1982_SGS_Linear_Integrated_Circuits_3ed 1982 SGS Linear Integrated Circuits 3ed

User Manual: 1982_SGS_Linear_Integrated_Circuits_3ed

Open the PDF directly: View PDF PDF.
Page Count: 886

Download1982_SGS_Linear_Integrated_Circuits_3ed 1982 SGS Linear Integrated Circuits 3ed
Open PDF In BrowserView PDF
criterion

(40B) 9BB-6300

manufacturers representatives
3350 Scott Blvd .. Bldg. 44. Santa Clara . CA 95051

ISSUED JUNE 1982

INTRODUCTION
This databook contains data sheets on the SGS-ATES range of linear integrated circuits for professional,
industrial and consumer applications.
Selection guides are provided in the following pages to facilitate rapid identification of the most suitable
device for the intended use.
The information on each product has been specially presented in order that the performance of the
product can be readily evaluated within any required equipment design.

SGS·ATES GROUP OF COMPANIES
INTERNATIONAL HEADQUARTERS
SGS-ATES Componenti Elettronici SpA
Via C. Olivetti 2 - 20041 Agrate Brianza - Italy

Tel.: 039 - 65551
Telex: 330131-330141
BENELUX
SGS-ATES Componenti Elettronici SpA
Benelux Sales Office

8- 1180 Bruxelles
Winston Churchill Avenue, 122

ITALY
SGS-ATES Componenti Elettronici SpA
Direzione Commerdale Italia
20149 Milano
Via Correggio, 1/3
Tel.: 02 - 4695651
Sales Office:
00199 Roma
Piazza Gondar, 11
Tel.: 06 - 8392848/8312777

Tel.: 02 - 3432439
Telex: 24149 B
DENMARK
SGS-ATES Scandinavia AB
Sales Office
2730 Herlev
Herlex Torv, 4

SINGAPORE
SGS-ATES Singapore (Pte) Ltd.
Singapore 1231
Lorang 4 & 6 - T oa Payoh
Tel.: 2531411
Telex: ESGIES RS 21412

Tel.: 02 - 948533
Telex: 35411
EASTERN EUROPE
SGS-ATES Componenti Elettronici SpA
Export Sales Office
.

20041 Agrate Brianza - Italy
Via C. Olivetti, 2
Tel.: 039 - 6555287/6555207
Telex: 330131-330141

FINLAND
SGS-ATES Scandinavia AB
Sales Office
02210 Esbo 21
Kaantopiiri,2
Tel.: 90 - 881395/6
Telex: 123643
FRANCE
SGS-ATES France S.A.
15643 Paris Cedex 13
Residence "Le Palatino"

17, Avenue de Choisy
Tel.: 01 - 5842730
Telex: 042 - 250938

WEST GERMANY
SGS-ATES Deutschland Halbleiter
Bauelemente GmbH
8018 Grafing bei Miinchen
Haidling, 17

Tel.: 08092··691
Telex: 0527378

SWEDEN
SGS-ATES Scandinavia AB
19501 Miirsta
Box 144
Tel.: 0760 - 40120
Telex: 042 - 10932

SWITZERLAND
SGS-ATES Componenti Elettronici SpA
Swiss Sales Offices
6340 Baar
Oberneuhofstrasse, 2
Tel.: 042 - 315955
Telex: 864915
1218 Grand-Saconnex (Geneve)

~~le~~;f~a~~~~6~/;mann 22
Telex: 28895

UNITED KINGDOM
SGS-ATES (United Kindgom) Ltd.
Aylesbury, Bucks
Planar House, Walton Street
Tel.: 0296 - 5977
Telex: 041 - 83245

Sales Offices:
3012 langenhagen
Hubertusstrasse, 7
Tel.: 0511 -772075/7
Telex: 0923195
8000 Munchen 90
Tegernseer LandstL, 146
Tel.: 089 - 6925100
Telex: 05215784
8500 Niirnberg 30

Ostendstr.,204
Tel.,0911-572977/78/79
Telex: 0626243
7000 Stuttgart 80
Kalifenweg,45
Tel.: 0711 - 713091/2
Telex: 07 255545
HONG KONG
SGS-ATES Singapore (Pte) Ltd.
9th Floor, Block N,
Kaiser Estate, Phase 1: t,
11 Hok Yuen St.,
Hung Hom, Kowloon

Tel.: 3-644251/5
Telex: 63906 ESGIE HX

U.S.A.
SGS-ATES Seminconductor Corporation
Scottsdale, AZ 85251
7117, East 3rd Avenue
Tel.: (602) 990-9553
Telex: SGS ATES SCOT 165808
Waltham, MA 02154
240, Bear Hill Road
Tel.: (617) 890-6688
Telex: 923495 WHA
Des Plaines, I L 60018
2340, Des Plaines Ave Suite 309
Tel.: (312) 296-4035
Telex: 282547
Santa Clara, CA 95051
2700, Augustine Drive

Tel.: (408) 727-3404
Telex: 346402
Woodland Hills, CA 91367
6355, Topange Canyon Boulevard
Suite 220
Tel.: (213) 716-6600
Telex: 182863

2

TABLE OF CONTENTS

I~

I,

'I'
"

ALPHANUMERICAL INDEX

Page

APPLICATION GUIDE

4

9

HANDLING OF POWER ICs

15

RELIABILITY (SURE III)

19

DATA SHEETS

33

3

ALPHANUMERICAL INDEX

Type
L120A
L 121A
L123
L146
L149
L165
L194-5
L194-12
L194-15
L200
L201
L202
L203
L204
L290
L291
L292
L293
L293E
L294
L487
L601
L602
L603
L604
L702
L2605
L2685
L2610
L3654
L7805
L7806
L7808
L7812
L7815
L7818
L7820
L7824
L78M05
L78M06
L78M08
L78M12
L78M15
L78M18
L78M20
L78M24

Function

Page

TRIAC/SCR phase control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
34
TRIAC/SCRburstcontrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
41
High precision voltage regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
49
High precision, high voltage regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . ..
57
68
High gain power output stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
3A-Power operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
73
5V-Positive voltage regulator with rectifying bridge . . . . . . . . . . . . . . . . . . .
79
12V-Positive voltage regulator with rectifying bridge. . . . . . . . . . . . . . . . . ..
79
15V-Positive voltage regulator with rectifying bridge. . . . . . . . . . . . . . . . . ..
79
Adjustable voltage and current regulator . . . . . . . . . . . . . . . . . . . . . . . . . ..
83
High voltage, high current 7 darlington arrays. . . . . . . . . . . . . . . . . . . . . . ..
93
High voltage, high current 7 darlington arrays . . . . . . . . . . . . . . . . . . . . . . .
93
High voltage, high current 7 darlington arrays . . . . . . . . . . . . . . . . . . . . . . .
93
High voltage, high current 7 darlington arrays . . . . . . . . . . . . . . . . . . . . . . .
93
Tachometer converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
98
5 bit D/A converter and position amplifier . . . . . . . . . . . . . . . . . . . . . . . . . 104
Switch-mode driver for DC motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Push-pull four channel driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 122
Push-pull four channel driver .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 122
Switch-mode solenoid driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Low dropout 5V ,egulator with reset . . . . . • . . . . . . . . . . . . . . . . . . . . . .. 136
High voltage, high current 8 darlington arrays . . . . . . . . . . . . . . . . . . . . . . . 139
High voltage, high current 8 darlington arrays . . . . . . . . . . . . . . . . . . . . . . . 139
High voltage, high current 8 darlington arrays . . . . . . . . . . . . . . . . . . . . . . . 139
High voltage, high current 8 darlington arrays . . . . . . . . . . . . . . . . . . . . . . . 139
Quad darlington switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 142
5V-Positive voltage regulator for automotive. . . . . . . . . . . . . . . . . . . . . . .. 146
8.5V-Positive voltage regulator for automotive. . . . . . . . . . . . . . . . . . . . . .. 146
10V-Positive voltage regulator for automotive. . . . . . . . . . . . . . . . . . . . . .. 146
Printer solenoid driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 148
Positive voltage regulator (lA-5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 153
Positive voltage regulator (lA-6V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 153
Positive voltage regulator (lA-8V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 153
Positive voltage regulator (lA-12V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 153
Positive voltage regulator (1 A-15V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 153
Positive voltage regulator (1 A-18V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 153
Positive voltage regulator (1 A-20V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 153
Positive voltage regulator (lA-24V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 153
Positive voltage regulator (0.5A-5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Positive voltage regulator (0.5A-6V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Positive voltage regulator (0.5A-8V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Positive voltage regulator (0.5A-12V) . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 165
Positive voltage regulator (0.5A-15V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Positive voltage regulator (0.5A-18V) . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 165
Positive voltage regulator (0.5A-20V) . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 165
Positive voltage regulator (0.5A-24V) . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 165
4

11

IlIiI
14

~

I~

ALPHANUME.RICAL INDEX (continued)

I',!

Type
L78S05
L78S75
L78S09
L78S10
L78S12
L78S15
L78S18
L78S24
L7905
L7952
L7908
L7912
L7915
L7918
L7920
L7924
LMl17
LM217
LM317
LM324
LM324A
LM339
LM339A
LM2902
LS025
LS045
LS10l
LS107
LS141
LS141A
LS141C
LS148
LS148A
LS148C
LS150
LS156
LS159
LS201
LS204
LS204A
LS204C
LS207
LS285
LS285A
LS288
LS301

Function
Positive voltage regulator (1.5A-5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Positive voltage regulator (1.5A-7.5V) . . . . . . . . . . . . . . . . . . . . . . . . . . .
Positive voltage regulator (1.5A-9V) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Positive voltage regulator (1.5A-l OV) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Positive voltage regulator (1.5A-12V) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Positive voltage regulator (1.5A-15V) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Positive voltage regulator (1.5A-18V) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Positive voltage regulator (1.5A-24V) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Negative voltage regulator (lA-5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Negative voltage regulator (lA-5.2V) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Negative voltage regulator (lA-8V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Negative voltage regulator (lA-12V) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Negative voltage regulator (1 A-15V) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Negative voltage regulator (lA-18V) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Negative voltage regulator (lA-20V) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Negative voltage regulator (lA-24V) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2V to 37V adjustable regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2V to 37V adjustable regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2V to 37V adjustable regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Low power quad operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . .
Low power quad operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . .
Quad voltage comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Quad voltage comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Low power quad operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . .
Balanced modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Channel amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High performance operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . .
Frequency compensated operational amplifier . . . . . . . . . . . . . . . . . . . . . .
Frequency compensated operational amplifier . . . . . . . . . . . . . . . . . . . . . .
Frequency compensated operational amplifier . . . . . . . . . . . . . . . . . . . . . .
Frequency compensated operational amplifier . . . . . . . . . . . . . . . . . . . . . .
Operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High performance 80 dB compandor . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Telephone speech circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High reliability transistor array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High performance operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . .
High performance dual operational amplifier . . . . . . . . . . . . . . . . . . . . . . .
High performance dual operational amplifier . . . . . . . . . . . . . . . . . . . . . . .
High performance dual operational amplifier . . . . . . . . . . . . . . . . . . . . . . .
Frequency compensated operational amplifier . . . . . . . . . . . . . . . . . . . . . .
Telephone speech circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Telephone speech circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Programmable telephone speech circuit . . . . . . . . . . . . . . . . . . . . . . . . . . .
High performance operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . .

5

Page
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

175
175
175
175
175
175
175
175
187
187
187
187
187
187
187
187
192
192
192
198
198
205
205
198
211
218
222
231
236
236
236
243
243
243
251
259
271
222
276
276
276
231
284
284
292
222

i

'.

ALPHANUMERICAL INDEX (continued)

Type
LS307
LS342
LS356
LS404
LS404C
LS656
LS709
LS709A
LS709C
LS776
LS776C
LS4558N
MC1458
MC1458C
TAA550
TAA611A
TAA611B
TAA611C
TBA231A
TBA331
TBA800
TBA810CB
TBA810P
TBA810S
TBA820
TBA820M
TCA830S
TCA900
TCA910
TCA940N
TCA 3089
TCA 3189
TDA 4405
TDA1054M
TDA1151
TDA1170
TDA1170D
TDA1170N
TDA1170S
TDA 1180P
TDA1190Z
TDA1200
TDA1220A
TDA1220B
TDA1220L
TDA1410A

Function

Page

Frequency compensated operational amplifier . . . . . . . . . . . . . . . . . . . . . "
Multifrequency to telephone line interface circuit. . . . . . . . . . . . . . . . . . . ..
Telephone speech circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
High performance quad operational amplifier . . . . . . . . . . . . . . . . . . . . . . "
High performance quad operational amplifier. . . . . . . . . . . . . . . . . . . . . . ..
Telephone speech circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Programmable operational amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Programmable operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . "
Dual high performance operational amplifier . . . . . . . . . . . . . . . . . . . . . . "
Dual operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Dual operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
TV voltage stabilizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "
1.8W audio amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "
2.1W audio amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
3.3W audio amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Dual audio preamplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
General purpose transistor array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5W audio amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
7W audio amplifier for CB radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7W audio amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
7W audio amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "
2W audio amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Minidip 1.2W audio amplifier . . . . . . . . . . . . . ;...... . . . . . . . . . . . . ..
3.4W audio amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Motor speed regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Motor speed regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
lOW audio amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FM-I F radio system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FM-IF high quality radio system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "
TV vision I F system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Preamplifier with ALC for cassette recorders . . . . . . . . . . . . . . . . . . . . . . ..
Motor speed regulator . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .
TV vertical deflection system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Low-noise TV vertical deflection system . . . . . . . . . . . . . . . . . . . . . . . . . "
Low-noise TV vertical deflection system. . . . . . . . . . . . . . . . . . . . . . . . . ..
TV vertical deflection system .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
TV horizontal processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Complete TV sound channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
FM-IF radio system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AM-FM radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AM-FM quality radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Low voltage AM-FM radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "
Quasi-complementary dual darlington . . . . . . . . . . . . . . . . . . . . . . . . . . . .

231
303
307
320
320
329
342
342
342
347
347
357
364
364
14
14
14
14
367
371
377
382
389
396
14
402
14
409
409
413
420
427
433
442
453
459
469
475
481
493
506
14
514
530
535
14

6

ALPHANUMERICAL INDEX (continued)

Type
TDA1420A
TDA1420L
TDA1470
TDA1670
TDAl770
TDA1904
TDA1905
TDA1908
TDA1910
TDA2002
TDA2003
TDA2004
TDA2005
TDA2006
TDA2008
TDA2009
TDA2010
TDA2020
TDA2020D
TDA2030
TDA2030A
TDA2040
TDA2054M
TDA2140
TDA2151
TDA2161
TDA2170
TDA2190
TDA2310
TDA2320
TDA2320A
TDA3190
TDA3310
TDA3410
TDA3420
TDA4092
TDA4420
TDA4431
TDA4433
TDA7270S
TDA7770

Function

Page

Quasi-complementary dual darlington . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Quasi-complementary dual darlington . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vertical deflection system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vertical deflection circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Vertical deflection circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,
4W audio amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
5W audio amplifier with muting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8W audio amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
lOW audio amplifier with muting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
8W car radio audio amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
lOW car radio audio amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10 + lOW stereo amplifier for car radio . . . . . . . . . . . . . . . . . . . . . . . . . . . ,
20W bridge amplifier for car radio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
lOW audio amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12W audio amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
10 + lOW Hi-Fi amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12W Hi-Fi amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,
20W Hi-Fi amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
40w audio driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14W Hi-Fi amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " .,
18W Hi-Fi amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,
22W Hi-Fi amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Preampl ifier with A LC for cassette recorders . . . . . . . . . . . . . . . . . . . . . . ..
PAL Subcarrier Reference Oscillator for Colour TV . . . . . . . . . . . . . . . . . . .
Luminance and Chrominance Amplifier for Colour TV . . . . . . . . . . . . . . . . .
Synchronous Demodulator and RGB Matrix for Colour TV . . . . . . . . . . .
TV vertical deflection output circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Complete TV sound channel with VCR and CCC . . . . . . . . . . . . . . . . . . . . .
Hi-Fi dual preamplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Preamplifier for infrared remote control systems . . . . . . . . . . . . . . . . . . . . .
Minidip stereo preamplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Complete TV sound channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Low noise N PN transistor array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Dual low noise tape preamplifier with autoreverse . . . . . . . . . . . . . . . . . . . ..
Dual low noise tape preamplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
5 bit binary to 7 segment decoder driver. . . . . . . . . . . . . . . . . . . . . . . . . ..
Vision I F system with AFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TV signal identif. and AFC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TV signal identif. and AFC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Multifunction system for tape players. . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Multifunction system for tape recorders . . . . . . . . . . . . . . . . . . . . . . . . . ..

14
14
540
551
563
575
579
592
603
616
623
632
642
656
666
672
683
691
700
711
721
735
742
14
14
14
749
756
775
784
790
800
14
809
817
824
830
837
837
845
14

7

APPLICATION GUIDE: CONSUMER CIRCUITS
Audio Power Amplifiers

TV
~.'~

« .• <».....;,."
""~:',' ":'«.'.\,;"

r"

Horizontal

TDA 1180P

Vertical

TDA1170
TDA1170D
TDA1170N
TDA 1170S
TDA1470
TDA1670
TDA1770
TDA2170

<:
0

.;::;
u
;;:::

'"
0'"

e

.I:.

u

TDA2140
TDA2151
TDA2161

Oscillator
Lumin. & Chromin.
Demodulator

Car radio

Portable radio

TAA611A
TAA611B
TAA611C
TBA820
TBA820M
TDA1904
TDA1905

TV receiver

TBA800
TCA940N
TDA1904
TDA1905
TDA1908
TDA2006
TDA2008
TDA2009

Hi-Fi and Hi-Fi TV

TDA1910
TDA2009
TDA2010
TDA2020
TDA2030
TDA2030A
TDA2040

Driver

TDA2020D
TDA2030A

f-

TV signal identification

TDM431
TDM433

Varicap supply

TAA550A
TAA550B
TAA550C

TV channels display driver

TDM092

Preamplifiers

General purpose

TBA231A

Tape

TDA1054M
TDA2054M
TDA3410
TDA3420

Hi-Fi

TDA2310

Infrared receiver

TDA2320

Stereo preamplifier

TDA2320A

. . . ; . .•.•. •. . 1,···,··!t,$V,e>S ...•••.• • . .•.,.,. . . <'
TBA810P
TBA810S
TBA810CB
TDA2002
T::lA2OO3
TDA2OO4
TDA2005

TDM40S
TDM420

Video I F system

'"

I~pp~i~~.'~,".,····. ·.,.;

TDAl190Z
TDA2190
TDA3190

Complete sound channel

E

i ;;;.:..
..... "'."~~'7.

:.•'.••.'; .. ,•...•....

Radio

IF/FM radio system

TCA3089
TCA3189
TDA1200

AM/FM radio

TDA1220A
TDA1220B
TDA1220L

Tape Recorders
Transistor Array

NPN array
lultifunction

TDA7270S

9

LS159
TBA331

APPLICATION GUIDE: PROFESSIONAL CIRCUITS

Operational Amplifiers

Single general purpose

Positive Voltage Regulators

LS107/207/307
LS141/A/C
LS148/A/C
LS709/A/C

Single high performance

LS1 01/201 /301

Programmable

LS776/C

Dual general purpose

MC1458/C

Dual high performance

LS204/A/C
LS4558N

Quad general purpose

LM324/A
LM2902

Quad high performance

Industrial Circuits

LS404/C

Telecommunications Circuits

Balanced modulator

LS025

Channel amplifier

LS045

Compandor

LS150

Telephone speech circuit

LS156
LS285/A
LS288
LS356
LS656

Multifrequency interface

LS342

Op-amps for active filter

LS204
LS404
10

Power operational amplifier

L165

DC motor positioning
system

L290
L291
L292

DC and stepping
motor driver

L293
L293E

Switch-mode solenoid driver

L294

Printer solenoid driver

L3654

Quad comparator

LM339

Darlington array

L201/2/3/4
L601/2/3/4
L702

Current boosters

L149
TDA1410A
TDA1420A
TDA1420L

Triac/SCR control

L120A
L121A

AUDIO POWER AMPLIFIERS

Selection table (test conditions; d = 10%,
SUpply
(VI

f = 1 kHz)
output Power

IWI

Device

RL=40

RI..""20

RI..=80

4

TBAS20M

0.35

TAA611A
TBAS10S
TBAS20M
TDA1904

0.5
1
0.75
O.S

0.35

6

1.S
1.S
2.5
1.6
1.6
2.2
2.5

1.15
1.15

9

TAA611A
TAA611B
TBAS10P
TBAS20
TBAS20M
TDA1904
TDA1905

12

TAA611B
TAA611C
TBAS20

14.4

TBAS10CB
TBAS10P
TDA1904
TDA1905
TDA190S
TDA2002
TDA2003
TDA2004
TDA2005

18

22

3.4

3
7
7

6
6
4.5
5.4
5.S
5.2
6
2x6.5
2x6.5 (0)

S
10
2xl0
2xl0

1.2
1.2
1.3
2.1
2.1
2

3
3
12 }
2xll RL =1.60
2xll

9

TDA2008

12

S

2xl0

(0)

4.5
5
5.5
5

23

TDA2009

24

TBASOO
TDA1905
TDA1908
TDA2006

12

S

28

TDA2010*
TDA2030*

12
14

9
9

32

TDA2030A*
TDA2040*

lS
22

12
12

36

TDA2020*

20

-

(0) 20W in Bridge

, ....

0.45

TBASOO
TCA940N
TDA1905
TDA190S

9

RL =

!.3} RL =160

(*) d

= 0,5%. f = 1 KHz.
11

OPERATIONAL AMPLIFIERS

LS10n
LS101AT
LS107T
LS14n
LS141AT
LS141CT
LS148T
LS148AT
LS148CT
LS20n
LS201AT
LS207T
LS301AT
LS307T
LS709T
LS709AT
LS709CT
LS776T
LS776CT
LS204T*
LS204AT*
LS204CT*
LS141CM.
LS148CB
LS201B
LS301AB
LS307B
LS776CB
LS204CB*
LS4558NB*
MC1458Pl*
MC1458CP1*

-55 to 125
-55 to 125
-55 to 125
-55 to 125
-55 to 125
o to 70
-55 to 125
-55 to 125
o to 70
o to 70
-25 to 85
-25 to 85
o to 70
o to 70
-55 to 125
-55 to 125
o to 70
-55 to 125
o to 70
-25 to 85
-55 to 125
o to 70
o
o
o
o
o
o
o
o
o
o

to
to
to
to
to
to
to
to
to
to

70
70
70
70
70
70
70
70
70
70

LS141CM
LS148CM
LS201M
LS301AM
LS307M
LS776CM
LS204M*
LS204CM*
LS4558NM*
MC1458M*
MC1458CM*

o to 70
o to 70
o to 70
o to 70
o to 70
o to 70
-25 to 85
o to 70
o to 70
o to 70
o to 70

LM324N**
LM324AN**
LM2902N**
LS709CB
LS404CB**

-25 to 85
-55 to 125
o to 70
o to 70
o to 70

LM324CM**
LM2902CM**
LS404M**
LS404CM**

-25 to 85
o to 70
-25 to 85
o to 70

, Dual

* * Quad.

••
••
•
•
••
••
•
•
•••
••
•
•
••
••
••
•
••
•
•
•
•••

90
96
96
90
95
90
90
95
90
90
96
96
90
90
90
110
90

120
30
30
80
30
80
80
20
80
250
30
30
70
70
200
100
300

10
10
0.7
0.5
0.7
0.5
5.5
5.5
5.5
10
10
0.7
10
0.5
0.25
0.25
0.25

22
22
22
22
22
18
22
22
22
22
22
22
18
18
18
18
18

TO-99

~

90

i5

0.35

i8

90
100
100
95

15
50
50
80

0.8
1.5
1.5
1

18
18
18
18

90
90
90
90
90
90
95
90
90
90

80
80
250
70
70
15
80
50
80
80

0.5
5.5
10
10
0.5
0.8
1
1.5
0.5
0.5

±18
± 22
± 22
±18
± 18
± 18
±18
±18
±18
± 18

WN

90
90
90
90
90
90
100
95
90
90
90

80
80
250
70
70
15
50
80
50
80
80

0.5
5.5
10
10
0.5
0.8
1.5
1
1.5
0.5
0.5

± 18

50-8

± 22
± 22
± 18
±18
± 18
± 18
± 18
± 18
±18
± 18

§fij9

70
85
70
90
90

45
45
45
300
100

70
70
94
90

45
45
50
100

12

0.25
1

32
32
32
± 18
± 18
32
32
± 18
± 18

Minidip

DIP

~Niif
SO-14

~

POSITIVE VOLTAGE REGULATORS

R"gulated .000t\>Ut vo\t!'IJ~ .tV)

I" max
(A)

2

1.5

IH~

L200CH/CV
L200CT/T
L78S00CV
L78S00CT/T

2.9 ..
2.9.-

LMl17K
LM217K
LM317K
LM317T

1.21.2.·
1.21.2 ..

•
•

L7800CV
L7800CT/T

0.5

0.15

L2600V
L78MOOCV
L 194-5V*
L 194-12V*
L194-15V*
L487

.

'•.

9101Z

15

ADJUSTABLE
ADJUSTABLE

• •
• •

Versawatt
TO-3

ADJUSTABLE
ADJUSTA.BLE
ADJUSTABLE
ADJUSTABLE

TO-3
TO-3
TO-3
Versawatt
Versawatt
TO-3

•
••

Versawatt
Versawatt
Pentawatt®
Pentawatt®

Pentawatt~

Pentawatt
POO1-A
TO-1OO
POO1-L
TO-1OO

L 123CB
L123CT/T
L146CB
L 146CT/T

* With integrated rectifying bridge.

NEGATIVE VOLTAGE REGULATORS

13

NOT FOR NEW DESIGN

TO-18

TAA550

TV VOLTAGE STABILIZER

TAA 611A
TAA 611B
TAA 611C

1.8W AUDIO AMPLIFIER
2.1W AUDIO AMPLIFIER
3.3W AUDIO AMPLIFIER

14-DIP/TO-100
14-DIP
14-DIP

TBA 820
TCA 830S

2W AUDIO AMPLIFIER
3AW AUDIO AMPLIFIER

14-DIP
FIN-DIP

12
15
22
16
20

TDA 1200

FM-IF RADIO SYSTEM

16-DIP

16

PENTAWATT@
PENTAWATT@
PENTAWATT@

36
44
40

KIT CHROMA

16-DIP
16-DIP
16-DIP

15
15
15

LOW-NOISE NPN TRANSISTORS

14-DIP

FIN-DIP

V z = 30V to 36V, IZ(max)= 20 mA
Po = 1.8W (9V - 4n). Po = 1.15W (9V - 8n)
Po = 2.1W (12V - 8n). Po = 1.15W (9V - 8n)
Po = 3.3W (15V -8n), Po = 1.7W (12V - 8n)
Po = 1.2W (9V - 8n)
Po = 2W (12V - 8n).
Po = 3AW (12V -4n). Po = 2.3W (12V -8n)

I See TCA 3089

.I:>

TDA 1410A
TDA 1420A
TDA 1420L
TDA 2140
TDA 2151
TDA 2161
TDA 3310

QUASI COMPLEMENTARY
DUAL DARLINGTON

hFE
hFE
hFE

> 800@ 2A
> 500@ 3A
> 800@ 2A

20

hFE

> 300 @ 100/lA,

20

Motor speed regulator, Bias Oscillator, DC record
play switching, Automatic stop.

NF = 0.5 dB

ARRAY
TDA 7770

I MULTIFUNCTION SYSTEM FOR
TAPE RECORDERS

PRECAUTIONS FOR PHYSICAL HANDLING OF POWER LINEAR ICs
When mounting power ICs certain precautions must be taken in operations such as bending of leads,
mounting of heatsink, soldering and removal of flux residue. If these operations are not carried out
correctly, the device can be damaged or reliability compromised.
1.

Bending and cutting leads
The bending or cutting of the leads requires the following precautions:

1.1 When bending the leads they must be clamped tightly between the package and the bending point
to avoid strain on the package (in particular in the area where the leads enter the resin) (fig. 1). This
also applies to cutting the leads (fig. 2).
1.2. The leads must be bent at a minimum distance of 3 mm from the package (fig. 3a).
1.3. The leads should not be bent at an angle of more than 90° and they must be bent only once
(fig.3b).
1.4. The leads must never be bent laterally (fig. 3c).
1.5. Check that the tool used to cut or form the leads does not damage them or ruin their surface.

Fig. 1 - Bending the leads

Fig. 2 - Lead forming or cutting mechanism

w
Plastic

packag~1 t

rn

j

I

\::~h1~1~~ng

Spaced? W
"'-0039

Clamp mechanism

Fig. 3 - Angles for lead wire bending

3.0min

a

c

b

15

or cutting

2.

Mounting on printed circuit
During mounting operations be careful not to apply stress to the integrated circuit.

2.1. Adhere strictly to the pin spacing of the IC to avoid forcing the leads.
2.2. Leave a suitable space between printed circuit and integrated circuit, if necessary use a spacer.
2.3. When fixing the device tp the printed circuit do not put mechanical stress on the IC. For this
purpose the device should be soldered to the printed circuit board after the IC has been fixed to the
heatsink and the heatsink to the printed circuit board.
3.

Soldering
In general an Ie should never be exposed to high temperatures for any length of time. It is therefore
preferable to use soldering methods where the IC is exposed to the lowest possible temperatures for
a short time.

3.1. Tolerable conditions are 260°C for 10 sec or 350°C for 3 sec. The graphs in fig. 4 give an idea of the
excess junction temperature during the soldering process for a TO-220 (Versawatt). It is also important to use suitable fluxes for the tin baths to avoid deterioration of the leads or of the package
resin.
3.2. An excess of residual flux between the pins of the integrated circuit or in contact with the resin can
reduce the long-term reliability of the device. The solvent for removing excess flux must be chosen
with care.
The use of solvents derived from trichloroethylene is not recommended on plastic packages because
the residue can cause corrosion.
.

Fig. 4 - Junction temperatures during soldering

TJ

260·( soldering bath

Tj

Exposed to air

('0 )

('C)

h :

150

100

---l

350·C soldering bath

Exposed to air

150

100

;

1.5mm :

50

260.C

20

40 60 80 100

50

I

Solder

I

1,"0

180

110

50

Time {sec)

16

60

Time(secl

I.

,.,

~
"

I.,

4.

Mounting of heatsink
To exploit best the performance of power ICs a heatsink with
will dissipate must be used.

Rth

suitable for the power that the IC

4.1. The plastic packages used by SGS for its linear ICs (Pentawatt, Multiwatt, Versawatt) provide for
the use of a single screw to fix the package to the heatsink. A compression spring (clip) can be
sufficient as an alternative (fig. 5).
Fig. 5 - MULTIWATT® mounting examples

The screw should be properly tightered to ensure good
contact between the back of the package and the heatsink
but should not be too tight to avoid deformation of the
copper part (tab) of the package causing breaking of the
die or separation of the resin from the tab (fig. 6).

Fig. 6 - Contact thermal resistance
vs. tightening torque
,.

l--L

("C/W )

MULTIWATT

0.8

'\

""- ........

06

I'

"

W"ho",

]!

'''''00" "m.

siuL.I""tj:
r-- -

4.2. The suggested tightening torques with a 3 MA screw are:
Versawatt 6 Kg/cm
Pentawatt 6 Kg/cm
Multiwatt 8 Kg/cm

--

c----

Torque (Kglcm)

If different screws are used the force transmitted to the tab must not exceed that encountered in
the above conditions.
When fixing the device avoid bumping or stressing the resin and pins with the tools used for this
operation (pneumatic screw drivers, tweezers etc.).

17

r.
i

4.3. The contact Rth between device and heatsink can be improved by inserting a thin layer of silicone grease with
fluidity sufficient to guarantee perfectly uniform distribution on the surface of the tab. The thermal resistance
with and without silicone grease is given in fig. 7. An
excessively thick layer or an excessive viscosity of the
si Iicone grease can be damaging for the Rth and for any
tab deformations.

5.

Fig.7 - Contact thermal resistance
insulator thickness

VS.

Heatsink problems
The most important aspect from the point of view of
reliability of a power IC is that the heatsink should be
dimensioned to keep the Tj of the device as low as
possible. From the mechanical point of view, however, the
heatsink must be realized so that it does not damage the
integrated circuit.

0.05

5.1. The planarity of the contact surface between device and heatsink must be
and Versawatt and < 20 Jlm for Multiwatt.

0.10

0.15

Th(mm)

< 10 Jlm for Pentawatt

5.2. If self threading screws are used there must be an outlet for the material that is deformed during
formation of the thread. The diameter if> 1 (fig. 8) must be large enough to avoid distortion of the
Fig. 8 - Device mounting

WRONG

RIGHT

tab during tightening. For this purpose it may be useful to insert a washer or use screws of the type
shown in fig. 9 where the pressure on the tab is distributed on a much larger surface. Sometimes
when the hole in the heatsink is formed with a punch, around the hole
Fig. 9 - Suggested screw
or hollow there may be a ring which is lower than the heatsink surface.
This is dangerous because it may lead to distortion of the tab as mentioned before.

T

5.3. A very serious problem is that of the rigidity between heatsink,device
and printed circuit board. When mounting the heatsink, device (which
may be fixed to frame of apparatus) and printed circuit board are
;''"''
bound together by the leads of the device. A solution of this type is extremely dangerous,especially
if the equipment is subjected to vibrations.
18

SEMICONDUCTOR USERS RELIABILITY EVALUATION
SGS SURE III programme is an important improvement of SURE II programme obtained with tightened
quality levels. Moreover there are many level's options to satisfy various customer's requests.
SGS SURE III programme aims to inform customers of basic production operations and internal quality
and reliability assurance procedures, paying particular attention to the tests and guarantees on the
finished product.
This programme covers the set of 100% operations, controls and testing operations undergone by the
devices produced to standard specification, i.e. without any special customer requirements.
In other words, unless special co-produced specifications are used, the majority of SGS customers in the
professional, consumer and industrial markets buy products tested according to the SURE III programme.
The programme thus fully meets the requirements of almost all applications.
Moreover, since the programme offers more options, the customer can request the product with certain
supplementary screenings, while the entire production process, apart from the optional operations
indicated in the programme, remains identical to that of the standard product.

General Information
This information is valid for all products ordered from SGS or which are ordered to one of the SURE
Programme options.
Marking
Each device will be marked in a contrasting ink with the following standard information (if sufficient
space is available);
1 - SGS logo
2 - Device type as shown in the detail specification
3 - Manufacturing plant number
4 - Lot code (Production lot)
Packing
Device will be packed in the SGS standard package.
The following information will be marked on the primary package.
1 - SGS logo
2 - Device type as shown on the order confirmation
3 - Quantity in the package
4 - SGS order confirmation
5 - Warning label on Mos products
Testing and finishing
1 - Screenings according to MIL or CECC or however to this programme
2 - 100% electrical testing according to SGS data sheet
3 - Temperature acceptance
When an extended temperature range is guaranteed SGS Outgoing QC may carry out the test at temperatures other than those shown on the data sheet on the basis of temperature correlation of the
parameters.
SGS, guarantees the applicability of the AQL levels at the temperature limits and will accepts any lot
rejected as a consequence.
19

External visual and Mechanical Inspection Criteria (group A Acceptance)
Inoperative mechanical defects (critical):
e.g. wrong pin indication, wrong marking or splitting, broken or weakened leads, short circuits between leads, missing or partially detached cap, mixed package, cap and frame not aligned at the same
side, catastrophic bent leads.
Major defects (significant mechanical defects, but not functional defects):
e.g. open packages, deformed leads, unmarked packages or with illegible marking, deep cracks on
packages, incomplete tinning or with bubbles - roughness - blackenings, lead straightness and
position not in accordance with relevant drawing.
-

Minor defects:

Reference specification
a) Basic Sampling Procedures and tables for inspection by attributes: MI L-STD-105D, IEC 410.
In general the single sampling plan will be used but it is acceptable for the customer to use double or
multiple sampling (with, naturally, the same AOLs and inspection levels).
Similarly O.C. managers can also use double or multiple sampling.
b) The Sure III Programme has been prepared considering the following specs: IEC 68-2, MI L-STD883B, CECC 50000, MIL-STD-38510 D and IEC 147-5.
It should be noted that conformance with these specs should be assumed only where specifically
stated in th is programme.
Precedence of documents
For the purpose of contractual interpretation in case of conflict, documents shall take the following
order of precedence:
1

Purchase order or contract. The text of the order or contract prevails over any other specification.

2

Detail specification. The detail specification agreed between customer and vendor prevails over this
present specification and any other reference specification.

3

Generic specification. The generic specification (including this programme) prevails over all reference specifications.

4 -

Relevant specification. All reference documents apply only to the extent defined here in.

Essential terms and definitions
For the purpose of interpretation of this general specification the following terms and definitions are
applied:
Detail/relevant/blank specification
A specification which covers a particular component or range of components, and which describes that
component including rated and/or limiting values and characteristics. The detail specification will also
give the inspection requirements or appropriate reference to this general specification.
Inspection lot
A quantity of components presented together for inspection from which a sample is to be drawn and
inspected to determine conformance with the acceptance criteria of the specification.

20

Production lot
Consists of one lot of devices sealed within a period not exceeding six weeks.
Delivery lot
A quantity of components del ivered to an order at one time. One del ivery lot may consist of one or
more inspection lots or parts thereof.
Structurally similar devices
-----------Structurally similar devices are those devices produced concurrently through final seal by the same
fabrication techniques, using the same type of machines and apparatus and having the same basic design
rules and the same packaging.
Details of structural similarity for various components will be defined, when required, by the SGS
Quality Assurance Mgr(s).
Certificate of Conformance
A document issued with a delivery lot stating that the components have been taken from one or more
inspection lots accepted under the requirements of the particular specification.

21

Standard production process flow chart

KEY:
OPERATION/SCREENING
IN-PROCESS CONTROL (MONITOR)
GATE INSPECTION (SAMPLE ACCEPTANCE)

HERMETIC PACKAGE
PROCESS

MOLDED PACKAGE
PROCESS

MATERIAL INSPECTION
Starting materials are inspected following written specification and
records are maintained for traceability.

2

WAFER FABRICATION
Masking, etching, diffusion and metallization processes produce
finished dice in wafer form.

3

IN-PROCESS CONTROL
Wafers and process environment are inspected at main process steps.

4

ELECTRICAL WAFER SORT
Each die is electrically tested and identified when doesn't meet
electrical requirements.

5

FINISHED WAFER INSPECTION
Active surface and back finish are inspected on each diffusion lot
before release for die fab and assembly.

6

DIE-FABRICATION
Wafers are separated into individual dice and electrical rejects are
removed.

7

VISUAL SCREENING
Dice are inspected and selected at high magnification.

8

QUALITY INSPECTION
Each dice lot is accepted before assembly (visual inspection of active
surface)

9

DIE ATTACH

10

QUALITY CONTROL (Table I)
Daily visual and mechanical (die shear strangth) control.

11

WIRE BOND

22

Standard production process flow chart (continued)
HERMETIC PACKAGE
PROCESS

MOLDED PACKAGE
PROCESS

12

QUALITY CONTROL (Table I)
Daily visual and mechanical (bond strength) control.

13

PRECAP VISUAL
Assembled but unsealed units are individually inspected at low and
high power magnifications.

14

QUALITY INSPECTION (Table I)
Each lot is accepted before sealing to verify compliance to precap
inspection specifications.

15

FINAL SEAL

16

MOLDING AND CURING

17

SEALING ATMOSPHERE CONTROL (Table I)

18

SEAL AND LID TORQUE CONTROL (Table I)

19

TEMPERATURE CYCLING (Table I)

20

CROPPING

21

CROPPING CONTROL

22

LEAD FINISH

23

LEAD FINISH INSPECTION (SOLDERABILITY - Table I)

24

FINAL CROPPING

25

INTERNAL WATER-VAPOR CONTENT CONTROL (Table I)

26

HIGH IMPACT SHOCK (Table I)

27

RAW LINE INSPECTION (Table I)

28

GROUPS B, C, AND D TESTS

QUALITY CLASSES
OPTIONS

QUALITY CLASSES
OPTIONS

23

Production quality tests description and screenings

TABLE I

10

DIE-ATTACH CONTROL

MIL STD 883B Mth 2010 condo B (internal visual) and Mth 2019
(die shear strength).

12

BONDING CONTROL

MIL STD 883B Mth 2010 condo B (internal visual) and Mth 2011
condo C (bond strength).

14

PRECAP INSPECTION

MIL STD 883B Mth 2010 condo B (internal visual)

17

SEALING ATMOSPHERE
CONTROL

18

SEAL CONTROL

Moisture content:
for Ceramic packages
for Metal Can packages

< 50 ppm
< 120 ppm

Fine Leak:
Metal can packages
IEC 68-2-17 test QK (CECC 50000 para 4.4.10)
Helium leak detector after pressurization in He for 16 hrs at 5
atm.
Limiti 5 • 10- 7 ccls
Ceramic packages
MIL STD 883B Mth 1014 condo Al
Helium leak detector after pressurization in He for 2 hrs at
4 atm.
Limit: 5· 10-' ccls for I.C. V .• < 0.4 cc
5 • 10- 7 ccls for I.C.V. ;. 0.4 cc

* (I.e.v. = internal

cavity volume).

Gross Leak:
Metal Can packages
I EC 68-2-17 test Qc Mth 2 (CECC 50000 para 4.4.10).
Bubble test in mineral oil at T amb = 125°C after pressurization in He for 16 hrs at 5 atm.
Ceramic packages
MIL STD 883B Mth 1014 condo C.
LI D TORQUE TEST
(CONTROL)
19

TEMPERATURE
CYCLING

Ceramic Packages only - MI L STD 883B Mth 2024.
-

From -25°C to +1500C; 30 min at extreme temperatures;
5 minutes transfer time; n° 5 cycles

CROPPING

Not for Metal Can packages.

23

SOLDERABI LlTY
INSPECTION

-

25

INTERNAL WATER VAPOR
CONTENT CONTROL

Dew Point method MIL STD 883B Mth 1018 procedure 3 - 5000
ppm max. (dew point temperature less than -15°C).

26

HIGH IMPACT SHOCK

Metal Can packages only except TO-3 and TO-66.
20000 G min.; T = 25 ),lsec min; Yl axis only.

27

RAW LINE INSPECTION

20-21-24

IEC 68-2-20 Test TA (bath method) - CECC 50000 para
4.4.7 - 230 ± 5°C with preconditioning for 16 hrs at 155°C.

External Visual
- MIL STD 883B Mth 2009.
Lid torque test: as per step 18.
Centrifuge (ceramic packages only)
MIL STD 883B Mth 2001
High I mpact Shock: as per step 26
Seal control: as per step 18

24

Available class options (*)
HERMETIC

MOLDED

r----- ----,
_ _ _ _ _ _specs:
_ _ -.J
L -ESA/SCCG

MIL class 8

MIL class C

Class B1
(81 160hrs)

Class 82

Class 83
(Automotive)

Class 84

Class 84

Class STD

Class STD

(*) SGS-A TES will also supply devices to CECC specifications when these are issued.

Quality & reliability tests

A

Each lot

Each lot

B

Each lot

See group C

C

3 months

3 months

o

6 months

6 months

25

Quality class options

B1

B2

B3, B4, STD

(Hermetic packages only)

(Hermetic packages only)

(Hermetic and molded packages)

100% electrical test

Reduced electrical test

100% electrical test

Marking

Marking

Marking

Burn-in 160 H

Burn-in 48 H

Group A acceptance (STD)

100% electrical test

100% electrical test

Group A acceptance (B 1)

Group A acceptance (B2)

Group A acceptance (B3 or B4
or STD)

Pack

Pack

Pack

Pack and documentation acc.

Pack and documentation acc.

Pack and documentation acc.

Ship

Ship

Ship

Group A acceptance (.)

Al

A2

A3

A4

Visual and mechanical insp.
Major
Minor

0.25
1

Inoperative failure
(electrical and mechanical)
over guaranteed tempe·
rature range

Tmax
25°C
T min

II

DC parameters and main
AC parameters over
gu aranteed temperatu re
range

Tmax
25°C
Tinin

II

Other AC parameters

25°C

S4

}0.15

0.25 0.25
1
1
} 0.15

0.15

0.65

0.25
1

0.25
1

0.065 } 0.1

I

0.25

0.65

26

} 0.1

10 .25 10 .4
0.65

Parameters are guaranteed within the teDlperature range by 250 C correlation measurements.
* Automotive devices only.

(.)For MIL class B/C and ESA/SCCG products see relevant SGS-ATES documents.

0.25
1

0.65

0.25 0.25
1
1
} 0.1

0.1

-

} 0.4

0.4

0.65 0.65

j

I

TABLE III - Group C tests - every 3 months on raw line material (+)

"'.~;}:

V :>:' ~'~';"'"
.•.'.•'::\;;:i:;;[~~~,'
.",.' ~,\t "".>>;'\.

;:, ,'; <;}~,

.",:::};.:

~); "'~

"

'Mft;4T1ii~~; "',

"",,::;'2 ,.:.:" ';< :';

"
" " \ " ' > , " " ' . ".",/;-;""";""< '"
",~:,\:;:;;,;,;;:,,:;,;,.. '

:,.

~~:':

Subgroup 1

Physical dimensions

-

Resistance to solvent

2015

Subgroup 3 11)
Solderability (2)

2003

Subgroup 4
Steady state and operating life
test or
I ntermittent Iife test
End-point electrical
parameters

2 devices (no failure)

2016

Subgroup 2 11)

1005

-

Ceramic packages
Molded packages: solvent solution 2.1A only
Metal can packages

4 devices (no failure)

Soldering temperature of 260 + 1 O"C or I EC
method 68-2-20 test T A (230 ± 5°C)
1000 hrs; according to device spec. type

15

2

5

2

15

2

-

5000 cycles
Key parameters (Table V); measurements at 0, 168,
500 and 1000 hrs,

Subgroup 5

(Hermetic packages only)
Temperature cycling
Constant acceleration
Seal (41
a) fine
b) gross

1010
2001
1014

F.,,-l-+-+-.J----i-+-+-.J----i-++.J----i-+-I---l

'm'l

'.

(V)

::::~~~:E

"

G:rEE:~~:: H+f1l-+I++-HflI

.

'"

"-

,!'.

1111

/8

220"" 15

10

t

'-~~~-I,-j~~~~~-4~

I

"
'"
"
-"

10 Rs(KA)

61.

H-

"

"'--

0.6

"

II
j

-'0

17

0.'

-10

10

30

SO

70

90

-

TambCoCJ

Fig. 6 - Ramp width vs. ex·
ternal time constant RI6 'C I

""1131-

os

_30

f..-

"

C 11_15 C"FI

Fig. 7 - Alternative system for reduction of power dissipation
.7Kn

3Vi

"

"

'0'

G-113ZIZ

".

ems)

20

-20

'0

T.. mb("cl

Fig. 5 - Gate pulse width
vs. C ll - 15

Fig. 4 - Gate current variation vs. ambient temperature
(mAl

"

30

IN4001

I

0j:7,.., 300 n
~

9

'0

LI21A
8

I
IN'OOI

!"

I

46

(250'1-) 1IZW

r
S~"Of'n

%20'

I ,',I:

i)

.~

I+i'

~
I

:.\

APPLICATION INFORMATION
Fig. 8 - Application circuit for temperature control (proportional type)

r-~~--------~~---~~------------------~O

rv 22()...21.0V
50-60Hz

Fig.9 - Application circuit for temperature control (ON-OFF type)

l~~F

':iiF20~F

II

I

1

16

15

14

I

12

13

"

10

9

6

7

8

6.8Kll 11 W "-'220 v-I

r

L' 2' A
1

I

2

J

~

5

4

I

ii

r

220,I.JF

l'so"lt

NTC

m!!.
''"ni

.el

390

RL

n)

,

I

II
~1.

10Kll.

,!

1··.

5 - LOS4/2

11

i

I;1

\

47

Fig. 10 - Application circuit for low AC supply voltage (by using pin 14)

5."

O.oIIJF

loon
rv

220-240V
SO-60Hz

lOOk

1.

L 121A

10)JF
10V

RL

10
kO

180.ll.
5-351912

Fig. 11 - Cimate control for car.
120.ll.

r----------------------------.---{==~~~OVS=12V

100

10

K.ll.

K.ll.
15

14

47

L 121 A
2 .
IN 4148

IOnF

KJl

4
100KJl

,

270 KJl

1

220IJF

Q.11J F

.i-T *12VI1W
5-3967/1

* Protection against overvoltages.
Pi : system hysteresis setting
P2 : temperature setting

NOTE - For a more detailed descriDtion of the L 120A and its applications refer to SGSDESIGN NOTE - DN 382.
48

'SLiNEAR INTEGRATED CIRCUIT
HIGH PRECISION VOLTAGE REGULATOR
INPUT VOLTAGE UP TO 40V
OUTPUT VOLTAGE ADJUSTABLE FROM 2 T037V
POSITIVE OR NEGATIVE SUPPLY OPERATION
SERIES, SHUNT, SWITCHING OR FLOATING OPERATION
OUTPUT CURRENT TO 150 rnA WITHOUT EXTERNAL PASS TRANSISTOR
ADJUSTABLE CURRENT LIMITING

•
•
•
•
•
•

The L123 is a monolithic integrated prQgrammable voltage regulator, assembled in 14-lead dual in-line
plastic package and 10-lead Metal Can (TO-100 type). The circuit provides internal current limiting.
When the output current excedes 150 rnA an external NPN or PNP pass element may be used. Provisions
are made for adjustable current limiting and remote shut-down.

ABSOLUTE MAXIMUM RATINGS
Vi

lN i _O
10
I ref

Ptot

Input voltage
Dropout voltage
Output current
Current from V ref
Power dissipation (at T amb = 70°C) Plastic DIP
TO-100
Operating junction temperature
Storage temperature

MECHANICAL DATA

L123

L123C

40V
40V

40V
40V

150mA
15 rnA

150mA
25mA
1W
520mW
to 70°C
-65 to 150°C

520mW
-25 to 150°C
-65 to 150 °C

o

Dimensions in mm

49

6/82

CONNECTION DIAGRAM AND ORDERING NUMBERS
(top views)

NC
CURRENT

NC

CURRENT

LIMIT

13

liMIT
CURRENT
SENSE

INVERTING
INPUT

"

INVERT.
NON-

3

INVERT

'0

INPUT

PIN 5

COMP.

·v,
Vc

INPUT
NONINVERTING
INPUT

FREQUENCY

v,

Vref

Vz

-v,

NC

V

connected Iotas€' - S

Type

TO-l00

Plastic DIP

L123

L123T

-

L123C

L123CT

L 123CB

TEST CIRCUIT

BLOCK DIAGRAM

(Pin configuration relative to the Plastic package)
INVERT.
INPUT

FREQUENCY
CQMPENS

Ve

I
I
SERIES PASS I
TRANSISTOR

NON-INVERT.

CURRENT

CURRENT

INPUT

LIMIT

SENSE

Vj'" 12V
Vo '" 5V
10'" 1 mA

~

A 1IJR 2 .;;;; 10 Kn

THERMAL DATA
Rth j-amb

TO-100
max

Thermal resistance junction-ambient

50

Plastic DIP

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, T amb = 25°C unless otherwise
specified)

L123C

Unit
Min.

t:,vo

~

/',V o
-Vo

Line regulation

Vi~12t015V

V· ~ 12 to 40V
Vi - 12 to 15V;
T min";; T amb ~ T max
Load regu lation

~

10

Typ.

Max.

0.01
0.1

0.1
0.5

1 to 50 mA

0.03

Reference voltage

Iref~

SVR

Ripple rejection

f

~

6.8

160!LA

Input voltage range

Vo

Output voltage range

Quiescent drain
current

0.01
0.02

0.1
0.2

%
%

0.3

%

0.15

%

0.6

%

7.35

V

0.03

7.5

6.95

7.15

74
86
150

Rsc~

10n

Vo~

0

Vi-YO
Id

7.15

Output voltage drift

Vi

0.2

74
86

0

Cref~ 5 !L F

Short circuit current
limiting

Max.

100 Hz to 10KHz
Cref~

Ise

Typ.

0.6

10~1t010mA

V ref

Min.

0.3

T min ~ T amb ~ T max

/',V o
~

L123

Test conditions

Parameter

10
Vi

~
~

dB
dB
150

65

65

ppm

---ac
mA

9.5

40

9.5

40

V

2

37

2

37

V

3

38

3

38

V

5

mA

0
30V

2.3

Long term stability

4

0.1

2.3

0.1

%-1000

hrs
eN

Vz

Output noise voltage

Output zener vOltage

BW~

Iz

~

100 Hz to 10 KHz
Cref~ 0
Cref~ 5 !LF
1 mA

6.9

(for plastic package
only)

Note:

20
2.5

T min ~ O°C iL123C); -25°C (l123).
T max~ 70°C (l123C); 150°C il123).

51

20
2.5
7.7

!LV
!LV
V

Ij

Ii
I;

Fig. 1 - Maximum output
current vs. voltage drop

Fig. 2 - Current limiting
characteristics
G·4J4011

,

Fig. 3 - Current limiting
characteristics vs. junction
temperature

0.7

vi: 12 II

r-

Rse : Ion
0.6

.

u

g

N

!

I

:

,

I

!

I
10

Fig. 4 - Load regulation
characteristics without current limiting

I-- f---t-~. r-- r-t--

arnb~

O'c

~.?SoC

a~

--

CUR~ENT

"'"

,

-0.1

va

-10

10

-0.2
40

r .~

;::::-

"'::::-

('/.)
0.1

-"

100

60

TJ (OC)

G- 4 344

,
Vo ",5 II

I

r~~

~

:::f-.C

iit~6 ~'2S

·cr--

:5V

.

I

I-- -

--..
-.....

-

Vi =1211
R5e =10ll.

"""'I~

-

I

-0.1

~~

I

-f---

T

\-

J~

i\TA :25~C

~

r-

TA =l25'C

I \

-0.4

10

t--

A:~5'C

\ '\

I
"

r- r-

I

,,\~

-0.3

60

Fig. 7 - Line regulation vs.
voltage drop
61J0 /Vo

,

~

Fig. 6 - Load regulation
characteristics with current
limiting

'il
-0. 1

,10

:::--r-.-

r::-.;;~.'04

1

-0.0

~

I

-~~~~:1~

10

~

;-- r--

-60

Fig. 5 - Load regulation
characteristics with current
limiting

--..

-0.3

,60

 10)

Fig.8 - Unity gain configuration

·,s
O.llJf

:I:

lN4001

10Kn

IN4001

.2

76

11KHz)

Fig.9 - Motor current control circuit with external power transistors (lmotor

> 3.5A)

+ Vs max36V

IOKJl

36Ko.

~

3.3Kfl2%

R2*
R7

Q,22},JF

~l

8D535

10Kfl

3.3KD

35Kll
... Vi

=0

'BV~~~C=J-~~~~~~~~~~~~~-c=r~~+-~~~~~~~-~~~~~

R3*

Note: The input voltage level is compatible with L291 (5-BIT D/A converter)

Fig. 10 - High current tracking regulator

Fig. 11 - Bidirectional speed control of
DC motor
... 15V

"'o-----r'
"pF

-- -------------0 • Vo

Lr,-...".....
-r-~:J..

OK"

1OKD.
~.~~~--CJ-

O,l,uF+-_~-c5-~~.,

..,..,O.2Z,.oF

i

fl'

.>=-----+----l~.'o

-Vi (}-~~~--'-~~~~-'

A:for±18';;;V i ';;;±32
Note -

V z must be chosen in order to verify

2 VI - V z ';; 36V

B: for V I ';;;± 18V

77

Fig. 12 - Split power supply

Fig. 13 - Power squarewave oscillator with independent adjustments for frequency and duty-cycle.
R1

2.2Kll
R2
2.2K !l.

>4--.--D"out

Pl : duty-cycle adjust
P2 : frequency adjust (f = 700 Hz with
Cl= 10 nF, P2= 100 Kn, f=25 Hz
with Cl= 10 nF, P2= 0)

..rLn.

'fi

5-5361

Fig. 14 - Bidirectional DC motor control with TTL!C-MOS/j.lP compatible inputs

V Sl = logic supply voltage

Must be V S2

;;:'

V S1

El, E2 = logic inputs

NOTE - For a more detailed description of the L 165 and its applications, refer to SGSTECHNICAL NOTE TN. 150.
78

LINEAR INTEGRATED CIRCUITS
POSITIVE VOLTAGE REGULATORS WITH RECTIFYING BRIDGE
•
•
•
•
•

OUTPUT VOLTAGE: 5V, 12V AND 15V
OUTPUT CURRENT UP TO 500 mA
SHORT CIRCUIT PROTECTION
THERMAL OVERLOAD PROTECTION
OVERVOLTAGE PROTECTION (60V - 10 ms)

The L 194-5, L 194-12 and L 194-15 are fixed voltage regulators assembled in Pentawatt ®
They incorporate a rectifying diode bridge with 7A surge current capability.

package.

ABSOLUTE MAXIMUM RATINGS
Vi
Vi
Vi
VR
ID
I DS

10
Ptot
T st9
Tj

Peak input voltage (10ms)
DC input voltage (at pin 2)
AC input voltage (rms)
Peak reverse voltage across each diode
Input diode repetitive current
Input diode surge current (10 ms)
Output current
Power dissipation
Storage temperature
Operating junction temperature

60
40
28
80
2
7
Internally limited
Internally limited
-65 to + 150
-25 to + 150

V
V
V
V
A
A

°C
°C

ORDERING NUMBERS: L 194-5V

(Vo= 5V)
L194-12V (Vo= 12V)
L194-15V (Vo= 15V)

MECHANICAL DATA

Dimensions in mm

79

6/82

CONNECTION DIAGRAM
(top view)

'I!
:&4: ~~:

~II

~'''"'

,

.

(tab connected to pin 3)

AC INPUT

5-4034

BLOCK DIAGRAM

4 OUTPUT

AC
INPUT

DC
INPUT

5- 4035

GND

THERMAL DATA
Rth j-case
Rthj-arnb

Thermal resistance junction-case
Thermal resistance junction-ambient

ELECTRICAL CHARACTERISTICS (Tj

Quiescent drain
current

Vo

Output voltage

/;V o

10 = 0

Vi (pin 2) = 28V

10= 100 rnA

VI = 15V (L194-5)
VI = 22V (L194-12)
Vi = 25V (L194-15)

10 = 100mA

Vi= 8 to 18V (L194-5)
Vi = 15 to 25V (L194-12)
VI = 18 to 28V (L194-15)

Line Regu lation

4

50

°C/W
°C/W

= 25°C)

Test conditions

Parameter
Id

max
max

80

Min.

4.75
11.4
14.25

TVp.

Max.

Unit

5

14

rnA

5
12
15

5.25
12.6
15.75

V

5
10
15

mV

ELECTRICAL CHARACTERISTICS (continued)
Test conditions

Parameter

t,vo

Load Regulation

10=10to
250 mA

Vo

V i- O

Dropout voltage
(pin 2-4)

t,vo

Output voltage drift

Min.

Vi = 15V (L194-5)
VI = 22V (L194-12)
Vi = 25V (L194-15)

lo=100mA

I:5.V

o
--v;;

10

Output current

Ise

Short-circuit current

~ 1%

2

Vi = 15V (L194-5)
Vi = 22V (L194-12)
Vi = 25V (L194-15)
L 194-5/12
L194-15 (*)

Max.

1
1
1

10 = 300 mA

LIT

Typ.

%

3

0.3
0.6
0.8

V

mV/oC

500
300

Vi = 15V (L194-5)
Vi = 22V (L194-12)
Vi = 25V (L194-15)

Unit

mA

700
500
400
0.7

mA

1.4

A

Ip

Peak output current

SVR

Supply voltage
Rejection

f=100Hz
10=200mA
LlV i =10V

L 194-5/12
L194-15

46
40

dB

Ro

Output Resistance

f = 1 kHz

10=100mA

80

mn

Vd

Diode Forward
Voltage

If = lA
If = 5A

1.6
4.5

V

(*) See diagram of fig. 1.

APPLICATION CIRCUIT
In the design of power supplies using
the L194, it must be always verified
that:

_ V2R V s

Ipeak -

<7A

5

where Rs is the sum of the transformer
resistance, the equivalent diode resistance and external resistors.

81

APPLICATION INFORMATION
The Absolute Maximum Ratings guarantee a max of 40V at pin 2 with max peak current of 7 A in the
rectifying diodes.
To avoid to damage the device, a suitable transformer secondary must be used so that even when there
are network variations the limits set are always respected during operation.
For example, with a nominal voltage of 24 V rms the maximum variations due to the transformer tolerance are ± 20% .
In order to limit (to the maximum value allowed) the current peak, which occurs in diodes during
switch-on, an external resistance RE,in series with the secondary of the transformer, must be introduced.
Supposing that the capacitor of the filter is discharged at switch-on, the following equivalent circuit can
be drawn:

Secondary voltage.
Secondary resistances of transformer.
Resistance produced by the diode pair involved in
conduction.

If values RT and RD are known RE is calculated in such a way that the peak current at switch-on does
not exceed 7 A.

Vs

peak

-7 (R T + R D )

7
For the 5V, with the nominal voltage of the 1 OV A transformer at 12V and with a total voltage variation
of ±15%, the transformer secondary is connected directly to pins 1 and 5.
For correct use of the device at 15V the graph in fig. 1 gives the max output current.

Fig. 1 - Guaranteed output
current vs. secondary voltage
I,
ImA )

RS"''''SJ-,
lp.,SA

Rs ,,4,fl.

.....r

1p=-7A

RsdA

60 0

IpaSA

500

Note:

40 0

JOO
2()0

~i:i=J:Ll"'''rr
'""V. t-: ~rf

K

I"

"0
1S

9

20

52

I

"

20.9

18,8

22

( 20 I.)

~~.'5V

l

23

(-15"1.)

Vs nom = 24.6 V rms for 220V ± 15%.
Vs nom'= 23.55 V rms for 220V ± 20%.

"

s (Vrms )
24.6

23.55

82

LINEAR INTEGRATED CIRCUIT
ADJUSTABLE VOLTAGE AND CURRENT REGULATOR
•
•
•
•
•
•
•
•

ADJUSTABLE OUTPUT CURRENT UP TO 2A (GUARANTEED UP TO T j = 150°C)
ADJUSTABLE OUTPUT VOLTAGE DOWN TO 2.85V
INPUT OVERVOL TAGE PROTECTION (UP TO 60V, 10 ms)
SHORT CIRCUIT PROTECTION
OUTPUT TRANSISTOR S.OA PROTECTION
THERMAL OVERLOAD PROTECTIOI\I
LOW BIAS CURRENT ON REGULATION PIN
LOW STANDBY CURRENT DRAIN

The L200 is a monolithic integrated circuit for voltage and current programmable regulation. It is
available in Pentawatt ® package or 4-lead TO-3 metal case. Current limiting, power limitinq, thermal
shutdown and input overvoltage protection (up to 60V) make the L200 virtually blowout proof. The
L200 can be used to replace fixed voltage regulators when hiqh output voltage precision is required and
eliminates the need to stock a range of fixed voltage regulators.

ABSOLUTE MAXIMUM RATINGS
Vi
Vi
t-,V i _o

10
P tot
Tstg
Top

DC input voltage
Peak input voltage (10 ms)
Dropout voltage
Output current
Power dissipation
Storage temperature
Operating junction temperature for L200C
for L200

MECHANICAL DATA

40
V
60
V
32
V
internally limited
internally limited
-55 to 150°C
-25 to 150
°C
-55 to 150°C

Dimensions in mm

83

6/82

CONNECTION DIAGRAMS AND ORDERING NUMBERS
(top views)

5-2387! 2

Type

Pentawatt®

TO-3
L 200 T

L 200
L 200 C

L 200 CT

L 200 CH
L 200 CV

BLOCK DIAGRAM

------

~5

1

0>----+--

OUTPUT

INPUT
\CURRENT
/LiMITING

2

GROUND
5·3928

84

SCHEMATIC DIAGRAM
I
R8

Z2
Z3

RI5

R9

R26

R21
0/ 08

03

021~

0/015

026

O~
014
RI4
RIO
~

01

C~

02

RII

,~[IJ"' ~5

o

~

03

411

R13

,~[ ~
ZI

U.

18

'""0' 22
-,

j

R
19

R
20

F

R
22

02~~

r

R
17

0/027

Q29

R
23

0-

020

017

R29

>--t::1023t-- K028

f-----

019

R28

030

l

~~ I
03~ ~J3
27

2

R24

5

{I!

~'
RI

R2

HI~" :A

010

R4

R6

025

1

~

RI2

R7

R
16

18

R25

THERMAL DATA
Rth j-case
Rth j-arnb

TO-3

Thermal resistance junction-case
Thermal resistance junction-ambient

Gl

5-2385

max
max

4°C/W
35°C/W

Pentawatt®
3°C/W
50°C!W

ELECTRICAL CHARACTERISTICS (T arnb = 25°C, unless otherwise specified)
Parameter

Test conditions

VOLTAGE REGULATION LOOP
Id

Quiescent drain current (pin 3)

Vi = 20V

eN

Output noise voltage

Vo= V ref

4.2

9.2

rnA

10= 10mA

B = 1 MHz

80

Vo

10=10mA

loVo

Voltage load regulation
(note 1)

lolo= 2A
lol o=1.5A

Line regulation

Vo= 5V
Vi = 8 to 18V

48

60

dB

Vo= 5V
10= 500mA
loVi= 10 Vpp
f = 100 Hz (note 2)

48

60

dB

Vo
loV i

-loVo

SVR

Supply voltage rejection

2.85

/LV

Output voltage range

0.15
0.1

85

36

V

1
0.9

%
%

ELECTRICAL CHARACTERISTICS (continued)
Parameter

Test conditions

Min.

1:1 V i- o

Droupout voltage between
pins 1 and 5

10 = 1.5A

I:1 V o

V ref

Reference voltage (pin 4)

Vi = 20V

10=10mA

1:1 V ref

Average temperature
coefficient of reference voltage

Vi = 20V

~

2%

2.64

10 = 10mA
for T j = -25 to 125°C
forTj= 125to 150°C

Typ.

Max.

Unit

2

2.5

V

2.77

2.86

V

-0.25
-1.5

mV/"C
mY/DC
10

14

Bias current at pin 4

3

1:114
I:1T·1 4

Average temperature
coefficient (pin 4)

-0.5

%/oC

Zo

Output impedance

1.5

mn

Vi = 10V
10= 0.5A

Vo= V ref
f = 100 Hz

Vi = 10V

Vo = V ref

IlA

CURRENT REGULATION LOOP
Vsc

Current limit senSe voltage
between pins 5 and 2

I:1 V se
1:1 T • V sc

Average temperatu re
coefficient of V sc

1:110

Current load regulation

-10

Ise

Peak short circuit current

0.38

15= 100 mA

V j =10V
10 = 0.5A
10 = 1A
10= 1.5A

0.45

0.52

V

0.03

%/"C

1.4
1
0.9

%
%
%

I:1Vo= 3V

Vi- V o=14V
(pins 2 and 5 short circuited)

3.6

A

Note 1):

A load step of 2A can be applied provided that input-output differential voltage is lower than 20V (see
fig. 1).

Note 2):

The same performance can be maintained at higher output levels if a bypassing capacitor is provided between pins 2 and 4.

86

Fig. 1 - Typical safe oper·
ating area protection

Fig. 3 - Quiescent current
vs. junction temperature

Fi!l. 2 - Quiescent current
vs. supply voltage
'd

(',1846

'H-t
H- +++v, .,,:

(rnA

"'h.

++-

4,Omammmw
3.8

I

""I.

,

,

!

•.

:~

Fig. 5 - Output noise voltage
vs. output voltage

r-

r-....

I

-

!

~

-~

-,......
T
\

I

I
I

I

.<0

20

Fig. 4 - Quiescent current
vs. output current

!

_. :.......

,

I

:

T~t~

~+ .. j l--~t'

3.6

I'

L_

.
' i i -'-+:
I vo~vr"

i

80

40

Fig. 6 - Output noise voltage
vs. frequency
G-:l831

'0

,

'N
(PVRMS

(rnA)

1.6
200
1.4

II I!I
ii, :

H•

1.2

i~:

! ,

: '

r~

I

!
'SO
0.8
0.6

B "lMHz

100

0.4

f-t

I

2

1.6

12

,

10

15

I-

6-1848

,

I

I

'1::' .20V-~

I

"
I' I

,

t--

2180

~--+--

-- i""'-

2160

5VR
(de)

I

I

111I11I11

Vi ;15VOC.2VRM5

10 "lOrnA

I

80
7S

65
60

2120

55
50
-"0

40

87

60

120

Tj (OC)

I
I

,

i

I
I
II
!

2100

III

Vo ,,'I ref

16

70

00

I

65

!\

-40

,

I

I

12

I

f (Hl'.:l

I

,,

2140

i
I

('-1849!2

0'0

~

~

f1I . I

I I

Fig. 9 - Supply voltage rejection vs. frequency

(mV)

J, II---t-1TA
i P=~
Vo"Vref

I

10'

'10 (v)

Fig. 8 - Voltage load regulation vs. junction temperature

Fig. 7 - Reference voltage
vs. junction temperature

,

I

I
0

lo(A)

,I

T'=75°C

r""2S'c

1--' .

50
0.8

,

Tj"I50°

0.2

04

I

"1

I

i

I
T

B:l00H:;o:
Vo=:Vref

I

i

'"

i I"
i
!I
II
'"10'

1

""

~

1468

10'

1

".a
f {Hz}

Fi~. 12 - Output impedance
vs. output current

Fig. 11 - Output impedance
vs. frequency

Fig. 10 - Dropout voltage
vs. junction temperature
C.-2845

I
Vo =Vrl'f

5.5

~

45

.

i--'T
i

3.5

V

.....

2.

2.5

.-

~=2"1.
v.

,

"-

LS'
1.5

!.
n!.

0.5
40

80

120

I

H=f

f---

It

j.

!

-20
-40

.. 0

o

h-l
o

(,-1861/1

+

~t-H

I

,

-HJ_i-

t

F~f

=O;-I-C2--4-~O

2

I

10:= lOrnA to lA

'

+0

+ ~
3

Vi=10V

-

-

~.
1

L=mf

Jfh=!t' 1:

.,

Vo =5.5V • Vj-=lOV

--,.-

(

.'

h- rt

[0 (Al

Fig. 14 -- Load transient response

Fig. 13 - Voltage transient
response
)

1.5

0.5

Tj ("C)

4

5

6

7

8

9

5-2386/1

t (,us)

Fig. 16 - Current limit sense
voltage. vs. junction temperature

Fig. 15 - Load transient response

Vi :.lOV

10 " lOrnA to lA

U"'O-t-t---co" '/-IF

5- 2388/1

88

i

APPLICATION CIRCUITS
Fig. 17 - Programmable voltage regulator

>

Fig. 18 - P.C. board and components layout offig. 17
(1 : 1 scale)

I
J _.1

CAD

Fig. 19 - Programmable voltage regulator with
current limiting

Cl

Fig. 20 - Programmable current regulator

Io(max)= V:;2

vo=vr€"

(1.~ )

0.22

Y,

"F

Fig. 22 - Digitally selected regulator with
inhibit

Fig. 21 - High current voltage regulator with
short circuit protection

lkn

s-

253912

89

APPLICATION CIRCUITS
Fig.24 - High current regulator with NPN
pass transistor

Fig. 23 - Tracking voltage regulator

BOWSl

!

Roo

Y\,

I
I,

1011

,

v

>---'-

L 200

2

3] 820 n]4

~lkn

BC~

10k'll
'r

=:o.,,"Fl

0.47"F

==

A: Vi(max)"; ± 34V ; 3 < Vo < 30.
B: Vi(max)"; ±22V ;3-

9

1

TTL OUTPUT

CMOS OUTPUT

Fig. 11 - Peak collector current as a function fo duty
cycle and number of outputs

Fig. 10 - Collector current
vs. collector emitter saturation voltage

Fig. 9 - DC current gain. vs.
collector current (for L 201)

G-1162

'e

\\
\'

(mA )

"0

,

I

/

I

10'

',,,

VCE~~

!

-

300

300

roo

-

~

,

"-' .........

'\.
"-,.
~6

"-

7~

f' ........

"'""

'00

~
''';:::

Tamo ,,70'C
100

100

i

10'
10

j'

II
'0'

0.5

Ie (rnA)

Fig. 12 - Input current vs.
input voltage (for L 202
and L 204)

1.5

VCE(~)M

;

-++

3.'
,

>.6

,

'.4

IC"~

'20'

L6

L2"Y

I

OA

I

0 ('/.)

(,-2165

"

(mA )

I

I

80

Fig. 14 - Power rating chart

Fig. 13 - Input current vs.
input voltage (L 203)

(',_2164/1

I

"

(rnA )

60

0.8

..-:: ~

t5

h V

~
~ Ie =350o:nA

0.6
0.'
•

•

0.3

I

"

16

20

30

24 Vi (v)

97

60

90

120

150

lamb ("C)

LINEAR INTEGRATED CIRCUIT

TACHOMETER CONVERTER
The L290, a monolithic LSI circuit in a 16-lead dual in-line plastic package, is intended for use with the
L291 and L292 which together form a complete 3-chip DC motor positioning system for applications
such as carriage/daisy-wheel position control in typewriters.
The L290/1/2 system can be directly controlled by a microprocessor. The L290 integrates the following
functions:
- tacho voltage generator (FIV converter)
reference voltage generator
- position pulse generator.

ABSOLUTE MAXIMUM RATINGS

vs

± 15
±7
1
-40 to +150

Supply voltage

VI (FTA, FTB, FTF) Input signals

Ptot
Tstg' TJ

Total power dissipation Tamb = 70°C
Storage and junction temperature

V
V
W

°C

ORDERING NUMBER: L290 B

Dimensions in mm

MECHANICAL DATA

6182

98

CONNECTION DIAGRAM
(top view)

FTB

16 FTA

VAB

15 VAA

Vre-t

14 STA

TACHO 4

13

'V s

12 FTF

Vbias.

srB

11 GND

6

VMB

10 STF

VMA

9

-Vs

5 - lo 159

BLOCK DIAGRAM
11

Vbias

GNO i

"VS:

, 6 FTA
TACHO

~

FTS

11.. STA

13

FTF

STF

STS

VrE'f

VAA

15

VAS

VMS

VMA

7 8

99

5- 41L.

312

4

12

10

TEST CIRCUIT
- Vs

FTA

,V s

TACHO

.5V

I

3x2.5K!t

'6

FTB

L 290

,4

STA

, 3

STB

FTF

STF
VMB
OVMA
2x820 n

+'.8V

-'.8V

THERMAL DATA
Rth j-amb

Thermal resistance junction-ambient

max

80

°C/W

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, S in (A), Vs = ± 12V,Tamb = 25°C
unless otherwise specified)
Parameters
Vs

Supply vol tage

Id

Quiescent drain current

Test conditions

Min.

Typ.

±10
13

Vs=±15V

Max.

Unit

±15

V

20

mA

±0.6

Vp

± 55

mV

INPUT AMPLIFIERS (AI and A 2 )
FTA, FTB

I nput signal from encoder
(pin 1, 16)

f max = 20 KHz

Vos

Output offset voltage
(pin 2,15)

FTA = FTB = OV

Ib

I nput bias current (pin 1, 16)

Gv

Voltage gain

f = 10 KHz FT A=FTB=±0.6V p

Vo

Output voltage swing
(pin 2, 15)

FTA= FTB= ± 1 Vp

±0.4

0.15

100

22
±9.5

23

IJA
24

dB
V

i

I"

~

ELECTRICAL CHARACTERISTICS (continued)
Test conditions

Parameters

I,

COMPARATORS WITH HYSTERESIS (C I , C2 and C3 )
VTHP(O)

VTHN(oo)

VL

Ileak

Positive Threshold voltage
(pin 2. 12. 15)

Negative Threshold voltage
(pin 2. 12, 15)

C I and C 2

550

850

rnV

C3

700

900

rnV

C I and C2

55

175

rnV

C3

570

830

rnV

0.4

V

1

/J.A

5.5

V

1.4

rnA

± 80

rnV

Output voltage (low levell
(pin 10.13,14)

10 = 2 rnA

0.2

(pins 10, 13, 14)

FT A= FTB= 0.5V
FTF= 1V
V CE= 5V

FT A= FTB= FTF= OV

REFERENCE GENERATOR
FTA= FTB= ± 0.5V p (*)
I ref = 1 rnA

V ref

DC reference voltage
(pin 3)

Iref

Output current (pin 3)

4.5

5

"TACHO" AMPLIFIER (A 3 )
Vos
Vo

Output offset voltage (pin 4)

FTA= ± 15 rnV FTB= 0.5V

DC output voltage (pin 4)

!',V o
Vo

FTA= FTB= ±0.5Vp

(**)
Vol

V MA= V MB = ±1.25V p

(*")
V 02

I

S in (B)
V MA
V MB

Multiplier input voltage
(pin 7,8)

V bias

Bias voltage (pin 6)

(0 )

FT A = FTB = FTF = 0

Note : Phase relationship
* FT A : 00
FTA : 00
*** FTA: 00

f

I

6

6.6

-5.4

-6

-6.6

V

-150

Vol + V 02
Output voltage swing (pin 4)

5.4

FTA= FTB= 0.5V

9

FTA= FTB= -0.5V

-9

+150

V
± 1.25

FT A and FTB floating

IV
(00)

FTA=FTB=FTF=

between the signals:
FTB : 900
FTB: _90 0
FTB: 900

101

rnV

-6.5

± 1.7

Vp

-8

V

i

WAVE FORMS (Neglecting threshold voltage level of the comparators)
ANTICLOCKWISE
DIRECTION

CLOCKWISE
DIRECTION

Wi;

t'

I

i

VAA

~VAA

h~VAB

VAB

CS1

CS1

CS2

, CS2

VMA

! VMA

~~'-'-'-VM:..::...B_

Yr:

~

CSB

~C5B

CSA

~CSA

i VMB

~

I

~TACHO

TACHO

~

SYSTEM DESCRIPTION: refer to the L292 data sheet

102

5-4156/1

Fig. 1 - Complete application circuit
FAOt04

ENCOOER

Speed

"OK.
L291
1 SO
10,",0j)

FRO'"'
,uPROCESSOR

'"

ISlI.n

16

", ~ -',

hC10 e'l
I Ol~

Strobli!'

1511.0.

0.1",

~

",

12

·12

-'.

103

ON(Hl

OFF(Ll

LINEAR INTEGRATED CIRCUIT

5 BIT - D/A CONVERTER AND POSITION AMPLIFIER
The L291, a monolithic LSI circuit in a 16-lead dual in-line plastic package, is intended for use with the
L290 and L292 to form a complete 3 chip DC motor positioning system for applications such as carriage/
daisy-wheel position control in typewriters.
The L290/1/2 system can be directly controlled by a microprocessor.
The L291 integrates the following functions:
5 bit 0/ A converter
error amp Iifier
position amplifier

(~

LSB max linearity error)

ABSOLUTE MAXIMUM RATINGS
±15
1
-40 to 150

Supply voltage
Total power dissipation T amb = 70°C
Storage and junction temperature

v
w
°C

ORDERING NUMBER: L291 B

Dimensions in mm

MECHANICAL DATA

6/82

104

CONNECTION DIAGRAM
(top view)

ERRV

1

16 POS lOUT

SC ,

15

POSIIN

SC 2

14

.V s

SC J

13

GND

SC 4

12

DACIOUT

SC 5

11

N.C

SIGN.

10

Strobe 8

-Vs

DAC liN
5-4160

BLOCK DIAGRAM

,J

14

SC'

SC2
-".

SCJ
SCI.
SC5

DIA
CONY,
~D--+--~ '6
POSIOUT

SIGN

Strobe

OAC/IN

DACfOUT

ERRV

12

POS/IN
1

105

15

S-t,157/1

TEST CIRCUIT

5c,00 8 2
5C2
5C)

L291

5C4

5C5
StrobeQ-50n
5'

s- 41 581l

:L ~

52

al ~.t
b

Otl00mV

2,l. V

THERMAL DATA
Rth j-amb

Thermal resistance junction-ambient

max

80

°C/W

± 12V,

ELECTRICAL CHARACTERISTICS (Refer to the circuit, Sl and S2 in (a). Vs
Tamb = 25°C, unless otherwise specified)

Parameters
Vs

Supply voltage

Id

Quiescent drain current

Test conditions

Min.

Typ.

± 10
Vs = ± 15V

6.5

Max.

Unit

± 15

V

10

mA

POSITION AMPLIFIER
V strobe Enable voltage level

V L (S in (a)) •

0

0.8

V

V H (S in (b)) •

2.4

+Vs

V

± 50

mV

0.3

IJA

Vos

Output offset voltage (pin 16)

V strobe= V L; G v = 20 dB

Ib

Input bias current (pin 15)

Vstrobe= V L

Vo

Output voltage swing (pin 16)

Vstrobe=VL; S2 in(b); Vs=±10.8V

VR

Residual output voltage (pin 16)

Vstrobe= V H

• See block diagram and the note for Position Amplifier.

106

V

±9
± 20

mV

ELECTRICAL CHARACTERISTICS (continued)
Parameter

Test conditions

D/A CONVERTER
I ref

Current reference input range
(pin 91

Vas

Current reference offset voltage
(pin 91

10

Output current range (pin 121

10

Output current (pin 121

LIla

0.3

Iref= 0.3 to 1.2 mA
All inputs high

I ref = 0.722 mA
SC1 to SC5 = L

1.2

mA

± 20

mV

1.4

mA

SIGN = L (1011

-1.358

-1.4

-1.442

SIGN = H (1021

-1-1.358

+1.4

+1.442

mA

-21

101 + 102

+21

!J.A
%FS

Linearity error

I ref = 0.722 mA

1.61

los

Pin 12 output offset current
(including Error Amplifier bias
currentl

All inputs high

± 0.4

!J.A

VL

Low voltage level (digital inputsl

0

0.8

V

VH

High voltage level (digital inputsl

2.4

+VS'

V

IL

Digital inputs current (low statel

V L = O.4V

-50

!J.A

IH

Digital inputs current (high statel

V H = +Vs

1

!J.A

± 200

mV

± 5

mA

± 8.4

Vp

SC1 = LSB
SC5 = MSB

ERROR AMPLIFIER
Vas

Output offset voltage (pin 11

I ref = 0.5 mA; All inputs high
G v = 40 dB

10

Output current (pin 11

Va

Output voltage swing (pin 11

All inputs high
S1 in (bl; R L =10Kn

107

±7.4

D/A Converter
The L291 contains a 5-bit D/A converter accepting a binary code and generating a bipolar output
current, the polarity of which depends on the SIGN input. The amplitude of the output current is a
multiple of a reference current Iref .
The maximum output current is
I FS = +
-

31

I

~ ref

The following table shows the value of 10 for different input codes. Note that the input bits are active
low.
DIGITAL INPUT WORD

Output Current

SIGN

SC5

SC4

Se3

Se2

Se1

L

L

L

L

L

L

10

-~
16
1

I ref

L

H

H

H

H

L

-"""""i"6 I ref

X

H

H

H

H

H

0

H

H

H

H

H

L

+ _1- lref

H

L

L

L

L

L

+

16
31

"""""16 I ref

X = indifferent
L = low
H = high

This D/A converter has a maximum linearity error equal to ± 1/2 LSB (or ± 1.61% Full Scale); that gua:
rantees its monotonicity.

Error Amplifier
In order to have a good stability, the Error Amplifier must work with a closed loop gain greater or equal
than 20 dB.

Position Amplifier
It is inserted by means of the strobe signal, TTL and microprocessor compatible. Its output is connected
to pin 16 when Vstrobe= Low; pin 16 is grounded for Vstrobe= High.

SYSTEM DESCRIPTION: refer to the L292 data sheet.

108

Fig. 1 - Complete application circuit

109

LINEAR INTEGRATED CIRCUIT
SWITCH-MODE DRIVER FOR DC MOTORS
The L292 is a monolithic LSI circuit in 15-lead MUL TIWATT® package. It is intended for use, together
with L290 and L291, as a complete 3-chip DC motor positioning system for applications such as carriage/daisy-wheel position control in typewriters.
The L290/1/2 system can be directly controlled by a-microprocessor. The outstanding characteristics
of the L292 are:
Singie power supply (18 to 36V).
Input signal symmetric to ground.
Thermal protection.

Driving capability: 2A, 36V, 30 KHz.
2 Logic chip enable.
- External loop gain adjustment.
-

ABSOLUTE MAXIMUM RATINGS
Vs

VI
V inhibit

Ptot
T 519

36
-15 to +Vs
o to Vs
25
-40 to +150

Power supply
Input voltage
Inhibit voltage
Total power dissipation (Tcase= 75°C)
Storage and junction temperature

V
V
V

W
°C

ORDERING NUMBER: L292

Dimensions in mm

MECHANICAL DATA

6/82

110

CONNECTION DIAGRAM
(top view)

MOTOR
Rs2
INHIBITCCEll
INHIBIT(m)
OSCILL.(R)
OSCILL.(C)
OUTPUT(ERR.AMPU
GNO
INPUT(ERR.AMPL.)

15

"
13
12
11

10
9

INPUT

OUTPUT C.S.A.
COMP. INPUT

'\'0

Rsl
MOTOR

5-3673

BLOCK DIAGRAM
'Vs

slon

.5,
c
r - - - - - - - - - - - - - - -- - - - - - - - - -

!---------- ~-.

L292

,,
VI : 6

03

RI

.,

lnF

,
04

I

!L. ________________________________ _
5_4168

High speed diodes (BYW 72 or equivalent)

111

THERMAL DATA
Rth j-case'

Thermal resistance junction-case

max

3

°C/W

ELECTRICAL CHARACTERISTICS (T amb = 25°C, fosc= 20 KHz unless otherwise specified)
Parameter

Test conditions

Vs

Supply voltage

Id

Quiescent drain current

V s = 20V (offset null)

Vos

Input offset voltage (pin 6)

Vs = 36V

V inh .

Inhibit low level (pin 12,13)

Typ.

18
30

10 = 0

Inhibit high level (pin 12, 13)

Max.

Unit

36

V

50

mA

±350

mV

2

V

3.2

Low voltage condition

V inh . (L)= O.4V

High voltage conditions

V inh . (H)= 3.2V

Ii

Input current (pin (6)

VI = -8.8V
VI = +8.8V

Vi

Input voltage (pin 6)

linh.

Min.

V
-100

Il A

10

Il A

-1.8
0.5

mA
mA

10= 2A

9.1

V

10= -2A

-9.1

V

Rsl = R s2 =0.25]

10

Output current

V D·

Total drop out voltage

VI = ±9.8V

RSI = R s2 = 0.25]

(inluding

±2

A

10= 2A

5

V

resistors)

10= lA

3,5

V

Sensing resistor voltage drop

T j = 150°C

10= 2A

0.44

V

Transconductance

Rsl = R s2 = 0.2n

235

mA/V

sensing

V RS

i

10
-Vi

205

120

Rsl = R s2 = O.4n
Frequency range (pin 10)

fosc

1

TRUTH TABLE
Vinhibit
Pin 12

Pin 13

L
L
H
H

L
H
L
H

Output stage
condition
Disabled
Normal operation
Disabled
Disabled

112

220

mAN
30

KHz

I

SYSTEM DESCRIPTION

I
I

The L290, L291 and L292 are intended to be used as a 3-chip microprocessor controlled positioning
system. These devices may be used separately - particularly the L292 motor driver - but since they will
usually be used together, a description of a typical L290/1/2 system follows.

Fig. 1 - System block diagram

The system operates in two modes to achieve high-speed, high-accuracy positioning.
Speed commands for the system originate in the microprocessor. It is continuously updated on the
motor position by means of pulses from the L290 tachometer chip, which in turn gets its information
from the optical encoder. From this basic input, the microprocessor computes a 5-bit control word
that sets the system speed dependent on the distance to travel.
When the motor is stopped and the microprocessor orders it to a new position, the system operates
initially in an open-loop configuration as there is no feedback from the tachometer generator. Therefore
maximum current is fed to the motor. As maximum speed is reached, the tachometer chip output backs
off the processor signal thus reducing accelerating torque.
The motor continues to run at top speed but under closed-loop control.
As the target position is approached, the microprocessor lowers the value of the speed-demand word;
this reduces the voltage at the main summing point, in effect braking the motor. The braking is applied
progressively until the motor is running at minimum speed.
At that time, the microprocessor orders a switch to the position mode, (strobe signal at pin 8 of L291)
and within 3 to 4 ms the L292 drives the motor to a null position, where it is held by electronic
"detenting" .

113

SYSTEM DESCRIPTION (continued)
The mechanical/electrical interface consists of an optical encoder which generates two sinusoidal signals
90° out of phase (leading or lagging according to the motor direction) and proportional in frequency to
the speed of rotation. The optical encoder also provides an output at one position on the disk which is
used to set the initial position.
The opto encoder signals, FT A and FTB are filtered by the networks R2 C2 and R3 C3 (referring to
Fig. 4) and are supplied to the FT A/FTB inputs on the L290.
The main function of the L290 is to implement the following expression:
Output signal (TACHO) =

d~AA

FTA
IFTAI

FTB
IFTBI

•

Thus the mean value of TACHO is proportional to the rotation speed and its polarity indicates the
direction of rotation.
The above function is performed by amplifying the input signals in Al and A2 to obtain VAA and
VAB (typ. 7 Vp ). From VAA and VAB the external differentiator RC networks Rs Cs and R4 C4 give
the signals V MA and V MB which are fed to the multipliers.
.
The second input to each multiplier consists of the sign of the first input of the other multiplier before
differentiation, these are obtained using the comparators CSI and CS2 ' The multiplier outputs, CSA and
eSB, are summed by A3 to give the final output signal TACHO. The peak-to-peak ripple signal ofthe
T ACHO can be found from the following expression:
V ripple

P-i>

=

-%-(..[2 - 1)

• V thace

DC

The max value of TACHO is:
Vtache max = :

V2'

Vthaco

DC

Using the comparators C 1 and C2 another two signals from VAA and VAB are derived - the logic signals
STA and STB.
These signals are used by the microprocessor to determine the position by counting the pulses.
The L290 internal reference voltage is also derived from V AA and VAB:
V ref == I VAA I

+

I VAB I

This reference is used by the 0/ A converter in the L291 to compensate for variations in input levels,
temperature changes and ageing.
The "one pulse per rotation" opto encoder output is connected to pin 12 of the L290 (FTF) where it is
squared to give the STF logic output for the microprocessor.
The T ACHO signal and V ref are sent to the L291 via filter networks Rs Cs Rg and Rs C7 R7 respectively.
Pin 12 of this chip is the main summing point of the system where T ACHO and the 0/ A converter out·
put are compared.
The input to the O/A converter consists of 5 bit word plus a sign bit supplied by the microprocessor.
The sign bit represents the direction of motor rotation. The (analogue) output of the 0/ A converter OAC/OUT - is compared with the TACHO signal and the resulting error signal is amplified by the error
amplifier, and subsequently appears on pin 1.

114

SYSTEM DESCRIPTION (continued)
The E RRV signal (from pin 1, L291) is fed to pin 6 of the final chip, the L292 H-bridge motor-driver.
This input signal is bidirectional so it must be converted to a positive signal because the L292 uses a
single supply voltage. This is accomplished by the first stage - the level shifter, which uses an internally
generated BV reference.
This same reference voltage supplies the triangle wave oscillator whose frequency is fixed by the external
RC network (R 20 , C ll - pins 11 and 10) where:
fo,c

=

1
2RC

(with R > B.2 K.II.)

The oscillator determines the switching frequency of the output stage and should be in the range 1 t030
KHz.
Motor current is regulated by an internal loop in the L292 which is performed by the resistors RIB' RIg
and the differential current sense amplifier, the output of which is filtered by an external RC network
and fed back to the error amplifier.
The choice of the external components in these RC network (pins 5, 7,9) is determined by the motor
type and the bandwidth requirements. The values shown in the diagram are for a 5.11., 5 mH motor.
(See L292 Transfer Function Calculation in Application Information).
The error signal obtained by the addition of the input and the current feedback signals (pin 7) is used
to pulse width modulate the oscillator signal by means of the comparator. The pulse width modulated
signal controls the duty cycle of the H-bridge to give an output current corresponding to the L292
input signal.
The interval between one side of the bridge switching off and the other switching on, T , is programmed
by C ll in conjunction with an internal resistor Rr .
This can be found from:
T =

Rr ' Cpin

(C ll in the diagram)

10'

Since Rr is approximately 1.5 K.II. and the recommended T to avoid simultaneous conduction is 2.5 I1S
Cpin 10 should be around 1.5 nF.
The current sense resistors RIB and RIg should be high precision types (maximum tolerance ± 2%) and
the recommended value is given by:
Rmax • 10 max';; 0.44V

It is possible to synchronize two L292's, if desired, using the network shown in fig. 2.
Fig. 2

,--1" L292
L-l

11

tf
.R

1.

" - 1.1lt.

Finally, two enable inputs are provided on the L292 (pins 12 and 13-active low and high respectively).

115

SYSTEM DESCRIPTION (continued)
Thus the output stage may be inhibited by taking pin 12 high or by taking pin 13 low. The output will
also be inhibited if the supply voltage falls below 18V.
The enable inputs were implemented in this way because they are intended to be driven directly by a
microprocessor. Currently available microprocessors may generates spikes as high as 1.5V during powerup. These inputs may be used for a variety of applications such as motor inhibit during reset of the
logical system and power-on reset (see fig. 3).
Fig. 3

I
Fig. 4 - Application circuit

FROM

C,
15nF

R le

0.220.

RI9

t-0._22_n~~~~~~~L::.:2::.:9:..:2::,

I

D,

f
'I

,D3

1~,}~n5n
C1S

I

lnF

0'1' 0,

FROM
.uPROCESSOR

4xlN4001

~---wt=5j---;PF'---tc=='--

R"

ISKJl

+ Ys

GNO

~Vs

116

ON(H)
QFF(L)

1

M 5mH

APPLICATION INFORMATION
This section has been added in order to help the designer for the best choise of the values of external
components.
.Vs

Fig. 5 - L292 block diagram

47nF

C
7

9

3

-------------

D3

InF

D'

5-4168

The schematic diagram used for the Laplace analysis of the system is shown in fig. 6.
Fig. 6
Vi

,I....._ _.J
I CURRENT

I
I FILTER

I

L _ _ _ _ _ _ _l

5- 1,17611

I SENSING
I'- AMPLIFIER
_______1

RSI = RS2 = Rs (sensing resistors)
_1_ = 0.005 n -1 (current sensing amplifier transconductance)
R4
LM = Motor inductance
RM = Motor resistance
1M = Motor current

Gm- o -1M
--VTH

I

S =

0

(DC transfer function from the input of the comparator (V TH) to the· motor cur·
rent (1M)).
117

APPLICATION INFORMATION (continued)
Neglecting the V CEsat of the bridge transistors and the V BE of the diodes:
where:

Vs = supply voltage
V R = 8V (reference voltage)

(1 )

DC transfer function
In order to be sure that the current loop is stable the following condition is imposed:
1 + sRC = 1 + S LM
RM
from which RC =

(pole cancellation)

~

(2)

(Note that in practice R must be greater than 5.6 Kn)

RM

The transfer function is then,

~ (s) =
VI

R2 R4
RIR3

G mo

1 + sRFC F
GmoRs+sR4C+s2RFCFR4C

(3)

In DC condition, this is reduced to

-.!.M...

(0) =

VI

0.044

R2 R4
RI R3

Rs

[..A..l
VJ

(4)

Open-loop gain and stability criterion
For RC

= LM/R M, the open loop gain is:
A

{3

=

1
SRFC

•

G

Rs
mo ~

(5)

In order to achieve"good"stability, the phase margin must be greater than 45° when IA J3I = 1.
That means that, at fF = 2 7r ~FCF ,must be IA {31

< 1 (see fig. 7), that is
Gmo Rs
R4 C

Fig. 7 - Open-loop frequency response
IAJ31

OdB,+_ _ _ _ _~;:--.;..

118

RFC F

~

<1

(6)

APPLICATION INFORMATION (continued)

Closed-loop system step response
a) Small-signals analysis.

Fig. 8 - Small signal step
response (normalized amplitude vs. t/RFC F )

The transfer function (3) can be written as follows:
1+ 2~

I
0.044
~(s)= - - -

VI

s

G-4J';l

Wo

1 + 1!~ +

Rs

Wo

where:

=

Wo

j

(7)

4-

'S=1I..fT

Wo

0.9

/

~----

Rs
R4 C RFC F
Gmo

is the cutoff frequency

,/ II

0.6

0.3

I.

5"'

I
I

/

II
I

"

By choosing the ~ value, it is possible to determine the system
response to an input step signal. Examples:
Fig. 9 - Motor current and pin 7 voltage
waveforms (application of fig. 5). Small
signal response

1)~=1

from which
OV

___
t_

1M

(t)

=

0.044 [1 - e 2R FC F (1 + 4 RtFC F ) 1• Vi
Rs

(where Vi is the amplitude of the input step).

2) ~ =

1

'1'2

1M

(t) =

from which
t

0.044 (1 - cos
t
e
Rs
2R FCF

2R F CF )V;

OA
V 7 = 200mV/div.
1M = 100mA/div.
t
= 100/ls/div.
with VI = 1.5 Vp.

From fig. 9, it is possible to verify that the L292 works in "closed-loop" conditions during the entire
motor current rise-time: the voltage at pin 7 (inverting input of the error amplifier) is locked to the
reference voltage V R, present at the non-inverting input of the same amplifier.
The previous linear analysis is correct for this example.
Decreasing the ~ value, the rise-time of the current decreases. But for a good stability, from relationship
(6), the minimum value of ~ is:

1:.=_1_
min

2

(phase margin = 45°)

W

119

APPLICATION INFORMATION (continued)
b) Large signal response
The large step signal response is limited by slew-rate and inductive load.
In this case, during the rise-time of the motor current, the L292 works in open-loop condition, as
can be seen from the photograph of fig. 10.

Fig. 10 - Motor current and pin 7 voltage waveforms
(application of fig. 5) Large signal response.
OV

V7
1M
t

1V/div.
0.5A/div.
500"s/div.

OA

The voltage at pin 7 (inverting input of the error amplifier) departs from the reference voltage V R
present at the non-inverting input and the feedback loop is open.
The fed back loop is on when the motor current reaches its steady-state value (2A).

Closed loop system bandwidth
A good choice for ~ is the value 1/V2.ln this case:
~ (s)
VI

= 0.044
Rs

1 + s RFC F
1 + 2s RFC F + 2s 2 R F 2C F 2

(8)

The module of the transfer function is:
0.044
Rs

2

.J 1 + w

2

V [ (1 + 2 w R F C F )2 + 1 ]

RF2 C F 2

• [(1 - 2

The cutoff frequency is derived by the expression (9) by putting

Wr =

0.9
RFC F

120

w R F C F )2

(9)
+ 1]

I ~~ 1= 0.707 (-3 dB). from which:

APPLICATION INFORMATION (continued)

Example:
a) Data

b) Calculation

-

Motor characteristics:

-

Voltage and current characteristics:
V 5 = 20V
1M = 2A

-

Closed loop bandwidth: 6 KHz.

-

From relationship (4):

LM = 5 mH
RM =50
LM/RM = 1 msec

and from (1):
G
'rno-

RC = 1 msec
Assuming

2Vs
RMV R

,.

[from expression (2) ].
~ = 1/...(2; from (7) follows:

p = 1.-. =
2

c) Summarising

1~-1

-

The cutoff frequency is:

-

RC = 1 • 10-3 sec
500 C = 1
RFCF
RFC F ~ 24 "sec

}

200 C
4 RFC F • 0.2

C = 47 nF
R = 22 Ko
For RF = 5100 -+ CF = 47 nF.

