1982_SGS_Linear_Integrated_Circuits_3ed 1982 SGS Linear Integrated Circuits 3ed
User Manual: 1982_SGS_Linear_Integrated_Circuits_3ed
Open the PDF directly: View PDF .
Page Count: 886
Download | |
Open PDF In Browser | View PDF |
criterion (40B) 9BB-6300 manufacturers representatives 3350 Scott Blvd .. Bldg. 44. Santa Clara . CA 95051 ISSUED JUNE 1982 INTRODUCTION This databook contains data sheets on the SGS-ATES range of linear integrated circuits for professional, industrial and consumer applications. Selection guides are provided in the following pages to facilitate rapid identification of the most suitable device for the intended use. The information on each product has been specially presented in order that the performance of the product can be readily evaluated within any required equipment design. SGS·ATES GROUP OF COMPANIES INTERNATIONAL HEADQUARTERS SGS-ATES Componenti Elettronici SpA Via C. Olivetti 2 - 20041 Agrate Brianza - Italy Tel.: 039 - 65551 Telex: 330131-330141 BENELUX SGS-ATES Componenti Elettronici SpA Benelux Sales Office 8- 1180 Bruxelles Winston Churchill Avenue, 122 ITALY SGS-ATES Componenti Elettronici SpA Direzione Commerdale Italia 20149 Milano Via Correggio, 1/3 Tel.: 02 - 4695651 Sales Office: 00199 Roma Piazza Gondar, 11 Tel.: 06 - 8392848/8312777 Tel.: 02 - 3432439 Telex: 24149 B DENMARK SGS-ATES Scandinavia AB Sales Office 2730 Herlev Herlex Torv, 4 SINGAPORE SGS-ATES Singapore (Pte) Ltd. Singapore 1231 Lorang 4 & 6 - T oa Payoh Tel.: 2531411 Telex: ESGIES RS 21412 Tel.: 02 - 948533 Telex: 35411 EASTERN EUROPE SGS-ATES Componenti Elettronici SpA Export Sales Office . 20041 Agrate Brianza - Italy Via C. Olivetti, 2 Tel.: 039 - 6555287/6555207 Telex: 330131-330141 FINLAND SGS-ATES Scandinavia AB Sales Office 02210 Esbo 21 Kaantopiiri,2 Tel.: 90 - 881395/6 Telex: 123643 FRANCE SGS-ATES France S.A. 15643 Paris Cedex 13 Residence "Le Palatino" 17, Avenue de Choisy Tel.: 01 - 5842730 Telex: 042 - 250938 WEST GERMANY SGS-ATES Deutschland Halbleiter Bauelemente GmbH 8018 Grafing bei Miinchen Haidling, 17 Tel.: 08092··691 Telex: 0527378 SWEDEN SGS-ATES Scandinavia AB 19501 Miirsta Box 144 Tel.: 0760 - 40120 Telex: 042 - 10932 SWITZERLAND SGS-ATES Componenti Elettronici SpA Swiss Sales Offices 6340 Baar Oberneuhofstrasse, 2 Tel.: 042 - 315955 Telex: 864915 1218 Grand-Saconnex (Geneve) ~~le~~;f~a~~~~6~/;mann 22 Telex: 28895 UNITED KINGDOM SGS-ATES (United Kindgom) Ltd. Aylesbury, Bucks Planar House, Walton Street Tel.: 0296 - 5977 Telex: 041 - 83245 Sales Offices: 3012 langenhagen Hubertusstrasse, 7 Tel.: 0511 -772075/7 Telex: 0923195 8000 Munchen 90 Tegernseer LandstL, 146 Tel.: 089 - 6925100 Telex: 05215784 8500 Niirnberg 30 Ostendstr.,204 Tel.,0911-572977/78/79 Telex: 0626243 7000 Stuttgart 80 Kalifenweg,45 Tel.: 0711 - 713091/2 Telex: 07 255545 HONG KONG SGS-ATES Singapore (Pte) Ltd. 9th Floor, Block N, Kaiser Estate, Phase 1: t, 11 Hok Yuen St., Hung Hom, Kowloon Tel.: 3-644251/5 Telex: 63906 ESGIE HX U.S.A. SGS-ATES Seminconductor Corporation Scottsdale, AZ 85251 7117, East 3rd Avenue Tel.: (602) 990-9553 Telex: SGS ATES SCOT 165808 Waltham, MA 02154 240, Bear Hill Road Tel.: (617) 890-6688 Telex: 923495 WHA Des Plaines, I L 60018 2340, Des Plaines Ave Suite 309 Tel.: (312) 296-4035 Telex: 282547 Santa Clara, CA 95051 2700, Augustine Drive Tel.: (408) 727-3404 Telex: 346402 Woodland Hills, CA 91367 6355, Topange Canyon Boulevard Suite 220 Tel.: (213) 716-6600 Telex: 182863 2 TABLE OF CONTENTS I~ I, 'I' " ALPHANUMERICAL INDEX Page APPLICATION GUIDE 4 9 HANDLING OF POWER ICs 15 RELIABILITY (SURE III) 19 DATA SHEETS 33 3 ALPHANUMERICAL INDEX Type L120A L 121A L123 L146 L149 L165 L194-5 L194-12 L194-15 L200 L201 L202 L203 L204 L290 L291 L292 L293 L293E L294 L487 L601 L602 L603 L604 L702 L2605 L2685 L2610 L3654 L7805 L7806 L7808 L7812 L7815 L7818 L7820 L7824 L78M05 L78M06 L78M08 L78M12 L78M15 L78M18 L78M20 L78M24 Function Page TRIAC/SCR phase control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 34 TRIAC/SCRburstcontrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 High precision voltage regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 49 High precision, high voltage regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 57 68 High gain power output stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3A-Power operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5V-Positive voltage regulator with rectifying bridge . . . . . . . . . . . . . . . . . . . 79 12V-Positive voltage regulator with rectifying bridge. . . . . . . . . . . . . . . . . .. 79 15V-Positive voltage regulator with rectifying bridge. . . . . . . . . . . . . . . . . .. 79 Adjustable voltage and current regulator . . . . . . . . . . . . . . . . . . . . . . . . . .. 83 High voltage, high current 7 darlington arrays. . . . . . . . . . . . . . . . . . . . . . .. 93 High voltage, high current 7 darlington arrays . . . . . . . . . . . . . . . . . . . . . . . 93 High voltage, high current 7 darlington arrays . . . . . . . . . . . . . . . . . . . . . . . 93 High voltage, high current 7 darlington arrays . . . . . . . . . . . . . . . . . . . . . . . 93 Tachometer converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 98 5 bit D/A converter and position amplifier . . . . . . . . . . . . . . . . . . . . . . . . . 104 Switch-mode driver for DC motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Push-pull four channel driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 122 Push-pull four channel driver .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 122 Switch-mode solenoid driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Low dropout 5V ,egulator with reset . . . . . • . . . . . . . . . . . . . . . . . . . . . .. 136 High voltage, high current 8 darlington arrays . . . . . . . . . . . . . . . . . . . . . . . 139 High voltage, high current 8 darlington arrays . . . . . . . . . . . . . . . . . . . . . . . 139 High voltage, high current 8 darlington arrays . . . . . . . . . . . . . . . . . . . . . . . 139 High voltage, high current 8 darlington arrays . . . . . . . . . . . . . . . . . . . . . . . 139 Quad darlington switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 142 5V-Positive voltage regulator for automotive. . . . . . . . . . . . . . . . . . . . . . .. 146 8.5V-Positive voltage regulator for automotive. . . . . . . . . . . . . . . . . . . . . .. 146 10V-Positive voltage regulator for automotive. . . . . . . . . . . . . . . . . . . . . .. 146 Printer solenoid driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 148 Positive voltage regulator (lA-5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 153 Positive voltage regulator (lA-6V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 153 Positive voltage regulator (lA-8V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 153 Positive voltage regulator (lA-12V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 153 Positive voltage regulator (1 A-15V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 153 Positive voltage regulator (1 A-18V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 153 Positive voltage regulator (1 A-20V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 153 Positive voltage regulator (lA-24V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 153 Positive voltage regulator (0.5A-5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Positive voltage regulator (0.5A-6V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Positive voltage regulator (0.5A-8V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Positive voltage regulator (0.5A-12V) . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 165 Positive voltage regulator (0.5A-15V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Positive voltage regulator (0.5A-18V) . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 165 Positive voltage regulator (0.5A-20V) . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 165 Positive voltage regulator (0.5A-24V) . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 165 4 11 IlIiI 14 ~ I~ ALPHANUME.RICAL INDEX (continued) I',! Type L78S05 L78S75 L78S09 L78S10 L78S12 L78S15 L78S18 L78S24 L7905 L7952 L7908 L7912 L7915 L7918 L7920 L7924 LMl17 LM217 LM317 LM324 LM324A LM339 LM339A LM2902 LS025 LS045 LS10l LS107 LS141 LS141A LS141C LS148 LS148A LS148C LS150 LS156 LS159 LS201 LS204 LS204A LS204C LS207 LS285 LS285A LS288 LS301 Function Positive voltage regulator (1.5A-5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Positive voltage regulator (1.5A-7.5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . Positive voltage regulator (1.5A-9V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Positive voltage regulator (1.5A-l OV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Positive voltage regulator (1.5A-12V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Positive voltage regulator (1.5A-15V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Positive voltage regulator (1.5A-18V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Positive voltage regulator (1.5A-24V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Negative voltage regulator (lA-5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Negative voltage regulator (lA-5.2V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Negative voltage regulator (lA-8V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Negative voltage regulator (lA-12V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Negative voltage regulator (1 A-15V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Negative voltage regulator (lA-18V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Negative voltage regulator (lA-20V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Negative voltage regulator (lA-24V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2V to 37V adjustable regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2V to 37V adjustable regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2V to 37V adjustable regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Low power quad operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . Low power quad operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . Quad voltage comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Quad voltage comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Low power quad operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . Balanced modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Channel amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High performance operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . Frequency compensated operational amplifier . . . . . . . . . . . . . . . . . . . . . . Frequency compensated operational amplifier . . . . . . . . . . . . . . . . . . . . . . Frequency compensated operational amplifier . . . . . . . . . . . . . . . . . . . . . . Frequency compensated operational amplifier . . . . . . . . . . . . . . . . . . . . . . Operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High performance 80 dB compandor . . . . . . . . . . . . . . . . . . . . . . . . . . . . Telephone speech circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High reliability transistor array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High performance operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . High performance dual operational amplifier . . . . . . . . . . . . . . . . . . . . . . . High performance dual operational amplifier . . . . . . . . . . . . . . . . . . . . . . . High performance dual operational amplifier . . . . . . . . . . . . . . . . . . . . . . . Frequency compensated operational amplifier . . . . . . . . . . . . . . . . . . . . . . Telephone speech circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Telephone speech circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programmable telephone speech circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . High performance operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 175 175 175 175 175 175 175 187 187 187 187 187 187 187 187 192 192 192 198 198 205 205 198 211 218 222 231 236 236 236 243 243 243 251 259 271 222 276 276 276 231 284 284 292 222 i '. ALPHANUMERICAL INDEX (continued) Type LS307 LS342 LS356 LS404 LS404C LS656 LS709 LS709A LS709C LS776 LS776C LS4558N MC1458 MC1458C TAA550 TAA611A TAA611B TAA611C TBA231A TBA331 TBA800 TBA810CB TBA810P TBA810S TBA820 TBA820M TCA830S TCA900 TCA910 TCA940N TCA 3089 TCA 3189 TDA 4405 TDA1054M TDA1151 TDA1170 TDA1170D TDA1170N TDA1170S TDA 1180P TDA1190Z TDA1200 TDA1220A TDA1220B TDA1220L TDA1410A Function Page Frequency compensated operational amplifier . . . . . . . . . . . . . . . . . . . . . " Multifrequency to telephone line interface circuit. . . . . . . . . . . . . . . . . . . .. Telephone speech circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. High performance quad operational amplifier . . . . . . . . . . . . . . . . . . . . . . " High performance quad operational amplifier. . . . . . . . . . . . . . . . . . . . . . .. Telephone speech circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programmable operational amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Programmable operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . " Dual high performance operational amplifier . . . . . . . . . . . . . . . . . . . . . . " Dual operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Dual operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. TV voltage stabilizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " 1.8W audio amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " 2.1W audio amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3.3W audio amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Dual audio preamplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. General purpose transistor array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5W audio amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7W audio amplifier for CB radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7W audio amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7W audio amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " 2W audio amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Minidip 1.2W audio amplifier . . . . . . . . . . . . . ;...... . . . . . . . . . . . . .. 3.4W audio amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Motor speed regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Motor speed regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. lOW audio amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FM-I F radio system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FM-IF high quality radio system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " TV vision I F system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preamplifier with ALC for cassette recorders . . . . . . . . . . . . . . . . . . . . . . .. Motor speed regulator . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . TV vertical deflection system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Low-noise TV vertical deflection system . . . . . . . . . . . . . . . . . . . . . . . . . " Low-noise TV vertical deflection system. . . . . . . . . . . . . . . . . . . . . . . . . .. TV vertical deflection system .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. TV horizontal processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Complete TV sound channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. FM-IF radio system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AM-FM radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AM-FM quality radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Low voltage AM-FM radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " Quasi-complementary dual darlington . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 303 307 320 320 329 342 342 342 347 347 357 364 364 14 14 14 14 367 371 377 382 389 396 14 402 14 409 409 413 420 427 433 442 453 459 469 475 481 493 506 14 514 530 535 14 6 ALPHANUMERICAL INDEX (continued) Type TDA1420A TDA1420L TDA1470 TDA1670 TDAl770 TDA1904 TDA1905 TDA1908 TDA1910 TDA2002 TDA2003 TDA2004 TDA2005 TDA2006 TDA2008 TDA2009 TDA2010 TDA2020 TDA2020D TDA2030 TDA2030A TDA2040 TDA2054M TDA2140 TDA2151 TDA2161 TDA2170 TDA2190 TDA2310 TDA2320 TDA2320A TDA3190 TDA3310 TDA3410 TDA3420 TDA4092 TDA4420 TDA4431 TDA4433 TDA7270S TDA7770 Function Page Quasi-complementary dual darlington . . . . . . . . . . . . . . . . . . . . . . . . . . . . Quasi-complementary dual darlington . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vertical deflection system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vertical deflection circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Vertical deflection circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , 4W audio amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5W audio amplifier with muting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8W audio amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. lOW audio amplifier with muting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8W car radio audio amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. lOW car radio audio amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 + lOW stereo amplifier for car radio . . . . . . . . . . . . . . . . . . . . . . . . . . . , 20W bridge amplifier for car radio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. lOW audio amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12W audio amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10 + lOW Hi-Fi amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12W Hi-Fi amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , 20W Hi-Fi amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 40w audio driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14W Hi-Fi amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " ., 18W Hi-Fi amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , 22W Hi-Fi amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Preampl ifier with A LC for cassette recorders . . . . . . . . . . . . . . . . . . . . . . .. PAL Subcarrier Reference Oscillator for Colour TV . . . . . . . . . . . . . . . . . . . Luminance and Chrominance Amplifier for Colour TV . . . . . . . . . . . . . . . . . Synchronous Demodulator and RGB Matrix for Colour TV . . . . . . . . . . . TV vertical deflection output circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Complete TV sound channel with VCR and CCC . . . . . . . . . . . . . . . . . . . . . Hi-Fi dual preamplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Preamplifier for infrared remote control systems . . . . . . . . . . . . . . . . . . . . . Minidip stereo preamplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Complete TV sound channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Low noise N PN transistor array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Dual low noise tape preamplifier with autoreverse . . . . . . . . . . . . . . . . . . . .. Dual low noise tape preamplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5 bit binary to 7 segment decoder driver. . . . . . . . . . . . . . . . . . . . . . . . . .. Vision I F system with AFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TV signal identif. and AFC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TV signal identif. and AFC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multifunction system for tape players. . . . . . . . . . . . . . . . . . . . . . . . . . . .. Multifunction system for tape recorders . . . . . . . . . . . . . . . . . . . . . . . . . .. 14 14 540 551 563 575 579 592 603 616 623 632 642 656 666 672 683 691 700 711 721 735 742 14 14 14 749 756 775 784 790 800 14 809 817 824 830 837 837 845 14 7 APPLICATION GUIDE: CONSUMER CIRCUITS Audio Power Amplifiers TV ~.'~ « .• <».....;,." ""~:',' ":'«.'.\,;" r" Horizontal TDA 1180P Vertical TDA1170 TDA1170D TDA1170N TDA 1170S TDA1470 TDA1670 TDA1770 TDA2170 <: 0 .;::; u ;;::: '" 0'" e .I:. u TDA2140 TDA2151 TDA2161 Oscillator Lumin. & Chromin. Demodulator Car radio Portable radio TAA611A TAA611B TAA611C TBA820 TBA820M TDA1904 TDA1905 TV receiver TBA800 TCA940N TDA1904 TDA1905 TDA1908 TDA2006 TDA2008 TDA2009 Hi-Fi and Hi-Fi TV TDA1910 TDA2009 TDA2010 TDA2020 TDA2030 TDA2030A TDA2040 Driver TDA2020D TDA2030A f- TV signal identification TDM431 TDM433 Varicap supply TAA550A TAA550B TAA550C TV channels display driver TDM092 Preamplifiers General purpose TBA231A Tape TDA1054M TDA2054M TDA3410 TDA3420 Hi-Fi TDA2310 Infrared receiver TDA2320 Stereo preamplifier TDA2320A . . . ; . .•.•. •. . 1,···,··!t,$V,e>S ...•••.• • . .•.,.,. . . <' TBA810P TBA810S TBA810CB TDA2002 T::lA2OO3 TDA2OO4 TDA2005 TDM40S TDM420 Video I F system '" I~pp~i~~.'~,".,····. ·.,.; TDAl190Z TDA2190 TDA3190 Complete sound channel E i ;;;.:.. ..... "'."~~'7. :.•'.••.'; .. ,•...•.... Radio IF/FM radio system TCA3089 TCA3189 TDA1200 AM/FM radio TDA1220A TDA1220B TDA1220L Tape Recorders Transistor Array NPN array lultifunction TDA7270S 9 LS159 TBA331 APPLICATION GUIDE: PROFESSIONAL CIRCUITS Operational Amplifiers Single general purpose Positive Voltage Regulators LS107/207/307 LS141/A/C LS148/A/C LS709/A/C Single high performance LS1 01/201 /301 Programmable LS776/C Dual general purpose MC1458/C Dual high performance LS204/A/C LS4558N Quad general purpose LM324/A LM2902 Quad high performance Industrial Circuits LS404/C Telecommunications Circuits Balanced modulator LS025 Channel amplifier LS045 Compandor LS150 Telephone speech circuit LS156 LS285/A LS288 LS356 LS656 Multifrequency interface LS342 Op-amps for active filter LS204 LS404 10 Power operational amplifier L165 DC motor positioning system L290 L291 L292 DC and stepping motor driver L293 L293E Switch-mode solenoid driver L294 Printer solenoid driver L3654 Quad comparator LM339 Darlington array L201/2/3/4 L601/2/3/4 L702 Current boosters L149 TDA1410A TDA1420A TDA1420L Triac/SCR control L120A L121A AUDIO POWER AMPLIFIERS Selection table (test conditions; d = 10%, SUpply (VI f = 1 kHz) output Power IWI Device RL=40 RI..""20 RI..=80 4 TBAS20M 0.35 TAA611A TBAS10S TBAS20M TDA1904 0.5 1 0.75 O.S 0.35 6 1.S 1.S 2.5 1.6 1.6 2.2 2.5 1.15 1.15 9 TAA611A TAA611B TBAS10P TBAS20 TBAS20M TDA1904 TDA1905 12 TAA611B TAA611C TBAS20 14.4 TBAS10CB TBAS10P TDA1904 TDA1905 TDA190S TDA2002 TDA2003 TDA2004 TDA2005 18 22 3.4 3 7 7 6 6 4.5 5.4 5.S 5.2 6 2x6.5 2x6.5 (0) S 10 2xl0 2xl0 1.2 1.2 1.3 2.1 2.1 2 3 3 12 } 2xll RL =1.60 2xll 9 TDA2008 12 S 2xl0 (0) 4.5 5 5.5 5 23 TDA2009 24 TBASOO TDA1905 TDA1908 TDA2006 12 S 28 TDA2010* TDA2030* 12 14 9 9 32 TDA2030A* TDA2040* lS 22 12 12 36 TDA2020* 20 - (0) 20W in Bridge , .... 0.45 TBASOO TCA940N TDA1905 TDA190S 9 RL = !.3} RL =160 (*) d = 0,5%. f = 1 KHz. 11 OPERATIONAL AMPLIFIERS LS10n LS101AT LS107T LS14n LS141AT LS141CT LS148T LS148AT LS148CT LS20n LS201AT LS207T LS301AT LS307T LS709T LS709AT LS709CT LS776T LS776CT LS204T* LS204AT* LS204CT* LS141CM. LS148CB LS201B LS301AB LS307B LS776CB LS204CB* LS4558NB* MC1458Pl* MC1458CP1* -55 to 125 -55 to 125 -55 to 125 -55 to 125 -55 to 125 o to 70 -55 to 125 -55 to 125 o to 70 o to 70 -25 to 85 -25 to 85 o to 70 o to 70 -55 to 125 -55 to 125 o to 70 -55 to 125 o to 70 -25 to 85 -55 to 125 o to 70 o o o o o o o o o o to to to to to to to to to to 70 70 70 70 70 70 70 70 70 70 LS141CM LS148CM LS201M LS301AM LS307M LS776CM LS204M* LS204CM* LS4558NM* MC1458M* MC1458CM* o to 70 o to 70 o to 70 o to 70 o to 70 o to 70 -25 to 85 o to 70 o to 70 o to 70 o to 70 LM324N** LM324AN** LM2902N** LS709CB LS404CB** -25 to 85 -55 to 125 o to 70 o to 70 o to 70 LM324CM** LM2902CM** LS404M** LS404CM** -25 to 85 o to 70 -25 to 85 o to 70 , Dual * * Quad. •• •• • • •• •• • • ••• •• • • •• •• •• • •• • • • ••• 90 96 96 90 95 90 90 95 90 90 96 96 90 90 90 110 90 120 30 30 80 30 80 80 20 80 250 30 30 70 70 200 100 300 10 10 0.7 0.5 0.7 0.5 5.5 5.5 5.5 10 10 0.7 10 0.5 0.25 0.25 0.25 22 22 22 22 22 18 22 22 22 22 22 22 18 18 18 18 18 TO-99 ~ 90 i5 0.35 i8 90 100 100 95 15 50 50 80 0.8 1.5 1.5 1 18 18 18 18 90 90 90 90 90 90 95 90 90 90 80 80 250 70 70 15 80 50 80 80 0.5 5.5 10 10 0.5 0.8 1 1.5 0.5 0.5 ±18 ± 22 ± 22 ±18 ± 18 ± 18 ±18 ±18 ±18 ± 18 WN 90 90 90 90 90 90 100 95 90 90 90 80 80 250 70 70 15 50 80 50 80 80 0.5 5.5 10 10 0.5 0.8 1.5 1 1.5 0.5 0.5 ± 18 50-8 ± 22 ± 22 ± 18 ±18 ± 18 ± 18 ± 18 ± 18 ±18 ± 18 §fij9 70 85 70 90 90 45 45 45 300 100 70 70 94 90 45 45 50 100 12 0.25 1 32 32 32 ± 18 ± 18 32 32 ± 18 ± 18 Minidip DIP ~Niif SO-14 ~ POSITIVE VOLTAGE REGULATORS R"gulated .000t\>Ut vo\t!'IJ~ .tV) I" max (A) 2 1.5 IH~ L200CH/CV L200CT/T L78S00CV L78S00CT/T 2.9 .. 2.9.- LMl17K LM217K LM317K LM317T 1.21.2.· 1.21.2 .. • • L7800CV L7800CT/T 0.5 0.15 L2600V L78MOOCV L 194-5V* L 194-12V* L194-15V* L487 . '•. 9101Z 15 ADJUSTABLE ADJUSTABLE • • • • Versawatt TO-3 ADJUSTABLE ADJUSTA.BLE ADJUSTABLE ADJUSTABLE TO-3 TO-3 TO-3 Versawatt Versawatt TO-3 • •• Versawatt Versawatt Pentawatt® Pentawatt® Pentawatt~ Pentawatt POO1-A TO-1OO POO1-L TO-1OO L 123CB L123CT/T L146CB L 146CT/T * With integrated rectifying bridge. NEGATIVE VOLTAGE REGULATORS 13 NOT FOR NEW DESIGN TO-18 TAA550 TV VOLTAGE STABILIZER TAA 611A TAA 611B TAA 611C 1.8W AUDIO AMPLIFIER 2.1W AUDIO AMPLIFIER 3.3W AUDIO AMPLIFIER 14-DIP/TO-100 14-DIP 14-DIP TBA 820 TCA 830S 2W AUDIO AMPLIFIER 3AW AUDIO AMPLIFIER 14-DIP FIN-DIP 12 15 22 16 20 TDA 1200 FM-IF RADIO SYSTEM 16-DIP 16 PENTAWATT@ PENTAWATT@ PENTAWATT@ 36 44 40 KIT CHROMA 16-DIP 16-DIP 16-DIP 15 15 15 LOW-NOISE NPN TRANSISTORS 14-DIP FIN-DIP V z = 30V to 36V, IZ(max)= 20 mA Po = 1.8W (9V - 4n). Po = 1.15W (9V - 8n) Po = 2.1W (12V - 8n). Po = 1.15W (9V - 8n) Po = 3.3W (15V -8n), Po = 1.7W (12V - 8n) Po = 1.2W (9V - 8n) Po = 2W (12V - 8n). Po = 3AW (12V -4n). Po = 2.3W (12V -8n) I See TCA 3089 .I:> TDA 1410A TDA 1420A TDA 1420L TDA 2140 TDA 2151 TDA 2161 TDA 3310 QUASI COMPLEMENTARY DUAL DARLINGTON hFE hFE hFE > 800@ 2A > 500@ 3A > 800@ 2A 20 hFE > 300 @ 100/lA, 20 Motor speed regulator, Bias Oscillator, DC record play switching, Automatic stop. NF = 0.5 dB ARRAY TDA 7770 I MULTIFUNCTION SYSTEM FOR TAPE RECORDERS PRECAUTIONS FOR PHYSICAL HANDLING OF POWER LINEAR ICs When mounting power ICs certain precautions must be taken in operations such as bending of leads, mounting of heatsink, soldering and removal of flux residue. If these operations are not carried out correctly, the device can be damaged or reliability compromised. 1. Bending and cutting leads The bending or cutting of the leads requires the following precautions: 1.1 When bending the leads they must be clamped tightly between the package and the bending point to avoid strain on the package (in particular in the area where the leads enter the resin) (fig. 1). This also applies to cutting the leads (fig. 2). 1.2. The leads must be bent at a minimum distance of 3 mm from the package (fig. 3a). 1.3. The leads should not be bent at an angle of more than 90° and they must be bent only once (fig.3b). 1.4. The leads must never be bent laterally (fig. 3c). 1.5. Check that the tool used to cut or form the leads does not damage them or ruin their surface. Fig. 1 - Bending the leads Fig. 2 - Lead forming or cutting mechanism w Plastic packag~1 t rn j I \::~h1~1~~ng Spaced? W "'-0039 Clamp mechanism Fig. 3 - Angles for lead wire bending 3.0min a c b 15 or cutting 2. Mounting on printed circuit During mounting operations be careful not to apply stress to the integrated circuit. 2.1. Adhere strictly to the pin spacing of the IC to avoid forcing the leads. 2.2. Leave a suitable space between printed circuit and integrated circuit, if necessary use a spacer. 2.3. When fixing the device tp the printed circuit do not put mechanical stress on the IC. For this purpose the device should be soldered to the printed circuit board after the IC has been fixed to the heatsink and the heatsink to the printed circuit board. 3. Soldering In general an Ie should never be exposed to high temperatures for any length of time. It is therefore preferable to use soldering methods where the IC is exposed to the lowest possible temperatures for a short time. 3.1. Tolerable conditions are 260°C for 10 sec or 350°C for 3 sec. The graphs in fig. 4 give an idea of the excess junction temperature during the soldering process for a TO-220 (Versawatt). It is also important to use suitable fluxes for the tin baths to avoid deterioration of the leads or of the package resin. 3.2. An excess of residual flux between the pins of the integrated circuit or in contact with the resin can reduce the long-term reliability of the device. The solvent for removing excess flux must be chosen with care. The use of solvents derived from trichloroethylene is not recommended on plastic packages because the residue can cause corrosion. . Fig. 4 - Junction temperatures during soldering TJ 260·( soldering bath Tj Exposed to air ('0 ) ('C) h : 150 100 ---l 350·C soldering bath Exposed to air 150 100 ; 1.5mm : 50 260.C 20 40 60 80 100 50 I Solder I 1,"0 180 110 50 Time {sec) 16 60 Time(secl I. ,., ~ " I., 4. Mounting of heatsink To exploit best the performance of power ICs a heatsink with will dissipate must be used. Rth suitable for the power that the IC 4.1. The plastic packages used by SGS for its linear ICs (Pentawatt, Multiwatt, Versawatt) provide for the use of a single screw to fix the package to the heatsink. A compression spring (clip) can be sufficient as an alternative (fig. 5). Fig. 5 - MULTIWATT® mounting examples The screw should be properly tightered to ensure good contact between the back of the package and the heatsink but should not be too tight to avoid deformation of the copper part (tab) of the package causing breaking of the die or separation of the resin from the tab (fig. 6). Fig. 6 - Contact thermal resistance vs. tightening torque ,. l--L ("C/W ) MULTIWATT 0.8 '\ ""- ........ 06 I' " W"ho", ]! '''''00" "m. siuL.I""tj: r-- - 4.2. The suggested tightening torques with a 3 MA screw are: Versawatt 6 Kg/cm Pentawatt 6 Kg/cm Multiwatt 8 Kg/cm -- c---- Torque (Kglcm) If different screws are used the force transmitted to the tab must not exceed that encountered in the above conditions. When fixing the device avoid bumping or stressing the resin and pins with the tools used for this operation (pneumatic screw drivers, tweezers etc.). 17 r. i 4.3. The contact Rth between device and heatsink can be improved by inserting a thin layer of silicone grease with fluidity sufficient to guarantee perfectly uniform distribution on the surface of the tab. The thermal resistance with and without silicone grease is given in fig. 7. An excessively thick layer or an excessive viscosity of the si Iicone grease can be damaging for the Rth and for any tab deformations. 5. Fig.7 - Contact thermal resistance insulator thickness VS. Heatsink problems The most important aspect from the point of view of reliability of a power IC is that the heatsink should be dimensioned to keep the Tj of the device as low as possible. From the mechanical point of view, however, the heatsink must be realized so that it does not damage the integrated circuit. 0.05 5.1. The planarity of the contact surface between device and heatsink must be and Versawatt and < 20 Jlm for Multiwatt. 0.10 0.15 Th(mm) < 10 Jlm for Pentawatt 5.2. If self threading screws are used there must be an outlet for the material that is deformed during formation of the thread. The diameter if> 1 (fig. 8) must be large enough to avoid distortion of the Fig. 8 - Device mounting WRONG RIGHT tab during tightening. For this purpose it may be useful to insert a washer or use screws of the type shown in fig. 9 where the pressure on the tab is distributed on a much larger surface. Sometimes when the hole in the heatsink is formed with a punch, around the hole Fig. 9 - Suggested screw or hollow there may be a ring which is lower than the heatsink surface. This is dangerous because it may lead to distortion of the tab as mentioned before. T 5.3. A very serious problem is that of the rigidity between heatsink,device and printed circuit board. When mounting the heatsink, device (which may be fixed to frame of apparatus) and printed circuit board are ;''"'' bound together by the leads of the device. A solution of this type is extremely dangerous,especially if the equipment is subjected to vibrations. 18 SEMICONDUCTOR USERS RELIABILITY EVALUATION SGS SURE III programme is an important improvement of SURE II programme obtained with tightened quality levels. Moreover there are many level's options to satisfy various customer's requests. SGS SURE III programme aims to inform customers of basic production operations and internal quality and reliability assurance procedures, paying particular attention to the tests and guarantees on the finished product. This programme covers the set of 100% operations, controls and testing operations undergone by the devices produced to standard specification, i.e. without any special customer requirements. In other words, unless special co-produced specifications are used, the majority of SGS customers in the professional, consumer and industrial markets buy products tested according to the SURE III programme. The programme thus fully meets the requirements of almost all applications. Moreover, since the programme offers more options, the customer can request the product with certain supplementary screenings, while the entire production process, apart from the optional operations indicated in the programme, remains identical to that of the standard product. General Information This information is valid for all products ordered from SGS or which are ordered to one of the SURE Programme options. Marking Each device will be marked in a contrasting ink with the following standard information (if sufficient space is available); 1 - SGS logo 2 - Device type as shown in the detail specification 3 - Manufacturing plant number 4 - Lot code (Production lot) Packing Device will be packed in the SGS standard package. The following information will be marked on the primary package. 1 - SGS logo 2 - Device type as shown on the order confirmation 3 - Quantity in the package 4 - SGS order confirmation 5 - Warning label on Mos products Testing and finishing 1 - Screenings according to MIL or CECC or however to this programme 2 - 100% electrical testing according to SGS data sheet 3 - Temperature acceptance When an extended temperature range is guaranteed SGS Outgoing QC may carry out the test at temperatures other than those shown on the data sheet on the basis of temperature correlation of the parameters. SGS, guarantees the applicability of the AQL levels at the temperature limits and will accepts any lot rejected as a consequence. 19 External visual and Mechanical Inspection Criteria (group A Acceptance) Inoperative mechanical defects (critical): e.g. wrong pin indication, wrong marking or splitting, broken or weakened leads, short circuits between leads, missing or partially detached cap, mixed package, cap and frame not aligned at the same side, catastrophic bent leads. Major defects (significant mechanical defects, but not functional defects): e.g. open packages, deformed leads, unmarked packages or with illegible marking, deep cracks on packages, incomplete tinning or with bubbles - roughness - blackenings, lead straightness and position not in accordance with relevant drawing. - Minor defects: Reference specification a) Basic Sampling Procedures and tables for inspection by attributes: MI L-STD-105D, IEC 410. In general the single sampling plan will be used but it is acceptable for the customer to use double or multiple sampling (with, naturally, the same AOLs and inspection levels). Similarly O.C. managers can also use double or multiple sampling. b) The Sure III Programme has been prepared considering the following specs: IEC 68-2, MI L-STD883B, CECC 50000, MIL-STD-38510 D and IEC 147-5. It should be noted that conformance with these specs should be assumed only where specifically stated in th is programme. Precedence of documents For the purpose of contractual interpretation in case of conflict, documents shall take the following order of precedence: 1 Purchase order or contract. The text of the order or contract prevails over any other specification. 2 Detail specification. The detail specification agreed between customer and vendor prevails over this present specification and any other reference specification. 3 Generic specification. The generic specification (including this programme) prevails over all reference specifications. 4 - Relevant specification. All reference documents apply only to the extent defined here in. Essential terms and definitions For the purpose of interpretation of this general specification the following terms and definitions are applied: Detail/relevant/blank specification A specification which covers a particular component or range of components, and which describes that component including rated and/or limiting values and characteristics. The detail specification will also give the inspection requirements or appropriate reference to this general specification. Inspection lot A quantity of components presented together for inspection from which a sample is to be drawn and inspected to determine conformance with the acceptance criteria of the specification. 20 Production lot Consists of one lot of devices sealed within a period not exceeding six weeks. Delivery lot A quantity of components del ivered to an order at one time. One del ivery lot may consist of one or more inspection lots or parts thereof. Structurally similar devices -----------Structurally similar devices are those devices produced concurrently through final seal by the same fabrication techniques, using the same type of machines and apparatus and having the same basic design rules and the same packaging. Details of structural similarity for various components will be defined, when required, by the SGS Quality Assurance Mgr(s). Certificate of Conformance A document issued with a delivery lot stating that the components have been taken from one or more inspection lots accepted under the requirements of the particular specification. 21 Standard production process flow chart KEY: OPERATION/SCREENING IN-PROCESS CONTROL (MONITOR) GATE INSPECTION (SAMPLE ACCEPTANCE) HERMETIC PACKAGE PROCESS MOLDED PACKAGE PROCESS MATERIAL INSPECTION Starting materials are inspected following written specification and records are maintained for traceability. 2 WAFER FABRICATION Masking, etching, diffusion and metallization processes produce finished dice in wafer form. 3 IN-PROCESS CONTROL Wafers and process environment are inspected at main process steps. 4 ELECTRICAL WAFER SORT Each die is electrically tested and identified when doesn't meet electrical requirements. 5 FINISHED WAFER INSPECTION Active surface and back finish are inspected on each diffusion lot before release for die fab and assembly. 6 DIE-FABRICATION Wafers are separated into individual dice and electrical rejects are removed. 7 VISUAL SCREENING Dice are inspected and selected at high magnification. 8 QUALITY INSPECTION Each dice lot is accepted before assembly (visual inspection of active surface) 9 DIE ATTACH 10 QUALITY CONTROL (Table I) Daily visual and mechanical (die shear strangth) control. 11 WIRE BOND 22 Standard production process flow chart (continued) HERMETIC PACKAGE PROCESS MOLDED PACKAGE PROCESS 12 QUALITY CONTROL (Table I) Daily visual and mechanical (bond strength) control. 13 PRECAP VISUAL Assembled but unsealed units are individually inspected at low and high power magnifications. 14 QUALITY INSPECTION (Table I) Each lot is accepted before sealing to verify compliance to precap inspection specifications. 15 FINAL SEAL 16 MOLDING AND CURING 17 SEALING ATMOSPHERE CONTROL (Table I) 18 SEAL AND LID TORQUE CONTROL (Table I) 19 TEMPERATURE CYCLING (Table I) 20 CROPPING 21 CROPPING CONTROL 22 LEAD FINISH 23 LEAD FINISH INSPECTION (SOLDERABILITY - Table I) 24 FINAL CROPPING 25 INTERNAL WATER-VAPOR CONTENT CONTROL (Table I) 26 HIGH IMPACT SHOCK (Table I) 27 RAW LINE INSPECTION (Table I) 28 GROUPS B, C, AND D TESTS QUALITY CLASSES OPTIONS QUALITY CLASSES OPTIONS 23 Production quality tests description and screenings TABLE I 10 DIE-ATTACH CONTROL MIL STD 883B Mth 2010 condo B (internal visual) and Mth 2019 (die shear strength). 12 BONDING CONTROL MIL STD 883B Mth 2010 condo B (internal visual) and Mth 2011 condo C (bond strength). 14 PRECAP INSPECTION MIL STD 883B Mth 2010 condo B (internal visual) 17 SEALING ATMOSPHERE CONTROL 18 SEAL CONTROL Moisture content: for Ceramic packages for Metal Can packages < 50 ppm < 120 ppm Fine Leak: Metal can packages IEC 68-2-17 test QK (CECC 50000 para 4.4.10) Helium leak detector after pressurization in He for 16 hrs at 5 atm. Limiti 5 • 10- 7 ccls Ceramic packages MIL STD 883B Mth 1014 condo Al Helium leak detector after pressurization in He for 2 hrs at 4 atm. Limit: 5· 10-' ccls for I.C. V .• < 0.4 cc 5 • 10- 7 ccls for I.C.V. ;. 0.4 cc * (I.e.v. = internal cavity volume). Gross Leak: Metal Can packages I EC 68-2-17 test Qc Mth 2 (CECC 50000 para 4.4.10). Bubble test in mineral oil at T amb = 125°C after pressurization in He for 16 hrs at 5 atm. Ceramic packages MIL STD 883B Mth 1014 condo C. LI D TORQUE TEST (CONTROL) 19 TEMPERATURE CYCLING Ceramic Packages only - MI L STD 883B Mth 2024. - From -25°C to +1500C; 30 min at extreme temperatures; 5 minutes transfer time; n° 5 cycles CROPPING Not for Metal Can packages. 23 SOLDERABI LlTY INSPECTION - 25 INTERNAL WATER VAPOR CONTENT CONTROL Dew Point method MIL STD 883B Mth 1018 procedure 3 - 5000 ppm max. (dew point temperature less than -15°C). 26 HIGH IMPACT SHOCK Metal Can packages only except TO-3 and TO-66. 20000 G min.; T = 25 ),lsec min; Yl axis only. 27 RAW LINE INSPECTION 20-21-24 IEC 68-2-20 Test TA (bath method) - CECC 50000 para 4.4.7 - 230 ± 5°C with preconditioning for 16 hrs at 155°C. External Visual - MIL STD 883B Mth 2009. Lid torque test: as per step 18. Centrifuge (ceramic packages only) MIL STD 883B Mth 2001 High I mpact Shock: as per step 26 Seal control: as per step 18 24 Available class options (*) HERMETIC MOLDED r----- ----, _ _ _ _ _ _specs: _ _ -.J L -ESA/SCCG MIL class 8 MIL class C Class B1 (81 160hrs) Class 82 Class 83 (Automotive) Class 84 Class 84 Class STD Class STD (*) SGS-A TES will also supply devices to CECC specifications when these are issued. Quality & reliability tests A Each lot Each lot B Each lot See group C C 3 months 3 months o 6 months 6 months 25 Quality class options B1 B2 B3, B4, STD (Hermetic packages only) (Hermetic packages only) (Hermetic and molded packages) 100% electrical test Reduced electrical test 100% electrical test Marking Marking Marking Burn-in 160 H Burn-in 48 H Group A acceptance (STD) 100% electrical test 100% electrical test Group A acceptance (B 1) Group A acceptance (B2) Group A acceptance (B3 or B4 or STD) Pack Pack Pack Pack and documentation acc. Pack and documentation acc. Pack and documentation acc. Ship Ship Ship Group A acceptance (.) Al A2 A3 A4 Visual and mechanical insp. Major Minor 0.25 1 Inoperative failure (electrical and mechanical) over guaranteed tempe· rature range Tmax 25°C T min II DC parameters and main AC parameters over gu aranteed temperatu re range Tmax 25°C Tinin II Other AC parameters 25°C S4 }0.15 0.25 0.25 1 1 } 0.15 0.15 0.65 0.25 1 0.25 1 0.065 } 0.1 I 0.25 0.65 26 } 0.1 10 .25 10 .4 0.65 Parameters are guaranteed within the teDlperature range by 250 C correlation measurements. * Automotive devices only. (.)For MIL class B/C and ESA/SCCG products see relevant SGS-ATES documents. 0.25 1 0.65 0.25 0.25 1 1 } 0.1 0.1 - } 0.4 0.4 0.65 0.65 j I TABLE III - Group C tests - every 3 months on raw line material (+) "'.~;}: V :>:' ~'~';"'" .•.'.•'::\;;:i:;;[~~~,' .",.' ~,\t "".>>;'\. ;:, ,'; <;}~, .",:::};.: ~); "'~ " 'Mft;4T1ii~~; "', "",,::;'2 ,.:.:" ';< :'; " " " \ " ' > , " " ' . ".",/;-;""";""< '" ",~:,\:;:;;,;,;;:,,:;,;,.. ' :,. ~~:': Subgroup 1 Physical dimensions - Resistance to solvent 2015 Subgroup 3 11) Solderability (2) 2003 Subgroup 4 Steady state and operating life test or I ntermittent Iife test End-point electrical parameters 2 devices (no failure) 2016 Subgroup 2 11) 1005 - Ceramic packages Molded packages: solvent solution 2.1A only Metal can packages 4 devices (no failure) Soldering temperature of 260 + 1 O"C or I EC method 68-2-20 test T A (230 ± 5°C) 1000 hrs; according to device spec. type 15 2 5 2 15 2 - 5000 cycles Key parameters (Table V); measurements at 0, 168, 500 and 1000 hrs, Subgroup 5 (Hermetic packages only) Temperature cycling Constant acceleration Seal (41 a) fine b) gross 1010 2001 1014 F.,,-l-+-+-.J----i-+-+-.J----i-++.J----i-+-I---l 'm'l '. (V) ::::~~~:E " G:rEE:~~:: H+f1l-+I++-HflI . '" "- ,!'. 1111 /8 220"" 15 10 t '-~~~-I,-j~~~~~-4~ I " '" " -" 10 Rs(KA) 61. H- " "'-- 0.6 " II j -'0 17 0.' -10 10 30 SO 70 90 - TambCoCJ Fig. 6 - Ramp width vs. ex· ternal time constant RI6 'C I ""1131- os _30 f..- " C 11_15 C"FI Fig. 7 - Alternative system for reduction of power dissipation .7Kn 3Vi " " '0' G-113ZIZ ". ems) 20 -20 '0 T.. mb("cl Fig. 5 - Gate pulse width vs. C ll - 15 Fig. 4 - Gate current variation vs. ambient temperature (mAl " 30 IN4001 I 0j:7,.., 300 n ~ 9 '0 LI21A 8 I IN'OOI !" I 46 (250'1-) 1IZW r S~"Of'n %20' I ,',I: i) .~ I+i' ~ I :.\ APPLICATION INFORMATION Fig. 8 - Application circuit for temperature control (proportional type) r-~~--------~~---~~------------------~O rv 22()...21.0V 50-60Hz Fig.9 - Application circuit for temperature control (ON-OFF type) l~~F ':iiF20~F II I 1 16 15 14 I 12 13 " 10 9 6 7 8 6.8Kll 11 W "-'220 v-I r L' 2' A 1 I 2 J ~ 5 4 I ii r 220,I.JF l'so"lt NTC m!!. ''"ni .el 390 RL n) , I II ~1. 10Kll. ,! 1··. 5 - LOS4/2 11 i I;1 \ 47 Fig. 10 - Application circuit for low AC supply voltage (by using pin 14) 5." O.oIIJF loon rv 220-240V SO-60Hz lOOk 1. L 121A 10)JF 10V RL 10 kO 180.ll. 5-351912 Fig. 11 - Cimate control for car. 120.ll. r----------------------------.---{==~~~OVS=12V 100 10 K.ll. K.ll. 15 14 47 L 121 A 2 . IN 4148 IOnF KJl 4 100KJl , 270 KJl 1 220IJF Q.11J F .i-T *12VI1W 5-3967/1 * Protection against overvoltages. Pi : system hysteresis setting P2 : temperature setting NOTE - For a more detailed descriDtion of the L 120A and its applications refer to SGSDESIGN NOTE - DN 382. 48 'SLiNEAR INTEGRATED CIRCUIT HIGH PRECISION VOLTAGE REGULATOR INPUT VOLTAGE UP TO 40V OUTPUT VOLTAGE ADJUSTABLE FROM 2 T037V POSITIVE OR NEGATIVE SUPPLY OPERATION SERIES, SHUNT, SWITCHING OR FLOATING OPERATION OUTPUT CURRENT TO 150 rnA WITHOUT EXTERNAL PASS TRANSISTOR ADJUSTABLE CURRENT LIMITING • • • • • • The L123 is a monolithic integrated prQgrammable voltage regulator, assembled in 14-lead dual in-line plastic package and 10-lead Metal Can (TO-100 type). The circuit provides internal current limiting. When the output current excedes 150 rnA an external NPN or PNP pass element may be used. Provisions are made for adjustable current limiting and remote shut-down. ABSOLUTE MAXIMUM RATINGS Vi lN i _O 10 I ref Ptot Input voltage Dropout voltage Output current Current from V ref Power dissipation (at T amb = 70°C) Plastic DIP TO-100 Operating junction temperature Storage temperature MECHANICAL DATA L123 L123C 40V 40V 40V 40V 150mA 15 rnA 150mA 25mA 1W 520mW to 70°C -65 to 150°C 520mW -25 to 150°C -65 to 150 °C o Dimensions in mm 49 6/82 CONNECTION DIAGRAM AND ORDERING NUMBERS (top views) NC CURRENT NC CURRENT LIMIT 13 liMIT CURRENT SENSE INVERTING INPUT " INVERT. NON- 3 INVERT '0 INPUT PIN 5 COMP. ·v, Vc INPUT NONINVERTING INPUT FREQUENCY v, Vref Vz -v, NC V connected Iotas€' - S Type TO-l00 Plastic DIP L123 L123T - L123C L123CT L 123CB TEST CIRCUIT BLOCK DIAGRAM (Pin configuration relative to the Plastic package) INVERT. INPUT FREQUENCY CQMPENS Ve I I SERIES PASS I TRANSISTOR NON-INVERT. CURRENT CURRENT INPUT LIMIT SENSE Vj'" 12V Vo '" 5V 10'" 1 mA ~ A 1IJR 2 .;;;; 10 Kn THERMAL DATA Rth j-amb TO-100 max Thermal resistance junction-ambient 50 Plastic DIP ELECTRICAL CHARACTERISTICS (Refer to the test circuit, T amb = 25°C unless otherwise specified) L123C Unit Min. t:,vo ~ /',V o -Vo Line regulation Vi~12t015V V· ~ 12 to 40V Vi - 12 to 15V; T min";; T amb ~ T max Load regu lation ~ 10 Typ. Max. 0.01 0.1 0.1 0.5 1 to 50 mA 0.03 Reference voltage Iref~ SVR Ripple rejection f ~ 6.8 160!LA Input voltage range Vo Output voltage range Quiescent drain current 0.01 0.02 0.1 0.2 % % 0.3 % 0.15 % 0.6 % 7.35 V 0.03 7.5 6.95 7.15 74 86 150 Rsc~ 10n Vo~ 0 Vi-YO Id 7.15 Output voltage drift Vi 0.2 74 86 0 Cref~ 5 !L F Short circuit current limiting Max. 100 Hz to 10KHz Cref~ Ise Typ. 0.6 10~1t010mA V ref Min. 0.3 T min ~ T amb ~ T max /',V o ~ L123 Test conditions Parameter 10 Vi ~ ~ dB dB 150 65 65 ppm ---ac mA 9.5 40 9.5 40 V 2 37 2 37 V 3 38 3 38 V 5 mA 0 30V 2.3 Long term stability 4 0.1 2.3 0.1 %-1000 hrs eN Vz Output noise voltage Output zener vOltage BW~ Iz ~ 100 Hz to 10 KHz Cref~ 0 Cref~ 5 !LF 1 mA 6.9 (for plastic package only) Note: 20 2.5 T min ~ O°C iL123C); -25°C (l123). T max~ 70°C (l123C); 150°C il123). 51 20 2.5 7.7 !LV !LV V Ij Ii I; Fig. 1 - Maximum output current vs. voltage drop Fig. 2 - Current limiting characteristics G·4J4011 , Fig. 3 - Current limiting characteristics vs. junction temperature 0.7 vi: 12 II r- Rse : Ion 0.6 . u g N ! I : , I ! I 10 Fig. 4 - Load regulation characteristics without current limiting I-- f---t-~. r-- r-t-- arnb~ O'c ~.?SoC a~ -- CUR~ENT "'" , -0.1 va -10 10 -0.2 40 r .~ ;::::- "'::::- ('/.) 0.1 -" 100 60 TJ (OC) G- 4 344 , Vo ",5 II I r~~ ~ :::f-.C iit~6 ~'2S ·cr-- :5V . I I-- - --.. -..... - Vi =1211 R5e =10ll. """'I~ - I -0.1 ~~ I -f--- T \- J~ i\TA :25~C ~ r- TA =l25'C I \ -0.4 10 t-- A:~5'C \ '\ I " r- r- I ,,\~ -0.3 60 Fig. 7 - Line regulation vs. voltage drop 61J0 /Vo , ~ Fig. 6 - Load regulation characteristics with current limiting 'il -0. 1 ,10 :::--r-.- r::-.;;~.'04 1 -0.0 ~ I -~~~~:1~ 10 ~ ;-- r-- -60 Fig. 5 - Load regulation characteristics with current limiting --.. -0.3 ,6010) Fig.8 - Unity gain configuration ·,s O.llJf :I: lN4001 10Kn IN4001 .2 76 11KHz) Fig.9 - Motor current control circuit with external power transistors (lmotor > 3.5A) + Vs max36V IOKJl 36Ko. ~ 3.3Kfl2% R2* R7 Q,22},JF ~l 8D535 10Kfl 3.3KD 35Kll ... Vi =0 'BV~~~C=J-~~~~~~~~~~~~~-c=r~~+-~~~~~~~-~~~~~ R3* Note: The input voltage level is compatible with L291 (5-BIT D/A converter) Fig. 10 - High current tracking regulator Fig. 11 - Bidirectional speed control of DC motor ... 15V "'o-----r' "pF -- -------------0 • Vo Lr,-..."..... -r-~:J.. OK" 1OKD. ~.~~~--CJ- O,l,uF+-_~-c5-~~., ..,..,O.2Z,.oF i fl' .>=-----+----l~.'o -Vi (}-~~~--'-~~~~-' A:for±18';;;V i ';;;±32 Note - V z must be chosen in order to verify 2 VI - V z ';; 36V B: for V I ';;;± 18V 77 Fig. 12 - Split power supply Fig. 13 - Power squarewave oscillator with independent adjustments for frequency and duty-cycle. R1 2.2Kll R2 2.2K !l. >4--.--D"out Pl : duty-cycle adjust P2 : frequency adjust (f = 700 Hz with Cl= 10 nF, P2= 100 Kn, f=25 Hz with Cl= 10 nF, P2= 0) ..rLn. 'fi 5-5361 Fig. 14 - Bidirectional DC motor control with TTL!C-MOS/j.lP compatible inputs V Sl = logic supply voltage Must be V S2 ;;:' V S1 El, E2 = logic inputs NOTE - For a more detailed description of the L 165 and its applications, refer to SGSTECHNICAL NOTE TN. 150. 78 LINEAR INTEGRATED CIRCUITS POSITIVE VOLTAGE REGULATORS WITH RECTIFYING BRIDGE • • • • • OUTPUT VOLTAGE: 5V, 12V AND 15V OUTPUT CURRENT UP TO 500 mA SHORT CIRCUIT PROTECTION THERMAL OVERLOAD PROTECTION OVERVOLTAGE PROTECTION (60V - 10 ms) The L 194-5, L 194-12 and L 194-15 are fixed voltage regulators assembled in Pentawatt ® They incorporate a rectifying diode bridge with 7A surge current capability. package. ABSOLUTE MAXIMUM RATINGS Vi Vi Vi VR ID I DS 10 Ptot T st9 Tj Peak input voltage (10ms) DC input voltage (at pin 2) AC input voltage (rms) Peak reverse voltage across each diode Input diode repetitive current Input diode surge current (10 ms) Output current Power dissipation Storage temperature Operating junction temperature 60 40 28 80 2 7 Internally limited Internally limited -65 to + 150 -25 to + 150 V V V V A A °C °C ORDERING NUMBERS: L 194-5V (Vo= 5V) L194-12V (Vo= 12V) L194-15V (Vo= 15V) MECHANICAL DATA Dimensions in mm 79 6/82 CONNECTION DIAGRAM (top view) 'I! :&4: ~~: ~II ~'''"' , . (tab connected to pin 3) AC INPUT 5-4034 BLOCK DIAGRAM 4 OUTPUT AC INPUT DC INPUT 5- 4035 GND THERMAL DATA Rth j-case Rthj-arnb Thermal resistance junction-case Thermal resistance junction-ambient ELECTRICAL CHARACTERISTICS (Tj Quiescent drain current Vo Output voltage /;V o 10 = 0 Vi (pin 2) = 28V 10= 100 rnA VI = 15V (L194-5) VI = 22V (L194-12) Vi = 25V (L194-15) 10 = 100mA Vi= 8 to 18V (L194-5) Vi = 15 to 25V (L194-12) VI = 18 to 28V (L194-15) Line Regu lation 4 50 °C/W °C/W = 25°C) Test conditions Parameter Id max max 80 Min. 4.75 11.4 14.25 TVp. Max. Unit 5 14 rnA 5 12 15 5.25 12.6 15.75 V 5 10 15 mV ELECTRICAL CHARACTERISTICS (continued) Test conditions Parameter t,vo Load Regulation 10=10to 250 mA Vo V i- O Dropout voltage (pin 2-4) t,vo Output voltage drift Min. Vi = 15V (L194-5) VI = 22V (L194-12) Vi = 25V (L194-15) lo=100mA I:5.V o --v;; 10 Output current Ise Short-circuit current ~ 1% 2 Vi = 15V (L194-5) Vi = 22V (L194-12) Vi = 25V (L194-15) L 194-5/12 L194-15 (*) Max. 1 1 1 10 = 300 mA LIT Typ. % 3 0.3 0.6 0.8 V mV/oC 500 300 Vi = 15V (L194-5) Vi = 22V (L194-12) Vi = 25V (L194-15) Unit mA 700 500 400 0.7 mA 1.4 A Ip Peak output current SVR Supply voltage Rejection f=100Hz 10=200mA LlV i =10V L 194-5/12 L194-15 46 40 dB Ro Output Resistance f = 1 kHz 10=100mA 80 mn Vd Diode Forward Voltage If = lA If = 5A 1.6 4.5 V (*) See diagram of fig. 1. APPLICATION CIRCUIT In the design of power supplies using the L194, it must be always verified that: _ V2R V s Ipeak - <7A 5 where Rs is the sum of the transformer resistance, the equivalent diode resistance and external resistors. 81 APPLICATION INFORMATION The Absolute Maximum Ratings guarantee a max of 40V at pin 2 with max peak current of 7 A in the rectifying diodes. To avoid to damage the device, a suitable transformer secondary must be used so that even when there are network variations the limits set are always respected during operation. For example, with a nominal voltage of 24 V rms the maximum variations due to the transformer tolerance are ± 20% . In order to limit (to the maximum value allowed) the current peak, which occurs in diodes during switch-on, an external resistance RE,in series with the secondary of the transformer, must be introduced. Supposing that the capacitor of the filter is discharged at switch-on, the following equivalent circuit can be drawn: Secondary voltage. Secondary resistances of transformer. Resistance produced by the diode pair involved in conduction. If values RT and RD are known RE is calculated in such a way that the peak current at switch-on does not exceed 7 A. Vs peak -7 (R T + R D ) 7 For the 5V, with the nominal voltage of the 1 OV A transformer at 12V and with a total voltage variation of ±15%, the transformer secondary is connected directly to pins 1 and 5. For correct use of the device at 15V the graph in fig. 1 gives the max output current. Fig. 1 - Guaranteed output current vs. secondary voltage I, ImA ) RS"''''SJ-, lp.,SA Rs ,,4,fl. .....r 1p=-7A RsdA 60 0 IpaSA 500 Note: 40 0 JOO 2()0 ~i:i=J:Ll"'''rr '""V. t-: ~rf K I" "0 1S 9 20 52 I " 20.9 18,8 22 ( 20 I.) ~~.'5V l 23 (-15"1.) Vs nom = 24.6 V rms for 220V ± 15%. Vs nom'= 23.55 V rms for 220V ± 20%. " s (Vrms ) 24.6 23.55 82 LINEAR INTEGRATED CIRCUIT ADJUSTABLE VOLTAGE AND CURRENT REGULATOR • • • • • • • • ADJUSTABLE OUTPUT CURRENT UP TO 2A (GUARANTEED UP TO T j = 150°C) ADJUSTABLE OUTPUT VOLTAGE DOWN TO 2.85V INPUT OVERVOL TAGE PROTECTION (UP TO 60V, 10 ms) SHORT CIRCUIT PROTECTION OUTPUT TRANSISTOR S.OA PROTECTION THERMAL OVERLOAD PROTECTIOI\I LOW BIAS CURRENT ON REGULATION PIN LOW STANDBY CURRENT DRAIN The L200 is a monolithic integrated circuit for voltage and current programmable regulation. It is available in Pentawatt ® package or 4-lead TO-3 metal case. Current limiting, power limitinq, thermal shutdown and input overvoltage protection (up to 60V) make the L200 virtually blowout proof. The L200 can be used to replace fixed voltage regulators when hiqh output voltage precision is required and eliminates the need to stock a range of fixed voltage regulators. ABSOLUTE MAXIMUM RATINGS Vi Vi t-,V i _o 10 P tot Tstg Top DC input voltage Peak input voltage (10 ms) Dropout voltage Output current Power dissipation Storage temperature Operating junction temperature for L200C for L200 MECHANICAL DATA 40 V 60 V 32 V internally limited internally limited -55 to 150°C -25 to 150 °C -55 to 150°C Dimensions in mm 83 6/82 CONNECTION DIAGRAMS AND ORDERING NUMBERS (top views) 5-2387! 2 Type Pentawatt® TO-3 L 200 T L 200 L 200 C L 200 CT L 200 CH L 200 CV BLOCK DIAGRAM ------ ~5 1 0>----+-- OUTPUT INPUT \CURRENT /LiMITING 2 GROUND 5·3928 84 SCHEMATIC DIAGRAM I R8 Z2 Z3 RI5 R9 R26 R21 0/ 08 03 021~ 0/015 026 O~ 014 RI4 RIO ~ 01 C~ 02 RII ,~[IJ"' ~5 o ~ 03 411 R13 ,~[ ~ ZI U. 18 '""0' 22 -, j R 19 R 20 F R 22 02~~ r R 17 0/027 Q29 R 23 0- 020 017 R29 >--t::1023t-- K028 f----- 019 R28 030 l ~~ I 03~ ~J3 27 2 R24 5 {I! ~' RI R2 HI~" :A 010 R4 R6 025 1 ~ RI2 R7 R 16 18 R25 THERMAL DATA Rth j-case Rth j-arnb TO-3 Thermal resistance junction-case Thermal resistance junction-ambient Gl 5-2385 max max 4°C/W 35°C/W Pentawatt® 3°C/W 50°C!W ELECTRICAL CHARACTERISTICS (T arnb = 25°C, unless otherwise specified) Parameter Test conditions VOLTAGE REGULATION LOOP Id Quiescent drain current (pin 3) Vi = 20V eN Output noise voltage Vo= V ref 4.2 9.2 rnA 10= 10mA B = 1 MHz 80 Vo 10=10mA loVo Voltage load regulation (note 1) lolo= 2A lol o=1.5A Line regulation Vo= 5V Vi = 8 to 18V 48 60 dB Vo= 5V 10= 500mA loVi= 10 Vpp f = 100 Hz (note 2) 48 60 dB Vo loV i -loVo SVR Supply voltage rejection 2.85 /LV Output voltage range 0.15 0.1 85 36 V 1 0.9 % % ELECTRICAL CHARACTERISTICS (continued) Parameter Test conditions Min. 1:1 V i- o Droupout voltage between pins 1 and 5 10 = 1.5A I:1 V o V ref Reference voltage (pin 4) Vi = 20V 10=10mA 1:1 V ref Average temperature coefficient of reference voltage Vi = 20V ~ 2% 2.64 10 = 10mA for T j = -25 to 125°C forTj= 125to 150°C Typ. Max. Unit 2 2.5 V 2.77 2.86 V -0.25 -1.5 mV/"C mY/DC 10 14 Bias current at pin 4 3 1:114 I:1T·1 4 Average temperature coefficient (pin 4) -0.5 %/oC Zo Output impedance 1.5 mn Vi = 10V 10= 0.5A Vo= V ref f = 100 Hz Vi = 10V Vo = V ref IlA CURRENT REGULATION LOOP Vsc Current limit senSe voltage between pins 5 and 2 I:1 V se 1:1 T • V sc Average temperatu re coefficient of V sc 1:110 Current load regulation -10 Ise Peak short circuit current 0.38 15= 100 mA V j =10V 10 = 0.5A 10 = 1A 10= 1.5A 0.45 0.52 V 0.03 %/"C 1.4 1 0.9 % % % I:1Vo= 3V Vi- V o=14V (pins 2 and 5 short circuited) 3.6 A Note 1): A load step of 2A can be applied provided that input-output differential voltage is lower than 20V (see fig. 1). Note 2): The same performance can be maintained at higher output levels if a bypassing capacitor is provided between pins 2 and 4. 86 Fig. 1 - Typical safe oper· ating area protection Fig. 3 - Quiescent current vs. junction temperature Fi!l. 2 - Quiescent current vs. supply voltage 'd (',1846 'H-t H- +++v, .,,: (rnA "'h. ++- 4,Omammmw 3.8 I ""I. , , ! •. :~ Fig. 5 - Output noise voltage vs. output voltage r- r-.... I - ! ~ -~ -,...... T \ I I I I .<0 20 Fig. 4 - Quiescent current vs. output current ! _. :....... , I : T~t~ ~+ .. j l--~t' 3.6 I' L_ . ' i i -'-+: I vo~vr" i 80 40 Fig. 6 - Output noise voltage vs. frequency G-:l831 '0 , 'N (PVRMS (rnA) 1.6 200 1.4 II I!I ii, : H• 1.2 i~: ! , : ' r~ I ! 'SO 0.8 0.6 B "lMHz 100 0.4 f-t I 2 1.6 12 , 10 15 I- 6-1848 , I I '1::' .20V-~ I " I' I , t-- 2180 ~--+-- -- i""'- 2160 5VR (de) I I 111I11I11 Vi ;15VOC.2VRM5 10 "lOrnA I 80 7S 65 60 2120 55 50 -"0 40 87 60 120 Tj (OC) I I , i I I II ! 2100 III Vo ,,'I ref 16 70 00 I 65 !\ -40 , I I 12 I f (Hl'.:l I ,, 2140 i I ('-1849!2 0'0 ~ ~ f1I . I I I Fig. 9 - Supply voltage rejection vs. frequency (mV) J, II---t-1TA i P=~ Vo"Vref I 10' '10 (v) Fig. 8 - Voltage load regulation vs. junction temperature Fig. 7 - Reference voltage vs. junction temperature , I I 0 lo(A) ,I T'=75°C r""2S'c 1--' . 50 0.8 , Tj"I50° 0.2 04 I "1 I i I T B:l00H:;o: Vo=:Vref I i '" i I" i !I II '"10' 1 "" ~ 1468 10' 1 ".a f {Hz} Fi~. 12 - Output impedance vs. output current Fig. 11 - Output impedance vs. frequency Fig. 10 - Dropout voltage vs. junction temperature C.-2845 I Vo =Vrl'f 5.5 ~ 45 . i--'T i 3.5 V ..... 2. 2.5 .- ~=2"1. v. , "- LS' 1.5 !. n!. 0.5 40 80 120 I H=f f--- It j. ! -20 -40 .. 0 o h-l o (,-1861/1 + ~t-H I , -HJ_i- t F~f =O;-I-C2--4-~O 2 I 10:= lOrnA to lA ' +0 + ~ 3 Vi=10V - - ~. 1 L=mf Jfh=!t' 1: ., Vo =5.5V • Vj-=lOV --,.- ( .' h- rt [0 (Al Fig. 14 -- Load transient response Fig. 13 - Voltage transient response ) 1.5 0.5 Tj ("C) 4 5 6 7 8 9 5-2386/1 t (,us) Fig. 16 - Current limit sense voltage. vs. junction temperature Fig. 15 - Load transient response Vi :.lOV 10 " lOrnA to lA U"'O-t-t---co" '/-IF 5- 2388/1 88 i APPLICATION CIRCUITS Fig. 17 - Programmable voltage regulator > Fig. 18 - P.C. board and components layout offig. 17 (1 : 1 scale) I J _.1 CAD Fig. 19 - Programmable voltage regulator with current limiting Cl Fig. 20 - Programmable current regulator Io(max)= V:;2 vo=vr€" (1.~ ) 0.22 Y, "F Fig. 22 - Digitally selected regulator with inhibit Fig. 21 - High current voltage regulator with short circuit protection lkn s- 253912 89 APPLICATION CIRCUITS Fig.24 - High current regulator with NPN pass transistor Fig. 23 - Tracking voltage regulator BOWSl ! Roo Y\, I I, 1011 , v >---'- L 200 2 3] 820 n]4 ~lkn BC~ 10k'll 'r =:o.,,"Fl 0.47"F == A: Vi(max)"; ± 34V ; 3 < Vo < 30. B: Vi(max)"; ±22V ;3 - 9 1 TTL OUTPUT CMOS OUTPUT Fig. 11 - Peak collector current as a function fo duty cycle and number of outputs Fig. 10 - Collector current vs. collector emitter saturation voltage Fig. 9 - DC current gain. vs. collector current (for L 201) G-1162 'e \\ \' (mA ) "0 , I / I 10' ',,, VCE~~ ! - 300 300 roo - ~ , "-' ......... '\. "-,. ~6 "- 7~ f' ........ "'"" '00 ~ ''';::: Tamo ,,70'C 100 100 i 10' 10 j' II '0' 0.5 Ie (rnA) Fig. 12 - Input current vs. input voltage (for L 202 and L 204) 1.5 VCE(~)M ; -++ 3.' , >.6 , '.4 IC"~ '20' L6 L2"Y I OA I 0 ('/.) (,-2165 " (mA ) I I 80 Fig. 14 - Power rating chart Fig. 13 - Input current vs. input voltage (L 203) (',_2164/1 I " (rnA ) 60 0.8 ..-:: ~ t5 h V ~ ~ Ie =350o:nA 0.6 0.' • • 0.3 I " 16 20 30 24 Vi (v) 97 60 90 120 150 lamb ("C) LINEAR INTEGRATED CIRCUIT TACHOMETER CONVERTER The L290, a monolithic LSI circuit in a 16-lead dual in-line plastic package, is intended for use with the L291 and L292 which together form a complete 3-chip DC motor positioning system for applications such as carriage/daisy-wheel position control in typewriters. The L290/1/2 system can be directly controlled by a microprocessor. The L290 integrates the following functions: - tacho voltage generator (FIV converter) reference voltage generator - position pulse generator. ABSOLUTE MAXIMUM RATINGS vs ± 15 ±7 1 -40 to +150 Supply voltage VI (FTA, FTB, FTF) Input signals Ptot Tstg' TJ Total power dissipation Tamb = 70°C Storage and junction temperature V V W °C ORDERING NUMBER: L290 B Dimensions in mm MECHANICAL DATA 6182 98 CONNECTION DIAGRAM (top view) FTB 16 FTA VAB 15 VAA Vre-t 14 STA TACHO 4 13 'V s 12 FTF Vbias. srB 11 GND 6 VMB 10 STF VMA 9 -Vs 5 - lo 159 BLOCK DIAGRAM 11 Vbias GNO i "VS: , 6 FTA TACHO ~ FTS 11.. STA 13 FTF STF STS VrE'f VAA 15 VAS VMS VMA 7 8 99 5- 41L. 312 4 12 10 TEST CIRCUIT - Vs FTA ,V s TACHO .5V I 3x2.5K!t '6 FTB L 290 ,4 STA , 3 STB FTF STF VMB OVMA 2x820 n +'.8V -'.8V THERMAL DATA Rth j-amb Thermal resistance junction-ambient max 80 °C/W ELECTRICAL CHARACTERISTICS (Refer to the test circuit, S in (A), Vs = ± 12V,Tamb = 25°C unless otherwise specified) Parameters Vs Supply vol tage Id Quiescent drain current Test conditions Min. Typ. ±10 13 Vs=±15V Max. Unit ±15 V 20 mA ±0.6 Vp ± 55 mV INPUT AMPLIFIERS (AI and A 2 ) FTA, FTB I nput signal from encoder (pin 1, 16) f max = 20 KHz Vos Output offset voltage (pin 2,15) FTA = FTB = OV Ib I nput bias current (pin 1, 16) Gv Voltage gain f = 10 KHz FT A=FTB=±0.6V p Vo Output voltage swing (pin 2, 15) FTA= FTB= ± 1 Vp ±0.4 0.15 100 22 ±9.5 23 IJA 24 dB V i I" ~ ELECTRICAL CHARACTERISTICS (continued) Test conditions Parameters I, COMPARATORS WITH HYSTERESIS (C I , C2 and C3 ) VTHP(O) VTHN(oo) VL Ileak Positive Threshold voltage (pin 2. 12. 15) Negative Threshold voltage (pin 2. 12, 15) C I and C 2 550 850 rnV C3 700 900 rnV C I and C2 55 175 rnV C3 570 830 rnV 0.4 V 1 /J.A 5.5 V 1.4 rnA ± 80 rnV Output voltage (low levell (pin 10.13,14) 10 = 2 rnA 0.2 (pins 10, 13, 14) FT A= FTB= 0.5V FTF= 1V V CE= 5V FT A= FTB= FTF= OV REFERENCE GENERATOR FTA= FTB= ± 0.5V p (*) I ref = 1 rnA V ref DC reference voltage (pin 3) Iref Output current (pin 3) 4.5 5 "TACHO" AMPLIFIER (A 3 ) Vos Vo Output offset voltage (pin 4) FTA= ± 15 rnV FTB= 0.5V DC output voltage (pin 4) !',V o Vo FTA= FTB= ±0.5Vp (**) Vol V MA= V MB = ±1.25V p (*") V 02 I S in (B) V MA V MB Multiplier input voltage (pin 7,8) V bias Bias voltage (pin 6) (0 ) FT A = FTB = FTF = 0 Note : Phase relationship * FT A : 00 FTA : 00 *** FTA: 00 f I 6 6.6 -5.4 -6 -6.6 V -150 Vol + V 02 Output voltage swing (pin 4) 5.4 FTA= FTB= 0.5V 9 FTA= FTB= -0.5V -9 +150 V ± 1.25 FT A and FTB floating IV (00) FTA=FTB=FTF= between the signals: FTB : 900 FTB: _90 0 FTB: 900 101 rnV -6.5 ± 1.7 Vp -8 V i WAVE FORMS (Neglecting threshold voltage level of the comparators) ANTICLOCKWISE DIRECTION CLOCKWISE DIRECTION Wi; t' I i VAA ~VAA h~VAB VAB CS1 CS1 CS2 , CS2 VMA ! VMA ~~'-'-'-VM:..::...B_ Yr: ~ CSB ~C5B CSA ~CSA i VMB ~ I ~TACHO TACHO ~ SYSTEM DESCRIPTION: refer to the L292 data sheet 102 5-4156/1 Fig. 1 - Complete application circuit FAOt04 ENCOOER Speed "OK. L291 1 SO 10,",0j) FRO'"' ,uPROCESSOR '" ISlI.n 16 ", ~ -', hC10 e'l I Ol~ Strobli!' 1511.0. 0.1", ~ ", 12 ·12 -'. 103 ON(Hl OFF(Ll LINEAR INTEGRATED CIRCUIT 5 BIT - D/A CONVERTER AND POSITION AMPLIFIER The L291, a monolithic LSI circuit in a 16-lead dual in-line plastic package, is intended for use with the L290 and L292 to form a complete 3 chip DC motor positioning system for applications such as carriage/ daisy-wheel position control in typewriters. The L290/1/2 system can be directly controlled by a microprocessor. The L291 integrates the following functions: 5 bit 0/ A converter error amp Iifier position amplifier (~ LSB max linearity error) ABSOLUTE MAXIMUM RATINGS ±15 1 -40 to 150 Supply voltage Total power dissipation T amb = 70°C Storage and junction temperature v w °C ORDERING NUMBER: L291 B Dimensions in mm MECHANICAL DATA 6/82 104 CONNECTION DIAGRAM (top view) ERRV 1 16 POS lOUT SC , 15 POSIIN SC 2 14 .V s SC J 13 GND SC 4 12 DACIOUT SC 5 11 N.C SIGN. 10 Strobe 8 -Vs DAC liN 5-4160 BLOCK DIAGRAM ,J 14 SC' SC2 -". SCJ SCI. SC5 DIA CONY, ~D--+--~ '6 POSIOUT SIGN Strobe OAC/IN DACfOUT ERRV 12 POS/IN 1 105 15 S-t,157/1 TEST CIRCUIT 5c,00 8 2 5C2 5C) L291 5C4 5C5 StrobeQ-50n 5' s- 41 581l :L ~ 52 al ~.t b Otl00mV 2,l. V THERMAL DATA Rth j-amb Thermal resistance junction-ambient max 80 °C/W ± 12V, ELECTRICAL CHARACTERISTICS (Refer to the circuit, Sl and S2 in (a). Vs Tamb = 25°C, unless otherwise specified) Parameters Vs Supply voltage Id Quiescent drain current Test conditions Min. Typ. ± 10 Vs = ± 15V 6.5 Max. Unit ± 15 V 10 mA POSITION AMPLIFIER V strobe Enable voltage level V L (S in (a)) • 0 0.8 V V H (S in (b)) • 2.4 +Vs V ± 50 mV 0.3 IJA Vos Output offset voltage (pin 16) V strobe= V L; G v = 20 dB Ib Input bias current (pin 15) Vstrobe= V L Vo Output voltage swing (pin 16) Vstrobe=VL; S2 in(b); Vs=±10.8V VR Residual output voltage (pin 16) Vstrobe= V H • See block diagram and the note for Position Amplifier. 106 V ±9 ± 20 mV ELECTRICAL CHARACTERISTICS (continued) Parameter Test conditions D/A CONVERTER I ref Current reference input range (pin 91 Vas Current reference offset voltage (pin 91 10 Output current range (pin 121 10 Output current (pin 121 LIla 0.3 Iref= 0.3 to 1.2 mA All inputs high I ref = 0.722 mA SC1 to SC5 = L 1.2 mA ± 20 mV 1.4 mA SIGN = L (1011 -1.358 -1.4 -1.442 SIGN = H (1021 -1-1.358 +1.4 +1.442 mA -21 101 + 102 +21 !J.A %FS Linearity error I ref = 0.722 mA 1.61 los Pin 12 output offset current (including Error Amplifier bias currentl All inputs high ± 0.4 !J.A VL Low voltage level (digital inputsl 0 0.8 V VH High voltage level (digital inputsl 2.4 +VS' V IL Digital inputs current (low statel V L = O.4V -50 !J.A IH Digital inputs current (high statel V H = +Vs 1 !J.A ± 200 mV ± 5 mA ± 8.4 Vp SC1 = LSB SC5 = MSB ERROR AMPLIFIER Vas Output offset voltage (pin 11 I ref = 0.5 mA; All inputs high G v = 40 dB 10 Output current (pin 11 Va Output voltage swing (pin 11 All inputs high S1 in (bl; R L =10Kn 107 ±7.4 D/A Converter The L291 contains a 5-bit D/A converter accepting a binary code and generating a bipolar output current, the polarity of which depends on the SIGN input. The amplitude of the output current is a multiple of a reference current Iref . The maximum output current is I FS = + - 31 I ~ ref The following table shows the value of 10 for different input codes. Note that the input bits are active low. DIGITAL INPUT WORD Output Current SIGN SC5 SC4 Se3 Se2 Se1 L L L L L L 10 -~ 16 1 I ref L H H H H L -"""""i"6 I ref X H H H H H 0 H H H H H L + _1- lref H L L L L L + 16 31 """""16 I ref X = indifferent L = low H = high This D/A converter has a maximum linearity error equal to ± 1/2 LSB (or ± 1.61% Full Scale); that gua: rantees its monotonicity. Error Amplifier In order to have a good stability, the Error Amplifier must work with a closed loop gain greater or equal than 20 dB. Position Amplifier It is inserted by means of the strobe signal, TTL and microprocessor compatible. Its output is connected to pin 16 when Vstrobe= Low; pin 16 is grounded for Vstrobe= High. SYSTEM DESCRIPTION: refer to the L292 data sheet. 108 Fig. 1 - Complete application circuit 109 LINEAR INTEGRATED CIRCUIT SWITCH-MODE DRIVER FOR DC MOTORS The L292 is a monolithic LSI circuit in 15-lead MUL TIWATT® package. It is intended for use, together with L290 and L291, as a complete 3-chip DC motor positioning system for applications such as carriage/daisy-wheel position control in typewriters. The L290/1/2 system can be directly controlled by a-microprocessor. The outstanding characteristics of the L292 are: Singie power supply (18 to 36V). Input signal symmetric to ground. Thermal protection. Driving capability: 2A, 36V, 30 KHz. 2 Logic chip enable. - External loop gain adjustment. - ABSOLUTE MAXIMUM RATINGS Vs VI V inhibit Ptot T 519 36 -15 to +Vs o to Vs 25 -40 to +150 Power supply Input voltage Inhibit voltage Total power dissipation (Tcase= 75°C) Storage and junction temperature V V V W °C ORDERING NUMBER: L292 Dimensions in mm MECHANICAL DATA 6/82 110 CONNECTION DIAGRAM (top view) MOTOR Rs2 INHIBITCCEll INHIBIT(m) OSCILL.(R) OSCILL.(C) OUTPUT(ERR.AMPU GNO INPUT(ERR.AMPL.) 15 " 13 12 11 10 9 INPUT OUTPUT C.S.A. COMP. INPUT '\'0 Rsl MOTOR 5-3673 BLOCK DIAGRAM 'Vs slon .5, c r - - - - - - - - - - - - - - -- - - - - - - - - - !---------- ~-. L292 ,, VI : 6 03 RI ., lnF , 04 I !L. ________________________________ _ 5_4168 High speed diodes (BYW 72 or equivalent) 111 THERMAL DATA Rth j-case' Thermal resistance junction-case max 3 °C/W ELECTRICAL CHARACTERISTICS (T amb = 25°C, fosc= 20 KHz unless otherwise specified) Parameter Test conditions Vs Supply voltage Id Quiescent drain current V s = 20V (offset null) Vos Input offset voltage (pin 6) Vs = 36V V inh . Inhibit low level (pin 12,13) Typ. 18 30 10 = 0 Inhibit high level (pin 12, 13) Max. Unit 36 V 50 mA ±350 mV 2 V 3.2 Low voltage condition V inh . (L)= O.4V High voltage conditions V inh . (H)= 3.2V Ii Input current (pin (6) VI = -8.8V VI = +8.8V Vi Input voltage (pin 6) linh. Min. V -100 Il A 10 Il A -1.8 0.5 mA mA 10= 2A 9.1 V 10= -2A -9.1 V Rsl = R s2 =0.25] 10 Output current V D· Total drop out voltage VI = ±9.8V RSI = R s2 = 0.25] (inluding ±2 A 10= 2A 5 V resistors) 10= lA 3,5 V Sensing resistor voltage drop T j = 150°C 10= 2A 0.44 V Transconductance Rsl = R s2 = 0.2n 235 mA/V sensing V RS i 10 -Vi 205 120 Rsl = R s2 = O.4n Frequency range (pin 10) fosc 1 TRUTH TABLE Vinhibit Pin 12 Pin 13 L L H H L H L H Output stage condition Disabled Normal operation Disabled Disabled 112 220 mAN 30 KHz I SYSTEM DESCRIPTION I I The L290, L291 and L292 are intended to be used as a 3-chip microprocessor controlled positioning system. These devices may be used separately - particularly the L292 motor driver - but since they will usually be used together, a description of a typical L290/1/2 system follows. Fig. 1 - System block diagram The system operates in two modes to achieve high-speed, high-accuracy positioning. Speed commands for the system originate in the microprocessor. It is continuously updated on the motor position by means of pulses from the L290 tachometer chip, which in turn gets its information from the optical encoder. From this basic input, the microprocessor computes a 5-bit control word that sets the system speed dependent on the distance to travel. When the motor is stopped and the microprocessor orders it to a new position, the system operates initially in an open-loop configuration as there is no feedback from the tachometer generator. Therefore maximum current is fed to the motor. As maximum speed is reached, the tachometer chip output backs off the processor signal thus reducing accelerating torque. The motor continues to run at top speed but under closed-loop control. As the target position is approached, the microprocessor lowers the value of the speed-demand word; this reduces the voltage at the main summing point, in effect braking the motor. The braking is applied progressively until the motor is running at minimum speed. At that time, the microprocessor orders a switch to the position mode, (strobe signal at pin 8 of L291) and within 3 to 4 ms the L292 drives the motor to a null position, where it is held by electronic "detenting" . 113 SYSTEM DESCRIPTION (continued) The mechanical/electrical interface consists of an optical encoder which generates two sinusoidal signals 90° out of phase (leading or lagging according to the motor direction) and proportional in frequency to the speed of rotation. The optical encoder also provides an output at one position on the disk which is used to set the initial position. The opto encoder signals, FT A and FTB are filtered by the networks R2 C2 and R3 C3 (referring to Fig. 4) and are supplied to the FT A/FTB inputs on the L290. The main function of the L290 is to implement the following expression: Output signal (TACHO) = d~AA FTA IFTAI FTB IFTBI • Thus the mean value of TACHO is proportional to the rotation speed and its polarity indicates the direction of rotation. The above function is performed by amplifying the input signals in Al and A2 to obtain VAA and VAB (typ. 7 Vp ). From VAA and VAB the external differentiator RC networks Rs Cs and R4 C4 give the signals V MA and V MB which are fed to the multipliers. . The second input to each multiplier consists of the sign of the first input of the other multiplier before differentiation, these are obtained using the comparators CSI and CS2 ' The multiplier outputs, CSA and eSB, are summed by A3 to give the final output signal TACHO. The peak-to-peak ripple signal ofthe T ACHO can be found from the following expression: V ripple P-i> = -%-(..