1983_NEC_Integrated_Circuits_for_Consumer_Use 1983 NEC Integrated Circuits For Consumer Use

User Manual: 1983_NEC_Integrated_Circuits_for_Consumer_Use

Open the PDF directly: View PDF PDF.
Page Count: 1150

Download1983_NEC_Integrated_Circuits_for_Consumer_Use 1983 NEC Integrated Circuits For Consumer Use
Open PDF In BrowserView PDF
t-IEC

INTEGRATED CIRCUITS
FOR CONSUMER USE
1983/1984

NEC cannot assume any responsibility for any circuits shown or represent that
they are free from patent infringement.
NEC reserves the right to make changes at any time without notice in order to
improve design and supply the best product possible.

©

1983

NEC Corporation

INTEGRATED CIRCUITS FOR ~CONSUMERUSE
1983/1984

II1II

~_1.__A_L_P_H_A_-_N_U_M_E_R_IC_A__L_IN__D_EX______________________________
2.

QUICK REFERENCE GUIDE

3. CROSS REFERENCE GUIDE
4. MAINTENANCE AND OBSOLETE TYPES
5. GENERAL STATEMENT

*

NEC's INTEGRATED CIRCUITS FOR CONSUMER USE
o History

0

Types and Featu res

o Type Number Designation

0

Device Technologies

*

STANDARDS OF INTEGRATED CIRCUITS

*

HINTS ON CORRECT USE

*
*

TECHNICAL SYMBOLS AND TERMS
RELIABILITY AND QUALITY CONTROL SYSTEMS

6. AUDIO APPLICATIONS
6 -1.

CAR AUDIO

6 -2.

HOME AUDIO

6-3.

PORTABLE AUDIO

7. TV APPLICATIONS

8. DIGITAL TUNING SYSTEMS
9. CLOCKS & WATCHES
10. VOLTAGE REGULATORS
11. ARRAYS

12. OTHERS
13. APPLICATION NOTES

ALPHA-NUMERICAL INDEX

ALPHA-NUMERICAL INDEX

Page

JJPA53C

14-DIP

5-Unit NPN Darlington Transistor Array ......... 870

~A54H

7-SIP

6-Unit Diode Array (Common Cathode) ......... 872

~A56C

16-DIP

7-Unit NPN Single Transistor Array . . . . . . . . . . . . 874

~A64H

7-SIP

6-Uriit Diode Array (Common Anode) . . . . . . . . . . . 878

~A67C

14-DIP

6-Unit NPN Darlington Transistor Array ......... 880

~A79C

16-DIP

7-Unit NPN Transistor Array . . . . . . . . . . . . . . . . . 882

p.PA80C

16-DIP

7-Unit PNP-NPN Transistor Array . . . . . . . . . . . . . . 884

~A81C

16-DIP

7-Unit NPN Darlington Transistor Array ......... 886

p.PA2001C

16-DIP

7-Unit NPN Darlington Transistor Array ......... 888

p.PA2002C

16-DIP

7-Unit NPN Darlington Transistor Array ......... 888

p.PA2003C

16-DIP

7-Unit NPN Darlington Transistor Array ......... 888

p.PA2004C

16-DIP

7-Unit NPN Darlington Transistor Array ......... 888

p.PB553AC

8-DIP

150 MHz Prescaler (Vcc=5 V) . . . . . . . . . . . . . . . . 578

p.PB556C

8-DIP

150 MHz Prescaler (Vee =3 V) . . . . . . . . . . . . . . . . 582

p.PB562C

8-DIP

1 G Hz Prescaler (V cc=5 V) . . . . . . . . . . . . . . . . . . 586

p.PC494C

16-DIP

Switching Regulator Control . . . . . . . . . . . . . . . . . 816

p.PC494G

16L-MFP

Switching Regulator Control . . . . . . . . . . . . . . . . . 827

p.PC574J

TO-92

33 V Tuning Voltage Stabilizer . . . . . . . . . . . . . . . 382

p.PC587C2

14-DIP

FM-MPX Demodulator . . . . . . . . . . . . . . . . . . . . .

p.PC1018C

16-DIP

AM-RF, MIX, IF

p.PC1026C

14-DIP

FM-MPX Demodulator . . . . • . . . . . . . . . . . . . . . . 101,973

p.PC1028H

7-SIP

FM-I F with Peak Detector. . . . . . . . . . . . . . . . . . .

p.PC1031H2

Po
10SIP

B/W Vertical Deflection . . . . . • . . . . . . . . . . . . . . 552

p.PC1032H

8-SIP

Dual Pre Amplifier. . . . . . . . . . . . . . . . • . . . . . . . 125

p.PC1043C

16-DIP

FG Motor Servo . . . . . . . . . . . . . . . . . . . . . . . . . 896

p.PC1052V

15-VDIP

Receiver for Radio-Control Systems . . . . . . . . . . . . 902

p.PC1053V

15-VDIP

Servo-Amplifier for Radio-Control Systems ....... 906

p.PC1158H2

7-SIP

Pre Amplifier with ALC . . . . . . . . . . . . . . . . . . . . 296

93,973

+ FM - IF Amplifier . . . . . . . . . . . 272
74,960

p.PC1161C3

16-DIP

FM-MPX Demodulator with Post Amplifier ....... 195

p.PC1163H

7-SIP

FM-I F Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . 177

pPC1167C2

16-DIP

FM-I F with Quadrature Detector . . . . . . . . . . . . . . 186

p.PC1176C

16-DIP

FM Noise Canceller . . . . . . . . . . . . . . . . • . . . • . . 121, 1001

P.PCl177H

Po
12SIP

3.5 W (4 Q) BTL Power Amplifier . . . . . . . . . . . . . 314

p.PCl180C

16-DIP

DOLBY B-Type Noise Reduction Processor ....... 254

p.PCl181 H3

Po
7- SIP

5.8 W (4 Q) Power Amplifier . . . . . . . . . . . . . . . . . 137

P.PCl182H3

Po
7- SIP

5.8 W (4 Q) Power Amplifier . . . . . . . . . . . . . . . . • 137

J,LPCl185H2

Po
12SIP

Dual 5.8 W (4 Q) Power Amplifier . . . . . . . . . . . . . 142

P.PCl188H

Po
12SIP

20 W (8 Q) Power Amplifier . . . . . . . . . . . .' ..... 222

J,LPCl197C

16-DIP

FM-MPX Demodulator . . . . . . . . . . . . . . . . . • . . • 286, 1049

..

ALPHA-NUMERICAL INDEX

Page

2

pPC1200V

15-VDIP

FM-I F with Quadrature Detector . . . . . . . . . . . . ..

79, 966

pPC1204C

16-DIP

REC/PB Amplifier. . . . . . . . . . . . . . . . . . . . . . . . 302

pPC1212C

8_ DIP
TAB

1 W (4 fl) Power Amplifier . . . . . . . . . . . . . . . . . . 326

pPC1213C

8_ DIP
TAB

2.4 W (4 fl) Power Amplifier . . . . . . . . . . . . . . . . . 336

pPC1215V

19-VDIP

AM Tuner for D.T.S. . . . . . . . . . . . . . . . . . . . . ..

57, 928

pPC1216V2

19-VDIP

AM Tuner . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

66, 939

pPC1217G

20-MFP

REC/PB System . . . . . . . . . . . . . . . . . . . . . . . . . 307

pPC1218H

8-SIP

250 mW (8 fl) BTL Power Amplifier ........... 347

pPC1221C

14_ DIP
TAB

Pre + ALC + 1 W (4 fl) Power Amplifier ...•...... 350

PPC1222C

16-DIP

AM Tuner + FM-IF Detector . . . . . . . . . . . . . . . . . 278,1043,1045

pPC1222C(R)

16-DIP

AM Tuner + FM-I F Detector . . . . . . . . . . . . . . . . . 278, 1043, 1045

pPC1224H

8-SIP

Dual Pre Amplifier. . . . . . . . . . . . . . . . . . . . . . .. 217

pPC1225H

Po
12SIP

30 to 50 W Power Amplifier Driver

234

pPC1227V

19-VDIP

FM-MPX Demodulator with Soft Separation ...... 109

pPC1228H

8-SIP

Dual Pre Amplifier . . . . . . . . . . . . . . . . . . . . . .. 130

pPC1230H

12-

pPC1235C

16-DIP

FM-MPX Demodulator with Post Amplifier

pPC1237H

8-SIP

Power Amplifier Protection

pPC1238

5-

Po
VDIP

10 W (8 n) Power Amplifier

228

pPC1241H

8-

Po
SIP

5.8 W (4 fl) Power Amplifier

152

pPC1242H

8-

Po
SIP

5.8 W (4 fl) Power Amplifier

152

pPC1243C

16-DIP

AM Tuner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

pPC1245V

19-VDIP

FM-I F with Peak Detector . . . . . . . . . . . . . . . . ..

Po
SIP

20 W (4 n) BTL Power Amplifier .............. 146
...... 206, 1024

. . . . . . . . . . . . . . . . 247

85

pPC1246C

16-DIP

Pre Driver for 3-Phases DC Brushless Motor . . . . . .. 911

pPC1252H2

8-SIP

dbx VCA Noise Reduction System. . . . . . . . . . . .. 256

pPC1253H2

8-SIP

dbx RMS Level Sensor Noise Reduction System .... 262

pPC1263C2

14_ DIP
TAB

Dual 1.2 W (8 fl) Power Amplifier . . . . . . . . . . . . . 357

PPC1277H

Po
12SIP

Dual 4.2 W (8 fl) Power Amplifier . . . . . . . . . . . . . 363, 1065

PPC1320C

16-DIP

FM-MPX Demodulator . . . . . . . . . . . . . . . . . . . . 115

PPC1350C

14_ DIP
TAB

Pre + ALC + 450 mW (8 fl) Power Amplifier ...... 368, 1069

PPC1352C

28-DIP

NTSC Chroma & Picture . . . . . . . . . . . . . . . . . . . . 473

PPC1353C

14_ DIP
TAB

SI F Processor & Picture . . . . . . . . . . . . . . . . . . .. 456

PPC1356C2

22-DIP

PI F Processor & Picture . . . . . . . . . . . . . . . . . . .. 442

PPC1361C

24-DIP

12 Channel Selector

PPC1362C

20-DIP

12 Channel Selector . . . . . . . . . . . . . . . . . . . . . . 392

PPC1363C

24-DIP

16 Channel Selector . . . . . . . . . . . . . . . . . . . . . . 398

PPC1364C2

28-DIP

SECAM Chroma. . . . . . . . . . . . . . . . . . . . . . . .. 491

386

ALPHA-NUMERICAL INDEX

Page
pPC1365C

28-D IP

PA L Chroma & Picture

PPC1366C

14_ DIP
TAB

B/W PI F Processor . . . . . . . . . . . . . . . . . . . . . . . 452

pPC1373H

8-SIP

Remote Control RX Amplifier . . . . . . . . . . . . . . . 405

pPC1377C

22-DIP

Color Synchro Processor . . . . . . . . . . . . . . . . . . . 560

pPC1378H

Po
7SIP

Color Vertical Deflection . . . . . . . . . . . . . . . . . .. 565

pPC1379C

16-DIP
TAB

B/W Synchro & Deflection . . . . . . . . . . . . . . . . .. 569

pPC1382C

14-DIP

SIF Processor & DC Attenuator . . . . . . . . . . . . . .. 463

505

pPC1384C

28-DIP

PAL Chroma & Picture . . . . . . . . . . . . . . . . . . . . 525

pPC1391H

8-SIP

SI F Processor. . . . . . . . . . . . . . . . . . . . . . . . . .. 469

pPC1394C

14-DIP

Switching Regulator Control. . . . . . . . . . . . . . . .. 832

pPC1397C

22-DIP

Picture Multiplex Adaptor . . . . . . . . . . . . _ . . . .. 545·

pPC1470H

TO-126

Motor Govener

pPC2002

Po
5VDIP

5.4 W (4 Q) Power Amplifier . . . . . . . . . . . . . . . . 159

pPC78LOO

SP-8

3-Terminal Positive Voltage Regulator (0.1 A) . . . .. 840

pPC78MOOH

TO-220

3-Terminal Positive Voltage Regulator (0.5 A) . . . .. 846

pPC7800H

TO-220

3-Terminal Positive Voltage Regulator (1 A) . . . . . ..

pPC7900H

TO-220

3-Terminal Negative Voltage Regulator (1 A) . . . . . .. 858

pPD832G

54-FLAT

3.5 Digit LCD Clock

742, 1091

pPD833G

54-FLAT

3.5 Digit LCD Clock

742, 1091

PPD1701 C-Oll

28_ SLlM
DIP

EU R LW/MW/FM DTS (Clock)

590

pPD1701 C-013

28_ SLlM
DIP

JPN/US AM/FM DTS (Cloci<) . . . . . . . . . . . . . . . . 598, 1076

pPD1701 C-014

28_ SLlM
DIP

JPN/US/EU R AM/FM DTS (Clock) . . . . . . • . . . .. 607

pPD1703C-017

28_ SLlM
DIP

US/CND VHF/UHF/CATV TV DTS (Remo. Con.) .. 617

pPD 1703C-018

28_ SLlM
DIP

JPN/US/EUR LW/MW/FM DTS . . . . . . . . . . . . . . 626

pPD1703C-020

28_ SLlM
DIP

JPN/US/EUR LW/MW/FM DTS (Clock, Timer)

pPD1704C-Oll

42-DIP

JPN/US/EUR AM/FM DTS

. . . . . . . . . . . . . . . . . . . . . . . . . 921

(Clock, Timer, Remo. Con.)
pPD1705C-012

42-DIP
64-FLAT

649

660

US/CND VHF/UHF/CATV TV DTS
(Clock, Timer, Remo. Con.)

pPD1706G-Oll

852, 1128

689

JPN/US/CND LW/MW/FM/SW DTS
(Clock, Timer) . . . . . . . . . . . . .. 704

pPD1913C

16-DIP

Remote Control Transmitter. . . . . . . . . . . . . . . .. 411

PPD1937C

16-DIP

Remote Control Receiver . . . . . . . . . . . . . . . . . .. 418

PPD1943G

20-MFP

Remote Control Transmitter. . . . . . . . . . . . . . . .. 411

PPD1986C

16-DIP

Remote Control Transmitter. .. . . . . . . . . . . . . .. 423

pPD1987C

16-DIP

Remote Control Receiver . . . . . . . . . . . . . . . . . .. 428

3

ALPHA-NUMERICAL INDEX

Page
J,LPD1990AC

4

14-DIP

Serial I/O Time Keeping . . . . . . . . . . . . . . . . . . . . 792, 1106

J,LPD2006G

54-FLAT

3.5 Digit FIP/LED Clock . . . . . . . . . . . . . . . . . . . . 771

J,LPD6102G

24-MFP

Remote Control Transmitter . . . . . . . . . . . . . . . . . . 433

J,LPD6517P3

CHIP

3.5 Digit Multiplex LCD Quartz Watch

J,LPD6529C

42-DIP

Automotive Clock . . . . . . . . . . . . . . . . . . . . . . . . . 787

. . . . . . . . . . 805

1. ALPHA-NUMERICAL INDEX

2. QUICK REFERENCE GUIDE
3.

CROSS REFERENCE GUIDE

4.

MAINTENANCE AND OBSOLETE TYPES

5.

GENERAL STATEMENT

*

NEC's INTEGRATED CIRCUITS FOR CONSUMER USE
o History

0

Types and Featu res

o Type Number Designation

0

Device Technologies

*

STANDARDS OF INTEGRATED CIRCUITS

*

HINTS ON CORRECT USE

*
*

TECHNICAL SYMBOLS AND TERMS
RELIABILITY AND QUALITY CONTROL SYSTEMS

6. AUDIO APPLICATIONS
6 - 1.

CAR AUDIO

6-2.

HOME AUDIO

6-3.

PORTABLE AUDIO

7. TV APPLICATIONS

8. DIGITAL TUNING SYSTEMS
9. CLOCKS & WATCHES
10. VOLTAGE REGULATORS
11. ARRAYS
12. OTHERS
13. APPLICATION NOTES

QUICK REFERENCE GUIDE

QUICK REFERENCE GUIDE FOR AUDIO ICs
AM TUNER ICs
Function
Type No.

Package

",PC1018C

16-DIP

",PC1215V

19-VDIP

",PC1216V2

19-VDIP

",PC1222C/C(R)

16-DIP

",PC1243C

16-DIP

AM-RF
CON.

AM
IF

•
•
•
•
•

•
•
•
•
•

AM
DET

FM
IF

Application

FM
DET

Remarks

•

Home
Audio

Car
Audio

A

•
•
• • •
•

•
•

for DTS

C(R): Reverse S Curve

A

•

Portable
Audio

•

Page

272
57
66

•

-

278
169

FM-IF AMPLIFIER ICs
Application

Function
Type No.

",PC1028H

Package

7-SIP

",PC1163H

7-SIP

",PC1167C2

16-DIP

",PC1200V

15-VDIP

",PC1245V

19-VDIP

FM
IF

FM
DET

0

0

•
•
•
•

•
•
•

Signal
Meter

DET
PEAK

•

QUADRATURE

•

Home
Audio

Car
Audio

Portable
Audio

A.

0

A.

•
•

QUADRATURE

A

PEAK

A

Page

74
177

A

186

•
•

79
85

FM-MULTIPLEX les
Function
Type No.

Package
PLL

",PC587C2

14-DIP

",PC1026C

14-DIP

",PC1161C3

16-DIP

",PC1197C

16-DIP

",PC1227V

19-VDIP

",PC1235C

16-DIP

",PC1320C

16-DIP

•
•
•
•
•
•
•

POST
AMP

Application

VCO
STOP

Sep. Adj.

Home
Audio

Car
Audio

•

•
•

A

•
•

•
•
•
•
•

•
•
•
•

•

Page

93
101
195

A

•

Portable
Audio

•
•

•

286
109
206

A

115

7

QUICK REFERENCE GUIDE

PRE AMPLIFIER ICs

Type No.

Package

Supply
Voltage
VCC
(V)

",PC1032H

8-SIP

8- 17

/JPC1158H2

7-SIP

2.2 - 15

/JPC1204C

16-DIP

8 .... 20

/JPC1217G

20-MFP

/JPC1224H

8-SIP

±10 .... ±25

/JPC1228H

8-SIP

6,..., 16

1.8"'" 6

Electrical
Characteristics

Function
PRE
AMP

ALC DUAL

•

•
• •
• •
• •
•
•

•
•

Application
Page

Avo
(dB)

T.H.D.
(%)

Noise
(",Vr.m.s.)

81.0

0.1

1.4

70.0

0.05

1.2

85.0

0.3

1.3

72.0

0.07

1.0

72.0

0.002

0.8

100.0

0.05

1.1

Home
Audio

Car
Audio

•

•
•

Portable
Audio
125

•
•
•

296
302
307
217

•

A

130

Portable
Audio

Page

POWER AMPLIFIER ICs

Type No.

Po

RL

(W)

(n)

VCC
(V)

Remarks

Po
12- SIP

3.5 .... 10

3.5

4

6

BTL (1 W DUAL)

Po
7- SIP

9.5"" 16

5.8

4

13.2

OTL

/JPC1185H2

Po
12- SIP

9.5"" 18

5.8X2

4

13.2

OTL

",PC1188H

Po
12- SIP

±17"'" ±23

18

8

±22

OTL

1

4

6

OTL

2.4

4

9

OTL

/JPC1181 H3/82H3

/JPC1212C

8- DIP
TAB

3.5"'" 9

",PC1213C

8- DIP
TAB

4.5"" 11

/JPC1218H

8- SIP

1.8...., 5

0.25

8

3

BTL

/JPC1221C

14- DIP
TAB

3.5"'" 9

1

4

6

OTL Pre+ALC

/JPC1230H

Po
12- SIP

9"'" 16

20

4

13.2

BTL

±6 ...... ±1.5

8.4

8

±13

OTL

/JPC1238

Po
5- VDW

/JPC1241 H/42H

Po
8- SIP

9 .... 16

5.8

4

13.2

OTL

/JPC1263C2

14- DIP
TAB

3,..., 13

1.2 X 2

8

9

OTL

/JPC1277H

Po
12- SIP

5"'" 16

4.2X2

4

12

OTL

/JPC1350C

14- DIP
TAB

3.5 .... 10

0.45

8

6

OTL Pre+ALC

8,..., 18

5.4

4

14.4

/JPC2002

Po
5- VDIP

Applications

Electrical Characteristics

VCC
(V)

/JPC1177H

8

Package

Supply
Voltage

OTL

Home
Audio

Car
Audio

•

•
•

314
137
142

•

222

•
•
•
•

•

326
336
347
350
146

•

228

•

152

•
•
•

•
•

357
363
368
159

QUICK REFERENCE GUIDE

QUICK REFERENCE GUIDE FOR DTS ICs
DIGITAL TUNING SYSTEM ICs ,uPD1700 Series (AUDIO & TV)

~
Item

Package
Last Channel
Memory
Preset
Memory

J.LPD
1701 C-Oll

J.LPD
1701C-013

J.LPD
1701 C-014

J.LPD
1703C-017

J.LPD
1703C-018

28- SLIM
DIP

28- SLIM
DIP

28- SLIM
DIP

28- SLIM
DIP

28- SLIM
DIP

FM, MW, LW

FM,MW

FM,MW

TV

FM,MW, LW
7(FM)/
7(MW+LW)

6(FM)/6(MW) 6(FM)/6(MW) 6(FM)/6(MW)

Auto Down

28?L1M
DIP
FM, MW, LW

•
•
•
•

•

•

J.LPD
1704C-Oll

J.LPD
1705C-012

42-DIP

42-DIP

FM,MW

TV

J.LPD
1706G-Oll
64-FLAT
FM,MW
LW,SW
10(FM+MW
+ LW+SW)

6(FM)/6(MW) 8(FM)/8(MW)

•

Preset Ch.
Address Ind.
Auto Up

J.LPD
1703C-020

•

•

•

0

0

0

0

0

0

0

0

•

•
0

•

0

0

0

•
•

0

0

•

•

•

0

0

0

0

0

0

0

•

0

0

0

0

0

0

0

IF Offset

0

0

0

0

0

0

0

Dimmer

0

0

0

0

24

12

12

24

24

12

12/24

1

3

1

1

Manual Up
Manual Down
Rotary Tuning

0

10-Key Direct
Muting

Clock (Hr)
Timer (Series)
Slee p (

Indicator

I

A~to

off )
mmute

64

60

LED

•

0

0

A

A

A

A

0

FIP

A

A

A

0

0

0

•

0

LCD

0

Remo. Con.
c

...aco

.~

0..
a.

«

a

:.c:J
«

Car

•

•

•

Home

A

A

Portable

A

A

J.LPB553AC

•

A

A

A

A

A

•

•

•

A

A

A

A

A

•

TV·CATV

Prescaler

0

0

J.LPB562C

•
J.LPB553AC'

J.LPB562C

•
J.LPB556C

9

QUICK REFERENCE GUIDE

QUICK REFERENCE GUIDE FOR TV ICs
CHANNEL SELECTOR ICs

Type No.

Package

Supply
Voltage
VCC
(V)

Tuning
Voltage
Stabilizer

•

~PC574J

TO-92

-

~PC136~C

24-DIP

12

~PC1362C

20-DIP

12

~PC1363C

24-DIP

12

Indicator

Function
12 Ch
Selector

16 Ch
Selector

Neon

•

•
•

•
•

•

LED

Remarks

Page

33 V Zener

382

•
•
•

386
392
398

DIGITAL TUNING SYSTEM ICs
Refer to "DIGITAL TUNING SYSTEM ICs J,LPD1700 Series" on Page 9.

INFRARED REMOTE CONTROL SYSTEM ICs

Type No.

Package

Supply
Voltage
VCC
(V)

~PD1986C

16-DIP

2.2- 7.2

~PD1913C

16-DIP

2.0"'" 3.3

~PD1943G

20-MFP

2.0 - 3.3

~PD6102G

24-MFP

2.0"'" 3.3

~PC1373H

8-SIP

6 - 14.4

~PD1937C

16-DIP

12

~PD1987C

16-DIP

12

Function
Receiver

Transmitter
TV

•

General

Page

Remarks

Pre Amplifier
for TV

•
•
•

•

27-KEY

423

20-KEY 32-Custom Code

411

32-KEY 256-Custom Code

411

64-KEY 256-Custom Code

433
405

•
•

27-Command Receiver

418

26-Command Receiver

428

PIF ICs

Type No.

Package

Supply
Voltage
VCC
(V)

~PC1356C2

22-DIP

12

~PC1366C

DIP
14_
TAB

12

Function
AGC

Video
Detector

Video
Amplifier

AFT

SIF
Independence

•
•

•
•

•
•

•

•

•

•

SIF Amp.
& Det.

DC
Volume

Audio
Driver

Audio
Output

•
•
•

•
•

•

•

VIF
Amplifier

Page

442
452

SOUND ICs

Type No.

10

Package

Supply
Voltage
VCC
(V)

~PC1353C

DIP
14_
TAB

12

~PC1382C

14-DIP

12

~PC1391H

8-SIP

12

Function
Remarks

Page

456

•

463
for Stereo &
Bilingual Demo.

469

QUICK REFERENCE GUIDE

CHROMINANCE & LUMINANCE ICs

Type No.

Package

Supply
Voltage
VCC
(V)

J.lPC1352C

28-DIP

12

J.lPC1364C2

28-DIP

12

J.lPC1365C

28-DIP

12

J.lPC1384C

28-DIP

12

J.lPC1397C

22-DIP

12

Function
Video
Amp.

Pedestal
Clamp

Color
Sync.

Color
Demo.

•

•

•
•

•

•
•

•
•

•

•
•

•
•

Video
Text
Interface

PALl
SECAM
Auto Sw.

•
•

•

Remarks

Page

NTSC; DC Res.: 75 %

473

SECAM

491

PAL; DC Res.: 100 %

505

PAL; DC Res.: 75 %

525

Analogue Inputs

545

DEFLECTION ICs

Type No.

Package

Supply
Voltage

Function
Sync.
Sep.

VCC
(V)

IlPC1031H2

Po
10SIP

12 - 18

IlPC1379C

DIP
16_
TAB

12

IlPC1377C

22-DIP

12

IlPC1378H

Po
7-S IP

24

Vert.
OSC

(H+V)
Sep

•
•

• H Sep
V Sep

•

•

Application

Hori. AFC'
OSC· X-Ray·
Pre-Driver

Vert.
Output

•
•

•
•

Page
Color

B/W

•
•

Small

Small

•
•

•

552

569
560
565

QUICK REFERENCE GUIDE FOR
VOLTAGE REGULATOR ICs
SWITCHING REGULATOR CONTROL ICs

Type No.

J.l.PC494C

Package

Supply
Voltage
VCC
(V)

Reference
Output
Voltage
VREF
(V)

16-DIP

J.l.PC494G

16L-MFP

J.l.PC1394C

14-DIP

7 - 41
6.6
(Shunt)

5 ± 0.25

Function

Features
Output
Mode

OSCWave
Form

Over Current
Protection

Single
or
Push-Pull

Saw-Tooth

D.C.

Single

Saw-Tooth

Dynamic

Dead
Inhibit Time
Control

•

•

•

Sync.

•
•

Low
Voltage
Protection

•

Page

816
827
832

I I

QUICK REFERENCE

GUIDE

3-TERMINAL REGULATOR ICs

Type No.

*

12

Original

~PC78L05

SP-8

@

78L05

~PC78L08

SP-8

@

78L08

~PC78L10

SP-8

@

-

'* - 20- + 150
'* -20 -+ 150
'* -20 -+ 150
'* -20 -+ 150
'* -20 -+ 150

~PC78L12

SP-8

@

78L12

~PC78L15

SP-8

@

78L15

~PC78M05H

TO-220AB

78M05

-20 -+ 80

~PC78M08H

TO-220AB

78M08

~PC78Ml0H

TO-220AB

~PC78M12H

TO-220AB

~PC78M15H

TO-220AB

~PC78M18H
~PC78M24H

VIN
(V)

VOUT
(V)

'*
'*
'*
'*
'*

10

MAX.
(A)

PT
MAX.
(W)

MIN.

MAX.

5

7

30

0.1

0.8

8

10.5

30

0.1

0.8

10

12.5

35

0.1

0.8

12

14.5

35

0.1

0.8

15

17.5

35

0.1

0.8

*

5

7

35

0.5

20

-20 -+ 80

*

8

10.5

35

0.5

20

-

-20 -+ 80

*

10

12.5

35

0.5

20

78M12

-20 -+80

*

12

14.5

35

0.5

20

78M15

-20 -+80

*

15

17.5

35

0.5

20

TO-220AB

78M18

-20 -+ 80

*

18

21

35

0.5

20

TO-220AB

78M24

-20 -+ 80

*

24

27

40

0.5

20

J.LPC7805H

TO-220AB

7805

-20 -+ 80

*

5

7

35

1.0

20

~PC7808H

TO-220AB

7808

-20 -+ 80

*

8

10.5

35

1.0

20

~PC7812H

TO-220AB

7812

-20 -+ 80

*

12

14.5

35

1.0

20

~PC7815H

TO-220AB

7815

-20 -+ 80

*

15

17.5

35

1.0

20

~PC7818H

TO-220AB

7818

-20 -+ 80

*

18

21

35

1.0

20

~PC7824H

TO-220AB

7824

-20 -+ 80

*

24

27

40

1.0

20

~PC7905H

TO-220AB

7905

-20 -+ 80

* -5

- 7

-35

1.0

20

~PC7908H

TO-220AB

7908

-20 -+ 80

* -8

-10.5

-35

1.0

20

~PC7912H

TO-220AB

7912

-20 -+ 80

*-12

-14.5

-35

1.0

20

~PC7915H

TO-220AB

7915

-20 -+ 80

*-15

-17.5

-35

1.0

20

~PC7918H

TO-220AB

7918

-20 -+ 80

*-18

-21

-35

1.0

20

~PC7924H

TO-220AB

7924

-20 -+ 80

*-24

-27

-40

1.0

20

@ ~PC78LOO

'*
*

Package

Operating
Temperature
Range
(OC)

Series are used NEC original packages called SP-8.
If package dimension is needed, see each specification.
Junction Temperature.
Output Voltage Accuracy ± 10 %.
Output Voltage Accuracy ±5 %.

QUICK REFERENCE GUIDE

QUICK REFERENCE GUIDE FOR ARRAYS
TRANSISTOR ARRAYS
~___________TypeNo.

------ -~

Item
Package

Number of units
Sink
Outputs

~PA2001C ~PA2002C ~PA2003C ~PA2004C

~PA53C

~PA56C

~PA67C

~PA79C

~PA80C

~PA81C

14-DIP

16-DIP

14-DIP

16-DIP

16-DIP

16-DIP

16-DIP

16-DIP

16-DIP

16-DIP

5

7

6

7

7

7

7

7

7

7

•

•

0

0

G

Cit

•

60

60

60

60

•
•

Source

•

Vo(V ss ) MAX. (V)

30

40

30

20

(-60)

45

10 MAX. (A/unit)

0.4

0.1

0.15

0.15

50m

0.4

0.5

0.5

0.5

0.5

3200

200

-

2800

2800

2800

•

Single

hFE TYP. (-)
NPN Darlington

•

LED, Lamp

c:
CtI

0

0

0

•

0

0

0

0

20

-

2.7

10.5

•

0

0

0

22

20

...

G

•

Induction Load

A.

A

0

.~

0.
c.

0

Printer

0

.~

2500

PNP-NPN

0

Reverse Bias
Protected Inputs

(kn)

450

Separate

- - - - - - .. - -

Clamp Diode

Input Resistance

2500

2800

10.5 &

20

20

-

A.

0

0

0

0

0

...

G

•

•

0

A.

0

0

0

0

14-25 V
PMOS

5V
TTL,
CMOS

10 V
CMOS

Zener

-----1

Feed-forward,
Feed-back,
Measures for
correction

~------~------~

c
o
.;::;
C'O

E

.Ec
"C
Qj

g
S2

Field

1. ALPHA-NUMERICAL INDEX
2.

QUICK REFERENCE GUIDE

3. CROSS REFERENCE GUIDE
4. MAINTENANCE AND OBSOLETE TYPES
5.

GENERAL STATEMENT

*

NEC's INTEGRATED CIRCUITS FOR CONSUMER USE

a History

0

Types and Features

a Type Number Designation

0

Device Technologies

*

STANDARDS OF INTEGRATED CIRCUITS

*

HINTS ON CORRECT USE

*
*

TECHNICAL SYMBOLS AND TERMS
RELIABILITY AND QUALITY CONTROL SYSTEMS

6. AUDIO APPLICATIONS
6-1.

CAR AUDIO

6-2.

HOME AUDIO

6-3.

PORTABLE AUDiO

7. TV APPLICATIONS

8. DIGITAL TUNING SYSTEMS
9. CLOCKS & WATCHES
10. VOLTAGE REGULATORS

11. ARRAYS
12. OTHERS
13. APPLICATION NOTES

•• t., ..:,

i
I

I

CAR AUDIO

INDEX
Page
J..LPC1215V

AM Tuner for DTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

57

J..LPC1216V2

AM Tuner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

66

J..LPC1028H

FM-I F with Peak Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

74

J..LPC1200V

FM-I F with Quadrature Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

79

J..LPC1245V

FM-IF with Peak Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

85

J..LPC587C2

FM-MPX Demodulator _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

93

J..LPC1026C

FM-MPX Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

101

J..LPC1227V

FM-MPX Demodulator with Soft Separation . . . . . . . . . . . . . . . . . . . . ,

109

J..LPC1320C

FM-MPX Demodulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

115

J..LPC1176C

FM Noise Canceller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

121

J..LPC1032H

Dual Pre Amplifier

125

J..LPC1228H

Dual Pre Amplifier

130

J..LPC1181H3

5.8 W (4 n) Power Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

137

J..LPC1182H3

5.8 W (4 n) Power Amplifier . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . .

137

J..LPC1185H2

Dual 5.8 W (4 n) Power Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . .

142

J..LPC1230H

20 W (4 n) BTL Power Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . .

146

J..LPC1241H

5.8 W (4 n) Power Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

152

J..LPC1242H

5.8 W (4 n) Power Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

152

J..LPC2002

5.4 W (4 n) Power Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

159

•

55

CAR AUDIO
BLOCK DIAGRAM

AM Block

'\7 Ant.

"--

..

AM
Detector

AM
IF Amp.

AM
Front End

p

AM OUT

J,tPC1215V (for DTS)
J,tPC1216V2

FM Block

\17 Ant.

AMIN
R CH. OUT

'--

FM
Front End

r--

FM
IF Amp.

r--

FM
IF Limiter

FM
Detector

f-

~

Noise
Canceller

-

MPX.

t-

~

L CH. OUT

A
MIX
RF
( JE9016 ) ( JE9011 )

( JE9011 )

I

I

I

OSC
( JE9011

I

I
J.,LPC1176C

J,tPC1028H
J,tPC1200V
J,tPC1245V

I

I
J,tPC587C2
J.,LPC1026C
J,tPC1227V
PC1320C

AF Block
R CH IN

~

Pre Amp.

P.H.

~
P.H.

Pre Amp.

~
I I

I

Control
Amp.

Control
'--______
Amp.

f

I

Po Amp.

~------~OC]

___'~--~'___p_O_A_m_p_.___'~-------o(]

L CH. IN

J.,LPC1032H (Dual)
J,tPC1228H (Dual)

56

SPEAKER

'----------'

J.,LPC1181H3
J.,LPC1182H3
J.,LPC1185H2 (Dual)
J,tPC1230H (BTL)
J.,LPC1241H
jJPC1242H
J.,LPC2002

SPEAKER

BIPOLAR ANALOG INTEGRATED CIRCUIT

,uPC1215V
ELECTRONIC TUNING AM RADIO RECEIVER SUBSYSTEM
SILICON BIPOLAR MONOLITHIC INTEGRATED CIRCUIT

DESCRIPTION
The ,uPC1215V, a monolithic integrated circuit, is a subsystem that provides the mixer, low level oscillator, IF
amplifier, detector and On channel detector stages for an electronic tuning AM radio receiver.
The ,uPC1215V also provides internal AGC for the first IF amplifier stage, delayed AGC for an optional external
RF amplifier, oscillator buffer amplifier to drive a logic section and local/distance sensitivity control.
The ,uPC1215V is suitable for use in automotive radio receivers, specially where compact mounting is required,
such as car stereo sets, because its package is the 19-1eads vertical dual in-line plastic package (V-DIP).

FEATURES
o Varactor-Diode tuning.
o Good sensitivity and wide AGC range.
o Excellent overload characteristics.
o Delayed AGC for RF amplifier.
o Special low level oscillator to reduce tracking error.
o Oscillator buffer output.
o ON channel detector for auto scan stop.
o Local/Distance sensitivity control.
o Occupation of minimum area in P.W.Board.
PACKAGE DIMENSIONS (in millimeters)

c 1.3
~

q
2 8

2 .5 MAX.

1\

~

x «x «x «x

«
MARKING

1

2

3

4

5

6

7

8

9

~

~

~

~

L11

N

co

co

cO

S

~

::!

10 11 12 13 14 15 16 17 18 19

"--

-

t--

2.54
I---

~

I

I

2. 54

0.6 MAX.

I----22.86

II

0.35

1
2.54
I--

57

pPC1215V
BLOCK DIAGRAM

CONNECTION DIAGRAM
Connection

Pin No.

Connection

Pin No.

1

GND1

2

AGC for Antenna

3

AGC Filter

4

AGC for RF

5

OSC Tank

6

MIX Input
OSC Buffer Output

7

OSC Bypass

8

9

MIX Output

10

GND2

11

1 st. I F Amp. Input

12

AGC Input

13

1st. IF Amp. Output

14

Detector Output

15

2nd. IF Amp. Input

16

VCC

17

On Channel Det. Input

18

LO/DX Control Input

19

On Channel Signal O:.Jtput

EaUIVALENT CI RCUIT

19

18

58

,uPC1215V
ABSOLUTE MAXIMUM RATINGS (Ta=25 DC)
DC Supply Voltage

15

Vcc

V

3.0
430 (Ta = 75 DC)

Input Voltage

Vi

Package Dissipation

Pd

Operating Temperature

T opt

Storage Temperature

T stg

Vp·p
mW

-30 to +75
-40 to +125

°c
°c

8.0 to 15
-30 to +75

°c

RECOMENDED OPERATING CONDITIONS
DC Supply Voltage Range

VCC

Operating Ambient Temperature

Ta

ELECTRICAL CHARACTERISTICS (Ta=25
CHARACTER ISTIC

SYMBOL

°c,

MIN.

V

Vcc=10 V, f=1.0 MHz, f mod .=400 Hz, mod.=30 %)
TYP.

MAX.

UNIT

TEST CONDITION

Circuit Current

ICC

10

14

21

mA

Maximum Sensitivity

MS

14

21

28

dBJ,LV

Signal to Noise Ratio

SIN

8.0

13

dB

Vi = 21 dBJ,LV

Vo

70

100

130

mVr.m.s.

Vi=74 dBJ,LV

Detector Output Volt.
Harmonic Distortion
On Channel Signal

T.H.D.

0.5

V19·L
V19-H

At no signal
Vo=30 mVr.m.s.

1.0

%

Vi =120 dBJ,LV

0.5

V

Vi = 0 d BJ,L V, R L = 18 kn

V

Vi = 74 dBJ,LV, RL = 18 kn

8.0

TUNER PERFORMANCE CHARACTERISTICS
(Ta=25

°c,

Vcc=10 V,f=1.0 MHz,f mod .=400 Hz, mod.=30 %)

CHARACTER ISTIC

TEST CONDITION

VALUE

UNIT

Maximum Sensitivity

V 0 = 30 mVr .m.s.

22

dBJ,LV

Usable Sensitivity

SIN =20 dB

28

dBJ,LV

Detector Output Voltage

Total Harmonic Distortion

Vi =74 dBJ,LV

100

mVr.m.s.

