,...- LIMIT DETERMINED
BY BVCED
0.01
to
IC - COLLECTOR CURRENT (mAl
e
~
=f
DETERMINED
5
....
15to
B
'"
VeE - COLLECTOR;EMITTER VOLTAGE (VI
Thermal Derating Curve
1.8
~
"c
~
-
~
Ci
.....
TO·202
I
~
~.126
-
-
'-.f'...
....... ~
100
VCE - COLLECTOR·EMITTER VOLTAGE (VI
o
100
10
1
2.0
0.1
0.01 '---'-_ _ _ _-":.::.l...J....JUJ.w
BVCEO
0.01
100
Maximum Power
Dissipation vs
Case Temperature
24
22
20
18
16
14
12
10
10
THIS LIMIT
I
VCE - COllECTOR VOLTAGE (VI
Safe Operating Area TO-237
\
0.1
..!:
10
1
~
B
1.m,s
5m,
DC
'--
lk
30
1 m,
DC
15to
0.1
~
20
COLlECTOR·BASE VOLTAGE (V)
clOD",
....
to
I
-
Safe Operating Area TO-202
is
e
~
10
0
10
to
"
::i
1
0
.J
VCB
B
V
100
10
Safe Operating Area TO-126
'15"
r-
I'-
I
10
.s....
10
20
:!i
10
VCE'10V
e
~
::i
Ie - COLLECTOR CURRENT {mAl
~
"~
~
~
lk
Gain Bandwidth Product vs
Collector Current
e
....
C
0.2
Ie - COLLECTOR CURRENT (mAl
250
30
U
>
~
F'" 1 MHz
;3
~
Z
9
40
u
I
~
I
10
Collector-Base Capacitance
vs Collector-Base Voltage
1111
10 1111
1.2
0.1
IC - COLLECTOR CURRENT (AI
Base-Emitter Saturation
Voltage vs Collector Current
~
;::
W
>
0.01
IC - COLLECTOR CURRENT (A)
Base-Emitter ON Voltage vs
Collector Current
~
0.01
.....
o
20
40
60
80 100 120 140 160
TC - CASE TEMPERATURE (OCI
8·120
1.6
1.4
1.2
1.D
c:
0.8
I
0.6
0.4
~
e
f---I-""':-f"",d----''''k~-f--l
0.2 I--+-+--t--==~~&-l
25
50
15
100
T - TEMPERATURE (OCI
125
150
"'C
Process 77
a
n
CD
o
o
Thermal Response in TO·126 Package
~~
0.7
0.5
~~
0.3
0.2
~~
0.1
0.01
0.05
'"
....
.... '"
,,0
'"'''
:=;:
.......
.......
-
D ~ 0.5
0.2
0.1
~ =:::
~ ~\J'0.02
~~001
,,'"
TIll
I
P(pk)
L
,e! 0.03
t-~~
"-D(SINGlE PULSE)
0.02
r--
-l I..-J
tl
-t2
0.01
0.02
0.05
0.1
OJC(t)~,(tI'OJC
OJC DC THERMAL RESISTANCE
Tpk ~ TC + Ppk 'OJC(t)
0.2
0.5
10
DUTY CYCLE D
20
~
50
*
100
200
11 - TIME Ims)
Thermal Response in TO·202 Package
~c
"'N
~~
....
.... '"
'"
,,0
'"'w
w~
~~
0.7
0.5
0.3
0.2
0.1
0.07
'"'''
........
"''"'
,e!
0.05
"'"
0.03
0.02
-;::-tJ
0.01
D 0.5
0.2
HEATS UNK
b::::;
f-
0.1
FREE AIR
ii.05
~~f02
0.01
SI7GllE~
...
L
P(pk)
I
SINGLE PUlSE
fill
II I
-- 11--
I
0.01 0.02
Tpk-TC+Ppk'OJClt)
DUTY CYCLE 0
-t2-
1111
0.05
OJcItJ-,ltI,oJC
OJC DC THERMAL RESISTANCE
0.1
0.2
0.5
10
20
50
t1- T1ME (ms)
8-121
100 200
500 lk
=!!
t2
2k
5k
10k
20k
SDk
lOOk
co
......
en
en
CI)
CJ
~National
Process 78 PNP Medium Power
~ Semiconductor
e
DESCRIPTION
a..
0.031
------j
Process 78 is a double-diffused, silicon epitaxial planar
device. Complement to Process 38.
I
(0.787) .
APPLICATION
This device was designed for general purpose medium
power amplifier and switching circuits that require collector currents to 1.5A_
PRINCIPAL DEVICE TYPES
TO-202, EBC: 2N6554
D41D1-14
D41E5,7
NSDU55,56
TO-202, BCE: NSE170, 171
0.031
(0.787)
~J
Parameter
TO-237, EBC: 2N6728 (92PU55)
TO-237, ECB: 2N6708, 9 (92PE77A, B)
TO-126, ECB: BD344
MJE171
MJE711
Conditions
Min
Typ
Max
Units
Ic=10mA
40
v
Ic=100!'A
50
V
I E=10!,A
VcB =40V
5
ICBO
IESO
VEs =4V
hFE
Ic=100 rnA, VcE =1V
50
35
BVCEO
BVCBO
BV EBO
V
150
100
nA
100
nA
300
hFE
Ic=500 rnA, VcE =1V
VCE(SAT)
Ic=500 rnA, Is=50 rnA
0.6
VSE(SAT)
Ic=500 rnA, Is=50 rnA
1.3
fT
Ic=100 rnA, VcE =10V
Cob
Vcs=10V
PD(max)
TO-126
TO-202
TO-237
TO-92
80
TC=25°C
TA=25°C
15
1.5
TC=25°C
TA=25°C
10
MHz
150
20.
V
V
25
pF
W
W
2
TCOLLECTOR LEAD = 25"C
T A =25"C
2
850
mW
TA=25°C
600
mW
W
°JC
TO-220
TC=25"C
TO-126
TC=25°C
8.33
°C/W
TO-202
TC=25°C
TCOLLECTOR LEAD = 25"C .
12.5
62.5
°C/VII
TO-237
TO-126
T A =25"C
83.3
°C/W
TO-202
TA=25"C
TO-237
TA=25°C
°C/W
TO-92
T A =25"C
62.5
147
208
"C/W
"C/W
OJA
TJ(max)
All Plastic Parts
150
8-122
"C/W
°C/W
°C
"'C
Process 78
Pulsed Current Gain
vs Collector Current
1000
~
1000
VCE - 5V
";:;
'"....
TC"+125"C
B
' ~125bc'
~
1100
-40"C
1-'
+25 °C ..3Io...
"
"u
"I
~
"u
10
IVCE -IV
l.:£
....
100
C
Collector-Emitter Saturation
Voltage vs Collector Current
Pulsed Current Gain
vs Collector Current
10
~
c
I
f-
.,
i"C
I-
0.1
10
~
0.01
0.1
1
0.01
10
IC - COLLECTOR CURRENT (AI
1.2
VeE -10V (25 CI~
VeE -10V (125'"CI~"
~
"
~
or
........
O.B
0.6
~
w
0.4
:il
0.2
11111
rv;-I~
111111111
11111
11111
Z
~
"
250
;;l
~~
;:~
"'"
~"
"':I~
lk
0.4
f-'" ~~"C
;t
;3
V
:il
;
11111111
1111
11111
0.2
"
I
10
100
lk
Ie - COLLECTOR CURRENT (mAl
IC - COllECTOR CURRENT (mAl
Gain Bandwidth Product vs
Collector Current
Safe Operating Area TO-126
Ivcr~jW;111
111111111 111111111
10
I I 1110111
.
~
150
~
B
or
100
z
~
50
"
0;
11II
DC
lOOps
"
"
:il
I
~
I
.,t100
lk
~
i
100
VCE - COLLECTOR·EMITTER VOLTAGE (VI
~~~~II~t~~1
BY BV CEO
L -..............J....J'-W.J.U.._-'--'-L..J...LJ..I..IJ
1
100
10
VeE - COLLECTOR·EMITTER VOLTAGE (V)
Thermal Derating Curve
1.8
~
1.6
5
1.4
~
I--r-,.
~
a::
-
.......
o
11111\lL 111II1111
THIS LIMIT DETERMINED
0.01
TO·202 f',.,'
0.01 L-......1._ _ _ _--"'=..J....Ju..LW
1
2.0
.,ze.126 -
10
01
I
Maximum Power
Dissipation vs
Case Temperature
24
22
20
lB
16
14
12
10
30
~
B
or
VCE - COLLECTOR VOLTAGE (VI
Safe Operating Area TO-237
1
10
100
10
20
10
Safe Operating Area TO-202
0.01
10
o
....
LIMIT DETERMINED
BY OVCEO
IC - COLLECTOR CURRENT (mAl
OLL~-LLJ-L~-LLL~~
5
1\
0.1
j
VeB - COLLECTOR·BASE VOLTAGE (VI
, I 11111111
"'~
....
~
~
u
11111
f.....- ~c
~
100
u
0.6
I
;;l
Collector-Base Capacitance
vs Collector-Base Voltage
";::
;- ~ clJ ~~~"C
;::
I
"c
;:
c
O.B
III
'
10
~
'.f -10 '1111
10
:il"
10
u
~
~
VeE -IV 1125"CI
I
~
-
VeE" lV (-40'C)
1.2
!5'"
....
0.1
IC - COLLECTOR CURRENT (AI
Base-Emitter Saturation
Voltage vs Collector Current
z
c
;:
~VCE "10V (-4oCI~
'"
0.01
0.01
10
lC - COLLECTOR CURRENT (AI
Base-Emitter ON Voltage vs
Collector Current
?:
0.1
o
W
~
W
~
lM1W
~
TC - CASE TEMPERATURE rCI
8-123
lW
1.2
1.0
0.8
~
0.6
I
0.4
rP
0.2
25
50
75
100
T - TEMPERATURE (OCI
125
150
a
2en
en
......
co
co
.....
Process 78
U)
U)
u
u
e
0-
Thermal Response in TO·126 Package
~~
...~~:;;
... "'
0.7
0.5
D= 0.5
0.3
O.Z
o.z
0.05
0.1
;;;~
zu 0.07
"z 0.05
......
"'''
,!!!
:g~
--
0.1
ZO
~;;
I
Plpk)
~~~O.OZ
),-J:'--0.01
0.03
O.OZ
L
I--f OISINGLE PULSE)
0.05
0.1
--I LJ
DUTYCYCLED=~
tl
-tz
0.01
o.oz
nn.OJc(t)-rltl-OJC
oJC DC THERMAL RESISTANCE
Tpk-TC+Ppk-OJClt)
O.z
0.5
10
ZO
50
100
zoo
tl - TIME 1m.)
Thermal Response in TO-202 Package
~~
:"
... :;;
ffi:::i
.I-~
~3
w~
zu
"z
"'''
......
I!!!
:g~
1
0.7
0.5
0.3
02
0.1
0.07
0.05
0.03
O.OZ
DC
0.:
!IIi
.0.
"ii!
~
~
~hl:-n.. °Jc(t)-rlt)-OJC
:!':p;.;}~;
.~
PU~
N~
'..:: I
.,",L,'
-
I:-:tz~
0JC DC THERMAL
Tpk=TC+Ppk -'Jclt)
DUTY CYCLE D= ~
.D.Ol
0.01 o.oz
0.05
0.1
o.z
0.5-'
10
ZO
50
t1 - TIME (msl
8·124
100 zoo 500 lk
Zk
5k
10k ZOk
SDk
lOOk
~National
Process 79 PN P Medium Power
~ Semiconductor
DESCRIPTION
Process 79 is a double-diffused, silicon epitaxial planar
device. Complement to Process 39.
j-----0.D31
I
(0.787)
APPLICATION
This device was designed for general purpose medium
power amplifier and switching circuits that require collector currents to lA.
PRINCIPAL DEVICE TYPES
TO-202, EBC: 2N6555-56
NS0204-6
NSOU57
0.031
TO·237, EBC: 2N6729,30
(92PU56, 57)
TO·237, ECB: 2N6710
(92PE77C)
TO-126, ECB: B0348
MJE172
MJE712
Parameter
Conditions
Min
Typ
Max
Units
BVCEO
Ic=10 rnA
70
v
BVCBO
Ic= 100 p.A
80
V
BV EBO
IE=10p.A
5
ICBO
VCB=60V
V
100
nA
100
nA
lEBO
VEB =4V
hFE
Ic= 100 rnA, VCE = 1V
40
hFE
Ic=500 rnA, VcE =1V
20
vCE(SAl)
lC=OUU rnA, IB=OU rnA
U.1i
v.
VBE(SAl)
Ic=500 rnA, I B =50 rnA
1.4
V
fT
Ic = 100 rnA, VCE = 10V
Cob
VcB =10V
PO(max)
TO-126
TO-202
TO-237
TO-92
70
120
125
14
Tc=25°C
TA=25°C
15
1.5
TC=25°C
TA=25°C
10
240
MHz
18
W
W
2
2
TCOLLECTOR LEAD = 25'C
TA = 25°C
850
TA = 25°C
600
pF
W
mW
mW
OJC
TO-220
Tc=25'C
TO-126
Tc=25°C
8.33
°C/W
TO-202
Tc=25°C
12.5
°C/W
TO-237
TCOLLECTOR LEAD= 25'C
62.5
°C/W
T A =25'C
T A =25'C
83.3
°C/W
TO-202
62.5
°C/W
TO-237
T A =25'C
147
°C/W
TO-92
T A =25'C
208
'C/W
OJA
TO-126
TJ(max)
'C/W
All Plastic Parts
150
8-125
'C
Process 79
Pulsed Current Gain
vs Collector Current
Pulsed Current Gain
vs Collector Current
1000
1000
z
>-
~
TC"'+125°C
~
_40°C
i
100
!::2.
"w
10
,,,,
10
-"'
"'>>-~
0
,
~
H~
0.1
0.01
1
0.01
10
0.1
'C - COLLECTOR CURRENT (AI
1.1
"
~
'"
>>-
~
VeE" lV (-40"C)
0.6
~"l~,:irCI
0.4
~5~\
;;;
0.1
~
~_
"""
~~
~ ~
wO
VeE -lOY (125 C)
Q
~:>
I III11111 I
I
0.8
0.4
10
100
<3
lk
,..,
w
~
2
~
8
11111
Gain Bandwidth Product vs
Collector Current
0
100
lk
.J
~
150
1-f-j-t+ftt1t-t-ttttjJ:l!;-.t::-H-tttftl
~
100
f--f-j-t+ftt1t-bi''FIttttt---t-f'ltffiftl
z
;;;
2
~,
"
I--f-
DC ~
i
10D}.1S
'"0
=
',{
1m,?
0
~
LIMIT OETERMINED
8Y BVCED
10
lk
0.1
=THIS LIMIT OETERMINE~rf
.Cd
BY BVCEO
0.01
1
100
VCE - COLLECTOR VOLTAGE (VI
~
~
Q
'"
~
~
"~
"x,
;:
100
VeE - COllECT9R.EMITTER VOL TAGE (V)
~
Thermal Derating Curve
24
22
2.0
1.B
. 20
18
16
14
12
10
8
100
10
VCE - COllECTOR-EMITTER VOLTAGE (V)
Maximum Power
Dissipation vs
Case Temperature
~
\
1= oc
"'
0.1
Ie - COLLECTOR CURRENT (rnA)
10
100/.1S
"
",
:.....
~
Safe Operating Area TO-237
30
Safe Operating Area TO-202
0.01
100
10
COllECTOR-BASE VOLTAGE (V)
f
1 m,
~
~,
-
10
~
10
10
VeB
Safe Operating Area TO-126
.5
I-t-I-tttttll-t-ttttttlt-++ltltHl
I--
,
10
10
200
1\
10
Ie - COLLECTOR CURRENT (rnA)
Ie - COLLECTOR CURRENT (rnA)
I
10
g;
IIIIIIII
1
3D
;;:
III1IIII
o
=1 MHz
1\
;3
F= ~ll~~;C
0.1
11111
;:
ri ,;;i
T
f
Z
r- T~ 1"1~~ll,c
~
40
u
11111
0.6
10
Collector-Base Capacitance
vs Collector-Base Voltage
-
11111
10 11111
"'?
11111
~
~
>
Ie
i; "
i=
111111111 I
0.8
1.1
o
VeE "10V(15"CI I
0.1
'C - COLLECTOR CURRENT (AI
Base-Emitter SatuTation
Voltage vs Collector Current
z
I III illllv,," 10V (-WC:~
1I111
0.01
10
'C - COLLECTOR CURRENT (AI
Base-Emitter ON Voltage vs
Collector Current
w
0.1,,_
>
~
0.D1
~
w>
::iz
00
ui=
u
,
~
0>t;~
-40'C
+25°C'
w
~
~
~
~
"'"
"''''
100
0
u
0
::;
z
~
I
Collector-Emitter Saturation
Voltage vs Collector Current
~
1.6
~
1.4
i=
I-
..... ~.116
t-...
TO·202
;;:
ili
1.2
"'
0.8
i5
I-- r--
N"'--.
........ ~
~
0
~
1.0
0.6
0.4
0.2
0
0
20
40
60
80 100 120 140 160
Tc - CASE TEMPERATURE lOCI
8-126
25
50
75
100
T - TEMPERATURE lOCI
125
150
."
Process 79
CD
en
en
......
co
Thermal Response in TO-126 Package
~2
0.7
0.5
D" 0.5
-
"'w
::;;N
or::;
0.3
0.2
~~
0.2
0.1
~~
0.1
0.07
0.05
w",
"'0
5~
"'''
~;::
0.05
I
Plpk)
~~~002
\-~-0.01
I
,!O 0.03
0.02 ~ 0ISING\E{J\5E)
'O~
":Cor
JUL
0.05
0.1
°JCII)",II)-OJC
OJC DC THERMAL RESISTANCE
Tpk" Tc + Ppk -oJcll)
-l l..J
II
-12
0.01
0.02
0.2
0.5
DUTV CVCLE D"
10
50
20
g
100
200
tl- TlME (ms)
Thermal Response in TO-202 Package
~2
"'w
::;;N
or::;
w",
~~
"'0
~~
u;w
"u
"'''
or",
......
,!O
0.7 10" .
0.5
~
ro~
0.1
0.07
h
0.05
~
-::;-~
":Cor 0.03
0.02
t'Si
.-
.H
0.3 10.:
0.2
I::::ii
I
b..
~
~~Il 'Jcll)-,II)-OJC
f?
.LE~
i-'" SiNG.LI
. ""'.
f--=:
_I_
OJC DC THERMAL RESISTANCE
I I
- -;':12.":"
Tpk"TC+PPk-O~CII)
DUTY CVCLE D"..!
12
0.01
0.01 0.02
0.05
0.1
0.2
0.5
10
g
20
50
t,-TlME (ms)
100 200
500 Ik
2k
5k
10k
20k
50k
lOOk
Section 9
Process
Characteristics
Power Transistors
~National
Process 34 NPN
PI~Hlar
Power
D Semiconductor
--
0.087
12.210)
0.008
~10.203)
V
This device is a nonoverlay double-diffused, silicon epitax- .
ial planar transistor_
//////////
V
1\
/
/
0.056 /
11.422)
/
0.070
/
11.178)
/
DE~CRIPTION
~I
\J
~
~
V
V
'n
APPLICATION
,
0_008
10.203)
N
V
::n
V t
V
:U
This device was designed for general purpose amplifier
applications utilizing collector currents to 5A.
PRINCIPAL DEVICE TYPES
TO·39, ESC: 2N2891
TO·237, ESC: TN3440
~ V
V
/ / / / / / / / / / /"/
0.060
~-------I~1.5=24o)-------~.-1
Typ
Max
Units
Ic=1 A, I S1 =0.1A
90
120
ns
tOFF
Ic=1A,ls2=0.1A
200
260
ns
GOb
Vcs =10V, f=1 !:'1Hz
V ES = 0.5V, f = 1MHz
60
70
pF
500
pF
Parameter
tON
G ib
Conditions
Min
hfe
IC=200 mA, VCE =10V,
f=20 MHz
4.0
hFE
Ic=1 mA, VcE =5V
IC =10mA,VCE =5V
40
40
hFE
IC=100 mA, VcE =5V
IC=500 mA, VcE =5V
hFE
Ic=1A, VcE =5V
20
15
hFE
hFE
Notes
5.0
40
40
80
150
hFE
Ic=5A, VcE =5V
VCE(SAT)
Ic=100 mA, Is=10mA
0.05
0.10
V
TO-39
VCE(SAT) .
Ic=1A,ls=100mA
0.20
0.30
V
TO·39
VSE(SAT)
Ic=100 mA, Is=10 mA
0.70
0.85
V
TO-39
VSE(SAT)
BVCEO
Ic=1A,ls=100mA
0.90
1.10
V
TO-39
IC'710 mA
80
BVcso
BV ESO
Ic= 100 /LA
100
I E=10/LA.
8
Icso
Vcs=60V
100
nA
IESO
V Es =6V
100
nA
9·2
Process 34
Base·Emitter ON Voltage vs
Collector Current
Pulsed DC Current Gain vs
Collector Current
120
Ir~~e ~ s.ov
z
~
....
~
..,w
'"~
100
i
w
60
'"u
40
"I
'"
J~:
.
~
~
'"w
~
~
u:..
I-"
~
5.0V
1.4
i:i
1.2
1200
Ci
cr:: 1000
1.0
~
800
~
600
I)
0.8
0.001
0.01
0.1
1.0
;:
10
0.4
0.001
0.01
0.1
...z
'"'"
ui=
f'...
",0
NO-39
100
" "-"I\-
80
150
"''''
"''''
~~
o~
~z
I~
'I.~I-
VeE
20
~
300
~~
200
-50
-100
100
50
Collector· Emitter Saturation
Voltage vs Collector Current
I
~
t.O
~
0.8
'"
0.5
c
>
z
~
~
0.01
j
10
~
1.4
~
1.2
!;;
g;
~
~
;a
~
::
0.4
0.2
0.001
51H1
100
0.01
Safe Operating Area
I
""
..£ = 10
I,
1.0
i
V
10_~
I
.2
0.8
0.6
0.4
0.001
OC
0.01
0.1
1.0
10
0.1
Ie - COLLECTOR CURRENT (AMPS)
10
VeE -(VOLTS)
9·3
0.1
1.0
Ie - COLLECTOR CURRENT(AMPS)
Ie - COLLECTOR CURRENT (rnA)
Base·Emitter Saturation
Voltage vs Collector Current
'">
~
8
I
o
TJ - JUNCTION TEMPERATURE ("C)
1.6
50
Small Signal Current Gain
vs Collector Current
0.1 -f---- VCB '" 5DV,/
~
10
REVERSE BIAS VOLTAGE (V)
§
125
1.
0.1
150
Vel: = 1.0V
100
I n---.
TA - AM81ENT TEMPERATURE ('C)
a:
75
,/ COBO
TIT
I
0.001
f= 1 MHz
Duty Cycle '" 1%
[j'i
50
200
1
Cilia
100
Pulse Width'" 300 ~ec
o
200
=5.0V
t=;WMHz
25
t'-...
150
100
50
;'\
i--i-Hf+.I'ft-ttVeE • 10V
o
~
0
Capacitance vs Reverse
Bias Voltage
z
I I
~
...
~
'- I"'"
400
40
Collector· Base Diode
Reverse Current vs
Temperature
::l
~\
~
500 ........
~"T"T"r-r-I-nrr-.,.-..,.,lrn
/I
./ Ie =10·mA
60
TC-CASE TEMPERATURE (OC)
~
0
A"
0'"
100
~
,p
A~P 17 ~ ~
f-- f-- f-- lei. 110
w
50
200
Pulsed DC Current Gain vs
Ambient Temperature
120
o
10
1.0
'~"
Ie - COLLECTOR CURRENT (AMPS)
Maximum Power
Dissipation vs
Case Temperature
o
"
TO-39
"r-...
TO·237
>< 400
Ie - COLLECTOR CURRENT (AMPS)
f'...
I - ('..
oct
9
o
1600
~ 14DO
~ 0.6
20
:
>
aD
~
~
1.6
Maximum Power
Dissipation vs
Ambient Temperature
100
10
~National
Process 36 NPN High Voltage Power
~'Semiconductor
~~~~_ 0.045 _~~~_
DESCRIPTION
(1.1431
Process 36 is a non-overlay double-diffused silicon epitaxial planar device with a field plate.
APPLICATION
This device is designed for use in horizontal driver, class A
off-line amplifier and off-line switching applications.
0.045
(1.1431
PRINCIPAL DEVicE TYPES
TO-202, ESC: D40P1, 3, 5
NSD36-36C
TO-126, ECS: 2N5655-57
MJE340-44
MJE3439-40
TO-237, ESC: 2N6720-23 (92PU36-36C)
Parameter
Conditions
Max
Units
Min
Typ
BVCEO
ICE = 1 rnA (Note 1)
200
300
V
BVcso
BV ESO
Ics=1001'A
225
325
V
I ES = 1O I'A
VcE =200V
6
ICEO
Icso
Vcs=225V
I'A
IESO
V Es =5V
I'A
hFE
Ic=50 rnA, VCE = 10V (Note 1)
Ic = 100 rnA, VCE = 10V (Note 1)
Ic = 250 rnA, VCE = 10V (Note 1)
Ic= 500 rnA, VCE = 10V (Note 1)
V
50
30
110
120
60
25
I'A
300
VCE(SATI
Ic= 100 rnA, Is= 10 rnA (Note 1)
0.2
0.5
V
VCE(SAT)
Ic=500 rnA, Is= 100 rnA (Note 1)
0.3
0.7
V
VSE(SAT)
Ic= 500 rnA, Is= 100 rnA (Note 1)
0.9
1.2
V
VSE(ON)
ft
Ic = 100 rnA, VCE = 10V (Note 1)
0.7
1.0
Cob
C ib
Vcs =10V,f=1MHz
15
pF
V sE =0.5V, f=1 MHz
125
pF
PD(max)
TO-126
20
Ic = 50 rnA, VCE = 10V
V
MHz
60
Tc=25°C
TA = 25°C
25
1.5
W
TO-202
Tc= 25°C
TA = 25°C
15
2
W
TO-237
TCOLLECTOR LEAD = 25°C
TA = 25°C
2
850
W
mW
TO-39
Tc=25°C
TA = 25°C
10
1
W
OJC
°C/W
TO-126
Tc=25°C
5.0
TO-202
Tc=25°C
8.33
°C/W
TO-237
TCOLLECTOR LEAD = 25°C
62.5
°C/W
TO-39
TC=25°C
17.5
°C/W
OJA
TO-126
TA=25°C
83.3
°C/W
TO-202
TA = 25°C
62.5.
°C/W
TO-237
TA=25°C
147
°C/W
TO-39
TA=25°C
175
°C/W
TJ(max)
All Plastic Parts
TO-39
150
200
• Pulse lest, pulse widlh = 300 "s
9-4
°C
°C
Process 36
Typical Pulsed Current Gain
vs Collector Current
Collector· Emitter Saturation
Voltage vs Collector Current
E
1
O.B
0.6
0.4
w
'"'"
~
0.1
0.08
0.06
0.04
TC = 25"C
O.B
..'"~
0.6
...~
~
..'"
1
0.02
0.01
100
~
>
z
0.2
10
Base·Emitter ON Voltage vs
Collector Current
10
1000
100
lk
~
>
z
lk
800
600
400
E
200
!:;
>
'"
O.B
~
ffi~ 0.6
.'"
~~
wI-
g>
1
;::
I-
U
0.4
::
:I
100
80
60
40
0.2
~
20
>
10
w
I-
'"'"
'"
'"
lk
I11fl1t'"
10
100
REVERSE BIAS VOLTAGE (VI
Typical Switching Time vs
Collector Current
Safe Operating Area TO·126
fMJ,""Ij ~
10
100
lk
IC - COLLECTOR CURRENT (mAl
Safe Operating Area TO·202
1 I
~
II
II
I 1111111
$
I::l
~
]
g;
,.;::
w
~
0.1~.
~
LIMIT DETERMINED
BY BVCEO
0.01
100
10
0.01
1000
~
~ III
iii;;
.
B
To~12~
TA
il~
~ 1.6 ~261
z
5o Jtwl-
'"
~
20
~
~
~
10
!
1
~
1
o
..'"
~
10
,.'"><
1
o
10
100
lk
VCE - CoLLECToR·EMITTER VOLTAGE (VI
..
c
TO·202 B.33°Ctw
1
bvc~o
" I\.
I.B
S
I I II II I
o
50
100
Tc - CASE TEMPERATURE (OCI
9·5
1000
Thermal Derating Curve
2.0
30
l!i
~
.s
100
VCE - COLLECTOR VOLTAGE (VI
Maximum Power
Dissipation vs Case
Temperature
Safe Operating Area TO·237
lk
100
10
VCE - COLLECTOR VOLTAGE (VI
IC - COLLECTOR CURRENT (mAl
I-
0.1
1
0.01 L---'--L.l..ULWL--L..LUJ.i.W
10
100
l00G
~
:'1
\
20Mtk:-
illi
>
.. '" ±lU
10~._
.~
.'"
-
1
..,w
0.1
iifii
\I
~
:'1
IC - COLLECTOR CURRENT (mAl
= 30V
[16OMH ,
.
~b.IE=O
~ Cob : :f,,= 0
10
100
Ik
10
~
..9
~
100
Contours of Constant Gain
Bandwidth Product (It)
;::
,.'"
wi5
10
IC - COLLECTOR CURRENT (mAl
Collector· Base and Emitter·
Base Capacitance vs
Reverse Bias Voltage
Base·Emltter Saturation
Voltage vs Collector Current
I-
0.2
IC - COLLECTOR CURRENT (mAl
IC - COLLECTOR CURRENT (mAl
'":1l
0.4
150
."
1.4
1.2
1.0
0.8
~
0.6
f-.
0.4
TCOLLECTOR LEAO(TO·2371
'\
1"-1\.
T?,
(TO·2371
'\ TA (TO·2021
I\..
"
r-.. 1"-.'\
"'~
~
0.2
25
50
75
100
T - TEMPERATURE lOCI
125
150
CD
Ct)
Process 36
en
en
CI)
CJ
e
Q.
Thermal Response in TO-202 Package
~~
~~
>-"
>-'"
ZO
0.7
0.5
0.3
0.2
~~
0.1
"'""
>->,e?
0.05
"'"
0.03
0.02
zu
""z 0.07
-;:-~
D' 0.5
HEATS UNK
0.2
i-
::::Iiiii'
0.1
FREE AIR
o.Os
~~f'~.02
r- 0.01
SINGLEPU~
LJlJl
I II I
I--
~ 11-
--t2-
0.01
0.010.02
0.05
'Jc(t)·,(t)-oJC
0JC DC THERMAL RESISTANCE
P(pk) .
SINGLE PULSE
0.1
0.2
0.5
10
20
50
t,-TIME(ms)
9-6
100 200
SOD lk
Tpk'TC+Ppk-OJC(t)
DUTY CYCLE D'!!
,
2k
t2
5k
10k
20k
SDk
lOOk
~National
a
Process 4A Epitaxial Power
Semiconductor
DESCRIPTION
w//
v:~
v
v
Process 4A is a double epitaxial silicon NPN mesa device
with diffused emitter. Complement to Process 5A.
//
/7>.
/P'
~
~
'/
//
///«
/~
(/
v
~
~
~
~
~
~
~
~
v~
v
f0
~
~
~
//
~
...
This device was designed for general purpose power
amplifier and switching circuits where a large safe
operating area is required.
PRINCIPAL DEVICE TYPES
0.100
(2.540
TO·220, BCE: 2N6099
2N6101
2N6486-88
BD347
MJE280n
MJE3055T
TIP41-41C
~
// 'LL/////
Parameter
APPLICATION
f'7<~
v ~
~
Conditions
Min
Typ
Max
Units
120
V
BVCEO
Ic= 200 mA (Note 1)
40
BVCBO
Ic=1 mA
60
BV EBO
IE=1 mA
5
ICEO
lEBO
VCE = BV CEO -'10V
VCB = BVCEO
V EB =5V
h~~
I~ =
VCE(SAT)
Ic=4A, I B=O.4A (Note 1)
0.4
0.6
VSE(ON)
Ic = 5A, VCE = 2V (Note 1)
1.1
1.3
It
Ic = 0.5A, VCE = 5V
td
Ic= 5A, IBI = IS2= 0.5A,
VCC= 40V
0.07
P.s
tr
Ic= 5A, IBI = IB2= 0.5A,
Vcc=40V
0.8
P.s
ts
Ic= 5A, IBI = IB2= 0.5A,
Vcc=40V
0.4
P.s
tf
Ic=5A,IB1=ls2=0.5A,
Vcc=40V
0.5
P.s
ICBO
-
2.5A.
V~c =
2V INote 1)
V
V
7
20
200
p.A
20
p.A
500
p.A
160
2
V
V
MHz
po(max)
Tb-220
Tc=25°C
TA=25°C
60
2
W
OJC
TO-220
Tc=25°C
2.08
°C/W
OJA
TO-220
TA =25°C
62.5
°C/W
TJ(max)
All Plastic Parts
150
Notel: Pulsed measurement = 300 ~s pulse width.
9-7
°C
Process4A
Typical Pulsed Current Gain
vs Collector Current
Typical Pulsed Current Gain
vs Collector Current
Collector· Emitter Saturation
Voltage vs Collector Current
10
z 1000
~
>ffi
..,
Ie 10
10
~ 100
ffi
~
~
::!
"..
TJ= .JIO"
10
~,
TJ:c+25"C
TJ=+125'C
0.01
0.1
10
0.1
Base·Emitter ON Voltage vs
Collector Current
.
VeE
,1.6
..,~
~~
i~
w""
~~
:!,>
..
~
:
Base·Emitter Saturation
Voltage vs Collector Current
~~
~~
1.2
~
0.4
..
1.4
~
u
1.2
-
~..,
;~
-
--
O.B
0.6
0.4
0.1
10
~
150
z
100
..
~
+125'C
0.1
50
10
10
VR
Safe Operating Area
TO·220
~
100
50
1--+-+-t1f++ttt---t--t-'H-I1++H
5
>-
20
ffi
..,
..,
10
..
5
B
..,
-
~
8
,
~
x
0.2
~ 2.4
z
iiic;
..,'
;:
~
1i:;;
50
100
Maximum Power
Dissipation vs
Ambient Temperature
2.2
I.B
1.6
1.4
1.2
"- -
"-TO·220 "-
O.B
0.6
0.4
)( 0.2
0
~
x
I\.
'",
:;;
'"
J:
40
'",
'I\.
o
20
40
BO BO 100 120 140 160
TA -AMBIENTTEMPERATURE I'CI
9·8
'"
~
20
100
REVERSE OIASVOLTAGE IVI
I\.
\.
\.
30 I--I-- I- TO·220 \.
20
\.
:;;
VeE - COLLECTOR·EMITTER VOLTAGE IVI
~
..,
1i:;;
x
10
>=
50
~
10
..
~
iiic;
0.5
Ie - COLLECTOR'CURRENT (AI
60
z
-
Maximum Power
Dissipation vs
Case Temperature
..
>=
0.1
0~-'--"-L.LJJ.U,'--...1..-'-'-'-'.L.UJ
I~
~
+25~ .....
i-1"I'1 'III
"r{'.
r-.,i'
::!
Ie - COLLECTOR CURRENT IAI
VeE = 5V
0.5
~
,,~O'C
III .....
0..01
Gain Bandwidth' Product vs
Collector Current
0.1
200
I\.
11111
Ie - COLLECTOR CURRENT IAI
10
z
5'"
,e
->.'"
mriTif,
0.01
.:: 250
~
~>
+25"C
I-"
I•
:!z
-40'C
P
!£. = 10
1.6
..,;;
1.4
0.6
Junction Capacitance vs
Reverse Bias Voltage
300
=2V
O.B
10
IC - COLLECTOR CURRENT IAI
IC - COLLECTOR CURRENT IAI
IC - COLLECTOR CURRENT (AI
111111
0.1
0.01
10
10
20
40
60
BO 100 120140 160
TC - CASE TEMPERATURE rCI
Process4A
Thermal Response in TO·220 Package
~~
~~
.... :z
....
'"
ZO
~~
0.7
0.5
0.3
0.2
i.-
0.1
""z
"'""
........
-;::'"
0.02
I!!?
-=-~
0.5
0.2
0.1
0.07
0.05
0.03
Zu
0
0.05
t
0.02
Plpk)
D.01
I
~r-
.....+-"SINGLE PULSE
0.01
0.01
0.02
0.05
0.1
0.2
0.5
10
11 - TIME
(ms)
9·9
TIn
\1
\
-- tl ---1220
IiJChl - tIt) -uJC
oJC DC THERMAL RESISTANCE
TpkoTC+Ppk·OJclt)
DUTY CYCLE D =!!
t2
50
100
200
500
lk
w
qo
o
oQ)
(,)
Process 4E NPN Epitaxial Power
~National
z.- Semiconductor
e
DESCRIPTION
a..
Process 4E is a double epitaxial silicon mesa device with
diffused emitter. Complement to Process 5E.
V#////////////~
/:
~
~
(
V
~
(
v:
V
~
J1
~
V
iJ
YJ
APPLICATION
This device was designed for general purpose power
amplifier and switching circuits where a large safe operat·
ing area is required.
0.067
iUl
PRINCIPAL DEVICE TYPES
~
TO·220, BCE: 2N5294, 96, 98
t/
2N5490, 92, 94, 96
2N6121-23
2N6129-31
2N6288, 90, 92
TO·126, ECB: 2N5190-92
t//////L///////~
Conditions
Parameter
Min
Typ
Max
Units
120
V
BVCEO
Ic= 100 mA (Note 1)
30
BVeBo
le= 1 mA
50
BV EBO
IE= 1 rnA
5
leEO
VeE = BV eEO -10V
300
leBo
VeB = BVeEO
V EB =5V
100
p.A
lEBO
1000
p.A
hFE
le= 1.5A, VeE = 2.0V (Note 1)
VeE(SAT)
le=4.0A, I B =O.4A(Note 1)
1.0
VBE(ON)
ft
le= 4.0A, VeE = 2.0V (Note 1)
Ie = 0.5A, VeE = 2V
1.3
td
le=1.0A, I B1 =0.1A, I B2 =0.1A,
Vee=30V
0.10
P.s
tr
le=1.0A, I B1 =0.1A, I B2 =0.1A,
Vee=30V
0.25
P.s
ts
Ic=1.0A, I S1 =0.1A, I B2 =0.1A,
Vee=30V
0.35
1'5
If
le=1.0A, I B1 =0.1A, I B2 =0.1A,
Vee=30V
0.23
I'S
V
V
8
p.A
200
20
V
V
MHz
4
po(max)
TO·220
Te=25°C
TA = 25°C
50
2
W
TO·126
Tc=25°C
TA = 25°C
40
1.5
W
ojc
TO-220
Tc = 25°C
2.5
°C/W
TO·126
Tc=25°C
3.12
°C/W
OJA
TO-220
TA=25°C
62.5
°C/W
TO-126
TA = 25°C
83.3
°C/W
1j(max)
,
All Plaslic ParIs
Note 1: Pulsed measurement'= 300
flS
150
pulse width.
9-10
°C
Process4E
Typical Pulsed Current Gain
vs Collector Current
Coliector·Emitter Saturation
Voltage vs Collector Current
Typical Pulsed Current Gain
vs Collector Current
10
0.01
0.1
10
0.1
0.01
lC - COLLECTOR CURRENT (A)
Base·Emitter ON Voltage vs
Collector Current
.."
2w
0.8
~
0.6
III
0.4
~
I
>
c1s
a:-'
-
O.Z
~
i
~
VeE =2V
0.01
Gain Bandwidth Product vs
Collector
Cumint
I
._
i
I\..
Q
~
1l
Ie = 10
I.
I
j
0.1
...
ZO
Q
~
10
i!:
B
a:
g;
Q
~
30
Safe Operating Area TO·126
~ I
50 O O I l i ' & 1
t;
§:
ZO
10
Ve • - COLLECTOR·BASE VOL lAGE (V)
Safe Operating Area TO·220
10 r-T"'l''''"T',mllimll-,jn-1r,,mnm"rl-'-"I"TIT1ijml nn
V~E ;,; z.v _+#I#tIt-+-t+Jjttttt
...
50
Ie - COLLECTOR CURRENT (AMPS)
Ie - COLLECTOR CURRENT (AMPS)
~
100
0:
Iilill
0.01
0.1
~
111111
o
1\
::i
w
I- Tel 111~rc
O.Z
11111
Tc'" 5'C
150
:;:
111111
IJ.II1Ir
0.4
zoo
Z
~
I
11111
...;:;""
I- ~eI2~~h
0.6
~~
~
w
: ::::: Te =Z 5°Cll-
D.B
~~
F==te -IZ5'C
Z
I.Z
:>
Te - _40°C
9
~
~
...
",
a:
Typical Coliector·Base
Capacitance vs Collector·
Base Voltage
Iilill
Iilill
a:
Te=Z5"C
~
1"
~
1A
Z
Q
I.Z
10
IC - COLLECTOR CURRENT (A)
Base·Emitter Saturation
Voltage vs Collector Current
1.4
~
,>z
0.1
10
Ic - COLLECTOR CURRENT (A)
ZO~
SM
10
~ F~~~~~~~~~
!z
8
~
,
I
_u
0.1
1
0.01
0.5
0.2
r--r-r-r.
10
Z
Maximum Power
Dissipation vs
Case Temperature
~
60
z
0::
=
:;:
50
i1i
c
40
~
3D
:>
ZO
a:
.""x
"
~
TO~22~
"0::
Q
:;:
i1i
I I '!I..
TO·126
"1'0.
ZO
50
10
·100
C
!'J5'CIW
a:
!!:
~
3.125'CIW'"
".."x
"
"""
~
:>
I
,
10
I
,
I
50
100
150
Maximum Power
Dissipation vs
Ambient Temperature
Z.4
Z.Z
1.8
1.6
1.4
I.Z
1
0.8
0.6
0.4
0.2
0
"
1--....
I"
,,0.220 -
I--
TO·126"1\.
f'..:
~
o ro
~
~
~
1~lro~
TA - AMBIENT TEMPERATURE ('C)
Te - CASE TEMPERATURE ('C)
9·11
ZO
50
100
VeE - COLLECTOR·EMITTER VOLTAGE (V)
VeE - COLLECTOR·EMITTERVOLTAGE (V)
Ie - COLLECTOR CURRENT (AMPS)
~
w
~
f/)
f/)
CI)
Process4E
8
Thermal
Respo~se
in TO·220 Package
,a-
Il.
:;:§
"N
~~
t-:E
ffi~
o;w
0,7
0.5
O' 0,5
0.3
0,2
0.2
I
0,05 '
,,~
""
"'''
~~
kl-:::
0,1
0.1
0,07
0,05
0-1"
I!z
-"
~~
0,1
0,07
0,05
0.1
0,05
,
0,01
~w
w",
I~
-<
-E~
=
0-
0,03
0,02
JlJl
-::
0,02
0JCW' ,(t) ·OJC
, 0JC DC THERMAL RESISTANCE
Tpk-TC+Ppk·OJC(t)
"
,
SINGLE PULSE
'--\11
I III
0,01
0,01
I
0,02 0,03 0,05
0,1
0,2 0,3
~'\
0.5
10
20 3D
50
DUTY CYCLE 0 - 11
PEAK PULSE
100
200 300 500
11 - TIME (m.)
SwitchingCir~uit
'Vee =35V
Ie = fA
181 z:: 100 mA
182'" 100 mA
15VIl
OV
DUTY CYCLE '1.0%
VEE "'5V
PW'" 5-10,us
GENERATOR,' HP1900A
TC1'5mFd@50V
9·12
POW~R' p.
lk
"'0
~National
Process 4F N PN Epitaxial Power
~ Semiconductor
a
(')
CD
o
o
DESCRIPTION
~
Process 4F is a double epitaxial silicon mesa device with
diffused emitier. Complement to Process 5F.
0.059
- - - - 11.5) - - - - -
"TI
APPLICATION
This device was designed for general purpose power
amplifier and switching circuits where a large safe
operating area is required.
PRINCIPAL DEVICE TYPES
0.055
""iiAI
Conditions
Parameter
TO·220, BCE: TIP29-29C
TIP31-31C
TIP61-61C
TO·126, ECB: 2N4921-23
MJE520,21
Min
Typ
Max
Units
BVCEO
Ic = 100 mA (Note 1)
30
120
V
BVcso
Ic=1 mA
60
240
V
5
300
p.A
10
p.A
100
p.A
V
8
BVESO
IE= 1 mA
ICEO
VCE = BVCEO -10V
Icso
Vcs= BVCEO
IESO
VEs=5V
hFE
Ic = 1.0A, VCE= 1V (Note 1)
VCE(SAT)
Ic = 2.0A, Is = 0.2A (Note 1)
1.0
VSE(ON)
ft
Ic = 2.0A, VCE = 2.0V (Note 1)
1.0
td
Ic = 1A, IS1 = 162 =0.1A,
VCC= 30V
u.uo
I'"~
tr
Ic= 1A, IS1 = IS2=0.1A,
Vcc=30V
0.25
p's
ts
Ic= 1A, IS1 = IS2=0.1A,
VCC= 30V
0.75
p's
tf
Ic = 1A, IS1 = IS2 =0.1A,
Vcc=30V
0.25
p's
PO(max)
TO·220
TO·126
15
200
V
MHz
4
Ic=0.5A, VCE=2V
·V
Tc=25°"C
TA = 25°C
40
2
W
Tc = 25°C
TA=25°C
30
1.5
W
(lJC
TO·220
Tc=25°C
3.12
°C/W
TO·126
Tc = 25°C
4.16
°C/W
(lJA
TO·220
TA = 25°C
62.5
·C/W
TO·126
TA=25°C
83.3
°C/W
TJ(max)
All Plastic Parts
150
Note 1: Pulsed measurement = 300 .s pulse width.
9·13
°C
I
LL
-.::t
Process4F
tn
tn
CI)
(.)
e
a..
Typical Pulsed Current Gain
vs Collector Current
.
2
1000
\
I-
0.4
10
IC - COLLECTOR CURRENT (AI
~.
0.2
!
>
oL-Jc...u.,U,WL-J-U.J..WI.I..-JWJ..LW1I
0.01
0.1
10
o
'"
10
10
Safe Operating Area TO-220
10
VeE "'2V
-'."
~
~
§e
if
5
...
~,
iii
0:
D;--
B
'"
~
~~
.
...'"
5
l\
~
,
~
1'\1\
'-- f-liMIT DETERMINED
2
10
~
e
~-
20
I-
J
iii
0:
TO.l~ I\.
3:
~
",'\
50
100
10
"
50
100
150
10
1
1.8
1.6
1.4
1.2
"
r .....
'"
"
{0.220-
~
TO.126" '\.
"
o
20
40
60
~
80 100 120 140 160
TA - AMBIENTTEMPERATURE ('C)
Te - CASE TEMPERATURE eCI
9-14
20
50
100
VCE - COLLECTOR·EMITTERVOLTAGE (VI
..
~
f-IIIIHr BViEO
2.4
Z.Z
0.8
0.6
\
0.4
0.2
:E.
0
~
rUMIT DETERMINED
Maximum Power
Dissipation vs
Ambient Temperature
'x~"
..,
'x"
"l,
I~
~c
i=
C
~:5
x-
i5
r--'
• 0.1
:;
'\ ~okzo
~~
.....