[2 - 1) • V thace DC The max value of TACHO is: Vtache max = : V2' Vthaco DC Using the comparators C 1 and C2 another two signals from VAA and VAB are derived - the logic signals STA and STB. These signals are used by the microprocessor to determine the position by counting the pulses. The L290 internal reference voltage is also derived from V AA and VAB: V ref == I VAA I + I VAB I This reference is used by the 0/ A converter in the L291 to compensate for variations in input levels, temperature changes and ageing. The "one pulse per rotation" opto encoder output is connected to pin 12 of the L290 (FTF) where it is squared to give the STF logic output for the microprocessor. The T ACHO signal and V ref are sent to the L291 via filter networks Rs Cs Rg and Rs C7 R7 respectively. Pin 12 of this chip is the main summing point of the system where T ACHO and the 0/ A converter out· put are compared. The input to the O/A converter consists of 5 bit word plus a sign bit supplied by the microprocessor. The sign bit represents the direction of motor rotation. The (analogue) output of the 0/ A converter OAC/OUT - is compared with the TACHO signal and the resulting error signal is amplified by the error amplifier, and subsequently appears on pin 1. 114 SYSTEM DESCRIPTION (continued) The E RRV signal (from pin 1, L291) is fed to pin 6 of the final chip, the L292 H-bridge motor-driver. This input signal is bidirectional so it must be converted to a positive signal because the L292 uses a single supply voltage. This is accomplished by the first stage - the level shifter, which uses an internally generated BV reference. This same reference voltage supplies the triangle wave oscillator whose frequency is fixed by the external RC network (R 20 , C ll - pins 11 and 10) where: fo,c = 1 2RC (with R > B.2 K.II.) The oscillator determines the switching frequency of the output stage and should be in the range 1 t030 KHz. Motor current is regulated by an internal loop in the L292 which is performed by the resistors RIB' RIg and the differential current sense amplifier, the output of which is filtered by an external RC network and fed back to the error amplifier. The choice of the external components in these RC network (pins 5, 7,9) is determined by the motor type and the bandwidth requirements. The values shown in the diagram are for a 5.11., 5 mH motor. (See L292 Transfer Function Calculation in Application Information). The error signal obtained by the addition of the input and the current feedback signals (pin 7) is used to pulse width modulate the oscillator signal by means of the comparator. The pulse width modulated signal controls the duty cycle of the H-bridge to give an output current corresponding to the L292 input signal. The interval between one side of the bridge switching off and the other switching on, T , is programmed by C ll in conjunction with an internal resistor Rr . This can be found from: T = Rr ' Cpin (C ll in the diagram) 10' Since Rr is approximately 1.5 K.II. and the recommended T to avoid simultaneous conduction is 2.5 I1S Cpin 10 should be around 1.5 nF. The current sense resistors RIB and RIg should be high precision types (maximum tolerance ± 2%) and the recommended value is given by: Rmax • 10 max';; 0.44V It is possible to synchronize two L292's, if desired, using the network shown in fig. 2. Fig. 2 ,--1" L292 L-l 11 tf .R 1. " - 1.1lt. Finally, two enable inputs are provided on the L292 (pins 12 and 13-active low and high respectively). 115 SYSTEM DESCRIPTION (continued) Thus the output stage may be inhibited by taking pin 12 high or by taking pin 13 low. The output will also be inhibited if the supply voltage falls below 18V. The enable inputs were implemented in this way because they are intended to be driven directly by a microprocessor. Currently available microprocessors may generates spikes as high as 1.5V during powerup. These inputs may be used for a variety of applications such as motor inhibit during reset of the logical system and power-on reset (see fig. 3). Fig. 3 I Fig. 4 - Application circuit FROM C, 15nF R le 0.220. RI9 t-0._22_n~~~~~~~L::.:2::.:9:..:2::, I D, f 'I ,D3 1~,}~n5n C1S I lnF 0'1' 0, FROM .uPROCESSOR 4xlN4001 ~---wt=5j---;PF'---tc=='-- R" ISKJl + Ys GNO ~Vs 116 ON(H) QFF(L) 1 M 5mH APPLICATION INFORMATION This section has been added in order to help the designer for the best choise of the values of external components. .Vs Fig. 5 - L292 block diagram 47nF C 7 9 3 ------------- D3 InF D' 5-4168 The schematic diagram used for the Laplace analysis of the system is shown in fig. 6. Fig. 6 Vi ,I....._ _.J I CURRENT I I FILTER I L _ _ _ _ _ _ _l 5- 1,17611 I SENSING I'- AMPLIFIER _______1 RSI = RS2 = Rs (sensing resistors) _1_ = 0.005 n -1 (current sensing amplifier transconductance) R4 LM = Motor inductance RM = Motor resistance 1M = Motor current Gm- o -1M --VTH I S = 0 (DC transfer function from the input of the comparator (V TH) to the· motor cur· rent (1M)). 117 APPLICATION INFORMATION (continued) Neglecting the V CEsat of the bridge transistors and the V BE of the diodes: where: Vs = supply voltage V R = 8V (reference voltage) (1 ) DC transfer function In order to be sure that the current loop is stable the following condition is imposed: 1 + sRC = 1 + S LM RM from which RC = (pole cancellation) ~ (2) (Note that in practice R must be greater than 5.6 Kn) RM The transfer function is then, ~ (s) = VI R2 R4 RIR3 G mo 1 + sRFC F GmoRs+sR4C+s2RFCFR4C (3) In DC condition, this is reduced to -.!.M... (0) = VI 0.044 R2 R4 RI R3 Rs [..A..l VJ (4) Open-loop gain and stability criterion For RC = LM/R M, the open loop gain is: A {3 = 1 SRFC • G Rs mo ~ (5) In order to achieve"good"stability, the phase margin must be greater than 45° when IA J3I = 1. That means that, at fF = 2 7r ~FCF ,must be IA {31 < 1 (see fig. 7), that is Gmo Rs R4 C Fig. 7 - Open-loop frequency response IAJ31 OdB,+_ _ _ _ _~;:--.;.. 118 RFC F ~ <1 (6) APPLICATION INFORMATION (continued) Closed-loop system step response a) Small-signals analysis. Fig. 8 - Small signal step response (normalized amplitude vs. t/RFC F ) The transfer function (3) can be written as follows: 1+ 2~ I 0.044 ~(s)= - - - VI s G-4J';l Wo 1 + 1!~ + Rs Wo where: = Wo j (7) 4- 'S=1I..fT Wo 0.9 / ~---- Rs R4 C RFC F Gmo is the cutoff frequency ,/ II 0.6 0.3 I. 5"' I I / II I " By choosing the ~ value, it is possible to determine the system response to an input step signal. Examples: Fig. 9 - Motor current and pin 7 voltage waveforms (application of fig. 5). Small signal response 1)~=1 from which OV ___ t_ 1M (t) = 0.044 [1 - e 2R FC F (1 + 4 RtFC F ) 1• Vi Rs (where Vi is the amplitude of the input step). 2) ~ = 1 '1'2 1M (t) = from which t 0.044 (1 - cos t e Rs 2R FCF 2R F CF )V; OA V 7 = 200mV/div. 1M = 100mA/div. t = 100/ls/div. with VI = 1.5 Vp. From fig. 9, it is possible to verify that the L292 works in "closed-loop" conditions during the entire motor current rise-time: the voltage at pin 7 (inverting input of the error amplifier) is locked to the reference voltage V R, present at the non-inverting input of the same amplifier. The previous linear analysis is correct for this example. Decreasing the ~ value, the rise-time of the current decreases. But for a good stability, from relationship (6), the minimum value of ~ is: 1:.=_1_ min 2 (phase margin = 45°) W 119 APPLICATION INFORMATION (continued) b) Large signal response The large step signal response is limited by slew-rate and inductive load. In this case, during the rise-time of the motor current, the L292 works in open-loop condition, as can be seen from the photograph of fig. 10. Fig. 10 - Motor current and pin 7 voltage waveforms (application of fig. 5) Large signal response. OV V7 1M t 1V/div. 0.5A/div. 500"s/div. OA The voltage at pin 7 (inverting input of the error amplifier) departs from the reference voltage V R present at the non-inverting input and the feedback loop is open. The fed back loop is on when the motor current reaches its steady-state value (2A). Closed loop system bandwidth A good choice for ~ is the value 1/V2.ln this case: ~ (s) VI = 0.044 Rs 1 + s RFC F 1 + 2s RFC F + 2s 2 R F 2C F 2 (8) The module of the transfer function is: 0.044 Rs 2 .J 1 + w 2 V [ (1 + 2 w R F C F )2 + 1 ] RF2 C F 2 • [(1 - 2 The cutoff frequency is derived by the expression (9) by putting Wr = 0.9 RFC F 120 w R F C F )2 (9) + 1] I ~~ 1= 0.707 (-3 dB). from which: APPLICATION INFORMATION (continued) Example: a) Data b) Calculation - Motor characteristics: - Voltage and current characteristics: V 5 = 20V 1M = 2A - Closed loop bandwidth: 6 KHz. - From relationship (4): LM = 5 mH RM =50 LM/RM = 1 msec and from (1): G 'rno- RC = 1 msec Assuming 2Vs RMV R ,. [from expression (2) ]. ~ = 1/...(2; from (7) follows: p = 1.-. = 2 c) Summarising 1~-1 - The cutoff frequency is: - RC = 1 • 10-3 sec 500 C = 1 RFCF RFC F ~ 24 "sec } 200 C 4 RFC F • 0.2 C = 47 nF R = 22 Ko For RF = 5100 -+ CF = 47 nF. NOTE - "For a more detailed description of the L290-L291-L292 and its applications refer to SGS - TECHNICAL NOTES TN 149 and TN150. 121 LINEAR INTEGRATED CIRCUITS PRELIMINARY DATA PUSH-PULL FOUR CHANNEL DRIVERS The L293 and the L293E are monolithic integrated high voltage, high current four channel drivers in dual in-line plastic package with 16 leads and 20 leads respectively. They are designed to accept standard DTL or TTL input logic levels and drive inductive loads (such as relays, solenoids, DC and stepping motors) and switching power transistors. Both are provided of complementary push-pull output stage, two inhibit inputs (which disable two channels each), and an additional supply inputs so that the logic circuitry may run at a lower voltage to reduce power dissipation. In the L293E the emitters of the lower transistors of each push-pull stage are not internally grounded and the corresponding pins can be used for the connection of an external sensing resistor, making very easy switch-mode current control. . The main features of the L293 and of the L293E are: 1A output current capability per channel 2A peak output current (non-repetitive) per channel Inhibit facility Overtemperature protection Logical "0" input voltage up to 1.5V (high noise immunity). The devices are assembled in new packages which have the four central pins connected together and used for heatsinking and grounding. ABSOLUTE MAXIMUM RATINGS Vs Vss Vi V inh lout Ptot Tstg , Tj Supply voltage Logic supply voltage Input voltage Inhibit voltage Peak output current (non-repetitive) Total power dissipation at TgrOUnd-Pins= 800C Storage and junction temperature ORDERING NUMBERS: V V V V A 5 W -40 to 150 °C L293B (16 leads) L293E (20 leads) MECHANICAL DATA 6/82 36 36 7 7 2 Dimensions in mm 122 CONNECTION AND BLOCK DIAGRAM (L293) (top view) CHIP ENABLE 1 16 INPUT 1 15 INPUT 4 OUTPUT 1 14 OUTPUT 4 V55 GNO 13 GN 0 GNO 12 GNO OUTPUT 2 11 OUTPUT 3 INPUT 10 2 9 Vs I NPU T 3 CHIP ENABLE 2 's 5 - 1,'69 CONNECTION AND BLOCK DIAGRAM (L293E) (top view) CHIP ENABLE 1 1 INPUT 1 V" INPUT 4 OUTPUT 1 OUTPUT 4 SENSE 1 SENSE 4 GNO GNO GND GND SENSE 'I. SENSE 3 OUTPUT 2 OUTPUT INPUT 2 Vs 3 INPUT 3 10 +Vs 123 v (2) (0) o ~ (12) In the L293 these points are not externally available. They are internally connected to the ground (substrate). Pins of L293 ( ) Pins of L293E 5 - 51St, I Ii ~ I THERMAL DATA Rth j-case Rth j-amb max max Thermal resistance junction-case Thermal resistance junction-ambient 14 80 °C/W °C/W ELECTRICAL CHARACTERISTICS (For each channel, Vs= 24V, Vss= 5V, Tamb = 25°C, unless otherwise specified) Parameter Vs Supply voltage Vss Logic supply voltage Is Total quiescent supply current Iss Total quiescent logic supply current V iL I nput low voltage V iH Input high voltage Test conditions Vi Vi Vi Vi =L =H =L =H 10 =0 =0 36 V 36 V V 1nh = H 2 6 V inh = H V inh - L 16 24 V inh = H 44 60 V inh = H 16 22 V inh = L 16 24 1.5 Vss > 7V 2.3 7 Low voltage input current Vi - L Vi - H I nhibit low voltage V inhH I nhibit high voltage mA 4 2.3 High voltage input current mA V V -10 p,A 100 /loA -0.3 1.5 V Vss ..; 7V 2.3 > 7V 2.3 Vss 7 V -100 p,A ± 10 p,A . Vss High voltage inhibit current 10 =0 =0 Unit -0.3 liH V inhL linhH 10 10 Max. Vss"; 7V liL' Low voltage inhibit current Typ. 4.5 V ss linhL Min. 30 -30 VCEsatH Source output saturation voltage 10 = lA 1.4 1.8 V VCEsatL Sink output saturation voltage 10 = -lA 1.2 1.8 V 2 V VSENS Sensing Voltage (pins 4, 7,14,17) (**) tr Rise time 0.1 to 0.9 Va (*) 250 ns tf Fall time 0.9 to 0.1 Va (0) 250 ns ton Turn-on delay 0.5 Vi to 0.5 Va (") 450 ns toff Turn-off delay 0.5 Vi to 0.5 Va (") 200 ns (*) See fig. 1. (**) Referred to L293E. 125 TRUTH TABLE Fig. 1 - Switching times Vi (each channen Vo V inh . (00) H L H L H L X (0) X (0) H H L L (0) High output impedance. (00) Relative to the considerate channel. Fig. 2 - Saturation voltage vs. output current Fig. 3 - Source saturation voltage vs. ambient temperature G- 4J4 5 veEs ...I VCEsatH (V) I (V) Vs= 24'0' ;:::::; p- sat H G-4)47 veE sat L ~~·~V,-.~14~v~--L-+-~-4~ (V) -- + __+-----1 3 f---~in"h"";b,,,!I',V~""T5_V-t__ Vinhibit~V5S=5V VeE Fig. 4 - Sink saturation voltage vs. ambient temperature i ----vl. ",I Vinhibit" V55 " 5V -- f- / - ......-:: ~ ~£satl I -t--1 1 0 " tSA I 10 _1A - 10 " O.SA 10 ",0.1 A I 0.5 - 50 Fig. 5 - Quiescent logic supply current vs. logic supply voltage (;-4398 '" {rnA ) V, I -~4V Fig. 6 - Output voltage vs. input voltage -" , f--- V VOr--'~V'~'~'~4V~'--'--'---_~~~~ j----------j---t--+--+--- 'II V V 46 Fig. 7 - Output voltage vs. inhibit voltage VS-JCE sa;H V1nh"HIGH " 50 "55" Vi ,,5'0' Vs '" 24'0' Vss"Vinhibit ,,5V - Vi :LOW 50 -50 50 It- 1/ V "'s-VeE sat H /.f-Tamb:25 'c _Tamb" 25'C -125'C -40'C f--t--+--tH'-I+---12S• c --40'C I 42 iL / VeE sat l I I to 20 30 ..ss(V) 1..5 '.5 126 veE sat l 1.5 r-- APPLICATION INFORMATION Fig, 8 - DC motor controls (with connection to ground and to the supply voltage) Fig, 9 - Bidirectional DC motor control .v. L_.....:==::;:;:;::;::;:~=:::tL--{) vinh 5 - 5155 V inh A H H H L L= Low Ml Fast motor stop M2 B H Run L Fast motor stop X Free running motor stop X Free running motor stop H = High C = H; D=L Turn right V inh = H C = L; D=H Turn left V inh = L C = X; Run L Fast motor stop C=D X = Don't care Fig, 10 - Bipolar stepping motor control FUNCTION INPUTS L= Low H = High D=X X = Don't care • v, O.22.IJF 06 05 ch iLljlL2dOOmA 02 I" 0' D1 - D8 127 Free running motor stop = 1N4001 APPLICATION INFORMATION (continued) Fig. 11 - Stepping motor driver with phase current control and short circuit protection r--------------------------------------------------r-------r~--~~O.v. I-----------------_t_~--t_----------O. 5 v· V,o-~~----------------_f~, V2o-~~~----------r_~F_~ L-~I-----~------------_t_--t__t_--~--~OV3 1 09 2xlN4148 012 Hi KJl +5Vo-----~~----~ R14 5-5166 D1 + D8: O.5A fast diodes (1N4001 or equivalent). NOTE - For a more detailed description of the L293/L293E and its applications, refer to SGS-TECHNICAL NOTE TN. 150. 128 MOUNTING INSTRUCTIONS The Rthj-amb of the L293 and the L293E can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board or to an external heatsink. The diagram of fig. 13 shows the maximum dissipable power Ptot and the Rthj-amb as a function of the side "Q" of two equal square copper areas having a thickness of 351J. (see fig. 12). In addition, it is possible to use an external heatsink (see fig. 14). During soldering the pins temperature must not exceed 260°C and the soldering time must not be longer than 12 seconds. The external heatsink or printed circuit copper area must be connected to electrical ground. Fig. 12 - Example of P.C. board copper area which is used as heatsink Fig. 13 - Max. dissipable power and junction to ambient thermal resistance vs. size "Q" COPPER AREA 35,u THtCKNESS , RIh PtO! ,W) ·CIW) r\ 60 ~hj- .. mb '"""'.,- r--. .-~ 6 -- - r--, Ptot (lamb" 70·C) 10 20 2 40 30 I (mm) P.C. BOARD Fig. 14 - External heatsink example (R th = 30 °C!W) mounting Fig. 15 - Maximum allowable power dissipation vs. ambient temperature (,_4350 ,w Pt. 1 ) ic .y~"'I''' '"% ~ 's/1t.ot ~ If-/rJy ~1"c:'s:"'1T~t o ·50 129 50 ~ ~ c'''' A./ ~ t-T-%. "" "~ ....,... :f\ )0... LINEAR INTEGRATED CIRCUIT SWITCH MODE SOLENOID DRIVER The L294 is a monolithic integrated circuit in an 11-1ead MUL TIWATT® package. It is particularly suited for solenoid driving,such as hammers and needles in printers and comp hard-copy peripherals. ith high working The switch-mode control of the output current allows electromechanic speed to be driven (switch ON/switch OFF time is very short) and to r dissipation compared to standard solutions. Furthermore, the L294 incorporates a diagnostic circuit with lat function (for instance electromagnet coil in short circuit). , The L294 main features are: high voltage operation (up to 50V) high output current capability (up to 4A) low saturation voltage /J-P compatible input Vs Vss VEN Vi Ip Ptot Tstg , Tj Input age Peak output current (repetitive) Total power dissipation (at T case = 75°C) Storage and junction temperature 50 v 7 7 7 V 4.5 A W °C 25 -40 to 150 V V ORDERING NUMBER: L294 Dimensions in mm MECHANICAL DATA 6/82 130 CONNECTION DIAGRAM (top view) SINK OUTPUT " CURRENT SENSING B TIMING ~ '~ ENABLE INPUT VOLTAGE GNO DIAGNOSTIC OUTPUT LOGIC SUPPLY VOLTAGE ON TIME LIMITER SOURC E OUTPUT POWER SUPPLY VOLTAGE Tab connected to pin 6 5 ~ 5312/1 BLOCK DIAGRAM 02 ZOUT 11 SINK STAGE OUT L r9 01 5-501411 131 THERMAL DATA Rth j-case Thermal resistance junction-case max 3 °C/W ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Vs =40V, Vss= 5V, T amb =25°C, unless otherwise specified). Parameter Test conditions Min. Typ. Vs Power supply voltage (pin 1) Operative condition Id Quiescent drain current (pin 1) VENABLE- H 20 Vi;;' 0.6V; 70 Vss Logic supply voltage (pin 4) Iss Quiescent logic supply current 12 VENABLE= L DIAG output at high impedance Vi I nput voltage (pin 7) Operating output I nput current (pin 7) VENABLE Enable input voltage (pin 9) IENABLE Iload/Vi Enable input current (pin 9) Transconductance 46 V 30 7 V mA 10 100 J.lA 0.6 0.45 Vi;;' 0.6V -1 Vi" 0.45V -3 Low level -0.3 High level 2.4 V J.lA 0.8 VENABLE= L -100 VENABLE- H 100 Rs= 0.2.11 mA 8 Non-operative output Ii Unit 5 4.5 V 01AG - L Max. Vi = lV 0.95 1 1.05 Vi= 4V 0.97 1 1.03 V J.lA AN V sat H Source output saturation voltage Ip= 4A 1.7 V V sat L Sink output saturation voltage Ip=4A 2 V V sat H+V sat L Total saturation voltage 4.5 Ip-4A 1 V mA Ileakage K Output leakage current Rs- 0.2.11; On time I imiter constant (0) VENABLE- L V 01AG Diagnostic output voltage (pin 5) IOIAG- 10mA 0.4 V IOIAG Diagnostic leakage current (pin 5) V o1AG =40V 10 J.lA V pin 8 OP AMP and OT A DC voltage gain (00) V pin 10- 100 to 800 mV 0.9 V V pin 10 V SENS Vi " 0.45V Sensing voltage (pin 10) (000) () After a time interval t max = KC 2 , the output stages are disabled. (00) See the block diagram. (000) Allowed range of V SENS without the intervention of the short circuit protection. 132 K.I1 120 5 CIRCUIT OPERATION The L294 works as a transconductance amplifier: it can supply an output current directly proportional to an input voltage level (Vi). Furthermore, it allows complete switching control of the output current waveform (see fig. 1). The following explanation refers to the Block Diagram, to fig. 1 and to the typical application circuit of fig.3. The ton time is fixed by the width of the Enable input signal (TTL compatible): it is active low and enables the output stages "source" and "sink". At the end of ton, the load current Iload recirculates through D1 and D2, allowing fast current turn-off. The rise time t, depends on the load characteristics, on Vi and on the supply voltage value (V s, pin 1). During the ton time, Iload is converter into a voltage signal by means of the external sensing resistance Rs connected to pin 10. This signal, amplified by the op amp and converted by the transconductance amplifier OTA, charges the external RC network at pin 8 (R1, Cn. The voltage at this pin is sensed by the inverting input of a comparator. The voltage on the non-inverting input of this one is fixed by the external voltage Vi (pin 7). After t" the comparator switches and the output stage "source" is switched off. The comparator output is confirmed by the voltage on the non-inverting input, which decreases of a constant fraction of Vi (1/10), allowing hysteresis operation. The current in the load now flows through D1. Two cases are possible: the time constant of the recirculation phase is higher than R 1. C1; the time constant is lower than R1.C1. In the first case, the voltage sensed on the non-inverting input of the comparator is just the value proportional to Iload. In the second case, when the current decreases too quickly, the comparator senses the voltage signal stored in the R1 C1 network. In the first case t1 depends on the load characteristics, while in the second case it depends only on the value of R 1.C1 . In other words, R1.C1 fixes the minimum value of t1 (t 1 ;;;;'1/10 R1.C1. Note that C1 should be chosen in the range 2.7 to 10 nF for stability reasons of the OTA). After t 1 , the comparator switches again: the output is confirmed by the voltage on the non-inverting input, which reaches Vi again (hysteresis). Now the cycle starts again: t 2 , t4 and t6 have the same characteristics as t" while t3 and t5 are similar to t 1 . The peak current Ip depends on Vi as shown in the typical transfer function of fig. 2. It can be seen that for Vi lower than 450 mV the device is not operating. For Vi greater than 600 mV, the L294 has a transconductance of 1A/V with Rs= 0.2n.. For Vi included between 450 and 600 mV, the operation is not guaranteed. The other parts of the device have protection and diagnostic functions. At pin 3 is connected an external capacitor C2, charged at constant current when the Enable is low. After a time interval equal to K . C2 (K is defined in the table of Electrical Characteristics and has the dimensions of ohms) the output stages are switched off independently by the Input signal. This avoids the load being driven in conduction for an excessive period of time (overdriving protection). The action of this protection is shown in fig. 1 b. Note that the voltage ramp at pin 3 starts whenever the Enable signal becomes active (low state), regardless of the Input signal. To reset pin 3 and to restore the normal conditions, pin 9 must return high. This protection can be disabled by grounding pin 3. The thermal protection included in the L294 has a hysteresis. It switches off the output stages whenever the junction temperature increases too much. After a fall of about 20°C, the circuit starts again. Finally, the device is protected against any type of short circuit at the outputs: to ground, to supply and across the load. When the source stage current is higher than 5A and/or when the pin 10 voltage is higher then 1 V (i.e. for a sink current greater than 1 V/Rs) the output stages are switched off and the device is inhibited. This condition is indicated at the open-collector output DIAG (pin 5); the internal flip-flop F/F changes and forces the output transistor into saturation. The F/F must be supplied independently through Vss (pin 4). The DI.AG signal is reset and the output stages are still operative by switching off the supply 133 CIRCUIT OPERATION (continued) voltage at pin 1 and then by switching the device on again. After that, two cases are possible: the reason for the "bad operation" is stili present and the protection acts again; the reason has been removed and the device starts to work properly. Fig. 1 - Output current waveforms Fig. 2 - Peak output current vs. input voltage (;-66961' 'p (A ) RS =0.2 it V'l--f---"-"-'''I--VENABLE / a) '/ V V V V V b) Fig. 3 - Test and typical application circuit + sv Fig. 4 - Output saturation voltages vs. peak output current H + Vs . v" (V' Vi L 2mH ENABLE "'"L..r RL 2fi _. I I Vsat I ./ V 1., I /v ./ 01: 3A fast diode 02: 1 A fast diode ./ ./ ./ V V VSatH V 0.' 5 - 531111 4 JplAI Fig. 6 - Turn-off phase Fig. 5 - Safe operating areas -1,701 V CE ve, ) (V) I 100 se 40 JOO}Jsec I / \ 30 ,\C \ i / / \ .-J 100 134 200 I. . . . . r-. 300 tensed CALCULATION OF THE SWITCHING TIMES Referring to the block diagram and to the waveforms of fig. 1, it is possible to calculate the switching times by means of the following relationships. t ,= - L RL In (1 - =- L RL In tf RL V1 . Ip) V2 V2 + RL . 10 where: V1 = Vs - VsatL - VsatH - V R sens where: V2 IK ";; 10 ";; = Vs + VOl + V 02 Ip 10 is the value of the load current at the end of ton. a) _ L RL 0.9 Ip . RL + V3 Ip RL + V3 In b) - R1 C1 In 0.9 ~ RL Note that the time interval tl switching frequency is always: == -k- where V3 = VsatL + V Rsens + VOl R1 C1 In ( V1 - Ip RL ) V1 - IK RL = t3 = t5 = .... takes the longer value between case a) and case b). The fswitching = In the case a) the main regulation loop is always closed and it forces: IK = (0.9 ± S) Ip where: S= 3% S = 1.5% @ @ Vi = 1V Vi = 4V In the case b), the same loop is open in the recirculation phase and IK,which is always lower than 0.9I p , is obtained by means of the following relationship. V3 RL - - (l-e With the typical application circuit, in the conditions Vs result: = 40V, t, = 255/Js a) 70/Js b) 16/Js f = 10.2 KHz 135 Ip = 4A, the following switching times LINEAR INTEGRATED CIRCUIT VERY LOW DROP 5V VOLTAGE REGULATOR • PRECISE OUTPUT VOLTAGE (5V ± 2.5%) • VERY LOW DROPOUT VOLTAGE • OUTPUT CURRENT IN EXCESS OF 500 mA • POWER-ON, POWER-OFF INFORMATION (RESET FUNCTION) • +1 00/-1 OOV LOAD DUMP PROTECTION :;t{:!': 35V 5-5B33 Fig. 5 - P.C. board and component layout of the circuit of fig. 4 (1: 1 scale) C5-0175 3/83 SELECTION OF COMPONENT VALUES Component Recommended Value R1 R2 100 kl1 Reset sensing threshold R3 4.7 kl1 fa setting R4 1 kl1 R5 15 kl1 Purpose Allowed Range Min. Max. - 1 kl1 220 kl1 NOTE R1/R2 = Vi min. V T (pin 12) 100 kl1 R4 rnin = Frequency Va 50 rnA See application note "Designing with the L296 Power Switching Regulator". 10 kl1 compensation R6 R7 51 kl1 Voltage divider - C1 10 J.lF Stability 1 J.lF C2 2.2 J.lF Reset delay 1 J.lF 4.7 J.lF C3 2.2 nF fa setting 1 nF 3.3 nF C4 2.2 J.lF Soft start 1 J.lF 4.7 J.lF C5 33 nF 51 kl1. R6/R7 = Vo - V ref V ref Frequency compensation C6 100 J.lF C7 100 J.lF L1 300 J.lH See application note "Designing with the L296 Power Switching Regulator". Output filter 3/83 Fig. 6 - Efficiency vs; out· put current Fig. 7 - Dissipated Power vs. output current (L296 only) - Vo "S.1V f ,,100KH~ Po - ,W) 6-4!1I6 0,,5.1 V ~~. f ,,100KHz diode VSKS40 (Schottky) eo 70 / I-- diodeVSK54 (Schottky) f- Fig. 9 - Efficiency vs. output voltage - ,/"" ..;;V ,./ ,/ V / V ,/ '" ,., r--r--r--+--+-~V;~'''3'~V--L--4 50 f---+c--l- r-- 'o·JA 0 I" Vo(V) I I /- I '-I / Fig. 11 - Power dissipation derating curve 6-4117 "7". I"\t-, IIII 10 RJ(Ko.) • VSK 540 -'-----+-------------~~~ f GNO----~------------~-4----~--~~~ 3/83 j-..;. II ·,S ~~ ,. "''''~4''',"'."'. ~ ~ ~ Fig. 12 - Voltage sensing for remote load 10 -. -.... ('' KHj ~V 2D C3~\Snf IIII >0 24 K.. OKH~ (wi CJa2.Znr:)r... dlodeVSK 540(Sc:hottky) - - diode VHE 1402 25KHJ p .... I 60 ,.... Vj .15V r--r--r--r--r--+--r.to~.~~~K~H'~ 80 ~ diodeVSKS40{Schottkyl (KH~ ) I . I 50 04) 90 .. Fig. 10 - Operating frequency vs. R3 and C3 0"4111 t " 6-4'15 Vj",J5V Vo .5.W " 90 60 Fig. 8 - Efficiency vs. output current 5. \ ........,:- ~~ ~~ ~ "", >0' rOC) Fig. 13 - Typical application RESET OUT BOVA ':J BY251 20V 20V BY251 VSK 540 5-5&32 Va= 5.1to15V 10 = 4A max. (min. load current = 100 mAl ripple ~ 20 mV loadregulation(lAt04A}= 10mV(V o = 5.1V} line regulation (220V ± 15% and to 10 = 3A) = 15 mV (Va = 5.1V) Fig. 14 - Preregulator for distributed supplies I---.----{)sv /400mA lO-4DY L296 PREREGULATOR 5.Bv f-.......--- 35V ';CURRENT LIMIT SETTING A resistor connected to pin 4 sets the current limit threshold. If this resistor is omitted, and pin 4 left open circuit, the limit threshold is 5A. The threshold can be varied from 0.5 to 4A. For a threshold of 2.5A the resistor is about 33 kil. When the switching frequency is at least ten times greater than the frequency at which the open loop gain is unity, the system can be approximated to a linear system. The PWM block can then be characterised as a linear block with gain independent of frequency. Compensating the system with a series RC network on the output of the error amplifier (pin 9). we obtain: THE LC FILTER Z The LC filter converts the pulse output of the L296's power stage into a continuous output voltage with a superimposed ripple, I::, V. The inductor determines the voltage ripple on the capacitor. The ripple 1::,1 L is generally chosen to be twice the minimum load current to avoid periods when the transistor and diode are both non-conducting. The formulae used to calculate LC as a function of 1::,1 L and I::, V are: L= Vo(Vi-V o ) = 1+ sRC sC Placing the zero introduced by the error amplifier at the resonjlnce frequency of the LC output filter (w o = 1/ Y LC) we obtain the Bode plot shown in figure 2. The slope when it crosses the frequency axis at 0 dB is roughly 40 dB/decade. In practice the LC filter contains parasitic elements which give a lower slope. /' The series resistance of the capacitor (ESR) 1,,- / troduces a zero at high frequencies, guaranteeing' stability of the system. Vi f I::,IL Fig. 2 - Bode plot of regulation loop. C= Va (Vi - Vol 8U' I::,V dB For example, for the test circuit (figure 5) the LC filter was calculated from the following data: Vi = 35V I::,IL = 150 mA I::,V = 3 mV Therefore Vo= 5V f = 100 kHz 5 --'.(3:=;5=---...:::5..:.)_ _ _ 300 /LH L = _ _ _:c 35x 1OOOOOx 150x 10·' Wo and I I. I Hz S_~97S fswilch C = _ _ _ _--".5--'-(3::.:5;:..-_5::.;)'--_ _ _ - 220 /-LF 8x300x 10·' x (1 OOx 10' ) • x30x 1 0·' 10 DIODE In practice the ripple depends on the quality of the filter capacitor. With standard components the ripple will be roughly twice the value implied by this calculation. In this example the actual ripple is about 5 mV. The diode should be a fast type to avoid high current peaks in the output transistor. The choice is therefore between Schottky diodes and fast' diodes with a Trr of less than 35 ns. A multiple capacitor - two or more connected in parallel with a total capacity of C - is recommended. Smaller electrolytics have a lower inductance - important at high frequencies - and handle higher peak currents. These diodes cost roughly the same. The only significant difference is the lower forward voltage of Schottky diodes. At low output voltages - around 5V - a Schottky diode therefore improves the efficiency of the system. COMPENSATION AND STABILITY SWITCHING FREQUENCY The system is non linear because the output stage operates in switchmode. However, in certain conditions the system can be represented as linear blocks. Delays are introduced by the output stage which can contribute to instability of the system. The choice of switching frequency depends on the inductor chosen (a smaller inductor can be used at higher frequencies), the power dissipation and desired efficiency. It should not exceed 200 kHz or efficiency will be reduced; the lower limit is set 2 only by the maximum acceptable dimensions of the output filter. The chosen frequency is set by the RC network connected to pins 7 and 11 (OSC and SYNC). Suitable values can be found from the nomogram, figure 3. The capacitor must be in the range 1 nF 3.3 nF and the resistor in the range 1 kil to 100 kil. Fig. 3 - Nomogram to find the values of the oscillator components. , Fig. 4 - In multiple supplies several L296s can be synchronised as shown here to reduce interference on the ground plane. L296 osc G - 4912 Rose 2 100 '"'0 ,,, '\ I C3=t5nF leos L-~ osc I SYNC osc SYNC _.+-1_~______~_J e I n view of the high currents (5A peak) and fast risetimes involved, care is necessary in the printed circuit layout to avoid problems. In particular, the tracks connecting the L296 output, recirculation diode and LC filter must be short to reduce voltage drop and avoid stray coupling. C3=Un~" 1":, ",~ r-. 6 10 -- I L296 LAYOUT ~~ 10 SYNC 1 (KHz l c ........ L296 , R3(Klll SYNCHRONISATION When several L296s are used in a multiple supply the switching frequencies should be synchronised to avoid interference propagated on the ground plane. This is done by connecting the SYNC pins together and omitting the oscillator components on all but the first device. The OSC pins of the subsequent devices are left open, as shown in figure 4. It is also important to connect the input filter capacitor, the recirculation diode and output capacitor to the same ground point. A separate ground should be used for the signal processing circuit grounds, connected to the power ground at the negative output terminal. Figure 5 shows a su itable layout for the test and evaluation circuit of figure 1. To guarantee good load regulation the two sensing terminals, pin 8 and 10, should be connected directly to the load as shown in figure 6. The two ten ohm resistors shown in this circuit are necessary to ensure that feedback will still be supplied to the L296 even when the sensing wires are disconnectedc Fig. 5 - PC board layout for the test and evaluation circuit of figure 1. ( C5-0175 3 Fig. 6 - When the load is some distance away this four wire connection should be used to ensure good regulation. divitler, to the unregulated input (figure 8). The internal threshold of the reset circu it is V ref - 100 mV (roughly 5V). Therefore the divider for the second case is found from: A VSK 10 Vi min V ref -100 mV R1 R2 10.0. 540 8 R2 should not exceed 200 kn. The reset output is open collector and the maximum allowed collector current is 50 mAo --+---------'i-~ c lOll. GND----~--------------~----OD--------~ 5 - 58 2 11 Fig. 8 - The reset circuit's sense input can be connected to the feedback point (a) or to the input via a divider (b). 35V Taking away all the optional components gives the even simpler configuration of figure 3. This circuit provides 4A at 5.1 V, soft start, thermal shutdown and current limiting with the default 5A threshold. The L296 is also ideal for use as a preregulator in distributed supply systems. Combined with low drop series regulators such as the L4800 series, an L296 gives extremely high efficiency plus very good regulation (figure 4). I, It " i 'f ~' "I I Fig. 3 - Many components can be omitted as shown here. This is a 4A/5.1 V supply. LIMIT THRESHOLD 10_SOI/ INPUT RESET THRESHOLD RESET RESET CROWBAR CROWBAR OUT DELAY SENSE DRIVE 300,uH 0 - - INPUT OUT 1-~r-- ___-"'"yy'---.--*-~--05.IV 200,uF L296 POWER SWITCHING REGULATOR GNal-~~--------4----*----O FEEDBACK INHIBIT "'_5980 2.211 I Fig. 4 - The L296 is ideal for use as a preregulator in distributed supply systems. Efficiency is very high and regulation is excellent. I---.---QSY /400mA 10-40Y L 296 5.BY PREREGULA TOR -05Y/400mA ')-S'lDl LOOKING INSIDE Looking at the simplified block diagram, figure 5, the main regulation loop can be identified quite easily; it consists of a 5.1 V reference, loop error amplifier, PWM modulator (sawtooth oscillator IS comparator), power stage and an external LC (. er. Voltage feedback from the output is compared with the 5.1 V reference in the error ampl ifier. The output of this amplifier sets the threshold of the PWM comparator and thus controls the duty cycle of the switching pulses. These pulses drive the output stage, producing the desired output voltage with the help of the LC filter. If the output is con- nected to the feedback point directly the regulated output voltage is 5.1V; a divider is added to the feedback loop to produce higher Voltages. The loop gain characteristics can be adjusted by the external RC network, RgCg, to give the required stability, ripple rejection at twice the mains frequency and immunity against supply and load variations. The output of the oscillator is not connected internally to the PWM comparator. This is done del iberately so that several L296s can be synchronised, avoiding interference and switching noise on the ground plane in multiple supplies. The SYNC pins of all the devices to be synchronised are connected together and only one is equ ipped with the oscillator components, as shown in figure 6. 3 Fig. 5 - Simplified block diagram of the L296. CROWBAR INPUT SUPPLY VOLTAGE CROWBAR DRIVE OSC. S Q INHIBIT FLIP FLOP ~--------~R Q r-------~~'2~~R~E~SET INPUT THERMAL SHUTDOWN I 1-':.:4'l-_R..,ES:)E T 0 U TP UT RESET 1-------- '3 RESET :CDELAY 5-5834/l I INHIBIT INPUT ess SWITCHING vs LINEAR How much do you gain? It's a well known fact that switching regulators are more efficient than linear types so the transformer and heatsink can be smaller and cheaper. But how mlj,ch can you gain? We can estimate the savings by comparing equivalent linear and switching regulators. For example, suppose that we want a 4A/5V supply. Therefore Vi min ~ 10.6V ,t V1(min) ---~~~~ l- vr' PP't> --~-~tS-~g96 Linear For a good linear regulator the minimum dropout will be at least 4V at 4A. The minimum input vo/tage.is given by: 4 Since operation must be guaranteed even when the mains voltage falls 20%, the nominal voltage on load at the terminals of the regulator must be: V nom = VI min 0.8 = 10.6 0.8 = 13.25V VI min = Va + V OROP + Y2 VrlPPle /0 T1 4x8x10-3 = 3.2V where VrlPPle ~----1Ox10- 3 C To allow even a small margin we have to cho!Js~/ (a good approximation is 8 ms for tl (at mains frequency of 50 Hz) and 1000 fJ.F for C, the filter capacitor after the bridge). The power that the series element must dissipate is therefore: V nom = 14V P d = (Vnom - Va) 10 = 36W Fig. 6 - Several L296s can be synchronised easily to avoid switching noise and save components. L296 OSC 50 SYNC I ~ ±Co~ - OSC SYNC I I SOFT START AND CURRENT LIMITING The soft start is produced by the diode, D, an external capacitor, Cs s , and a constant current source. (" L296 L296 '/hen power is applied, after an inhibit, or after a OSC SYNC I S-!!976 current limit, the voltage across Css is zero, clamping the error amplifier output to zero via the diode D. The capacitor is charged by the constant current generator, thereby allowing the error amplifier output - and hence the output voltage - to rise (figure 7). Fig. 7 - Waveforms showing the soft start. CLAMPED ERROR AMP OUTPUT NOMINAL ERROR AMP OUTPUT OUTPUT CURRENT 5- 56 35 and the transformer must supply a power of: P diss = 14x4 = 56W It follows that the transformer must be roughly 30 VA and the heatsink thermal resistance about 11 ° C/W. It must therefore be dimensioned for: Po= 56 0.9 = 62 VA Transformer and a heatsink will be necessary with a thermal resistance of: Rth heats. = 0.8° C/W ( Switching (L296) Assuming the same nominal voltage (14V), the L296 data sheet indicates that the power dissipated in this case is only 7W. And this power is dissipated in two elements; the L296 itself and the recirculation diode. Heatsink Linear Switching 62 VA 30 VA 0.8°C/W 11°C/W This comparison shows that the L296 switching regulator allows a saving of roughly 50% on the cost of the transformer and an impressive 80-90% on the cost of the heatsink. Considering also the extra functions integrated by the L296 the total cost of active & pas&ive components is roughly the same for both types. If for some reason it is necessary to use higher supply voltages the switching technique, and hence the L296, becomes even more advantageous. 5 Current limiting is more complex and involves two comparators, a flip flop, an AND gate, an OR gate and the transistor Or. A comparator compares the output current,sensed by an on-chip metal resistor, with the limit threshold preset by an external resistor. advanced bipolar process which allows the combination of fast-switching "high power devices and dense control circuitry on the same chip. One of the key features of this process is the use of a two-step ion-implantation technique to form the isolation wells. As soon as the current tops the threshold,this comparator switches, setting the flip flop which disables the output stage and shorts the soft start capacitor via Or. Normally this isolation is created by diffusing p-type impurities from above. The result is a bowl-like cross section which wastes silicon area (figure 9). Moreover, since prolonged high temperature processing is needed to perform this diffusion, the n+ buried layer spreads, reducing the breakdown voltage. A second comparator resets the fl ip flop when the voltage across C ss has fallen below OAV, re-enabling the output stage. With the usual slow ramp, the output current rises again and if the cause of the excess current is still present the whole process is repeated. This cycle continues until the fault condition is removed (figure 8). Thanks to the dead time and the soft start ramp the average current in this condition is not high enough to damage the device. Fig. 8 - Waveforms illustrating the action of the current limiter. ION-IMPLANTED ISOLATION The L296 is one of the first products to exploit an I n the new process a heavy p+ implant is made before the n- epitaxi(ll collector growth, followed by a further implant from above. When the wafer is heated both implants diffuse, jOining in the middle to create a narrow but deep isolation well (figure 10). Since high temperature processing is much reduced the n+ buried layer spreads verv little and the resulting NPN transistor has a brea: down voltage in excess of 50V. The narrower isolation resu Its in an increased density, with minimal geometry transistors reduced to a compact 18 mil 2 • Speed is correspondingly increased. Teamed with the Multiwatt plastic package, this process allows the integration of complex devices handling in excess of 200W. Other devices already introduced include the L295 dual solenoid driver (220W), the L294 switchmode driver (180 W) and the L298 dual bridge driver (200 W). Fig. 9 - Diffusing the isolation from above gives the familiar bowl-shaped cross section which wastes spaces. P t ISOLATION DIFFUSION n+ EMITTER n- EPITAXIAL P substrate 5-6001 Fig. 10 - The above/below two-step implanted isolation is more compact and results in an increased nthickness between base and buried laver. raising the breakdown voltage. p+-ISOLAT10N DIFFUSION ~ n+ EMITTER p n-EPITAXIAL BASE COLLECTOR n+ ---vTTTTTh1~.o...r----+. ~J._ p n+ BURIE~~AYER _ _ _ _) K subsleal. 15-60oa 6 Information furnished is believed to be accurate and reliable. However, no responsibility is assumed for the consequences of its use nor for infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise un,. any patent or patent rights of SGS·ATES. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and substitutes all information previously supplied. SGS·ATES GROUP OF COMPANIES Italy· France· Germany· Malta· Malaysia· Singapore· Sweden· Switzerland· United Kingdom· U.S.A. © SGS-ATES Componenti Elettronici SpA, 1983 - Printed in Italy CONNECTION DIAGRAM (top view) @7i, (tab ctr',nected to pin 3) 5- 5307 BLOCK DIAGRAM INPUT lo---~--------~------------------------------------~~' 4 DELAY CAPACITOR 5 - 5 202 TEST CIRCUIT OUTPUT VOLTAGE IN I,oonF 4 ,.., ,,J L 487 I I + 5V ""rn ..J.!.O fJF 10'00 fJF RESET OUTPUT 5-5308 THERMAL DATA Rth j-case max Thermal resistance junction-case 137 3 °C/W = 14.4V, Tamb = 25°C, unless ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Vi otherwise specified) Test conditions Parameter Vo Output voltage Vi Operating input voltage !OVo Line regulation 10=5mA to 500mA Vi = 6to 26V Min. TVp· Max. Unit 4.80 5 5.20 V 28 V 10 =5mA 5 mV mV !oVo Load regulation 10 = 5 to 500 mA 15 Vi-V o Dropout voltage 10 = 500mA 0.6 V Id Qu iescent current 5 20 100 mA 0.5 mV/oC 60 dB 0.8 A !OVo ~ SVR Ise 10 = 0 mA io=150mA 10 = 500mA Temperatu re output voltage drift SupplV voltage rejection f = 120 Hz Vi=12V±5Vpp 10 = 350 mA Co = 10IlF Output short circuit current VR Reset output voltage IR= 16mA IR Reset output leakage current Vo in regulation td Delav time for reset output Cd=100nF V RT Reset threshold VRTH Threshold hysteresis Vo';; 4.75V 4.75 Fig. 1 - Timing diagram for reset function ~o) 1------486 4 e~ ______ - _ ___ _ _ __ _ _____ _ - -- - - - - - - - - - - - - - - - - - - I J~omv ' I/ : . 138 i • I 0.8 V 50 IlA 30 ms Vo-0.15 V 10 mV LINEAR INTEGRATED CIRCUITS HIGH-VOLTAGE, HIGH-CURRENT 8 DARLINGTON ARRAYS These high-voltage, high-current Darlington transistor arrays comprise eight NPN Darlington on a common monolithic substrate. All units feature open collector outputs and integral suppression diodes for inductive loads. Peak currents of 500 mA can be withstood. They are pinned with inputs opposite outputs to facilitate circuit board layout. The L601 is a general-purpose array wich may be used with DTL, TTL, PMOS, CMOS, etc. The L602 is specifically designed for use with 14 to 25V PMOS devices. Each input has a Zener diode and resistor in series in order to limit the input current to a safe value. The L603 has a series base resistor to each Darlington pair, and thus allows operation directly with TTL or CMOS operating at a supply voltage of 5V. The L604 has a series base resistor to each Darlington pair, and thus allows operation directly with PMOS or CMOS utilizing supply voltage of 6 to 15V. In all cases, the individual Darlington collector current rating is 400 mAo However, outputs may be paralleled for higher load current capability. The devices are supplied in a 18-lead dual in-line plastic package with copper frame. ABSOLUTE MAXIMUM RATINGS V CEX Ic Ic VI Ii Ptot Top Tstg Collector emitter voltage (input open) Collector current Collector peak current Input voltage (for L602, L603 and L604) Input current (for L601 only) Total power dissipation a T amb = 25°C Operating junction temperature Storage temperature 90 0.4 0.5 30 25 1.8 -25 to 150 -55 to 150 V A A V mA W °C °C ORDERING NUMBERS: L601B, L602B, L603B, L604B MECHANICAL DATA Dimensions in mm 139 6/82 CONNECTION DIAGRAM (top view) IN >---,----1118 OUT 1 IN 2 :>-;--+-1117 OUT 2 IN 3 ;>-;--+-11'6 OUT 3 IN 4 >---,--+--11'5 OUT 4 IN 5 >-~-+-1114 OUT 5 IN 6 ;>-;--+-1113 OUT 6 IN 7 :>-;--+-1112 OUT 7 IN 8 >-.....-+-1111 OUT 8 10 COMMON FREE WHEELING DIODES GND 5-34901\ SCHEMATIC DIAGRAMS L601 L602 COM COM __- - - - + - - . - - o O U T 10.5kfi INo-T--T~~_~ I L_~ I I ________ _ EACH DRIVER L_~ __________ J EACH DRIVER 5- 3499 L603 5-1984 L604 COM COM 2.7kn INo--r--=- ~----+--.--oOUT 10.5k(1 ~----+--.--oOUT I N o-·T--C=r-I--t"'---.~ __y 3kfi -~------- EACH DRIVER 140 _J 5-2574 THERMAL DATA Rth j-amb Thermal resistance junction-ambient max 70 °C/W ELECTRICAL CHARACTERISTICS (T amb = 25°C, unless otherwise specified) Parameter I CEX Output leakage current V CE(sat) Collector emitter saturation voltage Test conditions Ic= 300 mA Ic= 200 mA Ic= 100 mA 18= 500 !LA 18= 350 !LA 18= 250 !LA DC forward current gain (L601 only I V CE = 3V Ic= 300 mA Vi Minimum input voltage (ON condition I V CE = 3V for L602 for L603 for L604 Ic= 300 mA Maximum input voltage VCE= 90V for L601 for L602 for L603 for L604 Ic= 25 !LA (OFF conditionl Typ. V CE= 90V hFE Vi Min. Max. Unit 10 !LA 2 1.7 1.2 V V V - 1000 11.5 2.5 2.5 V V V V V V V 0.55 7 0.75 1 50 !LA 2.4 V IR Clamp diode nwerse current V R= 90V VF Clamp diode forward voltage IF= 300 mA ton Turn-on delay 0.5 Vi to 0.5 Vo 0.4 !LS toft Turn-off de Iay 0.5 Vi to 0.5 Va 0.4 !LS 2 i.i Iii:1 I.: I.' i: 11 141 LINEAR INTEGRATED CIRCUIT QUAD DARLINGTON SWITCH • SUSTAINING VOLTAGE: MIN. 70V • • 2A OUTPUT HIGH CURRENT GAIN The L 702 is a monolithic integrated circuit for high current and high voltage switching applications. It comprises four darlington transistors with common emitter and open collector, suitable for current sinking applications, mounted on the new Powerdip and Multiwatt packages. This circuit reduces components, sizes and costs; it can provide direct interface between low level logic and a variety of high current applications. ABSOLUTE MAXIMUM RATINGS V eEX Vi Ie Ie Ptot Collector-emitter voltage (input open) Input vo Itage Collector current Collector peak current (repetitive) Total power dissipation at T pin 9 to 16 .;;; 90DC} Total power dissipation at Tamb .;;; 70DC Total power dissipation at Tease';;; 90DC Sto rage temperatu re Operating junction temperature ORDERING NUMBER: Multiwatt V V 4 W W W 1.1 20 -55 to 150 -25 to 150 A A DC DC L 7028 - Powerdip L 702N - Multiwatt MECHANICAL DATA 6/82 Powerdip 90 30 2 3 Dimensions in mm 142 CONNECTION DIAGRAMS (top view) S-J480 81 1 16 81 1 15 Cl 3 14 Cl C2 , 13 C2 GND C3 5 " C' 6 1.1 83 7 10 84 8 ~ 11 Bl 10 B2 nc GND 4 ~ 3 THE TAB 15 CONNECTED TO PIN 6 Powerdip C3 C4 B3 B4 5-3749 Multiwatt SCHEMATIC DIAGRAM (each Darlington) c B - ......- -......---. --~--_oV Fig. 6 - Input current vs. input voltage -- +--11- \ rtt Fig. 7 - Safe operating areas Fig. 8 - Safe operating areas (L702B) (L702N) 'e '~~!!!~II~III ,- • r---SlNGLE PULSE f-l-oc+H-f*I---+f\ -.. Fig. 9 - DC current gain vs. collector current (*) G-3105 _FE, (A). YJCYI 20 10 ,,<.oJ . 500 ~ ,~. 501,;~- , Ii-- I ,0> I \ .! I:, 10"' I :I·! i III ['ilil I 10"" '0 ~ I • 10·' It") (*J Pulse width = 300 IlS, duty cycle 1.5%. Fig. 10 - Stepping motor buffer 145 LINEAR INTEGRATED CIRCUITS PRELIMINARY DATA POSITIVE VOLTAGE REGULATORS FOR AUTOMOTIVE • • • • • • • • • OUTPUT VOLTAGE OF 5,8.5 AND 10V OUTPUT CURRENT UP TO 500 mA NO EXTERNAL COMPONENTS LOW DROP-OUT VOLTAGE LOAD DUMP VOLTAGE SURGE PROTECTION REVERSE VOLTAGE PROTECTION SHORT CIRCUIT PROTECTION CURRENT LIMITING THERMAL SHUTDOWN The L2600 series of three therminal positive regulators is specially designed to stabilize power supplies for car instrumentation in vehicles with 12V battery. They can supply an output current up to 500 mA. ABSOLUTE MAXIMUM RATINGS DC input voltage DC input reverse voltage Positive transient peak voltage (t = 40 ms, duty cycle = 1 %) Negative transient peak voltage (t = 30 ms, duty cycle = 1%) Operating temperature Storage temperature Power dissipation ORDERING NUMBERS: L2605V L2685V L2610V (Vo= 5V) (Vo= 8.5V) (Vo= 10V) Dimensions in mm MECHANICAL DATA 4.amu I 25 I~ ~ 6/82 35 V -28 V 120 V -90 V -40to 150 DC -65 to 150 DC I nternally limited 146 CONNECTION AND BLOCK DIAGRAMS (top view) s- 156811 THERMAL DATA Rthj-case max. Thermal resistance junction-case ELECTRICAL CHARACTERISTICS (T amb Parameter 25°) Test conditions Output voltage Vo = 10=500mA 4 °C/W Vi = 12 to 16V (L26051 Vi = 12 to 16V (L2685) Vi = 12 to 16V (L2610) Vi Operating input voltage see note (0) /',V o Line regulation 10 = 50mA Vi = 12 to 16V /',V o Load regulation Vi = 14V 10 = 50 to 500 mA /',V i _o Dropout voltage 10=500mA /',V o Output voltage drift 10 = 50mA Vi = 14V Tamb = -12 to 80°C Isc Output short circuit current Vi = 14V SVR Supply voltage rejection Vi = 16V f= 100Hz Output resistance 10 = 500mA Min. Typ. Max. Unit 4.8 8.15 9.55 5 8.5 10 5.2 8.85 10.45 V 28 V 2 mV 0.3 % Vo /',T Ro eN (0) Output noise voltage Note: For a DC input voltage 28V 1.8 /',V i = 2V 10 = 500mA BW = 100Hz to 10KHi < Vi < 35V the device is not operating 147 V -1 mV/oC 900 mA 60 dB 0.05 n 20 I'V LINEAR INTEGRATED CIRCUIT PRELIMINARY DATA PRINTER SOLENOID DRIVER The L3654 is a printer solenoid driver containing ten open-collector driver outputs and a ten-bit serialin, parallel-out shift register. Data is clocked into the shift register serially and transferred to the open-collector outputs by an enable input. Serial input data is loaded by the rising edge of the clock. A serial output from the tenth bit is provided which changes at the falling edge of the clock. This output is not controlled by the enable input and remains active at all time. Output stages are inhibited when the logic supply voltage falls below 6V. Each output is rated at 250 mA (sink) and is clamped to ground internally at 50V to dissipate stored energy in inductive loads. The L3654 is supplied in a 16 lead dual in-line plastic package, and its main fields of application comprise thermal printers, cash registers and printing pocket calculators. ABSOLUTE MAXIMUM RATINGS Vs Vi VE 10 Ig Ptot Tstg'. TJ Supply voltage Input voltage External supply voltage Output current (single output) Ground current Total power dissipati~n (Tamb = 70°C) Storage and junction temperature 9.5 9.5 45 0.4 4.0 1 -65 to 150 V V V A A W °C ORDERING NUMBER: L3654 B Dimensions in mm MECHANICAL DATA 6/82 148 CONNECTION DIAGRAM (top view) OUTPUT ENABLE 1 16 Vs OUTPUT 6 15 OUTPUT 5 OUTPUT 7 14 OUTPUT 4 OUTPUT 8 13 OUTPUT 3 OUTPUT 9 12 OUTPUT 2 OUTPUT 1 OUTPUT 10 6[ 11 DATA OUTPUT 7[ 10 DATA INPUT GND a[ CLOCK S 5012 LOGIC DIAGRAM OUTPU,5 V OUTPUT 1 EN ENABLE S - 5013 THERMAL DATA Rth j-amb max Thermal resistance junction-ambient 80 °C/W I: I,j 149 ELECTRICAL CHARACTERISTICS (Vs= 8.5V, vss= 30V, T amb = 0° to 70 0 e, unless otherwise specified) Test conditions Parameter Vs Supply voltage Is Supply current Min. Typ. 7.5 Max. Unit 9.5 V T amb = 25°C V EN = OV; Voo= OV 27 40 mA Vs = 9.5V V EN = 2.6V 10 = 250 mA (each bit) 55 70 mA 40 V 1 mA 65 V 1.6 V VE External operating supply voltage Ileak Output leakage current (each output) Vss= 40V VEN=OV Vz I nternal clamp voltage I z = 0.3A V EN = OV VCE sat Output satu ration voltage lo=250mA V EN = 2.6V VOl V CLK V EN I nput logic levels (pins 1,9,10) Low State (L) 101 Data input current 45 50 0.8 V High state (H) 2.6 T amb = 70°C V OI = 2.6V 0.3 0.57 mA oOe 0.57 V OI = 1V T amb = 70°C 220 V CLK = 2.6V T amb= 70De T amb = ICLK lEN Clock input current 0.2 0.75 J.LA 0.33 mA Enable input current T amb = oOe 0.33 VCLK=1V T amb = 70°C 125 V EN = 2.6V T amb = 70°C 0.2 0.5 J.LA 0.33 mA RIN Voo T amb = oOe 0.33 V EN = 1V T amb = 70°C 125 Input pu II-down resistance Clock input T amb = 25°C V CLK Enable input T amb = 25°C V EN Data input T amb = 25°C VOl < Vs 4.5 Low state (L) V OI = OV loo(pin 7)= 0 0.01 Output logic levels (pin 7) < Vs Roo Output pull-down resistance (pin 7) V OI = OV Voo=1V 150 J.LA 8 < Vs High state (H) V OI = 2.6V 100 (pin 7) = -0.75 rnA 0.5 K.I1 8 2.6 0.5 V 3.4 V 14 K.I1 Fig. 1 - Timing diagram 1L-_______----\lS r ItENclK ," I Ult~~~~N tClK tClK ~. I ~n I ~----4_----------~------ VClK II' 4 ~ VOO -_l ~ -I POH ,-1- ~tpoEll OUTPUT- - - - - - - - - - - - - t PDEH - ELECTRICAL CHARACTERISTICS (see fig. 1 and the section "definition of terms") Test conditions Parameter Min. Typ. Max. Unit Clock, data and enable input tCLK 4 tCLK 5.5 tSET-UP 1 tHoLO 3 ,"S Clock to enable delay tCLK EN 2 tSIT tEN CLK tSIT Enable to clock delay Data output delay tpoH, tpoL R L= 5Kfl., C L ";; 10 pF 0.8 2.5 ,"s Output delay tpOEL 3 tpoEH 3.5 ,"S Output rise time R L = 100 n, C L <100pF Output fall time R L = 100 n, C L <100pF 1.2 ,"s 1.2 ,"s V OO rise time 0.4 ,"s V OO fall time 0.4 ,"S 151 DEFINITION OF TERMS v 55 VOl. V : CLK ' External power supply voltage. The return for open-collector relay driver outputs. V EN : The voltages at the data. clock and enable inputs respectively. VOO : The voltage at data output. tSIT : Period of the incoming clock. tCLK : The portion of tSIT when V CLK ;;;. 2.6V. tCLK : The portion of tSIT when VCLK ';;; O.BV. t HOLO : The time following the start of tCLK required to transfer data within the shift register. tSET-UP : The time prior to the end of tCLK required to insure valid data at the shift register input for subsequent clock transitions. 152 LINEAR INTEGRATED CIRCUITS 3-TERMINAL POSITIVE VOLTAGE REGULATORS • • • • • OUTPUT CURRENT UP TO 1.5A OUTPUT VOLTAGES OF 5; 6; 8; 12; 15; 18; 20; 24V THERMAL OVERLOAD PROTECTION SHORT CIRCUIT PROTECTION OUTPUT TRANSISTOR SOA PROTECTION The L7800 series of three-terminal positive regulators is available in TO-220 and TO-3 packages and with several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents. ABSOLUTE MAXIMUM RATINGS Vi DC input voltage (for Va = 5 to 18V) (for Va = 20, 24V) Output current Power dissipation Operating junction temperature (for L7800) (for L7800C) Storage temperature 35 V 40 V internally limited internally limited -55 to +150 °C Oto+150 °C -65 to + 150°C Dimensions in mm MECHANICAL DATA 8.,....,1.7 (.-00$3It TO-3 TO-220 153 6/82 CONNECTION DIAGRAMS AND ORDERING NUMBERS (top views) ~ o C). OUTPUT ~")3 ,0 GND INPUT 5--25&912 !)-lSti8/' Type L L L L L L L L L L L L L L L L 7805 7805C 7806 7806C 7808 7808C 7812 7812C 7815 7815C 7818 7818C 7820 7820C 7824 7824C TO-220 TO-3 - L 7805T L 7805 CT L 7806T L 7806CT L 7808T L 7808CT L 7812T L 7812CT L 7815T L 7815CT L 7818T L 7818CT L 7820T L 7820CT L 7824T L 7824CT L 7805CV L 7806 CV L 7808 CV L 7812CV L 7815CV L 7818CV L 7820CV L 7824CV BLOCK DIAGRAM INPut 'O---~--------~-------------~-1 154 Output voltage 5V 5V 6V 6V 8V 8V 12V 12V 15V 15V 18V 18V 20V 20V 24V 24V SCHEMATIC DIAGRAM Q17 R12 Rll R5 OUT R6 R20 R15 Qll D1 R7 R, R2 07 R19 TEST CIRCUITS Fi!l. 1 - DC parameters Fig. 2 - Load regulation Fi!l. 3 - Ripple rejection I THERMAL DATA Rth H:ase Rth j-amb Thermal resistance junction-case Thermal resistance junction-ambient max max 155 TO-220 TO-3 3°C/W 50°C/W 4°C/W 35°C/W ELECTRICAL CHARACTERISTICS L 7800 (Refer to the test circuits, TJ= -55 to 150"C, 10 = 500 rnA, Ci = 0.33 iJ.F, Co = 0.1 iJ.F unless otherwise specified) OUTPUT VOLTAGE 5 6 8 12 INPUT VOLTAGE (Unless otherwise specified) 10 11 14 19 Parameter Vo Output Min. Typ. Tj: 25°C 4.8 5 lo""5mAto1A 5 5.15 5.65 8 12 4.65 6 6.35 7.6 8.4 11.4 12.6 (V,: 8 to 20V) (V,: 9 to 21V) (V,: 11.5 to 23V) (V,: 15.5t027V) Test conditions Max. Min. 5.2 5.75 Typ. Max. Min. Typ. 6 6.25 7.7 8 Unit Max. Min. 8.3 11.5 Typ. Max. 12 12.5 voltage Po ,,15W tNo 60 80 (V,: 10.5 to 25V) 120 (V,: 14.5t030V) 30 40 (V,: 11 to 17V) 60 (V,: l&to 22V) 100 100 100 120 25 30 40 60 6 6 6 6 0.5 0.5 0.5 0.5 0.8 (Vi: 8 to 25V) 0.8 (V,: 9 to 25V) 0.8 (V,: 11.5 to 25V) 0.8 (V,: 15 to 30V) 50 Line regulation (V,: 7 to 25V) (V,: 8 to 25V) Tj: 25°C mV 25 (V,: 8 to 12V) t1Vo Load regulation V Tj: 25°C 10:5mAtol.5A (V,: 9 to 13V) mV Tj: 25°C 10= 250 to 750 rnA 'd Quiescent T j : 25°C mA current t1'd Quiescent lo=5rnAto 1A current change t1Vo TT Output voltage 0.6 10= 5 rnA 1 0.7 mA mV/oC 1.5 drift eN output noise B: 10Hz to 100KHz Tj: 25°C 40 40 40 40 ",V -Vo- voltage SVR Supply f : 120Hz voltage 68 65 (V,: 8 to 18V) (V,: 9 to 19V) 2 2 62 61 (V,: 15 to 25V) (V,: 11.5 to 21.5V) dB rejection 2.5 2.5 Dropout 10= 1A voltage T): 25°C Ro Output resistance f : 1 KHz 17 'se Short Vi: 35V T): 25°C 0.75 1.2 0.75 1.2 2.2 3.3 1.3 2.2 3.3 1.3 Vd circuit current Iscp Short Tj: 25°C 1.3 19 eire. peak cuP'"ent 156 2 2.5 16 0.75 2.2 2 2.5 18 V mil 1.2 0.75 1.2 A 3.3 1.3 2.2 3.3 A ELECTRICAL CHARACTERISTICS L 7800 OUTPUT VOLTAGE INPUT VOLTAGE (Unless otherwise specified) Parameter Va Output Test conditions (continued) 15 18 20 24 23 26 28 33 Unit Min. Typ. Max. Min. Typ. Max. Min. Typ. T J= 25'C 14.4 15 15.6 17.3 18 18.7 19.2 20 '0"" 14.25 15 15.75 17.1 18 18.9 19 20 21 22.8 24 25.2 IV;= 18.5 to 30VI IV;= 22 to 33VI IV;= 24 to 35VI IV;= 28 to 38VI Max. Min. Typ. 24 20.8 23 Max. 25 voltage 5 mA to 1 A Po';;;; l5W :o.Va Line regulation T J = 25'C 150 IV;= 17.5 to 30VI 180 IV;= 21 to 33VI 200 IV;= 22.5 to 35VI 240 IV;= 27 to 38VI 75 IVj= 20 to 26VI 90 IV;= 24 to 30VI 100 IV;= 26 to 32VI 120 IV;= 30 to 36VI 150 180 200 240 75 90 100 120 6 6 6 6 0.5 0.5 0.5 0.5 0.8 IV;= 18.5to30VI 0.8 IV;= 22 to 33VI 0.8 IV;= 24 to 35VI 0.8 IV;= 28 to 38VI V rnV 6.V a Load regulation T J = 25'C 10= 5 mA to 1.5A rnV T j = 25°C '0= Id Quiescent 250 to 750 mA T j = 25'C rnA current 6. l d Quiescent 'o==5mAtolA current change 6.V a Output c;:T voltage drift eN output nOIse 10= 5 mA 1.8 2.3 2.5 3 B= 10Hz to 100KHz T j = 25°C 40 40 40 40 rnA rnV/oC ~V -Va voltage SVR Supply f = 120 Hz voltage rejection Vd Ra 60 IV;=18.5 to 28.5VI 2 Dropout 10= lA voltage Tj'= 2SoC Output f = 1 KHz 19 V;= 35V T j = 25°C 0.75 59 58 IV;= 22 to 32VI 2.5 2 56 dB IV;= 24 to 35VI IV;= 28 to 38VI 2 2 2.5 2.5 28 24 22 2.5 V rnD resistance I" Shart circuit 1.2 0.75 1.2 0.75 1.2 0.75 1.2 A 2.2 3.3 A current tscp Short .T j = 25°C 1.3 2.2 3.3 1.3 eire. peak current 157 2.2 3.3 1.3 2.2 3.3 1.3 o to ELECTRICAL CHARACTERISTICS L 7800C (Refer to the test circuits, Tj 10 = 500 mA, Cj = 0.33 JlF, Co = 0.1 JlF unless otherwise specified) OUTPUT VOLTAGE INPUT VOLTAGE (Unless otherwise specified) Parameter Vo Output Test conditions Min. 5 6 8 12 10 11 14 19 Typ. 5 Max. Min. 5.2 5.75 Typ. Max. Min. Typ. 6 6.25 7.7 S Max. Min. S.3 11.5 125°C, Unit Typ. Max. 12 12.5 T J = 25'C 4.S lo""5mAtolA 4.75 5.25 5.7 12 12.6 6 6.3 7.6 5 S S.4 11.4 (V i = 14.5 to 27VI (V i = 7 to 20VI (V j "" 8 to 21 V) (V i = 10.5 to 25VI voltage Po";; 15W :c,V o Line regulation 100 3 (V i = 7 to 25VI 120 (V i = S to 25VI 160 (V i =10.5t025VI 240 (V i = 14.5to30VI 1 50 (V i = S to 12VI 60 SO (V i = 11 to 17VI 120 16 to 22VI T J= 25'C ~Vo Load T j = 25'C regulation 10= 5 mA to 1.5A V mV (V i = 9 to 13VI (V i = 100 120 160 240 50 60 SO 120 S 8 8 S 0.5 0.5 0.5 0.5 mV T j = 25'C 10= 250 to 750 mA Id Quiescent T j = 25'C rnA current L.ld Quiescent lo=5mAtolA current change -~ 6T eN Output 10= 5 rnA Output Supply B'" 10Hz to 100KHz TJc 25'C f=120Hz voltage rejection Vd 1 1 rnA (Vj= 8 to 25V) (V i = 10.5 to 25VI (V i = 14.5to30VI -1.1 -O.S -O.S -1 mV/'C 40 45 52 75 MV (V i = S to lSVI (V i = 9 to 19VI 56 (V i = 11.5 to 21.5V) 2 2 2 2 V voltage drift noise voltage SVR 1.3 1.3 (Vi= 7 to 25Vj Dropout 10= lA 62 59 dB 55 (V i = 15 to 25VI voltage Ro Output resistance f = 1 KHz 17 19 16 18 mil I,c Short Vi= 35V T j = 25'C 750 550 450 350 rnA T j = 25'C 2.2 2.2 2.2 2.2 A circuit current Iscp Short eire. peak current 158 ELECTRICAL CHARACTERISTICS L 7800C OUTPUT VOLTAGE 15 18 20 24 INPUT VOLTAGE (Unless otherwise specified) 23 26 28 33 Output Max. Min. Typ. Unit Max. Min. Typ. Max. Min. Typ. Max. Min. Typ. T j " 25°C 14.4 15 15.6 17.3 18 18.7 19.2 20 lo""5mAto lA 21 14.25 15 15.75 17.1 18 18.9 19 20 IV;" 23 to 35VI IV;" 17.5 to 30VI IV;" 21 to 33VI 22.8 24 25.2 IV;" 27 to 38VI 400 480 IV;" 27 to 38VI Test conditions Parameter Va (continued) 20.8 23 24 25 voltage Po';;;; 15W "Va Line regulation 300 IV;" 17.5 to 30VI 360 IV;" 22.5 to 35VI IV;" 21 to 33VI TJ" 25°C "Va Load regulation V rnV 240 IV;" 30 to 36VI 200 150 IV;" 20 to 26VI 180 IV;" 24 to 30VI TJ" 25°C r a '" 5 rnA to 1 .5A 300 360 400 480 T j " 25°C 150 180 200 240 8 8 8 8 0.5 0.5 0.5 0.5 IV;" 26 to 32VI rnV 10 Id Quiescent ::' 250 to 750 rnA T j " 25°C rnA current "Id Quiescent lo=5mAto lA current change ~ "T Output 1 1 1 1 rnA IV;" 17.5t030VI IV;" 21 to 33VI IV;" 23 to 35VI IV;" 27 to 38VI 10= 5 rnA -1 -1 -1 -1.5 rnV/oC 90 110 150 170 ~V voltage drift eN Output noise voltage B= 10Hz to 100KHz T j " 25c C SVR Supply f"120Hz 54 53 dB 50 52 voltage rejection Vd Dropout 2 V 24 28 rnn 200 180 150 rnA 2.1 2.1 2.1 A 10= 1A 2 2 2 f = 1 KHz 19 22 Vi'" 35V T j "25°C 230 2.1 voltage Ro Output i resistance Iso Short circuit current Isep Short Tj ~ 25°C eire. peak current 159 Fig. 4 - Dropout voltage vs. junction temperature Fig. 5 - Peak output current vs. input/output differential voltage i""r--i""-... -...: :::-.. '.5 t-f- t-- 2.5 ~ rr--t.ljjjjH-r++I+8---i-m,+1I-+Htflill '1111 I ,II !. I r-::: ::-- ~ DROPOUT CONDITIONS AVo:OSo,. of Vo 05 (A, - J",. ---t-- ::rTTlmTi,~~'TImII~TITI!m-Tlrll'~i1i~ eo • i II'! III +t+l,++i'#--'--"80-"-5+ti+llI till II F ' (0 L 78XX IV' Fig. 6 - Supplv voltage rejection vs. frequency 60 l 1.5 20~ 40 ~ 20 --4 '. ..~ ~. :Jltiil ~t:""",_t.idI8..v-Hlt-t+tttt1lt--+++ti+llI 111 . 1,IIil ~;"'C" 0.5 Hili -75 -50 -25 0 25 50 75 100 125, Tj re) Fig. 7 - Output voltage vs. junction temperature 'lfll'!l (rnA) f- 10 4.2 H;;;): I I-- - . 50 75 100 125 Fig. 10 - Load transient response ''Ie (V) G 2971 I r- rlv %= v (0 I (AI I r- i .v Fig. 11 response I, , I .1-. , i -+t= ~ , V I , ! r- -H~ 10 G-291211 , INPUT VOlTAGE I I ! • -50 -25 I I 0 2S i L780S 50 75 I I 100 125 Tj (Oe) Fig. 12 - Quiescent current vs. input voltage v, ( v, L7805 15 i I 20 ..i (Q I I 10 I ~~mTo~TAGEI I"- , I ~1O I Io-SOOmA I I I 'SV I 20 -15 Line transient 0 I OUTPUT VOLTAGE DEVIATON 10' (m' I L 7805 LOAD CURREN 10' 10' Tj (oe) -+- -+tt-t l , 25 I I I :. mtt' +~++ H %1 / 3.6 0 I / i I 4.0 3.8 +- G-297" 'd (11) ~ -75 -50 -25 f (Hz) )()' Fig. 9 - Quiescent current vs. junction temperature Fig. 8 - Output impedance vs. freauency 20 1I11 10' 10 ~ ~20 50 t (us) o I i 10 160 t{JJs) 10 20 25 30 Vi (V) APPLICATION INFORMATION (continued) Fig. 13 - Fig. 14 - Fixed output regulator Costant current regulator V; Notes: (1) To specify an output voltage, substitute voltage value for "XX". (2) Although no output capacitor is needed for stability, it does improve transient response. (3) Required if regulator is located an appreciable distance from power supply filter. Fig. 15 - Circuit for increasing output voltage vxx! IFig. 16 -Adjustable output regulator (7 to 30V) R1 R2 Fi~. 17 - 0.5 to 10V regulator Fig. 18 - HiQh current voltage regulator VBEQ1 161 APPLICATION INFORMATION (continued) Fig. 19 - High output current with short circuit protection Fig. 20 - Tracking voltage regulator '\10 COMMON ~ -Vo Fig. 22 - Negative output voltage circuit Fig. 21 - Split power supply (±15V - 1A) +20VC)--'---'-I F--~>---'-O - 20Vo--""'--"l r--4-......-o·15V· + 15 V JI • Against potential latch-up problems Fig. 24 - High input voltage circuit Fig. 23 - Switching regulator 162 APPLICATION INFORMATION (continued) Fig. 25 - High input voltage circuit Fig. 26 - High output voltage regu lator Fig. 27 - High input and output voltage Fig. 28 - Reducing power dissipation with dropping resistor R = ~mjn) - Vxx - lo(max) Fig. 29 - Remote shuntdown 163 + VOROP(max) Id(max) APPLICATION INFORMATION (continued) Fig. 31 - Adjustable output voltage with temperature compensation Fig. 30 - Power AM modulator (unity voltage gain, 10 ';;; 1A) .v;o-!j L 7BXX Ir'---t----< 13 ! Q1 ~~3 C&-r--t---' 5-4117" Note: Note: The circuit performs well up to 100 KHz. 02 is connected as a diode in order to compensate the variation of the 01 VBE with the temperature. C allows a slow rise-time of the V0 R2 Vo= Vxx (1 + - - I +VBE R1 Fig. 32 - Light controllers (V o min= Vxx + V BE ) (b) (a) V; v 0 falls when the Ii!lht !loes up Vo rises when the light goes up Fig. 33 - Protection against input short-circuit with high capacitance loads Applications with high capacitance loads and an output voltage greater than 6 volts need an external diode (see fig. 33) to protect the device against input short circuit. In this case the input voltage falls rapidly while the output voltage decreases showly. The capacitance discharges by means of the Base-Emitter junction of the series pass transistor in the regulator. If the energy is sufficiently high, the transistor may be destroyed. The external diode by-passes the current from the Ie to !lround. 164 LINEAR INTEGRATED CIRCUITS PRELIMINARY DATA 3- TERMINAL POSITIVE VOLTAGE REGULATORS • OUTPUT CURRENT UP TO 0.5A • OUTPUT VOLTAGES OF 5; 6; 8; 12; 15; 18; 20; 24V • THERMAL OVERLOAD PROTECTION • SHORT CIRCUIT PROTECTION • OUTPUT TRANSISTOR SOA PROTECTION The L78MOO series of three-terminal positive regulators is available in TO-220 package and with several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 0.5A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents. ABSOLUTE MAXIMUM RATINGS DC input voltage (for V 0 = 5 to 18V) (for Vo = 20, 24V) Output current Power dissipation Storage tem peratu re Operating junction temperature MECHANICAL DATA 35 V 40 V Internally limited Internally limited -65 to +150 °C Oto+150 °C Dimensions in mm 165 6/82 CONNECTION DIAGRAM AND ORDERING NUMBERS (top view) s- 1'j66fl Ordering Numbers Output Voltage L78M05CV L78M06CV L78M08CV L78M12CV L78M15CV L78M18CV L78M20CV L78M24CV 5V 6V 8V 12V 15V 18V 20V 24V BLOCK DIAGRAM 166 SCHEMATIC DIAGRAM r-~~----------~--------~----~--~------~----OIN R9 R4 RI3 02 R5 ~~-----+--4-------~----~~---oOUT R6 D1 TEST CIRCUITS Fiq. 1 - DCparameters Fiq. 3 - Ripple rejection Fig. 2 - Load regulation JL 30~s Vo ov THERMAL DATA Rth j-case Rth j-amb Thermal resistance junction-case Thermal resistance junction-ambient max max 167 3 50 ELECTRICAL CHARACTERISTICS L78MOOC(Refer to the test circuits,Tj =25°C, 10= 350mA unless otherwise specified, Ci = 0.33 J.1F, Co = 0.1 J.1F) OUTPUT VOLTAGE INPUT VOLTAGE (Unless otherwise specified) Parameter Vo Test conditions Output Min. 4.8 5 6 8 12 10 11 14 19 Typ. 5 Max. Min. 5.2 5.75 Typ. Max. 6 6.25 Min. 7.7 Typ. 8 Unit Max. Min. Typ. Max. 8.3 11.5 12 12.5 voltage 10= 5 to 350 mA 6V o Line regulation 10= 200 mA 4.75 5 5.25 (V;= 7 to 20VI 5.7 6.3 6 (V;= 8 to 21VI 7.6 8 8.4 (V;= 10.5 to 23VI 11.4 12 12.6 (V;= 14.5 to 27V1 100 (V;= 7 to 25VI 100 IV;= 8 to 25VI 100 IV;= 10.5 to 25VI 100 IV;= 14.5 to 30VI 50 IV;= 8 to 25VI 50 IV;= 9 to 25VI 50 IV;= 11 to 25VI 50 IV;= 16 to 30VI 100 120 160 240 50 60 80 120 6 6 6 6 0.5 0.5 0.5 0.5 0.8 IV;= 8 to 25VI 0.8 (V;= 9 to 25VI 0.8 (V;= 10.5 to 251 0.8 IV;= 14.5 to 30VI V mV 6V o Load 10= 5 mA to 0.5A regulation mV 10= 5 mA to 200 mA Id Quiescent current 61 d' Quiescent 10= 5 mA to 350 mA current change 6V o . Output 6T Voltage 10= 200 mA 10= 5 rnA T j = 0 to 125°C mA mA -0.5 -0.5 -0.5 -1.0 mVtc 40 45 52 75 !-IV 56 IV;=11.5 to 21.5VI 55 (V;= 15 to 25VI dB drift eN Output noise B= 10Hz to 100KHz voltage SVR Supply voltage rejection Vd Dropout voltage Ise Short circuit f= 120Hz 10= 300 mA V;= 35V 62 IV;= 8 to 18VI 59 IV;= 9 to 19VI 2 2 2 2 V 300 270 250 240 mA 700 700 700 700 mA current Isep Short eire. peak current 168 ELECTRICAL CHARACTERISTICS L78MOOC (continued) OUTPUT VOLTAGE INPUT VOLTAGE (Unless otherwise specified) Parameter Vo Test conditions Output Min. 14.4 15 18 20 24 23 26 29 33 Typ. Max. Min. Typ. Max. 15 15.6 17.3 18 18.7 Min. Typ. Max. Min. 19.2 20.8 23 20 Typ. 24 Unit Max. 25 Voltage /oVO line 10= 5 to 350 mA 14.25 15 15.75 (V;= 17.5 to 30V) 17.1 18 18.9 (V;= 20.5 to 33V) 19 20 21 (V;= 23 to 35V) 22.8 24 25.2 IV;= 27 to 38VI 10= 200 mA 100 IV;= 17.5 to 30V) 100 IV;= 21 to 33V) 100 IV;= 23 to 35V) 100 IV;= 27 to 38VI 50 IV;= 20 to 30VI 50 IV;= 24 to 33VI 50 IV;= 24 to 35V) 50 IV;= 28 to 38VI 10= 5 mA to 0.5A 300 360 400 480 10= 5 mA to 200 mA 150 180 200 240 6 6 6 6 0.5 0.5 0.5 0.5 0.8 IV;= 17.5 to 30V) 0.8 IV;= 21 to 33V) 0.8 IV;= 23 to 35V) 0.8 IV;= 27 to 38V) regulation V mV /OVo Load regulation Id mV Quiescent current /Old Quiescent 10= 5 mA to 350 mA current /oVo /OT eN SVR change 10= 200 mA Output voltage drift T amb = Output noise voltage B= 10Hz to 100KHz Supply voltage mA mA 100;: 5 mA a to 125°C f=120Hz 10= 300 mA -1 -1.1 -1.1 -1.2 mVtc 90 100 110 170 !'V 54 IV;= 18.5 to 28.5V) 53 IV;= 22 to 32V) 53 IV i = 24 to 34V) 50 IV;= 28 to 38V) dB 2 2 2 2 V 240 240 240 240 mA 700 700 700 700 mA rejection Vd Dropout Voltage Ise Iscp Short circuit current Vi= 35V Short eire. peak current 169 Fig. 4 - Dropout voltage vs. junction temperature Fig. 5 - Dropout charac· teristics G-46\9 -416 "I-Vo " L78MXX (V) 1.5 -- '"'- tovo"S'" of Vo -- our =100mA i OmA 16UT"OV j I 20~ L76MOS ! ~itt 200rnA t--i--- DROPOUT CONDITIONS i IV 1 r--I- ~A r--r-::: :.- r- I--r--: :-- ~ '"'- t/"i -25 0 25 50 75 100 Tj 'i ~ i <:::: i I'" I:::-, i Fig. 9 - Quiescent current vs. junction temperature Fig. 8 Supply voltage rejection vs. frequency S,R r-r-TTTTn-"""11T~"rmn-ni'iWr\, L78M12 G-H2:;: 0 I ! ImA I (dB) L78M05 jVIN .1OV I·····;:...t' '-..J 0 '" I 1 I r I ! 60 45 "- 1 11.92 lOUT =200mA I I ill 11.8 4 H~OUT:5V .- - - r-- I 12.0 ~;~~ 1"-': ~" 0'0 0.2 10 G-4520 . -...;::~ 04 ('e) Fig. 7 - Output voltage vs. junction temperature I ~ b- ti 125 ~ Y 06 11 ilL ! I 1 --. I /1/ ~ --... 0.8 y/ I ))1 -50 Fig. 6 - Peak output current vs. input-output differential voltage I, I (A I ...... r---... r-- I- i " f- " I 1'-.' I -15 -50 -25 0 Fig. 10 25 SO 75 100 10 125 TJ rOC) Load transient 10' Fig. 11 10' D' f (Hz) -75 -50 -25 '0 IAl 25 50 75 100 125 TJ(OCl Fig. 12 - Quiescent current vs. input voltage Line transient I, 0 ImA , G--1,1>25 I I + I 78M05 I~ou,:· --iI;5'( I I /1 I 1 I I I I I I I j I I I I 170 10 1+-I e--+-L I I , I I i ,- I I t {JJs) I I I I I 10 I 15 20 APPLICATION INFORMATION (continued) Fig. 13 - Fig. 14 - Costant current regulator Fixed output regulator Vi Notes: (1) To specify an output voltage, substitute voltage value for "XX". (2) Although no output capacitor is needed for stabil ity, it does improve transient response. (3) Required if regulator is located an appreciable distance from power supply filter. Fig. 1.5 - Circuit for increasing output voltage vxxl 5-4962 Fig. 16 -Adjustablf:' output regulator (7 to 30V) R1 R2 Fi!1. 17 - 0.5 to 10V regulator Fig. 18·- Hiqh current voltage regulator 1-'--+--0 v, 'c;l--,."...---.J -..; O.1,uF 171 APPLICATION INFORMATION (continued) Fig. 19 - High output current with short circuit protection Fig. 20 - Tracking voltage regulator ,\10 COMMON Vo ~ a1 =80534 02 2N6124 = 4.7kO 5-1,966 -Vo Fig. 21 - Positive and negative regu lator Fig. 22 - Negative output voltage circuit JI (*) D1 and D2 are necessary if the load is connected between + V0 and - V 0 Fig. 23 - High input voltage circuit Fig. 24- High input voltage circuit Vo Vo 172 APPLICATION INFORMATION (continued) Fig. 25 - High output voltage regulator Fig. 26 - High input and output voltage Vo 5-497) Fig. 27 - Fig. 28 - Remote shuntdown Reducing power dissipation with dropping resistor oj Vi 0---r--V'-v-ri R, R= Vi(min) - Vxx - lo(max) + 1--",--' VDROP(max) Id(max) Fig. 29 - Power AM modulator (unity voltage gain, 10 < 0.5) Fig. 30 - Adjustable output voltage with tern· perature compensation Note: Note: The circuit performs well up to 100 KHz. Q 2 is connected as a diode in order to compensate the variation of the QJ V BE with the temperature. C allows a slow rise-time of the V 0 R2 Vo= Vxx (1 + - - ) + V BE R1 173 APPLICATION INFORMATION Fig. 31 - Light controllers (V 0 min = (continued) V XX + V BE) (a) (b) v, Vi v0 Vo falls when the li!lht ooes up rises when the light goes up Fig. 32 - Protection against input short-circuit with high capacitance loads Vi Applications with high capacitance loads and an output voltage greater than 6 volts need an external diode (see fig. 32) to protect the device against input short circuit. In this case the input voltage falls rapidly while the output voltage decreases showly. The capacitance discharges by means of the Base-Emitter junction of the series pass transistor in the regulator. If the energy is sufficiently high, the transistor may be destroyed. The external diode by-passes the current from the Ie to ground. 