1983_GI_Monsanto_Optoelectronic_Products 1983 GI Monsanto Optoelectronic Products

User Manual: 1983_GI_Monsanto_Optoelectronic_Products

Open the PDF directly: View PDF PDF.
Page Count: 438

Download1983_GI_Monsanto_Optoelectronic_Products 1983 GI Monsanto Optoelectronic Products
Open PDF In BrowserView PDF
C)
CD

' :::I
CD

-!LQ1

..
:::I

c

..
3

CD
:::I

o

I

-~
CD
CD

a_.
:::I

n

a"a.
c

~
en

Catalog
of OptOelectronic
Products
1983

Optoelectronics Division
3400 Hillview Avenue
Palo Alto, California 94304
Tel: (415) 493-0400
TWX: (910) 373-1767

GENERAL
INSTRUMENT

Copyright © 1982 by General Instrument Corp.
All rights reserved. No part of this book may be
reproduced without the
written permission of GEineral Instrument Corp.

ALL SPECIFICATIONS SUBJECT TO CHANGE.

Printed in USA.

,.

About General Instrument
Optoelectronics
Experience
For the last thirteen years-first as Monsanto and now as General Instrumentwe have been a leading manufacturer of optoelectronic products. As a result
of this experience and our leadership in developing III-V materials technology,
we have contributed many firsts to the field of optoelectronics-in LED lamps,
displays and optoisolators.

Quality Control
Because we are one of the few vertically integrated optoelectronic manufacturers,
we exercise total control over each stage of production-through growing our
own crystals to epitaxial deposition and wafer manufacturing. This ensures
quality and reliability in our products.

Reliable Products
At both our manufacturing plants, in Palo Alto and Kuala Lumpur, extensive
reliability testing and advanced manufacturing techniques ensure the highest
standards of production (see page iii for detailed reliability information). We are
committed to the concept of providing state-of-the-art dependable products at
competitive prices.

Broad Product Range
We offer over 300 high performance optoelectronic devices in five major
categories; optoisolators, emitters/detectors, displays, lamps and chips.
This catalog contains detailed specifications on our complete line of
optoelectronic products.

Product Availability
A worldwide network of stocking distributors assures immediate availability of
most standard products. General Instrument authorized distributors are located
in the United States, Canada, Mexico, South America, Europe, Africa, Japan and
Australia. In addition, six General Instrument Direct Sales Offices in the United
States and eight International Sales Offices serving major world markets,
provide a complete range of all General Instrument Optoelectronic products.
See how to order in the following section.

Efficient Service
If you have a question or a problem just pick up the phone and call the nearest
General Instrument Technical Representative. These highly qualified sales engineers can offer assistance in design and product selection. The list on pages
421 and 424 will enable you to locate one in your area.
In addition, our staff of factory product engineers can provide information,
discuss specific problems and offer applications assistance. The answer to your
question is only a phone call away.
You can depend on General Instrument.

About this Catalog

This catalog describes in detail our complete line of optoelectronic products.
For your convenience, the catalog is divided into five major product groupsoptoisolators, IR emitters and detectors, displays, lamps and chips.
A selection guide will be found at the beginning of each product section.
This provides brief basic information on the product line to assist you in selecting
the device best suited to your requirements.
Full specification sheets are located within each section.
For fast reference, an alpha-numeric listing appears on page vi which lists all
products individually with the appropriate data sheet page number.
A cross-index at the end of the product section lists competitive products by
part number, the manufacturer, and the equivalent General Instrument optoelectronic product. This compatibility guide is invaluable for design engineers.
Application notes starting on page 373, provide useful technical information
to assist you in selecting and testing optoelectronic devices.

How To Order
All General Instrument Optoelectronic products may be ordered through any of
the International Sales Offices and Direct Sales Offices listed on the back cover.
For immediate delivery of General Instrument optoelectronic products, contact
any of the stocking distributors located in your area. See pages 422 and 424.

11

Table of Contents
PAGE
ALPHANUMERIC PRODUCT LISTING.
RELIABILITY RESULTS.

vi
viii

OPTOISOLATORS
SELECTION GUIDE.
4N25, 4N26, 4N27, 4N28
4N29, 4N30, 4N31, 4N32, 4N33
4N35, 4N36, 4N37
6N137
6N138, 6N139
CNY17
CNY65
CNY75A, CNY75B, CNY75C
MCA11G1, MCA11G2
MCA230, MCA255
MCA231
MCL2601
MCP3009, MCP3010, MCP3011
MCP3020, MCP3021, MCP3022
MCS2, MCS2400
MCS21, MCS2401
MCT2
MCT2E
MCT210
MCT2200
MCT2201
MCT2202
MCT26
MCT270
MCT271
MCT272
MCT273
MCT274
MCT275
MCT276
MCT277
MCT4
MCT4R
MCT6, MCT66
MID400

Phototransistor Optoisolators .
Photo-Darlington Optoisolators .
Phototransistor Optoisolators .
High Speed Isolated Logic Gate
High Gain Split-Darlington
Phototransistor Optoisolator
High-Voltage Optoisolator .
Phototransistor Optoisolators
High Voltage Photodarlington
Photodarlington Optoisolator
Photodarlington Optoisolator ..
High Speed Isolated Logic Gate ..
Optically Isolated Triac Driver.
Optically Isolated Triac Driver.
Photo SCR Optoisolators .
Photo SCR Optoisolators .
Phototransistor Optoisolator .
Phototransistor Optoisolator .
Phototransistor Optoisolator .
Phototransistor Optoisolator .
Phototransistor Optoisolator
Phototransistor Optoisolator .
Phototransistor Optoisolator .
Phototransistor Optoisolator
Phototransistor Optoisolator
Phototransistor Optoisolator .
Phototransistor Optoisolator .
Phototransistor Optoisolator .
Phototransistor Optoisolator .
Phototransistor Optoisolator .
Phototransistor Optoisolator .
Phototransistor Optoisolator .
Phototransistor Optoisolator
Dual Phototransistor Optoisolator
AC Line Monitor ..

2
7
11
15
19
25
29
33
37
41
45
49
51
55
59
63
67
71
75
79
83
87
91
95
97
101
105
109
113
117
121
125
129
131
133
137

OPTOSWITCHES, INFRARED EMITTERS, SILICON DETECTORS
SELECTION GUIDE.
BPW39A
CNY36, CNY37
COX47
COY99
MCA7
MCA8, MCA81
MCT8, MCT81
ME7121, ME7124
ME7161
MT1, MT2
MT8020

Visible & Infrared Detector.
Photon Coupled Interrupter Modules .
Infrared Emitter.
Infrared Emitter .
Reflective Object Sensor.
Slotted Optical Limit Switches
Slotted Optical Limit Switches.
High Power Infrared Emitters
Infrared Emitter ..
Silicon Phototransistor Detectors.
Silicon Phototransistor Detector

144
147
151
155
159
163
167
171
175
176
181
183

I

I
I
I
iii

DISPLAYS
SELECTION GUIDE
MANiA, MAN10A
MAN101A, MAN1001A
MAN2A
MAN2815
MAN3400A, MAN3600A,
MAN70A, MAN3800A Series
MAN3480A, MAN3680A,
MAN78A, MAN3880A,
MAN3980A Series
MAN3900A Series
MAN4500A, MAN4600A,
MAN4700A, MAN4800A Series
MAN4580A, MAN4680A,
MAN4780A, MAN4880A,
MAN49BOA Series
MAN4900A Series
MAN6400 Series
MAN6600 Series
MAN6700 Series
MAN6BOO Series
MAN6900 Series
MANB600 Series
MANB800 Series
MANB900 Series
MMN36000, MMN3BOOO,
MMN39000 Series
MMN56000, MMN5BOOO,
MMN59000 Series
XDS Series

.27" Red Seven Segment Displays .
.27" Red Polarity & Overflow Displays
.32" Red Alpha-Numeric Display .
.135" Red 8-Character, 14-Segment
Alpha-numeric Display
.300" Hi-Elf. Green, Orange, Red and
Yellow 7-Segment Displays
.300" High Eft. Green, Orange, Red,
Yellow & Hi-Eft. Red Displays,
.300" Hi-Eft. Red Displays
AOO" Green, Orange, Red and
Yellow 7-Segment Displays.

188
197
199
201
203
207

213
219
223

AOO" Green, Orange, Red, Yellow,
Hi-Eft. Red 7-Segment Displays

AOO" Hi-Eff. Red 7-Segment Displays,
.560"
.560"
.560"
.560"
.560"
.BOO"

Hi-Eff. Green 7-Segment Displays,
Hi Performance Orange Displays
Hi Performance Red Displays
Yellow 7-Segment Displays
Hi-Eft. Red 7-Segment Displays.
Hi-Eft. Red (Orange) 7-Segment
Displays.
.BOO" Yellow 7-Segment Displays
.BOO" Hi-Eft. Red 7-Segment Displays

229
235
239
243
247
251
255
259
263
267

.300" 7-Segment Multidigit Displays .

271

.500" 7-Segment Multidigit Displays
Alphanumeric Display System

275
279

LAMPS
SELECTION GUIDE
NEW High-Efficiency Green Lamps.
MV10B
MV50, MV54
MV52, MV53
MV55A
MV5074C, MV5075C
MV5077C
MV5174C, MV5274C,
MV5374C, MV5774C
MV5177C, MV5277C,
MV5377C, MV5777C
MV51640, MV52640, MV53640,
MV54640, MV57640 Series
MV53620, MV57620 Series
MV50152, MV50154, MV52152,
MV52154, MV53152, MV53154,
MV57152, MV57154

iv

TO-1B Red Solid State Lamp
T-3/4 Red Solid State Lamps .
T-3/4 Green and Yellow Solid State Lamps
T-3/4 Red Solid State Lamp .
T-1 Red Solid State Lamps,
T-1 Red Solid State Lamp
T-1 Orange, Green, Yellow and Hi-Eft. Red
Solid State Lamps
T-1 Orange, Green, Yellow and Hi-Eft. Red
Solid State Lamps
T-1 Orange, Green, Yellow, Hi-Eft. Green and
Hi-Elf. Red Solid State Indicators
T-1 Yellow and Hi-Eft. Red Indicators
T-1 3/4 Red, Green, Yellow and Orange
Solid State Lamps.

296
301
305
307
309
311
313
315
317
319
321
323

325

MV5020 Series
MV5050, MV5051, MV5052,
MV5053, MV5055, MV5056 .
MV5054-1, MV5054-2,
MV5054-3
MV5054A-1, MV5054A-2,
MV5054A-3
MV5094
MV5152, MV5252, MV5352,
MV5752, MV64520, MV64521
MV5153, MV5154, MV5253,
MV5254, MV5353, MV5354,
MV5753, MV5754,
MV64530, MV64531
MV5491
MV53123, MV54123,
MV57123
MV52124, MV53124,
MV54124, MV57124
MV53173, MV54173,
MV57173
MV53164, MV54164
MV57164
MP21, MP22, MP51, MP52
MP65
MP73

T-1 3/4 Red Solid State Lamps .

327

T-1 3/4 Red Solid State Lamps.

329

T-1 3/4 Red Solid State Lamps

333

T-1 3/4 Red Solid State Lamps .
Red Bipolar Solid State Lamp.
Orange, Green, Yellow, Hi-Eff. Red and
Hi-Eff. Green Solid State Lamps ..

335
337

Orange, Green, Yellow, Hi-Eff. Red and
Hi-Eft. Green Solid State Lamps.
Red/Green Tri-State Lamp .
Yellow, Hi-Eft. Green and Hi-Eft. Red
Rectangular Solid State Lamps.
Yellow, Green, Hi-Eft. Green, and Hi-Eff. Red
.220" Rectangular Legend Lamps ..
Yellow, Hi-Eft. Green, and Hi-Eft. Red
.500" Rectangular Indicator Lamps.
Yellow, Hi-Eft. Green and Hi-Eft. Red
10-Segment Bargraphs .
Panel Mounting Grommets
Panel Mounting Grommets for
.220" Rectangular Lamp.
Panel Mounting Grommets for
.500" Rectangular Lamp.

339

341
343
347
349
351
355
360
361

•
1
•
. .
.·<
.

362

LED CHIPS
32M
MMH Series

Green, Yellow and Orange LED Chips
Red Monolithic LED Chips.

365
367

Discrete LED Selecting Made Easier.
The Photometry of LED's.
Improper Testing Methods for LSED Devices.
Optoisolator Input Drive Circuits .
6N139 (MCC671) Low Current
Input Circuit Ideas.
MID400 Power Line Monitor .

373
381
385
389

APPLICATIONS
(AN301)
(AN601)
(AN603)
(AN1071)
(AN1074)
(AN 1075)

APPENDIX
Cross Reference Index.........................................................................
North American Technical Representatives ..............................................
North American Stocking Distributors................................................... ...
International Stocking Distributors & Technical Representatives...................

395
399

413
421
422
424

•
I
v

Alpha-Numeric Product Listing
Product No.
4N25
4N26
4N27
4N28
4N29

VI

Page
7
7
7
7
11

Product No.
MAN4605A
MAN4610A
MAN4630A
MAN4640A
MAN4680A

Page
223
223
223
223
229

Product No.
MAN8650
MAN8810
MAN8830
MAN8840
MAN8850

Page
259
263
263
263
263

4N30
4N31
4N32
4N33
4N35

11
11
11
11
15

MAN4705A
MAN4710A
MAN4740A
MAN4780A
MAN4805A

223
223
223
229
223

MAN8910
MAN8930
MAN8940
MAN8950
MCA11G1

267
267
267
267
41

4N36
4N37
6N137
6N138 (MCC670)
6N139 (MCC671)

15
15
19
25
25

MAN4810A
MAN4840A
MAN4880A
MAN4905A
MAN4910A

223
223
229
235
235

MCA11G2
MCA230
MCA231
MCA255
MCA7

41
45
49
45
163

BPW39A
CNY17
CNY36
CNY37
CNY65

147
29
151
151
33

MAN4940A
MAN4980A
MAN6410
MAN6430
MAN6440

235
239
239
239

MCA8
MCA81
MCA670 (6N138)
MCA671 (6N139)
MCL2601

167
167
25
25
51

CNY75A
CNY75B
CNY75C
CQX47
CQX99

37
37
37
155
159

MAN6450
MAN6460
MAN6480
MAN6610
MAN6630

239
239
239
243
243

MCP3009
MCP3010
MCP3011
MCP3020
MCP3021

55
55
55
59
59

MAN1A
MAN10A
MAN1001A
MAN101A
MAN2A

197
197
199
199
201

MAN6640
MAN6650
MAN6660
MAN6680
MAN6710

243
243
243
243
247

MCP3022
MCS2
MCS21
MCS2400
MCS2401

59
63
67
63
67

MAN2815
MAN3410A
MAN3420A
MAN3430A
MAN3440A

203
207
207
207
207

MAN6730
MAN6740
MAN6750
MAN6760
MAN6780

247
247
247
247
247

MCT2
MCT2E
MCT210
MCT2200
MCT2201

71
75
79
83
87

MAN3480A
MAN3610A
MAN3620A
MAN3630A
MAN3640A

213
207
207
207
207

MAN6810
MAN6830
MAN6840
MAN6850
MAN6860

251
251
251
251
251

MCT2202
MCT26
MCT270
MCT271
MCT272

91
95
97
101
105

MAN3680A
MAN3810A
MAN3820A
MAN3830A
MAN3840A

213
207
207
207
207

MAN6880
MAN6910
MAN6930
MAN6940
MAN6950

251
255
255
255
255

MCT273
MCT274
MCT275
MCT276
MCT277

109
113
117
121
125

MAN3880A
MAN3910A
MAN3920A
MAN3930A
MAN3940A

213
219
219
219
219

MAN6960
MAN6980
MAN71A
MAN72A
MAN73A

255
255
207
207
207

MCT4
MCT4R
MCT6
MCT66
MCT8

129
131
133
133
171

MAN3980A
MAN4505A
MAN4510A
MAN4540A
MAN4580A

219
223
223
223
229

MAN74A
MAN78A
MAN8610
MAN8630
MAN8640

207
213
259
259
259

MCT81
ME7121
ME7124
ME7161
MID400

171
175
175
176
137

229/235

Product No.
MMN36220
MMN36240
MMN36420
MMN36440
MMN38220

Page
271
271
271
271
271

Product No.
MV5051
MV5052
MV5053
MV5054-1
MV5054-2

MMN38240
MMN38420
MMN38440
MMN39220
MMN39240

271
271
271
271
271

MV5054-3
MV5054A-1
MV5054A-2
MV5054A-3
MV5055

333
335
335
335
329

MV53642
MV5374C
MV5377C
MV54
MV54123

MMN39420
MMN39440
MMN56120
MMN56240
MMN56320

271
271
275
275
275

MV5056
MV5074C
MV5075C
MV5077C
MV5094

329
311
311
315
337

MV54124
MV54164
MV54173
MV54643
MV54644

301/321
301/321

MMN56440
MMN58120
MMN58240
MMN58320
MMN58440

275
275
275
275
275

MV5152
MV5153
MV5154
MV51640
MV51641

339
341
341
321
321

MV5491
MV55A
MV57123
MV57124
MV57152

343
311
347
349
325

MMN59120
MMN59240
MMN59320
MMN59440
MP21

275
275
275
275
360

MV51642
MV5174C
MV5177C
MV52
MV52124

321
317
319
309
349

MV57154
MV57164
MV57173
MV5752
MV5753

325
355
351
339
341

MP22
MP51
MP52
MP65
MP73

360
360
360
361
362

MV52152
MV52154
MV5252
MV5253
MV5254

325
325
339
341
341

MV5754
MV57620
MV57621
MV57622
MV57640

341
323
323
323
321

MT1
MT2
MT8020
MV10B
MV50

181
182
183
305
307

MV52640
MV52641
MV52642
MV5274C
MV5277C

321
321
321
317
319

MV57641
MV57642
MV5774C
MV5777C
MV64520

321
321
317
319

MV50152
MV50154
MV5020
MV5021
MV5022

325
325
327
327
327

MV53
MV53123
MV53124
MV53152
MV53154

309
347
349
325
325

MV64521
MV64530
MV64531
XDS2724P
XDS2724S

301/339
301/341
301/341

MV5023
MV5024
MV5025
MV5026
MV5050

327
327
327
327
329

MV53164
MV53173
MV5352
MV5353
MV5354

355
351
339
341
341

XDS2732P
XDS2732S

279
279

Page
329
329
329
333
333

Product No.
MV53620
MV53621
MV53622
MV53640
MV53641

Page
323
323
323
321
321
321
317
319
307
301/347
301/349

355
351

301/339

279
279

vii

~~'u·u"u.~1

1__+.... ___ ...

U~ •• ~I UI .. I.:JLI UIIICI

1""11_1:_1-:1: ..... _

nt:Ili:lUIlIL Y

n

At General Instrument, product dependability is assured through
an active reliability program which includes:

New Product
Qualification
All new products evolve through
an orderly design-to-manufacture flow.
At each stage reliability engineering
is present to ensure that the defined
reliability requirements' are met.
The reliability plan is implemented in the development stage
where actual testing begins. Stress
tests are performed to show potential problem areas and the reliability
of the new product is compared
directly with that of a previously
qualified product of a similar type.
During limited production, where
components must meet defined
reliability goals, samples from a
minimum of three lots are taken for
extensive testing. These samples
must meet or exceed defined goals
in order for the product to be considered qualified and transferred
to the reliability monitoring program.

Reliability monitoring consists
of the following tests:
• D.C. Operating Life
TA = 25°C
time = 1000 hours
IF = max. rated
• High Temperature Storage
TA = 150°C
time = 1000 hr.
• Low Temperature Storage
TA = -55°C
time = 1000 hr.
• 85/85 No Bias
TA = 85°C
RH = 85%
time = 1000 hrs.

.HTRB

•

•

Quality Control
Quality control is considered a
vital function at General Instrument.
To minimize variations in the product
and to maintain quality and hence
reliability, the following in-process
control activities are routinely
performed:
• Incoming Inspection of all piece
parts and raw materials.
• Die-attach process control gate.
• Wire-bond control gate.
• Encapsulation control gate.
• Equipment monitors.
• Final QA gate of all lots.
• Finished goods stores monitor.
• Frequent process line audits for
conformance to specification.

Monitor Program
To ensure that qualified products
continue to meet reliability targets,
a monitor program tests generic
device families on a periodic basis
and provides information for the
reliability data bank.

viii

•

•

•

TA = 100°C
voltage = 80% max. rated
time = 1000 hrs.
Thermal Shock per
MIL-STD-883, Method 1011
TA = O°C to 100°C
No.' of cycles = 30
Temperature Cycle per
MIL-STD-883, Method 1010
TA = -55°C to 125°C
No. of cycles = 100
Ther.mal Intermittent Test
TA = 25°C to 100°C
No. of cycles = 10
Moisture Resistance
per MIL-STD-833
Method 1004
(omit initial conditioning
and Step 7)
Pressure Pot
pressure = 15PSI
time = 96 hours

Reliability Test Facilities
Both in Palo Alto and Kuala
Lumpur (Malaysia), test facilities are
equipped with:
• Automated Testing
• Life test equipmentHi and Lo Temp.
• Temperature/humidity chambers
• Hi Temp. ovens
• T/S and T/C equipment
In addition, the failure analysis
lab facilities in Palo Alto and Kuala
Lumpur also have the following
capabilities:
• Electrical testing and verification
• Pin to pin measurements
• Package dissection and crosssectioning
• Chemical and plasma etching
• Optical photomicroscopy
• Micromanipulators
• Access to scanning electron
microscope with X-ray
spectrometry
• Access to Auger analysis

Failure Analysis and
Qualitative Reliability
When a reliability failure does
occur, a detailed analysis is performed to provide data for corrective
action as well as guidelines for the
design of future new products.
This on-going activity and the
resulting feedback and action is illustrated in the accompanying diagram.

Optoisolators

OPTOISOLATORS
DETECTOR

PACKAGE

OUTPUT CONFIGURATION

MAX.
EMITTER
VOLTAGE

MIN.
OUTPUT
VOLTAGE
IBVCEO)

TYPICAL
hFE

MAX.
VCEISAT)

MIN.
CURRENT
TRANSFER
RATIO

CNY65

TRANSISTOR

1.6V@5o.mA

32V

-

.3V@lmA

50.·30.0.%

CNY17A
CNY17B
CNY17C
CNY17D

TRANSISTOR

1.65V@6CmA

7CV

-

.3V@2.5mA

40.-80.%
63·125%
10.0.·20.0.%
160.·320.%

CNY75A
CNY75B
CNY75C

TRANSISTOR

1.6V@5o.mA

7CV

-

MCT22o.C
MCT22Cl
MCT22C2

TRANSISTOR

1.5V@2o.mA

3CV

-

.3V@2.5mA

20.%
10.0.%
60.·125%

MCT2
MCT2E
MCT26

TRANSISTOR

1.5V@2o.mA

3CV

250.
250.
150.

.4V@2mA
.4V@2mA
.5V@1.6mA

20.%
20.%
6%

MCT21C

TRANSISTOR

1.5V@4CmA

3CV

40.0.

.4V@16mA

150.%

MCT27C
MCT271
MCT272
MCT273
MCT274

TRANSISTOR

1.5V@2o.mA

3CV

50.0.
420.
50.0.
280.
360.

.4V@2mA

50.%
45·90.%
75·150.%
125·250.%
225·40.0.%

MCT275

TRANSISTOR

1.5V@2CmA

8CV

170.

.4V@2mA

70.·210.%

MCT276
MCT277

TRANSISTOR

1.5V@2CmA

3CV

90.
420.

.4V@2mA

15-60.%
lCC%·up

4N2!r
4N26
4N27
4N28

TRANSISTOR

1.5V@5CmA

3CV

250.

.5V@2mA

20.%
20.%
10.%
10.%

4N35
4N36
4N37

TRANSISTOR

1.5V@lCmA

3CV

10.0.

.3V@5mA

10.0.%

MCT6
MCT66

TRANSISTOR PAIR

1.5V@2CmA

3CV

-

.4V@2mA

20.%
6%

MCT4
MCT4R

TRANSISTOR

1.5V@4CmA

3CV

-

.5V@2mA

15%

MCA23C
MCA231
MCA255

DARLINGTON TRANSISTOR

1.5V@2CmA

3CV
3CV
55V

25,0.0.0.
50.,0.0.0.
25,0.0.0.

1.CV@5o.mA
1.2V@5CmA
1.CV@5CmA

10.0.%
20.0.%
10.0.%

. DARliNGTON TRANSISTOR

1.5V@5CmA

3CV

50.0.0.

1.CV@2mA
1.CV@2mA
1.2V@2mA
1.CV@2mA
1.CV@2rriA

10.0.%
10.0.%
50.%
50.0.%
50.0.%

HIGH VOLTAGE
DARLINGTON TRANSISTOR

1.5V@6CmA

lCCV
8CV

-

1.CV@5CmA

10.0.0.%

1.7V@1.6mA

7V
18V

DEVICE
NO.

TRANSISTORS

~

@

~

~

.3V@2.5mA

63·123%
10.0.·20.0.%
160.·320.%

DARLINGTONS

~

4N29
4N3C
4N31
4N32
4N33
MCAllGl
MCAllG2

~

6N138
(MCC67C)
6N139
(MCC671)

SPLlT·DAR LINGTON

NOTE 1: Underwriter's Laboratory recognized product File E5C151.

2

-

O.4V@ If" 1.BmA,
lo=4.8mA
Vee = 4.5V
O.4V@ If '" SmA,
lo-15mA

Vee" 4.SV

30.0.%
40.0.%

MIN.
STEADY STATE
ISOLATION
VOLTAGE

TYPICAL
OPERATING
SPEED OR
BANDWIDTH

PAGE
NO.

5"sec

33

5"sec

29

5"sec

37

Telephone circuits, industrial control systems, power supply
regulators, appliance sensor systems, microprocessor controls.

7500VDC @'

10"sec

83
87
91

Power supply regulators, digital logic inputs, microprocessor
inputs, appliance sensor systems, industrial controls.

2500VAC@'

150KHz
150KHz
300KHz

71
75
95

AC line/digitallogic isolator, logic isolator, line receiver,
cable receiver, relay monitor, power supply monitor.

2500VAC@'

150KHz

79

~~~~I~~~~i;:~~a~i~~, i~~~~~~iver .feedback control, moni·

2500VAC@'

10"sec
7"sec
10"sec
20"sec
25"sec

97
101
105
109
113

Switching networks, power supply regulators, digital logic
inputs, microcircuit inputs, appliance sensor systems, appliance controls.

25tJuv"C@

7"sec

11600VDCIVDE@'

APPLICATIONS

VDE Approved, high isolation voltage for medical instrumentation,
industrial controls, solid state relays, power supply monitor, AC
line to digital logic isolation.

Power supply regulators, digital logic inputs, microprocessor

7500VDC@'

5300VDCIVDE@'

inputs, appliance sensor systems, power supply regulators,
industrial controls.

driver, 'AIAn'~~~,"u"" high voltage industrial control, relay

I

3.5"sec
15"sec

121
125

Data processing, microprocessor input, high speed digital logic.

300KHz

7

Low cost products for logic isolator, telecommunications,
line/cable receiver, high frequency feedback & control system,
monitoring circuits.

150KHz

15

Low current, low power products for industrial control and
consumer, monitoring circuits, line receiver.

3000VDC@'

150KHz

133

Data line isolation, telephone signal coupling, line/cable
receiver, mobile equipment.

1000VDC

300KHz

129
131

Logic isolation. line or cable receiver for high hermeticity.
MCT4R-M I L-STD._8838 preconditioning.

2500VAC@'

10KHz

45
49
45

High current, low capacitance and fast switching products
for read relay, pulse transformer, multiple contact control
applications. Telecommunication. remote control logic isolation & alarm monitoring circuits, AC line/logic coupling.

2500VAC@'

30KHz

11

Low capacitance medium speed products for data isolation,
logic conversion, line/cable receiver. monitoring circuits or
mechanical feedback controls.

2500VAC@'

100"sec

41

High breakdown voltage with high current transfer ratio used in
telecommunications, pulse transformer and other logic isolation.

3000VDC@'

tpHL @ 10"sec
tpLH @ 35"sec
t pHL @ l"sec
tpLH @ 7"sec

25

CMOS logiC interface, telephone ring detector, low input
TTL interface, power supply isolation.

2500VAC@'

,

2500VAC@'

3

OPTOISOLATORS
DETECTOR

PACKAGE

HOLDING
CURRENT,
(MAX.)
.-

OUTPUT CONFIGURATION

MAX.
EMITTER
VOLTAGE

VGT
(MAX.)

ON·VOLTAGE
(MAX.)

MCS2
MCS2400

SCR

. 1.5V @l 20mA

1V

1.3V@l100mA

.5mA

14mA

MCS2l
MCS2401

SCR

1.5V@l20mA

lV

1.3V @l 300mA

.5mA

llmA

OUTPUT CONFIGURATION

MAX.
. EMITTER
VOLTAGE

DEVICE
NO.

1FT
(MAX.)

SCR's

6ijfJ

PACKAGE

DEVIC.E
NO.

DETECTOR
(TYP.)

IOHL
(MAX.)

VOL
(MAX.)

ICC
(TYP.)

1.75V@l10mA

3mA

250llA

.SV@l13mA

15mA

MAX.
EMITTER
VOLTAGE

ON-STATE
RMS INPUT
CUR. (MIN.)

OFF·STATE
RMS INPUT
CUR. (MAX.)

VOL
(MAX.)

IOH
(MAX.)

1.5V=30mA

4.0mA

.15mA

0.4%

100llA

OUTPUT CONFIGURATION

MAX.
EMITTER
VOLTAGE

MAX.
ON·STATE
VOLTAGE

PEAK
BL_OCKING
VOLTAGE

TYPICAL
STATIC dv/dt

HOLDING
CURRENT
(TYP.)

MCP3009
MCP3010
MCP30ll

TRIAC

1.5V@lSOmA

3.0V@l100mA

250V

10V/llsec

200llA

MCP3020
MCP3021
MCP3022

TRIAC

1.5V@lSOmA

3.0V@l100mA

400V

l5V/llsec

200llA

tolf

HIGH SPEED LOGIC GATE

~

MCL2601
SN137

OPEN-COLLECTOR
LOGIC GATE

DETECTOR

PACKAGE

DEVICE
NO.

OUTPUT CONFIGURATION

AC LINE MONITOR

~
PACKAGE

MID400

DEVICE
NO.

OPEN-COLLECTOR
LOGIC GATE

TRIAC DRIVERS

~

NOTE 1: Underwriter's Laboratory recognized product file E50151.

4

BLOCKING
VOLTAGE

MIN.
STEADY STATE
ISOLATION
VOLTAGE

PAGE
NO.

Lower power IC's to AC line isolation, relay functions, latches

200V
400V

2500VAC@'

63

200V
400V

2500VAC@'

67

MIN. TRANSIENT
IMMUNITY
CM

-1000V/"sac
-150V/"sec

MIN.
STEADY STATE
ISOLATION
VOLTAGE

APPLICATIONS

MIN.
STEADY STATE
ISOLATION
VOLTAGE

for DC circuits. home appliances, consumer and industrial

control
Complete power isolation for integrated circuits and AC line
voltage. High speed switching of relay functions.

OPERATING
FREQUENCY
(TYP.I

PAGE
NO.

10Mbits

51
19

3000V@'

SWITCHING
TIMES
TON. TOFF (TYP.I

PAGE
NO.

1.0mS

137

MIN.
STEADY STATE
ISOLATION
VOLTAGE

PAGE
NO.

APPLICATIONS

Isolated line receiver, data transmission isolation, microprocessor

system interface, pulse transformer replacement.

APPLICATIONS

Monitors AC "line-down" conditions; "closed loop" inter-

3550V@'

TRIGGER
CURRENT
(MAX.IFTI
30mA
15mA
10mA

7500VAC@'

5f!

30mA
15mA
10mA

7500VAC@'

59

face between electromechanical elements and microprocessors.
Time delay isolation switch.

APPLICATIONS

Interface between electronic controls and power triacs to
control resistive and inductive leads for 120VAC or 240VAC
operations. Specific applications are used as triac driver,
traffic light control. motor control and solid state relays.

5

6

PHOTOTRANSISTOR OPTOISOLATORS

I

4N25 4N27
4N26 4N28
PACKAGE DIMENSIONS

DESCRIPTION

r:] -

I
L~:::;::::::r::;:

The 4N25, 4N26, 4N27, and 4N28 series of
optoisolators have an NPN silicon planar
phototransistor optically coupled to a
gallium arsenide diode. Each is mounted in
a six·lead plastic DIP package.

-=
fJ

0

1

....

FEATURES & APPLICATIONS
•
•
•
•
•

-=-L-

C1339

SYMBOL

A

B

SEATING
PLANE

C
0
E
F
G
H

J
K
L
M
N

INCHES
MAX.
.365
.270
.160
15°

mm

MAX .
9.27
6.86
4.06
15°
.300 Ref. 7.62 Ref.
,014
0,36
.325
8.26
.070
1.78
.110
2.79
.022
0.56
.085
2.16
.175

NOTES

1

2
3
4
5

4.45

p

•
•
•
•
•
•
•
•

AC line/digital logic isolator
Digital logic/digital logic isolator
Telephone/telegraph line receiver
Twisted pair line receiver
High frequency power supply feedback
control
Relay contact monitor
Power supply monitor
Small package size and low cost
High isolation voltage
Excellent frequency response
UL recognized - File E50151
High isolation voltage
VISO = 2500 V RMS - 1 minute
VDE approval applied for

NOTES

ANODE~.
CATHODE

" INSTALLED POSITION OF LEAD CENTERS

2. FOUR PLACES
3. OVERALL INSTALLED POSITION
BASE

4. THESE MEASUREMENTS ARE MADE FROM

2

5

COLLECTOR

THE SEATING PLANE
5. MINIMUM 0.100 INCH

3

4

EMITTER

ABSOLUTE MAXIMUM RATINGS
*Storage temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _55°C to 150°C
*Operating temperature at junction . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _55°C to 100° C
*Lead temperature (soldering, 10 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 260°C
*Total package power dissipation at 25°C ambient (LED plus detector) . . . . . . . . . . . . . . . . . . . . . . . . . . 250 mW
*Derate linearly from 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 mwtC
Input diode
*Forward DC current continuous . . . . . . . . . 80 mA
*Reverse voltage . . . . . . . . . . . . . . . . . . . . . 3.0 V
*Peak forward current
(300 MS, 2% duty cycle) . . . . . . . . . . . . . . 3.0 A
*Power dissipation at 25°C ambient...... 150 mW
*Derate linearly from 25°C ....... : . 2.0 mWtC

Output transistor
*Coliector emitter voltage (BVCEO ) ........ 30 V
*Collector base voltage (BVCBO ) . . . . . . . . . . 70 V .
*Emitter collector voltage (BVECO ) . . . . . . . . . 7 V
*Power dissipation at 25°C ambient...... 150 mW
*Derate linearly from 25°C. . . . . . . . . . 2.0 mWtC

*1 ndicates JEDEC Registered Data.

7

4N25 4N26 4N27 4N28
ELECTRO-OPTICAL CHARACTERISTICS
CHARACTERISTI,CS

(25°C Free Air Temperatl,lre Unless Otherwise S~eCified)

SYMBOL

Inpl,It diode
*Forward voltage
Capacitance
*Reverse leakage current
Output transistor
DC forward current gain
*Collector to emitter
break~own voltage
*Collector to base
breakdown voltage
*Emitter to collector
breakdown voltage
*C'ollector to emitter leakage
current (4N25, 4N26, 4N27)
*Collector to emitter leakage
current (4N28)
*Collector to base
leakage current
Coupled
*Collector output current (a)
(4N25,4N26)
(4N27,4N28)

MIN.

VF
C

1.20
150
.05

GUAR.
MAX.

UNITS

1.50

V
pF

100

"A

250

hFE

TEST
CONDITIONS
IF = 10 mA
V R = 0 V, f = 1 MHz
V R = 3.0 V, RL = 1.0 Mn

VCE = 5 V, Ic = 500 "A

BVCEO

30

65

V

Ic = 1.0 mA, Ie = 0

BVceo

70

165

V

Ic = 100 "A, IE = 0

BVECO

7

14
3.5

ICEO

0.1

Iceo

Isolation voltage (b)
(4N25,4N26, 4N27, 4N28)
*(4N25)
*(4N26,4N27)
*(4N28)
Isolation resistance (b)
*Collector-em itter saturation
Isolation capacitance (b)
Bandwidth (c)
(also see note 2)

TYP.

Ic

2.0
1.0

V ,SO

2500
2500
1500
500

Bw

IE = 100 "A, Ie = 0

nA

VCE = 10 V Base Open

100

nA

20

nA

Vce = 10 V Emitter Open

mA

VCE = 10V, IF= lOmA, Ie =0

V
V
V
V

RMS, t = 1 minute
Peak
Peak
Peak
V = 500 VDC
Ic = 2.0 mA, IF = 50 mA
V = 0, f = 1.0 MHz
Ic = 2.0 mA, RL = 100 n
(Figure 13)

5.0
3.0

1011
0.2
1.3
300

VcE(SAT)

V
50

n
0.5

V
pF
kHz

*1 ndicates JEDEC Registered Data.
(a) Pulse Test: Pulse Width = 300 /.Is, Duty Cycle';;; 2.0%
(b) For this test LED pins land 2 are common and Phototransistor pins 4,5 and 6 are common.
(c) If adjusted to yield Ic = 2 mA and it = 0.7. mA RMS; Bandwidth referenced to 10 kHz.
SWITCHING TIMES
Non-saturated
Collector
Delay time
Rise time
Fall time
Non-saturated
Collector
Delay time
Rise time
Fall time
Saturated
ton (from 5 V to 0.8 V)
tOff (from SAT to 2.0 V)
Saturated
ton (from 5 V to 0.8 V)
toff (from SAT to 2.0 V)
Non-saturated
Base - Collector photo diode
Rise time
Fall time

8

TYP.

UNITS

TEST CONDITIONS

td
tr
tf

0.5
2.5
2.6

/ls
/ls
/ls

RL = 100 n, Ic'= 2 mA, Vcc = 10 V
(Fig. 7 and 13)

td
tr
tf

2.0
15
15

/ls

RL = 1kn, Ie 2 mA, Vcc = 10 V
(Fig; 7 and 13)

ton (SAT)
toll (SAT)

5
25

ton (SAT)
toll (SAT)

5
18

/ls

tr
tf

175
175

ns
r'lS

/ls
J.fs
/ls

/ls
/ls

RL = 2kn, IF = 15 mA, Vcc = 5 V
Re = Open (Circuit NO.1)
RL = 2kn, 'F = 20 mA, Vcc = 5 V
Re = 100kn (Circuit No.1)

RL = 1kn, Vce = 10 V

4N25 4N26 4N27 4N28
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25°C Free Air Temperature Unless Otherwise Specified)

40

"E
I

~
I-

~a:

"ua:
0

~

I

30

I

25

=

'/

0

IF =

-'

V

y

10

15

20

25

~

i" mi

(-- IF

30

35

.,

'1=

o

u

Cll11

=

70V"

Fig. 2. Collector Current vs.

25V

h·t~

/.~ ~V
~~ V

,

10 20 30 40 SO 600809000
7
TA - TEMPERATURE -

C1113

e11'2

Fig. 3. Dark Current vs. Temperature

........

1.8

<1. ,

r---.
I'::-

./

90

/

70

""

.§.
z

rr', ~5
1

3<1-

-'-

;,-

2

40

20

4

20

1

a:

aa:
u

IF" lOrnA'

~
~

80

o.

,
•

100

. 'I'
;::
""

10K

IK

~ '1""'~ •

lOOK

0.1

I I

RL·470n

.......

-'

RI...'O~

I I IL
G.20.3OA 0.&0.81.0

2

34567810
C1116

Fig. 6. Switching Time vs.
Collector Current
(see Fig. 13 for Circuit)

Fig. 5. Collector Current vs. Frequency
(see Fig. 12 for circuit)

Temperature

.I,o~n
T

COLLECTOR CURRENT Ie (mA)

CIIIS

Fig. 4. Current Transfer Ratio vs.

L

2

FREQUENCV (Hz)

C1114

R

0

"z .......,

1\
\

o. 2

I I

:;,

\\

AMBIENT TEMPERATURE (OCI

.

v(" = 10 VOLTS

~

I!.

1. 0

8 o.

f-CTR=1;-60

.

~~~- ~

eO. •

1

Vee = IOV

40

VeE -IOVOLTS

1.4

~ 1. 2

LOW CURRENT TRANSFER RATIO

soiL-

111111111

I-

::,...

I I II
I I II

I
1\ I
_\1>

111111111

HIGH CURRENT TRANSFER RATIO

'0

~c

Forward Current
2.0

r--.....

60

rYeE

·

FORWARD CURRENT flFl- rnA

Fig. 1. Collector Current vs.
Collector Voltage

'0

=

'0'
-20 -10 0

.01 L-.l...J..Ll.JJ.WL-J,..J....u..wu_L.J..1J..I.WJ
,1
.5 1.0
5.0 10.0
50.0

40

VeE

yc<=5~V

COLLECTOR VOLTAGE tV)- VOLTS

30

V~ ~~

,

~
aa:

om,- -

I

,/

~ 10.0

/

u

"
E

I-

/

'5
10

'D'

IF " 40 mA

/

V

20

·.,

J

V bo ml

/ ' IF

35

Vec

RL

IF
~

~

)

tv.

.,

Vo.,
OV
OV

~

V OUT

t.t

e1117

C1UO

Circuit 1

Fig. 7. Pulse Test Definition
(Note 3)

9

4N25 4N26 4N27 4N28
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES (Cont'd)
(25°C Free Air Temperature Unless Otherwise Specified)

1

1.

8

~ 1.

II

\

\

\

"'-

2

J:e>

CTA= 20%

T

/

~

CTT~

~

to IV

~

TA"

I

./

~ 1. 0

"'(soc

-> 'V

1

B
.1

10
.2
.5
Ie - COLLECTOR CURRENT {mAl
GillS

.1

Fig. 8. Saturation Voltage vs.
Collector Current

" 100

~80

~
~

6

I 50

.2

.5

z
o

>=
~

+100~

"~~

./

I

~

~

'. ~;,f,

1

5 10 20
SO 100
IF - FORWARD CURRENT - rnA
Cl119

1000

100

Forward Current

3U

I

I- - I - '
I- ~

8

25,uA
20,uA -

2

r

15_t

1

-r-r-

10,uA
, ,

Vee - IOV

4

liill1
l00!<
ABE - BASE RESISTANCE

18 =0

0

1M

-.n

"

16

20

Vc.volts

C1121

Fig. 11. Sensitivity vs.. Base Resistance

~

18 =5,uA

50C

0
10K

100,000

C1120

Fig. 10. Lifetime vs.

6

V

I

10,000

TIME· HOURS

20

,;'=\Jl~

/

20

'F _3mA

o

1

i

IF'" tOxic
fA

1. 3

5 t.2

"

=

vs.

T1E'iifllilTUr

;!

/

FORWARD VOLTAGE

FORWARD CURRENT IVF vs.
4rV5.

o

6

.J_~.

5

24

C1122

Fig. 12. Detector hfe Curves

OPERATING SCHEMATICS
~~~¥LATION

H

I~F
J.-J\J\JC....a

CONSTANT

CURRENT
INPUT

-

Vee = lQVOlTS

PULSE
INPUT

4711

~~-

-_OUTPUT

L----<....

--=--u~

-

I,

Vee· 10 VOLTS

DETECTOR

-

PULSE
OUTPUT

I,

'c

(DC) ~2 mA
ic = 0.7. mA RMS
C1124

C1123

Fig. 13. Modulation Circuit Used to Obtain
Output vs. Frequency Plot

Fig. 14. Circuit Used to Obtain Switching
Time vs. Collector Current Plot

NOTES
1.

10

The current transfer ratio (lC/IF) is the ratio of the detector collector current to the LED inpilt current with
VCE at 10 volts.

2.

The frequency at which ic is 3dB down from the 10 kHz value.

3.

Rise time (tr ) is the time required for the collector current to increase from 10% of its final value to 90%.
Fall time (ttl is the time required for the collector current to decrease from 90% of its initial value to 10%.

PHOTODARLINGTON OPTOISOLATORS

4N31
4N29 4N32
4N30 4N33
PACKAGE DIMENSIONS

DESCRIPTION

-=
~

r

The 4N29, 4N30, 4N31, 4N32 and 4N33
have a gallium arsenide infrared emitter
optically coupled to a silicon planar photodarlington. Each unit is sealed in a 6-lead
plastic DIP package.

D

J

FEATURES & APPLICATIONS

E

•
•
•

1
...... --1-

-..., ,.-

II

SYMBOL

A

.8

SEATING
PLANE

C

D

E
G

H
J
K

M
N

INCHES

mm

MAX.

MAX.

NOTES

9.27
.365
.270
6.86
.160
4.06
15'
15'
.300 Ref. 7.62 Ref.
.014
0.36
.325
8.26
,,070

1.78

.110
.022
.085

2.79
0.56
2.16

.175

4.45

•
•
•
•
•

Fast operate time - 10 /.IS
High isolation resistance - 10" Q
High dielectric strength, input to output
2500 V RMS - 1 minute
Low coupling capacitance - 1.0 pF
Convenient package - plastic dual-in-line
Long lifetime, solid state reliability
Low weight - 0.4 grams
UL recognized - File E50151
VDE approval applied for

P
NOTES
1. INSTALLED POSITION OF LEAD CENTERS
2. FOUR PLACES

3, OVERALL INSTALLED POSITION
4. THESE MEASUREMENTS ARE MADE FROM
THE SEATING PLANE
5. MINIMUM 0.100 INCH

ABSOLUTE MAXIMUM RATINGS T A

=

25°C (Unless otherwise specified)

*Storage Temperature . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . . . . . .' ...... _ : ........• _55°C to 150°C
*Operating Temperature at Junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55°C to 100°C
*Lead Soldering time @ 260°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 seconds
.*Total power dissipation @ 25°C ambient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 mW
*Derate linearly from 25°C . . . . . . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 mWrC
LED (GaAs Diode)
*Power dissipation @ 25°C ambient . . . . . . . . . 150 mW
*Derate linearly from 55°C . . . . . . . . . . . . . 2 mWtC
*Continuous forward current . . . . . . . . . . . . . . 80 mA
Reverse current . . . . . . . . . . . . . . . . . . . . . . . 10 mA
*Peak forward current (300 /.Isec, 2% duty cycle) .. 3.0 A

DETECTOR (Silicon Photo. Darlington Transistor)
*Power dissipation @ 25°C ambient . . . . . . . . . 150 mW
*Derate linearly from 25°C .... _ . . . . . . . 2_0 mWtC
*Collector-em itter breakdown voltage (BVCEO ) •.•. 30 V
*Collector-base breakdown voltage (BVCBO ) . • . . . • 50 V
Emitter-base breakdown voltage (BVEBO ) . . . . . • • 8.0 V
*Emitter-collector breakdown voltage (BVECO ) ••.•.. 5 V

* Indicated JEDEC Registered data.

11

I

4N29 4N30 4N31 4N32 4N33
ELECTRO-OPTICAL CHARACTERISTICS
CHARACTERISTIC

(25 9 CFreeAir Temperature Unless Otherwise Specified)

SYMBOL

LED-CHARACTERISTICS
(TA = 25°C unless o-therwise noted)
-*Reverseleakage current
*Forward voltage
Capacitance

MIN.

IR
VF
C

TYP.

MAX.

UNIT

0.05
1.2
150

100
1.5

JlA
Volts
pF

100

nA
Volts
Volts
Volts

TEST CONDITION

-VR = 3.0V
IF = 10 mA
VR =OV, f = 1.0 MHz

PHOTOTRANSISTOR CHARACTERISTICS
(TA = 25°C and IF =0 unless otherwise noted)
*Collector-emitter dark current
*Collector-base breakdown voltage
*Collector-emitter breakdown voltage
*Emitter-collector breakdown voltage
DC current gain

ICEO
BVceo
BVCEO
BVECO
hFE

30
30
5.0
5000

VCE = 10 V, base open
Ic = 100M, IE = 0
Ie = 100JlA, Ie = 0
IE = 100 JlA, Ie = 0
VCE = 5.0 V, Ic = 500 JlA

COUPLED CHARACTERISTICS
(TA = 25°C unless otherwise noted)
*Collector output current (Note 1)
4N32,4N33
4N29,4N30
4N31
Isolation voltage (Note 2)
4N29,4N30,4N31,4N32,4N33
*(4N29,4N32)
*(4N30, 4N31, 4N33)
Isolation capacitance (Note 2)
*Collector,emitter saturation voltage (1)4N31
4N29,4N30,4N32,4N33
I solation capacitance. (Note 2)
Bandwidth (3) (Test Circuit # 1)

= 10 V, IF = 10 mA, Ie = 0
= 10 V, IF = 10 mA, Ie = 0
= 10 V, IF = 10 mA, Ie = 0

Ic

50
10
5.0

mA
mA
mA

V,SO

2500
2500
1500

V
V
V
Ohms

V RMS, t = 1 minute
VDC
VDC
V = 500 VDC

Volts
Volts
pF
kHz

Ic = 2.0 mA, IF = 8.0 mA
Ic = 2.0 mA, IF = 8.0 mA
V = 0, f = 1.0 MHz

1011

R,so
VCE(SAT)

1.2
1.0
0.8
30

VCE
VCE
VCE

SWITCHING CHARACTERISTICS
(Test Circuit #2)
Turn-on time

tON

0.6

5.0

Jls

Ic = 50 mA, IF
Vcc = 10 V

= 200 mA,

Turn-off time
4N29, 4N30, 4N31
4N32,4N33

tOFF

17
45

40
100

Jls

Ic = 50 rnA, IF
Vcc = 10 V

= 200 rnA,

*Indicates JEDEC Registered Data.
(1) Pulse test: pulse width = 300 jls. duty cycle .. 2.0%
(2) For this test LED pins 1 and 2 are common and phototranslstor 'pIns 4, 5 and 6 are common.
(3) 'F adjusted to Ic 2.0 rnA and ic 0.7 rnA RMS.
(4), td and tr are Inversely proportional to the amplitude of IFi ts and tf are not sIgnificantly affected by IF.

=

=

CONSTANT CURRENT
INPUT

NC

N.C.
PULSE

MODULATION

INPUT

1.0.uF

47n 'I

I
I LED

1-

I

--

RD

o---'WI.-t----,
I

INPU6..-., 1--'I,'"IY+r---,,-....,

I

I

IPHOTO DARLINGTON
I TRANSISTOR

ILED

I
I

I
I

21

--...:5'-_~OUTPUT

o-_ _~---,~::2-=-::.;_::..::r _ _ _ _ _ _ _ ..J
I,

~~~~

'cIDe} "" 2.0 rnA

Ie (ACSINE WAVE) -0.7 mA RMS at 1KHz

C1098

--'.Oms

PULSE RATE·100pps

Note 2

FREQUENCY RESPONSE TEST CI RCUIT #1

12

SWITCHING TIME TEST CIRCUIT #2

C1099

4N29 4N30 4N31 4N32 4N33
APPLICATION INFORMATION

T2L LOGIC ISOLATION

LATCH

I

+Vcc

----...,

]

I
I

: ---------~
IL

________

~-----~----...,
I

I

I

I

-oJI

.----1._,

I
~
I
IL __________
.
...JI

'F

~

R
':"

el101

R"'Vec -J.6V

~

GNO

CllDD

NOT APPLICABLE TO 4N31
FORM C CONTACT

TRIAC TRIGGER

+Vee

--------.,

I
I
I

NO

I

-'

-,
I

I
I

Ne

Cl102

GNO

':"

NOT APPLICABLE TO 4N31
OPERATING A RELAY COIL

Vee < 55V
Vee< 9V
R<8MIl

R

IC<125mA

'e < 250mA
1!'e'F<"6mA

::r-

'F < SOmA

'F-

m

--

l

! _________--_-J"":-..,':"

Cl104

Cl104

13

4N29 4N30 4N31 4N324N33
TYPICAL ELECTRO·OPTICAL CHARACTERISTIC CURVES
(25°C Free Air Temperature Unless Otherwise Specified)

4.0

~O~M~ILIIZEb T6

h

'lc=O.SmA
VCE=5V

~

0

\

V

....-V
~

1.0

~ ......
0
0.1
FORWARD CURRENT If !mAl

1.0
10
100
Ie COLLECTOR CURRENT rnA

Cl106

Cl105

Fig. 1. Forward Voltage Drop vs.
Forward Current

120

10

..~
Z

,

a

"


~ICAl

~""" 5

~

1601--+-P'k+H111l--+-+

~

1401-.......!-++Nl11l--+-+< R"

>

z 1~

4

15
Q

~

I

100

I

or-~lJJm

~.:

\

\

IIIII

98% OF ALL UNITS

5M 10M
lOOK 200K 50CK 1M 2M
ROE - BASE EMITTER RESISTANCE - U
Cl05l

Fig. 7. Collector-Emitter Breakdown
Voltage vs. Base Resistance
' 0 " 20mA

TEST CIRCUIT

~t,,~

I
I

I
I

INPUT PULSE

PW= 2,,5
DUTY CYCLE = 1%

OV
OV--t--~_

tr';;
tr';;

10,,5
10 ns

.

OUTPUT < .4

--l

VOUT
Cl053

Fig. B. Test Pulse Definition (Note 3)

Fig. 9. Pulse Test Circuit for Fig. 7

17

4N35 4N36 4N37
TYPICAL ELECTRO·OPTICAL CHARACTERISTIC CURVES
(25°C Free Air Temperature Unless Otherwise Specified)

,.

.50

~

.45

~

.40

~

~ 1.

'F .. lOrnA
'c.=O.SmA

o
>

.30

~

.25

~

,20

V>

., 5

--

1

S .1 0
~

--

l- I-

MCT2! FORWARD VOLTAGE vs.
FORWARD CURRENT (VF vs. If I

4r- vs. T,Eiil,i,iTUr

~ 103
~
51.2

,35

is

5

>
o

~ 1.

~1;:~ihl
~d25J.

,..---

TA '"

~

~ 1.0

9..--8

o

10

20

30 40

50 60

70 80

90 100

.1

.2

TA - AMBIENT TEMPERATURE - ~c Cl054

.. 100 -

IF =SOmA

1

>=

~

4

V>

.~

60

0

......
z

1
I

/

8

~

1

10K

OPERATING SCHEMATICS
INPUT

1 F

47n.

HI--..'V"..r-...
LEO

25~A

2Ol'A1_

TA'" 2S"C

CONSTANT
CURRENT
INPUT

r
I
""""2.
L __ _

>--:-.--~

-I,

I I.

6

18 "SjJA

'8 -0

0
12

Cl057

16

20

24

VC,volts

Fig. 13. Detector Standard Tran~fer Curves

Vee = 10 VOLTS

PULSE
INPUT

-,

I
-.l

-r-

IOIlA_

[llll

1M
'OOK
Rs E - BASE RESISTANCE - I!

ClOSS

8

Vee = TOV

Fig. 12. Sensitivity vs. Base Resistance

MODULATION

-

I

4

II

20
0

50 toO

15iA

a

g

20

,U- --r-

40

w

10

J I
J J

'F=10mA

80

=

If = 2 0 m n .

,/~

5

Fig. 11. Forward Voltage
vs. Forward Current

Temperature

o

1

IF - FORWARD CURRENT - rnA

Fig. 10. Saturation Voltage
VB.

.5

V

"iJ~
III'

./

1

,;

,05

+100~

47n

-

I,

Vee = 10 VOLTS

DETECTOR

' - - -.....~-_OUTPUT

PULSE
OUTPUT

I,

Cl059

Fig. 14. Modulation Circuit Used to Obtain Output vs.·
Frequency Plot (Fig. 4)

Cl060

Fig. 15. Circuit Used to Obtain Switching Time vs.
Collector Current Plot (Fig. 5)

NOTES
1. Tests of input to output isolation current resistance and capacitance are performed with the input terminals (diode)
shorted together and the output terminals (transistor) shorted together.
2. The current transfer ratio (lC/IF) is the ratio of the detector collector current to the LED input current with
VCE at 10 volts.
3. Rise time (tr) is the time required for the collector current to increase from 10% of its final value, to 90%.
Fall time (tf) is the time required for the collector current to decrease from 90% of its initial value to 10%.

18

OPTICALLY ISOLATED LOGIC GATE

HIGH SPEED

PACKAGE DIMENSIONS*

6N 137

DESCRIPTION
TYPE NUMBER

J.
r-

The 6N137 is an optoisolator which combines a GaAsP LED as the emitter and an
integrated high gain multi-stage high speed
photodetector. The output of the detector
circuit is an open collector, Schottky
clamped transistor capable of sinking 50mA.
The open collector output provides capability for bussing, OR'ing and strobing.
The circuit is packaged in a plastic B-pin
mini-DIP designed to provide for 3000V
D.C. isolation withstand test voltage.

.007 us mm)
.013 (.33 mm)

FEATURES

I

I

-ITI =1

f--025165 mml MAX

.09012.29 mIn)
.IID/2.79mmJ
DIMENSIONS IN INCHES AND (MILLIMETERS)

C1589A

• High speed
• High common mode transient immunity
• TTL compatible
• Low input current
• S~ecified characteristics over temperature:
OCto 70°C
• Output-Strobable
• UL recognized (File #50151)
• High input to output isolation: 3000V dc
withstand test voltage
• VDE approval applied for

APPLICATIONS

A 0.01 to O.IIJF BYPASS
CAPACITOR MUST BE

CONNECTED BETWEEN

•
•
•
•
•
•
•

Isolated line. receiver
Microprocessor system interface
Data transmission isolation
Digital isolation for A/D, D/A circuits
Ground loop elimination
Instrument input/output isolation
Replacement for pulse transformer

PINS 8 AND 5.
(SEE NOTE 1)
C160SA

Fig. 1. Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS* (Between O°C and 70°C)
Storage Temperature _ . . . . . . . . . . -55°C to +125°C
Operating Temperature . . . . . . . . . . . O°C to +70°C
Lead Solder Temperature
(1.6mm. Below seating plane) ...... 260°C for lOS
D-C/Average Forward Input Current ....... 20mA
Peak Forward Input Current
(t';; 1.0msec duration) . . . . . . . . . . . . . . . . 40mA
*JEDEC Regilttered Data.

Enable. Input Voltage, (VE)
(Not to exceed Vee by more than 500mV) .... 5.5V
Supply Voltage, (Vee! .... 7.0V/l minute maximum
Reverse Supply Voltage (Vee! . . . . . . . . . . - 500mV
Output Current, (10) . . . . . . . . . . . . . . . . . . 50mA
Output Voltage, (Vo) . . . . . . . . . . . . . . . . . . 7.0V
Collector Output Power Dissipation _ . . . . . . . B5mW
Reverse Input Voltage . . . . . . . . . . . . . . . . . . . 5V

19

I

6N137
RECOMMENDED OPERATING CONDITIONS
MIN.
0
+6.3
4.5
0
2.0
0

SYMBOL
IFl
IFH
Vcc
VEL
VEH
TA
N

Input Current, Low Level
Input Current, High Level
Supply Voltage, Output
Enable Voltage Low Level
Enable Voltage High Level
Operating Temperature
Fan Out (TTL Load)

MAX.
250
15
5.5
.0.8
Vcc
70
8

UNITS
p.A
mA
V
V
V
°c

+6.3mA is a guard banded value which allows for at least 20% CTR degradation. Initial input current threshold value is 5.0mA or less.

ELECTRICAL CHARACTERISTICS (TA = O°C to 70°C Unless Otherwise Noted)
PARAMETER

SYMBOL

High Level Output Current

·'TYP.

MAX.

UNITS

IOH *

.01
.02

250

IlA
nA

Low Level Output Voltage

VOL *

.34

0.6

V

High Level Supply Current

ICCH *

10

15

mA

Low Level Supply Current

ICCl *

15

18

mA

Low
High
High
Low

IEL *
IEH
VEH
VEL

-1.5
-1.0

-2.0

0.8

mA
mA
V
V

1.75

Level Enable Current
Level Enable Current
Level Enable Voltage
Level Enable Voltage

2.0

Input Forward Voltage

VF*

Input Reverse
Breakdown Voltage
Input Capacitance
Input Diode
Temperature Coefficient

BVR *

Input·Output Insulation
Leakage Current
Resistance
(I nput to Output)

Capacitance
(I nput to Output)
Current
Transfer Ratio

1.55
5.0

V

IF = 10mA, TA
Figure 4

= 25°C

V

IR = 10llA, TA

= 25°C

VF = 0, f = lMHz

pF

tNF/f).TA

-1.4

mVfC

1.0

IlA

RI·O

1012

.11

CI·O

0.6

pF

CTR

750

%

** All typical values are at Vcc = 5V, TA

= 25°C.

Vcc = 5.5V,IF = OmA
VE = 0.5V
Vcc = 5.5V, IF = 10mA
VE = 0.5V
VCC = 5.5V, VE = 0.5V
VCC = 5.5V, VE = 2.0V

= 10mA

30

'1.0*

TEST CONDITIONS
VCC - 5.5V, Vo - 5.5V
IF = 250llA, VE = 2.0V
Figure 6
Vcc = 5.5V, IF = 5mA
VE = 2.0V,loL = 13mA
Figure 5

VCC = 5.5V,.IF
Note: 11

CIN

* JEDEC Registered Data.

20

MIN.

IF

= 10mA

Relative Humidity
TA =25°C, t = 5s
VI.O = 3000 VDC
Note: 10
VI_O =SOOV
Note: 10
F = lMHz
Note: 10
IF = S.OmA
RL = 100.11
Note: 12

=45%

6N137
SWITCHING CHARACTERISTICS (TA = 25°C, Vce = 5.0V)
PARAMETER

SYMBOL

MIN.

TYP.

MAX.

UNITS

TEST CONDITIONS

Propagation Delay Time
(For Output High Level)

tPLH *

48

75

ns

Propagation Delay Time
(For Output Low Level)

tpHL *

48

75

ns

Output Rise Time (10·90%)

tr

30

ns

Output Fall Time (90·10%)

tf

14

ns

tELH

25

ns

IF = 7.5mA
VEH = 3.0V
VEL =OV

ns

RL = 350n, CL = 15pF
Notes 6 & 7
Figure 11

Enable Propagation Delay
Time (For Output
High Level)
Enable Propagation Delay
Time (For Output
Low Level)

14

tEHL

Common Mode
Transient Immunity
(At Output High Level)
Common Mode
Transient Immunity
(At Output Low Level)

RL = 350n
CL = 15pF
IF = 7.5mA
Notes 2,3,4 & 5
Figures 7 & 10

CMH

50

v/Jls

CML

-150

v/Jls

I

VCM = 10V (Peak)
IF = OmA, VON (Min.) = 2.0V,
RL = 350n,
Note 9, Figure 13
VCM - 10V (Peak), IF = 5mA,
VOL (Max.) = 0.8V, RL = 350n,
Note 8, Figure 13

*JEDEC Registered Data.

TYPICAL CHARACTERISTIC CURVES (25°C Free Air Temperature unless otherwise noted)
9.0

>
~ 7.0

'"~

.,E

.1,,1

~~c==O~~07~OC -

B.O

~

~ 5.0

"r-~

rt

4.0

~

RL" lKn

3.0

'--

-;? 2.0

~

I \A L

'"

"~

350n

/

1

:r

\-r'

0

-

_\J.

/

.0 1

.0
Vc = COLLECTOR VOLTAGE IV)

C1614

Fig. 2. Optoisolator Collector
Characteristics

/

TA '" 25"C
1. 0

::>

o

~

/

r-

6.0

::>

1=

10.0

1.0

2.0

3.0

4.0

5.0

6.0

FORWARD INPUT CURRENT (IF. rnA)

1.2

C1602

1.6

1.4

VF , FOAWARD INPUTVQlTAGE (V)

C1600

Fig. 4. Forward Input Current vs.
Forward Input Voltage

Fig. 3. Output Voltage vs.
Forward Input Current

.B , . . - , - - , . - - , - - , - - - - - , , - . . . ,
Vee "'S.5V
w

~

7 I---+-+-j---j V, = 2.0V

.

-'

.6

g

IF'" 5.0mA

r--

t--t--t--t--t---,-t---j

5 .sl---+-+-j--+-+--j---j
~

10 .. l6mA,

10 = 12.amA

~ .3~
5.4~~~t~g~~~~~~
~ .2t--t~ro~·~6~.4m~Ar\~_+--1~~~=~·6~mC4A

10r---~----~-----t----~

OL-__
10
TEMPERATURE (TA • °C)

C1598

Fig. 5. Low Level Output Voltage vs.
Temperature

20

30

40

50

TA • TEMPERATURE (OC)

60

70

C1613

Fig. 6. High Level Output Current vs.
Temperature

o

~

____- J____

10

~

____- "

15

IF - PULSED INPUT CURRENT (rnA)

20
C1603

Fig. 7. Propagation Oelay vs.
Pulse Input Current

21

6N137
TYPICAL CHARACTERISTIC CURVES (25°C Free Air Temperature unless otherwise noted)

~,~8~~----1-----'
01

CURVE
TRACER
TERMINALS

,F

}-

]O--{!l---I---.....--o Vo

el'"

Fig. 8. Curve Tracer Connection to
Obtain Collector Characteristics

Fig. 9: Input·Output Schematic

INPUT

MONITo"R
(Ve )

.. <;.

is stray c'ircuit capacitance, including
the scope probe and is approximately 15pF.
C1592A

"C L is stray Circuit Capacitance, including the scope probe,
total ofappro)(im8tely 15pF
C1596A

~----------"'\- -

-

- -

- -

-

Ve =3.OV

INPUT

(Vel

_ltEHI..:~
OUTPUT

IVol

C1597A

Fig. 10. Test Circuit tpHL and tpLH

22

tELHj........-

I

I

I

I

I

~---

I

- - - - - - Vo=l.fN

C1599A

Fig. 11. Test Circuit tEHL and tELH

6N137

ChanA
INPUT

Chan B

1-.....---+-....--<0

I

+5V

47051

..L

Channel A ~
-:
I
1----1 tDL = 50ns (delay in response to logic High Level input)
Ch
I
anneB~
I - tDH = 20ns (delay in response to logic Low Level input)

-

CI611A

Fig. 12. Response Delay Between
TTL Gates

A

V fF

-=..

L-_ _ _~~---~s_LrV~'M~------__o
PULSE GEN.
C1593A

- - ---IOV

5V

CM,

SWITCH POS. tAl, 'F = 0
- - - - V o (MIN.)

':'2-

I\

O.5V _ _ _ _ _

- - - - VO (MAX.)
~WITCH

pas. ts), IF

= 5mA

C1594A

Fig. 13. Test Circuit for Transient
Immunity and Typical Waveforms

23

6N137
NOTES
1. The Vee supply voltage to each 6N137 isolator must be bypassed by a 0.011"F capacitor or larger. This can be either a
ceramic or solid tantalum capacitor with good high frequency characteristic and should be connected as close as possible
to the package Vee and GND pins of each device.
2. tpHL

• Propagation delay is measured from the 3.l5mA level on the LOW to HIGH transition of the input current pulse
· to the 1.5V level on the HIGH to LOW transition of the output voltage pulse.

3. tPLH

· Propagation delay is measured from the 3.l5mA level on the LOW to HIGH transition of the input current pulse
· to the 1.5V level on the HIGH to LOW transition of the output voltage pulse.

4. tf

• Fall time is measured from the 10% to the 90% levels of the HIGH to LOW transition on the output pulse.

5. t,

· Rise time is measured from the 90% to the 10% levels of the LOW to HIGH transition on the output pulse.

6. tEHL

· Enable input propagation delay is measured from the 1.5V level on the LOW to HIGH transition of the input
· voltage pulse to the 1.5V level on the HIGH to LOW of the output voltage pulse.

7. tELH

· Enable input propagation delay is measured from the 1.5V level on the HIGH to LOW transition of the input
· voltage pulse to the 1.5V level on the LOW to HIGH transition of the output voltage pulse.

8. CML

. The maximum tolerable rate of fall of the common mode voltage to ensure the output will remain in the low
· output state (i.e., VOUT < 0.8V). Measured in volts per microsecond (V/JlS).

9. CMH • The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the high
· state (i.e., VOUT > 2.0V). Measured in volts per microsecond (V/JlS).
10.

. Device considered a two· terminal device: Pins 1,2,3 and 4 shorted together, and Pins 5,6,7 and 8 shorted
· together.

11. Enable· No pull up resistor required as the device has an internal pull up resistor.
Input
12.

24

. DC current transfer ratio is defined as the ratio of the output collector current to the forward bias input current
times 100%.

HIGH GAIN SPLIT-DARLINGTON OPTOISOLATORS

(MCC670)
(MCC67l)
DESCRIPTION

PACKAGE DIMENSIONS

The 6N138 and 6N139 are optically coupled
isolators witha split-darlington output configuration_ A red visible emitting diode manufactured from specially grown gallium
arsenide is coupled to a photo sensitive
circuit_

cC::J '
1

2

3

I

6N138
6N139

FEATURES

:::f;.

4

•
mm.

INCH

SYMBOL

.4

B
C

~'4

D

E
F

J
K
L

.325
.010
.110
.G22
.055

M
N

.175

G
H

MAX.
10.29
6.86
3.30

M

A

NOTES

I.·

.7.62 Ref.
0.36
8.26
1.78
2.79
0.56
1.40
4.46

P
C1340

1

•
•
2
3
4

NOTES
1. INSTALLED POSITION OF LEAD CENTERS
4. THESE MEASUREMENTS ARE MADE FROM

PIN
1
2

3
4
5
6
7
B

N/C
LED ANODE
LED CATHODE

•

•

2. FOUR Pl.ACES
3. OVERALL INSTALLED POSITION
THE SEATING PLANE
5. MINIMUM 0.100 INCH

•

High sensitivity to low input currents
6N138-300% minimum CTR (IF = 1_6 mAl
6N139-400% minimum CTR (IF = .5 mAl
Fast switching capability at logic loads
6N138-10 Microseconds (ton)
35 Microseconds (t off)
6N139- 1 Microseconds (ton)
7 Microseconds (toff)
UL Recognized (File #E50151)
High input to output isolation = 3000V
DC withstand test voltage
VDE approval applied for

APPLICATIONS
• CMOS logic interface
• Telephone ring detector
• Low input TTL interface
• Power supply isolation

N/C
GROUND
OUTPUT
OUTPUT BASE

Vee
Cl3B5

ABSOLUTE MAXIMUM RATINGS*
Storage Temperature. . . . . • . . .. _55°C to +125°C
Operating Temperature . . . . . . . . . . . O°C to +70°C
Lead Solder Temperature ........ 260°C for 10 Sec
(1/16" below seating plane)
Average Input Current - 'F . . . . . . . . . . . . . 20 mA
(See Note 1)
Peak Input Current - IF . . . . . . . . . . . . . . . 40 mA
(50% Duty Cycle, 1 ms Pulse Width)
Peak Transient Input Current - 'F. . . . . . . .. 1.0 A
« 1 Ilsec pulse width, 300 pps)
Reverse Input Voltage - VR ............... 5 V
*JEDEC registered data

Input Power Dissipation. . . . . . . . . . . . . .. 35 mW
(See Note 2)
Output Current - 10 (Pin 6) . . . . . . . . . . . . . 60 mA
(See Note 3)
Emitter-Base Reverse Voltage (Pin 5-7) . . . . . .. .5 V
Supply and Output Voltage-VeC (Pin 8-5), Vo (Pin 6-5)
6N138 . . . . . . . . . . . . . . . . . . . . -0.5t07V
6N139 . . . . . . . . . . . . . . . . . . . . -0.5 to 18 V
Output Power Dissipation . . . . . . . . . . . . . 100 mW
(See Note 4)

25

6N138 6N139

(MCC670 MCC671)

C1382

INVERTING LOGIC INTERFACE

NON-INVERTING LOGIC INTERFACE

Rt (NON·INVERT) =

OUTPUT

VOOl - VOF - VOll

"
Rt (INVERT) =

"
R, •

VOD2 -VOLx(@IL + 121

"
WHERE:

INPUT

VOOl - VOH1 - VOF

VaDl: INPUT SUPPLY VOLTAGE

CMOS

NON·INV.

@5V

tNV.

CMOS

NON-INV.

@10V

fNV.
NON-tNV.
tNV.

74XX

VOD2 : OUTPUT SUPPLY VOLTAGE

VD' : DIODE FORWARD VOLTAGE
VOll: LOGIC "0" VOLTAGE Of DRIVER
VOH1 ; lOGIC ''1'' VOLTAGE OF DRIVER
: DIODE FORWARD CURRENT

"

VOLX: SATURATION VOLTAGE OF MCC670

"
"

LOAD CURRENT THROUGH RESISTOR Rz
: INPUT CURRENT OF OUTPUT GATE.

CURRENT LIMITING
RESISTOR CALCULATION

74LXX
74SXX
74LSXX

74HXX

NON·INV.
tNV,
NON-tNV.
tNV.
NON-tNV.
tNV.
NON·tNV.
INV.

HI (H)

2000
510
5100
4700
2200
180
lBOO
100
2000
360
2000
180
2000
180

CMOS
.. 5V
R2 (n)

CMOS
@10V
H2 tn)

74XX

74LXX

74SXX 14LSXX 74HXX

R;I \111

R2 tn)

R2 (n)

R2(nI

R2!n1

1000

2200

750

1000

1000

1000

560

RESISTOR VALUES FOR LOGIC INTERFACE

vo..

TELEPHONE RINGING DETECTION USING OPTO-ISOLATOR

26

C1384

6N138 6N139

(MCC670 MCC671)

ELECTRICAL CHARACTERISTIC CURVES (25°C Free air temperature unless specified)

.

100

II

TA

50

50

.
"z

!

/ ;'3
i'i

I

Vee ~!'IV
TA : 25"C

Vee' !'IV
TA • 25 C

25 C

"Z

5cmA

U

.A

~

~

2S

_0

FORWARD VOL TAGE

V

C1313

Vo

JJU

~1400
a

"

~1200 -

~1000

13

Vo

~

h'

~

04V

~

TA - 70 C

'.

~

25C

0C

Fig. 3. BN139 DC Transfer
Characteristics

10

_0

001
.010

A
FIG, 8

I

I

:

:

10

10

INPUT DIODE FORWARD CURRENT

rnA

C1378

Fig. B. BN139 Output Current
vs. Input Diode Forward Current

5V

t--...--oO>SV

I
I

(SATURATED
RESPONSE I

)'

I
~_ _ _ _~'J+--_vo<

FOR T'STCiRcu,rlij
1111
II

i·'" lilll

LOAD RESISTANCE

SV

{NON SAT'JRATED

90""

10""

RESPONSEl
_

kll

1--+--....,.-0 Vo

vo~o"
90',

II

10

i\

'F

~--r--I-Vo

III
,juSTED"OR

010
C1377

Fig. 5. BN138 Output Current
vs. Input Diode Forward Current

";sc_

,is:,:,

10

C1376

Fig. 4. Current Transfer Ratio
vs. Forward Current

10

10

10

l:'IJpur DIODE FORWARD CURRENT

10

FORWARD CURRENT

"

G1375

010

'F

'0

L

v

~ I00r-----r-----+-----~~

MCTOII

I

'0

OUTPurVOLTAGE

~

§"
TA

o~

17'"

Vu

-I:::

/,

400

C1374

TA ~ 25 C
T,.,,: O·C

6N139

~ 200

V

V~C"}~v

,.I.I,Jl

BOO

~600

OUTPUT VOLTAGE

Fig. 2. BN138 DC Transfer
Characteristics

Fig. 1. Input Diode Forward
Current vs. Forward Voltage

g

°°

1.21.3141.516 1.11B 1.9202.1
VF

25

a

~

_0

1.1

I

~

~

U

"
"a

II

,0 1

&omA

't

I,

C1380

C1379

Fig. 7. Non-Saturated Rise and Fall
Times vs. Load Resistance

Fig. 8. Switching Test Circuit

1----,--0 'SV

VCM~OV-----',,11- 20ns
90%
10"0
OV

10%

90"..
I,

'I

-

r---'--oVo
Vo

5V

SWITCH AT A

'F - OmA

V"

~VOL

Va
SWITCH AT B IF

~

!6mA

PULSE GEN

C138!

Fig. 9. Test Circuit for Transient Immunity and Typical Waveforms

27

6113861139

(MCC670 MCC671)

ELECTRICAL SPECIFICATIONS (0° to +70 D C Temperature unless otherwise specified)
CHARACTERISTIC

SYMBOL

·Current Transfer Ratio
(Notes 5, 6)

MIN

TYP'

6N139

400
500
300

MAX

UNITS

TEST CONDITIONS

%

V
p.A
p.A

IF = 0.5 mA, Vo = 0.4 V, Vee = 4.5 V
IF = 1.6 mA, Vo = 0.4 V, Vee = 4.5 V
IF=I.6mA,VO=0.4V,Vee=4.5V
IF = 1.6 mA, 10 = 6.4 mA, Vee = 4.5 V
IF = 5 mA, 10 = 15 mA, Vee = 4.5 V
IF = 12 mA, 10 = 24 mA, Vee = 4.5 V
IF = 1.6 mA, 10 = 4.8 mA, Vee = 4.5 V
IF=OmA,Vo=Vee=18V
IF=OmA,Vo=Vee=7V

mA

IF = 1.6 mA, Vo = Open, Vee = 5 V

nA

IF = OmA, Vo= Open, Vee = 5V

10H

6NI38
6N139
6N138

800
900
600
0.06
0.08
0.09
0.06
0.1
0.001

leeL

6NI38/6N139

0.20

leeH

6N138/6N139

10.0

VF
8VR
IlVF
IlTA
Co

6N 138/6N 139
6NI38/6N139

1.45

6N138/6N139

-1.8

mvtc

6N138/6N139

40

pF

11•0

6N 138/6N 139

R I· o

6NI38/6N139

10'2

CI· O

6N138/6N139

0.6

6N138
6NI39

Logic Low Output
Voltage (Note 6)

"Logic High Output
Current (Note 6)
Logic Low Supply
Current (Note 6)
Logic High Supply
Current (Note 6)
"Input Forward Voltage
Reverse 8reakdown Voltage
Temperature Coefficient
of Forward Voltage
Input Capacitance
"Isolation Leakage
(lnput·Output) (Note 7)
Resistance
(lnput·Output) (Note 7)
Capacitance
(lnput·Output) (Note 7)

DEVICE

0.4
0.4
0.4
0.4
100
250

1.7

5

1.0

%
V

V
V

p.A

IF = 1.6mA, TA = 25'C
IR = 10p.A, TA=25'C
IF = 1.6 mA
f = 1 MHz, V F = 0
45% Relative Humidity, TA = 25'C
V I•O = 3000 V, td = 5 sec
VI.O = 500 Vdc

pF

f = 1 MHz

(All typicals at TA = 25'C and VCC = 5 V, unless otherwise noted,)

SWITCHING SPECIFICATIONS
PARAMETER
Propagation Delay Time To
"Logic Low at Output
(See Fig. 8; Notes 6, 8)
Propagation Delay Time To
"Logic High at Output
(See Fig. 8; Notes 6, 8)
Common Mode Transient
Immunity at Logic High
Level Output
(See Fig. 9; Note 9)
Common Mode Transient
Immunity at Logic Low
Level Output
(See Fig. 9; Note 9)

SYMBOL
tpHL

tpLH

(TA = 2SoC)
DEVICE
6N139
6N139
6N138
6N139
6N139
6N138

MIN

TYP

MAX

UNITS

5.0
0.2
1.0
10
1.0
4.0

25
1
10
60
7
35

p.s
p.s
p.s
lAS

p.s
I'S

TEST CONDITIONS
IF = 0.5 mA, RL = 4.7 kD.
IF = 12 mA, RL = 270 D.
IF = 1.6 mA, RL = 2.2 kD.
IF = 0.5 mA, RL = 4.7 kD.
IF=12mA,R L =270D.
IF = 1.6 mA, RL = 2.2 kD.

CM H

>500

Vlp.s

IF = 0 mAo R L = 2.2 kD.
IVeml = 10 Vp.p

CM L

<-500

VII'S

IF = 1.6 mA, RL = 2.2 kD.
IVeml = 10 V p•p

NOTES
1.
2.
3.
4.
5.
6.
7.
8.
9.

Derate linearly above 50° C free-air temperature at a rate of 0.4 mA/oC.
Derate linearly above 50°C free·air temperature at a rate of 0.7 mW/oC.
Derate linearly above 25"C free·air temperature at a rate of O. 7 mA/oC.
Derate linearly above 25"C free·air temperature at a rate of 2.0 mW/oC.
DC CURRENT TRANSFER RA TlO is defined as the ratio of output collector current,lo, to the forward LED
input current, IF, times 100%.
Pin 7 Open.
Device considered a two· terminal device: Pins 1,2,3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
Use of a resistor between pin 5 and 7 will decrease gain and delay time.
Common mode transient immunity in Logic High level is the maximum tolerable (positive) dVcm/dt on the leading
edge of the common mode pulse, Vcm , to assure that the output will remain in a Logic High state (i.e., Va> 2.0 V).
Common mode transient immunity in Logic Low level is the maximum tolerable (negative) dVcm/dt on the trailing
edge of the common mode pulse signal, Vcm , to assure that the output will remain in a Logic Low state (i.e.,
Va  14.1mml
Weight max, 1.5g

Anode

Collector

1

4

APPLICATIONS

Cathode

C1B24

• DC Isolation 1I.0ltage 11.6 kV
• Nominal isolation operating voltage 2 1000 VAC
or 1200 VDC for isolation group B according to
VDE 0110b/2.79
• Test class 25/100/21 DIN 40 045
• Low coupling capacity typo 0.3. pF
• Current transfer ratio typo 100%
• Underwriters Laboratory (UL) recognized
File No. E76414

•
•
•
•
•
•

Medical Instrumentation
Industrial Controls
Power supply monitor
Solid state relays
High frequency power supply feedback control
AC line to digital logic isolation

Emitter

C1623

Fig. 1. Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS
INPUT-LED CIRCUIT
Reverse Voltage. . . . . . . . . . . . . . . . . . . . . .. 5V
Forward Current . . . . . . . . . . . . . . . . . . . . 75mA
Forward surge current (tp OS;; 1Oils) .••••••••. 1.5A
Power- dissipation (TA OS;; 25°C) . . . . . . . . . . 120mW
Junction temperature . . . . . . . . . . . . . . . . . 100°C
OUTPUT-DETECTOR CIRCUIT
Collector-emitter voltage . . . . . . . . . . . . . . .. 32V
Emitter-collector voltage ...... . . . . . . . . . .. 7V

Collector current . . . . . . . . . . . . . . . . . . . . 50mA
Peak collector current (tp/T = 0.5, tp OS;; 10ms) 100mA
Power dissipation (TA OS;; 25°C) . . . . . . . . . . 130mW
Junction temperature . . . . . . . . . . . . . . . . . 100°C
TOTAL PACKAGE
Storage temperature . . . . . . . . . . . _55°C to +100o C
DC isolation voltage (t = 1 minute)3 . . . . . . . 11.6kV
Power dissipation (TA OS;; 25°C) . . . . . . . . . . 250mW

33

CNY65
ELECTRICAL CHARACTERISTICS (25°C Temperature Unless Otherwise Specified)
CHARACTERISTICS

SYMBOL

INPUT LED
Forward Voltage
VF*
Reverse Breakdown
BVR*
Voltage
Junction Capacitance
CJ
OUTPUT DETECTOR
Coliector·Emitter
BVCEO *
Breakdown Voltage
Emitter·Collector
BV ECO *
Breakdown Voltage
Collector Leakage
ICEO *
Current
COUPLED CHARACTERISTICS
Current Transfer Ratio
CTR*
Current Transfer Ratio
CTR*
Coliector·Emitter
VCE(SAT) •
Saturation Voltage
DC Isolation Voltage 1
VISO **
Isolation Resistance
Rlso
Isolation Capacitance
CISO
Bandwidth

MIN.

TYP.

MAX.

UNITS

1.25

1.6

V

5

CONDITIONS

IF =50mA

V

IR = 100j.lA

pF

V R = 0, f = 1mHz

32

V

Ic = 1mA

7

V

IE = 100j.lA

50

50
60

10

200

nA

VCE = 20V

100

300

%
%

IF = 10mA, VCE = 5V
IF = 20mA, VCE = 5V

0.3

V

11.6

BW

IF = 10mA, Ic = 1mA

1012
0.3

kV
n
pF

110

kHz

= 1 min.
VI SO :, 1000V, 40% R.H.
f = 1mHz
IF = 10mA, VCE = 5V,
RL = 100n

t

* AOL =0.65%
** AOL = 2.5%
1 Related to standard climate 23/50 DIN 50014

SWITCHING CHARACTERISTICS
CHARACTERISTICS

SYMBOL

Delay time
Rise time
Turn·on time
Storage·time
Fall time
Turn·off time

MIN.

TYP.

I t o-_~/_F-.,
= 0.Q1

tp =

501'5

j.ls
j.ls
j.ls
j.lS
j.lS
j.lS

Ie = 5 rnA; -adjusted through
input amplitude

I

I
I

I

I
I
L._

I

.J
Channell

Oscilloscope
RL ;;'1 Mn

CL

.;

20 pI

50n
C1625

Fig. 2. Switching Time Test Circuit

34

CONDITIONS

Vcc = 5V,
Ic = 5mA,
RL = 100n
See test ci rcu it.

...,

,I

i

UNITS

+ 5V

o

RG = 50n

MAX.

2.5
4.5
7.0
0.3
3.7
4.0

td
tr
ton
ts
tf
toff

eNY65
TYPICAL ELECTRICAL CHARACTERISTICS CURVES (25°C Free air temperature unless otherwise specified)

VeE

......

100
~

I

5V

1.0

;;T
1=
«

50

a:

tJ

0.8
0.6

~

Scattering limit

!s=
0.5
IF
I

w

.;;

10

0.4

5
0.2

Ij

V

\

0.2

0.1

/

0

0.1

10

5

C1626

IF -(rnA)

50
C1627

Fig. 4. VCE (SAT) VS.
Collector Current

Fig. 3. Current Transfer Ratio

vs. Forward Current

'.20mA

~
E

r.Tz(

II

10
c

T

'I

-"
1

~~

'L

'2..~

fl

II

'1

0.1

10
VeE (V)

C1628

Fig. 5. Collector Current
vs. Collector Voltage

NOTES
1. Creeping current resistance: Group /1/ (KB>600-KC>600) according to VDE 0110b/2.79 table 3 and DIN 53
480IVDE 0303 part 1/10.76.
2. According to VDE test certificate dated 3/19/82.
3. Related to standard climate 23/50 DIN 50 014.

35

36

VDE TESTED,
PHOTOTRANSISTOR OPTOISOLATOR

CNY75A
CNY75B
CNY75C
PACKAGE DIMENSIONS

DESCRIPTION

Dimensions in inches (millimeters)

The CNY75 Series is an optoisolator which combines a
GaAs emitter with a silicon NPN phototransistor. This
device offers high isolation voltage (5.3 kV min.) as well
as high BVCEO (70 V min.). The CNY 75 is packaged in
a plastic six-pin dual-in-line package. VDE approval is
pending.

FEATURES

.100 ± .008 12.54 ± .21

II

II

4

R
~~t- <.""<.~,

o

-I

\-.299

II

13
II

~ :g~~ 17.6 ~ :~I
II

Airpath ,7.4 mm 2
Creeping Distance> B.6 mm 2
Weight;:: approximately 0,7 9

C1614

Isolation voltage 5.3kV'
Nominal isolation operating voltage '-500V AC or
600V DC for isolation group C according to VDE
011 0/b/02. 79
VDE test class 25/100/21 DIN 40045
Low coupling capacity typo 0.3 pF
Current transfer ratio in selected groups:
CNY75A: 63%-125%
CNY75B: 100%·200%
CNY75C: 160%-320%
Underwriters Laboratory (U L) recognized
File No. E76414

APPLICATIONS
II

II
II
II

II
II

Telephone circuits
Digital input to telecommunications
Industrial control systems
Power supply regulators
Appliance sensor systems
Microprocessor controls

C1615

Fig. 1. Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature range ....... _55°C to +100°C
DC isolation voltage (t = 1 min)3 . . . . . . . . . . 5.3kV
Total power dissipation (TA OS;;; 25°C) ...... 250mW
Solder lead temperature (t OS;;; 3s)4 ......... 260°C
EMITTER
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . . 5V
Forward current . . . . . . . . . . . . . . . . . . . . . 60mA
Forward surge current (tp OS;;; 1O~s) . . . . . . . . . . . 3A
Power dissipation (TA OS;;; 25°C) . . . . . . . . . . 100mW
Junction temperature . . . . . . • . . . . . . . . . . 100°C

DETECTOR
Collector-base voltage . . . . . . . . . . . . . . . . .. 80V
Collector·emitter voltage . . . . . . . . . . . . . . . . 70V
Emitter-collector voltage . . . . . . . . . . . . . . . . . 7V
Collector current . . . . . . . . . . . . . . . . . . . . 50mA
Collector peak current (tp/T = 0.5, tp OS;;; 10ms) 100mA
Power dissipation (OS;;; 25° C) . . . . . . . . . . . . 150mW
Junction temperature . . . . . . . . . . . . . . . . . 100°C

37

I

CNY75A CNY75B CNY75C
ELECTRICAL CHARACTERISTICS (25°C Ambient Temperature Unless Otherwise Specified)
CHARACTERISTICS

INPUT DIODE
Forward Voltage
Reverse breakdown
Voltage
Junction Capacitance
OUTPUT TRANSISTOR
Collector-base
Breakdown Voltage
Collector-emitter
Breakdown Voltage
Emitter·Collector
Breakdown Voltage
Collector-emitter
leakage current
COUPLED DEVICE
Current Transfer Ratio
Group A
Group B
Group C
Collector·em itter
Saturation Voltage
DC Isolation Voltage 5
Isolation Resistance 5
Isolation Capacitance
Bandwidth

SYMBOL

MIN.

VF*
BV R *

TYP.

MAX.

UNITS

1.25

1.6

V
pF

= 50mA
= 100/.lA
V R = 0, f = 1mHz

V

5
50

CJ

CONDITIONS

IF

IR

BVCBO *

80

V

Ic = 100/.lA

BVCEO *

70

V

Ic = 1mA

BV ECO *

7

V

IE

150

nA

VCE = 30V, IF

125
200
320

%
%
%

ICEO *

30

= 10mA, VCE = 5V

V

IF

= 10mA, Ic = 1mA

1012
0.3

kV
n
pF

110

kHz

t= 1 min.
VISO = 1000V, 40% R.H.
f = 1 mHz
IF = 10mA, VCE = 5V,
RL = 100n

63
100
160

0.3
5.3

BW

=0

IF

Ic/IF *

VCE(SAT) *
VISO **
Rlso
CISO

= 100/.lA

* AOL = 0.65%
** AOL = 2.5%

SWITCHING CHARACTERISTICS
CHARACTERISTICS

SYMBOL

Delay time
Rise time
Turn·on time
Storage·time
Fall time
Turn-off time

MIN.

TYP.

UNITS

/.IS
/.IS
/.IS
/.IS
/.IS
/.IS

Ic=5mA; adjusted through

!j!= 0.01
RG

MAX.

2.5
3.5
6.0
0.3
3.2
3.5

td
tr
ton
ts
tf
toff

input amplitude

= 50n

tp= 50/lS

Oscilloscope

RL >lMn

Channel I

CL
Channel II

50n

lOOn

C1616

Fig. 2. Test Circuit for Switching Characteristics

38

.;

20pF

CONDITIONS

VCC = 5V,
Ic = 10mA,
RL = 100n
See Figure 2

CNY75A CNY75B CNY75C
TYPICAL ELECTRICAL CHARACTERISTICS CURVES (25°C Free air temperature unless specified)

IF - 20mA

-

10mA

",..

IIIII
5mA

,"

~I

VCE = 5V

r-

600

iJ~~

~

w
u.

-

2mA

I/.

I

800

~

-<::

400

0.5

200

Ilf

I

11/

CNY75B

0.1

o
0.1

10V
VCE-(V)

10
Ic-(mA)

C1619

Fig. 3. Collector Current vs.
Collector Voltage

II

I

a

Fig. 4. hFE vs. Collector Current

I

Tamb=+:~ C

~ 1-1'-0

+50°C

25~cl

100

~

T
cr:
f0-

80
60

e.>

40
20

-2r~~

~~

k!

10

Vee = 5V
RL = 100n

,.

r'\

8

r-.

0;
::l.

u.
u.

6

z

.9
VeE = 5VCNY75A_

+50°C

1\
1\

"""

~ l--"" r-i'
t-+90°C
~

.9,

~ ./

~

A

C1618

!'I"-

~

ton

1"'"

r-

~

4

toft

""'''''

2

0
5

0

50
C1617

Fig. 5. Current Transfer Ratio vs.
Forward Current

5

10
Ic-(mA)

15
C1620

Fig. 6. Switching Time vs.
Collector Current
(See Fig. 2 for Test Circuit)

39

CNY75A CNY758 CNY75C
TYPICAL ELECTRICAL CHARACTERISTICS CURVES (25°C Free air temperature unless specified)
---I _CNY75A
0.8

0.8
Ie
I,

~ 0.6

;:
~
~

0.8

Ie

~ 0.6

0.5

IF - 0.5

.,:; 0.6

L

.; 0.4

~

1/

0.4

>

I-- r-CNY75C

I - - f-CNY75B

;

0.4

a

"

0.2
0.2

0.1

0.1

o
1

50

0.2

0.2

0.1

o
10

L

0.2

r-..
0.2

Ie

'F - 0.5

Ic-(mAI

50

10

1

50

10

C1621

Ic-(mA)

Ic-/mAl

Fig. 7. Saturated Collector Emitter Voltage vs.
Collector Curren t

CNY75 B

CNY75A

-

111111

scatteri~g';i'~its

I

CNY 75 C

S~~'~~ering limits

-

roo-

,/
Scattering limits.

0.5

0.5

0.5

~~

.?i-"
o. 1

'"

VeE - 5V

0.05

o. 1

i;'

o.
VeE - 5V

0.05

II

0.01
0.1

10

II

0.0 1
0.1

10

IV

0.1

Fig. 8. Current Transfer Ratio vs.
Forward Current

NOTES

40

II

0,01

IF-(mA)

1.
2.
3.
4.
5.

VeE - 5V

0.05

According to VDE 0883/6.80. VDE-certificate has been applied.
Creeping current resistance: Group I according to VDE 0110 & 6 table 3 and DIN 53 480/VDE 0303 part 1.
Related to standard climate 23/50 DIN 50 014.
Distance from the touching border ~ 2 mm.
Related to standard climate 23/50 DIN 50 014.

10
C1622

HIGH VOLTAGE PHOTODARLINGTON OPTOISOLATOR

I

MCA11Gl
MCA11G2
PACKAGE DIMENSIONS

DESCRIPTION
The MCA11G1 and MCA11G2 are photodarlington·
type optically coupled optoisolators. Both devices have
an infrared light emitting diode manufactured from
specially grown gallium arsenide, coupled with a
silicon, darlington connected phototransistor which
has an integral base·emitter resistor to optimize
elevated temperature characteristics. These devices are
supplied in a standard plastic six-pin dual·in·line
package.

FEATURES

r- l"rSEATlNG~m1
n

•

~-L

SYMBOL

,,

A

,,
,,

D

~

PLANE

G

P M

Lct240

~jjrK

I~~H:'S

MAle.

.365

9.27

.,
"

.300R~.

7.82RI1.

.014

11.36

MIL.

.. ..."

.270

.325

'.06

,.,

,

D."
2.16

.175

4.45

.,
3

M

•
•

1.18

.070

.''"",

,

,

8.~6

H

N

NOTES

•
•

NOTES

I. INSTALLED POSITION OF LEAD CENTERS

ANODE
CATHODE

~

2. FOURPLACe5
3. OVERALL INSTALLED.j>OSITION

1

6

BASE

2

5

COl.LECTOR

3

4

4. THESE MEASUREMENTS ARE MADE FROM THE
SEATING PLANE

5. MINIMUMO.I(X)INCH

EMITTER

C1710

Fig. 1. Equivalent Circuit

•

High BVcEo
Minimum 100V for MCA11G1
Minimum BOV for MCA 11 G2
High sensitivity to low input current Minimum SOO percent CTR at IF= 1 mA
High isolation voltage
2S00 VAC RMS - Steady State Rating
Low leakage current at elevated temperature
(maximum 100llA at BO°C).
.
Underwriters Laboratory (UL) recognized
File #ES01S1
VDE approval applied for

APPLICATIONS
• CMOS logic interface
• Telephone ring detector
• Low input TTL interface
• Power supply isolation
• Replace pulse transformer

ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature ..•.. . . . .. -SSoC to 1S0°C
Operating temperature .•.•..•.. -SSoC to 100°C
Lead temperature
(Soldering, 10 sec) ....•..•.•........ 260°C
Total package power dissipation @ 2SOC
(LED plus detector) . . . . . . . . . . . . . . . . 260 mW
Derate linearly from 2SoC . . . . . . . . . . 3.S mW/oC
Isolation voltage ..•.•....•.•.... 2.S kV RMS

INPUT DIODE
Forward DC current . . . . . . . . . . . . . . . . . 60mA
Reverse voltage . . . . . . . . . . . . . . . . . • . . . . 6 V
Peak forward current
(1 I"S pulse, 300 pps) . • . . . . . . . . • . . . . .. 3.0 A
Power dissipation 2SoC ambient . . . . . . . . 100mW
Derate linearly from 2SoC . . . . . . . . . . 1.B mW/oC
OUTPUT TRANSISTOR
Power dissipation @ 2SoC . . . . . . . . . . . • . 200 mW
Derate linearly from 2SoC . . . . . . . . . 2.67 mW/oC
Collector to emitter voltage
MCA11G1 . • . . . . . . . . . . . . . . . . . . . . 100 V
MCA11G2 . . . . . • . . . . . . . . . . . . . . . . . BOV

41

MCA11G1, MCA11G2
ELECTRO-OPTICAL CHARACTERISTICS (250 Temperature unless otherwise specified)

TRANSFER CHARACTERISTICS
CHARACTERISTIC

SYMBOL

MIN.

TYP.

MAX.

UNITS

TEST CONDITIONS

Current Transfer Ratio

collector to emitter

CTR
1000
500

0
Q

Saturation voltage

%
%

IF = 10mA;VCE = IV
IF = 1 mA; VCE = 5V

V
V

IF = 16mA;lc =50mA
IF = 1 mA; Ic = 1 mA

ps
ps

RL=100n;IF=10mA
VCE =5V
Pulse width" 300 psec,
f " 30 Hz

VCE(SATI
.S5
.75

1.0
1.0

Cl

~rn
J:W

o:i!:
1-1:1-

Turn-on time
Turn-off time

5
100

ton
toff

rn

Surge isolation

Viso

Steady state isolation

Visa

Isolation resistance

Riso

Isolation capacitance

Ciso

Z

0

f:

«
-'

0

!!!

4000

VDC

3000

VAC·rms

3500

VDC

2500

VAC-rms

10"

}

Relative humidity" 50%,
11-0" 10pA

}

Relative humidity" 50%,
11-0" 10 pA
1 minute

ohms
pF

.5

1 second

VI.O = 500 VDC
f= 1 MHz

INDIVIDUAL COMPONENT CHARACTERISTICS
CHARACTERISTIC
W
Q

0

Forward voltage
Forward voltage temp.