"':;
l;
[\
30
ZO
O.Z
VCE - COLLECTOR·EMITTER VOLTAGE (V)
Maximum Power
Dissipation vs
Case Temperature
40
r'\
0.5
E
f--lllllliiBVT
10
Ie - COLLECTOR CURRENT (AMPS)
0:
S,
,--
O.Z
0.1
1
~
0.5
E
0.1
DC
0:
...:'
0.02
,,[,\
iii
e
~,
z
;.,
~i'C ~
~
e
ie
3D
Safe Operating Area TO-126
10
'0:
:li
20
Ve , - COLLECTOR·BASE VOLTAGE (V)
Ie - COLLECTOR CURRENT (AMPS)
Gain Bandwidth Product vs
Collector Current
10
n.l
0.01
Ie - COLLECTOR CURRENT (AMPSI
""C
Process 4F
ao
C'D
en
en
Thermal Response in TO·220 Package
~Q
"'w
:;;N
CO"
w."
i=~
"'0
~!;;:
~~
~~
,,,,
-=~
"'"
0.7
O.S
0.3
0.2
=--
H'::t-l'-=I=
0-0.5
,
, ;
0.2
0.02
0.01
+=
0.05
0.02
0.01.,.-
iU+-t
-r
I I
..--rSINGLE PULSE
0.01
0.02 .
0.05
I
,
-i:-
C--TT
I
-j
Ii
P(pkl
I
I
nn
II I
-- t1 ---
-
I
O.S
0.2
0.1
"T1
,
I
,
0.1
0.1
0.07
O.OS
0.03
--
~
I~-
10
t
i
'I
I
II
I
0Jc(t) - r(t) ·oJC
I)JC OC THERMAL RESISTA NCE
Tpk"TC'Ppk·"Jclll
DUTY CYCLE 0"
2-
so
20
100
t
J
12
SOO
200
lk
11 - TIME (ms)
Thermal Response in TO·126 Package
~Q
"'w
:;;N
w."
"'''
~~
"'0
t':E3
~h~~
."z
~;::
,,,,
-.:t3
"'"
0.7
O.S
0-0.5
0.3
0.2
0.2
0.1
0.07
O.OS
0.03
0.02
0.01
0.1
O.OS
I-'""
0.01
, ,
I
Plpkl
•
~GLE PULSE
Htl
0.01
0.02 O.OJ 0.05
R S L " J C l 1I o d11. UJC
I!JC OC THERMAL RESISTANCE
Tpk'" Te + Ppk °OJc(t)
I I, I~
i
0.1
0.2
0.3
0.5
10
I
20
DUTY CYCLE 0 - :'
2
30
50
100
200 300
11 - TIME (ms)
Switching Circuit
Vee =35V
Ie =lA
IB1 = 100 rnA
IB2 =100mA
ISVn.
OV
DUTY CYCLE 1.0%
PW=5-10j.1s
GENERATOR 0 HPI900A
"J'"
9·15
Cl
0
S mFd@SOV
500
1k
~·National
Process 4H NPN Epitaxial Power
~ Semiconductor
DESCRIPTION
I
0.048
(1.221
I
Process 4H is a double epitaxial silicon mesa transistor
with diffused emitter.
APPLICATION
This device was designed for general purpose power
amplifier and switching circuits where a large safe
operating area is required.
PRINCIPAL DEVICE TYPES
TO·126, ESC: 2N4921-3
Parameter
Conditions
Min
BVCEO
BVCBO
Ic = 50 mA (Note 1)
30
Ic= 1 mA
60
BV EBO
IE=1 mA
5
I CEO
VCE = BVCEO-10V
VCB = BVCEO
V EB =5V
ICBO
lEBO
VCE(SAT)
Ic= 100 mA, VcE =5V
Ic=0.5A, I B=50 mA
VBE(SAT)
ft
Ic=0.5A, I B=50 mA
VCE = 10V, Ic=250 mA
COB
VcB =10V
hFE
po(max)
TO·126
30
Typ
Max
Units
120
V
V
8
80
V
300
/LA
10
/LA
100
/LA
200
V
0.3
V
0.86
MHz
3
pF
20
30
1.5
Tc=25'C
TA =25'C
W
8JC
TO·126
Tc=25'C
4.16
'C/W
8JA
TO·126
TA =25'C
83.3
'C/W
TJ(max)
150
All Plastic Parts
Nota 1: Pulse test. pulse width =300 pS
9·16
'C
Process4H
Typical Pulsed Current Gain
vs Collector Current
Collector· Emitter Saturation
Voltage vs Collector Current
Base·Emitter Voltage vs
Collector Current
2:
1.4
TC - Z5'C
IC
-'10
IS
w
'"~
1.2
>
I I
I I
a:
~
~
W
~
0.8
I
;= 0.6
~
>
0.01
0.1
10
0.01
IC - COLLECTOR CURRENT (A)
'C" 0
18
30V
_VCC'
1;-
If
5
...::;
'"
~
'"'"
~
0.1
8
I
!:!
0.01
0.01
I 11111111
0.4
0.01
10
1
~
DC
~
I"
~
1
2 3
5 1 10
15 I--I-- TO-126 '\.
~
;:;
10
'\.
..
I
;(
~
~
20 30 5010100
o
ZO
40
60 80 100 lZo 140 160
TC - CASE TEMPERATURE ('C)
VCE - COLLECTOR·TO·EMITTER VOLTAGE (V)
IC - COLLECTOR CURRENT (mA)
'\.
~
..""
LIMIT DETERMINED
8Y 8VCEO
0.1
0.1
'\.
zo
'"
1\
'\.
Z5
iiic;
0.1
0.5
0.3
0.2
30
'"
1m,
"
Maximum Power
Dissipation vs
Case Temperature
z
;::
100",~
5m
0.1
IC - COLLECTOR CURRENT (A)
Safe Operating Area TO·126
10
:::::::
10
IC
iB' lo~ ......
~C'EIJL
IC - COLLECTOR CURRENT (A)
Typical Switching Time vs
Collector Current
.
~ ~
0.1
VSE(SAT)
Maximum Power
Dissipation vs
Ambient Temperature
~
c;
~
iii
c;
'"
~
2.4
Z.Z
r-,--,--r-r---r-r-r-,
1---t---1--t--t---1f---t--t---f
21---t---1--t--t---1f--+--t-~
I-+++-+-I-I-t--l
I.B
1.6 1---t---1-+--t---1f--+--t-~
1.4 1---t-"'d-+--t---1I-+--t-~
1.2
f---+--i""":l--+--,I-+--+---l
"~
O.B
I
0.6
0.4
I-I-::::t:::j::::~::::t:::~;~::::t::j
;( O.Z
1---t---1f---t--t--f---t-'......~
i
~
~
TO·126i-"":-+-I-+---I
ZO
40 60 80 100 120 140 160
TA - AMBIENTTEMPERATURE ('C!
Thermal Response in TO·126 Package
~~
ffi~
","
...... "'"
,,'"
wS
..""
"' .."
;Ow
"'1;;
i~
0.1
0.5
D· 0.5
0.3
O.Z
o.z
0.1
0.1 D.ii5
0.01
0.05 0.01
I
P(~
R.JL
0.03 -s;;;\;LE PULSE
o.oz
0.01
~
-ttl
0.01
O.OZ 0.03 0.05
.
0.1
O.Z 0.3
0.5
•
10
'I - TIME (m,)
9·17
. I
ZO
°JC(I)-r(I)'OJC
0JC DC THERMAL RESISTA NCE
Tpk' TC + Ppk 'OJC(I)
DUTY CYCLE 0. '1
•
30
50
100
ZOO 300 500
lk
""')
-: ~National
m
D Semiconductor
CJ
,
Proces~4J
NPN Epitaxial Power Darlington
e
DESCRIPTION
a..
Process 4J is a double epitaxial silicon mesa device. Complement to Process 5J.
~----------~~----------~
APPLICATION
This device was designed for use in driver and output
stages otcomplementary audio amplifier circuits. It is
also well sUiiedfor solenoid driver applications.
PRINCIPAL DEVICE TYPES
TO·220, BCE: 2N6386
NSP2100-03
TIPll0-12
TO-126, ECB: 2N6037-39
MJE800-03
Parameter
Conditions
Min
BVCEO
Ic= 100 mA (Note 1)
40
BVCBO
BV EBO
Ic =100"A
70
IE=2 mA
5
ICEO
Typ
Max
120
V
lEBO
hFE
Ic=2A, VCE =3V (Note 1)
VCE(SAT)
Ic = 5A, I,B = 20 rnA (Note 1)
3.0
VBE(ON)
Ic= 5A, VCE = 3V (Note 1)
VCB = 10V
2.5
30
tON
Ic= lA, VCE = 3V, f = 1 MHz
Ic=6A, VcE =30V
1.25
tOFF
Ic=6A, VcE =30V
2.75
COBO
Ihle !
PO(max)
TO-220
TO-126
Tc=25'C
TA =25'C
TC'=25'C
TA =25'C
V
V
VCE = 1/2 BVCEO
VCB = BVCEO
VEB =5V
ICBO
Units
0.5
750
mA
20
pA
2.0
rnA
20,000
V
V
pF
9
"s
"S
sb
W
2
40
1.5
W
OJC
TO-220
Tc =25'C
2.5
TO-126
Tc=25'C
3'.12
TA =25'C
TA =25'C
62.5
OiA
TO-220
TO-126
83.3
'C/W
'C/W
'C/W
'C/W
TJ(max)
All Plastic Parts
150
Not.1: Pulsed measurement", 300 ~s pulse width,
9-18
'C
""0
Process4J
Typical Pulsed Current Gain
vs Collector Current
f~~~!III~11
~
I
z
1Uk
z
;;:
2.4
IVcE. '
~
"
"
;3 100
(3
~,
0:
I--
00
h~
"0-
100
>
~"
>
Ben
,
0-
10
2.4
0.1
10
~
~-II--I-+cI+ttft--ftfH'lltt+H
!
I
1.8
1.6 *'~A~I't-Htlit-+
,-'I-+-J'Irft+tH
1.4
1.2 IC=3A
rfIc=2A
lC
0,8
IC
0
0'15A
lA
=-~
~.II-t+1ttrr--t-+HII+llllfttjI
0,6
0.4
10k
lk
hFE - DC CURRENT GAIN
0.1
0.01
?
"'"
~
2.4
z
1:~ I
30
"G
20
:i"
5
:3
10
7
5
~
3
2
0-
t
~
1.6
~
1.2
~
~ 0.8
~
~7"ll5)c
.....
,~
20
~
z
~
0-
~ei ~ ~~
-rll
2
1
10
Maximum Pliwer
Dissipation vs
Ambient Temperature
i~;I_]1111111
V
I;
"-
r-I0.1
0.5
1
2
5
10
""x,
""
~
f"\ ~Oi20
1,\
TO'I~ "\
,~
50
75
100
125
"'- ,,\0.220- f-To·m,-"
"
50
~
50
I
~
B
20
::
5 ms IF
10
1~;
5
0
'"
0-
"
150
2
;
oc
1
,
0.5
f--I-
0.2
0.1
20
40
60
~
80 100 120 140 160
Safe Operating Area TO·126
20
~,
'\.
100
0
"'-l"\
Tc - CASE TEMFEiiA'i.!RE ("CJ
-
TA - AMBIENT TEMPERATURE 1°C)
~
a:
a
"-
0
Safe Operating Area TO·220
~
25
0.2
ri1
100
10
0
~
~
"x
I.B
1.6
1.4
1.2
1
O.B
0.6
0.4
0.2
0
Ie - COLLECTOR CURRENT lAMPS)
"\
xC
'"
0.5
100
1,\
t-
C
1
0.1
10
1ii
I;
0.2
'"
10
Ie - COLLECTOR CURRENT (AMPS)
i,l
~
~
0
j
./
l:h"2501111111
i=
40
"''''
"'!:
V
1/
.3
""
50
"
I
Switching Times vs
Collector Current
Cob
1
10
Base·Emitter Saturation
Voltage vs Collector Current
Ie - COLLECTOR CURRENT (AMPS)
Maximum Power
Dissipation vs
Case Temperat4r~
30
t--"TC" +125'C
0.1
hk
JJ,.
VR - REVERSE BIAS VOLTAGE IV)
~~
I
I
0.1
>
111111111 111111111 111111111
::.,...-
Te" +Z5°C
IC - COLLECTOR CURRENT IA)
r--- Gib
0.1
""
x i=
IIIII
IIIII
li~ ~ 25'C
Te '" -40"C
'"
l:
1
'"
~
r--ru
O.B
0.6
10
,
>
,
""'-:f1
TC" 40'C
2.8
w
Junction Capacitance \/s
Reverse Bia~ Voltage
u
1/
1.2
Base·Emitter ON Voltage vs
Collector Current
I
~~~~H*-*~/4H&H~
100
-=
w
1.4
IC - COLLECTOR CURRENT IA)
TC=25 0 C
~
~,
I.B
1.6
0.4
,,2.2
§
::"
TC" -40 'c,
ui=
Collector Saturation
Region - Typical Vatues
~
;;
"'"
"'''
~~
w>
f--i1
LIMIT OETERMINEO
BY BVCEO
III
10
::
$.",
5
""l
2
OC
1
0.5
LIMIT DETERMINED
BY BVCEO
0.1
100
VCE -'cOLLECTOR·TO,EMITTER VOLTAGE IV)
9·19
1 ms
10
0.2
1
en
en
~
"w
TC" +25'C
~
lC - COLLECTOR CURRENT IA)
g
e;
W
'11
CD
c..
lC
-"250
lB
2.2
t::2.
ITC .,"
1:(
"
0.01
~
'"w
0--
0-
"w
~
jOk
"
B
lk
Collector· Emitter Saturation
Voltage vs Collector Current
Typical Pulsed Current Gain
vs Collector Current
a
o
10
100
VCE - COLLECTOR·TO·EMITTER VOL TAGE IV)
...,
~
Process4J
(/)
(/)
CI)
(,)
...
c..
Thermal Response in TO·220 Package
0
~Q
0,7
0.5
ffi:::;
0.3
'"
0.2
""w
"'N
",""
....
....
'"
2°
0·0.5
0.1
~~
0,05
"'""
0.02
0.1
",,2 0.07
........ 0.05
l!!l 0.03
~~
"''''
-
0.2
0.02
0.01
0.01_
.,'
I
nnOJC(t):cr{t)oOJC
Plpk).
IIJC DC THERMAL RESISTANCE
-
,. II I
0,02
DUTY CYCLE 0 =
t
-
. ....+-'"SINGLE PULSE
0.01
Tpk·TC+Ppk·(JJclt)
-- '1 --
0.05
0.1
0.2
10
0.5
2-
t
J
t2
20.
50
100
200
.
lk
500
t1- T1ME (ms)
Thermal Response in TO·126 Package
0.7
0.5
D·0.5
"':::
0.3
0.2
'"
0.2
;ic
~~
....
....
'"
2°
wg
",W
2'"
""'"
"'""
.... ~
i~
0.1
0.1 7.05
0.07
0.05 0.01
0.03
0.02
0.01
'RnIlJClt)-rltl'OJC
Plpk)
IIJC DC THERMAL RESISTANCE
I
.
Tpk - TC + Ppk ·OJClt)
~GLEPULSE
~
H-ti
0,01
0,02 0.03 0.05
0.1
0,2 0.3
0.5
'2
10
t1-TIMElms)
9-20
I
20
DUTY CYCLE D. tl
t2
30
50
100
200 300 500
lk
""C
~National
Process 4K
NPN Epitaxial Power Darlington
~ Semiconductor
-1=10
Process 4K is a double epitaxial silicon mesa Darlington
transistor. Complement to Process 5K.
"
APPLICATION
The 4K was designed for general purpose amplifier and
low-speed switching applications.
I
~J
PRINCIPAL DEVICE TYPES
TO-220, BCE: SE9300-02
TIP121,22
TIP130-32
(1.111
Parameter
Conditions
Min
Typ
Max
Units
120
V
BV CEO
Ic= 100 mA (Note 1)
40
BVcso
BV ESO
Ic=200 I,A
70
IE=5 mA
5
ICEO
VCE = 1/2 BV CEO
0.5
'cso
vCs= DVCEO
VSE = 5V
lOU
jJ.A
2.0
mA
IESO
V
V
mA
18,000
hFE
Ic = 4A, VCE = 3V (Note 1)
750
hFE
Ic=8A, VcE =3V (Note 1)
100
VCE(SAT)
Ic = 4A, Is = 16 mA (Note 1)
2
V
VCE(SAT)
Ic=8A, Is=80 mA (Note 1)
3
V
VSE(SAT)
Ic=8A, Is=80 mA (Note 1)
4
V
VSE(ON)
Ic = 4A, VCE = 3V (Note 1)
2.8
V
Coso
Vcs = 10V
200
pF
I hIe!
Ic=3A, VcE =3V, f=1 MHz
4
Tc=25'C
TA=25'C
60
2
PD(rnax)
TO-220
W
OJC
TO-220
Tc=25'C
2.08
'C/W
OJA
TO-220
TA = 25'C
62.5
'C/W
lj(max)
All Plastic Parts
150
Note 1: Pulsed measurement = 300 p,s pulse width.
9-21
CD
U)
U)
DESCRIPTION
I~---------- ~i~Il'2'1
r7":T"T;'7777T7"7"l
ao
'C
~
-.::r
Process 4K
C/)
C/)
CI)
(,)
Collector· Emitter Saturation
Typical Pulsed Current Gain
vs Collector Current
E
a.
:2
10k
~
'"
Z
W
~~
+125~C
"''''
~~
u"
"w
~>
~
~"
'"
~
100
V
~I
~
00
u>=
'~TJ~'25"C
~~
0--",
"'0--
, B~
TJ- 40 c C
1111111
10
>
III
U
'"~
2,0
z
1.4
1.2
~
2,8
"
1.0
'0,8
'"
~
0-
'",..
0--
~
i;
;,l
>
~
~
'"
100
DC
o
0--
w
-
8
0,5
Maximum Power
Dissipation vs
Ambient Temperature
--
~
~
i---
illQ
--
~
1!l,.
I
\.
\.
c-
---
I
~
i-
\.
f---- '-- T~'220 \.
20
~-
'"
,.'"x,
-:-
---
10
x
I
20
40
60
50
"'"
~
80 100 120 140 160
Te - CASE TEMPERATURE
2.4
U
\.
1.8
1.6
1.4
\..
1.2
1
0,8
0,6
0,4
0,2
-
1--- f-- TO,220 \..
r--,.
- - f---
'\.
--120
eel
40
60
80 100 120 140 160
TA - AMBIENT TEMPERATURE
re)
Thermal Response in TO·220 Package
~Q
"'w
2N
~~
;=~
0,7
0,5
OJ
0,'
0-- 0
0,1
~~ 0,07
0,05
~~
"'''
,,,,
'Z'~
"'"
,
0,2 I
om
t;;io
f::t;
i
,
:
:'1
nIT
1--tt1 I -1,,1-1
!--+I
Ii
~~trputSE H-H----;-+-t- t- ·-H-+i rH
~
0.05
-'-f--t--
0,02
-H-
Hp';k)
I
0.01
0.D2
--
,
0.1 I
~5
,
0-0.5
I
i
-- t2--
0,01
0.01
0.02
0'.05
0.1
0.7.
0,5
10
tl - TIME (ms)
9·22
100
VeE - COLLECTOR EMITTER VOLTAGE (V)
VR - REVERSE BIAS VO l TAGE (V)
50
-
10
100
Maximum Power
, Dissipation vs
Case Temperature
I 1"1i
I11111
0,1
10
Ie - COLLECTOR CURRENT (A)
40
LIMIT DETERMINED
BY BVCEO
1>
0,1
\.
1m,
U
10
60
5m,
10
10
0,1
10
20
0-Z
W
'"
'"u
'"
i
1.2
-
0,1
0.01
5
"
30
1-+1"
0,6
7
.J.,.
125'C
Safe Operating Area TO·220
-
0
1.6
25C
Ie - COLLECTOR CURRENT (A)
;3
1,8
1.0
t:;;FF
10
z
2,0
"
100
50
-
2,2
>
~
i
1.0
:
-4OC
1000
,u
~
1.4
Junction Capaciti!nce vs
Reverse Bias Voltage
2.4
1.4
~
'C - COLLECTOR CURRENT (A)
~
0
~
'",
>
0,1
10
2,6
'"
:;;
0--
22
1.8
~
Base·Emitter Saturation
Voltage vs Collector Current
3,0
2,6
"'"
0-0--
1.6
Ie - COLLECTOR CURRENT (A)
z
VeE'" 3V
3,0
>
1.8
0,6
0,1
0,01
3.4
~
2.4
0--_
0-->
0--
TJ -
~
2,6
VCE - 5V
'"BlOOD
Base·Emitter ON Voltage vs
Collector Current
Voltage vs Collector Current
20
50
°Jc(t)-r(t)·oJC
OJC DC THERMAL RESISTA NCE
Tpk::: Te + Ppk .OJc(t)
DUTY CYCLE D"'!!
'2
100
200
500
lk
"'C
Process 4P NPN Planar Power
~National
D Semiconductor
CD
en
en
~
DESCRIPTION
1-
0.01i0
(1.521
·1 A
~
'/
Process 4P is a double-diffused silicon epitaxial planar
device. Complement to Process 5P.
I
APPLICATION
]
This device was designed for power amplifier, regulator
and switching circuits where speed is important.
))
0.060
0.52)
))
))
h
PRINCIPAL DEVICE TYPES
J
Conditions
Parameter
TO·220, BCE: D44C1-12
TO·126, ECB: MJE220-25
MJE240-44
TO·202,BCE: D42C1-12
Min
BVCEO
Ic= 100 mA (Note 1)
50
BVCEs
Ic=1 mA
75
BV EBO
IE=1 mA
5
ICES
VcE =50V
lEBO
VEB =5V
hFE
VcE =5V,lc=20 mA
30
hFE
VCE = 5V, Ic = 0.5A
50
hFE
VCE = 5V, Ic = 5A (Note 1)
10
VCE(SAT)
Ic:= 3A, IB = 0.3A
VBE(SAT)
ft
Ic = 3A, IB = 0.3A
~u"
VCE = 5V, Ic = 0.5A
'''"'0 -
VEB=1V
t, }
ts
Ic = 2A, VCE = 30V
tf
Typ
Max
Units
120
V
V
V
8
80
5
p.A
5
p.A
200
V
0.5
V
MHz
50
of
.....
CIB
IB1 = IB2 = 0.2A
PD(max)
TO-220
Tc=25'C
40
TO-126
Tc=25'C
30
15
400
pF
60
ns
750
ns
80
ns
W
W
W
TO-202
Tc=25'C
OJC
TO-220
Tc=25'C
3.2
TO-126
Tc=25'C
4.16
TO-202
Tc=25'C
8_33
OJA
TO·220
TA =25'C
62.5
TO-202
TA =25'C
62.5
TO-126
TA =25'C
83.3
'C/W
'C/W
'C/W
'C/W
'C/W
'C/W
TJ(max)
All Plastic Parts
an
150
Note 1: Pulsed measurement:;: 300 its pulse width.
9·23
'C
"'C
Process 4P
Typical Pulsed Current Gain
vs Collector Current
Typical Pulsed Current Gain
vs Collector Current
iii
"..
~ 100
~ 100
z 1000
~
z 1000
iii
0:
"~
~
...
50:
.
10
10
5
0:
~
I
0.01
0.1
mmm
~
I.B
1.4
"
0:
I.Z
~
~
O.B
..
5
z
!
I
i
0.6
0.4
0.2
-40°C
;...
+25°C
I--
5
z
0.1
j
10
F
f::::
0:
0:
B
0:
10.us
=0 C
=5
~
0.01
.
ill
0:
\\\
LIMIT OETERMINE~~
BY BVCEO
10
~8
40
.......
\\\
LIMIT DETERMINE~~
10
iii
"
0:
~
2
~
";c..
";c
.
I
~
10
r- ...... ~O.126
Maximum Power
DIssipation vs
Ambient Temperature
2.4
Z.Z
"-
I.B
1.6
1.4 r-~
I.Z
1
O.B
0.6
0.4
O.Z
0
o 20 40
1""
{o.zzo. TO·ZOZ
TO·126'"
'"
60
~
80 100 120 140 160
TA - AMBIENT TEMPERATURE (OCI
9·24
~'Z2o-
-
"b....'-
TO·2oZ,........,
~
~
100
VCE - COLLECTOR·TO·EMITTER VOLTAGE (VI
S
20
......
BY BVCEO
1
z
"- I,
30
...,;
~
0.1
0.01
c
100
,·Maximum Power
Dissipation vs
Case Temperature
r\
10,u$
-DC
=50 ...
~
~
10
VCE - COLLECTOR·TO·EMITTER VOLTAGE (VI
50
I
VCE - COLLECTOR·TO·EMITTERVOLTAGE (VI
LIMIT DETERMINE'
BY BVCED
100
1 ""!'00"'* 1 "'
10
100
0.1
60
S
0:
C
~\
0.1
I
~
10
Safe Operating Area TO·202
B
I:::::.
"
8
t-\"
~=
0.01
100
0:
Oms
I
~
VR - REVERSE BIAS VOLTAGE (VI
'm'!'00"'~ 1 ~s
10}Js~
DC
SUms
t:=:==:::
~
r-
Safe Operating Area TO·126
'm'!'00,.::::ij 1 P'
10
:5
8
10 '-0.1
10
S
ill
:l!
B
CD~=
tiz
=:
J
100
..S
Cib
100
Ie - COLLECTOR CURRENT IAI
..ill
Safe Operating Area TO·220
c
~
0
>
::
10
100
rrr-
~
0.1
IC - COLLECTOR CURRENT (AI
Junction Capacitance vs
ReversE! Bias Voltage
VCE =5V
~
0.01
10
1000
1.6
>
z
0.01
Ie - COLLECTOR CURRENT (AI
Base·Emitter ON Voltage vs
Collector Current
.
....
it
r-rml
0.1
0.1
10
IC - COLLECTOR CURRENT (AI
"
IC_ l0
lB
~
ill
~...
I
~
10
~mnlll
0:
>
.."'
Coliector·Emitter Saturation
Voltage vs Collector Current
ZO
40
60
80 100 120 140 160
TC - CASE TEMPERATURE rCI
"'tJ
Process 4P
a
(')
CD
en
en
Thermal Response in TO·220 Package
~
1
~c
"w
"'N
Woo
0.7
0.5
~:o
0.3
~~
0-
0.2
u;w
",u
0.1
0,0)
0.05
0.03
I
!
0.2
0
~:;
"'"
::;;:
,,,,
-;~
-='"
"'tJ
Do 0.5
-l-
I I
0.1
1
I
~
0.05
t
0.02
......
0.01-
0.02
l-
I
I
I
"'ySINGlE PULSE'
0.01
0.01
0.05
0.02
I
I
I
I
I
i
0.1
0.2
P(pk)
,
II I
I
I
I
i
nJL
IJJc(t) - r{t) 'IIJC
IIJC DC THERMAL RESISTANCE
-- 1, t--
DUTY CYCLE [)"'"
II I
II
10
0.5
I
I
TpkoTC+Ppk'''JC(I)
2-
20
~
12
50
100
200
1k
500
11 - TIME (r.15)
Thermal Response in TO·126 Package
~c
"w
"'~~N
0-'"
0-'"
0.7
0.5
Do 0.5
0.3
0.2
0.2
0.1
",0
wi';
0.1
"'"
"'"
0.05
~~
0-0-
~~
-='"
0.07
-
0.05
I
~ t:;TOOf
~-;; 0.01
0.03 I--0.02 f--
P(pk)
,
O:SI~G\EtmE)
TIll
-I
L
"JC(I)·,(I)·"JC
1
'1
-12-
ilJC DC THERMAL RESISTANCE
Tpk:: Te + Ppl( ollJe(t)
DUTY CYCLE DoH
0.01
0.02
0.05
0.1
0.2
10
0.5
11 - TIME (ms)
9·25
20
50
100
200
o
oqU)
U)
Q)
(.)
Process 4Q NPN Planar Power
~National
a
Semiconductor
e
a...
DESCRIPTION
I
0.090
(2.290)
Process 4q is a dou~le diffused silicon epitaxial planar
device_ Complement to Process 5Q_
I
1
APPLICATION
This device was designed for power amplifier, regulator
and switching circuits where speed is important
0.096
(2.440)
PRINCIPAL DEVICE TYPES
TO-220, BCE: D44H1
D44H2
D44H4
D44H5
D44H7
D44H8
D44H10
D44H11
Paramet~r
Conditions
Min
BVCEO
Ic= 100 rnA (Note 1)
50
BVCES
Ic= 1 rnA
75
5
BV EBO
IE= 1 rnA
ICES
VcE =50V
lEBO
V EB =5V
hFE
VcE =5V, Ic=20 rnA
30
hFE
VCE = 5V, Ic = 1A (Note 1)
50
hFE
VCE = 5V, Ic = 8A (Note 1)
20
Typ
Max
Units
120
8
5
5
100
300
1
v
VCE(SAT)
I c =8A,I B =0.8A(Note1)
0_6
VBE(SAT)
Ic= 8A, IB= 0.8A (Note 1)
1.2
h
VcE =5V,l c =0.5A
COB
VCB = 10V
110
CIB
V EB = 1V
730
pF
pF
tr
Ic=5A, VcE =30V
ts
161
if
PD(max)
TO-220
= IB2= 0.5A
Tc=25'C
V
MHz
50
30
ns
500
ns
60
ns
W
60
OJC
TO-220
Tc=25'C
2.08
'C/W
OJA
TO-220
TA = 25'C
62.5
'C/W
TJ(max)
All Plastic Parts
Note 1:
150
Pulsed measurement = 300 ~s pulse width.
9-26
'C
"'C
Process 4Q
Typical Pulsed Current Gain
vs Collector Current
:2
1000
~
600
Typical Pulsed Current Gain
vs Collector Current
~
400
=
200
"
u.J
"
1000
2
~
r
!2
'"
'"
B
+125"C
1\
+25'C
100
"
"
Vol
-40"C
60
40
Collector·Emitter Saturation
Voltage vs Collector Current
10
VCE - 5V
IC
~ 10
18 1 II
~r:>
:E;:
600
400
.,.'"
II
"'0:
200
Or
100
0.6
t;~
+2S"C
w:>
::32
-40'"C
0.2
,,00
ui=
60
40
k~
0.1
O:r 0.06
B~
20
20
10
10 '---'---LU.LLW_LL.LUWL-L...LlJ.illlJ
0.1
10
100
0.1
~
TC
25"C
'"0:
~
'"
0
~
I
:>
~
1.4
u
2
V
~m
I
1.2
;;l
0.0
I
~
II
0.1
"'"
r
r
10
"
r
TJ~
2
20
'"
"'"u
'"
10
00
~
0.2
20
100
0.1
'"
~
30
~
!
"~:;
20
I
10
BY BVCEO
x0:
10
"
~
0.1
100
~ 2.4
"
0
r
Bi
C
"I---
~
'"
r-- TD.22~
~
:;
"-
~
~
:;
I
I-- -_.
I
x0:
!
I
:;
0
0
20
VCE - COLLECTOR·EMITTER VOLTAGE (VI
40
60
~
00 100 120 140 160
U:=LLJ
'"
-
I
'\
-TO·22O '"
'\.
20
40
60 00 100 120 140 160
TA - AMOIENT TEMPERATURE (OCI
TC - CASE TEMPERATURE eCI
Thermal Response in TO·220 Package
~o
O:w
"N
~~
r"
r'"
1
0.7
0.5
0.3
0.2
w;O
u;w
I~
0.1
0.07
0.05
0.03
-='"
0.02
2U
0:2
~;::
-;;~
0:= 0.5
0.2
-::::
I
0.1
2"
~
-
0.05
0.02
0.01
.'
t
P(pkl
I
I - r-,
D.Ol
0.02
nnI!Jc(t)::r(t)'OJC
{!JC DC THERMAL RESISTANCE
I
I
--- t1 --
-
......r-SINGLE PULSE
0.01
0:05
0.1
0.2
0.5
1
2
5
11 -TIME (ms)
9·27
10
100
Maximum Power
Dissipation vs
Ambient Temperature
2
1.0
1.6
1.4
1.2
1 0.0
0.6
0.4
0.2
0
0
~
"- )..
40
10
VR - REVERSE OIAS VOLTAGE (V)
,
50
C
LIMIT DETERMINED
1
C,b
100
60
10
10
Bi
1 m,
i
0.1
i
+~
Maximum Power
Dissipation vs
Case Temperature
DC
I-I--
;3 200
2
"
0.1
;;.:
1
Cjb
;:; 600
,./
~
1111
1k
IC - COLLECTOR CURRENT (AI
150C
II
;:
-
-40'C
==
....::
~
'"F¥!#!!lFFmllll
2
I
!,'
__
10k
6k
2
0.4
:>
1000
100
0.6
Safe Operating Area TO·220
_... _-_._---
2V
II
hFE - DC CURRENT GAIN
100 ITC:25"C
~
~
0.6 f - OA
0.4 f - 4A
f - 2A
0.2 f -
I
u
1.0
1.6
VCE
100
Junction Capacitance vs
Reverse Bias Voltage
'"0:
:>
'"rr
10
IC - COLLECTOR CURRENT (A)
i!
~
~:>
0.1
100
Base·Emitter ON Voltage vs
Collector Current
Collector Saturation Region
10
III
0.01
Ie - COLLECTOR CURRENT (A)
IC - COLLECTOR CURRENT (AI
i!
w
10
V
~25<'>C
0.02
:>
~
-40'C
~
20
t
I
Tpk
TC + Ppk ·"JC(11
t
DUTY CYCLE 0".1.
2-
t2
50
100
200
500
1k
a
(")
(I)
tJ)
tJ)
o
~National
.
~ Semiconductor
Process 4R NPN Planar Power
DESCRIPTION
Process 4R is a double diffused silicon epitaxial planar
device. Complemflnt to Process 5R.
APPLICATION
This device was designed for power amplifier, regulator
and switching circuits where speed is important.
PRINCIPAL DEVICE TYPES
TO·126, ECB: MJE200
0.060
~~~~/-l
9-28
"tJ
Process 4R
Typical Pulsed Current Gain
vs Collector Current
"~
i
1000
2
VCE'IV
;;:
+125 C
"~
I
100
-40 C
"
~
=>
~
~
Typical Pulsed Current Gain
vs Collector Current
10
~
1000
Coliector·Emitter Saturation
Voltage vs Collector Current
10
~
I+125j
100
"
1-40.
~
10
0.1
0:
~
)---
I
IIII
w
0.01
0.1
10
lC - COLLECTOR CURRENT IAI
1.3
~~
"'w
1::"
""
~g
1.2
~2
0.9
.:..~
0.8
... "
"'"
w ...
~=>
0.7
~"
0.6
>~
~
10/-IS
DC
"'"
VV
+25'~
~
V
+125'C
~t'i
I
0.01
0.1
I=f=
10
1
10
IC - COLLECTOR CURRENT IAI
40
"x
""X
I
tt=
LIMIT DETERMINED
BY BVCEO
50
~
0.1
60
;;::
~
1m.
510 m•
!:
10
Maximum Power
Dissipation vs
Case Temperature
ill
c
'"
I~OJ.ls
I
I
0.4
~
~
Vv
-40"C
0.5
~
i=
10
0.1
IC - COLLECTOR CURRENT IAI
Safe Operating Area TO·126
...
I
II
0.01
10
5
I
I
U;I~
0.1
100
lC
-~10
18
1.1
~
IC - COLLECTOR CURRENT IAI
Base·Emitter Saturation
Voltage vs Collector Current
1.4
.-
. -40
=+Z,5'~
0.01
1
0.01
....
30
20
10
I-- r-
TO·12
~
"
~
100
20
VCE - COLLECTOR-TO·EMITTER VOLTAGE IVI
40 60 80 100 120 140 160
TC - CASE TEMPERATURE lOCI
Maximum Power
Dissipation vs
Ambient Temperature
~
ill
C
'"
~
1i,.
~
"x
I
"
~
2
1.8
1.6
1.4 t1.2
1
0.8 )--0.6
0.4
0.2
0
0 20
r-
40
TO·126
"
I"
r...
60 80 100 120 140 160
TA - AM81ENTTEMPERATURE rCI
Thermal Response in TO·126 Package
~~
ffi::::i
i=~
... '"
2"
w~
;Ow
2<.>
""
......
"''''
1
0.7
0.5
0.2
0.2
0.1
0.1
0.07
0.05
,!!!
-:;:3 0.03
"'"
o ~ 0.5
0.3
....-
~
~ ~::.:~o.o~
-
I
Plpkl
I
~Ii 0.01
0.02 - ' -t-°iSI~G~Et~WI
TIll
"JC DC THERMAL RESISTANCE
-j
DUTY CYCLE 0
11
I-
/lJclll~rlll·/lJC
Tpk~TC+Ppk."JCIII
I
~~
,-t2---
0.01
0.02
0.05
0.1
O.Z
0.5·
1
2
t1 - TIME (ms)
9·29
5
10
20
50
CD
en
en
::D
=>
~
'\ +i5' C
(")
~
~~
illill
t'+i5'i'"
a
100
zoo
150
Note 1: Pulsed measurement = 300 P.s pulse width.
9·30
°C
"'C
Process 5A
a
n
(I)
Typical Pulsed Current Gain
vs Collector Current
~#~~Imlllil
~
VeE - 5V
z 1000
~T~J~_~+1~25]']C~III!11
.....
1,00
c
TJ" +25'C
w
TJ - -40'C
2
1000
10
VCE" 1V
~
~
TJ
2
~
~-
=+125"C
~
Tr
C~
40 C
w:>
~
5
10
CO
'I
10
u>=,
~~
,.."
~,
0.01
0.1
~;;;
0.01
1.2
,>
~
~~
~>
~ 18 I1II
1.6
--
~~
V
IIlJJJl.~c_
e"
~~
~~
1rll,~125c
1111111
o
0.01
10 I
-40"C
"c
I I I 111111
0.01
~
2
~,
'""
I
......
"
6
0
~
:;;
~
0-
0-
'"
0
I
10ms
10
,
Q
~
DC~"J'
0.5
111111
5
1
10
nm
LIMIT DETERMINED
10
50
100
VCE - COLLECTOR·EMITTER VOLTAGE (V)
Ie - COllECTOR CURRENT (A)
~ 2.4
z
0
>='
:i:
iiiQ
'"
~
~
"«x
"x,
«
"
~
100
20
REVERSE BIAS VOL lAGE (V)
1\1
50
\.
J.,.
\.
~ t- TO.221
40
30
-
~
I
0.1
1
60
~
I""
5
-
Maximum Power
Dissipation vs
Case Temperature
iii
20
-"
I
I
0.1
50 t-- 1-'-
10
i1:
1
0
"VR
':~ FF11WfFfMnnm
0
4
COBO
10
~
2
c" i'
100
Safe Operating Area TO·220
11111111
8
~
0.1
200
§" 150
~
II
II
'\l~
Ie - COLLECTOR CURRENT (A)
vY
0
2
"
2
0.4
10
~
250
~
c
I.
0.1
1----- .CEo -
~
I
0.8
Gain Bandwidth Product vs
Collector Current
0-
u
1111
Ie - COLLECTOR CURRENT (A)
u
iH----t-Htttllt-fIl:-i+l--!J+4I---
H-jl+11t++hl111-+--++tH;IH-J.1IHtftl
1.2
:;;2
_40UC
0.4
:>
= 10
10
Junction Capacitance vs
Reverse Bias Voltage
300
t- ~
I
0.1
IC - COllECTOR CURRENT (AI
,..~
0.8
0.01
10
Base·Emitter Saturation
Voltage vs Collector Current
~~
~;::
;:B(5
0.1
IC - COLLECTOR CURRENT (AI
V~EI"li0'
:;w
TJ" +125:~11
0.01
10
Base·Emitter ON Voltage vs
Collector Current
1.6
!TJ"
>
IC - COLLECTOR CURRENT (AI
i5
'"
~
I TJ" +2!,oC'
0.1
,,~
~
w~
CJ'1
W~
~
t:~
»
10
'""
t;(5
TJ - +25'"C
Q
I~
~:-
I
100
fJ)
fJ)
~:>
~
~
Coliector·Emitter Saturation
Voltage vs Collector Current
~2
~
:'l
0:
i':,
Typical Pulsed Current Gain
vs Collector Current
"x
""x,
""
~
20
--
\.
\.
----
10
-
t---t
I\,
0
0
20
40
60
80 100 120 140 160
TC - CASE TEMPERATURE ('CI
Maximum Power
Dissipation vs
Ambient Temperature
2.2
2
'\.
1.8
1.6
1.4
I'\.
1.2
I
1 ~
TO·220 '\.
0.8
I
0.6
0.4
0.2
0
0 20 40 60 80 100 120 140 160
I-'i-
\.
""
TA - AM81ENTTEMPERATURE ('CI
9·31
,
~
Process SA
LO
U)
en
CI)
(.)
e
a.
Thermal Response in TO·220 Package
~~
~~
... '"
... 0:
0.7
0.5
0-0.5
0.3
0.2
0.2
z'"
0.1
Zu
0.05
~::
0.1
«'" 0.07
"'« 0.05
I~ 0.03
......
'Z'~
-=0:
I
P(pk)
0.02
0.01
0.02
0.01
1-'-
I
I
0.02
0.05
0.2
I
TpkoTC+Ppk·"JC(t)
0.5
10
11 -TIME (ms)
9·32
DUTY CYCLE 0""
' -'2--
i
0.1
ilJC DC THERMAL RESISTANCE
11
-- 'I --
I
.....-t-'""SINGLE PULSE
0.01
~i!Jc(t)-r(t).I!JC
20
50
100
200
~
'2
500
lk
"'0
~National
a
Process 5E PN P Epitaxial, Power
Semiconductor
CD
0.088
------(2.235) - - - - - -
DESCRIPTION
Process 5E is a double epilaxial silicon mesa device wilh
diffused emitter. Complement to Process 4E.
APPLICATION
This device was designed for general purpose power
amplifier and switching circuils where a large safe opera·
ling area is required.
0.067
iUl
PRINCIPAL DEVICE TYPES
TO·220, BCE: 2N6107-09
2N6124-26
2N6132-34
TO·126, ECB: 2N5193-95
MJE371
Parameter
BVCEO
Conditions
Min
. Ic = 100 mA (Note 1)
Typ
30
Max
Units
120
V
V
BVcso
Ic= 1 mA
40
BV ESO
IE=1 mA
5
ICEO
VCE= BVCEO
300
p.A
Icso
VCS= BVCEO
VEs =5V
100
p.A
1000
p.A
IESO
hFE
. Ic = 1.5A, VCE = 2.0V (Note 1)
V
8
170
20
V
VCE(SAT)
Ic = 4.0A, Is = O.4A (Note 1)
1.0
VSE(ON)
ft
Ic = 4.0A, VCE = 2.0V (Note 1)
1.3
td
Ic = 1.0A, IS1 = 0.1A, IS2 = 0.1A,
Vcc= 30V
0.10
P.s
Ir
Ic= 1.0A, IS1 =0.1A, I s2 =0.1A,
Vcc= 30V
0.25
P.s
Is
Ic = 1.0A, IS1 = 0.1A, 182 = 0.1A,
Vcc= 30V
0.40
p's
If
IC = 1.0A, IS1 = 0.1A, 182 = 0.1A,
Vcc=30V
0.23
p.S
PD(max)
TO·220
TO·126
a
C)
V
MHz
4
Ic = 0.5A, VCE = 2V
Tc=25°C
TA=25°C
50
2
W
Tc = 25°C
TA ;= 25°C
40
1.5
W
OJC
TO·220
Tc = 25°C
2.5
°C/W
TO·126
Tc = 25°C
3.12
°C/W
,
OJA
TO·220
TA=25°C
62.5
°C/W
TO·126
TA=25°C
83.3
°C/W
lj(max)
All Plastic Paris
150
Note 1: Pulsed measurement = 300 jJs pulse width.
9·33
°C
en
en
(J1
m
w
Lt)
Process 5E
tn
U)
Q)
Typical Pulsed Current Gain
vs Collector Current
o
E
Q.
~
~z
~~~!!!II~"II
VeE
1000
Typical Pulsed Current Gain
vs Collector Current
~
TJ" +t25'C
C>
~
~
~
to
~
I
100
;3
10
~~!j.~l1imlli~'lt1W
:':~"+25'C-
ml!1I!I 1 ~1f!lml
O.Ot
O.t
to
~
1.4
I::::
1.2
C>
>
r-
~
0.8
:::"'
0.6
SS
0.4
::i
0.2
w
~
I
"
9
.}
,!~l~ -40"C
1.2
«
.,
i3"'
/.
S~
O.B
wc>
0.6
~~
",w
~~
w>
~
Tc=125°C
-
~
~
::::: Vj,t2V
g
;]
.I-I'T
!
11111 Ie
=10 Is
I
o
O.t
Sale Operating Area TO-220
i1!
,.
r-
5
...
~
"'~
"'
C>
\
..
~
::i
I
~
50
5
to
$""
.::
V
0.1
I
ei illl
;::
;;:
ili
0.1
10
C
.,.:;:"'
",.;::
,."
~
~
;::
TO·220
50
T~.~2t
l'.
:<
ili
C
\i5"C,w
.:;:'"
30
,.
,."
,.><«
~
;::
3.t25"C,w"
20
to
I
I
~
~
~
20
50
50
100
Ii
150
I";
10
I
u
DC .s:""
0.5
-
0.2
JIIIII
100
10
2.4
2.2
"I'\.
,0.220-
0.8
0.6
0.4
0.2
r-
10·126,[\1"
I"\.:
~
20
40
60
80 100 120 t40 160
TA - :..r:'OIENT TeMPERATURE (Oe)
9-34
20
BIVI'f
50
100
Ve , - COLLECTOR·EMITTER VOLTAGE IV!
Maximum Power
Dissipation vs
Ambient Temperature
1.8
1.6
1.4 I--......
1.2
r
LIMIT DETERMINED
0.1
50
100",
1111
VeE - COLLECTOR-EMiTTER VOLTAGE (V)
60
40
~
1B(1'1
_lLllll
Maximum Power
Dissipation vs
Case Temperature
C>
30
20
~
g;
LIMIT DETERMINED
0.2
Ie - COLLECTOR CURRENT lAMPS!
..
~
tOO '"
III
1 2
~
'''''
DC
~ -=
.2
20
Sale Operating Area TO-126
20
0.5
~
10
100
C>
z
o
Ves - COLLECTOR·BASE VOLTAGE (V)
tOO
~
'"...C>
'r-.
100
Ie - COLLECTOR CURRENT lAMPS!
10
,
C>
~
o.Ot
1\
200
en
.J.I
::
0.1
\
;;:
"-;e" t25" Cr-
Gain Bandwidth Product vs
Collector Current
.
"-
Z
g 300
0.4
, Ie - COLLECTOR CURRENT lAMPS!
::
400
w
u
--46
0.2
10
Collector-Base Capacitance
vs Collector-Base Voltage
I
11111
0
0.1
Ic - COLLECTOR CURRENT IA!
1111
1111
1111
=t+tH1tJTc = 25"C
tc.lJ.i.