Vi =74 dBJ,LV

0.3

%

Vi=126 dBJ,LV

0.6

%

Vi=74 dBJ,LV, mod.=80 %

1.2

%

Signal to Noise Ratio

Vi=74 dBJ,LV

52

dB

I F Rejection Ratio

Vo=30 mVr.m.s., IF =450 kHz

56

dB

Image Rejection Ratio

Vo = 30 mVr.m.s., f+2 IF

57

dB

Selectivity

M=±10 kHz

39

dB

40

dB

47

dB

Tweet

Vi=74 dBJ,LV, 2 IF=900 kHz
3 IF = 1 350 kHz

OX Sensitivity

V19=8.0V

26

dBJ,LV

On Channel Bandwidth

Vi =74 dBJ,LV

5.0

kHz

At terminal 5

150

mVr.m.s.

At terminal 8

4.0

Vp-p

Oscillation Voltage

59

m

o

'l::
"'tJ
C')
..l

TEST CIRCUIT

N
..l

o22~ld 9

(J1

<

AC. Volt. Meter

Distortion Meter

Ql : 2SK49H

Vee
Dummy Antenna

30 Q 15 pF

~I

L2
. 022 JiF

~

-

SG: 50

Q

+ 10 V

+

65 pF

47 JiF

'.022.F

+
2.2 JiF

I
Lli

I

,uPC1215V
150 k.Q

+
2.2 JiF

.01 JiF

~PF
150 k.Q

l '1

.022

CT3

IIF

I

18

:S2]:: 1
D
m
I
CJ)

k.Q

r

.022 JiF

CF2

Tuning Voltage
DC. Volt. Meter

,uPC1215V
COIL DATA

L 1 & L2 : Ant. & R F Coil
Tank -r-~,.......,

Drain

GND

Vee

: OSC Coil

CD

MIX

Vee

14T

(D-Q)
48T

o

: 1FT

TYPE 7MC·4718N (Toko inc.)

~
@

®

®

IFT2

62T

Qu=60 min., L=95 ,uH

0

3

7T

TYPE 7BR·6048Z (Toko inc.)

~
30

IFTl

Qu =80 min., L = 170 pH

CD-ev, ev-Q), @-@

MIX

L3

TYPE 7BR·5407N (Toko inc.)

eFl

Qu=115±20 %, C=180 pF built in

CD-ev, ev-Q), @-@
GND

1FT

69T

77T

14T

TYPE 7MC·l0l000CO (Toko inc.)
L = 680 .uH, C = 180 pF built in

------

CERAMIC FILTER
CFM2-450BL

CFM2-450ZL

Center Frequency

450 kHz

450 kHz

6 dB Bandwidth

6 kHz min.

4 kHz min.

Selectivity ±9 kHz

16 dB min.

18 dB min.

I nsertion Loss

6 dB max.

6 dB max.

Input Impedance

1.5 kn

1.0 kn

Output Impedance

2.0 kn

1.5 kn

Marking

2

3

I : Input

2:GND
3: Output

61

m
I\)
~

"'tJ
('")
-'

N

TYPICAL APPLICATION

-'
U'I

Antenna

L

<

AF Output

Ql: 2SK195

R4 68 Q

e1

e2

I 01"F
I-----r--l

L2
I:

Vee +10 V

hD2 iT

k

1[" eT2

r

OSC. Output
to PLL .S",th.g,,,

01 "F

ell
I

"'8 1+

.01 "F

ox

~
C21

lO,uF

+

pPCI215V

Logic Vee

R5

. 047 ,uF

Tuning Voltage
-from PLL Synthesizer
VOl. VD2 & VD3: ISV1l7

ICl~
1

.022 ,uF

,uPC1215V
TYPICAL CHARACTERISTICS (Ta = 25°C)
SIGNAL TO NOISE RATIO

DETECTOR OUTPUT CHARACTERISTICS

+10

co
"0
I

60

0

OJ
tlD

.'S -10
"0
>
:J
a. -20

I

-30


-50
-60

.Q

VCC=lO V
f=l.O MHz

ro

-

co
50
I

"0

J-, ...--i\.

0

>

I

Ii

:J

',p

/

---

Sj nal

I'

Noise

0

I

80

60

40

20

100

120

Vi-Input Voltage -dB,uV

o

80

60

40

20

100

120

Vi -Input Voltage -dBJ,N
OUTPUT VOLTAGE AND TOTAL
HARMONIC DISTORTION vs. MODULATION

TOTAL HARMONIC DISTORTION
VS, INPUT VOLTAGE

500

10
?f(
I
c:

I

8

0

',p

u

'c0

fmod=400 Hz

ro
0
I

2

0

~

0

20

0

U



120

Vo

:c

:J 200

r---

6

'c

bQ

.'S
>

"0

\

I

Vi

E
I 300

\\....

l-

0

t0

;;

\\
,\

4

c:

~

\

f mo d=400 Hz
Vi=74 BJ,tV

?f(
8
I

400

\
6

E
ro

I

VeC=lO V
f =1.0 MHz

\

(5

Vi
0

10

VCC=10 V
f =1.0 MHz

0

I

100

~

2

:/
./

\I,-Input Voltage -dB,uV
:):)

o

o

V

~fo,..

V

/'

J

T:e- " V

V

~

20

40
60
mod- Modulation-%

80

100

TOTAL HARMONIC DISTORTION
vs, MODULATION FREQUENCY

ELECTRICAL FIDELITY

+10

10

,

i

~

V

/

V

V

/

./

~r-.
0

I

--J
I

 -10

?f(
I

:J
a.
:J

0

0

Vi

0

\

o

,~ -20
a:::
I
o
> -30

-40
30

VCC=lO V
f =1.0 MHz
mod=30 %
Vj =74 dBtt V

III100

6

I

u

'c

I

0

\

E
ro

:c

\

ro


::t.
c:c
"0
I
ell

tlO

.:3
(5
>

Vee=IO V
f =1.0 MHz
fmod=400 Hz
mod=30 %
Vo=30 mVr.m.s.

\V

-20

-30

V

/'

+20

+10

Vee=lO V
f mo d=400 Hz
mod=30 %

40

30

~

1

'5

c.

.=

20

Usable Sensitivity
(S/N,=20 dB)

r-- 10....

I

I

~ I---

I

I
Max. Sensitivity(Vo =30 m~r.m.s )_.- -

CI:I

c
c

2c

-

f - Detune Frequency- kHz

o
0.6

1.0

0.8

1.4

1.2

1.6

f - Receiving Frequency - MHz

IF REJECTION AND IMAGE REJECTION

TWEET CHARACTERISTIC

0
Vec=IO"V
f mo d=400 Hz
mod=30 %
fif=450 kHz

80

c:c
"0
I 60

-10

_

....

0
:p
CI:I

0::
C

0
+:;

40

U

ell

'(jj'
0::

I

V

1\

...

~ejectlon

~

0.6

>

,If

c

I

tlO

8

c

CI:I

6

I)
Ii
/I

4

>

2
0

-6

64

'!

I

)

,
I

Iii i
VI J
I

-4

, \,
\,
1\

1\ ' ".
\

Vi=120 dBpV

I

~
~

11/

I

Vee-IO V
f=1.0 MHz
f mo d=400 Hz
mod=30 %
RL=18kO

,

Vi=30 dBpV I

\

50 \

~ \
~CD ~
~

I\.ll

,

+4
+2
-2
o
f - Detune Frequency - kHz

+6

2 IF(900 kHz)

-"~t~~3~~:~
T 1'F:- -

-

-

-50

1.6

1.4

1.2

1.0

0.8

~ 10

I

,\.",
,

-40

Vee=IO V
f mo d=400 Hz
mod=30 %
Vo=30 mVr.m.s.

12

B

\ i\

~

I-

ON CHANNEL BANDWIDTH

Ql
c

"\
,

-30

I

f -Receiving Frequency-MHz

en

f\, ~

ell
ell

l-

20

0

\

c:c
"0 -20
I

~
IF

1

~ejection

Imfge

o

20

40

60

80

100

120

COMPONENTS LAYOUT FOR P.W.ASSEMBLY (Copper side)

AF Output

Vee

OSC. Output

GNO

r

Vee

NEe

OUT

CIS

'~H-

R~'.~ .... C13 i '

V;:;' I
C6 ".:;.;.'

C,19

. C22

-,'-\!--

'. .

'

.

<.'.'
"

- '"

:''onn'a:
\,' I

,~\

+1'~T2,1

.- .r-:-l
.

,L' ~
L.1 R13
.,<;8)'

",-,"

' Iml i .'

--f"-:--.
C12

U

N

"
\

n
CT3

1

.

o.R2.Y

,~~

C4

S

Cl

C3

T

'

T

'

Ll

:0..

ANT

i..,:

'

IVriIl

J, R

'!'

~1. r'1

"--"Rl

, '

!

'VIO "'" -g--

LII .' '\
CFl

j

I C5I.........

. -,,-----

n 'n '0,(0 0 '

,:;.'

,

C7'

,d ,,>:,~

,-',"
1~:2Rl~
;

.

T

.
L:J2

'i2t-:.~~
'.' '. .:. * Tell--Jr-'
'-'-If--L~
CJ ""t
~.

LO/OX

Logic Vee -------

Antenna

f

\"'.R7 .R6'

,

8~

,'-;J

5

J

Vr
jlPCI215V

Tuning Voltage

1::
."
C')
~

N

~

c.n

<
m
OJ

BIPOLAR ANALOG INTEGRATED CIRCUIT

p,PC1216V2
AM TUNER
SILICON BIPOLAR MONOLITHIC INTEGRATED CIRCUIT

DESCRIPTION
ThepPC1216V2, a monolithic integrated circuit, is an AM tuner. It is suitable for use in automotive radio receivers,
specially where compact mounting is required, such as car stereo sets, because its package is the 19-1ead vertical
dual in-line plastic package (V-DIP).
Internally, R F amplifier, Mixer, IF amplifier, Detector and two types of AGC circuit are included.

FEATURES
• Reduction of the adjustment time and the mounting area for I F transformer.
• Minimum difference of maximum sensitivity at the various receiving frequency.
• Good SIN and good tweet characteristic.
• High strength against the electrostatic damages for the antenna terminal.
• Low transient noise when power switch is turned on.
• Wide AGC range is provided by the two AGC circuits (delay type) employed in the I F and R F stages, in addition
to the capability of withstanding large input and the yield of high SIN.
• Easy to handle because of its V-D IP construction.
• Free of mismounting in P.W. Board due to its lead formation.

PACKAGE DIMENSIONS in millimeters

~

25.5 MAX.

~

~

~ ..........

~

x« x«

MARKING

1

2

3

4

5

6

7

8

9

~
C\J



2
-0
>

-=;

r\,

'"

~
'0

i=0
c

bO

en

0

l\......

-50

Not

.-100

8

E
VI

is

6

u

vi

E 400

.;

>

Ql

-=;

:::c
'"

\

\

fij

"0

I-

I
ci

2

\

~

~

0

20

200

Q)

I 100
0

~

40

:::c
'"

I
ci
~
....,:

--- -- -- --I-80

60

100

Vo......V

4

./

I-

0

.....::::..±..-

'c

"0

Ql

, i\.
1--

V

0

120

2

o /'

../
~

o

Vi-Input Voltage-dB.uV

/'

V

0

I

60

40

20

m - Modulation- %

I

- -

~'" ~

Ql

bD

2

-0

>

-10

~,
r\

:::I

C.

-=;
o

.8u

,

-20

Vec= 13 V
f
= 1 MHz
Ql
o
m =30%
10 -30 Vi = 74 dB.uV
~
RL = 10 kS2
Ql

-40
30

\

\

I
100

300

1k

fmod- Modulation Frequency- Hz

70

-

T.H.O.

ELECTRICAL FIDELITY

"0

3k

/

,/'

+ 10
CD

./
,,/

6

u

fij

u

\ m=30%

~

is
0

0

\

m=80% \

I

§

c.

0

\

~
0

bO

\ \,

4

120

Vee=13V
-f
= 1 MHz
f mod=400 Hz
8 - Vi = 74 dB.uV
RL = 10 kS2

:;J

2 300
"6
>

'c

§

100

10

c

E
I

:::I

0

80

60

DETECTOR OUTPUT AND TOTAL HARMONIC
DISTORTION vs. MODULATION

Vee = 13 V
f
= 1 MHz
f mo d=400 Hz
RL = 10 kS2

1
\

,

I

40

20

120

10

I

L
Vi-Input Voltage- dB ,LV

80
40
60
Vi-Input Voltage-dB,LV

I

I

o

TOTAL HARMONIC DISTORTION
VS. INPUT VOLTAGE

c

10

/

/

.....

500

.2

/
i

I

20

20

z

(f)

\

Ql

I
I

V

I

0

~

30

.........

1\

U
.& -40

Vee = 13 V
f
= 1 MHz
fmod=400 Hz
m =30%
RL =10 kQ

V
1

0::

\

o

J

40

"I

B -30
:::J

-60

0
:;::;

fij

0

0
~

I

Vee = 13 V
f
= 1 MHz
fmod= 400 Hz
m
=30%
RL = 10 kS2

'-

-20 ~ r--...

Ql

bO

II

CD

"0

II

E

E
I

~

I,..-

~

50

10k

--

80

~

100

jlPC1216V2
TOTAL HARMONIC DISTORTION

vs. MODULATION FREQUENCY
10
Vee= 13 V
f
= 1 MHz
Vi =74 dB/.N
RL =10 kQ

8

~
I
c
a

:ea

6

ill

i:5
u

'c
a

§
C'J

\

4

:J:

Ci'i
(5

\

l-

,

I

ci
:i

\

,

m=80%

~

....,.:

\, " ..... ..........

m=30%

---- --- -

~
o

30

-~
1k

300

100

;,.

./

....

3k

10k

fmod -Modulation Frequency- Hz
IF REJECTION AND IMAGE REJECTION

TWEET CHARACTERISTIC

o

100

80

--- ---- -. . . .V

I
~

~

CD

"0

I

60

0

'+0
C'J

a::

I

/

I

V

\

-10

IF Rej ection

~

F+=- f - -

Image Rejection

I

-

\~
.~

~ -20
I

\\.

\\,
\

\1\.

c
0

U

Vee = 13 V
fmod= 400 Hz
m =30 %
RL = 10 kQ
A maxi mum output
value of a detector
output beat.

40
Vee = 13 V
fmod=4oo Hz
m =30%
Vo =40 mVr.m.s.
RL = 10 kQ

Q)

'iiJ

a::

20

/~ ~

'\

-40

\~

21F

J

V

".....

-50

I
I

,."

/

31F
I

o

o

0.5

20

40

80

100

120

Vi-Input Voltage- dB ,N

1.5

1.0

60

f- Receiving Frequency- MHz
ONE-SIGNAL SELECTIVITY
CHARACTE RISTIC

MAX. SENSITIVITY AND USABLE SENSITIVITY

50

100

,
I

80

\

CD

"0

I

60

C'J

a::

c.
E

",

40

::t

CD

I

"0

I

\,

\

I

/

-10

/

\

2 30
(5
>
~

+10

t:.f- Detune F requency- kHz

.........

c.

""'--

E

Vee = 13 V
f
= 1 MHz
fmod=400 Hz
m =30%
Vo =20 mVr.ms.
RL =10 kQ

I:

\ oJ

Cll
tlD

V

I

\
-20

>

I

20

Q. 30

40

I
I

,

g
~

\

I

I

Vee = 13 V
fmod=4oo Hz
m =30%
RL = 10 kQ

\

+20

C'J

c
c

Usable Sensitivity (S/N= 20 dB)

20

2c

c::(

I

~

-

10

"-

-

Max. Sensi'tivity(Vo-40 mVr.m.s.)

I

+30

o

0.5

I

j

I

-

I

I
1.0

1.5

f- Receiving F requency- MHz

71

..J

I\)

1::

"n

~

N
~

en

<
N

TYPICAL APPLICATION
ANT.

120Q
4.7JiH

AGe

DEl.

AGe

VR
~

' - { ) to Power Amp.

"

'-- 700
E

1.2

'c0

co

fMOO=400 Hz

DO

~
>

1.0

C
u

b 600

VCC=lO V
fFM=lO.7 MHz

500

0.8 :; 400

.fr

'0
....
I

300

0.4

.sg

0.2

8I 100

J:

d
I

C5

0

.,.:

./

/

20

40

I

2

......

'co

~

E
2 o
co

/"
100

80

~ I
I
~ .~ -30 ~

u

T.H.D.

CD
"t)

~
-10
co
=:!CD
.~ 3 o "t) -20
Q

...- V
-~

/""

0
0

~

c::

.~

/'

/

200

L.I..

/'

~

I 4

/"

~

0.6 o...
E
co

ro

VOAF . /

~

V

/

I

0

I

c::

0

:e

1.8
1.6

0

1.4

20

1.2

0.8

~

-I

0.6

d

0.4

I

:; -3

~

Co

o

... -4
0

N-5
Q

I

-6

0



I
I

I

I

VCC -Supply Voltage - V

I

--- -- --.J.:.~.~~80

100

4

f'\.

VCC=lO V
Vin=80 dBp

~
'r'\.

\

3

1\

"'\
1\

2

T.H.O.(Llf = ± 75 kHz)- I - - -

T~H.O.(Af:! ±2~.5

I-- . /

SIN

60

r-......

co

g

10

76

0:::

~

U

~

1'-

\

70

,

........ AMR

\

\

~

~

!:?

5

I
r-.
c::

~

r

\\~
I

-80

~

>

ICC

~ \

Z

~ -70

~

S CURVE

V6AF

c::

.-1-0...

1- 60 (f) 60

r- r---....

-

I-....

Vin -Input Voltage-dBp

I

(.)

0

L.I..

0.2

E

...

...

f= 10.7 MHz
fMOO=400 Hz
Vin=80 dBp

~ ........



Q)

....
:t:
.,.:

Q)

co

~

E
1.0
co

J:

I

0

III

'c0

"t)

20

I

DO

.s
u

CD

VOAF

/ V

TOTAL HARMONIC DISTORTION,
DETECTOR OUTPUT VOLTAGE, CIRCUIT
CURRENT vs. SUPPLY VOLTAGE

~ 2.0

V

kHz) I - I
15

I

-600 -500 -400 -300 -200 -100

0

~

f'.... r-

~

+ 100 +200 +300 +400 +500 +600

(10.7 MHz)
f-Carrier Frequency-kHz

-120

JLPC1028H

LIMITTING SENSITIVITY, DETECTOR
OUTPUT VOLTAGE VL AMBIENT
TEMPERATURE

DETECTOR OUTPUT VOLTAGE VL
MODULATION FREQUENCY
II]

II

--.......~

....
::J

.s-5
::J

\

o

.....
o

I

~ -10

~

ll-

I

~-15

o

~

Co=O.OI J-IF

I

I-I--

1

10

100

1 k

VCC=10 V
f=10.7 MHz
Vin=80 dB~
go=O

~
II]

'tJ

I

___ ' "

bO

~

'E

\

:.::i
I

10 k

70

.iii

c
~

100 k

Ic:

~

fMOO-Modulation Frequency-Hz

'tJ

I

2

50

bO

c
ra
.c
c..>
Q)

I

VCC=10 V
f=10.7 MHz
Vin=80 dBJ-I

Q)

:::.;
60
:;:;

~~2F-~
I

80

I

I
I

a

I
I

bO

ra

==0

-1

30

I

:; -2

:

-3

I

.....

20

~Q) -4

10

~

o

Vin(lim)" t - - -

I

c.

;3

I

I

>
40

r"'"

V
:--VL1VOAF
r-

I

I

I
I

-5

I
I
I

I
c(-6

u..

~ -20

o

~

20

40

60

80

Ta -Ambient Temperature-'C

DETECTOR COIL TUNING PROCEDURE

1. In the test circuit, the signal generator SG is connected to the input terminal pin 1, and the AF voltmeter and
the total harmonic distortion meter are connected to the output terminal pin 7.
2. The SG is set at f

= 10.7

MHz, fMOD

= 400

Hz, .6.f

= ±22.S

kHz and the input level to the device under test

shou Id be 200 JiV.
3. After the procedure of 1 and 2, the detector coil is adjusted so that the output level as indicated by the AF
voltmeter is maintained the maximum value.
4. Then the detector coil is finely adjusted so that the total harmonic distortion is obtained the minimum value.
5. After the setting of 1 mV input level, the procedure of 3 and 4 are repeated.
(By the tuning at 200 JiV and 1 mV input level, the device provides the most stable characteristic from weak to
strong input signal level.)

TYPICAL APPLICATION

50kVR

• 7511s De·emphasis

CF: Ceramic Filter
CFSA-107
TaKa INC. made
SFE 10.7MA
MURATA CO. made
or equivalent.

Det. Coil
fo= 10.7 MHz, 00=50
C=22 pF (Built in)
TKACA-17473Z
TaKa INC. made
or equivalent.

77

,uPC1028H
PRINTED CIRCUIT BOARD PATTERN
in millimeters (inches)

FOIL SIDE

o

o

~.OU.T

LO
LO

U
o

Cl

~
.-.
•

N

o

o

II--.------loo-----~.l
( 3.93'1)

COMPONENTS LAYOUT

o

o

NEC t-lPC I 028H

--r-~~~~~~Ak~:;:b2
330Q.

FRONT
....
END

0-1-+----1--_ AF OUTPUT

Oet.Coll

o

o
GND

CF: Ceramic Filter
SFE10.7 MA (Red)
MURATA CO. made
or equivalent

Tr: 2SC1674
2SC1675

DETCOIL DATA
4
pin 5

0

2
0

Pin6

78

0

TYPE TKACA-17473Z
TaKa INC., made
fO= 10.7 MHz
C=22 pF
Q u =50

BIPOLAR ANALOG INTEGRATED CIRCUIT

I1PC1200V
SUPER LOW NOISE FM-IF AMPLIFIER
WITH QUADRATURE DETECTOR
SILICON MONOLITHIC BIPOLAR INTEGRATED CIRCUIT

DESCR IPTION
The pPC1200V, a monolithic integrated circuit, is a FM-I F amplifier with a quadrature detector. FM interstation
noise and lateral recovered audio signal can be extremely reduced by the new developed circuit.
The IC, pPC1200V, enables the best use of an FM noise canceller section, because it does not affect the SIN at
low input level.
Outline is a new developed 15-lead Vertical Dual In-Line Plastic Package (V-DIP), so that it is suitable for use in
automotive radio receivers, where small mounting space is required.
FEATURES
• Low undesirable noise level : - 60 dB
• Very low lateral uncomfortable sound either upper or lower from the tuning point.
• Capability for effective use of FM noise canceller.
o Occupation of minimum area in P.C. Board.
o Easy to handle because of its V-D IP construction.
o Free of mismounting in P.C. Board due to its lead formation.
o Wide range of power supplies : 7 to 12 V
PACKAGE DIMENSION (in millimeters)

2.8±0.2

195 MAX

~

'I

r

~

~

xx
xc:t: c:t:x c:t:c:t:

::E ::E ::E::E
MARKING
\D CY) O"!r-:
1 2 3 4 5 6 7 8 910111213141" <.006 :::~

i

i

I

.....

1

1

I

I

2.54
I--

2.54

I----

0.6 MAX.

II

~ 1~

~

17.78

CONNECTION DIAGRAM
Pin No.

Electrical Connection

1
3
5

BYPASS

7

9

GND

Pin No.

Electrical Connection

BYPASS

2
4

BYPASS

6

IF2 INPUT

BYPASS

8

GND

11

N.S. CONTROL

13
15

AUDIO OUTPUT

10
12
14

IFl INPUT
IFl OUTPUT

IF2 OUTPUT
DETECTOR INPUT
BYPASS

VCC

79

jlPC1200V
BLOCK DIAGRAM (Top View)

EQUIVALENT CIRCUIT

r----------

I

I

Vee

I
I
I

I
I
I
I

OUTPUT

I

IF INPUT 0--4

ABSOLUTE MAXIMUM RATINGS (Ta=25 °C)

15

V

Vi

3

V p _p

Package Dissipation at Ta = 75°C

Pd

310

mW

Operating Temperature

Topt

- 30 to 75

°c

Storage Temperature

Tstg

-40 to 125

°c

10

V

Supply Voltage

Vcc

Input Voltage

RECOMMENDED OPERATING CONDITIONS (Ta=25 °C)
Operating Supply Voltage

Vcc

Supply Voltage Range

VCC

Operating Ambient Temperature

Ta

7 to 12

V

-30 to 75

°c

ELECTRICAL CHARACTERISTICS (Ta = 25°C, VCC = 10 V, f = 10.7 MHz, fmod. = 400 Hz, DEV. =±22.5 kHz)
CHARACTER ISTIC
Circuit Current

80

SYMBOL
ICC

Limi:ting Sensitivity (1)

Vi(lim) 1

Recovered Audio Voltage

Vo

MIN.

TYP.

MAX.

UNIT

12

19

25

mA

110

47

53

dBJ,LV

150

200

mVr.m.s.

TEST CONDITIONS
Vi =0 dBJ,LV
-3 dB point, VR = 0

n, SW: ON

Vi =100 dBJ,LV

AM Rejection

AMR

45

dB

Vi =100 dBJ,LV, AM: f mo d.=400 Hz, m=30 %

Signal-to-Noise Ratio

SIN

67

dB

Vi =100 dBJ,LV

Total Harmonic Distortion

T.H.D.

0.1

Limiting Sensitivity (2)

Vj(lim)2

50

0.5

%

dBJ,LV

Vi =100 dBJ,LV
-3 dB point, VR=5.1 kil,SW : OFF

,uPC1200V
TEST CI RCUIT
T

IF~'NPUT
0.02:"F
S.G.

U1

or-..

RG=75

VCC

AUDIO OUTPUT

AC Voltmeter and
Distortion Meter.

C. F. : Ceramic Filter
SFEI0.7MA (MURATA CO.)
T
154AC41109Z (TaKa INC.)
fo= 10.7 MHz, Qu= 110
C =82 pF

TYPICAL CHARACTERISTICS

Vo, T.H.D. vs.

Vo, AMR, T.H.D. vs. Vi

(D
'0

I

~ 0.8

I

c

o

0.6

0.4

I

I
ci
:C

r-:

7
[7

(D_-40
'0

I

'iii
f-

,r\

~-20
:::E
q::

o

.&-60

.8

~

\

\
\

Vee =10 V
f
=10.7 MHz
f MOD =400 Hz
Dev. = ± 22.5 kHz

-.......- f""...

I

o

~

E

I
c.

1.0

20

40

60

80

Vi-IF Input Voltage-dB,uV

100

120

400

'6

::J

q::

0.5

I
0

200

~

ci
:C

r-:

0

0

~
0
0

I

-------- ----- T.H.D.

600

Vee =10
f
=10.7 MHz
fMOD =400 Hz
=100 dBJlV
Vi

~

«l

'0

Noise

E
~
E

u

'c0

f-

:::>

« -80

1.5

(/)

'iii

\

0

o
'6

iii

Ci

I

AMR

\
\

../

:::>

o

o

\

I

c

0

:e

\

\

I

:::>

0.2

~

Signal

0

0::

«l

'0

~
'0)
I

u

'c

E

0

0::

t

~
(5

c

~f

800

2.0

20

40

±Af-

60

80

100

Modutaticifl - kHz

81

,uPC1200V

vaDe vs.

Vee=10V

0

co
"'0
I

c~o~
(75 Jls)

-5

::l

0

I
C=6800 pF
\ . (50 Jls)

\\

~

.e0

'6

-10

I

0

-15 Vee =10 V
=10.7 MHz
f
M = ±22.5 kHz
Vi =100 dBJlV
-20
10
30
100

~

>
I
llD

'0

>

::l

.e::l

o
U

Q

.k

3 k

10 k

4r---~-----+----~----~--~~~~+-~--~--~

I

g

\\

300

6r---~--~~~~-r----~----+-----+-----~--~

Q)

2

\~

::l

«

~

o

>

3~

30 k

-0.4

100 k

__

~

____

-0.3

~

____

-0.2

Vo, ICC, T.H.D., Vi (lim) vs.
70

2.0

co

~

I

c:

~

~
c:

200

I

/

o

60

Q)

en

~ 1.5 ~ 15 >150
E
ti
I
I
o
C
u

llD

c:

~ 50
:.:::i

I

~

20

'co

E
1.0
ro

:r:

t

::l

U

~

.e::l

10 0100

I

/

/

,'(vI-a) I

/

/

/

Va

70

-

Vi(lim)1

en

llD

'c0
50

:.:::i

!

8

I

I

I

10

12

14

Vee - Supply Voltage - V

~

40

15

I

____

~

____

0.1

~

____

0.2

__

~

0.4

200

~

.e-

t

::l

::l

1.0

u 10

:r:

'5

>
E

0

0

100

'6

=10.7 MHz
fMOD =400 Hz
fl.f =±22.5 kHz

::l

"iii

t>

C3

«

I
0 0.5
:i

u

~

I

0

!:)

50

~

16

T.H.O. (Vj=100 dBJlV)

;L

0

0

0
-30

0

25

50

Ta -Ambient Temperature -

82

~

0.3

I

c

~

I

THO. (Vj=l00 dB.uV)

E
ro

«

E

u

c:

o

1.5

0

'E

f
=10.7 MHz
fMOO=400 Hz
± ±22.5 kHz
~f

c:

0
:;::

0

:;::

10.5

20

2.0

ti

Q)

-

o

I

~
c:

Vi.(lim)2

' ..."",

.......

~

~

co
"'0 60
'5

~

lo

----

I
Z.

~ .............

____

VO , ICC, T.H.D., Vi (lim) vs. Ta

I(Vj=100 dBJlV)

"iii

~ 40

Vee

--

/'-

~

-0.1

10.7 ±~f -Frequency - MHz

fMOD - Modulation Frequency - Hz

"'0

ll.f

75

"C

j.lPC1200V
TYPICAL APPLICATION
T

C.F.
T
FIE

SFElO.7MA (MURATA Co.)
154AC41109Z (TaKa INC.)
DMA - 040 (SANKEN ELE. LTD.)
GAIN 33±3 dB
NF
5 dBMAX.

88-108 MHz

f

• 75 J.l s de'emphasis

AUDIO
')UTPUT

The procedure below should be carefully followed,
in order to get the best use of J..LPC1200V.
1. Limiting sensitivity should be 5 to 10 dBJ..LV
2. F M TUN ER should have Noise Figure as low as possible.
3. VR (connected with pin~11) should be adjusted until the
optimum point of low lateral sound and high sensitivity
is reached.

TYPICAL PERFORMANCE with complementary stages (Ref. Application Circuit)

AUDIO OUTPUT vs. INPUT VOLTAGE

Signal

O~----~~~,-,-+-------~------~------~------~------~

m -20
"0

Vee
f
fmod.
Oev.

I

:J
B:::l
0
0

'6

=10 V
=98 MHz
=400 Hz
= ± 22.5 kHz

-40

:::l

«
I

0

~

-60
Noise

-80
-20

0

20

40
Vi-Input

60

80

100

120

oltage - dB J.l V

83

,uPC1200V

AUDIO OUTPUT vs. CARRIER FREQUENCY
Vee =10 V

+10

f
=98 MHz
f mo d.=400 Hz
Dev.
±22.5 kHz
Vi
=40 dBJlV

=

o

-10

CD
"0

1::J

~

0

VR=
0 kO

0

-20

:0
::J

«

I
~

-30

-40

-0.4

-0.3

-0.2

-0.1

fc

o

98±~f-earrier

+0.4
Frequency-MHz

COMPONENT LAYOUT FOR P.C. ASSEMBLY (Copper side)
IF INPUT Vee used for FM Tuner

o
...... OUT

----I_~

AUDIO
OUTPUT

o
84

NEe
JLPC1200 V

BIPOLAR ANALOG INTEGRATED CIRCUIT

,uPC1245V
FM IF SYSTEM WITH DIFFERENTIAL PEAK DETECTOR
SILICON BIPOLAR MONOLITHIC INTEGRATED CIRCUIT

DESCRIPTION
The pPC1245V is a monolithic integrated circuit that provides all the functions of an FM-I F system. It includes a
three-stage I F amplifier/limiter configuration with level detectors for each stage, a differential peak detector, and
an audio amplifier that features a muting (squelch) circuit. It also includes desirable features such as AGC for the
R F tuner, an AFC drive circuit, an output signal to drive a tuning meter and/or provides stereo switching logic, qnd
a station detector that provides a stop signal for search control in Electronically Tuned Radio. The pPC1245V is
suitable for use in automotive radio receivers. Outline is 19 leads Vertical Dual In-Line Package. (V-DIP).

FEATURES
•

High S+N/N ratio: 67 dB TYP.

•

Low distortion with single tune coil: 0.1 % TYP.

•

Soft muting circuit

o Programmable muting threshold and attenuation level
•

Programmable AGC voltage and threshold for R F amplifier

•

Programmable deviation where muting occurs and stop signal width

o Reduction of the occupation of mounting area in P.C. Board and hand-insertion time, due to the external shape
of the V-DIP.

PACKAGE DIMENSIONS (in millimeters)
25.5 MAX.

x x x x

c(

MARKING

c(

c(

c(

::E

::E ::E

:::E

LO

N

00

cd

8

00

~ ;!

1 .2 3 4 5 6 7 8 9 10111213141516171819

I

III
I

2.54

r---

2.54
I--

0.6 MAX.
22.86

0.35

1
2.54

I--

85

IlPC1245V
ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Supply Voltage

VCC

Input Voltage

VI

16

V

3.0
430

mW

Package Dissipation (Ta=75 °C)

Po

Operating Temperature

T opt

Storage Temperature

Tstg

-30 to
-40 to

VCC

7.0

V

+75
+125

°c
°c

RECOMMENDED OPERATING CONDITION
Supply Voltage Range

to 15

V

ELECTRICAL CHARACTERISTICS (Ta=25 °C, Vcc=10 V, f=10.7 MHz, fMOD =400 Hz, .1f=±22.5 kHz)
CHARACTERISTIC
Supply Current
Recovered AF Voltage

SYMBOL
ICC

MIN.
12

TYP.

MAX.

18

25

mA

No Signal

VOAF

130

mVr.m.s.

Vi(limit) 1

44

dB,uV

V o =VoAF-3 dB

Vi (limit) 2

50

dB~N

_
R3=22 kn
Vo -VoAF-3 dB, Mute ON, R8=5.6 kn

Limiting Sensitivity

Vi=80 dBl-tV

Total Harmonic Distortion

T.H.D.

0.1

%

Vi=80 dB,uV

Signal to Noise Ratio

SIN

67

dB

Vi=80 dB,uV

AM Rejection Ratio

AMR

42

dB

Vi=80 dB,uV,
AM: 400 Hz, 30 % mod

VSl

0

V

Vi=O dB,uV, R2=4.7 kn

VS2

1.0

V

Vi=60 dB,uV, R2=4.7 kn

VS3

5.3

V

Vi= 100 dB,uV, R2=4.7 kn

VAGC1

9.0

V

Vi=O dB,uV, V16=3.0 V
Vi=100 dB,uV, V16=3.0 V
Vi=80 dBJ.N

Signal Meter
Output Voltage

AGC Output

8S

TEST CONDITION

UNIT

0.5

VAGC2

0.1

V

AFC Output

VAFC

5.2

V

Stop Signal Width

BWSD

100

kHz

Vi=80 dB,uV, R5=5.6 kn
V SD = 5 V, Rg=3.3 kn

,uPC1245V
BLOCK DIAGRAM

r---+--"VVIr----.-......._

VCC D--+-----,

BIAS

AFC OUTPUT

~f

AUDIO

DETECTOR

AMPLIFIER

AUDIO
OUTPUT

+

I
SOFTL.P.F.

MUTE.
SENS.
ADJ.

SIGNAL
METER
OUTPUT

AGC VCC
OUT.

MUTING

AGC
MUTE
SENS. ATT.
ADJ.
ADJ.

SO OUTPUT

CONECTION DIAGRAM
Pin No.

1
3
5

Electrical Connection

Pin No.

Electrical Connection

VCC

2

AGC Output

Signal Meter Output

4

Bypass

Mute Sensitivity Adj.

6

IF Input

7

IF Bypass

8

IF Bypass

9

GND

10

GND

11

Detector Input (+)

12

Reference Voltage

13

Detector Input (-)

14

AFC Output

15

Bypass

16

AGC Sensitivity Adj.

17

Mute Att. Adj.

18

Audio Output

19

SO Output

87

j.lPC1245V
TEST CIRCUIT
Vcc= 10 V

.022 pF 300

AFC Output

AGC Output

Q

~
G

r-t---Ef--U

g

to AC Voltmeter
& Distortion Meter

RG=
50 Q

VCC
Signal Meter
Output

COIL DATA

Coil: 119ACS-14891Z (TaKa)

Type No.
119ACS-14891Z(TOKO INC.)

CD-@)

21T

Ct=22 pF
Q u =90 MIN.

(Bottom View)

TYPICAL PERFORMANCE CHARACTERISTICS (Ta=25 °C)

Va, Noise, AMR, T.H.D.

VS_

vi

Vo
o·r---------------------~--------------------~-----~~~--~--------~--------_+--------~
VCC=10 V
f=10.7 MHz
fmod=400 Hz
6f=±22.5 kHz

-20

CD

:g.

c:i

:x:t-=
~

::E
c(

Z
6

-40

~

-60r---------------------~------------------4-------------------------~~~----~--------------_+-----------------~

-80~

o

________

~

20

________

~

__________

40

~

________

60

Vi (dBpV)

aa

~

80

________

~--------~

100

120

,uPC1245V
Vo, !::,. V AFC, VSD VS.!::" f
1.0

0

10

/
\ /

-2

-4

8
0.5

-6

-8

6

~
(.)

u..

~

~
0

CD
.:g

0
en

0

>

:t

Vi(limit)2

co

.:g
j~
:::::.

f 10.7 MHz
fmod=400 Hz
Af= ±22.5 kHz

- ---

~

50

S

(.)

10

9

;r

45

5

~,

§

0.2

Vi(limit)l

.....

I

c:i

:I:

t-

40

o

T.H.O. (Vi=80 dBJ.lV)

0.1

~--

o

6

8

12

10

14

---16

Vee (V)

89

,uPC1245V
vo,T.H.D. vs. ~f
600r----------r----------~~----------~--------~

500
VCC=10 V
f=10.7 MHz
fmod=400 Hz
Vj=80 dBJlV
400

vi

E

0.6

~

.5

300

0

~

0.4

200

0.2

100

~
ci
:i
...,:

o

22.5

75

50

100

Af (kHz)

Vs, VAGe, VSD vs. vi
10
VCC=10 V
f=10.7 MHz

8

VSO"

~

VAGC

6

0

en
>
U
~
-§-

en

>

4

I
/'t

2

o

20

~

40

V

/
80

60

Vi (dBIlV)

90

/.
100

120

jlPC1245V
TYPICAL APPLICATION

Vcc

RI03
100 Q

-JVV~--~-t

i

RIOI
100 Q CF
IF Input Q-Vtk----,
_.
.L

DOo

I

......
~

LO

o

VREF

~

AFC Output

CIOI

.022. F

!
....
0

a::

N

~

Cl4

a::

Audio Output

AGC Output 0 - -...............- - - - ,

....

a::

jlPC1245V

VCC

10 V

N

U

~

Coil:
Ceramic filter:
Q1 :
Q2:
C13:

*

Vcc

119AC5-l489l Z (TaKa) or quivalent
SFE10.7MS2 (MURATA) or quivalent
2SC1675, 2SC1674 or quivalent
2SC945 or quivalent
0.01 ",F 75 ",5 deempha5i5

91

tLPC1245V
COMPONENT LAYOUT FOR P.W. ASSEMBLY ( Copper Side)

IF Input O--+---+-

pPC1245V

92

c=)

BIPOLAR ANALOG INTEGRATED CIRCUIT

J-lPC587C2
FM MULTIPLEX STEREO DEMODULATOR
SILICON MONOLITHIC BIPOLAR INTEGRATED CIRCUIT

DESCRIPTION
The ,uPC587C2 is a silicon monolithic integrated circuit designed for FM multiplex stereo demodulator applications in FM stereo radio receivers using phase locked loop CP.L.L.) techniques.
The device contains a demodulator system, a voltage controlled oscillator, phase detectors, low
pass filters, dividers and a D.C. amplifier.
It also includes a stereo-monaural switching circuit and a driver circuit for a stereo indicator lamp.
The features available in the device make possible a system delivering high fidelity sound within
the cost restrains of inexpensive stereo receivers.