:l

Reverse breakdown voltage

e
I-

"~

SYMBOL

MAX.

UNITS

1.3

1.50

V

10

mV/"C
V
pF
pF
pA

IR = 10pA
VF = 0 V, f = 1 MHz
V F = 1 V, f = 1 MHz
V R =3.0V

100
BO

V

IC = 1.0 mA, IF = 0

100
BO
7

V

Ic=100pA

V

IE = 100 pA, IF = 0

coefficient
Junction capacitance
Reverse leakage current

BVR
CJ

TEST CONDITIONS

TYP.

MIN.

VF

3.0

IR

-1.B
25
50
65
.35

IF = 60mA

Breakdown voltage

Z

0

ICl

Z

::;
a:

«
Q
I:l
"I:l

0

Collector to emitter
MCA11Gl
MCAllG2
Collector to base
MCAllGl
MCAllG2
Emitter to collector
Leakage current
Collector to emitter
MCA11Gl
MCAllG2
MCA11Gl
MCAllG2

42

BVCEO

BVCBO

BVECO

10

ICEO
100
100
100

nA
nA
pA

100

pA

VCE =BOV,IF
VCE =60V,IF
VCE = SOV, IF
TA = BO°C
VCE = 60V, IF
TA = SO°c

=0
=0
= 0,
= 0,

MCAllGl, MCAllG2
TYPICAL-ELECTRICAL CHARACTERISTIC CURVES
(25°C Free air temperature unless specified)

1,000

«

E

I
IZ

w

II:
II:

I

100
10

~

W
N

.01

/

~

.001

o

.S

/

~

II:

1.0

NORMALIZED T O·
VeE = S V
IF = 1 rnA

IIII

0
1.0

1.S

2.0

~

I

0

I

1\

I

::::i 2.0

«
z

r\
\

/

0

0.1

II:

3.0

()

/

II:

0
u..

II:
I-

/

1.0

0

I

4.0

/

:::>

()

"

----

.1

IF -

VF - FORWARD VOLTAGE - VOLTS

10
(rnA, 300 p'S pulses)

C1704

C1709
Fig. 2. Forward Voltage vs.
Forward Current

Fig. 3. Normalized CTR vs.
Input Current

100

10

IZ

w

1/-

II:
II:

3 10.0
I-

~

"'-

V

----------

:::>

= SO rnA

./

10 rnA
1 rnA

II:
I-

()

o

./

a...

~
o
o

IF
IF
IF

w

./

N

1.0

::::i

«

-

~

:-?'-

IF
IF
IF

-

10 rnA
SO rnA
1 rnA

: / ' ~ ...............
""""

II:

o
Z

0.1

~

II:

o
z

1.0

~

w

!:::!
~

0.01

100

NORMALIZED TO
IF 1.0 rnA (300 P.s pulse)
VeE = S V

01234
S
6
VeE - COLLECTOR TO EMITTER VOLTAGE (V)

0.1
-SO°C

NORMALIZED TO
TA = 2SoC
IF = 1.0 rnA (300 P.s pulse)
VeE = S V

C1706

C170S

Fig. 4. Output Characteristics

'"

Fig. 5. Normalized CTR vs.
Temperature

43

MCAl1Gl, MCAl1G2
TYPICAL·ELECTRICAL CHARACTERISTIC CURVES (Cant.)
(2SoC Free air temperature unless specified)

10

100

10

'/

VeE - aov
50V
~ 1= VeE
VeE 10V

=

~

E

I

""'-

IZ

/I

w

a:
a:

E .100

\

\

\
= 10 n

\100 n

I-

::>
Q.
~

./

-

.!!:

i--""
i-"'" i-"'"
20°C
40°C ao°c
O°C
TA - (OC)

ao°c

100°C

I'"
NORMALIZED
TO:IF = 10 mA
RL = 100 n
VeE = 5 V

0.1
0.1

"

"

~

1.0
tON

C1707
Fig. 6. Dark Current vs.
Temperature

1K

()

I/f 'v

.010

.001

\
i\RL

::> 1.0

o

44

«

+ tOFF

10

NORMALIZED TOTAL
SWITCHING SPEED
C170a
Fig. 1. Switching Speed

PHOTO DARLINGTON oPTolSoLAToRS

MCA230
MCA255
DESCRIPTION

PACKAGE DIMENSIONS

r:] r'l

The MCA230 and MCA255 optoisolators contain a
gallium arsenide infrared emitting diode optically
coupled to a silicon planar photodarlington transistor.
Both units are sealed in a 6-lead plastic DIP package.
Electrical isolation compares favorably with that of a
relay-without the relay's inherent magnetic field. The
MCA230 has a minimum collector-emitter breakdown
voltage of 30 volts and the MCA255, 55 volts.

-+

[0 tnJ

4:;F

"3

1
I

rLI
SEATiNG
PLANE

I I

-

G

-

~_I_II-~
-l

K

CB6'

SYMBOL
A

B
C

0
E
F

G
H

J
K

L

@

ANOOE I

CATHOOE 2
3

8 lASE
5 COLLECTOR

4 EMITTER

M
N

P

INCHES
MAX.

MAX.
9.27
.270
6.86
4.06
.160
15'
15'
.300 Ref. 7.B2Rel.
.014
B,•
.3.25
.070
1.78
2.79
.110
.022
0.58
2.16

NOTES

.36'

"

.

.00'
.175

4.45

1

2
3
4

,

NOTES
1. INSTALLED POSITION OF L.EAD CENTERS
2. FOUR PLACES
3. OVERALL. INSTALLED POSITION
4. THEse MEASUREMENTS ARE MADE FROM
THE SEATING PLANE
5. MINIMUM 0.100 INCH

FEATURES & APPLICATIONS
•
•
•
•
•
•
•
•
•
•
•
•
•

High collector current rating - 125 mA
Fast operate time - 10 /lS
Fast release time - 35/ls
High isolation resistance - 10" n
High dielectric strength, input to output - 4000 VDC
Low coupling capacitance - 0.5 pF
Convenient package - plastic dual-in-line
Long lifetime, solid state reliability
Low weight - 0.4 grams
Replace reed relays for 50 mA, 55 V DC loads
Replace pulse transformers
Form multiple contact, NO/NC relays
Useful for telephone lines, telegraph lines, SeR
triggers, hospital monitoring systems, airborne
systems, remote data gatheri ng systems and remote control systems.
• Use as a low-current alarm monitor for battery
powered supplies
• UL recognized - File E50151
• VDE approval applied for

ABSOLUTE MAXIMUM RATINGS
Storage Temperature .•.......... _55°C to 150°C
Operating Temperature . . . . . . . . . . . _55°C to 100°C
Lead Soldering time @ 260°C . . . . . . . . . . . . . . 7.0 sec
Total power dissipation @ 25°C ambient .. _. 250 mW
Derate linearly from 25°C. . . . . . . . . . .. 3.3 mWtC
LED (GaAs Diode)
Power dissipation @ 25°C ambient . . . . . . . . . 90 mW
Derate linearly from 2SoC . . . . . . . . . . . , 1.2 mW/C
Continuous forward current ...........•. 60 mA
Reverse voltage . . • . . . . . . . . . . . . . . . . . . 3.0 V
Peak forward current ( 1/lsec pulse, 300 pps) .. 3.0 A

DETECTOR
(Silicon Photo Transistor)
MCA230
Power dissipation
@ 25°C ambient . . . . . . . . 210 mW
Derate linearly from 25°C .. 2.8 mW/C
Collector-emitter breakdown
voltage (BVCEO ) •.•••••••• 30 V
Collector-base breakdown
voltage (BVCBO ) •••••••••• 30 V
Emitter-base breakdown
voltage (BVEBO ) ••••••••• 8.0 V
Collector-emitter
current (ICE) • . . • . • • • • 125.0 mA

MCA255

... 210 mW
.2.8 mW/C
..... 55 V
..... 55 V
.... 8.0 V
.... 125.0mA

45

I

MCA230 MCA255
DC RELAY CHARACTERISTICS (TYPICAL)
CONTACTS
Contact configuration
Contact load rating

SPST·NO
50 mA DC
30 V DC
55 V DC

MCA230
MCA255

Contact withstand voltage

LOV
10 Jlseconds

Closed contact voltage
Operate time with 100 nload
Release time with 100 nload
COIL
Turn on voltage
Turn on current at rated contact load

35 Jlseconds

1.3 V
50 mA

ISOLATION
Dielectric strength, contacts to coil
Isolation resistance, contact to coil
Capacitance, contacts to coil
WEIGHT

4000 VDC minimum
lO" Ohms
1.0 pF
0.4 grams

APPLICATIONCI RCUITS
OPERATING A RELAY COIL WITH MCA2

Vee < 9 v
R< SMn

'c< 250mA

I l'c "< ..

ISOLATE T2L LOGIC WITH MCA2

6mA

]:---------1
L

__ -'-_____
MCA2

C883

-1

~---lL...'"

VCC <55V

'c<125mA
'F<50mA
CBBl

',-

: (r 1
n m

-

I

'-~I--~
__________ J

C884

NOTES
1. The current transfer ratio (lcIIF) is the ratio of the detector collector current to the LED input current with VCE
at 5 volts.
2. The frequency at which ic is 3 dB down from the 1 kHz value.
3. Rise time (tr) is the time required for the collector current to increase' from 10% of its final value, to 90%.
Fall time (tf) is the time required for the collector current to decrease from 90% of its initial value to 10%.

46

MCA230 MCA255
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
14

60

13

"
:;

E

~

40

30

~

20

0

a

0.5

1.0

1.5

2.0

h

tc=O,5 rnA
Vce=5V

3.a

"BE

/

2. a

I
1.0
RBE "'Open

10

104

I

103

RBE=OPE~

V

_u@ 102
10 '
1.0

/

%

75

100

TEMPERATURE-OC

-i100

80

!d

60

40

20

V

~.E·

""......

,.!!;.

:-

lOW SAT

-

......

10 20 30 40 50 60 70 80 90 TOO
TA AMBIENT TEMPERATURE r C)
cal5

w

";::

it
"

RBe

'"z 0.0
51::

ii

50 rnA peak

'~~III

1~

Ree = 1 M{l

0.001
100

10K

1 M

IF - 50 rnA peak
10 V

~R'E = 5 Mn l==vcc •

',R

M-

JJJ
lK

0.4
225
0.3

"

I--'"

V

a 1--:a

AVE SAT

Fig. 6. VCE-SA T vs. Temperature

OPEN

300

0.5

V

u

>

C874

MCA2
Ie" 125mA
'F = SOmA

I

RL -

V
E

,

.8a
.7 8

/

Ase - O~~~:·ttl--I~H-H+ttl

" .. = lOMn

illl

I j IIIJ

lK
RL -

C877

n

10K
ea7S

Fig. 9. Switching Times

375

V

~

.8

.......

V

~o'~IL

F:f

n
Fig. 8. Switching Times

CB76A

k'"

86
84

HIGH 

~BE= lDMa

I,

50

I

/

'"

0.0 1

O. I

1.6
C1470A

TYPICAL 530% eTA

~V
25

/

Ree""

V-

1.4

""o~l;.~

O. 1

RBe = 1 MSl

1.2

a

I

~

Fig. 5. Normalized CTR vs. Collector
Current

V

V ... V

\

f=

1.0
10
IDa
COLLECTOR CURRENT· rnA

Ie

f--- t,
~

1.0

1.02

~

TYPICAL 530% eTR

105

~
!;

8

1.0

107

.8

1,04

t.:l

..... "

CB73A

Fig. 4. Current Transfer Characteristic

.6

.4

Fig. 3. Collector Current vs. Collector
Voltage

3

0,1

100

IF - mA

.2

VeE - COLLECTOR VOLTAGE

""V

a

1.0

0.1

.0

§ 1.06
NOAMAlIZED TO

II

I'lL V
I~

25

3.0

I

I~/ 2brnA

ca7t

4.0

O. I

50

Fig. 2. Collector Current vs. Collector
Voltage

f=':1=!=I vee
,,~+IOV
\
Ii,

1.0

2.5

veE -COLLECTOR VOLTAGE

Forward Current

10

8

30 rnA

/1 ~ IomA
........,

f

IF (mAl

Fig. 1. Forward Voltage Drop vs.

75

2

'F =2mA

a

~
I

10

_u

100

IF =4mA

15

I

/

"'"o

25

"

125

=> 100

6mA

I,

0

FORWARD CURRENT

I
I

35

"'"

i

8mA

I,

~-

1I '50

I

45

~=>

Mc1230/~55

TYPICAL 530% eTR IF = 1'0 rnA

RBe - OPEN

50

I-

12

175

I

55



1

1. 2

50

75

9

.1

100

.2

.5

1

5

10

20

I
I

10

~
~

"" "'" _r.05

z

...>

0

tZ

~ 10

1\~~

0.1

C89a

~

"Eo

1

tI

o
100

10

1000

Rl - LOAD RESISTANCE -

n

I

I

V
iCE'

1

ca92

25

50

10

I
75

100

T TEMPERATURE (OCI

Figure 8. Dark Current

Figure 7. Non-5aturated Rise and
Fall Times vs. Load Resistance

vs. Temperature

5.1Kn

PULSE
INPUT
IF'" 1 rnA

ca95

Figure 10. Logic Interface

10

/

,

10

1.0

100

IC - COLLECTOR CURRENT - rnA

Figure 6. Normalized CTR
vs. Collector Current

13

fp..\.\..

z
~

50

50 100

,

1

/,?-f~":,.

NOTES

..... 1-'
o

10

I

I

See MCA230 for circuits

/'
1.0

vs. Forward Current

[l

PULSE
INPUT
IF'" 1 rnA

l/V

Figure 5. Forward Voltage

Vee" 5V

100
eBBB

Figure 3. Collector Current
vs. LED Current

IF - FORWARD CURRENT - rnA

caS9

j
;;

10

IF - FORWARD CURRENT - rnA

"IJ~
'II V(

/

TA = 25"C

~

1.0

CB87

2.0

TA"' +1000

1.0

,.

0.1
0.1

125

°c

.....-

.....-

Temperature
~

TA=25°C

100

f..'.'25].
1/

Figure 4. Saturation Voltage
VS.

75

'111B-

1.

a
25

50

.9

3.0
TA

I

-25

25

-

NORMALIZED TO
Ic =0.5 rnA
VCE -SV

~ 1.0

2

TA-AMBIENTTEMPERATURE-OC

I

I

1.3 -

>
o

3

0
-50

I

U

4.0

e>

IF=l'mA

4

I

1.0

0

--

Figure 2. Collector Cu"ent
vs. Ambient Temperature

9

>
z

~

--

rnA

-25

0

ai"--.. ........
.........
7

'"

0

TA - AMBIENT TEMPERATURE -

eBBS

Figure 1. Collector Current
vs. Collector Voltage
>

13

VeE =5V
NORMALIZED TO 100% AT 2SoC_

10%

VeE - COLLECTOR VOLTAGE - V

,../

<: ~b~l~

LI

10

t-

I

2mA
1 mA

~

/

""cr 100%

5mA

40

I

E
I

t-

6~A

0

"

I

7mA

70

VCE = 1.0V

..
i

~

ao

~

100

9mA

12.

"

C893

ca91

OPTICALLY ISOLATED LOGIC GATE

HIGH CMR, HIGH SPEED

PACKAGE DIMENSIONS

I,

DESCRIPTION
TYPE NUMBER

, , 5 Dmer',

--:~~g-l~:;~-~--

MCL2601

ULRECOGNITION

~I~ III

iliU

~ ==---'---

of

. 007 (.18mm!

.013 (.3Jmm)

The MCL2601 is an optoisolator which combines a
GaAsP LED as the emitter and an integrated high gain
mUlti-stage high speed photo-detector. The output of
the detector circuit is an open collector, Schottky
clamped transistor capable of sinking 25mA (max.).
A Faraday shield integrated on the photodetector chip
reduces the effects of capacitive coupling between
the input LED emitter and the high gain stages of the
detector. This provides an effective common mode
transient immunity of 1000V/I.lS or equivalence of 300V
P.P. sinusoid at lMHz .
The circuit is packaged in a plastic 8-pin mini-DIP
designed to provide for 3000V D.C. voltage isolation.

FEATURES
•
•
•
•
•
DIMENSIONS IN INCHES AND (MILLIMETERSI

Cl589

TRUTH TABLE
(Positive Logic)
Input Enable Output
H
H
L
H
L
H
H
L
H
H
L
L

v,

A 0.01 to O.lI.lF
bypass capacitor
must be connected
between pins 8 and 5.
(See note 1)
Cl588

1:1

•
•
•
•
•

High speed - 10 Mbs. typical
Internal shielding - High common mode rejection
High common mode transient immunity 1000 V/I.lS minimum
TTL compatible
Low input current
Specified characteristics over temperature:
O°C to lO°C
Output - strobable
UL recognized (File #50151)
High input to output isolation: 3000 V dc withstand test voltage
Pin for pin compatible to Hewlett Packard's
HCPL-2601
VDE approval applied for

APPLICATIONS
• Isolated line receiver
• Microprocessor system interface
• Data transmission isolation
• Digital isolation for A/D, D/A circuits.
• Ground loop elimination
• Instrument input/output isolation
• Replacement for pulse transformer

Fig. 1. Equivalent Circuit

ABSOLUTE MAXIMUM RATING (between O°C and lO°C)
Storage Temperature . . . . . . . . . . . -55°C to +125°C
Operating Temperature . . . . . . . . . . . O°C to +lO°C
Lead Solder Temperature. . . . . . . .. 260°C for lOS
D-C/Average Forward Input Current . . . . . . . 20mA
Enable Input Voltage, (V E)
(Not To Exceed Vee By More Than 500mV) ... 5.5V

Reverse Input Voltage . . . . . . . . . . . . . . . . . . 5.0V
Reverse Supply Voltage (-Vee! . . . . . . . .. -500mV
Supply Voltage, (Vee! .... l.OV/l Minute Maximum
Output Current, (10) . . . . . . . . . . . . . . . . . . 25mA
Output Voltage, (Va) . . . . . . . . . . . . . . . . . . . l.OV
Collector Output Power Dissipation . . . . . . . . 40mW

51

I

MCL2601
RECOMMENDED OPERATING CONDITIONS
SYMBOL

Input Current, Low Level
Input Current, High Level
Supply Voltage, Output
Enable Voltage Low Level
Enable Voltage High Level
Operating Temperature
Fan Out (TTL Load)

MIN.

MAX.

UNITS

o

250
15
5.5
0.8
Vcc
70

p.A
mA

*6.3
4.5

o

2.0

o

V
V

V
°c

8

*6.3mA is a guard banded value which allows for at least 20% CTR degradation. Initial input current threshold value is
5.0mA or less.

ELECTRICAL CHARACTERISTICS (TA = O°c to 70°C Unless Otherwise Noted)
PARAMETER

SYMBOL

MIN.

-TYP.

MAX.

UNITS

High Level Output Current

10H

.02nA

250

p.A

Low Level Output Voltage

VOL

.34

0.6

V

High Level Supply Current

ICCH

10

15

mA

Low Level Supply Current

IccL

15

18

mA

Low Level Enable Current

IEL

-1.5

-2.0

mA

High Level Enable Current
High Level Enable Voltage
Low Level Enable Voltage

IEH
VEH
VEL
VE
8 VR
CIt:!

-1.0
0.8

mA
V
V

Input Forward Voltage
Input Reverse 8reakdown Voltage
Input Capacitance
Input Diode
Temperature Coefficient
I nput·Output
I nsulation Leakage Current
Resistance (I nput to Output)
Capacitance (I nput to Output)

2.0
1.55

1.75

30

V
V
pF

-1.4

mvtC

5.0

I:1VF /I:1TA

1.0

11- 0
R1_Q

1012
0_6

CI- O

p.A
n
pF

TEST CONDITIONS

Vcc = 5.5V, Va = 5.5V
IF = 250p.A, VE = 2.0V
Vcc = 5.5V, IF = 5mA
VE = 2.0V, 10L = 13mA
Vcc = 5.5V, IF = OmA
VE = 0.5V
Vcc = 5.5V, IF = 10mA
V E = 0.5V
Vcc = 5.5V, V E = 0.5V
Vcc = 5.5V, V E = 2.0V
Vcc = 5.5V, IF = 10mA
Note: 11
IE = 10mA, T/!, = 25°C
IR = 10p.A, TA =25°C
V E =O,f-1MHz
IF = 10mA
Relative Humidity - 45%
TA =25°C,t=5s
V I _O = 3000 VDC
Note: 10
VI_O" - 500V, Note: 10
f = 1MHz, Note: 10

*AII typical values are at Vcc = 5V, TA = 25°C.

SWITCHING CHARACTERISTICS (TA = 25°C, Vcc = 5.0V)
PARAMETER

Propagation Delay Time
(For Output High Level)
Propagation Delay Time
(For Output Low Level)
Output Rise Time (10-90%)
Output Fall Time (90-10%)
Enable Propagation Delay Time
(For Output High Level)
Enable Propagation Delay Time
(For Output Low Level)

SYMBOL

MIN.

TYP.

MAX.

UNITS

tpLH

48

75

ns

tpHL

48

75

ns

tr
tf

30
14

ns
ns

tELH

25

ns

tEHL

14

ns

Common Mode Transient Immunity
(At Output High Level)

CM H

1000

10,000

v/p.s

Common Mode Transient Immunity
(At Output Low Level)

CM L

-1000

-10,000

v/p.s

52

TEST CONDITIONS

RL = 350n
C L 15pF
IF =7.5mA
Notes 2, 3,4 & 5, Figure 8

=

IF =7.5mA
V EH = 3.0V
VEL = OV
RL = 350n, C L = 15pf
Notes 6 & 7, Figure 9
VCM = 50V (Peak)
IF = OmA, VON (Min_) = 2.0V
RL = 350n, Note 9
Figure 13
VCM = 50V (Peak)
IF = 7.5mA, VOL (Max.) = 0.8V
RL = 350n
Note 8, Figure 13

MCL2601
TYPICAL CHARACTERISTIC CURVES (25°C Free Air temperature unless otherwise noted)
.s .--.--,---.--,-----,---,

0 "===f==!===l==I==f==l=:;2l
1 1..6r:
~~'"

.41--- Vee'" S.SV t_-t--+--Y/'--1

...

.2

r - ~~ =;. g~

~ ,04

Vee = 5.5V

.7

~--t-_+-+--I ~E == 5~OO~A

-

~o .6~--t-_+-+-t_-.-_+-4

L

IF'" 250JlA

~06
B

~

~~~~~~~~~I=~~~

>

~

I-

~ .02~-+-~~~~-~-+-~-4

.5~--t-~-+-t_--t-~-4
10 = 16mA--.,.

10 = 12.8mA

.4~~~~~~~~~~~~~

5~3~

~:I:.006~
.OlC:=i~~=$==~=i=:t=~

~

.2 ~--t---'!','-·r6::..4::.m:,A'--~~-+",'-.__i'_.6::.m::.A'j

~ .004I-V-7''I--~-+-~--+--t--I

9.0

V,~.5.0) . _

B.O
>
~ 7.0

"~

TA =

40

t:;

~ 4.0

=>

RL = lKn

~ 3.0

-;J

'--

,\RL = 350n

2.0

.0

C1613

TEMPERATURE (TA • eCI

C1598

Fig. 3. Low Level Output Voltage vs.
Temperature

Fig. 2. High Level Output Current "'.
Tempe/ature

I

6.0

o

> 5.0

\l

1.0

~.002 F--+-~--+--~-+-~-4
- .001 L-L_-L_..L_L-L_-L_-'
10
20
30
50
60
70

O~-70CC

~
1.0

2.0

3.0

4.0

5.0

FORWARD INPUT CURRENT (IF, mAl

6.0
C1602

Fig. 4. Output Voltage vs.
Forward Input Current

10. 0

<
.§

BO~-+--~--+---t_-+--~--4

f-

~

~ 70~-+--~--+---t_R,~.~3~5_OQ~~

~

/

TA = 2SOC

1.0

B
f-

~
~

~

I

/

1

~

50

~

40

f2

AL =4Kn_

-

--

:~:

=-

--~:_ R~ ;:-~5;
-= t-="
RL _ 4Kn

~

30~-+~~--~--r--+--~--4

,

20r--+---r--+---r--+---r~

::::

-

60

AL = 1Kn

101------t_----+-----+-----,
.0 1

1

/

1.4

1.2

10

1.6

VF, FORWARD INPurVOLTAGE (V)

C16Da

C1604

Fig. 6. Propagation Delay vs.
Temperature

Fig. 5. Forward Input Current vs.
Forward Input Voltage

15

IF - PULSED INPUT CURRENT (mAl

20
C1603

Fig. 7. Propagation Delay vs.
Pulse Input Current

"c..is!lraycircuilt.llpacitance,includlng
Ihe iCope probe and is approximaleiy 15pF.
C1592
'C" iswayCi'c~iICapaciIBnce.incl"djn9thBscOpeprObe.
IOlal of approximately 15pF
C1596

j-------~== ',: :::::

,NPUT

I

(IF)

I

I PHL - :

:_

-_I

_~ ___

lVol

I
OUTPUT

lVol

IpLH; _ _

::f

ou;~i

90%

1.5V

I

-\-------;

I
I

I

I

10%

I

I

- : ~ 1.=...----=-=..1 ~ :-C1S91

Fig. 8. Test Circuit
tPHL. tPLH. tr• and tf

Fig. 9. Test Circuit
tEHL and tELH

53

MCL2601
TYPICAL CHARACTERISTIC CURVES (25°C Free Air temperature unless otherwise noted)

70
t.----===y"".5.0~=
-== t,--,_ _ IF =7.5mA_

~

=w2 300r--+--4-~r--+--+-~r-~
i\ = 4KII

~200r--+~~~---t--~~==~
~

;£,

~:,. 80~~!!~~~~~~~~~
30
f\." 350n

40

o
~

40

w

.i

__

i\ -4KII

_I

_0

50

~ 30

~ '-!.~ ~

gg --

20

~,

20 r--+-'-+-~---+-i\ . IK.!:..:I

10

'0C::±::±:~L:~~'~35~on~,~~~
o

10

20

30

40

50

60

TA - TEMPERATURE 1°C)

Fig. 10. Rise and Fall Time
Temperature

70

1\----''"
vc",-./

Tv

~

6K

~:~~g

~
~

>>-

Z
~

----VO(MAXI

-

VOL = a.BV

~

O.sv

--

~
SWITCH pos, (81. I, ~ 7.5mA

Fig. 13. Test Circuit Common
Mode Transient Immunity

~ 3Kr-~-r-+-+-+--r-+-+--r~

~ 2K f-+I'--4.....r-t-++-+-+~---l
8, 1K f-+-++-+--+--I--t-++~

1.2

20

ron. iKn.

30

40

~

Vee

~
>- 1.1
0

"z
"u

1.0

r

n - r--

50

60

70

Ct607

~

w

>
>=

g

COMMON MODE TRANSIENT AMPLITUDE IV)

CI590

='

5.0V

r--+---t--~r-~ ~~~ : ~. ~~ IFH

=7.5mA

~~--+~~~~:~~

' " r-....

VCM

=

-

50V

0
0

100 200 300 400 500 600 700 800 900 1000

Fig. 12. Common Mode Transient
Immunity vs. Common
Mode Transient Amplitude

CML

1.3

~
Q

~ 4K~~-r-+-+-+--r-+-+--r~

-

r-- r- T"1' R, -

1.4

;;

w

~ 5Kr;+-++-+--+--~r-'-+~

VCM

TELH.I\. = 350n

::>

~ 8K H+-++-+--+---1 ~~: i.·~~A ~~H"2~;vA

"",,,-f-:::: ~

TElH,If\.=,kn

V~-

Fig. 11. Enable Propagation Delay vs.
Temperature

VS.

7K

4Kn

TA - TEMPERATURE (Oe)

~ 9Krt+-~-+-+-+--r-L-~-r~

15

f\

........-r-

10

~'0KrT'-.--r-r-'--r-r-'--r,
t5

TELH •

C1B01

;

-

IF =7.SmA

~

~

100

~
a:

Vee = S.OV
"'3.eV
=oV

>- 60 r-~EH
VEL

.9

..
.7
10

20

30

40

50

TA - TEMPERATURE 1°C)

60

70
C1595

Fig. 14. Relative Common Mode
Transient Immunity
vs. Temperature

NOTES
1. The Vcc supply voltage to each MCL2601 isolator must be bypassed by a 0.01p.F capacitor or larger. This can be either a
ceramic or solid tantalum capacitor with good high frequency characteristic and should be connected as close as possible
to the package Vcc and GND pins of each device.
2. tpHL - Propagation delay is measured from the 3. 75mA level on the LOW to HIGH transition of the input current pulse
to the 1.5V level on the HIGH to LOW transition of the output voltage pulse.
3. tpLH . Propagation delay is measured from the 3.75mA level on the HIGH to LOW transition of the input current pulse
to the 1.5V level on the LOW to HIGH transition of the output voltage pulse.
4. tf
. Fall time is measured from the 10% to the 90% levels of the HIGH to LOW transition on the output pulse.
5. tr
. Rise time is measured from the 90% to 10% levels of the LOW to HIGH transition on the output pulse.
6. tEHL . Enable input propagation delay is measured from the 1.5V level on the LOW to HIGH transition of the input
voltage pulse to the 1.5V level on the HIGH to LOWof the output voltage pulse.
7. tELH· Enable input propagation delay is measured from the 1.5V level on the HIGH to LOW transition of the input
voltage pulse to the 1.5V level on the LOW to HIGH transition of tlJe output voltage pulse.
8. CML . The maximum tolerable rate of fall of the common mode voltage to ensure the output will remain in the low
output state (i.e., VOUT 0.8V). Measured in volts per microsecond (V1/lS).
9. CMH - The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the high
state (i.e., VOUT 2.0V). Measured in volts per microsecond (V1/lS).

<

>

Voltslmicrosecond can be translated to sinusoidial voltages:

=«d~~M~

10.
11. Enable
Input

54

VI/lS
Max. = rrfCM VCM (p.p.)
Example:
VCM = 318Vpp when fCM = 1MHz usingCML and CMH = 1000VI/lSdata sheet specified minimum.
. Device considered a two-terminal device: Pins 1,2,3 and 4 shorted together, and Pins 5,6,7 and 8 shorted
together.
. No pull up resistor required as the device has an internal pull up resistor.

OPTICALLY ISOLATED
TRIAC DRIVER

I

MCP3009
MCP3010
MCP3011
DESCRIPTION

PACKAGE DIMENSIONS

I
Ll!::;o==r=r=;~
y Y y

The MCP3009, MCP3010 and MCP3011 are optically
isolated triac driver devices. These devices contain a
GaAs infrared LED and a light activated silicon
bilateral switch, which functions like a triac. This
series is designed for interfacing between electronic
controls and power triacs to control resistive and
inductive loads for 120 VAC operations.

CI240

FEATURES
SYMBOL

-r=r r

1"r

C1240

Anode

3

'-

NOTES

15

.014

0.36

.325
.070
.110
.022
.085

8.26

.175

4.45

~~f-K

m6

Cathode 2

9.27
6.86
4.06

15

'''""~m1
1..:...-

MAX .

.365
.270
.160

•
•

.3DORef. 7.62 Ref .

~

PlANE

MIL.

INCHES
MAX.

1.78
2.79
0.56
2.16

•
•
•
•

NOTES
1. INSTALLED POSITION OF LEAD CENTERS
2. FOUR PLACES
3. OVERALl.. INSTALLED POSITION
4. THESE MEASUREMENTS ARE MADE FROM THE
SEATING PLANE

5. MINIMUM 0.100 INCH

Main Terminal

5

6~a~g~v~~~~:~:rate

4

Main Terminal

Fig. 1. Equivalent Circuit

Low input current required (typically 5mA MCP3011)
Minimum commutating dv/dt is specified at 0.1 V/
J.lsec
Pin for pin replacement for the MOC3009, 3010
and 3011 devices
High isolation voltage - minimum 7500 VAC peak
Underwriters Laboratory (U L) recognized - File
E50151
VDE approval applied for

APPLICATIONS
•
•
•
•
•
•

Triac driver
Industrial controls
Traffic lights
Vending machines
Motor control
Solid state relay

C1703

ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature .... . . . . .. -55°C to 150°C
Operating temperature . . . . . . . . . _40°C to 100°C
Lead temperature
(Soldering, 10 sec) . . . . . . . . . . . . . . . . . . 260°C
Total package power dissipation @ 25°C
(LED plus detector) . . . . . . . . . . . . • . . . 330 mW
Derate linearly from 25°C ......•... 4.0 mW/oC
Surge Isolation voltage. • . . . . . .. 7500 VAC Peak

INPUT DIODE
Forward DC current . . . . . . . . . . . . . . . . . 60 mA
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . 3 V
Peak forward current
(1 J.ls pulse, 300 pps) . . . . . . . . . . . . . . . . . 3.0 A
Power dissipation 25°C ambient . . . . . . . . 100 mW
Derate linearly from 25°C . . . . . . . . . 1.33 mW/oC
OUTPUT DRIVER
Off-State Output Terminal Voltage ..... 250 Volts
TA = 25°C ... 100 rnA
On-State RMS Current
(Full Cycle, 50 to 60 Hz) TA = 70°C .... 50 mA
Peak Nonrepetitive Surge Current . . . . . . . . 1.2 A
(PW = 10 ms, DC = 10%)
Total Power Dissipation @ TA = 25°C ..... 300 mW
Derate above 25°C .... _ . _ .... _ .4.0 mW/oC

55

MCP3009 MCP3010 MCP3011
ELECTRO·OPTICAL CHARACTERISTICS (25°C Temperature unless otherwise specified)
TRANSFER CHARACTERISTICS
CHARACTERISTIC
LED Trigger Current
(Current Required MCP3009
to latch output) MCP3010
MCP3011

(J

0

Holding Current

SYMBOL

MIN.

TYP.

MAX.

UNITS

TEST CONDITIONS

1FT

15.0
10.0
5.0

30
15
10

mA

IH

-

200

-

pA

Either direction

Main terminal

voltage = 3.0 V

Critical Rate of Rise of
Off-5tate Voltage

dv/dt

-

10.0

-

VIps

Cl

Static dv/dt
(see Figure 5)

Critical Rate of Rise of
Commutating Voltage

dv/dt

0.1

0.2

-

VIpS

II:

Commutating dv/dt
I LOAO = 15 mA
(see Figure 5)

Isolation Voltage

Visa

5300

VAcRMS

Visa

7500

VACPEAK

Isolation resistance

Riso

10 11

Isolation capacitance

Clso

"........ -....
t.J

i

0- 400

I

~
0.1 0.2 0.5 1 2
5 10 20 50100
FORWARD CURRENT - IF (mA)
C16S6

V

1.1

N

I'

:::;
'" 0.9
::;
a:

Ii

I'

oz

~

o. 7

......-

O. 5
-40 -20
0
20 40
60 80 100
TA - AMBIENT TEMPERATURE ('C)
C16BB

Fig.3.
On-State Characteristics

dv/dt TEST CIRCUIT

I'

ow

-BOO
-14 -10 -6.0 -2.0 2.0 6.0 10
14
VTM - ON-STATE VOLTAGE (VOLTS)
C1687

Fig. 2. Forward Voltage Drop
vs. Forward Current

STATIC -

.....
~

V
I

w

a:
a:

I

1.3

~idth LSO ~ /'

Fig. 4. Trigger Current vs.
Temperature

COMMUTATING - dv/dt TEST CIRCUIT
Rin

zW
0-

o

~=

WVpack = 21ff xl.414 Vrms

~=

= 8,88 f Vrms

8.88 f Vrms
C1689

Fig. 5.
dvldt Test Circuits

12.0

U)

Static

~

I

I

~

.Y
V

6.0

V

4.0

i.--"

V

0.20 ~
(!)

0.16

1 1

~

0.12 ::;
0

t.J

O.OB

V'n =130 RJS
Te~t Circuit in Figure 5
2.0

o

0.4
RL -

o.S

1.2
1.6
LOAD RESISTANCE (kO)

z
~
::>
::;

Com mutating

I
I

10

~

1

10.0

() S.o

~

0.24

I

~

~

0.04
2.0

...
~-4.

.

;;; 8

~
en
I

6

...

J'-.

2

o

-

z

>=

0.12 ;;;

1''1--- J

::>
::;
::;

...1

0. 08

TSOo" 1'.
L

1""....

Static dv/dt
Commutating dv/dt
Test Circuit in Figure 5

8
I

0.04 ~

o

"

50
25
75
100
TA - AMBIENT TEMPERATURE ('CI
C1691

C1690

Fig. 6 dvldt vs.
Load Resistance

~

(!)

I" I"-

II,

4

;;

""

;;;
0.16

~';;:~~:h

~
()

0.20

I
I

Fig. 7. dvldt vs.
Temperature

57

MCP3009 MCP3010 MCP3011
TYPICAL-ELECTRICAL CHARACTERISTIC CURVES
(25°C Temperature unless otherwise specified)

;;;

lw
(!)

~o

"'
a.
::;;

dv/dt 0.2 V/~s
Test Circuit in Figure 5
dv/dt B.9 Vinf
RL 1 kll

~

1.5

.....

II:
II:

100

I!ill[ 2h U~

r--..

t--

zw

.....

:>

0

w 1.0

>
o

(!)

II:

w

~

2.0

:>
10

(Jl

111111111111
~ffiilltffi_

'"a.

«
w

.5

o

1.0
10
100
1000
10,000 100,000
MAXIMUM OPERATING FREQUENCY (Hz)

0.01

0.1

1.0

10

100

PW - PULSE WIDTH {msi

f -

C1696

C1692

Fig. 9. Maximum
Nonrepetitive Surge Current

Fig. 8. Commutating dv/dt
vs. Frequency

TYPICAL APPLICATION CIRCUITS

'6

180

180

120 V
60 Hz

MCP3009
MCP3010
MCP3011

MCP3009
MCP3010
MCP3011

C1693

Fig. 11. Inductive Load With
Sensitive Gate Triac

1

180
MCP3009
MCP3010
MCP3011

0.2.F

(15 mA < IGT < 50 mAl

Fig. 12. Inductive Load With
Non-Sensitive Gate Triac

58

120 V
60 Hz

C1695

120 V
60 Hz

Cl

(IGT $15 mAl

Fig. 10. Resistive Load

Rin

O.I.F

2.4 k

C1694

OPTICALLY ISOLATED
TRIAC DRIVER

I'

MCP3020
MCP3021
MCP3022
DESCRIPTION

PACKAGE DIMENSIONS

-10

lei

~:~I

L

2

-\1,
---:.1

t[J,

0
,

3

C1240

T

~

L

r- 1"r-

SYMBOL

' '"""f}-m1
~
C1240

Anode

~jj~K

rn6
3

MAX.

CI240
MIL.
MAX.

FEATURES
NOTES

9.27
6.B6

4.06
15

.JOORef. 7.62 Ref.

,014
.325
.070
.110
.022
.OB5

0.36
8.26

.175

4.45

1.78

2.79
0.56
2.16

M

N

C th d 2.......
a 0 e.,.

INCHES

.365
.270
.160
15

~

PLAN'

The MCP3020, MCP3021 and MCP3022 are optically
isolated triac driver devices. These devices contain
a GaAs infrared LED and a light activated silicon
bilateral switch, which functions like a triac. This
series is designed for interfacing between electronic
controls and power triacs to control resistive and
inductive loads for 240 VAC operations.

Low input current required (typically 5 rnA MCP3022)
CI Minimum commutating dv/dt is specified at
0.1 V//J.sec
CI Pin for pin replacement for the MOC3020 and
MOC3021
CI High isolation voltage - minimum 7500 VAC peak
I> Underwriters Laboratory (U L) recognized File E50151
• VDE approval applied for

NOTES
1. INSTALLED POSITION OF LEAD CENTERS
2. FOUR PLACES

3. OVEAALllNSTALLED POSITION
4. THESE MEASUREMENTS ARE MADE FROM THE

SEATING PLANE
5. MINIMUM 0.100 INCH

M.;n Term;n.'

5 Triac Driver Substrate
DO NOT Connect

4

•

APPLICATIONS
•

European applications for 240 VAC
Triac driver
• Industrial controls
11:1 Traffic lights
II Vending machines
CI Motor control
III Solid state relay
CI

Main Terminal

Fig. 1. Equivalent Circuit

C1703

ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature ... . . . . . .. -55°C to 150°C
Operating temperature . . . . . . . . . _40°C to 100°C
Lead temperature
(Soldering, 10 sec) . . . . . . . . . . . . . . . . . . 260°C
Total package power dissipation @ 25°C
(LED plus detector) . . . . . . . . . . . . . . . . 330 mW
Derate linearly from 25°C . . . . . . . . . . 4.0 mW/oC
Surge Isolation voltage . . . . . . . . . 7500 VAC Peak

INPUT DIODE
Forward DC current . . . . . . . . . . . . . . . . . 60 rnA
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . 3 V
Peak forward cu rrent
(1 /J.s pulse, 300 pps) . . . . . . . . . . . . . . . . . 3.0 A
Power dissipation 25°C ambient . . . . . . . . 100 mW
Derate linearly from 25°C . . . . . . . . . 1.33 mW/oC
OUTPUT DRIVER
Off·State Output Terminal Voltage ..... 400 Volts
TA = 25°C ... 100 rnA
On·State RMS Current
(Full Cycle, 50 to 60 Hz) TA = 70°C .... 50 rnA
Peak Nonrepetitive Surge Current . . . . . . . . 1.2 A
(PW = 10 ms, DC = 10%)
Total Power Dissipation @ TA = 25°C ..... 300 mW
Derate above 25°C . . . . . . . . . . . . . 4.0 mW/oC

59

MCP3020 MCP3021 MCP3022
ELECTRO-OPTICAL CHARACTERISTICS (25°C Temperature unless otherwise specified)

TRANSFER CHARACTERISTICS
CHARACTERISTIC

tJ

a

.. zCI
,,-

~I-

,,<[
a:

SYMBOL

MIN.

LED Trigger Current
(Current Required MCP3020
to Iatch output) MCP3021
MCP3022

TYP.

MAX.

UNITS

1FT

-

Holding Current

IH

Critical Rate of Rise of
Off·laate Voltage

30
15
10

rnA

Main terminal
voltage = 3.0 V

-

15
B
5

-

200

-

pA

Either direction

dv/dt

-

15

-

VIps

Static dv/dt, TA = B5°C
(see Figure 4)

Critical Rate of Rise of
Com mutating Voltage

dv/dt

0.1

0.2

-

VIpS

Commutating dv/dt
ILOAO = 15mA
(see Figure 5)

Isolation Voltage

Visa

5300

VAcRMS

Viso

7500

VACPEAK

Isolation resistance

Riso

10 11

Isolation capacitance

Clso

Z

a

~..I
0

!!!

ohms
pF

.5

TEST CONDITIONS

Relative humiditY .. 50%,
11-0 .. 10 pA, 5 seconds
Relative humiditY .. 50%,
11-0 .. 10 pA, 5 seconds
VI-O = 500 VDC
f= 1 MHz

INDIVIDUAL COMPONENT CHARACTERISTICS

W

a
is
0

I:::J

...

~

I-a:
:::JO

rJ;
:::Jw

CHARACTERISTIC

SYMBOL

Forward voltage
Forward voltage temp.
coefficient
Reverse breakdown voltage
Junction capacitance

VF

BVR
CJ

MIN.

3.0

60

MAX~

UNITS

1.3

1.50

V

-l.B
25
50
65
.35

10

rnVI"C
V
pF
pF
pA

Reverse leakage current

IR

Peak Blocking Current,
Either Direction

IORM

-

10

100

nA

Peak OnoState Voltage,
Either Direction

VTM

-

2.0

3.0

Volts

01;;

a

TYP.

Note 1. Test voltage must be applied within dv/dt rating.

TEST CONDITIONS
IF =60mA

IR= 10pA
VF = 0 V, f = 1 MHz
VF=lV,f=lMHz
VR =3.0V
VORM = 400 V, Note 1
ITM = 100 mA Peak

MCP3020 MCP3021 MCP3022
TYPICAL ELECTRICAL CHARACTERISTIC CURVES (25°C Free Air Temperature Unless Specified)

o

~

+800

<'E
a:
a:

W

S
en

0
j

Z

0-400

-800

a:
a:

1.0

()

0.9

::J

~

I

~

"""I"

a:

V

I
::;;

Z
w

I

I

1:"

V

'\

1.1

I-

./

()

1.2

I

I

::J

1.3

a:

az

/

~+400
w

1.4

:J
«
:2

/

i'
:--....

r-.... .....

.......

r-.... .......

0.8

r--.

(!)

~ 0.7
I 0.6
f-

V
-3.0 -2.0 -1.0
0
1.0 2.0 3.0
VTM - ON-STATE VOLTAGE (VOLTS)
C1711

-40 -20
o 20 40 60 80 100
TA - AMBIENT TEMPERATURE (OC)

.!!:

C1712

Fig. 2.
on·Sta te Charac teristics

Fig. 3. Trigger Current vs.
Temperature

TEST CIRCUITS FOR dv/dt MEASUREMENTS

.-----.6

~{

1-----,

2

MCP3020
MCP3021
MCP3022
'------'4

dv
dt

RL

= WVpack = 271"f x1.414 Vrms
= 8.88 f Vrms

Fig. 4. Static dv/dt

Vee

.-------,6

~--~~----~

~---------,

2 MCP3020
r---~ MCP3021
MCP30221--...JvVv_ _....I
'------'4

RL

dv
dt = 8.88 f Vrms
C1689A
Fig. 5. Commutating dv/dt

61

62

PHOTO seR OPTOISOLATORS

I

MCS2
MCS2400
PACKAGE DIMENSIONS

ro

[:J

Lo
1

DESCRIPTION

1

rt[lC
4-

I'

,

2

--L

t::F

3

SEATING
PLANE

@

MOOI 1

CATMODI 2

31

• DATI

NOTES

1. INSTALLED POSITION OF LEAD CENTERS

• AfrtODi

2. FOUR PLACES

• CATHODI

~: ~~::t~~~~~~lEE~T~;~~'~~DE FROM
THE SEATING PLANE

r..MINIMUMo.'ODINCH

C1339

The MCS2 and the MCS2400 devices consist of a photo
SCR coupled to a gallium arsenide infrared diode in a
six lead plastic DIP package. The MCS2 has a blocking
voltage rating of 200 volts while the MCS2400 has a
400 volt rating.

FEATURES
• Built-in memory
• AC switch (SPST)
• High current carrying capability
(pulsed condition)
• Plastic dual-in-line package
• High isolation resistance - 10" n
• Compact, rugged, light-weight
• Low coupling capacitance - 1.0 pF typical
• MCS2400, UL recognized (File E50151)
• High isolation voltage
VISO = 2500 V RMS, 1 minute
• VDE approval applied for

APPLICATIONS
The Photo SCR coupled pair is intended for applications where complete electrical isolation is required
between low power circuitry, such as integrated circuits, and AC line voltages. It provides high speed
switching of relay functions. Because of its bistable
characteristics, it lends itself for use as a latching relay in direct current circuits.

ABSOLUTE MAXIMUM RATINGS
Storage temperature -SSoC to lS0°C
Operating temperature -SSoC to 100°C
Lead soldering time @ 260°C 7.0 seconds
LED (GaAs Diode)
Power dissipation @ 2SoC ambient . . . . . . . . . 90 mW
Derate linearly from 25°C . . . . . . . . . . . . 1.2 mW/C
Continuous forward current . . . . . . . . . . . . . . 60 mA
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . 3.0 V
Peak forward current . . . . . . . . . . . . . . . . . _ O.S A
(SO j.Ls pulse, 120 pps)
COUPLED
Isolation voltage . . . . . . . . . . _ . _ ...... 3S50 VDC
Total package power dissipation .... _ ..... 250 mW
Derate linearly from 25°C ...•....• _ .. 3_3 mW/C

DETECTOR (Photo SCR)
Power dissipation @ 2SoC ambient . . . . . . . . . 200 mW
Derate linearly from 25°C . . . . . . . . . . . 2.67 mW/C
MCS2 DC anode current ... _ . . . . . . . . . . . 150 mA
MCS2400 DC anode current . . . . . . . . . . . . . 100 mA
Peak pulse current (100 j.Ls, 120 pps) . . . . . . . . 1.0 A
Average gate current . . . . . . . . . . . . . . . . . . . 25 mA
Reverse gate current . . . . . . . . . . . . . . . . .. 1.0 mA
MCS2 anode voltage (DC or peak AC) . . . . . . . 200 V
MCS2400 anode voltage (DC or peak AC) . . . . . 400 V

63

MCS2 MCS2400
ELECTRO-OPTICAL CHARACTERISTICS (25°C Free Air Unless Otherwise Specified)
MCS2
CHARACTERISTICS

MIN.

INPUT DIODE
Forward voltage (V F )
Reverse voltage (V R )
Reverse current (I R)
Junction capacitance (CJ )

MCS2400

TYP.

·MAX.

1.25

1.5

3.0

DETECTOR
Forward leakage current (lFX)
Reverse leakage current ('RX)
Forward blocking voltage (VFXM , VOM )
Reverse blocking voltage (VROM )
On voltage (VTM )
Holding current ('HX)
Gate trigger voltage (VGT )
Gate trigger current ('GT)

.001
'50

10

.02
.02

2.0
2.0

0.5

.98
.16
0.5
19

1.3
.50
1.0
100

5.0
7

14

UNITS

1.25

1.5

V
V

'F = 20rnA
IR = 10/lA

.001
50

10

/lA

pF

V R =3.0V
V=O

.02
.02

2.0
2.0

.98
.16
0.6
23

.50
1.0
100

/lA
/lA
V
V
V
mA
V
/lA

VFX = Rated VFX • RGK = 27kn
V RX = Rated V RX • RGK = 27kn
RGK = IOkn @ 100°C
RGK = 10kn @ 100°C
'T = 100 rnA
RGK = 27kn
V FX = lOa V
V FX = lOa V, RL = 10kn, RGK = 27kn

.01

0.5

1.3

14

5.0
7

mA

/lS
VDC
VRMS
VDC
V RMS
n

3500
2500
4000
3000

3500
2500
4000
3000

Isolation resistance (R lsa )
Isolation capacitance (elsa)

MAX.

400
400

.01

Surge isolation rating

TYP.

3.0

200
200

COUPLED
Turn on current (threshold), (1FT)
t, + td (See note I) = (ton)
Steady state voltage (Visa)

MIN.

10 '2
1.0

lO"

lO"
2

10 '2
1.0

pF

2

TEST CONDITIONS

V FX = 100 V, RGK = 27kn
'F = 30 mA, RGK = 27kn, Vee = 20 V

t::: 1 min.
t = 1 min.
t == 1 sec.
t = 1 sec.
V = 500 VDC
f = I MHz

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES (25°C Free Air Unless Otherwise Specified)

,.5

'00

~ 1. 4

o
~

'z"
I

;:
«
c
~

\f~o;O.;i

'0

"~

-

0

61.

'" ,.,1----

r-

~~

.0

I--""
.2

100,000

10,000

'OA

~......

//1/"

Ii

~

a100 rnA

~

-

~/~50CTEST
I

1.0

,

II
ANODE TO CATHODE VOLTAGE - V

Fig. 3. Anode Current VB.
Anode-Cathode Voltage

50 100
C361

.........

"

r

.1.3

20

10.0

LIMIT MAX.

II"

, mA

64

10

Fig. 2. Forward Voltage v•.
Forward Current

.........« If

lOrnA

"IJ~
I IVi'
5

I

IF - FORWARD CURRENT -",A

~/;;/~ I
_N,

w

,5

C360

Fig. 1. LED Lifetime v•.
Forward Current

§

/

8

TIME - HOURS

, A

TA= +100"

,

.91--""

Tf i2~,C
1000

illlB
r,:'~'. "r.;;.

>

tell -

I
-~

,

TA-

o

......

1ilc

/'

1 .3

,

.0
10
C362

'OOn

lk

10k

RaK-il

Fig. 4, Holding Current v••
Gate-Cathode Resistance

lOOk
C383

MCS2 MCS2400
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES (Cont'd)
(2SoC Free Air Unless Otherwise Specified)

30,-,--.....,.----r-----,

I

500

I~

0

r-

1\

RGK = 27kn

~GK~'f'(

1'\

z
9

II
"I'-- ~rKT~nl

0,LO-------2±0~----~30~----~~

I
0.1

C1274

"E

10

50

200

1000
e3S6

Fig. 6. Forward Blocking Voltage vs.
Critical d VIdt

1000

'\

125

2

MINIMUM CRITICAL dV/dt - VOlTS//-ISEC

Fig. 5. Trigger Delav Time vs.
Forward Current (note 1)

150

II
0.5

100

I

RGK " 27kn

I-

~

100

"wc

75

w

"

50

ffi>

25

""

0:
:J

c
z

1'\
'\

~

"

o
o

I

~

1\
\

75

50

25

MCS2
@20DV

10

~

====" #

Ii'

Ikn
27kn

Ikn

I--

MCS2400
_@l400V

I'

100

TEMPERATURE _ °c

--

1.0

A

.0 I
-60

-40 -20

Fig. 7. Continuous Current Rating vs.
Ambient Temperature

20

40

60

Fig. 8. Forward Leakage Current vs.
Temperature

I

9
.8
7
6

5
4
3

- - --r-

100
C3SB

0

I.0

ao

TEMPERATURE - °C

C3S7

I

~

I.0

I

l- t-..:::: t:--

2

r---r--: r-

lakn

t-- 1--20kn
27kn

.1

0
-60 -40

I

.0 I

-20

20

40

TEMPERATURE _ °C

60

80

100

C369

Fig. 9. Gate Trigger Voltage vs.
Temperature

-60 -40

-20

20

40

TEMPERATURE _ °C

60

BO

100

C37C

Fig. 10. Holding Current vs.
Temperature

65

MCS2 MCS2400
TYPICAL CIRCUIT APPLICATIONS
Vee

r - - - - - - - --,
"

I

I

-rn=:
I

VF

I

I
Vow

-

I

I
I

I

I

I

I

I

L___ _

":::"

I

C372A

OPERATING SCHEMATICS

Vee'

MCS2

V,

DC LOAD
RL

+5V
I,

~

CONTROL {
INPUTS

)

'"

VRMS

60-

VSAT
RGK

TTL GATE
C135

RELAY CIRCUIT FOR HALF WAVE A.C. CONDUCTION

NOTES
1. The rise time of the SCR is typically less than 500 nanoseconds.

66

PHOTO SCR OPTOISOLATORS

I

MCS21
MCS2401
DESCRIPTION

PACKAGE DIMENSIONS

[:]

The MCS21 and the MCS2401 devices consist of a
photo SCR coupled to a gallium arsenide infrared
diode in a six lead plastic DIP package. The MCS21
has a blocking voltage rating of 200 volts while the
MCS2401 has a 400 volt rating.

I
Lil=f0~~

FEATURES

SYMBOL

SEATING

r---+--

I~CAHiS

1\1";.';

365

927

NOTES

~t---W- r -

H=-~~t~~
~~: r-,~

~

ANODI 1

• GATE

CATHODE 2 " )

:s

L

I ANDDI

NorES

.. CATHODE

IINSTALLEDPOSITIONOFLEAOCEIIITEAS
2 fOUR PLACES
3.0VERALLINSTALLEDfOSITION
• THESE MEASUREMENTS AAE MAOE FROM

THE SEATING PLANE
5 MINIMUMO.HlOINCH

C1339

• Built-in memory
• AC switch (SPST)
• High current carrying capability
(pulsed condition)
III Plastic dual·in-line package
D High isolation resistance - 1011 n
m Compact, rugged, light-weight
m Low coupling capacitance ... 1.0 pF typical
m MCS21, MCS2401, UL recognized (File #E50151)
• VDE approval applied for

APPLICATIONS
The Photo SCR coupled pair is intended for applications where complete electrical isolation is required
between low power circuitry, such as integrated circuits, and AC line voltages. It provides high speed
switching of relay functions. Because of its bistable
characteristics, it lends itself for use as a latching
relay in direct current circuits.

ABSOLUTE MAXIMUM RATINGS
Storage temperature _55°C to 150°C
Operating temperature _55°C to 100°C
Lead soldering time @ 260°C 7.0 seconds

LED (GaAs Diode)
Power dissipation @ 25°C ambient . . . . . . . . 100 mW
Derate linearly from 25°C . . . . . . . . . . . 1.3 mW/oC
Continuous forward current . . . . . . . . . . . . . 60 rnA
Reverse voltage . . . . . . . . . . . . . . . . . . . . . 6.0 V
Peak forward current (1 fJ.s, 300 pps) . . . . . . . 3.0 A
COUPLED
Isolation voltage . . . . . . . . . . . . . . . . . . 4000 VDC

DETECTOR (Photo SCR)
Power dissipation @ 25°C ambient . . . . . . . . 400 mW
Derate linearly from 25°C . . . . . . . . . . . 5.3 mW/oC
RMS forward current . . . . . . . . . . . . . . . . 300 rnA
Peak pulse current (100 fJ.S, 120 pps) . . . . . . . 1.0 A
Average gate current . . . . . . . . . . . . . . . . . . 25 rnA
Reverse gate current . . . . . . . . . . . . . . . .. 1.0 rnA
Peak forward voltage MCS21 . . . . . . . . . . . . 200 V
MCS2401 . . . . . . . . . . . 400 V

67

MCS21 MCS2401
ELECTRO·OPTICAL CHARACTERISTICS (25°C Free Air Unless Otherwise Specified)
CHARACTERISTICS

MCS21
TYP.

MIN.

INPUT DIODE
Forward voltage (VF)
Reverse voltage (VR )
Reverse current (I R )
Junction capacitance (CJ )

MAX.

1.15

1.5

3.0
10

DETECTOR
Off state current (lDM)
Reverse current (I RM )

COUPLED
Turn on current (threshold),
(1FT)

1.15

1.5

.001
50

10

1.1
.16
0.5
19

150

tlA

1.3
.50
1.0
100

V
V
V
mA
V
tlA

11

mA

VFX = 100 V,
RGK = 27kn

20

mA

VFX = 50 V,
RGK = 10kn
IF = 30 mA, RGK =
27kn, Vee = 20 V
t = 1 min. Relative
humidity 50%
t = 1 min. Relative
humidity 50%
t = 1 sec. Relative
humidity 50%
t = 1 sec. Relative
humidity 50%

1.1
.16
0.6
23

.01

0.5

20
7

Surge isolation rating

Coupled dv/dt, (input to output)

VDM = rated, TA =
100°C, RGK = 10 kn
V RM = rated, TA =
100°C, RGK = 10 kn
RGK = 10kn @ 100°C
RGK = 10kn @ 100°C
IT =300mA
RGK = 27kn
VFX = 100 V
VFX = 100 V, RL =
110kn, RGK = 27kn

50

11

tr + td (See note 1) = (ton)

IF = 20mA
IR =10tlA
VR =3.0V
V=O

tlA

1.3
.50
1.0
100

Turn on current (threshold)
(1FT)

V
V
tlA
pF

150

400
400

.01

TEST CONDITIONS

50

200
200

0.5

Steady state voltage (Vise)

UNITS

3.0
.001
50

Forward blocking voltage (VOM )
Reverse blocking voltage (VAM )
On voltage (VTM )
Holding current (lHX)
Gate trigger voltage (VGT )
Gate trigger current (lGT)

MCS2401
TYP.
MAX.

MIN.

7

I.ls

3500

3500

VDC

2500

2500

VRMS

4000

4000

VDC

3000

3000

VRMS

500

500

V//J.s

See figure 11.

TYPICAL ELECTRICAL CHARACTERISTIC CURVES (25°C Free air temperature unless specified)

•

1.

'00

~ 1. 4

o
::;,
.3

"z,

o

~

;i

\f~

a

1

f-

t1,U r-

Ieo

"-

,
r'00

TA =25"C

1000

10,000

Fig. 1. LED Lifetime vs.
Forward Current

lA·1111L;.

5> ' .2

1W.'.,2'}

'" ,.,L.-o

~

~

,;

I

TIME - HOURS

'"

;!

TA- +100"

,

.0

V

I

I

,

68

-

\ .......
.8

100,000
C360

.1

.2

.5

1

2

5

V

"!J~
ill

10

20

50 100

I" - FORWARD CURRENT - rnA

Fig. 2. Forward Voltage vs.
Forward Current

C361

MCS21 MCS2401
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES (Cont'd) (25°C Free Air Unless Otherwise Specified)
lOA

~....

/Iv/

1A
f-

a~

/;

100 mA

-

f'lj/~5"C
TEST
I

1.0

~~t?
II

II

II

f-f-f-

10mA

I

"-

«

LIMIT MAX.

E
I

x

i;lu/,<; I

w

""«z

30r-,-----,-------,-------,

10.0

"

IfI

z

"'"

I

'?

I

oL-----~~------~------~

.0 1

1 rnA
ANODE TO CATHODE VOLTAGE - V

10

lOQu

10

.3

C362

1000

300

«

"

200

f-

~

100

~

50

""

E
I

1,\
t--

1\

~

20

~

10

AGK

1"......

~'"

~

200

~

150

«
~

fi'

I

2

10

50

~IKTn

MINIMUM CRITICAL dv/dt-

200

100

100

25

50

x

\

MCS240Q

"\.

..., p-

-40

.7

.

>
I

:!i

.6

.5

--

'-..

r-.
.......

.4

.3

-

1

-: r.:::: t:-- r.:::-

---

.2
1

o
-60 -40

-20

20

40

TEMPERATURE -'C

60

80

100

C369

Fig. 9. Gate Trigger Voltage vs.
Temperature

40

60
C

80

100
C368

I

-f-

x

20

Fig. 8. Forward Leakage Current vs.
Temperature

1.0

"

-.
-20

TEMPERATURE -

.9

B

lkO

ur

C3S7

10

1.0

~@400V

-

.0 1
-60

100

75

1.0

1""

Fig. 7. Continuous Current Rating vs.
Ambient Temperature

Fig. 6. Forward Blocking Voltage vs.
Critical d VIdt

.."

I

TEMPERATURE - 'C

C366

V

27kn

MCS2.M lkn
@20QV ~
27kn

~

o

o

"GK

10

"\.
\

50

1000

VOlTS/~SEC

'\

~

I I I
0.5

'\.

250

"u

27kn

cG" I .~01(

fi'
1
0.1

=

40
C1274

Fig. 5. Trigger Delav Time vs.
Forward Current (note 11

Fig. 4. Holding Current vs.
Gate·Cathode Resistance

500

>

30

C363

Fig. 3. Anode Current vs.
Anode·Cathode Voltage

s

20

lOOk

10k

lk

.0 1
-60 -40

--

~

r--

IOkn

r-- r--2Okn

~
1

-20

20

40

TEMPERATURE -"C

60

80

100

C370

Fig. 10. Holding Current vs.
Temperature

69

MCS21 MCS2401
TYPICAL TEST CIRCUIT

f-

Vp

T
r

.63 Vp

t *

-ft7\1
.-.j 1_

Vp = 800 Volts
tp = .010 Seconds
f = 25 Hertz
TA = 25°C

+100 V AC

1O01l
MSC21
I--

+

I

...

IL _______
... _
10K
1I

dv/dt

tp

OSCILLOSCOPE

EXPONENTIAL
RAMP GEN.

C1677

Fig. 11
Coupled dv/dt - Test Circuit

TYPICAL CIRCUIT APPLICATIONS
Vee

,..------- --,
"

I

I

I

I
I
I

-OJ:.
,
VF

I
I

-

I

I

VISO

I

,

Vee

I

V,

MCS2401

DC LOAD

_J

)
CONTROL {
INPUTS
TTL GATE
C372A

OPERATING SCHEMATICS

NOTES
1. The rise time of the SCR is typically less than 500 nanoseconds.

70

C13S

220V AMS
50-60 Hz

PHOTOTRANSISTOR OPTOISOLATOR

I

MCT2
PACKAGE DIMENSIONS

DESCRIPTION

~~:-A1

CD
1

2

The MCT2 is a NPN silicon planar phototransistor
optically coupled to a gallium arsenide diode. It is
mounted.in a six-lead plastic DIP package.

FEATURES & APPLICATIONS

3

·,,,
,

SYMBOL

\1
I ;!,[j I::i IE g
~

-lHf-

q

til
SEATING

I

PLANE!

p

•
•
•
•
•
•
•
•
•

I

•

I

~II_­

,
,",,
,

G

~

1

··

-ll-K

r--J~

."'" ."'"

INCHES

NOTES

....
""
"" '"".
""
"" '" ,,
,
'"
".

.3001'1.1 1621'1.1

.01.

.325
.010
.110

8.26

... ...
1.18

2.18

".45

.

~: ~~SJ:~~;g:~SITlON OF LEAO CENTERS
3,QVERALLINSTAI.LEDPO$ITION
4. THESE MEASUREMENTS ARE MADE FROM

5.

~

ANODE 1

NOTES

~~!,~~~~~~~~~

AC line/digital logic isolator
Digital logic/digital logic isolator
Telephone/telegraph line receiver
Twisted pair line receiver
High frequency power su pply feedback control
Relay contact monitor
Power supply monitor
UL recognized - File E50151
VDE approval applied for

CATHODE 2
3

6 8ASE

5 COLLECTOR

'"

EMITTER

C1339

Storage temperature _55°c to 150°C
Operating temperature _55°C to 100°C
Lead temperature (Soldering, 10 sec) 260°C
Input Diode
Output Transistor
Forward current . . . . . . . . . . . . . . . . . . 60 mA
Power dissipation at 25°C amQient . . . . . 200 mW
Reverse voltage . . . . . . . . . . . . . . . . . • 3.0 V
Derate linearly from 25°C . . . . . . . . . 2.6 mW/C
Peak forward current
Input to output voitage isolation .... 1500 volts DC
(1 J.Ls pulse, 300 pps) . . . . . . • . . . . . . . 3.0 A
Total package power dissipation at
Power dissipation at 25°C ambient .... 200 mW
25" C ambient (LED plus detector) . . . . . 250 mW
Derate linearly from 25°C . . . . . . . . . 2.6 mW/C
Derate linearly from 25'C . • . . . . . . . . 3.3 mW/"C
Collector-Emitter Current (ICE) . . . . . . . . . . 50 mA

ABSOLUTE MAXIMUM RATINGS

ELECTRO-OPTICAL CHARACTERISTICS
CHARACTER ISTIC
Input Diode
Forward Voltage
Reverse Breakdown Voltage
Junction Capacitance

Reverse Leakage Current
Output Transistor
DC Forward Current Gain
Colleclor To Emitter Breakdown Volt.
Collector To 'Base Break·
down Voltage
Emiller to Collector Breakdown Voltage
Collector To Emiller, Leakage Current
Collector To Base Leakage Current

(25°C Free Air Temperature Unless Otherwise Specified)

SYMBOL

MIN.

VF
BV R
CJ

3.0

TYP.

MAX.

UNITS

1.50

V
V
pF

IR

1.25
25
50
.01

10

I1A

hFE

250

BV CEO

30

BVCBO

70

TEST CONDITIONS
IF = 20 rnA
I R=lO I1A
VF=OV
V R=3.0 V
VcE =5 V,l c =lOOI1A

85

V

Ic=1.0 rnA, IF=O

165

V

Ic=10 I1A

BVECO

14

V

IE = 100J.LA, IF = 0

ICEO

5

50

nA

VcE =10V,I F=0

ICBO

0.1

20

nA

VcB =10 V, IF=O

71

MCT2
ELECTRO-OPTICAL CHARACTERISTICS (2SoC
CHARACTERISTIC

SYMBOL

Capacitance Collector To
Emitter
Capacitance Collector To

Free Air Temperature Unless Otherwise Specified)

MIN.

MAX.

UNITS

TEST CONDITIONS

CCEO
CCBO

Base

Capacitance Emitter To Base

CEBO

Coupled
DC Collector Current Transfer
Ratio
DC Base Current Transfer Ratio
Isolation Voltage

IC/IF

20

IS/IF
3500
2500
lOll

Isolation Resistance
Isolation Capacitance
Collector-Emitter. Saturation
Voltage

pF

VCE=O

20
10

pF
pF

Vcs=10 V
VSE=O

60

%

.35

%
VDC
VRMS

0.24

0.4

150

Bw

SWITCHING TIMES

Vcs=10 V. IF·lD rnA

pF

f=60Hz
V,.o=sOO V
f=lMH"

V

I C =2.0mA, IF= l6mA

KH~

TYP

Saturated
t on (from 5 V to 0.8 V)
t off (from SAT to 2.0 V)
Saturated
Ion (from 5 V to 0.8 V)
t off (from SAT to 2.0 V)
Non·Saturated
Base
Rise Time
Fall Time

VCE=10V. I F =lOmA. Note 1

n

1012
.5

V cElsat)

Bandwidth (see note 2)

8

UNITS

Ic=2 rnA, V cE =10 V, RL =100 Q
(Circuit No.1)

TEST CONDITIONS

ton (SAT)
toff (SAT)

10
30

I1s

RL =2 KQ, I F =15 mA, Vcc=5 V
Rs=open (Circuit No.2)

ton (SAT)
loff (SAT)

10
27

I1S

RL =2 KH, I F =20 rnA, Vcc=5 V
Rs=100 KH (Circuil No.2)

tr
tf

300
300

ns
ns

RL =1 KQ, Vcs=10 V

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(2SoC Free Air Temperature Unless Otherwise Specified)

Vee

-'F

-'F

vee

]~

]~
)

Circuit 1

72

)""'

Vau!

Circuit 2

""

MCT2
TYPICAL ELECTRO·OPTICAL CHARACTERISTIC CURVES
(25°C Free Air Temperature Unless Otherwise Specified)

14 0

III

* 130
6 120

a:
a:

40
30

30%
20%

10'

,
VeE - 70V ....
VeE· 50V....

I

0

o

~ 10'

rTll

.......-:

10

~

"~

/1

./

0.....:;

/~ ~~
//
~~ j

B'D' t=
w

/5~

/
/

50

,

10'

~

~ol

90 f-T. = 25°C _

80
70

S.

....I

90L

~ 100 f--Vee • 5.tiU

60

v



FALL TIME-

1!-UJ~!m~

limA

w

'~"

~

.7

is

,6

ttJI+H+PI.H'OmA

;::

: .5Ht+ttt--+H-HtttlHtH-'H---'t-it-t--Nffla.DmA
~

~

8
6

7.0mA
6.0mA

.4

.3Ht+ttt---I~H-H-!\ff-l..-f'..t"j..tfI'l'H5.0mA

4,OmA

t:l

4

3

>

eTA - 50%

10K

4 6 BtOOK 2
4 6 81M
As _. BASE RESISTANCE - H

20
CB16

Fig. 3. Switching Time vs. Base
Resistance

10 -" 40mA

.21-++++++--~H.t:I'I+

o

T. (5"C
IF" 10xlc

.2
,5
Ie - COLLECTOR CURRENT (rnA)

./

~1 ~I~~~"C

"'ii/-

~

1

"'fr

1. 0

.;
10

;ji

,

100

-r-

i=
;::

~

:::

a:
ffZ

w
a:
a:

V

80

oj

6

~=+100"
9

w

>

~

a:

/

II

20

V

V

o

A

+HJl
'F "-

V

"IJ~
'1 ,v!,

V

8
.1

.2

C822

.5

1

2

5

10

20

50 100

IF - FORWARD CURRENT - rnA

C823

Fig. 8. Forward Voltage vs.
Forward Current

24
1

lOrnA

1

20

16

12

II

•0

u

IF ,,2

V

/
I

I

:>

i=

I, -" 50 rnA

V

J:..F-

V

Fig. 7. Saturation Voltage vs.
Collector Current

o

I~;"\ +25"C

) ..........

I

1
.1

•hs.Tli1mrRE

1. 3

;:'"
61. 2

/

\

MCT2: FORWARD VOLTAGE vs.
FORWARD CURRENT (V F vs. IF)

Vee" IOV

1A~,~~C

If

3U

-

,......

25pA

V

26'A_ - r I
1 -c-

r-

,

15

A

lOpA_
l1

.,

SI-,A

18

J

0
10K

111111
lOOK

o
o

1M

R8 E - BASE RESISTANCE - 11

C825

Fig. 9. Sensitivity vs. Base Resistance

18

12

vc.

16

volts

20

~

0

2.
C826

Fig. 10. Detector Typical hfe Curves

NOTES
1. The current transfer ratio (JCII FI is the ratio of the detector collector current to the LED input current with VCE at 10 volts.
2. The frequency at which ic is 3 dB down from the 1 kHz value.
3. Rise time (tr ) is the time required for the collector current to increase from 10% of its final value, to 90%.

Fall time Itfl is the time required for the collector current to decrease from 90% of its initial value, to 10%.

74

PHOTOTRANSISTOR OPTOISOLATOR

I

MCT2E
PACKAGE DIMENSIONS

DESCRIPTION
The MCT2E is a NPN silicon planar phototransistor
optically coupled to a gallium arsenide diode. It is
mounted in a six·lead plastic DIP package.
ANODE
CATHODE

~
I

1....

2

3

6

BASE

5

COLLECTOR

4

EMITTER

FEATURES & APPLICATIONS
Utility/economy isolator
AC line/digital logic isolator
II Digital logic/digital logic isolator
II Telephone/telegraph line receiver
II Twisted pair line receiver
II High frequency power supply feedback control
II Relay contact monitor
II Power supply monitor
II UL recognized - File E50151
.. High isolation voltage
VISO = 2500 V RMS, 1 minute
II VDE approval applied for

II
II

CIJ39

SEATING
PLANE

NOHS
"fIISTALlEDPOSITlONOFLEADCENHAS
<.fOURPLA.CES
JOYERALLlr..ISTALLEOPOSITION
4 TIiESEMEASUAEMEiIITSAREMAOEfROM

TilE SEATING PlAI'IE
5MIr.lIMUM01OOINCH

ABSOLUTE MAXIMUM RATINGS

Storage temperature _55°C to 150°C
Operating temperature _55°C to lOO°C
Lead temperature (Soldering, 10 sec) 260°C
Input Diode
Derate linearly from 25°C . . . . . . . . . 2.6 mWtC
Forward current. . . . . . . . . . . . . . . .. 60 mA
Isolation rating . . . . . . . . . . . . . . . . , 3550 VDC
Reverse voltage. . . . . . . . . . . . . . . . . .. 3.0 V
Total J>ackage power dissipation at
25 C ambient (LED ,pIuS detector) . . . . . 250 mW
Peak forward current
(1 Jls pulse, 300 pps) . . . . . . . . . . . . . . 3.0 A
Derate linearly from 25 C . . . . . . . . . . . 3.3 mW/C
Power dissipation at 25°C ambient . . . . 200 mW
Collector-Emitter Current (led . . . . . . . . . . 50 mA
Derate linearly from 25°C . . . . . . . . . 2.6 mW/C
Output Transistor
Power dissipation at 25°C ambient . . . . . 200 mW

ELECTRO·OPTICAL CHARACTERISTICS
CHARACTERISTIC
Input Diode
Forward Voltage
Reverse Breakdown Voltage
Junction Capacitance
Reverse Leakage Current

(25°C Free Air Temperature Unless Otherwise Specified)

SYMBOL

MIN.

VF
BV R
CJ

3.0.

IR

UNITS

TYP.

MAX.

1.25
25
50
.01

1.50

V
V
pF

10

I1A

TEST CONDITIONS
IF = 20 rnA
IR=IO I1A
VF=OV
VR=3.0 V

Output Transistor
DC Forward Current Gain

Collector To Emitter Break·
down Volt.

hFE

lOa

VcE =5 V, Ic=100 I1A

250

BV CEO

30

85

V

Icd.O rnA, IF=O

BVCBO

70

165

V

Ic =1 0 11A

BV ECO

7

14

Collector To 'Base Break-

down Voltage
Emitter to Collector Breakdown Voltage
Collector To Emitter, Leakage Current

ICED

5

50

ICBO

0.1

20

V

IE = 100JlA, IF = 0

nA

VcCIOV.IF=O

nA

VcB =10 V, IF=O

Collector To Base Leakage Current

75

MCT2E
ELECTRO·OPTICAL CHARACTERISTICS
CHARACTERISTIC
Capacitance COllector To
Emitter
Capacitance COllector To
Base
Capacitance Emitter To Base
Coupled
DC COllector Current Transfer
Ratio
DC Base CUrrent Transfer Ratio
Surge Isolation voltage

Steady state Isolation voltage

SYMBOL

(25°C Free Air Temperature Unless Otherwise Specified)

GUAR.
MIN.

TYP.

GUAR.
MAX.

UNITS

TEST CONDITIONS

CCEO
Cceo

e EBO
IC/i F

20

Ie/IF

8

pF

VCE=O

20
10

pF
pF

Vce=IO V
VeE=O

60

%

VcE=IOV,IF=IOmA, Note I

.35

%

Vce=IO V, IF-IO mA

Visa

4000

VDC
VAC~rms

Visa

3000
3S00

VDC

Relative humidity S SO%
TA = +2SoC, 11.0 S 10 /-lA

1 second
Relative humidity ~ 50%,

TA=+2SoC,II_OSI0/-lA

Bv(I-O)

Isolation Resistance
Isolation Capacitance
COllector-Emitter, Saturation
Voltage

Bandwidth (see note 2)

VCE(sat)
Bw

2S00

VAC-rms

3500
1011

VDC
10'2
.5
0.24
150

52
0.4

1 minute

pF

V,_o=500 V
f=IMH ...

V

'C = 2.0 mA, 'F

KHz

= 16 mA

'c =2 mA, V CE=IO V, RL=IOO n
(Circuit No. I)

SWITCHING TIMES

Non-Saturated
Collector

Non-Saturated
COllector

TYP,

UNITS

TEST CONDITIONS

Delay Time
Rise Time
Storage Time
Fall Time

td
t,
t,
tf

0.5
2.5
O.!
2.6

!ls

RL =100 n, Ic=2 mA, Vcc=IO V
(Circuit No. I)

Delay Time
Rise Time
Storage Time
Fall Time

td
t,
t,
tf

2.0
15
o.!
!5

!ls

RL =1 KH, Ic=2 mA, Vcc=IOV
(Circuit No. I)

ton (SAT)
tOft (SAT)

5
25

!ls

RL =2 Kn, I F =15 mA, Vcc=5 V
Re=open (Circuit No.2)

ton (SAT)
tOft (SAT)

5
18

!ls

RL =2 Kn, IF=20 mA, Vcc=5 V
Re=IOO KH (Circuit No.2)

t,
tf

175
175

ns
ns

RL =! KH, Vce=IO V

Saturated
t on (from 5 V to 0.8 V)
t off (from SAT to 2.0 V)
Saturated
t on (from 5 V to 0.8 V)
t off (from SAT to 2.0 V)
Non-Saturated
Base
Rise Time
Fall Time

Vee

C8DS

76

Circuit 2

C809

MCT2E
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25·C Free Air Temperature Unless otherwise Specified)

l&O~

o

14 0

5-;-

"

6

~ ~~oOi--Vcc

vy~

0

5

130
120

[,.-

~

9O,"--TA =25"C

:r!

80

~

0

~

50

ee-

0

5

IF

&

10

15

20

",llomA

4

Fig. 1 Collector Current vs.
Col/ector Voltage
(for Typical CTR 30%)

,

" 130

~
~

~

-....;:

./

.2

~

"

«

~

-

1o

o
z

/

j

Vee'" tOv

20

40

60

80

100

lK

~J~TlM~

8
6r-

t.:! - DELAY TIME

4
3

"

2

FALL TII~IE-

>

~

o
>
z

Il

10

~

60

CBt2

eTR _ 50%

BV CEX

C816

Fig. 7 Switching Time vs. Base

RBe

VS.

"'"

1
C814

RL" 47012

0.1

I
I I II

RL" 100U

0.20.30-4 0.6o.a 1.0

2

3 4 5678 10

catS

COLLECTOR CURRENT Ie (rnA)

Fig. 6 Switching Time vs. Collector
Current

-

:

5 C

II III

sOaK 1M

z
o
>=

-I-H+1rt+M lOmA

.7

.sH-t++I+--H-I+-H+-lIHtH--HH--!.I-NcHla.OmA
7.0mA
6.0mA

.3H-t++I+--\t-\--t-\:ffi
98%OF ALL UNITS

2M

5M

20

10M
cal7

Fig. B Collector - Emitter Breakdown
Voltage vs. Base Resistance

C819

~

~

~

- BASE EMITTER RESISTANCE - n

Fig. 10 Circuit for Figure 7

lImA

w

~ .4
~

RBe

1'I III

40
tOOK 200K

46 81M

I I
Rc.l.Gof"
l l

1""- ......

MCT2

'-ry

Resistance

10 20 30 40 50 60 70 80 90100

°

\

0

4
3
2

Rs _. BASE RESISTANCE - 11

a

'1""'-

<-'

ES'

12 0

80

68100K 2

~

RBE

I

4

i''!"'r

10

Vr '" 10 VOLTS

,~-~

6

14 a

8
6

10K

I

V

o ryplcA'L

, 1601-'-'-'"

";

.! ~WWJ

>

,

I

r:1//

Fig. 3 Dark Current vs. Temperature

Fig. 5 Collector Current vs.
Frequency
18

,

25V

I I II
I I II

10K
lOOK
FREQUENCY (Hz)

C813

I .... - PULSE WIDTH TIME

2

I"

TA - TEMPERATURE -"C

1\
\

Fig. 4 Current Transfer Ratio vs.
Temperature
4
3

-20

\

G.2
20

•

C811

\\

80.4

AMBIENT TEMPERATURE (OC)

10-

...

0.6

•
40

'liCE '" SOV

_VeE

.

4

-CTR"'t;--

4

VeE'" 70V

I
1\ I
\"

1.

IF -= lOrnA

/.

2

60

0

~ 0.8

-'j ~s

30 -

20 406080

Fig. 2 Current Transfer Ratio vs.

~

::' soL,

a

4 6810

1.

LOW CURRENT TRANSFER RATIO

7

.4 .6.81.0 2

IF - FORWARD CURRENT - rnA

~

:::-..

L'

0

;

I

l0~ ~y

,

,
10'

o

K

VeE" 10 VOLTS

~

./

w

z
~

,

30%
1-1"20%

• HlllllI
;;1.• llllillL
!.1.
z ,
~
a°

.........

i!; 9 0

'"
;2

Forward Current

HIGH CURRENT TRANSFER RATIO

11 0

~~ ~~

w

,
10'

01

,.

-...

o

ala' ,
~ 10'

"/

VeE COLLECTOR VOLTAGE DETECTOR (VOLTS)

C810

V

~

I/'ol
;;.;.
I/so%
/

0

,

I 10'

e-

~

a

,

«

gal

/

0
0

30

25

10'

lld%

0

a,

IF=20 mA

'111111
1111111
,111111
_~I"!!
=5.0V

50

IF- FORWARD CURRENT - rnA

100
CBIB

Fig. 9 Saturation Voltage vs.
Forward Current

ca2D

Fig. 11 Waveforms for Figure 7

77

MCT2E
TYPICAL ELECTRO·OPTICAL CHARACTERISTIC CURVES
(25 0 C Free Air Temperature Unless Otherwise Specified)

,

.50

> .•5
I

~

.40

~

1.5

If'" lOrnA

.8

~ 1.

Ie :2mA

6

o
~

.35

~
z
o
~

.25

:>

.20

.

.1 5

.30

a

-

I

;

.1 0

--

r- r-i"""

\

\

""- ~ /

.2

CTTO%

o

20 30 40 50 60 70 80 90 100
TA -AMBIENTTEMPEAATURE-"C C821

0,-"I 10

IF -50mA

~

'"

w

50

~
~

o

~

B0

oi
II

/

~ 6

~

o

...
":=
"o

......

, ..,,,,-

'10

:>

T.
100

2~;:i:

1000

10.000

a
w

>

I

~

100,000

OPERATING SCHEMATICS
41n.

Leo

-

CONSTANT

CURRENT
INPUT

r
I
'-L __ _

)---~

o

IF -

-

5 10 20
50 100
1
FORWARD CURRENT - rnA CB23

Fig. 14. Forward Voltage vs.
Forward Current

4

0

V
6

B

Vee'" IOV
TA ',~~·C

If

Y

l

- 3U
-- --

25~A

20~AI_

--

15iA

I

11111
'OOK

'OK

Vee = 10 VOLTS

1-1--

10pA

'e =5pA
Ie ,,0

0

,M

12
CB25

16

2.

20

e826

VC,volts

Fig. 17. Detector Typical hfe Curves

.7n

PULSE
INPUT

-

I,

Vee = 10 VOLTS

DETECTOR

DETECTOR

' - - -........- _ OUTPUT

-

PULSE
L-_ _ _..._ _ OUTPUT

I,

I,

Rl. ,. 100n

CB27

Modulation Circuit Used to Obtain Output vs Frequency Plot

C~2B

Circuit Used to Obtain Switching Time vs Collector Current Plot

NOTES
1. The current transfer ratio (lCII F) is the ratio of the detector collector current to the LED input current with VCE at 10 volts.
2. The frequency at which ic is 3 dB down from the 1 kHz value.
3. Rise time (tr ) is the time required for the collector current to increase from 10% of its final value, to 90%.
Fall time (tf) is the time required for the collector current to decrease from 90% of its initial value, to 10%.

78

~

I

4

Fig. 16. Sensitivity vs. Base Resistance

I,

,5

'F",10mA

ABE - BASE RESISTANCE - 11

Fig. 15. Lifetime vs. Forward Current
(Note 4)

>--1 hlV'v---.

ca22

2

!f

20

CB24

TIME - HOURS

~~~¥lATION l~F

.2

~ 40

Ilillll

I

B

'0

/

"fJ~
I IVi

/

9/

z

h - 3"""

......

Q

I

IF'" lOxle

If : 2 0 m n .

/V

o

:ilo

~

~ 1. 0

Fig. 13. Saturation Voltage vs.
Col/ector Current

;::
I

/ /

.5
Ie - COLLECTOR CURRENT (rnA)

.2

Fig. 12. Saturation Voltage vs.
Temperature

"z

~~~I~~hl
T'l'. +2rJ;.
"~ 1.,.......
TA", +l00

L

i

10

rrlifliliTU1E

>

TA,,,,25"C

~ .05

4rvs.

1.3

~ 2
51,

/

•

MCT2: FORWARD VOLTAGE vs.
FORWARD CURRENT (V F vs. IF I

PHOTOTRANSISTOR OPTOISOLATOR

I

MCT210
DESCRIPTION

PACKAGE DIMENSIONS

The MCT210 incorporates a NPN silicon
planar phototransistor optically coupled to
a gallium arsenide diode emitter. The
MCT210 has a specified minimum CTR of
50%, saturated, and 150%, unsaturated.
This unit is mounted in a six·lead plastic
DIP socket.

FEATURES

SEATING
PLANE

CA:::::

~': : ~:ECTOR
3

4

EMITTER

• TTL compatible 1·10 gate loads
• High CTR with transistor output
MCT21 0-150% min.
• Specified CTR over temperature range
• Good logic load characteristics
VOL = 0.4 V @ 1.6 mA to 16 mA
output sinking {lod
• UL recognized (File #50151)
• VDE approval applied for

C1339
mm

SYMBOL

MAX.
9.27

APPLICATIONS
NOTES

6.86
4.06
15"

• Digital logic isolation
• Line receivers
• Feedback control circuits
• Monitoring circuits

1.78
.110
.022
L
M

.OB5

2.79
0.58
2.16

.175

4.45

NOTES
1. INSTALLED POSITION OF LEAD CENTERS

2. FOUR PLACES
3. OVERALL INSTAllED POSITION
4. THESE MEASUREMENTS ARE MADE FROM
THE SEATING PLANE

5.MINIMUM 0.100 INCH

ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature . . . . . . . . . . . -5SoC to IS00C
Operating temperature . . . . . . . . . -SSoC to 100°C
Lead temperature
(Soldering, 10 sec) . . . . . . . . . . . . . . . . . . . 260°C
Total package power dissipation @ 2SoC
(LED plus detector) . . . . . . . . . . . . . . . . 260 mW
Derate linearly from ?SoC . . . . . . . . . . 3.4 mW/C
Surge isolation . . . . . . . . . . . . . . . . . . 4000 VDC
3000 VRMS
Steady state isolation . . . . . . . . . . . . . 3500 VDC
2500 VRMS

INPUT DIODE
Forward current
. . . . . . . . . . . . . . . 60 mA
Reverse voltage . . . . . . . . . . . . . . . . . . . . . 3.0 V
Peak forward current
(1 I.!s pulse, 300 pps) . . . . . . . . . . . . . . . . . . 3.0 A
Power dissipation 2SoC to 70°C ambient ... 90 mW
Derate linearly from +70°C . . . . . . . . . . 2.0 mW/C
OUTPUT TRANSISTOR
Power dissipation @ 2SoC . . . . . . . . . . . . 200 mW
Derate linearly from 2SoC . . . . . . . . . 2.67 mW/C

79

MCT210
ELECTRO-OPTICAL CHARACTERISTICS

(0° to +70°C Temperature unless otherwise specified)

INDIVIDUAL COMPONENT CHARACTERISTICS
w

Q

0

C
I-

:J

"~

a:
0

I-

U)

iii
2

«a:

CHARACTERISTIC

SYMBOL

Forward voltage
Forward voltage temp.
coefficient
Reverse breakdown voltage
Junction capacitance

VF

MIN.

MAX.

UNITS

1.50

V
mV/C

Reverse leakage current

IR

15
50
65
.01

DC forward current gain
Breakdown voltage
Collector to emitter
Collector to base
Emitter to collector
Leakage current
Collector to emitter

hFE

400

BV R
CJ

BVCEO
BVCBO
BVECO

6.0

TYP.
1.25
-1.8

30
30
6

V
V
V

8

:J

"-

I-

:J
0

Capacitance
Collector to emitter
Collector to base
Em itter to base

Ic = 1.0 mA, IF = 0
Ic= lO /lA
IE = 100/lA, IF = 0

50

nA

30

/lA

VCE = 5 V, IF = 0,
TA = +25°c
V cE =5V,I F =O,

pF
pF
pF

V cE =O,f=lMHz
V CB = 5, f = 1 MHz
V EB = 0, f = 1 MHz

lI-

I R =10pA
V F = 0 V, f = 1 MHz
V F = 1 V, f = 1 MHz
V R =6.0V
VCE = 5 V, Ic = 10 mA

45

5

I CEO

10

V
pF
pF
/lA

TEST CONDITIONS
IF = 40 mA

8
20
10

COUPLED CHARACTERISTICS
CHARACTE RISTIC

SYMBOL

Current transfer ratio,
collector to emitter
MCT210 (a)

ICE/IF

Current transfer ratio,
collector to base
Saturation voltage
collector to em i tter
MCT210

ICB/IF

u

Q

i=
0

U)

w
;;!;

1=
C!I
2

X

u

I-

~

80

50

70

%

150

225
0.6

%
%

0.2

MAX.

UNITS

0.4

Ic = 16mA,IF = 32 mA

VIsa

4000

Steady state isolation

Visa

3000
3500

VAC-rms
VDC

I solation resistance

R iso

2500
1011

I solation capacitance

Fall time
Saturated
Rise time
Fall time
Propagation delay
High to low
Low to high

VCE = 0.4 V, IF = 3.2 mA
to 32 mA
VCE = 5.0V,I F = 10mA
V CB = 5.0 V, IF = 10 mA

Relative humidity
50%,
TA = +25°C, 11-0 ~10 /lA
1 second
Relative humidity
50%,
TA = +25°C, 11•0 ~10 /lA
1 minute
VI-o = 500 VDC,
TA = +25°C
f = 1 MHz

Surge isolation

Non-saturated
Rise time

TEST CONDITIONS

V
VDC

«....I

~

TYP.

VCE(SAT)

2

0

MIN.

<
<

5x10 12

VAC-rms
ohms

C iSO

1.0

pF

t,

4

/ls

~

5

/ls

RL = 100 n, Ic = 2 mA,
Vcc = 5 V
See Figures 17 and 18

t,
tf

2.5
25

J.ls
J.ls

RL = 560n,I F = 16mA
See Figures 17 and 18

TpD(HL)
TpD(LH)

2
10

J.ls
J.ls

RL = 2.7K, IF = 16 mA
See Figures 17 and 18

MCT21 0
TYPICAL ELECTRICAL CHARACTERISTIC CURVES (25°C Free air temperature unless specified)
100

100
60
40
20
10
6

///
'/I

I.

20

Ii~Q~fffi
w"']..'6~

60
40
20

14
"

~

1
.6
4

O·C
+25"C
+7 °c

fIliI
I

2

.0 1
.5

/I
III

2

/

I

1.5

1.0

2.0

2.5

.01

20

,.

--

II-

14

!t

.E

10

-

12
10
8

III

i,.!+

.04

.2

.4.6 1.0

60

2

25,uA

'E

55

1\

~

20J.lA

[\

<'

E

~

~

130

z

jy

VeE'" 0.4 V
f-Ic '" 1.6 rnA

Ie 16mi-',
=

.5

1.0

2.0

5.0

10

~F =116:n~

1 Kn

IF -

SmA

IF=

4mA

~,) V

~
111 0

@ 100
N

::;

lMn

.9

90

6r---~---t----r----r---i

-50

-25

5 t---r-~r-'-e-.-'.-6rm-A --r-/-:;"1

..

41---+--+". 3.2 mA.,,-<;:-t-r--j

I

~

+25

?

Ic=16mA

...--

;31:R~~~

~

70
+50

2F--

"JmA

I"

+75

Ic=BmA

.1'-_-'-_ _'-_-'-_ _' - _....

+100

-25

+25

+50

.... 75

C1247

Fig. 7. Current Transfer Ratio
(saturated) vs. Temperature

+100
C1248

Fig. 9. Collector to Emitter
Saturation Voltage vs. Temperature

Fig. 8. Current Transfer Ratio
(unsaturated) vs. Temperature
100..----...----.,-----,

10.000~=+=+=hi

10M!!
C1246

'.0~~~
•
:;;
2:

0

+100

100 Kn

Fig. 6. Saturated CTR vs.
Base to Emitter Resistance

1c =20mA

'\

'"t;

"1i!

10 Kn

ABE - (n)

VeE - 5 V

C1259

101r----~----r-~~~

100

~
I

/"IJmY -

.0

'"t;

1,000

I

11

C1243

D.4 V

C1245

1c=2mA

lE

0

30
-50

1

9 10

7

120

,

1io!

VeE

Fig. 5. Collector to Emitter Breakdown
Voltage VS. Base to Emitter Resistance

,~

70

8

.06

RBE -IMol

C1244

I'" ~

iiiN

7

.02
.01
.2

5.0

110

90

6

.04

Fig. 4. Collector Current vs.
Collector to Emitter Voltage

I

'"t;

5

.2
.10

I"-o.....r--5

,~

4

1.0
.6
.4

!t

5.0jJ.A

0

3

10
6.0
4.0
2.0

2.5p.A

2.0

2

Forward Current
100
60
40
20

I

VeE - V

1

IF - (rnA)

0

1,0

o

~

Fig. 3. Collector Current vs.

15,A_

I--

.1.2.3.4.5 .7

~~

l/'

C1242

le= 1 rnA

10,uA

13

V

4

2.0 4.06.010

I

/,

•
0

.10

~

Vv~E·'.4V

V

Fig. 2. Collector Current vs.
Collector to Emitter Voltage

I.
301"A_

....

I-

16

.02

f

IF =2mA

VeE - (Yolts)

Fig. 1. Forward Voltage vs.
Forward Current

I

12

I
u

I

C1241

VF -(Volts)

<'

~

6

1
.06
.04
.02

E

L

IF -lOrnA
IF = ~ rnA

i

L
VVCE "'5V

16

~

<'

"EO

-"

100

~

~ O.ll---"""t---c

10

~::;

.0117'---j-zS-=-t-----i

+25

+50

+75

TEMP _

+100 +125 +150

(OC)

C1249

Fig. 10. Collector to Emitter Leakage
Current VS. Temperature

60

~

I

.001 '-.£..---'----..1----....
+25"
+50 0
+75 0
+100 0
TEMPERATURE - (OC)

C125Q

Fig. 11. Collector to Emitter Leakage
Current vs. Temperature

1i0"!
z

40

20

Po (TOTAL) = 100 mW

o
100

TIi~A:;:~'C I
toDD

10,000

100,000

OPERATING TIME - (Hours)

e12S!

Fig. 12. Current Transfer Ratio vs.
Operating Time

81

MCT210
TYPICAL SWITCHING CHARACTERISTICS

16
14

12
10

'in

""
I

BO~

I

,

Ii:~ RBE = 100 Kn
.

-tpO(HL!

I

E\.'

IF "'- 3.2 ~~ 16 rnA
Vee = 5 V
RL=2,7Kn
1

~

60

t,

RSE=OPEN

w

">=

Vee = 5 V

I

~~

70

RL. - 2.7 Kn

~

:%

50 f-+-H-ll'il!:.k:-Il:::+ttt-+-H-tt-I-H+H

I

40~~-H~t-~~~++*-+-+H~

">= 30 H-++1t-+-Hftt--p'llikt1t--H-tffi
1\0.

~SATURATED AT

RaE" 50 Kn

.~

----

I
3.24

12

16

IF -(rnA)

1M

....----

v

IC=2mA

.. 16

~~I, 11",1

rrrr

I

~

50K
C1253

J1Tlr[
O\rh" I "'1
~~~ : ;OV ill J I

4

010-·

""

100K

Fig. 14. Switch·off Time vs. Base to
Emitter Resistance (saturated)

Fig. 13. Switch·on Time vs.
'F Drive (saturated)

B

500K
RBe - (n)

C1252

12

~ll,170
~ll, 1100l!

Rl

0
lOOK

50K

500K

100n
lOOK

1M

RBe -lUI

C1255

Fig. 15. Rise Time vs. Base to Emitter
Resistance (non·saturated)

INPUT

TPDtiL

J
I

1M
C1254

Fig. 16. Fall Time vs. Base to Emitter
Resistance (non~saturated)

I

I

500K
RBE -In)

Vee

,",- - - -

--!: !__
:

I:

- : ~TPDLH
OUTPUT
~I
:
:
5V
(SATURATED):
:

,

,

1.5V-L

_ -1.5V

IF

..,

------ SAT.

1

OUTPUT
(NON

J

SATURATED)~!
10%
90%!_
:

C1256

i -!

90%

tr --::___

10%

ri

--:

:

r-- tf

e1257

INPUT

(3.2 TO 32 mAl

Fig. 17. Switching Time Waveforms

82

Fig. 18. Switching Time Test Circuits

I

FAN·OUT OF
1 TO 10 TTL LOADS

"...

"...

I

I

~

C1258

Fig. 19. Tvpical TTL Interface at
Operating Temperatures of d' to 7d' C

PHOTOTRANSISTOR OPTOISOLATOR

MCT2200
PACKAGE DIMENSIONS

DESCRIPTION
The MCT2200 is a phototransistor-type optically
coupled isolator. An infrared emitting diode manufactured from specially grown gallium arsenide is
selectively coupled with an NPN silicon phototransistor. The device is supplied in a standard
plastic six-pin dual-in-line package.