NOTE - "For a more detailed description of the L290-L291-L292 and its applications
refer to SGS - TECHNICAL NOTES TN 149 and TN150.
121

LINEAR INTEGRATED CIRCUITS
PRELIMINARY DATA
PUSH-PULL FOUR CHANNEL DRIVERS
The L293 and the L293E are monolithic integrated high voltage, high current four channel drivers in
dual in-line plastic package with 16 leads and 20 leads respectively. They are designed to accept standard
DTL or TTL input logic levels and drive inductive loads (such as relays, solenoids, DC and stepping
motors) and switching power transistors.
Both are provided of complementary push-pull output stage, two inhibit inputs (which disable two
channels each), and an additional supply inputs so that the logic circuitry may run at a lower voltage to
reduce power dissipation.
In the L293E the emitters of the lower transistors of each push-pull stage are not internally grounded
and the corresponding pins can be used for the connection of an external sensing resistor, making very
easy switch-mode current control.
.
The main features of the L293 and of the L293E are:
1A output current capability per channel
2A peak output current (non-repetitive) per channel
Inhibit facility
Overtemperature protection
Logical "0" input voltage up to 1.5V (high noise immunity).
The devices are assembled in new packages which have the four central pins connected together and used
for heatsinking and grounding.

ABSOLUTE MAXIMUM RATINGS
Vs

Vss
Vi
V inh
lout
Ptot
Tstg , Tj

Supply voltage
Logic supply voltage
Input voltage
Inhibit voltage
Peak output current (non-repetitive)
Total power dissipation at TgrOUnd-Pins= 800C
Storage and junction temperature

ORDERING NUMBERS:

V
V
V

V
A

5

W

-40 to 150

°C

L293B (16 leads)
L293E (20 leads)

MECHANICAL DATA

6/82

36
36
7
7
2

Dimensions in mm

122

CONNECTION AND BLOCK DIAGRAM (L293)
(top view)

CHIP ENABLE 1

16

INPUT 1

15

INPUT 4

OUTPUT 1

14

OUTPUT 4

V55

GNO

13

GN 0

GNO

12

GNO

OUTPUT 2

11

OUTPUT 3

INPUT

10

2

9

Vs

I NPU T 3

CHIP ENABLE 2

's
5 - 1,'69

CONNECTION AND BLOCK DIAGRAM (L293E)
(top view)

CHIP ENABLE 1

1

INPUT 1

V"
INPUT 4

OUTPUT 1

OUTPUT 4

SENSE 1

SENSE 4

GNO

GNO

GND

GND

SENSE 'I.

SENSE 3

OUTPUT 2

OUTPUT

INPUT 2

Vs

3

INPUT 3
10

+Vs

123

v

(2)

(0)

o

~
(12)

In the L293 these points are not externally available. They are internally connected to the ground (substrate).
Pins of L293
( ) Pins of L293E

5 - 51St,

I

Ii

~
I

THERMAL DATA
Rth j-case
Rth j-amb

max
max

Thermal resistance junction-case
Thermal resistance junction-ambient

14
80

°C/W
°C/W

ELECTRICAL CHARACTERISTICS (For each channel, Vs= 24V, Vss= 5V, Tamb = 25°C,
unless otherwise specified)
Parameter
Vs

Supply voltage

Vss

Logic supply voltage

Is

Total quiescent supply
current

Iss

Total quiescent logic
supply current

V iL

I nput low voltage

V iH

Input high voltage

Test conditions

Vi
Vi
Vi
Vi

=L
=H
=L
=H

10

=0
=0

36

V

36

V

V 1nh = H

2

6

V inh = H
V inh - L

16

24

V inh = H

44

60

V inh = H

16

22

V inh = L

16

24
1.5
Vss

> 7V

2.3

7

Low voltage input current

Vi - L
Vi - H

I nhibit low voltage

V inhH

I nhibit high voltage

mA

4

2.3

High voltage input current

mA
V
V

-10

p,A

100

/loA

-0.3

1.5

V

Vss ..; 7V

2.3

> 7V

2.3

Vss
7

V

-100

p,A

± 10

p,A

. Vss

High voltage inhibit
current

10

=0
=0

Unit

-0.3

liH
V inhL

linhH

10
10

Max.

Vss"; 7V

liL'

Low voltage inhibit current

Typ.

4.5

V ss

linhL

Min.

30

-30

VCEsatH Source output saturation
voltage

10

= lA

1.4

1.8

V

VCEsatL Sink output saturation
voltage

10

= -lA

1.2

1.8

V

2

V

VSENS

Sensing Voltage
(pins 4, 7,14,17) (**)

tr

Rise time

0.1 to 0.9 Va (*)

250

ns

tf

Fall time

0.9 to 0.1 Va (0)

250

ns

ton

Turn-on delay

0.5 Vi to 0.5 Va (")

450

ns

toff

Turn-off delay

0.5 Vi to 0.5 Va (")

200

ns

(*) See fig. 1.
(**) Referred to L293E.

125

TRUTH TABLE
Fig. 1 - Switching times
Vi (each channen

Vo

V inh . (00)

H
L
H
L

H
L
X (0)
X (0)

H
H
L
L

(0) High output impedance.
(00) Relative to the considerate channel.

Fig. 2 - Saturation voltage
vs. output current

Fig. 3 - Source saturation
voltage vs. ambient temperature

G- 4J4 5

veEs ...I

VCEsatH

(V)

I

(V)
Vs= 24'0'

;:::::; p-

sat H

G-4)47

veE sat L

~~·~V,-.~14~v~--L-+-~-4~

(V)

--

+ __+-----1

3 f---~in"h"";b,,,!I',V~""T5_V-t__

Vinhibit~V5S=5V

VeE

Fig. 4 - Sink saturation voltage vs. ambient temperature

i

----vl. ",I

Vinhibit" V55 " 5V

--

f-

/

-

......-:: ~ ~£satl

I

-t--1
1 0 " tSA

I
10 _1A

-

10 " O.SA
10 ",0.1 A

I
0.5

- 50

Fig. 5 - Quiescent logic
supply current vs. logic
supply voltage
(;-4398

'"

{rnA )

V,

I

-~4V

Fig. 6 - Output voltage vs.
input voltage
-" ,

f---

V

VOr--'~V'~'~'~4V~'--'--'---_~~~~
j----------j---t--+--+---

'II

V V

46

Fig. 7 - Output voltage vs.
inhibit voltage

VS-JCE sa;H

V1nh"HIGH

"

50

"55" Vi ,,5'0'

Vs '" 24'0'
Vss"Vinhibit ,,5V

-

Vi :LOW

50

-50

50

It-

1/

V

"'s-VeE sat H

/.f-Tamb:25 'c
_Tamb" 25'C
-125'C
-40'C

f--t--+--tH'-I+---12S• c
--40'C

I

42

iL

/

VeE sat l

I

I
to

20

30

..ss(V)

1..5

'.5

126

veE sat l
1.5

r--

APPLICATION INFORMATION
Fig, 8 - DC motor controls (with connection
to ground and to the supply voltage)

Fig, 9 - Bidirectional DC motor control

.v.

L_.....:==::;:;:;::;::;:~=:::tL--{)

vinh

5 - 5155

V inh

A

H

H

H
L

L= Low

Ml
Fast motor
stop

M2

B
H

Run

L

Fast motor
stop

X

Free running
motor stop

X

Free running
motor stop

H = High

C = H;

D=L

Turn right

V inh = H

C = L;

D=H

Turn left

V inh = L

C = X;

Run

L

Fast motor stop

C=D

X = Don't care

Fig, 10 - Bipolar stepping motor control

FUNCTION

INPUTS

L= Low

H = High

D=X

X = Don't care

• v,
O.22.IJF

06

05

ch
iLljlL2dOOmA

02

I"

0'

D1 - D8

127

Free running
motor stop

= 1N4001

APPLICATION INFORMATION

(continued)

Fig. 11 - Stepping motor driver with phase current control and short circuit protection
r--------------------------------------------------r-------r~--~~O.v.

I-----------------_t_~--t_----------O. 5 v·

V,o-~~----------------_f~,

V2o-~~~----------r_~F_~

L-~I-----~------------_t_--t__t_--~--~OV3

1

09

2xlN4148
012

Hi
KJl

+5Vo-----~~----~

R14

5-5166

D1 + D8: O.5A fast diodes (1N4001 or equivalent).

NOTE - For a more detailed description of the L293/L293E and its applications, refer to
SGS-TECHNICAL NOTE TN. 150.

128

MOUNTING INSTRUCTIONS
The Rthj-amb of the L293 and the L293E can be reduced by soldering the GND pins to a suitable copper
area of the printed circuit board or to an external heatsink.
The diagram of fig. 13 shows the maximum dissipable power Ptot and the Rthj-amb as a function of the
side "Q" of two equal square copper areas having a thickness of 351J. (see fig. 12). In addition, it is possible to use an external heatsink (see fig. 14).
During soldering the pins temperature must not exceed 260°C and the soldering time must not be longer
than 12 seconds.
The external heatsink or printed circuit copper area must be connected to electrical ground.

Fig. 12 - Example of P.C. board copper area
which is used as heatsink

Fig. 13 - Max. dissipable
power and junction to ambient thermal resistance vs.
size "Q"

COPPER AREA 35,u THtCKNESS

,

RIh

PtO!
,W)

·CIW)

r\

60

~hj- .. mb

'"""'.,-

r--.
.-~

6

--

- r--,

Ptot (lamb" 70·C)

10

20

2

40

30

I (mm)

P.C. BOARD

Fig. 14 - External heatsink
example (R th = 30 °C!W)

mounting

Fig. 15 - Maximum allowable power dissipation vs.
ambient temperature
(,_4350

,w

Pt. 1
)

ic

.y~"'I'''

'"%
~

's/1t.ot

~

If-/rJy

~1"c:'s:"'1T~t

o
·50

129

50

~

~

c''''
A./

~

t-T-%.

""

"~
....,... :f\
)0...

LINEAR INTEGRATED CIRCUIT
SWITCH MODE SOLENOID DRIVER
The L294 is a monolithic integrated circuit in an 11-1ead MUL TIWATT® package. It is particularly
suited for solenoid driving,such as hammers and needles in printers and comp
hard-copy peripherals.
ith high working
The switch-mode control of the output current allows electromechanic
speed to be driven (switch ON/switch OFF time is very short) and to
r dissipation compared to standard solutions.
Furthermore, the L294 incorporates a diagnostic circuit with lat
function (for instance electromagnet coil in short circuit). ,
The L294 main features are:
high voltage operation (up to 50V)
high output current capability (up to 4A)
low saturation voltage
/J-P compatible input

Vs
Vss

VEN
Vi
Ip

Ptot
Tstg , Tj

Input
age
Peak output current (repetitive)
Total power dissipation (at T case = 75°C)
Storage and junction temperature

50

v

7
7
7

V

4.5

A
W
°C

25
-40 to 150

V
V

ORDERING NUMBER: L294
Dimensions in mm

MECHANICAL DATA

6/82

130

CONNECTION DIAGRAM
(top view)

SINK OUTPUT

"

CURRENT SENSING

B

TIMING

~ '~

ENABLE
INPUT VOLTAGE

GNO
DIAGNOSTIC OUTPUT
LOGIC SUPPLY VOLTAGE
ON

TIME

LIMITER

SOURC E OUTPUT
POWER SUPPLY VOLTAGE

Tab connected to pin 6

5

~

5312/1

BLOCK DIAGRAM

02

ZOUT

11
SINK
STAGE

OUT

L r9
01

5-501411

131

THERMAL DATA
Rth

j-case

Thermal resistance junction-case

max

3

°C/W

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Vs =40V, Vss= 5V, T amb =25°C,
unless otherwise specified).
Parameter

Test conditions

Min.

Typ.

Vs

Power supply voltage (pin 1)

Operative condition

Id

Quiescent drain current (pin 1)

VENABLE- H

20

Vi;;' 0.6V;

70

Vss

Logic supply voltage (pin 4)

Iss

Quiescent logic supply current

12

VENABLE= L

DIAG output at high
impedance
Vi

I nput voltage (pin 7)

Operating output

I nput current (pin 7)

VENABLE Enable input voltage (pin 9)
IENABLE
Iload/Vi

Enable input current (pin 9)
Transconductance

46

V

30
7

V
mA

10

100

J.lA

0.6
0.45

Vi;;' 0.6V

-1

Vi" 0.45V

-3

Low level

-0.3

High level

2.4

V

J.lA
0.8

VENABLE= L

-100

VENABLE- H

100

Rs= 0.2.11

mA

8

Non-operative output
Ii

Unit

5

4.5
V 01AG - L

Max.

Vi = lV

0.95

1

1.05

Vi= 4V

0.97

1

1.03

V

J.lA
AN

V sat H

Source output saturation
voltage

Ip= 4A

1.7

V

V sat L

Sink output saturation
voltage

Ip=4A

2

V

V sat H+V sat L Total saturation voltage

4.5

Ip-4A
1

V
mA

Ileakage
K

Output leakage current

Rs- 0.2.11;

On time I imiter constant (0)

VENABLE- L

V 01AG

Diagnostic output voltage
(pin 5)

IOIAG- 10mA

0.4

V

IOIAG

Diagnostic leakage current
(pin 5)

V o1AG =40V

10

J.lA

V pin 8

OP AMP and OT A DC voltage
gain (00)

V pin 10- 100 to 800 mV

0.9

V

V pin 10
V SENS

Vi " 0.45V

Sensing voltage (pin 10) (000)

()
After a time interval t max = KC 2 , the output stages are disabled.
(00) See the block diagram.
(000) Allowed range of V SENS without the intervention of the short circuit protection.

132

K.I1

120

5

CIRCUIT OPERATION
The L294 works as a transconductance amplifier: it can supply an output current directly proportional
to an input voltage level (Vi). Furthermore, it allows complete switching control of the output current
waveform (see fig. 1).
The following explanation refers to the Block Diagram, to fig. 1 and to the typical application circuit of
fig.3.
The ton time is fixed by the width of the Enable input signal (TTL compatible): it is active low and
enables the output stages "source" and "sink". At the end of ton, the load current Iload recirculates
through D1 and D2, allowing fast current turn-off.
The rise time t, depends on the load characteristics, on Vi and on the supply voltage value (V s, pin 1).
During the ton time, Iload is converter into a voltage signal by means of the external sensing resistance
Rs connected to pin 10. This signal, amplified by the op amp and converted by the transconductance
amplifier OTA, charges the external RC network at pin 8 (R1, Cn. The voltage at this pin is sensed by
the inverting input of a comparator. The voltage on the non-inverting input of this one is fixed by the
external voltage Vi (pin 7).
After t" the comparator switches and the output stage "source" is switched off. The comparator output
is confirmed by the voltage on the non-inverting input, which decreases of a constant fraction of Vi
(1/10), allowing hysteresis operation. The current in the load now flows through D1.
Two cases are possible: the time constant of the recirculation phase is higher than R 1. C1; the time
constant is lower than R1.C1. In the first case, the voltage sensed on the non-inverting input of the
comparator is just the value proportional to Iload. In the second case, when the current decreases too
quickly, the comparator senses the voltage signal stored in the R1 C1 network.
In the first case t1 depends on the load characteristics, while in the second case it depends only on the
value of R 1.C1 .
In other words, R1.C1 fixes the minimum value of t1 (t 1 ;;;;'1/10 R1.C1. Note that C1 should be chosen
in the range 2.7 to 10 nF for stability reasons of the OTA).
After t 1 , the comparator switches again: the output is confirmed by the voltage on the non-inverting
input, which reaches Vi again (hysteresis).
Now the cycle starts again: t 2 , t4 and t6 have the same characteristics as t" while t3 and t5 are similar to
t 1 . The peak current Ip depends on Vi as shown in the typical transfer function of fig. 2.
It can be seen that for Vi lower than 450 mV the device is not operating.
For Vi greater than 600 mV, the L294 has a transconductance of 1A/V with Rs= 0.2n.. For Vi included
between 450 and 600 mV, the operation is not guaranteed.
The other parts of the device have protection and diagnostic functions. At pin 3 is connected an external
capacitor C2, charged at constant current when the Enable is low.
After a time interval equal to K . C2 (K is defined in the table of Electrical Characteristics and has the
dimensions of ohms) the output stages are switched off independently by the Input signal.
This avoids the load being driven in conduction for an excessive period of time (overdriving protection).
The action of this protection is shown in fig. 1 b. Note that the voltage ramp at pin 3 starts whenever
the Enable signal becomes active (low state), regardless of the Input signal. To reset pin 3 and to restore
the normal conditions, pin 9 must return high.
This protection can be disabled by grounding pin 3.
The thermal protection included in the L294 has a hysteresis.
It switches off the output stages whenever the junction temperature increases too much. After a fall of
about 20°C, the circuit starts again.
Finally, the device is protected against any type of short circuit at the outputs: to ground, to supply and
across the load.
When the source stage current is higher than 5A and/or when the pin 10 voltage is higher then 1 V (i.e.
for a sink current greater than 1 V/Rs) the output stages are switched off and the device is inhibited.
This condition is indicated at the open-collector output DIAG (pin 5); the internal flip-flop F/F changes
and forces the output transistor into saturation. The F/F must be supplied independently through Vss
(pin 4). The DI.AG signal is reset and the output stages are still operative by switching off the supply
133

CIRCUIT OPERATION (continued)
voltage at pin 1 and then by switching the device on again. After that, two cases are possible: the reason
for the "bad operation" is stili present and the protection acts again; the reason has been removed and
the device starts to work properly.
Fig. 1 - Output current waveforms

Fig. 2 - Peak output current
vs. input voltage
(;-66961'

'p
(A )

RS =0.2 it

V'l--f---"-"-'''I--VENABLE

/
a)

'/

V

V

V

V

V

b)

Fig. 3 - Test and typical application circuit
+

sv

Fig. 4 - Output saturation
voltages vs. peak output
current
H

+ Vs

.

v"

(V'

Vi

L
2mH

ENABLE

"'"L..r

RL
2fi

_.

I

I

Vsat

I

./

V

1.,

I

/v
./

01: 3A fast diode
02: 1 A fast diode

./

./

./

V

V
VSatH

V

0.'

5 - 531111

4 JplAI

Fig. 6 - Turn-off phase

Fig. 5 - Safe operating areas

-1,701

V

CE

ve,

)

(V)

I

100 se

40

JOO}Jsec

I

/

\

30

,\C

\
i

/

/

\

.-J

100

134

200

I. . . . . r-.
300

tensed

CALCULATION OF THE SWITCHING TIMES
Referring to the block diagram and to the waveforms of fig. 1, it is possible to calculate the switching
times by means of the following relationships.
t

,= -

L
RL

In (1 -

=-

L
RL

In

tf

RL

V1

. Ip)

V2
V2 + RL . 10

where:

V1 = Vs - VsatL - VsatH - V R sens

where:

V2

IK ";; 10

";;

= Vs + VOl + V 02

Ip

10 is the value of the load current at the end
of ton.
a) _

L
RL

0.9 Ip . RL + V3
Ip RL + V3

In

b) - R1 C1 In 0.9

~
RL
Note that the time interval tl
switching frequency is always:

==

-k-

where
V3 = VsatL + V Rsens + VOl

R1 C1

In ( V1 - Ip RL )
V1 - IK RL

= t3 = t5 = .... takes the longer value between case a) and case b). The
fswitching

=

In the case a) the main regulation loop is always closed and it forces:
IK = (0.9 ± S) Ip

where: S= 3%
S = 1.5%

@
@

Vi = 1V
Vi = 4V

In the case b), the same loop is open in the recirculation phase and IK,which is always lower than 0.9I p ,
is obtained by means of the following relationship.
V3
RL

- - (l-e
With the typical application circuit, in the conditions Vs
result:

= 40V,

t, = 255/Js
a) 70/Js
b) 16/Js

f = 10.2 KHz

135

Ip

= 4A, the following switching times

LINEAR INTEGRATED CIRCUIT
VERY LOW DROP 5V VOLTAGE REGULATOR
• PRECISE OUTPUT VOLTAGE (5V ± 2.5%)
• VERY LOW DROPOUT VOLTAGE
• OUTPUT CURRENT IN EXCESS OF 500 mA
• POWER-ON, POWER-OFF INFORMATION (RESET FUNCTION)
• +1 00/-1 OOV LOAD DUMP PROTECTION
:;t{:!':35V

5-5B33

Fig. 5 - P.C. board and component layout of the circuit of fig. 4 (1: 1 scale)

C5-0175

3/83

SELECTION OF COMPONENT VALUES
Component

Recommended
Value

R1
R2

100 kl1

Reset
sensing
threshold

R3

4.7 kl1

fa setting

R4

1 kl1

R5

15 kl1

Purpose

Allowed Range
Min.
Max.

-

1 kl1

220 kl1

NOTE

R1/R2 =

Vi min.
V T (pin 12)

100 kl1
R4 rnin =

Frequency

Va
50 rnA

See application note
"Designing with the L296
Power Switching Regulator".

10 kl1

compensation

R6
R7

51 kl1

Voltage
divider

-

C1

10 J.lF

Stability

1 J.lF

C2

2.2 J.lF

Reset delay

1 J.lF

4.7 J.lF

C3

2.2 nF

fa setting

1 nF

3.3 nF

C4

2.2 J.lF

Soft start

1 J.lF

4.7 J.lF

C5

33 nF

51 kl1.

R6/R7 =

Vo - V ref
V ref

Frequency
compensation

C6

100 J.lF

C7

100 J.lF

L1

300 J.lH

See application note

"Designing with the L296
Power Switching Regulator".
Output filter

3/83

Fig. 6 - Efficiency vs; out·
put current

Fig. 7 - Dissipated Power vs.
output current (L296 only)
-

Vo "S.1V
f ,,100KH~

Po

-

,W)

6-4!1I6

0,,5.1 V ~~.
f ,,100KHz
diode VSKS40
(Schottky)

eo
70

/
I--

diodeVSK54
(Schottky)

f-

Fig. 9 - Efficiency vs. output voltage

-

,/""
..;;V ,./

,/

V
/ V
,/

'"
,.,
r--r--r--+--+-~V;~'''3'~V--L--4

50

f---+c--l- r--

'o·JA

0

I"

Vo(V)

I

I

/-

I

'-I /

Fig. 11 - Power dissipation
derating curve
6-4117

"7".

I"\t-,

IIII
10

RJ(Ko.)

• VSK
540

-'-----+-------------~~~

f
GNO----~------------~-4----~--~~~

3/83

j-..;.

II

·,S
~~
,. "''''~4''',"'."'. ~ ~
~

Fig. 12 - Voltage sensing for remote load

10

-.
-....

('' KHj

~V

2D
C3~\Snf

IIII
>0

24

K..

OKH~

(wi

CJa2.Znr:)r...

dlodeVSK 540(Sc:hottky)
- - diode VHE 1402

25KHJ

p ....

I

60

,....

Vj .15V

r--r--r--r--r--+--r.to~.~~~K~H'~

80

~

diodeVSKS40{Schottkyl

(KH~ )

I

.

I

50

04)

90

..

Fig. 10 - Operating frequency vs. R3 and C3 0"4111

t

"

6-4'15

Vj",J5V
Vo .5.W

"

90

60

Fig. 8 - Efficiency vs. output current

5.

\

........,:-

~~

~~

~

"",

>0'

rOC)

Fig. 13 - Typical application
RESET OUT
BOVA

':J

BY251
20V
20V
BY251

VSK
540

5-5&32

Va= 5.1to15V
10 = 4A max. (min. load current = 100 mAl
ripple ~ 20 mV
loadregulation(lAt04A}= 10mV(V o = 5.1V}
line regulation (220V ± 15% and to 10 = 3A) = 15 mV (Va = 5.1V)

Fig. 14 - Preregulator for distributed supplies

I---.----{)sv /400mA

lO-4DY

L296
PREREGULATOR

5.Bv

f-.......---35V

';CURRENT LIMIT SETTING
A resistor connected to pin 4 sets the current
limit threshold. If this resistor is omitted, and pin 4
left open circuit, the limit threshold is 5A. The
threshold can be varied from 0.5 to 4A. For a
threshold of 2.5A the resistor is about 33 kil.

When the switching frequency is at least ten times
greater than the frequency at which the open loop
gain is unity, the system can be approximated to a
linear system. The PWM block can then be characterised as a linear block with gain independent of
frequency.
Compensating the system with a series RC network
on the output of the error amplifier (pin 9). we
obtain:

THE LC FILTER

Z

The LC filter converts the pulse output of the
L296's power stage into a continuous output
voltage with a superimposed ripple, I::, V. The inductor determines the voltage ripple on the capacitor.
The ripple 1::,1 L is generally chosen to be twice the
minimum load current to avoid periods when the
transistor and diode are both non-conducting.
The formulae used to calculate LC as a function
of 1::,1 L and I::, V are:
L=

Vo(Vi-V o )

=

1+ sRC
sC

Placing the zero introduced by the error amplifier
at the resonjlnce frequency of the LC output filter
(w o = 1/ Y LC) we obtain the Bode plot shown in
figure 2.
The slope when it crosses the frequency axis at 0
dB is roughly 40 dB/decade. In practice the LC
filter contains parasitic elements which give a lower
slope.
/'
The series resistance of the capacitor (ESR) 1,,- /
troduces a zero at high frequencies, guaranteeing'
stability of the system.

Vi f I::,IL
Fig. 2 - Bode plot of regulation loop.

C=

Va (Vi - Vol
8U' I::,V

dB

For example, for the test circuit (figure 5) the LC
filter was calculated from the following data:
Vi = 35V
I::,IL = 150 mA
I::,V = 3 mV
Therefore

Vo= 5V
f = 100 kHz

5 --'.(3:=;5=---...:::5..:.)_ _ _ 300 /LH
L = _ _ _:c
35x 1OOOOOx 150x 10·'

Wo

and

I
I.
I

Hz
S_~97S

fswilch

C = _ _ _ _--".5--'-(3::.:5;:..-_5::.;)'--_ _ _ - 220 /-LF
8x300x 10·' x (1 OOx 10' ) • x30x 1 0·'

10

DIODE

In practice the ripple depends on the quality of the
filter capacitor. With standard components the
ripple will be roughly twice the value implied by
this calculation. In this example the actual ripple
is about 5 mV.

The diode should be a fast type to avoid high
current peaks in the output transistor. The choice
is therefore between Schottky diodes and fast'
diodes with a Trr of less than 35 ns.

A multiple capacitor - two or more connected in
parallel with a total capacity of C - is recommended. Smaller electrolytics have a lower inductance - important at high frequencies - and handle
higher peak currents.

These diodes cost roughly the same. The only significant difference is the lower forward voltage of
Schottky diodes. At low output voltages - around
5V - a Schottky diode therefore improves the efficiency of the system.

COMPENSATION AND STABILITY

SWITCHING FREQUENCY

The system is non linear because the output stage
operates in switchmode. However, in certain conditions the system can be represented as linear
blocks. Delays are introduced by the output stage
which can contribute to instability of the system.

The choice of switching frequency depends on the
inductor chosen (a smaller inductor can be used at
higher frequencies), the power dissipation and
desired efficiency. It should not exceed 200 kHz
or efficiency will be reduced; the lower limit is set

2

only by the maximum acceptable dimensions of
the output filter.
The chosen frequency is set by the RC network
connected to pins 7 and 11 (OSC and SYNC).
Suitable values can be found from the nomogram,
figure 3. The capacitor must be in the range 1 nF 3.3 nF and the resistor in the range 1 kil to
100 kil.

Fig. 3 - Nomogram to find the values of the
oscillator components.

,

Fig. 4 - In multiple supplies several L296s can be
synchronised as shown here to reduce
interference on the ground plane.

L296

osc

G - 4912

Rose

2

100

'"'0

,,,
'\

I

C3=t5nF

leos

L-~

osc
I

SYNC

osc

SYNC

_.+-1_~______~_J

e

I n view of the high currents (5A peak) and fast
risetimes involved, care is necessary in the printed
circuit layout to avoid problems. In particular, the
tracks connecting the L296 output, recirculation
diode and LC filter must be short to reduce voltage
drop and avoid stray coupling.

C3=Un~"

1":,

",~
r-.
6

10

--

I

L296

LAYOUT

~~

10

SYNC

1

(KHz l

c ........

L296

,

R3(Klll

SYNCHRONISATION
When several L296s are used in a multiple supply
the switching frequencies should be synchronised
to avoid interference propagated on the ground
plane.
This is done by connecting the SYNC pins together
and omitting the oscillator components on all but
the first device. The OSC pins of the subsequent
devices are left open, as shown in figure 4.

It is also important to connect the input filter
capacitor, the recirculation diode and output capacitor to the same ground point. A separate ground
should be used for the signal processing circuit
grounds, connected to the power ground at the
negative output terminal.
Figure 5 shows a su itable layout for the test and
evaluation circuit of figure 1.
To guarantee good load regulation the two sensing
terminals, pin 8 and 10, should be connected
directly to the load as shown in figure 6. The two
ten ohm resistors shown in this circuit are necessary
to ensure that feedback will still be supplied to the
L296 even when the sensing wires are disconnectedc

Fig. 5 - PC board layout for the test and evaluation circuit of figure 1.

(

C5-0175
3

Fig. 6 - When the load is some distance away this
four wire connection should be used to
ensure good regulation.

divitler, to the unregulated input (figure 8).
The internal threshold of the reset circu it is V ref - 100 mV (roughly 5V). Therefore the divider for
the second case is found from:

A

VSK

10

Vi min
V ref -100 mV

R1
R2

10.0.

540

8

R2 should not exceed 200 kn.
The reset output is open collector and the maximum allowed collector current is 50 mAo

--+---------'i-~

c
lOll.

GND----~--------------~----OD--------~
5 - 58 2 11

Fig. 8 - The reset circuit's sense input can be
connected to the feedback point (a) or to
the input via a divider (b).

35V

Taking away all the optional components gives the
even simpler configuration of figure 3. This circuit
provides 4A at 5.1 V, soft start, thermal shutdown
and current limiting with the default 5A threshold.

The L296 is also ideal for use as a preregulator in
distributed supply systems. Combined with low
drop series regulators such as the L4800 series, an
L296 gives extremely high efficiency plus very
good regulation (figure 4).

I,

It
"

i

'f

~'
"I

I

Fig. 3 - Many components can be omitted as shown here. This is a 4A/5.1 V supply.

LIMIT
THRESHOLD

10_SOI/
INPUT

RESET
THRESHOLD

RESET RESET CROWBAR CROWBAR
OUT
DELAY
SENSE
DRIVE

300,uH

0 - - INPUT

OUT

1-~r--

___-"'"yy'---.--*-~--05.IV
200,uF

L296 POWER
SWITCHING REGULATOR

GNal-~~--------4----*----O

FEEDBACK
INHIBIT
"'_5980

2.211

I

Fig. 4 - The L296 is ideal for use as a preregulator in distributed supply systems. Efficiency is very high
and regulation is excellent.

I---.---QSY /400mA

10-40Y

L 296

5.BY

PREREGULA TOR

-05Y/400mA

')-S'lDl

LOOKING INSIDE
Looking at the simplified block diagram, figure 5,
the main regulation loop can be identified quite
easily; it consists of a 5.1 V reference, loop error
amplifier, PWM modulator (sawtooth oscillator
IS comparator), power stage and an external LC
(.
er.
Voltage feedback from the output is compared
with the 5.1 V reference in the error ampl ifier. The
output of this amplifier sets the threshold of the
PWM comparator and thus controls the duty cycle
of the switching pulses. These pulses drive the output stage, producing the desired output voltage
with the help of the LC filter. If the output is con-

nected to the feedback point directly the regulated
output voltage is 5.1V; a divider is added to the
feedback loop to produce higher Voltages. The loop
gain characteristics can be adjusted by the external
RC network, RgCg, to give the required stability,
ripple rejection at twice the mains frequency and
immunity against supply and load variations.
The output of the oscillator is not connected internally to the PWM comparator. This is done
del iberately so that several L296s can be synchronised, avoiding interference and switching noise on
the ground plane in multiple supplies. The SYNC
pins of all the devices to be synchronised are connected together and only one is equ ipped with the
oscillator components, as shown in figure 6.

3

Fig. 5 - Simplified block diagram of the L296.
CROWBAR
INPUT

SUPPLY
VOLTAGE

CROWBAR
DRIVE

OSC.

S

Q

INHIBIT
FLIP
FLOP
~--------~R
Q

r-------~~'2~~R~E~SET INPUT

THERMAL
SHUTDOWN

I

1-':.:4'l-_R..,ES:)E T 0 U TP UT

RESET

1--------

'3
RESET
:CDELAY

5-5834/l

I

INHIBIT
INPUT

ess

SWITCHING vs LINEAR
How much do you gain?
It's a well known fact that switching regulators are
more efficient than linear types so the transformer
and heatsink can be smaller and cheaper. But how
mlj,ch can you gain? We can estimate the savings
by comparing equivalent linear and switching regulators. For example, suppose that we want a
4A/5V supply.

Therefore Vi min ~ 10.6V

,t
V1(min)

---~~~~

l-

vr' PP't>

--~-~tS-~g96

Linear
For a good linear regulator the minimum dropout
will be at least 4V at 4A. The minimum input
vo/tage.is given by:

4

Since operation must be guaranteed even when the
mains voltage falls 20%, the nominal voltage on
load at the terminals of the regulator must be:

V nom =

VI min
0.8

=

10.6
0.8

= 13.25V

VI min = Va + V OROP + Y2 VrlPPle
/0 T1
4x8x10-3
= 3.2V
where VrlPPle ~----1Ox10- 3
C

To allow even a small margin we have to cho!Js~/

(a good approximation is 8 ms for tl (at mains
frequency of 50 Hz) and 1000 fJ.F for C, the filter
capacitor after the bridge).

The power that the series element must dissipate
is therefore:

V nom

=

14V

P d = (Vnom - Va) 10 = 36W

Fig. 6 - Several L296s can be synchronised easily to avoid switching noise and save components.

L296

OSC

50

SYNC

I
~ ±Co~
-

OSC

SYNC

I

I

SOFT START AND CURRENT LIMITING
The soft start is produced by the diode, D, an external capacitor, Cs s , and a constant current
source.
("

L296

L296

'/hen power is applied, after an inhibit, or after a

OSC

SYNC

I
S-!!976

current limit, the voltage across Css is zero,
clamping the error amplifier output to zero via the
diode D. The capacitor is charged by the constant
current generator, thereby allowing the error amplifier output - and hence the output voltage - to
rise (figure 7).

Fig. 7 - Waveforms showing the soft start.
CLAMPED ERROR

AMP OUTPUT
NOMINAL
ERROR AMP
OUTPUT

OUTPUT
CURRENT

5- 56 35

and the transformer must supply a power of:

P diss = 14x4 = 56W

It follows that the transformer must be roughly
30 VA and the heatsink thermal resistance about

11 ° C/W.

It must therefore be dimensioned for:

Po=

56
0.9

=

62 VA
Transformer

and a heatsink will be necessary with a thermal
resistance of:

Rth heats. = 0.8° C/W

(

Switching (L296)
Assuming the same nominal voltage (14V), the
L296 data sheet indicates that the power dissipated
in this case is only 7W. And this power is dissipated
in two elements; the L296 itself and the recirculation diode.

Heatsink

Linear

Switching

62 VA

30 VA

0.8°C/W

11°C/W

This comparison shows that the L296 switching
regulator allows a saving of roughly 50% on the
cost of the transformer and an impressive 80-90%
on the cost of the heatsink. Considering also the
extra functions integrated by the L296 the total
cost of active & pas&ive components is roughly the
same for both types.

If for some reason it is necessary to use higher
supply voltages the switching technique, and hence
the L296, becomes even more advantageous.

5

Current limiting is more complex and involves two
comparators, a flip flop, an AND gate, an OR gate
and the transistor Or. A comparator compares the
output current,sensed by an on-chip metal resistor,
with the limit threshold preset by an external
resistor.

advanced bipolar process which allows the combination of fast-switching "high power devices and
dense control circuitry on the same chip. One of
the key features of this process is the use of a
two-step ion-implantation technique to form the
isolation wells.

As soon as the current tops the threshold,this comparator switches, setting the flip flop which disables the output stage and shorts the soft start
capacitor via Or.

Normally this isolation is created by diffusing
p-type impurities from above. The result is a
bowl-like cross section which wastes silicon area
(figure 9). Moreover, since prolonged high temperature processing is needed to perform this diffusion,
the n+ buried layer spreads, reducing the breakdown voltage.

A second comparator resets the fl ip flop when the
voltage across C ss has fallen below OAV, re-enabling the output stage. With the usual slow ramp,
the output current rises again and if the cause of
the excess current is still present the whole process
is repeated.
This cycle continues until the fault condition is
removed (figure 8). Thanks to the dead time and
the soft start ramp the average current in this condition is not high enough to damage the device.

Fig. 8 - Waveforms illustrating the action of the
current limiter.

ION-IMPLANTED ISOLATION
The L296 is one of the first products to exploit an

I n the new process a heavy p+ implant is made
before the n- epitaxi(ll collector growth, followed
by a further implant from above. When the wafer
is heated both implants diffuse, jOining in the
middle to create a narrow but deep isolation well
(figure 10). Since high temperature processing is
much reduced the n+ buried layer spreads verv
little and the resulting NPN transistor has a brea:
down voltage in excess of 50V.
The narrower isolation resu Its in an increased
density, with minimal geometry transistors reduced
to a compact 18 mil 2 • Speed is correspondingly
increased.
Teamed with the Multiwatt plastic package, this
process allows the integration of complex devices
handling in excess of 200W. Other devices already
introduced include the L295 dual solenoid driver
(220W), the L294 switchmode driver (180 W) and
the L298 dual bridge driver (200 W).

Fig. 9 - Diffusing the isolation from above gives the familiar bowl-shaped cross section which wastes
spaces.
P t ISOLATION
DIFFUSION

n+
EMITTER

n- EPITAXIAL

P substrate

5-6001

Fig. 10 - The above/below two-step implanted isolation is more compact and results in an increased nthickness between base and buried laver. raising the breakdown voltage.
p+-ISOLAT10N
DIFFUSION

~

n+
EMITTER

p

n-EPITAXIAL

BASE COLLECTOR

n+

---vTTTTTh1~.o...r----+. ~J._

p

n+

BURIE~~AYER

_ _ _ _)

K

subsleal.

15-60oa

6

Information furnished is believed to be accurate and reliable. However, no responsibility is assumed for the consequences of its use nor for
infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise un,.
any patent or patent rights of SGS·ATES. Specifications mentioned in this publication are subject to change without notice. This publication
supersedes and substitutes all information previously supplied.

SGS·ATES GROUP OF COMPANIES
Italy· France· Germany· Malta· Malaysia· Singapore· Sweden· Switzerland· United Kingdom· U.S.A.
© SGS-ATES Componenti Elettronici SpA, 1983 - Printed in Italy

CONNECTION DIAGRAM (top view)

@7i,
(tab ctr',nected to pin 3)

5- 5307

BLOCK DIAGRAM
INPUT

lo---~--------~------------------------------------~~'

4

DELAY
CAPACITOR

5 - 5 202

TEST CIRCUIT
OUTPUT
VOLTAGE

IN

I,oonF

4

,..,
,,J

L 487

I

I

+ 5V

""rn
..J.!.O fJF 10'00 fJF

RESET
OUTPUT
5-5308

THERMAL DATA
Rth j-case

max

Thermal resistance junction-case

137

3

°C/W

= 14.4V, Tamb = 25°C, unless

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Vi
otherwise specified)
Test conditions

Parameter

Vo

Output voltage

Vi

Operating input voltage

!OVo

Line regulation

10=5mA to 500mA

Vi = 6to 26V

Min.

TVp·

Max.

Unit

4.80

5

5.20

V

28

V

10 =5mA

5

mV
mV

!oVo

Load regulation

10 = 5 to 500 mA

15

Vi-V o

Dropout voltage

10 = 500mA

0.6

V

Id

Qu iescent current

5
20
100

mA

0.5

mV/oC

60

dB

0.8

A

!OVo
~
SVR

Ise

10 = 0 mA
io=150mA
10 = 500mA

Temperatu re output
voltage drift
SupplV voltage rejection

f = 120 Hz
Vi=12V±5Vpp

10 = 350 mA
Co = 10IlF

Output short circuit
current

VR

Reset output voltage

IR= 16mA

IR

Reset output leakage
current

Vo in regulation

td

Delav time for reset
output

Cd=100nF

V RT

Reset threshold

VRTH

Threshold hysteresis

Vo';; 4.75V

4.75

Fig. 1 - Timing diagram for reset function

~o) 1------486
4 e~

______

-

_ ___ _ _ __ _ _____ _

- -- - - - - - - - - - - - - - - - - - - I

J~omv

'

I/ :

.

138

i

• I

0.8

V

50

IlA

30

ms

Vo-0.15

V

10

mV

LINEAR INTEGRATED CIRCUITS
HIGH-VOLTAGE, HIGH-CURRENT 8 DARLINGTON ARRAYS
These high-voltage, high-current Darlington transistor arrays comprise eight NPN Darlington on a
common monolithic substrate. All units feature open collector outputs and integral suppression diodes
for inductive loads. Peak currents of 500 mA can be withstood. They are pinned with inputs opposite
outputs to facilitate circuit board layout.
The L601 is a general-purpose array wich may be used with DTL, TTL, PMOS, CMOS, etc.
The L602 is specifically designed for use with 14 to 25V PMOS devices. Each input has a Zener
diode and resistor in series in order to limit the input current to a safe value.
The L603 has a series base resistor to each Darlington pair, and thus allows operation directly with
TTL or CMOS operating at a supply voltage of 5V.
The L604 has a series base resistor to each Darlington pair, and thus allows operation directly with
PMOS or CMOS utilizing supply voltage of 6 to 15V.
In all cases, the individual Darlington collector current rating is 400 mAo However, outputs may be paralleled for higher load current capability. The devices are supplied in a 18-lead dual in-line plastic package
with copper frame.

ABSOLUTE MAXIMUM RATINGS
V CEX
Ic
Ic

VI
Ii

Ptot
Top

Tstg

Collector emitter voltage (input open)
Collector current
Collector peak current
Input voltage (for L602, L603 and L604)
Input current (for L601 only)
Total power dissipation a T amb = 25°C
Operating junction temperature
Storage temperature

90
0.4
0.5
30
25
1.8
-25 to 150
-55 to 150

V
A
A
V
mA
W
°C
°C

ORDERING NUMBERS: L601B, L602B, L603B, L604B

MECHANICAL DATA

Dimensions in mm

139

6/82

CONNECTION DIAGRAM
(top view)

IN

>---,----1118

OUT

1

IN

2

:>-;--+-1117

OUT

2

IN

3

;>-;--+-11'6

OUT

3

IN 4

>---,--+--11'5

OUT 4

IN 5

>-~-+-1114

OUT

5

IN 6

;>-;--+-1113

OUT

6

IN 7

:>-;--+-1112

OUT

7

IN 8

>-.....-+-1111

OUT

8

10 COMMON FREE
WHEELING DIODES

GND
5-34901\

SCHEMATIC DIAGRAMS
L601

L602
COM

COM

__- - - - + - - . - - o O U T

10.5kfi

INo-T--T~~_~

I
L_~

I
I

________ _

EACH DRIVER

L_~

__________ J

EACH DRIVER

5- 3499

L603

5-1984

L604
COM

COM
2.7kn

INo--r--=-

~----+--.--oOUT

10.5k(1

~----+--.--oOUT

I N o-·T--C=r-I--t"'---.~

__y
3kfi

-~-------

EACH DRIVER

140

_J
5-2574

THERMAL DATA
Rth j-amb

Thermal resistance junction-ambient

max

70

°C/W

ELECTRICAL CHARACTERISTICS (T amb = 25°C, unless otherwise specified)
Parameter
I CEX

Output leakage current

V CE(sat) Collector emitter saturation
voltage

Test conditions

Ic= 300 mA
Ic= 200 mA
Ic= 100 mA

18= 500 !LA
18= 350 !LA
18= 250 !LA

DC forward current gain
(L601 only I

V CE = 3V

Ic= 300 mA

Vi

Minimum input voltage
(ON condition I

V CE = 3V
for L602
for L603
for L604

Ic= 300 mA

Maximum input voltage

VCE= 90V
for L601
for L602
for L603
for L604

Ic= 25 !LA

(OFF conditionl

Typ.

V CE= 90V

hFE

Vi

Min.

Max.

Unit

10

!LA

2
1.7
1.2

V
V
V
-

1000

11.5
2.5
2.5

V
V
V

V
V
V
V

0.55
7
0.75
1
50

!LA

2.4

V

IR

Clamp diode nwerse current

V R= 90V

VF

Clamp diode forward voltage

IF= 300 mA

ton

Turn-on delay

0.5 Vi to 0.5 Vo

0.4

!LS

toft

Turn-off de Iay

0.5 Vi to 0.5 Va

0.4

!LS

2

i.i

Iii:1

I.:
I.'

i:

11

141

LINEAR INTEGRATED CIRCUIT
QUAD DARLINGTON SWITCH
•

SUSTAINING VOLTAGE: MIN. 70V

•
•

2A OUTPUT
HIGH CURRENT GAIN

The L 702 is a monolithic integrated circuit for high current and high voltage switching applications.
It comprises four darlington transistors with common emitter and open collector, suitable for current
sinking applications, mounted on the new Powerdip and Multiwatt packages.
This circuit reduces components, sizes and costs; it can provide direct interface between low level logic
and a variety of high current applications.

ABSOLUTE MAXIMUM RATINGS
V eEX

Vi
Ie
Ie

Ptot

Collector-emitter voltage (input open)
Input vo Itage
Collector current
Collector peak current (repetitive)
Total power dissipation at T pin 9 to 16 .;;; 90DC}
Total power dissipation at Tamb .;;; 70DC
Total power dissipation at Tease';;; 90DC
Sto rage temperatu re
Operating junction temperature

ORDERING NUMBER:

Multiwatt

V
V

4

W
W
W

1.1
20
-55 to 150
-25 to 150

A
A

DC
DC

L 7028 - Powerdip
L 702N - Multiwatt

MECHANICAL DATA

6/82

Powerdip

90
30
2
3

Dimensions in mm

142

CONNECTION DIAGRAMS (top view)
S-J480

81

1

16

81

1

15

Cl

3

14

Cl

C2

,

13

C2
GND

C3

5

"

C'

6

1.1

83

7

10

84

8

~

11

Bl

10

B2

nc

GND
4

~

3

THE TAB 15 CONNECTED TO PIN 6

Powerdip

C3
C4
B3
B4
5-3749

Multiwatt

SCHEMATIC DIAGRAM (each Darlington)

c
B

- ......- -......---.--~--_oV

Fig. 6 - Input current vs.
input voltage

--

+--11-

\

rtt

Fig. 7 - Safe operating areas

Fig. 8 - Safe operating areas

(L702B)

(L702N)

'e

'~~!!!~II~III

,-

• r---SlNGLE PULSE

f-l-oc+H-f*I---+f\
-..

Fig. 9 - DC current gain vs.
collector current (*)
G-3105

_FE,

(A).

YJCYI

20

10

,,<.oJ

. 500 ~ ,~.
501,;~-

,

Ii--

I

,0>

I

\

.!
I:,
10"'

I

:I·!

i

III

['ilil
I

10""

'0

~

I

•

10·'

It")

(*J Pulse width = 300 IlS, duty cycle 1.5%.

Fig. 10 - Stepping motor buffer

145

LINEAR INTEGRATED CIRCUITS
PRELIMINARY DATA

POSITIVE VOLTAGE REGULATORS FOR AUTOMOTIVE
•
•
•
•
•
•
•
•
•

OUTPUT VOLTAGE OF 5,8.5 AND 10V
OUTPUT CURRENT UP TO 500 mA
NO EXTERNAL COMPONENTS
LOW DROP-OUT VOLTAGE
LOAD DUMP VOLTAGE SURGE PROTECTION
REVERSE VOLTAGE PROTECTION
SHORT CIRCUIT PROTECTION
CURRENT LIMITING
THERMAL SHUTDOWN

The L2600 series of three therminal positive regulators is specially designed to stabilize power supplies
for car instrumentation in vehicles with 12V battery. They can supply an output current up to 500 mA.

ABSOLUTE MAXIMUM RATINGS
DC input voltage
DC input reverse voltage
Positive transient peak voltage (t = 40 ms, duty cycle = 1 %)
Negative transient peak voltage (t = 30 ms, duty cycle = 1%)
Operating temperature
Storage temperature
Power dissipation

ORDERING NUMBERS: L2605V
L2685V
L2610V

(Vo= 5V)
(Vo= 8.5V)
(Vo= 10V)
Dimensions in mm

MECHANICAL DATA

4.amu

I

25

I~

~

6/82

35
V
-28
V
120
V
-90
V
-40to 150
DC
-65 to 150
DC
I nternally limited

146

CONNECTION AND BLOCK DIAGRAMS
(top view)

s-

156811

THERMAL DATA
Rthj-case

max.

Thermal resistance junction-case

ELECTRICAL CHARACTERISTICS (T amb
Parameter

25°)

Test conditions

Output voltage

Vo

=

10=500mA

4 °C/W

Vi = 12 to 16V (L26051
Vi = 12 to 16V (L2685)
Vi = 12 to 16V (L2610)

Vi

Operating input voltage

see note (0)

/',V o

Line regulation

10 = 50mA

Vi = 12 to 16V

/',V o

Load regulation

Vi = 14V

10 = 50 to 500 mA

/',V i _o

Dropout voltage

10=500mA

/',V o

Output voltage
drift

10 = 50mA
Vi = 14V
Tamb = -12 to 80°C

Isc

Output short
circuit current

Vi = 14V

SVR

Supply voltage
rejection

Vi = 16V
f= 100Hz

Output resistance

10 = 500mA

Min.

Typ.

Max.

Unit

4.8
8.15
9.55

5
8.5
10

5.2
8.85
10.45

V

28

V

2

mV

0.3

%

Vo

/',T

Ro
eN
(0)

Output noise voltage
Note: For a DC input voltage 28V

1.8

/',V i = 2V
10 = 500mA

BW = 100Hz to 10KHi

< Vi < 35V

the device is not operating

147

V

-1

mV/oC

900

mA

60

dB

0.05

n

20

I'V

LINEAR INTEGRATED CIRCUIT
PRELIMINARY DATA
PRINTER SOLENOID DRIVER
The L3654 is a printer solenoid driver containing ten open-collector driver outputs and a ten-bit serialin, parallel-out shift register.
Data is clocked into the shift register serially and transferred to the open-collector outputs by an enable
input. Serial input data is loaded by the rising edge of the clock. A serial output from the tenth bit is
provided which changes at the falling edge of the clock. This output is not controlled by the enable
input and remains active at all time.
Output stages are inhibited when the logic supply voltage falls below 6V.
Each output is rated at 250 mA (sink) and is clamped to ground internally at 50V to dissipate stored
energy in inductive loads.
The L3654 is supplied in a 16 lead dual in-line plastic package, and its main fields of application comprise thermal printers, cash registers and printing pocket calculators.

ABSOLUTE MAXIMUM RATINGS
Vs
Vi

VE
10
Ig
Ptot
Tstg'. TJ

Supply voltage
Input voltage
External supply voltage
Output current (single output)
Ground current
Total power dissipati~n (Tamb = 70°C)
Storage and junction temperature

9.5
9.5
45
0.4
4.0
1

-65 to 150

V
V
V
A

A
W
°C

ORDERING NUMBER: L3654 B

Dimensions in mm

MECHANICAL DATA

6/82

148

CONNECTION DIAGRAM
(top view)
OUTPUT ENABLE 1

16

Vs

OUTPUT 6

15

OUTPUT 5

OUTPUT 7

14

OUTPUT 4

OUTPUT 8

13

OUTPUT 3

OUTPUT 9

12

OUTPUT 2
OUTPUT 1

OUTPUT 10

6[

11

DATA OUTPUT

7[

10 DATA INPUT

GND

a[

CLOCK
S

5012

LOGIC DIAGRAM
OUTPU,5
V

OUTPUT 1

EN ENABLE

S - 5013

THERMAL DATA
Rth j-amb

max

Thermal resistance junction-ambient

80

°C/W

I:
I,j

149

ELECTRICAL CHARACTERISTICS

(Vs= 8.5V, vss= 30V,

T amb = 0° to 70 0 e, unless otherwise

specified)
Test conditions

Parameter

Vs

Supply voltage

Is

Supply current

Min.

Typ.

7.5

Max.

Unit

9.5

V

T amb = 25°C

V EN = OV; Voo= OV

27

40

mA

Vs = 9.5V

V EN = 2.6V
10 = 250 mA (each bit)

55

70

mA

40

V

1

mA

65

V

1.6

V

VE

External operating supply
voltage

Ileak

Output leakage current
(each output)

Vss= 40V

VEN=OV

Vz

I nternal clamp voltage

I z = 0.3A

V EN = OV

VCE sat

Output satu ration voltage

lo=250mA

V EN = 2.6V

VOl
V CLK
V EN

I nput logic levels
(pins 1,9,10)

Low State (L)

101

Data input current

45

50

0.8
V

High state (H)

2.6
T amb = 70°C

V OI = 2.6V

0.3

0.57
mA

oOe

0.57

V OI = 1V

T amb = 70°C

220

V CLK = 2.6V

T amb= 70De

T amb =

ICLK

lEN

Clock input current

0.2

0.75
J.LA

0.33
mA

Enable input current

T amb = oOe

0.33

VCLK=1V

T amb = 70°C

125

V EN = 2.6V

T amb = 70°C

0.2

0.5
J.LA

0.33
mA

RIN

Voo

T amb = oOe

0.33

V EN = 1V

T amb = 70°C

125

Input pu II-down resistance
Clock input

T amb = 25°C

V CLK

Enable input

T amb = 25°C

V EN

Data input

T amb = 25°C

VOl

< Vs

4.5

Low state (L)
V OI = OV

loo(pin 7)= 0

0.01

Output logic levels
(pin 7)

< Vs

Roo

Output pull-down
resistance (pin 7)

V OI = OV

Voo=1V

150

J.LA

8

< Vs

High state (H)
V OI = 2.6V
100 (pin 7) = -0.75 rnA

0.5

K.I1

8

2.6

0.5

V

3.4

V

14

K.I1

Fig. 1 - Timing diagram

1L-_______----\lS

r

ItENclK

,"

I

Ult~~~~N

tClK tClK

~.

I

~n

I

~----4_----------~------

VClK

II'

4

~

VOO

-_l

~

-I

POH

,-1-

~tpoEll

OUTPUT- -

-

-

-

-

-

-

-

-

-

-

-

t PDEH

-

ELECTRICAL CHARACTERISTICS (see fig. 1 and the section "definition of terms")
Test conditions

Parameter

Min.

Typ.

Max.

Unit

Clock, data and enable input
tCLK

4

tCLK

5.5

tSET-UP

1

tHoLO

3

,"S

Clock to enable delay
tCLK EN

2 tSIT

tEN CLK

tSIT

Enable to clock delay
Data output delay
tpoH, tpoL

R L= 5Kfl.,

C L ";; 10 pF

0.8

2.5

,"s

Output delay
tpOEL

3

tpoEH

3.5

,"S

Output rise time

R L = 100 n, C L <100pF

Output fall time

R L = 100 n, C L <100pF

1.2

,"s

1.2

,"s

V OO rise time

0.4

,"s

V OO fall time

0.4

,"S

151

DEFINITION OF TERMS

v 55
VOl. V

:

CLK '

External power supply voltage. The return for open-collector relay driver outputs.
V EN :

The voltages at the data. clock and enable inputs respectively.

VOO

: The voltage at data output.

tSIT

: Period of the incoming clock.

tCLK

: The portion of tSIT when V CLK ;;;. 2.6V.

tCLK

: The portion of tSIT when VCLK ';;; O.BV.

t HOLO

: The time following the start of tCLK required to transfer data within the shift register.

tSET-UP

: The time prior to the end of tCLK required to insure valid data at the shift register input
for subsequent clock transitions.

152

LINEAR INTEGRATED CIRCUITS
3-TERMINAL POSITIVE VOLTAGE REGULATORS
•
•
•
•
•

OUTPUT CURRENT UP TO 1.5A
OUTPUT VOLTAGES OF 5; 6; 8; 12; 15; 18; 20; 24V
THERMAL OVERLOAD PROTECTION
SHORT CIRCUIT PROTECTION
OUTPUT TRANSISTOR SOA PROTECTION

The L7800 series of three-terminal positive regulators is available in TO-220 and TO-3 packages and
with several fixed output voltages, making it useful in a wide range of applications. These regulators can
provide local on-card regulation, eliminating the distribution problems associated with single point
regulation. Each type employs internal current limiting, thermal shut-down and safe area protection,
making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

ABSOLUTE MAXIMUM RATINGS
Vi

DC input voltage (for Va = 5 to 18V)
(for Va = 20, 24V)
Output current
Power dissipation
Operating junction temperature (for L7800)
(for L7800C)
Storage temperature

35
V
40
V
internally limited
internally limited
-55 to +150
°C
Oto+150
°C
-65 to + 150°C

Dimensions in mm

MECHANICAL DATA

8.,....,1.7

(.-00$3It

TO-3

TO-220
153

6/82

CONNECTION DIAGRAMS AND ORDERING NUMBERS
(top views)

~
o

C).

OUTPUT
~")3

,0

GND

INPUT
5--25&912

!)-lSti8/'

Type
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

7805
7805C
7806
7806C
7808
7808C
7812
7812C
7815
7815C
7818
7818C
7820
7820C
7824
7824C

TO-220

TO-3

-

L 7805T
L 7805 CT
L 7806T
L 7806CT
L 7808T
L 7808CT
L 7812T
L 7812CT
L 7815T
L 7815CT
L 7818T
L 7818CT
L 7820T
L 7820CT
L 7824T
L 7824CT

L 7805CV

L 7806 CV

L 7808 CV

L 7812CV

L 7815CV
L 7818CV

L 7820CV

L 7824CV

BLOCK DIAGRAM
INPut

'O---~--------~-------------~-1

154

Output voltage
5V
5V
6V
6V
8V
8V
12V
12V
15V
15V
18V
18V
20V
20V
24V
24V

SCHEMATIC DIAGRAM

Q17
R12
Rll

R5

OUT

R6

R20
R15
Qll

D1

R7

R,

R2
07
R19

TEST CIRCUITS

Fi!l. 1 - DC parameters

Fig. 2 - Load regulation

Fi!l. 3 - Ripple rejection I

THERMAL DATA
Rth H:ase
Rth j-amb

Thermal resistance junction-case
Thermal resistance junction-ambient

max
max

155

TO-220

TO-3

3°C/W
50°C/W

4°C/W
35°C/W

ELECTRICAL CHARACTERISTICS L 7800 (Refer to the test circuits, TJ= -55 to 150"C,
10

= 500 rnA, Ci = 0.33 iJ.F, Co = 0.1 iJ.F unless otherwise specified)
OUTPUT VOLTAGE

5

6

8

12

INPUT VOLTAGE
(Unless otherwise specified)

10

11

14

19

Parameter

Vo

Output

Min.

Typ.

Tj: 25°C

4.8

5

lo""5mAto1A

5
5.15 5.65
8
12
4.65
6
6.35 7.6
8.4 11.4
12.6
(V,: 8 to 20V)
(V,: 9 to 21V)
(V,: 11.5 to 23V)
(V,: 15.5t027V)

Test conditions

Max. Min.

5.2 5.75

Typ.

Max. Min.

Typ.

6

6.25 7.7

8

Unit

Max. Min.

8.3 11.5

Typ.

Max.

12

12.5

voltage

Po ,,15W
tNo

60

80
(V,: 10.5 to 25V)

120
(V,: 14.5t030V)

30

40
(V,: 11 to 17V)

60
(V,: l&to 22V)

100

100

100

120

25

30

40

60

6

6

6

6

0.5

0.5

0.5

0.5

0.8
(Vi: 8 to 25V)

0.8
(V,: 9 to 25V)

0.8
(V,: 11.5 to 25V)

0.8
(V,: 15 to 30V)

50

Line
regulation

(V,: 7 to 25V)

(V,: 8 to 25V)

Tj: 25°C

mV
25
(V,: 8 to 12V)

t1Vo

Load
regulation

V

Tj: 25°C
10:5mAtol.5A

(V,: 9 to 13V)

mV
Tj: 25°C
10= 250 to 750 rnA

'd

Quiescent

T j : 25°C

mA

current

t1'd

Quiescent

lo=5rnAto 1A

current
change

t1Vo

TT

Output
voltage

0.6

10= 5 rnA

1

0.7

mA

mV/oC

1.5

drift

eN

output
noise

B: 10Hz to 100KHz
Tj: 25°C

40

40

40

40

",V

-Vo-

voltage

SVR

Supply

f : 120Hz

voltage

68

65
(V,: 8 to 18V)

(V,: 9 to 19V)

2

2

62
61
(V,: 15 to 25V)
(V,: 11.5 to 21.5V)

dB

rejection

2.5

2.5

Dropout

10= 1A

voltage

T): 25°C

Ro

Output
resistance

f : 1 KHz

17

'se

Short

Vi: 35V
T): 25°C

0.75

1.2

0.75

1.2

2.2

3.3 1.3

2.2

3.3 1.3

Vd

circuit
current
Iscp

Short

Tj: 25°C

1.3

19

eire. peak
cuP'"ent

156

2

2.5

16

0.75

2.2

2

2.5

18

V

mil

1.2

0.75

1.2

A

3.3 1.3

2.2

3.3

A

ELECTRICAL CHARACTERISTICS L 7800
OUTPUT VOLTAGE
INPUT VOLTAGE
(Unless otherwise specified)
Parameter

Va

Output

Test conditions

(continued)

15

18

20

24

23

26

28

33

Unit

Min.

Typ.

Max. Min.

Typ.

Max. Min.

Typ.

T J= 25'C

14.4

15

15.6 17.3

18

18.7 19.2

20

'0""

14.25
15
15.75 17.1
18
18.9 19
20
21 22.8
24
25.2
IV;= 18.5 to 30VI
IV;= 22 to 33VI
IV;= 24 to 35VI
IV;= 28 to 38VI

Max. Min.

Typ.
24

20.8 23

Max.
25

voltage
5 mA to 1 A

Po';;;; l5W
:o.Va

Line
regulation

T J = 25'C

150
IV;= 17.5 to 30VI

180
IV;= 21 to 33VI

200
IV;= 22.5 to 35VI

240
IV;= 27 to 38VI

75
IVj= 20 to 26VI

90
IV;= 24 to 30VI

100
IV;= 26 to 32VI

120
IV;= 30 to 36VI

150

180

200

240

75

90

100

120

6

6

6

6

0.5

0.5

0.5

0.5

0.8
IV;= 18.5to30VI

0.8
IV;= 22 to 33VI

0.8
IV;= 24 to 35VI

0.8
IV;= 28 to 38VI

V

rnV

6.V a

Load
regulation

T J = 25'C
10= 5 mA to 1.5A

rnV
T j = 25°C

'0=
Id

Quiescent

250 to 750 mA

T j = 25'C

rnA

current

6. l d

Quiescent

'o==5mAtolA

current
change

6.V a

Output

c;:T

voltage
drift

eN

output
nOIse

10= 5 mA

1.8

2.3

2.5

3

B= 10Hz to 100KHz
T j = 25°C

40

40

40

40

rnA

rnV/oC

~V

-Va

voltage

SVR

Supply

f = 120 Hz

voltage
rejection

Vd

Ra

60
IV;=18.5 to 28.5VI

2

Dropout

10= lA

voltage

Tj'= 2SoC

Output

f = 1 KHz

19

V;= 35V
T j = 25°C

0.75

59

58
IV;= 22 to 32VI

2.5

2

56

dB

IV;= 24 to 35VI

IV;= 28 to 38VI

2

2

2.5

2.5

28

24

22

2.5

V

rnD

resistance
I"

Shart
circuit

1.2

0.75

1.2

0.75

1.2

0.75

1.2

A

2.2

3.3

A

current

tscp

Short

.T j = 25°C

1.3

2.2

3.3 1.3

eire. peak
current

157

2.2

3.3 1.3

2.2

3.3 1.3

o to

ELECTRICAL CHARACTERISTICS L 7800C (Refer to the test circuits, Tj
10 = 500 mA, Cj = 0.33 JlF, Co = 0.1 JlF unless otherwise specified)
OUTPUT VOLTAGE
INPUT VOLTAGE

(Unless otherwise specified)
Parameter

Vo

Output

Test conditions

Min.

5

6

8

12

10

11

14

19

Typ.
5

Max. Min.
5.2 5.75

Typ.

Max. Min.

Typ.

6

6.25 7.7

S

Max. Min.
S.3 11.5

125°C,

Unit

Typ.

Max.

12

12.5

T J = 25'C

4.S

lo""5mAtolA

4.75
5.25 5.7
12
12.6
6
6.3 7.6
5
S
S.4 11.4
(V i = 14.5 to 27VI
(V i = 7 to 20VI
(V j "" 8 to 21 V)
(V i = 10.5 to 25VI

voltage

Po";; 15W

:c,V o

Line
regulation

100
3
(V i = 7 to 25VI

120
(V i = S to 25VI

160
(V i =10.5t025VI

240
(V i = 14.5to30VI

1
50
(V i = S to 12VI

60

SO
(V i = 11 to 17VI

120
16 to 22VI

T J= 25'C

~Vo

Load

T j = 25'C

regulation

10= 5 mA to 1.5A

V

mV
(V i = 9 to 13VI

(V i =

100

120

160

240

50

60

SO

120

S

8

8

S

0.5

0.5

0.5

0.5

mV

T j = 25'C
10= 250 to 750 mA
Id

Quiescent

T j = 25'C

rnA

current

L.ld

Quiescent

lo=5mAtolA

current

change

-~
6T

eN

Output

10= 5 rnA

Output

Supply

B'" 10Hz to 100KHz
TJc 25'C

f=120Hz

voltage
rejection
Vd

1

1

rnA

(Vj= 8 to 25V)

(V i = 10.5 to 25VI

(V i = 14.5to30VI

-1.1

-O.S

-O.S

-1

mV/'C

40

45

52

75

MV

(V i = S to lSVI

(V i = 9 to 19VI

56
(V i = 11.5 to 21.5V)

2

2

2

2

V

voltage
drift

noise
voltage

SVR

1.3

1.3
(Vi= 7 to 25Vj

Dropout

10= lA

62

59

dB

55
(V i = 15 to 25VI

voltage
Ro

Output
resistance

f = 1 KHz

17

19

16

18

mil

I,c

Short

Vi= 35V
T j = 25'C

750

550

450

350

rnA

T j = 25'C

2.2

2.2

2.2

2.2

A

circuit
current

Iscp

Short
eire. peak
current

158

ELECTRICAL CHARACTERISTICS L 7800C
OUTPUT VOLTAGE

15

18

20

24

INPUT VOLTAGE
(Unless otherwise specified)

23

26

28

33

Output

Max. Min.

Typ.

Unit

Max.

Min.

Typ.

Max. Min.

Typ.

Max. Min.

Typ.

T j " 25°C

14.4

15

15.6 17.3

18

18.7 19.2

20

lo""5mAto lA

21
14.25
15
15.75 17.1
18
18.9 19
20
IV;" 23 to 35VI
IV;" 17.5 to 30VI
IV;" 21 to 33VI

22.8
24
25.2
IV;" 27 to 38VI

400

480
IV;" 27 to 38VI

Test conditions

Parameter
Va

(continued)

20.8 23

24

25

voltage

Po';;;; 15W
"Va

Line
regulation

300
IV;" 17.5 to 30VI

360

IV;" 22.5 to 35VI

IV;" 21 to 33VI

TJ" 25°C

"Va

Load
regulation

V

rnV
240
IV;" 30 to 36VI

200

150
IV;" 20 to 26VI

180
IV;" 24 to 30VI

TJ" 25°C
r a '" 5 rnA to 1 .5A

300

360

400

480

T j " 25°C

150

180

200

240

8

8

8

8

0.5

0.5

0.5

0.5

IV;" 26 to 32VI

rnV
10

Id

Quiescent

::'

250 to 750 rnA

T j " 25°C

rnA

current

"Id

Quiescent

lo=5mAto lA

current

change

~

"T

Output

1

1

1

1

rnA

IV;" 17.5t030VI

IV;" 21 to 33VI

IV;" 23 to 35VI

IV;" 27 to 38VI

10= 5 rnA

-1

-1

-1

-1.5

rnV/oC

90

110

150

170

~V

voltage

drift

eN

Output
noise
voltage

B= 10Hz to 100KHz
T j " 25c C

SVR

Supply

f"120Hz

54

53

dB

50

52

voltage
rejection

Vd

Dropout

2

V

24

28

rnn

200

180

150

rnA

2.1

2.1

2.1

A

10= 1A

2

2

2

f = 1 KHz

19

22

Vi'" 35V
T j "25°C

230

2.1

voltage
Ro

Output

i

resistance

Iso

Short
circuit

current

Isep

Short

Tj

~

25°C

eire. peak
current

159

Fig. 4 - Dropout voltage vs.
junction temperature

Fig. 5 - Peak output current
vs. input/output differential
voltage

i""r--i""-... -...: :::-..

'.5

t-f-

t--

2.5

~

rr--t.ljjjjH-r++I+8---i-m,+1I-+Htflill
'1111

I

,II

!.

I

r-::: ::-- ~

DROPOUT CONDITIONS
AVo:OSo,. of Vo

05

(A,

- J",.

---t--

::rTTlmTi,~~'TImII~TITI!m-Tlrll'~i1i~
eo • i
II'! III +t+l,++i'#--'--"80-"-5+ti+llI
till II F '

(0

L 78XX

IV'

Fig. 6 - Supplv voltage
rejection vs. frequency

60

l

1.5

20~

40

~

20

--4 '. ..~ ~.
:Jltiil ~t:""",_t.idI8..v-Hlt-t+tttt1lt--+++ti+llI
111

. 1,IIil ~;"'C"

0.5

Hili
-75 -50 -25

0

25

50

75

100

125,

Tj

re)

Fig. 7 - Output voltage vs.
junction temperature

'lfll'!l

(rnA)

f-

10

4.2

H;;;):
I

I-- - .

50

75

100

125

Fig. 10 - Load transient
response
''Ie
(V)

G 2971

I

r- rlv
%= v

(0

I

(AI

I

r-

i

.v

Fig. 11
response

I,
, I
.1-.
,

i

-+t=

~

,

V

I

,

!

r- -H~
10

G-291211

,
INPUT VOlTAGE

I

I

!

•

-50 -25

I

I

0

2S

i
L780S

50

75

I I
100

125

Tj (Oe)

Fig. 12 - Quiescent current
vs. input voltage
v,

(

v,

L7805

15

i

I

20

..i

(Q

I
I

10

I

~~mTo~TAGEI

I"-

,

I

~1O

I

Io-SOOmA

I

I
I

'SV

I
20

-15

Line transient

0

I

OUTPUT VOLTAGE
DEVIATON

10'

(m' I

L 7805

LOAD CURREN

10'

10'

Tj (oe)

-+-

-+tt-t
l

,
25

I I I :.

mtt'
+~++ H
%1
/

3.6
0

I

/ i I

4.0

3.8

+-

G-297"

'd

(11) ~

-75 -50 -25

f (Hz)

)()'

Fig. 9 - Quiescent current
vs. junction temperature

Fig. 8 - Output impedance
vs. freauency
20

1I11
10'

10

~

~20

50 t (us)

o

I
i
10

160

t{JJs)

10

20

25

30

Vi (V)

APPLICATION INFORMATION (continued)
Fig. 13 -

Fig. 14 -

Fixed output regulator

Costant current regulator

V;

Notes:
(1) To specify an output voltage, substitute voltage
value for "XX".
(2) Although no output capacitor is needed for stability, it does improve transient response.
(3) Required if regulator is located an appreciable
distance from power supply filter.

Fig. 15 - Circuit for increasing output voltage

vxx!

IFig. 16 -Adjustable output regulator (7 to 30V)

R1

R2

Fi~.

17 - 0.5 to 10V regulator

Fig. 18 - HiQh current voltage regulator

VBEQ1

161

APPLICATION INFORMATION (continued)
Fig. 19 - High output current with short
circuit protection

Fig. 20 - Tracking voltage regulator

'\10

COMMON

~

-Vo

Fig. 22 - Negative output voltage circuit

Fig. 21 - Split power supply (±15V - 1A)

+20VC)--'---'-I

F--~>---'-O

- 20Vo--""'--"l

r--4-......-o·15V·

+ 15 V

JI

• Against potential latch-up problems

Fig. 24 - High input voltage circuit

Fig. 23 - Switching regulator

162

APPLICATION INFORMATION (continued)
Fig. 25 - High input voltage circuit

Fig. 26 - High output voltage regu lator

Fig. 27 - High input and output voltage

Fig. 28 -

Reducing power dissipation with
dropping resistor

R = ~mjn)

-

Vxx -

lo(max)

Fig. 29 - Remote shuntdown

163

+

VOROP(max)
Id(max)

APPLICATION INFORMATION (continued)
Fig. 31 - Adjustable output voltage with temperature compensation

Fig. 30 - Power AM modulator (unity voltage
gain, 10 ';;; 1A)

.v;o-!j

L 7BXX

Ir'---t----<

13

!
Q1

~~3 C&-r--t---'

5-4117"

Note:
Note: The circuit performs well up to 100 KHz.

02 is connected as a diode in order to
compensate the variation of the 01
VBE with the temperature. C allows a
slow rise-time of the V0
R2
Vo= Vxx (1 + - - I +VBE
R1

Fig. 32 - Light controllers (V o

min=

Vxx + V BE )
(b)

(a)

V;

v

0

falls when the Ii!lht !loes up

Vo

rises when the light goes up

Fig. 33 - Protection against input short-circuit with high capacitance loads
Applications with high capacitance loads and an
output voltage greater than 6 volts need an external
diode (see fig. 33) to protect the device against
input short circuit. In this case the input voltage
falls rapidly while the output voltage decreases
showly. The capacitance discharges by means of the
Base-Emitter junction of the series pass transistor
in the regulator. If the energy is sufficiently high,
the transistor may be destroyed. The external diode
by-passes the current from the Ie to !lround.
164

LINEAR INTEGRATED CIRCUITS
PRELIMINARY DATA

3- TERMINAL POSITIVE VOLTAGE REGULATORS
• OUTPUT CURRENT UP TO 0.5A
• OUTPUT VOLTAGES OF 5; 6; 8; 12; 15; 18; 20; 24V
• THERMAL OVERLOAD PROTECTION
• SHORT CIRCUIT PROTECTION
• OUTPUT TRANSISTOR SOA PROTECTION
The L78MOO series of three-terminal positive regulators is available in TO-220 package and with several
fixed output voltages, making it useful in a wide range of applications. These regulators can provide local
on-card regulation, eliminating the distribution problems associated with single point regulation. Each
type employs internal current limiting, thermal shut-down and safe area protection, making it essentially
indestructible. If adequate heat sinking is provided, they can deliver over 0.5A output current. Although
designed primarily as fixed voltage regulators, these devices can be used with external components to
obtain adjustable voltages and currents.

ABSOLUTE MAXIMUM RATINGS
DC input voltage (for V 0 = 5 to 18V)
(for Vo = 20, 24V)
Output current
Power dissipation
Storage tem peratu re
Operating junction temperature

MECHANICAL DATA

35

V

40
V
Internally limited
Internally limited
-65 to +150
°C
Oto+150
°C

Dimensions in mm

165

6/82

CONNECTION DIAGRAM AND ORDERING NUMBERS
(top view)

s- 1'j66fl

Ordering Numbers

Output Voltage

L78M05CV
L78M06CV
L78M08CV
L78M12CV
L78M15CV
L78M18CV
L78M20CV
L78M24CV

5V
6V
8V
12V
15V
18V
20V
24V

BLOCK DIAGRAM

166

SCHEMATIC DIAGRAM
r-~~----------~--------~----~--~------~----OIN

R9

R4

RI3

02

R5
~~-----+--4-------~----~~---oOUT

R6

D1

TEST CIRCUITS

Fiq. 1 - DCparameters

Fiq. 3 - Ripple rejection

Fig. 2 - Load regulation

JL
30~s

Vo

ov

THERMAL DATA
Rth j-case
Rth j-amb

Thermal resistance junction-case
Thermal resistance junction-ambient

max
max

167

3
50

ELECTRICAL CHARACTERISTICS L78MOOC(Refer to the test circuits,Tj =25°C, 10= 350mA
unless otherwise specified, Ci = 0.33 J.1F, Co = 0.1 J.1F)
OUTPUT VOLTAGE
INPUT VOLTAGE
(Unless otherwise specified)
Parameter

Vo

Test conditions

Output

Min.
4.8

5

6

8

12

10

11

14

19

Typ.
5

Max.

Min.

5.2

5.75

Typ. Max.
6

6.25

Min.

7.7

Typ.
8

Unit

Max.

Min.

Typ.

Max.

8.3

11.5

12

12.5

voltage
10= 5 to 350 mA

6V o

Line
regulation

10= 200 mA

4.75
5
5.25
(V;= 7 to 20VI

5.7
6.3
6
(V;= 8 to 21VI

7.6
8
8.4
(V;= 10.5 to 23VI

11.4
12
12.6
(V;= 14.5 to 27V1

100
(V;= 7 to 25VI

100
IV;= 8 to 25VI

100
IV;= 10.5 to 25VI

100
IV;= 14.5 to 30VI

50
IV;= 8 to 25VI

50
IV;= 9 to 25VI

50
IV;= 11 to 25VI

50
IV;= 16 to 30VI

100

120

160

240

50

60

80

120

6

6

6

6

0.5

0.5

0.5

0.5

0.8
IV;= 8 to 25VI

0.8
(V;= 9 to 25VI

0.8
(V;= 10.5 to 251

0.8
IV;= 14.5 to 30VI

V

mV

6V o

Load

10= 5 mA to 0.5A

regulation

mV
10= 5 mA to 200 mA

Id

Quiescent
current

61 d'

Quiescent

10= 5 mA to 350 mA

current
change

6V o . Output
6T

Voltage

10= 200 mA

10= 5 rnA
T j = 0 to 125°C

mA

mA

-0.5

-0.5

-0.5

-1.0

mVtc

40

45

52

75

!-IV

56
IV;=11.5 to 21.5VI

55
(V;= 15 to 25VI

dB

drift

eN

Output
noise

B= 10Hz to 100KHz

voltage
SVR

Supply
voltage
rejection

Vd

Dropout
voltage

Ise

Short
circuit

f= 120Hz
10= 300 mA

V;= 35V

62
IV;= 8 to 18VI

59
IV;= 9 to 19VI

2

2

2

2

V

300

270

250

240

mA

700

700

700

700

mA

current
Isep

Short eire.
peak

current

168

ELECTRICAL CHARACTERISTICS L78MOOC (continued)
OUTPUT VOLTAGE
INPUT VOLTAGE

(Unless otherwise specified)

Parameter
Vo

Test conditions

Output

Min.
14.4

15

18

20

24

23

26

29

33

Typ.

Max.

Min.

Typ.

Max.

15

15.6

17.3

18

18.7

Min. Typ.

Max.

Min.

19.2

20.8

23

20

Typ.
24

Unit

Max.
25

Voltage

/oVO

line

10= 5 to 350 mA

14.25 15 15.75
(V;= 17.5 to 30V)

17.1
18
18.9
(V;= 20.5 to 33V)

19
20
21
(V;= 23 to 35V)

22.8
24
25.2
IV;= 27 to 38VI

10= 200 mA

100
IV;= 17.5 to 30V)

100
IV;= 21 to 33V)

100
IV;= 23 to 35V)

100
IV;= 27 to 38VI

50
IV;= 20 to 30VI

50
IV;= 24 to 33VI

50
IV;= 24 to 35V)

50
IV;= 28 to 38VI

10= 5 mA to 0.5A

300

360

400

480

10= 5 mA to 200 mA

150

180

200

240

6

6

6

6

0.5

0.5

0.5

0.5

0.8
IV;= 17.5 to 30V)

0.8
IV;= 21 to 33V)

0.8
IV;= 23 to 35V)

0.8
IV;= 27 to 38V)

regulation

V

mV

/OVo

Load
regulation

Id

mV

Quiescent
current

/Old

Quiescent

10= 5 mA to 350 mA

current

/oVo
/OT

eN

SVR

change

10= 200 mA

Output
voltage
drift

T amb =

Output
noise
voltage

B= 10Hz to 100KHz

Supply

voltage

mA

mA

100;: 5 mA

a to 125°C

f=120Hz
10= 300 mA

-1

-1.1

-1.1

-1.2

mVtc

90

100

110

170

!'V

54
IV;= 18.5 to 28.5V)

53
IV;= 22 to 32V)

53
IV i = 24 to 34V)

50
IV;= 28 to 38V)

dB

2

2

2

2

V

240

240

240

240

mA

700

700

700

700

mA

rejection
Vd

Dropout

Voltage
Ise

Iscp

Short
circuit
current

Vi= 35V

Short eire.
peak
current

169

Fig. 4 - Dropout voltage vs.
junction temperature

Fig. 5 - Dropout charac·
teristics

G-46\9

-416

"I-Vo

"

L78MXX

(V)

1.5

--

'"'-

tovo"S'" of Vo

--

our =100mA

i

OmA

16UT"OV

j
I

20~

L76MOS

!

~itt

200rnA

t--i---

DROPOUT CONDITIONS

i

IV 1

r--I- ~A
r--r-::: :.- r- I--r--: :-- ~

'"'-

t/"i

-25

0

25

50

75

100

Tj

'i

~

i

<::::

i I'" I:::-,

i

Fig. 9 - Quiescent current
vs. junction temperature

Fig. 8
Supply voltage
rejection vs. frequency
S,R r-r-TTTTn-"""11T~"rmn-ni'iWr\,

L78M12

G-H2:;:

0

I

!

ImA I

(dB)

L78M05

jVIN .1OV

I·····;:...t'
'-..J

0

'"

I
1

I

r

I

!

60

45

"-

1

11.92

lOUT =200mA

I

I

ill

11.8 4

H~OUT:5V

.- - - r--

I

12.0

~;~~ 1"-': ~"
0'0

0.2

10

G-4520

.

-...;::~

04

('e)

Fig. 7 - Output voltage vs.
junction temperature
I

~

b-

ti

125

~

Y

06

11 ilL

!

I

1

--.

I

/1/

~

--...

0.8

y/ I
))1

-50

Fig. 6 - Peak output current
vs. input-output differential
voltage
I,
I
(A I

...... r---...
r--

I-

i

"

f-

"

I

1'-.'

I
-15

-50 -25

0

Fig. 10

25

SO

75

100

10

125 TJ rOC)

Load transient

10'

Fig. 11

10'

D'

f (Hz)

-75 -50 -25

'0

IAl

25

50

75

100

125

TJ(OCl

Fig. 12 - Quiescent current
vs. input voltage

Line transient

I,

0

ImA

,

G--1,1>25

I I

+

I
78M05

I~ou,:·

--iI;5'(

I I
/1

I

1

I

I

I
I

I I
I

j

I

I

I I

170

10

1+-I e--+-L
I

I

,

I

I i ,-

I I
t {JJs)

I

I

I

I I

10

I

15

20

APPLICATION INFORMATION (continued)
Fig. 13 -

Fig. 14 - Costant current regulator

Fixed output regulator

Vi

Notes:
(1) To specify an output voltage, substitute voltage
value for "XX".
(2) Although no output capacitor is needed for stabil ity, it does improve transient response.
(3) Required if regulator is located an appreciable
distance from power supply filter.

Fig. 1.5 - Circuit for increasing output voltage

vxxl
5-4962

Fig. 16 -Adjustablf:' output regulator (7 to 30V)

R1

R2

Fi!1. 17 - 0.5 to 10V regulator

Fig. 18·- Hiqh current voltage regulator

1-'--+--0 v,
'c;l--,."...---.J

-..;
O.1,uF

171

APPLICATION INFORMATION (continued)
Fig. 19 - High output current with short
circuit protection

Fig. 20 - Tracking voltage regulator

,\10

COMMON

Vo

~

a1 =80534
02 2N6124

=

4.7kO
5-1,966

-Vo

Fig. 21 - Positive and negative regu lator

Fig. 22 - Negative output voltage circuit

JI
(*) D1 and D2 are necessary if the load is connected

between + V0 and - V 0

Fig. 23 - High input voltage circuit

Fig. 24- High input voltage circuit

Vo
Vo

172

APPLICATION INFORMATION (continued)
Fig. 25 - High output voltage regulator

Fig. 26 - High input and output voltage

Vo

5-497)

Fig. 27 -

Fig. 28 - Remote shuntdown

Reducing power dissipation with
dropping resistor

oj

Vi

0---r--V'-v-ri
R,

R=

Vi(min) -

Vxx -

lo(max)

+

1--",--'

VDROP(max)
Id(max)

Fig. 29 - Power AM modulator (unity voltage
gain, 10 < 0.5)

Fig. 30 - Adjustable output voltage with tern·
perature compensation

Note:
Note: The circuit performs well up to 100 KHz.

Q 2 is connected as a diode in order to
compensate the variation of the QJ
V BE with the temperature. C allows a
slow rise-time of the V 0

R2

Vo= Vxx (1 + - - ) + V BE
R1

173

APPLICATION INFORMATION
Fig. 31 - Light controllers (V 0

min =

(continued)

V XX + V BE)

(a)

(b)

v,

Vi

v0

Vo falls when the li!lht ooes up

rises when the light goes up

Fig. 32 - Protection against input short-circuit with high capacitance loads

Vi

Applications with high capacitance loads and an output
voltage greater than 6 volts need an external diode (see fig.
32) to protect the device against input short circuit. In this
case the input voltage falls rapidly while the output voltage
decreases showly. The capacitance discharges by means of
the Base-Emitter junction of the series pass transistor in the
regulator. If the energy is sufficiently high, the transistor may
be destroyed. The external diode by-passes the current from
the Ie to ground.

174

LINEAR INTEGRATED CIRCUITS
3- TERMINAL POSITIVE VOLTAGE REGULATORS
•
•
•
•
•

OUTPUT CURRENT UP TO 2A
OUTPUT VOLTAGES OF 5; 7.5; 9; 10; 12; 15; 18; 24V
THERMAL OVERLOAD PROTECTION
SHORT CIRCUIT PROTECTION
OUTPUT TRANSISTOR SOA PROTECTION

The L78S00 series of three-terminal positive regulators is available in TO-220 and TO-3 packages and
with several fixed output voltages, making it useful in a wide range of applications. These regulators can
provide local on-card regulation, eliminating the distribution problems associated with single point
regulation. Each type employs internal current limiting, thermal shut-down and safe area protection,
making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 2A output
current. Although designed primarily as fixed voltage regulators, these devices can be used with external
components to obtain adjustable voltages and currents.

ABSOLUTE MAXIMUM RATINGS

10
P tot
Tstg

Top

DC input voltage (for Va = 5 to 18V)
(for Va = 24V)
Output current
Power dissipation
Storage temperature
Operating junction temperature (for L78S00)
(for L78S00C)

V
35
40
V
internally limited
Internally limited
-65 to + 150
°C
-55 to +150
°C
o to + 150°C

Dimensions in mm

MECHANICAL DATA

TO-3

175

6/82

CONNECTION DIAGRAMS AND ORDERING NUMBERS
(top views)

s,- 1568/1

Type

TO-220

TO-3

Output voltage

L 78S05
L 78S05C
L 78S75
L 78S75C
L 78S09
L 78S09C
L 78S10
L 78S10C
L 78S12
L 78S12C
L 78S15
L 78S15C
L 78S18
L 78S18C
L 78S24
L 78S24C

L 78S05CV

L 78S05T
L 78S05CT
L 78S75T
L 78S75CT
L 78S09T
L 78S09CT
L 78S10T
L 78S10CT
L 78S12T
L 78S12CT
L 78S15T
L 78S15CT
L 78S18T
L 78S18CT
L 78S24T
L 78S24CT

5V
5V
7.5V
7.5V
9V
9V
10V
10V
12V
12V
15V
15V
18V
18V
24V
24V

-

L 78S75CV
L 78S09CV
L 78S10CT
L 78S12CV
L 78S15CV
L 78S18CV
L 78S24CV

BLOCK DIAGRAM
I~.~PU~T_ _~______________________~~

176

SCHEMATIC DIAGRAM

TEST CIRCUITS

Fiq. 1 - DC parameters

Fig. 2 - Load regulation

Fiq. 3 - Ripple rejection

THERMAL DATA
Rth j-case
Rth j-amb

max
max

Thermal resistance iunction-case
Thermal resistance junction-ambient

177

TO-220

TO-3

3°C/W
50°C/W

4°C/W
35°C/W

•

..

,

ELECTRICAL CHARACTERISTICS L78S00 (Refer to the test circuits, Tj = 25°C, 10= 500 mA
unless otherwise specified)
5

7.5

9

10

10

12.5

14

15

Min. Typ. Max.

Min. Typ. Max.

Min. Typ. Max.

Min. Typ. Max.

7.15

8.65

9.35

9.5

9
9.4
(Vi~ llV)

9.4

OUTPUT VOLTAGE
INPUT VOLTAGE
(Unless otherwise specified)

Test conditions

Parameter
Ou'tput

Vo

4.8

5

5.2

4.75

5

5.25

7.5

7.9

9

10

Unit

10.5
V

voltage
lo~

lA

(V;~

{No

Line
regulation

7.1

7V)

(Vi~

100
7 to 25V)

(Vi~

50
8 to 12V)

7.5
7.95
(Vi~ 9.5V)

(Vi~

120
9.5 to 25V)

8.6

(Vi~

130
11 to 25V)

(Vi~

65
11 to 20V)

10
10.6
(Vi~ 12.5V)

(Vi~

200
12.5 to 30V)
rnV

rw

0

Load

lo~

20 rnA to 2A

(Vi~

60
10.5 to 20V)

(Vi~

100
14 to 22V)

100

120

130

150

rnV

8

8

8

8

rnA

0.5

0.5

0.5

0.5

regulation

Id

Quiescent
current

llid

Ouiescent

lo~

20 rnA to lA

lo~

20 rnA

current
change

rnA
(V;~

llVo
llT

Output
voltage

lo~
Ti~

5 rnA
-55 to 150"C

1.3
7 to 25V)

(Vi~

1.3
9.5 to 25V)

(Vi~

1.3
11 to 25V)

(V;~

1
12.5 to 30V)

-1.1

-0.8

-1

-1

rnV/"C

40

52

60

65

p.V

drift

eN

Output
noise

B~

10Hz to 100KHz

voltage

SVR

Supply

f

~

120 Hz

60

54

53

53

dB

8

10.5

12

13

V

voltage

rejection

Vi

Operating
input
voltage

10

Ro

Output
resistance

f

Ise

Short
circuit

~

';;

1.5A

1 KHz

17

16

17

17

500

500

500

500

rnH

rnA
Vi

~

27V

current

Iscp

Short eire.
peak

3.5

3.5

current

178

3.5

3.5

A

ELECTRICAL CHARACTERISTICS L78S00 (continued)

I
!

'----

OUTPUT VOLTAGE

12

INPUT VOLTAGE
(Unless otherwise specified)

19

Test conditions

Parameter

Va

Output

r

Min.

Typ.

Max.

Min.

11.5

12

12.5

14.4

15

18

24

23

26

33

Typ. Max.
15

15.6

Min.

17.1

Typ. Max.
18

18.9

Min.

23

Typ.
24

Unit
Max.

25

vol tage

10

. Vo

-

1A

14.25 15 15.75
(Vi= 17.5VI

17

18
19
(Vi= 20.5VI

24
25.2
22?
(Vi= 27VI

240
IVi" 14.5 to 30VI

300
(Vi" 17.5 to 30VI

360
(V,= 20.5 to 30VI

480
(Vi= 27 to 38VI

120
(Vi= 16 to 22VI

150
IV,= 20 to 26VI

180
(V," 22 to 28VI

240
(V;= 30 to 36VI

160

180

200

250

mV

8

8

8

8

mA

0.5

0.5

0.5

0.5

1
(V;" 14.5 to 30VI

(V;" 17.5 to 30VI

(V,= 22 to 33VI

(Vi= 28 to 38V)

-1

-1

-1

-1.5

mVI"C

75

90

110

170

~V

Line
regulation

mV

I

~VO

Load

V

11.4
12
12.6
(V,= 14.5VI

10= 20 "IA to 2A

regulation

Id

Qu ie5cent

current
61d

Quiescent
current

lo=20mAtolA

change

10= 20mA

l6;1-

Output

10= 5mA

voltage

T amb'" 0

II eN

Output
nOise

to

7CYC

1

1

1

mA

drift

B= 10Hz to 100KHz

vol tage

SVR

Supply

f=120Hz

53

52

49

48

dB

10'C 1.5A

15

18

21

27

V

vol tage
reJectton

V,

Operating
Input

voltage
Ro

Output

f

=

1 KHz

18

19

22

23

mD.

500

500

500

500

mA

resistance
Isc

Short
circuit

Vi" 27V

current
Iscp

Short eire.
peak

3.5

3.5

current

179

3.5

3.5

A

ELECTRICAL CHARACTERISTICS L78S00C(Refer to the test circuits, Tj = 25°C, 10= 500mA
unless otherwise specified)
OUTPUT VOLTAGE

5

7.5

9

10

INPUT VOLTAGE
(Unless otherwise specified)

10

12.5

14

15

Min. Typ. Max.

Min. Typ. Max.

Min. Typ. Max.

Min. Typ. Max.

7.15

8.65

9.5

Parameter
Va

Output
voltage

Test conditions
I

4.8

I

I

5.2

7.5

7.9

9

9.35

10

10.5
V

10= lA

i

{No

5

Unit

4.75
5.25
5
IV;= 7V)

7.95
7.5
7.1
IV;= 9.5V)

IVi= 7 to 25V)

regulation

9
IVi= llVI

120

100

Line

8.6

(Vi= 9.5 to 25VI

9.4

10
10.6
9.4
IVi= 12.5VI

130

200
(Vi= 12.5 to 30V)

(Vi= 11 to 25VI

rnV
50
(Vi= 8 to 12V)
6V o

Load

10= 20 rnA to 2A

60
(Vi= 10.5 to 20VI

65
IVi= 11 to 20VI

100
(Vi= 14 to 22VI

100

140

170

240

rnV

8

8

8

8

rnA

0.5

0.5

0.5

0.5

regulation

Id

Quiescent
current

61d

Quiescent
current
change

6V a
6T

Output
voltage

10= 20 rnA to lA

1.3

I l o=20rnA

1.3

1.3

1.0

rnA

(Vi= 7 to 25VI

(V; = 9.5 to 25VI

IV; = 11 to 25VI

(Vi= 12.5 to 30VI

-1.1

-0.8

-1

-1

mV/"C

40

52

60

65

MV

10= 5 rnA
T amb= 0 to 7rJ'C

drift

eN

Output

B= 10Hz to 100KHz

noise

voltage
SVR

Supply
voltage

f = 120 Hz

54

48

47

47

dB

10 ';; 1.5A

8

10.5

12

13

V

rejection

Vi

Operating
input

voltage
Ro

Ise

Output
resistance

f = 1 KHz

17

16

17

17

Vi = 27V

500

500

500

500

mil

mA

Short
circuit

current
Is""

Short eire.
peak

3.5

3.5

current

180

3.5

3.5

A

ELECTRICAL CHARACTERISTICS L78S00C (continued)
OUTPUT VOLTAGE

12

15

18

24

INPUT VOLTAGE
(Unless otherwise specified)

19

23

26

33

Test conditions

Parameter

Vo

Output

Typ. Max.

Min.
11.5

12

12.5

11.4

12
12.6
14.5V)

Min.
14.4

Typ. Max.
15

15.6

Min.

Typ. Max.

17.1

18

18.9

Min.

23

Unit

Typ. Max.
24

25

voltage
lo~

lA

(Vi~

6V o

Line

240
14.5 to 30V)

(Vi~

regulation

14.25 15 15.75
(Vi~ 17.5V)

(Vi~

300
17.5 to 30V)

17
(Vi~

(Vi~

18
19
20.5V)

360
20.5 to 30V)

22.8

24
25.2
27V)

V

(Vi~

(Vi~

480
27 to 38V)
rnV

120
(Vi~

6V o

Load

lo~

16 to 22VI

20 rnA to 2A

150
(V i~ 20 to 26V)

180
(V i~ 22 to 28V)

240
(V,~

30 to 36V)

240

300

360

480

rnV

8

8

8

8

rnA

0.5

0.5

0.5

0.5

regulation

Id

Quiescent
current

61d

Quiescent
current
change

'o=20mAto1A
lo~

20 rnA
(V,

6V o

Output

10= 5mA

6T

voltage
drift

Tamb~

Output

B~

eN

~

1.0
14.5 to 30V)

(V,

~

1.0
17.5 to 30V

1.0
(V,

~

20.5 to 30V)

(V,

~

1.0
27 to 38V)

rnA

-1

-1

-1

-1.5

rnV/oC

75

90

110

170

"V

0 to 70°C

10Hz to 100KHz

noise
voltage

SVR

Supply

f~120Hz

47

46

43

42

dB

10

15

18

21

27

V

voltage
rejection
Vi

Operating

';;

1.5A

input

voltage

Ro

Output

f

~

1 KHz

18

19

22

28

rn!l

500

500

500

500

rnA

resistance
Ise

Short
circuit
current

Iscp

Short eire.
peak

Vi

~

27V

3.5

3.5

curren~

181

3.5

3.5

A

F iq. 4 - Dropout voltage vs.
junction temperature

------ ----

G-4386

......... ,....

J

-.......; t--

CON::~

DROPOUT'

oj "0

I

i

i

-50

[Jl
III

2~

lIVo~5·1.

-75

I

-25

0

25

50

75

100

---

"
~"

~:::--

r'--...

f--I~~
L 76505

"R:c_
O'c

<~

,,~

~'c

i0

ISo.('

f-

i

L 16SXX

i
I

11----

2.5

~

.........
-

(A)

r- ~
r- §O!t.

..::::: I:::-- ......

k'- I"
":""
~

"

I

125

Fig. 6 - Supply voltaqe
rejection vs. frequency

<3438511

10

I
r- t-2= F!-

.........

1.5

Fig. 5 - Peak output current
vs. input/output differential
voltage

rc)

Tj

25 V,-Vo(V)

Fig. 7 - Output voltage vs.
j unction temperature

Fig. 9 - Quiescent current
vs. junction temperature

fig. 8 - Output impedance
vs. frequency

0-4389

V.

20

'd

(V)

(nl

(mA)

Vi~19V

l78S12

vidvl

I-- -

Yo=sv
I
I-- -- lo:500mAI

f--+-...,--j-+--j~:~~"mA 1-+---t----1

'"

,

I

/

IO'UMB• •

11.9

'"
-50 -25

0

25

50

75

m

125

Fig. 11
response

Fig. 10 - Load transient
response
G-q92

","0'1

I

I
I

_ Vo=5V

,
- r l-f-

.....

-

rf--

10

L

(A)

.vo

---

r-- - -

lO

--

t- r---

0

-

-_

..

OUTPUT vOLTAGE

Vt
I-r--- ~I--J
1
10

20

30

2S

50

75

-10

+t-

l18S05

f-

Vo = 5'"
~ lo:20tnA
Tj :25 C

------

~

.-

--

.

OUTPUT VOLTAG
DEVIATION

-

r-

-.-

-

1o:5~OIA

I

-20

5

4.0

182

.. -

,..-7
-.

-/-

':"-1-:-

:..-:-- k-

I

--f--

::::pi-"

!

l

L78S05\

I

I

I

3.0
I (;..Is)

TJ('Cl

. .....

!