- Te"
C>
....
0.01
1.4
";::
Te" 25"C
0.01
Base-Emitter Saluration
Voltage vsColiector Current
11111
I
~.+t'25:c
0.01
IC - COLLECTOR CURRENT IA!
Base-Emitter ON Voltage vs
Collector Current
V
ITJ
to
IC - COLLECTOR CURRENT IA!
~
I~
TJ = +125°C
~
I
w
0:
to
~ 1000 VeE =lV
=5V
~ 100 1..-......!±':'iII!",.+-
;]
Collector-Emitter Saturation
Voltage vs Collector Current
Process 5E
-c
n
a
CD
o
o
c.n
Thermal Response in TO·220 Package
~o
"N
CO"
"'w
w",
iO"
~'"
,,0
w;o
~~
"'''
~;:
,,,
~~
0.7
0.5
0.3
0.2
I
I
0.2
0.02
0.01
; I
I
0.1
0.1
0.07
0.05
0.03
m
o ~ 0.5
-
I
I
III
" 1
0.05
,
0.02
P(pk)
0.01~
I
I
...-f-""""SINGLE PULSE
0.01
0.05
0.02
0.1
J1JL
0Jchl = r(ll olJJC
IJJC DC THERMAL RESISTANCE
-
DUTY CYCLE 0
I
tl
'1 12-
I
0.2
0.5
10
'2
I
20
Tpk~TC+Pp •• IJJCIt)
~ '.!
12
100
50
200
500
lk
q -TIMElms)
Thermal Response in TO·126 Package
~
~~
0.7
0.5
0-0.5
w'"
0.3
0.2
z~
-"
~co
Zo
~~
0.2
>z
0.1
0.07
0.05
~~
~~
~~
-'"
~ffi
wO:
I~
x
....
0.1
0.03
JLJl
-::::::
--
0.05
0.02
0.01
SINGLE PULSE
I
0.02
I I II
0.01
0.01
0.02 0.03 0.05
0.1
0.2
O.~
q
I
0.5
I
tp
10
20
30
50
0Jcll) ~ ,It) 'OJC
OJC DC THERMAL RESISTA NCE
Tpk-TC+Ppk·OJCII)
DUTY CYCLE 0 PEAK PULSE
100
200 300
tl- TlME {ms)
Switching Circuit
Vee =35V
RL '" 30
OVU
Ie'" lA
15V
DUTY CYCLE
~
1.0%
GENERATOR
~
IB1
:1aOmA
162
= 100mA
VEE:: 5V
PW=5-10/.ls
HP1900A
":'
9·35
rCl::5mFd@50V
'!
POW~R
Pp
500
lk
LL
II)
en
en
CI)
(,)
~National
ProceSs SF PNP Epitaxial Power
~ Semiconductor
e
DESCRIPTION
0.
Process 5F is a double epitaxial silicon mesa device with
diffused emitter. Complement to Process 4F.
0.059
_
(1.51
1
APPLICATION
This device was designed for general purpose power
amplifier and switching circuits where a large safe
operating area is required.
PRINCIPAL DEVICE TYPES
0.055
(1.41
Parameter
Conditions
TO·220, BCE: TIP3O-30C
TIP32.:.32C
TIP62-62C
TO·126, ECB: 2N4918-20
MJE370
Min
Typ
Max
Units
120
V
BVCEO
Ic = 100.rnA (Note 1)
30
BVcso
Ic=1 mA
50
BVESO
IE=1 mA
5
ICEO
VCE = BVCEO -10V
Icso
Vcs= BVCEO
10
IESO
VEs=5V
100
V
6.5
V
300
10
120
hFE
Ic = 1.0A, VCE = 1.0V (Note 1)
VCE(SAT)
Ic = 2.0A, Is = 0;2A (Note 1)
1.0
VSE(ON)
ft
Ic = 2.0A, VCE = 2.0V (Note 1)
1.1
V
V
MHz
4
Ic=0.5A, VcE =2V
pA
pA
pA
0.03
ILS
t,
Ic= 1A, IS1 = I S2 =0.1A,
0.20
ILS
ts
Vcc=30V
0.26
ILS
0.20
JLs
td
If
po(max)
TO·220
TO·126
Tc = 25°C
TA=25°C
40
2
W
Tc = 25°C
TA;"25°C
30
1.5
W
OJC
TO·220
Tc=25°C
3.12
°C/W
TO·126
Tc=25°C
4.16
°C/W
OJA
TO·220
TA=25°C
62.5
°C/W
TO·126
TA=25°C
83.3
°C/W
TJ(max)
All Plastic Parts
Note 1: -Pulsed
measurem~nt
150
= 300 pS pulse width.
9-36
°C
""C
Process SF
Typical Pulsed Current Gain
vs Collector Current
z 1000
....~
"
~
!g
VCE
Collector· Emitter Saturation
Voltage vs Collector Current
'c _
"
'"
TJ=+125'C
O"~.
~
I
w
0.01
1
0.1
0.01
10
0.1
I
-
I
>
~
0,8
'"........
0.6
~
0.4
;:;
0.2
,
;
Tc
=
"
0.01
0.1
10
IC - COLLECTOR CURRENT (AI
Typical Collector
Capacitance vs Collector·
Base Voltage
Base·Emitter Voltage vs
Collector Current
200
=
-40 C
H1'
u
;:"
;;;9
I'
F:""~:
Te "-125 Cr--- .
150
;;:
;3
100
"
I' ,
'"....u
a
1111
w
1111
1111
u
25 C
--1-1-
r--
\
1\
"-
;:;
_~co25 C
!
TA
U
,/
__ "..H11
0.01
+25 J C
10
10
--H"
I
=:
TJ::: --4DoC
w
't'
~
a
."
~I
I
VCE = 1V
12
TJ
IC - COLLECTOR CURRENT (AI
Base·Emitter ON Voltage vs
Collector Current
14
;3
TJ '" +12SoC
IC - COLLECTOR CURRENT (AI
~
!
=+25"C
TJ
10
100
t-
50
a
I
01
3 5
Ie - COLLECTOR CURRENT (AMPS)
J
0.1
0.01
Ie - COLLECTOR CURRErH (AMPSI
Gain Bandwidth Product vs
Collector Current
10
VCB
-
20
30
COLLECTOR·BASE VOLTAGE (V)
Safe Operating Area TO·126
Safe Operating Area TO·220
12
10
.,
~
....
10
5
"
'"
"'"
0;;-'
....'"ua
D
-.- t-liMIT DETERMINED
r---
0.2
0.1
1
r-
10
~i3
~( i=
""
I~
30
20
1,\
01
50
100
10
I"
i
TO ,;;;--
10
D
1.6
~
100
~
0.8
~
0,6
x
,
I"
50
2.2
14
1.2
1'\.'
10
2.4 ,-,----,-,-,----,,--,-,---,
o
"\,
1',1\
~Ci
Maximum Power
Dissipation vs
Ambient Temperature
ili
0.4
~
"
"'"
~
150
0.2
20
40
60
80 100 120 140 160
TA - AMBIENT TEMPERATURE eCl
Te - CASE TEMPERATURE ('C)
9·37
20
50
100
Ve [ - COllECTOR EMITTER VOL TAGE (VI
~
~
~oL!
,,~
J
02
:
veE - COLLECTOR·EMITTER VOLTAGE (V)
Maximum Power
Dissipation vs
Case Temperature
'"
~~,,'"
,,-
20
0.5
a
I IIIII1I BVT
2
Ie - COllECTOR CURRENT (AMPS)
40
"
'"
'"'"
'"....
1,\
u
~
0.1
!....
0.5
a
u
,
O,I)?
100.us
'\
CD
en
en
CJ'I
VCE - 1V
TJ-+125°C
w
'"'"
u
0.01
1000
~
....
100
~
....
~
2:
1 0 R_ _
10
IB
5V
0
Typical Pulsed Current Gain
vs Collector Current
a
o
LL
Lt)
Process SF
o
oQ)
(.)
e
c..
Thermal Response in TO·220 Package
;i §
~~
~§
~g;
w
5
~~
0.5
0.3
0.2
I!O-IOi'51- !;!lIlIl!il .i1i1I1I1I!~;!~ I I!I!~:ri!:1!:"! i! ! ! ! ! ! I
0.2
..-
~
0.1
0.1
P"""
0.7
0.07
~; ~:~~
'? ~ 0.02
0.01
-n n
U L oJC
I I I Tpk' TC +Ppk .()JC(I)
0.05
0Jc(t) '" tit) 'OJC
0.02
P(Pk)...J
0.0' __ 1-'"
DC THERMAL RESISTANCE
- II OUTY CYCLE o.!!
"""'.....r--:::.L.:::S:;:INc::G:::LE:..:P.:::U:::LS:.:E-U-LL-....L-'-.....L--'--Ll...LLlL.....L--'----'.....L-U--L.~~_-~t2~-~~~~~~_..::t2~~~
0.0'
0.02
0.1
0.05
0.2
10
'0.5
50
20
100
200
500
11 - TIME (ms)
Thermal Response in TO·126 Package
~;;
"'w
~~
0.5 05
0.3 0.2. 7
0
. . _- - -
~~ 0.2 0.1
0.' 0.05
*~ 0.07
I
0.05
P(pk)
f-~
2°
Z
t.)
~ ~
f-f-
I
~
¥~
0.03
0.01
~GlE PULSE
0.02
0.01
=rLIL0JC(I)"(I)'()JC
()JC DC THERMAL ~ESISTANCE
·
Tpk,'TC+Ppk '()JcltI
I
OUTY CYCLE 0' II12
I 'I I t2
20 30 50 100 200 300 500 lk
'0
L--'-.L--'--'---'-J-W..J..W'---'-'--L-'--'-l-LJ..J..W_-'-~~~~~=-_~~~~~_~_~~_~
0.01 0.02 0.03 0.05
0.1
0.2
0.3
0.5
11 - TIME (ms)
Switching Circuit
Vcc=35V
o
RL '" 30
ovu
Rae
15V
=
140
P
Ie = lA
181 = 100 rnA
IS2 = 100 rnA
DUTY CYCLE = 1.0%
PW=5-10ps
GENERATOR' HP1900A
r
9-38
C1 = 5 mFd@SOV
lk
"'C
Process5J
PNP Epitaxial Power Darlington
~National
D Semiconductor
DESCRIPTION
Process 5J is a double epitaxial silicon mesa device. Com·
plement to Process 4J.
APPLICATION
This device was designed for use in driver and output
stages of complementary audio amplifier circuits. It is
also well suited for solenoid driver applications.
0.070
~~l
Conditions
Parameter
PRINCIPAL DEVICE TYPES
TO·126, ECB: 2N6034-36
MJE700-03
TO·220, BCE: NSP2090-93
TIP115-17
BVCEO
BVCBO
Ic = 100 mA (Note 1)
40
Ic= 2O I-'A
50
BVEBO
IE=2 mA
5
ICEO
VCE = 1/2 BVCEO
'--vuv
Typ
Min
-VEB=5V
Units
120
v
V
V
0.5
\/ __ = R\I ___
lEBO
Max
---
mA
200
~
2.0
mA
20,000
750
hFE
Ic = 2A, VCE = 3V (Note 1)
VCE(5AT)
Ic = 5A, IB = 20 mA (Note 1)
3.3
VBE(ON)
C OBO
Ic = 5A, VCE = 3V (Note 1)
2.8
Vcs= 10V
V
V
pF
35
4
Ihfel
Ic=1A, VCE=3V, f=1 MHz
tON
Ic = 6A, VCE = 30V
2.0
I-'s
tOFF
Ic = 6A, VCE = 30V
2.6
1-'5
PO(max)
TO-220
TO·126
Tc=25°C
TA=25°C
50
2
W
Tc=25°C
TA=25°C
40
1.5
W
OJC
TO·220
Tc=25°C
2.5
°C/W
TO·126
TC=25°C
3.12
°C/W
OJA
TO·220
TA=25°C
62.5
TO·126
TA=25°C
83.3
°C/W
°C/W
TJ(max)
All Plastic Parts
Note 1:
150
Pulse test, pulse width =300 pS
9·39
,
°C
an
CD
U)
U)
en
c..
Process5J
Typical Pulsed Current Gain
vs Collector Current
Typical Pulsed Current Gain
vs Collector Current
.
lOOk
2
"
lOOk
~
1.2
1
TJ- +25'C7,
IC - COLLECTOR CURRENT IA)
Base·Emitter Saturation
Voltage vs Collector Current
0:<
......
"''''
tiC:
"'i=
1<
"
0.1
IC - COLLECTOR CURRENT IA)
1.4
>
11111111
100
0.1
1.6
:::j2
_0:
....
< ....
I
I
w
~s
~
....
C· -40·
~
~
0:
0:<
"'>
lk
::l
0:
>
....
2
I.B
......
"''''
....
.....
~
:TC'
iie
tk
2.2
~>
:i;:
~~~'+125·C
~
iie
i:;
0:
ffi
B 10k
~
2.4
~VCI
0:
B 10k
Coliector·Emitter Saturation
Voltage vs Collector Current
L
t
I
aJcltI-rltl·OJC
aJC OC THERMAL RESISTA NCE
Tpk TC + Ppk .OJCltI
t'
OUTY CYCLE
250
100
o."!
200
t2
500
lk
"'C
Process5J
a
(")
CD
tn
tn
Thermal Response in TO·126 Package
0.1
0.5
0·0.5
ffi~
0.3
0.2
"
0.2
:iffi
"N
:'"
....
....
'"
z=
wi!:
;;;w
zu
",z
........
"''''
,!!!
;:;:3
-;'"
c...
0.1
0.1 1ii.05
0.01
0.05 0,01
0.03
0.02
0.01
en
I
P(ok)
I
~LEPULSE
n-.JL"JC(I)-
1.8
tB~
"
~"
~
~
oo
B~
I
100/
~
I
;::r
[~
I
w
10
~'-'l
TJol~~~~
0.01
>
0.1
10
1
'8:
~
1.2
g
1 - -40 C
0.8 - - -25C
125 C
0.6
0.1
=-"
LI;l~
wo
~::>
I
i=
~
>
I
2.4
1.4
i =ti-
I
-40 C
Safe Operating Area TO·220
"oo
1.6
-
0.1
I
"
;;:
I I
~ 2.4
I I
"
0
;;:
50
oo
~
~
'~"
'"
I
""'"
;p
iii
40
05
30
~
oo
~
'x"
"'"
20
10
I
o
20
40
60
"'""
;p
80 100 120 140 160
I lun
rllill
1
100
5
10
Maximum Power
Dissipation vs
Ambient Temperature
,I I
2.2
I
I ! I I I I
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
o
20
40
60
80 100 120 140 160
TA - AM81ENTTEMPERATURE (OC)
TC - CASE TEMPERATURE (' C)
Thermal Response in TO·220 Package
~§
0.7
0.5
~:::::i
0.3
"'N
x"
... 'oo"
,,0
we
0.2
I~
'Z'"~
roo
_r--::
::.....
0.1
0.1
~~ 0.07
""
~~
0=0.5
0.2
0.05
0.03
0.02
0.01
,I.'
\
0.05
0.020.01,.....
Plpk)
-
I
0.01
0.02
nIlIiJC(t)-r(t)oOJC
!)JC DC THERMAL RESISTANCE
I I I
Tpk
--- tl --
0.05"
0.1
0.2
10
0.5
q -TIME (ms)
9·43
20
TC + POk .,IJC(t)
DUTY CYCLE 0 =
-tz-
A""SINGLE PULSE
50
100
VCE - COLLECTOR EMITTER VOLTAGE (V)
VR - REVERSE BIAS VOL TAGE(V)
L~lJ
LIMIT DETERMINED
BY BV CEO
0.1
10
1
iii
05
0.5
10
Maximum Power
Dissipation vs
Case Temperature
60
1
_l,
0.1
1m,
DC
r
u
w
u
IC - COllECTOR CURRENT (A)
0
5m,
5
0
0
10
1
~
C,"
i
I
125 C
1.0
=
20
10
B
oo
~b
0
V
1.2
'-'
"
./
[-lSi"
r
100
10
100
50
~
;;:
1
0.1
Ie - COLLECTOR CURRENT (A)
u
~
1.8
I
I
~C
0.01
10
1
-t1"
0.6
>
I
25cIF
11--:- .
1.0
V,...,
r1ltlJ
/'1
il"11---T ~)
I
'!1
l«!!:
.1
,
~
"g
I
2.0
Ii ~,j, r[ -- Tni,i --: .
-40 C
Junction Capacit.mce vs
Reverse Bias Voltage
I
I
2.2
1.4
.... ~v.;
'"
~L
UI
1.8 -
2.2
Ie - COLLECTOR CURRENT (A)
Ie '" 250
IB
2.6
~
2.6
1k
2.8
~~
...
~
z
oo
r
r
~
t2
50
100
200
500
1k
CD
tn
tn
C11
_ VeE - 3V
If-=J:tt
3.0
0
1.4
3.0
:;;
3.4
~
1.6
Base·Emitter Saluration
Voltage vs Collector Current
0
?:
1~
250
2
IC - COLLECTOR CURRENT (AI
"i=
...~
Base·Emitter ON Voltage vs
Collector Current
a
o
0..
Lt')
tn
tn
Go)
o
~National
Process 5P PNP Planar Power
~ Semiconductor
e
DESCRIPTION
0..
0.060
(U2)
I
Process 5P is a double diffused silicon epitaxial planar
device. Complement to Process 4P.
-~
~
))
'/
APPLICATION
I
]
This device was designed for power amplifier, regulator
and switching circuits where speed is important.
0,060
PRINCIPAL DEVICE TYPES
(1.52)
))
))
h
Parameter
J
TO·220, BCE: D45C1-12
TO·126, ECB: MJE230-35
MJE250-54
TO·202, BCE: D43C1-12
Conditions
BV CEO
Ic = 100 mA (Note 1)
BV CES
Ic= 1 mA
BV EBO
IE= 1 mA
ICES
VcE =50V
Min
Typ
50
Max
Units
120
V
V
5
lEBO
VEB =5V
hFE
VcE =5V, Ic=20 mA
30
hFE
VCE = 5V, Ic = 0.5A
50
hFE
VCE = 5V, Ic = 5A (Note 1)
10
8
V
5
p.A
5
p.A
80
200
1
VCE(SAT)
Ic=3A,IB=0.3A
0.35
VSE(SAT)
Ic=3A,ls=0.3A
1.1
It
VCE = 5V, Ic = 0.5A
V
V
40
MHz
Cos
vCB= 10V
75
pF
CIS
t,
V EB = 1V
400
pF
60
ns
500
ns
50
ns
ts
tf
Ic=2A, VcE =30V
IB1 = IB2= 0.2A
PD(max)
TO·220
Tc=25'C
40
TO·126
Tc=25'C
30
15
W
W
W
TO·202
Tc=25'C
IIJC
TO·220
Tc=25'C
3.2
TO·126
Tc= 25'C
4.16
TO·202
Tc=25'C
8.33
IIJA
TO·220
TA = 25'C
62.5
TO·202
TA = 25'C
62.5
TO·126
TA = 25'C
83.3
'C/W
'C/W
'C/W
'C/W
'C/W
'C/W
TJ(max)
All Plastic Parts
150
Note 1: Pulsed measurement = 300 P.s pulse width.
9·44
'C
"'tJ
Process 5P
Typical Pulsed Current Gain
vs Collector Current
Typical Pulsed Current Gain
vs Collector Current
Collector·Emitter Saturation
Voltage vs Collector Current
;~_
~
·~."10
1--++1.111111-~
100
=t't
v
TJ "+2SC
10 _ _
:5
~,
w
~
1
0.01
l'--'--'-"..W-'W.....J.-'-'-UW,,--,-,-.u..u.w
0.1
10
0.01
lC - COllECTOR CURRENT (AI
:;;
~
t: ~
~~
~~
2.4
2.2
2
1.4
~~
O.B
0.6
0.4
...'"uo
'"o
...
'"w
'"'"=>
o
,
0.1
'--'-...LLLLLLiL.~....J....LL..U.l..U
10
10
'-~~~---~~~~
LIMIT DETERMINED\,:
60
100
veE - COLLECTOR·TO·EMITTER VOLTAGE (V)
Maximum Power
Dissipation vs
Case Temperature
I I 111 ..J,oo-5ML.1
BY BVCEO,",
10
Maximum Power
DisSipation vs
Ambient Temperature
i :~ I I I I I I I I I
I I I I I I I I I
50 r--r-r-~-T-r--r~~
f-+-"t--t-t-t_+-+---'
10
'"
;i
~
0.1
~
~
'-...L.....l.~_L-~...L~L-
,
L.....l......l....L'-~
_ _ _...::.;:=-.J
OW W M M
100
10
VCE - COllECTOR-TO·EMITTER VOLTAGE (VI
l00lW~
1.B
1.6 I--+-P<+-+-I-+-+~
1.4 f-+'l----'!~t-t_+-+1.2 I--+-f"'<.t-'V--I--t--+-t--+-t---J>orr,TO.220, TO·202
O.B 1--+-I--=T-;::0.:C12~6"'k--t--+-0.6 I--+-I-",~k:"q--+-0.4 I--+-I-+-+-t-"~c+-0.2 1--+-1-+-+-1-+"""--
~
!:
0.01
0.01
100
o
~,
1-+--t-t--t--j----j-t--HI~>\'rl
VCE - COLLECTOR-TO·EMITTER VOLTAGE (VI
Safe Operating Area TO·202
i
0.1
!:
LIMIT OETERMINEO~
BY BVCEo..~
0.01
IC - COLLECTOR CURRENT (Ai
100
~,
I--+-++-I--+--+-+-Hf\i~
!:
1--++++f-H-fl--+-++f+ttH
1
~
u
r--
0.1
...
w
1 f-+-~-+t+~~--~~HtH
10
Safe Operating Area TO·126
i
f--+-+-H+tH+--f-f-H-bI'I-H
~~
"'=>
w ...
0.1
IC - COllECTOR CURRENT (AI
~
10
1.2 1--+-++t-l+H+--+-+-17f.1-ItH
I 0
0.01
Safe Operating Area TO·220
f-.:,-.:t+H+ffl----+-f-1ffi1r++H
f-+--H-l-tttt+---j-++
II+t+tH
=
0.01
10
IC - COLLECTOR CURRENT (AI
Base·Emitter Saturation
Voltage vs Collector Current
r:T:-.c2::-:
S"c
C -n-m,,-,--r-n-mCT1
1.8 1--+-++t-l+H+----l ~
1.6
la
0.1
0
~
1M
20
Tc - CASE TEMPERATURE (OCI
40
60
80 100 120 140 160
TA - AMBIENT TEMPERATURE (OCI
Thermal Response in TO·220 Package
~Q
"'w
:;;N
"'::0
w",
i=~
"'0
5~
0.7
0.5
0.3
0.2
0" 0.5
0.1
0.1
~h:~ 0.07
0.05
0.05
0.03
0.02
"''''
"''''
,,,,
......
-=~
""",
-
0.2
0.01
0.02
"
I
P(pkl
I
~r-
%SINGLE PULSE
0.01
0.01
0.02
0.05
n.n.
II I
-- t1 --
0.1
0.2
0.5
10
11 - TIME (ms)
9·45
20
t
CJ)
CJ)
"'tJ
TJ = .. 125 C
TJ· 40C
CD
U1
~
"
, , VCE"IV
,::1000_
t;
ao
°Jc{t) '" r(t) oOJC
liJC DC THERMAL RESISTA NCE
Tpk" TC + Ppk .oJc(tl
t
DUTY CYCLE D".!
12
250
100
200
500
lk
a..
Lt)
-Process 5P
0
0
Q)
u
e
a..
Thermal Response in TO·126 Package
~§
:;N
...~~:;
0.7
0.5
0.3
0.2
0.2
0.1
... 0:
z"
w!!i
0.1
zu 0.07
o:z
0.05
o;w
"'''
......
I~
~~
D' 0.5
0.03
D.02
10-
r-nn
I:::i2""
~e
~ mo.o~
~
P(pkl
L
~7s1l0.01
r--t- O(SING~E,"l'.W'
0.05
. 0.1
.
L
I
'1
-t2-
0.01
0.02
--j
0.2
0.5
10
'1 - TIME
9·46
(m.I
°Jchl·r(tI·OJC
OJC DC THERMAL RESISTANCE
Tpk-TC+Ppk .oJchl·
DUTY CYCLE 0 •
~
.
20
50
100
20
"'tJ
~National
a
Process 5Q PN P Planar Power
Semiconductor
CD
en
Process 5Q is a double diffused silicon epitaxial planar
device. Complement to Process 4Q.
APPLICATION
This device was designed for power amplifier, regulator
and switching circuits where speed is important.
PRINCIPAL DEVICE TYPES
TO·220, BCE: D45H1
D45H2
D45H4
D45H5
D45H7
D45H8
D45H10
D45H11
Conditions
Min
BVCEO
Ic= 100 mA (Note 1)
50
BVCES
Ic= 1 mA
60
5
BV EBO
IE= 1 mA
ICES
VCE = 50V
lEBO
V EB =5V
hFE
VcE =5V, Ic=20 mA
..... ",. - ~
"r~
hFE
... ,
'/
-20
'l,...- " .
\"~
....
Typ
Max
120
Units
V
V
V
8
5
p.A
5
p.A
30
VCE = 5V, Ic= 8A (Note 1)
.. lJt:- ...... ,
~""
1
VCE(SAT)
Ic =8A,I B =0.8A(Note1)
0.6
VBE(SAT)
I c =8A,I B =0.8A(Note1)
1.2
ft
VcE =5V,l c =0.5A
COB
VCB= 10V
170
pF
CIB
V EB = 1V
870
pF
40
ns
500
ns
60
ns
tr
IB1=IB2=0.5A
tf
V
V
MHz
40
Ic = 5A, VCE = 30V
ts
(')
CJ)
CJ)
DESCRIPTION
Parameter
a
po(max)
TO·220
Tc=25'C
/1JC
TO·220
W
Tc=25'C
2.08
'C/W
/1JA
TO·220
TA = 25'C
62.5
'C/W
60
TJ(max)
All Plastic Parts
150
Note 1: Pulsed measurement =300 P.s pulse width.
9·47
'C
"
Process5Q
Typical Pulsed Current Gain
vs Collector Current
2
...~
1000
VCE< 5V
~
...~
Tj'::+125°C -
~
-
TJ = +25°C
100
TJ<-40'C
c
~
8
'"
;:;
~
I
1
10
11111111
1
~
0.1
100
0.1
10
IC - COLLECTOR CURRENT (A)
ffi~ 1.6
1::"
I::
TJ < -40'C
i=~
0.8
!!!",
0.6
~'"'
>~
0.4
w ...
~25;rl
~5'C
I
o
~
'">=
Te <25°C
SINGLE PULSE
TJ< 150'C
~
""
0.1
60
~
0.2
illc;
'"
1 m,
DC
~
3D
1=
0.1
IC - COLLECTOR CURREN! (A)
ZO
"x
10
I
LIMIT DETERMINED
BY BVCEO
"'"
~ 2.4
0
illc;
'"~
~
~
><
"'"'
"x
"'"'
~
I
2.2
2
1.8
1.6
1.4
1.2
\.
- TO·220 \.
\
20
VCE - COLLECTOR·EMITTER VOLTAGE (V)
">=
-
-
I\,
~
100
10
-\.
40
"><
'"'
0.1
10
~
\.
50
~
I
40
60
80
100 120 140 160
TC - CASE TEMPERATURE i'CI
Maximum Power
Dissipation vs
. Ambient T.emperature
'\.
I'\.
- -
-TO·220 '\.
0.8
0.6
0.4
0.2
'\.
0,
20
40
60 80 100 120 140 160
TA - AMBIENTTEMPERATURE I'C)
Thermal Response In TO·220 Package
~Q
0.7
0.5
0<0.5
",'"'
0.3
0.2
0.2
'"'w
"N
ffi:::i
...... "'"
w"
~
0.1
10
i:
I
w
w'"
"'"
we;
r--
TJ::; +25°C
0:
i:
~
4oc£ffi
t~25C
+125~C
~
I~
10
lC
< 10
18
TJ < 40'C
~
0:
~
100
w
~
10
VCE - 1V
TJ '" +125°C
c
w
5
1000
2
~
'I1
Coliector·Emitter Saturation
Voltage vs Collector Current
Typical Pulsed Current Gain
vs Collector Current
I
I
Tpk < TC + Pok "JC(I)
DUTY CYCLE D<~
t2
II 1220
"Jcll) < ,It) .oJC
0JC DC THERMAL RESISTA NCE
50
100
200
500
lk
""C
~National
a
Process SR PN P Planar Power
Semiconductor
CD
(J)
(J)
DESCRIPTION
CJ1
Process 5R is a double diffused silicon epitaxial planar
device. Complement to Process 4R.
APPLICATION
----~;~::)----·-11
This device was designed for power amplifier, regulator
and switching circuits where speed is important.
I
PRINCIPAL DEVICE TYPES
TO·126, ECB: MJE210
0.060
~l
Parameter
Conditions
Min
BVCEO
Ic = 100 mA (Note 1)
20
BVCES
Ic=1 mA
25
BVEBO
IE= 1 mA
5
1- __
\1 __ _ 'In\l
V"V
Typ
v_
VEB=5V
hFE
VCE = 5V, Ic = 20 mA
50
180
hFE
VCE = 5V, Ic = 0.5A
50
180
hFE
VCE = 5V, Ic = 10A (Note 1)
25
50
Ic=3A,IB=0.3A
VBE(SAT)
ft
. Ic=3A, IB=0.3A
Max
Units
40
v
5
V
V
uA
5
p.A
7
lEBO
VCE(SAT)
a
(')
0.35
350
8
MHz
50
VCE = 5V, Ic = 0.5A
V
V
1
COB
VCB = 10V
95
pF
CIB
VEB=1V
450
pF
PD(m~x)
W
TO·126
Tc =25·C
OJC
TO·126
Tc=25·C
4.16
·C/W
OJA
TO·126
.TA ~25·C
83.3
·C/W
30
TJ(max)
150
All Plastic Parts
Note 1: Pulsed measurement = 300"s pulse width.
9-49
·C
::c
a:
U')
Process 5R
(/)
us
Q)
~
c..
Typical Pulsed Current Gain
vs Collector Current
2:
1000
~
=
~ 100
2:
VCE" 5V
1000
10
Q
=
~ 100
Ito."',
~
TJ" 40'C
'"
~
:0
~
~
;'l
10
I
llli U
1
0.01
10
0.01
0.1
IC - COLLECTOR CURRENT IAI
Base·Emitter Saturation
Voltage vs Collector Current
1.2
"'"
~g
1.1
~"
0.9
~
~~
0.8
~'"
0.6
w>-
>~
0.7
0.5
~
";'l
.......-: /V
~
"'/
V
,
100
z
Safe Operating Area TO·126
>-
I
Cob
~
i
I II
8
10
is
40
i=
~
~
'"
~
~
is
"'
30
~
~
......
~
20
"x
'"X"
"'"
~
"x
r-- I-- -TO·12
""
10
I
LIMIT DETERMINED
BY BVCEO
1= ~
10
1
I
x
20
TC
40
~
60
2.2
2
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
- ,.- TOi'~
""
~
80 100 120 140 160
20
CASE TEMPERATURE 1°C)
40
60
"'
........
80 100 120 140 160
TA - AM81ENTTEMPERATURE 1°C)
Thermal Response in TO·126 Package
~c
"w
"'N
~~
>-'"
>-'"
ZC
0.7
0.5
0" 0.5
0.3
0.2
0.2
0.1
~~
0.1
~~ 0.07
"''' 0.05
""
>->I~
-
0.05
I
~~~002
_
-::-[:3 0.03
0.02
PI,k)
I
0.01
--f °iSI~G\E,'mE)
"""'
0.05
0.1
0.2
0.5
. 1
I
10
tl- TIME (ms)
9·50
°Jclt)" ,It),oJC
0JC DC THERMALBESISTANCE
T,k-TC+P,k 'OJclt)
L
DUTY CYCLE 0"
tl
-t2--
0.01
0,02
TIll
--I
i=
100
VCE - COLLECTOR·TO·EMITTER VOLTAGE IV)
~ 2.4
z
C
~
510 ms
Maximum Power
Dissipation vs
Ambient Temperature
60
50
l~OJ.ls
0.1
100
VR - REVERSE BIAS VOLTAGE IV)
Maximum Power
Dissipation vs
Case Temperature
~
~
1 ms
0.01
0.1
IC - COLLECTOR CURRENT IA)
i=
DC
::
10
~
lOps
'
I
10
0.1
..
10
g;
C
TJ '" +125°C
0.4
10
5
-
w
u
TJ"~
g!
0.1
100
Cib
;:"
L"~
IC - COLLECTOR CURRENT IA)
1000
I
I
~
0.01
Junction Capacitance vs
Reverse Bias Voltage
IC
-"10
18
1.3
~~
10
Ie - COLLECTOR CURRENT (A)
1.4
~
TJ"
0.1
TJ I
~
0.1
0.01
I'"
t,,~~
I
w
w>-
I~" 10
;:'"
>-
r=~
10
TJ-+125 C
>-
TJ" -40'C
Coliector·Emitter Saturation
Voltage vs Collector Current
VCE" IV
~
TJ=+125°C
'"
;'l
~
Typical Pulsed Current Gain
vs Collector Current
20
50
*
100
200
Section 10
Process
Characteristics JFETs
o
Ln
(/)
(/)
Q)
.
Semiconductor
I"
~National
a
CJ
o
c..
~
Process 50 N-Channel JFET
DESCRIPTION
Process 50 is designed primarily for R F amplifier
and mixer applications. It will operate up to
450 MHz with low noise figure and good power
gain. These devices offer outstanding performance
at VHF aircraft and communications frequencies.
Their major advantage is low crossmodulation and
intermodulation, low noise figure and good power
gain. The device is also a good choice for analog
switching where low capacitance is very important.
GATE IS ALSO BACKSIOE CONTACT
CHARACTERISTIC
PARAMETER
TEST CONDITIONS
MIN
Gate·Source Breakdown
Voltage
BV GSS
VOS =OV, IG =-l!J.A
Zero Gate Voltage
Drain Current
loss
Vos= 15V, V GS = OV
1.0
Forward Trans·
conductance
gts
VOS = 15V, V GS = 0
3.0
Forward Trans·
conductance
gts
VOG = 15V, 10 = 200!J.A
Reverse Gate Leakage
IGSS
V GS = -20V, Vos = 0
"ON" Resistance
ros
Vos = 100 mY, V GS = 0
-25
TYP
MAX
-40
10
5.5
V
20
7.0
100
175
-100
500
Pinch Off Voltage
VGS(OFF)
Vos=15V,lo=lnA
Output Conductance
gos
VOG = 15V, 10 = 1 mA, f = 1 kHz
Feedback Capacitance
Crss
VOG = 15V, V GS = 0
0.7
0.9
I nput -Capacitance
C iss
Vos = 15V, V GS = 0
3.5
4.0
Noise Voltage
en
VOG = 15V, 10 = lmA, f= 100 Hz
8.0
Noise Figure
NF
VOG = 15V, 10 = 5 mA,
RG= 1 kQ, f = 400 MHz
2.2
Power Gain
Gps
VOG = 15V, 10 = 5 mA, f = 400 MHz
-0.7
This process is available in the following device types. 'Denotes preferred parts.
TO·72 (CASE 25)
2N3823
2N3966
2N4223
2N4224
2N4416
*2N4416A
2N5078
2N5103
2N5104
2N5105
2N5556
2N5557
2N5558
TO-92 (CASE 92)
*2N5484
*2N5485
*2N5486
2N5555
2N5668
2N5669
2N5670
* J304
* J305
PN4223
PN4224
*PN4416
PN5163
MPF102
MPF106
MPF107
MPFll0
MPFlll
TO-92 (CASE 94)
2N3819
2N5248
BF244A
BF244B
BF244C
TIS58
TIS59
TO-92 (CASE 97)
2N5949
2N5950
2N5951
2N5952
2N5953
BC264A
BC264B
10-2
BC264C
BC264D
BF245A
BF245B
BF245C
BF256A
BF256B
BF256C
-3.5
-6.0
10
12
mA
mmhos
mmhos
1.1
-5.0
UNITS
pA
Q
V
!J.mhos
pF
pF
nV/v'Hz
4.0
dB
dB
...
""C
Process 50
20
:;;
.s....
16
iG
12
;;:
B.D·
.
I
Vos
\
-
.~
TA = +Z5"C
~~
.E 4.0
I
'l'
"
TA =+25·'C
~TA
-3.0
--4.0
-5.0
-75
....
4.0
~
~
....
2.0
I
.li
1
4.0
~
a:
3,0
~
lass
f=
"'::Iass
~
TA = +25 C
4.0
175
8.0
12
16
20
VDa - DRAIN·GATE VOLTAGE (V)
Output Conductance vs
Drain Current
~~GSIOfFI"-3.0V=
I
1,0
g
-
.""
-2.0
-3.0
-4.0
-5.0
0.2
0.4
0.6
O.B
0.01
Transconductance vs Drain
Current
100
~
~~
'""
o.
'DS
50
••
:JlI
./
I
."
V
10
-1.0
10
f~,~,G.,,:~5~.
tnl.=tRU" 1RRU ..
mmi
~
~ ;:.cl--'"
:5
1.0
Noise Voltage vs Frequency
1000
lDss
100
11111111
0.1
ID -DRAIN CURRENT (rnA)
VGSIOFFI @I Ves = 15V, 10 '" 1.0 nA
...........
11111111
0.1
1.0
VDS - DRAIN·SOURCE VOLTAGE (V)
~ gfs,loss@Vos= 15V, Vas:: 0 PU~SED=1
~'n.,{iil Vn., = 100 mV. V,...", =0
=1
In
§
0.01 ~:o '" 2.0 rnA
10 = 0.2 rnA
1.0
1000
;;:
_1
2;.:+85 C
:5
Parameter Interactions
.
ID=2.0mA~
I? = 0.2 mArr
.2 0.001
o
~ss §
ZD~·'0.
hV !1"H-H.l!!l'-;"·11
Vas - GATE·SOURCE VOLTAGE (V)
~
125
'c .. ,
0.1
2.0
.E
-1.0
~
75
(J1
=0.2mA
TA = +125
5.0
5.0
..
25
~ID'2.0I11A~
10
1.0
Common Drain-Source
Characteristics
"z
3.0
-25
tJ)
tJ)
10
~
j
Leakage Current vs Voltage
TA ···AM81ENTTEMPERATURE ( C)
.s
~
~
....
;;
Ves = 100 mV
Vas::: 0
7.0
"
~z
'"~
10
6.0
~
_f-
I
Transconductance
Characteristics
E
-~
i
I
Vas - GATE·SOURCE VOLTAGE (V)
]
-
§
I...,....,
-2.0
-2.5V
::;;~ =-B.OV
50
.~
'+125"C
= 1.0V
~~ ......-:.~
100
"'"
TA.-55"C
.1, ~
p~ ~5V
-1.0
VGSIOFFI
,......
ic:1i
TA ::: +125"C
:s~ "H
~,
500
"
TA = -55'C
K-
1....
1000
=15V
VGS(OFFI = -4.5V!
V
:5
I
100M.1
10llimMI
1.0
-5.0
-2.0
-10
0.1
VaSlD'" - GATE CUTOFF VOLTAGE (V)
Noise Figure Frequency
Capacitance vs Voltage
5.0
10
Vos:: 15V
0.1 -1.D MH,
10
~
."
"
I'
!::
I'.
;
....
1.0
C.
Iv D:" I~V) -
r-
Ra -1.0 kn++++-+-+-I~f++H
TA =25°C
3.0
f----+-+-H+tttt--t--H-J+tttl
.
2.0
f----+-+-H+tttt--t--H++tttl
~
1.0
I=~~~tti#==:::!=-.l-J+ltw
~
:
ii:
I
CI'I (Vos = 0)
I
= f=
~
2i
I
~
u
0.1
o
o
-4.0
-B.O
-12
-16
-20
=5.0 mA-
4.0
~
~
10
20
50
100
200
f - FREQUENCY (MHz)
Vas - GATE·SOURCE VOLTAGE (V)
10·3
1.0
10
f - FREQUENCY (kif,)
lD - DRAIN CURRENT (rnA)
f
n
CO
Channel Resistance vs
Temperature
Transfer Characteristics
o
500 1000
100
0
Process 50
LO
(J)
(J)
Q)
0
0
-g
'-
COMMON SOURCE
COMMON GATE
Input Admittance
Input Admittance
10
Q.
]"
Vos '" 15V
0
(CS),
'E
.5
z
«
~
::
~~
1.0
~
«
~
-b,,,
i
J,
7r
1
1
c;
(CG)
w
u
2
~
Vos '" 15V
=0
VGS
.5
u
«
100
E
VGS '"
0.1
100
10
~,,,
I·
J
200
1.0
1000
500
b..
./"
,/
100
200
f - FREQUENCY (MHz)
500
1000
f - FREQUENCY (MHz)
Forward Transadmittance
Fo rward' T ransadmittan ce
10
10
~
2.
W
«
~
r---------- +gfs
f--'
./
0'.5
«
'"
5;
~
...
-bl.
/
W
u
0' ...
~
gig
0
~
... E
1.0
+b'g
V
I;;
1~
..!-
"
./
Vos=15V- - - VGS " 0
Vos=15V
VGS = 0
(CG)
(CS)
0.1
0.1
100
500
200
1000
100
200
f - FREQUENCY (MH')
Output Admittance
~
'E
1000
Output Admittance
S
1.0
'E
1.0
.5
.5
=-~~10)
u
z
«
~
8
500
f - FREQUENCY. (MHz)
.,../
0.1
~
u
z
/'
~
go.
8
...
=-
~
,.
VGS '"
f!.
~
100
/'
'og>
r-Vos=15V
f-- Vas = 0
(CG)
1
0
1
(CS)
J ,0.01
./
.,../
0.1
~
V Ds '"'15V
1
r---bo~(Xl0)
«
200
j
1000
500
0.0\00
200
500
1000
f - FREQUENCY (MHz)
f - FREQUENCY (MHz)
Reverse Transadmittance
Reverse Transadmittance
10
1.0
-Vos""15V.
VGS 0
(CS)
Vos'" 15V
VGS = 0
(CG)
-by I-'
V
'''l
V
0.1
====-b~
,,, (X 0.11
0.1
100
200
,/
II
J
500
/
0.01
1000
100
f - FREOUENCY (MHz)
200
\
500
f - FREQUENCY (MHz)
10-4
1000
Process 51 N·Channel JFET
~National
~ Semiconductor
a
"n
(I)
(J)
(J)
~
DESCRIPTION
Process 51 is designed primarily for electronic switching
applications such as low ON resistance analog switching.
It features excellent C iss RDSION) time constant. The in·
herent zero offset voltage and low leakage current make
these devices excellent for chopper stabiiized amplifiers,
sample and hold circuits, and reset switches. Low feed·
through capacitance also allows them to handle video
signals to 100 MHz.
GATE IS ALSO BACKSIDE CONTACT
Characteristic
Parameter
Gate·Source Breakdown
Test Conditions
BV GSS
VDS=OV, IG= -11'A
Zero Gate Voltage
Drain Current
loss
VDS = 20V, VGS = 0
Reverse Gate Leakage
IGSS
Min
Typ
Max
Units
V
-30
-45
5.0
65
170
mA
-15
-200
pA
20
35
100
fl
8.5
mmhos
-0.5
-4.5
-g.O
V
pA
Voltage
Pulse Test
VGs= -20V, Vos=O
ON Resistance
rDS
V DS = 100 mV, VGs=O
Forward Transconductance
gfs
VOG=15V,ID=2mA
Pinch Off Voltage
VGSIOFF)
V os =20V,I D=1 nA
Drain OFF Current
IDIOFF)
Vos=20V. VGs= -10V
15
200
Feedback Capacitance
C rss
V DG = 15V, ID=5 mA, f= 1 MHz
3.5
4.0
pF
Input Capacitance
C iss
V DG =15V,I D =5mA,f=1 MHz
10
16
pF
Noise Voltage
en
V DG = 15V, ID= 1 mA, f=100 Hz
6.0
Turn·On Time
ton
V DD = 10V, ID = 6.6 mA
12
20
ns
Turn·Off Time
tOil
V DD = 10V, ID = 6.6 mA
40
80
ns
This process is available in the following device types. 'Denotes preferred parts.
TO·18 (CASE
2N3970
2N3971
2N3972
'2N4091
'2N4092
'2N4093
'2N4391
'2N4392
'2N4393
*2N4856
2N4856A
'2N4857
2N4857A
*2N4858
2N4858A
2N4859
2N4859A
02)
2N4860
2N4860A
2N4861
2N4861A
TO·72 (CASE 25)
' NF5101
' NF5102
' NF5103
TO·92 (CASE 92)
'2N5638
'PN4856
'2N5639
'PN4857
'2N5640
'PN4858
'PN4859
2N5653
'PN4860
2N5654
'J111
'PN4861
• J112
U1897
' J113
U1898
' PF5101
U1899
• PF5102
MPF820
'PF5103
'PN4091
'PN4092
'PN4093
'PN4391
'PN4392
'PN4393
10·5
TO·92 (CASE 94)
BF246A
BF246B
BF246C
TO·92 (CASE 97)
BF247A
BF247B
BF247C
*TIS73
*TIS74
*TIS75
nVly Hz
Process 51
Transfer Characteristics
Common Drain·Source
Characteristics
Parameter Interactions
Transfer Characteristics
g<"
.§
B.O
:;;
z
~
~
2D
2D
z
~ 10
,
.E
10
~
I
6.0 I-t-/I,b<1,..r'9'+++t-i
::l
~
4.0
hW;b;I-4,,'1;'""""'r-t-r...,
~ 2.0
hlI'7"'1H=I.........-'t--t-'+'-i
=
~
-0.5
Vas - GATE·SOURCE VOLTAGE (V)
-2.0
-3.0
-0.5
VaS - GATE·SOURCE VOLTAGE (V)
VaG "15V
TA "'25°&
f=,
kHz
~
10
VGS!OFF)=
z
z
I
1.4V
I-
",
III
v
11111
II
J
10
0.1
Noise Voltage vs
Frequency
~
100
i
1.0
;:
10
~
I'
1.0
10
20
511
0.2
100
10
J
0.1
10
0.01
~TA~· i125.~Ci'D'15'01: : 'i~
1.0
I I I
C.. IVos =0)
C.. (Vos"20)-
'OIOFFI
1.0
16
24
'rrr11l
c
IGSS
8.0
0.8
f=0.l-1.0MHz
f- 1
-4.0
32
-8.0
-12
-16
-20
Ves - GATE·SOURCE VOLTAGE (pF)
VOG (Vosl- DRAIN·GATE (SOURCE) VOLTAGE (V)
Noise Voltage vs
Current
0.6
toss
~S.OmA
o
2.0
100
5.0myj '/jIOFF
TA"+ZS"C
.i
0.1 L..J=LlllJJLLl.J.Ww.....Ll.lllJ1llI
0.01
0.1
0.4
~~.2mA
j
1.6
Capacitance vs
Voltage
.-::---:==-,-..--,""''''''''''''"
VDs=10V(FaRIDIOFF:)~~
T,.. "-+B5~C
1.2
IVcsIVcSlOFFII- NORMALIZED GATE·
TO·SOURCE VOLTAGE (V)
Urn
1£
Turn·On Switching
Turn·Off Switching
25 r-r;--------~~~
Voo=l.OV
tODD
~
~
5.0
0.8
Normalized Drain
Resistance vs Bias
Voltage
Leakage Current vs
Voltage
'0 - DRAIN CURRENT (mAl
10 - DRAIN CURRENT (rnA)
0.4
Vas - DRAIN·SOUACE VOLTAGE (V)
10 - DRAIN CURRENT (rnA)
~~~
VCS!OFFI=-lV
~
1.02.0
Output Conductance vs
Drain Current
:i'
z
-10
-5
CUTOFF VOLTAGE (V)
Resistance vs Drain
Current
-1.5
."oo~.
j
~
100
e
.§
-2
VOS(OFF) - GATE
VGS - GATE·SOURCE VOLTAGE (V)
Transconductance vs
Drain Current
~
-1
-1
-0.5
-1.5
Transfer Characteristics
Transfer Characteristics
-1.0
-1.0
Ves - GATE·SOURCE VOLTAGE (V)
]
20
t'iAPPROX.lo INDEPENDENT
]
z
;;
i,
tOO
15
~H~~-++++~
0.1
1.0
10
f - FREQUENCY (kHz)
100
"J 5.0 f--HH"""'~d--"'!.d--t-i
-2.0
10 - DRAIN CURRENT (mAl
-4.0
-6.0
-B.O
-10
VCSIOfFI - GATE·SOURCE CUTOFF VOLTAGE (V)
10·6
~
60
I-H~~~+4-+-t-i
j 40
~
f = 10 kHz"1"t\:Wll!t-I4I!!!!!I
f ~ 100 kHz
1.0 L....L.J.JL.WlJl.....w.J..Ww......u.J.Ul1lD
0.01
0.1
1.0
10
80
z
;c
~
20~H-+-+~~d
J
2.0
4.0
6.0
B.O
10 - DRAIN CURRENT (rnA)
10
-0
~National
Process 52 N-Channel JFET
~ Semiconductor
a
n
CD
en
en
en
I\)
DESCRIPTION
Process 52 is designed primarily for low level audio and
general purpose applications. These devices provide excellent performance as input stages for piezoelectric
transducers or other high impedance signal sources.