-I

L~=;=;==;=!l

C1240

SYMBOL
A
C

0

INCHES

MAX.
.365

.270
.160
15

MIL.
MAX.
9.27

NOTES

6.B6
4.06

15

.300 Ref. 7.62 Ref .
.014
0.36
.325
8.26

.070

.085

1.78
2.79
0.56
2.16

.175

4.45

,110

.022

FEATURES
II

II
II
II
II

M

High isolation voltage
5300 VAC RMS - 5 seconds
7500 VAC PEAK - 5 seconds
Minimum current transfer ratio of 20%
Maximum turn-on, turn-off time 20J.! seconds
specified
Underwriters Laboratory (U L) recognized
File #E50151
VDE approval applied for

APPLICATIONS
II
II
C1240

II
NOTES
1. INSTALLED POSITION OF LEAD CENTERS
2. FOUR PLACES
3. OVERALL INSTALLED POSITION
4. THESE MEASUREMENTS ARE MADE FROM THE
SEATING PLANE
5. MINIMUM 0.100 INCH

II
II

Power supply regulators
Digital logic inputs
Microprocessor inputs
Appliance sensor systems
Industrial controls

Fig. 1. Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature '" . . . . . . . _55°C to 150°C
Operating temperature . . . . . . . . . -55°C to 100°C
Lead temperature
(Soldering, 10 sec) . . . . . . . . . . . . . . . . . . 260°C
Total package power dissipation @ 25°C
(LED plus detector) . . . . . . . . . . . . . . . . 260 mW
Derate linearly from 25°C . . . . . . . . . . 3.5 mWtC

INPUT DIODE
Forward DC current . . . . . . . . . . . . . . . . . 90 mA
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . 3 V
Peak forward current
(1 J.!s pulse, 300 pps) . . . . . . . . . . . . . . . .. 3.0 A
Power dissipation 25°C ambient . . . . . . . . 135 mW
Derate linearly from 25°C . . . . . . . . . . 1.8 mW/oC
OUTPUT TRANSISTOR
Power dissipation @ 25°C . . . . . . . . . . . . . 200 mW
Derate linearly from 25°C . . . . . . . . . 2.67 mW/oC
83

MCT2200
ELECTRO·OPTICAL CHARACTERISTICS (25°C Temperature unless otherwise specified)
TRANSFER CHARACTERISTICS
CHARACTERISTIC
U
Q

Current Transfer Ratio,
collector to emitter
Saturation voltage

SYMBOL

MIN.

CTR

20

TYP.

MAX.

UNITS

60

TEST CONDITIONS

%

IF

VCE(SAT)

.21

.40

V

IF

6.0
5.5

20
20

I'S
I'S

= 10 rnA; VCE =5V
= 10 rnA; Ic = 2.5 rnA

c:J

!I/I
:rw

Non ..aturated

U::E

Turn-on time

-~

Turn..,ff time

ton
toff

Isolation Voltage

Visa

5300

VAC RMS

Visa

7500

VAC PEAK

Isolation resistance

Rlso

1011

Isolation capacitance

CISO

~-

~

Z
0

~

...J

0

!!!

ohms
pF

.5

{RL = 100 n; Ic
Vcc=10V
See figure 10.

= 2 rnA;

Relative humidity .. 50%,
11-0 .. 10 !lA, 5 seconds
Relative humidity .. 50%,
11-0 "10I'A, 5 seconds

= 500 VDC
= 1 MHz

VI-O
f

INDIVIDUAL COMPONENT CHARACTERISTICS
CHARACTERISTIC

w

0
0

e
~

:J

a..

!

Forward voltage

SYMBOL

MIN.

VF

TYP.

MAX.

UNITS

1.3

1.50

V

10

mV/oC
V
pF
pF
IlA

TEST CONDITIONS
IF

= 60 rnA

Forward voltage temp.
coefficient
Reverse breakdown voltage
Junction capacitance

Reverse leakage current

BVR
CJ

3.0

IR

-1.8
25
50
65
.35

IR = 10llA
VF = 0 V, f
VF = 1 V, f
V R = 3.0 V

= 1 MHz
= 1 MHz

Breakdown voltage

a:
0

~

1/1

iii

BV CEO
BVCBO
BV ECO

Z

Leakage current

a:

Collector to emitter
Coli ector to base
Capacitance

c(
~
~

:J
IL
~

:J

0

84

Collector to emitter

Collector to base
Emitter to collector

ICED
ICBO

30
70
7

45
130
10
5

Collector to emitter

8

Collector to base
Emitter to base

20
10

50
20

V
V
V

Ic = 1.0 rnA, IF = 0
Ic= 10llA
IE = 100llA,IF = 0

nA
nA

VCE = 10V,IF =0
V CB = 10 V, IF = 0

pF
pF
pF

V CE = 0, f = 1 MHz
V CB = 5, f = 1 MHz
V EB =O,f=l MHz

MCT2200
ELECTRICAL CHARACTERISTIC CURVES (25°C Free air temperature unless specified)
100
60
40
20
;( 6.0
§. 4.0

I

I

/ / /

1.0
.6
.4
.2
.1

I

0.75

!il

0.50

I

N

::J

I

~

/ /

/

II I

Z

I

.9

1.0

0.25

o

1.1

1.2

1.3

1.4

VF-(Volts}

o

1.5

o

5
IF -

C1285

Fig. 2. Forward Voltage vs.
Forward Current

1.0
IF = 10mAIF = 5mAIF = 20mA\

f

• E

a:=~ 1.0

I-a:
UI-

I

0.8

Cl

/

w

N

:::
a:

,/ ~/

~

--8-

0.60

a:
I-

0.50

U
Cl

w

0.40

::J

0.30

:::

0.20

~

0.10

N

a:

z
0.4
-75 -50 -25

~

V ""

+25 +50 +75 +100 +125
("C)

1.00
~

I

g:

--8-

0.60

a:
IU

0.50

Cl

0.40

w

N

0.30

:::
a:

0.20

0

Z

VeE = 0.3V

"?'I
m z
a:
W

I

0.10
0
10K

~
0

........

1.1

~1.0

I

:9

0.9

/

Cl

w

::J
a:
0

Fig. 6. CrR vs. RSE

1M
(n) C1682

V

Vee = 10V
Ie =2mA
RL = lOOn

0.7

llliLe ~ illl co

z

I

I

0.8

«
::;;

I
I

RBe -

C1681

:a :=

IF= 20mA
IF = 10mA
IF= 5mA

100K
BASE RESISTANCE -

1M
(n)

1.2

_

t

100K
BASE RESISTANCE -

Fig. 5. CrR vs. RSE

N

::J

«

""'.......

!

II

RBe -

III

1/1
,......

JlU

_I

/ J
I 1

10K

C1680

~

~ 0.80
I- a:
U
0.70

~

IF = 20mA
IF = 10mA
IF =5mA

If

Fig. 4. Normalized Current
Transfer Ratio vs.
Ambient Temperature

rl

20
C1679

o
0

TA -

ffi 0.90
&

15

VeE = 5V

<{

0

1'\

/'

g:

/

0.6

~~I ~::~

I

a: m
I- a:
U
0.70

1-.:.. ~
~~
~
/
'
II
~

V

~

<{

Vce = 0.3V
VeE = S.OV

~

10
(mA)

Fig. 3. Normalized Current
Transfer Ratio vs.
Forward Current

1.2

::J

~

<{

.8

a:
IU

--..

V

a:
IU

J /

2.0

VeE = 0.3V
VeE = 5.0V

UI~

/ il

10

..!!,

i'IJ :::5

.-r/ /
75"C/25"C/ -25"C

0.6
10K
RBe -

100K
1M
BASE RESISTANCE -

(n)

C1683

Fig. 7. Normalized toff vs. ReE

85

MCT2200
ELECTRICAL CHARACTERISTIC CURVES (25°C Free air temperature unless specified)

1.2

1.2

v

-------m w
WI
Z
g~
II:

::;:

1\

~

~

~ I~

\

~ 1.1
I

Vee = 10V
RL = 100n
(See Fig. 10)

w

!2

f-

~

..9

I- 0.8

0

(/)

:::;

@]

W
N

<{

~ ~
::;:

1.0

::;:

a:

Vee = 10V
Ie =2mA
RL = 100n
(See Fig t

0

Z

RBE -

100K
1M
BASE RESISTANCE -

\ "-

f'....

0.6

a:

oZ

t!!1

0.9
10K

10

6~1I

c

0.4

co
(n)

o

5

10
le-(mA}

C1684

Fig. 8. Normalized ton vs. RSE

15

20
C1685

Fig. 9. Normalized Switching
Time vs. Col/ector Current

Vee = 10V

}

OUTPUT

OV

.

RBE

PULSE WIDTH = 100 Il-S
DUTY CYCLE = 10%

INPUT

.~<.

t ....

OUTPUT---,.
I
1
10%

I
I

I

I

-J ton~
Ci296A

rC1294

Fig. 10. Switching Time Test
Circuit and Waveform

86

I

toff

PHOTOTRANSISTOR OPTOISOLATOR

I

MCT2201
PACKAGE DIMENSIONS

I_A_I

Iu
1

-r=1

L

2

3

t[J1}
~c_1

I

C1240

1 1"1_

"'''""~ml
PLANE

P

M

-+C1240

DESCRIPTION
The MCT2201 is a phototransistor-type optically
coupled isolator. An infrared emitting diode manufactured from specially grown gallium arsenide is
selectively coupled with an NPN silicon phototransistor. The device is supplied in a standard
plastic six-pin dual-in-line package.

F

--~

T C1240
SYMBOL
A

J

INCHES
MAX.

MIL.
MAX.

.365
.270

9,27
6.B6
4.06

,.

,160

FEATURES
NOTES

,.

.300 Ref 7.62 Rei.
.014
0.36
.325
8.26
1.78
.070
.110
2.79
.022
0.56

~11-K

L
M

08.

2,16

.175

4.45

•
D
D

•
•

High isolation voltage
5300 VAC RMS - 5 seconds
7500 VAC PEAK - 5 seconds
Minimum current transfer ratio of 100%
!VIaximum turn-on, turn-off time 1OJ.! seconds
specified
Underwriters Laboratory (UL) recognized
File #E50l5l
VDE approval applied for

APPLICATIONS

C124Q

Nons

•
•
•
•
•

Power supply regulators
Digital logic inputs
Microprocessor inputs
Appliance sensor systems
Industrial controls

1. INSTALLED POSITION OF LEAD CENTERS
2. FOUR PLACES

3. OVERALL INSTALLED POSITION
4. THESE MEASUREMENTS ARE MADE FROM THE
SEATING PLANE
5. MINIMUM 0.100 INCH

Fig. 1. Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature . . . . . . . . " _55°C to 150°C
Operating temperature . . . . . . . . . _55°C to 100°C
Lead temperature
(Soldering, 10 sec) . . . . . . . . . . . . . . . . . . 260° C
Total package power dissipation @ 25° C
(LED plus detector) . . . . . . . . . . . . . . . . 260 mW
Derate linearly from 25°C . . . . . . . . . . 3.5 mWtC

INPUT DIODE
Forward DC current . . . . . . . . . . . . . . . . . 90 mA
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . 3 V
Peak forward current
(1 J.!s pulse, 300 pps) . . . . . . . . . . . . . . . .. 3.0 A
Power dissipation 25°C ambient . . . . . . . . 135 mW
Derate linearly from 25°C . . . . . . . . . . 1.8 mW/oC
OUTPUT TRANSISTOR
Power dissipation @ 25°C . . . . . . . . . . . . . 200 mW
Derate linearly from 25°C . . . . . . . . . 2.67 mW/oC

87

MCT2201
ELECTRO~OPTICAL

CHARACTERISTICS (25°C Temperature unless otherwise specified)
TRANSFER CHARACTERISTICS

CHARACTERISTIC
0

C

Current Transfer Ratio,
collector to emitter

SYMBOL

MIN.

TYP.

CTR

100

200

MAX.

UNITS

TEST CONDITIONS

%

IF=10mA;V CE=5V

VCE(SAT)

.21

.40

V

IF = 10mA; IC = 2.5 mA

Turn·off time

ton
toll

6.0
5.5

10
10

I'S
I'S

Isolation Voltage

Visa

5300

VAC RMS

Visa

7500

VAC PEAK

Isolation resistance

Riso

10"

Isolation capacitance

Ciao

Saturation voltage
Cl

~rn

J:W

~!

3:1-

Non~saturated

Turn·on time

rn

Z
0
j:
~

-'
0

!!!

ohms

pF

.5

{RL = 100U;IC= 2mA;
VCC=10V
See figure 10.
Relative humidity <; 50%,
1'.0 <; 10 I'A, 5 seconds
Relative humidity <; 50%,
11.0 <; 10 I'A, 5 seconds
V 1-0 = 500 VDC
1=1 MHz

INDIVIDUAL COMPONENT CHARACTERISTICS
CHARACTERISTIC
W
C

Forward voltage

0

e

Forward voltage temp.

I-

Reverse breakdown voltage

"~

Junction capacitance

::l

a:

0

500

BVCEO
BVCBO
BVECO

30
70
7

45
130
10

mV/oC
V

pF
pF
10

I'A

TEST CONDITIONS
IF = 60 mA

IR = 10 I'A
V F = 0 V, I = 1 MHz
V F = 1 V, 1=1 MHz
V R =3.0V
VCE = 5 V, Ic = 100l'A

Breakdown voltage

Collector to base

Emitter to base

88

-1.8
25
50
65
.35

100

Capacitance
Collector to emitter

::l

V

IR

"-

I-

UNITS

1.50

hFE

Collector to emitter
Collector to base

::l

3.0

MAX.

1.3

DC forward current gain

lI-

Z

BVR
CJ

TYP.

Reverse leakage current


u
~

5o

I

~

0

V

o

./

/
/

VeE -'OVOlTS

,

/

9

L

10-1 0

V

,

10-1

10

I
I I

,

./

2.5

0
5
10
15
20
25
30
VeE COLLECTOR VOLTAGE - DETECTOR (VOL IS)

,
,

V

1

IF "'lOrnA

I

CE

_-1

---

7.5

o

IF' =20mA

r'
8

~

\f~

~

J

~

o

1

V-

5.0

'0 .0

.

1

!

~
:>

1

!
\!,1"6~,
,
!

!

20

30

40

50

,

00

60

IF INPUT CURRENT - LED (mAl

./
~

mow

~

W

00

AMBIENT TEMPERATURE (CI

100
C832

C831

CB30

Fig. 1 Detector Output Characteristics

0

,

J.. ..j..

II
1\ II

111111

, 111111111

·,
···,
40

]0
0
20
40 60 80
AMflllNT Tl","P[RAIUf,lE( t)

101')

I III
I III

\',L

VeE = 10VOLTS

Vr • 10 VOLTS

~~ \

0

~o

Fig. 3 Dark Current vs.
Temperature (' C)

Fig. 2 Input Current vs.
Output Current

......

10K

I I

:',

1\
\
lOOK

RL -"lDtt

I RL '" '0011
I III

0.2030.40.6o.a1.0
234567810
COl.LECTOR CURRENT IL (mA)

FREQUENCY (Hli

C834

C833

Fig. 4 Current Output
vs. Temperature

I I
RL"lulDL

:'.

Fig. 5 Output vs. Frequency

C835

Fig. 6 Switching Time vs.
Collector Current

For additional characteristic curves, see figures 2, 3, 5,6,8, 11,12, & 13 on MCT2.

OPERATING SCHEMATICS
MODULATION
INPUT

1 F

47n

r-ihN'V'-'"
LED

-

r
I

CONSTANT
CURRENT
INPUT

L __"'_

I,

Vee .. 10VOLTS

PULSE
INPUT

DETECTOR

' - - - . . . . ,. . .-

. . . OUTPUT

470

>-:pt-~
--=-u~

-

-I,

Vee -10VOLTS

DETECTOR

PULSE

' - - -.........-~ OUTPUT

"

"

C837

Modulation Circuit Used to Obtain Output vs. Frequency Plot

C838

Circuit Used to Obtain Switching Time vs. Collector Current Plot

NOTES

1. The current transfer ratio (IC/IF) is the ratio of the detector collector current to the LED input current with
VCE at 10 volts.
2. The frequency at which ic is 3 dB down from the 1 kHz value.
3. Rise time (tr) is the time required for the collector current to increase from 10% of its final value to 90%.
Fall time (tf) is the time required for the collector current to decrease from 90% of its initial value to 10%.

96

PHOTOTRANSISTOR OPTOISOLATOR

I

MCT270
PACKAGE DIMENSIONS

DESCRIPTION
The MCT270 is a phototransistor-type optically coupled
isolator. An infrared emitting diode manufactured
from specially grown gallium arsenide is selectively
coupled with an NPN silicon phototransistor. The
device is supplied in a standard plastic six-pin dual-inline package.

t[J
LJ,

I C1

~

1f

J.

TCI240

mm

SYMBOL

MAX.

NOTES

9.27
6.86
4,DB

FEATURES
•

,,"

7,B2Ref.

0,,.
8.26
1.78

2.79
0,,.
2,16
.175

•
•
•

4.45

•

Isolation voltage
2500VAC RMS - Steady State Rating
3000VAC RMS - Surge Rating
Minimum current transfer ratio of 50%
Maximum turn-on, turn·off time 10,u seconds
specified
Underwriters Laboratory (UL) recognized
File E50151
VDE approval applied for

NOTES

I,INSTALL.ED POSITION OF LEAD CENTERS
2. FOUR PL.ACES
3. OVERALL INSTALLED POSITION

4. THESE MEASUREMENTS ARE MADE FROM
THE SEATING PLANE

5. MINIMUM 0,'00 INCH

ANOOE~'
CATHODE

BASE

2

5

COLLECTOR

3

..

EMITTER

APPLICATIONS
• Power supply regulators
• Digital logic inputs
• Microprocessor inputs
• Appliance sensor systems
• Power supply regulators
• Industrial controls

C1339

Fig. 1 Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature . . . . . . . . . . -55°C to 150°C
Operating temperature. . . . . . . .. -55°C to 100°C
Lead temperature
(Soldering, 10 sec) . . . . . . . . . . . . . . . . . . 260°C
Total package power dissipation @ 25°C
(LED plus detector) . . . . . . . . . . . . . . . . 260 mW
Derate linearly from 25°C . . . . . . . . . . 3.5 mW/C

INPUT DIODE
Forward DC current . . . . . . . . . . . . . . . . . 90 mA
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . 3 V
Peak forward current
(1 /.Is pulse, 300 pps) . . . . . . . . . . . . . . . .. 3.0 A
Power dissipation 25°C ambient . . . . . . . . 135 mW
Derate linearly from 25°C . . . . . . . . . . 1.8 mW/oC
OUTPUT TRANSISTOR
Power dissipation @ 25°C . . . . . . . . . . . . . 200 mW
Derate linearly from 25°C . . . . . . . . . 2.67 mW/oC

97

MCT270
ELECTRO-OPTICAL CHARACTERISTICS

(25°C Temperature unless otherwise specified)

TRANSFER CHARACTERISTICS
CHARACTERISTIC

SYMBOL

MIN.

TYP.

ICE/IF

50

115

ICB/IF

.045

.15

MAX.

UNITS

TEST CONDITIONS

Current Transfer Ratio,
U

C

collector to emitter

%

collector to base
Saturation voltage

%

IF = 16 mA; VCB = 10 V

V

IF = 10 mA; IC = 2 mA

/-IS
/-IS

{RL = lOOn; Ic= 2mA;
VCC= 5 V
See ligures 11. 13

3.9
48

/-IS
/-IS

{I F =16mA;R L =1.9Kn
See figures 12,14

3.9
110

/-IS
,..S

{IF= 16 mA; RL = 4.7 Kn
See ligures 12, 14

VCE(SAT)

.21
6.0
5.5

.40

Non-saturated

Turn-on time

ton

w

Turn-off time

toft

i=

Saturated
Turn-on time

CI)

:IE
CJ
Z

i:

U
I-

~

ton
toff
(Approximates a typical TTL interlace)

Turn-off time

Turn-on time
ton
Turn-off time
toff
(Approximates a typical low power TTL interface)

10
10

Surge isolation

Visa

4000

VDC

Steady state isolation

Visa

3000
3500

VAC·rms
VDC

Ri~o

2500
1011

VAC·rms

Isolation resistance

Isolation capacitance

e isa

Z

0

i=
>-

5pA-

~~

6

I

10
6. 0
4. 0

lOrnA

1 ~:o

B

9

10

11

C1298

Vce=O.4V

r1,6D
, , ,
'F =8 rnA

0

.,

Vee = lOV

TA;; 2SoC

'F - 4 rnA

2

0
.06
.04

IIIIII

II

,

.02
.0

1M
100K
RBe - BASE RESISTANCE C1332

1 KH

Fig. 5. Sensitivity vs. Base Resistance

'00

10KS2

l00Kn
RBE - (HI

lMH

10M!!
C1300

Fig. 6. Saturated CTR vs.
Base to Emitter Resistance

IF=

...........

"

60

~

~

"-

40

::;

,c~~mA

"

11:
0
z

20

Po

o
-25

5

...Y .4

V

'80

60
-50

60
40

n.

Fig. 4. Collector Current vs.
Collector to Emitter Voltage

80

'00

SOmA

I

'OK

'00

4

Forward Current

20mA

C1299

120

3

20

G

..........

2

Fig. 3. Collector Current vs.

IF.20mrT

z

:i

1

'F - (mAl

SOmA

5.0

140

V
o

C1297

o

VeE - v

4.06.0 10

I 160

, .A

1.0

2
0

Fig. 2. Collector Current vs.
Collector to Emitter Voltage

3pA-

.1.2.3.4 .5 .7

.10

.D4

>=

;-

.§ 10

.02

VeE - (Volts)

25#lA

/

[7

V

4

III
III

"

C1285

Fig. 1. Forward Voltage vs.
Forward Current

20

8

SmA

=

I

I...VVce<5V

6

4

I

/

0

'F

6

4

2

III
III

I

0

4

'F- lOmA

/

2. 0

6

lJl

/

0

;(

8
IF ..~mA

1/

0

25' C' 1-25' C

75 0 C
0

'F-SOmA

0
0

.If /1/

0

.g

0

'00

'00

+25

+50

+75

TEMP - (·C)

Fig. 7. Current Transfer Ratio
(unsaturated) vs. Temperature

+100
e1301

100

(TALI <'00 m1w
I

i-i;;;¥,'c
1000

1111,
10,000

I
100,000

OPERATING TIME - (Hoursl

C1251

Fig. 8. Current Transfer Ratio vs.
Operating Time

99

MCT270
TYPICAL SWITCHING CHARACTERISTICS

40

16

IF-3.2tot6mA

RL ·'.9KII
Vee -.6V

I.

VCC·:SV
RL '1.9 KII

RaE -0
30

12

!

!

10

,.;::

"- ""'-

r-

~ 20

I

w

r--~

1'-.....

:e

;::

r--

.....
'ooj",';'!

10

'on

o

2

10

"

10M

C1302

Fig. 9. Switch-on Time
'F Drive (saturated)

VS.

1M

tOOK

RaE - 1m

10K

. C1303

Fig. 10. Swltch·off Time v•• 8e.e to
Emitter Resistance (saturated)

INPUT

OV

I.
I
I

C1293

Cl294

Fig. 12.

Fig. ".

VCC- 6.DV
Vcc mS.OV

)

OUTPUT

OUTPUT

10011

CI296

Fig. 13.

100

Cl286

Fig. 14.

DESIGNER SERIES
PHOTOTRANSISTOR OPTOISOLATOR

MCT271
PACKAGE DIMENSIONS

DESCRIPTION
The MCT271 is a phototransistor-type optically
coupled isolator. An infrared emitting diode manufactured from specially grown gallium arsenide is selectively coupled with·an NPN silicon phototransistor.
The device is supplied in a standard plastic six-pin
dual-in-line package.

t[J

IC1 - \('
IF

--~

T

SYMBOL

FEATURES
C1240

INCHES

MAX.

MAX.

.365

9.27

.210

6.86

,160
15~

NOTES

4.06
150

'.62RII',
0.36
8.26
1.78

2.79
0.56
2.16

.175

4.45

NOTES
1. INSTAL.LED POSITlON OF LEAD CENTERS
2. FOUR PLACES
3. OVERALL INSTAL.LED POSITION
4. THESE MEASUREMENTS ARE MADE FROM
THE SEATING PLANE
5. MINIMUM 0.100 INCH

ANODE~'
CATHODE

BASE

2

5

COLLfCTOR

3

4

EMITTER

• Controlled Current Transfer Ratio - 45% to 90%
(specified conditions)
• Maximum Turn-on time - 7 tIseconds
(specified condition)
• Maximum Turn-off time - 7 tIseconds
(specified condition)
• Surge Isolation Rating 4000 volts DC
3000 volts AC, rms
• Steady-state Isolation Rating 3500 volts DC
2500 volts AC, rms
• Underwriters Laboratory (U.L.) recognized
- File E50151
• VDE approval applied for

APPLICATIONS
•
•
•
•
•

Switching networks
Power supply regulators
Digital logic inputs
Microprocessor inputs
Appliance sensor systems

Cl339

ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature . . . . . . . . . . _55°C to 150°C
Operating temperature. . . . . . . .. -55°C to 100°C
Lead temperature
(Soldering, 10 sec) . . . . . . . . . . . . . . . . . . 260°C
Total package power dissipation @ 25°C
(LED plus detector) . . . . . . . . . . . . . • . . 260 mW
Derate linearly from 25°C . . . . . . . . . . 3.4 mW/oC

INPUT DIODE
Forward DC current . . . . . . . . . . . . . . . . . 60 mA
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . 3 V
Peak forward current
(1 tis pulse, 300 pps) . . . . . . . . . . . . . . . .. 3.0 A
Power dissipation 25°C ambient . . . . . . .. 90 mW
Derate linearly from 25°C . . . . . . . . . . 1.2 mW/"C
OUTPUT TRANSISTOR
Power dissipation @ 25°C . . . . . . . . . . . . . 200 mW
Derate linearly from 25°C . . . . . . . . . 2.67 mW/oC

101

I

MCT271
ELECTRO-OPTICALCHARACTE.FtISTICS (25°C Temperature unfess otherwise specified) .'
TRANSFER CHARACTERISTICS
CHARACTERISTIC
Curren~·

. MAX.

SYMBOL

MIN.

TYP.

ICE/IF

45
12.5

67

90

ICB/IF
VCE(SAT)

.15
.14

ton
toff

UNITS

TEST CONDITIONS

Transfer Ratio,

collector to emitter fa>
U

C

%
%

I F =10mA;V CE =10V
IF= 16mA;V CE =0.4V

.40

%
V

I F =10mA;V CB=10V
IF = 16 mA; I C = 2 mA

4.9

7

ItS

4.5

7

/.IS

RL = 10011; Ic= 2 mA;
VCC = 5 V
See figures 11, 13

5.2
38

ItS
ItS

IF = 16 mA; RL = 1.9 KfI.
See figures 12, 14

4.9
90

ItS
ItS

IF = 16 mA; RL = 4.7 KI1
See figures 12, 14
Relative humidity'; 50%,
11_0'; 10 "A
1 second
Relative humidity .; 50%,
11_0'; 10"A
1 minute
VI.O= 500 VDC

Current Transfer Ratio,

collector to base
Saturation voltage

en
w

:;:

i=
CI
2

J:

U
I-

~

Non-saturated
Turn-on time
Turn-off time
Saturated

Turn-on time

ton
Turn·off time
toff
(Approximates a typical TTL interface)
Turn-on time
ton
Turn-off time
toff
(Approximates a typical low power TTL interface)

Surge isolation

Viso

4000

VDC

Steady state isolation

Visa

3000
3500

VAC·rms
VDC

Isolation resistance

Riso

2500
10"

VAC·rms
ohms

Isolation capacitance

Ciso

z

0

i=

ct
....
0

!!l

pF

.5

f= 1 MHz

INDIVIDUAL COMPONENT CHARACTERISTICS
CHARACTERISTIC
w
C

0

Forward voltage
Forward voltage temp.

..

Reverse breakdown voltage
Junction capacitance

e

I-

::J

~

""0

I-

en

iii
2
ct

a:

lI-

.
::J

I-

::J

0

MIN.

VF

coefficient
BVR
CJ

3.0

TYP.

MAX.

UNITS

1.20

1.50

V

-1.8
25
50
65
.35

Reverse leakage current

IR

DC forward current gain
Breakdown voltage
Collector to emitter

hFE

100

420

BV CEO

30
70
7

45
130
10

Collector to base
Emitter to collector
Leakage current
Collector to emitter

BVCBO
BVECO
ICEO

5

mV/oC
V
pF
pF
10

"A

TEST CONDITIONS
IF=20mA

IR = 10"A
VF = 0 V, f = 1 MHz
VF= 1 V,f= 1 MHz
V R =3.0V
VCE = 5 V, Ic = 100"A

50

V
V
V

IC= 1.0mA,IF = 0
Ic= 10"A
IE = 100"A,IF = 0

nA

V CE =10V,I F =0

pF
pF
pF

VCE = 0, f = 1 MHz
V CB = 5, f = 1 MHz
V E B = 0, f = 1 MHz

Capacitance

Collector to emitter
Collector to base

Emitter to base

102

SYMBOL

8
20
10

MCT271
TYPICAL ELECTRICAL CHARACTERISTIC CURVES (25°C Free air temperature unless specified)
100

100
60
40

25° C: / _25 0 C

75° C

...
10

",
§

4 .•

~

2.•

,.

/Y/I

20

§

4 .•

_u

I..

/ /
V / /

..

1.0

-1.1

1.2

1.3

tA

1.5

.01

20

'8

,.'6

I'

--

2
veE" 5 V

"r-jm(
.02

.04

.10

C1285

I II
.2

.4.6 1.0

Fig. 2. Collector Current vs.
Collector to Emitter Voltage

,,"TTmT-...,

".s,

..- lS#JA

10
10IJA

2

3.01JA

1.0JJA

2.0

RBe - BASE RESISTANCE - n

Fig. 5. Sensitivity

VS.

90

8

9

10. 11
el2S7

II I II

I

1.0
.6

'F "'SmA
'F =4mA

.4

10Kn

lODKn

lMIl

RBE - 1m

Base Resistance

10Mn
C1289

Fig. 6. Saturated CTR vs.
Base to Emitter Resistance

100

'F.I.JM -

~

80

,80

~

70

..........

"

IU

'~"

5
6 7
'F - {mAl

'F = 16mA

C1331

Vce=10V

~::;

'0
6.0
'.0
2.0

1 KIl

C128S

Fig. 4. Collector Current vs.
Collector to Emitter Voltage

,

4

Vce- O.4V

.0'

5.0

VeE -v

3

.2
.10
.06
.0'
.02

5.A

1.0

100
60
.0
20

___ 20.A

_u

- ---

2

%

Fig. 3. Collector Current vs.
Forward Current

100 ...-......"rrTTmr-. . .

'8

1

C1286

25.A_

'2

.1.2.3.4 .5 .7

o
o

2.0 4.06.0 10

VeE - IVolts)

Fig. 1. Forward Voltage vs.
Forward Current

12

1, '0

I II

I

VF - (Voltsl

'6
14

'L.rt

III /
I I

.

'8

'F"'20mA

.

/

~,

-1:ffi

'/

...

/ / I

.•

,~

", ,..

/ I

I .•

20

60
4.

~/v

60

"
t;

~

;i

"",,'e

t:

~ 40
::;

= 2 rnA

N

so

'o~"

"'"

0

z
'0
30
-50

-25

+25

+50

60

;;::

z

0

Po ITOTALI =

100 mW

iT!"''''' I
TA7,~'c

+75

+100

C1290

Fig. 7. Current Transfer Ratio
(unsaturated) vs. Temperature

0
'00

'000

10,000

OPERATING TIME _. (Hours)

100,000
el2S1

Fig: 8. Current Transfer Ratio vs.
Operating Time

103

MCT271
TYPICAL SWITCHING CHARACTERISTICS
40
'F=3.2to16mA

il>..

Vee'"

~

RL'" L9 Kn
~~-----4-------1VCC=5V
RBE = 0

RL

30

.~
"

5V

1.9 Kn

II

3
~
;::

=

~~ i~ff

20

.~

10

3.2 4

16

12

C1291

'F- (rnA)

Fig. 9. Switch-on Time vs.
f F Drive (saturated)

, . . - -...... PULSE WIDTH

INPUT

DUTY CYCLE

1M

SOOK

RBE - fm

100K

50 K

C1292

Fig. 10. Switch·off Time vs. Base to
Emitter Resistance (saturated)

=
=

100 ps
10%

PULSE WIDTH = 100,/.ls
DUTY CYCLE = 10%

OV

OUTPUT

C1293

C1294

Fig. 11.

Fig. 12.

V CC =5.0V
Vcc= 5.0 V

}

OUTPUT

OUTPUT

lOon

104

C1295

C1296

Fig. 13.

Fig. 14.

DESIGNER SERIES
PHOTOTRANSISTOR OPTOISOLATOR

MCT272

I
I

PACKAGE DIMENSIONS

DESCRIPTION
The MCT272 is a phototransistor-type optically
coupled isolator. An infrared emittirig diode manufactured from specially grown gallium arsenide is selectively coupled with an NPN silicon phototransistor.
The device is supplied in a standard plastic six-pin
dual-in-line package.

FEATURES
M"l~.

NOTES

9.27
6.86
4.06

".

.62R.I.

1

0.36
8.26
1.78
2.79
0.58
2.16

NOTES
'.INSTALLED POSITION OF LEAD CENTERS

• Controlled Current Transfer Ratio - 75% to 150%
(specified conditions)
• Maximum Turn-on time - 10 IIseconds
(specified condition)
• Maximum Turn-off time - 10llseconds
(specified condition)
• Surge Isolation Rating4000 volts DC
3000 volts AC, rms
• Steady-state Isolation Rating 3500 volts DC
2500 volts AC, rms
• Underwriters Laboratory (U.L.) recognized
- File E50151
• VDE approval applied for

2. FOUR PLACES
3. OVERALL. INSTALLED POSITION

4, THESE MEASUREMENTS ARE MADE FROM
THE SEATING PLANE
5. MINIMUM 0.100 INCH

ANOOE~'

APPLICATIONS
BASE

CATHODE' 2

5

COLLECTOR

3

4

EMITTER

•
•
•
•
•
•

Power supply regulators
Digital logic inputs
Microprocessor inputs
Appl iance sensor systems
Power supply regulators
Industrial controls

C1339

ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature . . . . . . . . . . _55°C to 150°C
Operating temperature . . . . . . . . . _55°C to 100°C
Lead temperature
(Soldering, 10 sec) . . . . . . . . . . . . . . . . . . 260°C
Total package power dissipation @ 25°C
(LED plus detector) . . . . . . . . . . . . . . . . 260 mW
Derate linearly from 25°C . . . . . . . . . . 3.5 mWtC

INPUT DIODE
Forward DC current . . . . . . . . . . . . . . . . . 60 mA
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . 3 V
Peak forward current
(1 liS pulse, 300 pps) . . . . . . . . . . . . . . . .. 3.0 A
Power dissipation 25°C ambient ........ 90 mW
Derate linearly from 25°C . . . . . . . . . . 1.2 mWtC
OUTPUT TRANSISTOR
Power dissipation @ 25°C . . . . . . . . . . . . . 200 mW
Derate linearly from 25°C . . . . . . . . . 2.67 mW/"C
105

MCT272·
ELECTRO-OPTICAL CHARACTERISTICS

(25°C Temperature unless otherwise specified)

TRANSFER CHARACTERISTICS

(J

MIN.

TYP.

MAX.

UNITS

Current Transfer Ratio,
collector to eminer ial

Ice/IF

75
12.5

115

150

%
%

I F =10mA;V c e=10V
IF=16mA;Vc e=0.4V

Current Transfer Ratio,
collector to base
Saturation voltage

ICB/IF
VCe(SAT)

.15
.12

.40

%
V

IF=10mA;V CB =10V
IF=16mA;IC=2mA

ton

6.0

10

I'S

toff

5.5

10

I'S

RL = lOOn; Ic= 2mA;
VCC = 5 V
See ligures II, 13

3.9
48

I'S
IJS

IF= 16mA; RL = 1.9 Kn
See figures 12, 14

3.9

IJS
IJS

IF= 16mA;RL =4.7 Kn
See ligures 12, 14

C

Non·saturated
Turn-on time
III

w

:;
j:
Cl

Z

i(J
I-

3:

III

Z
0
j:

Turn-off time
Saturated
Turn-on time

ton
Turn-off time
toff
(Approximates a typical· TTL interlacel
Turn-on. time
ton
Turn-off time
toff
(Approximates a typical low power TTL interface)

110

Surge isolation

Visa

4000

VDC

Relative humidity';;; 50%,
11-0';;; 10IJA

Steady state isolation

Visa

3000
3500

VAC·rms
VDC

Isolation resistance

Riso

2500
10"

VAC·rms
ohms

1 second
Relative humidity .;;; 50%,
11-0';;; 10IJA
1 minute
VI.O = 500 VDC

Isolation capacitance

Ciso

...

c(

0

!!l

TEST CONDITIONS

SYMBOL

CHARACTERISTIC

pF

.5

1=1 MHz

INDIVIDUAL COMPONENT CHARACTERISTICS
CHARACTERISTIC
w
C

Forward voltage

e

Forward voltage temp.
coefficient
Reverse breakdown voltage

0

I-

:J
"-

!:

a:
0

I-

III

iii

zc(

a:

l-

Junction capacitance

SYMBOL

MIN.

VF

BVR
CJ

3.0

TYP.

MAX.

UNITS

1.20

1.50

V

10

mVI"C
V
pF
pF
IJA

-1.8
25
50
65
.35

Reverse leakage current

IR

DC forward current gain
Breakdown voltage
Collector to emitter
Caliector to base
Emitter to collector
Leakage current
Collector to emitter

hFe

100

500

BVceo
BVCBO
BVeco

30
70
7

45
130
10

I CEO

5

TEST CONDITIONS
IF = 20mA

IR = 10IJA
VF=OV,f=IMHz
VF = 1 V, f = 1 MHz
V R =3.0V
V cE =5V,lc=100I'A

50

V
V
V

Ic = 1.0mA,IF =0
Ic= 10l'A
le= IOO IJA,IF=O

nA

V CE=10V,I F =0

pF
pF
pF

V CE = 0, f = 1 MHz
V CB = 5, f = 1 MHz
V EB =O,f=IMHz

I-

::I

"-

I-

:J

0

106

Capacitance
Collector to emitter
Coli ector to base
Emitter to base

B
20
10

MCT272
TYPICAL ELECTRICAL CHARACTERISTIC CURVES (25°C Free air temperature unless specified)
'00

'00
0

/Y/,

0

75° C

0

:;r
E.

,

6. 0
4. 0

25° C: /

_25 0 C

';i"

_u- 2. 0

/

0
6
4

/

20
IF

60
40

0

/

20

/

10

//

.§

6.0
4.0

_u

2.0

,

/ /

2

/

..

/

/

7

12

v

10

.Y

V

1.0

1,1

1.2

,

1.3

1.4

1.5

,8

.01.02.04

e.-r-

.10

C128S

I----""

.2

A.6 1.0

2.0

IF=50mA

'F. 20mA

"

f...---"

';V

~

80

i

3pA-

'60
,40

,

'--...

9

10

11

C129S

II

.6
4

e.- r

, .1'6
, ~l
,

IF "'SmA
IF"'4mA

fr

0
.0
.04

,

.02
.0

, Kll

'M

10Kn

100Kn

lMn

RBE - (il)

C1332

10Mn
C1300

Fig. 6. Saturated CTR vs.
Base to Emitter Resistance

100

'Fdmij -

80

~ 120

2. 0

Fig. 5. Sensitivity vs. Base Resistance

VeE~'OV

8

I ,IF

., 6

IIIIII
n

7

OA v

2

Vee" TOV

ABE - BASE RESISTANCE -

,80

~

~

Tflia5"e

lOOK

C1299

Fig. 4. Collector Current vs.
Collector to Emitter Voltage

6

,

.Y

I

5.0

VeE

0
6. 0
4. 0

,

40

,OK

v

60
40

§ 1.0

::>
<.>

, pA

VeE -

'00

lOrnA

V

>-

5pA-

.1.2.3.4.5.71.02.0

rT
I I
20 rnA

o

.Y

5

Fig. 3. Collector Current vs.
Forward Current

50mA

r

tOpA

4

20

z
o
;::

15p.A-

3

IF -(rnA)

I 160

20pA-

2

Cl297

~

10

1

Fig. 2. Collector Current vs.
Collector to Emitter Voltage

200 r -

V

./

o
o

4.060 10

VeE - (Volts)

25pA

V

V
V

/

/

V

VeE = 5 V

~

III
III

III/

/

20

"

,4
;;

III
JU

1/
J

Fig. 1. Forward Voltage vs.
Forward Current

~,

,6

lJI
IF=lOmA

'.0

V F -(Voltsl

'4

,8

iF' ~o ~~

IF -SmA

,/ /

'6

50 rnA

60

"-..

~

40

,00

Ic=lmA
0

80
60
-50

Po lTiTALI • 100 mW
0

-25

-+25'

+50

+75

TEMP - eel

Fig. 7. Current Transfer Ratio
(unsaturated) vs. Temperature

+100
C1301

,00

if"'" I
TAI~11rc
1000

10,000

100,000

OPERATING TIME - (Hours)

e125'

Fig. 8. Current Transfer Ratio vs.
Operating Time

107

MCT272
TYPICAL SWITCHING CHARACTERISTICS

40

16
14

RL"'1.9K!l

I F "'3.2to16mA

Vee "'.5 V

Vee" 5 V
RL -1.9Kn

RBE" 0

12

!

30

10

!

I

w

"

"-

;::

o

---

I

--

2

w

"

20

"
;::

1"-1"-

.....

ID[~

10
Ion

10

14
C1302

Fig. 9. Switch-on Time vs.
f F Drive (saturated)

10M

1M

100K

RBE - 1m

10K"

e1303

Fig. 10. Switch·off Time vs. 8ase to
Emitter Resistance (setureted)

INPUT

OV

OUTPUT

C1294

C1293

Fig. 11.

Fig. 12.

VCC =5.0V

Vee = 5.0 V

}

OUTPUT

OUTPUT

TOon

C1295

Fig. 13.

108

e12BB

Fig. 14.

DESIGNER SERIES
PHOTOTRANSISTOR OPTOISOLATOR

MCT273
PACKAGE DIMENSIONS

DESCRIPTION
The MCT273 is a phototransistor-type optically
coupled isolator. An infrared emitting diode
manufactured from specially grown gallium arsenide
is selectively coupled with an NPN silicon phototransistor_ The device is supplied in a standard plastic
six-pin dual-in-line package.

It[JCl -\-

!I

-I

L~=;=;=;dl

- - JIF.

C1240

TC1240

FEATURES
mm
MAX.

NOTES

9.27
6.86
4.06

,,'

0,36

8.26
1.78

2.79
0.56
2.16

.175

4.45

NOTES
1. INSTALLED POSITION OF LEAD CENTERS
2. FOUR PLACES
3. OVERALL INSTALLED POSITION

4. THESE MEASUREMENTS ARE MADE FROM
THE SEATING PLANE

Controlled Current Transfer Ratio - 125% to 250%
(specified conditions)
1.1 Maximum Turn-on time - 20,useconds
(specified condition)
1.1 Maximum Turn-off time - 20,useconds
(specified condition)
• Surge Isolation Rating4000 volts DC
3000 volts AC, rms
II Steady-state Isolation Rating3500 volts DC
2500 volts AC, rms
• Underwriters Laboratory (U.L.) recognized
- File E50151
• VDE approval applied for
1\1

5. MINIMUM 0.100 INCH

ANODE~'''SE
CATHODE

2

3

.

5

COLLECTOR

4

EMITTER

APPLICATIONS
• Microprocessor board, reversible input/output
• Sensors to logic
• Logic to controls
• Appliance controls
• Industrial process control systems

Ct339

ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature . . . . . . . . . . -55°C to 150°C
Operating temperature . . . . . . . . . _55°C to 100°C
Lead temperature
(Soldering, 10 sec) . . . . . . . . . . . . . . . . . . 260° C
Total package power dissipation @ 25°C
(LED plus detector) . . . . . . . . . . . . . . . . 260 mW
Derate linearly from 25°C . . . . . . . . . . 3.5 mW/oC

INPUT DIODE
Forward DC current . . . . . . . . . . . . . . . . . 60 mA
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . 3 V
Peak forward current
(1 ,us pulse, 300 pps) . . . . . . . . . . . . . . . .. 3.0 A
Power dissipation 25°C ambient . . . . . . . . 90 mW
Derate linearly from 25°C . . . . . . . . . . 1.2 mWtC
OUTPUT TRANSISTOR
Power dissipation @ 25°C . . . . . . . . . . . . . 200 mW
Derate linearly from 25°C . . . . . . . . . 2.67 mW/oC

109

MCT273
ELECTRO-OPTICAL CHARACTERISTICS (2SoC Temperature unless otherwise specified)
TRANSFER CHARACTERISTICS
SYMBOL

MIN.

TYP.

MAX.

UNITS

ICE/IF

125
12.5

200

250

%
%

I F =lOmA;V CE =lOV
IF= 16mA;VCE =0.4V

ICB/IF
VCE(SATI

.15
.20

%

.40

V

I F =lOmA;VCB=lOV
I F =16mA;l c =2mA

ton

7.6

20

I-ts

toft

6.6

20

I'S

ton
Turn-off time
toft
(Approximates a typical TTL interlace I
Turn-on time
ton
Turn-off time
toft

3.6
75

I'S

3.6
155

1'5

CHARACTERISTIC.
Current Transfer Ratio,
collector to emitter (ar
c.J

C

Current Transfer Ratio,
collector to base
Saturation voltage
Non-saturated
Turn-on time
II)

w

:;;

i=
CI
Z
~

c.J
I-

~

Turn-off time
Saturated
Turn-on time

I'S

I'S

TEST CONDITIONS

RL = 100 n; IC= 2 mA;
VCC = 5 V
See ligures 11, 13
IF= 16mA; RL = 1.9 Kn
See figures 12, 14
IF = 16 mA; RL = 4.7 K.n
See figures 12, 14

(Approximates a typical low power TTL interface)
Surge isolation

Visa

4000

VDC

Relative humidity

~

50%,

II_o.;;· lO ILA

Steady state isolation

Visa

3000
3500

VAC·rms
VDC

Rlso

2500
10"

VAC-rms

Isolation resistance

Isolation capacitance

elsa

Z

0

i=

«
..J
0
!!!

ohms
pF

.5

1 second

Relative humidity"" 50%,
II_o';; lO ILA
1 minute
V 1_0 = 500 VDC

1=1 MHz

INDIVIDUAL COMPONENT CHARACTERISTICS
CHARACTERISTIC
C

w

Forward vol tage

e

0

Forward voltage temp.

I;:)

a..
~

a:
0

III)

iii

MIN.

VF

TYP.

MAX.

UNITS

1.20

1.50

V

Reverse leakage current

IR

-1.8
25
50
65
.35

DC forward current gain

hFE

280

coefficient
Reverse breakdown voltage
Junction capacitance

Breakdown voltage
Collector to emitter
Collector to base

Z

Emitter to collector
Leakage current

l-

Collector to emitter

«
a:

SYMBOL

BV R
CJ

BV CEO
BVCBO
BVECO
ICEO

3.0

30
70
7

mV/oC

10

V
pF
pF
ILA

IR ~ 10ILA
VF=OV,I=l MHz
VF ~ 1 V, 1=1 MHz
VR~ 3.0 V
VCE = 5 V, Ic = 100l'A

70
170
12
5

TEST CONDITIONS
IF=20mA

50

Ic~1.0mA,IF=0

V
V
V

Ic = 10ILA
IE = 1001'A, IF =0

nA

VCE = 10 V, IF ~ 0

pF
pF
pF

VCE
V CB

I-

;:)

a..

I;:)

0

110

Capacitance
Collector to emitter
Collector to base
Emitter to base

8
20
10

~

0, f = 1 MHz
5, f ~ 1 MHz
VEB~O,f=l MHz
~

MCT273
TYPICAL ELECTRICAL CHARACTERISTIC CURVES (25°C Free air temperature unless specified)
'00

100

I

20

/Y/I

20

25°'C /_25 0 C

75° C

;;:
I

_IJ..

/ I
/ I I

2. 0

0

IF

1 ::~

I

4. 0

E

1.3

1.4

1.5

14

--

;;:

12

E

10

2

8

.02

.04

.10

C1285

-

'"

IF.J±

25J.lA

o

roo

20J..lA

z

15,A_

......~ 175 I
z
~

150

~

6

7

8

9

10

"

C1304

IF=16mA

W

2.0

f--:I---

'F

f-I-

'F -4 rnA

8mA

I

.6

..Y .4
.2
.10
.06
.04

Vee;; lOV

lOOK

.02
.0 1
1 KU

1M

-.n

10 Kll

C1333

100 Kll
RBE - (ll)

lMll

10Mll
C1305

Fig. 6. Saturated CTR vs.
Base to Emitter Resistance

100

veE ~ 5 V

IF=4Lij -

~ 80
I

300

5

DAV

4. a

Fig. 5. Sensitivity VB. Base Resistance

35 a

4

§ 1,0

ABE - BASE RESlSTANCE

Fig. 4. Collector Current vs.
Collector to Emitter Voltage

«

T~,·25'e

C1244

VeE -V

3

10
6.0

V

10K

2

20

I

125

5.0

10
60a =vCE
40

lOrnA

1/

[l

'"

Fig. 3. Collector Current vs.
Forward Current

20mA

V
V/

~

1

'F - (mAl

tA!-

'"I 225
z

5.0.uA

2.0

o

C1242

250

1DjJA

1.0

a

2.0 4.06.010

.4.6 1.0

2.5p.A

.1.2.3.4.5 .7

/

Fig. 2. Collector Current vs.
Collector to Emitter Voltage

I,
30,A_

.....

.2

VeE - (Volts)

I-"""

~

V

10

IF - 2mA

I

/

,01

Forward Current

16

I

12

_u

/11

,

1.2

Fig. 1. Forward Voltage vs.

20

.§.

I'

,

VF -(Volts)

18

;;:

,I

.6

1.1

/

14

SmA

-\'~E .15 V

1.0

/ / /
,II / /
1.0

16

[I III

2.0

.6

.9

18

IF -lOrnA

11/

10

0

.§.

~art

40

y

20

... 41
~(t\p..
~pw·7

60

0
0

"'to

250

.............

~

""t::

I'---..

60

~

"""

150
100

~ 40

,c=2mA

N

:J

""
ii§
0

z

20

Po ITT ALI •

100

I""'".,1T'e

m1w

TA

50
-50

a
-25

+25

TEMP -

+50
(~C)

+75

+100

C1306

Fig. 7. Current Transfer Ratio
(unsaturated) vs. Temperature

100

1000

10,000

OPERATING TIME - (Hours)

100,000
C1251

Fig. 8. Current Transfer Ratio vs.
Operating Time

111

MCT273
TYPICAL SWITCHING CHARACTERISTICS
80

16r<-------,------,---~-,.

RL

:g

=.

1.9 Kfl

14~r_----~-------+VCC=5V

70

RBE '" 0
12~~----~~-----1~-----1

60

~

10

-

I F =3.2to16mA

Vee

= 5V
RL =1.9Kn

r--.

w

40

"r:

30

II

i'-r-...

50

~ I~f)
i"

20
10

12

3.2 4
IF - (mAl

16

50QK

1M

RBE -(m

C1307

Fig. 9. Switch·on Time vs.
IF Drive (saturated)

50 K

lOOK

C130B

Fig. 10. Switch·off Time vs. Base to
Emitter Resistance (saturated)

INPUT

ov

OUTPUT

I
I

I

I

I

I

-Jton~ toff

.c1293

I

t-

C1294

Fig. 11.

Fig. 12.

VCC =5.0V

VCC =5.0V

}

OUTPUT

OUTPUT

won

C1295

Fig. 13.

112

Cl296

Fig. 14.

DESIGNER SERIES
PHOTOTRANSISTOR OPTOISOLATOR

MCT274

I

I

PACKAGE DIMENSIONS

DESCRIPTION
The MCT274 is a phototransistor-type optically
coupled isolator. An infrared emitting diode manufactured from specially grown gallium arsenide is selectively coupled with an NPN high-gain silicon phototransistor. The device is supplied in a standard plastic
six-pin dual-in-line package.

FEATURES

SYMBOL.

,

A

C
0
E
F
G

H
J

<
L
M
N

INCHES

mm

MAX.

MAX,

....

NOTES

.355
9.21
.210
.160
4.06
15"
15"
.300 Ref. 7.62 Ref.
.014
0.38
.325
8.26
.070
1.78
.110
2.79
.022
0.66
2.16
.065
.175

4.46

P

1

2
3
4
5

NOTES
1. INSTALLED POSITION OF LEAD CENTERS
2. FOUR PLACES

• Controlled Current Transfer Ratio - 225% to 400%
(specified conditions)
• Maximum Turn-on time - 25 Ilseconds
(specified condition)
• Maximum Turn-off time - 25 Ilseconds
(specified condition) .
• Surge Isolation Rating 4000 volts DC
3000 volts AC, rms
• Steady-state Isolation Rating 3500 volts DC
2500 volts AC, rms
51 Underwriters Laboratory (U.L.) recognized
- File E50151
• VDE approval applied for

3. OVERALL INSTALLED POSITION

4. THESE MEASUREMENTS ARE MADE FROM

THE SEATING PLANE
6. MINIMUM 0.100 INCH

ANOOE~"ASE
CATHODE

2

3

.

5

COLLECTOR

4

EMITTER

APPLICATIONS
• Control Relays
• Digital controls
• Microprocessor controls
• Replace slow photodarlington types with better
switching speeds and equivalent gain devices
• Multiple gate interface

C1339

ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature . . . . . . . . . . _55°C to 150°C
Operating temperature. . . . . . . .. _55°C to 100°C
Lead temperature
(Soldering, 10 sec) . . . . . . . . . . . . . . . . . . 260°C
Total package power dissipation @ 25°C
(LED plus detector) . . . . . . . . . . . . . . . . 260 mW
Derate linearly from 25°C . . . . . . . . . . 3.5 mWtC

INPUT DIODE
Forward DC current . . . . . . . . . . . . . . . . . 60 mA
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . 3 V
Peak forward current
(1 Ils pulse, 300 pps) . . . . . . . . . . . . . . . .. 3.0 A
Power dissipation 25°C ambient . . . . . . . . 90 mW
Derate linearly from 25°C . . . . . . . . . . 1.2 mWtC
OUTPUT TRANSISTOR
Power dissipation @ 25°C . . . . . . . . . . . . . 200 mW
Derate linearly from 25°C . . . . . . . . . 2.67 mW/oC

113

MCT274
ELECTRO-OPTICAL CHARACTERISTICS (25°C Temperature unless otherwise specified)
TRANSFER CHARACTERISTICS
CHARACTERISTIC
Curren't Transfer Ratio,
collector to emitter (a)
tJ

SYMBOL

MIN.

TYP.

MAX.

ICE/IF

225
12.5

305

400

Q

UNITS
%"

TEST CONDITIONS

%

IF =.10 mA; VCE = 10 V
IF= 16mA;V CE =0.4V

Current Transfer Ratio,

ICB/IF
VCE(SAT)

.15
.16

.40

%
V

I F =10mA;V CB =10V
I F =16mA;I C =2mA

Turn-on time

ton

9.1

25

ItS

Turn-off time

toff

7.9

25

ItS

R L = 100.l1;I C =2mA;
VCC = 5 V
See figures 1" 13

ton

3.0
95

ItS

3.0
185

ItS

collector to base
Saturation voltage

Non-saturated

en
w
:;;
j:
C!l
Z

Saturated

i

Turn-on time
Turn-off time

~
en

Turn-on time

ton

Turn-off time

toft

tJ
I-

toff

ItS

IF=16mA;R L =I.9K.I1
See figures 12, 14

(Approximates a typical TTL interfacel
ItS

IF=16mA;RL=4.7Kn
See figures 12, 14

(Approximates a typical low power TTL interface)

Z
0
j:

Surge isolation

Visa

4000

VDC

Steady state isolation

Visa

3000
3500

VAC-rms
VDC
VAC-rms

Isolation resistance

Risa

2500
10"

Isolation capacitance

Cisa

oct

...J

0

!!l

ohms

pF

.5

Relative humidity ..; 50%,
11_0"; 10"A
t = 1 second
Relative humidity"; 50%,
11_0';; 10"A
t = 1 minute
V 1_0 = 500 VDC
f = 1 MHz

INDIVIDUAL COMPONENT CHARACTERISTICS
CHARACTERISTIC.
Q

w

Forward voltage

e

0

Forward voltage temp.

I-

Reverse breakdown voltage
Junction capacitance

...:::I
~

a:
0

I-

en
iii
Z

oct

a:

l-

SYMBOL

MIN.

VF

coefficient

TYP.

MAX.

UNITS

1.20

1.50

V

Reverse leakage current

IR

-1.8
25
50
65
.35

DC forward current gain
Breakdown voltage
Collector to emitter

hFE

360

Collector to base
Em itter to collector
Leakage current
Collector to emitter

BV R
CJ

BV CEO
BV CBO
BVECO
I CEO

3.0

30
70
7

mVI"C
V
pF
pF
10

IR = 10"A
V F = 0 V, f = 1 MHz
V F = 1 V, f = 1 MHz
V R = 3.0 V
V cE =5V,l c =100"A

70
170
12
5

"A

TEST CONDITIONS
IF = 20 mA

50

V
V
V

IC = 1.0 mA, IF = 0
Ic = 10"A
IE=100"A,I F =0

nA

VCE = 10 V, IF = 0

pF
pF
pF

V CE =O,f=1 MHz
V CB =5,f=1 MHz
V EB =O,f=1 MHz

I-

...

:::I

I-

:::I

0

114

Capacitance
Collector to emitter
Collector to base
Emitter to base

8
20
10

MCT274
TYPICAL ELECTRICAL CHARACTERISTIC CURVES (25°C Free air temperature unless specified)
100

100

eo

60
40

40

/Y/I

I.
;;: ...
.g
2D

75" C

c:1

10

;;:
I

L 1 J

I..

..

...•

I .•

I / I
II / I

..

1.0

1.1

1.2

1.3

1.4

1.5

'6

--"""

'4

;;
.g

'2

!:

8

;

f-"

3pA

a

2.0

L

~ 100

, pA

I

Vee

RBE - BASE RESISTANCE -

100

VeE - 5 V

"@

500

I

8

9

10

11

C1310

II

=

n

I

'F'" 16mA

'F

2.0

8mA

f/

1.0
.6
.4

IOV

/I

.02
.01
, Kn

10Kfl'

100Kf2

lMrt

RBE - (n)

C1334

10Mn
C1311

Fig. 6. Saturated CTR vs.
Base to Emitter Resistance

Fig. 5. Sensitivity vs. Base Resistance

600

7

.'0
.06
.04

,M

100K

C 1288

Fig. 4. Collector Current vs.
Collector to Emitter Voltage

;;:
.g
2

I

10K

VeE -v

20m~
lOrnA

~~1=25"C

5.0

6

VCE ,Q.4V

.2

ili

5

'0
6.0
4.0

LV

300

SpA

I

4

'F - (rnA)

50 rnA

-v
./

z
~ 200

3

20

~

'OpA _ _

2

Fig. 3. Collector Current vs.
Forward Current

I 400

~

1

V

C1309

"

15pA

./

o
o

2.0 4.06.0 10

100
60
40

z
o

"""" 20llA

>>-

1.0

.4 ,6 1.0

500

f-"

.1.2.3.4.5.7

I
I

VeE - (Voltsl

I,
25pA_

-

'0

.2

I

V

/

2mA

Fig. 2. Collector Current vs.
Collector to Emitter Voltage

Fig. 1. Forward Voltage vs.
Forward Current

'8

.10

V

<"CE '5V

I

I

.01,02.04

24

.9 1S

/11

C1285

20

.g

'F

.2

VF -IVoltsl

1......-

«

I II
I

2.0

2

32

~A

'j

...
.g ..•

I I

2.0

~o~~

20

_25 G C

1/

4 ••

I
_IJ..

25"

40

'F =20mA

I,dmij

80

-

a:

t;

400

:i

r-- ..........

"@

~ 300

..............

t;

200

;::
~

Ie = 2 rnA

o
w 40

K

N

"a:
"oz
«

'00

-50

-25

+25
TEMP - (CC)

+50

60

+75

+100
C1312

Fig. 7. Current Transfer Ratio
(unsaturated) vs. Temperature

0

Pony"ooT
'\7;~CC

0
'00

1000

10,000

OPERATING TIME _. (Hours)

100,000
C1251

Fig. 8. Current Transfer Ratio vs.
Operating Time

115

MCT274
TYPICAL SWITCHING CHARACTERISTICS

160

16

,.

I F =3.2to16mA

RL "'1.9Kn
VCC=SV

140 HH--t1I1-II-t+It-+ Vee·= 5 V
RL ;; 1.9Kn
120

RBe ;; 0

12

!

10

!100
I

I

!i:
;::

'-

l\:

80

;:: 60

"'"

.0

t on -

r--

20

12

3.2 4

16

5~K

1M

RBe - (n)

C1313

IF -(rnA)

Fig. 9. Switch-on Time vs.
IF Drive (saturated)

TOOK,

50 K
C1314

Fig. 10. Switch·off Time vs. Base to

Emitter Resistance (saturated)

INPUT

ov

I
I
I

I

~



8

.4.6 1.0

",-

/
/

200

1-

,

.2

8

Fig. 2. Collector Current vs.
Collector to Emitter Voltage

§5_

w 160

.10

10

-"

I

VeE = 5 V

12

.s

I II

VeE - (Volts)

Fig. 1. Forward Voltage vs.
Forward Current

180

'6

~~

J I

,

1.5

14

I II

I

1.1

'-I--t" I

'F -5mA

II
I

_u 2.0

/ / /
,II / /

18

;;

6.0
4.0

,

/ /
/ / /

_u.. 2.0

20 rnA

::r.ou.

I

2solC /-25" C

75° C
10

::t

20
'F

10 KS1

lOa Kr.!

1MS1

ABE - (51)

C1335

Base Resistance

10 Mr.!
C1317

Fig. 6. Saturated CTR vs.
Base to Emitter Resistance

100

~ 5V

I-~

175

80

'F.14L4 -

"'t;

150

..............

~
I 125

~

"i=

~

'"

"'

1-

" 100
75

50
-50

60

~

~

,c=2mA

40

:J

"

~
~

20

Po ITOTA71, ~'~IOO mW

o
-25

+25
TEMP _ (CC)

+50

+75

+100
C1318

Fig. 7. Current Transfer Ratio
(unsaturated) vs. Temperature

100

.i rl~t,7,~fe I
1000

10,000

OPERATING TIME - (Hours)

100,000

C1251

Fig. 8. Current Transfer Ratio vs.
Operating Time

119

MCT275
TYPICAL SWITCHING CHARACTERISTICS

16

SO

R L -l.9Kn

'F=3.2to16mA

Vee = 5 V

14

Vee'" 5 V
RL = 1.9 Kn

70

RBE "'0

60

12

:g

10

~

w

"-

"
;::

40

"

3D

;::

""-

ton-

50

w

Itoff

20
10

12

3.2 4
'F-lmA)

16

1M

SOOK

C1319

Fig. 9. Switch·on Time vs.
IF Drive (saturated)

RBE - 1m

lOOK

50 K
C1320

Fig. 10. Switch·off Time vs. Base to
Emitter Resistance (saturated)

INPUT

ov

OUTPUT

I
I

-.t
I

.c1293

I
I

I

I

on ..... toff

I-

C1294

Fig. 11.

Fig. 12.

Vee '" 5.0V

Vee= s.ov
'F=16mA

}

OUTPUT

}
OUTPUT

lOon

120

r-

~SE~

L __

C1295

C1296

Fig. 13.

Fig. 14.

DESIGNER SERIES
PHOTOTRANSISTOR OPTOISOLATOR

MCT276
PACKAGE DIMENSIONS

DESCRIPTION
The MCT276 is a phototransistor·type optically
coupled isolator. An infrared emitting diode manu·
factured from specially grown gallium arsenide is
selectively coupled with a high speed NPN silicon
phototransistor. The device is supplied in a standard
plastic six·pin dual·in·line package.

I

L LbF°9=;=n=FJ
~,J

Y y

C1240

FEATURES
mm
MAX.

NOTES

9.27
6.S6
4.06

".

.62Ref,

0.38
8.26
1.78
2.79
0.56
2.16

J

,

K

M
N

.176

4.45

P
NOTES
I. INSTALLED POSITION OF LEAD CENTERS
2. FOUR PLACES
J. OVERALL INSTALLED POSITION
4. THESE MEASUREMENTS ARE MADE FROM

• Highest speed discrete phototransistor optoisolator
• Controlled Current Transfer Ratio - 15% to 60%
(specified conditions)
• Maximum Turn·on time - 3.5pseconds
(specified condition)
• Maximum Turn·off time - 3.5pseconds
(specified condition)
• Surge Isolation Rating 4000 volts DC
3000 volts AC, rms
• Steady·state Isolation Rating 3500 volts DC
2500 volts AC, rms
• Underwriters Laboratory (U.L.) recognized
- File E50151
• VDE approval applied for

THE SEATING PLANE
5. MINIMUM 0.100 INCH

ANOO'fg"ASE

CATHODE

2

5

COLLECTOR

3

4

EMITTER

APPLICATIONS
•
•
•
•
•

Data communications
Digital ground isolation
Digital logic inputs
Microprocessor inputs
Appliance sensor systems

C1339

ABSOLUTE MAXIMUM RATINGS
TOTAL PACKAGE
Storage temperature . . . . . . . . . . _55°C to 150°C
Operating temperature. . . . . . . .. -55°C to 100°C
Lead temperature
(Soldering, 10 sec) . . . . . . . . . . . . . . . . . . 260°C
Total package power dissipation @ 25°C
(LED plus detector) . . . . . . . . . . . . . . . . 260 mW
Derate linearly from 25°C . . . . . . . . . . 3.5 mW/"C

INPUT DIODE
Forward DC current . . . . . . . . . . . . . . . . . 60 mA
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . 3 V
Peak forward current
(1 ps pulse, 300 pps) . . . . . . . . . . . . . . . .. 3.0 A
Power dissipation 25°C ambient ........ 90 mW
Derate linearly from 25°C . . . . . . . . . . 1.2 mW/"C
OUTPUT TRANSISTOR
Power dissipation @ 25°C . . . . . . . . . . . . . 200 mW
Derate linearly from 25°C . . . . . . . . . 2.67 mW/oC

121

I

MCT276
ELECTRO·OPTICAL CHARACTERISTICS 125°C Temperature unless otherwise specified) .

TRANSFER CHARACTERISTICS
CHARACTERISTIC

TEST CONDITIONS

SYMBOL

MIN.

TYP.

MAX:

UNITS

ICE/IF

15
12.5

30

60

%
%

I F =10mA;V C E=10V
IF = 16 mA; V C E = 0.4 V

ICB/IF
VCEISATI

.15
.24

.40

%
V

I F =10mA;V CB =10V
IF=16mA;lc=2mA

'Turn-on time

ton

2.4

3.5

I'S

Turn-off time
Saturated
Turn-on time
Turn-off time

toff

2.2

3.5

I'S

R L = 100U;lc=2mA;
VCC= 5 V
See figures 11, 13

ton

6.B
16

I'S

5.4
32

I'S

Cu"rrent Transfer Ratio,
U

collector to emitter (a)

Q

Current Transfer Ratio,

collector to base
Saturation voltage

Non-saturated
Ul

w

~

j:

CJ

Z

i

u

I-

~

Z
0

i=

toff

(Approximates a typical TTL interface)
Turn-on time
ton
Turn-off time
toff
(Approximates a typical low power TTL i.nterface)

I'S

Surge isolation

Visa

4000

VDe

Steady state isolation

Visa

3000
3500

VAC·rms
VDe



100
60
40
20

m

:"I

"..s

5.0

Vce-V

130

C1244

110

t;'"

,

-"

,,
,

Ie = 16 rnA'

,

+50
TEMP _1°C)

+100
C1259

Fig. 7. Current Transfer Ratio
(saturated) vs. Temperature

11

C1243

'F

4rnA

1/

1 Kn

VeE

=

N

I"

:J

90

o
z

ao
-25

0

+25
TEMP - (OC)

10 Kn

100 Kn

1 Mn

10M!!
C1246

ABE - In)

C1245

Fig. 6. Saturated CTR vs.
Base to Emitter Resistance

'.0~~~
.a

5v

.9

.7
.6

=

I---t---j--+--t--j

.5 I---t---j--+--t-~

'\

~ 100

70
-50

to

.4

10

,~ V 'c =20mA

'"
t;
~

30
0

5.0

I 110

50

-50

2.0

~'C=2mA
120

9

IIF "'116~~
IF - 8mA

Fig. 5. Collector to Emitter Breakdown
Voltage vs. Base to Emitter Resistance

'~

70

1.0
RBe - IMn)

Vce=O.4V

8

.'0~~~m

130

~1.BrnA

...........

7

.02I--H-+tt-H-+tt-t-I--HH-H-t-H
.01 '--L-I...J...I..L..-'--W.J..L.....I.......I....LJ..I......I......I....LJ
.5

.2

Fig. 4. Collector Current vs.
Collector to Emitter Voltage

6

.06
.04

45
2.0

5

.2I-H-H"II-H-Ht-1-I-t1rt-rt-ffi

............ r-.

5.0/lA

1.0

4

VeE'" 0.4 V

1.0
.6

50

2.5,..A

.1.2.3.4.5 .7

3

10
B.O
4.0
2.0

5}

lOpA

2

Fig. 3. Collector Current vs.
Forward Current

55

"'§

151lA_

I-'"

1

IF - (rnA)

Ie = 1 rnA



40

~

+50

I':

+75

+100
C1247

Fig. 8. Current Transfer Ratio
(unsaturated) vs. Temperature

~

.4

~

.3

~

.2

I--+--t-

~~$;"""""'F---+-

.1 '-_....I..._ _'-_-L_ _-'-_......I
-25

+25

+50

TEMP _ (CC)

+75

+100
C1248

Fig. 9. Collector to Emitter
Saturation Voltage vs. Temperature

127

MCT277
TYPICAL ELECTRICAL CHARACTERISTIC CURVES (25°C Free air temperature unless specified)
100,000

100

~'F=O

10

V~E

~

1,000

- 30~=
20 V

~

10V_
-5V

~

IlL ~ '-15~_

100

~

r

0

1

rIF

10,000

1I

100

IF =0
VCE=5V

"

80

;;
E
I

E

~

0.1

~

60

t'"

40

.01

20

+25

+50

+75

+100 +125 +150

TEMP - (0C)

Po (TOTAL) '" laO mW

TtUJfC1
'In"''''

o

.1
+50

C1249

+75

TEMPERATURE fOCI

Fig. 10. Coliector to Emitter Leakage
Current vs. Temperature

100

+100

~14Jm~ -

1000

Fig. 11. Collector to Emitter Leakage
Current vs. Temperature

40

6

~~-H~~tTH--rVCC=5V
RL = 1.9 Kf!

RBE '" OPEN

30

2
0
w

";::

f---

]

J"..,.

"

8

6

I F =3.2to16mA

RL - 1.9 Kn
Vee = 5 V

20

;::

'"

2

"-

10

r---...

ton -

3.2 4

12
IF -(mAl

Fig. 13. Switch-on Time vs.
'F Drive (saturated)

1M

16
C132B

. SOOK

lOOK

RBE - (il)

INPUT

OV

OUTPUT

C1294

Fig. 15.

Fig. 16.
V CC =5.0V

Vee "'5.DV

}

IF = 16mA
OUTPUT

OUTPUT

loon

}

r'

;.
RBE<

1L.___ •

e129!)
C1298

Fig. 17.

128

50 K
C1329

Fig. 74. Switch·off Time vs. Base to
Emitter Resistance (saturated)

C1293

100,doo
e12S1

Fig. 72. Current Transfer Ratio vs.
Operating Time

TYPICAL SWITCHING CHARACTERISTICS
14

10,000

OPERATING TIME - (Hours)

C1250

Fig. 78.

PHOTOTRANSISTOR OPTOISOLATOR

MCT4
PACKAGE DIMENSIONS r-:;~ j

DESCRIPTION

~~':Y='.-'
VOOLD'LATED
i~~OE~II""~
-+-'
r "'fA-

The MCT4 is a standard four-lead, TO-1S package
containing a GaAs light emitting diode optically
coupled to an NPN silicon planar phototransistor.

'"

m
~
:~~

P'T COLLECTQA

KOVAR

[10

-J

{ELECTRICALLY CONNECTED
TO CAsel

45°

~

h

,036

~

FEATURES
•
•
•
•

~

~",~.,.

PIT EMITTER

Hermetic package
High current transfer ratio; typically 35%
High isolation resistance; 10" ohms at 500 volts
High voltage isolation emitter to detector

C950

Storage temperature - _65U~ to 150o~
Operating temperature - -55 C to 125 C
Lead soldering time @ 260° C - 10_0 seconds

ABSOL.UTE MAXIMUM RATINGS

DETECTOR (Silicon phototransistor)
Power dissipation @ 25°C ambient ,_
Derate linearly from 25°C. • . . .
Collector-emitter breakdown voltage
(BV CEO ) . . . . . . . . • . .
Emitter-collector breakdown voltage;
(BV ECO )
ISOLATION VOLTAGE •. ; . . . .

LED(GaAs Diode)
Power dissipation @ 25°C ambient
.. _90mW
Derate linearly from 25°C .
1.2 mW/C
40mA
Continuous forward current
Reverse voltage • . . . .
. 3.0 volts
; 3.0 A
Peak forward current . . . .
(1 j.ls Dulse, 300 pps)
Total power dissipation . . . . . . . . . . . .. 250 mW
Derate linearly from 25°C. . . . . . . . .. 3.3 mW/C

.
200 mW
2.67 mW/C
30 volts
7.0 volts
1000 VDC

ELECTRO-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)
CHARACTERISTICS

Emitter
Forward voltage
Reverse current
Capacitance
Detector
BV CEO
BV ECO
ICEO(Dark)
Capacitance collector-emitter
Coupled
DC current transfer ratio
Breakdown voltage
Resistance emitter-detector
VCE(SAT)
Capacitance LED to detector
Bandwidth (see figure 5)
Rise time and fali time
(see operating schematic)

MIN.

30
7

15
1000
1011

TYP.

MAX.

1.3
.15
150

1.5

12
5
2
35
1500
10 12
0.1
0.2
1.8
300
2

io

50

0.5

UNITS

TEST CONDITIONS

V
j.lA
pF

I F =40 mA
V R =3.0 V
V=O

V
V
nA
pF

Ic=1.0 mA, IF=O
IE=100I'A,IF=O
V cE =10 V, IF=O
VCE=O

%
VDC
ohms
V
V
pF
kHz
j.IS

I F =lO mA, V cE =10 V
t = 1 second
V = 500 VDC
Ic=500j.lA, IF= 10 mA
Ic=2 mA, I F =50 mA
Note 2
Ic=2 mA, V cE =10 V
Note 3

129

I

MCT4
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25·C Free Air Temperature Unless Otherwise Specified)

5r---l

0

loO~

0

5

L
v~"'-

vc~ = lOv6LTS

0

5'-

/

5

0

IF .. 20mA

IF

5

.110 rnA

Figure 1 Detector Output Characteristics

/

5

/

10
0
5
15
20
25
VeE COLLECTOR VOLTAGE DETECTOR (VOLTS)
C951

/

/

V

J
J

J
20

30

40

50

7

<"

CUR~ENT~lOm~

LEDI
VeE-iO VOLTS
FREE STANDING DEVICE

/

6

111111111
111111111

1. 6

VeE'" 10 VOLTS

.5.l. 4
z

...

~ O. 6

4

-60

-40

·20

0

20

40

60

80

AMBIENT TEMPERATURErC)

100

IK

C954

Figure 4 Current Output vs. Temperature

I

.

\."

10K
lOOK
FREQUENCY (Hz)

C953

I I II
I I II
Vr

\

~12
w

~IO

~ 8

RLJoo~n

'-.

...~ 6 I'-..
~
I
C955

0.1

1 1

RL

4

=10 VOLTS

I I

c---...,

;:

\

o. 2

60 80 100 120 140

Figure 3 Dark Current vs.
Temperature r C)

.\

.J

8 o.•

20 40

AMBIENT TEMPERATURE f"C)

1\ 1
~~\~

~ 1. 2

"a 1.0

"~ o.8

/

5

V
-60 -40 -20, 0

60
C952

Figure 2 Input Current vs. Output Current

8

/f

/

J

/

10-12

10

/

I-- 1--,--..
VeE = 10 VOlTS/

IF INPUT CURRENT LED (rnA)

J

9

I

/

/

2. 0

I

00

3

10-4

l'"'-

=4700

I ~L=100
I I II·

0.20.3OA o.&o.sl.0

34567810

2

COLLECTOR CURRENT Ie (mA)

e9S6

Figure 6 Switching Time
vs. Collector Current

Figure 5 Output liS. Frequency

For add itional characteristic curves, see MCT2

OPERATING SCHEMATICS
CONSTANT
CURRENT

Vee "10VOLTS

INPUT

"D

-

PULSE
INPUT

470

I
-::-c.
~
LEO

'---~""-. OUTPUT

I,

C957

Modulation Circuit Used to Obtain Output vs. Frequency Plot

-

I,

L

Vee = 10~OLTS

Ie

-- ~
I

":"' ___ 1

-

DETECTOR

.........

'----

PULSE
OUTPUT

C95B

Circuit Used to Obtain Switching Time vs. Collector Current Plot

NOTES
1.
2.
3.

1.30

The current transfer ratio (lc/IF) is the ratio of the detector collector current to the LED input current with
VCE at 10 volts.
The frequency at which ic is 3 dB down from the 1 kHz value.
Rise time rtr ) is the time required for the collector current to increase from 10% of its final value, to 90%. Fall
time rtf) is the time required for the collector current to decrease from 90% of its initial value to 10%.

RELIABILITY CONDITIONED
PHOTOTRANSISTOR OPTOISOLATOR

MCT4R
PACKAGE DIMENSIONS

DESCRIPTION

-",'"'

ri~Y
I .J/::"-"

I

.500

[]

f

II
-1

PIT
COLLECT

BOTTOM VIEW

u

V

'>
rD::
_'/
~D4.
'1}/
.D19

'"

.D36

The MCT4 is a standard four-lead, TO-18
package containing a GaAs light emitting
diode optically coupled to a silicon planar
phototransistor.

FEATURES
• Hermetic package
• High current transfer ratio; typically 35%
• High isolation resistance, 1011 ohms at
500 volts
• High voltage isolation emitter to detector

APPLICATIONS

~=

The General Instrument MCT4R is designed
and manufactured to conform to the
requirements of military systems_ Reliability
testing has proven the product capable of
conforming to the screening and quality
conformance requirements of MIL-STD-883
Class B devices.

PIT EMITTER

.C950

SCREEN -:- 100%
Characteristic

Method

Internal Visual
Stabilization Bake
Temperature Cycle
Centrifuge
Hermeticity
Critical Electrical
Burn In
Final Electrical
Group A Sample I nspertion
External VislJa I

2010 - Characteristics applicable to device
1008 -150°C. for 48 hours
1010 -10 cycles; -55°C., 25°C., 150°., 25°C.
2001 - Test Condition E
1014 - Fine and Gross
Data Sheet
1015 -168 hours@ 125°C.
Data Sheet
5005
2009

Table I Subgroups

131

I

MCT4R
LOT QUALIFICATION TESTS
Characteristic
Subgroup I
. Visual Mechanical
Marking Permanency
Physical Dimensions

Method

LTPD

2008

15%

Subgroup II
Solderability

2003

15%

Subgroup III
Thermal Shock
Temperature Cycle
Moisture Resistance
Critical Electrical

1011 -15 cycles; 150°C. to -65°C.
1010 -10 cycles; -55°C., 25°C., 150°C., 25°C.
1004
Data Sheet

Subgroup IV
Mechanical Shock
Vibration Fatigue
Vibration Variable Frequency
Constant Acceleration
Critical Electrical
Subgroup V
Lead Fatigue
Hermeticity

Subgroup VI
Salt Atmosphere'

2002
2005
2007
2001

-

Condition B
Condition A
Condition A
Condition E
Data Sheets

15%

15%

2004 - Condition B2
1014 - Fine Condition A
Gross ConditionC

15%

1009 - Condition A

15%

LIFE TESTING 7% LTPD
Subgroup VII
High Temperature Storage'
Critical Electrical

1008 - 150°C. for 1000 hours
Data Sheet

7%

Subgroup VIII
Operating Life
Critical Electrical

1005 - Condition B
Data Sheets

7%

Subgroup IX
Steady State Reverse Bias

1015 - Condition A; 72 hours at 150°C.

7%

Subgroup X
Bond Strength

2001 -Condition C; 10 devices only

Reference: MI L·STD·883, Test Methods and Procedures for Microelectronics.

132

DUAL PHOTOTRANSISTOR OPTOISOLATORS

I

MCT6
MClB6
------------------------------------------------------------~
DESCRIPTION

PACKAGE DIMENSIONS

The MCT6 and MCT66 optoisolators have two channels
for high density applications. For four channel applications, two-packages fit into a standard 16-pin DIP
socket. Each channel is an NPN silicon planar phototransistor optically coupled to a gallium arsenide diode.

Lie]
1

2

3

I

FEATURES

~

4

INCH

SYMBOL

A
B
C

0
E
F
D
H

J
K
L
M

C1340

N

mm.

MAX,
MAX.
NOTES
.410
10.29
.270
6.B6
.130
3.30
.15"
1
.300 Ref. 7.62 Ref.
.014
0.36
.325
8.26
.070
1.78
.110
2.79
.022
0.56
.055
1.40
2

""

3
.175

4.45

P

4

5

NOTES
1.INSTALL.ED POSITION OF LEAD CENTERS

2. FOUR PLACES
3. OVERALL INSTALLED POSITION
4. THESE MEASUREMENTS ARE MADE FROM
THE SEATING PLANE
5. MINIMUM O. lOa INCH

• Two isolated channels per package
• Two packages fit into a 16 lead DIP socket
• Same basic electrical characteristics as MCT2
• 1500 volt isolation
II 50% typical current transfer ratio
II Underwriters Laboratory (U.L.) recognized
File E50151
II VDE approval applied for

APPLICATIONS
• AC Line/Digital Logic - Isolate high voltage
transients
• Digital Logic/Digital Logic - Eliminate spurious
grounds
• Digital Logic/AC Triac Control - Isolate high
voltage transients
iI Twisted pair line receiver - Eliminate ground loop
feedth rough
.. Telephone/Telegraph line receiver - Isolate high
voltage transients
• High Frequency Power Supply Feedback Control Maintain floating ground
.. Relay contact monitor - Isolate floating grounds
and transients
• Power Supply Monitor - Isolate transients

ABSOLUTE MAXIMUM RATINGS
Storage Temperature. . . . . . . . . .. _55°C to 150°C
Operating Temperature .... . . . .. _55°C to 100°C
Lead Temperature ...... (soldering, 10 sec.) 250°C
INPUT DIODE (each channel)
Forward current . . . . . . . . . . . . . . . . . . . . . 60mA
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . 3.0V
Peak forward current (1).1s pulse, 300 pps) . . . . . . 3A
TOTAL INPUT
Power dissipation at 25°C ambient ....•..• 100mW
Derate linearly from 25°C . . . . . . . . . . . 1.3mWrC

OUTPUT TRANSISTOR (each channel)
Power dissipation @25°C ambient ......... 150mW
Derate linearly from 25°C . . . . . . . . . . . . 2mW/oC
Collector Current . . . . . . . . . . . . . . . . . . . . 30m A
COUPLED
Input to output breakdown voltage ... 1500 volts DC
Total package power dissipation
@ 25°C ambient . . . . . . . . . . . . . . . . • . 400mW
Derate linearly from 25°C . . . . . . . . . . 5.33mW/oC

133

MCT6 MCT66
ELECTRO-OPTICAL CHARACTERISTICS

(25°C Free Air Temperature Unless Otherwise Specified)

MIN.···

CHARACTERISTICS

INPUT DIODE
Rated forward voltage YF'
Reverse voltage VR
R.everse current IR
Junction capacitance CJ

3.0

OUTPUT TRANSISTOR (IF = 0)
Breakdown voltage,
collector to emitter BVCEO
. Breakdown voltage,
emitter to collector BVECO
Leakage current, collector to emitter ICEO
Capacitance collector to emitter GeE
COUPLED
DC current transfer ratio (lC/IF) = CTR
MCT6
MCT66
Isolation voltage BV(J_o)
Isolation resistance
MCT6- Ro-o)
MCT66 - R O. O)
Breakdown voltage - channel-to-channel
MCT6
MCT66
Capacitance between channels
Saturation voltage collector to emitter VCE (SAT)
MCT6
MCT66
Bandwidth Bw

TYP.

MAX.

UNITS

1.25
25
.001
50

1.50

V
V
ILA
pF

IF = 20mA
IR = 10ILA
VR =3.0V
VF=OV

V

Ic = 1.0mA

V
nA
pF

IE = 100ILA
VCE = 10V
VCE = OV

30

85

6

13
5
8

10

100

20
6
1500

50
15
2500

%
%
VDC

1011
1011

1012
1012

n
n

500
500
0.4

VDC
VDC
pF

0.2
0.2
150

SWITCHING TIMES, OUPUT TRANSISTOR
Non-saturated rise time, fall time
(Note 3)
Non-saturated rise time, fall time
(Note 3)
Saturated turn-on time (from 5.0V to 0.8V)
Saturated turn·off time (from
saturation to 2.0V)

0.4
0.4

TEST CONDITIONS

VCE = 10V, IF = 10mA
VCE = 10V, IF = 10mA
t = 1 second
VI _O ;= 500VDC
VI_O = 500VDC
Relative humidity = 40%
Relative humidity = 40%
f = 1MHz

V
V
KHz

Ic = 2mA, IF = 16mA
Ic = 2mA, IF = 40mA
Ic = 2mA', Vcc = 10V,
RL = 100n

2.4

ILS

15

ILS

5

ILS

Ic = 2mA, VCE. = 10V,
RL = 100n
Ic = 2mA, VCE = Hiv,
RL = 1Kn
RL = 2Kn, IF = 40mA

25

ILS

RL = 2Kn, IF = lIOmA

MCT6 TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25°C Free Air Temperature Unless Otherwise Specified)

50

CTR=50% IF

«

...

40

~

a:
a:
30
:;)
u
a:
I-

~

20

.,

60

100

Z
«
a:

-JoT

lI-

o

r-

20

30

20

40

'F=lOrnA

,

20

40

Fig. 1. I-V Curve of Phototransistor

V'
~V

60

w
a:
a:
:;)
u

~~

0.1

50

~ /v

I..--::: ;:....-

/~~

Fig. 2. I-V Curve in Saturation

~-

.I~ol r~

ki~

I'""

.2.3.4.5 1.0 2 345

II

10 20 40 100

IF - FORWARD CURRENT - rnA

VeE - COLLECTOR VOLTAGE - VOLTS
C858

134

J 90~
~~

Z

o
10

lld%

80

!:!

o

VCE - 5.0 V
TA = 25"C

120

U)

1-40

r

10

a:

w
u.

50

I-

j

0

u

140

«
a:

'/

0

,
g
11'-

= 10,!,A

LW-

E

Fig. 3. CTR vs. Forward Current

CSBO

MCT6 MCT66
MCT6 TYPICAL ELECTRO-OPTICAL CHARACTERTISTIC CURVES (Cont_)
(25°C Free Air Temperature Unless Otherwise Specified)

10.5

'""-::;
a:

«
I
....

'"z«

a:
a: 10.7

w
u-

~

....a:
....

w

«
'" 10,8
"«~

a:
a:

:::l

u

'F=lOmA

+--++-+- VCC = 10 V

N

30

a:

10L-__~~~__~-L__~-L~

::J
«
::;

./ . / /
/./

:::l

u

~

8

. /V
"/ ./

10.6

o
z

60

40

20

20

40

60

>u..

0.81--+++1-+-++++---1
.1

80 100

AM81ENT TEMPERATURE I"C)

.2

5

8

VCE

V

VCE
VCE

./

VCE

V

= 70V = 50 V
= 25 V = 10 V -

::=:::

_u

10

20

10,10
20

50 100

30

40

50

60

70

80

90

100

TA - AM81ENT TEMPERATURE -"C C863

IF - FORWARD CURRENT - mA C862A

C861

Fig. 4. Current Transfer Ratio
vs. Temperature

.5

10,9

I

V

Fig. 6. Leakage Current VS. Temperature
vs. Collector Voltage

Fig. 5. I-V Curve of LED vs. Temperature

20
18

~
.. •o~

16

-

14

t=

12

'J:"
2

10

U

8

I
:ile o~

6

I-

~

....

~

I

f-

z

0

t=

«
e
«
a:

~ l-\f=""~

==
i=

"

~

r"'"

If ",3tTlA

~

"

0

TA = 25"C
\

100
COLLECTOR CURRENT IC ImAI

-

111111

f-

I

1000

100,000

10,000
TlME,HOURS

C864

C865

Fig. 8. Lifetime vs. Forward
Current (Note 1)

Fig. 7. Switching Time vs.
Collector Current

MCT66 TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25°C Free Air Temperature Unless Otherwise Specified)

_ 10.0

a:

~
~

r - ~I~

7.5

t;;
e

I

~
5.0
w

~

a:
a:

:::l

u

a:

~
:l

8

2.5

10.0

J~

«
!

-

~

t;;
~ 5.0

!Zw
a:
a:

1.1 = 20 rnA

~

I~

a 2.5

= lOrnA

....~
o"

0

o

5

10

15

20

L=lLoJs

a:: 7.5

25

30

VeE COLLECTOR VOLTAGE - DETECTOR IVOLTS)
C830

Fig. 1. Detector Output Characteristics

o

/

o

,/'
10

/'

20

V

V

. /V

"/ V

./

"/ ./' IV

""-

VCE
VCE

V

30

./'

40

50

60

Fig. 2. Input Current vs. Output Current

10,10
20

30

40

V
V

VCE = 25 V
VCE

V'

I, INPUT CURRENT - LED (rnA) C831

= 70
= 50

50

60

70

r--

F=
~

= 10 V r--

80

90 100

TA - AMBIENT TEMPERATURE -"C

Fig. 3. Leakage Current vs. Temperature
vs. Collector Voltage

135

MCT6 MCT66
MCT66 TYPICAL ELECTRO·OPTICAL CHARACTERTISTIC (Cont.)
(25°C Free Air Temperature Unless Otherwise Specified)
2.•

I

•

L

8

/

<"
!

VCE-I0VOLTS
FREE STANDING DEVICE

VCE -10VOlTS

0:

/

2 0.8
~ 0.6
.J

3

40

20

0

20

40

60

80

Fig. 4. Current Output
vs. Temperature

'"

z
o

20

.~
iilN

.

::;
:;;

.lloo~n
or

I I

RL ·470n

I RL • loon

0.1

C834

Fig. 6. Switching Time vs.
Col/ector Current

r
lEO

_

....
\:..~«'\F:t-

1

---

Vee

'--i\

L___

=

10 VOL T5

l
I DETECTOR
...J

-L=--t-_

'F

OUTPUT

RL = loon

Modulation Circuit Used
to Obtain Figure 5

6

[ [[

O.20.30A0.6D.81.0
234S67810
COLLECTOR CURRENT Ie (rnA)
C835

H

~ 1~

c
'"
>u

L

........

CONSTANT
I
MOOULATI0:ij'IJF
47S1
CURRENT
C
INPUT
INPUT-

40

30

1M

10K
lOOK
FREQUENCY (Hz)

Fig. 5. Output vs. Frequency

50
,

"

I'..

R

[
IK

100

C833

AMBIENT TEMPERATURErq

1""-.

\

•. 2

60

10 VOLTS

[ [

\ 1\

30.4
4

.
;\:>'

\

u

, /

\

~\

1.0

0:

[ [[

LLU
v,. •

, t\~ r\\

~ 1.2

a

7

6

llllllllL

1.6
1.4

>Z

LEO CURRENT·IOmA

[

[ [[1[[[11

1.8

":'
C837

\f ",,3"'p..

~

PULSE
INPUT

o'"
z
I
100

1000

10.000

TlME·HOURS

100,000

CI061

Fig. 7. Lifetime vs. Forward Current

'e

47n

Vee = 10VQLTS

~;.L
.:.u_
:.. -='-.....,0--.
-

'F

Circuit Used to Obtain
Figure 6

PULSE

OUTPUT

RL = loon
C838

NOTES
1. Normalized CTR degradation

=

CT~j; ~TR

2. The current transfer ratio (Ie/IF) is the ratio of the detector collector current to the LED input current with VCE at 10
volts.
3. The frequency at which ic is 3 dB down from the 1 kHz value.
.
4. Rise time (tr) is the time required for the collector current to increase from 10% of its final value tv 90%.
Fall time (ttl is the time required for the collector current to decrease from 90% of its initial value to 10%.

136

AC LINE MONITOR
OPTICALLY ISOLATED INTERFACE DEVICE

MID400
PACKAGE DIMENSIONS

DESCRIPTION

ID·

,

PIN

2

3

V,N
N/C
V,N
N/C
GROUND
Vo
AUX.

2

L~
,

The MID400 is an optically isolated AC lineto-logic interface device. It is packaged in an
8-lead plastic DIP_ The AC line voltage is
monitored by two back-to-back GaAs LED
diodes in series with an external resistor. A
high gain detector circuit senses the LED
current and drives the output gate to a logic
low condition,

3

I+.

4

4
5
6
7
B

The MID400 has been designed primarily for
use as an AC line monitor. It is recommended for use in any AC-to-DC control
application where excellent optical isolation,
solid state reliability, TTL compatibility,
small size, low power, and low frequency
operation are required.

Vee

MAX.
10.29
6.86

SYMBOL
A

NOTES

3.30

'"

.62 Rei.
0.36

FEATURES

8.26
1.78
2.79
0.56

•

1.40

.175

4.45

NOTES

C1340

I.INSTALLEO POSITION OF LEAD CENTERS

•
•

2. FOUR PL.ACES
3. OVERALL INSTALLED POSITION
4. THESE MEASUREMENTS ARE MADE FROM
THE SEATING PLANE
5. MINIMUM 0.100 INCH

•
•
•
•
•

Direct operation from 24 VAC to 240
VAC line with the use of an external
resistor
Externally adjustable time delay
Externally adjustable AC voltage
sensing level
High voltage isolation between input
and output
Compact plastic DIP packalje
Logic level compatibility
UL recognized (File #E50151)
VDE approval applied for

APPLICATIONS
VOUT

I - - -.....~

C1472

Fig. 1. MID400 Inte~facing Circuit

•

Monitoring of the AC "line-down"
condition
• "Closed-loop" interface between electromechanical elements such as solenoids,
relay contacts, small motors, and microprocessors
• Time delay isolation switch

ABSOLUTE MAXIMUM RATINGS
INPUT - LED CIRCUIT
RMS Current . . . . . . . . . . . . . . . . . . . . . . . 25 mA
DC Current . . . . . . . . . . . . . . . . . . . . . . . ±30 mA
Power Dissipation at 25°C Ambient. . . . . .. 45 mW
Derate Linearly from 70°C ....... ' .... 2.0 mW/oC
OUTPUT - DETECTOR CIRCUIT
Low Level Output Current (10 L) •.....••.• 20 mA
High Level Output Voltage (VOH ) • . . • • • • • • 7.0 V
Supply Voltage (Vee) ............... , .. 7.0 V
Power Dissipation at 25°C Ambient. . . . ... 70 mW
Derate Linearly from 70 0
2.0 mW/oC

TOTAL PACKAGE
Storage Temperature. . . . . . . . .. -55°C to +125°C
Operating Temperature ......... ,-40°C to +85°C
Lead Soldering Temperature, 10 Sec . . . . . . . . 260°C
Power Dissipation at 25°C Ambient ...•... 115 mW
Derate Linearly from 70°C . . . . . . . . . . . 4.0 mW/oC
Surge Isolation . . . . . . . . . . . . . . . . . . . 3550 VDC
2500 V RMS
Steady State Isolation . . . . . . . . . . . . . . 3200 VDC
2250 V RMS

e ...........

137

MID400
ELECTRICAL CHARACTERISTICS
(O°C to 70°C Free Air Temperature Unless Otherwise Specified-All Typical Values Are At 25°C)
Device Operation Input Voltage Range: 24 VAC to 240 VAC. .
.
PARAMETER

SYMBOL

LED Forward Voltage

VF

On-state RMS Input Voltage

VI (ON) RMS

Off-state RMS Input Voltage

VI(OFF) RMS

On·state RMS·lnput Current

II(ON) RMS

Off-state RMS Input Current

II(0FF) RMS

MIN

TYP

MAX

UNITS

1.5

V

IF

V

Vo = 0.4 V, 10 = 16 mA
Vee = 4.5 V, RIN = 22 Kn

V

Vo = Vee = 5.5 V,
10 ::; 100/lA, RIN = 22 Kn

90

5.5

TEST CONDITIONS

= ±30 mA DC

mA

Vo = 0.4 V, 10 = 16 mA
Vee = 4.5 V
24 V::; VI(ON) RMS::; 240 V

.15

mA

Vo = Vee = 5.5 V, 10 ::; 100/lA,
VI(OFF) RMS ~ 5.5 V

4.0

Logic Low Output Voltage

··VOL

.18

0.40

V

Logic High Output Current

10H

.02

100

/lA

liN = 0.15 mA RMS
Vo = Vee = 5.5 V
VI(OFF) RMS ~ 5.5 V

Logic Low Output
Supply Current

leeL

3.0

mA

liN = 4.0 mA RMS
Vo = Open, Vee = 5.5 V
24 V::; VI(ON) RMS::; 240 V

Logic High Output
Supply Current

leeH

0.80

mA

liN = 0.15 mA RMS
Vee = 5.5 V
VI(OFF) RMS ~ 5.5 V

SWITCHING TIMES (TA

liN = II(ON) RMS
10 = 16 mA, Vee = 4.5 V
24 V::; VI(ON) RMS::; 240 V

= +25°C)

Turn-On Time

tON

1.0

mS

liN = 4.0 mA RMS
10 = 16 mA, Vee = 4.5 V
RIN = 22.Kn (See Test Circuit 2)

Turn·Off Time

tOFF

1.0

mS

liN 4.0 mA RMS
10 = 16 mA, Vee = 4.5 V
RIN = 22 Kn (See Test Circuit 2)

ISOLATION (TA

= +25°C)

Surge Isolation Voltage

Steady State Isolation Voltage

VISO

VISO

Isolation Resistance

RISO

Isolation Capacitance

CISO

(RMS

138

= True RMS Voltage at 60 Hz, THO

3550

VDC

2500

VACRMS

3200

VDC

2250

VACRMS

10"
2
,e;;;;

1%.)