FEATURES
• No coil necessary, all tuning performed with single potentiometer.

o Automatic stereo/monaural swi tching.
• Wide supply operating voltage range: Vcc=7 to 16V.
• Low distortion at monaural operation: T.H.D. = 0.07% TYP. at f= 1kHz, Vin=300mV
• Replaceable to the ,uPC 1026C

BLOCK DIAGRAM
V.C.O.
CONTROL

L.P.F.

L.P.F.

COMPOSITE
INPUT

AUDIO
AMP
OUTPUT

1
POWER
SUPPLY

PHASE
DETECTOR
INPUT

19kHz
MONITOR
OUTPUT

4

5

LEFT
OUTPUT

RIGHT
OUTPUT

L.P.F.

L.P.F.

LAMP
DRIVER

93

jlPC587C2

PACKAGE DIMENSIONS AND CONNECTION DIAGRAM (Top

View)

19.4MAX.
(0.76MAX.)

12
Rl
(RO.04)

2.54
(0.100)

_-+-+++-_12....;(0.047)

__

0 _.
5 ±0.1
_-t-t--:(0.02)

Pin No.

94

Electrical Connections

Pin No.

7.62
U-~----~~

0.25±~g:~5

__

~

(0.300)

(0.010)

Electrical Connections

1

POWER SUPPLY (Vee)

8

L.P.F.

2

COM POSITE INPUT

9

L.P.F.

3

AUDIO AMP. OUTPUT

10

19kHz MONITOR OUTPUT

4

LEFT CHANNEL OUTPUT

11

PHASE DETECTOR INPUT

5

RIGHT CHANNEL OUTPUT

12

L.P.F.

6

LAMP DRIVER

13

L.P.F.

7

GND.

14

V.C.O. CONTROL

EQUIVALENT CIRCUIT

POWER SUPPLY (Vee)
Q1

PHASE
COMPOSITE AUDIO AMP. DETECTOR
INPUT
OUTPUT
INPUT L.P.F. L.P.F.
20
30
0 11
13 0 0 12

A'uri U

V.C.O. CONTROL
;:>14

~
I
~f

00

I

R15 I Rl~v

R13

.LAA1~012

R2

J~
r
~r-~--~-

A"

013(

019 IR21~

A"

R24

A"f

r~

A,,'

I

tD1
018 t...J

1036

R23

*02
R 14

...

'VVV

D4t

R6

yD5

t

R17

017.)~
R1S<:

~

Rl~~

111033

0341111037

038

~
~R48

R58

R49

R59

~

RIGHT OUTPUT 5
LEFT OUT PUT

R60

O)--+----+-----~

4 0>---+---+-.......-----,
051

B.~3~

R71

058

r

• .,)059
R69

0'47

)10
19kHz

R70

·VVV

R56
R50

IR51

050

;:t------J

R64

.,.,

~

R61~

R!i2f

MONITOR OUTPUT

('")

en

(X)
L.P.F. 8 6

9 L.P.F.

06
STEREO INDICATOR
LAMP.

CD
01

-...J
('")

N

p,PC587C2
ABSOLUTE MAXIMUM RATINGS (Ta=25"c)
Supply Voltage

Vee

16V

Paokage Dissipation
(Ta=75"C )
Lamp Driver Current (Pin 6)

Po

350mW
100mA

IL

Operating Temperature
Storage Temperature

-20 to +75"C
-40 to + 125"C

Topt
Tstg

RECOMMENDED CONDITIONS (Ta=25"c)
Operating Supply Voltage
Supply Voltage Range

Vee

10V
7 to 16V

Operating Ambient Temperature

Ta

-20 to +75"C

ELECTRICAL CHARACTERISTICS

(Ta=25"c, Vcc= IOV, Vin=300mV
CHARACTERISTIC

SYMBOL

Circuit Current

Icc

Input Impedance

Zi

MIN.
7

(CO~~~~ite = I~)'

TYP.

MAX.

UNIT

13

18

mA

f= I kHz, RL=3.9kn)

TEST CONDITIONS
Quiescent

50

kQ

30

40

dB

f= 100Hz, Vin (Pilot).. =30mV

35

45

dB

f= 1kHz, Vin (Pilot) =30mV

30

40

dB

f = 10kHz, Vin (Pilot) =30mV

-9

-6

dB

Monaural Input, Vin (L+R) =300mV

Ch.B.

-1.5

0

1.5

dB

Monaural Input, Vin (L+R) =300mV

Ch.B.

-1.5

0

1.5

dB

Stereo Input, Vin (Pilot) =30mV

0.07

0.5

%

Monaural Input, Vin (L+R) =300mV

0.15

0.5

%

Stereo Inpu.t, Vin (Pilot) =30mV

12

16

20

mV

Pilot Level

3

6

9

dB

Pilot Level

± 1.5

±3

%

Vin (Pilot) =30mV

19kHz Rej.

35

dB

19kHz, Vin (Pilot) =30mV

38kHz Rej.

45

dB

38kHz, Vin (Pilot) =30mV

SCA Rejection

SCA Rej.

70

dB

Pilot
Composite

Maximum Input Level

Vi

1

Vrms

Stereo Channel Separation

Voltage Gain

Sep.

Au

Channel Balance

Total Harmonic Distortion

Lamp Indicator Input Level

T.H.D.

LAMP ON

I

Lamp Hysteresis
Capture Range

C.R.

Ultrasonic Frequency Rejection

96

0.7

SCA
1
10' Composite

Monaural Input, T.H.D.= 1%

1
10

J1,PC587C2
TEST CIRCUIT

19kHz MONITOR

16kQ

Potentiometer

l.L.

::t

l"-

v

o

o

+
INPUT

10.uF

STEREO INDICATOR LAMP

A

1---+-~... Vee

Icc

~_-+-_.}-J~.J-1-H--O RIGHT CHANNEL OUTPUT

38kHz B.E.F.
BL-13 (KORIN LAB.)

}-+---4I....--t:i--(1 LEFT CHANNEL OUTPUT

1. Use'a polystylene capacitor to the 470pF capacitor connected pin 14 for temperature compensation
to V.C.O.
2. Radj 1 and Radj 2 should be set the voltage gain between the output" terminal of t"he IC and
the output terminal of the S.E.F. is OdS.
3. For tuning the V.C.O. perform with the 5k Q potentiometer connected pin 14 by reading a frequency
of 19kHz at Pin 10.

97

j1PC587C2
TYPICAL CHARACTERISTICS (Ta=25'C)
VOLTAGE GAIN
vs. SUPPLY VOLTAGE (Monaural)

CIRCUIT CURRENT
vs. SUPPLY VOLTAGE
25

5
4

0IdB}-6 dB

Quiescent

3

20

«

co

E

"0

1

f=l kHz

-

2

1

c

c

~

15

-

~

o

"~

.,' ~

10

~

Q)

OJ

0

co

~ -1

>

6

""

I" -2

«

1

o

52

-3

5

-4

o

-5
6

8

10

12

6

16

14

8

CHANNEL BALANCE
vs. SUPPLY VOLTAGE (Monaural)

f=l kHz
Vin(L+R) I--=300mV

2

1
1

Cii

0

co

co

1

§

(L-R)

gCD
.c

§co

cri

Right

40

-

-

~

-

f=l kHz
Vin (pilotl=30mV

30

-

20

1

g.

-5

10

Cf)

o

-6
6

10
12
14
Vee-Supply Voltage-V

8

60

co 50

"0

1- -

1

c

o

-- J;E!!t
Right

1---

--

8

6

16

CHANNEL SEPARATION
vs. PILOT INPUT LEVEL

10
12
14
Vee-Supply Voltage-V

16

FREE RUN FREQUENCY CHANGE
vs. SUPPLY VOLTAGE
+300

JVee=10V
I

f----

f=l kHz

f----

----~- ~--

I

N

Q)

co

.c

co

m
a.

+200

1
OJ
C

"':: 40

+ 100

0
>-

o

30

~

0

..

~

g (19kHz)

CD
c
c

It

co

20

c

-100

~

1

a:

c:i.

CD
Cf)

Le!!,

o

g-4

c3

I-

Cf)

1 -3

~

-

.~

-2

o

I"~~

"0

CD -1
c
c

\

50
cD

co

~

16

60

3

~
c

14

12

CHANNEL SEPARATION
vs. SUPPLY VOLTAGE

4

~

10

Vee-Supply Voltage-V

Vee-Supply Voltage-V

CD

10

~

-200

1

o

a

S8

<]

20

40

60
80
Vi(pilotl-Pilot Input Level-mV

100

-300

6

8

10
12
14
Vee-Supply Voltage-V

16

jlPC587C2
VOLTAGE GAIN
vs. FREQUENCY (Monaural)

CHANNEL SEPARATION
vs. FREQUENCY
4

60

2

(D

-c

I

c

.g
m
g-

0

50

C/)

-c

\

/

40

I

c
cti
~

-4

",

i\

-6

~

-8

I:. -10

I

c:i.

Vcc= 10V
Vin (pilot) =30mV

Q)

C/)

~

2

I

30

-2

<:)

(jj

c
c
ct:I
.c
0

...........

(D

ct:I

20

10

«

'\

-12
-14
-16

0.01 0.03

0.1

3

0.3

10

30

0.01 0.03

0.1

0.3

3

10

30

f -Frequency-kHz

f-Frequency-kHz

TYPICAL APPLICATION

Vcc=10V
Vin=300
mV
OdB=
6dB

19kHz MONITOR

F : 38kHz BAND
ELIMINATION FILTER
B3EN0102
(MURATA CO.)

Ra 16kQ

u..Co
a

r~
o
INPUT

C3

+

STEREO INDICOTOR LAMP.

lOpF '--____~------__- - J

~--------~~+-~~~~~~~+-----------------------+-~Vcc

LEFT CHANNEL OUTPUT

RIGHT CHANNEL OUTPUT

99

pPC587C2
TYPICAL PRINTED CIRCUIT BOARD PATTERN

PRINTED CIRCUIT LAYOUT

o

,uP058702

Rl=500k-Q
R2=500kQ
R3=3.9kQ
R4=3.9kQ
R5=100Q
R6=100kQ
R7= 1kQ
Ra=16kQ
R9=5kQ
Potentiometer

100

COMPONENT LAYOUT (Bottom View)

•

_ _~ ,uPC58702

o
01=470pF
02= 100,uF
03= 10,uF
04=4.7,uF
05=4.7,uF
06=O.Ol,uF
07=O.01,uF
Oa=O.22,uF
09=O.47,uF

010 =O.22,uF
011 =O.047,uF

BIPOLAR ANALOG INTEGRATED CIRCUIT

,uPC1026C
FM MULTIPLEX STEREO DEMODULATOR
SILICON MONOLITHIC BIPOLAR INTEGRATED CIRCUIT

DESCRIPTION
The ,uPC1026C is a silicon monolithic integrated circuit designed for FM multiplex stereo demodulator applications in FM stereo radio receivers using phase locked loop (p L L ) techniques.
The device contains a demodulator system, a voltage· controlled oscillator, phase detectors, low
pass filters, dividers and a D.C. amplifier.
It also includes a stereo-monaural switching circuit and a driver circuit for a stereo indicator lamp.
The features available in the device make possible a system delivering high fidelity sound within
the cost restrains of inexpensive stereo receivers.

FEATURES
• No coil necessary, all tuning performed with single potentiometer.
• Automatic stereo/monaural switching.
• Wide supply operating voltage range : V cc= 7 to 16V
• High Voltage gain

: Av= -1.5dB (RL=3.9kQ)

• Replaceable to the ,u PC587C2.

BLOCK DIAGRAM
v.c.o.
CONTROL

L.P.F.

1

2

POWER
SUPPLY

COMPOSITE
INPUT

L.P.F.

PHASE
DETECTOR
INPUT

19kHz
MONITOR
OUTPUT

L.P.F.

L.P.F.

RIGHT
OUTPUT

LAMP
DRIVER

GND

4

AUDI.O
AMP.
OUTPUT

LEFT
OUTPUT

101

,uPC1026C

PACKAGE DIMENSIONS in millimeters (inches)

19.4MAX.
(0.76MAX.)

14

13

12

11

10

Rl
(RO.04)
LO

LO

(Os
.N

1.2(0.047)

--+-+++--

_--+-f--:-0 _.5 ±0.1 0.25±~g:~5
(0.02)

7.62
(0.300)

(0.010)

CONNECTION DIAGRAM
Pin No.

102

Electrical Connections

Pin No.

Electrical Connections

1

POWER SUPPLY (Vee)

8

L.P.F.

2

COMPOSITE INPUT

9

L.P.F.

3

AUDIO AMP. OUTPUT

10

19kHz MONITOR OUTPUT

4

LEFT CHANNEL OUTPUT

11

PHASE DETECTOR INPUT

5

RIGHT CHANNEL OUTPUT

12

L.P.F.

6

LAMP DRIVER

13

L.P.F.

7

GND.

14

V.C.O. CONTROL

EQUIVALENT CIRCUIT

POWER SUPPLY (Vee)

PHASE
COMPOSITE AUDIO AMP. DETECTOR
INPUT
OUTPUT
INPUT L.P.F. L.P.F.
21""\

')1

Rl

Dr

R
4

C1

R2

0

R5
03

f-

~

5

1-

>

R.'
7.

14

:>

Drr

o~"

R6

R25
R22

oJ< • •

-R 15

R l~V

V

~

0,,(

019 R21 ~
>

f-'vVv- ~23

025

~

..-

018
011
R 12

V

R14

016

017
V

~,D5

R17

)07

O~,

34 R32

R33

R36

: R42

R37:

R43 :-

R44
~

~

R39

R3S:

35

t--

031

I>-

028

~~"

R'~

R18

o29030

027

R 23

08
V

~ R29

t:=+ R31

).

R30
R

• R27

R28~

r----

R24

~' Yo"

R26

R 20

" ,"

0 4 ,~

R45

032
..-

R40

033

R41

....

034

035

036

R46

R47
P-

037

038

R57
>

~

~R48

R49 ~
'v

R58
R59
R60

RIGHT OUTPUT 5"
LEFT OUTPUT 4

r

OlQ

~ ~09

3

V.C.O. CONTROL

~12

~O

R8

H:04)-

~~02 R

GN

,J

°

03 ~~

~r 0 1

13~
(

,,11

~ .~R"

0,

>

31""\

049

~

'-'

M B
~

R55

R53

-

vv

045

I

..

R50

I

o,,~

o,,~

.B 54

R56

R69

")-r1
R63

°

R70

1.0

19kHz
MONITOR OUTPUl

0
"

R";"D,~~ R"~(
050)-056 057

R51

R52 e

059

lJ
R62

0 46

R71

058

Jo"

055

054~

R61'>

R66 e R6

1:::
."

R6

o

-'

I

P F

R (~

Q I

P F

(

6

STEREO INDICATOR
LAMP.

o
tAl

o
N
en

o

,uPC1026C

ABSOLUTE MAXIMUM RATINGS (Ta=25'C)
Supply Voltage

Vee

16V

Package Dissipation (Ta=75"C )

Po

350mW

Lamp Driver Current (Pin 6)

IL

100mA

Operating Temperature

Topt

-20 to +75"C

Storage Temperature

Tstg

-40 to + 125 "C

RECOMMENDED OPERATING CONDITIONS (Ta =25t)
Operating Supply Voltage

Vee

10V

Supply Voltage Range

7 to 16V

Ta

Operating Ambient Temperature

-20 to +75"C

ELECTRICAL CHARACTERISTICS
(Ta=25'C, Vcc= IOV, Vin=150mV
CHARACTERISTIC

SYMBOL

Circuit Current

Icc

Input Impedance

Zi

(CO~~~~ite= I~)'

MIN.

TYP.

MAX.

UNIT

7

13

18

mA

f= 1kHz, RL=3.9kQ)

TEST CONDITIONS
Quiescent

50

kQ

30

40

dB

f= 100Hz,

35

45

dB

f= 1kHz.

30

40

dB

f=10kHz,

Av

-4.5

-1.5

2.0

dB

Monaural Input.

Vin(L+R) = 150mV

Ch.B.

-1.5

0

1.5

dB

Monaural Input,

Vin(L+R) =150mV

Ch.B.

-1.5

0

1.5

dB

Stereo Input.

0.15

0.5

%

Monaural Input, Vin(L+ R) =150mV

0.15

0.5

%

Stereo Input, Vin (Pilot) = 15 mV

5

8

11

mV

Pilot Level

3

6

9

dB

Pilot Level

± 1.5

±3

%

Vin (Pilot) = 15 mV

19kHz Rej.

35

dB

19kHz,

Vin(Pilot) =15mV

38kHz Rej.

45

dB

38kHz.

Vin (Pilot) = 15mV

SCA Rejection

SCA Rej.

70

dB

Pilot
Composite

Maximum Input Level

Vi

0.6

Vr.m.s.

Stereo Channel Separation

Voltage Gain

Sep.

Vin(Pilot) =15mV
Vin(Pilot) =15mV
Vin (Pilot) =15 mV

Channel Balance

Total.Harmonic Distortion

Lamp Indicator Input Level

T.H.D.

LAMP ON

Lamp Hysteresis
Capture Range

Vin(Pilot) =15mV

C.R.

Ultrasonic Frequency Rejection

104

0.4

1
SCA
10' Composite

Monaural Input, T.H.D. = 1%

1
10

pPC1026C
TEST CIRCUIT

19kHz MONITOR

16kQ

Potentiometer

l.L.

:t

I'-

v

o

o

,uPC1026C (Top View)

+
INPUT

10pF

STEREO INDICAOR LAMP

A

t---+----t~ Vee

Icc

'--_-+_ _>:.t--....-~---u

RIGHT CHANNEL OUTPUT

38kHz B.E.F.
BL-13 (KaRIN LAB.)

o-i...--.---t;:I--() LEFT CHANNEL OUTPUT

1. Use a polystylene .capacitor to the 470pF capacitor connected pin 14 for temperature compensation
to V.C.O.
2. Radj 1 and Radj 2 should be set the voltage gain between the output terminal of the IC and
the output terminal of the S.E.F. is Od·S.
3. For tuning the V.C.O. perform with the

5~ Q

potentiometer connected pin 14 by reading a frequency

of 19kHz at Pin 10.

105

,uPC1026C
TYPICAL CHARACTERISTICS (Ta=25°C)

VOLTAGE GAIN
vs. SUPPLY VOLTAGE (Monaural)

CIRCUIT CURRENT
vs. SUPPLY VOLTAGE
25

5
4
Quiescent



6,

-1

I", -2
-

o

~

30

Q)

g.

0
(19kHz)

o'" 20

~
c

-100

c
c

,

,......

=>

a:

ci.

(l)
(l)

10

~

,

0

o

:;
10

20

30

40

Vi(pilotl-Pilot Input Level-mV

106

10
12
14
Vee-Supply Voltage-V

Vce=10V I - -

Right

C

o

8

FREE RUN FREQUENCY CHANGE
vs. SUPPLY VOLTAGE

~ 40

(l)

-

30

I

g.

-5

(fJ

-

o

B-4

~

Right

(l)

~

cD

,

Le!!,

(fJ

-2

, -3

!D

-

40

c

(L-R)

ca'" 0

\

50
!D

!D

~

16

60

3

Q)

14

CHANNEL SEPARATION
vs. SUPPLY VOLTAGE

4

,

12

Vee-Supply Voltago-V

Vee-Supply Voltage-V

!g

-

2

15

=>

o

o

0' dB='-l.JdB

3

20

50

-200

-300
6

8

10
12
14
Vee-Supply Voltage-V

16

,uPC1026C
CHANNEL SEPARATION
vs. FREQUENCY

VOLTAGE GAIN
vs. FREQUENCY (Monaural)
4

60
CD

I
c
':?

50

IIR->L - I -

Q)

(J)

/

40

Q)
0)

a

Vcc= lOV
Vln (pol,,,) = 15 mV

20

",

OdB=
-1.5dB

-6

C1l

I

g

Vin=
150mV

'\

0

0

(J)

"-

c

,

30

............

-2

co -4

L -R

c.>

~

I

f\

Vcc= IOV

0
CD
u

~

0.

I

2

I I

u

-8

>
I
.;-10

\

-12
-14
-16

10

0.01 0.03

0.1

3

0.3

10

30

0.01 0.03

0.1

0.3

3

10

30

f -Frequency- kHz

f - Frequency - kHz

TYPICAL APPLICATION
19kHz MONITOR

F : 38kHz BAND
ELIMINATION FILTER
B3EN0102
(MURATA CO.)

Ra
16kQ

INPUT
STEREO INDICOTOR LAMP.

~--------~--~~----~~~--r-----------------------~~Vcc

F

F

Rl
500kQ

LEFT CHANNEL OUTPUT

RIGHT CHANNEL OUTPUT

107

,uPC1026C
TYPICAL PRINTED CIRCUIT BOARD PATTERN

PRINTED CIRCUIT LAYOUT

COMPONENT LAYOUT (Bottom View)

o

,uPC1026C

Rl=500kQ
R2=500kQ
R3=3.9kQ
R4=3.9kQ
R5= 100Q
R6=100kQ
R7=1kQ
R8= 16kQ
R9=5kQ
Potentiometer

loa

Cl=470pF
C2= 100,uF
C3= 10,uF
C4=4.7,uF
C5=4.7,uF
C6=O.01,uF
C7=O.01,uF
C8=O.22,uF
C9=0.47,uF

ClO =O.22,uF
Cll =O.047,uF

BIPOLAR ANALOG INTEGRATED CIRCUIT

p,PC1227V
FM MULTIPLEX STEREO DEMODULATOR
SILICON MONOLITHIC BIPOLAR INTEGRATED CIRCUIT

DESCRI PTION

The IlPC1227V is a silicon monolithic integrated circuit designed for FM multiplex stereo demodulator applications in
FM stereo radio receivers using phase locked loop (PLL) techniques.
The· device includes a variable blend facility that gives a smooth change from monaural to stereo reception. It also
includes independent separation adjustment for Land R channels, forced monaural and VCO stop functions. Outline is a
new developed 19-1ead Vertical Dual In-Line Plastic Package (V-DIP), so that it is suitable for use in auto'motive radio
receivers, where small mounting space is required.
FEATURES

•
•
•
•
•
•
•
•
•
•

No coil necessary, all tuning performed with a single potentiometer.
Automatic stereo/monaural switching.
High Voltage gain: Au =-0.6 dB (RL = 3.9 kUJ
Easy to handle because of its V-DIP construction
Reduction of the occupation of mounting area in P.C. Board and hand-insertion time, due·to the external shape of the
V-DIP.
Free of mismounting due to its lead formation.
Stereo noise reduction
White Noise reduction
Independent separation adjustment
Wide supply voltage range: Vee = 6 to 14 V

PACKAGE DIMENSIONS in millimeters
25.5 MAX.

x« x« x«

MARKING

1

2

I~

3 4

5

2.54

7

8

:::E:

LO

C\I

00

00

00

ci

c>i
.....

o:i
.....

.....

:::E:

9 10 11 12 13 14 15 16 17 18 19

i
I

I

I

...
~

6

x«

~

:::E:

-

...

2.54

0.6 MAX

22.86

.11.

0.35

-

2.54

109

,uPC1227V
ABSOLUTE MAXIMUM RATINGS (Ta

= 25°C)

Supply Voltage

16
430

VCC

Package Dissipation (Ta

= 75°C)

PD

Lamp Driver Current (Pin 9)

IL

Operating Temperature

T opt

Storage Temperature

Tstg

75

-30 to +75
-40 to + 125

RECOMMENDED OPERATING CONDITIONS (Ta = 25°C)
Operating Supply Voltage

VCC

8

Supply Voltage Range

VCC

6 to

14

Operating Ambient Temperature

Ta

-30 to

+75

ELECTRICAL CHARACTERISTICS
[Ta

= 25 ° C, VCC

=1-), f

= 8 V, vin = 300 mV (Pilot .

CHARACTE R ISTIC

Composite

SYMBOL

Circuit Current

ICC

Input Impedance

ZI

Stereo Channel Separation

Sep.

MIN.
12

10

= 1 kHz.

RL

TYP.

MAX.

UNIT

20

28

mA

= 3.9 kn]
TEST CONDITIONS
Quiescent

50

kn

35

45

dB

f = 100 Hz, Vin (Pilot) = 30 mV

40

55

dB

f = 1 kHz, Vin (Pilot) = 30 mV

dB

f = 10 kHz, Vin (Pilot) = 30 mV
Monaural input, Vin (L+R) = 300 mV

35

45

-3.5

-0.6

+2.5

dB

Ch.B.

-2

0

+2

dB

Monaural Input, Vin (L+R) = 300 mV

Ch.B.

-2

0

+2

dB

Stereo Input, Vin (Pilot) = 30 mV

0.05

0.3

%

Monaural Input, Vin (L+ R) = 300 mV
Stereo Input, Vin (Pilot! = 30 mV

--

Voltage Gain

Av

Channel Balance

Total Harmonic Distortion

T.H.D.
0.05

0.3

%

Lamp Indicator Input Level

LAMP ON

4

8

12

mV

Pilot Level

4

dB

Pilot Level

C.R.

±2

±4

%

Vin (Pilot) = 30 mV

19 kHz Rej.

35

dB

19 kHz, Vin (Pilot) = 30 mV

38 kHz Rej.

45

dB

38 kHz, Vin (Pilot) = 30 mV

SCA Rej.

70

dB

SCA
Pilot
1
=Composite 10, Composite
Monaural Input, T.H.D. = 1 %

Lamp Hysteresis
Oapture Range
Ultrasonic Frequency Rejection

SCA Rejection
Maximum Input Level

Vi

0.6

1.0

Vr.m.s.

Signal-to-Noise Ratio

SIN

70

80

dB

Forced Monaural Level

V mono

0.8

V

#8 terminal

VCO Stop Level

V stop

0.8

V

#8 terminal

dB

V 14 = 0.4 V

dB

V 14 = 1.0 V

Sep. C1
Stereo Channel Separation

Sep. C2

Voltage Gain

AvH

Sep. C3

110

3

0
17
40

55

-23.5

-19

-15

1
10

Monaural Input, Vin (L+ R) = 300 mV

dB

V 14 = 1.6 V

dB

V 14 =0.4V,f=10kHz

jLPC1227V
TEST CIRCUIT
19 kHz
MONITOR

FORCED
MONAURAL
VCO STOP

POL YSTYLENE CAPACITOR
LOW PASS FILTER: BL - 13 (KORIN LAB.)
*** Amp1 and, Amp2 should be set so that, the
voltage gain between the output terminal of the
IC and the output terminal of the LPF is 0 dB'

HCC
SNC

j.lPC1227V (Top View)

R SEP.
ADJ

STEREO
INDICATOR

VCC

330

3.3 k Q

Q

+

100 }.IF

(* *)

LEFT CHANNEL OUTPUT

BLOCK DIAGRAM
PRE
AMP.
P.D
OUTPUT INPUT LPF
7

VCC

VCO

~----------------~13~--~

3

COMPOSIT
SIGNAL
INPUT

LPF

LPF

2 19 kHz MONITOR

' - - - f - - + - - - - - - - - - { 9 LAMP DRIVER

151---------{
HI-CUT
COMPONENT

~--~14~--------~

L SEP. R SEP HIGH·CUT CONTROL
ADJ. ADJ.
(HCC)
&
STEREO NOISE
CONTROL
(SNC)

VCO STOP
GND
FORCED MON SW

I I I

,uPC1227V
TYPICAL CHARACTERISTICS (Ta

= 25°C)

Rch. OUTPUT LEVEL, TOTAL HARMONIC
DISTORTION, CHANNEL BALANCE vs.
FREQUENCY
+10

0.6

Vcc=S v
Vin=300 mV
Monaural

111/1
(R

I

c:

~
(I)

0

Your

0.5 co

0

;3

'2

E 0.3

ro

Q)

0::

.s= ro
() ~

~

~-40

T.H.O.

-50 30 50 100

I

a

-2

J

11111

o

:I:

1 al

I"'-

f-

ro

I

::>

0.1

E

..c:

(.)

I -30

0.2

0

'2
0 c:
c:
0.4
ro 0

0::

I

::r:

Ch.B

-20

~

ro

co

_..c0

:I:

t-=

~
+1 c:
ro

,\

....l

c..

+2 co
I

~ -10

0.4

+3

"0

Q)

"5

a

~~""

I

0

ro
~

R

0

"0

0

TOTAL HARMONIC DISTORTION, Rch. OUTPUT
LEVEL, CHANNEL BALANCE vs. SIGNAL INPUT
LEVEL
O.S
SOO
+4
VCC=S V
>
E
f= 1 kHz
0.7 I 700
+3
Monaural
(R
vi
I
E
c: 0.6 -;;i 600
+2 ~
0
I
E
Q)
I
0.5 Q) 500
+1 ~
0

" I"

300500 1 k

'"
3 k 5 k 10 k

::r:

t-=
30 k 50 k

3

0.3

>
.!!?

V

.&
:J

0

..cu

~OO

V
~
./

I 200

lY

(R

I

c:

50

1.4

:.e
~

.

1.2

\

~

ero

30
c..
Q)

1.0

I

I

0

::r:
t-=

o

0

O.S

SO

(R 0.7
I
c: 0.6
0

70

.€

~

0

30 50

100

300 500 1 k

;§

I

I

::r:
t-=

3 k 5 k 10 k 30 k 50 k

N~~

-5

>
Q)

"

....l

-10
"5
c..
"5

0

..c0

- 15

I
I-

:::>

.;g

- 20

Sep.

"0

I

50

c:

0.4

~

ero

40

(J)

30

c..
Q)

0.3
0.2

I
ci.
Q)
(J)

20

0.1

10

0

o

T.~.!:... ~ ~
100

(I)

0

~\ VCONT.

'2

~\\ 1.6 IV

E
ro

3 k 5 k 10 k

f - Frequency - Hz

300

200

so

0.7

70

0

:I:

400

-~
500

0.5
0.4

I

::r:
t-=

I

c:

~

ero

50
40

c..
Q)

0.3

U)

I

30

ci.
Q)

0.2

(J)

20

0.1

10

0

0

-

7

1/

I,
~

1
\ ..

1' ...

"-I'....
4

6

S

T.H.O.

-

I--"

I

10

Vee - Supply Voltage - V

12

....
600

f=l kHz
Vin(L+R)=300 mV
Pilot=10 %
Stereo

Sep.

,

co

"0

ro

a

60

0.6

0

;§

30 k 50 k

O.S

I

~

\\ 0.4 V
300 500 1 k

(R
0

1\ •O.S V
30 50 100

VCC=S V
f=l kHz
Pilot=lO %
Stereo

TOTAL HARMONIC DISTORTION,
SEPARATION vs. SUPPLY VOLTAGE

c:

\

-25

112

Vcc=s V
Vin=300 mV
Monaural

1\\ 1.0 V

0::

600

500

Vin - Signal Input Level- mVr.m.s.

~~

Q)

400

a

~

~ t--.

co

300

60

Rch. OUTPUT LEVEL vs. FREQUENCY

"0

200

100

f - Frequency - Hz

0

-3

co

0.5

0

'2

ro

V

10

0.4

(.)

TOTAL HARMONIC DISTORTION, SEPARATION

:I:

I

(J)

I

a

/

I

-2 ~

vs. SIGNAL INPUT LEVEL

0

ci. 20
Q)

O.S

--,V

-4

0

E
ro

(J)

:I:

ro
~

f\

VCC=S V
Vin(L+R)=300 mV
Pilot=10 %
Stereo

0

'2

E
ro

40

I

c:

0

0

'"

co

"0

R

1

V in - Signal Input Level - mVr.m.s.

7sep.

0

0

--

ro

~~

>

TOTAL HARMONIC DISTORITION, SEPARATION
vs. FREQUENCY
60

c:

16

1
T~~

/'

f-

::> 100
0

f - Frequency - Hz

1.6

VOU

17

./

0::

0.1

ro

co

a Q)c:

~V

0::

0.2

V

Ch. B

"5 400

V

V

t...14

,uPC1227V

INPUT PILOT LEVEL, FREE RUN
FREQUENCY CHANGE vs. SUPPLY
VOLTAGE

CHANNEL BALANCE, VOLTAGE GAIN,
TOTAL HARMONIC DISTORTION, CIRCUIT
CURRENT vs. SUPPLY VOLTAGE
+4

+4

+3

+3

O.S
~

1=1 kHz

0.7

I

c

CD

"0

I

+2

c
ro

+1

ro

c
c
ro

..c

(J

:e

0.6

+1

0

0

'ro

-1

Q)

0.5

no
2

0

> -1
I

I
CD

..c. -2

>

Q)

50

E

:2
0::::

~

10

;:)
lS.00

0

~

ro

a.
Q)
en
I
ci
Q)
en

70

14
CD

12

.

10

"0

0

ro

I

:l

c

1

2:l

~

I

/

20
10

c
0

30

/
./
..,.""""
0.5

1.0

I

I

\

1

I

\

\

If
\

J

;- r--;

,

17.00

I

,

19.00

lS.00

20.00

21.00

VCC=8 V
1=10 kHz
Vin=300 mV

I

I

40

I

ATTENUATION vs. CONTROL VOLTAGE (HCC)
16

50

'I

\

fVCO - VCO Free Running Frequency - Hz

SEPARATION vs. CONTROL VOLTAGE (SNC)

.

II

10

SO

60

I

\
\

20

VCO Free Running Frequency - kHz

"0

I
I

\

40

0

20.00

19.00

tvco -

I
c

\

:J

.2

Vcc=S V

I

\

a. 30
E

20

CD

1

1\

...J

30

o

1~

12

CAPTURE RANGE

"-f'...

/

40

10

S

6

VCC - Supply Voltage - V

Vcc=S V
1=1 kKz
Vin(L+R)=300 mV
Pilot=10 %
Stereo

"-

I

Lamp OFF (Monaural)

~ -300
u.
I
~ -400

so

-.....

1

I

-200

c

SEPARATION vs. VCO FREE
RUNNING FREQUENCY

60

I
Lamp ON (Stereo)

/""

VCC - Supply Voltage - V

70

l.-1-'"

.,-

a:::

..9:24
5

>.

-

~I

o

(J

.~ 8: S

(J ......

-

\"
~ +100

c
ro
..c

~ -100

10 I

f-

-2

-3

~ +200

20"E ~ 10
~...J

0

(J

~ 14
I-.!.

ICC

,,-

u

"0

+300

25 

o

a::

RIGHT
OUT

LEFT
OUT

19 kHz

MONITOR

:!:
2.

o

l-

=>

o

.....J

VCO
HCC

STOP

VCO STOP
FORCED MON SW

IN

HIGH - CUT CONTROL
(HCC)

&
STEREO NOISE
CONTROL
(SNC)

114

BIPOLAR ANALOG INTEGRATED CIRCUIT

,uPC1320C
FM MULTIPLEX STEREO DEMODULATOR
SILICON MONOLITHIC BIPOLAR INTEGRATED CIRCUIT

DESCRIPTION
The IlPC1320C is FM stereo demodulator with utilize phase locked loop technology.
The device features excellent channel separation over a wide band of frequencies and a wide range of operating voltage with
low distortion.
It contains an automatic stereo-monaural switching circuit, a VCO mute circuit for FM/ AM radio application, a forced
monaural switching circuit and stereo indicator lamp driver.

FEATURES
•

Less external part; No coil

•

Wide operating voltage range; Vee

•

Wide dynamic range; Vin = 1 000 mVr.m.s. TYP.

•

Excellent channel separation maintained over wide frequency range (fixed or adjustable).

•

High voltage gain; Av = -0.8 dB

•

Containing an automatic stereo-monaural switching circuit, a forced monaural switching circuit and a '(CO mute

= 5.4 to

14 V

circuit for FM/AM radio application.

PACKAGE DEMENSIONS (Unit: mm)

Typical values unless
otherw i se noted.

0.6

115

,uPC1320C
ABSOLUTE MAXIMUM RATINGS (Ta

= 25°C)

Supply Voltage

VCC

14

Lamp Voltage (Pin 6)

VLAMP

18

Package Dissipation (Ta = 75°C)

Po

Lamp Driver Current (Pin 6)

IL

350
75

Operating Temperature

Topt

-30 to +75

Storage Temperature

Tstg

-40 to +125

RECOMMENDED OPERATING CONDITIONS (Ta

= 25°C)

Operating Supply Voltage

VCC

8
5.4 to

Supply Voltage Range
Operating Ambient Temperature

Ta

14

-30 to +75

ELECTRICAL CHARACTERISTICS
(Ta = 25°C, Vcc=

8

V, Vin = 350 mV

CHARACTERISTIC

SYMBOL

Circuit Current

ICC

Input Impedance

Zi

Stereo Channel Separation

Sap.

Output Voltage
Channel Balance

(cO~~o;site '" 16), f
MIN.

8

40

Va

250

Ch.B.

-2

Ch.B.

-2

TYP.

MAX.

UNIT

12

18

mA

TEST CONDITIONS
Quiescent

50

kS1

45

dB

f

55

dB

f

45

dB

0

+2

dB

= 100 Hz, Vin (Pilot) = 35 mV
= 1 kHz, Vin (Pilot) = 35 mV
f = 10 kHz, Vin (Pilot) = 35 mV
Monaural Input, Vin (L+R) = 350 mV
Monaural Input, Vin (L+R) = 350 mV
Stereo Input, Vin (Pilot) = 35 mV

0.1

0.5

%

Monaural Input, Vin (L+R) = 350 mV
Stereo Input, Vin (Pilot)

320

430

dB

0

+2

dB

Total Harmonic Distortion

T.H.D.

0.1

0.5

%

Lamp Indicator Input Level

LAMP ON

4

8

12

mV

4

dB

Pilot Level

C.R.

±2

±5

%

Vin (Pilot)

19 kHz Rej.

35

dB

19 kHz, Vin (Pilot) = 35 mV

38 kHz Rej.

45

dB

38 kHz, Vin (Pilot)

SCA Rejection

SCA Rej.

70

dB

SCA _ =-'Pilot
=_1_
10' Composite
10
Composite

1.0

Vr.m.s.

83

dB

Lamp Hysteresis
Capture Range
Ultrasonic Frequency Rejection

116

= 1 kHz, RL = 3.9 kn)

Maximum Input Level

Vi

Signal·to-Noise Ratio

SIN

Forced Monaural Level

V mono

0.8

V

VCO Stop Level

V stop

0.8

V

0.6

= 35 mV

Pilot Level

= 35 mV

= 35 mV

Monaural Input, T.H.D.
Vi

= 350 mV

=1 %

j.lPC1320C
TEST CIRCUIT
POLYSTYLENE CAPACITOR
LOW PASS FILTER: BL - 13 (KORIN LAB.)
Amp1 and, Amp2 should be set so that, the
voltage gain between the output terminal of the
IC and the output terminal of the LPF is 0 dB

19 kHz
MONITOR

sw

1

V
1\

FORCED MONAURAL
VCO STOP

Vee

3.9 kQ

RIGHT CHANNEL OUTPUT

-

+
C14

LEFT CHANNEL OUTPUT

BLOCK DIAGRAM

VCO

LPF

LPF

P.D
INPUT

19 kHz
MONITOR

LPF

LPF

FORCED MONAURAL
VCO STOP

VCO
76 kHz
VCO
MUTE
P.D:
F .D:

VCC

COMPOSIT
SIGNAL
INPUT

PRE
AMP.
OUTPUT

L-CH
OUTPUT

R-CH
OUTPUT

LAMP
DRIVER

GND

PHASE
DETECTOR
FREQUENCY
DIVIDER

SEPARATION
ADJUST

117

,uPC1320C
TYPICAL CHARACTERISTICS (Ta

= 25°C)
TOTAL HARMONIC DISTORTION, Rch. OUTPUT
LEVEL, CHANNEL BALANCE vs. SIGNAL INPUT
LEVEL

TOTAL HARMONIC DISTORTION vs.
FREQUENCY

2.4

~

~

VCC=B V

I

c:

vin(L+R)=350 mV
Pilot= 10 %

.8
Ul

1.6

is
u

'c

1.2

0

E
ro

c:

,.