174 LINEAR INTEGRATED CIRCUITS 3- TERMINAL POSITIVE VOLTAGE REGULATORS • • • • • OUTPUT CURRENT UP TO 2A OUTPUT VOLTAGES OF 5; 7.5; 9; 10; 12; 15; 18; 24V THERMAL OVERLOAD PROTECTION SHORT CIRCUIT PROTECTION OUTPUT TRANSISTOR SOA PROTECTION The L78S00 series of three-terminal positive regulators is available in TO-220 and TO-3 packages and with several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 2A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents. ABSOLUTE MAXIMUM RATINGS 10 P tot Tstg Top DC input voltage (for Va = 5 to 18V) (for Va = 24V) Output current Power dissipation Storage temperature Operating junction temperature (for L78S00) (for L78S00C) V 35 40 V internally limited Internally limited -65 to + 150 °C -55 to +150 °C o to + 150°C Dimensions in mm MECHANICAL DATA TO-3 175 6/82 CONNECTION DIAGRAMS AND ORDERING NUMBERS (top views) s,- 1568/1 Type TO-220 TO-3 Output voltage L 78S05 L 78S05C L 78S75 L 78S75C L 78S09 L 78S09C L 78S10 L 78S10C L 78S12 L 78S12C L 78S15 L 78S15C L 78S18 L 78S18C L 78S24 L 78S24C L 78S05CV L 78S05T L 78S05CT L 78S75T L 78S75CT L 78S09T L 78S09CT L 78S10T L 78S10CT L 78S12T L 78S12CT L 78S15T L 78S15CT L 78S18T L 78S18CT L 78S24T L 78S24CT 5V 5V 7.5V 7.5V 9V 9V 10V 10V 12V 12V 15V 15V 18V 18V 24V 24V - L 78S75CV L 78S09CV L 78S10CT L 78S12CV L 78S15CV L 78S18CV L 78S24CV BLOCK DIAGRAM I~.~PU~T_ _~______________________~~ 176 SCHEMATIC DIAGRAM TEST CIRCUITS Fiq. 1 - DC parameters Fig. 2 - Load regulation Fiq. 3 - Ripple rejection THERMAL DATA Rth j-case Rth j-amb max max Thermal resistance iunction-case Thermal resistance junction-ambient 177 TO-220 TO-3 3°C/W 50°C/W 4°C/W 35°C/W • .. , ELECTRICAL CHARACTERISTICS L78S00 (Refer to the test circuits, Tj = 25°C, 10= 500 mA unless otherwise specified) 5 7.5 9 10 10 12.5 14 15 Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. 7.15 8.65 9.35 9.5 9 9.4 (Vi~ llV) 9.4 OUTPUT VOLTAGE INPUT VOLTAGE (Unless otherwise specified) Test conditions Parameter Ou'tput Vo 4.8 5 5.2 4.75 5 5.25 7.5 7.9 9 10 Unit 10.5 V voltage lo~ lA (V;~ {No Line regulation 7.1 7V) (Vi~ 100 7 to 25V) (Vi~ 50 8 to 12V) 7.5 7.95 (Vi~ 9.5V) (Vi~ 120 9.5 to 25V) 8.6 (Vi~ 130 11 to 25V) (Vi~ 65 11 to 20V) 10 10.6 (Vi~ 12.5V) (Vi~ 200 12.5 to 30V) rnV rw 0 Load lo~ 20 rnA to 2A (Vi~ 60 10.5 to 20V) (Vi~ 100 14 to 22V) 100 120 130 150 rnV 8 8 8 8 rnA 0.5 0.5 0.5 0.5 regulation Id Quiescent current llid Ouiescent lo~ 20 rnA to lA lo~ 20 rnA current change rnA (V;~ llVo llT Output voltage lo~ Ti~ 5 rnA -55 to 150"C 1.3 7 to 25V) (Vi~ 1.3 9.5 to 25V) (Vi~ 1.3 11 to 25V) (V;~ 1 12.5 to 30V) -1.1 -0.8 -1 -1 rnV/"C 40 52 60 65 p.V drift eN Output noise B~ 10Hz to 100KHz voltage SVR Supply f ~ 120 Hz 60 54 53 53 dB 8 10.5 12 13 V voltage rejection Vi Operating input voltage 10 Ro Output resistance f Ise Short circuit ~ ';; 1.5A 1 KHz 17 16 17 17 500 500 500 500 rnH rnA Vi ~ 27V current Iscp Short eire. peak 3.5 3.5 current 178 3.5 3.5 A ELECTRICAL CHARACTERISTICS L78S00 (continued) I ! '---- OUTPUT VOLTAGE 12 INPUT VOLTAGE (Unless otherwise specified) 19 Test conditions Parameter Va Output r Min. Typ. Max. Min. 11.5 12 12.5 14.4 15 18 24 23 26 33 Typ. Max. 15 15.6 Min. 17.1 Typ. Max. 18 18.9 Min. 23 Typ. 24 Unit Max. 25 vol tage 10 . Vo - 1A 14.25 15 15.75 (Vi= 17.5VI 17 18 19 (Vi= 20.5VI 24 25.2 22? (Vi= 27VI 240 IVi" 14.5 to 30VI 300 (Vi" 17.5 to 30VI 360 (V,= 20.5 to 30VI 480 (Vi= 27 to 38VI 120 (Vi= 16 to 22VI 150 IV,= 20 to 26VI 180 (V," 22 to 28VI 240 (V;= 30 to 36VI 160 180 200 250 mV 8 8 8 8 mA 0.5 0.5 0.5 0.5 1 (V;" 14.5 to 30VI (V;" 17.5 to 30VI (V,= 22 to 33VI (Vi= 28 to 38V) -1 -1 -1 -1.5 mVI"C 75 90 110 170 ~V Line regulation mV I ~VO Load V 11.4 12 12.6 (V,= 14.5VI 10= 20 "IA to 2A regulation Id Qu ie5cent current 61d Quiescent current lo=20mAtolA change 10= 20mA l6;1- Output 10= 5mA voltage T amb'" 0 II eN Output nOise to 7CYC 1 1 1 mA drift B= 10Hz to 100KHz vol tage SVR Supply f=120Hz 53 52 49 48 dB 10'C 1.5A 15 18 21 27 V vol tage reJectton V, Operating Input voltage Ro Output f = 1 KHz 18 19 22 23 mD. 500 500 500 500 mA resistance Isc Short circuit Vi" 27V current Iscp Short eire. peak 3.5 3.5 current 179 3.5 3.5 A ELECTRICAL CHARACTERISTICS L78S00C(Refer to the test circuits, Tj = 25°C, 10= 500mA unless otherwise specified) OUTPUT VOLTAGE 5 7.5 9 10 INPUT VOLTAGE (Unless otherwise specified) 10 12.5 14 15 Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. 7.15 8.65 9.5 Parameter Va Output voltage Test conditions I 4.8 I I 5.2 7.5 7.9 9 9.35 10 10.5 V 10= lA i {No 5 Unit 4.75 5.25 5 IV;= 7V) 7.95 7.5 7.1 IV;= 9.5V) IVi= 7 to 25V) regulation 9 IVi= llVI 120 100 Line 8.6 (Vi= 9.5 to 25VI 9.4 10 10.6 9.4 IVi= 12.5VI 130 200 (Vi= 12.5 to 30V) (Vi= 11 to 25VI rnV 50 (Vi= 8 to 12V) 6V o Load 10= 20 rnA to 2A 60 (Vi= 10.5 to 20VI 65 IVi= 11 to 20VI 100 (Vi= 14 to 22VI 100 140 170 240 rnV 8 8 8 8 rnA 0.5 0.5 0.5 0.5 regulation Id Quiescent current 61d Quiescent current change 6V a 6T Output voltage 10= 20 rnA to lA 1.3 I l o=20rnA 1.3 1.3 1.0 rnA (Vi= 7 to 25VI (V; = 9.5 to 25VI IV; = 11 to 25VI (Vi= 12.5 to 30VI -1.1 -0.8 -1 -1 mV/"C 40 52 60 65 MV 10= 5 rnA T amb= 0 to 7rJ'C drift eN Output B= 10Hz to 100KHz noise voltage SVR Supply voltage f = 120 Hz 54 48 47 47 dB 10 ';; 1.5A 8 10.5 12 13 V rejection Vi Operating input voltage Ro Ise Output resistance f = 1 KHz 17 16 17 17 Vi = 27V 500 500 500 500 mil mA Short circuit current Is"" Short eire. peak 3.5 3.5 current 180 3.5 3.5 A ELECTRICAL CHARACTERISTICS L78S00C (continued) OUTPUT VOLTAGE 12 15 18 24 INPUT VOLTAGE (Unless otherwise specified) 19 23 26 33 Test conditions Parameter Vo Output Typ. Max. Min. 11.5 12 12.5 11.4 12 12.6 14.5V) Min. 14.4 Typ. Max. 15 15.6 Min. Typ. Max. 17.1 18 18.9 Min. 23 Unit Typ. Max. 24 25 voltage lo~ lA (Vi~ 6V o Line 240 14.5 to 30V) (Vi~ regulation 14.25 15 15.75 (Vi~ 17.5V) (Vi~ 300 17.5 to 30V) 17 (Vi~ (Vi~ 18 19 20.5V) 360 20.5 to 30V) 22.8 24 25.2 27V) V (Vi~ (Vi~ 480 27 to 38V) rnV 120 (Vi~ 6V o Load lo~ 16 to 22VI 20 rnA to 2A 150 (V i~ 20 to 26V) 180 (V i~ 22 to 28V) 240 (V,~ 30 to 36V) 240 300 360 480 rnV 8 8 8 8 rnA 0.5 0.5 0.5 0.5 regulation Id Quiescent current 61d Quiescent current change 'o=20mAto1A lo~ 20 rnA (V, 6V o Output 10= 5mA 6T voltage drift Tamb~ Output B~ eN ~ 1.0 14.5 to 30V) (V, ~ 1.0 17.5 to 30V 1.0 (V, ~ 20.5 to 30V) (V, ~ 1.0 27 to 38V) rnA -1 -1 -1 -1.5 rnV/oC 75 90 110 170 "V 0 to 70°C 10Hz to 100KHz noise voltage SVR Supply f~120Hz 47 46 43 42 dB 10 15 18 21 27 V voltage rejection Vi Operating ';; 1.5A input voltage Ro Output f ~ 1 KHz 18 19 22 28 rn!l 500 500 500 500 rnA resistance Ise Short circuit current Iscp Short eire. peak Vi ~ 27V 3.5 3.5 curren~ 181 3.5 3.5 A F iq. 4 - Dropout voltage vs. junction temperature ------ ---- G-4386 ......... ,.... J -.......; t-- CON::~ DROPOUT' oj "0 I i i -50 [Jl III 2~ lIVo~5·1. -75 I -25 0 25 50 75 100 --- " ~" ~:::-- r'--... f--I~~ L 76505 "R:c_ O'c <~ ,,~ ~'c i0 ISo.(' f- i L 16SXX i I 11---- 2.5 ~ ......... - (A) r- ~ r- §O!t. ..::::: I:::-- ...... k'- I" ":"" ~ " I 125 Fig. 6 - Supply voltaqe rejection vs. frequency <3438511 10 I r- t-2= F!- ......... 1.5 Fig. 5 - Peak output current vs. input/output differential voltage rc) Tj 25 V,-Vo(V) Fig. 7 - Output voltage vs. j unction temperature Fig. 9 - Quiescent current vs. junction temperature fig. 8 - Output impedance vs. frequency 0-4389 V. 20 'd (V) (nl (mA) Vi~19V l78S12 vidvl I-- - Yo=sv I I-- -- lo:500mAI f--+-...,--j-+--j~:~~"mA 1-+---t----1 '" , I / IO'UMB• • 11.9 '" -50 -25 0 25 50 75 m 125 Fig. 11 response Fig. 10 - Load transient response G-q92 ","0'1 I I I _ Vo=5V , - r l-f- ..... - rf-- 10 L (A) .vo --- r-- - - lO -- t- r--- 0 - -_ .. OUTPUT vOLTAGE Vt I-r--- ~I--J 1 10 20 30 2S 50 75 -10 +t- l18S05 f- Vo = 5'" ~ lo:20tnA Tj :25 C ------ ~ .- -- . OUTPUT VOLTAG DEVIATION - r- -.- - 1o:5~OIA I -20 5 4.0 182 .. - ,..-7 -. -/- ':"-1-:- :..-:-- k- I --f-- ::::pi-" ! l L78S05\ I I I 3.0 I (;..Is) TJ('Cl . ..... ! ,/ - 10 (~s) 125 I 10 -~=r f- f-r-50 t 100 i G-QSO 'd (rnA) r-- -- I i -~ 20 I :~E~i~- 0 I Fig. 12 - Qu iescent current vs. input voltage (V) INPUT VOLTAGE -50 -25 L 78505 I 1.5 J _ _o.~IATON i -75 Vi I 1 , 3.6 t (Hz) 10' I Line transient (mV) L 78505 LOAD CURREN I 10' 10' 10' 10 Tj ( <5V 10= 10 mA to 1.5A T j = 25°C bl ADJ Adjustment pin current Vi-Vo= 2.5 to 40V 10= 10 mA to 1.5A V REF Reference voltage (between pin 3 and pin 1) Vi-Vo= 3 to 40V 10= 10 mA to 1.5A Minimum load current 10 max Maximum load current 1.2 Output noise (percentage of V 0) SVR Supply voltage rejection (*) Max. 0.01 0.02 0.01 0.04 0.02 0.05 0.02 0.07 5 15 5 25 20 50 20 70 0.1 0.3 0.1 0.5 0.3 1 0.3 1.5 50 100 50 100 }.LA 0.2 5 0.2 5 }.LA 1.25 1.3 1.25 1.3 V 1.2 1 3.5 V i -V o ":;15V 1.5 2.2 1 5 3.5 1.5 % 10 mA 2.2 A Vi-Vo= 40V eN Typ. Min. % Output voltage temperatu re stab i Iity 10 min Max. mV Adjustment pin current Vo Typ. %IV IADJ bV o LM 317 Test conditions 0.4 0.4 Ti= 25°C. 10Hz to 10KHz 0.003 0.003 Tj= 25°C CADJ= 0 f= 120Hz CADJ=10}.LF 65 65 % dB 66 80 66 80 (*) C ADJ is connected between pin 1 and ground. Note - Unless otherwise specified the above specs, apply over the following conditions: LM 117 T j = -55 to 150°C; LM217 T j =-25to150°C;LM317 T j =Oto125°C. 194 Fig. 1 - Output current vs. input- output differential voltage Fig. 2 - Dropout voltage vs. junction temperature .J _ (-+_.'-i-- - ==: ::-.... ;1 Tj ~15~'C , ,,~ ,'f--- - - - - ~, : '" llV o =100mV I 1.25 0 , r-- ' -- - / Io :l.5A r-- r-. -... t--- r-. r-- r-.t-- Y'_-"jC--- -- ""' , ~ , "DRO P I ) _25'C ! G" 4631/, G'A63{) [,-4629 ) Fig.3 - Reference voltage vs. junction temperature 5 V 1/ , A ~mA '" r"\ \ \ 0 I--b f- -...~ '2~ f +100 \ 1.23 5 Tj(e') i -50 +50 -I- 100 '\ T, (C') APPLICATION INFORMATION The LM 117/LM 217/LM 317 provides an internal reference voltage of 1.25V between the output and adjustment terminals. This is used to set a constant current flow across an external resistor divider (see fig. 4), giving an output voltage Va of: Fig. 4 - Basic adjustable regulator Va = V REF (1 + £L) Rl + IADJ R2 The device was designed to minimize the term IADJ (100 J.lA max) and to maintain it very constant with line and load changes. Usually, the error term IADJ • R2 can be neglected. To obtain the previous requirement, all the regulator quiescent current is returned to the output terminal, imposing a minimum load current condition. If the load is insufficient, the output voltage will rise. Since the LM 117/LM 217/LM 317 is a floating regulator and "sees" only the input-to-output differential voltage, supplies of very high voltage with respect to ground can be regulated as long as the maximum input-to-output differential is not exceeded. Furthermore, programmable regulator are easily obtainable and, by connecting a fixed resistor between the adjustment and output, the device can be used as a precision current regulator. In order to optimise the load regulation, the current set resistor Rl (see fig. 4) should be tied as close as possible to the regulator, while the ground terminal of R2 should be near the ground of the load to provide remote ground sensing. No external capacitors are required, but performance may be improved with added capacitance as follows: An input bypass capacitor of 0.1 J.lF. An adjustment terminal to ground 10 J.lF capacitor to improve the ripple rejection of about 15 dB (C ADJ )· An 1 J.lF tantalum capacitor on the output to improve transient response. 195 APPLICATION INFORMATION (continued) In additional to external capacitors, it is good practice to add protection diodes, as shown in fig. 5. Fig. 5 - Voltage regulator with protection diodes. lN4001 D1 D1 protects the device against input short circuit, while D2 protects against output short circuit for capacitors discharging. Fig. 7 - Current regulator Fig. 6 - Slow turn-on 15V regulator ~ Rl Vi V ref 10= ~+ I _ 1.25V ADJ = -R-l-- 0 0 = 10mAtol.5AI Fig. 8 - 5V electronic shut-down regulator Fig. 9 - Digitally selected outputs . DIGITAL INPUTS (R2 sets maximum Vol 196 5-5055/1 APPLICATION INFORMATION (continued) Fig. 10 - Battery charger (12V). Fig. 11 - Current limited 6V charger. Vi • Rs sets output impedance of charger R2 Zo ~ Rs (1 + R j ) * R3 sets peak current (O.6A for 1 n). Use of Rs allows low charging rates with fully charged battery. * * C 1 recommended to filter out input transients. 197 LINEAR INTEGRATED CIRCUITS PRELIMINARY DATA LOW POWER QUAD OPERATIONAL AMPLIFIERS • • • • SINGLE OR SPLIT POWER SUPPLY VERY LOW POWER CONSUMPTION INPUT COMMON-MODE RANGE INCLUDING GROUND LARGE DC VOLTAGE GAIN (100 dB) The LM 324 consists of four indipendent, high gain, internally frequency compensated opamps specifically designed to operate from a single power supply over a wide range of voltages. Botn in split and in single supply the current drain is independent of the magnitude of the power supply voltage. In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operating from only a single power supply voltage. The LM 324 is available in a standard 14-lead dual in-line plastic package and in a 14-lead micropackage version for thick or thin film hybrid circuits. ABSOLUTE MAXIMUM RATINGS VS Vi Vi Ptot Top Supply voltage Input voltage (single supply) Differential input voltage Total power dissipation Operating temperature for: LM 2902 LM324 LM 324A T stg Storage temperature MECHANICAL DATA 6/82 32 -0.3 to 26 32 400 to 70 -25 to 85 -55 to 125 -65 to 150 o V V V mW °C °C °C °C Dimensions in mm 198 CONNECTION DIAGRAM AND ORDERING NUMBERS (top view) OUTPUT A OUTPUT D INV.INP. A '3 INV.INP. 0 NON INY. INP. A 12 NONINV,INRD Type -Vs DIP-14 LM 324 LM 324N 80-14 LM 324CM NON JNV.INRC LM 324A LM 324AN - INV.INP. B INV.INP. C LM 2902 LM 2902N LM 2902CM OUTPUT B OUTPUT C NON I NV.INP. B 10 :.- SCHEMATIC DIAGRAM (one section) r---------------~--~--~--~--~--u+Vs RSC NON-INVERTING INPUT Q8 Q9 THERMAL DATA Rth j-amb DIP 14 Thermal resistance junction-ambient max • Measured with the device mounted on a ceramic substrate (25 x 16 x 0.6 mm). 199 200°C/W SO 14 200 0 C/W* ELECTRICAL CHARACTERISTICS (v. = +5V, Tamb = -55 to 125°C for the LM 324A, T amb = -25 to 85°C for the LM 324 and T amb = 0 to 700C for the LM 2902, unless otherwise specified) LM324 Parameter Supply current Input bias current Ib R L= 00 Vs = 30V Typ. Max. Min. Typ. I nput offset voltage R g= 0 los Input offset current Tamb - 25°C 3 1.5 3 1.5 3 0.7 1.2 0.7 1.2 250 45 100 45 ±2 200 ±7 ±2 ±9 ±5 ± 50 Gv 60 nA ±7 ± 10 7 30 7 ± 5 ±30 ±5 rnV Ilv/"e ± 50 nA ±200 10 300 10 40 60 40 "AI"e 60 rnA to ground current Large signal open loop voltage gain Vs= 15V RL;> 2 KS1 Tamb = 25°C 88 100 88 83 Vo ±2 ±3 ±75 10 40 Tamb= 25"e (.) 250 500 ±5 7 ~ Inp'ut offset current LIT drift Output short circuit Max. 1.2 ±150 Ise Typ. 1.5 45 Rg= 0 T amb = 25"e Vs = 5Vt03OV InRut offset voltage Min. rnA Tamb = 25°C t:,vos ~drlft Max. 0.7 500 Vos LM 2902 Unit Min. IS LM324A Test conditions I nput common-mode voltage range Vs = 30V Output voltage swing T amb = 25"e T amb = 25"e 100 100 83 0 V s-1.5 0 Vs-1.5 0 V s-1.5 0 Vs-2 0 Vs-2 0 Vs-2 R L = 2 KS1 V s-1.5 V s-1.5 Va sat Output saturation V V R L ;>10KS1 Vs = 30V dB 83 V s-1.5 R L = 2 KS1 26 R L ;>10KS1 27 22 26 28 RL'; 10 KS1 5 27 20 V 28 5 23 24 5 20 100 rnV voltage to ground eMR Common mode rejection T amb = 25°C 65 70 65 85 50 70 dB SVR Supply voltage rejection T amb = 25"e 65 70 65 100 50 70 dB es Channel separation f = 1 KHz to 20 KHz T amb = 25"e (I "put referred) 120 dB 1o ' Output source current 10 - Output sink current Vs = 15V Vi'= 1V V i - = OV VI' = OV Vi-= 1V V o= 200 rnV V I -= 1V Vi' = OV Vs= 15V (*) T amb = 25"e 120 120 20 40 20 40 20 40 10 20 10 20 10 20 T amb = 25"e 12 50 12 50 Tamb= 25"e 10 20 10 20 10 20 5 8 5 8 5 8 rnA IlA rnA Short circuits from the output to positive supply voltage can cause excessive heating and eventual destruction. The maximum output current is 40 rnA typo independent of the magnitude of Vs. Destructive dissipation can result from simultaneous shorts on all amplifiers. 200 (, - ~6 " ~6J3 "; I I, Fig. 3 - Output short circuit current vs. ambient temperature G· 5 Fig. 2 - Input voltage range vs. supply voltage Fig. 1 - Supply current vs. supply voltage tv ImA ) J ) Tamb =2S'C RL=m 16 I 1.5 , , I 0.9 !16 --1 1 ;-j '-- ~ V 20 25 "30 1,0 ;-jV 03 15 ~ ~ 06 10 Vj Negative !12 50 V 30 , 10 ~12 "'s(lI) :!.16 -50 ':Vs(V) 50 0 "'5=15V 100 60 1""- 60 100 f-- f-- I Vo ImV ) IICl"SOpF V,.30V I-------r-' G~:40dB 16 RL=2K!l. 40 a " r- -.C I""- "- 10K OUTPUT f\v 300 '-.. ""- f(Hz) 1- ' ./ 1\ "'\ I II 350 \ 1""- -tnt- I 10 '""- 1 Tamb=25'C~- - - INPUT 12 ""- 20 10 V5 =1511 Tamb:2SOC "- ~ lamb('C) G-4632 G-HJ6 J ) 100 Fig. 6 - Voltage follower pulse response (small signal) Fig. 5 - Large signal frequency response Fig. 4-0pen loop frequency response "- I 20 !~ '" 25 a V 1 I I 10' APPLICATION INFORMATION The LM 324 can operate with a single power supply voltage, has true-differential inputs and remains in the linear mode with an input common-mode voltage of OV. The four included op amps work over a wide range "Of power supply voltage with little change in performance characteristics. At 2SoC operation is possible down to a minimum supply voltage of 2.3V. The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is Vs -1.5V, but either or both inputs can go to +32V without damage. If the voltage at any of the input leads is driven negative (V in < -0.3Vl, the collector-base junction of the input PNP transitor becomes forward biased and thereby acts as an input diode clamps (max current: 50 rnA). In addition to this diode action, there is also lateral NPN parasitic transistor action on the Ie chip. This can cause the output voltage to go to the positive supply voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage again returns positive (V in >-0.3V). The output stage design allows the amplifiers to both source and sink large output currents. Therefore both NPN and PNP external current boost transistors can be used to extend the power capa201 APPLICATION INFORMATION (continued) bility of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to bias the on-chip vertical PNP transistor for output current sinking applications. Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive junction temperature. Putting direct short-circuits on more than one amplifier at a time, the total Ie power dissipation will increase to destructive levels, if not properly protected with external dissipation limiting resistors in series with the output leads of the amplifiers. The larger value of output source current which is available at 25°C provides a larger output current capability at elevated temperatures (see typical performance characteristics) than a standard IC op amp. The circuits presented in the following section emphasize operation on a single power supply voltage. If split supplies are used, all the standard op amps configuration can be realised. TYPICAL SINGLE SUPPLY APPLICATION CIRCUITS (V s = 5V) Fig. 8 - Power amplifier Fig. 7 - DC summing amplifier R1 +Vi n o--1t--I where: Vo=VI+V2-V3-V4 (VI + V 2 )';;' (V 3 + V4 ) to keep Vo Fig. 9 - LED driver > OV Fig. 10 - Lamp driver Fig. 11 - Fixed current sources V' R2 202 TYPICAL SINGLE SUPPLY APPLICATION CIRCUITS (continued) Fig. 13 - Ground referencing a differential input signal Fig. 12 - Comparator with Hysteresis Hysteresis I~I R1 V rT° H VOL~" VinL VREF VinH R4 5 - 5069 S~5068 R1 VinL= R1+R2 (VOL-VREFI+VREF R1 VinH = R1+R2 (VOH-VREFI+VREF Hysteresis= R1 R 1 + R2 (V OH - V OLI Fig. 15 - Squarewave oscillator Fig. 14 - Driving TTL R1 S - 5071 Fig. 17 - Wien bridge oscillator Fig. 16 - High input Z, DC differential amplifier R2 50Kil +~~._ 2 For R1 R2 Vo= 1+ R4 R3 R4 R3 r-," (CMRR depends on this resistor ratio match) (V2-V1) fo 203 = 2 1 RC 7T I TYPICAL SINGLE SUPPLY APPLICATION CIRCUITS (continued) Fig. 18 - Function generator TRIANGLE WAVE OUTPUT SQUARE >--H:.JWAVE OUTPUT f= Rl + RC , R3= 4CR f Rl R2 Rl R2+Rl Fig. 19 - Bi-Quad filter 1 Rl fo= 211 RC ; Rl= QR; R2= G BP ; 1 V ref =2" Vs; R3=G N R2; Cl=10C Example: fo = 1 KHz Q= 10 R = 160 K!l C = 1 nF Rl= 1.6 M!l R2= 1.6M!l R3= 1.6 M!l Where: G BP= Center Frequency Gain G N = Passband Notch Gain R2 204 LINEAR INTEGRATED CIRCUITS PRELIMINARY DATA QUAD VOLTAGE COMPARATOR The lM 339 and the lM 339A are monolithic integrated circuits in a 14-lead dual in-line plastic package and in a 14-lead micropackage. They consists of four independent precision voltage comparators and are specially designed to offer a versatility as high as possible; application areas include limit comparators, AID converters, waveforms generators, high voltage logic gates and so on. Furthermore, the open collec· tor output stage provides easy interfacing with all types of logic circuitry. The lM 339/lM 339A main features are: - Wide supply range (2 to 36V) Single or split supply operation Very low current consumption (0.8 rnA, regardless of supply voltage) Ground input compatibility Output voltage compatible with TTL, DTl, ECl, MOS and CMOS logic systems - Output short circuit to ground continuous ABSOLUTE MAXIMUM RATINGS Vs VI Vi Ii Ptot Top T stg • Supply voltage Input voltage range Differential input voltage Input current (V in < -0.3 VdC) Total power dissipation at Tamb = 25°C Operating temperature Storage and junction temperature ±180r+36 -0.3 to 36 36 50 600 a to 70 -65 to 150 V V V rnA mW °C °C Dimensions in mm MECHANICAL DATA 205 6/82 CONNECTION DIAGRAM AND ORDERING NUMBERS (top view) OUT2 14 OUT 3 OUT 1 13 OUl4 +Vs 12 GNO 11 IN4(+) DIP14 Type IN1(-) 4 IN1("') 5 IN4(-) IN2(-) 6 IN 3(+) lN2('" ) 7 IN3(-) LM 339 LM 339N LM 339A LM 339AN SO-14 LM 339CM - 5- 5169 SCHEMATIC DIAGRAM (each section) INPUT (+) OUT 17:'Y To------+----+--------' 5- 5170 THERMAL DATA Rth j-amb DIP-14 max Thermal resistance junction-ambient • Measured with the device mounted on a ceramic substrate (25 x 16 x 0.6 mml. 206 200°C/W SO-14 200°C/W* ELECTRICAL CHARACTERISTICS (V s = +5V for the LM 339; Vs = +15V for the LM 339A; T. mb = 25°C, unless otherwise specified) LM 339A Parameter Unit Typ. Max. Input offset voltage At out.switch point Vo"l.4V;Rg~ 0 Tamb~ 0 to 70"e VREF~ 1.4 V dc ± 1 ±2 I nput bias current Output in linear 25 (1) range Min. Vas Ib los ±5 Tamb~ 0 to 70'e Input CommanTamb~ 0 to 70'e (2) Supply current RL ~ Voltage gain R L ;;' 15 Krl Large signal ± 2 Max. ±5 ±9 250 25 250 ±50 ±5 ±50 ±150 0 V s-l.5 0 Vs-l.5 0 Vs-2 0 Vs-2 0.8 nA 2 0,8 2 nA V mA 106 106 dB response time V IN - TTL logic swing; VREF~ +l.4V; RL ~ 5.1 Krl V RL ~ 5V 300 300 nsec RL ~ 5.1 Krl 1.3 1.3 }jsec Response time (3) VRL~5V; 10 Output sink current V IN (-);;' lV; Va';;; 1.5V V sat Output saturation voltage V1N(-);;' lV VIN(+I~ OV I sink < 4 rnA 10 leak Output leakage current Differential input voltage V1N(+);;' lV V 1N (-) ~ OV 94 mV 400 ±150 = Is Gv Typ. 400 I npu t offset Mode voltage range Min. ±4 Tamb~ 0 to 700 e cu rrent Notes: L339 Test conditions V 1N (+)- OV; 6 16 250 Tamb~ 0 to 700 e Va ~ 5V 6 500 700 0.1 T amb - 0 to 700 Vo~ 30V e All V 1N ;;' OV (or -Vs if split supply is used); Tamb~ 0 to 70c e 16 250 mA 500 700 0.1 mV nA 1 1 I1A 36 36 V (1) The direction of the current is out of the Ie due to the PNP input stage. This current is essentially constant, independent of the state of the output, so no loading change exists on the reference or input lines. (2) If either input of any comparators goes more negative than 0.3V below ground, a parasitic transistor turns on causing high input current and possible faulty outputs. This condition is not destructive providing the input current is limited to less than 50 mAo (3) The response time specified is for a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 nsec can be obtained. 207 APPLICATION INFORMATION The LM 339 includes four high gain, wide bandwidth devices which, like most comparators, can easily oscillate if tht! output is inadvertently allowed to capacitively couple to the inputs via stray capacitance. That occurs during the output voltage transitions, when the comparator changes stat~. To minimize this problem, PC board layout should be designed to reduce stray input-output coupling; reducing the input resistors to less than 10 Kn reduces the feedback signal levels and finally, adding even a small amount (1 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible. It is good design practice to ground all unused pins. The differential input voltage may be larger than positive supply without damaging the device. Note that voltages more negative than -0.3V should not be used: an input clamping diode can be used as protection. The output of the LM 339 is the uncommitted collector of a NPN transistor with grounded emitter. This allows the device to be used like any open-collector gate providing the OR-wide facility. The output sink current capability is approximately 16 rnA; if this limit is exceeded, the output transistor will come out of saturation and the output voltage will rise very rapidly. Under this limit, the output saturation voltage is limited by the approximatively 60n rsat of the output transistor. Fig_ 1 - Basic comparator Fig. 3 - Inverting comparator with Hysteresis Fig. 2 - Non-inverting comparator with Hysteresis +V +V 3KJl +VREFo----i~ +VINo----I 3K !l >-+--OVO 5-5118 Fig.4 - Driving C/MOS Fig. 5 - Driving TTL +5V +5V 5-5173 208 APPLICATION INFORMATION (continued) Fig.6 - AND gate Fig.7 - OR gate 3 K!l A "---"-'---A v-'--_~----' B o--L_}--+----..--l C ,",---"-L J :VST ~VST "0" A+ B+C B~~_r_-~~~ "0" "1" Cv-----,_-'-- "1" 5 - 5175 5- 51 7i. Fig.9 - Squarewave oscillator Fig. 8 - Large fan-in AND gate +Vs 4.3 K IL lOOK IL Vo + v s T U o 1=100KHz 5-5177 Fig. 10 - Time delay generator Fig. 11 - ORing the outputs ... 15 V 10Kll 15KIl. 200Kll 10 K n 51 Kj) 10K11 +lS;TL.. to Ve , V,N J!nF INPUT GATING SIGNAL 'l2[ V3 ------ V2 ---- v, _ I ~ I I to +15V oT to V, 12 51 Kll .15V o 10KIl e' 14 : ' t, t, I 13 '4 lQKJl +15V oT to t, v, 51 Kll I s- 5333 209 APPLICATION INFORMATION (continued) Fig. 12 - Peak audio level display 560.n IN Fig. 13 - PC Board and component layout of the circuit of fig. 12 ... ,2V 1 K1L R1 RS S.8K 11 >-,'4"--_"3-:'d80,("1.4"-V')-----! R" 68011 13 -1008(0.6V) 5-5160 Fig. 15 - Zero crossing detector (split supplies) Fig. 14 - Zero crossing detector (single supply) +lSV V I Nmin "" O.4V peak for 1% phase distortion (ll ()) D1 prevents input from going negative by more than O.6V: R1 + R2 = R3 R3';; ~~ for smaller error in zero crossing 210 LINEAR INTEGRATED CIRCUIT BALANCED MODULATOR • SINGLE OR DUAL SUPPLY OPERATION • LOW POWER CONSUMPTION • LOW CARRIER LEAKAGE • LOW DISTORTION • LOW NOISE The LS025 is a low noise linear integrated circuit, intended for use as a channel modulator and demodulator in FDM telephone equipments and as analogue AC and DC multiplier in industrial and professional applications. It features low quiescent power consumption, low distortion and intermodulation. It shows a typical carrier leakage better than 85 dB throughtout the audio bandwidth. The LS025 is available in TO-l00 metal case, while the hermetic gold chip (8000 series) is available in SO-14 (14-lead plastic micropackage). This last version is particularly suitable for professional and telecom applications wherever very high MTBF are required. ABSOLUTE MAXIMUM RATINGS TO-100 Supply voltage Differential input voltage Operating temperature Power dissipation at T. mb = 70°C Storage temperature J-Lpackage 30V ±5V -25 to 85°C 520 mW 400 mW -65 to 150°C -55 to 150 °C MECHANICAL DATA Dimensions in mm ]:lr 211 6/82 CONNECTION DIAGRAMS AND ORDERING NUMBERS (top views) CARRIER INPUTS ~, OUTPUT MULTIPLIER 14~LTIPLIER INPUT [2 INPUT CARRIER INPUTS , iSIGNAL OR MULTIPLIER 7 INPUTS MULTIPLIER INPUTS (X AXIS) INPUT BIAS I SIGNAL OR 9 MULTIPLIER INPUTS Type TO-100 SO-14 LS025 LS 025T LS025M LS 8025M LS 8025 SCHEMATIC DIAGRAM (The pin numbers refer to the ",package version, while the numbers in brackets refer to the TO-100 version) 6(6) ,----+--c O.5kfi L ____+-I---___k (10)21(7) _ _ _+_~_~J ~L_o5(5) 9(8) THERMAL DATA Rth j-amb __ I Thermal resistance junction ambient TO-100 max 155°C/W • The thermal resistance is measured with the device mounted on a ceramic substrate (25 x 16 x 0.6 mm). 212 SO-14 200* °C/W ELECTRICAL CHARACTERISTICS (Referred to the circuit of fig. otherwise specified. The pins correspond to the /Lpackage version) Parameter Test conditions Min. 1; T amb = Typ. 25°C unless Max. Unit -30 V 2 2.5 rnA 2 2 4 /LA /LA /LA Vs Supply voltage range -12 Is Supply current Ib I nput bias cu rrent Pins 14-1 Pins 14-2 Pins 8-9 0.7 0.7 1.4 AI Input offset current Pins 14-1 Pins 14-2 Pins 8-9 50 70 100 nA nA nA 4.5 V -8 V Positive input common mode voltage Negative input common mode voltage Vo DC output voltage (pin 12) AVo Differential output voltage (pins 11-12) V ref I nput biasing reference voltage (pin 6) Ri I nput resistance Ro Output resistance Vo Output voltage swing CMR Common mode rejection SVR -3.2 Pins 14-1 Pins 14-2 Pins 8-9 f = 1 kHz -3.8 -4.6 V 25 100 mV -7.5 V 30 300 150 k!1 k!1 k!1 3 10 !1 1.3 Vpp 98 dB CM signal (pins 14-2) V = 700 mVrms fl= 10 kHz Diff. signal (pins 8-9) V = 350 mVrms f2= 40 kHz 86 dB CM signal (pins 8-9) V = 350 mVrms fl= 10 kHz Diff. signal (pins 14-1) V = 175 mVrms f2= 40 kHz 80 dB 33 dB 80 dB 1 eM signal (pins 14-1) V = 700 mVrms fl= 10 kHz Diff. signal (pins 8-9) V = 350 mVrms f2= 40 kHz Positive supply voltage rejection f = 1 kHz SVR Negative supply voltage rejection 213 ELECTRICAL CHARACTERISTICS (continued) Test conditions Parameter Typ. Max. Scale factor Gc Conversion gain t.G c Conversion gain change T amb = 10 to 50"C Carrier leakage V m= 4.5 a Modulating signal leakage 5 Unit V-I 3.2 K Vfm Min. 5.5 dB ± 0.1 dB -35 -50 dBv -35 -50 dBmo -75 dBmo V (fc±fml V(2 f m l V (fc±fml V (fc±2fml 2nd harmonic modulating signal leakage 2nd harmonic distortion --60 -75 dBmo 2nd harmonic d,stortion -55 -80 dBmo 3rd harmonic distortion -60 -79 dBmo -115 -125 dBv -127 dBv V (fc±fml V 2 (fc ±f m l V (fc±fml V(fc±3 f m l V (fc±fml Low frequ ency thermal noise High frequency thermal noise Vm=O B = 100 Hz f = 1 kHz Vm=O B = 100 Hz f=30kHz Fig. 1 - Test and application circuit of modulator with single supply voltage Working conditions Vs= -20V fc=130kHz fm =25 kHz Vo= -15 dBv (fc Vc= -13 dBv R L = 600 n 214 ± fm) Fig. 2 - Carrier leakage vs. modulation signal input offset Fig. 3 - Conversion gain vs. frequency Fig. 4 - Distortion vs. output level G,r-rr~~TTTmrn-"nITmIIIr-TTITTIm (dB) f-t+H-+1IIII--++-tffii/tl;;-,,:-'.:-'_""""dB~,It-++ttttll V• • tIOIl -100 f-+-+-f-+--+---j:cL ::~z f-t+H-+1IIII--++-tffiIllVm"·l6dB -eo - 12 f-t+H-+1IIII--++-tffiIll~m ::O~H~ - r--- IIc_·IJdBv f-+-+-+-f-+-+-+--+-+-I _2 H-t.+'f-IA-t-++-I!~:I;~:~: 10..- V i'""'-'" f--+-+-9--+--j-f--f"-4_dH H-+'-rTlH-++-HIIc=-IJdBv H-+++-H-++H~:~~~ L+ 10 10 110ft (mV) Fig. 5 - Carrier leakage adjustment circuit for system with two supply voltages 12 -votdBv) Fig. 6 - Carrier leakage vs. frequency ,dllY' ,..--rTTTTTnr-,--rrrrmr-,-ri'l'mn .10V 600n -90 f-++++A'III~.--c"'iithJ...d"'i",,:..'"m _H14 "0 1== ~~r::::::+=I=+=tim .... 15'1 ;-~t-= I)' Fig. 9 - Voltage follower pulse response Fig. 8 - Large signal frequency respo~s~" \ 100 10' 10' (V) :t 15'1 10 10 10 12 1~"" 70 ~~.~.~.~,~.~.~.-+~~~~~ 10 t 10 (mA) G 4163 0.' t-H-Iftffltt-+t+ttIfllo,.t-Httttff--t-t+1ttttl " SIN L Guaranteed performance characteristics (LS 107/LS 207) Fig. 10- Input voltage range vs. supply voltage arnb" to Fig. 12 - Voltage gain vs. supply voltage Fig. 11 - Output voltage swing vs. supply voltage __ 5 tol15 toll *_ (V) " ,0 '" " " .un 80 4 I; B 10 12 14 6 16!\Is (l/) 8 10 12 14 16 til, (1/) Guaranteed performance characteristics (LS 307) Fig. 13 - Input voltage range vs. supply voltage Fig. 14 - Output voltage swing vs. supply voltage Fig.15- Voltagegainvs.supply voltage ,,) "om~stmm am • to (dB) • G, 90 ffi~§f~~ff!J~ff~~fl .01010"(. POSITIVE " '0 t€GATlvE 80 15 6 7 8 9 10 " 12 Il !I!.(V) 5 6 1 8 9 to 11 12 13 tV,(II) 8 9 10 11 12 lJ !V. (II) TYPICAL APPLICATIONS Fig. 16 - Inverting amplifier R2:: 'i~R' 2 _ 6 J • , •• .ill. 0- ~. R1 Fig. 17 - Non-inverting AC amplifier Fig. 18 - Non-inverting amplifier Rl RI RZ ~~,o , ,0 Vo • I ]&20 R~,R2 Ri .RJ RJ • RlIR2 5-2621 235 Vi v'~' R) :'·2622 , LINEAR INTEGRATED CIRCUITS FREQUENCY COMPENSATED OPERATIONAL AMPLIFIERS • NO FREQUENCY COMPENSATION REQUIRED • SHORT CI RCUIT PROTECTION • OFFSET VOLTAGE NULL CAPABILITY • LARGE COMMON MODE AND DIFFERENTIAL VOLTAGE RANGE • NO LATCH-UP The LS 141 series consists of general purpose operational amplifiers, intended for a wide range of analog appl ications. High common mode voltage range and absence of "latch-up" tendencies make the LS 141 series.ideal for use as a voltage foliower.The high gain and wide range of operating voltage provide superior performance in integrators, summing ampl ifiers, and general feedback applications. The LS 141 series is available with hermetic gold chip (8000 series). This is particularly suitable for professional and telecom applications, wherever very high MTBF are required. ABSOLUTE MAXIMUM RATINGS TO-99 Vs Supply voltage V j (1) tNj Top Input voltage Differential input voltage Operating temperature for LS 141/LS 141A for lS 141C Output short circuit duration(2) Power dissipation at T amb = 70°C Storage temperatu re Lead soldering temperature Ptot T stg for LS 141/lS 141A for lS 141C I Minidip I J.lpackage ±22V ±18V ±15V ± 30V -55 to 125°C o to 70°C indefinite 520mW 400mW 665mW -65 to 150°C -55 to 150°C -55 to 150°C 300°C (lOs) 260°C (12s) 260°C (5s) 235°C (11s) 1) For supply voltage less than ± 15V, input voltage is equal to the supply voltage 2) The short circuit duration is limited by thermal dissipation MECHANICAL DATA 6/82 Dimensions in mm 236 CONNECTION DIAGRAMS AND ORDERING NUMBERS I': i I, ""SE'M'LCO' INVER tNPUf_ Type 2 7 NON INVER INPUT. 3 6 OUTPUT -vs 4 5 OFFSET NJLl TO-99 .Vs "'FSE''"' O' IN'o£R INPUT- 2 7 NON INVER 3 6 OUTPUT -vs to 5 OFFSET NJLl INPUT- +VS 80-8 Minidip LS 141 LS 141T - - LS 141A LS 141 AT - - LS 141C LS 141 CT LS 141 CB LS 141 CM LS 8141 - - LS 8141M LS 8141A - - LS8141 AM LS8141C - - LS 8141 CM SCHEMATIC DIAGRAM R1 R3 lkfl SOtin R2 1kfl 5-2059 THERMAL DATA Rth j-amb TO-99 Thermal resistance junction ambient max 155°C/W * Measured with the device mounted on a ceramic substrate (25 x 16 x 0.6 mm) 237 Minidip 80-8 120°C/W 200* °C/W I ELECTRICAL CHARACTERISTICS (see note) Parameter Test conditions !~141 __ LS141~k __ LS 141C Unit Typ. Max. Input offset voltage T amb = 25°C R g <;;10kn Rg <;; 50 n 2 T amb= T min to T max R g <;;10kn Rg <;; 50 n r-------.-.----- f---[:, Vos ~ In pu t offset voltage adjust. range Vs= ± 20V Vs= ± 15V T amb = 25°C ----- ~--------r--" .----.... Average input offset voltage Ri i 20 85 current Input resistance T amb = 25°C 3 200 500 30 20 70 I 2 1 30 6 to T max Large signal voltage gain ±13 ±12 94 nA 80 0.21 80 0.3 2 500 0.8 nA IJ-A Mn Mn ±13 ±12 ±13 V 86 106 dB dB 84 ±12 ±10 ±14 ±13 V 25 mA mA - 238 nA nA OC 0.5 ±12 200 300 i I 0.3 T amb= T min to T max 15 0.5 I T amb = 25°C T amb= T min to T max Input voltage range ±15 -L-L T amb= T min to T max ~ T amb= T min Vi mV mV I I I ±_1d_j±10 I Average input offset current drift Input bias +-' ' f---_ _d_rif_t_ - - 1_ _ _ _ _ _ _ Input offset T amb = 25°C current mV mV + 'J J ~-' I-+-i__ _7_.5+-~_~-i i _il 6 ...•. V --'- 90 dB 96 d8 dB ELECTRICAL CHARACTERISTICS (continued) LS 141 Parameter LS 141A LS 141C Test conditions Unit Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Transient respon. T amb = 25°e (unity gain) Rise time Overshoot 0.3 5 0.25 6 B Bandwidth T amb = 25°e SR Slew rate T amb = 25°e 0.5 Is Supply current T amb = 25°e 1.7 2.8 Power T amb = 25°e Vs= ±20V Vs= ±15V 50 85 Plot consumption 0.437 1.5 0.3 0.7 80 Vs= ±20V T amb = T min T amb= Tmax 0.8 20 0.3 5 ",s % MHz V/",s 0.5 1.7 2.8 mA 50 85 150 165 135 Vs=±15V T amb= T min T amb= T max mW mW 100 75 60 45 mW mW mW mW Note: These specifications, unless otherwise specified, apply for V s= ±15V and T amb = -55 to 125°e for LS 141 and LS 141A. For the LS 141e these specifications apply for Tamb= 0 to 700 e Fig. 1 - Open loop voltage gain vs. supply voltage Fig. 2 - Output voltage swing vs. supply voltage ('·Zlll/l G, V (dB) 511,1 lS lloolA. V it- 211n ." 32 80 L LS141A 28 1IJO V " LSI41C " '0 LS 141e 20 1/ 16 / 90 as (mW) R .05 Fig. 3 - Power consumption vs. supply voltage 12 20 V Tamb =2S"C I 80 11 15 " 239 :t Vs (v) .0 15 !Vs (v) Fig.4 - Open loop voltage gain vs. frequency . Fig. 5 - Open loop phase response vs. fre· quency G-UlO (f) (dB ) '0 Fig.6 - Input offset cu rrent vs. supply voltage (for LS 141 and LS 141C) (nA) f-- f--.. 0 '0 1'\ Vs=:tlSV "'- 60 -30 "'- 0 20 ~ :t15V T mb :f5 30 1\ -60 "- v '\. 20 -90 "- "'- l' t-- r- -120 '0 -180 1\ . •. + ·,so ---.!~ -+ 2 Fig. 7 - Input resistance and capacitance vs. fre· quency(for LS 141 and LS 141C) Fig. 8 - Output resistance vs. frequency. c, " S B 10 Lt· b;:~;T~ -:;- I--- I-- 12 14 16 tVs{V) Fig. 9 - Output voltage swing vs. load resistance Yo (pC) (Vpo) f-----I-I+++1+1t~--:;,.f--4+++H-tl 24 f--+-+-++++.m--+--+-+++H+l 20 f-----I-I+++1+1t-+++++H_tl '0 II Vs-:15V .... 200 • H-H-Il+ttI-+++ttttll--+t-tt1Itt1f---t1I-H1HH Tamb""ZS-C 16 " to' l.....!~.'!J.L!'.L.....!...1..!lfl!lL-+.l.!.LI!.lI!'.L...!-U.llllIlO·' to' tol 10" 105 I (Hz) Fig. 10 - Output voltage swing vs. frequency 10. 1 10' Fig. 11 - Input noise voltage vs. frequency Fig. 12 - Input noise current vs. frequency (~)'I.~I It;. Vs:!:.15V lamb= 25"C '" H-+++llllI-+f+++llll\l\-+l+l!l!l--+++1JllII 20 I--+l-Itl+ll>-I--++Ijillll-\-+\I+IlliIll----l-l-l+lillll 10. . . . . 16 t2 .,. 101 I 10' ••• I 10" 105 f(Hz) w l.....!~.~.~,-+~~-+~~-+~~ 10' f (Hz) to to' '0' 240 t-t-- Fig. 13 - Transient response Fig. 14 - Common mode reo jection ratio vs. fre· quency G·222? 20 0-2217 eM" I I h. VJ Vo 6~ Tamb " zs "c __ 10':11_ "L 02kn - NO ov RSHOOT (CLSlOOpF) '~S=OOT ': 10·' 2OOH-++I!!!II-++lj1llll--++++!HII-+~\lII -.;:::::, LJL.l...l....L..L..!.-LL.JU...l....L..L.LJ o 10 20 JO 40 50 60 Gy(dB) 10. . . . . . 10' 10' 10' 10' 249 10' 10' 10' ! (Hz) (;-221512 RELATIVE Fig. 32 - Transient response test circuit Fig. 31 - Voltage follower transient response (unity gain) Fig. 30 - Frequency characteristics vs. supply voltage (;-221311 Vo I (mV ) Tam b,,2S"c 10 1.4 90"1. __ RANSIENT SLEW RAT f-:: ~ 0.8 16 RESPONSE "'t-t--l- """b:::: r-- V,,=115V CcdOpF I LOSED lOOP BANDWIDTH R L : 2kO CL ."OOpF I -'- 0.6 I- -r-- -r-- Vi Tam1b"ZS'C 11~'" C, lOpF - f - RISIE T\t~E 0.4 ,5 0.5 10 2 t(us) Fig. 35 - Large signal feed forward transient response G-lOJ1 Fig. 34 - Feed forward compensation Fig. 33 - Voltage follower large-signal pulse response (;-221412 v. Vo 7 I ..L~o-2 OUT PRECISION THERMALLY COMPENSATED BIAS NETWORK '" o--.-'4--~-----' 1',.0. 13 252 I" ",c:r+ I ' I :L-----7~ I \ I I I I I I I :L--------C'I~~-_r I I I I I I I I I I I I ~ ~ I I ~!~O~I+-~------~~Jl------~------t_~~ 253 THERMAL DATA Rth i-amb Plastic 120°C!W max Thermal resistance junction-ambient ELECTRICAL CHARACTERISTICS (Refer Ceramic to the test circuit of fig. 1, -Vs= -12V;T amb =25°C unless otherwise specified) Parameter Is Supply current R7 Input dynamic biasing resistance (pin 7) Gv Gain t.G v Gain variation B Bandwith (-3 dB) Ro Output resistance RI· Input resistance (pin 5) d Distortion d3 Two-tone th ird order intermodulation eN Output noise in psophometric band t.IGI Expansion accuracy after balancing 10ff Inhibit current consumption (pin 2) G Amplifier gain Test conditions Min. LI = -14 dBv f = 800 Hz External time constant 2 Rl • Cl = 20 ms -1 Tamb= 5 to 55°C t.V s=±2% Typ. Max. Unit 5 8 mA 60 90 n 0 +1 dB ±0.2 ±0.03 dB dB 500 KHz 25 LI = -14 dBv f = 800 Hz f 2 =1020Hz f1 = 900 Hz V 1 = V 2 = 88 mV L i =-40to-l0dBv, f=800Hz T amb = 5 to 55°C , f = 800 Hz I nhibit ON (pin 2 grounded) .·f = 800 Hz 254 -1.5 60 n 100 Kn 0.7 % 0.5 % -100 dBm 0.1 0.2 0.2 0.3 dB dB 0.3 1 mA 0 +1.5 dB TEST AND APPLICATION CIRCUITS Fig. 1 - Expandor circuit Fig. 2 - Compressor circuit 4.7kl'l 4.7kn -12Vo--+---......-"""'4 4.'T5kfi 2.2fJF 100,uF 4.75kl1 OUT (.) S closed: unity gain amplifier. S open : expandor. Fig. 3 - Compandor Characteristics Fig. 4 - Comparison between LS150 performance (curve A) and limits from CCITT recommendation (curve B) - Green Book Geneva 1972 - G162. AG dB tll---~ .. 0.75 1 I 1 1 +0.2 -0.2 - - - - -~~26 - - - ~;o --- A- 0 ~4- dS;O_____ ~----- _ _ _ _ _ _ ...J _ _ _ _li 'I I I I I I, ",. 255 Fig. 5 - Expandor gain vs. temperature Y:t- 6G (d8) I tittHu -I" + ' ,r 0.3 0.2 G 2305 j Ii, .--j- '-+ -~---l--- : ,++r R+ 1[- ttt t~ +~ i-.. 0.' I "'j-.." -- Fig. 6 - Transient response II~' t +- ta .. 3m. T; tr '" 15.5ms +- -Jlt--.r-- -- • T:~ r I- ~o.' -60 -- --- I -0.3 -40 -20 1 20 ill 60 TcawrO APPLICATION INFORMATION The fig. 7 shows the basic configuration (with relative signal levels) of a compandorized system. It is clear the action against the line noise: the system using a compressor in sending and an expandor in receiving can improve very much the signal-to-noise ratio, especially with very high noise lines_ By using the LS150 it is possible to built both the compressor and the expandor blocks. Fig. 7 - Compandorized system. NOl5E .8dB OdB --=========::::::::::============::::::::============~8dB OdB=-'4dBv -3odB-----~ NOl5E -GOdB - - - - " / . ''".' 256 ~------30dB ~=. . =.:::::""":::::_ -GOdB APPLICATION INFORMATION (continued) The basic block diagram of an expandor is shown in fig. 8. The product of the input voltage Vi and its mean value Vi (obtained from the rectifier with time constant r) is supplied at the output of an "ideal" multiplier. Multiplier Fig. 8 - Basic expandor circuit. X Rectifier ~ ~ r- Vi 5-[,187 The output voltage Va is proportional to the product of V i and V I : Va= KVixV i where K is a factor that defines a level for unity gain. For a constant input level, Va = KV i X ~= KV;2 Expressing all levels in decibels relative to a reference level: Va (dB) = 20 IOg10 V? = 2 Vi (dB). Signals with an input level equal to the reference level are unaffected by the expandor while higher levels are raised and lower levels attenuated. It is recommended by CCITT, and practically advantageous, that the unaffected level be - 14 dBv, a voltage corresponding to -14 dBm across 600n. A time constant for the average rectifier of 20 ms is also recommended, giving "syllabic" operation of the compandor. Fig. 9 - Basic compressor circuit. Vi _ _ _-\. r---------- -, , I 'I 5-4'88 I ______________ 1 A compressor can easily be implemented with an expandor in the feedback path of an operational amplifier (Fig. 9). Assuming infinite gain for the amplifier: Vi = KVa x Va and for a constant input level Va = ~ K In decibels, with respect to the unaffected level, Va (dB) = 20 10glo (VI) y, 257 ~ Vi (dB). i: APPLICATION INFORMATION (continued) Design Constraints There are several constraints on the design of a compandor to be used in telecommunication equipment. Level: The reference (or unity gain) level is -14 dBv, i.e. 155 mV rms. For application in high-quality multiplexer transmission systems between exchanges, and expansion accuracy better than 0.2 dB in the same range (+40 to -25 dBmo) considered by CCITT for all operating conditions is required. These parameters had to be compatible with mass production manufacturing techniques. Particularly when taking into account the low signal levels, this requirement is very demanding. It was the main target in designing the device and had a strong influence on the fabrication process, circuit configurations, and layout. Power Supply: The circuit has to operate with a single 12V negative supply, unregulated, and with relatively high noise. Input Impedance: This has to be precisely defined by an external resistor, which is the passive termination of an LC filter before the expandor. Thus the input impedance of the IC must be very high. A differential input stage is preferable to reduce ground loop noise. Gain: The expandor (or compressor) shall not modify the level diagram of existing channel modems, already optimized for crosstalk and noise. This means that the gain at the unaffected level shall be 0 dB, with small spread. Inhibition: It must be possible to inhibit the operation of the compandor for testing and maintenance purpose, and to allow the transmission of telegraph channels. Definition of units dBmo power level (10 log :: ) is expressed in dBm when P1 is 1 mW, therefore 0 dBm = 1 mW. dBm the power is expressed in dBmo when referred to an established power level in the circuit, generally the output signal level. e.g.: if the output level is -15 dBm and this level is chosen as reference, then 0 dBmo = -15 dBm; if another signal, i.e. the distortion measured at the same point of the circuit, is -90 dBm, then the distortion is -75 dBmo. dBv 20 log V ~ when V 1 = 775 mVrms. V 258 LINEAR INTEGRATED CIRCUIT PRELIMINARY DATA TELEPHONE SPEECH CIRCUIT WITH MUL TIFREOUENCY TONE GENERATOR INTERFACE The LS156 is a monolithic integrated circuit in 16-lead dual in-line plastic package to replace the hybrid circuit in telephone set. It works with the same type of transducers for both transmitter and receiver (typically piezoceramic capsules, but the device can work also with dynamic ones). Many of its electrical characteristics can be controlled by means of external components to meet different specifications. In addition to the speech operation, the LS156 acts as an interface for the MF tone signal (particularly for M761 C/MOS frequency synthesizer). The LS156 basic functions are the following: It presents the proper DC path for the line current. It handles the voice signal, performing the 2/4 wires interface and changing the gain on both sending and receiving amplifiers to compensate for line attenuation by sensing the line length through the line current. It acts as linear interface for MF, supplying a stabilized voltage to the digital chip and delivering to the Iine the MF tones generated by the M761. ABSOLUTE MAXIMUM RATINGS VL IL IL Ptot Top T stg ' Tj Line voltage (3ms pulse duration) Forward Iine current Reverse line current Total power dissipation at Tamb = 70 D C Operating temperature Storage and junction temperature 22 150 -150 1 -45 to 70 -65 to 150 V mA mA W DC DC ORDERING NUMBER: LS 1568 Dimensions in mm MECHANICAL DATA 259 6/82 CONNECTION DIAGRAM (top view) MIC.INPUT MlC.INPUT 16 • LINE 15 VDO MUTING 14 MFINPUT BIAS ADJ. 13 RECEIVER OUTPUT SHUNT REG. BYPASS 12 ~ RECEIVER OUTPUT h 10h 11 O.C.REGUlATOR LINE CURRENT SENSING INPUT.(REC.AMP) INPUT-(REC.AMP.) 2BAl SWITCH 9 ~ -LINE 5·3838 11 BLOCK DIAGRAM r-----------------------,--{:=}-~~------------------------~----------Q~ tvl J. R2 bia!oo resistor r--------------{141r---------~~----~ t MF signal 5-4313 260 TEST CIRCUITS G -+______-, ~~+OA~-.__________________~_6,8~nr-~~33~0~n~~+-__ 52 10 LS156 nF 13 KD. -8 F 5-1, 3 68(1 Fig.2 Fig. 1 ~ ~ G A G r---+_---¢A TEST CIRCUIT TEST CIRCUIT R=6.8Kfi R =6.SKfi L---+.------68 L---+----- ,-- SVA L- 10 5 100 100 Fig. 6 - Supply voltage rejection vs. frequency 80 ~ 10 Gv (dB ) Gv 20 o ~. so -so so ~ 95 '" 40 40 90 -50 1et f (Hz) Fig. 7 - Large signal frequency response 50 100 Tamb( C) 20 10 Fig. 8 - Output voltage swing vs. load resistance 10' 10' 10' 10 5 f(Hz) Fig. 9 - Total input noise vs. freq uency G-!713 24 r--t-t-t-rttffl 'Is =.15V ) _Lll ~-+-++-H-.f+H Gy =20dS 20 ~-+-++-i1ft+H f = 1kHz ~-+-t+1f-t++H d = 3'" Rg.IOKIl . 10 ~ 12 ~-+-1f+-H-f+H--+-+-H-f++H 4~~~**--~+#~~~~~ -+-M+**--~-+-H#ffi-~++~ / OL-+-~~L-~~~~-LLll~ 10 2 10 3 10' f(Hz) 10' r "s_.,5V IKIl 5OJl[ ;i . 10' 279 I . .. 10' . .. .II .. f(Hz) APPLICATION INFORMATION Fig. 10 -Amplitude response Active low-pass filter: 0_36oWi '. BUTTERWORTH (dB ) The Butterworth is a "maximally flat" amplitude response filter. Butterworth filters are used for filtering signals in data acquisition systems to prevent aliasing errors in sampled-data applications and for general purpose low-pass filtering. The cutoff frequency, fe, is the frequency at which the amplitude response is down 3 dB. The attenuation rate beyond the cutoff frequency is -n6 dB per octave of frequency where n is the order(number of poles) of the filter. Other characteristics: • Flattest possible amplitude response. • Excellent gain accuracy at low frequency end of passband ~ \\ -20 ~ \' -40 ber of poles) of the filter. The cutoff frequency, fe, is defined as the frequency at which the phase shift is one half of this value. For accurate delay, the cutoff frequency shOUld be twice the maximum signal frequency. The following table can be used to obtain the -3 dB frequency of the filter. 2 pole 4 pole 6 pole 8 pole -so 0.77 fc 0.67 fc 0.57 fc 0.50 fc I III as fife Fig. 11 -Amplitude response G_361o~ '. (dB ) ;:..... ~'\. -20 I"- 1\\ \ -- n =2 ir· n.B \ l\n.S I\( -4 0 -60 -3 dB frequency ~ n.B ,\ t'.4 \ n.s1-j 0.1 BESSEL The Bessel is a type of "linear phase" filter. Because of their linear phase characteristics, these filters approximate a constant time delay over a limited frequency range. Bessel filters pass transient waveforms with a minimum of distortion. They are also used to provide time delays for low pass filtering of modulated waveforms and as a "running average" type filter. The maximum phase shift is -~1T radians where n is the order (num- '" 4 as 0.1 Other characteristics: • Selectivity not as great as Chebyschev or Butterworth. • Very little overshoot response to step inputs • Fast rise time. Fig. 12 -Amplitude response (± 1 dB ripple) CHEBYSCHEV A. Chebyschev filters have greater selectivity than either Bessel or Butterworth at the expense of ripple in the passband. Chebyschev filters are normally designed with peak-to-peak ripple values from ± 0.2 dB to ± 2 dB. Increased ripple in the passband allows increased attenuation above the cutoff frequency. The cutoff frequency is defined as the frequency at which the amplitude response passes through the specified maximum ripple band and enters the stop band. Other characteristics: • Greater selectivity • Very nonlinear phase response • High overshoot response to step inputs 280 I I (dB ) G-3I41 I I ~ i t., "1\\ ..... n.2 I -20 ! \\ I -40 \\ i -60 .4 iI I 0.1 \ .BY n.s\l f--I o.s fife APPLICATION INFORMATION (continued) The table below shows the typical overshoot and settling, time response of the low pass filters to a step input. NUMBER OF POLES PEAK OVERSHOOT SETTLING TIME (% of final value) ±1% % Overshoot BUTTERWORTH BESSEL CHEBYSCHEV (RIPPLE ± 0.25 dB) CHEBYSCHEV (RIPPLE ± 1 dB) 4 11 2 4 ± 0.1% 1.1/fc sec. 1.7/fc 1.7lfc sec. 2.8/fc 3.9/fc 5.1 fc 6 14 2.4/fc 8 16 3.1/fc 2 4 0.4 0.8/fc 1.0/fc ± 0.01% 1.9/fc sec. 3.8lf c 5.0lf c 7.1/fc 1.7/f c 2.4/fc 2.7/f c 6 0.8 0.6 8 0.3 1.6/fc 1 .4/f c 1.81f c 2.1/fc 2.3/fc 2 4 11 18 21 1.1/fc 3.0/fc 5.9/fc 8.4/fc 1.6/fc 5.4/fc 10.4/fc 16.4/fc - 1.6/fc 4.8/fc 2.7/f c 8.4/fc - 8.2/fc 11.6/fc 16.3lf c 24.8/fc 6 8 23 2 4 6 21 28 32 34 8 1.3/fc Design of 2 nd order active low pass filter (Sallen and Key configuration unity gain op-amp) Fig. 13 - Filter configuration where: with fc= cutoff frequency We 271' fe ~ damping factor. 281 3.2/f c - - APPLICATION . INFORMATION (continued) Tab_I Three parameters are needed to characterise the frequency and phase response of a 2 nd order active filter: the gain (G y l. the damping factor (~) or the O-factor (0= (2 ~)-l).and the cutoff frequency (fel. The higher order responses are obtained with a series of 2 nd order sections. A simple RC section is i"trcduced when an odd filter is required. The choice of .~. (or O-factor) determines the filter response (see table). Filter response ~ 0 Bessel :Yr 2 V3 Butterworth E2 V2 Chebyschev <-:5.. 2 1 1 >_1_ V2 Cutoff frequency fc Frequency at which phase shift is _900 Frequency at which Gv = -3 dB Frequency at which the amplitude response passes through specified max. ripple band and enters the stop band Fig. 14 - Filter response vs. damping factor (dB)r--r-rTTTTl"lr-r-ro-rrm -4 f-- 1j=~~07FR''I ""'~,-- 75 • n 536n ~ ~;"F R2 6.8Kfi 2 4 13 -11 R7 1 14 100n ,B.L, 10011 12 -.r- LINE LS285 16' R4 2.05K n :g2nF R 6' 9 5 3 6 10 C7 ~F Q" Fi 2501l ,.!li. C6 250Il. >-R3 16.2Kll ~ '----- 289 f"'" R50 9.09 K n j 5-5007 C4 :~2nF F APPLICATION INFORMATION The following table shows the recommended values for the typical application circuit of fig. 6. Different values can be used and notes are added in order to help designer. Component Recommended Value R1 75 n R2 536n R3 Purpose Note Bridge resistors The ratio R2/R1 fixes the amount of the signal delivered to the line. (see fig. 7) 16.2 Kn Bias resistor Changing R3 value it is possible to shift the gain characteristics. The value can be chosen from 15 Kn to 20 Kn. The recommended value assures the maximum swing (see fig. 9). R4 2.05 Kn Balance network R5 9.09 Kn In order to optimize the sidetone it is possible to change R4 and R5 values. I n any case; R2 ZB - - = R1 where ZB= R4 + R5/1C4. ZL R6 and R6' 250n Microphone impedance matching R6 and R6' must be equal; 250n is a typical value for dynamic capsules. Furthermore, they determ ine a sending gain variation according to; AG s = 20 log Rx 850n where Rx = R6 + R6' + R mike . The trend of AG s as a fu nction of Rx value is shown in fig. 8. R7 and R7' lOOn Receiver impedance matching R7 and R7' must be equal; lOOn is a typical value for dynamic capsules C1 1Ol'F AC loop opening Ensures a high regulator impedance for AC signals ('" 20 Knl. This capacitor should not be higher than 10 I'F in order to have a short response time of the system. C2 22 nF Matching to a capacitive line C2 changes with the characteristics of the transmission line. C3 82 nF High frequency roll-off C3 determines the high frequency response of the circuit. It also acts as RF bypass. C4 22 nF Balance network See note for R4 and R5. C5 1 I'F C6 and C7 1000 pF DC decoupl ing for receiving input RF bypass 290 APPLICATION INFORMATION (continued) ., • ., Fig. 7 Receiving gain variation vs. R 1 value (with fixed Rl/R2 ratio) G-4626 OG OG R OG 5 ~ \ (dB (dO ) l"lKHz r- IL~10to80 lL~'O 10 80mA ·'1 Rl IR 2: 7 5 V • 2 - OdBfa)7Sn - 7 ....v V -2 ,.,lKHz (dB ) 1.1KHz mA ., Fig. 9 - Sending and receiving gain variation vs. line current ,., Fig. 8 - Sending gain variation vs. Rx value (see note for R6 and R6') G-4 21 '8 '6 .\r\ \ R .20K1'l. ./" -2 \ .2 "- -2 -, / OdS (ci)850n "r--..... -4 -6 ....... - ~~:K~~ - \ 1\ f--- -6 \ \ I\. "'" -........ -8 '0 60 80 200 600 20 291 40 f--- LINEAR INTEGRATED CIRCUIT PROGRAMMABLE TELEPHONE SPEECH CIRCUIT The LS288 is a monolithic integrated circuit in 16 lead dual in-line plastic signed as a rep lacement for the hybrid circuit in telephone sets it performs all the func carried out by this circuit. With the LS288 it is possible to select the operating mode (fixed or both piezoceramic and dynamic transducers and therefore its sending and receiving paths, can be preset by means of two external resistors. This fe obtained in AGC operating mode, when the device automatically adjusts the Rx/Tx gai nsate for the line attenuation by sensing the line current. The LS288 can supply the decoupling FET when g with an electret microphone. Output impe· dance can be matched to the line independent impedance. VL IL IL 22 150 -150 1 -45 to 70 -65 to 150 Ptot Top Tstg' Tj V· rnA rnA W °C °C ORDERING NUMBER: LS288 B Dimensions in mm MECHANICAL DATA 6/82 292 CONNECTION DIAGRAM (top view) AGC CUTOFF MICROPHONE INPUT] 16 A C LOOP OPENING 15 AC AND DC IMPED.MATCHING 2 14 SENDING AMP OUT SENDING GAIN PROGRAM. 13 LINE "" RECEIVING PROGRAM. 12 B IA S RESISTOR 11 ELECTRET MIKE SUPPLY GAIN BAL. NETWORK REC. INPUT LINE - (GND) $- 4468" BLOCK DIAGRAM r----------{==~--------~--==J_~~--~------------------------,~ R2 R1 C2 14 I - - -(~'o--" I BIAS RESISTOR 5-4934 293 TEST CIRCUITS Fig. 1 - Test Circuit IL• A 39.2 n 392 n cr~--~--------------~-i~R:1:1}W~~~~:R:2J-~------------,~---, 12 7 14 13 LS288 5 ISM +-- 13 Kn J'R6 3~~J 1W -Q-1"6 2 3 9 10 [ 1'" "" R5 6Kn iii~C1 B 5-4935/1 Fig.2 Fig. 3 ,----~-_oA .--_-.0 A Fig.4 TEST CIRCUIT TEST CIRCUIT TEST CIRCUIT '---+---oB '--~>-----¢B C D E F D 5-49/,0 5-4938 CMRR V RO Vso V MI V MI Side tone = - - ; Gs = ----- THERMAL DATA Rth j-amb max Thermal resistance junction-ambient 294 80 °C/W ELECTRICAL CHARACTERISTICS (Refer to the test circuits, Tamb = -25 to +50°C, f to 3400 Hz, IL = 12 to 120 mA, unless otherwise specified) Parameter = 200 Test conditions AGe off (pin 1 floating) VL Line voltage T amb = 25°C IL= 15 mA IL= 22 mA IL= 60mA IL= 120 mA CMRR Common mode rejection f = 1 KHz Gs Sending gain (*) IL= 15 mA T amb = 25°C f = 1 KHz Rs=17Kn V M1 = 3 mV R7 = 8 Kn R7 = 29 Kn R7 =47 Kn V M1 = 3 mV f ref = 1 KHz I Lref= 60 mA .6G S Sending gain flatness (vs. freq.) .6G s Sending gain flatness (vs. current) dS Sending distortion IL= 15 mA T amb = 25°C f = 1 KHz R7 = 29 Kn V R1 = 0.3V Rs = 8 Kn Rs = 17 Kn Rs = 23 Kn V R1 = 0.3V f ref = 1 KHz I Lref= 60 mA ZML V SM 40 26 41 51 42 dB 3 ± 0.5 dB ± 0.5 dB V M1 = 0 Receiving gain (*) R9-10 2 2 GR Receiving distortion dB 5 V M1 = 3 mV dR 1 VSO= 775 mV G s = 42 dB Receiving gain flatness (vs. freq.) V VSO= 450 mV Sending noise . Receiving gain flatness (vs. current) 4.9 5.4 10 14 f = 1 KHz G s = 42 dB Microphone input impedance pin 2-3 .6G R 4.5 50 R2_3 .6G R 4.1 f = 1 KHz G R= -3 dB % 3 dBmp 3 Kn 3 6 dB 4 ± 0.5 dB 4 ± 0.5 dB -72 11 15 4 -6 5 14 3 V R1 = 570 mV 2 V R1 = 1.2V 5 % 4 250 ltV 4 Receiving noise GR=OdB VRI= 0 Receiver output impedance (pin 9 and 10) V RO =50mV 20 n 4 Sidetone f = 1 KHz G s = 42 dB GR= -3 dB 15 dB 3 n 4 Vp 4 V 1 Line matching impedance V R1 = 0.3V Max receiving output (click suppressor) V R1 = 2V GR=OdB Microphone supply voltage (pin 11) ISM= 0.8 mA f = 1 KHz 650 750 850 2.3 1.9 2.1 (*) The sending and receiving gains are not completely independent but the variation in sending gain over the whole range of receiving gain (and vice-versa) is less than 0.5 dB. 295 ELECTRICAL CHARACTERISTICS (continued) Test condition Parameter AGe on (pin 1 grounded) fiGS and flG R T amb =25°C Sending and receiving gain variation (**) f = 1 KHz IL = 25 mA IL = 50mA IL = 110mA -1 +1 -6 -7 -4 dB 3-4 -5 (00) Referred to any value fixed by means of R7 and R 8 . CIRCUIT DESCRIPTION 1. DC Characteristic In accordance with CCITT recommendations, any device connected to a telephone line must exhibit a proper DC characteristic V L, IL' The DC characteristics ofthe LS288 is determined by the shunt regulator (block 2) together with two series resistors Rl and R3 (see the block diagram). The equivalent circuit is shown in fig. 5. Fig. 5 - Equivalent DC load to the line 14 R1 13 R3 15 5-4936 A fixed amount, 10 , of the total available current, IL' is drained to allow the circuit to operate correctly. The value of 10 can be programmed externally by changing the value of the bias resistor connected to pin 12. 296 CIRCUIT DESCRIPTION (continued) The recommended minimum value of 10 is 7.5 mA with R pin 12 = 13 Kn. The voltage Va "" 3.8V of the shunt regulator is independent of the line current. The shunt regulator (block 2) is controlled by a temperature compensated voltage reference (block 1). Fig.6 shows a more detailed circuit configuration of the shunt regulator. Fig.6 - Circuit configuration of the shunt regulator R2 RI 14 15 16 L-R3~ ~~~_I __ The difference IL - 10 flows through the shunt regulator since Ib is negligible. I. is an internal constant current generator; hence Va = VB + I•. R. = 3.8V. The V L, IL characteristic of the device is therefore similar to a pure resistance in series with a battery. It is important to note that the DC voltage at pin 16 is proportional to the line current V 16 = V 15 + VB = (IL - 10 ) R3 + VB· 2. Two to four wires conversion The LS288 performs the two wire (line) to four wire (microphone, earphone) conversion by means of a Wheatstone bridge configuration thus obtaining the proper decoupling between sending and receiving signals (see fig. 7). For a perfect balancing of the bridge :~ = ~~ The AC signal from the microphone is sent to one diagonal of the bridge (pin 8 and 14). A small percentage of the signal power is lost on ZB (since ZB ~ ZL); the main part is sent to the line via R 1 . In receiving mode, the AC signal coming from the line is sensed across the second diagonal of the bridge (pin 6 and 7). After amplification it is applied to the receiving capsule. The impedance ZM is simulated by the shunt regulator which also acts as a transconductance amplifier for the transmission signal. The impedance ZM is defined as 1;V(14-8) ...:;::,~-~.!!L_ 1;1 (14-8) 297 CIRCUIT DESCRIPTION (continued) Fig. 7 - Two to four wires conversion 14 , [J ZL LINE ~ -----------J___ _ 8 5-4937 From fig. 6, considering C l as a short circuit to the AC signal, any variation in /:"V 14 generates a variation as follows: The corresponding current change is: /:,.1 therefore /:"V Ra R3 (1 + - - I /:"1 Rb The total impedance across the line connections (pin 13 and 8) is given by ZM = - -14- = R ZML ~ ZM = R3 (1 + _a_) Rb The amplitude of the signal received across pins 6 and 7 can be changed using different values of R 1. (Of course the relationship ~~ = :~ must always be valid). 298 The received signal is related to the value of R 1 according to the approximated relationship: Rl Rl + ZM Note that if the value of R 1 is changed the transmission signal current is not changed, since the microphone amplifier is a transconductance amplifier. = VR V R1 2 3. Input and output amplifiers The microphone amplifier (4) has a differential input stage with high impedance (min 11 Kn) so allowing a good matching to the microphone by means of an external resistor without affecting the sending gain. The receiving output stage (8) is intended to drive both piezoceramic and dynamic capsules. It has low output impedance, a maximum voltage swing greater than 2 Vp and a peak current of 2 mAo With very low impedance transducers, DC decoupling by an external. capacitor must be provided to prevent a large DC current flow across the transducer itself due to the receiving output stage offset. 4. Gain Control It is possible to set the LS288 gain characteristics by means of one pin (pin 1). When the pin 1 is floating, the gains of the sending and receiving ampl ifiers do not depend on the line current (AGC off). When the pin 1 is grounded the LS288 automatically changes the gain to compensate for line attenuation (AGC on). 4.1. AGe OFF In this conditions, as already mentioned, both the sending and the receiving gain are fixed. Their values are determined, independently for the two paths, by the two external resistors R7 (for T x, between pin 4 and ground) and Rs (for Rx , between pin 5 and ground). R7 values ranging from 8 Kn up to 50 Kn giving sending gains from 26 dB to 51 dB. Rs values range from 8 Kn to 23 Kn giving receiving gains from -6 dB to + 14 dB (see fig. 9 and 10). This allows the LS288 to be used with a variety of different transducers. Fig. 9 - Sending gain vs. R7 value (AGC off) Fig. 10 - Receiving gain vs. Rs value (AGC off) G-HI5 Os "8',I 56 AGe off /' '/ AGe 011 / I V I ./ ,/ : ./ ./ ./ 32 28 V I ./ I ~V -8 i I -16 : i 20 20 JO 20 299 Ra(Kfi) DESCRIPTION CIRCUIT (continued) 4.2. AGCON Starting from any couple of gain values, fixed by the appropriate values of R7 and Rs , the LS288 can automatically change the sending and receiving gains depending on the line current. The line current is sensed across R3 (see fig. 7) and transferred to pin 16 by the regulator. V16 = Va + V 15 = Va + (I L - 10 ) • R3 Following comparison with an internal reference V REFG (see the block diagram) the voltage at pin 16 is used to modify the gain of the amplifiers (5) and (7) on both the sending and receiving paths. The starting point of the automatic level control is obtained at IL = 25 rnA when the drain current 10 = 7.5 rnA. The external resistors R7 and Rs fix the maximum value for the gains. Minimum gain is reached for a line current of about 110 rnA when the same drain current 10 of 7.5 rnA is used. When 10 is increased by means of the external resistor connected to pin 12 the two above mentioned line current values for the starting point and for the minimum gain increase accordingly. 5. DC Shunt Regulator The LS288 has built into the chip a DC shunt regulator intended to supply the coupling FET when an electret microphone is used. It delivers 1 mAp current with a voltage of 2 Volts (typ) regardless of the line current. Fig. 11 - Typical application circuit (piezoceramic transducers) • ~ rv C5 I-'+t.--.--...--.----+--C::J"'----~-_C:;::J_-___; C2 1,uF 13 10 I---C:::J--+---' LS288 LINE 18V Rl0 15 12 8 16 R3 33.2Jl lW b-----'-i R5 10nF 101111 C3 s- '942fl 300 CIRCUIT DESCRIPTION (continued) Fig. 12 - Application circuit with electret microphone + C2 l,..uF 13 LS288 LINE 18v 15 12 8 16 R3 33.Z!l lW 13K s- 494311 The following table can be helpful to the designer when choosing different values for the external components; it refers to the typical application circuit of fig. 11. Component Value Note Function RI 39.2 n Bridge '. R2 392n Resistors Line current sensing R I controls the receiving gain. The ratio R2/RI fixes the amount of signal delivered to the line. RI helps in fixing the DC characteristic (see R3 note) The relationships involving R3 are: - ZML= (25 R3I!ZB) + RI ZLI! ZML R3 -VL=(lL-lol. (R3+ R ,)+V o [Vo = 3.8V] - Gs = K· R3 33.2 n Fixing DC characteristic Values of ZML ranging from 650 up to 850n are easily obtainable. R4 Rs 2.2 Kn 10Kn Balance Network I n order to optimize the sidetone it is possible to change R4 and Rs values; in any case the following relationship applies: ZB ZC= 301 R2 R1 where ZB= R4+RSI!XC3 APPLICATION INFORMATION Component R6 Value 13 Kn (continued) Function Bias Resistor Note The suggested value assures the minimum operating current. It is possible to increase the supply current by decreasing R6 (they are inversely proportional) , in order to achieve the shifting of the AGC starting point R7 8 to 50 Kn Sending gain programming Resistor Rs 8 to 23 Kn Receiving gain programming Resistor 1.8 Kn Receiver impedance matching R9 and R9' must be equal; the suggested value is good for matching to piezoceramic capsule; there is no problem in increasing and decreasing (down to On) th is value, but when low resistance levels are used DC decoupling must be inserted to stop the current due to the receiver output offset voltage (max 400 mY). RIO 4Kn Microphone impedance matching The suggested value is typical for a piezoceramic microphone, but it is possible to choose RIO from a wide range of values: R Mike ~ RIO//Rpin 2-3' CI 1OI'F Regulator AC bypass A value greater than 10 I'F gives a system start time too high for low line current. A lower value gives an alteration of the AC line impedance at low frequency. C2 1 I'F R9, R9' DC decoupl ing for receiving input C3 10 nF Balance network See note for R4 and R s. C4 47 nF Matching to a capacitive line C4 must be chosen according to the characteristics of the transmission line. Cs 82 nF Receiving gain flattness Cs depends on balancing and line impedance versus frequency. C6 , C 7 1000 pF RF bypass 302 LINEAR INTEGRATED CIRCUIT MULTIFREQUENCY TO TELEPHONE LINE INTERFACE CIRCUIT The LS342 is a monolithic integrated circuit in dual in-line minidip plastic package. It interfaces the multifrequency tone diallers M751 and M761/761A to the line in telephone sets, performing the follow· ing functions: Adjustment of the DC current/voltage characteristic and AC input line impedance by means of an external resistor (Rd. Sending to the line of the multifrequency signal. Adjustment of the signal level by means of an external resistor (R T ). Stabilized supply voltage to the tone dialler. ABSOLUTE MAXIMUM RATINGS VL IL IL Ptot Top T stg , Tj Maximum line voltage (pulse duration';;; 10 ms) Maximum forward current Maximum reverse current Total power dissipation at T amb = 70°C Operating temperature Storage and junction temperature 22 '155 -150 800 -40 to 70 -55 to 150 V mA mA mW °C °C ORDERING NUMBER: LS342D Dimensions in mm MECHANICAL DATA ~~; .5 .... . . 7 303 6/82 CONNECTION DIAGRAM (top view) MULTIFREQUENCY INPUT 1 REGULATOR AC BYPASS 2 3 8 ~ SIGNAL LEVEL ADJUSTMENT 7 ~ BIAS 6 ~ + VLAND MF OUTPUT 5~ ACIDC CHARACT.ADJUSt 4 5- 40731 2 BLOCK DIAGRAM DESCRIPTION The L5342 interface the M751 and M761/761A tone diallers with the telephone line. Power is only applied to the system when the handset is lifted and a key pressed. At this time 51 is also switched (see fig. 2) disconnecting the speech circuit from the line and connecting the dialling circuit. In the dialling condition the L5342 performs 3 functions: 1) D.C. and A.C. line termination 2) Tone dialler power supply 3) Amplification and transmission of tone pairs. In the initial stage of switch-on the supply voltage V DD is regulated at ~ 4 volt. This overdrives the M751/761/761A internal oscillator causing a rapid start-up and therefore rapid generation of output tones. When the system reaches its normal operating point the supply voltage VDD is stabilized at 2.5V ± 4%. THERMAL DATA Rthi-amb max Thermal resistance junction-ambient 304 100 °C/W ELECTR.ICAL CHARACTERISTICS (lL=10tol00 rnA; Tamb = -25 to +60°C; f = 1 KHz;S in (b), unless otherwise specified). Parameter VL Line voltage Gs Sending gain fiGs Sending gain spread over temperature THD* Distortion Test conditions Min. Typ. Max. Unit 4.2 4.6 6.3 9.8 4.5 5 6.8 11.5 V 14 dB ± 0.2 dB I L = lOrnA IL= 17mA IL= 60mA IL= 150mA Ej = 0 T amb = 25°C Ej = 50 mV f = 500 Hz to 2 KHz 12.4 S in (a) Ej = 120 mV ** 2 S in (c) Ej= 95 mV ** 2 % ZREF= 6000 f ;"" 300 Hz to 3.4 KHz 14 AR Return loss ZOUT Output impedance (pins 6, 4) CE=2.2/L F Voo Supply voltage for digital device T amb = 25°C 2.4 Voo= 2.4V 1.8 100 Supply current for digital device t s*** Start-up time ZIN I nput impedance (pin 1) dB 750 R E= 390 2.5 0 2.6 V 5 msec mA 4 MO * The distortion of the device is not affected by a signal coming from the line with the following levels: -13 dBm if IL= 10 mA, -8 dBm if IL= 20 mAo The different AC and DC levels are intended to simulate the limit working operation of the digital devices M751, M761, M761A. The time necessary because the AC signal is varying within ± 1 dB of its steady-state value. Fig. 1 - Test circuit LS342 6°~lOIlF .nr 5- 5005/1 305 IVo APPLICATION INFORMATION The table shows the recommended values for the circuit of fig. 2. Component Recomm. value RE 390. Note Purpose DC characteristic The relationships involving RE are: • VL=(lL-IO)RE+Vo where 10 '" 6 mA and Vo '" 4V • Zo = 22 RE (f = 1 KHz) The following relationship must be always verified AC impedance adjustment Vp' ZL RE ;;. (lL-l o )ZL-22Vp where Vp is the maximum peak value of the MF signal in the line and ZL is the line impedance. 5.6 Kn Rp R~ Bias resistor ( 71.50. RT can be reduced in order to increase the output current from pin 3 DDI. In this case, the total current consumption is increased. The MF gain is: Signal level adjustment G MF = 0.97 ZL II Zo RT The recommended value for RT is good to set the Europe I standard (-9 dBm, -11 dBml. If the Europe II or the American Standard is required, RT must be decreased. I n the mean time, the minimum operation current will increase because the pin 8 voltage is fixed by an internal reference (190 mV typ.l. CE 2.2/.1F Cf 0.33/.1F CL 30 nF Regu lator AC bypass A value greater than 2.2 /.IF gives a system start time too high when line current is between 10 mA and 17 mAo A value less than 2.2 /.IF gives an alteration of the AC line impedance because its reactance is not negligible at low frequencies. DC filtering The Cf range is from 0.33 /.IF to 0.47 /.IF. The lowest values is ripple limited, the higher values is starting up time limited. Match ing to a capacitive line This is needed with a capacitive line because the output impedance of the LS342 is essentially resistive. The range of C L is between 30 and 60nF. Fig. 2 - Application circuit with M751/M761A. " 1209 C2 1336 OJ 1477 C4 1633 'DO H, '11 697 Hz 13 1'12770 Hz 12 1'13852 Hz M751 tl --+4- 10 ll~ ~a ~ M761 A R4 941 Hz; HOOK TO THE SPEECH " , 3 R, --',.-+......_ _+-_ SINGLE PUSH BUTTON 306 SINGLE PUSH BUTTON LINE LINEAR INTEGRATEO CIRCUIT TELEPHONE SPEECH CIRCUIT WITH MULTIFREQUENCY TONE GENERATOR INTERFACE The LS356 is a monolithic integrated circuit in 16-lead dual in-line PI,'\ ;'j~,\{::: ~'1N~S VL Lin IL IL Fo Rev Total Opera g temperatu re Storage and junction temperature Ptot Top T stg , T j 22 150 -150 1 -45 to 70 -65 to 150 V mA mA W °C °C ORDERING NUMBER: LS356B MECHANICAL DATA Dimensions in mm 307 6/82 CONNECTION DIAGRAM (top view) '-' 16 MlC. INPUT ~ MlC.INPUT +LINE 15 VDD MUTING 14 MF INPUT BIAS ADJ. 13 RECEIVER OUTPUT BYPASS 12 RECEIVE.R OUTPUT D.C.REGULATOR 11 INPUT.(RECAMP) LINE CURRENT SENSING 10 INPUT -(REC.AMP) SHUNT REG. GAIN CONTROL -LINE 5-4919 BLOCK DIAGRAM .-----------------------~--{:~--~--------------------------~----------~~ tVL .1. t MF . signal R3 S'-4930/1 308 TEST CIRCUITS - G Rl .A IL 39.2 n 392.11 52 ~ 33 nF :!2V 10 Vz=18V VL LS356 13 K.Q 33 n VG R3 R _B 5-4920/2 Fig.2 Fig. 1 'L=IZto~ 'L=12to~ G ,----+---QA G A TEST CIRCUIT R =6.8Kfl. TEST CIRCUIT R=6.8Kfl. l.....-+-~B B C 0 E F C 0 E 5-4921 CMRR Side tone Fig.3 = V RO ~ Fig.4 G A r--~--QA TEST CIRCUIT R =S.8K fl. lO,uF TES T CIRCUIT R=lKfl. ~-""--QB B C 0 E C F 309 0 E F THERMAL DATA Rth j-amb max Thermal resistance junction-ambient ELECTRICAL CHARACTERISTICS 80 mA, S1 and S2 in (a), T amb (Refer to the test circuits, VG = 80 °C/W 1 to 2V, IL 12 to = -25 to +50°C, f = 200 to 3400 Hz, unless otherwise specified) Parameter Test conditions SPEECH OPERATION VL Line voltage CMRR Common mode rejection f = 1 KHz 50 Gs Sending gain T amb = 25°C f= 1KHz VG= 2V V M1 = 3 mV VG= 1V 44 Sending gain flatness (vs. frequency) V M1 = 3 mV Tamb= 25°C IL= 12 mA IL= 20mA IL= 80 rnA 4.7 5.5 12.2 3.9 - dB 1 46 50 dB 2 ± 1 dB 2 ± 0.5 dB 2 % 2 48 f ref = 1 KHz * Sending gain flatness V (vs. current) GR Sending distortion f = 1 KHz V so - lV Vso= 1.3V Sending noise V M1 = OV VG=lV Microphone input impedance (pin 1-16) V M1 = 3 mV Sending gain in MF operation V M1 = 3 mV S2 in (b) Receiving gain V R1 = 0.3V f = 1 KHz T amb = 25°C VG= 2V VG=lV Receiving gain flatness (vs. frequency) V R1 = 0.3V f ref = 1 KHz 2 10 -70 dBmp 2 40 Kn - -30 dB 2 -5 1 dB 3 ± 1 dB 3 ± 0.5 dB 3 % 3 -3 -1 -4 0 * Receiving gain flatness (vs. current) Receiving distortion f - 1 KHz Receiving noise V R1 = OV Receiver output impedance (pin 12-13) V Ro =50mV Sidetone f = 1 KHz Sl in (bi T amb = 25°C ZML Line match ing impedance V R1 = 0.3V f = 1 KHz 18 Input current for gain control (pin 8) * Fixed gain mode. 2 V RO - 400mV VRo= 480 mV 10 I'V 3 100 n - 36 dB 2 100 310 500 600 700 n 3 -10 I'A - ELECTRICAL CHARACTERISTICS (continued) Test conditions Parameter MUL TlFREQUENCY SYNTHESIZER INTERFACE S2 in (b) 2.4 S2 in (b) 0.5 2 MF amplifier gain fMF in= 1 KHz V MF in= 80 mV 15 DC input voltage level (pin 14) V MF In= 80 mV RI Input impedance (pin 14) VMF 1n= 80 mV d Distortion V MF in= 110 mV Voo M F supply voltage (Standby and operation) 100 M F supply current VI Standby Operation M F operation Muting operating current (pin 3) S2 in (b) 311 V - mA - dB 4 V - K!l - 2 % 4 5 ms - 1 V - 60 Speech operation Muting standby current (pin 3) 17 .0.3 Voo Starting delay time Muting threshold voltage (pin 3) 2.5 V - -10 IJ.A - +10 IJ.A - 1.6 CIRCUIT DESCRIPTION 1. DC characteristic The fig. 5 shows the DC equivalent circuit of the LS356. Fig. 5 - Equivalent DC load to the line PIN 6 R, PIN2 lro VL PIN9 PIN7 ~ LINE 5 .. 