Relative Humidity ::; 50"10,
11- 0 ::; lO/lA
1 Second, 60 Hz
Relative Humidity ::; 50%,
11-0 ::; lO/lA
1 Minute, 60 Hz

n

V I_O = 500 VDC

pF

f

= IMHZ

MID400
DESCRIPTION/APPLICATIONS
The input of the MID400 consists of two back-to-back LED diodes which will accept and convert alternating
currents into light energy. An integrated photo diode-detector amplifier forms the output network. Optical
coupling between input and output provides 3550 V DC voltage isolation. A very high current transfer ratio,
(defined as the ratio of the DC output current and the DC input current) is achieved through the use of a high
gain amplifier. The detector amplifier circuitry operates from a 5 V DC supply and drives an open collector
transistor output. The switching times are intentionally designed to be slow in order to enable the MID400, when
used as an AC line monitor, to respond only to changes of input voltage exceeding several milliseconds. The short
period of time during zero crossing which occurs once every half cycle of the power line is completely ignored.
To operate the MID400, always add a resistor, RIN, in series with the input (as shown in Fig. 1) to limit the
current to the required value. The value of the resistor can be determined by the following equation:

I

Where V IN (RMS) is the input voltage.
V F is the forward voltage drop across the LED.
liN (RMS) is the desired input current required to sustain a logic "0" on the output.

PIN DESCRIPTION
SCHEMATIC DIAGRAM

DESIGNATION
VIN1,VIN2

Vee
AUX.

PIN #

1,3
8
7

Vo

6

GND

5

FUNCTION

Input terminals.
Supply voltage, output circuit.
Auxiliary terminal. Programmable capacitor input to
adjust AC voltage sensing level
and time delay.
Output terminal; open
collector.
Circuit ground potential.

C1473
NOTE: 00 NOT CONNECT PIN 2 AND 4

139

MID400
GLOSSARY
VOLTAGES
VIION) RMS

On-state RMS input voltage
The RMS voltage at an input terminal for a sqecified input current with output conditions
applied that according to the product specification will cause the output switching element
to be sustained in the on-state within one full cycle.
--

VIIOFF) RMS

Off-state RMS input voltage
The RMS voltage at an input terminal for a specified input current with output conditions
applied that according to the product specification will cause the output switching element
to be sustained in the off-state within one f,ill cycle.

VOL

Low-level output voltage
The voltage at an output terminal for a specific output current IOL with input conditions
applied that according to the product specification will establish a low-level at the output.

VOH

High-level output voltage
The voltage at an output terminal for a specified output current IOH with input conditions
applied that according to the product specification will establish a high-level at the output.
LED forward voltage
The voltage developed across the LED when input current I F is applied to the anode of the
LED.

CURRENTS
II(ON) RMS

On-state R MS input current
The RMS current flowing into an input with output conditions applied that according to the
product specification will cause the output switching element to be sustained in the on-state
within one full cycle.

II(OFF) RMS

Off-state RMS input current
The RMS current flowing into an input with output conditions applied that according to the
product specification will cause the output switching element to be sustained in the off-state
within one full cycle.
High-level output current
The current flowing into' an output with input conditions applied that according to the
product specification will establish a high-level at the output.
Low-level output current
The current flowing into' an output with input conditions applied that according to the
product specification will establish a low-level at the output.

I CCH '

Supply current, output low
The current flowing into' the Vcc supply terminal of a circuit when the output is at a
low-level voltage.
Supply current, output high
The current flowing into' the V cc supply terminal of a circuit when the output is at a
high-level voltage.

DYNAMIC CHARACTERISTICS
Turn-on time
The time between the specified reference points on the input and the output voltage waveforms with the output changing from the defined high-level to the defined low-level.
tOFF

Turn-off time
The time between the specified reference points on the input and output voltage waveforms
with the output changing from the defined low-level to the defined high-level.

'Current flowing out of a terminal is a negative value.

140

MID400
OPERATING SCHEMATICS
Vee

R'N

= 22 KU

I

RL = 300 U
V,N
ACINPUT

1---+--....--7

Va

TEST CIRCUIT 1

C1478

Input Current vs. Capacitance, CAUX. Circuit

"A-C
INPUT

OV------.,.

I

I
I
I

I
I
I

I
I

I
I

_-.h on :.....

.......: toft

:::_~_~::~~_~ ~~5_0_%
__

:~

:~)1r5-0-%------

_______________________

"INPUT TURNS ON AND OFF AT ZERO CROSSING.

+4.5 V
Vee

MID 400
1 INPUT
A-C
INPUT'llV

2

R'N

3

22 KQ

4

N/C

AUX.

2 INPUT
N/C

8
Vee

VOUT
GND

7

RL

6

~

5

OUTPUT

TEST CIRCUIT
TEST CIRCUIT 2

C1479

MID400 Switching Time

141

MID400
TYPICAL CURVES
250

30
tA = 125°c
Vee = 5.0V

Vi 200
:0
a:

:0

~

w



~ 100
0..

~

...J

>
f::J
0..

/'

o

50

o

V

V

o

10

~

10

0

«
10L= ;smA

20

V

()

RON IKn)

o

30

40

50

60
C1474

~

/

,;;.0

15

0

./

0'1-'"

Z
()

«

/

25

Vi

V

o

It

10H ~100~A

RON IKn)
10

20

30

40

50

60
C1474

Fig. 2. Input Voltage vs. Input Resistance
120

~~

Jl
o

W

100

N

::J

«

:0

a:
o

z

90

""

""

_ 110
~

V

V
""

80
4:5

""

~
~I

./

~V

k'

",

4.6 4.7 4.8 4.9 5.0 5.1
Vee IV)

5.2 5.3 5.4 5.5
C1475

Fig. 3. Supply Current vs. Supply Voltage

2.8
2.4

'"a:

:0

~

..s
f-

z

2.0

i'

1.6

~

i'

a:
a: 1.2

0.8

~

I"ONI

= 4.0 mA, RMS)

.15

f---f---t_""'7~if---t_-__1

.10

t---+--7>~---t--_t--___1

~

o
>

~~

u

0..

-=0

-g
w

::J

r-----,---,..---,----,----,

4.5 V
5.0V
.20 f----t---+---+--,~~5.5 V

10H ~ 100~A
RON = 22 KU
TA = 25°C

~

w

f::J

.25

Ve!=~.W
10L = 16 mA

~

0..

f::J

o

.05

l,jOFF)

0.4
.01o
10

20

50

100

200

500

CAPACITANCE IpF) IAUX. TO GND)

Fig. 4. Input Current vs. Capacitance
(See test circuit 11

142

1000
C1476

~_--'

01.0

__

5.0

~

__

10.0

~

__

15.0

~

__...J

20.0

OUTPUT CURRENT I10cllmA)

25.0
C1477

Fig. 5, Output Voltage vs, Output Current

Optoswitches·
Emitters
Detectors

143

I

f

OPTO SWITCHES
DETECTOR

MAX.
EMITTER
VOLTAGE

MIN.
BVCEO

TYPICAL
DARK
CURRENT

MAX.
VCE(SAT)

MIN.
CURRENT
TRANSFER
RATIO

SLOTTED LIMIT
SWITCH, TRANSISTOR

1.5V@20mA

32V

5nA@10V

.4V @25M

1%

CNY37

SLOTTED LIMIT
SWITCH, TRANSISTOR

1.5V@20mA

32V

5nA@10V

.4V @ 25M

1%

MCA7

REFLECTIVE SENSOR,
DARLINGTON

1.5V@20mA

30V

5nA@5V

-

0.1%

1.0V@2mA

15%

1.0V@1.6mA

4%

DEVICE
NO.

PACKAGE

~

CNY36
o'

4F
~

MCA8

~

OUTPUT CONFIGURATION

SLOTTED LIMIT
SWITCH, DARLINGTON

MCA81

5nA@5V
1.5V@20mA

MCT8

30V

SLOTTED LIMIT
SWITCH, TRANSISTOR

MCT81

.4V @ 50M

1%

.4V @ 25M

0.25%

5nA@10V

INFRARED EMITTERS
PACK·
AGE

~

DEVICE
NO.

RADI·
ATED
POWER
(TYP.)

ON·AXIS
IRRADIANCE
OR INTENSITY
(TYP.)

MAX.
FORWARD
VOLTAGE

MAX.
DC
CURRENT

MAX.
POWER

ON/OFF
DELAY
(TYP.)

PAGE
NO.

CQX47

25mW

33mW/Str.

3.4V@100mA

100mA

280mW

450nsee

155

APPLICATIONS

Card readers, en-

Q

9
=#=

144

coders, alarm and

CQY99

15mW

14mW/Str.

1.7V@ 100mA

150mA

210mW

450nsee

159

sector systems, level
indicator, end..af-

tape detection.

ME7121
ME7124

ME7161

175

10.8mW/Str.
3.0mW

1.8V@50mA

100mA

150mW

500nsee

243.6mW/Str.

3.0mW

175

1.8V@50mA

50mA

75mW

500nsee

179

TYPICAL
BANDWIDTH

PAGE
NO.

-

151

-

151

APPLICATIONS

I

Tape reader, mark sensor, end.af.tape detector, end-of·film detector, metal processing
equipment, length measurement, coded disk detection, edge sensor, textile processing
equipment, fluid volume and velocity control, level detector. object sensor, strobing light
control, stroboscope.
0.8KHz

163

0.8KHz

167

1.5KHz

167

150KHz

171

200KHz

171

Object sensing, end-of·tape detection, length measurement, industrial processing
equipment.

I

SILICON DETECTORS
PACK·
AGE

DEVICE
NO.

SENSITIVITY
IlA/mW/cm 2
(TYPICAL)

VCE
(SAT)
(MAX.

MAX.
DC
CURRENT

MIN.
BVcEO

DARK
CURRENT
(TYPICAL)

BAND·
WIDTH
(TYP.)

PAGE
NO.

~

8PW39A

400

0'3V@lmA

100mA

32V

10nA

500KHz

147

~

MTl

560

~

MT2

1400

MTB020

350

~

181
.5V@2mA

40mA

30V

lnA

300KHz

40mA

30V

1.5nA

300KHz

Optical switching,
intrusion alarm. process
control, tape and card

181

0.4V@1.6
rnA

APPLICATIONS

reader, level controls,
character recognition.

183

145

146

VISIBLE & INFRARED DETECTOR

SILICON NPN EPITAXIAL PLANAR PHOTOTRANSISTOR

BPW39A

PACKAGE DIMENSIONS

DESCRIPTION

All dimensions are in inches (millimeters).

The BPW39A is an NPN silicon photo·
transistor packaged in a clear plastic case.
This device has high sensitivity and is
packaged in a TO·92 package.

LUMINANCE DIRECTION

ti

-t-.200
I5.1)

L

FEATURES
• Plastic case, white clear
• Suitable for visible and near infrared
radiation
• High sensitivity
• Wide angle of sensitivity
• Flat window
• Irradiation direction vertical to mount·
ing direction
• Compatible with COX47

RADIANT SENSITIVE AREA
COLLECTOR

I

_

::-t

EMITTER

--I1'~:_~",J
~(5.1)

t

.018
10.45)

APPLICATIONS

.138
(3.5)

•

t

•
•

(13)

C1659

•
•

Angle of half sensitivity Ct = 130·
Plastic case equivalent to:
JEDEC TO 92
10 B 3 DIN 41868
Weight = max 0.4 g.

•
•

•
•
•
•

Detector in electronic control and
drive circuits
Optical shaft position and velocity
monitor using a digitally encoded disc
mounted on a shaft
Optical sensing of holes in paper,
paper tape, IBM card or magnetic tape
Optical sensing of marks on paper,
paper tape, or IBM card
End of tape sensor using a transparent
section of tape, a reflective strip on th
the tape, or a hole in the tape
End of film sensor for films not
affected by infrared light
Limit switch for mechanical travel
such as cam switches, pressure
switches, machine tool limit switches,
foot pedal switches, safety interlock
switches
Edge sensor for sheet materials such as
paper, plastic film, fabric, foil, news·
pri nt, belt sanders, reproduction paper
Fiber continuity monitor for fibers
such as yarn, wire, thread
Fluid volume monitor by sensing tur·
bine vanes passing through the slot
Liquid level detector of an opaque
liquid

147

BPW39A
ABSOLUTE MAXIMUM RATINGS
Collector-Emitter Voltagf!
Emitter·Coliector Volta!je
Collector Current ......
Peak Collector Current
(tplT = 0.5, tp ~10ms)

Total Power Dissipation (TA ~ 2SoC) ...... lS0 mW
Junction Temperature ........•.. '.' ~ .... 8S:C
Stora!je Temperature Range ...... -2S C to +8S C
Soldering Temperature (t ~ 3 s) (See Note 1) . __.24SoC

................ 32V
.•........•..... 5V
, ......•..... 100 mA
'.
. . . . . . . . . . . . '.200 mA

ElECTR ICAl AND OPTICAL CHARACTERISTICS (2SoC Ambient Temperature Unless Otherwise Specified)

.

CHARACTERISTICS
Collector light current

SYMBOL
ICE

Collector dark current
Sensitivity
Peak wavelength sensitivity
Range of spectral
bandwidth (SO%)
Collector-emitter
breakdown voltage
Collector-emitter
saturation voltage
Bandwidth

MIN.
O.S

TYP.

MAX.
1.6

UNITS
mA

100
320

780

nA
JlA/mW/cm'
nm

S20-9S0

nm

10

ICEO *
s
Ap

100

Ao.s
BVCEO *

32

V
0-3

VCE(SAT)
Bw

170

V
kHz

CONDITIONS
VCE = SV,
Source = Tungsten'
VCE = 20V'
VCE = SV,

Ic = 1 mA
Ic = O.lmA'
Ic = SmA, Vcc = SV,
R L =100n

'0.65 AOL
'Radiation source is unfiltered tungsten filament bulb at 2875° K color
Temperature H = 5 mW/cm'
'Measured under dark conditions; H S; 1.0 IlW/cm 2

SWITCHING CHARACTERISTICS
CHARACTERISTICS
Delay time
'Rise time
Turn-on time
Storage time
Fall time
Turn-off time

SYMBOL
td
tr
ton
ts
tf
toff

TYP.
1.8
1.6
3.4
0.3
1.7
2.0

CONDITIONS

UNITS

JlS
JlS
JlS
JlS
Jls

VCC

= SV, Ic = SmA, RL = 100 n (See test circuit, Fig. 1)

j.lS

oSL

Ie = 5 mA
adjusted through distance "d"

RG = 50n

~=0.02
tp = 20"s

CHANNEL I OSCILLOSCOPE
RL<: 1MIl
CL'; 20pF
CHANNEL II
5011

10011

i..-d
C1660

Fig. 1. Switching Time Test Circuit

148

BPW39A
TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (25°C Ambient Temperature Unless Otherwise Noted)

1.2

10.-----~~_=~------,------,

Q

.--~~--~--~~---r-'----'--'

BPW39A

-1--+--+-+'--1-'---1-;--1-'---11--+--+----1

n

BPW39A _-1--..£._ _-1
IF = 60 mA
r-d=3mm'~~-~-~

II \I.

B

!2-d = 3 mm
1.1

CQX47~r1

9

7-1----r--~~~~~~--___I

~

6+---:::::;;;;0+""'=-----:::;;;......,"----+-=----1

.5w 5+--::::.......""'9'------::::1;;.-::::....
u

3-1---~~r----+---~--___I

0.9

+--+-+-+--+--t-+--P~I--"-.L7--+--'-"I

IF=10mA
O+------+------~----+-----~

O.B +--+-+--I--I--+----1--+--+--+--11----i

o

40

o

80

5

C1661

9

B

I

J

=CQX47~

..!.

.5

!2-d=3mm
I

VeE = lOVy
~

4

3

2

o

/'

o

l/

10

~

~

~BPW39A

IIIIII

/' . /

5

~V

TA = 25°C
K

~ r-VeE = 5V

0.1

75°C

I'VCE = 2V

VeE = 10V
I

K

I

ICE
=IIF I

.01
20

20
C1662

!2-d=3mm

/

I

6

w

u

CQX4~

BPW39A

7
~

I

Q

15

Fig. 3. Col/ector Light Current vs.
Col/ector Emitter Voltage

Fig. 2. Relative Col/ector Light Current
vs. Ambient Temperature

10

10
VCE (v)

30

40

50

60

IF (mA)

Fig. 4. Col/ector Light Current vs.
GaAs LED Forward Current

70

C1663

1

10
IF (rnA)

100
C1647

Fig. 5. Current Transfer Ratio vs.
GaAs LED Forward Current

149

BPW39A
TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (25°C Ambient Temperature Unless Otherwise Noted)

20°

10°

0°

10°

20°

20

COX4]
I-

18

30°
1.0

16

0.9

14
40°

0.8

«

E

0.7

50°
60°

0.6

w
()

12
10

80°

2

o
0.4

0.2

0

0.2

0.4

]~

\

\

\

"\
~

o

C1665

Fig. 6. Spatial Distribution

NOTES
1. Distance from the touching border? 2 mm with intermediate PC-board_

150

=3 mmVCE= 10V-

IF~mA

1

6
4

~d

I

8

70°

I

~BPW39A-

5

10
d (mm)

~IIC'~

-

-15

20

C1648

Fig. 7. Col/ector Light Current vs.
Distance From GaAs LED Source

PHOTON COUPLED
INTERRUPTER MODULES

CNY36
CNY37
PACKAGE DIMENSIONS Dimensions in inches (mm)
RADIA nON SiNS/TfVE ZONE AT THE CENTERLINE

ill+- +
~

r·124 •. 0213.1S •. SI

l:

L-n--i-.,,-....II'

T

402(102)

011310451....:0:--1 299,761

I-E

FEATURES

j 'L

•
•
•
•
•
•

.10012.541

-f~-I-~-t~-~I4J
'l
:

I

DESCRIPTION
The CNY36 and CNY37 are both photon·coupled inter·
rupter modules containing a GaAs LED and an NPN
phototransistor. Both chips face each other across a
0.12 inch air gap. The CNY37 has mounting flanges
on both sides, whereas the CNY36 comes without
mounting flanges for applications where enoiJgh
space may not be available.
.

C1629

CNY36

Compact construction
CNY36 for printed circuit board construction
CNY37 with mounting flange
No contact switching, therefore high reliability.
Plastic case.
Transistor detector offers faster switching speeds
than darlington detectors

RADIATION SENSITIVE ZONE AT THE CENTERLINE

APPLICATIONS

.2441621
CI630

CNY37

Input·LED

Output·Detector

Cathode

Collector

• Optical shaft position and velocity monii:or using a
digitally encoded disc mounted on a shaft.
• Optical sensing of holes in paper, paper tape, IBM
card, or magnetic tape.
• Optical sensing of marks on paper, paper tape or
IBM card.
• End of tape sensor using a transparent section of
tape, a reflective strip on the tape, or a hole in
the tape.
• End of film sensor for films not affected by infra·
red light.
• Limit switch for mechanical travel such as cam
switches, pressure switches, machine tool limit
switches, foot pedal switches, safety interlock
switches.
• Edge sensor for sheet materials such as paper, plastic
film, fabric, foil, newsprint, belt sanders, reproduc·
tion paper.
• Fiber continuity monitor for fibers such as yarn,
wire, thread.
• Fluid volume monitor by sensing turbine vanes
passing through the slot.
• Liquid level detector of an opaque liquid.

CI531A

Fig. 1. Equivalent Circuit

151

CNY36 'CNY37
ABSOLUTE MAXIMUM RATINGS
INPUT-LED CIRCUIT
Reverse Voltage . . . . .. . . . . . . . . . . . . . • . .. 5V
Forward Current .. ';' . . . . . . . . . . . . , .... 60mA
Forward surge current (tp/T = 0.01 ;tp .;; 0.1 ms).. 1.0A,
Power dissipation (TA .;; 25~C) .......... 100mW
Junction temperature ...........•.. '..... 85°C
OUTPUT~DETECTOR C I R C U I T ' .
Collector-emitter voltage . . • . • . . . . . . . . . .. 32V
Emitter-collector voltage . . . . . . . . . . . . . . . . . 5V

'Collector current ......•.••......... 100mA
Power dissipation (TA .;; 25°C) .....•..•• 150mW
Junction temperature .•. , ••••..•...•... 85°C
TOTAL PACKAGE
' .
Storage i:emperature " _ .•...•.. ·_25°C to + 85°C'
Power dissipation (TA .;; 25°C) ••..••.... 250mW
Soldering temperature (t';; 3s) distance to the case
~2mm . . . . . • . . . . . . . . . . . • . . . . . 245°C

ELECTRICAL CHARACTERISTICS (25°C Temperature Unless Otherwise Specified)
CHARACTERISTICS

SYMBOL

INPUT LED
Forward Voltage
V F *.
Reverse Breakdown
BVR*
Voltage
OUTPUT DETECTOR
Collector-Emitter
BVeEo *
Breakdown Voltage
Collector Leakage
ICEO *
Current
COUPLED CHARACTERISTICS
Current Transfer Ratio
CTR*
Collector Dark Current
Ico'
Collector-Emitter
*
VCE(SAT)
Saturation Voltage

*AQL

=

1 Closed

MIN.

TYP.

MAX.

1.2

1.5

'UNITS

CONDITIONS

V

IF = 20m A

5

V

IR = 100jLA

32

V

Ie = lmA

nA

VCE = 10V, IF =0

%
p.A

IF = 20mA, VCE = 10V
IF = 20m A, VCE = 10V

0.4

V

IF = 20m A, Ie = 25p.A

MAX.

UNITS

100
4
0.1

0.65%
aperture

SWITCHING CHARACTERISTICS
CHARACTERISTICS

SYMBOL

MIN.

TYP.

Delay time

td

1.8

p.s

Rise time

t,

2.5

p.s

Turn-on time

ton

4.3

p.s

Storage-time

t.

0.3

p.s

Fall time

tf

3.3

p.s

Turn-off time

toff

3.6

p.s

152

CONDITIONS

Vec = 5V,
Ic =2mA,
RL = lOOn
See test circuit.

CNY36 CNY37
I,

lOV

oJL

*

I,

r-----I
I
I

RG = 50n

I
I

= 0.05

tp = 50ps

I-I
I_I

I

L __

I

I

J._..!._

Ie

..,
le= 2 mA,
adjusted through input amplitude

I
I
I
I

...J

Oscilloscope

RL ;>lMn

CL

Channell

50n

loon

.;;

20pF

ChannellJ

C1632

I

Fig. 2, Switching Time Test Circuit

TYPICAL ELECTRICAL CHARACTERISTICS CURVES (25°C Free air temperature unless otherwise specified)
1000

-001
I- _tp
_T
.
I-

VeE - 10V

3

tp

50,us

100

II'J'"

~

5V

~

50

'"m

2V

~

't
10

o

20

40

60

o

80

VF-peak IVI

C1633

'F-lmAI

Fig. 3. Collector Current vs.
Input LED Current

Fig. 4. Peak Input LED Current vs.
Peak Input Voltage

Ie

rei

1.0
1.0

1
.~

!

0.9

0.8

0.7

=
=
-

VeE - 10V
'F = 20mA
Ie
Ie ,,' = Ie ITA = 25°CI

0.4

o
40

~§t
......

h_

,
1\
1\

\

0.2

0
0

-

0.8

-f--- Scattering limits

0.6

..!<

C1634

TA-loCI

..... 1-4

80
C1635

5 mm

h-+C1636

Fig. 5. Collector Current vs.
Ambient Temperature

Fig. 6. Relative Collector Current
vs. Object Distance

153

CNY36 CNY37
TYPICAL ELECTRICAL CHARACTERISTICS CURVES (2SoC Free air temperature unless otherwise specified)

..

3

...

lli.l-I-

" =1°rf

VeE = lOV

~Otf
.ll-I40 rnA

IU

0.1
TA

0.05

I I I

~

rOlmt

10-

=25'C

0.01
20mA

L

75'C

LI"

0.005

J....ll
lOrnA

a

I I I

a

10

15

VeE -IVI

0.001
20

C1637

10

50

i,-lmAI
C1638

Fig. 7. Collector Current vs.
Collector Emitter Voltage

154

Fig. 8. IC vs. LED Forward Current
IF

INFRARED EMITTER

GaAs INFRARED LIGHT EMITTING DIODE

PACKAGE DIMENSIONS

DESCRIPTION

All dimensions are in inches (millimeters).

The CQX47 is a high power liquid phase
epitaxial I R emitter device. It is packaged
in a plastic case in which the radiation
direction is vertical to the mounting
direction .

COX47

I

.035 ± .004
(0.9t O.1)

FEATURES
II
II
II

/I
II

Plastic case, blue clear
High radiant intensity
High radiant power
Suitable for pulse operation
Good spectral matching for silicon
photo detectors

APPLICATIONS
/I
II

WEIGHT: MAX 0.59

Remote control source
Card and tape reader sources

C1640

Angle of half intensity
al = 35
a2 = 50

C1639

ABSOLUTE MAXIMUM RATINGS
Reverse Voltage . . . . . . . . . . . . . . . . . . . . .. 10V
Forward Current . . . . . . . . . . . . . . . . . . . 100 mA
Forward Peak Current
(tp/T = 0.5, tp ::;: 10 ms) . . . . . . . . . . . . . 200 mA
Forward Surge Current (tp ::;: 10 /lsI . . . . . . .. 2.5 A

Power Dissipation (TA ::;: 25°C) . . . . . . . . . . 280 mW
Junction Temperature . . . . . . . . . . . . . . . . . 100°C
Storage Temperature Range ...... _25°C to +1 OO°C
Soldering Temperature (t::;: 3 5) (See Note 1) .. 245°C

155

CQX47
ELECTRICAL AND OPTICAL CHARACTERISTICS (25°C Ambient Temperature Unless Otherwise Specified)
CHARACTERISTICS

Radiant intensity
Radiant power
Temperature coefficient of tP.
Peak wavelength emission
Spectral half bandwidth
Forward voltage

I

Breakdown voltage
Junction capacitance
Switching characteristics
Rise time
Fall time

SYMBOL

MIN.

TYP.

UNITS

CONDITIONS

I.

25

33
300
25

mW/sr
mW/sr
mW

-O.B
950
50
2.8
5.4

nm
nm
V
V

IF
IF
IF
IF
IF
IF

I.'

tP.

TK.

Ap

Ll.A
VF*

VF '
VR*

CJ

MAX.

%/oC

3.4

10

V

25

pF

400

ns
ns

450

= 100mA
;-1.5A
= 100 mA
= 100 mA
= 100mA
= 100mA
IF =100mA
IF = 1.5 A
I R =100,uA
V R = 0, f = 1 MHz
I F peak=1A
tp/T = 0.01, tp:::;: 10,us
(See test circuit, Fig. 1)

*0.65 AQL

'tp/T

=

0.001. tp ~ 0.1 ms

Iph

0-_..1

....--o+45V

-=500
.!p.= 0.01
tp =10,1.15

PIN -

PHOTODIODE

CHANNELl

RG

OSCILLOSCOPE
RL~ 1MO
CL$ 20pF
CHANNEL II

500

500

Fig. 1. Test Circuit For Switching Time

156

C1641

CQX47
TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (25°C Ambient Temperature Unless Otherwise Noted)

1.0

100

If'

90
0.8

80

60

~

E

50

~

~

40

i>-

«

\
\
\

I

70

I
I
II

0.6

Q)

0.4

1/

30
20

0.2

I

10

o

o

l/
0.5

1.5

10°

0°

J

10°

I

\
\.
"I'-

880

920

C1642

960

1000

1040
C1658

ft.

Fig. 2. Forward Current vs.
Forward Voltage

20°

\

0

2.0 2.5 3.0 3.5 4.0

VF(V)

/

I. ,J
1
CPe (ft.) rei =
CPe (ft.)
CPe (Apeak)

Fig. 3. Relative Radiated Power
vs. Wavelength

20°

20°

10°

0°

10°

20°
30°

30°
1.0

1.0

0.9
40°

0.8

40°

~ 0.8

.....

Q)

0.7

50°

0.6

60°

0.4

0.2

0

0.2

50°
60°

0.6

70°

70°

80°

80°
90°
0.4

0.4

0.2

0

0.2

0.4
C1645

C1644
Fig. 4. ot1 - Spatial Distribution
For Vertical Plane

Fig. 5. ot2 - Spatial Distribution
For Horizontal Plane

157

CQX47
TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (25°C Ambient Temperature Unless Otherwise Noted)
10~~--~--~--~~r-~--,

9 CQX47Q!

8
7

~

4

6 ) -.....

BPW39A

\ld

CQX4]

\l-d = 3 mm

= 3 mm/--I--I

~ VCE VCE=10V

11I11
TA = 25°C

~ Ice,---if-7"7of,.....,.--j

4

~BPW39A

K

0.1

75°C

~~~--~--f

~

3+-~r--+~dP~+---r--+--~

VCE = 10V

2+-~r-~~-r--+-~r--+--~

K_

0~0~~10--~2tO--~30~-4+0--~50~-6tO---f70
IF (mA)

.01

10

1

C1646

IF (mA)

20

I.
CQX4]

18

.sw
o

12
10

~

)~

\

'""

6
4
2

o

= 3 mm
VCE= 10V

IF~QmA

\

8

o

I

~BPW39A

I!-d

16

<'

5

~
10

~IIC' ~

-

-.
15

d(mm)

Fig. 8. On-axis Detector Response
vs. Distance

NOTES
1. Distance from the touching border 21.5 mm with intermediate PC·board.

158

100
C1647

Fig. 7. Silicon Detector Current Transfer
.Ratio vs. Forward Current

Fig. 6. Silicon Detector Output
vs. Forward Current

14

ICE

-I rFj

1+-~~-+---r--~--r--+--~

20
C1648

INFRARED EMITTER

CQY99

GaAs INFRARED LIGHT EMITTING DIODE

PACKAGE DIMENSIONS

DESCRIPTION

All dimensions are in inches (millimeters).

The CQY99 high power infrared emitter is
designed to accommodate all needs of the
emitter detector relationship. This device is
packaged in a clear blue plastic case.

t

f7

t

FEATURES

"r r'~"-I L :~J-~ ~ "'I
IB.BI

• High radiant intensity
• High radiant power
• Suitable for pulse operation
• Good spectral matching for silicon photo
detectors

11.51

11~5;, _ _--l."i

,~~~-

ANGLE OF HALF INTENSITY a = 60°
PLASTIC CASE
WEIGHT MAX. O.4g

BOTTOM
VIEW

I

APPLICAnONS
•
•

C1649

ANODE

Remote control source
Card and tape reader sources

ABSOLUTE MAXIMUM RATINGS
Reverse Voltage . . . . . . . . . . . . . . . . . . . . . . . SV
Forward Current . . . . . . . . . . . . . . . . . . . lS0 mA
Forward Peak Current
(tp/T = O.S, t p ~ 10 ms) . . . . . . . . . . . . . 300 mA
Forward Surge Current (tp ~ lOlls) . . . . . . .. 2.S A
Power Dissipation (TA ~ 2S"C) . . . . . . . . . . 210 mW
Junction Temperature . . . . . . . . . . . . . . . . . 100°C
Storage Temperature Range . . . .. - 2SoC to +1 OO°C
Soldering Temperature (t ~ 3 s) (See Note 1) .. 24SoC

250

~

E
200

~

z

0

~
a.

150

,
[\

Ui
CIl

(5

a:
UJ
3:
0

a.

100

'\~

50

o

"\
o

20

40

60

80

~
100

C1650

Fig. 1. Power Dissipation vs.
Ambient Temperature

159

CQY99
ELECTRICAL AND OPTICAL CHARACTERISTIC~ (2Soe Ambient Tempera~ure Unless OtherWise Specified)

CHARACTERISTICS

SYMBOL

Radiant power
Temperature coefficient ofrp.'
Radiant intensity,
Peak wavelength emission
Spectral half bandwidth
Forward voltage
Breakdown voltage
Junction capacitance
Thermal resistance
(junction ambient)
Switching characteristics
Rise time
Fall time

MIN.

rpe*
D.rp./!H
7

.Ie

Ap
D."
VF*
VR*

TYP.

15
-0.8
14
950
50
1.4

MAX:

1.7

350

t,
tf

IF
I'F
IF
IF
IF
IF
IR

V

50

RthJA

CONDITIONS

mW
%/oe
mW/sr
nm
nm
V
pF

5

eJ

UNITS

400
450

= 100mA
= 100 mA
= 100 mA
= 100 mA
= 100 mA
=100mA
= 100.uA
V R =O,f= 1 MHz

°e/W
ns
ns

IF = 1 A
tp/T = 0.01, tp ~ lO.us
(See test circuit, Fig. 2)

·0.65 AQL

0 - _....

r

Iph

~--o+45V

--RG= 50n

*=
tp

PIN -

PHOTODIODE

CHANNELl

.....---+---0

OSCILLOSCOPE
RL? 1Mn
CL:5 20pF

0.01

= 10lls

CHANNEL II

50n

C1641
Fig. 2. Switching Time Test Circuit

160

CQY99
TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (25°C Ambient Temperature Unless Otherwise Noted)

10

10,000
tp _ co

~

1.0

x
E
.!;!:;

'"

~ ~

./

1000

VO.05

..... '

~

~
E

~,

/'

'.

rr-

0.1
0.2 1/
0.1 ~
0.5

.'/
/I

100

10-2

10-4

100

2

I

j.LS

0.001

3

4

VF (V)

C1652

5
C1653

Fig. 4. Peak Forward Current vs.
Peak Forward Voltage

1.4

1000
500
tp

1.2

" " "-

W
> 1.0

~

....J

~

_

I

o

Fig. 3. Maximum Forward Current vs.
Pulse Time

W

tp = 10
tp

T

104

tp (S)

LIMITS

Ii

10

102

XSCATTERING _

III

':II

0.1

0.01

...

.;

T-

I' V 1/0.01

"-

0.8

"-

~

IF = 20 (mA)

0.6 e-

cP

-

i-' a rei -

cPa

cpe

(TA

I Iii

0.4

o

20

1f

w-

100

.x:!;(
....J....J

50

>w
->
1--

= 5 j.LS
= 0.0005

Ww
~a:

"

-$-;

~

..........

25°C)

./

1

Fig. 5. Relative Radiant Power vs.
Ambient Temperature

.. '

5
~

I I
80

",

10

100
C1654

/'
0.1

1

IF (A)

10
C1655

Fig. 6. Relative Radiant Power vs.
Peak Forward Current

161

COY99
TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (25°C Ambient Temperature Unless Otherwise Noted)
10°

20°

100

0°

10°

20°
30°

1.0
0.9

10

5

/'
I'

~
-2!

"

O.B

40°

0.7

50°

0.6

60°

0.5

70°

/

0.1
1

"

BO°
10
IF (mA)

50

100

0.4

0

0.2

Fig. 8. Spatial Distribution

1.0

I~

O.B

1\
1 1
I
\
II

0.4

,!

I

I

I

I

IF = 100 mA

11

\

J

0.2

I.

-) rei =
-)
- (nm)
Fig. 9. Spectral Distribution

NOTES
1. Distance from the touching border Z 1.5 mm with intermediate PC-board.

162

0.2

C1656

1040
C1658

REFLECTIVE OBJECT SENSOR

MeA7
PACKAGE DIMENSIONS

DESCRIPTION
The MCA7 optoisolator consists of an infrared emitting diode and a silicon planar photodarlington_ The
on-axis radiation of the emitter and the on-axis
response of the detector are both perpendicular to the
face of the MCA7. The photodarlington responds to
radiation emitted from the diode only when a reflective object or surface is in the field of view of the
detector.

FEATURES
PIN
1
2
3
4

.. High sensitivity
CI Lowcost
CI High reliability

LED ANODE
LED CATHODE
PHOTODARLINGTON COLLECTOR
PHOTODARLI.NGTON EMITTER

APPLICATIONS
Object sensing
.. End-of-tape sensing

II

ALL DIMENSIONS ARE IN INCHES

ABSOLUTE MAXIMUM RATINGS
Storage Temperature . . . . . . . . . . _55°C to lOO°C
Operating Temperature . . . . . . . . . _55°C to 100°C
Lead Temperature (Soldering, 5 sec) . . . . . . . 260°C
Total Power Dissipation
(25° Free Air Temp.) . . . . . . . . . . . .. 250 mW
Derate linearly from 25 u C . . . . . . . . . 3.3 mWtC

INPUT DIODE
Power dissipation at 25°C ambient . . . . . . 90 mW
Derate Linearly from 25°C . . . . . . . . 1.2 mW;"C
Forward current . . . . . . . • . . . . . . • . . _ 60 mA
Reverse voltage . . . . . . . . • . . . . . . . . _ ... 3 V
Peak forward current (1 f..Is pulse, 300 pps) .. 3.0 A
OUTPUT DARLINGTON
Power dissipation at 25°C Ambient ...•. 150 mW
Derate linearly from 25°C . . . . . . . . . 2.0 mW;"C
Collector Current . • . . . . . . . . . • . . . . . 25 mA
Collector to emitter voltage . . . . . . . . . . . . 30 V

ELECTRO-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)
CHARACTERISTIC
INPUT DIODE
Forward Voltage
Reverse Breakdown Voltage
Junction Capacitance
Reverse Leakage Current

OUTPUT DARLINGTON
Breakdown Voltage
Reverse Breakdown Voltage
Leakage current
Rise Time, Fall Time
COUPLED
DC Collector Current

SYMBOL
VF
BVR
Cj
IR

MIN.

3.0

TYP.

MAX.

UNITS

1.25
5.5
50
.01

1.50

V
V
pF

10

"A

BVCEO

30

55

V

BVECO

5

7

V

ICEO (dark)

Ie

5
0.6
.050

100

nA
mS
mA

TEST CONDITIONS
IF =20mA
IR = 10"A
VF=OV
VR =3.0V
IC = 1.0 mA
IF = 0 (NOTE 2)
IC = 100 "A
IF = 0 (NOTE 2)
V CE = 5V (NOTE 2), IF=O
V CE = 5V, RL = lKn
IF = 50mA
V CE = 5.0V (NOTE 1 & 2)
d = 1.0CM

163

MCA7
100

IF=50m~-:=

~

I
t-

~

VCE·-.5.0V
4'.... 4".90% REFLECTIVE CARD

0

15a:
a:

::>

u

~

::>

~

1

o
I
_u
.1
.25

.50

.75

1.0

1.25

d_ em

1.50
Cl017

CI016

Figure 2 Output Current vs. Distance

Figure 1 Parameter Symbols

10.0

=

~~mA
OmA

d-1.0cm
TEMp· +25·C=

r-- 40mA
r--30mA ."\.
r--20 m~~"\'
r-- 'OmA

1I
~
w
a:
a:

a

1
I

~"\

-

..-::

1.0

!;

~

o

.Y

V
0.1

o

a:
::>
u.

t::>

t:::>

---

,/

I

t-

15a:

o
I

.Y

8.0
12.0
4.0
18.0.
VCE - OUTPUT VOLTAGE - V

20.0
C1018

IF - INPUT CURRENT - rnA

C1019

Figure 4 IC vs. 'F

Figure 3 'C vs. VCE

r=

1. 5
~ 1. 4
.J

o

>
I

.3

'~"

1. 2

w

T

o
> .1i.---"
01

=ill~f':;"

......

1It'l1=+2~

a:

~

~ 1.0

. ·v
I

V

V

IF!J~

>

.2

~

!IVr

8

.1

~

~A=+1(Xt

.5

1

5

10

20

IF - FORWARD CURRENT - rnA

so

Cl020

Figure 5 Forward Voltage vs. Forward Current

164

1

'A

1

100

00

00
TIME

'.000
HOURS

000
Cl021

Figure 6 Lifetime vs. Forward Current

MCA7

'"0

1.0

z

TA=25°C

lrl

VCC=5V

0

TA

Fig. 9& Fig. 11

'"

:;

:iE

",0}2

I

;::
z
0
;::

0.5

-

in

z
..:
a:

l-

.~

)~

I

en
w
:0

,,/~
"I\1/I~
~J.
~~i'\";'''''
>

3

'~"

,/

./..",. 1<;"

;::

'"z

/

,,0

E

...J

'"w
:0

= 25°C

Vce = 5V

,I

..,? , /

2

U

I-

~

V

...

I

I

x

I-

Fig. 10 & Fig. 11

o
10

100

n

10K

5K

1000

RL - LOAD RESISTANCE -

n

Cl023

Figure 8. Saturated Switching Times
vs. Load Resistance

Figure 7. Non-Saturated Rise and Fall Times
vs. Load Resistance

Cl024

Figure 9. Non-Saturated Switching Waveforms

Figure 10. Saturated Switching Waveforms

10'

. - -.....- - - 0

50K

20K

RL - LOAD RESISTANCE -

CI022

.

_Ill'

+5V

oS

F

102

a:
a:

:::>

/

<.l

"a: 10
I

1

V

VeE

.1
CI026

Figure ". Circuit for Testing Switching Parameters

o

•

t
Cl025

/

V

~

.E

t

/

I::

I

~

•

25

50

i

75

lOV

100

T - TEMPERATURE _lOCI

125
Cl007

Figure 72. Dark Current vs. Temperature

165

64

MeA7
CIRCUITS TO INTERFACE THE MCA7 WITH 5V LOGIC

.,v

Cl030
Cl028

C1029

Circuit 1

Normally High Output

Circuit 2

Circuit 3

Normally Low Output

Comparator Driver

--t 1-.100"

IF_TI-~~---l
I·
I
I

.

c,.

I

'5V

I
I

REGION OF

I
I

EMITTER
COVERAGE

I
I

REGION OF
MUTUAL
COVERAGE.

REGION OF
DETECTOR
COVERAGE

I

I
L _ _ _ _ _ _ ...J
10K

C1031
Cl027

Circuit 4

Booster Drive to Logic Isolator

Spatial Distribution of Maximum Sensitivity

NOTES:
1. Photo current is obtained from a 4.0" x 4.0", 90% white surface pieced ata distance of 1.0cm from the surface of the MCAl.

2. Measured with radiation flux intensity of less than 0.1 "W/cm2 (dark condition) over the spectrum from 0.1 micron to
1.5 microns.
3. Measured at typical factory ambient of 150 foot-candles (150 lamberts per square foot).

166

SLOTTED OPTICAL LIMIT SWITCHES

MCA8
MCA81
PACKAGE DIMENSIONS

DESCRIPTION
The MCAB optical limit switch transmits light from a
GaAs infrared emitting diode to a silicon photodarlington detector. Both semiconductor chips face each other
across a .1-inch air gap. The MCA8 senses an object
that interrupts the beam. Output current will directly
operate a TTL Schmidt trigger.

ANOD:EJ~ ~HOT:D:::~~::::
CATHODE
3

PIN 1 ORIENTATION MARK
EMITTER

FEATURES

C997

• High sensitivity permits direct interface with TTL
logiC.
• Modular construction permits low cost package
modification to suit any application.
• Recessed detector provides a high signal to noise
ratio in ambient light.
• Plugs into standard DIP socket.
• Multiple flat reference surfaces allow precise
mechanical alignment of the optical beam.
• Absence of lensing provides position sensitivity
down to 0.020" between full on and full off.
• Solid copper lead-frame provides excellent heat
sinking and highest reliability for the LED.
• One piece construction of the emitter and detector
components provides excellent moisture resistance,
immunity from thermal shocks, high and low temperature stabil ity, and protection from shock and
vibration.

APPLICATIONS

.025 so. LEADS
0.30" MIN.
.12SDIA
2 HOLES

C99a
.047 D1A.

All dimensions are In inches.

Active area of LED is .014 x .014
Active area of Photo Darlington Is .010 x .020
'Dlmenslons ± .010 Inches

• Optical shaft position and velocity monitor using a
digitally encoded disk mounted on a shaft.
• Optical sensing of holes in paper, paper tape, IBM
card, or magnetic tape.
.
• Optical sensing of marks on paper, paper tape, or
IBM card.
• End of tape sensor using a transparent section of
tape, a reflective strip on the tape, or a hole in the
tape.
• End of film sensor for films not affected by infrared light .
• Limit switch for mechanical travel such as cam
switches, pressure switches, machine tool limit
switches, foot pedal switches, safety interlock
switches.
• Edge sensor for sheet materials such as paper, plastic
film, fabric, foil, newsprint, belt sanders, reproduction paper.
• Fiber continuity monitor for fibers such as yarn,
wire, thread.
• Fluid volume monitor by sensing turbine vanes
passing through the slot.
• Liquid level detector of an opaque liquid.

167

MCA8 MCA81
ELECTRO-OPTICAL CHARACTERISTICS
CHARACTERISTIC

.g.YMBOL.

MIN.

VF
BVA
IA

3.0

INPUT DIODE
Forward Voltage'
Aeverse Breakdown Voltage'
Aeverse Leakage Current
Junction C~pacitance
OUTPUT DAALINGTON-MCAB
Saturation Voltage
Collector Breakdown' Voltage
Emitter Breakdown Voltage

VCE{SAT)
BVCEO
BVECO

Dark Current-MCAB
Rise Time
Fall Time

ICEO
tr
tf
tON
tOFF
CTA

Turn-on Time

Turn-off Time
DC Current Transfer Aatio
OUTPUT DAALINGTON-MCABl
Saturation Voltage
Collector Breakdown Voltage
Emitter Breakdown Voltage
Dark Current
Ambient Light Leakage Current
Aise Time
Fall Time
Turn-on Time
Turn-off Time
DC Current Transfer Aatio

(25°C Free Air Temperature Unless Otherwise Specified)

VCE{SAT)
BVCEO
BVECO
ICEO

TYP.

MAX.

UNITS

1.25
25
.01
50

'1.5

V
V
jlA
.pF,

O.B
55
7

1.0

30
5

V
V
V

IC = 2 rnA, IF = 16 rnA (Note 1)
IC = 1 mA, IF = 0 (Note 1)
IC = 100 jlA, IF = 0

100

nA
rns
ms
rns
ms
%

VCE = 5.0 V.IF = 0 (Note 1)
VCE=5V,AL=1 K!1
VCE = 5 V, AL = 1 K!1
IF = 12 rnA, FIG 12
IF = 12 rnA, FIG 12

15

5
2.3
1.7
.3
1.0
30
O.B
55
7
5
2
.36
.3
.15
.2
B

1.0

V
V
V
nA
jlA
ms
ms
ms
rns
%

Ie = 1.6 mA,lF = 50 rnA (Note 1)
IC = 1 rnA, IF = 0 (Note 1)
IC = l00jlA,IF = O·
VCE = 5.0 V, IF = 0 (Note 1)
VCE=5.0V,IF=0
VCE = 5 V, AL = 1 K!1
VCE = 5 V, AL = 1 K!1
IF = 40 rnA, FIG 12
IF = 40 rnA, FIG 12
IF = 16 rnA, VCE = 5 V

30
5

tr
tf
tON
tOFF
CTA

4

10.

100

TEST. CONDITIONS
IF= 20. rnA
IA = lOjlA
VA;" 3V
.VF':'O

IF=16mA,VCE=5V

ABSOLUTE MAXIMUM RATINGS
Storage Temperature Range. • • . . . _65°C to +100oC
Operating Temperature Rijnge .... _55°C to +lOO~C
Lead Temp. (Soldering, 10sec) • . . . . . . . • . . 260°C
Total Power Diss. @ 25°C Free
Air Temperature . . . . . . . . . . • • . . • . 275 mW
Derate Li.nearly to lOO°C (OJ8).' . . . 1.65 mW/C
Input to Output Isolation Voltage ..••. 1500 vAC

Input Diode
Power Dissipation @25°C Ambient . . . . • • 90 mW
Derate Linearly from 25°C . . . • • . . • 1.2 mW/C
Forward Current • • • • • • • • • . • • . . . • . . 60 mA
Reverse Voltage ••••••.•••••••.••..• 3 V
Peak Forward Current
(1 p.s pulse, 300 pps) . • . . . . . . • • . • • . 3.0 A
Output Darlington
Collector-Emitter Voltage (BVCEO ) . . . • . . 30 V
Collector Current • • . . • • . . . . . . . . . • 100 mA

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25°C Free Air Temperature Unless Otherwise Specified)

'2

- I - ~O~A

~

'0

+rhp,ICAl-1=5r
R

MCA8
TA, =2S"C

I-

I-~

I-

H-r~~mAI

1.5mA-2mA

r-r-IF =4mA-

~

~IF=10mA

r-

Figure 1 Collector Current
vs. Collector Voltage

168

C999

-

0

NORMALIZED TO 100% AT 25°C_

M~AB. MCAB' I

VeE. volts

0

I-- I--

~ VCE =5V

'0%-50

o
o

TEST POINTS

......

I'\.

........ V

~ 100%

.P

II

TA",25°C

a

~

I

VeE ,.o.sv

'",

8,

6mAj.

I-

'00

-25

0

25

50

75

r--

100

TA - AMBIENT TEMPERATURE - DC

Figure 2 Collector Current
VI. Ambient Temperature

125
Cl000

.,

o

1.0

MC~"/

10

I-:

iii'
LI

IF - FORWARD CURRENT OF LED - mA

Figure j Collector Current
VI. LED Current

100
C100l

MCA8 MCA81
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES (Continued)
1.0

.5

9

.ar--

--

7
.6

-

r--...

5
IF -'6mA
Ie" 2mA

4

•
.3

0

,

MC~

r. ~,~~,~

3

TA

0

60

75

ac

.1

100

~j

I

I

~i~c9 : ~~~ I!

;;

10

20

..:::

'fp.\..\.

TA

I

50 IDO

100

Cl003

7

,

/
/'

V

V k::"

.b-~

"""
1000

100

n

5K

ClODS

1

Figure 7 Non-Saturated Rise and Fall Times
vs_ Load Resistance

10K

n

I

V
VeE

j IOV

1

50K

20K

RL - LOAD RESISTANCE -

Cl004

Figure 6 Lifetime vs.
Forward Current

Fig. 10' Fig. 11

RL - LOAD RESISTANCE -

100,000

TIME - HOURS

o~

~\"'~

I

10,000

,0

o
10

2~;:~:

1000

I

.....

=

10'

I

,~'"

r-r--

5

1111

TA=2S0C

I
...("'~

"i= o. 5

1

Vee" 5V

~

I

If!

-', ,,311\

Figure 5 Forward Voltage
vs. Forward Current

vs, Temperature

r. -25"C

,5

:..--

IF - FORWARD CURRENT - mA

Cl002

Figure 4 Saturation Voltage

~ 1.0

.2

0

"IJ~
T,Vj

8
25

-25

TA - AMBIENT TEMPERATURE -

~
....

~ ~100·C

' ......

0
-50

is
~

\

V

2
1

.
~
:.~

1'1'.:' ••2[;

.1"

C100S

Figure 8 Saturated Switching Times
vs. Load Resistance

25

50

75

100

125

T - TEMPERATURE - (OC)

CIOD7

Figure 9. Dark Current
VS.

Temperature

O.5V

.,

"1 I

•

CIOOS

PW = 10-100 msec
DC = 10%

tr tf - .. 10 nsec

1
C1009

Figure 11 Saturated Switching Waveforms

Figure 10 Non-Saturated Switching Waveforms

, - -....- - - 0 +5V

~

Cl010

Figure 12 Circuit for Testing Switching Parameters

169

MCAS MCASI
10K-12K

tON <.5m=-

tOFF<1.5ms
1/6DTL937

!/S TTL 9016
116 TTL 7404

C1012

Figure 13 Driving Two Hex Inverters

Figure 12 Driving a TTL Schmidt Trigger

DIFFUSED SURFACE
IS SCREEN

~
.

LED

/:

:/

PAPER
P/DARLINGTON

-

-~I

IF-TIl
: ?}
MCAS

II
II
II

MCAB

,---.

r---'

I

II
II

I

"---"""'-I-...,-+5V

I

'-L--"~

L ______ J
Cl014

Cl013

Figure 14 Detecting Paper by using a Lens Screen

Figure 15 TTL Logic Interface

NOTES
1. Measured with radiation flux intensity of less than 0.1 /J.W/cm2 (dark condition) over the spectrum from 0.1 micron to 1.5 microns.

170

SLOTTED OPTICAL LIMIT SWITCHES

MCTa
MCTal
DESCRIPTION

PACKAGE DIMENSIONS

J G
,

ANODE

V

LE:

The MCT8 optical limit switch transmits light from a
GaAs infrared emitting diode to a silicon phototransistor. 80th semiconductor chips face each other across
an .1-inch air gap. The MCT8 senses an object in the
air gap by the effect on light transmission

4

COLLECTOR

PHOT:TRANS'STOR

CATHODE

EMITTER

C437

FEATURES
PIN' ORIENTATION MARK

• Transistor detector allows faster switching speeds
than darlington detector.
• Modular package design permits low cost package
modification to suit any application.
• Recessed detector and use of black plastic provide
a high signal to noise ratio in ambient light.
• Plugs into standard DIP socket.
• Solid copper lead-frames provide excellent heat
sinking.

APPLICATIONS
C438

-w-

lril·
-- - -.

I
.250
--.L

!
.430

:'::'::':~
,

,

_300

_025 so. LEADS
0,30" MIN.

• Optical shaft position and velocity monitor using a
digitally encoded disc mounted on a shaft.
• Optical sensing of holes in paper, paper tape, IBM
card, or magnetic tape.
• Optical sensing of marks on paper, paper tape, or
IBM card.
• End of tape sensor using a transparent section of
tape, a reflective strip on the tape, or a hole in the
tape.
• End of film sensor for films not affected by infrared light.
• Limit switch for mechanical travel such as cam
switches, pressure switches, machine tool limit
switches, foot pedal switches, safety interlock
switches.
• Edge sensor for sheet materials such as paper, plastic
film, fabric, foil, newsprint, belt sanders, reproduction paper.
• Fiber continuity monitor for fibers such as yarn,
wi re, th read.
• Fluid volume monitor by sensing turbine vanes
passing through the slot.
• Liquid level detector of an opaque liquid.

Dimensions ± .010 inches
All dimensions are in inches.

171

MCTa MCTal
ELECTRO-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)

CHARACTERISTIC

INPUT DIODE
Forward Voltage
Reverse Breakdown Voltage
Reverse Leakage Current

'OUTPUT TRANSISTOR-MCTS
DC Collector Current
Saturation Voltage
Collector Breakdown Voltage
Emitter Breakdown Voltage
Dark Current
Rise Time
Fall Time
Turn·on Time
(from 5 V to O.S V)
Turn-off Time
(from SAT. to 2 V)

OUTPUT TRANSISTOR:-MCTSI
DC Collector Current
Saturation Voltage
Collector Breakdown Voltage
Emitter Breakdown Voltage
Dark Current
Ambient Light Leakage Current
Rise Time
Fall Time
Turn-on Time
(from 5 V to O.S V)
Turn-off Time
(from SAT to 2 V)

SYMBOL

MIN.

TYP.

-MAX.

VF
BV R
IR

1.30
20
.01

1.50

3.0

Ic
VcE(SAT)
BVCEO
BVECO
ICEO
tr

.200
30
5

0.4

100

IF = 20 mA
I R = lO flA
V R =3 V

mA
V
V
V
nA
flsec

IF = 20 mA, VCE = 10 V
Ic = 50 flA, IF = 20 mA (Note 1)
Ic = 1 mA, IF = 0 (Note 1)
Ic = 100flA, IF = 0
VCE =10.0 V,I F = 0 (Note 1)
Vcc = 10 V, l"c = 1 mA
RL = 100 n CIRCUIT 1
Vcc = 10 V, Ic = 1 mA
RL = 100 n CIRCUIT 1
IF =40 mA CIRCUIT 2
Ra = 1.2kn, RL = 2.4kn
IF = 40 mA CIRCUIT 2
Ra = 1.2kn, RL = 2.4kn

4

/lsec

tON

6

flsec

tOFF

4

flsec

50

tr

100
0.2
55
7
5
0.30
3

tf

4

flsec

tON

6

flsec

tOFF

3

/lsec

Ic
VcE(SAT)
BVCEO
BVECO
ICEO

30
5

Storage Temperature Range ...• -65~C to +100oC
Operating Temperature Range ... _55°C to +100°C
Lead Temp. (Soldering, 10 sec) . . . . . . . • . 260°C
Total Power Diss. @ 25°C Free
Air Temperature . . . . . . . . . . . . . . •. 275 mW
Derate Linearly to 100°C (OJA)' ...• 3.7 mWlC

p.A

0.4

100

TEST CONDITIONS

V
V
flA

tf

ABSOLUTE MAXIMUM RATINGS

172

1.0
0.2
55
7
5
5

10

UNITS.

V
V
V
nA
flA
flsec

IF = 20 mA, VCE = 10 V
Ic = 25 flA, IF = 20 mA (Note 1)
Ic = 1 mA, IF = 0 (Note 1)
Ic = 100flA, IF = 0
VCE = 10.0 V,I F = 0 (Note 1)
VCE = 10.0 V,I F = 0
Vcc = 10 V, Ic = 1 mA
RL = 100 n CIRCUIT 1
Vcc = 10 V, Ic = 1 mA
RL = 100 n CIRCUIT 1
IF =40 mA CI RCUIT 2
Ra = 1.2kn, RL = 2.4kn
IF =40 mA CIRCUIT 2
Ra = 1.2kn, RL = 2.4kn

Input Diode
Power Dissipation @ 25°C Ambient ....••. 90 mW
Derate Linearly Above 25°C . . . . . . . . . 1.2 mW/oC
Forward Current . . . . . . . . • . . . . . • . • . . . 60 mA
Reverse Voltage . . • . . . . . . . . . . . . • • • . . • . 3 V
Peak Forward Current
(1 fls pulse, 300 pps) . . . . . . . . • • . . . . . 3.0 A
Output Transistor
Collector-Emitter Voltage . . . . . . . . . . . . • • . 30 V
Emitter·Coliector Voltage . . • . • . . . . . .. . •. 5 V

MCTa MCTal
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25°C Free Air Temperature Unless Otherwise Specified)

90

300

'0
VF VS1F

'"

70

1

-

60

~

E

1

1

~
a
~

~

1r

V

I-

I-

50

30

~

1

I

40

1

u

"



1

VS.

-

0

/
.2

200

:l

~

~

-50

-25

50

25

75

AMBIENT TEMPERATURE (TAl -

gc

100

100

1000

C443

LOAD RESISTANCE !ALI - n

C444

Fig. 4. Saturation Voltage vs. Temperature

Fig. 5. Non·saturated Rise and Fall Times
vs. Load Resistance
(See Circuit 1)

.

10'

PULSE

.70

~

V

'"1 10 .,

Vcc ·,0VOLTS

l/~ ~~
v.;~ VV
r/

I-

INPUT

i5

-

~ .,
am

DETECTOR

~

PULSE
'---~t-~. OUTPUT

~

I,

to "=

1

o

~ 10

C83B

Circuit Used to Obtain Switching Time vs. Collector Current Plot

Fig. 6.

"=-

.,

VeE'" 70V

YCE:= 5~V""

I-VCE '= 25V
I I
I

~ ~V

i"ir'

10
-20 10 0 10 20 30 40 50 60 70 BO 90 100

-

TA - TEMPERATURE -

~c

CB12

Fig. 7. Dark Current va. Temperature

173

MCTa MCTal
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES (CONT.)

+5V

PW = 10·100 "S8C

PULSE

DC =10%

INPlTT

,,~~

tr tf = <10 nsec

V out

C446

(CIRCUIT 21

Fig. 8.

DIFFUSED SURFACE

. IS SCREEN

PAPER

C447

Fig. 9. Detecting Paper by Using a Lens Screen

NOTES:
1. Measured with radiation flux intensity of less than 0.1 /lW/cm2 (dark condition) over the spectrum from 0.1 micron to 1.5 microns.

174

HIGH POWER INfRARED EMITTERS

ME7121
ME7124
PACKAGE DIMENSIONS

DESCRIPTION

.055
-. - ,
DIE SEATING
_-r··-PLANE

.--

I

1flO
I

.Jo

r--t--.......,

-SEATING PLANE

~I
.030

This family of high power liquid phase
epitaxial I R Emitters is designed to accommodate all needs of the emitter detector
relationship. Products range from a wide
angle power spread for non-critical detector
location to sharp-angle concentration of
power for detectors located a significant
distance from the emitter. The devices can
be mounted with a plastic pop-in, furnished
upon request.

.040 I

I

~-T

.450

±.01iO
LEAD CROSS SECTION
~"-........OO5 R
.025 SO
TYP

m

...L

--111-.025

~.100J

C1139

ALL DIMENSIONS IN INCHES
TOLERANCES" ±.010 UNLESS SPECIFIED

C704

ABSOLUTE MAXIMUM RATINGS
Power dissipation @ 25°C ambient .... _ ......... _ . . . . . . . . . . _ . . . . . . . . . . . . . . . . . . . . . . . . . 150 mW
Derate linearly from 50°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8 mW/C
Storage & operating temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _55° to 100°C
Lead solder time@ 230°C (Note 3) . . . • . • . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 sec
Continuous forward current. . . • . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA
Reverse voltage ..•.. '.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3.0 V
Peak forward current (PW ; 1.0/Jsec, Duty Cycle; 0.3%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1.0 A

175

ME7121 ME7124
ELECTRO-OPTICAL CHARACTERISTICS
TYPICAL
HALF'ANGLE
(DEGREES)

TYPICAL
ON AXIS INTENSITY
(MW/STR.) @ 50 rnA

17·
6°

2.0
10

ME7121
ME7124

TYP.

MIN.

Total External Output Power (Note 2)
Peak Emission Wavelength
Spectral Line Half Width
Forward Voltage
Light Turn On & Turn Off Time
Reverse Current

{

500

mW
nm
nm
V
nsec

10

JlA

940
50

1.4

TEST
CONDITIONS

UNITS

MAX.

3.0

1.0

. into cone @ 1/2 power points
@ IF = 50 mA
ROP= 3 mW

1.8

IF = 50 mA
IF = 50 mA
IF = 50 mA
IF = 50 mA
50
Load
V R = 3.0 V

n

PANEL
MOUNTING
TECHNIQUES

h

NOTES:
TOLERANCE

:
m
r.'80DIA·

.25ooIA·tli
I

I

I

~.010

MATERIAL: POLYPRQ OR
EQUIVALENT
FOR MOUNllNG DRILL

A .25" HOLE
PANEL MAX .. 125"

dj5

,

I!

J- .310 CIA. -..j

.025

SECTION A A

SECTION B B

C713

MOUNTING GROMMET

PANEL MOUNTING

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25°C Free air temperature unless otherwise specified.)

10.0

7.0

4.0

TC - 25°C
SEE NOTE 4

80~+-+-4-~~-+-H~--~~
I-

70~+-+-4-~~-+~~--~~

:iia:

60~+-+-4-~~-+4K~--~~

:::l

50~+-+-4-~~-+~~--~~

"a:

40~+-+-4-~~-+~~--~~

'"

30~+-+-4-~-+-+~~--~-t-1

~

20~+-~-4-~~~~~--~~

a:
u

s:
a:

2.0
0.7
0.4

0.2

10~+-+-4-~-+-I-4~--~+-~
.2

.4

.6

.8 1.0 1.21.4 1.6 1.8

FORWARD VOLTAGE (V F ) VOLTS

Fig. 1. 'F

176

vs. Vi:'

C408

/

1.0

V

O. 1
10

/
400

1000

FORWARD CURRENT (IF)-mA

C409

40

100

Fig. 2. ROPvs.IFPeak

ME7121, ME7124
TYPICAL ELECTRO·OPTICAL CHARACTERISTICS (Cont.)
(2SoC Free Air Temperature Unless Otherwise Specified)

170%
150%

ciUT~UTI
r- -~ELlT1JE
VS. TEMPERATURE
IF - 50 mA

130%

"' "\

"\

110%

"\

90%

"\
I\.

70%
50%
-60· -40'-20' 0'

40·

"'

80·

120·

160'

TEMPERATURE ·C

.5

.4

.3

.2

.1

0

C410

C1275

Fig. 4. Spatial Distribution

Fig. 3. ROP vs. Temperature
(Note 1)

(ME7121)

1.0

I\

.9

II \

.8

.7

J

.6

I

.5

I

.4

.3
.2
.1

.5

.4

.3

.2

.1

o

0

C1276

Fig. 5. Spatial Distribution

/

"

\

\
\
1\

"' ...... t--

860 880 900 920 940 960 980 1000 1020 1040
WAVELENGTH -;\ - nm
C379

Fig. 6. Spectral Distribution

(ME7124)

NOTES
1. The curves in figure 3 are normalized to the power output at 25°C to indicate the relative efficiency over the
operating temperature range.
2. The total external radiated power output measurements are made with a Centralab 110C solar cell terminated into a
1000. impedance.
3. The leads of the ME7121 and ME7124 were immersed in molten solder, heated to 230"C, to a point 1/16 inch from
the body of the device, per MIL-S-750.
4. This parameter is measured using pulse techniques pw = 40 lJSec duty cycle <.10%.

177

178

INFRARED EMITTER

ME7161
DESCRIPTION

PACKAGE DIMENSIONS

The ME7161 is a liquid phase epitaxial gallium arsenide
infrared diode. The lead·frame construction is encapsulated in an epoxy case and lens.

BLACK MARK
INDICATES
CATHODE

H

I

1+1
1-1

(+1

ANODE
I

1 'O'S~1
.020

:~~
C1141

P --r--lCp---- - ~

~-~.~
.250

.1;0

.250

MIN.

.090

MIN.

FEATURES

I

The ME7l6l is intended for high volume infrared
source application where low cost, high reliability
and high density packaging are required .

_

•
•

NOTE:
'.CENTERLINE OF STUD TO CENTERLINE

OF LENS TlR :1:.010
2. TOLERANCE = tOlD UNLESS OTHERWISE

SPECIFIED

a

•
•
•
•

Low cost
Compatible with integrated circuits
Long life, rugged
Small size
Easily assembled in linear arrays
Card & tape reader sources
High on-axis power

,c;::t==+:==pc::::rJ

--r
C694

ABSOLUTE MAXIMUM RATINGS
Power dissipation @ 25°C ambient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 mW
Derate linearly from 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 mW/C
Storage & operating temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _55°C to 100°C
Lead solder time @ 230°C (See Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 sec
Continuous forward current........ ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA
Peak forward current (1 j1sec pulse width, 0.3% duty cycle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 A
Reverse voltage . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . 3.0 V

ELECTRO-OPTICAL CHARACTERISTICS

(25°C Free Air Temperature Unless Otherwise Specified)

CHARACTERISTICS

MIN.

TYP.

Total external radiated power (see Note 2)
Peak emission wave length
Spectral line half-width
Forward voltage
Reverse current
Light turn-on and turn-off
Capacitance
Forward voltage temperature coefficient

0.8

3.0
940
50
1.3
10
500
80
-1.05

MAX.

1.8

UNITS

TEST
CONDITIONS

mW
nm
nm
V
JlA
ns
pF
mV/C

IF = 50 mA
IF = SOmA
I F =50mA
IF = 50 mA
VR=3.0V
SOn Load
V=O
IF = 10 mA

179

ME7161
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25°C Free Air Temperat~re Unless Otherwise Specified)

100

100

,/

90

'"~

80

!5

70

,/

10

:J

1=

60

~

50

:J

/

!;;c 40

/

~ 30

'"
20

30

40

DC INPUT CURRENT - rnA

10

1/

50

1

140

...

......

120

1

20 30 40 5{)" 60 7rf> 80
CONE OF HALF ANGLE - e

90

e37S

e375

........

a

I 100

20r--t---f-f-r--1t---i

w

l°r--t-~-+f--rt~t---i

~

80

.......

.9

~

.8

~

.7

~

.6

I

.5

~

/'\

II \
I

/
'/

til .4

\
\

rii

2: 60

_

~

a;

""

~
~

Fig. 3. SpatialOistribution
(Note 3)

~ 1.0

.........

........

:J

30~-+---

I-

Fig. 2. Percent of Radiated Power
Into Cone of Half Angle

Fig. 1. Input Current vs.
Output Power

I

HALF ANGLE s

"

10

C374

~

PERCENT OF RADIATED

POWER INTO CONE OF

J

~ 20

L
10

/

i5

/

~

80

~ 70

,/

a 50
~
~ 40
a
~30

r

90

'"a~

,/

5
60
a

~ 20

V

~ .3
~

40

.2

I'
g.~ ,..,

\

i=

20-SO

-40 -20

0

20

40

60

80

AMBIENT TEMPERATURE -"C

100
e37S

....... ~

860 880 900 920 940 960 98010001020 1040
e379
WAVELENGTH - '" - nm

FORWARD VOLTAGE (VF) - VOLTS C377A

Fig. 4. Forward Current
vs. Forward Voltage

Fig. 5. % Relative Output v•.

Fig. 6. Spectral Distribution

Temperature

NOTES

""6

1. The leads of the device were immersed in molten solder, heated to a temperature of 230°C, to a point
inch
from the body of the device per MIL-5-750.
2. The total external radiated power output measurements are made with a Centraiab ',,0C solar cell terminated
into a 100n impedance.
3. The axis of spatial distribution are typically within a 10° cone with reference to the central axis of the device.

180

SILICON PHOTOTRANSISTOR

MTl
MT2
PACKAGE DIMENSIONS

DESCRIPTION
The MT1 and MT2 silicon phototransistors are mounted on a standard T046 header. The MT1 features a flat
window mounted at the top of a protective metal can.
The MT2 has a lens in the same position for an optical
gain of 4 .
.150" DIE
SEATING

I ..i-

.220"

l}95"

.500,,·~t-L
MIN

T---::;

1'.019r.

046"~

.

,

t~:g ~ ~~~ECTOR

046"

.100"

e:J fl fl

II
II

.024"

~/":":8"

II
II

.033" "'-~

L

II

.046"
45' .036"

_
2

v---o

3

~1

MT2

NOTE: Active Area'" .032" x .032"

ABSOLUTE MAXIMUM RATINGS

Low leakage current - 1 nA
Wide Spectral Response
Responsive to GaAs - lAO mA/mW /cm 2
Optional flat lens (MTl) or built-in optics (MT2)
Standard Transistor (Hermetic Seal) package for
easy handling and mounting

'" Optical switching & encoding
II I ntrusi on Alarm
II Process Control
II Tape and Card Reader
II Level & I ndustrial Control
II Optical Character Recognition

C726

2

MTl

+

4°F36"

(9.,

3

MIN

.018"

,~,,'O'6"~
~

NOTE
LEAD 1 EMITTER

.5oo,,·E:i=i~i3T

~

ffl

FEATURES

PLANE

Storage and Operating Temperature _55°C to 125°C
Maximum Lead Solder Time @ 260°C (See Note 1) - 7.0 sec

Power Dissipation @ 25°C Ambient .
Derate Linearly from 25°C
Colledor-Emitter Breakdown Voltage (BV cEo )
Emitter-Collector Breakdown Voltage (BV ECO )
Collector-Base Breakdown Voltage (BV cBo )
Collector Current (Ic) . • . _ . _ •. _ . _ • . .

ELECTRO-OPTICAL CHARACTERISTICS
CHARACTERISTICS 8: SYMBOLS
Sensitivity MTl (see note 3) (SCEO)
Sensitivity MT2 (see note 3) (SCEO)
Sensitivity MTl (see note 4) (SCEO)
Sensitivity MT2 (see note 4) (SCEO)
Sensitivity MTl (see note 3) (Sc BO)
Sensitivity MT2 (see note 3) (SCBO)
Sensitivity MTl (see note 4) (SC'B 0)
Sensitivity MT2 (see note 4) (SCBO)
Collector-emitter saturation voltage (VCE(sat)
Light current rise time (see figure 8) (t,)
Light current fall time (see figure 8) (t,)
Delay time (see figure 8) (td)
Frequency response

200mW

2.0mWfC
30 V
. 7.0 V
. . 80V
40mA

(25'C Free Air Temperature Unless Otherwise Specified)
MIN. TYP.
200
500
80
200
1.4
3.5
0.6
1.5

560
1400
260
650
2.5
6.2
1.0
2.5
0.2
2.0
2.0
1.2
300

MAX.

0.5

UNITS
pA/mW/cm'
pA/mW/cm'
pA/mW/cm'
pA/mW/cm'
pA/mW/cm'
pA/mW/cm'
pA/mW/cm'
pA/mW/cm'
V
ps
ps
j1S

kHz

TEST CONDITIONS
A=0.9 microns, V cE =5_0 V
A=0.9 microns, VCE=5.0 V
2875'K, V cE =5.0 V
2875' K, V cE =5.0 V
A=0.9 microns, V cE =5.0 V
A=0.9 microns, V cB =5.0 V
2875' K, V C B=5.0 V
2875'K, V cB =5.0 V
Ic=2.0 mA, H=10mW/cm'
V cc =5.0V,l c =2.0mA, RL =100n
Vcc=5.0V,lc=2.0mA, RL =lQOn
Vcc=5.0V,lc=2.0.mA, RL =lQOn
Vcc=5.0V,l c =2.0mA,R L =100n

181

MTl MT2
ELECTRO-OPTICAL CHARACTERISTICS

(25°C Free Air Temperature Unless Otherwise Specified)

CHARACTERISTICS

SYMBOLS.

Collector dark current (see note 2)
Collector dark current (see note 2) ,
Collector base breakdown voltage (see note 2)
Collector emitter breakdown voltage (see note 2)
Emitter collector breakdown voltage (see note 21

. .MIN .

TYP.

MAX.

UNITS

r

20
10

80
'30
7

0.15
140
65
12

nA
nA
V
V
V

I.CEO
ICBO
BV CBO
BVCEO
BV EGO

TEST
CONDITIONS

V cE =5.0 V
V cB =5.0 V
Ic=100 jlA
Ic=100 /.LA
iE=100 jlA

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
10.0

(25°C Free Air Temperature Unless Otherwise Specified)

MT·'

::~r-t--

TA

2
1

=25°C

, .•,.
~:~r-r-"7. ,.....,,"'"
."r-r".
,
::~r-:: P'"'" "" ..
:;~f-+-

5.0
E 4.5

!

4.0

F- r---

2 ~:~f--I-2.'
2,.

....,

co

6mw/cm1

H" 4",~/c",1

1.

10

15

20 25 30 35
VeE IN VOLTS

40

1.-

..'\

/

,,">

20

40

1

2

2
0

/

6
4
2

.CJ

3

'\.

8

•
2

TEMPERATURE 1°C)

100

6

7

8

I

9

0,8

"-

\

:c'"3:

f--

'~

0,6
0

..
"

V

ME7120
{ ME7140

...... V

rMV10B

~V50

-

0 2
% RELATIVE RESPONSE"OF SILICON DETECTOR

C730

Figure 3 $pectral Response

Rl. "I Kn

"'- ........

500n

'\.

.......

.........

loon

10
C732

, Figure 6 Angular Response

4

3
2

.

t", - PULSE WIDTH TIME

~~TIM~

8

•

DELAY TIME

4

t, - FALL 1~~E-

3
2

>

7

.! -kl~J ~!llJ

8
6
4

3
2r-- 10K

2

4 6 8100K 2
4 6 81M
Re .- BASE RESISTANCE - n

Fig. 8 Switching Time

C735

VS.

Base Resistance

NOTES
1. The leads of the device were immersed in molten solder. heated to a temperature of 2600 C, to a point 1/16-inch
from the body of the device per M/L-S-750.
2. Measured under dark conditions H<'1_0jlW/cm2.
3. Measured with a GaAs light source at 0.9 microns with a radiation flux density of 3 mW/cm2_
4. Measured with a tungsten filament lamp operated at a color temperature of 28750 K with a radiation flux density
of5mW/cm2.
.
.

182

MV52

.3
C729

Figure 5 Rise Time VB. Collector Currenr

Fig. 7 Circuit Used to Obtain Switching Time vs.
Collector Current Plot

MV53

Vee" 5 V

0.030.050.1
1.0
Ie - COLLECTOR CURRENT rnA

C731

- --

~ 0"

10

0

120"

Figure 4 Leakage Current vs. Temperature

5

z

Tc" 287So K

--

6

80

4

lOT)':::

IRRADIATION (mW/cm~)

"\

•

0·/

60

."'1---'"

t;

,

Figure 2 Photo Current vs. Irradiation

""c,1b

~~
/'
b

~

8

~v

~(,~

•

/

~

:E:

-

~"

-9101

/V

~

o

45 50
e72S

V

Hr

10":20

~

. --'

H-1mWem'

5

Figure 1 Collector-Emitter Characteristics

~

~"/

2

1

~ D.

L ED LIGHT
SOUReES

-- -- - -- .......

,1
1

i

",V

3

1.5f--r---- H .. 2mW/crn 1

TA·2SoC

,2"

u 1,0

8

6

t\

•

1.

-'"~

•
,
,
•

ltnll-UC;IfI

<

vee" S.OV A =0.9#01"1-

0

C733

SILICON PHOTOTRANSISTOR

MTB020
PACKAGE
DIMENSIONS

DESCRIPTION
.OBO"R

1 -

.3.D"r

- - - - DIE SEATING PLANE

1T-jr-+--+-----+-++

.lB5"DIA

APPLICATIONS
COLLECTOR

INDEX NOTCH

j

.025"

CD

= ,i

.01"

~

".-+~;_~

TOLERANCESi,OI0"

••---'-I
COLLECTOR

TOP VIEW
EMITTER

-.10"-1

The MT8020 is an NPN silicon planar phototransistor
in a clear epoxy T-l 3/4 lamp package. The infrared
emitter mates for the MT8020 are the ME7121 and
the ME7124.

C599B

When used as an emitter-detector pair the MT8020 and
the ME7121 or ME7124 are suitable for the following
applications:
• Optical shaft position and velocity monitor using a
digitally encoded disc mounted on a shaft.
• Optical sensing of holes in paper, paper tape, IBM
card or magnetic tape.
• Optical sensing of marks on paper, paper tape, or
IBM card.
• End of tape sensor using a transparent section of
tape, a reflective strip on the tape, or a hole in the
tape.
• End of film sensor for films not affected by infrared light.
• Limit switch for mechanical travel such as cam
switches, pressure switches, machine tool limit
switches, foot pedal switches, safety interlock
switches.
• Edge sensor for sheet materials such as paper, plastic
film, fabric, foil, newsprint, belt sanders, reproduction paper.
• Fiber continuity monitor for fibers such as yarn,
wire, thread.
• Fluid volume monitor by sensing turbine vanes passing through the ·slot.
• Liquid level detector of an opaque liquid.

ABSOLUTE MAXIMUM RATINGS

Storage and Operating Temperature -ssoe to 1000 e
Maximum Lead Solder Time @ 2300 e (See Note 1) -S.O sec
Power Dissipation @ 2Soe Ambient . _ ... _ . . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . . . . . . . . . 200 mW
Derate Linearly above 2Soe Ambient . . . . . . . . . . _ . . . . • . . . . . . . . . . . . . . _ . . . . . . . . . . . . . 2.67 mWfe
Collector-Emitter Breakdown Voltage (BVCEO) ... _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 V
Emitter-Collector Breakdown Voltage (BVECO) . _ . _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7.0 V
Collector Current (lc) ....... _ . . . . . . . . . . . . • . . . . . . . . _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 mA

183

MT8020
ELECTRO-OPTICAL CHARACTERISTICS
CHARACTERISTIC

(2S0C Free Ai,Temperature Unless Oth~"Nise Specified)

SYMBOL

MIN.

TYP.

Sensitivity !light
current)

Sceo

12S

3SO

Sensitivity (light

Sceo

SO

BVeeo

30

UNIT

MAX.

TEST CONDITIONS

;tA/mw/cm 2

V e'. = SV

source =. GaAs
(note 4)

;tA/mw/cm 2

140

Vee = SV
source·'= tu~gsten'

·~current)

(note 3)

Collector emitter
breakdown voltage
Collector dark

l,S

Iceo

current
Emitter Collector

65

7

BVeco

SO

12

Volts

le=100;tA
(note 2)

nA

V e.=10V
(note 2)

Volts

I. = 100;tA

Volts

Ie = 1.6mA
H = 10mw/cm2

breakdown voltage

Collector emitter

V e• (SAT)

0.2

0.4

saturation valtage

source = GaAs
(note 4)
Switching Speed

ton

2.S

#sec

Vee = S.O V
le=1.6mA

toff

1.8

,usee

RL = lOOn
(figure 7)

Current transfer
ratio -ME7124

CTR

2.0

%

Vee = 5V, when coupled
to ME7124 at If = 20mA.
MT8020 to ME7124 distance
is .200"

Current transfer
ratio -ME7121

CTR

O.S

%

Vee = 5V, when coupled
to ME7121 at If = 20mA,
MT8020 to ME7121
distance is .200"

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES

10.0
9. 5
9. 0
8. 5
8. 0
7.'5
7. 0
6. 5
6.
5. 5 . /
eC 5.
E 4. 5~
~ 4.
... 3 . 5 -

1.4
A =, 0.9~

V

/

/
/

H~6mw/'m~

",1/1,,""

23
2 .5
2 .0 .........
I .5

./
fo"'"

15

_I"""

20 25 30 35
VeE IN VOLTS

0.8

...>~

o. 7

~

r-

o. 6
0, 5

.........

,....
,....., V

,.....,

.........
./

"

/

V

O. 4

40

45 50
C728

Fig. 1. Collector·Emitter Characteristics

184

~ 0.9
l:

l;

LED LIGHT
SOURCES

t--

i

z

H =lmW/cm'
10

-- --

l"-

a:

:/

H =2mW/cm'

I

VI

u 1.0

~,
,,,,1/1,'''' . . .
", . ~

-

1.2

~ 1. I

~,,"" .....

,I.

H ...

o'fo"'"
.5 .........
o

TA" 2S"C

TAl "'251o C

o. 3

0

~o

0

,0 EO

0

,0

90

0o

% RELATIVE RESPONSE OF SILICON DETECTOR

Fig. 2. Spectral Response

C730

MT8020
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
10-'

100

/
/

~
Qo

V

I

,

I-

ZN 50

\

;i~

1-::;; 40
1-0:
Zo 30

'f

,c-

0'

DISTANCE

1\

VlW

0/

10·'.20'

=LL.P=

\

0:1- 60
w«

LLC

.J.c-'v

V

1\
\
70
80

II

;ic

;}/

.
.

MT 8020 COUPLED TO
ME 7121

90

"-

~z

0:

:::>

....... 1'--.

I

20

t,)

10

20'

,
60

40

,
100 120'

80

TEMPERATURE ('t)

o

C731A

a

.1

.2

.3

.4

.5

.6

.7

.8

.9 1.0

DISTANCE BETWEEN EMITTER AND
DETECTOR (INCHES)
C1281

Fig. 3. Leakage Current vs. Temperature

Fig. 4. Normalized Current Transfer

,..- r-

100
90

~,

80

!;(::;l

70

Q8

Ratio vs. Distance Between Emitter

~

\

0: "
0: C 60

50

~~

40

«w

0'

::[)I-IO=

10'

DISTANCE

20'
30'

r\.

wI-

~~

and Detector MTB020 and ME7121.

MT 8020 COUPLED TO
ME 7124

100%

I\.

"

1-«

ffi~ 30

40'

"-

0:0

~Z 20

~

50'

tJ

60'

10
70'

o

o

.1

.2

.3

.4

.5

.6

.7

.8

.9

1.0

DISTANCE BETWEEN EMITTER AND
DETECTOR (INCHES)
C1282

Fig. 5. Normalized Current Transfer
Ratio vs. Distance Between Emitter
and Detector MTB020 and ME 7124.

80'

t:t:::t=:t=f:::j:::::jt::o!:::::::t!:::::::t::::jj 90'
50% 40% 30% 20% 10% 0%

C1283

Fig. 6. Angular Response

Fig. 7. Circuit Used to Obtain Switching Time
Values Light Source is ME7121 or ME7124

NOTES
1. The leads of the device were immersed in molten solder, heated to a temperature of 230°C, to a point 1/16-inch
from the body of the device per MIL-S-750.
2. Measured under dark conditions H~1.0 IJ.w/cm2.
3. Radiation source is an unfiltered tungsten filament bulb at 2875" K color temperature. H = 5 mW/cm 2 .
4. Radiation source is a GaAs infrared emitting diode such as a ME7121 or ME7124 at A = 0.94 microns. H = 3 mW/cm 2 .

185

186

Displays

187

DISPLAYS
PACKAGE

~
I

I

I

B
~

Lm:llEmmm.fiJ,lil!it!1

DEVICE
NO.

DESCRIPTION

Red

.270·lnch; Common Anode; LHDP; Direct View

MAN10A

MAN1001A
Red
MAN101A

.270·lnch; Common Anode; Polarity/Overflow;
Direct View

.320·lnch; X·Y 35 Diode, Alphanumeric;
Direct View

125!,cd @ 10mA

201

MAN2815

Red

.135·lnch; Common Cathode; 14 Segment
Alphanumeric; 8-Characters

60!,cd @ 2.5mA
(avge. curr.)

203

MAN3810A

510!,cd @ 10mA

207

320!,cd @ 10mA

, 219

510!,cd @ 10mA

·207

Red

125!,cd @ 10mA

·207

Yellow

320!,cd@ 10mA

207

()range

B

.3-lnch; Common Anode; RHDP

Orange

510!,cd @ 10mA

207

MAN3940A

High Eff. Red

320!,cd @ 10mA

219

MAN3440A

High Eff. Green

510l'cd @ 10mA

207

Red

1251'cd @ 10mA

207

Yellow

320l'cd @ 10mA

207

MAN3620A

Orange

510!,cd @ 10mA

207

MAN3920A

High Eff. Red

320!,cd@ 10mA

219

MAN3420A

High Eft. Green

MAN3840A

TI

High Eff. Green

MAN3640A

MAN74A

~

199

Red

MAN3410A

~

741'cd@20mA
74!,cd@10mA

MAN2A

MAN71A

I

197
74!,cd@10mA

MAN3910A . High Eff. Red
I

PAGE
NO.

74!,cd@20mA

MANIA

MAN3610A

I

COLOR

BRIGHTNESS OR
LUMINOUS
INTENSITY
(PER SEG. MIN.)

.3-lnch; Common Cathode; RHDP

510!,cd @ 10mA

207

Red

125!,cd@ 10mA

207

Yellow

320l'cd @ 10mA

207

MAN3630A

Orange

510!,cd @ 10mA

207

MAN3930A

High Eft. Red

320!,cd @ 10mA

219

MAN3430A

High Eff. Green

MAN72A
MAN3820A

MAN73A
MAN3830A

.3-lnch; Common Anode; LHDP

510l'cd @ 10mA

207

Red

125!,cd @ 10mA

207

Yellow

320!,cd@ 10mA

207

.3-lnch; Common Anode; Polarity & Overflow

NOTE: PIN CONNECTION CODES: Ac (e.g.) First letter (capital) is segment, second letter (lower case) is cathode or anode.
E.g. Ac = Segment A cathode
188
Acl (e.g.) Final numbenefers to digit number in 2-Digit devices.

PIN CONNECTIONS (See note)

Ac

2

3

4

5

6

7

8

9

10

11

12

13

14

Fe

ea

NC

NC

DPe

Ee

Dc

ea

Cc

Ge

NC

Be

ca

APPLICATIONS

Instruments
Test Equipment
Office Machine
Computer

C/D

com-

NC

NC

NC

NC

Dc

Cc

NC

Bc

Ac

NC

NC

com-

man

mon

Col.2
(+)

I

A/B
NC

Row 1

Row3

Row4

H

H

H

Col. 1
(+)

NC

DP
(+)

Col. 3
(+)

Row7

RowS

Row5

H

H

H

Row2
(-)

Col. 5
(+)

Col. 4
(+)

Business Machines
Caleu lators
Computers

Indus. Control Equ.

Compact Computers
Test Equipment
Desk Top Calcu lators
Commun. Equip.
Verification Sys.

For pin connections, see Package Drawing on Page 204.

I
Ac

Fe

ea

NP

NP

NC

Ee

Dc

DPc

Cc

Gc

NP

Be

ca
j

I

1
Fa

Ga

NP

cc

NP

Ea

Da

Ca

DPa

NP

NP

cc

Ba

I

Aa
Instruments

Test Equipment
Office Machines
Computers

Automobiles
Clocks/Radios
Communication

Equipment
Calculators
CB Radios
Ac

Fe

ca

NP

NP

DPe

Ec

Dc

NC

Cc

Ge

NP

Be

ca

Ca
Da

NP

Ca
Da

NP

NP

NP

Dc

Cc

NC

Bc

Ac

NP

NP

Aa
Ba

ca = common anode

cc = common cathode
DP = decimal point

NC = no connection
NP = no pin

189

DISPLAYS
PACKAGE

~

I

I

~

I

f

~
I

I

[@

f

DEVICE
NO.

COLOR

DESCRIPTION

BRIGHTNESS OR
LUMINOUS
INTENSITY
(PER SEG. MIN.I

PAGE
NO.

MAN3680A

Orange

510jlcd@ 10mA

213

MAN3980A

High Eff. Red

320jlcd @ 10mA

219

MAN3480A

High Eff. Green

510jlcd @ 10mA

213

Red

125jlcd @ 10mA

213

Yellow

320jlcd @ 10mA

213

MAN78A
MAN3880A

.3·lnch; Common Cathode; RHDP; 10·Pin

MAN4510A

Green

320jlcd @ 10mA

223

MAN4610A

Orange

510jlcd@ 10mA

223

MAN4710A

Red

200jlcd @ 10mA

223

MAN4810A

Yellow

510jlcd@ IOmA

223

MAN4910A

High Eff. Red

320jlcd @ IOmA

235

MAN4505A

Green

320jlcd @ IOmA

223

MAN4605A

Orange

510jlcd @ 10mA

223

MAN4705A

Red

200jlcd @ 10mA

223

MAN4805A

Yellow

510jlcd@ 10mA

223

MAN4905A

High Eff. Red

320jlcd@ 10mA

235

MAN4540A

Green

320}tcd @ IOmA

223

MAN4640A

Orange

5,10jlcd@ 10mA

223

MAN4740A

Red

200jlcd @ IOmA

223

MAN4840A

Yellow

510jlcd@ 10mA

223

MAN4940A

High Eff. Red

320llcd @ 10mA

235

MAN4580A

Green

·200jlcd@ 10mA

229

MAN4680A

Orange

510jlcd@ 10mA

229

MAN4780A

Red

200jlcd @ IOmA

229

MAN4880A

Yellow

510jlcd @ IOmA

229

MAN4980A

High Eff. Red

320}tcd @ 10mA

229,235

.4·lnch·; Common Anode; RHDP

.4·lnch; Universal (CA/CCI Overflow ±1, RHDP

.4·lnch; Common Cathode; RHDP

'.

MAN6410

.4·lnch; Common Cathode; RHDP; IO·Pin

O.56·lnch; Common,Anode; RHDP; 2-Digit
High Eft. Green

M

239

MAN6440

O.56-lnch; Common Cathode; R HOP; 2-Digit

MAN6610

O.56-lnch; Common Anode; RHDP; 2-Digit

510jlcd @ 10mA
Orange
MAN6640

243
O.56-lnch; Common Cathode; RHDP; 2-Digit

O.56-lnch; Common Anode; RHDP; 2-Digit

MAN6710
Red
MAN6740

125jlcd@ 10mA
O.56-lnch; Common Cathode; RHDP; 2-Digit

NOTE: PIN CONNECTION CODES: Ac (e.g.1 First letter (capitall is segment, second letter (lower casel is cathode or anode.
E.g. Ac = Segment A cathode
Acl (e.g.1 Final number refers to digit number in 2-Digit devices.

190

247

PIN CONNECTIONS (See note)
1

2

3

4

5

6

7

8

9

10

Cc

Fa

Ga

Ea

Da

Cc

DPa

Ca

Ba

Aa

11

12

13

14

15

16

17

18

APPLICATIONS

I
Ac

Fe

NP

ca

NP

NC

Ec

Dc

OPe

Ce

Ge

NP

Be

ca

-

-

-

Instruments

Test Equipment
Office Machines
Computers
Automobiles
Clocks/Radios
Communication

Oat

NP

Oct

Cc

Dc2

Da2

Ca

DPa

NP

OPe

Be

Ac

Aa

Ba

-

-

-,

-

Equipment
Calculators
CB Radios

I

I
Fa

Ga

NP

cc

NP

Ea

Da

Ca

DPa

NP

NP

cc

Ba

Aa'

-

-

-

\

~
I

Cc

Fa

Ga

Ea

Eet

Oct

Cet

DPet

Eat

Oat

Cal

DPat

Ect

Oct

Cct

OPel

Eat

Oat

Cat

Ect

Del

Eat

Oat

Da

-

-

-

-

-

-

-

-

Ac2

Fe2

ca2

cat

Bet

Act

Get

Fet

Aa2

Fa2

cc2

cct

Bat

Aal

Gat

Fat

Bc2

Ac2

Fc2

ca2

cat

Bel

Act

Get

Fct

Instruments

DPa2

Ba2

Aa2

Fa2

cc2

cct

Bal

Asl

Gal

Fal

Test Equipment
Clocks/Radios
TV Channel
Indicators

Cc2

DPc2

Bc2

Ac2

Fc2

ca2

cat

Bct

Act

Get

Fct

Ca2

DPa2

Ba2

Aa2

Fa2

cc2

cct

Bat

Aat

Gat

Fat

Cc

DPa

Ca

Ba

Aa

Ec2

Dc2

Gc2

Cc2

DPe2 Bc2

Ea2

Da2

Ga2

Ca2

DPa2 Ba2

Ec2

Dc2

Gc2

Cc2

DPc2

DPa'

Ea2

Da2

Ga2

Ca2

Cct

DPcl

Ec2

Dc2

Gc2

Cat

DPat

Ea2

Da2

Ga2

POS Terminals
Computers

ca = common anode
cc = common cathode
DP = decimal point

NC = no connection
NP = no pin

191

DISPLAYS
PACKAGE

DEVICE
NO

COLOR

MAN6S10

DESCRIPTION

B

I

PAGE
NO

510l'cd @ lOrnA

251

320l'cd @ lOrnA

255

O.56-lnch; Common Anode; RHDP; 2-Digit
Yellow

O
1_ .1:1.

BRIGHTNESS OR
LUMINOUS
INTENSITY
(PER SEG MIN)

O.56-lnch; Common Cathode; RHDP; 2,Digit

MAN6S40

MAN6910

O.56-lnch; Common Anode; RHDP; 2-Digit
High Eff. Red
O.56-lnch; Common Cathode; RHDP; 2-Digit

MAN6940

O.56-lnch; Common Anode; RHDP; l%-Digit

MAN6430
High Eff. Green

239

MAN6450

O.56-lnch; Common Cathode; RHDP; 1%-Digit

MAN6630

O.56-lnch; Common Anode; RHDP; l%-Digit

510l'cd @ lOrnA
243

Orange

,

O.56:lnch; Common Cathode; RHDP; l%-Digit

MAN6650

'I-'

f

+1.1:1.

O.56-lnch; Common Anode; RHDP; l%-Digit

MAN6730
Red

1251'cd @ lOrnA

247

510l'cd @ lOrnA

251

320l'cd @ lOrnA

255

O.56-lnch; Common Cathode; RHDP; 1%-Digit

MAN6750

MAN6S30

O.56-lnch;Common Anode; RHDP; l%-Digit
Yellow
O.56-lnch; Common Cathode; RHDP; 1%-Di"git

MAN6S50

,
MAN6930

O.56-lnch; Common Anode; RHDP;'l%-Digit
High Eft. Red

MAN6950

O.56-lnch; Common Cathode; RHDP; l%-Digit

I

MAN6460

O.56-lnch; Common Anode; RHDP
239

High Eff. Green

I

MAN64S0

O.56-lnch; Common Cathode; RHDP
510l'cd @ lOrnA

~

MAN6660

O.56-lnch; Common Anode; RHDP
243

Orange

,

MAN66S0

1:1.
~

O.56-lnch; Common Cathode; RHDP

MAN6760

O.56-lnch; Common Anode; RHDP
Red

MAN67S0

MAN6S60

510jicd @ lOrnA

251

320l'cd @ lOrnA

255

6001'cd@ 10mA

259

O.56-lnch; Common Cathode; RHDP

MAN6960

D.56-lnch; Common Anode; RHDP
High Eff. Red

MAN69S0

O.56-lnch; Common Cathode; RHDP

MANB610

.BOO-Inch; Common Anode; RHDP
.SOO-Inch; Common Anod,e; RHDP; ±1 Overflow

MANB630
Orange
MANS640

.SOO-Inch; Common Cethode; RHDP

MANS650

.SOO-Inch; Common Cathode; RHDP; ±1 Overflow

NOTE: PIN CONNECTION CODES: Ac

192

247

O.56-lnch; Common Anode; RHDP
Yellow

MAN6SS0

l:l.
LeJ

1251'cd @ lOrnA
O.56-lnch; Common Cathode; RHDP

(e.g.) First letter (cepital) is segment, second letter (lower case) is cathode or anode.
E.g. Ac = Segment A cathode
Acl (e.g.} Final number refers to digit number in 2-Digit devices.

PIN CONNECTIONS (See notel
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Eel

Del

Cel

OPel

Ee2

De2

Ge2

Ce2

DPe2

Be2

Ae2

Fe2

ea2

eal

Bel

Ael

Gel

Fel

Eal

Dal

Cal

OPal

Ea2

Da2

Ga2

Ca2

DPa2

Ba2

Aa2

Fa2

ee2

eel

Bal

Aal

Gal

Fal

Eel

Del

Cel

OPel

Ee2

De2

Ge2

Ce2

DPe2

Be2

Ae2

Fe2

ea2

eal

Bel

Ael

Gel

Fel

Eal

Dal

Cal

OPal

Ea2

Da2

Ga2

Ca2

DPa2

Ba2

Aa2

Fa2

ee2

eel

Bal

Aal

Gal

Fal

Cel

Del

Bel

OPel

Ec2

Dc2

Gc2

Ce2

DPc2

Bc2

Ae2

Fc2

ca2

eal

Acl

NC

NC

NC

Cal

Dal

Bal

OPal

Ea2

Da2

Ga2

Ca2

DPa2

Ba2

Aa2

Fa2

ce2

eel

Aal

NC

NC

NC

Del

Bel

OPel

Ee2

De2

Ge2

Ce2

DPe2

Be2

Ae2

Fe2

ea2

cal

Ael

NC

NC

NC

Cal

Dal

Bal

OPal

Ea2

Da2

Ga2

Ca2

DPa2

Ba2

Aa2

Fa2

ee2

eel

Aal

NC

NC

NC

Cel

Del

Bel

OPel

Ee2

De2

Ge2

Ce2

DPe2

Be2

Ae2

Fe2

ea2

cal

Ael

NC

NC

NC

Cal

Dal

Bal

OPal

Ea2

Da2

Ga2

Ca2

DPa2

Ba2

Aa2

Fa2

ee2

eel

Aal

NC

NC

NC

Cel

Del

Bel

OPel

Ee2

De2

Ge2

Ce2

DPe2

Be2

Ae2

Fe2

ea2

eal

Ael

NC

NC

NC

Cal

Dal

Bal

OPal

Ea2

Da2

Ga2

Ca2

DPa2

Ba2

Aa2

Fa2

ee2

eel

Aal

NC

NC

NC

Cel

Del

Bel

OPel

Ee2

De2

Ge2

Ce2

DPe2

Be2

Ae2

Fe2

ea2

cal

Ael

NC

NC

NC

Cal

Dal

Bal

OPal

Ea2

Da2

Ga2

Ca2

DPa2

Ba2

Aa2

Fa2

ee2

eel

Aal

NC

NC

NC

Ee

Dc

ea

Ce

OPe

Be

Ae

ea

Fe

Ge

-

Ea

Da

ee

Ca

DPa

Ba

Aa

ee

Fa

Ga

-

Ee

Dc

ea

Ce

OPe

Be

Ae

ea

Fe

Ge

-

Ea

Da

ee

Ca

DPa

Ba

Aa

ee

Fa

Ga

-

-

-

-

-

-

-

-

-

Ee

Dc

ea

Ce

OPe

Be

Ae

ea

Fe

Ge

-

Ea

Da

ee

Ca

DPa

Ba

Aa

ee

Fa

Ga

-

Ee

Dc

ea

Ce

OPe

Be

Ae

ea

Fe

Ge

-

-

Fa

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

~

Ca

DPa

Ba

Aa

ee

De

ea

Ce

OPe

Be

Ae

ea

Fe

Ge

-

-

-

-

Ca

DPa

Ba

Aa

ee

Fa

Ga

-

-

ee

-

-

Da

-

-

-

-

-

-

Ae

Fe

ea

Eo

NP

Ee

NP

Dc

OPe

Dc

ea

Ce

Ge

Be

NP

ea

NP

Da

Ee
Ea

NC

Ga

NC

NC

NC

ea

Ce

NP

Ce

NP

D2e

OPe

D2e

ea

Be

Ole

Ae

NP

ea

NP

NC

Aa

Fa

ee

Ea

NP

Ea

NP

ee

DPa

Da

ee

Ca

Ga

Ba

NP

ee

NP

NC

NC

NC

ee

Ca

NP

Ca

NP

ee

DPa

D2a

ee

Ba

Dla

Aa

NP

ee

NP

ca = common anode

NC = no connection

cc = common cathode
DP = decimal point

NP = no pin

I

I
I
POS Terminals
Computers

Instruments
Test Equipment
Clocks/Radios
TV Channel

I

Indicators

\

r,

I

-

ee

Ea

APPLICATIONS

193

DISPLAYS
DEVICE
NO.

PACKAGE

COLOR

DESCRIPTION

MAN8810

.800·lnch; Common Anode; RHDP

MAN8830

.800-lnch; Common Anode; RHDP; ±1 Overflow
Yellow

[BJ
I~.

I

MAN8840

.800-lnch; Common Cathode; RHDP

MAN8850

.800-lnch;Common Cathode;RHDP;±l Overflow

MAN8910

.800-lnch; Common Anode; RHDP

MAN8930

.800-lnch;Common Anode; RHDP;±l Overflow
High Eff. Red

)

IB.B.I

)

,
!

I

B.B.B.B.

I

,
V

[[SJ

IB.B. B.B.I

MAN8940

.800-lnch; Common Cathode; RHDP

MAN8950

.800-lnch; Common Cathode; RHDP;±l Overflow

BRIGHTNESS OR
LUMINOUS
INTENSITY
(PER SEG. MIN.I

PAGE
NO.

500l'cd @ lOrnA

263

3201'cd@ lOrnA

267

5101'cd@ lOrnA

MMN36220

Orange

MMN38220

Yellow

MMN39220

High Eff. Red

MMN36420

Orange

MMN38420

Yellow

MMN39420

High Eff. Red

MMN36240

Orange

MMN38240

Yellow

MMN39240

High Eff. Red

MMN36440

Orange

MMN38440

Yellow

MMN39440

High Eft. Red

MMN56120

Orange

MMN58120

Yellow

MMN59120

High Eff. Red

MMN56320

Orange

MMN58320

Yellow

MMN59320

High Eff. Red

MMN56240

Orange

MMN58240

Yellow

MMN59240

High Eff. Red

350l'cd @ lOrnA

MMN56440

Orange

510l'cd @ lOrnA

MMN58440

Yellow

MMN59440

High Eff. Red

NOTE: PIN CONNECTION CODES: Ac

O.3-lnch; Common Anode; 2-DigifMultipiexed

5101'cd@ lOrnA

510l'cd @ lOrnA
O.3-lnch; Common Cathode;2-Digit Multiplexed

5101'cd@ lOrnA

271

350l'cd @ 10mA
510l'cd @ lOrnA
O.3-lnch; Common Anode; 4-Digit Multiplexed

5101'cd@ lOrnA

271

350l'cd @ lOrnA
5101'cd@ lOrnA
O.3-lnch; Common Cathode;4-Digit Multiplexed

5101'cd@ lOrnA

271

350l'cd @ lOrnA
5101'cd@ lOrnA
O.5-lnch; Common Anode; 2-Digit Direct Drive

5101'cd@ lOrnA

275

350l'cd @ lOrnA
510l'cd@ lOrnA
O.5-lnch; Common Cathode; 2-Digit Direct Drive

510l'cd@ lOrnA

275

3501'cd@ lOrnA
510l'cd @ lOrnA
O.5-lnch; Common Anode; 4-Digit Multiplexed

O.5-lnch; Common Cathode;4-Digit Multiplexed

5101'cd@ lOrnA

510l'cd @ 10mA
350l'cd @ lOrnA

(e.g.l First letter (capital) is segment, second letter (lower casel is cathode or anode.
E.g. Ac = Segment A cathode
Acl (e.g.l Final number refers to digit number in 2-Digit devices.

194

271

350l'cd @ lOrnA

275

275

PIN CONNECTIONS (See notel
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

NC

Ac

Fe

ca

Ec

NP

Ee

NP

De

OPe

De

ea

Ce

Ge

Be

NP

ea

NP

-

NC

NC

NC

ea

Ce

NP

Ce

NP

D2e

ea

Be

Ole

Ae

NP

ea

NP

-

NC

Aa

Fa

ee

Ea

NP

Ea

NP

ee

DPa

Da

ee

Ca

Ga

Ba

NP

ee

NP

-

NC

NC

NC

ee

Ca

NP

Ca

NP

ee

DPa

D2a

ee

Ba

Dla

Aa

NP

ee

NP

-

-

D2e OPe

APPLICATIONS

POS Terminals
Computers

Instruments

De

ea

Cc

Ge

Be

NP

ca

NP

-

-

D2e

ea

Be

Ole

Ac

NP

ea

NP

DPa

Da

ee

Ca

Ga

Ba

NP

ee

NP

ee

DPa

D2a

ee

Ba

Dla

Aa

NP

ee

NP

-

-

Ce

Be

NC

NC

NC

Ae

NC

Fe

NC

-

-

-

-

DPa

Ca

Ba

NC

NC

NC

Aa

NC

Fa

NC

-

-

-

-

De

Ge

NC

3a

Be

Ae

Fe

4a

OPe

Ce

-

-

-

-

NC

Ae

Fe

ea

Ee

NP

Ee

NP

NC

NC

NC

ea

Ce

NP

Ce

NP

De

NC

Aa

Fa

ee

Ea

NP

Ea

NP

ee

NC

NC

NC

ee

Ca

NP

Ca

NP

Ge

Ee

NC

la

Dc

2a

OPe

Ga

Ea

NC

le

Da

2e

NC

Ee

la

NC

NC

2a

OPe

D2e OPe

Test Equipment
Clocks/Radios
TV Channel

I

Indicators

-

I
I

t

NC

Ea

le

NC

NC

2e

Da

Ga

NC

3e

Ba

Aa

Fa

.4e

DPa

Ca

-

-

-

-

I

Test and

Measurement
Point-ol-Sale
Industrial Control
Consumer Products

~

TV
Eel

NC

Del OPel Cel

Ge2

Ec2

De2 DPe2 Ce2

ca

Be2 Ae2

Fe2

Bel

Ael

NC

Fel

NC

Gel

Eal

NC

Dal OPal Cal

Ga2

Ea2

Da2 DPa2 Ca2

ee

Ba2

Fa2

Bal

Aal

NC

Fal

NC

Gal

Aa2

I

I

Ae

NC

De

eal

NC

NC

ea2

Ce

NC

ca3

Be

Fe

Ee

ea4

OPe

Ge

-

-

-

-

Aa

NC

Da

eel

NC

NC

ee2

Ca

NC

ee3

Ba

Fa

Ea

ee4

DPa

Ga

-

-

-

-

ca = common anode
cc = common cathode

NC = no connection
NP= no pin

DP = deeimal point

195

196

.27-INCH SEVEN SEGMENT DISPLAYS

RED
RED
PACKAGE DIMENSIONS

MAN1A
MAN10A

DESCRIPTION
The MAN1A and MAN10A are seven segment diffused planar GaAsP light emitting
diode arrays. They are mounted on a dual in·
line 14 pin substrate and then encapsulated
in red epoxy for protection. They are capable of displaying all digits and nine distinct
letters.

r----r--ORIENTATION MARKS

FEATURES

1~
0.10
(12 PLACES)
8--..------'9

LU=o::~=:W

T--~--Jo
T
~
~_

(MIN)

I
PIN
PIN
PIN
PIN
PIN
PIN
PIN

1
2
3
4
5
6
7

PIN B

0.02DIA.~111-PIN
PIN
PIN
PIN
PIN
PIN

9
10
11
12
13
14

+

CATHODE A
CATHODE F
ANODE·COMMON
NO PIN
NOPIN
DECIMAL POINT CATHODE
CATHODE E

JUMPER PINS 3, 9, AND 14

CATHODE 0

ON CIRCUIT 80ARD

C736
A

ANODE·COMMON
CATHODE C
CATHODE G
NO PIN
CATHODE B
ANODE·COMMON

F/-;;/B
~l

.

D.P.

AL.L DIMENSIONS NOMINAL. IN INCHES' DUAL, IN-LINE CONFIGURATION

D

IC

• High brightness ...
• Categorized for luminous intensity (see
note 6)
• Single plane, wide angle viewing ... 150°
• Unobstructed emitting surface
• Standard 14 pin dual-in-line package
configuration
• Long operating life ... solid state
reliability
III Shock resistant
• Operates with IC voltage requirements
• Small size; offering unique styling
advantages
• All numbers plus 9 distinct letters
• Usable for wide viewing angle requirements
• Usable in vibrating environment,
impervious to vibration
• Directly compatible with integrated
circuits

APPLICATIONS
The MAN1A/MAN10A is for industrial and
military applications such as:
• Digital readout displays
• Cockpit readout displays

ABSOLUTE MAXIMUM RATINGS
Power dissipation @ 25°C ambient
Derate linearly from 25°C .
Storage and operating temp
Continuous forward current
Total •..•
Per segment

. 750 mW
10 mWrC
.-55°C to 100°C
240 rnA

Decimal point . . . . . . . . . . . . . . . 3 0 mA
Reverse Voltage
Per segment. . . . . . . . . . . . . . . . . .. 10.0 volts
Decimal point . . . . . . . . . . . . . . . . . . 5.0 volts
Solder time at 260°C (see note 5) . . . . . . . . . 5 sec

. 30 rnA

ELECTRO-OPTICAL CHARACTERISTICS (25°C Ambient Temperature Unless Otherwise Specified)

I

MAN1A MAN10A
ELECTRO-OPTICAL CHARACTERISTICS Cont.'d (2,5°C Ambient Temperature Unless Otherwise Specified)
MIN. '

CHARACTERISTICS

Forward voltage
Segment
Decima!point
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal point
Reverse Current
Segment
Decimal point

TYP.

MAX.

UNITS

3.4
1.6

4.0,
2.0

V
V

IF=20mA "
IF=20 mA

11
5.5

n
n

IF=20 mA
IF=20 mA

"IF=20mA
IF=20 rnA

80
135

pF
pF

V=O
V=O

V=O
V=O

VR=10.0 volts
VR= 5.0 volts

V R =1 0.0 volts
VR= 5.0 volts

100
100

TEST CONDITIONS
MAN1A
MAN10A

/lA
/lA '

DECODER/DRIVER FUNCTIONAL DIAGRAM

IF=10 mA
IF=10mf-

TYPICAL TRUTH TABLE

General I nstrument MAN lA/MAN 1OA

· ·
b

A'

B' C'

B'

~"

C'
0'
E'
DECOOERlDRIVER

SN7447

RBI--J

LYJT. ~T
BCD INPUT

F'

G'

E'

F' G'
1

I,

1

I'

0

0

0

1

0

0

I

I

0

1

0

1

0

0

I

·0

1

0

1

I

~ I

It.

0

0

0

I

0

I

0
0
1

TEST

1

C737

1

0

•
• • ••
I

1

1

1

•

0

I

1

1

0

•

0

0

•
•
•
I

0

0

0

0

50

'"

1

0

1

1

I

c

1

1

3

1

1

A'

D'

• • • •• •• • ••
••
• • •
• • •• • • • •
•
•
•o .
•

D

RBO--

;::

0

g•

"-

8

10

15

20

25

"

30

FORWARD CURRENT PER SEGMENT (rnA)

0
0

5 ~55
C1470

Figure 1 Luminous Intensity VS. Forward Current

~

f'..
2S

0

25

SO

75

100

AMBIENT TEMPERATURE (0C)

C787

Figure 2 Luminous Intensity VI. Temperature

TYPICAL THERMAL CHARACTERISTICS

e

Thermal Resistance (note 4) Junction to free air JA . • • • • • • . • • • • • • • . • • . • • • • • • • • • • • • • • • • • • • 4400 CfW
Wavelength Temperature Coefficient (case temp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.0 A;oc
Forward Voltage Temperature Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . -4.0 mV;oC

NOTES
1. As measured with a Photo Research Corp. "SPECTRA" Microcandela Meter (Modell V·D). Intensity will not vary
more than ±50% between all segments.
2. The curve in Figure 2 is normalized to the brightness at 25°C to indicate the relative efficiency over the operating
temperature range.
3. For contrast improvement Polaroid H RCPl circular polarizer filter can be used. Non·glare circular polarizer filter
will provide further enhancement in display visibility.
4. Thermal resistance (junction to ambient) value of anyone segment with all segments in operation.
5. Leads of the device immersed to 1/16 inches from the body. Maximum device surface temperature is 140°C.
6. All displays are categorized for luminous intensity. The luminous category is marked on each part as a suffix letter
to the part number.

200

.32-INCH ALPHA-NUMERIC DISPLAY

RED

PACKAGE DIMENSIONS

MAN2A

FEATURES & APPLICATIONS

• x-v matrix drive
~"""",,...ORIEI

I DOTTED LINE
INDICATES

1. 0

~ V/

~ ~ PUL~~~ ~~~~~:~~N-

1

MAN3400A SERIES

;<;

I

>m
60

N+M+ED tT IF "1 '0 mlj

i::

in

MAN3400A SEAlES J

1.0
2.0
3.0
4.0
FORWARD VOLTAGE - VF IVOLTS,

;<; 100
w

>

~

3600

0

10

/
4

I

600

1/

CIOSO

<
~ 80
15

>

,

,

~

I
I

0

;;

MAN3800ASERIES

80

70

1200

90

20

/

10

10

/

20
VF - VOLTS

300

30
C429

Fig. 1o. Forward Current vs.
Forward Voltage

210

or-

I

3D

20

MAN3800ASERIES

I

40

100

-

90

"-

/

"-

"-

0

B
0

2S

30

"-

"-

50
-50

V

V

/

V

25

50

70
C1244

Fig. 9. Luminous Intensity vs.
Temperature

12'

Y

110

100

0

---

MA~3800AS!RIES
............
...........

I'-.

0

30
IF {PER SEGMENTI

-25

AMBIENT TEMPERATURE _oc

IF (PER SEGMENTI- mA

60

"

15

~ 150D

I

120

~

~

180D

I
I

90

"-

130

~ 11 0

Fig. 8. Luminous Intensity vs.
Forward Current

Fig. 7. Forward Current vs.
Forward Voltage
100

~
~

/

10

C426

MAN70ASERIES

"-

0

1140

0

2.0

VF - VOLTS

160

,

/

15

1.0

/

3200

I

0

400

C

Fig. 6. Luminous Intensity vs.
Temperature

/

600

0

"70

AMBIENT TEMPERATURE

Cloa1

/v

!

0

'""'-

0
-50

30

~AN701 SERIE~
~ BOO

0

I

25

FORWARD CURRENT {IF) - rnA

MAN70ASERIES

~

20

Fig. 5. Luminous Intensity vs.
Forward Current

0

"-

0

0

I

90

"-

100

0

10

Fig. 4. Forward Current vs.
Forward Voltage
100

~

/

8121.62024 2.B 32 3.64.0

FORWARD VOLTAGE IVFI - VOLTS

120

~ 11 0

/

1200

0

"-

t;:13 0

~

MAN3600A SERIES

"

0

~o 14 0

/

1800

II

100

0

2400

I

75

,oc'

Fig. 3. Relative Luminous
Intensity vs. Temperature

//

0

'" '"

C1700

M~N3600~SERIE~

280 0

0

0

""1"'-

C1702

I I

0

MAN3400A SERIES

-25
25
50
TEMPERATURE - TA

-55

Fig. 2.
Relative Luminous Intensity
vs. DC Forward Current

MAN360QASERI(S

0

80

NORMALIZED
AT 25°C

70

C1697

0

90

10
15
20
25
30
DC FORWARD CURRENT - IF ImAI

Fig. 1. Forward Current
vs. Forward Voltage
100

"" '"

120

~

i:: 110
in
m
>-

V

/

V

130

mA

C1G89

Fig. 11. Luminous Intensity vs.
Forward Current

,

0

-so

25

AMBIENT TEMPERATURE _

'c"

C431

Fig. 12. Luminous Intensity vs.
Temperature

MAN3400A MAN3GOOA MAN70A MAN3800A SERIES
1000

4.0

_ BOO

~

MAN340nA SEAlES

MAN3400A SEAlES _

~ 600

,.6

400

~ 200

"o
~

100

~

40

:g

~

0°

J

~,,"0-

r5~

I-

3.0

10 mA

ttiU
:!:JA • • • • • • . • • • • • • . • . • . • . . • . • . • . • • • • • • • . • • • • • • • • • • 160°C/W
Wavelength temperature coefficient (case temp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 A/c
Forward voltage temperature coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '. . . . . . . . . . . . . -1.5 mV/C

RED/ORANGE/HIGH EFFICIENCY RED
Thermal resistance junction to free air cl>JA • • • • • • . • • • . • • . • • . • • • • . • • • • • • • • • • • • • • • • • • • . • . • 160°C/oW
Wavelength temperature coefficient (case temp). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1.0
Forward voltage temperature coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -2.0 mV /C

tv c

NOTES:
1. The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing
by the total number of segments as measured with a Photo Research Corp. "SPECTRA" Microcandela Meter (Model
IV·oJ. Intensity will not vary more than ±33.3% between all segments within a digit.
2. The curve in Fig. 3, 6, 9, and 12 is normalized to the brightness at 25°C to indicate the relative luminous intensity
over the operating temperature range.
3. The decimal point is designed to have the same surface brightness as the segments; therefore, the luminous intensity
of the decimal point is .3 times the luminous intensity of the segments, since the area of the decimal point is .3 times
the area of the average segment.
4. Leads of the device immersed to 1/16·inches from the body. Maximum device surface temperature is 140°C.
5. For flux removal, Freon TF, Freon TE, Isoproponal or water may be used up to their boiling points.
6. All displays are categorized for luminous intensity. The intensity category is marked on each part as a suffix letter
to the part number.

218

O.300-INCH SEVEN
SEGMENT DISPLAY

IHIIGHI IEIFIFDCIIENCV RED

IMAN3900A SERIES

FEATURES
•
•
•
•
•
•
•
•
•
•
•
•
D

Common anode or common cathode models
High efficiency red
Fast switching-excellent for multiplexing
Low power consumption
Bold solid segments that are highly legible
Solid state reliability-long operation life
Impact resistant plastic construction
Directly compatible with integrated circuits
High brightness with high contrast
Categorized for luminous intensity (see note 6)
Standard dual in-line package configuration
Wide angle viewing ... 1500
These devices have a red face and red segments

DESCRIPTION
The MAN3900A Series is a high efficiency red LED
display. Standard units are also available in red, green,
orange and yellow, with common anode right hand decimal, common anode left hand decimal, common cathode
right hand decimal, and common anode overflow (±1)
with right hand decimal. They can be mounted in arrays
with 0.400-inch (10.16 mm) center-to-center spacing.
Units are constructed with red face and segment
color.

APPLICATIONS
For industrial and consumer applications such as:
• Digital readout displays
a Instrument panels
• Point of sale equipment
D
Calculators
• Digital clocks

MODEL NUMBERS
PART NO.

MAN3910A
MAN3920A
MAN3930A
MAN3940A
MAN3980A

COLOR

High
High
High
High
High

Efficiency
Efficiency
Efficiency
Efficiency
Efficiency

PACKAGE

Red
Red
Red
Red
Red

I

A
B

C

D
E

DESCRIPTION

Common
Common
Common
Common
Common

Anode; Right Hand Decimal
Anode; Left Hand Decimal
Anode; Overflow ±1
Cathode; Right Hand Decimal
Cathode; Right Hand Decimal

PIN OUT
SPECIFICATION

A
B
C

D
E

RECOMMENDED FILTERS
For optimum on and off contrast, one of the following filters or equivalents should be used over the display:
DEVICE TYPE

FILTER

MAN3910A
MAN3920A
MAN3930A
MAN3940A
MAN3980A

Panelgraphic Scarlet 65
Homalite 100-1670

219

MAN3900A SERIES

.-r-------------~~.L-~~--~
.200"
5.08mm

t'01:.I-r'T"l'""'M'"'T"I""MrT'"I""T""';

C1338

.294"
17.47mml

a:.

a:·

8

E

D

C

E

oDP

D

C422

C

E

o

DP

PIN CONNECTIONS
ELECTRICAL CONNECTIONS
PIN
NO.

1
2
3
4

5
6
7
S
9
10
11
12
13
14

A

B

C

D

E

MAN3910A

MAN3920A

MAN3930A

MAN3940A

MAN3980A

Cathode A
Cathode F
Common anode
Nopin
No pin
No connection
Cathode E
Cathode 0
Cathode O.P.
Cathode C
Cathode G
No pin
Cathode B
Common anode

Cathode A
Cathode F
Common anode
No pin
No pin
Cathode O.P.
Cathode E
Cathode 0
No connection
CathodeC
Cathode G
No pin
Cathode B
Common anode

Anode C,O
No pin
Anode C, 0
Nopin
No pin
Nopin
Cathode 0
Cathode C
No connection
Cathode B
Cathode A
No pin
No pin
Anode A, B

Anode F
Anode G
No pin
Common cathode
No pin
Anode E
Anode 0
Anode C
Anode O.P.
No pin
Nopin
Common cathode
Anode B
Anode A

Common cathode
. AnodeF
Anode G
Anode E
Anode 0
Common cathode
Anode O.P.
Anode C
Anode B
Anode A

ELECTRICAL SCHEMATIC

"

MAN3930A

220

MAN3900A SERIES
ELECTRO-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)
MIN.

Luminous intensity, Digit Average
(See Note 1)
Decimal point (See Note 3)
Segment "C" or "D" of MAN3630A
Peak emission wavelength
Spectral line half width
Forward voltage
Segment
Decimal point
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal point

.:t

0

CIO

~

..

Y

~

I

10

~ 600

":3

/
.4

.8

1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

FORWARD VOLTAGE (V F ) - VOLTS

./

V

C1OBO

",-

120

~ 110

/'

V

g

90

""'" r-...

70

15

20

25

\

I

MAN3900A SE RI ES

aoo

"-

80

50
-50

30

500

-25

25

AMBIENT TEMPERATURE -

C10Bt

50

°c

"70
C1244

Fig. 3. Luminous Intensity vs.
Temperature

Fig. 2. Luminous Intensity vs.
Forward Current

1000

"-

~ 100
::::

FORWARD CURRENT (IF) - rnA

Forward Voltage

"' "- "-

130

60

10

Fig. 1. Forward Current vs.

MAN3900A SE R I ES

"-

'"I 140

~

I

I

160

150

'"w

I

40

= 10 mA

165
165

'"~" 2400

I

50

-

ffi

I

70

TEST CONDITIONS

IF

I

MAN3900A SERIES

UNITS

/Lcd

~ 3600

I I

90

MAX.

TYP.

320

MAN3900A SERIES

\

,REQUENCY = 200 PP$

'\..

" 200

~i'..

E

I
~100

1.5

\..

"-

~ 80
~ 50

1'1'

"-

f'..

20
I
10

10

2

3

5 810

20

305080100

DUTY CYCLE - %

C1221

Fig. 4. Max Peak Current vs.
Duty Cycle

20

40

DC

DUTY CYCLE - %
IF PER SEG 10 mA AVERAGE

C1222

Fig. 5. Luminous Intensity vs.
Duty Cycle

221

MAN39UUA SERIES
ABSOLUTE MAXIMUM RATINGS
MAN3910A
MAN3920A
MAN3940A
MAN3980A

MAN3930A

Power dissipation @ 25°C ambient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
600 mW
375mW
-5.36 mW/oC
Derate linearly from 50°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -8.6 mW/"C
Storage and operating temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _40°C to +85°C _40°C to +85°C
Continuous forward current
Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
240 mA
150 mA
Per segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30mA
30mA
Decimal point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30mA
30mA
Reverse voltage
Per segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.0 V
6.0V
Decimal point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.0V
6.0V
Solder time @ 260°C (Note 4 and 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 sec.
5 sec.

TYPICAL THERMAL CHARACTERISTICS
HIGH EFFICIENCY RED

Thermal resistance junction to free air  JA ••• 1600 C/W
Wavelength temperature coefficient (case temp) 1.0 A/oc
Forward voltage temperature coe~ficient ... -1.5 mV

Thermal resistance junction to free air cf> JA .,. 1600 C/.W
Wavelength temperature coefficient (case temp) 1.0 Atc
Forward voltage temperature coefficient ... -2.0 mV1°C

tc

NOTES
1. The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing
by the total number of segments as measured with a Photo Research Corp. "SPECTRA" Microcandela Meter (Model
IV-OJ. Intensity will not vary more than ±33.3% between all segments within a digit.
2. The curve in Fig. 3, 6, 9, and 12 is normalized to the brightness at 25"C to indicate the relative efficiency over the
operating temperature range.
3. The decimal point is designed to have the same surface brightness as the segments; therefore, the luminous intensity
of the decimal point is .3 times the luminous intensity of the segments, since the areil of the decimal point is .3
times the area of the average segment.
4. Leads of the device immersed to 1/16-inches from the body. Maximum device surface temperature is 140°C.
5. For flux removal, Freon TF, Freon TE, Isoproponal or water, may be used up to their boiling points.
6. All displays are categorized for luminous intensity. The intensity category is marked on each part as a suffex letter
to the part number.

228

.400-INCH SEVEN SEGMENT DISPLAYS

GREEN
ORANGE

MAN4580A
MAN4680A

RED
YELLOW
HIGH EFFICIENCY RED

MAN4780A
MAN4880A
MAN4980A

FEATURES
•
•
•
•
•
•
•
•
•
•
•
•
•

H.P. compatible common cathode displays
Red, yellow, green, orange and high efficiency red
Fast switching-excellent for multiplexing
Low power consumption
Bold solid segments that are highly legible
Solid state reliabilitY-long operation life
Impact resistant plastic construction
Directly compatible with integrated circuits
High brightness with high contrast
Categorized for luminous intensity (see note 6)
Standard 10 pin dual in·line package configuration
Wide angle viewing ... 1500
Package size and lead configuration is the same as
MAN50A/3600A/70A/BOA Series

I
DESCRIPTION

APPLICATIONS
For industrial and consumer applications such as:
• Digital readout displays
• Instrument panels
• Point of sale equipment
• Calculators
• Digital clocks
• High ambient light conditions

The MAN45BOA, MAN46BOA, MAN47BOA,
MAN4BBOA and MAN49BOA are common cathode
displays which provide a choice of color of LED displays.
They are pin and functional replacements for the 0.300
inch H.P. common cathode displays. This series is
complementary to the MAN4500A, MAN4600A,
MAN4700A and MAN4900A which are also available in
red, yellow, green, orange and high efficiency red. They
can be mounted in arrays with 0.400-inch (10.16 mm)
center to center spacing. The green and yellow displays
are constructed with grey face and neutral segment
color. Red displays have black faces and red segment
color. Others hdve face and segment color corresponding to the emitted light.

MODEL NUMBERS

PART NO.

MAN45BOA
MAN46BOA
MAN47BOA
MAN4BBOA
MAN49BOA

COLOR

Green
Orange
Red
Yellow
High Efficiency Red

DESCRIPTION

Common
Common
Common
Common
Common

Cathode;
Cathode;
Cathode;
Cathode;
Cathode;

Right
Right
Right
Right
Right

Hand
Hand
Hand
Hand
Hand

Decimal
Decimal
Decimal
Decimal
Decimal

229

MAN4580A MAN4680A MAN4780A MAN4880A MAN4980A
PACKAGE DIMENSIONS

LEADS ARE TIN/LEAD
SOLDER DIPPED
TOLERANCE: .015" (.381mml

PIN
=1

.738"
118.75mml
!.010"

II

c=:JD
ilDd.

-,

j

.055" DIA
11.40mml

~11-8°
15.54 mml

PART NO. CODE:
MANXXXX = PART NO.
YXX = DATE CODE
Z = LIGHT INTENSITY
CAT. NO.

C1457

8~

.010"
10.25mml
~
+.007" - - - . . -.000"
.050"
,.. .300" .. 111.27mml
(7.62mml
±.015"

I

I

PIN CONNECTIONS

PIN
NO.

1
2

3
4
5
6
7

a
9
10

230

ELECTRICAL
CONNECTIONS

Common Cathode
Anode F
Anode G
Anode E
Anode D
Common Cathode
Anode D.P.
Anode C
Anode a
Anode A

C1457

---I

~ ~~

.100"
12.54mml
!.010"

.020"
1O.51mml
+.004"
-.000"

MAN4580A MAN4680A MAN4780A MAN4880A MAN4980A
ELECTRO·OPTICAL CHARACTERISTICS

(25'C Free Air Temperature Unless Otherwise Specified)
UNITS

TEST CONDITIONS

Luminous intensity, Digit Average
(See Note 1)
Decimal point (See Note 3)
Peak emission wavelength
Spectral line half width
Forward voltage
Segment
Decimal point
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal point

320

"cd

IF= 10mA

150

"cd
nm
nm

I F =10mA

V
V

IF = 20mA
I F =20mA

17

n
n

IF = 20mA
IF = 20 mA

35
35

pF
pF

V=O
V=O

"A
"A

V R = 5.0 V
V R = 5.0 V

Luminous intensity. Digit Average
(See Note 1)
Decimal point ISee Note 3)

510

"cd

I F =10mA

250

"cd
nm
nm

I F =10mA

V
V

I F =20mA
I F =20mA

26
26

n
n

I F =20mA
I F =20mA

35
35

pF
pF

V=O
V=O

"A
"A

V R = 5.0 V
V R - 5.0V

"cd

IF= 10mA

"cd
nm
nm

I F =10mA

V
V

I F =20mA
I F =20mA

n
n

IpK = 100 mA
IpK = 100 mA

MIN.

c

CD

~

Z

<
::;

2.5
2.5

.
CD

Z

<
::;

3.0
3.0

17

100

KID

Peak emission wavelength

c

MAX.

565
40

630
40

Spectral line half width

...

TYP.

Forward voltage
Segment
Decimal point
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal point

2.2
2.2

2.5
2.5

I

Reverse current
Segment
Decimal point

c

CD

:0
Z

<
::;

,
c

CD

~

::;

c

!2

~

100
100

Luminous intensity. Digit Average
(See Note 1)
Decimal point (Se. Not. 3)
Peak emission wavelength
Spectral line half width
Forward voltage
Segment
Decimal point
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal point

200

Luminous intensity. Digit Average
(S.e Note 1)
Decimal point (See Note 3)
Peak emission wavelength
Spectral line half width
Forward voltage
Segment
Decimal point
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal point
Luminous intensity, Digit Average
(5 •• Note 11
Decimal point (See Note 3)
Peak emission wavelength
Spectral line half width
Forward voltage
Segment
Decimal point
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal point

85
660
20
1.6
1.6

2.0
2.0

2
2
35
35

V=O
v=o

80
80
"A
"A

V R =5.0V
V R = 5.0 V

510

"cd

IF= 10mA

250

"cd
nm
nm

IF = 10mA

V
V

I F =20mA
I F =20mA

26
26

n
n

I F =20mA
I F =20mA

35
35

pF
pF

v=o
V=O

"A
I'A

V R = 5.0 V
V R = 5.0 V

320

I'cd

IF= 10mA

165

.. cd
nm
nm

I F =10mA

V
V

I F =20mA
I F =20mA

26
26

n
n

I F =20mA
I F =20mA

35
35

pF
pF

V=O
V=O

I'A
I'A

V R = 5.0 V
V R 5.0 V

100
100

585
40
2.5
2.5

3.0
3.0

100
100

635
40
2.5
2.5

100
100

g

231

MAN4580A MAN4680A MAN4780A MAN4880A MAN4980A
TYPICAL CURVES

....
..'"

.ao

I

900

I

I

MAN4580A

MAN~58OA

V

1

'"
,.

I

.0

V
vf

V
30

10
15
I, IPER SEGMENT I

'.0

Fig. 1. Forward Current vs.
Forward Voltage
'00

I
I

0

V.

'000

0

I

0

4

8

'00

'" 1 6 70 24 28 J 2 36 40

FORWARD VOLTAGE IV,)

VOLTS

l/

V

~

~

'000

~

20

25

"

VOLTS

'00
MAN4880A

.0

I

0

~

30

g
15

V,

2.0
VOLTS

30

Fig. 10. Forward Current vs.
Forward Voltage

10

25

900

'0
0429

/

...........

~0

/

/

/

.0
1,IPERSEGMENTl

/

"

30

V

"

........

50

AMBIENT TEMPERATURE -

C427

n>A

~AN4B8OA

~ !!iUl.)

300

-........

0

'"''

I
'0

~

Forward Current

/

'0

-......

"
100

~

Fig. 8. Luminous Intensity vs.

...

130

120
0

~

>

1,IPERSEGMENTi

1200

'"
,.

MAN47BOA

0

0

10

C426

I
I

C418

0

60

'"

C

0

/

1/

70

AMBIENT TEMPERATURE _

Fig. 6. Luminous Intensity vs.
Temperature

/
20

I
I

90

........

·'0

30

/1'
/

Fig. 7. Forward Current vs.
Forward Voltage

...........

0

L

V,

...........

90
80

CIOSO

V
'.0

......

"

0

~AN47JOA

'0

I

-

0

800

50

.0

0425

0

60

20

130
120
0

g

0

232

/'

VMAN4980A

15

MAN478DA

30

'c

0

~
'i:

Forward Current

~

70

50

~:~::~~: -

0

/

Fig. 5. Luminous Intensitv vs.

80

"

·25

AMBIENT TEMPERATURE -

0

I,IPERSEGMENTI

I

go

·50

"
."

~V

CIOBO

Fig. 4. Forward Current vs.
Forward Voltage
H'O

70

30
C1134

~AN46~OA

2000

0

25

Temperature

3000

0

20

Fig. 3. Luminous Intensity vs.

MAN4680A
MAN49aOA

60

~~

Forward Current

0
E

...........

Fig. 2. Luminous Intensity vs.

90

or- t-

I

/

/

2.0
VOLTS

'0

...........

/

I

30

~AN4580~

0 ..........

/

I

50

•

.,.
I

750

C

70
C428

Fig. 9. Luminous Intensity vs.
Temperature
120

0

'00

-

~AN4880~

r-.. ............
-.........

'"

..........

..
10

25

30
Cl089

Fig. 11. Luminous Intensity vs.
Forward Current

70
-!IO

-2!I

2S

AMBIENT TEMPERATUi\E

50
C

70
C431

Fig. 12. Luminous Intensity vs.
Temperature

MAN4580A MAN4680A MAN4780A MAN4880A MAN4980A
1000

MAN45BOA

BOO
500

,LEU,L.L

r"-

a

MAN4&BOA

r--....

I'\.
.'\,

I'\.

5

"'-

'I'

" '"

20

,

lU

,
'2

3

!i!l

10

20

DUTY CYCLE

•

BOO

"'"

)

+H-

"

]ulJ"

E

,,

FJEoUEL,,1
r--....

y r-

MAN4680A

MAN49BOA

'\.

""-;"

i'

,

I

"'-

,
"I

3

II

!i

10

10

Fig. 16. Luminous Intensity vs.
Duty Cycle

,

MAN4780A

,"0

OUTY cVel E .,,(,

Clnl

Fig. 15. Max Peak Current vs.
Duty Cycle

lOOO
ROO

20

~.~I·I(JO

OUTYC'I'CLE

MAN41BOA

~ FREQUENCY

200 PI"

i'

)

"'-

.:: IOf )

:t

,

5

)

,

<

Cl'220

Fig. 14. Luminous Intensity vs.
Duty Cycle

r- r-- ~~~:~g:

<[;100

OC

DUTY CYCLE
I, PERSEG lOrnA AVERAGE

C1219

Fig. 13. Max Peak Currenr vs.
Ducy Cycle

1000

'0

30 50 flU 100

5

!>I )

i'

,

............

'""""-

)

1

I

JlJ

.0

uun

lO

cveu

20

CI223

.0

DUTY CYCLE

DC

...

'F PER SEG 10 mAo AVERAGE

Fig. 17. Max Peak Current vs,

Fig. 18. Luminous Intensity vs.
Ducy Cycle

Duty Cycle

1000
BOO
500

2

MAN48BOA

MAN48BOA

" J~lJUEL) ~LJ~

1:mo

Cln4

~

"\.
5

)

'\..

i'

,

.....
)

'2

J

!i

Ij

10

20

DUTY CYCLE . '<

J(J

[)() 111) 100

C'215

Fig. 19. Max Peak Current vs.
Duty Cycle

20

'0

DUTY CYCtE - ...
'F PERSEQ IOmAAVER~GE

DC
CI216

Fig. 20. Luminous Intensity·vs.
. Duty Cycle

233

MAN4580A MAN4680A MAN4780A MAN4880A MAN4980A
ABSOLUTE MAXIMUM RATINGS
Power dissipation @ 25°C ambient ...
Derate linearly from 50°C . . . . . . . . .
Storage and operating temperature ...
Continuous forward current
Total. . . . . . . . . . . . . . . . . . . . .
Per segment . . . . . . . . . . . . . ...
Decimal point . . . . . . . . . . . . . . .
Reverse voltage
Per segment . . . . . . . . . . . . . ...
Decimal point. . . . . . . . . . . . . . .
Solder time @ 260°C (Note 4 and 5)

Power dissipation @ 25°C ambient ...
Derate linearly from 50°C ........
Storage and operating temperature ...
Continuous forward current
Total. . . . . . . . . . . . . . . . . . . . .
Per segment . . . . . . . . . . . . . . . .
Decimal point. . . . . . . . . . . . . . .
Reverse voltage
Per segment . . . . . . . . . . . . . . ..
Decimal point. . . . . . . . . . . . . . .
Solder time @ 260°C (Note 4 and 5)

MAN45BOA

MAN46BOA

480mW
-9.6 mW/oC
-40°C to +85°C

600mW
-8.6 mW/oC
_40° to +85° C

480mW
-6.9 mW/oC
-40°C to +85°C

160 mA
20mA
20mA

240mA
30mA
30mA

240mA
30mA
30mA

6.0 V
6.0 V
5 sec.

6.0 V
6.0 V
5 sec.

6.0 V
6.0 V
5 sec.

MAN4BBOA

MAN4980A

600mW
-10.3 mW/oC
-40°C to +85°C

600mW
-8.6 mW/"C
_40° to +85°C

200mA
25mA
25mA

240mA
30mA
30mA

6.0 V
6.0V
5 sec.

6.0V
6.0 V
5 sec.

MAN47BOA

TYPICAL THERMAL CHARACTERISTICS
GREEN/YELLOW
Thermal resistance junction to free air JA ••• 160°C/W
Wavelength temperature coefficient (case temp) 1.0 J3../"C
Forward voltage temperature coefficient ... -1.5 mV 1°C

RED/ORANGE/HIGH EFFICIENCY RED
Thermal resistance junction to free air  JA . , . 160 0 CLW
Wavelength temperature coefficient (case temp) 1.0 J3../oC
Forward voltage temperature coefficient ... -2.0 mV/oC

RECOMMENDED FILTERS
For optimum on and off contrast, one of the following filters or equivalents should be used over the display:
DEVICE TYPE
FILTER
DEVICE TYPE
FILTER
MAN4580A}

Panelgraphic Green 48

MAN4780A}

Panelgraphic Red 60
Homalite 100-1605

MAN4680A}

Panel graphic Scarlet 65
Homalite 100-1670

MAN4880A}

Panelgraphic Yellow 25 or Amber 23
Homalite 100-1720 or 100-1726

MAN4980A}

Panel graphic Red 60

NOTE: When using the grey face MAN4580 or MAN4880 in situations of high ambient light, a neutral density filter can be used
to achieve a greater contrast. The following or equivalent can be used: Panelgraphic Grey 10.

NOTES
1. The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing
by the total number of segments as measured with a Photo Research Corp. "SPECTRA" Microcandela Meter (Model
IV-D). Intensity will not vary more than ±33.3% between all segments within a digit.
2. The curve in Fig. 3, 6, 9, and 12 is normalized to the brightness at 25°C to indicate the relative efficiency over the
operating temperature range.
3. The decimal point is designed to have the same surface brightness as the segments; therefore, the luminous intensity
of the decimal point is .3 times the luminous intensity of the segments, since the area of the decimal point is.3
times the area of the average segment.
4. Leads of the device immersed to 1/16-inches from the body. Maximum device surface temperature is 140°C.
5. For flux removal, Freon TF, Freon TE, /soproponalor water, may be used up to their boiling points.
6. All displays are categorized for luminous intensity. The intensity category is marked on each part as a suffex letter
to the part number.
234

O.400-INCH SEVEN
SEGMENT DISPLAY

HIGH EFFICIENCY RED

MAN4900A SERIES

FEATURES
•
•
•
•
•
•
•
•
•
•
•
•
•

Common anode or common cathode models
High efficiency red
Fast switching-excellent for mUltiplexing
Low power consumption
Bold solid segments that are highly legible
Solid state reliability-long operation life
Impact resistant plastic construction
Directly compatible with integrated circuits
High brightness with high contrast
Categorized for luminous intensity (see note 6)
Standard dual in-line package configuration
Wide angle viewing ___ 1500
Package size and. lead configuration is the same as
MAN50A/3600A/70A/80A Series
• These devices have a red face and red segments

APPLICATIONS
For industrial and consumer applications such as:
• Digital readout displays
• Instrument panels
• Point of sale equipment
• Calculators
• Digital clocks
• High ambient light conditions

I
DESCRIPTION
The MAN4900A Series provides superior brightness
high efficiency red LED display. Standard units are also
available in red, green, orange and yellow, with common anode right hand decimal, common cathode
right hand decimal, and universal (CA or CC) overflow (±1) with right hand decimal. They cim be
mounted in arrays with 0.400-inch (1 0.16 mm)
center to center spacing. Units are constructed with
red face and segment color.

MODEL NUMBERS
PART NO.

MAN4905A
MAN4910A
MAN4940A
MAN4980A

COLOR

Hi.
Hi.
Hi.
Hi.

Eff.
Eff.
Eff.
Eff.

Red
Red
Red
Red

DESCRIPTION

Universal
Common
Common
Common

{CA or CCI Overflow ±1, Rt. Hand Dec.
Anode; Right Hand Decimal
Cathode; Right Hand Decimal
Cathode; Right Hand Decimal

PACKAGE
DRAWING

PIN-OUT
SPECI FICATION

B
A
A
C

D
A
C
E

RECOMMENDED FILTERS
For optimum on and off contrast, one of the following filters or equivalents should be used over the display:
DEVICE TYPE

FILTER

MAN4905A
MAN4910A
MAN4940A
MAN4980A

Panelgraphic Scarlet 65
Homalite 100-1670

235

MAN4900A SERIES
ELECTRO-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified!
MIN.

g
CIO

~

...~

~

~

~

~
~

::;)

a

Z 1000

30

:E

::;)

20

..J

I

10

500

V
.4

.8

1.2 1.6 2.0 2.4 2.B 3.2 3.6 4.0

FORWARD VOLTAGE (V F > - VOLTS

/V

o

V
./

/'

20
10
15
IF (PER SEGMENT) - mA

C1OBO

Fig. 1. Forward Current vs.
Forward Voltage

/'

25

30
C1OS0

Fig. 2. Luminous Intensity vs.
Forward Current

170
160
150

'"

140

w

130

I-

120

to

a:

110

"'>w

100

~

90

..J

80

a:

70

I

V>
V>

z

:J:

w

....
.......... r-.,.

..........
..............

~
..............

60
50
-50

-25

25

50

AMBIENT TEMPERATURE _·C

70
C42B

Fig. 3. Luminous Intensitv vs.
Temperature

1000

I I
I I

BOO
500

I
I

I I
I I

i\

\

,REQUENCY = 200pps

<:: 200

""

E
I
~100

~ BO
~

>1-'
c;;

50

'\.

Z

W

I-

:

1.5

>

.....

'r--

"-

"-

~

w

a:

20
10

2

3

5 8 10

20

30 50 B0100

DUTY CYCLE - %

Fig. 4. Max Peak Current vs.
Duty Cvcle

C1221

1
10

20

"-

"-I"

40

DUTY CYCLE - %
'F PER SEG 10mA AVERAGE

DC
C1222

Fig. 5. Luminous Intensitv vs.
Dutv Cvcle

237

MAN4900A SERIES
ELECTRICAL SCHEMATIC

MAN4905A
DP

10

C1456

ABSOLUTE MAXIMUM RATINGS
MAN4905A

Power dissipation @ 25°C ambient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
450mW
Derate linearly from 50°C . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . -6.4 mWtC
Storage and operating temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _40° to +85°C
Continuous forward current
180mA
Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '" ., ..
30mA
Per segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Decimal point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30mA
Reverse voltage
6.0V
Per segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.0V
Decimal point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 sec.
Solder time @ 260°C (Note 4 and 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MAN4910A
MAN4940A
MAN4980A

600mW
-8.6 mWtC
_40° to +85°C
240mA
30mA
30mA
6.0 V
6.0 V
5 sec.

TYPICAL THERMAL CHARACTERISTICS
Thermal resistance junction to free air IN=6

11
I nD7': 1

1190501ml

c

Cl186

NOTE: When placing double digits and single digits together
on a board, allowance should be made for .150" spacing
between the end leads of the double digit and the end leads
of the single digit.

600"
10.251l11111
11524'l1ml-{
~.OO7
.015

·.1lOO

PIN CONNECTIONS
PIN
NO

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18

240

ELECTRICAL CONNECTIONS
A MAN6410

B MAN6430

CMAN6440

DMAN6450

E MAN6460

Ecathode (No.1)
E anode (No.1)
C anode (No.1)
E cathode
C cathode (No.1)
D anode (No.1)
D anode (No.1)
D cathode
D cathode (No.1) D cathode (No.1)
B anode (No.1)
Common anode
B cathode (No.1)
C anode (No.1)
C cathode (No.1)
DP cathode (No.1) DP cathode (No.1) DP anode (No.1)
DP anode (No.1)
C cathode
DP cathode
E cathode (No.2)
E anode (No.2)
E anode (No.2)
E cathode (No.2)
D cathode (No.2) D cathode (No.2)
D anode (No.2)
D anode (No.2)
B cathode
G anode (No.2)
G anode (No.2)
A cathode
G cathode (No.2) G cathode (No.2)
C cathode (No.2)
C cathode (No.2)
C anode (No.2)
C anode (No.2)
Common anode
DP cathode (No.2) DP cathode (No.2) DP anode (No.2)
DP anode (No.2)
F cathode
Bcathode (No.2)
B cathode (No.2)
B anode (No.2)
B anode (No.2)
G cathode
A cathode (No.2) A cathode (No.2)
A anode (No.2)
A anode (No.2)
F cathode (No.2)
F anode (No.2)
F anode (No.2)
F cathode (No.2)
Digit No.2 anode
Digit No.2 anode Digit No.2 cathode Digit No.2 cathode
Digit No.1 anode
Digit No.1 anode Digit No.1 cathode Digit No.1 cathode
B cathode (No.1)
A cathode (No.1)
B anode (No.1)
A anode (No.1)
A cathod!! (No.1)
No connection
A anode (No.1)
No connection
No connection
G anode (No.1)
No connection
G cathode (No.1)
F anode (No.1)
No connection
F cathode (No.1)
No connection

F MAN6480

E anode
D anode
Common cathode
C anode
DP anode
B anode
Aanode
Common cathode
F anode
G anode

MAN6400 SERIES
TYPICAL CURVES

,.

100

«g

'"

I-

zw

a:
a:

OJ
U

0

a:

~

zw

;:;

U)

I

50

OJ

0

:1
OJ

40

a:

20
10

I

..J
W

>

Vi

IDOTTED LINE
INDICATES
PULSED OPERATIONSEE FIGS. 3, 51

/

o
1.0

2.0

z

I

30

3.0

I-

I

80

mlj
/V

NJRMAJZED lT IF

1ii

I

70

4.0

I-

I

80

u.

0

I

90

2.0

3.0

1.0

~

..J
W

,.~

~

I-

1ii 110

;:;

~w

a:

?

~

:t:s;='!IS ~

.. ..
~~""

40

::!

20

15

20

25

10
10

30

100

1000

PULSE DURATION

IF ,mA,

10,000

I~SI

C1599

C1702

Fig. 2.
Relative Luminous Intensity
vs. DC Forward Current

"" ""

100
90
80
70
-55

/

Fig. 3.
Maximum Peak Current
vs. Pulse Duration

I

~

w

>

"",

'" 100
80
no 50 F~-s:.

NORMALIZED
AT 25'C

zW

I-

200

~
10

C1697

~
~
13
U1

DC FORWARD CURRENT -

Fig. 1. Forward Current
vs. Forward Voltage

120

10

::!

4.0

FORWARD VOLTAGE - VF IVOLTSI

130

V

V

a:

V

1000
800
600
400

1

J

-25

25

"" "

50

TEMPERATURE -

75

100

2.0

10

5.0

TA ,'CI

50

20

DC

% DUTY CYCLE

C1701

C1700

Fig. 5. Relative Efficiency
vs. Duty Cycle

Fig. 4. Relative Luminous
Intensity vs. Temperature

INTERNAL CONNECTIONS

~

EQCElAGFDPEUGC8
1
2
151611 18

L.

D

C
3

,
"

, , ,

DP E

A

1

~.~.

"

3

,
, ,C

0

G

6

A

1011

,~

F

"

.
DP

e1196

MAN6430

SECOr.ojOIGIT

~

,

C

D

I

SECOND DIGIT

[13

FIRSTjOIGIT

E
1

,

el'95

MAN6410

/"

"

±1

FIRST !OIGIT

~
F
161716

A

G

.

,~

,

DP E

D

6

, , ,

G

C

10

I
A

F

11

"

t

DP
9

~ECO"DIOIGIT

±1

~

':~,~ ~ ~~

DCABDPEOCiCBAFQ

'}

1

IS 3

4

MAN6440

'3

I"

I

~~
E
1

:.

6

MAN6450

,
D

.
C

..

.. ..

, ,
•
A

6

MAN6460

F

G DP
10 5
C1238

a

1011129
e1198

I,

13

,

7

I I
E
1

,

0

.
C

~.
B

6

, •
A

MAN6480

F

G 0'
10 ,

C1239

241

MAN6400 SERIES
ABSOLUTE MAXIMUM RATINGS

Power dissipation @ 25°C ambient ....
Derate linearly from 50°C .........
Storage and operating temperature ....
Continuous forward current
Total . . . . . . . . . . . . . . . . . . . . .
Per diode . . . . . . . . . . . . . . . . . .
Reverse voltage
Per diode . . . . . . . . . . . . . . . . . .
Solder time @ 260°C (Note 2 and 3) ..

MAN6410
MAN6440

MAN6430
MAN6450

MAN6460
MAN6480

.
.
.

1140 mW
-24 mW/oC
.-40°C to +85°C

1000mW
-21 mW/oC
-40°C to +85°C

570mW
-12 mWrC
-40°C to +85°C

.
.

480mA
30mA

420mA
30mA

240mA
30mA

.
.

6.0 V
5 sec.

6.0 V
5 sec.

6.0V
5 sec.

ELECTRICAL-OPTICAL CHARACTERISTICS
(Per diode at 25°C Free Air Temperature Unless Otherwise Specified)
MIN.

TYP.

MAX.

UNITS

Luminous Intensity, Digit Average
(See Note 1,4)
Segment C or D of "+" (6430/6450)
Pulsed Luminous Intensity, Digit Average

510
260
710

/lcd
/lcd
/lcd

Segment C or D of "+" (6430/6450)

360

/lcd

Peak emission wavelength
Dominant wavelength
Spectral line half width
Forward voltage
Dynamic resistance (See Fig. 1)
Light rise time
Capacitance
Reverse current

562
567
30
2.2
12
500
40

3.0

nm
nm
nm
V

100

nsec
pF
/lA

.n

TEST
CONDITIONS

IF = 10 mA
IF = 10 mA
IF = 60 mA peak,
1:6 DF
IF = 60 mA peak,
1:6 DF

IF =20 mA
IF = 20 mA
IF = 10 mA
V = 0, f= 1 MHz
VR = 3.0V

TYPICAL THERMAL CHARACTERISTICS
Thermal resistance junction to free air ,,----_-,lCAT.. 180"

~.

14.06mml

~(8.00mml

/'

(4.~:~·ml

---.l

.D66"DlA.

b-----d~"

.Ot,,, ,.0tO"
11.27mml
.020" +.004"
(0.51 mml-.ooo"

PIN#5

.600"_ (0.25 mm)

(IS.24mm)

+.007"

±.OIS"

-.000"

C1186A

.

BOTTOM VIEW

a

1:1 '"

. . . . 12

'"

~

P1N#tO

r-rE1~~--;

B

loI:vl-r

' '1)L-j\~066'OIA
~ Oo!QdT
750"

DIGIT-I

1~8

PIN

CAT:
Z

--:;fs.

rn""""'7'O'''''m::l.-f8.~ mmJ

It'

100..

~A
f}~op

S
A

•

G

,

C

o

OOP

(168 mm) LIGHT INTENSITY

PART

IDENTIFICATION

cgEc

-1 I- -II..!

12.54mml

.050"
127 mm)

t.OIS"

NOTE: When placing double digits and single digits together
on a board, allowance should be made for .150" spacing
between the end leads of the double digit and the end leads
·of the single digit.

6oo..

.020"
(a,STmml

R---.l
L -L-:T

(4.:~~1

ellB6

/15.24 mml-i (O.:.~ml
t.015

'.004
-.000

-.000

PIN CONNECTIONS
PIN
NO

ELECTRICAL CONNECTIONS
A MAN6610

1 Ecathode (No.1)
o cathode (No.1)
2
3 C cathode (No.1)
4 DP cathode (No, 1)
E cathode (No.2)
5
o cathode (No.2)
6
7 G cathode (No.2)
8 C cathode (No.2)
9 DP cathode (No.2)
10 B cathode (No.2)
11 A cathode (No.2)
12 F cathode (No.2)
13 Digit No.2 anode
14 Digit No.1 anode
15 B cathode (No.1)
16 A cathodtl (No.1)
17 G cathode (No.1)
18 F cathode (No.1)

244

B MAN6630

C cathode (No.1)
D cathode (No.1)
Bcathode (No.1)
DP cathode (No.1)
E cathode (No.2)
D cathode (No.2)
G cathode (No.2)
C cathode (No.2)
DP cathode (No.2)
B cathode (No.2)
A cathode (No.2)
F cathode (No.2)
Digit No.2 anode
Digit No.1 anode
A cathode (No.1)
No connection
No connection
No conneCtion

D MAN6650
C MAN6640
E anode (No.1)
C anode (No.1)
D anode (No. 1)
D anode (No.1)
C anode (No.1)
B anode (No.1)
DP anode (No.1),
DP anode (No.1)
E anode (No.2)
E anode (No.2)
D anode (No.2)·
D anode (No.2)
G anode (No.2)
G anode (No.2)
C anode (No.2)
C anode (No.2)
DP anode (No.2)
DP anode (No.2)
B anode (No.2)
B anode (No.2)
A anode (No.2)
A anode (No.2)
F anode (No.2)
F anode (No.2)
Digit No.2 cathode Digit No.2 cathode
Digit No.1 cathode Digit No. l cathode
Banode (No.1)
A anode (No.1)
A anode (No.1)
No connection
No connection
G anode (No.1)
F anode (No.1)
No connection

E MAN6660

Ecathode
Dcathode
Common anode
Ccathode
DPcathode
Bcathode
A cathode
Common anode
F cathode
G cathode

F MAN66BO

Eanode
Danode
Common cathode
Canode
DPanode
Banode
Aanode
Common cathode
F anode
G anode

MAN6600 SERIES
TYPICAL CURVES
100

3000
MAN6600 SE

90
MAN6600 SERIES

80
70

;: ]000

< 60
E

-

~

/
/

50
40

~ I~OO

z

30

/

10
0

1000

§

20

4

,

V

0

0

~OO/

/

170

IHE~

"00

/

160

"

140

120

"

100

VOLTS

"-

"-

70

GO
50

IS

10

'"

.'~

".1\

JD
Cl{)..-_-,/'CAT.
.160"

I (8.00 mml

(4.06 mm)
t,O,5"

Jo::-

PIN~ ~-1~11.27mml
.020" +.004"

.100" TVP
12.54 mm)

PlN#5'

(0.51 mm)-.OOO"

+.007"
- .000"
C1186

L

-L--r
I

.010"

.600'~ --...1 (O}go~Tl

11;~~~~1

-:000"

PIN CONNECTIONS
ELECTRICAL CONNECTIONS
MAN6810

MAN6830

MAN6840

MAN6850

MAN6860

MAN6880

2 Digit
C.A.

1% Digit

2 Digit
C.C.

1% Digit

1 Digit
C.A.

1 Digit
C.C.

PIN PACKAGE
NO. DIMENSIONS I

1
2
3
4
5
6

7
8

9
10
11
12
13
14
15
16

17
18

252

C.A.
PACKAGE
DIMENSIONS II

PACKAGE
DIMENSIONS I

C.C.
PACKAGE
DIMENSIONS II

PACKAGE
DIMENSIONS III

PACKAGE
OIMENSIONS III

E cathode (No.1) C cathode (No.1)
E anode (No.1)
C anode (No.1)
E cathode
E anode
D anode (No.1)
D anode (No.1)
D cathode (No.1) D cathode (No.1)
D cathode
D anode
C cathode (No.1)
B cathode (No.1)
C anode (No.1)
B anode (No.1)
Common anode Common cathode
DP anode (No.1)
DP anode (No.1)
DP cathode (No.1) DP cathode (No.1
C cathode
C anode
E anode (No.2)
E anode (No.2)
E cathode (No.2) E cathode (No.2)
DP cathode
DP anode
D cathode (No.2) D cathode (No.2)
D anode (No.2)
D anode (No.2)
B cathode
B anode
G cathode (No.2) G cathode (No.2)
G anode (No.2)
G anode (No.2)
A cathode
A anode
C anode' (No.2)
C cathode (No.2) C cathode (No.2)
C anode (No.2)
Common anode Common cathode
DP cathode (No.2) DP cathode (No.2) DP anode (No.2)
DP anode (No.2)
F cathode
F anode
B anode (No.2)
B cathode (No.2)
B cathode (No.2)
B anode (No.2)
G cathode
G anode
A anode (No.2)
A anode (No.2)
A cathode (No.2) A cathode (No'. 2)
F cathode (No.2)
F anode (No.2)
F anode (No.2)
F cathode (No.2)
Digit No.2 anode Digit No.2 cathode Digit No.2 cathode
Digit No.2 anode
Digit No.1 anode
Digit No.1 anode Digit No.1 cathode Digit No.1 cathode
A anode (No.1)
B anode (No.1)
B cathode (No.1) A cathode (No.1)
A cathode (No.1)
No connection
No connection
·A anode (No.1)
G cathode (No.1)
No connection.
G anode (No.1)
No connection
F cathode (No.1)
No connection
F anode (No.1)
No connection

MAN68UU SERIES
TYPICAL CURVES
100
90

<

80

1/

70

'/

120

1800

I

r - - _MAN6S00

~ 1500

..

E

~

I

/

20
10

V
1.0

900

~:;;

J

30

3
300

2.0

3.0

/

600

/

/

/

Fig. 1. Forward Current vs.
Forward Voltage

110

I

ffi
~

100

w

90

'"'"~

g
15

20

25

IF /PER SEGMENTj- rnA

C429

~

>

10

4.0

VF - VOLTS

M~N6Bcio

r--

--

~

...........

...........

80

70
-50

30
ClOB9

-25

25

50

AMBIENT TEMPERATURE _

70

cc

C431

Fig. 3. Luminous Intensity vs.
Temperature

Fig. 2. Luminous Intensity vs.
Forward Current

ffi

1000
800

MAN6S00

500

I

I

E
I

~ 24

1'-,
20

"

3

5

B 10

20

30 50 80 100

DUTY CYCLE - %

10

C1225

~

4

i

~

Fig. 4. Max Peak Current vs.
Duty Cycle

6

E

DC

DUTY CYCLE - %
IF PER SEG 10 rnA AVERAGE

12

10

"~

40

20

14

"

"

1

2

16

"g

r-..

I

\

i ~~

'" "

50

10

w

'\

1,5

~ so

MAN6S00

30
"' 28
26

\.
\.

~

..!-100

"

~

MAN6S00 f-

.i.aulLt!.

~
,,......_-,/CAT..160"

-.3Is"

/4.06mml

("OOmm'
.t,OI0"
I

br-----d __
'·o_r"

~
[1.27mmj

--11-- (0.51
.020" +.004"
mm) -.000"

PIN #5

+.007"

Cl186A

-.000"

PlN#IDe.~~ ...

80TTO~ VIEW,

g ' ..

I I

---i

s.

.600"_ W,25mml

(1S.24mm)

C1185

PlN.,OOOOOOOPlN#'
co ..

>1

i.OIO"

A

560·

(8.13mml

480"
(12:20mm

aa

i1rc=F-:J 11

DIGIT.1

r

C

r-;::I2S.02 mml ~

A

PIN:ltID

'"

r-;::l2s~~~ml~

B

I ~S~~ I

CI

rr
[al1
"'J;). ~:r
?

O'G" .,

.~.J
1~8

S
A

•

G

E

C

o

OOP

NOTE; When placing double digits and single digits together
on a board, allowance should be made for .150" spacing
between the end leads of the double digit and the end leads
of the single digit.

CAT.

.----~'I:-__:ri---.

PART

IDENTIFICATION

b-r'\"T(T'I"7'\"T(T'I"7"TT1Z:d~8 ~6~ml

PIN61

1:1"

PIN=fi

066 DOA
(I 66mml LIGHTINTENSITV

DATE CODE

CI

T

-I1.:'21mml
.020"
{D.51 mml

Clt86

+.004

-.000

PIN CONNECTIONS
PIN
NO

1
2
3
4
5
6
7

8
9
10
11
12
13
14
15
16
17
18

256

ELECTRICAL CONNECTIONS
A MAN6910

Ecathode (No.1)
D cathode (No.1)
C cathode (No.1)
DP cathode (No.1)
E cathode (No.2)
D cathode (No.2)
G cathode (No.2)
C cathode (No.2)
DP cathode (No.2)
B cathode (No.2)
A cathode (No.2)
F cathode (No.2)
Digit No.2 anode
Digit No.1 anode
B cathode (No.1)
Acathodl! (No.1)
G cathode (No.1)
F cathode (No.1)

B MAN6930

C MAN6940

o

MAN6950

C cathode (No.1)
E anode (No.1)
C anode (No.1)
D cathode (No.1)
D anode (No.1)
D anode (No.1)
Bcathode (No.1)
C anode (No.1)
B an'ode (No.1)
DPcathode (No.1) DP anoc!e (No.1)
DPanode (No.1)
E cathode (No.2)
E anode (No.2)
E anode (No.2)
D anode (No.2)
D anode (No.2)
D cathode (No.2)
G cathode (No.2)
G anode (No.2)
G anode (No.2)
C cathode (No.2)
C anode (No.2)
C anode (No.2)
DP cathode (No.2) DP anode (No.2)
DP anode (No.2)
B anode (No.2)
B anode (No.2)
B cathode (No.2)
A cathode (No.2)
A anode (No.2)
A anode (No.2)
F cathode (No.2)
F anode (No.2)
F anode (No: 2)
Digit No.2 anode Digit No.2 cathode Digit No.2 cathode
Digit No.1 anode Digit No.1 cathode Digit NO.1 cathode
A cathode (No.1)
Banode (No.1)
A anode (No.1)
No connection
A anode (No.1)
No connection
No connection
No connection
G anode (No.1)
No connection
F anode (No.1)
No connection

E MAN696D

Ecathode
Dcathode
Common anode
Ccathode
DPcathode
Bcathode
A cathode
Common anode
F cathode
G cathode

F MAN698D

Eanode
Danode
Common cathode
C anode
DPanode
Banode
Aanode
Common cathode
F anode
G anode

MAN6900 SERIES
TYPICAL CURVES
100

170

3000

0

160

MAN6900SERIES

MAN6900SERIE5

2500

80

140

70
2000
0

I
I

0
-

"

150

40

./

1500

0

I
V

10

.4

.8

V

1.2 1.6 2.0 2.4 2.8 3.2 3.64.0

"-

,.,

I'

80

......

70

"

50

15

20

25

II' !PER SEGMENTI- rnA

Cl080

30

-50

-'25

CIOSO

25

50·

AMBIENT TEMPERATURE _·C

Fig. 2. Luminous Intensity vs.

Fig. 1. Forward Current vs.
Forward Voltage

......

100

/V

500

FORWARD V01.TAGE NFl - VOLTS

120

110

V

1000

0

"-

130

,/

"

70

C1244

Fig. 3. Luminous Intensity vs.
Temperature

Forward Current

(see Note 2)
1000

1-t-

-

800

<
e

FREa."2OOpps

"

2<)0

I

100

_14

\.
"\.

i'...

1.5

~ 80

~

r\.

MAN69oosERI s

500

~

........

50

"

0
0
3

5

10

20

50

100

20
40
DUTY CYCLE -

el193

DUTY CYCLE - "

I

""- I'.
DC
%

If PER SEa 10 rnA AVERAGE

e12'l2

Fig. 5. Luminous Intensity vs.

Fig. 4. Max Peak Current vs.
Duty Cycle

DutV Cycle

INTERNAL CONNECTIONS

1,3

114
FIRsrjolGlr
,~,

E
1

0
2

C

3

~

.~

. ~ '~

,,

8

A

G

IS

16

11

F
18

0' E
4
5

~
D
6

G
7

C
8

8 A
10 11