Their high output impedance and high voltage breakdown
lend them to high gain audio and video amplifier applications. Source and drain are interchangeable.
GATE IS ALSO BACKSIDE CONTACT
Characteristic
Gate-Source Breakdown
Voltage
Parameter
Test Conditions
BV GSS
VDS=OV, IG= -1 p.A
Min
-40
Typ
Max
-70
Units
V
Drain Saturation Current
IDSS
VDs =20V, VGs=OV
0.2
1.5
12
mA
Forward Transconductance
gts
VDS = 20V, VGS = OV
1.0
2.5
5.0
mmho
Forward Transconductance
gts
VDs =20V, ID=200 p.A
Reverse Gate Leakage
Current
IGSS
VGs= -30V, VDS=OV
Drain ON Resistance
rDS
VDS = 100 mV, VGS = OV
Gate Cutoff Voltage
VGS(OFF)
VDS = 15V, ID= 1 nA
p.mho
700
pA
-10
250
400
-0.3
1.0
2000
-8.0
Output Conductance
gas
VDG = 15V, ID = 200 p.A
2.0
Feedback Capacitance
C rss
VDG = 15V, VGS = OV, f = 1 MHz
1.3
1.8
Input Capacitance
C iss
V DG = 15V, VGs=OV, f= 1 MHz
5
6
en
V DG = 15V, ID=200 p.A, f= 100 Hz
10
Noise Voltage
This process is available in the following device types. * Denotes preferred parts.
TO-18 (CASE 02)
TO-72 (CASE 25)
TO-92 (CASE 92)
2N3069
2N3070
2N3071
2N3368
2N3369
2N3370
2N3458
2N3459
2N3460
*2N4338
*2N4339
*2N4340
*2N4341
*2N3684
*2N3685
*2N3686
*2N3687
* J201
*J202
*J203
*PN3684
*PN3685
*PN3686
*PN3687
*PN4302
*PN4303
*PN4304
10-7
n
V
p.mho
pF
pF
nV/..jHz
Process 52
Transfer Characteristics
Common Drain·Source
G/laracteristics
Transfer Characteristics
6.0
2.0
VGS ~ 10;-
1.8
"<
.s....
5.0
~
4.0
~
3.0
~
.s....
z
:;:
~
10.0
~
8,0
~
6.0
.s
-=I
2.0
~
E
1.0 P'R:~~"'F~....:I~!.-t-H
E
1.4
5a: 1.2
1.0
B
z
z
a:
:;:
g;
l--l"'-d"'d""i-?r"-t-
4,0
I
I
E
2.0
i-"'"
1.6
0.8
t- bVvGS ~ -o.hv
t-
0.2
"I-
VGS ~ -0.5V
'T
0.6
0.4
TVP VGSIOFFI ~ 1.8V
TA ~ 25'C
vGS ~ -0.75V
lJ
vGS- -1.5V_
o
1.0
VGS~-1.0V
vGS" -~V
o
0.5
1.0
1.5
2.0
2.5
·0.6
1.2
1.8
2.4
3.0
VGS - GATE·SOURCE VOLTAGE iVI
VGS - GATE·SOURCE VOLTAGE IVI
Transfer Characteristics
Transfer Characteristics
2.0
3.0
4.0
5.0
VOS - ORAIN·SOURCE VOLTAGE IVI
Parameter Interactions
1.0
10
~
.sw
4.0
Ff"''k+-:++-t--+--j-H
'-'
i
"'"
3.0
~
2.0
;l!
I-
.s"i:
5.oF""'!-~-
0.5
~
4,0
0.2
I
z
~~~~~~
I
2.0
1.0
30
~
1.0
1.0
100
~
5
~
co
~~.
VGSIOFFI ~ 4.3V/
10
'-'
'"'"
I
1~~
10V
20V
15~
5.0
,
I
V1.0
V
VGSIOFFI ~ 2.35V
0.1
1.0
w
'-'
1.0
lh'
~
i
lk
'"~
100
'"'"
10 ~ 100"A
10
w
"
I
~
~
~"ID'
100
10
E
lk
10k
I - FREQUENCY 1Hz!
lOOk
25
25
75
125
175
TA - AMBIENT TEMPERATURE I'CI
Capacitance vs Voltage
IGSS
~
"''-'"
...<:;
:::
.
w
2!
IGSS
11 10 ~ 0.1 rnA
==
5.0
4.0
I
J
TA ~ 25'C
IGSS
1.0
2.0
yg
5 10 15 20 25 30 35 40 45 50
VOG - ORAIN·GATE VOLTAGE IVI
10·8
Ciss IV OS - 15VI_ -
\
II
o
I
Crn IVos ~ OVI-
"Cr.. IVOS"5V
1.0
o
.......
3.0
:3
f= 1,0 - ,1.0 ~A
~
11'111111
10
-75
10
O.lmA
TA - 85'C
I
11111111
1.0
1.0
TA-125'C
w
1 0 ~I :i:U;A
1
~
i5
0.1
10
w
w
,.
OS
~GS~ 0 I
100
Leakage Current vs Voltage
"'"
~
:;
I
J ~ 10~ m~
10 - ORAIN CURRENT ImAI
10k
".
1IJ
200
E'
0.01
"<
V
V V
,,'" ".V VGSIOFFI ~ 4.3V
~
0.1
Noise Voltage vs Frequency
co
VGSloFFI" 2.35V
co
'"g;
:;:
10
500
~
z
VGSIOFFI ~ 4.3V
10 - ORAIN CURRENT ImAI
.."
"'"~
I-VGSIO~';'; ~ 0.72V
2.0
;;;
100
10
lk
I
I
5.0
g
5.0
";l!....
20V
2.0
Channel Resistance vs·
Temperature
10
.s
1.0
VGSIOFFI- GATE CUTOFF VOLTAGE IVI
~
"i:
5V
0.5
3.0
Transconductance vs Drain
Current
5V
'-'
2.0
VGS - GATE·SOURCE VOLTAGE IVI
Output Conductance vs
Drain Current
"~
'"-=
~
P""'t-ooitx--\t-""-,(t--'l:+--l
2.0
3.0
"i:
-"
w
~
!/!
VGS - GATE·SOURCE VOLTAGE IVI
~
;;
co
z
0.1
;l!
....I
.
,.
'"
1.0
co
~
co
-2
.. -4
eros IV OS" 20VI
-6
-8
-10
VGS - GATE·SOURCE VOLTAGE IVI
..,
"tJ
Process 53 N-Channel JFET
~National
~ Semiconductor
(J1
eN
Process 53 is designed primarily for low current
DC and audio applications. These devices provide
excellent performance as input stages for sub picoamp instrumentation or any high impedance signal
sou rces.
GATE IS ALSO BACKSIDE CONTACT
PARAMETER
BV GSS
V DS = OV, IG = -1 !lA
Zero Gate Voltage
Drain Current
I Dss
V DS = lOV, V GS = 0
Forward Transconductan ce
gl,
V DS = lOV, V GS = 0
Forward Transconductance
gt,
V DG = 15V, ID = 50!lA
..
'Lib:::'
~~
~~~~
-~~"~::l"'"
MIN
TEST CONDITIONS
Gate-Source Breakdown
Voltage
~.~.
~<..:iS
':"'vv,
"DS
MAX
TYP
UNITS
-60
-40
0.02
V
0.25
mA
1.0
350
250
80
!lmho
120
v
!lmho
V.V
Pinch Off Voltage
V GS(OFF)
V DS = 10V, ID = 1 nA
Feedback Capacitance
Crss
V DG = 15V, V GS = 0, f = 1 MHz
-0.5
Input Capacitance
Ciss
V Ds =15V,V Gs =0,f=1 MHz
Output Conductance
go,
V DG = 10V, ID
Noise Voltage
en
-2.2
= 5O!lA
V DG = 10V, ID = 50 !lA,
f-'~
IV
-6.0
V
pF
0.85
1.0
2.0
2.5
pF
0.9
5.0
!lmhos
150
45
nV Iy'Hz
f= 100 Hz
This process is available in
the following device types.
* Denotes preferred parts.
Parameter Interactions
Leakage Current vs Voltage
1000
TO-72 (CASE 25)
2N4117
*2N4117A
2N4118
*2N4118A
2N4119
*2N4119A
., NF5301
NF5301-1
NF5301-2
NF5301-3
TO-92 (CASE 92)
PN4117
PN4117A
PN4118
PN4118A
PN4119
PN4119A
PF5301
PF5301-1
PF5301-2
PF5301-3
E
_3
100
'=111
500
"'w
3u
V;I
0- "" ,
"
wo",u
0: =>
=> C
100
u1!i
"u
50
ct~
«
0:
Co:
lO~
I
.EJi
o(I)
en
en
DESCRIPTION
CHARACTER ISTIC
o
c
50
,.""
~7:
;;
10
'os
.,...
5.0
VGSIOFFI @Vos" TOY, 10" 1.0 nA
VGS(OFfJ -
1.0
-0.5 -1.0
-5.0 -10
GATE CUTOFF VOLTAGE (V)
10·9
~
"m
~
!!j
,.
~
91<. loss @Vos:: TOY, VGS '" 0
rDS @Vos '" 100 mY, V GS '" 0
10
-0.1
I
B
1
1000
FF'F Ie ~ 30 OR 100"A
0-
~
B
IGSS
100
=:o-100PA
It!:: 30pA -
w
~
'"'"
~
10
0-
I
dP'rL
+85°C
-IGSS
Ie -30"A~
1.0
TA"+25~C
.§
.2
TA
f=f=i=~D -lDOp~
w
;.'l
~
TA:: +125"C
:GSS
0.1
0
5.0
VOG -
10
15
20
DRAIN·GATE VOLTAGE IV)
25
\
C")
L!)
Process 53
(/)
(/)
Q)
Transfer Characteristics
0
...
100
0
c..
90
80 . 70
~
60
~
40
z
z
.P
A :=
tT A
"
30
'0
10
0.6
u
j
0.4
"
"
.5
.3
0-
~/
'<:~
I~
'"
:i 200
'5°C
~":h~" 125"C
50
Transfer Characteristics
0.8
---ti~GSlO'"
"-lV
T
-55"C
'..."
.3
Transfer Characteristics
"~
0-
150
~
1,\
"'"I"ro-..
VaSIOFF)" -O.75V
TA = 125 u C
~,/I TA "25°C'- IVfr)\(~ "-55"C- f--
_
~
100
.E
50
~r.-1'i~-+-r--t---cI-t-i--l
I
~
P'cr'...-'k--t--t-t----+-I--l
0.2
I
.P
...... y~
-0.2
-0.4
-0.6
-1
-0.8
-0.2
Vas - GATE-SOURCE VOLTAGE (V)
-0.6
VGS
-1
-1.4
-1.B
-1.0
GATE-SOURCE VOLTAGE (V)
-
Transfer Characteristics
Transfer Characteristics
-3.0
-2.0
-4.0
VGS - GATE·SOURCE VOLTAGE (V)
Transfer Characteristics
400 . .:0-:::::1-,;;---::--:;-;;;;'
300
E
E 250
.3
~
1.-."..,+-++/
250
~
.3
~
200
-
iii·
~
S
12
IY
"~
I
VGS = -0.15V- l -I -
...Il"
.E
-2
vas = -O.SV
'/-
C>
-I
J. ! _0'25V_ I -
~
-3
-I
Vas - GATE·SOU~CE VOLTAGE (V)
-3
-2
-5
-4
VOS - DRAIN·SOURCE VOLTAGE (V)
VGS - GATE·SOURCE VOLTAUE (V)
Transfer Characteristics
r
VGS - -IV
. Vas - 1.25V
Parameter Interaction
Transfer Characteristics
9" 'oss@Vos
=
10
15V, VGS - OV,~
c
'os@l o = 0.5 rnA, Vas" OV
'vasloFF;@Nos
I
=15V, 10 = 1 nA
c
,' .•'-
'"";;
9"
'"'"m
!!i
V r~
c
~
~L
/'
",
-2
-I
Vas - GATE-SOURCE VOLTAGE (V)
Output Conductance
Drain Current
~
100
TA
~
z
B
10
5V
25"C
u
~OG = lv
I
«
~
C>
Transconductance vs Drain
Current
f-1 kHz
.3
Vas~~FF~
10
~
g
V
J1
0.1
aS
1'5V
=-3 .IV ~ b'
20V
V
. . . Ior
/'
~
'0 - DRAIN CURRENT 1m A)
0.1
0.01
10
«
'"
"""
(IWl111-;:r
I;;
11l
1111111
>-
iii
~
w
10
1"
'-'
«
'";
10
10
I
of
-llml~
~
I
j
~D=D.1rnA
TA=125"C
~
"
l11IIt'-++ItI
IIIIIIIII IIIIIIII
I
0.1
10
f - fREUUENCY 1kHz)
j
100
,...
-w
~~ IGss~
"':I¥
TA _85 c C
100
10
Capacitance vs Voltage
10
TA=25°C
~
lass=
;3
J
1 MHz
......
:
t-
1\
"11:
I
f
I,
u
z
«
>-
~~
ID - 0.1 rnA
w
I D =100pA
~
TA - AM81ENTTEMPERATURE I"C)
-lass
w
'-'
w
I
leakage Current vs Voltage
Vos -15V
§i
100
1l
1111.
0.1
%10k
TA = 25°C
0.01
"'"c
'"
~
10 - DRAIN CURRENT (rnA)
~
~,.
u
11,111
b rF1W" =-3.IV
j
VaS(OFFI = -1.6V
Noise Voltage vs
Frequency
100
Ik
§
C:IOV
15V
/"
I
f '" 1 kHz
"- .......
I
l"-
j
10
20
30
40
10·12
50
llLLL
T
ern (Vas
I
VDa - DRAIN·GATE VOLTAGE (V)
Ciss (V es '" 15V)
t-
10 = 1 rn'f-=f=
1
o
0.1
-10
-5
Channel Resistance vs
Temperature
Vos -15V
TA=25°C
Wv
- rr
E
VGS~OFF) - GATE CUTOFF VOLTAGE (VI
VGS - GATE·SOURCE VOLTAGE IV)
YS
"~
I
-2
-I
-3
-
o
-2
-4
-6
=15V)
-8
-10
Vas - GATE-SOURCE VOLTAGE (V)
~National
Process 58 N-Channel JFET
~ Semiconductor
en
en
01
Q)
0.039
If-..4 - - - - - - - I O . 0 9 1 I - - - - - - - - - I
Process 58 was developed for analog or digital
switching applications where very low rDSION) is
mandatory. Switching times are very fast and
RDSION) C;ss time constant is low. The 6Q typical
on resistance is very useful in precision multiplex
systems where switch resistance must be held to an
absolute minimum. With rDS increasing only
O.7%/oC, accuracy is retained over a wide temp-
,
0.006
(O.15J)
erature excursion.
GATE IS ALSO BACKSIDE CONTACT
PARAMETER
Gate-Source Breakdown
Voltage
BV GSS
Zero Gate Voltage
Drain Current
IDSS
TEST CONDITIONS
VDS
~
OV, IG
~-1
VDS~5V,VGS~0
Pulse Test
Reverse Gate Leakage
IGSS
VGs~-15V,VDs~0
rDS
VDS
~
100 mV, V GS
Pinch Off Voltage
VGSIOFF)
VDS
~
5V, ID
Drain "OFF" Current
IDIOFF)
VDS
~
5V, V GS
~
~
0
3 nA
~
-10V
-30
100
400
1000
mA
-50
-500
pA
V
3.0
6.0
20
-0.5
-5.0
-12
20
Q
V
nA
1 MHz
12
25
pF
25
50
pF
15V. In
~
2 mAo f
V DG
~
15V, ID
~
2 mA,
Forward Transconductance
gfs
V DG
~
10V, ID
~
2 mA
Output Conductance
gos
V DG
~
10V, ID
~
2 mA
Noise Voltage
en
V DG
~
15V, ID
~
2 mA,
10-13
-25
1 MHz
Vn~ ~
Ciss
TO-92 (CASE 92)
UNITS
~
C.
*Jl08
* Jl09
* Jll0
PN5432
PN5433
PN5434
MAX
f~
Feedback Capacitance
This process is available in the following device
types. *Denotes preferred parts.
TYP
0.05
Input Capacitance
*2N5432
*2N5433
*2N5434
MIN
MA
"ON" Resistance
TO-52 (CASE 07)
n
CD
DESCRIPTION
CHARACTER ISTIC
...o"'C
10
100
f~
100 Hz
6.0
mmhos
Mmhos
nV/yHz
co
II)
Process 58
en
en
C1)
Common Drain-Source
()
Characteristics
..
0
0-
100
.
~2.0~-
Vos =DV .
J /'-,1.
80
.§
....
:5
40
<1
'"I
Q
20
.E
-1:0V
I
./
'1i/ V
60
'"
~
z
HON" Resistance vs
Drain Current
Parameter Interactions
p"
:i:
100
S
..,w
z
"In
~z
<1
0.8
1.2
1.6
I
r'v
10
100
5.0
50
loss
a:
c
.!1
s..,
w
100
Z
VG~(OFF) '" -l.OV
"In
I - - +125'C
~
10
'"~
"....
"3
"<1
5.0
~
+25°C
l5
-0.1
-0.5 -1.0
""!,, ii j Il
1.0
5O
G
V
J
.!1
Vos - DRAIN·SOURCE VOLTAGE (VI
55'C~
+25°&
I
10
-5.0 -10
II
r.-·}izt{
1---
'"
=
=0
Vas
50
M
~
I
2.0
f
"»'"
Z
1.0
0.4
500
s.nv, 10 '" 3.0 nA
VGSIOFFI @Vos '"
~
a:
Ii IIV
- I - -
w
~
~ I
l-
I
.Ii
100
.,;
~
10
5
0.01 0.03 0.1
,.....
O!;:
6.0
:l:
4.0
N
!5
I-
~
2.0
~
-16
VGS - GATE·SOURCE VOLTAGE (VI
-20
-2.0
40
Voo '" 1.5V
VaS(OFFJ = -1ZV
!!l
~
I- -
:l:a:
30
N..T'-
"I
20
I =1 10;;;'A--01 '1- "j
.9
10
100
1'-'
_ VGS(OFFI =-B.5~_
=-s.sv
~-:- VaS(OFFI = -3.5V~I~ VastOFFI
~ i'.. ......
l-
...... ;::0-
r-
I
-4.0-6.0
-8.0
-10
VastOFFI - GATE·SOURCE CUTOFF VOLTAGE (VI
10·14
I
TA' 25'C
;:
10 .130 ~A
I
-12
]
I
z
10
Switching Turn-On
Time vs Drain Current
50
g
I'
0.51.02.0
1- FREQUENCY (kHz)
Voo "'1.5V
VGS(OfFl'" -1ZV
TA"'+Z5°C
8.0
c.. (Vos = 5.0V) - -
-8.0
lU II
1.0
10
10
F E ::::.c~ (Vos ' 0)
-4.0
10'10~
.'
Switching Turn~On vs
Gate·Source Voltage
. . . r-- f-l
o
5.0
I
1.0
I
1'0<.10 '1.0 rnA
10 - DRAIN CURRENT (mAl
I
1.0
10
F
1==
J--
I I
II
Z
VaS(OFfl ", -5.DV
0.1
1-0.l-l.0MHz
~ ..... ~
"'z
0
1.0
Capacitance vs Voltage
~
w
~~
~ VGSlO'''' -1.0V
) d- VGSlOFF! ", -3.0V
a:
1--"7I<-++I+1+1+--!- TA • +25'C
1= 1.0 kHz
1.0 '--'--'-.L.J..I..llJ.I...--'--'-J...J..I.J.W
0.1
1.0
10
II
oS
>
10 - DRAIN CURRENT (rnA)
~
>
~
10
Voa '" 10V
BW' 6.0 Hz@f'10Hz, 100 Hz
"'D.Zt@t;?:1.0kHz
50
~
1;!
!;
I
Ii
C>
1';
.I
.."..,
..g
.
"
f·I.0 kHz
100
TA' -55'C ~
TA '" +25°C ;:r
TA ' +125'C'"
~
~
C
VOG::: 10V
TA "'+25°C
w
Z
C
Z
100
S
"l!
.§
..,
~
Noise Voltage vs
Frequency
Transconductance vs
Drain Cu.-rent
5.0
10
15
20
10 - DRAIN CURRENT (mAl
25
~National
a
Process 83 N·Channel
Monolithic Dual JFET
Semiconductor
0.022
f-------(0.5591--------I
DESCRIPTION
Process 83 is a monolithic dual J FET with a diode isolated
substrate. It is intended for operational amplifier input
buffer applications. Processing results in low input bias
current and virtually unmeasurable offset current. likewise matching characteristics are virtually independent
of operating current and voltage, providing design flexibility. Most GP 2N types are sorted from this family.
0.024
(0.6101
Characteristic
Min
Test Conditions
Parameter
Gate-Source Breakdown
Voltage
Zero Gate Voltage
Drai n Current
loss
Forward Transconductance
gfs
VoS =15V, VGs=O
Pinch Off Voltage
VGS(OFF)
VOS =15V, 10=1 nA
Gate Current
IG
VOG =20V, 10 =0.2 rnA
t: .................... T ............................................ ...
• UI.,;I
• -
"
•
u
Typ
0.5
2.5
8.0
rnA
1.0
2.5
5.0
mmho
-0.5
-2.0
-4.5
V
3.0
50
pA
5.0
I'mhos
nV/-.jHz
_._.0 ...
gas
VOG = 15V, 10= 0.2 rnA
1.0
rOS
VOS = 100 mV, VGS = 0
450
IVGS1-VGS21
v
-70
ON Resistance
Differential Match
Units
-50
Output Conductance
Noise Voltage
Max
II
VoG =15V, 10 =0.2 rnA, f= 100 Hz
10
50
VOG= 15V, 10 =0.2 rnA
7.0
25
mV
50
I'V/oC
Differential Match
t.V GSl -2
VOG=15V,10=0.2mA
Common-Mode Rejection
CMRR
VOG=15V,10=0.2mA
10
80
dB
95
Feedback Capacitance
VOG= 15V, 10 =0.2 rnA, f = 1 MHz
1.0
1.2
pF
Input Capacitance
V oG =15V,1 0 =0.2mA,f=1 MHz
3.4
4.0
pF
This process is available in the following device types. 'Denotes preferred parts.
TO-71 (CASE 12)
2N3921
2N3922
'2N3954
'2N3954A
'2N3955
'2N3955A
'2N3956
'2N3957
'2N3958
2N4084
2N4085
2N5045
2N5046
2N5047
'2N5196
'2N5197
'2N5198
'2N5199
2N5452
2N5453
2N5454
'2N5545
'2N5546
'2N5547
U231
U232
U233
U234
U235
S-Pin MinlDIP (CASE 60)
S-Pin MiniDIP (CASE 67)
J410
J411
J412
'NPD8301
'NPD8302
'NPD8303
10-15
('I)
co
Process 83
en
en
CD
u
e
0...
Common Drain·Source
Characterisiics
Transfer Characteristics
'.0
1
i
l
4.of-l.HH...-i
2D
.E
I.Q
i
l'o?io-1A\-t":;'-i'4'-..,..+-l
3D
z
~
,
z
~,
HI=i-t""'''d~
.E
3.D
-1.0
-1.5
-2.0
TYP VasloFFI = -z.ZV
I
t-t-HH-·v~Jov~
-rJ.BV
1.0
-2:5
-1.2V
~!i!!~-ClE·'~V~EB
·-1.5V
~
Vas - GATE·SOURCE VOLTAGE (V)
1.0
2.0
3.0
10
C..§
VaSIOFFI@Ves =20V·=tJ
=~
~ti
'o-I.OnA
4.0
....
c~
10k
§§§~~~~"*::;;;;j
I...
10'
I
-1.5
-2.0
-2.5
.i
o
VGS -.GATEoSOURCE VOL TA~E IV)
:,1
!i:
~,
J
~t
"
,.
0-111
'.1
1.0
f - FREQUENCY 1kHz)
0.1
'!.J;
11TIW
FI
~ l"rItii
100
'.1 L...J..u.wooJ....I...1.I.J.lJJw....u.wLW
0.01
10
0.1
1.0
1000
10 - DRAIN CURRENT {rnA}
Dillerential Ollset
aE
l00~~
lOD
I·D.l-1.OMH,
-'iffflil
1.'
0.1
0.01
1.0
~,
J
VoG ·,5V
~~
TA = +25"&
LOOSE
ffi~
g
s
lOD
g
TIGH1-
;:::
oJ
I
1.0
0.01
10
10 - DRAIN CU~~ENT (mAl
0.1
VGS - GATE·SOURCE VOL lAGE (V)
Differential Drift
10 - DRAIN CURRENT {mAl
CMRR vs Drain Current
~ 110
1111
§"o
100
~
90
"z
"
,
70
~
60
t.vDo = IOV - 20V
1111
I..
IIII
IIII
111111
r0.01
10 - DRAIN' CURRENT {mAl
-r-t--I-
i+~
f--
o
o
I.DD.L"-'-.l...Ll,,J,,.'fi..ofL.,":"',.1..-L.l..lJ.llU
, •D
eMAn,. 20 log tr.V DG
1111
.o.VG~',11
0.1
10 - DRAIN CURRENT (rnA)
10·16
rei
D·
10
100
T,."D.'m'
10 "".OmA
"
r-
40
·D.2f@f~1.OkHz
~
~
32
TA - AMBIENT TEMPERATURE
DV;ZP . 20V
f--
Noise Volt"ge vs
Current
V•• -15V
..
BW= ~.o Hz@f"ID Hz. 100 Hz
~
24
V~GI.5.0V .
1.0
VOG -DRAIN·GATE VOLTAGE (V)
Noise Voltage vs
Frequency
100
16,
0.1 L...L...J-'-'-"-...J.....J..-"--"--'
-15
-25
+25
+75
+125
+175
VGSCOfFI • -J.DY
-less
8.0
,!l
'-100kHz
~
"'''·c
~j ~~~I!~~~~~~
..,
-1.0
E:
10
i!l
T.
0.1
-10
Output Conductance vs
Drain Current
~ ~~~~~_~~~~
-0',5
II
-1.0
VGSIOFFI - GATE CUTOFF VOLTAGE (V)
il
o0
ros
0.1
-0.1
5.0
1,.Ok f=1=1=1=1=
10
1.0
I.D~g
~ z O.5~
~
~ ,
=
o~
_~~a
5.0
~ z~
1.0
Z
Leakage Current vs
Voltage·
.
~
, -
0
;: :;
z In
,,8
Vos - DRAIN-SOURCE VOLTAGE (V)
Transfer Characteristics
5.' rlrr-r-r-,-,--,---,-.,.,
~.
!Its.A'
rrr;,,,.,
~=
=0 1.0
u
10
a..,loss (fIVos=15V, Vas"OPULSED
ros@Vos=IOOmV,Vas· O
J
E~
'.0 I-Hi0'9I'::;;I;;;oI.;;-CI::r·3:,:Vt-+-H
o
-0.5
r:T=""-'""!"=5..TC ..,-..,....,.,.,...."
4.0
Channel Resistance vs
Temperature
Parameter Interactions
1.0
1.0
~National
Process 84 N-Channel
Monolithic Dual JFET
~ Semiconductor
.1
DESCRIPTION
Process 84 is a monolithic dual JFET with a diode
isolated substrate. It is designed for the most
critical operational amplifier input stages or elec·
trometer single ended preamp. Ideal for medical
applications and instrumentation inputs where
sUbpicoamp inputs are important. Device design
considered high CMRR, sUbpicoamp leakage over
wide input swings, low capacitance, and tight
match over wide current range.
l"--L-'i7'Y'.,f-----t0.0040
(0.1016)
~~~~d~.,LA+,-
0.022
CHARACTERISTIC
MIN
TYP
Vas =OV, IG =-1 /lA
-40
-60
300
1000
/lA
180
300 .
/lmhos
.umhos
PARAMETER
Gate·Source Breakdown Voltage
CONDITIONS
BV GSS
Drain Saturation Current
lass
Vas = 1 5V, V GS = OV
20
Forward Transconductance
g"
Vas = 15V, V GS = OV
90
= 30 /lA
50
120
150
2
4.5
9t,
Vas = 15V, 10
VGS(OFFj
Vas=15V,la=1nA
Reverse Gate Leakage Current
IGSS
Vas = OV, V GS = -20V
Gate Leakage Current
IG
VaG = 1OV, I a = 30 /lA
Feedback Capacitance
Crss
Vas = 15V, V GS = 0, 1= 1 MHz
Input Capacitance
C iss
Vas = 15V, V GS = 0, 1=1 MHz
Noise Voltage
en
Vas = 15V, la
Noise Voltage
en
Vas = 15V, I a = 30 /lA, 1= 10Hz
180
Vas = 1OV, I a = 30 /lA
0.01
Output Conductance
gos
n;·q:" ... " .... +; ... 1 r- . . +nC .... " ... ,..." " .... 1.. ., ... "
-
1\/
-- . ---
~"
1(\\1
I
1= 1 kHz
pA
0.5
3
pA
0.3
0.4
pF
2
3
pF
30
50
_ ':In "/\
1~
Vos = 10V, 10
= 30/lA
10
Common-Mode Rejection
nV/..jHz
0.1
CMRR
Vos
= 10V, 10
= 30/lA
112
This process is available in the following device types.
50
* Denotes preferred parts.
*2N5906
*2N5907
*2N5908
*2N5909
Leakage Current vs
Voltage and Drain Current
Parameter Interactions
lk P=~~~~~~~EBIffi
lk
:ov ::::t::t:
~
InA ~
i
"
TA
=1'25"~==t=lr30L 100,A
100
10 -30,A=
w
'"
;2
10
~
I D =10DpA¥; 1
TA - 25°C
I
10
0.1
VGS(OFFi ~
101 30,~
.OJ
l--'.-'...L.l..LU.li..._L..J....LLlil.!J
i=::::
TA=85"C ~lo-l00"A§ !§
~
;3
0.1
10
0
VOL TAGE GATE·TO·SOURCE (V)
10
20
30
40
50
60
VOG - DRAIN GATE VOLTAGE IV)
10·17
/lvtc
dB
TO·78 (CASE 24)
rr/
/lmhos
~\I
Ratio
VGSIOFFI Ql Vas' 15V, 10:
nV/..jHz
~
D. V GSI-2
Uls. los5@V as :15V.VGs
V
5
Differential Gate-Source
Voltage Drilt
2N5902
2N5903
2N5904
2N5905
UNITS
V
0.5
Forward Transconductance
Gate Cutoll Voltage
= 30/lA,
MAX
=
70
~
co
·Process 84
en
en
Q)
Common Drain-Source
Transfer C.haracteristics
CJ
e
c..
Leakage Current vs
Voltage
Characteristics
360
500
~ 300
....
~
~
~~~~~--+
180
120
~
,.,
100
300
~w
10
..'"
0.5 0.75
1
1.25 1.5
1.75
-
1--
'!§ 300
.3
..~
VGS(OFFI"
w
u
z
240
.,z
180
,
:3
I
..
60
TA
0.75
1
_
200
100
.,- 'I:;
'"
!i0
~z
~
I"
1.25 1.5
300
z
""'XTA =125°C
1.
"~
I
125~C~ ~VGS(OFFI;:: 1.2V----'
0.25 0.5
VDG
f= 1 kHz
TA =25'C"
TA = 125'C I
~
TA =-55'C
"
VGS(OFF'- 2V
TA = -55"C
"§
.3
il:
z
:3
J
co
..~
.
2!
100
1 rnA
200
Capacitance vs Voltage
..E
100
>
100 Hz
0
1 kHz
5
I
.;
0
1 kHz
10 kHz
100 kHz
"J
J
10kHz.:;:::: 100 kHz
10
100
30
Differential' Offset
Differential Drift
VOG '" 15V
'"
30
iOIOJl
MED
= -55'C to 25,',~.
10 - DRAIN CURRENT IpAI
....'"
:3
10
50
100
10 - DRAIN CURRENT (pAl
10-18
16
20
24
1
r--"VOG =10-20V
115
105
r::t:- ....
b----- "VDG =3-10V
1--- r--.
1
100
95
~
1 rnA
i:i
90
!'
I
I
"T = 25°C to 125'C
= -55'C to 25'C
lk
125
a: 110
w
i=TIGHT
III
100
;:;J
I
10
TIGHT
~
.,
!iz
I
MEO
12
CMRR vs Drain Current
~
:s
z 120
VOG -15V
1
""
VGS - GATE·SOURCE VOLTAGE (VI
100
6 T" 25°C to 125°C
CASS (Vos = 15VI
10 - DRAIN CURRENT (pAl
100
10
0.4
0.3
0.2
0.1
10
f - FREQUENCY (kHz)
I-""
CiSS (V os '" 1!iVI
Z
I
i 1mr\
10
30 50
10
2!
I
20
15V
10 - DRAIN CURRENT (pAl
~Hz
co
0
100
1~~,
vr IIIII
10
10
w
10
~
w
u
w
100
11 0 1
1
~
:s
w
10
10V
VGSIOFFI-
200
~
10 =3DIJA
.;
2V
1
VOG = 1!iV
I
w
F
I
VOG -15V
:s
70
10V
100
~
lk
~
>
- f-.l ~!.!
Noise Voltage vs
Current
YS
60
VaS(OFFI-
5V
10 - DRAIN CURRENT (pAl
lk
:;
"
.~
..-HII
100
50
5V
w
u
VGSIOFFI = 1.2V
20 30 50
40
!
10
Frequency
.'"
-g
15V
J
10
30
lk
!;
VGS - GATE·SOURCE VOLTAGE (VI
Noise Voltage
;;
30
20
1.75
20
Output Conductance vs
Drain Current
!ioo
~
2V
~: :;:o5~C
\
.li
10
VOG - DRAIN GATE VOLTAGE (VI
Transconductance vs
Drain Current
"
-'" .,: VVTA=2-tc~~
~ 120
a:
....
......
I-.
..
v
=25°C
0.2
0
lk
"
TA
VOS - DRAIN SOURCE VOLTAGE IVI
Transfer Characteristics
-g
....-
I
J
VDS " GATUO·SOURCE VOLTAGE (VI
360
85~C
:li
.E 100
OL-~~~~~~~~
0.25
TA '"
....
I
o
L
co
:5
60 t-...l'~?--+---f'''oIl---+---1
-
TA ", 125°C
a:
~ 200
I
.E
.::
~
f-.3oj,,-",,,c-'II--+
z
.,~
400
....
::a::
240
~
VGSIOFFJ = 2.25V
j
Zk
lk
!....
TA = 25' C
CMRR = 20 Log
6VOG
6VGS1-2
85
10
20
30
40 50 60
10 - DRAIN CURRENT (pAl
80 100
~National
Process 86 N-Channel
Monolithic Dual JFET
~ Semiconductor
DESCRIPTION
Process 86 is a monolithic dual JFET with a diode
isolated substrate. It is intended for critical amplifier
input stages requiring low noise, sub picoamp bias
currents and high gain. Exacting process control results
in consistent parameter distribution with tight match
and low drift.
This process is available in the following device types.
'Denotes preferred parts.
0.022
TO·78 (CASE 24)
'T'
U421
U422
U423
U424
U425
U426
t
PROCESS IN DEVELOPMENT
10-19
~National
Process 87 Analog Switches
~ Semiconductor
0.030
1-------(0.7621-------1
minimum of circuit board area. Switching transients are
greatly reduced by a monolithic integrated circuit process. The resulting analog switch devics provides the
following features:
•
•
•
•
•
•
301l
100 MHz
4MHz
250pA
±15V
Low ON Resistance
High Analog Signal Frequency
High Toggle Rate
Low Leakage Current
Large Analog Signal Swing
Break Before Make Action
Note: Pin 4 is also backside gate
DESCRIPTION
The AM1000 series of analog switches are particularly
suitable for the following applications:
The AM1000 series are junction FET integrated circuit
analog switches. These devices commutate faster and
with less voltage spiking than any other analog switch
presently available. By comparison, discrete JFET
switches require elaborate drive circuits to obtain
reasonable performance for high toggle rates. Encapsulated in a four pin TO-72 package, these units require a
•
•
•
•
•
SCHEMATIC AND CONNECTION DIAGRAM
High Speed Commutators
Multiplexers
Sample and Hold Circuits
Reset Switching
Video Switching
EQUIVALENT CIRCUIT
TO·72 Package
ANALOG~ANAlOG
INPUT....
"":"0
...,
OUTPUT
EXTERNAL
DIODE REQUIRED
TOPV1EW
TYPICAL APPLICATIONS
± 10 Volt Swing Analog Switch 0.5% Accuracy
± 15 Volt Swing Analog Switch
,--AMIDDo']
ANALOG
INPUTS
[O----=()----
10
a:
0:=
C>:;l
12
5.0
.E
.E ....
-16
~
K t7 ..-
-ZO
~
~ -8.0
100
_0:
Ilk, loss @V os ::: -15V, VGS:: 0 PULSED
I
los@Vos:::-100mV,Vas=0
VGS(OFFI@VOS '" -:'5V,l o '" -1.0$lA
I
1.0
Z.O
3.0
1.0
4.0
GATE·SoURCE VOLTAGE IVI
z~
Z.O
tL
_
~ -4.0
.4~
10
-1.0
Leakage Current vs
Voltage
-
E
"2
.!
Z
i0:1i
~
~
Z
....
500
"In
w
"
2
4.0
~-
.... t:';1v
-~
.,.
+Z.5V.1 +3.0V +3.5V
-Z.O
-3.0
-4.0
-5.0
Channel Resistance vs
Temperature
1000
~
~-
Vo, - DRAIN·SoURCE VOLTAGE IVI
!
!;l
+0.5V
+1.0V
......t""
E
VGS(OFFI- GATE CUTOFF VOLTAGE (V)
Transfer Characteristics
~
.........
1
.y
I.
~::
i""""
1'/ ..... ......
0:
C>
I
5.0
r-t-JG,l ov~
-IZ
~ -8.0
~
10
TA :: 25'C
TYP VGS(OFFI:: 4.5V
-16
l-
f'
1.0
-
i
"In;;;
!It.
50 z
-"
VG,
.!
2
<12
z
<1
~
;;:
I-+-"!~a--+---'l"\,d---l--l
100
r-
VOS
100 mV
VGS 0
VGSlDFFI· Z.5V ~ . .l.
I-
t-VGSlDFFI.4.5V~
~ lt-- VGS(OFF! :: B.OV ~~
1---1""" ~ I-
50
:5
I
I
!i
.5
10
1.0
VG ,
-
Z.O
3.0
-6.0
4.0
GATE-5oURCE VOLTAGE IVI
-1 Z
-18
-Z4
-30
-75
Output Conductance vs
Drain Current
'
Transconductance vs
Drain Current
]
_1:
.3
-25
+25
+75
+125
TA - AMBIENT TEMPERATURE
VOG - DRAIN·GATE VOLTAGE (V)
+175
(~C)
Noise Voltage vs
Frequency
!~G"~~lp Z.5vlll~
I:' 1:~ RIIIIIIIIIIIIIII
11111111
w
"z
"t;
100
~
l3
~
:>
1 . 0 _ .
0.5
10
Hfl...r-t"~lo '" -0.2 rnA
~ ~1i'ilJ::m~.s
'"z
C>
~
!;
Voo:: -15V
BW::: 6.0 HZ@f"'10Hz,10oHz
I
C>
.c
1-+-I-ttI!tt!-H-tttttVOG '" -15V
I
J
f::: 1.0 kHz
• 0.Z'@';'1.0kHz
1.0 L-L...L.J.-'-...I...L-'-~:'-'-:,:"..u..........,
0.01 0.03 0.1
0.51.0Z.0
10
100
0.1 L-LLJ.J.J.JJJL....I-LllWJJ.-l...I..J.J.LWI
-0.1
-1.0
-10
-100
10 - DRAIN CURRENT ImAI
Normalized Drain
Resistance vs
Bias Voltage
Capacitance vs Voltage
100
"z
50
w
"In
i0:1i
I I I I
"2
0;
:i:
10
I
5.0
ZO
w
N
C.LU5VI!=
:;
10
C. IV Ds - 15VI:=
"'"
=
z
5.0
!i
Z.O
0:
"
IIII
1.0
4.0
-
8.0
lZ
16
I- rOSb-
rr-
1
1.0
ZO
.." t::::"
O.Z
GATE·SoURCE VOLTAGE IVI
'DS
VGS
VGS(OFFI
I
I
I I I I I
VG ,
50
C>
.....
;'\
J,
VGS(OFFI @ 5V, 10~A
w
f-D.l-l.0MHz
;:!
• - FREoUENCY IkHzl
10 - DRAIN CURRENT ImAI
100
-
10 -5.DmA
10
5.0
......... . /
0.4
0.6
0.8
1.0
IVGs/VGS(OFFII- NORMALIZED GATE-
To·SoURCE VOLTAGE IVI
10-23
o
n
CD
, Common Drain-Source
Characteristics
Parameter Interactions
...
"'C
en
en
(X)
(X)
0')
co
tJ)
tJ)
(I>
~National
Process 89 P-Channel JFET
~ Semiconductor
(,)
o...
I~
Q.
i1
1:::::)-----1>
DESCRIPTION
Process 89 is designed primarily for low level
amplifier applications. This device is the comple·
ment to Process 52. Commonly used in voltage
variable resistor applications.
0.020
10.508)
~~~/1
CHARACTERISTIC
TEST CONDITIONS
PARAMETER
MIN
TYP
Gate-Source Breakdown
Voltage
BV Gss
Vos = OV, IG = lilA
20
40
Zero Gate Voltage
Drain Current
loss
V os =-15V,V Gs =0
-0.3
-4.0
Forward Transconductance
gfs
Vos = -15V, V GS = 0
1.0
2.5
Forward Transconductance
gfs
VOG = -15V, 10 = -0.2 mA
Gate Leakage
IGSS
V GS = 20V, Vos = 0
Pinch Off Voltage
VGSIOFF)
Vos =-15V,l o ·=-1 nA
Feedback Capacitance
C rss
VOG = -15V, V GS = 0, f = 1 MHz
Input Capacitance
Cis
VOS = -15V, 10 = -2 mA, f = 1 MHz
"ON" Resistance
ros
Vos = -100 mV, V GS = 0
Output Conductance
gas
VOG = -15V, 10 = -0.2 mA
Noise Voltage
en
VOG =-15V,10 =-0.2mA,
f = 100 Hz
This process is available in the following device
types. * Denotes preferred parts.
TO-18 (CASE 11)
TO·92 (CASE 92)
TO-92 (CASE 94)
2N2608
2N4381
2N5020
2N5021
*2N5460
*2N5461
*2N5462
PN4342
PN4360
PN5033
2N3820
TO-72 (CASE 23)
2N3329
2N3330
2N3331
2N3332
10-24
MAX
V
-20
4.0
700
0.5
UNITS
mA
mmhos
Ilmhos
nA
0.02
1.0
3.0
9.0
V
2.0
2.5
pF
7.0
8.5
pF
n
450
5.0
30
15
Ilmhos
nV/v'Hz
""C
Process 89
Transfer Characteristics
.s....
.s .s
;<
-6.0
....
~
'"~
z
I
.E
~
z
z
i
~
-2.0
I
g".lpss@Vps:-15V,VGs-OPUlSED
'os@Vos:l00mV.VGs:o
VGS!ofF!@VOS: -15V,lp ~ 1.011A
5.0
~
1.0
'DS
~
,£
0.1
0.1
V GS - GATE·SOURCE VOL TAGE (V)
II~rs
I
IIII
I
0.5
z
~
~
0.1
.s....
j
'"
-0.4
~
I
"
IGSS
~
2.0
d- l o"0.1-1.0rnA=
ID"O.1
TA "+125°C
'"
1.0mA
~ ~
1.0
~
T
0.01
r-
V GS - GATE·SOURCE VOLTAGE (V)
~
TA " +25"C
-6.0
-12
-3.0
-4.0
-5.0
VGSIOFFI-l.0V . . . . . .
'"
VG"OFFI"1.8V~
VGSIOFFI '" 5.0V
-18
-24
I
i--"
~~
1.0
=
0.5
......
~
I
.e
0.1
-75
-30
-25
25
75
175
125
TA - AMBIENT TEMPERATURE eC)
VDG - DRAIN·GATE VOLTAGE (V)
Output Conductance vs
Drain Current
-2.0
Vos =-100 mV
Vas - 0
«
IGSS
FF-ID-0.l-l.0mA~
4.0
-1.0
10
5.0
z
i;;
~
~
z
z
I
0.6V
0.BV+--.1.0V- 1.2V -
VDS - ORAIN·SOURCE VOL TAGE (V)
w
u
f'-.
TA '" +85°C=t= IGSS
§
-
r- r- r-
0.4V
Channel Resistance vs
Temperature
3.0
z
3.0
j
9
0.2V
_I'"'"
...-
Leakage Current vs
Voltage
E
2.0
/
-0.8
g
1.0
I-
z
.E
(X)
(0
VGS '" OV
/
-1.2
10
5.0
1.0
4.0
'"'"....