4365 A fixed amount 10 of the total available current IL is drained for the proper operation of the circuit. The value of 10 can be programmed externally by changing the value of the bias resistor connected to pin 4 (see block diagram). The minimum value of 10 is 7.5 mAo The voltage Vo = 3.8V of the shunt regulator is independent of the line current. The shunt regulator (2) is controlled by a temperature compensated voltage reference (1) (see the block diagram). Fig. 6 shows a more detailed circuit configuration of the shunt regulator. Fig. 6 - Circuit configuration of the shunt regulator R2 R' I. . ._ c L -_ _ _ _ _ _ _ _ _ _'--S-CI.925----· b The difference IL -10 flows through the shunt regulator being Ib negligible. I. is an internal constant current generator; hence V 0 = VB + I•• R. = 3.8V. The V L. IL characteristic of the device is therefore similar to a pure resistance in series to a battery. It is important to note that the DC voltage at pin 5 is proportional to the line current (V 5 = V7 + VB = (I L-10) R3 + VB). 312 I CIRCUIT DESCRIPTION (continued) I.: I', 2. Two to four wires conversion The LS356 performs the two wires (line) to four wires (microphone, earphone) conversion by means of a Wheatstone bridge configuration so obtaining the proper decoupling between sending and receiving signals (see fig. 7). ' Fig. 7 - Two to four wires conversion 6 11 -----...- --- :, r1 l}ZL , LINE ., 9 -----------~---s· 4367(1 R1 R2 ZL. For a perfect balancing of the bridge - ZB The AC signal from the microphone is sent to one diagonal of the bridge (pin 6 and 9). A small percentage of the signal power is lost on ZB (being ZB > ZL.); the main part is sent to the line via R1. In receiving mode, the AC signal coming from the line is sensed across the second diagonal of the bridge (pin 11 and 10). After amplification it is applied to the receiving capsule. The impedance ZM is simulated by the shunt regulator that is also intended to work as a transconductance amplifier for the transmission signal. The impedance ZM is defined as /:"V 6 - 9 • /:,.1 6 - 9 From fig. 6 considering C1 as a short circuit for AC signal, any variation /:"V 6 generates a variation: tN7 = /:"V A = /:"V 6 The corresponding current change is 61 Therefore 313 • , Rb Ra + Rb I~ CIRCUIT DESCRIPTION (continued) The total impedance across the line connections (pin 11 and 9) is given by ZML = R1 + ZM II (R2 + Zs) By choosing ZM > R1 and ZB > ZM The received signal amplitude across pin 11 and 10 can be changed using different values of R1 (of course the relationship ZL/Z B = R1/R2 must be always valid). The received signal is related to R1 value according to the approximated relationship: 1'l1 Note that by changing the value of R 1, the 'transmission signal current is not changed, being the microphone amplifier a transconductance amplifier_ 3.Automatic gain control The LS356 automatically adjusts the gain of the sending and receiving amplifiers to compensate for line attenuation. This function is performed by the circuit of fig_ BFig_ 8 5-4696 The differential stage is progressively unbalanced by changing VG in the range 1 to 2V (V REFG is an internal reference voltage, temperature compensated). It changes the current IG' and this current is used as a control quantity for the variable gain stages "(amplifier (4) and (5) in the block diagram). The voltage V G can be taken: a) from the LS356 itself (both in variable and in fixed mode) and b) from a resistive divider, directly at the end of the line. al In the first case, connecting VG (pin 8) to the regulator bypass (pin 5) it is possible to obtain a gain characteristic depending on the current. In fact (see fig. 6): V5 = VB + V7 ~ Vs + (I L - 10 ) R3 The sta,rting point of the automatic level control is obtained at IL = 25 rnA when the drain current 10 = 7.5 rnA. 314 CIRCUIT DESCRIPTION (continued) Minimum gain is reached for a line current of about 52 mA for the same drain current 10 = 7.5 mAo When 10 is increased by means of the external resistor connected to pin 4, the two above mentioned values of the line current for the starting point and for the minimum gain increase accordingly. It is also possible to change the starting point without changing 10 by connecting pin 8 to the centre of a resistive divider placed between pin 5 and ground (the total resistance seen by pin 5 must be at least 100 Kn). In this case, the AGC range increases too; for example using a division 1: 1 (50K/50K) the AGC starting point shifts to about IL = 40 mA, and the minimum gain is obtained at IL = 95 mAo In addition to this operation mode, the VG voltage can be maintained constant thus fixing the gain values (Rx, Tx) independently of the line conditions. For this purpose the VDD voltage, available for supplying the MF generator, can be used. b) When gains have to be related to the voltage at the line terminals of the telephone set, it is necessary to obtain VG from a resistive divider directly connected to the end of the line. This type of operation meets for istance the requirements of the French standard. (See the application circuit of fig. 12). 4. Transducers interfacing The microphone amplifier (3) has a differential input stage with high impedance (~ 40 Kn) so allowing a good matching to the microphone by means of external resistor without affecting the sending gain. The receiving output stage (6) is particularly intended to drive dynamic capsules. (Low output impedance, 100 n max; high current capability, 3 mAp). When a piezoceramic capsule is used, it is useful to increase the receiving gain by increasing R 1 value (see the relationship for V R)' With very low impedance transducer, DC decoupling by an external capacitor must be provided to prevent a large DC current flow across the transducer itself due to the receiving output stage offset. 5. Multifrequency interfacing The LS356 acts as a linear interface for the Multifrequency synthesizer M761 according to a logical signal (mute function) present on pin 3. When no key of the keyboard is pressed the mute state is low and the LS356 feeds the M761 through pin 15 with low voltage and low current (standby operation of the M761). The oscillator of the M761 is not operating. When one key is pressed, the M761 sends a "high state" mute condition to the LS 356. A voltage comparator (8) of LS356 drives internal electronic switches: the voltage and the current delivered by the voltage supply (9) are increased to allow the operation of the oscillator. This extra current is diverted by the receiving and sending section of the LS356 and during this operation the receiving output stage is partially inhibited and the input stages of sending and receiving amplifiers are switched OFF. A controlled amount of the signalling is allowed to reach the earphone to give a feedback to the subscriber; the MF amplifier (10) delivers the dial tones to the sending paths. The application circuit shown in fig. 9 fulfils the EUROPE II standard (-6, -8 dBm). If the EUROPE I levels are required (-9, -11 dBm) an external divider must be used (fig. 10). The'mute function can be used also when a temporary inhibition of the output signal is requested. 315 APPLICATION INFORMATION Fig.9 - Application circuit with multifrequency (EUROPE II STD) C3 II ~~ r--- ct + Voo f 18 LINE ""* , 8V 1 2 3 , S 6 7 8 9 * ° '" A D~- l' I~:, 3 MF INPUT 16 8~ M761 39.2n Rl 2 ~oJ ~ ~ 9 6 11 ~20PF IS 13 3 10 ~~F clld I~S 2.2Kll LS356 " 8 C5 R80200£ , R3 3311 lW ~ 13~it l 9 5 ? FOi C7" 1 171---- I lOon R7' 100n R7 ~~3IJF :~OPF n 12 7 2 14:, :cZinf R2 82Kfi 1 392 lW MUTE IS I--- " B I--- 12 C I--- 13 82nFil 16 ~f· 11 34.8 Kit 18 * VDO 15 MUTE 15 4.87K 16 n * M761 LS 356 MF IN~UT 14 30 n * TOLLERANCE =t2% 316 ...... C6 I-OnF R6 :~C 10Kfi 5'492611 Fig. 10 - Application circuit with multifrequency (EUROPE I) F II ~OPF I I :1 1 j I APPLICATION INFORMATION (continued) Fig. 11 - Sending and receiving gain vs. line cur· rent (application circuit of fig. 13) G- Fig. 12 - Application circuit without multifrequency .. C3 ~..-- J9.21t 1w ~5'3 (,. "If, G, (dB) ) 392.n I ~C2 lIT J:47nF C'L 2 50 S " :\ -2 '3 " -4 INE ---- -, " '0 20 so ~ '6V .s , 4 .3 lW 1l:~ ~ '--- s ,s C~~,uF .. Fig. 13 - Application circuit with gain controlled by line voltage (French standard) CURRENT LIMITING 82nF 39.2fi a 392fi lW :::I:47nF " 12 ,5 13 LS 356 18Y 14 8 7 33fi 1W 317 10 07 .. RsD200n ~ CIRCU --+_OVOUI with fe = cutoff frequency = damping factor. 325 - APPLICATION INFORMATION (continued) TAB 1 Three parameters are needed to characterize the frequency and phase response of a 2 nd order active filter: the gain (G v ), the damping factor (~) or the O-factor (0= (2 ~)-1 ), and the cutoff frequency (fel. The higher order responses are obtained with a series of 2nd order sections. A simple RC section is introduced when an odd filter is required. The choice of '~' (or O-factor) determines the filter response (see table). Filter response Bessel Butterworth Chebyschev ~ Q .J3 1 2 .J3 .)2 1 2 ft .j2 1 < - >.)2 2 Cutoff frequency fc Frequency at wh ich phase sh itt is _90 0 Frequency at which Gv = -3 dB Frequency at which the amplitude response passes through specified max. ripple band and enters the stop band Fig. 14 - Filter response vs. damping factor (dB)r--,-,-.-r-rrnr-'---TT--rrrrn f---++t+J-Yt,Htt'~""5 =0.177 f---++t+mtm'='JI== 0.25 rt-:~~.!~~=OJ5 =0.5 -4 - Fixed R= Rl = R2 , we have (see fig. 13) ~=U707FR'IiF\'I""+--H:-H+tH =2 Cl=~ R we 1 -'2f----+++-+-t+ftt--\'l--t+-t+J+jj -'6 f---+-+++-++m--~\~-'+-+++H-I1 0.2 0.5 .' C2 = 1 R ~Wc The diagram of fig. 14 shows the amplitude response for different values of damping factor ~ in 2 nd order filters. 5 (fifO) EXAMPLE: Fig. 15 - 5 th order low pass filter (Butterworth) with unity gain configuration. Ri 326 APPLICATION INFORMATION (continued) In the circuit of fig. 15, for fc = 3.4 KHz and R j = R 1= R 2 = R3= R4= 10 Kn, we obtain: Cj = 1.354 1 0 Ff 1 0 21T f Tab. II Damping factor for low-pass Butterworth filters 6.33 nF Order c 1.97 nF C2 =1753 . C3 = 0.309 C4 =3.325 0 _ 1 R 1 0 0 Ffo -1- = 21T fc 1 21T f 1 c 1 Off ° 21Tf c = 8.20 nF 1.45 nF Cj Cl C2 2 0.707 1.41 3 1.392 0.202 3.54 4 0.92 5 1.354 0.421 1.08 C3 C4 0.38 2.61 C5 Cs 0.966 1.035 0.707 1.414 0.259 3.86 7 1.336 0.488 1.53 0.623 1.604 0.222 4.49 0.98 Ca 1.75 0.309 3.235 6 8 C7 1.02· 0.83 1.20 0.556 1.80 0.195 5.125 = 15.14nF The attenuation of the filter is 30 dB at 6.8 KHz and better than 60 dB at 15 KHz. The same method, referring to Tab. II and fig. 16, is used to design high-pass filter. In this case the damping factor is found by taking the reciprocal of the numbers in Tab. II. For fc = 5KHz and C j = C1 = C 2 = C3 = C4 = 1 nF we obtain: 1 R1 = 0.421 1 1 °c 21Tfc = 75.6 Kn 18.2 Kn 1 R3 = 0.309 1 1 °c' 21Tfc = 103 Kn 9.6 Kn Fig. 16 - 5 th order high-pass filter (Butterworth) with unity gain configuration. R2 Cj R4 c, o--i~ I 1st order 327 5-4122 APPLICATION INFORMATION (continued) Fig. 17 - Multiple feedback 8-pole bandpass filter. C3 C6 R, CI IN C9 ell •• C2 RI ., O-;'I--=K--IH'"'-P..... o'l,uF .1< O.l,uF .,.o--~-+-----1 R2 22KO R3 22KJ'l 1--0 220"1 e13 O.221JF I C7 fc = 1.180Hz;A= 1; C2 = C3 = Cs = C6 =Cs =C9 =C IO = C11 = 3.300 pF; RI = R6 R9 = Rl2 = 160 Kn; Rs = Rs = R11 = Rl4 = 330Kn; R4 = R7 = =: Fig. 18 - Frequency response of band-pass filter I (dB) ~, ! ONE-, -20 , , , , , -<0 TWO"" , ,- -60 , \ \ -3 -, \ , -. \ \ -. -. _7 FOUR.. 11 -80 -9 AI 0.1 OJ " .' I ONE/ , f{KHz) ,,-.r! fO"IKHz _2 I \' ' , = Rll = 5.3Kn Fig. 19 - Bandwidth of band· pass filter (dB) 1 RIO TWO/ i I fOu .'11 I II 328 " , '. 1\ ... \ \ \ II I 7 1\ rr _150 _120 -90 -60 ". ." """ 1\\" \ -JO 0 .30 ·60 .90 (Hz) OUT LINEAR INTEGRATED CIRCUIT TELEPHONE SPEECH CIRCUIT WITH MULTI FREQUENCY TONE GENERATOR INTERFACE The LS656 is a monolithic integrated circuit in 16-lead plastic package ••torepl~~eih~ hybrid circuit in telephone set. It works with the same type of transducers for both transm.i~teral"ld receiver (typically dynamic capsules). Many of its electrical characteristics can be ccii'ltrolled'hy. means of external components to meet different s p e c i f i c a t i o n s . . " ..•.....••......••...•.•..• In addition to the speech operation, the LS656 acts as an i#t~i'facef~r the MF tone signal (particularly for M761 CiMOS frequency synthesizer). The LS656 basic functions are the following: . ' . - It presents the proper DC path for the line curfli1nf, particular care being paid to have low voltage drop. . .. '. "... ' . - perfOrmi~g~i'f~:~f4,:",I~e~interfaCe It handles the voice signal, and changing the gain on both sending and receiving amplifiers to compensa~~.4pt;·.tjri~·.attenuation by sensing either the line current or the line Voltage. In addition, the L$~l:i~ calr~I~'';Work in fixed gain mode. <~,:",'!, ' . ' '\<,: It acts as linear interface f6B••MF;,•.• SIif't:)iYirig a stabilized voltage to the digital chip and delivering to the line the MF tones gel'ffl(~~ b\I:.the M761. i,'"',, VL IL IL Ptot Top Tstg , Tj '!";;} ., pulse duration) rent Reverse I'e current Total power dissipation at Tamb.= 70DC Operating temperature Storage and junction temperature 22 V 150 -150 1 -45 to 70 -65 to 150 mA mA W DC DC ORDERING NUMBER: LS656B Dimensions in mm MECHANICAL DATA 329 6/82 CONNECTION DIAGRAM (top view) ...... MIC.INPUT 16 MIC.INPUT _LINE 15 VOO MUTING 14 MFINPUT BIAS ADJ. 13 RECEIVER OUTPUT SHUNT REG. BYPASS 12 RECEIV~R D.C.REGULATOR 11 INPUT_(REC.AMP) liNE CURRENT SENSING 10 INPUT ~(REC.AMP.) GAIN CONTROL OUTPUT -LINE s -1,919 BLOCK DIAGRAM ,-----------------------~--c=~--~--------------------------.---------~~ tvL .1. I ~ ,I --- bia5 resistor )----------{14:.--------{ t MF . signal R3 YuTE 5-493011 330 TEST CIRCUITS G _I L A ~r--r ________________r-t:j-~~33=0=11~~~__~_____ 3011 33 nF B Fig. 1 Fig.2 IL·'i'o~ IL=12'o~~ G G A A TE5T CIRCUIT R=6.8Ka. TEST CIRCUIT R =6.8Ka. '----+------flB B C E F 50-4921 Side tone = CMRR V =O.lV VRO Gs= V MI VSO V MI Fig.4 Fig. 3 IL·1210~ G lo.85v A A TEST CIRCUIT R =6.8K a. lO,uF TEST CIRCUIT R =lKn B B C 0 F E $- 5-'923 GR= V RO G MF = V RI 331 V MO V MF 492411 THERMAL DATA Rth j-amb Thermal resistance junction-ambient max 80 (Refer to the test circuits, VG = 1 to2V,I L = 12to80mA, = 25 to +50°C, f = 200 to 3400 Hz, unless otherwise specified). ELECTRICAL CHARACTERISTICS 51,52 and 53 in (a), T amb Parameter Test conditions SPEECH OPERATION VL Line voltage CMRR Common mode rejection f = 1 KHz Gs Sending gain T amb = 25°C V M1 = 3 mV GR Sending gain flatness (vs. freq.) VMI= 3 mV Sending gain flatness* (vs. current) V M1 = 3 mV S3 in (b) Sending distortion f = 1 KHz IL= 15 mA 4 5 6.9 IL= 12 mA IL= 30mA IL= 60 mA Tamb= 25°C 50 f= 1 KHz IL25mA IL= 50 mA 48 44 1 dB 2 ± 1 dB 2 ± 0.5 dB 2 2 10 % % 2 46 Vso= 700 mV Vso= 800 mV - dB 50 f ref = 1 KHz V Sending noise V M1 - OV; dBmp 2 Microphone input impedance (pin-16) VMI- 3 mV 40 Kn - Sending gain in MF operation VMI= 3mV S2 in (b) -30 dB 2 Receiving gain VRI= 0.3V f = 1 KHz T amb = 25°C IL= 25 mA IL= 50 mA dB 3 V R1 - 0.3V f ref - 1 KHz ± 1 dB 3 ±0.5 dB 3 3 Receiving gain flatness (vs. freq.) -70 VG=1V -4 -2 -8 -6 Receiving gain flatness* (vs. current) Receiving distortion f = 1 KHz I L =15mA Receiving noise VRI=OV; VG=1V 150 % % IJV Receiver output impedance (pin 12-13) V Ro =50mV 30 n - Sidetone f = 1 KHz T fmb = 25°C S in (b) 36 dB 2 700 n 3 -10 IJA - ZML Line matching impedance 18 Input current for gain control (pin 8) V R1 = 0.3V 2 10 VRO=440mV V Ro=480mV f = 1 KHz * F .xed ga on mode. 332 500 600 3 I.11 I i ELECTRICAL CHARACTERISTICS (continued) Parameter Test conditions MULTIFREQUENCY SYNTHESIZER INTERFACE Voo M F supply voltage Stand by and Operation S2 in (b) 100 MF supply current Stand by Operation S2 in (b) MF amplifier gain fMF in= 1 KHz V MF in= 80 mV VI DC input voltage level (pin 14) V MF in= 80 mV RI I nput impedance (pin 14) V MF in= 80 mV d Distortion V MF in= 150 mVp IL> 15mA 2.4 15 mA mA - dB 4 V - K!1 - 2 % 4 5 ms - 1 V - V - -10 iJ.A - +10 iJ.A - 17 0.3 Voo 60 Speech operation M F operation 1.6 Muting stand by current (pin 3) Muting operating current (pin 3) - 0.5 2 Starti ng delay time Muting threshold voltage (pin 3) V 2.5 S2 in (b) 333 - CIRCUIT DESCRIPTION 1. DC characteristic The fig. 5 shows the DC equivalent circuit of the LS656. Fig. 5 - Equivalent DC load to the line PIN 6 RI PIN2 110 VL LINE PIN9 PIN7 ~ 5 .. 4365 A fixed amount 10 of the total available current IL is drained for the proper operation of the circuit. The value of 10 can be programmed externally by changing the value of the bias resistor connected to pin 4 (see block diagram). The minimum value of 10 is 7,5 mA. The voltage Vo= 37V of the shunt regulator is independent of the line current. The shunt regulator (2) is controlled by a temperature compensated voltage reference (1) (see the block diagram). Fig. 6 shows a more detailed circuit configuration of the shunt regulator. Fig. 6 - Circuit configuration of the shunt regulator R2 RI 6 R3 S-492S The difference IL -10 flows through the shunt regulator being Ib negligible. la is an internal constant current generator; hence Vo= Va + la • Ra= 3.7V. The V L • IL characteristic of the device is therefore similar to a pure resistance in series to a battery. 334 It is important to note that the DC voltage at pin 5 is proportional to the line current (V 5 = V7 + V B= (lL -10) R3 + VB)' The DC characteristic of the LS656 is shown in fig. 7. Fig. 7 - DC characteristic G-4707 VL (V, R,:30 n R3:30 11 I /' /V" '/ V /' , 10 40 60 80 'l(mA) 2. Two to four wires conversion The LS656 performs the two wires (line) to four wires (microphone, earphone) conversion by means of a Wheatstone bridge configuration so obtaining the proper decoupling between sending and receiving signals (see fig. 8). Fig. 8 - Two to four wires conversion 11 . - - - - ------ - -- LINE ___________ ----4; _ _ _ _ 5- 4367/1 ZR1 For a perfect balancing of the bridge __ L_ - - ZB R2 The AC signal from the microphone is sent to one diagonal of the bridge (pin 6 and 9). A small percentage of the signal power is lost on ZB (being ZB > ZLI; the main part is sent to the line via R 1. In receiving mode, the AC signal coming from the line is sensed across the second diagonal of the bridge (pin 11 and 10). After amplification it is applied to the receiving capsule. The impedance ZM is simulated by the shunt regulator that is also intended to work as a transconductance amplifier for the transmission signal. 335 APPLICATION INFORMATION The impedance ZM is defined as (continued) /::"V 6 - 9 /::,.1 6 - 9 From fig. 6 considering C1 as a short circuit for AC signal, any variation /::"V 6 generates a variation: Rb The corresponding current change is /::"1= Therefore /::"V 7 R3 /::"V 6 Ra ZM = - - = R3 (1 + - ) /::"1 Rb The total impedance across the line connections (pin 11 and 9) is given by ZML = R1 + ZM//(R2 + ZB) By choosing ZM :l!> R1 and Z,B:l!> ZM ZML "" ZM = R3 (1 + ~) Rb The received signal amplitude across pin 11 and 10 can be changed using different values of R 1 (of course the relationship ZL/ZB = R1/R2 must be always valid). The received signal is related to Rl value according to the approximated relationship: R1 R1 + ZM Note that by changing the value of R1, the transmission signal current is not changed, being the microphone amplifier a transconductance amplifier. 3. Automatic gain control The LS656 automatically adjusts the gain of the sending and receiving amplifiers to compensate for line attenuation. This function is performed by the circuit of fig. 9. Fig.9 5-4696 336 I. l~·.~ '1 II I: The differential stage is progressively unbalanced by changing V G in the range 1 to 2V (V REFG is an internal reference voltage, temperature compensated). It changes the current IG' and this current is used as a control quantity for the variable gain stages (amplifier (4) and (5) in the block diagram). The voltage VG can be taken: a) from the LS656 itself (both in variable and in fixed mode) and. b) from a resistive divider, directly at the end of the line. a) In the first case, connecting VG (pin 8) to the regulator bypass (pin 5) it is possible to obtain a gain characteristic depending on the current. In fact (see fig. 6) The starting point of the automatic level control is obtained at IL = 25 mA when the drain current 10 = 7.5 mAo Minimum gain is reached for a line current of about 50 mA for the same drain current 10 = 7.5 mAo When 10 is increased by means of the external resistor connected to pin 4, the two above mentioned values of the line current for the starting point and for the minimum gain increase accordingly. It is also possible to change the starting point without changing 10 by connecting pin 8 to the centre of a resistive divider placed between pin 5 and ground (the total resistance seen by pin 5 must be at least 100 Kn). In this case, the AGe range increases too; for example using a division 1: 1 (50K/50K) the AGe starting point shifts to about IL = 40 mA, and the minimum gain is obtained at I L = 95 mA. In addition to this operation mode, the VG voltage can be maintained constant thus fixing the gain values (Rx, Tx) independently of the line conditions. For this purpose the V DD voltage, available for supplying the MF generator, can be used. b) When gains have to be related to the voltage at the line terminals of the telephone set, it is necessary to obtain V G from a resistive divider directly connected to the end of the line. This type of operation meets the requirements of the French standard. (See the application circuit of fig. 13). 4. Transducer interfacing The microphone amplifier (3) has a differential input stage with high impedance (==' 40 Kn) so allowing a good matching to the microphone by means of external resistor without affecting the sending gain. The receiving output stage (6) is particularly intended to drive dynamic capsules. (Low output impedance (lOOn max); high current capability 3 mAp). When a piezoceramic capsule is used, it is useful to increase the receiving gain by increasing R 1 value (see the relationship for V R). Whit very low impedance transducer, De decoupling by an external capacitor must be provided to prevent a large De current flow across the transducer itself due to the receiving output stage offset. 5. Multifrequency interfacing The LS656 acts as a linear interface for the Multifrequency synthesizer M761 according to a logical signal (mute function) present on pin 3. When no key of the keyboard is pressed the mute state is low and the LS656 feeds the M761 through pin 15 with low voltage and low current (standby operation of the M761). The osci IIator of the M761 is not operating. 337 When one key is pressed, the M761 sends a "high state" mute condition to the LS656. A voltage comparator (8) of LS656 drives internal electronic switches; the voltage and the current delivered by the voltage supply (9) are increased to allow the operation of the oscillator. This extra current is diverted by the receiving and sending section of the LS656 and during this operation the receiving output stage is partially inhibited and the input stages of sending and receiving ampi ifiers are switched 0 F F. A controlled amount of the signalling is allowed to reach the earphone to give a feedback to the subscriber; the MF amplifier (10) delivers the dial tones to the sending paths. The mute function can be used also when a temporary inhibition of the output signal is requested. The application circuit shown in fig. 10 fulfils the EU ROPE II standard (-6, -8 dBm). If the EUROPE I levels are required (-9, -11 dBm) an external divider must be used (see fig. 11). APPLICATION INFORMATION Fig. 10 - Application circuit with multifrequency (EU ROPE II STD) C3 82nFI 330.n. t-'----t---t------ - - - - - - - -------,----+---4:=:J;""'.,--c=}----; R1 I1l--o=:r-+lh 11 Voo 18 R 7' 15 13 I--o=:r--I--' R7 MUTE 1S 10 MF LS656 INPUT 14 LINE 16H-~--t-~, y. R6 J!.50F "'!':'" 6.BKfi ICt, b _ _ _ _ _ _ ':V L~ Fig. 11 - Application circuit with multifrequency (EU ROPE I STD) 18 1Sf------+--t-=-=--.j 16f---rl=H--F"-"-'='>j M761 17 120pF * TOLLERANCE ,,±2% 338 I I J I APPLICATION INFORMATION (continued) Fig. 12 - Sending and receiving gain vs. line current (application circuit of fig.1 0) ) i -- , ( 50 l i 46 I \\ - - -#o-~-'-- + ( - -- .\ INE I R2 r e 1 , so '" ' OOft R7 t , , 9 1'3~~ '--- Fig. 14 - Application circuit with gain controlled by line voltage (French standard) CURRENT 82 nF 330n 12 13 10 of 20Kfi 339 C7 Rs0200n ,~ 47 22Kfi 8 "of CJ --* P5 lS656 J ~ 11. 30 fl LINE 1I'0pF IlO 13 7 CIRCUli R7' 'Or---- IL(mA) lIMlllNG lOOll " '00<" :C2 330n R' £'5 1\ 50 82nFn 30!l,w " ( I ii cst R~=13Kn\ '\R4=6.SKO i I i+- I i Fig. 13 - Application circuit without multifrequency 5 '5 'f , ¢1 (6 r--R6 :~5 .SKfL 5 '" APPLICATION INFORMATION Fig. 15 - Application circuit with fixed gain operation (continued) Fig. 16 - External mute function 15 5 - 5251 b) without mu Itifrequency a) with multifrequency Main gain condition Main gain condition In addition to the above mentioned applications, different values for the external components can be used in order to satisfy different requirements. The following table (refer to the application circuit of fig. 10) can help the designers. Component Value Rl 30 n R2 330n R3 30n R4 13 Kn Purpose Note Bridge Resistors Line current sensing. Fixing DC characteristic. Rl controls the receiving gain. When high current values are allowed, Rl must be able to dissipate up to lW. The ratio R2/Rl fixes the amount of signal delivered to the line. Rl helps in fixing the DC characteristics (see R3 note). The relationships involving R3 are: - ZIIIIL = (20 R311Z s ) + Rl ZL//ZML R3 - Gs = K· - V L = (I L - 10 ) (R3 + R1) + Va; Vo= 3.7V. Without any problem it is possible to have a ZML ranging from 600 up to 900n. As far as the power dissipation is concerned, see Rl note. The suggested value assures the minimum operating current. It is possible to increase the supply current by decreasing R4 (they are inversely proportional), in order to achieve the shifting of the AGC starting point. (See fig. 16). After R4 changement, some variations could be found also in other parameters, i.e. line voltage. Bias Resistor 340 I, Ii Component Value R5 2,2 Kn R6 6,8 Kn Purpose 8alance Network Nota It's possible to change R5 and R6 values in order to improve the matching to different lines; in any case: R2 Rl Zs = R5 + R6/1X C4 R7-R7' 100n Receiver impedance matching R7 and R7: must be equal; the suggested value is good for matching to dynamic capsule; there is no problem in increasing and decreasing (down to On) this value, A DC decoupling must be inserted when low resistance levels are used to stop the current due to the receiver output offset voltage (max 200 mVl, R8 200n Microphone impedance matching The suggested value is typical for a dynamic microphone, but it is possible to choose R8 in a wide range. Regulator AC bypass A value greater than 10 I'F gives a system start time too high for low current line during MF operation; a lower value gives an alteration of the AC line impedance at low frequency. Cl C2 47 nF Matching to a capacitive line C2 changes with the characteristics of the transmission line. C3 82nF Receiving gain flatness C3 depends on balancing and line impedance versus frequency. C4 15 nF 8alance network See note for R5, R6. DC filtering The C5 range is from 0.1 I'F to 0.47 IIF. The lowest value is ripple limited, the higher value is starting up time limited. C5 C6-C7 1000pF RF bypass C8 Receiving output DC decoupling C9 Receiving input DC decoupling 341 See note for R7, R7. LINEAR INTEGRATED CIRCUITS OPERATIONAL AMPLIFIERS The LS 709 series features low offset, high input impedance, large input common mode range, high output voltage swing. The amplifier is intended for use in D.C. servosystems, high impedance analog computer,low level instrumentation applications, and for the_,generation of special linear and non linear transfer functions. ABSOLUTE MAXIMUM RATINGS TO-99 Supply voltage Input voltage Differential input voltage Operating temperature for LS 709/LS 709A for LS 709C Power dissipation at T amb = 70°C Storage temperature DIP ± 18 V ± 10 V ±5V -55 to 125°C o to 70 ~C 520 mW 400 mW -65 to 150°C -55 to 150 °C 1) For supply voltages less than ± 10V maximum input voltage is equal to the supply voltage. MECHANICAL DATA 6/82 Dimensions in mm 342 CONNECTION DIAGRAMS AND ORDERING NUMBERS (top views) .'. 9 Type TO-99 DIP LS 709 LS 709T - LS 709A LS 709 AT - LS 709C LS 709 CT LS 709 CB SCHEMATIC DIAGRAM (pin numbers are referred to the TO-99 version) ?8 r-----~~~--------~~----~--------~--~--O·~ R1 2Skll R2 2Skll '--~t-t::.a4 as R1S 30kll a13 4 '---------'>----------------"---:5--:-2"'74-'"'--{)-vs THERMAL DATA Rth j-amb Thermal resistance junction-ambient max 343 OUTPUT FltEO.CONP, ELECTRICAL CHARACTERISTICS (see note) LS 709A Ib 1 6 5 2 10 7.5 mV mV I nput bias Tamb~ T min Tamb~ 25c C 0.3 100 0.6 200 0.5 200 1.5 500 0.36 300 2 1500 /lA nA Tamb~ T max Tamb~ T min Tamb~ 25c e 3.5 40 10 50 250 50 20 100 50 200 500 200 75 125 100 400 750 500 nA nA nA I nput offset Ro Output resistance Tamb~ 25 c e Is Supply current Vs~±15V Transient response R isetime Overshoot Tamb~ 25 c C Slew rate Tamb~ 25 c e Gv Tamb~ Tamb~ 170 700 40 150 150 T amb~25ce 2.5 100 400 50 50 150 250 250 kn kn 150 n 3.6 2.6 5.5 2.6 6.6 mA 1.5 30 0.3 10 1 30 0.3 10 1 30 jJ.s % Vi~20mveL<;;100pF Average tempera- Rg~ 50n ture coefficient T amb~ 25c C to of input offset Tamb~ 25 c C to voltage Rg~ 10 kn Tamb~ 25c C to Tamb~ 25 c c to Large signal voltage gain 85 350 T min 25 c e Vs~±15V 0.25 T max T min 1.8 1.8 10 10 T max T min 2 4.8 15 25 88 93 97 ±12 ±10 ±14 ±13 0.25 0.25 V/jJ.s 3 6 6 12 ",vre ",Vrc ",v/ce ",v/ce RL# 2 kn Vo~±10V Output voltage Vs~±15V RL~ swing Vs~ ±15V RL~ Vi Input voltage range Vs~±15V ±8 eMR Common mode Rg<;; 10 kn 80 Rg<;; 10 kn 80 Va Max. 3 2 Input resistance I'Nos Typ. 0.6 Ri ---.6T Typ. Max. Min. Rg<;; 10 kn Rg<;; 10 kn T amb~25cC current SR Typ. Max. Min. I nput offset voltage current los LS 70ge Unit Min. Vas LS 709 Test conditions Parameter 10 kn 2 kn 97 88 93· 83 93 dB ±12 ±10 ±14 ±13 ±12 ±10 ±14 ±13 V V ±8 ±10 ±8 ±10 V 110 70 90 65 90 dB 88 76 92 74 92 dB rejection SVR Supply voltage rejection Note: These specifications, unless otherwise specified, apply for Tamb= -55 to 125c e for LS 709/LS 709A and T amb = 0 to 70c e for LS 70ge with the following conditions: Vs= ± 9V to ± 15V, el= 5000 pF, Rl= 1.5 kn, C2= 200 pF and R2= 51 n. (See fig. 8 and fig. 17). 344 II, I.•. , I~ ~ I Fig. 1 - Voltage gain vs. supply voltage (for 709A) (,-,970 G, V Tam b"-5S'toll5 f-- 60k RL ~2kn ....... f-""" V ./ ", ./ 30k ~,~~.~~ro~l ....- lamb" -5S'C to12S'C ....... ~ ....... ~\"'~P""t'l. 15 I ...- .-'~.- .-'- ~.- V ~, i-- ~ I-- Wk w w " 10 Fig. 5 -Output voltage swing vs. load resistance(for 709A) Fig. 4 - Power consumption vs. supply voltage (for 709A) Fig. 6 - Input bias current vs. ambient temperatu re (for 709A) (,-2986 I P to! (m' ) II ) Tamb= 2Soc; Tam b'2S'C ./ /' ./ 80 V V 30 ./ ....... f-""" ", ....... v 400 300 ./ ..- 70 ;-l987 'b (nA) v :!ISV "0 50 !-- W V .....- 20k (,-2919 G-297& '0 20 ./ Fig. 3 - Input common mode voltage range vs. supply voltage (for 709A) (Vpp ) 25 V V-'./ 40k Fig. 2 - Output voltage swing vs. supply voltage (for 709A) .....- 18 "\ 200 '\. ~ / I "'""' '---. r- / 10 10-' Fig. 7 - Input offset current vs. ambient temperature (for 709A) -60 Fig. 8 - Transient response test circuit 0 20 60 Fig. 9 - Transient response (for 709A) REL,6,TlVE,---,--r--,-,--,-,---f"""-, I 40 -20 OOTPUT 1\ Vs ,'15V Tam b'2S'C 1.2 \ 30 r--.. o.s \ 20 0.6 '\ '" 10 I -60 -20 0 20 I 0.4 --. RISE TIME 02 05 60 345 '5 t (,us) Fig. 10 - Slew rate vs. closed loop gain using recommended compensation networks (for 709A) SR'~~~~II~~~~~~!!~I Fig.11- Voltage gain vs. suplply voltage (for 709) (,296' (1//1-'5)' 'I--- .mHS· V5~'15V • 60> r ./ -- / >!o- f-- -'r-- -- ~+ ~+ H- I r-- -t _~c...\:'I. 1-- L" ~10-- ....... V ......"""~ "'rJ!' - 1--- '" 10 ~ - ..-i<:::' V'-' I ~ I- lamb" O'C to 70'C (LS709C) 20 I i .. f-- r-- I - f-- V lamb- -55'C to 125'C (LS709) ./ I ~ I V Rl ;:>:2kfl '" G-l98< 1/ ~tt~b-S5'''R 12;" 1--+-tt-+--- - 1- 10 -~--- -- G. 10' 10 Fig. 12-0utputvoltageswing vs. supply voltage (for 709 and 70ge) 14 Fig.13 - Voltage gain vs. supply voltage (for 70ge) Fig. 14 - Input bias current vs. ambient temperature (for 70ge) (;-2963 Fig. 15 - Input offset current vs. ambient temperature (for 70ge) 13-1992 I G. lamb-O'C to 70"C r--- RL :.'!2kn Vs·!15V Vs~!15V /' !Vs (V) 0,8 160 0,6 120 /' 10k ~V V V ...... "'- /' " 0,2 80 ~ r--... ~ I-- r10 12 14 !Vs (V) -60 60 100 lamb('C) 60 20 0 20 ........ 60 r-100 Tamb("C) Frequency compensation for all types Fig. 16 - Open loop frequency response for various values of compensation Fig. 17 - Frequency compensation circuit G-J~ IIIII~ 111m G. (dB) G. "~I~Ir-nTmw-rITrnm-TPv.IT'~'~l5vTr~ (dB) H+iffll-+H-tttHt-Httttllt---tlTamb :25'C 1/$"t'51/ T amb'"2S'C IlIl'e,." 11111111. 100 80 IllIIn 11111111 Fig. 18 - Frequency response for various closed loop gains ._"" :-- 60 ~'- " c~.~,.~ 'bo .'$" '('~.. )!~ .0,...-9/~ ~$ '0 4-4. C'<,,,,<,; Jo.o,c- .f~c.. 0.o,c- S-21~l "U$~R:2.son ... 1\fiI t~.mplif, ... ,$ opeoratfod .... ,th eap,o.e,hv. lo~,"9 20 ..~ 20 _20 L..l.lllllllL...J..J.lllllll-LllUU'---LUUJJlI.....1..J..J1Jill -20 10' 10' 10' 10' 346 10' 10' f (Hz) LINEAR INTEGRATED CIRCUITS PROGRAMMABLE OPERATIONAL AMPLIFIER • MICROPOWER CONSUMPTION • INTERNALLY FREQUENCY COMPENSATION • OFFSET NULL CAPABI LlTY • SHORT CI RCUIT PROTECTION • LOW INPUT BIAS CURRENTS • LOW NOISE The LS 776 is a programmable operational amplifier available in three different packages (TO-99, Minidip and SO-8 imicropackage). High input impedance, low supply currents and low input noise over a wide range of operating supply voltages coupled with programmable electrical characteristics, make it an extremely versatile amplifier for use in high accuracy, low power consumption analog applications. Input noise voltage and current, power consumption and input current can be optimized by a single resistor t..f current source that sets the quiescent current for nanowatt power consumption or for characteristics similar to the LS 141. Internal frequency compensation, absence of "latch-up", high slew rate and short circuit current protection assure ease of use in long interval integrators, active filters and sample and hold circuits. The LS 776 is available with hermetic gold chip (8000 Series). ABSOLUTE MAXIMUM RATINGS Vs VI (1) tNI YSET ISET Top Supply voltage I nput voltage Differential input voltage Maximum voltage to ground at ISET Maximum current at ISET Operating temperature for LS 776 for LS 776 C Output short circuit duration (2) Power dissipation at T amb = 70°C Storage and junction temperature TO-99 Minidip Jlpackage 520 mW -65 to 150°C. ±18V ± 15V ±30V Vs -2V to Vs 500 JlA -55 to 125°C o to 70°C indefinite 665mW -55 to 150°C 400mW -55 to 150°C 1) For supply voltage less than ± 15V, input voltage is equal to the supply voltage 2) The short circuit duration is limited by thermal dissipation Dimensions in mm MECHANICAL DATA 347 6/82 I [ CONNECTION DIAGRAMS AND ORDERING NUMBERS (top views) OFFSET NULL 'D1SET INVERTING INPUT- 2 1 "" 3 ''"''eT INVERTING INPUT. I L~~~~6_ I I I-- l I TO-99 INVERTING INPUT",N INVERTING INPUT. OF~3c~ 4 Type .V s :0:':: 3 6 OUTPU1 4 S Minidip OF~3c~ 80-8 LS 776T I LS 776C LS8776 1 Lssn-6: I LS 776CT LS 776 CB I -------- 1 l ______ SCHEMATIC DIAGRAM 'SET 7 .---------------~------~._---~--~--~----~----------~-___o.vs INVERTING INPUT 2 R4 500 R5 lOOn R6 R7 6 OUTPUT lOon lOon t------lt_09 OFFSET NULL ~'0c~ET R1 10kO 5- 2107/1 019 _::I--+.-fb-'°'""c"'-8----1--l:. 020 R2 10kQ 4 ' - - - - - - -. . .- - - - - - - - '__________- - - -. . .---+-------~>_--------_+----__{)-vs I THERMAL DATA Rth j-amb TO-99 Minidip 80-8 Thermal resistance junction-ambient * The thermal resistance is measured with device mounted on a ceramic substrate (25 x 16 x 0.6 mm) 348 ELECTRICAL CHARACTERISTICS for LS 776 I (V s= ± 15V. T amb = 25°C unless otherwise specified) J.: ISET= 1.5"A Parameter ISET= 15"A Test conditions Min. Typ. Max. Min. Typ. Max. Unit Vas I nput offset voltage R g 0(10kn 2 5 2 5 mV los Input offset current R g 0(10kn 0.7 3 2 15 nA Ib I nput bias current 2 7.5 15 50 Ri I nput resistance 50 5 nA Mn Ci I nput capacitance 2 2 pF l;V os I nput offset voltage adjustment range 9 18 mV Gv Large signal voltage gain Ro Isc RL> 75 kn Vo=±1,OV RL> 5 kn Vo= ± 10V 106 dB 112 100 112 dB Output resistance 5 1 kn Output short-circuit 3 12 mA current Is Supply current Ps Power consumption Transient response (unity gain) 20 VI = 20 m V CL = 100pF Rise time tr Slew rate Vo Output voltage swing 180 "A 5.4 mW RL> 5 kn Overshoot l; Vo SR 160 25 0.75 RL> 5 kn ± 12 RL> 75 kn 1.6 0.35 0 10 % 0.1 0.8 V I"s ± 13 V "s. ± 14 V ± 10 RL> 5 kn The following specifications apply for T amb = -55 to 125°C vas Input offset voltage Rg 0(10kn 6 6 mV los Input offset current Tamb= 125°C 5 15 nA Tamb= -55°C 10 40 nA T amb = 125°C 7.5 50 nA T amb = -55°C 20 120 nA Ib Input bias current Vi Input voltage range CMR Common mode rejection Rg 0( 10 kn 70 90 70 90 dB SVR Supply voltage rejection Rg 0( 10 kn 76 92 76 92 dB Gv Large signal voltage gain RL> 75 kn Vo Output voltage swing Is Supply current Ps Power consumption ± 10 Vo= ± 10V RL> 75 kn ± 10 100 98 ± 10 ±10 30 0.9 349 V dB V 200 "A 6 mW ELECTRICAL CHARACTERISTICS for LS 776 IV.= ± 3V, Tamb = 25°C unless otherwise specified) ISET= 1.5/LA Parameter ISET= 15/LA Test conditions Unit Min. Typ. Max. Min. Typ. Max. VOS Input offset voltage 2 5 2 5 mV los Input offset current 0.7 3 2 15 nA Ib I nput bias current 2 7.5 15 50 Ri Input resistance 50 Rg " 10 kn 5 nA Mn Ci In pu t capaci tance 2 2 pF tNos Input offset voltage adjustment range 9 18 mV Gv Large signal voltage gain RL:> 75 kn Vo= ± 1 V R L :> 5 kn Vo= ± lV 94 106 dB 94 106 dB Ro Output resistance 5 1 kn Isc Output short-circuit current 3 5 mA I. Supply current 13 20 130 160 /LA Ps Power consumption 78 120 780 960 /LW Transient response (unity gain) SR Vi = 20mV C L .. l00pF RL:> 5 kn Rise time tr 3 0.6 /LS Overshoot I!. Vo 0 5 % 0.03 0.35 V//Ls Slew rate RL:> 5 kn The following specifications apply for Tamb = -55 to 125°C "'os Input offset voltage Rg" 10 kn 6 6 mV los I n put offset current Tamb= 125°C 5 15 nA Tamb= -55°C 10 40 nA Tamb= 125°C 7.5 50 nA 20 120 nA Ib Input bias current Tamb= -55°C V, Input voltage range CMR Common mode rejection Rg.. 10 kn 70 86 70 86 dB SVR Supply voltage rejection Rg" 10 kn 76 92 76 92 dB Gv Large signal voltage gain RL:> 75 kn Vo= ± lV R L :> 5 kn Vo= ± lV Vo Output voltage swing ± 1 V dB B8 ·88 ±2 RL:> 75 kn ± 1 dB ± 2.4 V ± 1.9 ± 2.1 R L :> 5kn V I. Supply current 25 180 Ps Power consumption 150 1080 /LW 350 /LA I j 'i ji I ELECTRICAL CHARACTERISTICS for LS 776C (Vs= ± 15V, T amb = 25°C unless otherwise specified) ISET= 1.5J.!A Parameter, Unit Min. VOS Input offset voltage los I n put offset cu rrent Ib Input bias current Ri Input resistance ISET= 15J.!A Test conditions Rg<10k.l1 Typ. Max. Min. Typ. Max. 2 6 2 6 mV 0.7 6 2 25 nA 2 10 15 50 5 50 nA M.I1 Ci Input capacitance 2 2 pF /eNos Input offset voltage adjustment range 9 18 mV Gv Large signal voltage gain 112 dB RL> 75 k.l1 Vo= ± 10V 5 k.l1 Vo= ± 10V RL> 94 ' 112 dB ,94 Ro Output r,esistance 5 1 k.l1 Isc Output short-circuit 3 12 mA Is Supply current Ps Power consumption current Transient response (unity gain) 20 30 160 0.9 Vi = 20 mV CL<100pF SR Slew rate RL> 5 k.l1 Vo Output voltage swing RL> 75 k.l1 RL> 190 J.!A 5.7 mW RL> 5 k.l1 Rise time tr Overshoot 11 V 0 ± 12 1.6 0.35 0 10 % 0.1 0.8 V/J.!s ± 13 V J.!s ± 14 V ± 10 5k.l1 The following specifications apply for T amb = 0 to 70°C Vos Input offset voltage R g< 10 k.l1 7.5 7.5 mV los Input offset current Tamb= 70°C 6 25 nA T amb = O°C 10 40 nA T amb = 70c C 10 50 nA T amb = O°C 20 100 nA Ib I nput bias current ± 10 ± 10 V Vi I nput voltage range CMR Common mode rejection Rg < 10 k.l1 70 90 70 90 dB SVR Supply voltage rejection Rg< 10k.l1 74 92 74 92 dB Gv Large signal voltage gain RL> 75 k.l1 Vo Output voltage swing RL> 75 k.l1 Is Supply current Ps Power consumption Vo= ± 10V 351 94 94 ± 10 ± 10 I /, dB V 35 200 J.!A 1.05 6 mW ! ELECTRICAL CHARACTERISTICS for LS 776C ± 3V, Tamb = 25°C unless otherwise specified) (Vs= ISET= 1.5MA Unit Min. Vas Input offset voltage lOS Input offset current Ib I nput bias current ISET= 15MA Test conditions Parameter R g< 10 kn Typ. Max. Min. Typ. Max. 2 6 2 6 mV 0.7 6 2 25 nA 2 10 15 50 nA 50 5 Mn Ri I nput resistance Ci Input capacitance 2 2 pF !Nos I nput offset voltage adjustment range 9 18 mV Gv Large signal voltage gain RL> 75 kn Vo= ± lV RL> 5 kn V o - ± lV 88 106 dB 88 106 dB Ro Output resistance 5 1 kn Isc Output short-circu it current 3 5 mA Is Supply current 13 20 130 170 MA Ps Power consumption 78 120 780 1020 MW Transient response (unity gain) Vi = 20 m V RL> 5 kn C L < 100 pF Rise time tr Overshoot SR to Vo Slew rate RL> 5 kn 3 0.6 0 5 % 0.03 0.35 VII's MS The following specifications apply for Tamb = 0 to 70°C vAS Input offset voltage Rg <10kn 7.5 7.5 mV los I nput offset current T amb = 70°C 6 25 nA T amb = O°C 10 40 nA T amb = 70°C 10 50 nA Tamb= O°C 20 100 nA Ib I nput bias current ± 1 ±1 V Vi Input voltage range CMR Common mode rejection R g< 10 kn 70 86 70 86 dB SVR Supply voltage rejection Rg< 10 kn 74 92 74 92 dB Gv Large signal voltage gain RL> 75 kn Vo= ± 1V 5 kn Vo= ± lV RL> Vo Output voltage swing dB 88 ±2 RL> 75 kn RL> 88 dB V ± 2.4 5kn ±2 V ± 2.1 Is Supply current 25 180 MA Ps Power consumption 150 1080 MW 352 Fig. 1 - Input bias current vs. set current Fig. 2 - Input bias current vs. ambient temperature 10 Fig. 3 - Input offset current vs. ambient temperature 1,1 1o, II i~ 30 1/ 10 ~, "dllloH II " " / 12 1.5 ·60 Fig. 4 - Change in input offset voltage vs. set current dVos ()Jvl 300 ~~JJTIIT ,j.~ i"l' lill1 -;' t---.+. 1 115=1310tI8\1 _100 >-1 ~~ I, ---'--,-T i t '1 ~500 20 60 Fig. 6 - Input noise voltage vs. set current 'N'rnmg;m = lSpA 300 200 t--- I I r ii 100 10 i--.. I -1; ; , I _300 0 400 jI l f'j. -20 (~):SU Vs=.!.15V ISET .60 100 Tilmb{OC) Fig. 5 - Change in input offset voltage vs. ambient temperature (unnulled) ,.,",," 500 I 100 60 A T -zoo 1 -300 10 10. 1 -60 ISEy(jJA) Fig. 7 - Input noise voltage and cu rrent vs. frequency -20 0 20 60 100 Tamb<"C) Fig. 8 - Input noise current vs. set cu rrent 10-' '°. 1 10 'SET (,uA) Fig.9 - Optimum source resistance for minimum noise vs. set current. 11111 . I 1 0 , _ lamb =25*C , F Vs :!;310.!.18V f .. lkHz llf" 1Hz L+--U.~..!l-------!--l-!l-!l111TI1illl--------!--nr1TLjljnml!ll--!--4J-!ljIIlO" 10 10' 10' 10' f (Hz) 10' 10-! ... ... 353 TIm Trmm , .. 10 .. ISET (jJA) 10' c...,f---Lj.-4.lf,tL-f-1-!ljljlL.,l-4ljljlL 10·' 10 ISET (jJA) Fig. 10- Output voltage swing vs. load reo sistance Fig. 11 - Output voltage swing vs. supply voltage Fig. 12 - Gain bandwidth product vs. set current ~"-''-,,~-r'-,,,,-r~~'' ", H".Lmb-',>ZS"·,,+-+-H-+++-H-++-i •. 28~~~t~~+=t~::,+.,=~L,~" ~IO~"~"~A+~H "H-+++-H-+R~l'r",>_n,,~~~7~?~~ " lamb ~ 25"C 1111 1111 ~1.S 15ET V lo15)JA :!Jv 1111 ", ". " Fig. 13- Open loop voltage gain vs. ambient temperatu re Fig. 14 - Open loop voltage gai n vs. ambient temperature II V, :1 SET· ,(Xl> Fig. 15 - Open loop voltage gain vs. set current :t1SV L~ /.I 1.4"-4 800>" ""'-" ET' 1.2M 1. /.IA: 10'. _ _ JJA.: 'Is : 1. /-IA.: 15k ~ 3'1 soo> 400k "Xl> amb: 2S·C L=7Skfl 200t '--LLllll.llL.-'-.LLl.llIllL-III...L.LLLll!-" 10' .60 _20 0 20 -60 Fig. 16 - Common mode rejection vs. set current CMR I III , (dB (,_2891 -20 0 20 " 60 Fig. 17 - Supply voltage' rejection vs. set current (~,,::, ~=:=I=II;'II;III=:::~~;=:=::~ Fig. 18 - Supply current vs. ambient temperature '. -++ (jJA) lilmb :25'(: lamb =lS V :13to!18v 9J I '15 :~15V ~t15/JA v dlSV v, =il ,/ ./ I 69 " os 20 ./ I .. 80 ,0 IO lis: !JV .. f-++++ttItl--++fttHlto--,-++fIFIlII ET =T. }lA V :1;15'1 ro .. ISET (",Al 354 'Is =!3Y -60 -ro 0 20 60 100 Tamb('C) I, 1 Fig. 19 - Standby supply current VS. set Fig. 20 - Slew rate current VS. Fig. 21 - Voltage follower transient response (unity gain) set " e-J--i-+-H--P+-I-+++-f-+++-1 10-' '-LllJl!jj'-LlllilJJ'-Llil 10-' Ml' 10 as I5£T(,I.I"') " 2S t (/-IS) TYPICAL APPLICATIONS Fig. 22 - High accuracy sample and hold Fig. 23 - Nanowatt amplifier .sv 5-258611 S~~~JlLE Fig. 24 - High input impedance amplifier CONTROL -sv HOLD *HOLD CAPACITOR 5-258511 e; 355 TYPICAL APPLICATIONS (continued) Fig. 25 - Multiplexing and signal conditioning -15V 2.7Mfi +---C:J-O.15V 270kn 5- 2588 Fig. 26 - Multiple feedback bandpass filter Fig. 27 - Gated amplifier lMfi '>''---~---r; 0 UTPU T VEE 5-3936 5- 3935 356 I ii LINEAR INTEGRATED CIRCUIT ~, 1,',:" PRELIMINARY DATA DUAL HIGH PERFORMANCE OPERATIONAL AMPLIFIER • • • • • • • ! j:; 1,' SINGLE OR SPLIT SUPPLY OPERATION LOW POWER CONSUMPTION HIGH UNITY GAIN BANDWIDTH NO CROSSOVER DISTORTION NO POP NOISE SHORT CIRCUIT PROTECTION HIGH CHANNEL SEPARATION ,~ ~ !.I The LS 4558N is a high performance dual operational amplifier with frequency and phase compensation built into the chip. The internal phase compensation allows stable operation as voltage follower in spite of its high gain-bandwidth products. The circuit presents very stable electrical characteristics over the entire supply voltage range and the specially designed input stage allow the LS 4558N to be used in low noise audio signal processing application. The optimized class AB output stage completely eliminates crossover distortion, under any load conditions, has large source and sink capacity and is short circuit protected. , J";,, ,',', ABSOLUTE MAXIMUM RATINGS V5 VI Vi Ptot Supply voltage Input voltage Differential input voltage Power dissipation at T amb = 70°C Top Tj T stg Operating temperature Junction temperature Storage temperature Minidip Micropackage ± 18 ±Vs ±(Vs -1) 665 400 o to 70 150 -55 to 150 V V mW mW °C °C °C ORDERING NUMBER: LS 4558 NB (Minidip) LS 4558 NM (Micropackage) MECHANICAL DATA Dimensions in mm ] 1:, i 357 6/82 CONNECTION DIAGRAM (top view) OUTPI,IT A ~OU~UT INIlINP. A 7 NONINI! INP. A 6 ~ INI!~NP. h NON INV. 5 ~ INP. B 5-3590 SCHEMATIC DIAGRAM (one section) INVERTING INPUT NON INVERTING INPUT 8 ~_ _- 1_ _ _ _ _ _~_ _ _ _ _ _~_ _ _ _~_ _~_ _ _ _~~_ _ _ _ _ _~_ _ _ _ _ _--o~s R7 OUTPUT RS Q16· 5-5155 THERMAL DATA Rth j-amb Minidip Thermal resistance junction-ambient (*) Measured with the device mounted on a ceramic substrate (25 x 16 x 0.6 mml. 358 120 °e/W 80-8 200* °e/W ELECTRICAL CHARACTERISTICS (V s = ± 15V, Tamb = 25°C, unless otherwise specified) Parameter Test cond itions Min. Typ. Max. Unit Is Supply current (.) 1 2 mA Ib I nput bias current 50 500 nA Ri I nput resistance T min < Top f = 1 KHz Vos I nput offset voltage Rg .. 10 Kn Rg <;; 10 Kn T min < Top los Gain-bandwidth product f = 20 KHz Total inpu t noise voltage f - 1 KHz eN Popcorn no ise d Distortion Vo Output voltage swing RL- 2 Kn Vo Large signal voltage swing RL-l0 Kn f = 10 KHz Transient response Slew rate unity gain R L = 2 Kn CMR Common mode rejection V i -l0V T min < Top VI lV T min < Top f - 10 KHz Supply voltage rejection Channel separation 200 nA 500 nA 86 100 d8 2 3 8 10 18 0.03 R L - 2 Kn < T max f < T max 100 Hz R g- l Kn (.) Both amplifiers. 359 MHz 15 nV VRZ 10 RL= 2 Kn f = 1 KHz Vi - 20mV C L = 100 pF SR mV mA Rg- 50n R = 1 Kn R~= 10 Kn Gv= 20 dB Vo=2 Vpp Rise time 5 7.5 23 B-1 Hz to 1 KHz Rg= 10 Kn t =·10 sec Overshoot CS < T max current B nA Mn mV J I Output short circuit eN SVR 0.5 20 RL= 2 Kn 800 1 < Top < T max Large signal open loop voltage gain Gv 0.3 I nput offset current T min Ise < T max 1 /JV peak % ± 13 V 28 Vpp 0.13 /JS 5 % 0.8 1.5 V//Js 70 90 dB 80 100 dB 105 dB l Fig. 1 -Open loop frequency and phase response Fig. 2 - Open loop gain vs. ambient temperature IJ Gv (dB ) Vs o,,5"- RLo2Kn_ - 200 f-"'.+-',-"+--,--+--..,...--] 160 10 5 120 10 0 Fig.3 - Supply voltage rejection vs. frequency I I i I , . 80 -t+t- 95 1 I 'ii 0 i 50 -50 r+- . W~--L 10 Fig. 5 - Output voltage swing vs. load resistance Fig. 4 - Large signal frequency response t '.'-j 40 I __ 10' ~_-L_~~_~ 10' 1(Hz) 10' 10' Fig. 6 - Total input noise vs. frequency G_3713 G-369SIt Illllll Vo (Vpp ) 24 Vo (Vpp ) I 20 - 16 f12 Vs= ~15V RL=2KIl. Gv =20dB ' d =. 3°/0 , Gv =20dB f =1kHz d 3 0 1ft 20 16 !, / . , 10' 10' HHz) G' I' 'G 10' . , 10' RL(a) Fig. 8 - Transient response .. 1 10' ! ~~ i! I .. "II 10' G- 4661 "s='±15V - " I .. I ,I 1\ , \ , / - WK II L _ .L I -+ " f (Hz) 6 V.5,,:t15V 10 "I II illill .. ! Fig. 9 - Voltage follower large-signal pulse response .. -+t '--I· '00 I I: ~ 80 I: I 10' '10 '00 "~. I Fig. 7 - Channel separation '40 1Kn I I , I I t 10' Rg=10Kfi,' i I I i , ~ I jl 12 ~fw ~. ee- I • , ~. 160 r-.... 10 LI'll ,.,' I = L I ill e--r ~O:'5-7E1 "r" }I- .Vs=.!.lSV 24 Ililll f(Hz) 0.25 0.5 360 0.75 1 t(,us} 10 - ---- 30 APPLICATION INFORMATION ], :1; '. Fig. 10 - Mike/Line preamplifier for audio mixers (0 dB to 60 dB continuously variable gain) lK.IL i. J 56 '." 150 Il. KIl. 1.8 nF OUT l 5 - 5 2 73 Note - The particular characteristics of the circuit of fig. 10 is that using a linear potentiometer, the gain is continuously variable in a logarithmic mode from 0 dB to 60 dB in the audio band. Fig. 11 - Microphones nomograph Very Low-Noise mike Fig. 12 preamplifier (G v = 40 dB) SOUND PRESSURE LEVEL dB 3.3 K 11 130 OUT 120 MICROPHONE OUTPUT VOLT AGE 110 100 dB NOISV FACTORY IV 600 '00 200 100mv lPascal(Pa) =lnewfon/m 2 90 SUBWAY "- TRAIN 5-PIECE ORCHESTRA AT 10 FEET eo AVERAGE NOl5Y OFFICE MICRO PHON E SENSITIVITY dB (1 Vfpa) (lV/,ubar) 10 mv 40 -60 - 50 -70 - 60 -80 - 70 -90 - 80 -100 ~ STREET , l,ubar=1dynE"/cm 70 60 '0 20 1m, 600 '00 200 "- Rl 100 }Jv 60 NORMAL SPEECH AT 3 FEET 60 '0 20 10 )-Iv 6 , 50 PRIVATE OFFICE 1 ~, '0 AVERAGE RESIDENCE Fig. 13 - Balanced input audio preamplifier 361 R2 f APPLICATION INFORMATION (continued) Fig. 15 - Frequency response of the High-pass filter offig.14 Fig. 14 - 20 Hz to 200 Hz variable High-pass filter (G v = 3 dB) (dB),-,,---nTIl1l-,,---nmTT-ri--rrmn O.15~F INo--Jb-_-II-~-"-l OUT 1.,1 5- 5274 ·30 f-hf+ttHtf-+-It-t+t+tII-H++ft+1j 10 Fig. 16 - DC coupled low-pass active filter (f = 1KHz, Gv = 6 dB) 30 100 300 I (Hz) Fig. 17 - Switch able HP-LP audio filter C1 1S0n Fig. 18 - Subsonic or rumble filter (G v = 0 dB) 10KIl C Vin 0-11-<>-411-....-"-1 Vout s- 5279 fc (Hz) C (IlF) 15 22 30 55 100 0.68 0.47 0.33 0.22 0.1 Fig. 19 - High-cut filter (G v = 0 dB) >'+--OVout 362 fc (KHz) C1 (nF) C2 (nF) 3 5 10 15 3.9 2.2 1.2 0.68 6.8 4.7 2.2 1.5 APPLICATION INFORMATION (continued) Fig. 20 - Fifth order 3.4 KHz low-pass Butterworth filter ,st order For fc = 3.4 KHz and R; = R1 = R2 = R3 = R4 = 10 Kn, we obtain: C1 1 • = 1.354 • -R 1 21r fc C1 = 0421 ._1_. 1 21r fc . R C2 1 • = 1.753 • -R 1 21r fc 6.33 nF C3 = 0309 • _1_. _ 1 _ R 21r fc 1.45 nF 1.97 nF C4 = 3.325. _1_. _1_ R 2,1r fc 15.14 nF S.20 nF The attenuation of the filter is 30 dB at 6.S KHz and better than 60 dB at 15 KHz. . Fig. 21 - Six-pole 355 Hz low-pass filter (Chebychev type) I 16o ;"F 2 20 rf S -5218 This is a 6- pole Chebychev type with ± 0.25 dB ripple in the passband. A decoupling stage is used to avoid the influence of the input impedance on the filter's characteristics. The attenuation is about 55 dB at 710Hz and reaches SO dB at 1065 Hz. The in band attenuation is limited in practice to the ± 0.25 dB ripple and does not exceed 0.5 dB at 0.9 fc. 363 LINEAR INTEGRATED CIRCUITS PRELIMINARY DATA DUAL OPERATIONAL AMPLIFIERS • INTERNALLY COMPENSATED • SHORT-CIRCUIT PROTECTED • LOW POWER CONSUMPTION • WIDE COMMON-MODE AND DIFFERENTIAL VOLTAGE RANGES • NO LATCH-UP The MC 1458 is a dual operational amplifier with frequency and phase compensation built into the chip, available in 8-lead minidip package and in 8-lead micropackage. It is intended for a wide range of applications where space and cost saving are the main goals. In spite of that, the MC 1458 offers good performance and absence of latch-up makes the device ideal for use as voltage follower, integrator, summing amplifier and general feedback applications. ABSOLUTE MAXIMUM RATINGS Supply voltage Input voltage (*) Differential input voltage Power dissipation at T amb = 70°C Minidip Micropackage Operating temperature Storage temperature ± 18 ± 15 ±30 665 400 o to 70 -55 to 150 V V V mW mW (*) For Vs lower than ± 15V, the absolute maximum input voltage is equal to the supply voltage. MECHANICAL DATA 6/82 Dimensions in mm 364 Ii: I ! CONNECTION DIAGRAM AND ORDERING NUMBERS (top view) OUTPUT A 6 INY.INP. A Type OUTPUT Minidip SO-8 B NON INY. INP. A -lis Ns ~ 6 INY.INP. B 5 NON INV. INP. B MC 1458 MC 1458 P1 MC 1458 M MC 1458C MC 1458 CP1 MC 1458 CM 5-3590 SCHEMATIC DIAGRAM (one section) ~_----_-- -,.._ _ _ _ _ _--._ _ _ _--._-o+Vs 08 :I---.-----J::09 NON INVERTING INPUT 01 02 R6 R9 INVERTING INPUT u----+---+---+----' OUTPUT R10 THERMAL DATA Rth j-amb Minidip max· Thermal resistance junction-ambient * Measured with the device mounted on a ceramic substrate (25 x 16 x 0.6 mm.). 365 120°C/W SO-8 200* °C!W ELECTRICAL CHARACTERISTICS ± (Vs= 15V, T amb = 25°C, unless otherwise specified) MC 1458C MC 1458 Parameter Unit Test conditions Min. l Is Supply current (both amplifiers) Ib Input bias current Typ. Input offset voltage Rg'; 10 Kn 2 bVos bT Input offset voltage drift los Input offset current Ise Rg =10Kn O°C 0 'f,.c;. 15K ~~ ~v,,\.'·:.:.. 10K d; V 4 10 Rt=l- -- -- ---;:; ....-;:; ~ - ~RL --RL 1---- - - f = 1 KHz f./'" ~~ o GSD150 G, '5Dl03 Vo Fig, 3 - Open loop voltage gain vs. supply voltage Fig, 2 - Quiescent drain current vs, supply voltage I---R L RL - SDK ;, 10~ II 12 14 -c-:: V~ (V) 10 .t 369 --- -- 5K 12 14 II i; II~ I, --- SK, C 3KCl_ I ~II Fig. 4 - Open loop frequency response using recommeded compensation networks l Fig. 5 - Output voltage swing vs. frequency for vari· ous compensation networks Fig. 6 - Input noise voltage vs. frequency e, G. ~~~i~±ttlt~~ 80 f: Cd!3) HI-- Vs= + 15V ",.14,• • Hr 15 r-. 10- 16 EEf~fE!limj5!~ 10- 17 ·20 U.J.ll...l.....ulL.LI.J..LLl....l..UL.LllU 100 1K 10K lOOK '0"8 L-L.LlL..L.LJ..lL-L-LllJ.-l.....J...LJ.L..J f (HZ) 10 Fig. 7 - Input noise current vs. frequency Fig. 8 - Closed loop gain vs. frequency 100 1K 10 K Fig. 9 - Open loop voltage gain vs. temperature ,"~~~~~~~~~~~.,i4~ (~: I _ Vs = ± 15V VS -±15V f = 1KHz 30K ...... j----.,: t---\.;: , Rt ~~ 10K a 10 Fig. 10 - TV remote control receiver ~ lK.n. t..7nF 4.7nF C1330RJ lOOK C2 330 .--!--!--.,,J,,........,I,.--,I,--*_~-::.-~--~----O Va C8 :I: 4,'"F ~~_~=R=5~____~__________________D'Vs lQOKfi 370 5-39~O -- "- R~ - 107D APPLICATION INFORMATION 1 '" f-- .......... 20K 10. 26 L-L.LlL..L.LJ..lL-L-LllJ.-l.-l...LJ.L.J 10K f (Hz) 10 100 1K f (Hz) (15~lB) 20 30 40 50 T {"CI LINEAR INTEGRATED CIRCUIT GENERAL PURPOSE TRANSISTOR ARRAY The TBA 331 is an array of 5 monolithic NPN transistors in a 14-lead dual in-line plastic package. Two transistors are internally connected to form a differential amplifier. The transistors of the TBA 331 are well suited to low noise general purpose and to a wide variety of applications in low power systems in the DC through VHF range. They may be used as discrete components in conventional circuits; in addition, they provide the very significant inherent integrated circuit advantages of close electrical and thermal matching. Ic P tot T stg' T j Top Collector-base voltage (I E = 0) Collector-emitter voltage (I B = 0) Collector-substrate voltage Emitter-base voltage (lc = 0) Collector current Total power dissipation at Tomb ~ 55°C Storage and junction temperature Operating temperature Each transistor 20 15 20 5 50 300 -40 to o to Total package V V V V mA 750 mW 150 °C 85 °C * The collector of each transistor of the TBA 331 is isolated from the substrate by an integrated diode. The substrate (pin 13) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action. ORDERING NUMBER: TBA 331 Dimensions in mm MECHANICAL DATA 2.5: . ;j ~~ D~.s. I I j ABSOLUTE MAXIMUM RATINGS V CBO . V CEO V css * V EBO j 15.24 I 371 6/82 i ! SCHEMATIC DIAGRAM 2 5 8 4 3 7 6 11 9 10 14 12 13 substrate 5-3763 THERMAL DATA Rth j-amb Total Thermal resistance junction-ambient ELECTRICAL CHARACTERISTICS I CEO 126°C/W (T amb = 25°C unless otherwise specified) Parameter ICBO max Test conditions Co lIector cutoff current (I E = 0) V CB = 10 V Collector cutoff current (lB = 0) VCE = 10 V Min. Typ. Max. Unit Fig. 0.002 40 nA 1 see 0.5 /.LA 2 2 /.LA 7 curve IIB1-1B21 Input offset current Ic VCE = = 1 mA 3 V 372 0.3 i;! 'II 11 i~ ~ ELECTRICAL CHARACTERISTICS (continued) Test conditions Parameter VCSO V CEO Vcss VCE (sat) Collector-base voltage (I E ~ 0) Ic ~ Collector-emitter voltage (Is ~ 0) Ic ~ collector-substrate voltage (I css ~ 0) Ic ~ Is Ic ~ IE ~ IE VCE IE VCE ~ Ic VCE ~ Ic VCE ~ Ic VCE ~ Ic VCE ~ Base-em itter voltage temperature coefficient Ic VCE ~ I nput offset voltage temperature coefficient Ic VCE ~ Emitter-base voltage (I C ~ 0) Base-emitter voltage VSE I V SEr V sE21 IVSE3- V SE41 IV SE4- V SE51 Input offset voltage I nput offset voltage I nput offset voltage IV SE5- V SE4 1 I nput offset voltage L1V SE LIT IVSErVSE21 LIT Typ. Unit Fig. 10"A 20 60 V - 1 mA 15 24 V - 10"A 20 60 V - 0.23 V - 7 V - 0.715 V 4 0.8 V 4 Max. Collector-emitter saturation voltage V EBO Min. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 mA 10mA 10 "A 1 mA 3V 10 mA 3V 5 1 mA 3V 0.4? 5 mV 4-6 1 mA 3V 0.45 5 mV 4-6 1 mA 3V 0.45 5 mV 4-6 1 mA 3V 0.45 5 mV 4-6 1, 1 mA 3V -1.9 mV/oC 5 1 mA 3V 1.1 "V/oC 6 373 ELECTRICAL CHARACTERISTICS (continued) Test conditions Parameter hFE fT NF Hie hfe ., hre hoe Yie yfe Yre DC current gain Transition frequency Noise figure I nput impedance Forward current transfer ratio Reverse voltage transfer ratio Output admittance Input admittance Forward transadmittance Reverse transadmittance Ie VeE Ie veE Ie V eE = lOrnA = 3V 1 mA = 3V 10JJA = 3V Min. Typ. Max. Unit. Fig. 100 - 3 100 - 3 54 - 3 550 MHz 14 3.25 dB 8 Ie = 1 rnA VeE = 3V = 1 kHz f 3.5 k!1 9 Ie = 1 rnA V eE = 3V = 1 kHz f 110 - 9 Ie = lmA V eE = 3V = 1 kHz f 1.8xl0" - 9 Ie = 1 rnA VeE = 3V = 1 kHz f 15.6 JJS 9 Ie = 1 rnA V eE = 3V = 1 MHz f o.3+jQ.04 mS 11 Ie = 1 rnA VCE= 3V = 1 MHz f I I 31-jl.5 mS 10 Ie = 1 rnA veE = 3V = 1 MHz f see curve mS 13 Ie = 3mA V eE = 3V Ie V eE f Rg = = = = 40 300 100JJA 3V 1 KHz 1 k!1 374 ELECTRICAL CHARACTERISTICS (continued) Parameter Test Conditions Output admittance y"" C EBO Collector-base capacitance CCBO Collector-sustrate capacitance Cess Fig. 1 - Collector cutoff current vs ambient temperature 'CEO (nA) 10 ~~~~~~~~~~~'I-'~"~'" Unit. Fig. 0.001+jO.03 mS 12 Max. f = = = 1mA 3V 1 MHz Ic V EB = = 0 3V 0.6 pF - IE VCB = = 0 3V 0.58 pF - Ic = Vcss= 0 3V 2.8 pF - IC V CE Emitter-base capacitance Typ. Min. Fig. 2 - DC current gain vs. emitter current. ,- Fig. 3 - Input voltage and input offset voltage vs. emitter current , ., E V. 120 =3V (mV) 1.1 h 0.7 100 IhFEl H"FE21 hFE2 ~E.l 80 0.6 A.' o.a 60 os ilVSE 0.' ·20 20 100 60 80 10. 2 10- 1 100 Tamtrcl Fig. 4 - Input characteristic for each transistor 'BE I ,,10m froY) 1'·,",,1' (PA): as IE (mAl Fig. 6 - Input offset current for matched transistor pair Fig. 5 - Input offset voltage vs. ambient temperature G-046113 10·' ~~~~IE~~~~~~'~'~"I'" f-~ _ f-f---H-++tHtt-..L ..l. + • - . VCEdV .7 VE"'W "mA .5 0' lmA oeo Ie'" 3mA lmA o.lmA 10-"~_ 020 -60 -30 30 60 90 Tamb("'C) ·tlO -20 0 20 375 OJ 100 TafT'bl"C1 Ie (mA) Fig. 7 - Noise figure vs collector current N' (dB) IYJ veE ~ 3V = 1kfl. I--R 1= 0.1 kHz --'T ~-~ '+'- " Fig.9 - Input admittance Fig.8 - Forward admittance -o'''n ~:i, II " ~- 20 f- gie ~~~~- (mS1 gf, _>en 0 ~"~ 0,+ b" 'CE 1 _ r--t r- VeE ·3V IC ~ lmA '111-:+ g, I, , +-T °~ " -20 10kHz -4O 10·' 10-' 10- Ie (rnA) 10 Fig. 11 - Reverse admittance Fig. 10 - Output admittance bee gee (mS) ,-,-rn-rrnr7-rrrrTTTrr--rrrTiTiTI f-+++t+tfH--++HtHtt--H-ttttffi f-+++t+tfH--++HtHtt--H-ttttffi go. 10' f (MHz) 376 >0' " 10' I (MHz) Fig. 12 - Transition frequency LINEAR INTEGRATED CIRCUIT j: 5W AUDIO AMPLIFIER i The TBA 800 is a monolithic integrated power amplifier in a 12-lead quad in-line plastic package. The external cooling tabs enable 2.5W output power to be achieved without external heatsink and 5W output power using a small area of the P.C. board copper as a heatsink. It is intended for use as a low frequency Class B amplifier. r: I I I ABSOLUTE MAXIMUM RATINGS Vs 10 10 Ptot T stg , Tj 30 2 1.5 1 5 -40 to 150 Supply voltage Peak output current (non repetitive) Peak output current (repetitive) Power dissipation at Tamb = 80°C at T tab = 90°C Storage and junction temperature V A A W W °C ORDERING NUMBER: TBA 800 Dimensions in mm MECHANICAL DATA I l.!.i, ,· I'j iM I :i i,~ ~ 377 6/82 CONNECTION AND SCHEMATIC DIAGRAMS (top view) SUPPLY VOLTAGE 12 N C 11 OUTPUT N C SUPPLY VOLTAGE 10 GROUND GROUND GROUND GROuND BOOTSTRAP (SUBSTRATE) COMPENSATION 8 INPUT FEEDBACK 7 RIPPLE REJECTION 5-0329 Substrate TEST CIRCUIT +Vs=24V C9 01 .~ C6 'Tr _T 100~F 25V C8 100,uF Vi 15V R2 100kQ C2 500I'F 15 V C1 100!,F 6V Rj 560. * C3, C7 see fig. 5. 378 THERMAL DATA Rth J-tab Rth j-amb Thermal resistance junction-tab Thermal resistance junction-ambient max max 12 70* °C/W °C/W - Obtained with tabs soldered to printed circuit with minimized copper area. ELECTRICAL CHARACTERISTICS(Refer to the test circuit, T amb = 25°C, Vs= 24V, RL = 16n, unJess otherwise specified) Parameter Test conditions Min. Typ. Max. Unit 11 12 13 V Vo Quiescent output voltage (pin 12) Id Quiescent drain current 9 20 mA Ib Input bias current (pin 8) 1 5 !J.A Po Output power Vi(rms) Input saturation voltage V·I I nput sensitivity Po: 5W Ri Input resistance (pin 8) f : 1 KHz B Frequency response (-3 dB) C3: 330 pF d Distortion d: 10% f : 1 kHz f : 1 kHz W mV 80 mV 5 MD 40 to 20,000 Hz Po: 50 mW to 2.5W f : 1 kHz 0.5 % 80 dB Voltage gain (open loop) f : 1 kHz Gv Voltage gain (closed loop) f : 1 kHz eN Input noise voltage 39 B : 22 Hz to 22 KHz - iN I nput noise current 1) Efficiency Po: 5W SVR Supply voltage rejection f ripple: 100 Hz C5 : 25!J.F C5:100!J. F Drain current 5 220 Gv Id 4.4 f = 1 kHz Po: 5W • See fig. 6. 379 42 45 dB 5 !J. V 0.2 nA 75 % 35 38 dB dB 280 mA Fig. 2 - Maximum power dissipation vs. supply voltage Fig. 1 - Output power vs. supply voltage r Fig. 3 - DislOrtion vs. output power 60805/1 I~i: Ptot _._- - 1--- -- (W) - - , Rl=8Q / f-++-+++ V i 1++++- + ~ 10 20 ~~ ~ Fig. 4 - Distortion vs. frequency 1•· 20 ~t + I R -lGn 111\lL-_ 1= , ~ :' I I I f- ---i tVs!:Lv """I I:I~" I I tll I",,", 1 't'll ,/ -. -11 t5 10 Vs (V) I A",o16U /v rrrn ' ij If!i III j I r-- -= I V d ('/,) t· T I r LL._.~L ' 1! I - I , I t Ij V: ' ' , f ' ' '..L' 4 25 Vs (V) - I' f"o(W) Fig. 6 - Voltage gain (closed loop) and input voltage vs. Fig. 5 - Value of C3 vs. Rf for various values of B Rf d C3, (%) 111111 so24V,,-=lsn ",=5SU (pF)e 7"'5xC ,- -5kHz Po =50mW e-- / ' 10kHz t- 10', r-- 2 r-' , ==-- o=2.5W I 1\ --_..- ./ to' 10 to' to' to' 20kHz f (Hz) 10 Fig. 7 - Power dissipation and efficiency vs. output power -I , 6 8 I II 1; ~t(O) 102 50 100 Rt (n) Fig. 9 - Supply voltage rejection vs. Rf • Fig. 8 - Quiescent output voltage (pin 12) vs. supply voltage G-0633Jl Ptot (W) P, '1 Va ('/,) (V) 70 SO 1.5 101-+++-1-++H-+-if-H-+-H 50 1/ -10 H-++-H-+-+-I-+--+--+-1I-+-H -20 f-f--. 40 Vs=24V 30 RL=16n f -lkH 10 4 fb (W) -+-~ to -so 20 380 ~~-I-++I-++I-++H : : Rf!t:f:h~'5"'1~OlF~i~5.~5"tt~ 20 0.5 .-1-1-+++-1-+++-11-+++-1 50 100 APPLICATION INFORMATION Fig. 10 -- Circuit with the load connected to the supply voltage 5-0102/3 * C3, C7 see fig. 5. Compared with the other circuits, this configuration entails a lower number of external components and can be used at low supply voltages. Fig. 11 - Circu it with load connected to ground without bootstrap. ~:t500~F ~i1 '5V 1 *C3, C7 see fig. 5. This circuit is only for use at high voltages. The pin 3 is left open circuit, this automatically inserts diodes 02-03 (see schematic diagram) and this enables a symmetrical wave to be obtained at the output. 381 LINEAR INTEGRATED CIRCUIT FULLY-PROTECTED 7W AUDIO AMPLIFIER FOR CB RADIO • • • • • • HIGH OUTPUT POWER (7W AT 16V/4n; 14.4V/2n) HIGH OUTPUT CURRENT (3A REPETITIVE) LOAD DUMP PROTECTION UP TO 40V LOAD SHORT CIRCUIT PROTECTION UP TO Vs = 15V POLARITY INVERSION PROTECTION THERMAL PROTECTION The TBA 810CB is a monolithic integrated circuit in a 12-lead quad in-line plastic package, expressly designed for use as a power audio amplifier in CB radios. The TBA 810 ACB has the same electrical characteristics as the TBA 81 OCB but its cooling tabs are flat and pierced so that an external heatsink can be easily attached. ABSOLUTE MAXIMUM RATINGS Peak supply voltage (50 ms) DC supply voltage Operating supply voltage Output peak current (non repetitive) Output peak current (repetitive) Power dissipation at Tamb 80°C (for TBA 810CB) T tab .;; 100°C (for TBA 810ACB) Storage and junction temperature V s(peak) Vs Vs 10 10 Ptot 40 28 20 4 3 1 5 < -40 to 150 V V V A A W W °C ORDERING NUMBER: TBA 810CB TBA 810ACB MECHANICAL DATA Dimensions in mm .~.'95""' . . " , , T13A 810CB 6/82 TBA 810AC13 382 CONNECTION AND SCHEMATIC DIAGRAMS (top view) '3UPPLY VOLTAGE 12 N. C. OUTPUT N, C N.C. 10 6 0---- GROUND , GROUND GRCUND (}------- GROUND BOOTSTRAP (SUBSTRATE) COMPENSATION INPUT RIPPLE REJECTION FEEDBACK 5-0289 TEST AND APPLICATION CIRCUIT R3 loon CB v, 100~F 15V Y''--<>---+--------, R2 I IOOkO ~2 T:~eO"F I WR, 5-220311 *C3,C7 SEE FIG.6 THERMAL DATA Rth' j-tab Rth j-amb TBA 810CB Thermal resistance junction-tab Thermal resistance junction-ambient max max • Obtained with tabs soldered to printed circuit with minimized copper area, 383 TBA 810ACB 12°C/W 10°C/W 70* °C/W 80°C/W ELECTRICAL CHARACTERISTICS (Refer to the test circuit; Vs = 14.4V, T amb = 25°C unless otherwise specified) Test conditions Parameter Min. Typ. Max. Unit 20 V 7.2 8 V 20 mA Vs Supply voltage (pin 1) Vo Quiescent output voltage (pin 12) Id Quiescent drain current 12 Ib Input bias current (pin 8) 0.4 f.lA Po Output power 6 7 W W Vi(rms) I nput saturation voltage Vi I nput sensitivity / 4 6.4 d ~ 10% RL ~ 4.11 RL ~ 2.11 f ~ 1 kHz 5.5 5.5 f ~ 1 kHz Po ~6W R f ~ 56.11 R f ~ 22.11 Po~ 7W R f ~ 56.11 R f ~ 22.11 RL RL Ri Input resistance (pin 8) B Frequency response (-3 dB) RL ~ 4.11/2.11 C 3 ~ 820pF C 3 ~ 1500 pF Distortion P0 ~ 50 mW to 2.5W RL ~ 4.11/2.11 f ~ 1 kHz d Gv Voltage gain (open loop) RL Gv Voltage gain (closed loop) RL ~ 4.11/2.11 eN. I nput noise voltage iN Input noise current 1] Efficiency Supply voltage rejection ~ 4.11 ~ ~ 4.11 B (-3 dB) ~ f ~ 1 kHz f ~ 1 kHz 34 40 to 15000 Hz Po~ ~ RL RL 6W 1 kHz ~ 4.11 mV mV 55 20 mV mV 5 Mn 40 to 20 000 40 to 10000 Hz Hz 0.3 % 80 dB 37 40 dB 2 f.lV 80 pA 75 % 48 dB 4.11 V ripple~ 1 V rms friPPle~ 100 Hz 384 ~ 75 30 2.11 Vs~16V f SVR mV 220 40 I, Fig. 1 - Output power vs. supply voltage I"," Fig. 3 - Distortion vs. frequency (R L = 417.) Fig. 2 - Maximum power dissipation vs. supply voltage (sine wave operation) P, d (wi (0/.) !i 11 j", i,; 16 Vs(v) 16 Fig. 4 - Distortion vs. frequency (R L = 217.) Vs(V) Fig. 5 - Distortion vs. output power d d (.10) (°1.) Fig. 6 - Value of C3 vs. feed· back resistance for various values of B , ' ,il 10' 10 10-' 10' Fig. 7 - Relative voltage gain (closed loop) and input voltage vs. feedback resistance Po(W) I w' Fig. 8 - Relative voltage gain (closed loop) and input voltage vs. feedback resistance Fig. 9 - Power dissipation and efficiency vs. output power Ptot 'l. (W) (°1.) 80 60 20 80 100 120 RI (0) 20 <.0 60 80 385 100 Rf (n) Fig. 10 - Quiescent output voltage (pin 12) vs. supply voltage Fig. 11 - Quiescent drain current vs. supply voltage Fig. 12 - Supply voltage rejection vs. feedback resistance (~~ ~~-.-.~~-~~~~ (dB) 8 ~" I. :; I-L~~:~~+: , r +t t ; ;: 20 i - t 2 ~lf h- ~i 1- ++- vJ"Lllt-f RL"4.n _ C5=,100,uF tr f",",f'f-"r'-- I t-J , 40 50 60 16 ~m ~LI tl .. j i i i ·lil- ffi{ +1..: , f Vs(V) 100 BUI LT -IN PROTECTION SYSTEMS Load dump protection The load dump case occurs in a car when the engine is running and the battery is disconnected: voltage spikes on the power line are supplied by the alternator since there is no clamping effect due to battery capacitance. The TBA 810CB was designed to withstand a pulse train on pin 1, of the type shown in Fig. 13. Providing an LC filter is included, as shown in Fig. 14, a much higher pulse train amplitude (up to 100 V peak ) is allowed on the supply line with no damage to the device. Fig.13 Fig.14 From L=2mH Topin1of supply ~TBA8'OCB line ~O~q,uF '6V I 5-2207 5-2206 Short-circu it protection The TBA 810CB can withstand a permanent short circuit across the load for a supply voltage up to 15V. Polarity inversion protection High current (up to 5A) can be handled by the device with no damage for a longer period than the blow-out time of a quick lA fuse (normally connected in series with the supply). This feature is added to avoid destruction if, during fitting to the car, a mistake on the connection of the supply is made. 386 BUI LT -IN PROTECTION SYSTEMS(continued) Open ground protection When the radio is in the ON condition and the ground is accidentally opened, a standard audio amplifier will be damaged. On the TBA 810CB, protection diodes are included to avoid any damage. I nductive load protection A protection diode is provided between pin 12 and pin 1 (see the internal schematic diagram) to allow use of the TBA 810CB with inductive loads. In particu lar, the TBA 81 OCB can drive the coupl ing transformer for aud io modulation in CB transmitters. DC voltage protection The maximum operating DC voltage on the TBA 810CB is 20V. However the device can withstand a DC voltage up to 28V with no damage. This could occur during winter if two batteries were series connected to crank This means that a variation in current absorbed by the motor, due to a variation in torque applied,causes a proportional variation in regulator output voltage. In fig. 6 is shown the minimum allowable Eo vs. RT . The TCA 900 and TCA 910 give a reference constant voltage V,ef (between pins 2 and 3) independent of variations of V5' 12 and ambient temperature. They also give: 13 = Id3 + 12/k 13 = total current at pin 3 Id3 = quiescent current at pin 3 (12 = 0) 12 = current at pin 2 k constant The output voltage V m, applied to the motor has the following value: Where: V m = V,ef +R T [ V,ef (1 +.!...) + Id3 ] R5 k +~ k RT ------- Term 2 Term 1 Term 1 equals Eo and fixes the motor speed by means of the variable resistor R5 ; -If-. Term 2 RT equals the term Rm. 1m and, therefore, compensates variations of torque applied. Complete compensation is achieved when: RT = k Rm If RT max > k Rm min instability may occur. 412 LINEAR INTEGRATED CIRCUIT lOW AUDIO POWER AMPLIFIER The TCA 940N is a monolithic integrated circuit in a 12-lead quad in-line plastic package, intended for use as a low frequency class B amplifier. The TCA 940N provides lOW output power@ 20V/4n, 7W@ 16V /4n and 6.5W @ 20V /8n. It gives high output current (up to 3A), very low harmonic and cross-over distortion. Besides the thermal shut-down, the device contains a current limiting circuit which restricts the operation within the safe operating area of the power transistors. The TCA 940N is pin to pin equivalent to the TBA 810 AS. I j" ABSOLUTE MAXIMUM RATINGS v 5 10 10 P tot T stg , T j Supply voltage Output peak current (non-repetitive) Output peak current (repetitive) Power dissipation: at T amb = 50D C at T tab = 70D C Storage and junction temperature 28 3.5 V A 3 A W W 1.25 8 -40 to 150 DC ORDERING NUMBER: TCA 940N MECHANICAL DATA Dimensions in mm I! II , ., :~ I:I,· " i \i I,: I~ Ii:~ :j 1< ,. I~ [! 413 6/82 CONNECTION AND SCHEMATIC DIAGRAMS (top view) t"'" I SUPPLY VOLTAGE I I 12 ()) OUTPUT N.C. N. C. N C. GROUND GROUND CB) I BOOTSTRAP [ifli GROUND (SUBSTRATE) COMPENSATION INPUT FEEDBACK RIPPLE REJECTION J lt [ GI ® 5-0289 TEST AND APPLICATION CIRCUIT V C9 O.lfJF R3 C6 lOon IOO}JF CB lOOfJF R2 100kO *=C3 ,C7 SEE FIG. 7 414 THERMAL DATA Rth J-tab Rth J-amb max max Thermal resistance junction-tab Thermal resistance junction-ambient ELECTRICAL CHARACTERISTICS Parameter 10 80 °CIW °CIW (Refer to the test circuit, T amb = 25°C) Test conditions Min. - Typ. Max. Unit 28 V 9.8 V Vs Supply voltage (pin 1) Vo Quiescent output voltage (pin 12) Vs=18V Id Quiescent drain current Vs=12V Vs = 24V 13 20 mA rnA Ib I nput bias current (pin 8) Vs=18V 0.5 /JA Po Output power d= 10% Vs = 20V Vs=18V Vs=16V Vs = 20V Vs=18V 10 9 7 6.5 5 W W W W W 6 8.2 f = 1 kHz R L =40 R L =40 R L =40 R L =80 R L =80 Vl(rms) Voltage for input saturation Vi Input sensitivity Vs=18V f = 1 kHz 90 RL=40 40 Hz to 20 KHz Vs=18V C3 = 1000 pF d Distortion Po = 50 mW to 5W R L =40 Vs=18V f = 1 kHz Gy Voltage gain (open loop) Gv Voltage gain (closed loop) mV Po =9W R L =40 Frequency response (-3 dB) Input resistance (pin 8) 7 250 B Ri 9 Vs=18V f = 1 kHz R L =40 Vs=18V f = 1 kHz R L =40 Rg=O eN I nput noise voltage Vs=18V iN Input noise current Vs=18V 415 34 mV 0.3 % 5 MO 75 dB 37 40 dB 3 /JV 0.15 nA ELECTRICAL CHARACTERISTICS (continued) Test conditions Parameter 1) Efficiency Po ~ Min. Typ. Max. Unit Vs~18V 9W RL~4n 1 ~ 1 kHz SVR Id Tsd Supply voltage rejection Drain current Vs ~ 24V f ripple ~ 100 Hz RL~4n Po ~ 9W RL ~ 4n Vs~18V Ptot Thermal shut-..down (.) Case temperature ~ 4.8W 65 % 45 dB 770 mA 110 °C (.) Seelig. 15. Fig. 1 - Output power vs. supply voltage. Fig. 2 - Maximum power dissipation vs. supply volt· age (sine wave operation) ~otrT-T'-rT-''-''-''-''~'T-'~'''c,'' (w) H++-H++ +c:+--ri--+-+-t--+-I f--t--+--H--+-+--t-'I= \~Hi'--t++-H+-i -I-+-I,---t-,;f---t--+~\-I/I'¥I----j L=lIn 416 Fig. 3 - Distortion vs. output power. Fig. 4 - Voltage gain and input sensitivity vs. feed· back resistance (R f ) Fig. 5 - Distortion vs. frequency (R L = 4n) Fig. 6 - Distortion vs. frequency (R L = 8n) Fig. 7 - Value of C3 vs. R f for different bandwidths Fig. 8 Supply voltage rejection vs. feedback resi stance (R tl~~.-,-,-"'-T'ro Fig. 9 - Power dissipation and efficiency vs. output power (R L = 4n) C3~~~C-"TT~--~~-rI7TrD (PF)3 - • • • • "... ~:) --+" r--:-- 1 -'0 -20 Vs~24 V RL= 40 -30 C5:100 .... f f"PIM=100H z . -40 -so -60 100 " ° Fig. 10 - Power dissipation and efficiency vs. output power (R L = 8n) Fig. 11 - Qu iescent output voltage (pin 12) vs. supply voltage p\:;, EEEEEEEfa=HS=-t~Ft4EfIr=,.+ ~F<~~~:l-(~" t++-EEi§i§!§'E~' i:+'+' ' ->,t-- -1-- ..... 8 Fig. 12 - Quiescent current vs. supply voltage " rr-,--n--'--'-T1,-",-",-n--::n (" 60 fI!.--:': , 'f-t-+--t- I l'tot 1-+ +-~--.::..