~~~
F

C
3

8
15

C

A

1

15

3•

0
6

G
7

C

8

8

10

0' E
5

4

G
7

A
11

0
2

F

12

9

A
10 11

F 0'
12 9
C1196

1,3

,~ ,~

C
1

A

15

•3

~~ ~

~

0
6

0' E
4
5

G

7

MAN6960

/3

I.

I

I

~. \~~~ ~~

~

C123B

'~,

••
C

SECONOIOLGLT

t~

~ ,~

EOCBAFGP
t
'2
4
6
7 9 10 5

MAN6960

,

~

14

e1197

MAN6940

0
6

±1

~ \~ .~~~
0' E
4 5

,,

.

MAN6930

1I"

G F
16 17 18

A

D'

SeCOND OIGIT

~

0
2

0
2

I

SECOND DIGIT

C1195

114

E
1

t, ,

12 9

MAN691D

F'RSTIO'G'T

1,3

14
±1

SECONOIOIGIT

E

0

c

1

2

4

•

•

A
7

MAN6980

. ~~

'~n

••

C

,~ ,~

A

10 11

F

,

12 9
C119B

~

,

F

G

9

10 5
C1239

257

MAN69UU SERIES
ABSOLUTE MAXIMUM RATINGS

Power dissipation @ 25°C ambient .. .
Derate linearly from 50°C ........ .
Storage and operating temperature .. .
Continuous forward current
Total . . . . . . . . . . . . . . . . . . . . .
Per segment . . . . . . . . .. . . ... .
Decimal point . . . . . . . . . . . . . . .
Reverse voltage
Per segment . . . . . . . . . . . . . . . .
Decimal point . . . . . . . . . . . . . . .
Solder time @ 260°C (Note 4 and 5)

MAN6910
MAN6940

MAN6930
MAN6950

MAN6960
MAN69S0

1200 mW
-17.1 mW/oC
-40°C to +S5°C

1050 mW
-15.0 mW;oC
_40°C to +S5°C

600mW
-S.6 mW/oC
-40°C to +S5°C

4S0mA
30mA
30mA

420 mA
30mA
30mA

240mA
30mA
30mA

6.0 V
6.0 V
5 sec.

6.0 V
6.0 V
5 sec.

6.0 V
6.0 V
5 sec.

ELECTRICAL-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)

MIN.

Luminous Intensity, Digit Average
(See Note 1)
Decimal point (See Note 5)
Segment C or D of "+" (6930/6950)
Peak emission wavelength
Spectral line half width
Forward voltage
Segment
Decimal point
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal point

TYP.

MAX.

320
125
125

UNITS

TEST
CONDITIONS

!Lcd
!Lcd
!Lcd
nm
nm

IF = 10 mA
IF = 10 mA
IF = 10 mA

V
V

IF = 20mA
IF =20 mA

26
26

n.
n.

IF = 20 mA
IF = 20 mA

35
35

pF
pF

V=O
V=O

!LA
!LA

VR = 3.0V
VR = 3.0 V

635
40
2.5
2.5

100
100

TYPICAL THERMAL CHARACTERISTICS
Thermal resistance junction to free air ElJA • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 160°CIW
Wavelength temperature coefficient (case temp.) . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 A/c
Forward voltage temperature coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -2.0 mVtC

NOTES
1. The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing
by the total number of segments. As measured with a Photo Research Corp. "SPECTRA" Microcandela Meter
(ModeIIV·OJ. Intensity will not vary more than ±33.3% betwee,n all segments within a digit.
2. The curve in Fig. 3 is normalized to the brightness at 25"C to indicate the relative efficiency over the operating
temperature range.
.
3. Leads immersed to 1/16:' from the body of the device. Maximum unit surface temperature is 140°C.
4. For flux removal, use Freon TF, Freon TE, Isoproponal, or water up to their boiling points.
5. Intensity adjusted for smaller areas of the "+" and decimal points.
6. All displays are categorized for luminous intensity. The intensity category is marked on each part as a suffix letter
to the part number.
.

258

O.800-INCH HIGH PERFORMANCE DISPLAY

HIGH EFFICIENCY RED (ORANGE)

MAN8600SERIES

FEATURES
•
•
•
•
•
•
•
•
•
•
•
•
•
•

High performance nitrogen-doped GaAsP on GaP
Large, easy to read, digits
Common anode or common cathode models
Fast switching-excellent for multiplexing
Low power consumption
Bold solid segments that are highly legible
Solid state reliability-long operation life
Rugged plastic construction
Directly compatible with integrated circuits
High brightness with high contrast
Categorized for luminous intensity (see note 6)
Wide angle viewing ... 1500
Low forward voltage
Gray face for use in high ambient light conditions

I
DESCRIPTION

APPLICATIONS
For industrial and consumer applications such as:
• Digital readout displays
• Instrument panels
• Point-of-sale equipment
• Digital clocks
• TV and radios

The MAN8600 Series is a family of large digits 0.8
inches in height. This series combines high brightness
large size and good aesthetics and is designed to be
used where accurate readable displays need to be
viewed over a distance. All models use right hand decimal points. Units are constructed with grey face
and neutral segment color.

MODEL NUMBERS
PART NO.

MAN8610
MAN8630
MAN8640
MAN8650

DESCRIPTION

COLOR

Hi-Efficiency
(Orange)
Hi-Efficiency
(Orange)
Hi-Efficiency
(Orange)
Hi-Efficiency
(Orange)

Red

Common Anode, Right Hand Decimal Pt.

Red

Common Anode, ± 1 Overflow Right Hand Decimal Pt.

Red

Common Cathode, Right Hand Decimal Pt.

Red

Common Cathode, ± 1 Overflow, Right Hand Decimal Pt.

PACKAGE
DRAWING

II

II

FILTER RECOMMENDATIONS
For optimum on and off contrast, one of the following filters should be used over the display:
PANELGRAPHIC SCARLET 65
HOMALITE 100-1670

In situations of high ambient light, contrast with
the gray face can be enhanced by using a neutral
density filter. The following or an equivalent can
be used:
PANELGRAPHIC GREY NO. 10

259

MAN8600 SERIES
PACKAGE DIMENSIONS

II

NOTE: Shaded Areas Indicate
Overflow Units Only_

.415"
(10.54 mml
± 010"

LUMINOUS
INTENSITY
DATE. CODE CATEGORY

LUMINOUS
INTENSITY
DATE CODE CATEGORY

Lr--~~~I~..1:LnTnra~~~1
f

(15.24mmt

'.0""

_11_ PIN

.100"~

.010" #10 12.54 mmJ
(.254

mmJ

C13G9

TVP

+.007"
-.000"
C1370

PIN CONNECTIONS
ELECTRICAL CONNECTIONS

PIN
1
2
3
4
5

6
7

8
9
10
11
12
13
14
15
16
17
18

260

#

MAN8610

MAN8630

MAN8640

MAN8650

Digit

± Overflow

Digit

± Overflow

Common Anode

Common Anode

Common Cathode

Common Cathode

Package Dimensions II

Package Dimensions I

Package Dimensions II

Package Dimensions I

No Connection
A Cathode
F Cathode
Common Anode
E Cathode

No Connection
No Connection
No Connection
Common Anode
C Cathode

No Connection
A Anode
F Anode
Common Cathode
E Anode

No Connection
No Connection
No Connection
Common Cathode
C Anode

E Cathode

C Cathode

E Anode

C Anode

o Cathode
DP Cathode
o Cathode

02 Cathode
DP Cathod!\
02 Cathode
Common Anode
B Cathode
01 Cathode
A Cathode

Common Cathode
DP Anode
o Anode
Common Cathode
C Anode
G Anode
B Anode

Common Cathode
DP Anode
02 Anode
Common Cathode
B Anode
01 Anode
A Anode

Common Anode

Common Cathode

Common Cathode

-

Common Anode
C Cathode
G Cathode
B Cathode

Common Anode

-

-

-

-

-

-

-

-

-

MAN8600 SERIES
TYPICAL CURVES
'00

0

90

1500

0
0

2000

60

I
U

0

=.

0

';00

'000

JO
0

I

0
4

8

1']

16

500

VOL

rs

Cl080

v

~

"-

" ....,

130

~

120
ll 0

iim .00
~
~

" "-

90

0

8

0

"' "

"

0
!P~R

15
<'0
SEGME"'TI .1'111

"

JU

50

-25

Cl()gll

"

50

AMBIENT TEMPERATURE - C

Fig. 2. Luminous Intensity vs.
Forward Current

70
C1244

Fig. 3. Luminous Intensity vs.
Temperature
(see NOM 21

~

1000
BOO
500
~REaUENCY ~

~

1,\

200 ppl

=

\

200

i'..

~100

;;:::

0

140

60

I,

Fig. 1. Forward Current vs.
Forward Voltage

,

/

]0 ,]4 lH 31 36 40

FORWARD VOLTAGE ,V f I

«

V

/

V

".50

80

~ 20
~ 18

!'\

a 16
:s 14

"' ~

50

3

OJ

10

DUTY CYCLE

20

50

",

~o

"

i

8

~

"'-

20

.

.0
100

10
1'1 Ile! '. r

Fig. 4. Max Peak Current vs.
Duty Cycle

,

40
IltJr~

DC

CYLI f

6
4

2

E

0

10 20 30 40 50

0

60 70 80 90

T A. AMBIENT TEMPERA TURE, ~c

CI194

Fig. 5. Luminous Intensity vs.

I

10

x

~

e1193

30
28

"

C1371

Fig. 6. Maximum DC Current

Duty Cycle

VS.

Temperature

INTERNAL CONNECTIONS

5,7

DP
10
MAN8640

c

02

DP

5.7

9,11

10

DP

02

10

11

o
11

13

14

15

5,7

01

A

13

14

15

13

01
14

15

A

MANB6S0

C1372

261

MAN8600 SERIES
ABSOLUTE MAXIMUM RATINGS
MAN8600

MAN86tO
MAN8640

MAN8630
MAN86S0

Power dissipation @ 25°C ambient . . . . . . . . . . .
Derate linearly from 50°C . . . . . . . . . . . . . . . • .
Storage and operating temperature . . . . . . . . . . .
Continuous forward current
Total. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Per segment . . . . . . . . . . . . . . . . . . . • . . . .
Decimal point . . . . . . . . . . . . . . . . . . . . . . .
Reverse voltage
Per segment . . . . . . . . . . . . . . . . . . . . . . . .
Decimal point . . . . . . . . . . . . . . . . . . . . . . .
Solder time @ 2BO"C (Note 4) ..•....•......
Peak forward current per segment (lmax)
(See Figure 4) . . . . . . . . . . . . . . . • . . . . . .

BOOmW
"':8.BmW/oC
_40°C to +85°C

450mW
-B.4mW;oC
-40°C to +85°C .

240mA
30mA
30mA

180mA
30mA
30mA

6.0 V
6.0 V
5 sec.

6.0 V
6.0 V
5 sec.

ELECTRICAL-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)

Luminous Intensity, Digit Average
(See N'ote 1 and 6)
Decimal point (see Note 5)
Segment C or D of "+" (8630/8650)
Peak emission wavelength
Spectral line half width
Forward voltage
Segment
Decimal point
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal point
Luminous Intensity Ratio IL
(segment·to·segment)

UNITS

TEST
CONDITIONS

/.Icd
/.Icd
/.Icd

IF=10mA
IF = 10 mA
.IF = 10 mA

V
V

IF = 20mA
IF = 20mA

26
26

n
n

IF = 20mA
IF = 20mA

35
35

pF
pF

V=O
v=o

/.IA
/.IA

VR = 3.0 V
VR = 3.0 V
IF = 10 mA

MIN.

TYP.

600
240
240

1000
. 400
400
630
40

MAX.

2.5
2.5

100
100
2:1

TYPICAL THERMAL CHARACTERISTICS
Thermal resistance junction to free air 9JA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160°CIW
Wavelength temperature coefficient (case temp.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 1.0 A/c
Forward voltage temperature coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -2.0 mV/oC

NOTES
1. The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing
by the total number of segments as measured with a Photo Research Corp. "SPECTRA" Microcandela Meter
(ModeIIV·D). Intensity will not vary more than ±33.3% between all segments within a digit.
2. The curve in Fig. 3 is normalized to the brightness at 25°C to indicate the relative efficiency over the operating
temperature range.
3. Leads immersed to 1/16" from the body of the device. Maximum unit surface temperature is 140°C.
4. For flux removal, use Freon TF, Freon TE, Isoproponal, or water up to their boiling points.
5. Intensity adjusted for smaller areas of the "+" and decimal points.
6. All displays are categorized for luminous intensity. The intensity category is marked as a suffix letter to the part
number.

262

O.BOO-INCH SEVEN SEGMENT
HIGH PERFORMANCE DISPLAY

YELLOW

MANSSUU SERIES

FEATURES
•
•
•
•
•
•
•
•
•
"
•
•
•
"

Yellow nitrogen-doped GaAsP on GaP
Large, easy to read, digits
Common anode or common cathode models
Fast switching-excellent for multiplexing
Low power consumption
Bold solid segments that are highly legible
Wide angle viewing __ . 1500
High brightness maximized for high "on" contrast.
Gray face for improved "off" contrast
End stackable for multiple digit displays
Categorized for luminous intensity (see.note 6)
Solid state reliability-long operation life
Directly compatible with integrated circuits
Rugged encapsulated plastic construction.

DESCRIPTION

APPLICATIONS
For industrial and consumer applications such as:
• Digital readout displays
• Instrument panels
• Point-of-sale equipment
• Digital clocks
II TV and radios

The MANBBOO Series is a family of large digits O.B
inches in height. This series combines high brightness
large size and good aesthetics and is designed to be
used where accurate readable displays need to be
viewed over a distance. All models use right hand
decimal points. The display on-off contrast has been
optimized·for high ambient light conditions by use
of a neutral grey face and diffused wh ite segments.
Construction makes use of a metal lead frame, plastic reflector cap with epoxy-filled segments and back.

MODEL NUMBERS
PART NO.

COLOR

DESCRIPTION

PACKAGE
DRAWING

MANBB10
MANBB30
MANBB40
MANBB50

Yellow
Yellow
Yellow
Yellow

Common Anode, Right Hand Decimal Pt.
Common Anode, ± 1 Overflow, Right Hand Decimal Pt.
Common Cathode, Right Hand Decimal Pt.
Common Cathode, ± 1 Overflow, Right Hand Decimal Pt.

II
I
II
I

FILTER RECOMMENDATIONS
For optimum on and off contrast, one of the following filters should be used over the display:
MANBBOO Series

Panelgraphic, Yellow 250r Amber 23
Panelgraphic, Neutral Density Filter, Gray 10
Homalite,
100-1720 or 100-1726

263

MAN8800
SERIES
.
.

PACKAGE DIMENSIONS

II
.735"

PIN #1

PIN #1 r(l~~~~.m)-!

'n01
±I~"",?"",D=;\u"",o!l.l

±.olO"-1

.985"
(25,02 mml

.985"

(25.02 mml

.735"
L118.67 mml---:l

1-

(20.32 mml

±l~

.8lo.,
(20.32 mml

PIN #lD

LUMINOUS
INTENSITY
DATE CODE CATEGORY

LUMINOUS
INTENSITY
DATE CODe CATEGORY

C13G9

C1370

PIN CONNECTIONS
ELECTRICAl- CONNECTIONS
. MAN8810

4
5
6
7
8

9
10
11
12
13
14
15
16

17
18

264

MAN8840

MAN8850

Digit

± Overflow

Digit

± Overflow

. Common Anode

Common Anode

Common Cathode

Common Cathode

Package Dimensions I

Package Dimensions II

Package Dimensions I

No Connection
No Connection
No Connection
Common Anode
C Cathode

No Connection
A Anode
F Anode
Common Cathode
E Anode

No Connection
No Connection
No Connection
Common Cathode
C Anode

E Anode

C Anode

PIN# Package Dimensions II
1
2
3

MAN8830

No Connection
A Cathode
F Cathode
Common Anode
E Cathode

E Cathode

-

C Cathode

-

-

-

-

D Cathode
DP Cathode
D Cathode
Common Anode
C Cathode
G Cathode
B Cathode

D2 Cathode
DP Cathode
D2 Cathode
Common Anode
B Cathode
D1 Cathode
A Cathode

Common Cathode
DP Anode
D Anode
Common Cathode
C Anode
G Anode
B Anode

Common Cathode
DP Anode
D2 Anode
Common Cathode
8 Anode
D1 Anode
A Anode

Common Anode

Common Anode

Common Cathode

Common Cathode

-

-

-

-

-

-

MAN8800 SERIES
TYPICAL CURVES
100

l'500

/

I

70

~ 1200
in

z

'" 60

...7

~

50

~

I

40

~

I

30
20

/

10

Z

:;
:1

/

900
600

300

2.0

1.0

3.0

VF -VOLTS

V

MAN8800

I

80

120

IBOO

J

MAN8800

90

k(

V

V

10

4.0

/

110

I

~
~

100

w

0

'"'"
~
>

g
15

25

20

IF (PER SEGMENTJ- mA

C429

~

r-- ..............
.............

...........

0

70

30
CIOS9

-50

25

-25

AMBIENT TEMPERATURE -

50

70

°c

C431

Fig. 3. Luminous Intensity vs.

Fig. 2. Luminous Intensity vs.
Forward Current

Fig. 1. Forward Current vs.
Forward Voltage

--

JAN8860

Temperature

1000

800

~

"- JEQuLvlJ.l,

",200
E
I

..!!o1ao
"

~

'\.

. . . 1"--.

MAN8800

0
8
6
4
2

MAN8800

MAN8800+t-l-

600

I

'\

1.5

I"

80
50

......

'I'

20

"-

10
2

3

5

810

20

305080100

DUTY CYCLE - %

10

20

Ct225

6
4
2

i'

40

a

DC

DUTY CYCLE - %
IF PER SEG lOmA AVERAGE

60 70

80 90

TA. AMBIENT TEMPERATURE,

C1226

Fig. 1$. Luminous Intensity vs.
Duty Cycle

Fig. 4. Max Peak Current vs.
Duty Cycle

r10 20 30 40 50

°c

Ct371

Fig. 6. Maximum DC Current

vs. Temperature

INTERNAL CONNECTIONS

DP

A

5,7

9, "

13

10

14

15

5.7

MAN8810

02

DP

9, 11

10

13

DI

A

14

15

MAN8830

17

A

5,7

MAN8840

OP

o

10

11

13

14

15

5,7

OP
10

D2
11

13

01
14

A

15

MAN88S0
C1372

265

MAN8800 SERIES
ABSOLUTE MAXIMUM RATINGS
Power dissipation @ 25°C ambient . . . . . . . . . .
Derate linearly from 50° C . . . . . . . . . . . . . . .
Storage and operating temperature . . . . . . . . . .
Continuous forward current
Total . . . . . . . . . . . . . . . . . . . . . . . . . . .
Per segment . . . . . . . . . . . . . . . . . . . . . . .
Decimal point . . . . . . . . . . . . . . . . . . . . .
Reverse voltage
Per segment . . . . . . . . . . . . . . . . . . . . . . .
Decimal point ......................
Solder time @ 260°C (Note 4) . . . . . . . . . . . . .
Peak forwatd current per segment (lmax) .....
(See Figure 4) . . . . . . . . . . . . . . . . . . . . . .

MAN8810
MAN8840

MAN8830
MAN8850

.
.
.

600mW
-10.3 mW/"C
_40°C to +85°C

450mW
-7.7 mW/"C
_40°C to +85°C

.
.
.

200mA
25mA
25mA

150mA
25mA
25mA

.
.
.
.
.

6.0 V
6.0 V
5 sec.

6.0 V
6.0V
5 sec.

ELECTRICAL-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)
MIN.

Luminous Intensity, Digit Average
(see Notes 1 and 6)
Decimal point (see Note 5)
Segment C or D of "+" (8830/8850)
Peak emission wavelength
Spectral line half width
Forward voltage
Segment
Decimal point
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal point
Luminous Intensity Ratio IL
(segment-ta-segment)

I.

TYP.

MAX.

500
200
200

UNITS

TEST
CONDITIONS

IIcd
IIcd
IIcd
nm
nm'

IF = 10mA
IF = 10mA
IF = 10mA

V
V

IF = 20 mA
IF = 20 mA

26
26

n
n

IF = 20 mA
IF = 20mA

35
35

pF
pF

V=O
V=O

IIA
IIA

VR = 3.0 V
VA = 3.0 V
IF = 10 mA

585
35
3.0
3.0

100
100
2:1

TYPICAL THERMAL CHARACTERISTICS
Thermal resistance junction to free aire JA . . . . . . . . . . . . . . . • . • . . • . . • • . . . . . . • . • • . • . . • . • . • . 160°CIW
Wavelength temperature coefficient (case temp.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 Atc
Forward voltage temperature coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .- . . . . . . . . -'1.5 mV/oC

NOTES
1. The digit average Luminous Intensity is oqtained by summing the Luminous Intensity of each segment and dividing
by the total number of-segments as measured with a Photo Research Corp. "SPECTRA" Microcandela Meter
(Model IV-D). Intensity will not vary more than ±33.3% between all segments within a digit.
2. The curve in Fig. 3 is normalized to the brightness at 25°C to indicate the relative efficiency over the operating
temperature range.
3. Leads immersed to 1/16" from the body of the device. Maximum unit surface temperature is 140°C.
4. For flux removal, use Freon TF, Freon TE, /soproponal, or water up to their boiling points.
5. Intensity adjusted for smaller areas of the "+" and decimal points.
6. All displays are categorized for luminous intensity. The intensity category is marked as a suffix letter to .the part
number.
.

266

O.BOO-INCH· SEVEN SEGMENT
HIGH PERFORMANCE DISPLAY

HIGH EFFICIENCY RED

MANagOO SERIES

FEATURES
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

High performance nitrogen-doped GaAsP on GaP
Large, easy to read, digits
Common anode or common cathode models
Fast switching-excellent for multiplexing
Low power consumption
Bold solid segments that are highly legible
Solid state reliability-long operation life
Rugged plastic construction
Directly compatible with integrated circuits
High brightness with high contrast
Categorized for luminous intensity (see note 6)
Wide angle viewing ... 1500
Low forward voltage
Red face and red segment for good ON/OFF contrast
These devices have a red face and red segments.

I

APPLICATIONS

DESCRIPTION

For industrial and consumer applications such as:
• Digital readout displays
• Instrument panels
• Point-of-sale equipment
• Digital clocks
• TV and rad ios

The MAN8900 Series. is a family of large digits 0.8
inches in height. This series combines high brightness
large size and good aesthetics and is designed to be
used where accurate readable displays need· to be
viewed over a distance. All models use right hand decimal points.

MODEL NUMBERS
PART NO.

MAN8910
MAN8930
MAN8940
MAN8950

COLOR

High
High
High
High

Efficiency
Efficiency
Efficiency
Efficiency

DESCRIPTION

Red
Red
Red
Red

Common
Common
Common
Common

Anode, Right Hand Decimal Pt.
Anode, ± 1 Overflow, Right Hand Decimal Pt.
Cathode, Right Hand Decimal Pt.
Cathode, ± 1 Overflow, Right Hand Decimal Pt.

PACKAGE
DRAWING

"
"
I
I

FILTER RECOMMENDATIONS
For optimum on and off contrast, one of the following filters should be used over the display:
PANELGRAPHIC SCAR LET 65
HOMALITE 100-1670

267

MAN8900 SERIES
PACKAGE DIMENSIONS

II
PIN #1

.735"
1...-118.67 mm)~

1-

~.010"

~I

DA

...I".L

O·

002 c
cP!!1

(25.02 mml

(20.32 mml

±I~

aDP

lUMINOUS

PIN #10

LUMINOUS
INTENSITY
DATE CODe CATEGORY

INTENSITY

DATE CODE CATEGORY

C1369

C1370

PIN CONNECTIONS
ELECTRICAL CONNECTIONS
MAN8910
Digit
Common Anode
PIN# Package Dimensions II
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

268

MAN8930

MAN8940

± Overflow

Digit

± Overflow

Common Anode

Common Cathode

Common Cathode
Package Dimensions I

Package Dimensions I

Package Dimensions II

No Connection
A Cathode
F Cathode
Common Anode
E Cathode

No Connection
No Connection
No Connection
Common Anode
C Cathode

No Connection
A"Anode
F Anode
Common Cathode
E Anode

E Cathode

C Cathode

E Anode

D Cathode
DP Cathode
D Cathode
Common Anode
C Cathode
G Cathode
B Cathode

D2 Cathode
DP Cathode
D2 Cathode
Common Anode
B Cathode
D1 Cathode
A Cathode

Common Cathode
DP Anode
D Anode
Common Cathode
C Anode
G Anode
B Anode

Common Anode

Common Anode

-

-

MAN8950

-

-

-

Common Cathode

-

No Connection
No Connection
No Connection
Common Cathode
C Anode

-

C Anode
Common Cathode
DP Anode
D2 Anode
Common Cathode
B Anode
D1 Anode
A Anode

-

Common Cathode

MANagUU SERIES
TYPICAL CURVES
100

3000

0

90

160
2500

80

0

0

200 0

0

I

0

=

"'

ISO

1500

II

40

./

0

I

10
4

B

I;?

16

/'

......

D-.

..:".

0

..:".

0

10

15

20

25

IF (PER SEGMENTI- rnA

CIOSO

......

0

0

10 ]4 ]!I ] ] 3640

VOLTS

0

/

500

FORWARD VOLTAGE (VF'

V

V
,/

1000

0

......

0

0

30

50

·25

"

Cl090

SO

10

C

C1244

AMBIENT TEMPERATURE

Fig. 1. Forward Current vs.
Forward Voltage

Fig. 2. Luminous Intensity vs.

Fig. 3. Luminous Intensity vs.

Forward Current

Temperature
(see Note 2)

"
z

1000

~

\.

800
~FREQUENCY

z

.""

\.

500
200 PIlS

~ 26

I

<

"- r-..

<: 200

E

~

r--...

100

5

< 80

'\

"' i'--

0

0
0

I

3

5

20

50

100

20

10

C1193

DUTYCVCLE %

/,

"

.
x
<

40

~

DC

0

10 20 30

40 50

60 70

8090

TA. AMBIENT TEMPERATURE, ·C

DUTY CYCLE - %

Ip PER SEG 10 rnA AVERAGE

G137'

C1222

Fig. 4. Max Peak Current vs.

Fig. 5. Luminous Intensity vs.

Duty Cycle

Fig. 6. Maximum DC Current

Duty Cycle

vs. Temperature

INTERNAL CONNECTIONS

14

I"

I"

1 1
~" ~
C
5,7

1

" .~ " ~r -r ~

f- -

02
9, 11

0'
10

~r

8
13

OT

A

14

15

MAN8930

MAN8910

"

0'

A

6,7

10

11

MAN8940

13

14

15

5,7

0'
10

02
11

01
13

14

15

MAN8950

C1372

269

MAN8900 SERIES
ABSOLUTE MAXIMUM RATINGS
Power dissipation @ 25°C ambient . . . . . . . . . . .
Derate linearly from 50°C . . . . . . . . . . . . . . . . .
Storage and operating temperature . . . . . . . . . . .
Continuous. forward current
Total. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Per segment . . . . . . . . . . . . . . . . . . . . . . . .
Decimal point. . . . . . . . . . . . . . . . . . . . . . .
Reverse voltage'
Per segment . . . . . . . . . . . . . . . . . . . . . . . .
Decimal point . . . . . . . . . . . . . . . . . . . . . . .
Solder time @ 2600 e (Note 4) . . . . . . . . . . . . . .
Peak forward current per segment (lmax)
(See Figure 4) . . . . . . . . . . . . . . . . . . • . . .

MAN8910
MAN8940

MAN8930
MAN8950

600mW
-8.6 mW/oC
-40°C to +85°C

450mW
-6.4 mWrC
_40°(: to +85°e

240mA
30mA
30mA

180mA
30mA
30mA

6.0V
6.0V
5 sec.

6.0V
6.0 V
5 sec.

ELECTRICAL·OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)
MIN.

Luminous Intensity, Digit Average
(see Note 1)
Decimal point (see Note 5)
Segment e or D of "+" (8930/8950)
Peak emission wavelength
Spectral line half width
Forward voltage
Segment
Decimal point
Dynamic resistance
Segment
Decimal point
Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal point
Luminous Intensity Ratio IL
(segment-to-segment)

TYP.

MAX.

320
130
130

UNITS

TEST
CONOITIONS

/lcd
/lcd
/lcd
nm
nm

IF = 10mA
IF = 10mA
IF = 10 mA

V
V

IF = 20 mA
IF = 20mA

26
26

n
n

IF = 20 mA
IF = 20mA

35
35

pF
pF

V=O
V=O

/lA
/lA

VA = 3.0 V
VA =3.0 V
IF=10mA

635
40
2.5
2.5

100
100
2:1

TYPICAL THERMAL CHARACTERISTICS
Thermal resistance junction to free air 8 JA • • • • • . . • • • • • • • • • . • • • • . • • • • • • • • • • • • . • • • • • • • • • • 160o elW
Wavelength temperature coefficient (case temp.) . . . . . . . . . . . . . . . . . . . . . . . . . . . '.. '.... _ . . . . . .. 1.0 A/e
Forward voltage temperature coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -2.0 mV/oe

NOTES
1. The digit average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing
by the total number of segments as measured with a Photo Research Corp. "SPECTRA" Microcandela Meter
(ModeIIV-D)_ Intensity will not vary more than ±33.3% between all segments within a digit.
2. The curve in Fig. 3 is normalized to the brightness at 25°C to indicate the relative efficiency over the operating
temperature range.
3. Leads immersed to 1/16" from the body of the device. Maximum unit surface temperature is 140°C.
4. For flux removal, use Freon TF, Freon TE, Isoproponal, or water up to their boiling points.
5. Intensity adjusted for smaller areas of the "+" and decimal points.
6. All displays are categorized for luminous intensity. The intensity category is marked as a suffix letter to the part
number.

270

O.300-INCH HIGH PERFORMANCE
7 SEGMENT MULTIDIGIT DISPLAYS

ORANGE
YELLOW
HIGH EFFICIENCY RED

MMN36000 SERIES
MMN38000 SERIES
MMN39000 SERIES

FEATURES
• High performance GaAsP on GaP LED die for
higher luminous intensity
• MUlti-digit displays prematched for brightness
and hue
• End-stackable two and four-digit packages
• Wide viewing angle
• High on/ott contrast
• Special lens color options to tailor display to
appl ication
• Common anode or common cathode versions
• Replacement for National Semiconductor similar
stick displays

APPLICATIONS
a
•
•
•
•
•

Test and measurement
Point-of-sale
TV
Industrial controls
Consumer products
Replacement for national semiconductor similar
stick displays

I

DESCRIPTION
The MMN30000 Series is a family of multi-digit LED
numeric displays featuring improved performance
through the use of high efficiency GaAsP on GaP die.
Construction is the non-encapsulated type using a
P.C. board, air gap reflector cap, and a single piece
lens cap. Terminals are standard P.C. board edge
finger contacts on .100" centres. Additionally the
contacts have a drilled plated through hole. Electrical
connection can be made via edge card connectors or
can be soldered to standard .100" terminal header
strip. These displays offer a number of options for
maximum design flexibility including various drive
configurations, lens colors, and both two-digit and
four-digit packages.

MODEL NUMBERS
PART NO_

DE.SCRIPTION

PACKAGE DRAWING

LED COLOR

LENS COLOR

Orange
Orange
Yellow
Yellow
High Efficiency Red
High Efficiency Red

Orange
Orange
Clear
Clear
Red
Red

Common
Common
Common
Common
Common
Common

anode, multiplexed
cathode, multiplexed
anode, multiplexed
cathode, multiplexed
anode, mUltiplexed
cathode, multiplexed

A
A
A
A
A
A

Orange
Orange
Clear
Clear
Red
Red

Common
Common
Common
Common
Common
Common

anode, multiplexed
cathode, multiplexed
anode, multiplexed
cathode, multiplexed
anode, multiplexed
cathode, multiplexed

B
B
B
B
B
B

2 DIGIT DISPLAYS
MMN36220
MMN36420
MMN38220
MMN38420
MMN39220
MMN39420

4 DIGIT DISPLAYS
MMN36240
MMN36440
MMN38240
MMN38440
MMN39240
MMN39440

Orange
Orange
Yellow
Yellow
High Efficiency Red
High Efficiency Red

MMN
-1Product Family Prefix

W

-1-

x

-1-

y
-1-

ZZ

-1-

Digit Size

Color

Drive Configuration

Number of Digits

3 = 0.3"

6 = orange
8 = yellow
9 = hi. eff. red

1 = common
2 = common
3 = common
4 = common

20=2
35=3%
40=4

anode direct drive
anode multiplexed
cathode direct drive
cathode multiplexed

271

MMN36000 MMN38000 MMN39000 SERIES
ABSOLUTE MAXIMUM RATINGS.
4 DIGIT

2 DIGIT

Power Dissipation @ 25°C ambient ..... 1600 mW/unit
Derate Linearly From 50°C . . . . . . . . . . . 38 mWtC
Storage and Operating Temperature ... -40°C to +85°C
Continuous Forward Current DC
.
Total Per Digit . . . . . . . . . . . . . . . . . . . . . 160 mA
Per Segment or DP . . . . . . . . . . . . . . . . . . 20 mA

: ... 800 mW/uni't
.. : ... 19 mW/oC
... "40°C to +135°C
........ 160 mA
. . . . . . . . . 20 mA

Reverse Voltage
Min. Per Segment . . . . . . . . . . . . . 5V
Min. Decimal Point . . . . . . . . . . . . 5V
Solder Time @ 260°C . . . . . . . . . . 5 sec.
Pulse Curren1:!Segment (See Figure 4) .....
.... ;. '.' ................ 0.5 AMP

ELECTRO-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)
MIN

UI

w

w

~

2:

«
a::

0

it
w
UI

Q
Q
Q

ID

'"Z

:i!!
:i!!