0.5
I
~
~
z
~
TA"25"C
T¥P VGSIOFFI = 1.8V
;< -1.6
VGS(OFFI - GATE CUTOFF VOL TAGE (V)
Transfer Characteristics
:
-uw
1.0
J,-
0.5
~'-:•
o
1"
5.0
z
u
13 ~
-4.0
«
'"'"
E
(J)
(J)
-2.0
10
10
;<
(1)
Common Drain-Source
Characteristics
Parameter Interactions
Noise Voltage vs
Frequency
Transconductance vs
Drain Current
10
I~
5.0
?
w
u
z
w
u
'"
z
~
~10~
S
5.0
• • •
~
'"
~
I
J
I: §~III~~~~~m~
VOG '" -15V
f =1.0 kHz
I
1.0 l.-JL....UO-WU-J...J-.UJ.J.1ll-..L.I...LLl.Wl
-1.0
-0.1
-10
-0.01
;;:
0.1
-0.01
ID - DRAIN CURRENT (rnA)
-0.1
-1.0
-10
Capacitance vs Voltage
100
f=0.1-1.0MHz
50
w
u
z
;::
u
:l:
10
:3
I
,
u
is ~ E
C, (V DS " -15V)=
==
5.0
- ~ ~rOI
u
Crs (Vos
1.0
o
4.0
-15V)
B.O
12
16
. 20
VGS '- GATE·SOURCE VOL TAGE (V)
10-25
~
~
~
I
.c
10
5.0
Vo a"'-15V
BW =6.0 Hz@f'" 10 Hz, 100 Hz
"0.2t@f;;:::1.0kHz
1.0 l....J..J..l.....L..Ll.-LL..J...Ll....L..Ll.-'-l
0.01 0.03 0.1
0.51.02.0
10
1- FREQUENCY (kH,)
10 - DRAIN CURRENT (rnA)
-
-w
'"
~,.
~
o
n
50 100
o0')
r.n
r.n
Q)
(.)
~National
Process 90 N-Channel JFET
~ Semiconductor
o
~
DESCRIPTION
c.
Process 90 is designed for VHF/UHF mixer/
amplifier and applications where Process 50 is not
adequate.' Has sufficient gain and low noise, common gate configuration at 450 MHz, for sensitive
receivers. The high transconductance and square
law characteristics insures low crossmodulation
and intermodulation distortions. Common-gate
operation simplifies circuitry. Consider Process
92 for even higher performance.
GATE IS ALSO BACKSIDE CONTACT
CHARACTERISTIC
PARAMETER
TEST CONDITIONS
MIN
TYP
...,20
-30
MAX
UNITS
Gate-Source Breakdown
Voltage
BV GSS
Vos = OV, IG = -1 /lA
Zero Gate Voltage
Drain Current
loss
Vos = 10V, V GS = 0
3
18
40
mA
Forward Transconductance
gfs
Vos = 10V, V GS = 0
5.5
8.0
10
mmhos
Forward Transconductance
gfs
Vos = 10V, 10 = 5 mA
4.5
5.8
mmhos
-5.0
Reverse Gate Current
IGSS
V GS =-.15V, Vos = 0
"ON" Resistance
ros
Vos = 100 mV, V GS = 0
Pinch Off Voltage
VGS(OFF)
Vos = 10V,I o = 1 nA
Output Conductance
gas
VOG=10V,10=5mA
Feedback Capacitance
Crs
Input Capacitance
V
-100
pA
fl
90
-1.5
-3.5
-6.0
V
45
100
/lmhos
VOG = 10V, 10 = 5 mA
1.0
1.2
pF
4.0
5.0
pF
Gis
VOG = 10V, 10 = 5 mA
Noise Voltage
en
VOG = 10V,I 0 = 5 mA,f= 100 Hz
13
nV/YHZ
Noise Figure
NF
VOG = 10V, 10 = 5 mA, f = 450 MHz
3.0
dB
Power Gain
Gpg (CG)
VOG = 10V, 10 = 5 mA, f = 450 MHz
11
dB
This process is available in the following device types. * Denotes preferred parts.
TO-52 (CASE 07)
TO-72 (CASE 29)
TO-92 (CASE 92)
TO-92 (CASE 97)
U312
* 2N5397
2N5398
J114
*J210
* J211
*J212
*J300
MPF256
*2N5245
*2N5246
*2N5247
Common Drain-Source
50
;t
.5
I-
:;;
-1.5V 11-1_ '1_
-2.0V
~
30
~
20 f---3.0;;
.E
10
Z
e---
-2~V
--If-I-
JC~~Jj::::~
t:::-/.I-""-
I
o
-','l"eI
100
~~; ~::~O'FlI. J.5v~-tL .Iov
40
Qt!.
"jg
E
E
50
;tW
Eu
_
I- z
z«
wI",u
",=>
=>c
u
10
gf
2.0
3.0
4.0
5.0
Z
.5
100
~
"
f'
Z
c'"
~
.,P';;
E
I
1.0
1,0
"jg
«
I I~ I
Vos - DRAIN·SOURCE VOLTAGE (V)
S
500 uw
50
5.0
10
1000
loss
r~ ~V
Z
~~
«z
loss@Vos::1OV,VGs=OPULSED
ros@Vos=100mV. VGS =0
VaS[OFFJ @Vos =tOY, 10 =1.0 nA
"'«
~H'
o
Transconductance vs
Drain Current
Parameter Interactions
Characteristics
10
-0.1
-1.0
-5.0 -10
VGS(OFFI - GATE CUTOFF VOL TAGE (V)
10-26
E
5.0
w
~~r·
55"C ;:::..
T +25°C
A "
TA·+125'Cr';;:;J~
VGS[OFF} '"
u
Z
~~
«
t;
I
1.0
-2.SVt$lP'"
Ill
GSlo " , .
-5.5V
0.5
~
l-
VOG '"
I
.li
lOV
f.lyrl'
0.1
0.1
1.0
'0 - DRAIN CURRENT (mAl
10
Process 90
...
"tJ
o
n
(T)
CJ)
CJ)
COMMON SOURCE
Transfer Characteristics
J5~~~-.-.-r-r-r-r,
~ 10k
30
Input Admittance
1i
~:0-10rnA
~
,
~
.2
~
1
:i
.
~
VGSIDfFl ~ -2.6V
lGSS~
5.0
~
I"-i=!~"""d>':"""~;~:: ~~~ ~
I-hH-4~-+-+"i~"i--H
10
5.0
I
..t:.
0 L.J--L-LJ-,--'1lIo..L..J-ll1.......
tII..J
o
-1.0
-2.0
-3.0
-4.0
-s.o
2.0
1.0
"
1"
"''"
VOG -IOV
10 " lOrnA
(CS)
.
z
1..
1.0
100
f= 0.1 -1.IIMH2
0.1
-4.0
-8.0
-12
-16
Vc;s - GATE·SOUACE VOLTAGE (VI
g"
~
.
z
b,·
F='
l
/'
I
~,
/
1.0
50100
1000
500
100
k:.
1.0
1:
VOG " 10V
10" 10 rnA
(CG)
0.1
500
100
.;
1- FREQUENCY (MHz)
10110
f - FREQUENCY (MHz)
Output Admittance
~
Output Admittance
..
~
VOG" 10V
10" 10mA
(CS)
~-:---.-
VOG = IOV
10=10 rnA
(CG)
.
z
boo,
I
1.0
I .......
/b
1.0
o•
~
'.0
J
10
~
g"
~
go,," x (0".1)
0
~,
.J
Forward Transadmittance
E
~
z
z
(V os " IOV)
1000
=
1
.
c" (Vos" 0)
~
10
..
~
=
Output Conductance
VS Drai n Current
CII (VDS = 5.DV)
0
Forward Transadmittance
10
,--~'~0.~11_.~1C,-·'~.O~kH~'~~.J..L.l..J
0.51.02.0
500
100
f - FREQUENCY (MHz)
100
10 " lOrnA
VOG" 10V
8W=6.0Hz@f"IIIHz,100Hz
1.0 (../_---'-------.JL-l---'--LL.Ll.J
1000
f - FREQUENCY (MHz)
f - FREQUENCY (kHz)
10
J
500
100
~~d-~~~+-~++~
0.01 0.03 0.1
Capacitance vs Voltage
1i,
20
15
~ ~~~~~'i'~·~1.0~m~A~!!~
VGS - GATE·SOURCE VOLTAGE (V)
It
10
J
f
0.1
1.0 0
,
g.
J
TA - +25°C
10
b.
,
10
TA~+125e-
~
2.0
=
~~:::::~
B.O
6.0
~
10
1.0 rnA
Noise Voltage vs
Frequency
z
~
~
VOG - DRAIN·GATE VQL TAGE (V)
TA = +125 e
~
~
l)lO~A
"r-r-r>~~~~~-r,
~ VDS ~ 10V - VGSIDFfI ~ -41,{=E5V
10'~
lOO8EmI
VaG ~ 10V
10 - lamA
(eG)
-I GSS,::::
+85·C
10
Transfer Characteristics
'0
lOV
-10 mA
(CS)
.§
IDa
VGS - GATE·SOURCE VOLTAGE (V)
V"
z
T,
~
to
I nput Admittance
10
E
10 -1.0 rnA
\.Ok
~
COMMON GATE
o
Leakage Current vs
Voltage
-g.,IJIX(o.l)
1
~
J
1
0.1
-20
>00
100
10 - QRAIN CURRENT (rnA)
1000
J
y
0.1
tOO
500
Reverse Transadmittance
!,
i
r
10·27
..
VOG" 1GV
10 ~ 10 mA
(CS)
y
=
~
Reverse Transadmittance
1i
10
~
./
1.0
f---.
0'\00
1.0
E
-V oG =10V
z
~-
'0 =lOrnA
~
LII
~
~
/"-b"
~,
g",J
1- FREQUENCY (MHz)
+g'g
0.1
r-"
!
1000
K
-~~ ~
/"
"'
~
500
11100
f - FREQUENCY (MHz)
f - FREQUENCY (MHz)
.
y
0.01
V
tOO
\1/
500
1- FREQUENCY (MHz)
~II
1000
Process 92 N·Channel JFET
~National
~ Semiconductor
~___________ iOi·0~23 -----------1
. 0.0038
DESCRIPTION
Process 92 is designed for VHF/UHF amplifier, oscillator,
.and mixer applications. As a common gate amplifier,
16 dB at 100 MHz and 12 dB at 450 MHz can be realized.
Worst case 75 ohm input impedance provides ideal input
match.
0.015
{0.3811
GATE IS ALSO BACKSIDE CONTACT
Characteristic
Test Conditions'
Parameter
Gate-Source Breakdown
Voltage
BVGSS
Vos=OV, IG= -1 p.A
Zero Gate Voltage
Drain Current
loss
Yos = 10V, VGS = 0, Pulsed
Forward Transconductance
gts
Vos= 10V, VGs=O, Pulsed
Forward Transconductance
gts
VOG=10V,10=10mA
Reverse Gate Current
IGSS
VGs= -15V, Vos=O
Min
Typ
-20
-30
10
38
Max
Units
V
80
mA
13
18
mmhos
-15
-100
35
45
80
-1.5
19
10
mmhos
pA
ON Resistance
ros
Vos=100mV,VGs=0
Pinch Off Voltage
VGS(OFF)
Vos=10V, 10=1 nA
-4.0
-:6.5
Output Conductance
gas
VOG= 10V, 10= 10 mA
160
250
p.mhos
pF
0
V
Feedback Capacitance
Cgd
VOG=10V,10=10mA,f=1 MHz
2.0
2.5
Input Capacitance
Cgs
VOG = 10V, 10 = 10 IT\A, f = 1 MHz
4.1
5.0
Noise Voltage
en
VOG = 10V, 10= 10 mA, f = 100 Hz
6.0
nV/-JHz
Noise Figure
NF
VOG= 10V, 10= 10 mA, f=450 MHz
3.0
dB
Gpg
VOG= 10V, 10= 10 mA, f=450 MHz
12
dB
Power Gain
pF
This process Is available in the following device types. *Denotes preferred parts.
TO·52 (CASE 07)
TO·92 (CASE 92)
U308
*U309
*U310
J308
*J309
*J310
Transconductance vs Drain
Current
Parameter Interactions
".
.5..,
,..0
~
wE
",E
lk
100
50
:oW
~~
~B
.~
10
~
~~
l'
1In,loss@VDs"'OV,Yes"DV.PULSED
ros@lo"l rnA, Ves = OV
VGSIOFFI iI Vos" IOV, II:!," 1 nA
TA "2!i C
~~
-1
-3
-5
t
"
100
50
:{~,
~~
c,
.
~
.
c
c
10
=
:;l
z
,..,
.Ii
.. VGS'O'F! - GATE CUTOFF VOLTAGE (V)
==
IVGSIOFFI;; -2.BV
~I
~
10
-10
Leakage Current vs Voltage
VOG =10V
f-1 kHz
T.-25·C
i.5
w
I
""
~~
500
loss-
",-
100
1
~
~~
1
""' '_5 2V
ImJil' i
0.1
10
10 - DRAIN CURRENT {mAl
10-28
VOG - DRAIN·GATE VOLTAGE (V)
""0
Process 92
Transfer Characteristics
~
50
en
en
co
I\)
100
lOV
10 = 10 rnA
ICGI
VOG -
~
.s
u
z
«
::
~«
g~
""
10
....
=>
b
j
'"
1
J
-1
-1
-3
-2
-2
-3
-4
-5
V
1.0
-6
100
Transfer Characteristics
Transfer .Characteristics
·1.s
Forward Transadmittance
'"
;
='lOV
10 rnA
=
~
15
10
VOG
10
ICGI
~
u
~
1000
100
u
'"
«
500
f - FREQUENCY IMHd
VGS - GATE·SOURCE VOLTAGE IVI
VGS - GATE·SOURCE VOLTAGE IVI
~
;;;
1'"-....±--""~~'"1
-g.
10
....
0
'"
g
«
'"
~
I
"
-2
-1
-1
-3
Common Drain·Source
Characteristics
40
-4
-5
-6
I
~
i -i - ~
1
100
LII~IIIfi]
I
J
5.0
4.0
3.0
Capacitance vs Voltage
lDV)-
r-- ~ K C,~ltt
IN-
crn
-4
I-
:s
~
ICG)
10
10 = 1.0 rnA
>
=
b,.
~
C
I
'rll1i
of
I
VGS - GATE·SOURCE VOLTAGE IVI
-lOY
lo=10mA
I I I I
w
Z
~8
VOG
I II
0
r-_
10VI
-6
::c
'"«
10
FV OG -10V
~BW' 6,0 H,@f'10H,.100H,
'0.2f@f>1.0kH,
I~
1000
Reverse Transadmittance
Noise Voltage vs Frequency
--
500
f - FREQUENCY IMH,I
100
10
=
100
10 - DRAIN CURRENT 1m AI
VOS - DRAIN·SOURCE VOLTAGE IVI
-2
VoG =·10V
10 = lOrnA
ICGI
u
J
f"'\
10~~
'"
10
Ci;:s (Vos
1000
Output Admittance
1000~.
....=>
~o
~ f;;:
500
«
v~s' ov
2.0
100
>
f - FREQUENCY (MHz)
.3
w
I
I
1.0
iJ:
Output Conductance vs
Drain Current
t- TA = 25°C
I- VGS(OFFI = -2.7V
30
-3
,,/
1.0
VGS - GATE-SOURCE VOLTAGE tV)
Vas - GATE-SOURCE VOLTAGE tV)
50
-2
§
-10
1.0
0.01 0.03 0.1
A
r-
II
0.5
2.0
10
f - FREQUENCY IkH,1
50 100
ao
CD
Input Admittance
Transfer Characteristics
II
/
500
f - FREQUENCY IMH,I
it
1000
~National
Process 93 N-Channel
Monolithic Dual JFET
~ Semiconductor
0.OZ3
1----:-~-10.584) - - - - - 1
0.0038
DESCRIPTION
Process 93 is a monolithic dual JFET with a diode
isolated substrate. It is intended for wide band,
low noise, single ended video amplifier input
stages, and high slew rate op amps. Monolithic
structure eliminates thermal transient errors, and
provides freedom to pick operating current and
voltage.
CHARACTERISTIC
PARAMETER
TEST CONDITIONS
Gate·Source Breakdown
Voltage
BV GSS
V DS =OV,I G =-1 p.A
Zero Gate Voltage
Drain Current
IDSS
V DS = 10V, V GS = 0, Pulsed
Forward Trans·
conductance
'gfs
Forward Trans·
conductance
gfs
V DG = 1OV, I D = 5 mA
MIN
TYP
-25
-30
3.0
MAX
18
V DS = lOV, V GS = 0, Pulsed
V
40
6.0
-1.5
-3.5
Output Conductance
gos
V DG = 10V, ID = 5 mA
Pinch Off Voltage
VGSIDFF)
V DS = 10V, ID = 1 nA
50
"ON" Resistance
rDS
V DS = 100 mV, V GS = 0
100·
Gate Current
10
IG
V DG = 10V, ID = 5 mA
Noise Voltage
en
V DG = 10V, ID ='5 mA, f = 100 Hz
Differential Match
IVGS1,VGS21
V DG = 10V, ID = 5 mA
9.0
9.0
mA
mmhos
8.0
5.0
UNITS
10
mmhos
100
p.mhos
-'6.0
V
n
100
pA
30
nV/y'HZ
30
mV
40
p.V/oC
Differential Match
AVGSl -2
V DG = 10V, ID = 5 mA
15
Common Mode
Rejection
CMRR
V DG = 10V,I D = 5mA
90
Feedback Capacitance
C"
V DG = 10V, ID = 5 mA, f.= 1 MHz
1.0
1.2
pF
Cis
V DG = 10V, ID = 5 mA, f = 1 MHz
4.2
5.0
pF
Input Capacitance
dB
This process is available in the following device types. *Denotes pniferrei{parts.
TO·78 (CASE 24)
*2N5911
*2N5912
U257
Transconductance
vs Drain Current
Parameter Interactions
1
;:-;
~ 'i
....
....=62!
....
...."'l!::'i.
"''''
.., .,
r
"'E
lk
100
50
II..
d
IA
"'=w
=z
1/ I
500
.......
10
~
V
_I.
100
50
lit., loss (II VOl = 10V. Ves = OV, PULSED
'DS@ID =1 rnA, Ves =OV
VOSIOFFIIJ Vos "10V,lo = 1 nA
1
-1
-3
-5
10
.!
l!J
z
z
'os
",t-
-;
E
g
,
,..'"
loss
I-- VaslOFFI = -~
~
~
:::::
..~
.,
g
"i
VesCOFFI = -4.7V
z
'"
III
!!l,.
~
a:
t-
.
§
10
VaG" 10V
T."Z5°C
'·1 kHz
0.1
10
0.1
-10
10 - DRAIN CURRENT ImA)
VGSlOFFI- GATE CUTOFF VOLTAGE IV)
10·30
Process 93
"'C
..,
o(")
CD
Transfer Characteristics
SO
ZO .--r:-:-----::-:::c:-r---r-,
-"....
"
~
12
;;:
;;:
16
-"....
I"
IT~~<+-
"
~
;;:
-"....
"w
'"'"=>
"
"
30
zo
:5
I
I
.E
-z
-1
VGS
-
-1
-Z
-3
-4
-S
~
~
-"w
"«"
i~
"~....
10
-6
-3
I"-E::
o
~
....
1.0k
~
100
~
w
....
:3
Z.S
0
-1
-Z
-3
-4
-S
10
= 1.0 rnA
10
IGss~
TA
1.0
+25°C
5.0
10
15
lOLL!
I III II [£1 11EffiE
ZO
II
C1SS (Vos
~
Z5
Id
= 10V)
w
;:""
w
'"«
,=
I Gss
Capacitance vs Voltage
~
~
I r l jomA
VOG - DRAIN·GATE VOLTAGE (V)
::c
w
Z
5.0
10 ,110 ~A
-6
I';:
"
4.0
TA - +85°C
Noise Voltage vs Frequency
100
3.0
I
J
'"
100 f==¥:#VMIOFFI =-4.0V)liM
Z.O
~~10'10mA
=
"w
'"'"=>
VGS - GATE·SOURCE VOLTAGE IVI
E
1.0
10k
"w
7.S
VGS - GATE·SOURCE VOLTAGE IVI
.3
""'-
t:.-I' .....
~f-/.
Leakage Current vs Voltage
80
-r-
~VI_I~!U~i"
1°IGI-II·III- ;1111111
70 -CMRR:20Iog
~VGSl_2
1111111
60
0.1
I
~VDG
I
1.0
10 - DRAIN CURRENT ImAi
10
to
(,J
v
m
(fJ
(fJ
C1)
Process 94 N-Channel
Monolithic Dual JFET
~National
~ Semiconductor
(J
...o
0..
DESCRIPTION
Process 94 is a monolithic dual JFET. It is strictly
intended .for operational amplifier input buffer
applications. Special processing results in ex·
tremely low input bias current and virtually
unmeasureable offset current. It is important to
note that the <5 pi co ampere bias current is
measured at 35 volts.· Typical CM R R is 125 dB.
Performance superior to electrometer tubes can
be readily achieved with low offset· voltage and
almost zero long term drift.
CHARACTERISTIC
TEST CONDITIONS
PARAMETER
MIN
UNITS
MAX
TYP
Gate·Source Breakdown
Voltage
BV GSS
Vos = OV, IG = -1 /lA
Zero Gate Voltage
Drain Current
loss
Vos = 15V, V GS = 0
0.5
3.0
Forward Trans·
conductance
gfs
Vos = 15V, V GS = 0
1.5
3.5
7.0
mmho
Forward Trans·
conductance
gfs
VOG = 15V, 10 = 0.2 mA
0.7
1.2
1.S
mmhos
Pinch Off Voltage
V GS(OFF)
Vos = 15V, 10 = 1 nA
-0.5
-2.0
~6.0
V
Gate Current
IG
VOG = 35V, 10 = 0.20 mA
2.0
15
pA
Feedback Capacitance
erss
Vos = 15V, V GS =0, f= 1 MHz
0.01
0.02
pF
Ciss
VOS = 15V, V GS =0, f= 1 MHz
4.0
5.0
pF
Input Capacitance
-70
-40
V
I
mA
10
Noise Voltage
en
VOG = 15V, 10 = 0.2 mA, f = 10 Hz
Output Conductance
gas
VOG = 15V, 10 = 0.2 mA
<0.1
Differential Match
IVGS"VGS21
VOG = 15V, 10 = 0.2 mA
5.0
25
mV
Differential Match
~VGS'.2
VOG = 15V, 10 = 0.2 mA
6.0
50
jJ.V/oC
Common Mode
Rejection
CMRR
VOG = 15V, 10 = 0.2 mA
This process is available in
the following device types.
* Denotes preferred parts.
12
50
nV/YHZ
/lmhos
dB
125
Common Drain-Source
Characteristics
Parameter Interactions
5.0
TO-71 (CASE 12)
*NDF9406
*NDF9407
*NDF940S
*NDF9409
*NDF9410
"..
.!l
J
TA '25'C
TVP VGSIOFFl '" -2.5V
4.0
0-
"'a:a:
3.0
;;:
2.0
.,
17
jL.,..o
E
0.1
-0.1
VGS!OFFJ -
-5.0
··0.5 -1.0
-10
GATE-SOURCE VOLTAGE (V)
10-32
1.0
o
ijc,...
o
1.0
.-
i J v I-
-0.9V
~i--'
I
.E
-
-;;]; VI-I-
(/
}v
:5
gk. loss @Vas '" 20V, VGS '" 0 PULSED
VGS(OFFJ @V as '" 20V, 10 '" 1.0 nA
1/
1-1G~~=
1.2V
I
-1.5vLJ.
2.0
3.0
-l.RV
4.0
Vos - DRAIN·SDURCE VOLTAGE (V)
5.0
"tJ
Process 94
~
o(")
CD
Transfer Characteristics
~
1
4.0
~u
t-'I.t-'rl--+-+
:
§
~
~
3.0
2.0
f
-1 m,s
I-+---P~\t-+
...
~
1.0
III
1
-1.0
-1.5
-2.0
1.0
20
"
~
15V
0.1
50
0.1
.sw
4.1l
w
10
u
~1
f=.H+0
05
-1.5
-1.1l
-2.0
w
20
:s
'"
b~~
-2.5
10
~
5.0
u.u
nl \",
50 100
0.01
f - FREQUENCY IkHzl
0.1
w
u
'"
5G
~'-
~~
1.0
ME~
"'"
~
'"'"'"
_
~
I~
.'=
~'"
'"
S
TIGHT
~
11.01
I
"'"
"':'"
I
1.0
0.1
0.01
10 -DRAIN CURRENT (rnA)
0.1
130
~VOG
'"
i:l'"
1.0
I
I
lID
~I-l!v
100
90
~VeG
CMRR = 20 log - -
I I I I 111~1S1'
80
0_01
io - DRAIN CURRENT (rnA)
I
- 10 - 20V
120
1
II
1.0
TlGHT-
5.0
10
~
10
"w
"",
:>w
:>
""
.w
CMRR vs Drain Current
~~E
w:>
..."'~"
"',::;
0.1
10 - DRAIN CURRENT (rnA)
10-33
-20
MEO
10 - DRAIN CURRENT ImAI
VoG -15V
L'.T=+25°CTO+I 25"C
- _55°C TO +25°C
Mr'
-16
IA '" t::fl,;
"~
Differential Drift
100
-12
1'<'
'111m
1.0
0.5 1 2.0
f" 0.1 -1.0
-8.0
10
'w
10 Hz
f.... IOkH~:
"1
\
LOOSE
~~
"':>
:>
2.0
'"
"':>
:s
I diD ~ 0.03 rnA
oi
Differential Offset
:?
~
~
-4.0
-
Cgb (VG,a)
VGS - GATE·SOURCE VOLTAGE (V)
I~
~ I F:t 10 " 0.2 rnA
C" IVos" 15Vi-+-
IVOSI"
0.1
Noise Voltage vs
Current
:>
1
0.5
,
10 - DRAIN CURRENT (rnA)
0.2f@f::;::1.0kHz
.....
'"~
-
1
u
--
u
Noise Voltage vs
Frequency
50
1.0
0.1 L-LLLWllL-LLllWJL-,-,-,.w.JJ
1.0
0.01
0.1
10
VGS - GATE·SOURCE VOLTAGE (V)
~
;;:
;:;
-
~C"
;:;
1
-1l.S
r-...
";::
~
§" 1.0~~
s=m
"~
k: I---
u
"
1.0 t--t--'\'--t----j--+--f~--l-H
5.0
-
u
"'"
!
5.0
10
Capacitance vs
Voltage
~10~~
I
1.0
10 - DRAIN CURRENT (mAt
Transconductance vs
Drain Current
E
lIT
,m
/
"'"
VeG - DRAIN·GATE VOLTAGE (V)
Transfer Characteristics
-1.0V
. ll1V
1
40
30
r~~
I
1= 10V
...
-~I~" 01,,,,
1.0
GATE·SOURCE VOLTAGE (V)
-
!
-1.0 rnA
10
3.0V
VOG '" 5.IIV
~
.2
-2.5
IL
V_GSIIOFFJ -
u
"
10 " 0.11.0 rnA
TA - +25"(;
j
VGS
:.;.:;SS
CJ)
CJ)
V5
=loll kHz
E
.3
10 ~ 0.11.0 rnA
TA"+125~C
1.0k
TA - +B5"C
1
-0.5
10
10k
l-+-,d'o,,)'r4-1-f---+-+-+--j
'"
.E
Output Conductance
Drain Current
Leakage Current vs
Voltage
1.0
1.0
U)
~
~National
Process 95 N-Channel
Monolithic Dual JFET
~ Semiconductor
DESCRIPTION
0.038
'~~~~~10.9651~~~~~--1
CHARACTERISTIC
PARAMETER
Process 95 is a monolithic dual JFET with a diode
isolated substrate. It is intended for operational
amplifier input buffer applications. Processing
results in low input bias current and virtually un·
measureable offset current. Low noise voltage
and high CMRR for critica.1 1/f applications.
TEST CONDITIONS
MIN
TYP
MAX
UNITS
Gate·Source Breakdown
Voltage
BV GSS
Vos :OV, IG :-1 /J.A
Zero Gate Voltage
Drain Current
loss
Vos: 15V, VGs: 0
0.5
3.0
8.0
mA
Forward Trans·
conductance
gfs
Vos: 15V, VGs: 0
1.0
2.5
4.0
mmhos
Forward Trans·
conductance
gfs
VOG: 15V, 10: 0.2 mA
0.5
0.7
Gate Lea kage
IGSS
V GS :-20V,V os :0
Pinch Off Voltage
VGSIOFFI
Vos:15V,10:1nA
Input Capacitance
C jss
Vos: 15V, VGs: 0, f: 1 MHz
Noise Voltage
en
Vos: 15V,!",: 0.2 mA,
f: 10 Hz
Noise Voltage
en
Output Conductance
Feedback Capacitance
-40
-70
-5.0
-0.5
V
mmhos
-100
pA
-2.5
-4.0
V
10
14
pF
8.0
30
nV/VHz
Vos: 15V, 10: 0.2 mA,
f: 100 Hz
6.0
10
nV/vHz
gas
VOG : 15V, 10 : 0.2 mA
0.3
1.0
/J.mhos
Crss
V os :15V,V Gs :0,f:1 MHz
3.5
5.0
pF
Differential Match
IVGS1,VGS21
VOG : 20V, 10 : 0.2 mA
6.0
25
mV
Differential Match
tl.V GS1 .2
VOG : 20V, 10 : 0.2 mA
9.0
60
/J.V/oC
Common Mode
Rejection
CMRR
VOG : 20V, 10 : 0.2 mA
This process is available in the following device
types. * Denotes preferred parts.
TO-71 (CASE 12)
2N5515
2N5516
2N5517
2N5518
2N5519
*2N5520
*2N5521
*2N5522
*2N5523
*2N5524
*2N6483
*2N6484
*2N6485
10-34
86
115
dB
Process 95
Transfer Characteristics
Common Drain-Source
Characteristics
Transfer Characteristics
-2:0V,
~
i-t::
zl.~ --J-- -'.6V
--\-
H1~j1~,~·,sV-~-=1+~
1.'
:
Z.O
~
1).6
I
0.4
~
1.0
z
.!?
'.2
-0.5
-1.0
-1.5
-1.0
-3.0
-4.0
o
-5.0
VGS - GATE-SOURCE VOLTAGE lV)
VGS - GATE·SOURCE VOLTAGE lV)
Transconductance
Characteristics
~
~
E
.
.
z
2.'
!
z
1.0
,
,
Z.O
l.o
4.0
VGSIOfFl -
.
-
""
Leakage Current vs Voltage
'"
5.'
z
..
in
3.'
~
1.0
'.5
~,
~
J
j
0.1
-25
-15
VGS - GATE·SOURCE VOL rAGE jV)
TA
Ves - GATE·SOURCE VOL TAGE (V)
Output Conductance vs
Drain Current
10
rv::WvE!ttf!~
E
E
I~ ~!II§~g~ml
~
0.1
~~~ij!j'jl:fu~~~~~
0.01 '-...L..Ll...lllJlL_Ll...LJ.J..!.l.lJ
0.1
1.0
10 - DRAIN CURRENT (rnA!
25
125
75
100
~VOG
'.1
0.01
'" '"
30
40
50
VaG - DRAIN·GATE VOL TAGE (V)
.
M
100
F
Vor;
~ 15V
11IIIIIttttll
'--"'iff
20
"
10 '" 1I.0l rnA
'0 ~ 0.2 rnA
'1~1!1~'0~'~1.~om~A~
"
2' 1-t+++H-I-t-+++H-t+-I
1.'
1.,
1.,
'.1 c..::=:.c...""::::.:..LilllllL.L1illJJJJ
'"
1.fi
115
Noise Voltage vs
Current
15V
0.21@i21.0kHz
bll
I,.~,
"
AMBIENT TEMPERATURE (" C)
~ "~
,
J
'i
~o:>
1.0
~
-
Inn
Noise Voltage vs
Frequency
Transconductance vs
Drain Current
_
1.0k
u
2.'
1.0
GATE CUTOFF VOLTAGE (V)
~ In"
~
~
'--'--.ll_,l..5llil
_1L.O_Ll..Llillll_100.1
5.0
Channel Resistance
vs Temperature
5'
E
1.0
Vos" DRAIN·SOURCE VOLTAGE lV)
Transconductance
Characteristics
• 3.'
.
-2.0
H/~!J...,+,,-l;-:+--:::':;'·BV:.,..;!::-!-::::!
1.OV 1.2V 1.4V 1.6V-1.HV
,~g
H"~-t,,1Iot
Ll.l.l.-'--LLLl...ll..LLLLL.J
0.51.0 3.0 10
50 100
0.01 0.03 0.1
L.JLl.l.,WJ;"-LLLl.WlL.-LLUJ.llJJ
10 - DRAIN CURRENT (mAl
(~Hz)
i-FREQUENCY
10 - DRAIN CURRENT (rnA)
~
~
Capacitance vs Voltage
'"0
-
i
~
0.1 -1.0 MHz
Voa
TA
50
C: IV" ,115VI, I
10
5'
~
20V
25 C
I !
,
U1DSE
I
.,...,.
LOOSE
I I
"
o
-4.0
-B.O
~
-12
-16
Vas - GATE·SOURCE VOLTAGE (V)
V,,'2nV
TlGHTJ
C.. (Vos ~ al
15V)
-2n
I
j
11
1.0
0.01
0.1
10 - DRAIN CURRENT (rnA)
~T"'25
1.'
0.01
10-35
,m
CTO+12S"C
'" -55'CTD +25 C
1.,
'"
~,b
TIGHT
~f,.. t::-- CG. SUBS (VG,SUBS)
~
CMRR
'"
100
C
11
MED
(Vas
1.'
;
~
,
I
z
4
Differential Drift
Differential Offset
ct
:!
;:;
~,
100
0.1
10 - DRAIN CURRENT (rnA)
CMRR '"
-
YS
Drain Current
2~ lag
;:+
olVOG
olVGS1 .2
mllll,I15V -25V
C--
vLI,'~
Inn
"
"
0.01
0.1
10 - DRAIN CURRENT (mAl
o
o(1)
en
en
(0
(J1
-J
t, oJ'.2V
1).8
;:;>
Parameter Interactions
...
"'C
1.'
CD
0)
U)
U)
Q)
e
Process 96 N·Channel
Monolithic Dual JFET
~National
ZIII Semiconductor
0.031
a..
DESCRIPTION
Process 96 Is a monolithic dual JFETwith a diode isolated
substrate. It is intended for wide band, low noise, single
ended video amplifier input stages. Also ideal for matched
voltage variable resistor applications over 60 dB tracking
range.
Characteristic
V
-55
VOS= 15V, VGS = 0
5.0
15
30
mA
g,s
Vos =15V, VGs=O
9.0
18
30
mmhos
7.5
9.0
BV GSS
Vos=OV, IG= -1 p.A
Zero Gate Voltage
Drain Current
loss
Forward Transconductance
Forward Transconductance
g,s.
VoG =15V,1 0 =2mA
Output Conductance
gas
V oG =15V,1 0 =2mA
Pinch Off Voltage
VGS(OFF)
Vos=15V,10=1 nA
ON Resistance
ros
Vos =100mV,VGs =0
Gate Current
IGSS
VGs= -20V, Vos=O
Gate Current
IG
mmhos
p.mhos
15
45
-0.5
-1.8
-3.0
35
70
120
-8.0
-100
VoG =15V,1 0 =2mA
15
200
pA
10
nV/,jHz
V
{J
pA
VOG= 15V, 10=2 mA, f = 100 Hz
4_5
C,s
V OG =15V, 10=2 mA, f= 1 MHz
2.5
3.0
pF
.C is
V OG =15V, 10=2 mA, f= 1 MHz
10
12
pF
,en
Feedback Capacitance
Input Capacitance
Units
Max
Typ
-40
Gate·Source Breakdown
Voltage
Noise Voltage
Min
Test Conditions
Parameter
Differential Voltage
IVGS1-VGS21
V OG =15V,1 0 =2mA
8.0
25
mV
Differential Voltage
cNGS
VOG=15V,10=2r'nA
9.0
50
p.V/oC
Common-Mode Rejection
CMRR
VOG= 15V, 10=2 mA
76
dB
95
This process is available in the following device types. 'Denotes preferred parts.
TO·71 (CASE 12)
a·Pin DIP (CASE 67)
*2N5564
*2N5565
*2N5566
'NPD5564
'NPD5565
'NPD5566
Transconductance vs Drain
Current
Parameter Interactions
100
fpSU~S~Df Vas = 15V, VGS - OV~
.L
10
i-'""'"""/
~
loss
,,,
100
-
VGS(OFFI - ~ATE
8"
co
I
.,
..
.sw
iii
d
'"
'~"
.,m"1
!l
~
'os
res@1 0 '" 1 rnA
VGS(OFFI@ Ves" 15V, 10 = 1 nA
-2
Ii"
~
§:
10
1
-l
100
lk
-10
CUTOFF VOLTAGE (V)
~
5a: 1.0k ~~ F l o "0.2mA/l/i
VOG =15V
T, -25"C
f= 1 kHz
"l!
~Io
~
u
Ii
8
Leakage Current vs Voltage
10k
VGS(OFFI
.'"'"
=.~
VGS(OFFI ;;
~
2.3V
F: :c= 10 = 2.0 rnA
l:1li
100
10 - O.2mA
w
1r1
1.1
I-
'"a:
'"'"
A
l-
I
T
-IG';'~
TA - +85°C
w
10
= 2.0mA'·
10
-IGSS
I:;;;p
I
~
.;:
.E
1
10
0.1
10 - DRAIN CURRENT (rnA)
10-36
~
I--T, +25"C
1.0
o
8.0
16
24
32
VOG - DRAIN·GATE VDl TAGE (V)
40
Process 96
Common Drain-Source
Characteristics
Transfer Chara.cteristics
Transfer Characteristics
10
l~
'.
I\~ I VGS=O
t
IVP~,,,,,,,,.
.s"
~
B
z
15
".s....
i
10
30
".s....
i
zo
z
~
~
C
1
1
.E
z
;;:
I.....
8.0
I
1
.E
.E
Ivo,l =
1/
6.0
[I t - V I
I
GS '"
4.0
i"'"
~
10
1""11-1
f-
-h.zJ _ f-I=
I
-O.4V
I--J ,! -0!6V 1
G
Z.O
VG, = -O.BV I
v =-
0
0
Vas - GATE·SOURCE VOLTAGE (VI
VGS - GATE·SOURCE Val rAGE (V)
Transfer Characteristics
Transfer Characteristics
;
~
.s
-;
~
30
.sw
u
"
~
z
~
"....a:
"
~
~
z
"....a:
10
..
1
TA
50
zo
10
VGS -
~
§ht;111~
I~
111111111111111111
!~OH~z
1.0
10
5"
w
~
ID
Z.O
=
,..,..
0.2 mA_
I
VOG
w
w>
.... 3
III~EO
"'''
~~
Oa:
IIIII
10 - DRAIN CURRENT (rnA)
c
c
"~
""8
01
-8.0
-IZ
-16
-ZO°
10 - DRAIN CURRENT (mAl
f--
1
·lJl~lll0 _ l z o J r-+-.
100
aVoG·5.0-10~"'
90
80
70
a:
a:
I
1.0
10-37
-4.0
110
z
c
I
1.0
10
i
TIGHT=
~~
k
CMRR vs Drain Current
MEOI
;;
I Cgb (Vo,BI
C" (Vo,
o
~
15V
LOOSE
;;
III
1.0
10
"
r-I--
>w
HllHT
=
C. (Vo, = 15VI'
I
VG, - GATE·SOURCE VOLTAGE (VI
55°C TO +25°C
,,~
u
I
5.0
50100
Q
a:
LOOSE
I
1.0
10
.H '" +25 CTO +1 Z5"C
u
~~
0.1
10
,
I
0.51.0Z.0
=>-
1.0
,
u
Differential Drift
VOG = 15V
TA =25u C
-':::....
1
'1'i-4-
I I
100
~.~
V
10
f - FREQUENCY IkH,1
S;=
w",
5.0
= 2.0mA
1.0
0.01 0.03 0.1
10
Differential Offset
~~
10
5.0
z
I
Z
;:;
10 - DRAIN CURRENT (rnA)
10
I
w
u
zo
1
0.1
I.UIIMl
U
of
w
5.0
VOG = 15V
lin §EEEBW=6.0HZ@f=10HZ.l00HZ)
-U.l.I~I.::::
0=
50
1.0
Capacitance vs Voltage
Noise Voltage vs Frequency
~~~II~~!llf~=~I'O~k~H!'1II
100
0.5
10 - DRAIN CURRENT {mAl
100
f-H+H-Hll--t--t:!-K1!:
10
>c
. zov
-z
-1.5
-1
GATE·SOURCE VOLTAGE (VI
~
1
zov .
I-+-t-t-I~
m
111 100
-
.5.0V
10
Noise Voltage vs Current
~~
!:::c:
c>
LzHI
VOG - 5.0V .
1
-0.5
,,>
5.0
2S'C
1.0 kHz
I---
Vas - GATE·SOURCE VOLTAGE (V)
~-
4.0
=
100~~
f-
30
z
ZO
3.0
z.O
Output Conductance vs
Drain Current
u
z
1.0
Vo, - ORAIN·SOURCE VOLTAGE (VI
ii
10
60
0.1
1.0
ID - DRAIN CURRENT (rnA)
10
~National
a
Process 98 N·Channel JFET
Semiconductor
•
I
~ ""'Dl
(11.5591
0.0038
(0.09651
DESCRIPTION
Process 98 is a high gain, general purpose, monolithic
dual JFET with a diode isolated substrate. It is intended
for amplifier input stages requiring high gain, low noise
and low offset drift over temperature. Strict processing
controls result in low input bias currents and virtually immeasurable offset currents. Matching characteristics are
essentially independent of operating current and voltage.
Characteristic
Test Conditions
Parameter
Gate-Source
Breakdown Voltage
BV Gss
vos=ov, IG= -1 p.A
Gate Leakage
Current
IGSS
VGs= -30V, Vos=OV
Pinch-off Voltage
Min
Typ
50
75
Units
Max
V
2.0
100
pA
VGS(OFF)
Vos= 15V, 10= 1 nA
0.5
1.3 .
3.0
V
Zero Gate Voltage
Drain Current
loss
Vos= 10V, VGs=O
0.5
1.8
10
mA
Forward
Transconductance
g,o
Vos= 10V, VGs=O
2.0
4.5
7.0
mmhos
Output Conductance
8.0
20
"mhos
1.4
1.8
mmhos
VOG = 15V, 10= 200 p.A
1.3
2.0
p.mhos
VOG = 10V, 10 = 200 p.A
10
40
mV
gos
VOs= 10V, VGs=O
Forward
Transconductance
g,o
VOG = 15V, 10= 200 p.A
Output Conductance
goo
Differential
Offset Voltage
Vos
Feedback Capacitance
Crso
VOG= 15V, 10= 200 I'A, f = 1 MHz
1.7
3.0
pF
8.0
pF
50
1.0
Input Capacitance
C lso
VOG = 15V, 10= 200 I'A, f = 1 MHz
6.0
Noise Voltage
en
Vos= 15V, 10=200 p.A, f = 10 Hz
8.0
Common Mode
Rejection Ratio
CMRR
VOG = 5V-10V, 10= 200 I'A
90
nV~z
dB
108
This process is available in the following device types.
TO-71 (CASE 12)
8-PIN DIP (CASE 60)
2N5561
U401
U404
J401
J404
2N5562
U402
U405
J402
J405
2N5563
U403
U406
J403
J406
Gate Leakaga Current
vs Voltage
Forward Transconductance
vs Drain Current
Parameter Interactions
1.0
~
.'"
I
.."
co
z
0.1
'"m
!!i
~
"~
E:
'"
!_
z
-
~
10k
~co
8Eilill
TA"25'e
VOG -15V
z
~~ ~~IIII~~V;GSI(0~FFI),'2~'2I1V
i:'i!
lk
co
I
100 L-J...J.J..J.IJ.III.....I...I..L.WllI....J....U.
0.01
1.0
0.1
li1 .
10 - DRAIN CURRENT (mAl
10-38
10
...
.."'k~.
lDD~:~~~ I~
~
il!
a:
Tl
~w
....~
10
:;
1.0
<
~
§~GSS~~
...w
I
l:i
!:
E
0.1
0
4
8 12 16 20 24 28 32 36 40
VOG - DRAIN·GATE VOLTAGE (V)
Process 98
Transfer Characteristics
V~SI~~~~:II~~
VGISlo~~f: 21.~~
1\
;"
L'"
o
o
~
~~~
-0.8
-0.4
o
r-i-.:
1~5°C
~-
~1_55olc
"-\ ,
C
-1.0
125°(:
I
~::::;: ~
-0.75
'\
-1.5
t- VGSIOFF)" 2.3V
5
12
w
~
~
""'
-0.6
I
,J'
::--.
-1.0
100
-1.4
V
0.2V
'/
VGS::; -O.6V
~I-VGS " 1.0V;\;
VGS" -O.BV
12
10
16
""'-
---20
VOG -10V
z
o
~
~E
I
o
o
MEO
MEO
~
TIGHT
...,r- TiGH~
0.1
10 - DRAIN CURRENT (mA)
"
~
I
1.0
1.0
1
0.01
I
I
I
Ciss (Vas - 0)
=
c~" IVDIS" O}
-
'"'"
~
I
0.1
10 - DRAIN CURRENT (rnA)
10-39
-4
T
I
-6
-8
-10
CMRR vs Drain Current
~
aT: 25°C to 125°C
IH- 55°C to 25°C
LOOSE
I
VGS - GATE·SOURCE VOLTAGE (V)
Differential Drift
100
VOG" 10V
TA - 25°C
0.01
-2
Vas - DRAIN SOURCE VOLTAGE tV)
Differential Offset
I
100
VGS" -DAV
20
VOS - ORAIN·SOURCE VOLTAGE (V)
lOOk
10k
Capacitance vs Gate
Source Voltage
V~S"ot
VGS"
O.6V
Ik
f- FREQUENCY (Hz)
IIIIII
,
Vr,SInFFl" 1.4V
DAV
16
~¥
>
~
4
=
Noise Voltage vs Frequency
10
~
'"'"
~
I'.... 1,\
~ TA"" 25C
1.0
10 - DRAIN CURRENT ImA)
vJSIO~~~: i~~
VGS" 0.2V
VGS -
0.01
-1.25
Common Drain Source
Characteristics
i_v,GS~OU
VGS
0.1
VGS - GATE·SOURCE VOLTAGE IV)
Common Drain Source
Characteristics
I
0.1
'\
-0.2
-2.0
VGS - GATE·SOURCE VOLTAGE IV)
100
-1.0
IVIIIII 15V I
TA" 25'C
~
~
'"
w:;:ttJ
-0.5
--
~
-0.5
"
~J50C
N
VOG = lOV
VGSIOFF)" 1.5V
/
Transconductance vs Gate
Source Voltage
vLo~~~: ;.~~
,I~ YVOG" 15V
0
VGS - GATE·SOURCE VOLTAGE IV)
Transconductance vs Gate
Source Voltage
\
VOG" 5V
CD
(X)
III
VOG" 10V
-r
...=>
f~
-0.25
VGS - GATE·SOURCE VOLTAGE IV)
c-215°C
...=>
'I..."J\.
o
-1.6
-1.2
1.0
<>
en
en
VGSIOFF)" 1.9V
VOG" 5V
==
z
l:-' '"
r--.'\.
ff-
1
u
I\~
tV
~
N~
CD
10
I -r-:r
~
(')
Output Conductance vs
Drain Current
Transfer Characteristics
1.0
120
I
IIII
110
IV~G"0.z
100
90
BO
TA" 25'C
70
CMRR=20Iog--
~VDG
I I Ilfmr-
2
60
0.01
"'tJ
a
0.1
10 - DRAIN CURRENT ImA)
1.0
Section 11
JFET
Applications Notes
III
Q)
'tl
:::s
c:J
FET Application Guide
c
-o
.cu
.~
c.
c.