-t= 40 ".18'-+-t--l-:::-=sn ; _ Rl .. ~_~_ ~ >-_~ -+tJ- ~1~~ :: ~-~ 5 20 ! ~d(oulput 'tran~is~or~): _ +)' " 20 " 417 ""s(vl Po(W) "~1 : SHORT CIRCUIT PROTECTION The most important innovation in the TCA 940N is an original circuit which limits the current of the output transistors. Fig. 13 shows that the maximum output current is a function of the colle~tor-emitter voltage; hence the circuit works within the safe operating area of the output power transistors. This can therefore be considered as being power limiting rather than simple current limiting. The TCA 940N is thus protected against temporary overloads or short circuit by the above circuit. Should the short circuit exists for a longer time, the thermal shut-down comes into action and keeps the. junction temperature within safe limits. . Fig. 14 - Test circuit for the limiting characteristiCs Fig. 13 - Maximum output current vs. voltage (V CE) across each output transistor ,A, rrr-r"",-,-,-rrr---,,':-":':':::' lOMAX n9J ..JW f;50Hz THERMAL SHUT-DOWN Fig. 15 - Output Aower and drain current vs. case tem· The presence of a thermal limiting circuit offers the following advantages: 1) an overload on the output (even if it is permanent), or an above-limit ambient temperature can be easily supported. 2) the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case of too high a junction temperature: all that happens is that Po (and therefore P tot) and Idare reduced (fig. 15). 10 ++-t-t-+-t +-t ++++-it-H 0.2 418 MOUNTING INSTRUCTION The power dissipated in the circuit may be removed by connecting the tabs to an external heatsink according to fig. 16. The desired thermal resistance may be obtained by fixing the TCA 940N to a suitably dimensioned plate as shown in fig. 17. This plate can also act as a support for the whole printed circuit board; the mechanical stresses do not damage the integrated circuit. During soldering the tabs temperature must not exceed 260°C and the soldering time must not be longer than 12 seconds. Fig. 16 - Maximum allowable power dissipation vs. ambient temperature Fig. 17 - Mounting example ALUMINIUM 3.5rrm THICKNESS Fig. 18 - P.C. board and components layout of the test and application circuit (1:1 Scale). CS-003311 419 LINEAR INTEGRATED CIRCUIT FM-I F RADIO SYSTEM • • • • • • HIGH LIMITING SENSITIVITY HIGH AMR HIGH RECOVERED AUDIO GOOD CAPTURE RATIO LOW DISTORTION MUTING CAPABILITY The TCA 3089 is a monolithic integrated circuit in a 16-lead dual in-line plastic package. It provides a complete subsystem for amplification of FM signals. The functions incorporated are: FM amplification and detection Interchannel controlled muting - AFC and delayed AGC for FM tuner - Switching of stereo decoder - Driver of a field strength meter The TCA 3089 can be used for FM-IF amplifier application in Hi-Fi, car-radios and communication receivers. ABSOLUTE MAXIMUM RATINGS Supply voltage Output current (from pin 15) Total power dissipation at T amb Storage temperature Operating temperature 16 V mA 800 mW -55 to 150°C -25 to 70°C 2 ';; 70°C ORDERING NUMBER: TCA 3089 Dimensions in mm MECHANICAL DATA 6182 420 CONNECTION DIAGRAM J:I (top view) " IF INPUT N.C. BYPASS AGC OUTPUT BYPASS GROUND FIEL D STRENGTH METER GROUND MUTE INPUT MUTE OUTPUT AUDIO OUTPUT SUPPLY VOLTAGE AFC OUTPUT REF. QUAQ OUTPUT QUAD. INPUT 5-0398/1 BLOCK DIAGRAM TO Ir-.. H R'.AL f-lE"C,ULA 7CH', o IF INPUT i~~~~f·~ :~ I 2 DELAYED AGe FOR RF AMPL 421 BIAS !i :i!: ± 40 KHz 5.6 V 430 TEST CIRCUITS Single tuned detector coil Double tuned detector coil r-"";oo~;1 ! VS,;ll'; 1tL~~~-t---::---~,----!;;---';-.., :~~O 001,uF II • ~ I 6 ~AUDIO C'.;i. ~* 0 51 OCl2.t- OUTPUT )1 AUDIO TeA 3189 ..:.. I"F-OO~ "1"',' OUTPUT 1 "' J.. W II • ,L~~:: PIN 13 1 Fig.1 - P.C. board and component layout of the single tuned circuit (1:1 scale) 10.7MHz INPUT 431 Fig. 2 - Limiting and noise characteristics (kHz)r--,-r-rrTTlTr-..,..,.,iTi'i'n (dB) _ _ r---'~'/l"3-'-[-~"Alffll;'~~ITT~l1jlt-1 o f== -10 Fig. 4 - Recovered audio and muting action vs. input level Fig. 3 - Deviation mute threshold vs. R 7-10 I _20~~'~~"~~:~~~~1 -~ M~1~k~ dB =500mV -40 -1Om_ -50 ---- lis ~ '2'1 AUDI f---f-H+++++t~m: ~~~~HZ "0 f---,"\rl-+++f++f---jl-H-+i-H--H "0 f---HH-+++++t--+-++m+H '00 1--t---i\\-H-ttI-tt--t-H-++-1tH -20 f--+-II-f-+-+-17",-::.",,,",,-'--t-1 f--+-+_.f-+-+-1 ~~ ~o;~~~z llh ±75KHz OdB=500mX 8°f---f-~.r++++t--4--++m+H ~~, -60 0 TPUT ( -60 1--+-t+/-+-+-I--+--~+--+--1 -80 -90 10 10' 10' 10 Fig. 5 - AFC characteristics ) " 'IS" 12 V t .. 10.7MH:/: f,,'0.7MHz 1/ / "00 '50 -50 -15 0 'Isz12V / 0 -10 Fig. 7 - Field strength and tuning meter output vs. input level "3 ) .200 '" 10' 10 Fig.6 - AGC voltage for FM tuner vs. input level 1 '.A R7-lO{kn) V V V" V V Vs= 12V j f" IO.7MHz " , I-~ " V V / / -\00 -50 50 100 l!f(KHz) 10 10' FEATURES I ! I I Low Limiting Sensitivity (25 p.V max.) Low Distortion « 1%) Single-coil Tuning Capability Programmable Audio Level SIN Mute Deviation Mute AFC and delayed AGC Programmable AGC Threshold and Voltage Typical S + NIN > 70 dB Typical S + NIN > 60 dB Meter Drive Voltage Depressed at Very-Low Signal Levels On-Channel Step Control Voltage 432 10 TCA 3189 TCA 3089 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes No Yes No No Yes No No LINEAR INTEGRATED CIRCUIT TV VISION I F SYSTEM The TDA 440S is a monolithic integrated circuit in a 16-lead dual in-line plastic package. The functions incorporated are: - Gain controlled vision I F amplifier - Synchronous detector - AGC detector with gating facility - AGC amplifier for PNP tuner drive with variable delay - Video preamplifier with positive and negative outputs. It is intended for use in black and white and colour TV receivers. ABSOLUTE MAXIMUM RATINGS Vs V5 Supply voltage (pin 13) Voltage at pin 5 VlO Voltage at pin 10 V ll Voltage at pin 11 (with load connected to V s) Output current Total power dissipation at Tamb .;; 70°C Storage temperature Operating temperature Ill,112 Ptot T stg Top ORDERING NUMBER: 15 15 -1 3 8 f 1 5 V V V V V mA 800 mW -55 to 150°C o to 7 0 ° C TDA 440S Dimensions in mm MECHANICAL DATA 433 6/82 _ _ _1_ _ _ _ _ _ CONNECTION DIAGRAM (top view) [ 1 16 INPUT OECOUPLING [ 2 15 BIAS DECOUPLING GROUND [ 3 14 INPUT BIAS AGe TIME CONSTANT TUNERAGC OUTPU T N,C. su PPL Y 13 [ 4 l5 VOLTAGE 12 POSIT IvE V I OEO OUTPUT 11 NEGATIVE VIDEO 10 VOLTAGE TUNER AGe DELAY OUTPUT FLYBACK PULSE INPUT OUTPUT REGULATION CARRIER TUNING CARRIER TUNING '-, (19-8' 1 BLOCK DIAGRAM ~ +-11-··1 ~ ',,8} C3 + 1.9"' '3 I 1 434 V'S .~. • THERMAL DATA Rthi·amb max Thermal resistance junction-ambient 100 °C/W ~, ELECTRICAL CHARACTERISTICS (Refer to fig. 1 test circuit, T amb = 25°C) Parameter Test conditions DC CHARACTERISTICS Vs Supply voltage range (pin 13) Is Supply current (pin 13) Vs=12V -Ill (1) Output current Vs=15V V l l = 8V V ll Output voltage Vs=12V Rs = (2) 10 12 15 V 50 rnA la 1.6 rnA lb ~ 4.5 V Rs = 0 V 12 (2) LlV l l ---;;v;- Output voltage Vs = 12V Output voltage drift V s =11to14V 7 V l l = 5.5V 1a 5.6 V 1a 3.5 % lb 9.5 rnA 3c -5 V - 220 IlV AC CHARACTERISTICS (Refer to fig. 2 test circuit, Vs = 12V, T amb = 25°C) IS (3) V7 V. I (4) LlV I Vo Tuner AGe current V7 = 0 fo = 38.9 MHz R4 = 2.5 K.fl 6 AGe gating pulse input peak voltage f = 15.6 kHz -1.5 I nput sensitivity V7 = 0 fo = 38.9 MHz V 11 = 3.3V peak to peak 100 150 V 7 =0 LlVo = 1 d8 fo = 38.9 MHz V 11 = 3.3V peak to peak 50 60 V 7 =0 V l l = 5.5V fo = 38.9 MHz V I = see note (5) 3.3 3.5 AGe range Peak to peak output voltage at pin 11 430 dB 3.7 V 3c ELECTRICAL CHARACTERISTICS (continued) Test conditions Parameter Video output varia- f\,V o tion over the AGC range (0 to 5.5 MHz) V n . V 12 Sound I F at video outputs (5.5 MHz) Differential error of the output voltage (B&W) Vn . V 12 V7 Vn ~ fa fm ~ ~ ~ Min. 0 LWi~50dB 3.3V peak to peak 38.9 MHz 0 to 5.5 MHz V7 ~ 0 V i ~ see note (5) fa (vision) ~ 38.9 MHz fa (sound) ~ 33.4 MHz Max. Unit Fig. 1 2 dB 3b mV 3d % - 30 0 fa ~ 38.9 MHz 3.3V peak to peak V7 Vn ~ V7 Vi fa ~O ~ Typ. 15 Video carrier and video carrier 2 nd har- monic leakage at video outputs V n . V 12 Video carrier leakage at video outputs ~ ~ see note (5) 38.9 MHz mV 5 mV 10 MHz 3d dB 3a 3c Frequency response B 8 (-3 dB) I ntermodulation dim products at video outputs V7 ~ 0 Vi ~ see note (5) fa (vision) ~ 38.9 MHz fa (sound) ~ 33.4 MHz fa (chroma) ~ 34.5 MHz -50 V7 1.4 krl - 2 pF - -40 I nput resistance Ri (between pins 1 and 16) I nput capacitance (between pins 1 and 16) Ci NOTES: 15 ~O Vi ~ see note (5) fa : 38.9 MHz (1) (2) Current flowing out from pin 11 with the load connected to V == av. V 11 and V 12 are adjustable simultaneously by means of the resistance, or by a variable voltage (3) connected between pin 10 and ground. Measured with an input voltage 10 dB higher than the Vi at which the tuner AGe current starts. (4) RMS values of the unmodulated video carrier (modulation down). (5) The input voltage Vi can have any value within the AGe range. 436 < O.6V. Fig. la - Test circuit for measurement of is. V ll • V 12 Fig. lb - Test circuit for measurement of-ill and 6.V ll/6.Vs J; IDA 4405 lDA 4405 10 11 3V • Rl 2.5 kil TO 8 FOR -Ill TEST Fig.2 - AC test circuit VIDEO .(v5O'_ _ _-.-_ _-.-_ _ _ _ (~g~j~~E) VIDEO (~~~~¥I~E) 2.5kfl R5 13 12 10 T,l TDA.4405 IF 'NPU 1 G AGe OUTPUT (TO TUNER) Note: T 1 Vi = 50/200n Balun transformer. = Input voltage between pins 1 and 16. 437 5-097213 Fig. 3a - Set-up for measurement of dim SELECTIVE VOLTMETER S-0973 Fig. 3b - Set-up for measurement of l:;,.Va AC VOLTMETER UP TO 5.5 MHz 5-0974 Fig. 3c - Set-up for measurement of '5. Vi' l:;,.V i • Va. V 11 and V 12 .V5 o • AC VOL TMETER .SELECTIVE VOLTMETER FOR LEAKAGE TEST 438 Fig. 3d - Set-up for measurement of B, V 11 and V 12 V AC VOLTMETER o (UP TO 1SMHz) VIDEO CARRIER INPUT LEVEL a dB SIDE BAND INPUT LEVEL -3QdB SOUND CARRIER INPUT LEVEL.-30dB S1 TO A FOR FREQUENCY RESPONSE TEST 51 TO B FOR SOUND r F OUTPUT TEST Fig. 5 - Tuner AGC output current vs. I F gain variation Fig. 4 - AGC voltage vs. input voltage variation G " I '" Hc--I~fdce'~9"~H'--+-+-+-+-IH-t-l __ 4 I - - c--- VS~!2V --:~:~SOJ.JV(OdB) 110=3.3 vpp ,,-t-t-t--t--+-1 -- VS .,,12 V 117=0 " L 20 Hall f:389MHz f-- - " OdS =Gma~ f-- -10 ~ Fig. 6 - Output black level vs. supply voltage 30 /R6;O II I I R6;O_5Kfi I I I J -30 R6.>Kfi / "nt.:t II (In I I1I1 .A 11 ~ -40 .o.G(d8) APPLICATION INFORMATION The TDA 440S enables very compact I F amplifiers to be designed and provides the performance demanded by high quality receivers. The input tuning-trapping circuitry and the detector network can be aligned independently with respect to each other. The value of Q for the parallel tuned circuit between pin 8 and 9 is not critical, although the higher it is, the better is the chroma-sound beat rejection, but the tuning is more critical. Values of Q from 30 to 50 give good rejection with non-critical tuning. The LC circuit between pins 8 and 9 is tuned to the vision carrier thus appreciably attenuating the sidebands. Hence a small amount of signal can be removed whose amplitude is almost constant over the whole working range of the AGC and it can be used to drive an AFC circuit. The black level at the output is very stable against variations of Vs and of temperature: this enables the contrast control to be kept simple. The AGC is of the gated type and can take the top of the synchronism or the black level (back porch) as its reference: when the latter is used, the output black level is particularly stable. 439 Fig. 8 - Typical application circuit. VIDEO OUTPUT (NEGATIVE) VIDEO OUTPUT (POSITIVE) R7 14 13 12 11 2.5k(l 10 TDA 4405 C19 II :: O.42,uH- Q o= 110 - lZ, L3,L7=0.3,uH- Q O= 110 L4 = R6 t..7t.1,uF MANUAL GAIN RJ CONTROL o--l_l--+----1--t-~ kfl :: O.22,uH- QO=110-4.5turns,0=O.22mn(close wound} L5,l6:: L8 6turns0::0.22rrm (clos€' wound) 5.5turnskhO.22rrm{close wound) KEY INPUT 51 kfl 1 )-lH-Q O=1l0- IOturns0=O.22rnn{close wound) 1.2jJH-Q O"nC- IOturns.0=O.2Zmn(c\osewoundJ AGe TUNER L1 tol7:coil former BR 27IP,coreGW4>O.5'13Fl00 Neosld, screening can BR JOIST 5-097711 Typical performance of the Fig. 8 circuit Fig. 9 - Overall frequency response of the fig. 8 circuit Frequency response (fo vision = 38.9 MHz, fo sound = 33.4 MHz) standard eel R Sound carrier attenuation 28 dB ;;;'60 dB 31.9 MHz trap attenuation ;;;. 56 40.4 MHz trap attenuation dB ;;;. 44 41 .4 MHz trap attenuation dB AGe range 55 dB Overall gain including I F filter and trap circuits (note 1) dB 86 Intermodulation products over the whole - 55 AGe range (note 2) dB dB 13~MHZ (1) (2) The gain is measured at video output 3.3V peak to peak and is defined as peak to peak output voltage to RMS input voltage (modulation down). Measured at 1.07 MHz, vision carrier level = 0 dB, chroma carrier level = -6 dB, sound carrier level = -6 dB. 440 40.4MHz I 41j4MHZ j\ ·10 I .40 .60 NOTES: 6.9MHz 1.9MHz , I I rTj 32 - . Jb 1,4 f (MHz) I II I I" I', j~ Fig. 10 - Circuit options for tuner AGC driving !'\ !I Ii Ii j\ i.ii 'I .1 I; i. lOA 4405 2.2 r---------- kfi I I : PIN DIODE TUNER I I I '----------- 5-098111 TDA 440 5 I I I I I I IL __________ .:..._ 5-0982f1 441 LINEAR INTEGRATED CIRCUIT PREAMPLIFIER WITH ALC FOR CASSETTE RECORDERS • EXCELLENT VERSATILITY in USE (V s from 4 to 20V) • HIGH OPEN LOOP GAIN • LOW DISTORTION • LOW NOISE • LARGE AUTOMATIC LEVEL CONTROL RANGE • GOOD SUPPLY RIPPLE REJECTION • STEREO MATCHING BETTER THAN 3 dB The TDA 1054M is a monolithic integrated circuit in a 16-lead dual in-line plastic package. The functiens incorporated are: -- Low noise preamplifier - Automatic level control system (ALC) - High gain equalization amplifier - Supply voltage rejection facility (SVRF). It is intended as preamplifier in cassette tape recorders and players, dictaphones, compressor and ex· pander in industrial equipments, Hi-Fi preamplifiers and in wire diffusion receivers; for stereo applications the ALC matching is better than 3 dB. ABSOLUTE MAXIMUM RATINGS Vs P tot Tstg,"J;j Supply voltage Total power dissipation at Tamb .;;; 50°C Storage and junction temperature ORDERING NUMBERS: TDA 1054M mono applications 2 TDA 1054M stereo applications MECHANICAL DATA 6/82 20 V 500 mW -40 to 150°C Dimensions in mm 442 CONNECTION AND SCHEMATIC DIAGRAMS (top view) 16 ALe REC~~~ Ale OUTPUT ~~~~iO SUPPLY 2 1..1: COLLECTOR ALe INPUT J SUPPLY Q2 BASE " VOLTAGE Ql BASE \3 OUTPUT 01 EMITTER 12 ccJ~~c;~ET~~ 11 NON INV~:r~~ 02 EMITTER Q2 COLLECTOR 07 7 10 o. INVERTING INPUT GROUNO 12 01 Q2 SVRF \3 EQUALIZATION AMPLIFIER 16 A LC TEST CIRCUIT ~-------------------------------{)+Vs ~ 1 150pF 0.47t.JF 4.7 k!l 0.47 B~ Bo A 52 2.2I'F 6V 47}JF 6V 443 THERMAL DATA Rth j-amb Thermal resistance junction-ambient max 200 °C/W Max_ Unit ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Tamb = 25°C) Parameter Min_ Test conditions Vs Supply voltage Id Quiescent drain current RL~ = Vs ~ 9V S1 ~S2~S3~ B hFE DC current gain Ic~0.1mA eN Input noise voltage (Q1) 4 Ic f iN Input noise current (Q11 NF Noise figure (Q11 ~ ~ VCE ~ 5V V CE 0.1 mA 1 kHz ~ 300 20 rnA 500 - 2 JHz nV 5V V CE ~ 5 V Ic~0.1mA Rg ~ 4.7 k!"l B (-3 dBI ~ 20 to 10,000 Hz Open loop voltage gain (for equalization amplifier! Vs ~ 9V Va Output voltage with A.L.C. Vs f ~ 9V 1 kHz S1 ~ f ~ ~ 1 kHz Vi ~ 100mV S2 ~ S3 ~ A (for SVR F systeml V 6 ..E6... 0.5 Gv R1 Typ_ 0.5 y'Hz 4 dB 60 dB 1.1 V 7.5 k!"l 120 !"l 1.3 MV 0.8 V see schematic diagram R2 (for SVR F systeml eN Input noise voltage (for equalization amplifier pin 111 Vs ~ 9V 40 dB V OR Drop-out (between pins 14 and 21 Vs ~ 9V Rg ~ 4.7 k!"l S1 ~ B Gv~ B (-3 dBI~ 22 Hz to 22 KHz 444 Id ~ 6 mA II Fig. 2 - Equivalent input noise current vs. frequency (input transistor 0 1 ) Fig. 1 - Equivalent input spot voltage and noise current vs. bias current (input transistor 0,) 'N 0 'N If*) 10H (i): 10' Fig. 3 - Equivalent input noise voltage vs. frequency (input transistor 0 1 ) tt 10 0 10' 10 10kHz k- 10 I 10 lun' I-": .. 100HZJri 1kHz 10kHz 00 10 10' 1~' .. -. • 10' 50 A 50.IJA 10- 1 10' 1. IC{J.lA) 0 .. f(Hz) 10' 10 10' .. , 10' o • f(Hz} Fig. 6 - Current gain vs. collector current (input transistor 0 1 ) Fig. 5 - Optimum source resistance and minimum NF vs. bias current (input transistor 0 1 ) Fig. 4 - Noise figure vs. bias current (input transistor 0 1 ) .. lmA 'g • •g • (kn) B(-3dB),,20Hzto lOkH% G (k11.): .~, 10 '\ ilL ,~ 'dB 2 10 j i'..~ I i 500 10 100Hz f--+ I 1'.." 10' I" " .. <00 >1- 1kHz 10kHz II 10' 10 10' Fig. 8 - Open loop phase response vs. frequency (equalization amplifier) Fig. 7 - Open loop gain vs. frequency (equalization amplifier) G'rTnm~~rnrTm~~~ill~III~~ (dS) Htttlttl--titttllf--t+tttIII-++tlfflll-! IIIII--H-ttfflfl 60r+~~~~~~~~·I~IIIIUli~ -60 -120 -180 -240 -300 10' 10' 10' 10' 10' I (Hz) 10' 445 10' 10' 10' lev..I.A) APPLICATION INFORMATION Fig.9 - Application circuit for battery/mains cassette player and recorder " ~~~~ L-l 6V * TANTALUM 1.8,uF R21 2.2 "' CAPACITORS Fig. 10 - P.C. board and component layout for the circuit fig. 9 (1:1 scale) 446 '"270n Typical performance of circuit in fig. 9 (T amb = 25°C, Vs = 9V) Parameter Test conditions Min. Typ. Max. Unit PLAYBACK Gy Voltage gain (open loop) f = 20 to 20,000 Hz 110 dB Gy Voltage gain (closed loop) f = 1 kHz 57 dB IZjl Input impedance f f f = 100 Hz = 1 kHz = 10 kHz 10 41 43 kn kn kn IZol Output impedance f = 1 kHz 12 B Frequency response d Distortion S+N -N- Output weighted background noise n see fig. 12 Vo= lV f = 1 kHz Output background noise *** 35 Z9 = 300 n + 120 mH (DIN 45405) 0.1 % 1.3 mV 1.3 mV Signal to noise ratio Vo= 1.3V Z9 = 300 n + 120 mH 60 dB SVR Supply voltage ripple rejection at the output frjPPle = 100 Hz 30 dB ton ** Switch-on time Vo= lV 500 ms Gy Voltage gain (open loop) f = 20 to 20,000 Hz 110 dB Gy Voltage gain (closed loop) f = 1 kHz 70 dB B Frequency response d* Distortion without ALC Va= 1.1V f =.1 kHz 0.3 % d Distortion with ALe Vo= 1.1V f = 10 kHz 0.4 % ALe Automatic level control range (for 3 dB of output voltage variation) Vj "40mV f = 10 kHz 54 dB Vo Output voltage before clipping without ALe f 2.3 V Vo Output voltage with ALe Vj =30mV 1.1 V RECORDING see fig. 14 = 1 kHz 447 f = 10 kHz Typical performance of circuit in fig. 9 (continued) Parameter t[ ** tset tree Test conditions' Min. Limiting time Isee fig. 11) LV;~+40dB --- f ~ ton ** S + N **** -N- ~ LV; Switch-on time Vo~ 1.1V Signal to noise ratio with ALe Vo~ 1.1V -40 dB f ~ Max. Unit 75 ms 300 ms 150 s 500 ms 64 dB 1 kHz Level setting time Isee fig. 11) Recovery time Isee fig. 11) Typ. 1 kHz Rg~470n * Measured with selective voltmeter This value depends on external network When the DIN 45511 norm for frequency response is not mandatory the equalization peak at 10 kHz can be avoided - so halving the output noise Weighted noise measu"ement lOIN 45405) Fig. 11 - Limiting, level setting, recovery time Vi '0 -.- '0 tset ~ ~_\- ~ VO~ tl =lIMITING trec=RECOVERY TIME TIME tset:: LEVEL SETTING TIME 5_11-12 Fig. 12 - Relative frequency response for the circuit in fig.9 (playback) Fig. 13 - Distortion vs. fre· quency for the circuit in fig. 9 (playback) Fig. 14 - Relative frequency response for the circuit in fig.9 (recording) G,r;~TImr>-nTIlmrllll-'~mr-'nnm 611 (;-2178 Yr • t (V) (VI Tamb 'II." , = 25"C \/slY) IS Fig. 6 - Reflection coefficient vs. supply voltag~."" Tamb =2Soc 1M ", loomA V... 6'11 23 6'11 l1V 18'11 - 1.30 I. 1.2 \ls('II) 22 I", ,,4OOmA 1.4 1.25 I. 21 t3 1.20 • """"' 2. 1.2 19 1.15 1.1 16 1.10 " 100 200 300 'M(mA) -2. 40 2. to Tambrtl " Fig. 8 - Reflection coefficient vs. ambient temperature Fig. 7 - Reflection coefficient vs. motor current 12 16 VsIV) Fig. 9 - Typical minimum supply voltage vs. motor current .·21nll VH'.O 'Is ,,6'11 Tamb " 25"C 23 23 22 22 V• .,.., 21 21 2. 2. 8' " 19 16 18 'V) 1M'" 25mA " " SOmA " = 100m A " =200mA " =400mA .. T~mb·Z5-C !!w.-s Yr .., . 2.8 14 ~~. 17 I. " f+ll I 100 200 300 'MirnA) -20 20 Wi4. 456 U I.' 60 Tamb,OC) 100 200 300 .,. ... - APPLICATION INFORMATION 1M RM Eg Motor current at rated speed Motor resistance Back electromotive force V ref • RT RSmin= Eg-(Vref-Id RT ) RT K· RM RT K typ • RM typ If RT max> KRM min instability may occur 5-1996 Application circuit +9V 14.2n 280n 1 kn 2.9V 150 mA RM • 1M + Eg = 5.03V 5-1995 Note: A ceramic capacitor of 10 nF between pins. 1 and 2 improves stability in some applications. Fig. 10 - Speed variation vs. supply voltage . n . (rpm) T~mb.,2S'C ro A.. •• Fig. 12 - Speed variation vs. ambient temperature Fig. 11 - Speed variation vs. motor current ~~~~dfj::: ~ (rpm) ,. , IT~'·m~'.']'.c1111 G"l17ill (rpm) Vs " 9V _ IM:a lSOmA. 1080 ('/.) Vs: + 9V I "l50mA 1200 1-1--1-1--+-1--1-+-1--1-1-·+-'--1-1-+--1-1--1-1-12100 1100 -. 1000 -'0 ,"00 1900 12 16 Vs (V) -, 2000 _11,"00 so 100 140 457 220 [M(mA) '9EO 1920 -10 10 '"' APPLICATION INFORMATION (continued) Low cost application circuit +12V 14.7n 290n 1 kn 2.65V 110 mA Vs RM RT Rs Eg 1M M 10nF 5-2000 Fig. 14 - Speed variation vs. motor current Fig. 13 - Speed variation vs. supply voltage ..!co.. (rpm) ("I.) T~mb ..An. " ,"/.) =25' Fig. 15 - Speed variation vs. ambient temperature (rpm) Vs ='ZV ~ (rpm) ("/.) lamb= 25"C lis 1M'" 1l0mA ,.1210' '",,='10mA 10 2200 10 2200 2200 ID 2100 2100 2100 2000 2000 2000 -, 1900 -, 1900 -, 1900 -ID 1800 -10 1800 ·10 1800 12 ,0 100 458 20 60 LINEAR INTEGRATED CIRCUIT TV VERTICAL DEFLECTION SYSTEM The TDA 1170 is a monolithic integrated circuit in a 12-lead quad in-line plastic package. It is designed mainly for use in large and small screen black and white TV receivers. . The functions incorporated are: oscillator voltage ramp generator high power gain amplifier flyback generator ABSOLUTE MAXIMUM RATINGS Vs V 4 -V 5 Va Supply voltage (pin 2) Flyback peak voltage Sync. input voltage VlO Power amplifier input voltage 10 Output peak current (non-repetitive) @ t = 2 ms @ f = 50 Hz, t ~ 10 J1s Output peak current @ f = 50 Hz, t> 10 J1s 10 Ptot 27 58 ± 12 10 1. -0.5 2 2.5 1.5 5 1 -40 to 150 J Power dissipation: at T tab = 90°C at Tamb = 80°C (free air) Storage and junction temperature V V V V V A A A W W °C ORDERING NUMBER: TDA 1170 Dimensions in mm MECHANICAL DATA 459 CONNECTION AND BLOCK DIAGRAM (top view) RAMP OUTPUT RAMP GENERATOR SUPPLY VOLTAGE GROUND REGULATED VOLTAGE C6 +-_--'~_--'~ ________________+ _ _ + - ' SCHEMATIC DIAGRAM _ 1 ~to, -r-@ ~~ I a~ I 1 R~~ I I ~"2 Vu35i. 05 «.<\"~:"! ';:.. +-+r ni $ ! i. i 4 I 032 TABS 460 5-0611/2 THERMAL DATA Rth j-tab Rth j-amb max max Thermal resistance junction-tab Thermal resistance junction-ambient 12 °C/W 70* °C/W * Obtained with tabs soldered to printed circuit with minimized area. I' ELECTRICAL CHARACTERISTICS (Refer to the test circuits, Vs = 25V, T amb = 25°C unless otherwise specified) Test conditions Parameter DC CHARACTERISTICS -19 Oscillator bias current Vg -1 10 Amplifier input bias current VI0~ -112 1V ~ 1V Ramp generator bias 0.2 1 J.lA 1a 0.15 1 J.lA 1b 0.05 0.5 J.lA 1a current Vs Supply voltage V4 Quiescent output voltage 10 R2 ~ 10 kD Vs ~ 25V Vs~10V V 6, V 7 R1 R1 ~ ~ 30 kD 10 kD Regulated voltage /'-,V 6 /'-,V 7 - - Line regulation /'-,V s /'-,V s V - 1a 8 4 8.8 4.4 9.6 4.8 V V 6 6.5 7 V I. 1b V5 ~ 10 to 27V mV/V 1.5 Supply current Iv Peak to peak yoke current (pin 4) V4 Flyback voltage Va Peak sync. input voltage (positive or negative) Iv II ~ 1A 140 mA 1.6 A 2 Iv 'I: Ii AC CHARACTERISTICS (f = 50 Hz) Is i ~ 1A 51 1 461 V V ELECTRICAL CHARACTERISTICS (continued) Test conditions Parameter Vg Peak to peak oscillator sawtooth voltage Ra Sync. input resistance Va ~ tfly Flyback time Iy ~ of Pull-in range (below 50 Hz) 3.5 kr! 1A 0.6 of /:,T tab Oscillator frequency drift with tab temperature Ttab~ 10 to 27V 40 to 120°C Fig. ms 0.8 7 Hz 0.01 Hz V 0.015 Hz- 2 °C Fig. 1b - DC test circuit for measurement of -110' V 6, V 7,6V 6/6Vs and 6V 7/tN 5 Fig. 1a - DC test circuit for measurement of -19, -112 and V4 TDA1170 Unit 1V Vs 9 Max. V Oscillator frequency drift with supply voltage -- Typ. 2.4 of /:,V s ~ Min. 9 4 5V 462 TDA 1170 10 Fig.2 - AC test circuit , -________~~------~~----~----------------------~.V5=25V DI ::'1 IN4001 C3 lOOfJF 25V TABS 2 4 R9 10 kll II 1000 ",F/16 v C7 SYNC INPUT 8 TDA 1170 10 I YOKE Ion 12 20mH R7 5.6kll C4 O.lfJF R3 270 C5 kll O.1fJF RIO III Fig. 3 - Relative qu iescent voltage variation vs. supply voltage 5-111813 Fig. 5 - Regulated voltage vs. supply voltage Fig. 4 - Relative quiescent voltage variation vs. tab temperature -:bti: ~ ~t -ttii~~ , R:- +~-+6.52 I --<-- 6.50 6.4 , -f-+-I- 6,46 ··+fa.;;'b=25'C -[ t- H- I 10 20 25 Vs (v) 10 463 IS 20 25 Vs (v) Fig. 6 - Regu lated voltage vs. tab temperature Fig. 8 - Frequency variation of unsynchronized oscillator vs. tab temperature Fig. 7 - Frequency variation of unsynchronized oscillator vs. supply voltage to 25 20 " Vs lv} APPLICATION INFORMATION The thermistor in series to the yoke is not required because the current feedback enables the yoke current to be independent of yoke resistance variations due to thermal effects. The oscillator is directly synchonized by the sync. pulses (positive or negative). therefore its free frequency must be lower than the sync. frequency. The flyback generator applies a voltage, about twice the supply voltage, to the yoke. This produces short flyback time together with a high useful power to dissipated power ratio. The flyback time is: 2 Lv Iv 3' Vs where: Lv Vs Iv Yoke inductance Supply voltage Peak to peak yoke current The supply current is: Iv + 0.02 (A)' 8 It does not depend on the value of V s but only on yoke characteristics. The minimum value of V s necessary for the required output current permits the maximum efficiency. The quiescent output voltage (pin 4) is fixed by the voltage feedback network R7, R8 and R9 (refer to fig. 2) according to: R7 + R8 R7 + R9 Pin 10 is the inverting input of the amplifier and its voltage is V 10:::= 2V. 464 Fig. 9 - Typical application circuit for B & W 24" 110° TV sets =fj Hold 150kil * 5-061312 Tolerance 5% Typical performance (V s = 22V; Iv = 1A; Rv= 10n; Lv= 20 mH) Supply current Flyback time Maximum scanning current (peak to peak) Operating supply voltage TDA 1170 power dissipation 140 0.75 1.2 20 to 24 2.2 mA ms A V W For safe working up to T amb = 50°C a heatsink of Rth = 40 °C/W is requ ired and each tab of TDA 1170 must be soldered to 1 cm 2 copper area of the printed circuit board. 465 Fig. 10 - Typical application circuit for B & W small screen TV sets .------..----+---...------------o.Vs=1Stab. O.BV llr------<>----------' ~VNC INPUT 8 C7 TDA 1170 2000 ).JF/IOV 10 I--~-.--___.--["-H 1 YOKE 12 P3 47kil linearity P2 Height .R2 220kJl *C.4 *R6 0.1}J·E39kJl R3 • 470 kJl R7 68kJl CS* O.1}JF RIO * Tolerance 5·'. S-1I20n Typical performance (V. = 10.8V; Iy= 1A; Ry = 4n; Ly = 7.5 mH) Supply current Flyback time Maximum scanning current (peak to peak) Operating supply voltage TDA 1170 power dissipation 150 0.7 1.15 10.8 1.3 rnA ms A V W For safe working up to T amb = 50°C a heatsink of Rth = 30 °C/W is required and each tab of the TDA 1170 must be sol de reb to 1 cm 2 copper area of the printed circuit board. 466 Fig. 11 - P.C. board and component layout for the circuit of fig. 9 and fig. 10 (1: 1 scale) +Vs GND YOKE YOKE SYNC. GND C9 is not mounted on the P.C. board. MOUNTING INSTRUCTIONS The junction to ambient thermal resistance of the TDA 1170 can be reduced hy soldering the tabs to a suitable copper area of the printed circuit board (fig. 12) or to an external heatsink (fig. 13). The diagram of fig. 16 shows the maximum dissipable power Ptot and the Rth j-amb as a function of the side "s" of two equal square copper areas having a thickness of 35!l (1.4 mil). During soldering the tab temperature must not exceed 260 DC and the soldering time must not be longer than 12 seconds. The external heatsink or printed circuit copper area must be connected to electrical ground. 467 Fig. 13- Example of TDA 1170 with external heatsink Fig. 12 - Example of P.C. board copper area used as heatsink R AREA 35}.J THICKNESS H£ATSINK R'h ~ 30°CjW C. BOARD Fig. 14 - Maximum power dissipation and junction-ambient thermal resistance vs. "s" R " 20 Fig. 15 - Maximum allowable power dissipation vs. ambient temperature jamb 30 40 s (mm) 468 LINEAR INTEGRATED CIRCUIT LOW-NOISE TV VERTICAL DEFLECTION SYSTEM The TDA 11700 is a monolithic integrated circuit in a 16-lead dual in-line plastic package. It is intended for use in black and white and colour TV receivers. Low-noise meakes this device particularly suitable for use in monitors. The functions incorporated are: I synchronization circuit oscillator and ramp generator high power gain amplifier flyback generator voltage regulator ABSOLUTE MAXIMUM V, V6, V7 V14 I I' Supply voltage at pin 2 Flyback peak voltage Power amplifier input voltage Output peak current (non repetitive) at t = 2 msec Output pe'lk current at f = 50 Hz t ~ 10 psec Output prakcurrentat f = 50 Hz t > 10 psec Pin 3 DC ctlrrentat V6 < V2 Pin 3 peak to peak flyback current for f = 50 Hz, tfly Pin 10 current Power dissipation: at T tab = 90°C at Tamb = 70 0 e (free air) Storage and junction temperature ~ 1.5 msec 35 60 { + 10 - 0.5 2 2.5 1.5 100 1.8 ± 20 4.3 1 -40 to 150 V V V V A A A mA A mA W W °C ORDERING NUMBER: TDA 11700 MECHANICAL DATA . Dimensions in mm PQ:)l-V 469 6/82 CONNECTION DIAGRAM RAMP RAMP OUTPUT 16 SUPPLY VOLTAGE 15 COMPENSATION FLYBACK 14 AMP. INPUT 11 GROUND 12 AMP. OUTPUT GENERATOR I GROUND OSCILLATOR AMP VOLTAGE REGULATED VOLTAGE 10 SINe. [NPUT 9 HEGHT ADJUST 5_531411 -----''------------,-------o·V. BLOCK DIAGRAM ... i THERMAL DATA Rth j-tab Rth j-amb Thermal resistance junction-pins Thermal resistance junction-ambient max max 1°) Obtained with pins 4, 5, 12,13 soldered to printed circuit with minimized copper area. 470 14 °C/W 80 °C/W (0) ELECTRICAL CHARACTERISTICS (Refer to the test circuits, Vs J othwwise specified) Test conditions Parameter DC CHARACTERISTICS 12 Pin 2 quiescent current 13 ~ 0 17 Pin 7 quiescent current 14 ~ 0 -III Oscillator bias current Vll~ 1V Amplifier input bias V12~ lV 0 -112 7 14 mA lb 8 15 mA lb 0.1 1 )J.A la 1 7 )J.A lb 0.02 0.3 )J.A la 20 24 )J.A lb 0.2 1 % lb 35 V - 1 1.4 V - 1.7 2.6 V la 4.17 4.4 4.63 V la 8.35 8.8 9.25 V 1a O.lA 0.9 1.2 V lc -16= 0.8A 1.9 2.3 V lc 16= O.lA 1.4 2.1 V ld current -116 Ramp generator bias current V16~ -1 16 Ramp generator current 17 LlI16 Ramp generator non-linearity LI V 16= 0 to 1 2V 19 = 20)J.A 116 Vs Vl 20)J.A ~ 19 V16= 0 Supply voltage range Pin 1 saturation voltage to 10 11 ~ 1 mA ground V3 Pin 3 saturation voltage to 13~10mA ground V6 Quiescent output voltage Vs~ R2 lOV 10 Kll Rl=10Kll 35V Rl = 30 Kll ~ Vs~ r- R2~10Kn V6L Output saturation voltage -16~ to ground V6H Output saturation voltage to supply 2.8 3.2 V ld 6.1 6.5 6.9 V lb 6.2 6.6 7 V lb mVN lb V -- Mll 1a 16= 0.8A V8 Regulated voltage at pin 6 V9 Regulated voltage at pin 7 LI V8; LI V9 Regulated voltage drift LI V s LI V s with supply voltage V14 Amplifier input reference voltage Rl0 Pin 10 input resistance 19= 20)J.A LlV s =10t035V 1 2.07 1 V10';; O.4V 471 22 2.3 Fig. 1 - DC test circuit 10 11 11 D.U.T. 14 I --1.- Fig.lb Fig. la 1I 11 D.U.T. 11 14 I I --L 4v "------~--- 1 D.U.T. 14 V6L IV 5-5317 Fig. ld Fig. lc 472 -114 5-5316 ELECTRICAL CHARACTERISTICS (Refer to the AC test circuit, 25V; f = 50 Hz; Vs T amb = 25°C, unless otherwise specified) Test conditions Parameter AC CHARACTERISTICS ~ Iy 1 App Is Supply current 140 mA 11 0 Sync. input current (positive or negative) V6 Flyback voltage Iy ~ 1 App 51 V tll y Flyback time Iy ~ 1 App 0.7 ms VON Peak to peak output Bw~ 500 J.lA 20 -0- 20.000 Hz 50 rnV noise fo Llf LIt LlVs Llf LIT pins Free running frequency (P1 + R1) ~ 260 K!1 C2 ~ 0.1 J.lF 52.4 Hz (P1 + R1) ~ 300 Kn C2;100nF 43.7 Hz ~ Synchronization range 18 Frequency drift with supply voltage Vs Frequency drift vs. pins 4,5,12 and 13 temp. Ttab~ 40 to 120°C ~ 0.5 rnA 14 Hz 10 to 35V 0.005 Hz/V 0.01 Hzf'C Fig. 2 - AC test circuit D 1 fIN 4001 r---i C36 Cl O.1~F .L Cl0 , 100~;r5Vr-o-l..J..-!-.l...J...J--, L 37 R9 10 151--~1-- ~n _ _ _-' C7 SYNC INPUT 10 TDA 11700 1000 ....F/16 V R8 141----1---------~c:J-i R5 L.7k!1 , I--~I---., L...;i-__.:;-__..:,'6::...J 4;: ~, "' PI C4 J:."ea~!~ O.1,up,47kD. YOKE Ion 20mH R7 5.6kn R3 270 kll C5 O.1,uF RIO 'n 473 5-5359 Fig.3 - P.C. board and components layout of the AC test circuit. 474 LINEAR INTEGRATED CIRCUIT LOW-NOISE TV VERTICAL DEFLECTION SYSTEM The TDA 1170N is a monolithic integrated circuit in a 12-lead quad in-line plastic package. It is intended for use in black and white and colour TV receivers. Low-noise meakes this device particularly suitable for use in monitors. The functions incorporated are: synch ron ization ci rcu it oscillator and ramp generator high power gain amplifier flyback generator vo Itage regu lator ABSOLUTE MAXIMUM Vs V4,V5 Vl0 Supply voltage at pin 2 Flyback peak voltage Power amplifier input voltaij.e r Output peak currEl~t (tJo()nr~petrtive) at t = 2 msec Output peakqljl~r~ntl;\1;~= 50 Hz t .;;; 10 /lsec Output peal5;~urre~t atf= 50 Hz t > 10 flSec Pin 3 g'EcurrElPt~tV4 < V2 Pin 3 ~I;\k.:~()peak flyback current for f = 50 Hz, t jly Pin S CUl'r:E!nt Power di~~ipation: at T tab = 90 0 e at T amb = sove (free air) Storage and junction temperature .;;; 1.5 msec 35 60 10 - 0.5 2 2.5 1.5 100 1.S ± 20 5 1 -40 to 150 V V V V A A A mA A mA W W °e Dimensions in mm MECHANICAL DATA 475 6/82 CONNECTION AND BLOCK DIAGRAMS RAMP GENERATOR' RAMP OUTPUT COMPENSATION SUPPLY VOLTAGE FLVSACK AMP. INPUT GROUND GROUND OSCILLATOR AMP. OUTPUT SYNC. AMP. VOLTAGE REGULATED VOLTAGE INPUT HEIGHT ADJUST. 5-1'1511 THERMAL DATA Rth j-tab Rth j-amb Thermal resistance junction-tab Thermal resistance junction-ambient max max (0) Obtained with tabs soldered to printed circuit with minimized copper area. 476 12 70 ELECTRICAL CHARACTERISTICS (Refer to the test circuits, Vs = 35V, T amb = 25°C, unless otherwise specified) Parameter Test conditions DC CHARACTERISTICS 12 Pin 2 quiescent current 7 13 = 0 15 Pin 5 quiescent current 14 = 0 -19 Oscillator bias current V9 = 1V -110 Amplifier input bias Vl0= lV 14 mA lb 1b 8 15 mA 0.1 1 }J.A la 1 7 }J.A lb 0.02 0.3 }J.A la 20 24 }J.A lb 0.2 1 % lb 35 V ~ ~ current -112 Ramp generator bias V12= 0 current -112 L'l112 112 V12= 0 Ramp generator current 17 = 20}J.A Ramp generator L'I V 1 2= 0 to 12V non-linearity 17 = 20}J.A 19 Vs Supply voltage range Vl Pin 1 saturation voltage to ground 11=1 mA 1 1.4 V V3 Pin 3 saturation voltage to ground 13 = 10 mA 1.7 2.6 V la V4 Quiescent output voltage Vs= lOV R2 = 10 K!1 Rl= 10 K!1 4.17 4.4 4.63 V la Vs= 35V R2=10K!1 Rl= 30 K!1 8.35 8.8 9.25 V la 0.9 1.2 V lc lc V4L Output satu ration voltage to ground V4H Output saturation voltage to supply V6 Regu lated voltage at pin 6 V7 Regulated voltage at pin 7 10 -14= O.lA -14= O.8A 1.9 2.3 V 14 = O.lA 1.4 2.1 V ld 2.8 3.2 V ld 6.1 6.5 6.9 V lb 6.2 6.6 7 V lb mVN lb 14 = O.8A L'I V6 ; L'I V7 Regulated voltage drift L'I V s L'I Vs with supply voltage Vl0 Amplifier input reference voltage R8 Pin 8 input resistance 17 = 20}J.A 1 L'lVs= 10 to 35V 2.07 V8,;;; O.4V 1 477 22 2.3 V M!1 ~ la Fig. 1 - DC test circuits TDA 1170 N lOA 1170 N 10 Rl 10 TABS V4 R2 --LSV BV 5 - 5300 Fig.lb Fig.la .Vs ~----2-S 2-S V4H lOA 1170 N lOA 1170 N 10 10 TABS TABS --L 4V T ~IY I '----_ _ _----*-____ ± Fig. ld Fig.lc 478 --+____ ! .J.. ...J 5-5303 ELECTRICAL CHARACTERISTICS (Refer to the AC test circuit, Vs 25V; f = 50 Hz; Tamb = 25°C, unless otherwise specified) Parameter Test conditions AC CHARACTERISTICS Is Supply current Is Sync. input current (positive or negative) Iy = 1 App 140 mA 500 JJ-A V4 Flyback voltage Iy= 1 App 51 V tfly Flyback time Iy 0.7 ms VON Peak to peak output Bw = 20 .;. 20.000 Hz fo Free running frequency [If ld to V s I~I to T tab = 1 App 50 mV noise (P1 + R1) = 300 Kn C2=0.1JJ-F 52.4 Hz (P1 + R1) = 360 Kn C2 = 100 nF 43.7 Hz 14 Synchronization range Is = 0.5 mA Frequency drift with supply voltage Vs = 10 to 35V Frequency drift with tab temperatu re T tab = 40 to 120°C Hz 0.005 Hz/V 0.01 Hz/"C Fig. 2 - AC test circuit ----~------~----~~------------------~O·Vs·25V lN4001 Dl R7 5.6kQ 479 Fig. 3 - PC board and component layout of the AC test circuit (1:1 scale) 480 LINEAR INTEGRATED CIRCUIT TV VERTICAL DEFLECTION SYSTEM The TDA 11705 is a monolithic integrated circuit in a 12-lead quad in-line plastic package. It is intended for use in black and white and colour TV receivers. The functions incorporated are: • synchronization circuit • oscillator and ramp generator • high power gain amplifier • flyback generator • voltage regu lator ABSOLUTE MAXIMUM RATINGS Supply voltage at pin 2 F Iyback peak voltage Power amplifier input voltage T stg , T j Output peak current (non repetitive) at t = 2 msec Output peak current at f = 50 Hz t < 10 !-,sec Output peak current at f = 50 Hz t> 10 !-,sec Pin 3 DC current at V4 < V 2 Pin 3 peak to peak flyback current for f = 50 Hz, t fly Pin 8 current Power dissipation: at T tab :: 90:C} TDA 11705 at T amb - 80 C Storage and junction temperature < 1.5 msec 35 60 + 10 - 0.5 2 2.5 1.5 100 1.8 ± 20 5 1 -40 to 150 V V V V A A A mA A mA W W °C ORDERING NUMBERS: TDA 1170 S TDA 1170 SH MECHANICAL DATA · ·. ·. ~· ·.~ ·. · ·. ·e " '. Dimensions in mm ' TDA 1170SH TDA.1170 S 481 6/82 CONNECTION AND BLOCK DIAGRAMS REGULATED VOLTAGE SCHEMATIC DIAGRAM 02 als aID alS all ZI .3 I ~I I 02 , 032 ., ! I TABS 482 THERMAL DATA Rth j-tab Rth j-amb TDA 1170S TDA 1170SH max 1Q°C/W max 80°C/W max 12°C/W max 70°C/W(0) Thermal resistance junction-tab Thermal resistance junction-ambient (0) Obtained with tabs soldered to printed circuit with minimIzed copper area. ELECTRICAL CHARACTERISTICS (Refer to the test circuits, Vs= 35V, T amb = 25°C, unless otherwise specified) Test conditions Parameter DC CHARACTERISTICS 12 Pin 2 quiescent current 13 ~ Is Pin 5 quiescent current 14 ~ -19 Oscillator bias current Vg -110 Amplifier input bias current VlO~ 1V -112 Ramp generator bias current V12~ 0 0 0 1V ~ -112 Ramp generator current 17~20JlA 1';(12 -112 Ramp generator non-linearity 10 V 12~ 0 to 1 2V 17 ~ 20 JlA Vs Supply voltage range VI Pin 1 saturation voltage to V12~ 19 0 7 14 mA 1b 8 15 mA 1b 0.1 1 JlA 1a 0.1 1 JlA 1b 0.02 0.3 JlA 1a 20 24 JlA 1b 0.2 1 % 1b 36 V - 1 1.4 V - 1.7 2.6 V 1a 10 11 1 mA ~ ground V3 Pin 3 saturation voltage to ground 13~10mA V4 Quiescent output voltage Vs~ 10V R2~10 Kl1 Rl~10 Kl1 4.17 4.4 4.63 V 1a Vs~ Rl~30Kl1 8.35 8.8 9.25 V 1a R2~ V 4L V 4H Output saturation voltage to ground Output saturation voltage to supply 35V 10 Kl1 -14 ~ 0.1A 0.9 1.2 V 1c -14 ~ 0.8A 1.9 2.3 V 1c 14 ~ 0.1A 1.4 2.1 V 1d 14 ~ 0.8A 2.8 3.2 V 1d 6.1 6.5 6.9 V 1b ~ 20 JlA 6.2 6.6 7 V 1b mV!V 1b V - Ml1 1a V6 Regulated voltage at pin 6 V7 Regulated voltage at pin 7 17 Regulated voltage drift with supply voltage IoVs~ IoV 6 IoV 7 -- -IoV s ' IoV s VlO Amplifier input reference voltage Rs Pin 8 input resistance 10 to 35V 1 2.07 V s <;;O.4V 483 1 2.2 2.3 Fig. 1 - DC test circuits TOA 11705 10 lOA 11705 9 R1 10 TABS V4 R2 5-329411 Fig.1a Fig.1b ~ ~ 2-5 -9 2-5 4r--- lOA 11705 TOA 11705 10 TABS TABS t" , S - 329& J Fig.1c Fig.1d 484 1 ~ -.J S 3297 14 AC CHARACTERISTICS (Refer to the test circuit, Vs= 25V; f = 50 Hz; T arnb = 25°C, unless otherwise specified) Test conditions Parameter Is Supply current Is Sync. input current (positive or negative) V4 F Iyback voltage Vg Peak to peak oscillator sawtooth voltage tfly Flyback time fo Free running frequency Iy ~ Min. 1 App Typ. 140 500 Iy Iy ~ ~ (P 1 1 App 1 App + R 1) ~ 300 Kr! C2~100nF iP 1 + R 1) ~ 260 Kr! C2~100nF ~ LIt Synchronization range 18 LIt ---6V s Frequency drift with supply voltage Vs~10t035V 0.5 mA I6TLIt tab Il Frequency drift with tab temperature Ttab~40to C1 mA 2 MA 2 V 2 V 2 0.7 ms 2 44 Hz 2 52 Hz 2 Hz 2 0.005 Hz/V 2 0.01 Hz/oC 2 C3 1. SYNC INPUT 8 TDA 11705 P1 100kfl 5-1i18/1 485 Fig. 51 Fig. 2 - AC test circuit O.11'~ Unit 2.4 14 120"C Max. Fig.3 - Typical application circuit for small screen B/W TV set (R y = 2.9n, Ly= 6 mH; Iy= 1.1 App) ......- - - - - - - - - - _ o . V s = 1 0 . 8 V ----_~---+-- c,l "'I Dl C9 IN4001 CIO C3 11 t - - + - - - - - - ' SYNC. o---It:~>---; INPUT Cll C7 2000 .uF/16 V TDA 11705 10 1---1~ It--_----, YOKE 12 2.9.fi 6mH PI, R1** 56kn CS O.1I'F 5-332711 * Toleorance- 5-'. **.. . 2'1. Typical performance Vs Is t fly Ptot Iy Operating supply voltage Supply current F Iyback time TDA 11705 power dissipation Maximum scanning current (peak to peak) For safe working up to T amb = 60°C a heatsink of Rth = 30°C/W is required. 486 10.8 155 0.5 1.35 1.30 V mA ms W A Fig.4 - Typical application circuit for small screen 90° PIL TVC set (R y= 12.5.11; Ly= 31 mH; Iy= 0.8 App) n . -________~--------~----~~--------------------~.Vs~22v Dl lN4001 C9cb470l-'F 25V C3 Cl Rll 3,30 O.II-'F 5 VNC. "--..i lNPUT'-' ,I-C::-:'-:-'.----t 4.7 R13 k1l. 11 ~--~--------_ TDA 1170 S . 12 PI l00kIl I Rl ~ 150kO Hold ~ lookO' R2, 220kfly I P3 r"[ "-, .L"'N"'I ;., :-r- O.lj.JF~ nR3* 330 kO ~ 47kil}1 C4 ..... 39kl11 R6i P2 Hegnt C2 clO O.l~F _ I R7 ** J 561<.1< C5 T°.1~F 1 ** ,,2", Typical performance Vs Is t f1y Ptot Iy Operating supply voltage Supply current Flyback time TDA 1170S power dissipation Maximum scanning current (peak to peak) For safe working up to T amb = 60°C a heatsink of Rth = 18°C/W is required. 487 22 120 0.8 1.95 1.0 V rnA ms W A Fig. 5 - Typical application circuit for large screen 8/W TV set (R y = 1012; Ly= 20 mH; I y = 1 App) 1 ----------.-------~~----~---------------------4J·VS=2ZV Cl C3 O.II';r 1 11 ~ __ ~ ________ ~ O.1IJF SYNC. "--~ INPUT ,-,----.I-C =':-'..---i ;:;kfl i l. L R1 : 150kO , '"iiz : .J.. I' FI16V I 12 HOI~.r ~ ! RS .. -r,~rtlc6 ~: . 1, TDA 11705 ~ ~----~ P.2 I lOOkfl t, .. YOKE 10 It Is.6kO H •• gnt R2~ C2 l""' 180kfl Rl0· 111 5-3329/1 * Tolerancp 5·'. **.. 2'/, Typical performance V. I. t lly Ptot Iy Operating supply voltage Supply current Flyback time TDA 1170S power dissipation Maximum scanning current (peak to peak) For safe working up to T amb = 60°C a heatsink of Rth = 14°C/W is required. 488 22 145 0.7 2.3 1.2 V mA ms W A Fig. 6 - Typical application circuit for large screen 110° PI L TVC set (R y = 10n; Ly= 25 mH; Iy= 1.25 App) ,-------~~·---T--_,.------------_o. 470,.,F 35V '5 iSv R"[n C'O 3.3 () O.1)JF R9'*1 19H1 TDA 1170SH e12 J: 6.8nF C7_ 1000 ~F/25V 10 t---~-----"-L_ YOKE 12 10 Jl 2SmH P2 lookO C4 R2 270kD * Tole-rancE' • • .. 5-'_ 2'/, Typical performance Vs Is tfly Ptot Iy Operating supply voltage Supply current F Iyback time TDA 1170SH power dissipation Maximum scanning current (peak to peak) For safe working up to T amb = 60°C a heatsink of Rth = 8.5°C/W is required. 489 25 175 1 3.25 1.4 V mA ms W A Fig.7 - P.C. board and component layout of the circuit of fig. 6 (1 : 1 scale) Note: For the heatsink (1170 Sand 1170 SH) see mounting instructions MOUNTING INSTRUCTIONS During soldering the tab temperature must not exceed 260°C and the soldering time must not be longer than 12 seconds. The external heatsink or printed circuit copper area must be connected to electrical ground. TDA 1170S The junction to ambient thermal resistance of the TDA 11705 can be reduced by soldering the tabs to a suitable copper area of the printed circuit board (fig. 8) or to an external heatsink (fig. 9). The diagram of fig. 10 shows the maximum dissipable power Ptot and the Rth i-amb as a function of the side "sn of two equal square copper areas having a thickness of 35 jJ. (1.4 mil). 490 MOUNTING INSTRUCTIONS (continued) Fig. 8 - Example of P .C. board copper area used as heatsink. Fig. 9 - Example of TDA 1170 S with external heatsink. AREA 35)J THICKNESS HEATSINK 'Rth ~ 30°C/W P. C. BOARD Fig. 10 - Maximum Power dissipation and junctionalambient thermal resistance vs. "S" Ptot Fig. 11 - Maxim. allowable power dissipation vs. ambient temp. (TDA 1170S) ,!~.,4+tttt ("C/WI (WI Fig. 12 - Maxim. allowable power dissipation vs_ ambient temp_ (TDA 1170SH) WITH INFINITE HEAT SINK 80 60 R WITH H AT SINK HAVIN lamb 40 H- P tot (lamb =55·C WITH U HEAT SINK (T ",70'C) H-+-H' fjllt 40" (mm) -so 50 1 -50 TDA 1170SH The power dissipated In the circuit may be removed by connecting the tabs to an external heatsink accordrng to fig. 12. The desired thermal resistance may be obtained by fixing the TDA1170SH to a suitable dimensioned plate as shown in fig. 13. I 491 I MOUNTING INSTRUCTIONS (continued) Fig, 13 - Mounting example, 492 LINEAR INTEGRATED CIRCUIT TV HORIZONTAL PROCESSOR J The TDA 1180P is a horizontal processor circuit for b.w. and colour television receiver. It is a monolithic integrated circuit encapsulated in 16-lead dual in-line plastic package. The TDA 1180P combines the following functions: Noise gated horizontal sync separator. Noise gated vertical sync separator. Horizontal oscillator with frequency range limiter. Phase comparator between sync pulses and oscillator pulses (PLL). Phase comparator between flyback pulses and oscillator pulses (PLL). Loop gain and time cons.tant switching (VCR). Composite blanking and key pulse generator. Protection circuits. Output stages with high current capability. I ABSOLUTE MAXIMUM RATINGS Supply voltage (pin 1) Voltage at pin 2 Voltage at pin 4 15 18 Vs { Vs -6 6 - 6 Vs 1 0.5 30 20 30 1 -40 to 150 Voltage at pin 8 {+ Vg Voltage at pin 9 Vl l Voltage at pin 11 Pin 2 peak current Pin 3 peak current Pin 6 current Pin 7 current Pin 10 current Total power dissipation at Tamb .;;; 70°C Storage and junction temperature 12 13 16 17 110 Ptot T stg, Tj ORDERING NUMBER: V V V V A A mA mA mA W °C TDA 1180P Dimensions in mm MECHANICAL DATA .•~ .==:sr. """".""""""'."'l l27~\ i~~········· 493 H.· .•.4.m•.' .•.•.....•.......•... . ~. 1<' 'f' . ~, 6/82 I j i 1 j I CONNECTION DIAGRAM (top view) 16 GNO OUTPUT - 15 OSc. CONTROL CURRENT OUTPUT ... 14 OSCILLATOR PROTECTION CIRCUIT INPUT 13 CONT. CURRENT PHASE SHIFTER FILTER 12 FLYBACK 11 SUPPLY VOLTAGE 1 INPUT KEY AND BLANK PUlSE OUTPUT T~.i?EPARATOR 7 10 9 R OUTPUT TIME CONSTANT SWITCH COINCIDENCE DETECTOR VERTICAL SYNC OUTPUT VERTICAL SYNC SEPARATOR IN s- 3426 BLOCK DIAGRAM Il A Jl ", .~ ", ~ l II ,l.J ", ~I~~LO r I 'L l' ~I -. ! ( VCR rI _J ." " T 494 ,':~ .!. 1 1 I j.'.' , I"1,,1 2: «cc (!) « o c.J I- « :E w :::r:: c.J rJ) 495 TEST CIRCUIT SANDCA$TLE OUTPUT A Jl VERT SYNC OUTPUT FlYBACK INPUT (lQOV) + Vs 470nF (I ~~.~Mn R6 47 kll ,.-....J- ._---'-_ _- ' -_ _~_---L_ __'___,_, ,O ~_ 9 RI 2.2kfl TDA 1180P JIDEQ SIGNAL INPUT OUTPUT PULSE 16 •'s o--C=:}-C:J--===:;;' 5>-3427J1 THERMAL DATA Rth i-amb max Thermal resistance junction-ambient ELECTRICAL CHARACTERISTICS 80 °e/W (Refer to the test circuit, Vs= 12V, T amb = 25°e unless otherwise specified) Parameter Vs Supply voltage Is Suppty current Vs Supply voltage at which the output pulses (at pin 2and31are switched off Test conditions Min. 10 13~ 0 Typ. Max. 12 13.2 V 40 52 mA 4 V 6 V Unit HORIZONTAL SYNC. SEPARATOR AND NOISE GATE Vi Peak to peak input signal Va Input switching voltage Is 80.uA 1 1.5 V Is Input switching current Va~1.4V 10 .u A la Input blocking current for noise suppression 0.9 mA Va Input switching voltage for noise suppression 2.1 V Is Leakage current ~ Va ~ -5V 496 3 1 .uA ELECTRICAL CHARACTERISTICS (continuedl Parameter Test conditions Min. Typ. Max. 3 6 Unit VERTICAL SYNC. SEPARATOR VI Peak to peak input signal Vg Input switching voltage 1 ~ Ig 80 IlA 1.5 V V Ig Input switching current Vg~1AV Ig Leakage current Vg VIO Vertical sync. pulse output voltage No load at pin 10 RlO Output resistance 10 Kn tLv Delay between leading edge of input and output signals 17 IlS tTV Delay between trailing edr,e of input and output signa s 50 IlS tv Vertical sync pulse duration 190 . IlS ~ 5 -5V IlA 1 11 IlA V - PROTECTION CIRCUIT V4 Input voltage for switching off the output pu Ises R4 Input resistance 14 Input current Output pulses OFF Output pulses ON 0.5 1 200 V Kn 5 IlA fL YBACK PULSE V6 ., Input threshold voltage of blanking V6 Input threshold voltage of phase comparator 16 Input switching current V 1.5 generator V6~1.7V 7.6 V 0.23 mA OUTPUT PULSE ~ V3 Peak to peak output voltage 13 13 Output current V3 R3 Output resistance at leading edge of output pulse 3 at trailing edge of output pulse 20 tp 150 mApp ~ 5V Output pulse duration 20 10 V 500 mA 22 n 26 IlS 4.8 V COMPOSITE BLANKING AND KEY PULSE V 7K V 78 Key pulse output peak voltage . Blanking pulse output voltage 9 11 4.2 4.5 V R7 Output res ista nce 100 n t5K Phase relation between trailing edge of key pulse and middle of sync input pulse 2.7 IlS tK Key pulse duration tfb Delay between flyback pulse and blanking pulse 3.5 V6~1.7V 497 3.8 IJ.S 0.2 IJ.S I ELECTRICAL CHARACTERISTICS (continued) Test conditions Parameter INTERNAL GATING PULSE tg Gating pulse duration t Phase relation between middle of sync pulse and trailing and leading edge of gating pulse 7.5 flS 3.75 flS COINCIDENCE DETECTOR V ll Output voltage 6.S with coincidence 4 without coincidence III Peak output current 0.5 V mA VCR SWITCH o to 4 or 8.5 to Vll Input voltage -Ill Output cu rrent 35 1 III Output current 0.4 1 12 I V flA I. mA TIME CONSTANT SWITCH V 12 Output voltage R12 Output resistance 4.5V V ll < V ll < SV > S.5V or V ll < 4V 3 V 100 n Kn 40 OSCILLATOR V 14 Low level threshold voltage 5.4 V V 14 High level threshold voltage Charge current S.2 0.6 V mA 0.3 mA 114 114 Discharge current V 15 Current source supply voltage 3 V 115 Current source supply current 0.3 mA 15625 Hz ± 10 % fo Mo -fo fd o Free running frequency Adjustment range Frequency control sensitivity Mo Hz 52 tJl5 Frequency change when V s drops t04V -,;A ± 10 498 % ELECTRICAL CHARACTERISTICS (continued) Parameter Test conditions OSCILLATOR-FL YBACK PULSE PHASE COMPARATOR V5 Control voltage range 15 Peak control current 15 I nput current (blocked phase detector) td Permissible delay between output pulse leading edge and fly back pulse lead ing edge 6t 6td 9.4 to 8.2 V ± 0.5 mA 5 IlA tp - tf Static control error IlS 0.2 % SYNC PULSE-OSCILLATOR PHASE COMPARATOR V13 Control voltage range 4.6 to 1.4 V 113 Control peak current ±2 mA M6t Phase lock loop gain 2 KHz -IlS ± 700 Hz Phase relation between middle of flyback pulse and middle of sync pulse 2.6 IlS Adjustment sensitivity 65 mV -IlS Adjustment sensitivity 10 ~ f Catching and holding range OVERALL PHASE RELATIONSHIP to 6V 5 --6to 61 5 -6to 499 IlS Fig. 1 - Vertical sync. output pulse I f tv Fig. 2 - Relationship of main waveform phases I \ FLVBACK INPUT PULS ~ " 1 lo- ,J VIDEO IN PUT SIGNAL \.. PHASE COM PARATOR r I DRIVING PU lSE SEPARATED SYNC. PU lSE I \ '9 GATE PUlS I I ---"'--- SANDCASTL E OUTPUT PU lSE I .-- I I I I 'SK 'K v" \ [v's 'p OuTPUT PULSE PIN J S-3~3"l 500 Fig. 3 - Free running fre· quency vs. supply voltage (k~~) H-+-H--t--r--t+-t-i-f'+-1-++-1 +-++-+-++++--+-++-H , , --t H--f-f'-+1-t-[--j--l-+-+-+-+-+-+-+-I -i--- +-+-+-+-++-1-+ T +-' , I 5 15.5 Fig. 5 - Loop gain Fig. 4 - Overall phase relation vs. supply voltage J , (,-)597 (,-)';96 I I rLSYNC t:I:: ~t • . : l' If + ~~+ -+ PULSE ~LVBA.CK - PULSE -tFF , ~ , -- , f I H=-0.8 -0.0 -04 I -0.2 APPLICATION INFORMATION Pin 1 - Positive supply The operating supply voltage of the device ranges from 10V to 13.2V. Pin 2 and 3 - Output The outputs of TDA 1180P are suitable for driving transistor output stages, they deliver positive pulse at pin 3 and negative pulse at pin 2. The negative pulse is used for direct driving of the output stage, while positive pulse is useful when a driver stage is required. The rise and fall times of the output pulses are about 150 ns so that interference due to radiation are avoided. Furthermore the output stages are internally protected against short circuit. Pin 4 - Protection circuit input By connecting pin 4 of the Ie to earth the output pulses at pin 2 and 3 are shut off; this function has been introduced to protect the final stages from overloads. The same pulses are also shut off when the supply voltage falls below 4V. Pin 5 - Phase shifter filter To compensate for the delay introduced by the line final stages, the flyback pulses to pin 6 and the oscillator waveform are compared in the oscillator-flyback pulse phase comparator. The result of the comparison is a control current which, after it has been filtered by the external capacitor connected to pin 5, is sent to a phase shifter which adequately regulates the phase of the output pulses. The maximum phase shift allowed is: where tl is the flyback pulse duration. Pin 5 has high input and output resistance (current generator). 501 APPLICATION INFORMATION (continued) Pin 6 - Flyback input The fly back pulse drives the high impedance input through a resistor in order to limit the input current to suitable maximum values. The flyback input pulses are processed by a double threshold circuit; this generates the blanking pulses by sensing low level flyback voltage and the pulses to drive the phase comparator by sensing high level flyback voltage, therefore phase jitter caused by ringing normally associated with the flyback pulse, is avoided. Pin 7 - Key and blanking pulse output The key pulse for taking out the burst from the chrominance signal is generated from the oscillator ramp and has therefore a fixed phase position with respect to the sync. The key pulse is then added internally to the blanking pulse obtained by correctly forming the flyback pulse present at pin 6. The sum of the two signals (sandcastle pulse) is available on low impedance at output pin 7. Pin 8 and 9 - Sync separators inputs The video signal is applied by means of two distinct biasing networks to pins 8 and 9 of the Ie and therefore to the respective vertical and horizontal sync separators. The latter take the sync pulses out of the video signal and make them available to the rest of the circuit for further processing. An amplitude detector also connected to pin 8, blocks operation of the sync separators when interference or noise peaks exceed a certain preset value. Pin 10 - Vertical sync output The vertical sync pulse, obtained by internal integration of the synchronizing signal, is available at this pin. The output impedance is typically 10Kn and the lowest amplitude without load is 11 V. Pin 11 - Coincidence detector From the oscillator waveform a gate pulse 7 p,s wide is taken whose phase position is centered on the horizontal syncronism. The gate pulse not only controls a logic block which permits the sync to reach the oscillator-sync phase comparator only for as long as its duration, but also allows the latching and de-latching conditions of the oscillator to be established. This function is obtained by a coincidence detector which compares the phase of the gate pulses with that of the sync. When the two signals are not accurately aligned in time It means that the oscillator is not synchronized. In this case the detector acts on the logic block to eliminate its filtering effect and on the time constant switching block to establish a high impedance on pin 12 (small time constant of low-pass filter). Th is latter block also acts on the oscillator-sync phase detector to increase its sensitivity and with it the loop gain of the synchronizing system. In this conditions the phase lock has low noise immunity (wide equivalent noise bandwidth) and rapid pull-in time which allows fairly short synchronization times. 502 APPLICATION INFORMATION (continued) Once locking has taken place the coincidence detector enables the logic block, causes a low impedance on pin 12 and reduces the sensitivity of the phase comparator. In these conditions the phase lock has high noise immunity (narrow equivalent noise bandwidth) due to the complete elimination of interference which occurs during the scanning period and the greater inertia with which the oscillator can change its frequency. To optimize the behaviour of the Ie if a video recorder is used, the state of the detector can be forced by connecting pin 11 to earth or to +Vs. The characteristics of the phase lock thus correspond to the lack of synchronization. Pin 12 -:- Time constant switch, (see pin 11) Pin 13 - Control current output The oscillator is synchronized by comparing the phase of its waveform with that of the sync pulses in the oscillator-sync phase comparator and sending its output current 113 (proportional to the phase difference between the two signals) to pin 15 of the oscillator after it has been filtered properly with an external low-pass circu it. The time constant of the filter can be switched between two values according to. the impedance presented by pin 12. The voltage limiter at the output of the phase comparator limits the voltage excursion on pin 13 and therefore the frequency range in which the oscillator remains held-in. The output resistance of pin 13 is : low when V 13 > 4.3V or V 13 < 1.6V high when 1.6V < V 13 < 4.3V Tb prevent the vertical sync from reaching the oscillator-sync phase comparator along with the horizontal sync, a signal which inhibits the phase detector during the vertical interval is taken from the vertical output stage; inhibition remains even if the video signal is not present. The free running frequency of the oscillator is determined by the values of the capacitor and of the resistor connected to pins 14 and 15 respectively. To generate the line frequency output pulses, two thresholds are fixed along the fall ramp of the triangular waveform of the oscillator. Pin 14 - Oscillator (see pin 13) Pin 15 - Oscillator control current input (see pin 13) Pin 16 - Ground 503 Fig.6 - Application circuit for large screen b.w. and colour TV SANDCASTLE OUTPUT A .v, ll FlYBACK INPUT (IOOV) PHASE Fig. 7 - p.e. board and component layout for the circuit in fig. 6 (1: 1 scale) FLYBACK INPUT(lOOV) Vs OUTPUT PULSE 504 Fig.8 - Application circuit for small screen b.w. TV. .10.1\' SANDCA51lE OUTPUT ]l A I 1511 FLYBACK INPUT(100V) .V s 470nF C1 R1 R8 47 n'1fi kfl r--:':,0:----:---~----:---.......- - -...--, f---"'---' 9 2.2kfl TDA 1180P VIDEO SIGNAL INPUT 16 C9 5nF 5-31.33/1 Fig.9 :.' Application circuit for Darlington output stage SANOCASTlE OUTPUT ]l A FLYBACK I NPUTi 100v) R8 47 IOO"F J: kfl r-~----~--~~--~----~----~-' 10 fl TDA 1180P VIDEO SIGNAL INPUT 16 C9 5nF 5-31,34/1 505 Bue060r BUB07 82 LINEAR INTEGRATED CIRCUIT COMPLETE TV SOUND CHANNEL The TDA 1190Z is a monolithic integrated circuit in a 12-lead quad in-line plastic package. It performs all the functions needed for the TV sound channel: I F limiter-amplifier - Active low-pass filter - FM detector - DC volume control - AF preamplifier - AF output stage The TDA 1190Z can give an output power of 4.2W (d = 10%) into a 160 load at Vs = 24V, or 1.5W (d = 10%) into an 80 load at Vs = 12V. This performance, together with the FM-IF section characteristics of high sensitivity, high AM rejection and low distortion, enables the device to be used in almost every type of television receivers. The device has no irradiation problems, hence no external screening is needed. ABSOLUTE MAXIMUM RATINGS Supply voltage (pin 10) Input signal voltage (pin 1) Output peak current (non-repetitive) Output peak current (repetitive) Power dissipation: at T tab = 90°C at T amb = 80° (free air) Storage and junction temperature ORDERING NUMBER: V 1 V A A 2 1.5 5 1 -40 to 150 W W °C TDA 1190Z Dimensions in mm MECHANICAL DATA 6/82 28 506 CONNECTION AND BLOCK DIAGRAM (top view) I; " ~- SCHEMATIC DIAGRAM TABS 507 TEST CIRCUIT L1 L= 10,.,H Q o =60 10=4.5 MHz 9pF C7 C6 0 I ~ 120pF INPUT lOOnrJ: C12 C10 J---- 0..C~ .' . . ,.,'.,,<: .•. ~ ' , . . . . . " , , ,.• ,•.,>' ·cA~~CITOR\'·. R~ ..•..·.-A.N. :1. .•.1£..1'. 1 14. :Jl•• '. .•.•. i' "'/ .Q i.'.'.' ,:,c<:I~<:'::' " ;<:; "0 ~ ~ , « u... ~ +"' (S tl S :..'. ....... . •. F:~ ............ , Rl3 ..Q '" ....0 ..c +"' "0 ~ :::l C '':; C 0 ., '" ..£ Z co ~ +"' > ~ l- +"' C « '"c 2 0 0 LL c. E 0 tl Z -g Z l' co I- U 0 « U ...J Il.. Il.. « ~. 24 co 0 .0 0.. ~ N ~ .' ..... 8 .... · ~. rRl6 - L . \..•.·. .C. 23 ~.......... ~.c::::::::J ,.. ~ ..·L6--c:::::h ....... ..• '. ... .R15 ... ,C27 , 10IQ:?'J(~~0~~'~·•. -'-- :::l 0 0 a: + . ~.. . R24 .Ris [ 7j'r- . 1--) .. C32. 0 0 ,0 SWl AM ~. .,..,.---4 ('~7~Oc~~~ . . 0 0 0 .. ::.~Qr:~~'IIII[ (9 ... .o {ATTEi!lV+3t12V CS-0117 .~ u... 524 FM APPLICATION INFORMATION (continued) Low cost receiver performance (V s = 9V) I! Test conditions Parameter Value I I. Wavebands Sensitivity Distortion f m : 1 KHz ~ fm:1KHz ·N FM 87.5 -;. 108 MHz AM 510-;. 1620 KHz FM : 75.11 (S + N/N) : 26 dB (S + N/N) : 6 dB m: 0.3 1 jJV AM (S + N/N) : 26 dB m: 0.3 10 jJV FM Vi: 100jJV M: 22.5 KHz p: 0.5W .;; 0.25 % FM Vi: 100jJV M: 75 KHz p: 0.5W .;; 1 % AM Vi: 100jJV m: 0.3 p: 0.5W .;; 0.6 % AM Vi: 100jJV m: 0.8 p: 0.5W .;; 1 % FM Vi: 100jJV M: 22.5 KHz p: 0.5W ;. 70dB AM Vi: 1000jJV m: 0.3 p: 0.5W FM -3 dB point AMR FM Vi: 100jJV Quiescent current Supply voltage range .;; 2 jJV AM Input limiting voltage IF I1f: 22.5 KHz ;. 55 dB .;; 1.5jJV M: 22.5 KHz m: 0.3 ;. 45 dB FM 10.7 MHz AM 460 KHz FM 23mA AM 15 mA FM 3-;.12V AM 3-;.12 V 525 J; "' ·H~ • ~\> : , ~~ I 0 l , I ,I , , I j~ I "~ 13::J C .;::; C 0 .::. .2 Q "0 « :2E :;§; I- a: 0 ~ I u. Z S en Z S !;;: S -l LL 0 :;§; (J I ...I N N Q., Q., « ~ I ~ ~ !. i I z I .", u. 526 0 APPLICATION INFORMATION (continued) Fig. 23 - PC board and component layout of the four band radio (fig. 22) C11 I'.) -..J ~ I mm205 i ~I I ----... ----.-.......-..- APPLICATION INFORMATION (continued) FOUR BAND RADIO PERFORMANCE Parameter AM SECTION Values Test. conditions H I~I N BW Distortion Vi = 10"V V i - l mV -3 dB V I = 20 "V Vi -100"V VI 1 mV Vi 20"V Vi 1 mV m =0.3 m - 0.3 Vi- 30"V V i -l00"V V i - 10"V V i - 1OO ILV V i - l mV V I - 10ILV V i -l00"V Vi 10"V V i -l00"V Vi -1 mV M = 22.5 b.f - 22.5 M - 22.5 b.f - 22.5 b.f - 22.5 M-75 M-75 M - 22.5 M - 22.5 b.f - 22.5 26 dB 55 dB 10 KHz 0.5 % 0.5 % 0.5 % 0.9 % 1% m = 0.3 m - 0.3 m 0.3 m 0.8 m 0.8 FM SECTION AMR Distortion I~I N Input limiting voltage KHz KHz KHz KHz KHz KHz KHz KHz KHz KHz m - 0.3 m -0.3 f m = 1 KHz f m - 1 KHz -3 dB 45 dB 47 dB 0.3 % 0.2 % 0.2 % 1% 1% 60dB 70dB 70dB l"V (.j The performance remains substantiallv the same over LW, MW and SW bands. 100 KHz/div. 5 KHz/div. Fig. 24 - FM-SECTION S cu rve response Fig. 25 - AM-SECTION Band pass IF filter response at AGC starting point. 528 .. APPLICATION INFORMATION (continued) Fig. 26 - Low cost 27 MHz receiver ·9V I, TDA 1220 A 111----'-.......-+-----, 16 Sensitivity: 1O!J. V for ( S ~ N ) = 26 dB Fig. 27 - PC board and component layout of the low cost 27 MHz receiver (1: 1 scale) AUDIO OUT Fig. 28 - L2 Oscillator Coil I 00 +9V «XX> 0000 0000 I r--II I: I I I IL __ _ ! 5-3419 Coil support: Taka 10K. Primary winding: 10 Turns of enamelled copper wire 0.16 mm diameter (pins 3-1). Secondary winding: 4 Turns copper wire 0.16 mm diameter (pins 6-4). I: Fig. 29 - L 1 Antenna Coil j--- 00) «XX> 0000 I:I I I: I NOTE - For a more detailed description of the TDA 1220A and its applications refer to SGSTECHNICAL NOTE TN. 14B. -~~3~18 Coil support: Taka 10K. Primary winding: as L2 (pins 3-1) Secondary winding: 2 Turns copper wire 0.16 mm diameter (pins 6-4). 529 Ji LINEAR INTEGRATED CIRCUIT AM-FM QUALITY RADIO The TDA 1220B is a monolithic integrated circuit in a 16-lead dual in-line plastic package designed as an improved version of the TDA 1220A. It is intended for quality receivers produced in large quantities. The functions incorporated are: AM SECTION Preamplifier and double balanced mixer (1) One pin local oscillator I F amplifier with internal AGC Detector and audio preamplifier The TDA 1220B is suitable up to 30 MHz and features: ds (including 450 KHz narrow band) Very constant characteristics (3V to 16V) High sensitivity and low noise Very low tweet Very high signal handling (1 V) Sensitivity regulation facility,,( recovered audio signal (100 mY) suited' stereo decoders and radio recorders simple DC switching of AM-FM Low current drain ''':1)f;' e or, by mean of a resistor (5 to 12 Krl) between pin 4 and ground. ABSOLUTE Vs Ptot Top Tstg , Tj • Supply~ltage Total po~er dissipation at Tamb 110°C Operating temperature Storage and junction temperature < 16 V 400 mW -30 to 8 5 ° C -55 to 150°C ORDERING NUMBER: TDA 1220B Dimensions in mm MECHANICAL DATA 6/82 530 CONNECTION DIAGRAM LOCAL OSCILLATOR 16 AM 15 IF FM '4 IF FM BYPASS AMPLIFIED AGG (BYPASS) i3 FM DETECTOR AM IF INPUT 12 FM DETECTOR INPUT MIXER A~ OUT DETECTOR IF FM INPUT 6 GROUND BYPASS AM DETECTOR AGe (BYPASS) BYPASS .v 5 10 8 AF OUTPUT BLOCK DIAGRAM - ', ~,--------,. ~-------'---r'6--l-~O.V' : :~~-u-~ : -- _ ~--- -' ~ I.l : : I , L - , - - t-.l ,--\ '# ~: .l. ..,.. I~_" ..... OUT ---------------" S-S16611 531 THERMAL DATA max Thermal resistance junction-ambient Rth j-amb 100 ELECTRICAL CHARACTERISTICS (T amb = 25°C, Vs= 9V unless otherwise specified, refer to test circu it! Test conditions Parameter Vs Supply voltage Id Drain current AM SECTION(f o Vi = Min. Typ. 3 Max. 16 10 Unit V mA 1 MHz; f m = 1 KHz! I nput sensitivity SIN SIN = 26 dB m = 0.3 12 Vi = 10mV m = 0.3 52 dB 100 d8 120 mV 0.4 % 1 V Vi AGC eange llV out = 10dB m = 0.8 Vo Recovered audio signal (pin 9) Vi = 1 mV m = 0.3 d< 10% 65 25 IJV d Distortion VH Max input signal handling capability m = 0.8 Rj I nput resistance between pins 2 and 4 m=O 7.5 KO Ci I nput capacitance between pins 2 and 4 m-O 18 pF Ro Output resistance (pin 9) Tweet 2 IF -- Tweet 3 IF FM SECTION (fo = 10.7 MHz; f m m = 0.3 = Vi = 1 mV 7 KO 38 d8 55 dB 1 KHz! Vi Input limiting voltage -3 dB li""iting point AMR Amplitude modulation rejection M = ± 22.5 KHz m = 0.3 22 IJV 52 dB Vi = 3 mV SIN Ultimate quieting M = + :'2.5 KHz Vi = 1 mV 64 dB d Distortion M = ± 75 KHz Vi= 1 mV 0.7 % d Distortion d Distortion (double tuned) Vo 0.25 % 0.1 % 100 mV M = ± 22.5 Vi= 1 mV Recovered audio signal (pin 9) M = ± 22.5 KHz Vi = 1 mV Ri I nput resistance between pin 16 and ground M=O 6.5 KO Ci I nput capacitance between pin 16 and ground M-O 14 pF Ro Output resistance (pin 9) 7 KO 532 65 Fig. 1 - Test circuit I,. Fig.2 - PC board and component layout (1: 1 scale) of the test circuit. 533 Fig. 3 - Suggestion for 7 x 7 mm "Le" conventional filter use. TDA 1220 B 13 ___ 10 AM FM .-J KAC5 K586 HM Fig.4 - Suggestion for "coil block" use. SUMIDA FSN 1067 r--~- '.1 100jJF L_ - - '6 --------'"1 2 9 t / t TOKO RWO 6A6574A ' 50h ~) r- : : 6 ' -~- ~3{-.o:---~ ~~I---+---~~--c:::}--t Vs=3 to 12V I -. 100 n F 1>----+-----" -:L. ~ 1 ~---------: lOll s Pin 2 D.C. current at V 16 < V 3 Pin 2 peak to peak flyback current for f = 50 Hz, t fly Pin 11 current Maximum power dissipation at Tease ~ 75°C Storage and junction temperature ~ 1.5 ms 35 60 +10 -0.5 3 3.5 2 100 3 20 25 -40 to 150 V V V V A A A mA A mA W °C ORDERING NUMBER: TDA 1470 MECHANICAL DATA 6/82 Dimensions in mm 540 CONNECTION AND BLOCK DIAGRAMS (top view) POWER GROUND 16 AMP. FLYBACK 15 NC OUT SUPPLY VOLTAGE 14 AMP. SUPPLY RAMP OUT 13 REG RAMP GENERATOR VOLTAGE 12 HEIGHT AOJUS T COMPENSATION 11 SYNC. INPUT AMP. INPUT (+) 10 OSCILLATOR AMP. INPUT (-) 9 GROUND The copper slug is electrically connected to pin 9 (substrate) SCHEMATIC DIAGRAM aiD all R3 D2 .1 .2 10 01 .6 I, 13 541 THERMAL DATA Rth j-case Thermal resistance junction-case max 3 °C/W DC ELECTRICAL CHARACTERISTICS (Refer to the DC test circuits, Vs= 35V, T amb = 25°C, unless otherwise specified) Parameter Test conditions Min. Typ. Max. Unit Fig. 13 Pin 3 quiescent current 12 = 0 7 mA lb 114 Pin 14 quiescent current 116 = 0 10 mA 1b -1 10 Oscillator bias current V 10=1V 0.1 !LA la -IS Amplifier input bias current Vs=lV 1 !LA lb Ramp generator bias V5 = OV 0.02 !LA 1a 20 !LA 1b 1 % 1b 35 V - 1.4 V - V la -15 current -15 Ramp generator current V5= OV "'15 15 Ramp generator linearity "'V5= 0 to 12V 112 = 20 !LA Vs Supply voltage range(pin3) V4 Pin 4 saturation voltage to ground 14= 1 mA 1 V2 Pin 2 saturation voltage to ground 12= 10 mA 0.5 V 16 Quiescent output voltage Vs= 10V R 2 =10 K!1 R I = 10K!1 Vs= 35V R 2 = 10 K!1 R I = 30 K!1 V I6L Output saturation voltage to ground 112= 20 !LA 0.2 10 4.15 4.45 4.73 V la 8.3 8.9 9.45 V la -116= O.8A 1.3 V lc -116= 1.5A 1.7 V lc 542 D.C. ELECTRICAL CHARACTERISTICS Test conditions Parameter Output saturation voltage to supply V 16H V 13 Regu lated voltage at pin 13 V 12 Regulated voltage at pin 12 loV 13 nV s Min. Typ. Max. Unit Fig. 116 = O.SA 1.9 V 1d 116 = 1.5A 2.3 V 1d 112 = 2O IlA n V 12 Regulated voltages lo V s drift V7 (continued) 6.1 6.5 6.9 V 1b 6.2 6.5 7 V 1b mV/V 1b 1 nVs= 10 to 35V Amplifier input reference voltage 2.07 2.2 2.3 V Fig. 1 - DC test circuits (b) (a) 14 '2 -----111 D.U.T. 1- 9 16 10 ~R1 D.U.T. ..... 5-376611 543 S -3 76 7/1 (c) (d) .V s Q t---- -----14 14 10 10 16 D.U.T. 16 D.UJ. 1-9 i TABS I l__ I_V-±-_ ---'- 1V S -3769/1 S-J 7 6 611 AC ELECTRICAL CHARACTERISTICS (Refer to the AC test circuit f = 50 Hz, Vs = 24V, unless otherwise specified) Parameter Test cond itions Min. Typ. Max. Unit Vs Operating supply voltage Iy max= 2.2 App 24 V Is Supply current Iy = 2 App 270 rnA III Sync. input current V I6 Flyback voltage V IO Peak to peak oscillator sawtooth voltage tflY Flyback time Free running frequency 500 Iy = 2 App IlA 49 V 2.4 V Iy = 2 App 0.6 ms Rl +P 1 = 300 Kn C2 = 100 nF 44 Hz Rl +P 1 = 260 Kn C2 =100nF 52 Hz ~. fo lit Synchronization range I l l = 500 IlA -litf:,V s Frequency drift vs. supply voltage Vs= 10 to 35V -lit -- Frequency drift vs. tab temperatu re T amb = 40 to 120°C f:,T tab 544 14 Hz 0.005 Hz/V 0.01 Hz/oC Fig. 2 - AC Test circuit ,---------~--------~----~----------------------O·%=24V YOKE 5.9fl. lOmH 1 lOOkfi 4 12 5 Linearit Rl (2 R6 (4 Hold 220kfl 47kfi Height R2 100kil R3 470 kil (5 O.1~F 5·3770/1 Fig. 3 - Relative output voltage drift vs. supply voltage _ ",('/.J6 ,0. 99/1 Fig. 4 - Relative output voltage drift vs. case temperatu re AV,6 --,---,--,--,--,-,--,-,--,--,""'r~ ("!o)--P- --_ _....-I OUTPUT YOKE lOA 1470 41-~~0---, 12 5 1000,uF/,6 R3* 680 kfi * Tolerance 5-/. ** " ," S-37731' 2'1, Typical performance Vs Is tfly Pd Iy 23 185 1 2.8 1.4 Operating supply voltage Supply current Flyback time TDA 1470 power dissipation Maximum scanning current For safe operation up to T amb = 60°C a heatsink of Rth = 10 °C/W is required. 548 V mA ms W App Fig. 9 - P.C. board and component layout (Application circuits of fig. 6, 7 and 8) SYNC. INPUT FLVBACK OUTPU T MOUNTING INSTRUCTIONS The power dissipated in the circuit must be removed by adding an external heatsink as shown in fig. 10. The system for attaching the heatsink is very simple; it uses a plastic spacer which is supplied with the device on request (TDA 1470 F2). Thermal contact between the copper slug (of the package) and the heatsink is guaranteed by the pressure which the screws exert via the printed circuit board; this is due to the particular shape of the spacer. Note: The most negative supply voltage is connected to the copper slug, hence to the heatsink (because it is in contact with the slug). 549 Fig. 10 - Mounting system example (TDA 1470) HEATSINK - - - - - - - ; o . r - - R t h " 2\oS'CIW ~/ - + - - - - - S P A C E R ~--",_---P. 550 c. BOARD LINEAR INTEGRATED CIRCUIT PRELIMINARY DATA VERTICAL DEFLECTION CIRCUIT The TDA 1670 is a monolithic integrated circuit in 15-lead Multiwatt® package. It is a full performance and very efficient vertical deflection circuit intended for direct drive of the yoke of 110° colour TV picture tubes. It offers a wide range of applications also in portable CTVs, BW TVs, monitors and displays. The functions incorporated are. Synchronization circuit Precision osci lIator and ramp generator Power output amplifier with high current capability Flyback generator Voltage regulator Precision blanking pulse generator Thermal shut down protection CRT screen protection circuit which blanks the beam current in the event of loss of vertical deflection current. I I !.. ABSOLUTE MAXIMUM RATINGS V5 Supply voltage at pin 14 Flyback peak voltage Sync. input voltage Vll ,VI2 Power amplifier input voltage V 13 Voltage at pin 13 Output current (non repetitive) at t = 2 msec Output peak current at f = 50 Hz t 10 Jisec Output peak current at f = 50 Hz t';;; 10 Jisec Pin 15 peak to peak flyback current at f = 50 Hz, t f1y Pin 15 DC current at VI V 14 Maximum power dissipation at T case';;; 60°C Storage and junction temperature Vs VI, V 2 10 10 10 '15 '15 Ptot Tst9' Tj > < .;;; 1.5 msec 35 60 V V 20 V { Vs -10 Vs V 3 A 2 A 3.5 A A 3 100 mA .30 -40 to 150 °C W ORDERING NUMBER: TDA 1670 Dimensions in mm MECHANICAL DATA I, I 551 6/82 CONNECTION DIAGRAM (top view) ~~ Ay FLYBACK SUPPLY BLANKING OUTPUT AMPLIFIER INPUT (-) AMPLIFI ER INPUT (+) RAMP OUTPUT RAMP GENERATOR GROUND HEIGHT ADJUSTMENT OSCILLATOR SYNC. INPUT OSCILLATOR OSCILLATOR AMPLIFIER SUPPLY AMPLIFIER OUTPUT 131 121 11 10 9 8 7i 'I5, BLOCK DIAGRAM ,-------~-~--~----~--------~O+vs BLANKING OUT O-----~ 14 I I Cf 15 JL SYNC. Ra cr'j-----j 5 - S264 552 THERMAL DATA Rth j-case Rth j-amb max max Thermal resistance junction-case Thermal resistance junction-ambient 3 40 ELECTRICAL CHARACTERISTICS (Vs= 35V, T amb = 25°C, unless otherwise specified) Test conditions Parameter DC CHARACTERISTICS 12 Pin 2 quiescent current 11 = 0 18 30 mA lb -19 Ramp generator bias current V9= 0 0.02 1 p.A lb -19 Ramp generator current V9 =0; 20 21.5 p.A lb Ramp generator non linearity !lV 9 =Oto15V -17= 20 p.A 0.2 1 % lb 25 50 mA lb 16.8 17.8 18.6 V 7 7.5 8 V I~I 19 114 Pin 14 quiescent current VI Quiescent output voltage -17= 20 p.A Vs= 35V; Rb= 1 Kn Ra= 2.2 Kn Vs= 15V; Ra= 390n Rb= 1 Kn 18.5 la V 1L Output saturation voltage to ground 11 = 1.2A 1 1.4 V lc V 1H Output saturation voltage to supply -11= 1.2A 1.6 2.2 V ld V4 Oscillator virtual ground V lb V7 Regulated voltage at pin 7 -17= 20p.A V lb !lVs Regulated voltage drift with supply voltage !lVs= 15 to 35V Vu Amplifier input (+) reference voltage V 13 Blanking output saturation voltage 113= 10 mA 0.35 V 15 Pin 15 saturation voltage to ground '15= 20mA 1 !lV7 0.45 6.3 7.1 mV 1 4.2 553 6.6 4.4 4.6 1.3 ----v- lb V lb V la V 1a Fig. 1 - DC test circuit Fig. 1a Fig. 1b 4 5-5258 Fig. 1d Fig.1c 554 ELECTRICAL CHARACTERISTICS(Refer to the A.C. test circuit of fig. 2, T amb = 25°C, Vs= 24V, f = 50 Hz, unless otherwise specified) Test conditions Parameter AC CHARACTERISTICS Is Supply current 15 Sync input current required to sync. 2 App Iy~ 295 mA 100 !LA vI Flyback voltage Iy~ 2 App 50 v3 Peak to peak oscillator sawtooth voltage 15 - a 3.6 V 15= 100 !LA V 10th L Start scan level of the input ramp 2 App V 3.4 V 1.85 V tfly Flyback time Iy~ Blanking pulse duration fo- 50 Hz T j - 75°C 0.6 1.4 ms tblank fo= 60 Hz T j = 75°C 1.17 ms Ro- 7.5 K.I1 Co = 330 nF Tj = 75°C 43.5 Hz Ro= 6.2 K.I1 Co = 330 nF Tj 75°C 52.5 Hz 15 - 100 !LA T j - 75°C Free running frequency fo lit Synchronization range Tj Junction temperature for thermal shut-down ~ ms 16 Hz 145 °C Fig.2 - AC test circuit t blank II Jl J11![ BLANKING OUT SYNC. IN YOKE lLt sync . 5.9 II A t blank - ---i- 4'7:n.(FREa~0~: ~ __ __ I 10mH : TDA 1670 _ lito 3 i 7180 _ v3 ~~ SERVICEl SWITCH S2 5-5260 ~' 220 K Jl 2200 O.l}JF9 KJl 56KJl 560 KII r-,--~~L-r J~>F HEIGHT 555 L -_____ --~~~J~tly :~ Fig. 3 - Application circuit for small screen 90° Tve set (Ry= 15,n; Ly= 30 mH, Iy= 0.82 App) +vs 1N4001 R3 10K Jl BLANKING OUT ~G~~E IN 01~F 13 Oc,1 S 14 " TDA 1670 19~~\ 15 Q ~F R9 2.2 C7 ::I: n. 0.22 2.4KJl : Rl1 I 330Jl : 1 I I I! 1 1 L _ _ _ .J Co R2 1SKJl SERVICE SWITCHJS1 ~ RT1 HEIGHT S - 5261 * The value depends on the characteristics of the CRT. The value shown is indicative only. Typical performance Vs Is t fly t blkg fo Ptot Rth heatsink Minimum supply voltage Supply current Flyback time Blanking time Free running frequency Power dissipation Thermal resistance of the heatsink for T amb = 600 e and T j max= 1100 e for T amb = 600 e and T j max= 1200 e 556 25 140 0.7 1.4 43.5 V mA msec msec Hz 2.4 W 13 16 °e/w °e/W Fig. 4 - Application circuit for 110° TVC set (Ry= 9.6n; Ly= 27 mH; Iy= 1.17 App) BLANKING OUT ,J " YOKE 14 r - --, 5 I I Ii TDA 1670 Co s- • 5262 The value depends on the characteristics of the CRT. The value shown is indicative only. Typical performance Vs Is t f1y t b1kg fO Ptot Rth heatsink Minimum supply voltage Supply current Flyback time Blanking time Free running frequency Power dissipation Thermal resistance for the heatsink for T amb = 60°C and T j max= 110°C for Tamb = 60°C and T j max= 120°C 557 22.5 185 1 1.4 43.5 V mA msec msec 2.7 Hz W 11.5 14.5 °C/W °C/W Fig. 5 - Application circuit for 110° TVC set (Ry= 5.90; Ly= 10 mH; Iy= 1.95 App) 1N4001 +Vs R3 10KA BLANKING OUT ~0~~E IN 01!