Luminous intensity, Digit average (See Note 1)
Decimal point (See Note 3)
Peak Emission ~avelength
Forward voltage
Segment
Decimal point
Dynamic resistance
Segment

s:0

...J
...J
W

>

272

v=o
V=O

"A
"A

V R =5.0V
V R = 5.0 V

"cd
"cd
nm

IF=10mA
IF=10mA

V
V

IF=20mA
IF = 20 mA

26
26

n
n

IF =20mA
IF = 20mA

'"Z:i!!

35
35

pF
pF

v=o
V=O

"A
"A

VR
VR

"cd
"cd
nm

IF=10mA
IF = 10mA

Peak Emission wavelength
UI
W

it

w

UI

W

!!!
Z

J:

::0

:i!!

Forward voltage
Segment
Decimal point

V
V

IF =20mA
IF =20mA

Dynamic resistance
Segment
Decimal point

26
26

n
n

IF =20mA
IF =20mA

Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal point

35
35

pF
pF

v=o
V=O

"A
/AA

VR = 5.0 V
V R =5.0V

2.6
2.6

100
100
510
90

Segment
Decimal point
Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal paint

IXI

II.
~

pF
pF

Dynamic resistance

Q
Q
Q

%

35
35

Q
Q
Q

C3

u:

IF =20mA
IF =20 mA

UI

W

W

n
n

2.5
2.5

C

2:

26
26

w

Luminous intensity, Digit average (See Note 1)
Decimal point (See Note 3)

>
I.)

IF=20mA
IF = 20mA

585

:i!!

a::

V
V

Forward voltage
Segment
Decimal point

it
w

TEST CONDITIONS
IF=10mA
I F =10mA

2.2
2.2

Capacitance
Segment
Decimal point
Reverse current
Segment
Decimal point

UNITS
"cd
"cd
nm

Peak Emission wavelength
UI

MAX.

630

Decimal point

Luminous intensity, Digit average (See Note 1)
Decimal point (See Note 3)

TYP.

510
90

3.0
3.0

100
100
350
65
630
2.2
2.2

2.6
2.6

100
100

= 5.0 V
= 5.0 V

MMN36000 MMN38000 MMN39000 SERIES
TYPICAL CURVES (at 25°C unless otherwise noted)
500

«

3000r---,----r---,----r---,----,

/

450

E

I 400

lI

MMN36000
MMN39000

::: 350
f-

~ 300

/

0:
0:

a 250
~

0:

~

~ 1500 ~--~--~-----h~-I----<'----~
~

'"~
:::>

/'1'

~ 100

«

Z

/

150

)

50

o
o

b

~--~--~----+_--_+--7"'__1~--~

2000

iii

1I

J

~ 200

o

~

/

2500~--~--~----+_--~--~~--~

1000 ~--~--~-,tC----:l.o"'-_+-=-""'I~--~

:!E

MMN38000

:::>
-'

500~--~~~~'-+_--_+--~~--~

V
.4 .8 1.2

o

2.0

2.8
3.6 4.4 5.2 6.0
1.6 2.4 3.2
4.0 4.8
5.6
FORWARD VOLTAGE (V.) VOLTS
C1526
Fig. 1 Peak Forward Current vs.
Forward Voltage

5

10

15

20

30

25

IF (PE R SEGMENT) - rnA

C1527

Fig. 2. Luminous Intensity vs.
Forward Current

I

170

,

160

~

"" 150
I 140

'"ffl

130

!i:

120

z

""

~ 110
'" 100
90

~

~

-'
w

~

-" -"

MMN38000

80
70

0:

MMN36000
MMN39000

~

~

'\..

60
50
. -50 -40 -25

"

0

25

50

AMBIENT TEMPERATURE _

"

70

'c

85

C152B
Fig. 3. Luminous Intensity vs.

Temperature
1000
800
500

«E
I
~

"w«
0-

.....

200

I'\.
r\.'\ MLN3600~

I

~

MMN36000
MMN38000

i'
100
80
50

iii

zw

~

f-

"!:
w

""

~-'

""

FREO. = 200Hz

1.5

2

3

5 8 10

20

30 50 80100

DUTY CYCLE - %

Fig. 4. Max Peak Current vs.
Duty Cycle

C1529

",
'\.

MMN38000'

w

0..

"~ ~~

0:

FREO. = 200~z FREO. = 200Hz

10

1

\..\
'\

>

......

20

'\. \..MMN39000

~

~MN39000

10

15

20

30

~ ...

40 50 60 708090 DC

DUTY CYCLE - %
IF PER SEG 10 rnA AVERAGE

C1530

Fig. 5. Luminous Intensity vs.
Duty Cycls

273

MMN36000 MMN38000 MMN39000 SERIES
PACKAGE DIMENSIONS

PIN CONNECTIONS
MULTIPLEXED
TWD·DIGIT DISPLAYS
Orange

Yellow
R.d

.22"
[5.59mm)

PIN

1
I1==:J:~1=~~~:t=====:;:~T.

A

MMN36220
MMN38220

MMN39220
COMMON ANODE

CatnodeG
Cathode E

NC

.85"
(21.59mm)

I.
11

12

13
14

15
16

MMN36420
MMN38420
MMN39420
COMMON CATHODE
AnodeG
AnodeE

NC

,;0'

Dig
CA
Cathode 0
Dig...2CA
Cathode DP
CathodeC

Cathode B
NC
NC
NC
Cathode A
NC
Cathode F
NC

oig, ... 1 CA
Anode 0
Dig, "2eA
ArlOdeDP
AnodeC
Anode B

NC
NC
NC
Anode A

NC
Anode F
NC

MULTIPLEXED
FDUR·DIGIT DISPLAYS

B

.Jo.. 1(21.:~m)
--'l.
j 500"
1=1:;;;;;:;;;;ri==::;;;::;;;;;:;;~::::;;;:;::;;;:;;;:;~~;;;;:~I----_'--(·'2.7rml
[7.62mm)

165" (4.91 mm)

!

22"
,040" DIA
11,02mm)

(S.59mml

.J
-I

r

Orange
Yellow
Rod
PIN
1

2
3
4

5

6
7

•

NC

NC
Anode E
Dig .... ' CC

NC
NC
Dig. Jt2CA
Cathode 0
CathodeG

9

NC
Cathode A
Cathode F
;,4 C A

15
16

MMN36440
MMN38440
MMN39440
COMMON CATHODE

Cathode E
Dlg."1 C A

11
12
13
14

I.

L ~:~'ml

MMN36240
MMN38240
MMN39240
COMMON ANODE

NC

..3t: A
Calhod~

NC
NC
Dig ...2CC
Anode 0
AnodeG

B

Cathode D,P.

Cathode C

:zz3CC
AnodeS
Anode A
Anl)deF

'"'C C
Anode D.P.
AnodeC

~

(1

C1532

THRU 16PL

NOTES
·1. The digit average luminous intensity is obtained by summing the total number of segments. The standard of
measurement is the Photo Research Spectra Microcandela Meter corrected for wavelength. Intensity will not vary
more than ±33.3% between al/ segments within a digit or from digit to digit.
2. The curve in Fig. 3 is normalized to the brightness at 25°C to indicate the relative efficiency over the operating
temperature range.
3. The decimal point is designed to have the same surface brightness as the segments; therefore, the luminous
intensity of the decimal point is .18 times the luminous intensity of the segments, since the area of the decimal
point is .18 times the area of the average segment.
4. These high performance multi-digit displays are not sealed and should not be immersed during flux and clean
operations. Immersion may cause condensation of flux or cleaner on the inner surface of the lens. Immerse only
the edge connectors.
5. For flux removal, use Freon TF or Isoproponal at room temperature.

LIGHT FilTERS
A suitable light filter can considerably enhance the display aesthetics and increase the readability in high ambient tight
conditions.
Filters are available from:
Panelgraphic Corporation, New Jersey
201·227-1500
Rohm and Haas, Pennsylvania
215-592-3000
302·652-3686
SGL Homatite, Delaware
612·733-2023
3M Company, Minnesota
617-769-6800
Polaroid Corporation, Massachusetts

274

O.500-INCH HIGH PERFORMANCE
7 SEGMENT MULTIDIGIT DISPLAYS

ORANGE
YELLOW
HIGH EFFICIENCY RED

MMN56000 SERIES
MMN58000 SERIES
MMN59000 SERIES

FEATURES
•
•
•
•
•

High performance GaAsP on GaP LED die for
higher luminous intensity
Multi-digit displays prematched for brightness
and hue
End-stackable two and four-digit packages
General Instrument's distinctive sculptured font for
an easy-to-read, pleasing appearance
Special lens color options to tailor display to
application

DESCRIPTION
The MMN50000 Series is a family of multi-digit LED
numeric displays featuring improved performance
through the use of high efficiency GaAsP on GaP die.
These displays offer a number of options for maximum
design fle"ibility including various drive configurations, lens colors, and both two-digit and four-digit
packages.

APPLICATIONS
• Test and measurement
• Point-of-sale
• TV
• Industrial controls
• Consumer products

MODEL NUMBERS
PART NO.

LED COLOR

LENS COLOR

DESCRIPTION

Orange
Orange
Yellow
Yellow
High Efficiency Red
High Efficiency Red

Orange
Orange
Clear
Clear
Red
Red

Common
Common
Common
Common
Common

Orange
Orange
Clear
Clear
Red
Red

Common anode, multiplexed
Common cathode, multiplexed
Common anode, multiplexed
Common cathode, multiplexed
Common anode, multiplexed
Common cathode, multiplexed

PACKAGE DRAWING

2 DIGIT DISPLAYS
MMN56120
MMN56320
MMN58120
MMN58320
MMN59120
MMN59320

A
A
A
A
A
A

anode, direct drive
cathode, direct drive
anode. direct drive
cathode, direct drive
anode, direct drive

Common cathode. direct drive

4 DIGIT DISPLAYS
MMN56240
MMN56440
MMN58240
MMN58440
MMN59240
MMN59440

Orange
Orange
Yellow
Yellow
High Efficiency Red
High Efficiency Red

MMN

-1Product Family Prefix.

w

-1-

x

-1-

y
-1-

B

B
B
B

B
B

ZZ

-1-

Digit Size

Color

Drive Configuration

Number of Digits

5 = 0.5"

6 = orange
8 = yellow
9 = hi. eff. red

1 = common
2 = common
3 = common
4 = common

20= 2
35= 3%
40=4

anode direct drive
anode multiplexed
cathode direct drive
cathode multiplexed

275

MMN56000 MMN58000 MMN59000 SERIES
ABSOLUTE MAXIMUM RATINGS
4 DIGIT

2 DIGIT

Power Dissipation @ 25°C ambient ...... 1600 mW ....... 800 mW
Derat~ LinearlYFr~m 25°C .. , ...... (, 15 mW/:C .. : . (, 15 mW/:C
Storage andOperatmg Temperqture. -40 C to +85 C. -40 C to +85 C
Continuous Forward Current DC
Total Per Digit . . . . . . . . . . . . . . . . : ...160 mA ....... 160 mA
Per Segment or DP . . . . . • . . . . . . . . . . . 20 mA ........ 20 mA

Reverse Voltage
Min. Per Segment . . . . . . . . . . . . . 5V
Min. Decimal Point . . . . . . . . . . . . '5 V
Solder Time @ 260°C . . . . . . . . . . 10 sec.
Pulse Current (See Figure 4) ; .... 0.5 AMP

ELECTRO-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)
MIN

W

C1
Z


'"w

it
w

'"

0
0
0

CD
III

Z

:i!
:i!

2.6
2.6

100
100

Decimal point

s:0

TEST CONDITIONS
IF = 10mA
IF=10mA

2.2
2.2

Capacitance
Segment

UNITS
/Jcd
/Jcd
nm

630

Decimal point

Luminous intensitY. Digit average (See Note 1)
Decimal point (See Note 3)
Peak Emission wavelength
Forward voltage
Segment
Decimal pOint

MAX.

510
90

510
90
585
2.5
2.5

3.0
3.0

Dynamic resistance

Segment
Decimal point
Capacitance
Segment
Decimal point
Reverse current

Segment
Decimal point

C

W

a:

>
(,)
Z

W

U
ii:

u..
W

::t:

.C1

5:

276

~

t¥:
w

I/)

80

HI
Z

:i!
:i!

Luminous intensity. Digit average (See Note 1)
Decimal point (See Note 3)
Peak Emission wavelength
Forward voltage
Segment
Decimal point
Dynamic resistance
Segment
Decimal point
Capacitance

Segment
Decimal point
Reverse current
Segment
Decimal point

100
100
350
65

/Jcd
/Jcd
nm

630

.'

IF = 10mA
IF = 10mA

V
V

IF =20mA
IF =20mA

26
26

n
n

IF =20 mA
IF=20mA

35
35

pF
pF

V=O
V=O

/JA
/JA

VR=5.0V
V R =5.0V

2.2
2.2

2.6
2.6

100
100

MMN56000 MMN58000 MMN59000 SERIES
TYPICAL CURVES (at 25°C unless otherwise noted!
500

3000r----r--~r_--,_--_r--~r___,

J

450

~ 400
-;;. 350

~
zw
0::
0::

II

250

J I

~

>-

/

I-

iii

z

w

I-

V

~

CIl

11./

o

150

b

~ 100
"-

50

t

o
o .4 .B 1.2

2500 1----1----11----1----+---11---1

I

300

:::>
<.> 200
0::

~

MMN56000
MMN59000

I

OJ

oz
i

MMN5BOOO

:::>

...J

I

o

2.0

2.B
3.6 4.4
5.2 6.0
1.6 2.4 3.2
4.0 4.B -5.6
FORWARD VOLTAGE (VF ) VOLTS
C1526

10

15

25

20

IF. (PER SEGMENT)- rnA

30
C1527

Fig. 2. Luminous Intensity vs.
Forward Current

Fig. 1. Forward Current vs.
Forward Voltage
170
160

"-......

150

"if'
I 140

13130

z

"

~ 120

~

110

::: 100
> 90

~
...J

BO

0::

70

w

MMN56000
MMN59000

'\..

CIl

-

..........

MMN;;;;- ~

~

'\..

60
50
-50 -40 -25

o

25

-"- ......

50

70

85

AMBIENT TEMPERATURE - ~C
C152B

Fig. 3. Luminous Intensity vs.
Temperature
2
1000

I I
I I

800
500

«E
I
~

«
'"
w
0..

.......

200

"-

MMN56oo0
MMN58000

r--

100
80
50

FREO.

20

iii

~MN59000

zw

I-

~
w

"

'\.'\" ,-'
'\

>I-

",,"

«

w

"- r-...

= 200 pps

MMN5BO~

...J

"~

0::

10
2

3

5 8 10

".'\. 0.-

1.5

i=

.....

20

30 50 80100

DUTY CYCLE - %

Fig. 4. Max Peak Current vs.
Duty Cycle

C1529

MIMN5600~

MMN59000

>

10

1

\..

15

20

30

~~

~iIII

40 50 60 70B090DC

DUTY CYCLE - %
IF PER SEG 10 rnA AVERAGE

C1530

Fig. 5. Luminous Intensity vs.
Duty Cycle

277

MMN56000 MMN58000 MMN59000 SERIES
PACKAGE DIMENSIONS

PIN CONNECTIONS
.28"
(7.112mm}
.06"
(1.524mm!

PtN#11

D'G'T#11:::1~~~~~~~=:$~~~

MUL TlPLEXEO
TWO~DIGIT DISPLAYS

" .~ 1

124.130 mml

117.7j mml

126.670mml

~ ~

.040" DIA
(1.016mm)
THRU 20 pL.es

,4,"rm, -l

.03" TYP.
(0.762 mml
ELECTRICAL CONNECTIONS

(STAKING PINS)

ON BOTH SIDES

A

elS01

.030"TVP.
1,762mml
(STAKING PINS)

1~

Tr- j I

J
n

.700"

"'~-,

200"
(5.0ao
mml

-

B

-l

1.00"

t

MULTIPLEXED
FOUR-DIGIT DISPLAYS
PIN
1
2
3

•

CONNECTION
A SEGMENT

N.C.
DSEGMENT
DIG.llndO.P.l COM.
NO CONNECTION
NO CONNECTION

DIG.2IndD.P.2COM.
CSEGMENT

PIN

CONNJOCTION

9
1.

N,C.

11

BSEGMENT

12
13

F SEGMENT
E SEGMENT
DIG.4IndD.P.4 COM.
D.P.

,.,.
I•

DIG. 3 and C.P.3OOM.

G SEGMENT

.06"mml

(1.524

(7.1·::·~ml
C1600

NOTES
1_ The digit average luminous intensity is obtained by summing the total number of segments. The standard of
measurement is the Photo Research Spectra Microcandela Meter corrected for wavelength. Intensity will not vary
more than ±33.3% between all segments within a digit or from digit to digit.
2. The curve in Fig. 3 is normalized to the brightness at 25°C to indicate the relative efficiency over the operating
temperature range.
.3. The decimal point is designed to have the same surface brightness as the segments; therefore, the luminous
intensity of the decimal point is. 18, times the luminous intensity of the segments, since the area of the decimal
point is .18 times the area of the average segment.
4. These high performance multi-digit displays are not sealed and should not be immersed during flux and clean
operations. immersion may cause condensation of flux or cleaner on the inner surface of the lens. Immerse only
the edge connectors.
5. For flux removal, use Freon TF or Isoproponal at room temperature.

278

Preliminary Data Sheet

ALPHANUMERIC DISPLAY SYSTEM

XOS2724P - XOS2724S - 24-character version
XOS2732P -XOS2732S -32-character version

XDS SERIES

INTRODUCTION
The G(lneral Instrument XDS series is a complete, ready-to-use Alphanumeric Display System, using a combination of
advanced LED display and microprocessor technology. These are available in 24 or 32 character versions. The series has
been especially designed to provide the visual communication link in today's many microprocessor, data communications
and instrumentation environments. The use of a microprocessor controller offers a wide variety of display features, and
relieves the user's system from the normal display maintenance of refresh, update, addressing, etc.
In each version all characters of the display are uniquely addressable allowing the display to be selectively changed in
accordance with system requirements_ Also the displayed information may be "read from" by using addressing and the
I/O lines_ All display changes are instantaneous with no flicker or distracting movements.

I

Two input versions are offered - a "Parallel Version" and a "Serial Version". Both share similar design features, construction
and common internal f.lP operating. software.
The XDS series consists of 24 or 32 characters of 0.135" high 14 segment monolithic direct view red LED displays, a microprocessor, and all the necessary display drive electronics_

SPECI FICATIONS
Number of Characters . . . . . . . . . . . . . . . . . 24,32
Character Font. . . .. 14 Segment Plus Decimal Point
Character Size (Magnified) . . . . .. .135" (3.43 mm)
Character Line Length
24 characters . . . . . . . . . . . 4.135" (105.02 mm)
32 characters .. : . . . . . . . . . 5.56" (141.23 mm)
Character Set (See Note 1) ... Full ASCII Upper Case
Display Technology '" LED Red GaAsP Monolithic
Display Type ...... General Instrument's MAN2815
Display Cycle Time . . . . . . . . . . . . . . . . . . 11.6 mS
Display Duty Cycle
Hi Brightness . . . . . . . . . . . . . . . . . . . . . . 1/32
Lo Brightness ........ _ . . . . . . . . . . . .. 1/96

FEATURES
• Completely solid state
• 24 or 32 characters .135" high; 14 segments per
character plus decimal point displays with compact
display Iine lengths
• Highly visible monolithic GaAsP red LED displays
with wide viewing angle
• Aesthetically pleasing 0.175" character-to-character
spacing

X DS2724
Dimensions (Overall) .... 6.8" W x 2.4" H x 1.35" D
(172.72 mm W x 60.96 mm H x 34.29 mm D)
XDS2732
Dimensions (Overall) .... 8.0" W x 2.6" H x 1.35" D
(203.2 mm W x 60.96 mm H x 34.29 mm D)
Weight . . . . . . . . . . . . . Approximately 6 Ozs. Max
(168 Grams Max.)
Connectors . . . . . . . . . . . . 26 Pin Male Flat Ribbon
Serial Version. . . 3 Pin .100" Right Angle Header Strip
NOTE 1: Accepts full ASCII upper and lower case input data
but displays all characters in upper case only. Data
output retains the same upper and lower case format
as the input.

• Complete display system with interfacing and display refresh electronics
• 8 bit f.lP controller
• Parallel and serial versions available
• Left/right display entry; Hardware/software control
• Multiple end-of-line modes, horizontal scroll, carriage return/line feed, no action
• Editing capability; Insert or delete characters
• BI.inking on/off cursor; hardware/software control
• I/O accepts upper and lower case data but displays
in upper case only; Data retains same ASCII format
as input.
• End-of-line "bell" output
• Brightness control hardware/software
• A completely "Interactive Display System" with
input and output capability
• Compact
• XDS2724 is mechanically similar to the HP HDSP8716 unit with same mounting dimensions

279

XDS DISPLAY SYSTEM
XDS. PARALLEL VERSION

XDS. SERIAL VERSION

• Universal S bit 'bi-directional bus system
• OnlyS data plus 3 control interconnects between
host pP and XDS display system plus 2 lines for
power

•
•
•
•

ABSOLUTE MAXIMUM RATING

XDS2724S/2732S
Supply Voltage Vee to ground ..... : . . . .. 6.0 V
Supply Voltage +Vs to ground . . . . . . . . . . . +15 V
Supply Voltage -Vs to ground . . . . . . . . . . . -15 V
Voltage-Input and Output Options ... -00'5 V to Vge
Storage Temperature. . . . . . . . . .. -40 C to +S5 C
Recommended Operating Conditions
Temperature . . . . . . . . . . . . . . . ; .. O°C to +70°C

Serial RS232 input and output
Selectable baud rates (50-9600)
Full or half-duplex modes
Selectable bit pattern, one or two stop bits"
odd/even parity, or no parity
• Parallel ASCII data input option into UART transmitter section

XDS2724P/2732P
Supply Voltage Vee to ground . . . . . . . . . . . 6.0 V
Voltage-Input and Output
Data and Options . . . . . . . . . . . . -0.5 V to Vee
Storage Temperature. . . . . . . . . .. -40°C to +S5°C
Recommended Operating Conditions
Temperature . . . . . . . . . . . . . . . . . . O°C to +70°C

---

Symbol

Min.

Max.

Units

5.25

V

V

Vee
Vs +

4.75
+10.S

+13.2

V

24

mA

Vs -

-10.S

-13.2

V

IOH

2500

pA

+15

V

24

mA

VIH
VIL

+3

IOL

RS232
Input
VIN

-3

-15

V

IOH

1000

pA

RS232
Output VOUT

VOH

+3

+10.5V

V

VOL

-3

Bell Output
lOUT

IOL

-10.5V
24

mA

IOH

1000

pA

Parameter
Parameter

Symbol

Min.

Max.

Units

Supply Voltage

Vee

4.75

5.25

Data Out
(Do-D7)

IOL

Bell Output
lOUT

Supply Voltage

Figure IA

Figure 18

COMMON SPECIFICATIONS. PARALLEL AND SERIAL VERSIONS
ELECTRICAL CHARACTERISTICS (Over temperature range O°C to +700 C)
All typical values specified Vee = 5 V, Vs + = 12 V, Vs- = -12 V and

TA = 25° unless otherwise specified.

XDS2724P/2724S/2732P/2732S
PARAMETER

Average luminous
Intensity/Segment
Peak Wavelength
Input Threshold-High
All Inputs
Input Threshold-low
All Inputs
!!!.e!:!t Current-low
RST, ST, BRT, SB,
FNT, LIft PRI, BlK
Output Current-High
BEll
Output Current-low
BEll
NOTE 2: Temperature 25°C,

SYMBOL

IV
).,p
VIH

MIN

30

TYP

UNITS

50

pcd

660

nm

2.0

CONDITIONS

See Note 2

V

Vee = 5 V ± 5%
Vee=5V±5%

VIL

O.S

V

IlL

1.6

mA

Vee = 5.25 V

IOH

1000

pA

IOL

24

mA

Vee = 5.25 V @
VOH = 2.4 V
Vee = 5.25 V@
VOL =0.5 V

Vee = 5 V, all characters with B segments on, High Brightness.
Figure 2

2S0

MAX

V

XDS DISPLAY SYSTEM
ELECTRICAL CHARACTERISTICS (Con't.)
Supply Current, Input/Output Specifications
PARALLEL VERSION
XOS2724P/2732P
PARAMETER

SYMBOL

MIN

TVP

MAX

UNITS

380
435

450
520

mA
mA

CONDITIONS

Vee Supply Current
X DS2724P
XDS2732P
Input Threshold-High
All Inputs
Input Threshold-Low
All Inputs
Input Current-High
00-+D7

Icc
Icc
V IH

2.0

V IL

0.8

40

IIH

I nput Current Low
Do-+D7

I nput Current Low
All inputs except
Do'~

V

Vee = 5 V

V

Vee = 5 V

IJ.A

Vee = 5.25 V
VIN=2.7V

mA

Vee = 5.25 V
V IN =.5 V

mA

Vee = 5.25 V
VIN =.5 V

0.4
IlL

1.6

IlL

(See Note 3)

Data Out, Do-D7

VOH

2.4

Vee = 5.25 V all characters
displaying 8 segments ON

V

IOH = -2.6 mA, Vee = 4.75 V

0.5

V

IOL = 8 mA, Vee = 4.75 V

TVP

MAX

UNITS

380
435

450
520

mA
mA

Vs+=+13.2V
Vs- = -13.2 V
Vee= 5.25 V

mA
+19.0

+25.0

Vee = 5.25 V
Vs+= +13.2 V
Vs -=-13.2V

mA
-32.0

-39.0

Vee = 5.25 V
Vs+ = +13.2 V
Vs-= -13.2 V

VOL

I

Figure3A

SERIAL VERSION
XOS2724S/2732S
PARAMETER

SYMBOL

MIN

CONDITIONS

+Vee
Supply Current
X DS2724S
XDS2732S

Icc
Icc

Vs +
Supply Current

Is'"

VsSupply Current

I s-

RS232C Output
Voltage

VOL
VOH

-9.0
+9.0

V IH
_ V IL

+3.0
-3.0

RS232C Input
Voltage

-10.5
+10.5
+15.0
-15.0

all characters
displaying 8
segments ON

V

Vee = 5.25 V } RL = 3K
Vs+ = +13.2 V
Vs-= -13.2 V

V

Vee = 5.25 V
Vs+ = +13.2 V
Vs -= -13.2 V

Figure 38

NOTE 3: All inputs listed except 00-0, have 4.7K pullup resistors. IIH not specified due to pullup resistors.

281

XDS DISPLAY SYSTEM
BASIC INTERFACE DEFINITIONS
All statements are made with respect to the XDS display system from the host system as shown:

I---WRITE---~~

XDS
DISPLAY

~----READ------~

SYSTEM

HOST

Figure 4. Data Flow Diagram

In both parallel and serial versions interfacing is straight
forward requiring the minimum interconnects. The
basic features and hardware/software display format
remains the same for both systems.

WRITE - Writes data from the host into the display.
READ - Display system outputs data to the host.

XDS-PARALLEL SYSTEM DESCRIPTION
The XDS displa,y,system interface requires the minimum of control or "hand shaking" in a BUS oriented system,
and is shown in Figure 5. Data/Control line functions are as follows:

HOST
MICROPROCESSOR
8080, Z80, 280, 6800/2/9
8085, Etc.

~

DATA BUS
WR
RD
CEN

Figure 5

~
.

XDS
ALPHA-NUMERIC
DISPLAY
SYSTEM

C1502A

DATA BUS:

a'Bitstandard JlP bi-directionaldata BUS. This BUS in conjunction with 3 control inputs either accepts
or sends data onto the a Bit BUS. When in the WRITE mode (with respect to display system) accepts
data bytes, character display information, control codes and cursor locations. In the READ mode
(output) it may be used to transmit "displayed information", status information and cursor location
to the host system.

C EN:

CHIP ENABLE LINE: (ACTIVE LOW)
This is the master enable for any communications between host system and display subsystem.
When the C EN line is high, no communication exists between display and host microcomputer.
When the C EN line is low, the BUS READ, BUS WRITE and DATA BUS are recognized.
READ BUS: (ACTIVE LOW)
If C EN line is low and RD is low, it enables data to be read from the display system to the host system.

RD:
WR:

282

BUS WRITE: (ACTIVE LOW)
If C EN is low, a negative going pulse (high to low transition) on the WR line causes data on BUS to be
latched into the display system and a service request is flagged.

XDS DISPLAY SYSTEM
TIMING DIAGRAMS:
READ TIMING

~~------------r-J_I_______________\_~--------~1::,
DATA

~L~I------------fr

tL-------+:.----'~

-------+l--~i:~V~A~L~ID~t!j>:~---------------i!--~i

--J

ta

~

~thl

i-+-

VAt'D

~;.... ~

th,

ta

1

1"-

WRITE TIMING
; :

: -+1

t'l......- - - - - - -

twm

tww - - - - - - -..~~;

~

;

:..-twm~

I

~':,',.I

\1 1

f

\

-------~!--~LlJ

------f T"'~" t
!!

DATA

~

!

j,
I

! i..-th2-----J.

iI

1:

1,

I

~:

ts

1

(:r---------

::

~rT

---.: ts

BE STAi

LE

I

t---th
-1,
~
2

C1577

Figure 6

Figure 6 shows the timing relationships and specifications for the various control signals.
WRITE STROBE TO STATUS TIMING

(Wii + CEN)

,

-------~~

STATUS BIT

!
,r------------

, ~~------------~f
l-*-

i,

~ tsb

:

: III(

'

:
I

tsa

!

):III

C1578

Figure 1

Read/Write Timing
Parameter

Write Strobe to Status Timing

Symbol

Min.

Max.

Units

Read Timing
Access Time

ta

-

28

nS

Data Hold Time

thl

0

45

nS

Write Timing
Set·up Time

ts

10

-

nS

Hold Time

th2

3.0

-

nS

twm

.015

35

IlS

WR Pulse Width

Parameter
Time Between
WRITES (See
Note 4)

Symbol

Min.

Max.

Units

tww
(Fig. 6)

220J..lS

00

-

Write Low to
Status Low

tsb
(Fig. 7)

-

50

IlS

Write Low to
Status High

tsa
(Fig. 7)

-

5.0mS

IlS

Note 4: Write pulses should not be sent unless status bit is high;
therefore, minimum tim"e between write pulses is de~
pendent on the status time·out, variable with last
commanded operation.

283

CHARACTER-TO-CHARACTER
ACCESS TIMES

PARALLEL VERSION

Character-to-character access time is the amount of
time required to enter a character to the next character
into XDS Display System (entry to entry)_

CEN
H

Left Entry Mode CR/LF
220j.lS = 4545 characters/second
The time increases in horizontal scroll mode when the
display line has been filled to maximum of 803j.1S
which is equal to 1246 characters/second.
Right Entry Mode
B03j.1S = 1246 characters/second

RD

X

Data Bus
Direction

WR

Data Bus Content

High
Impedance

-

H

Output

Data At Cursor
Position

X

L

L

L
L

H

L

Input

Data From Host

L

L

-

Invalid Condition

Figure 8. Truth Table Control Inputs

BLOCK DIAGRAM-XDS2724P/2732P
PARALLEL INPUT VERSION
-liE[[

OISPLAY
{
FORMAT
OPTIONS
(HARDWARE)

BUS CONTROL

.~

I
------------

...ro {

-

XDS-PARALLEL
ALPHA·NUMERIC
DISPLAY
SYSTEM

--.

GRD

t

+5V
C15038

Figure 9.

XDS-SERIAL SYSTEM DESCRIPTION
PARALLEL ASCII INPUT OPTION
INTO UART TRANSMITTER SECTION

CRT TERMINAL,
TELETYPE MACHINE
POINT -OF-5ALES
EQUIPMENT, INSTRUMENTATION OR
REMOTE MICROPROCESSOR SYSTEM

XDS-8ERIAL
ALPHA-NUMERIC
DISPLAY
SYSTEM

CI504A

Figure 10

284

XDS DISPLAY SYSTEM
XDS SERIAL DISPLAY SYSTEM

DATA BIT PATTERN-XDS-SERIAL

Serial Version
The XDS Serial unit is designed to operate with RS232
serial input and output data. Jumper options provide
for all commonly used Baud rates from 50 to 9600
Baud and for various bit patterns. A unique feature
provides for a jumper option to allow ASCII parallel
data to be loaded directly in the UART transmitter
section, sent out to the host system RS232 serial.
(See page 14)
The host's answer can then be returned RS232 serial
for display on the XDS display system. The addition of
the ASCII keyboard and a power supply makes for a
complete terminal single line display sUb-system. These
features allow the system to be used in full or half
duplex systems and provides a complete interactive
display sub-system.

The data bit pattern starts with 1 START bit followed
by 8 DATA BITS,Ieast significant bit first (Bo)
through to the most significant bit (B 7 ). Provision is
made for jumper options for one or two STOP bits,
odd or even PARITY, or NO PARITY.
Any data/command transmitted to the XDS display
system is echoed back to the sender when the status bit
goes high. If the command sent is a READ command,
the data echoed back to the sender is that which was
requested by the command, rather than echoing the
command.
Above 300 Baud, NULLS must be sent to the XDS
display system between characters to prevent display
blanking.

I

BLOCK DIAGRAM-XDS2724S!2732S
JUMPER OPTION
PARALLEL ASCII KEYBOARD
INPUT

r-

~

KEYBOARD
STROBE
,..._ _ _""-_ _......., INPUT

SERIAL INPUT VERSION

-1l'EIT
DISPLAY
FORMAT
OPTIONS
(HARDWARE I

DATA
1/0

{

HARDWAREI
SOFTWARE PRIORITY
STARBURST ONIOFF
LEFT/RiGfif ENTRY
BRIGHTNESS
SELF TEST
FONT

XDS-SERIAL
ALPHA·NUMERIC
DISPLAY
SYSTEM

SERIAL INPUT RS232
SERIAL OUTPUT RS232
+12V
-12V

GRD

+6V
C15058

Figure 11.

DISPLAY FONT (14 segments plus decimal point)
The top and bottom segments are displayed split as
shown, but are always shown as one since both halves
are connected together.
The "decimal point" is used as a "period" and in the
display of the "exclamation mark" and the "colon".

Figure 12. 14 Segments Plus Decimal Point

285

XDSDISPLAY SYSTEM
~~

ASCII FONT CHART
Hex
Character

00
01
02
03
04
05
06
07
08
09
OA
OB
OC
OD
OE
OF
10
11
12
13
14
15
16
17
18
19
lA
lB
lC
lD
lE
IF

ASCII

Font

NULL
SOH
STX
ETX
EaT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR

so
SI
DLE
DCl
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

*
*
*

*
*

*

*
*

*

Hex
Character

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

. Font

ASCII

SPAC'E

,

,

,

"

//

#

:8

$

[[
_U

%

%

&

\7
L:Y

,

/
/

(

'\

)

j

*
+
,

7/\

/

-

--

\1/

-I-

I

/

0

0-,/
,

1
2
3
4
5
6
7
8
9

-]

L
-]

--,
,-L~
:~

C-

LJ

7
E3
[]

--,

:

-

,

7

<

/
\

=

--

>
?

-\
/

-?

STARBURST CURSOR FONT
Hex
Character

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

ASCII
@

[~

A
B
C
D
E
F
G
H
I

F1

286

Hex
Character

ASCII

,

Font

\

Q

L:Y

rl

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71

R
S
T
U
V

F~

72

r

F~

_J

73
74
75
76

5

:J

77

w

]

,-L_
II
JJ
,L

,-LJF-

H
T

-L
/

J

U

K
L
M
N
a
P

I-<
,

W

L_

,M ,

",

,\J
11

u

fJ
[~

,

T

' .,
LJ
v' /

'

Y

V\J/
\/
/\
\/

Z

7
L

x
[

,

II
\I

\
1

v

1\

/\

-

--

.& Deletes character under the cursor, and cursor moves to the right one position.

* Control characters used

Font

Figure 13. ASCII Font Chart

\
1\

78
79
7A
7B
7C
7D
7E
7F

a

R

b

]
r-

C

d
·e

L
II

JJ

[

f

F-

9

LJ

h

H

rT

i

-L

j

U

k

I

/

I-<
,
L_

m

,M ,

n

,\J

0

'--'

p
q

",,-,

fJ
11

L~

,--

,
'LJ
v' /
,
T

t

u
V

/

y

/
V\J
\/
/\
\/

z

7
L

x

{
I

}

DELETE

,

~

,,

1/-

•

XDS DISPLAY SYSTEM
BASIC DISPLAY MODES (NOTE: The following illustrations are shown for a 24 character system. Operation for
the 32 character system is similar.)
POSITION 25
RESERVED

FOR CURSOR
ONLYNON· DISPLAYED

I
-

Fi IUFJ IHIFi INIuIML F~ II IL1- I] III ~J !Ii L H y I I
IFiIUpIHIFiINlul,~ L F~IIILI- I]III~JI~JIFJ L H yll
1\
IRILl pi HIFi It'-J IUI,~ [ F~ II ILI I] II I~J III FJ L Fi YI I I
IFiIL_IFJIHIRINluIM L F~IIILIIJJIII~Jllh_IFiIY II I I
I

DELETE CHARACTER

.

Figure 14.

287

XDS DISPLAY SYSTEM
DISPLAY MODES
The XDS2732 has 32 characters and operate similarly
with the appropriate number of characters.
Display Length
The XDS2724 has 24 viewable character positions, 1

through 24. There is a noil·displayed 25th position
which is reserved for the cursor in RIGHT ENTRY
DISPLAY, HORIZONTAL SCROLL NO-ACTION,
modes, as shown in Figure 14.

DISPLAY ENTRY MODES
There are two character entry modes, left or right.
Either can be selected by hardware or software commands. See Figure 14.
Left Entry
Characters when entered into an empty display enter
on the left most position #1; subsequent characters fill
the display left to right. In the "Left Entry" mode all
"End-of-Line" mode commands, cursor control and
editing features are functional as explained later.
Right Entry
Each new character entered is displayed in the rightmost character position (last character) and the entire
display is shifted left one position.
In the "Right Entry" mode the only display controls
which function are the "Backspace" character wh ich
causes the entire display to be moved right one character position, and the "Line Feed" which clears the
entire display. Cursor, "editing" modes, and "Bell
output" are not functional.
The action taken by the display for new characters
entered in "Right Entry" mode appear very similar to
"Left Entry" with the "Horizontal Scroll End-of-Line"
mode when the display has been filled; however, in

horizontal scroll mode the cursor is operational. See
"Horizontal Scroll Mode."
Internal Cursor"
The display has an internal cursor which always points
to where the next character entered will be displayed.
This mayor may not be visible dependent upon
whether a STARBURST has been selected by hardware/software and the display mode. If STARBURST
is ON, the next character entered will be displayed
at the current starburst location and the cursor will be
moved one character to the right for left entry.
On POWER UP or on a RESET the entire display is
blanked (refresh RAM filled with spaces). If "left
display e'ntry" mode is selected, the cursor will be at
the left most position and the cursor value will be one.
As each subsequent ASCII character (displayable
, only) is entered, it is displayed at the cursor position
and the cursor will move right one position. Its value
will have increased by one. The maximum cursor
position is one position past the last displayable
character and if further displayable characters are sent,
the action taken by the display will depend upon
the selected "end-of-line mode" (See Figure 14).

END-OF-LiNE MODES
The "End-of-Line" modes determine what the display
contents will do when all display character positions
have been filled. All "End-of-Line" modes are selected
or changed by software commands except the automatic default mode explained next.
Horizontal Scroll
The "Horizontal Scroll" mode is the automatic default.
If no "End-of-Line" mode has been selected by software commands I-jorizontal Scroll Mode is assumed.
When all display character positions have been filled
subsequent ASCII characters cause the entire display
to be shifted left one position and a new character is
entered in the right-most position. The starburst cursor,
if selected, will not be visible since it will be in the
position reserved for the cursor only. (See Figure 14.)
BACKSPACE and HORIZONTAL TAB allow the
cursor to be moved throughout the display.

288

Carriage Return/Line Feed
When the entire display line has been filled, the next
character entered clears the entire display and that
character is placed in the left·inost position #1. The
starburst cursor, if selected, will be in position #2.
(See Figure 14.)
No Action
When the display line has been filled further characters
entered cause a negative pulse on ttie "BELL" output
and the display remains unchanged.
The "Carriage Return" character clears the display and
is ready to accept new data.
Power ON Default Mode
The display reverts to "Left Entry" display mode,
"Horizontal Scroll" end-of-line mode. The "Starburst
Cursor" is on when no hardware select inputs are
connected.

XDS DISPLAY SYSTEM
CONTROL MODES AND COMMAND DEFINITIONS
Communication Input and Output
Communication with the XDS display system is made
possible by the input and output ports. The "Parallel
XDS" display communication is established by an 8·bit
bi·directional I/O plus 3 command lines. The "Serial
XDS" display communication is via a serial RS232C
input port and a RS232C output port.
In both systems the data bit FORMAT remains the
same. This is shown in Figure 15.

READ·PORT
(output to host)
CONTROL LINE STATUS
CE" = Low
RD = Low
WR = High

fI

'------ASCII DATA
I
I
STATUS BIT

~

WRITE·PORT
(input to display)
CONTROL LINE STATUS
CE = Low
RD = High
WR = Low

tI

DATA~

I

I

COMMAND BIT
Figure 15

Data Write
DATA WRITES are performed by sending an ASCII
character in bits Bo..... B6 and bit B, = L. Some ASCII
control characters will affect display operation as
listed. All characters transmitted to the display will be
echoed.
Control Characters Recognized:
L.F.
(HEX 0A) Line feed: clears display without
affecting the cursor position.
C.R.
(HEX 0D) Carriage return: sets cursor to
position one.
H.T.
(HEX 09) Horizontal tab: moves cursor
right one position.
B.S.
(HEX 08) Backspace: In left entry, deere·
ments cursor; in right entry,
scrolls the display right one posi·
tion, losing the last character.
ESC.
(HEX 1B) The escape character plus a two
key numeric entry positions the
cursor to any of the 1 through 24
character positions. The first
numeric entry represents the ten's
digit, the second represents the
unit's digit.
BELL (HEX 07) Bell: This charact~r causes a nega·
tive pulse to be output on the
"BELL" I/O line.

I

The following control characters set the mode of opera·
tion of the display when extra characters are typed
beyond the end of the character line.
CTL Q. (HEX 11) Auto carriage return/line feed.
CTL R. (H EX 12) Display "No Action". Bell pulse only
CTL S. (HEX 13) Horizontal scroll (Auto Default
Mode). All characters are shifted
to the left one character position.
Command Write
The commands listed (Bit B7 = H) affect the operation
of the display system. Invalid commands will be
ignored. Command characters can be sent but not
checked at the output, due to bit B, being used as a
status bit.
- continued on next page -

In the WRITE mode (to display) ASCII characters are
transmitted to the display by sending bit B, = L with
the ASCII DATA in bits Bo..... B6 • All displayable ASCII
characters will be stored in the display IlP refresh RAM
adjusted to be upper case. Some control characters will
be recognized and will affect display operation. (See
DATA WRITE.)
Commands are sent to the display by sending bit
B, = H. The rest of the byte Bo..... B6 contains command
information. (See COMMAND WRITE.)
In the READ mode bit B, is the STATUS BIT. If
HIGH, the bits Bo..... B6 contain valid data. If bit B, is
LOW, then bits Bo..... B6 contain invalid data.

289

XDS DISPLAY SYSTEM
CONTROL MODES AND COMMAND DEFINITIONS (Continued)
Fixed Commands
These commands have to be generated by the host
system.
Hex Value
80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F

Function
Carriage return, line feed
Read cursor position
Read data at cursor position
Read data at cursor, increment cOrsor
Insert space at cursor (left entry only)
Delete character at cursor position
(left entry only)
Turn on starburst at cursor position
(left entry only)
Turn off starburst
Select blinking of starburst, if displayed
Deselect bl inking of starburst
Go to left display entry mode
Go to right display entry mode
Go to high display brightness
Go to low display brightness
Enable hardware control of brightness
(default)
System reset, as power up, or hardware
RESET

Inherent Address Commands
These commands contain the cursor address pointer.
Bit # 7654321 0 Command
Bit # 111XXXXX Set cursor to position XXXXX
(Binary)
Bit # 110XXXXX Read data at position XXXXX
(Binary)

HARDWARE/SOFTWARE CONTROL
At power.up, or system reset, the display FORMAT
option lines are read into the XDS processor. These
option lines control:
(1) Hardware Priority, (2) Self-test, (3) Brightness,
(4) Entry Mode-Left/Right, (5) Starburst Cursor
On/Off, and (6) Font*.
The XDS controller board is designed so that the
display format options can be controlled from an
external system via input connections on the primary
.connector, P1.
Hardware Priority (PR II pin #3
If the priority line is setHIGH, all software commands
which could affect brightness or entry mode (left/right)
are ignored.
Starburst (SB) pin #8
The starburst is merely a cursor location marker and it
is displayed at position #1 at power up, if selected.
(See Figure 14.) Software commands may be sent to
turn on onurn off the starburst character and blinking
may be selected or deselected. Selection of starburst
ON/OFF does not change the blinking/not blinking
state of the starburst stored command.
* Font input not used on XDS display system.

290

Brightness (BRT) pin #12
After pOiNer up, the state ofthe hardware brightness
line is read during each display refresh cycle so that a
light cOntrol system may be implemented to control
the brightness of the display. If a "Hi" or "Lo" bright·
ness software command is sent then the hardware
"Brightness Line" is inoperative. Brightness stays "Hi"
or "Lo" according to the software command. After
receipt of a software "enable hardware brightness"
command, sampling of the hardware line is resumed.
Blanking Input (BLK) pin #14
This line can be used to blank out the display or can be
used to control the brightness levels of the display by
varying the pulse frequency. Blanking occurs during the
low state.
Left/Right Entry Mode (L/R) pin #2
If the software priority has been selected (hardware
PRIORITY line = Ll. then the entry mode may be
modified with the "select left" (or right) entry mode
software commands.
Self-Test (ST) pin #18
If the SELF-TEST line is low at power up, the XDS J.lP
sets the status bit low and executes the self-test
sequence, the system will remain in SELF-TEST mode
until the self-test line is taken high. Data or command
inputs into the system will be ignored during a SE LFTEST sequence. The end of a SELF-TEST response
is flagged by a cleared display and the status bit on the
READ port being set high.
The self-test routine performs three functions: (1) performs a functional segment "lamp test" for each
character (2) displays the entire available character set
and (3) a functional self-test of the XDS controller.
The format of the self-test is simple: a non-blinking
starburst character is displayed at the left-most location
and the character is displayed at the right-most location. The starburst is then scrolled across the display
moving rightwards as further characters, in sequence,
are scrolled in from the right, moving left. When the
entire character set has been displayed, spaces·are
scrolled in from the right until the display is cleared .
At this point the status bit is set high and the XDS
controller is ready to receive data/command inputs.
Font
This determines the type of display output from the J.lp.
control board for driving the display board, either 14
segment decoded information or an ASCII output. In
the XDS systems 14 segment decode information is
used and the FONT input must be left HIGH (PIN 6 of
primary connector P1).
Bell Output pin #4
This is a negative pulse of 2 J.ls duration which can be
used to trigger an audible device whenever a bell
output occurs.

XDS DISPLAY SYSTEM
BLOCK DIAGRAMS

xes Parallel Units
lAP CONTROLLER

DISPLAY BOARD

.p
8048

RESET
=nEST
BRIGHTNESS

fBRT)

STARBURST ON/an: (SB)
FONT (FNT)

D'SPLAY (

FORMAT

LEFT/RIGHT

OPTIONS

(URI

PRIORITY (PRI)

BLA~~~~~

BELL
OUTPUT

....::.1!rK=_ _ _ _ _ _ _ _ _ _ _ _ _--...:_ _ _ _ _...l
C1579

Figure 16. Block Diagram-XDS Parallel Unit

xes Serial Units

DISPLAY BOARD

AS232

JUMPER OPTIONS

INPUT
Rx

ASCII KEYBOARD INPUT

BREAK FOR PARALLEL

AS232
OUTPUT

Tx

STROBE

ASCII
INPUT

OPTION
BAUD

. RATE
OPTIONS

RESET

.-:;;;;:.'-----J

SELF TEST

,-::S"'B:":'T'""'----1

BRIGHTNESS ~="-----t

__..J--...J

STARBURST ON/CWF (58)

DISPLAY

FORMAT (

OPTIONS

FONT (FNT)

w

--:L=E':FT':':/':':RI~G':':HT':':=.L1'"'~""'---1~
~P~R~IO~R~IT~Y~(P~R~II_ ___1~

~

"
BUFFER
BELL
OUTPUT

BLA~~~~~-=BL=K'----------------------'

C1580

Figure 17. Block Diagram-XDS Serial Unit

291

XDS DISPLAY SYSTEM
CONNECTION TO COMMONLY USED MICROPROCESSORS
Zilog Z-80

Intel 8080
A,6

xr------------~~

AO

INTEL
MCS.ao

DATA BUS

ZILOG
z.ao

MEMlIIl

D------iR'D

r----L_)

lIIl

MEM~

rW~R~______.

180.'01

I

*NOT ON CONTROL BOARD

I

*
/0

0

,r--

~

~;'60"'4.064mm} 4 PLC

.1
o,«{/.

I
I

l~~ ..,

mm)!

2.000"
(50.BO mm) .....j

DISPLAY 32 CHARACTERS

I

1

5.400" ± .0tO
(137.16 mm ± .254)
1 23
~ P4 SERIAL VERSION ONLY

I

i

i~

.

..

6.300" ± .010
(160.02 mm ± .254)
5.850" ± .010
/148.59 mm ± .254)

C15B3

Figure 24

293

XDS DISPLAY SYSTEM
PRIMARY CONNECTOR

'CONNECTOR
STANDARD 26 PIN MALE

-12V" PIN #26
+12V' PIN #24

PIN #23 DATA 1/0 D,

Tx SERIAL DATA' PIN #22

PIN #21 DATA 1/0 D,

RESET PIN #20

PIN #19 DATA 1/0 D,

SELF TEST PIN #IB

PIN #17 DATA 1/0 D3

GROUND PIN #16

PIN #15 DATA 1/0 O2

BLANKING PIN #14

PIN #13 DATA 1/0 0,

BRIGHTNESS PIN #12

PIN#11 DATA 1/00,

Rx SERIAL DATA" PIN #10

PIN #9 CHIP ENABLE LINE"

STARBURST ONIOFF PIN #B

PIN #7 READ BUS·

FONT PIN #6

PIN #5 BUS WRITE·/KEYBOARD STROBE'

BELL PIN #4

PIN #3 PRIORITY

LEFTIRIGHT PIN #2

PIN #1 +5V

~NOTE:PIN#IHAS

r

A TRIANGULAR
DESIGNATOR ON
TOP OF CONNECTOR

DISPLAY BOARD

'SERIAL VERSION ONLY
·PARALLEL VERSION ONLY

C1585

CONNECTION TO XDS DISPLAY SYSTEM REOUIRES 26 PIN STANDARD
RIBBON CABLE WITH SOCKET CONNECTOR. A.P, PRODUCTS TYPE
924043·36·R OR SIMILAR.

Figure 25

P3 OPTIONAL: +5 V POWER CONNECTIONS
GROUNO~GROUND

AN OPTIONAL 3 PIN MALE CONNECTOR MAY BE INSTALLEO BY CUSTOMER
FOR +5 VOLT SUPPLY IF REQUIREO.

RXOATA~

I r---TXDATA

1 23
P4 SERIAL VERSION ONLY

o

o

NO CONNECTION
+5 VOLT

~

o

0

DISPLAY

1
2

P3

GROUND~3

o

0

C15B6
MOUNTING CONNECTOR
MOLEX TYPE 26·17·1031 .156" CENTERS MALE OR SIMILAR.
MATING CONNECTOR.
MOLEX TYPE 09·91·0300 .156" CENTERS FEMALE OR SIMILAR.

Figuie26

294

C15B7
P4 SERIAL VERSION. OPTIONAL RS232 I/O
THIS CONNECTOR ISWIRED IN PARALLEL WITH CONNECTIONS IN Pl.
MATING CONNECTOR. FEMALE MOLEX 22'()1·2036 .100" CENTERS.

Figure 27

Lamps

'." ":::X%"~,,',,'~",""',',"',""."",.," ",'"
'"',,,','

~
.

..

>

.

.

.

'

,

.

.

,",

,

'.'

,

.

,

..

,

,

'

,

'

295

LED LAMPS
VIEWED COLORI
LENS COLOR or
EFFECT

~

MV10B

Red/Clear

0.8mcd@l10mA

MV50

Red/Clear

1.4 mcd @l 20mA

MV52

Green/Clear

1.5 mcd @l 20mA

MV53

Yellow/Clear

1.5 mcd @l 20mA

MV54

Red/Flooded

1.0 mcd @l 20mA

MV55A

High Eff. Red

0.5 mcd @l 3mA

40·

2.5 mcd @l 20mA
1.6 mcd @l 20mA

70·
90·

1.7 mcd @l 20mA

110"

T·3/4

~.

~

T-3/4

TYPICAL
VIEWING
ANGLE

DEVICE
NO.

TO·18

I

LUMINOUS INTENSITY
(TYP)@
FORWARD CURRENT

PACKAGE

T-l, .055" LEAD SPACING

(a) MV5074C
(a) MV5075C

80·

Red

(a)

I
I
(b)

~

i

T-l,.100" LEAD SPACING

I
I

~

I

I

T-1-3/4* LOW PROFILE

1i

(b) MV5077C
(a) MV5174C
(b) MV5177C

Orange

5.0 mcd @l 20mA
3.0 mcd @l 20mA

90·
180·

(a) MV5274C
(b) MV5277C

Green

1.8 mcd @l 20mA
0.9 mcd @l 20mA

90·
180·

(a) MV5374C
(b) MV5377C

Yellow

4.0 mcd @l 20mA
2.0 mcd @l 20mA

90·
180·

(a) MV5774C
(b) MV5777C

High Eff. Red

5.0 mcd @l 20mA
3.0 mcd @l 20mA

90·
180·

MV51640
MV51641
MV51642

Orange

2.0 mcd @l 10mA
2.5 mcd @l 10mA
3.5 mcd@l10mA

90·
90·
90·

MV52640
MV52641
MV52642

Green

1.5 mcd @l 20mA
3.0 mcd @l 20mA
4.0 mcd @l 20mA

90·
90·
90·

MV53620
MV53640
MV53641
MV53642

Yellow

2.0
2.0
3.0
4.5

mcd@l10mA
mcd@l10mA
mcd@l10mA
mcd@l10mA

60·
90·
90·
90·

MV54643
MV54644

High Eff. Green

5.0 mcd @l 20mA
10.0 mcd @l 20mA

90·
90·

MV57620
MV57640
MV57641
MV57642

High Eff. Red

mcd@l10mA
mcd @l 10mA
mcd@l10mA
mcd@l10mA

60·
90·
90·
90·

MV50152
MV50154

Red

2.0 mcd@l10mA
1.5 mcd @l 10mA

45·
50·

MV52152
MV52154

Green

2.0 mcd @l10mA
1.5 mcd @l10mA

45·
50·

MV53152
MV53154

Yeliow/Orange

5.0 mcd@l10mA
3.0 mcd@l10mA

45·
50·

MV57162
MV57154

OrangelAmber

8.0 mcd@ 10mA
4.0 mcd@ 10mA

46·
50·

MV5094

Red

0.8 mcd @ 20mA

50·

MV5491

Greenl
Red

0.5 mcd @ 20mA
1.5 mcd @ 20mA

50·

2.0
2.0
2.5
3.5

T·'·~'·
BI-DIRECTIONAL ~

TWO 00<.0"

"O~

"MOUNTING HARDWARE AVA I LABLE

296

MAX.
POWER

MAX.
DC
CURRENT

FORWARD
VOLTAGE
(TYPICAL)

PAGE
NO.

1.65V

305

APPLICATIONS
General purpose indicator lights compatible with
Bipolar IC's.

175mW

70mA

80mW

40mA

1.65V

307

105mW

35mA

2.20V

309

105mW

35mA

2.10V

309

80mW

40mA

1.65V

307

6mW

4mA

1.60V

311

Diagnostic or indicator lights in low·power/low current
environments, MOS compatible

311

General purpose indicators, developmental projects,
breadboards.

315

Miniature indicators, breadboards, test jigs. Low profile.

100mW

105mW

120mW

50mA

100mA

I
I

1.6BV

2.00V

317
319

2.20V

317
319

2.10V

317
319

2.00V

317
319

2.00V

321

2.20V

321

2.10V

323
321
321
321

35mA

30mA

Indicator lights, diagnostic and panel displays, printed
circuit board indicators, miniature low profile package.

2.20V

301,321

2.00V

323
321
321
321

1.60V

325

2.20V

325

2.10V

325

2.00V

325

I

Portable equipment, general purpose indicators and
matrix panel displays, test equipment and systems,
sorting machines, vending machines. High intensity

I

indicators in four colors.

I
Computars, general purpose indicators, instruments, test
sy·stems, mini- and micro-processors, process controlled
industrial systems, sorting machines, assembly equipment, vending machines, telephone equipment, backlight panels. High intensity indicators in four colors.

180mW
35m A

140mW

70mA

1.60V

337

200mW

35m A
70mA

2.20V
1.65V

343

High voltage bi-directional AC indicators, power suppl ie.,
transformers.

Polarity indication tri-state indicator, flow direction
display, instruments, tester displays, educational aids.

297

LED LAMPS
PACKAGE
T+3/4*

Q

I

I

T·l·3/4*

~

T·l·3/4*

I

~
~
~

T·l·3/4*

I
T·l·3/4*

~
RECTANGULAR*~

RECTANGULAR

~

DEVICE
NO.

VIEWED COLOR/
LENS COLOR or
EFFECT

MV5020
MV5021
MV5022
MV5023
MV5024
MV5025
MV5026

Red/Clear
Red/Soft
Red/Point
Red/Soft
Red/Soft
Red/Flooded
Red/Flooded

2.0 med @ 20mA
1.6 med @ 20mA
1.6 med @ 20mA
1.6 med @ 20mA
3.0 med@ 20mA
0.4 mcd @ 20mA
0.6 med @ 20mA

90°
90°
90"
90°
60°
180°
"90°

MV5050
MV5051
MV5052
MV5053
MV5055
MV5056

Red/Clear
Red/Soft
Red/Point
Red/Flooded
Red/Flooded
Red/Flooded

2.0 med @ 20mA
1.6 med @ 20mA
2.0 med @ 20mA
1.6 med @ 20mA
0.6 med @ 20mA
0.8 med @ 20mA

50°
72°
72"
80°
'150°
110°

LUMINOUS INTENSITY
(TYPI@
FORWARD CURRENT

TYPICAL
VIEWING
ANGLE

2.0 med @ lOrnA
3.0 mcd @ lOrnA
4.0 mcd@ lOrnA

MV5054·1
MV5054·2'
MV5054·3
Red

50°
2.0mcd@10mA
3.0 mcd @ lOrnA
4.0mcd@10mA

MV5054A·l·
MV5054A·2
MV5054A·3

MV5152
MV5153
MV5154

Orange

40.0 med @ 20mA
6.0 mcd @ 20mA
10.0 mcd@ 20mA

28"
65°
24°

MV5252
MV5253
MV5254

Green

15.0 mcd@ 20mA
3.5 mcd @ 20mA
3.0 mcd @ 20mA

28°
65°
24"

MV5352
MV5353
MV5354

Yellow

45.0 mcd @ 20mA
8.0 mcd @ 20mA
10.0 mcd@ 20mA

28"
65°
24"

MV5752
MV5753
MV5754

High Eff. Red

40.0 mcd @ 20mA
9.0 mcd @ 20mA
10.0 mcd@ 20mA

28°
65°
24°

MV64520
MV64521
MV64530
MV64531

High Eff. Green

25.0 mcd @ 20mA
60.0 mcd @ 20mA
6.0 mcd @ 20mA
14.0 mcd@ 20mA

35'
35'
75°
77°

mcd @ 20mA
med @ 20mA
med @ 20mA
mcd@ 20mA

100°

Yellow
High Eff. Green
High Eff. Red

4.0 mcd @ 20mA

100'

MV53173
MV54173
MV57173

Yellow
High Eff. Green
High Eff. Red

lO'med@ 20mA

Wide
Angle

MV53164
MV54164
MV57164

Yellow
High Eff. Green
High Eff. Red

1.0 mcd @ lOrnA
(per segmentl

Wide
Angle

MV52124
MV53124
MV54124
MV57124

Yellow
High Eff. Green
High Eff. Red

MV53123
MV54123
MV57123

Green

3.0
4.0
4.0
4.0

.5" RECTANGULAR"

~
, ~'0'0'0'0"0."0.~
'''G'''~

'MOUNTING HARDWARE AVAILABLE

298

MAX.
POWER

lBOmW

MAX.
DC
CURRENT

FORWARD
VOLTAGE
(TYPICAL)

PAGE
NO.

1.65V

327

1.70V

329

APPLICATIONS

Instruments, printed circuit board indicators, board·
mounted panel display. different lens effect and viewing
angles. MV5020 series offers leads with standoffs for

100mA

assemblv ease. General purpose indicators.

333

1.BOV

335

120mW

2.00V

339
341
341

2.20V

339
341
341

2.10V

339
341
341

35mA

2.00V

339
341
341

industrial systems, sorting machines, assembly equipment, vending machines, telephone equipment, back-

light panels. High intensity indicators in four colors.

120mW

30m A

2.20V

301,339
301,339
301,341
301,341

120mW

35mA
35mA
30mA
35m A

2.00V
2.00V
2.20V
2.00V

349
349
301,349
349

Legend backlight, panel indicator, bar graph, display
button. Mounting hardware available.

120niW

35mA

2.00V

347
301,347
347

Legend backlight, illuminates pushbutton, panel
indicator, bar graph meter.

200mW

25mA
30mA
35mA

2.00V
2.00V
2.20V

351

Panel indicators, backlight legends, light arrays.

2.50V

355

Analog measurement, audio instruments, meters, gauges.

750mW

300mA (30mA
per segment)

I

Computers, general purpose indicators, instruments, t"est
systems, mini- and micro-processors, process controlled

299

300

SOLID STATE LAMPS

HIGH EFFICIENCY GREEN

RECTANGULAR
RECTANGULAR
T-1 DIFFUSED
T-1 DIFFUSED
T-l% NON-DIFFUSED
T-l% NON-DIFFUSED
T-1 % DIFFUSED
T-1 % DIFFUSED

MV54123
MV54124
MV54643
MV54644
MV64520
MV64521
MV64530
MV64531

I

DESCRIPTION

General Instrument introduces a new family of solid state lamps utilizing an improved gallium phosphide green light
emitting diode.

FEATURES

• Typically 2-3 times brighter than the first generation green lamps.
• Comparable in brightness to high-efficiency red, yellow and orange.
• Pin-for-pin replacements for first generation lamps.

301

MV54123 MV54124 MV54643/4 MV64520/1 MV64530/1
PACKAGE DIMENSIONS

MV54123

Mv54124
---.t

j~l~078±'OO'
.197

.1.9BJ

±OOS
15.001

.020!.001

.0501.02'5
\27

0.5t,

049
\2.

'00

,2.54

It

It.

Cl667

MV54643
MV54644

MV64520
MV64521

MV64530
MV64531

Ti "O]
.S08 OlA
I

I

'L

laO",
.254

-"-

I

340

~.040

i
1

III
\

.075

1

'02

.BOO •
.20,32
,MIN.

11.91J MAX.

I

~j-''t~

.050 ,'.27,
.100 (2.54,
TOLERANCES

± .010

C1533

NOTES:
1. ALL DIMENSIONS IN INCHES (MILLIMETERS)
2. AN EPOXY MINISCUS MAY EXTEND ABOUT .040"(1 mm) DOWN
THE LEADS.
3. TOLERANCES '.010" UNLESS SPECIFIED.

302

.020
rO.S11
rSQUARE,

Cl062

MV54123 MV54124 MV54643/4 MV64520/1 MV64530/1
ABSOLUTE MAXIMUM RATINGS
Power dissipation @25°C ambient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 mW
Derate linearly from 50°C .................•................•...........••........ 1.6 mW/C
Storage and operating temperatures ...........................................•.• _55°C to 100°C
Lead solder time @ 260°C (1/16 inch from body) .......•.......•.......•....•....•...•...••.. 5 sec
Continuous forward current @ 25°C ...........•..........•.•...•..............•..•..•.•. 30 mA
Continuous forward current @·100°C ....•••...•..•.•............................•.....•• 10 mA
Peak forward current (see figure 3) . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 mA
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . • . . . . . • . . . . . . . . . . . . . . . 5.0 V

LUMINOUS INTENSITY AND VIEWING ANGLE (AT 25°C AMBIENT)
PART
NUMBER

LUMINOUS INTENSITY (mcd)
AT20mADC
TYP.
MIN.

PACKAGE
DESCRIPTION

MV54123
MV54124
MV54643
MV54644
MV64520
MV64521
MV64530
MV64531

Rectangular
Rectangular
T·l Diffused
T-l Diffused
T-l% Non-Diffused
T-l% Non-Diffused
T-l% Diffused
T-l% Diffused

VIEWING
ANGLE

100°
100°
90°
90°
35°
35°
75°
75°

4.0
4.0
5.0
10.0
25.0
60.0
6.0
14.0

1.0
2.0
2.0
6.0
12.0
30.0
3.0
7.0

ELECTRO-OPTICAL CHARACTERISTICS (TA = 25°C)
PARAMETER

SYMBOL

Forward Voltage
Peak Wavelength
Dominant Wavelength
Spectral Line Half Width
Light Rise Time
Capacitance
Reverse Breakdown Voltage
Temperature Coefficient of VF

MIN.

VF
Ap
Ad
l:.A/2
t,
C

VR

5.0

l:.VF/l:.T

TYP.

2.2
562
567
30
500
20
50
-1.35

MAX.

UNITS

TEST CONDITIONS

3.0

V
nm
nm
nm
ns
pF
V
mVrC

IF = 20 mA
IF = 20 mA
IF = 20 mA
IF = 20 mA
IF = 20 mA
VF = 0, f = 1 MHz
IR =1001lA
IF = 20 mA

I

TYPICAL ELECTRO-OPTICAL CHARACTERISTICS CURVES (TA = 25°C)
100
line
.;( 90 IPulsed operation - see Fig. 31
E
;;: 80

(Dott~d

indic~tes

I 70
IZ 60
LU

a:: 50
a::

::J

I

U 40
0

a:: 30

~
a::

/

20

0 10

LL

o

a

I

/

8.0

i
I

/

/

V

./

1.0
2.0
3.0
FORWARD VOLTAGE - VF (Voltsl
C1670

Fig. 1. Forward Current vs.
Forward Voltage

~ ,;('7.0

/

CiiE

t5 ~ 6.0

~

II

-.!!:-5.0
001::J

~

"";:r
~~--~~ '§,T" ~~

rr- ~T" 1; ~
[\.
r\

1; 1;

I\,

\

r-,

'" "-

120

fJ

til

~

_110

>-C,)

t: l'o 100
C/lC\l

~ Cil

r-,

1-"0

~

"" " "

90

~:!l 80
w:.:

:::~

I- ...

«g

70

uj - 60

a:

50
10
1.0

10
100
1000
PULSE DURATION (J.'5)

10000
C1674

-25
o 25 50 75
TEMPERATURE - TA lOCI

-55

100
C1671

Fig. 4. Relative Luminous Intensity
vs. Temperature

Fig. 3. Maximum Peak Forward Current
vs. Pulse Duration

20°

10°

0°

10°

20°

20°

10°

O·

10·

20°

20%

40%
C1673

100%
90%

70%

50%

30%

10% 0%

20%

Fig. 5. Spatial Distribution

304

40%
C1672

50%

30%

10% 0%

Fig. 6. Spatial Distribution

SOLID STATE LAMPS

RED

PACKAGE DIMENSIONS

DESCRIPTION
The MV10B is a GaAsP light emitting diode mounted
on a TO·18 header with a clear epoxy lens. On forward
bias, it emits a spectrally narrow band of radiation
which peaks at 660 nm.

H~~ri:R B:~~~~ t
WITH
EPOXY
LENS

MV10B

.164 _.

.230"
MAX.

.o:L:

·,F··.D D

~~~

(21.eadsl

FEATURES

"

~ '\ ,0...

'~

.046"
.038"

.5"

• Ultra High Brightness

I

• Long Life - Solid State Reliability
CONNECTED
INTERNALLY
TO HEADER

• Low Power Requirements
• Compatible with Integrated Circuits

TOLERANCES %.010"

• Compact, Rugged, Lightweight.

e569

ABSOLUTE MAXIMUM RATINGS
Power Dissipation @ 25°C Ambient Temperature
Derate Linearly from 25°C . . . . .
Storage & Operating Temperature .. .
Lead Solder Time @ 260°C (See note 2)
Continuous Forward Current . . . . .
Peak FQrward Current (1 Jlsec pulse, 0.3% duty cycle)
Reverse Voltage . . . . . . . . . . . . . . . . . . . . .

. . . . . . 175mW
. .. 2.33mW/C
·55°C to +100 o C
. 7.0 s
70mA
.1.0A
5.0V

ELECTRO·OPTICAL CHARACTERISTICS
CHARACTERISTICS

Luminous Intensity (see note 1)
Peak emission wave length
Spectral line half width
Forward voltage
Forward dynamic resistance
Capacitance

TYP.

0.8
660
20
1.65
2.0
135

MAX.

700
2.0

UNITS

TEST CONDITIONS

mcd
nm
nm
V

IF = 10 mA

n

pF

IF = 50 mA
IF = 50 mA
V=O

305

MVIOB
ELECTRO·OPTICAL CHARACTERISTICS
CHARACTERISTICS

(Continued)

MIN.

TYP.

3

50
50
15
3.7
90

Light rise.time and fall time
Reverse current
Reverse breakdown voltage
Luminous Flux
View angle

MAX.

UNITS

TEST CONDITIONS

ns
nA

50n system, IF =.:50 mA
V R = 3.0 V
IR = 100tlA
i'F = 50 mA
"Between 50% Points·

V
mLumens
Degrees

TYPICAL THERMAL CHARACTERISTICS
Thermal Resistance Junction to Free Air (e JA)
. . . . . . . • . • • . • . . . . . . . . . • . . . . • . . . . . . . . . 320° C/W
Thermal Resistance Junction to Case (e Jc ) . . . . . . . . . . . . . . . ~ . . . . . . . . . . . . . . . . . . . . . . . . . 155° C/W
Wavelength Temperature Coefficient (case temperature) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0.3 nm/C
Forward Voltage Temperature Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .: ... "-2.0 mV/C

TYPICAL ELECTRO·OPTICAL CHARACTERISTIC CURVES
(25°C Free Air Temperature)

v

J

~

V

~

,

0
E

;:-. 0

150

Z

~, 0

I"

12

a:

"au4 0

>

"

10a

I'

a:

'" ,
0

40

60

FORWARD CURRENT (rnA)

Figure 1 Brightness

VS.

80

~

3

~

2

0
0

I

0

V

I50

·25
0
25
SO
75
AMBIENT TEMPERATURE (oq

0.4
0.8
1.2
FORWARD BIAS (VOLTS)

100
C571

1.6

Figure 2 Brightness vs. Temperature

Figure 3 Forward Current vs. Forward Voltage

~

1.6

"

1.4

z>-

r "\

~ 1. 0
C

~

~

•
.•

~

4

'">

o. 2

iii

~

I

o.

~ o.

~

a:
CS73A

V/:

~ ,8

:=

J
0

,I. 2

~

~'.0

\

I
./

6300 6400

6
"o.
>-

1\

I

~

\
6500

6600

6700

~

\.
6800

WAVELENGTH IN,ANGSTROMS

Figure 5 Spectral Oistribution

6900

251lSEC

~50'SEC

c· 4 t - -

\

At-ISEC

Y
/',D,JSEC

w

\

II

CONSTANT
DUTY eYe LE = 0.3%

~

\

I

1< 0

10~SEC

:blt~SE~
0.2

C574

0.4

0.6

0.8

1.0

1.2

PEAK FORWARD CURRENT - AMPS C575A

Figure 6 Peak Power Output vs.
Pulsed Forward Current

NOTES
1. As measured with a Photo Research Corp. "SPECTRA" Microcandela Meter (ModeIIV-D).
2. The leads of the MV10B were immersed in molten solder, heated to 260°C, to a point 1/16· inch (1.6mm) from
the body of the device per MI L-S·750, with a dwell time of 5 seconds.
3. The axis of spatial distribution are typically within a 10° cone with reference to the central axis of the device.

306

2.0
C572

C570

Forward Current

Figure 4 Spatial Distribution
(Note 3)

I
I
I
II

:;ra

5:

~

20

0

I,

"0:~ ,

V

V
a

17

I

FREE STANDING DIODE

z

/

a

I

20 0

SOLID STATE LAMPS

RED
RED

MV50
MV54

PACKAGE DIMENSIONS

DESCRIPTION

GREEN MARK

The'MV50 and MV54 are diffused Gallium Arsenide
Phosphide diodes mounted in a two lead epoxy pack·
age; the MV50 has a clear lens; the MV54 is red
diffused. On forward bias they emit a spectrally narrow
band of visible light which peaks at 660 nm. (Also see
MV55A.)

INDICATES

~

i250MIN

~',"r" L~1f'

ANODE

1+)

0r.'~~20
L_
In C
,015

FEATURES
The MV50 and MV54 are intended for high volume
indicator light applications where low cost, high relia·
bility, and top performance are required. Major usage is
in applications such as diagnostic lights on printed circuit
boards and panel lights. They can be used to displace
subminiature lamps as small as T3/4 size.

iT§g

-

=t===::l

110
\J ..1 080

'--_ _ _--f:r-:,0.c.:
'O_'

-J

amI

j"

15'

NOTES:

1. ALL DIMENSIONS IN
INCHES
2. TOLERANCES ±.010"
UNLESS SPECIFIED

C576

• Low cost
• Bright
• Compatible with integrated circuits
• Long Iife, rugged
• Small. size - T3/4
• Easily assembled in arrays

TYPICAL THERMAL CHARACTERISTICS
Wavelength temperature coefficient (case temperature) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 nmtc
Forward voltage temperature coefficient . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . -2.0 mV fOe

ABSOLUTE MAXIMUM RATINGS
Power dissipation @ 25°C ambient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mW
Derate linearly from 25°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. L6 mWjOC
Storage and operating temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55°C to 100°C
Peak forward current (1 J.(sec pulse width, 0.3% duty cycle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LOA
Lead solder time @ 230° (note 1) . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
5 sec
Continuous forward current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,.... 40 mA
Reverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . • . . . . . . . . . . . . . 5.0 V

307

MV:JO MV:J4
ELECTRO·OPTICAL CHARACTERISTICS

(25°C Free Air Temperature)

MINIMUM

CHARACTERISTICS

MV50
0.5

Luminous Intensity (note 2)

TYPICAL

MV54

. MV50

004

.1.4

Peak emission wavelength
Spectral line halfwidth
Forward voltage
Capacitance
Rise and fall time

MV54
1.0

660

Reverse current
Reverse breakdown voltage
View angle

5

MAXIMUM

20
1.65
80
50

660
20
1.65
80
50

5.0
15
80

5.0
15
80

TYPICAL ELECTRO·OPTICAL CHARACTERISTIC CURVES

MV50/54

(25°C Free Air Temperature)
2.50

0

"

~

8

.....

6
4

/

~

I-

~

::>
0

z

C

B

12

16

FORWARD CURRENT (mAl

Figure 2 Brightness

VI.

80

/

a: 70

20

40

Figure 3 Paak Power Output VI.
Pulsed Forward Current
170
160

/

150

\

140

a: 130
w

~120

BRIGHTNESS VS. TEMPERATURE

\

IF-20mA

"-

wilD

>

" I"

~100
~ 90

/

3

~20""SEC
0.4
0.6
0.8
t.O
1.2
PEAK FORWARD CURRENT - AMPS . C579A

C578

II

50

'"

~

. " ao

2

70

J
./
40
60
20
CONE OF HALF ANGLE f,)

5D,.tSEC

o '1
o 0.2

:.--

0

-

';OQliSEC

.50

Forward Current

100

60

M

.75

-

r-

.~

~ 150

"7

,. V V

2.

/

o

10

~

PERCENT OF RADIATED POWER
'rTO I'0Nf OF, HA~F ANGLE e

100

/

3

lI"

50

/

I I I I I
.5.4

20 30 40 50 &0" 70 80 90
CONE OF HALF ANGLE

e

.3

C594

.2

.1

SPATIAL DISTRIBUTION

1.0

C595

2.0

3.0

Fig. 3 Luminous Intensity vs.
Forward Current

CO¥"~~
~·

180%
160%
140%

'\

~

-Vss

"-

100%

"'- ........
,~

60%

(OTHER
GATES)

R

40%

-40

-20

0"

20°

40~

60" 80° 100"

TEMPERATURE _oC

Fig.

=tr
+V::SIMOS

.........

80%

-60

(OTHER
GATES)

120%

e597

4 Relative Output vs. Temperature

4.0

FORWARD CURRENT OFI-mA

Figure 2 (Note 2)

Figure 1

-Vss

~

C588

Fig. 5 MV55A Interfaced with COS/MaS

NOTES
1. The (eads of the device were immersed in molten solder, heated to a temperature of 2300 C, to a point 1/16 inch
(1.6mm) from the body of the device per MIL-S-l50, with dwell time of 5 sec.
·2. The axis of spatial distribution are typically within a 100 cone with reference to the central axis of the device.
3. As measured with a Photo Research Corp. "SPECTRA" Microcandela Meter (Modell V-D).

312

IL

/

200

~

•

3. -

V

~

5.0
C596A

SOLIDSTATi LAMPS

RED
RED
PACKAGE DIMENSIONS

MV5074C
MV5075C

DESCRIPTION
The MV5074Cand MV5075C are red (GaAsP) light
emitting diodes mounted in a red epoxy package .
Their small size (approximately T-1 size), good view·
ing angle, and small square leads contribute to their
versatility as all purpose indicators.

. 12S"{3.18mm) DIA .
. 115" (2.92 mm)
4
~

FEATURES

II

Square leads (will fit into .020" (.508 mm)
diameter hole)
Compact size

II

Bright (typically 2.0 mcd at 20 mAl

II

Long life, rugged

II

.210" (5.33 mml

·"""r

t
.020"

era

mml

II

mml

.011" {.280 mm) SO.
.017" (.432mm)
-ANODE/

1.00"125t mm) MIN.

0: ~ .~

I

• Mount on approximately 3/16" (4.72 mm) centers

~

-

MV5074C and MV5075C have 1" (25.4 mm)
minimum lead length

II

.025" {.635 mml
.075" (1.91 mm)

Upon request, also available with anode lead
trimmed longer than cathode .

•

CATHODE REF
FLAT

NOTE:TOLERANCE :t.Ol0"
UNLESS SPECIFIED

...... 060"(1.52 mm)
.050" (1.27 mml

Cl128

ABSOLUTE MAXIMUM RATINGS
Power Dissipation @ 25°C . . • . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . 100 moW
Derate Linearly from 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ;;-1.27 mw/ o C
Storage Temperature . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55 o C to + 100 ° C
Operating Temperature . . • . . • • • . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55 C to + 100 C
Continuous Forward Current (25° C) • • • • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50 rnA
Peak Forward Current ( 1 fJ.sec Pulse Width, 0.3% Duty Cycte) . . • . • . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 A
Reverse Voltage • • . . . . • • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.0 Volts
Lead Solder Time 260°C (See Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5 sec

313

MV5014C MV5075C
(25°C Free Air Temperature)

TYPICAL ELECTRO·OPTICAL CHARACTERISTICS
CHARACTERISTICS

Optical
Luminous Intensity (I) (Note 1)
MV!:>074C
MV5075C
Wavelength (Apk)
Spectr;]1 Half Width
Viewing Angle
MV5074C
MV5075C
Electrical
ForwMd Voltage (V F )
Reve,," Voltage (V R )
Dynamic Resistance (Ro)
Capacllance

TYP.

0.7
0.6

2.5
1.6
660
20

mcd
mcd
nm
nm

70
90

degrees
degrees

MAX.

2.0

1.68
15.0
7.0
23

5.0

TEST
CONDITIONS

UNITS

MIN.

IF = 20 mA
IF = 20 mA

Between 50% points
Between 50% points

Volts
Volts

IF = 20 mA
IR = 100 /lA

n

V;"O

pF

TYPICAL ELECTRO·OPTICAL CHARACTERISTIC CURVES
50

1,
~

40

~

4. a

II

30

V
lL L V
O~

1.4

1.5

V
MV5075C

/"

2. a

1/
./

V

3.a

/

a

LV50741
C-

s. a

I

""o 2a

j

a

I

II

V

1.0

1.7

1.8

FORWAI\O VOL TAGE IVF) - VOL T8

Fig. 1. Forward Current

VS'.

1.9

10

20

30"

40

50

60

FORWAADCURRENT([FI-mA

C1126

C1127

Fig. 2. Luminous Intens;ty vs. Forward Current

Forward Voltage

180%

30"
160%

~5

100%

120%

1-

o

60'

g
*"

l:t:::±::1::::::1~~:::t~±±:tl90
50%

30%

10% 0

~ 100%

70"

80'
C1129

'0%

l"

r-.

80%

f"

60%

0

20

40

TEMPERATURE -

Fig. 3. Spatial Distribution

60
C

ao

i'-.

0/

20' '0

-20

\

:/

20%

-40

1\

1.

40 %

40%

·60

II \

60%

i"-

;:

60'

I 1\

140%

10D

630

C1130

Fig. 4. Percent Relative Response vs. Temperature

640

650

660

670

WAVELENGTH -

~

Fig. 5. Spectral Response

NOTES
1. As measured with a Photo Research Corp., "SPECTRA" Microcandela Meter (ModeIIV·D).

314

680

2. The leads of the device were immersed in molten solder at 260°C to a point 1/16 inch (1.6mm) from the body
of the device per MI L-S·750, with a dwell time of 5 seconds.
.

690
C1131

SOLID STATE LAMPS

RED

PACKAGE DIMENSIONS

DESCRIPTION
MV5077C is a red (GaAsP) light emitting diode
mounted in a red epoxy package. Its small size
(approxim*tely T-1 size). good viewing angle, and
small square leads contribute to its versatility as an
all purpose indicator.

:125" (3,18mm)OIA.

h

. 150" 1381 mill)
t.Ol0"12!l2mllll

FEATURES

~'-Tr--rr-'-f
OI1"I::~ ~:,::n:
1,00" ;em) MIN
4-

MV5077C

"

.Ol7"(.432mml
ANODE.-/'

NOTE· TOLERANCE '%,010"
UNLESS SPECIFIED

---

•

Square leads (will fit into .020" (.508 mm)
diameter hole)

•

Compact size

a

Bright (typically L 75 mcd at 20 mAl

•

Long life, rugged

•

MV5077C have I" (25.4 mm) minimum lead
length

•

Mount on approximately 3/16" (4.72 mm) centers

•

Upon request, also available with anode lead
trimmed longer than cathode

I

C1132

ABSOLUTE MAXIMUM RATINGS
Power Dissipation @ 25°C . • . . . . . • . . • . . • . . . . . . . • . . . . . . . . . . . . . • . . . . . . • . . . . . • • . . . . 100 mW
Derate Linearly from 25°C •.••••. '. . . . . • . . . . . . • . . . • • • . • . . . . . . . • . . . . • . • . . . • ..
1.27 mW/C
Storage Temperature, . . . . • . • . . • • • . • • . • . . . • . . . . . . . . • • . . . . • . • . . . . . . . • • • . . • _55°C to +100 o C
Operating Temperature . . • • . . • . . . . . . • . • . . . . . . . . . . • • • . . . • • . . • . . . . . . . . . . • . . _55°C to + 100°C
Continuous Forward Current (25°C) • • . • . . • . . . . . . . . • . . • . • . . • . . • • • • . • • . . . . . . . . . . • • • . . 50 mA
Peak Forward Current (l!Lsec Pulse Width, 0.3% Duty Cycle) • . . . . . . • • . . . . . • . . • • • • . . . . . . . . . . . 1.0 A
Reverse Voltage . • . • . . • . . . • • . . • • • . . . . . • • . . • • . • • • • . . . . • • • . . • • . • • . . . . . . . . • . • . . • 5.0 Volts
Lead Solder Time 260°C (See Note 2) . . • . . . . • . . . . . . • • . . . • . . . • . . • . . • • . • . . . . . . . • . . . • • •. 5 sec

TYPICAL ELECTRO-OPTICAL CHARACTERISTICS
CHARACTERISTICS

Optical
Luminous Intensity (I) (Note 1)
Wavelength (Apk)
Spectral Half Width
Viewing Angle
Electrical
Forward Voltage (VF )
Reverse Voltage (V R )
Dynamic Resistance (R D )
Capacitance

MIN.

TYP.

0.3

1.75
660
20

(25°C Free Air Temperature)
MAX.

mcd
nm
nm
degrees

110

5.0

L68
15.0
7.0
23

UNITS

2.0

Volts
Volts

n

pF

TEST
CONDITIONS

IF = 20 mA
I F =20mA
IF = 20 mA

Between 50% points
IF = 20 mA

IR = 100 !LA
v=o

315

MV5077C
TYPICAL ELECTRO·OPTICAL CHARACTERISTIC CURVES

50

'E"

6.0

I

1/

40

il

E .

I

~

20

~

10

4. 0

~

II

~

u

:r

;

I

t- 30

c
a:

MV

L:Z

50

I

ill
::>

.I .

5..0

in

i1i

3. 0

~

I

~
z
;;
:I

1/

2.0

°v

1,

./

o
1.4

1.5

1.6

1.7

1.8

1.9

FORWARD VOLTAGE (VF) - VOLTS

10

C1l26

Fig. 1. Forward Current vs. Forward Voltage

~

V

20

~

V
30

40

50

60

FORWARDCURRENT(IFI-mA

C1133

Fig. 2. Luminous Intensity vs. Forward Current

180%
160%

100%

~

( l\

80%

II \

5
w

>

~

60%

"

20%

J./
630

~

~ 100%

g

il

640

\
660

670

WAVELENGTH· -

f'- r---..

i"-

60%

I"'-

,,60%
40%

J'.,.
650

I120%

c

J

a: 40%

..

~ 140%

680
).

Fig. 3. Spectral Response

20%

690
et131

-60

-40

-20

a

20

40

TEMPERATURE -

60
~c

80

100
Ctt30

Fig. 4. Percent Relative Response vs. Temperature

NOTES
1. As measured with a Photo Research Corp.• "SPECTRA" Microcandela Meter (ModeIIV·D).
2. The leads of the device were immersed in molten solder at 260°C to a point 1/16 inch (1.6mmJ from the
device per MIL-S-750, with a dwell time of 5 seconds.

316

SOLID STATE LAMPS

ORANGE
GREEN

MV5174C
MV5274C

PACKAGE DIMENSIONS

DESCRIPTION

..

.210" 15.33 mm)

1..

.190·T8 mml

t

t

.020" (.508 mm!

FEATURES

1.00" (25.4 mm) MIN.

-

a Versatile mounting on P.C. board or panel

.025" 1.635 mm)

• Long life-solid state reliability
a Low power requirements

,075" {1.91 mm}

+

t

• Compact, rugged, lightweight

CATHODE REF

FLAT

• Square leads (will fit into .020" [.508 mml
diameter holes}

.160" (4.06 mm) OIA.
.150" (3.81

mm..l~'--_-'l"_--r

--

NOTE: TOLERANCE ±.010"

UNLESS SPECI FI ED

4 - .060" (1.52 mm)
.050" (1.27 mm)

I

a High efficiency GaP light source with various
lens effects

:~~~:: ::!~~ ::: 50.--0: ~-±
ANODE--""'"

MV5374C
MV5774C

These solid state indicators offer a variety of color
selection. The high-efficiency red, orange and yellow
devices are made with a gallium arsenide phosphide
on gallium phosphide; the green units are made with
gallium phosphide on gallium phosphide. All are
encapsulated in epoxy packages. Their small size
(approximately T-1 size), good viewing angle, and
small square leads contributes to their versatility as
all purpose indicators.

.130" !3.30 111m) DIA.
,115" 12.92 mm)

...

YELLOW
HIGH EffiCIENCY RED

a Upon request, also available"with anode lead
trimmed longer than cathode

Cl128A

ABSOLUTE MAXIMUM RATINGS
Power dissipation @ 25°C ambient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 mW
Derate linearly from 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . 1.14 mW/oC
Storage and operating temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55°C to 100°C
Lead solder time @ 260°C (See Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . 5 sec
Continuous forward current @ 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 mA
Continuous forward current @ 100°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 mA
Peak forward current (1 p.sec pulse, 0.3% duty cycle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 A
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.0 V

PHYSICAL CHARACTERISTICS
TYPE
MV5174C
MV5274C
MV5374C
MV5774C

SOURCE
COLOR
Orange
Green
Yellow
Red

.LE;NS
COLOR
Orange diffused
Green diffused
Yellow diffused
Red diffused

LENS
EFFECT
Wide beam
Wide beam
Wide beam
Wide beam

PACKAGE
PROFILE
High profile
High profile
High profile
High profile

317

MV5174C MV5274C MV5374C MV5774C
ELECTRO-OPTICAL CHARACTERISTICS (2SoC Free 'Air Temperature).
PARAMI;TER

TESTCOND.

MVS274C

MVS374C

MVS7.74C

2.2
3.0

2.1
3.0

2.0
3.0

1.5,
5.0
635
45

.4
1.0
565
35

1.5
4.0
585
35

1.5
5.0
635
45

pF

45

45

45

45

V
V

5
25

5
25

5
25

5
25

nA

20
100
90

20
100
90

20
100
90

20
100
90

UNITS

Forward voftage(VF )
Typ.
IF = 20 mA
Max.
IF = 20 mA
Luminous intensity (see Note 1)
Min.
IF =20 mA
Typ.
IF = 20 mA
Peak wave length
IF = 20 mA
Spectral line
IF = 20 mA
Half width
Capacitance
Typ.
V=O
Reverse voitage (V R)
Min.
IR = 100~A
Typ.
IR = 100~A
Reverse current (IR)
Typ.
V R =5.dv
Max.
V R =5.0V
Viewing angle (total)
See Fig. 3 & 4

V
V

mcd'.
mcd
nm
nm

~A

degrees,

MVS174C
' 2.0
3.0

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25°C Free Air Temperature Unless Otherwise Specified)
120%

GREENf'

.
I

~

30~-r~~~~-rr-~-+--1

80%

::>

~

::>

'"::>~
'"
~~

0

Wr--r~~Yr~--r-~-+--1
10~-r~~~-+--r-4--+--1

V~LLOlw

100%

,.

~

1.6

1.B

2.0

2.2

2.4

2.6

2.B

FORWARD VOLTAGE (VFI- VOLTS

540

560 580 BOO 620 640 660 680
WAVELENGTH ()..I - nm

C1063A

Fig. 1. Forward Current vs.
Forward Voltage
0"

)

/

520

1\

II / \ I~ \,

20%

3.0

I \ 1\

j

40%

o
1.4

"
1\

60%

w

1f\?RANGE
REO

10"

12

1l 10
E

MV5274C

I

MV57I";.;

1:

(1/

~
~

;::

is'"
z

4

;;

3

2

~
50%

30%

10%

a

Fig. 3. Spatial Distribution

Cl064

Fig. 2. Spectral Response

~

~

---

10
C1129A

/ ~
"/
20

/MV5374C

-Mv5274C
30

FORWARD CURRENT (IF' -

4P

ma

C1184

Fig. 4. Luminous Intensity v•.
Forward Current

NOTES
1_ As measured with a Photo Research Corp. "SPECTRA" Microcandela Meter (ModeIIV,D).
2. The leads of the device were immersed in molten solder, at 260°C, to a point 1/16 inch (1.6mm) from the
body of the device per MIL-S-750, with a dwell time of 5 seconds.

318

SOLID STATE LAMPS

MV5177C
MV5277C

ORANGE
GREEN
PACKAGE DIMENSIONS

YELLOW
HIGH EFFICIENCY RED

MV5377C
MV5777C

DESCRIPTION
These solid state indicators offer a low profile T-1
package_ The high-efficiency red, orange and yellow
devices are made with gallium arsenide phosphide on
gallium phosphide; the green units are made with
gallium phosphide on gallium phosphide. All are
encapsulated in epoxy packages. Their small size
(approximately T-1 size), good viewing angle, and
small square leads contribute to their versatility as
all-purpose indicators.

.130" (3.30mm)OIA.
.115" (2.92 mm)

.160" (3.81 mm)
±.010" (.254 mml

LrL-----i

T

.::~:;;:::+ ~3mJMIN'
ANODE

J

---

FEATURES
a

.025" 1_635 mmJ MIN_
.015" 11.91 mmJ

Square leads (will fit into .020" [.508 mm] diameter
hole)

I

• Compact size
• Bright (up to 3.0 mcd at 20 mAl
• .Long life, rugged

+

• Mount on approximately 3/16" (4.72 mm) centers

t

.160" 14.06 mm) DIA.

S1
.150·t_

t
r--r---.l..
,060" (1.52 mm)
.050" (1.27 mm)

m::TE'TOLERANCE •.010"'

• See MV5077 series for other red sources
• Upon request, also available with anode lead
trimmed longer than cathode

UNLESS SPECIFIED

CllSl

ABSOLUTE MAXIM.UM RATINGS
Power dissipation @ 2SoC ambient. _ . . . . . . . . . . . . . . . . . . . . _ . _ . . . . . . . . . . . . . . . . . . . . .- , .... 105 mW
Derate linearly from 2SoC ........ _ . _ . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . 1.14 mW/"C
Storage and operating temperature~ -.. _ ..... _ .. _ .... -. ...... _ . . . . . . . . . . . . . . . . . . . . -5SoC to + 100°C
Continuous forward current @ 2SoC ... ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 mA
Peak forward current (lp.sec pulse width, 0.3% duty cycle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 A
Reverse voltage ....... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.0 V
Lead solder time @ 260°C (See Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : . . . . . . . . . . . . . . . . . S sec

PHYSICAL CHARACTERISTICS
TYPE
MVSl77C
MVS277C
MVS377C
MV5777C

SOURCE
COLOR
Orange
Green
Yellow
Red

LENS
COLOR
Orange diffused
Green diffused
Yellow diffused
Red diffused

LENS
EFFECT
Wide beam
Wide beam
Wide beam
Wide beam

PACKAGE
PROFILE
Low profile
Low profile
Low profile
Low profile

319

MV5177C MV5277C MV5377C MV5777C
ELECTRO-OPTICAL CHARACTERISTICS
. TESTCOND.

PARAMETER

Forward voltage (VF )
Typ.
IF = 20mA
Max.
IF = 20 mA
Luminous intensity (see Note 1)
Min.
I F = 20 mA
Typ.
IF= 20 mA
Peak wave length
IF = 20 mA
Spectral line
IF = 20 mA
Halfwidth
Capacitance
Typ.
V=O
Reverse voltage (V R )
Min.
I R =100JlA
Typ.
IR = 100JlA
Viewing angle (total) (Fig. 5)
Dynamic resistance (R D )

(25°C Free Air Temperature.) .
UNITS

MV5177C

MV5277C

MV5377C

MV5777C

V
V

2.0
3.0·

2.2
3.0

2.1
3.0

2.0

mcd
mcd
nm
nm

1.0
3:0
635
45

.2
0.6
565
35

1.0
·2.0
585
35

1.0
3.0
635
45

pF

45

45

45

45

V
V
degrees

5
25
180
7.0

5
25
180
7.0

5
25
180
7.0

5
25
180
7.0

n

3~0.

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25°C Free Air Temperature Unless Otherwise Specified)
120%

"B 4.51--+-+-t--+-+~f--+
E
I

~

iii

3.0 f--+-+-t--7f'--+"J'!L--j

"."l

I-

~

1.6

1.8

2.0

2.2

2.4

2.6

2.8

35

3.0

FORWARD VOLTAGE IVF) - VOLTS

Cl063B

Fig. 1. Forward Current vs.
Forward Voltage

'"I
~

FORWARD CURRENT (IF) -rnA

Fig. 2. Luminous Intensitv vs.
Forward Current

Y~LLO~

GREENfl
80%

f\ :/\?RANGE
REO

1\

560%
u>

/ / \ 1\ 1\
II / \ I~ \

>

~ 1.5 f--+--k-"J'!L--+-+-t--j

1.4

"

100%

~40%
'" 20%

oL

520 540

\

/

560 580 600 620 640 660 680
WAVELENGTH ().I- om

C1182

Fig. 3. Spectral Response

180%

160%

140%
120%

.......

r--- r-....

100%

80%

r--..

........

60%
40%

20%

-60

-40

-20

0

20

40

TEMPERATURE -

60
C

80

100
C1130

Fig. 4. Percent Relative Response vs.
Temperature

C1183

Fig. 5. Spatial Distribution

NOTES
1. As measured with a Photo Research Corp. "SPECTRA" Microcandela Meter (Model IV-OJ.
2. The leads of the device were immersed in molten solder, at 260°C, to a point 1/16 inch (1.6mmJ from the body
of the device per MI L-S-750, with a dwell time of 5 seconds.

320

C1D64

SOLID STATE LAMPS

ORANGE
GREEN (HLMP 150X)
.YELLOW (HLMP 140X)

MV5164X
MV5264X
MV5364X

PACKAGE DIMENSIONS

HIGH Eff. GREEN
HIGH EFF. RED (HLMP 130X)

MV5464X
MV5764X

FEATURES
•
•
•
•
•
•
•
•
•
•

Replacement for the HLMP 1300, 1400
and 1500 product series.
100 mil lead spacing
High efficiency GaP light
Versatile mounting on P.C. board or panel
Long life-solid state reliability
Low power requirements
Compact, rugged, lightweight
T-l diameter
Wide viewing angle
Diffused I ens

DESCRIPTION
NOTES:
1. ALL DIMENSIONS IN
INCHES (MILLIMETERS)

2. AN EPOXY MINISCUS
MAY EXTEND ABOUT
040" (1 mm) DOWN THE
LEADS.
3. TOLERANCES ±.010"
UNLESS SPECIFIED

CI633

I

These solid state indicators offer a variety of color
selection. The high efficiency red, orange and yellow
devices are made with gallium arsenide phosphide on
gallium phosphide; the green units are made with
gallium phosphide on gallium phosphide. The high
efficiency green utilizes an improved gallium
phosphide light emitting diode. All are encapsulated
in epoxy packages with diffused lenses. Their small
size, wide viewing angle, and small square leads
contribute to their versatility as all·purpose
indicators.

LUMINOUS INTENSITY AT 2SoC (mcd)
ORANGE
MV51640
MV51641
MV51642
GREEN
MV52640 (HLMP 1500)
MV52641 (HLMP 1501)
MV52642 (HLMP 1502)
YELLOW
MV53640 (HLMP 1400)
MV53641 (HLMP 1401)
MV53642 (HLMP 1402)
HIGH EFFICIENCY GREEN"
MV54643
MV54644
HIGH EFFICIENCY RED
MV57640 (HLMP 1300)
MV57641 (HLMP 1301)
MV57642 (HLMP 1302)

"see also High Efficiency Green Data Sheet.

MIN

TYP

TEST CONDITIONS

1.0
1.5
2.5

2.0
2.5
3.5

IF=10mA

.8
1.5
2.5

1.5
3.0
4.0

IF= 20 rnA

1.0
1.5
2.5

2.0
3.0
4.5

IF= 10 rnA

2.0
6.0

5.0
10.0

IF=20mA

1.0
1.5
2.5

2.0
2.5
3.5

IF=10mA

321

MV5164X MV5264X MV5364X MV5464X MV5764X
ABSOLUTE MAXIMUM RATINGS
Power dissipation @ 25°C ambient . . . . . . . . . . . . . . . . . .
Derate Linearly from 500 t ...................... .
Storage and .operating temperatures . ; ........ ; ..... .
Lead solder time@260°C (1/16 inch from body) .....•..
Continuous forward current @ 25°~ . . . . . . . . . . . . . . .- ..
Continuous forward current@ 100 C . . . . . . . . . . . . . . . .
Peak forward current (1 Ilsec pulse, 0.3% duty cycle) .... .
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ELECTRO-OPTICAL CHARACTERISTICS
PARAMETER

Forward voltage IV F)
Typ.
Max.
Peak wave length
Spectral line
Half width
Capacitance
Typ.
Reverse voltage (VR)
Min.
Typ.
Viewing angle (total)

MV6164X-5364X
MV6264X-5764X

MV6464X Series'

120mW
1.6mWfC
-55°C to 100°C
5 sec
30mA
10mA "
1.0A'
5.0 V

120mW
1.6 mW/oC'
-55°C to 100°C'
Ii sec
30mA.
10mA
90mA
S.OV

(25°C Free Air Temperature)
MV6164X
ORANGE

MV6264X
GREEN

MV6364X
YELLOW

MV6464X
HI EFFGREEN

MV5764X
RED

nm

2.0
3.0
635

*2.2
*3.0
565

2.1
3.0
585

*2.2
*3.0
562

2.0
3.0
635

IF=10mA

nm

45

35

35

30

45

V=O,f=1MHz

pF

45

45

45

20

45

IF= 100llA

V

See Fig. 3

degrees

5.0
25
90

5.0
25
90

5.0
25
90

5
50
90

5.0
25
90

TESTCONO.

UNITS

IF= 10 mA

V

IF = 10 mA

*IF=20mA

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25°C Free Air Temperature Unless Otherwise Specified)
For MV5464X See High Efficiency Green Data Sheet see page no. 301
120%

JELLdw

100%

GREEN/'

n

1\

HJGH EFFler ENCY
RED/ORANG E

80%
60%
20

I I \ VI\
II I \ A \

f-+-+~hf---+-+--t-l
40%

lDf-+--f-H.'---!-+-+--t-l

2""

__L-~~-L~
2.0 2.2 2.4 2.6 2.8 3.0

o

0~~~~

1.4

1.6

1.8

FORWARD VOLTAGE (VFI- VOLTS

Fig. 1. Forward Current

/

\

)

J

620 540 560 580 600 620 640 660 680

Cl063A

WAVELENGTH IX) - nm

VS.

C1064

Fig. 2. Spectral Response

Forward Voltage

~

0 3.0

~

~

;:: 2.0

<

f----j-----,o'f-----\----J

a

::J

:;

i

1.0 f---+---7I~=±=-J

~
C1'29B

10

20

30

e1563

FORWARD CURRENT (IF) - mA

Fig. 3. Spatial Distribution

322

Fig. 4. Relative Luminous Inrensityvs.
Forward Current

SOLID STATE LAMPS

YELLOW

HIGH EFFICIENCY RED
PACKAGE DIMENSIONS

MV53620 SERIES
MV57620SERIES

FEATURES
•
•
•
•
•
•
•
•
•
•

Clear-colored, non-diffused lens
100 mil lead spacing
High efficiency GaP light
Versatile mounting on P.C. board or panel
Long life-solid state reliability
Low power requirements
Compact, rugged, lightweight
T-1 diameter
Wide viewing angle
Clear lens

DESCRIPTION
NOTES:
T. ALL DIMENSIONS IN
INCHES (MILLIMETERS)
2. AN EPOXY MINISCUS

MAY EXTEND ABOUT
040" (1 mml DOWN THE
LEADS.
3. TOLERANCES ±.OlO"
UNLESS SPECIFIED

These solid state indicators offer a variety of color
selection. The high efficiency red and yellow devices
are made with gallium arsenide phosphide on gallium
phosphide. All are encapsulated in epoxy packages and
have clear lenses. Their small size, wide viewing angle,
and small square leads contribute to their versatility
as all-purpose indicators.

I

C1S33

LUMINOUS INTENSITY AT 2SoC (mcd)
MIN

TYP

1.S
3.0
6.0

2.0
4.0

1.5
3.0
6.0

2.0
4.0

TEST CONDITIONS

HIGH EFFICIENCY RED

MV57620
MVS7621
MVS7622

IF = 10 rnA

8.0

YELLOW

MVS3620
MVS3621
MVS3622

IF=10mA

8.0

ABSOLUTE MAXIMUM RATINGS
Power dissipation @ 2SoC ambient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 mW
Derate linearly from SO°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.4 mA/oC
Storage and operating temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -SSoC"to 100°C
Lead solder time @260°C (1/16 inch from body) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S sec
Continuous forward current @ 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 rnA
Continuous forward current @ 100°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 rnA
Peak forward current (1 /.lsec pulse, 0.3% duty cycle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 A
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... 5.0 V

323

MV53620 MV57620 SERIES
ELECTRO-OPTICAL CHARACTERISTICS (25°C Free Air Temperature)
PARAMETER

TESTCOND.

UNITS

MV53620 SERIES

MV57620 SERI ES

IF=10mA

V

IF = 10mA

nm

2.1
3.0
585

2.0
3.0
635

IF = 10 mA

nm

35

45

V=O

pF

45

45

IR = 100llA

V

5.0
25
60

5.0
25
60

Forward voltage (VF)
Typ.
Max.
Peak wave length .
Spectra I line
Half width
Capacitance
Typ.
Reverse voltage (VR)
Min.
Typ.
Viewing angle (total)

See Fig. 3

degrees

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25°C Free Air Temperature Unless Otherwise Specified)

50

'E"
-

40

,-- _

IMV51520 ~

Lv-

~

30

()

0

20

;:

~

10

180%

!:l

~ 60%

o

~

1.4

1.6

1.8

>

;:: 40%

:5w

rr: 20%

o
2.0

2.2

2.4

2.5

2.8

FORWARD VOLTAGE (VFI- VOLTS

RED

~

I V \
/ A \

w

;;

{\~~~~d'ENd.y

If'

>II.

SERIES

/;

a:

'a:"

MV53520

I(j

a:

::>

y'ELLdw

100%

SERIES

I

f-

120%

J

\

J

520 540 550 580 600 620 640 650 680

3.0
Cl063B

WAVELENGTH

(~)

-

nm

C1D64B

Fig. 2. Spectral Response

Fig. 1. Forward Current vs.
Forward Voltage

~
0

z

3.0

'~"

;: 2 . 0 / - - - / - - " 7 ' 1 / - - - 1 - - - 1

'"

@
N

::;

~ 1.0 f---,J£----jl----j-----j

a:

o

~

60%

30%

10% 0

C1129C

10

20

30

C1553A

FORWARD CURRENT (IF)- mA

Fig. 3. Spatial Distribution
Fig. 4. Relative Luminous Intensity vs.
Forward Current

324

SOLID STATE LAMPS

MV52152 MV53154
MV50152 MV52154 MV57152
MV50154 MV53152 MV57154
DESCRIPTION

PACKAGE DIMENSIONS

\I

,250" (6.35 mmJ

:~~:: :~:~~~:Lr'-----f_:r3mm)
FL~!~~~g:ES

17_-, "
I ~

mm) \.., __ .....

.220"1'.'0.

.....

I

!

FEATURES

3 3:

/U~iZ

,

I r.,
,

~

.018" 10.46 mm)

I

.240" 16.10 mm)

~~ ~~

.022" (O.56mml

ANODE LEAD
IS LONGER

High intensity light source with two lens effects.
Red, orange, green and yellow colors available.
a Versatile mounting on P.C, board or panel.
a Long life-solid state reliability
II Low power requirements
III Compact, rugged, lightweight
a High efficiency
II Ultra high brightness
II Short T-l 3/4 size

II
(I

10" NOM
(2.54 mm)

~

.200" (5 08 mm)
.17CY· 14.32mm)

These solid state indicators offer a variety of lens
effects and color availability in a short barrel T-1 %
package. The red, orange and yellow devices are made
with gallium arsenide phosphide, and the green units
are made with gallium phosphide. All are encapsulated
in epoxy lenses.

C1357

I

ABSOLUTE MAXIMUM RATINGS
Maximum power dissipation @ 25° C
ambient (red) . . . . . . . . . . . . . . .
180 mW
Maximum power dissipation @ 25° C
ambient (Orange, yellow, green). . . . . . . . . 105 mW
Derate linearly from 25°C (GYO) . • . . . . . . 1.14 mWrC
Derate linearly from 25°C (Red) • . . . . . . 2.0 mW/oC
Maximum storage and operating
temperatures . . . . . . . . . . . . . . _55°C to 100°C

Maximum lead solder time @ 260°C (See Note 3) . . . 5 Sec
Maximum currents' and voltages
Continuous forward current
@ 25°C . . . . . . . . Red = 100 rnA GYO =
Continuous forward current @ 100°C . . . . . .
Peak forward current (1 ,,5 pulse,
0.3% duty cyclel . . . . . . . . . . . . . . . . . ..
Reverse voltage .. : . . . . . . . . . . . . . . . . ..

35 rnA
10 rnA
1.0 A
5.0 V

PHYSICAL CHARACTERISTICS
TYPE
MV50152
MV50154
MV52152
MV52154
MV53152
MV53154
MV57152
MV57154

SOURCE
COLOR
Red
Red
Green
Green
Yellow
Yellow
Orange
Orange

LENS COLOR
Red clear
Red lightly diffused
Green clear
Green lightly diffused
Orange clear
Orange lightly diffused
Amber clear
Amber lightly diffused

LENS EFFECT
Point source
Soft point source
Point source
Soft point source
Point source
Soft point source
Point source
Soft point source

325

MV50152/4 MV52152/4 MV53152/4 MV57152/4
ELECTRO~OPTICAL CHARACTERISTICS
PARAMETER

TEST
CONDo

UNITS

Fwd. Voltage (V F)

10mA

y

MV50152 ' MV50154
1.6

TVp

Max
Luminous Intensity
(see Note. 1 ) Min

Typ
Peak wave length
Spectral line

(25°C Free Air Temperatl,lre)

"'6
2.0

1.6
1.6
2.0

10mA
lOrnA
10mA
lOrnA

mcd
mcd
,nm
nm

,6
2.0
660
20

.4
1.5
660
20

V=O

pF
V

30

MV52152

MV52154

2.2
2.2

MV53154

MV57152
'2.0
2.0
3.0

MV57164

1.5
3.0
585
35

4.0
8.0
630
45

2.0
4.0
630
45

2.1
2.1
3,0

2.1
2.1
'3.0

.5
1.5
565
35

3.0
5.0
585
35

' 3~0
.75
2.0
565
35

MV53152

2.2
2.2
3.0

2.0
2.0
3.0

Half width

Capacitance
Typ
Reverse volt. (VRI

IR=100~A

30

45

45

45

45

45

,45

5
25

25

5
25

5
25

5
25

5
25

5
25

5
25

100
20

100
20

100
20

100
20

100
20

100
20

100
20

100
20

45

50

45

50

45

50

45

50

Min
Typ

Revene current (I R)
Max
Typ

V R =5.0V

~A

Viewing angle

(,ee fig. 3)

TYPICAL ELECTRO·OPTICAL CHARACTERISTIC CURVES
(25°C Free Air Temperature Unless Otherwise Specified)
120%

I

-...
~
a
~

"~

:r

)ELLJw oiRAN1E

100%

"E

GREENI'

...'"

80%

"

60%

~

40%

I

~

0

W·

'"

10

1.6

loB

2.0

~.2

2.4 .2.6

2.8

FORWARD VOLTAGE (VFI - VOL T~

Fig. 1. Forward Current vs.
Forward Voltage

3.0
Cl063C

/ I \ l~

20%

o

1/\

l I 1 l~

>

20

q

)

I

~ RED

I\

\

V

\

r\

520 540 560 580 600 620 640 660 680 690
WAVELENGTH (XI- nm

Fig. 2. Spectral Response

C1358

C1064A

Fig. 3. Spatial Distribution (Note 2)

NOTES
1. As measured with a Photo Research Corp., "SPECTRA" Microcandela Meter (Model IV-D).
2. The axis of spatial distribution are typically within a 10° cone with reference to the central axis of the device.
3. The leads of the device were immersed in molten solder at 260°C to a point 1/16 inch (1.6mm) from the body of
of the device per MIL-S-l50, with a dwell time of 5 seconds.

326

. SOLID STATE LAMP

RED
PACKAGE DIMENSIONS

MV5020 SERIES

DESCRIPTION
The MV5020 series of solid st~tliindicators is made
with gallium arsenide phosphide light-emitting diodes.
Encapsulation and lens is epoxy. Various lens effects
are available for many indicator applications_

- - -

- - - DIE SEATING PLANE

FEATURES

.1850IA.

CATHODE
.040 INDEX NOTCH

+e{

.jDIA

CD IfCCJ

-

~so

G

•
•

Low cost
High intensity red light source with various lens
colors and effects

•
•

Versatile mounting on PC board or panel
Snap in panel mounting clip available
(See MP21 and MP22 for clip detail)

I

BOARD MOUNTING

-

r1

#~~

.01
TOP VIEW
NOTE: 1. TOLERANCES ±.010" UNLESS SPECIFIED
2. E and F TOLE RANeES i.OO2"

~
~

1-.10-\
eS99

SUGGESTED P.C.
BOARD MOUNTING

C601

ABSOLUTE MAXIMUM RATINGS
Power dissipation Ca! 25°C ambient . . . • . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 mW
Derate linearly from 25°C .. _ '.' . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2 mWlC
Storage and operating temperatures . . . . • . . . . . . . . . . . . . . . . . . . • . . . • . . . . . . . . . . . . . . . _55°C to 100°C
Lead solder time @ 260°C (Note 2) • . . . . . . . . . . ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '. . . . . .. 5 sec
Continuous forward current Ca) 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . • .. 100 mA
Continuous forward current Ca> 100°C • • . . . . . . . . . . • . . • . . . . . . . . . . . . . . . . .- . . . . . . . . . . . . . . . 20 mA
Peak forward current (1 !J.sec pulse, 0.3% duty cycle) . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . • . • . . 1.0 A
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . • . . . . . . . . . . 5.0 V

PHYSICAL CHARACTERISTICS
TYPE

SOURCE
E&F COLOR

LENS
COLOR

A

B

C

D

MV5020
MV5021
MV5022
MV5023
MV5024

.340
.340
.340
.340
.340

.190
.190
.190
.190
.160

.100
.100
.100
.100
.130

.040
.040
.040
.040
.040

.025
.025
.025
.025
.025

RED
RED
RED
RED
RED

CLEAR
CLEAR DIFF .
TRANS. RED
RED DIFF .
RED DIFF .

MV5025
MV5026

.340
.340

.160
.160

.130
.130

.040
.040

.025
.025

RED
RED

RED DIFF.
DK. RED DIFF.

LENS
EFFECT

POINT
SOFT
POINT
SOFT
SOFT
FLOODED
FLOODED
FLOODED

MOUNTING

CIRCUIT
BOARD
MOUNTING

X
X
X
X
X

X
X
X
X
X

X
X

X
X

POp·IN

327

MV5020 SERIES
ELECTRO-OPTICAL CHARACTERISTICS (2SoC Free Air..Temperature'
PARAMETER
Luminousjntensity-Min. (Note 1)
Typ. (Note 1)
Peak Wave Length
Spectral Line Half Width
Forward Voltage
Typ.
VF
Max.
Reverse Current I R Typ.
Max.
Reverse Voltage VR Min.
Typ.
Typ.
Capacitance
View Angle
Rise Time
& Fall Time

UNITS'

20mA

mcd'

20mA
20mA
20mA
20mA
20mA
V R = 5.0 V

,mcd
nm
nm
V
V
nA

660 660 660 660 660 660 660
20 . 20. 20
20
20
20
20
1.65 1.65 1.65 1.65 1.65 1.65 1.65
2.0 2.0 2.0 2.0 2.0
2.0 2.0
15
15
15
15
15
15
15

VR=5.0V
IR = 100J.lA
IR = 100J.lA
V=O

J.lA
V
V
pF

100 100 100 100 100 100 100
5.0 5.0 5.0 5.0
5.0
5.0
5.0
10.0 10.0 10.0 10.0 10.0 10.0 10.0
35
35
35
35
35
35
35

Between
50% Points

Degrees

90

90

90

90

60

180

90

nsec

50

50

50

50

50

50

50

nsec

50

50

50

50

50

50

50

10%·90%
50.\1 system
90%·10%
50.\1 system

Typ.

5020 5021 5022 5023 5024 5025 5026

TESTCOND.

0.6
2.0

6.4

0.5. 0.6
1.6
1.6

0.9
3.0

1.6

0.1

0.1

:4

.6

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
100

2.

I.

3.0,--,--,.--,.---.,.---.,.---.

0

•

~ 2.51---1----I---I--+~'-+---l

0

~

< •0

...~

0\

I.0
140
l20

100

\

E

·55 ·25

r"-.
0

:>

0

0

25

o
o 1.0 l---hllJil~--I--+---I---l

~
~

0

~
50

r--r---j---j~Y---j--l

2.0

~ 1.5

~5 0

I\,

0

40

I

0

,5

0

75

o

100

TEMPERATURE (0C)

C6Q4

Fig. 1. Luminous Intensity vs.
Temperature

MV5020

0.2 0.4 0.6 O.B 1.0 1.2 1.4 1.6 1.8 2.0
FORWARD BIAS (VOLTS)
CG05

0.2

0.4

0.6

O.B

1.0

Fig. 3. Radiated Output Power vs.
Peak Forward Current
MV6020

0

.
5

MV5020SERIES SPATIAL DISTRIBUTION

Fig. 4. Spatial Distribution

V

/

V

V
VVV

:/

/l/:V
~

''It. I--" i=""

V

:/

MV5021
MV5022
MV5023

1--1-"

f-:: t:::: f-- f-40

C607

V

V

,

0.60.50.40.30,20.1

/

/

7

2

/

V

,
,

3

80

fORWARDCURRENT-IF-mA

1110

C1138

Fig. 5. Luminous Intensity vs.
Forward Current

NOTES
1. As measured with a Photo Research Corp., "SPECTRA" Micracandela Meter (Modell V-DJ.
2. The leads of the device were immersed in molten solder at 260°C to a point 1/16 inch (1.6mm) from the body of
the device per MIL·S-750, with 8 dwell time of 5 seconds.

328

1.2

PEAK FORWARD CURRENT - AMPS C606A

Fig. 2 Forward Current vs.
Forward Voltage

SOLID STATE LAMPS

RED MV5050
RED MV5051
RED MV5052
DESCRIPTION

PACKAGE DIMENSIONS

The MV5050 series of solid state indicators is made
with Gallium Arsenide Phosphide light emitting diodes
encapsulated in epoxy lenses. Various lens effects are
pleasing in different design settings.

5'OO~;OIAj

IT- ....

MV5053
MV5055
MV5056

.100·/,\1

12.54mml

(s'L
.340"

-

I
i

FEATURES

l
.025" 1,635 mm)

I

• High intensity red light source with various
lens colors and effects

(l:=~)
.230"

15.84mml

OIA

• Versatile mounting on P.C. board or panel

.800"

M

I

• Snap in mounting grommet available on request

(20 32mml

__
- '+-,._ '! ~IN
•L

.075" (1.91 mm)

a

Long life-solid state reliability

• Low power requirements
• Compact, rugged, lightweight

.OSO"".27mml
.1CIO"C2.54mml
NOTE: TO LE RANeES t.010" UN LESS SPECI FI EO

C1062

• Upon request, also available with anode lead
trimmed longer than cathode.

PHYSICAL CHARACTERISTICS

TYPE

SOURCE
COLOR

LENS
COLOR

LENS
EFFECT

POp·IN
MOUNTING

MV5050
MV5051
MV5052
MV5053
MV5055
MV5056

Red
Red
Red
Red
Red
Red

Clear
Diffused
Trans. Red
Red Diffused
Red Diffused
Dark Red Diffused

Point
Soft
Point
Flooded
Flooded
Flooded

X
X
X
X
X
X

CIRCUIT
BOARD
MOUNTING

X
X
X
X

X
X

329

MV5050 MV5051 MV5052 MV5053 MV5055 MV5056
ABSOLUTE MAXIMUM RATINGS
Power dissipation @ 25°C ambi.ent . . . . . '.' . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . 180 mW
Derate linearly from 25 DC . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . : ..• , . . . . . : 2.0 mW;oC
Storage and operating temperatures . • . . • . . . . . . . . . . . . . . . . . . . . • . . . . . . • . . . . . . • . . . . -55°C to 100DC
Lead solder time @ 260°C (See Note 3) -. . . . . . . : . . . . . . . . . . . . . . • . • . . . . . • . . . . . : . . . . . . . . . • , .. 5 sec
Continuous forward current @ 25 DC . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . • . . . . . . • . . . . . . . • . .. 100 mA
Continuous forward current @ lOODC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . • . . . . . . . . . . . . . .
15 mA
Peak forward current (1 j1sec pulse, 0.3% duty cycle) . . . . . . . • • • . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
1.0 A
Reverse voftage . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . • . . . . . . . . . . • . . . • . . . . . . . . . . • . • . . . 5.0 V

ELECTRO-OPTICAL CHARACTERISTICS

(25 DC Free Air Temperature)

PARAMETER

TESTCOND.

UNITS

5050

5051

5052

5053

5055

5056

Forward Voltage (V F )
Typ.
Max.

IF = 20 mA
I F =20mA

V
V

1.7
2.2

1.7
2.2

1.7
2.2

1.7
2.2

1.7
2.2

1.7
2.2

Luminous Intensity
(See note 1)
Min.
Typ.

IF = 20 mA
IF = 20 mA

mcd
mcd

0.5
2.0

0.4
1.6

0.7
2.0

0.5
1.6

0.1
.6

0.2
.8

Peak Wave Length

IF= 20 mA

nm

Spectral Line
Half Width

IF = 20 mA

nm

670

670

670

670

670

670

20

20

20

20

20

20

V=O

pF

30

30

30

30

30

30

Reverse Voltage (V R )
Min.
Typ.

I R = 100j1A
I R = 100j1A

V
V

5
25

5
25

5
25

5
25

5

25

5
25

Reverse Current (I R)
Max.
Typ.

V R = 5.0V
V R = 5.0V

,..A
nA

100
20

100
15

100
5

100
5

100
5

100
5

10%-90%
50n system
90%·10%
50n system

nsec

50

50

50

50

50

50

nsec

50

50

50

50

50

50

See Fig. 5 & 6

degrees

50

72

72

80

150

110

Capacitance
Typ.

Rise Time
Fall Time

Viewing Angle

330

MV5050 MV5051 MV5052 MV5053 MV5055 MV5056
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES
(25°C Free Air Temperature Unless Otherwise Specified)

100
_ _ ~v50ko

I

0

~

II

4

MV~O~ V / ' lL '" i---'" r-P""

I

0

I

/ V-

I' ~ F-

/

20

V/

L~ P'

0
1.2

o
1.4

1.6

2.2

2.0

1.8

FORWARD VOLTAGE /VFl VOLTS

300

I
MV5053

~V5J51

200

~

~
"
iil

//
1"'\ ~ V
r-- f-MV..i·~V\ ~ "/
/"
I/.

~

/
/~
~~

100

Q

;i

o

,
o

~~

~"
20

40

~

A

d

20

f-

\

40

i~50i5- f-

60

100

80

e6l6

FORWARD CURRENT (IF) mA

Fig.2. Luminous Intensity vs. Forward Current

100%

(

...

~

80%

/

,!:"""

.~

MV505?-

~

I I
I I

0%

80

C617

640

650

660

670

"

680

WAVELENGTH - ~ - nm

Fig. 3. ROP vs. Forward Current

I

\

./
630

100

\

/

20%

FORWARD CURRENT (mAl

\

J

..:l!4O%

~;'°r- r-- 60

....

/

MV5050

0

...

/

-

MV5056_

P
o

e615

Fig. 1. Forward Current vs. Forward Voltage

"
~

I....-

MV5~~

0

~

I~ ./

~V5052

690

e61S

Fig. 4. Spectral Response

~'00%
in

ffi9O%

!;:

~ 80%

>

"~
...Z

~

C61.

70%

60%

60% 40% 30% 20% 10%

C620

Fig. 5. Spatial Distribution (Nate 2)

Fig. 6. Spatial Distribution (Nate 2)

(MV5053, MV5055, MV5056)

(MV5050, MV5051, MV5052)

NOTES
1. As measured with a Photo Research Corp., "SPECTRA" Microcandela Meter (ModeIIV-DJ.
2. The axis of spatial distribu"tion are typically within a 100 cone with reference to the central axis of the device.
3. The leads of the device were immersed in molten solder at 260°C to a point 1/16 (1.6mmJ from the body of
the device per MIL-S-750, with a dwell time of 5 seconds.

331

332

SOLID STATE LAMPS

RED
RED
RED
PACKAGE DIMENSIONS

MV5054-1
MV5054-2
MV5054-3

DESCRIPTION
The MV5054 series lamps are made with gallium
arsenide phosphide diodes mounted in a red
epoxy package.

'&

FEATURES

r'----j--- SEATING PLANE

2300lA

• Three light intensity categories
• Illuminates a ]4" dia. circle
• High intensity red light source for back lighting
a panel
• Versatile mounting on PC board
• Mounting grommet available .

.2000IA
FLAT

DENOTES

CATHODE

.

[:TI+[]

.~¥S+:.j~.;;:~ sa

I

C622

NOTE 1: TOLERANCES %.010" UNLESS SPECIFIED

ABSOLUTE MAXIMUM RATINGS
Power dissipation @ 25°C ambient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 mW
Derate linearly from 25°C . . . . • . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.0 mW/oC
Storage and operating temperatures . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . .. -55°C to 100°C
Lead solder time @ 230°C (See Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 sec
Continuous forward current @ 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . 100 mA
Continuous forward current@ 100°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . 15 mA
Peak forward current (1 jlsec pulse, 0.3% duty cycle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . 1.0 A
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.0 V
Reverse current . . . . . . . . . . . . . . . . . • . . . • . . • . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . • . . . . 10 /lA

ELECTRO·OPTICAL CHARACTERISTICS
CHARACTER ISTICS

Luminous intensity (Note 1)
MV5054·1
MV5054·2
MV5054·3
Forward voltage
Capacitance
Reverse current
Rise and fall time
Viewing angle (total)

(25°C Ambient Temperature)

MIN.

TYP.

1.0
2.0
3.0

2.0
3.0
4.0
1.8
35

MAX.

2.2
100

50
40

UNITS

TEST CONDITIONS

mcd
mcd
mcd
V
pF
JlA
ns
degrees

IF = 10 mA
IF = 10 mA
IF = 10mA
IF = 10mA
V = 0, f = 1 MHz
V R = 5.0V
50!l System
Between 50%
intensity pOints

333

MV5054-1 MV5054-2 MV5054-3
TYPICAL ELECTRO.QPTICAL CHARACTERISTIC CURVES
(2SoC Free·Air Temperature Unless Otherwise Specified)

.

..

:>

20.0

••

'" ,•
~

>
!::

.,'"

•

[i!2

~

~,

MV5054 ·3
12.0

~

ffi

0:.
0:

a

(I)

"z

I
I
J

;;
:3

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
',FORWARD BIAS (VOLTS)

C624

4.0

o lo

V

,.- .......

~V5054 .~ c= ...........

8.0

o

•

----

,.,..

I
I

1

V. i.;"
vv20

40

-.t;1;5054 .,'j' -j

60

so

FORWARD CURRENT IIF)-mA

Fig. 2. Forward Current VB. Forward Voltage

o·

10'

"

I
I

Fig. 3. Luminous Intensity

VB.

100
e62S

Forward Current

20'

50% 40% 30% 20'% 10%
C620A

Fig. 4. Spatial Distribution (Note 2)

DISTANCE - em

C627

Fig. 5. (rradiance vs. Distance

NOTES
1. As measured with a Photo Research Corp., "SPECTRA" Microcandeia Meter (Modell V·D).
2. The axis of spatial distribution are typically within a 10° cone with reference to the central axis of the device.
3. The leads of the device were immersed in molten solder at 260·C to a point 1/16 (1.6mm) from the body of
the device per MIL·S·l50, with a dwell time of 5 seconds.

334

, SOLID STATE LAMPS

RED
RED
RED

Ti

PACKAGE DIMENSIONS

DESCRIPTION

~

The MV5054A lamp series is made with gallium arsenide
phosphide diodes mounted in a red epoxy package.

200" DIA
15'08m~J

I

18.[ I

.'00"/

(2.54mmJ

--'<-

FEATURES

!

.340"

• Three light intensity categories
• Illuminates a %" dia. circle
• High intensity red light source for back lighting
a panel
• Versatile mounting on PC board
• Mounting grommet available
• Improved performance in mUltiple unit applications

1

.040"
.230"
---rll.02mm) {5.84mml

I

I I,

DIA

.800"

1

.075"

MV5054A-l
MV5054A-2
MV5054A-3

(20.32mml
MIN

~

11.9'mmIMA X

: Jj- ~,,~.,
I

I

I

:-.0

i-.' 00" (2.54mml

NOTE: 1. TOLERANCES ±.010" UNLESS SPECIFIED

Cl062

ABSOLUTE MAXIMUM RATINGS
Power dissipation @25°Cambient . . . . . . . . . . . . .
. .........••..•.......•... , . . . . . . . . . . . . . 180 mW
Derate linearly from 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . • . 2.0 mW/oC
Storage and operating temperatures . . . . . . . . . . . . . '.' . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . -55°C to 100°C
Lead solder time @260°C (See Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 sec
Continuous forward current@25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 rnA
Continuous forward current@ 100°C . . . . . . . . . . . . . . . . . . . . . • • . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 rnA
Peak forward current (1 Ilsec pulse, 0.3% duty cycle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . 1.0 A
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . 5.0 V
Reverse current . . . • . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 fJ.A

ELECTRO·OPTICAL CHARACTERISTICS
CHARACTERISTICS

Luminous intensity (Note 1)
MV5054A-I
MV5054A-2
MV5054A-3
Forward voltage
Capacitance
Reverse current
Rise and fall time
Viewing angle (total)

(25°C Ambient Temperature)

MIN.

TYP.

1.0
2.0
3.0

2.0
3.0
4.0
1.8
35

MAX.

2.2

TEST CONDITIONS

mcd
mcd
mcd

IF = 10mA
IF = 10 mA
IF = 10 mA

V

IF = lOrnA
V = 0, f = 1 MHz

pF
100

50
40

UNITS

iJA

ns
degrees

V R = 5.0V
50 n System
Between 50%
intensity points

335

MV5054A-l MV5054A-2 MV5054A-3
TYPICAL ELECTRO·OPTICAL CHARACTERISTIC CURVES
(25°C Free Air Temperature Unless Otherwise Specified)

.

.

20.0

0

~

I
I

0

t:

..

"...
MV5054A·3
12.0

~

ffi

~
~

0

"3

I
)
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 '.8
FORWARD BIAS (VOLTS)

C624

V
l,..-'f-'"

-

"-;;;V5054.A.2

B.O

o
z

0

---

16.0

~,.

,/.

4.0

>/"

,,',/ V
Ij"
a
a

20

~

~

j

I
40

60

BO

FORWARD CURRENT (IF)-mA

Fig. 2. Forward Current vs. Forward VOlta!J.e

.....

I::-::!
M,V50j4.A ' -

'00
C625

Fig. 3. Luminous Intensity vs. Forward Current

'L.'-cm~~~,wcm--~~~'O~c-m-L~,oo~cm

. 50% 40% 30% 20% 10%
C620A

Fig. 4. Spatial Distribution (Note 2J

DISTANCE - em

C627

Fig. 5. Irradiance vs. Distance

NOTES
1..As measured with a Photo Research Corp., "SPECTRA" Microcandela Meter (Model IV-D).
2. The axis of spatial distribution are typically within a 10° cone with reference to the central axis of the device.
3: The leads of the device were immersed in molten solder at 260°C to a point 1/16 (1_6mm) from the body of
the device per MIL-S-750, with a dwell time of 5 seconds.

336

BIPOLAR SOLID STATE LAMP

RED

PACKAGE DIMENSIONS

MV5094

DESCRIPTION
The MV5094 is the first commercially available solid
state AC-OC lamp. Reliability,long life, plus a convenient panel mounting enable this red lamp to be run
from A.C. voltages even as high as 110-115 V •

f

.340

.18S0IA.

ELECTRICAL

FEATURES
• Sol id state
a A.C. lamp

.4S0
±.050

1=

•

110-l15 VAC operation (see chart)

a

Versatile mounting on P.C. board or panel

I

• Convenient mounting grommet available
TOP

• Cool operation

VIEW

•

- J .10 t--

NOTE: TOLERANCES ±.010" UNLESS SPECIFIED

Long life

• This lamp mounts in the MP21 or MP22
grommet.

C647

ABSOLUTE MAXIMUM RATINGS
Power Dissipation @ 25°C (Peak or continuous) . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . , . . . . . . 140 mW
Storage and Operating Temperature.; . . . • . • . • . . . . . . . . . . . • . . • • . . . . • . . • . . • . . . . . . . . _55°C to + 100°C
A,C'(RMS)iD.C. Forward Current 25 C . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . • . . . . • . • . . • . . . • . 70 mA
A,C'(RMs)iD.C. Forward Current 100°C . . . . . . . . . . . • . . . . . . . • . . . . . . . . . . . . • . . . . . • • . • . • • . • • . 5 mA
12T (0.1 % Duty Cycle) . . . . . . . • . . • . . • . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.5 X 10-4 amps2 sec
Ipeak (repetitive) (0.3% Duty Cycle. 1.0 j.lsec pulse width) . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . LOA
Lead Solder time 260°C (See Note 3) . . . . . . . . :., . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . • . • . . • . • . . 5 sec

TYPICAL ELECTRO·OPTICAL CHARACTERISTICS
MIN.
Luminous Intensity (1) (Note 1)
Forward Voltage (V F )

TYP.

(25°C Ambient Temperature Unless Stated Otherwise)
MAX.

.8
1.6

2.0

UNITS
mcd
volts

CONDITIONS
IF =20 mA
IF = 20 mA

337

MV5094
AC OPERATION
. IF .. 10 mA, Vp = 1.56
RESISTOR

5.0
6.3
9.0
12.0
15.0
la.O,
24.0
2a.0
4a.0
110.0

,,.. .. .25 rnA, V p " 1.62
RESISTOR

,

~ESISTOR

J30n, I/a W
laOn,l/aw
300n,1/4W

36'on,1/8W
470n; I/aW
7S0n:l/aW
1.0 Kn.l/a,.W
1.3'Kil,1/4W
1.6 Kil,J/4W
2.2 Kil, 1/4W
2.7 Kn, 1/2W
4.7 Kn, 1/2W
11.0 Kn, 2 W

=

'" • 5.0 ,!,A, V p ="1.66

IF" 70 rnA, V p 1.70
RESIStOR

6an,li4W
. lOOn, 1/4W
150n,1/2W
20on,1/2W .
:i70n,1 W
330n,.1 W
470n,2W

430n,l/2W

S60n,,1/2W
6aOn, 1/2 W
910n,IW
1.IKn,IW
1.8 Kil, 2 W

51 n, 1/4W
68n, 1/2 W
J.lOn,IW
ison, I W
,,200n, I W
240n,2W
330n,2W
390n,2W

~On,2W

Resistor values are nearest commercially available.

E(RMS) - V p

•

ResIstor Value'" - - ' F - where:

IF corresponds to a desired brightness level (from fig. 2).
Vp corresponds to the voltage across the device (from fig. 1).

RESISTOR

TYPICAL ELECTRO-OPTICAL CHARACTERISTICS
~,

100

4.0

11

80

,

E

"0

I

I

!!l

2.0

/'

~

z
i

/
1.4

1.5

o
1.6

INSTANTANEOUS FORWARD VOLTAGE

1.8

1.7

Nfl -VOLTS

caS1

"
0
~
~

~

ill0

~

"-

120%

~

0

I"
I"

~

--60
C6S3

Fig. 3. Spatial Distribution

.0

60

40

20

100%

>-

""

a

20

40

TEMPERATURE -

.0%

I

::>

RE6 _ f - -

>

~

~

60
~c

so

100

CB54

Fig. 4. Output vs. Temperawre

'"

0
630

\

/

'0%
20%

1\

II

560%
w
~

-40 -20

/1,\

j!:

"0%

"0%

50% 40% 30% 20% 10% 0

o

I

~ 100%

.."

1/

Fig. 2.· Luminous Intensity vs. Forward Current

140%

!

V

/

E

/

GREEN

R,!D

20

/

10

o
o

2.0

/

1.0

1.5

2.0

II

VGREEN

V

/

1.0

.J
.5

/

3.0

RED

V V

,#
2.5

3.0

FORWARD VOLTAGE (VFI - VOLTS

20

Fig. 1. Forward Current vs Forward Voltage

40

60

80

FORWA'RD CURRENT (IFI- rnA

eBSO

CBBl

Fig. 2. Luminous Intensity vs Forward Current

140%

120%

,
~

!;

,,~

~

~

o

~100%

g
~

~~
.......

80%

GREEN

r-.. ..........
RED

50%

30%

60%
-60 -40

10% 0%

C662

Fig. 3 Spatial Distribution (Note 1)

-20

0

20

TEMPERATURE

40

_·C

60

........

80

100
0663

Fig. 4. Relative Output vs Temperature

345

MV5491
TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES (continued)
(25°C Free Air Temperature Unless Otherwise Specified)

'20
WAVELENGTH -

x - nm

"':664

""

Fig. 5. Spectral Distribution

NOTES
1. The axis of spatial distribution are typically within a 10° cone with reference to the central axis of the device.
2. As measured with a Photo Research Corp. "SPECTRA" Microcandela Meter (ModeIIV-D)_
3. The leads of the device were immersed in molten solder, heated to a temperature of 260°C to a point 1/16 inch
(1.6mm) from the body of the device per MIL-S-750, with a dwell time of 5 seconds.

346

RECTANGULAR SOLID STATE LAMPS

YELLOW
HIGH EFFICIENCY GREEN
HIGH EFFICIENCY RED

MV53123
MV54123
MV57123

DESCRIPTION

PACKAGE DIMENSIONS

-----.i

J~l~'078

± .004
(1.98)

.197

± .005

These rectangular LED lamps provide a lighted surface
area 2 x 5 mm. The high·efficiency red and yellow
solid state lamps contain a gallium arsenide phosphide
on gallium phosphide light emitting diode. The
high efficiency green lamps utilize an improved
gallium phosphide. light emitting diode.

(5.001

f

FEATURES
2 x 5 mm lighted area

.295 ± .010
17.501

II
II

1:1
1:1
D

Stackable in X or Y direction
High brightness-typically 4 mcd
Solid state reliability
Compact, rugged, lightweight

@

20 rnA

1

APPLICATIONS

I

II

1

iii

II
1

1\1

1.000 MIN.
125.4,

'J
.020 ± .001
10.511

Legend backl ighting
Illuminated pushbutton
Panel indicator
.
Bargraph meter

NOTE1: ALL DIMENSIONS SHOWN IN INCHES (M1 LliMETERS)
2: TOLERANCES t.OlO" UNLeSS SPECIFIED

.050 ± .025
11.271

.049
11.241

C1667

ABSOLUTE MAXIMUM RATINGS
Power dissipation @ 25°C . . . . . . . . . . . . . . . . . . . . . . . .
Derate linearly from 500 C . . . . . . • . . . . . . . . . . . . . . . .
Storage temperature . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating temperature . . . . . . . . . . . . . . . . . . . . . . . . . .
Peak forward current . . . . . . . . . . . . . . . . . . . . . . . . . . .
(1 f.Lsec pulse width 300 pps)
Forward current @ 25°C . . . . . . . . . . . . • . . . . . . . . . . .
Lead solder time @ 260°C (see Note 1) . . . . . . . . . . . . . . .
Reverse voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MV53123
MV57123

MV54123

120mW
1.6mWrC
_55°C to 100°C
-55°C to 100°C
1 AMP

120mW
1.6 mW/oC
_55°C to 100°C
-55°C to 100°C
90 rnA

35mA
5 seconds
5.0 volts

30mA
5 seconds
5.0 volts

347

MV53123 MV54123 MV57123
ELECTRO-OPTiCAL CHARACTERISTICS (25°C Free Air Temperature)
PARAMETER

Forward voltage (VF )
, Typ.
Max.
Luminous Intensity
(See Note 2) Min.
Typ.
Peak wave length
Half width
Capacitance
Typ.
Reverse voltage (VR)
Min.
Typ.
Viewing angle (total)

TESTCOND.

UNITS

MV53123

MV54123

MV57123

IF= 20mA
IF =20mA

V
V

2.1
3.0

2.2
,3.0

2.0
3.0

IF = 20 mA
IF =20mA
IF = 20mA

mcd
mcd
nm
nm

1.0
4.0
585
45

1.0
4.0
562
30

1.0
4.0
635
45

V = 0, f= 1MHz

pF

45

20

45

IR = 100 JlA
IR = 100 JlA

V
V
degrees

5.0
25
100

5
50
100

5.0
25
100

TYPICAL ELECTRO-OPTICAL CHARACTERISTICS CURVES (25°C Free Air Temperature)
For MV54123 see High Efficiency Green Data Sheet curves page no. 304
50

MV5~123
SERIES

~
trJ/

..:

E

,

40

~
...z
w 30
::>
0

20

~
0:

0

"'
~

10

o

1.4

o

~ 40%

S
M! 20%

II IP
J

t

2.0

V

~

~~
....J~

,

\

Fig. 2. Spectral Response


u
Q

a:
«
;:
a:

lr

20

10

o
1.4

120%

~Vj

...--.--..-.....,.--,-.,..".,=;:-::-,==,-,

100% 1---+--f--,a<-f__,+---,,
i=::>

I

V

060%1---+~~~~~~1---'~1--'-l

w

>
;:::

//

S40%1---++-+4~-4rl-~I---H~I--'-l

w

a:

/, /
1.6

1.8

2.0

2.2

2.4

2.6

2.8

FORWARD VOLTAGE (VFI- VOLTS

3.0

520 540

560 580

600 620 640 660 680

WAVELENGTH (AI- nm

C1355

Fig. 1. Forward Current vs. .
Forward Voltage

MJ521241(GRE~NI

MV53124 (YELLOWI
MV57124 (REDI

L

/

/

/

C1356

Fig. 2. Spectral Response

/

/

V

./
o

10

15

20

25

Forward Current (IF) - mA

30

35
C1241

Fig. 3. L.uminouslntensity V8.
Forward Current

NOTES
1. The leads of the device were immersec/ in molten solder, heated to a temperature of 260°C, to a point 1/16 inch (1.6mm)
from the body of the device per MIL-S-750, with dwell time of 5 seconds.
2. As measured with a Photo Research Corp. "SPECTRA" Microcandela Meter (ModeIIV-D)_

350

SOLID STATE INDICATOR

YELLOW
HIGH EFFICIENCY GREEN
HIGH EFFICIENCY RED
DESCRIPTION

PACKAGE DIMENSIONS

The MV5X173 series is a large rectangular lamp which
contains two LED chips with separate anodes and
cathodes for each light. The illuminated area is 0.500
inches x 0.250 inches (12.7 mm x 6.35 mm).
Separate mounting hardware is available. See MP73.

RIENTATION MARK

Pin#l
.250"

' \

j'I635mmJ 'j
_

~

MV53173
MV54173
MV57173

.125"
(J 18mml

1

t

.550"

FEATURES

.500"

11 3.97mml

0.~27jommJ
t
I

+
.2J5"
(6.99mml

.25

(S.35 mmJ

LL
.148"
m

• .500" x .250" lighted area available in three colors
• Solid state reliability
• Fast switching - excellent for multiplexing
• Low power consumption
II Directly compatible with IC's
• Wide viewing angle
• .2" DIP lead spacing
• Mounting hardware available
II Categorized for luminous intensity (See note 1)

-I. ,I

+

I..295"

13.76m J

DATE CODE

{7.49mml

PART NO.

.3r-1i

(S.OOmml

I
t

14:~~~~;r±,01S'"

,

LIGHT
INTENSITY

CATEGORY

APPLICATIONS

SEE NOTE 4

• Panel indicators
• Backl ight legends
• Light arrays

MV5X173

.470" REF
fl1.94mmJ

1

I -f= (o:~~~~1

---'----1;1

.200"

/S.08mmJ ----..
±.OlS"

±.DOl"

NOTE: TOLERANCE ±.010" UNLESS SPECIFIED

C14S7

ABSOLUTE MAXIMUM RATINGS
Power Dissipation at 25°C . . . . . . . • . . . . . . . .
Derate linearly from 50°C •......•..•...•.
Storage Temperature ..•....•............
Operating Temperature •.••..••.•........
Continuous Forward Current per light (25°C) .. .
Peak Forward Current per LED chip ........ .
(1llsec pulse width, 300 pps)
Solder Time at 260°C (See notes 3 and 5) .•....•

MV53173

MV54173

MV57173

200mW
-4.3 mW/oC
-40°C to 100°C
-40°C to +85°C
25mA
1.0 A

200mW
-4.5 mW/oC
_40°C to 100°C
_40°C to +85°C
30mA
90mA

200mW
-4.3 mW/oC
_40°C to 100°C
-40°C to +85°C
35mA
1.0 A

5 sec.

5 sec.

5 sec.

351

MV53173 MV54173 MV57173
ELECTRO-OPTICAL CHARACTERISTICS
PARAMETER

Forward voltage (VF)
Typ.
Max.
Luminous Intensity
(See Note 1) Min.
Peak wave length
Typ.
Spectral line half width
Capacitance
Typ.
Reverse voltage (VR )
Min.
Typ.
Viewing angle (total)

(25°C Free Air Temperature)

TESTCOND.

MV53173

MV54173

MV57173

UNITS

IF = 20mA
IF = 20mA

2.0
2.5

2.2
3.0

2.0
2.5

V
V

IF = 20mA

4.5

4.5

4.5

med

IF = 20mA
IF = 20mA

585
45

562
30

635
45

nm
nm

V=O,f= lMHz

35

20

35

pF

IR = 100 !LA
IR = 100 !LA

5
25
120

5
50
120

5
25
120

V
V
degrees

TYPICAL THERMAL CHARACTERISTICS
Thermal resistance junction to free air cf> JA • • • • • •
Wavelength temperature coefficient (case temp) ..
Forward voltage temperature coefficient .......

MV53173

MV54173

MV57173

160°C/W
1.0AfC
-1.5mVtC

160°C/W
1.oAtc
-1.4 mVfC

160°C/W
1.0 A;.°c
-2.0 mY/DC

TYPICAL CURVES (Per LED Chip Unless Indicated) (25°C Free Air Temperature)

100

3000

/

90

2500

80

MV53173
MV57173

70

2000

/MV53173

60

/

50

1500

MV57173/
40

30

"
"

1000

'/

20

10

.4

.8

'"

500

1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

10

15

20

IF (PER SEGMENT) - rnA

FORWARD VOLTAGE !VF) - VOLTS

25

30

Cl090A

CloaOA

Fig. 2. Luminous Intensity vs.
Forward Current
(both LED chips on)

Fig. 1. Forward Current vs.
Forward Voltage
170

160

I
I

"-

150
140

"-MV57173

130

"-

120
110

100 t-MV53173
90

"

r,,-

-

" :-...

80
70
60
50
-50

-25

25

50

AMBIENT TEMPERATURE - ~c

352

V

V

/

V

V

"

70

C1244A

Fig. 3. Luminous Intensity vs.
Temperature
See Note 2

MV53173 MV54173 MV57173

1000
800

I

500

200 pps

\

r-

MV53173

~

I
~

<=

I

" 200
E

~

I

FREQ.

r"-

5m3

100

~JV5~,i3
'\l"\

1.5

~ eo

~

50

20

1'\1"\

~

MV~3173

i'

~'"

,

'0 ,

10

20

50

'0

100
C1193

DUTY CYCLE - %

'0

20

DC
C1194A

PERCENT DUTY - %

DUTY CYCLE - %
IF perseg. 10 rnA AVERAGE

Fig. 4. Max Peak Current vs.
Duty Cycle

Fig. 5. Luminous Intensity vs.
Duty Cycle

100

<
~

.)!,

zw

a:
a:

::J

()

0

a:

80

I

~

20
10

en

::J

0

z

/

40

~
..J

if
./

o
1.0

W

>

f1

(DOTTED LINE
INDICATES
PULSED OPERATIONSEE FIGS. 3, 5(

2.0

2.0

::J

I

30

NJRMAJZED1T IF

~

MV54173

I

50

a:
0

I

60

u.

>
le;;
Z
w
I- 3.0

I

70
I-

4.0

I

90

3.0

1.0

..J

W

a:

o

4.0

/

/
5

/
10

V

/

J

10

V

C1697

I

MV54173

15

20

DC FORWARD CURRENT -

FORWARD VOLTAGE - VF (VOLTS,

ml/

25

30

IF ImAI

C1702

Fig 6. Forward Current vs.
Forward Voltage

Fig. 7. Relative Luminous Intensity vs.
DC Forward Current
(Both LED chips on)

1000
_ 800

~600
-

~

400
MV54173

~ 200

II

::J

()

"" 199 -d
~ 60
§i 40 ==
:::;

~

""

~.~~

~q;
~ ~

20
10
10

100

1000

10,000

PULSE DURATION I~SI

C1699

Fig. 8. Maximum Peak
Current vs. Pulse Duration

353

MV53173 MV54173 MV57173
130

~

120

~

>-

I(ij

110

I-

~

100
V5417

UJ

>

~

90

a:

80

...J
UJ

70
-55

t;

~

z

UJ

g

~~

""'"

fTTr-TllTTTTTl
1 IrTTljTIIII

4.0r--r-l

NORMALIZED
AT 25°C

3.0

~

50
[t=
UJ

~~n;

a:~

'"

-25
25
50
75
TEMPERATURE - TA (OCI

r

2]

~~ t~h-t-It-H-t'ii:tttl

II

~ 2.0

MV54173

l'

_

~~

UJ

D

= 20 rnA

IF(AVGI

,t'-

::::::-.."

1.0 f--+-+-t-;I-Httt--""-I;r-...;:"t-t-tttttl
I

't'-

0.0 L..........l-......l-..LL..l...ll.L.L----'----'--'-i.J....L.llJ
50
DC
2.0
5.0
10
20
% DUTY CYCLE
C1701

100

C1700

Fig. 9. Relative Luminous
Intensity vs. Temperature

Fig. 10. Relative Efficiency
vs. Duty Cycle

PIN CONNECTIONS
6
PIN
NO.
1
2
3

4
5
6

5

4

~

ELECTRICAL
CONNECTIONS
Cathode 1
No Pin
Anode 2
Cathode 2
NC
Anode 1

3

SCHEMATIC

FILTER RECOMMENDATIONS
For optimum on and off contrast, one of the following filters or equivalents may be used over the lamp
MV53173

MV54173

MV57173

Panel graphic Yellow 25 or Amber 23
Homalite 190 - 1720 or 100 -1726

Panel graphic Green 48
Panelgraphic Red 60
Homalite 100 - 1440 Green
Homalite 100 - 1605
In situations of high ambient light, a neutral density filter can be used to achieve greater contrast
Panel graphic Grey 10
Panelgraphic Grey 10
Homalite 100 - 1266 Grey

1. The average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by
the total number of segments. The standard of measurement is the Photo Research Corp. "Spectra" Microcandela
Meter (ModeIIV'DJ corrected for wavelength. Intensity will not vary more than ±33.3% between all segments
within a unit.
2. The curve in Figure 3 is normalized to the brightness at2!i"C to indicate the relative efficiency over the
operating temperature range.
3. Leads immersed to 1/16" (l.6mmJ from the body of the device. Maximum unit surface temperature is 140°C.
4. All units are categorized for luminous intensity. The invensity category is marked on each part as a suffix letter
to the part number.
5. For flux removal, Freon TF, Freon TE, isoproponal or water may be used up to their boiling points.

354

BAR GRAPH DISPLAY

YELLOW
HIGH EFFICIENCY GREEN
HIGH EFFICIENCY RED
PACKAGE DIMENSIONS

MV53164
MV54164
MV57164

DESCRIPTION
The MVSX164 Series is a 10 segment bar graph display
with separate anodes and cathodes for each light
segment. The packages are end stackable.

,070"
(1,78mml

±,002"

FEATURES
DATE CODE
LIGHT INTENSITY
CATEGORY
SEE NOTE 4

_.__ lI.mmru.m-i.mj,zJ

(8;~~0~~1

I

II

--t ~- (O:~~~~I

_11_(1~~~~1
100"

(2~~r~~1

I

I

1_

•
•
•
•
•
a
•
•

Large segments, closely spaced
End stackable
Fast switching, excellent for multiplexing
Low power consumption
Directly compatible with IC's
Wide viewing angle
Standard .3" DIP lead spacing
Categorized for luminous intensity (see note 4)

I

±.002"

1.300"

(7~~1~~)

NOTE: TOLERANCES ±.010" UNLESS SPECIFIED

C1468

ABSOLUTE MAXIMUM RATINGS
Power dissipation @ 2SOC ambient .......... .
Derate linearly from SO°C ...........•....
Storage and operati ng temperatu re .......... .
Continuous forward current
Total . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Per segment . . . . . . . . . . . . . . . . . . . . . . . .
Reverse voltage
Per segment . . . . . . . . . . . . . . . . . . . . . . . .
Solder time @ 260°C (See Notes 3 and S.) ..... .

MV53164

MV54164

MV57164

7S0mW
-14.3 mWtC
-40°C to 8SoC

7S0mW
-14.3 mW/oC
_40°C to 8SoC

7S0mW
-14.3 mW/oC
-40°C to 8SoC

200mA
2SmA

300mA
30mA

300mA
30mA

6.0 V
S sec.

6.0V
S sec.

6.0V
S sec.

TYPICAL THERMAL CHARACTERISTICS
Thermal resistance junction to free air cf> JA •••••
Wavelength temperature coefficient (case temp) ..
Forward voltage temperature coefficient ...... .

MV53164

MV54164

MV57164

160°C/W
1.oAtc
-l.SmVtC

160°C/W

160°ciw
1.oAtc
-2.0mVtC

1.oAtc

1.4 mV/oC

355

MV53164 MV54164 MV57164
ELECTRO-OPTICAL CHARACTERISTICS

(25°CFree Air TemperatlJ~e Unless Otherwise Specified)
MIN.

Forward Voltage MV53164, MV57164/MV54164'
Luminous intensity (unit avg.) (see Note 1)
Pulsed luminous intensity (MV54164)

TYP.

MAX.

UNITS

2.0/2.2

2.5/3.0

V
/Lcd
/Lcd

510
710

Peak emission wavelength
MV53164
MV54164
MV57164
Spectral line half width MV53164, MV57164/MV54164
Dynamic resistance
Segment MV53164, MV57164/MV54164
Capacitance MV53164, MV57164/MV54164
Switching Time
Reverse Voltage

585
562
630
40/30

nm
nm
nm
nm

26/12
35/40
500

pF
ns

IF = 10 mA
IF = 10 mA
IF =60,mA
peak; 1:6 DF

n

IF= 20mA
V = 0, f= 1MHz
IF = 10 mA
IR = 100/LA

6.0

TYPICAL DRIVE CIRCUIT

TEST
CONDITIONS,

v+

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

10
RVS:
MSA:
B:
Re:

REFERENCE VOLTAGE SOURCE
MODE SELECT AMPLIFIER
BUFFER
LED BRIGHTNESS CONTROL

Rs

BAR OR
SINGLE
LED
CONTROL

20

ILED

RLO

4

C1471

LM3914

, PIN CONNECTIONS
PIN ELECTRICAL
NO. CONNECTIONS
1
2
3
4
5

356

Bar
Bar
Bar
Bar
Bar

1 Anode
2 Anode
3 Anode
4 Anode
5 Anode

PIN ELECTRICAL
NO. CONNECTIONS
6
7
8

9
10

Bar
Bar
Bar
Bar
Bar

6
7
8
9
10

Anode
Anode
Anode
Anode
Anode

PIN ELECTRICAL
NO. CONNECTIONS

PIN ELECTRICAL
NO. CONNECTIONS

11
12
13
14
15

16
17
18
19
20

Bar
Bar
Bar
Bar
Bar

10 Cathode
9 Cathode
8 Cathode
7 Cathode
6 Cathode

Bar
Bar
Bar
Bar
Bar

5 Cathode
4 Cathode
3 Cathode
2 Cathode
1 Cathode

MV53164 MV54164 MV57164
TYPICAL CURVES MV53164 MV57164 (PER SEGMENT) (25°C Free Air Temperature)
100

«

E 80

II

I
u.

....
z
w

70
60

a:

~
a:
0

u.

zw

~ 1500

::>

~ 1000
:iii

[I

20

:J
..J

h
IJI

10

0

.4

.8

500

0

1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

FORWARD VOLTAGE (VF) - VOLTS

170

"-

"

'"

I 140

II)

ffj130

..J~
W

r- MV53164

«

"' "-

E

~

""-

80

a: 70

r--

o

50

25

~

BO

Q.

50

w

J

AMBIENT TEMPERATURE -"C

"

~

w

1.5

>
i=

.........

3

1

w

a:

50

100
C1193

~MV57164

'\ c'\

~

~

['\

"

dw"
a:

u.

.... ~
1
10

20

Fig. 4. Max Peak Current vs.
Duty Cycle

MV5316~ ~~

«

..J

10

DUTY CYCLE - %

C1244A

\

....

MV53164
~ MV57164

10

70

~

~
iii
zw

.......

20

Fig. 3. Luminous Intensity vs.
Temperature (See Note 2)

2

FTO. = 200 pps

~

~

60
-25

"

~

200

I
.!!-100

'-..

90

50
-50

25
30
Cl090A

.L

"-..MV57164

z

100

10
15
20
IF (PER SEGMENT) - rnA

500

!i: 120
~

5

MV57164

1000
BOO

150


0

..

"8

J

I MV53164

a: 50
a:

0

3000

1
1

90

20

' ....

40

DUTY CYCLE - %
IF parseg. 10 rnA AVERAGE

DC
C1194A

Fig. 5. Luminous Intensity vs.
Duty Cycle

357

MV53164 MV54164 MV57164
TYPICAL CURVES MV54164 (PER SEGMENT) (25°C Free Air Temperature)
100



l-

I

80
70

I-

4.0

I

90

l('

::l
~

w

> 1.0

~

(DOTTED LINE
INDICATES
PULSED OPERATIONSEE FIGS. 3, 5)

FORWARD VOLTAGE -

~

./

w

a:

o

4.0

3.0

2.0

«

VF (VOLTSI

V

/'

5

10

15

20

25

30

DC FORWARD CURRENT -IF ImAI

C1697

C1702

Fig. 6. Forward Current
vs. Forward Voltage

Fig. 7. Relative Luminous Intensity
vs. DC Forward Current

1000
_ 800
~ 600
;: 400

130

~

~
«
~
~

15'0

60 ~~'t"(.

. ~~~-'~
~

~

~~6!
;.>-

;.>

~

I-

~
w

100

~

90

>

40

NORMALIZED
AT 25°C.

~

w

a:

20
10
10

~

I
MV54164

I'"

~

:;
:;

110

~

zw

["I'

'I'
100
80

I(ij

>

MV54164

~ 200
::l

~

120

80

"-

70
100

1000

10,000

-25

C1699

Fig. 9. Relative Luminous
Intensity vs. Temperature

5.0 10 20
% DUTY CYCLE

50

DC

C1701

Fig. 10. Relative Efficiency
vs. Duty Cycle

358

100

C1700

Fig. 8. Maximum Peak
Current vs. Pulse Duration

2.0·

"

0
25
50
75
TEMPERATURE - TA (OC)

-55

PULSE DURATION (I's)

MV53164 MV54164 MV57164
FILTER RECOMMENDATIONS
For optimum
over the lamp
. on and off contrast, one of the following filters or equivalents may be used
.
MV53164

MV54164

MV57164

Panelgraphic Yellow 25 or Amber 23
Homalite 190 -1720 or 100 - 1726

Panelgraphic Green 48
Homalite 100 - 1440 Green

Panelgraphic Red 60
Homalite 100 - 1605

In situations of high ambient light, a neutral density filter can be used to achieve greater contrast
Panelgraphic Grey 10

Panelgraphic Grey 10
Homalite 100 - 1266 Grey

1. The average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by
the total number of segments. The standard of measurement is the Photo Research Corp. "Spectra" Microcandela
Meter (ModeIIV·DJ corrected for wavelength. Intensity will not vary more than ±33.3% between all segments
within a unit.
2. The curve in Figure 3 is normalized to the brightness at 25"C to indicate the relative efficiency over the
operating temperature range.
.
3. Leads immersed to 1/16" (1.6mmJ from the body of the device. Maximum unit surface temperature is 140°C.
4. All units are categorized for luminous intensity. The invensity category is marked on each part as a suffix letter
to the part number.
.
5. For flux removal, Freon TF, Freon TE, isoproponal or water may be used up to their boiling points.

I

I

359

PANEL MOUNTING GROMMETS
(FOR LED PANEL INDICATORS)

MP21 MP51
MP22 MP52
DESCRIPTION

PACKAGE DIMENSIONS

The MP Series of mounting grommets is intended for panel mounting of many standard
General Instrument light emitting diode
indicators. The grommets are made of plastic
.and are available in clear and black.

NOTES: TOLERANCE ~.OlO" (.254mmJ
MATERIAL: POL YPRO OR eQUIVALENT
FOR MOUNTING DRilL A .25" f6.35mml HOLE

.265"

::~r~;!T~ -~t::j::~~-(T'
LAMPS

L

---.J

.310"
17.87mmlOIA.

.025"
1.635mm'
C600

rhl,"

The MP Series will easily mount the applicable
lamps on any panel thickness up to .125 inch
(3.18mm).

~~mml

APPLICATION

~ ''''''~

PART NO.

17,16mmJDIA.
.36Q"
IS.14mml UtA.

C6QO

MP21 (CLEAR)
MP22 (BLACK)

AVAILABILITY

Special Order Only
Standard

COLLAR

Applicable Lamps:
ME7021 thru ME7124;
MV5020 thru MV5056

MP21/MP22
TWO-PIECE POP-INS

PART NO.

MP51 (CLEAR)
MP52 (BLACK)

AVAILABILITY

Special Order Only
Standard

Applicable Lamps:
MV5050 thru MV5056
MV5054A-1-2-3
MV5152 thru MV5752
MV5153 thru MV5753
MV5154 thru MV5754
MV5174C thru MV5774C

TOLERANCE

i

010 I 254mml

.

MATERIAL POL YPAO OR eQUIVALENT
FOR MOUNTING DRILL A 25' (6 35mmJ HOLE

~.:rml
LS: ''''''d
. 165"

.

I

17.16mmJ OIA .
.360"

0621
LAMP HOLDER

19.14mmIOIA.

MP61/MP52
TWO-PIECE POP-INS

360

COLLAR

C621

TYPICAL MOUNTING TECHNIQUE

PANEL MOUNTING GROMMET
FOR .220-INCH RECTANGULAR LAMP

MP65
DESCRIPTION

PACKAGE DIMENSIONS

The MP65 mounting grommet is intended for
panel mounting the MV5x124 series of rectangular lamps_ The grommets are made of black
plastic and provide the user with an easy-tomount, professional appearance when viewed
on a front panel.
The MP65 can be used on any panel thickness
up to _125-inch (3_18 mm)_

r ,- - - - - - -,

i - - - .370" - - - . / .
I
r9.40mm)
I

D

~------------rl

L

.270"
(S.B6mml

I

I
I!

.

1I
I I

f-J
Li
L
_____________ .J
'=------------_-:1

MATTE FINISH

TOP VIEW OF GROMMET

.12J"l3.12mml-l
.120" 13.05 mm)

-I

1_

,07S"rt.91mml-l
.072"ll.83mml

-I

C::;::+,======+=~

I

~

t==:::::t::::;:l

c;:::j:,

I

END VIEW
OF GROMMET

I . - - - .370" - - - - . /
I
19.40mml
I

1DJ
I

,.."

I

t+--lh2mml-~
TOP VIEW OF RING

1

.200"

--l-ll

mm

L-JC--_ _ _ _ _
sloe VIEW OF RING

MATERIAL: POLYPROPYLENE BLACK

'

PANEL HOLE PUNCHING:
Punches can be ordered from one of the following sources:
W. A. WHITNEY COMPANY
650 Race Street
Rockford, IL 61105
(815) 964-6771
(Request a 28xx series punch with
dimensions of 5/16" x 7/32")
ROTEX PUNCH COMPANY, INC_
2350 Alvarado Street
San Leandro, CA 94577
(415) 357-3600
(Request a 3506 series punch with
dimensions of 5/16" x 7/32")

C1455

361

PANEL MOUNTING GROMMET
FOR .5-INCH RECTANGULAR INDICATOR

MP73
PACKAGE DIMENSIONS:

DESCRIPTION:

£20mml
.008

T

~r====n

NON ACCUM.
(.41mm)

SCALE;20n

DETAIL A

BEZEL ONLY

---1 t+II

The MP73 can be used on any
panel thickness up to .125-inch
(3.18mm).

TYP. AL.L AROUND'

MATTE FINISH,

.025

JI

r1l6PLCSlTOL

.43

~~------------~~
1,64mml

~ l+-'~~~'

The MP73 mounting grommet is
intended for panel mounting the
MV57173 rectangular lamp. The
grommets are made of black
plastic and provide the user with
an easy·to-mount, professional
appearance when viewed on a
front panel.

FULL

\4PlCS)

020
LI.S'lm ml

,t

30" TYP.

"\

.289

"·"1

mml .336

--±

lar

ml

MATERIAL: POLYPROPYLENE - BLACK

"'Fr

C 1480

.032

032

1.81 mml
.43
····r···r.--{10.92mml~

.20

I~508mm~ I

r--·'-:·'I

Punches may be ordered from one
of the following sources:

.68

W. A. WHITNEY COMPANY
650 Race Street
Rockford, I L 61105
(815) 964-6771

(17.27mml
.616
115.65mml

ROTEX PUNCH COMPANY, INC.
2350 Alvarado Street
San Leandro, CA 94577
(415) 357-3600

~t:::====.J/
PROTRUSIONS
TO BE SCORE
LINES IN MOLD

12SIOESONLY)

MATERIAL: POLYPROPYLENE - BLACK

362

PANEL HOLE
PUNCHING:

C 1481

363

364

LIGHT EMITTING DIODE CHIPS

GREEN G-32
YELLOW Y-32
ORANGE 0-32
DESCRIPTION
and die fabrication procedures currently available. The
dice are shipped in vials or expanded vinyl membranes
for ease in handling and for maintenance of die adjacency which provides the user the best possible die-todie hue and luminous intensity matching.

The G, Y, 0-32 Series is a light emitting diode fabricated from state-of-the-art Nitrogen doped GaAs x P1-X
epitaxially grown on a GaP substrate. The device is a
planar emitter whose luminous performance has been
optimized by using the current best epitaxial growth

ELECTRICAL/OPTICAL CHARACTERIZATION (See Notes)
PARAMETER

Forward Voltage
Reverse Voltage

@

@

If = 20m A
Ir = 100/lA

Luminous Intensity at If = 20mA (unlensed)
Center Wavelength at If = 10mA

PRODUCT

G-32
Y-32
0-32
G-32
Y-32
0-32
G-32
Y-32
0-32
G-32
Y-32
0-32

MIN

MAX

UNITS

2.6
2.6
2.5

Volts
Volts

8
8
8
200
700
700
5600
5750
6250

/lcd
5750
5950
6400

Angstroms

I

PHYSICAL CHARACTERISTICS
Viewed from the top, the nominal 32 Series die is square measuring 0.0140
inches_ The nominal thickness of the die is 0.007 inches. In practice, the
die dimensions do not deviate by more than 20% from the nominal values.
The bottom of each die is metallized with a gold alloy which can be
attached to conventional gold or silver plated substrates or lead frames by
using a conductive epoxy.
The top of each die is selectively metallized and the bonding pad material
is compatible with conventional gold thermocompression and aluminum
wire bonding techniques.

PACKAGING AND LABELING
32 Series wafers are mounted on 5.75" x 5.75" expanded vinyl membranes and covered with a thin protective overlay. Each wafer is clearly
labeled identifying the die type, lot number, control date, brightness
minimum and the number of die which meet the specifications.
Notss:
1. Elsctricel and optical characteristics are determined by die attaching and wire
bonding the LED chip to a TO-IS, Au plated, Kovar header. No encapsulation is
used.
2. Luminous intensity is measured with a Photo-Research Spectra microcandela
meter, Model IV-D, fitted with a 4° probe. The center wavelength is determined
with a 0.5 meter Jarrell-Ash grating monochromator and is defined as the
average of the spectrum half power points.
3. Package coda suffix: W = shipped In unscribed wafer form
M = scribed and mounted on expanded vinyl membrane

SILICON
NITRIOEI"'''''---'-----L---=-.l
0.007"

b:==============:d.~7)
If..----

I

0.014"
(0.35) ----'-1

SILlCON~~l
NITRIOE~
0.014"

PAD
BONOING

L~~~~~~~~~uJ(0.35)
C1714

365

366

MONOLITHIC LIGHT EMITTING DIODE CHIPS

RED

MMH SERIES

DESCRIPTION
The MMH Series provides a selection of 7 segment, and
9 segment fonts, with digit slants from 0 degrees to
12 degrees, as well as a bar chip and dot chip. These
products offer high performance gallium arsenide
phosphide red monolithic numeric, bar, and dot LED's
and are particularly suited for watch, clock, toy and
game displays. They are specifically designed for

hybrid assembly operations with automatic die attach
and wire bonding operations in mind.
Monolithic numeric products are available in probed
wafer form or mounted on expandable vinyl membranes for ease of handling and maintenance of dice
adjacency, giving optimum digit-to-digit luminous
intensity matching.

ELECTRICAL/OPTICAL CHARACTERISTICS
DESCRIPTION
Forward Voltage/Sog.

SYMBOL

Reverse Voltage/Seg.

VF
VR

Luminous Intensity/Seg.
Luminous Intensity/seg.
Luminous I ntensity Ratio
(Segment to Segment)

MIN.

TYP.

-

1.55

MAX.

UNITS

TESTCOND

LBO

Volts

I F =10mADC

NOTES
A

-

Volts

I R=100/lADC

A

/led

I F=5mADC

A,B,F

/led

I F =10mADC

A,B,F

5.0

-

L.I.

67

-

L.I.

160'

-

RLI- 1

-

-

-

1.5

-

I F =10mADC

A,B,C,F

Luminous Intensity Ratio
(Adjacent Dicel

RLI-2·

-

-

1.5

-

I F=10mADC

A,B,D,F,G

Luminous I ntensity Ratio
(Five Adjacent Dice)

R LI -3

-

-

I.B

-

I F=10mADC

A,B,E,F,G

Peak Wave Length

~p

-

655

-

'1m

I F=10mADC

I

*MMH322 = 250 /led min.

MECHANICAL CHARACTERISTICS
DIE TYPE

FONT

DIE SIZE
(INCHES)

CHARACTER
SIZE (INCHES)

CHARACTER
SLANT

EMITTER
WIDTH (IN)

NOMINAL BONDING
PAD SIZE (IN)

MMH62M,W

7seg.

0.048xO.036

0.042xO.022

12·

0.002

0.004xO.004

MMH75M

9 seg.

0.106xO.066

0.100xO.060

O·

0.005

Universal

MMH78M

9seg.

0.082xO.052

0.075xO.045

O·

0.0055

Universal

MMHBOW

1 seg.

0.040xO.01O

O·

0.005

MMH321/2W,V

Dot

0.014xO.014

0.005xO.035
0.010xO.Ol0

0.OO4xO.0040
0.003 (DIA)

-

-

NOTE: See packaging note 3.
TYP.

MAX.

UNITS

-

A

BOoo

-

-

A

3

-

-

Grams

-

Inches
Inches

MIN.
Cathode Metallization
Au Allov/Au - Thickness

3000

Anode Metallization
Aluminum - Thickness
Anode Bond Strength
Die Thickness - (Monolithic Digit)
(Colon Dot)

-

0.007
0.0055

NOTES

H

367

MMH SERIES
MECHANICAL CRITERIA - (Origin of X-Ycoordinate system is located at the geometric center of
.'
the chip with the coordinate axes parallel to the edges of the chip.)
MMH62

DIE SIZE
CHARACTER SIZE
CHARACTER SLANT
EMITTER WIDTH
NOMINAL BONDING PAD SIZE

0.048" X 0.036"
0.040", Seg. A·Seg. D, 1t..1t.
0.01956", Seg. B·Seg. F, 1t..1t.
12'
.
0.002"
0.004" X 0.004"

BONDING PAD LOCATIONS
XA
Xa
Xc
Xo
Xe
XF
Xo,
Xo

YA
Ya
Yc
Yo
Ye
YF
Yo,
Yo

= 0.001"
= 0.007"

= 0.0027"
= -0.001"
=-0.007"

= -0.0027"
= 0.0032::
= -0.0032

n~
~\
75

DIE SIZE
CHARACTER SIZE
CHARACTER SLANT
EMITTER WIDTH
EMITTER LENGTH
NOMINAL BONDING PAD SIZE

Gl

0.0055"

= -0.0055"
= 0.015"

YOP2 = -0.015"

XOP2 = 0.0128

MMH75

= 0.008"

=

Yo~,

Xo~, = -0.0128::

1

= 0.0145"
= 0.012"
= -0.008"
= -0.0145"
= -0.012"

0.106" X 0.066"
0.095", Seg. A-Seg. D, It.-It.
Sog. F-Sog. B, It.-It.

.g~oss",

0.005"
0.049", Seg. B, C, E, F
0.046", Seg. A, D, G
0.03B", Seg. H, J
Universal Chip

BONDING PAD LOCATIONS
XA = -0.0132"
XA' = 0.0122"
X B2 = 0.0143"
Xc = 0.0153"
Xo = -0.0122"
Xo 1 = 0.0132"
XE 2 = -0.0143"
XF = -0.0153"

MMH78

±

0.003"

± 0.004"

± 0.006"
± 0.005"
± 0.003"
± 0.003"
± 0.006"
± 0.005"

XG = -0.0122" ± 0.004"
XG 1 = 0.0122" ± 0.004"
XH2 = -0.0117" ± 0.005"
XJ = 0.0117"±0.005"
YA = 0.0392" ± 0.001"
YA' = 0.0392" ± 0.001"
YB2 = 0.0278" ± 0.002"
Yc = -0.0158" ± 0.002"

DIE SIZE
CHARACTER SIZE
CHARACTER SLANT
EMITTER WIDTH
EMITTER LENGTH
NOMINAL BONDING PAD SIZE

YO = -0.0392" ± 0.001"
Yo' = -0.0392" ± 0.001"
YE 2 = -0.0278" ± 0.002"
YF = 0.0158"±0.002"
YG = -0.0084" ± 0.001"
Yo 1 = 0.0084" ± 0.001"
YH2 = 0.0278" ± 0.002"
YJ = -0.0278" ± 0.002"

0.062" X 0.052"
0.0695", Seg. A-Seg. D, ct.-ct.
g.039S", Seg. F-Seg. B, cr-Ii.
0.0055"
0.0365", Seg. S, C, E, F
0.030", Seg. A, D, G
0.024", Seg. H, J
. Universal Chip

BONDING PAD LOCATIONS
XA
Xa
Xc
Xo
XE
XF

= -0.0099" ± 0.001"

=

0.0102" ± 0.003"

= 0.011" ± 0.002"

= 0.0099"
= -0.0102"
= -0.011"
XG, = -0.009"

368

±

0.001"

± 0.003"
± 0.002"
± 0.002"

= 0.009" ± 0.002"
XH2 = -0.0087" ± 0.002"
XJ = 0.0087" ± 0.002"
YA = 0.0275" ± 0.001"
YB = 0.0157" ± 0.001"
Yc = -0.0101" ± 0.001"
XG

Yo = -0.0275" ± 0.001"
YE = -0.0157" ± 0.001"
YF = 0.0101" ± 0.001"
YG = -0.0725" ± 0.001"
Yo 1 = 0.0725" ± 0.001"
y H2 = 0.019" ± 0.001"
YJ = -0.019" ± 0.001"

MMH SERIES
--.--~,:
:
:
,
,
:

i
_____ J

MMH32

MMH80
DIE SIZE
CHARACTER SIZE
CHARACTER SLANT
EMITTER WIDTH
EMITTER LENGTH
BONDING PAD SIZE
PAD LOCATION

0.040"
0.005"
O·
0.005"
0.035"
0.004"
0.000"

X 0.010"
X 0.035"

XI

0.014" X 0.014"
0.010" X 0.010"
0.003" (DIA)

CHARACTER
SIZE
DIE SIZE
BONDING PAD SIZE

1r&11

C1252

X 0.004"
X 0.000"

: .C1365

VISUAL CHARACTERISTICS
1. Chips
2. Cracks
3. Missing. extraneous. or
occluded emitting area
4. Emitter isolation
5. P-contact metallization defects

6. Bonding pad defects

LIMIT

NOTE
I. J

None in active area.
None in active area.
Not detectable to the unaided eye under
light-up@ IF=10mADC.
No emitters electrically shorted.
No defect producing visual non-uniformity
in any emitting area detectable by the
unaided eye under light-up@ IF=10mADC.
No defect prohibiting normally satisfactory
wire bonding.

K

A

A

NOTE: Supplemental visual characteristic drawings on request.

Expandable Vinyl Membrane

RECOMMENDED SEQUENCE FOR
REMOVING DICE FROM EXPANDED
MEMBRANE
In order to optimize digit to digit luminous
intensity match. remove dice from expanded
vinyl membrane in the sequence relative to
wafer orientation on the membrane as shown
in the drawing at right.

START

I

'2

•

• 10.

9

8

••

11 121314 •

3

4

•

1

6

S.

4---

15161718 •

277625.242322212019.4--

,

28293031

ETC.

\

II
GENERAL

INSTRUMENT Optoelectronics
Di.TYI' _ _ __
LOlu _ _ _ _

c.o. _ _ __
_ _ _ _ Ilcp
_ _ _ ChIps

369

MMH SERIES·
NOTES:
A. The device under test must be die attached and wire bonded to the display substrate of intended

use or on an 8-Pin, TO-5, Au-plated, Kovar header.
B. Luminous intensity will be measured with a Photo-Research Spectra microcandela meter, Model
IVD fitted with a 4° probe.
C. RU-1 is the ratio of brightest emitter divided by dimmest emitter within a die.
.
D. RU-2 is the ratio of brightest emitter divided by dimmest emitter between packaged horizontally
adjacent dice.
E. RU-3 is the ratio of brightest emitter divided by the dimmest emitter between five packaged
horizontally adjacent dice.
F. All correlation and reject verification must be done by electro-optic means such as monitoring the
photo current from a silicon photodetector (C.I.E. corrected) or photomultiplier positioned such
that the normal axis of the L.E.D. chip and the photodetector are coincident and that they be
separated by at least two inches. The test must be conducted in a zero ambient light environment
with device under test configuration as specified in Note A, above.
G.ln order to optimize digit to digit luminous intensity matching die should be removed from the
vinyl film as shown in figure 1.
H. The pull test shall be performed on a gold ball bond formed from 0.001 inch wire.
I. A chip is defined to be any missing material around the edges of the die when viewed from the
emitter side of the die.
J. The active area consists of the areas defined by the emitters and p-contact metallization.
K.A crack is defined to be any mechanical discontinuity of the surface other than etched steps.

PACKAGING/LABELING/SHIPPING CHARACTERISTICS
1) Monolithic Numerics and Colons

Wafers are mounted on 5.75" x 5.75" expandable vinyl membranes. Each wafer is covered by a 0.00'" thick mylar
overlay and separated from adjacent wafers by anti-static, non-adhesive spacers. Each mounted wafer is marked with
the following information:
Die Type
Lot Number
Number of Good Dice
Average Luminous Intensity
Control Date
Mounted wafers are packed in secondary cartons which ensure their integrity during shipment. Each secondary carton
is marked with the following information:
Device Type/Part Number
Number of Good Dice
Lot Number
Date Code
2) Watch Set Colons
Standard packaging for discrete colons is a vial marked with the following information:
Die Type
Lot Number
Number of Good Dice
Luminous Intensity Category
Control Date
Colon dice are not visually sorted. The number of good dice supplied in a shipment corresponds to the ratio required for·
use with the monolithic digits. Colon dice are luminous intensity categorized for optimum match to the monolithic
digits and are supplied in two standard categories to be used as follows:
3) Package Code Suffix
W = shipped in unscribed wafer form
M = scribed and mounted on expandable vinyl membrane
V = scribed and packaged in vials

370

Applications

371

372

AN301
discrete LED selecting made easier
Light Emitting Diodes, LED's, have come into widespread use on the electronics scene_ This application
note is intended to aid the designer in selecting a particular device from the many LED's offered today_
The more important parameters as well as some littleknown pitfalls are discussed.
THEORY
Although light emission from a semiconductor junction
had long been speculated, the first commercial devices
did not become available until about 1963. This light
em issi on phenomenon can be explai ned in terms of
Semiconductor Energy-Band Theory. An external
voltage applied to forward-bias a PN junction excites the
majority carriers (electrons). causing them to move from
the N-side Conduction Band to the P-side Valence Band.
In making this transition the electrons cross the Energy
Gap, Eg, that separates the two Bands, and so have to
give up energy in the form of heat (phonons) and light
(photons).
Each semiconductor material type has an Eg characteristic, and the wavelength (A) of emitted light depends
upon the magnitude of Eg , (see Figure 1). For example,
Gallium Arsenide material, GaAs, has an Eg = 1.35 eV
and a Apeak = 9000 ft.. The wavelength (i_e., color)
emitted by some other materials made from Gallium
compounds are listed in Table 1.
Material

Wavelength

Color

GaAs:Zn
GaAsP.4
GaAsP.5
GaAsP.85: N
GaP:N

9000A
6600A
6100A
5900A
5600A

infrared

red

ELECTRICAL CONSIDERATIONS
Most incandescents are rated in terms of voltage; LED's,
on the other hand, are current-dependent devices since
they are basically diodes. When operating from constant-voltage sources, protection should be provided by
incorporating a current-limiting resistor with each LED.
Basic DC Circuit. For the simple circuit shown in
Figure 2 the resistor value can be calculated from

+Vcc

r

[Equation 21

C1147

I

Figure 2

amber

yellow
green

Table 1. Some Wavelentghs and Colors
Emitted by Gallium Compounds

+

12380
Wavelength of Emission (Apeak) '" - E - (in Angstrom units)
9

[Equation 11

Fig. 1. Relationship Between Band-Gap
Energy and Wavelength

where VF and IF are taken from an LED Data Sheet.
The power rating required for the resistor should also be
kept in mind.
Design Example #1: Suppose that a MV50 is to be
used with Figure 2's circuit and a Vcc of +5 volts.
Figure 3a shows the MV50's Brightness versus IF curve,
and Figure 3b shows IF vs. VF . (Note that Brightness
varies directly with IF). Further suppose that a Brightness of 800 foot-Lamberts is decided upon. From Figure
3a we see that IF must be set at 13 rnA, from Figure 3b
we see that VF will be 1.5 volts when IF is 13 rnA.
Substituting these values in Equation 2, we obtain
- VF R - 5 - 1.5 R = 269 ohm
R L -- Vcc IF
, L - 0.013 ' L
.

373

From the expression, Power = (IF)2 RL, we see that
RL's power rati ng can be 1/8 watt.

If

/

/

Figure 6 shows a circuit that has an MOS Ie output
driving both an LED and a TTL logic input.
Design Example #2: Suppose that a given MOS ROM,
operated with Vss =+12 volts, VGG = -12 volts, and
Voo =ground, is to drive an LED and a TTL logic
input. Further suppose that the LED's brightness is to
be adequate for use as a trouble-shooting indicator lamp.
From the data sheet for a MV55 we see that this lowcost, low-current LED typically delivers a usable 125
foot-Lamberts when IF is 1 mA, and has an IF maximum
rating of 3 mAo A value of 6.8 Kohm should be used
for RL.

/

/
J

IL

o

5

10 15

20

25

30

35

40

FORWARD CURRENT (mA)

C1148

+Vcc
MV·1i5

Figure 38.

LEO

MOS
RAM

or

torrl.

ROM
40

I
1/

;(

g

...~ 30
IX
IX

a

el151

~ 20

~

Figure 5.

I

IX

~10

I
J
~2

~

~6

~8

1.0

1~

IA

1~

FORWARD BIAS (VOLTS)

I.B
C1149

Figure 3b.

Active-Low Drive Circuit. Figure 4 shows a singletransistor drive circuit that lights the LED when the
transistor is "low," i.e., conducting. The· value for RL
can be calculated from

Figure 6.

AC Operation. LED's should be operated in the
forward direction only. Therefore, the LED circuit must
provide reverse-voltage protection· if applied voltage is
expected to exceed the VR maximum rating of the LED.
Figure 7a shows a circuit having an ordinary silicon
diode (e.g., 1N914) placed "back-to-back" with the
LED. Figure 7b shows an alternate and more novel
approach that utilizes two LED's in parallel. If no·
current flows, neither LED lights. But as long as current
does. flow (in either direction), one of the LED's lights
and one does not (because one LED will be conducting

RL = Vee - VF -VeE(sat)
IF
[Equation 3J

rt/

Active-High Drive Circuit. Figure 5 shows a singletransistor drive circuit that lights the LED when the
transistor is "high," i.e., not conducting. Equation 2 can
be used for calcu lati ng the value of R L. The transistor
should have a VeE of approximately 0.4 volts when
conducting.
.

~

L1:D

: .~

lN914

+Vcc

Fig. 7a. Bipolar Operation

v
) VeEI..,1

ellSO

Figure 4.

374

Fig. 7b. Bipolar Operation

C1152

and the othernotconducting.) An extension of this backto-back thinking led to the development of the bipolar
devices, i.e., the MV5094 (Red/Red) and the MV5491
(Red/Green). These are actually two diodes in each
package allowing either ACIDC or tri-state status
indication.
If reverse operation (below breakdown) is expected for
any length of time, then the designer should be aware of
the fact that reverse leakage over temperature of LED
materials (GaAs, GaAsP, etc.) is significantly less than
that of silicon diode materials.
Pulsed Operation. Significantly higher peak LED light
output can be obtained from ampere-level drive current
pulses (of narrow width and at low duty cycle) than
from steady-state driving. For example, total radiated
power (expressed in milliwatts) from a ME7021, infrared-emitting LED, operated steady· state (typically with
IF = 100 mAl is 2 mW. But this output increases to
50 mW when driven by a 6 amp, one microsecond-wide
pulse at 0.1 % Duty Cycle. It should be pointed out
that this factor of 25 increase comes at the expenSe of
a somewhat lower internal (quantum) efficiency.
Besides the increase in average power just described,
pulsed operation of visible'emitting LED's also gives rise
to a human perception phenomenon commonly known
as Light Enhancement. This phenomenon is due in part
to the eye's retention of high brightness levels (such as
those produced by camera flash bulbs). A numerical
Light Enhancement Factor (always greater than 1) can
be defined by the following ratio:

~]
MOUNTING GROMMET

~:::::::J

GROOVED RING
C1154

MOUNTING
GROMMET

LED

PANEL

Light Enhancement Factor =

C1555

IDe (stead v-state operation) to produce Brightness "B"

Figure Sa.

laverage (pulsed operation) to pr:oduce Brightness "B"

[Equation 6]

This Light Enhancement phenomenon is available only
from GaAsP because this LED material will not saturate
under high-current conditions.
When the human eye is the detector of visible energy,
lower average power is consumed by pulsed operation
than by steady-state operation. This advantage of pulsed
operation is especially important for battery· powered
applications and for applications in which large LED
arrays are being driven.
MOUNTING CONSIDERATIONS
Panel Mounting. In the "Pop-In" panel mounting
method, (see Figure 8a). a black plastic mounting
grommet is placed over the top of the lens and the LED
is inserted-leads first-into the panel mounting hole
until the grommet's flange butts against the panel. Next
a grooved ring is placed against the inside·panel end of
the grommet, and the ring is pushed on until the LED is
securely held in place. The grommet's black color
provides contrast improvement. This mounting method
allows mounting of the MV5020-Series (T1% size)lamps