,/

-

10

(~s)

125

I

10

-~=r

f- f-r-50 t

100

i

G-QSO

'd
(rnA)

r-- --

I

i

-~

20

I

:~E~i~-

0

I

Fig. 12 - Qu iescent current
vs. input voltage
(V)

INPUT VOLTAGE

-50 -25

L 78505

I

1.5

J

_ _o.~IATON

i
-75

Vi

I

1

,

3.6

t (Hz)

10'

I

Line transient

(mV)

L 78505

LOAD CURREN

I

10'

10'

10'

10

Tj (<5V
10= 10 mA to
1.5A

T j = 25°C

bl ADJ

Adjustment pin
current

Vi-Vo= 2.5 to 40V
10= 10 mA to 1.5A

V REF

Reference voltage
(between pin 3 and
pin 1)

Vi-Vo= 3 to 40V
10= 10 mA to 1.5A

Minimum load
current

10 max

Maximum load
current

1.2

Output noise
(percentage of V 0)

SVR

Supply voltage
rejection (*)

Max.

0.01

0.02

0.01

0.04

0.02

0.05

0.02

0.07

5

15

5

25

20

50

20

70

0.1

0.3

0.1

0.5

0.3

1

0.3

1.5

50

100

50

100

}.LA

0.2

5

0.2

5

}.LA

1.25

1.3

1.25

1.3

V

1.2

1
3.5

V i -V o ":;15V

1.5

2.2

1
5

3.5

1.5

%
10

mA

2.2
A

Vi-Vo= 40V
eN

Typ.

Min.

%

Output voltage
temperatu re stab i Iity

10 min

Max.

mV

Adjustment pin
current

Vo

Typ.

%IV

IADJ

bV o

LM 317

Test conditions

0.4

0.4

Ti= 25°C. 10Hz to 10KHz

0.003

0.003

Tj= 25°C CADJ= 0
f= 120Hz
CADJ=10}.LF

65

65

%

dB
66

80

66

80

(*) C ADJ is connected between pin 1 and ground.

Note -

Unless otherwise specified the above specs, apply over the following conditions: LM 117 T j = -55 to 150°C;
LM217 T j =-25to150°C;LM317 T j =Oto125°C.

194

Fig. 1 - Output current vs.
input- output
differential
voltage

Fig. 2 - Dropout voltage vs.
junction temperature

.J _

(-+_.'-i--

-

==: ::-....

;1

Tj ~15~'C

,
,,~
,'f--- - - - - ~,
:

'"

llV o =100mV

I

1.25 0

,

r--

'

--

-

/

Io :l.5A

r-- r-.
-... t--- r-.
r-- r-.t--

Y'_-"jC---

-- ""' ,
~

,

"DRO P

I

) _25'C

!

G" 4631/,

G'A63{)

[,-4629

)

Fig.3 - Reference voltage vs.
junction temperature

5

V

1/

, A

~mA

'"

r"\

\

\

0

I--b

f-

-...~
'2~ f +100

\

1.23 5

Tj(e')

i
-50

+50

-I- 100

'\
T, (C')

APPLICATION INFORMATION
The LM 117/LM 217/LM 317 provides an internal reference voltage of 1.25V between the output and
adjustment terminals. This is used to set a constant current flow across an external resistor divider (see
fig. 4), giving an output voltage Va of:
Fig. 4 - Basic adjustable regulator

Va

=

V REF (1 +

£L)
Rl

+ IADJ R2

The device was designed to minimize the term IADJ (100 J.lA max) and to maintain it very constant with
line and load changes. Usually, the error term IADJ • R2 can be neglected. To obtain the previous
requirement, all the regulator quiescent current is returned to the output terminal, imposing a minimum
load current condition. If the load is insufficient, the output voltage will rise.
Since the LM 117/LM 217/LM 317 is a floating regulator and "sees" only the input-to-output differential voltage, supplies of very high voltage with respect to ground can be regulated as long as the maximum input-to-output differential is not exceeded. Furthermore, programmable regulator are easily obtainable and, by connecting a fixed resistor between the adjustment and output, the device can be used
as a precision current regulator.
In order to optimise the load regulation, the current set resistor Rl (see fig. 4) should be tied as close as
possible to the regulator, while the ground terminal of R2 should be near the ground of the load to
provide remote ground sensing.
No external capacitors are required, but performance may be improved with added capacitance as
follows:
An input bypass capacitor of 0.1 J.lF.
An adjustment terminal to ground 10 J.lF capacitor to improve the ripple rejection of about 15 dB
(C ADJ )·

An 1 J.lF tantalum capacitor on the output to improve transient response.
195

APPLICATION INFORMATION (continued)
In additional to external capacitors, it is good practice to add protection diodes, as shown in fig. 5.
Fig. 5 - Voltage regulator with protection diodes.
lN4001
D1

D1 protects the device against input short circuit, while D2 protects against output short circuit for
capacitors discharging.
Fig. 7 - Current regulator

Fig. 6 - Slow turn-on 15V regulator

~

Rl
Vi

V ref

10= ~+

I

_

1.25V

ADJ = -R-l--

0 0 = 10mAtol.5AI

Fig. 8 - 5V electronic shut-down regulator

Fig. 9 - Digitally selected outputs

.

DIGITAL INPUTS

(R2 sets maximum Vol

196

5-5055/1

APPLICATION INFORMATION (continued)
Fig. 10 - Battery charger (12V).

Fig. 11 - Current limited 6V charger.

Vi

• Rs sets output impedance of charger
R2
Zo ~ Rs (1 + R j )

* R3 sets peak current (O.6A for 1 n).

Use of Rs allows low charging rates with fully
charged battery.

* * C 1 recommended to filter out input transients.

197

LINEAR INTEGRATED CIRCUITS
PRELIMINARY DATA
LOW POWER QUAD OPERATIONAL AMPLIFIERS
•
•
•
•

SINGLE OR SPLIT POWER SUPPLY
VERY LOW POWER CONSUMPTION
INPUT COMMON-MODE RANGE INCLUDING GROUND
LARGE DC VOLTAGE GAIN (100 dB)

The LM 324 consists of four indipendent, high gain, internally frequency compensated opamps specifically designed to operate from a single power supply over a wide range of voltages. Botn in split and in
single supply the current drain is independent of the magnitude of the power supply voltage.
In the linear mode the input common-mode voltage range includes ground and the output voltage can
also swing to ground, even though operating from only a single power supply voltage.
The LM 324 is available in a standard 14-lead dual in-line plastic package and in a 14-lead micropackage
version for thick or thin film hybrid circuits.

ABSOLUTE MAXIMUM RATINGS
VS
Vi
Vi
Ptot
Top

Supply voltage
Input voltage (single supply)
Differential input voltage
Total power dissipation
Operating temperature for: LM 2902
LM324
LM 324A

T stg

Storage temperature

MECHANICAL DATA

6/82

32
-0.3 to 26
32
400
to 70
-25 to 85
-55 to 125
-65 to 150

o

V
V
V
mW
°C
°C
°C
°C

Dimensions in mm

198

CONNECTION DIAGRAM AND ORDERING NUMBERS
(top view)

OUTPUT A

OUTPUT D

INV.INP. A

'3

INV.INP. 0

NON INY. INP. A

12

NONINV,INRD

Type
-Vs

DIP-14

LM 324

LM 324N

80-14
LM 324CM

NON JNV.INRC

LM 324A

LM 324AN

-

INV.INP. B

INV.INP. C

LM 2902

LM 2902N

LM 2902CM

OUTPUT B

OUTPUT C

NON I NV.INP. B

10

:.-

SCHEMATIC DIAGRAM
(one section)
r---------------~--~--~--~--~--u+Vs

RSC

NON-INVERTING
INPUT

Q8

Q9

THERMAL DATA
Rth j-amb

DIP 14

Thermal resistance junction-ambient

max

• Measured with the device mounted on a ceramic substrate (25 x 16 x 0.6 mm).

199

200°C/W

SO 14

200 0 C/W*

ELECTRICAL CHARACTERISTICS (v. = +5V, Tamb = -55 to 125°C for the LM 324A,
T amb = -25 to 85°C for the LM 324 and T amb = 0 to 700C for the LM 2902, unless otherwise specified)
LM324

Parameter
Supply current

Input bias current

Ib

R L= 00

Vs = 30V

Typ.

Max.

Min.

Typ.

I nput offset voltage

R g= 0

los

Input offset current

Tamb - 25°C

3

1.5

3

1.5

3

0.7

1.2

0.7

1.2

250

45

100

45

±2

200

±7

±2

±9

±5

± 50

Gv

60

nA

±7
± 10

7

30

7

± 5

±30

±5

rnV
Ilv/"e

± 50
nA
±200

10

300

10

40

60

40

"AI"e
60

rnA

to ground current

Large signal open

loop voltage gain

Vs= 15V
RL;> 2 KS1

Tamb = 25°C

88

100

88

83

Vo

±2

±3

±75

10
40

Tamb= 25"e (.)

250
500

±5

7

~ Inp'ut offset current
LIT
drift

Output short circuit

Max.

1.2

±150

Ise

Typ.

1.5

45

Rg= 0
T amb = 25"e
Vs = 5Vt03OV

InRut offset voltage

Min.

rnA

Tamb = 25°C

t:,vos

~drlft

Max.

0.7

500
Vos

LM 2902
Unit

Min.
IS

LM324A

Test conditions

I nput common-mode
voltage range

Vs = 30V

Output voltage swing

T amb = 25"e

T amb = 25"e

100

100

83

0

V s-1.5

0

Vs-1.5

0

V s-1.5

0

Vs-2

0

Vs-2

0

Vs-2

R L = 2 KS1

V s-1.5

V s-1.5

Va sat Output saturation

V

V

R L ;>10KS1
Vs = 30V

dB

83

V s-1.5

R L = 2 KS1

26

R L ;>10KS1

27

22

26
28

RL'; 10 KS1

5

27
20

V
28
5

23

24
5

20

100

rnV

voltage to ground

eMR

Common mode
rejection

T amb = 25°C

65

70

65

85

50

70

dB

SVR

Supply voltage
rejection

T amb = 25"e

65

70

65

100

50

70

dB

es

Channel separation

f = 1 KHz to 20 KHz
T amb = 25"e
(I "put referred)

120

dB

1o '

Output source
current

10

-

Output sink current

Vs = 15V
Vi'= 1V
V i - = OV
VI' = OV
Vi-= 1V
V o= 200 rnV
V I -= 1V
Vi' = OV
Vs= 15V

(*)

T amb = 25"e

120

120
20

40

20

40

20

40

10

20

10

20

10

20

T amb = 25"e

12

50

12

50

Tamb= 25"e

10

20

10

20

10

20

5

8

5

8

5

8

rnA

IlA

rnA

Short circuits from the output to positive supply voltage can cause excessive heating and eventual destruction. The maximum output current is 40 rnA typo independent of the magnitude of Vs. Destructive dissipation can result from simultaneous shorts on all
amplifiers.

200

(, -

~6

"

~6J3

";

I

I,

Fig. 3 - Output short circuit
current vs. ambient temperature
G·
5

Fig. 2 - Input voltage range
vs. supply voltage

Fig. 1 - Supply current vs.
supply voltage
tv

ImA )

J

)

Tamb =2S'C

RL=m

16

I
1.5

,
,

I

0.9

!16

--1

1

;-j '-- ~

V
20

25

"30

1,0
;-jV

03

15

~

~

06

10

Vj

Negative

!12

50

V

30

,

10
~12

"'s(lI)

:!.16

-50

':Vs(V)

50

0

"'5=15V
100

60

1""-

60

100

f-- f--

I

Vo

ImV )

IICl"SOpF
V,.30V

I-------r-'

G~:40dB

16

RL=2K!l.

40 a

" r-

-.C

I""-

"-

10K

OUTPUT

f\v

300

'-..

""-

f(Hz)

1-

'

./

1\

"'\

I

II

350

\
1""-

-tnt-

I

10

'""-

1

Tamb=25'C~- - -

INPUT

12

""-

20

10

V5 =1511

Tamb:2SOC

"- ~

lamb('C)

G-4632

G-HJ6

J

)

100

Fig. 6 - Voltage follower
pulse response (small signal)

Fig. 5 - Large signal frequency response

Fig. 4-0pen loop frequency
response

"-

I

20

!~

'"

25

a

V

1

I

I

10'

APPLICATION INFORMATION
The LM 324 can operate with a single power supply voltage, has true-differential inputs and remains in
the linear mode with an input common-mode voltage of OV. The four included op amps work over a
wide range "Of power supply voltage with little change in performance characteristics. At 2SoC operation
is possible down to a minimum supply voltage of 2.3V.
The input common-mode voltage or either input signal voltage should not be allowed to go negative by
more than 0.3V. The upper end of the common-mode voltage range is Vs -1.5V, but either or both
inputs can go to +32V without damage.
If the voltage at any of the input leads is driven negative (V in < -0.3Vl, the collector-base junction of
the input PNP transitor becomes forward biased and thereby acts as an input diode clamps (max
current: 50 rnA). In addition to this diode action, there is also lateral NPN parasitic transistor action on
the Ie chip. This can cause the output voltage to go to the positive supply voltage level (or to ground for
a large overdrive) for the time duration that an input is driven negative. This is not destructive and
normal output states will re-establish when the input voltage again returns positive (V in >-0.3V).
The output stage design allows the amplifiers to both source and sink large output currents.
Therefore both NPN and PNP external current boost transistors can be used to extend the power capa201

APPLICATION INFORMATION (continued)
bility of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above
ground to bias the on-chip vertical PNP transistor for output current sinking applications.
Output short circuits either to ground or to the positive power supply should be of short time duration.
Units can be destroyed, not as a result of the short circuit current causing metal fusing, but rather due
to the large increase in IC chip dissipation which will cause eventual failure due to excessive junction
temperature. Putting direct short-circuits on more than one amplifier at a time, the total Ie power dissipation will increase to destructive levels, if not properly protected with external dissipation limiting
resistors in series with the output leads of the amplifiers. The larger value of output source current which
is available at 25°C provides a larger output current capability at elevated temperatures (see typical
performance characteristics) than a standard IC op amp.
The circuits presented in the following section emphasize operation on a single power supply voltage.
If split supplies are used, all the standard op amps configuration can be realised.

TYPICAL SINGLE SUPPLY APPLICATION CIRCUITS (V s = 5V)
Fig. 8 - Power amplifier

Fig. 7 - DC summing amplifier

R1

+Vi n o--1t--I

where: Vo=VI+V2-V3-V4
(VI + V 2 )';;' (V 3 + V4 ) to keep Vo

Fig. 9 - LED driver

> OV

Fig. 10 - Lamp driver

Fig. 11 - Fixed current sources

V'
R2

202

TYPICAL SINGLE SUPPLY APPLICATION CIRCUITS (continued)
Fig. 13 - Ground referencing a differential input signal

Fig. 12 - Comparator with Hysteresis
Hysteresis

I~I

R1
V

rT°

H

VOL~"
VinL

VREF

VinH

R4

5 - 5069

S~5068

R1
VinL= R1+R2

(VOL-VREFI+VREF

R1
VinH = R1+R2

(VOH-VREFI+VREF

Hysteresis=

R1
R 1 + R2

(V OH - V OLI

Fig. 15 - Squarewave oscillator

Fig. 14 - Driving TTL

R1

S - 5071

Fig. 17 - Wien bridge oscillator

Fig. 16 - High input Z, DC differential amplifier
R2

50Kil

+~~._
2

For

R1
R2

Vo= 1+

R4
R3
R4
R3

r-,"

(CMRR depends on this resistor
ratio match)

(V2-V1)
fo

203

=

2

1
RC

7T

I

TYPICAL SINGLE SUPPLY APPLICATION CIRCUITS (continued)
Fig. 18 - Function generator
TRIANGLE WAVE
OUTPUT

SQUARE
>--H:.JWAVE
OUTPUT

f=

Rl + RC , R3=
4CR f Rl

R2 Rl
R2+Rl

Fig. 19 - Bi-Quad filter

1
Rl
fo= 211 RC ; Rl= QR; R2= G BP ;
1
V ref =2" Vs; R3=G N R2; Cl=10C

Example:
fo = 1 KHz
Q= 10

R = 160 K!l
C = 1 nF
Rl= 1.6 M!l
R2= 1.6M!l
R3= 1.6 M!l
Where: G BP= Center Frequency Gain
G N = Passband Notch Gain

R2

204

LINEAR INTEGRATED CIRCUITS
PRELIMINARY DATA
QUAD VOLTAGE COMPARATOR
The lM 339 and the lM 339A are monolithic integrated circuits in a 14-lead dual in-line plastic package
and in a 14-lead micropackage. They consists of four independent precision voltage comparators and are
specially designed to offer a versatility as high as possible; application areas include limit comparators,
AID converters, waveforms generators, high voltage logic gates and so on. Furthermore, the open collec·
tor output stage provides easy interfacing with all types of logic circuitry.
The lM 339/lM 339A main features are:
- Wide supply range (2 to 36V)
Single or split supply operation
Very low current consumption (0.8 rnA, regardless of supply voltage)
Ground input compatibility
Output voltage compatible with TTL, DTl, ECl, MOS and CMOS logic systems
- Output short circuit to ground continuous

ABSOLUTE MAXIMUM RATINGS
Vs
VI
Vi
Ii
Ptot
Top
T stg •

Supply voltage
Input voltage range
Differential input voltage
Input current (V in < -0.3 VdC)
Total power dissipation at Tamb = 25°C
Operating temperature
Storage and junction temperature

±180r+36
-0.3 to 36
36
50
600
a to 70
-65 to 150

V
V
V
rnA
mW
°C
°C

Dimensions in mm

MECHANICAL DATA

205

6/82

CONNECTION DIAGRAM AND ORDERING NUMBERS
(top view)

OUT2

14

OUT 3

OUT 1

13

OUl4

+Vs

12

GNO

11

IN4(+)

DIP14

Type
IN1(-)

4

IN1("')

5

IN4(-)

IN2(-)

6

IN 3(+)

lN2('" )

7

IN3(-)

LM 339

LM 339N

LM 339A

LM 339AN

SO-14
LM 339CM

-

5- 5169

SCHEMATIC DIAGRAM
(each section)

INPUT
(+)

OUT

17:'Y To------+----+--------'

5- 5170

THERMAL DATA
Rth j-amb

DIP-14
max

Thermal resistance junction-ambient

• Measured with the device mounted on a ceramic substrate (25 x 16 x 0.6 mml.

206

200°C/W

SO-14

200°C/W*

ELECTRICAL CHARACTERISTICS (V s = +5V for the LM 339; Vs

= +15V

for the LM 339A;

T. mb = 25°C, unless otherwise specified)
LM 339A

Parameter

Unit

Typ.

Max.

Input offset voltage At out.switch point
Vo"l.4V;Rg~ 0
Tamb~ 0 to 70"e
VREF~ 1.4 V dc

± 1

±2

I nput bias current

Output in linear

25

(1)

range

Min.
Vas

Ib

los

±5
Tamb~ 0 to 70'e

Input CommanTamb~ 0 to 70'e

(2)

Supply current

RL ~

Voltage gain

R L ;;' 15 Krl

Large signal

± 2

Max.
±5
±9

250

25

250

±50

±5

±50
±150

0

V s-l.5

0

Vs-l.5

0

Vs-2

0

Vs-2

0.8

nA

2

0,8

2

nA

V
mA

106

106

dB

response time

V IN - TTL logic swing;
VREF~ +l.4V; RL ~ 5.1 Krl
V RL ~ 5V

300

300

nsec

RL ~ 5.1 Krl

1.3

1.3

}jsec

Response time (3)

VRL~5V;

10

Output sink current

V IN (-);;' lV;
Va';;; 1.5V

V sat

Output saturation
voltage

V1N(-);;' lV
VIN(+I~ OV
I sink < 4 rnA

10 leak Output leakage
current

Differential input
voltage

V1N(+);;' lV
V 1N (-) ~ OV

94

mV

400

±150

=

Is

Gv

Typ.

400

I npu t offset

Mode voltage range

Min.

±4

Tamb~ 0 to 700 e

cu rrent

Notes:

L339

Test conditions

V 1N (+)- OV;

6

16
250

Tamb~ 0 to 700 e

Va

~

5V

6
500
700

0.1

T amb - 0 to 700
Vo~ 30V

e

All V 1N ;;' OV (or -Vs if split
supply is used);
Tamb~ 0 to 70c e

16
250

mA
500
700

0.1

mV
nA

1

1

I1A

36

36

V

(1)

The direction of the current is out of the Ie due to the PNP input stage. This current is essentially constant, independent of the state of the output, so no loading change exists on the reference or input lines.

(2)

If either input of any comparators goes more negative than 0.3V below ground, a parasitic transistor turns
on causing high input current and possible faulty outputs. This condition is not destructive providing the
input current is limited to less than 50 mAo

(3)

The response time specified is for a 100 mV input step with 5 mV overdrive. For larger overdrive signals
300 nsec can be obtained.

207

APPLICATION INFORMATION
The LM 339 includes four high gain, wide bandwidth devices which, like most comparators, can easily
oscillate if tht! output is inadvertently allowed to capacitively couple to the inputs via stray capacitance.
That occurs during the output voltage transitions, when the comparator changes stat~.
To minimize this problem, PC board layout should be designed to reduce stray input-output coupling;
reducing the input resistors to less than 10 Kn reduces the feedback signal levels and finally, adding even
a small amount (1 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible.
It is good design practice to ground all unused pins.
The differential input voltage may be larger than positive supply without damaging the device. Note that
voltages more negative than -0.3V should not be used: an input clamping diode can be used as
protection.
The output of the LM 339 is the uncommitted collector of a NPN transistor with grounded emitter. This
allows the device to be used like any open-collector gate providing the OR-wide facility.
The output sink current capability is approximately 16 rnA; if this limit is exceeded, the output transistor will come out of saturation and the output voltage will rise very rapidly.
Under this limit, the output saturation voltage is limited by the approximatively 60n rsat of the output
transistor.

Fig_ 1 - Basic comparator

Fig. 3 - Inverting comparator
with Hysteresis

Fig. 2 - Non-inverting comparator with Hysteresis

+V

+V

3KJl
+VREFo----i~

+VINo----I

3K !l

>-+--OVO

5-5118

Fig.4 - Driving C/MOS

Fig. 5 - Driving TTL
+5V

+5V

5-5173

208

APPLICATION INFORMATION (continued)
Fig.6 - AND gate

Fig.7 - OR gate

3 K!l

A "---"-'---A v-'--_~----'
B o--L_}--+----..--l
C ,",---"-L
J

:VST

~VST
"0"

A+ B+C

B~~_r_-~~~

"0"

"1"

Cv-----,_-'--

"1"

5 - 5175

5- 51 7i.

Fig.9 - Squarewave oscillator

Fig. 8 - Large fan-in AND gate
+Vs

4.3 K IL
lOOK IL

Vo + v s T U

o

1=100KHz

5-5177

Fig. 10 - Time delay generator

Fig. 11 - ORing the outputs
... 15 V

10Kll

15KIl.

200Kll

10 K

n

51 Kj)
10K11

+lS;TL..
to

Ve ,

V,N

J!nF

INPUT GATING SIGNAL

'l2[
V3

------

V2

----

v, _

I

~

I

I

to

+15V

oT
to

V,

12

51 Kll

.15V

o

10KIl

e'

14

:

'
t, t,

I

13 '4

lQKJl
+15V

oT
to t,

v,
51 Kll

I

s- 5333

209

APPLICATION INFORMATION

(continued)

Fig. 12 - Peak audio level display
560.n

IN

Fig. 13 - PC Board and component layout of
the circuit of fig. 12

... ,2V

1 K1L

R1

RS

S.8K 11

>-,'4"--_"3-:'d80,("1.4"-V')-----!

R"
68011

13
-1008(0.6V)

5-5160

Fig. 15 - Zero crossing detector (split supplies)

Fig. 14 - Zero crossing detector (single supply)
+lSV

V I Nmin "" O.4V peak for 1% phase distortion (ll ())

D1 prevents input from going negative by more
than O.6V:
R1 + R2 = R3
R3';;

~~

for smaller error in zero crossing

210

LINEAR INTEGRATED CIRCUIT
BALANCED MODULATOR
• SINGLE OR DUAL SUPPLY OPERATION
• LOW POWER CONSUMPTION
• LOW CARRIER LEAKAGE
• LOW DISTORTION
• LOW NOISE
The LS025 is a low noise linear integrated circuit, intended for use as a channel modulator and demodulator in FDM telephone equipments and as analogue AC and DC multiplier in industrial and professional
applications. It features low quiescent power consumption, low distortion and intermodulation. It shows
a typical carrier leakage better than 85 dB throughtout the audio bandwidth. The LS025 is available in
TO-l00 metal case, while the hermetic gold chip (8000 series) is available in SO-14 (14-lead plastic
micropackage). This last version is particularly suitable for professional and telecom applications wherever very high MTBF are required.

ABSOLUTE MAXIMUM RATINGS

TO-100

Supply voltage
Differential input voltage
Operating temperature
Power dissipation at T. mb = 70°C
Storage temperature

J-Lpackage

30V
±5V
-25 to 85°C
520 mW
400 mW
-65 to 150°C
-55 to 150 °C

MECHANICAL DATA

Dimensions in mm

]:lr
211

6/82

CONNECTION DIAGRAMS AND ORDERING NUMBERS
(top views)
CARRIER

INPUTS

~,
OUTPUT

MULTIPLIER

14~LTIPLIER
INPUT

[2

INPUT

CARRIER
INPUTS

,

iSIGNAL OR
MULTIPLIER

7

INPUTS

MULTIPLIER
INPUTS
(X AXIS)

INPUT
BIAS

I

SIGNAL OR

9

MULTIPLIER

INPUTS

Type

TO-100

SO-14

LS025

LS 025T

LS025M
LS 8025M

LS 8025

SCHEMATIC DIAGRAM (The pin numbers refer to the ",package version, while the numbers in
brackets refer to the TO-100 version)

6(6)

,----+--c
O.5kfi

L ____+-I---___k
(10)21(7)

_ _ _+_~_~J

~L_o5(5)

9(8)

THERMAL DATA
Rth j-amb

__

I

Thermal resistance junction ambient

TO-100
max

155°C/W

• The thermal resistance is measured with the device mounted on a ceramic substrate (25 x 16 x 0.6 mm).

212

SO-14
200* °C/W

ELECTRICAL CHARACTERISTICS (Referred to the circuit of fig.
otherwise specified. The pins correspond to the /Lpackage version)
Parameter

Test conditions

Min.

1; T amb =

Typ.

25°C

unless

Max.

Unit

-30

V

2

2.5

rnA

2
2
4

/LA
/LA
/LA

Vs

Supply voltage range

-12

Is

Supply current

Ib

I nput bias cu rrent

Pins 14-1
Pins 14-2
Pins 8-9

0.7
0.7
1.4

AI

Input offset current

Pins 14-1
Pins 14-2
Pins 8-9

50
70
100

nA
nA
nA

4.5

V

-8

V

Positive input common mode

voltage
Negative input common mode
voltage
Vo

DC output voltage (pin 12)

AVo

Differential output voltage
(pins 11-12)

V ref

I nput biasing reference voltage
(pin 6)

Ri

I nput resistance

Ro

Output resistance

Vo

Output voltage swing

CMR

Common mode rejection

SVR

-3.2

Pins 14-1
Pins 14-2
Pins 8-9
f = 1 kHz

-3.8

-4.6

V

25

100

mV

-7.5

V

30
300
150

k!1
k!1
k!1

3

10

!1

1.3

Vpp

98

dB

CM signal (pins 14-2)
V = 700 mVrms fl= 10 kHz
Diff. signal (pins 8-9)
V = 350 mVrms f2= 40 kHz

86

dB

CM signal (pins 8-9)
V = 350 mVrms fl= 10 kHz
Diff. signal (pins 14-1)
V = 175 mVrms f2= 40 kHz

80

dB

33

dB

80

dB

1
eM signal (pins 14-1)
V = 700 mVrms fl= 10 kHz
Diff. signal (pins 8-9)
V = 350 mVrms f2= 40 kHz

Positive supply voltage
rejection
f = 1 kHz

SVR

Negative supply voltage
rejection

213

ELECTRICAL CHARACTERISTICS (continued)
Test conditions

Parameter

Typ.

Max.

Scale factor

Gc

Conversion gain

t.G c

Conversion gain change

T amb = 10 to 50"C

Carrier leakage

V m=

4.5

a

Modulating signal leakage

5

Unit
V-I

3.2

K

Vfm

Min.

5.5

dB

± 0.1

dB

-35

-50

dBv

-35

-50

dBmo

-75

dBmo

V (fc±fml
V(2 f m l
V (fc±fml
V (fc±2fml

2nd harmonic modulating
signal leakage

2nd harmonic distortion

--60

-75

dBmo

2nd harmonic d,stortion

-55

-80

dBmo

3rd harmonic distortion

-60

-79

dBmo

-115

-125

dBv

-127

dBv

V (fc±fml
V 2 (fc ±f m l
V (fc±fml
V(fc±3 f m l
V (fc±fml
Low frequ ency thermal noise
High frequency thermal noise

Vm=O
B = 100 Hz

f = 1 kHz

Vm=O
B = 100 Hz

f=30kHz

Fig. 1 - Test and application circuit of modulator with single supply voltage

Working conditions
Vs= -20V
fc=130kHz
fm =25 kHz
Vo= -15 dBv (fc
Vc= -13 dBv

R L = 600 n

214

± fm)

Fig. 2 - Carrier leakage vs.
modulation signal input
offset

Fig. 3 - Conversion gain vs.
frequency

Fig. 4 - Distortion vs. output level

G,r-rr~~TTTmrn-"nITmIIIr-TTITTIm

(dB) f-t+H-+1IIII--++-tffii/tl;;-,,:-'.:-'_""""dB~,It-++ttttll

V• • tIOIl
-100

f-+-+-f-+--+---j:cL ::~z

f-t+H-+1IIII--++-tffiIllVm"·l6dB

-eo

-

12 f-t+H-+1IIII--++-tffiIll~m ::O~H~ -

r---

IIc_·IJdBv

f-+-+-+-f-+-+-+--+-+-I

_2

H-t.+'f-IA-t-++-I!~:I;~:~:

10..-

V
i'""'-'" f--+-+-9--+--j-f--f"-4_dH

H-+'-rTlH-++-HIIc=-IJdBv
H-+++-H-++H~:~~~

L+

10

10

110ft (mV)

Fig. 5 - Carrier leakage adjustment circuit for
system with two supply voltages

12

-votdBv)

Fig. 6 - Carrier leakage vs.
frequency
,dllY' ,..--rTTTTTnr-,--rrrrmr-,-ri'l'mn

.10V

600n

-90 f-++++A'III~.--c"'iithJ...d"'i",,:..'"m_H14

"0 1==
~~r::::::+=I=+=tim
.... 15'1

;-~t-=

I)'

Fig. 9 - Voltage follower
pulse response

Fig. 8 - Large signal frequency respo~s~"

\

100

10'

10'

(V)
:t 15'1

10

10

10

12

1~""

70

~~.~.~.~,~.~.~.-+~~~~~
10

t 10 (mA)

G 4163

0.' t-H-Iftffltt-+t+ttIfllo,.t-Httttff--t-t+1ttttl

"

SIN L

Guaranteed performance characteristics (LS 107/LS 207)
Fig. 10- Input voltage range
vs. supply voltage
arnb"

to

Fig. 12 - Voltage gain vs. supply voltage

Fig. 11 - Output voltage
swing vs. supply
voltage

__ 5 tol15

toll

*_

(V)

"
,0

'"

"

"

.un

80

4

I;

B

10

12

14

6

16!\Is (l/)

8

10

12

14

16 til, (1/)

Guaranteed performance characteristics (LS 307)
Fig. 13 - Input voltage range
vs. supply voltage

Fig. 14 - Output voltage
swing vs. supply
voltage

Fig.15- Voltagegainvs.supply voltage

,,)
"om~stmm
am •

to

(dB)

•

G,
90

ffi~§f~~ff!J~ff~~fl
.01010"(.

POSITIVE

"

'0
t€GATlvE

80

15
6

7

8

9

10

"

12

Il

!I!.(V)

5

6

1

8

9

to

11

12

13 tV,(II)

8

9

10

11

12

lJ !V. (II)

TYPICAL APPLICATIONS
Fig. 16 - Inverting amplifier

R2::

'i~R'
2 _

6

J •

, •• .ill.
0-

~.

R1

Fig. 17 - Non-inverting AC
amplifier

Fig. 18 - Non-inverting amplifier

Rl

RI

RZ

~~,o

,

,0

Vo •

I

]&20

R~,R2

Ri .RJ
RJ • RlIR2
5-2621

235

Vi

v'~'
R)

:'·2622

,

LINEAR INTEGRATED CIRCUITS
FREQUENCY COMPENSATED OPERATIONAL AMPLIFIERS
• NO FREQUENCY COMPENSATION REQUIRED
• SHORT CI RCUIT PROTECTION
• OFFSET VOLTAGE NULL CAPABILITY
• LARGE COMMON MODE AND DIFFERENTIAL VOLTAGE RANGE
• NO LATCH-UP
The LS 141 series consists of general purpose operational amplifiers, intended for a wide range of analog
appl ications. High common mode voltage range and absence of "latch-up" tendencies make the LS 141
series.ideal for use as a voltage foliower.The high gain and wide range of operating voltage provide superior
performance in integrators, summing ampl ifiers, and general feedback applications. The LS 141 series is
available with hermetic gold chip (8000 series). This is particularly suitable for professional and telecom
applications, wherever very high MTBF are required.

ABSOLUTE MAXIMUM RATINGS

TO-99

Vs

Supply voltage

V j (1)
tNj
Top

Input voltage
Differential input voltage
Operating temperature for LS 141/LS 141A
for lS 141C
Output short circuit duration(2)
Power dissipation at T amb = 70°C
Storage temperatu re
Lead soldering temperature

Ptot
T stg

for LS 141/lS 141A
for lS 141C

I

Minidip

I

J.lpackage

±22V
±18V
±15V
± 30V
-55 to 125°C
o to 70°C
indefinite
520mW
400mW
665mW
-65 to 150°C -55 to 150°C -55 to 150°C
300°C (lOs) 260°C (12s)
260°C (5s)
235°C (11s)

1) For supply voltage less than ± 15V, input voltage is equal to the supply voltage
2) The short circuit duration is limited by thermal dissipation

MECHANICAL DATA

6/82

Dimensions in mm

236

CONNECTION DIAGRAMS AND ORDERING NUMBERS

I':
i

I,

""SE'M'LCO'
INVER tNPUf_

Type

2

7

NON INVER
INPUT.

3

6

OUTPUT

-vs

4

5

OFFSET NJLl

TO-99

.Vs

"'FSE''"' O'

IN'o£R INPUT-

2

7

NON INVER

3

6

OUTPUT

-vs

to

5

OFFSET NJLl

INPUT-

+VS

80-8

Minidip

LS 141

LS 141T

-

-

LS 141A

LS 141 AT

-

-

LS 141C

LS 141 CT

LS 141 CB

LS 141 CM

LS 8141

-

-

LS 8141M

LS 8141A

-

-

LS8141 AM

LS8141C

-

-

LS 8141 CM

SCHEMATIC DIAGRAM

R1

R3

lkfl

SOtin

R2

1kfl
5-2059

THERMAL DATA
Rth j-amb

TO-99

Thermal resistance junction ambient

max

155°C/W

* Measured with the device mounted on a ceramic substrate (25 x 16 x 0.6 mm)
237

Minidip

80-8

120°C/W 200* °C/W

I

ELECTRICAL CHARACTERISTICS (see note)
Parameter

Test conditions

!~141

__

LS141~k

__

LS 141C
Unit

Typ. Max.

Input offset
voltage

T amb = 25°C
R g <;;10kn
Rg <;; 50 n

2

T amb= T min to T max
R g <;;10kn
Rg <;; 50 n
r-------.-.-----

f---[:, Vos
~

In pu t offset
voltage adjust.
range

Vs= ± 20V
Vs= ± 15V T amb = 25°C

-----

~--------r--"

.----....

Average input
offset voltage

Ri

i

20
85

current

Input resistance

T amb = 25°C

3

200
500

30

20

70

I

2

1

30

6

to T max

Large signal
voltage gain

±13

±12

94

nA

80
0.21

80

0.3

2

500
0.8

nA
IJ-A

Mn
Mn

±13

±12

±13

V

86

106

dB

dB

84

±12
±10

±14
±13

V

25

mA
mA

-

238

nA
nA

OC

0.5

±12

200
300

i
I

0.3

T amb= T min to T max

15

0.5

I
T amb = 25°C
T amb= T min to T max

Input voltage
range

±15

-L-L

T amb= T min to T max

~ T amb= T min
Vi

mV
mV

I I I

±_1d_j±10
I

Average input
offset current
drift
Input bias

+-'

'

f---_ _d_rif_t_ - - 1_ _ _ _ _ _ _
Input offset
T amb = 25°C
current

mV
mV

+ 'J J ~-' I-+-i__ _7_.5+-~_~-i

i

_il

6

...•.

V

--'-

90

dB

96

d8
dB

ELECTRICAL CHARACTERISTICS (continued)
LS 141
Parameter

LS 141A

LS 141C

Test conditions

Unit
Min. Typ. Max. Min. Typ. Max.

Min. Typ. Max.

Transient respon. T amb = 25°e
(unity gain)
Rise time
Overshoot

0.3
5

0.25
6

B

Bandwidth

T amb = 25°e

SR

Slew rate

T amb = 25°e

0.5

Is

Supply current

T amb = 25°e

1.7

2.8

Power

T amb = 25°e
Vs= ±20V
Vs= ±15V

50

85

Plot

consumption

0.437

1.5

0.3

0.7

80

Vs= ±20V
T amb = T min
T amb= Tmax

0.8
20

0.3
5

",s
%

MHz

V/",s

0.5
1.7

2.8 mA

50

85

150

165
135

Vs=±15V
T amb= T min
T amb= T max

mW
mW

100
75

60
45

mW
mW

mW
mW

Note: These specifications, unless otherwise specified, apply for V s= ±15V and T amb = -55 to 125°e for LS 141 and
LS 141A. For the LS 141e these specifications apply for Tamb= 0 to 700 e

Fig. 1 - Open loop voltage
gain vs. supply voltage

Fig. 2 - Output voltage
swing vs. supply
voltage

('·Zlll/l

G,

V

(dB)

511,1

lS lloolA.

V

it-

211n

."

32

80

L
LS141A

28

1IJO

V

"

LSI41C

"

'0

LS 141e

20

1/

16

/

90

as

(mW)

R

.05

Fig. 3 - Power consumption
vs. supply voltage

12

20

V

Tamb =2S"C

I

80
11

15

"
239

:t

Vs (v)

.0

15

!Vs (v)

Fig.4 - Open loop voltage
gain vs. frequency

.

Fig. 5 - Open loop phase
response vs. fre·
quency

G-UlO

(f)

(dB )

'0

Fig.6 - Input offset cu rrent
vs. supply voltage
(for LS 141 and
LS 141C)
(nA)

f-- f--..
0

'0

1'\

Vs=:tlSV

"'-

60

-30

"'-

0
20

~

:t15V

T mb :f5

30

1\

-60

"-

v

'\.
20

-90

"-

"'-

l'

t-- r-

-120

'0

-180

1\

.

•. +

·,so

---.!~ -+

2

Fig. 7 - Input resistance and
capacitance vs. fre·
quency(for LS 141
and LS 141C)

Fig. 8 - Output resistance
vs. frequency.
c,

"

S

B

10

Lt·

b;:~;T~

-:;-

I--- I--

12

14

16

tVs{V)

Fig. 9 - Output voltage
swing vs. load resistance
Yo

(pC)

(Vpo)

f-----I-I+++1+1t~--:;,.f--4+++H-tl

24

f--+-+-++++.m--+--+-+++H+l

20

f-----I-I+++1+1t-+++++H_tl

'0

II

Vs-:15V

....

200

•

H-H-Il+ttI-+++ttttll--+t-tt1Itt1f---t1I-H1HH

Tamb""ZS-C

16

"
to' l.....!~.'!J.L!'.L.....!...1..!lfl!lL-+.l.!.LI!.lI!'.L...!-U.llllIlO·'
to'

tol

10"

105

I (Hz)

Fig. 10 - Output voltage
swing vs. frequency

10. 1

10'

Fig. 11 - Input noise voltage
vs. frequency

Fig. 12 - Input noise current
vs. frequency

(~)'I.~I
It;.

Vs:!:.15V

lamb= 25"C

'" H-+++llllI-+f+++llll\l\-+l+l!l!l--+++1JllII
20

I--+l-Itl+ll>-I--++Ijillll-\-+\I+IlliIll----l-l-l+lillll
10. . . . .

16
t2

.,.

101

I

10'

•••

I

10"

105

f(Hz)

w l.....!~.~.~,-+~~-+~~-+~~
10'
f (Hz)
to
to'
'0'

240

t-t--

Fig. 13 - Transient response

Fig. 14 - Common mode reo
jection ratio vs. fre·
quency

G·222?

20

0-2217

eM"

I
I h.

VJ

Vo

 6~

Tamb " zs "c

__

10':11_
"L 02kn -

NO ov RSHOOT
(CLSlOOpF)

'~S=OOT

':
10·'

2OOH-++I!!!II-++lj1llll--++++!HII-+~\lII

-.;:::::,

LJL.l...l....L..L..!.-LL.JU...l....L..L.LJ
o
10
20
JO
40
50
60
Gy(dB)

10. . . . . .

10'
10'

10'

10'

249

10'

10'

10'

! (Hz)

(;-221512

RELATIVE

Fig. 32 - Transient response
test circuit

Fig. 31 - Voltage follower
transient response
(unity gain)

Fig. 30 - Frequency characteristics vs. supply
voltage

(;-221311

Vo

I

(mV )

Tam b,,2S"c

10

1.4

90"1.
__ RANSIENT

SLEW RAT

f-:: ~

0.8

16
RESPONSE

"'t-t--l-

"""b::::

r--

V,,=115V

CcdOpF

I

LOSED lOOP BANDWIDTH

R L : 2kO

CL ."OOpF

I

-'-

0.6

I- -r--

-r--

Vi

Tam1b"ZS'C

11~'"

C,
lOpF

- f - RISIE T\t~E
0.4

,5

0.5

10

2

t(us)

Fig. 35 - Large signal feed
forward transient
response
G-lOJ1

Fig. 34 - Feed forward compensation

Fig. 33 - Voltage follower
large-signal pulse
response

(;-221412

v.

Vo



7

I

..L~o-2

OUT

PRECISION
THERMALLY
COMPENSATED

BIAS NETWORK

'" o--.-'4--~-----'
1',.0.

13

252

I"

",c:r+

I '

I

:L-----7~

I

\

I
I

I
I
I
I
I

:L--------C'I~~-_r
I
I
I
I
I

I
I

I
I
I

I
I
~
~

I

I

~!~O~I+-~------~~Jl------~------t_~~

253

THERMAL DATA
Rth i-amb

Plastic

120°C!W

max

Thermal resistance junction-ambient

ELECTRICAL CHARACTERISTICS (Refer

Ceramic

to the test circuit of fig. 1, -Vs= -12V;T amb =25°C

unless otherwise specified)

Parameter
Is

Supply current

R7

Input dynamic biasing resistance
(pin 7)

Gv

Gain

t.G v

Gain variation

B

Bandwith (-3 dB)

Ro

Output resistance

RI·

Input resistance (pin 5)

d

Distortion

d3

Two-tone th ird order
intermodulation

eN

Output noise in psophometric
band

t.IGI

Expansion accuracy after
balancing

10ff

Inhibit current consumption
(pin 2)

G

Amplifier gain

Test conditions

Min.

LI = -14 dBv f = 800 Hz
External time constant
2 Rl • Cl = 20 ms
-1
Tamb= 5 to 55°C
t.V s=±2%

Typ.

Max.

Unit

5

8

mA

60

90

n

0

+1

dB

±0.2
±0.03

dB
dB

500

KHz

25
LI = -14 dBv
f = 800 Hz

f 2 =1020Hz
f1 = 900 Hz
V 1 = V 2 = 88 mV

L i =-40to-l0dBv, f=800Hz
T amb = 5 to 55°C , f = 800 Hz

I nhibit ON (pin 2 grounded)
.·f = 800 Hz
254

-1.5

60

n

100

Kn

0.7

%

0.5

%

-100

dBm

0.1
0.2

0.2
0.3

dB
dB

0.3

1

mA

0

+1.5

dB

TEST AND APPLICATION CIRCUITS
Fig. 1 - Expandor circuit

Fig. 2 - Compressor circuit

4.7kl'l

4.7kn

-12Vo--+---......-"""'4
4.'T5kfi 2.2fJF

100,uF

4.75kl1

OUT

(.) S closed: unity gain amplifier.
S open : expandor.

Fig. 3 - Compandor Characteristics

Fig. 4 - Comparison between LS150 performance (curve A) and limits from CCITT
recommendation (curve B) - Green Book Geneva 1972 - G162.

AG
dB

tll---~
.. 0.75

1

I
1
1

+0.2

-0.2

- - - - -~~26 - - - ~;o --- A- 0 ~4- dS;O_____ ~----- _ _ _ _ _ _ ...J _ _ _ _li
'I

I

I

I
I

I, ",.
255

Fig. 5 - Expandor gain vs. temperature

Y:t-

6G

(d8)

I

tittHu

-I"

+
'

,r

0.3

0.2

G 2305

j Ii,

.--j-

'-+

-~---l---

: ,++r
R+
1[- ttt t~
+~

i-..

0.'

I

"'j-.."

--

Fig. 6 - Transient response

II~'
t

+-

ta .. 3m.

T;

tr '" 15.5ms

+-

-Jlt--.r--

--

•

T:~ r

I-

~o.'

-60

-- ---

I

-0.3

-40

-20

1
20

ill

60

TcawrO

APPLICATION INFORMATION
The fig. 7 shows the basic configuration (with relative signal levels) of a compandorized system.
It is clear the action against the line noise: the system using a compressor in sending and an expandor in
receiving can improve very much the signal-to-noise ratio, especially with very high noise lines_
By using the LS150 it is possible to built both the compressor and the expandor blocks.
Fig. 7 - Compandorized system.

NOl5E

.8dB
OdB --=========::::::::::============::::::::============~8dB
OdB=-'4dBv

-3odB-----~

NOl5E

-GOdB - - - - " / . ''".'
256

~------30dB

~=. .

=.:::::""":::::_ -GOdB

APPLICATION INFORMATION (continued)
The basic block diagram of an expandor is shown in fig. 8. The product of the input voltage Vi and its
mean value Vi (obtained from the rectifier with time constant r) is supplied at the output of an "ideal"
multiplier.
Multiplier
Fig. 8 - Basic expandor circuit.

X
Rectifier

~

~

r-

Vi
5-[,187

The output voltage Va is proportional to the product of V i and V I :
Va= KVixV i
where K is a factor that defines a level for unity gain.
For a constant input level,
Va = KV i X ~= KV;2
Expressing all levels in decibels relative to a reference level:
Va (dB) = 20 IOg10 V? = 2 Vi (dB).
Signals with an input level equal to the reference level are unaffected by the expandor while higher levels
are raised and lower levels attenuated. It is recommended by CCITT, and practically advantageous, that
the unaffected level be - 14 dBv, a voltage corresponding to -14 dBm across 600n. A time constant for
the average rectifier of 20 ms is also recommended, giving "syllabic" operation of the compandor.
Fig. 9 - Basic compressor circuit. Vi _ _ _-\.

r----------

-,

,
I

'I
5-4'88

I

______________ 1

A compressor can easily be implemented with an expandor in the feedback path of an operational amplifier (Fig. 9). Assuming infinite gain for the amplifier:
Vi = KVa x Va
and for a constant input level
Va =

~
K

In decibels, with respect to the unaffected level,
Va (dB) = 20 10glo (VI) y,

257

~

Vi (dB).

i:

APPLICATION INFORMATION (continued)

Design Constraints
There are several constraints on the design of a compandor to be used in telecommunication equipment.
Level: The reference (or unity gain) level is -14 dBv, i.e. 155 mV rms. For application in high-quality
multiplexer transmission systems between exchanges, and expansion accuracy better than 0.2 dB in the
same range (+40 to -25 dBmo) considered by CCITT for all operating conditions is required. These parameters had to be compatible with mass production manufacturing techniques. Particularly when
taking into account the low signal levels, this requirement is very demanding. It was the main target in
designing the device and had a strong influence on the fabrication process, circuit configurations, and
layout.
Power Supply: The circuit has to operate with a single 12V negative supply, unregulated, and with
relatively high noise.
Input Impedance: This has to be precisely defined by an external resistor, which is the passive termination
of an LC filter before the expandor. Thus the input impedance of the IC must be very high. A differential input stage is preferable to reduce ground loop noise.
Gain: The expandor (or compressor) shall not modify the level diagram of existing channel modems,
already optimized for crosstalk and noise. This means that the gain at the unaffected level shall be 0 dB,
with small spread.
Inhibition: It must be possible to inhibit the operation of the compandor for testing and maintenance
purpose, and to allow the transmission of telegraph channels.

Definition of units
dBmo

power level (10 log :: ) is expressed in dBm when P1 is 1 mW, therefore 0 dBm = 1 mW.

dBm

the power is expressed in dBmo when referred to an established power level in the circuit,
generally the output signal level.
e.g.: if the output level is -15 dBm and this level is chosen as reference, then 0 dBmo = -15
dBm; if another signal, i.e. the distortion measured at the same point of the circuit, is
-90 dBm, then the distortion is -75 dBmo.

dBv

20 log V ~ when V 1 = 775 mVrms.

V

258

LINEAR INTEGRATED CIRCUIT
PRELIMINARY DATA
TELEPHONE SPEECH CIRCUIT WITH MUL TIFREOUENCY TONE GENERATOR
INTERFACE
The LS156 is a monolithic integrated circuit in 16-lead dual in-line plastic package to replace the hybrid
circuit in telephone set. It works with the same type of transducers for both transmitter and receiver
(typically piezoceramic capsules, but the device can work also with dynamic ones). Many of its electrical
characteristics can be controlled by means of external components to meet different specifications.
In addition to the speech operation, the LS156 acts as an interface for the MF tone signal (particularly
for M761 C/MOS frequency synthesizer).
The LS156 basic functions are the following:
It presents the proper DC path for the line current.
It handles the voice signal, performing the 2/4 wires interface and changing the gain on both sending
and receiving amplifiers to compensate for line attenuation by sensing the line length through the line
current.
It acts as linear interface for MF, supplying a stabilized voltage to the digital chip and delivering to
the Iine the MF tones generated by the M761.

ABSOLUTE MAXIMUM RATINGS

VL
IL
IL
Ptot
Top
T stg '

Tj

Line voltage (3ms pulse duration)
Forward Iine current
Reverse line current
Total power dissipation at Tamb = 70 D C
Operating temperature
Storage and junction temperature

22
150
-150
1
-45 to 70
-65 to 150

V
mA
mA
W

DC
DC

ORDERING NUMBER: LS 1568
Dimensions in mm

MECHANICAL DATA

259

6/82

CONNECTION DIAGRAM
(top view)
MIC.INPUT

MlC.INPUT

16

• LINE

15

VDO

MUTING

14

MFINPUT

BIAS ADJ.

13

RECEIVER OUTPUT

SHUNT REG.
BYPASS

12

~

RECEIVER OUTPUT

h
10h
11

O.C.REGUlATOR
LINE CURRENT
SENSING

INPUT.(REC.AMP)

INPUT-(REC.AMP.)

2BAl SWITCH

9

~

-LINE

5·3838 11

BLOCK DIAGRAM
r-----------------------,--{:=}-~~------------------------~----------Q~

tvl

J.

R2

bia!oo

resistor

r--------------{141r---------~~----~

t

MF

signal
5-4313

260

TEST CIRCUITS
G

-+______-,

~~+OA~-.__________________~_6,8~nr-~~33~0~n~~+-__

52

10

LS156

nF

13
KD.

-8

F

5-1, 3 68(1

Fig.2

Fig. 1
~

~

G
A

G

r---+_---¢A

TEST
CIRCUIT

TEST
CIRCUIT

R=6.8Kfi

R =6.SKfi

L---+.------68

L---+-----

,--

SVA
L-

10 5

100

100

Fig. 6 - Supply voltage rejection vs. frequency

80

~

10

Gv
(dB )

Gv

20

o

~.

so

-so

so

~

95

'"

40

40

90
-50

1et f (Hz)

Fig. 7 - Large signal frequency response

50

100

Tamb( C)

20
10

Fig. 8 - Output voltage
swing vs. load resistance

10'

10'

10'

10 5

f(Hz)

Fig. 9 - Total input noise
vs. freq uency
G-!713

24

r--t-t-t-rttffl 'Is =.15V

)

_Lll

~-+-++-H-.f+H Gy =20dS

20 ~-+-++-i1ft+H f = 1kHz
~-+-t+1f-t++H d = 3'"

Rg.IOKIl

.

10 ~

12 ~-+-1f+-H-f+H--+-+-H-f++H

4~~~**--~+#~~~~~
-+-M+**--~-+-H#ffi-~++~

/

OL-+-~~L-~~~~-LLll~

10 2

10 3

10'

f(Hz)

10'

r

"s_.,5V

IKIl

5OJl[

;i

.

10'

279

I

. ..

10'

. ..

.II ..

f(Hz)

APPLICATION INFORMATION
Fig. 10 -Amplitude response

Active low-pass filter:

0_36oWi

'.

BUTTERWORTH

(dB )

The Butterworth is a "maximally flat" amplitude response filter.
Butterworth filters are used for filtering signals in data acquisition
systems to prevent aliasing errors in sampled-data applications and
for general purpose low-pass filtering.
The cutoff frequency, fe, is the frequency at which the amplitude
response is down 3 dB. The attenuation rate beyond the cutoff frequency is -n6 dB per octave of frequency where n is the order(number
of poles) of the filter.
Other characteristics:
• Flattest possible amplitude response.
• Excellent gain accuracy at low frequency end of passband

~

\\

-20

~

\'

-40

ber of poles) of the filter. The cutoff frequency, fe, is defined as the
frequency at which the phase shift is one half of this value. For accurate delay, the cutoff frequency shOUld be twice the maximum signal
frequency. The following table can be used to obtain the -3 dB frequency of the filter.
2 pole

4 pole

6 pole

8 pole

-so

0.77 fc

0.67 fc

0.57 fc

0.50 fc

I

III

as

fife

Fig. 11 -Amplitude response
G_361o~

'.
(dB

)

;:.....
~'\.

-20

I"-

1\\
\

--

n =2

ir·
n.B \ l\n.S
I\(

-4 0

-60

-3 dB frequency

~

n.B ,\ t'.4
\ n.s1-j

0.1

BESSEL
The Bessel is a type of "linear phase" filter. Because of their linear
phase characteristics, these filters approximate a constant time delay
over a limited frequency range. Bessel filters pass transient waveforms
with a minimum of distortion. They are also used to provide time
delays for low pass filtering of modulated waveforms and as a "running
average" type filter.
The maximum phase shift is -~1T radians where n is the order (num-

'"

4

as

0.1

Other characteristics:
• Selectivity not as great as Chebyschev or Butterworth.
• Very little overshoot response to step inputs
• Fast rise time.
Fig. 12 -Amplitude response
(± 1 dB ripple)

CHEBYSCHEV

A.

Chebyschev filters have greater selectivity than either Bessel or Butterworth at the expense of ripple in the passband.
Chebyschev filters are normally designed with peak-to-peak ripple
values from ± 0.2 dB to ± 2 dB.
Increased ripple in the passband allows increased attenuation above
the cutoff frequency.
The cutoff frequency is defined as the frequency at which the amplitude response passes through the specified maximum ripple band and
enters the stop band.
Other characteristics:
• Greater selectivity
• Very nonlinear phase response
• High overshoot response to step inputs
280

I
I

(dB )

G-3I41

I

I

~

i

t., "1\\ ..... n.2

I

-20

!

\\

I

-40

\\

i

-60

.4

iI

I

0.1

\

.BY n.s\l

f--I

o.s

fife

APPLICATION INFORMATION (continued)
The table below shows the typical overshoot and settling, time response of the low pass filters to a step
input.

NUMBER
OF POLES

PEAK
OVERSHOOT

SETTLING TIME (% of final value)

±1%

% Overshoot

BUTTERWORTH

BESSEL

CHEBYSCHEV
(RIPPLE ± 0.25 dB)

CHEBYSCHEV
(RIPPLE ± 1 dB)

4
11

2
4

± 0.1%

1.1/fc sec.
1.7/fc

1.7lfc sec.
2.8/fc
3.9/fc
5.1 fc

6

14

2.4/fc

8

16

3.1/fc

2
4

0.4

0.8/fc
1.0/fc

± 0.01%
1.9/fc sec.
3.8lf c
5.0lf c
7.1/fc
1.7/f c
2.4/fc
2.7/f c

6

0.8
0.6

8

0.3

1.6/fc

1 .4/f c
1.81f c
2.1/fc
2.3/fc

2
4

11
18
21

1.1/fc
3.0/fc
5.9/fc
8.4/fc

1.6/fc
5.4/fc
10.4/fc
16.4/fc

-

1.6/fc
4.8/fc

2.7/f c
8.4/fc

-

8.2/fc
11.6/fc

16.3lf c
24.8/fc

6
8

23

2
4
6

21
28
32
34

8

1.3/fc

Design of 2 nd order active low pass filter
(Sallen and Key configuration unity gain op-amp)
Fig. 13 - Filter configuration

where:
with fc= cutoff frequency

We

271' fe

~

damping factor.

281

3.2/f c

-

-

APPLICATION . INFORMATION (continued)
Tab_I

Three parameters are needed to characterise the
frequency and phase response of a 2 nd order active filter: the gain (G y l. the damping factor (~)
or the O-factor (0= (2 ~)-l).and the cutoff frequency (fel.
The higher order responses are obtained with a
series of 2 nd order sections. A simple RC section
is i"trcduced when an odd filter is required.
The choice of .~. (or O-factor) determines the
filter response (see table).

Filter response

~

0

Bessel

:Yr
2

V3

Butterworth

E2

V2

Chebyschev

<-:5..
2

1

1

>_1_

V2

Cutoff frequency
fc
Frequency at which
phase shift is _900
Frequency at which

Gv = -3 dB
Frequency at which
the amplitude
response passes
through specified
max. ripple band
and enters the stop
band

Fig. 14 - Filter response vs. damping factor
(dB)r--r-rTTTTl"lr-r-ro-rrm

-4 f-- 1j=~~07FR''I""'~,--

75

•

n

536n

~

~;"F

R2

6.8Kfi
2
4

13
-11

R7
1
14

100n

,B.L,
10011

12

-.r-

LINE

LS285
16'

R4
2.05K n

:g2nF

R 6'
9

5

3

6

10

C7

~F

Q"
Fi

2501l

,.!li.

C6

250Il.

>-R3
16.2Kll
~

'-----

289

f"'"

R50
9.09 K
n

j
5-5007

C4
:~2nF

F

APPLICATION INFORMATION
The following table shows the recommended values for the typical application circuit of fig. 6. Different
values can be used and notes are added in order to help designer.

Component

Recommended
Value

R1

75 n

R2

536n

R3

Purpose

Note

Bridge resistors

The ratio R2/R1 fixes the amount of the
signal delivered to the line. (see fig. 7)

16.2 Kn

Bias resistor

Changing R3 value it is possible to shift the
gain characteristics.
The value can be chosen from 15 Kn to 20
Kn. The recommended value assures the
maximum swing (see fig. 9).

R4

2.05 Kn

Balance network

R5

9.09 Kn

In order to optimize the sidetone it is possible
to change R4 and R5 values. I n any case;
R2
ZB
- - = R1 where ZB= R4 + R5/1C4.
ZL

R6 and R6'

250n

Microphone impedance
matching

R6 and R6' must be equal; 250n is a typical
value for dynamic capsules.
Furthermore, they determ ine a sending gain
variation according to;
AG s = 20 log

Rx
850n

where Rx = R6 + R6' + R mike . The trend of
AG s as a fu nction of Rx value is shown in fig. 8.
R7 and R7'

lOOn

Receiver impedance
matching

R7 and R7' must be equal; lOOn is a typical
value for dynamic capsules

C1

1Ol'F

AC loop opening

Ensures a high regulator impedance for AC
signals ('" 20 Knl.
This capacitor should not be higher than 10
I'F in order to have a short response time of
the system.

C2

22 nF

Matching to a capacitive
line

C2 changes with the characteristics of the
transmission line.

C3

82 nF

High frequency roll-off

C3 determines the high frequency response
of the circuit.
It also acts as RF bypass.

C4

22 nF

Balance network

See note for R4 and R5.

C5

1 I'F

C6 and C7

1000 pF

DC decoupl ing for
receiving input
RF bypass

290

APPLICATION INFORMATION (continued)

.,

•
.,

Fig. 7
Receiving gain
variation vs. R 1 value (with
fixed Rl/R2 ratio)
G-4626

OG

OG R
OG 5

~ \

(dB

(dO )

l"lKHz

r-

IL~10to80

lL~'O 10 80mA

·'1

Rl IR 2: 7 5

V

• 2

-

OdBfa)7Sn

-

7

....v

V

-2

,.,lKHz

(dB )

1.1KHz

mA

.,

Fig. 9 - Sending and receiving gain variation vs. line
current
,.,

Fig. 8 - Sending gain variation vs. Rx value (see note
for R6 and R6')
G-4 21

'8

'6

.\r\

\

R .20K1'l.

./"

-2

\

.2

"-

-2

-, /

OdS (ci)850n

"r--.....

-4

-6

.......

-

~~:K~~ -

\

1\

f---

-6

\
\ I\.

"'"

-........

-8

'0

60

80

200

600

20

291

40

f---

LINEAR INTEGRATED CIRCUIT
PROGRAMMABLE TELEPHONE SPEECH CIRCUIT
The LS288 is a monolithic integrated circuit in 16 lead dual in-line plastic
signed as a rep lacement for the hybrid circuit in telephone sets it performs all the func
carried out by
this circuit.
With the LS288 it is possible to select the operating mode (fixed or
both piezoceramic and dynamic transducers and therefore its
sending and receiving paths,
can be preset by means of two external resistors. This fe
obtained in AGC operating
mode, when the device automatically adjusts the Rx/Tx gai
nsate for the line attenuation by
sensing the line current.
The LS288 can supply the decoupling FET when
g with an electret microphone. Output impe·
dance can be matched to the line independent
impedance.

VL
IL
IL

22
150
-150
1
-45 to 70
-65 to 150

Ptot
Top
Tstg' Tj

V·
rnA
rnA
W

°C
°C

ORDERING NUMBER: LS288 B

Dimensions in mm

MECHANICAL DATA

6/82

292

CONNECTION DIAGRAM
(top view)
AGC CUTOFF

MICROPHONE INPUT]

16

A C LOOP OPENING

15

AC AND DC
IMPED.MATCHING

2

14

SENDING AMP OUT

SENDING GAIN
PROGRAM.

13

LINE ""

RECEIVING
PROGRAM.

12

B IA S RESISTOR

11

ELECTRET MIKE
SUPPLY

GAIN

BAL. NETWORK

REC. INPUT
LINE - (GND)
$- 4468"

BLOCK DIAGRAM
r----------{==~--------~--==J_~~--~------------------------,~
R2

R1

C2

14

I

- - -(~'o--"
I

BIAS
RESISTOR

5-4934

293

TEST CIRCUITS
Fig. 1 - Test Circuit
IL• A

39.2

n

392

n

cr~--~--------------~-i~R:1:1}W~~~~:R:2J-~------------,~---,

12

7 14

13

LS288

5
ISM

+--

13
Kn

J'R6

3~~J
1W

-Q-1"6

2

3

9

10
[

1'" ""

R5
6Kn

iii~C1

B

5-4935/1

Fig.2

Fig. 3

,----~-_oA

.--_-.0 A

Fig.4

TEST
CIRCUIT

TEST
CIRCUIT

TEST
CIRCUIT

'---+---oB

'--~>-----¢B

C

D

E

F

D

5-49/,0

5-4938

CMRR

V RO

Vso

V MI

V MI

Side tone = - - ; Gs = -----

THERMAL DATA
Rth j-amb

max

Thermal resistance junction-ambient
294

80

°C/W

ELECTRICAL CHARACTERISTICS (Refer to the test circuits, Tamb = -25 to +50°C, f
to 3400 Hz, IL = 12 to 120 mA, unless otherwise specified)
Parameter

=

200

Test conditions

AGe off (pin 1 floating)
VL

Line voltage
T amb = 25°C

IL= 15 mA
IL= 22 mA
IL= 60mA
IL= 120 mA

CMRR

Common mode rejection

f = 1 KHz

Gs

Sending gain (*)

IL= 15 mA
T amb = 25°C
f = 1 KHz
Rs=17Kn
V M1 = 3 mV

R7 = 8 Kn
R7 = 29 Kn
R7 =47 Kn

V M1 = 3 mV
f ref = 1 KHz

I Lref= 60 mA

.6G S

Sending gain flatness (vs. freq.)

.6G s

Sending gain flatness (vs. current)

dS

Sending distortion

IL= 15 mA
T amb = 25°C
f = 1 KHz
R7 = 29 Kn
V R1 = 0.3V

Rs = 8 Kn
Rs = 17 Kn
Rs = 23 Kn

V R1 = 0.3V
f ref = 1 KHz

I Lref= 60 mA

ZML

V SM

40

26
41
51

42

dB

3

± 0.5

dB

± 0.5

dB

V M1 = 0

Receiving gain (*)

R9-10

2

2

GR

Receiving distortion

dB

5

V M1 = 3 mV

dR

1

VSO= 775 mV

G s = 42 dB

Receiving gain flatness (vs. freq.)

V

VSO= 450 mV

Sending noise

. Receiving gain flatness (vs. current)

4.9
5.4
10
14

f = 1 KHz
G s = 42 dB

Microphone input impedance
pin 2-3

.6G R

4.5

50

R2_3

.6G R

4.1

f = 1 KHz
G R= -3 dB

%

3

dBmp

3

Kn

3

6

dB

4

± 0.5

dB

4

± 0.5

dB

-72
11

15

4

-6
5
14

3

V R1 = 570 mV

2

V R1 = 1.2V

5

%

4

250

ltV

4

Receiving noise

GR=OdB
VRI= 0

Receiver output impedance
(pin 9 and 10)

V RO =50mV

20

n

4

Sidetone

f = 1 KHz
G s = 42 dB
GR= -3 dB

15

dB

3

n

4

Vp

4

V

1

Line matching impedance

V R1 = 0.3V

Max receiving output (click
suppressor)

V R1 = 2V
GR=OdB

Microphone supply voltage
(pin 11)

ISM= 0.8 mA

f = 1 KHz

650

750

850

2.3
1.9

2.1

(*) The sending and receiving gains are not completely independent but the variation in sending gain over the whole
range of receiving gain (and vice-versa) is less than 0.5 dB.

295

ELECTRICAL CHARACTERISTICS (continued)
Test condition

Parameter

AGe on (pin 1 grounded)
fiGS and
flG R

T amb =25°C

Sending and receiving gain
variation (**)

f = 1 KHz

IL = 25 mA
IL = 50mA
IL = 110mA

-1

+1

-6
-7

-4

dB

3-4

-5

(00) Referred to any value fixed by means of R7 and R 8 .

CIRCUIT DESCRIPTION
1. DC Characteristic
In accordance with CCITT recommendations, any device connected to a telephone line must exhibit a
proper DC characteristic V L, IL'
The DC characteristics ofthe LS288 is determined by the shunt regulator (block 2) together with two
series resistors Rl and R3 (see the block diagram). The equivalent circuit is shown in fig. 5.

Fig. 5 - Equivalent DC load to the line
14

R1

13

R3
15
5-4936

A fixed amount, 10 , of the total available current, IL' is drained to allow the circuit to operate correctly.
The value of 10 can be programmed externally by changing the value of the bias resistor connected to
pin 12.

296

CIRCUIT DESCRIPTION (continued)
The recommended minimum value of 10 is 7.5 mA with R pin 12 = 13 Kn.
The voltage Va "" 3.8V of the shunt regulator is independent of the line current.
The shunt regulator (block 2) is controlled by a temperature compensated voltage reference (block 1).
Fig.6 shows a more detailed circuit configuration of the shunt regulator.
Fig.6 - Circuit configuration of the shunt regulator
R2

RI

14

15

16

L-R3~ ~~~_I
__

The difference IL - 10 flows through the shunt regulator since Ib is negligible.
I. is an internal constant current generator; hence Va = VB + I•. R. = 3.8V.
The V L, IL characteristic of the device is therefore similar to a pure resistance in series with a battery.
It is important to note that the DC voltage at pin 16 is proportional to the line current V 16 = V 15 + VB =
(IL - 10 ) R3 + VB·

2. Two to four wires conversion
The LS288 performs the two wire (line) to four wire (microphone, earphone) conversion by means of a
Wheatstone bridge configuration thus obtaining the proper decoupling between sending and receiving
signals (see fig. 7).
For a perfect balancing of the bridge

:~

=

~~

The AC signal from the microphone is sent to one diagonal of the bridge (pin 8 and 14). A small percentage of the signal power is lost on ZB (since ZB ~ ZL); the main part is sent to the line via R 1 .
In receiving mode, the AC signal coming from the line is sensed across the second diagonal of the bridge
(pin 6 and 7). After amplification it is applied to the receiving capsule.
The impedance ZM is simulated by the shunt regulator which also acts as a transconductance amplifier
for the transmission signal.
The impedance ZM is defined as

1;V(14-8)
...:;::,~-~.!!L_
1;1 (14-8)

297

CIRCUIT DESCRIPTION (continued)
Fig. 7 - Two to four wires conversion

14

,

[J

ZL

LINE

~ -----------J___ _
8

5-4937

From fig. 6, considering C l as a short circuit to the AC signal, any variation in /:"V 14 generates a variation as follows:

The corresponding current change is:
/:,.1

therefore

/:"V
Ra
R3 (1 + - - I
/:"1
Rb
The total impedance across the line connections (pin 13 and 8) is given by
ZM

= - -14- =

R

ZML ~ ZM = R3 (1 + _a_)

Rb
The amplitude of the signal received across pins 6 and 7 can be changed using different values of R 1.

(Of course the relationship

~~

=

:~

must always be valid).

298

The received signal is related to the value of R 1 according to the approximated relationship:

Rl
Rl + ZM
Note that if the value of R 1 is changed the transmission signal current is not changed, since the microphone amplifier is a transconductance amplifier.

=

VR

V R1 2

3. Input and output amplifiers
The microphone amplifier (4) has a differential input stage with high impedance (min 11 Kn) so allowing a good matching to the microphone by means of an external resistor without affecting the sending
gain.
The receiving output stage (8) is intended to drive both piezoceramic and dynamic capsules. It has low
output impedance, a maximum voltage swing greater than 2 Vp and a peak current of 2 mAo
With very low impedance transducers, DC decoupling by an external. capacitor must be provided to
prevent a large DC current flow across the transducer itself due to the receiving output stage offset.

4. Gain Control
It is possible to set the LS288 gain characteristics by means of one pin (pin 1).
When the pin 1 is floating, the gains of the sending and receiving ampl ifiers do not depend on the line
current (AGC off). When the pin 1 is grounded the LS288 automatically changes the gain to compensate
for line attenuation (AGC on).
4.1. AGe OFF
In this conditions, as already mentioned, both the sending and the receiving gain are fixed. Their values
are determined, independently for the two paths, by the two external resistors R7 (for T x, between pin
4 and ground) and Rs (for Rx , between pin 5 and ground). R7 values ranging from 8 Kn up to 50 Kn
giving sending gains from 26 dB to 51 dB. Rs values range from 8 Kn to 23 Kn giving receiving gains
from -6 dB to + 14 dB (see fig. 9 and 10).
This allows the LS288 to be used with a variety of different transducers.

Fig. 9 - Sending gain vs.
R7 value (AGC off)

Fig. 10 - Receiving gain vs.
Rs value (AGC off)

G-HI5

Os

"8',I
56

AGe off

/'

'/

AGe 011

/

I

V

I

./

,/

:

./

./
./

32
28

V
I

./

I

~V

-8

i

I
-16

:

i

20
20

JO
20

299

Ra(Kfi)

DESCRIPTION CIRCUIT (continued)
4.2. AGCON

Starting from any couple of gain values, fixed by the appropriate values of R7 and Rs , the LS288 can
automatically change the sending and receiving gains depending on the line current.
The line current is sensed across R3 (see fig. 7) and transferred to pin 16 by the regulator.
V16 =

Va + V 15 =

Va + (I L - 10

) •

R3

Following comparison with an internal reference V REFG (see the block diagram) the voltage at pin 16
is used to modify the gain of the amplifiers (5) and (7) on both the sending and receiving paths.
The starting point of the automatic level control is obtained at IL = 25 rnA when the drain current
10 = 7.5 rnA.
The external resistors R7 and Rs fix the maximum value for the gains.
Minimum gain is reached for a line current of about 110 rnA when the same drain current 10 of 7.5 rnA
is used.
When 10 is increased by means of the external resistor connected to pin 12 the two above mentioned
line current values for the starting point and for the minimum gain increase accordingly.

5. DC Shunt Regulator
The LS288 has built into the chip a DC shunt regulator intended to supply the coupling FET when an
electret microphone is used. It delivers 1 mAp current with a voltage of 2 Volts (typ) regardless of the
line current.

Fig. 11 - Typical application circuit (piezoceramic transducers)
•

~

rv

C5

I-'+t.--.--...--.----+--C::J"'----~-_C:;::J_-___;
C2 1,uF
13

10 I---C:::J--+---'

LS288
LINE
18V

Rl0
15

12

8

16

R3
33.2Jl
lW

b-----'-i

R5

10nF

101111 C3

s- '942fl

300

CIRCUIT DESCRIPTION (continued)
Fig. 12 - Application circuit with electret microphone
+
C2 l,..uF

13

LS288
LINE
18v

15

12

8

16

R3
33.Z!l
lW

13K

s- 494311

The following table can be helpful to the designer when choosing different values for the external
components; it refers to the typical application circuit of fig. 11.
Component

Value

Note

Function

RI

39.2 n

Bridge

'. R2

392n

Resistors

Line current sensing

R I controls the receiving gain.
The ratio R2/RI fixes the amount of
signal delivered to the line. RI helps in
fixing the DC characteristic (see R3
note)
The relationships involving R3 are:
- ZML= (25 R3I!ZB) + RI
ZLI! ZML
R3
-VL=(lL-lol. (R3+ R ,)+V o
[Vo = 3.8V]
- Gs = K·

R3

33.2 n

Fixing DC
characteristic

Values of ZML ranging from 650 up to
850n are easily obtainable.
R4
Rs

2.2 Kn
10Kn

Balance
Network

I n order to optimize the sidetone it is
possible to change R4 and Rs values; in
any case the following relationship
applies:

ZB
ZC=

301

R2
R1
where

ZB= R4+RSI!XC3

APPLICATION INFORMATION
Component

R6

Value

13 Kn

(continued)
Function

Bias Resistor

Note

The suggested value assures the minimum operating current.
It is possible to increase the supply
current by decreasing R6 (they are

inversely proportional) , in order to
achieve the shifting of the AGC starting
point
R7

8 to 50 Kn

Sending gain
programming Resistor

Rs

8 to 23 Kn

Receiving gain
programming Resistor

1.8 Kn

Receiver impedance
matching

R9 and R9' must be equal; the suggested
value is good for matching to piezoceramic capsule; there is no problem in increasing and decreasing (down to On)
th is value, but when low resistance levels
are used DC decoupling must be inserted
to stop the current due to the receiver
output offset voltage (max 400 mY).

RIO

4Kn

Microphone
impedance matching

The suggested value is typical for a piezoceramic microphone, but it is possible
to choose RIO from a wide range of
values: R Mike ~ RIO//Rpin 2-3'

CI

1OI'F

Regulator AC
bypass

A value greater than 10 I'F gives a
system start time too high for low line
current. A lower value gives an alteration
of the AC line impedance at low
frequency.

C2

1 I'F

R9, R9'

DC decoupl ing for
receiving input

C3

10 nF

Balance network

See note for R4 and R s.

C4

47 nF

Matching to a
capacitive line

C4 must be chosen according to the
characteristics of the transmission line.

Cs

82 nF

Receiving gain
flattness

Cs depends on balancing and line impedance versus frequency.

C6 , C 7

1000 pF

RF bypass

302

LINEAR INTEGRATED CIRCUIT
MULTIFREQUENCY TO TELEPHONE LINE INTERFACE CIRCUIT
The LS342 is a monolithic integrated circuit in dual in-line minidip plastic package. It interfaces the
multifrequency tone diallers M751 and M761/761A to the line in telephone sets, performing the follow·
ing functions:
Adjustment of the DC current/voltage characteristic and AC input line impedance by means of an
external resistor (Rd.
Sending to the line of the multifrequency signal.
Adjustment of the signal level by means of an external resistor (R T ).
Stabilized supply voltage to the tone dialler.

ABSOLUTE MAXIMUM RATINGS
VL
IL
IL
Ptot
Top

T stg , Tj

Maximum line voltage (pulse duration';;; 10 ms)
Maximum forward current
Maximum reverse current
Total power dissipation at T amb = 70°C
Operating temperature
Storage and junction temperature

22
'155
-150
800
-40 to 70
-55 to 150

V
mA
mA
mW
°C
°C

ORDERING NUMBER: LS342D

Dimensions in mm

MECHANICAL DATA

~~;
.5

....

.

.

7

303

6/82

CONNECTION DIAGRAM
(top view)
MULTIFREQUENCY INPUT

1

REGULATOR AC BYPASS

2
3

8

~

SIGNAL LEVEL
ADJUSTMENT

7

~

BIAS

6

~

+ VLAND MF OUTPUT

5~ ACIDC CHARACT.ADJUSt

4

5- 40731 2

BLOCK DIAGRAM

DESCRIPTION
The L5342 interface the M751 and M761/761A tone diallers with the telephone line. Power is only
applied to the system when the handset is lifted and a key pressed. At this time 51 is also switched (see
fig. 2) disconnecting the speech circuit from the line and connecting the dialling circuit.
In the dialling condition the L5342 performs 3 functions:
1) D.C. and A.C. line termination
2) Tone dialler power supply
3) Amplification and transmission of tone pairs.
In the initial stage of switch-on the supply voltage V DD is regulated at ~ 4 volt. This overdrives the
M751/761/761A internal oscillator causing a rapid start-up and therefore rapid generation of output
tones.
When the system reaches its normal operating point the supply voltage VDD is stabilized at 2.5V ± 4%.

THERMAL DATA
Rthi-amb

max

Thermal resistance junction-ambient

304

100 °C/W

ELECTR.ICAL CHARACTERISTICS

(lL=10tol00

rnA; Tamb = -25

to +60°C; f = 1

KHz;S in

(b), unless otherwise specified).
Parameter
VL

Line voltage

Gs

Sending gain

fiGs

Sending gain spread over
temperature

THD*

Distortion

Test conditions

Min.

Typ.

Max.

Unit

4.2
4.6
6.3
9.8

4.5
5
6.8
11.5

V

14

dB

± 0.2

dB

I L = lOrnA
IL= 17mA
IL= 60mA
IL= 150mA

Ej = 0

T amb = 25°C Ej = 50 mV
f = 500 Hz to 2 KHz

12.4

S in (a)

Ej = 120 mV **

2

S in (c)

Ej= 95 mV **

2

%

ZREF= 6000
f ;"" 300 Hz to 3.4 KHz

14

AR

Return loss

ZOUT

Output impedance (pins 6, 4)

CE=2.2/L F

Voo

Supply voltage for digital device

T amb = 25°C

2.4

Voo= 2.4V

1.8

100

Supply current for digital device

t s***

Start-up time

ZIN

I nput impedance (pin 1)

dB
750

R E= 390

2.5

0
2.6

V

5

msec

mA

4

MO

* The distortion of the device is not affected by a signal coming from the line with the following levels: -13 dBm
if IL= 10 mA, -8 dBm if IL= 20 mAo
The different AC and DC levels are intended to simulate the limit working operation of the digital devices M751,
M761, M761A.
The time necessary because the AC signal is varying within ± 1 dB of its steady-state value.

Fig. 1 - Test circuit

LS342

6°~lOIlF

.nr
5- 5005/1

305

IVo

APPLICATION INFORMATION
The table shows the recommended values for the circuit of fig. 2.
Component

Recomm.
value

RE

390.

Note

Purpose

DC characteristic The relationships involving RE are:
• VL=(lL-IO)RE+Vo
where 10 '" 6 mA and Vo '" 4V
• Zo = 22 RE (f = 1 KHz)
The following relationship must be always verified

AC impedance
adjustment

Vp' ZL

RE ;;.

(lL-l o )ZL-22Vp
where Vp is the maximum peak value of the MF signal in the line and
ZL is the line impedance.
5.6 Kn

Rp

R~

Bias resistor

(

71.50.

RT

can be reduced in order to increase the output current from pin 3

DDI. In this case, the total current consumption is increased.

The MF gain is:

Signal level
adjustment

G MF = 0.97

ZL

II

Zo

RT
The recommended value for RT is good to set the Europe I standard
(-9 dBm, -11 dBml. If the Europe II or the American Standard is
required, RT must be decreased. I n the mean time, the minimum
operation current will increase because the pin 8 voltage is fixed by an
internal reference (190 mV typ.l.
CE

2.2/.1F

Cf

0.33/.1F

CL

30 nF

Regu lator AC
bypass

A value greater than 2.2 /.IF gives a system start time too high when line
current is between 10 mA and 17 mAo A value less than 2.2 /.IF gives an
alteration of the AC line impedance because its reactance is not negligible at low frequencies.

DC filtering

The Cf range is from 0.33 /.IF to 0.47 /.IF. The lowest values is ripple
limited, the higher values is starting up time limited.

Match ing to a
capacitive line

This is needed with a capacitive line because the output impedance of
the LS342 is essentially resistive. The range of C L is between 30 and 60nF.

Fig. 2 - Application circuit with M751/M761A.

"

1209

C2

1336

OJ
1477

C4
1633

'DO

H,

'11 697 Hz

13

1'12770 Hz

12

1'13852 Hz

M751

tl

--+4-

10

ll~

~a

~

M761 A
R4 941 Hz;

HOOK

TO THE SPEECH

"

,

3

R,

--',.-+......_ _+-_
SINGLE PUSH BUTTON

306

SINGLE

PUSH BUTTON

LINE

LINEAR INTEGRATEO CIRCUIT

TELEPHONE SPEECH CIRCUIT WITH MULTIFREQUENCY TONE GENERATOR
INTERFACE
The LS356 is a monolithic integrated circuit in 16-lead dual in-line PI,'\ ;'j~,\{:::

~'1N~S

VL

Lin

IL
IL

Fo
Rev
Total
Opera g temperatu re
Storage and junction temperature

Ptot
Top

T stg , T j

22
150
-150
1
-45 to 70
-65 to 150

V
mA
mA
W
°C
°C

ORDERING NUMBER: LS356B

MECHANICAL DATA

Dimensions in mm

307

6/82

CONNECTION DIAGRAM
(top view)
'-'
16

MlC. INPUT

~

MlC.INPUT

+LINE

15

VDD

MUTING

14

MF INPUT

BIAS ADJ.

13

RECEIVER OUTPUT

BYPASS

12

RECEIVE.R OUTPUT

D.C.REGULATOR

11

INPUT.(RECAMP)

LINE CURRENT
SENSING

10

INPUT -(REC.AMP)

SHUNT REG.

GAIN CONTROL

-LINE
5-4919

BLOCK DIAGRAM

.-----------------------~--{:~--~--------------------------~----------~~

tVL

.1.

t

MF .
signal

R3

S'-4930/1

308

TEST CIRCUITS

-

G
Rl

.A

IL

39.2

n

392.11
52

~
33
nF

:!2V

10

Vz=18V

VL

LS356
13
K.Q

33

n

VG

R3
R

_B

5-4920/2

Fig.2

Fig. 1
'L=IZto~

'L=12to~

G

,----+---QA

G
A

TEST
CIRCUIT
R =6.8Kfl.

TEST
CIRCUIT
R=6.8Kfl.

l.....-+-~B

B
C

0

E

F

C

0

E

5-4921

CMRR

Side tone

Fig.3

= V RO
~

Fig.4
G
A

r--~--QA

TEST
CIRCUIT
R =S.8K fl.

lO,uF

TES T
CIRCUIT
R=lKfl.

~-""--QB

B
C

0

E

C

F

309

0

E

F

THERMAL DATA
Rth j-amb

max

Thermal resistance junction-ambient

ELECTRICAL CHARACTERISTICS
80 mA, S1 and S2 in (a), T amb

(Refer to the test circuits, VG =

80

°C/W

1 to 2V, IL

12 to

= -25 to +50°C, f = 200 to 3400 Hz, unless otherwise specified)

Parameter

Test conditions

SPEECH OPERATION
VL

Line voltage

CMRR

Common mode rejection

f = 1 KHz

50

Gs

Sending gain

T amb = 25°C f= 1KHz VG= 2V
V M1 = 3 mV
VG= 1V

44

Sending gain flatness
(vs. frequency)

V M1 = 3 mV

Tamb= 25°C

IL= 12 mA
IL= 20mA
IL= 80 rnA

4.7
5.5
12.2

3.9

-

dB

1

46
50

dB

2

± 1

dB

2

± 0.5

dB

2

%

2

48

f ref = 1 KHz

* Sending gain flatness

V

(vs. current)

GR

Sending distortion

f = 1 KHz

V so - lV
Vso= 1.3V

Sending noise

V M1 = OV

VG=lV

Microphone input impedance
(pin 1-16)

V M1 = 3 mV

Sending gain in MF operation

V M1 = 3 mV
S2 in (b)

Receiving gain

V R1 = 0.3V
f = 1 KHz
T amb = 25°C

VG= 2V
VG=lV

Receiving gain flatness
(vs. frequency)

V R1 = 0.3V

f ref = 1 KHz

2
10
-70

dBmp

2

40

Kn

-

-30

dB

2

-5
1

dB

3

± 1

dB

3

± 0.5

dB

3

%

3

-3
-1

-4
0

* Receiving gain flatness
(vs. current)
Receiving distortion

f - 1 KHz

Receiving noise

V R1 = OV

Receiver output impedance
(pin 12-13)

V Ro =50mV

Sidetone

f = 1 KHz
Sl in (bi

T amb = 25°C

ZML

Line match ing impedance

V R1 = 0.3V

f = 1 KHz

18

Input current for gain control
(pin 8)

* Fixed gain mode.

2

V RO - 400mV
VRo= 480 mV

10

I'V

3

100

n

-

36

dB

2

100

310

500

600

700

n

3

-10

I'A

-

ELECTRICAL CHARACTERISTICS (continued)
Test conditions

Parameter

MUL TlFREQUENCY SYNTHESIZER INTERFACE
S2 in (b)

2.4

S2 in (b)

0.5
2

MF amplifier gain

fMF in= 1 KHz
V MF in= 80 mV

15

DC input voltage level
(pin 14)

V MF In= 80 mV

RI

Input impedance (pin 14)

VMF 1n= 80 mV

d

Distortion

V MF in= 110 mV

Voo

M F supply voltage (Standby
and operation)

100

M F supply current

VI

Standby
Operation

M F operation

Muting operating current (pin 3)

S2 in (b)

311

V

-

mA

-

dB

4

V

-

K!l

-

2

%

4

5

ms

-

1

V

-

60

Speech operation

Muting standby current (pin 3)

17
.0.3
Voo

Starting delay time
Muting threshold voltage
(pin 3)

2.5

V

-

-10

IJ.A

-

+10

IJ.A

-

1.6

CIRCUIT DESCRIPTION
1. DC characteristic
The fig. 5 shows the DC equivalent circuit of the LS356.
Fig. 5 - Equivalent DC load to the line
PIN 6

R,

PIN2

lro

VL

PIN9

PIN7

~

LINE

5 .. 4365

A fixed amount 10 of the total available current IL is drained for the proper operation of the circuit.
The value of 10 can be programmed externally by changing the value of the bias resistor connected to
pin 4 (see block diagram).
The minimum value of 10 is 7.5 mAo
The voltage Vo = 3.8V of the shunt regulator is independent of the line current.
The shunt regulator (2) is controlled by a temperature compensated voltage reference (1) (see the block
diagram).
Fig. 6 shows a more detailed circuit configuration of the shunt regulator.
Fig. 6 - Circuit configuration of the shunt regulator
R2

R'

I. . ._
c

L -_ _ _ _ _ _ _ _ _

_'--S-CI.925----·

b

The difference IL -10 flows through the shunt regulator being Ib negligible.
I. is an internal constant current generator; hence V 0 = VB + I•• R. = 3.8V.
The V L. IL characteristic of the device is therefore similar to a pure resistance in series to a battery.
It is important to note that the DC voltage at pin 5 is proportional to the line current (V 5 = V7 + VB =
(I L-10) R3 + VB).
312

I

CIRCUIT DESCRIPTION (continued)

I.:

I',

2. Two to four wires conversion
The LS356 performs the two wires (line) to four wires (microphone, earphone) conversion by means of
a Wheatstone bridge configuration so obtaining the proper decoupling between sending and receiving
signals (see fig. 7).
'
Fig. 7 - Two to four wires conversion

6

11

-----...-

---

:,

r1
l}ZL
,

LINE

.,

9

-----------~---s· 4367(1

R1
R2

ZL.
For a perfect balancing of the bridge - ZB

The AC signal from the microphone is sent to one diagonal of the bridge (pin 6 and 9). A small percentage of the signal power is lost on ZB (being ZB > ZL.); the main part is sent to the line via R1.
In receiving mode, the AC signal coming from the line is sensed across the second diagonal of the bridge
(pin 11 and 10). After amplification it is applied to the receiving capsule.
The impedance ZM is simulated by the shunt regulator that is also intended to work as a transconductance amplifier for the transmission signal.
The impedance ZM is defined as

/:"V 6 - 9

•

/:,.1 6 - 9

From fig. 6 considering C1 as a short circuit for AC signal, any variation /:"V 6 generates a variation:

tN7

=

/:"V A

=

/:"V 6

The corresponding current change is
61

Therefore

313

•

, Rb
Ra + Rb

I~

CIRCUIT DESCRIPTION (continued)
The total impedance across the line connections (pin 11 and 9) is given by
ZML = R1 + ZM II (R2 + Zs)
By choosing ZM

> R1 and ZB > ZM

The received signal amplitude across pin 11 and 10 can be changed using different values of R1 (of
course the relationship ZL/Z B = R1/R2 must be always valid).
The received signal is related to R1 value according to the approximated relationship:

1'l1
Note that by changing the value of R 1, the 'transmission signal current is not changed, being the microphone amplifier a transconductance amplifier_

3.Automatic gain control
The LS356 automatically adjusts the gain of the sending and receiving amplifiers to compensate for line
attenuation.
This function is performed by the circuit of fig_ BFig_ 8

5-4696

The differential stage is progressively unbalanced by changing VG in the range 1 to 2V (V REFG is an
internal reference voltage, temperature compensated).
It changes the current IG' and this current is used as a control quantity for the variable gain stages "(amplifier (4) and (5) in the block diagram). The voltage V G can be taken:
a) from the LS356 itself (both in variable and in fixed mode) and
b) from a resistive divider, directly at the end of the line.

al In the first case, connecting VG (pin

8) to the regulator bypass (pin 5) it is possible to obtain a gain
characteristic depending on the current.
In fact (see fig. 6):
V5 = VB + V7 ~ Vs + (I L - 10 ) R3

The sta,rting point of the automatic level control is obtained at IL = 25 rnA when the drain current
10 = 7.5 rnA.
314

CIRCUIT DESCRIPTION (continued)
Minimum gain is reached for a line current of about 52 mA for the same drain current 10 = 7.5 mAo
When 10 is increased by means of the external resistor connected to pin 4, the two above mentioned
values of the line current for the starting point and for the minimum gain increase accordingly.
It is also possible to change the starting point without changing 10 by connecting pin 8 to the centre
of a resistive divider placed between pin 5 and ground (the total resistance seen by pin 5 must be at
least 100 Kn). In this case, the AGC range increases too; for example using a division 1: 1 (50K/50K)
the AGC starting point shifts to about IL = 40 mA, and the minimum gain is obtained at IL = 95 mAo
In addition to this operation mode, the VG voltage can be maintained constant thus fixing the gain
values (Rx, Tx) independently of the line conditions.
For this purpose the VDD voltage, available for supplying the MF generator, can be used.
b) When gains have to be related to the voltage at the line terminals of the telephone set, it is necessary
to obtain VG from a resistive divider directly connected to the end of the line.
This type of operation meets for istance the requirements of the French standard. (See the application circuit of fig. 12).

4. Transducers interfacing
The microphone amplifier (3) has a differential input stage with high impedance (~ 40 Kn) so allowing
a good matching to the microphone by means of external resistor without affecting the sending gain.
The receiving output stage (6) is particularly intended to drive dynamic capsules. (Low output impedance, 100 n max; high current capability, 3 mAp).
When a piezoceramic capsule is used, it is useful to increase the receiving gain by increasing R 1 value (see
the relationship for V R)'
With very low impedance transducer, DC decoupling by an external capacitor must be provided to prevent a large DC current flow across the transducer itself due to the receiving output stage offset.

5. Multifrequency interfacing
The LS356 acts as a linear interface for the Multifrequency synthesizer M761 according to a logical
signal (mute function) present on pin 3.
When no key of the keyboard is pressed the mute state is low and the LS356 feeds the M761 through
pin 15 with low voltage and low current (standby operation of the M761). The oscillator of the M761
is not operating.
When one key is pressed, the M761 sends a "high state" mute condition to the LS 356. A voltage comparator (8) of LS356 drives internal electronic switches: the voltage and the current delivered by the
voltage supply (9) are increased to allow the operation of the oscillator.
This extra current is diverted by the receiving and sending section of the LS356 and during this operation the receiving output stage is partially inhibited and the input stages of sending and receiving amplifiers are switched OFF.
A controlled amount of the signalling is allowed to reach the earphone to give a feedback to the subscriber; the MF amplifier (10) delivers the dial tones to the sending paths.
The application circuit shown in fig. 9 fulfils the EUROPE II standard (-6, -8 dBm). If the EUROPE I
levels are required (-9, -11 dBm) an external divider must be used (fig. 10).
The'mute function can be used also when a temporary inhibition of the output signal is requested.

315

APPLICATION INFORMATION
Fig.9 - Application circuit with multifrequency (EUROPE II STD)
C3
II

~~

r---

ct

+

Voo

f
18

LINE

""*

, 8V

1

2

3

,

S

6

7

8

9

* ° '"

A

D~-

l'

I~:,
3

MF
INPUT

16

8~

M761

39.2n
Rl

2

~oJ
~

~

9

6

11

~20PF

IS

13

3

10

~~F

clld
I~S
2.2Kll

LS356

"

8

C5

R80200£

,

R3

3311
lW

~ 13~it l

9

5

? FOi
C7"

1

171----

I

lOon
R7'
100n
R7

~~3IJF

:~OPF

n

12

7
2

14:,
:cZinf

R2

82Kfi

1

392

lW

MUTE

IS

I--- "
B I--- 12
C I--- 13

82nFil

16

~f·

11

34.8
Kit

18

*

VDO

15

MUTE

15
4.87K
16

n

*

M761

LS 356
MF IN~UT

14

30 n

* TOLLERANCE

=t2%

316

......

C6

I-OnF

R6

:~C

10Kfi

5'492611

Fig. 10 - Application circuit with multifrequency (EUROPE I)

F

II
~OPF

I

I

:1

1

j
I

APPLICATION INFORMATION (continued)
Fig. 11 - Sending and
receiving gain vs. line cur·
rent (application circuit of
fig. 13)
G-

Fig. 12 - Application circuit without multifrequency

..

C3
~..--

J9.21t 1w

~5'3

(,.

"If,

G,
(dB)

)

392.n

I ~C2 lIT
J:47nF

C'L
2

50

S

"

:\

-2

'3

"

-4

INE

----

-,

"
'0

20

so

~

'6V

.s

,

4

.3
lW

1l:~

~

'---

s

,s

C~~,uF

..

Fig. 13 - Application circuit with gain controlled by line voltage (French standard)
CURRENT
LIMITING

82nF
39.2fi

a

392fi

lW
:::I:47nF

"

12

,5

13

LS 356

18Y

14
8
7
33fi
1W

317

10

07 ..

RsD200n
~

CIRCU--+_OVOUI

with fe = cutoff frequency

= damping factor.

325

-

APPLICATION INFORMATION (continued)
TAB 1

Three parameters are needed to characterize
the frequency and phase response of a 2 nd
order active filter: the gain (G v ), the damping
factor (~) or the O-factor (0= (2 ~)-1 ), and
the cutoff frequency (fel.
The higher order responses are obtained with a
series of 2nd order sections. A simple RC section
is introduced when an odd filter is required.
The choice of '~' (or O-factor) determines the
filter response (see table).

Filter response
Bessel

Butterworth

Chebyschev

~

Q

.J3

1

2

.J3

.)2

1

2

ft

.j2

1

< - >.)2
2

Cutoff frequency
fc
Frequency at wh ich
phase sh itt is _90
0

Frequency at which
Gv = -3 dB
Frequency at which
the amplitude
response passes
through specified
max. ripple band
and enters the stop
band

Fig. 14 - Filter response vs. damping factor
(dB)r--,-,-.-r-rrnr-'---TT--rrrrn

f---++t+J-Yt,Htt'~""5 =0.177
f---++t+mtm'='JI== 0.25
rt-:~~.!~~=OJ5
=0.5

-4 -

Fixed R= Rl = R2 , we have (see fig. 13)

~=U707FR'IiF\'I""+--H:-H+tH

=2

Cl=~
R we
1

-'2f----+++-+-t+ftt--\'l--t+-t+J+jj
-'6 f---+-+++-++m--~\~-'+-+++H-I1
0.2

0.5

.'

C2 =

1

R ~Wc

The diagram of fig. 14 shows the amplitude response for different
values of damping factor ~ in 2 nd order filters.

5 (fifO)

EXAMPLE:
Fig. 15 - 5 th order low pass filter (Butterworth) with unity gain configuration.

Ri

326

APPLICATION INFORMATION (continued)
In the circuit of fig. 15, for fc = 3.4 KHz and
R j = R 1= R 2 = R3= R4= 10 Kn, we obtain:
Cj = 1.354

1

0

Ff

1

0

21T f

Tab. II

Damping factor for low-pass Butterworth filters

6.33 nF

Order

c

1.97 nF

C2 =1753
.

C3 = 0.309
C4 =3.325

0 _

1
R

1

0

0

Ffo

-1- =
21T fc

1

21T f

1

c

1

Off ° 21Tf

c

=

8.20 nF

1.45 nF

Cj

Cl

C2

2

0.707 1.41

3

1.392 0.202 3.54

4

0.92

5

1.354 0.421

1.08

C3

C4

0.38

2.61

C5

Cs

0.966 1.035 0.707 1.414 0.259 3.86

7

1.336 0.488 1.53 0.623 1.604 0.222 4.49
0.98

Ca

1.75 0.309 3.235

6

8

C7

1.02·

0.83

1.20 0.556 1.80 0.195 5.125

= 15.14nF

The attenuation of the filter is 30 dB at 6.8 KHz
and better than 60 dB at 15 KHz.

The same method, referring to Tab. II and fig.
16, is used to design high-pass filter. In this
case the damping factor is found by taking the
reciprocal of the numbers in Tab. II. For fc
= 5KHz and C j = C1 = C 2 = C3 = C4 = 1 nF
we obtain:

1
R1 = 0.421

1
1
°c
21Tfc =

75.6 Kn
18.2 Kn

1
R3 = 0.309

1
1
°c'
21Tfc =

103 Kn
9.6 Kn

Fig. 16 - 5 th order high-pass filter (Butterworth) with unity gain configuration.
R2
Cj

R4

c,

o--i~
I

1st order

327

5-4122

APPLICATION INFORMATION (continued)
Fig. 17 - Multiple feedback 8-pole bandpass filter.