-1F 0y,J 13 5 14 " YOKE 15 r - --., : ~-~------~~~~ TDA1670 1\ 5 - 5263 * The value depends on the characteristics of the CRT. The value shown is indicative only. Typical performance Vs Is tfly t b1kg fo Ptot Rth heatlnk Minimum supply voltage Supply current Flyback time Blanking time Free running frequency Power dissipation Thermal resistance of the heatsink for T amb = 600C and TJ max= 1100C ;or T amb = 600C and Tj max= 1200C 558 24 285 0.6 1.4 43.5 4.3 V rnA msec msec Hz W 6.5 8.5 °CIW °CIW Fig. 6 - PC board and components layout for the application circuits of fig. 3, 4 and 5 (1 : 1 scale) GND SYNC. Iy I N TEST APPLICATION INFORMATION (Refer to the block diagram) Oscillator and Sync gate (Clock generation) The oscillator is obtained by means of an integrator driven by a two threshold circuit that switches Ro high or low so allowing the charge or the discharge of Co under constant current conditions. The Sync input pulse at the Sync gate lowers the level of the upper threshold and than it controls the period duration. A clock pulse is generated. Pin 4 Pin 6 Pin 3 Pin 5 is is is is the the the the inverting input of the amplifier used as integrator. output of the switch driven by the internal clock pulse generated by the threshold circuits. output of the amplifier. input for sync pulses (positive) 559 Ramp generator and buffer stage A current mirror, the current intensity of which can be externally adjusted, charges one capacitor producing a linear voltage ramp. The internal clock pulse stops the ramp increasirg by a very fast discharge of the capacitor; a new voltage ramp is immediately allowed. The required value of the capacitance is obtained by means of the series of two capacitors, Ca and Cb, which allow the linearity control by applying a feedback between the output of the buffer and the tapping from Ca and Cb. Pin 7 Pin 9 Pin 10 The resistance between pin 7 and ground defines the current mirror current and than the height of the scanning. is the output of the current mirror that charges the series of Ca and Cb. This pin is also the input of the buffer stage. is the output of the buffer stage and it is internally coupled to the inverting input of the power amplifier through R 1. Power amplifier This amplifier is a voltage-to-current power converter, the transconductance of which is externally defined by means of a negative current feedback. The output stage of the power amplifier is supplied by the main supply during the trace period, and by the flyback generator circuit during the most of the duration of the flyback time. The internal clock turns off the lower power output stage to start the flyback. The power output stage is thermally protected by sensing the junction temperature and then by putting off the current sources of the power stage. Pin 12 Pin 11 Pin 1 Pin 2 is the inverting input of the amplifier. An external network, Ra and Rb, defines the DC level across Cy so allowing a correct centering of the output voltage. The series network Rc and Cc, in conjunction with Ra and Rb, applies at the feedback input pin 12 a small part of the parabola, available across Cy, and the AC feedback Voltage, taken across Rf. The external components Rc, Ra and Rd, produce the linearity correction on the output scanning current Iy and their values must be optimized for each type of CRT. is the non-inverting input and it is not used. At this pin the non-inverting input reference voltage supplied by the voltage regulator can be measured. This pin is only used on a quasi-bridge configuration. is the output of the power amplifier and it drives the yoke by a negative slope current ramply. Re and the Boucherot cell are used to stabilize the power amplifier. The supply voltage of the power output stage is forced at this pin. During the trace time the supply voltage is obtained from the main supply voltage Vs by a diode, while during the retrace time this pin is supplied from the flyback generator. Flyback generator This circuit supplies both the power amplifier output stage and the yoke during the most of the duration of the flyback time (retrace). The internal clock opens the loop of the amplifier and lets pin 1 floating so allowing the rising of the flyback. Crossing the main supply voltage at pin 14, the flyback pulse front end drives the flyback 560 generator in such a way allowing its output to reach and overcome the main supply voltage, starting from a low condition forced during the trace period. An integrated diode stops the rising of this output incrl:ase and the voltage jump is transferred by means of capacitor Cf at the supply voltage pin of the power stage (pin 2). When the current across the yoke changes its direction, the output of the flyback generator falls down to the main supply voltage and it is stopped by means of the saturated output darlington at a high level. At this time the flyback generator starts to supply the power amplifier output stage by a diode inside the device. The flyback generator supplies the yoke too. Later, the increasing flyback current reaches the peak value and then the flyback time is completed: the trace period restarts. The output of the power amplifier (pin 1) falls under the main supply voltage and the output of the flyback generator is driven for a low state so allowing the flyback capacitor Cf to restore the energy lost during the retrace. Pin 15 is the output of the flyback generator that, when driven, jumps from low to high condition. An external capacitor Cf transfers the jump to pin 2 (see pin 2). Blanking generator and CRT protection This circuit is a pulse shaper and its output goes high during the blanking period or for CRT protection. The input is internally driven by the clock pulse that defines the width of the blanking time when a flyback pulse has been generated. If the flyback pulse is absent (short circuit or open circuit of the yoke), the blanking output remains high so allowing the CRT protection. Pin 13 is an open collector output where the blanking pulse is available. Voltage regulator The main supply voltage Vs is lowered and regulated internally to allow the required reference voltages for all the above described blocks. Pin 14 Pin 8 is the main supply voltage input Vs (positive). is the GND pin or the negative input of Vs. Fig. 7 - Output saturation voltage to ground vs. peak output cu rrent Fig. 8 - Output saturation voltage to supply vs. output peak current Fig. 9 - Maximum allowable power dissipation vs. am· bient temperature Pto t {WI 32 28 "20 I. 7'1- O"BlO ~ 'l(1~n '% ~,,~c;..-I$. "<. I?,!~~ tJ,'8t'~ '\<-v, - 'I'~ 12 o 1.5 iyCAp) '5 1.5 561 ly(Ap) -so '0 100 Tamb(-cJ MOUNTING INSTRUCTIONS The power dissipated in the circuit must be removed by adding an external heatsink. Thanks to the MUL TIWATT® package attaching the heatsink is very simple, a screw or a compression spring (clip) being sufficient. Between the heatsink and the package it is better to insert a layer of silicon grease, to optimize the thermal contact; no electrical isolation is needed between the two surfaces. Fig. 10- Mounting example 562 LINEAR INTEGRATED CIRCUIT PRELIMINARY DATA VERTICAL DEFLECTION CIRCUIT The TDA 1770 is a monolithic integrated circuit in 20-lead plastic package. It is a full performance and very efficient vertical deflection circuit intended for direct drive of the yoke. It offers a wide range of applications in portable CTVs, BW TVs, monitors and displays. The functions incorporated are: synchronization circuit. precision oscillator and ramp generator power output amplifier fly back generator voltage regulator precision blanking pulse generator thermal shut down protection CRT screen protection circuit which blanks the beam current in the event of loss of vertical deflection current. The TDA 1770 is assembled in a new 20-lead plastic package which has 4 centre pins connected together and used for heatsinking. ABSOLUTE MAXIMUM RATINGS Vs V7 , Va V ll V 19 , V 20 35 Supply voltage at pin 2 Flyback peak voltage Sync. input voltage Power amplifier input voltage 60 Voltage at pin 1 Output current (non repetitive) at t = 2 msec Output peak current at f = 50 Hz t 10 J,1sec Output peak current at f = 50 Hz t .;;; 10 J,1sec Pin 3 peak to peak flyback current at f = 50 Hz, t f1y Pin 3 DC current at V 7 V2 Maximum power dissipation: at T Pins';;; 90°C at Tamb = 70°C Storage and junction temperature 20 { Vs -10 Vs 2 > < 2 50 rnA 2.2 1.5 msec V A A A A 1.2 .;;; V V V 4.3 W 1 -40 to 150 W °C ORDERING NUMBER: TDA 1770 MECHANICAL DATA Dimensions in mm 563 6/82 CONNECTION DIAGRAM (top view) BLANKING OUTPUT AMPliFIER INPUT(-) SUPPLY (+) AMPLIFIER INPUT(+) RAMP FLVBACK RAMP GENERATOR N.C GROUND GROUND GROUND GROUND AMPLIFIER OUTPUT 7 AMPLIFIER SUPLLY 8 HEIGHT ADJUST. N.C. OSCILLATOR OSCILLATOR OSCILLATOR OUTPUT 11 10 SYNC. INPUT s- 5265 BLOCK DIAGRAM c-------------~r---1r----~------~--------------O.vs :r BLANKING OUT LCJ-t-!=:J--l---+-I'Ol-fI- ~ ,.j", " 5- 5280 564 THERMAL DATA Rth j-pins Rth j-amb max max Thermal resistance junction-pins Thermal resistance junction-ambient 14 80 °C/W °C/W ELECTRICAL CHARACTERISTICS (Vs= 35V, Tamb = 25°C, unless otherwise specified) Parameter Test conditions DC CHARACTERISTICS 12 Pin 2 quiescent current Is Pin 8 quiescent current -117 Ramp generator bias . current 50 mA lb 18 30 mA lb 0.02 1 JJ.A la 20 21.5 JJ.A lb 0.2 1 % lb V lb la 30 17= 0 V 17= 0 Ramp generator current V 17 = 0; Ramp generator non linearity LW17= 0 to 15V -114= 20 JJ.A VI Blanking output saturation voltage 11= 10 mA 0.35 V3 Pin 3 saturation voltage to ground 13= 20 mA 1 1.3 V V7 Quiescent output voltage Vs= 35V; Rb= 1 Kn Ra= 2.2 Kn 16.8 17.8 18.6 V Vs= 15V; Ra= 390n Rb= 1 Kn 7.1 7.5 8 V -117 I t.l17 I 117 -114= 20JJ.A 18.5 la V 7L Output saturation voltage to ground 17= 0.7A 0.7 1 V lc V7H Output saturation voltage to supply -17= 0.7A 1.3 1.8 V ld V IO Oscillator virtual ground V la V14 Regulated voltage at pin 14 -114= 20 JJ.A V lb Regulated voltage drift with supply voltage L1Vs= 15 to 35V L1VI4 L1Vs VI 9 0.45 6.3 Amplifier input (+) reference voltage 7.1 mV 1 4.2 565 6.6 4.4 4.6 V-- lb V lb Fig. 1 - DC test circuit 71-_.-----, :) - 5281 Fig. lb Fig.la +Vs +Vs 1+ 17 lV-.c- I 7 10 lV 20 8V....L I S - 5283 f" I 10 S -- 528. Fig.ld Fig.lc 566 ELECTRICAL CHARACTERISTICS (Refer to the A.C. test circuit of fig. 2, Vs= 20V, f= 50 Hz, T amb = 25°C, unless otherwise specified) Test conditions Parameter AC CHARACTERISTICS Iy~ 1 App Is Supply current III S·Ync. input current V7 F Iyback voltage Iy~ Vg Peak to peak oscillator sawtooth voltage III ~ 1 App V 3.6 V III ~ 100 /LA 3.4 V tfly Flyback time Iy~ 1 App tblank Blanking pulse duration fo~ fo~ 1.85 V 0.75 msec 50 Hz 1.4 ms 60 Hz 1.17 ms 7.5 K!1 330 nF 43.5 Hz 6.2 K!1 330 nF 52.5 Hz Ro~ Free running frequency Co~ Ro~ Co~ Ill~ lit Synchronization range Tj Junction temperature for thermal shut-down /LA a Start scan level of the input ramp - mA 42 V 18th L fo 160 100 100/LA 16 Hz 145 DC Fig. 2 - AC test circuit +Y's tblank ...,-y- Jl ~12 2O,uF 1N4001 O}'-~~~~~~---'O~-+--r-r---'+--'1Jrl25 V 25~70 2.2 KIL :cpr:c BLANKING O~._~~~~~ -D?ir o ...J2 1,fJ F ,i , 'I' 'I' " ,'I SVNC.IN 11 YOKE 20mH ~~-o~~~--j12 sync 5-5285 7.5 Kil TDA 1770 l. HEIGHT 567 I I Fig. 3 - Typical application circuit for small screen 90° TVC set (Ry= 155); Ly= 30 mH; Iy= 0.82 App) 19 I! TDA1770 14 17 ~J~!5'I'R4~'* ~r- -~.ik l~F Co * lNi SERVICE SWITCH }Sl ~ • RT1 220 Kfl HEIGH1. RS }56Kfl 390 Kfl *(6 R6 :E'~F S 5286 The value depends on the characteristics of the CRT. The value shown is indicative only. Typical performance Vs Is t fly t blkg fo Ptot Rth heatsink ** Minimum supply voltage Supply current Flyback time Blanking time Free running frequency Total dissipation Thermal resistance of the heatsink for T amb = 60°C and T j max= 130°C See "Thermal considerations" . 568 25 140 0.7 1.4 43.5 2.4 V mA msec msec Hz W 8 °C/W Fig.4 - Typical application circuit for B/W TV set (Ry= 100; Ly= 20 mH; Iy= 1 App) 01 RJ BLANKING 10Kfl OUT :....-------1 3 19 7 R9 TDA 1770 SERVICE SWITCH 6 15 2.2!l 1 .J... * The value depends on the characteristics of the CRT. The value shown is indicative only. Typical performance Vs Is t f1y t b1kg fa Ptot Rth heatsink ** Minimum supply voltage Supply current Flyback time Blanking time Free running frequency Power dissipation Thermal resistance of the heatsink for T amb = 60°C and Tj max= 1300C See "Thermal considerations". 569 20 160 0.75 1.4 43.5 2.1 V mA msec msec Hz W 11 °C/W Fig. 5 - Typical application circuit for small screen (Ry= 2.9n; Ly= 6 mH; Iy= 1.1 App) 1 N40Ql R3 BLANKING lOKil OUT ::)----------~ Co • The value depends on the characteristics of the CRT. The value shown is indicative only. Typical performance Minimum supply voltage Supply current Flyback time tfly t b1kg Blanking time Free running frequency fo Ptot Power dissipation Rth heatsink * * Thermal resistance of the heatsink for T amb = 60°C and T j max= 130°C Vs Is See "Thermal considerations". 570 10.5 170 0.45 1.4 43.5 1.25 mA msec msec Hz 28 °C/W V W Fig. 6 - PC board and components layout for the application circuits of fig. 3, 4 and 5 ( 1: 1 scale) GND BLKG or vs YOKE Iy TEST s·a:C.IN GND APPLICATION INFORMATION (Refer to the block diagram) Oscillator and Sync gate (Clock generation) The oscillator is obtained by means of an integrator driven by a two threshold circuit that switches Ro high or low so allowing the charge or the discharge of Co under constant current conditions. The Sync input pulse at the Sync gate lowers the level of the upper threshold and than it controls the period duration. A clock pulse is generated. Pin 10 Pin 12 Pin 9 Pin 11 is is is is the the the the inverting input of the amplifier used as integrator. output of the switch driven by the internal clock pulse generated by the threshold circuits. output of the amplifier. input for sync pulses (positive). Ramp generator and buffer stage A current mirror, the current intensity of which can be externally adjusted, charges one capacitor producing a linear voltage ramp. The internal clock pulse stops the ramp increasing by a very fast discharge of the capacitor; a new voltage ramp is immediately allowed. The required value of the capacitance is obtained by means of the series of two capacitors, Ca and Cb, which allow the linearity control by applying a feedback between the output of the buffer and the tapping from Ca and Cb. Pin 14 Pin 17 Pin 18 The resistance between pin 7 and ground defines the current mirror current and than the height of the scanning. is the output of the current mirror that charges the series of Ca and Cb. This pin is also the input of the buffer stage. is the output of the buffer stage and it is internally coupled to the inverting input of the power amplifier through R 1. 571 APPLICATION INFORMATION (continued) Power amplifier This amplifier is a voltage-to-current power converter, the transconductance of which is externally defined by means of a negative current feedback. The output stage of the power amplifier is supplied by the main supply during the trace period, and by the flyback generator circuit during the most of the duration of the flyback time. The internal clock turns off the lower power output stage to start the flyback. The power output stage is thermally protected by sensing the junction temperature and then by putting off the current sources of the power stage. Pin 20 Pin 19 Pin 7 Pin 8 is the inverting input of the amplifier. An external network, Ra and Rb, defines the DC level across Cy so allowing a correct centering of the output voltage. The series network Rc and Cc, in conjunction with Ra and Rb, applies at the feedback input pin 20 a small part of the parabola, available across Cy, and the AC feedback voltage, taken across Rf. The external components Rc, Ra and Rd, produce the linearity correction on the output scanning current Iy and their values must be optimized for each type of CRT. is the non-inverting input. At this pin the non-inverting input reference voltage supplied by the voltage regulator can be measured. This pin is used on a quasi-bridge configuration or on portable TVS. is the output of the power amplifier and it drives the yoke by a negative slope current ramp Iy. Re and the Boucherot cell are used to stabilize the power amplifier. the supply voltage of the power output stage is forced at this pin. During the trace time the supply voltage is obtained from the main supply voltage Vs by a diode, while during the retrace time this pin is supplied from the flyback generator. Flyback generator This circuit supplies both the power amplifier output stage and the yoke during the most of the duration of the flyback time (retrace). The internal clock opens the loop of the amplifier and lets pin 1 floating so allowing the rising of the flyback. Crossing the main supply voltage at pin 2, the flyback pulse front end drives the flyback generator in such a way allowing its output to reach and overcome the main supply Voltage, starting from a low condition forced during the trace period. An integrated diode stops the rising of this output increase and voltage jump is transferred by means of capacitor Cf at the supply voltage pin of the power stage (pin 8). When the current across the yoke changes its direction, the output of the flyback generation falls down to the main supply voltage and it is stopped by means of the saturated output darlington at a high level. At this time the flyback generator starts to supply the power amplifier output stage by a diode inside the device. The flyback generator supplies the yoke too. Later, the increasing flyback current reaches the peak value and then the flyback time is completed: the trace period restarts. The output of the power amplifier (pin 7) falls under the main supply voltage and the output of the flyback generator is driven for a low state so allowing the flyback capacitor Cf to restore the energy lost during the retrace. Pin 3 is the output of the flyback generator that, when driven, jumps from low to high condition. An external capacitor Cf transfers the jump to pin 8 (see pin 8). Blanking generator and CRT protection This circuit is a pulse shaper and its output goes high during the blanking period or for CRT protection. 572 APPLICATION INFORMATION (continued) The input is internally driven by the clock pulse that defines the width of the blanking time when a flyback pulse has been generated. If the flyback pulse is absent (short circuit or open circuit of the yoke), the blanking output remains high so allowing the CRT protection. Pin 1 is an open collector output where the blanking pulse is available. Voltage regulator The main supply voltage Vs is lowered and regulated internally to allow the required reference voltages for all the above described blocks. Pin 2 is the main supply voltage input Vs (positive). Pin 5,6,15,16 are the GND pins or the negative input of Vs. THERMAL CONSIDERATIONS (a note referred to Fig. 3, 4 and 5) The shown value of case to ambient thermal resistance is the equivalent to three thermal resistances that are: R1 - Thermal resistance junction to ambient of the device. R2 - Thermal resistance of the p.c. copper side. R3 - Thermal resistance of the auxiliary heatsink. The circuit that contains these thermal resistances is shown on fig. 7 where R3 is the thermal resistance junction to pins of the device and Pd is the maximum dissipated power. Fig. 7 - Semiconductor heatsink thermal circuit. ~-5289 Since the thermal resistance R3 of the heatsink is defined from its physical and mechanical charac· teristics, it is necessary to define the required copper side on the p.C. board for the necessary R2 value. For instance, let's consider the application for the 900 yoke. It is known: It can be calculated: 130 - 60 T j max - Tamb max Rth c-amb + Rth j-Plns-: 8 + 14 3.18W Using an auxiliary heatsink of a thermal resistance R3= 20°C/W (including some losses), it can be easily calculated (see fig. 7): R2 = 94°C/W. From fig. 9, it can be found: Q;;;' 21 mm. 573 MOUNTING INSTRUCTIONS The Rth j-amb of the TDA 1770 can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board (Fig. 8) or to an external heatsink. The diagram of figure 9 shows the Rth as a function of the side "Q" of two equal square copper areas having a thickness of 35" (1.4 mils). During soldering the pins temperature must not exceed 260"C and the soldering time must not be longer than 12 seconds. The external heatsink or printed circuit copper area must be connected to electrical ground. Fig. 8 - Example of P.C. board copper area which is used as heatsink. COPPER AREA 35" THICKNESS P.C. BOARD Fig. 10- Maximum allowable power dissipation vs. ambient temperature Fig. 9 - Thermal resistance of the P .C. copper side vs. side "Q" ,-, Rt h f'tot ("C/W } 100 150 \ \t: "'>", ~> 1\ \ '\. 10 0 , "- ....... 50 10 \ ~ "'", 10 30 '- * " t::: 1- 40 .e (mm) -50 574 50 .. ~" ~<;. l:. ~. \C, /, ~~ '1'- --;... 100 TambC-C) LINEAR INTEGRATED CIRCUIT 4W AUDIO AMPLIFIER The TDA 1904 is a monolithic integrated circuit in POWERDIP package intended f6r.useas low-frequency power amplifier in a wide range of applications in portable radio and sets. Its main features are: rv High output current capability (up to 2A) Protection against chip overtemperature Low noise High supply voltage rejection Supply voltage range: 4V to 20V ABSOLUTE MAXIMUM Vs 10 10 Ptot Tstg , Tj Supply voltage' Peak output current(rontepetitive) Peak outpy,~curl%ll~t (fepetitive) Total pow(tr~i~si~ti(im at Tamb = 80°C c,cCCc,>c c Tease = 60°C Storage ancf'tunction temperature 20 2.5 2 1 6 -40 to 150 V A A W W °C ORDERING NUMBER: TDA 1904 Dimensions in mm MECHANICAL DATA 575 6/82 CONNECTION DIAGRAM (top view) '-' OUTPUT 16 GNO 15 GND BOOTSTRAP 3 14 GND N.C 4 13 GND 12 ~GND 11 ~GND 15 I N.t INVERT. IN 6 10~GND SVR 9 ~GND 5-5291 SCHEMATIC DIAGRAM 22ea1 R1I e R3 )26'11 Q1 ~~ 0 ~ ./012 ~ 013 1OO.n '"ii5 kC12 - R7 100'11 R6 ......04 os,/" r2llnA RI iml. *C1 AI D1 to : !::50pF' R4 6'11 "'07 " ~03 K~ D2 7 05 • AI D6 0;"" OS ~ Q1Q ........014 ...... --<09 06>- R2 03 ~ RIO , S_S293 THERMAL DATA Rth j-case Rth j-amb Thermal resistance junction-pins Thermal resistance junction-ambient max max 576 15 70 , I oil TEST CIRCUIT (*) R4 is necessary only for V s < 6V. ELECTRICAL CHARACTERISTICS (refer to the test circuit, Gv= 40 dB, RL = 4n, Tamb = 25°C unless otherwise specified) Parameter Test conditions Vs Supply voltage Id Quiescent drain current V= s 9V Vs= 14V Po Output power d = 10% Vs= 9V Vs= 12V Vs= 6V d Ri Distortion B Frequency response Voltage gain (open loop) Gv Voltage gain (closed loop) eN Total input noise voltage Typ. 4 Max. 20 Unit V 16 19 mA mA 2 3.5 0.8 W W W 0.1 % f = 1 KHz f = 1 KHz Vs=9V Po= 50 mW to 1.2W Vs= 14V Po= 50 mW to 2W I nput resistance (pin 8) Gv Min. 0.1 % 150 Kn 40 to 40 000 Hz 80 dB 40 dB Rg= 10 Kn; B= 22Hz to 22KHz 3 Rg= 10 Kn; B = curve A 2 J.lV 11 Efficiency V= 9V s Vs= 12V Po= 2W Po= 3.5W SVR Supply voltage rejection Vs= 12V fripple= 100 Hz Rg= 10 Kn 577 4 70 65 % 50 dB Fig. 1 - Application circuit >-'-+_____~C-17 100 !l R2 Fig. 2 - P.C. board and components layout of fig. 1 (1:1 scale) C5-0163 578 1000I-lF LINEAR INTEGRATED CIRCUIT 5W AUDIO AMPLIFIER WITH MUTING The TDA 1905 is a monolithic integrated circuit in POWERDIP package, intended for use as low frequency power amplifier in a wide range of applications in radio and TV sets. Its main features are: muting facility protection against chip over temperature very low noise high supply voltage rejection low "switch-on" noise voltage range 4 V to 30V The TDA 1905 is assembled in a new plastic package, the POWERDIP, that offers the same assembly ease, space and cost saving of a normal dual in-line package but with a power dissipation of up to 6W and a thermal resistance of 15 D C/W (junction to pins). ABSOLUTE MAXIMUM RATINGS Supply voltage Output peak current (non repetitive) Output peak current (repetitive) Input voltage Differential input voltage Muting thresold voltage Power dissipation at Tamb = 80 D C Tcase = 60D C Storage and junction temperature ORDERING NUMBER: 30 3 2.5 o to + Vs ±7 Vs 1 6 -40 to 150 V A A V V V W W DC TDA 1905 MECHANICAL DATA Dimensions in mm 579 6/82 CONNECTION DIAGRAM (Top view) --.::.J OUTPUT 16 GND Vs 15 GND BOOTSTRAP 14 GND 13 000 MUTING 12 GND INVERT. IN 11 GND SVR 10 GND THRESHOLD 4 NON INVERT'I 8 INPUT GND 5-2913 SCHEMATIC DIAGRAM I L~~ k MUTING ~~ R3 ~ Rll § 0./012 013 l00kil 02 Rl 01 9 ~ ~ 26kfi 300nl R6 R5 R4 ~~ lQOkfl R7 R, ---{) 200KA 10Kfi+ 03 ~OB Cl "'07 6kn ~" 06>- R2 6 Kn 02 RB OS 06 ;{; ~ ;~,"" T RIO 5-361;712 4 ( 7 5 • to 16 6 " 6 THERMAL DATA RthJ-case RthJ-amb max max Thermal resistance junction-pins Thermal resistance junction-amb 580 15 °C/W 70 °C/W TEST CIRCUIT • c_ _ ..... - . . -4055/2_ MUTING CIRCUIT Vi 1 'Vr (Muting) 581 ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Tamb 25°C, Rth (heatsink) 20°C/W, unless otherwise specified) Vs Vo Qu iescent output vol tage Min. Test conditions Parameter Supply voltage ~ 4V Vs~14V ~ 30V Vs 1.6 6.7 14.4 Vs Id V CE sat Po Quiescent drain current Output stage saturation voltage Output power Vs ~ 4V V s ~ 14V Vs ~ 30V Harmonic distortion Max. Unit 30 V 2.1 7.2 15.5 2.5 7.8 16.8 V 15 17 21 35 Ic ~ lA 0.5 Ic ~ 2A 1 mA V d ~ 10% Vs ~ 9V Vs~14V f ~ 1 KHz RL ~ 4[1 (-) RL ~ 4[1 Vs~18V RL~8[1 Vs d Typ. 4 ~ 24V f ~ 1 KHz Vs ~ 9V P0 RL ~ 2.2 5 5 4.5 16[1 2.5 5.5 5.5 5.3 W RL~4[1 ~ 50 mW to 1 .5W RL ~ 4[1 P0 ~ 50 mW to 3W 0.1 Vs~14V Vs~18V Vs Vi I nput sensitivity ~ f ~ 1 KHz Vs ~ 9V Vs ~ 14V Vs~18V Vs ~ 24V V ~ RL ~ 4[1 Po Po Po 16[1 Po RL~4[1 RL~8[1 RL ~ 0.1 ~ ~ ~ ~ 2.5W 5.5W 5.5W 5.3W 9V 37 49 100 Vs ~ 24V I nput resistance (pin 8) f 1 KHz 60 Id Drain current f ~ 1 KHz Vs ~9V Vs~18V Vs~14V RL RL Vs~18V RL~8[1 ~ ~ ~ RL ~ Po Po Po 16[1 Po RL RL RL RL ~ 4[1 4[1 Vs 1] Efficiency ~ 24V f ~ 1 KHz Vs ~ 9V Vs~14V Vs~18V ~ 24V Vs ~ ~ 4[1 4[1 Po Po ~8[1 Po ~ 16[1 Po ~ (-) With an external resistor of 100[1 between pin 3 and +V s' 582 mV 73 Ri V:~14V ~ % 0.1 0.8 1.3 1.8 2.4 Vi Input saturation voltage (rms) 0.1 RL~8[1 P0 ~ 50 mW to 3W 24V RL ~ 16[1 P0 ~ 50 mW to 3W V 100 ~ 2.5W 5.5W 5.5W 5.3W 380 550 410 295 ~ ~ ~ ~ 2.5W 5.5W 5.5W 5.3W 73 71 74 75 K[1 mA % ELECTRICAL CHARACTERISTICS (continued) Test conditions Parameter BW Small signal bandwidth (-3dB) Vs = 14V Gv Voitage gain (open loop) Vs=14V f = 1 KHz Gv Voltage gain (closed loop) Vs=14V f = 1 KHz eN Total input noise SIN Supply voltage rejection Thermal shut-down Tsd case temperatu re MUTING FUNCTION Min. Po = 1W RL = 4n Po = 1W 39.5 Rg = 50n Rg = 1 Kn R g =10Kn (0 ) Rg = 50n Rg = 1 Kn R g =10Kn (00 ) Vs=14V R g =10Kn Po = 5.5W Rg = 0 R L = 4n Rg = 10Kn Rg = 0 Signal to noise ratio SVR RL = 4n Vs=18V RL = 8n f ripple = 100 Hz V ripple = 0.5Vrms Max. Hz 75 dB 40 40.5 1.2 1.3 1.5 4.0 2.0 2.0 2.2 6.0 dB p.V p.V 90 92 dB (00 ) 87 87 dB 50 dB 115 °C R g =10KH 40 (Refer to Muting circuit) V TOFF Muting-off threshold voltage (pin 4) 1.9 4.7 V TON Muting-on threshold voltage (pin 4) 0 1.3 6.2 Vs R5 I nput resistance (pin 5) R4 I nput resistance (pin 4) AT Muting attenuation Muting off 80 Rg+ Rl = 10Kn 10 to 22 KHz. 583 50 Kn 200 30 n Kn 150 Note: Weighting filter = curve A. Filter with noise bandwidth: 22 Hz See fig. 30 and fig. 31 V V Muting on (0) (00) (*) Unit (0 ) Ptot = 2.5W (*) Typ. 40 to 40,000 60 dB Fig. 1 - Quiescent output voltage vs. supply voltage Fig. 2 - Quiescent drain current vs. supply voltage Vo Fig. 3 - Output power vs. supply voltage P"r-r-'-,,-,,-,-,--,-.,-r-r-,-,, (V) (WI hIKH:;t f-t- '.10'. H-++++-H--++-H n H-+++.f-,H+-+ 20 u"' _. ... =t~ " H-+++-,· J++-H-+++f.-H II' I 12 16 20 24 12 Fig. 4 - Distortion vs. output power (R L = 16n) • (-"':I==l== 16 20 16 Fig. 5 - Distortion vs. output power (R L = an) 20 24 Fig. 6 - Distortion vs. output power (R L = 4n) ("2,: :-- .. -E V s .. 9'1 ·r------nrL=~n 2 I---- J (J.' I) OJ f .. IKH J 0.' 11 RL~I6n. f slKHz 0.0' .. .' OD' , d ("t.J \Is ~24V r-... (J., R L;16Jl. ·· , ,W / · _50mW Q, , 0.0, '0 ...10' , ... '0' . ...'0' , , 0.0 t(Hz) .Pc,IWI 0' Fig. a - Distortion vs. frequency (R L = an) Fig. 7 - Distortion vs. frequency (R L = 16n) .. 0.0' (J., %(wI Fig. 9 - Distortion vs. frequency (R L = 4Q) IIIIIII V5 ;18Y ...... RI:S.a. l7'w I$r 50mW Q',-SOmW ...'0' , ...10' . ...'0' 5a4 z • •• f(HzI oo,L-~~1¥L~4.~.~.L-~,~.~ ••~+y.~.~. 10 102 tO J 104 11Hz} Fig. 10 - Open loop frequency response G, Fig. 11 - Output power vs. input voltage Fig. 12 - Value of capacitor ex vs. bandwidth (BW) and gain (Gv) c, r--'~~~~TC~~~~~~ (nF) (dBl "BW~5KHz '0 1".." 1$ "0<,yo> -try ~ "",- "'"- ~ "' "\. 20 f---Tttitllr--H+H1+ \ lO~ 10' I(Hz) Vi (mV) Fig. 14 - Supply voltage rejection vs: source resistance Fig. 13 - Supply voltage rejection vs. voltage gain (ref. to the Muting circuit) "R 5" ,~-,---,--r--~--~-'---, (dB) eo (dB) r--- -+--,~~-- 60 1--- '10\ I!! I ,- I , r-- 20 t--~ II lilt 50 G v (d8) 10 Fig. 16 - Power dissipation and efficiency vs. output power Plot (W ) ("I.) f elKHz ~ot ,w, Gv,"'OdE 60 1.5 "n --h - '0 I 05 ii ~H- f-"I rr(8nJ ~~~!:~l H7f'''''='''-'i''-t.-l''+-H-++-1 I 16 Rg (Knl 20 24 'Is (v) Fig. 18 - Power dissipation and efficiency vs. output power 1 ('/.) 'tot ,W, 7<) ,.,., ~ "S·24V f ~IKHz y 70 Gv~ Gv,l,OdB 40d R L ;16ll. 60 3,0 60 2.5 H-I-+-.....~::-t+++-H-I-+-H so ,. 50 2.0 Hf-f--Y-H '0 2.0 '5 I-lilL~~-.L+-t--+-L..L+-H-+++-H 30 '.5 30 fH!i'++-P'H~tot {'6°Hrl-+++-H '.0 IIH-+++-H~-,++-H-++-H 20 '.0 20 0.5 05 10 20 to 8 i . -r H-,-,-¥-H7r'+++-H-I-+-H 30 0.5 J-~~~ --'~---I---'~ t en 3.0 70 30 _ I 2.0 Fig. 17 - Power dissipation and efficiency vs. output power '----,---,--r-_---,_" Vs~'~V - . i I 2.5 I I 20 ~-~~ RL~"n I I H-~'~f+i~ +_-+------+-- i :- I- ,WI II Gv(dB) Fig. 15 - Max power dissipation vs. supply voltage (sine wave operation) r-ti~ ~:~:~:'IOO~! 60 50 20 Po(W) 585 so " Plot to ~ (W) 60 Po (W) APPLICATION INFORMATION Fig. 19 - Application circuit without muting Fig. 20 - PC board and components lay-out of the circuit of fig. 19 (1:1 scale) 1000,!.JF °16v R3 lD lOon (-I R2 R4 is necessary only for Vs < 10V. Po = 5.5W (d = 10%) Vs=14V Id = 0.55A Gv = 40 dB C5-0129'1 Fig. 21 - Application circuit with muting Fig. 22 - Delayed muting circuit 586 APPLICATION INFORMATION (continued) Fig. 24 - Output power vs. supply voltage (circuit of fig. 23) Fig. 23 - Low-cost application circuit without bootstrap. "s '0 IW) I0 1uF " Fig. 25 - Two position DC tone control using change of pin 5 resistance (muting function) I'll lOOka Fig. 26 - Frequency response of the circuit of fig. 25 " " flIIJ~~~i~~f~~ '0 b IdB) 50 ," ~ ..... ',~- G, 10 kfi 1£1. R7 012j.JF ca Fig. 27 - Bass Bomb tone control using change of pin 5 resistance (muting function) ---~--I-r--------{)·vs C'I0 20 Vs(V) ~!!lIl.ll!lIl~l!II'FL~rlllll Fig. 28 - Frequency response of the circuit of fig. 27 Gv (dB) 1/JF 50 48 l000,uF BOOST 46 ca 1'14 RG 10Hl lJl " FLAT 40 loon 38 " '0 587 '0' '0' )0' t(Hz) MUTING FUNCTION The output signal can be inhibited applying'a DC voltage VT to pin 4, as shown in fig. 29 Fig. 29 VOUT Vs/2 The input resistance at pin 5 depends on the threshold voltage V T at pin 4 and is typically: Rs =200 Ku @ 1.9V < VT < 4.7V muting-off Rs = lOu @ OV - R2 12 ~ ./ 07 ~03 'Y @ 012 ==Cl Rl @ "",014 10 RIO 5- 4044 7 8 6 593 9 TEST CIRCUIT • See fig. 12. THERMAL DATA Rth j-tab Rth j-amb TDA 1908 TDA 1980A 25°C, Rth (heatsink)= max max Thermal resistance junction-tab· Thermal resistance junction-amb (0) Obtained with tabs soldered to printed circuit board with min copper area. ELECTRICAL CHARACTERISTICS 8 °C/W, (Refer to the test circuit, T amb = unless otherwise specified) Max. Unit 30 V 2.1 9.2 15.5 2.5 10.2 16.8 V Vs =4V Vs=18V Vs = 30V 15 17.5 21 35 Ic= lA 0.5 Ic= 2.5A 1.3 Test condition Parameter Vs Supply voltage Va Quiescent output voltage Id Quiescent drain current V CEsat Po Output stage saturation voltage (each output transistor) Output power Min. Typ. 4 1.6 8.2 14.4 Vs =4V Vs=18V Vs = 30V mA V f = 1 KHz d = 10% R L = 40Vs= 9V R L = 40Vs=14V R L = 40. Vs=18V R L = 80. Vs = 22V R L = 160. Vs = 24V 594 2.5 5.5 7 9 6.5 4.5 8 5.3 W ELECTRICAL CHARACTERISTICS (continued) Test condition Parameter f ~ 1 KHz Vs ~ 9V P0 Harmonic distortion d Min. RL~ 4S"! 50 mW to 1.5W RL~ 4S"! P0 ~ 50 mW to 4W 24V RL~ 16S"! Po~ 50 mW to 3W ~ • Typ. Max Unit 0.1 Vs~1SV V5 V I nput sensitivity Vi 9V RL~ 4S"! Po~ Po~ Vs=1SV Vs ~ 22V V 5 ~ 24V RL~ 4S"! SS"! Po~ RL~16S"! Po~ ~ V:~14V R L = 4S"! RL~ 0.1 2.5W 5.5W 9W 37 52 64 90 110 Po~SW 5.3W ~ 24V Ri I nput resistance (pin S) f ~ 1 KHz Is Drain current f ~ 1 KHz Efficiency 1) mA 1 KHz Po~ 9W 72 % Po~ 40 to 40 000 Hz 75 dB Po~ ~ f Vs~18V BW Small signal bandwidth (-3 dB) Vs=1SV Gv Voltage gain (open loop) f Gv Voltage gain (closed loop) Vs~18V f Total input noise 570 730 500 310 Po~ RL~ 411 RL~ 4S"! 22V RL ~ SS"! 24V RL~ 16S"! RL~ eN KS"! Vs~1SV ~ ~ ~ ~ 4S"! Po~ Po~ 4S"! RL~ 5.5W 9W 8W 5.3W 1W 1 KHz 1 KHz (0 ) (00 ) RL~ Po~ Rg Rg Rg ~ Rg Rg ~ 4S"! 1W ~ ~ ~ 39.5 40 40.5 50S"! 1 KS"! 10 KS"! 1.2 1.3 1.5 4.0 50S"! 1KS"! 2.0 2.0 2.2 6.0 Rg~10Ks"! SIN Signal to noise ratio Vs~18V Rg~ P0 ~ 9W RL ~ 4S"! Rg~ Rg~ SVR Supply voltage rejection Vs~1SV Tsd Thermal shut-down case temperature (0) (0 ) 10KS"! 1° 0 0 RL~ 4S"! Rg~ Ptot~ (* ) ) 40 10KS"! 4W - Note: (00) (*) 10KS"! 0 Rg~ f ripple~ 100 Hz Weighting filter ~ curve A. Filter with noise bandwidth· 22 Hz to 22 KHz. See fig. 24 and fig. 25. 595 V 100 60 Vs~14V V5 V5 mV 0.8 1.3 1.S 2.4 Vs~18V Vs % 0.1 V 5 ~ 9V V 5 ~ 14V Input saturation voltage (rms) Vi ~ dB J1.V J1.V 92 94 dB S8 90 dB 50 dB 110 °C Fig. 1 - Quiescent output voltage vs. supply voltage G-4216 v, (V) Fig. 2 - Quiescent dra'in current vs. supply voltage G_1,277 I. +- (rnA) , 10 "t- " "I" U h- 16 - F r 24 16 20 Fig. 4 - Distortion vs. output power (R L = 16n) • (O,.J: I" P, r--'--~r--,---,---~-P~, (W) 9 J....l 20 -+17 Fig. 3 - Output power vs. supply voltage ,;'6 '''S9V - 20 'is (V) 24 6 Fig. 5 - Distortion vs. output power (R L = 8n) 9 12 15 18 21 24 ,"s(V) Fig. 6 - Distortion vs. output power (R L = 4n) G-HSO (~ fi-" 1 11 ' IIi 0.1 . il 22V I ' C--" . 0.1 , , 0.01 ~(W) 01 >BV Vs:9V ! f ,,1KHz 0.1 R L ~\6.n f .IKHz 0"' '~~Jl 'I 0.1 Fig. 7 - Distortion vs. frequency (R L = 16n) . i 0.1 Po (W) Fig. 9 - Distortion vs. frequency (R L = 4n) Fig. 8 - Distortion vs. frequency (R L = 8n) .. tJ .11 0.01 Po(W) ) ,;: (OM 'I'l1 3W. - '0'5. 24 '0' ,- . 'J-tt L,I6V R I :f=fl (l()1 'W 10 t ," 1:1--1 10' II '7 ii. 01 I I 1 ~ 50mW fir ,lW· 10 4 I(Hz) , I no, ,0 ." 10' iT p- ""S·IBV RL,a.Q 3W 50mW ""5. 14 "" 3W R L,4 50mW 0' '" 10' 596 ," no, 10' I(Hz) '0 ,0' '" , ~, ... 10' f(Hz) G, Fig. 12 - Values of capacitor versus gain and Bw Fig. 11 - Output power vs. input voltage Fig. 10 - Open loop frequency response ex C, ,,-cmr~~r-~~~~m-~~ (nfJ (dB) -t,y ," ~BW'5t(Hz '0 /s <'01"Z..y~ -?' ., 60 10 ,,' la' la' )0' 20 !(Hz) Fig. 13 - Supply voltage rejection vs. voltage gain Fig. 14 - Supply voltage rejection vs. source resistance i I I! II I ('---I! I II ~S,:':~ !~t; I I ! I! f r iPplEhl00Hz \ I! i I i II I' Fig. 16 - Power dissipation and efficiency vs. output power (Vs= 14V) j I Fig. 15 - Max power dissipation vs. supply voltage Plot 'WI ~ I 1'1 11 ~ I I 0.5 " Rg (KIU Fig. 17 - Power dissipation and efficiency vs. output power (Vs= 18V) (WI 80 " 21 " vs(V) HY"f:~;,~'":Y",t+f-_t~+_+f-71-"J..-rl'-+ ++-1 ::::~-f--Hft+++-f-t++H 35 ~~) 60 so 30 60 2.5 50 25 " 1.5 30 IS Fig. 18 - Power dissipation and efficiency vs. output power (Vs= 24V) ~~~ Plot 40 30 I 'j 10 j\. I I I I • 2.0 1'- '\ ~ 60 H++~··++ffiljir--c-l'"~-+l+'IIII--++;ljj!j 40 30 20 1.0 20 05 " • 0.5 ~ (W) 597 APPLICATION INFORMATION Fig. 19 - Application circuit with bootstrap • R4 is necessary when V s is less than 1 OV. Fig. 20 - P.C. board and component lay-out of the circuit of fig. 19 (1: 1 scale) Vs GND G GND CS-0128'1 598 APPLICATION INFORMATION (continued) Fig. 22 - Output power vs. supply voltage (circuit of fig. 21) Fig. 21 - Application circuit without bootstrap ,;,1 ~--~--~~-- I /" I 1KHz "'-""l' RL="n I d,'O·'. I~ ~~ [-~T 24 Fig. 23 - Position control for car headlights , ~O.lAJF I..... -------c::J----100 11 ~lu ~ 1 M-ll~~~--+' MANUAL SETTING ,-------c:J---i I I ! I-T--~---L l8'4 -------~ ~-~- 599 lsJ Vs(V) APPLICATION SUGGESTION The recommended values of the external components are those shown on the application circuit of fig. 19. When the supply voltage V5 is less than 10V, a 100n resistor must be connected between pin 1 and pin 4 in order to obtain the maximum output power. Different values can be used. The following table can help the designer. Component Raccom. value Purpose Larger than raccomanded value Smaller than raccomanded value Allowed range Min. Max. RI 10Kn Close loop gain setting. Increase of gain. Decrease of gain. Increase qu iescent current. R2 lOon Close loop gain setting. Decrease of gain. Increase of gain. R3 1n Frequency stability Danger of oscillation at high frequencies with inductive loads. R4 100n Increasing of output swing with low V s' CI 2.21'F Input DC decoupling. C2 O.lI'F Supply voltage bypass. C3 2.21'F Inverting input DC decoupling. Increase of the switch-on noise Higher low frequency cutoff. O.lI'F C4 10l'F Ripple Rejection. Increase of SVR. Increase of the switch-on time. Degradation of SVR. 2.21'F 100 l'F Cs 471'F Bootstrap Increase of the distortion at low frequency 10l'F 100l'F C6 0.221'F Frequency stability. Danger of oscillation. C7 1000l'F Output DC decoupling. Higher low frequency cutoff. 9 R2 R l /9 47n Lower noise Higher low frequency cutoff. Higher no ise. 330n O.lI'F Danger of oscillations. 600 THERMAL SHUT-DOWN The presence of a thermal limiting circuit offers the following advantages: 1) An overload on the output (even if it is permanent). or an above limit ambient temperature can be easily supported since the Tj cannot be higher than 150°C. 2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature. If, for any reason" the junction temperature increases up to 150°C, the thermal shut-down simply reduces the power dissipation and the current consumption. The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 26 shows this dissipable power as a function of ambient temperature for different thermal resistance. Fig. 24 - Output power and drain current vs. case tem· perature Fig. 25 - Output power and drain current vs. case temperature Fig. 26 - Maximum power dissipation vs. ambient tem· perature MOUNTING INSTRUCTIONS The thermal power dissipated in the circuit may be removed by connecting the tabs to an external heatsink (TDA 1908A see fig. 27), or by soldering them to a copper area on the PC board (TDA 1908 see fig. 28). During soldering, tab temperature must not exceed 260°C and the soldering time must not be longer than 12 seconds. Fig. 27 ALUMINIUM J5rrm THICKNES-? 601 MOUNTING INSTRUCTIONS (continued) Fig. 28 -- Mounting example (TDA 1908) Fig. 29 -- Maximum power dissipation and thermal resistance vs. side "Q" (TDA 1908) _+ 0952 G COPPER AREA 35}.l THICKNESS h- 'I. L_~_. Rlh __ .~ Rt J-am N.. 40 I + Ptot(Tamb~ 55 'C) r= ..H-p\Q\ (Tarnb " 70'C l 20 P. C BOARD 602 30 40 10 l(mm) LINEAR INTEGRATED CIRCUIT lOW AUDIO AMPLIFIER WITH MUTING The TDA 1910 is a monolithic integrated circuit in MULTIWATT@package,intendedforusein Hi-Fi audio power applications, as high quality TV sets. The TDA 1910 meets the DIN 45500 (d = 0.5%) guaranteed output power of 10W when used at 24V/ 4n. At 24V/8n the output power is 7W min. Features: muting facility protection against chip over temperature very low noise high supply voltage rejection low "switch-on" noise. The TDA 1910 is assembled in MU LTIWA TT@ package that offers: easy assembly simple heatsink space and cost saving high reliability. ABSOLUTE MAXIMUM RATINGS Vs 10 10 Vi Vi Vl l Ptot T stg , T j Supply voltage Output peak current (non repetitive) Output peak current (repetitive) Input voltage Differential input voltage Muting thresold voltage Power dissipation at T case = 900 e Storage and junction temperature o to 30 3.5 3.0 + Vs ±7 Vs 20 -AO to 150 V A A V V V W °e ORDERING NUMBER: TDA 1910 MECHANICAL DATA Dimensions in mm 603 6/82 CONNECTION DIAGRAM (Top view) r====::o r====::o THRESHOLD BOOTSTRAP -V5 OUTPUT GNu I~~~~GNO INPUT- Ne o SVR INPUTMUTING 5-3655 tab connected to pin 6 SCHEMATIC DIAGRAM 10 300nj RI1 ~" k MUTING -,....- D1 ~ R3 ~ (J 26kfi f~ 9 f~ 0 ::: 012 a2 ., IOOkil l00kfi R5 R6 ~ "",a4 a13 a/o .7 R9 2~Jl 1o'K1L :::/CI ~ R4 6kfi >--f( a3 ~" Q6)-6 R2 KJl 02 R8 8 03 H' . os D6 a,0 a8 ~ Va'4 7 J.w 5-3647/1 11 I 3 5 2 604 6 TEST CIRCUIT .Vs I 3.3 R r1820 k.tl xl I n ," ("J ~:f:~Cx L -_ _ _.,......, _ - - -.... - - - - 1 C4 100n R2 (*) See fig. 13. 5-364811 MUTING CIRCUIT .Vs 1 C5 .VT (Muting) 605 RL THERMAL DATA Rlh Thermal resistance junction-case max 3 j-c .~----------------------------------------~----------------- ELECTRICAL CHARACTERISTICS (Refer to the test circuit, T amb = 25°C, Rlh (heatsink) 4°C/W, unless otherwise specified) Test condition Parameter r-' Vs Supp Iy vo Ilage Va Quiescent output voltage Id Quiescent drain current Min. 8 Vs Vs ~ ~ 18V 24V 8.3 11.5 Vs~18V Vs ~ Ic~ VCE sal Output stage saturation voltage 24V 2A Output power d = 0.5% d ~ ~ ~ f ~ 24V 24V 10% Vs~18V V s = 24V Vs ~ 24V d d Vi I nput sensitivity RL~4n RL~4n I I 9.2 12.4 10 13.4 19 21 32 35 V mA V RL~ 8n f = 1 KHz R L =4n RL~ 4n RL~ 8n 7 12 7.5 W 8.5 15 9.5 17 10 W 9 1 KHz 18V RL~4n Po~ 7W Vs ~ 24V R L = 4n p 0 ~ 12W Vs = 24V RL~ 8n Po~ 7.5W f V 6.5 10 7 Vs = 24V R L =4n Po= 10W f2= 8 KHz fl = 250 Hz (DIN 45500) Intermodulation distortion 30 40 to 15,000Hz f = 40 to 15.000 Hz RL~4n Vs=18V P0= 50 mW to 6.5W RL~4n Vs= 24V Po~ 50 mW to 10W Vs ~ 24V RL~ 8n Po= 50 mW to 7W Harmonic distortion Unit 1.6 Vs~18V Vs Vs Max. 1 Ic= 3A Po Typ. 0.2 0.5 0.2 0.5 0.2 0.5 % 0.2 % 170 220 245 mV ~ Vs~ Vi Input saturation voltage (rms) Vs=18V Vs ~ 24V 1.8 2.4 Ri Input resistance (pin 5) f = 1 KHz 60 Id Drain current Vs ~ f = 1 KHz 24V p 0 ~ 12W R L =4n R L = 8n Po= 7.5W 606 V 100 820 475 Kn I I mA ELECTRICAL CHARACTERISTICS (continued) Test condition Parameter Efficiency 1) R L =4n BW Small signal bandwidth Vs = 24V BW Power bandwidth Vs=24V Po = 12W Gv Voltage gain (open loop) f = 1 KHz Gv Voltage gain (closed loop) Vs = 24V f = 1 KHz eN Total input noise SIN Signal to noise ratio SVR Supply voltage rejection Tsd Thermal shut-down case temperature Min. f = 1 KHz Vs = 24V R L =4n Po= 12W R L =8n Po= 7.5W Vs = 24V Po = 12W R L =4n Po= 1W R L =4n d" 0.5% R L =4n Po= 1W Max. Unit 62 65 % 10 to 120,000 Hz 40 to 15,000 Hz 75 dB 30 30.5 dB Rg = 50n Rg = 1Kn (0) Rg = 10Kn 1.2 1.3 1.5 3.0 3.2 4.0 /lV Rg = 50n Rg = 1Kn (00) Rg = 10Kn 2.0 2.0 2.2 5.0 5.2 6.0 /lV Rg = 10Kn (0) Rg = 0 97 103 105 dB R g =10Kn (00) Rg = 0 93 100 100 dB 50 60 dB 110 125 °C R L =4n Vs = 24V Rg= 10Kn friPPle= 100 Hz Ptot = 8W (*) 29.5 Typ. MUTING FUNCTION (Refer to Muting circuit) VT Muting-off threshold voltage (pin 11) 1.9 4.7 VT Muting-on threshold voltage (pin 111 0 1.3 6 Vs Rl V I nput resistance (pin 1) Muting off 80 Muting on Rll Input resistance (pin 11) AT Muting attenuation (*) 200 10 150 R g +R 1 =10Kn Nota: (0) (00) V Weighting filter = l'urve A. Filter with noise bandwidth: 22 Hz to 22 KHz. See fig. 29 and fig. 30. 607 50 Kn 30 n Kn 60 dB Yo G_3682 P" (V) 14~~~-t-+~4-+-i-+~+-~~ Fig. 3 -Open loop frequency response Fig. 2 - Quiescent drain current vs. supply volta g:_"" Fig. 1 - Quiescent output voltage vs. supply voltage (m~H-+-j-H-+++-~~+-~- --+-------l----__+v",s_;,_,_v-t-_-i _--I---+ (d'!:) +-- --100 I==::j-80. L______ ---'-- - ''60 12~+H+ 40. '0.-cL-_~ 12 16 20 24 12 Vs (V) G_J6a3 Po 20 24 lis (II) Fig. 5 - Output power vs . supply voltage . Fig. 4 - Output power vs. supply voltage (W )1---- 1= 40Hz 16 10 10.' _ _ L _ _L__~_~ 10.' 10' Fig. 6 Distortion output power vs. G_36a4 "0 to 15KHz (W ) d=O.5°'. 4r-- 16 f=lKHz d,,10% -- RL=4n RL=4n./ 12 8 / V ./'" /' ",- ~ 0. 8 .- V /' RL :8n / , V ./ 16 20. / ---- ---- /' ",.- Rl ,,8n ",.- f:::=: I-- 0. 12 / 24 Fig. 7 Distortion output power 8 Vs (V) vs. V 12 ./ ./ 16 24 20. Vs (V) Fig. 8 - Output power vs. frequency G 3701 Ii> (W ) s·'·V R L=4n 10. fl,(W) Fig. 9 - Output power vs. frequency 'm!eE~m!e~'~S~"~4!V~ ($) ~ RL =8n d=0,2·J. 10. _m·,. I IT' d=O.10J0 d.Q.,·,. d=Q2'/. , 10.- I' 254063 ~2S4063 I I I' 16254063 1625410163 10 3 608 10~ f (Hz) Fig. 10 - Output power vs. input voltage Fig. 11 - Output power vs. input voltage Fig. 12 - Total input noise vs. source resistance G 3699 '" :~ (W) 10 Vs=24V Gv = 30dB . : / RL=4J1 RL,-sn R L_'6f '/ ! r-t 10- . ex I I [ 10 10' 10 Fig. 13 - Values of capacitor ex vs. bandwidth (BW) and gain (G v ) 6_3696 30 50 100 Vi (mY) Fig. 15 - Supply voltage rejection vs. source resitance Fig. 14 - Supply voltage rejection vs. voltage gain G 3696 (dB) , .t'-.. 10 z -- "., Vs:24V 80 R ~ ........ 60 ."":\ I, 0- Bw =5KHz 10KHz = Vs=24V Rl =4J1 80 LL i - frippl€, =l00Hz 60 ~~ 2~FI I"'-- ~ R I"'-- -c--- r--- r--- f r ipple:100Hz RL=4n Rg =()KJ1 63697 , SVR (dB ) SVR (nF ) 10.u F C3 r--- 40 5~F 2~F 20 20 15KHz 30KHz , 20 30 40 o 50 Gv(dB) Fig. 16 - Power dissipation and efficiency vs. output power '1 ( "I.) /'1 60 IV 1/ ---- -- 40 4 I ~ . / r-rt 1/ / 6_3675 80 6 I ./ ) 10 V I/R Lo4n 40 / 'lot 20 " 2 I 20 o 12 Rg (0) Fig. 18 - Max power dissipation vs. supply voltage ( ,/ 6 10' , Vs=24V (W) - t=lKHz 80 / A"'- ~o t Rl=4Il Rl =SJ1 10' 50 Gv(dB) Fig. 17 - Power dissipation and efficiency vs. output power ,- G_3731 Vs=24V ~ot (W )1--- t=IKHz 40 30 I i o 20 10 16 Fb(W) 12 609 16 Fb (W) o L V i:::::: V V RL° 8n ./ 16 24 APPLICATION INFORMATION Fig. 19 - Application circuit without muting Fig. 20 - PC board and component lay-out of the circuit of fig. 19 (1: 1 scale) . nOO,uF C7 16v R3 ID O.22,uF lOOil R2 C6 Fig. 21 - Application circuit with muting Performance (circuits of fig. 19 and 21) Po = Vs Id = Gv = 12W (40 to 15000 Hz, d ";;;0.5%) = 24V Rg R2 .v, Muting 610 0.82A 30 dB APPLICATION INFORMATION (continued) Fig. 22 - Two position DC tone control (10 dB boost 50 Hz and 20 KHz) using change of pin 1 resistance (muting function) Fig. 23 - Frequency response of the circuit of fig. 22 G.3679 r-----~p---.,....--------oVs::.+2"V R, lQOkIl 01,uF Flat R2 I ~. C5 12karOOS' I!! i -t 2 --I -~ B r-----~p---.,....-------_ovs= Rl l00kll Flat C4 't, 1 'I to' 10 Fig. 24 - 10 dB 50 Hz boost tone control using change of pin resistance (muting function) BOOST I I Ii I' , j II :\- ", 0 i J Bh I ! il,! I r- 11'" 6 34 ii ii i 2 ',~ ' I ~I, -f FLAT i III 1I1I 10' 10' f(Hz) Fig. 25 - Frequency response of the circuit of fig. 24 ·24V G~l"6 IO.1,uF I ) , I 42 , 40 38 36 2200,uF C8 C2 34 16V l\a005 I '/ , 32 <- R6 30 la R3 2B - RL=411 10 O.22,uF C7 Fig. 26 - Squelch function in TV applications , ~ If , FLAT i , I 10' I 10' 1()' Fig. 27 - Delayed muting circuit r---~----------OV5='24V Rl l00kfl. 2200,uF '6' 611 t(Hz) MUTING FUNCTION The output signal can be inhibited applying a DC voltage V T to pin 11, as shown in fig. 28 Fig. 28 "OUT Vs/2 The input resistance at pin 1 depends on the threshold voltage VT at pin 11 and is typically. Rl = 200 Kn @ @ 1.9V ~ V T OV ~ ~ 4.7V muting-off V T ~ 1.3V Vs muting-on 6V~VT ~ Referring to the following input stage, the possible attenuation of the input signal and therefore of the output signal can be found using the following expression. where Rs "" 100 Kn Considering Rg = 10 Kn the attenuation in the muting-on condition is typically AT= 60 dB. In the muting-off condition, the attenuation is very low, typically 1.2 dB. A very low current is necessary to drive the threshold voltage V T because the input resistance at pin 11 is greater than 150 Kn. The muting function car1 be used in many cases, when a temporary inhibition of the output signal is requested, for example: in switch-on condition, to avoid preamplifier power-on transients (see fig. 27) - during commutations at the input stages. - during the receiver tuning. The variable impedance capability at pin 1 can be useful in many applications and we have shown 2 examples in fig. 22 and 24, where it has been used to change the feedback network, obtaining 2 different frequency responses. 612 APPLICATION SUGGESTION The recommended values of the components are those shown on application circuit of fig. 21. Different values can be used. The following table can help the designer. Component Rg + Rl R2 Recomm. value 10Kn 3.3Kn Larger than recommended value Smaller than recommended value Input signal imped. for muting operation Increase of the attenuation in muting-on condition.Decrease of the input sensitivity. nuation in muting on condition. Close loop gain setting. Increase of gain. Purpose Allowed range Min. Max. Decrease of the atte- Decrease of gain. Increase quiescent 9 R3 current. Close loop gain setting. Decrease of gain. Frequency stability Danger of oscillation at high frequencies with inductive loads. Volume potentiometer. Increase of the switch-on noise. R3 lOOn R4 In Pl 20Kn Cl C2 C3 11lF 1 }LF 0.22 }LF Input DC decoupling. C4 2.2}LF Inverting input DC decoupling. Cs O.lIlF Supply voltage bypass. C6 10llF Ripple Rejection. C7 471lF Cs 0,22}LF C9 2200 }LF (R L =4n) l0001lF (RL=Bnl R 2 /9 Increase of gain. Decrease of the input impedance and the input level. 10K!1 100Kn Higher low frequency cutoff. Increase of the switch-on noise. I:i igher low frequency cutoff. 0.1 ,,;,F Danger of oscillations. Degradation of SVR. 2.2 }LF 100llF Bootstrap. Increase of the distortion at low frequency. 10llF 100llF Frequency stability. Danger of oscillation. Output DC decoupling. Higher low frequency cutoff. Increase of SV R . Increase of the switch-on time. 613 THERMAL SHUT-DOWN The presence of a thermal limiting circuit offers the following advantages: 1) An overload on the output (even if it is permanent), or an above limit ambient temperature can' be easily supported since the T j cannot be higher than 150°C. 2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature. If for any reason, the junction temperature increases up to 150°C, the thermal shut-down simply reduces the power dissipation and the current consumption. The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 31 shows this dissipable power as a function of ambient temperature for different thermal resistance. Fig. 29 - Output power and drain current vs. case tel" perature , . ! , ) I IIs:<2411 f :::lKHz Rl =41\ i I fbi 12 10 Id j. i-1- I 'l I 20 40 I 60 80 100 120 140 i -. :fu ~~ . 16 -9 I 08 12 10 __ ,_+- 06 II-\ ~01 (W I I 12 I i d Al V5 =24V, L=lf",Hz 1----RL:::81\! 14 1 \ _-t-_ . LJ+: I - \ I ---t 1d 1Al I 1\ t- " Fig. 31 - Maximum allowable power dissipation vs. ambient temperature 6·)578 Fig. 30 - Output power and drain current vs. case temperature ! 10 Po ,._ Id I-- " -- 04 I I 0 Tease( C} (1 20 40 , 0.8 I I 1 ____ ;I 60 80 100 120 140 Tcase{oC) 614 f.;; -9 S"~ ~r ~c 50 100 Tamb(OC) ~ .~~ ;'~'6' /"" .,- 0.6 ~t_ +- ~ ~ 'c'/Jr 0.4 0.2 o -50 MOUNTING INSTRUCTIONS The power dissipated in the circuit must be removed by adding an external heatsink. Thanks to the Multiwatt ® package attaching the heatsink is very simple, a screw or a compression spring (clip) being sufficient. Between the heatsink and the package it is better to insert a layer of silicon grease, to optimize the thermal contact; no electrical isolation is needed between the two surfaces._ Fig. 34 - Mounting examples o .... o .. . .. .. .• . 5-3712 S-3713 615 LINEAR INTEGRATED CIRCUIT 8W CAR RADIO AUDIO AMPLIFIER The TDA 2002 is a class B audio power amplifier in Pentawatt® package designed for driving low impedance loads (down to 1.60.). The device provides a high output current capability (up to 3.5A), very low harmonic and cross-over distortion. In addition, the device offers the following features: - very low number of external comoonents assembly ease, due to Pentawatt® power package with no electrical insulation requirement space and cost saving high reliability flexibility in use complete safety during operation due to protection against: a) short circuit; b) thermal over range; c) fortuitous open ground; d) polarity inversion (V s max= 12V); e) load dump voltage surge. ABSOLUTE MAXIMUM RATINGS Vs Vs Vs 10 10 Ptot T stg, T j Peak supply voltage (50 ms) DC supply voltage Operating supply voltage Output peak current (repetitive) Output peak current (non repetitive) Power dissipation at T case = 90°C Storage and junction temperature 40 28 18 3.5 4.5 15 -40 to 150 V V V A A W °C ORDERING NUMBERS: TDA 2002 H TDA 2002 V Dimensions in mm MECHANICAL DATA 6/82 616 CONNECTION DIAGRAM (top view) 5-1894'1 SCHEMATIC DIAGRAM L ~'bi ~4 O~ T ~5 OJ R6 ~'JI 01 as R. 07 08 06 09 R9 4 ~1-' =f" R7 02 R14 020 RS R4 09 RIO 150kn R2 022 ~a23 if RJ 021 ~Q13 os ,----- 01 OJ 04 1 ·F+ l~~ If 07 - YS =14.4V '-1kHz R L=4.n '00 VS "'4.4V '-1kHz RL"2.n 200 14.IoV 200 P. .. S.2W 100 100 "' ..-P. -O.SW p'::aQ.5W 8Y 12 , 16 20 24 RL (1) Fig. 7 - Distortion vs. out· put power G-20n/l , - I I f= 1kHz SY" 1111 (dS) I III ~ o j I· V•• 144V J r ___ ~::~~~~Hz R2 "Z.2n ·20 f-+-+-+-+-+++-+-+-+-+-I Gv,, 40 40 "l II I ---Vs=14.4V- .lD I" I R =4n Fig. 9 -Supply voltage rejec' tion vs. voltage gain G_2099/1 r Vs ·I4.4V Gv ·40dB ,.. 200 100 '00 Fig. 8 - Distortion vs. fre· quency ("10 l (",. l 200 '00 2n ·40 1--l.L-l-+---I--+-++-+-+-+-+-I Po :2.5W l/ 50mW 10 _50 L.L.L.L..L..L..J....J......LJJ...J.--.J 10' 10' 619 10' f (Hz) o 100 200 300 400 Fig. 10 - Supply voltage rejection vs. frequency Fig. 11 - Power dissipation and efficiency vs. output power (R L = 4n) Fig. 12 - Power dissipation and efficiency vs. output power (R L = 2n) ;;"110211 SVR I R = 4n V$ "'14,4V " -20 P tot V -eo~1DI E:Etmm 10 ... . lOJ , 60 I 50 EHfEEEIS=Ef.g~fa" vs _1Io4V1= (W) Plot ~t~ 6' 10 3 104 f (Hz) Fig. 13 - Maximum power dissipation vs. supply voltage (sine wave operation) • Ptotlll P tot +t+ "--I- + Kh-t M-t- ,,--,--,--,,--,--,--,.,--r,--,.,-'-T'T'-'o 50 13 5 6 7 · , ", ....... ·· B .. 10KHz r--.. 0 t"- 20KHz , , JO'CtW 40 60 80 100 120 TaOilb(OC) 'Po (W) c, 10 R "2 8 , (nF ) ' ....... lO"CIW " Fig. 15 - Values of capacitor (C x ) for different values of frequency response (BI '"'' , 10 20 10 12 20 60 10 14 Vs (V) 70 30 to 15 R,,2tt H~ (W) H7.,.:OF;:"."'IT'<-.-J,H"'EA::',t;S,.d--rH++-H i 15 Pt t t:::lkHz 40 Fig. 14 - Maximim allowable power dissipation vs. ambient temperature (W) (0/.) + + ~G'·'mOdB J-'-'- R2 .. Z.2n -80 ..- - Rg c::::J (*) In TDA 2003 C1 c=:J --cJRl c:::) c=J C5 C6 the device can support a short circuit between every side of the loudspeaker and ground. Fig. 22 - P.C. board and component layout for the low-cost bridge amplifier of fig. 20, in stereo version (1:1 scale} C5-0103/3 1m' C3 C3 C5 --c:::::>- ( <==::) ) C1 IN m m m TDA 2003 lOA 2003 T{)AZ003 TDA 2003 U4 C2 C7 C2 <==::) -c:=r R1 C6 --c:=JR1 C6 c==:> D4 ·~C5 ~ <==::) C1 RL BUILT-IN PROTECTION SYSTEMS Load dump voltage surge The TDA 2003 has a circuit which enables it to withstand a voltage pulse train, on pin 5, of the type shown in fig. 23. If the supply voltage peaks to more than 40V, then an LC filter must be inserted between the supply and pin 5, in order to assure that the pulses at pin 5 will be held within the limits shown in fig. 23. A suggested LC network is shown in fig. 24. With this network, a train of pulses with amplitude up to 120V and width of 2 ms can be applied at point A. This type of protection is ON when the supply voltage (pulsed or DC) exceeds 18V. For this reason the maximum operating supply voltage is 18V. 629 Fig. 23 Fig. 24 FROM A L=2mH SUPPLY ~TO PIN 5 j£.""" 3000JJF LINE 5 ~ I 1901 16V Short-circuit (AC and DC conditions) The TDA 2003 can withstand a permanent short-circuit on the output for a supply voltage up to l6V. Polarity inversion High current (up to 5A) can be handled by the device with no damage for a longer period than the blow-out time of a quick 1A fuse (normally connected in series with the supply). This feature is added to avoid destruction if, during fitting to the car, a mistake on the connection of the supply is made. Open ground When the radio is in the ON condition and the ground is accidentally opened, a standard audio amplifier will be damaged. On the TDA 2003 protection diodes are included to avoid any damage. Inductive load A protection diode is provided between pin 4 and 5 (see the internal schematic diagram) to allow use of the TDA 2003 with inductive loads. In particular, the TDA 2003 can drive a coupling transformer for audio modulation. DC voltage The maximum operating DC voltage on the TDA 2003 is l8V. However the device can withstand a DC voltage up to 28V with no damage. This could occur during winter if two batteries were series connected to crank the engine. Thermal shut-down The presence of a thermal limiting circuit offers the following advantages: 1) an overload on the output (even if it is permanent), or an excessive ambient temperature can be easily withstood. 2) the heat-sink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case of excessive junction temperature: all that happens is that Po (and therefore Ptot ) and Id are reduced (figs. 25 and 26). Fig. 25 - Output power and drain current vs. case tem· perature (RL = 4.0:) .0 .0 r-r--'--r-r'~~rTl--'---"---''''::'';::-:r--", v-;;14A - (W) RL d f-++-f-++-l-+-+-l ~ 10"(. f-++-f-++-t-+-+-l 3 4 f-++-Ic++-l rr--.---"--.---"-,,,-,,-,-'TT--I,, (WI (A) (A) n. f-t+"H-t-H--t-+-1-+-+-1-+-+-t 12 '0 Fig. 26 - Output power and drain current vs. case tem· perature (RL = 20) H--t-H-t-H--j os f-+...f.!!"+-++H++-+++-+-+-H 0.6 f-+-lP:J!O+-++H++-+++-+,,*-H 0.' +-+-+-+-H->HH-j 0.6 f-++-H'\\-I-i 0.' f--t+H+H++-+++-+--t'ltH o.2 1-++-H++-+--+-+-l-+-+-l~M--i 0.2 50 1.2 H-+-H-+-I-++-+ 50 '00 630 100 PRATICAL CONSIDERATIONS Printed circu it board The layout shown in fig. 17 is recommended. If different layouts are used, the ground points of input 1 and input 2 must be well decoupled from the ground of the output through which a rather high current flows. Assembly suggestion No electrical insulation is required between the package and the heat·sink. Pin length should be as short as possible. The soldering temperature must not exceed 260°C for 12 seconds. Application suggestions The recommended component values are those shown in the application circuits of fig. 16. Different values can be used. The following table is intended to aid the car-radio designer. Component Recommended value Cl 2.2 jLF C2 C3 C4 C5 Cx Purpose Larger than recommended value Input DC decoupling Noise at switch-on, switch-off 470 jLF Ripple rejection Degradation of SVR 0.1 jLF Supply bypassing Danger of oscillation 1000 jLF Output coupling to load Higher low frequency cutoff 0.1 jLF Frequency stability Danger of oscillation at high frequencies with inductive loads 1 ~ 2" B Rl Upper frequency cutoff Lower bandwidth Rl (G v -1) • R2 R2 2.212 Setting of gain and SVR Degradation of SVR R3 1 12 Frequency stability Danger of oscillation at high frequencies with inductive loads 20 R2 Upper frequency cutoff Rx Smaller than recommended value ~ Setting of gain 631 Larger bandwidth I ncrease of drain current Poor high frequency attenuation Danger of oscillation LINEAR INTEGRATED CIRCUIT 10 + 10W STEREO AMPLIFIER FOR CAR RADIO The TDA 2004 is a class B dual audio power amplifier in MU LTIWATT ® package specifically designed for car radio applications: stereo amplifiers are easily designed using this device that provides a high current capability (up to 3.5A) and that can drive very low impedance loads (down to 1.6n). Its main features are: Low distortion. Low noise. High reliability of the chip and of the package with additional complete safety during operation thanks to protections against: output AC short circu it to grou nd very inductive loads overrating chip temperature load dump voltage surge fortuitous open ground polarity inversion Space and cost saving: very low number of external components, very simple mounting system with no electrical isolation between the package and the heatsink (one screw only). ABSOLUTE MAXIMUM RATINGS Vs Vs Vs 10 (*) 10 (*) Ptot Tj,Tstg (.) Operating supply voltage DC supply voltage Peak supply voltage (for 50 ms) Output peak current (non repetitive t = 0.1 ms) Output peak current (repetitive f ;;;, 10Hz) Power dissipation at Tease = 60°C Storage and junction temperature 18 28 40 4.5 3.5 30 -40 to 150 v V V A A W °C The max. output current is internally limited. ORDERING NUMBER: TDA 2004 Dimensions in mm MECHANICAL DATA 6/82 632 I~ Ii I' CONNECTION DIAGRAM (top view) !I=== $/ Tab connected BOOTSTRAP 1 OUTPUT 1 +VS OUTPUT 2 BOOTSTRAP 2 GNO INPUT+(2) lNPUT-(2) SVRR lNPUT·(1) INPUTt(l) to pin 6 SCHEMATIC DIAGRAM THERMAL DATA Rth j-case max Thermal resistance junction-case 633 3 °C/W Fig. 1 - Test and application circuit INPUT(R) 2.2.u F !~1~1~ C2 C7 lJn Fig.2 - PC board and components layout (scale 1: 1) GND IN (ll GND IN .Vs (R) 634 ELECTRICAL CHARACTERISTICS (Refer to the test circuit, T amb = 25°C, Gv = 50 dB, Rth (heatsink) = 4°C/W, unless otherwise specified) Test conditions Parameter Vs Supply voltage Vo Quiescent output voltage Total quiescent drain current Typ. Max. Unit 18 V 7.2 6.6 7.8 7.2 V V 65 62 120 120 mA mA 8 Vs~14.4V 6.6 5.0 Vs~13.2V Id Min. Vs~14.4V Vs~13.2V IS8 Stand-by current Pin 3 grounded Po Output power (each channel) f ~ 1 KHz mA 5 d~ 10% Vs~14.4V RL ~ 4D. RL~3.2D. RL ~ 2D. RL ~ 1.6D. , Vs ~ 6 7 9 10 6.5 8 10(*) 11 W W W W 6.5 10 W W 12 W 13.2V RL ~ 3.2D. RL ~ 1.6D. 6 9 Vs~16V RL ~ 2 D. d Distortion (each channel) f ~ 1 KHz Vs~14.4V Po~ 50 mW Vs ~ 14.4V Po~ 50 mW Vs ~ 13.2V Po~ 50 mW Vs ~ 13.2V Po~ 50 mW CT Vi Cross talk I nput sensitivity Vs RL ~ 4D. to 4W RL ~ 2D. to 6W 0.2 1 % 0.3 1 % 0.2 1 % 0.3 1 % RL~3.2D. to 3W RL ~ 1.6D. to 6W ~ 14.4V Vo~ 4 V rms f ~ 1 KHz f ~ 10KHz RL ~ 4D. 50 40 f ~ 1 KHz Po ~ 1W RL ~ 4D. RL~ 3.2D. 60 45 dB dB 6 5.5 mV mV mV 300 Vi Input saturation voltage Ri I nput resistance (non inverting input) f ~ 1 KHz Ri Input resistance (inverting input) f ~ 1 KHz fL Low frequency roll off (-3 dB) RL~ 4D. RL ~ 2D. RL~ 3.2D. RL ~ 1.6.11 fH High frequency roll off (-3 dB) RL ~ 4D. RL ~ 2D. RL~ 3.2D. RL ~ 1.6D. I 635 70 KD. 200 Kn 10 35 50 40 55 15 15 15 15 Hz Hz Hz Hz KHz KHz KHz KHz ELECTRICAL CHARACTERISTICS (continued) Test conditions Parameters Gy Gy Voltage gain (open loop) f = 1 KHz Voltage gain (closed loop) f = 1 KHz Min. Typ. 50 48 eN Total input noise voltage Rg= 10 Kn(O) SVR Supply voltage rejection f'iPPle= 100 Hz Rg- 10 Kn C3 = 10jJ.F V'iPPle=0.5V,ms Efficiency Vs = R L= R L= Vs = RL= RL= Thermal shut down case temperature TSd' Unit dB 51 dB dB 0.5 Closed loop gain matching 1) Max. 90 1.5 35 f = 1 KHz Po= 6.5W Po= lOW f = 1 KHz Po= 6.5W Po= lOW 14.4V 4n 2n 13.2V 3.2n 1.6n jJ.V 5 45 dB 70 60 % % 70 60 % % R L =4n Vs=14.4V f = 1 KHz Ptot = 5.5W 125 135 °C (*) 9.3W Without Llootstrap. (0) Bandwidth filter: 22 Hz to 22 KHz. Fig. 4 - Quiescent drain current vs. supply voltage Fig.:3 - Quiescent output voltage vs. supply voltage Fig. 5 - Distortion vs. output power G"'299f1 G4297 I. Vo (V) / / / V / V / / / t.1KHl 80 60 " , - VS"12V Rl,12fi --Vs·ltJ.VR l ,4n -- ---- II '11111 VSd12V R L,16,fl VS"4.4V RLdn '0 20 12 16 14 VslVl Fig. 6 - Output power vs. supply voltage ..."" Po n 11111 Gy .50dB 100 / 10 IW II {mAl 10 ds1O~ I 12 ".24/ V V / " 12 V ./ V V VR L 12n o V ...... 12 636 1.2 p~~ ~~~iE33~~~~~~"~~'~2~n~ "'t~~~~~~~~~7~'R~~'nT'~n~ Po,2.5W V 10 ":"1=-i ll ~, I I 12 V ./ ./ f"'" ,/ V V Vs=14.4\f Gv=SOdB Rl °1.6.n/ d.IO"r. 1/1' 0.' Fig. 8 - Distortion vs. frequency - ~ ~':~;~B /RLsion 10 0.01 (W hlKHz G.,.5OdB 1/ i---" " 12 Fig. 7 - Output power vs. supply voltage Po I I I 16 Vs(V) 10 10' 10 4 1(Hz) Fig.9 - Distortion vs. frequency Fig. 11 - Supply voltage rejection vs. frequency Fig. 10 - Supply voltage rejection vs. C3 G.4J0411 sv. r---,r-TO-rrncn---''''"T"TTTTTI lOB) f----j---jH+++1*C"""7,-lc-L+++t+tl "'S.14./"V ~ f----jf-H+++1+1 'rlppl•• 100HZL f----jf-H+++1+1 Vrippie.O.5 V f----jf-H+++1+1 Gv.50dB f----jf-H+++1+1 Rg.IOl(n I '0 20 30 40 ~~~ _ Vs·14.4V 1tI---+-+t+I-t1lI-H+l-Hlll - Gy:SOdB CJilOJ.lF Ht---++ttf-tftt-H-H+IllI ........... f----jf-....... -f''''''''<+l+++--f-+-I+++1ftj '0 f-++++ttItl---+-+t+I+Hf-H-HfIIH 6Of---+-+-H++Ht--+--+++++tH 10 '0 Fig. 12 - Supply voltage rejection vs. values of capacitors C2 and C3 !Fig.13 - Supply voltage rejection vs. values of capacitors C2 and C3 f (HlI:I Fig. 14 - Gain vs. input sensitivity G-4l0& sv.) sv. III III VS~1".4V (dB RL~4fl Rg,1)KQ Gv· J 90/1n {dBI 40 /' ./ '0 " " 200 '00 38 / '0 L 20 / ~ " V 50 P: =0.5 30 2. 22 10 20 '0 .. ." G, (dB) '0 20 Fig. 16 - Total power dissipation and efficiency vs. output powp.r Fig.15 - Gain vs. input sensitivity '0 '00 300 . .. " I"", Yj(mV) 12 60 IWI ~-+++-H-+'+-+-H-++~HI~J P,ot 500 •• ,. 4Z ·.,w .. 100 so "o.sw 30 fI/ 22 '00 300 ... Vi (mY) Ptot '0 17' "- -/. "'S·144Y 40 RLs 2n hll ---+c---.---~___il C'I '.',oF 1 2200lllF Cll 5 -t.06 51 2 647 R3 (n) ELECTRICAL CHARACTERISTICS (Refer to the stereo application circuit, Tamb = 25°C, Gy= 50 dB, Rth(heatsink)= 4°CIW, unless otherwise specified). Parameters Test conditions Vs Supply voltage Vo Quiescent output voltage Vs = 14.4V Vs = 13.2V Id Total quiescent drain current Vs = 14.4V Vs = 13.2V Po Output power (each channel) f = 1 KHz Vs = 14.4V Vs=16V Distortion (each channell CT Cross talk (0) Vi Input saturation voltage Vi Input sensitivity 6.6 6 d = 10% R L =4n R L =3.2n R L =2n R L = 1.6n R L = 3.2n R L = 1.6n R L = 2n 6 7 9 10 6 9 f = 1 KHz R L =4n Vs = 14.4V Po = 50 mW to 4W R L =2n Vs = 14.4V Po = 50 mW to 6W R L = 3.2n Vs = 13.2V Po= 50 mW to 3W R L = 1.6n Vs = 13.2V Po = 40 mW to 6W Vs= 14.4V R L =4n Vo = 4V,ms Rg= 10 Kn f = 1 KHz f = 1 KHz fL Low frequency roll off (-3 dB) R L = 2n fH High frequency roll off (-3 dB) R L = 2n Gv Voltage gain (open loop) f = 1 KHz f = 1 KHz 70 inverting input Voltage gain (closed loop) eN Total input noise voltage 18 V 7.2 6.6 7.8 7.2 V V 65 62 120 120 mA mA 6.5 8 10 11 6.5 10 12 W W W W W W W 0.2 1 % 0.3 1 % 0.2 1 % 0.3 1 % dB dB 45 Po= 1W R L =4n R ...= 3.2n f = 1 KHz non inverting input Closed loop gain matching Unit mV 300 I nput resistance Gy Max. 60 f = 10 KHz Ri AG y Typ. 8 Vs = 13.2V d Min. 6 5.5 mV 200 Kn Kn 10 50 KHz 15 dB 90 48 50 51 (0) For TDA 2005S only. (00) Bandwidth filter: 22 Hz to 22 KHz. 648 1.5 dB dB 0.5 Rg= 10 Kn (00) Hz 5 p.V I I I,,- ELECTRICAL CHARACTERISTICS (continued) I' I' Parameters Test conditions SVR Supply voltage rejection Rg= 10 K11 fripple= 100 Hz C 3= 10 /LF V riPPle= 0.5V 1/ Efficiency Vs = 14.4V R L =411 R L = 211 Vs = 13.2V R L = 3.211 R L = 1.611 f = 1 KHz Po= 6.5W Po= 10W f = 1 KHz Po= 6.5W Po= 10W Vs = 14.4V Ptot = 6.6W R L = 211 Thermal shut-down case temperature TSd Fig. 8 - Quiescent output voltage vs. supply voltage Min. Typ. 35 45 Max. Unit dB i' 120 Fig. 9 - Quiescent drain current vs. supply voltage 70 60 % % 70 60 % % 130 °C Fig. 10- Distortion vs. output power Vo tv) (mAl / 1/ V IV 100 / 80 / IIIII f-f-f-~-1-,----j'---'~--+--+--+--I II / V / V 10 12 16 VSIVI 10 Fig. 11 - Output power vs. supply voltage Po tW " , 1 G vs50dB I I d ~ '10-" i f~ll(Hz - 1 i 12 I I ,/ ,/ 1/ v %l I I 10 12 d RL~ ~10·J. 1.6.n V 12 / V / V ,/ /RL~J.2n 1.2 o.s /' '" Fig. 13 - Distortion vs. frequency hlKHz Gv~SOdB ~L:4Il I I.A" V r- 1/ 0.1 I tW) I Rl~2n/ I I Fig. 12 - Output power vs. supply voltage Po I I 0.01 12 ./ V "., "' V 10 12 649 'I, 16 VS(VI 11 10 10' 1)4 11Hz) I I " Fig. 14 frequency Distorsion vs. Fig. 15 - Supply voltage rejection VS. C3 Fig. 16 - Supply voltage rejection vs. frequency G-4306/1 ,- 'iSd4."V Gv=50dB C3'\O/JF - Iii I', Rg_ 0 i--J' , ! ' I ,~9·lOKJl I 30 I 20 'I I II III I ! 10 10' 10~ 10' Fig. 17 - Supply voltage rejection vs. values of capacitors C 2 and C 3 5'" Vs:14.I,V Rl·4,Q Rg,1OKn G y .l000110D t r l pp l.,100Hz G, "ffi 'Is =14.4'0' 1 : 1kHz RL = 411 54 C2'22iJ~ ,500 50 /vr 200 46 ~2,5j..JF / I (Hz) G, U- / C Z,220j.JF 50 10' Fig. 19 - Gain vs. input sensitivity Fig. 18 - Supply voltage rejection vs. values of capacitors C 2 and C3 (dBI 10' 10 10 f{Hzl Po -6W 42 100 / 30 20~ I I, i I / , I' ill ~ " V 20 ! . 10 Fig. 20 - Gain vs. input sensitivity +++ : ! I 20 26 I , 22 10 20 Fig. 21 - Total power dissipation and efficiency vs. output power (bridge) 0, 50 P , 0,5 30 30 100 300 " Vi (mV) Fig. 22 - Total power dissipation and efficiency vs. output power Ptot ,WI I Vs·14.4 : If :lkH RL-2Il. 500 I 60 200 46 42 3S 40 " =--.:.'" 30 ,,--+ 22 Po' lOW ~-t-. R 100 + .Q,SW Ii 11+ -- 20 , 100 300 " "',(I'T'V) 20 650 24 Po(W) 10 Po(W) APPLICATION INFORMATION Fig. 23 - 10 + 10W stereo amplifier with ton(' balance and loudness control Fig. 24 Tone control response (circuit of fig. 23) H-c:::J-~~1 .---blOiJ F ., I INPUHLJ 1--=---'----'--' ., ., ., JNPUT(RJ J:~'=.6JKn--~--~--' Fig. 25 - 20W Bus amplifier VS •• 14.4V 18Ka 22 IJ F r 10/(a. lOKn lOKn 2Z001JF ..,~ol:,_":____,.o_K_~K_n _:_:_~ ~,-",+ __.... __..... __________-'-I OJ!. on on an $-4350/1 651 Fig. 26 - Simple 20W two way amplifier (fc = 2 KHz) 2200,uF 8 lKn~' ~~ R3..L ..,.. C7 0: O.1,uF ,,100 /-IF -----f'-c-i R7 WOOFER In C,~n QR' . I INPUT ..J.. ..L C10 .J... >-_+'~O_ -t-- -1"--1l~ lKf) rlR5 l00~F 100.uF'~ 2 nL . J -U, = lil (8 Q)' R8 CO lon 2.2.u F I 3 e1 ! ..J. .J... ... Fig. 27 - Bridge amplifier circuit suited for low-gain applications (G v = 34 dB) R1 INPUT!A 1 2.2,.uF ","F ~ R7 111 5- 541,7/1 652 TWE.ETER APPLICATION SUGGESTION The recommended values of the components are those shown on Bridge application circuit of fig. 1. Different values can be used, the following table can help the designer. Component Recommended Value Kn RJ 120 R2 1 Kn R3 2 Kn R4 and Rs 12 R6 and R7 1 Larger than Purpose Optimization of the output symmetry Smaller Po max Smaller than Smaller Po max Closed loop gain setting (see BRIDGE AMPLIFIER DESIGN) n n Frequency stabil ity C1 2.2/-lF Input DC decoupling C2 2.21'F Optimization of turn on pop and tu rn on delay. C3 O.lI'F Supply by pass C4 10l'F R ipp Ie Rejection Danger of oscillation at high frequency with inductive loads High turn on delay Higher turn on pop. Higher low frequency cutoff. Increase of noise. Danger of oscillation. I ncrease of SV R. Increase of the Degradation of SVR. switch-on time. Cs and C 7 100 I'F Bootstrapping Increase of distortion at low frequency. C 6 and C 8 220 I'F Feedback input DC decoupling, low frequency cutoff. Higher low frequency cutoff. C 9 and C IO O.lI'F Frequency stability. Danger of oscillation. 653 BUILT-IN PROTECTION SYSTEMS Load dump voltage surge The TDA 2005 has a circuit which enables it to withstand a voltage pulse train, on pin 9, of the type shown in fig. 29. If the supply voltage peaks to more than 40V, then an LC filter must be inserted between the supply and pin 9, in order to assure that the pulses at pin 9 will be held within the limits shown. A suggested LC network is shown in fig. 28. With this network, a train of pulses with amplitude up to l20V and width of 2 ms can be applied at point A. This type of protection is ON when the supply voltage (pulse or DC) exceeds l8V. For th is reason the maximum operating supply voltage is l8V. Fig. 29 Fig.28 FROM A L,,2mH SUPPLY ~TO PIN 9 LINE IJ.£ "'''''' 16V 3000f.JF 5_1901 14.4 t1' -~ I I ---~~ Short circuit (AC and DC conditions) The TDA 2005 can withstand a permanent short-circuit on the output for a supply voltage up to 16V. Polarity inversion High current (up to lOA) can be handled by the device with no damage for a longer period than the blow-out time of a quick 2A fuse (normally connected in series with the supply). This feature is added to avoid destruction, if during fitting to the car, a mistake on the connection of the supply is made. Open ground When the radio is in the ON condition and the ground is accidentally opened, a standard audio amplifier will be damaged. On the TDA 2005 protection diodes are included to avoid any damage. I nductive load A protection diode is provided to allow use of the TDA 2005 with inductive loads. DC voltage The maximum operating DC voltage for the TDA 2005 is 18V. However the device can withstand a DC voltage up to 28V with no damage. This could occur during winter if two batteries are series connected to crank the engine. Thermal shut-down The presence of a thermal limiting circuit offers the following advantages: 1) an overload on the output (even if it is permanent), or an excessive ambient temperature can be easily withstood. 2) the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case of excessive junction temperature: all that happens is that Po (and therefore Ptot ) and Id are reduced. The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 30 shows this dissipable power as a function of ambient temperature for different therma I resistance. 654 Fig. 30 - Maximum allow· able power dissipation vs. ambient temperature Fig. 31 - Output power and drain current vs. case temperature )~i-+-t r--" i I. _. 1 1'5'''.'' I:,L,~"~ .J ld Fig. 32 - Output power and drain current vs. case temperature " ''I ~ ~ \ '0 1 '\ , '. I I t- 03 1 eo Tease (OCJ 160 Tcase-(OC) Loudspeaker protection The circuit offers loudspeaker protection during short circuit for one wire to ground. MOUNTING INSTRUCTIONS The power dissipated in the circuit must be removed by adding an external heatsink. Thanks to the MUL TIWATT® package attaching the heatsink is very simple, a screw or a compression spring (clip) being sufficient. Between the heatsink and the package it is better to insert a layer of silicon grease, to optimize the thermal contact; no electrical isolation is needed between the two surfaces. Fig. 33 - Mounting examples o ,, ,, 655 -- LINEAR INTEGRATED CIRCUIT lOW AUDIO AMPLIFIER The TDA 2006 is a monolithic integrated circuit in Pentawatt® package, intended for use as a low frequency class" AB" amplifier. At ± 12V, d = 10% typically it provides 12W output power on a 4n load and BW on a Bn. The TDA 2006 provides high output current and has very low harmonic and cross-over distortion. Further the device incorporates an original (and patented) short circuit protection system comprising an arrangement for automatically limiting the dissipated power so as to keep the working point of the output transistors within their safe operating area. A conventional thermal shutdown system is also included. The TDA 2006 is pin to pin equivalent to the TDA 2030. ABSOLUTE MAXIMUM RATINGS Vs Vi Vi 10 Ptot T stg , T j Supply voltage Input voltage Differential input voltage Output peak current (internally limited) Power dissipation at T case = 90°C Storage and junction temperature ± 15 Vs ± 12 3 20 -40 to 150 V V A W °C ORDERING NUMBERS: TDA 2006H; TDA 2006V MECHANICAL DATA 6/B2 Dimensions in mm 656 CONNECTION DIAGRAM C) ~iiii:'VS OUTPUT -Vs INVERTING INPUT NON INVERTING INPUT 5-2628/1 tab connected to pin 3 SCHEMATIC DIAGRAM 657 TEST AND APPLICATION CIRCUIT C5 0.22 pF 5-3916 THERMAL DATA Rth _i case Thermal resistance junction-case max 3 °CIW ELECTRICAL CHARACTERISTICS (Refer to the test circuit; Vs= ±12V, T amb = 25°C unless otherwise specified) Parameters Vs Supply voltage Id Quiescent drain current Ib Input bias current Test conditions Min. Typ. Max. Unit ± 15 V 40 SO mA 0.2 3 IlA ±6 Vs=±15V Vos Input offset voltage los Input offset current ± Vos Output offset voltage ± 10 Po Output power ±S d = 10% f = 1 KHz R L=4n RL=Sn 658 6 mV SO 12 S nA ± 100 mV W W ELECTRICAL CHARACTERISTICS (continued) Parameter d Distortion Test conditions Min. Typ. Max. Units Po~O.l to8W RL ~ 4!1 f ~ 1 KHz 0.2 % Po~ 0.1 to 4W RL ~ 8!1 1 ~ 1 KHz Vi Input sensitivity Po~ P0 B ~ lOW 6W Rj I nput resistance (pin 1) Gv Voltage gain (open loop) Gv Voltage gain (closed loop) eN I nput noise voltage iN InpOt noise current SVR Supply voltage rejection RL ~ 4!1 0.5 f ~ 29.5 B (-3 dB) ~ 22Hz to 22kHz RL~4!1 RL~ 4n 22 Kn 1ripPle~ 100 Hz Drain current Po~12W P0 : Tj 1 % 200 220 mV mV 1 0 to 140,000 Hz 5 M!1 75 dB 1 KHz Rg~ Id 1 ~ 1 KHz RL ~ 4!1 R L ~ 8!1 Frequency response (-3 dB) Po~8W I 0.1 8W Thermal shut down junction temperatu re (*) Relerring to lig. 15, single supply. 