2.0

0

:;:;

:t:

I

I:,

is

,"

E
ro

:t:

SUB

-I" ..
0

30 50

100200300500

I 0.4

I)
-r-f1'

0
:i
.....:

1

o

100

.....
:l
o

0

I k 2 k3 k5 k 10 k 20 k 50 k

100

/

>

TOTAL HARMONIC DISTORTION, SEPARATION

c:

Vcc= B V

~
2Ul

CD
"0

is 1.6
u

~
I

vin(L+R)

~

I 40

-T

c:

c:

=350 mV
Pilot= 10 %

~

.8

Stereo

Ul

is

.~

'c
0

E

1.2

ro
:t:
~

.v""
Vs~p

50

2.0

c.

O.B

I
0 0.4
:i

2.0

50

I

c.
Q)

en

V

I k 2 k3 k 5 k 10k 20 k 50 k

Q;

> -10

Q)

...J

+2

~2.0

....

'in 1.6

is

Vo~r R

~I-o.

Ch. B(R-L)

\

:l
fro -20 '§ 1.2

..cu
c::
I

-30

..... -40

>

-50

~0.4
T.H.D.
0 30 50

~
CD
..c:

3 u
I III
100 200300500 I k 2 k3 k 5 k 10 k 20 k 50 k
f - Frequency-- Hz

118

c:

~
CD

2

~

o

I
Q)

c:
ro
.c:

~O.B

:i
.....:

"0

0 ro

'0

:l
0

CD

1 Q;
c:

E

0

I"'-

"'"

VCC=B V

a.
Q)

I 0.4

10

o

0

100

200

300

400

%

i.- ~

T.H.D.

2.4

60

~ 2.0

50

~

u

u

:l

BOO 4

500

600

700

BOO

TOTAL. HARMONIC DISTORTION,
SEPARATION vs. SUPPLY VOLTAGE

VCC=8 V
Vin=350 mV +1
Monaural

:eo

I

700

Vin-Signal Input Level-mVr.m.s.

2.4
~

o

600

f= 1 kHz
Pilot= 10
Stereo

Rch. OUTPUT LEVEL, TOTAL HARMONIC
DISTORTION, CHANNEL BALANCE vs.
FREQUENCY

0

500

30

f- Frequency- Hz

CD
"0

400

Sep.

0
:i
.....:

100 200300 5(){)

~

l-

0

+ 10

300

.c:

3 u

",.,

c:

o
ro

'0

If

T.H.D.
30 50

200

:;:;

O.B

~

J

10

0

~~ ...-

I 40

en
l20
Q)
en

ro
:t:

I

I.20

.....:

CD

,

I

CD
"0

1.6

E

Q)

'0

60

'c
1.2
0

30

en

I-

2.4

u

~
~

2 I

vs. SIGNAL INPUT LEVEL

60

I

U

TOTAL HARMONIC DISTORTION, SEPARATION

vs. FREQUENCY
~ 2.4

c:
<'J
.c:

Monaural

Vin-Signal Input Level-mVr.m.s.

f - Frequency- Hz

o·

ro

-1 ~

f= 1 kHz

/r

..c

~

CD

R

)~

;3 200

u

o
VCC=8 V

I'Vour

:l

O.B·

I
Q)

/

c.

;§

+1~

Y

/

~300

'c
0
1.2

Main

V

Ch. B(R-L)

Q;

u

~

0.4

:i
.....:

'in 1.6

i
T400

/

E

0

'0
0

°500

+2

/

I
2.0

0

:e

O.B

~

l-

=e 600

2.4

I

0

:e

--

"0

0

'in 1.6

is
u

'§ 1.2

--

-.

I 40

c:
0
:;:;

f= 1 kHz
vin(L+R)= 350 mV
Pilot=10 %
Stereo

<'J

~

c.
Q)

E

en

20

en

ro
:t: O.B

30

I.20

c.

Q)

I-

10.4

.....:

Sep.

CD

10

0
:i
4

_.

0

- ...

0
4

T'!iD:..
6

B

10

----

Vcc- Supply Voltage- V

--

12

14

jlPC1320C

CHANNEL BALANCE, VOLTAGE GAIN,
TOTAL HARMONIC DISTORTION, CIRCUIT
CURRENT VS. SUPPLY VOLTAGE

2

+2

~
I

CD

I

'0

QJ

u

I

0

c:

.~

iii

_-1
QJ
('J

1

CD

B-3

iii

Q)

Av

10'@
U

"

0.8

I

f-

.0.4
:i
1

0

~

......

0

4

T.H.D

-

6

- r12

10

8

--

a.

~

5

,,

('J

.r:

U-IOO
U

6

c:
~-200

Lamp ON (Stereo)

III

~
c:-300

::J

0::
QJ

:§

2

I

'0.

.-

;:;,

14

~-400

u...

0

-.;J

-500

4

".

50

j

CD

'0
1

c:

40

/

,~

~
('J

-- - .....'\

I

E 50

~

J

T 40

'~

.....I

,

30

'0

(f)

Vee = 8 V
f=1 kHz
v in(L+R)= 350 mV
Pilo!= 10 %
Stereo

I, 20

a.
QJ
(f)

10

~

I

1\
1

'iii
>
QJ

a.
QJ

L

I

~

20

\

'0
~ 10

\

"- -I
,,
\

o

18.00

16.00

20.00

19.00

17.0018,00

50

< 20
E
I

15

':;
~

u

10

~

~ 12

30

E

10

il:

8

1

0

'0.

...:.. 25

25

50

Ta- Ambient Temperature-'C

75

QJ

--

....- ~

- ---

~

~

-~

Lamr O~( Stereo)

5-20 0

0::

r--

~

-

Lamp OFF( Monaural)

~-30 0

I
~

;:;,

o

c:

Q)

5--10 01.--

Llf

QJ
QJ

4

,-

o

.r:

U
>.
u

~

0

Vee=8 V
Vin(L+R)= 350 mV
Pilo!= 10 %
f= 1 kHz

(f)

5

QJ

.....I

(f)

QJ

U

('J

~ 16

Icc(No Signal)

~ 20

I

c:

I

I ,

~ 40

a.
QJ

:I:
E
~ 20 tIO
~+ 100
E

Sep,

,~

~
~

U

VCC= 8 V
fo= 19 kHz

N

CD

::J

\

19.0020.0021.0022.00

"- 200

ui 24

'0

c:

t

J

PI LOT INPUT LEVEL, FREE RUN
FREQUENCY CHANGE vs. AMBIENT
TEMPERATURE'

CIRCUIT CURRENT, SEPARATION
VS. AMBIENT TEMPERATURE

-

/
V

fvco- VCO Free Running Frequency- kHz

fvco- VCO Free Running Frequency-Hz

60

V

\

~

L\.

J VCC= 8

\

ui

/'

30

14

12

CAPTURE RANGE

60

_\

V

10

Vcc- Supply Voltage- V

SEPARATION VS. VCO FREE
RUNNING FRe.o.UENCY

/

8

6

Vcc- Supply Voltage- V

60

I

Lamp OFF (Monaural)

--- -

0-

QJ

4

,~

"

>.

E

U

I

QJ

c:

8

>
QJ

'0
il:
'5

LIt

:I:
tIO

.....I

U

~

/

'0

-4

I

t

15

Icc

,~

:I:

-3

-4

-

('J

1- 2
~

>E

1-c:

Ch. B

+ 100
N

~ 10

20<

::J

§ 1.2

2
~

13-2

-

u

~-1

c:
c:

~--.

'c

C,!)

CD

12

vi
E

is 1.6 -

0

c:

('J

Vin= 350 mV
f= 1kHz

~ 2.0
B

+1

CD

'0

2.4

INPUT PILOT LEVEL, FREE RUN
FREQUENCY CHANGE VS. SUPPLY
VOLTAGE

0

-4,<:°25

o

25

50

75

Ta- Ambient Temperature-'C

119

,uPC1320C
Components Layout for P.C. Assembly (Copper side)

NEe

Application Information

1. Separation Adjustment
Separation control is normally adjusted by a variable resistor connected to Pin 15.
A phase compensator, however, is recommended to use as show below when the variable resistor is not enough to provide
typical separation due to large IF phase delay.

from IF Stage - -...

2. Stereo-Monaural Switching
Applying voltage higher than 0.8 V to Pin 9 make ~PC1320C switch from stereo to monaural condition. The monaural
switching is also performed by keeping Pin. 11 grounded. (stereo operation is kept by Pin. 10 grounded.)

120

BIPOLAR ANALOG INTEGRATED CIRCUIT

,uPC1176C
FM NOISE CANCELLER
SILICON BIPOLAR MONOLITHIC INTEGRATED CIRCUIT

DESCRIPTION

pPC1176C, a monolithic integrated circuit, is an FM Noise Canceller for use in automotive radio receivers.
The incoming noise such as that from car ignition can be suppressed. Internally, buffer-amplifier, delay circuit, gate circuit, noise detector, control circuit for gate and stereo signal holding circuit are included.

FEATURES

o Effective pulsive noise suppression.
o Minimum distortion level due to the stereo signal holding circuit.
o Automatic change of the blanking time, according to noise intensity .
• Excellent response for highly repetitive noise.

BLOCK DIAGRAM (Top View)

Noise
Detector

Vee
Control Ci rcuit for Gate

121

,uPC1176C
PACKAGE DIMENSIONS (in millimeters)

19.4MAX.

---+]

R1

N

ci
+1
It>
It>

'"

O.5±O.1

ABSOLUTE MAXIMUM RATINGS (Ta=2SoC)
Supply Voltage

VCC

Package Dissipation

PO

Operating Temperature

T opt

Storage Temperature

T stg

-40 to +125

°c

15

V

350*

mW

-20 to +75

°c

*Ta= 75°C

ELECTRICAL CHARACTERISTICS (Ta = 2SoC, VCC = 10V)
CHARACTERISTIC
Circuit Current

MIN.

TYP.

MAX.

UNIT

TEST CONDITIONS

ICC

13

16.5

23

mA

Vi =0

Voltage Gain

Av

-0.3

0.7

1.7

dB

Vi = 500mVr.m.s., f = 1 kHz

Blanking Time

TB

30

J.I.S

VT

40

mVp

Triggering Voltage

122

SYMBOL

Vi = 500mVp, f = 1 kHz, tw = llJ.s
f = 1 kHz, tw = 10IJ.s

TYPICAL APPLICATION CIRCUIT

Vee

I

lJ...

'+

330pF

Pulse
Shaping
Circuit

Noise
Detector

GND

IL

::2

('t")
('t")

INPUT
(to FM Det.)

Trigger
Circuit

C
. for Gate
antral ·
Circuit

-------------------

+
Buffer
Amp.

4.7 pF

Delay
Circuit

Vee

Schmitt

Noise
Control
Circuit

Gate
Circuit

Stereo
Signal
Holding

Output
Circuit

::2

"N

4.7kQ

+

4.7JlF
OUTPUT
(to MPX or Po·amp.)

lJ...

~

2kQ
1.5k5~

II

VR should be adjusted to maintain the
amplitude and frequency of the 38
kHz signal when the gate circuit is
turned off.

1::

"

()
-a
-a

-..J

0)
I\)

W

()

I\)
~

1:::
\J

Diagram of Components Mounted on a Printed-Circuit Board (Bottom View)

o

~
~

.......

m

o

4.7J1 F

OUTPUT

•

t;

r~~:·~::~,:.~: ~+ ~~==·:r:.-=~-::)\
OUTPUT
L \'q v
/.__. _. ,,_~.~,. _._.,~~__ l

rt

r-I'r-

fL-~-~~:WII {
'~-~200PF":"~'----

2kQ

\"c,. . lL.

\~'8~T

'_'VVV-7-f?~~:'-:';~~ --!

t .-- -

lkQ VR

INPUT

1.5kQ ~'~f

··TlL.--,~

NEe

BIPOLAR ANALOG INTEGRATED CIRCUIT

J-lPC1032H
DUAL LOW NOISE PREAMPLI FIER
SILICON BIPOLAR MONOLITHIC INTEGRATED CIRCUIT

DESCRIPTION
The J.LPC1032H is a silicon monolithic integrated circuit designed for use as a 2 channel preamplifier for a car stereo
set. The device has features of low noise, high gain, high output voltage and wide supply volta~e range.
Especially, as an advanced production process is used, the device has an excellent feature of very low pulsive noise.
An internal voltage regulator circuit permits the J.LPC1032H to operate satisfactorily over wide variation of supply
voltage.

FEATURES
PACKAGE DIMENSIONS
19.5MAX.

(0.76M".)

in millimeters {inches}

o Two channel

_I

2.B±0.2

o

(0.11)

CI
(C 0.04)

o Wide supply voltage range
o Minimum number of external parts required
• Low noise, especially low pulsive noise
• SIP assures easy mounting on printed circuit board.

EOUIVALENT CIRCUIT
0.25
( 0.01)

I(g.~~il--:~-

CONNECTION DIAGRAM

INI

NFBI

OUT I

Vl'l'

GND

OUT2

NFB2

IN2

125

,uPC1032H
ABSOLUTE MAXIMUM RATINGS (Ta

= 2SoC)

Supply Voltage

VCC

Package Dissipation

PD

Operating Temperature

T opt

-20 to +75

Storage Temperature

T stg

-40 to +125

18

V

270*

*Ta =

RECOMMENDED CONDITIONS (Ta

mW

°c
°c

75°C

= 2SoC)

Operating Supply Voltage

VCC

13.2

Supply Voltage Range

VCC

V

8 to 17

V

Operating Ambient Temperature

-20 to +75

°c

Load impedance

10kil TYP.

ELECTRICAL CHARACTERISTICS (Ta
CHARACTERISTIC

= 2SoC, Vcc = 13.2V, f = 1 kHz, RL = 10 kil)

SYMBOL

MIN.

TYP.

MAX.

7

11.0

Circuit Current

ICC

Open Loop Voltage Gain

Avo

70

81

Voltage Gain

Av

33.5

35

1.1

1.7

50

100

Maximum Output Voltage

VOM

Total Harmonic Distortion

T.H.D.

Input Impedance

fj

Equivalent Input Noise Voltage

vnin

0.1

1.4

Cross Talk
-0.3

0

TEST CIRCUIT

35.5

kn
""Vr.m.s.

@

RG

dB

®

Vo

= 2.2kn, NAB~ 35dB
= 1V, (The other channel

dB

®

Vo

= 0.3V

dB
V

0.3

2.0

+0.3

TEST CONDITIONS

CD
CD
®
®
®
®

rnA
dB

-62

Channel Balance

UNIT

%

vin

Vo
Vo

=0
= 0.3V
= 0.3V, RNF = 1.8kn

T.H.D. = 1%,
Vo

= 0.3V,

NAB~35dB

NAB~

35dB

vin = 0, RG = 2.2kn)

TEST CIRCUITS

® Av Test Circuit

CD Icc, Avo Test Circuit

(for Ch. 1)

Vcc=13.2V

126

lOO"F
.----1_EI-+~~------ovcc= 13.2V

J,lPC1032H
@ VOM, T.H.D., rj Test Circuit

® Vnin Test Circuit

(for Ch. 1)

(for Ch. 1)

100!,F

100!1F

~_--t::1t-:-+~--------oVcc=

13,2V

r""_-"-+-""---o Vee = 13 ,2V
Flat Amp,

B,P,F,

Vn

Av(dB)(f= 1kHz)

vnin is calculated by vn and amp. gain (Av +40 dB).
External components of the IC are the same as the Test Circuit.3

® Cross Talk, Channel Balance Test Circuit

RL
10kQ

o---I::I-~>---<:

0 uti

0---'-1'1---.>---<: Out 2

RI.
I

Ok~l

External Components of the IC are the same as the Test Circuit
Cross talk Test Procedure
20 log Out2 /Out I
Switch Position
SW I ~2. SW 2 ~ 1
20 log Outl/Out2
Switch Position
SW I ~ 1. SW 2 ~ 2
Channel Balance Test Procedure
20 log Outl/Out2
Switch Position
SW I ~2. SW 2 ~2

(3.)

TYPICAL CHARACTERISTICS (Ta = 25°C)
OUTPUT VOLTAGE vs.
INPUT VOLTAGE

(Test Circuit

TOTAL HARMONIC DISTORTION vs.
OUTPUT VOLTAGE

®)

(Test Circuit

100

®)

10

50
~

g
~Ci

20

~

10

:>

~

0

'0

1

g,

0,5

>

c5
~

0,2

,;

"
100Hz

1 OkHz

f= 1kH>:",

0,5

:x::

~

0,2

~

0,1

~

~~

10kHZ,

1P OH Z

~

0, I

I

cl 0,05

~

0,0 5

'2

:x:

.

0,0 2
0,0 1
0,1 0,2 0,5

1= 1 kHz

~

1111

0,02
1

5

10 20

50 100 200 500 1000

Vin-Input Voltage- mVr.m,s,

0,01
0,01 0,02 0,05 0,1

0,2

0,5

J

III j

10

V o - Output Voltage- Vr,m,s,

127

,uPC1032H
TOTAL HARMONIC DISTORTION vs.
OUTPUT VOLTAGE

VOLTAGE GAIN vs. FREQUENCY
(Test ClrcuiteD,®)

(Tesl Circuit®)
120

10

~

!g

~

~
c
u

0g

~

:z:

b

0.5

~
lI
ci

0.05

~
a

60

<

'"z<

BV

<

~cl~~ 13.~V. : 7~'1

,

0.2

0.5

'""

Vo- Output Voltage- Vr.m.s.

.?-

t--..

--I'-- ....

40

~SAHI

"

20

o

10

10

20

50

I.B

~

1.4

>

1.2

~

"

1.0

E

O.B

')(

0.6

a

o

~

~
I

:0:

~

!g

.... k
....

';;j
CI

I. ....

..

~

60

"0

g

40

.

Q.

0

..~

20

0.2
20

30

50

70

100

CIRCUIT CURRENT, MAXIMUM OUTPUT VOLTAGE,
OPEN LOOP VOLTAGE GAIN AMBIENT TEMPERATURE

(Test CircuiteD, ®)

b

BO

E

';;j
CI

...

a'"

60

Q.

0
0

..

c:

I.B '--

16

:>

.

1.6

>

1.2

14

~

U

20

<
0

~

!!

12

a

10

"

Q.

"

-

~

r-- ~

-

r-- 1--_

AIJO

1.4

1.0

0

B

§
E

~

Q.

I

iii

':;

40

0

g

~
~

2.0

IB

(.)

>

...J

<

.~

O.B

Icc

-

0.6

~

4

o

I

0.4

~
> 0.2

o

SOk lOOk

-20

~

E 14

"0 1.5

i

"
6

':;

>

~I

---

~

(.)

1.0

0.5

10

~

B

~

6

U

I'

7

I

4

o

--

Vm.t

I

I

....

o

4

---

Ie ..
it-'

~

I

....
0

/'

I

,
, /

12

.;

....

10

12

14

Vee-Supply Voltage-V

RL-Lood Resistance-kQ

~

ZOk

1'1,.-.....

~

0
10

!g

10k

Avo

16

<

:0:

<

20

Sk

IB
2.0

~

c:

0.4

~
>

E

...J

100

2k

20

Q.

>

o

+20

+ 40

+ 60

Ta-Ambient Temperature-'C

128

BO

b

I

2.5
iii

~

....

lk

(Test CircuitCD,@)

100

1.6

500

CIRCUIT CURRENT, MAXIMUM OUTPUT VOLTAGE,
OPEN LOOP VOLTAGE GAIN vs. SUPPLY VOLTAGE

2.0

~

100 200

I-Frequency-Hz

(Test Circuit ®)

E

r-...r-.

L,..ol--'' '

MAXIMUM OUTPUT VOLTAGE vs.
LOAD RESISTANCE

iii

"""'i;

[.....-- f-

=>

0.02
0.05 0.1

BO

~

~

0.01
0.01 0.02

Avo

';;j
CI

>

I'..

0.2
0.1

:i
...,:

100

+ BO

16

IB

20

,uPC1032H
TYPICAL PRINTED CIRCUIT BOARD PATTERN
Bottom View (Unit: millimeters)

~----------------70~--------------~~

Components Layout

Foil Side

Components Side

lOOJlF(l6V)

....-------H....:...+--..------------oVcc

">---o----1R---OOUT

2.7kQ

129

BIPOLAR ANALOG INTEGRATED CIRCUIT

,uPC1228H
LOW NOISE DUAL 'PREAMPLIFIER
SILICON BIPOLAR MONOLITHIC INTEGRATED CIRCUIT

DESCRIPTION
The ~PC1228H, a silicon monolithic integrated circuit, is a low noise dual preamplifier designed for car stereo
applications. The device consists of two separate amplification channels, and its major features are low noise, low
distortion, high gain, large dynamic range and wide supply voltage range.
Outline is a 8-lead single in-line plastic package, for small mounting space and easy mounting on P. C. Board.

FEATURES
• High open loop gain

: AvO = 100 dB TYP.

• Low noise

: Vnin= 1.1 ~V TYP.

• Low distortion

: T.H.D. = 0.05 % TYP.

• Large dynamic range

: VOM= 2.0 Vr.m.s. TYP.

• Wide supply voltage range

: VCC = 6 to 16 V

• High output current

: I ODC= 1 rnA MAX.

• Low impedance load driving capability

: RL = 1 kn MIN.

• Small feedback capacitance capability

PACKAGE DIMENSIONS in millimeters (inches)
19.5 MAX.
(0.76 MAX.)

2.8± 0'.2
(0.11 )

C 1
(C 0.04)

MARKING

l.8
(0.07)

2.54±0.2t
( 0.1)

I

II

17.78
( 0.7)

130

1.0±0.1

(0.04)-M-~

,uPC1228H
ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Supply Voltage

18
270*
-30 to +75
-40 to +125

VCC

Package Dissipation

PD

Operating Temperature

T opt

Storage Temperature

T stg

V
mW
°c
°c

* Ta=75 °c

RECOMMENDED CONDITIONS (Ta

= 25°C)

Operating Supply Voltage

VCC

Supply Voltage Range

Vcc

Operating Ambient Tamperature

Ta

Load impedance

RL

ELECTRICAL CHARACTERISTICS (Ta

--

CHARACTER ISTIC

Quiescent Current
Open Loop Voltage Gain

MIN.

TYP.

T.H.D.

Input Impedance

q

Vo = 0.3 V, f = 100 Hz

40

dB

(2)

Vo = 0.3 V, NAB

2.0

V

(2)

T.H.D. = 1 %, NAB

%

(2)

Vo = 0.3 V, NAB

kn

(2)

}JVr.m.s.

(3)

0.05
50

4.8

0.3

100
1.1

Vnin

TEST CONDITIONS
Vin= 0

Avo

Total Harmonic Distortion

TEST CIRCUIT

(1)

100

1.0

UNIT

dB

3.3

90

Av

MAX.

mA

2.5

VOM

V
°c

(1 )

ICC

Voltage Gain

V

= 25°C, Vcc = 10 V, f = 1 kHz, RL = 10 kil)

SYMBOL

Maximum Output Voltage

Equivalent Input Noise Voltage

13.2
6 to 16
-30 to +75
10 kil TYP.

Cross Talk

-50

-65

Channel Balance

-0.3

0

1.7

+0.3

dB

(4)

dB

(4)

RG = 2.2 kil, NAB
Vo = 1 V, (The other channel

Vin = 0, RG = 2.2kn)
Vo = 0.3 V

CONNECTION DIAGRAM
Pin No.

Electrical connection

1
2
3

Input 1
Negative feed back 1
Output 1
Power supply: +VCC
Ground
Output 2
Negative feed back 2
Input 2

4
5
6
7

8

131

j.lPC1228H
TEST CIRCUITS

(2) Av, VOM, T.H.D., Zin test circuit (for Ch. 1)

(1) ICC, Avo test circuit

...--_-----0 Vee= 10 V

\

\

(3) Vnin test circuit (for CH. 1)

(4) Cross talk, Channel balance test circuit

.--__---0 Vee=10 V
B.P.F·

I=3dB\
RG=
2.2 kQ

{5Hz 30

Vn

k~

NOTE: Vnin is calculated by Vn and amp. gain (Av +40dB).

NOTE1: External components of the IC are the same as the test
circuit (2).
2: Cross talk procedure
Switch position SW.1
Switch position SW.1
3: Channel balance
Switch position SW.1

132

~2,

SW.2 ~1, 20 log V02/V01
2010g V01/V02

~1, SW.2~2,
~2,

SW.2 ~2, 20 log V01/V02

,uPC1228H

TYPICAL CHARACTERISTICS (Ta

= 25°C)
TOTAL HARMONIC DISTORTION
vs. OUTPUT VOLTAGE

OUTPUT VOLTAGE vs. INPUT VOLTAGE

10

Test Circuit(2)
VCC 10 V

0.5

V

2

V

/
f=1 kH

100 HZ/

>
I

zV V

I

V

c
0

0.2

~

0.1

is

tID

0

2

0.5

>
:J

.e::::s

0.2

I

0.1

V

V

V

,

1'.."

-

0.01

I

/

~~

I

0.002
0.001

0.5

0.2

10

2

20

50

om

100

0.02

0.05

0.2

t-....

0.1

Q)

0.02

Q)

tID tID

II

~~
~C)

VCi~v

0
0

0
0

cQ)

'0

...J ...J

~,

I

I

/~"\,

I'\.

u

/

'"

50

I

"

r-....

~~

'-'

~~

40

~

..........

0.002

30

0.001
0.010.02

0.05

0.1

0.2

Vo -

2

0.5

5

140

>

I

Q)

>
:J

2

L

1

.e::::s

f=l kHz, T.H.D.=l %

-

CIRCUIT CURRENT, MAXIMUM OUTPUT
VOLTAGE, VOLTAGE GAIN vs. SUPPLY VOLTAGE
15
Test Circuit(l), (2)
VCC=10 V

3

60

ro

ro

'0

'0

I

I

>

I

tID

<.!:l

<.!:l

Q)

Q)

a

2
a
>

a.

a.

0
0

0
0

0

.2u

2
>

E
::::s
E

a

2 ElO
I

>
:J

tID

tID

~

Q)

c

.~ 120 'ro40 2

0

,/

C
~
::::s

.e
::::s

'x
ro
~

'5

I

I

~

~

10

RL - Load Resistance - k Q

15

II

--1---

,I

Ava (f=l kHz)

-- -_..

0

a

f--- I--

_.-

ICC(Vi=O)

~

~

80

5

I

~

~

~

-- .-

~
VOM (f= 1 kHz, T.H.D. = 1 %)

J

!::?

I

I

0

0

~

~

-

AV (f= 1 kHz)

/
/

U

0

E
~
::::s
...J
...J
i:3
E
~
20'~
1 I 5
~100
u

a

100 k

10 k

f - Frequency - Hz

Test Circuit(2)
VCC=10 V

a

v(NAB)

III

1k

10

3

2

100

10

"

Output Voltage - V

MAXIMUM OUTPUT VOLTAGE vs.
LOAD RESISTANCE

tID

,

1/

60

Q)

0

r--.

l/~

CJ*'

oa. '"
0

l-

"~

II

F-

70

a. a.

...... ~

1\.\

~

»

ci 0.005
:i

10

Test Circuit(l),(2)
VCC=10 V

n

~~

22

0.01

0

t7
80

00

"

0

2

I

c

ro 'ro

-

c

:c

I

90 f -

<.!:l<.!:l

0.05

E
ro

'0

.S:

10 V, 13.2 V

VCC=6 V

'0

1IAVOI_

~

/

1111/

ro ro

II il

0

IIII

100

I I II I

~

2

0.5

0.2

Output Voltage - V

VOLTAGE GAIN vs. FREQUENCY
110

Test Circui t(2)
f 1 kHz
I 11 1

0.5

0.1

Vo -

TOTAL HARMONIC DISTORTION vs.
OUTPUT VOLTAGE
'

.~

)

-

Vi -Input Voltage - mV

is

f-.I

~

[7 /"

0.01
0.1

"-e
~

....

c::i
:i 0.005
/

I

I'

I'\.i'-.
1'\1"r--.
i'

0.02

I-

0.05

c

"",

~

0.05

:c
ro
'0

~

0.02

f=l lHZ r\~

E
ro

V VV

/V

0

0

V

V

'c0

V

I"

10 kHz"

't
10 kHz

Q)

a

I'

~

l-

Test Circuit(2
VCC 10 V

1-100 Hz

a

o

5

10

15

20

Vee - Supply Voltage - V

133

jlPC1228H

QUIESCENT CURRENT, MAXIMUM OUTPUT VOLTAGE,
VOLTAGE GAIN vs. AMBIENT TEMPERATURE
Test Circuit(l), (2)
VCC=10 V

140
CD
"t:I

I

120

oS

100

tID

(5

>

~

oS

g

I

6

tID

·ro

~

>

6

-

Q)

c:

Co

80 ~
0

Co

o
o

E
::l
E

...J

·x

5 E
I

-

c:

u

i"- "-

·5

ro

~
(3

3

I
:E
u
I 2 !::?
:E

~

~

.,/

4
4 ~
::l

3

f"""oo.

1- r---t-.,

o

r.....

I""- r--...
VOM (f= 1 kHz, T.H.D.= 1 %)

0
.~

20

.I

AVO(f=l kHz)



<:

o

4

2

6

8

10

14

12

16

30

PO-Output Power-W
20
20 30 50

100 200300 500

1k 2 k 3 k 5 k 10 k 20 k30 k50 k 100 k

f-Frequency-Hz

TOTAL HARMONIC DISTORTION

vs. OUTPUT POWE R
20
~

I

10

c::::

SUPPLY VOLTAGE CHARACTERISTICS

80

Vee= 13.2 V
RL=4 Q

I

,"
:
,

5

.B
U)

is

3

0

'c0

2

E

r--. ..... ""'-.

1'0

~

'00.5

~

....

........

I

d 0.3
~ 0.2

....... ......

..,:

0.1
0.05

.......

"

....

100 H{

--

--t-o
...... ~ ...!....kHz
0.2 0.3 0.5

1

::J

1::
0
~

::

(!)

c::::

a.
0.6 :; 6

cr 40
C,)

E

30

g
I 30 ~ 0.4
< ~'0
20 d 0.2
~

..,:

..J

PO-Output Power-W

5

10

20

10

o

.e
5

I 4
0

~

o

./
~

~

~

/ ---%)

I

....J.---.
.

I

I

I

TH.D.I(~~l ~~Zw)_

/'

10

(T.H.D.= 10
f == 1 kHz

I

lee(NO Signal)

2

--o

I

/

=1 kHz )
PO=0.5 W
~

'/

Q"

I

eI

I

~ 50 ~40 E
.:;
2
ro
.~
:c

-~

3

A"

C 60 c:::: 50 0 0.8 S 8
~
'ro
.~
~

,:

2

Q

10

I

CD

'0

20
0.1

RL=4

I
60.~ 1.0

70

I

r---. ~ ..JJ

l-

140

<:
E

I

....... -!.: 10 kHf

:c

12

1.2
~

~I

0

:e

70

---

12

14

16

18

VcC-Supply Voltage-V

20

,uPC1181H3, ,uPC1182H3

TEMPERATURE CHARACTERISTICS

120

70

1.2

12

1.0

10

VCC=13.2 V

~

RL=4

I

100

~

:e.e
b50 is

::

[Xl

I

"0

(I)

.-

c 80
~
~

60 glJ40

~

~

.-

g

60

.~

c3
ro

E 0.6
~

C3 40 ~ 30

~

co 0.4
;,-

I

~

~
20

I

0.8 ~ 8

~

20 c:i 0.2

o

(PO=0.5 W)

'5 6 "-

.s-

o

10

p

o

----

(T.H.D.= 10
f=l'kHz

%)

.-- ~

:J

4

-

ICC(No Signal)

0..

2

:i

..,;

Av f= 1 kHz

-

0..

o
I
o

Q

I-

o

-

-25

T.H.D.

o

(PO ,0.5 W)
f = 1 kHz

25

50

75

Ta-Ambient Temperature-·C

TYPICAL APPLICATIONS
VCC

(1) Circuit Example

1 000 J.lF

INPUT

Cl
220 J.lF

Fig. A

• The supply ripple rejection ratio is improved by C6 •
(2) Circuit Example

VCC

1 000 J.lF

INPUT

Cl
220 J.lF

Fig. B

• The capacitor C4 is for preventing a parasitic oscillation.
A mylar film capacitor is recommended.
If an oscillation occure, increase capacitance of C4 , or connect an additional resistor R 1 as shown in Fig. B.

141

BIPOLAR ANALOG INTEGRATED CIRCUIT

,uPC1185H2
7 W DUAL AF POWER AMPLIFIER
SILICON BIPOLAR MONOLITHIC INTEGRATED CIRC·UIT

The pPCl185H2 is a dual audio power amplifiers in a 12-lead single in-line package, specifically designed for car stereo
application.
This device provides an output power of 7 watts per channel to 4 ohm load with 10 percent distortion at 14.4 volts power
supply.
The pPCl185H2 is pin to pin equivalent to the pPCl185H.
FEATURES

• Very low number of external small size components.
• Easy mounting with no electrical isolation between the package and heat sink.
• Space saving due to the single in-line package.
• Very low transient noise at power switch-on.
• No damage for reverse insertion on the PC-board.
• Thermal shut-down circuit included.
• Load dump protection circuit included.

PACKAGE DIMENSIONS (in millimeters)
CONNECTION DIAGRAM

2.5

142

Pin No.

Function

1

GND (for input)

2

Output 1

3

Boot Strap 1

4

Filter

5

N.F.1

6

Input 1

7

Input 2

8

N.F.2

9

+VCC

10

Boot Strap 2

11

Output 2

12

GN 0 (for output)

,uPC1185H2

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Supply Voltage (Surge PW = 200 ms)

VCCsurge

40

V

Supply Voltage (Quiecent)

VCC1

25*

V

Supply Voltage (Operational)

VCC2

18

V

Circuit Current (Peak)

Icc

4.5

A

Package Dissipation

Po

20

W

Operating Temperature

T opt
Tstg

-30 to +75*

°c
°c

Storage Temperature

peak

-55 to +150

*Using an aluminum heat sink Oth(c-a) =6 °C/W

EL~CTRICAL CHARACTERISTICS (Ta=25
CHARACTERISTIC
Circuit Current

Output Power

Total Harmonic Distortion

SYMBOL
ICC

Po

°c,

Vee = 13.2 V, f= 1 kHz, RL =4 il)

MIN.

TYP.

MAX.

UNIT

30

80

180

mA

5.0

7.0

T.H.D. = 10 %, VCC = 14.4 V

5.8

W

T.H.D.=10 %, VCC=13.2 V

8.5

W

T.H.D.=10%,RL=2n, VCC=13.2V

1.0

0.4
Voltage Gain

AI)

Channel Balance

AAu

Cross Talk

CT

Output Noise Level

Un

Uin=O

W

0.3

T.H.D.

TEST CON DITIONS

51

54

30

45
1.4

%

PO=0.5 W

%

PO=2 W, RL =2 n

58

dB

±1.5

dB

PO=0.5 W

dB

f = 1 kHz, other ch RG = 0

mVr.m.s.

4

PO=0.5 W

RG = 1 0 kn.

TEST CIRCUIT
SWI
47J.lF /6.3V

Table 1

Vee

SW1

SW2

OFF

3

3

Po

ON

1
(3)

3
(1)

T.H.D.

ON

1
(3)

3
(1 )

Au

ON

1
(3)

·3
(1 )

13.2V

ICC

7

*Mylar Film Capacitor

SW3

Un

ON

2

2

SVR

ON

3

3

CT

ON

1
(3)

3
(1 )

The position of switches at testing AMP1
is show in table 1. The numbers in parenthesis show the position of switches in
testing AMP2.

143

,uPC1185H2
BLOCK DIAGRAM

+

Vee
1 000 JlF

NOTICE:

This device is not recommended for bridge and power booster amplifiers because
the ~pe1230H suitable for its.

144

J,lPC1185H2
TYPICAL CHARACTERISTICS (Ta =25°C)
POWER DISSIPATION vs.
OUTPUT POWER

PACKAGE DISSIPATION vs.
AMBIENT TEMPERATURE

18

24~----~----~----~------~A-I-P-a-ne-l-t-=~2~m-m-----'

::I

Use silicone grease
Unit :mm

20~----~p---~----~----~

::

c:

:3~

14

I

c:

16 t-----+_

121---+_

VI

Q)

bO

co

81-----+------r--

u

co

is

8

~

6

a..

4

0

a..
I

4~~E~S
o

Cl

a..

Free Air
(OJ-a=32 -C/W)
25

50

75

100

125

-,

~

~

~

~

-- - -....
4

60
II)

(!)

~

2

~
I

.,

........ ......

.....

,~

*
I

c:
0

:e

,

.8VI

10

is

5
3
2

'c0

"

30

10

12

14

,"
,
I

.... ~ ...
. .... ... -J,,=

J:

2
0

ex:

I-

I
100 200 300 500

I

VCC=13.2 V
RL=4 Q

E
co

"'Iii"

20 30 50

I
8

50
30
20

u

40

20
10

6

TOTAL HARMONIC DISTORTION

VCC=13.2 V
vin=2.45 mV
RL=4 Q
,/-

I

vs. OUTPUT POWER

70

50

"""""""

PO-Output Power-W

VOLTAGE GAIN vs. FREQUENCY

I
c:
·iii

VCC=13.2 V_ RL=2 Q

VCC=16 V
RL=4 Q
VCC=13.2 V
RL=4 Q

I
2

Ta - Ambient Temperature-·C

"tJ

_I-

J.

~

r- r---...

2
0

150

"'VCC=16 V
RL=2 Q

I

,,--

//.

I
"tJ

a..

-"",,-

~7

a. 10
.iii

VI

.:.:

)/-

12

.~
co

·iii

is

f=l kHz
2 ch
operate

16

d
:i
t-=

1k 2 k 3 k 5 k 10 k 20 k30 k50 k 100 k

f-Frequency-Hz

0 ~Hz
~J.gO~ ...