C3

C6

R,
CI

IN

C9

ell

••

C2

RI

.,

O-;'I--=K--IH'"'-P.....
o'l,uF

.1<
O.l,uF

.,.o--~-+-----1

R2

22KO

R3

22KJ'l

1--0

220"1

e13 O.221JF

I

C7

fc = 1.180Hz;A= 1; C2 = C3 = Cs = C6 =Cs =C9 =C IO = C11 = 3.300 pF;
RI = R6
R9 = Rl2 = 160 Kn; Rs = Rs = R11 = Rl4 = 330Kn; R4 = R7 =

=:

Fig. 18 - Frequency response
of band-pass filter

I

(dB)

~,
!

ONE-,

-20

,
, ,

,
,

-<0

TWO""

, ,-

-60

,

\

\

-3

-,

\ ,

-.

\
\

-.
-.
_7

FOUR..

11

-80

-9

AI
0.1

OJ

" .' I
ONE/

,

f{KHz)

,,-.r!

fO"IKHz

_2

I \' ' ,

=

Rll

= 5.3Kn

Fig. 19 - Bandwidth of band·
pass filter
(dB)

1

RIO

TWO/

i

I

fOu

.'11

I
II

328

" ,

'.

1\ ...
\
\

\

II I
7

1\

rr

_150 _120 -90 -60

". ."

""" 1\\"

\

-JO

0 .30 ·60 .90

(Hz)

OUT

LINEAR INTEGRATED CIRCUIT
TELEPHONE SPEECH CIRCUIT WITH MULTI FREQUENCY TONE GENERATOR
INTERFACE
The LS656 is a monolithic integrated circuit in 16-lead plastic package ••torepl~~eih~ hybrid circuit in
telephone set. It works with the same type of transducers for both transm.i~teral"ld receiver (typically
dynamic capsules). Many of its electrical characteristics can be ccii'ltrolled'hy. means of external components to meet different s p e c i f i c a t i o n s . . " ..•.....••......••...•.•..•
In addition to the speech operation, the LS656 acts as an i#t~i'facef~r the MF tone signal (particularly
for M761 CiMOS frequency synthesizer).
The LS656 basic functions are the following:

.

'

.

- It presents the proper DC path for the line curfli1nf, particular care being paid to have low voltage
drop.
. .. '. "... '
.
-

perfOrmi~g~i'f~:~f4,:",I~e~interfaCe

It handles the voice signal,
and changing the gain on both sending
and receiving amplifiers to compensa~~.4pt;·.tjri~·.attenuation by sensing either the line current or the
line Voltage. In addition, the L$~l:i~ calr~I~'';Work in fixed gain mode.
<~,:",'!, ' . ' '\<,:
It acts as linear interface f6B••MF;,•.• SIif't:)iYirig a stabilized voltage to the digital chip and delivering to
the line the MF tones gel'ffl(~~ b\I:.the M761.
i,'"',,

VL
IL
IL
Ptot
Top

Tstg , Tj

'!";;}

., pulse duration)
rent
Reverse I'e current
Total power dissipation at Tamb.= 70DC
Operating temperature
Storage and junction temperature

22

V

150
-150
1
-45 to 70
-65 to 150

mA
mA
W
DC
DC

ORDERING NUMBER: LS656B
Dimensions in mm

MECHANICAL DATA

329

6/82

CONNECTION DIAGRAM
(top view)

......
MIC.INPUT

16

MIC.INPUT

_LINE

15

VOO

MUTING

14

MFINPUT

BIAS ADJ.

13

RECEIVER OUTPUT

SHUNT REG.
BYPASS

12

RECEIV~R

D.C.REGULATOR

11

INPUT_(REC.AMP)

liNE CURRENT
SENSING

10

INPUT ~(REC.AMP.)

GAIN CONTROL

OUTPUT

-LINE

s -1,919

BLOCK DIAGRAM
,-----------------------~--c=~--~--------------------------.---------~~

tvL

.1.

I

~

,I

---

bia5
resistor

)----------{14:.--------{

t

MF .
signal

R3

YuTE
5-493011

330

TEST CIRCUITS
G

_I L

A

~r--r

________________r-t:j-~~33=0=11~~~__~_____
3011

33
nF

B

Fig. 1

Fig.2

IL·'i'o~

IL=12'o~~

G

G
A

A

TE5T
CIRCUIT
R=6.8Ka.

TEST
CIRCUIT
R =6.8Ka.

'----+------flB
B
C

E

F

50-4921

Side tone =

CMRR

V =O.lV

VRO

Gs=

V MI

VSO
V MI

Fig.4

Fig. 3

IL·1210~

G

lo.85v

A

A

TEST
CIRCUIT
R =6.8K a.

lO,uF

TEST
CIRCUIT
R =lKn

B

B

C

0

F

E
$-

5-'923

GR=

V RO

G MF =

V RI

331

V MO
V MF

492411

THERMAL DATA
Rth j-amb

Thermal resistance junction-ambient

max

80

(Refer to the test circuits, VG = 1 to2V,I L = 12to80mA,
= 25 to +50°C, f = 200 to 3400 Hz, unless otherwise specified).

ELECTRICAL CHARACTERISTICS
51,52 and 53 in (a), T amb
Parameter

Test conditions

SPEECH OPERATION
VL

Line voltage

CMRR

Common mode rejection

f = 1 KHz

Gs

Sending gain

T amb = 25°C
V M1 = 3 mV

GR

Sending gain flatness
(vs. freq.)

VMI= 3 mV

Sending gain flatness*
(vs. current)

V M1 = 3 mV
S3 in (b)

Sending distortion

f = 1 KHz
IL= 15 mA

4
5
6.9

IL= 12 mA
IL= 30mA
IL= 60 mA

Tamb= 25°C

50
f= 1 KHz

IL25mA
IL= 50 mA

48
44

1

dB

2

± 1

dB

2

± 0.5

dB

2

2
10

%
%

2

46

Vso= 700 mV
Vso= 800 mV

-

dB
50

f ref = 1 KHz

V

Sending noise

V M1 - OV;

dBmp

2

Microphone input
impedance (pin-16)

VMI- 3 mV

40

Kn

-

Sending gain in MF
operation

VMI= 3mV
S2 in (b)

-30

dB

2

Receiving gain

VRI= 0.3V
f = 1 KHz
T amb = 25°C

IL= 25 mA
IL= 50 mA

dB

3

V R1 - 0.3V

f ref - 1 KHz

± 1

dB

3

±0.5

dB

3

3

Receiving gain flatness
(vs. freq.)

-70

VG=1V

-4

-2

-8

-6

Receiving gain flatness*
(vs. current)
Receiving distortion

f = 1 KHz
I L =15mA

Receiving noise

VRI=OV; VG=1V

150

%
%
IJV

Receiver output
impedance (pin 12-13)

V Ro =50mV

30

n

-

Sidetone

f = 1 KHz
T fmb = 25°C
S in (b)

36

dB

2

700

n

3

-10

IJA

-

ZML

Line matching
impedance

18

Input current for gain
control (pin 8)

V R1 = 0.3V

2
10

VRO=440mV
V Ro=480mV

f = 1 KHz

* F .xed ga on mode.
332

500

600

3

I.11

I
i

ELECTRICAL CHARACTERISTICS (continued)
Parameter

Test conditions

MULTIFREQUENCY SYNTHESIZER INTERFACE
Voo

M F supply voltage
Stand by and Operation

S2 in (b)

100

MF supply current
Stand by
Operation

S2 in (b)

MF amplifier gain

fMF in= 1 KHz
V MF in= 80 mV

VI

DC input voltage level
(pin 14)

V MF in= 80 mV

RI

I nput impedance
(pin 14)

V MF in= 80 mV

d

Distortion

V MF in= 150 mVp
IL> 15mA

2.4

15

mA
mA

-

dB

4

V

-

K!1

-

2

%

4

5

ms

-

1

V

-

V

-

-10

iJ.A

-

+10

iJ.A

-

17
0.3 Voo

60

Speech operation
M F operation

1.6

Muting stand by current
(pin 3)
Muting operating
current (pin 3)

-

0.5
2

Starti ng delay time
Muting threshold voltage
(pin 3)

V

2.5

S2 in (b)

333

-

CIRCUIT DESCRIPTION
1. DC characteristic
The fig. 5 shows the DC equivalent circuit of the LS656.
Fig. 5 - Equivalent DC load to the line
PIN 6

RI

PIN2

110

VL LINE

PIN9

PIN7

~

5 .. 4365

A fixed amount 10 of the total available current IL is drained for the proper operation of the circuit. The
value of 10 can be programmed externally by changing the value of the bias resistor connected to pin 4

(see block diagram).
The minimum value of 10 is 7,5 mA.
The voltage Vo= 37V of the shunt regulator is independent of the line current.
The shunt regulator (2) is controlled by a temperature compensated voltage reference (1) (see the block
diagram).
Fig. 6 shows a more detailed circuit configuration of the shunt regulator.
Fig. 6 - Circuit configuration of the shunt regulator
R2

RI

6

R3

S-492S

The difference IL -10 flows through the shunt regulator being Ib negligible. la is an internal constant
current generator; hence Vo= Va + la • Ra= 3.7V.
The V L • IL characteristic of the device is therefore similar to a pure resistance in series to a battery.

334

It is important to note that the DC voltage at pin 5 is proportional
to the line current (V 5 = V7 + V B= (lL -10) R3 + VB)'
The DC characteristic of the LS656 is shown in fig. 7.

Fig. 7 - DC characteristic
G-4707

VL
(V,

R,:30 n
R3:30 11

I

/'
/V"

'/

V

/'
,

10

40

60

80

'l(mA)

2. Two to four wires conversion
The LS656 performs the two wires (line) to four wires (microphone, earphone) conversion by means of
a Wheatstone bridge configuration so obtaining the proper decoupling between sending and receiving
signals (see fig. 8).
Fig. 8 - Two to four wires conversion

11
.

- - - -

------ -

--

LINE

___________

----4; _ _ _ _

5- 4367/1

ZR1
For a perfect balancing of the bridge __
L_ - - ZB
R2
The AC signal from the microphone is sent to one diagonal of the bridge (pin 6 and 9). A small percentage of the signal power is lost on ZB (being ZB > ZLI; the main part is sent to the line via R 1.
In receiving mode, the AC signal coming from the line is sensed across the second diagonal of the bridge
(pin 11 and 10). After amplification it is applied to the receiving capsule.
The impedance ZM is simulated by the shunt regulator that is also intended to work as a transconductance amplifier for the transmission signal.

335

APPLICATION INFORMATION
The impedance ZM is defined as

(continued)

/::"V 6 - 9
/::,.1 6 - 9

From fig. 6 considering C1 as a short circuit for AC signal, any variation /::"V 6 generates a variation:
Rb

The corresponding current change is

/::"1=
Therefore

/::"V 7
R3

/::"V 6

Ra
ZM = - - = R3 (1 + - )
/::"1
Rb
The total impedance across the line connections (pin 11 and 9) is given by
ZML = R1 + ZM//(R2 + ZB)

By choosing ZM :l!> R1 and Z,B:l!> ZM
ZML "" ZM = R3 (1 +

~)

Rb
The received signal amplitude across pin 11 and 10 can be changed using different values of R 1 (of
course the relationship ZL/ZB = R1/R2 must be always valid).
The received signal is related to Rl value according to the approximated relationship:
R1
R1 + ZM

Note that by changing the value of R1, the transmission signal current is not changed, being the microphone amplifier a transconductance amplifier.

3. Automatic gain control
The LS656 automatically adjusts the gain of the sending and receiving amplifiers to compensate for line
attenuation.
This function is performed by the circuit of fig. 9.
Fig.9

5-4696

336

I.

l~·.~

'1

II

I:

The differential stage is progressively unbalanced by changing V G in the range 1 to 2V (V REFG is an
internal reference voltage, temperature compensated).
It changes the current IG' and this current is used as a control quantity for the variable gain stages
(amplifier (4) and (5) in the block diagram). The voltage VG can be taken:
a) from the LS656 itself (both in variable and in fixed mode) and.
b) from a resistive divider, directly at the end of the line.
a) In the first case, connecting VG (pin 8) to the regulator bypass (pin 5) it is possible to obtain a gain
characteristic depending on the current.
In fact (see fig. 6)

The starting point of the automatic level control is obtained at IL = 25 mA when the drain current
10 = 7.5 mAo
Minimum gain is reached for a line current of about 50 mA for the same drain current 10 = 7.5 mAo
When 10 is increased by means of the external resistor connected to pin 4, the two above mentioned
values of the line current for the starting point and for the minimum gain increase accordingly.
It is also possible to change the starting point without changing 10 by connecting pin 8 to the centre
of a resistive divider placed between pin 5 and ground (the total resistance seen by pin 5 must be at
least 100 Kn). In this case, the AGe range increases too; for example using a division 1: 1 (50K/50K)
the AGe starting point shifts to about IL = 40 mA, and the minimum gain is obtained at I L = 95 mA.
In addition to this operation mode, the VG voltage can be maintained constant thus fixing the gain
values (Rx, Tx) independently of the line conditions.
For this purpose the V DD voltage, available for supplying the MF generator, can be used.
b) When gains have to be related to the voltage at the line terminals of the telephone set, it is necessary
to obtain V G from a resistive divider directly connected to the end of the line.
This type of operation meets the requirements of the French standard. (See the application circuit
of fig. 13).

4. Transducer interfacing
The microphone amplifier (3) has a differential input stage with high impedance (==' 40 Kn) so allowing
a good matching to the microphone by means of external resistor without affecting the sending gain.
The receiving output stage (6) is particularly intended to drive dynamic capsules. (Low output impedance (lOOn max); high current capability 3 mAp).
When a piezoceramic capsule is used, it is useful to increase the receiving gain by increasing R 1 value
(see the relationship for V R).
Whit very low impedance transducer, De decoupling by an external capacitor must be provided to
prevent a large De current flow across the transducer itself due to the receiving output stage offset.

5. Multifrequency interfacing
The LS656 acts as a linear interface for the Multifrequency synthesizer M761 according to a logical
signal (mute function) present on pin 3.
When no key of the keyboard is pressed the mute state is low and the LS656 feeds the M761 through
pin 15 with low voltage and low current (standby operation of the M761). The osci IIator of the M761
is not operating.
337

When one key is pressed, the M761 sends a "high state" mute condition to the LS656. A voltage comparator (8) of LS656 drives internal electronic switches; the voltage and the current delivered by the
voltage supply (9) are increased to allow the operation of the oscillator.
This extra current is diverted by the receiving and sending section of the LS656 and during this operation the receiving output stage is partially inhibited and the input stages of sending and receiving ampi ifiers are switched 0 F F.
A controlled amount of the signalling is allowed to reach the earphone to give a feedback to the subscriber; the MF amplifier (10) delivers the dial tones to the sending paths.
The mute function can be used also when a temporary inhibition of the output signal is requested.
The application circuit shown in fig. 10 fulfils the EU ROPE II standard (-6, -8 dBm). If the EUROPE I
levels are required (-9, -11 dBm) an external divider must be used (see fig. 11).

APPLICATION INFORMATION
Fig. 10 - Application circuit with multifrequency (EU ROPE II STD)

C3

82nFI
330.n.

t-'----t---t------ - - - - - - - -------,----+---4:=:J;""'.,--c=}----;
R1

I1l--o=:r-+lh

11

Voo
18

R 7'

15

13 I--o=:r--I--'
R7

MUTE

1S

10

MF

LS656

INPUT
14

LINE

16H-~--t-~,

y. R6

J!.50F

"'!':'"

6.BKfi ICt,

b _ _ _ _ _ _ ':V

L~

Fig. 11 - Application circuit with multifrequency (EU ROPE I STD)

18

1Sf------+--t-=-=--.j
16f---rl=H--F"-"-'='>j
M761

17

120pF

* TOLLERANCE ,,±2%
338

I

I

J
I

APPLICATION INFORMATION (continued)
Fig. 12 - Sending and receiving gain vs. line current
(application circuit of fig.1 0)
)

i

--

,
(

50

l
i
46

I

\\

- - -#o-~-'-- +

(

-

--

.\
INE

I

R2

r

e

1

,
so

'"

' OOft
R7

t

,
,

9

1'3~~

'---

Fig. 14 - Application circuit with gain controlled by line voltage (French standard)
CURRENT
82 nF

330n

12

13
10

of

20Kfi

339

C7

Rs0200n

,~

47

22Kfi
8

"of

CJ

--*

P5

lS656

J
~ 11.

30 fl

LINE

1I'0pF

IlO

13

7

CIRCUli

R7'

'Or----

IL(mA)

lIMlllNG

lOOll

"

'00<"

:C2

330n

R'

£'5

1\

50

82nFn
30!l,w

"

(

I

ii

cst

R~=13Kn\ '\R4=6.SKO

i
I

i+-

I

i

Fig. 13 - Application circuit without multifrequency

5

'5

'f

,

¢1
(6

r--R6

:~5

.SKfL
5

'"

APPLICATION INFORMATION
Fig. 15 - Application circuit
with fixed gain operation

(continued)
Fig. 16 - External mute function

15

5 - 5251

b) without mu Itifrequency

a) with multifrequency
Main gain condition
Main gain condition

In addition to the above mentioned applications, different values for the external components can be
used in order to satisfy different requirements.
The following table (refer to the application circuit of fig. 10) can help the designers.

Component

Value

Rl

30 n

R2

330n

R3

30n

R4

13 Kn

Purpose

Note

Bridge Resistors

Line current sensing.
Fixing DC
characteristic.

Rl controls the receiving gain. When high current values are allowed, Rl must be able to
dissipate up to lW.
The ratio R2/Rl fixes the amount of signal
delivered to the line. Rl helps in fixing the DC
characteristics (see R3 note).
The relationships involving R3 are:
-

ZIIIIL = (20 R311Z s ) + Rl
ZL//ZML
R3

-

Gs = K·

-

V L = (I L - 10 ) (R3 + R1) + Va; Vo= 3.7V.
Without any problem it is possible to have a
ZML ranging from 600 up to 900n. As far
as the power dissipation is concerned, see
Rl note.

The suggested value assures the minimum operating current. It is possible to increase the
supply current by decreasing R4 (they are
inversely proportional), in order to achieve the
shifting of the AGC starting point. (See fig. 16).
After R4 changement, some variations could be
found also in other parameters, i.e. line voltage.

Bias Resistor

340

I,

Ii
Component

Value

R5

2,2 Kn

R6

6,8 Kn

Purpose
8alance Network

Nota
It's possible to change R5 and R6 values in
order to improve the matching to different
lines; in any case:
R2
Rl

Zs

=

R5 + R6/1X C4

R7-R7'

100n

Receiver impedance
matching

R7 and R7: must be equal; the suggested value
is good for matching to dynamic capsule; there
is no problem in increasing and decreasing
(down to On) this value, A DC decoupling must
be inserted when low resistance levels are used
to stop the current due to the receiver output
offset voltage (max 200 mVl,

R8

200n

Microphone
impedance matching

The suggested value is typical for a dynamic
microphone, but it is possible to choose R8 in a
wide range.

Regulator
AC bypass

A value greater than 10 I'F gives a system start
time too high for low current line during MF
operation; a lower value gives an alteration of
the AC line impedance at low frequency.

Cl

C2

47 nF

Matching to a
capacitive line

C2 changes with the characteristics of the
transmission line.

C3

82nF

Receiving gain
flatness

C3 depends on balancing and line impedance
versus frequency.

C4

15 nF

8alance network

See note for R5, R6.

DC filtering

The C5 range is from 0.1 I'F to 0.47 IIF. The
lowest value is ripple limited, the higher value
is starting up time limited.

C5

C6-C7

1000pF

RF bypass

C8

Receiving output
DC decoupling

C9

Receiving input
DC decoupling

341

See note for R7, R7.

LINEAR INTEGRATED CIRCUITS
OPERATIONAL AMPLIFIERS
The LS 709 series features low offset, high input impedance, large input common mode range, high
output voltage swing. The amplifier is intended for use in D.C. servosystems, high impedance analog
computer,low level instrumentation applications, and for the_,generation of special linear and non linear
transfer functions.

ABSOLUTE MAXIMUM RATINGS

TO-99

Supply voltage
Input voltage
Differential input voltage
Operating temperature for LS 709/LS 709A
for LS 709C
Power dissipation at T amb = 70°C
Storage temperature

DIP

± 18 V
± 10 V
±5V
-55 to 125°C
o to 70 ~C
520 mW
400 mW
-65 to 150°C -55 to 150 °C

1) For supply voltages less than ± 10V maximum input voltage is equal to the supply voltage.

MECHANICAL DATA

6/82

Dimensions in mm

342

CONNECTION DIAGRAMS AND ORDERING NUMBERS
(top views)

.'.
9

Type

TO-99

DIP

LS 709

LS 709T

-

LS 709A

LS 709 AT

-

LS 709C

LS 709 CT

LS 709 CB

SCHEMATIC DIAGRAM (pin numbers are referred to the TO-99 version)

?8
r-----~~~--------~~----~--------~--~--O·~

R1

2Skll

R2

2Skll
'--~t-t::.a4

as
R1S
30kll

a13

4

'---------'>----------------"---:5--:-2"'74-'"'--{)-vs

THERMAL DATA
Rth j-amb

Thermal resistance junction-ambient

max

343

OUTPUT FltEO.CONP,

ELECTRICAL CHARACTERISTICS (see note)
LS 709A

Ib

1

6
5

2

10
7.5

mV
mV

I nput bias

Tamb~ T min
Tamb~ 25c C

0.3
100

0.6
200

0.5
200

1.5
500

0.36
300

2
1500

/lA
nA

Tamb~ T max
Tamb~ T min
Tamb~ 25c e

3.5
40
10

50
250
50

20
100
50

200
500
200

75
125
100

400
750
500

nA
nA
nA

I nput offset

Ro

Output resistance Tamb~ 25 c e

Is

Supply current

Vs~±15V

Transient response R isetime
Overshoot

Tamb~

25 c C

Slew rate

Tamb~

25 c e

Gv

Tamb~
Tamb~

170
700

40
150

150

T amb~25ce

2.5

100
400

50
50

150

250
250

kn
kn

150

n

3.6

2.6

5.5

2.6

6.6

mA

1.5
30

0.3
10

1
30

0.3
10

1
30

jJ.s
%

Vi~20mveL<;;100pF

Average tempera- Rg~ 50n
ture coefficient
T amb~ 25c C to
of input offset
Tamb~ 25 c C to
voltage
Rg~ 10 kn
Tamb~ 25c C to
Tamb~ 25 c c to
Large signal
voltage gain

85
350

T min
25 c e

Vs~±15V

0.25

T max
T min

1.8
1.8

10
10

T max
T min

2
4.8

15
25

88

93

97

±12
±10

±14
±13

0.25

0.25

V/jJ.s

3
6

6
12

",vre
",Vrc
",v/ce
",v/ce

RL# 2 kn

Vo~±10V

Output voltage

Vs~±15V

RL~

swing

Vs~

±15V

RL~

Vi

Input voltage
range

Vs~±15V

±8

eMR

Common mode

Rg<;; 10 kn

80

Rg<;; 10 kn

80

Va

Max.

3
2

Input resistance

I'Nos

Typ.

0.6

Ri

---.6T

Typ. Max. Min.

Rg<;; 10 kn
Rg<;; 10 kn T amb~25cC

current

SR

Typ. Max. Min.

I nput offset
voltage

current

los

LS 70ge
Unit

Min.
Vas

LS 709

Test conditions

Parameter

10 kn
2 kn

97

88

93·

83

93

dB

±12
±10

±14
±13

±12
±10

±14
±13

V
V

±8

±10

±8

±10

V

110

70

90

65

90

dB

88

76

92

74

92

dB

rejection

SVR

Supply voltage
rejection

Note: These specifications, unless otherwise specified, apply for Tamb= -55 to 125c e for LS 709/LS 709A and
T amb = 0 to 70c e for LS 70ge with the following conditions: Vs= ± 9V to ± 15V, el= 5000 pF, Rl= 1.5 kn,
C2= 200 pF and R2= 51 n. (See fig. 8 and fig. 17).

344

II,
I.•. ,

I~

~

I
Fig. 1 - Voltage gain vs. supply voltage (for 709A)
(,-,970

G,

V
Tam b"-5S'toll5

f--

60k

RL ~2kn

....... f-"""

V

./

",

./

30k

~,~~.~~ro~l

....-

lamb" -5S'C to12S'C

....... ~

....... ~\"'~P""t'l.

15

I

...-

.-'~.-

.-'-

~.-

V
~,

i--

~ I--

Wk

w

w

"

10

Fig. 5 -Output voltage swing
vs. load resistance(for 709A)

Fig. 4 - Power consumption
vs. supply voltage (for 709A)

Fig. 6 - Input bias current
vs. ambient temperatu re (for
709A)

(,-2986

I

P to!
(m' )

II

)

Tamb= 2Soc;

Tam b'2S'C

./

/'

./

80

V

V

30

./

....... f-"""

", .......

v

400

300

./

..-

70

;-l987

'b
(nA)

v :!ISV

"0

50

!--

W

V

.....-

20k

(,-2919

G-297&

'0

20

./

Fig. 3 - Input common
mode voltage range vs. supply voltage (for 709A)

(Vpp )

25

V

V-'./
40k

Fig. 2 - Output voltage swing
vs. supply voltage (for 709A)

.....-

18

"\

200

'\.
~

/

I

"'""' '---. r-

/
10
10-'

Fig. 7 - Input offset current vs. ambient temperature
(for 709A)

-60

Fig. 8 - Transient response
test circuit

0

20

60

Fig. 9 - Transient response
(for 709A)
REL,6,TlVE,---,--r--,-,--,-,---f"""-,

I
40

-20

OOTPUT

1\

Vs ,'15V
Tam b'2S'C

1.2

\

30

r--..

o.s

\
20

0.6

'\

'"

10

I

-60

-20

0

20

I

0.4

--.

RISE TIME

02

05

60

345

'5

t

(,us)

Fig. 10 - Slew rate vs. closed
loop gain using recommended compensation networks
(for 709A)

SR'~~~~II~~~~~~!!~I

Fig.11- Voltage gain vs. suplply voltage (for 709)
(,296'

(1//1-'5)'

'I--- .mHS·
V5~'15V

•

60>

r

./

--

/

>!o-

f--

-'r--

--

~+ ~+
H-

I

r--

-t

_~c...\:'I.

1-- L"

~10--

.......

V

......"""~
"'rJ!'

-

1---

'"

10
~

-

..-i<:::' V'-'

I

~

I-

lamb" O'C to 70'C (LS709C)

20

I

i

..

f--

r--

I - f--

V

lamb- -55'C to 125'C (LS709)

./

I

~

I

V

Rl ;:>:2kfl

'"

G-l98<

1/

~tt~b-S5'''R 12;"
1--+-tt-+--- -

1-

10

-~---

--

G.

10'

10

Fig. 12-0utputvoltageswing
vs. supply voltage (for 709
and 70ge)

14

Fig.13 - Voltage gain vs. supply voltage (for 70ge)

Fig. 14 - Input bias current
vs. ambient temperature (for
70ge)

(;-2963

Fig. 15 - Input offset current vs. ambient temperature
(for 70ge)
13-1992
I

G.
lamb-O'C to 70"C

r--- RL :.'!2kn

Vs·!15V

Vs~!15V

/'

!Vs (V)

0,8

160

0,6

120

/'

10k

~V

V

V

......

"'-

/'

"
0,2

80

~

r--...

~

I-- r10

12

14 !Vs (V)

-60

60

100 lamb('C)

60

20

0

20

........

60

r-100 Tamb("C)

Frequency compensation for all types
Fig. 16 - Open loop frequency response for various
values of compensation

Fig. 17 - Frequency compensation circuit

G-J~

IIIII~
111m

G.
(dB)

G. "~I~Ir-nTmw-rITrnm-TPv.IT'~'~l5vTr~
(dB) H+iffll-+H-tttHt-Httttllt---tlTamb :25'C

1/$"t'51/

T amb'"2S'C

IlIl'e,." 11111111.

100

80

IllIIn
11111111

Fig. 18 - Frequency response for various closed loop
gains
._""

:--

60

~'- "

c~.~,.~
'bo
.'$" '('~.. )!~
.0,...-9/~ ~$

'0

4-4. C'<,,,,<,; Jo.o,c-

.f~c..

0.o,c-

S-21~l

"U$~R:2.son

... 1\fiI t~.mplif, ... ,$
opeoratfod .... ,th eap,o.e,hv. lo~,"9

20

..~

20

_20 L..l.lllllllL...J..J.lllllll-LllUU'---LUUJJlI.....1..J..J1Jill

-20

10'

10'

10'

10'

346

10'

10' f (Hz)

LINEAR INTEGRATED CIRCUITS
PROGRAMMABLE OPERATIONAL AMPLIFIER
• MICROPOWER CONSUMPTION
• INTERNALLY FREQUENCY COMPENSATION
• OFFSET NULL CAPABI LlTY
• SHORT CI RCUIT PROTECTION
• LOW INPUT BIAS CURRENTS
• LOW NOISE
The LS 776 is a programmable operational amplifier available in three different packages (TO-99,
Minidip and SO-8 imicropackage). High input impedance, low supply currents and low input noise over
a wide range of operating supply voltages coupled with programmable electrical characteristics, make it
an extremely versatile amplifier for use in high accuracy, low power consumption analog applications.
Input noise voltage and current, power consumption and input current can be optimized by a single
resistor t..f current source that sets the quiescent current for nanowatt power consumption or for characteristics similar to the LS 141. Internal frequency compensation, absence of "latch-up", high slew rate
and short circuit current protection assure ease of use in long interval integrators, active filters and
sample and hold circuits. The LS 776 is available with hermetic gold chip (8000 Series).

ABSOLUTE MAXIMUM RATINGS
Vs
VI (1)

tNI
YSET
ISET
Top

Supply voltage
I nput voltage
Differential input voltage
Maximum voltage to ground at ISET
Maximum current at ISET
Operating temperature for LS 776
for LS 776 C
Output short circuit duration (2)
Power dissipation at T amb = 70°C
Storage and junction temperature

TO-99

Minidip

Jlpackage

520 mW
-65 to 150°C.

±18V
± 15V
±30V
Vs -2V to Vs
500 JlA
-55 to 125°C
o to 70°C
indefinite
665mW
-55 to 150°C

400mW
-55 to 150°C

1) For supply voltage less than ± 15V, input voltage is equal to the supply voltage
2) The short circuit duration is limited by thermal dissipation

Dimensions in mm

MECHANICAL DATA

347

6/82

I

[
CONNECTION DIAGRAMS AND ORDERING NUMBERS
(top views)

OFFSET
NULL

'D1SET

INVERTING
INPUT-

2

1

""

3

''"''eT

INVERTING

INPUT.

I

L~~~~6_
I

I
I--

l
I

TO-99

INVERTING
INPUT",N
INVERTING
INPUT.

OF~3c~

4

Type

.V s

:0:'::
3

6 OUTPU1

4

S

Minidip

OF~3c~

80-8

LS 776T

I

LS 776C
LS8776

1

Lssn-6:

I

LS 776CT

LS 776 CB

I

--------

1

l ______

SCHEMATIC DIAGRAM
'SET
7

.---------------~------~._---~--~--~----~----------~-___o.vs

INVERTING
INPUT 2

R4

500

R5

lOOn
R6
R7

6

OUTPUT

lOon

lOon
t------lt_09

OFFSET
NULL

~'0c~ET
R1

10kO

5- 2107/1

019 _::I--+.-fb-'°'""c"'-8----1--l:. 020

R2
10kQ

4

' - - - - - - -. . .- - - - - - - - '__________- - - -. . .---+-------~>_--------_+----__{)-vs

I

THERMAL DATA
Rth j-amb

TO-99

Minidip

80-8

Thermal resistance junction-ambient

* The thermal resistance is measured with device mounted on a ceramic substrate (25 x 16 x 0.6 mm)
348

ELECTRICAL CHARACTERISTICS for LS 776

I

(V s= ± 15V. T amb = 25°C unless otherwise specified)

J.:
ISET= 1.5"A

Parameter

ISET= 15"A

Test conditions
Min.

Typ.

Max.

Min.

Typ.

Max.

Unit

Vas

I nput offset voltage

R g 0(10kn

2

5

2

5

mV

los

Input offset current

R g 0(10kn

0.7

3

2

15

nA

Ib

I nput bias current

2

7.5

15

50

Ri

I nput resistance

50

5

nA
Mn

Ci

I nput capacitance

2

2

pF

l;V os

I nput offset voltage
adjustment range

9

18

mV

Gv

Large signal voltage gain

Ro
Isc

RL> 75 kn

Vo=±1,OV

RL> 5 kn

Vo= ± 10V

106

dB

112
100

112

dB

Output resistance

5

1

kn

Output short-circuit

3

12

mA

current

Is

Supply current

Ps

Power consumption
Transient response
(unity gain)

20

VI = 20 m V
CL = 100pF

Rise time tr

Slew rate

Vo

Output voltage swing

180

"A

5.4

mW

RL> 5 kn

Overshoot l; Vo
SR

160

25
0.75

RL> 5 kn
± 12

RL> 75 kn

1.6

0.35

0

10

%

0.1

0.8

V I"s

± 13

V

"s.

± 14

V
± 10

RL> 5 kn

The following specifications apply for T amb = -55 to 125°C
vas

Input offset voltage

Rg 0(10kn

6

6

mV

los

Input offset current

Tamb= 125°C

5

15

nA

Tamb= -55°C

10

40

nA

T amb = 125°C

7.5

50

nA

T amb = -55°C

20

120

nA

Ib

Input bias current

Vi

Input voltage range

CMR

Common mode rejection

Rg 0( 10 kn

70

90

70

90

dB

SVR

Supply voltage rejection

Rg 0( 10 kn

76

92

76

92

dB

Gv

Large signal voltage gain

RL> 75 kn

Vo

Output voltage swing

Is

Supply current

Ps

Power consumption

± 10

Vo= ± 10V

RL> 75 kn

± 10

100

98

± 10

±10
30
0.9

349

V

dB
V
200

"A

6

mW

ELECTRICAL CHARACTERISTICS for LS 776
IV.= ± 3V, Tamb = 25°C unless otherwise specified)
ISET= 1.5/LA
Parameter

ISET= 15/LA

Test conditions

Unit
Min.

Typ.

Max.

Min.

Typ.

Max.

VOS

Input offset voltage

2

5

2

5

mV

los

Input offset current

0.7

3

2

15

nA

Ib

I nput bias current

2

7.5

15

50

Ri

Input resistance

50

Rg " 10 kn

5

nA
Mn

Ci

In pu t capaci tance

2

2

pF

tNos

Input offset voltage
adjustment range

9

18

mV

Gv

Large signal voltage gain

RL:> 75 kn

Vo= ± 1 V

R L :> 5 kn

Vo= ± lV

94

106

dB
94

106

dB

Ro

Output resistance

5

1

kn

Isc

Output short-circuit
current

3

5

mA

I.

Supply current

13

20

130

160

/LA

Ps

Power consumption

78

120

780

960

/LW

Transient response
(unity gain)

SR

Vi = 20mV
C L .. l00pF

RL:> 5 kn

Rise time tr

3

0.6

/LS

Overshoot I!. Vo

0

5

%

0.03

0.35

V//Ls

Slew rate

RL:> 5 kn

The following specifications apply for Tamb

= -55 to 125°C

"'os

Input offset voltage

Rg" 10 kn

6

6

mV

los

I n put offset current

Tamb= 125°C

5

15

nA

Tamb= -55°C

10

40

nA

Tamb= 125°C

7.5

50

nA

20

120

nA

Ib

Input bias current

Tamb= -55°C
V,

Input voltage range

CMR

Common mode rejection

Rg.. 10 kn

70

86

70

86

dB

SVR

Supply voltage rejection

Rg" 10 kn

76

92

76

92

dB

Gv

Large signal voltage gain

RL:> 75 kn

Vo= ± lV

R L :> 5 kn

Vo= ± lV

Vo

Output voltage swing

± 1

V

dB

B8
·88
±2

RL:> 75 kn

± 1

dB

± 2.4

V
± 1.9 ± 2.1

R L :> 5kn

V

I.

Supply current

25

180

Ps

Power consumption

150

1080 /LW

350

/LA

I

j
'i

ji
I

ELECTRICAL CHARACTERISTICS for LS 776C
(Vs= ± 15V, T amb = 25°C unless otherwise specified)
ISET= 1.5J.!A
Parameter,

Unit
Min.

VOS

Input offset voltage

los

I n put offset cu rrent

Ib

Input bias current

Ri

Input resistance

ISET= 15J.!A

Test conditions

Rg<10k.l1

Typ.

Max.

Min.

Typ.

Max.

2

6

2

6

mV

0.7

6

2

25

nA

2

10

15

50

5

50

nA
M.I1

Ci

Input capacitance

2

2

pF

/eNos

Input offset voltage
adjustment range

9

18

mV

Gv

Large signal voltage gain

112

dB

RL> 75 k.l1

Vo= ± 10V

5 k.l1

Vo= ± 10V

RL>

94

' 112

dB
,94

Ro

Output r,esistance

5

1

k.l1

Isc

Output short-circuit

3

12

mA

Is

Supply current

Ps

Power consumption

current

Transient response
(unity gain)

20

30

160

0.9
Vi = 20 mV
CL<100pF

SR

Slew rate

RL> 5 k.l1

Vo

Output voltage swing

RL> 75 k.l1
RL>

190

J.!A

5.7

mW

RL> 5 k.l1

Rise time tr
Overshoot 11 V 0

± 12

1.6

0.35

0

10

%

0.1

0.8

V/J.!s

± 13

V

J.!s

± 14

V
± 10

5k.l1

The following specifications apply for T amb = 0 to 70°C
Vos

Input offset voltage

R g< 10 k.l1

7.5

7.5

mV

los

Input offset current

Tamb= 70°C

6

25

nA

T amb = O°C

10

40

nA

T amb = 70c C

10

50

nA

T amb = O°C

20

100

nA

Ib

I nput bias current

± 10

± 10

V

Vi

I nput voltage range

CMR

Common mode rejection

Rg < 10 k.l1

70

90

70

90

dB

SVR

Supply voltage rejection

Rg< 10k.l1

74

92

74

92

dB

Gv

Large signal voltage gain

RL> 75 k.l1

Vo

Output voltage swing

RL> 75 k.l1

Is

Supply current

Ps

Power consumption

Vo= ± 10V

351

94

94

± 10

± 10

I

/,

dB
V

35

200

J.!A

1.05

6

mW

!

ELECTRICAL CHARACTERISTICS for LS 776C
± 3V, Tamb = 25°C unless otherwise specified)

(Vs=

ISET= 1.5MA

Unit
Min.

Vas

Input offset voltage

lOS

Input offset current

Ib

I nput bias current

ISET= 15MA

Test conditions

Parameter

R g< 10 kn

Typ.

Max.

Min.

Typ.

Max.

2

6

2

6

mV

0.7

6

2

25

nA

2

10

15

50

nA

50

5

Mn

Ri

I nput resistance

Ci

Input capacitance

2

2

pF

!Nos

I nput offset voltage
adjustment range

9

18

mV

Gv

Large signal voltage gain

RL> 75 kn

Vo= ± lV

RL> 5 kn

V o - ± lV

88

106

dB
88

106

dB

Ro

Output resistance

5

1

kn

Isc

Output short-circu it
current

3

5

mA

Is

Supply current

13

20

130

170

MA

Ps

Power consumption

78

120

780

1020

MW

Transient response
(unity gain)

Vi = 20 m V RL> 5 kn
C L < 100 pF

Rise time tr
Overshoot
SR

to Vo

Slew rate

RL> 5 kn

3

0.6

0

5

%

0.03

0.35

VII's

MS

The following specifications apply for Tamb = 0 to 70°C
vAS

Input offset voltage

Rg <10kn

7.5

7.5

mV

los

I nput offset current

T amb = 70°C

6

25

nA

T amb = O°C

10

40

nA

T amb = 70°C

10

50

nA

Tamb= O°C

20

100

nA

Ib

I nput bias current

± 1

±1

V

Vi

Input voltage range

CMR

Common mode rejection

R g< 10 kn

70

86

70

86

dB

SVR

Supply voltage rejection

Rg< 10 kn

74

92

74

92

dB

Gv

Large signal voltage gain

RL> 75 kn

Vo= ± 1V

5 kn

Vo= ± lV

RL>
Vo

Output voltage swing

dB
88

±2

RL> 75 kn
RL>

88

dB
V

± 2.4

5kn

±2

V

± 2.1

Is

Supply current

25

180

MA

Ps

Power consumption

150

1080

MW

352

Fig. 1 - Input bias current
vs. set current

Fig. 2 - Input bias current
vs. ambient temperature
10

Fig. 3 - Input offset current
vs. ambient temperature
1,1

1o,
II

i~

30

1/

10

~,

"dllloH II

"
"

/

12
1.5

·60

Fig. 4 - Change in input offset voltage vs. set
current
dVos

()Jvl

300

~~JJTIIT
,j.~
i"l' lill1 -;'
t---.+.

1

115=1310tI8\1

_100

>-1 ~~
I,

---'--,-T

i

t

'1

~500

20

60

Fig. 6 - Input noise voltage
vs. set current

'N'rnmg;m

= lSpA

300
200

t--- I
I

r

ii

100
10

i--..

I

-1; ; , I

_300

0

400

jI l

f'j.

-20

(~):SU

Vs=.!.15V

ISET

.60

100 Tilmb{OC)

Fig. 5 - Change in input offset voltage vs. ambient temperature
(unnulled)
,.,",,"
500

I

100

60

A

T

-zoo

1

-300

10

10. 1

-60

ISEy(jJA)

Fig. 7 - Input noise voltage
and cu rrent vs. frequency

-20

0

20

60

100 Tamb<"C)

Fig. 8 - Input noise current
vs. set cu rrent

10-'

'°.

1

10 'SET (,uA)

Fig.9 - Optimum source resistance for minimum noise vs. set
current.

11111

.

I

1 0 , _

lamb =25*C

,

F

Vs :!;310.!.18V
f .. lkHz

llf" 1Hz

L+--U.~..!l-------!--l-!l-!l111TI1illl--------!--nr1TLjljnml!ll--!--4J-!ljIIlO"
10

10'

10'

10'

f (Hz)

10'
10-!

... ...
353

TIm

Trmm
, ..

10

..

ISET (jJA)

10' c...,f---Lj.-4.lf,tL-f-1-!ljljlL.,l-4ljljlL
10·'

10

ISET (jJA)

Fig. 10- Output voltage
swing vs. load reo
sistance

Fig. 11 - Output voltage
swing vs. supply
voltage

Fig. 12 - Gain bandwidth
product vs. set
current

~"-''-,,~-r'-,,,,-r~~''

", H".Lmb-',>ZS"·,,+-+-H-+++-H-++-i

•.

28~~~t~~+=t~::,+.,=~L,~" ~IO~"~"~A+~H

"H-+++-H-+R~l'r",>_n,,~~~7~?~~

"

lamb

~

25"C

1111
1111
~1.S

15ET
V

lo15)JA

:!Jv

1111

",

".

"

Fig. 13- Open loop voltage
gain vs. ambient
temperatu re

Fig. 14 - Open loop voltage
gai n vs. ambient
temperature
II

V, :1

SET·

,(Xl>

Fig. 15 - Open loop voltage
gain vs. set current

:t1SV

L~

/.I

1.4"-4

800>" ""'-"
ET'

1.2M

1. /.IA:

10'. _ _

JJA.:

'Is :

1. /-IA.: 15k

~

3'1

soo>
400k

"Xl>

amb: 2S·C
L=7Skfl

200t

'--LLllll.llL.-'-.LLl.llIllL-III...L.LLLll!-"

10'

.60

_20

0

20

-60

Fig. 16 - Common mode rejection
vs.
set
current

CMR

I III

,

(dB

(,_2891

-20

0

20

"

60

Fig. 17 - Supply voltage' rejection
vs.
set
current

(~,,::, ~=:=I=II;'II;III=:::~~;=:=::~

Fig. 18 - Supply current vs.
ambient temperature

'.

-++

(jJA)

lilmb :25'(:

lamb =lS

V :13to!18v

9J

I
'15 :~15V

~t15/JA

v

dlSV

v,

=il

,/

./
I
69

"
os

20

./

I ..

80
,0

IO

lis: !JV

..

f-++++ttItl--++fttHlto--,-++fIFIlII

ET =T. }lA

V :1;15'1

ro

..

ISET (",Al

354

'Is =!3Y

-60

-ro

0 20

60

100 Tamb('C)

I,

1
Fig. 19 - Standby supply
current VS. set

Fig. 20 - Slew rate
current

VS.

Fig. 21 - Voltage follower
transient response
(unity gain)

set

" e-J--i-+-H--P+-I-+++-f-+++-1

10-' '-LllJl!jj'-LlllilJJ'-Llil
10-'

Ml'

10

as

I5£T(,I.I"')

"

2S

t (/-IS)

TYPICAL APPLICATIONS
Fig. 22 - High accuracy sample and hold

Fig. 23 - Nanowatt amplifier

.sv

5-258611

S~~~JlLE

Fig. 24 - High input impedance
amplifier

CONTROL

-sv
HOLD
*HOLD CAPACITOR

5-258511

e;

355

TYPICAL APPLICATIONS (continued)
Fig. 25 - Multiplexing and signal conditioning

-15V

2.7Mfi

+---C:J-O.15V
270kn

5- 2588

Fig. 26 - Multiple feedback bandpass filter

Fig. 27 - Gated amplifier
lMfi

'>''---~---r; 0 UTPU T

VEE

5-3936

5- 3935

356

I ii

LINEAR INTEGRATED CIRCUIT

~,

1,',:"

PRELIMINARY DATA
DUAL HIGH PERFORMANCE OPERATIONAL AMPLIFIER
•
•
•
•
•
•
•

!

j:;

1,'

SINGLE OR SPLIT SUPPLY OPERATION
LOW POWER CONSUMPTION
HIGH UNITY GAIN BANDWIDTH
NO CROSSOVER DISTORTION
NO POP NOISE
SHORT CIRCUIT PROTECTION
HIGH CHANNEL SEPARATION

,~

~

!.I

The LS 4558N is a high performance dual operational amplifier with frequency and phase compensation
built into the chip. The internal phase compensation allows stable operation as voltage follower in spite
of its high gain-bandwidth products. The circuit presents very stable electrical characteristics over the
entire supply voltage range and the specially designed input stage allow the LS 4558N to be used in low
noise audio signal processing application. The optimized class AB output stage completely eliminates
crossover distortion, under any load conditions, has large source and sink capacity and is short circuit
protected.

,
J";,,
,',',

ABSOLUTE MAXIMUM RATINGS
V5
VI
Vi
Ptot

Supply voltage
Input voltage
Differential input voltage
Power dissipation at T amb = 70°C

Top
Tj
T stg

Operating temperature
Junction temperature
Storage temperature

Minidip
Micropackage

± 18
±Vs
±(Vs -1)
665
400
o to 70
150
-55 to 150

V
V
mW
mW
°C
°C
°C

ORDERING NUMBER: LS 4558 NB (Minidip)
LS 4558 NM (Micropackage)

MECHANICAL DATA

Dimensions in mm
]

1:,

i

357

6/82

CONNECTION DIAGRAM
(top view)

OUTPI,IT
A

~OU~UT

INIlINP.
A

7

NONINI!
INP. A

6 ~ INI!~NP.

h NON INV.

5 ~

INP. B

5-3590

SCHEMATIC DIAGRAM
(one section)
INVERTING
INPUT

NON INVERTING
INPUT

8

~_ _- 1_ _ _ _ _ _~_ _ _ _ _ _~_ _ _ _~_ _~_ _ _ _~~_ _ _ _ _ _~_ _ _ _ _ _--o~s

R7

OUTPUT
RS
Q16·

5-5155

THERMAL DATA
Rth

j-amb

Minidip

Thermal resistance junction-ambient

(*) Measured with the device mounted on a ceramic substrate (25 x 16 x 0.6 mml.

358

120 °e/W

80-8

200*

°e/W

ELECTRICAL CHARACTERISTICS (V s = ± 15V, Tamb = 25°C, unless otherwise specified)
Parameter

Test cond itions

Min.

Typ.

Max.

Unit

Is

Supply current (.)

1

2

mA

Ib

I nput bias current

50

500

nA

Ri

I nput resistance

T min < Top
f = 1 KHz

Vos

I nput offset voltage

Rg .. 10 Kn
Rg <;; 10 Kn
T min < Top

los

Gain-bandwidth product

f = 20 KHz

Total inpu t noise voltage

f - 1 KHz

eN

Popcorn no ise

d

Distortion

Vo

Output voltage swing

RL- 2 Kn

Vo

Large signal voltage swing

RL-l0 Kn
f = 10 KHz

Transient response
Slew rate

unity gain
R L = 2 Kn

CMR

Common mode rejection

V i -l0V
T min < Top
VI lV
T min < Top
f - 10 KHz

Supply voltage rejection
Channel separation

200

nA

500

nA

86

100

d8

2

3
8
10
18

0.03

R L - 2 Kn

< T max
f

< T max

100 Hz

R g- l Kn

(.) Both amplifiers.

359

MHz
15

nV

VRZ
10

RL= 2 Kn
f = 1 KHz

Vi - 20mV
C L = 100 pF

SR

mV

mA

Rg- 50n
R = 1 Kn
R~= 10 Kn

Gv= 20 dB
Vo=2 Vpp

Rise time

5
7.5

23

B-1 Hz to 1 KHz
Rg= 10 Kn
t =·10 sec

Overshoot

CS

< T max

current

B

nA
Mn
mV

J
I

Output short circuit

eN

SVR

0.5

20

RL= 2 Kn

800
1

< Top < T max

Large signal open loop
voltage gain

Gv

0.3

I nput offset current
T min

Ise

< T max

1

/JV
peak

%

± 13

V

28

Vpp

0.13

/JS

5

%

0.8

1.5

V//Js

70

90

dB

80

100

dB

105

dB

l

Fig. 1 -Open loop frequency
and phase response

Fig. 2 - Open loop gain vs.
ambient temperature

IJ

Gv
(dB )

Vs o,,5"- RLo2Kn_ -

200

f-"'.+-',-"+--,--+--..,...--] 160

10 5

120

10 0

Fig.3 - Supply voltage rejection vs. frequency

I

I

i
I

,

.

80

-t+t-

95
1

I

'ii

0

i

50

-50

r+-

.

W~--L

10

Fig. 5 - Output voltage
swing vs. load resistance

Fig. 4 - Large signal frequency response

t

'.'-j

40

I

__

10'

~_-L_~~_~

10' 1(Hz)

10'

10'

Fig. 6 - Total input noise vs.
frequency
G_3713

G-369SIt

Illllll

Vo
(Vpp )

24

Vo
(Vpp )

I

20 -

16 f12

Vs= ~15V
RL=2KIl.
Gv =20dB
' d =. 3°/0

,

Gv =20dB
f =1kHz
d
3 0 1ft

20
16

!,

/

.

,

10'

10'

HHz)

G'

I'

'G

10'

.

,

10'

RL(a)

Fig. 8 - Transient response

..

1

10'

!

~~

i! I

..

"II

10'

G- 4661

"s='±15V

-

"

I

..

I

,I 1\
, \
,

/

-

WK

II

L

_ .L

I

-+
"

f (Hz)

6

V.5,,:t15V

10

"I

II illill
..

!

Fig. 9 - Voltage follower
large-signal pulse response

.. -+t

'--I·

'00

I

I:

~

80

I: I

10'

'10
'00

"~.

I

Fig. 7 - Channel separation

'40

1Kn I I

,

I
I

t

10'

Rg=10Kfi,'

i

I

I

i

,

~

I
jl

12

~fw ~.

ee-

I
•

,

~.

160

r-....

10

LI'll

,.,'

I

=

L

I ill

e--r

~O:'5-7E1
"r"

}I-

.Vs=.!.lSV

24

Ililll

f(Hz)

0.25

0.5

360

0.75

1

t(,us}

10

- ----

30

APPLICATION INFORMATION

], :1;

'.

Fig. 10 - Mike/Line preamplifier for audio mixers (0 dB to 60 dB continuously variable gain)
lK.IL

i.
J

56

'."

150 Il.

KIl.

1.8 nF

OUT

l

5 - 5 2 73

Note -

The particular characteristics of the circuit of fig. 10 is that using a linear potentiometer, the gain is continuously variable in a logarithmic mode from 0 dB to 60 dB in the audio band.

Fig. 11 - Microphones nomograph

Very Low-Noise mike
Fig. 12
preamplifier (G v = 40 dB)

SOUND
PRESSURE LEVEL

dB

3.3 K 11

130

OUT

120
MICROPHONE
OUTPUT VOLT AGE

110

100

dB

NOISV FACTORY

IV
600
'00
200
100mv

lPascal(Pa) =lnewfon/m 2

90

SUBWAY

"-

TRAIN

5-PIECE ORCHESTRA
AT 10 FEET

eo

AVERAGE

NOl5Y

OFFICE

MICRO PHON E

SENSITIVITY
dB

(1 Vfpa) (lV/,ubar)

10 mv

40

-60

- 50

-70

- 60

-80

- 70

-90

- 80

-100

~

STREET

,
l,ubar=1dynE"/cm
70

60
'0
20

1m,
600
'00
200

"-

Rl

100 }Jv

60

NORMAL SPEECH
AT 3 FEET

60
'0
20

10 )-Iv
6

,

50

PRIVATE

OFFICE

1 ~,

'0

AVERAGE

RESIDENCE

Fig. 13 - Balanced input audio preamplifier

361

R2

f
APPLICATION INFORMATION (continued)
Fig. 15 - Frequency response
of the High-pass filter offig.14

Fig. 14 - 20 Hz to 200 Hz variable High-pass
filter (G v = 3 dB)

(dB),-,,---nTIl1l-,,---nmTT-ri--rrmn
O.15~F

INo--Jb-_-II-~-"-l

OUT

1.,1

5- 5274
·30

f-hf+ttHtf-+-It-t+t+tII-H++ft+1j
10

Fig. 16 - DC coupled low-pass
active filter (f = 1KHz, Gv = 6 dB)

30

100

300 I (Hz)

Fig. 17 - Switch able HP-LP audio filter

C1

1S0n

Fig. 18 - Subsonic or rumble filter (G v = 0 dB)
10KIl
C

Vin 0-11-<>-411-....-"-1
Vout

s- 5279

fc (Hz)

C (IlF)

15
22
30
55
100

0.68
0.47
0.33
0.22
0.1

Fig. 19 - High-cut filter (G v = 0 dB)

>'+--OVout

362

fc (KHz)

C1 (nF)

C2 (nF)

3
5
10
15

3.9
2.2
1.2
0.68

6.8
4.7
2.2
1.5

APPLICATION INFORMATION

(continued)

Fig. 20 - Fifth order 3.4 KHz low-pass Butterworth filter

,st order

For fc = 3.4 KHz and R; = R1 = R2 = R3 = R4 = 10 Kn, we obtain:
C1

1 •
= 1.354 • -R

1

21r fc

C1 = 0421 ._1_.
1
21r fc
.
R
C2

1 •
= 1.753 • -R

1
21r fc

6.33 nF

C3

= 0309 •

_1_. _ 1 _
R
21r fc

1.45 nF

1.97 nF

C4

= 3.325.

_1_. _1_
R
2,1r fc

15.14 nF

S.20 nF

The attenuation of the filter is 30 dB at 6.S KHz
and better than 60 dB at 15 KHz.

.

Fig. 21 - Six-pole 355 Hz low-pass filter (Chebychev type)

I

16o ;"F
2 20 rf

S -5218

This is a 6- pole Chebychev type with ± 0.25 dB ripple in the passband. A decoupling stage is used to
avoid the influence of the input impedance on the filter's characteristics. The attenuation is about 55 dB
at 710Hz and reaches SO dB at 1065 Hz. The in band attenuation is limited in practice to the ± 0.25 dB
ripple and does not exceed 0.5 dB at 0.9 fc.

363

LINEAR INTEGRATED CIRCUITS
PRELIMINARY DATA
DUAL OPERATIONAL AMPLIFIERS
• INTERNALLY COMPENSATED
• SHORT-CIRCUIT PROTECTED
• LOW POWER CONSUMPTION
• WIDE COMMON-MODE AND DIFFERENTIAL VOLTAGE RANGES
• NO LATCH-UP
The MC 1458 is a dual operational amplifier with frequency and phase compensation built into the chip,
available in 8-lead minidip package and in 8-lead micropackage. It is intended for a wide range of
applications where space and cost saving are the main goals. In spite of that, the MC 1458 offers good
performance and absence of latch-up makes the device ideal for use as voltage follower, integrator,
summing amplifier and general feedback applications.

ABSOLUTE MAXIMUM RATINGS
Supply voltage
Input voltage (*)
Differential input voltage
Power dissipation at T amb = 70°C

Minidip
Micropackage

Operating temperature
Storage temperature

± 18
± 15
±30
665
400
o to 70
-55 to 150

V
V
V
mW
mW

(*) For Vs lower than ± 15V, the absolute maximum input voltage is equal to the supply voltage.

MECHANICAL DATA

6/82

Dimensions in mm

364

Ii:

I
!

CONNECTION DIAGRAM AND ORDERING NUMBERS
(top view)

OUTPUT
A

6

INY.INP.
A

Type

OUTPUT

Minidip

SO-8

B

NON INY.
INP. A

-lis

Ns

~

6

INY.INP.
B

5

NON INV.
INP. B

MC 1458

MC 1458 P1

MC 1458 M

MC 1458C

MC 1458 CP1

MC 1458 CM

5-3590

SCHEMATIC DIAGRAM (one section)
~_----_-- -,.._ _ _ _ _ _--._ _ _ _--._-o+Vs
08 :I---.-----J::09
NON
INVERTING
INPUT

01

02
R6

R9
INVERTING
INPUT

u----+---+---+----'

OUTPUT

R10

THERMAL DATA
Rth j-amb

Minidip
max·

Thermal resistance junction-ambient

* Measured with the device mounted on a ceramic substrate (25 x 16 x 0.6 mm.).

365

120°C/W

SO-8

200* °C!W

ELECTRICAL CHARACTERISTICS

±

(Vs=

15V, T amb =

25°C, unless otherwise specified)
MC 1458C

MC 1458
Parameter

Unit

Test conditions

Min.

l

Is

Supply current
(both amplifiers)

Ib

Input bias current

Typ.

Input offset voltage

Rg'; 10 Kn

2

bVos
bT

Input offset voltage
drift

los

Input offset current

Ise

Rg =10Kn
O°C0 'f,.c;.

15K

~~
~v,,\.'·:.:..

10K

d; V
4

10

Rt=l-

--

--

---;:;

....-;:; ~

-

~RL
--RL

1---- -

-

f = 1 KHz

f./'"
~~

o

GSD150

G,

'5Dl03

Vo

Fig, 3 - Open loop voltage
gain vs. supply voltage

Fig, 2 - Quiescent drain current vs, supply voltage

I---R L

RL - SDK ;,

10~ II

12

14

-c-::
V~ (V)

10

.t

369

---

--

5K

12

14

II
i;
II~

I,

---

SK, C

3KCl_
I

~II

Fig. 4 - Open loop frequency
response using recommeded
compensation networks

l

Fig. 5 - Output voltage
swing vs. frequency for vari·
ous compensation networks

Fig. 6 - Input noise voltage
vs. frequency
e,

G.

~~~i~±ttlt~~
80 f:

Cd!3)

HI--

Vs=

+

15V

",.14,• •
Hr 15

r-.

10- 16

EEf~fE!limj5!~

10- 17

·20

U.J.ll...l.....ulL.LI.J..LLl....l..UL.LllU

100

1K

10K

lOOK

'0"8 L-L.LlL..L.LJ..lL-L-LllJ.-l.....J...LJ.L..J

f (HZ)

10

Fig. 7 - Input noise current
vs. frequency

Fig. 8 - Closed loop gain vs.
frequency

100

1K

10 K

Fig. 9 - Open loop voltage
gain vs. temperature

,"~~~~~~~~~~~.,i4~

(~:

I

_

Vs = ± 15V

VS -±15V

f = 1KHz

30K

...... j----.,: t---\.;: ,
Rt ~~

10K

a

10

Fig. 10 - TV remote control receiver

~
lK.n.

t..7nF 4.7nF

C1330RJ
lOOK

C2 330 .--!--!--.,,J,,........,I,.--,I,--*_~-::.-~--~----O Va

C8

:I: 4,'"F
~~_~=R=5~____~__________________D'Vs
lQOKfi

370

5-39~O

--

"-

R~ - 107D

APPLICATION INFORMATION

1

'"

f--

..........

20K

10. 26 L-L.LlL..L.LJ..lL-L-LllJ.-l.-l...LJ.L.J
10K
f (Hz)
10
100
1K

f (Hz)

(15~lB)

20

30

40

50

T {"CI

LINEAR INTEGRATED CIRCUIT
GENERAL PURPOSE TRANSISTOR ARRAY
The TBA 331 is an array of 5 monolithic NPN transistors in a 14-lead dual in-line plastic package. Two
transistors are internally connected to form a differential amplifier.
The transistors of the TBA 331 are well suited to low noise general purpose and to a wide variety of
applications in low power systems in the DC through VHF range. They may be used as discrete components in conventional circuits; in addition, they provide the very significant inherent integrated circuit
advantages of close electrical and thermal matching.

Ic
P tot
T stg' T j
Top

Collector-base voltage (I E = 0)
Collector-emitter voltage (I B = 0)
Collector-substrate voltage
Emitter-base voltage (lc = 0)
Collector current
Total power dissipation at Tomb ~ 55°C
Storage and junction temperature
Operating temperature

Each
transistor
20
15
20
5
50
300
-40 to
o to

Total
package
V
V
V
V

mA
750 mW
150
°C
85
°C

* The collector of each transistor of the TBA 331 is isolated from the substrate by an integrated diode.
The substrate (pin 13) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.

ORDERING NUMBER:

TBA 331
Dimensions in mm

MECHANICAL DATA

2.5: . ;j
~~

D~.s.

I

I

j

ABSOLUTE MAXIMUM RATINGS

V CBO
. V CEO
V css *
V EBO

j

15.24

I

371

6/82

i
!

SCHEMATIC DIAGRAM

2

5

8

4

3

7

6

11

9

10

14

12

13

substrate

5-3763

THERMAL DATA
Rth j-amb

Total

Thermal resistance junction-ambient

ELECTRICAL CHARACTERISTICS

I CEO

126°C/W

(T amb = 25°C unless otherwise specified)

Parameter

ICBO

max

Test conditions

Co lIector cutoff
current (I E = 0)

V CB

=

10 V

Collector cutoff
current (lB = 0)

VCE

=

10 V

Min.

Typ.

Max.

Unit

Fig.

0.002

40

nA

1

see

0.5

/.LA

2

2

/.LA

7

curve

IIB1-1B21

Input offset
current

Ic
VCE

=
=

1 mA
3 V

372

0.3

i;!
'II

11
i~

~
ELECTRICAL CHARACTERISTICS

(continued)
Test conditions

Parameter

VCSO

V CEO

Vcss

VCE (sat)

Collector-base
voltage (I E ~ 0)

Ic

~

Collector-emitter
voltage (Is ~ 0)

Ic

~

collector-substrate
voltage (I css ~ 0)

Ic

~

Is
Ic

~

IE

~

IE
VCE
IE
VCE

~

Ic
VCE

~

Ic
VCE

~

Ic
VCE

~

Ic
VCE

~

Base-em itter
voltage
temperature
coefficient

Ic
VCE

~

I nput offset
voltage
temperature
coefficient

Ic
VCE

~

Emitter-base
voltage (I C ~ 0)
Base-emitter
voltage

VSE

I V SEr V sE21

IVSE3- V SE41

IV SE4- V SE51

Input offset
voltage

I nput offset
voltage

I nput offset
voltage

IV SE5- V SE4 1 I nput offset
voltage

L1V SE
LIT

IVSErVSE21
LIT

Typ.

Unit

Fig.

10"A

20

60

V

-

1 mA

15

24

V

-

10"A

20

60

V

-

0.23

V

-

7

V

-

0.715

V

4

0.8

V

4

Max.

Collector-emitter

saturation voltage

V EBO

Min.

~

~

~

~

~

~

~

~

~

~

1 mA
10mA

10 "A

1 mA
3V
10 mA
3V

5

1 mA
3V

0.4?

5

mV

4-6

1 mA
3V

0.45

5

mV

4-6

1 mA
3V

0.45

5

mV

4-6

1 mA
3V

0.45

5

mV

4-6

1,

1 mA
3V

-1.9

mV/oC

5

1 mA
3V

1.1

"V/oC

6

373

ELECTRICAL CHARACTERISTICS (continued)
Test conditions

Parameter
hFE

fT

NF

Hie

hfe

.,
hre

hoe

Yie

yfe

Yre

DC current gain

Transition
frequency

Noise figure

I nput impedance

Forward current
transfer ratio

Reverse voltage
transfer ratio

Output
admittance

Input
admittance

Forward
transadmittance

Reverse
transadmittance

Ie
VeE
Ie
veE
Ie
V eE

= lOrnA
= 3V
1 mA
= 3V
10JJA
= 3V

Min.

Typ.

Max.

Unit.

Fig.

100

-

3

100

-

3

54

-

3

550

MHz

14

3.25

dB

8

Ie = 1 rnA
VeE = 3V
= 1 kHz
f

3.5

k!1

9

Ie = 1 rnA
V eE = 3V
= 1 kHz
f

110

-

9

Ie = lmA
V eE = 3V
= 1 kHz
f

1.8xl0"

-

9

Ie = 1 rnA
VeE = 3V
= 1 kHz
f

15.6

JJS

9

Ie = 1 rnA
V eE = 3V
= 1 MHz
f

o.3+jQ.04

mS

11

Ie = 1 rnA
VCE= 3V
= 1 MHz
f

I I
31-jl.5

mS

10

Ie = 1 rnA
veE = 3V
= 1 MHz
f

see curve

mS

13

Ie = 3mA
V eE = 3V
Ie
V eE
f
Rg

=
=
=
=

40

300

100JJA
3V
1 KHz
1 k!1

374

ELECTRICAL CHARACTERISTICS (continued)
Parameter

Test Conditions

Output
admittance

y""

C EBO

Collector-base
capacitance

CCBO

Collector-sustrate
capacitance

Cess

Fig. 1 - Collector cutoff
current vs ambient temperature
'CEO
(nA)

10

~~~~~~~~~~~'I-'~"~'"

Unit.

Fig.

0.001+jO.03

mS

12

Max.

f

=
=
=

1mA
3V
1 MHz

Ic
V EB

=
=

0
3V

0.6

pF

-

IE
VCB

=
=

0
3V

0.58

pF

-

Ic =
Vcss=

0
3V

2.8

pF

-

IC
V CE

Emitter-base
capacitance

Typ.

Min.

Fig. 2 - DC current gain vs.
emitter current.
,-

Fig. 3 - Input voltage and
input offset voltage vs. emitter current

, .,

E

V.

120

=3V

(mV)

1.1

h

0.7

100

IhFEl
H"FE21
hFE2
~E.l

80

0.6

A.'
o.a

60

os
ilVSE

0.'
·20

20

100

60

80

10. 2

10- 1

100 Tamtrcl

Fig. 4 - Input characteristic
for each transistor
'BE

I ,,10m

froY)

1'·,",,1'
(PA):

as

IE (mAl

Fig. 6 - Input offset current
for matched transistor pair

Fig. 5 - Input offset voltage
vs. ambient temperature
G-046113

10·'

~~~~IE~~~~~~'~'~"I'"
f-~ _

f-f---H-++tHtt-..L ..l.

+

• -

.

VCEdV

.7
VE"'W

"mA

.5
0'

lmA

oeo

Ie'" 3mA
lmA

o.lmA

10-"~_

020

-60

-30

30

60

90

Tamb("'C)

·tlO

-20

0

20

375

OJ

100

TafT'bl"C1

Ie (mA)

Fig. 7 - Noise figure vs collector current
N'

(dB)

IYJ
veE ~ 3V
= 1kfl.

I--R

1= 0.1 kHz

--'T

~-~

'+'-

"

Fig.9 - Input admittance

Fig.8 - Forward admittance
-o'''n

~:i,

II

"

~-

20

f-

gie

~~~~-

(mS1

gf,

_>en

0

~"~
0,+

b"

'CE
1 _

r--t
r-

VeE ·3V

IC

~

lmA

'111-:+
g,

I,

,

+-T

°~

"

-20

10kHz

-4O

10·'

10-'

10-

Ie (rnA)

10

Fig. 11 - Reverse admittance

Fig. 10 - Output admittance
bee
gee
(mS)

,-,-rn-rrnr7-rrrrTTTrr--rrrTiTiTI

f-+++t+tfH--++HtHtt--H-ttttffi
f-+++t+tfH--++HtHtt--H-ttttffi

go.

10'

f (MHz)

376

>0'

"

10'

I (MHz)

Fig. 12 - Transition frequency

LINEAR INTEGRATED CIRCUIT
j:
5W AUDIO AMPLIFIER

i

The TBA 800 is a monolithic integrated power amplifier in a 12-lead quad in-line plastic package. The
external cooling tabs enable 2.5W output power to be achieved without external heatsink and 5W
output power using a small area of the P.C. board copper as a heatsink.
It is intended for use as a low frequency Class B amplifier.

r:

I
I

I

ABSOLUTE MAXIMUM RATINGS
Vs
10
10
Ptot
T stg , Tj

30
2
1.5
1
5
-40 to 150

Supply voltage
Peak output current (non repetitive)
Peak output current (repetitive)
Power dissipation at Tamb = 80°C
at T tab = 90°C
Storage and junction temperature

V

A
A

W
W
°C

ORDERING NUMBER: TBA 800

Dimensions in mm

MECHANICAL DATA

I

l.!.i,

,·
I'j
iM

I

:i

i,~

~

377

6/82

CONNECTION AND SCHEMATIC DIAGRAMS
(top view)

SUPPLY VOLTAGE

12

N C

11

OUTPUT

N C

SUPPLY VOLTAGE

10

GROUND

GROUND

GROUND

GROuND

BOOTSTRAP

(SUBSTRATE)

COMPENSATION

8

INPUT

FEEDBACK

7

RIPPLE REJECTION

5-0329

Substrate

TEST CIRCUIT

+Vs=24V
C9

01

.~

C6

'Tr _T 100~F
25V

C8
100,uF

Vi

15V

R2
100kQ

C2

500I'F
15 V
C1

100!,F
6V

Rj
560.

*

C3, C7 see fig. 5.

378

THERMAL DATA
Rth J-tab
Rth j-amb

Thermal resistance junction-tab
Thermal resistance junction-ambient

max
max

12
70*

°C/W
°C/W

- Obtained with tabs soldered to printed circuit with minimized copper area.

ELECTRICAL CHARACTERISTICS(Refer to the test circuit, T amb = 25°C, Vs= 24V, RL = 16n,
unJess otherwise specified)
Parameter

Test conditions

Min.

Typ.

Max.

Unit

11

12

13

V

Vo

Quiescent output voltage
(pin 12)

Id

Quiescent drain current

9

20

mA

Ib

Input bias current (pin 8)

1

5

!J.A

Po

Output power

Vi(rms)

Input saturation voltage

V·I

I nput sensitivity

Po: 5W

Ri

Input resistance (pin 8)

f : 1 KHz

B

Frequency response (-3 dB)

C3: 330 pF

d

Distortion

d: 10%

f : 1 kHz

f : 1 kHz

W
mV

80

mV

5

MD

40 to 20,000

Hz

Po: 50 mW to 2.5W
f : 1 kHz

0.5

%

80

dB

Voltage gain (open loop)

f : 1 kHz

Gv

Voltage gain (closed loop)

f : 1 kHz

eN

Input noise voltage

39

B : 22 Hz to 22 KHz

-

iN

I nput noise current

1)

Efficiency

Po: 5W

SVR

Supply voltage rejection

f ripple: 100 Hz
C5 : 25!J.F
C5:100!J. F

Drain current

5

220

Gv

Id

4.4

f = 1 kHz

Po: 5W

• See fig. 6.

379

42

45

dB

5

!J. V

0.2

nA

75

%

35
38

dB
dB

280

mA

Fig. 2 - Maximum power
dissipation vs. supply voltage

Fig. 1 - Output power vs.
supply voltage

r

Fig. 3 - DislOrtion vs. output power

60805/1

I~i:

Ptot

_._-

- 1--- --

(W)

-

-

,

Rl=8Q

/

f-++-+++

V

i

1++++- +

~

10

20

~~

~

Fig. 4 - Distortion vs. frequency

1•·

20

~t

+

I

R -lGn

111\lL-_

1=

, ~ :' I I I

f-

---i

tVs!:Lv

"""I
I:I~"
I

I

tll I",,", 1 't'll

,/

-. -11

t5

10

Vs (V)

I

A",o16U

/v

rrrn ' ij If!i III j
I

r-- -=
I

V

d
('/,)

t·

T

I

r

LL._.~L

'

1!
I

-

I
,

I
t

Ij

V: '
'
, f
' '

'..L'

4

25 Vs (V)

-

I'

f"o(W)

Fig. 6 - Voltage gain (closed
loop) and input voltage vs.

Fig. 5 - Value of C3 vs. Rf
for various values of B

Rf
d

C3,

(%)

111111
so24V,,-=lsn
",=5SU

(pF)e

7"'5xC

,-

-5kHz

Po =50mW

e--

/ ' 10kHz

t-

10',

r--

2

r-'

, ==--

o=2.5W

I

1\

--_..- ./

to'
10

to'

to'

to'

20kHz

f (Hz)

10

Fig. 7 - Power dissipation
and efficiency vs. output
power

-I

,

6

8

I

II

1;

~t(O)

102

50

100

Rt (n)

Fig. 9 - Supply voltage
rejection vs. Rf •

Fig. 8 - Quiescent output
voltage (pin 12) vs. supply
voltage

G-0633Jl

Ptot
(W)

P,

'1

Va

('/,)

(V)

70
SO

1.5

101-+++-1-++H-+-if-H-+-H

50

1/

-10

H-++-H-+-+-I-+--+--+-1I-+-H

-20

f-f--.

40
Vs=24V
30

RL=16n
f -lkH

10

4

fb

(W)

-+-~
to

-so

20

380

~~-I-++I-++I-++H

: : Rf!t:f:h~'5"'1~OlF~i~5.~5"tt~

20

0.5

.-1-1-+++-1-+++-11-+++-1

50

100

APPLICATION INFORMATION
Fig. 10 -- Circuit with the load connected to the supply voltage

5-0102/3

* C3, C7 see fig. 5.

Compared with the other circuits, this configuration entails a lower number of external components
and can be used at low supply voltages.
Fig. 11 - Circu it with load connected to ground without bootstrap.

~:t500~F

~i1

'5V
1

*C3, C7 see fig. 5.

This circuit is only for use at high voltages. The pin 3 is left open circuit, this automatically inserts
diodes 02-03 (see schematic diagram) and this enables a symmetrical wave to be obtained at the output.

381

LINEAR INTEGRATED CIRCUIT
FULLY-PROTECTED 7W AUDIO AMPLIFIER FOR CB RADIO
•
•
•
•
•
•

HIGH OUTPUT POWER (7W AT 16V/4n; 14.4V/2n)
HIGH OUTPUT CURRENT (3A REPETITIVE)
LOAD DUMP PROTECTION UP TO 40V
LOAD SHORT CIRCUIT PROTECTION UP TO Vs = 15V
POLARITY INVERSION PROTECTION
THERMAL PROTECTION

The TBA 810CB is a monolithic integrated circuit in a 12-lead quad in-line plastic package, expressly
designed for use as a power audio amplifier in CB radios.
The TBA 810 ACB has the same electrical characteristics as the TBA 81 OCB but its cooling tabs are flat
and pierced so that an external heatsink can be easily attached.

ABSOLUTE MAXIMUM RATINGS
Peak supply voltage (50 ms)
DC supply voltage
Operating supply voltage
Output peak current (non repetitive)
Output peak current (repetitive)
Power dissipation at Tamb
80°C (for TBA 810CB)
T tab .;; 100°C (for TBA 810ACB)
Storage and junction temperature

V s(peak)
Vs
Vs

10
10
Ptot

40
28
20
4

3
1
5

<

-40 to 150

V
V
V
A
A
W
W
°C

ORDERING NUMBER: TBA 810CB
TBA 810ACB

MECHANICAL DATA

Dimensions in mm

.~.'95""'
.

.

"
,

,
T13A 810CB

6/82

TBA 810AC13

382

CONNECTION AND SCHEMATIC DIAGRAMS
(top view)

'3UPPLY

VOLTAGE

12

N.

C.

OUTPUT
N, C

N.C.

10

6

0----

GROUND

,

GROUND

GRCUND

(}-------

GROUND

BOOTSTRAP

(SUBSTRATE)
COMPENSATION

INPUT
RIPPLE
REJECTION

FEEDBACK

5-0289

TEST AND APPLICATION CIRCUIT

R3

loon

CB

v,

100~F

15V

Y''--<>---+--------,
R2

I

IOOkO

~2

T:~eO"F
I

WR,
5-220311

*C3,C7 SEE FIG.6

THERMAL DATA
Rth' j-tab
Rth j-amb

TBA 810CB

Thermal resistance junction-tab
Thermal resistance junction-ambient

max
max

• Obtained with tabs soldered to printed circuit with minimized copper area,

383

TBA 810ACB

12°C/W

10°C/W

70* °C/W

80°C/W

ELECTRICAL CHARACTERISTICS (Refer to the test circuit;

Vs = 14.4V,

T amb = 25°C unless

otherwise specified)
Test conditions

Parameter

Min.

Typ.

Max.

Unit

20

V

7.2

8

V

20

mA

Vs

Supply voltage (pin 1)

Vo

Quiescent output voltage
(pin 12)

Id

Quiescent drain current

12

Ib

Input bias current (pin 8)

0.4

f.lA

Po

Output power

6
7

W
W

Vi(rms)

I nput saturation voltage

Vi

I nput sensitivity

/

4
6.4

d ~ 10%
RL ~ 4.11
RL ~ 2.11

f

~

1 kHz
5.5
5.5

f ~ 1 kHz
Po ~6W
R f ~ 56.11
R f ~ 22.11
Po~ 7W
R f ~ 56.11
R f ~ 22.11

RL

RL

Ri

Input resistance (pin 8)

B

Frequency response
(-3 dB)

RL ~ 4.11/2.11
C 3 ~ 820pF
C 3 ~ 1500 pF

Distortion

P0 ~ 50 mW to 2.5W
RL ~ 4.11/2.11
f ~ 1 kHz

d

Gv

Voltage gain (open loop)

RL

Gv

Voltage gain (closed loop)

RL ~ 4.11/2.11

eN.

I nput noise voltage

iN

Input noise current

1]

Efficiency

Supply voltage rejection

~

4.11

~

~

4.11

B (-3 dB)

~

f

~

1 kHz

f

~

1 kHz

34

40 to 15000 Hz

Po~
~

RL

RL

6W
1 kHz
~

4.11

mV
mV

55
20

mV
mV

5

Mn

40 to 20 000
40 to 10000

Hz
Hz

0.3

%

80

dB

37

40

dB

2

f.lV

80

pA

75

%

48

dB

4.11

V ripple~ 1 V rms

friPPle~ 100 Hz

384

~

75
30
2.11

Vs~16V

f
SVR

mV

220

40

I,

Fig. 1 - Output power vs.
supply voltage

I","

Fig. 3 - Distortion vs. frequency (R L = 417.)

Fig. 2 - Maximum power
dissipation vs. supply voltage
(sine wave operation)

P,

d

(wi

(0/.)

!i

11

j",
i,;

16

Vs(v)

16

Fig. 4 - Distortion vs. frequency (R L = 217.)

Vs(V)

Fig. 5 - Distortion vs. output
power

d

d

(.10)

(°1.)

Fig. 6 - Value of C3 vs. feed·
back resistance for various
values of B

, '

,il
10'

10

10-'

10'

Fig. 7 - Relative voltage gain
(closed loop) and input voltage vs. feedback resistance

Po(W)

I
w'

Fig. 8 - Relative voltage gain
(closed loop) and input voltage vs. feedback resistance

Fig. 9 - Power dissipation
and efficiency vs. output
power
Ptot

'l.

(W)

(°1.)

80

60

20

80

100

120

RI (0)

20

<.0

60

80

385

100

Rf (n)

Fig. 10 - Quiescent output
voltage (pin 12) vs. supply
voltage

Fig. 11 - Quiescent drain
current vs. supply voltage

Fig. 12 - Supply voltage
rejection vs. feedback resistance

(~~ ~~-.-.~~-~~~~
(dB)

8

~"

I.

:;

I-L~~:~~+:

, r +t
t

;

;:

20

i

- t

2

~lf

h-

~i

1- ++-

vJ"Lllt-f

RL"4.n
_ C5=,100,uF

tr f",",f'f-"r'--

I

t-J ,

40

50
60
16

~m
~LI
tl ..
j i

i i
·lil-

ffi{ +1..:

,

f

Vs(V)

100

BUI LT -IN PROTECTION SYSTEMS
Load dump protection
The load dump case occurs in a car when the engine is running and the battery is disconnected: voltage
spikes on the power line are supplied by the alternator since there is no clamping effect due to battery
capacitance.
The TBA 810CB was designed to withstand a pulse train on pin 1, of the type shown in Fig. 13. Providing
an LC filter is included, as shown in Fig. 14, a much higher pulse train amplitude (up to 100 V peak ) is
allowed on the supply line with no damage to the device.

Fig.13
Fig.14
From

L=2mH

Topin1of

supply ~TBA8'OCB
line
~O~q,uF
'6V

I

5-2207

5-2206

Short-circu it protection
The TBA 810CB can withstand a permanent short circuit across the load for a supply voltage up to 15V.

Polarity inversion protection
High current (up to 5A) can be handled by the device with no damage for a longer period than the
blow-out time of a quick lA fuse (normally connected in series with the supply).
This feature is added to avoid destruction if, during fitting to the car, a mistake on the connection of the
supply is made.

386

BUI LT -IN PROTECTION SYSTEMS(continued)
Open ground protection
When the radio is in the ON condition and the ground is accidentally opened, a standard audio amplifier
will be damaged. On the TBA 810CB, protection diodes are included to avoid any damage.

I nductive load protection
A protection diode is provided between pin 12 and pin 1 (see the internal schematic diagram) to allow
use of the TBA 810CB with inductive loads.
In particu lar, the TBA 81 OCB can drive the coupl ing transformer for aud io modulation in CB transmitters.

DC voltage protection
The maximum operating DC voltage on the TBA 810CB is 20V.
However the device can withstand a DC voltage up to 28V with no damage. This could occur during
winter if two batteries were series connected to crank 
This means that a variation in current absorbed by the motor, due to a variation in torque applied,causes
a proportional variation in regulator output voltage. In fig. 6 is shown the minimum allowable Eo vs. RT .
The TCA 900 and TCA 910 give a reference constant voltage V,ef (between pins 2 and 3) independent
of variations of V5' 12 and ambient temperature.
They also give:
13 = Id3 + 12/k
13 = total current at pin 3
Id3 = quiescent current at pin 3 (12 = 0)
12 = current at pin 2
k
constant
The output voltage V m, applied to the motor has the following value:
Where:

V m = V,ef +R T [ V,ef (1 +.!...) + Id3 ]
R5
k

+~
k

RT

-------

Term 2
Term 1
Term 1 equals Eo and fixes the motor speed by means of the variable resistor R5 ;

-If-.

Term 2
RT equals the term Rm. 1m and, therefore, compensates variations of torque applied.
Complete compensation is achieved when:
RT = k Rm
If RT max > k Rm min instability may occur.
412

LINEAR INTEGRATED CIRCUIT
lOW AUDIO POWER AMPLIFIER
The TCA 940N is a monolithic integrated circuit in a 12-lead quad in-line plastic package, intended for
use as a low frequency class B amplifier. The TCA 940N provides lOW output power@ 20V/4n, 7W@
16V /4n and 6.5W @ 20V /8n. It gives high output current (up to 3A), very low harmonic and cross-over
distortion. Besides the thermal shut-down, the device contains a current limiting circuit which restricts
the operation within the safe operating area of the power transistors. The TCA 940N is pin to pin
equivalent to the TBA 810 AS.

I
j"

ABSOLUTE MAXIMUM RATINGS

v

5

10
10
P tot
T stg , T j

Supply voltage
Output peak current (non-repetitive)
Output peak current (repetitive)
Power dissipation: at T amb = 50D C
at T tab = 70D C
Storage and junction temperature

28
3.5

V
A

3

A
W
W

1.25

8
-40 to 150

DC

ORDERING NUMBER: TCA 940N

MECHANICAL DATA

Dimensions in mm

I!
II

,

.,

:~

I:I,·
"

i

\i

I,:

I~

Ii:~
:j
1<

,.

I~

[!
413

6/82

CONNECTION AND SCHEMATIC DIAGRAMS
(top view)

t"'"
I

SUPPLY

VOLTAGE

I
I

12

())

OUTPUT

N.C.

N. C.

N C.

GROUND

GROUND

CB) I
BOOTSTRAP

[ifli

GROUND
(SUBSTRATE)

COMPENSATION

INPUT

FEEDBACK

RIPPLE
REJECTION

J

lt

[
GI

®

5-0289

TEST AND APPLICATION CIRCUIT

V

C9

O.lfJF

R3
C6

lOon

IOO}JF

CB
lOOfJF

R2
100kO

*=C3 ,C7 SEE FIG. 7
414

THERMAL DATA
Rth J-tab
Rth J-amb

max
max

Thermal resistance junction-tab
Thermal resistance junction-ambient

ELECTRICAL CHARACTERISTICS
Parameter

10
80

°CIW
°CIW

(Refer to the test circuit, T amb = 25°C)
Test conditions

Min.

-

Typ.

Max.

Unit

28

V

9.8

V

Vs

Supply voltage (pin 1)

Vo

Quiescent output voltage (pin 12)

Vs=18V

Id

Quiescent drain current

Vs=12V
Vs = 24V

13
20

mA
rnA

Ib

I nput bias current (pin 8)

Vs=18V

0.5

/JA

Po

Output power

d= 10%
Vs = 20V
Vs=18V
Vs=16V
Vs = 20V
Vs=18V

10
9
7
6.5
5

W
W
W
W
W

6
8.2

f = 1 kHz
R L =40
R L =40
R L =40
R L =80
R L =80

Vl(rms) Voltage for input saturation
Vi

Input sensitivity

Vs=18V
f = 1 kHz

90

RL=40

40 Hz to 20 KHz

Vs=18V
C3 = 1000 pF

d

Distortion

Po = 50 mW to 5W
R L =40
Vs=18V
f = 1 kHz

Gy

Voltage gain (open loop)

Gv

Voltage gain (closed loop)

mV

Po =9W
R L =40

Frequency response (-3 dB)

Input resistance (pin 8)

7

250

B

Ri

9

Vs=18V
f = 1 kHz

R L =40

Vs=18V
f = 1 kHz

R L =40

Rg=O

eN

I nput noise voltage

Vs=18V

iN

Input noise current

Vs=18V

415

34

mV

0.3

%

5

MO

75

dB

37

40

dB

3

/JV

0.15

nA

ELECTRICAL CHARACTERISTICS (continued)
Test conditions

Parameter
1)

Efficiency

Po

~

Min.

Typ.

Max.

Unit

Vs~18V

9W

RL~4n

1 ~ 1 kHz
SVR

Id

Tsd

Supply voltage rejection

Drain current

Vs ~ 24V
f ripple ~ 100 Hz

RL~4n

Po ~ 9W
RL ~ 4n

Vs~18V

Ptot

Thermal shut-..down (.)
Case temperature

~

4.8W

65

%

45

dB

770

mA

110

°C

(.) Seelig. 15.

Fig. 1 - Output power vs.
supply voltage.

Fig. 2 - Maximum power
dissipation vs. supply volt·
age (sine wave operation)
~otrT-T'-rT-''-''-''-''~'T-'~'''c,''
(w)

H++-H++ +c:+--ri--+-+-t--+-I
f--t--+--H--+-+--t-'I= \~Hi'--t++-H+-i

-I-+-I,---t-,;f---t--+~\-I/I'¥I----j
L=lIn

416

Fig. 3 - Distortion vs. output
power.

Fig. 4 - Voltage gain and
input sensitivity vs. feed·
back resistance (R f )

Fig. 5 - Distortion vs. frequency (R L = 4n)

Fig. 6 - Distortion vs. frequency (R L = 8n)

Fig. 7 - Value of C3 vs. R f
for different bandwidths

Fig. 8
Supply voltage
rejection vs. feedback resi stance (R tl~~.-,-,-"'-T'ro

Fig. 9 - Power dissipation
and efficiency vs. output
power (R L = 4n)

C3~~~C-"TT~--~~-rI7TrD
(PF)3

-

• • • • "...

~:)

--+"

r--:-- 1

-'0
-20
Vs~24 V
RL= 40

-30

C5:100 .... f
f"PIM=100H z .

-40

-so
-60
100

"

°

Fig. 10 - Power dissipation
and efficiency vs. output
power (R L = 8n)

Fig. 11 - Qu iescent output
voltage (pin 12) vs. supply
voltage

p\:;, EEEEEEEfa=HS=-t~Ft4EfIr=,.+
~F<~~~:l-(~"
t++-EEi§i§!§'E~'
i:+'+' '

->,t--

-1-- .....

8

Fig. 12 - Quiescent current
vs. supply voltage

" rr-,--n--'--'-T1,-",-",-n--::n
("

60

fI!.--:':
, 'f-t-+--t-

I

l'tot

1-+

+-~--.::..-t=

40

".18'-+-t--l-:::-=sn
; _
Rl ..

~_~_ ~

>-_~

-+tJ- ~1~~ :: ~-~

5
20

!

~d(oulput 'tran~is~or~):
_

+)' "
20

"
417

""s(vl

Po(W)

"~1

:

SHORT CIRCUIT PROTECTION
The most important innovation in the TCA 940N is an original circuit which limits the current of the
output transistors. Fig. 13 shows that the maximum output current is a function of the colle~tor-emitter
voltage; hence the circuit works within the safe operating area of the output power transistors. This can
therefore be considered as being power limiting rather than simple current limiting. The TCA 940N is
thus protected against temporary overloads or short circuit by the above circuit. Should the short circuit
exists for a longer time, the thermal shut-down comes into action and keeps the. junction temperature
within safe limits.
.

Fig. 14 - Test circuit for the limiting characteristiCs

Fig. 13 - Maximum output
current vs. voltage (V CE)
across each output transistor

,A, rrr-r"",-,-,-rrr---,,':-":':':::'

lOMAX

n9J

..JW

f;50Hz

THERMAL SHUT-DOWN

Fig. 15 - Output Aower and
drain current vs. case tem·

The presence of a thermal limiting circuit offers the following
advantages:
1) an overload on the output (even if it is permanent), or an
above-limit ambient temperature can be easily supported.
2) the heatsink can have a smaller factor of safety compared
with that of a conventional circuit. There is no device
damage in the case of too high a junction temperature: all
that happens is that Po (and therefore P tot) and Idare
reduced (fig. 15).

10

++-t-t-+-t +-t ++++-it-H 0.2

418

MOUNTING INSTRUCTION
The power dissipated in the circuit may be removed by connecting the tabs to an external heatsink according to fig. 16. The desired thermal resistance may be obtained by fixing the TCA 940N to a suitably
dimensioned plate as shown in fig. 17. This plate can also act as a support for the whole printed circuit
board; the mechanical stresses do not damage the integrated circuit. During soldering the tabs temperature must not exceed 260°C and the soldering time must not be longer than 12 seconds.
Fig. 16 - Maximum allowable power dissipation vs.
ambient temperature

Fig. 17 - Mounting example

ALUMINIUM
3.5rrm THICKNESS

Fig. 18 - P.C. board and components layout of the test and application circuit (1:1 Scale).

CS-003311

419

LINEAR INTEGRATED CIRCUIT
FM-I F RADIO SYSTEM
•
•
•
•
•
•

HIGH LIMITING SENSITIVITY
HIGH AMR
HIGH RECOVERED AUDIO
GOOD CAPTURE RATIO
LOW DISTORTION
MUTING CAPABILITY

The TCA 3089 is a monolithic integrated circuit in a 16-lead dual in-line plastic package. It provides a
complete subsystem for amplification of FM signals.
The functions incorporated are:
FM amplification and detection
Interchannel controlled muting
- AFC and delayed AGC for FM tuner
- Switching of stereo decoder
- Driver of a field strength meter
The TCA 3089 can be used for FM-IF amplifier application in Hi-Fi, car-radios and communication
receivers.

ABSOLUTE MAXIMUM RATINGS
Supply voltage
Output current (from pin 15)
Total power dissipation at T amb
Storage temperature
Operating temperature

16

V
mA
800
mW
-55 to 150°C
-25 to 70°C

2

';;

70°C

ORDERING NUMBER: TCA 3089
Dimensions in mm

MECHANICAL DATA

6182

420

CONNECTION DIAGRAM

J:I

(top view)

"

IF INPUT

N.C.

BYPASS

AGC OUTPUT

BYPASS

GROUND
FIEL D STRENGTH
METER

GROUND
MUTE INPUT

MUTE OUTPUT

AUDIO OUTPUT

SUPPLY VOLTAGE

AFC OUTPUT

REF.

QUAQ OUTPUT

QUAD. INPUT

5-0398/1

BLOCK DIAGRAM

TO Ir-.. H R'.AL
f-lE"C,ULA 7CH',

o

IF
INPUT

i~~~~f·~

:~
I
2

DELAYED
AGe FOR
RF AMPL

421

BIAS

!i

:i!:


± 40 KHz

5.6

V

430

TEST CIRCUITS
Single tuned detector coil

Double tuned detector coil
r-"";oo~;1

!
VS,;ll';

1tL~~~-t---::---~,----!;;---';-.., :~~O

001,uF

II •

~

I
6

~AUDIO

C'.;i. ~*

0

51

OCl2.t-

OUTPUT

)1

AUDIO

TeA 3189

..:..

I"F-OO~

"1"','

OUTPUT

1

"'

J..

W

II •

,L~~::

PIN 13

1
Fig.1 - P.C. board and component layout of the single tuned circuit (1:1 scale)
10.7MHz
INPUT

431

Fig. 2 - Limiting and noise
characteristics

(kHz)r--,-r-rrTTlTr-..,..,.,iTi'i'n

(dB) _ _

r---'~'/l"3-'-[-~"Alffll;'~~ITT~l1jlt-1

o f==

-10

Fig. 4 - Recovered audio
and muting action vs. input
level

Fig. 3 - Deviation mute
threshold vs. R 7-10

I

_20~~'~~"~~:~~~~1

-~

M~1~k~

dB =500mV

-40

-1Om_
-50 ----

lis ~ '2'1
AUDI

f---f-H+++++t~m: ~~~~HZ

"0 f---,"\rl-+++f++f---jl-H-+i-H--H
"0 f---HH-+++++t--+-++m+H
'00 1--t---i\\-H-ttI-tt--t-H-++-1tH

-20

f--+-II-f-+-+-17",-::.",,,",,-'--t-1
f--+-+_.f-+-+-1 ~~ ~o;~~~z
llh ±75KHz

OdB=500mX

8°f---f-~.r++++t--4--++m+H

~~,

-60

0 TPUT

(

-60

1--+-t+/-+-+-I--+--~+--+--1

-80
-90

10

10'

10'

10

Fig. 5 - AFC characteristics

)

"

'IS" 12 V
t .. 10.7MH:/:

f,,'0.7MHz

1/

/

"00
'50

-50

-15 0

'Isz12V

/

0

-10

Fig. 7 - Field strength and
tuning meter output vs.
input level

"3

)

.200

'"

10'

10

Fig.6 - AGC voltage for FM
tuner vs. input level

1

'.A

R7-lO{kn)

V

V

V"

V

V

Vs= 12V

j

f" IO.7MHz

"
, I-~
"

V

V

/

/
-\00

-50

50

100 l!f(KHz)

10

10'

FEATURES

I
!

I

I

Low Limiting Sensitivity (25 p.V max.)
Low Distortion « 1%)
Single-coil Tuning Capability
Programmable Audio Level
SIN Mute
Deviation Mute
AFC and delayed AGC
Programmable AGC Threshold and Voltage
Typical S + NIN > 70 dB
Typical S + NIN > 60 dB
Meter Drive Voltage Depressed at Very-Low Signal Levels
On-Channel Step Control Voltage

432

10

TCA 3189

TCA 3089

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
No
Yes
No
Yes
No
No
Yes
No
No

LINEAR INTEGRATED CIRCUIT
TV VISION I F SYSTEM
The TDA 440S is a monolithic integrated circuit in a 16-lead dual in-line plastic package. The functions
incorporated are:
- Gain controlled vision I F amplifier
- Synchronous detector
- AGC detector with gating facility
- AGC amplifier for PNP tuner drive with variable delay
- Video preamplifier with positive and negative outputs.
It is intended for use in black and white and colour TV receivers.

ABSOLUTE MAXIMUM RATINGS
Vs
V5

Supply voltage (pin 13)
Voltage at pin 5

VlO

Voltage at pin 10

V ll

Voltage at pin 11 (with load connected to V s)
Output current
Total power dissipation at Tamb .;; 70°C
Storage temperature
Operating temperature

Ill,112

Ptot
T stg
Top

ORDERING NUMBER:

15
15
-1
3
8

f
1

5

V
V
V
V
V
mA

800
mW
-55 to 150°C
o to 7 0 ° C

TDA 440S

Dimensions in mm

MECHANICAL DATA

433

6/82
_ _ _1_ _ _ _ _

_

CONNECTION DIAGRAM (top view)

[ 1

16

INPUT

OECOUPLING

[ 2

15

BIAS
DECOUPLING

GROUND

[ 3

14

INPUT

BIAS

AGe TIME
CONSTANT
TUNERAGC
OUTPU T

N,C.

su PPL Y

13

[ 4

l5

VOLTAGE

12

POSIT IvE
V I OEO
OUTPUT

11

NEGATIVE
VIDEO

10

VOLTAGE

TUNER AGe
DELAY

OUTPUT

FLYBACK

PULSE INPUT

OUTPUT
REGULATION

CARRIER
TUNING

CARRIER

TUNING
'-, (19-8' 1

BLOCK DIAGRAM

~
+-11-··1

~

',,8}

C3

+

1.9"'

'3

I

1
434

V'S

.~.

•

THERMAL DATA
Rthi·amb

max

Thermal resistance junction-ambient

100

°C/W

~,
ELECTRICAL CHARACTERISTICS (Refer to fig. 1 test circuit, T amb = 25°C)
Parameter

Test conditions

DC CHARACTERISTICS
Vs

Supply voltage range
(pin 13)

Is

Supply current (pin 13)

Vs=12V

-Ill (1)

Output current

Vs=15V

V l l = 8V

V ll

Output voltage

Vs=12V

Rs =

(2)

10

12

15

V

50

rnA

la

1.6

rnA

lb

~

4.5
V

Rs = 0
V 12

(2)

LlV l l

---;;v;-

Output voltage

Vs = 12V

Output voltage drift

V s =11to14V

7

V l l = 5.5V

1a
5.6

V

1a

3.5

%

lb

9.5

rnA

3c

-5

V

-

220

IlV

AC CHARACTERISTICS (Refer to fig. 2 test circuit, Vs = 12V, T amb = 25°C)
IS (3)

V7
V.