659 40 30 30.5 dB 3 10 IN 80 200 pA 50 dB 850 500 mA mA 145 °C (*) RL~ 4!! R L : B!1 Fig. 1 - Output power vs. supply voltage I I 0) IW d ~,o 'I. f :1KHz 16 Fig.2 - Distortion vs. output power ("10 Fig. 3 - Distortion vs. frequency )I--+--t--t+tf!f---j RL=t.n/ V VI V RL"7 / VI , / ./ /' V ! I I Fig. 4 - Distortion vs. frequency Fig.5 -Sensitivity vs. output power ')f--- _..1.._L.' .. ' R L,,4n I ImV 0 IT ++ _l G v = 30dB 18 0 f (Hz) Fig. 6 - Sensitivity vs. output power -r-~ vI",-l~r iL ?' 60 =+ A"'" 0.3 G v =_40d!L- ~i I--:- --f -t ! ~ J ! 10' Fig.7 - Frequency response with different values of the rolloff capacitor Cs (see fig. 13) G,r----r---,----,-----~~ (dB) Fig. 8 - Value of C s vs. voltage gain for different bandwidths (see fig. 13) , C, (;-4173 IpF ) Vs= ± 12 v RS;' 3R2 80 B-20KHz 10' " 1\ ~ B=50KHz 1\ 20 1\ 10 10 10 4 - ! 's';"H-+- f+ , =lKHz 0.2 w' G-<;1 d"~~-'TP~-'TITmr~~~ (0/0) 10 10' 10 " 10' 1\ G v (dB)50 30 660 Fig. 9 - Qu iescent current vs. supply voltage Fig. 10 - Supply voltage rejection vs. voltage gain Fig. 11 - Power dissipation and efficiency vs. output power Fig. 12 - Maximum power dissipation vs. supply voltage (sine wave operation) o~ " , , I ) i I , ,lK<, I : I R L< ~ n y I V ./ -- ,./ Po (W) Fig. 13 - Application circuit with split power supply V v RL:Sfi V Fig. 14 - P.C. board and component layout for the circuit of fig. 13 661 Fig. 15 - Application circuit with single power supply Fig. 16 - P.C. board and component layout for the circuit of fig. 15 Fig. 17 - Bridge amplifier configuration with split power supply (Po lN40Ql -;\0.22 >IF 1!l s- '316 662 = 24W, Vs = ± 12V) PRACTICAL CONSIDERATION Printed circuit board The layout shown in fig. 14 should be adopted by the designers. If different layout are used, the ground points of input 1 and input 2 must be well decoupled from ground of the output on which a rather high current flows. Assembly suggestion No electrical isolation is needed between the package and the heat-sink with single supply voltage configuration. Application suggestion The recommended values of the components are the ones shown on application circuits of fig. 13. Different values can be used. The following table can help the designers. Larger than recommended value Smaller than recommended value Increase of gain Decrease of gain Closed loop gain setting Decrease of ga i n Increase pf ga in 22 K!1 Non inverting input biasing Increase of input impedance Decrease of input impedance R4 1!1 Frequency stability Danger of oscillation at high frequencies with inductive loads R5 3 R2 Upper frequency cutoff Poor high frequencies attenuation C1 2.21'F Input DC decoupling I ncrease of low freqencies cut off C2 221'F Inverting input DC, decoupling I ncrease of low frequencies cutoff C 3C 4 0.1 I'F Supply voltage by pass Danger of oscillation C 5C6 100l'F Supply voltage by pass Danger of oscillation C7 0.221'F Frequency stability Danger of oscillation Ca 1 21TBR J Upper frequency cutoff DID2 lN4001 To protect the device against output voltage spikes. Component Recommended value Rl 22 K!1 R2 680!1 R3 Purpose Closed loop gain setting Lower bandwidth 663 Danger of oscillation Larger bandwidth SHORT CIRCUIT PROTECTION The TDA 2006 has an original circuit which limits the current of the output transistors. Fig. 18 shows that the maximum output current is a function of the collector emitter voltage; hence the output transistors work within their safe operating area (fig. 19). This function can therefore be considered as being peak power limiting rather than simple current limiting. The TDA 2006 is thus protected against temporary overloads or short circuit. Should the short circuit exist for a longer time, the thermal shutdown protection keeps the junction temperature within safe limits. Fig. 18 - Maximum output current vs. voltage V Ce(sat) across each output transistor Fig. 19 - Safe operating area and collector characteristics of the pro· tected power transistor \ \....,--P tat ::k \ Ie max, \ \ 5-0764/1 THERMAL SHUT-DOWN The presence of a thermal limiting circuit offers the following advantages: 1) An overload on the output (even if it is permanent), or air above limit ambient temperature can be easily supported since the T j cannot be higher than 150°C. 2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature. If for any reason, the junction temperature increases up to 150°C, the thermal shutdown simply reduces the power dissipation and the current consumption. 664 Fig. 20 - Output power and drain current VS. case temperature (R L = 40.) Po Fig. 21 - Output power and drain current VS. case temperature (R L = Bn) •. I":1 f---· !':- ,..-..-.~ (W)~ ~...., -r- --- ~---T T--_ r--- ---'"P - : :j o - .- - - - - .- .- . . _..j .. -- - .-- ~ - ---- 1 iillll - ~--~~-t r--.,.-t~.-~~ ................. ~ 1 : :Joe . . .---- -~--~- +-+ ::,:~lO.6 .=r~-==:. .•... _ - 0.4 0.2 so -+-~+--t- O6 0.4 • 0.2 so 100 The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 22 shows this dissipable power as a function of ambient temperature for different thermal resistances. Fig. 22 - Maximum allowable power dissipation VS. ambient temperature 20 Fig. 23 - Example of heatsink I f - - -....."'T"-__ 16 I 12 -so so 100 150 TambC"Cl Dimension suggestion The following table shows the lenght of the heatsink in fig. 23 for several values of Ptot and Rth . P tot (WI 12 8 6 Lenght of heatsink (mml 60 40 30 Rth of heats ink 4.2 6.2 8.3 (oeMiI 665 L1N,EAR INTEGRATED CIRCUIT 12W AUDIO AMPLIFIER (V s = 22V, RL = 4[2) The TDA 2008 is a monolithic class B audio power amplifier in Pentawatt® package designed for driving low impedance loads (down to 3.2n). The device provides a high output current capability (up to 3A), very low harmonic and crossover distortion. In addition, the device offers the following features: very low number of external components assembly ease, due to PentawattQ3) power package with no electrical insulation requirement space and cost saving high reliability flexibility in use thermal protection ABSOLUTE MAXIMUM RATINGS Vs io 10 Ptot T stg ' T j DC supply voltage Output peak current (repetitive) Output peak current (non repetitive) Power dissipation at T case= 90°C Storage and junction temperatu re ORDERING NUMBERS: 28 3 4 20 W -40 to 150 °C TDA 2008V MECHANICAL DATA 6/82 V A A Dimensions in mm 666 CONNECTION DIAGRAM (top view) IC) ;IIr r- I r* "om' 2 1 - INPUT INPUT c 5-1b94!l tab connected to pin 3 SCHEMATIC DIAGRAM 667 :ii::; INVERTING NON INVERTING DC TEST CIRCUIT ,-----------~--------~J+vs :!100nF 470}JF R2 nl .------. -------;U~ 5- 4009 -- AC TEST CIRCUIT C4 1000 ).IF 4 Rl 470 ).IF 668 J.. THERMAL DATA Rth j-case max Thermal resistance junction-case 3 °C/W ELECTRICAL CHARACTERISTICS (Refer to the test circuits,V s = 22V, T amb = 25°C unless otherwise specified) Parameter Vs Supply voltage Vo Quiescent output voltage (pin 4) Id Quiescent drain current (pin 5) Po Output power Test conditions I nput sensitivity 65 d: 10% R L : 8St f : 1 KHz R L : 4St d Distortion f : 1 KHz Po = 0.05 to 4W R L = 8St Po = 0.05 to 6W R L = 4St Voltage gain (open loop) f : 1 KHz f = 1 KHz Gv Voltage gain (closed loop) eN I nput noise voltage 10 R L : 8St R L : 8St R L : 4St R L: 4St Po: 1W R L : 4St Gv Unit 28 V V 115 70 mA 8 W 12 W mV 300 f : 1 KHz Po: 0.5W Po: 8W Po: 0.5W Po: 12W Frequency response (-3 dB) I nput resistance (pin 1) Max. 10.5 B Ri Typ. 10 Vi (RMS) I nput saturation voltage Vi Min. 20 80 14 70 mV mV mV mV 40 to 15000 Hz 0.15 0.15 % % 150 KSt 80 dB RL = 8St 39.5 40 40.5 dB 1 5 }lV 60 200 pA BW= 22Hz to 22 KHz iN I nput noise cu rrent SVR Supply voltage rejection V ripple= 0.5V R g : 10KSt R L =4St 669 f=100Hz f= 15 KHz 30 36 dB 36 dB 6/81 APPLICATION INFORMATION Fig. 1 - Typical application circuit ,-----c-iI..----,O Fig. 2 - P.C. board and component layout for the circuit of fig. 1 (1: 1 scale) Co,-0126 Vs ..,.~~ v ..... 1 c! 'o--~~. . t 5 Fig. 3 - 25W bridge configuration application circuit (0) Fig. 4 - P.C. board and component layout for the circuit of fig. 3 (1: 1 scale) I '----_--".:c3~11__---+_C:::J------~~ 15 )JF 10pF S - GO, 2 (0 I The value of the capacitors C3 and C4 are different to optimize the SVR (Typ. = 40 dB! 670 Fig. 5 - Vertical deflection for count-down circuits 2200,u F lN4001 lN4001 y :'.4.!l,3mH ,3.5App 5 - 4007 671 LINEAR INTEGRATED CIRCUIT 10 + 10W HIGH QUALITY STEREO AMPLIFIER The TDA 2009 is class AS dual Hi-Fi Audio power amplifier cially designed for high quality stereo applications as Hi-Fi TV and High output power (10 + lOW min.@ d = 0.5%) High current capability (up to 3.5A) Thermal overload protection Space and cost saving: very low number of Multiwatt@ package. "'''''"hn'r....onto Vs 10 10 Ptot T519' Tj (repetitive f ;;;. 20 Hz) (fN:e·~t (non repetitive, t = 100 /-ls) Power ipation at Tcase= 90°C Storage lind junction temperature and simple mounting thanks to the 28 3.5 4.5 20 -40 to 150 V A A W °C ORDERING NUMBER: TDA 2009 MECHANICAL DATA 6/82 Dimensions in mm 672 CONNECTION DIAGRAM (top view) N.C. OUTPUT (1) +Vs OUTPUT (2) N.C. GNO NON INV.INPUT(2) INV. INPUT (2) SVRR -$2 INV. INPUT (1) NON INV.INPUT(1) s- 5203 SCHEMATIC DIAGRAM THERMAL DATA Rth j-case Thermal resistance junction-case max 673 3 Fig. 1 - Test circuit (G v = 36 dB) +Vs 2Z,uF I Ie3 2.2IJF ~11---4------F"'" (Ll Cl IN 2.21JF (Rl C2 ~II---'+---l 5_5188 Fig. 2 - P.C. board and components layout of the circuit of fig. 1 (1 674 1 scale) ELECTRICAL CHARACTERISTICS (Refer to the stereo application circuit, Tamb = 25°C, Gv = 36 dB, unless otherwise specified) Test conditions Parameters Min. Typ. Vs Supply voltage Vo Qu iescent output voltage Vs ~ 23V 11 Id Total quiescent drain current Vs ~ 23V 80 Po Output power leach channell 8 RL~ 4 n n RL=4 n RL~ 8 n 10 12 5.5 7 7 RL~8 Vs~18V CT Distortion leach channel) Rg Vi Input saturation voltage Irmsl R; Input resistance f 120 mA ~ W W W W % 0.05 00 f ~ 1 KHz 60 dB 10 Kn f ~ 10 KHz 50 dB ~ 1 KHz non inverting input 70 Low frequency roll off 1-3 dB) ~ mV 200 Kn 10 Kn 15 Hz 80 KHz 85 dB 4n fH High frequency roll off 1-3 dB) Gv Voltage gain lopen loop) f ~ 1 KHz Gv Voltage gain Iclosed loop) f ~ 1 KHz 6G v Closed loop gain matching eN Total input noise voltage Supply voltage rejection leach channell V 300 RL SVR V 0.1 inverting input fL 28 4 f ~ 1 KHz Vs ~ 23V RL~ 4 n Po~ 100 mW to 8W Vs ~ 23V RL~ 8 n Po~ 100 mW to 3W RL ~ Cross talk 1°° o I Unit f~40Hzt016KHz d ~ 0.5% Vs ~ 23V d Max. 35.5 36 36.5 dB 0.5 dB Rg = 10 Kn 1°) 1.5 IN Rg ~ 10 Kn 1°°1 2 MV 55 dB 145 °c Rg = 10 Kn fripPle~ 100 Hz V ripple= 0.5V TJ Thermal shut-down junction temperature 1°) Curve A. 1°°) 22 Hz to 22 KHz. (000 675 I Optimized test box. Fig. 3 - Output power vs. supply voltage Fig. 5 - Distortion vs. output power Fig. 4 - Output power vs. supply voltage 6-466211 ,... d I I IIIIII "1Z 0.' I 0.5 H--"-r-+--l-- 11 , 0.4 0.3 16KHz E" n 16KHz =-~ii' 0.1 0.1 10 12 14 16 18 riy. u - 20 22 21. Lii:'luriiull 26 '1 s (V) V!). 11t:- 10 ·f d I I I IIIIW I LH:s~23V ~,,36dB I I I Po'" loW t II1 0.3 d 0.1 01 .. , f- ~ 4ni T .3 I 10 , 50 I I V " /' ''/ 10K 50 10 f (Hz) " 10 ,--+++- ~- 70 11 10 /1 ~J 1--'10+10W I STEREO ft' i~ ,/ 10 f (Hz) .!L. '!- --;- j ~ II-T- 30 10 CJ (pFl Fig. 11 - Total power dissipation and efficiency vs. output power , .....- ...,....; V 1----+-!+HttH- 'Is (V) , Pto 60 16 11 18 Fig. 10 - Total power dissipation an efficiency vs. output power (;-4566 1---+-++t+i11t--+-t-!-t+tH!-- 100 1---J,Lh--Pi"h,f-~+-+++++++i V SVRr-'-TTnnm---'--rTTTmr~PC'i'i'nrn 10 Ii ,",Ullvili. ./' Fig. 9 Supply voltage rejection vs. frequency 30 i ,I , ~ 70 - --t ~ II dB1 , / 100 ( 0.1 Vs(V) I I, en lKlt; I , Ii II 60 I I 30 - - I : I 05 26 " I I I .6 22 ri~. 7 - GLiia5Ci;;j-,'t vs. supply voltage quency ". 18 i , I, ,. I I !~~:;!~ I. '.1 60 I·-+~I--- ~ot~!l~!llsill-fl~~lc!!i"!l ,WI P tot 4 +- ~r-+Ts~23V Rl:" !l f 12 2 '" 1KHz 16 676 20 24 Po(W) '1$=23'1 Rl"B il. f ",1KHz 10 12 14 16 Po (W) APPLICATION INFORMATION Fig. 12 - Typical application circuit 2200,uF 1.2Kfl RI .t:a To'~F I • C6 ~~ 220,uF R2 IBn IN QR5 In 1 2.2,uF o.----tC2If---'+--l· (Ri '·°"'1 r' RL RL R6 1 _'I! 5_5189 Fig. 13 - 10 + 10W stereo amplifier with tone balance and loudness control Fig. 14 - Tone control response (circuit of fig. 13) INPUHl) T ~1 22d ~4JKO .6 I P1 100"" Kn .1, INPUT(RJ 1 O.22/-lF 1/1 TDA1009 5-5190 677 APPLICATION INFORMATION (continued) Fig. 15 - 10 + lOW high quality cassette player '-~~~~~~~~~~~~ __-'~~~~f-~~~~~~~~~~~~~~~~~-o." I TONE '8K~ .O~F~---;-----=---. r-;l,- - 82KJl. _ ~~ ~ ... ___ '"~ 5,6 Kil :;i3nFU681l. , , 'l_~'6KJl.' i h21~'F'~F {R).L 4.7/ OO~F IN 2.2~F o----------iil-C-,-'-1'-.r.-.. r 2.2}.JF C25 5_519411 Fig. 19 - P.C. board and components layout of the circuit of fig. 18 (1 C5-0153 Vi GND 680 OUT B OUT A 1 scale) APPLICATION SUGGESTION The recommended values of the components are those shown on application circuit of fig. 12. Different values can be used; the following table can help the designer. Component R1 and R3 Recomm. value 1.2 Larger than Purpose Kn Smaller than I ncrease of gain Decrease of gain Decrease of gain I ncrease of gain Close loop gain setting R2 and R4 18 R5 and R6 1 n n Frequency stability Danger of oscillation at high frequency with inductive load C1 and C2 2.21'F Input DC decoupling High turn-on delay High turn-on pop Higher low frequency cutoff. I ncrease of noise C3 221'F Ripple rejection Better SVR. I ncrease of the switch-on time Degradation of SVR. C6 and C7 220l'F Feedback I nput DC decoupling. C8 and C9 0.11'F Frequency stabil ity. Danger of oscillation. C10andC11 1000 I'F to 2200l'F Output DC decoupling. Higher low-frequency cut-off. 681 MOUNTING INSTRUCTIONS The power dissipated in the circuit must be removed by adding an external heatsink. Thanks to the MULTIWATT® package attaching the heatsink is very simple, a screw or a compression spring (clip) being sufficient. Between the heatsink and the package it is better to insert a layer of silicon grease, to optimize the thermal contact; no electrical isolation is needed between the two surfaces. Fig. 20 - Mounting examples / . ...... 682 LINEAR INTEGRATED CIRCUIT 12W Hi-Fi AUDIO AMPLIFIER The TDA 2010 is a monolithic integrated operational amplifier in a 14-lead quad in-line plastic package, inteded for use as a low frequency class B power amplifier. Typically it provides 12W output power (d = 1% ) at ± 14V /4n; at V s = ± 14V the guaranteed output power is 10W on a 4n load and 8W on a 8n load (DIN norm 45500). The TDA 2010 provides high output current (up to 3.5 A) and has very low harmonic and cross-over distortion. Further, the device incorporates an original (and patented) short circuit protection system, comprising an arrangement for automatically limiting the dissipated power so as to keep to working point of the output transistors within their safe operating area. A conventional thermal shut-down system is also included. The TDA 2010 is pin to pin equivalent to TDA 2020. ABSOLUTE MAXIMUM RATINGS Vs Vi Vi 10 Ptot T stg , T j Supply voltage I nput voltage Differential input voltage Output peak current (internally limited) Power dissipation at T case < 95°C Storage and junction temperature ORDERING NUMERS: TDA TDA TDA TDA 2010 2010 2010 2010 882 B92 BC2 BD2 ± 18 Vs ± 15 3.5 18 -40 to 150 V V A W °C dual in-line plastic package quad in-line plastic package dual in-line plastic package with spacer quad in-line plastic package with spacer MECHANICAL DATA Dimensions in mm 683 6/82 CONNECTION AND SCHEMATIC DIAGRAMS (top view) ~~----t,--i;----+_ I rtJ 12 POWER lINtYlNG 10 CO ...PEttSATlON 9 8 ~-J+----*----+-~ ~-+-+--I:::' I I, II i I I • I COIolPENSATlON INVERTING INPUT The copper slug is electrically connected to pin 5 (substrate) I I l_L l-.~_J----~------,_-,,~---o ,6 TEST CIRCUIT * 02 *IN 4001 5-113912 OR EQUIVALENT THERMAL DATA max Thermal resistance junction-case 684 I i;1 l'I . Ii i ELECTRICAL CHARACTERISTICS (Refer to the test circuit, V s = ± 14V, T amb = 25°C unless otherwise specified) Parameter Vs Supply voltage Id Quiescent drain current Ib I nput bias current Vos I nput offset voltage Test conditions I nput offset current Vos Output offset voltage Po Output power Typ. Max. Unit ± 18 V ± 5 Vs Vs los Min. ~ ± 18V ~ ± 45 mA 0.15 )J.A 5 mV 0.05 )J.A 17V 10 d 100 mV =1% T case " 7ft' C f ~ 40 to 15 000 Hz RL~4 n RL ~ 8 n 10 8 d ~ 10% T case" 7Cf'C f ~ f ~ 1 kHz RL ~ 4 n RL ~8 n I nput sensitivity P~ ~ lOW P0 ~ 8W C4 ~ B Frequency response (-3dB) RL ~ 4 n d Distortion Po ~ 100mWto lOW RL ~ 4 n T case" 7Cf'C f f ~ ~ W W 15 12 W W 1 kHz RL ~4n RL ~8 n Vj 12 9 68 pF 1 kHz 40 to 1 5 000 Hz 220 250 mV mV 10 to 160000 Hz 0.1 0.3 1 % % 0.1 0.2 1 % % P0 ~ 100 mW to 8 W RL ~8 n T case" 7ft'C f f Rj Input resistance (pin 7) Gv Voltage gain (open loop) ~ ~ 1 kHz 40 to 15 000 Hz Mn 5 dB 100 RL ~ 4 n Gv Voltage gain (closed loop) eN Input noise voltage RL ~4 n iN I nput noise current B (-3 dB) f ~ 1 kHz 29.5 ~ 22 Hz to 22 KHz 685 30 30.5 dB 4 )J.V 0.1 nA ELECTRICAL CHARACTERISTICS (continued) Parameter SVR Test conditions fripple Drain current Tsd Thermal shut-down Typ. Max. Unit R,_ = 4 Supply voltage rejection Id n = 100 Min. Po Pa 50 dB 0.8 0.5 A A 145 DC 120 DC Hz n n RL = 4 RL = 8 = 12 W = 9W junction temperature (*l Thermal shut·down case Tsd P tat temperature = 10.5 W (*l See fig. 14. Fig. 1 - Output power vs. supply voltage Fig.2 - Output power vs. supply voltage (>·16'7/1 (W I 16 d ,,10". 16 - I-- 12 \>oy't. ~~1- / / V V ~~~ .// 4nV V / RL 40 t.oVli ~ ~ ,/ ,/ 1/ 'II', / I '. ! - /' d oa II : ~::~l~V ~ Vs , ,; Fi ['j--cTrrm----,-,-oT'Tin '11" I ! I i ,, 40H,' I lkH~ 1 II ~ , . 10 ~~ : ~~4dVB j!,I] II i iI Ij , . 10-1 10 686 I I 'I, , " , I I, I I I.!' " I II . III " ~Tjl 1-1+ I :,,'.1'·1 I il ], =8ft Po - 8W ! 02 ! RL .. 4Cl Po "lOW -~-RL II 0.2 I I II II IIIIII!II II I 15KHz , , II 0.2 I I{~ 08 , I G165312 d I I 04 II ,I Fig. 6 - Distortion vs. frequency Gv "30dS 0.6 ': (V) ("I.) I II! aD! + +':HiIt--+_C' HttIJI+-;-I i Fig. 5 - Distortion vs. output power (R L =8 n) II __ , 15 G-1649 +I'. / i Fig.4 - Distortion vs. output power (R L = 4 n) I' '+III'H-i-+-Htt.JJI v, ."" ,/ ;/ f/ .•~:,.::::.v 1-++ "I ~v ~~~~zB+-,I-tlitt Ht Itttt-Il-t-+THtffi /' f ,,1kHz GV"30dB ~ ('1.I ('/.) I--h-i-Dillilllllll_+-+1+1I!~+t.lt-HC-t-t-H+I'.JJI (WI d ~ ",. (\,"30dB Fig. 3 - Distortion vs. output power G_I64611 , "' 10" 'V , " lO4 "" I (Hz) Fig. 7 - Output power vs. frequency L,+,~ ~l'ct RL~4 II a,~, ! I:Vs=!14V . w' Gv =30dBIIll-+l+HltiI-++HltiI d=l"'. -1v,J;-;h RL .4[l f=lkHl'! I -± ~rli I~i+~ i- . 240 A' 200 ,.,V " r;p r--7 v, (mV) 350 ....r I RL=sn G". =JOd 250 200 I -I H-+'V,.1,M,,\'-V+ t-+-H--t-+ 300 ""V' -r",'Od8! / [,L- 120 " Fig. 9 - Sensitivity vs. output power (R L =8 n) G_!65 v, (mV) "0 it 'ltiI'~+ttt+tll--H111lti1 t I Fig.8 - Sensitivity vS.output power (R L = 4 n) 150 :~~ 'lR~~TT G,," I (Hz) 10 Po(W) >C Fig. 11 - Value of C4 vs. voltage gain for different bandwidths Po(W) Fig. 12 - Quiescent current vs. supply voltage I, " .0 " lei (OUTPUT TRANSISTORS 20 >C. >c' >C' 10~ >C' ~ (H:rl >C. >C " G, 0-1"58 G_165812 SVR Ptot ,W) (dBl I VS=!14V 60 I lTiPPle=l00Hzl- 80 " I. .n ~ (0'.) ---8.0. 20 ........ eo 30 ,W) " V 12 I-(" ,/ " -1::: p.,. ... 50 20 Vs=!"14V f"lkH:i" , Gv =30dB 12 G",(dB) 687 - V 101 I 20 Plot Plot .0 ........ Vs (V) Fig. 15 - Maximum power dissipation vs. supply voltage (sine wave operation) Fig. 14 - Power dissipation and efficiency vs. output power Fig. 13 - Supply voltage rejection vs. voltage gain 17 15 16 Po(Wl ,/ V ..-an ~ 13 15 tV. IV) APPLICATION INFORMATION Fig. 16 - Application circuit with split power supply . 01 13 O.l~! R, 10 ~C5 .... IOO~FT' . RL 02 C8 OJ~F J.. "N,OO' OR EQUIVALENT O-Vo 5-1141/2 Fig. 17 - P.C. board and component layout for the circuit of fig. 16 (1:1 scale) CS-0074 688 SHORT CIRCUIT PROTECTION The most important innovation in the TDA 2010 is an original circuit which limits the current of the output transistors. Fig.18 shows that the maximum output current is a function of the collectoremitter voltage; hence the output transistors work within their safe operating area (fig. 19). This function can therefore be considered as being peak power limiting rather than simple current limiting. The TDA 2010 is thus protected against temporary overloads or short circuit. Should the short circuit exists for a longer time, the thermal shut-down comes into action and keeps the junction temperature within safe limits. Fig. 18 - Maximum output Fig. 19 - Safe operating "rea and current vs. voltave (V CE) collector characteristics of the proacross each output transistor tected power transistor. ! \ I c,I Ie max. \....-P1ot =k \ \ \ ar.a\ Second breakdowl'\ a2 -, -+ L -____________________~ 30 VCEQ1 (vl 0 20 -20 VCr:: -10 5-076411 THERMAL SHUT-DOWN The presence of a thermal limiting circuit offers the following advantages: 1) an overload on the output (even if it is permanent). or an above-limit ambient temperature can be easily supported since the Tj cannot be higher than 150°C 2) the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature. If, for any reason, the junction temperature increases up to 150°C, the thermal shut-down simply reduces the power dissipation and the current consumption. Fig. 20 - Output power and drain current vs. case temperature (R L =8 n) Fig. 21 - Output power and drain current vs. case temperature (R L = 4 n) ~l rr-',,-'r-r-',,~-.r=.!.T'''~-'\iV-r'±T"",61 (:~ f-++-t-++-t-++-t-1R l "811. '0 f-++-t-++-H 10 f-++-H-+-toPot-+-t H-H-++.::r'd-++'-+H. \ , ,. + _.fWtU~++-t++\t-I-~ ... ri ' 50 '00 ! . • 50 689 ' • . 100 Tease (·C) 08 06 :: MOUNTING INSTRUCTIONS The power dissipated in the circuit must be removed by adding an external heatsink as shown in figs. 22 and 23. The system for attaching the heatsink is very simple: it uses a plastic spacer wh ich is suppl ied with the device. Thermal contact between the copper slug (of the package) and the heatsink is guaranteed by the pres· sure which the screws exert via the spacer and the printed circuit board; this is due to the particular shape of the spacer. Note: The most negative supply voltage is connected to the copper slug, hence to the heatsink (because it is in contact with the slug). Fig. 22 - Mounting system of TDA 2010 HEATSINK ----. R 1h :. 2toS·C/W ~ -- ---CONTACT (SILICONE GREASE) R1h=q rfcjw ~.-----s1'AC'" ~.Fig. 23 - Cross-section of mounting system . Q - --_'_'._0 Q Fig. 24 - Maximum allowable power dissipation vs. ambient temperature The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 24 shows this dissipable power as a function of ambient temperature for different thermal resistance. 690 LINEAR INTEGRATED CIRCUIT 20W Hi-Fi AUDIO AMPLIFIER The TDA 2020 is a monolithic integrated operational amplifier in a 14-lead quad in-line plastic package, intended for use as a low frequency class B power amplifier. Typically it provides 20W output power (d = 1%) at ± 18V/4n; the guaranteed output power at ± 17V/4n. is 15W (DIN norm 45500). The TDA 2020 provides high output current (up to 3.5 A) and has very low harmonic and cross-over distortion. Further, the device incorporates an original (and patented) short circuit protection system, comprising an arrangement for automatically limiting the dissipated power ~o as to keep to working point of the output transistors within their safe operating area. A conventional thermal shut-down system is also included. ABSOLUTE MAXIMUM RATINGS Vs Vi Vi 10 Ptot T stg , T j Supply voltage I nput voltage Differential input voltage Output peak current (internally limited) Power dissipation at Tease ,,;;; 75°C Storage and junction temperature ± 22 V Vs ± 15 3.5 25 -40 to 150 V A W °C ORDERING NUMBERS: TDA 2020 A82 dual in-line plastic package TDA 2020 A92 quad in-line plastic package TDA 2020 AC2 dual in-line plastic package with spacer TDA 2020 AD2 quad in-line plastic package with spacer MECHANICAL DATA Dimensions in mm 691 6/82 CONNECTION AND SCHEMATIC DIAGRAMS (top view) -SUPPLY VOLTAGE I OUTPUT Nt " Nt -SUPPLY VOLTAGE 3 12 POWER LIMITING 10 COMPE NSATION Nt Nt -SUPPLy' VOLTAGES o[ Nt NON INVERTING • INPUT COMPENSATION 7 [ 8 INVERTING INPUT The copper slug is electrically connected to pin 5 (substrate) TEST CIRCUIT ~ Dl IOfJF Vi o9Jlr--.---.------4+ Vo 14 4.7fJF 0.1 ~F 100fJF R3 100 kn Rl 33 kn C7 5"/. C8 * 02 R2 100kn 5'/. 5-1143/3 *IN4001 OR EQUIVALENT THERMAL DATA Rthl-case max Thermal resistance junction-case 692 3 °C/W ELECTRICAL CHARACTERISTICS (Refer to the test circuit, V, = ± 17V, Tamb = 25°C unless otherwise specified) V, Supply voltage Id Quiescent drain current Ib Input bias current Vos Typ. Min. Test conditions Parameter ±5 V, ~ Max. ± 22 ± 22 V Unit V 60 mA 0.15 f.LA I nput offset voltage 5 mV 10 , I nput offset current 0.05 Vas Output offset voltage Po Output power 10 d ~ T case f ~ Vs Vs V ~ , d ~ ~ ~ Vi I nput sensitivity , , d ~ Gv ~ P0 ~ Vs V ~ , B ~ ~ Frequency response (-3 dBI RL~ Distortion Pa G v ~ 30 dB 1% 7DoC 40 to 15000 Hz ± 17V ± 1SV ± 1SV RL ~ 4 n RL ~ 4n RL ~ S n 10% Gv f ~ , V Gv f f Gv Voltage gain (open loop) RL ~ 4n RL ~ Sn 30dB 15W f ± 17V ±1SV RL~ 4n RL ~ sn 4n C4 ~ ~ W W W 24 20 W W 30 dB 1 kHz ± 17V ±1SV 1 kHz 260 3S0 mV mV 10 to 160000 Hz . 6S pF ~ ~ ~ ~ ~ 1 kHz 40 to 15 000 Hz 0.2 0.3 1 % % 150 mW to 15W ±1SV RL ~ 8 n 30dB T case .; 700 C % % 0.1 0.25 1 kHz 40 to 15 000 Hz 5 Mn dB 100 RL ~ 4 n Gv ~ 1S.5 20 16.5 ~ ~ P0 Input resistance (pin 7) ~ 15 150 mW to 15W G v ~ 30 dB RL ~ 4n T case .; 700 C f f Ri mV ~ T case .; 70' C V V f.LA 100 Voltage gain (e lased loop) f ~ 1 kHz 29.5 693 30 30.5 dB ELECTRICAL CHARACTERISTICS (continued) Parameter Test cond itions Min. eN I nput noise voltage RL~ iN I nput noise current B(-3 dB) ~ 10 to 20,000 Hz SVR SupplV voltage rejection Gv RL~ 4D. f ripple ~ 100 Hz Id Drain current Tsd Tsd 4D. ~ ~ 18.5W RL ~ 4D. P0 ~ 16.5W 8D. V5 ~ Thermal shut-down case Fig. 1 - Output power vs. supply voltage !'101 ~ '1 a::. Unit 4 I'V 0.1 nA 50 dB 1 A 0.7 A 140 °C ,"0; 0(' ±18V Thermal.hut-down junction temperature + .............. "' ........ + ......... Max. 30dB P0 RL~ TVp. [:;\1\1 Fig. 2 - Output power vs. supply voltage Fig. 3 - Distortion vs. output power d ('10) f 8 - ~ 1kHz G v '" JOd slf--++++tfflt---Ittttttttl -- II , 16 694 18 £'t's (v) 10-' '0 ., Po(W} Fig. 4 - Distortion vs. output power (R L =4.11) Fig.5 - Distortion vs. output power (R L =8.11) Fig. 6 - Distortion vs. frequency d (•., 1--+-1f-t+tt+tto--::c';;;t+ 1tt-Htf--+-+--H+I+lI Vs "118V Rl"aJl Gv"30.n. 0.81----- - 0.' 1--+-t+HtlIIf--++1f-1tHtt-----1-+++Ht1I 0.4 f-+++++ttll---++Ht-H#---H-H+Il1I ! ! 0.1, f- - 0.' H--ti-H~jf-H++H~+-f-Hj-Hlf--+++I-HlH ./'5 kHz lkHJ 40Hz 10' Fig. 7 - Output power vs. frequency Fig. 8 - Sensitivity vs. output power (R L =4n) 10' 104 f (Hz) Fig. 9 - Sensitivity vs. output power (R L =8.11) (W) RL =81l. f 20 200 16 I-- Vs=.t18V RL=8 H-++-¥-f'G.:"'..:.30:,,dc:H :lkHz B JOO H-+II--+-H-+++-H-+-++-H 120 H++-++-j--l+++-H-+-++-H BOf-If-+++-H-,j......"F+-H++-H 160 Gy "30d d , 10 10' .. =1°1. 10' 10' f (Hz) Fig. 10 - Open loop frequency response with different values of the rolloff capacitor C4 .,~nT~-rrmm- ----.--~ THERMAL DATA Rth j-case max Thermal resistance junction-case 701 3 ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Vs= ±20V, T amb = 25°C unless otherwise specified) Test conditions Parameter Vs Supply voltage Id Quiescent drain current Ib Input bias current Vos Min. Typ. ±5 40 V s = ±25V Max. Unit ± 25 V 80 mA 0.15 }.tA I nput offset vo Itage 5 mV los Input offset current 0.05 }.tA Vos Output offset voltage VeE(sat) Output saturation voltage I:! t-requency response (-3 dB) d Distortion I ntermodu lation Rj I nput resistance (pin 7) Gv Voltage gain (open loop) 10 100 mV 10 = 0.5A ± 1.7 ±2 V 10 = 0.5A 10 to 160000 G v= 30 dB 10 = 0.5A f = 1 kHz f = 40 to 15000 Hz ._DIN 45500 f Gv Voltage gain (closed loop) eN Input noise voltage 0.05 0.2 = Hz 0.3 % % 0.2 % 5 MD. 100 dB 1 kHz 29.5 30 30.5 dB 4 }.tV 0.1 nA 50 dB 160 100 mA mA 145 °C 135 °C B (-3 dB) = 10 to 20 000 Hz iN Input noise current SVR Supply voltage rejection f ripple= 100 Hz G v = 30 dB Id Drain current Po = 4.5W Po = 2W Tsd Thermal shut-down junction temperatu re Tsd Thermal shut-down case temperature Ptot = 5W 702 R L = 36D. R L = 36D. 35 ! 0.,_ Fig. 1 - Qu iescent current vs. supply voltage Fig. 2 - Output current vs. Fig. 3 - Power dissipation vs. supply voltage V CE (sat) 40 G-/B61 f- I+-r- + Ptol IWI HI R:3 1 "~ 10 0.2 23 1.6 !Vs(V) Fig. 4 - Open loop frequency. response with different values of the rolloff capacitor Fig. 6 - Supply voltage rejection vs. voltage gain C-l'" c j~ 19 (pFl Vs"!20V 'KK 120 I 'i- 10' ~o 17 1.8 Fig. 5 - Value of rolloff capacitor vs. voltage gain for different bandwidths (,-15511 100 EffiWffiiHEiE I li', " WI B~40 ~Hz '0 1--+-+-+----j-+---jtrlpp le =100Hz - 20 1--+--+-+-+--+---+-+----1-"-+:-......-""4 1 ('°4), ~~s '0 100pF 220pF 15pF II III ~ 6~ ~ i'--.ffililli ~l--, IIIII IIIII IIIII '" 160kHz I IIIh 7pF--' 20 I ~~i 60 II 1"i,10 1 106 ~T* I ~ I 1. • , G, l(Hz) .. ', [0 .;~;+o·t-h 'AI 20 Vs:22011 - r-- RL =3sn R L = 36n Gv" 30dB II 10 U 0.4 I 0.' -10 +- 01 rt=- rt= 20 t(ps) 703 1J ~, 0.2 f--' I I 0.5 - H- 0,6 1/ -20 '0 Fig. 8 - Output current vs. case temperatu re Fig. 7 - Transient response ,.," 20 40 1 , ::t~,- 60 80 H H100 120T case (OC) 40 APPLICATION INFORMATION Fig.9 - Applic~tion circuit for P0= 30 to 50W .Y, Note: Resistors R9, aJ,P, Rll and R12 are optional. Their pu~pose is to change the allowable operating area of the output transistors (see fig. 23). The designer can choose different values according to working conditions (V s, R L) and to the SOA of the external transistors. When these resistors are not used the application circuit is modified as follows: .2 lJkO a) R7, R8 are changed to 25 mn. b) R 10, R12 are substituted by a short ., circuit . L-_-+____ ~- Fig. 10 - P.C. board and component layout for the circuit of fig. 9 (1:1 scale) Po R L=4.(1 30W 40W ± Vs 18V 20V R9/Rll - 2.2 kn Rl0/R12 4.7n 4.7n 01 BD707 or BOW21A BD907 or BOW21A 02 B0708 or BOW22A B0908 or BOW22A Note: If resistors R9, R1D, Rll and R12 are not used, R7 and R8 must be 25 mil. The following table shows what length of wire (copper and constantan) is required to obtain a resistor of 25 mn for different values of -"U- 100 kfl ~~#T 10 kO n ~ I ,56n!I:; • I .L =1 kO BOO24A l/ZW ! + r,-.'2v For this application the maximum value of Vs in no-load condition is ± 45V. 707 Application suggestions for circuit in fig. 20 Using the two circuits shown in fig. 21 and fig. 22 it is possible to use a transformer with a large spread of output voltage between load and no-load condition. The voltage on pins 1 and 5 follows Vo according to the equations: V 1= V 0 + (V s - Vol • -':::R71-,-,~=;2R:::-;2-- Fig. 21 - 2 V BE R2 V5= Vo - (Vs + Vol • ---;R""1:;-'-'-+"'R~2;- + 2 VBE R2 while the voltage between pins 1 and 5 is a constant. In fact: ~--'----+---JVo~ ~ -V 1-V 5- V' V 1-5s 2 R2 R1+R2 - 4 V BE TO OUTPUT POWER TRANSISTORS V 1-5 must not exceed 50V and then the maximum value of Vs in no-load condition will be: Vs max= (50 + 4 VBEI • R1 + R2 2 R2 R1 :'-255211 The minimum value of Vs depends on the output power requested and will be: VS(min)= V L + VCE(sat) with VL= .J 2 Po RL Resistance R2 must be greater than R 1 to guarantee a positive voltage on pin 1 and a negative voltage on pin 5 for correct working of TDA 2020D. Note 1 - Between pins 1 and 5 a ceramic capacitor must be inserted to guarantee good stability. Note 2 - It is possible to insert an electrolytic capacitor (10 ).LF) between pin 1 and GND and between pin 5 and GND, but in this case the maximum output voltage must be V peak=23V. With the circuit in fig. 22 the voltage at pins 1 and 5 is kept constant by two zener diodes. In load conditions a current equal to 10= 1/{3 flows in R; the value of R is then given by (VCE-VBEI R = I {3. In no-load condition, if !:N is the in- Fig. 22 rfY:T'V I :"F . VO TO OUTPUT POWER TRANSfS TORS crease in the supply voltage, the zener diodes dissipate a power depending on !:N and {3 according to the equation: 5-1553 708 SHORT CIRCUIT PROTECTION The most important innovation in the TOA 20200 is an original circuit which limits the current of the output transistors. Fig. 23 shows that the maximum output current is a function of the collector-emitter voltage; hence the output transistors work within their safe operating area (fig. 24). This function can therefore be considered as being peak power limiting rather than simple current limiting. By choosing the appropriate values for R9, R 10, R11, R12, (fig. 9) the maximum output current can be established as a function of the SOA of the output parameters being used. Fig. 23 - Maximum output current vs. vo Itage [V C~(sat)] across one output transistor, for different values of R 10 (typical application circuit) Fig. 24 - Safe operating area and collector characteristics of the protected power transistor \ \"'--P tot =k \ Ie max \ \ 1O:Rlh4.7; = 11" kn RIO" RIZ"I,,7n; R9"RII,,_ Rl0",R12:0 . R9:RlI:_ 6 12 18 24 ]0 36 42 48 Vc.E(Vl os 076411 THERMAL SHUT-DOWN The presence of a thermal limiting circuit offers the following advantages: 1) An overload on the output (even if it is permanent) or an above-limit ambient temperature can be easily withstood since the T j cannot be higher than 150°C. 2) The heatsink can have a smaller safety factor than a conventional circuit. There is no possibility of device damage due to high junction temperature. If, for any reason, the junction temperature increases up to 150°C, the thermal shut- "~~~--ill-----, ,.--'-1 ~"1 ,n Rio I 22KJ1 22KQ 717 '00,",} 0' F iJ an Tweeter (SW) PRACTICAL CONSIDERATIONS Printed circuit board The layout shown in fig. 16 should be adopted by the designers. If different layouts are used, the ground points of input 1 and input 2 must be well decoupled from the ground return of the output in which a high current flows. Assembly suggestion No electrical isolation is needed between the package and the heatsink with single supply voltage configuration. Application suggestions The recommended values of the components are those shown on application circuit of fig. 13. Different values can be used. The following table can help the designer. Recomm. value Component Larger than recommended value Purpose Smaller than recommended value Rl 22 kn Closed loop gain setting Increase of gain Decrease of ga in R2 680 n Closed loop gain setting Decrease of ga in Increase of ga in R3 22 kn Non inverting input biasing Increase of input impedance Decrease of input impedance R4 1n Frequency stability Danger of osci Ilat. at high frequencies with induct. loads R5 '= 3 R2 Upper frequency cutoff Poor high frequencies attenuation Cl 1 "F C2 Danger of oscillation Inpu.t DC decoupling Increase of low frequencies cutoff 22" F Inverting DC decoupling Increase of low frequencies cutoff C3,C4 0.1 "F Supply voltage bypass Danger of oscillation C5,C6 100 "F Supply voltage bypass Danger of oscillation C7 0.22"F Frequency stability Danger of oscillat. C8 D1,D2 - 1 21T B R1 1 N4001 Upper frequency cutoff Smaller bandwidth Larger bandwidth To protect the device against output voltage spikes 718 SHORT CIRCUIT PROTECTION The TDA 2030 has an original circuit which limits the current of the output transistors. Fig. 20 shows that the maximum output current is a function of the collector emitter voltage; hence the output transistors work within their safe operating area (fig. 21). This function can therefore be considered as being peak power limiting rather than simple current limiting. The TDA 2030 is thus protected against temporary overloads or short circuit. Should the short circuit exist for a longer time, the thermal shut-down protection keeps the junction temperature within safe limits. Fig. 21 - Safe operating area and' collector characteristics of the pro· tected power transistor Fig. 20 - Maximum output current vs. voltage [V CEsat] across each output transitor Q, aroa\ Second breakdown 0, -, 10 .... CEQ2 (v) -30 10 -10 S-075t,11 THERMAL SHUT-DOWN The presence of a thermal limiting circuit offers the following advantages: 1) An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily supported since the T j cannot be higher than 150°C. 2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature. If for any reason, the junction temperature increases up to 150°C, the thermal shut-down simply reduces the power dissipation and the current consumption. The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 24 shows this dissipable power as a function of ambient temperature for different thermal resistance. 719 Fig. 23 - Output power and drain current vs. case temperature (R L = 8n) Fig. 22 - Output power and drain current vs. case temperature (R L = 4n ) Fig. 24 - Maximum allowable power dissipation vs. ambient temperature ld (A) 16 12 12 10 50 0.6 0.6 0.4 0.4 01 0.2 100 50 100 150 50 Tcase(OC) Dimension: suggestion. Fig. 25 - Example of heat-sink The following table shows the length that the heatsink in fig. 25 must have for several values of Ptot and Rth . Ptot(W) Length of heatsink (mm) Rth of heatsink (OC/W) ..... _~ _____.~5~O_ _ _ _ _+l 720 12 8 6 60 40 30 4.2 6.2 8.3 ~i, ; :\ LINEAR INTEGRATED CIRCUIT I-I I PRELIMINARY DATA law Hi-Fi AMPLIFIER AND 30W DRIVER The TDA 2030A is a monolithic IC in Pentawatt@package intended for use as low frequency class AB amplifier. With Vs max= 44V it is particularly suited for more reliable applications without regulated supply and for 30W driver circuits using low-cost complementary pairs. The TDA 2030A provides high output current and has very low harmonic and cross-over distortion. Further the device incorporates a short circuit protection system comprising an arrangement for automatically limiting the dissipated power so as to keep the working point of the output transistors within their safe operating area. A conventional thermal shut-down system is also included. ABSOLUTE MAXIMUM RATINGS Vs Vi Vi 10 Ptot Tstg • TJ Supply voltage Input voltage Differential input voltage Peak output current Total power dissipation at Tcase= 90°C Storage and junction temperature ± 22 Vs ±15 3.5 20 -40 to 150 V V A W °C ORDERING NUMBER: TDA 2030AV MECHANICAL DATA Dimensions in mm 721 6/82 CONNECTION DIAGRAM (top view) '~<.D•. jj . _ l,r::!::,,"~ ~ NON INVERTING INPUT $-2128/1 TEST CIRCUIT THERMAL DATA Rth j-case Thermal resistance junction-case max 722 3 ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Vs= ±16V, Tamb = 25°C unless otherwise specified) Parameter Vs Supply voltage Id Quiescent drain current Ib Input bias current Test conditions Min. Typ. Max. Unit ± 22 V 50 80 mA 0.2 2 /lA ±6 Vs=±22V Vos I nput offset voltage ±2 ± 20 mV los I nput offset current ± 20 ± 200 nA Po Output power BW Power bandwidth SR Slew Rate Gv Open loop voltage gain Gv Closed loop voltage gain d Total harmonic distortion d = 0.5% G v = 26 dB f = 40 to 15000 Hz RL= 4 n RL= 8 n 15 10 18 12 Vs = ± 19V R L =8n 13 16 Po= 15W RL = 4 n W 100 KHz 8 V//lsec 80 dB 1 = 1 KHz 25.5 26 26.5 dB Po=0.1t014W RL=4 n 1 = 40 to 15000 Hz 1 = 1 KHz 0.08 0.03 % 0.05 % 0.03 % 0.08 % Po =0.1t09W R L =8 n 1 = 40 to 15000 Hz d2 Second order CC I F intermodulation distortion Po=4W R L = 4n Irl1 = 1 KHz d3· Third order CCIF i ntermodu lation distortion 11 = 14 KHz 12 = 15 KHz 21 1 -1 2 = 13KHz I nput noise voltage B = curve A 2 B = 22 Hz to 22 KHz 3 eN /lV iN I nput noise current B = curve A 50 B = 22 Hz to 22 KHz 80 R L = 4n Rg= 10 Kn B = curve A Po = 15W 106 Po = 1W 94 10 pA SIN Signal to noise ratio 200 dB 723 ELECTRICAL CHARACTERISTICS (continued) Parameter Test conditions RI I nput resistance (pin 1) (open loop) f = 1 KHz SVR Supply voltage rejection R L =4n Rg= 22 Kn Gv = 26dB f = 100 Hz I=in 1 _ -C::innl.a ell""!..1 ";:'" " ' ; : J ' - --1""1""', . .. 0.5 5 Mn 54 dB 145 °C i"'-.... 60 GA'N .0 ,/ •0 I I Fig. 3 - Output power vs. supply voltage G-10601 l" / ',J'.. 10 .. ::-..... Unit ~rnnli.f:iR" PHASE ,00 .0 Max. _ ••• ,... ........ . Fig. 2 - Open loop-frequency response G-'"" I ) -.0 Typ. Thermal shut-down junction temperatu re Tj ,-, Min. "'. ~ .- f - • 'w", Fig. 4 - Total harmonic distortion vs. output power(*) .....-,----,-,--r_---,--,--"':!.!i''''---, , ~v=~l~·ZS fa40Hz to 15KHz 2' ./ .0 . /K." " " V ./ k;;- V ......... V ...... 115;3811 :,lIs =3211 0.3 1-+_I-+_;:"L=,=6"-~!I=rURL='~='=I-----i V I ·.0 ·60 '0 " " " *) Test using noise filters. 724 3. 0.1 0.3 10 30 Po(W) I Fig. 5 - Two tone CCIF intermodulation distortion (;-'607 (.,d .) .. I" . II. I J1V Po: 4W - - R L :4fi IG v :26dB I -r.-~ I -...+- i-t-! I I f--f--Il---i-- - ~~ f-- '0 r-r"TTTTmr--"-jTTTTTnr--T~\-m, 2. " ~"50.n. r- =4,n. 20 0.1 J 0.0 3 ri DRciR J, ) (t 2 , i\ " ORDER (2f,-f21 i, ./ I 30 100 300 11( 311. 10K t (Hz) 10 I (KHz) -50 50 100 Fig. 8 - Split-supply high power amplifier (TOA 2030A + B0907/B0908) Fig. 9 - Single supply high power amplifier (TOA 2030A + B0907/B0908) Rl 56K.ll. ! ~1~~H4~~~~~--~+H~ "s:IISV . I 0.3 Fig. 7 - Maximum allowable power dissipation vs. ambient temperature Fig. 6 - Large signal frequency response C3 R6 Io.22JJF 1.5ll. 4ll. 725 Fig. 10 - P.C. board and component layout for the circuit of fig. 9 (1:1 scale) GND IN RL GND +Vs Typical performance of the circuit of fig. 9 Parameter Test conditions Min. Typ. Max. Unit 36 44 V Vs Supply voltage Id Quiescent drain current Vs = 36V Po Output power d = 0.5% RL=4n f = 40Hz to 15KHz Vs= 39V 35 Vs= 36V 28 d = 10%; f = 1 KHz Vs= 39V 44 R L =4n Vs= 36V 35 50 mA W W Gv Voltage gain SR Slew Rate d Total harmonic distortion f = 1 KHz 19.5 20 8 f = 1 KHz 0.02 f=40Hzt015KHz 0.05 20.5 dB V I!-,sec % Po= 20W Vi I nput sensitivity Gv = 20 dB Po= 20W f = 1 KHz RL=4n 890 SIN Signal to noise ratio RL= 4.11 Rg= 10 Kn B = curve A Po= 25W 108 Po=4W 100 mV dB 726 35 30 t-- Pp,-------,-,-~~~~ d ('10) TOA 20JOA B0907-60908 Po (w) Fig. 13 - Output power vs. input level Fig. 12 - Total harmonic distortion vs. output p?~~,: Fig. 11 - Output power vs. supply voltage (WI 18 G v " 20 dB ~ d" ~;:~~<:1015KHzf--+-+-f--7'"-1 0.5 I. / /' 15 20 f---- '5 - //, ,,/ 0' V I 24 03 /' 26 r---t-+-L---f I 36 28 30 Fig. 14 - Power dissipation vs. output power , 125 Vs=36V Rl ,,1,11. I I 10 - I-- Cm-1~LET~ V / I Y; / t ,,1KHz - AJPLlFiER I r I I r- I' 809b7 - sl0908 t TDj 2030 1 I I I " 175 250 350 500 700 Vi (mV) Fig. 15 - Typical amplifier whit split power supply G-4701 I ! ) '0 Po(W) I I Fig. 16 - P.C. board and component layout for the circuit of fig. 15 (1 727 1 scale) Fig. 17 - Bridge amplifier whit split power supply (Po= 34W, Vs= ±16V) 811 22Kll R7 C5 ~22JJF R 6.:t680 11 5-5218 Fig. 18 - P.C. board and component layout for the circuit in fig. 17 (1:1 scale) 728 Multiway speaker systems and active boxes Multiway loudspeaker systems provide the best possible acoustic performance since each loudspeaker is specially designed and optimized to handle a limited range of frequencies. Commonly, these loudspeaker systems divide the audio spectrum into two or three bands. To maintain a flat frequency response over the Hi-Fi audio range the bands covered by each louds· peaker must overlap slightly. Imbalance between the loudspeakers produces unacceptable results there· fore it is important to ensure that each unit generates the correct amount of acoustic energy for its seg· ment of the audio spectrum. In this respect it is also important to know the energy distribution of the music spectrum to determine the cutoff frequencies of the crossover filters (see fig. 19). As an example, a lOOW three-way system with crossover frequencies of 400 Hz and 3 KHz would require 50W for the woofer, 35W for the midrange unit and 15W for the tweeter. Both active and passive filters can be used for crossovers but today active filters cost significantly less than a good passive filter using air-cored inductors and non-electrolytic capacitors. In addition, active filters do not suffer from the typical defects of passive filters: power loss increased impedance seen by the loudspeaker (lower damping) difficulty of precise design due to variable loudspeaker impedance. Fig. 19 - Power distribution vs. frequency Fig. 20 - Active power filter ~ HH++~~~++~4+h+~H+++~ 00 ,. o. H+++i-t"rm"l-fII-r7'l++-h- 5. H+++H+-h-~~~++~++h+++rH '0 H+t+H+ffl+-f+-t+-h-P-h-f-l+"rH HH+h,*ffi-t+4-t+++·f7-HHHJ·+-f-h 10 Obviously, active crossovers can only be used if a power amplifier is provided for each drive unit. This makes it particularly interesting and economically sound to use monolithic power amplifiers. In some applications, complex filters are not really necessary and simple RC low-pass and high-pass networks (6 dB/octave) can be recommended. The results obtained are excellent because this is the best type of audio filter and the only one free from phase and transient distortion. The rather poor out of band attenuation of single RC filters means that the loudspeaker must operate linearly well beyond the crossover freqllency to avoid distortion. A more effective solution, named "Active Power Filter" by SGS is shown in fig. 20. The proposed circuit can realize combined power amplifiers and 12 dB/octave or 18 dB/octave high-pass or low-pass filters. In practice, at the input pins of the amplifier two equal and in-phase voltages are available, as required for the active filter operation. The impedance at the pin (-) is of the order of lOOn, while that of the pin (+) is very high, which is also what was wanted. 729 The component values calculated for fc = 900 Hz using a Bessel 3rd order Sallen and Key structure are: Cl = C2 = C3 22 nF Rl R2 R3 8.2 KO 5.6 KO 33 KO Using this type of crossover filter, a complete 3-way 60W active loudspeaker system is shown in fig. 21. It employs 2nd order Buttherworth filters with the crossover frequencies equal to 300 Hz and 3 KHz. The midrange section consists of two filters, a high pass circuit followed by a low pass network. With Vs = 36V the output power delivered to the woofer is 25W at d = 0.06% (30W at d = 0.5%). The power delivered to the midrange and the tweeter can be optimized in the design phase taking in account the louspeaker efficiency and impedance (R L = 40 or 80). It is quite common that midrange and tweeter speakers have an efficiency 3 dB higher than woofers. Fig. 21 - 3 way 60W active loudspeaker system (V s = 36V) ~r,,-0-ou-F~~~0.-,,-uF--~O-.5-A---'N-40-0~~~_~1~O+36V ............ LOW-PA~S WOOFER +36V BAND - PA55 300 Hz to 3~Hz l1i14001 1 'O,..F 'A 8A }22I'F MIDRANGE 1N4001 HIGH-PAS!) 3K.Hz '!L'OO)"'F +v. 81l. l,22,..F 22K.1l. I TWEETER 22KJl 5 - LeU 730 Musical instruments amplifiers Another important field of application for active systems is music. In this area the use of several medium power amplifiers is more convenient than a single high power amplifier, and it is also more reliable. A typical example (see fig. 22) consist of four amplifiers each driving a low-cost, 4n, 12 inch loudspeaker. Th is appl ication can supply 80 to 160W rms. Similar output power can be obtained by a single amplifier using the "superbridge" circuit of fig.24.As shown in the diagram of fig. 16 this circuit can supply output power of 120W and more. Fig. 22 - High power active box for musical instrument Fig. 23 - Output power vs. supply voltage (application circuit of fig. 24) G" l P, (W ) ! 0 IN /' 0 1/,'/ 80 50 d_""/ ]7V ~ 59& V / A ~'I. ~- I I I I I V 20 :!:12 Fig. 24 - 120W "superbridge" power ampl ifier 731 !11, ±1S !18 \Is (V) Transient intermodulation distortion (TIM) Transient intermodulation distortion is an unfortunate ph en omen associated with negative-feedback amplifiers. When a feedback amplifier receives an input signal which rises very steeply, i.e. it contains high-frequency components, the feedback can arrive too late so that the amplifiers overloads and a burst of intermodulation distortion will be produced as in fig. 25. Since transients occur frequently in music this is obviously a problem for the designer of audio amplifiers. Unfortunately, heavy negative feedback is frequently used to reduce the total harmonic distortion of an amplifier, which tends to aggravate the transient intermodulation (TIM) situation. The best known method for the measurement of TIM consists of feeding sine waves superimposed onto square waves, into the amplifier under test. The output spectrum is then examined using a spectrum analyser and compared to the input. This method suffers from serious disadvantages: the accuracy is limited, the measurement is a rather delicate operation and an expensive spectrum analyser is essential. A new approach (see Technical Note 143) applied by SGS to monolithic amplifiers measurement is fast cheap-it requires nothing more sophisticated than an oscilloscope - and sensitive - and it can be used down to the values as low as 0.002% in high power amplifiers. The "inverting-sawtooth" method of measurement is based on the response of an amplifier to a 20 KHz sawtooth waveform. The amplifier has no difficulty following the slow ramp but it cannot follow the fast edge. The output will follow the upper line in fig. 26 cutting of the shaded area and thus increasing the mean level. If this output signal is filtered to remove the sawtooth, a direct voltage remains which i"Ji<;dL'" Li,,, dll'VUIIL VI Tiivi Ji,ivriiun, aithuugh it is ciiiiicui1lO measure because i1 is indis1inguisnabie from the d.c. offset of the amplifier. This problem is neatly avoided in the IS-TIM method by periodically inverting the sawtooth waveform at a low audio frequency as shown in fig. 27. In the case of the sawtooth in fig. 26 the mean level was increased by the TIM distortion, for a sawtooth in the other direction the opposite is true. Fig. 26 - 20 KHz sawtooth waveform Fig. 25 - Overshoot phenomenon in feedback amplifiers v, - --,....., I V3 II --- I-- ~ Fig. 27 - Inverting sawtooth waveform f-- r-- mTmD OUTPUT SIGNAL_ _ _..J (I) The result is an a.c. signal at the output whose peak-to-peak value is the TIM voltage, which can be measured easily with an oscilloscope. If the peak-to-peak value of the signal and the peak-to-peak of the inverting sawtooth are measured, the TIM can be found very simply from: TI M = ---,-..,.V..=o-,,-u-,-t_ _ • 100 Vsawtooth 732 'I, , ,., j i/ 11 ii In fig. 28 the experimental results are shown for the 30W amplifier using the TDA2030A as a driver and a low-cost complementary pair. The measured performances are perfectly suitable for Hi-Fi systems. A simple RC filter on the input of the amplifier to limit the maximum signal slope (SS) is an effective way to reduce TIM. The diagram of fig. 29 originated by SGS can be used to find the Slew-Rate (SR) required for a given output power or voltage and a TI M design target. For example if an anti-TIM filter with a cutoff at 30 KHz is used and the max. peak-to-peak output voltage is 20V then, referring to the diagram, a Slew-Rate of 6V /J1S is necessary for 0,1% TIM. As shown Slew-Rates of above 10V/IlS do not contribute to a further reduction in TIM. Slew-Rates of 100V/IlS are not only useless but also a disadvantage in Hi-Fi audio amplifiers because they tend to turn the amplifier into a radio receiver. Fig. 28 - TIM distortion vs. output power Fig. 29 - TIM design diagram (fc= 30 KHz) 0"'l1li_ v om '-.L.l.LLl,.il,1L-...L..L,Ll.J.J, 0,1 LL.L.l.JLWll--.JLl..LllWL...l...Ll-1..W.lJ L-.L..L.L,.w,.LUJ, .IJJ, 0.1 1 10 Po(W) 0.1 10 Vo(Vpp) Power supply Using monolithic audio amplifier with non-regulated supply voltage it is important to design the power supply correctly. In any working case it must provide a supply voltage less than the maximum value fixed by the IC breakdown voltage. It is essential to take into account all the working conditions, in particular mains fluctuations and supply voltage variations with and without load. The TDA 2030A (V. max= 44V) is particularly suitable for substitution of the standard Ie power amplifiers (with V. max= 36V) for more reliable applications. An example, using a simple full-wave rectifier followed by a capacitor filter, is shown in the table and in the diagram of fig. 30. A regulated supply is not usually used for the power output stages because of its dimensioning must be done taking into account the power to supply in the signal peaks. They are only a small percentage of the total music signal, with consequently large overdimensioning of the circuit. Even if with a regulated supply higher output power can be obtained (V. is constant in all working conditions), the additional cost and power dissipation do not usually justify its use. Using non-regulated supplies, there are fewer design restriction. In fact, when signal peaks are present, the capacitor filter acts as a flywheel supplying the required energy. In average conditions, the continuous power supplied is lower. The music power/continuous power ratio is greater in this case than for the case of regulated supplied, with space saving and cost reduction. 733 .,I: Mains (220V) +20% +15% +10% -10% -15% -20% Secondary voltage 28.8V 27.6V 26.4V 24V 21.6V 20.4V 19.2V Fig. 30 - DC characteristics of 50W non-regulated supply DC output voltage (V 0) 10= 0 43.2V 41.4V 39.6V 36.2V 32.4V 30.6V 28.8V 10= O.1A 10= 1A 42V 40.3V 38.5V 35V 31.5V 29.8V 28V 37.5V 35.8V 34.2V 31V 27.8V 26V 24.3V "0 'v eVppl G8C-tH-l744-JO 3. 34 R IPPLE I ) t)'" 220 V \ l"- 31 I ""'- RIPPLE f- 30 50VA ....... "''" L '0 f- --......... "OUT(DC) ~ ""'j--...., 28 0.8 15 20 Io(A) SHORT CIRCUIT PROTECTION The TDA 2030A has an original circuit which limits the current of the output transistors. This function can be considered as being peak power limiting rather than simple current limiting. The TDA 2030A is thus protected against temporary overloads or short circuit. Should the short circuit exist for a longer time, the thermal shut-down protection keeps the junction temperature within safe limits. THERMAL SHUT-DOWN The presence of a thermal limiting circuit offers the following advantages: 1) An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily supported since the T j cannot be higher than 150°C. 2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature. If for any reason, the junction temperature increases up to 150°C, the thermal shut-down simply reduces the power dissipation and the current consumption. 734 LINEAR INTEGRATED CIRCUIT 22W Hi-Fi AUDIO POWER AMPLI FIER The TDA 2040 is a monolithic integrated circuit in Pentawatt ® package, intended for use as an audio class AB amplifier. Typically it provides 22W output power (d = 0.5%) at Vs = 32V/4n. The TDA 2040 provides high output current and has very low harmonic and cross-over distortion. Further the device incorporates a patented short circuit protection system comprising an arrangement for automatically limiting the dissipated power so as to keep the working point of the output transistors within their safe operating area. A thermal shut-down system is also included. ABSOLUTE MAXIMUM RATINGS Vs Vi Vi 10 . Ptot Tstg , Tj Supply voltage I nput voltage Differential input voltage Output peak current (internally limited) Power dissipation at Tease = 75° C Storage and junction temperature ORDERING NUMBER: ± 20 V Vs ± 15 V 4 25 -40 to 150 A W °C TDA 2040V MECHANICAL DATA Dimensions in mm l5.8""'~ 735 6/82 CONNECTION DIAGRAM (top view) ~I! l1ri:,?~::",,~ ~ ~ "" NON INVERTING INPUT 5-262B/1 TEST CI RCUIT 5 - 5383 THERMAL DATA Rth j-case max Thermal resistance junction-case 736 3 ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Vs = ±16V, Tamb = 25°C unless otherwise specified) Parameter Vs Supply voltage Id Quiescent drain current Test conditions Min. Typ. Max. ± 2.5 Unit V Vs= ± 4.5V 45 30 mA 100 mA Ib Input bias current 0.3 1 p.A Vos Input offset voltage ±2 ± 20 mV ±200 nA los Input offset current Po Output power BW Power bandwidth Gv Open loop voltage gain Gv Closed loop voltage gain d Total harmonic distortion eN iN I nput noise voltage 20 22 12 W f = 15 KHz RL= 4n 15 1S W Po= 1W R L =4n 100 KHz SO dB 29.5 Po= 0.1 to 10W R L =4n f = 40 to 15000Hz f = 1 KHz 30 O.OS 0.03 B = curve A 2 B '= 22 Hz to 22 KHz 3 30.5 dB % p.V I nput noise current B = curve A 50 B = 22 Hz to 22 KHz SO pA I nput resistance (pin 1) SVR Supply voltage rejection Tj T case= 60°C R L =4n RL=Sn f = 1 KHz Rj 1"/ d = 0.5% f = 1 KHz Efficiency Gv = 30 dB R L = 4n f=100Hz Rg= 22 Kn Vrjpple= 0.5 V rms f = 1 KHz Po= 12W Po= 22W R L = sn R L =4n Thermal shut-down junction temperatu re 737 0.5 5 Mn 40 4S dB 66 63 % 145 °C APPLICATION INFORMATION Fig. 1 - Amplifier with split power supply (*) Fig. 2 - P.C. board and components layout of the circuit of fig. 1. ----~----.n-vs 22 ~ ~ :I:100~~:I: 5-5137 Vs = ± 16V RL=4D PO;;;' 15W (d = 0.5%) Fig. 3 - Amplifier with single supply (*) Fig. 4 - P.C. board and components layout of the circuit of fig. 3. 5-482612 * In the case of highly inductive loads protection diodes may be necessary. 738 APPLICATION INFORMATION (continued) Fig. 5 - 30W Bridge amplifier with split power supply IN C1 5-j] l-..----f---'-l 2.2 )-IF 22K ..'l eD Vs = ± 16V RL = 8n Po;;' 30W (d = 0.5%) Fig.6 - P.C. board and components layout for the circuit of fig. 5. 739 APPLICATION INFORMATION (continued) Multiway speaker systems and active boxes Multiway loudspeaker systems provide the best possible acoustic performance since each lodspeaker is specially designed and optimized to handle a limited range of frequencies. Commonly, these loudspeaker systems divide the audio spectrum into two, three or four bands. To maintain a flat frequency response over the HiFi audio range the bands covered by each loudspeaker must overlap sl ightly. Imbalance between the loudspeakers produces unacceptable results therefore it is important to ensure that each unit generates the correct amount of acoustic energy for its segment of the audio spectrum. In this respect it is also important to know the enenlV distribution of the music spectrum to determine the cutoff frequencies of the crossover filters (see fig. 7). As an example, a 100 W three-way system with crossover frequencies of 400 Hz and 3KHz would require 50W for the woofer, 35W for the midrange unit and 15W for the tweeter. Both active and passive filters can be used for crossovers but today active filters cost significantly less than a good passive filter using air-cored inductors and non-electrolytic capacitors. In addition, active filters do not suffer from the typical defects of passive filters: power loss increased impedance seen by the loudspeaker (lower damping) difficulty of precise design due to variable loudspeaker impedance ,., Fig. 7 - Power distribution vs. frequency G-'66' .) - 90 ~ ~ V lEe -DIN FOR SPEAKER TESTING 80 I i 70 60 MODERN MUSIC II '1/ ! 40 '/: 30 10 Fig. 8 - Active power filter I V ./ , i I 0.02 0.04 O,OB 0.16 0.31 0.63 1.25 2.5 5 10 20 f (KHz) Obviously, active crossovers can only be used if a power amplifier is provided for !lach drive unit. This makes it particularly interesting and economically sound to use monolithic power amplifiers. In some applications, complex filters are not really necessary and simple RC low-pass and high-pass networks (6 dB/octave) can be recommended. The results obtained are excellent because this is the best type of audio filter and the only one free from phase and transient distortion. The rather poor out of band attenuation of single RC filters means that the loudspeaker must operate linearly well beyond the crossover frequency to avoid distortion. A more effective solution, named "Active Power Filter" by SGS is shown in fig. 8. The proposed circuit can realize combined power amplifiers and 12 dB/octave or 18 dB/octave highpass or low-pass filters. In practice, at the input pins of the amplifier two equal and in-phase voltages are available, as required for the active filter operation. The impedance at the pin (-) is of the order of 100.11, while that of the pin (+) is very high, which is also what was wanted. 740 The component values calculated for fc = 900 Hz using a Bessel 3rd order Sallen and C1 = C2= C3 R1 R2 R3 22 nF 8.2 Kn 5.6 Kn 33 Kn Key structure are: In the block diagram of fig. 9 is represented an active loudspeaker system completely realized using power integrated circuits, rather than the traditional discrete transistors or hybrids, very high quality is obtained by driving the audio spectrum into three bands using active crossovers (TDA 2320A) and a separate amplifier and loudspeaker for each band. A modern subwoofer/midrange/tweeter solutionis used. Fig. 9 - High power active loudspeaker system using TDA 2030A and TDA 2040 r- -I 8il : TWEETER I 811. I SUBWOOFER 8il : MIDRANGE 5-5139 741 LINEAR INTEGRATED CIRCUIT PREAMPLIFIER • • • • • • WITH ALC FOR Cr 0 2 CASSETTE RECORDERS EXCELLENT VERSATILITY IN USE (V s from 4 to 20V) HIGH OPEN LOOP GAIN LOW DISTORTION LOW NOISE LARGE AUTOMATIC LEVEL CONTROL RANGE STEREO MATCHING BETTER THAN 3 dB (matched pair) The TDA 2054M is a monolithic integrated circuit in a 16-lead dual in-line plastic package. The functions incorporated are: - low noise preamplifier automatic level control system (ALC) high gain equalization amplifier It is intended as preamplifier in tape and cassette recorders and players (C,02), dictaphones, compressor and expander in telephonic equipments, Hi-Fi preamplifiers and in wire diffusion receivers; for stereo applications the ALC matching is better than 3 dB. ABSOLUTE MAXIMUM RATINGS Supply voltage Total power dissipation at T amb = 50°C Storage and junction temperature ORDERING NUMBERS: 20 500 -40 to 150 TDA 2054M mono applications 2 TDA 2054M stereo applications MECHANICAL DATA Dimensions in mm ~ ~.~~ ~ •••. .....• 0.4 .... · 1 8 . . ' .. . \ . ",' ',', ,,', e 6/82 V mW °C 742 ' ...... a3BI , ".. ,,' ',',' *'OC!I-C CONNECTION DIAGRAM ALC OUTPUT 16 ALC RECOVERY TIME 03 BASE 15 ALC INPUT 01 COLLECTOR Q2 BASE 01 SUPPLY VOLTAGE BASE OUTPUT 01 EMITTER 12 FREOUENCY COMPENSATION 02 EMITTER 11 NON INVERTING INPUT INVERTING INPUT 02 03 GROUND 5-3341 SCHEMATIC DIAGRAM 4 11 10 08 02 09 01 I~ 010 D5 tI I I @ 01 Q2 03 i-~ l OJ' EQUALIZATION AMPLIFIER 15 A LC S-Jt.04 743 TEST CIRCUIT ,---..----------------o.v. 2.2Mfi 150pF 4'7~ IVo 5-3405 THERMAL DATA Rth j-amb max Thermal resistance junction-ambient 200 °C!W ELECTRICAL CHARACTERISTICS (Refer to the test circuit, T amb = 25°C) Parameter Test conditions Vs Supply voltage Id Quiescent drain current Vs=9V S1 = S2 = S3 = at B hFE DC current gain (Q1, Q2, Q3) Ie = 0.1 mA V eE = 5V eN Input noise voltage (Q1, Q2, Q3) le=0,1 mA f = 1 KHz V eE = 5V iN Input noise current (Q1, Q2, Q3) NF Noise figure (Q1, Q2, Q3) Min. Typ·. 4 Max. 20 10 '300 Unit V rnA 500 nV 2 ../Hz pA 0,5 ../Hz V eE = 5V le=0.1 rnA Rg = 4,7 K1'2 B (-3 dB)= 20 to 10000 Hz Gv Open loop voltage gain(for equalization amplifier) V s - 9V Vo Output voltage with A.L,C. Vs = 9V f = 1 KHz eN Equivalent input noise voltage (for equalization amplifier pin 11) V s - 9V G v = 40 dB S1 at B B (-3 dB)= 20 to 20000 Hz Rl Q3 emitter resistance 0.5 4 dB f = 1 KHz 60 Vi= 100mV S1= S2= S3 at A 0,6 V 1.3 }J.V 105 744 150 dB 195 1'2 Fig. 1 - Equivalent input spot voltage and noise cur· rent vs. bias current (tran· sistors 01,02,03) Fig. 2 - Equivalent input noise current vs. frequency (transistors 01, 02, 03) (~):~~aI~~~~IO~H~~I~~)\ -Kalil (;,;;.) (ve) w':~. ~-t e-. " ':J.i ,• e"""~- ~p!' .~;., 10H, ~.~ 1, ''"'' 11;'OkHZ 10' 10 10-' 10' I A tr+:150 "A:-= ,- -1-T~! !I'III 10' 10' I -1 i~ d± I I 50 A ,!II ... ImA 10' 10' «Hz) Fig. 6 - Current gain vs. collector current (transistors 01,02,03) NF (dB) (kO) "'. soo i'.. " :,,11 it: 10 f(Hz) Fig. 5 - Optimum source resistance and minimum N F vs. bias current (transistors 01 02 03) , R, .==:. il' 'I ~ 10 Fig. 4 - Noise figure vs. bias current (transistors 01, 02,03) ,~t 10 rT - ~. t : ,e-H ~TTp-..+-=:::T~100Hl f ImA k lo'~b;: -li- '"~' ~-y~"j,~~1 , 10' 10 r ",,+",+HlII"0""'''l"'41-ffi4li I" J-+ ! i I G-I!!084 'N 1--+-l-W-I.lll1--T . . I Fig. 3 - Equivalent input noise voltage vs. frequency (transistors 01, 02, 03) I 10 400 1 :~'" 'f-- ..,,' I 10 ,,' ... I ", Ie (~A) 10 Fig. 7 - Open loop gain vs. frequency (equalization amplifier! , !~~~, "I "'~~ +1- *lkH, I R, '00 "TT 11OOH, .,. .. 1 I 10"' 200 Ie (,uAl G, G-3592 RI- 9 In ) 60 10 o~ I , "":t,+ , 40 COMPENSATION 330~i! e 12.13 :680pF 30 !'\; " "'..r.., I ~ , -60 \. 1\ (f: 1kHz) \. 10 \ -120 ,"01- , -180 \. 'C~A) 10' Fig. 9 - Dinamic resistance R I - 9 vs. ALC voltage V I6 Cd.) 50 ", 10 Fig. 8 - Open loop phase response vs. frequency(equaIization ampl ifier) (0-158& I- , I - I 20 -240 I " 10 ~, "W _'00 . . . , \ \ . I. 10 10' '0' 10' 10' 10' 10' 745 22 V16(V) APPLICATION INFORMATION Fig. 9 - Application circuit for Cr 0 2 cassette player and recorder "" 330n ~-------~~ C9 I SO/.lF -- ~ i,,,n33on U...,F 2.2kfi : L-____________~}~ __------~ Fig. 10 - P.C. board and component layout for the circuit of Fig. 9 (1: 1 scale) 746 I TYPICAL PERFORMANCE OF CIRCUIT IN FIG. 9 (T amb = 25°C, Vs = 9V) Test conditions Parameter Min. Typ. Max. Unit PLAYBACK Gv Voltage gain (open loop) 1 ~ 20 to 20000 Hz Gv Voltage gain (closed loop) 1 ~ 1 KHz 60 dB Zi I nput impedance 1 ~ 100 Hz 1 ~ 1 KHz 1 ~ 10 KHz 10 41 43 Kn Kn Kn 1 ~ 1 KHz Zo Output impedance B Frequency response d Distortion Vo~1V Output background noise Zg '" ton , 12 dB 35 n see lig. 11 f ~ 1 KHz 0.2 % 300n + 120 mH (DIN 45405) 1.5 mV 1 mV Signal to noise ratio Vo ~ 1.5V Zg ~ 300n + 120 mH 60 dB Switch-on time Vo 500 ms 134 dB 72 dB ~ Output weighted background noise S+N -N 134 ~ 1V RECORDING Gv Voltage gain (open loop) f ~ 20 to 20000 Hz Gv Voltage gain (closed loop) I ~ 1 KHz B Frequency response see fig. 13 ~ I~ 10 KHz 0.5 % f~ 10 KHz 54 dB 3 ,V 1.1 V 75 ms d Distortion with ALe Vo ALC Automatic level control range(for V i <40mV Va Output voltage belore clipping without ALC f Va Output voltage with ALC Vi~30mV I ~ 1 KHz tl' limiting time (see lig. 17) "'Vi~+40dB I ~ 1 KHz 1V 3 dB of output voltage variation) , , tree , tset ton S+N - -*** N ~ 1 KHz Level setting time (see fig. 17) Recovery time (see lig. 17) "'Vi~ Switch-an-time Va Signal to noise ratio with ALC Vo~1V ~ -40 dB I ~ 1 KHz 1V Rg ~ 470n 300 ms 150 sec. 500 ms 64 dB * This value depends on external network. When the DIN 45511 norm for Irequency response is not mandatory the equalization peak at 15 KHz can be avoided - so halving the output noise. Weighted noise measurement (DIN 45405). 747 Fig. 11 - Frequency response for the circuit in fig. 9 (playback) Fig. 12 - Distortion vs. frequency for the circuit in fig.9 (playback) G-Mn G,,,,,nm,,,,nm,,,,nmr-rrrrnm d "B'H-+t-Hl!tH-+ttlitiH-+t+t+ttf-f-+tttHII " f---H-1f+W' 12 II '"fo) f\-f-\i':ef::;-:i-:i!::;!~efrlJll -c--t";~ I 1. H-H++WH~t+.'~;: 50dBat f ~ lkHz-- I' ,. -U~ OA .2 10' 10 4 t(Hz) '0 ~j(ffijImI I i I I l- , I; !' II i Ii t 1 Ii l'i i' I Iii " " Fig. 14 - Output voltage variation and distortion with ALC vs. input voltage for the circuit in fig. 9 (record ing) (dB)~ I I I I I iH f-f-!-tttlft-f-H-ftHit-f-H-t+liIt-l--HttHII I r i '1, I" G,'-rn~r-rnTmr-rn~r-rn~ (dB) "o= 1V i: I 1 'I - 10 ',Ii : I ! Fig. 13-Frequency response for the circuit in fig. 9 (recording) Fig. 16 - Limiting and level setting time vs. input signal variation Fig. 15 - Distortion vs. frequency with ALC for the circuit in fig. 9 (recording) Cd51'S ('J.) f+- ('/.) H-+titttlHr-tiitttlt-t-H-tttttt--t-H+ttffi ,. 54dB 2.' .., -8 f- lIoatOdB=UV ,6 1,:.10kHz 08 Vo '* 1V 200 100 0.5 I I 00 10' 00' 10' 00' Vi C,..v) ~ W' 00' I (Hz) Fig. 17 - Limiting, level setting, recovery time v, t\ tset tn'e=RECOYERY TIME =LlMITING TIME =LEVEL SETTING TIME 5-1112 748 10 -+ + 2. , LINEAR INTEGRATED CIRCUIT TV VERTICAL DEFLECTION OUTPUT CIRCUIT The TDA 2170 is a monolithic integrated circuit in 11-lead Multiwatt@ package. It is a high efficiency power booster for direct driving of vertical windings of TV yokes. It is intendl!d fOt LJ~.jn Colour and B & W television receivers as well as in monitors and displays. The functionsincorpora1;ed ani: power amplifier - flyback generator - reference voltage - thermal protection Vs V 7 , Va V5 V2 ,V 3 Supply voltage (pin 4) Flyback peak voltage>} Voltage at pin 5., .. '." Ampl ifier.i,fJPut.'l!Rtta~; 10 OutP/4,!1. 10 10 15 15 ~~(~ur~t i~on repetitive,_ t = 2 msec) OutP~ .·I!~I4~nt at f = 50 or 60 Hz, t';;; 10 /J.sec OutPUt;~ealtcurrent at f = 50 or 60 Hz, t Pin 5 Decurrent at V 7 < V4 Pin 5 peak to peak flyback current at f = 50 or 60 Hz, t fly ';;; 1.5 msec Total power dissipation at Tcase = 60"C Storage and junction temperature > 10 /J.sec V V 35 60 + Vs + Vs , -0.5 2.5 3 2 100 t V A A A mA 3 30 -40 to 150 A W °C ORDERING NUMBER: TDA 2170 Dimensions in mm MECHANICAL DATA 749 6/82 CONNECTION DIAGRAM (top view) -·-~11 o o NC GND REFERENCE VOLTAGE OUTPUT STAGE SUPPLY OUTPUT GND FLYBACK GENERATOR SUPPLY VOLTAGE NON INVERTING INPUT INVERTING INPUT NC 10 9 6 5 o ~ 5_ 5325 BLOCK DIAGRAM - - - - - - < 0 · v5 5_5324 750 Fig. 1 - DC test circuits Fig. la - Measurement of 12 ; 13 ; 14; la; V g ; f-,Vg/I'N s ; R9 Fig. 1 b - Measurement of V7 H ......- - - - - - 0 · V 5 , - - - - - ......- - - -......--O.V5 r~ 1,or3v ao 5, 6-10 53 5-5323 Sl : (a) 12 ; (b) S2 : (a) 14 and S3 : (a) 12 , 13 , 13 , 14 and la. la; (b) 13 ; (c) 12 , 14 , la, 19 and V 9 ; (b) R9. Fig. lc - Measurement of VSL ; V 7L Fig. 1d - Measurement of V 7 12 K Il 5- 5320 50 - S J 2' 751 THERMAL DATA Rth j-case Rth j-amb Thermal resistance junction-case Thermal resistance junction-ambient max max ELECTRICAL CHARACTERISTICS (Refer to the test circuits, Vs = 3 40 °C/W °C/W 35V, T amb = 25°C unless otherwise specified) ! Test conditions Parameter Min. TVD. Max. Unit Fia. 14 Pin 4 quiescent current 15 = 0; 17 = 0; V3= 3V 8 mA 1a Is Pin 8 quiescent current 15 = 0; 17 = 0; V3=3V 18 mA 1a Amplifier input bias V3= 1V -0.1 -1 JiA 1a V 2= 1V -0.1 -1 JiA 1a 13 current 12 Amplifier input bias current Reference voltage 19 = 0 2.2 V 1a !:1Vs Reference voltage drift vs. supply voltage Vs = 15 to 30V 0.5 mV/V 1a V5L Pin 5 saturation voltage to GND 15 =20mA 0.5 V 1c V7 Quiescent output voltage Vs = 35V; Ra = 39 K.r2 18 V 1d Vs = 15V; Ra = 13 K.r2 7.5 V 1d 17=1.2A 1 V 1c 17 = 0.7A 0.6 V 1c -17 = 1.2A 1.6 V 1b -17 = 0.7A 1.2 V 1b V9 tN9 V 7L V,H Output saturation voltage to GND Output saturation voltage to supply R9 Reference voltage output resistance 2.1 K.r2 Tj Junction temperature for thermal shut down 140 °c 752 Fig.2 - AC test circuit TDA2170 0.22 C4Q~F R7 1.5.fl! Ry 611. 5 - 5305 Fig.3 - PC board and component layout (1: 1 scale) GND YOKE YOKE (V o ) IN NOt\I~:V.IN REF. VOLTAGE GND 753 Components list for typical applications 110 TVC 110 TVC 90° TVC 5.9n/10 mH 9.6n/27 mH 15n/30 mH 1.95 App 1.17 App 0.82 App 0 0 Component Unit Rl 24 18 12 Kn R2 10 6.8 5.6 Kn R3 R4 39 5.6 22 5.6 22 Kn 5.6 Kn R5 0.82 1.2 2.2 n R6 270 330 330 n R7 1.5 1.5 1.5 n D1 1 N 4001 IN 4001 IN 4001 - Cl 0.1 IlF 1000/25V 0.1 470/25V 0.1 C2 el. 470/25V IlF C3 el. C4 C5 el. 220/25V 220/25V 220/25V IlF 0.22 2200/25V 0.22 1500/25V 0.22 1000/16V IlF IlF C6 el. 10/16V 10/16V 10/16V IlF Typical performances Parameter V5 15 - - Supply voltage Current tfly - Flyback time Ptot - Power dissip. Rth c-a - Heatsink 110° TVC 110° TVC 90° TVC 5.9n/10 mH 9.6n/27 mH 15n/30 mH 24 22.5 25 V 280 175 125 mA Unit 0.6 1 0.7 ms 4.2 7 2.5 2.05 13 16 60 W °C/W °c 60 110 110 60 110 To 20 20 20 Vi 4 4 4 ms Vpp v7 50 47 52 Vp Tamb Tj max 754 °c MOUNTING INSTRUCTIONS The power dissipated in the circuit must be removed by adding an external heatsink. Thanks to the MU LTIWATT® package attaching the heatsink is very simple, a screw or a compression spring (clip) being sufficient. Between the heatsink and the package it is better to insert a layer of silicon grease, to optimize the thermal contact; no electrical isolation is needed between the two surfaces. Fig. 4 - Mounting examples o , , -', , " 5-37'12 Fig. 5 - Maximum allowable power dissipation vs. ambient temperature Plot IW) " " ~~ " '"" 20 -t " ·so 50 755 -.~ 100 Tamb("C) LINEAR INTEGRATED CIRCUIT COMPLETE TV SOUND CHANNEL WITH V.C.R. AND C.C.C. The TDA 2190 is a monolithic integrated circuit in 16-lead dual in-line power dip. It performs the following functions: IF limiter-amplifier and low-pass filter. FM detector. DC volume control. AF preamplifier and AF power amplifier with thermal shut-down protection and choice of class B or C.C.C. operation mode VCR facility with common pin for input and output (playback and recording). VCR input and FM Detector DC switching for recording and playback. The main features of TDA 2190 are: Suitable for all TV standards with FM modulation. Class B or constant current consumption (C.C.C.) operation mode. Video cassette recorder (VCR) facility according to DIN norms. DC or AC volume control. Physiological volume and tone controls (AC volume control mode). LC or ceramic filters can be used for input and detector networks. High output power (lOW) easily achieved by very simple external stage. n .... _¥. ______ _ n _ L _-' ~dlt:ay 1II;IIIVI11'QII\.oo'll Very low spread of DC volume control. DC volume control thermally compensated. Very low current ripple in C.C.C. operation mode. 4W output power. No radiation problem Thermal protection of AF output stage. Short-circuit protection of VCR input-output pin. ABSOLUTE MAXIMUM RATINGS Vs Vi V3 10 10 Ptot T stg • T j Supply voltage (pins 14 and 15) Input peak voltage (pin 10) Voltage at pin 3 Output peak current (non repetitive) Output peak current (repetitive) Power dissipation at T case= 75°C Storage and junction temperature 28 1 Vs 2 1.5 15 -40 to 150 V V V A A W °c ORDERING NUMBERS: TDA 2190 TDA 2190 F2 MECHANICAL DATA 6/82 Dimensions in mm 756 CONNECTION DIAGRAM AF OUTPUT GROUND " RIPPLE REJECTION SUPPLY VOLTAGE VCR SWITCH . I, C.c.c. SUPPLY VOLTAGE " INPUT 12 DC VOLUME CONTROL AF AMPLIf INVERTING VCR INPUT/OUTPUT DE - EMPHASIS DC VOLUME CONTROL DETECTOR REFERENCE VOLT DETECTOR IF INPUT IF BY- PASS GROUND BLOCK DIAGRAM VCR VCR INPUT/OUTPUT SWITCH R3 ell R-C,C.C R2 C7 I VOLUME P1 THERMAL DATA Rth j-case max. Thermal resistance junction-case 757 5 758 ELECTRICAL CHARACTERISTICS (Refer to the test circuit, V 5= 24V. fo= 5.5MHz, f m = 1 KHz, class B, T amb = 25°C, unless otherwise specified) Test conditions Parameter DC CHARACTERISTICS Vs Supply voltage (pi ns 14 and 151 Vo Quiescent output voltage (pi n 11 28 11 Vs = 24V PI = 0 Vs~12V PI 11 12 13 5.1 6 6.9 V V ~ 0 V4 Pin 4 DC voltage Playback and recording 5 6 7 V V ll DC volume control reference P1 =Ot05Kll 4 4.7 5.5 V 0.9 1.1 1.3 V voltage V 14~15 C.C.C. reference voltage (between pins 14 and 151 Id Quiescent drain current Vs = 24V PI = 0 25 45 65 Vs=12V PI = 0 20 35 50 PI = 0 L\f = 40 100 J.lV Vi PI ~ 1 mV 0 L\f=±25KHz 400 480 mV = Vi m 1 mV 0.3 L\f = mA IF AMPLIFIER AND DETECTOR Vi (threshold) Input limiting voltage at 25 KHz t pin 10 V5 AMR Recovered audio voltage Amplitude modulation rejection = + 240 50 KHz 62 dB Ri Input resistance (pin 10) Vi = 1 mV 10 Kll Ci Input capacitance (pin 101 Vi = 1 mV 5 pF Volume attenuation (resistance control) PI PI PI = = Vc Control voltage A ~ 90 dB A = 30 dB A= o dB 6A 6T tab Volume attenuation thermal drift (resistance control) T tab 251085°C PI = 2.3 Kll DC VOLUME CONTROL A --~ on 80 22 2.3 Kll 5 Kll 90 30 0 0 1.5 3 =0.05 38 3 dB dB dB V V V dB DC AUDIO FREQUENCY AMPLIFIER Po Ou tput power in class B mode d 10% Vs 24V 12V Vs d = 2% Vs - 24V Vs 12V .