~

0.5
0.3
0.2

I
0"'

I,~

~~~~.
1 kHz I"

.• ?II
l..o'

r-~

0.1

I
I

0.020.030.05 0.1

0.20.3 0.5

1

2 3 5

10

20

30

PO-Output Power-W

SUPPLY VOLTAGE CHARACTERISTICS

SUPPLY VOLTAGE CHARACTE RISTICS

14

7

12

::

10

/

I

~0

a..

8

~

~

~.,

~

0
I
0

,

4

a..

~v

200

.....c:

~
~, R=4 Q

Q)

~ 150

u

~,

2

is 1.5

bO

40

~

~ 100
I

E

(5

co
==j 30 J:

ex:

c.>

.9 50

u

'c0

.,

Iii

-0

20 lI 0.5

r

,.

--

d

o
8

10

12

14

16

18

20

t-=

ICC (No Signal)
I

I

I

I

e=l kHZ)
T.H.D. PO=0.5 W

10 :i

6

Q

(f =1 kHz )
Av PO=0.5W

VI

'iii

(!)

2

C3

/'

I
c:

RL=4

I

:zj

Q)

.....

/'"

*
0

II)

I
I

1c: 5 0 2

I

",'"

2

o

~.,

E

/

~,

)'

6

60

ex:

/

/

.....

.s-

f=l kHz
T.H.D.=lO %

R=2 Q

2.5

250

o

6

8

10

12

14

16

18

20

Vce-Supply Voltage-V

VCC-Supply Voltage-V

145

BIPOLAR ANALOG INTEGRATED CIRCUIT

I1 P C1230H
23 W AF POWER AMPLIFIER
SILICON BIPOLAR MONOLITHIC INTEGRATED CIRCUIT

The ,uPC1230H is an audio power amplifier in a 12-lead single in-line package, specifically designed for car stereo application.
Typically it provided 23 watts output power at 14.4 volt and 20 watts at 13.2 V on a 4 ohm load.
This device can be used without

ou~put

capacitors, because it incorporates the orignal short circuit protection which protects

output power transistors and a speaker at the same time when the output terminal is shorted to ground.
FEATURES

• Can be used as OCL connection.
• Very low output offset voltage: Voffset = 150 mV (MAX.)
• High output power: Po =23 W TYP.
Po =20 W TYP.

RL =4
RL =4

n

n

at 14.4 V
at 13.2 V

• Very low distortion.
• Very low number of external low size components, very simple mounting system with no electrical
isolation between the package and the heat sink .
• Low thermal resistance: () J-C ;,: 2.5 °C/W
• Following protective circuit as provide
(1)
(2)
(3)
(4)

Load dump protection
Output therminal short circuit protection
Thermal shut down protection
Speaker protection

PACKAGE DIMENSIONS
(in millimeters)

32.0 MAX.
5.0 MAX.

24.0±0.2

2.5
0.3

--I-~-1.4

146

MAX.

,uPC1230H

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
VCC surge

40

V

Supply Voltage (Quiecent)

VCC1

25*

V

Supply Voltage (Operational)

VCC2

18

V

Circuit Current (Peak)

ICC peak

4.5

A

Package Dissipation

PD

20

W

Operating Temperature

T opt

-30 to +75*

°c

Storage Temperature

T stg

-55 to +150

°c

Supply Voltage

(Note)

*Using an aluminum heat sink 0th(c-a) =4 °C/W
Note: Pulse width = 200 ms, Trise 2: 1 ms
RECOMMENDED OPERATING CONDITIONS (Ta=25 °C)
Supply Voltage Range

9.5 to 16

v

Load Impedance

3.2 to 16

n

ELECTRICAL CHARACTERISTICS (Ta=25 °c, Vcc = 13.2 V, RL =4
CHARACTERISTIC
Quiescent Current
Output Offset Voltage
Output Power
Voltage Gain
Total Harmonic Distortion
Output Noise Level
Supply Voltage Rejection Ratio
Input Resistance
Rolloff Frequency

SYMBOL

MIN.

ICC

16
53

kHz)

TYP.

MAX.

UNIT

90

180

mA

vin=O

±150

mV

Vin =0

Voffset
Po

n, f= 1

TEST CONDITIONS

23

W

VCC=14.4 V, T.H.D.=10 %

20

W

VCC=13.2 V, T.H.D.=10 %
Vin =2.45 mV

55

56

dB

T.H.D.

0.15

1.0

%

vn

0.65

mV

RG =0, BW=20 to 20 kHz

SVR

45

dB

RG =0, frip = 100 Hz, Vrip = 0.5 V

Av

PO=2 W

Ri

45

kn

fH

90

kHz

Au =-3 dB from 1 kHz Ref.

High

fL

15

Hz

Au =-3 dB from

Low

TEST CIRCUIT & TYPICAL APPLICATIONS

m

47 pF/16 V

0.1 pF

I

:t

~

;J;C S

1 kHz Ref.

VCC
013.2 V

:S;C9 2200 pF/16 V

r':4---dr---.,

1100 pF/16 V

*Mylar film capacitor

147

jlPC1230H
BLOCK DIAGRAM
VCC

47 .uF/16 V

+

+

2200 .uF/16 V

input

1 Q
100 .uF/6.3 V

LOAD DUMP
TERMINAL SHUTDOWN
THERMAL SHORT·
CIRCUIT
PROTECTOR
100 .uF/6.3 V

CONNECTION DIAGRAM
Pin No.
1

Output 2

2

Boot Strap 2

3

Divided Output

4

Input 2

5

N.F.1

6

Input 1

7

GND (for input)

8

Filter

9

148

Function

+VCC

10

Boot Strap 1

11

Output 1

12

GND (for output)

0;r
0.1 /-iF
1 Q

RL
4Q

J,lPC1230H

PACKAGE DISSIPATION vs.
AMBIENT TEMPERATURE

POWER DISSIPATION VI.
OUTPUT POWE R
30

30

25
~

I

c
0
:;:;

1"'-900

a.
·iii
VI

15
I--

C1I

boO

-

III

~

0

III

0..

I

f=l kHz

..-

~

~I-j

~
III

I

~

20

III

i5

.~~
I
'<7
c",<

I

Free

Ai~

\\-r-

')

25

d._I_J.

50
Ta-Ambient

\"

·s.
I C'/~~~'"

75

4$'_

,~~

~c/W)

o

VI

'*',

C'
/~

q~8

"I
100

-

Te~perature-·C

20

a.
·iii

\"0,\~

'.;>~

(,.

(t9.
I......

10

c

~"/KIs:; \;;-~
1\"

100

0
0..

i5

....C1I

0..

I

-'

0
0..

'1~

\~

)f'

125

I

50

o

150

Vee=13.2 V
RL=4 Q
Vin=5.6 mVr.m.s.

/

/"

- .... r-.

-

i""""'-- ~ 10 V

10
20
Po-Output Power-W

30

~
I

Vee 13.2 V
RL 4 Q
RG 600 Q

50

c

~ 20
o
Vi 10

o
o
o

·2

E

45

2

III

::I:

"0

10 kHz
100 Hz

I§

>

I~

Vee= 13.2 V_
--I"---. .........

TOTAL HARMONIC DISTORTION
OUTPUT POWER

(.!)

~

"'-

r-

J

VS.

·ro
~

----

-

16 V

~

~

55

c

~

\ ;_

:..,-

-

100

60

co

/

10

~~f\

f--

l"- i"'-

/"'!"'"

~
0

VOLTAGE GAIN VI.
FREQUENCY

"0

RL =4 Q

AI Panel t-2 mm
Use silicon grease
Unit; cm

o 0.5

t-

40

I
C 0.2

0«

:x::

....: 0.1
0.01 0.02

35

30
10

20

50 100 200 500 1k 2 k
5 k 10k 20 k
f-Frequency-Hz

.......

~

.L IT

I""

I

IL
'1'1

TI

f=l kHz nTI
0.05 0.1 0.2
0.5 1
Po-Output Power-W

10

20

50 100

50 k 100 k

149

,uPC1230H

OUTPUT POWER vs.
SUPPLY VOLTAGE

SUPPLY VOLTAGE CHARACTERISTICS

30

20

f= 1 kH z

/I

I

==

L

20

T.~.D.= 10 %

-0

V
/

:;
.9:::I

,

/

0

0

a.

/

10

,,, , " V
V

T.H.D.=l

~

%

30

U

/'1'

V

2

a.
o.
:::I

en

15

0

u

20

till

30

(5

:::I

en

,

0::

>
en

C1)

0:
'5 10

,

'\.

.e

>

-E:0.

>

a.
0.

C1)

2

C1)

till

~loo
0

C1)

'(j)
0::

:::I

40

0

I

r--

0.

'':

c:
;::.

10

100

1 k

10 k

trip-Ripple Frequency-Hz

150

(!)

'(ij

l,....-o'

c:

till

t-

I

I

..f'

-~

100 k

-

I--

I

U

2

..

,'"",

~:::I

C1)

~t-

-

\'lli"" 0)
\~

I

0

~'
SVR (RG=O. frip= 100 Hz. Vrip=O.5 V r . m. s )

__ I

,

~

,

,

,--,--1

T.H.D. (f=1 kHz. PO=2 W. RG=600 Q)
0

45

0

-

-- --

10

15

Vee-Supply Voltage-V

Vee 13.2 V
RG 0
V ripple= 0.5 Vr .m.s.

>

E
I

c: 10

0

Gv (f=l kHz. PO=2 w)

I

:i

50

20

1000

~

c:

ci

I

-0

-:Q

I

>- 40 ~
1 g50
0

SUPPLY VOLTAGE REJECTION RATIO
vs. RIPPLE FREQUENCY

0::

~

-0

:x:

(5

Vee-Supply Voltage-V

.~

II)

u

>

>
en

0

2

E
ro

till

0::

I

B
VI

'c

C1)

V

~

Ci

C1)

'(j)
0::

",'

II)

100

I

c:

0::

V

10

55

RL =4 Q

~

I

:3ro

7T
/

I

C1)

~
0

a.

150

II)

/

/

60

RL=4 Q

20

jlPC1230H
COMPONENTS LAYOUT FOR P.W. ASSEMBLY (Copper side)
HO£l18d ri

INPUT

151

BIPOLAR ANALOG INTEGRATED CIRCUITS

~PC1241H,~PC1242H
7 W AF POWER AMPLIFIER
SILICON BIPOLAR MONOLITHIC INTEGRATED CIRCUIT

DESCRIPTION

The J,lPC1241 Hand J.lPC1242H are audio power amplifiers which is especially designed for car radio and car stereo.
The devices are encapsulated in newly developed small packages featuring low thermal resistance, providing easy design for 2 n
load circuit and 4 U load BTL circuit.
At 14.4 V the devices give output power of 7 W at RL = 4 nand 11 Wat RL = 2 n
FEATURES

•

High output power:

Po= 7 W TYP.

@

RL = 4 n, T.H.D. = 10 %, Vee= 14.4 V

Po =ll W TYP.
Po =18 W (Bridge)

@

RL = 2 n, T.H.D. = 10 %, Vee= 14.4 V

@

RL = 4 n, T.H.D. = 10 %, Vee= 14.4 V

T.H;D.=O.l % TYP.

@

RL = 4 n, Po= 0.5 W

•

Low distortion :

•

High reliability: of the chip and package with additional complete safety during operation thanks to protection
against;
(1) Load dump voltage surge.
0

(2) Over rating chip temperature (150 C).
(3) Output DC and AC short circuit to ground or Vee.
(4) Revere insertion.
These ICs are not destroyed nor damaged even when any of neighboring two terminals are shorted to each other.
• Space and cost saving: very low number of external components, very simple mounting system with no electrical
isolation between the package and the heat sink (one screw only).
• Pin orders of these types are symmertical each other, which reduces the area of Printed Circuit Board effectively.
PACKAGE DIMENSIONS (in millimeters)
3.8 MAX.

20.32 MAX.

1J1.3±003

R 3.S±0.1

0

x

x

c:(

:i:

...

It')

z

:iil
co
Lri

c:(

:E

....

10

N

~

c::i

+I

0'1

0
z

....

1.8 MAX.

:iil
~

1.27 MIN.

12.541

152

...;

j1.

PC1241H,j1. PC1242H

ABSOLUTE MAXIMUM RATINGS (Ta=25 °C)
Supply Voltage (Surge PW=200 ms)

VCC surge

50

V

Supply VOltage (Quiecent)

V CCl

25*

V

Supply Voltage (Operational)

VCC2

18

V

Circuit Current (Peak)

ICC peak

4.5

A

Package Dissipation

PD

12

W

Operating Temperature

Topt

-30 to +75 *

°c

Storage Temperature

T stg

-55 to +150

°c

·Using an aluminum heat sink 100 X 100 X 1 mm

RECOMMENDED CONDITIONS (Ta=25 °C)
Supply Voltage Range
Load Impedance

9.5 to 16

V

2 to 16

n

ELECTRICAL CHARACTERISTICS (Tu=25 0 C, f = 1 kHz, RL =4 n)
CHARACTERISTIC

SYMBOL

Circuit Current

MIN.

ICC

Output Power

TYP.

MAX.

UNIT

25

45

80

mA

5.0

5.8

Po

RL=4 n, T.H.D.=10 %, VCc=13.2 V

7

W

RL=4 n, T.H.D.=10 %, VCC=14.4 V

9.2

W

RL=2 fl, T.H.D.=10 %, VCc=13.2 V

W

RL=2 n, T.H.D.=10 %, VCC=14.4 V

1

%

RL=4 fl, Po=0.5W, VCc=13.2 V

%

RL=2 n, Po =l W, VCc=13.2 V

51.5

54

dB

Po =0.5W

1.4

4.0

mVr .m . s.

0.1

T.H.D.

0.4
Voltage Gain

Av

Output Noise Level

Vn

49

tr.n=O, VCC=13.2 V

W

11
Total Harmonic Distortion

TEST CONDITIONS

RG=10 kn

TEST CIRCUIT

r------------++-------O

VCC

14.4 V

1 000 J.lF

SG

3

* Mylar Film Capacitor

153

j1.

PC1241H,j1. PC1242H

BLOCK DIAGRAM

r--------------------nVcc

+

47.uF

)-------------.(81------_

/6.3 V
OVER VOLTAGE
LOAD DUMP
PROTECTION

&

47 .uF/!O V

IN

RL

4 Q

L-.-----l

4

}------------~

5 1-------'

CONNECTION DIAGRAM
pPC1242H

pPC1241H

Pin No.

NEe
,uPC1241H

234

154

5

678

876

5

432

pPC1241H
pPC1242H

1

Input

2

Bypass

3

Feedback

4

GND (for Input)

5

GND (for Output)

6

Output

7

Bootstrap

8

Power supp Iy

J1 PC1241 H,J1 PC1242H

TYPICAL CHARACTERISTICS (T a =25°C)
POWER DISSIPATION vs.
OUTPUT POWER

POWER DISSIPATION vs.
OUTPUT POWER

:;:
I

ro

:;:

0
~

;;:

0

V

0-

;;:

~P'
i--"'"

5

0

0-

10 V

--

13.2 V

7. V'

I

')~'

"0

~

r---

-

-r-- 1E~

l,...--I--

~

13.2 V

~

./

V

0

t-

r-

./

Vee=18 V

~

--I--I-"

.~

l - t-

-- - -

r/

10

ro

c.

16 V

l"'- t-

'1/"

"0

0

:,J

--r-r--

/""

II 1/ ....

3

I

c

Vee=18 V

4

0-

I

.I.

5

.9

~

0>

«

~

0-

I"'-

~

I;> 30

C>

4

.......

40 Z

a

\I

ro

I

I

~.

U

0

aJ

"0

.::£

0-

60

~-+-t--t

8

0

~

70

~

:~

Q)

Vee=13.2 V
RL=4 Q
Po =0.5 W
RG=600 Q

80

~. --+--+--1

10

I

ro

20

PACKAGE DISSIPATION vs.
AMBIENT TEMPERATURE

c

0
:,J

15

Po -Output Power-W

AI Panel
12 ~-+-+--+-'-"--f-o.!:--!-+--+"""~--I Use silicon
grease

:;:

10

PO-Output Power-W

20
2
10

o

25

50

75

100

125

o

150

10

1k

100

Ta-Ambient Temperature-'C

10 k

TOTAL HARMONIC DISTORTION
vs. OUTPUT POWER

TOTAL HARMONIC DISTORTION
vs. OUTPUT POWER

Vee 13.2 V
RL 4 Q
RG=600 Q

Vee 13.2 V
RL 2 Q
RG=600 Q
~

~

I

c

0
:,J

I

c

10

0

:e

~

~
u

u

§
I

10

0

0

'c
0

100 k

f-Frequency-Hz

'c
0

1.0

§

ro

f

:§

......

0

l-

~

10 kHz

L."ooo'

100 Hz

.......V

"'- ~~Hr;r

I

c:i 0.1
::i

I

..... Iit'

100 Hz
I L

l-

V

10 kHz

~

co
"0
I

c:i
::i

1 kHz
0.1

....,:

....,:

0.01
0.001

f

ro

0.01

0.1

Po-Output Power-W

1.0

10

0.01
0.01

0.1

10

Po-Output Power-W

ISS

p PC1241 H,p PC1242H

TOTAL HARMONIC DISTORTION

TOTAL HARMONIC DISTORTION
vs. SIGNAL SOURCE RESISTANCE

vs. FREQUENCY
Vee 13.2 V
Rl 4 Q
P.o=0.5 W
RG=600 Q

~

I

r::

~

I

10

0

Vee 13.2 V
f 1 kHz
Rl=4 Q
Po=0.5 W
10

r::
0

~
a

~

VI

~

,

u

·c

a
u

·c

\.

0

E

0

E

<0

<0

:I:

:I:

v-

co

iii

-0

l-

i\.

I

c::i
:i

0.1

"0
I

..--

l-

...... ~

t-=

~

0.1

c::i
:i
t-=

0.01
10

10 k

1k

100

0.01
10

100 k

100

100 k

10 k

1k

RG-Signal Source Resistance- Q

f-Frequency-Hz
OUTPUT NOISE VOLTAGE vs.
SIGNAL SOURCE RESISTANCE

SUPPLY VOLTAGE REJECTION
vs. RIPPLE FREQUENCY

Vee=13.2 V
Rl=4 Q

8

Vee=13.2 V
Rl=4 Q
RG=O Q
Vrip=0.3 V

80
70

7
CD

"0

..

>

E

!tID

.e

0

>

I

6

r::

0

Q)

5

.iii"
a:: 50

4

.e
0

Q)

~

·0

z

tlO

"5

.e
~

0

60

u

Ir::

~

...... ~

3

>.

a.
a.

~

30

U)

I

~

a::

>
U)

,/

~

~

~

2

:--.

./

40

>

~

20
10

o

1k

100

100 k

10 k

o

1M

SUPPLY VOLTAGE CHARACTERISTICS

15
f=1 kHz
T.H.D.=lO %

==!

,,

Q)

/

a.
"5

/'t'

~

0

0

a.

,

5

,.
~'

k'"

,
...

,

,

V

/'

V

~

,

)~Rl=4

100

..!.r::

I

(!)

~

u

9

·c
0

I

~

,
,,

:I:

~
0

I-

c:(

20

0.5

10

15

20

o

o

I

l

-

Ilee (v:=O)

~

.iii"
a::

40

30

Q)

tID

.e

>
>.

a.
a.
~

U)

20

,,

J

"_t~D.
10

I

a::

>
U)
(f=1 kHz, Po =0.5 W)

-- -

o
5

0

0

-v

10

.
r::

50

I

',--

I

c::i
:i
t-=

1.00'

-- -

,.

CD

"0

1. I. 1_ H~O Hz, Vrip=O.3
V)
SVR (frlp
_

<0

~ 30
50

60

J

-f----

1.0

E

.e

~

I

40

tID

U

/

~
u

Q)

·5

:r

70

Av (f=1 kHz, Po=0.5 W)

Ci

r::

u

Q

~ 50

·ro

~

/V

vee-Supply Voltage-V

156

,

I

0

o
5

~
r::

/

~

.e

60

,1

V

VCC=13.2 V
Rl=4 Q

70

,/

'/

10

~
0

I

1.5

150

Q/

100 k

10 k

trip-Ripple Frequency-Hz

o UTP UT POWE R vs.
SUPPLY VOLTAGE

Rl=2

1k

100

10

RG-Signal Source Resistance- Q

15

vee-Supply Voltage-V.

10

o
20

jJ.

PC1241H,jJ. PC1242H

TEMPERATURE CHARACTERISTICS
120

70

1.2

12
VCC=13.2 V
RL=4 Q

~

100
c(

80

l'c:

S

:e

1.0

10

.e

'3

b

>
40

!:?

i,....oo-'

~

10-

:I:

(5

~

--

3.6±O.1
~

4.8MAX.

1.3

2.2
4.5
8.4

ABSOLUTE MAXIMUM RATINGS
Peak Supply Voltage (50 ms)
DC Supply Voltage (quiescent)
DC Supply Voltage (operational)

VCC1

40

V

VCC2
, VCC3

28

V

18

V

Output Peak Current (repetitive)

ICC{peak)1

3.5

A

Output Peak Current (non repetitive)

ICC{peak)2

4.5

A

Package Dissipation (Tease = 90°C)

Po

15

W

Operating Temperature

Topt

-30 to 75

°c

T stg

-40 to 150

°c

4

°C/W

8 to 18

V

Storage Temperature
THERMAL DATA
Thermal Resistance junction-case

Rth(j-c)

RECOMMENDED OPERATING CONDITION (Ta=25°C)
Operating Supply Voltage Range

160

VCC

JlPC2002
ELECTRICAL CHARACTERISTICS
(Refer to the test circuit. : Ta = 2SoC, RL =4n, f= 1kHz, using an aluminum heat sink 100x 100x2 mm)
CHARACTER ISTIC

VCC=14.4V

SYMBOL

Quiescent Current

MIN.

ICC

Output Power

Po

VCC"13.2V
TYP.

UNIT

TEST CONDITIONS

TYP.

MAX.

35

55

85

54

rnA

4.8

5.4

4.5

W

RL "4n, T.H.D. -10%

9.0

7.5

W
%

RL -2n, T.H.D."10%
RL a4n, Po-0.5W

Total Harmonic Distortion

T.H.D.

Open Loop Voltage Gain
Closed Loop Voltage Gain

Avo
Av

Output Noise Voltage

Un

Input Resistance

Ri

70

Supply Voltage Rejection Ratio

SVR

30

0.05

1.0

0.05

0.06

1.0

0.06

%

RL "2n, Po"1.0W

78

dB

Po-0.5W
Po"0.5W

78
39.5

Ui=O

40

40.5

40

dB

0.6

3.0

0.6

rnVr.rn.s.

150

150

kn

39

39

dB

RG -10kn
RG-10kn

Uripple" 0.5V
f ripple"" 1OOHz

TEST CI RCUIT

SW.1

r-

I
r--~-_ _--.._ _ _Ii--o--o--t-_ _"""---o Vee = 14.4V

r

SW.2

L _____ J

+
0.1# -

lOOJ,F/16V

lOpF/lOV
lOOOJ,F/lOV
Output

lOkO

4.7 JlF / lOY

SW.3

In

r- ---,

1~~~/6V

470J,lf/6V

• Mylar capacitor

Switch position

~

ICC

SW.1

2

1

1

1

1

1

1

SW.2

2

1

1

1

1

2

SW.3

1

1

1

2

1

1

2
1

SW.

Po

T.H.D.

Avo

Av

Un

SVR

161

jJ.PC2002
TYPICAL CHARACTERISTICS (Ta = 25°C)

PACKAGE DISSIPATION vs.
AMBIENT TEMPERATURE

POWER DISSIPATION AND EFFICIENCY

vs. OUTPUT POWE R
100

20r--,---.--,---r--.---.-H-ea-t-s-n-k-A-I----~

10

VCC- 14. 4V
f= 1kHz

Use sillicone grease
80

:=

8

I

c::

:=
o

*'

0:1

c::

I

I

c::

>u

+:

.~

0

.~
60

CLl

'u
w
I

CLl

bO

l::-

~

6
~

~

~

o

.~
0

~
i'

40

~
0

c..
I

4

7

"0

c..

U
0:1

c..
I

o
c..

20

/

2

V
/

.'

~

~//

.....

/

=20)
. V 71(RL =40) 71(RL
,_ ... .;

~

.

~

...

...

... .......

...--r

=+-l

Pd(RL =20)

~'

-r--. ...... Pd(RL =40)

/0- ",.
~

--.-~

/

0
50
100
150
Ta-Ambient Temperature-'C

200

0

2

POWER DISSIPATION vs.
OUTPUT POWE R

10

---- RL =20

....

8

........

:=

TOTAL HARMONIC DISTORTION

vs. 0 UTP UT POWE R
20

!

f=lkHz
--RL=40

--

--' --

f---

'18V -

--- ---

0

+:
0:1
c.

'm

,"'~

6

0

....CLl

0

t)

.,.... .... ...

,, ".." ~

-- --- -- -- --

Vee=14.4V-

r- __

4

c..

I

I

c.."
2

r--

/'

'/
,
I-"'"
/ ....

---

"

............

o

5

I

I

0

2

u

'c
0

§

I

~
0

I

0

~

If

*'
+:

~.

c::

Vec=14.4V
RL =40

10
c::

, ....

I

0:1
:r: 0.5

-~

r-..... t" Vee = 14. 4V

18V -

f

~

r---......

10kHz

r-t-~

0

I-

0.2
I
ci
:C 0.1

l-

f ' ,,~

~

8V

100Hz

IJ 1./

0.05

III

8V
2

10

8

4
6
Po - Output Power - W

4
6
PO-Output Power-W

8

10

0.02
0.01' 0.02

I

III
0.05 O. 1 0.2

lkHz~

I II

0.5

5

2

10

Po-Output Power-W

TOTAL HARMONIC DISTORTION
vs. OUTPUT POWER

20
10

OPEN LOOP VOLTAGE GAIN AND CLOSED
LOOP VOLTAGE GAIN vs. FREQUENCY

Vec=14.4V
RL =20

160

:?
:,., ;r~·~~ F1 ~
VCC=14.4V

Avo test circuit

*'
I

5

lO~+

c::
0

+:

0

t)

2

0

Ii

u

'c0

f

§ 0.5
0:1

l/~

10kHz

V

:r:

(ij

0 0.2

l-

I
ci
:C

~

4,O,l;lCXl.uFVCC

;t~. ,...,

~

o.l.uFl

vO

I"k
1

~

O. 1

f:::~

-

0.05
0.02
0.01 0.02

V

i)

100Hz

~

162

~

RL =40

0.05 O. 1 0.2

0.5

PO-Output Power-W

2

V-

f"'..

I
Av (PO=O.5W)

, i

I""

.,.... I-f-'
20

t~ZI-

I
5

10

010 20

50.100 200

500 1k 2k'

5k 10k 20k

f- Frequency - Hz

50k lOOk

,uPC2002

QUIESCENT CURRENT. CLOSED LOOP VOLTAGE GAIN.
TOTAL HARMON IC DISTORTION AND SUPPLY VOLTAGE
REJECTION RATIO vs. SUPPLY VOLTAGE

OUTPUT POWER vs.
SUPPLY VOLTAGE

15

-60
f= 1kHz
T.H.O.=lO%

/

en
I
~

/;""~(

I

10

~
a
a..

/

/

"=i

.e::J

0

I

0

a..

5

V

/

V

/

V

'<:y

co
0::

/

150

If

a

~I

Q)

'c
:r:

I I I

U

c.
a
a

ro

2
-0
>

r-- r- SVR (RG = lOkU fripple = 100Hz. Vripple =0. 5V) f--

::J

>

a
E

Av (PO=0.5W, f=lkHz)
_L

100

~

2
-0

u

Q)

c
Q)

lil

-l

ro

r-

.~

Cf)

I
>
Cf)
0::

-

~

.,/

15

o

o

20

~-

(5

f-

::J

10

I J I
ICC (vi=O)

--

::J
50
O. 1 ~20 0'
a
I
U
!
u
I
ci
..Y
;,
:i
«

>.
0. -20
c.

.... V

I

tl

bD

/"

c

(5

0::

/'

I

a

.~ O. 2 ~ 40

-40

.iii'

«;.v/
V

en

'0

c

~
Q)

'O<~/

RL =40
r--

'C!2.

c

~

60

'0

1/

=::

0.3

o

o

5

VCC-Supply Voltage-V

T.H.O. (PO=O. 5W, f= 1kHz)

20

15

10

VCC-Supply Voltage-V

OUTPUT POWER. CLOSED LOOP VOLTAGE GAIN. TOTAL
HARMONIC DISTORTION. SUPPLY VOLTAGE REJECTION
RATIO AND QUIESCENT CURRENT vs. AMBIENT TEMPERATURE

150

-60

0.3

60

15

5-40 ~ 0.2 ~40

=::10

VCC=14.4V
RL=411

en

'0

I

c

'C!2.
I

en

0::

a
:p

c

"iii

~
I

.Q

100

~::J

(5

Q)

.iii'

Q)

I

U

..Y

>

E
co

bD

c.
a
a

SVR

f--

~
a
a..
"=i

-0

a

Q)

lil

2

u

2
:r:
-0
%
-l
>
0
ro
Z,-20
~ 0.1 ~20
Vl
~5
c.
a
c.
a..
I
::J
U
Cf)
ci
I
I
;,
:i
0::
«
~
>
Cf)

o

o

o

L-

I 1
(RG = 10k11, fripple = 100Hz, Vripple =0. 5V) '---

!

I

I'

I

I

1 1

II

II

I

-

I-- ICC (v·=O)

r-L.t
~l

-

:;;-

-~

Po (T.H.D. = lO%,f= 1kHz)
I

I

1

1

1

I

.-~

1

...
.....

~
c--

o

Av (PO=O. 5W, f= 1kHz)

=-

I

Q)

'c

0::

'5
0' 50

I

'';::::

u

u
C
Q)

'0

c

0

-50

__ 1.\--1.0. (Po=O.

I

5Wf=1\-120

APPLICATION CIRCUIT (Top view)
33 Q

+Vee

Audio Output

Signal
Meter

ANT.

172

,uPC1243C
COIL SPECIFICATION (Bottom view)
(1) OSC Coil

c

RWR-43208N (TOKO Co.)

v.C.
Base
GND

~ II
®
3

11

CD

II
II
II

Qu = 110 -

(796 kHz)

G)-@ @-@ @-@

@ VCC

4T

58T

L = 160 JlH

10T

±6 %

@
Collector

(2) IFT1 (IF transformer) CFT455B (TOKO Co.)
Centre freq. 455 kHz ± 3.5 kHz
Selectivity ± 10 kHz
26 dB Mini.

Collector
Base

VCC

GND

(3) IFT2 (IF transformer)

RMC-43198C (TOKO Co.)
Centre freq.

~

~
(2)

CD

@
~jjII ~~
II

Qu

= 80 -

455 kHz
180 pF (Included)
(455 kHz)

CD-@

@

164T

(4) Bar antenna AR12¢-120 (Coil Snake Co.)

roooOOOl
db
V.C.

flrlcb

234
GND OUT GND

G)-@ @-@) @-@
58T

6T

5T

IN(ANT.)

(5) Air variable FB621 U (Alps Electric Co.)
Capacitor
CMAX • = 326 pF
CM1N • = 9 pF

173

,uPC1243C
EXAMPLE FOR PRINTED CIRCUIT BOARD

HE'

,,·GNO

JlPC12.43C

COMPONENT LAYOUT

r--------------- -,

AF

OUTPUT

jlPC1243C.
R1:
R2:
R3:
R4:
RS:

1kS1
2.2 kS1
33 S1
10 kS1
10kS1

C1
C2
C3
C4
Cs

Cs
C7
Cs

Cg
C10
C11
C12
C13
C14
C1S
C16

174

:
:
:
:
:

0.022pF
0.022pF
0.022pF
0.022 pF
47 pF
: 0.022pF
: 0.01 pF
: 0.022pF
: 22pF
: 10 pF
: 10 pF
: 0.022pF
: 33)lF
: 0.022pF
: 2.2pF
: 0.022pF

Ceramic
Ceramic
Ceramic
Ceramic
Chemical
Ceramic
Ceramic
Ceramic
Chemical
Chemical
Chemical
Ceramic
Chemical
Ceramic
Chemical
Ceramic

:
VR
:
OSCCOIL
:
IF1
:
IF2
:
ANT.CO.
Air vari. con. :
Signal meter:

1 kS1 MAX.
RWR-4320SN
CFT-4SSB
RMC-4319SC
AR12 cJ>- 120
FB621 U
SOO pA MAX.

,uPC1243C

TOTAL HARMONIC DISTORTION vs. INPUT
SIGNAL

DETECTOR OUTPUT VOLTAGE AND SIGNAL
TO NOISE RATIO vs. INPUT SIGNAL
Vee=12 V
mVr.m.s.
f=1 MHz
fMOD=400 HZ,MOD=30 %

~

o dB= 180
CD

CD

"0

"0

Q)

2

0

~

0 "0

0::

>
::;

~
'0

-

r----

0-

r----

z -20
.8

0

:::l

u -40
~bO -40 .8
(j)
~

/

Cl

I

"en

--

-----~-

I -60

/
---

'"

----

-

o

20

40

-

i5

4

u

'c
0
-- - - f--

~

3

ro

2

i \

l\
\\

::x:

f--

'\

'0

"-

~

"i'o....

100

120

140

.......
40

20

0

Yin -Input Signal- dB/m

0
-10
-20 ....-

I

-

,

--

r-

~

a;
Q)

!t

I

r--

!t

~

-

~

" -/

-30

~

~

2 IF

-

I/"I\ I

\V

f---- f---'

i\.

-50
40

60

Vee=12V

Q)

2
"0
>
::;

0.8

-5
0

0.6 --

f---

--

f-

.....

0.4

rI

0::
I

80

f--

F

>

/'/

V

/
J

I

V

t--

100

120

140

20

40

§ 6

2

g
:::l

-5
o

-2:~

Vo

-4

5

~~,-'f--

Cl

I

-8 E f--10 ~ 3

Cl

~

>

-14 ~ 2
-16 I
-18 q 1
-20
-22 0
10

i3

,-

"0

'"'"

80

Ero

I

T.H.D.
20 30 50

100 200300 500

-

1k

140

c:

0

n
Q)

I

+

'w
0::

~--

60

.......
40

/

-

-I--

---

:::-

IF. Rej.

-

....-, /
0
2 k 3 k 5 k 10 k

fMOD - Modulation Frequency - Hz

-

+

-- - - I -

-Image Rej.- -

20
I

120

Vee=12 V
fMOD=400 Hz
MOD=30 %
Vo=10 mVr.m.s.

100

0::

--+-

\

100

CD

I

'"

I

~ -12 ro

~

f--.-

"\

-6'~ 4

80

IF REJECTION AND IMAGE REJECTION vs.
FREQUENCY

Vee 12 V
Vj=100 dB/m
fMOD=30 %

I

ot0

60

Yin -Input Signal- dB/m

~

~bO

-- r -

0.2

LO

DETECTOR OUTPUT VOLTAGE AND TOTAL
HARMONIC DISTORTION vs. MODULATION FREQUENCY

"0

-

--

Yin - Input Signal- dB/m

CD

I

140

I---i--

I

0

20

120

L t-

>

c

r--U

I

LO

'\

-40 f-- ---

o

f - - c---

~

--

30 % MOD-

100

PIN 15 OUTPUT VOLTAGE vs. INPUT SIGNAL

Vee=12 V
f=1 MHz
fMOD=400 Hz
MOD=30 %

CD

80

Yin - Input Signal- dB/m

TWEET vs. INPUT SIGNAL

"0

60

_-

80 % MOD
r--...... -...Lf
l_

\

c:i
::C
~

80

60

~ .....

I

SIN

--

0

>

I

!

~

-

Vo
- -

~-

~+~

-

.e -20 - -

z -60

0

5

t

20

I

I

Vee=12 V
f=1 MHz
fMOD=400 Hz

I

c:

........ ..,/

I

T

-

--

1.5

0.5

f - Frequency - MHz

175

JlPC1243C

ONE-SIGNAL SELECTIVITY
FREQUENCY

VI.

MAXIMUM·SENSITIVITY AND TOTAL
HARMONIC DISTORTION VI. SUPPLY
VOLTAGE

DETUNE
~

~

I 5 I

5 z;.

~

80

\

III

-c
I

60

\

z;.

.s:

40

~

,

/

\

(/)

20

tIO

en

IV

-30

-20

-10
~f -

/

o

VCC=12 V
f=1 MHz
fMOO=400 Hz
MOO=30 %
Vo=10 mVr.m.s,
+10

+20

+30

Delune Frequency - kHz

CIRCUIT CURRENT

VI.

SUPPLY VOLTAGE
No Signal

16

<

15

L..-

ICC

E
I

,-1:: 14
~

--

--

:J

(.)

... 13
'5

f:!

U

I 12

(.)

£}

11
10

8

9

10

11

12

13

Vee - Supply Voltage - V

176

)(

:I: 2 ~

\ /

0
-20

V

/

t\

Q)

coc

/

14

15

~
~

q

MA X. ~ens

:~

]? 4 ~ O
o ~ 2
.~ 3 E 4
o
:J
E .§ 6
8

'.10

1

~
en

12

>< 14

~O~

l'

1

~t

X.sens..:.!) dB
{Vin=37 dB
Vo,=10 mV
T.H.O.
f'in=130 dB
M9 0 =80 %

I
T
I
I

-- -I

8

9

I

T.H.O.

!--

10

11

12

13

Vee - Supply Vollage - V

14

'._

15

BIPOLAR ANALOG INTEGRATED CIRCUIT

J1PC1163H
FM IF AMPLIFIER
SILICON BIPOLAR MONOLITHIC INTEGRATED CIRCUIT

DESCRIPTION
The J,.LPC1163H is a semiconductor integrated circuit for FM·I F amplification, and contains a emitter followered differentia'l
amplifying stage and a constant current source. The limiting characteristics for AM signals of the J,.LPC1163H are excellent, and
since it has been designed to minimize distortion at high level inputs, it is most suitable for use in high class FM·IF amplifiers.
FEATURES
• The distortion characteristics at high level inputs are excellent.
• The group delay characteristics of the FM·IF circuit have minimum disparity.
• A terminal for varying the constant current is provided, enabling 10 to be varied from 4.5mA to 15mA.
This makes possible its employment as a driver for ratio detector.
• Very few external components are required.
• High stability for parasitic oscillation.
• Capability for cascade connection.
• Wide range of supply voltage: 10V to 15V

EQUIVALENT CIRCUIT

7 )"'--+---+--f

PACKAGE DIMENSIONS
in millimeters (inches)
19.5MAX.
(O.77MAX.)

CONNECTION DIAGRAM
Pin No.

1
MARKING

2

3

4

6

7

Electrical
Connection

2

Vcc
OUTPUT

3

BYPASS

4

GND

5
6
7

BYPASS
INPUT BIAS
INPUT

177

,uPC1163H

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Supply Voltage

Vcc

15

V

Output Collector Voltage

Vz

20

V

Voltage Between Input Terminals

Vi

5

Vp-p

Power Dissipation

Pd

Operating Temperature

T opt

- 20 to

+75

°c

Storage Temperature

T stg

-40 to +125

°c

10'" 12'" 15

V

270 (Ta = 75°C)

mW

RECOMMENDED OPERATING CONDITIONS (Ta = 25°C)
Supply Voltage

VCC

ELECTRICAL CHARACTERISTICS (Ta = 25°C, Vce = 12 V, f= 10.7 MHz)
CHARACTERISTIC

SYMBOL

MIN.

TYP.

MAX.

UNIT

TEST CONDITIONS

ICC

6.0

8.6

13.0

mA

Vi=O

Output Current

IC

1.5

2.1

3.2

mA

Vi = 0, 1 pin Current

Voltage Gain

Av

26.5

30.0

33.5

Supply Current

dB

Vi = 20 mA, R1 = 1 kn

Cin

3.0

pF

Vi =30mV

gin

0.01

m'U

Vi =30mV

Output Capacitance

Co

3.4

pF

Vi=l00mV

Output Conductance

90

0.035

m'U

Vi=loomV

Forward Transfer Admittance

IYfl

36.6

m'U

Vi = 100 mV

0.0038

m'U

Vi = 100 mV

I nput Capacitance
Input Conductance

Reverse Transfer Admittance

IYrl

TEST CIRCUIT

• IcC,

Au
L1

L2
1kQ

L= 1 ~H
0 0 ~ 50
{ Rs ~ 0.5 n
Self-Resonance Frequency ~ 18 MHz

{

00~100
I nterna I Capacita nce = 82 pF
fo=10.7MHz±3%
RF V.V

S.G.
RG=50Q

f= 10.7MHz

O.022.tLF

1J1FI
0.022

.178

5

PM=30dB

(TOA)

tLPC1163H

• 9in, Cin

RX
METER

5-_

0.022,uF

1

0.022
,uFI

RX METER
TYPE 250-A (BOONTON)

• 90, Co

RX
METER

RX METER
TYPE 250-A (BOONTON)

• Yf

S.G.
R(;=50Q
f=1O.7MHz

RF VOLT METER
8405A (YHP)

• Yr

S.G.
RG=50Q
f= 10. 7MHz

RF VOLT METER
8405A (YHP)

179

,uPC1163H
TYPICAL CHARACTERISTICS (Ta =25°C)

VOLTAGE GAIN, PHASE VI. FREQUENCY
(Measure in Differential Circuit)

OUTPUT VOLTAGE vs. INPUT VOLTAGE
(Measure in Differential Circuit)
10000

0

30
",..

/

1000

~-80

V

100

-140

V

10

-160

-ISO

.s-

aI

J

0

I

>

1.0

33012 7

Hmo
Rc

S,G.

l

If

0.1

.",

0.01
-20

2

Vee
IN

I

6

~"

3

R,lkQ

1
2

OUT

O,022pF
Vec=12V

RL lkQL Load
Rc 33012

-'

0

20

40

60

80

Vin -Input Voltage-dB,uV

100
120
OdB,uV= l,uV

RESISTER FOR 3 pin, VOLTAGE GAIN
CONSTANT CURRENT
(Measure In Differential Circuit)

r

200

50

VS.

Vcc= 12V
f=10.7MHz