in y., in. diameter holes on panels having thicknesses
from 0.62 in. to 0.125 in.
A method for mounting LED types without using
mounting hardware is to drill the panel holes and either
epoxy tbe LED's into place or solder them to a
back-Panel printed circuit board, (see Figure'8b).
Printed Circuit Board Mounting. The most common
techniques for mounting LED's on P.C. Boards' are
illustrated in Figure 9. The lead bending can be per-

formed by the user, or arrangements can be made to
have it done prior to shipment from the Factory.
OPTICAL CONSIDERATIONS
Lens Effects. Lenses of the earliest LED's were designed to pass maximum light in the forward direction,
i.e., perpendicular to the mounting surface, (see Figyre
10). Later LED's produced more light and their lenses
were designed to spread light over a wider area, thus
permitting broader observer viewing angles. Still later, as
higher light output LED's became available, a variety of
red-colored, epoxy lenses came into use. These lenses act
to diffuse light into a broader apparent emitting area.
LED lenses that produce a broad, evenly-diffused light

I

P.C.B.

EPOXIED

P.C.B. -BACKED
C1156

Fig. 8b. LED's Mounted Without Hardware'

375

(a) LED's mounted
without leads being bent

(b) LED mounted

with leads bent

C1157

Fig. 9. Techniques for Mounting LED's on P.C. Boards

/

APPROXIMATE PATTERN
FOR MOST LED'S

1800 FOR WIDE·ANGLE
VIEWING REOUIREMENT

Fig. 10. Different Lens Effects (Used on the Same LED)

are generally assumed to be more pleasing to the eye
than lenses that produce a highly·intense point of light.
Figure 11 illustrates the effects of adding varying
amounts of red diffusants to the epoxy lens material.

Lf.\ L
r\J f ~
(0) Clear Lens
(Point Source)

~.

f

(b) Partially Diffused (e) Fully Flooded
(Area Source)

Fig. 11. Epoxy Lenses With Varying Amounts of Diffusants

376

Light Measurement. The manner by which the human
eye "sees" is highly subjective and is affected by various
factors such as "nature" of the light source (i.e., "point"
or "area" source), viewing distance, color, and the
observer's visual acuity. For example, it has been found
that a "standard" observer with 20/20 vision can discern
objects having dimensions that transcribe angles as small
as two minutes. To such an observer a source having a
0.16·inch diameter and positioned farther away than 22
feet seems more "point" than "area" in nature.
Two photometric parameters which designers find useful
for evaluating LED light output are Luminous Intensity,
I,and Luminance (Brightness), B, (see Table 2). While an
infinitely·small light source exists in theory only, the
following expression can provide a means for deter·
mining the distance at which the eye loses its ability to
discern an "area" and begins to see a "point."
THRESHOLD DISTANCE = Diameter of Light Source
(At which sources
TAN 0° 2'
.[ Equation 71 .
"lose" their area)
From this determination the designer can decide·
whether to use the I or B parameter for his evaluation of
LED light output. The "diameter of the light source~' in
Equation 7 is the apparent emitting area of the LED.
For a "clear" lens LED, (Figure 11a), multiply diode
emitting area by the lens magnifying factor. (Unless
stated otherwise, most clear lenses magnify by about
2X.) For a "flooded" lens LED, (Figure i1c),use the
outside package diameter. For a partially·diffused lens
LED, (Figure 11b), a good rule of thumb is one·half the
outside package diameter.

Nature of Photometric Symbol
Source
Parameter
Point

Luminous

Units

common materials under normal illumination levels, we
can easily determine the minimum acceptable Luminance levels required from our LED light sources.

Measurement of

I

candela Luminous Flux/steradian

B

Luminous Flux/steradian
footLambert (,r)(Area of source in ft 2 )

Intensity
Area

luminance
(Brightness)

stilb

Design Example #3: Suppose that the illumination
level produced by normal laboratory lighting is approximately 25 foot-candles, and that the reflection
from a light-gray panel, under this lighting produces a
Background Luminance, Lb , of approximatley 10 footLamberts. What is the minimum acceptable Luminance
which must be produced by an LED mounted on this
panel?

Luminous Flux/steradian
Area of source in cm2

Table 2. I and B Photometric Parameters

Substituting the above values into Equation 8, we have
_Ls-10
_
10 - -1-0-' or Ls - 110.

Contrast Ratio. The degree by wh ich an observer
distinguishes an object or source is a function both of
time spent looking and of Contrast Ratio. Contrast
Ratio is defined as "the difference in Luminance
between an object and its background," or
CONTRAST RATIO
where

= Ls -

Lb

Therefore, for an LED installed on a light-gray panel and
used in this lighting environment, we see that the
minimum acceptable level of Luminance is 110 footLamberts.

Lb

Colors. LED's are now available in various colors. In
some applications the designer may be called upon to
develop circuits in which LED's of different colors are to
produce equal Brightness. Since light output from an
LED is basically a function of current flow through the
PN junction, equal Brightness can be achieved by
adjustments of currerit flow.

"Ls' is a Source Luminance and
"Lb" is Background.Luminance
[Equation 81

After an observer has focused on an object for longer
than about one second, the time factor becomes
negligible and Contrast Ratio remains as the important
factor.

Design Example #4: Suppose that three LED's, one
each of red, yellow, and green, are to each produce a
luminous intensity of 2 mcd when installed in the circuit
shown in Figure 12. Further suppose that Vee is set at
+5 volts and the LED types chosen are MV5053 (red).
MV5353 (yellow), and MV5253 (green).

Human Factors Studies have shown that a Contrast
Ratio of 10 is the minimum design value. Knowing this,
and knowing the background Luminance of some

Vee

~

VF(

P
MV5053
(RED)

~
VF(

;V

~
VF(·

MV5353
(YELLOW)

I

pJ
MV5253
(GREEN)

C1158

Fig. 12. Brightness Marching Different Colors

377

It should be noted that the foregoing analysis holds true
only as long as spatial distribution (beam pattern) and
apparent image size are very nearly the same for all
LEO's, regardless of color.

First the values of IF needed to produce 2 mcd in each
LED must be determined. From the data sheets we are
given that the MV5053 typically produces 1.6 mcd when
IF is 20 mA; the MV5253 produces 1.5 mcd when IF is
20 mA; and MV5353 produces 6.0 mcd when IF is
20 mAo The brightness-IF relationship for LED's can
be assumed to be linear for IF values within the maximum
ratings. Therefore, knowing these points and that 'the
luminous intensity is zero when IF is zero, we can plot
the straight·line relationship for each LED type (see
Figure 13). From these plots we see that the MV5053
produces 2.0 mcd when IF is 25 mA; the MV5253
when IF is 26 mA; lind the MV5353 when IF is 7 mAo

R =5~1.65
,
.025

R = 5..,.2.1
Y
.007

R = 5-2.2
9
.026

Infrared LED Sources. Visible·emitting LEO's, the vital
link in the man·machine interface, are characterized in
terms of Photometric quantities. On the other hand,
infrared·emitting LED's (whose invisible light is of
wavelengths longer than .750 nanometers) are charac·
terized .in terms of Radiometric quantities. Also, applications requirements for infrared LED sources are
different from those for visible·emitting LED's. Whereas
for visible'emitting LED's a wide viewing angle is
normally important, for infrared sources a narrow beam
width and high on·axis int~nsity are normally important.
Light output prOduced by infrared sources is defined by
one or more of the following Radiometric parameters
(see Table 3):
.
Radiated Output Power (P) or (ROP)-Total output
of the device in all directions (measured in
Watts).
Radiant Intensity (J)-Radiant flux per unit solid
angle in a given direction (measured in Watts/
steradian).
Irradiance (H)-The density of radiant flux incident
on a surface (measured in Watts/area).

R,=1340hins

Ry =4140hms

Rg=1080hms

Irradiarice is a particularly useful parameter because it
describes how much output power is available at.a given

Now the resistor values for R"
calculated using Equation 2.

Ry , and Rg can be

_ VCC-VF .
RL
---IF
with VF taken as the "typical" values given on the data
sheets. We then have:

3

/

2

V

12.0 moo @25mA)

/

1

f-

o

17

J

MV5053

(REDI

V

o

I
10

20

30

40

50

'F (IN mAl

C1159

(a)

/

I

J

I

I

if

/12.0 m,d @ 7 mAl

2•0m'd@26mAI

I

/

o

1

V

~VR5i~~) - t - -

V

o

20

30
'F (IN mAl

40

I
10

50

20

30

'F (IN mAl

C1160

(b)

(e)
Figure 13.

378

MV5353
(YElLOW)

~

I
10

I
II
40

50

Table 3

Parameter and Symbol
Radiant Energy

Definition

0"

Radiant Flux

P

P= dQe
dt

Radiant Emittance
(see Note 2)

W

W=~

~

C

Irradiance

H

H=~

Radiant Intensity
(see Note 1)

J

J = dP
dw

Radiance
(see Note 1)

N

N=

!:1
IX:

I-

w

0


Z

0-

u

I:

~
'"zw
:!!

::>

100%

' " GaAs EMITIER.

600

~IEL~~ON DETECTOR

\

300
200

-J

100
0
300

400

500

I

I

~o~

;

I

I-H : i
GaP:N
LED EMITIER
[
MATERIAL TYPES

700

800

900
I

I

t+t
! I GaAsP.

I-H

I

H---I

1000

50

\

""

1100

25

1200

PEAK
NOTE:

)'

r+-\

SPECTRAL HALF-WIDTH
C1162

Fig. 14. Relationship Between LED and Detector Spectrums

380

>

II:

I

WAVELENGTH-.-NANOMETERS-nm

w

§w

GaAs:Zn

GaAsP s

Z

iiia:

GaAsPS2: N

H-l

w

Ul

o

(

400

75

~

AN601
the photometry of LED's
a primer in photometry
REVIEW OF GEOMETRIC PRINCIPLES
Any short discourse on the subject of photometry requires
a brief review of geometric principles utilized.
RADIAN
In plane geometry the angle whose arc is equal to the radius
generating it is called a radian. Therefore, if C = 2rrR (Circumference of a circle) 2rrR = 360°. Radian = 1800 /rr =
57.27° (approx.)

Other abbreviations of immediate concern are:
Ae = Area of emitting (or reflecting) surface.
Ap = Apparent area of an emitting source whose image
is projected in space and viewed at some angle, El.
Ad = Detection area. Whether a physical target or
merely a defined spatial area, it is the area of
interest.

PHOTOMETRIC TERMINOLOGY
FLUX (Symbol F)
Any radiation, whether visible or otherwise, can be expressed by a number of FLUX LINES about the source, the
number being proportional to the intensity of that source.
This LUMINOUS flux is expressed in LUMENS for visible
radiation.
LUMINOUS EMITTANCE (Symbol L)

TWO DIMENSIONAL FIGURE

FIGURE 1

STERADIAN
In solid geometry one steradian is the solid angle subtended
at the center of a sphere by a portion of the surface area
equal to the square of the radius of the sphere. Therefore, if
AREA/R2 = 1 = 1 steradian and the area on the surface of a
sphere equals 4rrR 2 , then 4rrR 2 /R 2 or 4rr steradians of solid
angle w about the center of a sphere. The steradian is
usually abbreviated as STER.

A source measurement parameter. It is defined as the ratio
of the luminous flux emitted from a source to the area of
that source, or L = F/Ae. Typically expressed in units
of:
lumens/cm 2 or one PHOT,
lumens/m 2 or one LUX (or one METER CANDLE),
lumens/ft2 or one FOOT CANDLE.
The foot candle is the more common term used in this
country.

I
FIGURE 3

THREE DIMENSIONAL FIGURE

FIGURE 2

381

ILLUMINANCE (Symbol E)
This is a target or detector area measurement parameter. It
is the ratio of flux lines incident on a surface to the area of
that surface or E = L/Ad. Typical measurement units are
the same for LUMINOUS EMITTANCE (above) i.e.
lumen/cm 2 = one phot, lumen/m 2 = one lux, and lumen/ft'
= one ft. candle.

0.1 the distance to the detector, it can be considered as an
area source. If less than this 10% figure, the source can be
treated as point in nature. This one to ten ratio of source
diameter to distance is offered as it MATHEMATICALLY
very closely approximates results obtained when comparing
an area source to its point equivalent. LUMINANCE
presents itself as an extremely useful parameter as it applies
a figure of merit to:

1. Apparent or protected area of the source (Ap).
2. Amount of luminous flux contained within the pro·
jected area of the source (Ap).
TARGET OR
DETECTOR AREA

3. Solid angle the projected area generates with respect
to the center of the source.
NOTE: The projected area Ap varies directly as the cosine
of e i.e. max. at 0° or normal to the surface and minimum
at 90°
Ap=Aecose

FIGURE 4

LUMINANCE is defined as the ratio of LUMINOUS INTENSITY to the projected area of the sourceAp.

LUMINOUS INTENSITY (Symbol II
A spatial flux density concept. It is the ratio of luminous
flux of a source to the solid angle subtended by the
detected area and that source. The LUMINOUS IN·
TENSITY of a source assumes that source to be point
rather than an area dimension. The LUMINOUS
INTENSITY (or CANDLE POWER) of a source is measured
in LUMENS/STERADIAN which is equal to one
CANDELA (or loosely, one CANDLE).

FIGURE 6

LUMINOUS INTENSITY
Ap

POI NT SOURCE ,"

FIGURE 5

LUMINANCE (Symbol

5)

Sometimes called photometric brightness (although the
term brightness should not be used alone as it encompasses
other physiological factors such as color, sparkle, texture,
etc.) it is applied to sources of appreciable area size.
Mathematically, if the area of an emitter (circular for
example) has a diameter or 'diagonal dimension greater than

382

LUMENS
STERADIAN CANDELAS
Ae cos e
- (Sq. Unit)

And depending on the units used for area:
1 CANDELA/em' = 1 STILB
1 CANDELA/m' = 1 NIT
1 CANDELA/in' =)
,
.
1 CANDELA/ft' =) no deSignator available.
Also:

l/n candela/em'
l/n candela/m'
l/n candela/in'
l/n candela/ft'

LAMBERT
APOSTI LB (or BLONDEL)
no designator available
FOOT LAMBERT

CIE CURVE
Following is the standard observer curve or "standard eyeball" established by the Commission Internationale de l'Eciair
(commonly called the CI E curve). Whereas one watt of radiated energy at any frequency corresponds to one watt of radiated
energy at any other frequency, this relationship fails to hold true for photometric measurement. The CIE curve is essential
therefore. not only in determining the eye's efficiency at any particular wavelength, but also the corresponding lumens per
watt conversion of that particular wavelength.
For example, the MV5020 which emits 180 IlW of radiant energy at 6600A (typical) or 41.4 lumens per watt has
180 x 10-6 watts x 41.4 lumens = 7.45 mLumens
watt

of flux emitted from it.

700
650

/

600

a:

0

/

550


Z

350

I

1
I
I
II

0

U

II-

300



520

540.

560

0

\

W

.r:s

\,

I
I
I
I
I
I
I
I

,/

380

-75%

\
\

w

a:
Q

I

150

o

I

I

II

W

:::>

\'
\

I

en
a:
w

1\

I

U.

0

-100%

"~\

/

IU

v-

0

-25%

N

0
tn

>

2:

\
,~
580

600

620

640

WAVELENGTH - nm

660

680

I

~

700

710

720

740
C1146

Similarly, a green emitter such as the MV5253 operating at an identical input power as the red will emit 10 Ilwatts of radiant
energy or
10

X

10-6 watts x 649 lumens =6.49 mLumens
watt

of flux emitted from it. In short although there exists at least an order of magnitude difference in radiant power the eyes' com·
pensating effect "magnifies" the green to appear equally bright.

383

LUMINOUS INTENSITY versus LUMINANCE
The successful application of either measurement parameter as a yardstick to duplicate mathematically the visual stimulation
experienced by an observer is a controversy which will probably rage for some time. As the entire electromagnetic spectrum
is bounded only by the"capabilities of a detector to discern it, so for within the visual spectrum the eye is the limiting factor.
SUBJECTIVELY speaking, the eye can discern finer increments of arc (computed from target to eye) than a 1 to 10 relationship, or approximately 5° 43 min. In fact, it can be shown that for view angles of much less than 2 minutes, the eye translates
the source into a point and thus the photometric measurement of LUMINOUS INTENSITY (in candelas) most directly correlates with subjective brightness. For view angles of much greater than approximately 2 minutes, the eye sees the source as an
area source, and thus the photometric measurement of LUM INANCE most directly correlates with subjective brightness. A
two minute view angle computes to a 1/1666 ratio of source diameter to distance ratio. For the MV5025 this computes to
approximately 22 feet (1666 x .16" diameter, approximately 22 feet) well within the expected normal viewing distance of
"
an observer.

--=={?

1

0= 5°43"

10

Dimensional criteria for
Photometric approximation

9]1

0= 2"

1666

FIGURE 7

Considering that the usage of the discrete MV5025 LED is as an indicator and as such is utilized arms length or approximately
30" away, it can be seen that the LUMINANCE parameter and its basic unit, the FOOT LAMBERT, most closely correlates
with subjective brightness.
Below are the products, their respective chip dimension, either diameter or diagonal, apparent size due to optical magnification
and luminance/luminous intensity crossover distance. It should be stressed that this distance is not finite but represents a
gradual threshold distance at which either parameter might be definitive.

Product
MV10B
MV50
MV5020
MV5025

Active
Chip Area
.015"
.017" diag.
.017" diag.
(.160")*

Optical
Lens Factor
xl.9
xl.75
xl.5
(x15.2)

Apparent
Size
.028"
.030"
.025"
.160"

Crossover
Distance
Feet
3.96
3.0
2.5
22:2

* Entire lens is considered the apparent emitting area.

RADIOMETRY
While photometric units are concerned with only the visible spectrum of wavelength, all frequencies of emission, including
the visible are expressable in RADIOMETRIC terms. Radiometric terms and their photometric equivalents are as follows:

RADIOMETRIC
Radiant flux (Symbol P) expressed in watts
Irradiance (Symbol H) expressed in watts/sq. unit
Radiant Emittance (Symbol W) expressed in watts/sq. unit
Radiant Intensity (Symbol J) expressed in watts/steradian
Radiance (Symbol N) expressed in watts/ster/sq. unit

384

PHOTOMETRIC
L.uminous flux (F) expressed in lumens
Illuminance (E) expressed in lumens/sq. unit
Luminous Emittance (L) expressed in lumens/sq. unit
Luminous Intensity (Symboli) expressed in lumens/steradian
Luminance (B) expressed in lumens/ster/sq. unit

AN603
improper testing methods for LED devices
In any manufacturing operation it is essential that the
materials used in the fabrication process meet the minimum quality specifications of the device under production. To that end, prudent manufacturers establish some
sort of incoming quality assurance system to make sure
that defective materials are culled at the door. It is
equally important, however, that the screening system
used in the Q.A. inspection does not reject materials
which are acceptable, and that the testing procedures
utilized in the system do not inadvertently damage
materials which are otherwise acceptable. Unfortunately,
this latter aspect of quality assurance procedures is often
neglected, and whenever a device is rejected because of
inappropriate testing methods, both the manufacturer
and the vendor are subject to a great deal of unnecessary
expense and inconvenience. Because many manufacturers who buy LED components are relatively inexperienced with the features and limitations of II I-V devices,
problems involving improper testing methods and unnecessary materials rejection are of particular concern to
LED vendors. This note is intended to familiarize the
user with the basic electrical and opto-electrical properties of LED devices and to clear up some of the
problems involved in testing them.

semiconductor Energy-Band Theory. When an external,
forward-biasing voltage ~s applied to a p-n junction, the
conduction mechanism is su"ch thai electrons are excited
by the electric field, gaining enough energy to cross the
energy gap from the valence" band to the conduction
band, and then to relax back" from the conduction band
into the valence band. During the transition from the
valence band to the conduction band, the electrons take
energy from the field. As they pass back into the valence
band, the electrons release this energy in the form of
light photons. The amount of energy released is determined by the width of the energy gap. (The wavelength,
or color, or the light is a function of the energy gap.)
The light is emitted directly from the electrons within
the depletion region formed between the two sides of
the junction.
The electrical characteristics of LED's are also related to
the energy gap. For example, the conduction threshold,
or "knee" point on the It/Vf curve in the forward-biased
direction occurs at approximately 1.0 volts for infrared
LED's, at approximately 1.3 volts for visible red LED's,
and from 1.8 to 2 volts for yellow and green LED's. The
brightness of the light is directly proportional to the
operating current flowing in the forward "direction.

THE MATERIAL

GALLIUM VS. SILICON
As a semiconductor, III-V compounds using Gallium
have several advantages over silicon and germaniumreverse leakage current is several orders of magnitude
lower; forward current is lower below the "knee" point;
inherent thermal noise is lower; and carrier mobility is
high. Perhaps the greatest advantage, certainly where
LED's are concerned, is the ability to produce light directly from electron flow.
Figure 1 shows a comparison between the forward conduction characteristics of diodes formed from III-V
materials and silicon. Notice that the "knee" of the conduction curve for the Gallium diodes occurs at higher
voltages, and is harder than the "knee" of silicon diodes.
Notice also that as the wavelength progresses from the
infrared toward the blue end of the spectrum, the GaAsP
"knee" points get progressively higher and the slope of
the If Nf curve tends to decrease. Excluding exotic
devices such as Schottky or Esaki diodes, silicon diode de-

Historically, silicon and germanium were the first semiconductor materials to have been used for p-n junction
devices such as transistors, diodes, and solar cells. However, following closely upon the invention of the germanium transistor in 1948, work was begun on predicting the semiconductivity of a material from its chemical
compound_ Based on energy band-gap experimentation,
it was discovered that III-V materials have semiconductor properties. 1
Gallium semiconducting materials, Gallium Arsenide
(GaAs), Gallium Arsenide Phosphide (GaAsP), and Gallium Phosphide (GaP) are the materials from which
LED's are fabricated. These materials have the ability to
emit a narrow band of monochromatic light in either the
visible or infrared spectrum, "depending on the constituent and ratio of ingredients. The mechanism for this
emission of radiant energy is best described in terms of
1 E.G. Bv1ander, Materials for Semiconductor Functions (New

I

York, 1971), p.17.

385

600
TA 1= 250C

/

500

I

v; 2mAlDIV
Si

Y G

H: O.5V/OIV

j

V

V

/

100

I
10

20

30

40

50

60

FORWARD CURRENT PER SEGMENT (mA)

C449

Fig. 2. Tvpical LED Curve

Lumino.us Intensity vs. Forward
Current for Constant Temperature

ISO
'F=20mA

130

...........

ill

~ 110

r--.....

:I:

'"

"'>

FORWARD VOLTAGE (V,l'-VOLTS

Fig. 1. Tvpicallf/Vf Curves of Silicon, GaAs, and GaAsP, GaP
(Silicon·IN914, IR·ME7024, Red·MV5053,
Yellow·MV5353, Green·MV5253)

:::

90

~

70

.

.......... ;--......

r-......

IX:

50
30

-55

-25

25

50

AMBIENT TEMPERATURE (OC)

75

100
C450

Fig. 3. Tvpical LED Curve
Brightness vs. Temperature
for Constant Current

vices normally show little difference in the forward con·
duction curve.
The reverse charaCteristics of "I·V materials are similar
to those of silicon except that silicon's thermal leakage
current is higher at very low reverse voltages. The reverse
breakdown voltages of silicon are typically higher, and
the characteristics of .silicon devices are usually con·
trolled for reverse breakdown at particular voltages. The
reverse breakdown characteristics of diodes used in LED
devices are not particularly controlled, since the quality
of light emission is the first priority. The MANX and
MANXX series displays use LED's which have a typical reverse·mode breakdown voltage range of from 5
to 20 volts. However for guard·band purposes, the reo
verse voltage is specified on the data sheets at 5 vo-Its
minimum.
If a silicon device is subject to junction damage, it will
often continue to perform adequately because of sil·
icon's inherent annealing capability. When damage
occurs to the junction of an LED device, however, the
result is usually a softening of the "knee" or a flattening
of the IfNf curve. Although the device may continue to
operate, performance will be less than satisfactory, and
early failure may result.

DAMAGE MECHANISMS
The discussion which follows will treat, in some detail,
the most common errors in LED test set·ups and will

386

suggest either alternative testing methods or means by
which improper testing methods can be corrected to
produce more reliably accurate results.
Testing for Fabrication Defects
Thermal Shock-is a passive mode test involving a rapid
refrigerate/heat cycle in which no current is applied to
the device. This test is a good method for detecting weak
bonds an(l, therefore, locating defective devices, but it
should be used cautiously, especially with LED's. In
LED's a '·mil gold wire is bonded from the top of the
die over to the side contact, whether it is lead frame or
substrate. The wire is surrounded by the epoxy which
encloses the die and forms the package. When heat is
applied, the epoxy, the gold, and the lead frame all
expand at different rates. Thus, when the device is
heated up too rapidly, the. effects on the bond are
similar to giving the wire a hard jerk. This action
constitutes thermal shock and tends to weaken even
good bonding and, consequently, shorten life expec·
tancy.

Burn·ln-consists of operating the device at elevated
temperatures, thus accelerating the effects of opera·
tionally imposed heating. This method is frequently used
in testing semiconductors, but its use is not advised with
LED's, especially if the testing involves operating with
excess current or current which exceeds the device
ratings for several hours. LED's exhibit a gradual degra·
dation of brightness as a function of current, time, and

EXCEssrVEIF

> 100 rnA

I

- - ~ - / + [TEST BENCHMARK

NOTES:
A) NORMAL FORWARD IFNF CURVE
B) DAMAGE OCCURRING TO JUNCTION
WHILE REVERSE BIASED
C) PARTtALLY DAMAGED JUNCTION
0) DEFECTIVE OR HEAVILY DAMAGED
JUNCTION

T

A

VF, <: VF !MAX)@.F,ITESTlJ

Ie:
>
I : /.

I /"
•

:V F1

AVALANCHE

EXCESSIVE IR

> l~A

FORWARD AND REVERSE
NOT TO SAME SCALE

I,

<451

Fig. 4. Effects of Improper Testing Procedure

DEVICE
UNDER
TEST

'--t----ifo~ 0
-+---+--....... G 0

"'--JL-~~ C>---<>--f'IA*-.....
POWER SUPPLY
(VOLTAGE REGULATED)

.. II

SCOPE

C452

Fig. 5. Potentiallv Damaging Forward·Mode Test Setup

temperature, and the higher the current, the faster the
degradation. The graphs in Figures 2 and 3 illustrate
typical LED responses to forward current and temper'
ature. Exceeding the rated parameters in test can result
in rapid degradation beyond an acceptable level. For the
same reasons, burn·in is particularly inadvisable with
LED's if the test set·up involves slow on·off cycles of
overcurrent (cyclic room temperature to high temper'
ature and then cooling).

Thermal Cycling-is an on·off cycling method which
simulates operational heating effects. The device is
allowed to heat up from room temperature with rated
current, and is then cooled down. Thermal cycling is an
excellent method for finding defective devices (poor
bonds, fractures in the metalization, voids in the dieattach, etc.), and its use is recommended for testing
LED's. Too often, such thermal cycling occurs in actual
use, and defects are detected too late. However, to
insure against exceeding the rated capabilities of a
particular device, a thermal cycling test program (or
operational program) should not be established Without
factory guidance.
Reverse Conduction Mode Problems
Reverse voltage testing can be hazardous since it may
involve a system capable of delivering voltages and
currents which considerably exceed the reverse voltage
and power ratings of the device under test. Too much
current at the avalanche voltage will dissipate excessive

power, resulting in heat which will degrade the junction
rapidly. The importance of adequate current limiting
cannot be over-emphasized. Without it, damage to the
junction can result from testing into the avalanche
region and/or from the sudden application of voltage
Which exceeds the rated avalanche breakdown voltage of
the device. Damage in the avalanche region is usually the
result of an improperly set testing apparatus. As Figure 4
indicates, damage may not be immediately apparent, but
it could result in poor performance during other test
situations and possible rejection of the device due to
excessive voltage or current values.

I

Forward Conduction Mode Problems
Forward mode testing is used to check such performance
criteria as the forward V/1 curve of the diode, brightness,
ROP, .and luminescence. The potential danger in examining the forward curve is damage to the diode junction,
since the test circuitry can sometimes deliver very high
energy bursts. For example, if a 5.0-volt regulated power
supply is set for 5 volts to supply the test fixture, and if
power is supplied through a switch as shown in Figure 5,
it is possible to deliver current pulses of a high enough
amplitude to result in junction damage. This problem is
easily avoided by supplying low voltage power with
current limiting to the test fixture. Another acceptable
method, and the one which is used by General Instrument quality assurance engineers, is to use a power
supply which is both full voltage regulated and current
limited.

387

BOO

900

1,000

WAVELENGTH (;>.) - nm

1,100
C453

Fig. 6. ' Responses of Two Detectors to the
'Output of a Visible Red LED

Brightness Tests
Optical measurements are typically, and in most instan·
ces, unavoidably, of very low accuracy. Optical measurements with errors of less than 1% are rare, and accuracy
within 5% is difficult to' obtain. With an experienced
technician using good equipment it is possible to secure
accuracy within 10% to 20% on a routine basis, but even
here a slight difference in technique can result in errors
in excess of 50%.
Detectors-A good detector approximates the CIE curve
area with 2%. However, it, is important to note that
even when the detector is within 2% of perfect, it is still
possible to produce mismatches at specific wavelengths
which can cause the percentage of error to increase
considerably. Therefore, in order to determine the
margin of possible,error, it is imperative that one know
the qetector's spectral response within the wavelength
range of the device to be measured. To illustrate the
problem of spectral mismatch, the reader is referred to
Figure,6 where, we show the responses of two detectors,
a radiometric detector and a photometric detector, 'to
the output of a visible red LED. The response of the
radiometric detector is about 3% high. Notice, however,
that the photometric detector, which provides a very
close match to the CIE curve, produces a +25% error.2
Additional factors which must be considered are detector aging and filter deterioration, nonlinear detector
responses, ci rcuitry wh ich is not temperaturecompensated, and stray light. Periodic calibration is
essential if a reasonable degree of accuracy is to be
maintained.

Correlation Samples-Unless the testing apparatus is
reciprocally related to' a vendor-supplied correlation
sample, test results may erroneously indicate that mariy
devices in a shipment do not meet the minimum brightness that was specified on the order, and could result in
the rejection of devices which do meet minimum stan-

2Michael A. Zaha,"Shedding Some Needed Ugh t on Opticel
Measurements," Electronics, November 6, 1972, pp. 94-96.

388

dards. Correlation samples are also essential for the
correction of instrumentation drift.

Subjectivity Problems-In some instances a visual comparison may be the best method for brightness testing.
However, the manner by which the human eye "sees" is
affected by various factors such as the nature of the light
source, viewing distance, color, texture, the observer's
visual acuity, and even the viewer's emotional state.
Therefore, because of these highly subjective factors
involved in human visual perception, such tests alone are
usually inadequate and should be used only as a supplement to or in correlation with instrumentation. It has
been our experience that manufacturers who rely solely
on visual testing return many devices, a fair percentage
of which can be reshipped and accepted.
Testing to Parameters Other Than Those Specified-This
is a particularly important consideration when a manufacturer specifies his own parameters distinct from those
normally specified. To avoid unnecessary rejection of
devices, it is imperative that a device is always tested to
the parameters under which it will be expected to
operate.
SUGGESTIONS FOR PROPER TESTING
That which follows is a quick check list of "do's" which
enable manufacturllrs to avoid many of the problems
associated with running incoming quality assurance tests
on LED~s.
• In cooperation with the vendor, establish specifications which are economically feasible and ensure that
devices are screened at their point of origin.
• Always obtain a. correlation sample from the vendor
before setting up the test procedure.
• Establish a reliable test procedure.
• Measure relevant parameters at relevant points.
• Make sure that the test circuitry will not erroneously
indicate defects and that it will not generate failures
later in the manufacturing cycle.
• Work closely with the vendor in establishing the test
system.

AN1071

Optoisolator input drive circuits
MCT270 SERIES
An optoisolator is a combination of a light source and a
photo-sensitive detector. In the optoisolator, or photon
coupled pair, the coupling is achieved by light being
generated on one side of a transparent insulating gap and
being detected on the other side of the gap without an
electrical connection between the two sides (except for a
minor amount of coupling capacitance). In the General
Instrument optoisolators, the light is generated by an
infrared light emitting diode, and the photo-detector is a
silicon diode, transistor, or SCR. The sensitivity of the
silicon material peaks at the wavelength emitted by the
LED, giving maximum signal coupling.
Since the input to all the optoisolators is an LED, the
input characteristics will be the same, independent of
the type of detector employed. The LED diode characteristics are shown in Figure 1. The forward bias current
threshold is shown at approximately 1 volt, and the current increases exponentially, the useful range of IF
between 1 mA and 100 mA being delivered at a VF
between 1.2 and 1.3 volts. The dynamic values of the
forward bias impedance are current dependent and are
shown on the insert graph for RDF and toR as defined in
the figure_ Reverse leakage is in the nanoampere range
before avalanche breakdown.
The LED equivalent circuit is represented in Figure 2,
along with typical values of the components. The diode
equations are provided if needed for computer modeling
and the constants of the equations are given for the I R
LED's. Note that the junction capacitance is large and
increases with applied forward voltage_ An actual plot of
this capacitance variation with applied voltage is shown
on the graph of Figure 3. It is this large capacitance
controlled by the driver impedance which influences the
pulse response of the LED. The capacitance must be
charged before there is junction current to create light
emission. This effect causes an inherent delay of 10-20
nanoseconds or more between appl ied current and light
emission in fast pulse conditions_
The LED is used in the forward biased mode. Since the
current increases very rapidly above threshold, the
device should always be driven in a current mode, not
voltage driven. The simplest method of achieving the
current drive is to provide a series current-limiting
resistor, as shown in Figure 4, such that the difference
between VF and VAPP is dropped across the resistor at

the desired IF, determined from other criteria. A silicon
diode is shown installed inversely parallel to the LED.
This diode is used to protect the reverse breakdown of
the LED and is the simplest method of achieving this
protection. The LED must be protected from excessive
power dissipation in the reverse avalanche region. A
small amount of reverse current will not harm the LED,
but it must be guarded against unexpected current
surges.
The forward .voltage of the LED has a negative temperature coefficient of 1.05 mW/oC and the variation is
shown in Figure 5.
The brightness of the I R LED slowly decreases in an
exponential fashion as a function of forward current
(IF) and time. The amount of light degradation is
graphed in Figure 6 which is based on experimental data
out to 20,000 hours. A 50% degradation is considered to
be the failure point. This degradation must be considered in the initial design of optoisolator circuits to allow
for the decrease and still remain within design specifications on current-transfer-ratio (CTR) over the design lifetime of the equipment. Also, a limitation on IF drive is
shown to extend useful lifetime of the device.
In some circumstances it is desirable to have a definite
threshold for the LED above the nominal 1.1 volts of
the diode VF. This threshold adjustment can be obtained by shunting the LED by a resistor, the value of
which is determined by a ratio between the applied
voltage, the series resistor, and the desired threshold.
The circuit of Figure 7 shows the relationship between
these values. The calculations will determine the resistor
values required for a given 1FT and VA. It is also quite
proper to connect several LED's in series to share the
same IF. The VF of the series is the sum of the individual VF'S. Zener diodes may also be used in series.

I

Where the input applied voltage is reversible or alternating and it is desired to detect the phase or polarity of
the input, the bipolar input circuit of Figure 8 can be
employed. The individual optoisolators could control
different functions or be paralleled to become polarity
independent. N·ote that in this connection, the LED's
protect each other in reverse bias.

389

o,:m

.1R~30011

,., ,-rn"':":r-,rnrr-r-nrM

g

1.4

f-t+tt--Ht+tt--f-H-1ct-1 ROF '"

.:. 1.3

~
g

1.2

r:
~

0.9

LED
EaUIVALENT
CIRCUIT

FORWARD BIAS

13.11

f-t+tt--f-IH-tt--Iz"f±Jt±:::l
TA-+2SoC

'mA
F

12"'I'Ht--Ht+t+-::CHI+II:b-I

80

100

f-H-l-l-HH-t-l-HI-HI+--!

o

60

.~L..,JJLlL-:':-.J.JLlL-LJJlJJ....J

C102

SLOPE

J=&R=~

IF-FORWARD CURRENT - mA

&1

Ve

-.!f
20

18

10

16

Cj

4

-5
55

Vi
RANGE OF·
8V R

'8

R.Rp

.1

<10

I
300
1.1

100
1.0
0

10
500
1.2

30

100

V
rnA

of
1.3

V
nA

0.3

n

>109

THRESHOLD

1.0

REVERSE BIAS

IF=IFTeXp~

10

VF =V FT

100
NOTE CHANGE OF SCALES

+ k IOg~

FOR IR IN OPTO-ISOLATORS
VFT '" 0.98 VOLT

mA

1FT " 0.10 mA

IR

k =0.360

Cl0l
Rs"

Fig. 1. Characteristics of IR LED

~~O~~~I

Fig. 2. Equivalent Circuit Equations

Cl04

Fig. 4. Typical LED Drive Circuit

350
~
~

I

300

g-

.1
1.5

1.0

0.5

0

1

2

APPL1I:D'VOLTAGE

3

4

5

6

7

a

C103

Fig. 3. Voltage Dependence of Junction Capacitance

390

.2.5

2

5 10 20

50 100
Cl05

IF - FORWARD CURRENT - rnA

Fig. 5. IR Forward Voltage vs.
Forward Current and Temperature

50
40
30

1.,cPP

20

L

'0

.... ~

V

,~

'0

....

~g"'"
\,
'3o(O~

~

1~.',b~A

I-

IIII
1000

'00

TA

25°C

10,000

100,000
C106

TIME - HOURS

Fig. 7. LED Threshold Adjustment

Fig. 6. Brightness Degradation vs.
Forward Current and Time

C109

Fig. 8. Bipolar Input Selects LED

0----/

r
120V
RMS

00",

Fig. 9. High Threshold Bipolar Input

.----____---. !'F
R,

..J.yVv-_-+----,

EXTERN""A-L
SWITCH
DEVICE

t

10---+--------1
VA2

C,

--

I!VICS

--

MCL

~ ~gr

'------'
ellO

Fig. 10. AC Input to LED Drive Circuit

Another method of obtaining a high threshold for high
level noise immunity is shown in Figure 9, where the
LED's are in inverse series with inverse parallel diodes to
conduct the opposite polarity currents. hi this circuit
the VF is the total forward drop of the LED and silicon
diode in series. The resistors serve their normal threshold
and current limiting functions. The silicon diodes could
be replaced by LED's from other optoisolators or visible
signal indicators.
In some situations it may be necessary to drive the LED
from a 120 VRMS, 60 Hz or 400 Hz source. Since the
LED responds in nanoseconds, it will foliow the AC
excursions faithfully, turning on and off at each zero-

crossing of the input. If a constant output is desired
from the optoisolator detector, as in AC to logic coupling, it is necessary to rectify and filter the input to the
LED. ,The circuit of Figure 10 illustrates a simple filterIng scheme to deliver a DC current to the LED. in some
cases the filter could be designed into the detector side
()f the optoisolator, allowing the LED to pulse at line
frequency. In the circuit of Figure 10, the valUe,of Cl is
selected to reduce the variations in the IF between half
cycles below the current that is detectable by the
detector portion. This condition usually means that the
detector is functioning in saturation, so that minor variations of IF will not be sensed. The values of Rl, R2

391

and R3 are adjusted to optimize the filtering function,
R3Cl time constant, etc. Speed of turn-off may be a
determining factor. More complicated transistor filtering
may be required, such as that shown in Figure 11, where
a definite time delay, rise time and fall time can be
designed in. In this circuit, Cl and R3 serve the same
basic function as in Figure 10. The transistor provides a
high impedance load to the R4C2 filter network, which,
once reaching the V F value, suddenly turns on the LED
and pulls the transistor quickly into saturation. The turnoff transient consists of the discharge of Cl through R3
and the LED.

the optoisolator detector, the leakage can be bypassed
around the LED by the addition of another resistor in
parallel with the LED shown as Rl. The value of Rl can
be large, calculated so that the leakage current develops
less than threshold VF (-D.8 volt) from Figure 5. The
drive transistor can. be the normal output current sink
of a TTL or DTL integrated circuit, which will sink
16 mA atO.2 volt nominal and upto 50mA in saturation.
If the logic is not capable pf sinking the necessary IF, an
auxiliary drive transistor can be employed to boost current capability. The circuit ot"Figure 13 shows how a
PNP transistor is connected as an emitter follower, or
common collector, to obtain current gain. When the output of the gate (Gl) is IOW,01 is turned on and current
flows through the LED. The calculation of R1 must now
include the base-emitter forward biased voltage drop,
VBE , as shown in the figure.

In logic-to-Iogic coupling using the opto-isolator, a
simple transistor drive circuit can be used as shown in
Figure 12. In the normally-off situation, the LED is
energized only when the transistor is in saturation. The
design equations are given for calculating the value of
the series current limiting resistor. With the transistor
off, only minor collector leakage current will flow
through the LED. If this small leakage is detectable in

DC
INPUT
FROM
BRIDGE
RECTIFIER

In the normally on situation of Figure 14, the transistor
is required to shunt the IF around the LED, with a
VSAT of less than threshold VF. Typical switching

1,

r--

c,

r--

10K

Vee

+
Clll

Vee =5V
IF
= 20 rnA
VSAT = 0.4 V

VF

=1.2V

R Vcc - VF - VSAT

Fig. 11. R-C-Transistor Filter Circuit

IF

= 5-1.2-0.4 = 3.4
20

20

R = 170n

Cl12

R, = Vee-VF-VBE-VeEISATIGATE

Vee

Vee

IF

Fig. 12_ Transistor Drive, Normally Off

VBE(Q,I = 0.6 V
VCEISAT)(Gl1=n4V

Cll3

Fig. 13. Logic to LED Series Booster

392

the relationship between the amount of overdrive, duty
cycle, and pulse width. The overdrive is normalized to
the loc value listed as maximum on the device data
sheet. Average power dissipation is the limiting parameter at high duty cycles and short pulse widths. For
longer pulse widths, the equilibrium temperature occurs
at lower duty cycle values, and peak power is the
limiting parameter.

transistors have saturation voltages less than 0.4 volts at
Ic=20 mA or less. The value of the series resistor is
determined to provide the required IF with the tran·
sistor off.
Again, if the logic cannot sink the IF, a booster transis·
tor can be employed as shown in Figure 15. With the
output of the gate low the transistor Q, will be on, and
the sum of VCE (SATI of G, and VBE of Q, will be less
than the threshold VF of the LED. With the gate high,
Q, is not conducting and the LED is. The value of R, is
calculated normally, but shunt current will be greater
than IF. The normally·on or normally·off conditions are
selected depending on the required function of the
detector portion of the optoisolator and fail·safe opera·
tion of the circuits.

For duty cycles of 1% or less the pulse becomes similar
to a non-recurrent surge allowing additional ratings such
as the 12 t used in rectifier diodes. Average current is
used for lifetime calculation. The pulse response of the
detector must be considered in choosing drive
conditions.
There are situations where it is not desirable to pass all
of the input current through the LED. One method to
achieve this is to provide a bypass resistor as suggested in
Figure 7 for threshold adjustment. This method is
satisfactory where the input current is switched on and
off completely, but, if the information on the current is
only a small variation riding on a constant DC level, the
bypass resistor also bypasses a large portion of the desired signal around the LED. Two methods can be used
to retrieve the signal with little attenuation. If the signal

In many applications it is found necessary to pulse drive
the LED to values beyond the DC ratings of the device.
In these situations a "pulse" is defined as an on·off
transient occurring and ending before thermal equilibrium is established between the LED, the lead frame,
and the ambient. This equilibrium will normally occur
within one millisecond. For a pulse width in the microsecond range, the IF can be driven above the DC ratings,
if the duty cycle is low. The chart of Figure 16 shows

vee-VF

R=--

vee

vee

Vee

'F

=~=190n

-=-

C114

Fig. 15. Logic to LED Shunt Booster

Fig. 14. Transistor Drive, Normafly On

100
1

~~T

5"
10~s

'pK

-

'DC

10

I

"

"'" r-o:

PW=\ro,se,

~

looL
300~'
I
0.1

~

1.0

10

DUTY CYCLE - %

100
Cl16

Fig. 16. Maximum Peak IF Pulse Normalized to Max IDe
for Pulse Width (PW) and Duty Cycle (%)

393

has a rapid variation (e.g., the audio signal on a tele·
phone lirie), the DC component can be cancelled in the
detector by feedback circuits. If the variation is slow, a
dynamic shunt can be used instead of the fixed resistor.
If a constant-current device or circuit is used in parallel
with the LED, as shown in Figure 17, the adjusted component of the DC will flow through the dynamic impedance, and any current variations will result in a change of
terminal voltage. Therefore, the total current change will
flow through the paralleled LED circuit. The graph of

Figure 18 shows the performance of this particular circuit .adjusted to center· on IL = 120 mA and a circuit
node voltage· of 3.4 volts. In the circuit shown the
detector portions of the MCT276 and MCT274 were
employed for convenience. Note that in Figure 18 most
of the current variation occurs as IF' The ratio between
the DC resistance (Ro) and dynamic impedance (Rd) for
the shunt is 50,which represents the signal transfer gain
achieved over a fixed resistor.

125

.~

'tN\"\'~\":

I"

2.7K

ll,·,omA

3.4V

120

(MCA2)

\\..V'

R=20Cln

«

~ 115

220n

r
I
I

r

L

'::'

C-=-~i
_L~
J

110
'L, SANS LED

__

V
105
3.0

C117

Fig. 17. Constant-Current Shunt Impedance

394

Vr--

,.-

R = '.6Kn

3.1

3.2

3.4

3.6

TERMINAL VOLTAGE - VA

3.B

4.0

CtlS

Fig. 18_ Shunt Impedance Performance

AN1074
Low current input circuit ideas

6N139 (MCC671) SERIES
Introducti on
Advancements in opto-coupling and LED technology
have given us the MCC671 which also meets the specifications of JEDEC Registration 6N139. This unique
optoisolator, having an input LED current specification
at 500 microamperes, has opened some interesting design
doors. tlesides the obvious and much written about
ability· to be directly driven by CMOS circuits, the
MCC671 can be considered for signal detection, transient
detection, matrices and non-loading line receiving.
Following are but a few circuit ideas to stimulate the
designer's interest.

this way, the LED is not causing conduction in its output
circuitry but is prepared to conduct very quickly. Any
noise or oscillation on the "D.C. power source" is
coupled through "C" which develops a signal across the
LED. Even small unwanted signals can cause a large
change in the LED forward current. Once the LED's
forward current equals or exceeds 500 microamperes,
the output circuitry will conduct indicating the presence
of the unwanted signal.
Transient Detection
The detection of the presence or absence of waveforms
can easily be detected by the circuit in Figure 2.

Signal Detection
The detection of noise, spikes or oscillations can easily
and directly be detected by the input of the MCC671 as
shown inthe circuit of Figure 1.

MCC671

Input

r-..............MCC671
--.......... ------I

+o-----~~--~~--~~~'~~
R

,,
....... _----------

D.C.

C1460

power sou rce

Figure 2. Pulse or Waveform Detection Circuit

I

For the detection of the presence of a desired signal,
pulse or waveform use:

L ___ ............ _______ _

C1459

Figure 1. MCC671 Input Circuit For Signal Detection

For the detection of undesirable signals on a D.C. power
source use:

CR = Silicon diode
R = (Positive Vpk. of input) - 2.5 volts
L
1 milliampere
Cmin = Pulse interval of l/F

RL

R = Power supply voltage - 1.5 volts
50 microamperes

R
- Pulse width or 1/4F
smax 5C

C = To effect 500 microamperes into LED
X = Latching or non-latching output
circuitry to follow
LED = Input diode of MCC671

X = Non-latching output
circuitry to follow
LED = Input diode of MCC671

The LED is provided with a 50 microampere forward
current to charge the LED capacity to the VF level. In

Examples:
A desired pulse train to be present is shown in Figure 3.

395

The resulting LED forward current that will keep the
output circuitry conducting is shown as the result of
proper design.

output is now possible as shown in figure 5.
Non-Loading Line Receiver
For virtual non·loading, the MCC671 is compatible with
the differential amplifier circuit of Figure 6.
·v.

"0

(rnA)

Output
(Vain)

511

0.4

.

liS IIxampte

' -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __

1

T

Figure 3. Pulse Train Waveforms

A desired sine wave to be present is shown in Figure 4.
The resulting LED forward current that will keep the
output circuitry conducting is shown as the result of
proper design.

CI464

Figure 6. Differential Amplifier Drive

For a virtual no-load optosiolator circuit use:
X = Non-latching output
circuitry to follow
LED = Input diode of MCC671
Current requirement at "in" will be less than 20 microamperes.

OutlX'l
(VollI)

'.On
D.'

L-_ _ _ _ _ _ _ _ _ _ _ _ __

Figure 4. Sine Wave Waveforms

Matrices Opto·Coupling
With the low input LED current advantage of the
MCC671, the ability to drive matrices with but one TTL
>-..-.-.............., - . , - . . , - - - - - - - 5.6KU -+'

I--I-+-H -

- - -

Scan

Example:
If "REF" is made to be +1.4 volts and the resistor
common to the emitters is 1.2Kn, the circuit will respond
nicely to TTL "0" and "1" levels. That is, a "0" at "In"
will cause LED current resulting in the conduction of
the output circuitry. Conversely, a "1" at· "In" will
result in no LED current. Notice that depending upon
which collector the LED is in series with it will give the
option of LED current flowing with a "0" or a "1"
at "In".
MCC671 Output Circuitries
The following are two examples of MCC671 output
circuitry. One latching (Figure 71; the other non-latching
(Figure 81, but both capable of driving a TTL gate
directly.

-{:=.- - . - t-<>-~-+- o- - j~---+-~.";';'!
"Normally OPEN momentarv pU$h button

TTL\l\Ilputwlthopancolle.lof
C1465

Figure 7. Latching Output Circuit For MCC671
ConlfOI

r--,

:l __,)-------i

r--,

1

Figure 5. Opto·Coupling out of Matrices

396

Referring to Figure .7 and assuming that the "RESET"
has been actuated by a momentary ground and no input
signal is being received, all transistors shown are nonconducting (Output high, "1"1. The arrival of an input
signal will cause all transistors to turn on. (Output low,
"0"1. The PN P transistor. being turned on by the output

transistor, will in turn latch that same output transistor
or until the "RESET" is again initiated.
(5V.l

----1-1'

,-----------'.
I

,

+5V

I r~EED~~~:~~ ~;~::AL
I CIRCUITS WHEN MONlrORING
I SYSTEM IS "OFF".
GND I
MINlf~~TUTER

r----

I
I

MIDODD

RL

I

I

I"

21
I

I

I5

IL ___________

II

7
~

IL _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I
~

C1516

Fig. 20. Example For Fail·Safe Considerations

On AC line failure the MI0400 goes high,causing 0 1 to
turn off and allowing Cx to charge, so that after the required time the 555 is allowed to go LOW. Refer to the
waveform in Figure 18.
By the choice of the time constant RxCx the circuit in
either a saturated or unsaturated mode can be made to
either respond or not respond to one or more AC input
cycles as shown in Figures 16 through 19.

OTHER SPECIAL DESIGN
CONSIDERATIONS
Special mention must be made about effects on MI0400
operation caused by leakage at pin 7. To avoid problems
keep impedance at 10 megohm or greater. If a capacitor is connected to pin 7, make sure it is a high quality
type (such as Mylar) that exhibits very low leakage.
(Even current leakage between printed circuit traces can
have noticeable effects on circuit operation if the board
material has poor dielectric insulation characteristics.. )

DESIGNS FOR FAIL-SAFE OPERATION
In those industrial, military, computer, and medical
system applications where fail-safe operation is important, circuit response must also be considered when AC
input or the Vee supply, (or even both), switch off.

Table I lists the MI0400 output response under these
conditions. This "Truth Table" shows that the MI0400
output NPN transistor can be ON (conducting) only
when AC current is flowing through MI 0400 input LEO
diodes and the 5V Vee to the MI0400 is present (ON).
Table 1. FAIL-SAFE TRUTH TABLE
AC Line
Input

+5 Vee
Supply

ON
ON

ON
OFF

OFF

ON

OFF

OFF

MI0400 Output
Condition
ON (conducting)
OPEN (nonconducting)
OPEN (nonconducting)
OPEN (nonconducting)

This truth table reflects a MI0400 being operated from
a +5 volt supply which has a high impedance when not
"ON." However, other external factors can influence
the apparent state of the MI 0400 output. For example,
Figure 20 shows an application where the MI0400 is
monitoring the AC voltage of a device. The MI0400 is

405

~-------------------~

I

MI[)400

I

VCC

tB~

DIODE

DX

.~
INTERNAL ....
..,.
IMPEDANCE
OR OTHER
I
CIRCUITS
I

I

----------C1517

Fig. 21. Diode Dx Added to Stop Reverse Current
When MID400 +5v Vee Line is Off

115V
AC

r

I

ISOLATED
REGULATED
POWER OUTPUT TO
COMPUTER, ~P, MEMORY ETC.

MID400
---------,

I

I

~-o-----"""---i~ OUTPUT
POWER FAILURE DETECT

I
I

L~

+5V

__ _

GOES HIGH ON POWER FAILURE

C1518

Fig. 22. Circuit for Switching Power Supply

supplied by a separate 5V supply in the "MONITOR
UNIT" fed from a separate AC line. The output of
MI0400 is fed to a remote minicomputer with a TTL
type input circuit.
In this system it is quite feasible to get an erroneous
apparent output from the MI0400 if RL is 1000 ohms,
or less, and the 5V power supply .in the monitor system
presents a low impedance when OFF. The TTL input
to the minicomputer might appear low due to current
being forced through R L and the low impedance of the
OFF 5V power supply. This can be eliminated by the
addition of a diode Ox as shown in Figure 21.
In some C!Pplications additional circuitry may have to
be added to insure fail·safe operation. One such example
is the monitor circuit shown later, Figure 24. There
both voltage and current are monitored.

406

Another interesting condition to consider is operation
of the MI0400 if its LED input diodes are "blown
out" by excessive current. In this case the MI0400
output will be in the high state, still indicating an error
condition.

APPLICATION CIRCUITS
Figure 22 shows a circuit for a switching power supply
to give advanced warning of power failure to computer,
microprocessor, memory etc., so that an orderly power
down sequence can be initiated. Such a circuit is useful
because a switching power supply inherently provides
power storage for a limited period of time after removal
of AC input power.

r- -

I

-

o

------------1

1

r----1~------~>_--~--+5V

I

I

II

3.3K

jBd

I

0-;..
r----..--

+V

SUPPLY

18 ~ l3.5mA

MID400

el519

Fig. 23. Relay Interface Circuit

POWER OIODES

AC INPUT
110V60Hz

FUSE
R=22Kn

1

r-------------'a
+5V

t:

v,

RL

IK

I

L'
L _ MI0400
____ _

r-------------

2~K I

I

OUTPUT NORMALLY HIGH.
OUTPUT LOW WHEN FUSE OR CIRCUIT BREAKER OPENS.
CI521

Fig. 25. Fuse or Circuit Breaker Monitor
C1S20

I

Fig. 24. AC Power Line Voltage and Current Monitor

Figure 23 shows a circuit that allows a relay or solenoid
of almost any voltage and current rating to be controlled
by the MID400. NPN transistor 0 , must have adequate
beta and voltage/current ratings for the application.
Relay is energized when no AC current is flowing in
theMID400 input diodes.
Figure 24 shows a circuit that uses two MID400s to
monitor both voltage and current. When both voltage
and current are being supplied to the load, the output of
"NOR" gate is high. If load current drops due to either
open circuit or failure, the output of "NOR" gate is low.

If both voltage and current are not present the output
is low. Care must be taken in overall systems design to
insure fail·safe operation is achieved for all possible conditions. This topic was discussed previously in this Note.
Figure 25 shows a circuit to monitor a fuse or a circuit
breaker. With this circuit consideration must be given to
Fail-Safe operation. Note that if load is a very high impedance there might not be sufficient current to operate
the MID400. In other words, the output of MID400 is
low on open fuse or breaker. If Vee.to MID400 is off
and fuse opens, no MID400 indication will result.

407

01--r---~--------------------~

NEUTRAL--+-----~~~--~--------------~

}

POWER
TO
SYSTEM

~--L---~---+---+----------~~

r------------I
I

MID400

+5VVCC

I
I

",,~>---+-i~

OUTPUT

C1522

NOTE: Circuit detects failure of either but not both phases
Fig. 26. Monitor Circuit for Two Phase Power Line

.,_-...._ _ _ _ _ _ _ _ _ _ _ _ _ 0,

'2

.. ..,--1-----------------------.-

~~---------------------+.~

·3---++-~--------~

NEUTRALt----H--------------------.-

__

POWER

TO
SYSTEM

12~--~~----------.

C152J

NOTE: Circuit detects failure of either or both phases
Fig. 27. Alternate Monitor Circuit for Two Phase Power Line

C1524

Fig. 28. Monitor Circuit for Three Phase Power Line

ADDITIONAL APPLICATION IDEAS
The following circuits are included for their intrinsic
value, but may need further refining for use in a specific
application.
Figure 26 shows a circuit to detect failure of either but
not both phases on a two phase AC power line. The
MI0400 output goes LOW when a phase fails. Figure
27 shows a more complicated circuit that will detect
failure of either or both phases on a two phase line.
The NOR gate output stays HIGH so long as both phases
are present, but switches to LOW if either or both
phases fail.
Figure 28 shows a circuit to monitor a three phase line.
This circuit detects a failure on a single phase, as well
as all phases failing simultaneously. The output from
408

the NOR gate is normally high when all phases are present.
The input current limiting resistor RL is chosen so the
MI0400s operate in saturated mode. If a phase fails,
for example phase 01 goes open cirCUit, this effectively
places M10400's #A and #B in series, causing them
noW to operate in non-saturated mode and produce
120Hz pulses. Therefore the output "NOR" gate outputs pulses to indicate phase failure. The output NOR
gate is low when there is no power on any phase.
In some applications, for example when monitoring the
power to a three phase motor, if a phase opens when
the motor is running, it might run "single phase." The
motor might then generate sufficient back EM F on the
open phase to keep input current to MI 0400, and under
such a condition this MID400 monitoring system is not
effective.

r

""50V
ACRMS

AC
INPUT

1_

r-----------

I

+5V

I
I

C1525

Fig. 29. AC Va/tage Devlatian Manitar

Figure 29 illustrates the basic circuit concept for an AC
voltage deviation monitor. Here the zener diode and
bridge rectifier establish a given AC voltage, irrespective
of AC input voltage, over a given range. This is compared with the voltage developed by R2 and R3 . Depending upon choice of zener voltage and ratio of R2
and R3 the circuit can operate in a number of modes:
1. Voltage Deviation Monitor to give a low output
when AC voltage deviates from set standard. The
voltage at junction of R2 and R3 is made equal to
zener voltage for given AC input voltage. A deviation from standard causes current flow through
MI D400 diodes.
2. Over Voltage Monitor (over given range). For
normal AC input voltage R2 and R3 are chosen
for a current flow through the M1D400; when
AC input voltage goes too high the current ceases
through MID400 input diodes.
3. Under Voltage Monitor (over given range). Similar to above, except R2 and R3 are chosen so current through MID400 input diodes ceases if AC
with low input voltage is too low.
It should be noted that in this circuit the magnitude of
current through the MI D400 input diodes is governed
by choice of R1 , R2, and R3 resistor values.

MID400 BENEFITS
This small size device connects through an external resistor directly to AC power lines and offers both inputto-output noise immunity as well as electrical surge isolation, up to 2500 VRMS (or 3550 VDC). Its output is
compatible with TTL logic. Also the MID400 is UL
recognized (File #E50151), has low power consumption, and operates from a single Vcc supply up to 7
volts. Besides inputs from power lines, the MI D400 can
a Iso be connected to AC sources of other frequencies
and even to DC sources (for detection of power). Output current is 16mA when a minimum 4mA RMS input
current is applied to the input LEDs. When the inexpensive and readily available 555 Timer is connected to
the MID400 output, circuits can be built having high
sink and source current drive capabilities. These simple
circuits can also be designed for a wide range of adjustable delay, and with rise and fall times compatible with
TTL computer circuits.

I

CONCLUSION
This Application Note has summarized internal operation of the MID400 and described several classes of
application circuits. Refer to the MID400 Data Sheet
for a Ii~ting of Absolute Maximum Ratings and specifications for its Electrical Characteristics.

409

410

Appendix

411

412

Cross Reference Index
Competitive
Type
Number
1351G
1352G
1353G
1354G
1361E

"

General
Instrument
Part Number
MAN3410A
MAN3420A
MAN3430A
MAN3440A
MAN3610A

Competitive
Type
Number
4N27
4N28
4N29
4N29
4N30

1362E
1363E
1364E
1371R
1372R

"
"
"
"
"

MAN3620A
MAN3630A
MAN3640A
MAN71A
MAN72A

4N31
4N32
4N33
4N35
4N36

1373R
1374R
·1381Y
1382Y
1383Y

"
"
"
"
"

MAN73A
MAN74A
MAN3810A
MAN3820A
MAN3830A

4N37

1384Y
1451G
1454G
1455G
1461E

"
"
"

MAN3840A
MAN4510A
MAN4540A
MAN4505A
MAN4610A

1464E
1465E
1471R
1474R
1475R

"

MAN4640A
MAN4605A
MAN4710A
MAN4740A
MAN4705A

1481Y
1484Y
1485Y
1704R
1737R

"

Manufacturer
1EE

"
"

"
"
"

"
"

MAN4810A
MAN4840A
MAN4805A
MAN2A
MAN71A or
72A

"
"
"
"

MAN74A
MAN6760
MAN6780
MAN6610
MAN6630

2664E
2665E
2666E
2668E
2671R

"
"
"
"
"

MAN6640
MAN6650
MAN6660
MAN6680
MAN6710

1673R
2674R
2675R
2687R
2678R

"
"
"
"
"

MAN6730
MAN6740
MAN6750
MAN6760
MAN6780

4N26

OPTRON

"

FSC/GE/LiT/
MOT/OPT
FSC/GE/MOT

"
"

OPTRON

"
"
"

"
FSC/GE/
MOT/OPTRON
HP/
SPECTRONICS

6N139

1738R
1787R
1788R
2661E
2663E

3N243
3N243R
4N25

6N137
6N138

Manufacturer
FSC/GE/MOT

MCT4
MCT4R
4N25

General
Instrument
Part Number
4N27
4N28
4N29
MCT277
4N30
4N31
4N32
4N33
4N35
4N36
4N37
6N137
MCC670/
6N138
MCC671/
6N139
MV54

5082-4101

HP

5082-4150
5082-4160
5082-4360
5082-4361
5082-4370

"
"

5082-4371

"

5082-4494
5082-4550
5082-4555
5082-4557

"
"
"

MCC671/
6N139
MV5075B
MV5353
MV5353
MV5352

5082-4558
5082-4584
5082-4590
5082-4592
5082-4595

"
"
"
"
"

MV5352
MV5374B
MV53154
MV53154
MV53152

5082-4597
5082-4650
5082-4655
5082-4657
5082-4658

"
"
"
"
"

MV53152
MV5753
MV5753
MV5752
MV5752

5082-4684
5082-4690
5082-4692
5082-4693
5082-4694

"
"
"

"

MV57748
MV57154
MV57154
MV57152
MV57152

5082-4695
5082-4790
5082-4792
5082-4850
5082-4855

"
"
"
"
"

MV57152
MV50154
MV50154
MV5053
MV5054A-1

"

"

MV53
MV55A
6N137
MCL2601
MCC670/
6N138

I

4N26

413

Competitive
Type
Number
5082-4855
5082-4855
5082-4880
5082-4881
5082-4885

General
Instrument
Part Number
MV5054A-2
MV5054A-3
MV5054A-1
MV5054A-2
MV5050

Competitive
Type
Number
521-9259
521-9260
521-9261
745-0005
745-0014

5082-4885
5082-4888
5082-4950
5082-4955
5082-4957

MV5052
MV5051
MV5253
MV5253
MV5252

745-0014
745-0016
7610R
7611R
7620Y

5082-4958
5082-4990
5082-4992
5082-4995
5082-4997

MV5252
MV52154
MV52154
MV52152
MV52152

7621Y
7630G
7631G
7730R
7731R

5082-7610
5082-7610
5082-7611
5082-7611
5082-7613

MAN3920A
MAN3620A
MAN3910A
MAN3610A
MAN3980A

8503-1
BPX38-3, -4
BPX43-2, -3
BPX62
BP1 03B-2, -3

5082-7620
5082-7621
5082-7623
5082-7630
5082-7631

MAN3820A
MAN3810A
MAN3880A
MAN3400A
MAN3410A

CL13
CLl510
CLl511
CMN3620A
CMN3640A

5082-7633
5082-7651
5082-7730
5082-7731
5082-7740

MAN3480A
MAN4610A
MAN72A
MAN71A
MAN78A

CMN3680A
CMN3910A
CMN3920A
CMN3930A
CMN3940A

MV5056
MV50
MV54
MV5075B
MV54

CMN3980A
CMN4580A
CMN4610A
CMN4640A
CMN4680A

521-9206
521-9207
521-9216
521-9217
521-9224

MV5274B
MV5374B
MV5075C
MV5053
MV5253

CMN4705A
CMN4710A
CMN4780A
CMN4880A
CMN4905A

521-9225
521-9246
521-9247
521-9248
521-9249

MV5353
MV5753
MV5752
MV5353
MV5753

CMN4910A
CMN4940A
CMN4980A
CMN58A
CMN6640

MV5253
MV5257
MV5753
MV5752
MV5353

CMN6680
CMN6710
CMN6730
CMN6740
CMN6780

521-9179
521-9185
521-9186
521-9189
521-9195

521-9250
521-9251
521-9256
521-9257
521-9258

414

Manufacturer
HP

DIALIGHT

"
"
"
"

Manufacturer
DIALIGHT

DIALIGHT

1EE

General
Instrument
Part Number
MV5352
MV5253
MV5352
MAN2A
MAN71A
MAN72A
MAN74A
MAN3620A
MAN3810A
MAN3820A
MAN3810A
MAN3420A
MAN3410A
MAN72A
MAN71A

SPECTRONICS
SIEMENS/LIT

CLAIREX

"
CML

"

CQY99
MT1
MT2
MT2
MT8020
4N37
4N37
4N37
MAN3620A
MAN3640A
MAN3680A
MAN3910A
MAN3920A
MAN3930A
MAN3940A

"

"

"
"
"
"
"

MAN3980A
MAN4580A
MAN4610A
MAN4640A
MAN4680A
MAN4705A
MAN4710A
MAN4780A
MAN4880A
MAN4905A
MAN4910A
MAN4940A
MAN4980A
MAN3480A
MAN6640
MAN6680
MAN6710
MAN6730
MAN6740
MAN6780

Competitive
Type
Number
CMN6910
CMN6930
CMN6940
CMN6950
CMN6960

General
Instrument
Part Number
MAN6910
MAN6930
MAN6940
MAN6950
MAN6960

Competitive
Type
Number
CM4-84B-2
CM4-85B
CM4-86B
CM4-244A
CM4-244B

CMN6980
CMN72A
CMN73A
CMN74A
CMN78A

MAN6980
MAN72A
MAN73A
MAN74A
MAN78A

CM4-264
CM4-265
CM4-282B
CM4-382B-2
CM4-283B

MV57124
MV57173
MV5752
MV5752
MV5754

CMN88A
CMN8910
CMN8930
CMN8940
CMN8950

MAN3880A
MAN8910
MAN8930
MAN8940
MAN8950

CM4-284B
CMR-284B-2
CM4-293B
CM4-294B
CM4-344A

MV5753
MV5753
MV50152
MV5-154
MV5274B

CMN56120
CMN56240
CMN56320
CMN56440
CMN58120

MMN56120
MMN56240
MMN56320
MMN56440
MMN58120

CM4-344B
CM4-364
CM4-382B
CM4-382B-2
CM4-383B

MV5274C
MV52124
MV5252
MV5252
MV5254

CMN58240
CMN58320
CMN58440
CMN59120
CMN59240

MMN58240
MMN58320
MMN58440
MMN59120
MMN59240

CM4-384B
CM4-384B-2
CM4-393B
CM4-394B
CM4-444A

MMN59320
MMN59440
MP22
MP52
MP65

CM4-470-19150-1
CM4-470-29150-2
CM4-482B
CM4-482B-2
CM4-483B

CMN59320
CMN59440
CM4-5B
CM4-6B
CM4-8B

Manufacturer
CML

"

"
"

CM4-9B
CM4-20
CM4-21
CM4-22
CM4-23

MP73
MV5020
MV5021
MV5022
MV5025

CM4-24
CM4-25
CM4-43A
CM4-43B
CM4-73A

MV5024
MV5023
MV5075B
MV5075C
MV5052/
MV50152

CM4-80B
CM4-81B
CM4-82B
CM4-83
CM4-83-1
CM4-83-2
CM4-83-3
CM4-84B
CM4-84B-0
CM4-84B-1

"

"

MV5050
MV5051
MV5052
MV5054-1
MV5054-1
MV5054-2
MV5054-3
MV5053
MV5053
MV5053

CM4-484B
CM4-484B-2
CM4-493B
CM4-494B
CM4-544A
CM4-544B
CM4-564
CM4-570-19350-1
CM4-570-29350-2
CM4-582B
CM4-582B-2
CM4-583B
CM4-584B
CM4-584B-2
CM4-593B

Manufacturer
CML

"

"

General
Instrument
Part Number
MV5053
MV5056
MV5055
MV5774B
MV5774C

MV5253
MV5253
MV52152
MV52154
MV5174B

MK9150-1

"

"
"

MK9150-2
MV5152
MV5152
MV5154
MV5153
MV5153
MV57152
MV57154
MV5374B

"

MV5374C
MV53124

"

MK9350-1

"
"

MK9350-2
MV5352

"
"

MV5352
MV5354
MV5353
MV5353
MV53152

I
415

Competitive
Type
Number
CM4-594B
CNY17-1
CNY17-11
CNY17-111
CNY17-IV
CNY28
CNY51
CQX13-1
CQX23-1
CQX33-2
DL-10
DL-10A
DL-101
DL-101A
DL-500
DL-507
DL-57
DL-701
DL-704
DL-707
DL-707R
DL-727
DL-728
DL7651
DL7751-S

Manufacturer
CML
SIEMENS/LIT

"

GE/SIEMENS

SIEMENS/LIT

"
"
"
"

"

FCD810
FCD810C/D
FCD820
FCD820B
FCD820C/D

FAIRCHILD

FCD825C/D
FCD830C/D
FCD831C/D
FCD836C/D
FCD850

"

FCD860
FCD880
FCD885
FLV251
FLV252

"
"
"

General
Instrument
Part Number
MV53154
CNY17-1
CNY17-2/75A
CNY17-3/75B
CNY17-4/75C

Competitive
Type
Number
FLV460
FND500
FND507
FND560
FND567

CNY37
CNY75B
MV52154
MV50154
MV53154

FND800
FND807
FND847
FND850
FPT500

MAN8640
MAN8610
MAN8610
MAN8640
MT2'

MAN10A
MAN10A
MAN1001A
MAN1001A
MAN6680

FSC825B
GBG1000
GL4484
GL4850
GL4950

MCT270
MV54164
MV5274B
MV5253
MV5253

MAN6760
MAN2A
MAN73A
MAN74A
MAN72A

GL56
H11A1

MAN71A
MAN6710
MAN6740
MAN4610A
MAN4710A
MCT26
MCT2200
MCT2
MCT2E
MCT2200
MCT2201
MCT2200
MCT2200
MCT2200
MCA230
MCA231
MCT6
MCT66
MV5752
MV5752

Manufacturer
FAIRCHILD

SIEMENS/LIT

"

H11A2
H11A3
H11A4

MV52
MCT270/
MCT272
MCT2
MCT2E
MCT2

H11A5
H11B2
H11B255
H11B3
H11C1

MCT26
MCA231
MCA255
MCA230
MCS21

GE

H11C2
H11C3
H11C4
H11C5
H11C6

"

MCS21
MCS2
MCS2401
MCS2401
MCS2400

H11G1
H11G2
H11J1
H11J2
H11J3

"

MCA11G1
MCA11G2
MCP3011
MCP3010
MCP3011

"
"

H13B1

MCP3010
MCP3009
MCT8CNY37
MCT81CNY37
MCA8

H13B2
H20A1
H20A2
HCPL-2601
HD1131-0

MCA81
CNY36
CNY36
MCL2601
MAN6660

H11J4
H11J5
f113A1
H13A2

FLV31 0
FLV315
FLV341
FLV350
FLV351
FLV355
FLV360
FLV365
FLV440
FLV450

416

"

"

MV5254
MV5253
MV5252
MV5253
MV5252
MV5253
MV5253
MV5253
MV5353
MV5353

General
Instrument
Part Number
MV5353
MAN6780
MAN6760
MAN6680
MAN6660

HP
SIEMENS/LIT

'Minor mechanical or electrical differences

Competitive
Type
Number
HD1133-0
HD1131-R
HD1133-R
HD1131-0
HD1133-0
HDSP-3401
HDSP-3403
HDSP-3530
HDSP-3530
HDSP-3531

Manufacturer
SIEMENS/LIT

HP

General
Instrument
Part Number
MAN6680
MAN6760
MAN6780
MAN6960
MAN6980
MAN8910
MAN8940
MAN3920A
MAN3620A
MAN3910A

HDSP-3531
HDSP-3533
HDSP-3533
HDSP-3901
HDSP-3903

MAN3610A
MAN3980A
MAN4980A
MAN8910
MAN8940

HDSP-4030
HDSP-4031
HDSP-4033
HDSP-4201
HDSP-4203

MAN3810A
MAN3810A
MAN3880A
MAN8810
MAN8840

HDSP-4830
HDSP-4840
HDSP-5301
HDSP-5303
HDSP-5501

MV57164
MV53164
MAN6760
MAN6780
MAN6960

HDSP-5503
HDSP-5701
HDSP-5703
HDSP-5801
HDSP-5803

"
"

MAN6980
MAN6860
MAN6880
MAN6460
MAN6480

HLMP-1300
HLMP-1301
HLMP-1302
HLMP-1400
HLMP-1401

MV57640
MV57641
MV57642
MV53640
MV53641

HLMP-1402
HLMP-1500
HLMP-1501
HLMP-1502
HLMP-1503

MV53642
MV52640
MV52641
MV52642
MV54643

HLMP-1523
HLMP-3300
HLMP-3301
HLMP-3400
HLMP-3401
HLMP-3500
HLMP-3501
HLMP-3502
HLMP-3507
HLMP-3517

"

MV54644
MV5753
MV5753
MV5353
MV5353

"

MV5253
MV5253
MV64530
MV64531
MV64520

"

"

Competitive
Type
Number
HLMP-3519
1L1
IL5
IL 12
1L15

General
Instrument
Part Number
MV64521
MCT2E/MCT2/
MCT276
MCT270
MCT2
MCT26

ILA30
ILA50
ILA55
ILCA2-30
ILCA2-55

MCA230
MCA255
MCA256
MCA230
MCA255

ILCT6
ILD74
LD261-4
LD271
LD271A

MCT6
MCT66
ME7161 *
ME7121 *
COY99

LD30-1
LD32-1
LD32-2
LD36-C
LD37-1

MV50758
MV57641
MV57642
MV53642
MV52642

LD52-1
LD52-2
LD52-C
LD52-CA
LD56-1

MV5753
MV5753
MV5752
MV5752
MV5353

LD56-2
LD56-C
LD56-CA
LD57-1
LD57-2

MV5353
MV5752
MV5352
MV5253
MV5253

LD57-C
LD57-CA
MCA230
MCA231
MCA255

Manufacturer
HP
SIEMENS/LIT

"

FAIRCHILD

MCT2
MCT2E
MCT6
MCT26
MCT66

MV5252
MV5252
MCA230
MCA231
MCA255
MCT2
MCT2E
MCT6
MCT26
MCT66

MOC119
MOC1000
MOC1001
MOC1002
MOC1003

MOTOROLA

MOC1005
MOC1006
MOC1200
MOC3000
MOC3001

"

"

"

I

MCA231
MCT2
MCT2E
4N27
4N28
MCT2200
MCT2200
MCA230
MCS2
MMCS2401

417

Competitive
Type
Number
MOC3002
MOC3003
MOC3009
MOC3010
MOC3011

Manufacturer
MOTOROLA

MV5050
MV5051
MV5052
MV5053
MV5054-1

FAIRCHILD

MV5054-2
MV5054-3
MV5055
MV5056
MV5152

"

MV5153
MV5154
MV5252
MV5253
MV5254

"
"

MV5352
MV5353
MV5354
MV5752
MV5754

"

NSB373
NSB374
NSB381
NSB382
NSB3881

NATIONAL

NSB3882
NSB581
NSB583
NSB5881
NSB5882

"

NSL5020
NSL5022
NSL5023
NSL5024
NSL5026
NSL5027
NSL5053
NSL5057
NSL5076
NSL5076A
NSL5080
NSL5274
NSN61L
NSN64R
NSN71L

418

General
Instrument
Part Number
MCS2400
MCS21
MCP3009
MCP3010
MCP3011

Competitive
Type
Number
NSN71R
NSN74R
NSN373
NSN374
NSN583

MV5050
MV5051
MV5052
MV5053
MV5054-1

OPB711
OPB77
OP800W
OP804
OPB813S3

MV5054-2
MV5054-3
MV5055
MV5056
MV5152

OPB819S10
OP160
OPI-140
OPI-2100
OPI-2150

MV5153
MV5154
MV5252
MV5253
MV5254

OPI-2151
OPI-2152
OPI-2153
OPI-2250
OPI-2251

MV5352
MV5353
MV5354
MV5752
MV5754

OPI2252
OPI2253
RL-20

MAN74A
MAN72A
MAN74A
MAN72A
MMN39440
MMN39240
MAN6740
MAN6740
MMN59440
MMN59240
MV5020
MV5022
MV5023
MV5024
MV5026

"

"

MV5054A-2
MV5053
MV5054A-1
MV5177C
MV5074C
MV5074C
MV5377C
MAN8710
MAN8640
MAN72A

Manufacturer
NATIONAL

OPTRON

"

General
Instrument
Part Number
MAN71A
MAN74A
MMN39320
MMN39120
MMN59320
MCA7
MCA7
MT1
MT2
CNY37
CNY37
COY99
MCT4
MCT210
MCT26

"
"
"

SIEMENS!
LlTRONIX

RL20-02
RL20-03

"

RL20-03
RL20-04
RL20-04
RL-2000
RL-209

"

MCT2
MCT2
MCT272
MCT2
MCT2
MCT2
MCT272
MV5053
MV5052
MV5051
MV5021
MV5050
MV5020
MV5054-1
MV5075C

RL21
RL21
RL21
RL-21
RL-4403

MV5024
MV5025
MV5026
MV5054-1
MV5054-1

RL-4415
RL-4484
RL-4850
RL-50
RL-5054-1

MV5054-1
MV5074B
MV5054-1
MV50
MV5054-1

RL-5054-2
RL-54
RL-55
RL-55-5
SCD11B2
SCD11B3
SCD255
SCS11C1
SCS11C3
SCS11C6

"
SPECTRONIX

"
"

MV5054-2
MV54
MV55
MV55
MCA231
MCA230
MCA255
MCS2400
MCS2400
MCS2400

Competitive
Type
Number
SCS11 C9
SFH600 I

Manufacturer
SPECTRONIX
SPECI
SIEMENS/LIT.

SFH600 II
SFH600-Z
SFH600 III

SFH601 I

General
Instrument
Part Number
MCS2400
CNY75A
CNY75B
MCT210
CNY75CI
MCT271

SFH 601 II

CNY75AI
MCT272
CNY75BI

SFH601 III
SFH601-4
SPT1873

MCT275
CNY75C
MCT274
MCT8

SPX2*
SPX2E*
SPX26
SPX28*
SPX33

4N35
4N35
MCT26
4N27
MCT271

SPX35*
SPX36*
SPX37*
SPX4*
SPX5*

4N35
4N35
4N35
4N35
4N35

SPX53
SPX6*
SPX103
SPX1872-1*
SPX1874-1 *

MCT272
4N35
MCT273
CNY36
CNY37

Competitive
Type
Number
TIL 146
TIL149
TIL155
TIL209A
TIL211

Manufacturer
TI

General
Instrument
Part Number
MCA8
MCA7
MCT270
MV5075C
MV5274C

TIL211
TIL212-1
TIL212-1
TIL212-2
TIL213

MV52640
MV5174B
MV5374C
MV5374C
MV53640

TIL220
TIL220
TIL220
TIL216-1
TIL216-2

MV5054A-1
MV5054A-2
MV5054A-3
MV5774C
MV5774C

TIL228-1
TIL228-2
TIL228-3
TIL231-1
TIL232-1

MV5754
MV5754
MV5754
MV5052
MV5274B

TIL234-1
TIL234-2
TIL234-3
TIL240-1
TIL240-2

MV5254
MV5254
MV5254
MV5353
MV5353

TIL241-1
TIL241-2
TIL242-1
TIL242-2
TIL302

MV5753
MV5753
MV5253
MV5253
MAN10A

MCT2731

SPX2862-1*
TIL 111
TIL112
TIL113
TIL 114

TI

TIL115
TIL116
TIL117
TIL118
TIL119
TIL120
TIL 124
TIL 126
TIL 126
TIL138
TIL143
TIL 143
TIL 144
TIL 144
TIL 145

CNY36
MCT2
MCT26
MCA230
MCT2E

TIL303
TIL304
TIL305
TIL312
TIL312

MAN10A
MAN1001A
MAN2A
MAN71A
MAN72A

MCT270
MCT271
MCA231

TIL314
TIL314
TIL316
TIL316
TIL317

MAN3410A
MAN3420A
MAN3810A
MAN3820A
MAN3840A

MCT4
MCT276
MCT271
MCT272
MCT8

TIL321
TIL322
TIL325
TIL326
TLR303

MAN6760
MAN6780
MAN6860
MAN6880
MAN72

MCA8
MCT8
MCA81
MCT81
MCA8

XC209
XC209A
XC209G
XC209Y
XC209-02

MCT2E
MCT2E

MCT2721

"

"

"
"
"
"
"

"

"
"
XCITON

"
"
"
"

I

MV5075B
MV5174B
MV5274B
MV5374B
MV5074B

419

Competitive
Type
Number
XC5025
XC5053
XC5053A
XC5053G
XC5053Y

Manufacturer
XCITON

General
Instrument
Part Number
MV5025
MV5053
MV5153
MV5253
MV5353

XC5055
XC554A-2
XC554G-2
XC554Y-2
XC554-3

MV5055
MV5154
MV5254
MV5354
MV5754

XC554A-4
XC554G-4
XC554Y-4
XC554-6
XC554A-6

MV5154
MV5754
MV5354
MV5752
MV5152

XC554G-6
XC554Y-6
XC554-9
XC556
XC556A

MV5252
MV5352
MV5752
MV5054-1
MV5154

XC556G
XC556Y
XC556-2
XC556A-2
XC556A

MV5254
MV5354
MV5054-2
MV5154
MV5154

XC556G
XC556Y
XC556-2
XC556A-2
XC556G-2

MV5254
MV5354
MV5054-2
MV5154
MV5254

XC556Y-2
XC556-3
YL212
YL56
YL4484

MV5354
MV5054-3
MV5374C
MV5374B
MV5374B

YL4484
YL4550
YL4850

420

SIEMENS/LIT

MV53640
MV5353
MV5353

North American Technical Representatives
ARKANSAS
Beacon Electronic Associates
Little Rock
(501) 224-5449

IOWA
Lorenz Sales
Cedar Rapids
(319) 377-4666

ALABAMA
Beacon Electronic Associates
Huntsville
(205) 881-5031

KANSAS
Rush & West Associates, Inc.
Olathe
(913) 764-2700

ARIZONA
Thom Luke Sales, Inc.
Scottsdale
(602) 941-1901

MARYLAND
Beacon North
(800) 336-3747

CALIFORNIA
Ewing-Foley, Inc.
Los Altos
(415) 941-4525
Ed Landa Company
Los Angeles
(213) 879-0770
Harvey King, Inc.
San Diego
(714) 566-5252
COLORADO
DIZ Associates, Inc.
Denver
(303) 429-9369
CONNECTICUT
Scientific Components
Cheshire
(203) 272-296312160
DELAWARE
Beacon North, Inc.
(800) 336-3747
FLORIDA
Beacon Electronic Associates
Clearwater
(813) 796-2378
Beacon Electronic Associates
Ft. Lauderdale
(305) 491-1054
Beacon Electronic Associates
Maitland
(305) 647-3498
Beacon Electronic Associates
Melbourne
(305) 724-8010
GEORGIA
Beacon Electronic Associates
Atlanta
(404) 256-9640
ILLINOIS
Sumer, Inc.
Rolling Meadows
(312) 991-8500
INDIANA
Leslie M. Devoe Company
Indianapolis
(317) 842-3245

MASSACHUSETTS
Kanan Associates, Inc.
Reading
(617) 944-8484
MINNESOTA
Mel Foster Technical Sales, Inc.
Edina
(612) 941-9790
MISSOURI
Rush & West Associates, Inc.
Ballwin
(314) 394-7271
NEBRASKA
Lorenz Sales
Lincoln
(402) 475-4660
NEW MEXICO
SynTech
Albuquerque
(505) 266-7951
NEW YORK
Bob Dean Inc.
Ithaca
(607) 257-1111
Comtronic Associates
Melville
(516) 249-0505

NORTH CAROLINA
CSR Electronics, Inc.
Charlotte
(704) 332-3296
CSR Electronics, Inc.
Raleigh
(919) 847-8434
OHIO
Midwest Marketing
Chagrin Falls
(216) 247-6655
Midwest Marketing
Dayton
(513) 433-2511
OREGON
Western Technical Sales
Hillsboro
(503) 640-4621

PENNSYLVANIA
CMS Marketing
Glendale
(215) 885-5106
Russell F Clark Co., Inc.
Pittsburgh
(412) 242-9500
TENNESSEE
Beacon Electronic Associates
Johnson City
(615) 282-2421
TEXAS
Southern States Marketing, Inc.
Austin
(512) 452-9459
Southern States Marketing, Inc.
Dallas
(214) 387-2489
Southern States Marketing, Inc.
Houston
(713) 988-0991
UTAH
DIZ Associates, Inc.
Salt Lake City
(801) 268-2876
VIRGINIA
Beacon North
(800) 572-0405
WASHINGTON
Western Technical Sales
Bellevue
(206) 641-3900
Western Technical Sales
Spokane
(509) 922-7600
WEST VIRGINIA
Beacon North
(800) 336-9747
WISCONSIN
Sumer, Inc.
Brookfield
(414) 784-6641
CANADA
Vitel Electronics
Port Moody, B.C.
(604) 461-3322
Vitel Electronics
Toronto, Ont.
(416) 676-9720
Vitel Electronics
Ottawa,Ont.
(613) 836-1776
Vitel Electronics
Montreal, Que.
(514) 331-7393

I
421

North American Stocking Distributors
ALABAMA
ARROW ELECTRONICS
Huntsville (205) 882-2730

CONNECTICUT
ARROW ELECTRONICS
Wallingford (203) 265-7741

IOWA
ARROW ELECTRONICS
Cedar Rapids (319) 395-7230

HAM ILTO NIAVN ET

HAMILTONIAVNET

SCHWEBER ELECTRONICS

Huntsville (205) 837-7210

Danbury (203) 797-2800

Cedar Rapids (319) 373-1417

SCHWEBER ELECTRONICS

J. V. ELECTRONICS
East Haven (203) 469-2321

Huntsville (205) 882-2200

ARIZONA
HAMILTONIAVNET
Tempe (602) 231-5100

KIERULFF ELECTRONICS
SCHWEBER ELECTRONICS
Danbury (203) 792-3500

WYLE DISTRIBUTION
GROUP
Phoenix (602) 249-2232

CALIFORNIA
ARROW ELECTRONICS

Kansas City (913) 888-8900

Wallingford (203) 265-1115

KIERULFF ELECTRONICS
Phoenix (602) 243-4101
Tucson (602) 624-9986

KANSAS
HAMILTONIAVNET

FLORIDA
ARROW ELECTRONICS
Ft. Lauderdale (305) 776-7790
Palm Bay (305) 725-1480

HAMILTONIAVNET
Ft. Lauderdale (305) 971-2900
St. Petersburg (813) 576-3930

HAMMOND
ELECTRONICS, INC

MARYLAND
ARROW ELECTRONICS
Columbia (301) 247-5200

HAMILTONIAVNET
Baltimore (301) 995-3500

SCHWEBER ELECTRONICS
Gaithersburg (301) 840-5900

MASSACHUSETTS
ARROW ELECTRONICS
Boston (617) 933-8130

Cahtsworth (213) 701-7500
Newport Beach (714) 851-8961
San Diego (714) 565-4800
Sunnyvale (408) 745-6600

Ft. Lauderdale (305) 973-7103
Orlando (305) 849-6060

Woburn (617) 935-9700

HAMILTONIAVNET

KIERULFF ELECTRONICS

Billerica (617) 667-8331

Costa Mesa (714) 641-4100
Culver City (213) 558-2121
Sacramento (916) 920-3150
San Diego (714) 571-7510
Sunnyvale (408) 743-3355

KIERULFF ELECTRONICS
Los Angeles (213) 725-2325
Palo Alto (415) 968-6292
San Diego (714) 278-2112
Tustin (714) 731-5711

WYLE DISTRIBUTION
GROUP
EI Segundo (213) 322-8100
Irvine (714) 641-1600
San Diego (714) 565-9171
Santa Clara (408) 727-2500

COLORADO
ARROW ELECTRONICS

St. Petersburg (813) 576-1966

SCHWEBER ELECTRONICS
Hollywood (305) 927-0511

GEORGIA
ARROW ELECTRONICS
Atlanta (404) 449-8252

HAMILTONIAVNET
Norcross (404) 447-7500

SCHWEBER ELECTRONICS
Atlanta (404) 449-9170

ILLINOIS
ARROW ELECTRONICS
Rolling Meadows
(312) 397-3440

HAMILTONIAVNET
Bensenville (312) 860-7700

Denver (303) 758-2100

KIERULFF ELECTRONICS

HAMILTONIAVNET

Elk Grove Village
(312) 640-0200

Denver (303) 740-1000

KIERULFF ELECTRONICS
Denver (303) 371-6500

WYLE DISTRIBUTION
GROUP
Thornton (303) 457-9953

NEWARK ELECTRONICS
Chicago (312) 638-4411

SCHWEBER ELECTRONICS
Elk Grove (312) 364-3750

INDIANA
ARROW ELECTRONICS
Indianapolis (317) 243-9353

GRAHAM ELECTRONICS
Ft. Wayne (219) 423-3422
Indianapolis (317) 634-8202

HAMILTONIAVNET
Indianapolis (317) 844-9333

422

HAMILTONIAVNET
KIERULFF ELECTRONICS
RC COMPONENTS
Wilmington (617) 273-1860

SCHWEBER ELECTRONICS
Bedford (617) 275-5100

MICHIGAN
ARROW ELECTRONICS
Detroit (313) 971-8220

HAMILTONIAVNET
Livonia (313) 522-4700
Grand Rapids (616) 243-8805

SCHWEBER ELECTRONICS
Livonia (313) 525-8100

MINNESOTA
ARROW ELECTRONICS
Edina (612) 830-1800

HAMILTONIAVNET
Minneapolis (612) 932-0600

KIERULFF ELECTRONICS
Edina (612) 941-7500

SCHWEBER ELECTRONICS
Eden Prairie (612) 941-5280

MISSOURI
ARROW ELECTRONICS
St. Louis (314) 567-6888

HAMILTONIAVNET
Earth City (314) 344-1200

KIERULFF ELECTRONICS
Maryland Heights
(314) 739-0855

NEW HAMPSHIRE
ARROW ELECTRONICS
Manchester (603) 668-6968

OKLAHOMA
KIERULFF ELECTRONICS
Tulsa (918) 252-7537

WASHINGTON
ARROW ELECTRONICS
Bellevue (206) 643-4800

NEW JERSEY
ARROW ELECTRONICS
Moorestown (609) 235-1900
Saddle Brook (201) 797-5800

OREGON
HAMILTON/AVNET
Lake Oswego (503) 634-8831

HAMILTON/AVNET
Bellevue (206) 643-3950

HAMILTON/AVNET
Cherry Hill (609) 424-0110
Fairfield (201) 575-3390
KIERULFF ELECTRONICS
Fairfield (201) 575-6750
SCHWEBER ELECTRONICS
Fairfield (201) 227-7880
NEW MEXICO
ARROW ELECTRONICS
Albuquerque (505) 243-4566
HAMILTON/AVNET
Albuquerque (505) 765-1500

NEWYORK
ARROW ELECTRONICS
Hauppauge (516) 231-1000
Rochester (716) 275-0300
Syracuse (315) 652-1000
HAMILTON/AVNET
Melville (516) 454-6060
Rochester (716) 475-9130
Syracuse (315) 437-2641
SCHWEBER ELECTRONICS
Rochester (716) 424-2222
Westbury (516) 334-7474
SUMMIT DISTRIBUTORS, INC.
Buffalo (716) 884-3450

NORTH CAROLINA
ARROW ELECTRONICS
Raleigh (919) 876-3132
Winston-Salem
(919) 725-8711
HAMILTON/AVNET
Raleigh (919) 829-8030
HAMMOND
ELECTRONICS, INC.
Greensboro (919) 275-6391
KIERULFF ELECTRONICS
Greensboro (919) 852-9440

OHIO
ARROW ELECTRONICS
Cleveland (216) 248-3990
Dayton (513) 435-5563
CAM/OHIO
Cleveland (216) 461-4700
HAMILTON/AVNET
Cleveland (216) 831-3500
Dayton (513) 433-0610

KIERULFF ELECTRONICS
Portland (503) 641-9150
WYLE DISTRIBUTION
GROUP
Hillsboro (503) 640-6000

PENNSYLVANIA
ARROW ELECTRONICS
Philadelphia (215) 928-1800
. Pittsburgh (412) 856-7000
CAM/RPC INDUSTRIAL
ELECTRONICS
Pittsburgh (412) 782-3770
SCHWEBER ELECTRONICS
Horsham (215) 441-0600
Pittsburgh (412) 782-1600

SOUTH CAROLINA
HAMMOND
ELECTRONICS, INC.
Greenville (803) 233-4121
TENNESSEE
HAMMOND ELECTRONICS
Knoxville (615) 691-3491
TEXAS
ARROW ELECTRONICS
Austin (800) 252-9759
Dallas (214) 386-7500
Houston (713) 491-4100
HAMILTON/AVNET
Austin (512) 837-8911
Dallas (214) 659-4111
Houston (713) 780-1771
HARRISON EQUIP CO., INC.
Stafford (713) 879-2600
KIERULFF ELECTRONICS
Austin (512) 835-2090
Dallas (214) 343-2400
Houston (713) 530-7030

KIERULFF ELECTRONICS
Tukwila (206) 575-4420
WYLE DISTRIBUTION
GROUP
Bellevue (206) 453-8300

WISCONSIN
ARROW ELECTRONICS
Oak Creek (414) 764-6600
HAMILTON/AVNET
New Berlin (414) 784-4510
KIERULFF ELECTRONICS
Waukesha (414) 784-8160
SCHWEBER ELECTRONICS
Brookfield (414) 784-9020

CANADA
CARDINAL ELECTRONICS
Edmonton (403) 483-6266
CESCO ELECTRONICS LTD.
Calgary (403) 246-1980
Montreal (514) 735-5511
Ottawa (613) 226-6903
Quebec (418) 687-4231
Toronto (416) 661-0220
FUTURE ELECTRONICS, INC.
Calgary (403) 259-6408
Montreal (514) 694-7710
Ottawa (613) 820-9471
Toronto (416) 663-5563
Vancouver (604) 438-5545
HAMILTON/AVNET
Calgary (403) 230-3586
Montreal (514) 331-6443
Ottawa (613) 226-1700
Toronto (416) 677-7432
RAE. ELECTRONICS
Vancouver (604) 291-8866
Edmonton (403) 451-4001

SCHWEBER ELECTRONICS
Austin (512) 458-8253
Dallas (214) 661-5010
Houston (713) 784-3600

UTAH
ARROW ELECTRONICS
Salt Lake City (801) 539-1135

I

DIPLOMAT
ELECTRONICS, INC.
Salt Lake City (801) 486-4134
HAMILTON/AVNET
Salt Lake City (801) 972-2800

KIERULFF ELECTRONICS
Cleveland (216) 587-6558

KIERULFF ELECTRONICS
Salt Lake City (801) 973-6913

SCHWEBER ELECTRONICS
Beachwood (216) 464-2970
Dayton (513) 439-1800

WYLE DISTRIBUTION
GROUP
Salt Lake City (801) 974-9953

423

International Stocking Distributors
and Technical Representatives
EUROPE
AUSTRIA
MOOR GesmbH
Storchengasse 1/1/1
1150 Wien
Tel. 85.86.46
TELEX-0135701
OMNI RAY GesmbH
Vertriebsbuero Wien
Prinz Eugen-Strasse 36
1040 Wien
Tel. 0222/65.64.31
TELEX-132712

BELGIUM-LUXEMBURG
N.v. TELEREX
Kouwenbergdref 6
2230 Schilde
Tel. 031/83.33.50
TELEX-33511
DENMARK
NOR DISK ELEKTRONIK AlB
Trans Formervej 17
2730 Herlev
Tel. 02/842000
TELEX-35200

R.TF.
9 Rue d'Arcueil
94250 Gentilly
Tel. 664.11.01
TELEX-201069
S.G.T
15/17 Boulevard Bonrepos
31008 Tou louse
Tel. 61/62.11.33
TELEX-531501
80/83 Quai de Queyries
33072 Bordeaux
Tel. 56/86.50.31
TELEX-550988

SCIENTECH
11 Avenue Ferdinand Buisson
75016 Paris
Tel. 609.91.36
TELEX-260042
SELFCO
31 Rue du Fosse des treize
67000 Strasbourg
Tel. 88/22.08.88
TELEX-890.706

FINLAND
OY FINTRONIC AlB
Melkonkatu 24A
00210 Helsinki 21
Tel. 0-692 6022
TELEX-124224

GERMANY
INDEG GmbH
Emil Kommerlingstrasse 5
Postfach 1563
6780 Pirmasens
Tel. 06331/94065
TELEX-452269

FRANCE
DISCOM ELECTRONIQUE
Mercure C-Z 1. d'Aix
en Provence
13763 Les Milles
Tel. 42/60.01.77
TELEX-420683

A NEYE-ENATECHNIK GmbH
2085 Quickborn-Hamburg
Schillerstrasse 14
Postfach 1240
Tel. 04106/6121
TELEX-213590

ETS. SEDRE
21 Avenue de la Plaine Fleurie
38240 Meylan
Tel. 16/76/90.71.18
TELEX-980936
10/12 rue Jean Bourgey
69100 Villeurbanne
Tel. 16178/68.30.96
TELEX-370461

GROUPEMENT
ELECTRONIQUE
DE DISTRIBUTION
53 Rue de Paris
92100 Boulogne
Tel. 604.81. 70
TELEX-270191
Neuille Ie Lierre
37380 Monnaie
Tel. 16/47/52.96.07

424

SPOERLE ELECTRONIC KG
Max Planckstrasse 1-3
Postfach 10 21 40
6072 Dreieich/Frankfurt
Tel. 06103/304-1
TELEX-0417903

GREECE
GENERAL ELECTRONICS LTD.
209 Thevon Street
Nikaia 77
Paraeus-Athens
Tel. 1/361.8145
TELEX-219250
ISRAEL
A. SCHNEIDER LTD.
44 Petach Tikva Road
PO. Box 18055
Tel Aviv
Tel. 3/332089
TELEX-33613

ITALY
IDAC ELETTRONICA SPA
Via Turazza 32
35100 Pad ova
Tel. 049/660222
TELEX-430353
LASI ELETTRONICA SPA
Viale Lombardia 6
20092 Cinisello Balsamo
(Milano)
Tel. 02/6120441/2-3-4-5
TELEX-331612
SILVERSTAR LTD.
20 Via dei Gracchi
20146 Milano
Tel. 02/4996
TELEX-332189

NETHERLANDS
TECHMATION
ELECTRONICS B.v.
PO. Box 9
4175 ZG Haaften
Bernhardstraat 11
4175 ED Haaften
Tel. 04189/2222
TELEX-50423
NORWAY
NOR DISK ELEKTRONIK A/S
Smedsvingen 4
1364 Hvalstad
Tel. 2/78.62.10
TELEX-17546
SOUTH AFRICA
ELECTROLINK LTD.
PO. Box 1020
Martin Hammerschlag Way
Cape Town 8000
Tel. 21/5350/1/2
TELEX-5727320
SPAIN
SUTELCO
Pilar de Zaragoza 23
Madrid 2
Tel. 1/245.86.03
TELEX-43852
Londres 63
Barcelona 11
Tel. 32507377
TELEX-50669

SWEDEN
NOR DISK ELEKTRONIK AlB
Box 27301
Sandhamnsgatan 71
102,54 Stockholm
Tel. 8/635040
TELEX-10547

SWITZERLAND

JAPAN

MEXICO

MOORAG
Bahnstrasse 58
8105 Regensdoif
Tel. 01/840.66.44
TELEX-52042

DAINICHI ELECTRONICS INC.
Koraku Bldg.
1-1-8, Koraku
Bunkyo-Ku, Tokyo 112
Tel. (03) 815-4711

OMNI RAY AG
Dufourstrasse 56
8008 Zurich
Tel. 01/252.07.66
TELEX-57198

JAPAN ELECTRONICS
RESEARCH CO.
Omori Mitsubishi Bldg.
2-3-10 San no
Ohta-Ku, Tokyo 143
Tel. (03) 777-4111

MEXEL
MEXICANA DE ELECT
IND. S.S.
Tlacoquemecatl 139-401
Mexico
Tel. 575-78-68
TELEX-1771823 MXELME

TURKEY

TURKELEK ELEKTRONIK LTD.
Hatay Sok. 8
Ankara
Tel. 18.94.83
TELEX-42120

KANEMATSU
SEMICONDUCTOR CO.
2nd Nagaoka Bldg.
2-8-5 Hachobori
Chuo-Ku, Tokyo 104
Tel. (03) 552-6091

UNITED KINGDOM

KOKUEI TSHSHO CO., LTD.
Hoei Bldg.
3-10 Kanda-Jimbo-Cho
Chiyoda-Ku, Tokyo 101
Tel. (03) 230-0191

BA ELECTRONICS LTD.
Millbrook Road
Yate, Bristol BS17 5NX
Tel. 0454/315824
TELEX-449150

In ELECTRONIC SERVICES
Edinburgh Way
Harlow Essex CM20 2DE
Tel. Harlow 0279/26777
TELEX-81525
SEMICOMPS LTD.
Halifax Road
Keighley
West Yorkshire BD21 5HR
Tel. 0535/65191
TELEX-517343
SEMICONDUCTOR
SPECIALISTS (U.K.) LTD.
Carroll House
159 High Street
West Drayton
Middlesex UB78EX
Tel. 08954/4522
TELEX-21958
SWIFT SASCO LTD.
61-63 Gatwick Road
Crawley Sussex RH10 2RU
Tel. Crawley 0293/28700
TELEX-87131
YUGOSLAVIA

BELRAM SA
83 Avenue des Mimosas
1150 Brussels/Belgium
Tel. 02/734.33.32
TELEX-21790

NAGOYA DENGENSHA
9-27 Furuwatari-Cho
Naka-Ku, Nagoya 460
Tel. (052) 322-3511
NEW METALS AND
CHEMICALS CO., LTD.
Shin Daiichi Bldg.
3-4-13 Nihonbachi
Chuo-Ku, Tokyo 103
Tel. (03) 201-6585
TAKACHIHO
KOHEKI CO., LTD.
Nakamura Bldg.
1-2-8 Yotsuya
Shinjuku-Ku, Tokyo 160
Tel. (03) 355-1111

SOUTH AMERICA
ARGENnNA

REYCOM
ELECTRONICA SRL
Uruguay 485-7th Floor C
1015-Buenos Aires
Tel. 40-2199/45-8092
TELEX-17591
BRAZIL

COSELE
Commercia e Servicios
Electronicos Uda.
Rua da Consolacao, 867
CJ.22-01301
Sao Paulo
Tel. 257-3535
TELEX-(011) 30869
CSEL BR
CHILE

VICTRONICS LTDA.
Casilla 283-V, Correo 21
Santiago 01, Chile
Tel. 36440 or 30237
TELEX-3520001

SOUTHEAST ASIA
AUSTRALIA

ALLIED CAPACITORS
PTY. LTD.
214 Harbord Road
P.O. Box 198
Brookvale 2100 NSW
Tel. 02/938-2422
TELEX-790-25400
RIFA
·2020 Bell St. Box 95
Preston, Victoria 3072
Tel. 02/480-1211
TELEX-AA31001
HONG KONG

ASTEC AGENCIES LTD.
Room 901-2,
Chow Sang Sang Bldg.
229 Nathan Road
Kowloon, Hong Kong
Tel. 3-7210346
TELEX-37528 TCSEL HX
INDIA

FEGU INC.
3308 Middlefield Road
Palo Alto, CA 94306
ZENITH ELECTRONICS
541 Panchratna
Mama Parmanand Marg
Bombay,4
KOREA

DAEHO CORPORATION
Room 903, Dong Young Bldg.
832, 1-Kaulgiro, Chunk-Ku
Seoul
Tel. 777-3848 2487
TELEX-K26264

NEW ZEALAND
CHANNEL MASTER
Roma Road
Mt. Roskill, Auckland
Tel. 599-003
TELEX-NZ21033
SINGAPORE

ASTEC
Unit 801-2, Sim Lim Tower
10 Jalan Besar
Singapore 0820
Tel. 2920826-7
TELEX-RS 35709

425

International Sales Offices
EUROPE

ITALY

SOUTHEAST ASIA

GENERAL INSTRUMENT

GENERAL INSTRUMENT

GENERAL INSTRUMENT

Optoelectronics Division
Dendermondsesteenweg .
502C
9120 Destelbergen, Belgium
Tel. 091 /28 .88 .00
TELEX- 12686

EUROPE DIV.
P Clare Elettronica SRL
Via Quintiliano 7
20138 Milano
Tel. 0215062584/504605
TELEX- 314233

SOUTHEAST ASIA, LTD.
14th Floor, Santoi Bldg.
139 Connaught Road
Hong Kong
Tel. 5-434360
TELEX- 94606

e.

FRANCE

UNITED KINGDOM

JAPAN

GENERAL INSTRUMENT

GENERAL INSTRUMENT

GENERAL INSTRUMENT

FRANCE
5-7 Rue Amiral Courbet
94160 Saint Mande
Tel. 01 /365 .72.50
TELEX- 213.073

U.K. LTD.
Righ Wycombe
Cock Lane,
Bucks HP13 7DE
Tel. 0494/445311
TELEX- 83691

INTERNATIONAL CORP.
Fukide Bldg.
1-13 Toronomon 4-Chome
Minato-Ku, Tokyo 105
Tel. (03) 437-0281
TELEX- 720-2423413

GERMANY

GENERAL INSTRUMENT

SOUTH AMERICA

TAIWAN

DEUTSCHLAND GmbH
Neumarkter Strasse 61
8000 Munchen 80
Tel. 089/43 .50 .86
TELEX- 05/24523

GENERAL INSTRUMENT
Optoelectronics Division
3400 Hillview Avenue
Palo Alto, CA 94304
Tel. 415-493-0400
TELEX- 348430

GENERAL INSTRUMENT
TAIWAN
PO. Box 22226
Hsin Tien
Taipei
Tel. 9113860
TELEX- 785-31115

North American Direct Sales Offices
HEADQUARTERS

CENTRAL AREA

EASTERN AREA

GENERAL INSTRUMENT

2355 S. Arlington Hts . Rd .
Suite 303
Arlington Heights, IL 60005
(312) 364-9410

330 Milltown Road
E. Brunswick, NJ 08816
(201) 254-1588

5820 W. 85th Street, Suite 102
Indianapolis, IN 46278
(317) 875-6851

2020 McNab Road , Suite 121
Ft. Lauderdale, FL 33309
(305) 973-4640

Optoelectronics Division
3400 Hillview Avenue
Palo Alto, CA 94304
Tel. (415) 493-0400
TWX : (910) 373-1767

WESTERN AREA
25301 Cabot Road, Suite 204
Laguna Hills, CA 92653
(714) 581-5817

Optoelectronics Division
3400 Hillview Avenue
Palo Alto, California 94304
Tel : (415) 493-0400
TWX: (910) 373-1767

SOUTHEAST AREA

NEW ENGLAND AREA
400-2 Totten Pond Road
Waltham , MA 02154
(617) 890-9399

GENERAL
INSTRUMENT



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:07:08 14:37:47-08:00
Modify Date                     : 2017:07:08 15:27:51-07:00
Metadata Date                   : 2017:07:08 15:27:51-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:17bddc5a-5b6e-fb42-932e-cd6885d99c91
Instance ID                     : uuid:676100da-4bd9-6c4f-bc9e-bf038f759100
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 438
EXIF Metadata provided by EXIF.tools

Navigation menu