~----- 16l! SSI, R L. RL RL R, = 1612 8S1 -- - - - - - - - - - - - - - - - - - - 759 4.1 1.5 I 3 1.2 W W -L£J ELECTRICAL CHARACTERISTICS (coQtinued) Test conditions Parameter AUDIO FREQUENCY AMPLIFIER (continued) Po Output power in C.C.C. mode d : 10% Vs: 24V Vs:12V R L : 16n R L : 8n 3.5 1.2 W W R L : 16n 507 10000 Hz 50 dB B Frequency response of audio amplifier (-3 dB) Po: 1W SVR Supply vortage rejection ratio PI: 0 R L : 16n Llf : 0 Vi: 1 mV friPPle: 100 Hz V.C.R. 2 V3 Input switching voltage for recordinq V3 Input switching voltage for playback R3 Input resistance V3: 1 to lOV V 4i Input voltage (playback) V3 ~ 8.5V Pout: 1W PI: 5 Kn V 40ut Output voltage (recording) V3 <;;2V PI: 0 Vi: 1 mV Llf: ± 25 KHz I V 8.5 R4i Input resistance (playback) V 3 ;;' 8.5V R 4put Output resistance (recording) V3 <;;2V d Total harmonic distortion of pin 4 output signal PI: 0 Llf: ± 25 KHz SVR Supply voltage rejection at output pin 4 V i ;;'1 mV PI: 0 V3 <;;2V Llf: 0 friPPle: 100 Hz S+N -N- Signal and noise to noise ratio (pin 4) V3 <;; 2V Llf: ± 50 KHz Vi;;' 1 mV V Kn 50 100 45 90 180 mV 240 400 480 mV 13 Kn 140 n 0.5 % 50 dB 50 67 dB 50 67 dB 0.5 0.5 % % 10 Vi: 1 mV V3 <;; 2V OVERALL CIRCUIT -1\1 S+N Signal and noise to noise ratio Vi~ 1 mV Llf: ± 50 KHz Vo :4V d Distortion Po: 50 mW Vs: 24V Vs: 12V Llf: ± 25 KHz R L : 16n R L : 8n 760 TEST CIRCUIT 4 TDA 2190 IF INPUT 14 '~f ll~0 _;rvc W,'i t~ Fig. 1 - Relative audio output and signal to noise ratio vs. input signal ''( A:ClassB B: c.c.e. O. Ys Ys 12 RL 8 24 'y R7 180 C8 3.9 16 !l 100 n 1.8 nF S-3185 Fig, 2 - AM rejection vs, input signal Fig. 3 - fl.AM rejection vs. tun ing frequency change 5·N I "\ 10' V,(I-.N) -30 761 -20 -10 0 Xl 20 JO If(kHz) Fig. 5 - Distortion of the detected signal (pin 5) vs. unloaded O-factor of the detector coil Fig. 4 - Detected audio voltage (pin 5) vs. unloaded 0factor of the detector co iI Fig. 6 - Output voltage attenuation vs. DC volume control resistance (P 1) and vs. DC volume control volt age (V e ) •• '·~·)E~. :""4V ~ RL''''' v, :lOmV _:'0 =5.SMHz nfm=lkHl Vs = 24V :~ : ;:.1=1=fO=5~MIm =lkHz AI =!25kHz '00 f- nbf = ~50kHz ,.' 300 .Y lot r;-- X o.,~ 90 60 1020304050607080 o 8 P1(k.fi) o Fig. 8 - Distortion vs. tuning frequency change Fig. 7 - Distortion vs. frequency deviation d (0/.) i H~S=24 Rl = 16 ti II ~r~: Fig. 9 - Switch-off attenuation of the VCR at pin 4 vs. switch-off voltage at pin3 " ,-,-,-,---r,,-,-,---r,,-,-,--PFl (dB)H-+++-H-++-+O'--d-'-.-"o'--,-",++-H -10 00=80 ~;~ =S.5MHz i----':~7: ~k2~:HZ 'Jet¥) H-'-++-1'ri-'-+-I,oc,"",,,',,,-'--H-t---i H---t--++-H--i--l-jRl = 00 -20 Vi =lmV H-+++-H-\+--H'O = 5.5 MHz H-+---t--t-H-tr--H~~ = ~e~Ztor ~4 =0.4'1 1-- , -c- : ~"-I""~ 0 Fig. 10 - Overall frequency response f+H+' -" _" H-+-++-H--+++-rW,'_'hri",--'TO_'H -50 -20 H-t-++--H-+H-+--H-+-++--H -70 ~LL-L-'---'--'-"--LL-'---'--L.L-L-'---'--' (; f(kHz) 20 H-+++-H-+H--+-+--+++-H -60 o Fig. 11 - Audio amplifier frequency response 10 Fig. 12 - Distortion vs. output power (Vs= 24V and RL = 16.11) d CO!.lf-- v.' C.C., ~ ~iO~=';d ,I" !-----------lm =lktb: 4V Rl 'l6.n , I---- 6f Vi :lmV -, '0 =S.SMHz /.I.1=!2Sk QUTPU pin1 VCR OUTPUT -'0 -. -10 Tf>lJT( In1) -11 10 L:~6~t 16 ::~ -,Ri -8 VJ(V) 10' • l 25kHz 12 10 ;::::t:: ~ 10 10' 10' 762 10' f(Hz) %(W) Fig. 15 - Maximum power dissipation vs. supply voltage (sine wave operation; class B mode) Fig. 14 - Output power vs. supply voltage (class B mode) Fig. 13 - Distortion vs. output power (V s= 12V and RL = 8n) Fb IW, IW' Vi -lmY j; d=lO"I. 0.5.5 Hz 'm'_t- lI1Hz 'O:5.SMHz fn,=lkHz Af=&25kHz 25kHz R =1 R ;8n. I:.c.c.. Ctass 10 to Fig. 16 - Power dissipation and efficiency vs. output power (class B mode) " I.... IW' P, 30 Vsey) Fig. 18 - Power dissipation and efficiency vs. output power (C.C.C. mode) rj ~l ~f1!;lIl .fl lf'r-~l · (~otmmmrm·;J-., W) ~l::~ .ton Vi j= .~;;J---l- ao 'O.S.5MH2: R =8.0 . 10< 25 20 Fig. 17 - Output power vs. supply voltage (C.C.C. mode) R Iw, t5 PIG! ~7:~~~z . m fO:~:~tt 'm_ 40 lkHz llf .~25kHz Rl=16.tl. Vj ;lmY to ~ UN '", .. 1kHz . At :t15kHz f\(W) Fig. 20 - Current ripple vs. signal frequency (C.C.C. mode only) Fig. 19 - Current ripple vs. R-CCC value (C.C.C. mode only) Irippll' (mARMS) 1 'h): . ~ __ 120 100 I. . " 10 o ,. o FbIWl I---Wj____ imr;i!~1rTT"n"mr-r~ . ~~,..:.~tO"'+'-HIf-l-l+1.JllII Fig. 21 - Quiescent drain current vs. supply voltage (C.C.C. mode only). G 3.l1l;I11 , I, ImA '50 : ~~+~_-f~cc~"J.Jn I,. Po ,,0 R-CCC=3.Jfi I tOO .,. 60 .•0 "0 60 320 40 300 - I-- q-= Rif ! 20 4 R-<:CC(n.) 1)4 to 763 '(Hz) -~-- ,. I +, Fig. 22 - Quiescent output voltage (pin 1) vs. supply voltage Fig. 23 - Supply voltage ripple rejection vs. volume control attenuation Fig. 24 - Supply voltage ripple rejection at the AF and VCR outputs vs. ripple frequency v. (vl RL=w IIi: 0 10 CLA5SB C.c.C IIU 10 30 'Is(V) 1020]Q40S060 (dB) 10 APPLICATION INFORMATION (Refer to the block diagram) I F amplifier and limiter The IF sound signal is amlJlified and limited by a chain of 6 differential stages. To avoid the possibility of radiation problems an active low pass filter has been integrated to eliminate the high frequency harmonics from the signal sent to the detector. Pin 10 is the non inverting input of the amplifier-limiter and it is used as input of the I F sound signal coming from the input network which can employ either LC or ceramic filters. The typical input impedance of pin lOis 10 Kn, 5 pF at f 0 = 5.5 MHz. Pin 8 is the inverting input, of the amplifier-limiter. The DC negative feedback of the amplifier is applied internally to this pin which must therefore be decoupled by means of a by pass capacitor toward ground. FM detector Signal detection is obtained by means of a peak differential detector which enables radiation problems to be minimized. Pin 7 is the first input of the peak differential detector and it is the output of the low pass filter. The typical output impedanca is 2.7 Kn. Pin 6 is the second input of the peak differential detector. This pin must be supplied with the same DC voltage as the other input (pin 7) and this is done by coil L1. External components L 1 C3 and C5 transform the frequency variations into ampl itude variations useful to drive the detector. Network L 1 C3 C5 has two resonance frequencies: f 1 series resonance for Xu· XC3 XC5 = --==-.,...'="'XC3 + Xu f2 parallel resonance for Xu = XC3 764 APPLICATION INFORMATION (continued) Coil L 1 must be tuned at frequency fo = IF sound, equidistant from frequencies fl and f2 to which the peaks of the "S" response of the detector correspond. The separation between the peaks is defined by the ratio ff2: = 1 + 1 ~. C3 Network L 1 C3 C5 can obviously be substituted by a ceramic filter. Pin 5 is the output of the FM detector. Its output impedance of 20 Kn, in combination with capacitor C4 connected between pin 5 and ground, defines the time constant of the deemphasis. The detector "S" curve is visible at pin 5. Improved AM R performance can be obtained by connecting a 10 Kn 10 J.1F RC series network between pin 5 and ground. VCR This function, required by receivers capable of recording complete TV signals, is made in accordance with D IN Norms. A single pin (pin 4) acts both as output of the signal to be recorded and as input of the signal to be played back. The function of this pin is changed by means of a control, applied to pin 3, consisting of two different levels of DC voltage. The operating conditions of pins 3 and 4 are: Mode Recording Playback VCR Switch pin 3 Function of pin 4 V3 <2V Output R4 Input R4 V3 ~ 8.5V Signal at pin 4 Impedance of pin 4 = = 140n V4 = 400 mV 13 Kn V4 = 90 mV In the recording state the output signal at pin 4 is independent of the volume control, while during playback the signal applied at pin 4 is regulated by the volume control before being sent to the audio amplifier. Pin 3, input of the VCR switch, has an impedance greater than 50Kn for any value of input voltage. Control pulses at pin 3 with very sharp edges cause temporary unbalancing of the circuit and produce audible signals. This effect is eliminated by means of R3 C8 which slows down the control edges. In the playback state the I F sound signal coming from the detector is automatically blocked by the VCR switch. Pin 4, input-output of the audio signal,has a DC typical voltage of 6V. C6 must therefore be used to decouple it from the VCR. The output signal of pin 4 can be used to perform the AC volume control (fig. 31). The potentiometer must be connected between pin 4 and ground and the slider must be connected to pin 13 after DC decoupling. DC volume control The audio signal coming from the FM detector or from the VCR is adjusted in amplitude by means of a DC controlled active attenuator. The attenuation can be changed either by means of a potentiometer or by means of a DC voltage. Pin 11 supplies the reference voltage for the volume control. This voltage is between 4V and 5.5V and has a thermal coeff. of +O.25%;oC. The maximum current which can be suppliedby pin 11 is 10 mAo 765 APPLICATION INFORMATION (continued) Pin 12 is the input of the DC volume control. To minimize the attenuation spreads, the volume control network R 1, R2, Pl is supplied by the reference voltage of pin 11. The attenuation of the signal is inversely proportional to the voltage applied at pin 12; therefore maximum attenuation is for V 12 =0 or for Pl = 0 . Capacitor C7, connected in parallel to the volume potentiometer, eliminates any signals or spikes picked up by the connection wires of the potentiometer. The volume control characteristic depends on the configuration and on the values of the components of the network connected to pins 11 and 12. The suggested values are: R 1= 1 Kn R2= 3.9 Kn and Pl = 5 Kn with linear variation; with this network a linear variation of the output power is obtained. Different slopes of the volume control and relative networks are shown in figs. 25 and 26. Fig. 26 Fig.25 12 R1 3.9kfi 20 40 60 80 lCX) 120 R2 Pl(°/o) The volume can also be controlled by means of a DC voltage applied between resistor R2 and ground instead of potentiometer Pl. Using this configuration, volume variation can be obtained by means of remote control as shown in fig. 36. AF amplifier The AF amplifier consists of an operational amplifier with thermally protected (thermal shut down) output stage. By using a simple external variant the power stage can be made to operate in class B or in costant current consumption. Pin 1 is the output of the power amplifier. The network which defines the gain and the band of the audio amplifier is connected between pins 1,2 and 13. The input voltage of the amplifier is I • R4, where I is the signal output current of the DC volume control block. The closed loop gain of the amplifier is given by G v = R5/R6; Therefore the output voltage is given by V o =I·R4- R5 R6 Changing the values of these resistors, different output voltage (i.e. different closed loop gain) can be obtained. When impedances, rather than pure resistors, are used, the closed loop gain is changed with frequency. In particular at high frequencies the gain is reduced by capacitor Cll and at low frequencies it is reduced by capacitor C13. The Boucherot cell R7 C14 guarantees the stability of the circuit in all the operating conditions. Pin 2, the non inverting input of the audio amplifier, is connected to an integrated voltage divider which fixes its DC voltage at V 5/2. 766 APPLICATION INFORMATION (continued) Since the voltage of pin 2 is the reference of the input differential stage of the audio amplifier, both the voltage of pin 13 and the voltage of pin 1 are equal to Vs/2. Capacitor C12, connected between pin 2 and ground, has the dual function of eliminating the audio signals from pin 2 and providing the s:.Jpply voltage ripple rejection. Pin 13 is the inverting input of the audio preamplifier; the outoput of the DC volume control is also connected to this pin. Supply The device can operate either in class B or in C.C.C. mode. In class B the supply current is highly variable and depends on the power supplied to the load. The supply must therefore be well filtered to prevent modulation effects on the supply itself which may influence other circuits in the TV. In C.C.C. mode supply current is constant and the supply system can therefore be simplified; for example the sound channel can be supplied directly by the line transformer without problems of modulation of the picture size. is the ma in supply of the device; when it is connected directly to the power supply and pin 14 is left open, the circuit operates in class B. Pi n 15 Pin 14 is the supply point for C.C.C. The reference system, connected between pin 14 and pin 15, determines a constant voltage of 1.1 V between the two pins. To make the device operate in C.C.C. mode, pin 14 must be connected to the supply and a resistor R-CCC must be connected between pin 14 and pin 15; the value of this resistor d8fines the quiescent current Iccc= 1.1 V/R-CCC. Pin 9 is the main ground of the circuit. Pin 16 is the ground of the power output stage only. 767 APPLICATION INFORMATION (continued) Fig. 27 - Typical application circuit (class B mode) Cl~210~F TDA 2190 C3 CF1 'F~r:F~:S~~BC2'OnF L-~--!f---4---T---1'-...J INPUT R9 560n I = 10 Rla R6 10kll R7 3.3!l. C14 1· 22 ,uF 560n L_~ + _____ ___ 5-3187 .V s 24V Fig. 28- P.C. board and component layout of the circuit shown in fig. 27 (1:1 scale) 768 R L lGll APPLICATION INFORMATION (continued) Fig. 29 - Application using a ceramic discriminator and an LC network at the IF input (C.C.C. mode) R5 C3 L2 I(f' L___ ~I IC~-;" ~c INPUT 33 PF ~ IF '-:C"l 10 3lt539XX (Taka) Fig. 30 - P.C. board and component layout of the circuit shown in fig. 29. (1: 1 scale) 769 APPLICATION INFORMATION (continued) Fig. 31 - Application circuit with AC volume control Volume 47kfi Log. 10 11 12 Fig. 32 - Application circuit with tone controls + " 770 100kfi APPLICATION INFORMATION (continued) Fig. 33 - Application circuit with physiological volume control , P, (dB) 0 ,}:vt . [-:zf'. 15 Vs'24V RL =16V 1-~', -+-: ' .12V ' ~47d6(o) 10 '" 20 d~10' " O_5W 30 '0 - " '0 ~ -I ~+ 10' f-.-d 10' 10' lo(Hz) Fig. 34 - Application circuit with fixed bass and treble boost VCR VCR IN/OUT SWITCH .., (dB) ~~:~:m, --l --:-, =12V, 'oblum~ , +t Volume H TDA 2190 rl~5.';~~B100F ~~T 5600 I =- -, -t~ -4 12 13 560n , , ---r-:- -6 16 10 ~+ " 100 ." 10 771 10' 10' 50 mW APPLICATION INFORMATION (continued) Fig. 35 - Application circuit for lOW of output power when Vs= 22V and RL = 4f! VCR SW'TCH TDA2190 ~~F~:S~Bf'onF r 'F INPUT S60n -==:- 560n ..i.. tO~ 5-319»1 + Vs Fig. 36 - Remote volume control. The output of the sound channel increases when the duty-cycle at pin 2 of the I.C. M1025 decreases t8kn 47!1 ---D---n~ I Output from pin20f the I.C. M'025 (Outy- cycle variabl. from 1/31 to 30/31) I ,I 'f 112".5 (31131) ':J ~I. 27/31 . .1 >80dB , --, r-------, r--I Max Vo'ume ~. _I Min. Volume 5-3194 NOTE: RTI must be set for the normalization of the output power (P o = 100 mW). Procedure: - IF input at pin 10 of the TDA 2190 Vs= 24V; R L = 16f!; V j = 1 mV;f o = 5.5 MHz; !If = ± 25 KHz; fm = 1 KHz. Whith the normalizated output of the RL = 16f!. I.e. Ml025 (duty cycle of 10/31), set RTI for 1.26 V RMS across the load 772 I! MOUNTING INSTRUCTIONS The power dissipated in the circuit must be removed by adding an external heatsink as shown in figs. 37 and 38. The system for attaching the heatsink is very simple: it uses a plastic spacer which is supplied with the device on request (TDA 2190 F2). Thermal contact between the copper slug (of the package) and the heatsink is guaranteed by the pressure which the screws exert via the spacer and the printed circuit board; this is due to the particular shape of the spacer. Note: The most negative supply voltage is connected to the copper slug,hence to the heatsink(because it is in contact with the slug). Fig.37 - Mounting system .------CONTACT (SILICONE GREASE) Rth=O.S'c/w ~; ~+_----SPACER ~__',---P. 773 C. BOARD MOUNTING INSTRUCTIONS (continued) Fig. 38 - Cross-section of mounting system HII!';!I!stnk PC board / Chip The maximum allowable power dissipation' depends upon the size of the external heatsink (i.e. its thermal resistance): fig. 39 shows this dissipable power as a function of ambient temperature for an heatsink having 5°C/W. Fig. 39 - Maximum allowable power dissipation vs. am· bient temperature ..... " . , .. • . 100 774 Tamb{"C) LINEAR INTEGRATED CIRCUIT Hi-Fi DUAL PREAMPLI FI ER The TDA2310 is a dual high quality class A preamplifier intended for extremely low distortion application in Hi-Fi systems. The TDA2310 is a monolithic integrated circuit in a 14-lead dual-in-line plastic package and its main features are: Very high dynamic range Very low distortion High open loop bandwidth Very low noise No pop-noise High slew-rate: 14V/lls (G v = 30 dB) - 50V/lls (G v = 50 dB) Large output voltage swing Single or split supply operation Output short circuit protection ABSOLUTE MAXIMUM RATINGS Vs Vs Vem Vi Ptot T j , T stg ± 22 ± 20 ± 15 ±5 500 -40 to 150 DC supply voltage Operating supply voltage Common mode input voltage Differential input voltage Total power dissipation at Tamb <"60°C Junction and storage temperature ORDERING NUMBER: V V V V mW °C TDA2310 MECHANICAL DATA Dimensions in mm . . . . . . ~.t-~ ~ , U1 _d o~ I , ... 15.24 I··· _ Lri ~ ·2...54 ~ t ~::::::r 775 6/82 CONNECTION DIAGRAM (top view) OUTPUT (AI 14 P051TIVE 5UPPLV(.Vs I DRIVER (AIDUTPUT 13 OUTPUT(BI COMPEN5ATlON (A DRIVER(BIOUTPUT 11 " NON INVERTlN6 INPUT (A I 10 INVERTING INPUHAI 6 NEGATIVE SUPPLY (-Vs> 7 I COMPENSATION (BI NON INVERTING INPUT (BI 8 ~ INVERTING INPUT(BI ~ BLOCK DIAGRAM (one section) OUTPUT NON INVERTING INPUT :~~5~TlN G ."..-----1------' -Vs *-________~________~~________-" t7~____ 776 THERMAL DATA Rthj-amb max. Thermal resistance junction-ambient 180 °C/W Fig. 1 - Gain and distortion test f ',uF 20 KJl. OUT RL 30 KJl. 5 - 4 06611 Fig. 2 - Noise test OUT ELECTRICAL CHARACTERISTICS (Refer to the Test circuit offig. 1, Tamb = 25°C, Vs = ± 15V, G v = 30dB, RL = 20K.Q unless otherwise specified) Parameter Vs Supply voltage Test conditions Min. Typ. ± 5 Max. ± 20 Unit V Is Supply current 10 15 mA Ib Input bias current 0.2 1 f.lA los I nput offset current 50 300 nA Vos I nput offset voltage 1 3 mV 777 ELECTRICAL CHARACTERISTICS (continued) Gv Voltage gain (open loop) Min. Test conditions Parameter 1 - 1 KHz Typ. Max. Unitl 85 dB No compensation 85 dB 1 ~ 1 KHz ±0.2 dB 1 ~ 100KHz ±0.5 dB 5 M>1 1 ~ 20KHz l>G v Voltage gain spread (closed loop) Ri I nput resistance Ro Output resistance Vpp Output voltage swing (peak to peak) d~l% Va Output voltage (rms) Rx~ RIM Pn'-'l.I~r ~~~tj'..JI.!!d":~ \'u = 20 Gv ~ 30dB SR Slew rate Gv ~ 50dB (C 3 Rs ~ 3V 1 ~ 1 KHz 0.035 % 1 ~ 20 KHz 0.035 % 1 ~ 1 KHz 1 ~ 1 KHz 1 ~ 100KHz Total harmonic distortion d d2 Second order CCI F intermodulation distortion d3 Third order CC IF intermodulation distortion 8.2K>1 \/~~ , 1 ~ 1 KHz 6 1 ~ 20KHz 6 R . ·X = Q'" ..... ~ vn 10 >1 24 V 22 V 8 V 8 V 1Dn ,....-1 ,_ ,~~¥ 14 V/jls ~ Va VOl~lV V o2 11 12 ~ ~ Rg Rg ~ ~ 330pF 470>1) 12 - 11 ~ 50 1 KHz 0.01 0.1 % 0.03 0.1 % 0.6 1.0 0.8 1V 14KHz 15KHz ~ ~ 21rl2 ~ 13 KHz 600>1 3.3K>1 (0) jlV * Total input noise eN Rg ~ 600>1 Rg ~ 3.3K>1 (0) * Signal to noise ratio SIN Cs Channel separation Vo ~ 20KHz ~ 600>1 ~ ~ Rg Rg Rg ~ ~ ~ jlV 3.3K 600 0 (0 ) 74 78 80 dB 3.3K 600 0 (00) 72 76 78 dB 100 dB 500mV Rg f Rg Rg Rg 0.75 1.2 ~ ~ CMR Common mode rejection Rg ~ 600>1 95 dB SVR Supply voltage rejection Rg ~ 600>1 85 dB 15 rnA ISh Output short circuit current (*) (0) Test CirCUit 01 I,g. 2 (G v ~ 40 dB) BW ~ curve A (00) BW ~ 22Hz to 22KHz 778 Fig. 4 - Harmonic distortion vs. frequency. Fig.3 - Harmonic distortion vs. output leve I. Fig. 5 - Output voltage swing vs. frequency. 'or-,-TTTITm--,,-nTnT--~~TIm (VPP}r--t-Htitttt---t+H-tt-ttt---H-ttttttl RX_S.2Kll ~ r--t-Htitttt-R'_:OO t-- t---- - " I-- - -t-ttttttt---H-Htti1t--t-Httt-fH r--t-Httt-ItI~~: :~~ ~ f-_-t-Httt-ttr-d~.'i"" - f (Hz) lOOK Fig. 6 - Output voltage swing vs. load resistance. I\ \ f (KHz) '00 Fig. 7 - Total input noise vs. source resistance. Fig. 8 - Noise density vs. frequency. 'or--'--"-'rITTr--'--'~~Tn (Vpp) 1--,",.c-1,"'''++-t+1-tH----t--H-H+H1 ~ ~ i ~,~ z H+H-ttt----t-+:bI+t-H / / v v '1 ' v 10K Fig. 9 - Open loop frequency response. I 5-.323 1 : 1 NO COMPENSATION NETWORK I ,,-on i'.. 330> 1\ "- !,\L 3.36~~ '\ V$-'15V 1 60 I i "-1,,\1 \ "- r-1 I --p- , i 1M f(Hz} 1 1 I I C 3 ,,3JOpF R S ,,470 Jli I 50 \ 1 ! i },. r- 1 Vs " ~15 V I I \. Fig. 11 - Two tone CCI F intermod. distortion. Fig. 10 - Closed loop gain vs. frequency. G-'32211 B f (Hzf I I c ,,3.3 nF R .68 It , I I 1 ~ -, I I , ! I -tti , I' -+ -w F::j:2Il:!:..i'0!:RO,!!E~R..!.(tC!.1:.:-t"'1)'../11-----t 1 I 779 1M f(Hz) 0.25 0.5 0.3 r-"} ---+moRDe:~(2f1-fZ) I ," I -.. f--+--+--~+---'--t-+6 ---+---+..------4-----4---------+..-----I--<)-VS S-5155 THERMAL DATA Rth j-amb Thermal resistance junction-ambient max 785 200 ELECTRICAL CHARACTERISTICS (Vs= 5V, Tarnb = 25°C, single amplifier, unless otherwise specified) Parameter Vs Supply voltage Is Total supply current Ib I nput bias current Vos I nput offset voltage los I nput offset cu rrent Gv Open loop voltage gain Test conditions Min. Typ. Max. Unit 20 V 0.8 2 rnA 100 500 nA 4 Vs = 20V Rg < 10 Kn f = 1 KHz 64 f=100KHz 0.5 mV 15 nA 70 dB 30 dB 3 MHz B Gain bandwidth product f = 40 KHz SR Slew rate R L = 2 Kn 1.5 V/J.LS eN Total input noise voltage f = 40 KHz Rg= 10Kn 20 nVr/Hz 2.5 Vpp 80 dB Vo· DC output voltage swing SVR Supply voltage rejection (.) f = 100 Hz 1.5 (.) Circuit of fig. 1. APPLICATION INFORMATION Fig. 1 - Application circuit with carrier Fig. 2 - Alternative input stage 5 -5108 786 ,I APPLICATION INFORMATION (continued) The preamplifier shown in fig. 1 must be used with carrier mode transmission. It is particularly suitable for use with microprocessor decoding system (for instance with the M206 + M3870 or M3872 TV PLL frequency synthesizer). The "with carrier" signal is sent as a burst (fcarr= 38 KHz) to reduce power consumption at the transmitter (duty cycle = 1 %) and to allow the receiver to have some bandwidth limiting in the preamplifier to improve noise immunity (50/100 Hz pulses from incandescent lighting). The fig. 2 shows an alternative configuration for the input stage: this new circuit allows the correct operation of the preamplifier even when an incandescent lamp is very close to the I R diode. Using this configuration, the circuit has only a slight degradation in the useful range. Fig. 3 - Tuned amplifier application (with carrier) 1 K 11 Fig. 4 - Application circuit without carrier 787 APPLICATION INFORMATION (continued) The circuit shown in fig. 4 works in transmission mode without carrier. The transmitted signal is sent as a series of single pulses (rather than bursts, as with the carrier solution). The DC bias network formed by the 82/2.2 Ko divider and 1 N4148 diode fixes the DC output voltage near the supply voltage (just under the saturation level). In this way it is possible to optimize the noise immunity of the receiver. The 2.2 Ko output resistance avoids turn-off problems in the final stage. Performance 4.5V min; 5.5V max 6mA Supply voltage Quiescent drain current Supply voltage rejection (f = 100 Hz) Useful range (using the transmitter of fig. 7) greater than 50 dB 14 mt With a incandescent IiQht (75WI as a noise source located at 1 mt from the receiver the useful ranQe decreases to 10 mt. Fig. 5 - Optimized preamplifier ("no carrier" mode) Fig. 6 - P.C. and components layout of the circuit of fig. 5 (1 : 1 scale) 788 APPLICATION INFORMATION (continued) Fig. 7 - I R transmitter using M709 or M710 Fig. 8 - MMC II - PLL TV Frequency synthesizer • ONIOFF Fig.9 - I R Preamplifier and Remote Control receiver for 32 channels voltage synthesizer (EPM - M293) ., , h',," l: d(fjll',l I 210F 5 ... t1 S _ 4 BC17B ' '°11 tt 3 :-+ 47K D. 82Kfi Kn 12K.n 3.3K Jl 14 by 05C 'B500 17 5:'OOPF 1,6 1" 2 INFRARED Stand RI1lay l 4. 7 £o"n' H , 22Kfl ~_ i I ~~ZA 2320 J3Kll I 1[ D 475- 525 --r-l--- 1 47nF I I 1(ll)K!l PREAMPLIFIER PA 26 PB 25 "1293 Pc 24 5 A Po 23 P E 22 5 B 7 C , 0 Ml04 27 Strobe 10 RE's.l 9 Res.2 27Kfl. 16 II II II II ..... p fl rl !I r rl ® -:¢:~ 19 11 ?I II JI - () 1 .... 0 27Kn ~'5 21 120 I ~ ~ s- ~1 Vol. I"oonF ~ l1J --_-uOUT Rg 792 150 = 20 dB for Rx = 1350n THERMAL DATA Rth j-amb max Thermal resistance junction-ambient 200 °G/W ELECTRICAL CHARACTERISTICS (Refer to the test circuits, Vs = 15V, T amb = 25°G, unless otherwise specified) Parameter Vs Supply voltage (*) Is Supply current (*) Ib Input bias current Vos I nput offset voltage los Gv Open loop voltage gain Test conditions Rg < 10 Kn Input offset current Output voltage swing (*) Typ. Max. Unit 36 V 0.8 2 mA 150 500 nA 0.5 5 mV 10 50 nA 3 Vs=15V Vo Min. f = 333 Hz 80 f = 1 KHz 70 f = 10 KHz 50 70 Vs = 4.5V f = 1 KHz f = 1 KHz Vs= 15V 13 RL = 600n Vs= 4.5V 2.5 dB Vpp B Gain-bandwidth product f = 20 KHz 1.5 2.5 MHz BW Power bandwidth (*) Vo= 5 Vpp d = 1% 40 70 KHz 1.6 V/,.,S SR Slew rate (*) d Distortion (*) Vo= 2V f = 1 KHz 0.03 G v= 20 dB f = 10 KHz 0.08 eN Total input noise voltage ('0) Curve A R9 = 1 B - 22 Hz to 22 KHz 50n Rg= 600n 1.1 Rg- 5 Kn 1.5 50n 1.3 Rg- 600n 1.5 Rg- 5 Kn 2 Rg= % 1 1.4 ,.,V ,.,V Rc= 600n 9 nV/,fiiZ' Cs Channel separation (**) f = 1 KHz 100 dB SVR Supply voltage (**) rejection f=100Hz 80 dB f - 1 KHz (*) Test circuit of fig. 1. (*0) Test circuit of fig. 2. 793 • •• Fig. 3 - Supply current vs. supply voltage '. Fig. 5 - Output voltage swi ng vs. load resistance Fig. 4 - Supply current vs. ambient temperature G-~554 '. 'mA ) 'mA ) Vs=15V 0.9 f--f--HH--I7f-fttG y "20dS 20 f--f--Hf-hlf+ftt f =1kHz 1.0 - V 16 V l- 0.8 0.' ,./1-'" 1/ 0.6 0.7 f--+-+-++t++tt -- T .. u- Fiy. -50 14 " n _" _____ ruvvcl 50 1__ "__ 1••• !_I..o.I_ I rly. . 10' ...... UallUVYIULl1 L 4 0.4 I • I ULi:l1 • ;:ig. lIi:11 JlIUIIIl,,; distortion vs. output voltage 10' a - IUlili in(Jui nui5tl V5. sou rce resistance G-45S1 -"'n-"''''~~ B:22Hzto22K~ ,f-- 0.3 + 4lli curveA ~C..;...-+--~ i .. '. ! . I i 0.' 0,3 10 0.1 30 f(KHl:) ) v,,"'5V . 10' 1 30 , 20 - 318/-15 "20KHz (500Hz) I o I .. I 1 10' ., c----' Wili ...... r- 20 , , 10' 11!11l II' 40 30 I Ilj Vs ,,4.5V 60 10 i Rg (11) 50 - son . --rr i ill' ,.ill i(1120 "I H, SUBSONIC, FILTER 40 lKn 10 t'-- I: --- EO.=120....s f75,IJ5 : I -, _. r Rg -lOKfi .----1- ,I;',. j'I!11 ' 10' 70 I ) , , Fig. 11 - Tape preamplifier frequency response (circuit of fig. 14) dB ,. iii 0.3 Fig. 10- RIAA preamplifier response (circuit of fig. 12) Fig. 9 - Noise density vs. frequency ! '52 S f (Hz) 10 ~~ 63 16 25 10 2 ~o 6J 16 25 10 J 794 ~o 63 15 2S 40 53 10 4 I (Hz) 10 .0 .0' '" 10' "Hz) APPLICATION INFORMATION 18K .n Fig. 12 - Stereo RIAA preamplifier R6 C>~~11111~~'~5______o_ugR) 5- 467012 Fig. 13 - P.C. board and components layout of the circuit of fig. 12 OUT(R) OUT(L) + Vs 795 APPLICATION INFORMATION (continued) Fig. 14 - Stereo preamplifier for Walkman cassette players 18K Jl +4.5V 82KJl 0'3~V 4.71JF TAPE HEAD '~. 100 KJl 20 K Fig. 15 - Second order 2 KHz Butterworth crossover filter for Hi-Fi active boxes Fig. 16 - Frequency response (circuit of fig. 15) + 15 V r o LOW-PASS ./ HIGH-PA S 0.47 flF 10K1l 7 ~ ~ 5Kll fe \ 5.6K Jl = 2KHz IN TO WOOFER AMPLIFIER 1 O"}JrF~ 5KJl TO TWEETER AMPLIFIER 5.6 KJl 5- 466211 796 "f--I-+I-+++-++I+--+-+-1H-I+I.fj 10-1 fife APPLICATION INFORMATION (continued) Fig. 18 - Frequency response (circuit of fig. 17) Fig. 17 - Third order 2.8 KHz Bessel crossover filter for Hi-Fi active boxes .15V -rii;2320 7 5.+ 4 t L - AS O.47,uF . 5K.fl. pi 5.6K!\ R' ~F 'c 8 -"~ +-f-III+H---'I-+---++++++H =2,8KHz TWEETER : --~>----.--.--IIL 11 I C8 10 C7.,.. .J.. Cl IN o-JJ---<~-o---I *PIN5 4-5-12-13 ARE CONNECTED TO GROUND J-Lth C4 801 C6...i- I ~~-------------4 0 z ::§! ::> « a: C!' « 0 a: '"~ 0 i!!u '"zz C 0 u '"a:.. ~ I- , ~ « ::§! + . w 01) ::I: z Ii: (.J en * 802 TEST CIRCUIT L1 L.l0;JH 0 0 .60 l~~F r----l0-,-0-n""F-----..--C-14-nvS I--+-_ _---,Cll ."T' .. to=4.S MHz 14 "T' ...100;JF/35V 470;JF/16V e12 111--'--*~-1If=-' TDA 3190 .* 16 O.lume R2 ~ Pl 22kIl 4.7 n ltn. (5 75 nF , ... * RC·75)Js "PINS 4-5 -12-1) ARE CONNECTED TO GROUND C9 50;JF/16V IP (FM DISCRIMINATOR) THERMAL DATA Rth j-pins Rth j-amb max max Thermal resistance junction-pins Thermal resistance junction-ambient 14 80* °C/W °C/W * Obtained with the GND pins soldered to printed circuit with minimized copper area. ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Vs= 24V, T amb = 25°C unless otherwise specified) Parameter Test conditions Min. Typ. Unit 28 V Vs Supply voltage (pin 14) Vo Quiescent output voltage (pin 11) Vs= 24V Vs= 12V 11 5.1 12 6 13 6.9 V V Id Quiescent drain current PI = 22Kn Vs = 24V Vs=12V 11 22 19 45 40 mA mA Po Output power 9 Max. d = 10% fo= 4.5 MHz Vs = 24V Vs= 12V f m = 400 Hz f., f = ± 25 KHz R L = 16.11 R L = 8.11 4.2 1.5 W W d = 2% fo = 4.5 MHz Vs = 24V Vs=12V f m = 400 Hz M= ± 25 KHz R L = 16.11 R L = 8.11 3.5 1.4 W W 803 ELECTRICAL CHARACTERISTICS (continued) Test conditions Parameter Vi d B Vo Input limiting voltage (-3 dB) at pin 1 Distortion Frequency response of audio amplifier (-3 dB) Recovered audio voltage (pin 16) fo = 4.5 MHz f m = 400 Hz P1 = 0 M = ± 7.5 KHz Po = 50 mW fo = 4.5 MHz Vs = 24V Vs = 12V f m = 400 Hz M = ± 7.5 KHz R L = 16n R L = 8n RL = 16n C 7= 470 pF Rf = 82n Rf = 47n C s = 120 pF P 1= 22 Kn Vi> 1 mV f m = 400 Hz fo Fl AMR S+N ---r;J Ampliture modulation rejection Signal to noise ratio R3 External feedback resistance (between pins 9 and 11) Ri Input resistance (pin 1) Ci Input capacitance (pin 1) SVR Supply voltage rejection Av DC volume control attenuation = Min. Max. Unit 40 100 IlV 0.75 1 % % 70 to 12000 70 to 7000 Hz Hz .20 III'V' 55 dB 65 dB = 4.5 MHz M = ± 7.5 KHz 0 Vi> 1 mV f m = 400 Hz m = 0.3 Typ. fo = 4.5 MHz M = ± 25 KHz Vo =4V Vi> 1 mV fo = 4.5 MHz f m = 400 Hz M = ± 25 KHz 50 25 Kn 30 Kn 5 pF RL = 16n f rlpple= 120 Hz P1 = 22 Kn 46 dB P 1 =12Kn 90 dB Vi = 1 mV fo = 4.5 MHz 804 Fig. 2 - Output voltage attenuation vs. DC volume control resistance. Fig. 1 - Relative audio output voltage and output noise vs. input signal. Fig. 3 - Amplitude modulation rejection vs. input signal '0 'dB) o. 50 -, ~30 ~'O ~. ~" ~'O ~11 -60 -70 10' " ", 10' \Ij(,uV) Fig. 4 - LlAMR vs. tuning frequency change. >0' '0' ", >0 Fig. 5 - Recovered audio voltage vs. unloaded Q factor of the detector coil Fig. 6 Distortion output power , "/,) \ I:J - I, - ~ r- ' , ;-1 f-+i-+~~·t-·-+--H-++-H-+-+-H f-++ i ' -10 10 20 30 6fo(KHz) Fig. 7 - Distortion vs. frequency deviation G,'" )tt\!.,;~ I -t 1 102030405060 00 d,,~-r-r'-~,,-'-r-r'-~~ \lj=lm\l fo=i,.5MHz , ~~~;~~~:z I ! ! ii' 00= 60 II I: !II Ii i ! 1J.;.,.n I!! \Is=24VI Rl'''O , t II, I' II ! I I , W' 1- '~ ! i "I 10·' Fig, 9 - Audio amplifier frequency response Fig. 8 - Distortion vs. tuni ng frequency change (OWH-+-++++-H--+-+-+++-H G"H% \15 =12'1 T Rl · · " ! -20 vs. 't " -1 'Ij1~":~ l~ , ! -30 \Ii (~IJ) 10' ~r-r;-~W-"Trrmr-rnT~-'Tn~ ,dB) -+- f -- R =47il. t ,; "'MH, tm=400Hz I I -:' -, f-t-tt-HttIll'-+t-tt+IW;. Po "Z50mW- 0 0 =60 ilifll i i : i: ! 10 j- t !20 -6 f-t-+HttHt--t -8 II A r' f !30 Af(lCHz) -30 -20 20 -10 805 30 6fo( kHz) to to' to' f(Hz) Fig. 10 - Supply voltage ripple rejection vs. ripple frequency SVR (dB) so r-1-rrmll"'IIITTTTTllrrr-rrrmnr-rnmm H--'+Itttlt-+++tttttt--+t++IHtf--+1-+t+1tII r-~" r- r h8f-+ r IP ,+ 50 Fig. 11 - Supply voltage ripple rejection vs. volume control attenuation SVR r-r--ro-r-T-''-,,--'-.-,,-'T''1 (dB) H++--H-++--H-+-+-H-+-I Fig. 12 - Output power vs. supply voltage ~ rT-''-,,-''-,,-'-''-rT''1 (w) H-++--H-+-+-+-I-+-+-+--H-I 'fttlIt-1-tHt14f----'-t+t1"'lli ffit- ~f_tttlffi_+ttt1t1ll +t' 'ft. ..... " RL-I!IA f+ RL =laA + lIV-, ' -+- y -Xl Fig. 13 - Maximum power dissipation vs. supply voltage (sine wave operation) Plot (w) 1-1-T-r+ -I-+-+-+--H++-~-f-+-J 2 :i ::;.;. fo =4.5MHz -Ifm =400 Hz .IAf "'t25kHz RL = ell ) -r-r (5 / t-i -60 (dB) I / os V 2S 30 Vs '" ---- I I (',-1305 )n- 80 r-~' ! -, 10 I f-;- +0/' /: ~ A 40 ~jlIj t+ iV":::' 10 Vs (v) (v) Vo 15 , j--,-+I i i 20 m Fig. 15 - Quiescent output voltage (pin 11) vs. supply voltage (V J 15 25 20 15 10 ,/ A f-+-t-+-+><+--l-","i-,t+-t-H-l-,H -so l- Qo~60 1.5 -I.(J ('·'470 Ptot / RL =16.n. +--h'-,-!Ft-'--,,+-1 f--, -30 Fig. 14 - Power dissipation and efficiency vs. output power , -~'H=i±_+I-tt~~+-!--+,-t-H 2.5 -20 ::7_ 20 25 30 Ys{V) APPLICATION INFORMATION The electrical characteristics of the TDA 3190 remain almost constant over the frequency range 4.5 to 6 MHz, therefore it can be used in all television standards (FM mod.). The TDA 3190 has a high input impedance, so it can function with a ceramic filter or with a tuned circuit that provide the necessary input selectivity. The value of the resistors connected to pin 9, determine the AC gain of the audio frequency amplifier. This enables the desired gain to be selected in relation to the frequency deviation at which the output stage of the AF amplifier, must enter into clipping. Capacitor C8, connected between pins 10 and 11, determines the upper cutoff frequency of the audio bandwidth. To increase the bandwidth the values of C8 and C7 must be reduced, keeping the ratio C7/C8 as shown in the table of fig. 16. The capacitor connected between pin 16 and ground, together with the internal resistor of 10 Kn forms the de-emphasis network. The Boucherot cell eliminates the high frequency oscillations caused by the inductive load and the wires connecting the loudspeaker. 806 APPLICATION INFORMATION (continued) Fig. 16 - Typical application circuit L1 ,-----~l00~nF~----~--~OVS C14 C L= 10"H Qo =60 to~4.S MHz • "--...---1If-t-------, 10 11 I I "'lXl/JF{2sv 250/JF/16V 14 C12 111---"-*_-1IF=' IDA 3190 16 C5 .* 7.5nF •• PINS 4-5-12-13 ARE .Cpram1c filter CONNECTEO TO GROUND S-3483 Fig. 17 - P.C. board and component layout of the circuit shown in Fig. 16 (1: 1 scale) 73mm ·1 1° 25mm C5-0097/1 807 MOUNTING INSTRUCTIONS The Rth j-amb of the TDA 3190 can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board (Fig. 18) or to an external heatsink (Fig. 19). The diagram of figure 20 shows the maximum dissipable power Ptot and the Rth j-amb as a function of the side "JI." of two equal square copper areas having a thickness of 351' (1.4 mils). During soldering the pins temperature must not exceed 260°C and the soldering time must not be longer than 12 seconds. The external heatsink or printed circuit copper area must be connected to electrical ground. Fig. 18 - Example of P.C.board copper area which is used as heatsink. COPPER AREA 3ot' Fig. 19 - External heatsink mounting example THICKNESS I / S-J181 P. C. BOARD Fig. 20 - Maximum dissipable power and junction to ambient thermal resistance vs. side "JI." G-nS8 Fig. 21 - Maximum allowable power dissipation vs. ambient temperature Ptot Rth (W) ( "CIW) eo r\ r- , ~j- ... mb i'- -- I'-- r-f-- ,........ ~ Ptot (T amb = ?OOCli 20 T I 10 20 30 100 -50 I (mm) 808 so 100 T...mb("C) LINEAR INTEGRATED CIRCUIT DUAL LOW NOISE TAPE PREAMPLIFIER WITH AUTOREVERSE The TDA 3410 is a dual preamplifier with tape autoreverse facility for the amplification of low level si!lnals in applications requirin!l very low noise performance, as stereo cassette players. Each channel consists of two independent amplifiers. The first has a fixed gain of 30 dB while the second one is an operational amplifier optimized for high quality audio application. The TDA 3410 is a monolithic integrated circuit in a 16-lead dual in-line plastic package and its main features are: Very low noise High gain Low distortion Sin!lle supply operation Wide supply range - SVR = 120dB - Large output voltage swing - Tape autoreverse facility - Short circuit protection ABSOLUTE MAXIMUM RATINGS 36 600 -40 to 150 Supply voltage Total power dissipation at T amb = 60°C Storage and junction temperature V mW °C ORDERING NUMBER: TDA 3410 Dimensions in mm MECHANICAL DATA 809 6/82 CONNECTION DIAGRAM (top view) OUTPUT A 16 NON INVERT. INPUT A 15 OUTPUT B 14 NON INVERT. B INPUT 13 INVERT. INPUT B INVERT. INPUT A VOLTAGE REF. • Vs THRESHOLO 12 OUTPUT INPUT OUTPUT INPUT INPUT ui-tu ~O ; ~ ii,jrv"i 5-32G1 BLOCK DIAGRAM j r--- 'Vs ~---- ___ 53 6' 1 I '-- - 12 " AUTO REVERSE '11 ~OUTPUT ~Ch.A s- 4051/·' THERMAL DATA Rth j-amb max Thermal resistance junction-ambient 810 150 °C/W SCHEMATIC DIAGRAM DJ·iQQ~ iH 2 -----~ I ~~ ~ 0, ~32 ~ ~ ~ IQ~ 02 ~ .,~ 03 R2. ... r Q36 fQ~ R'7 1 D3't~t ~ Q23C !: VOLTAGE QtQ~ D45~ R33 00 '------- 6 lQgo lag, +087 R36 I~ I@ Q62 01. Ql1 l092 Q96J Q~ t fO~8' f---------i(Q80 072 ~6 013 014 15 R'8 it' IRSS 017 '-2 • '0 11 14 R60 R5. 13 rD.'j TEST CIRCUIT (Flat Gain - Gv= 60 dB) 4 0-------------- v ref 11 L R 5 "R6"4 7K.!l(Vs " '4.4 V) R5"R6"'5K!l(V s "30V) _____ _ I I 1 Aut.orel/ersE' I SWitch : , Shielded Test -Box 5-4053fl * Mylar or polycarbonate capacitors. ELECTRICAL CHARACTERISTICS (T amb = 25°C, Vs= 14.4V, G v= 60 dB, refer to the test circuit, unless otherwise specified) Parameter Test conditions Is Supply current Vs~ 10 Output current (pins 1-15) Source Min. 8V to 30V Vs~ Gv Closed loop gain f ~ 20 Hz to 20 KHz Rj I nput resistance f ~ 1 KHz Ro Output resistance (pins 1-15) f ~ 1 KHz THD Total harmonic distortion Vo~300mV 50 ~ f~ 812 Max. Unit 10 mA 10 mA 1 mA 60 dB 80 Kn 50 n 8V to 30V Sink f Typ. 1 KHz 10 KHz 0.05 0.05 % % ELECTRICAL CHARACTERISTICS (continued) Parameter Vo Output voltage swing (pins 1-15) Vo Output voltage (pins 1-15) Total input noise (0) en Signal to noise ratio (0) SIN Test conditions Min. Typ. Max. Unit Peak to Peak V 5= 14.4V Vs= 30V 12 28 .V V d = 0.5% f = 1 KHz Vs= 14.4V Vs= 30V 4 8 Vrms Rg= 50.11 Rg= 600.11 Rg= 5Kn 0.25 0.4 1.3 V rms 0.6 ltV ltV ltV Vin= 0.3 mV Rg= 600.11 57 dB Vin= 1 mV Rg= 0 73 dB CS Channel separation f = 1 KHz 60 dB CT(OOO ) Cross-talk (differential input) f = 1 KHz 80 dB SVR Supply voltage rejection (00) f = 1 KHz 120 dB SVR (00) Of reference voltage (Pin 4) 100 dB 55 mV 100 .11 Rg= 600.11 f = 1 KHz Rg= 600.11 V ref Reference voltage (pin 4) R ref Ref. voltage output resistance (pin 4) l'N ref ~ (0) (00) (000) Voltage temperature coefficient 10 The weighting filter used for the noise measurement has a curve A frequency response. Referred to the input. Between a disabled input and an input ON. 813 ItV/oC ELECTRICAL CHARACTERISTICS (Refer test circuit, Vs= 30V! AMPLIFIER N° 1 Test conditions Parameter Gv Gain (pins 6 to 5) d Distortion Vo= 300mV en Total input noise (0) Zo Output impedance (pin 5) 10 Output current (pin 5) Vs DC output voltage (pin 5) Min. Typ. Max. Unit 29 30 30.5 dB f = 1 KHz f = 10 KHz 0.05 0.05 % R g=600n 0.4 IN f = 1 KHz 100 n 1 mA 1.3 Vs=10V 2 2.7 V AMPLIFIER N° 2 Gv Open loop voltage gain (pins2tol) 100 dB Is I nput bias current 0.2 IJA Vos I nput offset voltage 2 mV los I nput offset cu rrent 0.05 IJA BW Small signal bandwidth G v= 30 dB 150 KHz en Total input noise (0) Rg= 600n 2 IJV Rj I nput impedance f = 1 KHz (open loop) 500 Kn 150 AUTOREVERSE Pjn (0) V 12 < 2V V 12 > 4.5V 6 -10 OFF ON 7- 9 ON OFF The weighting filter used for the noise measurement has a curve A frequency response. Fig. 2 - Total input noise vs. source resistance (BW= 22 Hz to 22 KHz) Fig. 1 - Total input noise vs. source resistance (curve A) I-t--t+lttltl-t ) .k' 1 0.. 1 0.'. _ _ I-t~-++~--~rn '+-0.01 0,01 10 Rg(i'I.l 10' I Ii Fig. 3 - Total harmonic distortion vs. output voltage I!! I II' I' , I' '--~~~:'---:--'-~~---:--:-'c~ 10 3 Rg (11.) 10' '0 I " Fig. 6 - Very low noise stereo preamplifier for car cassette players (with Gap Loss Correction and autoreverse function) '0 Fig. 5 - Frequency response G 0961\ (dB I 1111 iTTr '! I ,l- 60 I I , c- ,.~ l , r- 22nF 30 r-+ tt- , " Rll. O2°'1,·"'OF RL,,20KA t--f~I~~~~2~2~OKJn~ L{==~~~~,~;1~22~n~F It..4V Rl lMll R2 1 C9 50Kn 2AJf 1 Autoreverse * Myla.r or polycarbonat~ 5- ~ 04 912 815 capacitors " , , " , 10 I rt+~ t (Hz) Fig. 6 - P.C. board and component lay-out (1:1 scale) for the circuit of fig. 4 OUTPUT LEFT .Vs --.- OUTPUT RIGHT '-..- INPUT INPUT (LEFT CHAN.) (RIGHT CHAN.) AUTOREVERSE . Fig. 7 - Stereo preamplifier for car cassette players, with low value capacitors (Autoreverse function) Fig. 8 - Frequency response (dB) lOOn. IIIIII ---,"--c:"-_:--·-o.llo.4V I *'OO,.uF ...... O.3mV IIIIII 80 70 60 50 lOOKA S.Stc:A e13 * 1SnF 40 30 a.3mV 20 0'::~RL'20Kn 15 Rn I C14. 15nF '4.4V Rt lM ..'l. lAut. 5-1,050/2 * MylAr or polycarbonat. capacitors 816 10 10' t(Hz) LINEAR INTEGRATED CIRCUIT PRELIMINARY DATA DUAL VERY LOW NOISE PREAMPLIFIER The TDA 3420 is a dual preamplifier for applications requiring very low noise performance, as stereo cassette players and quality audio systems. Each channel consists of two independent amplifiers. The first one has a fixed gain while the second one is an operational amplifier for audio application. The TDA 3420 is available in two packages: 16-lead daul in-line plastic and 16 lead micropackage. Its main features are: Very low noise High gain Low distortion - Single supply operation - Large output voltage swing - Short circuit protection ABSOLUTE MAXIMUM RATINGS Vs Ptot Tj , T stg. Supply voltage Total power dissipation at T amb = 70°C Dip 50-16 Storage and junction temperature 20 V 530 mW 400 mW -40 to 150°C ORDERING NUMBERS: TDA 3420 (DIP) L 343M (50-16) Dimensions in mm MECHANICAL DATA 817 6/82 CONNECTION DIAGRAMS '-" OUTPUT A 16 • VS NON INVERT. ;NPUT A 15 OUTPUT B GND 14 NON INVERT. INPUT B INVERT. LNPUT B INVERT. INPUT A 13 GND N.C. OUTPUT 12 INVERT. INPUT B 16 • VS 15 OUTPUT B 14 NON INVERT. INPUT B N.C. 13 OUTPUT 12 INPUT " OUTPUT A NON INVERT. INPUT A INVERT. INPUT A 10 INPUT GND INPUT " OUTPUT INPUT INPUT 10 INPUT INPUT GND OUTPUT INPUT 5-523' 5-5233 50-16 DIP BLOCK DIAGRAM(Pin numbers refer to the DIP) r - - - - - I ':C~)-:()- 5 6 - - - - -. I I OUTPUT(L) I I I 8~ND I I OUTPUT(R) DIP THERMAL DATA Rth j-amb • max Thermal resistance junction-ambient The thermal resistance is measured with the device mounted on a ceramic substrate (25 x 16 x 0.6 mml. 818 80-16 Fig. 1 - Test circuit INPU~~ (Ll y 10 INPUrC2 10JoJF (Rl Note: Pin numbers refer to DIP. Fig. 2 - P.C. board and components layout of the circuit of fig. 1 (1: 1 scale) 819 Fig. 3 - Test circuit without input capacitors INPUT ( Ll INPUT(R) C5 10p F T R2n R4nR 3Kfil. t2Kfi --- .. ,vvnu Note: Pin numbers refer to the DIP. 5- 5 237/1 ELECTRICAL CHARACTERISTICS (Tamb = 25°C, Vs= 14.4V, Gv= 60 dB refer to the test circuit of fig. 1, unless otherwise specified) Parameter Test conditions Is Supply current Vs= 8V to 20V 10 Output current Source Min. Typ. Max. Unit 8 mA 10 mA 1 mA 60 dB 100 Kn 50 n f = 1 KHz 0.05 % f = 10 KHz 0.05 % Vs= 8V to 20V Sink Gv Gain Ri .Input resistance Ro Output resistance THD Total harmonic distortion without noise f = 1 KHz Vo= 300mV 50 820 ELECTRICAL CHARACTERISTICS (continued) Test conditions Parameter Va Peak to peak output voltage I = 40 Hz to 15 KHz en Total input noise (0) Rs= 50 n Rs= 600 n Rs= 5 Kn SiN (0 ) Signal to noise ratio (00) CS Channel separation SVR Supply voltage rejection Min. Typ. Max. 12 0.25 0.4 1.3 Unit V 0.7 !LV !LV !LV Vin= 0.3 mV Vin= 1 mV Rs= 600 n Rs= 0 57 73 dB Vin= 0.3 mV Vin= 1 mV Rs= 600 n Rs= 0 55 71 dB 60 dB 110 dB 1= 1 KHz 1= 1 KHz Rs= 600 n (000 ) (0) Weighting lilter: curve A. (00) Weighting lilter: Dolby CCIRiARM. (000) Relerred to the input. ELECTRICAL CHARACTERISTICS (Refer to the test circuit of fig. 1, Vs= 14.4V) AMPLIFIER N° 1 Parameter Test conditions Gv Gain (pin 6 to pin 5) d Distortion Va= 300 mV en Total input noise (0) Zo Output impedance (pin 5) 10 Output current (pin 5) V5 DC output voltage (pin 5) Min. Typ. Max. Unit 27.5 28.5 29 dB 1= 1 KHz f = 10 KHz 0.05 0.05 % Rs= 600n 0.4 !LV f = 1 KHz 100 n 1 mA Test circuit fig. 3 2.8 V Test circuit fig. 1 (0) Weighting lilter: curve A. 821 1.0 1.5 ELECTRICAL CHARACTERISTICS (continued) AMPLIFIER N° 2 Test conditions Parameter Typ. Min. Max. Unit Gv Open loop voltage gain 100 dB 18 I nput bias current 0.2 I'A Vos I nput offset voltage 2 mV los I nput offset current 50 nA en Total input noise (0) Rs= 600n 2 I'V Rj I nput impedance f = 1 KHz (open loop) 500 Kn 150 (0) Weighting filter: curve A. Fig.4 - Total input noise vs. source resistance (curve A) Fig. 5 - Total input noise vs. source resistance(BW= 22 Hz to 22 KHz) G_3!411 _. .1 i,1 i ! 4 r--=jV s =14.4V I , !Ii.em .- [.Iff- 0.1 0.' =F=B :~ '-1- illII' , I , 0.01 Rg (n) Rg(n) Fig. 8 - Distortion vs. input level (test circuit of fig, ,,~) Fig. 7 - Output voltage vs. frequency 400 300 11111\11 i i 'I: I ! v":4i4~~~:"j d"opS% !, i' I' " 'f--. ,[-- li'!1 I I 0.' - I I i I I II - f ~++tllI ,I 1'1 I I i iI Fig. 9 - Frequency response , I 0.' I II'il!li G-3620 II 11 , i Illdll I '+EQ.:120,uS 'T-I '!-,. so Ii 822 ! 60 '-- I 03 ll I '''t- , I 0.0 1 -'1· 70 - ! I IIII! II I I III - I 1 I I circuit of fig. 10 ,of the 111,'11 I !II Ii f ,,300Hz I'! ' hi 'i _J ;~ it, r-i ~i~ ~ ~T -t-~ 0.' eo , [-- 11 -~ iii (dB d ('J. RL=ZOKl'l [I' H I II t100 II it I 200 IlIlili G·3610/1 II :=tl:~:::f+ -..:- , I ,[-- I I: I :1 , I Tt. ., 11:1 I >--- --:-t- .' 1'----'-' ,-1- 7~j I , " I!V i'-6~EI~~~L ~~~~~OR I, 0.1 , I I I f-+t - Vo , 1:t'C ,-- (mV G·I, o~I~~~~~~!J. I~-----r-r+tt -~ 0.01 ., d ('/ BW" curve ~ Fig. 6 - Total harmonic distortion vs. output voltage -t " - " ..- , 30 - 20 '0 10' .<>, '0' f(Hz) Fig. 10 - Very low noise stereo preamplifier for cassette players C5 .r-ll--r"44V 01,uF 1 '6 onf-JF >,---.--11- -0 CIO 0.22 .uf >"--~--IJ------o Cll S-SZJe,lf Fig. 11 - Complete 20 + 20W stereo tape playback system 823 LINEAR INTEGRATED CIRCUIT PRELIMINARY DATA 5 BIT BINARY TO 7-SEGMENT DECODER DRIVER • • ROM MASK OPTION STANDARD CONFIGURATION FOR 2 DIGIT 7-SEGMENT LED TO PRESENT THE NUMBERS 1 TO 32 • CONSTANT CURRENT OUTPUT STAGES FOR DIRECT DRIVING OF COMMON ANODE LEDs • OUTPUT PROVIDED TO DISPLAY THE STAND-BY MODE • AV OUTPUT ACTIVATED WHENEVER PROGRAM 32 IS SELECTED • TTL COMPATIBLE INPUTS • 5V SUPPLY VOLTAGE The TDA 4092 is a monolithic integrated circuit designed to display the program number (1 to 32) in TV or Radio sets in conjunction with voltage or frequency synthesizers. The inputs accept a 5 bit binary code with TTL levels and have internal pull-up. The outputs can directly drive LED display elements with common anode. One of these outputs is intended to display the stand-by mode of the set. No p.xtp.rn::ll rf~~ic;;tnrc:; ~rp !"p'=!'_t!r,=,d jf the LED5 ~~e 5!..!p~Eed ~t 5V. The LEDs can also be supplied with higher voltage (up to 18V) but in this case a single resistor in series with the LED elements must be used in order to limit the power dissipation of the IC; moreover, a suitable Rext must be chosen. The circuit is produced in 12 L technology and is available in a 24 pin dual in-line plastic package. ABSOLUTE MAXIMUM RATINGS Vs VI Vo (off) IOL Ptot T stg , Tj Top 10 10 20 22 0.8 -25 to 150 Oto 70 Supply voltage Input voltage Off state output voltage Output current Total power dissipation at T amb = 55°C Storage and junction temperature Operating temperature V V V mA W °C °C ORDERING NUMBER: TDA 4092 MECHANICAL DATA 6/82 Dimensions in mm 824 CONNECTION DIAGRAM (top view) GND BRIGHTNESS CONTROL S TAND- BY INPUT PA PB BINARY INPUTS DECIMAL POINT OUTPUT A"l OUTPUT PEN - COLLECTOR) PC PD PE C OUTPUTS(TD THE MOST 6:gl~ljICANT C d OUTPUTS (TO THE LEAST SIGNIFICANT DIGIT) BLOCK DIAGRAM PA I----------->---t ~~I~THRT~tSS PB BINARY INPUTS ,------------t T~~~~- BY PC PD DECIMAL POINT OUTPUT PE AV(OPEN COLLECTOR >--------i OUTPUT) ROM 32 x 14 TO DISPLAY DIGITS GNO 825 5- 522~ APPLICATION CIRCUIT BRIGHTNESS CONTROL 5- 5227 (*) R is necessary only with Vc greater than 5.5V. THERMAL DATA Rth j-amb Thermal resistance junction ambient max 120 °G/W ELECTRICAL CHARACTERISTICS (Vs= 5V, Tamb = 25°G unless otherwise specified) Test conditions Parameter Min. Typ. 4.5 Vs Supply voltage Is Quiescent supply current Vs= 5.5V V IH High level input voltage T amb = a to V IL Low level input voltage T amb = a to 70 e IIH. High level input current T amb = a to 700 Vs = 5.5V IlL Low level input current 20 700 e 5.5 V 28 rnA V V IH = 2V V IL=0.8V 826 Unit 2 0 e Max. -50 0.8 V 100 nA -200 /1A ELECTRICAL CHARACTERISTICS (continued) Parameter Test conditions V out Output voltage 10= 15 rnA V AV ' AV output voltage (pin 20) (All the binary inputs high) IAV=1.6mA Pin 23 input current (Brightness control) 18 Output current (*) 10 Min. Typ. Max. Unit V 2 50 Rext= 3.3 Kn -375 R ext = 5.6 Kn -225 260 mV !LA Rext= 3.3 K 13.5 15 16.5 R ext = 5.6 K 8 9 10 mA Output cu rrent for decimal point (pin 21)(**) lop Lllo -I~ o III V s Segment cu rrent stability 10=15mA V s= 4.5 to 5.5V (*) 10 = 40· 18 (**) lop is fixed and independent of R ext value. 827 12.5 mA 0.2 % FUNCTION TABLE INPUTS A B C D E Standby a H L L L 1 2 3 4 5 6 H H L L L 7 H H H L L L L L L H L L L L L H L L L L • H H L L L L L H L L L L L L H L L L 8 9 10 11 12 13 14 15 16 L L L H L 17 H L L L L L H L L H L L L H L L H L H L L H H L L H L L L H H L L H L L H H L L H H H L L H H H H L L L H H H L H H H H L H H H H H L 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 X X X X X H none L L H L L H L L H L H H L L H L H L H L L L H L H L L H H L H H L L H H H L H L L L H H L H L L H H L H L H H L L L H H L H H L H H H H L L L H OUTPUTS Number displayed L L = High L = Low Av: open collector output. on on on on on on on on on on on on on ten's digit (MSD) b c d e on on on on on on on on on on on on on on on on on on on on on on on g b on on on on on on on on on on on on on on on on on on on on on on on on on a on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on unit's digit (LSD) c d e f g DP on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on on X = Don't care AV output is "on" whenever the input bits are all high, regardless of the standby input. 828 Av' .. APPLICATION INFORMATION Fig. 1 - Remote controlled voltage synthesizer (up to 32 stations) for TV and radio When operating with a supply voltage higher than 5.5V for LED elements, it is necessary to limit the IC power dissipation by means of one external resistance connected in series with the common point of the digits (R in fig. 2). Unused outputs must be connected to Vs taking into account the additional power dissipation. The ~alue of. ~ must be chosen taking into account the worst Fig. 2 _ Schematic diagram working conditions. for LED driving. The maximum number of ON segments is 12 (number 28 dis· played), so, Vc - Vo - Vout min R= 12· 10 10 , depending on Rext (see Table of Electrical characteristics), can be fixed to the most suitable value to minimize the power dissipation in the IC. Since the worst condition for the device is with seven outputs active, it follows that: Pd out = 7· 10 (V c - Vo -7R • 10 ) Pd = Vs· Is max Power dissipation in the output stage Power drained from the supply I-TD_A_4_09_2--1f---1f-...J } . ' " Total power dissipation Ptot must not exceed the Absolute Maximum Ratings of 800 mW, at Tamb = 55°C. Otherwise the maximum operating ambient temperature can be fixed by: Tamb max= Tj max - Rth j-amb Ptot Example: Vc = 18V; 10 = 10 mA (fixed by means of Rext= 5.6 Kn); Tj max= 150°C; Vo = 2V; Vs = 5.5V. Applying the previous formulae, it follows that: R ~ 120n; Ptot = 0.686W; Tamb max~ 68°C. 829 Vout min= 2V; Is max= 28 mA; Pd out= 0.532W; Pd = 0.154W; LINEAR INTEGRATED CIRCUIT VISlor\l I F SYSTEM WITH AFC • • • • • • • • HIGH GAIN-HIGH STABILITY VERY LOW INTERMODULATION PRODUCTS MINIMUM DIFFERENTIAL ERROR CONSTANT INPUT IMPEDANCE INDEPENDENT OF AGC FAST AGC GATING-ACTION, LARGELY INDEPENDENT OF PULSE SHAPE AND AMPLITUDE ADJUSTABLE WHITE LEVEL LARGE AFC OUTPUT CURRENT SWING (PUSH-PULL OUTPUT) SWITCHABLE AFC The TDA4420 is a monolithic integrated circuit in 18 lead dual in-line plastic package. The functions in· corporated are: gain controlled vision I F amplifier video demodulator controlled by picture carrier AGC detector with gating facility AGC amplifier for tuner drive with variable delay phase comparator for AFC current generation electronic AFC switch, controlled by a DC threshold detector thermally compensated push-pull AFC output stage. ABSOLUTE MAXIMUM RATINGS Vs V5 113 , 114 Ptot T stg , T j Supply voltage (pin 15) Voltage at pin 5 Video DC output current Total power dissipation at Tamb ,;;; 70°C Storage and junction temperature 15 15 V V 5 mA 1 W -40 to 150°C ORDERING NUMBER: TDA 4420 MECHANICAL DATA Dimensions in mm 6/82 830 CONNECTION DIAGRAM (top view) ,. INPUT DECOUPLING 17 BIAS DECOUPLING GROUND 16 A Fe OUT INPUT BIAS AGe TIME 15 ,. CONSTANT TUNER AGe OUTPUT SUPPLY VOLTAGE POSITIVE VIDEO OUTPUT NEGATIVE TUNER AGe 13 DELAY VIDEO OUTPUT FlVBACK 12 WHITE LEVEL PULSE INPUT CARRIER TUNING " AFC TUNING lOP CARRIER TUNING AFC TUNING $-1,026 BLOCK DIAGRAM _J' ci >..., M > 5-4033 836 LINEAR INTEGRATED CIRCUITS TV SIGNAL IDENTIFICATION CIRCUIT AND AFC INTERFACE The TDA4431 and the TDA4433 are monolithic integrated circuits in a 14 lead dual-in-line plastic package. They integrate the following functions: - TV signal identificator-Sync.separator - Threshold detector - Digital Interface - Voltage regulator They are intended for use in Electronic Program Memory tuning systems. the TDA4431 in conjunction with M193B1, while the TDA4433 with M293B1. The circuits features are: Identification of true TV stations only. Low impedance output of the identification signal. Digital control signal for automatic search and AFC operation. Thermal compensation of the voltage regulator. ABSOLUTE MAXIMUM RATINGS Vs V3 V13 12 16 ; 12 110 III 112 Ptot Tstg' Tj 16 16 -5 to +6 ±1 1 2 2 ±2 800 -40 to 150 Supply voltage (pin 1) Voltage at pin 3 Voltage at pin 13 Pin 2 current (TDA4431 ) Pin 6 and pin 2 current (TDA4433) Pin 10 current Pin 11 current Pin 12 current Total power dissipation at Tamb ,,;; 70°C Storage and junction temperature V V V mA mA mA mA mA mW °C ORDERING NUMBERS: TDA 4431 TDA 4433 MECHANICAL DATA Dimensions in mm I ~ ~::::::l 837 6/82 CONNECTION AND BLOCK DIAGRAM (TDA4431) (Top view) REGULATED VOLTAGE OUTPUT r------------------------------{4,)-----------~ OND V, '13 OUTPUT Afe "5" CURVE INPUT 3 " STABILIZED IDENTIFICATION H ~~~\~~~TAfl FLYBACK INPUT VIDEO SENS!TIVITY VOLTAGE OUT TIME CONSTANT VIDEO SIGNAL INPUT SIGNAL CONTROL W IDENTIFICATION SIGNAL OUTPUT N,C N.C. N,C N.C SENSITIVITY CONTROL 14 IDENTIFICATION SIGNAL OUTPUT CONNECTION AND BLOCK DIAGRAM (TDA4433) (Top view) REGULATED VOLTAGE OUTPUT V, 14 OND OUTPUT A 13 VIDEO SIGN"AL AFe "S" CURVE INPUT " STABILIZED ~~~I~~:TA:fl SENSITIVITY CONTROL VOLTAGE OUT IDENTifiCATION TIME CONSTANT INPUT H FLVBACK INPUT 10 IDENTIFICATION SIGNAL OUTPUT OUTPUT B N.C. N C, N.C SENSITIVITY CONTROL I ~ BUFFER STAGE L-________________________ -----l- ~1D)}---------------------~ LOENT1FICATION SIGNAL OUTPUT * Open collector outputs 838 ..... 5-4046/1 TEST CIRCUIT dl- ) O----A~b .------'-----',,---'--.;;, Hor'8_,b_a_'k_'"_ _6,,-,9 r ~L-.4--o D,gltal AFC lout A : L r" 'o,,3B.9MHz out TDA 44311: (no ident.) : O~---, i--o-----oldentlf. out t:::..;~---T---':';'----T-...J HL I (ld;nU PI Digital AFC perfect tuning P2 Sensitivity control S2 A : DC or pulses width B : Functional tests SI A: Static tests B : Functional tests L---+J 0\ outTOA4433 TDA4431133 o or3V(DC) : r:-u7 B HL Digital AFC 'N F _ '-_-+--i_O+VS"'12 V Oor3V(OC1 Jl (*'r THERMAL DATA Rth j-amb max Thermal resistance junction-ambient ELECTRICAL CHARACTERISTICS (refer to the test circuit; Vs 12V, Tamb 100 °C/W = 25°C, unless otherwise specified) Test conditions Parameter Vs Supply voltage range (pin 1 ) Is Supply current (pin 1) V s =14.5V V2 Output voltage: low ftuning medium high (TDA4431) V2 Output voltage (TDA4433) Min. 10.8 < fo Typ. Max. Unit 14.5 V 30 mA 0.8 V 8.5 V ftunin£ = fo Vs = 10.8 to 14.5 5.5 ftuning > Vs-0.5 V ftuning < fo Vs-0.5 V fo 12 = lmA ftuning == fo 0.8 V > fo 0.8 V ftuning 839 ELECTRICAL CHARACTERISTICS (continued) Test conditions Parameter V6 Output voltage (TDA4433) Min. Typ. Max. Unit ftuning < fo 16 = lmA 0.8 V ftuning = fo 16= lmA 0.8 V ftuning > fo V Vs-0.5 12 Output cu rrent (TDA4431) V3 I nput voltage range V 3U Upper threshold voltage (see fig. 2) V 4 -25 V 3L Lower threshold voltage (see fig. 2) V 4 -425 R3 I nput resistance V3 = V 4 V4 Regulated voltage 14 = lmA 14 Output current R4 Output differential resistance f:..V 4 -f:..Ts Regulated voltage thermal drift ± 25 IJ-A 8 V V4 V 4 +25 mV V 4 -400 V 4 -375 mV 4 Mn 1.4 V 6.6 1 n 60 ±2 mVrc' VlO Identification output voltage RIO Output resistance V 12 Switch off threshold voltage 112 Input flyback current R12 Input resistance lfly Flyback pulse duration 10 17 }.lsec. t Time delay between leading edges of flyback pulse and sync. pulse 0 3.5 J.l sec. Vl3 Video input signal (peak to peak) 2.5 4.5 V no identification 110 = lmA mA V Vs-l.3 identification Vl3 Sync. pulse amplitude (above black level) Rl3 I nput resistance 20 0.5 V 12 = 3V 1 V 1.5 mA Kn 10 0.52 V 1.5 840 mV n 100 Kn Fig. 2 - Digital AFC threshold voltage vs. frequency. Fig. 1 - Medium output Voltage Vs. Supply voltage. ('_31,7 " MEDIUM ", V - /' V"" /' ;- .....-v ,/ V- /' M~ / ' /' .....- V • 25m'" "t.-O.4V.Z5mv /' 14 'Is (v) TDA4431 I nput Voltage (V3) V3> V 4 V 4 -0.4V V3 < V3 < V 4 < V 4 -O·4V TDA4433 Output voltage (V 2 ) Output voltage (V 2 ) Output voltage (V 6 ) Low level High level Low level Medium level Low level Low level High level Low level High level APPLICATION INFORMATION (refer to the block diagram) TV signal identification circuit: The circuit recognizes only TV signals by checking 'Iogically during one line the coincidence between the horizontal flyback pulse and the pulse detected by a sync. separator. The signal identification is carried out by charging the capacitor connected to pin 5; when the capacitor voltage overcomes a fixed threshold voltage, a Schmitt trigger switches and enables the AFC control. If a TV signal is recognized, the capacitor is slightly charged every line and its voltage reaches the threshold after a number of line which is defined by the value of the capacitor itself. The sensitivity of the identification circuit, hence the number of lines required to charge the capacitor, can be adjusted by means of the resistor connected between pin 11 and ground. When the identification has been made, a signal (level L) is available at pin 10. 841 Threshold circuit: The circuit detects 3 ranges of AFC voltage and in combination with the TV signal identification circuit drives the electronic switches. With a correct TV signal, the output levels corresponding to the 3 ranges are: TDA4433 TDA4431 (V 2 ) fa - Ii f L (V 2 ) (V 6 ) H L fa M L L fa + Ii f H L H L M H ~ ~ ~ Low level Medium level High level Note that the output levels are different for the two devices. The TOA4431 provides three output levels: low (L), medium (M) and high (H). The output at pin 2 remains at medium level if no video signal is applied at the input or if a video signal is applied but is not identified as a true TV signal. The TOA 4433 has two separate outputs which can have only two states, high (H) or low (L). The outputs at pin 2 and at pin 6 remain at a low level with no video signal input or with a video signal not identified as a true TV signal. Both pin 2 and pin 6 are open collector outputs and must be pulled.,up to the positive supply voltage by external resistors. Voltage Regulator The circuit can deliver 1 mA and it can be used as. Of A converter reference to supply fine tuning voltage. Fig. 3 - Application circuit LS HS ~----c ldentif. out Digital AFC out (TDA 4433 only) Digital AFC out (TDA4 431 and TOA 4433) Pos. video out Po, Ily. in 842 5-403211 The passive components should be chosen as follows: R 1 and R2 : these define the AFC response slope. For R 1 = R 2 = 5.1 KQ, the typical slope is 750/11 KHz/V (with AFC output unloaded). Sl : switches between low slope (LS) and high slope (HS). The high slope is typically 88/11 KHz/V. R3 and R4 : the ratio (R3 + R4 )/R 3 defines the digital AFC width (of) calculated from the linear AFC width (26f). With V 5 = 12V, the relation is: Df = 0.036 (26f) RT 1 : by means of this trimmer it is possible to align the linear tuning with the digital one, at the same frequency. The typical relation is: with R3 = 3.3KQ, Ra can be a fixed resistor of 11 OKQ. RT2 : by means of this trimmer it is possible to choose the better sensitivity. It is possible to put a fixed resistor at pin 11 in the range of 68 Kn to 100 Kn. To make a better sensitivity adjustment of trimmer R T2 , it is necessary to use only a weak signal at the antenna. The video information must be a black picture or a field of small white points on a black field. Furthermore, the action of the syncs separator must be as quick as possible. In receivers with automatic program search, Sl should be in the HS position and then the components Sl, R 1 and R2 can be omitted completely. Fig. 4 - Linear and digital AFC 2" f Vout pin 16 TOA 4420(AFCou!) Low Slope VOUI pin 2 TOA 4431 A MH, ca.rrier) 5-4033 843 EPM SYSTEM CONFIGURATIONS 1) For 16 channels M 193 1 ___M__19_3_A__~ __T_D_A __ 4_43_1__~--------------~~,_ M 193 C '2) For 32 channels '--__ T_D_A_4_4_33__ ~~-----------~--~~ ____M_2_9_3____ 3; With microprocessor TDA 4433 11 844 P ~ LINEAR INTEGRATED CIRCUIT MULTIFUNCTION SYSTEM FOR TAPE PLAYERS The TDA 7270S is a multifunction monolithic integrated circuit in a 16-lead dual in-line plastic package specially designed for use in car radios cassette players, but suitable for all applications requiring tape playback. It has the following functions: Motor speed regulator Automatic stop Manual stop Pause Cassette ejection Radio - Playback automatic switching. The circuit incorporates also: Thermal protection - Short circuit protection to ground (all the pins) ABSOLUTE MAXIMUM RATINGS Vs 11 15 Ptot Tstg ;Tj Supply voltage Sink peak current at pin 1 Sink peak current at pin 5 Power dissipation at T amb ';;; 80°C Storage and junction temperature 20 2 V A 2 A 1 W -40 to 150 °C ORDERING NUMBER: TDA 7270 S Dimensions in mm MECHANICAL DATA 845 6/82 CONNECTION DIAGRAM (top view) 16 MOTOR S~EED 15 REG. 14 CASS, SWITCH 4 13 RELAY 12 GND DRIVER AUT. STOP 11 EJECTION 10 Vs 5- 321" BLOCK DIAGRAM ~~----------------~ M +V5 9 LSJ: C~~Sl RELAY ( 1A MAX) , RELAV (150mA MAX) 9 to16 ROTARY SWITCH 5 - 3 S67/1 846 c. ~~ " ~ ~" , ~= ~ ' ~:" 7::~; ~ ~"). , '" 847 ~c_cc ', ~""'" ;lit y "'" ~ c ~~ _ _ _ c__ © _c _ _ _ _ _ _ _ TEST CIRCUIT tV5~ 15 Jl lOKfi A'08 s, J.~ THERMAL DATA Rth j-amb Rth Hoase max max Thermal resistance junction-ambient Thermal resistance junction-pins ELECTRICAL CHARACTERISTICS (Refer to the test circuit; T amb = 25°C; 15 °C/W °C/W Vs = 14V; 57 at 70 B, unless otherwise specified) Parameter Vs Supply voltage Id Quiescent drain current Is Test conditions Max. Unit 18 V Automatic stoP-S3 at B S4 at B 5 10 Pause - S3 at A; S4 at A 9 15 Maximum output current Thermal shut-down case temperature Typ. 6 mA mA 150 for relay driving Tsd Min. Ptot ~ 1W 105 ( I'N ref ~ -5%) V ref 848 125 °C ELECTRICAL CHARACTERISTICS (continued) Test conditions Parameter MOTOR SPEED CONTROL I MS Starting current {pin 1) V ref Reference voltage (pin 2-3) 1 IM= 100 mA 1.15 A 1.25 1.35 V 0.4 %/V 0.03 %/mA /l,V ref //1, V V ref S IM= 100 mA V 5 = 8 to 18V 0.1 /l,Vr~//I,IM IM= 50 to 400 mA 0.01 IM= 100 mA T amb = -20 to 700C 0.01 V ref /l,V ref //1, T V ref V2 Operating voltage K ~//I,V K Reflection coeff.{K= 1M/IT see fig. 12) IM= 100mA /I, V ref = -5% V ref IM= 100mA V 2.4 18 IM= 100mA V 5= 8V to 18V 5 %/oC - 20 22 0.3 1 %/V 0.02 %/mA ~//I,IM I M= 50 to 400 mA 0.005 ~//I,T IM= 100mA T amb= -20 to 700 C 0.01 K K %/"C PAUSE 13 Current consumption V S- 1 S4 at A 1.4 mA S4 at A 0.2 V EJECTION 17 20 S2 in A Vs-s Saturation voltage I s =100mA Vs Satu ration voltage Is-s= 1.5A V4 (Pause condition) Sl at A V4 (Radio) Sl at A V4 (Tape) Sl at A Ro Output impedance at pin 4 S3 at B S3 at A S4 at A 6 S3 at B S4 at B 6 S3 at A S4 at B fJ.A 2.1 3 V 2.2 3 V V V 9 16 1.7 V 22 Kn 1 fJ.A 1 fJ.A 19.5 fJ.A AUTOMATIC STOP V S- 1 Saturation voltage Sl at B 16 Minimum current to avoid stop Sl at C 17_S Load current for delay circu it 16= 0 S2 at B S7 at A 849 S3 at B S2 at B 10.5 15 Fig. 1 - Reference voltage vs. supply voltage. G-~UGI1 f I ) IM~'OOmA ., , Fig. 3 - Reference voltage vs. ambient temperature. Fig. 2 - Reference voltage vs. motor current. (3-'14711 Vref ,~ f "f ./.) " I ) I ( Vs " 1"V 1.3 5 , 5 I i / f.2 6 ....... " 1.25~-+I--=!--+--+-I--+-+-+-k-+ ( 5 I-- 4 5 1---, i i , 1.1Sf---+-+----l--+-+-+--f---+-+---l : >'6 I 1 I I 1 I T I 100 15 I-Ig. 4 - Saturation voilage (pins 5-8) vs. pin 5 current. -20 -10 4001M(mA) 0 +10 +20 +30 +40 +50 1amb('C) !=:g. e - Ref!e~tk~~ c0~f ficient vs. motor current. riy. 5 - nt:fit:Cliui~, Cu~f ficient vs. supply voltage. r-'--r-.--'--r-'--r--r~~~ ~+--+-I--+--+-+--+-~-+~,{~) 22 f---+-+---l--++--l--+-+--l---!'5 ~+-~-+--~4--+~~+-~~'5 ,/ ,/ ~+-~-+--t-4--+~1---+--r~-5 ,/ " 150 fOO 200 IS (mAl 200 fOO Fig. 7 Reflection coefficient vs. ambient temperature. Fig. 8 - Pin 1 saturation voltage vs. motor current. G-~153 ) ~ oM ) 1---+'-,,-.-\c14c;,,_L-+--~+--+~--+--1« 1 =100 rnA f-4--+---I--+--+-+--+-+--+---+'5 1/ V f-4--+---I--+-~-+--t-4---+---+'5 " f-4--+---I--+-+-+~+-+--+---+ ./ :,...- ./ V -20 -10 0 +10 0.3 +20 +30 +40 +50Tamb{'C) 850 0.6 09 / 300 400 lM(rnA) APPLICATION INFORMATION The TDA 7270S incorporates four different functional blocks: 1) Motor speed contro I. 2) Autostop circuit. 3) Radio/Playback switching 4) Relay driver. The motor speed control is a conventional circuit providing correction for the internal losses of the motor. Fig. 9 shows the external circuit. The values of RT , Rs and RK determine the regulation characteristics and motor speed. RT = K· RM where K = the IC regulator reflection coefficient and RM = motor internal resistance. The following condition must be always satisfied Rs < 4 RT Fig.9 S-4358 The voltage applied across the motor is given by VS - 1 = RT 1) + _RK 1 V ref [1 + ~ ( 1 + -K Rs and this is proportional to RK which therefore adjusts the speed. The voltage between pin 2 and the supply must not fall below 0.3V and so [V ref RT min (~s ) + 1M RT min (---.-) 1> 0.3V Kmax < < The "pause" condition corresponds to V 3 50 mV; in this condition the motor will stop (V 1-8 0.2V), the capacitor C2 on the autostop circuit (see below) will no longer be charged and the pin 4 (cassette/ radio switch output) will be pulled high. 851 APPLICATION INFORMATION (continued) The autostop circuit is shown in fig. 10. In normal operation the capacitor C2 (22 }.IF) is slowly charged by a constant current drawn by pin 7 of 15 }.lA, and each time the pulser (a switch on the cassette take-up speed shaft) closes, C2 is discharged. If the cassette stops, and the pulse stops, the voltage on pin 7 falls. This switches the power amplifier state and pin 5 goes low. Pin 5 can be used for one of two purposes: 1} to drive a stop warning light connected from pin 5 supply Vs. 2} to actuate a solenoid wired eitherto ground (to release the cassette) or to supply (to eject the cassette). The pause and/or cassette/radio switching shown in fig. 11 has an input/output on pin 4. If pin 4 is not used it should be grounded. This pin has the following logic. Fig. 11 Fig. 12 - Application circuit Function Cass IN Pause Pin 4 Open Open >6V motor off/radio on Open Close >6V motor off/radio on Close Open < 1.7V Close Close >6V motor on/casso on pause/radio on +vso--~----~-----~~,..-' C2 Ego .--1--1-:---+-----:::~~}_--- R2 R1 RM il]R5 T 'l 'I CASS SWITCH £TTE 5-390311 EJECTION 852 DESCRIPTION OF OPERATION (Refer to fig. 12) When the cassette is introduced the switch T 2 closes, the motor start to turn and the rotary switch generates the pulses which keep the levels of pin 5 and pin 7 high. A relay between pin 5 and ground holds the cassette. If there are no pulses at pin 6 (because tape stopped) or if the ejection switch T I is closed, the voltages at pin 5 and pin 7 drop; the relay is thus de-energized and the cassette ejected; as soon as the cassette is ejected, the switch T 2 opens and the motor stops. The capacitor at pin 7 dis· charges allowing the system to start again when another cassette is inserted. In other types of mechanical systems the cassette is ejected by energizing a relay; in this case the relay must be connected between pin 5 and the supply; the sequence of operations is then the same as described above. If the pause switch T 3 is closed, the motor stops even though there are no pulses at pin 6, the voltage levels at pins 7 and 5 remain high so the cassette is not ejected and the motor is ready to start again as soon as the pause key is released. A voltage for driving the radio-tape switching is available at pin 4. This voltage level is high (> 6V) with stopped motor and is low « 1.7V) with running motor. APPLICATION SUGGESTION (See figure 12) Component RI Recommended value 10Kn Purpose Limits current from pin 7 R2 560 Kn By rotary switch it produces pulses which disable the automatic stop R3 10Kn Limits the motor current during pause (T 3 closed) R4 2.2 Kn Rs 560Kn R6 1 Mn Larger than recommended value Smaller than recommended value Allowed range Min. Max. 0 100Kn Delayed ejection. Possibility that ejection does not work High driving current at pin 7 Undesired operation of automatic switch Possibility of audio interference spikes 100Kn 2Mn Reference voltage Higher motor current during pause (T 3 closed) with delayed stop of motor 1Kn 47Kn Voltage at pin 4 decreases. RadioPlayback switching could not work 1.5Kn 2.7Kn variation Fixes voltage of pin 4 du ring pause and playback Voltage at pin 4 Compensates for cu rrent loss between pin 6 and ground Limited compensation Necessity to increase C I and decrease R2 100Kn 00 Limited Possibility that automatic stop will not work 560Kn 00 Compensates for current loss between pin 7 and grou nd. Also reduces recovery increases compensation time RT K-R M (typical values) Compensates for voltage drops at motor terminals vs.l'> 1M Danger of oscillations 853 Poor speed regu lation versus l'>IM See note on next page APPLICATION SUGGESTION (continued) Component Larger than recommen",ded value Smaller than recommended value Fixes the current value in RT and and RK for IM= 0 Danger of saturation of non inverting input of regulator (pin 2). Considerable speed variation for small variation cif R K I mpossibil ity to obtain a low motor speed Fixes the requested V 8 - 1 Wide speed variation versus Recommended value Purpose Rs SeeNote(*) RK See Note (*) C1 0.1 J-LF DC isolati on Allowed range Min. Max. 4 RT Limited speed variation versus '" RK '" RK Electrolytic Undesired automatic stop capacitors cannot 0.047 J-LF be used I C2 22 J-LF C3 10J-LF Rotary switch frequency 20 Hz Low recovery time. Undesired automatic stop I ntegrates the pulses of the rotary switch High recovery time By pass Wow and flutter problems I nstability at low temperature Keeps automatic Possibility of audio interference spikes Necessity to increase stop off 3.3 J-LF 22 J-LF 5J-LF C 1 and C 2 NOTE (*): RT 1 RK V 8-1 = V ref [1 + - - (1 + -K) + - R - j from wh ich it can be seen that V 8-1 varies Iinearly with R K . Rs 5 The voltage between pin 2 and the supply must not fall below 0.5V, so the following expression must be verified RT RT [Vrefmin (R-)+IMmin (-K--)j > 0.3V 5 max During the pause, the voltage between pin 3 and ground must be lower than 1.3V. n VS. ~ (rpm) n 2100 '5 2000 1900 co,.) Vs ,,14V (rpm) ("t.) Vs =14V I M ,,100mA +5 2100 f.....- 2000 r- 7 On --;;- (rpm) (O,.) ~:100mA Fig. 15 - Speed variation vs. ambient temperature Fig. 14 - Speed variation motor current Fig. 13 - Speed variation vs. supply voltage +5 2100 2000 I-5 1900 1900 -5 i 14 16 16 20 o 20 40 60 60 lOa 120 140 854 160 IM(mA) -40 -20 0 20 40 60 SO lambC'C) ;,." ~ ,* "'\ j .' , ' , : .: ~ IT' ~ ,~""" \ ~ ' , , " , ''''Hi APPLICATION SUGGESTION (continued) Fig. 16 - Delay time of the relay driver Fig. 17 - Low cost application circuit (C 2 = 2.2I'F) VOLTAGE AT PIN 5 5-3898,1 V51 0.5 U, . I 1.5 . t (sec) The circuit shown in fig. 17 offers the following functions: 1) 2) 3) 4) motor speed regulation automatic stop autostop warning light pause. The circuit incorporates an additional resistor/diode from pin 3 to pin 5. When the cassette stops, and the pulser no longer generates pulses, pin 5 falls to a low level and the stop indicator is on. Pin 3 is pulled low through the 1 Kn resistor and the diode, however pin 3 must not be pulled lower than 1.3V since this would cause pin 5 to go high again. The current of about 1 mA out of pin 3 causes V3-5 to be about 1.5V. In this way the motor remains stopped and pin 5 remains low. MOUNTING INSTRUCTIONS Fig. 18 - Example of heatsink using PC board copper Fig. 19 - Example of external heatsink 30mm. cs- 0'00 ~--------65mm-------~ Figures 18 and 19 show two ways to make the device dissipate. In both cases, Rth = 35°C/W. 855 I Information furnished is believed to be accurate and reliable. However, no responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-ATES. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and substitutes all information previously supplied. SGS-ATES GROUP OF COMPANIES Italy - France - Germany - Malta - Malaysia - Singapore - Sweden - United Kingdom - U.S.A. © SGS-ATES Componenti Elettronici SpA, 1982 - Printed in Italy
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:56:37 Create Date : 2012:12:14 10:48:30-08:00 Modify Date : 2012:12:14 15:51:07-08:00 Metadata Date : 2012:12:14 15:51:07-08:00 Producer : Adobe Acrobat 9.52 Paper Capture Plug-in Format : application/pdf Document ID : uuid:6ea8eae5-249b-40cc-8f14-dfa6679f1e98 Instance ID : uuid:db3c3af5-d3a7-42ae-a808-5e47cf8741b4 Page Layout : SinglePage Page Mode : UseNone Page Count : 886EXIF Metadata provided by EXIF.tools