I- Vi=10mV(SOdB,uV)

RL = lkoQ L Load

lao
160
Of

I

'a.

...

I

c:

l>'

~

(!)

.E 120

~

40

'iii

(Y")

'iii

co

"C

c: 140

100

Q)

0:::

80

~3O

.... i""""

.B

'0

>
I

40

~ ~"" L

~

\
10 \

10

,
\

20
0

~

~

<20

60

180

'-

\ ,

-120

<

J

IlO

'0

Av i"""

qJ

-100

.B
'0
> 0
I

>
E
I
Q)

S-

IlO

........

"- ~

'\I
Q)

Vcc= 12V
R.=51Q

,~

~-6O

J

:;

~r--~

~-4O

-

r-.;...

f"""'o.. .........

-20

II

.B
>

.....

2

3
5
7
10
lo-Constant Current-rnA

15 20

30

20
10
5
f-Frequency-MHz

30

50

100

,uPC1163H

INPUT RESISTANCE AND CAPACITANCE
vs. INPUT VOLTAGE
(Measure in Differential Circuit)

OUTPUT RESISTANCE AND CAPACITANCE
vs. INPUT VOLTAGE
(Measure In Differential Circuit)

Vcc= 12V

IJ...
0.

12

120

10

100

c:

c:

'u
<0

<0

"til

8

a.

'iiI

6

<0

CIJ
a:: 60
"5
0.

U

Vcc= 12V
f=lO.7MHz

CIJ

u

19

80

c:

"5
0.

T

~ 100
I

I

u

0.
<0

~ 10
Q)

CIJ

8

'u
<0
u

120

I

CIJ

u

2

Ri

~

I

12

f=10.7MHz

g

80

tl
'11\
CIJ

6

a::

60

c:

T

4

40

Co

....... ........

0:

c.5

2

20

o

o

o

20

Ci

40

60

100
Vin-Input Voltage-mV

140

120

80

Ro

2

20

o

o

o

3.0 r-- r--

Kl

Kl

E
I

u 0.2

12.0

c:

to

c:
to

U

J

:::J

"50.

en
"5
0.

T

T

c:

0.1

.is

bi

/
.11'/
2

3

5

J

~

'5

.s:::J

'i' 0.1

IL

0

llO

-

120

140

Vcc=12V
f--

Vin=l00mV

CIJ

,
J

:::J

en
'5

~

a:::J

/1
./1

0

I 1
0

.c

bo~"

~v

gi

20 30
10
f-Frequency-MHz

100

E
I

c:

U

I

1.0

80

Kl

~ 2
c:
20.

0

I

c:

3

2u

:::J
'0

~

c:
U
0

g 0.2

I

u

C.
CIJ

:::J
'0

t.ii

0.3

Vin=30mV

E

CIJ

60

OUTPUT ADMITTANCE vs. FREQUENCY
(Measure In Differential Circuit)

Vcc=12V

Kl

E
I

40

Vi n-Input Voltage - mV

INPUT ADMITTANCE vs. FREQUENCY
(Measure in Differential Circuit)

0.3

20

50

100

200

2

3

--

~

go

......

5

10

20

30

50

100

200

f- Frequency-MHz

181

,uPC1163H

FORWARD TRANSFER ADMITTANCE
vs. FREQUENCY

REVERSE TRANSFER ADMITTANCE
vs. FREQUENCY

(Measure in Differential Circuit)

(Measure in Differential Circuit)
Vcc= 12V

Vcc= 12V

60

0.06 >-- I---

Vin=lOOmV

Vin=l00mV

I.

[0

~

E

~
I

I

g

!';l

Q)

t

~
t

:g

0.05

C1l

50

'E
"0 0.04
«

40

«

I
if

!\,

C1l

Vi
c:

~

;::.

2 30

j

0.03

!';l

I

~

"

1/

CI.J

0.02
>
CI.J

~

cr:
I

~ 20
I

)

>;

0.01
j..Oii'"

10

2

3

o
1

2

3

20

10

30

V

II

5
10
20
f-Frequency-MHz

50

f-Frequency-MHz

VOLTAGE GAIN, V2, V3, CI RCUIT CURRENT
vs. AMBIENT TEMPERATURE
(Measure in Differential Circuit)
Vcc= 12V
f=1O.7MHz
Vin= lOmV(80dB,uV)

15

«

E

co
I

V2

1-c:

"0

c:

'iii

>10
I

(.!)

->

C1l

bO

.s

'0 40

>
I



160

%

0

I

.......

, .....
I""i"o

~

qJl'\

"

~

l\I'

20
Vee

II

I

RL

1

7

!,PC1l6
6
0022!'F

V
S.G.
R,,7!i.Q

Eft

5

OUT

2

3

4

o

F=

~
I--

2

1

3

5

10

20

30

50

100

f- Frequency -MHz

I-I--

lOO22!'F
Vrr=l2V
RL=lkll

751!

f=lO.7MHz

II

"

40

V

0.1

"""r-...

80

I

l.0

Av,""

60

II

;:

.......V in = 10mV(80dB,uV)

100

::J

a

t-....

"J 140
;;
So 120



c:

.iii 20

if

100
>
E
I

180

I

I

Rg =51Q

L Load

~

F=

~

e-

I--

0.0 1
-20

0

20

40

60

80

100

Vin-Input Voltage-dB,uV

120

140

OdB,uV=l,uV

CIRCUIT CURRENT, VOLTAGE GAIN vs. SUPPLY VOLTAGE

50

20
18

« 16
E

1-c:

t

::J

u

14
12

~

'-'

'-'

'-

-

f---

f= 10. 7MHz
RL= 11& L Load
V in = lOmV(80dB,uV)
I edNO SIGNAL)

40

8
6
4

I
.~

'"

<..:)

""

1/'

,

/

2

0

,

ci.
10

0

~

I

20

2
0

~

30

ClJ
bD

>
I

-- -.... '
!
I-- -- -,Oi\\ere(\~~~
Circuit ~ ~

o

Av
C~~
.... ........

"0

·s 10
U
I

CD

-

1/'

_.... """
5

,.

10 ,

........... ~

/'

,

,

......

,,-"

V

\

Circuit
A"

L

. /V

~

....

... "'"

... "

~
Icc

10

15

20

Vee-Supply Voltage-V

183

jlPC1163H
TYPICAL APPLICATIONS

• FM-IF amplifier using a ceramic filter.

n

IN

Rl

OUT

I coFI
t:::::I

t:::::I

L\

L2

Vee

R1 to R4 :
C
:
L1 & L2 :
C. F.
:

Match to the impedance of the ceramic filter.
High frequency bypass capacitors. 0.022 pF ceramic capacitor.
Decoupling inductances of the power supply circuit.
Ceramic filter.

• FM-IF amplifier using a Ie

IN

filter~

0---'"

..--t----oOUT

1FT
LC Filter.

Vee O - - - - - . J

~--------------~---~Vec

R1 & R2 : Match to the input and output impedance.
C
: High frequency bypass capacitors. 0.022 JJF ceramic capacitors.
L1 & L2 : Decoupling inductances of the power supply circuit.
1FT
: FM intermediate-frequency filter coils.
PLF (Toko Company)

184

jlPC1163H

• FM-I F detector circuit.

IND----.

:
:
:
:

Match to input impedance.
High frequency bypass capacitors. 0.022 J.LF ceramic capacitors.
FM detector filter coil.
Registor for adjusting detector drive current.
(Adjustment of constant current 10 .)

• Recommended line-up for high class stereo tuner.

r--------------------------------~-----,

I

I

I

I

I

r-----.

I

I

I ____

: L.C.
I filter
:
LI

,uPC1l63H

L.C.
filter

,uPC1l63H

L.C.
filter

,uPC1l63H

,uPC577H

OUT
~

,uPC1l63H: FM detector
Detector I
section

FM-IF limiter secti.:m.

stage

:

driver
________________________________ I __
_ _ _ JI
~

Precautions on the use of the J,LPC1163H.
1. When the J,LPC1163H is used with a discrete resistor connected between pin 3 and ground, caution
must be taken so that Pd does not exceed 270mW at 75°C with the change of the differential constant current 10 from 4.5mA to a maximum of 15mA.
2. The recommended operating supply voltage of the J,LPC1163H is 12V, and it should be used within
a range of 10V to 15V. Since the dielectric strength of the output terminal 2 is 20V~ care should
be taken not to exceed this voltage when a tuned load is used.

185

BIPOLAR ANALOG INTEGRATED CIRCUIT

J,lPC1167C2
FM IF SYSTEM WITH QUADRATURE DETECTOR
SILICON BIPOLAR MONOLITHIC INTEGRATED CIRCUIT

DESCRIPTION
The pPC1167C2, a monolithic integrated circuit, is a FM-I F system with Q-DET for use in Hi-Fi FM stereo tuners.
This device includes three-stage IF amp1ifier/limiter, quadrature detector, AF preamplifier and specific circuits for AGC, AFC,
muting (squelch), signal meter and center meter.
The external form is 16 pin, dual in-line plastic package.

FEATURES
• Exceptional input limiting sensitivity.

: 25 dBpV TYP.(-3 dB point from VOAF with 100 dBpV input)

• High AM Rejection Ratio.

: 55 dB TYP. (Vi = 100 dBpV, AM,: 400 Hz, 30 % MOD.
FM : 400 Hz, 75 kHz, DEV.)

• Low Total Harmonic Distortion.

: 0.02 % TYP. (Vi = 100 dBpV)

• High recovered audio voltage.

: 340 mV TYP. (Vi = 100 dBpV)

• Low transient noise at mute circuit turn-on and off.
• Adjustable muting sensitivity.

: 27 dBpV TYP. (VR1 = open)
35 dBpV TYP. (VR1 = 33 k!1)

• Adjustable muting band width.

: BW(MUTE) =±75 kHz TYP. (Vi = 100 dBpV, V 12 = 1.4 V, R7 = 5.6 k!1)

• Wide range of power supplies.

: 8.5 V to 14 V

19.4 MAX.
(0.763 MAX.)

PACKAGE DIMENSIONS
in millimeters (inches)
R1
(R 0.039)

0-15°

18S

jlPC1167C2

FUNCTIONAL BLOCK DIAGRAM
15

16

,

14

.f13l

,

/

~

Y

MUTE

S Meter

CIRCUIT

CIRCUIT

I

I

12

11

I

1

10

I"9l

1

MUTE
DRIVE
CIRCUIT

I
r---

OR

oV

Level

CIRCUIT

SWITCH

DET.

•
Level

Level

Level

DET.

DET.

DET.

Quadratur
DET.

1st IF
~

>----

1

AMP

I

L:..J

}-

2nd IF

3rd IF

AMP

AMP

t
AUDIO
MUTE
t-CIRCUIT

I

~

3

I

4

I

J
5

AMP

II

I

-,

AUDIO

6

AFC
AMP

1

7

8

I

TERMINAL CONNECTION
TERM. NO.

CONNECTION

1

IF INPUT

2

TERM. NO.

CONNECTION

9

DETECTOR INPUT

INPUT BYPASS

10

REFERENCE BIAS

3

INPUT BYPASS

11

VCC

4

GND

12

MUTE DRIVE OUTPUT

5

MUTE CONTROL

13

SIGNAL METER OUTPUT

6

AUDIO OUTPUT

14

GND

7

AFC OUTPUT

15

AGC OUTPUT

8

IF OUTPUT

16

MUTING SENSITIVITY ADJUSTMENT

187

,uPC1167C2
ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Supply Voltage

VCC·

15

Supply Current

ICC

40

rnA

V

Input Voltage

VI

3

V _
p p

Package Dissipation

PD

420"

mW

Operating Temperature

T opt

-20 to +60

°C

Storage Temperature

T stg

-40 to +125

°C

*Ta=60 °c

RECOMMENDED OPERATING CONDITION (Ta=25 °C)
CHARACTERISTIC
Supply Voltage

SYMBOL

MIN.

TYP.

MAX.

UNIT

VCC

8.5

12

14

V

ELECTRICAL CHARACTERISTICS (Ta = 25°C)
(Vec = 12 V, f= 10.7 MHz, fMOD = 400 Hz, f=±75 kHz DEV.,
CHARACTERISTIC
Supply Current

SYMBOL

MIN.

TYP.

MAX.

UNIT

ICC

14

23

31

rnA

25

31

dBJJV

340

460

mV

0.02

0.2

I nput Limiting Voltage

Vi(lim)

Recovered Audio Voltage

VOAF

Total Harmonic Distortion

T.H.D.

Signal to Noise Ratio
AM Rejection

Muting Sensitivity

240

TEST CONDITIONS
No Signal
-3 dB point from VOAF
with 100 dBJJV input
Vi = 100 dBJJV

%

Vi = 100 dBJJV

75

81

dB

Vi = 100 dBJJV

A.M.R. (1)

45

55

dB

Vi = 100 dBJJV
AM : 400 Hz, 30 % MOD.
FM : 400 Hz, 75 kHz DEV.

Vj(MUTE)1

19

27

SIN

35

dBJJV

V12= 1.4 V, VR1 =Open
V12= 1.4 V, VR1 =3.9 kn

35

dBJJV

Muting Attenuation

MUTE (ATT)

69

75

dB

V 5 = 2 V, V R 1 = Open

Muting Band Width

BW(MUTE)

90

150

kHz

Vi= 100 dBJJV, V12= 1.4 V
R7=5.6 kn

V12(1)

4.5

6.0

Vi(MUTE)2

Mute Drive Output

V

Vi=O dBJJV

0

0.3

V

Vi = 100 dBJJV

V13(1)

0

0.3

V

Vi=O dBJJV

V13(2)

2.0

V

Vi =70 dBJJV

V12(2)

Signal Meter Drive Output

AGC Output

V13(3)

3.0

4.0

V

Vi = 100 dBJJV

V15(1)

5.0

6.0

7.0

V

Vi =0 dBJJV

0.1

0.5

V

Vi = 100 dBJJV

V15(2)

IBB

Rg = 330 Q)

jlPC1167C2
TEST CIRCUIT FOR ELECTRICAL CHARACTERISTICS
Multipath Output (}-_ _ _.....-_ _ _ _ _ _......_ _ _--.

VCC
2.2 J.lH
RI2

rO.022 pF

33 k
AGC for RF AMP

47 kQ

2.2 kQ

AFC OUTPUT
MUTING ON

0.022 J.lF 300 Q

+
75 Q

0.022PF

+

1

S1

12kQ

0.47 J.lF

MUTING
OFF

+

1

to STEREO THRESHOLD
LOGIC CIRCUITS

AUDIO OUTPUT

RL
20 kQ

V.T.V.M

M,

: Center Meter

VA'

: Muting level adjusting
semi-fixed potentiometer

5,

: Muting switch

52

: Muting level adjusting switch

T2

: TKAEA25868 X

l,

: 7BA220

(K.K.TOKO)

L2

: 7BA2A2K

(K.K.TOKO)

T,

: TKAEA24638 AUO (K.K.TOKO)
(K.K.TOKO)

18S

,uPC1167C2
TYPICAL APPLICATION (Top View)
Signal Meter

VR3
30 k.Q

Vee

S3

f

Multipath Output

VR4

50 k.Q
AGC

47 k.Q

100 k.Q
2.2 kQ

S2

Muting Level
Sensitivity

VRI

t

50 kQ

0.022 f.1. F

5V~~0.022

""1

330 Q

FMIF~~n
c:::::J

AFC OUTPUT
12 I
>
N
>

0
:i

('r')

~

0.3

\

70

Vec=12 V
fFM= 10.7 MHz
RG=330 Q

0.9

, A.M.R.

~

>

1.0

I

r\

~

50

en

1
1 1 1
I 1 1

0.8
VCC=12 V RG==330 Q
fFM = 10.7 MHz, ~f=75 kHz dev.
0.7
fMOO=400 Hz
'AM=400 Hz(30 % MOO)
0.6 ~

I~'

20

.:3

VOAF

l/

10

T

11 1
1 1 1
1 1 1

1 1
1 1

.....

0.2

"- -60

-

.-1

70

....- '--80 90 100

'\

1\ 1\

5

,

4

V12

1\ 1\ ( M_uting Drive )

2

\
\

0.1
.--1

0

o

10

,

.... f-

I\,.H
30 40

20

50

f---

-10

I I

CO

LL

-30

1 1I

1

1/

1-.....

;

I-f-- 1--1-1- f -

--·40

CO

.:3

I

>

-

'-V12

-

.s
::J

1

fMOD=4oo Hz
Vi=loo dBJlV
R7=5.6 k Q

\

,

,

-50

::!:

I

-60

-60

--

1

- --.

-70

..--- . . . r... 1\ i

i 1

1 1

o

10

20

30

40

50

Yin

60

70

80

90

- 100

100 110 120

(dB,u)

1

,

I
1
1
1
I
1

-80

-80

,

7

VCC=12 V
fFM = 10.7 MHz
~f=75 kHz dev.

I

,

~ -40

-50

-70

-30

f-I-

~

VR 1=OO Qt- TRl=33 kQ

~

o

-20

I 11

11111111
1 1 1 1 I liT

-10

Vee= 12 V RG=330 Q
fFM= 10.7 MHz
M=75 kHz dev.

I

17

111

I

0

I I I

i

I

-20

.:3

I"

I I
I \
70 80 90 100 110 120

60

Fig.4 Mute ATT. vs. CARRIER FREQUENCY

1
1

---vOAF /

,/ (5 'lTletet

Vin (dB,u)

Fig. 3 VOAF vs. Vin

1 1

-

\

1'1

Vv13

,

Yin (dB,u)

o

\

I
If-

1\

V15
(AGe)

f-~

\ ,VRl-33 kQ

3 ~ VRI Open

110 120

_

i
I

6

.- -I

,

,

1

4

1

3

1

2>

:
I

~
N

i

/' MUTE ATT.

II 1"'1-+-4-1
I

o

II II 1

I I I
- 50
0
+ 50
+ 100
CARRIER FREQUENCY: fc 10.7 MHz ± ilf kHz.

Fig. 5 VOAF, T.H.D. vs. MODULATION FREQUENCY
I II I
0

-

-

vOAF

I

co

"'" I"':

-20

.:3
LL

0.2
I'

-,...--

Vee 12 V
fFM=10.7 MHz
~f=75 kHz dev.

I

0.15

f--t-f--VOAF: fMOO=400 Hz f--- 0.1
f---

-30

~

0

>

.....

I

-10

-40

;

0
:i

~

II

/

0.05

17

I

-50

~

THO.

I ill!

-60
50 70

200 300

500 700 1 k

0
2k 3k5k

7 k 10 k

MODULATION FREQUENCY fMOD

20 k

(Hz)

193

,uPC1167C2

Fig. 7 BW(MUTE) vs. R7

Fig. 6 VR 1 vs. Vin
VCC=12 V
. fFM= 10.7 MHz
f MOD=400 Hz
~f=75 kHz dey.

i
60

Vcc= 12 V
fFM= 10.7 MHz
VIN= 100 dBJl V
fMOD=400 Hz
~f=75 kHz dey.

600

---c--1.0

50

500
I

-c---

Cl

-=-

N

40

~

Cl

U
.r::

>

ro

400

WI-

=>

IL

rX 30

:9}

\

I

-=-

j

i

\

::';!

\

/

~ 300

~

\

~ 0.5

'\

rr:

20

I

'\

200

\

o

o
o

I I
I I
I 1
20

30

40

Vin

194

100

-R- - - - V R - - -

10

50

(dBjiV)

60

1
\
\

I

I

!

\

'\
10

!

CD

70

80

90

100

o

I

i
,!
~

10

i

i

I

r- r-l.

-I-- I--

20

R7

I

i

-....

30

(kQ)

i
!

I

!

i
40

50

BIPOLAR ANALOG INTEGRATED CIRCUIT

JLPC1161C3
FM MULTIPLEX STEREO DEMODULATOR
SILICON BIPOLAR MONOLITHIC INTEGRATED CIRCUIT

DESCRIPTION
ThepPCl161 C3 is a silicon monolithic integrated circuit for FM mUltiplex demodulator developed for high class stereo FM tuners.
As the IC adopts a PLL (Phase Locked Loop) system, complexity of control usually experienced when using conventional external coil is eliminated and the demodulator can easily be constructed by simply controlling the external semi-fixed potentiometer. Internal circuits are composed of a stereo demodulator, a lamp driver, an input stage pre-amplifier that is capable of
establishing variable input signal levels, a VCO (Voltage Controlled Oscillator) constituting PLL, a phase comparator, a LPF
(Low Pass Filter), a frequency divider, and a DC amplifier. A stereo-monaural automatic switching circuit, a circuit for manual
switching, VCO forced stop circuit etc. are built-in.

FEATURES
o External parts are small. Coil is not used.
o Low monaural total harmonic distortion.
T.H.D. = 0.02 % TYP , at f= 1 kHz.
T.H.D. =0.03 % TYP, at f= 10 kHz.
o Low stereo total harmonic distortion.
T.H.D. = 0.02 % TYP , at
T.H.D. = 0.06 % TYP , at
T.H.D.=0.12 % TYP, at
o High channel separation
Sep. = 55 dB TYP , at f=

f= 1 kHz (L+R).
f = 10 kHz (L or R).
f= 10 kHz (L+R).
1 kHz.

o Built-in output stage post amplifier.
Vout = 1.5 Vr.m.s. TYP , at V in = 300 mV.
V out =3.5 Vr.m.s. TYP, at V in =700 mV.
• Stereo-monaural switching can be made either automatically or manually from outside. The shock noise at switching is reduced considerably.
• Stereo-monaural switching operation is perfectly synchronized with a stereo indicator lamp.
• Monitoring of VCO free running frequency can be performed by directly connecting the frequency counter to No.
g terminal.
• High signal to noise ratio.
SIN = 82 dB TYP , at Vin = 300 mV.
o Wide maximum input level.
Vin = 700 mVr.m.s , T.H.D. = 1 %.

PACKAGE DIMENSIONS
in millimeters (inches)

194 MAX
(0 763 MAX)

TERMINAL CONNECTION
No.
1

,r~~~0~7)!625~~~3)
a·"Jl.

: ' II
25

II

No.

CONNECTION

9

ST. LAMP & 19 kHz MONITOR

2

10

LOW PASS FILTER

3

PRE AMP O.UTPUT

11

LOW PASS FILTER

4

POST AMP BIAS

12

DETECTOR INPUT

:":

5

POST AMP BIAS

13

LOOP FILTER

i

6

R·CH OUTPUT

14

LOOP FILTER

762

•

(01)

(0019)

CONNECTION
Vee
PRE AMP INPUT

(001)

0-15

7

L-CH OUTPUT

15

OSC RC. NETWORK

8

GND

16

ST.-MONO. SW & VCO STOP

NOTE: Numerical values show TYP. values unless otherwise designated.

195

,uPC1161 C3
FUNCTIONAL BLOCK DIAGRAM

VCO
76 kHz

ST-MONO SW
VCO STOP
SW

PILOT
PRESENCE
DETECTOR

PHASE LOCK
DETECTOR

38 kHz TO
19 kHz
DIVIDER

76 kHz TO
38 kHz
DIVIDER

STEREO
SWITCH
LAMP DRIVER

38 kHz TO

L CH
POST AMP
PRE AMP

STEREO
DEMODULATOR

NF AMP

R CH
POSTAMP

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Supply Voltage

15

V

75
400*

mA

VCC

Lamp Current

IL

Package Dissipation

Po

mW

Operating Temperature

T opt

- 20 to +70

Storage Temperature

T stg

- 40 to +125

°c
°c

*Ta=70 DC

RECOMMENDED OPERATING CONDITION (Ta=25 °C)
CHARACTER ISTIC
Supply Voltage

196

SYMBOL

MIN.

TYP.

MAX.

UNIT

VCC

9

12

15

V

,uPC1161C3
ELECTRICAL CHARACTERISTICS (Ta = 25°C)
(Vcc=12 V, f=1 kHz, R1 =47 kn, R+L=270 mV, Pilot=30 mV)
CHARACTERISTIC
Supply Current

Channel Separation

Voltage Gain
Channel Balance

SYMBOL

MIN.

TYP.

ICC

12

20

40

50

dB

45

55

dB

Sep.

Av

T.H.D.

Stereo Total
Harmonic Distortion

T.H.D.

UNIT

30

mA

dB

f= 10 kHz

17

dB

Monaural, Vin = 300 mV*

-1.5

0

1.5

dB

Monaural, Vin = 300 mV

-1.5

0

1.5

dB

Stereo, Pilot = 30 mV

0.02

0.1

%

0.1

%

0.02

f= 100 Hz

%
R+L= 270 mV
Pilot = 30 mV

%

6

dB

±3

%

Pilot= 30 mV

19 kHz Rej.

35

dB

Pilot = 30 mV

38 kHz Rej.

45

dB

Pilot= 30 mV

20

mVr.m.s.

f = 1 kHz
f= 10 kHz

±1.5

Hy.
C.R.

SCA Rejection

Vin=300 mV

12

Capture Range

f = 1 kHz

45

6

Stereo Lamp Hysteresis

Ultrasonic Frequency
Rejection

Pilot= 30 mV

13

0.12
L-ON

f=100Hz

9

0.02

Pilot Level for Lamp On

TEST CONDITIONS
No Signal

35

C.B.

Monaural Total
Harmon ic Distortion

MAX.

Pilot Level, R,=47 kn.
Pilot Level

SCA Rej.

70

dB

Maximum I nput Level

Vin

0.7

Vr.m.s.

Signal to Noise Ratio

SIN

82

dB

Vin = 300 mV, After LPF

Stereo-Monaural Switching
SWoON Voltage

Vs

1.4

1.6

V

No. 16 Terminal Voltage
Where Stereo Lamp-O F F

VCO Stop Voltage

Vo

VCC

V

No. 16 Terminal Voltage
Where VCO Stops

7

Pilot = 30 mV, SCA = 30 mV
Monaural, T.H.D. = 1 %

* Av is from the output level measured at I C output terminal. Av can be set by the input impedance R,.

197

,uPC1161C3
TEST CIRCUIT FOR ELECTRICAL CHARACTERISTICS
19 kHz Monitor

470 pF

3.3 !IF

1 kQ

Stereo Lamp
VC)

0----0

Vs

Lamp Protecting
Resistor

S3

MPX Input

r

SOOPF

+
22 kQ

1 000 pF

3.3 kQ

Rch·OUT

-

10IlF

Sep. Adj.
500 kQ VR

LPF
3.3 kQ
10 IIF

+
1 000 pF

-

Lch·OUT

3.3kQ

LPF
veo Adj.
Sep. Adj.
S1

S2
S3

BL-13 (K.K. KORIN)
veo tuning semi-fixed potentiometer
Separation adjusti ng semi-fixed potentiometer
Vee ON-OFF SW
SW tor 19 kHz monitor
SW for veo stop

NOTES:

1. Use polystyrene capacitors for that connected to No. 15 terminal to compensate the
temperature coef. of veo.
2. For adjusting the veo oscillation frequency, make S2 open, connect the frequency
counter to No.9 terminal 19 kHz monitor and then set by varying the semi-fixed
potentiometer veo Adj. connected to No. 15 terminal
3. For separation adjustment, vary the semi-fixed potentiometer Sep. Adj. connected
between terminals No.4 and No.5 to set at the best point.

198

,uPC1161 C3
TYPICAL APPLICATION
19kHz Monitor

1 kQ

Vs~1.6

V

01----St. -Mono
manual SW

ON-+

veo

STOP
0.047IiF

MPX input

I

47 kQ
Rch·OUT

+

500 pF
1000 pF

3.3 kQ

10/ I F

Sep. Adj.
10 ."F

500

k~2

L.P.F.

VR
101lF

22 kQ

+
1 000 pF

1001lF
Vee
+12 V

3.3 kQ

Lch·OUT

+
lO,uF

LPF
VCO Adj.
Sep. Adj.
*470 pF

BL-13 (K.K. KORIN)
VCO tuning semi-fixed potentiometer
Separation adjusting semi-fixed potentiometer
Polystyrene capacitor

NOTES:
When the unit is used with power supply voltage of less than 12 V, the mid- point electric
potential of the output terminals 6, 7 in the above typical application may change and
Total Harmonic Distortion at output terminal will increase.
In this case change the bias registor 47 kn between terminals 5, 6 and terminals 4, 7 and
keep at mid-point electric potential.

199

,uPC1161 C3
EXAMPLE OF PRINTED-CIRCUIT BOARD (Unit: mm)
100

o

o
(Bottom View)

OUTBOARD COMPONENTS MOUNTED ON A PRINTED-CIRCUIT BOARD
+Vcc
stereo·monaural switching

-----co~

MPX input

VCO STOP

Rch·OUT

Lch·OUT

(Bottom View)

200

Rl=47 kQ

R6 =47 kQ

Rll=15kQ

Cl=I00J.lF

C6 =1000 pF

Cll=lOJ.lF

Sep. Adj. =500 kQ VR

R2=10 kQ

R7 =3.3 kQ

R12=3.3 kQ

C2=4.7 flF

C7 =0.22 J.lF

C12=10 J.lF

VCO Adj. =5 kQ VR

R3=22 kQ

Rs =47'kQ

R13=3.3.kQ

C3=500 pF

Cs =1.5J.1F

C13=10 J.lF

BL·13=19 kHz

R.=10 kQ

Rg =3.3 kQ

Ru=1 kQ

C.=O.047 J.lF

Cg =3.3J.1F

C14=10 J.lF

Rs=22 kQ

R10 =1.0 kQ

RL =Lamp
Protecting
Resistor

Cs=l000 of

C10 = 470 pF( Polystyrene
capacitor)

LPF(K.K KaRIN)

tlPC1161C3
ON CIRCUIT GAIN
The circuit gain of the IlPCl161C3 is obtained from, the input stage PRE AMP, the demodulator,
and output stage POST AMP, and can be expressed equivalently from external resister ratio by
following equation :

A2::;: (R3#R2)

+ Rs

R3#R2
Av ::;: 20 log (A1 • A2)

(dB)

">---0 Rch-OUT
6

2

. > - - - - - 1 Demodulator

7
~--o

Lch-OUT

VCCo-----~~---<~----~--~I~--~

The change of the circuit gain in case an input resister R1 has been varied is shown in the following
drawing.

R2=10kQ
R3=22 kQ
Rs =47 kQ

18

en

17

.:s

16

~

15

<......

..
~

i\.

'r\.

14

bO

.9.

"""f'-~

~13
12

"' "'-

11

33

39 43

47

51

R\ (kQ)

56

''"
62

68

201

j.lPC1161C3
TYPICAL CHARACTERISTICS (Ta=25 °C)
SEPARATION vs.
MODULATION FREQUENCY

70

II
II

60
CD

7c:

TOTAL HARMONIC DISTORTION
vs. MODULATION FREQUENCY

~

50

- ......

-~

R-+L

I:

"""

r;

~
I

~~R- f--

..g 40

0
0-e

Vi
is

",-,

u

~

I

MAINJ

I

0

,

ro

c.
~

c:

0.5
0.3
0.2
0.1

'g 0.05 f-R

MONO

~ 0.03 -L

30

7§ 0.02 ,-L

I

g. 20

---

r-- r-- I-~ 1-

R~

o

l-

(f)

I

ci

~

am

~

-

~
~

-- ..

....:::

~otifj

~0.005

a

30 50

100 200 300 500

30 50

1 k 2 k 3 k 5 k 10 k 20 k 30 k

100 200 300 500 1 k 2 k 3 k 5 k 10 k 20 k 30 k
f -Modulation Frequency -Hz

f -Modulation Frequency -Hz

TOTAL HARMONIC DISTORTION
vs. MAIN SIGNAL INPUT VOLTAGE

TOTAL HARMONIC DISTORTION vs.
MODULATION FREQUENCY (STEREO)

f =1 kHz

0.5

~

I

0.3
0.2

c:
0

:p

~

;

0

Vi

0.1

u
.~

0.05 -

is

-

E
ro 0.03

.

:c
0.02
7§

Ronly
Rsub
~Sf

-

I-

I 0.01

~ 0.5

~

I

c:

:e

r-=:=- -

",'Ls~ub

0

Malo

1.0

MAIN

0.3

0

Vi
is 0.2

Lonly

ci
~0.005

u

'c
0
50

100 200 300 500

E

1 k 2 k 3 k 5 k 10 k 20 k 30 k

ro

:c

f -Modulation Frequency -Hz

0.1

Cij

0

I" 0.05

),

ci

~

TOTAL HARMONIC DISTORTION
vs. SIGNAL INPUT VOLTAGE

-'-: -- ....

0.03

~~ L

0.02

L

f=l kHz

~

'-

0.01
1.0

,•

.

0.5
I

c:

0.3

0

0.2

Vi

,

u

'c
0

E

~

",

/

/

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CHANNEL BALANCE vs.
MODULATION FREQUENCY

!

is

a

~

,,'

,~

Yin-Main Signal Input Voltage-Vr.ms.

.

~

2

0.005

~

~ ~,
......

0.1

ro

:c

CD

7+4~~+H+--~~~++~t--4-4~++~t--+~

Cij

;§ 0.05 .---t---+-+-SUB.R +----+11'-,-+-+---+-~
I.

R.ONLY

\

~ 0.03 t--+--+--t-.......t-'\-'Io~.."!;_,~~r'-+---+-+---l

~

B+3~~+H+-~~r+++~~-+-+~++~~-+~

~+2~~+H+-~~~++~t--4-4-+-++~t--+-4

~

_
~~,...~ ... SUB.L
0.021--t--~,!F.i=,:,:~:,~,=~_~
......
~ot.;,,:..-t.~~
I--I----+~
L-ONLY

~+1~~+H+-~~~++~t--4-4~++~t--+-4
~

O~-++-++I+---+--1f-++++++I-""-+--+-+#~I--+--1

~-1~~+H+--4~~++~~-+-+~++~~-+--1

B-2~~+H+--;~r+++~t--+-+-+-++~t--+-4

I -3r+++~---r-r+++H#---~~++~--~~

~-4~~+H+-~~~++~t--+-4~++~~-+-4

u

0.005 L . - - - L . . _ I . - - J -___L---J-_ _ _ _
a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
....L.----L_~___'

Vin-Signal Input Voltage-Vr.m.s.

202

30 50

100 200300500

1k

2 k 3 k 5 k 10 k 20 k30 k

f - Modulation Frequency - Hz

,uPC1161 C3

TOTAL HARMONIC DISTORTION
vs. SUPPLY VOLTAGE

SEPARATION vs.
SUPPLY VOLTAGE

70
f = 1 kHz

f -1 kHz

0.5

60

R-+L

CD

\.

"U

~

I

0.3
0.2

:e

"-L-+R

.~ 50

I

g

~

rtl

Co
Q)

1il

(/)

(5

I 40

0.1

u

'c

ci.
Q)

a!

o

I

(/)

§
rtl

30

0.05

:J:

,

~

(5

~

I" 0.03

1\

c::i
~ 0.02

,;,.".,

.. -.
-- .--'/~
.--

.. ,. ~
VyV

"

R ONLY
L O.NLY
MONO L
MONO R

20

6

8

10

12

14

16

Vee-Supply Voltage-V

~

~ ..... ....

0.01

~

0.005

8

10

12

14

16

18

Vee-Supply Voltage-V

SEPARATION vs.
SIGNAL INPUT VOLTAGE

70
f=l kHz

TOTAL GAIN vs.
SUPPLY VOLTAGE

60

f= 1 kHz

I

...,

+3

--

-- ---

L-+R
R-+L -

+2
~ +1
I
.~

R or L

0

,r

c.!)

~

a

-1

1"-2

30

~ -3
-4

20

-5

o

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ID
Vin-Signal Input Voltage-Vr.m.s.

-6
6

8

10

12

14

16

Vee -Supply Voltage-V

CHANNEL BALANCE vs.
SUPPLY VOLTAGE

FREE-RUNNING FREQUENCY
DRIFT vs. SUPPLY VOLTAGE

f = 1 kHz

N

~ 19.2 t--t--+---t--+--f---+--+--+--f----I

+3

I

+2

£5
~
c:

CD
-0

19.1 t--+--+--t--+--t---t--+--t--+--I

1+1

Q)

R or L

u

Q)

~

::J

cr
Q)

U:: 19.0~+-f=~~-t-+-4-;;;;;J~:t-~
~

~
CD
Qj

0

V

-1

c:

'c
c:

~ -2
u
I -3
cD

..c:

::J

~ 18.9 t--+--+--t--+---'t---t--+--t--+--I
Q)

~

I


E

~ 15~~--~~~~4-~--~~--~~

23

o

« 22
E
I

g 14

21

c:
·iii

~ I--"

0 20

c:

---

~::J 19
u 18

S0

-

~ 13~~--~~~~4-~--~~--~~

~

~

~

.E

~ 12

11~~--~4-~--4-~--+--+--+-~

j
::J

~10

17

c.
E

~ 16

...J

lI

9

nl

8

15

£!
a:
I

7

14

0

6

z

8

6

10

12

16

14

...J

VcC-Supply Voltage-V

8

6

10

12

14

16

VcC-Supply Voltage-V

PILOT LAMP INPUT LEVEL. FOR
LAMP OFF VS. SUPPLY VOLTAGE
(PILOT ONLY)

PILOT LEVEL AND AMBIENT
TEMPERATURE VS. CAPTURE
RANGE

>

E

I
~ 9~-r--r--r~~~~--~-+--+--;
c.

90

8 J--r--I---t---l--~-+--+--+--+---t

E
nl

...J

=e 70

~ 7
~

6 J--r--~-+---f-+--+-+--+-+---t

4.l

80

: 5 J--r--I---t---l--~~--~-+--+---t
~

I
~60 f---

j 50

25 ·C

II

i\\\

£!
~40

-20·C

-20 ·C
25 ·C
75
./

·c

I'.

75

·c, 1/)

.= 4 1--t-~I---+--4--+---+--+---+--+--I
c.
~ 3 J--r--r--t---l--~-+--~-+--+---t
...J
£! 2~-r--r--r--l~~-+--~-+--+--;
a:

b
30
...J

II--t--I---+--4--+---+--+---+--+--I

10

O~~--~~-...J~~~--~~--~~

~ ./
-5 -4 -3 -2 -1 0 + 1 +2 +3 +4 +5

J.

...J

6

8

10

12

14

'""' "'"

a: 20

IJ...

9

~

...

o

16

VCC -Supply Voltage-V

l

=e 14

+4~--+--+--1--1--+--+--+--1--4-1

l13
(5

+2~--~-+--+-~--~~--~-r~~

~'+I~--~-+--+--+--~~--r-~~r;

a::

~

~

0~--~~--+--+--r-~--r--r~r1

8-1~--+--+--+--+--r--r--I---+---l--t

I

~-2~--~~--+--+--~~--r--r~r1

cJ

-3~~-+-+-+-+~~~~~
-4·~--+--+--~-t---l--+---+--r-~

"

PILOT LAMP INPUT LEVEL FOR
LAMP ON-OFF VS. AMBIENT
TEMPERATURE

+5~--~~--~~--r--r--~~~~

tlO

~

C.R.-Capture Range-%

CAPTURE RANGE VS. AMBIENT
TEMPERATURE (PILOT=30 mV)

~+3~~~~--+--+--~~--~~~~

J

'I

c§

12

ON

c.

Ell

nl

...J

,E1O
S. 9
.=

g
nl

8

a:

6

b

5

a:

4

...J

7

..Q

I

OFF

...J

-5~--~~--~~--~~--~~~~

-20 -10

0

10 20 30 40 50 60 70

Ta-Ambient Temperature-OC

204

-20-10 0

10 20 30 40 50 60 70

Ta-Ambient Temperature-%

,uPC1161C3

FREE-RUNNING FREQUENCY DRIFT
AMBIENT TEMPERATURE

VS.

~

Put into temperature
test chamber only Ie
(exclude external
components)

19.30

.:t::.

b..:: 19.20
Cl

>.

19.10

r-..... ..........

g19.00
:l

C"

~ 18.90

..........

i"-- ....

,

..........

.........

.~ 18.80

~

w

.......... ~

18.70

~ 18.60
I

 - - - 0 Rch-OUT

6
Demodu-

A2

lator
7

>---0 Lch-OUT

4

vCCO-----~~--~r-----~--~

The change of the circuit gain in case an input resister RI has been varied is shown in the following drowing.

18
R= 10 kO
17
16
15

ro

-0

14

I

:{

13

<

12

tlO

.2
0

N

11

R=22 kO
R=47 kO

'\

""
"'~

r":~

" """
"-

10

9

~

8

33

39

43

47

51

56

62

"
68

Rl-kO

211

pPC1235C
EXAMPLE OF

PRINTED·CI~CUIT

BOARD

(Unit: mm)

100

oU)

(Bottom View)

OUTBOARD COMPONENTS MOUNTED ON A PRINTED·CIRCUIT BOARD

stereo·monaural switching

o

Rch.OUT

Lch·OUT

212

Rl=47 kQ

Rs =47 kQ

Ru=15 kQ

Cl=100J.lF

Cs =1000 pF

Cu=10J.lF

R2=10 kQ

R7 =3.3 kQ

R12=3.3 kQ

C2=4.7 J.lF

C7 =0.22J.1F