<
I-
National Semiconductor manufactures a broad line of
silicon Junction Field Effect Transistors (JFETs).
National's JFETs provide excellent performance in many
areas such as RF amplifiers, analog switching, low input
current amplifiers, ultra low noise amplifiers and outstanding matched duals for operational amplifiers
input appl ications.
Tlie following chart is a guide to enable the user to
determine what parameters are important in each
application.
UJ
LL
APPLICATIONS AND THEIR PARAMETERS
LISTED IN APPROXIMATE ORDER OF
IMPORTANCE
LOW
FREQUENCY
AMPLIFIER
SOURCE
FOLLOWER
ELECTROMETER
AMPLIFIERS
LOW ORIFT
AMPLIFIER
LOW
NOISE
AMPLIFIER
HIGH
FREQUENCY
AMPLIFIER
OSCILLATOR
DIFFERENTIAL
A~PLlFIER
ANALOGANO
DIGITAL
SWITCHING
Y!s
Y!s
IG
IDZ
en
ReIY!sl'
Y!s
IVGS1-VGS21
rDSIONI
lOSS
IG
Y!s
Y!s@IOZ
iG, in
RelY;sl
lOSS
,;IVGS1-V GS21
IDIOFFI
VGSIOFF)
Crss
IOZ
VGS@IOZ
Y!s
NF
Crss
Ciss
Crss
en
Ciss
en
IG
lOSS
Crss
Ciss
IIG1- IG21
Crss
IDSS
90S
BVGSS
VGSIOFFI
RelYos)
VGSIOFF)
IG
VGSIOFF)
lOSS
BVGSS
Y!s
BVGSS
,;T
BVGSS
VGSIOFFI
BVGSS
VGSIOFFI
Ciss
Y!sliY!s2
IYosl··Yos21
CMRR
VGSIOFF)
JFET Parameter Relationships
VGs)2
ID ~ IDSS ( 1 - - - - VGS(OFF)
Variation of drain cur·
rent with gate bias.
Squ
en
t-
W
LL
-co
j
C
.~
.c
-0
:t::
Unit.
The ~VGS temperature characteristics of the 2·chip
dual and the monolithic dual were then measured at
500.llA of drain current. The results are illustrated
in Figures 6 and 7.
C
0
::E
...§
...
'"'"
w
VoG - 20V
'oss'2mA
~V
~'e
w:>
~..s
"' ...
"'2
!:;~
0"
:> ..
w~
"w
",0
:z...
V
~ffi~
400
;:;
.'"
1n
~
600
800
0.5
:>
w
1.5
$;
.§
\.
g~u
-1
o
VoG·20V
IDSS= 2 mA
~E:i
!:;~~
/
'"'"
\
~~~
~~e
.V
i;"
g;!:
"'0
~u
0
o
1k
~'"
TYPICAL
DATA
-1.0
-1.5
200
400
600
800
lk
1.2k
FIGURE 2. Gate-Source Voltage Temper·
atu.ra Coefficient vs Drain Current (Single
Device)
'-=-'-'--~--'-=--'-....I
-50 -25
'0 - DRAIN CURRENT I.A)
'10 - DRAIN CURRENT I.A)
I-+---,ii<--r
1-'-"'-+-+--.
25
50
75
100
125
TEMPERATURE I'C)
FIGURE 3. Gate-Source Voltage Temp·
erature Coefficient Sensitivity to Drain
Current Change vs Drain Current (Single
FIGURE 4.Differential'Gate-Source
Voltage vs Temperature for a Typical
Monolithic Dual JFET
Device)
2.5
>"
1.5
.§
U
~
;:;
1.0
~
~
:>
.,
1.5
..
~
0.5 p.,cl-.....30~-+---,v..
2.5
'01' 500.A
VoG' 20V
r-+-!~2' J96.A
~t-'02·504.A
~ -0.5
E
i"""'F==-----jf-+
-1.5
1n
~
~
:>
-1
L-.::'::"'~~"7--J..--'-....L.--'
-50 -25
75
100
125
TEMPERATURE I'C)
FIGURE 5. Differential Gate·Source
Voltage vs Temperature for a Typical
2·Chip Dual JFET (10 IlVtC Unit)
-1.0
VoG = 20V
101" 500.A
IL
-1.5
-75 -50 -25
0
25
50
75 100 125
TEMPERATURE rC)
FIGURE 6. Differential Gate-Source·
Voltage vs Temperature for the Same
Monolithic JFET in Figure 4, Only the
Drain Current has been Changed to
5001lA.
11·4
0.5
E
-0.5
~
<1
-1.0
'
-1.5
/
#'
A
I
..
I
':jJ
/Jr)
~
~
it'1
~-O.5
:>
.., -1.0
d-:""'<;
,r---:.. V
;:;
/
f-1~2 .1496~A
'02' 500.A I
1.5 f-102·504.A~W
.§.
~
I
E
I
' 02' 500 "~:-:u
~ 0.5
I
$;
/.If
/J
"I
-2.0
-75 -50 -25 0
VOG·20V
'D1·500.A·
25 50 75 100 125 150
TEMP,ERATURE I'C)
FIGURE 7. Differential Gate·Source
Voltage vs'Temperature for the Sarrie
2·Chip Dual FET in Figure 5, Only the
Drain Current is 500 JJ.A
of the device. The L; VGS error will disappear once the
devices are again in thermal equilibrium. The time for
the 2·chip dual FET to reach thermal equilibrium, after
a thermal transient, is considerable since the FET chips
making up the 2·chip dual are located some distance
apart. On the other hand, the monolithic structure
recovers from thermal transients very rapidly because
the 2 FETs, constituting the chip, are in intimate contact.
Note that the monolithic dual exhibits good L;VGS
temperature characteristics (TC ~ 15 f.1V tc) while the
2·chip dual has a temperature coefficient greater than
50 f.1V tC. The data displayed in Figures 4-7 is for 2
specific devices; however, it is representative of the data
accumulated on a number of process 83 and 2·chip
dual FETs.
Another point that warrants discussion is the fast
thermal transient response of the monolithic dual FET.
This type device is generally employed as the input
stage for an operational amplifier; therefore, it may be
subjected to electrical overload such as input voltage
transients. This condition causes 1 side of the dual FET
to dissipate more power than the other, which in turn
results in a temperature differential between the 2 sides
APPLICATIONS
+
_.
n
C
c
Q)
A typical operational amplifier application is illustrated
in Figure 8. This circuit employs the 2N3954 monolithic
dual F ET as the input device. The drain current level
is set by F ET 02 and resistor R X. F ET 02 is a 2N5457.
This device exhibits a 0 TC drain current operating point
."
m
-I
(J)
<
(J)
15V
R3 ~ TEMPERATURE
500
COEFFICIENT
20T
ADJ
2V {
3:
o
::l
o
N
I
(")
=r
_.
Rl
15V
10k,l%
25 ppmrc
'C
~--+---"-I
OUTPUT
2N3954
IP831
C
C
-
Q)
."
m
-I
(J)
-15V
I'liote I;
I ne lemperawre eDelllClern can lyplcallY oe oUJU:iLt:U
(by R3 and R41 to less than 5 p.VrC from -25"C to +85"C.
Note 2: The common-mode rejection ratio is typically greater
than 100 dB for input voltage swings of 5V.
FIGURE 8. Low Temperature Coefficient Operational Amplifier
15V ±1%
500
0.1%
...____+
VOUT ~
VIN' VOFFSET
500
0.1%
-15V ±1%
FIGURE 9
11·5
..c
o
I
N
at about 400 /lA. In addition, the Q2-RX combination
exhibits an output impedance typically greater than
10 Mn. This characteristic, coupled with the high
output impedance of the 2N3954, contribute to a
CMRR of greater than 100 dB for this amplifier. Input
offset voltage can be adjusted to 0 with R4.. This control
exhibits sensitivity of 2 mV /turn. The temperature
coefficient can be compensated by R3 with an approximate sensitivity of 5 /lV fe/turn. The temperature performance of a typical amplifier of this type is illustrated
in Figure 10.
_
~
~
1.5
f!
">
!U
it
">-
0.5
co::s
!: -0.5
~
C
w
5pVfC
~
-
~
1- .-
r-
I
~ -1.0
> -1.5
-50 -25
Note 1 :
~
LIMITS
I- t-
~
25
50
75 100 125 150
TEMPERATURE rCI
Temperature
Definition of temperature coefficient:
(TC)L = I,WGS(TO) - 50V
<50 pA @ 20V 1200 /l-A
9f.10
1000@200/l-Ao
2N5196-2N5199
>50V
<15 pA@20V/200/l-A
>700@200/l-A
NOF9406-NOF9409
>50V'
<5 pA @ 35V 1200 p.A
>950@200p.A
* Limits not specified on the published data sheet.
11-7
The inherent matching of all devices because of monolithic construction further reduces the effects of
common-mpde
signals.
.
.
"§
110
11111
z
CI
;: 100
~94).
0;
II
z
;:
CI
...!!l
IfT--,...,..u
~
...
...'"
1<1~~G·5~
90
CI
CI
CI
:IE
80
:IE
CI
I
...'"
a:
::;;
<1VDG = 10V-20V
120
I I
I
110
I I:
~=5.0V- 10V
z
CI
100
...
90
...:IE'"
80
I
~
:IE
...
I
-L
CI
CI
:IE
z
130
:!!
<1VDG = 10V-20V
;;:
...'"
Figure 3 compares CMRR of a monolithic triode dual
FET (National P83) with a cascade structure (National
CI
70
CMRR = 20 log
CMRR = 20 log
a:
60
0.01
1
I
JVDG
<1 GSI-2
0.1
I
0.01
<1~VDG
111"lr-~
0.1
ID - DRAIN CURRENT (mill
ID - DRAIN CURRENT (mAl
FIGURE 3 •• Triode ConS!ruction
FIGURE 3b. Cascode
11-8
Con~trliction
1.0
Simple VHF
Analog Switches
en
_.
National Semiconductor
FET Brief 1
Mike Turner
February 1977
3
"C
cr
<
::t
Simple JFET switches like those in Figure 1. will toggle
at rates to about 10 MHz and switch analog signals with
frequencies to above 100 MHz. They accomplish this by
resolving in the gate-driver design the contradictory
performance goals that even the best switching transistors cannot meet.
proper gate driver. The drive circuit should have a low
impedance when the JFET is turned OFF and a high
impedance when the JFET is turned ON. The lowimpedance path is needed to prevent analog-signal
feedthrough and the high impedance to minimize
signal attenuation through the driver while the JFET
is conducting. A well-designed driver can do both.
VOUT
The relationships among JFET and driver characteristics
can be sorted out with the help of Figure 2, which shows
a typical series-pass switch and the equivalent circuits
of the JFET in its ON and OFF conditions. A JFET
operates best as a series-pass switch when the ON condition allows RON and shunt capacitance to be low, and
series-pass capacitance to be high.. But in the OFF
condition, it should exhibit low series-pass capacitance
and high series-pass resistance (ROFF). The JFET will
have these characteristics when properly matched to
the driver.
R2
."
»
::l
Q)
5"
c.c
en
:e
~
:r
CD
en
v-o-_--+--I
a. Series-Pass Switch
RS
Mr--OVOUT
R2
a. Series-Pass jFET Switch
SOURCE
CONTROL L-_ _ _--....I
r
RON
ORAIN
0--1'~""'NI..,...-",_O
T~
T"
GATE
v-o-~------~~
b. JFET On
L--
BYPlss -::!:b. With JFET Gate Diode
FIGURE 1. High-Frequency JFET Switching Circuits
To switch high-frequency signals, the JFET should have
low ON impedance, rds(on) or RON, and low input
capacitance, Ciss. The switch's RC time constant is
establ ished by these 2 parameters, and they also indicate
the bandwidth capability. JFETs have been developed
that come close to being ideal, but unfortunately the
real-world nature of semiconductor devices makes it
impossible to achieve optimum values of both parameters in the same device. Low RON calls for a physically
large JFET. On the other hand, the very low capacitance
needed for fast toggle rates implies small size.
GATE
c. JFET Off
drain-gate capacitance
gate-channel distributed capacitance
source-gate capacitance
9rain-source capacitance
Cdg
PgC
r;;,g
Cds
RON
ROFF
At a casual glance, gate drive impedance does not appear
very important. However, the JFET device conflict
between RON and Ciss may be overcome by using the
ON impedance
=
OFF impedance
FIGURE 2. Series-Pass Switch and JFET Equivalent Circuits
11-9
IIII
t/)
Q)
-
J:
o
'U)i
C)
.2
cu
c
<
LL
J:
>
.!!
Co
E
U)
or exceed RS in parallel with R L,.but then the toggle
rate would be kept down by the very high drive
impedance.
Getting down to a low RON when the gate is turned ON
is no problem. A JFET such as the 2N4391 has a maxi·
mum RON of 30[2 (see rds(on) in Table I). However, the
parallel capacitance in the signal path can become fairly
high-abbut15 pF when drain, source and gate have the
same potential (VDS = V GS = 0). The simple answer to
this dilemma is to drive the gate with a high AC impe·
dance when the switch is closed. The shunt capacitance
will be in series with a high impedance. Virtually all of
the signal will then go through the JFET, the path of
least resistance, rather than through the gate·to·ground
connection.
We prefer the circuits in Figure 1, which are fairly fast
and not tricky. When NPN transistor 02 is in saturation,
01 is biased OFF through a low·impedance path. The
diode is slightly forward·biased and exhibits high capa·
citance. When 02 turns OFF, D1's cathode is driven
positive by R 1. Now the diode is reverse·biased and
exhibits high impedance and low capacitance. The
charge that was stored on D1 discharges into the gate
of 01, allowing the JFET to be turned ON. Because
there is no good discharge path available to the charge
stored on 01 's. gate, the gate will "follow" any signal
swing in the analog input voltage. Adding R2 will
ensure that the gate follows the signal even during DC
conditions. Remember, however, that the R2/C sg time
constant will effect switching time and gate-source'
signal tracking.
Next problem. When the switch is OFF, high·frequency
attenuation is the name of the. game. It is depended
upon to prevent the signal at the input from reaching the
output. The JFET channel is, for all practical purposes,
an open circuit because ROFF of a quality JFET is over
10 12 [2 although this decreases as frequency goes up.
However, capacitive feedthrough is the most significant
route across the switch. From Figure 2c,
Don't expect just any diode to work well; D1 's capacitance is critieal and should match that of the JF ET
(CD1 = C01). One good way of making sure that the
JFET and the diode are well mated is to use the same.
type of JFET for both. The gate lead is 1 electrode of
the diode and the drain and source leads are simply
tied together to form the other electrode. The circuit in
Figure 1bwas oPtimize~ in this way.
Feedthrough capacitance can be significant if the gate is
not operated at AC ground, Minimizing the right·hand
term by operating the gate at AC ground allows Cds to
become the pacing factor. If the gate is grounded, Cds
will be approximately 0.2 pF. In other words, the
effective ROFF of the switch depends directly on
circuit design, not the JFET.
Excellent high-frequency series switches can be made
with 2N4091, 2N4092 and 2N4093 JFETs.· RC time
constants are short· because of their low rds(on) and
capacitance, and leakage is low. The 2N4391, 2N4392
and 2N4393 series is even better, having only 100 pA
leakage and lower Ciss. Even though the 2N4416 is
classed as an RF amplifier, it is also listed in .Table I to
illustrate that many of our other JFETs can solve
special switching problems. This one does well in circuits
requiring very low capacitance and leakage. Although
the RON of an RF transistor is not specified, it can be
estimated as rds(on) "" 0.85/Y fs, which IS typically
170[2 for the 2N4416.
Now to put these principles to work. The best high·
frequency switch is an N·channel JFET. Its gate should
be biased positive from a high·impedance source for
turn·on and biased negative through a low·impedance path
for turn·off. Driving the switch ON through an RF choke
sounds tempting, but it would be difficult to avoid
resonances and oscillation bursts during some switching
conditions. DC resistances could be increased to equal
TABLE I. JFETs for High-Frequency Analog Signal Switching
Crss
BVGSS
OR
BVOGO
(MAX)
IGSS
(MAX)
(MAX)
2N4091
2N4092
2N4093
40V
40V
40V
0.2 nA
0.2 nA
0.2 nA
2N4391
2N4392
2N4393
40V
40V
40V
2N4416
2N4416A
30V
35V
TYPE
NO,
OR
eOGO
(MAX)
rdslonl
(MAX)
ton
(MAX)
toll
(MAX)
16 pF
16 pF
16 pF
5 pF
5 pF
5 pF
30n
50n
80n
25 ns
35 ns
60 ns
40 ns
60 ns
80 ns
0.1 nA
0.1 nA
0.1 nA
14 pF
14 pF
14 pF
3.5 pF
3.5 pF
3.5 pF
30n
60n
100n
15 ns
15 ns
15 ns
20 ns
35 ns
50 ns
0.1 nA
0.1 nA
4 pF
4 pF
0.8 pF
0.8 pF
170n*
170n*
Ciss
*This value is not specified in RF amplifier JFETs; 170n is typical
11·10
Noise of Sources
z
o
National Semiconductor
John Maxwell
February 1977
Cir
CD
INTRODUCTION
The elimination or minimization of noise is one of the
most perplexing problems facing engineers today.
Many preamplifiers and components come with out·
standing noise specifications, only to disappoint the
user. The problem is the difference between specification and application, as the amplifiers are specified
under ideal conditions not the real conditions, (i.e.,
a transducer connected to the input). Many times the
transducer noise is as large or even greater than the
amplifier noise, degrading the signal to noise ratio.
Before amplifier or component noise can be considered,
familiarity with the source noise is essential.
Rapidly changing network impedance and amplifier
gain equalization combine to complicate the issue.
The total source noise in a non-ideal case can be calculated by breaking the noise spectrum into several small
bands where the noise (Re(Z)) is nearly white and
calculating th'e noise of each band. The total source
noise is the RMS sum of the noise in each of the bands
N1- Nn·
REVIEW OF NOISE BASICS
The expression does not take amplifier gain equalization
(like RIAA) into account, which will change the character of the noise at the amplifier output. By reflecting
the gain equalization to the amplifier input and normalizing the gain to 0 dB at 1 kHz, the equalized source
noise may then be calculated.
There are 3 types of transducers: resistive, capacitive and
inductive. The noise of a passive network is thermal
noise, generated by the real part of the complex impedance, as given by Nyquist's relation:
Vn2
Boltzmann's constant (1.38 x 10-23 VASt K)
Absolute temperature (oK)
Real part of complex impedance (n)
Noise bandwidth (Hz)
Re(Z)
llf
t/)
Where VEQ = equalized source noise (J.LV) and
IAnl = magnitude of the equalized gain at the center of
each noise band (VIV).
Mean square noise voltage (V2)
k
c::
n
CD
(1)
4kTRe(Z) llf
T
o
"""
en
o
SOURCE NOISE
The noise may be represented as a spectral density
(V2/Hz) or more commonly in J.LV/VHz, or nV/VHz,
Models are needed for capacitive and inductive systems
such that noise calculations can be made. Namely, the
real part of the impedance needs to be determined.
M IUlllfJt::U IIIUUI::H VI i:::I \,;afJ0l,;llIVt:: ::'UUIl,;t:, ::.UI,.;II d:::' liUIIUt:II:::'t::1
or electret microphone, consists of the microphone and
stray capacitance shunted by a load resistance.
(2)
i~""
={=c."
. lk
LU
'"
:;
L
(5)
R
Ro(ZI = 1 + w2R2C2
~~
2>
....
t'
,,;
IZI
10
= (
1+
w;~2C:i) 1/2
FIGURE 2. Lumped Model of a Capacitive Microphone
0
UJ
It should be noted that for any particular microphone,
the noise of the network ((C m + CS )//RU is reduced
by increasing R L because Re(Z) (the real part of the
impedance) is inversely proportional to R L (see equation 5).
I
~
V
1
100
lk
10k
lOOk
1M
RESISTANCE (il)
The inductive source (phono cartridges and tape heads)
is more complex to analyze because it has a much more
complex model. The simplified lumped model of a phono
cartridge or tape head consists of a series inductance
and resistance shunted by a small capacitor. Each phono
cartridge or tape head has a recommended load con-
FIGURE 1. Thermal Noise Voltage us Resistance
The total noise voltage in a frequency band can be
readily calculated if it is white noise (i.e., Re(Z). is frequency independent). This is not the case for capacitive
or inductive sources or most real world noise problems.
11-11
IiII
U>
Q)
(J
...
slstlng of a specified shunt resistance and capacitance.
A model for the inductive source and preamp input
network is shown in Figure 3.
o
CJ)
-------, r------
::l
-
EXAMPLES
Calculations of electret microphone noise with various
loads and R IAA equalized phono cartridge noise is done
using equations (1 )-(7). Center frequencies and frequency
bands must be chosen first. Values of the lumped cir·
cuit components calculated and noise calculated for
each band, then summed for the total noise. Octave
bandwidths starting at 25 Hz will be adequate for
approximating the noise.
I
o
I
I
LC
Q)
I
.~
o
I
I
I
I
I
Cc
z
_______
~
CA
RA
In this example, the microphone capacitance is 10 pF
loaded with 5 pF of amplifier and stray capacitance.
Two resistive loads will be used to illustrate the effect
R L has on the microphone noise. R L1 = 1 Gn (10 9 ),
RL2 = 10Gn (10 10 ). It is assumed that there is no
gain equalization in the amplifiers that follow. The
noise calculations are summarized in Table I.
L ______ _
INDUCTIVE
SDURCE
SPECIFIED
LOAD
The electret or condenser microphone noise (Re(Z)) is
reduced when the load resistance is increased. This is
one of the cases when a larger resistance means lower
noise, not more noise.
FIGURE 3. Phono Cartridge or Tape Head
and Preamp Input Network
This circuit is quite formidable to analyze and needs
further simplication. Through the use of Q equations,
a series L-R is transformed to a parallel L-R.
RS
~
LS
=
Q
Rp
Rp =
=
Lp
The second example is the calculation of the RIAA
equalized noise of an ADC 27 phono cartridge loaded
with CA = 250 pF and RA = 47k. The cartridge con·
stants are Rs = 1.13k and Ls = 0.75H (C c may be
neglected). The noise calculations are summarized in
Table II for this example.
(6)
wLs
Rs
Rs (1 + Q2)
L
s
The RIAA equalized noise of. the ADC 27 phono
cartridge and preamp input network was 0.73 IlV for the
audio band. Typical high quality preamps have noise
voltages less than 1 IlV, resulting in a 3 dB or more loss
in 'system SIN ratio when the cartridge noise is added to
the preamp noise (in an RMS fashion).
C
+Q2)
Q2
Simplifying the input network to:
CONCLUSIONS
Zero noise sources and amplifiers do not exist. Specifying amplifier noise under ideal conditions will only
lead to ideal specifications, not a measure of actual
performance. Methods of SIN ratio measurement should
be used that reflect the true performance instead of
hollow specifications.
R
R
C
L
C
REFERENCES
1. Fraim, F. and Murphy, P., "Miniature Electret Microphones". J. Audio Eng. So., Vol. 18, pp.511-517.
(Oct. 1970)
FIGURE 4. Simplified Inductive Source Network
Re(Z)
(RXL - RXC)2 +
RXLXC
Z
((RXL - RXc)2 +
xt X~)
2. Hallgren, B. I., "On the Noise Performance of a
Magnetic Phonograph Pickup". J. Audio Eng. Soc.,
Vol. 23, pp. 546-552. (Sep. 1975)
(7)
XI X~
3. Fristoe, H.T., "The Use of Q Equations to Solve
Complex Electrical Networks". Engineering Research
Bulletin, Oklahoma State University, 1964.
1/2
WL
4. Korn, G.A. and T.M., "Basic Tables in Electrical
Engineering". McGraw-Hili, New York, New York,
1965.
1/wC
The tools are now available to calculate the noise of a
variety of transducers and see how this unspecified noise
affects ampl ifier (SIN) performance.
5. Maxwell, J., "Hold Noise Down with JFETs". Electronic Design, Vol. 24, pp.146-152. (Feb. 16, 1976).
11-12
TABLE I Summary of Electret Microphone Calculations
f Range (Hz)
25-50
50-100
100-200
200-400
400-800
800-1600
1600-3200
3200-6400
9600-12.8k
12.8k-20k
f Center (Hz)
37.5
25
75
50
150
100
300
200
600
400
1200
800
2400
4800
3200
9600
16,400
7,200
1.25M
0.31M
78k
19k
35.4M
17.7M
8.8M
4.4M
4.9k
2.2M
18
0.72
0.52
fBw (Hz)
for RL = lGS1
Re(Z) (m
74.2M
19.6M
272M
140M
4.98M
70.6M
1100
5.5
560
3.96
280
140
71
36
Vnz(/N)
2.8
V~z (/N2)
30.2
15.7
7.84
1.98
3.92
1.42
2.0
1.02
1.04
8M
283M
320
2M
141M
180
0.5M
70.8M
125k
31.3k
17.7M
1.6
2.56
1.3
1.62
7.8k
8.8M
11.4
0.32
0.103
IZI(m
enz (nV/y'Hz)
1600
6400
9
1.1M
4.5
420
650
2.8
0.51
0.26
0.36
0.13
0.24
0.06
500
2.2M
2.9
0.16
0.025
122
1.1M
1.4
0.112
0.013
42
650k
0.84
0.07
0.005
1.22k
(~V~z) 1/2 = 7.9 /lV
RL = 10GS1
Re(Z) (m
IZI(m
enz (nV/y'Hz)
Vnz (/lV)
V~z (/lV2)
(~V~z) 1/2 = 2.4 /lV
90
0.9
0.81
35.4M
45
0.64
0.41
23
0.46
0.21
2k
4.4M
5.8
0.232
0.054
TABLI II. Summary of Phono Cartridge Calculations
~
~
c.>
f Range (Hz)
25-50
50-100
100-200
200-400
400-800
800-1.6k
1.6k-3.2k
3.2k-6.4k
6.4k-12.8k
12.8k-20k
f Center (Hz)
37.5
75
150
300
1200
fBw (Hz)
0= (wLs/Rs)
02
25
0.156
0.0244
50
100
2400
1600
16.4k
7.2k
0.625
0.391
4800
3200
20
9600
6400
0.313
200
1.25
600
400
40
400
401
1600
1601
1.0
68.4
4678.6
4679.6
1+02
1.0244
1 + 0 2 /0 2
42
1.16k
Rp(m
Lp (H)
0.098
1.098
11.24
1.24k
8.43
Rp//R (m
XL(S1)
31.5
1.13k
7.42k
Xc (m
Re(Z) (n)
17M
1.11k
IZI(m
enz (nV /y'Hz)
VN (nV)
V~ (nV2)
A2
1.12k
4.24
21.2
1.11k
1.15k
4.24
30
449.4
63.0
28.3k
900
29.5
26.6k
A2v~ (nV2)
1.21k
3.97k
8.48M
1.391
3.56
1.57k
2.67
1.52k
2.52k
4.24M
1.11k
1.3k
4.24
42.4
1798
10.7
19.2k
1.56
2.56
1.64
2.9k
1.23
2.74k
2.32k
2.12M
1.15k
1.77k
4.31
2.5
6.25
7.25
1.16
8.2k
0.87
7k
3.28k
1.06M
61
3721
1.26k
2.97k
4.51
90.2
8136
3.85
13.2k
1.66
13.5k
800
5
25
26
1.04
29.4k
0.78
18.1k
5.88k
0.53M
1.73k
5.59k
5.29
149.6
22.4k
0.85
19k
10
100
101
1.01
114k
0.76
32.9k
11.45k
0.265M
3.86k
l1.7k
7.9
316
99.9k
0.49
48.9k
1.0
454k
0.75
42.6k
22.6k
0.133M
12.4k
24.4k
14.2
803
645k
0.154
99.3k
1.8M
0.75
45.8k
45.2k
66.3k
41.5k
43.6k
26
2080
4.33M
0.043
186k
1.0
5.29M
0.75
46.6k
77.2k
38.8k
34k
40.1k
23.5
1994
3.98M
0.019
76k
(l:V~) 112 = 31lV unequalized noise
(l:1An 12V~) 1 /2
Ii
=
0.73 IlV RIAA equalized noise
sa:>Jnos jO as!ON
Q)
U)
'0
z
The Noise Figure Fallacy
National Semiconductor
John Maxwell
February 1977
Noise Figure (NF) can be one of the most misleading
specifications confronting the engineer today. Noise
Figure is defined as the ratio of total output noise power
to the output noise power of the sou rce.
with the spectral density given by e~
enR =
-
(V~/M)
1/2
(3)
lk
Total output noise power
NF = 10 Log
(1)
400
Output noise power of the source
Q)
.c
t-
A minimum NF exists for any amplifier, but is usually
far removed from the actual operating conditions. This is
where the problem begins. Lowering the NF doesn't
always lower the noise which is what the engineer is
really interested in. NF only gives the designer insight
into the ratio of the amplifier noise to thesource noise,
not the input noise of the amplifier or the signal to
noise ratio.
~>
100
.:.
~
40
./
,/
10
4
./
/'
'I'"
Amplifier noise performance is adequately described by
modeling the noise sources as a series voltage generator
and a shunt current generator with a series voltage
generator for the source. resistance noise.
100
10k
lk
lOOk
1M
RESISTANCE ([1)
FIGURE 2. Thermal Noise vs Resistance
Using the model of Figure 1, an expression of noise
figure in terms of the noise generators can be developed.
The noise power of the source' can be found by using
Nyquist's relation.
e~t = e~A + e~R + i~A R;
ent = total input noise voltage (nV /y'Hz1
enA = amplifier noise voltage (nV/y'Hz1
inA =
amplifier noise current (pA/y'Hz1
enA
source resistance thermal noise (nV /.JR'Z)
=
V2
Source Noise Power = ~
R2
FIGURE 1. Simiplified Amplifier Noise Model
e~RM
(4)
R2
with the total output noise power at the input of the
amplifier of:
The amplifier noise data is found on vendor data sheets
in the form of en and in vs frequency for bipolar transistors and en vs frequency for FETs and FET amplifiers.
.
ef.RM
e~AM
Total nOise power = ~ + ~ + i~A R2 M (5)
Current noise depends on amplifier input bias current
which is only a few picoamps for FETs and is therefore
negligible. However, bipolar transistor amplifiers have
bias currents into the microamp range where current
noise is significant.
Yielding
NF = 10 Log
(6)
The thermal noise of the source resistance is given by
Nyquist's relation.
V2
R
4kTRLlf
Noise figure has a minimum that occurs at an optimum
source resistance Ropt .
(2)
2
VR
mean square noise voltage (V 2 )
k
Boltzmann constant
Ropt =
T
absolute temperature (K)
R
resistance (rI.)
Llf
noise bandwidth (Hz)
(7)
inA
(1.38 x 10- 23 VAStK)
V~
enA
Artifically changing the source resistance for minimum
NF will generally increase the circuit noise as demon·
strated by the following example.
11-14
-I
source resistance (not affecting gain). The other case will
only have the transducer connected to the input.
Example:
An amplifier is needed to boost the signal from a
resistive transducer.
We will neglect the noise of the feedback resistors and
determine the input noise and NF for both configurations using equations (1 )-(6).
Amplifier requirements
Case A, minimum NF
Total input noise Vn = ent (.6.f)
NF= 0.06 dB
Z
o
(ii'
(D
"T1
1/2
Av = 100
f =10Hztol0kHz
Tr.ansducer = 10 kn
::r
(D
= 14 J1V
to
..,C
(D
Case B, minimum noise
Amplifier-LF356
Noise data, en = 12 nV 1$2 @ 1 kHz
in = 0.01 pA/yHZ @ 1 kHz
Vn = 1.7 J1V
NF = 3 dB
Noise figure is only a measurement of the amplifier
noise relative to the source noise. The example used
was radical, but it Illustrated a very important point.
Resistance should never be added in series with the
source to improve the NF. The NF will improve but the
input noise will suffer, degrading performance. Total
input noise should always be considered allowing
problem sources to be identified and minimized to meet
the system's specific noise requirements.
The optimum source resistance for the amplifier is
found to be 12M (using equation (7)). Using Figure 2,
the noise of the transducer is 12 nV 1$2 and the noise
of the optimum source resistance is 140 nV 1$2.
Using the non·inverting amplifier configuration, we'll
view the effect of Ropt. In one case, resistance will be
added to the source to equal the amplifier optimum
b. Minimum Noise
a. Minimum NF
FIGURE 3. 2 Amplifier Solutions
11-15
"T1
Q)
Q)
o
'<
~
Q)
5
Low Noise FET Amplifiers
Q.
National Semiconductor
.John Maxwell
March 1977
E
..:.
~
Rg.
400
~A3140
100
~LM741
........
"'" ...... .........
~
40
........
.
10
4
b. FET with IN Amplifier
- ..LF356
- -
PF5102
-(P51)
10
100
-
FIGURE 3. FET Gain Stages
OR NPD5565
lk
I
10k
-
lOOk
FREQUENCY (Hz)
FIGURE 2. Discrete JFET and Dp Amp Noise Comparison
The main problem with JFETs is that the voltage gain is
limited by the size of the load resistance which is limited
by. the power supply voltage and the F ET operating
current. The voltage gain can be increased by combining
the JFET (a transconductance amplifier) with an op amp
In the FET/op amp configuration, the FET AC drain
current is shunted to the op amp virtual ground and
through its feedback resistor, bypassing the FET drain
resistor, Rd. The drain resistor is used to bias the FET
in a linear region with the feedback resistor, Rf, used
to set the gain.
Biasing problems associated with lot and device to device
parameter variations are minimized by biasing the source
. through a large resistor to the negative supply of the op
amp. A portion of the source resistor should be unbypassed to minimize gain variations between FETs.
11-16
From a design standpoint, the maximum AC drain
current should be 1110 of the FET quiescent current
for low distortion. The unbypassed portion of the source
resistor should be limited to 220Sl for minimum noise
and to increase the op amp feedback resistor (decreased
AC current).
and a shunt current generator with a series voltage generator for the source resistance thermal noise. The thermal
noise of a resistor is given by Nyquist's relation and has a
spectral density given by e~ R.
Expressions for the single and differential amplifier
configurations are needed for optimizing the noise to
meet system noise requirements.
Ampl ifier noise performance is adequately described by
model ing the noise sources as a series voltage generator
(1)
k
T
R
mean square noise voltage per unit bandwidth (nV 2 /Hz)
Boltzmann constant (1.38 x 10- 23 VASI
oK)
absolute temperature (OK)
resistance (Sl)
r-
o
:e
z
o
en'
(1)
"TI
!!I
»
3
"C
15V
7.5k
>-....-oVo
Vi o-"'-I~
AV'" 1000
-15V
a. Single-Ended
240k
15V
7.5k
"lcr-4______---10-o-N-~-~~::-~-5-1-0-0------~
7.5k
AV '" -500
-15V
b. Differential Input
FIGURE 4. High Gain FET/Op Amp AC Amplifiers
11-17
III
...CI>
(/)
-
!E
The single ended and differential input amplifier input
noise (F ET noise current is negligible) is given by the
RMS sum of the- noise generators.
Q.
E
.~
o
z
~
o
...J
Practical low noise, high gain AC amplifiers can be built
using a low noise JFET and just about any op amp.
The op amp needs to meet the slew rate and bandwidth
requirements of the circuit, eliminating selected low
noise op amps or complex discrete amplifiers.
with
ent =
enf =
enA =
inA =
ens =
enR =
gm
R
total input noise voltage (nV Iy'Hz)
FET noise voltage (nV/y'HZ)
op amp noise voltage (nV/y'HZ)
op amp noise current (pA/y'RZ)
source resistor thermal noise (nV/y'HZ)
drain and feedback (RdIIRf) resistor thermal
noise (nV 1y'HZ)
FET transconductance at the FET operating
current (mmho)
parallel resistance of Rd and Rf (>2)
A note- of caution is in order for the op amp noise.
Virtually any JFET input or bip~lar input op amp can
be used without trouble, but MOSFET input op amps
should be avoided. MOSFET l/f noise is one or more
orders of magnitude greater than discrete JFETs, JFET
op amps or bipolar input op amps. MOSFETs have
l/f corner frequencies (where the noise power rises as
l/f) starting as high as 100 kHz. The other forms of
amplifiers have l/f corner frequencies of 1 kHz and less.
Ouite a difference.
The differential configuration has higher noise and lower
gain than the single-ended version, but is useful when
lk
400
~
~
100
40
./
a:
c
~
V
10
4
./
/'
,/'
1
100
lk
10k
lOOk
RESISTANCE (n)
FIGURE 5. Thermal Noise vs Resistance
FIGURE 6. Single-Ended Noise Model
11-18
1M
The Low Noise JFETThe Noise Problem Solver
The most versatile low noise active device available to
the designer today is the Junction Field-Effect Transistor
(JFET). JFETs are virtually free of the problems which
have plagued bipolar transistors-limited bandwidth,
popcorn noise, a complex design procedure to optimize
noise performance. In addition, JFETs offer low distortion and very high dynamic range.
Most designers think of JFETs for very high source
impedances. However, modern devices offer the designer
performance improvements over bipolar transistors in
NF for all but lowest impedance «500rl) sources and
even then may provide improved performance if popcorn
noise, bandwidth or circuit component noise is a
consideration (see Figure 1J.
-t
=r
National Semiconductor
Application Note 151
John Maxwell
January 1976
(l)
r
o
The noise of a resistor may be represented as a spectral
density (V 2 /Hz) or more commonly in IlV IVHz or
nV/y'Hz and is given by:
c...
m
enR
R
inR
=
(4
RkT) 1/2
(3)
1000
f-
~
>
~
~
0_
~
10
100
10
I"--
~
Ie
I-""
1/
I'.
N CHANNEL JFET
IPf510211P51)
o
lk
10k
-
0'
--<
lk
10k
( l)
1M
lOOk
3
RESISTANCE W)
Ie oO_lmA
0
...
"C
o
0.1
'"
ID
O.lk
.
FIGURE 2. Thermal Noise Voltage
and Current Densities vs Resistance.
en
The second basic form of noise, shot noise, is due to the
raridomness of current flow (discrete charge particles) in
semiconductor P-N junctions.
(l)
1 ,~A
I,
(l)
""
"2
12N9l01lPOJI
eN'
en
~lg
~
2<
5
<:
:c;::
~~
"---<
~l:g
~~
,,>
Z
o_.
in
0
100
12~S0861IP62)
I mA
lOOk
FIGURE 1. Bipolar and JFET Transistor
q
-o<
...
(4)
2q l oc6.f
Noise Comparison
-t
I
-t
=r
0-
UW
1
\
"'T1
(l)
100
~
:;::
10
(l)
It is sometimes more convenient to represent thermal
noise as noise current instead of a noise voltage. One
needs only to consider the Norton equivalent yielding a
noise current density.
Therefore, the purpose of this article is to review low
noise design procedures and indicate the simplicity of
designing high performance low noise amplifiers with
low cost JFETs.
f= 1 kHz
BW=200Hz
_.
en
(2)
>
12
:e
z
o
Mean square noise current
Charge of an electron (1.6 x 10- 19 AS)
IDe = dc current flowing through the junction (A)
REVIEW OF BASICS
6.f = Noise bandwidth (Hz)
Before guidelines are established for designing low noise
JFET amplifiers, a method of noise characterization
must be chosen. Designers are confronted with a multitude of different noise parameters such as Noise
Figure (N F), noise voltage and current densities, noise
temperature, noise resistance, etc. Designers are primarily
concerned with signal to noise (SIN) ratios preferring
noise voltage, (en) and current (in) density.
As with thermal noise, shot noise may be represented
as a current density (A 2 1Hz) or pA/y'Hz.
in
= (12/6.f)1/2
(5)
It should be noted that both thermal noise and shot
noise are IIwhite" noise sources, i.e., frequency independent.
Noise generally manifests itself in three forms: thermal
noise, shot noise and flicker or "1/f" noise. Thermal
noise arises from thermal agitation of electrons in a
conductor and is given by Nyquist's relation:
~.
V2 = 4k TR M
R
V~
(1 )
k
mean square noise voltage
Boltzmann constant
(1.38 x 10-23 VAS;oK)
T
Absolute temperature (oK)
R
6.f
Resistance in ohms
III
10
100
lk
10k
GATE LEAKAGE (pAl
FIGURE 3. Current Noise vs Gate Leakage Current
Noise bandwidth (Hz)
11-19
...
-o>
(1)
en
E
-.(1)c
...o
a.
(1)
en
.o
Z
(1)
..c
....
6) Stage gain
7) Power supply voltage and current limitations
8) Circuit configuration, single or dual device
The third basic noise source confronting designers is
flicker or "1 If" noise whose density is roughly inversely
proportional to frequency starting at about 1 kHz in
both JFETs and bipolar transistors and increasing as
frequency is decreased. Through careful processing,
flicker noise in JFETs has been reduced' to levels
nearly insignificant to the designer. Flicker noise in
JFETs is primarily a noise voltage and is source independent. Flicker noise in bipolar transistors is a function
of base and leakage currents increasing with increased
source impedance or operating currents.
The design procedure is dependent on the type of
source and each case must be considered separately.
Resistive sources will be considered first because they
are the least restrictive for th'e preamplifier .
Resistive Sciurces
Preamplifiers for resistive sources are typically voltage
amplifiers requiring a fixed input resistance and capacitance consistent with the maximum frequency of interest
and source resistance. In most cases a resistor of the
desired value connected between the gate and ground
will satisfy the input resistance requirement leaving the
maximum' input capacitance as the major concern .
A simple noise model of a JFET or any amplifying device
may be constructed using a thermal and shot noise
source which would adequately describe its noise perfor·
mance allowing signal to noise'ratios to be calculated
directly.
I
tuLL
The maximum amplifier input capac.itance is a function
of the JFET source resistor, input resistance, source
capacitance and maximum frequency. The maximum
allowable input capacitance will be used in eliminating
unsuitable JFET geometrics and optimizing the circuit
configuration. Sometimes the JFET geometry (or type)
with the lowest noise may also have an input capacitance
that makes it unsuitable. The JFET input capacitance
should be considered before noise in high source
resistance, wide band amplifier designs.
..,
(1)
.~
o
z
~
o
..J
(1)
FIGURE 4. Simple JFET Noise Model
The input noise per unit bandwidth at some frequency
may be calculated from the mean square sum of the
noise sources (assuming the JFET noise sources are
uncorrelated or independent of one another) ..
..c
....
Cin == C" (, + _g_m_R_O_)
\
1+gmR,
(9)
1 +gm R,
(6)
- The total noise in the same bandwidth Llf, where the
noise sources are independent of frequency, is simply:
c.
(7)
Practically, noise ·sources are not frequency independent
except resistor noise with no .dc bias. The total input
noise for the non ideal case may be calculated by
brea'dng the spectrum up into several small bands
and <:~Iculating the noise in each band where the noise
sour. e" are nearly frequency independent. The total
input noise would then be the RMS sum of the noise in
each of the bands N1 ... Nn.
FIGURE 5. ATypical Resistive Source
JFET Amplifier
If low input capacitance is required, a cascode configuration minimizes input capacitance and still allows high
gain within a device type. The cascode configuration
can also be used to reduce the voltage across a device,
reducing device heating (for high current operation) and
gate leakage currents when source impedances are very
high.
THE DESIGN PROCESS
The final circuit configuration and suitable J FET will be
determined by the external circuit constraints.
1) Minimum signal to noise ratio (maximum amplifier
noise)
2) Type and magnitude of source impedance (resistive
or reactive)
.
Once the basic circuit configuration has been decided
upon or dictated by gain, bandwidth and power supply
limitations, the final JFET selection will be on noise.
Redrawing the amplifier in Figure 4 with all of the noise
sources, the total amplifier noise per unit bandwidth can
be found.
3) Amplifier input impedance requirements
4) Bandwidth and maximum frequency of interest
5) Maximum operating temperature
11-20
-4
::r
from the signal source. Assuming the gate resistor, Rg, is
so large as to not load the capacitive source, the input
noise voltage is:
Ro
(D
r-
o
~
Z
o
where G = Gs + Gin
CJ)
(D
with an input signal of
FIGURE 6. A Typical Resistive Source JFET
~
Amplifier with Noise Sources
(14)
"-4m
I
where:
e~i9
The noise voltage of the JFET
e~s
The noise of the source resistor Rs
e~D
i~
The noise of the parallel connection of
Ri and Rg
e~f
Av 2
(R;lIR g )2
When the sou rce and input capacitance are matched, the
final JFET geometry will be selected on two criteria: the
noise voltage, en, and the current noise from the gate
leakage, IG(oN), to optimize the signal to noise ratio. As
in the resistive source case, the circuit configuration and
JFET selection is an iterative process using all of the
external circuit constraints and device parameters and
limitations.
The noise at the drain (thermal noise of
the load plus the second stage noise)
-4
::r
(D
Z
o
CJ)
(D
""C
The current noise contribution of the
JFET
"'"
o
Inductive Sources
Amplifiers designed for inductive sources (including
transformers) require fixed input resistances (as in the
resistive source case) and controlled input capacitance
(as in the capacitive source case). The input noise per
unit bandwidth will rise with increasing frequency to a
maximum value at resonance of the inductive source and
the input capacitance or when the shunt resistance of the
inductor is larger than the input resistance of the
amplifier.
When the amplifier is operated at room temperature and
moderate drain voltages, the current noise term is
usually negligible with source resistances as high as
10 MD.. Depending on the voltage gain of the stage, the
drain circuit noise may be negligible, simplifying the
input noise expression.
(11 )
The final JFET selection will be based on the noise
requirements from the maximum allowable noise V MAX.
C'"
(D
3
en
o
<
(D
"'"
(12)
Depending on V MAX and e~f the source resistor may
have to be bypassed to ground to eliminate noise of the
bias resistor.
R,
..J L _________ _
Capacitive Sources
FIGURE B. JFET Amplifier with an
Inductive Source
Preamplifiers for capacitive sources are primarily current
amplifiers requiring very high input resistance and
controlled input capacitance to match the source capacitance.
The inductive source amplifier is the most difficult to
analyze due to the complex input impedance. The
input noise per unit bandwidth is given by:
e~t
=
e~f + (i~f)( IZ in 12) + 4 kT (Re (Zin))
where
and Zin
L ________ _
(15)
Z = XCINllRg
= ZII(ZL + R L )
Usually the current noise of the JFET is negligible,
simplifying the expression a little, but not much. The
optimization process for inductive sources is very complex and it will require the spectrum to be'broken up
into several small bands to arrive at a final design. Generally, a JFET with a minimum noise voltage will be the
proper choice,
FIGURE 7. JFET Preamplifier with a
Capacitive Source
The source capacitance should equal the sum of the
preamplifier input capacitance and the stray capacitance
for maximum frequency response and power transfer
11-21
iii
...