I

(4)

LlV I

Vo

Tuner AGe current

V7 = 0
fo = 38.9 MHz

R4

= 2.5 K.fl
6

AGe gating pulse input
peak voltage

f = 15.6 kHz

-1.5

I nput sensitivity

V7 = 0
fo = 38.9 MHz
V 11 = 3.3V peak to peak

100

150

V 7 =0
LlVo = 1 d8
fo = 38.9 MHz
V 11 = 3.3V peak to peak

50

60

V 7 =0
V l l = 5.5V
fo = 38.9 MHz
V I = see note (5)

3.3

3.5

AGe range

Peak to peak output
voltage at pin 11

430

dB

3.7

V

3c

ELECTRICAL CHARACTERISTICS

(continued)
Test conditions

Parameter

Video output varia-

f\,V o

tion over the AGC
range (0 to 5.5 MHz)

V

n . V 12

Sound I F at video
outputs (5.5 MHz)

Differential error of
the output voltage
(B&W)
Vn

. V 12

V7
Vn

~

fa
fm

~

~
~

Min.

0
LWi~50dB
3.3V peak to peak
38.9 MHz
0 to 5.5 MHz

V7 ~ 0
V i ~ see note (5)
fa (vision) ~ 38.9 MHz
fa (sound) ~ 33.4 MHz

Max.

Unit

Fig.

1

2

dB

3b

mV

3d

%

-

30

0
fa ~ 38.9 MHz
3.3V peak to peak

V7
Vn

~

V7
Vi
fa

~O

~

Typ.

15

Video carrier and
video carrier 2 nd har-

monic leakage at
video outputs
V

n . V 12

Video carrier leakage

at video outputs

~
~

see note (5)
38.9 MHz

mV

5

mV

10

MHz

3d

dB

3a

3c

Frequency response

B

8

(-3 dB)
I ntermodulation

dim

products at video
outputs

V7 ~ 0
Vi ~ see note (5)
fa (vision) ~ 38.9 MHz
fa (sound) ~ 33.4 MHz
fa (chroma) ~ 34.5 MHz

-50

V7

1.4

krl

-

2

pF

-

-40

I nput resistance

Ri

(between pins 1
and 16)

I nput capacitance
(between pins 1
and 16)

Ci

NOTES:

15

~O

Vi ~ see note (5)
fa : 38.9 MHz

(1)
(2)

Current flowing out from pin 11 with the load connected to V == av.
V 11 and V 12 are adjustable simultaneously by means of the resistance, or by a variable voltage

(3)

connected between pin 10 and ground.
Measured with an input voltage 10 dB higher than the Vi at which the tuner AGe current starts.

(4)

RMS values of the unmodulated video carrier (modulation down).

(5)

The input voltage Vi can have any value within the AGe range.

436

< O.6V.

Fig. la - Test circuit for measurement
of is. V ll • V 12

Fig. lb - Test circuit for measurement
of-ill and 6.V ll/6.Vs

J;
IDA 4405

lDA 4405
10

11

3V •

Rl

2.5

kil

TO 8 FOR -Ill TEST

Fig.2 - AC test circuit
VIDEO

.(v5O'_ _ _-.-_ _-.-_ _ _ _ (~g~j~~E)

VIDEO

(~~~~¥I~E)
2.5kfl

R5

13

12

10

T,l

TDA.4405

IF
'NPU

1
G
AGe OUTPUT

(TO TUNER)

Note: T 1
Vi

= 50/200n Balun transformer.
= Input voltage between pins 1 and

16.

437

5-097213

Fig. 3a - Set-up for measurement of dim

SELECTIVE
VOLTMETER

S-0973

Fig. 3b - Set-up for measurement of l:;,.Va

AC VOLTMETER

UP TO 5.5 MHz
5-0974

Fig. 3c - Set-up for measurement of

'5.

Vi' l:;,.V i • Va. V 11 and V 12
.V5

o

• AC
VOL TMETER

.SELECTIVE VOLTMETER
FOR LEAKAGE TEST

438

Fig. 3d - Set-up for measurement of B, V 11 and V 12

V
AC VOLTMETER
o (UP TO 1SMHz)

VIDEO CARRIER INPUT LEVEL a dB
SIDE BAND INPUT LEVEL
-3QdB
SOUND CARRIER INPUT LEVEL.-30dB
S1 TO

A

FOR FREQUENCY RESPONSE TEST

51 TO B FOR SOUND r F OUTPUT TEST

Fig. 5 - Tuner AGC output
current vs. I F gain variation

Fig. 4 - AGC voltage vs.
input voltage variation

G

"

I

'" Hc--I~fdce'~9"~H'--+-+-+-+-IH-t-l
__

4

I

- - c---

VS~!2V

--:~:~SOJ.JV(OdB)
110=3.3 vpp ,,-t-t-t--t--+-1

--

VS .,,12 V

117=0

"

L
20

Hall

f:389MHz

f-- - " OdS =Gma~ f--

-10

~

Fig. 6 - Output black level
vs. supply voltage

30

/R6;O

II
I
I

R6;O_5Kfi

I
I
I J
-30

R6.>Kfi /

"nt.:t

II (In

I I1I1
.A 11 ~
-40

.o.G(d8)

APPLICATION INFORMATION
The TDA 440S enables very compact I F amplifiers to be designed and provides the performance demanded by high quality receivers.
The input tuning-trapping circuitry and the detector network can be aligned independently with respect
to each other.
The value of Q for the parallel tuned circuit between pin 8 and 9 is not critical, although the higher it
is, the better is the chroma-sound beat rejection, but the tuning is more critical. Values of Q from 30 to
50 give good rejection with non-critical tuning.
The LC circuit between pins 8 and 9 is tuned to the vision carrier thus appreciably attenuating the sidebands. Hence a small amount of signal can be removed whose amplitude is almost constant over the
whole working range of the AGC and it can be used to drive an AFC circuit.
The black level at the output is very stable against variations of Vs and of temperature: this enables
the contrast control to be kept simple. The AGC is of the gated type and can take the top of the
synchronism or the black level (back porch) as its reference: when the latter is used, the output black
level is particularly stable.

439

Fig. 8 - Typical application circuit.

VIDEO
OUTPUT
(NEGATIVE)

VIDEO
OUTPUT
(POSITIVE)

R7

14

13

12

11

2.5k(l

10

TDA 4405

C19

II

:: O.42,uH- Q o= 110 -

lZ, L3,L7=0.3,uH- Q O= 110
L4

=

R6 t..7t.1,uF

MANUAL GAIN
RJ
CONTROL o--l_l--+----1--t-~

kfl

:: O.22,uH- QO=110-4.5turns,0=O.22mn(close wound}

L5,l6::
L8

6turns0::0.22rrm (clos€' wound)
5.5turnskhO.22rrm{close wound)

KEY INPUT

51

kfl

1 )-lH-Q O=1l0- IOturns0=O.22rnn{close wound)
1.2jJH-Q O"nC- IOturns.0=O.2Zmn(c\osewoundJ

AGe TUNER

L1 tol7:coil former BR 27IP,coreGW4>O.5'13Fl00 Neosld,
screening can BR JOIST

5-097711

Typical performance of the Fig. 8 circuit

Fig. 9 - Overall frequency
response of the fig. 8 circuit

Frequency response (fo vision = 38.9 MHz, fo sound = 33.4 MHz)
standard eel R
Sound carrier attenuation
28
dB
;;;'60
dB
31.9 MHz trap attenuation
;;;. 56
40.4 MHz trap attenuation
dB
;;;. 44
41 .4 MHz trap attenuation
dB
AGe range
55
dB
Overall gain including I F filter and trap
circuits (note 1)
dB
86
Intermodulation products over the whole
- 55
AGe range (note 2)
dB

dB

13~MHZ

(1)

(2)

The gain is measured at video output 3.3V peak to peak
and is defined as peak to peak output voltage to RMS
input voltage (modulation down).
Measured at 1.07 MHz, vision carrier level = 0 dB, chroma
carrier level = -6 dB, sound carrier level = -6 dB.

440

40.4MHz

I 41j4MHZ

j\

·10

I
.40

.60

NOTES:

6.9MHz

1.9MHz

,

I

I

rTj
32

-

.

Jb

1,4

f (MHz)

I
II
I

I"

I',
j~

Fig. 10 - Circuit options for tuner AGC driving

!'\

!I
Ii

Ii

j\
i.ii
'I

.1

I;

i.

lOA 4405

2.2

r----------

kfi

I

I
:

PIN DIODE TUNER

I
I
I

'-----------

5-098111

TDA 440 5
I

I

I
I

I
I

IL __________ .:..._
5-0982f1

441

LINEAR INTEGRATED CIRCUIT
PREAMPLIFIER WITH ALC FOR CASSETTE RECORDERS
• EXCELLENT VERSATILITY in USE (V s from 4 to 20V)
• HIGH OPEN LOOP GAIN
• LOW DISTORTION
• LOW NOISE
• LARGE AUTOMATIC LEVEL CONTROL RANGE
• GOOD SUPPLY RIPPLE REJECTION
• STEREO MATCHING BETTER THAN 3 dB
The TDA 1054M is a monolithic integrated circuit in a 16-lead dual in-line plastic package. The functiens incorporated are:
-- Low noise preamplifier
- Automatic level control system (ALC)
- High gain equalization amplifier
- Supply voltage rejection facility (SVRF).
It is intended as preamplifier in cassette tape recorders and players, dictaphones, compressor and ex·
pander in industrial equipments, Hi-Fi preamplifiers and in wire diffusion receivers; for stereo applications the ALC matching is better than 3 dB.

ABSOLUTE MAXIMUM RATINGS
Vs
P tot
Tstg,"J;j

Supply voltage
Total power dissipation at Tamb .;;; 50°C
Storage and junction temperature

ORDERING NUMBERS:

TDA 1054M mono applications
2 TDA 1054M stereo applications

MECHANICAL DATA

6/82

20
V
500
mW
-40 to 150°C

Dimensions in mm

442

CONNECTION AND SCHEMATIC DIAGRAMS
(top view)

16 ALe REC~~~

Ale OUTPUT

~~~~iO SUPPLY 2
1..1:

COLLECTOR

ALe INPUT

J

SUPPLY

Q2 BASE

"

VOLTAGE

Ql BASE

\3

OUTPUT

01 EMITTER

12 ccJ~~c;~ET~~
11 NON INV~:r~~

02 EMITTER
Q2 COLLECTOR

07

7

10

o.

INVERTING
INPUT

GROUNO

12

01

Q2

SVRF

\3

EQUALIZATION AMPLIFIER

16

A LC

TEST CIRCUIT

~-------------------------------{)+Vs

~

1

150pF

0.47t.JF

4.7 k!l 0.47

B~

Bo

A

52
2.2I'F
6V

47}JF

6V

443

THERMAL DATA
Rth

j-amb

Thermal resistance junction-ambient

max

200

°C/W

Max_

Unit

ELECTRICAL CHARACTERISTICS
(Refer to the test circuit, Tamb

=

25°C)

Parameter

Min_

Test conditions

Vs

Supply voltage

Id

Quiescent drain current

RL~ =
Vs ~ 9V
S1 ~S2~S3~ B

hFE

DC current gain

Ic~0.1mA

eN

Input noise voltage (Q1)

4

Ic
f
iN

Input noise current (Q11

NF

Noise figure (Q11

~
~

VCE ~ 5V

V CE

0.1 mA
1 kHz

~

300

20

rnA

500

-

2

JHz

nV

5V

V CE ~ 5 V
Ic~0.1mA
Rg ~ 4.7 k!"l
B (-3 dBI ~ 20 to 10,000 Hz

Open loop voltage gain
(for equalization
amplifier!

Vs

~

9V

Va

Output voltage with
A.L.C.

Vs
f

~

9V
1 kHz S1

~

f

~

~

1 kHz

Vi ~ 100mV
S2 ~ S3 ~ A

(for SVR F systeml

V

6

..E6...

0.5

Gv

R1

Typ_

0.5

y'Hz

4

dB

60

dB

1.1

V

7.5

k!"l

120

!"l

1.3

MV

0.8

V

see schematic diagram

R2

(for SVR F systeml

eN

Input noise voltage
(for equalization amplifier
pin 111

Vs

~

9V
40 dB

V OR

Drop-out (between pins
14 and 21

Vs

~

9V

Rg ~ 4.7 k!"l
S1 ~ B
Gv~
B (-3 dBI~ 22 Hz to 22 KHz

444

Id

~

6 mA

II
Fig. 2 - Equivalent input
noise current vs. frequency
(input transistor 0 1 )

Fig. 1 - Equivalent input
spot voltage and noise current vs. bias current (input
transistor 0,)
'N

0

'N

If*)

10H

(i):
10'

Fig. 3 - Equivalent input
noise voltage vs. frequency
(input transistor 0 1 )

tt

10
0

10'

10

10kHz

k-

10

I

10

lun'

I-":

..

100HZJri

1kHz 10kHz

00

10

10'

1~'

..

-.
•

10'

50 A

50.IJA

10- 1

10'

1.

IC{J.lA)

0

..

f(Hz)

10'

10

10'

..

,

10'

o •
f(Hz}

Fig. 6 - Current gain vs. collector current (input transistor 0 1 )

Fig. 5 - Optimum source
resistance and minimum NF
vs. bias current (input transistor 0 1 )

Fig. 4 - Noise figure vs. bias
current (input transistor 0 1 )

..

lmA

'g •

•g •

(kn)

B(-3dB),,20Hzto lOkH%

G

(k11.):

.~,

10

'\ ilL

,~

'dB

2

10

j

i'..~

I i

500

10

100Hz

f--+

I

1'.."

10'

I"
"

..

<00

>1-

1kHz
10kHz

II

10'

10

10'

Fig. 8 - Open loop phase response vs. frequency (equalization amplifier)

Fig. 7 - Open loop gain vs.
frequency (equalization amplifier)
G'rTnm~~rnrTm~~~ill~III~~
(dS)

Htttlttl--titttllf--t+tttIII-++tlfflll-!
IIIII--H-ttfflfl

60r+~~~~~~~~·I~IIIIUli~
-60

-120

-180

-240

-300

10'

10'

10'

10'

10'

I (Hz)

10'

445

10'

10'

10'

lev..I.A)

APPLICATION INFORMATION
Fig.9 - Application circuit for battery/mains cassette player and recorder

"

~~~~

L-l
6V

* TANTALUM

1.8,uF

R21

2.2

"'

CAPACITORS

Fig. 10 - P.C. board and component layout for the circuit fig. 9 (1:1 scale)

446

'"270n

Typical performance of circuit in fig. 9
(T amb

= 25°C, Vs = 9V)
Parameter

Test conditions

Min.

Typ.

Max.

Unit

PLAYBACK

Gy

Voltage gain
(open loop)

f

= 20 to 20,000 Hz

110

dB

Gy

Voltage gain
(closed loop)

f

= 1 kHz

57

dB

IZjl

Input impedance

f
f
f

= 100 Hz
= 1 kHz
= 10 kHz

10
41
43

kn
kn
kn

IZol

Output impedance

f

= 1 kHz

12

B

Frequency response

d

Distortion

S+N
-N-

Output weighted
background noise

n

see fig. 12
Vo= lV

f

= 1 kHz

Output background noise
***

35

Z9 = 300 n + 120 mH
(DIN 45405)

0.1

%

1.3

mV

1.3

mV

Signal to noise ratio

Vo= 1.3V
Z9 = 300 n + 120 mH

60

dB

SVR

Supply voltage ripple
rejection at the output

frjPPle = 100 Hz

30

dB

ton **

Switch-on time

Vo= lV

500

ms

Gy

Voltage gain
(open loop)

f

= 20 to 20,000 Hz

110

dB

Gy

Voltage gain
(closed loop)

f

= 1 kHz

70

dB

B

Frequency response

d*

Distortion without ALC

Va= 1.1V

f

=.1 kHz

0.3

%

d

Distortion with ALe

Vo= 1.1V

f

= 10 kHz

0.4

%

ALe

Automatic level control
range (for 3 dB of output
voltage variation)

Vj "40mV

f

= 10 kHz

54

dB

Vo

Output voltage before
clipping without ALe

f

2.3

V

Vo

Output voltage with ALe

Vj =30mV

1.1

V

RECORDING

see fig. 14

= 1 kHz

447

f

= 10 kHz

Typical performance of circuit in fig. 9 (continued)
Parameter
t[ **

tset

tree

Test conditions'

Min.

Limiting time Isee fig. 11)
LV;~+40dB

---

f

~

ton **
S + N ****
-N-

~

LV;

Switch-on time

Vo~

1.1V

Signal to noise ratio with
ALe

Vo~

1.1V

-40 dB

f

~

Max.

Unit

75

ms

300

ms

150

s

500

ms

64

dB

1 kHz

Level setting time
Isee fig. 11)
Recovery time
Isee fig. 11)

Typ.

1 kHz

Rg~470n

* Measured with selective voltmeter
This value depends on external network
When the DIN 45511 norm for frequency response is not mandatory the equalization peak at 10 kHz can be
avoided - so halving the output noise
Weighted noise measu"ement lOIN 45405)

Fig. 11 - Limiting, level setting, recovery time
Vi

'0
-.-

'0

tset

~ ~_\-

~
VO~
tl

=lIMITING

trec=RECOVERY TIME

TIME

tset:: LEVEL SETTING TIME
5_11-12

Fig. 12 - Relative frequency
response for the circuit in
fig.9 (playback)

Fig. 13 - Distortion vs. fre·
quency for the circuit in fig.
9 (playback)

Fig. 14 - Relative frequency
response for the circuit in
fig.9 (recording)
G,r;~TImr>-nTIlmrllll-'~mr-'nnm

611

(;-2178

Yr • t
(V)

(VI

Tamb

'II."

,

= 25"C

\/slY)

IS

Fig. 6 - Reflection coefficient vs. supply voltag~.""
Tamb =2Soc

1M ", loomA

V... 6'11

23

6'11
l1V
18'11 -

1.30

I.

1.2
\ls('II)

22

I", ,,4OOmA

1.4

1.25

I.

21

t3
1.20

•

""""'

2.
1.2

19

1.15

1.1

16

1.10

"
100

200

300

'M(mA)

-2.

40

2.

to Tambrtl

"

Fig. 8 - Reflection coefficient vs. ambient temperature

Fig. 7 - Reflection coefficient vs. motor current

12

16 VsIV)

Fig. 9 - Typical minimum
supply voltage vs. motor
current
.·21nll
VH'.O

'Is ,,6'11

Tamb " 25"C

23

23

22

22

V• .,..,
21

21

2.

2.

8'

"

19

16

18

'V)

1M'" 25mA
" " SOmA
" = 100m A
" =200mA
" =400mA

.. T~mb·Z5-C

!!w.-s
Yr ..,

.

2.8

14
~~.

17

I.

"

f+ll I
100

200

300

'MirnA)

-20

20

Wi4.

456

U

I.'
60 Tamb,OC)

100

200

300

.,.

...

-

APPLICATION INFORMATION

1M
RM
Eg

Motor current at rated speed
Motor resistance
Back electromotive force

V ref • RT
RSmin= Eg-(Vref-Id
RT )
RT
K· RM
RT
K typ • RM typ
If RT max> KRM min instability may occur

5-1996

Application circuit

+9V

14.2n
280n
1 kn
2.9V
150 mA
RM • 1M + Eg = 5.03V

5-1995

Note: A ceramic capacitor of 10 nF between pins. 1 and 2 improves stability in some applications.

Fig. 10 - Speed variation vs.
supply voltage

.
n

.

(rpm)
T~mb.,2S'C

ro

A..
••

Fig. 12 - Speed variation vs.
ambient temperature

Fig. 11 - Speed variation vs.
motor current
~~~~dfj:::
~
(rpm)

,. , IT~'·m~'.']'.c1111

G"l17ill

(rpm)

Vs " 9V

_

IM:a lSOmA.

1080

('/.)

Vs: + 9V

I "l50mA

1200

1-1--1-1--+-1--1-+-1--1-1-·+-'--1-1-+--1-1--1-1-12100

1100

-.

1000

-'0

,"00

1900

12

16

Vs (V)

-,

2000

_11,"00
so

100

140

457

220

[M(mA)

'9EO
1920

-10

10

'"'

APPLICATION INFORMATION (continued)
Low cost application circuit

+12V
14.7n
290n
1 kn
2.65V
110 mA

Vs
RM
RT
Rs
Eg
1M

M

10nF

5-2000

Fig. 14 - Speed variation vs.
motor current

Fig. 13 - Speed variation vs.
supply voltage
..!co..
(rpm)
("I.)

T~mb

..An.

"

,"/.)

=25'

Fig. 15 - Speed variation vs.
ambient temperature

(rpm)

Vs ='ZV

~

(rpm)

("/.)

lamb= 25"C

lis

1M'" 1l0mA

,.1210'

'",,='10mA
10

2200

10

2200

2200

ID

2100

2100

2100

2000

2000

2000

-,

1900

-,

1900

-,

1900

-ID

1800

-10

1800

·10

1800

12

,0

100

458

20

60

LINEAR INTEGRATED CIRCUIT
TV VERTICAL DEFLECTION SYSTEM
The TDA 1170 is a monolithic integrated circuit in a 12-lead quad in-line plastic package. It is designed
mainly for use in large and small screen black and white TV receivers.
.
The functions incorporated are:
oscillator
voltage ramp generator
high power gain amplifier
flyback generator

ABSOLUTE MAXIMUM RATINGS
Vs
V 4 -V 5
Va

Supply voltage (pin 2)
Flyback peak voltage
Sync. input voltage

VlO

Power amplifier input voltage

10

Output peak current (non-repetitive) @ t = 2 ms
@ f = 50 Hz, t ~ 10 J1s
Output peak current @ f = 50 Hz, t> 10 J1s

10

Ptot

27
58
± 12
10
1. -0.5
2
2.5
1.5
5
1
-40 to 150

J

Power dissipation: at T tab = 90°C
at Tamb = 80°C (free air)
Storage and junction temperature

V
V
V
V
V
A
A
A
W
W
°C

ORDERING NUMBER: TDA 1170

Dimensions in mm

MECHANICAL DATA

459

CONNECTION AND BLOCK DIAGRAM
(top view)

RAMP OUTPUT

RAMP
GENERATOR

SUPPLY VOLTAGE

GROUND

REGULATED
VOLTAGE

C6

+-_--'~_--'~

________________+ _ _ + - '

SCHEMATIC DIAGRAM

_
1

~to,
-r-@
~~
I
a~

I

1

R~~

I I

~"2 Vu35i.

05

«.<\"~:"! ';:..

+-+r

ni $
!

i.

i

4

I

032

TABS

460

5-0611/2

THERMAL DATA
Rth j-tab
Rth j-amb

max
max

Thermal resistance junction-tab
Thermal resistance junction-ambient

12 °C/W
70* °C/W

* Obtained with tabs soldered to printed circuit with minimized area.
I'

ELECTRICAL CHARACTERISTICS (Refer to the test circuits, Vs = 25V, T amb = 25°C unless
otherwise specified)
Test conditions

Parameter

DC CHARACTERISTICS
-19

Oscillator bias current

Vg

-1 10

Amplifier input bias
current

VI0~

-112

1V

~

1V

Ramp generator bias

0.2

1

J.lA

1a

0.15

1

J.lA

1b

0.05

0.5

J.lA

1a

current

Vs

Supply voltage

V4

Quiescent output voltage

10
R2 ~ 10 kD
Vs ~ 25V
Vs~10V

V 6, V 7

R1
R1

~
~

30 kD
10 kD

Regulated voltage

/'-,V 6 /'-,V 7
- - Line regulation
/'-,V s /'-,V s

V

-

1a

8
4

8.8
4.4

9.6
4.8

V
V

6

6.5

7

V

I.
1b

V5

~

10 to 27V

mV/V

1.5

Supply current

Iv

Peak to peak yoke current
(pin 4)

V4

Flyback voltage

Va

Peak sync. input voltage
(positive or negative)

Iv

II

~

1A

140

mA
1.6

A

2
Iv

'I:

Ii

AC CHARACTERISTICS (f = 50 Hz)
Is

i

~

1A

51
1

461

V
V

ELECTRICAL CHARACTERISTICS (continued)
Test conditions

Parameter

Vg

Peak to peak oscillator
sawtooth voltage

Ra

Sync. input resistance

Va

~

tfly

Flyback time

Iy

~

of

Pull-in range
(below 50 Hz)

3.5

kr!

1A

0.6

of
/:,T tab

Oscillator frequency drift
with tab temperature

Ttab~

10 to 27V

40 to 120°C

Fig.

ms

0.8

7

Hz

0.01

Hz
V

0.015

Hz-

2

°C

Fig. 1b - DC test circuit for measurement of
-110' V 6, V 7,6V 6/6Vs and 6V 7/tN 5

Fig. 1a - DC test circuit for measurement of
-19, -112 and V4

TDA1170

Unit

1V

Vs

9

Max.

V

Oscillator frequency drift
with supply voltage

--

Typ.

2.4

of
/:,V s

~

Min.

9

4

5V

462

TDA 1170

10

Fig.2 - AC test circuit
, -________~~------~~----~----------------------~.V5=25V
DI

::'1

IN4001

C3

lOOfJF 25V

TABS

2

4
R9

10 kll
II
1000 ",F/16 v

C7

SYNC INPUT 8

TDA 1170
10

I

YOKE

Ion

12

20mH

R7
5.6kll

C4

O.lfJF
R3
270

C5

kll

O.1fJF
RIO

III

Fig. 3 - Relative qu iescent
voltage variation vs. supply
voltage

5-111813

Fig. 5 - Regulated voltage
vs. supply voltage

Fig. 4 - Relative quiescent
voltage variation vs. tab
temperature

-:bti: ~

~t -ttii~~

,

R:- +~-+6.52

I

--<--

6.50
6.4

,

-f-+-I-

6,46

··+fa.;;'b=25'C

-[ t-

H-

I

10

20

25

Vs (v)

10

463

IS

20

25

Vs (v)

Fig. 6 - Regu lated voltage
vs. tab temperature

Fig. 8 - Frequency variation
of unsynchronized oscillator
vs. tab temperature

Fig. 7 - Frequency variation
of unsynchronized oscillator
vs. supply voltage

to

25

20

"

Vs

lv}

APPLICATION INFORMATION
The thermistor in series to the yoke is not required because the current feedback enables the yoke
current to be independent of yoke resistance variations due to thermal effects. The oscillator is directly
synchonized by the sync. pulses (positive or negative). therefore its free frequency must be lower than
the sync. frequency. The flyback generator applies a voltage, about twice the supply voltage, to the yoke.
This produces short flyback time together with a high useful power to dissipated power ratio.
The flyback time is:
2

Lv Iv

3'

Vs

where:

Lv

Vs
Iv

Yoke inductance
Supply voltage
Peak to peak yoke current

The supply current is:
Iv

+ 0.02 (A)'

8

It does not depend on the value of V s but only on yoke characteristics. The minimum value of V s
necessary for the required output current permits the maximum efficiency.
The quiescent output voltage (pin 4) is fixed by the voltage feedback network R7, R8 and R9 (refer to
fig. 2) according to:

R7

+

R8
R7

+

R9

Pin 10 is the inverting input of the amplifier and its voltage is V 10:::= 2V.

464

Fig. 9 - Typical application circuit for B & W 24" 110° TV sets

=fj
Hold 150kil

*

5-061312

Tolerance 5%

Typical performance (V s = 22V; Iv = 1A; Rv= 10n; Lv= 20 mH)

Supply current
Flyback time
Maximum scanning current (peak to peak)
Operating supply voltage
TDA 1170 power dissipation

140
0.75
1.2
20 to 24
2.2

mA
ms
A
V
W

For safe working up to T amb = 50°C a heatsink of Rth = 40 °C/W is requ ired and each tab of TDA 1170
must be soldered to 1 cm 2 copper area of the printed circuit board.

465

Fig. 10 - Typical application circuit for B & W small screen TV sets

.------..----+---...------------o.Vs=1Stab.
O.BV

llr------<>----------'
~VNC

INPUT 8

C7

TDA 1170

2000 ).JF/IOV

10 I--~-.--___.--["-H

1

YOKE

12

P3
47kil
linearity

P2
Height

.R2
220kJl

*C.4

*R6

0.1}J·E39kJl
R3 •
470
kJl

R7

68kJl

CS*
O.1}JF
RIO

* Tolerance 5·'.

S-1I20n

Typical performance (V. = 10.8V; Iy= 1A; Ry = 4n; Ly = 7.5 mH)

Supply current
Flyback time
Maximum scanning current (peak to peak)
Operating supply voltage
TDA 1170 power dissipation

150
0.7
1.15
10.8
1.3

rnA

ms
A
V
W

For safe working up to T amb = 50°C a heatsink of Rth = 30 °C/W is required and each tab of the
TDA 1170 must be sol de reb to 1 cm 2 copper area of the printed circuit board.

466

Fig. 11 - P.C. board and component layout for the circuit of fig. 9 and fig. 10 (1: 1 scale)

+Vs

GND

YOKE

YOKE

SYNC.

GND

C9 is not mounted on the P.C. board.

MOUNTING INSTRUCTIONS
The junction to ambient thermal resistance of the TDA 1170 can be reduced hy soldering the tabs to a
suitable copper area of the printed circuit board (fig. 12) or to an external heatsink (fig. 13).
The diagram of fig. 16 shows the maximum dissipable power Ptot and the Rth j-amb as a function of the
side "s" of two equal square copper areas having a thickness of 35!l (1.4 mil).
During soldering the tab temperature must not exceed 260 DC and the soldering time must not be longer
than 12 seconds.
The external heatsink or printed circuit copper area must be connected to electrical ground.

467

Fig. 13- Example of TDA 1170 with external heatsink

Fig. 12 - Example of P.C. board copper area
used as heatsink

R AREA

35}.J THICKNESS
H£ATSINK

R'h ~ 30°CjW

C. BOARD

Fig. 14 - Maximum power
dissipation and junction-ambient thermal resistance vs.
"s"

R

"

20

Fig. 15 - Maximum allowable
power dissipation vs. ambient temperature

jamb

30

40 s (mm)

468

LINEAR INTEGRATED CIRCUIT
LOW-NOISE TV VERTICAL DEFLECTION SYSTEM
The TDA 11700 is a monolithic integrated circuit in a 16-lead dual in-line plastic package. It is intended for use in black and white and colour TV receivers. Low-noise meakes this device particularly
suitable for use in monitors. The functions incorporated are:

I

synchronization circuit
oscillator and ramp generator
high power gain amplifier
flyback generator
voltage regulator

ABSOLUTE MAXIMUM

V,
V6, V7
V14

I

I'

Supply voltage at pin 2
Flyback peak voltage
Power amplifier input voltage
Output peak current (non repetitive) at t = 2 msec
Output pe'lk current at f = 50 Hz t ~ 10 psec
Output prakcurrentat f = 50 Hz t > 10 psec
Pin 3 DC ctlrrentat V6 < V2
Pin 3 peak to peak flyback current for f = 50 Hz, tfly
Pin 10 current
Power dissipation: at T tab = 90°C
at Tamb = 70 0 e (free air)
Storage and junction temperature

~

1.5 msec

35
60
{ + 10
- 0.5
2
2.5
1.5
100
1.8
± 20
4.3
1
-40 to 150

V
V
V
V
A
A
A
mA
A
mA

W
W
°C

ORDERING NUMBER: TDA 11700

MECHANICAL DATA

. Dimensions in mm

PQ:)l-V

469

6/82

CONNECTION DIAGRAM
RAMP

RAMP OUTPUT

16

SUPPLY VOLTAGE

15

COMPENSATION

FLYBACK

14

AMP. INPUT

11

GROUND

12
AMP. OUTPUT

GENERATOR

I

GROUND

OSCILLATOR

AMP VOLTAGE
REGULATED
VOLTAGE

10

SINe. [NPUT

9

HEGHT ADJUST

5_531411

-----''------------,-------o·V.

BLOCK DIAGRAM

...
i

THERMAL DATA
Rth j-tab
Rth j-amb

Thermal resistance junction-pins
Thermal resistance junction-ambient

max
max

1°) Obtained with pins 4, 5, 12,13 soldered to printed circuit with minimized copper area.

470

14 °C/W
80 °C/W (0)

ELECTRICAL CHARACTERISTICS (Refer to the test circuits,

Vs

J

othwwise specified)
Test conditions

Parameter

DC CHARACTERISTICS
12

Pin 2 quiescent current

13

~

0

17

Pin 7 quiescent current

14

~

0

-III

Oscillator bias current

Vll~

1V

Amplifier input bias

V12~

lV
0

-112

7

14

mA

lb

8

15

mA

lb

0.1

1

)J.A

la

1

7

)J.A

lb

0.02

0.3

)J.A

la

20

24

)J.A

lb

0.2

1

%

lb

35

V

-

1

1.4

V

-

1.7

2.6

V

la

4.17

4.4

4.63

V

la

8.35

8.8

9.25

V

1a

O.lA

0.9

1.2

V

lc

-16= 0.8A

1.9

2.3

V

lc

16= O.lA

1.4

2.1

V

ld

current

-116

Ramp generator bias
current

V16~

-1 16

Ramp generator current

17

LlI16

Ramp generator
non-linearity

LI V 16= 0 to 1 2V
19 = 20)J.A

116
Vs
Vl

20)J.A

~

19

V16= 0

Supply voltage range
Pin 1 saturation voltage to

10
11

~

1 mA

ground
V3

Pin 3 saturation voltage to

13~10mA

ground
V6

Quiescent output voltage

Vs~

R2

lOV
10 Kll

Rl=10Kll

35V

Rl = 30 Kll

~

Vs~

r-

R2~10Kn

V6L

Output saturation voltage

-16~

to ground
V6H

Output saturation voltage
to supply

2.8

3.2

V

ld

6.1

6.5

6.9

V

lb

6.2

6.6

7

V

lb

mVN

lb

V

--

Mll

1a

16= 0.8A
V8

Regulated voltage at pin 6

V9

Regulated voltage at pin 7

LI V8; LI V9 Regulated voltage drift
LI V s LI V s with supply voltage
V14

Amplifier input reference
voltage

Rl0

Pin 10 input resistance

19= 20)J.A
LlV s =10t035V

1
2.07
1

V10';; O.4V

471

22

2.3

Fig. 1 - DC test circuit

10

11
11

D.U.T.

14

I

--1.-

Fig.lb

Fig. la

1I

11

D.U.T.

11

14
I

I

--L

4v

"------~---

1

D.U.T.

14

V6L

IV

5-5317

Fig. ld

Fig. lc

472

-114

5-5316

ELECTRICAL CHARACTERISTICS (Refer to the AC test circuit,

25V; f = 50 Hz;

Vs

T amb = 25°C, unless otherwise specified)
Test conditions

Parameter

AC CHARACTERISTICS
~

Iy

1 App

Is

Supply current

140

mA

11 0

Sync. input current
(positive or negative)

V6

Flyback voltage

Iy

~

1 App

51

V

tll y

Flyback time

Iy

~

1 App

0.7

ms

VON

Peak to peak output

Bw~

500

J.lA

20 -0- 20.000 Hz

50

rnV

noise

fo

Llf

LIt
LlVs
Llf
LIT pins

Free running frequency

(P1 + R1) ~ 260 K!1
C2 ~ 0.1 J.lF

52.4

Hz

(P1 + R1) ~ 300 Kn
C2;100nF

43.7

Hz

~

Synchronization range

18

Frequency drift with
supply voltage

Vs

Frequency drift vs. pins
4,5,12 and 13 temp.

Ttab~ 40 to 120°C

~

0.5 rnA

14

Hz

10 to 35V

0.005

Hz/V

0.01

Hzf'C

Fig. 2 - AC test circuit
D 1 fIN 4001

r---i

C36

Cl
O.1~F

.L

Cl0

,

100~;r5Vr-o-l..J..-!-.l...J...J--,
L 37
R9

10
151--~1--

~n

_ _ _-'
C7

SYNC INPUT

10

TDA 11700

1000 ....F/16 V

R8

141----1---------~c:J-i
R5
L.7k!1

, I--~I---.,
L...;i-__.:;-__..:,'6::...J
4;: ~, "'
PI
C4

J:."ea~!~

O.1,up,47kD.

YOKE

Ion

20mH

R7

5.6kn

R3
270
kll

C5
O.1,uF
RIO

'n

473

5-5359

Fig.3 - P.C. board and components layout of the AC test circuit.

474

LINEAR INTEGRATED CIRCUIT
LOW-NOISE TV VERTICAL DEFLECTION SYSTEM
The TDA 1170N is a monolithic integrated circuit in a 12-lead quad in-line plastic package. It is intended for use in black and white and colour TV receivers. Low-noise meakes this device particularly
suitable for use in monitors. The functions incorporated are:
synch ron ization ci rcu it
oscillator and ramp generator
high power gain amplifier
flyback generator
vo Itage regu lator

ABSOLUTE MAXIMUM
Vs
V4,V5
Vl0

Supply voltage at pin 2
Flyback peak voltage
Power amplifier input voltaij.e

r

Output peak currEl~t (tJo()nr~petrtive) at t = 2 msec
Output peakqljl~r~ntl;\1;~= 50 Hz t .;;; 10 /lsec
Output peal5;~urre~t atf= 50 Hz t > 10 flSec
Pin 3 g'EcurrElPt~tV4 < V2
Pin 3 ~I;\k.:~()peak flyback current for f = 50 Hz, t jly
Pin S CUl'r:E!nt
Power di~~ipation: at T tab = 90 0 e
at T amb = sove (free air)
Storage and junction temperature

.;;;

1.5 msec

35
60

10
- 0.5
2
2.5
1.5
100
1.S
± 20
5
1
-40 to 150

V
V
V
V
A
A
A
mA
A
mA
W
W

°e

Dimensions in mm

MECHANICAL DATA

475

6/82

CONNECTION AND BLOCK DIAGRAMS
RAMP
GENERATOR'

RAMP OUTPUT

COMPENSATION

SUPPLY VOLTAGE

FLVSACK

AMP. INPUT

GROUND

GROUND

OSCILLATOR

AMP. OUTPUT

SYNC.

AMP. VOLTAGE
REGULATED
VOLTAGE

INPUT

HEIGHT ADJUST.

5-1'1511

THERMAL DATA
Rth j-tab
Rth j-amb

Thermal resistance junction-tab
Thermal resistance junction-ambient

max
max

(0) Obtained with tabs soldered to printed circuit with minimized copper area.

476

12
70

ELECTRICAL CHARACTERISTICS (Refer to the test circuits, Vs

=

35V, T amb = 25°C, unless

otherwise specified)
Parameter

Test conditions

DC CHARACTERISTICS
12

Pin 2 quiescent current

7

13 = 0

15

Pin 5 quiescent current

14 = 0

-19

Oscillator bias current

V9 = 1V

-110

Amplifier input bias

Vl0= lV

14

mA

lb
1b

8

15

mA

0.1

1

}J.A

la

1

7

}J.A

lb

0.02

0.3

}J.A

la

20

24

}J.A

lb

0.2

1

%

lb

35

V

~

~

current

-112

Ramp generator bias

V12= 0

current

-112
L'l112
112

V12= 0

Ramp generator current

17 = 20}J.A

Ramp generator

L'I V 1 2= 0 to 12V

non-linearity

17 = 20}J.A

19

Vs

Supply voltage range

Vl

Pin 1 saturation voltage to
ground

11=1 mA

1

1.4

V

V3

Pin 3 saturation voltage to
ground

13 = 10 mA

1.7

2.6

V

la

V4

Quiescent output voltage

Vs= lOV
R2 = 10 K!1

Rl= 10 K!1

4.17

4.4

4.63

V

la

Vs= 35V
R2=10K!1

Rl= 30 K!1

8.35

8.8

9.25

V

la

0.9

1.2

V

lc
lc

V4L

Output satu ration voltage
to ground

V4H

Output saturation voltage
to supply

V6

Regu lated voltage at pin 6

V7

Regulated voltage at pin 7

10

-14= O.lA
-14= O.8A

1.9

2.3

V

14 = O.lA

1.4

2.1

V

ld

2.8

3.2

V

ld

6.1

6.5

6.9

V

lb

6.2

6.6

7

V

lb

mVN

lb

14 = O.8A

L'I V6 ; L'I V7 Regulated voltage drift
L'I V s L'I Vs with supply voltage

Vl0

Amplifier input reference
voltage

R8

Pin 8 input resistance

17 = 20}J.A

1

L'lVs= 10 to 35V
2.07
V8,;;; O.4V

1

477

22

2.3

V
M!1

~

la

Fig. 1 - DC test circuits

TDA 1170 N

lOA 1170 N

10

Rl

10
TABS

V4

R2
--LSV

BV
5 - 5300

Fig.lb

Fig.la

.Vs

~----2-S

2-S

V4H

lOA 1170 N

lOA 1170 N

10

10

TABS

TABS

--L 4V

T

~IY

I
'----_ _ _----*-____

±

Fig. ld

Fig.lc

478

--+____
!

.J..

...J

5-5303

ELECTRICAL CHARACTERISTICS (Refer to the AC test circuit, Vs

25V; f = 50 Hz;

Tamb = 25°C, unless otherwise specified)
Parameter

Test conditions

AC CHARACTERISTICS
Is

Supply current

Is

Sync. input current
(positive or negative)

Iy = 1 App

140

mA

500

JJ-A

V4

Flyback voltage

Iy= 1 App

51

V

tfly

Flyback time

Iy

0.7

ms

VON

Peak to peak output

Bw = 20 .;. 20.000 Hz

fo

Free running frequency

[If
ld

to V s

I~I
to T tab

=

1 App

50

mV

noise

(P1 + R1) = 300 Kn
C2=0.1JJ-F

52.4

Hz

(P1 + R1) = 360 Kn
C2 = 100 nF

43.7

Hz

14

Synchronization range

Is = 0.5 mA

Frequency drift with
supply voltage

Vs = 10 to 35V

Frequency drift with tab
temperatu re

T tab = 40 to 120°C

Hz
0.005

Hz/V

0.01

Hz/"C

Fig. 2 - AC test circuit
----~------~----~~------------------~O·Vs·25V
lN4001
Dl

R7
5.6kQ

479

Fig. 3 - PC board and component layout of the AC test circuit (1:1 scale)

480

LINEAR INTEGRATED CIRCUIT
TV VERTICAL DEFLECTION SYSTEM
The TDA 11705 is a monolithic integrated circuit in a 12-lead quad in-line plastic package. It is intended for use in black and white and colour TV receivers.
The functions incorporated are:
• synchronization circuit
• oscillator and ramp generator
• high power gain amplifier
• flyback generator
• voltage regu lator

ABSOLUTE MAXIMUM RATINGS
Supply voltage at pin 2
F Iyback peak voltage
Power amplifier input voltage

T stg , T j

Output peak current (non repetitive) at t = 2 msec
Output peak current at f = 50 Hz t < 10 !-,sec
Output peak current at f = 50 Hz t> 10 !-,sec
Pin 3 DC current at V4 < V 2
Pin 3 peak to peak flyback current for f = 50 Hz, t fly
Pin 8 current
Power dissipation: at T tab :: 90:C} TDA 11705
at T amb - 80 C
Storage and junction temperature

< 1.5 msec

35
60
+ 10
- 0.5
2
2.5
1.5
100
1.8
± 20
5
1
-40 to 150

V
V
V
V
A
A
A
mA
A
mA
W
W
°C

ORDERING NUMBERS: TDA 1170 S

TDA 1170 SH

MECHANICAL DATA

· ·. ·. ~· ·.~ ·. · ·.
·e
"
'.

Dimensions in mm

'

TDA 1170SH

TDA.1170 S

481

6/82

CONNECTION AND BLOCK DIAGRAMS

REGULATED
VOLTAGE

SCHEMATIC DIAGRAM

02

als
aID

alS

all
ZI

.3

I

~I
I

02

,

032

.,

!

I

TABS

482

THERMAL DATA
Rth j-tab
Rth j-amb

TDA 1170S

TDA 1170SH

max 1Q°C/W
max 80°C/W

max 12°C/W
max 70°C/W(0)

Thermal resistance junction-tab
Thermal resistance junction-ambient

(0) Obtained with tabs soldered to printed circuit with minimIzed copper area.

ELECTRICAL CHARACTERISTICS (Refer to the test circuits, Vs= 35V, T amb = 25°C, unless
otherwise specified)
Test conditions

Parameter

DC CHARACTERISTICS
12

Pin 2 quiescent current

13

~

Is

Pin 5 quiescent current

14

~

-19

Oscillator bias current

Vg

-110

Amplifier input bias current

VlO~

1V

-112

Ramp generator bias current

V12~

0

0
0
1V

~

-112

Ramp generator current

17~20JlA

1';(12
-112

Ramp generator non-linearity

10 V 12~ 0 to 1 2V
17 ~ 20 JlA

Vs

Supply voltage range

VI

Pin 1 saturation voltage to

V12~

19

0

7

14

mA

1b

8

15

mA

1b

0.1

1

JlA

1a

0.1

1

JlA

1b

0.02

0.3

JlA

1a

20

24

JlA

1b

0.2

1

%

1b

36

V

-

1

1.4

V

-

1.7

2.6

V

1a

10
11

1 mA

~

ground
V3

Pin 3 saturation voltage to
ground

13~10mA

V4

Quiescent output voltage

Vs~ 10V
R2~10 Kl1

Rl~10

Kl1

4.17

4.4

4.63

V

1a

Vs~

Rl~30Kl1

8.35

8.8

9.25

V

1a

R2~

V 4L

V 4H

Output saturation voltage to
ground

Output saturation voltage to
supply

35V
10 Kl1

-14

~

0.1A

0.9

1.2

V

1c

-14

~

0.8A

1.9

2.3

V

1c

14

~

0.1A

1.4

2.1

V

1d

14

~

0.8A

2.8

3.2

V

1d

6.1

6.5

6.9

V

1b

~

20 JlA

6.2

6.6

7

V

1b

mV!V

1b

V

-

Ml1

1a

V6

Regulated voltage at pin 6

V7

Regulated voltage at pin 7

17

Regulated voltage drift with
supply voltage

IoVs~

IoV 6 IoV 7
-- -IoV s ' IoV s
VlO

Amplifier input reference
voltage

Rs

Pin 8 input resistance

10 to 35V

1

2.07

V s <;;O.4V

483

1

2.2

2.3

Fig. 1 - DC test circuits

TOA 11705

10

lOA 11705

9

R1

10
TABS

V4

R2

5-329411

Fig.1a

Fig.1b

~

~

2-5

-9

2-5

4r---

lOA 11705

TOA 11705

10
TABS

TABS

t"

,
S - 329&

J

Fig.1c

Fig.1d

484

1

~

-.J

S 3297

14

AC CHARACTERISTICS

(Refer to the test circuit, Vs= 25V; f = 50 Hz; T arnb = 25°C, unless

otherwise specified)
Test conditions

Parameter

Is

Supply current

Is

Sync. input current
(positive or negative)

V4

F Iyback voltage

Vg

Peak to peak oscillator
sawtooth voltage

tfly

Flyback time

fo

Free running frequency

Iy

~

Min.

1 App

Typ.

140
500

Iy

Iy

~

~

(P 1

1 App

1 App

+ R 1)

~ 300 Kr!

C2~100nF

iP 1

+ R 1)

~ 260 Kr!

C2~100nF
~

LIt

Synchronization range

18

LIt
---6V s

Frequency drift with supply
voltage

Vs~10t035V

0.5 mA

I6TLIt tab Il

Frequency drift with tab
temperature

Ttab~40to

C1

mA

2

MA

2

V

2

V

2

0.7

ms

2

44

Hz

2

52

Hz

2

Hz

2

0.005

Hz/V

2

0.01

Hz/oC

2

C3

1.
SYNC INPUT 8

TDA 11705

P1

100kfl

5-1i18/1

485

Fig.

51

Fig. 2 - AC test circuit

O.11'~

Unit

2.4

14

120"C

Max.

Fig.3 - Typical application circuit for small screen B/W TV set (R y = 2.9n, Ly= 6 mH; Iy= 1.1 App)

......- - - - - - - - - - _ o . V s = 1 0 . 8 V

----_~---+--

c,l

"'I

Dl

C9

IN4001

CIO

C3

11 t - - + - - - - - - '
SYNC. o---It:~>---;
INPUT
Cll

C7

2000 .uF/16 V

TDA 11705
10 1---1~

It--_----,

YOKE

12

2.9.fi

6mH

PI,

R1**

56kn

CS
O.1I'F

5-332711

* Toleorance- 5-'.

**.. .

2'1.

Typical performance
Vs
Is
t fly
Ptot
Iy

Operating supply voltage
Supply current
F Iyback time
TDA 11705 power dissipation
Maximum scanning current (peak to peak)

For safe working up to T amb = 60°C a heatsink of Rth = 30°C/W is required.

486

10.8
155
0.5
1.35
1.30

V
mA
ms
W
A

Fig.4 - Typical application circuit for small screen 90° PIL TVC set (R y= 12.5.11; Ly= 31 mH; Iy= 0.8
App)

n

. -________~--------~----~~--------------------~.Vs~22v
Dl

lN4001

C9cb470l-'F

25V
C3

Cl

Rll
3,30

O.II-'F
5 VNC. "--..i
lNPUT'-'
,I-C::-:'-:-'.----t
4.7
R13
k1l.

11

~--~--------_

TDA 1170 S

.

12
PI
l00kIl

I

Rl

~
150kO

Hold

~
lookO'

R2,
220kfly
I

P3

r"[

"-,

.L"'N"'I ;.,

:-r-

O.lj.JF~

nR3*

330

kO

~

47kil}1

C4 ..... 39kl11
R6i

P2

Hegnt

C2

clO

O.l~F

_

I

R7

**

J 561<.1<

C5

T°.1~F
1

**

,,2",

Typical performance
Vs
Is
t f1y
Ptot
Iy

Operating supply voltage
Supply current
Flyback time
TDA 1170S power dissipation
Maximum scanning current (peak to peak)

For safe working up to T amb = 60°C a heatsink of Rth = 18°C/W is required.

487

22
120
0.8
1.95
1.0

V
rnA
ms
W
A

Fig. 5 - Typical application circuit for large screen 8/W TV set (R y = 1012;

Ly=

20 mH; I y = 1 App)

1

----------.-------~~----~---------------------4J·VS=2ZV

Cl

C3

O.II';r

1
11

~

__

~

________

~

O.1IJF

SYNC. "--~
INPUT ,-,----.I-C
=':-'..---i

;:;kfl

i

l.

L

R1

:

150kO

,

'"iiz

:

.J..

I' FI16V

I

12

HOI~.r ~

!

RS ..

-r,~rtlc6

~:

.
1,

TDA 11705

~ ~----~
P.2 I lOOkfl

t, ..

YOKE

10 It

Is.6kO

H •• gnt

R2~

C2

l""'

180kfl

Rl0·
111
5-3329/1

* Tolerancp 5·'.

**..

2'/,

Typical performance
V.
I.

t lly

Ptot
Iy

Operating supply voltage
Supply current
Flyback time
TDA 1170S power dissipation
Maximum scanning current (peak to peak)

For safe working up to T amb = 60°C a heatsink of Rth = 14°C/W is required.

488

22
145
0.7
2.3
1.2

V
mA
ms
W
A

Fig. 6 - Typical application circuit for large screen 110° PI L TVC set (R y = 10n; Ly= 25 mH; Iy= 1.25
App)
,-------~~·---T--_,.------------_o.

470,.,F
35V

'5

iSv

R"[n C'O

3.3 ()

O.1)JF

R9'*1
19H1

TDA 1170SH

e12

J: 6.8nF

C7_

1000

~F/25V

10 t---~-----"-L_

YOKE

12

10 Jl
2SmH

P2

lookO

C4

R2
270kD

*

Tole-rancE'

• • ..

5-'_
2'/,

Typical performance
Vs
Is
tfly
Ptot
Iy

Operating supply voltage
Supply current
F Iyback time
TDA 1170SH power dissipation
Maximum scanning current (peak to peak)

For safe working up to T amb = 60°C a heatsink of Rth = 8.5°C/W is required.

489

25
175
1
3.25
1.4

V
mA
ms
W
A

Fig.7 - P.C. board and component layout of the circuit of fig. 6 (1 : 1 scale)

Note: For the heatsink (1170 Sand 1170 SH) see mounting instructions

MOUNTING INSTRUCTIONS
During soldering the tab temperature must not exceed 260°C and the soldering time must not be longer
than 12 seconds.
The external heatsink or printed circuit copper area must be connected to electrical ground.

TDA 1170S
The junction to ambient thermal resistance of the TDA 11705 can be reduced by soldering the tabs to a
suitable copper area of the printed circuit board (fig. 8) or to an external heatsink (fig. 9).
The diagram of fig. 10 shows the maximum dissipable power Ptot and the Rth i-amb as a function of the
side "sn of two equal square copper areas having a thickness of 35 jJ. (1.4 mil).

490

MOUNTING INSTRUCTIONS (continued)
Fig. 8 - Example of P .C. board copper area used as
heatsink.

Fig. 9 - Example of TDA 1170 S with external
heatsink.

AREA 35)J THICKNESS
HEATSINK

'Rth ~ 30°C/W

P. C. BOARD

Fig. 10 - Maximum Power
dissipation and junctionalambient thermal resistance
vs. "S"
Ptot

Fig. 11 - Maxim. allowable
power dissipation vs. ambient temp. (TDA 1170S)

,!~.,4+tttt

("C/WI

(WI

Fig. 12 - Maxim. allowable
power dissipation vs_ ambient temp_ (TDA 1170SH)

WITH INFINITE HEAT SINK

80

60
R

WITH H AT SINK HAVIN

lamb

40

H-

P tot (lamb =55·C

WITH U HEAT SINK

(T

",70'C)

H-+-H' fjllt
40"

(mm)

-so

50

1

-50

TDA 1170SH
The power dissipated In the circuit may be removed by connecting the tabs to an external heatsink accordrng to fig. 12. The desired thermal resistance may be obtained by fixing the TDA1170SH to a
suitable dimensioned plate as shown in fig. 13.

I

491

I

MOUNTING INSTRUCTIONS

(continued)

Fig, 13 - Mounting example,

492

LINEAR INTEGRATED CIRCUIT
TV HORIZONTAL PROCESSOR

J

The TDA 1180P is a horizontal processor circuit for b.w. and colour television receiver. It is a monolithic integrated circuit encapsulated in 16-lead dual in-line plastic package. The TDA 1180P combines
the following functions:
Noise gated horizontal sync separator.
Noise gated vertical sync separator.
Horizontal oscillator with frequency range limiter.
Phase comparator between sync pulses and oscillator pulses (PLL).
Phase comparator between flyback pulses and oscillator pulses (PLL).
Loop gain and time cons.tant switching (VCR).
Composite blanking and key pulse generator.
Protection circuits.
Output stages with high current capability.

I

ABSOLUTE MAXIMUM RATINGS
Supply voltage (pin 1)
Voltage at pin 2
Voltage at pin 4

15
18
Vs
{ Vs
-6
6
- 6
Vs
1
0.5
30
20
30
1
-40 to 150

Voltage at pin 8

{+

Vg

Voltage at pin 9

Vl l

Voltage at pin 11
Pin 2 peak current
Pin 3 peak current
Pin 6 current
Pin 7 current
Pin 10 current
Total power dissipation at Tamb .;;; 70°C
Storage and junction temperature

12
13
16
17
110

Ptot
T stg, Tj

ORDERING NUMBER:

V
V
V
V
A
A
mA
mA
mA
W
°C

TDA 1180P
Dimensions in mm

MECHANICAL DATA

.•~
.==:sr.
"""".""""""'."'l

l27~\

i~~·········

493

H.·
.•.4.m•.' .•.•.....•.......•...

. ~.

1<' 'f' .

~,

6/82

I

j

i

1

j

I

CONNECTION DIAGRAM
(top view)
16

GNO

OUTPUT -

15

OSc. CONTROL
CURRENT

OUTPUT ...

14

OSCILLATOR

PROTECTION
CIRCUIT INPUT

13

CONT. CURRENT

PHASE SHIFTER
FILTER

12

FLYBACK

11

SUPPLY VOLTAGE

1

INPUT

KEY AND BLANK
PUlSE OUTPUT

T~.i?EPARATOR

7

10

9

R

OUTPUT
TIME CONSTANT
SWITCH

COINCIDENCE

DETECTOR
VERTICAL
SYNC OUTPUT

VERTICAL SYNC
SEPARATOR

IN

s- 3426

BLOCK DIAGRAM

Il

A

Jl

",

.~

",

~

l
II

,l.J

",

~I~~LO

r
I

'L

l'

~I -.

!
(

VCR

rI

_J

."

"

T

494

,':~
.!.

1

1

I
j.'.'

,

I"1,,1

2:

«cc
(!)

«
o

c.J

I-

«

:E
w

:::r::

c.J

rJ)

495

TEST CIRCUIT
SANDCA$TLE
OUTPUT

A Jl

VERT SYNC
OUTPUT

FlYBACK
INPUT (lQOV)

+ Vs

470nF
(I

~~.~Mn

R6
47
kll

,.-....J- ._---'-_ _- ' -_ _~_---L_ __'___,_,
,O

~_ 9

RI
2.2kfl

TDA 1180P
JIDEQ SIGNAL
INPUT

OUTPUT
PULSE

16

•'s o--C=:}-C:J--===:;;'

5>-3427J1

THERMAL DATA
Rth i-amb

max

Thermal resistance junction-ambient

ELECTRICAL CHARACTERISTICS

80

°e/W

(Refer to the test circuit, Vs= 12V, T amb = 25°e unless

otherwise specified)
Parameter
Vs

Supply voltage

Is

Suppty current

Vs

Supply voltage at which the output
pulses (at pin 2and31are switched off

Test conditions

Min.
10

13~

0

Typ.

Max.

12

13.2

V

40

52

mA

4

V

6

V

Unit

HORIZONTAL SYNC. SEPARATOR AND NOISE GATE
Vi

Peak to peak input signal

Va

Input switching voltage

Is

80.uA

1

1.5

V

Is

Input switching current

Va~1.4V

10

.u A

la

Input blocking current for noise
suppression

0.9

mA

Va

Input switching voltage for noise
suppression

2.1

V

Is

Leakage current

~

Va

~

-5V

496

3

1

.uA

ELECTRICAL CHARACTERISTICS (continuedl
Parameter

Test conditions

Min.

Typ.

Max.

3

6

Unit

VERTICAL SYNC. SEPARATOR
VI

Peak to peak input signal

Vg

Input switching voltage

1
~

Ig

80 IlA

1.5

V
V

Ig

Input switching current

Vg~1AV

Ig

Leakage current

Vg

VIO

Vertical sync. pulse output voltage

No load at pin 10

RlO

Output resistance

10

Kn

tLv

Delay between leading edge of input
and output signals

17

IlS

tTV

Delay between trailing edr,e
of input and output signa s

50

IlS

tv

Vertical sync pulse duration

190

. IlS

~

5

-5V

IlA
1

11

IlA
V

-

PROTECTION CIRCUIT
V4

Input voltage for switching off the
output pu Ises

R4

Input resistance

14

Input current

Output pulses OFF
Output pulses ON

0.5
1
200

V
Kn

5

IlA

fL YBACK PULSE
V6

., Input threshold

voltage of blanking

V6

Input threshold voltage of phase
comparator

16

Input switching current

V

1.5

generator

V6~1.7V

7.6

V

0.23

mA

OUTPUT PULSE
~

V3

Peak to peak output voltage

13

13

Output current

V3

R3

Output resistance

at leading edge of output pulse

3

at trailing edge of output pulse

20

tp

150 mApp

~

5V

Output pulse duration

20

10

V

500

mA

22

n
26

IlS

4.8

V

COMPOSITE BLANKING AND KEY PULSE
V 7K
V 78

Key pulse output peak voltage
. Blanking pulse output voltage

9

11

4.2

4.5

V

R7

Output res ista nce

100

n

t5K

Phase relation between trailing
edge of key pulse and middle of
sync input pulse

2.7

IlS

tK

Key pulse duration

tfb

Delay between flyback pulse and
blanking pulse

3.5
V6~1.7V

497

3.8

IJ.S

0.2

IJ.S

I

ELECTRICAL CHARACTERISTICS (continued)
Test conditions

Parameter

INTERNAL GATING PULSE
tg

Gating pulse duration

t

Phase relation between middle of
sync pulse and trailing and leading
edge of gating pulse

7.5

flS

3.75

flS

COINCIDENCE DETECTOR
V ll

Output voltage

6.S

with coincidence

4

without coincidence

III

Peak output current

0.5

V
mA

VCR SWITCH

o to 4 or 8.5 to

Vll

Input voltage

-Ill

Output cu rrent

35

1

III

Output current

0.4

1

12

I

V
flA

I.

mA

TIME CONSTANT SWITCH
V 12

Output voltage

R12

Output resistance

4.5V
V ll

< V ll < SV
> S.5V or V ll < 4V

3

V

100

n
Kn

40

OSCILLATOR
V 14

Low level threshold voltage

5.4

V

V 14

High level threshold voltage
Charge current

S.2
0.6

V
mA

0.3

mA

114
114

Discharge current

V 15

Current source supply voltage

3

V

115

Current source supply current

0.3

mA

15625

Hz

± 10

%

fo
Mo
-fo
fd o

Free running frequency

Adjustment range
Frequency control sensitivity

Mo

Hz

52

tJl5

Frequency change when V s drops
t04V

-,;A
± 10

498

%

ELECTRICAL CHARACTERISTICS (continued)
Parameter

Test conditions

OSCILLATOR-FL YBACK PULSE PHASE COMPARATOR
V5

Control voltage range

15

Peak control current

15

I nput current (blocked phase
detector)

td

Permissible delay between output
pulse leading edge and fly back pulse
lead ing edge

6t
6td

9.4 to 8.2

V
± 0.5

mA

5

IlA

tp - tf

Static control error

IlS
0.2

%

SYNC PULSE-OSCILLATOR PHASE COMPARATOR
V13

Control voltage range

4.6 to 1.4

V

113

Control peak current

±2

mA

M6t

Phase lock loop gain

2

KHz
-IlS

± 700

Hz

Phase relation between middle of
flyback pulse and middle of sync
pulse

2.6

IlS

Adjustment sensitivity

65

mV
-IlS

Adjustment sensitivity

10

~

f

Catching and holding range

OVERALL PHASE RELATIONSHIP
to

6V 5
--6to
61 5
-6to

499

IlS

Fig. 1 - Vertical sync. output pulse

I

f

tv

Fig. 2 - Relationship of main waveform phases

I

\
FLVBACK

INPUT PULS

~

"

1

lo-

,J

VIDEO IN PUT
SIGNAL

\..

PHASE COM PARATOR

r

I

DRIVING PU lSE

SEPARATED
SYNC. PU lSE

I

\
'9
GATE PUlS

I

I

---"'---

SANDCASTL E
OUTPUT PU lSE

I

.--

I
I

I

I

'SK

'K

v"

\ [v's

'p
OuTPUT PULSE
PIN

J

S-3~3"l

500

Fig. 3 - Free running fre·
quency vs. supply voltage

(k~~) H-+-H--t--r--t+-t-i-f'+-1-++-1

+-++-+-++++--+-++-H

,
,

--t

H--f-f'-+1-t-[--j--l-+-+-+-+-+-+-+-I

-i---

+-+-+-+-++-1-+ T

+-'

,

I

5

15.5

Fig. 5 - Loop gain

Fig. 4 - Overall phase relation vs. supply voltage

J

,

(,-)597

(,-)';96

I

I
rLSYNC

t:I::

~t

•

. : l'

If

+
~~+
-+

PULSE

~LVBA.CK

-

PULSE

-tFF

,

~

,

--

,

f

I

H=-0.8

-0.0

-04

I

-0.2

APPLICATION INFORMATION
Pin 1 - Positive supply
The operating supply voltage of the device ranges from 10V to 13.2V.

Pin 2 and 3 - Output
The outputs of TDA 1180P are suitable for driving transistor output stages, they deliver positive pulse at
pin 3 and negative pulse at pin 2.
The negative pulse is used for direct driving of the output stage, while positive pulse is useful when a
driver stage is required.
The rise and fall times of the output pulses are about 150 ns so that interference due to radiation are
avoided.
Furthermore the output stages are internally protected against short circuit.

Pin 4 - Protection circuit input
By connecting pin 4 of the Ie to earth the output pulses at pin 2 and 3 are shut off; this function has
been introduced to protect the final stages from overloads.
The same pulses are also shut off when the supply voltage falls below 4V.

Pin 5 - Phase shifter filter
To compensate for the delay introduced by the line final stages, the flyback pulses to pin 6 and the oscillator waveform are compared in the oscillator-flyback pulse phase comparator.
The result of the comparison is a control current which, after it has been filtered by the external capacitor connected to pin 5, is sent to a phase shifter which adequately regulates the phase of the output
pulses.
The maximum phase shift allowed is:

where tl is the flyback pulse duration.
Pin 5 has high input and output resistance (current generator).
501

APPLICATION INFORMATION (continued)
Pin 6 - Flyback input
The fly back pulse drives the high impedance input through a resistor in order to limit the input current
to suitable maximum values.
The flyback input pulses are processed by a double threshold circuit; this generates the blanking pulses
by sensing low level flyback voltage and the pulses to drive the phase comparator by sensing high level
flyback voltage, therefore phase jitter caused by ringing normally associated with the flyback pulse, is
avoided.

Pin 7 - Key and blanking pulse output
The key pulse for taking out the burst from the chrominance signal is generated from the oscillator
ramp and has therefore a fixed phase position with respect to the sync.
The key pulse is then added internally to the blanking pulse obtained by correctly forming the flyback
pulse present at pin 6.
The sum of the two signals (sandcastle pulse) is available on low impedance at output pin 7.

Pin 8 and 9 - Sync separators inputs
The video signal is applied by means of two distinct biasing networks to pins 8 and 9 of the Ie and
therefore to the respective vertical and horizontal sync separators.
The latter take the sync pulses out of the video signal and make them available to the rest of the circuit
for further processing.
An amplitude detector also connected to pin 8, blocks operation of the sync separators when interference or noise peaks exceed a certain preset value.

Pin 10 - Vertical sync output
The vertical sync pulse, obtained by internal integration of the synchronizing signal, is available at this
pin.
The output impedance is typically 10Kn and the lowest amplitude without load is 11 V.

Pin 11 - Coincidence detector
From the oscillator waveform a gate pulse 7 p,s wide is taken whose phase position is centered on the
horizontal syncronism.
The gate pulse not only controls a logic block which permits the sync to reach the oscillator-sync phase
comparator only for as long as its duration, but also allows the latching and de-latching conditions of
the oscillator to be established.
This function is obtained by a coincidence detector which compares the phase of the gate pulses with
that of the sync.
When the two signals are not accurately aligned in time It means that the oscillator is not synchronized.
In this case the detector acts on the logic block to eliminate its filtering effect and on the time constant
switching block to establish a high impedance on pin 12 (small time constant of low-pass filter).
Th is latter block also acts on the oscillator-sync phase detector to increase its sensitivity and with it the
loop gain of the synchronizing system.
In this conditions the phase lock has low noise immunity (wide equivalent noise bandwidth) and rapid
pull-in time which allows fairly short synchronization times.

502

APPLICATION INFORMATION (continued)
Once locking has taken place the coincidence detector enables the logic block, causes a low impedance
on pin 12 and reduces the sensitivity of the phase comparator.
In these conditions the phase lock has high noise immunity (narrow equivalent noise bandwidth) due to
the complete elimination of interference which occurs during the scanning period and the greater inertia
with which the oscillator can change its frequency.
To optimize the behaviour of the Ie if a video recorder is used, the state of the detector can be forced
by connecting pin 11 to earth or to +Vs. The characteristics of the phase lock thus correspond to the
lack of synchronization.

Pin 12 -:- Time constant switch, (see pin 11)
Pin 13 - Control current output
The oscillator is synchronized by comparing the phase of its waveform with that of the sync pulses in
the oscillator-sync phase comparator and sending its output current 113 (proportional to the phase difference between the two signals) to pin 15 of the oscillator after it has been filtered properly with an
external low-pass circu it.
The time constant of the filter can be switched between two values according to. the impedance presented by pin 12.
The voltage limiter at the output of the phase comparator limits the voltage excursion on pin 13 and
therefore the frequency range in which the oscillator remains held-in.
The output resistance of pin 13 is :
low when V 13 > 4.3V or V 13 < 1.6V
high when 1.6V < V 13 < 4.3V
Tb prevent the vertical sync from reaching the oscillator-sync phase comparator along with the horizontal sync, a signal which inhibits the phase detector during the vertical interval is taken from the
vertical output stage; inhibition remains even if the video signal is not present.
The free running frequency of the oscillator is determined by the values of the capacitor and of the
resistor connected to pins 14 and 15 respectively.
To generate the line frequency output pulses, two thresholds are fixed along the fall ramp of the triangular waveform of the oscillator.

Pin 14 - Oscillator (see pin 13)
Pin 15 - Oscillator control current input (see pin 13)
Pin 16 - Ground

503

Fig.6 - Application circuit for large screen b.w. and colour TV
SANDCASTLE
OUTPUT

A

.v,

ll

FlYBACK
INPUT (IOOV)

PHASE

Fig. 7 - p.e. board and component layout for the circuit in fig. 6 (1: 1 scale)

FLYBACK

INPUT(lOOV)
Vs

OUTPUT
PULSE

504

Fig.8 - Application circuit for small screen b.w. TV.
.10.1\'
SANDCA51lE
OUTPUT

]l

A

I

1511
FLYBACK

INPUT(100V)

.V s

470nF
C1
R1

R8
47

n'1fi

kfl

r--:':,0:----:---~----:---.......- - -...--,

f---"'---'

9

2.2kfl

TDA 1180P
VIDEO SIGNAL
INPUT

16

C9
5nF

5-31.33/1

Fig.9 :.' Application circuit for Darlington output stage
SANOCASTlE
OUTPUT

]l

A

FLYBACK
I NPUTi 100v)

R8
47

IOO"F

J:

kfl

r-~----~--~~--~----~----~-'
10

fl

TDA 1180P
VIDEO SIGNAL
INPUT

16

C9
5nF
5-31,34/1

505

Bue060r
BUB07

82

LINEAR INTEGRATED CIRCUIT
COMPLETE TV SOUND CHANNEL
The TDA 1190Z is a monolithic integrated circuit in a 12-lead quad in-line plastic package. It performs
all the functions needed for the TV sound channel:
I F limiter-amplifier
- Active low-pass filter
- FM detector
- DC volume control
- AF preamplifier
- AF output stage
The TDA 1190Z can give an output power of 4.2W (d = 10%) into a 160 load at Vs = 24V, or 1.5W
(d = 10%) into an 80 load at Vs = 12V. This performance, together with the FM-IF section characteristics of high sensitivity, high AM rejection and low distortion, enables the device to be used in
almost every type of television receivers.
The device has no irradiation problems, hence no external screening is needed.

ABSOLUTE MAXIMUM RATINGS
Supply voltage (pin 10)
Input signal voltage (pin 1)
Output peak current (non-repetitive)
Output peak current (repetitive)
Power dissipation: at T tab = 90°C
at T amb = 80° (free air)
Storage and junction temperature

ORDERING NUMBER:

V

1

V
A
A

2
1.5

5
1
-40 to 150

W
W

°C

TDA 1190Z

Dimensions in mm

MECHANICAL DATA

6/82

28

506

CONNECTION AND BLOCK DIAGRAM
(top view)

I;

"

~-

SCHEMATIC DIAGRAM

TABS

507

TEST CIRCUIT
L1
L= 10,.,H
Q o =60
10=4.5 MHz

9pF
C7

C6

0

I

~

120pF
INPUT

lOOnrJ:
C12
C10
J----0..C~
.' . .
,.,'.,,<: .•. ~
' , . . . . . " , , ,.• ,•.,>' ·cA~~CITOR\'·. R~
..•..·.-A.N. :1. .•.1£..1'. 1 14. :Jl•• '. .•.•.
i' "'/

.Q

i.'.'.'

,:,c<:I~<:'::' "

;<:;

"0

~

~

,
«

u...

~

+"'

(S
tl

S

:..'. .......
. •. F:~ ............
, Rl3

..Q

'"
....0
..c

+"'

"0

~

:::l
C
'':;
C
0

.,

'"

..£

Z

co
~

+"'

>

~

l-

+"'

C

«
'"c
2
0

0

LL

c.

E
0

tl

Z

-g

Z

l'
co

I-

U

0

«
U
...J
Il..
Il..

«

~.

24

co

0

.0
0..
~

N

~ .'

..... 8
....
· ~. rRl6
- L . \..•.·. .C. 23

~.......... ~.c::::::::J

,.. ~ ..·L6--c:::::h

....... ..• '. ...

.R15

...

,C27 ,

10IQ:?'J(~~0~~'~·•. -'--

:::l
0

0

a:

+ . ~..

. R24

.Ris [

7j'r- .

1--)

.. C32.

0

0

,0

SWl AM

~. .,..,.---4

('~7~Oc~~~ .
.

0

0

0

..

::.~Qr:~~'IIII[
(9
...
.o
{ATTEi!lV+3t12V

CS-0117

.~

u...

524

FM

APPLICATION INFORMATION

(continued)

Low cost receiver performance (V s = 9V)

I!

Test conditions

Parameter

Value

I

I.

Wavebands

Sensitivity

Distortion f m : 1 KHz

~
fm:1KHz
·N

FM

87.5 -;. 108 MHz

AM

510-;. 1620 KHz

FM : 75.11 (S + N/N) : 26 dB
(S + N/N) : 6 dB

m: 0.3

1 jJV

AM

(S + N/N) : 26 dB

m: 0.3

10 jJV

FM

Vi:

100jJV

M: 22.5 KHz

p: 0.5W

.;; 0.25 %

FM

Vi:

100jJV

M: 75 KHz

p: 0.5W

.;; 1 %

AM

Vi:

100jJV

m: 0.3

p: 0.5W

.;; 0.6 %

AM

Vi:

100jJV

m: 0.8

p: 0.5W

.;; 1 %

FM

Vi:

100jJV

M: 22.5 KHz

p: 0.5W

;. 70dB

AM

Vi: 1000jJV

m: 0.3

p: 0.5W

FM

-3 dB point

AMR

FM

Vi: 100jJV

Quiescent current

Supply voltage range

.;; 2 jJV

AM

Input limiting voltage

IF

I1f: 22.5 KHz

;. 55 dB
.;; 1.5jJV

M: 22.5 KHz

m: 0.3

;. 45 dB

FM

10.7 MHz

AM

460 KHz

FM

23mA

AM

15 mA

FM

3-;.12V

AM

3-;.12 V

525

J; "'

·H~
• ~\>

:

,

~~

I

0

l

,

I

,I
,

,
I
j~
I

"~

13::J
C

.;::;
C
0

.::.
.2

Q

"0

«
:2E

:;§;

I-

a:
0

~
I

u.

Z

S
en

Z

S

!;;:

S
-l

LL

0

:;§;

(J

I

...I

N
N

Q.,
Q.,

«

~

I

~

~

!. i

I

z

I

.",

u.

526

0

APPLICATION INFORMATION (continued)
Fig. 23 - PC board and component layout of the four band radio (fig. 22)

C11

I'.)

-..J

~

I

mm205

i
~I
I

----...

----.-.......-..-

APPLICATION INFORMATION (continued)
FOUR BAND RADIO PERFORMANCE
Parameter

AM SECTION

Values

Test. conditions

H

I~I
N
BW

Distortion

Vi = 10"V
V i - l mV
-3 dB
V I = 20 "V
Vi -100"V
VI 1 mV
Vi 20"V
Vi 1 mV

m =0.3
m - 0.3

Vi- 30"V
V i -l00"V
V i - 10"V
V i - 1OO ILV
V i - l mV
V I - 10ILV
V i -l00"V
Vi
10"V
V i -l00"V
Vi -1 mV

M = 22.5
b.f - 22.5
M - 22.5
b.f - 22.5
b.f - 22.5
M-75
M-75
M - 22.5
M - 22.5
b.f - 22.5

26 dB
55 dB
10 KHz
0.5 %
0.5 %
0.5 %
0.9 %
1%

m = 0.3
m - 0.3
m 0.3
m 0.8
m 0.8

FM SECTION
AMR

Distortion

I~I
N
Input limiting
voltage

KHz
KHz
KHz
KHz
KHz
KHz
KHz
KHz
KHz
KHz

m - 0.3
m -0.3

f m = 1 KHz
f m - 1 KHz

-3 dB

45 dB
47 dB
0.3 %
0.2 %
0.2 %
1%
1%
60dB
70dB
70dB
l"V

(.j The performance remains substantiallv the same over LW, MW and SW bands.

100 KHz/div.

5 KHz/div.

Fig. 24 - FM-SECTION
S cu rve response

Fig. 25 - AM-SECTION
Band pass IF filter response at AGC
starting point.
528

..

APPLICATION INFORMATION (continued)
Fig. 26 - Low cost 27 MHz receiver

·9V

I,

TDA 1220 A

111----'-.......-+-----,

16

Sensitivity: 1O!J. V for ( S ~ N )

= 26 dB

Fig. 27 - PC board and component layout of
the low cost 27 MHz receiver (1: 1 scale)
AUDIO
OUT

Fig. 28 - L2 Oscillator Coil

I

00

+9V

«XX>

0000
0000

I r--II

I:
I
I

I
IL __ _

!

5-3419

Coil support: Taka 10K.
Primary winding: 10 Turns of enamelled copper wire 0.16 mm diameter (pins 3-1).
Secondary winding: 4 Turns copper wire
0.16 mm diameter (pins 6-4).

I:

Fig. 29 - L 1 Antenna Coil

j---

00)

«XX>
0000

I:I
I

I:
I

NOTE - For a more detailed description of the TDA 1220A and
its applications refer to SGSTECHNICAL NOTE TN. 14B.

-~~3~18

Coil support: Taka 10K.
Primary winding: as L2 (pins 3-1)
Secondary winding: 2 Turns copper wire
0.16 mm diameter (pins 6-4).

529

Ji

LINEAR INTEGRATED CIRCUIT
AM-FM QUALITY RADIO
The TDA 1220B is a monolithic integrated circuit in a 16-lead dual in-line plastic package designed as
an improved version of the TDA 1220A.
It is intended for quality receivers produced in large quantities.
The functions incorporated are:

AM SECTION
Preamplifier and double balanced mixer (1)
One pin local oscillator
I F amplifier with internal AGC
Detector and audio preamplifier
The TDA 1220B is suitable up to 30 MHz
and features:

ds (including 450 KHz narrow band)

Very constant characteristics (3V to 16V)
High sensitivity and low noise
Very low tweet
Very high signal handling (1 V)
Sensitivity regulation facility,,(

recovered audio signal (100 mY) suited'
stereo decoders and radio recorders
simple DC switching of AM-FM
Low current drain

''':1)f;'

e

or,
by mean of a resistor (5 to 12 Krl) between pin 4 and ground.

ABSOLUTE
Vs

Ptot
Top

Tstg , Tj •

Supply~ltage

Total po~er dissipation at Tamb
110°C
Operating temperature
Storage and junction temperature

<

16
V
400
mW
-30 to 8 5 ° C
-55 to 150°C

ORDERING NUMBER: TDA 1220B
Dimensions in mm

MECHANICAL DATA

6/82

530

CONNECTION DIAGRAM
LOCAL
OSCILLATOR

16

AM

15

IF FM

'4

IF FM BYPASS

AMPLIFIED
AGG (BYPASS)

i3

FM

DETECTOR

AM IF INPUT

12

FM

DETECTOR

INPUT

MIXER

A~

OUT

DETECTOR

IF FM INPUT

6

GROUND

BYPASS
AM DETECTOR

AGe (BYPASS)

BYPASS

.v 5

10
8

AF

OUTPUT

BLOCK DIAGRAM

- ',

~,--------,. ~-------'---r'6--l-~O.V'
:
:~~-u-~
: -- _
~--- -' ~ I.l : :
I

,

L -

,

-

-

t-.l

,--\

'#

~:

.l.
..,..

I~_"

.....

OUT

---------------"
S-S16611

531

THERMAL DATA
max

Thermal resistance junction-ambient

Rth j-amb

100

ELECTRICAL CHARACTERISTICS (T amb = 25°C, Vs= 9V unless otherwise specified, refer to
test circu it!
Test conditions

Parameter

Vs

Supply voltage

Id

Drain current

AM SECTION(f o
Vi

=

Min.

Typ.

3

Max.
16

10

Unit
V
mA

1 MHz; f m = 1 KHz!

I nput sensitivity

SIN

SIN = 26 dB

m = 0.3

12

Vi = 10mV

m = 0.3

52

dB

100

d8

120

mV

0.4

%

1

V

Vi

AGC eange

llV out = 10dB

m = 0.8

Vo

Recovered audio signal
(pin 9)

Vi = 1 mV

m = 0.3
d< 10%

65

25

IJV

d

Distortion

VH

Max input signal handling
capability

m = 0.8

Rj

I nput resistance between
pins 2 and 4

m=O

7.5

KO

Ci

I nput capacitance between
pins 2 and 4

m-O

18

pF

Ro

Output resistance (pin 9)
Tweet 2 IF

--

Tweet 3 IF

FM SECTION (fo

=

10.7 MHz; f m

m = 0.3

=

Vi = 1 mV

7

KO

38

d8

55

dB

1 KHz!

Vi

Input limiting voltage

-3 dB li""iting point

AMR

Amplitude modulation
rejection

M = ± 22.5 KHz

m = 0.3

22

IJV

52

dB

Vi = 3 mV

SIN

Ultimate quieting

M = + :'2.5 KHz

Vi = 1 mV

64

dB

d

Distortion

M = ± 75 KHz

Vi= 1 mV

0.7

%

d

Distortion

d

Distortion (double tuned)

Vo

0.25

%

0.1

%

100

mV

M = ± 22.5

Vi= 1 mV

Recovered audio signal
(pin 9)

M = ± 22.5 KHz

Vi = 1 mV

Ri

I nput resistance between
pin 16 and ground

M=O

6.5

KO

Ci

I nput capacitance between
pin 16 and ground

M-O

14

pF

Ro

Output resistance (pin 9)

7

KO

532

65

Fig. 1 - Test circuit

I,.

Fig.2 - PC board and component layout (1: 1 scale) of the test circuit.

533

Fig. 3 - Suggestion for 7 x 7 mm "Le" conventional filter use.

TDA 1220 B
13

___

10

AM

FM

.-J

KAC5 K586 HM

Fig.4 - Suggestion for "coil block" use.

SUMIDA FSN 1067
r--~-

'.1
100jJF

L_ - -

'6

--------'"1

2

9

t
/ t
TOKO RWO
6A6574A

'

50h
~)

r-

:

:

6 '

-~- ~3{-.o:---~

~~I---+---~~--c:::}--t

Vs=3 to 12V

I

-.

100 n F

1>----+-----"

-:L.

~

1

~---------: lOll s
Pin 2 D.C. current at V 16 < V 3
Pin 2 peak to peak flyback current for f = 50 Hz, t fly
Pin 11 current
Maximum power dissipation at Tease ~ 75°C
Storage and junction temperature

~

1.5 ms

35
60
+10
-0.5
3
3.5
2
100
3
20
25
-40 to 150

V
V
V
V
A
A
A
mA
A
mA
W
°C

ORDERING NUMBER: TDA 1470

MECHANICAL DATA

6/82

Dimensions in mm

540

CONNECTION AND BLOCK DIAGRAMS
(top view)

POWER GROUND

16

AMP.

FLYBACK

15

NC

OUT

SUPPLY VOLTAGE

14

AMP. SUPPLY

RAMP

OUT

13

REG

RAMP

GENERATOR

VOLTAGE

12

HEIGHT AOJUS T

COMPENSATION

11

SYNC. INPUT

AMP. INPUT

(+)

10

OSCILLATOR

AMP. INPUT

(-)

9

GROUND

The copper slug is electrically
connected to pin 9 (substrate)

SCHEMATIC DIAGRAM

aiD

all
R3

D2

.1

.2

10

01

.6

I,

13

541

THERMAL DATA
Rth j-case

Thermal resistance junction-case

max

3

°C/W

DC ELECTRICAL CHARACTERISTICS (Refer to the DC test circuits, Vs= 35V, T amb = 25°C,
unless otherwise specified)
Parameter

Test conditions

Min.

Typ.

Max.

Unit

Fig.

13

Pin 3 quiescent current

12 = 0

7

mA

lb

114

Pin 14 quiescent current

116 = 0

10

mA

1b

-1 10

Oscillator bias current

V 10=1V

0.1

!LA

la

-IS

Amplifier input bias
current

Vs=lV

1

!LA

lb

Ramp generator bias

V5 = OV

0.02

!LA

1a

20

!LA

1b

1

%

1b

35

V

-

1.4

V

-

V

la

-15

current

-15

Ramp generator current

V5= OV

"'15
15

Ramp generator linearity

"'V5= 0 to 12V
112 = 20 !LA

Vs

Supply voltage range(pin3)

V4

Pin 4 saturation voltage
to ground

14= 1 mA

1

V2

Pin 2 saturation voltage
to ground

12= 10 mA

0.5

V 16

Quiescent output voltage

Vs= 10V
R 2 =10 K!1

R I = 10K!1

Vs= 35V
R 2 = 10 K!1

R I = 30 K!1

V I6L

Output saturation voltage
to ground

112= 20 !LA

0.2
10

4.15

4.45

4.73

V

la

8.3

8.9

9.45

V

la

-116= O.8A

1.3

V

lc

-116= 1.5A

1.7

V

lc

542

D.C. ELECTRICAL CHARACTERISTICS

Test conditions

Parameter

Output saturation voltage
to supply

V 16H

V 13

Regu lated voltage at
pin 13

V 12

Regulated voltage at
pin 12

loV 13
nV s

Min.

Typ.

Max.

Unit

Fig.

116 = O.SA

1.9

V

1d

116 = 1.5A

2.3

V

1d

112 = 2O IlA

n V 12 Regulated voltages
lo V s drift

V7

(continued)

6.1

6.5

6.9

V

1b

6.2

6.5

7

V

1b

mV/V

1b

1

nVs= 10 to 35V

Amplifier input reference
voltage

2.07

2.2

2.3

V

Fig. 1 - DC test circuits

(b)

(a)

14

'2

-----111
D.U.T.

1- 9

16

10

~R1

D.U.T.

.....

5-376611

543

S -3 76 7/1

(c)

(d)

.V s

Q

t---- -----14

14

10

10

16

D.U.T.

16

D.UJ.

1-9
i

TABS

I

l__ I_V-±-_
---'-

1V

S -3769/1

S-J 7 6 611

AC ELECTRICAL CHARACTERISTICS (Refer to the AC test circuit f

= 50 Hz, Vs = 24V,

unless otherwise specified)

Parameter

Test cond itions

Min.

Typ.

Max.

Unit

Vs

Operating supply voltage

Iy max= 2.2 App

24

V

Is

Supply current

Iy = 2 App

270

rnA

III

Sync. input current

V I6

Flyback voltage

V IO

Peak to peak oscillator
sawtooth voltage

tflY

Flyback time
Free running frequency

500
Iy = 2 App

IlA
49

V

2.4

V

Iy = 2 App

0.6

ms

Rl +P 1 = 300 Kn
C2 = 100 nF

44

Hz

Rl +P 1 = 260 Kn
C2 =100nF

52

Hz

~.

fo

lit

Synchronization range

I l l = 500 IlA

-litf:,V s

Frequency drift vs. supply
voltage

Vs= 10 to 35V

-lit
--

Frequency drift vs. tab
temperatu re

T amb = 40 to 120°C

f:,T tab

544

14

Hz
0.005

Hz/V

0.01

Hz/oC

Fig. 2 - AC Test circuit

,---------~--------~----~----------------------O·%=24V

YOKE

5.9fl.

lOmH

1
lOOkfi

4
12

5
Linearit

Rl

(2

R6

(4

Hold 220kfl

47kfi

Height

R2
100kil

R3
470
kil

(5
O.1~F

5·3770/1

Fig. 3 - Relative output
voltage drift vs. supply
voltage
_

",('/.J6
,0.

99/1

Fig. 4 - Relative output voltage drift vs. case temperatu re
AV,6 --,---,--,--,--,-,--,-,--,--,""'r~

("!o)--P---_ _....-I
OUTPUT

YOKE

lOA 1470

41-~~0---,

12

5

1000,uF/,6

R3*
680

kfi

* Tolerance 5-/.

** " ,"

S-37731'

2'1,

Typical performance
Vs
Is
tfly
Pd
Iy

23
185
1
2.8
1.4

Operating supply voltage
Supply current
Flyback time
TDA 1470 power dissipation
Maximum scanning current

For safe operation up to T amb = 60°C a heatsink of Rth = 10 °C/W is required.
548

V
mA
ms

W
App

Fig. 9 - P.C. board and component layout (Application circuits of fig. 6, 7 and 8)

SYNC.
INPUT

FLVBACK
OUTPU T

MOUNTING INSTRUCTIONS
The power dissipated in the circuit must be removed by adding an external heatsink as shown in fig. 10.
The system for attaching the heatsink is very simple; it uses a plastic spacer which is supplied with the
device on request (TDA 1470 F2).
Thermal contact between the copper slug (of the package) and the heatsink is guaranteed by the pressure
which the screws exert via the printed circuit board; this is due to the particular shape of the spacer.
Note: The most negative supply voltage is connected to the copper slug, hence to the heatsink (because it is in contact
with the slug).

549

Fig. 10 - Mounting system example (TDA 1470)

HEATSINK

- - - - - - - ; o . r - - R t h " 2\oS'CIW

~/ - + - - - - - S P A C E R

~--",_---P.

550

c.

BOARD

LINEAR INTEGRATED CIRCUIT
PRELIMINARY DATA
VERTICAL DEFLECTION CIRCUIT
The TDA 1670 is a monolithic integrated circuit in 15-lead Multiwatt® package. It is a full performance
and very efficient vertical deflection circuit intended for direct drive of the yoke of 110° colour TV
picture tubes. It offers a wide range of applications also in portable CTVs, BW TVs, monitors and
displays. The functions incorporated are.
Synchronization circuit
Precision osci lIator and ramp generator
Power output amplifier with high current capability
Flyback generator
Voltage regulator
Precision blanking pulse generator
Thermal shut down protection
CRT screen protection circuit which blanks the beam current in the event of loss of vertical deflection current.

I
I
!..

ABSOLUTE MAXIMUM RATINGS

V5

Supply voltage at pin 14
Flyback peak voltage
Sync. input voltage

Vll ,VI2

Power amplifier input voltage

V 13

Voltage at pin 13
Output current (non repetitive) at t = 2 msec
Output peak current at f = 50 Hz t
10 Jisec
Output peak current at f = 50 Hz t';;; 10 Jisec
Pin 15 peak to peak flyback current at f = 50 Hz, t f1y
Pin 15 DC current at VI
V 14
Maximum power dissipation at T case';;; 60°C
Storage and junction temperature

Vs
VI, V 2

10
10
10
'15
'15

Ptot

Tst9' Tj

>

<

.;;;

1.5 msec

35
60

V
V

20

V

{ Vs
-10
Vs

V

3

A

2

A

3.5

A
A

3
100

mA

.30
-40 to 150

°C

W

ORDERING NUMBER: TDA 1670
Dimensions in mm

MECHANICAL DATA

I,

I
551

6/82

CONNECTION DIAGRAM
(top view)

~~

Ay

FLYBACK
SUPPLY
BLANKING OUTPUT
AMPLIFIER INPUT (-)
AMPLIFI ER INPUT (+)
RAMP OUTPUT
RAMP GENERATOR
GROUND
HEIGHT ADJUSTMENT
OSCILLATOR
SYNC. INPUT
OSCILLATOR
OSCILLATOR
AMPLIFIER SUPPLY
AMPLIFIER OUTPUT

131

121
11
10
9

8

7i
'I5,

BLOCK DIAGRAM
,-------~-~--~----~--------~O+vs

BLANKING

OUT

O-----~

14

I

I
Cf

15

JL
SYNC.

Ra

cr'j-----j

5 - S264

552

THERMAL DATA
Rth j-case
Rth j-amb

max
max

Thermal resistance junction-case
Thermal resistance junction-ambient

3
40

ELECTRICAL CHARACTERISTICS (Vs= 35V, T amb = 25°C, unless otherwise specified)
Test conditions

Parameter

DC CHARACTERISTICS
12

Pin 2 quiescent current

11 = 0

18

30

mA

lb

-19

Ramp generator bias
current

V9= 0

0.02

1

p.A

lb

-19

Ramp generator current

V9 =0;

20

21.5

p.A

lb

Ramp generator non
linearity

!lV 9 =Oto15V
-17= 20 p.A

0.2

1

%

lb

25

50

mA

lb

16.8

17.8

18.6

V

7

7.5

8

V

I~I
19

114

Pin 14 quiescent current

VI

Quiescent output voltage

-17= 20 p.A

Vs= 35V;
Rb= 1 Kn

Ra= 2.2 Kn

Vs= 15V;

Ra= 390n
Rb= 1 Kn

18.5

la

V 1L

Output saturation voltage
to ground

11 = 1.2A

1

1.4

V

lc

V 1H

Output saturation voltage
to supply

-11= 1.2A

1.6

2.2

V

ld

V4

Oscillator virtual ground

V

lb

V7

Regulated voltage at pin 7

-17= 20p.A

V

lb

!lVs

Regulated voltage drift
with supply voltage

!lVs= 15 to 35V

Vu

Amplifier input (+)
reference voltage

V 13

Blanking output saturation
voltage

113= 10 mA

0.35

V 15

Pin 15 saturation voltage
to ground

'15= 20mA

1

!lV7

0.45
6.3

7.1

mV

1
4.2

553

6.6

4.4

4.6

1.3

----v-

lb

V

lb

V

la

V

1a

Fig. 1 - DC test circuit

Fig. 1a

Fig. 1b

4

5-5258

Fig. 1d

Fig.1c

554

ELECTRICAL CHARACTERISTICS(Refer to the A.C. test circuit of fig. 2, T amb = 25°C,
Vs= 24V, f = 50 Hz, unless otherwise specified)
Test conditions

Parameter

AC CHARACTERISTICS
Is

Supply current

15

Sync input current
required to sync.

2 App

Iy~

295

mA

100

!LA

vI

Flyback voltage

Iy~

2 App

50

v3

Peak to peak oscillator
sawtooth voltage

15 -

a

3.6

V

15= 100 !LA

V 10th L

Start scan level of the input
ramp

2 App

V

3.4

V

1.85

V

tfly

Flyback time

Iy~

Blanking pulse duration

fo- 50 Hz

T j - 75°C

0.6
1.4

ms

tblank

fo= 60 Hz

T j = 75°C

1.17

ms

Ro- 7.5 K.I1
Co = 330 nF

Tj = 75°C

43.5

Hz

Ro= 6.2 K.I1
Co = 330 nF

Tj

75°C

52.5

Hz

15 - 100 !LA

T j - 75°C

Free running frequency

fo

lit

Synchronization range

Tj

Junction temperature for
thermal shut-down

~

ms

16

Hz

145

°C

Fig.2 - AC test circuit
t blank

II

Jl

J11![

BLANKING
OUT
SYNC. IN
YOKE

lLt sync .

5.9
II

A

t blank

- ---i- 4'7:n.(FREa~0~:
~
__

__

I

10mH :

TDA 1670

_

lito

3 i 7180

_

v3

~~

SERVICEl
SWITCH
S2
5-5260

~'

220
K Jl

2200

O.l}JF9

KJl

56KJl
560
KII

r-,--~~L-r

J~>F

HEIGHT

555

L -_____

--~~~J~tly
:~

Fig. 3 - Application circuit for small screen 90° Tve set (Ry= 15,n; Ly= 30 mH, Iy= 0.82 App)

+vs

1N4001
R3
10K Jl

BLANKING
OUT

~G~~E
IN

01~F

13

Oc,1

S

14

"

TDA 1670

19~~\

15

Q ~F
R9
2.2

C7

::I:

n.

0.22

2.4KJl

:
Rl1

I

330Jl :
1

I
I

I!

1
1

L _ _ _ .J

Co
R2
1SKJl
SERVICE
SWITCHJS1
~

RT1
HEIGHT

S - 5261

* The value depends on the characteristics of the CRT. The value shown is indicative only.

Typical performance
Vs
Is
t fly
t blkg

fo

Ptot
Rth heatsink

Minimum supply voltage
Supply current
Flyback time
Blanking time
Free running frequency
Power dissipation
Thermal resistance of the heatsink
for T amb = 600 e and T j max= 1100 e
for T amb = 600 e and T j max= 1200 e

556

25
140

0.7
1.4
43.5

V
mA
msec
msec

Hz

2.4

W

13
16

°e/w
°e/W

Fig. 4 - Application circuit for 110° TVC set (Ry= 9.6n; Ly= 27 mH; Iy= 1.17 App)

BLANKING
OUT

,J

"

YOKE

14

r - --,

5

I
I

Ii

TDA 1670

Co

s-

•

5262

The value depends on the characteristics of the CRT. The value shown is indicative only.

Typical performance
Vs
Is
t f1y
t b1kg

fO
Ptot
Rth heatsink

Minimum supply voltage
Supply current
Flyback time
Blanking time
Free running frequency
Power dissipation
Thermal resistance for the heatsink
for T amb = 60°C and T j max= 110°C
for Tamb = 60°C and T j max= 120°C

557

22.5
185
1

1.4
43.5

V
mA
msec
msec

2.7

Hz
W

11.5
14.5

°C/W
°C/W

Fig. 5 - Application circuit for 110° TVC set (Ry= 5.90; Ly= 10 mH; Iy= 1.95 App)
1N4001

+Vs
R3
10KA

BLANKING

OUT

~0~~E
IN

01!-1F

0y,J

13
5

14

"

YOKE

15

r - --.,

:

~-~------~~~~

TDA1670

1\

5 - 5263

*

The value depends on the characteristics of the CRT. The value shown is indicative only.

Typical performance
Vs
Is
tfly
t b1kg
fo
Ptot
Rth heatlnk

Minimum supply voltage
Supply current
Flyback time
Blanking time
Free running frequency
Power dissipation
Thermal resistance of the heatsink
for T amb = 600C and TJ max= 1100C
;or T amb = 600C and Tj max= 1200C

558

24
285
0.6
1.4
43.5
4.3

V
rnA
msec
msec
Hz
W

6.5
8.5

°CIW
°CIW

Fig. 6 - PC board and components layout for the application circuits of fig. 3, 4 and 5 (1 : 1 scale)

GND

SYNC. Iy
I N TEST

APPLICATION INFORMATION (Refer to the block diagram)
Oscillator and Sync gate (Clock generation)
The oscillator is obtained by means of an integrator driven by a two threshold circuit that switches Ro
high or low so allowing the charge or the discharge of Co under constant current conditions.
The Sync input pulse at the Sync gate lowers the level of the upper threshold and than it controls the
period duration. A clock pulse is generated.
Pin 4
Pin 6
Pin 3
Pin 5

is
is
is
is

the
the
the
the

inverting input of the amplifier used as integrator.
output of the switch driven by the internal clock pulse generated by the threshold circuits.
output of the amplifier.
input for sync pulses (positive)

559

Ramp generator and buffer stage
A current mirror, the current intensity of which can be externally adjusted, charges one capacitor producing a linear voltage ramp.
The internal clock pulse stops the ramp increasirg by a very fast discharge of the capacitor; a new
voltage ramp is immediately allowed.
The required value of the capacitance is obtained by means of the series of two capacitors, Ca and Cb,
which allow the linearity control by applying a feedback between the output of the buffer and the
tapping from Ca and Cb.
Pin 7
Pin 9
Pin 10

The resistance between pin 7 and ground defines the current mirror current and than the height
of the scanning.
is the output of the current mirror that charges the series of Ca and Cb. This pin is also the
input of the buffer stage.
is the output of the buffer stage and it is internally coupled to the inverting input of the power
amplifier through R 1.

Power amplifier
This amplifier is a voltage-to-current power converter, the transconductance of which is externally
defined by means of a negative current feedback.
The output stage of the power amplifier is supplied by the main supply during the trace period, and by
the flyback generator circuit during the most of the duration of the flyback time. The internal clock
turns off the lower power output stage to start the flyback.
The power output stage is thermally protected by sensing the junction temperature and then by putting
off the current sources of the power stage.
Pin 12

Pin 11

Pin 1
Pin 2

is the inverting input of the amplifier. An external network, Ra and Rb, defines the DC level
across Cy so allowing a correct centering of the output voltage. The series network Rc and Cc,
in conjunction with Ra and Rb, applies at the feedback input pin 12 a small part of the parabola, available across Cy, and the AC feedback Voltage, taken across Rf. The external components Rc, Ra and Rd, produce the linearity correction on the output scanning current Iy and
their values must be optimized for each type of CRT.
is the non-inverting input and it is not used. At this pin the non-inverting input reference
voltage supplied by the voltage regulator can be measured.
This pin is only used on a quasi-bridge configuration.
is the output of the power amplifier and it drives the yoke by a negative slope current ramply.
Re and the Boucherot cell are used to stabilize the power amplifier.
The supply voltage of the power output stage is forced at this pin. During the trace time the
supply voltage is obtained from the main supply voltage Vs by a diode, while during the retrace
time this pin is supplied from the flyback generator.

Flyback generator
This circuit supplies both the power amplifier output stage and the yoke during the most of the duration
of the flyback time (retrace).
The internal clock opens the loop of the amplifier and lets pin 1 floating so allowing the rising of the
flyback. Crossing the main supply voltage at pin 14, the flyback pulse front end drives the flyback

560

generator in such a way allowing its output to reach and overcome the main supply voltage, starting
from a low condition forced during the trace period.
An integrated diode stops the rising of this output incrl:ase and the voltage jump is transferred by means
of capacitor Cf at the supply voltage pin of the power stage (pin 2).
When the current across the yoke changes its direction, the output of the flyback generator falls down to
the main supply voltage and it is stopped by means of the saturated output darlington at a high level.
At this time the flyback generator starts to supply the power amplifier output stage by a diode inside
the device. The flyback generator supplies the yoke too.
Later, the increasing flyback current reaches the peak value and then the flyback time is completed:
the trace period restarts. The output of the power amplifier (pin 1) falls under the main supply voltage
and the output of the flyback generator is driven for a low state so allowing the flyback capacitor Cf
to restore the energy lost during the retrace.
Pin 15

is the output of the flyback generator that, when driven, jumps from low to high condition. An
external capacitor Cf transfers the jump to pin 2 (see pin 2).

Blanking generator and CRT protection
This circuit is a pulse shaper and its output goes high during the blanking period or for CRT protection.
The input is internally driven by the clock pulse that defines the width of the blanking time when a
flyback pulse has been generated. If the flyback pulse is absent (short circuit or open circuit of the yoke),
the blanking output remains high so allowing the CRT protection.
Pin 13

is an open collector output where the blanking pulse is available.

Voltage regulator
The main supply voltage Vs is lowered and regulated internally to allow the required reference voltages
for all the above described blocks.
Pin 14
Pin 8

is the main supply voltage input Vs (positive).
is the GND pin or the negative input of Vs.

Fig. 7 - Output saturation
voltage to ground vs. peak
output cu rrent

Fig. 8 - Output saturation
voltage to supply vs. output
peak current

Fig. 9 - Maximum allowable
power dissipation vs. am·
bient temperature
Pto
t
{WI

32
28

"20

I.

7'1-

O"BlO

~

'l(1~n

'%

~,,~c;..-I$.
"<.

I?,!~~
tJ,'8t'~

'\<-v,
-

'I'~

12

o
1.5

iyCAp)

'5

1.5

561

ly(Ap)

-so

'0

100 Tamb(-cJ

MOUNTING INSTRUCTIONS
The power dissipated in the circuit must be removed by adding an external heatsink.
Thanks to the MUL TIWATT® package attaching the heatsink is very simple, a screw or a compression
spring (clip) being sufficient. Between the heatsink and the package it is better to insert a layer of silicon
grease, to optimize the thermal contact; no electrical isolation is needed between the two surfaces.
Fig. 10- Mounting example

562

LINEAR INTEGRATED CIRCUIT
PRELIMINARY DATA
VERTICAL DEFLECTION CIRCUIT
The TDA 1770 is a monolithic integrated circuit in 20-lead plastic package. It is a full performance and
very efficient vertical deflection circuit intended for direct drive of the yoke.
It offers a wide range of applications in portable CTVs, BW TVs, monitors and displays. The functions
incorporated are:
synchronization circuit.
precision oscillator and ramp generator
power output amplifier
fly back generator
voltage regulator
precision blanking pulse generator
thermal shut down protection
CRT screen protection circuit which blanks the beam current in the event of loss of vertical deflection current.
The TDA 1770 is assembled in a new 20-lead plastic package which has 4 centre pins connected together
and used for heatsinking.

ABSOLUTE MAXIMUM RATINGS
Vs

V7 , Va
V ll
V 19 , V 20

35

Supply voltage at pin 2
Flyback peak voltage
Sync. input voltage
Power amplifier input voltage

60

Voltage at pin 1
Output current (non repetitive) at t = 2 msec
Output peak current at f = 50 Hz t
10 J,1sec
Output peak current at f = 50 Hz t .;;; 10 J,1sec
Pin 3 peak to peak flyback current at f = 50 Hz, t f1y
Pin 3 DC current at V 7
V2
Maximum power dissipation: at T Pins';;; 90°C
at Tamb = 70°C
Storage and junction temperature

20
{ Vs
-10
Vs
2

>

<

2
50

rnA

2.2
1.5 msec

V

A
A
A
A

1.2
.;;;

V
V
V

4.3

W

1
-40 to 150

W
°C

ORDERING NUMBER: TDA 1770

MECHANICAL DATA

Dimensions in mm

563

6/82

CONNECTION DIAGRAM
(top view)
BLANKING OUTPUT

AMPliFIER INPUT(-)

SUPPLY (+)

AMPLIFIER INPUT(+)
RAMP

FLVBACK

RAMP GENERATOR

N.C

GROUND

GROUND

GROUND

GROUND
AMPLIFIER OUTPUT

7

AMPLIFIER SUPLLY

8

HEIGHT

ADJUST.
N.C.

OSCILLATOR

OSCILLATOR
OSCILLATOR

OUTPUT

11

10

SYNC. INPUT

s- 5265

BLOCK DIAGRAM
c-------------~r---1r----~------~--------------O.vs

:r

BLANKING
OUT

LCJ-t-!=:J--l---+-I'Ol-fI- ~
,.j",

"

5- 5280

564

THERMAL DATA
Rth

j-pins

Rth j-amb

max
max

Thermal resistance junction-pins
Thermal resistance junction-ambient

14

80

°C/W
°C/W

ELECTRICAL CHARACTERISTICS (Vs= 35V, Tamb = 25°C, unless otherwise specified)
Parameter

Test conditions

DC CHARACTERISTICS
12

Pin 2 quiescent current

Is

Pin 8 quiescent current

-117

Ramp generator bias
. current

50

mA

lb

18

30

mA

lb

0.02

1

JJ.A

la

20

21.5

JJ.A

lb

0.2

1

%

lb

V

lb

la

30
17= 0
V 17= 0

Ramp generator current

V 17 = 0;

Ramp generator non
linearity

LW17= 0 to 15V
-114= 20 JJ.A

VI

Blanking output saturation
voltage

11= 10 mA

0.35

V3

Pin 3 saturation voltage
to ground

13= 20 mA

1

1.3

V

V7

Quiescent output voltage

Vs= 35V;
Rb= 1 Kn

Ra= 2.2 Kn

16.8

17.8

18.6

V

Vs= 15V;

Ra= 390n
Rb= 1 Kn

7.1

7.5

8

V

-117

I t.l17 I
117

-114= 20JJ.A

18.5

la

V 7L

Output saturation voltage
to ground

17= 0.7A

0.7

1

V

lc

V7H

Output saturation voltage
to supply

-17= 0.7A

1.3

1.8

V

ld

V IO

Oscillator virtual ground

V

la

V14

Regulated voltage at pin 14

-114= 20 JJ.A

V

lb

Regulated voltage drift
with supply voltage

L1Vs= 15 to 35V

L1VI4
L1Vs
VI 9

0.45
6.3

Amplifier input (+)
reference voltage

7.1

mV

1
4.2

565

6.6

4.4

4.6

V--

lb

V

lb

Fig. 1 - DC test circuit

71-_.-----,

:) - 5281

Fig. lb

Fig.la

+Vs

+Vs

1+ 17
lV-.c-

I

7

10

lV

20
8V....L

I

S - 5283

f"

I

10

S -- 528.

Fig.ld

Fig.lc

566

ELECTRICAL CHARACTERISTICS (Refer to the A.C. test circuit of fig. 2, Vs= 20V, f= 50 Hz,
T amb = 25°C, unless otherwise specified)
Test conditions

Parameter

AC CHARACTERISTICS
Iy~

1 App

Is

Supply current

III

S·Ync. input current

V7

F Iyback voltage

Iy~

Vg

Peak to peak oscillator
sawtooth voltage

III ~

1 App

V

3.6

V

III ~ 100 /LA

3.4

V

tfly

Flyback time

Iy~

1 App

tblank

Blanking pulse duration

fo~
fo~

1.85

V

0.75

msec

50 Hz

1.4

ms

60 Hz

1.17

ms

7.5 K!1
330 nF

43.5

Hz

6.2 K!1
330 nF

52.5

Hz

Ro~

Free running frequency

Co~
Ro~
Co~

Ill~

lit

Synchronization range

Tj

Junction temperature for
thermal shut-down

/LA

a

Start scan level of the
input ramp

-

mA

42

V 18th L

fo

160
100

100/LA

16

Hz

145

DC

Fig. 2 - AC test circuit
+Y's
tblank

...,-y-

Jl

~12 2O,uF

1N4001

O}'-~~~~~~---'O~-+--r-r---'+--'1Jrl25 V
25~70

2.2 KIL

:cpr:c

BLANKING

O~._~~~~~

-D?ir o

...J2 1,fJ F

,i

,

'I'

'I'

"

,'I

SVNC.IN

11

YOKE
20mH

~~-o~~~--j12

sync

5-5285

7.5 Kil

TDA 1770

l.

HEIGHT

567

I
I

Fig. 3 - Typical application circuit for small screen 90° TVC set (Ry= 155); Ly= 30 mH; Iy= 0.82 App)

19

I!

TDA1770

14

17

~J~!5'I'R4~'* ~r- -~.ik l~F

Co

*

lNi
SERVICE
SWITCH }Sl

~

•

RT1

220
Kfl

HEIGH1.

RS }56Kfl
390
Kfl

*(6 R6

:E'~F

S

5286

The value depends on the characteristics of the CRT. The value shown is indicative only.

Typical performance
Vs
Is
t fly
t blkg

fo

Ptot
Rth heatsink

**

Minimum supply voltage
Supply current
Flyback time
Blanking time
Free running frequency
Total dissipation
Thermal resistance of the heatsink
for T amb = 60°C and T j max= 130°C

See "Thermal considerations" .

568

25
140
0.7
1.4
43.5
2.4

V
mA
msec
msec
Hz
W

8

°C/W

Fig.4 - Typical application circuit for B/W TV set (Ry= 100; Ly= 20 mH; Iy= 1 App)

01

RJ
BLANKING

10Kfl

OUT

:....-------1
3

19

7
R9

TDA 1770

SERVICE
SWITCH

6
15

2.2!l

1

.J...
* The value depends on the characteristics of the CRT. The value shown is indicative only.

Typical performance
Vs
Is
t f1y
t b1kg

fa
Ptot
Rth heatsink

**

Minimum supply voltage
Supply current
Flyback time
Blanking time
Free running frequency
Power dissipation
Thermal resistance of the heatsink
for T amb = 60°C and Tj max= 1300C

See "Thermal considerations".

569

20
160
0.75
1.4
43.5
2.1

V
mA
msec
msec
Hz
W

11

°C/W

Fig. 5 - Typical application circuit for small screen (Ry= 2.9n; Ly= 6 mH; Iy= 1.1 App)

1 N40Ql
R3

BLANKING

lOKil

OUT

::)----------~

Co

•

The value depends on the characteristics of the CRT. The value shown is indicative only.

Typical performance
Minimum supply voltage
Supply current
Flyback time
tfly
t b1kg
Blanking time
Free running frequency
fo
Ptot
Power dissipation
Rth heatsink * * Thermal resistance of the heatsink
for T amb = 60°C and T j max= 130°C

Vs
Is

See "Thermal considerations".

570

10.5
170
0.45
1.4
43.5
1.25

mA
msec
msec
Hz

28

°C/W

V

W

Fig. 6 - PC board and components layout for the application circuits of fig. 3, 4 and 5 ( 1: 1 scale)

GND
BLKG

or
vs

YOKE

Iy TEST

s·a:C.IN

GND

APPLICATION INFORMATION (Refer to the block diagram)
Oscillator and Sync gate (Clock generation)
The oscillator is obtained by means of an integrator driven by a two threshold circuit that switches Ro
high or low so allowing the charge or the discharge of Co under constant current conditions.
The Sync input pulse at the Sync gate lowers the level of the upper threshold and than it controls the
period duration. A clock pulse is generated.
Pin 10
Pin 12

Pin 9
Pin 11

is
is
is
is

the
the
the
the

inverting input of the amplifier used as integrator.
output of the switch driven by the internal clock pulse generated by the threshold circuits.
output of the amplifier.
input for sync pulses (positive).

Ramp generator and buffer stage
A current mirror, the current intensity of which can be externally adjusted, charges one capacitor producing a linear voltage ramp.
The internal clock pulse stops the ramp increasing by a very fast discharge of the capacitor; a new
voltage ramp is immediately allowed.
The required value of the capacitance is obtained by means of the series of two capacitors, Ca and Cb,
which allow the linearity control by applying a feedback between the output of the buffer and the
tapping from Ca and Cb.
Pin 14
Pin 17
Pin 18

The resistance between pin 7 and ground defines the current mirror current and than the height
of the scanning.
is the output of the current mirror that charges the series of Ca and Cb. This pin is also the
input of the buffer stage.
is the output of the buffer stage and it is internally coupled to the inverting input of the power
amplifier through R 1.

571

APPLICATION INFORMATION (continued)
Power amplifier
This amplifier is a voltage-to-current power converter, the transconductance of which is externally
defined by means of a negative current feedback.
The output stage of the power amplifier is supplied by the main supply during the trace period, and by
the flyback generator circuit during the most of the duration of the flyback time. The internal clock
turns off the lower power output stage to start the flyback.
The power output stage is thermally protected by sensing the junction temperature and then by putting
off the current sources of the power stage.
Pin 20

Pin 19

Pin 7
Pin 8

is the inverting input of the amplifier. An external network, Ra and Rb, defines the DC level
across Cy so allowing a correct centering of the output voltage. The series network Rc and Cc,
in conjunction with Ra and Rb, applies at the feedback input pin 20 a small part of the parabola, available across Cy, and the AC feedback voltage, taken across Rf. The external components Rc, Ra and Rd, produce the linearity correction on the output scanning current Iy and
their values must be optimized for each type of CRT.
is the non-inverting input. At this pin the non-inverting input reference voltage supplied by the
voltage regulator can be measured.
This pin is used on a quasi-bridge configuration or on portable TVS.
is the output of the power amplifier and it drives the yoke by a negative slope current ramp Iy.
Re and the Boucherot cell are used to stabilize the power amplifier.
the supply voltage of the power output stage is forced at this pin. During the trace time the
supply voltage is obtained from the main supply voltage Vs by a diode, while during the retrace
time this pin is supplied from the flyback generator.

Flyback generator
This circuit supplies both the power amplifier output stage and the yoke during the most of the duration
of the flyback time (retrace).
The internal clock opens the loop of the amplifier and lets pin 1 floating so allowing the rising of the
flyback. Crossing the main supply voltage at pin 2, the flyback pulse front end drives the flyback generator in such a way allowing its output to reach and overcome the main supply Voltage, starting from a
low condition forced during the trace period.
An integrated diode stops the rising of this output increase and voltage jump is transferred by means
of capacitor Cf at the supply voltage pin of the power stage (pin 8).
When the current across the yoke changes its direction, the output of the flyback generation falls down
to the main supply voltage and it is stopped by means of the saturated output darlington at a high level.
At this time the flyback generator starts to supply the power amplifier output stage by a diode inside the
device. The flyback generator supplies the yoke too.
Later, the increasing flyback current reaches the peak value and then the flyback time is completed:
the trace period restarts. The output of the power amplifier (pin 7) falls under the main supply voltage
and the output of the flyback generator is driven for a low state so allowing the flyback capacitor Cf to
restore the energy lost during the retrace.
Pin 3

is the output of the flyback generator that, when driven, jumps from low to high condition.
An external capacitor Cf transfers the jump to pin 8 (see pin 8).

Blanking generator and CRT protection
This circuit is a pulse shaper and its output goes high during the blanking period or for CRT protection.
572

APPLICATION INFORMATION (continued)
The input is internally driven by the clock pulse that defines the width of the blanking time when a
flyback pulse has been generated. If the flyback pulse is absent (short circuit or open circuit of the yoke),
the blanking output remains high so allowing the CRT protection.
Pin 1

is an open collector output where the blanking pulse is available.

Voltage regulator
The main supply voltage Vs is lowered and regulated internally to allow the required reference voltages
for all the above described blocks.
Pin 2
is the main supply voltage input Vs (positive).
Pin 5,6,15,16 are the GND pins or the negative input of Vs.

THERMAL CONSIDERATIONS (a note referred to Fig. 3, 4 and

5)

The shown value of case to ambient thermal resistance is the equivalent to three thermal resistances
that are:
R1 - Thermal resistance junction to ambient of the device.
R2 - Thermal resistance of the p.c. copper side.
R3 - Thermal resistance of the auxiliary heatsink.
The circuit that contains these thermal resistances is shown on fig. 7 where R3 is the thermal resistance
junction to pins of the device and Pd is the maximum dissipated power.
Fig. 7 - Semiconductor heatsink thermal circuit.

~-5289

Since the thermal resistance R3 of the heatsink is defined from its physical and mechanical charac·
teristics, it is necessary to define the required copper side on the p.C. board for the necessary R2 value.
For instance, let's consider the application for the 900 yoke.
It is known:

It can be calculated:
130 - 60

T j max - Tamb max
Rth c-amb

+

Rth j-Plns-:

8 + 14

3.18W

Using an auxiliary heatsink of a thermal resistance R3= 20°C/W (including some losses), it can be easily
calculated (see fig. 7): R2 = 94°C/W.
From fig. 9, it can be found: Q;;;' 21 mm.

573

MOUNTING INSTRUCTIONS
The Rth j-amb of the TDA 1770 can be reduced by soldering the GND pins to a suitable copper area of
the printed circuit board (Fig. 8) or to an external heatsink.
The diagram of figure 9 shows the Rth as a function of the side "Q" of two equal square copper areas
having a thickness of 35" (1.4 mils).
During soldering the pins temperature must not exceed 260"C and the soldering time must not be longer
than 12 seconds.
The external heatsink or printed circuit copper area must be connected to electrical ground.
Fig. 8 - Example of P.C. board copper area which is used as heatsink.
COPPER AREA 35" THICKNESS

P.C. BOARD

Fig. 10- Maximum allowable
power dissipation vs. ambient temperature

Fig. 9 - Thermal resistance
of the P .C. copper side vs.
side "Q"
,-,
Rt h

f'tot

("C/W }

100

150

\

\t:

"'>",

~>

1\
\

'\.

10 0

,

"-

.......

50

10

\
~

"'",

10

30

'-

*
"

t:::

1-

40

.e

(mm)

-50

574

50

..

~"
~<;.
l:.

~.

\C,

/,

~~

'1'-

--;...

100

TambC-C)

LINEAR INTEGRATED CIRCUIT

4W AUDIO AMPLIFIER
The TDA 1904 is a monolithic integrated circuit in POWERDIP package intended f6r.useas low-frequency power amplifier in a wide range of applications in portable radio and
sets.
Its main features are:

rv

High output current capability (up to 2A)
Protection against chip overtemperature
Low noise
High supply voltage rejection
Supply voltage range: 4V to 20V

ABSOLUTE MAXIMUM
Vs
10
10
Ptot
Tstg , Tj

Supply voltage'
Peak output current(rontepetitive)
Peak outpy,~curl%ll~t (fepetitive)
Total pow(tr~i~si~ti(im at Tamb = 80°C
c,cCCc,>c c
Tease = 60°C
Storage ancf'tunction temperature

20
2.5
2
1
6
-40 to 150

V
A
A
W
W
°C

ORDERING NUMBER: TDA 1904

Dimensions in mm

MECHANICAL DATA

575

6/82

CONNECTION DIAGRAM
(top view)

'-'
OUTPUT

16

GNO

15

GND

BOOTSTRAP

3

14

GND

N.C

4

13

GND

12

~GND

11

~GND

15
I

N.t
INVERT. IN

6

10~GND

SVR

9

~GND

5-5291

SCHEMATIC DIAGRAM
22ea1 R1I

e

R3 )26'11
Q1

~~

0

~
./012

~

013

1OO.n
'"ii5

kC12

-

R7

100'11
R6

......04

os,/"

r2llnA

RI

iml.
*C1

AI

D1

to

: !::50pF'

R4

6'11

"'07
"

~03

K~

D2

7

05

•

AI

D6

0;""

OS

~
Q1Q

........014
......

--<09

06>-

R2

03

~

RIO

,

S_S293

THERMAL DATA
Rth j-case
Rth j-amb

Thermal resistance junction-pins
Thermal resistance junction-ambient

max
max

576

15
70

, I oil

TEST CIRCUIT

(*) R4 is necessary only for V s < 6V.

ELECTRICAL CHARACTERISTICS (refer to the test circuit, Gv= 40 dB, RL = 4n, Tamb = 25°C
unless otherwise specified)
Parameter

Test conditions

Vs

Supply voltage

Id

Quiescent drain current

V=
s 9V
Vs= 14V

Po

Output power

d = 10%
Vs= 9V
Vs= 12V
Vs= 6V

d

Ri

Distortion

B

Frequency response

Voltage gain (open loop)

Gv

Voltage gain (closed loop)

eN

Total input noise voltage

Typ.

4

Max.
20

Unit
V

16
19

mA
mA

2
3.5
0.8

W
W
W

0.1

%

f = 1 KHz

f = 1 KHz
Vs=9V
Po= 50 mW to 1.2W
Vs= 14V
Po= 50 mW to 2W

I nput resistance (pin 8)

Gv

Min.

0.1

%

150

Kn

40 to 40 000

Hz

80

dB

40

dB

Rg= 10 Kn;

B= 22Hz to 22KHz

3

Rg= 10 Kn;

B = curve A

2

J.lV

11

Efficiency

V=
9V
s
Vs= 12V

Po= 2W
Po= 3.5W

SVR

Supply voltage rejection

Vs= 12V
fripple= 100 Hz

Rg= 10 Kn

577

4

70
65

%

50

dB

Fig. 1 - Application circuit

>-'-+_____~C-17

100 !l

R2

Fig. 2 - P.C. board and components layout of fig. 1 (1:1 scale)

C5-0163

578

1000I-lF

LINEAR INTEGRATED CIRCUIT
5W AUDIO AMPLIFIER WITH MUTING
The TDA 1905 is a monolithic integrated circuit in POWERDIP package, intended for use as low frequency power amplifier in a wide range of applications in radio and TV sets.
Its main features are:
muting facility
protection against chip over temperature
very low noise
high supply voltage rejection
low "switch-on" noise
voltage range 4 V to 30V
The TDA 1905 is assembled in a new plastic package, the POWERDIP, that offers the same assembly
ease, space and cost saving of a normal dual in-line package but with a power dissipation of up to 6W
and a thermal resistance of 15 D C/W (junction to pins).

ABSOLUTE MAXIMUM RATINGS
Supply voltage
Output peak current (non repetitive)
Output peak current (repetitive)
Input voltage
Differential input voltage
Muting thresold voltage
Power dissipation at Tamb = 80 D C
Tcase = 60D C
Storage and junction temperature

ORDERING NUMBER:

30

3
2.5
o to + Vs

±7
Vs
1
6
-40 to 150

V
A
A
V
V
V
W
W

DC

TDA 1905

MECHANICAL DATA

Dimensions in mm

579

6/82

CONNECTION DIAGRAM
(Top view)

--.::.J

OUTPUT

16

GND

Vs

15

GND

BOOTSTRAP

14

GND

13

000

MUTING

12

GND

INVERT. IN

11

GND

SVR

10

GND

THRESHOLD

4

NON INVERT'I 8
INPUT

GND
5-2913

SCHEMATIC DIAGRAM

I

L~~
k

MUTING
~~

R3

~

Rll

§
0./012
013

l00kil
02

Rl
01

9

~

~

26kfi

300nl

R6

R5

R4

~~

lQOkfl

R7

R,
---{)

200KA

10Kfi+

03

~OB

Cl
"'07

6kn

~"

06>-

R2

6
Kn

02

RB

OS

06

;{;

~ ;~,""

T

RIO

5-361;712

4

( 7

5

• to 16

6
" 6

THERMAL DATA
RthJ-case
RthJ-amb

max
max

Thermal resistance junction-pins
Thermal resistance junction-amb

580

15 °C/W
70 °C/W

TEST CIRCUIT

• c_

_

.....

-

.

. -4055/2_

MUTING CIRCUIT

Vi

1
'Vr
(Muting)

581

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Tamb

25°C, Rth (heatsink)

20°C/W, unless otherwise specified)

Vs
Vo

Qu iescent output vol tage

Min.

Test conditions

Parameter

Supply voltage
~ 4V
Vs~14V
~ 30V

Vs

1.6
6.7
14.4

Vs
Id

V CE sat

Po

Quiescent drain current

Output stage saturation
voltage
Output power

Vs ~ 4V
V s ~ 14V
Vs ~ 30V

Harmonic distortion

Max.

Unit

30

V

2.1
7.2
15.5

2.5
7.8
16.8

V

15
17
21

35

Ic

~

lA

0.5

Ic

~

2A

1

mA

V
d ~ 10%
Vs ~ 9V
Vs~14V

f ~ 1 KHz
RL ~ 4[1 (-)
RL ~ 4[1

Vs~18V

RL~8[1

Vs
d

Typ.

4

~

24V

f ~ 1 KHz
Vs ~ 9V
P0

RL

~

2.2
5
5
4.5

16[1

2.5
5.5
5.5
5.3

W

RL~4[1

~

50 mW to 1 .5W
RL ~ 4[1
P0 ~ 50 mW to 3W

0.1

Vs~14V
Vs~18V

Vs

Vi

I nput sensitivity

~

f ~ 1 KHz
Vs ~ 9V
Vs ~ 14V
Vs~18V
Vs ~ 24V

V

~

RL

~

4[1

Po
Po
Po
16[1 Po

RL~4[1
RL~8[1

RL

~

0.1
~
~
~
~

2.5W
5.5W
5.5W
5.3W

9V

37
49
100

Vs

~

24V

I nput resistance (pin 8)

f

1 KHz

60

Id

Drain current

f ~ 1 KHz
Vs ~9V

Vs~18V

Vs~14V

RL
RL

Vs~18V

RL~8[1

~
~
~

RL

~

Po
Po
Po
16[1 Po

RL
RL
RL
RL

~

4[1
4[1

Vs
1]

Efficiency

~

24V

f ~ 1 KHz
Vs ~ 9V
Vs~14V

Vs~18V
~ 24V

Vs

~

~

4[1
4[1

Po
Po
~8[1
Po
~ 16[1 Po
~

(-) With an external resistor of 100[1 between pin 3 and +V s'

582

mV

73

Ri

V:~14V

~

%

0.1

0.8
1.3
1.8
2.4

Vi

Input saturation
voltage (rms)

0.1

RL~8[1

P0 ~ 50 mW to 3W
24V RL ~ 16[1
P0 ~ 50 mW to 3W

V

100

~

2.5W
5.5W
5.5W
5.3W

380
550
410
295

~
~
~
~

2.5W
5.5W
5.5W
5.3W

73
71
74
75

K[1

mA

%

ELECTRICAL CHARACTERISTICS

(continued)

Test conditions

Parameter

BW

Small signal
bandwidth (-3dB)

Vs = 14V

Gv

Voitage gain (open loop)

Vs=14V
f = 1 KHz

Gv

Voltage gain (closed loop)

Vs=14V
f = 1 KHz

eN

Total input noise

SIN

Supply voltage rejection

Thermal shut-down

Tsd

case temperatu re

MUTING FUNCTION

Min.

Po = 1W

RL = 4n
Po = 1W

39.5

Rg = 50n
Rg = 1 Kn
R g =10Kn

(0 )

Rg = 50n
Rg = 1 Kn
R g =10Kn

(00 )

Vs=14V R g =10Kn
Po = 5.5W Rg = 0
R L = 4n
Rg = 10Kn
Rg = 0

Signal to noise ratio

SVR

RL = 4n

Vs=18V RL = 8n
f ripple = 100 Hz
V ripple = 0.5Vrms

Max.

Hz

75

dB

40

40.5

1.2
1.3
1.5

4.0

2.0
2.0
2.2

6.0

dB

p.V

p.V

90
92

dB

(00 )

87
87

dB

50

dB

115

°C

R g =10KH

40

(Refer to Muting circuit)

V TOFF

Muting-off threshold
voltage (pin 4)

1.9

4.7

V TON

Muting-on threshold
voltage (pin 4)

0

1.3

6.2

Vs

R5

I nput resistance (pin 5)

R4

I nput resistance (pin 4)

AT

Muting attenuation

Muting off

80

Rg+ Rl = 10Kn

10

to

22 KHz.

583

50

Kn

200
30

n
Kn

150

Note:
Weighting filter = curve A.
Filter with noise bandwidth: 22 Hz
See fig. 30 and fig. 31

V

V

Muting on

(0)
(00)
(*)

Unit

(0 )

Ptot = 2.5W

(*)

Typ.

40 to 40,000

60

dB

Fig. 1 - Quiescent output
voltage vs. supply voltage

Fig. 2 - Quiescent drain current vs. supply voltage

Vo

Fig. 3 - Output power vs.
supply voltage
P"r-r-'-,,-,,-,-,--,-.,-r-r-,-,,

(V)

(WI

hIKH:;t

f-t-

'.10'. H-++++-H--++-H
n

H-+++.f-,H+-+

20

u"'

_.
...

=t~

" H-+++-,· J++-H-+++f.-H

II'
I
12

16

20

24

12

Fig. 4 - Distortion vs. output power (R L = 16n)

•

(-"':I==l==

16

20

16

Fig. 5 - Distortion vs. output power (R L = an)

20

24

Fig. 6 - Distortion vs. output power (R L = 4n)

("2,: :-- .. -E

V s .. 9'1

·r------nrL=~n

2 I----

J

(J.'

I)

OJ

f .. IKH

J

0.'

11

RL~I6n.

f slKHz

0.0'

..

.'

OD'

,

d
("t.J

\Is ~24V

r-...

(J.,

R L;16Jl.

··
,

,W
/

·

_50mW
Q,

,

0.0,

'0

...10' , ... '0' . ...'0'

, ,

0.0
t(Hz)

.Pc,IWI

0'

Fig. a - Distortion vs. frequency (R L = an)

Fig. 7 - Distortion vs. frequency (R L = 16n)

..

0.0'
(J.,

%(wI

Fig. 9 - Distortion vs. frequency (R L = 4Q)

IIIIIII
V5 ;18Y

......

RI:S.a.

l7'w
I$r

50mW

Q',-SOmW

...'0' , ...10' . ...'0'
5a4

z • ••
f(HzI

oo,L-~~1¥L~4.~.~.L-~,~.~
••~+y.~.~.
10

102

tO J

104

11Hz}

Fig. 10 - Open loop frequency response
G,

Fig. 11 - Output power
vs. input voltage

Fig. 12 - Value of capacitor ex vs. bandwidth (BW)
and gain (Gv)
c,

r--'~~~~TC~~~~~~

(nF)

(dBl

"BW~5KHz

'0

1".."

1$

"0<,yo>
-try ~

"",-

"'"- ~ "' "\.
20

f---Tttitllr--H+H1+

\
lO~

10'

I(Hz)

Vi (mV)

Fig. 14 - Supply voltage rejection vs: source resistance

Fig. 13 - Supply voltage rejection vs. voltage gain (ref.
to the Muting circuit)

"R

5"

,~-,---,--r--~--~-'---,

(dB)

eo

(dB)

r--- -+--,~~--

60

1---

'10\

I!!

I

,-

I

,

r--

20

t--~

II

lilt
50

G v (d8)

10

Fig. 16 - Power dissipation
and efficiency vs. output
power
Plot
(W )

("I.)

f elKHz

~ot
,w,

Gv,"'OdE

60

1.5

"n

--h
-

'0

I

05

ii

~H- f-"I

rr(8nJ