C12= 10 J.lF

VCO Adj. =5 kQVR

R3=22 kQ

Rs =47 kQ

R13=3.3 kQ

C3=500 pF

Cs =1.5 J.lF

C13=10 J.lF

BL·13= 19 kHz LPE(K.K KORIN)

R4=10 kQ

R9 =3.3 kQ

R14=1.0 kQ

C4=0.047 J.lF

C9 =3.3J.1F

C14=10 J.lF

Rs=22 kQ

RIO=1.0 kQ

RL =Lamp
Protecting
Resistor

Cs=l 000 pI

Clo=470 pF(Polystyrene
capacitor)

Sep. Adj. = 500 k Q VR

,uPC1235C
TYPICAL PERFORMANCE CHARACTERISTICS
TOTAL HARMONIC DISTORTION vs.
MAIN SIGNAL INPUT VOLTAGE

SEPARATION vs.
MODULATION FREQUENCY

70
f= 1 kHz

60

MONO

a::l
"0

I

-R

~

50

.J'

R...,..L to.. r-.
"

c:

40

g.

30

ero

1.0

.
"'

.,3

~

(/)

~

I

c:

20

0.5
J

0.3

I

0

'';:

OJ

(/)

MAIN

~

.8

10

I

0.2

Vl

0

a

u

30 50

100 200300500

1k

2k 3k 5k

'c

10k 20k30k

I

0.1

0

E

f - Modulation Frequency - Hz

ro

I

J

0.05

~

TOTAL HARMONIC DISTORTION
vs. MODULATION FREQUENCY
(STEREO)

I
ci
I

0.5

co
;§

0.03
0.02
0.01

Rsuh.

III

I~

~,.

-~

1111 \

1\

Lonly

Ronly

100

200300500

a

~

1k

2k 3k 5k

10k

f= 1 kHz

f - Modulation Frequency - Hz

1.0

0.5

c:
o

0.3
0.2

.B
Vl
is

0
'';:;

0.3

0.1

.8

0.2

'2

0.05

0

E
ro

0.03 I-R
0.02 I·...;,
R
[
0.01

ro

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

20k30k

I

~
I

L/V

~-:/ R

TOTAL HARMONIC DISTORTION vs.
SUPPLY VOLTAGE
30 50

~

I

......... l/

VV

Vin - Main Signal Input Voltage - Vr.m.s.

TOTAL HARMONIC DISTORTION

o

.. V
..V

1'.. ......

vs. MODULATION FREQUENCY

u

1.....1:':: r.

-... ~

0.005

0.05 i-i-Lsub

I
ci
I
....:

:e

~r-,

,J)

0.1

I

-::r:;.

1

0.01

,I

0.2

'Eo
E
ro

~I--

~

0.3

11"

R

0.03
0.02

.~

V.I

ro

MAIN It-f-

/

~

I
c

Vl

~

MONO

~~

-

V
J

_'"'::t-

-

-

i.-

II'

100 200300500

1k

2k 3k 5k

f - Modulation Frequency - Hz

10k 20k30k

I

:

0.1

\I

ro

0.05

\

I

0.03

ci
I

0.02

U

'c0

E
ro

I

;§
30 50

0.5

\
I

~~

~

....:

...... -

--

R ONLY

~

L

O~~i- - 1-

,~ ~_.J"" l .... ~

0.01

1"00;

~

I-""

MONO R

0.005

8

10

12

14

16

18

Vee - Supply Voltage - V

213

,uPC1235C
SEPARATION vs. SUPPLY
VOLTAGE

TOTAL HARMONIC DISTORTION vs.
MAIN SIGNAL INPUT VOLTAGE

70
f= 1 kHz

f= 1 kHz
60
"0

--,

~

R~L

CD

1.0

I

n•

0.5

c

I

'-L-R

50

0

:;::::;
~
ro

c
0

0.

0.3

"-e

.8
III
0

0.2

.r:u
0

E
ro

,

Q.l
U)

:

en

I
ci.

40

Q.l

30

0.1

I

ro

0.05

-0
I

R·ONLY

0.03

q
I

8

6

A

\

10

12

14

16

Vee - Supply Voltage - V

0.02

.....:

20

SUB·R

f-

~::-:--,

...

J.

~

"L·ONLY

SEPARATION vs. SIGNAL INPUT
VOLTAGE

0.01

70
f=l kHz

0.0050

0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8 0.9 1.0
CD

I

0

CHANNEL BALANCE vs. SUPPLY
VOLTAGE

Q.l
U)

I
ci.

+2

30

Q.l

~

-1

~

-2

ro

c
ro
..c

U

40

Q.l

+1

0

R-L

50

en

"0

g

-('R

0.

f= 1 kHz

I

L

:;::::;
~
ro

+3
CD

--- -- --

...-

"0

c

I

I

60

Vin - Signal Input Voltage - Vr.m.s.

R or L

~
.- -

20
---,--

o

0.1

0.2

0.3

0.4

0.5

0.60.7

0.8

0.9

1.0

Vin - Signal Input Voltage - Vr.m.s.

-3

I

a:i

U -5

TOTAL GAIN vs. SUPPLY
VOLTAGE

-6
6

8

10

12

14

16

f= 1 kHz
+3

Vee - Supply Voltage - V

+2
CHANNEL BALANCE vs.
MODULATION FREQUENCY

!g

+1

I

o

CD

"0

I
Q.l

u
c
ro

ro
CD
iii
c
c
ro
..c

C,)

I
ai

-1

+4
+3
+2
+1
0
-1
-2
-3
-4

;§

-2

I
~ -3

-4

I

-5
-6
100200300500

1k

2 k3k 5k 10k 20k30k

f - Modulation Frequency - Hz

214

/'

ro

U
30 50

R or L

6

8

10

12

Vee - Supply Voltage - V

14

16

,uPC1235C
TOTAL CURRENT DRAIN vs.
SUPPLY VOLTAGE (NO SIGNAL)

PILOT LAMP INPUT LEVEL FOR
LAMP OFF vs. SUPPLY VOLTAGE
(PILOT ONLY)
vi

23
c::(

E

;;

22

E
I
c:

21

0

20

~::J

19

'ro
.....c:

()

---

18

~

V

E

-- -----

I
c:
0

v

Co

E

.8

11

(jj

Co

I
U

10

...J

17

.9

13
12

>
(lJ

'0

14

co

...J

co

f-

15

E

16

9

co

...J

15

:§

14

I

c::

16

14

12

10

8

6

z

0

8
7
6

.,j

Vcc - Supply Voltage - V

6

vee PILOT LAMP INPUT LEVEL FOR
LAMP ON vs: SUPPLY VOLTAGE
(PILOT ONLY)

vi

E

;;

E
I

(5

I

PILOT LEVEL AND AMBIENT
TEMPERATURE vs. CAPTURE
RANGE

90
8
.,;

~

Co

E 7

.8
(jj

:>

I

co

...J

E

!

6

I
(jj

5

>
(lJ

>

...J

(lJ

...J

.....::J

Co

oS

Supply Voltage - V

I

i

I

9

:§

4

c::

I

3

I

0.

...J

8

10

12

80
70
60
50
40

f-

30

a::

20

a...J

E 2
co

-20·C

I

~5 ·C" \

25·C

~

!II

16

14

o +1 +2 +3 +4 +5

VCC - Supply Voltage - V

C.R. - Capture Range CAPTURE RANGE vs. AMBIENT
TEMPERATURE (PILOT=30 mVr.m.s.)

+4

vi

14

;;
E

13

I

12

E
I

%

PILOT LAMP INPUT LEVEL FOR
LAMP ON-OFF vs. AMBIENT
TEMPERATURE

+5

~

+3
+2

ON

(lJ

(5

llJJ

c:
co

+1

~

0

a:::

::J

U

I

0::
<.:i

C

11

E
co

10

o

C.
co

16

14

12

10

8

...J

-1

9

-2

"5
Co

-3

oS
Co

8

I

7

E

-4~~-+--4---+--4---+--1---r--+--~
-5~~~--~--~~--~--~--~~--~

-20 -10

0

10

20

30

40

50

Ta - Ambient Temperature - 'c

60

70

.::l

'0
0:

OFF

6
5

I
f-

a
...J

c:::

I

4 _ 20 -10

0

10

20

30

40

50

60

70

Ta - Ambient Temperature - 'c

215

,uPC1235C
FREE-RUNNING FREQUENCY DRIFT
AMBIENT TEMPERATURE

FREE-RUNNING FREQUENCY
DRIFT vs. SUPPLY VOLTAGE

VS.

Put into temperature
N

test chamber only Ie
(exclude external parts)

19.30

:I:

~

I

-

19.20

.....

;§

19.10

>.
u

19.00

cQ)
~

cr
Q)

at

~

~

r--.......

..........

..... 19.1

~ .......

~
~

18.90

~

>.
u

........

cQ)

r-....... I'-

~

cr
Q)

bD

18.80

·cc

18.70

·c

cb
~
u.

18.60

0:::

I

18.50

I..i..

18.40

I
~

c

~

19.0

Lt
bD

c
c

0::

18.9

~

cb

~

~

-20 -10

0

10

20

30

40

50

Ta - Ambient Temperature _ ·e

216

19.2
N

I

60

70

18.8
6

8

I

10

12

Vee - Supply Voltage - V

14

16

BIPOLAR ANALOG INTEGRATED CIRCUIT

p.PC1224H
HIGH SUPPLY VOLTAGE LOW NOISE DUAL PRE AMPLIFIER

DESCRIPTION
The IlPC1224H is a monolithic integrated circuit and a dual pre amplifier designed for the low-end class to the middle
class Hi-Fi audio sets and in an 8-pin single in-line plastic (SIP) package.
The circuit inside of IlPC1224H is composed of the two stage differential amplifiers acting as a voltage amplifier stage
and the SEPP (Single End Push Pull) circuit acting as a final stage.
FEATURES
•
•
•
•
•

IlPC1224H has a dual pre amp in an 8-pin SIP package, so that it has a merit of design and assembly of small sets_
Very low noise.
0.815IlVr.m.s. TYP. (RG= 0 il, Av = 36 dB at 1 kHz, RIAA, without Filter)
Low distortion.
0.0024 % TYP. (Vee = ± 22 V, Vo = 1 Vr.m.s., RL = 10 kil, f = 1 kHz)
Wide input dynamic range. 222 mVr.m.s. TYP.
(Vee = ± 22V, T.H.D. = 0.1 %, f = 1 kHz, Av = 36 dB)
IlPC1224H can drive a lower impedance load because its final stage is the SEPP circuit.

PACKAGE DIMENSIONS (Unit: mm)

BLOCK DIAGRAM &
CONNECTION DIAGRAM

2.8±O.2

19.5 MAX.

Cl

+Vcc

Outl

NFBI

INI

-vcc

IN2

NFB2

Out2

1.2±O.1

-1 Regulated Power Supply

6.7 MAX.
1.2

2.54±O.2
17.78

217

,uPC1224H
ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Supply Voltage
Allowable Power Dissipation
Differential Mode Input Voltage
Common Mode Input Voltage
Operating Temperature

Topt

Storage Temperature

Tstg

± 25
330
±10

VCC

Po

Ta

= 65°C

VID

to ± Vcc
-20 to +65
-40 to +125

VICM

V
mW
V
V

°c
°c

RECOMMENDED OPERATING CONDITIONS (Ta = 25°C)
CHARACTER ISTIC

MIN.

TYP.

MAX.

Supply Voltage

VCC

±10

±22

±24

V

Input Bias Resistance

RIN

20

50

100

kn

Load Impedance

RL

1

10

100

kn

Closed Loop Voltage Gain

Av

15

36

ELECTRICAL CHARACTERISTICS (Vee

=±22 V,

SYMBOL

MIN.

CHARACTER ISTIC
Quiscent Circuit Current

218

UNIT

SYMBOL

ICC

Open Loop Voltage Gain

AVO

Total Harmonic Distortion

T.H.D.

Maximum Output Voltage

VOM

80

RL

=10 kn,

Au =36 dB, RIAA, Ta = 25°C)

TYP.

MAX.

UNIT

3

5S

mA

100
0.0024

12

dB

dB
0.03

%

1.6

IlVr•m.s.

14

Equivalent Input Noise Level

NL

0.8

Common Mode Reduction Ratio

C.M.R.

90

Supply Voltage Reduction Ratio

SVR

65
25

Channel Separation

Ch.sep.

90

Vr.m.s.

(+)
(-)

TEST CONDITIONS

=0.1 Vr.m.s.
= 1 Vr.m.s., f = 1 kHz
T.H.D. =0.1 %, f = 1 kHz
Rg = 0 n, without Filter
Vo
Vo

dB

RIN ~10 kn

dB

RIN ~ 10 kn. fripple

dB

Vo

= 100 Hz

= 10 Vr.m.s., f = 1 kHz

,uPC1224H
TEST CI RCUIT
SWl

1

2

........---() +22

~

V

1 SW2
....---------{')

10 k Q

2o-------~'~--~------~

SW4

510 kQ
330 J,lF

+

~-----------_o-22V

SW1

SW2

SW3

SW4

ICC

2

2

2

1

AvO

1

1

1

2

T.H.D.

1

1

2

1

VOM

1

1

2

1

NL

1

2

2

1

TYPICAL APPLICATION CIRCUIT
510 kQ

39 kQ

6 800 pF 1 930 pF
r------------,

I

3

'\---;~..AJ.},....--.....!..f:I---.......-__o

L-ch OUTPUT

L-ch INPUT D - - - - I l ¥ - - . - - - - - {
-22VO----4--~

R-ch INPUT o---n-:---..-~~

\..-...-.J.N\.--..!...FI---.......---o R-ch OUTPUT
10 kQ

510 kQ

39 kQ

219

,uPC1224H
TYPICAL CHARACTERISTIC
VOLTAGE GAIN vs. FREQUENCY
VCC=±22 V
Vo=O.l Vr.m.s.
Rl=lO kQ

120
CD

~

100

'0

......

"""

I

c

'jij

r--....

I

16

>

g

"- .....

-.e
:J

.........

:J

"-"

60

I

.;(

18

E
tlO

tlO

!!

..:
Q)

Q)

g

20

!!

80

(!)

MAXIMUM OUTPUT VOLTAGE
vi

0

~

r"-~

40

E
:J
E

'x
nI

::E
I
::E

VS.

FREQUENCY
VCC=±22 V
T.H.D.=O.l %
Rl=IO kQ

,

14

'"\

12

,

10

~

8
6

\,

4
2

0

20 10

2030 50

100 200300500 1 k 2 k3 k 5 k 10 k20 k30 k50 klOO k

>

10203050

100200300500

f - Frequency - Hz

lk

2k3k5k IOk20k30k50k

f - Frequency - Hz

TOTAL HARMONIC DISTORTION vs.
OUTPUT VOLTAGE
VCC=±22 V
Av=36 dB
(at 1 kHz RIM)
Rl=10 kQ

0.5

MAXIMUM OUTPUT VOLTAGE
SUPPLY VOLTAGE

VS.

20

0.3
0.2

~

~

I

c

0.1

0

'of

~

0.05

C
u

'2
0

0.03

nI

E

0.02

:I:

~

~~
......

"-

iii

~

0.01

I

d

"1'\'" '\

~V

V

..,:

0.003

0.001
0.1

~
3

16

E
I
Q)

tlO

./

14

",

!!

'0

> 12
'5 10

V

./

:J

~

2

0.2 0.5

~

'=1 kHz
IH.D.=O.l %
Rl=10 kQ

.e
'x
nI

::E
I
::E

1/

~

4

E
:J
E

"

V

\., J

0.002

18

0

~ ~V

0.005

::x:

'=20 kHz

/

V

vi

V

0

/

6

V

/

/

4

./

2

V

>

/

5

8

0

±2

±4

±6

±S ±10 ±12 ±14 ±16 ±IS ±20 ±22 ±24

± Vee - Supply Voltage - V
10

20 30

Vout - Output Voltage - Vr.m.s.

MAXIMUM OUTPUT VOLTAGE

VOLTAGE GAIN VS.
SUPPL Y VOLTAGE

vs. LOAD INPEDANCE
18

16

100

>

I

Q)

tlO

14

!!

./

g

-

/~

:J

c.. 12

'5

'x
nI
::E
I
::E

~

----

--

-

(
-II

CD

I

c

'jij

60

(!)

/V'
10

80

Vo=O.l Vr.m.s.
'=50 Hz

'0

/

0

E
:J
E

120

VCC=±22 V
T.H.D.=O.l %
f=l kHz

Q)

tlO

,/

!!

g

40

I

.;(

8

20

6
1k

2k 3k

5k

10 k

20 k 30 k 50 k

RL - Load Impedance - Ohms

220

100 k

o

±2

±4 ±6

±S ±10 ±12 ±14 ±16 ±IS ±20 ±22 ±24

±Vee - Supply Voltage - V

tlPC1224H

CIRCUIT CURRENT vs.
SUPPLY VOLTAGE

SUPPLY VOLTAGE REJECTION
vs. SUPPLY VOLTAGE

5

70

VIN=O

c:(

C
~
:::l

d~.R(+)

60

4

~

E
I

3

(.)

III

CD

"0

50

~

f ripple·=lOO Hz
RIN:;?;10 kQ

;::;;;;;; t--

I

I

c
0

hl

.(j)
0::

40

CI)

DO

.e

1

~ 30
>.

a.
Co
:::l

o

IJ)

±2 ±4

±6 ±8 ±10 ±12 ±14 ±lG ±lS ±20 ±22 ±24

I

S~.R(

20

a:

± Vee - Supply Voltage - V

:>.

IJ)

10

CHANNEL SEPARATION

VS.

a

FREQUENCY

120

CD

7

"0

I

:2

SO

r- ~

l,...--

100

..V

VCC=±22 V
VOUT=10 Vr.m.s.

r-- t---r-

r-....

It

--"V

~

.....

)

II

±2 ±4

±G ±S ±10 ±12 ±14 ±lG ±lS ±20 ±22 ±24

±Vee -

Supply Voltage - V

...........

/

~

<0

Co

~

60

Q;

c

C

<0

<3

40

I

Co

~

..c.
(.)

20

0 10

20 30 50

100

200 300 500

1k

2k3k 5k

10 k

20 k 30 k 50 k 100 k

f - Frequency - Hz

221

BIPOLAR ANALOG INTEGRATED CIRCUIT

,uPC1188H
20 W AUDIO POWER AMPLIFIER

DESCRIPTION
The J.LPCl188H is a monolithic

int~grated

circuit and a power amplifier designed for Hi-Fi audio sets and in a 10pin

Single In-Line plastic package. J.LPC1188H can provide 20 W (TYP.) to 8 ohms at 1 % T.H.D. and ± 22 V Supply voltage.

FEATURES
•

20 W TYP. (Vee = ± 22 V, Au =40 dB, f = 20 Hz -- 20 kHz, R L = 80, T.H.D. = 1 %)
20 W TYP. (Vee =± 22 V, Au = 27.5 dB, f= 20 Hz", 20 kHz, R L = 80, T.H.D. = 0.5 %)

High output power_

0.02 % TYP. (Vee = ± 22 V, Au = 40 dB, f = 1 kHz, R L = 80, Pout = 5.0 W)
0.005 % TYP. (Vee = ± 22 V, Au= 27.5 dB, f = 1 kHz, R L = 80, Pout = 5.0 W)
• Wide frequency band width.
f= 250 kHz (-3 dB)
• J.LPC1188H has a muting function which eliminates pop on noise and the thermal and the over current protection
circuit.
•

Low distortion.

•

Available for N FB tone control amp.

BLOCK DIAGRAM

Muting

~------------------------------~ 4 ~------------------------------------~

Thermal Protection

Muting Circuit

'"
~

ii:

GND
INPUT
Circuit for level
shift and
phase inverse

1

Pre Driver

:J

Constant Current
Source

Current Limitter

.e
~

o

Q)

"C

in

'------------(8~-------------------I
NFB

222

Phase Compasation

-VCC

:J
Co
:J

o

jlPC1188H

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Supply Voltage (Quiescent)

VCC

± 30

V

Circuit Current
Package Dissipation

ICC(peak)

5
30*

W

Operating Temperature
Storage Temperature

Topt
Tstg

Thermal Resistance Junction to Case

Rth(joc)

PD

A
°c
°c

-20 to +70
-55 to +150
3

°C/W

°

* Tta b=60 C

RECOMMENDED OPERATING CONDITIONS (Ta = 25°C)
CHARACTERISTIC

UNIT

MIN.

TYP.

MAX.

±17

±22

±23

V

100

kn.

Operating Supply Voltage
Input Impedance

47

56

Closed Loop Voltage Gain

26

40

dB

Load Impedance

4

8

n

ELECTRIC CHARACTERISTICS (Vee = ±22 V, Av
CHARACTERISTIC

SYMBOL

MIN.

= 40 dB, RL = 8 n,

RG

= 600 n,

TYP.

MAX.

UNIT

Ta

= 2SoC)
TEST CONDITIONS

Output Offset Voltage

VIO

-100

0

+100

mV

No Signal

Circuit Current

ICC

30

60

120

mA

No Signal

Output Power

Po

16

18

W

T.H.D.

Open Loop Voltage Gain

Avo

65

75

dB

Po

Total Harmonic Distortion

T.H.D.

0.1

0.3

%

Output Noise Voltage

NV

0.4

1.0

mV

Power Band Width

P.B.W.

Supply Voltage Rejection Ratio

S.V.R.

50

250

kHz

56

dB

= 0.5 %, f = 20 Hz - 20 kHz
= 0.3 W, f = 1 kHz
Po = 10 W, f = 20 Hz - 20 kHz
RG = 2.2 kn, No Filter
Po = 0.3 W, -3 dB
RG = 2.2 kn, fripple = 100 Hz

PACKAGE DIMENSION
Unit: mm
Typical value unless otherwise noted
32.0 MAX.
24.0 ±0.2

5.0 MAX.

r-I

CONNECTION DIAGRAM
1

0.3

OUTPUT

2

NC

3

+VCC

4

MUTING

5

PHASE COMP

6

PHASE COMP

7

INPUT

8

NFB

9

GND

10

-VCC

223

,uPC1188H
TEST CIRCUIT
+VCC=22V

SW2.

SG

IH.D.
SW3.

-VCC=-22V

NOTE: Turn on plus and minus power supply at the same time or minus power supply at first.

ITEM

SYMBOL

SW1

SW2

SW3

Circuit Current

ICC

2

3

1

Output Offset Voltage

VIO

1

3

1

Output Power

Po

1

1

1

Open Loop Voltage Gain

Avo

1

1

2

Total Harmonic Distortion

T.H.D.

1

1

1

Output Noise Voltage

NV

1

2

1

Supply Voltage Rejection Ratio

SVR

1

2

1

APPLICATION CIRCUIT

+22V

INPUTo---H-_~

Speaker
RL=8 ohms

-22V

224

DY.M

jlPC1188H
TYPICAL CHARACTERISTICS (Ta = 25°C)

POWER DISSIPATION

w.

AMBIENT TEMPERATURE

OUTPUT POWER vs. FREQUENCY

40~----~----~----~----~------------~

26
24
22

AI Panel t=2 mm
With Silican Glyce
~

-

20

18
:t 16
0
a.. 14
:; 12
:::J
10
0
I
8
0
a..
6
4

....I

VCC=±22 V
IH.D.=0.5 %
Av=40 dB

JJ8J- -

-~

lJ

I

CI)

~

10~----~----+--

I

o

a..

o

25

50

,

1\

.e

CI)

:t

l--

i-'~-

100

75

150

,,

~\

\\

2

Ta - Ambient Temperature _·C

0

10

20 30 50 100 200 300 500 1 k 2 k 3 k 5 k 10 k 20 k 30 k 50 k 100 k

f - Frequency - Hz
VOLTAGE GAIN

I II

80

~

'(;i
CI)

"

V
17

VCC=±22 V
Pout =0.3 W

1"

"

60
50

""

r E

Ie

C1l

C1l

oot:
ro ::>

~u

o

U

::>

::>

::>

ICC
~

00'

I

I

50

/

0

ri . /V

10

>~

j......-

i-"'"

,""'"

---

'Q)
0::

-

C1l

bO

.e
"0

40

>

.-

>.

0.

a.

30

::>

en

I

c:

l/:V
1/V

>.

20

en

10

r/

/

Q

V V

~V

50

C1l

4

1/

~

I
c..
o

.e.~

ou

(1= 1 kHz
)
o IH.D.=O.5 %

o

cC1l

::>

f - - f--p

Co

::>

.g
g~
.....

20

::>

>.~

~

~
o
c..

C

:;:;
u

V

I

100

60

0::

/

::

E I

:;:;
co

VIC f - - ~

~

/

0

±10

±20

±30

Vee - Supply Voltage - V

o

0

±10

±20

±30

Vee - Supply Voltage - V

OUTPUT NOISE VOLTAGE vs. INPUT IMPEDANCE
VCC=±22 v
Av =40 dB
Without Filter

3.0
vi

J

E

I

.;;

E
I
C1l

00

.e
-0

II

2.0

/

>

C1l
II>

'I

'0

z

/

"5

.s-

0

I

1.0

V

I

V

>

z

~

1-0--....

I ••

0

"

20 30 50 100 200 300 500 1 k 2 k 3 k 5 k 10 k 20 k30 k 50 k 100 k

RG -Input Impedance - Q

227

BIPOLAR ANALOG INTEGRATED CIRCUIT

,u PC1238
10 W AF POWER AMPLIFIER
SILICON BIPOLAR MONOLITHIC INTEGRATED CIRCUIT

The pPC1238 is an audio power amplifier designed for median Hi-Fi stereo set and TV set sound power amplifier.
This device can provide 8.4 watts to 8 ohm at 1 % T.H.D. and ±13 V supply voltage.
The pPC1238 incorporates the thermal protection circuit to protect the damage of IC chip against load damping etc.
Since the package is a 5 Pin TO-220 package, it greatly simplifies construction of a power amplifier both in design and as-·
sembly.
FEATURES

• Low equivalent input noise voltage .

• High output power

• Available for NFB tone control mode.

8.4 W TYP. (at 8 Q, Vee =±13 V)
12.5 W TYP. (at 4 Q, Vee =±13 V)

• Negligible power ON/OFF noise.
• High density components assembly due to 5 Pin TO-220 package .

• Low T.H.D.
0.012 % TYP. (Pout =2 W, RL =8 Q)
0.02 % TYP. (Pout = 2 W, RL == 4 Q)
CONNECTION DIAGRAM

o

Pin No.
1

Electrical Connection
Non inverting input

2

Inverting input

3
4

-Vee
Output

5

+Vee

PACKAGE DIMENSIONS (in millimeters)
~PC1238H

~PC1238V

¢ 3.6±0.1

4.8 MAX.

10.4 MAX.

I

a

co

~

a

N
...i
N

~I
r-..

"'1

!

1.0 M_A_X.-+-+-_
6.8
3.4

1

228

8.4

JlPC1238
ABSOLUTE MAXIMUM RATINGS (T a =25 °C)
Supply Voltage (Quiescent)

Vcc

±18

V

Supply Voltage (Operational)

VCC

±15

V

Circuit Current

ICC(peak)

4

A

Package Dissipation

PD

*25

W

Junction Temperature

Tj

150

°c

Operating Temperature

T opt

-20 to +65

°c

Storage T em peratu re

T stg

-40 to + 150

Thermal Resistance Junction to Case

°c
°C/W

3.4

Rth (j-c)

*Ttab = 65°C

RECOMMENDED OPERATING CONDITIONS (Ta =25 °C)
CHARACTER ISTIC
Operating Supply

SYMBOL

MIN.

TYP.

MAX.

UNIT

VCC

±6

±13

±15

V

Terminated Input Resistance

RIN

47

56

100

kn

Closed Loop Voltage Gain

Av

20

35

dB

Load Impedance

RL

4

8

n

ELECTRICAL CHARACTERISTICS
(Refer to the test circuit: Ta=25 °c, V cc =±13 V, Av=35 dB, RG =600
CHARACTERISTIC

on,

RL =8

on)

SYMBOL

MIN.

TYP.

MAX.

UNIT

Output Offset Voltage

VOFF

-100

0

+100

mV

No Signal

Circuit Current

ICC

30

60

130

mA

No Signal

Output Power

Po

7

8.4

Total Harmonic Distortion

T.H.D.

0.2

Open Loop Voltage Gain

Avo

83

Equivalent Input Noise Voltage

VNI

3

Power Band Width

P.B.W.

Supply Voltage Rejection Ratio

S.V.R.

45

1

10

TEST CONDITIONS

W

T.H.D.=1 %, f=1 kHz

%

f = 40 Hz - 15 kHz
PO=0.1 -7 W

dB

PO=0.1 W, f=500 Hz

J.,LV r .m .s.

RG=2.2 kn
f=40 Hz - 15 kHz(-3 dB)

75

kHz

Po =0.1 W, -3 dB

51

dB

f = 100 Hz, RG =2.2 kn

229

,uPC1238
TEST CIRCUIT & TYPICAL APPLICATIONS

SW1
~-------o

S.G.

V.T.V.M.

+ 13 V

1 SW2

2
2.2
kQ

~

J--1t--+----1~__----<...._--__..-__140 Hz 15

kHz

-13dB/OCT

3
Q

2

I

SW3

56 kQ

V.T.V.M.

0.22
_

+ 100

IIF
IIF

IIF

1

L -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _--Q

Switch Position
TEST

ITEM

Output Offset Voltage
Circu it Current

230

SW1.

SW2.

SW3.

VOFF

1

3

1

ICC

2

3

1

SYMBOL

Output Power

Po

1

1

1

Total Harmonic Distortion

T.H.D.

1

1

1

Equivalent Input Noise Voltage

VNI

1

2

2

Supply Voltage Rejection Ratio

S.V.R.

1

2

1

1
-13 V

jlPC1238
TYPICAL CHARACTERISTICS (T a =25°C)
PACKAGE DISSIPATION vs.
AMBIENT TEMPERATURE

POWER DISSIPATION vs. OUTPUT POWER

10
AI Panel
t=2 mm
Use silicon grease
& insulator

30

::
I
c

\. ~......

25

a.

'Vi

~.

is
Q)

co

U

0-

I

10

0
0-

5

en

V

is

...

£/

~c0'(-'?

'l?

C//it;

VCC=±13V
f= 1 kHz

/

?:

o

-

SQ

"

0-

I

•

2S'~ ~

f r~~l

5

Q)

\~

.loa

co

a.

~

-

.::t:.

~

'Vi
~

15

,/

o

\\

-

I

I
c

~

20

en

IlO

I
::

\"'"~

0

~

.l"R~~4 Q

"0

0-

~

C/l1;; ~

.I

Free I_r~
Air (64 C W)
0

50

o

150

100

15

10

5

20

PO-Output Power-W

T a-Ambient Temperature-OC

OUTPUT POWER vs. FREQUENCY

VCC=±13 V
T.H.D.= 1 %
Av=35 dB
16

::
...I

Q)

;:

14

RL =4 Q

12

0

sJ

0-

.....::J

10

:J

S

0-

6

a.

0
I
0

'"

-'"\ "
.....

4

2

~O

20 30

50

100

200300 500

1k

2k 3 k 5 k

10 k

20 k30 k 50 k

f - Frequency - Hz

VOLTAGE GAIN vs. FREQUENCY

100
VCC= ± 13 V
PO=O.l. W

90
./

SO
!Xl

70 I-

I
c

60

"0

'ro
(!)
Q)

IlO

.s

"0

50

>

40

.;

30

I

10'''''

V

V

.... ~ ....

'/

/

~LOOP

~ ...... ......

~~

'"
--

~

- Closed Loop

",.,.-

'"

I'-... ......
-r-.

20
10 I-

qo

20 30

50

100

200300 500

1k

2 k 3 k 5k

10 k 20 k 30 k 50 k

f - Frequency - Hz

231

JlPC1238
TOTAL HARMONIC DISTORTION vs.
OUTPUT POWE R

TOTAL HARMONIC DISTORTION vs.
OUTPUT POWER

~

I

c:

Vee ±13 V
Av 35 dB
RL=4Q

Vee ±13 V
Av 35 dB
RL=a Q

~

3

I

3

0

2

c:

2

0

1::

1::

.s

.s

I

III

III

0

C

u

u
'2

0.5

'2

E
m

0.3

E
m

0.3

(ij

0.2

0

J:

J:

0.2

(ij

f=15~~ "'"

-0

I-

0.1

I

c:i
::i 0.05

...:

0.03

~

0.02
0.01
0.1

l-

I

'#

'r-..,

-

i"" I"-

0.2 0.3

0.5

2

3

"'

0.03

-

~

-

1'1"-

0.02

I)

1 kHz

..""

~

5

.....

~1.
~~,

0.1

c:i
::i 0.05 ..........
...:

I'

......

"""""'"

:...

-0

l-'~

b,o\,\1.

15 kHz

f

0.5

0

0.01
0.1

10

2

0.2 0.3 0.5

PO-Output Power-W

l1k~

3

,

I

5

10

20

PO-Output Power- W

TOTAL HARMONIC DISTORTION vs. FREQUENCY

10

Vee ±13 V
Av 35 dB

5
~

3

I

2

c:
0

1'1

t

.s
III

0
u

0.5

'2
0

E

0.3

J:

0.2

m

:e
0

........

.......

0.1

l-

--.

...... ~

I

::00..

c:i
::i 0.05

...:

PO=4

.....

-

!

-I-

I

I III

0.1 W (a Q)

0.03

f

:..-t-r

.....

1

I

I

4 W (RL=a

0.1 W (4 Q)

........

v

W(RL =4 Q)

QV V ",I

-

.....

, ,"" n

0.02
0.01
10

2030 50

11

100200300500 1 k 2 k 3 k 5 k 10 k 20 k

50 k 100 k

f - Frequency - Hz
OPEN LOOP VOLTAGE GAIN,
CIRCUIT CURRENT vs. SUPPLY VOLTAGE

OUTPUT POWER vs. SUPPLY VOLTAGE

100
f=l kHz
T.H.D.=l %
Av=35 dB

Avo (f=500 Hz) /

20

3:

L
Q)

~
0

(

15
RL=4Q

Q.

....::s

.e

::s
0

/

0

Q.

IjaQ

/ /

5

L

Y'
o

±5

v:

±10

±15

vee-Supply Voltage-V

232

, ~ee(VIN=O)

1

/J

10

I

/

±20

o

±5

±10

±15

vee-Supply Voltage-V

±20

JlPC1238
OUTPUT OFFSET VOLTAGE, SUPPLY
VOLTAGE REJECTION RATIO VS.
SUPPLY VOLTAGE

50

100

m
"0
I

>

0

E

~

I

c::

(\J

CI)

!:!

0

>

(5

.0)

~

CD

0:

.l!!
(5

...

VOFF( VIN =0)

c:

bO

0

CI)

bO

50

S.V.R(fHUM= 100 Hz)

!:!

.e

(5

0

C.
c.

::I

>

::I

>.

I
u..
u..

::I

en
I

0

>

0:

>
en
-50

0

±5

±10

±15

±20

vee-Supply Voltage-V

233

BIPOLAR ANALOG INTEGRATED CIRCUIT

,uPC1225H
30-50 W POWER AMPLIFIER DRIVER

DESCRIPTION
~PC1225H

is designed for use with a Hi-Fi power amplifier driver. It is composed of a differential amplifier, a pre driver, a

driver and protection circuit.
It is in a 12 pin small power SIP. (Single In Line)

FEATURES
•

Excellent Low Distortion

= ±36 V, f = 1 kHz, Av = 30 dB, Po = 30 W, RL = 8 Ohms)
(Vee = ±36 V, f = 20 kHz, Av = 30 dB, Po = 30 W, RL = 8 Ohms)

0.002 % TYP. (Vee
0.006 % TYP.
•

Wide Frequency Band
900 kHz TYP. (-3 dB)

•

Wide Power Band Width
90 kHz TYP. (Po

•

= 25 W, T.H.D. = 0.1

%)

Excellent Low POP ON/OFF Noise

BLOCK DIAGRAM
Muting

+VccP(Pre-amp Stage)

+VccD(Driver Stage)

2>-------------~1)__--_

NonInverted
Input

OUTPUT 1
(POWER DRIVE)

Inverted
Input

OUTPUT 2
(POWER DRIVE)

+VccP(Pre-amp Stage) Phase CompasatiM

Bias

+VccD(Driver Stage)

NOTE: The protection circuit is for this Ie and cannot protect external Power Transistors. Thus, design a Po Tr protection circuit besides.

234

,uPC1225H
ABSOLUTE MAXMUM RATINGS (Ta = 25°C)
Supply Voltage (Ouiscent)

VCC1

±50

V

Supply Voltage (Operational)

VCC2

±45

V

Ouiscent Circuit Current

ICC

200

rnA

Allowable Package Dissipation

PD

4.1 *

W

Operational Temperature

T opt

-20 to +75

°c

Storage Temperature

T stg

-40 to +150

°c

*Ta=75°C
Using an aluminum heat sink 100 x 100 x 1 mm
RECOMMENDED OPERATING CONDITION
Supply Voltage (Operational)

VCC = ±18 to ±36 V at Max Power Output

Input Bias Resistance

RIN

= 1 to 50 to

Power Transistor hFE

h FE

Closed Loop Voltage Gain

AV

= 50 at Max Power Output
= 26 to 30 dB

ELECTRICAL CHARACTERISTICS (VCC
CHARACTERISTIC

SYMBOL

100 kohms

= ±36 V, Av = 30 dB, Use Standard Test Circuit, Ta = 25°C)
MIN.

TYP.

MAX.

UNIT

CONDITION

Output Offset Voltage

VOFF

±5

±100

mV

SEE TEST CIRCUIT 1

Quiscent Circuit Current

ICC

20

40

rnA

Maximum Output Voltage

VOM

20

23

V

Open Loop Voltage Gain

Avo

80

95

dB

VIN =0
T.H.D. = 0.05 %
f = 20 to 20 kHz
Vo=1.5V,f=1 kHz

Output Noise Voltage

VNO

0.07

mV

RG = 10 kohms

Power Band Width

P.B.W.

900

kHz

Vo = 1.5 V, -3 dB

Supply Voltage Rejection Ratio

S.V.R.

70

dB

RG

55

0.14

= 2 kohms, f = 100 Hz

235

,uPC1225H
PACKAGE DIMENSIONS
in millimeters (inches)
40(0157)

30 MAX.(118 MAX)
28(1.10)
t/J 3.6(0.142)-2

15(0.59)

R 3.5(0.138)-2

!

\

~

'1?

I

0

~

I

17\

-x

-

T,

Marking

1

-

«

I

m roo
_xe.
«
It)

0

-

It)

c;;

3

4

5

6

00

7

8

)

IJLJL;JL )

9

10

11

12

LJ 1;.1 l;JL J L

~

1

I

Il)

00
+1+1

0

;z;
0

1.2(0.047)
0.5(0.020)

2.54(0.1)

\,I

s

N

~

0

N

'"

....

I

LII
I

:::E

*~

I

2

I-

:::E

It)

0

\0

\Oil)
N

e.

'"

-

1.4(0.055)
1-0.45(0.018)

Typical dimensions unless specified otherwise.

PIN CONNECTION DIAGRAM
Pin No.

236

Pin connection

1

+V CCD (for Driver)

2

+VCCP (for Preamp)

3

MUTING

4

INPUT

5

NFB

6

PHASE COMP

1

BIAS

8

BIAS

9

-v CCP (for Preamp)

10

-V CCD (for Driver)

11

LOWER OUTPUT

12

UPPER OUTPUT

________~~PC1225H
TEST CIRCUIT 1 (VOFF)
+36 V

D.V.M

Ql }
Q2 2SCl844F

56 kQ

TEST CIRCUIT 2 (ICC)

Ql} 2SCl844F
Q2

20 kQ

237

J,lPC1225H
TEST CIRCUIT 3 (VOM)
+36 V

-36 V

10 JlF

6~} 25C1844F

V,T.V,M

TEST CI RCU IT 4 (AvO)
+36 V

-36 V

15553

390 Q

'390 Q
390 Q

15553

6J

o
100 kQ

V.T.V.M.

238

25C1844F

,uPC1225H
TEST CIRCUIT 5 (VNO)
Vcc

VEE

6~

}

2SC1844F

20 kQ
30 dB Amp

V.T.V.M.

LPF
(30 kHz -12 dB Oct)

TEST CIRCUIT 6 (S.V.R.)
+36 V

s.G61

f~lOOHU

-36 V

11

ISS53

2 kQ
390 Q

1SS53

8~

}

2SC1844F

3.3 kQ

239

j.lPC1225H
TYPICAL APPLICATION CIRCUIT

Vcc

Vcc

0.1 JlFr

2501110

....-........--05P OUT

258849

VCC=36 V
VEE=-36 V

56 kQ

Po- Ta

Characteristic

10.---.---~---.---~------~

==
~

~
.~

Heat sink: AI
Use silicon Glice
Unit:mm

Rthj_c=10 'C/W
8 . - - - - + Rthj_a=18 'C/W 100x100x1
Rthj_a=53.5 'C/W Free Air



(@-<]) Pin:15 pF,
60

I

r--",
~t---..

I

«>
:> 40

"

t......

'I-

®-@ Pin:0.033 JJ F)

0

«

.......

r-....r--....,.

Avo

0

VEE=-36 V
RL=390 Q

No Phase Compo

~K ®-

I

>~

:OJ

c

10

>

0

"0

E
I

C1l

tID

I
2
C1l
100 '~100 ~'~OO g40 ~ 20
21.
u
C1l
0
C1l
tID
:J
0
>
'w
I
2
>
a::
c:

~
o

>

80

c.

2'

~ 80

2

0
0
...J

.s-

~
'0

0

«>

>

0100
(f)
I
40 I 40 0
z

a::

>

uj

20

20

0

0

u

0

1l

~

::;

0

:J

.s-

'5

'x
ro

g-

>=

E
E
::J

:J
c: 60 >. 60 c.
:J
c.
~

0
I

C

0

z

0

::J

5
f - f-~

f--

0 f - - I--f-f-

-

f-