-o>
Q)
en
E
Q)
.c
...o
c.
Q)
tn
.o
Transformers may be used with JFET amplifiers to
minimize noise with very low source impedances.
Transformers have both drawbacks and advantages and
both must be examined before a transformer design is
chosen. Poor frequency response, susceptibility to mech·
anical and magnetic pickup and thermal noise head the
list of disadvantages to be weighed against two very
important advantages. First, the noise voltage is transformed by the turns ratio N; second, the resistance is
transformed by N 2. These can be used to advantage by
matching very low values of source resistance to a
relatively noisy amplifier and still maintaining a good
signal to noise ratio, i.e., the total noise at the source
assuming an ideal transformer is
Z
SUMMARY
Low noise amplifier design concepts have been introduced for the three basic types of sources. Basic
parameters (C in , 'en' gm) were discussed that affect
both circuit configuration and JFET type. There is no
universal low noise JFET or circuit configuration that
solves all problems. Each low noise amplifier design is
different and must be considered within its own framework of performance requirements.
REFERENCES
A. Van der Ziel, "Noise," Prentice-Hall, 1954.
Richard S.C. Cobbold, "Theory and Applications of
Field-Effect Transistors," John 'Wiley & Sons, 1970.
C.D. Motchenbacher and F.C. Fitchen, "Low Noise
Electronic Design," John Wiley & Sons, 1973.
(16)
Q)
.c
....
I
tuLL
...,
SOME PRACTICAL LOW N91SE JFET INPUT CIRCUITS
Q)
tn
.-
o
z
+15V
o==
..J
Q)
.c
....
R,
-15V
Usable Bandwidth 1 MHz
a) Wide Band, Low Input Capacitance, Very Low Noise Preamplifier
+lSV
+lSV
R,
R,
AV;,,-~~(RC)
OUTPUT ':'
gm
-15V
10 MHl bandwidth with Rc = lk
b) Low Noise, Very Low I nptlt Capacitance Video Amplifier
11-22
-I
:::::r
APPENDIX A
(t)
r-
o
:e
z
Important National JFET Process Parameter Guide
Test Conditions
PROCESS
VDS
= 15V,
en @ 10 Hz
(nV/yHZ I
50
= 1 mA
ID
(V GS
en @ 1 kHz
(nV/yHZl
15
en
en @ 100 kHz
(nV/yHZl
5
o
= OV)*
gf,
(mmhol
2.5
IGIONI
(pAl
5V
3
2 pA
CGD
(pFI
CGS
(pFI
0.7
2.5
(t)
C-
."
~
10V 10 pA
15V
1 nA
I
51
5
3
1.3
7
30
3
9
55
10
4
2.5
2.4
5
2
4
92
10
4
1.5
4.5
2
4
(t)
o
10V 20 pA
-I
:::::r
1 nA
15V
Z
83
10
5
2.5
2
5
1
2.5
84*
50
15
9.
0.2
0.1
0.01
2
94
10
5
2.5
2
1-2
0.01
4
95
10
4
2.5
1.5
15
3.5
15
96
5
3
1.3
7
30
3
9
"C
93
15
7
2
3.5
10V 20 pA
1
3.2
o
en
(t)
""'II
1nA
15V
C"
(t)
3
CJ)
o
<
(t)
""'II
National JFET Process Low Noise Amplifier Gujde
PROCESS
50
Low Noise Application
51
55
92
83
84
Single JFET
Resistive Ultra- Low
en < 5 nV/.jHz@
10 Hz
X
Resistive Low Freq
X
93
94
95
96
Dual JFET
X
X
X
X
X
X
X
X
X
X
X
X
X
< 20 kHz
Resistive Wideband
< 10 MHz
X
Resistive Wide Band
X
Resistive Very High
Rs > 10 Mrl
X
Capacitive Low C
X
> 10 MHz
X
X
X
X
X
X
X
X
X
X
X
X
X
X
< 10 pF
Capacitive High C
X
X
X
X
> 20 pF
Inductive
X
X
11-23
X
X
X
X
III
...
-o>
Q)
CJ)
E
Q)
.c
...a..o
Q)
.-en
o
Z
Q)
Ik
APPENDIX B
I¥
~
'5
NOISE PARAMETER CONVERSION
'"!::;
<[
Noise Figure (NF) to an Effective en
">w
~
z
>
SOURCE RESISTANCE In)
FIGURE B1. Effective Noise Voltage lenE)
vs Noise Figure and Source Resistance (RS)
Noise Resistance
W
From equations 1 and 2, one finds the source noise
power to be
(Bl )
The effective noisevoltage density (en) and noise current
density (in) are found directly by referring to Figure 1,
and reading the values for the corresponding resistances.
en
.-
o
z
~
o
..J
Q)
J:
inR ;
(B2)
Source Noise Power
(1 )
enR ; (4 KTR)1/2
~
Q)
10
~
By definition:
Total Output Noise Power
NF; 10 log - - - - - _ - - - - - Output Noise Power of the Source
LL
Q
It is more convenient to present noise· data for bipolar
transistors in the form of contours of constant noise
figure at a fixed frequency or plots of noise figure
versus frequency at a fixed source resistance due to
large values of noise current (in). Noise figure must be
converted to an effective noise voltage (enE) for comparisians to be made between a BJT and a J F ET or for
signal to raise ratio calculations .
.J::
toI
to-
100
(4
:T)
1/2
(3)
APPENDIX C
for some source resistance Rs.
JFET Current Noise
Referring to Figure 4, the total output noise power at
the input of the amplifier would be:
Total Output Noise Power;
e~R M
Ai: low frequencies the current noise and voltage noise
~ources are uncorrelated in JFETs with the current noise
being pure shot noise due to gate leakage currents.
As frequency is increased, the current noise also increases
starting at frequencies as low as 50 kHz in some high
capacitance device types.
e~t M
+ --+
Rs
to-
(B3)
The noise figure (NF) can now be expressed in terms of
the noise source generators, enR, ent and i nt allowing
an expression to convert noise figure (NF) to an
effective noise voltage (enE).
NF; 10 log
~+
It has been suggested and experimentally verified that the
noise current at high frequencies is due to increased gate
input conductance.
_'
i~ ; 4 KT[Re (Y,,)1
(Cl)
Re· (Y 11) is available on high frequency JFET data
sheet as the real portion of the common source input
admittance parameters. In effect the channel noise is
coupling to the gate circuit through the source-gate and
drain gate capacitances. Hence low capacitance devices
exhibit lower values of noise current at high frequencies
than do high capacitan~e devices.
(B4)
yielding
(B5)
11-24
."
m
National Semiconductor
Application Note 32
April 1977
FET Circuit Applications
-I
...n
Q
--.
c_.
»
"C
"C
n
Q)
S·
::::J
en
~-----1~OV'
10M
OUTPUT
+--....--.......
INPUT 0-.....- - ,
10M
~--""'~-o OUTPUT
.,
INPUT
PNJ684 (P52)
o-J\I\(\r+--.....-~+,
PNJ686 (PS2)
SAMPLE
-, r
15V SAMPLE
b-J--15V HOLD
JFET AC Coupled Integrator
Samp!e and Hold With Offset Adjustment
This circuit utilizes the "tI-amp" technique to achieve
very high voltage gain. Using Cl in the circuit as a Miller
integrator, or capacitance multiplier, allows this simple
circuit to handle very long time constants.
The 2N4393 JFET was selected because of its low
IGSS «100 pAl, very low ID(OFFI «100 pAl and low
pinchoff voltage. Leakages of this level put the burden
of circuit performance qn cle~n, solder·resin free, low
.
leakage circuit layout.
.-----....-----ip-----o
JOV
10k
O.I/J F
2.2M
+ SUPPLY
0::-1
0.001 ~
~F
_____M
ZN5485 (P50)
RIN<:!:10DM
Gos" 5 IAmhos MAX
CIN $;O,25pF
10M
t---,--I
10k
r-+--OVDUT
2N3904(P2J)
O.IJ.1F
'--+---+---1 ! - -....1M
....--oDUTPUT
1k
Ultra·High ZIN AC Unity Gain Amplifier
Low Power Regulator Reference
This simple reference circuit provides a stable voltage
reference almost totally free of supply voltage hash.
Typical power supply rejection exceeds 100 dB.
Nothing is left to chance in reducing input capacitance.
The 2N5485, which has. low capacitance in the first
place, is operated as a source follower with bootstrapped
gate bias resistor and drain.
.
11·25
IiII
CJ)
s:::
....oCO
-.~c.
SHUNT
PEAKING COIL
JOV
v'
Rl
J.9k
c.
RFe
0.033 uF
'C
'C
10k
_.
_.
n
Q)
>4--0 OUTPUT
10k
o
::l
lOOk
O.00331-'F
0.00331-'F
HI-FI Tone Control Circuit (High Z Input)
The 2N5458 JFET provides the function of a high input
impedance and low noise characteristics to buffer an op
amp-operated feedback type tone control circuit.
RFe
12Vo--....- - '
BYPASS
T
RFe
BVPASS-,-
-4:-
AGe
100 MHz Converter
The 2N4416 JFET will provide noise figures of less than
3 dB and power gain of greater than 20 dB. The JFET's
outstanding low crossmodulation and low intermodulation distortion provides an ideal characteristic for an
input stage. The output feeds into an LM171 used as a
balanced mixer. This configuration greatly reduces L.O.
radiation both into the antenna and into the I F strip
and also reduces RF signal feedthrough.
11·27
en
U)
c
.....o
CO
o
.-
-
Q.
Q.
«
RS
DI,~~~~~NJ~:i
'NPUT
AS
:
\
OUTPUT
I
NPD5566
0-"",,""'---;".,
IP96..
) ...
, ~'H-4""","'-"'-I--I
/
'-
I
./
TOGGLE
DRIVE
(J
- - - TO ADDITIONAL
_ _ _ MULTIPLEX STAGES
....UJ
LL
RS
0----""',.,..---....
DIFFERENTIAL
INSTRUI~~~~
o-___'VIR/lS~-----...
RS - scaling resistors
Differential Analog Switch
ranges (-25°C to +125°C), this makes it an unusual but
ideal choice for an accurate multiplexer. This close
tracking greatly reduces errors due to common-mode
signals.
The NP05566 monolithic dual is used in a differential
multiplexer application where ROS(ON) should be
closely matched. Since ROS(ON) for the monolithic
dual tracks at better than ±1% over wide temperature
1k
I5V
150k
0.01
~F
i
+
tOk
O.Ol/-1F
5O
~OUTPUT
"
24k
-.-.,»-,
1M
'N'UT(O-l---.....
o.o04/JF
':'"
820k
1k
-=
+'
470
22k
T
5O
"
330k
...._ _ _ _ _ _ _---4~"IiI'(lk.,.....-o-15V
Magnetic Pickup Phono Preamplifier
This preamplifier provides proper loading to a,reluctance
phono cartridge. It provides approximately 35 dB of
gain at 1 kHz (2.2 mVinput for ,100 mV output), it
features S + N/N ratio of better'than -70 dB (referenced
to 10 mV input at 1 kHz) and has 11 dynamic range,of
84 dB (referenced to ',1 kHz). The feedback provides for
RIAA equalization.
"~
5V
R2
BIPOLAR
1k
LOGIC
ELEMENT
~-_~OUTPUT
'C
'C
V-
GAIN CONTROL
n
v-
OJ
Negative to Positive Supply Logic Level Shifter
Voltage Controlled Variable Gain Amplifier
This simple circuit provides for level shifting from any
logic function (such as MaS) operating from minus to
ground supply to any logic level (such as TTL) operating
from a plus to ground supply. The 2N5639 provides a
low rds(ON) and fast switching times.
The 2N5457 acts as a voltage variable resistor with an
RDS(ON) of BOOn max. Since the differential voltage
on the LM10l is in the low mV range, the 2N5457
JFET will have linear resistance over several decades of
resistance providing an excellent electronic gain control.
r-----~~-~V+
VIDEO
VIDEO
OUTPUl
INPUT
I-.....--OVOUT
-lOV
,,
-=,, IM>-I-r----....I
-=
IM~tr6--------;---t
J
2N36861P52)
V,N
O---+--.....---i~.,
OOD1P
•
'
500 typical
\....---J....o
\
Variable Attenuatar
'VVII
•
'u;:',UI\l1
Ultra-High Gain Audio Amplifier
\u:.a;)
Ulall
~UIIlt:lIlllt::::.
",""VIolo"I·
l;dllt:=U
lIl~
.Jrl:
I
,u-amp , InlS
CirCUit pro-
vides a very low power, high gain amplifying function.
·Since f.-I of a JFET increases as drain current decreases,
the lower drain current is, the more gain you get. You
do sacrifice input dynamic range with increasing gain,
however.
The tee attenuator provides for optimum dynamic
linear range for attenuation and if complete turn-off is
desired, attenuation of greater than 100 dB can be
obtained at 10 MHz providing proper RF construction
techniques are employed.
VIDEO INPUT
VIDEO OUTPUT
son
50n
Attenuation> 80 dB
Insertion loss '" 6 dB
@
100 MHz
1M
-10V
High Frequency Switch
The 2N4391 provides a low ON resistance of 30n and a
high OFF impedance «0.2 pF) when OFF. With proper
11-29
-_.
c_.
»
MOS
LOGIC
ELEMENT
WITH
NEGATIVE
SUPPLY
......... " ' .... ~ .. ...
...n_.
()
RI
V,N o--'W"","---<~--f
layout and an "ideal" switch, the performance stated
above can be readily achieved.
o
::J
CJ)
R'
V'N
c.
c.
OV
Precision Current Sink
The 2N5457 and PN2222 bipolar serve as voltage
isolation devices between the output and the current
sensing resistor, Rl. The LM10l provides a large amount
of loop gain to assure that the circuit acts as a current
source. For small values of current «1 mAl, the
PN2222 and 10k resistor may be eliminated with the
output appearing at the source of the 2N5457.
The 2N5457 JFET and PN2222 bipolar have inherently
high output impedance. Using R 1 as a current sensing
resistor to provide feedback to the LM 101 op amp
provides a large amount of loop gain for negative feedback to enhance the true current sink nature of this
circuit. For small current values, the 10k resistor and
PN2222 may be eliminated if the source of the JFET
is connected to R 1.
OUTPUT
------'lr------,
O-....
V+
INPUT
JOV
FROM
r-I...------+~!:YY"'''--4~ V'DEO
r-1
DETECTOR
---I
W
r- 15V (SAMPLE)
-15V (HOLD)
*Polycarbonate dielectric capacitor
Low Drift Sample and Hold
JFET-Bipolar Cascade Circuit
The JFET-bipolar cascode circuit will provide full video
output for the CRT cathode drive. Gain is about 90.
The cascode configuration eliminates Miller capacitance
problems with the 2N4091 JFET, thus allowing direct
drive from the video detector. An m derived filter using
stray capacitance and a variable inductor prevents
4.5 MHz sound frequency from being amplified by the
video amplifier.
The JFETs,Ol and 02, provide complete buffering to
Cl, the sample and hold capacitor. During sample, 01
is turned ON and provides a path, rds(ON), for charging
Cl. During hold, 01 is turned OFF, thus leaving 01
ID(OFF) «100 pAl and 02 IGSS «100 pAl as the
only discharge paths. 02 serves a buffering function so
feedback to the LM10l and output current are supplied
from its source.
11·30
-, r
15V ON
W
-15V OFF
...
n
lN914
-_.
c:::
l>
2N4393
IPS1)
'C
'C
n
OUTPUT
Q)
o
~
tJ)
JFET Sample and Hold Circuit
Peak output voltage
Vp '" Vz + lV
Wien Bridge Sine Wave Oscillator
The major problem in producing a low distortion,
constant amplitude sine wave is getting the amplifier
loop gain just right. By using the 2N5457 JFET as a
voltage variable resistor in the amplifier feedback loop,
this can be easily achieved. The LM103 zener diode
provides the voltage reference for the peak sine wave
amplitude; this is rectified and fed to the gate of the
2N5457, thus varying its channel resistance and, hence,
loop gain.
The logic voltage is applied simultaneously to the sample
and hold JFETs. By matching input impedance and feedback resistance and capacitance, errors due to rds(ON)
of the JFETs is minimized.
r - -.......- O
...------1r--Q v'
100
VOUT
A2
10k
+----....-0 vQUT
10M
AI
lk
10M
1k
1k
High Impedance Low Capacitance Wideband Buffer
The 2N54B5 features low input capacitance which
makes this compound series-feedback buffer a wide-band.
unity gain amplifier.
High Impedance Low Capacitance Amplifier
This compound series-feedback circuit provides high
. input impedance and stable, wide-band gain for general
purpose video amplifier applications.
11-31
If)
r:::
-0
....CO
,---....- - - - - - - 1 r - - - - - - -...-
20V
2.2k
(.)
.-
c.
c.
r - - -....--~~--....--oOUTPUT
V,No-.....-+lh
....
::s
(.)
4.7k
6.8M
-70 dB
47 pF
Low Distortion Oscillator
The 2N5485 JFET is capable of oscillating in a circuit
where harmonic distortion is very low. The JF ET
local oscillator is excellent when a low harmonic content'
is required for a good mixer circuit.
11-32
"T1
m
-I
-+---1:..1<=:""""10 1OUTPUT
n
..,
n
c_.
~
"C
"C
n
INPUTlOr-"'i-1......?
AGC range 59 dB
power gain 17 dB
Q)
=:
o
::::s
L 1 = 0.07 f.!Hy center tap
L2 = 0.07 f.!Hy tap 1/4 up from ground
200 MHz Cascode
This 200 MHz JFET cascade circuit features low crossmodulation, large signal handling ability, no neutralization, and AGC controlled by biasing the upper cascade
Amp~fier
JFET. The only special requirement of this circuit is
that lOSS of the upper unit must be greater than that of
the lower unit.
+
OUTPUT
3D pF
vFET Op Amp
The NP08301 monolithic-dual provides an ideal low
offset, low drift buffer function for the LM 101 A op
amp. The excellent matching characteristics of the
NP08301 track well over its bias current range, thus
improving common-mode rejection.
2NS45B
(P551
CONDTR~e~ o-......I--.............."'1k""..........HI4-O -10V
ON
111
OFF -20
=t..r:=-
lN914
1N914
FROM OS780D
tOO pF
High Toggle Rate High Frequen.cy Analog Switch
This
drive
OFF
ideal
commutator circuit provides low impedance gate
to the PN4091 analog switch for both ON and
drive conditions. This circuit also approaches the
gate drive conditions for high frequency signal
handling by providing a low AC impedance for OFF
drive and high AC impedance for ON drive to the
PN4091.
11·33
en
en
c
--
o
.-
2N4091 JFETs
(P51)
CO
.~
,--.--0
,-----,
INPUT 1
1M
I
Q,
Q,
c:(
INPUT 2
on
TTL
INPUTS
1M
I
L _____ ---.JI
INPUT 3
OS7800
U
VOLTAGE TRANSLATOR
I-
,-----1
I
W
1M
I
u..
ilNPUT 4
on
TTL
INPUTS
1M
L _____ ..JI
OUTPUT
057800
VOLTAGE TRANSLATOR
4-Channel Commutator
This 4-channel commutator uses the 2N4091 to achieve
low channel ON resistance «30£1) and low OFF current
leakage. The D57800 voltage translator is a monolithic
device wh ich provides from 10V to -20V gate drive to
the JFETs while at the same time providing DTL/TTL
logic compatability.
R5
OIFFERE~Jt~i o--'V""--t----------,
R'
>---<1"-0 Vo UT
"SCALING"
RESISTORS
R2
DIFFERENTIAL
INPUT
PN4392
(P51)
RJ
Rl
~
-15V
ADDITIONAL
CHANNELS
Wide Band Differential Multiplexer
This design allows high frequency signal handling and
high toggle rates simultaneously. ·Toggle rates up to
1 MHz and MHz signals are possible with this circuit.
11-34
."
m
-t
POSITIVE
INPUT
VOLTAGE
RI
0.1
1%
("')
o-.......-JVv..-..---o
...
TO LOAD
(')
C
»
R2
100
'tJ
'tJ
1%
-_.
(')
Q)
PN3684 (P52)
MONITOR
OUTPUT
5V/A
R1 R3
VOUT"'R2 IL
o
::::J
CJ)
R'
5k
1%
Current Monitor
R1 senses current flow of a power supply. The JFET is
used as a buffer because ID = IS, therefore the output
monitor voltage accurately reflects the power supply
current flow.
TO COMPANION CHANNEL
FOR STEREO CIRCUIT
.....~----_r--~--OI5V
r-----~------._--------._--
VOLUME
1.'
6Dk
15Dk
~
1k
10k
LINEAR
TAPER
1.2M
(I.02jJF
2N5457
INPUT~
1m)
OUTPUT
-=
-l-
1M
6Dk
O.I""I
2.2k
1DOjJF
1M
10k
:~:~~~--JVv..--~~~
I
I
I
100k
':"
I
2.2k
-15V
Low Cost High Level Preamp and Tone Control Circuit
This preamp and tone control uses the JFET to its
best advantage; as a low noise high input impedance
d~vice. All device parameters are non-critical, yet the
circuit achieves harmonic distortion levels of less than
0.05% with an SIN ratio of over 85 dB. The tone controls allow 18 dB of cut and boost; the amplifier has a
lV output for 100 mV'input at maximum level.
11-35
IIII
..
;o
c.
e
.~
:i
lij
LL
Q)
>
o
Z
IVpl
VDG = VDS - VGS
It should be noted that N FET's can be paralleled for
higher load current requirements without matching the
devices.
R1
2.2M
R2
10M
VOUT
r
I
I
106
I
I
IL ____________ -'
Actual performance of the regulator is quite good. With
a 10V typical output, the line regulation is within
±0.05% for a range of VIN-VOUT of 0.3V to 10V.
The load regulation is 0.2% with a load range of 10 pA
to 10 mA (Zo"" 10n) and the temperature stability is
-o.ol%fC (-1 mVfC). The output voltage can be
easily trimmed by adding a pot at the Rl R202BASE
junction to eliminate BVEB variations or to make the
output adjustable over a limited range. Also, the temperature stability can be improved by replacing 03 with an
8.2V zener diode, because its temperature drift (- 4 mV 1
°C) would nearly match the combined VBE drift of
02 and 04. The regulator is good enough to be used as
a reference in low accuracy (6-7-bit) or limited temperature range applications if current drain is important.
Output Voltage
VOUT = VSE (2 + R1 ) + SVES (1
R2
+~)
REFERENCES
R2
Drift
aVOUT_ = aVSE
aT
aT
Quiescent Current
(2 + ~) + asvES
R2
aT
~
(1 + ~
4 JlA
FIGURE 1. Micropower Regulator
R2
1. "Voltage Regulator Handbook", National Semiconductor Corporation, May 1975.
2. "Zener Diode Handbook", Motorola, Inc., May 1967.
3. Williams, P., "D.C. Voltage-Reference Circuits with
Minimum Input·Output Differentials", Proc. IEEE
pp. 1280-1281, December, 1969.
11-36
»
z
o
<
~
~
IL = 10pA
""
Q
i=
....
""
~
-0.3
I
II
""
Q
-n
m
10
VIN = 10.8V
T A = 25" TO 85' C
-I
""
I--
Q
i=
V
I-
VO(TyP) = 10 .1V
VIN(TVP) = 10 .8V
TA=25'C
....
""
-30
I-
0.01
10
0.1
o
:e
"'"
""
Q
-40
-0.4
s:
a
"C
(;'
-10
0.1
INPUT·OUTPUT DIFFERENTIAL
VOLTAGE (VIN-VOUT)
IL - LOAD CURRENT (rnA)
FIGURE 2. Line Regulation vs Input·Output Differential
FIGURE 3. Load Regulation
10
::;
Q)
CC
CD
:D
CD
CC
C
or....
o
~
~
~
""
Q
i=
I-
....""
""
"'"
20
0.2
IQ
-80
-0.8
25
45
65
85
TEMPERATURE (OC)
FIGURE 4. Temperature Stability
11·37
...
-
-~
~
c.
E
A Linear Multiple GainControlled Amplifier
National Semiconductor
Appl ication Note 129
Jim Sherwin
August 1975
1
FIGURE 3. FET/Op Amp Gain Control Circuit
1200
1000
2N395B
IPB31
BOO
J
1000
Rl =JOOk
vp =2.6V
f600
f-
rr
30k
400
VI'
R2~3ki/. ~ V
k".L
V
Vp '" 3.7V
2N5524
IP951
BOO
I
600
V
>
"
/V
\(L,
/
/
400
~I
200
'"
"
OIl
200
~
o
-3.0
I
-2.5 -2.0 -1.5
-1.0
o
-0.5
-4.0
-3.2
-2.4
-1.6
-O.B
VGS IVI
VGS iVj
FIGURE 4. Gain vs Control
Voltage For Short Channel FET
FIGURE 5. Gain vs Control
Voltage For Long Channel FET
11·39
...
Q)
!E
1000
100
H=B
Co
E
0
10
100
.....,~
C
r_.
ID
IDmA
PER
DIV.
ID
SDIl.uA
PER
DIV.
:s:
c
_.
;::::;
"2Ves = D.SV/DIV.
CD
C)
VDS - D.SV/DIV.
Q)
.)
V~
= 2.BV
::s
b) V, =9V
n
o
.o::s..
'D
ID
10ll.uA
PER
DIV.
2mA
PER
DIV.
(5"
Co
J>
3
...
'C
VDS = 50 mV/DIV.
VDS = 50 mV/DIV.
,) V, =2.BV
~
CD'
d) V,=9V
FIGURE 9. AC Output Characteristics of FET with Feedback Linearization
ttlu
1000
III! IIII
".!
1ftmlJJ
IWI 1
1000ml1
."
100
1
~r
10.~
10
Av = 1-100
Vp "'S.2V
Vp =2.BV
1
PN4091 (P511
L-L.!-L-.L....l..........."'2N.:.:3"'95"'8"'(P.;;.83;;:.1.......J
-3.0 -2.5 -2.0 -1.5 -1.0
1 ' - - ' -................-'--'--'---'"'--""-'
-0.5
-9 -B -7 -6 -5 -4 -3 -2 -1
VGS(V)
Vos (V)
FIGURE 10. Distortion With
Vp = 2.BV
FIGURE 11. Distortion With
Vp= B.2V
1000
100
1000
§
2~0.8%
~WO.5%
rn
r/,
10
0.3%
o.I%I HOI-
I-
Av = 1-100Vp=2.8V -:
2N3958 (P83)
-3.0
FEEDBACK
Av = 1-100
Vp -8.2V
PN4091 (PSI)
1
-2.5 -2.0 -1.5 -1.0 -0.5
0.05% THO
I I
10
FEEOBAC~~
1
-
0.1% t::;;
=.0.0?-
100
-9 -8 -7 -6 -5 -4 -3 -2 -1
Vo, (V)
[II
0
Vos (V)
FIGURE 12. Distortion With
Vp = 2.BV, With Linearization
FIGURE 13. Distortion With
Vp = S.2V, With Linearization
11·41
...
C»
:e
Q.
E
3
-
"C
~
...
C1
Ci)'
r
I
R ~ 1M
Rl ~ 20k
R2 ~ 5k
RJ =240k
R4 ~ 10k
RS 10k
+10V
I
L_~5~_...J
R5 __
C2
+t--'VII'v--.....----+--IL..".
GAIN CONTROL lOOk
\ ..l..
+20V
FIGURE 17. Quad Gain Control
.-----'VIi'v----.....-o IlC OUT
IlII
"or 1/2 lM348
FIGURE 1B. Volume Expander/Compressor Block Diagram
FIGURE 19. Full Wave Linear Precision Peak Detector
11·43
..
Q)
-E
~
Q.
«
"0
--..o
Q)
.....
c:
o
U
c:
.CO
"
..
.!
Q.
CO
Q)
c:
r-----------------------------------------------------------------------------------~
audio attenuator to realize SIN about 100 dB or in a
60 dB attenuator to realize 80 dB SIN. Improvements
in SIN can be made by reducing system bandwidth in
fixed or low frequency operation. Minimum noise is also
achieved by using the minimum practical amplifier
source resistance. Values as low as 1 kn are advantageous.
half cycle (full-wave detector). The detector should,
therefore, be a full-wave precision linear peak detector
with low internal impedance; the requirements can be
met with the circuit of Figure 19.
The expander circuit shown in Figure 20 will perform as
desired. The gain control function is plotted in Figure 21;
distortion is below 0.1% at all levels. ,Resistors R3 and
R4 are added in order to modify the linear control curve
to the desired log curve. Note that the input signal is
attenuated prior to amplification in order to reduce
distortion and maintain an overall gain of approximately
o dB at midrange of expansion. The noise with the
LM124 over a 20 kHz bandwidth is, of course, a function
of signal; but the maximum signal to noise ratio is 80 dB.
The circuit could be adapted to stereo or quad sound
as in Figures 22-23. Questions for individual design
concern the method of control. Whether to expand all
channels together, and whether to derive the control
signals individually from each channel, a summation
from ,2 to 4 channels, or from a single channel (assuming
that high level from any channel indicates high levels
from all channels). Note that the FET is biased OFF
(minimum gain) for low signals, and increasing signals
progressively bias the FET ON (maximum gain).
The effect of temperature will be to change the gain
according to the temperature sensitivity of the FET.
This effect can be reduced by using a silicon resistor for
the feedback resistor, R1. If the FET were to be
integrated onto the op amp chip, an attempt should be
made to include R1 on the chip as well.
The application to a volume expander circuit is of
interest as the control is linear, the required control
range is only about 1:4, and the input signal is small
for the low gain condition when distortion would otherwise be most apparent. The elements of a volume
expander are indicated in Figure 18. The gai n controlled
amplifier need only exhibit a 12 dB variation in gain,
being lowest for small signals. The slope of gain versus
control should be linear, more specifically the slope
of (log) gain in dB versus (log) signal in dB should
be linear. A practical range is 12 dB gain change over a
30 dB input signal range. The peak detector should be
linear down to very small signals, exhibit a fast attack or
charge time of a millisecond or less, a discharg~ time
constant of about 2 seconds, and operate on the first
The volume compression circuit is a logical mate to the
expander. The only difference would be that the FET is
initially biased ON (maximum gain) for low signals, and
:i
«
+20V
'0
-=
10k
".
+lDV
"J
SIDk
"'
51k
4100
"2
4100
-=
1M
1M
+10V
1M
1M
-1 ",".".""
t1DV
1.---------.....
FIGURE 20. Volume Expander Circuit
11-44
I"'""
~~~io-,-----------~
/
~
..,>
3:
./
-I
c
;::;:
-3
-------+1
r-"
-5
F~~~i 0-....
-,
-7
-6
0
6 12 18 21 24 27 30 33 36
illig
(dB)
FIGURE 21. Expander Gain Characteristic
R~~:~ 0 - . - - - - - -....1
RIGHT 0 ....... . . . , . . - - - - - - - - - -....,
~::~ 0-...------+1
--
(D
Co
LEFT
»
----------_1
0-.....
FIGURE 22. Stereo Expander Block
increasing signals progressively bias the FET OFF (minimum gain). A disadvantage is that the circuit produces
greatest distortion in the low gain condition when signals
are highest. Maximum SIN is degraded by 24 dB over
that of the expander, minimum SIN is the same.
CONCLUSION
The combination of FET and op amp provides a linear
dc (voltage) control of gain over a range to 60 dB. As the
circuit realizes positive gain, rather than being a controlled attenuator, the input signal -is limited. Input
FIGURE 23. Four-Channol Expander Block
signal is further limited to several hundred millivolts by
the non·linearity of the FET (which sees the full input
signal). Because input signals will yenerally be in the
10-300 mV range, noise performance of the selected
op amp will be important. Even so, SIN of 60-100 dB is
obtainable with standard amplifiers. Track ing pair or
quad gain·control amplifiers are realizable with existing
monolithic dual or quad FET's, and the combination of
FET and op amp lends itself to simple integration. The
Circuit IS well-suited to remote and multiple linear gain
control and to volume expander/compressors. The volume
expander is especially interesting as the signal level and
gain conditions result in extremely low distortion and
more than adequate signal-to-noise ratio.
3
-
'C
=4\
(S'
...
IDI
11-45
...
U)
Q)
;,-
e.
Binary/BCD Gain
Programmed Amplifiers
National Semiconductor
John Maxwell
February 1977 .
Many systems require logic controlled gain programmable
amplifiers (GPA) for signal preconditioning, level control
.and dynamic range expansion. The system sets GPA
requirements for accuracy, speed and signal handling
capability, limiting the type used. Conventional CMOS
analog switches limit signal handling to ±7.5V and
accuracy to 1%. High voltage CMOS br JFET analog
switches increase both accuracy and signal handling
(±10V to ±15V) but at a greater cost. Programmable
amplifiers using current mode analog switches·have the
highest signal handling capability (±25V) with high
accuracy, speed and low cost.
A logic "0" turns the switch ON with a logic "I"
shutting the switch OFF by pinching the FET OFF. The
diode is used to clamp the source to drain voltage to
about 0.7V in the switch, OFF state. The series FET in
the feedback path is used to compensate for the ON
resistance of the switch FET.
E
.. converters can be built using monolithic
.current mode analog switches, an op amp and a few
resistors. '
A 4·bit multiplying DfA converter can be built using a
quad current mode switch, 4 binary weighted resistors
(R, 2R, 4R, 8R) and an op amp. The output voltage
will be a function of the feedback resistor, input resis·
tors and the logic state of the FET gates, GN.
Unlike conventional analog switches, only signal current
is switched at the'virtual ground of an op amp with cur·
reflt mode analog switch~s. Limiting the voltage across
the switch to a few hundred millivolts, power supplies,
logic interface and level translator circuits are eliminated
allowing the JFET switches to be 'driven directly by
standard logic.
The number of bits is expanded by c'ascading another
quad current switch and resistor array to the first.
Instead of continuing the binary progression of the input
resistors, (16R, 32R, etc). current splitting resistors·are
used such that the same resistor array (R, 2R, 4R, 8R)
is used for the additional bits, minimizing the number of
resistor values required for higher order converters.
G1
2R
4R
Vo
OR
VIN O-.....~""'.--+-...I
FIGURE 1. Current Mode Analog Switch
FIGURE 2. 4·Bit Multiplying D/A Converter
11-46
CD
:::s
r
R
10k
I
I
...
Q)
-AH5iilO-'"
'<
.......
CD
I
I
I
I
Gl
n
c
G')
Q)
2R
20k
:::s
...
...
"'C
RF
4R
40k
5k
(8k BCD)
o
(Q
Q)
3
3
8R
80k
CD
Q.
>
3
'C
:::;:
...
CD'
R
10k
(J)
2R
20k
4R
40k
AA _ _......._ - '
8R
80k
Vo
~ -VIN
RF [Gl 20 + G2 2- 1 + G3 2-2 + G4 2-3 + 1/16 (G5 20 + G6 2- 1 + G7 2-2 + G8 2-3 )]
R
(1 II for BCO)
°
FIGURE 3. a·Bit Multiplying D/A Using Cascaded 4·Bit Sections
Binary weighting requires a 1/16 current split for the
second switch quad while BCD weighting requires a
1/10 split.
There are 2 basic switch configurations available that
are optimized for a variety of logic drives: TTL or CMOS
Multiple independent switches 14 by SPSTI and a 4channel multiplex version with a series compensation
FET.
Practical limitations in using monolithic current mode
analog switches need consideration. Resistor values and
tolerance impacted by switch resistance is minimized by
increasing resistor values without regard, but limits
bandwidth and creates leakage errors at elevated temper·
atures. Using resistors that are too sma", increase switch
resistance errors. Current saturation lincreased switch
resistance I occurs when the switch current approaches
the FET saturation current, 'DSS. High currents also
11-47
IIII
f!
Q)
~
C.
E
«
"0
Q)
E
E
...COm
e
cause IG(ON), current lost through the gate, as the
diode and FET source to gate diode become forward
biased. An input resi~tor value of 10k limits the switch
current to less than 2 mA minimizing both leakage and
switch resistance problems. For example, the gain
accuracy at unity gain using the compensation FET is
less than 0.05% with R = R F= 10k.
The current shunt resistor used in cascading switches
should be kept small to minimize the voltage drop,
keeping the FET drains near ground. Values of RS
should be less than 100.11 (20 typ).
This works out to be ±0.2% for the 8·bit binary unit.
Errors in the feedback resistor directly affect the output
of the converter. The most significant resistor, R,
contributes 1/2 full-sca'e, reducing its error contribution
by a factor of 2. The same is true for the rest of the
resistors with contributions of 1/4, 1/8, etc. Using a
resistor tolerance of 0.1% for the feedback resistor,
0.2% for the 2 most significant resistors (R, 2R), 0.5%
for the 3rd and 1% for the 4th and 5th switches allows
5% resistors to be used in the 6th, 7th and 8th switch
positions.
0.
.5
CO
"
C
U
III
.......
~
Resistor tolerance will be determined by converter
resolution, i.e., the number if bits (N). For example,
an 8·bit binary D/A converter will have 2N_l or 255
steps- (99 for BCD) or different gains. The resolution or
smallest step is (least significant bit) 1/2 N of the full·
scale value (0.0039). Typical accuracy specifications
for D/A converters are stated as 1 LSB or ±1/2 LSB.
Using the above information, 4-bit or more binary/BCD
gain programmable amplifiers can be built with large
signal handling capability, few parts and easily adjustable
gain or attenuation. Figure 3 shows a practical 8-bit
binary/BCD GPA with gains of 0.996 (binary) with
RF = 5k and 0.99 (BCD) with RF = 8k. For other gains,
only the feedback resistor need be changed.
CO
r::
as
2"
22
2i1
% error = [ Ef2 + (ER) 2 + (E2R) 2 + - - - + (EnR) 2 ]1/2
(2)
or
[ 2 (0.2)2
(0.2) 2
( 5 )2]1/2
% error = (0.1) +"2
+
+ - - - + 256
= ±0.198%
'"'4
Ef = tolerance of feedback resistor
ER = tolerance of most significant resistor
EnR = tolerance of Nth resistor
11-48
"T1
m
National Semiconductor
John Maxwell
February 1977
FET Curve Tracer
-I
n
c::::
...<
CD
10
Junction field-effect transistors (JFETs), unlike bipolar
transistors, do not easily lend themselves to analytic
solutions of bias networks. By their very nature, JFETs
are voltage controlled devices. Gate to source voltage
(control voltage VGS) variations of several volts can
exist within a given part type at the same operating
conditions, causing the problem. Multiple suppliers and
inadequate or non-existent data sheet curves compound
the problem further, requiring data from the suppliers
or the use of a cu rve tracer.
V
/
o
-2.5
-2
V
-1.5
-1
A simple curve tracer, used with any oscilloscope, can be
built using a quad op amp and a handful of parts. The
circuit displays drain current versus gate voltage for both
P and N·channel JFETs at a constant drain voltage.
-0.5
FIGURE 1. Typical N·Channel FET Transfer Curve
The circuit consists of an op amp current to voltage
(I/V) amplifier with a positive or negative gate sweep
1k
1 mAN
100
5 mAN
100
10 mAN
15V
10k
OUT
10k
[0
VERTICAL
HORIZONTAL
D.SV/ms
10k
Dl-D2 Q2*
Q3*
150k
15V
I O-4-----~ • __--~~---4
I
fl
68k
499
-15V
750
'lW NPN, PNP
-15V
FIGURE 2. FET Curve Tracer
11·49
lN914
92PUOl IP37)
92PU51 IP77)
D)
o
...CD
V
VGS(V)
D2
...
-I
/
...
...co
IQ)
(J
Q)
...
>
::l
U
IW
u..
voltage. The I/V amplifier uses 1/4 of the quad op amp
and 3 switch able feedback resistors for drain current
scaling: 1k·for 1 mAIV, 200n for 5 mAIV and 100n
for 10 mAIV. An NPN·PNP emitter·follower buffer is
used with the IIV amplifier to handle high FET currents
(to 100 mAl. A unity gain inverting amplifier is used
for proper drain current polarity.
horizontal input is used for the gate voltage. The hori·
zontal sweep can be used if no horizontal input is
available where a sweep rate of 0.5 ms/cm corresponds
to 0.5V /ms, allowing the .curve tracer to be used with
any oscilloscope.
-r-----oRESET
The gate sweep generator consists of 2 parts, a linear
ramp generator with a reset and a window comparator.
The ramp generator is an op amp with a capacitor 'in
its feedback loop. The sweep rate is set by a constant
current supplied to the capacitor through a resistor tied
to either the plus or minus voltage supply.
0.1 ).JF
15Dk
i
1~3 o--'IIII'v-_-I
Vo
'lV/m~
The positive (P·channel) ramp mode uses the positive
reference on the plus input of the comparator with the
ramp connected to the minus input. The comparator
output stays.high (15V) pinching the FET OFF until the
input exceeds the reference (10V). At that point, the
output snaps to the negative supply, turning the FET
switch ON, discharging the capacitor. The reference
voltage at the plus input is set near ground using the
51k input resistor, 02 and 68k feedback resistor when
the comparator output is in the low state. When the
capacitor is discharged, the comparator resets, restarting
the ramp.
FIGURE 3. Linear Ramp Generator
20 , - - - - - , - - - - - - ,
2
Q
10
>
A negative sweep is more difficult to generate using the
same comparator. The reference (-10V) is on the
minus input with the ramp connected to the plus input.
As with the positive sweep, the comparator output is
high until the negative sweep exceeds the reference.
The difference is that the reference cannot be set to
ground for the reset sweep but to a negative voltage
such that when the ramp is at OV the comparator resets.
The function of Q2 is to short R 1, changing the reference voltage from -1 OV to -6V.
I------,;t------,I
10
20
TIME (ms)
FIGURE 4. Positive Sweep
In both cases, the sweep time is 10 ms. The resistor
attenuator on the FET gate terminal divides the voltage
in half, yielding a sweep rate of 0.5V /ms with a maximum gate voltage of ±5V. This should be adequate for
most FETs used as amplifiers but if additional gate
voltage is required, the attenuator can be switched out.
2
-10
1-----""''1-------''1
-20
L -_ _ _ _-'----'-_ _ _.....
Q
>
The circuit is limited to displaying 6nly the FET transfer
characteristic 10 vs V GS, but th!is is the curve most
needed by designers. It gives in'sight into parameter
variations of bias circuits and it c'an be used to observe
temperature effects on the FET. The oscilloscope
vertical input is used for the drain current and the
10
TIME (msl
FIGURE 5. Negative Sweep
11-50
20
Section 12
Appendices
!!l
o
.c
E
~
tn
'0
~National
D Semiconductor
DC PARAMETERS
BV CBO
-
Collector-Base' Breakdown Voltage
with Emitter Open-Circuited
The breakdown voltage of the collector-base
junction, measured at a specified current,
with the emitter open-circuited,
Collector-Emitter Breakdown Voltage
with the Base Open-Circuited
.en9
'iii
The collector-emitter breakdown voltage,
measured at a specified collector current,
with the base open-circuited.
c::
CO
I-
Transistor Glossary of Symbols
BV CER
Collector-Emitter Breakdown Voltage
with Resistance between Emitter and
Base
The collector-emitter breakdown voltage
measured at a specified current with a
specified resistance R connected between
the base and the emitter.
BV CES
Collector-Emitter Breakdown Voltage
with Base Shorted to Emitter
The collector-emitter breakdown, measured
at ,a specified current, with the base shorted
to the emitter.
BV CEX
BVCEX
'Collector-Emitter Breakdown Voltage
at a Specified Condition
The collector-emitter breakdown voltage
me'asured at a specified current with the
base-emitter junction forward or reverse
biased by a specified voltage or current.
BV EBO
Emitter-Base Breakdown Voltage
with Collector Open-Circuited
The
emitter-base
breakdown
voltage,
measured at a specified current, with the
collector open-circuited.
Common-Emitter DC Current Gain
The ratio of DC collector current to DC base
current measured at a specified collectoremitter voltage and a specified collector
current.
h,,-SETA
'"
-;--:::
CF....LI3"~
'$[0--5" of $::,
12-2
Inverse Collector-Base Current
ICBO
Iceo
The collector-base current with the junction
reverse biased by a specified Voltage, with
the emitter open-circuited_
Inverse Collector-Emitter Current at
a Specified Condition
The collector-emitter current measured at a
specified collector-emitter voltage with the
base forward or reverse biased by a specified
voltage or current, or with the base shorted
to the em itter_
Inverse Emitter-Base Current
lEBO
The emitter-base current with the junction
reverse biased by a specified voltage with the
collector open-circuited_
LV CEO '
Pulsed Limiting Breakdown Voltages
LV CER '
These are similar to the corresponding, above _
defined, BV parameters but are measured at
a specified high current point where
collector-emitter voltage is lowest. The duration of the pulse and its duty cycle must be
specified_ The letter L indicates LIMITING
Value and is measured outside the negative
resistance zone of the reverse characteristic.
LV CES'
LV CEX ' or,
V CEO(sust)
V CER(sust)
~.
VCES(sust)
",1
~
VCEX(sust)
o
VBE
(ON)
Unsaturated Base-Emitter Voltage
The base-emitter voltage measured in the
common-emitter connection at a specified
collector to emitter voltage and specified
collector current.
CNBEIONI:;:;.1t::: 1.8 mV/'C-2.4 mVrC
12-3
$~'ULSEO
en
0
.c
VBE(SAT)
E
~
The base-emitter voltage measured in the
common-emitter connection at a specified
collector and base saturation currents.
U)
'too
0
.~
CO
Base-Emitter Saturation Voltage
VeE (SAT)
VeeISATI. VCEISATI
Collector-Emitter Saturation Voltage
The collector·emitter voltage measured in
the common·emitter connection at specified
collector and base saturation currents.
en
en
0
G
...0
FORCED BETA
...
en
'Ci)
c
!
t-
Reach Through Voltage
Punch Through Voltage
The collector·base voltage above which· an
increase of applied voltage can be measured
in the emitter·base open circuit.
SMALL SIGNAL PARAMETERS
Common-Base Output Capacitance
The common· base output capacitance with
input ac open.
t)
CAPACITANCE
Cob
'J~iC
OPEN
8
MEASURE
OUTPUT
CAPACITANCE
8
Common-Emitter Reverse Transfer
Capacitance
This parameter is the imaginary part of Yr •.
When Ic = 0, Cr. is identical to CCB.
Base-Emitter Capacitance
The capacity of the base·emitter junction at
a specified inverse voltage with the collector
open.
Collector-Base Capacitance
Collector-base capacitance measured at some
specified collector·base voltage.
12·4
2) Cee
C~B ~ COb (WITH EMITTER GUARO'EO)
CONVERSION GAIN
11 SPECifY
Vc~
2) IRF • 'IF. LO LEVEL. CIRCUIT
Conversion Gain, Common-Emitter or
Common-Base
'c.
The ratio of the output power of a mixer, at
one specified frequency, to its input power,
at another specified frequency. This parameter is a function of oscillator injection
voltage and the mixer operating point.
C)
0'
tJ)
tJ)
IIF~IAF-flO
OJ
~-----------------------------------------+----------------------------~~
Common-Base Cut Off Frequency
So
The frequency at which the hlb (et) is
reduced to 0.707 of its low frequency value.
(J)
'<
Common-Emitter Cut Off Frequency
3
o
161-_ _,"
The frequency at which the hIe (~) is
reduced to 0.707 of its low frequency value.