~~~!:~l H7f'''''='''-'i''-t.-l''+-H-++-1

I
16

Rg (Knl

20

24

'Is

(v)

Fig. 18 - Power dissipation
and efficiency vs. output
power
1
('/.)

'tot
,W,

7<)

,.,.,
~

"S·24V
f

~IKHz

y

70

Gv~

Gv,l,OdB

40d
R L ;16ll.

60

3,0

60

2.5

H-I-+-.....~::-t+++-H-I-+-H

so

,.

50

2.0

Hf-f--Y-H

'0

2.0

'5

I-lilL~~-.L+-t--+-L..L+-H-+++-H

30

'.5

30

fH!i'++-P'H~tot {'6°Hrl-+++-H
'.0 IIH-+++-H~-,++-H-++-H 20

'.0

20

0.5

05

10

20

to

8

i

. -r

H-,-,-¥-H7r'+++-H-I-+-H

30

0.5 J-~~~ --'~---I---'~

t

en

3.0

70
30

_

I

2.0

Fig. 17 - Power dissipation
and efficiency vs. output
power

'----,---,--r-_---,_"
Vs~'~V

-

.

i

I

2.5

I
I

20

~-~~

RL~"n

I

I

H-~'~f+i~ +_-+------+--

i

:-

I-

,WI

II

Gv(dB)

Fig. 15 - Max power dissipation vs. supply voltage
(sine wave operation)

r-ti~ ~:~:~:'IOO~!

60

50

20

Po(W)

585

so

"

Plot

to

~ (W)

60

Po (W)

APPLICATION INFORMATION

Fig. 19 - Application circuit without muting

Fig. 20 - PC board and components lay-out
of the circuit of fig. 19 (1:1 scale)

1000,!.JF

°16v

R3
lD

lOon

(-I

R2

R4 is necessary only
for Vs < 10V.

Po = 5.5W (d = 10%)

Vs=14V
Id = 0.55A

Gv = 40 dB

C5-0129'1

Fig. 21 - Application circuit with muting

Fig. 22 - Delayed muting circuit

586

APPLICATION INFORMATION (continued)

Fig. 24 - Output power vs.
supply voltage (circuit of
fig. 23)

Fig. 23 - Low-cost application circuit without bootstrap.
"s

'0
IW)

I0

1uF

"
Fig. 25 - Two position DC tone control using change of pin 5
resistance (muting function)
I'll

lOOka

Fig. 26 - Frequency response
of the circuit of fig. 25

"
"

flIIJ~~~i~~f~~

'0

b

IdB)

50

,"

~
.....

',~-

G,

10
kfi

1£1.
R7

012j.JF

ca

Fig. 27 - Bass Bomb tone control using change of pin 5 resistance
(muting function)
---~--I-r--------{)·vs

C'I0

20 Vs(V)

~!!lIl.ll!lIl~l!II'FL~rlllll

Fig. 28 - Frequency response
of the circuit of fig. 27
Gv
(dB)

1/JF

50
48
l000,uF

BOOST

46

ca
1'14

RG

10Hl

lJl

"

FLAT

40

loon

38

"
'0

587

'0'

'0'

)0'

t(Hz)

MUTING FUNCTION
The output signal can be inhibited applying'a DC voltage VT to pin 4, as shown in fig. 29
Fig. 29

VOUT

Vs/2

The input resistance at pin 5 depends on the threshold voltage V T at pin 4 and is typically:
Rs =200 Ku

@

1.9V < VT < 4.7V

muting-off

Rs = lOu

@

OV-

R2

12

~

./
07

~03

'Y

@
012

==Cl
Rl

@

"",014
10

RIO

5- 4044

7

8

6

593

9

TEST CIRCUIT

• See fig. 12.

THERMAL DATA
Rth j-tab
Rth j-amb

TDA 1908

TDA 1980A

25°C,

Rth (heatsink)=

max
max

Thermal resistance junction-tab·
Thermal resistance junction-amb

(0) Obtained with tabs soldered to printed circuit board with min copper area.

ELECTRICAL CHARACTERISTICS
8 °C/W,

(Refer to the test circuit, T amb =

unless otherwise specified)
Max.

Unit

30

V

2.1
9.2
15.5

2.5
10.2
16.8

V

Vs =4V
Vs=18V
Vs = 30V

15
17.5
21

35

Ic= lA

0.5

Ic= 2.5A

1.3

Test condition

Parameter
Vs

Supply voltage

Va

Quiescent output voltage

Id

Quiescent drain current

V CEsat

Po

Output stage saturation voltage
(each output transistor)
Output power

Min.

Typ.

4
1.6
8.2
14.4

Vs =4V
Vs=18V
Vs = 30V

mA

V
f = 1 KHz
d = 10%
R L = 40Vs= 9V
R L = 40Vs=14V
R L = 40.
Vs=18V
R L = 80.
Vs = 22V
R L = 160.
Vs = 24V

594

2.5
5.5

7

9

6.5
4.5

8
5.3

W

ELECTRICAL CHARACTERISTICS

(continued)
Test condition

Parameter

f ~ 1 KHz
Vs ~ 9V
P0

Harmonic distortion

d

Min.

RL~ 4S"!
50 mW to 1.5W
RL~ 4S"!
P0 ~ 50 mW to 4W
24V
RL~ 16S"!
Po~ 50 mW to 3W
~

•

Typ.

Max

Unit

0.1

Vs~1SV

V5
V

I nput sensitivity

Vi

9V

RL~

4S"!

Po~
Po~

Vs=1SV
Vs ~ 22V
V 5 ~ 24V

RL~

4S"!
SS"!

Po~

RL~16S"!

Po~

~

V:~14V R L = 4S"!
RL~

0.1

2.5W
5.5W
9W

37
52
64
90
110

Po~SW

5.3W

~

24V

Ri

I nput resistance (pin S)

f

~

1 KHz

Is

Drain current

f

~

1 KHz

Efficiency

1)

mA

1 KHz
Po~ 9W

72

%

Po~

40 to 40 000

Hz

75

dB

Po~

~

f

Vs~18V

BW

Small signal bandwidth (-3 dB)

Vs=1SV

Gv

Voltage gain (open loop)

f

Gv

Voltage gain (closed loop)

Vs~18V

f

Total input noise

570
730
500
310

Po~

RL~ 411
RL~ 4S"!
22V RL ~ SS"!
24V RL~ 16S"!

RL~

eN

KS"!

Vs~1SV
~

~

~

~

4S"!

Po~
Po~

4S"!

RL~

5.5W
9W
8W
5.3W

1W

1 KHz
1 KHz

(0 )

(00 )

RL~

Po~

Rg
Rg
Rg

~

Rg
Rg

~

4S"!
1W

~

~

~

39.5

40

40.5

50S"!
1 KS"!
10 KS"!

1.2
1.3
1.5

4.0

50S"!
1KS"!

2.0
2.0
2.2

6.0

Rg~10Ks"!

SIN

Signal to noise ratio

Vs~18V

Rg~

P0 ~ 9W
RL ~ 4S"!

Rg~

Rg~

SVR

Supply voltage rejection

Vs~1SV

Tsd

Thermal shut-down case
temperature

(0)

(0 )

10KS"!
1° 0
0

RL~

4S"!

Rg~

Ptot~

(* )

)

40

10KS"!

4W

-

Note:
(00)
(*)

10KS"!
0

Rg~

f ripple~ 100 Hz

Weighting filter ~ curve A.
Filter with noise bandwidth· 22 Hz to 22 KHz.
See fig. 24 and fig. 25.

595

V

100

60

Vs~14V

V5
V5

mV

0.8
1.3
1.S
2.4

Vs~18V

Vs

%

0.1

V 5 ~ 9V
V 5 ~ 14V

Input saturation voltage (rms)

Vi

~

dB

J1.V

J1.V

92
94

dB

S8
90

dB

50

dB

110

°C

Fig. 1 - Quiescent output
voltage vs. supply voltage
G-4216

v,
(V)

Fig. 2 - Quiescent dra'in current vs. supply voltage
G_1,277

I.

+-

(rnA)

,

10

"t-

"
"I"

U

h-

16

-

F

r

24

16

20

Fig. 4 - Distortion vs. output power (R L = 16n)

•
(O,.J:

I"

P, r--'--~r--,---,---~-P~,
(W)

9

J....l

20

-+17

Fig. 3 - Output power vs.
supply voltage

,;'6

'''S9V

-

20

'is (V)

24

6

Fig. 5 - Distortion vs. output power (R L = 8n)

9

12

15

18

21

24

,"s(V)

Fig. 6 - Distortion vs. output power (R L = 4n)

G-HSO

(~

fi-"

1

11

'

IIi

0.1

.

il

22V

I
' C--"

.

0.1

, ,

0.01

~(W)

01

>BV

Vs:9V

!

f ,,1KHz

0.1

R L ~\6.n
f .IKHz

0"'

'~~Jl

'I

0.1

Fig. 7 - Distortion vs. frequency (R L = 16n)

.

i

0.1

Po (W)

Fig. 9 - Distortion vs. frequency (R L = 4n)

Fig. 8 - Distortion vs. frequency (R L = 8n)

..

tJ

.11

0.01

Po(W)

)

,;:

(OM

'I'l1

3W.

-

'0'5. 24 '0'

,-

.

'J-tt

L,I6V

R

I

:f=fl

(l()1

'W
10

t

,"

1:1--1
10'

II

'7

ii.

01

I

I
1

~

50mW

fir ,lW·
10 4

I(Hz)

,

I

no,
,0

."

10'

iT
p-

""S·IBV
RL,a.Q

3W
50mW

""5. 14 ""

3W

R L,4

50mW

0'

'" 10'

596

,"

no,
10'

I(Hz)

'0

,0'

'"

,
~,

...

10'

f(Hz)

G,

Fig. 12 - Values of capacitor
versus gain and Bw

Fig. 11 - Output power vs.
input voltage

Fig. 10 - Open loop frequency response

ex
C,

,,-cmr~~r-~~~~m-~~

(nfJ

(dB)

-t,y

,"

~BW'5t(Hz

'0

/s

<'01"Z..y~ -?'

.,

60

10

,,'

la'

la'

)0'

20

!(Hz)

Fig. 13 - Supply voltage
rejection vs. voltage gain

Fig. 14 - Supply voltage rejection vs. source resistance

i

I I! II
I ('---I!
I
II ~S,:':~ !~t;
I

I ! I!

f r iPplEhl00Hz \

I!

i

I i II
I'

Fig. 16 - Power dissipation
and efficiency vs. output
power (Vs= 14V)

j

I

Fig. 15 - Max power dissipation vs. supply voltage
Plot
'WI

~

I

1'1 11
~ I I

0.5

"

Rg (KIU

Fig. 17 - Power dissipation
and efficiency vs. output
power (Vs= 18V)

(WI
80

"

21

"

vs(V)

HY"f:~;,~'":Y",t+f-_t~+_+f-71-"J..-rl'-+ ++-1
::::~-f--Hft+++-f-t++H

35

~~)
60

so

30

60

2.5

50

25

"

1.5

30

IS

Fig. 18 - Power dissipation
and efficiency vs. output
power (Vs= 24V)

~~~

Plot

40

30

I

'j
10

j\.

I

I I
I

•

2.0

1'-

'\ ~

60 H++~··++ffiljir--c-l'"~-+l+'IIII--++;ljj!j

40

30

20
1.0

20

05

"

•

0.5

~ (W)

597

APPLICATION INFORMATION
Fig. 19 - Application circuit with bootstrap

• R4 is necessary when V s is less than 1 OV.

Fig. 20 - P.C. board and component lay-out of the circuit of fig. 19 (1: 1 scale)

Vs
GND

G

GND

CS-0128'1

598

APPLICATION INFORMATION

(continued)
Fig. 22 - Output power vs.
supply voltage (circuit of
fig. 21)

Fig. 21 - Application circuit without bootstrap

,;,1

~--~--~~--

I /"

I

1KHz

"'-""l'

RL="n

I

d,'O·'.

I~ ~~
[-~T

24

Fig. 23 - Position control for car headlights

,

~O.lAJF

I.....
-------c::J----100 11

~lu

~

1 M-ll~~~--+'

MANUAL
SETTING

,-------c:J---i

I

I

!

I-T--~---L

l8'4

-------~

~-~-

599

lsJ

Vs(V)

APPLICATION SUGGESTION
The recommended values of the external components are those shown on the application circuit of
fig. 19.
When the supply voltage V5 is less than 10V, a 100n resistor must be connected between pin 1 and pin 4
in order to obtain the maximum output power.
Different values can be used. The following table can help the designer.

Component

Raccom.
value

Purpose

Larger than
raccomanded value

Smaller than
raccomanded value

Allowed range
Min.

Max.

RI

10Kn

Close loop gain
setting.

Increase of gain.

Decrease of gain.
Increase qu iescent
current.

R2

lOon

Close loop gain
setting.

Decrease of gain.

Increase of gain.

R3

1n

Frequency stability

Danger of oscillation
at high frequencies
with inductive loads.

R4

100n

Increasing of output
swing with low V s'

CI

2.21'F

Input DC
decoupling.

C2

O.lI'F

Supply voltage
bypass.

C3

2.21'F

Inverting input DC
decoupling.

Increase of the
switch-on noise

Higher low frequency cutoff.

O.lI'F

C4

10l'F

Ripple Rejection.

Increase of SVR.
Increase of the
switch-on time.

Degradation of
SVR.

2.21'F

100 l'F

Cs

471'F

Bootstrap

Increase of the
distortion at low
frequency

10l'F

100l'F

C6

0.221'F

Frequency stability.

Danger of oscillation.

C7

1000l'F

Output DC
decoupling.

Higher low frequency cutoff.

9 R2

R l /9

47n
Lower noise

Higher low frequency cutoff.
Higher no ise.

330n

O.lI'F

Danger of
oscillations.

600

THERMAL SHUT-DOWN
The presence of a thermal limiting circuit offers the following advantages:
1) An overload on the output (even if it is permanent). or an above limit ambient temperature can be
easily supported since the Tj cannot be higher than 150°C.
2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There
is no possibility of device damage due to high junction temperature.
If, for any reason" the junction temperature increases up to 150°C, the thermal shut-down simply
reduces the power dissipation and the current consumption.
The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 26 shows this dissipable power as a function of ambient temperature for different
thermal resistance.
Fig. 24 - Output power and
drain current vs. case tem·
perature

Fig. 25 - Output power and
drain current vs. case temperature

Fig. 26 - Maximum power
dissipation vs. ambient tem·
perature

MOUNTING INSTRUCTIONS
The thermal power dissipated in the circuit
may be removed by connecting the tabs to
an external heatsink (TDA 1908A see fig.
27), or by soldering them to a copper area
on the PC board (TDA 1908 see fig. 28).
During soldering, tab temperature must not
exceed 260°C and the soldering time must
not be longer than 12 seconds.

Fig. 27

ALUMINIUM
J5rrm THICKNES-?

601

MOUNTING INSTRUCTIONS (continued)
Fig. 28 -- Mounting example (TDA 1908)

Fig. 29 -- Maximum power
dissipation and thermal resistance vs. side "Q"
(TDA 1908)

_+

0952

G

COPPER

AREA 35}.l

THICKNESS

h-

'I.

L_~_.

Rlh

__ .~

Rt J-am

N..

40

I

+

Ptot(Tamb~ 55 'C)

r=

..H-p\Q\ (Tarnb " 70'C l

20

P.

C BOARD

602

30

40

10

l(mm)

LINEAR INTEGRATED CIRCUIT
lOW AUDIO AMPLIFIER WITH MUTING
The TDA 1910 is a monolithic integrated circuit in MULTIWATT@package,intendedforusein Hi-Fi
audio power applications, as high quality TV sets.
The TDA 1910 meets the DIN 45500 (d = 0.5%) guaranteed output power of 10W when used at 24V/
4n. At 24V/8n the output power is 7W min. Features:
muting facility
protection against chip over temperature
very low noise
high supply voltage rejection
low "switch-on" noise.
The TDA 1910 is assembled in MU LTIWA TT@ package that offers:
easy assembly
simple heatsink
space and cost saving
high reliability.

ABSOLUTE MAXIMUM RATINGS
Vs

10
10
Vi
Vi

Vl l
Ptot

T stg , T j

Supply voltage
Output peak current (non repetitive)
Output peak current (repetitive)
Input voltage
Differential input voltage
Muting thresold voltage
Power dissipation at T case = 900 e
Storage and junction temperature

o to

30
3.5
3.0
+ Vs

±7
Vs
20
-AO to 150

V
A
A
V
V
V
W

°e

ORDERING NUMBER: TDA 1910

MECHANICAL DATA

Dimensions in mm

603

6/82

CONNECTION DIAGRAM (Top view)

r====::o
r====::o

THRESHOLD
BOOTSTRAP
-V5
OUTPUT
GNu

I~~~~GNO

INPUT-

Ne

o

SVR

INPUTMUTING

5-3655

tab connected to pin 6

SCHEMATIC DIAGRAM
10
300nj RI1

~"

k

MUTING

-,....-

D1

~

R3

~

(J 26kfi

f~

9

f~

0

::: 012

a2

.,

IOOkil

l00kfi

R5

R6

~
"",a4

a13
a/o

.7

R9

2~Jl

1o'K1L

:::/CI ~
R4

6kfi

>--f( a3

~"

Q6)-6

R2

KJl

02

R8

8

03

H' .

os

D6

a,0

a8

~

Va'4
7

J.w

5-3647/1

11

I

3

5

2

604

6

TEST CIRCUIT
.Vs

I

3.3 R r1820
k.tl

xl I n
," ("J

~:f:~Cx
L -_ _ _.,......, _ - - -.... - - - - 1

C4

100n
R2
(*) See fig. 13.

5-364811

MUTING CIRCUIT
.Vs

1

C5

.VT

(Muting)

605

RL

THERMAL DATA
Rlh

Thermal resistance junction-case

max

3

j-c
.~----------------------------------------~-----------------

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, T amb = 25°C, Rlh (heatsink)
4°C/W, unless otherwise specified)
Test condition

Parameter

r-'
Vs

Supp Iy vo Ilage

Va

Quiescent output voltage

Id

Quiescent drain current

Min.

8
Vs
Vs

~
~

18V
24V

8.3
11.5

Vs~18V

Vs

~

Ic~

VCE sal Output stage saturation voltage

24V
2A

Output power

d

= 0.5%

d

~

~
~

f

~

24V
24V

10%

Vs~18V

V s = 24V
Vs ~ 24V
d

d

Vi

I nput sensitivity

RL~4n
RL~4n

I

I

9.2
12.4

10
13.4

19
21

32
35

V

mA

V

RL~

8n

f = 1 KHz
R L =4n
RL~ 4n
RL~ 8n

7
12
7.5

W

8.5
15

9.5
17
10

W

9

1 KHz
18V RL~4n Po~ 7W
Vs ~ 24V R L = 4n p 0 ~ 12W
Vs = 24V RL~ 8n Po~ 7.5W

f

V

6.5
10
7

Vs = 24V R L =4n Po= 10W
f2= 8 KHz
fl = 250 Hz
(DIN 45500)

Intermodulation distortion

30

40 to 15,000Hz

f = 40 to 15.000 Hz
RL~4n
Vs=18V
P0= 50 mW to 6.5W
RL~4n
Vs= 24V
Po~ 50 mW to 10W
Vs ~ 24V
RL~ 8n
Po= 50 mW to 7W

Harmonic distortion

Unit

1.6

Vs~18V

Vs
Vs

Max.

1

Ic= 3A

Po

Typ.

0.2

0.5

0.2

0.5

0.2

0.5

%

0.2

%

170
220
245

mV

~

Vs~

Vi

Input saturation voltage (rms)

Vs=18V
Vs ~ 24V

1.8
2.4

Ri

Input resistance (pin 5)

f = 1 KHz

60

Id

Drain current

Vs

~

f = 1 KHz
24V
p 0 ~ 12W
R L =4n
R L = 8n
Po= 7.5W

606

V
100

820
475

Kn

I

I

mA

ELECTRICAL CHARACTERISTICS (continued)
Test condition

Parameter
Efficiency

1)

R L =4n

BW

Small signal bandwidth

Vs = 24V

BW

Power bandwidth

Vs=24V
Po = 12W

Gv

Voltage gain (open loop)

f = 1 KHz

Gv

Voltage gain (closed loop)

Vs = 24V
f = 1 KHz

eN

Total input noise

SIN

Signal to noise ratio

SVR

Supply voltage rejection

Tsd

Thermal shut-down case
temperature

Min.

f = 1 KHz
Vs = 24V
R L =4n
Po= 12W
R L =8n
Po= 7.5W

Vs = 24V
Po = 12W
R L =4n

Po= 1W

R L =4n
d" 0.5%

R L =4n
Po= 1W

Max.

Unit

62
65

%

10 to 120,000

Hz

40 to 15,000

Hz

75

dB

30

30.5

dB

Rg = 50n
Rg = 1Kn (0)
Rg = 10Kn

1.2
1.3
1.5

3.0
3.2
4.0

/lV

Rg = 50n
Rg = 1Kn (00)
Rg = 10Kn

2.0
2.0
2.2

5.0
5.2
6.0

/lV

Rg = 10Kn
(0)
Rg = 0

97

103
105

dB

R g =10Kn
(00)
Rg = 0

93

100
100

dB

50

60

dB

110

125

°C

R L =4n
Vs = 24V
Rg= 10Kn
friPPle= 100 Hz
Ptot = 8W

(*)

29.5

Typ.

MUTING FUNCTION (Refer to Muting circuit)
VT

Muting-off threshold voltage
(pin 11)

1.9

4.7

VT

Muting-on threshold voltage
(pin 111

0

1.3

6

Vs

Rl

V

I nput resistance (pin 1)

Muting off

80

Muting on
Rll

Input resistance (pin 11)

AT

Muting attenuation

(*)

200
10

150
R g +R 1 =10Kn

Nota:
(0)
(00)

V

Weighting filter = l'urve A.
Filter with noise bandwidth: 22 Hz to 22 KHz.
See fig. 29 and fig. 30.

607

50

Kn
30

n
Kn

60

dB

Yo

G_3682

P"

(V)

14~~~-t-+~4-+-i-+~+-~~

Fig. 3 -Open loop frequency
response

Fig. 2 - Quiescent drain
current vs. supply volta g:_""

Fig. 1 - Quiescent output
voltage vs. supply voltage

(m~H-+-j-H-+++-~~+-~-

--+-------l----__+v",s_;,_,_v-t-_-i
_--I---+

(d'!:)

+-- --100 I==::j-80. L______ ---'-- - ''60

12~+H+

40.
'0.-cL-_~

12

16

20

24

12

Vs (V)

G_J6a3

Po

20

24

lis (II)

Fig. 5 - Output power vs .
supply voltage

. Fig. 4 - Output power vs.
supply voltage
(W )1---- 1= 40Hz

16

10

10.'

_

_ L _ _L__~_~

10.'

10'

Fig. 6
Distortion
output power

vs.

G_36a4

"0

to 15KHz

(W )

d=O.5°'.

4r--

16

f=lKHz
d,,10%
--

RL=4n

RL=4n./

12

8

/
V

./'"

/'
",-

~
0.
8

.-

V

/'

RL :8n

/

,

V

./
16

20.

/

---- ----

/'

",.- Rl ,,8n

",.-

f:::=: I--

0.
12

/

24

Fig. 7
Distortion
output power

8

Vs (V)

vs.

V
12

./

./

16

24

20.

Vs (V)

Fig. 8 - Output power vs.
frequency
G 3701

Ii>

(W )

s·'·V
R L=4n

10.

fl,(W)

Fig. 9 - Output power vs.
frequency

'm!eE~m!e~'~S~"~4!V~

($) ~

RL =8n

d=0,2·J.

10.

_m·,.
I IT'

d=O.10J0

d.Q.,·,.

d=Q2'/.

,

10.-

I' 254063

~2S4063

I I I'
16254063

1625410163

10 3

608

10~

f (Hz)

Fig. 10 - Output power vs.
input voltage

Fig. 11 - Output power vs.
input voltage

Fig. 12 - Total input noise
vs. source resistance

G 3699

'" :~

(W)

10

Vs=24V
Gv = 30dB

.

:

/

RL=4J1
RL,-sn

R L_'6f

'/

!
r-t

10-

.

ex

I

I [

10

10'

10

Fig. 13 - Values of capacitor ex vs. bandwidth (BW)
and gain (G v )
6_3696

30

50

100 Vi (mY)

Fig. 15 - Supply voltage rejection vs. source resitance

Fig. 14 - Supply voltage rejection vs. voltage gain
G 3696

(dB)

,
.t'-..

10

z

--

".,

Vs:24V

80

R
~
........

60

."":\

I,
0-

Bw =5KHz
10KHz

=

Vs=24V
Rl =4J1

80

LL

i

-

frippl€, =l00Hz

60

~~

2~FI

I"'-- ~ R
I"'--

-c---

r--- r---

f r ipple:100Hz
RL=4n
Rg =()KJ1

63697

,

SVR
(dB )

SVR

(nF )

10.u F C3

r---

40

5~F

2~F

20

20

15KHz

30KHz

,
20

30

40

o

50 Gv(dB)

Fig. 16 - Power dissipation
and efficiency vs. output
power
'1

( "I.)

/'1

60

IV

1/

----

--

40

4

I

~

. / r-rt

1/

/

6_3675

80

6

I

./

)

10

V

I/R Lo4n

40

/

'lot
20

"

2

I

20

o
12

Rg (0)

Fig. 18 - Max power dissipation vs. supply voltage
(

,/
6

10'

,

Vs=24V
(W) - t=lKHz

80

/
A"'-

~o t

Rl=4Il

Rl =SJ1

10'

50 Gv(dB)

Fig. 17 - Power dissipation
and efficiency vs. output
power
,-

G_3731

Vs=24V
~ot
(W )1--- t=IKHz

40

30

I

i

o
20

10

16 Fb(W)

12

609

16

Fb (W)

o

L

V
i:::::: V

V RL° 8n

./
16

24

APPLICATION INFORMATION
Fig. 19 - Application circuit without muting

Fig. 20 - PC board and component lay-out of the
circuit of fig. 19 (1: 1 scale)
.

nOO,uF
C7

16v

R3

ID

O.22,uF
lOOil

R2

C6

Fig. 21 - Application circuit with muting

Performance (circuits of fig. 19 and 21)

Po =
Vs
Id =
Gv =

12W (40 to 15000 Hz, d ";;;0.5%)

= 24V

Rg

R2

.v,
Muting

610

0.82A
30 dB

APPLICATION INFORMATION (continued)
Fig. 22 - Two position DC tone control (10 dB boost 50 Hz and
20 KHz) using change of pin 1 resistance (muting function)

Fig. 23 - Frequency response of the circuit of
fig. 22
G.3679

r-----~p---.,....--------oVs::.+2"V

R,

lQOkIl

01,uF

Flat

R2

I

~.

C5

12karOOS'

I!!

i
-t

2

--I
-~

B

r-----~p---.,....-------_ovs=

Rl

l00kll
Flat

C4

't,

1

'I
to'

10

Fig. 24 - 10 dB 50 Hz boost tone control using change of pin
resistance (muting function)

BOOST

I
I Ii

I'

,

j II

:\-

",

0

i

J

Bh

I

! il,!

I

r- 11'"

6
34

ii

ii i

2

',~

' I ~I,

-f FLAT
i III
1I1I

10'

10'

f(Hz)

Fig. 25 - Frequency response of the circuit of
fig. 24

·24V

G~l"6

IO.1,uF

I

)

,

I

42

,

40
38

36
2200,uF

C8
C2

34

16V

l\a005

I

'/

,

32 <-

R6

30

la
R3

2B -

RL=411

10

O.22,uF
C7

Fig. 26 - Squelch function in TV applications

,

~
If
, FLAT
i

,

I
10'

I
10'

1()'

Fig. 27 - Delayed muting circuit

r---~----------OV5='24V

Rl

l00kfl.

2200,uF
'6'

611

t(Hz)

MUTING FUNCTION
The output signal can be inhibited applying a DC voltage V T to pin 11, as shown in fig. 28
Fig. 28

"OUT

Vs/2

The input resistance at pin 1 depends on the threshold voltage VT at pin 11 and is typically.
Rl = 200 Kn

@
@

1.9V ~ V T
OV

~

~

4.7V

muting-off

V T ~ 1.3V
Vs

muting-on

6V~VT ~

Referring to the following input stage, the possible attenuation of the input signal and therefore of the
output signal can be found using the following expression.

where Rs "" 100 Kn
Considering Rg = 10 Kn the attenuation in the muting-on condition is typically AT= 60 dB. In the
muting-off condition, the attenuation is very low, typically 1.2 dB.
A very low current is necessary to drive the threshold voltage V T because the input resistance at pin 11
is greater than 150 Kn. The muting function car1 be used in many cases, when a temporary inhibition
of the output signal is requested, for example:
in switch-on condition, to avoid preamplifier power-on transients (see fig. 27)
- during commutations at the input stages.
- during the receiver tuning.
The variable impedance capability at pin 1 can be useful in many applications and we have shown 2
examples in fig. 22 and 24, where it has been used to change the feedback network, obtaining 2 different
frequency responses.
612

APPLICATION SUGGESTION
The recommended values of the components are those shown on application circuit of fig. 21. Different
values can be used.
The following table can help the designer.

Component

Rg

+ Rl

R2

Recomm.
value
10Kn

3.3Kn

Larger than
recommended value

Smaller than
recommended value

Input signal imped.
for muting operation

Increase of the attenuation in muting-on
condition.Decrease of
the input sensitivity.

nuation in muting
on condition.

Close loop gain
setting.

Increase of gain.

Purpose

Allowed range
Min.

Max.

Decrease of the atte-

Decrease of gain.
Increase quiescent

9 R3

current.

Close loop gain
setting.

Decrease of gain.

Frequency stability

Danger of oscillation
at high frequencies
with inductive loads.

Volume potentiometer.

Increase of the
switch-on noise.

R3

lOOn

R4

In

Pl

20Kn

Cl
C2
C3

11lF
1 }LF
0.22 }LF

Input DC
decoupling.

C4

2.2}LF

Inverting input DC
decoupling.

Cs

O.lIlF

Supply voltage
bypass.

C6

10llF

Ripple Rejection.

C7

471lF

Cs

0,22}LF

C9

2200 }LF
(R L =4n)
l0001lF
(RL=Bnl

R 2 /9

Increase of gain.

Decrease of the input
impedance and the
input level.

10K!1

100Kn

Higher low frequency cutoff.

Increase of the
switch-on noise.

I:i igher low frequency cutoff.

0.1 ,,;,F

Danger of
oscillations.
Degradation of
SVR.

2.2 }LF

100llF

Bootstrap.

Increase of the distortion at low frequency.

10llF

100llF

Frequency stability.

Danger of oscillation.

Output DC
decoupling.

Higher low frequency cutoff.

Increase of SV R .
Increase of the
switch-on time.

613

THERMAL SHUT-DOWN
The presence of a thermal limiting circuit offers the following advantages:
1) An overload on the output (even if it is permanent), or an above limit ambient temperature can' be
easily supported since the T j cannot be higher than 150°C.
2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There
is no possibility of device damage due to high junction temperature.
If for any reason, the junction temperature increases up to 150°C, the thermal shut-down simply
reduces the power dissipation and the current consumption.
The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 31 shows this dissipable power as a function of ambient temperature for different
thermal resistance.

Fig. 29 - Output power and
drain current vs. case tel"
perature

,

.

!

,

)

I
IIs:<2411
f :::lKHz
Rl =41\

i

I

fbi

12

10

Id

j.

i-1-

I

'l

I

20 40

I

60 80 100 120 140

i

-. :fu ~~
.

16

-9

I

08

12

10

__ ,_+-

06

II-\

~01

(W I

I

12

I

i

d

Al

V5 =24V,
L=lf",Hz 1----RL:::81\!

14

1

\

_-t-_ . LJ+:

I

-

\

I

---t

1d
1Al

I

1\

t-

"

Fig. 31 - Maximum allowable power dissipation vs.
ambient temperature
6·)578

Fig. 30 - Output power and
drain current vs. case temperature

!

10

Po ,._
Id

I--

"

--

04
I

I

0

Tease( C} (1

20 40

,

0.8
I

I
1 ____

;I

60 80 100 120 140 Tcase{oC)

614

f.;;

-9

S"~

~r

~c

50

100 Tamb(OC)

~

.~~
;'~'6' /""
.,-

0.6

~t_

+-

~

~

'c'/Jr

0.4

0.2

o

-50

MOUNTING INSTRUCTIONS
The power dissipated in the circuit must be removed by adding an external heatsink.
Thanks to the Multiwatt ® package attaching the heatsink is very simple, a screw or a compression
spring (clip) being sufficient. Between the heatsink and the package it is better to insert a layer of silicon
grease, to optimize the thermal contact; no electrical isolation is needed between the two surfaces._
Fig. 34 - Mounting examples

o

....

o .. .
.. ..

.•

.

5-3712

S-3713

615

LINEAR INTEGRATED CIRCUIT
8W CAR RADIO AUDIO AMPLIFIER
The TDA 2002 is a class B audio power amplifier in Pentawatt® package designed for driving low impedance loads (down to 1.60.). The device provides a high output current capability (up to 3.5A), very
low harmonic and cross-over distortion. In addition, the device offers the following features:
-

very low number of external comoonents
assembly ease, due to Pentawatt® power package with no electrical insulation requirement
space and cost saving
high reliability
flexibility in use
complete safety during operation due to protection against:
a) short circuit; b) thermal over range; c) fortuitous open ground; d) polarity inversion (V s max= 12V);
e) load dump voltage surge.

ABSOLUTE MAXIMUM RATINGS
Vs
Vs
Vs
10
10
Ptot
T stg, T j

Peak supply voltage (50 ms)
DC supply voltage
Operating supply voltage
Output peak current (repetitive)
Output peak current (non repetitive)
Power dissipation at T case = 90°C
Storage and junction temperature

40
28
18
3.5
4.5
15
-40 to 150

V
V
V
A
A
W

°C

ORDERING NUMBERS: TDA 2002 H
TDA 2002 V

Dimensions in mm

MECHANICAL DATA

6/82

616

CONNECTION DIAGRAM
(top view)

5-1894'1

SCHEMATIC DIAGRAM

L ~'bi

~4

O~

T

~5

OJ
R6

~'JI
01

as
R.

07

08

06

09

R9

4

~1-'

=f"

R7
02

R14

020

RS

R4

09

RIO

150kn

R2

022

~a23

if

RJ

021

~Q13
os

,-----

01

OJ

04

1

·F+

l~~

If
07

-
YS =14.4V
'-1kHz
R L=4.n

'00

VS "'4.4V
'-1kHz

RL"2.n
200

14.IoV

200

P. .. S.2W

100

100

"'

..-P. -O.SW

p'::aQ.5W

8Y

12

,

16

20

24

RL (1)

Fig. 7 - Distortion vs. out·
put power
G-20n/l

,

-

I

I

f= 1kHz

SY"
1111

(dS)

I

III ~

o

j

I·

V•• 144V

J

r

___ ~::~~~~Hz
R2 "Z.2n

·20 f-+-+-+-+-+++-+-+-+-+-I

Gv,, 40
40

"l

II

I

---Vs=14.4V-

.lD

I"
I

R =4n

Fig. 9 -Supply voltage rejec'
tion vs. voltage gain

G_2099/1

r

Vs ·I4.4V
Gv ·40dB

,..

200

100

'00

Fig. 8 - Distortion vs. fre·
quency

("10 l

(",. l

200

'00

2n

·40 1--l.L-l-+---I--+-++-+-+-+-+-I
Po :2.5W

l/

50mW

10

_50 L.L.L.L..L..L..J....J......LJJ...J.--.J
10'

10'

619

10'

f (Hz)

o

100

200

300

400

Fig. 10 - Supply voltage
rejection vs. frequency

Fig. 11 - Power dissipation
and efficiency vs. output
power (R L = 4n)

Fig. 12 - Power dissipation
and efficiency vs. output
power (R L = 2n)

;;"110211

SVR

I

R = 4n

V$ "'14,4V

"

-20

P tot

V

-eo~1DI
E:Etmm
10

... .

lOJ

,

60

I

50

EHfEEEIS=Ef.g~fa"
vs _1Io4V1=

(W)
Plot

~t~

6'

10 3

104

f (Hz)

Fig. 13 - Maximum power
dissipation vs. supply voltage
(sine wave operation)

•

Ptotlll

P tot

+t+
"--I-

+ Kh-t M-t-

,,--,--,--,,--,--,--,.,--r,--,.,-'-T'T'-'o

50

13

5

6

7

·

, ",
.......

··

B .. 10KHz

r--..

0

t"-

20KHz

,

,

JO'CtW

40

60

80

100

120

TaOilb(OC)

'Po (W)

c,

10

R "2

8

, (nF )

' .......

lO"CIW

"

Fig. 15 - Values of capacitor
(C x ) for different values of
frequency response (BI '"''

,

10

20
10

12

20

60

10

14

Vs (V)

70

30

to

15

R,,2tt

H~

(W) H7.,.:OF;:"."'IT'<-.-J,H"'EA::',t;S,.d--rH++-H i

15

Pt t

t:::lkHz

40

Fig. 14 - Maximim allowable
power dissipation vs. ambient temperature

(W)

(0/.)

+
+
~G'·'mOdB

J-'-'-

R2 .. Z.2n

-80

..-

-

Rg

c::::J

(*) In

TDA 2003

C1

c=:J

--cJRl

c:::)

c=J

C5

C6

the device can

support a short circuit between every
side of the loudspeaker and ground.

Fig. 22 - P.C. board and component layout for the low-cost bridge amplifier of fig. 20, in stereo version
(1:1 scale}
C5-0103/3

1m'

C3

C3

C5

--c:::::>-

(

<==::)
)

C1

IN

m m m
TDA 2003

lOA 2003

T{)AZ003

TDA 2003

U4

C2

C7

C2

<==::)

-c:=r
R1

C6

--c:=JR1

C6

c==:>

D4

·~C5
~

<==::)

C1

RL

BUILT-IN PROTECTION SYSTEMS
Load dump voltage surge
The TDA 2003 has a circuit which enables it to withstand a voltage pulse train, on pin 5, of the type
shown in fig. 23.
If the supply voltage peaks to more than 40V, then an LC filter must be inserted between the supply
and pin 5, in order to assure that the pulses at pin 5 will be held within the limits shown in fig. 23.
A suggested LC network is shown in fig. 24. With this network, a train of pulses with amplitude up to
120V and width of 2 ms can be applied at point A. This type of protection is ON when the supply
voltage (pulsed or DC) exceeds 18V. For this reason the maximum operating supply voltage is 18V.

629

Fig. 23

Fig. 24

FROM
A
L=2mH
SUPPLY ~TO PIN 5

j£."""
3000JJF

LINE
5

~

I

1901

16V

Short-circuit (AC and DC conditions)
The TDA 2003 can withstand a permanent short-circuit on the output for a supply voltage up to l6V.

Polarity inversion
High current (up to 5A) can be handled by the device with no damage for a longer period than the
blow-out time of a quick 1A fuse (normally connected in series with the supply).
This feature is added to avoid destruction if, during fitting to the car, a mistake on the connection of
the supply is made.

Open ground
When the radio is in the ON condition and the ground is accidentally opened, a standard audio amplifier
will be damaged. On the TDA 2003 protection diodes are included to avoid any damage.

Inductive load
A protection diode is provided between pin 4 and 5 (see the internal schematic diagram) to allow use of
the TDA 2003 with inductive loads.
In particular, the TDA 2003 can drive a coupling transformer for audio modulation.

DC voltage
The maximum operating DC voltage on the TDA 2003 is l8V.
However the device can withstand a DC voltage up to 28V with no damage. This could occur during
winter if two batteries were series connected to crank the engine.

Thermal shut-down
The presence of a thermal limiting circuit offers the following advantages:
1) an overload on the output (even if it is permanent), or an excessive ambient temperature can be easily
withstood.
2) the heat-sink can have a smaller factor of safety compared with that of a conventional circuit. There
is no device damage in the case of excessive junction temperature: all that happens is that Po (and
therefore Ptot ) and Id are reduced (figs. 25 and 26).
Fig. 25 - Output power and
drain current vs. case tem·
perature (RL = 4.0:)

.0

.0 r-r--'--r-r'~~rTl--'---"---''''::'';::-:r--",
v-;;14A -

(W)

RL

d

f-++-f-++-l-+-+-l
~ 10"(. f-++-f-++-t-+-+-l
3

4

f-++-Ic++-l

rr--.---"--.---"-,,,-,,-,-'TT--I,,

(WI

(A)

(A)

n.

f-t+"H-t-H--t-+-1-+-+-1-+-+-t
12

'0

Fig. 26 - Output power and
drain current vs. case tem·
perature (RL = 20)

H--t-H-t-H--j os

f-+...f.!!"+-++H++-+++-+-+-H 0.6
f-+-lP:J!O+-++H++-+++-+,,*-H 0.'

+-+-+-+-H->HH-j 0.6
f-++-H'\\-I-i 0.'

f--t+H+H++-+++-+--t'ltH o.2

1-++-H++-+--+-+-l-+-+-l~M--i 0.2

50

1.2

H-+-H-+-I-++-+

50

'00

630

100

PRATICAL CONSIDERATIONS
Printed circu it board
The layout shown in fig. 17 is recommended. If different layouts are used, the ground points of input 1
and input 2 must be well decoupled from the ground of the output through which a rather high current
flows.
Assembly suggestion
No electrical insulation is required between the package and the heat·sink. Pin length should be as short
as possible. The soldering temperature must not exceed 260°C for 12 seconds.
Application suggestions
The recommended component values are those shown in the application circuits of fig. 16. Different
values can be used. The following table is intended to aid the car-radio designer.

Component

Recommended
value

Cl

2.2 jLF

C2
C3
C4

C5

Cx

Purpose

Larger than
recommended value

Input DC
decoupling

Noise at switch-on,
switch-off

470 jLF

Ripple rejection

Degradation of SVR

0.1 jLF

Supply bypassing

Danger of oscillation

1000 jLF

Output coupling to
load

Higher low frequency
cutoff

0.1 jLF

Frequency stability

Danger of oscillation at
high frequencies with
inductive loads

1

~

2" B Rl

Upper frequency
cutoff

Lower bandwidth

Rl

(G v -1) • R2

R2

2.212

Setting of gain and
SVR

Degradation of SVR

R3

1 12

Frequency stability

Danger of oscillation at
high frequencies with
inductive loads

20 R2

Upper frequency
cutoff

Rx

Smaller than
recommended value

~

Setting of gain

631

Larger bandwidth

I ncrease of drain current

Poor high frequency

attenuation

Danger of oscillation

LINEAR INTEGRATED CIRCUIT
10 + 10W STEREO AMPLIFIER FOR CAR RADIO
The TDA 2004 is a class B dual audio power amplifier in MU LTIWATT ® package specifically designed
for car radio applications: stereo amplifiers are easily designed using this device that provides a high
current capability (up to 3.5A) and that can drive very low impedance loads (down to 1.6n).
Its main features are:
Low distortion.
Low noise.
High reliability of the chip and of the package with additional complete safety during operation thanks
to protections against:
output AC short circu it to grou nd
very inductive loads
overrating chip temperature
load dump voltage surge
fortuitous open ground
polarity inversion
Space and cost saving: very low number of external components, very simple mounting system with no
electrical isolation between the package and the heatsink (one screw only).

ABSOLUTE MAXIMUM RATINGS
Vs
Vs
Vs
10 (*)
10 (*)
Ptot
Tj,Tstg
(.)

Operating supply voltage
DC supply voltage
Peak supply voltage (for 50 ms)
Output peak current (non repetitive t = 0.1 ms)
Output peak current (repetitive f ;;;, 10Hz)
Power dissipation at Tease = 60°C
Storage and junction temperature

18
28
40
4.5
3.5
30
-40 to 150

v
V
V

A
A
W
°C

The max. output current is internally limited.

ORDERING NUMBER: TDA 2004

Dimensions in mm

MECHANICAL DATA

6/82

632

I~
Ii

I'

CONNECTION DIAGRAM
(top view)

!I===

$/

Tab connected

BOOTSTRAP 1
OUTPUT 1
+VS
OUTPUT 2
BOOTSTRAP 2

GNO
INPUT+(2)
lNPUT-(2)
SVRR
lNPUT·(1)
INPUTt(l)
to pin 6

SCHEMATIC DIAGRAM

THERMAL DATA
Rth j-case

max

Thermal resistance junction-case

633

3

°C/W

Fig. 1 - Test and application circuit

INPUT(R)

2.2.u F

!~1~1~
C2

C7
lJn

Fig.2 - PC board and components layout (scale 1: 1)

GND

IN
(ll

GND

IN

.Vs

(R)

634

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, T amb = 25°C, Gv = 50 dB,
Rth (heatsink) =

4°C/W, unless otherwise specified)
Test conditions

Parameter

Vs

Supply voltage

Vo

Quiescent output voltage

Total quiescent drain current

Typ.

Max.

Unit

18

V

7.2
6.6

7.8
7.2

V
V

65
62

120
120

mA
mA

8
Vs~14.4V

6.6
5.0

Vs~13.2V

Id

Min.

Vs~14.4V
Vs~13.2V

IS8

Stand-by current

Pin 3 grounded

Po

Output power (each channel)

f

~

1 KHz

mA

5
d~

10%

Vs~14.4V

RL ~ 4D.
RL~3.2D.

RL ~ 2D.
RL ~ 1.6D.

,
Vs

~

6
7

9
10

6.5
8
10(*)
11

W
W
W
W

6.5
10

W
W

12

W

13.2V
RL ~ 3.2D.
RL ~ 1.6D.

6

9

Vs~16V

RL ~ 2 D.
d

Distortion (each channel)

f

~

1 KHz

Vs~14.4V

Po~ 50 mW
Vs ~ 14.4V
Po~ 50 mW
Vs ~ 13.2V
Po~ 50 mW
Vs ~ 13.2V
Po~ 50 mW
CT

Vi

Cross talk

I nput sensitivity

Vs

RL ~ 4D.
to 4W
RL ~ 2D.
to 6W

0.2

1

%

0.3

1

%

0.2

1

%

0.3

1

%

RL~3.2D.

to 3W
RL ~ 1.6D.
to 6W

~

14.4V
Vo~ 4 V rms
f ~ 1 KHz
f ~ 10KHz

RL ~ 4D.
50
40

f ~ 1 KHz
Po ~ 1W
RL ~ 4D.
RL~ 3.2D.

60
45

dB
dB

6
5.5

mV
mV
mV

300

Vi

Input saturation voltage

Ri

I nput resistance (non inverting
input)

f

~

1 KHz

Ri

Input resistance (inverting input)

f

~

1 KHz

fL

Low frequency roll off (-3 dB)

RL~

4D.
RL ~ 2D.
RL~ 3.2D.
RL ~ 1.6.11

fH

High frequency roll off (-3 dB)

RL ~ 4D.
RL ~ 2D.
RL~ 3.2D.
RL ~ 1.6D.

I

635

70

KD.

200

Kn

10
35
50
40
55
15
15
15
15

Hz
Hz
Hz
Hz
KHz
KHz
KHz
KHz

ELECTRICAL CHARACTERISTICS (continued)
Test conditions

Parameters

Gy
Gy

Voltage gain (open loop)

f = 1 KHz

Voltage gain (closed loop)

f = 1 KHz

Min.

Typ.

50

48

eN

Total input noise voltage

Rg= 10 Kn(O)

SVR

Supply voltage rejection

f'iPPle= 100 Hz Rg- 10 Kn
C3 = 10jJ.F V'iPPle=0.5V,ms

Efficiency

Vs =
R L=
R L=
Vs =
RL=
RL=

Thermal shut down case
temperature

TSd'

Unit
dB

51

dB
dB

0.5

Closed loop gain matching

1)

Max.

90

1.5
35

f = 1 KHz
Po= 6.5W
Po= lOW
f = 1 KHz
Po= 6.5W
Po= lOW

14.4V
4n
2n
13.2V
3.2n
1.6n

jJ.V

5

45

dB

70
60

%
%

70
60

%
%

R L =4n

Vs=14.4V
f = 1 KHz
Ptot = 5.5W

125

135

°C

(*) 9.3W Without Llootstrap.
(0) Bandwidth filter: 22 Hz to 22 KHz.

Fig. 4 - Quiescent drain
current vs. supply voltage

Fig.:3 - Quiescent output
voltage vs. supply voltage

Fig. 5 - Distortion vs. output power
G"'299f1

G4297

I.

Vo
(V)

/

/

/

V

/

V

/

/

/

t.1KHl

80

60

"

,
-

VS"12V Rl,12fi

--Vs·ltJ.VR l ,4n

-- ----

II

'11111

VSd12V R L,16,fl

VS"4.4V RLdn

'0

20

12

16

14

VslVl

Fig. 6 - Output power vs.
supply voltage
...""
Po

n

11111

Gy .50dB

100

/

10

IW

II

{mAl

10

ds1O~

I

12

".24/

V

V

/

"
12

V

./

V

V

VR L 12n
o

V
......

12

636

1.2

p~~

~~~iE33~~~~~~"~~'~2~n~
"'t~~~~~~~~~7~'R~~'nT'~n~
Po,2.5W

V

10

":"1=-i ll
~,

I

I
12

V

./

./

f"'"

,/

V

V

Vs=14.4\f

Gv=SOdB

Rl °1.6.n/

d.IO"r.

1/1'

0.'

Fig. 8 - Distortion vs. frequency
-

~ ~':~;~B

/RLsion

10

0.01

(W

hlKHz
G.,.5OdB

1/
i---"

"

12

Fig. 7 - Output power vs.
supply voltage
Po
I
I
I

16

Vs(V)

10

10'

10 4

1(Hz)

Fig.9 - Distortion vs. frequency

Fig. 11 - Supply voltage
rejection vs. frequency

Fig. 10 - Supply voltage
rejection vs. C3

G.4J0411

sv. r---,r-TO-rrncn---''''"T"TTTTTI
lOB)

f----j---jH+++1*C"""7,-lc-L+++t+tl
"'S.14./"V
~
f----jf-H+++1+1 'rlppl•• 100HZL
f----jf-H+++1+1 Vrippie.O.5 V
f----jf-H+++1+1 Gv.50dB
f----jf-H+++1+1 Rg.IOl(n
I