Gain Band-Width Product
~"''''
I;
The common-emitter current gain bandwidth product in the frequency range where
the current gain is falling at approximately
6 db/octave.
~
1
'L-______
C"
'(ij
r\
~,~"~------+,,~
LDGI- _
Transition Frequency
The frequency at which the hIe (~) is equal
to 1.0. This is a device figure of merit that
is often specified at a VCE and Ie.
I
Maximum Frequency of Oscillation
Th is parameter is a device figure of merit
that is calculated from ft an'd rb'Cc.
GP e
PG
MAX FREOUENCY OF OSCILLATION
FREOUENCY AT WHICH MAG = 1
IMAX =
J
I)SPECIFYlc,Vcr
21Io ••,~.CIRCUIT.NEUTRALIZED?
Power Gain
Can be common-emitter or common-base.
gains involved,
transducer gain
~'1
_&_~
~
11;' H11: :;, ) Q )~ )S1
0,,,
Common-Emitter Transducer Gain
A test fixture must be specified.
GMA
8" It
,bee = I VIPG
ru
P(lW£R GAI",TRANSCONDUCER GAIN
Common-Emitter Power Gain
Usually stability-limited
thus are effectively a
measurement.
_
MAX -
Stability Limited Gain or Gain
Maximum Available
12-5
SO!!
r.7
G
_
POWER DELIVERED TO THE LOAD
TE - POWER AVAILABLE FROM THE SOURCE
GMA=10LOG
This parameter is a device figure of merit
and must be calculated from the two port
"y " parameters.
USUALLY
[lYle l
IY,.I
(K-~)]
NOT DEFINED FOR K < 1
UJ
'0
.c
E
h Parameters
h - PARAMETERS
··t ~L-,--'A_N~~ t·,
en>-
WHERE I,. i,. e2. i z ARE SMALL SIGNAL VOLTAGES AND CURRENTS
'I-
.
THE h - (HVBRID) PARA",ETERS ARE DEfiNED BY
0
e,=hl1 i,+h12 t z
iz=hz,i,+hzZIZ
AND FOR COMMON EMITTER OPERATION THESE E Q BECOME
='''.i,+h.. ez
>-
8,
CO
i2=h~i,
+h""ez
U)
U)
.2
~
....!0
..
h'e
Common-!=mitter Current. Gain
,,- PARAMETERS-COMMON EMITTER
The C1lmmon-ernitter forward current transfer ratio with output ac shorted. This is a
complex quan~ity ..
U)
c
·03h"'~'"''
CO
t-
hi~
Com!110n-EmittEl r Input Impedance
llh;"~"'"
The common-emitter input impedance with
the output ac shorted. This is a' comple~
quan~ity.
hoe
Common-Em,tt~r
Output AdfTlittance
The common-emitter output admittance
with the input ac open: This is a comple/<
quantity.
Common-i;:mitter Reverse Voltage
Transfer Ratio'
.
,
The' co~mcin-e~itter reverse voltage tran~fer
ratio with iifll.!lt' ac open. This is ~ complex
quantity.
M,AG
:
lIJIaximufTl Availabll! Gi,lin
Device figure, of merit that must be ca!cuhited from the ~w() port "'I" par~m~ters.
MSG
Maximum
S~ble
!la!!'
This Parameter is ,a device figure of merit
that is calculated from the two port "'I':
MSG =
IVf 1
10 LOG -"-'I
IV r "
par~meter~.
NF
Noise
Fi~flre
NOISE FIGURE MUST $!"ECIFY
Noise figure' = 10 1091 0 F. where F is the
ratio of t~tal outp'\Jt noise power to the·
output power due solely to the thermal
noise of the sourc~ impedance.
,
;:
12-6
11
VeE,Ie
2) Rs,fo.PBW
.,
Base «Spreading»
Resistance
Ib' MEASUREMENT
Equivalent to the real part of hie at some
specified very high frequency.
ti~
,
r~---'b'--~---"---~T'------R
\
Jw,
~~
-j~
rb'Cc
Collector Base Time Constant
This parameter is a device figu re tif merit
and is measured in a specified test Circuit.
'b' Cc
=
Common-Emitter Switching
Parameters
COLLECTOR BASE TIME CONSTANT
SPECIFY -Ie. VCE. FREQUENCY
SWITCHING PAAAMETERS
In the following, drive circuit conditions,and
collector circuit conditions must be specified.
The transitibn times of the i~put must be
negligible compared to the measured times.
Delay Time
The time interval during turn-on from the
point when the input pulse at the base
reaches 10% of its full amplitude to the
point when the collector pulse changes from
oto 10% of its maximum amplitude.
t,
TON
= t.! +!,
TOFF = '. + II
Rise Time
90%-rl
I
The time interval during turn·on in which
the collector pulse changes from 10% to 90%
OT 115
maximum
ampll1Uae.
14
Storage Time
The time interval during turn-off from the
point when the turn-off pulse at the base
changes from 100% to 90% of its full
amplitude to the time when the collector
current has changed from 100% to 90% of
its maximum amplitude.
I
1
1
1--..1
l __ tR
·"13'%
I
I I'
f ou ,
:
90%
I
I
I
:
I_
I I
I
I
~
--I,
Fall Time
The time interval during turn-off in which
the collector pulse decreases from 90% to
10% of its maximum amplitude.
Y Parameters
y
PARAMETERS
.'I~L-__LAN_-,~ I"
y PARAMETERS ARE DEFINED BY
i 1 =Yll e'+Y12 e2
i1 =YZl e'+Y22 ez
OR IN COMMON EMITTER NOTATION
i1 "V•• el+y,.eZ
'2 = VI. e, +yo.ez
12-7
-.co
tn
Yle
E
Common-Emitter Forward Transfer
Admittance
The common-emitter forward transfer admittance with output ac shorted_ This is a
complex quantity (gle + jble )·
>0
U)
,'",-"-I
l]}'
1
',$
Vb. V0
Yie
Common-Emitter Input Admittance
The common-emitter input admittance with
output ac shorted. This is a complex
quantity (gie + jb ie )·
tn
tn
o
Cl
...o
-...
Yoe
.~
Common-Emitter Output Admittance
The common-emitter output admittance
with input ac open_ This is a complex
quantity (goe + jboe )·
tn
c:::
m
....
v PARAMETERS-COMMON
EMITTER
l []
"~
0:3
"I
v•• = -
Vb.
v,,=D
···'2J. -"
,
Yre
Common-Emitter Reverse Transfer
Admittance
The common-emitter reverse transfer adm ittance with input ac shorted. This is a
complex quantity (gre + jb re ).
·03'"
•.. ';;;!..-"
LARGE SIGNAL PARAMETERS
'Y/
Collector Efficiency
This parameter applies to oscillators and
class C amplifiers, predominantly. It is
defined as the ratio of R F Power Out/DC
Power In.
Po
Power Out
THERMAL PARAMETERS
RTH
COLLECTOR EFFICIENCY
Po (RFI
1]=--PIN(DCI
vi
=---
IC
X
vCE
p,
This parameter applies to oscillators. The
units are watts and a test circuit must be
specified.
i
1]-
Internal Junction-to Case Thermal
Resistance
The rated increase of junction temperature
with respect to the case temperature per
unit of dissipated power. It is also called
Thermal Resistance with infinite heat sink.
BJC
Junction-to Case Thermal Rating
BJA
Junction-to Ambient Thermal Rating
12·8
~
METER
SPECIFV -Ie. VCE UNDER QUIESCENT CONDITIONS
- '0'
RlOAO
c...
~National
JFET Glossary of Symbols
~ Semiconductor
-t
C')
oen
DC PARAMETERS
BVDGO (V)
or BVGDO
en
Q)
...
Drain-Gate Breakdown Voltage with Source OpenCircuited
-
'<
o
The breakdown voltage of the drain-gate junction,
measured at a specified current with the source
open-circuited.
BVSGO (V)
or BVGSO
Source-Gate Breakdown
Open-Circuited
Voltage
with
en
'<
3
Drain
C"
o
-
The breakdown voltage of the source-gate junction,
measured at a specified current, with the drain
open-circuited.
BVGSS (V)
Dr BV, V(BR)GSS
SDurce-Gate Breakdown
Source Shorted
VDltage
with
en
Drain-
The breakdown voltage of the source-gate and
drain-gate junctions, measured at a specified
current with the drain-source shorted.
lOGO (pA)
or IGDO
Drain-Gate Leakage Current, Source Open-Circuited
The leakage current of the drain-gate junction,
measured at a specified voltage, with the source
open-circuited.
Drain ON Current
The drain current, measured at a specified drainID(OFF) (pA)
I
vos
Drain Cutoff Current
Drain Saturation Current
Gate Leakage Current with Drain Current FIDwing
The gate leakage current, measured at a specified
drain current and drain-gate voltage.
IGSS (pA)
T
lOSS
The drain current, measured at a specified drainsource voltage with the source shorted to the gate
(VGS = 0)
IG (pA)
Dr IG(ON)
*,vos
I
The drain cutoff current, measured at a specified
drain-source voltage and gate-source voltage.
lOSS (mA)
"m
Gate-Source Reverse Leakage Current with DrainSDurce Shorted
The gate-source reverse leakage current measured
at a specified gate-source voltage.
12-9
cG3
o
+
~vos
.!!l.
0
.c
E
~
en
ISGO(pA)
or IGSO
Source-Gate Reverse Leakage Current with .Drain
Open-Circuited .
The leakage current of the source-gate junction.
measured at a specified voltage. with the ·drain
open-circuited.
ISGO
~
.
· · L L J VSG
~
0
...CO
~
rDS (n)
or 'ds. RDS'
rDS(ON)
t/)
t/)
..2
VDS(ON) (~V)
e"
....
W
LL
-,
Drain-Source ON Resistance
The drain-source ON resistance. measured at a
specified gate-source voltage and drain current.
Drain-Source ON Voltage
The drain-source ON voltage. measured at a specified gate-source voltage and drain current.
VGS (V)
or VGS(ON).
VG
VGS(F) (V)
Operating Gate-Source V/?Itage
Vos
'os = ID
--10
The gate-source voltage. measured at a specified
drain current and drain-source voltage.
Forward Gate-Source Voltage
The forward gate-source voltage. measured at
specified current.
VGS(OFF) (V)
or Vp
Gate-Source Cutoff (Pinch-Off) Voltage
The gate-source cutoff voltage. measured at a
specified drain current and drain-source voltage.
--10
YOS
SMALL SIGNAL PARAMETERS
Ciss (pF)
or Ciss. Cgss
Common-Source Input Capacitance
The common-source input capacitance measured
between the gate and source with the drain A-C
shorted to the source at specified drain-source and
gate-source voltages.
Coss (pF)
or Cos. Cdss
Common-Source Output Capacitance
The common-source output capacitance, measured
between the drain and source with the source
A-C shorted to the gate at specified drain-source
and gate-sou rce voltages.
12-10
Yos
c...
C rss (pF)
or C rs , Cdg
."
Common-Source Reverse Transfer Capacitance
m
-I
The common-source reverse transfer capacitance,
measured between the drain and gate at specified
drain-source and gate source voltages.
VDS
-
G')
0
en
en
...
'<
Q)
en (nV/y'HZ)
or en, V n, En
-
Equivalent Input Noise Voltage
0
The equivalent input noise voltage per unit bandwidth, measured with the input A-C shorted to
the source at a specified operating condition.
en
'<
3
0"
9fg (mV) (m'U)
or Yfg
Common-Gate Forward Transconductance
The common-gate forward transconductance with
the output A-C shorted. This is a complex quantity (9fg + ibfgl.
9fs (mV) (m 'Ul
or gm, Vfs, .
RelVfsl
9iss (IlV) (J.L 'U)
or Vis
Common-Source Input Conductance
Common-Source Output Conductance
The common source output conductance with the
input A-C shorted. This is a complex quantity
(gas + ibosl.
Common-Gate Power Gain
The common-gate power gain is the ratio of output power to input power.
Common-Source Power Gain
The common-source power gain is the ratio of output power to input power.
in (pA/y'HZ)
YI
9
=ID
-
vGS
Yls= -ID-
The common source forward transconductance
with the output A-C shorted. This is a complex
quantity (9fs + ibfsi.
ur lOS
GPS (dB)
VGStl-YID
Common-Source Forward Transconductance
The common-source input conductance with the
output A-C shorted. This is a complex quantity
(9is + ibis)'
G pg (dB)
~
Equivalent Input Noise Current
The equivalent input noise current measured with
the input open-circuited under specified operating
conditions.
12-11
vGS
I
VDS=O
I
VDS= 0
0
ur
-.ceno
NF (dB)
Noise figure = 10 1091O F were F is noise factor
which is the ratio of the total output noise power
to the output noise power of the source. Measured
at specified operating conditions and source resistance.
E
~
U)
o
~
~S-ou-r-c-e~O~ut~p~u~t~N~o~ise~Po~w~e~r
In the following, drive circuit conditions and drain
circuit conditions must be specified. The transition
times of the input must be negligible compared to
the measured times.
en
en
.2
...
F = Total Output Noise Power
COMMON-SOURCE SWITCHINGPARAMETERS
...cu
CJ
Spot Noise Figure
td(ON)
W
..,
VOO Q--W."..... .oooQVOUT
Turn-On Delay Time
RIN
The time interval during turn-on from the point
when the input pulse at the gate reaches 10% of its
full amplitude to the point when the drain pulse
changes from 0 to 10% of its maximum amplitude.
LL
Rise Time
IOION)
VOO-VOSIONI
= --:::-R-L--
The time interval during turn-on in which the
drain current pulse changes from 10% to 90% of
its maximum amplitude.
td(OFF)
Turn-Off Delay Time
100
~F==::t:~
90 t-
The time interval during turn-off from the point
when the turn-off pulse at the gate changes from
100% to 90% of its full amplitude to the time
when the drain current has changed from 100% to
90% of its maximum amplitude.
IOION) (%)
1~ !;211==+=4=~~--
tdION)~
tON
VOS
The time interval during turn-off in which the
drain current pulse decreases from 90% to 10% of
its maximum amplitude.
I
Vp--.J
DUAL FET PARAMETERS
BVG1 G2 (V)
or BVG1-2
Gate to Gate Breakdown Voltage
The breakdown voltage of the gate to gate junctions, measured at a specified current.
Gl
~
SUB
02
CMRR (dB)
or CMR
I-tr
f-
+ 0-.----,
Fall Time
Common-Mode Rejection Ratio
The common-mode rejection ratio is the ratio of
the change in differential gate voltage with a
change in the drain to gate voltage.
CMRR = 20 log 10 AVDG
AVos
12-12
tf
td(OFF)
L----
c...
9fs1-2 (%)
or 9fs1/9fs2
."
m
Common-Source Forward Transconductance Ratio
(Match)
-4
The transconductance ratio = 9fsl/9fs2 x 100 (%)
measured at specified drain-gate voltage and drain
current_
C)
o
en
en
...
Q)
goss 1-2 (f.1V)
or gos1-2
Common-Source Output Conductance (Match)
-
'<
o
Output conductance match = Igosl-gos21 measured
at specified drain-gate voltage and drain current_
IOSS1-2 (%)
or IOS1-2,
IOSS1/ IOSS2
IG1-2(pA)
en
'<
3
C"
o
Drain Saturation Current Ratio (Match)
The drain saturation current ratio = 10SSl/
IOSS2 x 100% measured at specified drain-source
voltages_
en
Differential Gate Leakage Current
Differential gate leakage current = II G 1-1G21
measured at specified drain-gate voltage and drain
current_
IG1, G2 (pA)
Gate to Gate Reverse Leakage Current
The gate to gate reverse leakage measu red at a
specified voltage monolithic dual with diode isolation shown_
IG1.G2
r----""'l""'10-
--¥VG1.G2
1
VGS1-2 (mV)
or t.VGS, Vas,
IVGS1-VGS21
t.VGS1-2 (f.1 v tC)
or t.IVGS1VGS21/t.T
t.Vos/t:>.T
Differential Gate-Source Voltage
The differential gate-source voltage, measured ata
specified drain-gate voltage and drain current.
Differential Gate-Source Voltage Drift
The differential gate·source voltage drift is the
change in the differential gate-source voltage with
a change in device temperature at a specified
operating condition.
t.Vos = !(VGS1-V GS2)I T l - (VGS1- V GS2)1T2!
t.T
Tl-T 2
12-13
U)
Q)
c
.
~ Semiconductor
~National
Dimensions are in
Package Outlines
inches
(millimeters)
Numbers in parentheses behind package titles are NS internal package codes.
PACKAGES
Dual-In-Line Packages
(N)
Devices ordered with "N" suffix are supplied in plastic molded dual-in-line package. Molding material is a highly reliable
compound suitable for military as well as commercial temperature range applications. Lead maierial is copper or alloy42
with a hot solder dipped surface to allow ease of solderability.
(J)
Devices ordered with the "J" suffix are supplied in a cer-dip package (ceramic lid and base sealed with high temperature
vitreous glass). Lead material is solder dipped alloy 42.
(D)
Devices ordered with the "D" suffix are supplied in side braze, multi-layer ceramic dual-in-line packages. The leads are
Kovar or alloy 42 and either tin-plated, gold-plated, or solder-plated.
(Q)
Devices ordered with the "0" suffix are supplied in either a "D" or "J" package, but with a U.V. window.
Metal Can Packages
(H)
Devices ordered with the "H" suffix are supplied in a metal can package. The cap is nickel finish and the leads are gOldplated Kovar. Gold free construction using epoxy D/A is also available, with a tin-plated finish.
Flat Packages
(F)
Devices ordered with the "F" suffix are supplied in a multi,layer ceramic bottom brazed flat package. The lid is plated
alloy 42, and leads are gold-plated, tin-plated, or solder-plated alloy 42 or Kovar.
NS PACKAGE
CODE
JEDEC
CODE
NS PACKAGE
CODE
JEDEC
CODE
39
40
TO·116 14·Lead Ceramic DIP ICD)
02
TO-18 Glass
04
TO·5 Glass
05
TO·71 Glass DifL Amp. TO·18
41
06
07
TO·46 Solid
TO·52 Solid
42
51
09
TO·39 Sol id Kovar
55
10
TO·39 Solid Steel
11
TO·18 Glass
56
57
TO-116 14·Lead Molded DIP ICN)
TO·116 14·Lead Molded Array
TO·3
TO·202
TO·202
TO·202
TO·220
TO·126
12
TO·71 Glass TO·18 Ditt. Amp.
17
TO·39 Solid Steel Low Profile
58
60
18
TO·52 Glass
67
8·Lead Molded DIP ICN)
8·Lead Molded DIP leN)
19
TO·18 Solid
92
TO·92
23
TO·72 Glass 14·Lead TO·18)
94
TO·92
24
TO·78 Glass TO·5 Ditt. Amp.
96
TO·92 Faraday Shield
25
TO·72 Glass 14·Lead TO·18)
97
TO·92
27
TO·78 Ditt. Amp. TO·S
98
TO·92 Faraday Shield
28
29
TO·72 Glass 14·Lead TO·18)
TO·72 Glass 14·Lead TO·18)
90
91
TO·237
TO·237
30
TO·78 Glass DifL Amp. TO·5
TO-3 (42) .
1.177-1.197
129.896-30.404)
0.560-0.670
o210-0.220 ~
i"~~'~0
0.425-0.435
(10.795-11.049)
116.764-17.018)
:i __ I__ I~:;::~::;:) RTYP
01
'
20~~~~OT:~; HOLES
13.835-4.089) OIA
0.490-0.510 R
112.446-12.954)
Pin 1-8ase
Pin 2-Emitter
Case-Collector
12-14
TO·5(04)
PIN
TO·18 (02, 11, 19)
T
PIN
1
E
B
2
B
C
3
C
PIN
FET N (02)
fl ;"T'"
1
s
2
D
3
G
PIN
FET P(II)
2
1;;2::;05 ::2 1
0.175-0.195
.
0.170-0210
SEATlN:4p4:;::~5lIQ
'
r=
O.OlO
(0.7621
MAX
0.016-0.019 _
(0.406-0.48ll
TO·39 (09, 10)
PIN
T(02), (19)
E
ODD--r
II
_
1
S
2
G
3
D
0.500
ilUOl
MIN
TO·39 (17) LO·PROFILE
T
PIN
E
l __
(:::::=::::~I
1
E
B
B
C
C
F:mg!i1~
Q
~
0.160-0.180
;;;1
~
"., "
JPLANE
SEATING
1PlANE
0.500
(12.7001
MIN
~ ~ .~ -1l~
. 0.016-0.019
(0.406-0.4831
I (~:;~=~ ~i
(4'064_4'57:llr~''''~' ~;t.
0.045
0.500
(12.701
MIN
T
-OL.0-09-t_-0.1-25-
~ ~ II-~
__
(0.22B-l.1751
0.190-0.210
f-----f
12·15
0.016-0.019
1O.406-0.4Bll
0.190-0.210
CJ)
Q)
r:::
TO·46 (06)
PIN
SE:lT~~hl
8
mlH
PIN
T(18)
1
E
S
B
C
2
3
B
D
C
G
I"
R
""'~':::F~' ~r'
0.178-0.191
1 14.521-4.9531
-j f--
0.142-0.159
·1,11
0.075-0.095
11.905-2.4131
0.500
TIT
D0 0
0,030
iiUoi MIN
0.040
I1:Oi6I
MAX
FET (07)
0.209-0.219
(5.309_5.5631
0.209-0.219
(5.308-5.5631
0.178-0.195
D0 0_
0.012-0.019
(0.305-0.4831
TO·52 (07, 18)
E
T
(0.7621
I
L
MAX
0.016-0.019.-;,
(0.406-0.4831
0.500
(12.701
0.100
I--~-t--- (2.5401
TO·71 (08, 12)
A
n
(::~::=:~::I
0.178-0.191
0.030
(0.7621
(23, 25, 28, 29)
FET(12)
PIN
T(25)
1
SI
1
E
S
2
Dl
2
B
D
3
5
6
7
Gl
3
C
G
S2
4
GND
CASE
G2
I"'T'"
-1
JL0III
MAX
0.016-0.019
10.406-0.4831
.
[J]
_
FET N (25, 29)
D2
PIN
T(28)
1
B
S
2
E
G
0.188-0.210
'''''':::~f;~:
.
TO~72
PIN
0.175-0.195
3
C
D
4
GND
CASE
R~;2;:9-~;2::21
'
0.170-0'.210
'''''::::~ II: u;1 :"'C
0.500
(12.701
MIN
I L0500
o 0 0-l-1 ~i:OI
0.016-0.019 ~Il-10.406-0.4831
.
12·16
FET P(23)
0.030
(0.7621
MAX
0.100
"'tJ
I PINl T(30) I FET(~
TO·78 (24, 30)
1
E1
S1
2
81
D1
3
C1
G1
5
E2
S2
6
82
D2
7
C2
G2
Q)
TO·92 (92, 94, 96, 97, 98)
o
"
Q)
1
PIN
J
CO
CD
S
Drain-source
on most
interchangeable
2
8
C
G
JFET devices
3
E
D
1
oC
--_.
=:J
94
TJFET
~
J
CD
(J)
0.175 - 0.185
'--~-r (4445 _ 46901
~
nl~M
TlaM
Ii270i
~II
MIN
I
0.0145 - 0.0155 TYP
--II-- (0.3683 _ 0.39371
0.045 -0.055
~RNOM~m(1.143_1.3971
(2.2861
t
I~ j
r PIN
123
" ; NOM
1
2
0.135-0.145
(3.429 -3.6831
L3
10° NOM
"" See note regarding lea dform on 12·19
TO·237 (90, 91)
PIN
PACKAGE 90
TO·126 (58)
PACKAGE 91
Collector
Base
2
Collector
Base
3
Emiller
Emiller
~R
(0.5081
TYP
NOM
0.120-0.130
(3.048-3.3021
3
~
0.0155-0.0145
0085-0095
~
!
3" TYP
~0435
~110491
0605-0655
(15367-166371
(2159-Z4131~
0091-0097
--II---
III
0020-0026 - - ---
~R
0015-00Z5
IL (0381-06351
I
~IIULI
(Z 311-Z4641
10394-0.~~;
~
095
Q 105
IL0
- ·6671
o(0508-06601
OZ5-0 035 --I
(Z.413-Z
(2.2861
NOM
(0.635-0.8891
f~~j
0.045-0.055
\"1.143-1.3971
I
====I~=====-I
I
Pin 1- Emitter
0.055-0.045
(1.397-1.1431
Pin 2- Collector
Pin 3- Base
. e torque not to
When mounting the devle ,
exceed 6.0 ,in Ib,
If lead bending is
.' d use suitable
r~~~~r~eiween transis.
lamp or other supp
~or case and point of bend.
12·17
..".,
98
T
8
E
C
en
Q)
c:
.;:
TO·220(57)
TO·202 (51, 55, 56)
PIN
:::J
o
Q)
en
co
n
I L'
0.395-0.405
ll0.033_10.2871
~
(,)
co
0.100-0.120
12.540-3.0481
c..
~
0.560-0.625
114.224-15.8751
j.
I~:~:~=~:~~I
0.020-0.035
10.508-0.8891
0.090-0.110
"1
DIA
T
1
Emitter
2
3
Collector
Base
Colleclor
Base
Collector
Emitter
.-.--'-++-+-+-i
~10.762-1.3971
-,---
T
Base
·1I
0.030-0.055
PACKAGE 56
Emitter
0.175-0.185
~ ~
1::;::1
NOM
PACKAGE 55
T
~14'445-4'6991
0.139-0.147
13.531-3.7341
+
0.240-0.260'
16.096-6.6041
0.128-0.132
13.251-3.3531
0.480-0.520
112.192-13.2081
0.230-0.270
-.l;'
~
110;57000~10~5267251
J
PACKAGE 51
15.842-6.8581
0.285-0.315
17.237-8.0011
2 PLACES
0.012-0.025
10.305-0.6351
L
~
I~'::~I
-I
o405-0 4J5
110.287-10.7951
II
REF
0095-0105~111-1_
--I
12.413·26671
12.286-1.7941
I 12.413-2 6671
I--
106601
.
Pin I-Base
~
~
0170-0.190
-14.318-4.8261
0019-0.026
1
10.483-0.6601
~095-0105
0.026
0095-0.105
12.413-2.6671 •
Pin 2-Collector
Pin 3 - Emitter
W
L
~ ~I~~~I
o
0.060
"" "" '"
CAVITY DUAL·IN·LINE PACKAGE D (40)
MOLDED MINI· DIP (60,
1
Cl
8
9
C3
2
81
01
Bl
B3
3
01
NC
3
El
10
E3
4
Gl, Gl
4
NC
11
NC
82
82
5
6
E2
12
E4
5
6
02
02
B2
13
B4
7
G2
NC
7
C2
14
C4
8
NC
G2
0.400
0.092
12.3371
OIA
NOM
~
~11~i~911~1~~~1
R JmtVW
0.020-0.060
10.508-1.5241
0.008_0.015
10.203-0.3811
R:
0.300-0.320
0.030
10.7621
{7620.-:.128!
MAX
1-------1'
Lo.015-0.023
II
0.125
10.381-0.5841 -j!-" IJ.1751
0.100 ±0.010
NOM
8
7
6
5
I0.250 ±0.005
16.350 ±0.1271
0.1154
1~~7p21
0090
160IJ
' - { , J l l 0 .MAX
12.2861
PIN NO.1 IDENT
~~",r.n~~)~--L
REF
81
2
0.298
17.5691
MAX
0.050.0.010
Ij
11.270 ±0.2541-!-"
67
NC
T
"'' '1="'' ' ' ",-,,,,11,,,-,,,,'' '-1'::'',...'';' ..,I---.
I 0.300 I
I- 17.6201--i
60
1
PIN
iOl '" '"
0.485
PIN
T
0.760
119.3041-----1
MAX
6n
PIN
I•
+0025'
0325 -0 015
(8 255 +0 635)
.
-0 381
MIN
12.540 ±0.2541
12·18
0.045
{1.1431
¥.FiF.FF.~~
TYP
0.065
'JJ
0009-0015
{0.229-0.J80
0.045 -0.015
11.143 -0.3811
0.100
{2 5401
TVP
1:1:
0.130 ±O.OOS
,.,
MOLDED DUAL·IN·LINE PACKAGE N (39)
PIN
T
PIN
T
1
C1
C3
2
61
8
9
3
E1
10
E3
4
NC
11
NC
5
6
7
E2
12
E4
Q)
62
13
64
C2
14
C4
CD
--I
L..;,................,.,....,.,,......,.,.,r-r:'T"~-1
MIN
0.040
0.014-0.016
(0.356-0.4061-- -
l~tX
0.065
~f==T
I
0.325
I
II
~
(~~~I
~
---I1~0.D15
(0.381)
NOM
0.130 ±0.005
R . .-" IJU- L
I•
:::
0.180
,:i::,- . . ":]'
0.250 ±0.005
(6.350 ±0.121)
FI
I
1
or:::
0.160
(4.0641
(d:~1 ~I~~(:;;:I
---.
0.030
(0.162)
"
CO
_I
0.300-0.320
(1.620-8.128)
o
·18 OPTION
63
-
0.092
Q)
TO·92 (92, 94, 96)
TO·18 LEAD FORM
(1..51)
(0.229-0.381)
0015 '0 015
(1.905 '0.381)
~~
0.100
~:~~:
.w!L
~
-
- I ; - ' 0 NO!:\-(2.5401
~
OIA PIN CIRCLE
"J
-1 o.fzo
(0.508)
0.018 ±0.003 0.125 MIN
(0.451 ±0.016) (~~~5)
~y~40)
/8255 +0.635)
\.
-0.381
TO·92 (92, 94, 96)
TO·5 LEAD FORM
TO·92 (97, 98)
TO·18 LEAD FORM STD
FOR IN·LINE LEADS
L34Z OPTION
·5 OPTION
(~::::ll-1
-11 (~:::~I II L
D"80
~t
(4.5121
_II~_ 0.011-0.0019
(0.432-0.4831
0.200 ±0.010
(5.080 ±O.2541
OIA PIN
CIRCLE
-II1 r-
0.,60
(4.0641
~(~:::~Ol
(2.540)
MAX
t-~I~
-
MAX
I
0.180.
(4.5121
-l----=:!=
j~
0.180
(4.5121
0.100
(2.5401
"1MAX
~-
0.025
(0.6351
MIN
-
I~
0.315
0.014-0.016
(0.356-0.4061-
(9.5251
NOM
_
0.315
- - NOM
(9.5251
~
II 0.D15
---I f-- iDTaii
NOM
-I ;--'0' NOM .w!L
~~(2.5401
~~,
~
~
* Note:
2
OIA PIN CIRCLE
All package 97 or98 transistors are lead formed tothis
configuration prior to shipment.
12·19
oQ)
C
.-
+=
::::I
TO·92 (92, 94, 96)
0.100" SPACING LEAD FORM
o
TO·92 (92, 94, 96)
TO·18 LEAD FORM AND CROP
J61Z0PTION
0.195-0.205
-
Q)
C)
i4.95J:5.2oii -
~
(,)
ca
0..
J14Z0PTION
L 1-0
!
~
0.175-0.185
0'050~(
~--1t
11210~L--I
-1--0.425-0.450
0.090
-12.2861
1I0.195fl.430}
NOM
~
~
1--r~41::4}
.
~
'--
0.180
~~r-14'51Z}
..!!J..!!..
-
0.180
14.51Z}
IZ.540}
=f=- _ jMAX
~
10.6351
TYP
0.OZ5
10.635}
MIN
-
II
10.356-0.406}
~--ll10.356-0.4061
.1--2 .....3
L 9
tJ
1
1---'
~
2
3
_I
0.190-0.210
~-
TO~92 (92, 94, 96)
TO·S LEAD FORM AND CROP
. 0.135-0.145
t
13.4Z9.3.6831
0.16D
O.ZOO±!l.OIO
L
J22Z0PTION
0.160
_--114.0641
,I
II"
. ~~~ 'j' '111
15.0BO±!l.Z54}
DIA PIN
CIRCLE
TO,92 (92, 94, 96)
TO·18 LEAD FORM AND CROP
J2SZ0PTION
--r--l
114.064)
j
10.381}
0.045-0.055
0.0145-0.0155
I,
--II--~ NOM
_®;;-1
NOM
0 ' 12.540}
OIA PIN CIRCLE
10.3683-0.3931}
0.180
14.5721
II
0.150-0.180
13.810-4.51Z}
0.100
~_I--
1-~1
1
0.180
1r-14.5121
0.180
14 512}
..!!J..!!..
1- _jMAX.
1
0.025
10.6351.
MIN
• 0.014-0.016 _
10.356-0.4061
0.017-0.0019
0.130-0.180
~ 13.302-4.5121
HEADS
12.5401
.
I
0.120-0.150
II-i304a=iiiDi
..
~
II 0.015
--II-- iO:iiii
0.100
_®;;-1
NOM
0 . 12.540}
DIA PIN CIRCLE
3~'
1,2...3
~
,
'12·20
NOM
""C
TO·237 (90, 91)
0.100" SPACING LEAD FORM
Q)
o
J61Z OPTION
"
Q)
CC
CD
0.175-0.185
0.100
12.5401
NOM
oc
- - (4.445-4.699) 0.195-0.205
~l--
::.
0.020
-1---1T-===~==~rr=====~--105081
t
~~~
I
0
0.175-0.185
14.445-4.6991
RAO
I
j
0.050-0.100
11.270~
t~
0.425-0.450
12.2861
110.795f1.4301 NOM
~
~
~
0.014-0.016~1_
10.356-0.4061
TY,
0.045-0.055
11.143-1.3971
0.0145-0.0155
(o.3683_0.3937Ig~!--1
Ll
lJ
2
_I
3
0.190-0.2101_
14.826-5.3341
TO·237 (90, 91)
TO·18 LEAD FORM
·18 OPTION
1~44;-4.6991
-
12.5401
NOM
0.050
~~
10.5081
_1_-
I
-
0.195-0.205
1WOi-j~I-
j
0.17510.185
14.445-4.6991
I
IL
0
NOM RAD
TY,
-(
I
0.090
12.2861
NOM
_II-
0.135-0.145
~~=~_13_.4_29-,-t3.6831
0.014-0.016
10.356-0.4061
0.100
12.5401
DIA
'c
I
I 0.135-0.145
"--,-,"'---"--='.D-.-l 13.429-3.6831
I
WNDM
12·21
U)
CI)
c
TO·237 (90; 91)
TO·5 LEAD FORM
·5 OPTION
0.100
{Z.540}
NOM
0.175-0.; 85
{4.445-,1.699}
0.195-0.Z05
0.050
I
11.Z10}1~1
-L-----'-f
~
-I
I
I
{0.508}
NOM RAo
TYP
o
0.175-0.185
!
0.05d-0.l00
I1l10-Z.540}
~-=---0.315
j
0.090
I
{Z.Z86}
Ig.5Z5}
NOM.
NOM
-11~~
{0.356-0.406}
TYP
0.190-0.Z10
14.8Z6-5.334}
olA
PC
I
0.0145-0.0155
10.3683-0.3931}
L~1......I:::::II.
-,
I
0.045-0.055
0.045-0.055
{1.143-1.391l
-LI1.143-1.391l
0.045-0.055
11.143-1.391l - -
TO·202 (51, 55, 56)
TO·5 LEAD FORM, CROP AND TAB SHEAR
,
.~
10.16Z-1.Z10}
0.313-0.377
t
-0.365!
0.060
}
{1.5Z4}
/
/"")
,_/
0.\51 0.065
13.988} 11.651}
(
LL
~
Z11
{6096-6604}
I
0.Z85 -0.315
{1.Z39 -8.001}
0.300
rr
r{9A14-9.516}l
0.Z40-0.260
~r
-1 .l
J46Z0PTION
0.615
117.15}
)
___
NOM
1
j
~
l~ ~~'
jtl
0.041-0.049
11.194-1.245} - 0.OZ4-0.0Z8
10.610-0.111}
TYP
.
0.195-0.Z05
14.953-5.Z01l
NOM
TYP
---1
600 REF
0.OI95_b.OZ05-n
{0.4953-0.5Z01}
I
0.095-0.105
t=IZ.413-Z.861}
'<'""",I
0
45
}
0.065-0.015
{i.651-1.905}
~
~
12·22
0.090-0.110
{Z.286-Z.794}
"'0
TO·202 (51,55,56)
TO·5 LEAD FORM AND CROP
S»
TO·202 (51, 55, 56)
LEAD FORM
J52Z OPTION
J41Z OPTION
0095-0.105
(2:413-2.667)0.0195-0.0205
0.095-0.105
12.413_2.~671~1
10.4953-0.52071
0.170-0.190 .
(4.318-4.B26J - -
n
="
S»
CO
CD
I--
il - -
O. 170-0.190
14. 318-4.826)
1
0.435
(11.051
L
r- ""rI
.!2'!.
13~~il 0.157~,
I
13.988111.6511:
I
I
NOM
NaM
~Il~ I~~~:;I
\
0.020~ ~~
~RAO
TVP
0.5081
10.5081\
RAO
TVP
TVP
/
--I~160' REF
60' REF TVP
0.0195_0.0205
IQ.4953-0.52071
1-
0.090-0.110_
12.286-2.7941
~
~
U /
0.0195-0.0205
10.4953-0.52071
I
1.135
12 8.831 0.134 0.065
REF
13.4041 11.651)
NOM
NOM
~!-..L-
- IC
7' TVP
-
:- t--- ~
[
/
1
I
L
0.073-0.077 _
11.854-1.9561
0.380-0.400
~1-19.652-'0.'61~1
12.921)
0.240-0.260
II~I
-0-
-1
-
0.500
I
I
L~
t-
I
I
0.28 5-0.315
/
17.23 9-8.001)
\
LL
I -1
..... '~/
(1.5241
0.047-0.053
11.19~y~3461
0.024-0.028
10.610-0.7111
TVP
OIA
!
11.5241
0.047-0,049
(1.194-1.245
,dj I_I
0.024-0.028
10.610-0.711 I
0:095-0.105
I2.413-2.6671
0.195-0.205_
'0.373-0.377
(9.474-9.576)--
0.195-0.20 5
1
14.953-5.2071
-
-
-
-
~
450:
~
I
1-
I
'('
\
'-'
0.300-0.365!
17.620-9.2711
0.060
_
-
,..- -,
LL
rr---
14.953-5.20711
~
I
\
17.239-8.0011
I
JI
I
y
0.285-0.315
\
~
-0. 365
f2711
0.060
1::::=::::1
112.701
112.19-13.211
17.620
-
1 1
45'~
"" 0.373-0.377
-(9.474-9.576)
0.065-0.075
-11.651-1.9051
"'~I
.---~1l~2
;j
0.095-0.105
I2.413-2.667\
_
"
12·23
tiEd
0.065-0.075
11.651-1.905\
o
C
~
(J)
Q)
c
TO·202 (51, 55, 56)
TAB SHEAR
L43Z OPTION
TO·202 (51, 55, 56}
TAB FORM
L42Z OPTION
~f~ 14.318-4.8261
0.170-0.190
0.080
12.0321--
0.095-0.105
(2.413-2.667) --0.0195-0.0205
REF
f--
-
0.095-0.105
f-12.413-2.6671
10.4953-0.52071-
0.170-0.190
I ~-I
TAB
MOLDED 800Y - '
I
OF PACKAGE
I
0
J
I
'-
rr--l-
7 TYP
'I
0.655
116.641
REF
0.105-0.135
12.667-3.4291
'I-,
I
,
I
J.
,,-ll--,
I
,,
1.183
r -1
130.0481
REF
,
I
I
I
Go
'.
0.0195-0.0205 __11___
10.4953 0.52071
11-
0.0195-0.0205
10.4953-0.52071
0.240-0.260
16.096-6.6041 +-+~---I
0.373-0.377
0.030-0.050.
fO.762-1.270l
1-19.474-9.5761 ~I
0.240-0.260
13.048-3.4291+++~-1
~T1~ll
I
+'
I
0.2B5-0.315
17 .239-8.0011
I
0.085-0.095
12.159-2.4131
0.120-0.135
FULL
I
~~~
0.115-0.,35!
~I
..,.---r~0-....,,//+-+-+--~
I
II
t::,-
--,-
0.405-0.425)
I
oj65
i1.i51i
110.29-10.801
0.060
I
0.'65
111.)8111
11.5241
II
-I
0.047-0.049
I
11.194-1.24510.024-0.028
(0.610-0.7111- - : TYP
0.285-0.315
17.239-8.0011
0.047-0.049
0.195-0.205
I
I
II
11.19'-1.2'511
TYP
0.095-0.105
-12.413-2.6671
____
I~~.52'1
I
,-
1
i~
14.953-5.2071 -
~-H"-I '-0-1
10.610-0.7111
TYP
I
,-
j
l'j
0.095-0.105
12.413-2.6671
0.195-0205
1•. 953-52071
'<:'
45°""'-
~I
0.373-0.377
- - (9.474-9,576) - -
0.065-0.075
-11.651-1.9051
~
,;o/'5=--.1~.,:::::::::
~
1
2
3
[[]] [[]] [[l]
12·24
I
I
0.405-0.'25
"'0
TO·202 (51, 55, 56)
TO·66 LEAD FORM, CROP AND TAB FORM
J45Z OPTION
0.095-0.105
0.095-0.105
-I
(2.413-2.6671
0.0195-0.0205
-
(2.41l-2.6671
0.0195-0.0205
_
o 110-0.ll0
(2.794-l.l021
-
J68Z OPTION
1 -
(0'4953_0'52071~ -
1
(0.495l-0.520lJ
D)
TO·202 (51,55,56)
TO·5 LEAD FORM FOR FLUSH MOUNT
-
0.110-0.190
(4.l18-4.8261 -
0.110-0.190
(4.l18-4.8261 -
n
~
D)
CQ
CD
o
c:::
_.
=
:::s
CD
tn
r--=:----'---~]I
0.580-0.590
0.065-0.095
' 'T"'
(1.651-2.41l1
I
1
II
~
l
0'0195ru:::-t
(0.4953-0.520lJ
1_0.l7o:=!
(9.l981
0.0195-0.0205
I
0.58010.010
(14.7310.2541
0.68010.010
(0.495l-0.52071
0.l60-0.l80
I~ (9.144-9.6521-1
0.240-0.260
n-
1r
I
(~:~ Ol-
j-
MIN
0.200
(5.0BOI
MIN
n rrI
0.360-0.380
I-I
T
I~ (9.144-9.6521-1
0.240-0.260
(6.096-6.6041
0.120-0.1l5
(6.096-6.6041
(l.04B-l.4291
0.113-0.117
(2.870-2.9721
I
I
1
0.12B-0.ll5
(3.251-l.4291
1
0.425
0.465
(11.611
REF
(1.5241
l
I
~.~
I
0.285-0.l15
(7.2l9-B.001 I
I
1
0.060
(1.5241
0.285-0.315
(7.239-8.001 I
I
0.095-0.105
-I1--
(2.41l-2.66lJ--1
0.195-0.205
(4.95l-5.20lJ
I
~I
-I
.
t
0.l7l-0.377
. ~ (9.474-9.5761 -
0.024-0.028
(0.610-0.7111 -
0.046-0.050
(1.168-1.2701
I
1\~LEAD
~f I
0.060
(1.5241
CENTER
0.095-0.105
CUTOFF
~I-I- ~
(2.41l-2.6671
0.195-0.205
(4.953-5.2071
.
~
0.065-0.075
~ (1.651-1.9051
12-25
I I I
L'
0.37510.005
(9.52510.1271
0.024-0.028
(0.610-0.7111
BEFORE
LEAD FINISH
0.046-0.050
0.065-0.075
(1.168-1.2701
(1.651-1.9051
oCI)
C
.-
=
o
TO·220 (57)
TO·5 LEAD FORM
J69Z OPTION
~.
0.050iO.002
O.110±O.Dl0
CI)
C')
0.395-0.410
11.210iO.051) - ,
0.180±0.005
(2.194'0.Z541
14'512iO'1211~
r~-I~
co
r--
'+"
~
~
O.151±O.ODZ _ O.2S0l0.Dl0
~--~--'t'---~-~13~.8=35~iO~.0~511 {6~50±0.2541
(.)
co
I
DIA
a..
0.34olu.Ol0
O.130±O.025
13.302±0.6351
"~FtI-
brr=rM=r.,j~~
j"'"
j II-I
~ -I~
-
TAPERED I'
2 SIDES
-."",
n,..
(3.8101
MAX
O.OSO
{1.2101-
0.032';~:5
rrI
.
_
-0.002
fo 381 +0.Z54)J
\.
-0.05)
10.813+0.1211
TVP
0.105~~:~:~
15.080'0.2541
.
O.100±D.Dl0
L
a.200!D.01D ___
Q.lou±a.01D
~
fz 661 +0.254)
(2.54D!O.254) ---
\.
TO·220 (57)
. TO·5 LEAD FORM FOR FLUSH MOUNT
-0.381
J6720PTION
D.050±O.OD2
O.11D!D.Ol0
0.395-0.410
1-~1
11. 210±0.05I1l
a.laOlD.OOS
12.194±0.2541
®
+
I
(4.572±O.127) - - .
0.1511.0,002
I
il.250±O.010
~~--~t'-·~13~.8~35~!~0.0=5~1I.16.350±0.2541
UIA
+-1----'--I--=b~
I t
0.340±0.010
TAPERED 1~
2 SIDES
l'
(8.636r2541
lJ~t
. 0'032,...
1211
10.813±0.
TVP
D.200±O.01O
II
n
1
.
15.080±0.2541a.10U±O.OlD
(2.540±0.2541
.',.,!!::
J
12\. 661 -0.381
+0.254)
12-26
1
A
~8
_,~ I~~ I
I----o~1
+0.010
0.015_0.002
fo J81 +0.254)
\'
-0.051
TO·220(57)
TO·66 LEAD FORM AND CROP
J48Z0PTION
0.050+0.002
0.110'0.010
0.395-0.410
I~-I
0
11.270.0.0511-1
0.180'0.005
14.572'0.127)-
12.794 '.0.254)
I
,-+---,--
I
0.150±0.002
13.835±0.0511
DIA
I
11.250 1 0.010
(635T254)~
0.340'0.010
0.050
~UlI '""'I--W
---'I
I
(1.270)
MAX
O.20D±D.Ol0 ___
(5.080±0.254)
I""""""
)
~~~~:iD
7
0
1
~
--~~w"-=-=.J~=====I====~I'''"r''
18.636L(_·2_54_)
0.050
~L
1
(1.270)
MAX
0.105 ~~:~:~
f2 667 +0.254)-
\.
12·27
-0.381
0.340
-(8.636)MIN
0.015~:~:~
fo\. 3B1 -0.051
+0.254)
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.6 Linearized : No Create Date : 2016:04:02 12:59:15-08:00 Modify Date : 2017:06:19 16:04:01-07:00 XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19 Metadata Date : 2017:06:19 16:04:01-07:00 Producer : Adobe Acrobat 9.0 Paper Capture Plug-in Format : application/pdf Document ID : uuid:7df09e90-e453-a449-ae91-158a9fb99bf4 Instance ID : uuid:69c3038f-9d0a-ea44-b288-31e2d3837c9b Page Layout : SinglePage Page Mode : UseNone Page Count : 560EXIF Metadata provided by EXIF.tools