'0
20

30
40

~~~ _

Vs·14.4V

1tI---+-+t+I-t1lI-H+l-Hlll

-

Gy:SOdB
CJilOJ.lF

Ht---++ttf-tftt-H-H+IllI

...........

f----jf-.......
-f''''''''<+l+++--f-+-I+++1ftj

'0 f-++++ttItl---+-+t+I+Hf-H-HfIIH

6Of---+-+-H++Ht--+--+++++tH

10

'0

Fig. 12 - Supply voltage
rejection vs. values of capacitors C2 and C3

!Fig.13 - Supply voltage
rejection vs. values of capacitors C2 and C3

f (HlI:I

Fig. 14 - Gain vs. input
sensitivity

G-4l0&

sv.)

sv.

III
III

VS~1".4V

(dB

RL~4fl

Rg,1)KQ

Gv· J 90/1n

{dBI

40

/'

./

'0

"

"

200

'00
38

/

'0

L

20

/

~

"

V

50

P: =0.5

30
2.

22
10

20

'0

..
."

G,

(dB)

'0

20

Fig. 16 - Total power dissipation and efficiency vs.
output powp.r

Fig.15 - Gain vs. input
sensitivity

'0

'00

300

. ..

"

I"",

Yj(mV)

12

60

IWI ~-+++-H-+'+-+-H-++~HI~J
P,ot

500

••
,.
4Z

·.,w

..

100

so
"o.sw

30

fI/

22
'00

300

...

Vi (mY)

Ptot

'0

17'
"-

-/.

"'S·144Y

40

RLs 2n
hll---+c---.---~___il

C'I '.',oF

1

2200lllF
Cll

5 -t.06 51 2

647

R3 (n)

ELECTRICAL CHARACTERISTICS (Refer to the stereo application circuit, Tamb = 25°C,
Gy= 50 dB, Rth(heatsink)= 4°CIW, unless otherwise specified).
Parameters

Test conditions

Vs

Supply voltage

Vo

Quiescent output voltage

Vs = 14.4V
Vs = 13.2V

Id

Total quiescent drain current

Vs = 14.4V
Vs = 13.2V

Po

Output power (each channel)

f = 1 KHz
Vs = 14.4V

Vs=16V
Distortion (each channell

CT

Cross talk (0)

Vi

Input saturation voltage

Vi

Input sensitivity

6.6
6

d = 10%
R L =4n
R L =3.2n
R L =2n
R L = 1.6n
R L = 3.2n
R L = 1.6n
R L = 2n

6
7
9
10
6
9

f = 1 KHz
R L =4n
Vs = 14.4V
Po = 50 mW to 4W
R L =2n
Vs = 14.4V
Po = 50 mW to 6W
R L = 3.2n
Vs = 13.2V
Po= 50 mW to 3W
R L = 1.6n
Vs = 13.2V
Po = 40 mW to 6W
Vs= 14.4V
R L =4n
Vo = 4V,ms
Rg= 10 Kn

f = 1 KHz

f = 1 KHz

fL

Low frequency roll off (-3 dB)

R L = 2n

fH

High frequency roll off (-3 dB)

R L = 2n

Gv

Voltage gain (open loop)

f = 1 KHz

f = 1 KHz

70

inverting input

Voltage gain (closed loop)

eN

Total input noise voltage

18

V

7.2
6.6

7.8
7.2

V
V

65
62

120
120

mA
mA

6.5
8
10
11
6.5
10
12

W
W
W
W
W
W
W

0.2

1

%

0.3

1

%

0.2

1

%

0.3

1

%
dB
dB

45

Po= 1W
R L =4n
R ...= 3.2n

f = 1 KHz non inverting input

Closed loop gain matching

Unit

mV

300

I nput resistance

Gy

Max.

60

f = 10 KHz

Ri

AG y

Typ.

8

Vs = 13.2V

d

Min.

6
5.5

mV

200

Kn
Kn

10
50

KHz

15

dB

90
48

50

51

(0)
For TDA 2005S only.
(00) Bandwidth filter: 22 Hz to 22 KHz.

648

1.5

dB
dB

0.5
Rg= 10 Kn (00)

Hz

5

p.V

I

I

I,,-

ELECTRICAL CHARACTERISTICS (continued)

I'

I'
Parameters

Test conditions

SVR

Supply voltage rejection

Rg= 10 K11 fripple= 100 Hz
C 3= 10 /LF V riPPle= 0.5V

1/

Efficiency

Vs = 14.4V
R L =411
R L = 211
Vs = 13.2V
R L = 3.211
R L = 1.611

f = 1 KHz
Po= 6.5W
Po= 10W
f = 1 KHz
Po= 6.5W
Po= 10W

Vs = 14.4V
Ptot = 6.6W

R L = 211

Thermal shut-down case
temperature

TSd

Fig. 8 - Quiescent output
voltage vs. supply voltage

Min.

Typ.

35

45

Max.

Unit

dB

i'

120

Fig. 9 - Quiescent drain current vs. supply voltage

70
60

%
%

70
60

%
%

130

°C

Fig. 10- Distortion vs. output power

Vo

tv)

(mAl

/
1/

V
IV

100

/

80

/

IIIII

f-f-f-~-1-,----j'---'~--+--+--+--I

II

/

V

/
V

10

12

16

VSIVI

10

Fig. 11 - Output power vs.
supply voltage
Po
tW

"

,

1

G vs50dB

I
I

d ~ '10-"

i

f~ll(Hz

-

1

i

12

I

I

,/

,/

1/

v

%l

I
I

10

12

d

RL~

~10·J.

1.6.n

V

12

/

V

/

V

,/
/RL~J.2n

1.2

o.s

/'

'"

Fig. 13 - Distortion vs.
frequency

hlKHz
Gv~SOdB

~L:4Il

I

I.A"

V

r-

1/

0.1

I

tW)

I Rl~2n/

I

I

Fig. 12 - Output power vs.
supply voltage
Po

I
I

0.01

12

./

V

".,

"'

V

10

12

649

'I,

16

VS(VI

11

10

10'

1)4

11Hz)

I

I

"

Fig. 14 frequency

Distorsion vs.

Fig. 15 - Supply voltage rejection

VS.

C3

Fig. 16 - Supply voltage
rejection vs. frequency

G-4306/1

,-

'iSd4."V
Gv=50dB
C3'\O/JF

-

Iii

I',

Rg_ 0

i--J'

,

! '

I ,~9·lOKJl

I

30

I
20
'I

I

II
III

I

!
10

10'

10~

10'

Fig. 17 - Supply voltage
rejection vs. values of capacitors C 2 and C 3

5'"

Vs:14.I,V
Rl·4,Q

Rg,1OKn
G y .l000110D
t r l pp l.,100Hz

G,

"ffi

'Is =14.4'0'
1 : 1kHz
RL = 411

54

C2'22iJ~

,500

50

/vr

200

46

~2,5j..JF

/

I (Hz)

G,

U-

/ C Z,220j.JF

50

10'

Fig. 19 - Gain vs. input
sensitivity

Fig. 18 - Supply voltage rejection vs. values of capacitors C 2 and C3
(dBI

10'

10

10

f{Hzl

Po -6W

42

100

/

30

20~

I

I,

i

I

/

, I' ill

~

"

V

20

!
. 10

Fig. 20 - Gain vs. input
sensitivity

+++

:

!

I

20

26

I

,

22
10

20

Fig. 21 - Total power dissipation and efficiency vs.
output power (bridge)

0,

50

P , 0,5

30

30

100

300

"

Vi (mV)

Fig. 22 - Total power dissipation and efficiency vs.
output power

Ptot

,WI

I Vs·14.4
: If :lkH

RL-2Il.

500

I

60

200

46

42
3S

40

" =--.:.'"
30

,,--+
22

Po' lOW

~-t-.
R

100

+

.Q,SW

Ii

11+

--

20

,

100

300

"
"',(I'T'V)

20

650

24

Po(W)

10

Po(W)

APPLICATION INFORMATION
Fig. 23 - 10 + 10W stereo amplifier with ton(' balance and
loudness control

Fig. 24
Tone control
response (circuit of fig. 23)

H-c:::J-~~1
.---blOiJ F

.,

I

INPUHLJ

1--=---'----'--'

.,
.,

.,

JNPUT(RJ

J:~'=.6JKn--~--~--'

Fig. 25 - 20W Bus amplifier
VS •• 14.4V

18Ka

22

IJ

F

r
10/(a.

lOKn

lOKn

2Z001JF

..,~ol:,_":____,.o_K_~K_n _:_:_~ ~,-",+
__....

__.....

__________-'-I

OJ!.

on

on

an

$-4350/1

651

Fig. 26 - Simple 20W two way amplifier (fc = 2 KHz)

2200,uF

8

lKn~'

~~

R3..L
..,.. C7

0: O.1,uF

,,100 /-IF

-----f'-c-i

R7

WOOFER

In

C,~n QR'

.

I

INPUT

..J.. ..L C10 .J...
>-_+'~O_ -t-- -1"--1l~
lKf) rlR5
l00~F

100.uF'~

2

nL . J
-U,

=

lil

(8
Q)'

R8

CO

lon
2.2.u F

I

3
e1 !

..J.

.J...

...

Fig. 27 - Bridge amplifier circuit suited for low-gain applications (G v = 34 dB)
R1

INPUT!A

1

2.2,.uF

","F

~

R7

111

5- 541,7/1

652

TWE.ETER

APPLICATION SUGGESTION
The recommended values of the components are those shown on Bridge application circuit of fig. 1.
Different values can be used, the following table can help the designer.

Component

Recommended
Value

Kn

RJ

120

R2

1

Kn

R3

2

Kn

R4 and Rs

12

R6 and R7

1

Larger than

Purpose
Optimization of the
output symmetry

Smaller Po max

Smaller than
Smaller Po max

Closed loop gain
setting (see BRIDGE
AMPLIFIER
DESIGN)

n
n

Frequency stabil ity

C1

2.2/-lF

Input DC
decoupling

C2

2.21'F

Optimization of
turn on pop and
tu rn on delay.

C3

O.lI'F

Supply by pass

C4

10l'F

R ipp Ie Rejection

Danger of oscillation
at high frequency
with inductive loads

High turn on delay

Higher turn on pop.
Higher low frequency
cutoff.
Increase of noise.

Danger of oscillation.
I ncrease of SV R.
Increase of the

Degradation of SVR.

switch-on time.
Cs and C 7

100 I'F

Bootstrapping

Increase of distortion
at low frequency.

C 6 and C 8

220 I'F

Feedback input
DC decoupling, low
frequency cutoff.

Higher low frequency
cutoff.

C 9 and C IO

O.lI'F

Frequency stability.

Danger of oscillation.

653

BUILT-IN PROTECTION SYSTEMS
Load dump voltage surge
The TDA 2005 has a circuit which enables it to withstand a voltage pulse train, on pin 9, of the type
shown in fig. 29.
If the supply voltage peaks to more than 40V, then an LC filter must be inserted between the supply
and pin 9, in order to assure that the pulses at pin 9 will be held within the limits shown.
A suggested LC network is shown in fig. 28. With this network, a train of pulses with amplitude up to
l20V and width of 2 ms can be applied at point A. This type of protection is ON when the supply
voltage (pulse or DC) exceeds l8V. For th is reason the maximum operating supply voltage is l8V.
Fig. 29

Fig.28

FROM
A
L,,2mH
SUPPLY ~TO PIN 9

LINE

IJ.£ "''''''
16V

3000f.JF

5_1901

14.4
t1'

-~

I

I

---~~

Short circuit (AC and DC conditions)
The TDA 2005 can withstand a permanent short-circuit on the output for a supply voltage up to 16V.

Polarity inversion
High current (up to lOA) can be handled by the device with no damage for a longer period than the
blow-out time of a quick 2A fuse (normally connected in series with the supply). This feature is added
to avoid destruction, if during fitting to the car, a mistake on the connection of the supply is made.

Open ground
When the radio is in the ON condition and the ground is accidentally opened, a standard audio amplifier
will be damaged. On the TDA 2005 protection diodes are included to avoid any damage.

I nductive load
A protection diode is provided to allow use of the TDA 2005 with inductive loads.

DC voltage
The maximum operating DC voltage for the TDA 2005 is 18V.
However the device can withstand a DC voltage up to 28V with no damage. This could occur during
winter if two batteries are series connected to crank the engine.

Thermal shut-down
The presence of a thermal limiting circuit offers the following advantages:
1) an overload on the output (even if it is permanent), or an excessive ambient temperature can be easily
withstood.
2) the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There
is no device damage in the case of excessive junction temperature: all that happens is that Po (and
therefore Ptot ) and Id are reduced.
The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 30 shows this dissipable power as a function of ambient temperature for different
therma I resistance.
654

Fig. 30 - Maximum allow·
able power dissipation vs.
ambient temperature

Fig. 31 - Output power and
drain current vs. case temperature

)~i-+-t
r--"

i

I.

_.

1

1'5'''.''

I:,L,~"~

.J ld

Fig. 32 - Output power and
drain current vs. case temperature

"
''I

~

~

\
'0

1

'\

,

'.

I

I

t-

03

1

eo

Tease

(OCJ

160 Tcase-(OC)

Loudspeaker protection
The circuit offers loudspeaker protection during short circuit for one wire to ground.

MOUNTING INSTRUCTIONS
The power dissipated in the circuit must be removed by adding an external heatsink.
Thanks to the MUL TIWATT® package attaching the heatsink is very simple, a screw or a compression
spring (clip) being sufficient. Between the heatsink and the package it is better to insert a layer of silicon
grease, to optimize the thermal contact; no electrical isolation is needed between the two surfaces.
Fig. 33 - Mounting examples

o

,,

,,

655

--

LINEAR INTEGRATED CIRCUIT
lOW AUDIO AMPLIFIER
The TDA 2006 is a monolithic integrated circuit in Pentawatt® package, intended for use as a low
frequency class" AB" amplifier. At ± 12V, d = 10% typically it provides 12W output power on a 4n
load and BW on a Bn. The TDA 2006 provides high output current and has very low harmonic and
cross-over distortion. Further the device incorporates an original (and patented) short circuit protection
system comprising an arrangement for automatically limiting the dissipated power so as to keep the
working point of the output transistors within their safe operating area. A conventional thermal
shutdown system is also included. The TDA 2006 is pin to pin equivalent to the TDA 2030.

ABSOLUTE MAXIMUM RATINGS
Vs
Vi
Vi

10
Ptot
T stg , T j

Supply voltage
Input voltage
Differential input voltage
Output peak current (internally limited)
Power dissipation at T case = 90°C
Storage and junction temperature

± 15
Vs
± 12
3
20
-40 to 150

V
V
A

W

°C

ORDERING NUMBERS: TDA 2006H; TDA 2006V

MECHANICAL DATA

6/B2

Dimensions in mm

656

CONNECTION DIAGRAM

C)

~iiii:'VS

OUTPUT

-Vs

INVERTING INPUT

NON INVERTING INPUT

5-2628/1

tab connected to pin 3

SCHEMATIC DIAGRAM

657

TEST AND APPLICATION CIRCUIT

C5
0.22 pF
5-3916

THERMAL DATA
Rth _i

case

Thermal resistance junction-case

max

3

°CIW

ELECTRICAL CHARACTERISTICS (Refer to the test circuit; Vs= ±12V, T amb = 25°C unless
otherwise specified)
Parameters
Vs

Supply voltage

Id

Quiescent drain current

Ib

Input bias current

Test conditions

Min.

Typ.

Max.

Unit

± 15

V

40

SO

mA

0.2

3

IlA

±6

Vs=±15V
Vos

Input offset voltage

los

Input offset current

±

Vos

Output offset voltage

± 10

Po

Output power

±S

d = 10%
f = 1 KHz
R L=4n
RL=Sn

658

6

mV

SO

12
S

nA
± 100

mV

W
W

ELECTRICAL CHARACTERISTICS

(continued)

Parameter

d

Distortion

Test conditions

Min.

Typ.

Max.

Units

Po~O.l

to8W
RL ~ 4!1
f ~ 1 KHz

0.2

%

Po~

0.1 to 4W
RL ~ 8!1
1 ~ 1 KHz
Vi

Input sensitivity
Po~

P0
B

~

lOW
6W

Rj

I nput resistance (pin 1)

Gv

Voltage gain (open loop)

Gv

Voltage gain (closed loop)

eN

I nput noise voltage

iN

InpOt noise current

SVR

Supply voltage rejection

RL ~ 4!1
0.5

f

~

29.5

B (-3 dB) ~ 22Hz to 22kHz
RL~4!1

RL~

4n
22 Kn

1ripPle~ 100 Hz
Drain current

Po~12W

P0 :
Tj

1

%

200
220

mV
mV

1 0 to 140,000

Hz

5

M!1

75

dB

1 KHz

Rg~

Id

1 ~ 1 KHz
RL ~ 4!1
R L ~ 8!1

Frequency response (-3 dB)
Po~8W

I

0.1

8W

Thermal shut down junction
temperatu re

(*) Relerring to lig. 15, single supply.

659

40

30

30.5

dB

3

10

IN

80

200

pA

50

dB

850
500

mA
mA

145

°C

(*)
RL~ 4!!
R L : B!1

Fig. 1 - Output power vs.
supply voltage

I
I

0)

IW

d ~,o 'I.
f :1KHz

16

Fig.2 - Distortion vs. output
power
("10

Fig. 3 - Distortion vs. frequency

)I--+--t--t+tf!f---j

RL=t.n/

V
VI

V RL"7

/

VI
,

/

./

/' V

!

I
I

Fig. 4 - Distortion vs. frequency

Fig.5 -Sensitivity vs. output
power

')f--- _..1.._L.' ..

'

R L,,4n

I

ImV

0

IT

++

_l

G v = 30dB

18 0

f (Hz)

Fig. 6 - Sensitivity vs. output
power

-r-~

vI",-l~r

iL

?'
60

=+

A"'"

0.3

G v =_40d!L-

~i

I--:-

--f

-t

! ~

J !

10'

Fig.7 - Frequency response
with different values of the
rolloff capacitor Cs (see
fig. 13)
G,r----r---,----,-----~~
(dB)

Fig. 8 - Value of C s vs.
voltage gain for different
bandwidths (see fig. 13) ,

C,

(;-4173

IpF )

Vs= ± 12 v

RS;' 3R2

80
B-20KHz

10'

" 1\

~
B=50KHz

1\

20

1\

10
10

10 4

- !

's';"H-+- f+

, =lKHz

0.2

w'

G-<;1

d"~~-'TP~-'TITmr~~~
(0/0)

10

10'

10

"

10'

1\
G v (dB)50

30

660

Fig. 9 - Qu iescent current
vs. supply voltage

Fig. 10 - Supply voltage
rejection vs. voltage gain

Fig. 11 - Power dissipation
and efficiency vs. output
power

Fig. 12 - Maximum power
dissipation vs. supply voltage (sine wave operation)
o~ " ,

,

I

)

i

I
, ,lK<, I

:

I

R L< ~

n

y
I

V
./

--

,./

Po (W)

Fig. 13 - Application circuit with
split power supply

V

v

RL:Sfi

V

Fig. 14 - P.C. board and component
layout for the circuit of fig. 13

661

Fig. 15 - Application circuit with single
power supply

Fig. 16 - P.C. board and component
layout for the circuit of fig. 15

Fig. 17 - Bridge amplifier configuration with split power supply (Po

lN40Ql

-;\0.22 >IF

1!l
s- '316

662

= 24W, Vs = ± 12V)

PRACTICAL CONSIDERATION
Printed circuit board
The layout shown in fig. 14 should be adopted by the designers. If different layout are used, the ground
points of input 1 and input 2 must be well decoupled from ground of the output on which a rather high
current flows.

Assembly suggestion
No electrical isolation is needed between the package and the heat-sink with single supply voltage
configuration.

Application suggestion
The recommended values of the components are the ones shown on application circuits of fig. 13.
Different values can be used. The following table can help the designers.

Larger than
recommended value

Smaller than
recommended value

Increase of gain

Decrease of gain

Closed loop gain
setting

Decrease of ga i n

Increase pf ga in

22 K!1

Non inverting input
biasing

Increase of input
impedance

Decrease of input
impedance

R4

1!1

Frequency stability

Danger of oscillation at
high frequencies with
inductive loads

R5

3 R2

Upper frequency
cutoff

Poor high frequencies
attenuation

C1

2.21'F

Input DC decoupling

I ncrease of low
freqencies cut off

C2

221'F

Inverting input DC,
decoupling

I ncrease of low
frequencies cutoff

C 3C 4

0.1 I'F

Supply voltage by pass

Danger of oscillation

C 5C6

100l'F

Supply voltage by pass

Danger of oscillation

C7

0.221'F

Frequency stability

Danger of oscillation

Ca

1
21TBR J

Upper frequency
cutoff

DID2

lN4001

To protect the device against output voltage spikes.

Component

Recommended
value

Rl

22 K!1

R2

680!1

R3

Purpose
Closed loop gain

setting

Lower bandwidth

663

Danger of oscillation

Larger bandwidth

SHORT CIRCUIT PROTECTION
The TDA 2006 has an original circuit which limits the current of the output transistors. Fig. 18 shows
that the maximum output current is a function of the collector emitter voltage; hence the output
transistors work within their safe operating area (fig. 19).
This function can therefore be considered as being peak power limiting rather than simple current
limiting. The TDA 2006 is thus protected against temporary overloads or short circuit. Should the short
circuit exist for a longer time, the thermal shutdown protection keeps the junction temperature within
safe limits.

Fig. 18 - Maximum output
current vs. voltage V Ce(sat)
across each output transistor

Fig. 19 - Safe operating area and
collector characteristics of the pro·
tected power transistor

\

\....,--P tat ::k
\

Ie

max,

\

\

5-0764/1

THERMAL SHUT-DOWN
The presence of a thermal limiting circuit offers the following advantages:
1) An overload on the output (even if it is permanent), or air above limit ambient temperature can be
easily supported since the T j cannot be higher than 150°C.
2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There
is no possibility of device damage due to high junction temperature.
If for any reason, the junction temperature increases up to 150°C, the thermal shutdown simply
reduces the power dissipation and the current consumption.

664

Fig. 20 - Output power and
drain current VS. case temperature (R L = 40.)
Po

Fig. 21 - Output power and
drain current VS. case temperature (R L = Bn)

•.

I":1

f---·

!':-

,..-..-.~

(W)~

~....,

-r-

---

~---T

T--_

r--- ---'"P -

: :j

o - .- - - - - .-

.- . . _..j
..

-- - .-- ~

- ---- 1

iillll
- ~--~~-t r--.,.-t~.-~~ ................. ~

1

: :Joe

. . .---- -~--~- +-+

::,:~lO.6
.=r~-==:.

.•... _ -

0.4

0.2

so

-+-~+--t-

O6
0.4
•
0.2

so

100

The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its
thermal resistance); fig. 22 shows this dissipable power as a function of ambient temperature for different thermal resistances.

Fig. 22 - Maximum allowable power dissipation VS.
ambient temperature

20

Fig. 23 - Example of heatsink

I

f - - -....."'T"-__

16

I

12

-so

so

100

150 TambC"Cl

Dimension suggestion
The following table shows the lenght of the heatsink
in fig. 23 for several values of Ptot and Rth .

P tot (WI

12

8

6

Lenght of
heatsink (mml

60

40

30

Rth of heats ink

4.2

6.2

8.3

(oeMiI

665

L1N,EAR INTEGRATED CIRCUIT

12W AUDIO AMPLIFIER (V s

=

22V, RL = 4[2)

The TDA 2008 is a monolithic class B audio power amplifier in Pentawatt® package designed for driving
low impedance loads (down to 3.2n). The device provides a high output current capability (up to 3A),
very low harmonic and crossover distortion.
In addition, the device offers the following features:
very low number of external components
assembly ease, due to PentawattQ3) power package with no electrical insulation requirement
space and cost saving
high reliability
flexibility in use
thermal protection

ABSOLUTE MAXIMUM RATINGS
Vs
io
10
Ptot
T stg ' T j

DC supply voltage
Output peak current (repetitive)
Output peak current (non repetitive)
Power dissipation at T case= 90°C
Storage and junction temperatu re

ORDERING NUMBERS:

28

3
4
20

W

-40 to 150

°C

TDA 2008V

MECHANICAL DATA

6/82

V
A
A

Dimensions in mm

666

CONNECTION DIAGRAM

(top view)

IC) ;IIr

r-

I

r*

"om'

2

1

-

INPUT

INPUT

c

5-1b94!l

tab connected to pin 3

SCHEMATIC DIAGRAM

667

:ii::;

INVERTING

NON INVERTING

DC TEST CIRCUIT

,-----------~--------~J+vs

:!100nF

470}JF

R2

nl

.------.

-------;U~
5- 4009

--

AC TEST CIRCUIT

C4
1000 ).IF
4

Rl

470 ).IF

668

J..

THERMAL DATA
Rth

j-case

max

Thermal resistance junction-case

3

°C/W

ELECTRICAL CHARACTERISTICS (Refer to the test circuits,V s = 22V, T amb = 25°C unless
otherwise specified)

Parameter

Vs

Supply voltage

Vo

Quiescent output voltage
(pin 4)

Id

Quiescent drain current
(pin 5)

Po

Output power

Test conditions

I nput sensitivity

65

d: 10%

R L : 8St

f : 1 KHz

R L : 4St

d

Distortion

f : 1 KHz
Po = 0.05 to 4W R L = 8St
Po = 0.05 to 6W R L = 4St

Voltage gain (open loop)

f : 1 KHz

f = 1 KHz
Gv

Voltage gain (closed loop)

eN

I nput noise voltage

10

R L : 8St
R L : 8St
R L : 4St
R L: 4St

Po: 1W
R L : 4St

Gv

Unit

28

V
V

115

70

mA

8

W

12

W
mV

300
f : 1 KHz
Po: 0.5W
Po: 8W
Po: 0.5W
Po: 12W

Frequency response
(-3 dB)

I nput resistance (pin 1)

Max.

10.5

B

Ri

Typ.

10

Vi (RMS) I nput saturation voltage
Vi

Min.

20
80
14
70

mV
mV
mV
mV

40 to 15000

Hz

0.15
0.15

%
%

150

KSt

80

dB

RL = 8St
39.5

40

40.5

dB

1

5

}lV

60

200

pA

BW= 22Hz to 22 KHz

iN

I nput noise cu rrent

SVR

Supply voltage rejection

V ripple= 0.5V
R g : 10KSt
R L =4St

669

f=100Hz
f= 15 KHz

30

36

dB

36

dB

6/81

APPLICATION INFORMATION
Fig. 1 - Typical application circuit

,-----c-iI..----,O

Fig. 2 - P.C. board and component layout for
the circuit of fig. 1 (1: 1 scale)
Co,-0126

Vs

..,.~~

v

.....

1

c!

'o--~~. . t

5

Fig. 3 - 25W bridge configuration application
circuit (0)

Fig. 4 - P.C. board and component layout for
the circuit of fig. 3 (1: 1 scale)

I

'----_--".:c3~11__---+_C:::J------~~
15 )JF

10pF

S - GO, 2

(0 I The value of the capacitors C3 and C4 are different to optimize the SVR (Typ. = 40 dB!

670

Fig. 5 - Vertical deflection for count-down circuits

2200,u F

lN4001

lN4001

y :'.4.!l,3mH ,3.5App

5 - 4007

671

LINEAR INTEGRATED CIRCUIT

10 + 10W HIGH QUALITY STEREO AMPLIFIER
The TDA 2009 is class AS dual Hi-Fi Audio power amplifier
cially designed for high quality stereo applications as Hi-Fi TV and
High output power (10 + lOW min.@ d = 0.5%)
High current capability (up to 3.5A)
Thermal overload protection
Space and cost saving: very low number of
Multiwatt@ package.

"'''''"hn'r....onto

Vs

10
10
Ptot

T519' Tj

(repetitive f ;;;. 20 Hz)
(fN:e·~t (non repetitive, t = 100 /-ls)
Power
ipation at Tcase= 90°C
Storage lind junction temperature

and simple mounting thanks to the

28
3.5
4.5
20
-40 to 150

V
A
A
W
°C

ORDERING NUMBER: TDA 2009

MECHANICAL DATA

6/82

Dimensions in mm

672

CONNECTION DIAGRAM
(top view)

N.C.
OUTPUT (1)
+Vs
OUTPUT (2)

N.C.
GNO
NON INV.INPUT(2)
INV. INPUT (2)

SVRR

-$2

INV. INPUT (1)
NON INV.INPUT(1)

s- 5203

SCHEMATIC DIAGRAM

THERMAL DATA
Rth j-case

Thermal resistance junction-case

max

673

3

Fig. 1 - Test circuit (G v

= 36 dB)
+Vs

2Z,uF

I

Ie3

2.2IJF

~11---4------F"'"

(Ll

Cl

IN

2.21JF

(Rl

C2

~II---'+---l

5_5188

Fig. 2 - P.C. board and components layout of the circuit of fig. 1 (1

674

1 scale)

ELECTRICAL CHARACTERISTICS (Refer to the stereo application circuit, Tamb = 25°C,
Gv

= 36 dB, unless otherwise specified)

Test conditions

Parameters

Min.

Typ.

Vs

Supply voltage

Vo

Qu iescent output voltage

Vs

~

23V

11

Id

Total quiescent drain current

Vs

~

23V

80

Po

Output power leach channell

8

RL~

4 n
n
RL=4 n
RL~ 8 n

10

12

5.5

7
7

RL~8

Vs~18V

CT

Distortion leach channel)

Rg
Vi

Input saturation voltage Irmsl

R;

Input resistance

f

120

mA

~

W
W
W
W

%
0.05

00

f

~

1 KHz

60

dB

10 Kn

f

~

10 KHz

50

dB

~

1 KHz non inverting input

70

Low frequency roll off 1-3 dB)
~

mV
200

Kn

10

Kn

15

Hz

80

KHz

85

dB

4n

fH

High frequency roll off 1-3 dB)

Gv

Voltage gain lopen loop)

f

~

1 KHz

Gv

Voltage gain Iclosed loop)

f

~

1 KHz

6G v

Closed loop gain matching

eN

Total input noise voltage

Supply voltage rejection
leach channell

V

300

RL

SVR

V

0.1

inverting input
fL

28

4

f ~ 1 KHz
Vs ~ 23V
RL~ 4 n
Po~ 100 mW to 8W
Vs ~ 23V
RL~ 8 n
Po~ 100 mW to 3W
RL ~

Cross talk 1°° o I

Unit

f~40Hzt016KHz

d ~ 0.5%
Vs ~ 23V

d

Max.

35.5

36

36.5

dB

0.5

dB

Rg = 10 Kn 1°)

1.5

IN

Rg ~ 10 Kn 1°°1

2

MV

55

dB

145

°c

Rg = 10 Kn
fripPle~ 100 Hz

V ripple= 0.5V
TJ

Thermal shut-down junction
temperature

1°) Curve A.

1°°) 22 Hz to 22 KHz.

(000

675

I

Optimized test box.

Fig. 3 - Output power vs.
supply voltage

Fig. 5 - Distortion vs. output power

Fig. 4 - Output power vs.
supply voltage

6-466211

,...
d

I

I IIIIII

"1Z

0.'

I
0.5

H--"-r-+--l--

11

,

0.4
0.3

16KHz

E" n

16KHz

=-~ii'

0.1
0.1

10

12

14

16

18

riy. u -

20

22

21.

Lii:'luriiull

26

'1 s (V)

V!).

11t:-

10

·f

d

I
I

I IIIIW

I

LH:s~23V
~,,36dB
I

I

I Po'" loW

t II1

0.3

d

0.1
01

..

,

f-

~

4ni

T

.3

I

10

,

50

I

I

V

"

/'

''/
10K

50

10

f (Hz)

"

10

,--+++- ~-

70
11

10

/1

~J

1--'10+10W
I STEREO

ft'

i~

,/

10

f (Hz)

.!L.

'!-

--;-

j

~

II-T-

30

10

CJ (pFl

Fig. 11 - Total power dissipation and efficiency vs.
output power

,

.....- ...,....;

V

1----+-!+HttH-

'Is (V)

,

Pto

60

16

11

18

Fig. 10 - Total power dissipation an efficiency vs. output power
(;-4566

1---+-++t+i11t--+-t-!-t+tH!--

100

1---J,Lh--Pi"h,f-~+-+++++++i

V

SVRr-'-TTnnm---'--rTTTmr~PC'i'i'nrn

10

Ii

,",Ullvili.

./'

Fig. 9
Supply voltage
rejection vs. frequency

30

i
,I

,

~

70

-

--t

~

II

dB1

,

/

100

(

0.1

Vs(V)

I
I,

en

lKlt;

I

,

Ii
II

60

I

I

30

- -

I

: I

05

26

"

I I I

.6

22

ri~. 7 - GLiia5Ci;;j-,'t
vs. supply voltage

quency

".

18

i

,

I,

,.

I

I !~~:;!~

I.

'.1
60

I·-+~I---

~ot~!l~!llsill-fl~~lc!!i"!l

,WI

P tot

4

+-

~r-+Ts~23V
Rl:" !l
f

12

2

'" 1KHz

16

676

20

24

Po(W)

'1$=23'1
Rl"B il.
f ",1KHz

10

12

14

16

Po (W)

APPLICATION INFORMATION
Fig. 12 - Typical application circuit

2200,uF

1.2Kfl

RI

.t:a

To'~F
I
•

C6

~~

220,uF

R2
IBn

IN

QR5

In

1

2.2,uF

o.----tC2If---'+--l·

(Ri

'·°"'1

r'

RL

RL

R6

1

_'I!

5_5189

Fig. 13 - 10 + 10W stereo amplifier with tone balance and
loudness control

Fig. 14 - Tone control response (circuit of fig. 13)

INPUHl)

T
~1
22d
~4JKO

.6

I

P1

100""

Kn

.1,
INPUT(RJ

1

O.22/-lF

1/1
TDA1009

5-5190

677

APPLICATION INFORMATION (continued)
Fig. 15 - 10 + lOW high quality cassette player
'-~~~~~~~~~~~~

__-'~~~~f-~~~~~~~~~~~~~~~~~-o."

I TONE
'8K~

.O~F~---;-----=---.
r-;l,- - 82KJl.

_

~~

~

...
___

'"~

5,6 Kil

:;i3nFU681l.

,

,

'l_~'6KJl.'
i
h21~'F'~F

{R).L 4.7/OO~F
IN

2.2~F

o----------iil-C-,-'-1'-.r.-..

r

2.2}.JF

C25

5_519411

Fig. 19 - P.C. board and components layout of the circuit of fig. 18 (1

C5-0153

Vi

GND

680

OUT B OUT A

1 scale)

APPLICATION SUGGESTION
The recommended values of the components are those shown on application circuit of fig. 12. Different
values can be used; the following table can help the designer.

Component

R1 and R3

Recomm.
value

1.2

Larger than

Purpose

Kn

Smaller than

I ncrease of gain

Decrease of gain

Decrease of gain

I ncrease of gain

Close loop gain setting
R2 and R4

18

R5 and R6

1

n
n

Frequency stability

Danger of oscillation at
high frequency with
inductive load

C1 and C2

2.21'F

Input DC decoupling

High turn-on delay

High turn-on pop
Higher low frequency
cutoff. I ncrease of noise

C3

221'F

Ripple rejection

Better SVR.
I ncrease of the
switch-on time

Degradation of SVR.

C6 and C7

220l'F

Feedback I nput DC
decoupling.

C8 and C9

0.11'F

Frequency stabil ity.

Danger of oscillation.

C10andC11

1000 I'F to
2200l'F

Output DC decoupling.

Higher low-frequency
cut-off.

681

MOUNTING INSTRUCTIONS
The power dissipated in the circuit must be removed by adding an external heatsink.
Thanks to the MULTIWATT® package attaching the heatsink is very simple, a screw or a compression
spring (clip) being sufficient. Between the heatsink and the package it is better to insert a layer of silicon
grease, to optimize the thermal contact; no electrical isolation is needed between the two surfaces.

Fig. 20 - Mounting examples

/
.
......

682

LINEAR INTEGRATED CIRCUIT
12W Hi-Fi AUDIO AMPLIFIER
The TDA 2010 is a monolithic integrated operational amplifier in a 14-lead quad in-line plastic package, inteded for use as a low frequency class B power amplifier. Typically it provides 12W output
power (d = 1% ) at ± 14V /4n; at V s = ± 14V the guaranteed output power is 10W on a 4n load and
8W on a 8n load (DIN norm 45500). The TDA 2010 provides high output current (up to 3.5 A) and
has very low harmonic and cross-over distortion. Further, the device incorporates an original (and
patented) short circuit protection system, comprising an arrangement for automatically limiting the
dissipated power so as to keep to working point of the output transistors within their safe operating
area. A conventional thermal shut-down system is also included. The TDA 2010 is pin to pin equivalent
to TDA 2020.

ABSOLUTE MAXIMUM RATINGS
Vs
Vi
Vi

10
Ptot
T stg , T j

Supply voltage
I nput voltage
Differential input voltage
Output peak current (internally limited)
Power dissipation at T case < 95°C
Storage and junction temperature

ORDERING NUMERS:

TDA
TDA
TDA
TDA

2010
2010
2010
2010

882
B92
BC2
BD2

± 18
Vs
± 15
3.5
18
-40 to 150

V
V
A
W
°C

dual in-line plastic package
quad in-line plastic package
dual in-line plastic package with spacer
quad in-line plastic package with spacer

MECHANICAL DATA

Dimensions in mm

683

6/82

CONNECTION AND SCHEMATIC DIAGRAMS
(top view)

~~----t,--i;----+_

I

rtJ
12

POWER lINtYlNG

10

CO ...PEttSATlON

9

8

~-J+----*----+-~ ~-+-+--I:::'

I

I,

II

i I

I

•

I

COIolPENSATlON

INVERTING

INPUT

The copper slug is electrically
connected to pin 5 (substrate)

I
I

l_L

l-.~_J----~------,_-,,~---o

,6

TEST CIRCUIT

*
02

*IN 4001

5-113912

OR EQUIVALENT

THERMAL DATA
max

Thermal resistance junction-case

684

I

i;1

l'I

.

Ii
i

ELECTRICAL CHARACTERISTICS
(Refer to the test circuit, V s = ± 14V, T amb = 25°C unless otherwise specified)
Parameter
Vs

Supply voltage

Id

Quiescent drain current

Ib

I nput bias current

Vos

I nput offset voltage

Test conditions

I nput offset current

Vos

Output offset voltage

Po

Output power

Typ.

Max.

Unit

± 18

V

± 5

Vs

Vs
los

Min.

~

± 18V

~ ±

45

mA

0.15

)J.A

5

mV

0.05

)J.A

17V

10
d

100

mV

=1%

T case " 7ft' C
f ~ 40 to 15 000 Hz
RL~4 n
RL ~ 8 n

10
8

d ~ 10%
T case" 7Cf'C

f

~

f ~ 1 kHz
RL ~ 4 n
RL ~8 n

I nput sensitivity

P~ ~ lOW
P0

~

8W

C4

~

B

Frequency response (-3dB)

RL ~ 4 n

d

Distortion

Po ~ 100mWto lOW
RL ~ 4 n
T case" 7Cf'C
f
f

~
~

W
W

15
12

W
W

1 kHz

RL ~4n
RL ~8 n
Vj

12
9

68 pF

1 kHz
40 to 1 5 000 Hz

220
250

mV
mV

10 to 160000

Hz

0.1
0.3

1

%
%

0.1
0.2

1

%
%

P0 ~ 100 mW to 8 W
RL ~8 n
T case" 7ft'C
f
f
Rj

Input resistance (pin 7)

Gv

Voltage gain (open loop)

~

~

1 kHz
40 to 15 000 Hz

Mn

5

dB

100
RL ~ 4 n

Gv

Voltage gain (closed loop)

eN

Input noise voltage

RL ~4 n

iN

I nput noise current

B (-3 dB)

f

~

1 kHz
29.5

~

22 Hz to 22 KHz

685

30

30.5

dB

4

)J.V

0.1

nA

ELECTRICAL CHARACTERISTICS (continued)
Parameter
SVR

Test conditions

fripple

Drain current

Tsd

Thermal shut-down

Typ.

Max.

Unit

R,_ = 4

Supply voltage rejection

Id

n
= 100

Min.

Po
Pa

50

dB

0.8
0.5

A
A

145

DC

120

DC

Hz

n
n

RL = 4
RL = 8

= 12 W
= 9W

junction temperature

(*l Thermal shut·down case

Tsd

P tat

temperature

= 10.5 W

(*l See fig. 14.

Fig. 1 - Output power vs.
supply voltage

Fig.2 - Output power vs.
supply voltage

(>·16'7/1

(W

I

16

d ,,10".

16

- I--

12

\>oy't.

~~1-

/

/

V

V

~~~

.//

4nV V

/
RL 40

t.oVli

~

~

,/

,/

1/

'II',

/

I '. !

-

/'

d

oa

II
:

~::~l~V

~ Vs

, ,; Fi

['j--cTrrm----,-,-oT'Tin

'11"

I

!

I
i

,,

40H,'

I

lkH~

1

II
~

,

.

10

~~ : ~~4dVB

j!,I]

II

i iI
Ij

,

.

10-1

10

686

I I

'I,

, "

,

I

I,
I

I

I.!' "
I II
. III

"

~Tjl 1-1+ I :,,'.1'·1
I

il

],

=8ft Po - 8W

!

02

!

RL .. 4Cl Po "lOW
-~-RL

II

0.2

I
I

II

II

IIIIII!II

II

I

15KHz

,

, II

0.2

I

I{~

08

,

I

G165312

d

I

I

04

II

,I

Fig. 6 - Distortion vs. frequency

Gv "30dS
0.6

':

(V)

("I.)

I

II!

aD!

+ +':HiIt--+_C' HttIJI+-;-I
i

Fig. 5 - Distortion vs. output
power (R L =8 n)

II

__

,
15

G-1649

+I'.

/

i

Fig.4 - Distortion vs. output
power (R L = 4 n)

I' '+III'H-i-+-Htt.JJI

v, .""

,/

;/ f/

.•~:,.::::.v

1-++
"I ~v ~~~~zB+-,I-tlitt
Ht
Itttt-Il-t-+THtffi

/'

f ,,1kHz

GV"30dB

~

('1.I

('/.) I--h-i-Dillilllllll_+-+1+1I!~+t.lt-HC-t-t-H+I'.JJI

(WI

d ~ ",.
(\,"30dB

Fig. 3 - Distortion vs. output
power

G_I64611

, "'
10"

'V

, "
lO4

""

I (Hz)

Fig. 7 - Output power vs.
frequency

L,+,~

~l'ct

RL~4

II
a,~,

!

I:Vs=!14V
. w'

Gv =30dBIIll-+l+HltiI-++HltiI
d=l"'.

-1v,J;-;h
RL .4[l
f=lkHl'!

I

-± ~rli I~i+~
i- .

240

A'

200

,.,V

"

r;p r--7

v,
(mV)
350

....r

I

RL=sn

G". =JOd

250

200

I
-I

H-+'V,.1,M,,\'-V+ t-+-H--t-+

300

""V' -r",'Od8!

/
[,L-

120

"

Fig. 9 - Sensitivity vs. output
power (R L =8 n)

G_!65

v,
(mV)

"0

it
'ltiI'~+ttt+tll--H111lti1

t

I

Fig.8 - Sensitivity vS.output
power (R L = 4 n)

150

:~~

'lR~~TT
G,,"

I (Hz)

10

Po(W)

>C

Fig. 11 - Value of C4 vs.
voltage gain for different
bandwidths

Po(W)

Fig. 12 - Quiescent current
vs. supply voltage
I,

"
.0

"
lei (OUTPUT TRANSISTORS
20

>C.

>c'

>C'

10~

>C'

~

(H:rl

>C.

>C

"

G,

0-1"58

G_165812

SVR

Ptot
,W)

(dBl
I

VS=!14V

60

I

lTiPPle=l00Hzl-

80

"

I.

.n

~
(0'.)

---8.0.

20

........

eo

30

,W)

"

V

12

I-("
,/

"

-1::: p.,.

...

50

20

Vs=!"14V
f"lkH:i" ,
Gv =30dB

12

G",(dB)

687

-

V

101

I
20

Plot

Plot

.0

........

Vs (V)

Fig. 15 - Maximum power
dissipation vs. supply voltage
(sine wave operation)

Fig. 14 - Power dissipation
and efficiency vs. output
power

Fig. 13 - Supply voltage
rejection vs. voltage gain

17

15

16

Po(Wl

,/

V
..-an

~

13

15

tV. IV)

APPLICATION INFORMATION
Fig. 16 - Application circuit with split power supply

.

01

13

O.l~!

R,

10

~C5

....

IOO~FT'

.

RL

02

C8
OJ~F

J..
"N,OO' OR EQUIVALENT

O-Vo

5-1141/2

Fig. 17 - P.C. board and component layout for the circuit of fig. 16 (1:1 scale)

CS-0074

688

SHORT CIRCUIT PROTECTION
The most important innovation in the TDA 2010 is an original circuit which limits the current of the
output transistors. Fig.18 shows that the maximum output current is a function of the collectoremitter voltage; hence the output transistors work within their safe operating area (fig. 19). This function
can therefore be considered as being peak power limiting rather than simple current limiting. The TDA
2010 is thus protected against temporary overloads or short circuit. Should the short circuit exists for
a longer time, the thermal shut-down comes into action and keeps the junction temperature within
safe limits.
Fig. 18 - Maximum output
Fig. 19 - Safe operating "rea and
current vs. voltave (V CE)
collector characteristics of the proacross each output transistor
tected power transistor.
!

\

I c,I
Ie

max.

\....-P1ot =k
\
\
\

ar.a\

Second breakdowl'\

a2

-,

-+

L -____________________~
30 VCEQ1 (vl
0

20
-20

VCr::

-10

5-076411

THERMAL SHUT-DOWN
The presence of a thermal limiting circuit offers the following advantages:
1) an overload on the output (even if it is permanent). or an above-limit ambient temperature can be
easily supported since the Tj cannot be higher than 150°C
2) the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There
is no possibility of device damage due to high junction temperature.
If, for any reason, the junction temperature increases up to 150°C, the thermal shut-down simply reduces the power dissipation and the current consumption.
Fig. 20 - Output power and
drain current vs. case temperature (R L =8 n)

Fig. 21 - Output power and
drain current vs. case temperature (R L = 4 n)

~l rr-',,-'r-r-',,~-.r=.!.T'''~-'\iV-r'±T"",61 (:~
f-++-t-++-t-++-t-1R l "811.

'0 f-++-t-++-H

10 f-++-H-+-toPot-+-t

H-H-++.::r'd-++'-+H. \

, ,. +

_.fWtU~++-t++\t-I-~

... ri '
50

'00

! . •
50

689

'

• .

100

Tease (·C)

08
06

::

MOUNTING INSTRUCTIONS
The power dissipated in the circuit must be removed
by adding an external heatsink as shown in figs. 22
and 23.
The system for attaching the heatsink is very simple:
it uses a plastic spacer wh ich is suppl ied with the
device.
Thermal contact between the copper slug (of the
package) and the heatsink is guaranteed by the pres·
sure which the screws exert via the spacer and the
printed circuit board; this is due to the particular
shape of the spacer.

Note: The most negative supply voltage is connected to the
copper slug, hence to the heatsink (because it is in
contact with the slug).

Fig. 22 - Mounting system of TDA 2010

HEATSINK

----. R 1h :. 2toS·C/W

~

--

---CONTACT
(SILICONE GREASE)

R1h=q

rfcjw

~.-----s1'AC'"

~.Fig. 23 - Cross-section of mounting system

.

Q

-

--_'_'._0

Q

Fig. 24 - Maximum allowable power dissipation vs.
ambient temperature

The maximum allowable power dissipation depends
upon the size of the external heatsink (i.e. its thermal
resistance); fig. 24 shows this dissipable power as a
function of ambient temperature for different thermal
resistance.

690

LINEAR INTEGRATED CIRCUIT
20W Hi-Fi AUDIO AMPLIFIER
The TDA 2020 is a monolithic integrated operational amplifier in a 14-lead quad in-line plastic package, intended for use as a low frequency class B power amplifier. Typically it provides 20W output
power (d = 1%) at ± 18V/4n; the guaranteed output power at ± 17V/4n. is 15W (DIN norm 45500).
The TDA 2020 provides high output current (up to 3.5 A) and has very low harmonic and cross-over
distortion. Further, the device incorporates an original (and patented) short circuit protection system,
comprising an arrangement for automatically limiting the dissipated power ~o as to keep to working
point of the output transistors within their safe operating area. A conventional thermal shut-down
system is also included.

ABSOLUTE MAXIMUM RATINGS
Vs
Vi
Vi

10
Ptot
T stg , T j

Supply voltage
I nput voltage
Differential input voltage
Output peak current (internally limited)
Power dissipation at Tease ,,;;; 75°C
Storage and junction temperature

± 22

V

Vs
± 15
3.5
25
-40 to 150

V
A
W
°C

ORDERING NUMBERS: TDA 2020 A82

dual in-line plastic package
TDA 2020 A92 quad in-line plastic package
TDA 2020 AC2 dual in-line plastic package with spacer
TDA 2020 AD2 quad in-line plastic package with spacer

MECHANICAL DATA

Dimensions in mm

691

6/82

CONNECTION AND SCHEMATIC DIAGRAMS
(top view)

-SUPPLY VOLTAGE I

OUTPUT

Nt

"

Nt

-SUPPLY VOLTAGE 3

12

POWER LIMITING

10

COMPE NSATION

Nt

Nt

-SUPPLy' VOLTAGES

o[

Nt
NON INVERTING
• INPUT

COMPENSATION

7 [

8

INVERTING

INPUT

The copper slug is electrically
connected to pin 5 (substrate)

TEST CIRCUIT

~

Dl
IOfJF

Vi

o9Jlr--.---.------4+
Vo

14

4.7fJF

0.1 ~F 100fJF

R3
100

kn

Rl
33

kn

C7

5"/.

C8

*
02

R2
100kn

5'/.

5-1143/3

*IN4001

OR EQUIVALENT

THERMAL DATA
Rthl-case

max

Thermal resistance junction-case

692

3

°C/W

ELECTRICAL CHARACTERISTICS
(Refer to the test circuit, V, = ± 17V,

Tamb =

25°C unless otherwise specified)

V,

Supply voltage

Id

Quiescent drain current

Ib

Input bias current

Vos

Typ.

Min.

Test conditions

Parameter

±5
V,

~

Max.
± 22

± 22 V

Unit
V

60

mA

0.15

f.LA

I nput offset voltage

5

mV

10 ,

I nput offset current

0.05

Vas

Output offset voltage

Po

Output power

10
d

~

T case
f

~

Vs
Vs
V

~

,

d

~
~

~

Vi

I nput sensitivity

,
,

d

~

Gv

~

P0

~

Vs
V

~

,

B

~

~

Frequency response (-3 dBI

RL~

Distortion

Pa

G v ~ 30 dB
1%
7DoC
40 to 15000 Hz

± 17V
± 1SV
± 1SV

RL ~ 4 n
RL ~ 4n
RL ~ S n

10%

Gv
f

~

,

V
Gv
f
f

Gv

Voltage gain (open loop)

RL ~ 4n
RL ~ Sn

30dB
15W

f

± 17V
±1SV

RL~ 4n
RL ~ sn

4n

C4

~

~

W
W
W

24
20

W
W

30 dB
1 kHz

± 17V
±1SV

1 kHz
260
3S0

mV
mV

10 to 160000

Hz

.

6S pF

~
~
~
~

~

1 kHz
40 to 15 000 Hz

0.2
0.3

1

%
%

150 mW to 15W
±1SV
RL ~ 8 n
30dB
T case .; 700 C

%
%

0.1
0.25

1 kHz
40 to 15 000 Hz

5

Mn
dB

100
RL ~ 4 n

Gv

~

1S.5
20
16.5

~

~

P0

Input resistance (pin 7)

~

15

150 mW to 15W
G v ~ 30 dB
RL ~ 4n
T case .; 700 C
f
f

Ri

mV

~

T case .; 70' C
V
V

f.LA
100

Voltage gain (e lased loop)

f

~

1 kHz
29.5

693

30

30.5

dB

ELECTRICAL CHARACTERISTICS (continued)
Parameter

Test cond itions

Min.

eN

I nput noise voltage

RL~

iN

I nput noise current

B(-3 dB) ~ 10 to 20,000 Hz

SVR

SupplV voltage rejection

Gv
RL~ 4D.
f ripple ~ 100 Hz

Id

Drain current

Tsd

Tsd

4D.

~

~

18.5W

RL ~ 4D.

P0

~

16.5W
8D.

V5

~

Thermal shut-down case

Fig. 1 - Output power vs.
supply voltage

!'101

~

'1

a::.

Unit

4

I'V

0.1

nA

50

dB

1

A

0.7

A

140

°C

,"0;

0('

±18V

Thermal.hut-down
junction temperature

+ .............. "' ........ + .........

Max.

30dB

P0

RL~

TVp.

[:;\1\1

Fig. 2 - Output power vs.
supply voltage

Fig. 3 - Distortion vs. output
power
d
('10)

f

8

-

~

1kHz

G v '" JOd

slf--++++tfflt---Ittttttttl

-- II
,
16

694

18 £'t's (v)

10-'

'0

.,
Po(W}

Fig. 4 - Distortion vs. output
power (R L =4.11)

Fig.5 - Distortion vs. output
power (R L =8.11)

Fig. 6 - Distortion vs. frequency

d

(•., 1--+-1f-t+tt+tto--::c';;;t+
1tt-Htf--+-+--H+I+lI
Vs "118V
Rl"aJl
Gv"30.n.

0.81----- -

0.'

1--+-t+HtlIIf--++1f-1tHtt-----1-+++Ht1I

0.4

f-+++++ttll---++Ht-H#---H-H+Il1I

!
!
0.1,

f- -

0.'

H--ti-H~jf-H++H~+-f-Hj-Hlf--+++I-HlH

./'5 kHz

lkHJ

40Hz

10'

Fig. 7 - Output power vs.
frequency

Fig. 8 - Sensitivity vs. output
power (R L =4n)

10'

104

f (Hz)

Fig. 9 - Sensitivity vs. output
power (R L =8.11)

(W)

RL =81l.
f

20
200
16

I--

Vs=.t18V

RL=8

H-++-¥-f'G.:"'..:.30:,,dc:H

:lkHz

B

JOO

H-+II--+-H-+++-H-+-++-H
120 H++-++-j--l+++-H-+-++-H
BOf-If-+++-H-,j......"F+-H++-H
160

Gy "30d
d

,
10

10'

..

=1°1.

10'

10'

f (Hz)

Fig. 10 - Open loop frequency response with different
values of the rolloff capacitor C4

.,~nT~-rrmm-----.--~

THERMAL DATA
Rth j-case

max

Thermal resistance junction-case

701

3

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Vs= ±20V, T amb = 25°C unless
otherwise specified)

Test conditions

Parameter

Vs

Supply voltage

Id

Quiescent drain current

Ib

Input bias current

Vos

Min.

Typ.

±5
40

V s = ±25V

Max.

Unit

± 25

V

80

mA

0.15

}.tA

I nput offset vo Itage

5

mV

los

Input offset current

0.05

}.tA

Vos

Output offset voltage

VeE(sat)

Output saturation voltage

I:!

t-requency response (-3 dB)

d

Distortion

I ntermodu lation
Rj

I nput resistance (pin 7)

Gv

Voltage gain (open loop)

10

100

mV

10 = 0.5A

± 1.7

±2

V

10 = 0.5A

10 to 160000

G v= 30 dB
10 = 0.5A
f = 1 kHz
f = 40 to 15000 Hz
._DIN 45500

f

Gv

Voltage gain (closed loop)

eN

Input noise voltage

0.05
0.2

=

Hz

0.3

%
%

0.2

%

5

MD.

100

dB

1 kHz
29.5

30

30.5

dB

4

}.tV

0.1

nA

50

dB

160
100

mA
mA

145

°C

135

°C

B (-3 dB) = 10 to 20 000 Hz

iN

Input noise current

SVR

Supply voltage rejection

f ripple= 100 Hz G v = 30 dB

Id

Drain current

Po = 4.5W
Po = 2W

Tsd

Thermal shut-down junction
temperatu re

Tsd

Thermal shut-down case
temperature

Ptot = 5W

702

R L = 36D.
R L = 36D.

35

!

0.,_

Fig. 1 - Qu iescent current vs.
supply voltage

Fig. 2 - Output current vs.

Fig. 3 - Power dissipation
vs. supply voltage

V CE (sat)

40

G-/B61

f- I+-r- +

Ptol

IWI

HI

R:3

1

"~
10

0.2

23

1.6

!Vs(V)

Fig. 4 - Open loop frequency. response with different values of the rolloff
capacitor

Fig. 6 - Supply voltage
rejection vs. voltage gain

C-l'"

c

j~

19

(pFl
Vs"!20V

'KK

120

I

'i-

10'
~o

17

1.8

Fig. 5 - Value of rolloff
capacitor vs. voltage gain
for different bandwidths

(,-15511

100

EffiWffiiHEiE

I

li',

"

WI

B~40 ~Hz

'0

1--+-+-+----j-+---jtrlpp le =100Hz -

20

1--+--+-+-+--+---+-+----1-"-+:-......-""4

1

('°4),

~~s

'0

100pF
220pF

15pF

II

III

~

6~

~

i'--.ffililli

~l--,

IIIII
IIIII
IIIII
'"

160kHz

I

IIIh

7pF--'

20

I

~~i

60

II

1"i,10

1

106

~T*

I

~

I

1.

•

,

G,

l(Hz)

..

',

[0

.;~;+o·t-h

'AI

20

Vs:22011

- r--

RL =3sn

R L = 36n
Gv" 30dB

II

10

U

0.4

I

0.'

-10

+-

01

rt=- rt=
20

t(ps)

703

1J

~,

0.2

f--'

I

I

0.5

-

H-

0,6

1/

-20

'0

Fig. 8 - Output current vs.
case temperatu re

Fig. 7 - Transient response

,.,"

20

40

1 ,
::t~,-

60

80

H H100

120T case (OC)

40

APPLICATION INFORMATION
Fig.9 - Applic~tion circuit for P0= 30 to 50W

.Y,
Note:
Resistors R9, aJ,P, Rll and R12 are
optional. Their pu~pose is to change the
allowable operating area of the output
transistors (see fig. 23).
The designer can choose different values
according to working conditions (V s,
R L) and to the SOA of the external
transistors. When these resistors are not
used the application circuit is modified
as follows:

.2

lJkO

a) R7, R8 are changed to 25 mn.
b) R 10, R12 are substituted by a short

.,

circuit .

L-_-+____ ~-

Fig. 10 - P.C. board and component layout for the circuit of fig. 9 (1:1 scale)

Po
R L=4.(1

30W

40W

± Vs

18V

20V

R9/Rll

-

2.2 kn

Rl0/R12

4.7n

4.7n

01

BD707
or
BOW21A

BD907
or
BOW21A

02

B0708
or
BOW22A

B0908
or
BOW22A

Note:

If resistors R9, R1D, Rll and R12 are not
used, R7 and R8 must be 25 mil. The following table shows what length of wire
(copper and constantan) is required to obtain
a resistor of 25 mn for different values of -"U-

100
kfl

~~#T
10
kO

n
~

I
,56n!I:;

•

I

.L

=1 kO

BOO24A

l/ZW

!

+

r,-.'2v

For this application the maximum value of Vs in no-load condition is ± 45V.

707

Application suggestions for circuit in fig. 20
Using the two circuits shown in fig. 21 and fig. 22 it is possible
to use a transformer with a large spread of output voltage
between load and no-load condition.
The voltage on pins 1 and 5 follows Vo according to the
equations:
V 1= V 0 + (V s - Vol •

-':::R71-,-,~=;2R:::-;2--

Fig. 21

- 2 V BE

R2
V5= Vo - (Vs + Vol • ---;R""1:;-'-'-+"'R~2;- + 2 VBE
R2

while the voltage between pins 1 and 5 is a constant. In fact:
~--'----+---JVo~
~

-V 1-V 5- V'
V 1-5s

2 R2
R1+R2
- 4 V BE

TO OUTPUT
POWER
TRANSISTORS

V 1-5 must not exceed 50V and then the maximum value of Vs
in no-load condition will be:
Vs max= (50 + 4 VBEI •

R1 + R2
2 R2

R1

:'-255211

The minimum value of Vs depends on the output power
requested and will be:
VS(min)= V L + VCE(sat) with VL=

.J 2 Po

RL

Resistance R2 must be greater than R 1 to guarantee a positive
voltage on pin 1 and a negative voltage on pin 5 for correct
working of TDA 2020D.
Note 1 - Between pins 1 and 5 a ceramic capacitor must be inserted
to guarantee good stability.
Note 2 - It is possible to insert an electrolytic capacitor (10 ).LF)
between pin 1 and GND and between pin 5 and GND, but
in this case the maximum output voltage must be V peak=23V.

With the circuit in fig. 22 the voltage at pins 1 and 5 is kept
constant by two zener diodes. In load conditions a current
equal to 10= 1/{3 flows in R; the value of R is then given by
(VCE-VBEI
R =
I
{3. In no-load condition, if !:N is the in-

Fig. 22

rfY:T'V
I :"F .
VO TO OUTPUT
POWER

TRANSfS TORS

crease in the supply voltage, the zener diodes dissipate a
power depending on !:N and {3 according to the equation:

5-1553

708

SHORT CIRCUIT PROTECTION
The most important innovation in the TOA 20200 is an original circuit which limits the current of the
output transistors. Fig. 23 shows that the maximum output current is a function of the collector-emitter
voltage; hence the output transistors work within their safe operating area (fig. 24). This function can
therefore be considered as being peak power limiting rather than simple current limiting.
By choosing the appropriate values for R9, R 10, R11, R12, (fig. 9) the maximum output current can be
established as a function of the SOA of the output parameters being used.

Fig. 23 - Maximum output
current vs. vo Itage [V C~(sat)]
across one output transistor,
for different values of R 10
(typical application circuit)

Fig. 24 - Safe operating area and collector
characteristics of the protected power
transistor

\
\"'--P tot =k
\

Ie max

\

\

1O:Rlh4.7; = 11" kn
RIO" RIZ"I,,7n; R9"RII,,_
Rl0",R12:0 . R9:RlI:_

6

12

18

24

]0

36

42

48

Vc.E(Vl

os 076411

THERMAL SHUT-DOWN
The presence of a thermal limiting circuit offers the following advantages:
1) An overload on the output (even if it is permanent) or an above-limit ambient temperature can be
easily withstood since the T j cannot be higher than 150°C.
2) The heatsink can have a smaller safety factor than a conventional circuit. There is no possibility of
device damage due to high junction temperature.
If, for any reason, the junction temperature increases up to 150°C, the thermal shut-"~~~--ill-----,

,.--'-1

~"1

,n

Rio

I

22KJ1

22KQ

717

'00,",}

0' F
iJ

an

Tweeter (SW)

PRACTICAL CONSIDERATIONS
Printed circuit board
The layout shown in fig. 16 should be adopted by the designers. If different layouts are used, the ground
points of input 1 and input 2 must be well decoupled from the ground return of the output in which a
high current flows.

Assembly suggestion
No electrical isolation is needed between the package and the heatsink with single supply voltage configuration.

Application suggestions
The recommended values of the components are those shown on application circuit of fig. 13. Different
values can be used. The following table can help the designer.

Recomm.
value

Component

Larger than
recommended value

Purpose

Smaller than
recommended value

Rl

22 kn

Closed loop gain
setting

Increase of gain

Decrease of ga in

R2

680 n

Closed loop gain
setting

Decrease of ga in

Increase of ga in

R3

22 kn

Non inverting input
biasing

Increase of input
impedance

Decrease of input
impedance

R4

1n

Frequency stability

Danger of osci Ilat. at
high frequencies
with induct. loads

R5

'= 3 R2

Upper frequency
cutoff

Poor high frequencies attenuation

Cl

1 "F

C2

Danger of
oscillation

Inpu.t DC
decoupling

Increase of low frequencies cutoff

22" F

Inverting DC
decoupling

Increase of low frequencies cutoff

C3,C4

0.1 "F

Supply voltage
bypass

Danger of oscillation

C5,C6

100 "F

Supply voltage
bypass

Danger of oscillation

C7

0.22"F

Frequency stability

Danger of oscillat.

C8
D1,D2

-

1
21T B R1
1 N4001

Upper frequency
cutoff

Smaller bandwidth

Larger bandwidth

To protect the device against output voltage spikes

718

SHORT CIRCUIT PROTECTION
The TDA 2030 has an original circuit which limits the current of the output transistors. Fig. 20 shows
that the maximum output current is a function of the collector emitter voltage; hence the output
transistors work within their safe operating area (fig. 21). This function can therefore be considered
as being peak power limiting rather than simple current limiting. The TDA 2030 is thus protected
against temporary overloads or short circuit. Should the short circuit exist for a longer time, the thermal
shut-down protection keeps the junction temperature within safe limits.

Fig. 21 - Safe operating area and'
collector characteristics of the pro·
tected power transistor

Fig. 20 - Maximum output
current vs. voltage [V CEsat]
across each output transitor

Q,

aroa\
Second

breakdown

0,

-,
10
.... CEQ2 (v) -30

10
-10

S-075t,11

THERMAL SHUT-DOWN
The presence of a thermal limiting circuit offers the following advantages:
1) An overload on the output (even if it is permanent), or an above limit ambient temperature can be
easily supported since the T j cannot be higher than 150°C.
2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There
is no possibility of device damage due to high junction temperature. If for any reason, the junction
temperature increases up to 150°C, the thermal shut-down simply reduces the power dissipation and
the current consumption.
The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 24 shows this dissipable power as a function of ambient temperature for different
thermal resistance.

719

Fig. 23 - Output power and
drain current vs. case temperature (R L = 8n)

Fig. 22 - Output power and
drain current vs. case temperature (R L = 4n )

Fig. 24 - Maximum allowable power dissipation vs.
ambient temperature

ld
(A)

16

12

12

10

50

0.6

0.6

0.4

0.4

01

0.2

100

50

100

150

50

Tcase(OC)

Dimension: suggestion.

Fig. 25 - Example of heat-sink

The following table shows the length
that the heatsink in fig. 25 must have for
several values of Ptot and Rth .
Ptot(W)

Length of heatsink
(mm)
Rth of heatsink

(OC/W)

..... _~ _____.~5~O_ _ _ _ _+l

720

12

8

6

60

40

30

4.2

6.2

8.3

~i,
;

:\

LINEAR INTEGRATED CIRCUIT

I-I
I

PRELIMINARY DATA

law Hi-Fi AMPLIFIER AND 30W DRIVER
The TDA 2030A is a monolithic IC in Pentawatt@package intended for use as low frequency class AB
amplifier.
With Vs max= 44V it is particularly suited for more reliable applications without regulated supply and
for 30W driver circuits using low-cost complementary pairs.
The TDA 2030A provides high output current and has very low harmonic and cross-over distortion.
Further the device incorporates a short circuit protection system comprising an arrangement for automatically limiting the dissipated power so as to keep the working point of the output transistors within
their safe operating area. A conventional thermal shut-down system is also included.

ABSOLUTE MAXIMUM RATINGS
Vs
Vi
Vi
10
Ptot
Tstg • TJ

Supply voltage
Input voltage
Differential input voltage
Peak output current
Total power dissipation at Tcase= 90°C
Storage and junction temperature

± 22
Vs
±15

3.5
20
-40 to 150

V
V
A
W
°C

ORDERING NUMBER: TDA 2030AV

MECHANICAL DATA

Dimensions in mm

721

6/82

CONNECTION DIAGRAM
(top view)

'~<.D•.

jj
.

_

l,r::!::,,"~
~

NON INVERTING INPUT

$-2128/1

TEST CIRCUIT

THERMAL DATA
Rth j-case

Thermal resistance junction-case

max

722

3

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Vs= ±16V, Tamb = 25°C unless
otherwise specified)
Parameter
Vs

Supply voltage

Id

Quiescent drain current

Ib

Input bias current

Test conditions

Min.

Typ.

Max.

Unit

± 22

V

50

80

mA

0.2

2

/lA

±6

Vs=±22V
Vos

I nput offset voltage

±2

± 20

mV

los

I nput offset current

± 20

± 200

nA

Po

Output power

BW

Power bandwidth

SR

Slew Rate

Gv

Open loop voltage gain

Gv

Closed loop voltage gain

d

Total harmonic distortion

d = 0.5%
G v = 26 dB
f = 40 to 15000 Hz
RL= 4 n
RL= 8 n

15
10

18
12

Vs = ± 19V

R L =8n

13

16

Po= 15W

RL = 4 n

W

100

KHz

8

V//lsec

80

dB

1 = 1 KHz
25.5

26

26.5

dB

Po=0.1t014W
RL=4 n
1 = 40 to 15000 Hz
1 = 1 KHz

0.08
0.03

%

0.05

%

0.03

%

0.08

%

Po =0.1t09W
R L =8 n
1 = 40 to 15000 Hz
d2

Second order CC I F
intermodulation distortion

Po=4W
R L = 4n

Irl1 = 1 KHz

d3·

Third order CCIF
i ntermodu lation distortion

11 = 14 KHz
12 = 15 KHz

21 1 -1 2 = 13KHz

I nput noise voltage

B = curve A

2

B = 22 Hz to 22 KHz

3

eN

/lV

iN

I nput noise current

B = curve A

50

B = 22 Hz to 22 KHz

80

R L = 4n
Rg= 10 Kn
B = curve A

Po = 15W

106

Po = 1W

94

10

pA

SIN

Signal to noise ratio

200

dB

723

ELECTRICAL CHARACTERISTICS (continued)
Parameter

Test conditions

RI

I nput resistance (pin 1)

(open loop)

f = 1 KHz

SVR

Supply voltage rejection

R L =4n
Rg= 22 Kn

Gv = 26dB
f = 100 Hz

I=in
1 _ -C::innl.a
ell""!..1
";:'"
" ' ; : J ' - --1""1""',

.

..

0.5

5

Mn

54

dB

145

°C

i"'-....

60

GA'N

.0

,/

•0
I
I

Fig. 3 - Output power vs.
supply voltage
G-10601

l"

/ ',J'..
10

..

::-.....

Unit

~rnnli.f:iR"

PHASE

,00
.0

Max.

_ ••• ,... ........ .

Fig. 2 - Open loop-frequency response
G-'""
I
)

-.0

Typ.

Thermal shut-down junction
temperatu re

Tj

,-,

Min.

"'. ~
.- f -

•

'w",

Fig. 4 - Total harmonic
distortion vs. output power(*)

.....-,----,-,--r_---,--,--"':!.!i''''---,
,

~v=~l~·ZS

fa40Hz to 15KHz

2'

./

.0

. /K."

"
" V

./

k;;-

V
......... V

......
115;3811 :,lIs =3211

0.3 1-+_I-+_;:"L=,=6"-~!I=rURL='~='=I-----i

V

I

·.0
·60
'0

"

"

"

*) Test using noise filters.

724

3.

0.1

0.3

10

30

Po(W)

I

Fig. 5 - Two tone CCIF
intermodulation distortion
(;-'607

(.,d

.)

.. I" . II.
I

J1V
Po: 4W
- - R L :4fi
IG v :26dB

I

-r.-~

I
-...+-

i-t-!

I

I

f--f--Il---i-- -

~~

f--

'0 r-r"TTTTmr--"-jTTTTTnr--T~\-m,

2.
"

~"50.n.

r-

=4,n.

20

0.1

J

0.0 3

ri DRciR J, )
(t 2

,

i\

"

ORDER (2f,-f21

i,

./

I
30

100

300

11(

311.

10K

t (Hz)

10

I (KHz)

-50

50

100

Fig. 8 - Split-supply high power amplifier (TOA 2030A + B0907/B0908)

Fig. 9 - Single supply high power amplifier (TOA 2030A + B0907/B0908)
Rl

56K.ll.

!

~1~~H4~~~~~--~+H~
"s:IISV

.

I

0.3

Fig. 7 - Maximum allowable
power dissipation vs. ambient temperature

Fig. 6 - Large signal frequency response

C3

R6

Io.22JJF

1.5ll.

4ll.

725

Fig. 10 - P.C. board and component layout for the circuit of fig. 9 (1:1 scale)

GND IN

RL

GND +Vs

Typical performance of the circuit of fig. 9
Parameter

Test conditions

Min.

Typ.

Max.

Unit

36

44

V

Vs

Supply voltage

Id

Quiescent drain current

Vs = 36V

Po

Output power

d = 0.5%
RL=4n
f = 40Hz to 15KHz

Vs= 39V

35

Vs= 36V

28

d = 10%; f = 1 KHz

Vs= 39V

44

R L =4n

Vs= 36V

35

50

mA

W

W

Gv

Voltage gain

SR

Slew Rate

d

Total harmonic distortion

f = 1 KHz

19.5

20
8

f = 1 KHz

0.02

f=40Hzt015KHz

0.05

20.5

dB
V I!-,sec

%

Po= 20W

Vi

I nput sensitivity

Gv = 20 dB
Po= 20W

f = 1 KHz
RL=4n

890

SIN

Signal to noise ratio

RL= 4.11
Rg= 10 Kn
B = curve A

Po= 25W

108

Po=4W

100

mV

dB

726

35
30

t--

Pp,-------,-,-~~~~

d
('10)

TOA 20JOA
B0907-60908

Po
(w)

Fig. 13 - Output power vs.
input level

Fig. 12 - Total harmonic
distortion vs. output p?~~,:

Fig. 11 - Output power vs.
supply voltage

(WI

18

G v " 20 dB

~ d"
~;:~~<:1015KHzf--+-+-f--7'"-1
0.5 I.
/

/'

15
20

f----

'5

-

//,

,,/

0'

V

I
24

03

/'

26

r---t-+-L---f

I
36

28

30

Fig. 14 - Power dissipation
vs. output power

,

125

Vs=36V
Rl ,,1,11.

I I

10

-

I--

Cm-1~LET~
V

/

I

Y;

/

t ,,1KHz

-

AJPLlFiER

I r
I I

r-

I'

809b7 - sl0908

t

TDj 2030

1 I
I I
"

175

250

350

500

700

Vi (mV)

Fig. 15 - Typical amplifier whit split power supply

G-4701

I

!

)

'0

Po(W)

I
I

Fig. 16 - P.C. board and component layout for the circuit of fig. 15 (1

727

1 scale)

Fig. 17 - Bridge amplifier whit split power supply (Po= 34W, Vs= ±16V)

811

22Kll

R7

C5

~22JJF

R 6.:t680

11

5-5218

Fig. 18 - P.C. board and component layout for the circuit in fig. 17 (1:1 scale)

728

Multiway speaker systems and active boxes
Multiway loudspeaker systems provide the best possible acoustic performance since each loudspeaker is
specially designed and optimized to handle a limited range of frequencies. Commonly, these loudspeaker
systems divide the audio spectrum into two or three bands.
To maintain a flat frequency response over the Hi-Fi audio range the bands covered by each louds·
peaker must overlap slightly. Imbalance between the loudspeakers produces unacceptable results there·
fore it is important to ensure that each unit generates the correct amount of acoustic energy for its seg·
ment of the audio spectrum. In this respect it is also important to know the energy distribution of the
music spectrum to determine the cutoff frequencies of the crossover filters (see fig. 19). As an example,
a lOOW three-way system with crossover frequencies of 400 Hz and 3 KHz would require 50W for the
woofer, 35W for the midrange unit and 15W for the tweeter.
Both active and passive filters can be used for crossovers but today active filters cost significantly less
than a good passive filter using air-cored inductors and non-electrolytic capacitors. In addition, active
filters do not suffer from the typical defects of passive filters:
power loss
increased impedance seen by the loudspeaker (lower damping)
difficulty of precise design due to variable loudspeaker impedance.
Fig. 19 - Power distribution
vs. frequency

Fig. 20 - Active power filter

~ HH++~~~++~4+h+~H+++~
00

,.
o. H+++i-t"rm"l-fII-r7'l++-h-

5.

H+++H+-h-~~~++~++h+++rH

'0

H+t+H+ffl+-f+-t+-h-P-h-f-l+"rH
HH+h,*ffi-t+4-t+++·f7-HHHJ·+-f-h

10

Obviously, active crossovers can only be used if a power amplifier is provided for each drive unit.
This makes it particularly interesting and economically sound to use monolithic power amplifiers.
In some applications, complex filters are not really necessary and simple RC low-pass and high-pass
networks (6 dB/octave) can be recommended.
The results obtained are excellent because this is the best type of audio filter and the only one free from
phase and transient distortion.
The rather poor out of band attenuation of single RC filters means that the loudspeaker must operate
linearly well beyond the crossover freqllency to avoid distortion.
A more effective solution, named "Active Power Filter" by SGS is shown in fig. 20.
The proposed circuit can realize combined power amplifiers and 12 dB/octave or 18 dB/octave high-pass
or low-pass filters.
In practice, at the input pins of the amplifier two equal and in-phase voltages are available, as required
for the active filter operation.
The impedance at the pin (-) is of the order of lOOn, while that of the pin (+) is very high, which is
also what was wanted.
729

The component values calculated for fc = 900 Hz using a Bessel 3rd order Sallen and Key structure are:
Cl

= C2 = C3
22 nF

Rl

R2

R3

8.2 KO

5.6 KO

33 KO

Using this type of crossover filter, a complete 3-way 60W active loudspeaker system is shown in fig. 21.
It employs 2nd order Buttherworth filters with the crossover frequencies equal to 300 Hz and 3 KHz.
The midrange section consists of two filters, a high pass circuit followed by a low pass network.
With Vs = 36V the output power delivered to the woofer is 25W at d = 0.06% (30W at d = 0.5%).
The power delivered to the midrange and the tweeter can be optimized in the design phase taking in
account the louspeaker efficiency and impedance (R L = 40 or 80).
It is quite common that midrange and tweeter speakers have an efficiency 3 dB higher than woofers.
Fig. 21 - 3 way 60W active loudspeaker system (V s = 36V)

~r,,-0-ou-F~~~0.-,,-uF--~O-.5-A---'N-40-0~~~_~1~O+36V

............

LOW-PA~S

WOOFER
+36V

BAND - PA55

300 Hz to

3~Hz

l1i14001

1
'O,..F

'A

8A

}22I'F

MIDRANGE

1N4001

HIGH-PAS!)
3K.Hz

'!L'OO)"'F
+v.

81l.

l,22,..F

22K.1l.

I

TWEETER

22KJl
5 - LeU

730

Musical instruments amplifiers
Another important field of application for active systems is music.
In this area the use of several medium power amplifiers is more convenient than a single high power
amplifier, and it is also more reliable.
A typical example (see fig. 22) consist of four amplifiers each driving a low-cost, 4n, 12 inch loudspeaker. Th is appl ication can supply 80 to 160W rms.
Similar output power can be obtained by a single amplifier using the "superbridge" circuit of fig.24.As
shown in the diagram of fig. 16 this circuit can supply output power of 120W and more.

Fig. 22 - High power active box for musical instrument

Fig. 23 - Output power vs.
supply voltage (application
circuit of fig. 24)
G"

l

P,
(W )

!
0

IN

/'

0

1/,'/

80
50

d_""/

]7V

~

59&

V /
A

~'I.
~-

I
I

I

I

I

V

20

:!:12

Fig. 24 - 120W "superbridge" power ampl ifier

731

!11,

±1S

!18

\Is (V)

Transient intermodulation distortion (TIM)
Transient intermodulation distortion is an unfortunate ph en omen associated with negative-feedback
amplifiers. When a feedback amplifier receives an input signal which rises very steeply, i.e. it contains
high-frequency components, the feedback can arrive too late so that the amplifiers overloads and a burst
of intermodulation distortion will be produced as in fig. 25. Since transients occur frequently in music
this is obviously a problem for the designer of audio amplifiers. Unfortunately, heavy negative feedback
is frequently used to reduce the total harmonic distortion of an amplifier, which tends to aggravate the
transient intermodulation (TIM) situation. The best known method for the measurement of TIM consists
of feeding sine waves superimposed onto square waves, into the amplifier under test. The output spectrum is then examined using a spectrum analyser and compared to the input. This method suffers from
serious disadvantages: the accuracy is limited, the measurement is a rather delicate operation and an
expensive spectrum analyser is essential. A new approach (see Technical Note 143) applied by SGS to
monolithic amplifiers measurement is fast cheap-it requires nothing more sophisticated than an oscilloscope - and sensitive - and it can be used down to the values as low as 0.002% in high power amplifiers.
The "inverting-sawtooth" method of measurement is based on the response of an amplifier to a 20 KHz
sawtooth waveform. The amplifier has no difficulty following the slow ramp but it cannot follow the
fast edge. The output will follow the upper line in fig. 26 cutting of the shaded area and thus increasing
the mean level. If this output signal is filtered to remove the sawtooth, a direct voltage remains which
i"Ji<;dL'" Li,,, dll'VUIIL VI Tiivi Ji,ivriiun, aithuugh it is ciiiiicui1lO measure because i1 is indis1inguisnabie
from the d.c. offset of the amplifier. This problem is neatly avoided in the IS-TIM method by periodically inverting the sawtooth waveform at a low audio frequency as shown in fig. 27. In the case of the
sawtooth in fig. 26 the mean level was increased by the TIM distortion, for a sawtooth in the other
direction the opposite is true.

Fig. 26 - 20 KHz sawtooth waveform

Fig. 25 - Overshoot phenomenon in feedback amplifiers

v,

- --,.....,

I

V3

II

---

I-- ~

Fig. 27 - Inverting sawtooth waveform

f--

r--

mTmD

OUTPUT

SIGNAL_ _ _..J

(I)

The result is an a.c. signal at the output whose peak-to-peak value is the TIM voltage, which can be
measured easily with an oscilloscope.
If the peak-to-peak value of the signal and the peak-to-peak of the inverting sawtooth are measured,
the TIM can be found very simply from:
TI M = ---,-..,.V..=o-,,-u-,-t_ _ • 100
Vsawtooth

732

'I,

,

,.,

j

i/

11

ii

In fig. 28 the experimental results are shown for the 30W amplifier using the TDA2030A as a driver and
a low-cost complementary pair.
The measured performances are perfectly suitable for Hi-Fi systems.
A simple RC filter on the input of the amplifier to limit the maximum signal slope (SS) is an effective
way to reduce TIM.
The diagram of fig. 29 originated by SGS can be used to find the Slew-Rate (SR) required for a given
output power or voltage and a TI M design target.
For example if an anti-TIM filter with a cutoff at 30 KHz is used and the max. peak-to-peak output
voltage is 20V then, referring to the diagram, a Slew-Rate of 6V /J1S is necessary for 0,1% TIM.
As shown Slew-Rates of above 10V/IlS do not contribute to a further reduction in TIM.
Slew-Rates of 100V/IlS are not only useless but also a disadvantage in Hi-Fi audio amplifiers because
they tend to turn the amplifier into a radio receiver.

Fig. 28 - TIM distortion vs.
output power

Fig. 29 - TIM design diagram (fc= 30 KHz)

0"'l1li_
v

om '-.L.l.LLl,.il,1L-...L..L,Ll.J.J,

0,1 LL.L.l.JLWll--.JLl..LllWL...l...Ll-1..W.lJ

L-.L..L.L,.w,.LUJ,

.IJJ,

0.1

1

10

Po(W)

0.1

10

Vo(Vpp)

Power supply
Using monolithic audio amplifier with non-regulated supply voltage it is important to design the power
supply correctly. In any working case it must provide a supply voltage less than the maximum value
fixed by the IC breakdown voltage.
It is essential to take into account all the working conditions, in particular mains fluctuations and supply
voltage variations with and without load.
The TDA 2030A (V. max= 44V) is particularly suitable for substitution of the standard Ie power amplifiers (with V. max= 36V) for more reliable applications.
An example, using a simple full-wave rectifier followed by a capacitor filter, is shown in the table and in
the diagram of fig. 30.
A regulated supply is not usually used for the power output stages because of its dimensioning must be
done taking into account the power to supply in the signal peaks. They are only a small percentage of
the total music signal, with consequently large overdimensioning of the circuit.
Even if with a regulated supply higher output power can be obtained (V. is constant in all working conditions), the additional cost and power dissipation do not usually justify its use. Using non-regulated
supplies, there are fewer design restriction. In fact, when signal peaks are present, the capacitor filter acts
as a flywheel supplying the required energy.
In average conditions, the continuous power supplied is lower. The music power/continuous power ratio
is greater in this case than for the case of regulated supplied, with space saving and cost reduction.
733

.,I:

Mains
(220V)
+20%
+15%
+10%
-10%
-15%
-20%

Secondary
voltage
28.8V
27.6V
26.4V
24V
21.6V
20.4V
19.2V

Fig. 30 - DC characteristics
of 50W non-regulated supply

DC output voltage (V 0)
10= 0

43.2V
41.4V
39.6V
36.2V
32.4V
30.6V
28.8V

10= O.1A

10= 1A

42V
40.3V
38.5V
35V
31.5V
29.8V
28V

37.5V
35.8V
34.2V
31V
27.8V
26V
24.3V

"0

'v

eVppl

G8C-tH-l744-JO

3.
34

R IPPLE

I

)

t)'"

220 V

\
l"-

31

I

""'-

RIPPLE

f-

30

50VA

.......

"''"

L
'0

f-

--......... "OUT(DC)

~

""'j--....,

28

0.8

15

20

Io(A)

SHORT CIRCUIT PROTECTION
The TDA 2030A has an original circuit which limits the current of the output transistors. This function
can be considered as being peak power limiting rather than simple current limiting. The TDA 2030A is
thus protected against temporary overloads or short circuit. Should the short circuit exist for a longer
time, the thermal shut-down protection keeps the junction temperature within safe limits.

THERMAL SHUT-DOWN
The presence of a thermal limiting circuit offers the following advantages:
1) An overload on the output (even if it is permanent), or an above limit ambient temperature can be
easily supported since the T j cannot be higher than 150°C.
2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There
is no possibility of device damage due to high junction temperature. If for any reason, the junction
temperature increases up to 150°C, the thermal shut-down simply reduces the power dissipation and
the current consumption.

734

LINEAR INTEGRATED CIRCUIT

22W Hi-Fi AUDIO POWER AMPLI FIER
The TDA 2040 is a monolithic integrated circuit in Pentawatt ® package, intended for use as an audio
class AB amplifier. Typically it provides 22W output power (d = 0.5%) at Vs = 32V/4n. The TDA 2040
provides high output current and has very low harmonic and cross-over distortion. Further the device
incorporates a patented short circuit protection system comprising an arrangement for automatically
limiting the dissipated power so as to keep the working point of the output transistors within their safe
operating area. A thermal shut-down system is also included.

ABSOLUTE MAXIMUM RATINGS
Vs
Vi
Vi
10 .

Ptot
Tstg , Tj

Supply voltage
I nput voltage
Differential input voltage
Output peak current (internally limited)
Power dissipation at Tease = 75° C
Storage and junction temperature

ORDERING NUMBER:

± 20

V

Vs
± 15

V

4
25
-40 to 150

A
W

°C

TDA 2040V

MECHANICAL DATA

Dimensions in mm

l5.8""'~

735

6/82

CONNECTION DIAGRAM
(top view)

~I!
l1ri:,?~::",,~
~
~
""

NON INVERTING INPUT

5-262B/1

TEST CI RCUIT

5 - 5383

THERMAL DATA
Rth j-case

max

Thermal resistance junction-case

736

3

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Vs

= ±16V,

Tamb = 25°C unless

otherwise specified)
Parameter
Vs

Supply voltage

Id

Quiescent drain current

Test conditions

Min.

Typ.

Max.

± 2.5

Unit
V

Vs= ± 4.5V
45

30

mA

100

mA

Ib

Input bias current

0.3

1

p.A

Vos

Input offset voltage

±2

± 20

mV

±200

nA

los

Input offset current

Po

Output power

BW

Power bandwidth

Gv

Open loop voltage gain

Gv

Closed loop voltage gain

d

Total harmonic distortion

eN

iN

I nput noise voltage

20

22
12

W

f = 15 KHz

RL= 4n

15

1S

W

Po= 1W

R L =4n

100

KHz

SO

dB

29.5
Po= 0.1 to 10W

R L =4n
f = 40 to 15000Hz
f = 1 KHz

30
O.OS
0.03

B = curve A

2

B '= 22 Hz to 22 KHz

3

30.5

dB
%

p.V
I nput noise current

B = curve A

50

B = 22 Hz to 22 KHz

SO

pA
I nput resistance (pin 1)

SVR

Supply voltage rejection

Tj

T case= 60°C
R L =4n
RL=Sn

f = 1 KHz

Rj

1"/

d = 0.5%
f = 1 KHz

Efficiency

Gv = 30 dB
R L = 4n
f=100Hz
Rg= 22 Kn
Vrjpple= 0.5 V rms
f = 1 KHz
Po= 12W
Po= 22W

R L = sn
R L =4n

Thermal shut-down junction
temperatu re

737

0.5

5

Mn

40

4S

dB

66
63

%

145

°C

APPLICATION INFORMATION
Fig. 1 - Amplifier with split power
supply (*)

Fig. 2 - P.C. board and components layout of the
circuit of fig. 1.

----~----.n-vs

22 ~ ~ :I:100~~:I:
5-5137

Vs = ± 16V
RL=4D

PO;;;' 15W (d

= 0.5%)

Fig. 3 - Amplifier with single supply (*)

Fig. 4 - P.C. board and components layout of the
circuit of fig. 3.

5-482612

* In the case of highly inductive loads protection
diodes may be necessary.

738

APPLICATION INFORMATION (continued)
Fig. 5 - 30W Bridge amplifier with split power supply

IN

C1

5-j] l-..----f---'-l
2.2 )-IF
22K ..'l

eD

Vs = ± 16V
RL = 8n
Po;;' 30W (d

= 0.5%)

Fig.6 - P.C. board and components layout for the circuit of fig. 5.

739

APPLICATION INFORMATION (continued)
Multiway speaker systems and active boxes
Multiway loudspeaker systems provide the best possible acoustic performance since each lodspeaker is
specially designed and optimized to handle a limited range of frequencies. Commonly, these loudspeaker
systems divide the audio spectrum into two, three or four bands.
To maintain a flat frequency response over the HiFi audio range the bands covered by each loudspeaker
must overlap sl ightly. Imbalance between the loudspeakers produces unacceptable results therefore it is
important to ensure that each unit generates the correct amount of acoustic energy for its segment of
the audio spectrum. In this respect it is also important to know the enenlV distribution of the music
spectrum to determine the cutoff frequencies of the crossover filters (see fig. 7). As an example, a
100 W three-way system with crossover frequencies of 400 Hz and 3KHz would require 50W for the
woofer, 35W for the midrange unit and 15W for the tweeter.
Both active and passive filters can be used for crossovers but today active filters cost significantly less
than a good passive filter using air-cored inductors and non-electrolytic capacitors. In addition, active
filters do not suffer from the typical defects of passive filters:
power loss
increased impedance seen by the loudspeaker (lower damping)
difficulty of precise design due to variable loudspeaker impedance

,.,

Fig. 7 - Power distribution
vs. frequency
G-'66'

.)

-

90

~

~

V

lEe -DIN
FOR
SPEAKER

TESTING

80

I

i

70

60

MODERN
MUSIC

II

'1/

!
40

'/:

30

10

Fig. 8 - Active power filter

I

V

./

,

i

I

0.02 0.04 O,OB 0.16 0.31 0.63 1.25 2.5

5

10

20

f (KHz)

Obviously, active crossovers can only be used if a power amplifier is provided for !lach drive unit.
This makes it particularly interesting and economically sound to use monolithic power amplifiers.
In some applications, complex filters are not really necessary and simple RC low-pass and high-pass
networks (6 dB/octave) can be recommended.
The results obtained are excellent because this is the best type of audio filter and the only one free from
phase and transient distortion.
The rather poor out of band attenuation of single RC filters means that the loudspeaker must operate
linearly well beyond the crossover frequency to avoid distortion.
A more effective solution, named "Active Power Filter" by SGS is shown in fig. 8.
The proposed circuit can realize combined power amplifiers and 12 dB/octave or 18 dB/octave highpass or low-pass filters.
In practice, at the input pins of the amplifier two equal and in-phase voltages are available, as required
for the active filter operation.
The impedance at the pin (-) is of the order of 100.11, while that of the pin (+) is very high, which is
also what was wanted.
740

The component values calculated for fc

= 900 Hz using a Bessel 3rd order Sallen and

C1 = C2= C3

R1

R2

R3

22 nF

8.2 Kn

5.6 Kn

33 Kn

Key structure are:

In the block diagram of fig. 9 is represented an active loudspeaker system completely realized using
power integrated circuits, rather than the traditional discrete transistors or hybrids, very high quality is
obtained by driving the audio spectrum into three bands using active crossovers (TDA 2320A) and a
separate amplifier and loudspeaker for each band.
A modern subwoofer/midrange/tweeter solutionis used.

Fig. 9 - High power active loudspeaker system using TDA 2030A and TDA 2040
r- -I

8il
: TWEETER

I

811.

I SUBWOOFER

8il
: MIDRANGE

5-5139

741

LINEAR INTEGRATED CIRCUIT
PREAMPLIFIER
•
•
•
•
•
•

WITH

ALC

FOR

Cr 0 2

CASSETTE RECORDERS

EXCELLENT VERSATILITY IN USE (V s from 4 to 20V)
HIGH OPEN LOOP GAIN
LOW DISTORTION
LOW NOISE
LARGE AUTOMATIC LEVEL CONTROL RANGE
STEREO MATCHING BETTER THAN 3 dB (matched pair)

The TDA 2054M is a monolithic integrated circuit in a 16-lead dual in-line plastic package.
The functions incorporated are:
-

low noise preamplifier
automatic level control system (ALC)
high gain equalization amplifier

It is intended as preamplifier in tape and cassette recorders and players (C,02), dictaphones, compressor
and expander in telephonic equipments, Hi-Fi preamplifiers and in wire diffusion receivers; for stereo
applications the ALC matching is better than 3 dB.

ABSOLUTE MAXIMUM RATINGS
Supply voltage
Total power dissipation at T amb = 50°C
Storage and junction temperature

ORDERING NUMBERS:

20
500
-40 to 150

TDA 2054M mono applications
2 TDA 2054M stereo applications

MECHANICAL DATA

Dimensions in mm

~
~.~~ ~
•••.

.....•

0.4 ....

· 1 8 . . ' .. . \ .
",' ',',

,,',

e
6/82

V
mW
°C

742

'

......

a3BI

, ".. ,,' ',',' *'OC!I-C

CONNECTION DIAGRAM
ALC OUTPUT

16

ALC RECOVERY
TIME

03 BASE

15

ALC INPUT

01 COLLECTOR
Q2 BASE
01

SUPPLY
VOLTAGE

BASE

OUTPUT

01

EMITTER

12

FREOUENCY
COMPENSATION

02

EMITTER

11

NON INVERTING
INPUT
INVERTING
INPUT

02
03

GROUND
5-3341

SCHEMATIC DIAGRAM
4

11

10

08

02

09

01

I~

010

D5

tI

I
I

@
01

Q2

03

i-~
l

OJ'

EQUALIZATION AMPLIFIER

15

A LC
S-Jt.04

743

TEST CIRCUIT

,---..----------------o.v.
2.2Mfi
150pF

4'7~
IVo

5-3405

THERMAL DATA
Rth j-amb

max

Thermal resistance junction-ambient

200

°C!W

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, T amb = 25°C)
Parameter

Test conditions

Vs

Supply voltage

Id

Quiescent drain current

Vs=9V
S1 = S2 = S3 = at B

hFE

DC current gain (Q1, Q2, Q3)

Ie = 0.1 mA

V eE = 5V

eN

Input noise voltage (Q1, Q2, Q3)
le=0,1 mA
f = 1 KHz

V eE = 5V

iN

Input noise current (Q1, Q2, Q3)

NF

Noise figure (Q1, Q2, Q3)

Min.

Typ·.

4

Max.
20

10
'300

Unit
V
rnA

500
nV

2

../Hz
pA

0,5

../Hz

V eE = 5V

le=0.1 rnA

Rg = 4,7 K1'2
B (-3 dB)= 20 to 10000 Hz
Gv

Open loop voltage gain(for
equalization amplifier)

V s - 9V

Vo

Output voltage with A.L,C.

Vs = 9V
f = 1 KHz

eN

Equivalent input noise voltage
(for equalization amplifier pin 11)

V s - 9V
G v = 40 dB
S1 at B
B (-3 dB)= 20 to 20000 Hz

Rl

Q3 emitter resistance

0.5

4

dB

f = 1 KHz

60

Vi= 100mV
S1= S2= S3 at A

0,6

V

1.3

}J.V

105

744

150

dB

195

1'2

Fig. 1 - Equivalent input
spot voltage and noise cur·
rent vs. bias current (tran·
sistors 01,02,03)

Fig. 2 - Equivalent input
noise current vs. frequency
(transistors 01, 02, 03)

(~):~~aI~~~~IO~H~~I~~)\

-Kalil

(;,;;.)

(ve)

w':~. ~-t
e-. " ':J.i

,• e"""~-

~p!'

.~;., 10H, ~.~
1,

''"''

11;'OkHZ

10'

10

10-'

10'

I

A

tr+:150 "A:-=

,-

-1-T~! !I'III
10'

10'

I

-1

i~
d±

I

I

50 A

,!II

...

ImA

10'

10'

«Hz)

Fig. 6 - Current gain vs.
collector current (transistors
01,02,03)
NF

(dB)

(kO)

"'.
soo

i'..

"

:,,11

it:

10

f(Hz)

Fig. 5 - Optimum source
resistance and minimum N F
vs. bias current (transistors
01 02 03)
,

R,

.==:.

il'
'I

~

10

Fig. 4 - Noise figure vs.
bias current (transistors 01,
02,03)

,~t
10

rT
-

~.

t

:

,e-H

~TTp-..+-=:::T~100Hl

f

ImA

k

lo'~b;: -li- '"~' ~-y~"j,~~1
,

10'

10

r ",,+",+HlII"0""'''l"'41-ffi4li

I"

J-+

!

i

I

G-I!!084

'N

1--+-l-W-I.lll1--T . .
I

Fig. 3 - Equivalent input
noise voltage vs. frequency
(transistors 01, 02, 03)

I

10

400

1

:~'"

'f--

..,,'
I

10

,,'

...

I

",

Ie

(~A)

10

Fig. 7 - Open loop gain vs.
frequency (equalization amplifier!

, !~~~, "I

"'~~

+1-

*lkH, I R,

'00
"TT

11OOH,

.,.

..

1

I

10"'

200

Ie (,uAl

G,

G-3592

RI- 9

In )

60

10
o~

I

, "":t,+
,

40

COMPENSATION

330~i!

e 12.13 :680pF
30

!'\;

"

"'..r..,

I

~

,

-60

\.

1\

(f: 1kHz)

\.
10

\

-120

,"01-

,

-180

\.

'C~A)

10'

Fig. 9 - Dinamic resistance
R I - 9 vs. ALC voltage V I6

Cd.)

50

",

10

Fig. 8 - Open loop phase
response vs. frequency(equaIization ampl ifier)

(0-158&

I-

,

I

-

I

20

-240
I

"

10

~,

"W

_'00 .

.

.

,

\
\

.

I.

10

10'

'0'

10'

10'

10'

10'

745

22

V16(V)

APPLICATION INFORMATION
Fig. 9 - Application circuit for Cr 0 2 cassette player and recorder

""

330n

~-------~~

C9

I

SO/.lF

--

~

i,,,n33on

U...,F
2.2kfi
:
L-____________~}~ __------~

Fig. 10 - P.C. board and component layout for the circuit of Fig. 9 (1: 1 scale)

746

I

TYPICAL PERFORMANCE OF CIRCUIT IN FIG. 9 (T amb = 25°C, Vs = 9V)
Test conditions

Parameter

Min.

Typ.

Max.

Unit

PLAYBACK
Gv

Voltage gain (open loop)

1 ~ 20 to 20000 Hz

Gv

Voltage gain (closed loop)

1 ~ 1 KHz

60

dB

Zi

I nput impedance

1 ~ 100 Hz
1 ~ 1 KHz
1 ~ 10 KHz

10
41
43

Kn
Kn
Kn

1 ~ 1 KHz

Zo

Output impedance

B

Frequency response

d

Distortion

Vo~1V

Output background noise

Zg

'"

ton

,

12

dB

35

n

see lig. 11
f

~

1 KHz

0.2

%

300n + 120 mH
(DIN 45405)

1.5

mV

1

mV

Signal to noise ratio

Vo ~ 1.5V
Zg ~ 300n + 120 mH

60

dB

Switch-on time

Vo

500

ms

134

dB

72

dB

~

Output weighted background noise

S+N
-N

134

~

1V

RECORDING
Gv

Voltage gain (open loop)

f

~

20 to 20000 Hz

Gv

Voltage gain (closed loop)

I

~

1 KHz

B

Frequency response

see fig. 13
~

I~

10 KHz

0.5

%

f~

10 KHz

54

dB

3

,V

1.1

V

75

ms

d

Distortion with ALe

Vo

ALC

Automatic level control range(for

V i <40mV

Va

Output voltage belore clipping
without ALC

f

Va

Output voltage with ALC

Vi~30mV

I

~

1 KHz

tl'

limiting time (see lig. 17)
"'Vi~+40dB

I

~

1 KHz

1V

3 dB of output voltage variation)

,
,
tree
,

tset

ton

S+N
- -***
N

~

1 KHz

Level setting time (see fig. 17)
Recovery time (see lig. 17)

"'Vi~

Switch-an-time

Va

Signal to noise ratio with ALC

Vo~1V

~

-40 dB

I

~

1 KHz

1V
Rg

~

470n

300

ms

150

sec.

500

ms

64

dB

* This value depends on external network.
When the DIN 45511 norm for Irequency response is not mandatory the equalization peak at 15 KHz can be
avoided - so halving the output noise.
Weighted noise measurement (DIN 45405).

747

Fig. 11 - Frequency response
for the circuit in fig. 9 (playback)

Fig. 12 - Distortion vs. frequency for the circuit in
fig.9 (playback)
G-Mn

G,,,,,nm,,,,nm,,,,nmr-rrrrnm

d

"B'H-+t-Hl!tH-+ttlitiH-+t+t+ttf-f-+tttHII
" f---H-1f+W'
12

II

'"fo)

f\-f-\i':ef::;-:i-:i!::;!~efrlJll

-c--t";~ I
1.

H-H++WH~t+.'~;: 50dBat f ~ lkHz--

I'

,. -U~
OA

.2
10'

10 4

t(Hz)

'0

~j(ffijImI

I

i

I

I
l-

,

I;

!'
II

i
Ii

t

1

Ii

l'i

i'

I

Iii

"

"

Fig. 14 - Output voltage
variation
and
distortion
with ALC vs. input voltage
for the circuit in fig. 9
(record ing)
(dB)~

I I

I

I
I

iH

f-f-!-tttlft-f-H-ftHit-f-H-t+liIt-l--HttHII

I

r

i

'1,

I"

G,'-rn~r-rnTmr-rn~r-rn~
(dB)

"o= 1V i:

I

1

'I

-

10

',Ii : I

!

Fig. 13-Frequency response
for the circuit in fig. 9 (recording)

Fig. 16 - Limiting and level
setting time vs. input signal
variation

Fig. 15 - Distortion vs. frequency with ALC for the
circuit in fig. 9 (recording)

Cd51'S

('J.)

f+-

('/.) H-+titttlHr-tiitttlt-t-H-tttttt--t-H+ttffi

,.
54dB

2.'

..,

-8

f-

lIoatOdB=UV

,6

1,:.10kHz

08

Vo

'* 1V

200

100

0.5

I
I
00

10'

00'

10'

00'

Vi C,..v)

~

W'

00'

I (Hz)

Fig. 17 - Limiting, level setting, recovery time

v,

t\

tset

tn'e=RECOYERY TIME

=LlMITING TIME

=LEVEL

SETTING TIME
5-1112

748

10

-+

+
2.

,

LINEAR INTEGRATED CIRCUIT
TV VERTICAL DEFLECTION OUTPUT CIRCUIT
The TDA 2170 is a monolithic integrated circuit in 11-lead Multiwatt@ package. It is a high efficiency
power booster for direct driving of vertical windings of TV yokes. It is intendl!d fOt LJ~.jn Colour and
B & W television receivers as well as in monitors and displays. The functionsincorpora1;ed ani:
power amplifier
- flyback generator
- reference voltage
- thermal protection

Vs
V 7 , Va
V5

V2 ,V 3

Supply voltage (pin 4)
Flyback peak voltage>}
Voltage at pin 5., .. '."
Ampl ifier.i,fJPut.'l!Rtta~;

10

OutP/4,!1.

10
10
15
15

~~(~ur~t i~on repetitive,_ t = 2 msec)
OutP~ .·I!~I4~nt at f = 50 or 60 Hz, t';;; 10 /J.sec

OutPUt;~ealtcurrent at f = 50 or 60 Hz, t
Pin 5 Decurrent at V 7 < V4
Pin 5 peak to peak flyback current
at f = 50 or 60 Hz, t fly ';;; 1.5 msec
Total power dissipation at Tcase = 60"C
Storage and junction temperature

> 10 /J.sec

V
V

35
60
+ Vs
+ Vs
, -0.5
2.5
3
2
100

t

V
A
A
A
mA

3
30
-40 to 150

A
W
°C

ORDERING NUMBER: TDA 2170
Dimensions in mm

MECHANICAL DATA

749

6/82

CONNECTION DIAGRAM
(top view)
-·-~11

o

o

NC
GND
REFERENCE VOLTAGE
OUTPUT STAGE SUPPLY
OUTPUT
GND
FLYBACK GENERATOR
SUPPLY VOLTAGE
NON INVERTING INPUT
INVERTING INPUT
NC

10
9

6

5

o
~
5_ 5325

BLOCK DIAGRAM
- - - - - - < 0 · v5

5_5324

750

Fig. 1 - DC test circuits

Fig. la - Measurement of 12 ; 13 ; 14; la; V g ;
f-,Vg/I'N s ; R9

Fig. 1 b - Measurement of V7 H

......- - - - - - 0 · V 5
, - - - - - ......- - - -......--O.V5

r~
1,or3v
ao

5,

6-10
53

5-5323

Sl : (a) 12 ; (b)
S2 : (a) 14 and
S3 : (a) 12 , 13 ,

13 , 14 and la.
la; (b) 13 ; (c) 12 ,
14 , la, 19 and V 9 ; (b) R9.

Fig. lc - Measurement of VSL ; V 7L

Fig. 1d - Measurement of V 7

12 K Il

5- 5320

50 - S J 2'

751

THERMAL DATA
Rth j-case
Rth j-amb

Thermal resistance junction-case
Thermal resistance junction-ambient

max
max

ELECTRICAL CHARACTERISTICS (Refer to the test circuits,

Vs

=

3
40

°C/W
°C/W

35V, T amb = 25°C unless

otherwise specified)

!

Test conditions

Parameter

Min.

TVD.

Max.

Unit

Fia.

14

Pin 4 quiescent current

15 = 0;

17 = 0;

V3= 3V

8

mA

1a

Is

Pin 8 quiescent current

15 = 0;

17 = 0;

V3=3V

18

mA

1a

Amplifier input bias

V3= 1V

-0.1

-1

JiA

1a

V 2= 1V

-0.1

-1

JiA

1a

13

current

12

Amplifier input bias
current

Reference voltage

19 = 0

2.2

V

1a

!:1Vs

Reference voltage drift
vs. supply voltage

Vs = 15 to 30V

0.5

mV/V

1a

V5L

Pin 5 saturation voltage
to GND

15 =20mA

0.5

V

1c

V7

Quiescent output voltage

Vs = 35V;

Ra = 39 K.r2

18

V

1d

Vs = 15V;

Ra = 13 K.r2

7.5

V

1d

17=1.2A

1

V

1c

17 = 0.7A

0.6

V

1c

-17 = 1.2A

1.6

V

1b

-17 = 0.7A

1.2

V

1b

V9
tN9

V 7L

V,H

Output saturation
voltage to GND

Output saturation voltage
to supply

R9

Reference voltage output
resistance

2.1

K.r2

Tj

Junction temperature for
thermal shut down

140

°c

752

Fig.2 - AC test circuit

TDA2170

0.22

C4Q~F
R7
1.5.fl!

Ry
611.

5 - 5305

Fig.3 - PC board and component layout (1: 1 scale)

GND
YOKE
YOKE (V o )
IN
NOt\I~:V.IN

REF. VOLTAGE

GND

753

Components list for typical applications

110 TVC

110 TVC

90° TVC

5.9n/10 mH

9.6n/27 mH

15n/30 mH

1.95 App

1.17 App

0.82 App

0

0

Component

Unit

Rl

24

18

12

Kn

R2

10

6.8

5.6

Kn

R3
R4

39
5.6

22
5.6

22

Kn

5.6

Kn

R5

0.82

1.2

2.2

n

R6

270

330

330

n

R7

1.5

1.5

1.5

n

D1

1 N 4001

IN 4001

IN 4001

-

Cl

0.1

IlF

1000/25V

0.1
470/25V

0.1

C2 el.

470/25V

IlF

C3 el.
C4
C5 el.

220/25V

220/25V

220/25V

IlF

0.22
2200/25V

0.22
1500/25V

0.22
1000/16V

IlF
IlF

C6 el.

10/16V

10/16V

10/16V

IlF

Typical performances

Parameter

V5
15 -

-

Supply voltage
Current

tfly - Flyback time
Ptot - Power dissip.
Rth c-a - Heatsink

110° TVC

110° TVC

90° TVC

5.9n/10 mH

9.6n/27 mH

15n/30 mH

24

22.5

25

V

280

175

125

mA

Unit

0.6

1

0.7

ms

4.2
7

2.5

2.05

13

16

60

W
°C/W
°c

60
110

110

60
110

To

20

20

20

Vi

4

4

4

ms
Vpp

v7

50

47

52

Vp

Tamb
Tj

max

754

°c

MOUNTING INSTRUCTIONS
The power dissipated in the circuit must be removed by adding an external heatsink.
Thanks to the MU LTIWATT® package attaching the heatsink is very simple, a screw or a compression
spring (clip) being sufficient. Between the heatsink and the package it is better to insert a layer of silicon
grease, to optimize the thermal contact; no electrical isolation is needed between the two surfaces.

Fig. 4 - Mounting examples

o

,
, -', , "

5-37'12

Fig. 5 - Maximum allowable power dissipation vs. ambient temperature
Plot
IW)

"

"

~~

"

'""

20

-t

"

·so

50

755

-.~

100 Tamb("C)

LINEAR INTEGRATED CIRCUIT
COMPLETE TV SOUND CHANNEL WITH V.C.R. AND C.C.C.
The TDA 2190 is a monolithic integrated circuit in 16-lead dual in-line power dip. It performs the
following functions:
IF limiter-amplifier and low-pass filter.
FM detector.
DC volume control.
AF preamplifier and AF power amplifier with thermal shut-down protection and choice of class B or
C.C.C. operation mode
VCR facility with common pin for input and output (playback and recording).
VCR input and FM Detector DC switching for recording and playback.

The main features of TDA 2190 are:
Suitable for all TV standards with FM modulation.
Class B or constant current consumption (C.C.C.) operation mode.
Video cassette recorder (VCR) facility according to DIN norms.
DC or AC volume control.
Physiological volume and tone controls (AC volume control mode).
LC or ceramic filters can be used for input and detector networks.
High output power (lOW) easily achieved by very simple external stage.

n .... _¥. ______ _

n _ L _-'
~dlt:ay

1II;IIIVI11'QII\.oo'll

Very low spread of DC volume control.
DC volume control thermally compensated.
Very low current ripple in C.C.C. operation mode.
4W output power.
No radiation problem

Thermal protection of AF output stage.
Short-circuit protection of VCR
input-output pin.

ABSOLUTE MAXIMUM RATINGS
Vs

Vi
V3

10
10
Ptot
T stg • T j

Supply voltage (pins 14 and 15)
Input peak voltage (pin 10)
Voltage at pin 3
Output peak current (non repetitive)
Output peak current (repetitive)
Power dissipation at T case= 75°C
Storage and junction temperature

28
1
Vs
2
1.5
15
-40 to 150

V
V
V
A
A
W
°c

ORDERING NUMBERS: TDA 2190
TDA 2190 F2

MECHANICAL DATA

6/82

Dimensions in mm

756

CONNECTION DIAGRAM
AF OUTPUT

GROUND

"

RIPPLE REJECTION

SUPPLY VOLTAGE

VCR SWITCH

. I,

C.c.c. SUPPLY VOLTAGE

"

INPUT

12

DC VOLUME CONTROL

AF AMPLIf INVERTING

VCR INPUT/OUTPUT
DE - EMPHASIS

DC VOLUME CONTROL

DETECTOR

REFERENCE VOLT

DETECTOR

IF INPUT

IF BY- PASS

GROUND

BLOCK DIAGRAM
VCR

VCR

INPUT/OUTPUT

SWITCH

R3

ell
R-C,C.C
R2
C7

I

VOLUME
P1

THERMAL DATA
Rth j-case

max.

Thermal resistance junction-case
757

5

758

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, V 5= 24V. fo= 5.5MHz, f m = 1 KHz,
class B, T amb = 25°C, unless otherwise specified)
Test conditions

Parameter

DC CHARACTERISTICS
Vs

Supply voltage (pi ns 14 and 151

Vo

Quiescent output voltage (pi n 11

28

11
Vs = 24V

PI = 0

Vs~12V

PI

11

12

13

5.1

6

6.9

V

V
~

0

V4

Pin 4 DC voltage

Playback and recording

5

6

7

V

V ll

DC volume control reference

P1 =Ot05Kll

4

4.7

5.5

V

0.9

1.1

1.3

V

voltage
V 14~15

C.C.C. reference voltage (between
pins 14 and 151

Id

Quiescent drain current

Vs = 24V

PI = 0

25

45

65

Vs=12V

PI = 0

20

35

50

PI

=

0

L\f =

40

100

J.lV

Vi
PI

~

1 mV
0

L\f=±25KHz

400

480

mV

=

Vi
m

1 mV
0.3

L\f

=

mA

IF AMPLIFIER AND DETECTOR
Vi (threshold) Input limiting voltage at

25 KHz

t

pin 10
V5
AMR

Recovered audio voltage

Amplitude modulation rejection

= +

240

50 KHz

62

dB

Ri

Input resistance (pin 10)

Vi

=

1 mV

10

Kll

Ci

Input capacitance (pin 101

Vi

=

1 mV

5

pF

Volume attenuation
(resistance control)

PI
PI
PI

=
=

Vc

Control voltage

A ~ 90 dB
A = 30 dB
A= o dB

6A
6T tab

Volume attenuation thermal drift
(resistance control)

T tab 251085°C
PI = 2.3 Kll

DC VOLUME CONTROL
A

--~

on

80
22

2.3 Kll
5 Kll

90
30
0
0
1.5
3
=0.05

38
3

dB
dB
dB
V
V
V
dB

DC

AUDIO FREQUENCY AMPLIFIER
Po

Ou tput power in class B mode

d
10%
Vs 24V
12V
Vs
d = 2%
Vs - 24V
Vs 12V
.~-----

16l!
SSI,

R L.
RL
RL
R,

=

1612
8S1

-- - - - - - - - - - - - - - - - - - -

759

4.1
1.5

I

3
1.2

W
W

-L£J

ELECTRICAL CHARACTERISTICS (coQtinued)
Test conditions

Parameter

AUDIO FREQUENCY AMPLIFIER (continued)
Po

Output power in C.C.C. mode

d : 10%
Vs: 24V
Vs:12V

R L : 16n
R L : 8n

3.5
1.2

W
W

R L : 16n

507
10000

Hz

50

dB

B

Frequency response of audio
amplifier (-3 dB)

Po: 1W

SVR

Supply vortage rejection ratio

PI: 0
R L : 16n

Llf : 0
Vi: 1 mV
friPPle: 100 Hz

V.C.R.
2

V3

Input switching voltage for
recordinq

V3

Input switching voltage for
playback

R3

Input resistance

V3: 1 to lOV

V 4i

Input voltage (playback)

V3 ~ 8.5V
Pout: 1W

PI: 5 Kn

V 40ut

Output voltage (recording)

V3 <;;2V
PI: 0

Vi: 1 mV
Llf: ± 25 KHz

I

V

8.5

R4i

Input resistance (playback)

V 3 ;;' 8.5V

R 4put

Output resistance (recording)

V3 <;;2V

d

Total harmonic distortion of pin 4
output signal

PI: 0
Llf: ± 25 KHz

SVR

Supply voltage rejection at output
pin 4

V i ;;'1 mV
PI: 0
V3 <;;2V
Llf: 0 friPPle: 100 Hz

S+N
-N-

Signal and noise to noise ratio
(pin 4)

V3 <;; 2V
Llf: ± 50 KHz

Vi;;' 1 mV

V

Kn

50

100

45

90

180

mV

240

400

480

mV

13

Kn

140

n

0.5

%

50

dB

50

67

dB

50

67

dB

0.5
0.5

%
%

10

Vi: 1 mV
V3 <;; 2V

OVERALL CIRCUIT

-1\1

S+N

Signal and noise to noise ratio

Vi~ 1 mV
Llf: ± 50 KHz

Vo :4V

d

Distortion

Po: 50 mW
Vs: 24V
Vs: 12V

Llf: ± 25 KHz
R L : 16n
R L : 8n

760

TEST CIRCUIT

4

TDA 2190
IF
INPUT

14

'~f
ll~0 _;rvc

W,'i

t~

Fig. 1 - Relative audio output and signal to noise ratio
vs. input signal

''(

A:ClassB
B: c.c.e.

O. Ys

Ys

12

RL

8

24 'y

R7 180
C8 3.9

16

!l

100

n

1.8 nF
S-3185

Fig, 2 - AM rejection vs,
input signal

Fig. 3 - fl.AM rejection vs.
tun ing frequency change

5·N
I

"\

10'

V,(I-.N)

-30

761

-20

-10

0

Xl

20

JO

If(kHz)

Fig. 5 - Distortion of the
detected signal (pin 5) vs.
unloaded O-factor of the
detector coil

Fig. 4 - Detected audio voltage (pin 5) vs. unloaded 0factor of the detector co iI

Fig. 6 - Output voltage attenuation vs. DC volume
control resistance (P 1) and
vs. DC volume control volt
age (V e )

••

'·~·)E~.
:""4V
~

RL'''''

v, :lOmV

_:'0 =5.SMHz

nfm=lkHl

Vs = 24V

:~ : ;:.1=1=fO=5~MIm =lkHz

AI =!25kHz

'00

f-

nbf = ~50kHz

,.'

300

.Y

lot

r;--

X

o.,~
90
60

1020304050607080

o

8

P1(k.fi)

o

Fig. 8 - Distortion vs. tuning frequency change

Fig. 7 - Distortion vs. frequency deviation
d

(0/.)

i

H~S=24
Rl = 16

ti

II

~r~:

Fig. 9 - Switch-off attenuation of the VCR at pin 4
vs. switch-off voltage at pin3
" ,-,-,-,---r,,-,-,---r,,-,-,--PFl
(dB)H-+++-H-++-+O'--d-'-.-"o'--,-",++-H
-10

00=80

~;~

=S.5MHz

i----':~7: ~k2~:HZ

'Jet¥)

H-'-++-1'ri-'-+-I,oc,"",,,',,,-'--H-t---i
H---t--++-H--i--l-jRl = 00

-20

Vi =lmV

H-+++-H-\+--H'O = 5.5 MHz

H-+---t--t-H-tr--H~~ = ~e~Ztor ~4 =0.4'1

1--

,

-c-

: ~"-I""~
0

Fig. 10 - Overall frequency
response

f+H+'
-"

_" H-+-++-H--+++-rW,'_'hri",--'TO_'H
-50

-20

H-t-++--H-+H-+--H-+-++--H

-70

~LL-L-'---'--'-"--LL-'---'--L.L-L-'---'--'

(; f(kHz)

20

H-+++-H-+H--+-+--+++-H

-60

o

Fig. 11 - Audio amplifier
frequency response

10

Fig. 12 - Distortion vs. output power (Vs= 24V and
RL = 16.11)
d

CO!.lf--

v.'

C.C.,

~ ~iO~=';d­
,I" !-----------lm =lktb:

4V

Rl 'l6.n ,

I---- 6f

Vi :lmV

-,

'0 =S.SMHz
/.I.1=!2Sk

QUTPU pin1

VCR OUTPUT

-'0

-.

-10

Tf>lJT( In1)

-11

10

L:~6~t

16

::~
-,Ri
-8

VJ(V)

10'

• l 25kHz

12
10

;::::t::

~
10

10'

10'

762

10'

f(Hz)

%(W)

Fig. 15 - Maximum power
dissipation vs. supply voltage
(sine wave operation; class B
mode)

Fig. 14 - Output power vs.
supply voltage (class B
mode)

Fig. 13 - Distortion vs. output power (V s= 12V and
RL = 8n)
Fb

IW,

IW'

Vi -lmY

j;

d=lO"I.

0.5.5 Hz

'm'_t- lI1Hz

'O:5.SMHz
fn,=lkHz
Af=&25kHz

25kHz

R =1
R ;8n.

I:.c.c..

Ctass

10

to

Fig. 16 - Power dissipation
and efficiency vs. output
power (class B mode)

"

I....

IW'

P,

30

Vsey)

Fig. 18 - Power dissipation
and efficiency vs. output
power (C.C.C. mode)

rj ~l ~f1!;lIl .fl lf'r-~l ·

(~otmmmrm·;J-.,
W)
~l::~

.ton

Vi

j=

.~;;J---l-

ao

'O.S.5MH2:

R =8.0

.

10<

25

20

Fig. 17 - Output power vs.
supply voltage (C.C.C. mode)
R

Iw,

t5

PIG!

~7:~~~z

.

m

fO:~:~tt

'm_

40

lkHz
llf .~25kHz

Rl=16.tl.
Vj ;lmY
to ~ UN
'", .. 1kHz

.

At :t15kHz

f\(W)

Fig. 20 - Current ripple vs.
signal frequency (C.C.C.
mode only)

Fig. 19 - Current ripple vs.
R-CCC value (C.C.C. mode
only)
Irippll'
(mARMS)

1

'h): .

~ __

120
100

I. .

"

10

o

,.

o
FbIWl

I---Wj____

imr;i!~1rTT"n"mr-r~

. ~~,..:.~tO"'+'-HIf-l-l+1.JllII

Fig. 21 - Quiescent drain
current vs. supply voltage
(C.C.C. mode only).

G 3.l1l;I11

,

I,

ImA

'50

: ~~+~_-f~cc~"J.Jn

I,.

Po ,,0
R-CCC=3.Jfi

I

tOO

.,.
60

.•0

"0

60

320

40

300

-

I--

q-=

Rif
!

20

4 R-<:CC(n.)

1)4

to

763

'(Hz)

-~--

,.

I

+,

Fig. 22 - Quiescent output
voltage (pin 1) vs. supply
voltage

Fig. 23 - Supply voltage
ripple rejection vs. volume
control attenuation

Fig. 24 - Supply voltage ripple rejection at the AF and
VCR outputs vs. ripple
frequency

v.
(vl

RL=w
IIi: 0

10

CLA5SB

C.c.C

IIU
10

30

'Is(V)

1020]Q40S060

(dB)

10

APPLICATION INFORMATION (Refer to the block diagram)
I F amplifier and limiter
The IF sound signal is amlJlified and limited by a chain of 6 differential stages. To avoid the possibility
of radiation problems an active low pass filter has been integrated to eliminate the high frequency
harmonics from the signal sent to the detector.
Pin 10 is the non inverting input of the amplifier-limiter and it is used as input of the I F sound signal
coming from the input network which can employ either LC or ceramic filters.
The typical input impedance of pin lOis 10 Kn, 5 pF at f 0 = 5.5 MHz.
Pin 8 is the inverting input, of the amplifier-limiter. The DC negative feedback of the amplifier is applied internally to this pin which must therefore be decoupled by means of a by pass capacitor toward
ground.

FM detector
Signal detection is obtained by means of a peak differential detector which enables radiation problems
to be minimized.
Pin 7 is the first input of the peak differential detector and it is the output of the low pass filter. The
typical output impedanca is 2.7 Kn.
Pin 6 is the second input of the peak differential detector. This pin must be supplied with the same DC
voltage as the other input (pin 7) and this is done by coil L1.
External components L 1 C3 and C5 transform the frequency variations into ampl itude variations useful
to drive the detector. Network L 1 C3 C5 has two resonance frequencies:
f 1 series resonance for

Xu· XC3
XC5 = --==-.,...'="'XC3 + Xu

f2 parallel resonance for Xu = XC3

764

APPLICATION INFORMATION (continued)
Coil L 1 must be tuned at frequency fo = IF sound, equidistant from frequencies fl and f2 to which the
peaks of the "S" response of the detector correspond. The separation between the peaks is defined by
the ratio ff2:

=

1 +

1

~.
C3

Network L 1 C3 C5 can obviously be substituted by a ceramic filter.
Pin 5 is the output of the FM detector. Its output impedance of 20 Kn, in combination with capacitor
C4 connected between pin 5 and ground, defines the time constant of the deemphasis. The detector "S"
curve is visible at pin 5. Improved AM R performance can be obtained by connecting a 10 Kn 10 J.1F RC
series network between pin 5 and ground.

VCR
This function, required by receivers capable of recording complete TV signals, is made in accordance
with D IN Norms. A single pin (pin 4) acts both as output of the signal to be recorded and as input of
the signal to be played back. The function of this pin is changed by means of a control, applied to pin 3,
consisting of two different levels of DC voltage. The operating conditions of pins 3 and 4 are:
Mode
Recording
Playback

VCR Switch
pin 3

Function of
pin 4

V3 <2V

Output

R4

Input

R4

V3

~

8.5V

Signal at
pin 4

Impedance of
pin 4
=
=

140n

V4

=

400 mV

13 Kn

V4

=

90 mV

In the recording state the output signal at pin 4 is independent of the volume control, while during playback the signal applied at pin 4 is regulated by the volume control before being sent to the audio amplifier.
Pin 3, input of the VCR switch, has an impedance greater than 50Kn for any value of input voltage.
Control pulses at pin 3 with very sharp edges cause temporary unbalancing of the circuit and produce
audible signals. This effect is eliminated by means of R3 C8 which slows down the control edges. In the
playback state the I F sound signal coming from the detector is automatically blocked by the VCR
switch.
Pin 4, input-output of the audio signal,has a DC typical voltage of 6V. C6 must therefore be used to
decouple it from the VCR.
The output signal of pin 4 can be used to perform the AC volume control (fig. 31). The potentiometer
must be connected between pin 4 and ground and the slider must be connected to pin 13 after DC
decoupling.

DC volume control
The audio signal coming from the FM detector or from the VCR is adjusted in amplitude by means of a
DC controlled active attenuator. The attenuation can be changed either by means of a potentiometer or
by means of a DC voltage.
Pin 11 supplies the reference voltage for the volume control.
This voltage is between 4V and 5.5V and has a thermal coeff. of +O.25%;oC. The maximum current
which can be suppliedby pin 11 is 10 mAo
765

APPLICATION INFORMATION (continued)
Pin 12 is the input of the DC volume control. To minimize the attenuation spreads, the volume control
network R 1, R2, Pl is supplied by the reference voltage of pin 11. The attenuation of the signal is inversely proportional to the voltage applied at pin 12; therefore maximum attenuation is for V 12 =0 or for
Pl = 0 . Capacitor C7, connected in parallel to the volume potentiometer, eliminates any signals or
spikes picked up by the connection wires of the potentiometer. The volume control characteristic
depends on the configuration and on the values of the components of the network connected to pins 11
and 12. The suggested values are: R 1= 1 Kn R2= 3.9 Kn and Pl = 5 Kn with linear variation; with this
network a linear variation of the output power is obtained. Different slopes of the volume control and
relative networks are shown in figs. 25 and 26.

Fig. 26

Fig.25

12

R1
3.9kfi

20

40

60

80

lCX)

120

R2

Pl(°/o)

The volume can also be controlled by means of a DC voltage applied between resistor R2 and ground
instead of potentiometer Pl. Using this configuration, volume variation can be obtained by means of
remote control as shown in fig. 36.

AF amplifier
The AF amplifier consists of an operational amplifier with thermally protected (thermal shut down)
output stage. By using a simple external variant the power stage can be made to operate in class B or in
costant current consumption.
Pin 1 is the output of the power amplifier. The network which defines the gain and the band of the
audio amplifier is connected between pins 1,2 and 13.
The input voltage of the amplifier is I • R4, where I is the signal output current of the DC volume control block. The closed loop gain of the amplifier is given by G v = R5/R6;
Therefore the output voltage is given by
V o =I·R4-

R5
R6

Changing the values of these resistors, different output voltage (i.e. different closed loop gain) can be
obtained.
When impedances, rather than pure resistors, are used, the closed loop gain is changed with frequency.
In particular at high frequencies the gain is reduced by capacitor Cll and at low frequencies it is reduced
by capacitor C13.
The Boucherot cell R7 C14 guarantees the stability of the circuit in all the operating conditions.
Pin 2, the non inverting input of the audio amplifier, is connected to an integrated voltage divider which
fixes its DC voltage at V 5/2.

766

APPLICATION INFORMATION (continued)
Since the voltage of pin 2 is the reference of the input differential stage of the audio amplifier, both the
voltage of pin 13 and the voltage of pin 1 are equal to Vs/2. Capacitor C12, connected between pin 2
and ground, has the dual function of eliminating the audio signals from pin 2 and providing the s:.Jpply
voltage ripple rejection.
Pin 13 is the inverting input of the audio preamplifier; the outoput of the DC volume control is also
connected to this pin.

Supply
The device can operate either in class B or in C.C.C. mode. In class B the supply current is highly variable
and depends on the power supplied to the load. The supply must therefore be well filtered to prevent
modulation effects on the supply itself which may influence other circuits in the TV. In C.C.C. mode
supply current is constant and the supply system can therefore be simplified; for example the sound
channel can be supplied directly by the line transformer without problems of modulation of the picture
size.
is the ma in supply of the device; when it is connected directly to the power supply and pin 14 is
left open, the circuit operates in class B.

Pi n 15

Pin 14 is the supply point for C.C.C. The reference system, connected between pin 14 and pin 15,
determines a constant voltage of 1.1 V between the two pins. To make the device operate in C.C.C. mode,
pin 14 must be connected to the supply and a resistor R-CCC must be connected between pin 14 and
pin 15; the value of this resistor d8fines the quiescent current Iccc= 1.1 V/R-CCC.
Pin 9

is the main ground of the circuit.

Pin 16 is the ground of the power output stage only.

767

APPLICATION INFORMATION (continued)
Fig. 27 - Typical application circuit (class B mode)

Cl~210~F

TDA 2190
C3

CF1

'F~r:F~:S~~BC2'OnF L-~--!f---4---T---1'-...J

INPUT

R9

560n

I
=

10

Rla

R6
10kll

R7
3.3!l.
C14

1·

22 ,uF

560n

L_~

+ _____

___

5-3187

.V s
24V

Fig. 28- P.C. board and component layout of the circuit shown in fig. 27 (1:1 scale)

768

R

L
lGll

APPLICATION INFORMATION (continued)
Fig. 29 - Application using a ceramic discriminator and an LC network at the IF input (C.C.C. mode)

R5

C3

L2

I(f'
L___

~I IC~-;" ~c
INPUT 33 PF
~
IF

'-:C"l

10

3lt539XX
(Taka)

Fig. 30 - P.C. board and component layout of the circuit shown in fig. 29. (1: 1 scale)

769

APPLICATION INFORMATION (continued)
Fig. 31 - Application circuit with AC volume control

Volume

47kfi
Log.

10

11

12

Fig. 32 - Application circuit with tone controls

+

"

770

100kfi

APPLICATION INFORMATION (continued)
Fig. 33 - Application circuit with physiological volume control

,

P,

(dB)

0

,}:vt .
[-:zf'.

15

Vs'24V
RL =16V

1-~',
-+-:

'

.12V

'

~47d6(o) 10 '"

20
d~10'

"

O_5W

30

'0

-

"
'0

~

-I

~+
10'

f-.-d
10'

10'

lo(Hz)

Fig. 34 - Application circuit with fixed bass and treble boost

VCR

VCR

IN/OUT

SWITCH

..,
(dB)

~~:~:m,

--l --:-,

=12V,
'oblum~

,

+t

Volume

H
TDA 2190

rl~5.';~~B100F

~~T

5600

I

=-

-,

-t~

-4

12

13

560n

, ,
---r-:-

-6

16

10

~+

"

100

."

10

771

10'

10'

50
mW

APPLICATION INFORMATION (continued)
Fig. 35 - Application circuit for lOW of output power when Vs= 22V and RL = 4f!
VCR

SW'TCH

TDA2190

~~F~:S~Bf'onF
r
'F

INPUT

S60n

-==:-

560n

..i..

tO~

5-319»1

+

Vs

Fig. 36 - Remote volume control. The output of the sound channel increases when the duty-cycle at pin
2 of the I.C. M1025 decreases

t8kn

47!1

---D---n~
I

Output from
pin20f the

I.C. M'025

(Outy- cycle
variabl. from
1/31 to 30/31)

I

,I 'f 112".5 (31131)

':J

~I.

27/31

.

.1

>80dB

,

--, r-------, r--I

Max Vo'ume

~.
_I

Min. Volume

5-3194

NOTE:
RTI must be set for the normalization of the output power (P o = 100 mW).
Procedure:
- IF input at pin 10 of the TDA 2190
Vs= 24V; R L = 16f!; V j = 1 mV;f o = 5.5 MHz; !If = ± 25 KHz; fm = 1 KHz.
Whith the normalizated output of the
RL = 16f!.

I.e.

Ml025 (duty cycle of 10/31), set RTI for 1.26 V RMS across the load

772

I!

MOUNTING INSTRUCTIONS
The power dissipated in the circuit must be removed by adding an external heatsink as shown in figs. 37
and 38.
The system for attaching the heatsink is very simple: it uses a plastic spacer which is supplied with the
device on request (TDA 2190 F2).
Thermal contact between the copper slug (of the package) and the heatsink is guaranteed by the pressure
which the screws exert via the spacer and the printed circuit board; this is due to the particular shape of
the spacer.

Note:

The most negative supply voltage is connected to the copper slug,hence to the heatsink(because
it is in contact with the slug).

Fig.37 - Mounting system

.------CONTACT

(SILICONE GREASE)

Rth=O.S'c/w

~; ~+_----SPACER

~__',---P.

773

C. BOARD

MOUNTING INSTRUCTIONS (continued)
Fig. 38 - Cross-section of mounting system

HII!';!I!stnk

PC board

/

Chip

The maximum allowable power dissipation' depends upon the size of the external heatsink (i.e. its
thermal resistance): fig. 39 shows this dissipable power as a function of ambient temperature for an
heatsink having 5°C/W.
Fig. 39 - Maximum allowable
power dissipation vs. am·
bient temperature

.....

"

.

,

..

•

.

100

774

Tamb{"C)

LINEAR INTEGRATED CIRCUIT
Hi-Fi DUAL PREAMPLI FI ER
The TDA2310 is a dual high quality class A preamplifier intended for extremely low distortion application in Hi-Fi systems.
The TDA2310 is a monolithic integrated circuit in a 14-lead dual-in-line plastic package and its main
features are:
Very high dynamic range
Very low distortion
High open loop bandwidth
Very low noise
No pop-noise
High slew-rate: 14V/lls (G v = 30 dB) - 50V/lls (G v = 50 dB)
Large output voltage swing
Single or split supply operation
Output short circuit protection

ABSOLUTE MAXIMUM RATINGS
Vs
Vs
Vem
Vi
Ptot
T j , T stg

± 22
± 20
± 15
±5
500
-40 to 150

DC supply voltage
Operating supply voltage
Common mode input voltage
Differential input voltage
Total power dissipation at Tamb <"60°C
Junction and storage temperature

ORDERING NUMBER:

V
V
V
V
mW
°C

TDA2310

MECHANICAL DATA

Dimensions in mm

. . . . . . ~.t-~

~
,

U1

_d

o~

I

,

...

15.24

I···

_

Lri

~

·2...54

~

t

~::::::r

775

6/82

CONNECTION DIAGRAM
(top view)

OUTPUT (AI

14

P051TIVE 5UPPLV(.Vs I

DRIVER (AIDUTPUT

13

OUTPUT(BI

COMPEN5ATlON (A

DRIVER(BIOUTPUT

11

"
NON INVERTlN6
INPUT (A I

10

INVERTING INPUHAI

6

NEGATIVE SUPPLY (-Vs>

7

I

COMPENSATION (BI

NON INVERTING
INPUT (BI

8

~

INVERTING INPUT(BI

~

BLOCK DIAGRAM
(one section)

OUTPUT
NON
INVERTING
INPUT

:~~5~TlN G ."..-----1------'

-Vs

*-________~________~~________-"

t7~____

776

THERMAL DATA
Rthj-amb

max.

Thermal resistance junction-ambient

180

°C/W

Fig. 1 - Gain and distortion test

f

',uF

20
KJl.

OUT

RL

30 KJl.

5 - 4 06611

Fig. 2 - Noise test

OUT

ELECTRICAL CHARACTERISTICS (Refer to the Test circuit offig. 1, Tamb = 25°C, Vs = ± 15V,
G v = 30dB, RL = 20K.Q unless otherwise specified)
Parameter
Vs

Supply voltage

Test conditions

Min.

Typ.

± 5

Max.
±

20

Unit
V

Is

Supply current

10

15

mA

Ib

Input bias current

0.2

1

f.lA

los

I nput offset current

50

300

nA

Vos

I nput offset voltage

1

3

mV

777

ELECTRICAL CHARACTERISTICS

(continued)

Gv

Voltage gain
(open loop)

Min.

Test conditions

Parameter
1 - 1 KHz

Typ.

Max.

Unitl

85

dB

No compensation

85

dB

1 ~ 1 KHz

±0.2

dB

1 ~ 100KHz

±0.5

dB

5

M>1

1 ~ 20KHz
l>G v

Voltage gain spread
(closed loop)

Ri

I nput resistance

Ro

Output resistance

Vpp

Output voltage swing
(peak to peak)

d~l%

Va

Output voltage (rms)

Rx~

RIM

Pn'-'l.I~r ~~~tj'..JI.!!d":~

\'u

=

20

Gv

~

30dB

SR

Slew rate
Gv

~

50dB (C 3
Rs

~

3V

1 ~ 1 KHz

0.035

%

1 ~ 20 KHz

0.035

%

1 ~ 1 KHz

1 ~ 1 KHz
1 ~ 100KHz

Total harmonic
distortion

d

d2

Second order CCI F
intermodulation
distortion

d3

Third order CC IF
intermodulation
distortion

8.2K>1

\/~~

,

1 ~ 1 KHz

6

1 ~ 20KHz

6

R

. ·X

=

Q'"
.....

~

vn

10

>1

24

V

22

V

8

V

8

V

1Dn

,....-1 ,_

,~~¥

14
V/jls

~

Va

VOl~lV

V o2
11
12

~

~

Rg
Rg

~
~

330pF
470>1)

12 - 11

~

50

1 KHz

0.01

0.1

%

0.03

0.1

%

0.6
1.0

0.8

1V

14KHz
15KHz

~

~

21rl2 ~ 13 KHz

600>1
3.3K>1 (0)

jlV

* Total input noise

eN

Rg ~ 600>1
Rg ~ 3.3K>1 (0)

* Signal to noise ratio

SIN

Cs

Channel separation

Vo

~

20KHz
~ 600>1

~

~

Rg
Rg
Rg

~

~
~

jlV

3.3K
600
0

(0 )

74
78
80

dB

3.3K
600
0

(00)

72
76
78

dB

100

dB

500mV

Rg

f

Rg
Rg
Rg

0.75
1.2

~
~

CMR

Common mode rejection

Rg

~

600>1

95

dB

SVR

Supply voltage rejection

Rg

~

600>1

85

dB

15

rnA

ISh

Output short
circuit current

(*)
(0)

Test CirCUit 01 I,g. 2 (G v ~ 40 dB)
BW ~ curve A

(00)

BW

~

22Hz to 22KHz

778

Fig. 4 - Harmonic distortion
vs. frequency.

Fig.3 - Harmonic distortion
vs. output leve I.

Fig. 5 - Output voltage
swing vs. frequency.
'or-,-TTTITm--,,-nTnT--~~TIm

(VPP}r--t-Htitttt---t+H-tt-ttt---H-ttttttl
RX_S.2Kll

~

r--t-Htitttt-R'_:OO
t--

t---- -

" I-- - -t-ttttttt---H-Htti1t--t-Httt-fH

r--t-Httt-ItI~~: :~~ ~
f-_-t-Httt-ttr-d~.'i"" -

f (Hz)

lOOK

Fig. 6 - Output voltage
swing vs. load resistance.

I\

\

f (KHz)

'00

Fig. 7 - Total input noise
vs. source resistance.

Fig. 8 - Noise density vs.
frequency.

'or--'--"-'rITTr--'--'~~Tn
(Vpp)

1--,",.c-1,"'''++-t+1-tH----t--H-H+H1
~ ~ i ~,~ z H+H-ttt----t-+:bI+t-H

/
/

v

v

'1 '

v
10K

Fig. 9 - Open loop frequency response.

I

5-.323

1 : 1

NO COMPENSATION
NETWORK I

,,-on

i'.. 330>

1\
"- !,\L

3.36~~

'\

V$-'15V

1
60

I

i

"-1,,\1 \
"-

r-1
I

--p-

,

i
1M

f(Hz}

1

1

I

I

C 3 ,,3JOpF R S ,,470 Jli

I

50

\
1

!
i

},.

r-

1

Vs " ~15 V

I

I

\.

Fig. 11 - Two tone CCI F
intermod. distortion.

Fig. 10 - Closed loop gain
vs. frequency.

G-'32211

B

f (Hzf

I

I

c ,,3.3 nF R .68 It

,

I
I

1
~ -,

I

I

,

!

I

-tti

,

I'

-+

-w F::j:2Il:!:..i'0!:RO,!!E~R..!.(tC!.1:.:-t"'1)'../11-----t

1

I

779

1M

f(Hz)

0.25

0.5

0.3

r-"}

---+moRDe:~(2f1-fZ)

I

,"

I

-.. f--+--+--~+---'--t-+6---+---+..------4-----4---------+..-----I--<)-VS
S-5155

THERMAL DATA
Rth j-amb

Thermal resistance junction-ambient

max

785

200

ELECTRICAL CHARACTERISTICS (Vs= 5V, Tarnb = 25°C, single amplifier, unless otherwise
specified)
Parameter
Vs

Supply voltage

Is

Total supply current

Ib

I nput bias current

Vos

I nput offset voltage

los

I nput offset cu rrent

Gv

Open loop voltage gain

Test conditions

Min.

Typ.

Max.

Unit

20

V

0.8

2

rnA

100

500

nA

4
Vs = 20V

Rg

< 10 Kn

f = 1 KHz

64

f=100KHz

0.5

mV

15

nA

70

dB

30

dB

3

MHz

B

Gain bandwidth product

f = 40 KHz

SR

Slew rate

R L = 2 Kn

1.5

V/J.LS

eN

Total input noise voltage

f = 40 KHz
Rg= 10Kn

20

nVr/Hz

2.5

Vpp

80

dB

Vo·

DC output voltage swing

SVR

Supply voltage rejection (.)

f = 100 Hz

1.5

(.) Circuit of fig. 1.

APPLICATION INFORMATION
Fig. 1 - Application circuit with carrier

Fig. 2 - Alternative input
stage

5 -5108

786

,I

APPLICATION INFORMATION (continued)
The preamplifier shown in fig. 1 must be used with carrier mode transmission. It is particularly suitable
for use with microprocessor decoding system (for instance with the M206 + M3870 or M3872 TV PLL
frequency synthesizer).
The "with carrier" signal is sent as a burst (fcarr= 38 KHz) to reduce power consumption at the transmitter (duty cycle = 1 %) and to allow the receiver to have some bandwidth limiting in the preamplifier to
improve noise immunity (50/100 Hz pulses from incandescent lighting).
The fig. 2 shows an alternative configuration for the input stage: this new circuit allows the correct
operation of the preamplifier even when an incandescent lamp is very close to the I R diode.
Using this configuration, the circuit has only a slight degradation in the useful range.
Fig. 3 - Tuned amplifier application (with carrier)
1 K 11

Fig. 4 - Application circuit without carrier

787

APPLICATION INFORMATION (continued)
The circuit shown in fig. 4 works in transmission mode without carrier. The transmitted signal is sent as
a series of single pulses (rather than bursts, as with the carrier solution).
The DC bias network formed by the 82/2.2 Ko divider and 1 N4148 diode fixes the DC output voltage
near the supply voltage (just under the saturation level). In this way it is possible to optimize the noise
immunity of the receiver. The 2.2 Ko output resistance avoids turn-off problems in the final stage.

Performance
4.5V min; 5.5V max
6mA

Supply voltage
Quiescent drain current
Supply voltage rejection (f = 100 Hz)
Useful range (using the transmitter of fig. 7)

greater than 50 dB
14 mt

With a incandescent IiQht (75WI as a noise source located at 1 mt from the receiver the useful ranQe
decreases to 10 mt.
Fig. 5 - Optimized preamplifier ("no carrier" mode)

Fig. 6 - P.C. and components layout of the circuit of fig. 5 (1 : 1 scale)

788

APPLICATION INFORMATION (continued)
Fig. 7 - I R transmitter using M709 or M710

Fig. 8 - MMC II - PLL TV Frequency synthesizer

•

ONIOFF

Fig.9 - I R Preamplifier and Remote Control receiver for 32 channels voltage synthesizer (EPM - M293)

., ,
h',,"

l:

d(fjll',l
I

210F

5 ...

t1

S _

4

BC17B

'

'°11 tt

3

:-+

47K D.

82Kfi

Kn

12K.n

3.3K Jl

14

by

05C

'B500

17

5:'OOPF

1,6

1"

2
INFRARED

Stand

RI1lay

l

4. 7

£o"n'

H

,

22Kfl

~_

i

I

~~ZA 2320

J3Kll

I

1[

D 475- 525

--r-l--- 1

47nF

I

I

1(ll)K!l

PREAMPLIFIER

PA 26

PB 25

"1293

Pc 24
5 A

Po 23
P E 22

5 B
7 C
,

0

Ml04

27

Strobe

10

RE's.l

9

Res.2

27Kfl.

16

II II II II

.....

p

fl
rl !I r rl
®

-:¢:~

19

11 ?I II JI
-

()

1

.... 0

27Kn

~'5

21

120

I

~

~
s-

~1

Vol.

I"oonF

~

l1J--_-uOUT

Rg

792

150

= 20 dB

for Rx

= 1350n

THERMAL DATA
Rth

j-amb

max

Thermal resistance junction-ambient

200

°G/W

ELECTRICAL CHARACTERISTICS (Refer to the test circuits, Vs = 15V, T amb = 25°G, unless
otherwise specified)
Parameter
Vs

Supply voltage (*)

Is

Supply current (*)

Ib

Input bias current

Vos

I nput offset voltage

los
Gv

Open loop voltage gain

Test conditions

Rg

< 10 Kn

Input offset current

Output voltage swing (*)

Typ.

Max.

Unit

36

V

0.8

2

mA

150

500

nA

0.5

5

mV

10

50

nA

3

Vs=15V

Vo

Min.

f = 333 Hz

80

f = 1 KHz

70

f = 10 KHz

50
70

Vs = 4.5V

f = 1 KHz

f = 1 KHz

Vs= 15V

13

RL = 600n

Vs= 4.5V

2.5

dB

Vpp

B

Gain-bandwidth product

f = 20 KHz

1.5

2.5

MHz

BW

Power bandwidth (*)

Vo= 5 Vpp
d = 1%

40

70

KHz

1.6

V/,.,S

SR

Slew rate (*)

d

Distortion (*)

Vo= 2V

f = 1 KHz

0.03

G v= 20 dB

f = 10 KHz

0.08

eN

Total input noise
voltage ('0)

Curve A

R9 =

1

B - 22 Hz to
22 KHz

50n

Rg= 600n

1.1

Rg- 5 Kn

1.5

50n

1.3

Rg- 600n

1.5

Rg- 5 Kn

2

Rg=

%

1
1.4

,.,V

,.,V

Rc= 600n

9

nV/,fiiZ'

Cs

Channel separation (**)

f = 1 KHz

100

dB

SVR

Supply voltage (**)
rejection

f=100Hz

80

dB

f - 1 KHz

(*) Test circuit of fig. 1.
(*0) Test circuit of fig. 2.

793

•

••

Fig. 3 - Supply current vs.
supply voltage

'.

Fig. 5 - Output voltage swi ng
vs. load resistance

Fig. 4 - Supply current vs.
ambient temperature
G-~554

'.

'mA )

'mA )

Vs=15V

0.9

f--f--HH--I7f-fttG y "20dS
20 f--f--Hf-hlf+ftt f =1kHz

1.0

-

V

16

V

l-

0.8

0.'

,./1-'"

1/

0.6

0.7

f--+-+-++t++tt -- T

..

u-

Fiy.

-50

14

"
n _" _____
ruvvcl

50

1__ "__ 1••• !_I..o.I_

I

rly.

.

10'

......

UallUVYIULl1

L

4

0.4

I

•

I ULi:l1

•

;:ig.

lIi:11 JlIUIIIl,,;

distortion vs. output voltage

10'

a - IUlili in(Jui nui5tl V5.

sou rce resistance

G-45S1

-"'n-"''''~~
B:22Hzto22K~

,f--

0.3

+

4lli

curveA

~C..;...-+--~

i .. '.

!

. I

i
0.'

0,3

10

0.1

30 f(KHl:)

)

v,,"'5V

.

10'

1

30

,

20

-

318/-15

"20KHz

(500Hz) I

o

I

..
I

1

10'

.,

c----'

Wili

......
r-

20

,
,
10'

11!11l

II'

40
30

I

Ilj
Vs ,,4.5V

60

10

i

Rg (11)

50

-

son

.

--rr

i ill' ,.ill

i(1120

"I H,
SUBSONIC,
FILTER

40

lKn

10 t'--

I:

---

EO.=120....s

f75,IJ5

:

I

-, _.

r

Rg -lOKfi

.----1-

,I;',.

j'I!11
' 10'

70

I

)

,

,

Fig. 11 - Tape preamplifier
frequency response (circuit
of fig. 14)
dB

,.

iii

0.3

Fig. 10- RIAA preamplifier
response (circuit of fig. 12)

Fig. 9 - Noise density vs.
frequency

!

'52 S

f (Hz)

10

~~

63

16 25

10 2

~o

6J

16 25

10 J

794

~o

63

15 2S 40 53

10 4

I (Hz)

10
.0

.0'

'"

10'

"Hz)

APPLICATION INFORMATION
18K

.n

Fig. 12 - Stereo RIAA preamplifier

R6

C>~~11111~~'~5______o_ugR)

5- 467012

Fig. 13 - P.C. board and components layout of the circuit of fig. 12

OUT(R)

OUT(L) + Vs

795

APPLICATION INFORMATION (continued)
Fig. 14 - Stereo preamplifier for Walkman cassette players
18K Jl

+4.5V

82KJl

0'3~V
4.71JF
TAPE
HEAD

'~.

100
KJl

20

K

Fig. 15 - Second order 2 KHz Butterworth crossover
filter for Hi-Fi active boxes

Fig. 16 - Frequency response
(circuit of fig. 15)

+ 15 V

r

o

LOW-PASS

./

HIGH-PA S

0.47 flF
10K1l

7

~

~ 5Kll

fe

\

5.6K Jl

= 2KHz

IN

TO
WOOFER
AMPLIFIER

1

O"}JrF~
5KJl

TO
TWEETER
AMPLIFIER

5.6 KJl
5- 466211

796

"f--I-+I-+++-++I+--+-+-1H-I+I.fj
10-1

fife

APPLICATION INFORMATION (continued)
Fig. 18 - Frequency response
(circuit of fig. 17)

Fig. 17 - Third order 2.8 KHz Bessel crossover filter for Hi-Fi
active boxes
.15V

-rii;2320

7

5.+ 4

t

L

-

AS

O.47,uF .
5K.fl.

pi

5.6K!\

R'

~F
'c

8

-"~

+-f-III+H---'I-+---++++++H

=2,8KHz

TWEETER
:--~>----.--.--IIL
11

I

C8

10

C7.,..

.J..

Cl
IN

o-JJ---<~-o---I

*PIN5 4-5-12-13 ARE
CONNECTED TO GROUND

J-Lth

C4

801

C6...i-

I

~~-------------4

0

z

::§!

::>

«
a:
C!'
«

0

a:

'"~
0

i!!u

'"zz

C

0

u

'"a:..

~
I-

,

~

«
::§!

+
.

w

01)

::I:

z

Ii:

(.J

en

*

802

TEST CIRCUIT
L1

L.l0;JH
0 0 .60

l~~F r----l0-,-0-n""F-----..--C-14-nvS

I--+-_ _---,Cll ."T'
..

to=4.S MHz

14

"T'

...100;JF/35V

470;JF/16V
e12
111--'--*~-1If=-'

TDA 3190

.*

16

O.lume

R2

~

Pl
22kIl

4.7 n

ltn.

(5

75
nF

,

...

*

RC·75)Js
"PINS 4-5 -12-1) ARE
CONNECTED TO GROUND

C9

50;JF/16V

IP (FM DISCRIMINATOR)

THERMAL DATA
Rth j-pins
Rth j-amb

max
max

Thermal resistance junction-pins
Thermal resistance junction-ambient

14

80*

°C/W
°C/W

* Obtained with the GND pins soldered to printed circuit with minimized copper area.

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Vs= 24V, T amb = 25°C unless
otherwise specified)
Parameter

Test conditions

Min.

Typ.

Unit

28

V

Vs

Supply voltage (pin 14)

Vo

Quiescent output voltage (pin 11)

Vs= 24V
Vs= 12V

11
5.1

12
6

13
6.9

V
V

Id

Quiescent drain current

PI = 22Kn
Vs = 24V
Vs=12V

11

22
19

45
40

mA
mA

Po

Output power

9

Max.

d = 10%
fo= 4.5 MHz
Vs = 24V
Vs= 12V

f m = 400 Hz
f., f = ± 25 KHz
R L = 16.11
R L = 8.11

4.2
1.5

W
W

d = 2%
fo = 4.5 MHz
Vs = 24V
Vs=12V

f m = 400 Hz
M= ± 25 KHz
R L = 16.11
R L = 8.11

3.5
1.4

W
W

803

ELECTRICAL CHARACTERISTICS (continued)
Test conditions

Parameter
Vi

d

B

Vo

Input limiting voltage (-3 dB)
at pin 1

Distortion

Frequency response of audio
amplifier (-3 dB)

Recovered audio voltage (pin 16)

fo = 4.5 MHz
f m = 400 Hz
P1 = 0

M = ± 7.5 KHz

Po = 50 mW
fo = 4.5 MHz
Vs = 24V
Vs = 12V

f m = 400 Hz
M = ± 7.5 KHz
R L = 16n
R L = 8n

RL = 16n
C 7= 470 pF
Rf = 82n
Rf = 47n

C s = 120 pF
P 1= 22 Kn

Vi> 1 mV
f m = 400 Hz

fo

Fl
AMR

S+N

---r;J

Ampliture modulation rejection

Signal to noise ratio

R3

External feedback resistance
(between pins 9 and 11)

Ri

Input resistance (pin 1)

Ci

Input capacitance (pin 1)

SVR

Supply voltage rejection

Av

DC volume control attenuation

=

Min.

Max.

Unit

40

100

IlV

0.75
1

%
%

70 to 12000
70 to 7000

Hz
Hz

.20

III'V'

55

dB

65

dB

= 4.5 MHz

M = ± 7.5 KHz

0

Vi> 1 mV
f m = 400 Hz
m = 0.3

Typ.

fo = 4.5 MHz
M = ± 25 KHz

Vo =4V
Vi> 1 mV
fo = 4.5 MHz f m = 400 Hz
M = ± 25 KHz

50

25

Kn

30

Kn

5

pF

RL = 16n
f rlpple= 120 Hz
P1 = 22 Kn

46

dB

P 1 =12Kn

90

dB

Vi = 1 mV
fo = 4.5 MHz

804

Fig. 2 - Output voltage attenuation vs. DC volume
control resistance.

Fig. 1 - Relative audio output voltage and output noise
vs. input signal.

Fig. 3 - Amplitude modulation rejection vs. input
signal

'0
'dB)

o.

50

-,
~30

~'O

~.

~"

~'O

~11

-60
-70

10'

"

",

10'

\Ij(,uV)

Fig. 4 - LlAMR vs. tuning
frequency change.

>0'

'0'

",

>0

Fig. 5 - Recovered audio
voltage vs. unloaded Q factor
of the detector coil

Fig. 6
Distortion
output power

,
"/,)

\ I:J

-

I,

-

~

r-

' ,
;-1

f-+i-+~~·t-·-+--H-++-H-+-+-H

f-++
i '
-10

10

20

30 6fo(KHz)

Fig. 7 - Distortion vs. frequency deviation
G,'"

)tt\!.,;~ I
-t
1

102030405060

00

d,,~-r-r'-~,,-'-r-r'-~~

\lj=lm\l
fo=i,.5MHz

,

~~~;~~~:z

I !

!

ii'

00= 60

II

I:

!II
Ii

i
!

1J.;.,.n

I!!

\Is=24VI

Rl'''O ,

t

II,

I'
II
!

I I

,

W'
1-

'~

!

i

"I

10·'

Fig, 9 - Audio amplifier
frequency response

Fig. 8 - Distortion vs. tuni ng frequency change

(OWH-+-++++-H--+-+-+++-H

G"H%

\15 =12'1

T Rl · · "

!

-20

vs.

't
"
-1 'Ij1~":~ l~
,

!

-30

\Ii (~IJ)

10'

~r-r;-~W-"Trrmr-rnT~-'Tn~

,dB)

-+- f -- R =47il.

t ,;
"'MH,
tm=400Hz
I

I -:'

-, f-t-tt-HttIll'-+t-tt+IW;.

Po "Z50mW-

0 0 =60

ilifll
i
i : i:
!

10

j- t
!20

-6

f-t-+HttHt--t

-8

II
A

r'

f
!30

Af(lCHz)

-30

-20

20

-10

805

30 6fo( kHz)

to

to'

to'

f(Hz)

Fig. 10 - Supply voltage
ripple rejection vs. ripple
frequency
SVR
(dB)

so

r-1-rrmll"'IIITTTTTllrrr-rrrmnr-rnmm
H--'+Itttlt-+++tttttt--+t++IHtf--+1-+t+1tII

r-~"
r- r

h8f-+

r IP ,+

50

Fig. 11 - Supply voltage
ripple rejection vs. volume
control attenuation
SVR

r-r--ro-r-T-''-,,--'-.-,,-'T''1

(dB)

H++--H-++--H-+-+-H-+-I

Fig. 12 - Output power vs.
supply voltage
~ rT-''-,,-''-,,-'-''-rT''1
(w)

H-++--H-+-+-+-I-+-+-+--H-I

'fttlIt-1-tHt14f----'-t+t1"'lli
ffit- ~f_tttlffi_+ttt1t1ll

+t'

'ft.

.....

"

RL-I!IA

f+

RL =laA

+

lIV-,

' -+-

y
-Xl

Fig. 13 - Maximum power
dissipation vs. supply voltage (sine wave operation)
Plot
(w)

1-1-T-r+
-I-+-+-+--H++-~-f-+-J

2

:i ::;.;.

fo =4.5MHz
-Ifm =400 Hz
.IAf "'t25kHz

RL = ell

)

-r-r

(5

/

t-i

-60

(dB)

I

/

os

V

2S

30

Vs

'"

----

I
I

(',-1305

)n-

80

r-~'

!

-,

10

I

f-;-

+0/'
/:

~

A

40

~jlIj t+

iV":::'
10

Vs (v)

(v)

Vo

15

,

j--,-+I

i

i
20

m

Fig. 15 - Quiescent output
voltage (pin 11) vs. supply
voltage
(V

J
15

25

20

15

10

,/

A

f-+-t-+-+><+--l-","i-,t+-t-H-l-,H

-so

l-

Qo~60

1.5

-I.(J

('·'470

Ptot

/

RL =16.n.

+--h'-,-!Ft-'--,,+-1

f--,

-30

Fig. 14 - Power dissipation
and efficiency vs. output
power

, -~'H=i±_+I-tt~~+-!--+,-t-H
2.5

-20

::7_

20

25

30

Ys{V)

APPLICATION INFORMATION
The electrical characteristics of the TDA 3190 remain almost constant over the frequency range 4.5 to
6 MHz, therefore it can be used in all television standards (FM mod.). The TDA 3190 has a high input
impedance, so it can function with a ceramic filter or with a tuned circuit that provide the necessary
input selectivity.
The value of the resistors connected to pin 9, determine the AC gain of the audio frequency amplifier.
This enables the desired gain to be selected in relation to the frequency deviation at which the output
stage of the AF amplifier, must enter into clipping.
Capacitor C8, connected between pins 10 and 11, determines the upper cutoff frequency of the audio
bandwidth. To increase the bandwidth the values of C8 and C7 must be reduced, keeping the ratio
C7/C8 as shown in the table of fig. 16.
The capacitor connected between pin 16 and ground, together with the internal resistor of 10 Kn forms
the de-emphasis network. The Boucherot cell eliminates the high frequency oscillations caused by the
inductive load and the wires connecting the loudspeaker.
806

APPLICATION INFORMATION (continued)
Fig. 16 - Typical application circuit
L1

,-----~l00~nF~----~--~OVS
C14
C

L= 10"H
Qo =60
to~4.S MHz

•
"--...---1If-t-------,

10

11

I

I

"'lXl/JF{2sv

250/JF/16V

14

C12
111---"-*_-1IF='

IDA 3190
16

C5

.*

7.5nF

•• PINS 4-5-12-13 ARE
.Cpram1c filter
CONNECTEO TO GROUND

S-3483

Fig. 17 - P.C. board and component layout of the circuit shown in Fig. 16 (1: 1 scale)
73mm

·1

1°

25mm

C5-0097/1

807

MOUNTING INSTRUCTIONS
The Rth j-amb of the TDA 3190 can be reduced by soldering the GND pins to a suitable copper area of
the printed circuit board (Fig. 18) or to an external heatsink (Fig. 19).
The diagram of figure 20 shows the maximum dissipable power Ptot and the Rth j-amb as a function of
the side "JI." of two equal square copper areas having a thickness of 351' (1.4 mils).
During soldering the pins temperature must not exceed 260°C and the soldering time must not be longer
than 12 seconds.
The external heatsink or printed circuit copper area must be connected to electrical ground.
Fig. 18 - Example of P.C.board copper area which is
used as heatsink.
COPPER

AREA 3ot'

Fig. 19 - External heatsink
mounting example

THICKNESS

I

/

S-J181

P. C. BOARD

Fig. 20 - Maximum dissipable power and junction to
ambient thermal resistance
vs. side "JI."
G-nS8

Fig. 21 - Maximum allowable
power dissipation vs. ambient temperature

Ptot

Rth

(W)

( "CIW)

eo

r\
r-

,

~j- ... mb

i'-

--

I'-- r-f-- ,........ ~

Ptot (T amb = ?OOCli

20

T
I

10

20

30

100

-50

I (mm)

808

so

100

T...mb("C)

LINEAR INTEGRATED CIRCUIT
DUAL LOW NOISE TAPE PREAMPLIFIER WITH AUTOREVERSE
The TDA 3410 is a dual preamplifier with tape autoreverse facility for the amplification of low level
si!lnals in applications requirin!l very low noise performance, as stereo cassette players. Each channel
consists of two independent amplifiers. The first has a fixed gain of 30 dB while the second one is an
operational amplifier optimized for high quality audio application.
The TDA 3410 is a monolithic integrated circuit in a 16-lead dual in-line plastic package and its main
features are:
Very low noise
High gain
Low distortion
Sin!lle supply operation
Wide supply range

- SVR = 120dB
- Large output voltage swing
- Tape autoreverse facility
- Short circuit protection

ABSOLUTE MAXIMUM RATINGS
36
600
-40 to 150

Supply voltage
Total power dissipation at T amb = 60°C
Storage and junction temperature

V
mW
°C

ORDERING NUMBER: TDA 3410

Dimensions in mm

MECHANICAL DATA

809

6/82

CONNECTION DIAGRAM (top view)

OUTPUT A

16

NON INVERT.
INPUT A

15

OUTPUT B

14

NON INVERT.
B
INPUT

13

INVERT.
INPUT B

INVERT.
INPUT A
VOLTAGE

REF.

• Vs

THRESHOLO

12

OUTPUT
INPUT

OUTPUT

INPUT

INPUT

ui-tu

~O

;

~

ii,jrv"i

5-32G1

BLOCK DIAGRAM

j
r---

'Vs

~----

___

53

6'
1

I
'--

- 12

"

AUTO REVERSE

'11

~OUTPUT

~Ch.A

s- 4051/·'

THERMAL DATA
Rth j-amb

max

Thermal resistance junction-ambient
810

150

°C/W

SCHEMATIC DIAGRAM

DJ·iQQ~

iH
2

-----~

I

~~

~

0,

~32

~

~

~

IQ~

02

~

.,~

03

R2.

...

r

Q36

fQ~
R'7

1

D3't~t ~
Q23C

!:

VOLTAGE

QtQ~

D45~

R33

00

'-------

6

lQgo lag,

+087

R36

I~

I@

Q62

01.
Ql1

l092

Q96J

Q~

t fO~8'

f---------i(Q80
072

~6

013
014

15

R'8

it'
IRSS

017

'-2

•

'0

11

14

R60

R5.

13

rD.'j

TEST CIRCUIT (Flat Gain - Gv= 60 dB)

4

0-------------- v ref

11

L

R 5 "R6"4 7K.!l(Vs " '4.4 V)
R5"R6"'5K!l(V s "30V)

_____ _

I
I

1

Aut.orel/ersE' I
SWitch
:
,

Shielded Test -Box
5-4053fl

* Mylar or polycarbonate capacitors.

ELECTRICAL CHARACTERISTICS (T amb = 25°C, Vs= 14.4V, G v= 60 dB, refer to the test
circuit, unless otherwise specified)
Parameter

Test conditions

Is

Supply current

Vs~

10

Output current (pins 1-15)

Source

Min.

8V to 30V

Vs~

Gv

Closed loop gain

f

~

20 Hz to 20 KHz

Rj

I nput resistance

f

~

1 KHz

Ro

Output resistance (pins 1-15)

f

~

1 KHz

THD

Total harmonic distortion

Vo~300mV

50

~

f~

812

Max.

Unit

10

mA

10

mA

1

mA

60

dB

80

Kn

50

n

8V to 30V

Sink

f

Typ.

1 KHz
10 KHz

0.05
0.05

%
%

ELECTRICAL CHARACTERISTICS (continued)
Parameter

Vo

Output voltage swing (pins 1-15)

Vo

Output voltage (pins 1-15)

Total input noise (0)

en

Signal to noise ratio (0)

SIN

Test conditions

Min.

Typ.

Max.

Unit

Peak to Peak

V 5= 14.4V
Vs= 30V

12
28

.V
V

d = 0.5%
f = 1 KHz

Vs= 14.4V
Vs= 30V

4
8

Vrms

Rg= 50.11
Rg= 600.11
Rg= 5Kn

0.25
0.4
1.3

V rms

0.6

ltV
ltV
ltV

Vin= 0.3 mV

Rg= 600.11

57

dB

Vin= 1 mV

Rg= 0

73

dB

CS

Channel separation

f = 1 KHz

60

dB

CT(OOO )

Cross-talk (differential input)

f = 1 KHz

80

dB

SVR

Supply voltage rejection (00)

f = 1 KHz

120

dB

SVR (00)

Of reference voltage (Pin 4)

100

dB

55

mV

100

.11

Rg= 600.11

f = 1 KHz
Rg= 600.11

V ref

Reference voltage (pin 4)

R ref

Ref. voltage output resistance
(pin 4)

l'N ref
~

(0)
(00)
(000)

Voltage temperature
coefficient

10

The weighting filter used for the noise measurement has a curve A frequency response.
Referred to the input.
Between a disabled input and an input ON.

813

ItV/oC

ELECTRICAL CHARACTERISTICS (Refer test circuit, Vs= 30V!
AMPLIFIER N° 1
Test conditions

Parameter
Gv

Gain (pins 6 to 5)

d

Distortion

Vo= 300mV

en

Total input noise (0)

Zo

Output impedance (pin 5)

10

Output current (pin 5)

Vs

DC output voltage (pin 5)

Min.

Typ.

Max.

Unit

29

30

30.5

dB

f = 1 KHz
f = 10 KHz

0.05
0.05

%

R g=600n

0.4

IN

f = 1 KHz

100

n

1

mA

1.3

Vs=10V

2

2.7

V

AMPLIFIER N° 2
Gv

Open loop voltage gain (pins2tol)

100

dB

Is

I nput bias current

0.2

IJA

Vos

I nput offset voltage

2

mV

los

I nput offset cu rrent

0.05

IJA

BW

Small signal bandwidth

G v= 30 dB

150

KHz

en

Total input noise (0)

Rg= 600n

2

IJV

Rj

I nput impedance

f = 1 KHz (open loop)

500

Kn

150

AUTOREVERSE
Pjn

(0)

V 12

< 2V

V 12

> 4.5V

6 -10

OFF

ON

7- 9

ON

OFF

The weighting filter used for the noise measurement has a curve A frequency response.

Fig. 2 - Total input noise
vs. source resistance (BW=
22 Hz to 22 KHz)

Fig. 1 - Total input noise vs.
source resistance (curve A)

I-t--t+lttltl-t )

.k'

1

0..

1

0.'. _ _

I-t~-++~--~rn '+-0.01

0,01
10

Rg(i'I.l

10'

I Ii

Fig. 3 - Total harmonic
distortion vs. output voltage

I!! I

II'

I'

,

I'

'--~~~:'---:--'-~~---:--:-'c~
10 3
Rg (11.)
10'
'0

I

"

Fig. 6 - Very low noise stereo preamplifier for car cassette players
(with Gap Loss Correction and autoreverse function)

'0

Fig. 5 - Frequency response
G 0961\

(dB I

1111

iTTr
'!

I

,l-

60

I

I

,

c- ,.~

l

,

r-

22nF
30

r-+

tt-

,
"

Rll.

O2°'1,·"'OF

RL,,20KA

t--f~I~~~~2~2~OKJn~

L{==~~~~,~;1~22~n~F
It..4V Rl
lMll

R2

1

C9

50Kn

2AJf

1

Autoreverse

*

Myla.r or

polycarbonat~

5-

~

04 912

815

capacitors

"

,

,

"

,

10

I

rt+~
t (Hz)

Fig. 6 - P.C. board and component lay-out (1:1 scale) for the circuit of fig. 4
OUTPUT
LEFT .Vs

--.-

OUTPUT
RIGHT

'-..-

INPUT
INPUT
(LEFT CHAN.) (RIGHT CHAN.)

AUTOREVERSE

. Fig. 7 - Stereo preamplifier for car cassette players, with low value
capacitors (Autoreverse function)

Fig. 8 - Frequency response
(dB)

lOOn.

IIIIII

---,"--c:"-_:--·-o.llo.4V
I

*'OO,.uF

......

O.3mV

IIIIII

80
70
60
50

lOOKA
S.Stc:A
e13 *
1SnF

40
30

a.3mV

20

0'::~RL'20Kn

15

Rn

I

C14.
15nF

'4.4V Rt
lM ..'l.

lAut.
5-1,050/2

* MylAr

or polycarbonat. capacitors

816

10

10'

t(Hz)

LINEAR INTEGRATED CIRCUIT
PRELIMINARY DATA
DUAL VERY LOW NOISE PREAMPLIFIER
The TDA 3420 is a dual preamplifier for applications requiring very low noise performance, as stereo
cassette players and quality audio systems. Each channel consists of two independent amplifiers.
The first one has a fixed gain while the second one is an operational amplifier for audio application.
The TDA 3420 is available in two packages: 16-lead daul in-line plastic and 16 lead micropackage.
Its main features are:
Very low noise
High gain
Low distortion
- Single supply operation
- Large output voltage swing
- Short circuit protection

ABSOLUTE MAXIMUM RATINGS
Vs
Ptot
Tj , T stg.

Supply voltage
Total power dissipation at T amb = 70°C Dip
50-16
Storage and junction temperature

20
V
530
mW
400
mW
-40 to 150°C

ORDERING NUMBERS: TDA 3420 (DIP)
L 343M (50-16)
Dimensions in mm

MECHANICAL DATA

817

6/82

CONNECTION DIAGRAMS
'-"

OUTPUT A

16

• VS

NON INVERT.
;NPUT A

15

OUTPUT B

GND

14

NON INVERT.
INPUT
B

INVERT.
LNPUT B

INVERT.
INPUT A

13

GND

N.C.

OUTPUT

12

INVERT.
INPUT B

16

• VS

15

OUTPUT B

14

NON INVERT.
INPUT
B

N.C.

13

OUTPUT

12

INPUT

"

OUTPUT A

NON INVERT.
INPUT A
INVERT.

INPUT A

10

INPUT
GND

INPUT

"

OUTPUT

INPUT

INPUT

10

INPUT

INPUT

GND

OUTPUT

INPUT
5-523'

5-5233

50-16

DIP

BLOCK DIAGRAM(Pin numbers refer to the DIP)
r - - - - -

I

':C~)-:()- 5

6

-

-

- -

-.
I
I
OUTPUT(L)
I

I

I

8~ND
I

I

OUTPUT(R)

DIP

THERMAL DATA
Rth j-amb

•

max

Thermal resistance junction-ambient

The thermal resistance is measured with the device mounted on a ceramic substrate (25 x 16 x 0.6 mml.

818

80-16

Fig. 1 - Test circuit

INPU~~
(Ll

y

10

INPUrC2 10JoJF
(Rl

Note: Pin numbers refer to DIP.

Fig. 2 - P.C. board and components layout of the circuit of fig. 1 (1: 1 scale)

819

Fig. 3 - Test circuit without input capacitors

INPUT ( Ll

INPUT(R)

C5

10p F

T

R2n R4nR
3Kfil. t2Kfi

--- .. ,vvnu

Note: Pin numbers refer to the DIP.

5- 5 237/1

ELECTRICAL CHARACTERISTICS (Tamb = 25°C, Vs= 14.4V, Gv= 60 dB refer to the test

circuit of fig. 1, unless otherwise specified)
Parameter

Test conditions

Is

Supply current

Vs= 8V to 20V

10

Output current

Source

Min.

Typ.

Max.

Unit

8

mA

10

mA

1

mA

60

dB

100

Kn

50

n

f = 1 KHz

0.05

%

f = 10 KHz

0.05

%

Vs= 8V to 20V
Sink
Gv

Gain

Ri

.Input resistance

Ro

Output resistance

THD

Total harmonic distortion
without noise

f = 1 KHz

Vo= 300mV

50

820

ELECTRICAL CHARACTERISTICS (continued)
Test conditions

Parameter

Va

Peak to peak output
voltage

I = 40 Hz to 15 KHz

en

Total input noise (0)

Rs= 50 n
Rs= 600 n
Rs= 5 Kn

SiN

(0 )

Signal to noise ratio

(00)

CS

Channel separation

SVR

Supply voltage
rejection

Min.

Typ.

Max.

12

0.25
0.4
1.3

Unit
V

0.7

!LV
!LV
!LV

Vin= 0.3 mV
Vin= 1 mV

Rs= 600 n
Rs= 0

57
73

dB

Vin= 0.3 mV
Vin= 1 mV

Rs= 600 n
Rs= 0

55
71

dB

60

dB

110

dB

1= 1 KHz
1= 1 KHz

Rs= 600 n

(000 )

(0)
Weighting lilter: curve A.
(00) Weighting lilter: Dolby CCIRiARM.
(000) Relerred to the input.

ELECTRICAL CHARACTERISTICS (Refer to the test circuit of fig. 1, Vs= 14.4V)
AMPLIFIER N° 1
Parameter

Test conditions

Gv

Gain (pin 6 to pin 5)

d

Distortion

Va= 300 mV

en

Total input noise (0)

Zo

Output impedance (pin 5)

10

Output current (pin 5)

V5

DC output voltage (pin 5)

Min.

Typ.

Max.

Unit

27.5

28.5

29

dB

1= 1 KHz
f = 10 KHz

0.05
0.05

%

Rs= 600n

0.4

!LV

f = 1 KHz

100

n

1

mA

Test circuit fig. 3

2.8
V

Test circuit fig. 1
(0) Weighting lilter: curve A.

821

1.0

1.5

ELECTRICAL CHARACTERISTICS (continued)
AMPLIFIER N° 2
Test conditions

Parameter

Typ.

Min.

Max.

Unit

Gv

Open loop voltage gain

100

dB

18

I nput bias current

0.2

I'A

Vos

I nput offset voltage

2

mV

los

I nput offset current

50

nA

en

Total input noise (0)

Rs= 600n

2

I'V

Rj

I nput impedance

f = 1 KHz (open loop)

500

Kn

150

(0) Weighting filter: curve A.

Fig.4 - Total input noise vs.
source resistance (curve A)

Fig. 5 - Total input noise vs.
source resistance(BW= 22 Hz
to 22 KHz)

G_3!411

_.
.1

i,1

i !

4 r--=jV s =14.4V I

,

!Ii.em

.- [.Iff-

0.1

0.'

=F=B

:~

'-1- illII' ,

I

,

0.01
Rg (n)

Rg(n)

Fig. 8 - Distortion vs. input
level (test circuit of fig, ,,~)

Fig. 7 - Output voltage vs.
frequency

400
300

11111\11

i

i

'I:

I
!

v":4i4~~~:"j
d"opS%

!,

i'

I'

"

'f--.

,[--

li'!1

I

I

0.'

-

I

I

i

I

I

II

- f

~++tllI ,I

1'1

I
I i iI

Fig. 9 - Frequency response

,

I

0.'

I

II'il!li

G-3620

II

11

,

i

Illdll

I '+EQ.:120,uS

'T-I
'!-,.

so

Ii

822

!

60

'--

I
03

ll

I

'''t-

,

I

0.0 1

-'1·

70

-

!

I IIII! II

I

I III

-

I

1 I

I

circuit of fig. 10
,of the
111,'11
I !II Ii

f ,,300Hz

I'! '

hi

'i _J ;~ it,
r-i ~i~ ~ ~T

-t-~

0.'

eo

,

[--

11 -~ iii

(dB

d
('J.

RL=ZOKl'l

[I' H

I

II

t100

II

it
I

200

IlIlili

G·3610/1

II

:=tl:~:::f+
-..:- ,

I

,[--

I
I:

I

:1

,

I

Tt.

.,

11:1

I

>--- --:-t- .'

1'----'-'

,-1- 7~j

I

,

"

I!V i'-6~EI~~~L ~~~~~OR I,

0.1

,

I
I I

f-+t

-

Vo

,

1:t'C

,--

(mV

G·I,

o~I~~~~~~!J.

I~-----r-r+tt

-~

0.01

.,

d
('/

BW" curve

~

Fig. 6 - Total harmonic distortion vs. output voltage

-t

"

-

"

..-

,

30

-

20

'0

10'

.<>,

'0'

f(Hz)

Fig. 10 - Very low noise stereo preamplifier for cassette players
C5

.r-ll--r"44V
01,uF

1

'6

onf-JF

>,---.--11-

-0

CIO

0.22 .uf

>"--~--IJ------o
Cll

S-SZJe,lf

Fig. 11 - Complete 20 + 20W stereo tape playback system

823

LINEAR INTEGRATED CIRCUIT
PRELIMINARY DATA

5 BIT BINARY TO 7-SEGMENT DECODER DRIVER
•
•

ROM MASK OPTION
STANDARD CONFIGURATION FOR 2 DIGIT 7-SEGMENT LED TO PRESENT THE NUMBERS
1 TO 32
• CONSTANT CURRENT OUTPUT STAGES FOR DIRECT DRIVING OF COMMON ANODE LEDs
• OUTPUT PROVIDED TO DISPLAY THE STAND-BY MODE
• AV OUTPUT ACTIVATED WHENEVER PROGRAM 32 IS SELECTED
• TTL COMPATIBLE INPUTS
• 5V SUPPLY VOLTAGE
The TDA 4092 is a monolithic integrated circuit designed to display the program number (1 to 32) in
TV or Radio sets in conjunction with voltage or frequency synthesizers. The inputs accept a 5 bit binary
code with TTL levels and have internal pull-up.
The outputs can directly drive LED display elements with common anode.
One of these outputs is intended to display the stand-by mode of the set.
No p.xtp.rn::ll

rf~~ic;;tnrc:; ~rp

!"p'=!'_t!r,=,d

jf

the LED5

~~e 5!..!p~Eed ~t

5V.

The LEDs can also be supplied with higher voltage (up to 18V) but in this case a single resistor in series
with the LED elements must be used in order to limit the power dissipation of the IC; moreover, a suitable Rext must be chosen.
The circuit is produced in 12 L technology and is available in a 24 pin dual in-line plastic package.

ABSOLUTE MAXIMUM RATINGS
Vs
VI
Vo (off)
IOL

Ptot
T stg , Tj
Top

10
10
20
22
0.8
-25 to 150
Oto 70

Supply voltage
Input voltage
Off state output voltage
Output current
Total power dissipation at T amb = 55°C
Storage and junction temperature
Operating temperature

V
V
V

mA

W
°C
°C

ORDERING NUMBER: TDA 4092

MECHANICAL DATA

6/82

Dimensions in mm

824

CONNECTION DIAGRAM (top view)
GND
BRIGHTNESS
CONTROL
S TAND- BY INPUT

PA
PB
BINARY

INPUTS

DECIMAL
POINT OUTPUT
A"l OUTPUT
PEN - COLLECTOR)

PC
PD
PE

C

OUTPUTS(TD
THE MOST

6:gl~ljICANT

C

d

OUTPUTS
(TO THE LEAST
SIGNIFICANT
DIGIT)

BLOCK DIAGRAM

PA

I----------->---t ~~I~THRT~tSS

PB

BINARY
INPUTS

,------------t T~~~~- BY

PC
PD

DECIMAL POINT
OUTPUT

PE

AV(OPEN COLLECTOR

>--------i OUTPUT)
ROM
32 x 14

TO DISPLAY
DIGITS

GNO

825

5-

522~

APPLICATION CIRCUIT

BRIGHTNESS

CONTROL

5- 5227

(*) R is necessary only with Vc greater than 5.5V.

THERMAL DATA
Rth j-amb

Thermal resistance junction ambient

max

120

°G/W

ELECTRICAL CHARACTERISTICS (Vs= 5V, Tamb = 25°G unless otherwise specified)
Test conditions

Parameter

Min.

Typ.

4.5

Vs

Supply voltage

Is

Quiescent supply current

Vs= 5.5V

V IH

High level input voltage

T amb =

a to

V IL

Low level input voltage

T amb =

a to 70 e

IIH.

High level input current

T amb = a to 700
Vs = 5.5V

IlL

Low level input current

20
700

e

5.5

V

28

rnA
V

V IH = 2V
V IL=0.8V

826

Unit

2

0

e

Max.

-50

0.8

V

100

nA

-200

/1A

ELECTRICAL CHARACTERISTICS (continued)
Parameter

Test conditions

V out

Output voltage

10= 15 rnA

V AV '

AV output voltage (pin 20)

(All the binary inputs high)
IAV=1.6mA

Pin 23 input current
(Brightness control)

18

Output current (*)

10

Min.

Typ.

Max.

Unit

V

2

50

Rext= 3.3 Kn

-375

R ext = 5.6 Kn

-225

260

mV

!LA

Rext= 3.3 K

13.5

15

16.5

R ext = 5.6 K

8

9

10

mA

Output cu rrent for
decimal point (pin 21)(**)

lop

Lllo

-I~

o

III V s

Segment cu rrent
stability

10=15mA
V s= 4.5 to 5.5V

(*) 10 = 40· 18
(**) lop is fixed and independent of R ext value.

827

12.5

mA

0.2

%

FUNCTION TABLE
INPUTS

A B C D E

Standby

a

H L

L

L

1
2
3
4
5
6

H H L

L

L

7

H H H L

L

L

L

L

L

H L

L

L

L

L

H L

L

L

L •

H H L

L

L

L

L H L

L

L

L
L
L

H L

L

L

8
9
10
11
12
13
14
15
16

L

L

L

H

L

17

H L

L

L

L

L

H L

L

H L

L

L

H L

L

H L

H L

L

H H L

L

H L

L

L

H H L

L

H L

L

H H L

L

H H H L

L

H H H H L

L

L

H H H

L

H H H H

L

H H H H H

L

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

X X X X X

H

none

L

L

H

L

L H L

L

H

L

H H L

L

H

L

H L H

L

L

L

H L

H

L

L H H L H

H L

L

H H H L

H

L

L

L H H

L

H L

L H H

L

H L H H

L

L
L

H H L H H

L

H H H

H L

L
L

H

OUTPUTS
Number
displayed

L
L

= High
L = Low
Av: open collector output.

on
on
on
on
on
on
on
on
on
on
on
on
on

ten's digit (MSD)
b
c
d
e

on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on

g

b

on
on

on
on
on
on

on
on
on
on
on
on

on
on
on
on
on
on
on
on
on
on

on
on
on

a

on
on

on
on
on
on
on
on
on
on
on
on
on
on
on

on
on
on
on
on
on
on
on
on
on

on
on
on
on
on
on
on
on
on
on
on
on
on

on
on
on
on
on
on
on
on
on
on
on
on
on
on
on

on
on
on
on
on
on
on
on

on
on
on
on
on
on
on
on

on
on
on
on
on
on

unit's digit (LSD)
c
d
e
f

g

DP

on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on

on
on
on
on

on

on

on
on
on

on

on
on

on

on
on

on

on

on
on
on

on

on
on

on

on
on

on

on

on
on
on

on
on

on

on

on
on
on
on
on
on

on
on
on
on
on
on

on
on
on
on
on
on

on
on
on
on
on
on
on

on
on
on
on
on
on
on

on
on
on
on
on
on
on

on

on
on

X = Don't care

AV output is "on" whenever the input bits are all high, regardless of the standby input.

828

Av'

..

APPLICATION INFORMATION
Fig. 1 - Remote controlled voltage synthesizer (up to 32 stations) for TV and radio

When operating with a supply voltage higher than 5.5V for LED elements, it is necessary to limit the IC
power dissipation by means of one external resistance connected in series with the common point of the
digits (R in fig. 2).
Unused outputs must be connected to Vs taking into account the additional power dissipation.
The ~alue of. ~ must be chosen taking into account the worst
Fig. 2 _ Schematic diagram
working conditions.
for LED driving.
The maximum number of ON segments is 12 (number 28 dis·
played), so,
Vc - Vo - Vout min
R=
12· 10
10 , depending on Rext (see Table of Electrical characteristics), can
be fixed to the most suitable value to minimize the power dissipation in the IC. Since the worst condition for the device is with
seven outputs active, it follows that:

Pd out = 7· 10 (V c - Vo -7R • 10 )
Pd = Vs· Is max

Power dissipation in the output
stage
Power drained from the supply

I-TD_A_4_09_2--1f---1f-...J } . ' "

Total power dissipation
Ptot must not exceed the Absolute Maximum Ratings of 800 mW, at Tamb = 55°C.
Otherwise the maximum operating ambient temperature can be fixed by:
Tamb max= Tj max - Rth j-amb Ptot
Example:
Vc = 18V;
10 = 10 mA (fixed by means of Rext= 5.6 Kn);
Tj max= 150°C; Vo = 2V; Vs = 5.5V.
Applying the previous formulae, it follows that: R ~ 120n;
Ptot = 0.686W; Tamb max~ 68°C.
829

Vout min= 2V;

Is max= 28 mA;

Pd out= 0.532W;

Pd = 0.154W;

LINEAR INTEGRATED CIRCUIT
VISlor\l I F SYSTEM WITH AFC
•
•
•
•
•
•
•
•

HIGH GAIN-HIGH STABILITY
VERY LOW INTERMODULATION PRODUCTS
MINIMUM DIFFERENTIAL ERROR
CONSTANT INPUT IMPEDANCE INDEPENDENT OF AGC
FAST AGC GATING-ACTION, LARGELY INDEPENDENT OF PULSE SHAPE AND AMPLITUDE
ADJUSTABLE WHITE LEVEL
LARGE AFC OUTPUT CURRENT SWING (PUSH-PULL OUTPUT)
SWITCHABLE AFC

The TDA4420 is a monolithic integrated circuit in 18 lead dual in-line plastic package. The functions in·
corporated are:
gain controlled vision I F amplifier
video demodulator controlled by picture carrier
AGC detector with gating facility
AGC amplifier for tuner drive with variable delay
phase comparator for AFC current generation
electronic AFC switch, controlled by a DC threshold detector
thermally compensated push-pull AFC output stage.

ABSOLUTE MAXIMUM RATINGS
Vs

V5
113 , 114

Ptot
T stg , T j

Supply voltage (pin 15)
Voltage at pin 5
Video DC output current
Total power dissipation at Tamb ,;;; 70°C
Storage and junction temperature

15
15

V
V
5
mA
1
W
-40 to 150°C

ORDERING NUMBER: TDA 4420

MECHANICAL DATA

Dimensions in mm

6/82
830

CONNECTION DIAGRAM

(top view)

,.

INPUT

DECOUPLING

17

BIAS
DECOUPLING

GROUND

16

A Fe OUT

INPUT

BIAS

AGe TIME

15

,.

CONSTANT

TUNER AGe
OUTPUT

SUPPLY
VOLTAGE

POSITIVE

VIDEO
OUTPUT
NEGATIVE

TUNER AGe

13

DELAY

VIDEO

OUTPUT

FlVBACK

12 WHITE LEVEL

PULSE INPUT

CARRIER
TUNING

"

AFC
TUNING

lOP

CARRIER
TUNING

AFC
TUNING

$-1,026

BLOCK DIAGRAM

_J'

ci

>...,
M

>

5-4033

836

LINEAR INTEGRATED CIRCUITS
TV SIGNAL IDENTIFICATION CIRCUIT AND AFC INTERFACE
The TDA4431 and the TDA4433 are monolithic integrated circuits in a 14 lead dual-in-line plastic
package. They integrate the following functions:
-

TV signal identificator-Sync.separator - Threshold detector - Digital Interface - Voltage regulator

They are intended for use in Electronic Program Memory tuning systems. the TDA4431 in conjunction
with M193B1, while the TDA4433 with M293B1. The circuits features are:
Identification of true TV stations only.
Low impedance output of the identification signal.
Digital control signal for automatic search and AFC operation.
Thermal compensation of the voltage regulator.

ABSOLUTE MAXIMUM RATINGS
Vs

V3
V13
12
16 ; 12
110
III
112

Ptot
Tstg' Tj

16
16
-5 to +6
±1
1
2
2
±2
800
-40 to 150

Supply voltage (pin 1)
Voltage at pin 3
Voltage at pin 13
Pin 2 current (TDA4431 )
Pin 6 and pin 2 current (TDA4433)
Pin 10 current
Pin 11 current
Pin 12 current
Total power dissipation at Tamb ,,;; 70°C
Storage and junction temperature

V
V
V
mA
mA
mA
mA
mA
mW
°C

ORDERING NUMBERS: TDA 4431
TDA 4433

MECHANICAL DATA

Dimensions in mm

I

~

~::::::l
837

6/82

CONNECTION AND BLOCK DIAGRAM (TDA4431)
(Top view)

REGULATED VOLTAGE
OUTPUT

r------------------------------{4,)-----------~
OND

V,

'13

OUTPUT

Afe "5"
CURVE INPUT

3

"

STABILIZED

IDENTIFICATION

H

~~~\~~~TAfl

FLYBACK
INPUT
VIDEO

SENS!TIVITY

VOLTAGE OUT

TIME CONSTANT

VIDEO SIGNAL
INPUT

SIGNAL

CONTROL
W

IDENTIFICATION
SIGNAL OUTPUT

N,C

N.C.

N,C

N.C

SENSITIVITY

CONTROL

14
IDENTIFICATION
SIGNAL OUTPUT

CONNECTION AND BLOCK DIAGRAM (TDA4433)
(Top view)
REGULATED VOLTAGE
OUTPUT

V,

14

OND

OUTPUT A

13

VIDEO SIGN"AL

AFe "S"
CURVE INPUT

"

STABILIZED

~~~I~~:TA:fl

SENSITIVITY
CONTROL

VOLTAGE OUT
IDENTifiCATION
TIME CONSTANT

INPUT
H FLVBACK
INPUT

10

IDENTIFICATION
SIGNAL OUTPUT

OUTPUT B

N.C.

N C,

N.C

SENSITIVITY
CONTROL

I

~

BUFFER
STAGE

L-________________________

-----l-

~1D)}---------------------~

LOENT1FICATION
SIGNAL OUTPUT

*

Open collector outputs

838

.....
5-4046/1

TEST CIRCUIT

dl-

)

O----A~b

.------'-----',,---'--.;;,

Hor'8_,b_a_'k_'"_ _6,,-,9

r

~L-.4--o

D,gltal AFC

lout A

:

L

r"
'o,,3B.9MHz

out TDA 44311:

(no ident.) :

O~---,

i--o-----oldentlf. out

t:::..;~---T---':';'----T-...J

HL
I

(ld;nU

PI Digital AFC perfect tuning
P2 Sensitivity control

S2 A : DC or pulses width
B : Functional tests

SI A: Static tests
B : Functional tests

L---+J 0\

outTOA4433

TDA4431133

o or3V(DC)

: r:-u7 B

HL

Digital AFC

'N F
_ '-_-+--i_O+VS"'12 V

Oor3V(OC1

Jl

(*'r

THERMAL DATA
Rth j-amb

max

Thermal resistance junction-ambient

ELECTRICAL CHARACTERISTICS (refer to the test circuit; Vs

12V,

Tamb

100 °C/W

= 25°C, unless

otherwise specified)
Test conditions

Parameter

Vs

Supply voltage range (pin 1 )

Is

Supply current (pin 1)

V s =14.5V

V2

Output voltage: low

ftuning

medium

high (TDA4431)
V2

Output voltage

(TDA4433)

Min.
10.8

< fo

Typ.

Max.

Unit

14.5

V

30

mA

0.8

V

8.5

V

ftunin£ = fo
Vs = 10.8 to 14.5

5.5

ftuning

>

Vs-0.5

V

ftuning

< fo

Vs-0.5

V

fo

12 = lmA

ftuning == fo

0.8

V

> fo

0.8

V

ftuning

839

ELECTRICAL CHARACTERISTICS (continued)
Test conditions

Parameter

V6

Output voltage

(TDA4433)

Min.

Typ.

Max.

Unit

ftuning

< fo

16 = lmA

0.8

V

ftuning

= fo

16= lmA

0.8

V

ftuning

> fo

V

Vs-0.5

12

Output cu rrent
(TDA4431)

V3

I nput voltage range

V 3U

Upper threshold voltage
(see fig. 2)

V 4 -25

V 3L

Lower threshold voltage
(see fig. 2)

V 4 -425

R3

I nput resistance

V3 = V 4

V4

Regulated voltage

14 = lmA

14

Output current

R4

Output differential resistance

f:..V 4
-f:..Ts

Regulated voltage thermal drift

± 25

IJ-A

8

V

V4

V 4 +25

mV

V 4 -400

V 4 -375

mV

4

Mn

1.4

V

6.6
1

n

60

±2

mVrc'

VlO

Identification
output
voltage

RIO

Output resistance

V 12

Switch off threshold voltage

112

Input flyback current

R12

Input resistance

lfly

Flyback pulse duration

10

17

}.lsec.

t

Time delay between leading
edges of flyback pulse and
sync. pulse

0

3.5

J.l sec.

Vl3

Video input signal
(peak to peak)

2.5

4.5

V

no identification

110 = lmA

mA

V

Vs-l.3

identification

Vl3

Sync. pulse amplitude
(above black level)

Rl3

I nput resistance

20

0.5
V 12 = 3V

1

V

1.5

mA

Kn

10

0.52

V

1.5

840

mV

n

100

Kn

Fig. 2 - Digital AFC threshold voltage vs. frequency.

Fig. 1 - Medium output Voltage Vs. Supply voltage.
('_31,7

"

MEDIUM

",

V

-

/'
V""
/'
;-

.....-v

,/

V-

/'

M~ / '

/'

.....- V
• 25m'"

"t.-O.4V.Z5mv

/'

14

'Is (v)

TDA4431
I nput Voltage
(V3)

V3> V 4
V 4 -0.4V
V3

< V3 < V 4

< V 4 -O·4V

TDA4433

Output voltage
(V 2 )

Output voltage
(V 2 )

Output voltage
(V 6 )

Low level

High level

Low level

Medium level

Low level

Low level

High level

Low level

High level

APPLICATION INFORMATION (refer to the block diagram)
TV signal identification circuit:

The circuit recognizes only TV signals by checking 'Iogically during one line the coincidence between
the horizontal flyback pulse and the pulse detected by a sync. separator.
The signal identification is carried out by charging the capacitor connected to pin 5; when the capacitor
voltage overcomes a fixed threshold voltage, a Schmitt trigger switches and enables the AFC control. If
a TV signal is recognized, the capacitor is slightly charged every line and its voltage reaches the threshold
after a number of line which is defined by the value of the capacitor itself. The sensitivity of the identification circuit, hence the number of lines required to charge the capacitor, can be adjusted by means
of the resistor connected between pin 11 and ground.
When the identification has been made, a signal (level L) is available at pin 10.
841

Threshold circuit:
The circuit detects 3 ranges of AFC voltage and in combination with the TV signal identification circuit
drives the electronic switches.
With a correct TV signal, the output levels corresponding to the 3 ranges are:

TDA4433

TDA4431
(V 2 )

fa - Ii f

L

(V 2 )

(V 6 )

H

L

fa

M

L

L

fa + Ii f

H

L

H

L
M
H

~

~
~

Low level
Medium level
High level

Note that the output levels are different for the two devices.
The TOA4431 provides three output levels: low (L), medium (M) and high (H). The output at pin 2
remains at medium level if no video signal is applied at the input or if a video signal is applied but is not
identified as a true TV signal.
The TOA 4433 has two separate outputs which can have only two states, high (H) or low (L). The outputs at pin 2 and at pin 6 remain at a low level with no video signal input or with a video signal not
identified as a true TV signal. Both pin 2 and pin 6 are open collector outputs and must be pulled.,up
to the positive supply voltage by external resistors.

Voltage Regulator
The circuit can deliver 1 mA and it can be used as. Of A converter reference to supply fine tuning voltage.

Fig. 3 - Application circuit

LS HS
~----c ldentif. out

Digital AFC out
(TDA 4433 only)

Digital AFC out
(TDA4 431 and
TOA 4433)

Pos. video out

Po,
Ily. in

842

5-403211

The passive components should be chosen as follows:
R 1 and R2

: these define the AFC response slope. For R 1 = R 2 = 5.1 KQ, the typical slope is 750/11
KHz/V (with AFC output unloaded).

Sl

: switches between low slope (LS) and high slope (HS). The high slope is typically 88/11
KHz/V.

R3 and R4

: the ratio (R3 + R4 )/R 3 defines the digital AFC width (of) calculated from the linear
AFC width (26f). With V 5 = 12V, the relation is:
Df = 0.036 (26f)

RT 1

:

by means of this trimmer it is possible to align the linear tuning with the digital one,
at the same frequency. The typical relation is:

with R3 = 3.3KQ, Ra can be a fixed resistor of 11 OKQ.
RT2

: by means of this trimmer it is possible to choose the better sensitivity. It is possible to
put a fixed resistor at pin 11 in the range of 68 Kn to 100 Kn.

To make a better sensitivity adjustment of trimmer R T2 , it is necessary to use only a weak signal at the
antenna. The video information must be a black picture or a field of small white points on a black field.
Furthermore, the action of the syncs separator must be as quick as possible.
In receivers with automatic program search, Sl should be in the HS position and then the components
Sl, R 1 and R2 can be omitted completely.

Fig. 4 - Linear and digital AFC

2" f
Vout pin 16
TOA 4420(AFCou!)
Low Slope

VOUI pin 2
TOA 4431

A

MH,
ca.rrier)
5-4033

843

EPM SYSTEM CONFIGURATIONS
1) For 16 channels

M 193

1 ___M__19_3_A__~
__T_D_A
__
4_43_1__~--------------~~,_
M 193 C
'2) For 32 channels

'--__
T_D_A_4_4_33__

~~-----------~--~~

____M_2_9_3____

3; With microprocessor

TDA 4433

11

844

P

~

LINEAR INTEGRATED CIRCUIT
MULTIFUNCTION SYSTEM FOR TAPE PLAYERS
The TDA 7270S is a multifunction monolithic integrated circuit in a 16-lead dual in-line plastic package
specially designed for use in car radios cassette players, but suitable for all applications requiring tape
playback.
It has the following functions:
Motor speed regulator
Automatic stop
Manual stop
Pause
Cassette ejection
Radio - Playback automatic switching.
The circuit incorporates also:
Thermal protection
- Short circuit protection to ground (all the pins)

ABSOLUTE MAXIMUM RATINGS
Vs
11
15
Ptot
Tstg ;Tj

Supply voltage
Sink peak current at pin 1
Sink peak current at pin 5
Power dissipation at T amb ';;; 80°C
Storage and junction temperature

20
2

V
A

2

A

1

W

-40 to 150

°C

ORDERING NUMBER: TDA 7270 S
Dimensions in mm

MECHANICAL DATA

845

6/82

CONNECTION DIAGRAM
(top view)

16

MOTOR
S~EED

15

REG.
14

CASS, SWITCH 4

13

RELAY

12

GND

DRIVER
AUT. STOP

11

EJECTION

10

Vs
5- 321"

BLOCK DIAGRAM

~~----------------~
M

+V5 9

LSJ:

C~~Sl

RELAY
( 1A MAX)

,

RELAV
(150mA MAX)

9 to16

ROTARY

SWITCH
5 - 3 S67/1

846

c.
~~

"

~

~"

,

~= ~

'

~:" 7::~;
~ ~").

,

'"

847
~c_cc

',

~""'" ;lit

y "'" ~

c

~~

_ _ _ c__

©

_c _ _ _ _ _ _ _

TEST CIRCUIT

tV5~
15 Jl

lOKfi

A'08
s,
J.~

THERMAL DATA
Rth j-amb
Rth Hoase

max
max

Thermal resistance junction-ambient
Thermal resistance junction-pins

ELECTRICAL CHARACTERISTICS (Refer to the test circuit; T amb = 25°C;

15

°C/W
°C/W

Vs = 14V;

57 at

70

B, unless otherwise specified)
Parameter
Vs

Supply voltage

Id

Quiescent drain current

Is

Test conditions

Max.

Unit

18

V

Automatic stoP-S3 at B
S4 at B

5

10

Pause - S3 at A; S4 at A

9

15

Maximum output current

Thermal shut-down case
temperature

Typ.

6

mA

mA

150

for relay driving
Tsd

Min.

Ptot

~

1W

105

( I'N ref ~ -5%)
V ref

848

125

°C

ELECTRICAL CHARACTERISTICS (continued)
Test conditions

Parameter

MOTOR SPEED CONTROL
I MS

Starting current {pin 1)

V ref

Reference voltage (pin 2-3)

1
IM= 100 mA

1.15

A
1.25

1.35

V

0.4

%/V

0.03

%/mA

/l,V ref //1, V
V ref
S

IM= 100 mA
V 5 = 8 to 18V

0.1

/l,Vr~//I,IM

IM= 50 to 400 mA

0.01

IM= 100 mA
T amb = -20 to 700C

0.01

V ref
/l,V ref //1, T
V ref
V2

Operating voltage

K

~//I,V
K

Reflection coeff.{K= 1M/IT
see fig. 12)

IM= 100mA

/I, V ref = -5%
V ref

IM= 100mA

V

2.4
18

IM= 100mA
V 5= 8V to 18V

5

%/oC

-

20

22

0.3

1

%/V

0.02

%/mA

~//I,IM

I M= 50 to 400 mA

0.005

~//I,T

IM= 100mA
T amb= -20 to 700 C

0.01

K

K

%/"C

PAUSE
13

Current consumption

V S- 1

S4 at A

1.4

mA

S4 at A

0.2

V

EJECTION
17

20

S2 in A

Vs-s

Saturation voltage

I s =100mA

Vs

Satu ration voltage

Is-s= 1.5A

V4

(Pause condition)

Sl at A

V4

(Radio)

Sl at A

V4

(Tape)

Sl at A

Ro

Output impedance at pin 4

S3 at B

S3 at A

S4 at A

6

S3 at B

S4 at B

6

S3 at A

S4 at B

fJ.A
2.1

3

V

2.2

3

V
V
V

9

16

1.7

V

22

Kn

1

fJ.A

1

fJ.A

19.5

fJ.A

AUTOMATIC STOP
V S- 1

Saturation voltage

Sl at B

16

Minimum current to avoid
stop

Sl at C

17_S

Load current for delay circu it

16= 0

S2 at B

S7 at A

849

S3 at B

S2 at B

10.5

15

Fig. 1 - Reference voltage
vs. supply voltage.
G-~UGI1

f

I

)

IM~'OOmA

.,
,

Fig. 3 - Reference voltage
vs. ambient temperature.

Fig. 2 - Reference voltage
vs. motor current.
(3-'14711

Vref

,~ f

"f
./.)

"

I

)

I

(

Vs " 1"V

1.3 5

,
5

I

i
/

f.2 6

.......

"

1.25~-+I--=!--+--+-I--+-+-+-k-+

(

5

I--

4

5

1---,

i

i

,

1.1Sf---+-+----l--+-+-+--f---+-+---l

:

>'6

I

1

I

I
1

I

T

I

100

15

I-Ig. 4 - Saturation voilage
(pins 5-8) vs. pin 5 current.

-20 -10

4001M(mA)

0

+10 +20 +30

+40 +50 1amb('C)

!=:g. e - Ref!e~tk~~ c0~f­
ficient vs. motor current.

riy. 5 - nt:fit:Cliui~, Cu~f­
ficient vs. supply voltage.

r-'--r-.--'--r-'--r--r~~~

~+--+-I--+--+-+--+-~-+~,{~)
22

f---+-+---l--++--l--+-+--l---!'5

~+-~-+--~4--+~~+-~~'5

,/
,/

~+-~-+--t-4--+~1---+--r~-5

,/

"

150

fOO

200

IS (mAl

200

fOO

Fig. 7
Reflection coefficient vs. ambient temperature.

Fig. 8 - Pin 1 saturation
voltage vs. motor current.
G-~153

)

~
oM

)

1---+'-,,-.-\c14c;,,_L-+--~+--+~--+--1«
1 =100 rnA

f-4--+---I--+--+-+--+-+--+---+'5

1/
V

f-4--+---I--+-~-+--t-4---+---+'5

"

f-4--+---I--+-+-+~+-+--+---+

./

:,...-

./

V
-20

-10

0

+10

0.3

+20 +30 +40 +50Tamb{'C)

850

0.6

09

/

300

400 lM(rnA)

APPLICATION INFORMATION
The TDA 7270S incorporates four different functional blocks:
1) Motor speed contro I.
2) Autostop circuit.
3) Radio/Playback switching
4) Relay driver.

The motor speed control is a conventional circuit providing correction for the internal losses of the
motor. Fig. 9 shows the external circuit.
The values of RT , Rs and RK determine the regulation characteristics and motor speed.
RT

=

K· RM

where K = the IC regulator reflection coefficient and RM = motor internal resistance.
The following condition must be always satisfied
Rs

<

4 RT

Fig.9

S-4358

The voltage applied across the motor is given by

VS -

1 =

RT
1)
+ _RK 1
V ref [1 + ~ ( 1 + -K
Rs

and this is proportional to RK which therefore adjusts the speed.
The voltage between pin 2 and the supply must not fall below 0.3V and so
[V ref

RT

min

(~s ) + 1M

RT
min

(---.-)

1>

0.3V

Kmax

<

<

The "pause" condition corresponds to V 3
50 mV; in this condition the motor will stop (V 1-8
0.2V),
the capacitor C2 on the autostop circuit (see below) will no longer be charged and the pin 4 (cassette/
radio switch output) will be pulled high.

851

APPLICATION INFORMATION (continued)
The autostop circuit is shown in fig. 10.
In normal operation the capacitor C2 (22 }.IF) is slowly charged by a constant current drawn by pin 7 of
15 }.lA, and each time the pulser (a switch on the cassette take-up speed shaft) closes, C2 is discharged.
If the cassette stops, and the pulse stops, the voltage on pin 7 falls.
This switches the power amplifier state and pin 5 goes low. Pin 5 can be used for one of two purposes:
1} to drive a stop warning light connected from pin 5 supply Vs.
2} to actuate a solenoid wired eitherto ground (to release the cassette) or to supply (to eject the cassette).

The pause and/or cassette/radio switching shown in fig. 11 has an input/output on pin 4.
If pin 4 is not used it should be grounded.
This pin has the following logic.
Fig. 11

Fig. 12 - Application circuit

Function

Cass IN

Pause

Pin 4

Open

Open

>6V

motor off/radio on

Open

Close

>6V

motor off/radio on

Close

Open

< 1.7V

Close

Close

>6V

motor on/casso on
pause/radio on

+vso--~----~-----~~,..-'

C2
Ego

.--1--1-:---+-----:::~~}_---­
R2

R1

RM

il]R5

T

'l

'I

CASS
SWITCH
£TTE

5-390311

EJECTION

852

DESCRIPTION OF OPERATION (Refer to fig. 12)
When the cassette is introduced the switch T 2 closes, the motor start to turn and the rotary switch
generates the pulses which keep the levels of pin 5 and pin 7 high. A relay between pin 5 and ground
holds the cassette. If there are no pulses at pin 6 (because tape stopped) or if the ejection switch T I is
closed, the voltages at pin 5 and pin 7 drop; the relay is thus de-energized and the cassette ejected; as
soon as the cassette is ejected, the switch T 2 opens and the motor stops. The capacitor at pin 7 dis·
charges allowing the system to start again when another cassette is inserted. In other types of mechanical
systems the cassette is ejected by energizing a relay; in this case the relay must be connected between
pin 5 and the supply; the sequence of operations is then the same as described above. If the pause switch
T 3 is closed, the motor stops even though there are no pulses at pin 6, the voltage levels at pins 7 and
5 remain high so the cassette is not ejected and the motor is ready to start again as soon as the pause key
is released. A voltage for driving the radio-tape switching is available at pin 4. This voltage level is high
(> 6V) with stopped motor and is low « 1.7V) with running motor.
APPLICATION SUGGESTION (See figure 12)
Component
RI

Recommended
value
10Kn

Purpose
Limits current

from pin 7

R2

560 Kn

By rotary switch
it produces pulses
which disable the
automatic stop

R3

10Kn

Limits the motor
current during
pause (T 3 closed)

R4

2.2 Kn

Rs

560Kn

R6

1 Mn

Larger than
recommended
value

Smaller than
recommended
value

Allowed range
Min.

Max.

0

100Kn

Delayed ejection.
Possibility that
ejection does not
work

High driving
current at pin 7

Undesired
operation of
automatic switch

Possibility of
audio interference
spikes

100Kn

2Mn

Reference voltage

Higher motor
current during
pause (T 3 closed)
with delayed stop
of motor

1Kn

47Kn

Voltage at pin 4
decreases. RadioPlayback switching
could not work

1.5Kn

2.7Kn

variation

Fixes voltage of
pin 4 du ring pause
and playback

Voltage at pin 4

Compensates for
cu rrent loss
between pin 6
and ground

Limited
compensation

Necessity to
increase C I and
decrease R2

100Kn

00

Limited

Possibility that
automatic stop
will not work

560Kn

00

Compensates for
current loss
between pin 7 and
grou nd. Also
reduces recovery

increases

compensation

time

RT

K-R M
(typical values)

Compensates for
voltage drops at
motor terminals
vs.l'> 1M

Danger of
oscillations

853

Poor speed
regu lation versus
l'>IM

See note
on next page

APPLICATION SUGGESTION (continued)
Component

Larger than
recommen",ded
value

Smaller than
recommended
value

Fixes the current
value in RT and
and RK for IM= 0

Danger of
saturation of non
inverting input of
regulator (pin 2).
Considerable speed
variation for small
variation cif R K

I mpossibil ity to
obtain a low motor
speed

Fixes the
requested V 8 - 1

Wide speed
variation versus

Recommended
value

Purpose

Rs

SeeNote(*)

RK
See Note (*)

C1

0.1 J-LF

DC isolati on

Allowed range
Min.

Max.
4 RT

Limited speed

variation versus

'" RK

'" RK

Electrolytic

Undesired
automatic stop

capacitors cannot

0.047
J-LF

be used
I

C2

22 J-LF

C3

10J-LF

Rotary
switch
frequency

20 Hz

Low recovery time.
Undesired
automatic stop

I ntegrates the
pulses of the rotary
switch

High recovery time

By pass

Wow and flutter
problems

I nstability at low
temperature

Keeps automatic

Possibility of audio
interference spikes

Necessity to increase

stop off

3.3 J-LF

22 J-LF

5J-LF

C 1 and C 2

NOTE (*):
RT
1
RK
V 8-1 = V ref [1 + - - (1 + -K) + - R - j from wh ich it can be seen that V 8-1 varies Iinearly with R K .
Rs
5
The voltage between pin 2 and the supply must not fall below 0.5V, so the following expression must be verified
RT
RT
[Vrefmin (R-)+IMmin (-K--)j > 0.3V
5
max
During the pause, the voltage between pin 3 and ground must be lower than 1.3V.

n

VS.
~

(rpm)

n

2100

'5

2000

1900

co,.)

Vs ,,14V

(rpm)

("t.)

Vs =14V

I M ,,100mA

+5

2100

f.....-

2000

r-

7

On

--;;-

(rpm)

(O,.)

~:100mA

Fig. 15 - Speed variation
vs. ambient temperature

Fig. 14 - Speed variation
motor current

Fig. 13 - Speed variation
vs. supply voltage

+5

2100

2000

I-5

1900

1900

-5

i
14

16

16

20

o

20

40

60

60

lOa

120 140

854

160 IM(mA)

-40 -20

0

20

40

60

SO

lambC'C)

;,."

~

,*

"'\

j

.'

, ' , : .:
~

IT'

~

,~"""

\

~

'

,

,

"

,

''''Hi

APPLICATION SUGGESTION (continued)
Fig. 16 - Delay time of the relay driver

Fig. 17 - Low cost application circuit

(C 2 = 2.2I'F)

VOLTAGE
AT PIN 5

5-3898,1

V51

0.5

U,
.

I
1.5

.

t (sec)

The circuit shown in fig. 17 offers the following functions:
1)
2)
3)
4)

motor speed regulation
automatic stop
autostop warning light
pause.

The circuit incorporates an additional resistor/diode from pin 3 to pin 5. When the cassette stops, and
the pulser no longer generates pulses, pin 5 falls to a low level and the stop indicator is on.
Pin 3 is pulled low through the 1 Kn resistor and the diode, however pin 3 must not be pulled lower
than 1.3V since this would cause pin 5 to go high again. The current of about 1 mA out of pin 3 causes
V3-5 to be about 1.5V.
In this way the motor remains stopped and pin 5 remains low.

MOUNTING INSTRUCTIONS
Fig. 18 - Example of heatsink using PC board
copper

Fig. 19 - Example of external heatsink

30mm.

cs- 0'00
~--------65mm-------~

Figures 18 and 19 show two ways to make the device dissipate.
In both cases, Rth = 35°C/W.
855

I
Information furnished is believed to be accurate and reliable. However, no responsibility is assumed for the consequences of its use nor for
any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of SGS-ATES. Specifications mentioned in this publication are subject to change without notice. This
publication supersedes and substitutes all information previously supplied.

SGS-ATES GROUP OF COMPANIES
Italy - France - Germany - Malta - Malaysia - Singapore - Sweden - United Kingdom - U.S.A.
© SGS-ATES Componenti Elettronici SpA, 1982 - Printed in Italy



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:56:37
Create Date                     : 2012:12:14 10:48:30-08:00
Modify Date                     : 2012:12:14 15:51:07-08:00
Metadata Date                   : 2012:12:14 15:51:07-08:00
Producer                        : Adobe Acrobat 9.52 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:6ea8eae5-249b-40cc-8f14-dfa6679f1e98
Instance ID                     : uuid:db3c3af5-d3a7-42ae-a808-5e47cf8741b4
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 886
EXIF Metadata provided by EXIF.tools

Navigation menu