AVO(f=l kHz, Vo=1.5 V)

~
S.V.R.( )

::J

0

0

VOM(f

20 kHz)

V:-

I

l--' ~

VO~F

~
0 -5
I 20 610 I
I
I
I.L.
~
I.L.
f - f - VNOU
0
..".
0
S?
>
> -10
~
~

-

-

ICC('J\l'CO)

"..

,.VV

±20

±30

±40

±50

Vee - Supply Voltage - V
OUTPUT NOISE VOLTAGE
vs. SOURCE RESISTANCE
1000
30 dB FLAT AMP
30 kHz/-12 dB oct

500

>~
I
C1l

tID

2

L.P.F
300

~

200

V l.--""

0

>
~
'0

100

:J
c.
:J

50

.,V

z

0

I

0

z

30

..--

L.--

'-"-" ~

+--

--

I.-- I-""""

~

"'1T

20

>

10
0

II

300

500

1 k

2 k 3 k 5 k

10 k

RG - Source Resistance -

20 k 30 k 50 k 100 k 200 k 300 k
Q

241

pPC1225H
MAXIMUM OUTPUT VOLTAGE vs.
OUTPUT CURRENT

30

VCC=±36 V

-

.,;

E

~

I
~ 20
!!

r- r-

-

t-This indicates Protectio n Action

~

o

100

200

lout - Output Current - mAr.m.s.

POWER DISSIPATION vs. OUTPUT CURRENT

4

==I
c:

.Q

roc.

3
,V~

.~

/"'"
.-

0
~

Q)

2

~
0

0..

I
0

0..

/~ V
~~V ~
V

~~

.........
,-~-

-

----

~

- --

tv

-

VCC= ±36 V Correspond to 5ow

r_

~ ri7

I

I

--r~-A

I I I

Vec= ±32 V'Correspond
I
I
I
I
I
I
I .~-~
I
I
VCC= ±28 V Correspond

~

v

.t

to 40 W
I
I
I J.
to 3ow

I

!
0

100

200

lout - Output Current - mAr.m.s.

THERMAL RESISTER vs. AREA OF HEAT SINK

50
..

~

Free Air

==

$J
----

'"

:---.....
.............

~

I 10

~~

~

'in
Q)

c:::

ro

Rthj_c=IO 'C/W

5

'"

O~l~fuCk

E
Q)

.c:

l-

I
::I:

o

.c:

OUT

I

Attach with
Silicon Glice

cE'

3

10

A - Area of Heat Sink - cm 2

242

100

fLPC1225H/IlPC1237H/MP-80 EVALUATION CIRCUIT

VEE

Vee

Vec
25C945

0.033 J.lF
,

I

cr

~Rch

258849
(25A1l41)
250414
(250882, 2581449)

36 V
+
10 000 J.lF~

+
10000 J.lF ~

5P OUT

15553

10/]1 W

Vee= __---+----......,

rO.033 pF

>----_. . . .

VEE = .....

v.

,~

-36 V
a

u.+

.:.!

8-

~

::t:z

VEE
25A733

36 kQ

56 kQ

VEE

Vee

Vec

15 kQ

Vee

47 kQ I AC off Oetection
15553

Vee
MR-31-24T
10 kQ

0.033 J.lF
o-T--+--O Lch 5P OUT

56 kQ

258819
(25A1l41)
250414
(250882, 2581449)

220 J.lF
33 J.lF

Relay Orive

VEE

390/]1 W

56 kQ

Automatic reset/Latch
(GNO)! (0.022 J.lF)

Muting

1:::
"'tJ

56 kQ

o

~

N

N

Note:

N

~

W

Attach 2SD414 on Po Tr Heat Sink.
Attach AI Heat Sink, which is larger than 60 mm X 60 mm X 1 mm, with J,LPC1225 H.

c.n

::J:

I\)
~
~

1:::

"

n

Note:

..I

#1

C

#2

These terminals are for JP- lines to
a temperature Compensation transistor (2SD414 or others).

#3

Use 0.02 J,lF capacitance in case of
using J,lPC1237H at latching function, while connect each other at
automatic resetting.
This capacitance is for preventing
POP ON/OFF noise.
Thus, neglect it in caseofusinga relay.
These terminals are for JP-lines in
case of using the same power supply
(J,lPC1237H and Power Amplifier)
These terminals are for JP- lines in
case of using the same power supply
(J,lPC1225H and Power Tr)
This terminal is for AC-OFF Detection. Thus, use 8.2 k ohms instead of
22 k ohms, neglect 1SS53 and connect these 1 SS53's termi nals and
neglect 4.7 J,lF in case of using DC

#4

B

#5

ROUT

(~

MR31
(Relay)

#fj

#7

LOUT

#8
MR31

@ (Relay)

These terminals are for 3-terminals
regulators (J,lPC7818H, J,lPC7918H)
as a J,lPC1224H power supply.

power supply.
These capacitances are for preventing
a parastic oscillation. Use a 0.1 J,lF.

#9

These trimmers are for adjusting an
idling current. Recommend Neo-Pot
PS61 Series.

#10

These capacitance are for the 3-terminals regulator input.
Design of 1 J,lH (example)

#11

«l1_~_=~)11]~ mm
0.8 mm-J-l:

I·22 Turn·1
#12

->

This indicates a copper board pattern

N

N

U1

J:

J,lPC1225H
TOTAL HARMONIC DISTORTION
vs. OUTPUT POWER
RL=8 Q
VCC=36 V
VEE=-36 V
2SA1141
2SC2681
Id=60 mA

~

I

c:

-

r-I- -

r-rr-~

0

:.e

~

i5

0.1

u

'2
0

E
IV

:x:

ro

"0

I-

0.01

I

0
:i

r-=f':: l-I-r-.....

--

20 kHz

r- ~ -~

.......

I}
~f--o'"

..... r---- ~

r-:

1 kHz
~f""

~

20 kHz
0.001
0.1

10

Po - Output Power - W
TOTAL HARMONIC DISTORTION
vs. OUTPUT POWER
2SA1141
2SC2681
Id=60 mA
~

RL=4 Q

I

VCC=36 V

c:
0

~
i5

VEE=-36 V

O. 1

u

'c
0

20 kHz

E

-

I"

ro
:x:

~ =:::::::::

ro

"0 0.0 1

~

f=:: ~~

l-

~

J

20 Hz

I

0
:i

1 kHz

r-:

0.001
0.1

10

100

Po - Output Power - W
TOTAL HARMONIC DISTORTION
vs. FREQUENCY
2SA1141
2SC2681
Id=60 mA
RL=8 Q
~

VCC=36 V

I

c:
o

'i:

VEE=-36 V
0.1

J

~

II /
IJ
I /

i5
u

'c
o

/.'(/

E
IV

:x:
~
o

l-

I

o
:r:
r-:

0.0 1

,r--_

", Po=1 W

~'pO'=lO

-~

0.001
10

\j

100

1k

--,

/.

{

. /W

..0

W

-~ ~

Po=50 W

II I

10 k

lOOk

f - Frequency - Hz

245

jlPC1225H
TOTAL HARMONIC DISTORTION
vs. FREQUENCY
2SA1141
2SA2681
Id=60 mA
RL=4 Q

~

I

I
c:
0

:e

0.1

VCC=36 V
VEE=-36 V

I

~

/"

Ci

~'I

u

"c:
0

E
ro

::I:

ro

"0 0.01

b...

I

~~

/

I",

c:i

-

Po=10 W

Po=l W

'

......... .......
.......

l-

'"

::x:

~

~

~

Po =70 W

t-:

0.001
10

100

1k

10 k

100 k

f - Frequency - Hz
POWER STAGE IDLING CURRENT

vs. SUPPLY VOLTAGE
80
+2SA1l41
2SC2681
RE=0.25 Q
VIN=O

70

~

60


>

E::l

E::l
o 5

I

I 10
'5

0

5

0

V

~

'-..

--

o
-5

-5
-10

246

10

'5

o

-10

2
Time-s

3

4

o

2

Time-s

3

4

BIPOLAR ANALOG INTEGRATED CIRCUIT

,uPC1237H
PROTECTOR IC FOR STEREO POWER AMPLIFIER

DESCRIPTION
J,LPC1237H is a monolithic integrated circuit designed for protecting stereo power amplifiers and loudspeakers, and is
in an 8 pin single in-line package.
FEATURES
• Work stably within a wide power supply voltage range. (Vee = 25 to 60 V)
• Contain a relay driver. (Max. 16 = 80 mAl
• Work as either latching function or automatic resetting function by using pin 3. (In both overload detection and output
offset detection, either function can be selected.)
o Need only single power supply.
• Both positive and negative output offset can be detected through the same pin. (Output offset detection through pin 2)
• AC voltage can be detected. (For AC-power-OFF mute through pin 4)
• The time delay from amplifier power ON to relay ON can be freely set by selecting external components. (For ACpower-ON mute through pin 7)
• The moment that amplifier-power is turned off, it can make relay broken OF F and then loudspeaker disconnected
from amplifier to prevent a shock off noise.
BLOCK DIAGRAM

Vee

,--------------------------(7}--------fSI------------.
t------i

Vee ON

Overload detector

6

mute
C-

o

:;::

I
.9-

u:

Ae -

Output Offset detector

OFF detector

Switch for latch/automatic - reset

......- - - - - { 5

)-------------t

GND

}-------------4.4J------------....I

247

J,lPC1237H
PACKAGE DIMENSIONS
in millimeters (inches)
19.5 MAX.
(0.767 MAX.)

2.8±0.2
(0.11)

Cl
(CO.04)

MARKING

0.25
(O.OI)-H~-

1.0 ± 0.1
(0.04)

17.78
(0.7)

_-+--_

Typical dimension unless specified otherwise.

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Power Supply Voltage

VCC

Allowable Power Dissipation

Po

Operational Temperature

Topt

-20 to +75

Storage Temperature

Tstg

-40 to +125

°c
°c

Pin 6 Maximum Current

16 max

80

rnA

Pin 4 Maximum Voltage

V4 max

10

V

Pin 8 Maximum Voltage

V8max

8

V

Pin 1 Maximum Current

11 max

3

rnA

Pin 2 Maximum Current

12 max

±3

rnA

Pin 7 Maximum Voltage

V7 max

8

V

60

V

320*

mW

*Ta = 75°C
RECOMMENDED OPERATING CONDITIONS
Supply Voltage

VCC= 25 to 45 to 60 V

ELECTRICAL CHARACTERISTICS (Vee = 45 V, Ta = 25°C, State using latching function)
UNIT
CHARACTER ISTIC
SYMBOL
MIN
TYP.
MAX.
Pin 1 Threshold Voltage
0.67
0.76
0.58
V
Vth 1
V
Vth+2
0.70
Pin 2 Positive Threshold Voltage
0.54
0.62
Pin 2 Negative Threshold Voltage
Vth-2
V
-0.17
-0.23
-0.12
Pin 4 Threshold Voltage
V
Vth 4
0.74
0.90
0.60
Pin 8 Reference Voltage
V
V8
3.8
3.0
3.4

248

CONDITION
level to invert at pin 6
level to invert at pin 6
level to invert at pin 6
level to invert at pin 6
RL = 1.5 kn

JLPC1237H
TEST CIRCUIT (State using latchung function)

15 kQ

~____~~__~~------~----o45V

1.5 kQ

RL

Switch positions
Item

SW 1

SW2

SW3

Vth 1

1

3

2

Vth+2

2

1

2

Vth-2

2

2

2

Vth 4

2

3

1

V8

2

3

2

TYPICAL APPLICATION CIRCUIT

,--,
Relay

r+vccl

I
I

I

I

I

I
I

: G--tl------O
0 I

I

~---------------------------------------------71~

I

I

I
I

I

Lch

~_____1~5Mk~Q____________~__~__~+VCC

Rch

45 V

156

56 kQ

+

I

I

Speaker L

0 - - + - -__

L

Terminal for overload detection

I
t---+----.--'

IkQ
I

)
Q

~--------------------------------------------+I~~O

I

1

24 V. 37 rnA
( Internal resistance 650

33 }.IF

I

I

L-~C~_J

560

Amplifier set

jlPC1237H

249

,uPC1237H
NOTE FOR USING pPC1237H
1. FUNCTION FOR OUTPUT OFFSET DETECTION (pin 2)
1) If too much DC current flows through a speaker voice coil due to large output offset DC level, the voice coil might
be overheated and the speaker might be broken. To prevent the damage, it is necessary to detect the Output Offset
DC level and to disconnect the speaker from the power amplifier by breaking off a relay if the detected DC level is
shifted beyond a threshold level. pPC1237H has a function to detect both the positive and the negative Output Off·
set DC level with its single power supply. As shown below, you can easily make the positive and the negative thresh·
old level equivalent and also set up their level by choosing proper resistances.
2) How to determine the threshold levels of Output Offset detection. (±Vth)
[1] The threshold level of positive output offset detection (+Vth) is given by Eq. (1).

RA
+Vth = (2 + - ) • Vth +2,
Re

........................................................... (1)

where Vth +2 is the original positive threshold level of pin 2, and Vth +2 = 0.62 V TYP.
[2] The threshold level of negative Output Offset detection (- Vth) is given by Eq. (2).
- Vth = - { - Vth - 2 • (2 + RA) + Ic2 • RA },
Re

.............................................. (2)

where Vth - 2 is the original negative threshold level of pin 2, and
Vth-2 =-0.17 V TYP.
and Ic2 is the current from pPC1237H and,
Ic2 = 12.5 pA TYP.
at nearly - Vth.
3) You can easily find how to make ±Vth level equivalent as shown below
RA
+
{
_
RA
}
(2 + - ) • Vth 2 = - -Vth 2· (2 + - ) + Ic2 • RA ,
Re
Re

...................................... (3)

therefore determine RA, Rs and Re from Eq. (3)
Attention; The original positive and negative threshold level at pin 2 without any resistances are unbalanced; +Vth
= 0.62 V TYP. and - Vth = -0.17 V TYP.
Example of design
If you need the output offset threshold level ±Vth to be ±2.0 V, determine RA, Rs and Re as shown below.
[1] Substitute 2.0 to +Vth in Eq. (1) and obtain RA/Re.
RA
2.0 = (2 + - ) X 0.62
Re
RA;:! 1.226
Re
[2] Substitute - 2.0 to - Vth in Eq. (2) and obtain RA (Rs) and Re.
-2.0 = -0.17 (2 + 1.226) - 12.5 (pA) X RA (kn) (V)
RA = 116.1 kn
Re = 94.7 kn
Therefore, if you need ±Vth to be 2.0 volts, choose RA , Rs and Re as shown below.
RA = Rs = 120 kn and Re = 91 kn
The lower limits of RA and Rs are given by the maximum rating (± 3 mA) of pin 2 and
+Ve

-=---£. < ±3 (mA)

RA(B)
In case of recommended condition, that is RA = Rs = 56 kn and Re = 00, ±Vth can be obtained as shown below.
[1] +Vth = (2 + 56 (kn))

0.62 = 1.24 (V)

t--1~~IIIr---o

00

RS*

[2] -Vth =-0.17 (2 + 56 (kn)) -12.5 (pA) X 56 (kn) = -1.04 (V)

Vth
The threshold level' of )
( Output offset detection

00

fig. 1

* Rch

power amplifier output terminal is usually an imaginally GND
as seen from Lch power amplifier, so that the equivalent circuit
can be obtained as shown above.

250

JLPC1237H
2. FUNCTION OF AC LEVEL DETECTION
When you turn off the power switch, it sometimes causes a shock-off noise, therefore it is necessary to break off the
relay and then to keep the power amplifier apart from loud speaker at the moment that power switch is turned off. In
other words, the protection circuit is required to have a function to detect that power-off time. However, in fact, it is
difficult to detect that power-off time from actual DC supply voltage line. Because it cannot be turned 0 V instantaneously due to a large capacitance inserted between the power supply line and GND. In case of pPC1237H, it can
detect this power-off time from AC power supply directly, that is, this is a function to detect AC level.
The AC power supply level (usually 50 Hz or 60 Hz) can be transmitted to pin 4 through a half-wave rectification circuit
as shown below.
And it works within a wide range of AC level by choosing a proper resistance as R4 (Refer to the characteristic curve
shown as fig.5 for the choice of R4), If power switch is turned off while the relay is being made ON and the speaker is
being connected to the power amplifier output, the relay will be broken OFF to disconnect the speaker after a time
delay (AC OFF mute) according to the discharge time constant determined by the voltage on pin 4, the external
capacitance C4, and the internal resistance of the IC.

fig. 2
3. FUNCTION OF OVERLOAD DETECTION (pin 1)
The original threshold level of pin 1 is 0.67 V TYP. In case of using a constant-current drive, as the means of detection,
the threshold current level is 110 pA TYP. When current which is larger than 110 pA flows to the IC, the relay will be
broken OFF.
Note;

The overload detecting circuit is not included in the
detection.

Ie because of patent problems. Use the external circuit as an overload

4. FUNCTION OF LATCHING AND AUTOMATIC RESETTING (pin 3)
If the IC detects the abnormal condition such as the larger output offset level or the overload, the IC can make the relay
broken OF F. And then, two functions can be selected after the condition returns to the normal state. One is that the
relay is made ON automatically and the other is that it keeps the relay broken off until once the power switch is turned
off and then is turned on again.
The former is a function of automatic resetting and the latter is a function of latching. pPC1237H has both functions and
can be selected either functiun by using pin 3. In case of latching, connect pin 3 to the ground through the capacitor,
which is for preventing misoperation. For automatic resetting, connect it to the ground directly. This function is valid
for both overload detection and output offset detection.
5. TIME DELAY FROM POWER AMPLIFIER POWER SWITCH ON TO RELAY ON (power-on mute at pin 7)
To suppress shock-on noise generated by power ON, a time delay is provided by connecting a circuit with a time
constant. This time delay is set to make relay ON to connect speakers after enough time for the power amplifier and the
preamplifier to reach a stable operating condition. The ON mute time is determined as follows,
T (ON mute) = - C7 • R7 • Qn

Va - V7

,

Va
where Va is reference voltage at pin 8, 3.40 volts, TYP. and V7 is threshold level at pin 7, 2.06 volts, TYP.
R7

~ToPins

Iji C7
-rtr

fig. 3

6. HOW TO MAKE IT WORK WITHIN A WIDE RANGE OF POWER SUPPLY VOLTAGE (pin 8)
By choosing a proper resistance Ra connected to pin 8, the IC can work within a wide range of power supply voltage
Vee from 25 to 60 volts.
In case that pin 8 is directly driven by a regulated power supply, set Va to 3.40 volts, TYP. As for the choice of Ra
value, refer to the characteristic curve shown as fig.6.
RS

% - - -.....ovcc

fig. 4
251

jlPC1237H
fig. 6 OPTIMUM VALUE
OF EXTERNAL RESISTANCE RS

fig. 5 OPTIMUM VALUE
OF EXTERNAL RESISTANCE R4

R4 to VAC Characteristic

RS to V CC Characteristic

50

I
40

/

20
J

/

~

I
00
cr:

/

,/

,,~

.::.:

I
I

~

cc

j

30

20

V

"..,

~

-'

",..",~

",..", io-"""

"..,

",..",

l....,..oo ~

J

/
o
20

/

30

40

50

Vee - Supply Voltage - V

J

10

{

/
I
o

J
RS

10

20

30

40

50

60

@---Wr---o Vce

VAC - Ae Supply Voltage (50 Hi) - Vr.m.s.

Example) Use of E-24 series.
Select 15 kn RS for 45 volts Vcc.
If no resistance of specified value is available,
choose a resistance which is as close as possible
to and lower than the value specified by the diagram.

Example) Use of E-24 series.
Select 24 kn R4 for 40 volts r.m.s. V AC'
If no resistance of specified value is available,
choose a resistance which is as close as possible
to and lower than thevalue specified by the diagram.

252

60

jlPC1237H
TEMPERATURE CHARACTERISTIC

Vs' TON mut, Vth4, Vth+2, and Vth1 to Ta Characteristics
VCC=45 V
RS=15 kQ

5

i

1.0 -

4.0

>
I

~

4

->

>

I-

=>

I

~3~
z

~

N

.s
>

3.0 ";0.5
2

.s

f--

Vs

"""
r-~

~

- - --- --

~ ~ ........

.......;:::: ~ .......
...
r--- r-- ~ ::a... ......

. -......r-- ......
-20

o

- ...... ......
20

40

~

r-- ~ !-.l.Vth4

.....

I
I

~

TON MUTE- r--

......

-

60

Vthl

........

r0-

~

Vth+2

Vth-2-

N

I

80

Ta - Ambient Temperature -'C

253

BIPOLAR ANALOG INTEGRATED CIRCUIT

,uPC1180C

DD

DOLBY B-TYPE NOISE REDUCTION PROCESSOR

DESCRIPTION
The pPCl180C is a monolithic integrated circuit specifically designed to realize the Dolby B-Type Noise Reduction
System.
The device consists of a Buffer Amplifier (B.A.), a Noise Reduction Processor (N.R.Processor) consisting of an Inverter
Amplifier (INV), a Side Chain Amplifier (SCA), an Overshoot Suppression Circuit (OS), a Voltage Control Amplifier
(VCA), an Integration Circuit (INT), a Hi-Pass Filter (HPF), and a Detector Circuit (DET).
The IC is encapsulated in a 16 pin, dual-in-line plastic package.
Available only to licensees of Dolby Laboratories Licensing Corporation, San Francisco, from whom licensing and application information must be obtained.
"Dolby" and the Double-D symbol are trade marks of Dolby Laboratories.

FEATURES
• Very close matching to standard Dolby Characteristics
• Use's Low Noise Devices
Buffer Amp. Noise Level (6 dB gain)

-98 dBv

(CCIR/ARM)

Noise Reduction Processor Noise Level

-80 dBv

(CCIR/ARM)

Buffer Amp. Distortion

0.02 %

(f = 10 kHz)

Noise Reduction Processor Distortion

0.03 %

(f= 333 Hz)

Noise Reduction Processor Distortion

0.08 %

(f=10kHz)

• Low Total harmonic distortion (at Dolby level)

• Low supply current

9 mAo

Icc

FUNCTIONAL BLOCK DIAGRAM

r------------------------------------,

I

16

Vee

I
r--------------------------------~I
I
II
I
I I
Noise Reduction Processor

Power
Ref-l

Supply

I
I
I

DET

£l·

I

-M-

I

A

i

IL_

.

2 __ 1

IN-l

254

8

_

OUT-l

IN-2

OUT-2

IN-3

OUT-3

IN-6

IN-5

OUT-5

IN-4

6

I
I
_.J

By-Pass
By-Pass
By-Pass

,uPC1180C
ABSOLUTE MAXIMUM RATINGS (Ta=25 °C)
Supply Voltage

Vcc

Power Dissipation

Po

28

V

350*

mW

Operating Temperature Range

T opt

-15 to +75

Storage Temperature Range

T stg

-55 to +125

Lead Temperature

TL

°c
°c
°c

260**

*Value at Ta = 75°C
**Soldering at 10 s MAX.

RECOMMENDED OPERATING CONDITIONS (Ta = 25°C)
CHARACTERISTICS

SYMBOL

MIN.

TYP.

MAX.

24

26

V

12

dB

Supply Voltage

VCC

18

Buffer Amp. Gain

Av-(B.A.l

6

ELECTRICAL CHARACTERISTICS [Ta = 25

°c, Vee = 24 V,

UNIT

Dolby Level = 1 Vr.m.s. (= 0 dBv)]

TEST CONDITIONS

CHARACTER ISTICS

SYMBOL

Supply Current

ICC

No Signal

Signal Handling

V om (1)

f= 10 kHz, T.H.D.= 1 %, RL =5 kn

Distortion

T.H.D.(1)

f= 10 kHz, Vo=6 dBv, RL =5 kn

Noise Level

V no (1)

Input Shorted, Using CCIR/ARM

Av

f=333 Hz

V om (2)

MIN.

TYP.

MAX.

UNIT

9

12.5

rnA

Buffer Amp.

I NV Amp. Gain

15

dBv

17
0.02

0.07

%

-98

-88

dBv

-0.5

0

0.5

dB

REC, f=333 Hz, Vo=O dBv, RL =10 kn

15

17

12.5

Noise Reduction Processor
Signal Handling

dBv
dBv

Signal Handling

V om (3)

REC, f= 10 kHz, Vo=O dBv, RL = 10 kn

Distortion

T.H.D.(2)

P.B, f=333 Hz, Vo=O dBv, RL=10 kn

0.03

0.08

Distortion

T.H.D.(3)

REC, f= 10 kHz, Vo=O dBv, RL = 10 kn

0.08

0.14

%

Noise Level

V no (2)

REC, Rg=O, Using CCIR/ARM

-80

-70

dBv

REC Mode Response

F.R(1)

f=333 Hz, Vin=O dBv

-0.7

0

+0.7

dBv

REC Mode Response

F.R(2)

f= 1 kHz, Vin=-20 dBv

-18.1

-16.7

-15.3

dBv

REC Mode Response

F.R(3)

f=5 kHz, Vin=-20 dBv

-18.0

-16.8

-15.6

dBv

REC Mode Response

F.R(4)

f=5 kHz, Vin=-40 dBv

-30.4

-29.7

-28.8

dBv

Cross Talk

Vcrs

REC, f=333 Hz, B.A. to N.R.Processor,
Vo=15dBv

-70

dBv

I

15

%

For alignment instruction see section 3.8 of licence information manual.

255

BIPOLAR ANALOG INTEGRATED CIRCUIT

,uPC1252H2
VCA FOR dbx NOISE REDUCTION SYSTEM

DESCRIPTION

PACKAGE DIMENSIONS
in millimeters (inches)

The pPC1252H2 is dbx noise reduction

19.5 MAX.
(0.76 MAX.)

system VCA (Voltage Controlled Amplifier),
used in tape deck and other audio equip-

2.8±0.2
(0.11)

o

C1
(C 0.04)

ment.
The pPC1252H2 features excellent lineality
VCA for wider input level due to N EC's
super low noise and high hFE NPN/PNP,
complementary process.
Since the package is 8 pin SIP. It can be

0.25

built in a compact set.

(0.01)

1.0 ± 0.1

17.78
(0.7)

--1-4----

(0.04)

FEATURES
• . Wide operating supply volt~ge

Vee

= ±4 to ±15 V

(TYP. ±12 V)

= -30 dB to +30 dB)

Excellent lineality Control Constant

Ve = -5.9 mV/dB (Av

•

Low total hamonic distortion

T.H.D.

•

Low noise

NVa = -94 dBV TYP. (Vee = ±12 V, RIN = 33.2 kU,

•

= 0.01

% TYP.

(Vee = ±12 V, f = 1 kHz, Va

= 0 dBV)

Av = 0 dB, BPF = 10 Hz to 20 kHz)

Vce
FUNCTIONAL BLOCK DIAGRAM
~----------------~v'v~--->20kQ

:>-----oVo

256

jlPC1252H2
ABSOLUTE MAXIMUM RATINGS (T a = 25°C)
Supply Voltage

VCC, VEE

+15

V

Supply Current

Icc

30

mA
mW

PD

330*

Operating Temperature Range

Power Dissipation

T opt

- 20 to +75

0

Storage Temperature Range

Tstg

-40 to +125

°c

C

* Value at Ta = 75°C

RECOMMENDED OPERATING CONDITIONS
CHARACTERISTIC

SYMBOL

MIN.

TYP.

MAX.

Operating Supply Voltage

VCC, VEE"

±4

±12

±15

V

ISET

-

2.0

-

mA

Vin

-40

+10

dBV

Bias Current
Input Level Range

UNIT

** See Note

ELECTRICAL CHARACTERISTICS (Ta = 25
CAHRACTER ISTIC

SYMBOL

°c, VCC =+12 V, VEE =-12 V, ISET = 2

rnA, RIN = ROUT =33Iill, f= 1 kHz)

MIN.

TYP.

MAX.

UNIT

TEST CONDITIONS

1.0

2.0

3.0

mA

Non Signal

6

20

nA

Non Signal

Supply Current

ICC

Equivalent Input Bias Current

liN

Gain Cell Idling Current

IDLE

20

tJ.A

Non Signal

VOFF

±0.5

mV

Av

Gain Cell Offset Voltage
Control Constant

Vc

-5.9

-6.1

mY/dB

Total Harmonic Distortion

T.H.D.1

0.007

0.07

%

Total Harmonic Distortion

T.H.D.2

0.02

0.10

%

Total Harmonic Distortion

T.H.D.3

0.02

0.15

%

Output Noise Level

NV

-94

-84

dBV

Symmetry Control Voltage

VSYM

0

+4

mV

Note)

-5.8

-4

= 0 dB, T.H.D. ~ 0.07 %
Av = -30 dB to +30 dB
Av = 0 dB, Vo = OdBV, BPF = 400 Hz to 5 kHz
Av = +20 dB, Vo = OdBV, BPF = 400 Hz to 5 kHz
Av = -20 dB, Yin = OdBV, BPF = 400 Hz to 5 kHz
Av = 0 dB, RIN = 33 kn, BPF = 10 Hz to 20 kHz
Av = 0 dB, T.H.D. ~ 0.07 %

VCC, VEE and ISET are defined as follows.

JlPC1252H2

I

VEE - 4·V BE

SET

=----R

EXT

VEE -

2.4
2mA

REXT

tISET
REXT

257

,uPC1252H2
TEST CIRCUIT
(1) ICC

~-~-OVOUT

(2) Vc
+12 V
...----...---'V\J'\r-"'-;" VR 1

20 kQ MAX.

-12 V

33 kQ
47 pF

(3) T.H.D. 1-3

33 kQ
47 pF

tC1 =400 Hz 1-12 dB/oct
tC2=5 kHz
tC1
-:>----4----1 /

. - - - - ' \ / \ J ' \ r -....

120 kQ

tC2

B. P. F.

\

1--------,

i~~:k:
MAX.

-12 V

T.H.D.1; Make T.H.D. minimum with VR 2 after adjusting GC1 = 0 mV with VR 1 at V in = 0 dBV
T.H.D.2; Make T.H.D. minimum with VR2 after adjusting GC1 = -120 mV with VR 1 at Vin = -20 dBV
T.H.D.3; Make T.H.D. minimum with VR 2 after adjusting GC1 = +120 mV with VR, at V in = 0 dBV

2sa

,uPC1252H2
(4) VNO

fC1 = 10 Hz } 12 dB/oct
fC2=20 kHz
fC1

~-----t

/

fC2

B.P.F.

\

I---i

(5) VSYM

+ 12

V

VR1
.---..----.J'vv\r--_~>

20 k Q
MAX.

33 kQ

47 pF

S.G

tCl

-

tC2

.~

+ 12

V

~vv--l~~2kQ

V.T.V.M

T.H.D.

400 Hz-5 kHz BPF

1/2 J,lPC4558C

-12 dB/OCT

!MAX.

D.V.M
-12 V
-12 V

Make T.H.D. minimum with VR2 after adjusting GC1
Voltage of 4 pin.

= 0 mV with

VR 1 at V in

= 0 dBV

and Measure Symmetry Control

259

JlPC1252H2
VOLTAGE GAIN vs.
CONTROL CONSTANT VOLTAGE

VCC=±12 V
1=1 kHz

60
50

f".. l'-.l'.
CD
"C

I

c:

.iij
Cl

.....

til)

~~

-.....:

~

-300 -200 -100

,

~
I

,20
30

<

-

30
20
10

~

I

c:
0

:e

O~

-10

>

Vcc + 12 V
1-1 kHz
BPF
(400 Hz to 5 kHz)

40

~~

Q)

2

TOTAL HARMONIC DISTORTION vs.
INPUT VOLTAGE and OUTPUT VOLTAGE

100

200

.B

300

,~ ~

~~

r'\

"1

-40
-50
-60

0.3



f--

v~r~m120

I Ll1

111111

-8
-10
10

II \,
100

1k

19 k

f - Frequency - Hz

260

100 k

f,\

IIII
1M

dB

,uPC1252H2
Note for use
1. Since pPC1252H2 is designed for Noise Reduction System, recommend to use pPC1252H2 with pPC1253H2 (RMS Revel
Sensor), which controlspPC1252H2, in case of composing dbx NR System.
2. Documents issued by dbx, in corporated have priority over NEC, such as application note or data about dbx NR system.
3. If you plan to use pPC1252H2 except dbx NR system, inform NEe of it as soon as possible.
APPLICATION CIRCUIT
33 kQ

J,tPC1252H2

47

F

Signal INo---1

1 JlF
Signal OUT

GCla-----------------~

r------ o - -------,

:

-'"

I
I

~

I

VEE

I

20 kQMAX.

0--'VVVV'v--0 VCC

I
I

I

I
I
I __________________
VCA SYM ADJ.
I
L
~

·1. Possible to connect 4 pin to GND in case of using,this IC at T.H.D. ~ 0.05 %.
·2. Iset is set to be 2 rnA at REXT= 4.7 kS1, VCC = 12 V, VEE = -12 V, so readjust REXT in case that supply voltage is different from above.
Gel is an input terminal of IlPC1252H2 control voltage.

261

BIPOLAR ANALOG INTEGRATED CIRCUIT

,uPC1253H2
RMS LEVEL SENSOR FOR dbx NOISE REDUCTION SYSTEM

DESCRIPTION

PACKAGE DIMENSIONS
in millimeters (inches)

The pPC1253H2 is dbx noise reduction system RMS
(Root Mean Square) level sensor, used in tape deck and
other audio equipment.

19.5 MAX.
(0.76 MAX,)

2.8±0.2
(0.11)

o

The pPC1253H2 features high accurate RMS level sensor
for wide input due to N EC's super low noise and high
hFE PNP process.
Since the package is 8 pin SIP, it can be built in a compact set.

0.25
(0.01)
1.0±0.1
(0.04)

17.78
(0.7)

FEATURES
•

Wide operating supply voltage

Vee = ±4 to ± 15 V (TYP. ± 12 V)

•

Excellent lineality Control Constant

Vc = 5.9 mY/dB

•

Wider input range

vin

= -40 dBV to +10 dBV

FUNCTIONAL BLOCK DIAGRAM
10 kQ
Vee 0----'VI/'v---0 VEE

0.1

Vino--f

262

f.1

.--'VV'\,--,

Vout
(Ve)

,uPC1253H2
ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Supply Voltage

Vce, VEE

±15

V

Supply Current

ICC

30

mA

Power Dissipation

PD

330*

mW

Operating Temperature Range

T opt

-20 to +75

°c

Storage Temperature Range

T stg

-40 to +125

°c

* Value at Ta = 75°C

RECOMMENDED OPERATING CONDITIONS
CHARACTERISTIC
Operating Supply Voltage

SYMBOL

MIN.

TYP.

MAX.

UNIT

VCC,VEE

±4

± 12

±15

V

Vin

-40

+10

dBV

Input Level Range
Bias Current

ELECTRICAL CHARACTERISTICS (Ta
CHARACTERISTIC

24

Is

SYMBOL

pA

= 25°C, VCC = +12 V, VEE =-12 V, f = 1 kHz,
MIN.

TYP.

MAX.

UNIT

Zin

= 33 kn)
TEST CONDITIONS

Supply Current

ICC

0.9

2.0

mA

No Signal

Output Level

VO*

111

136

161

mV

VIN = 0 dBV

Control Constant

Vc

5.8

5.9

6.1

mV/dB

Vin = -40dBVto +10 dBV

* Output Level is defined as follows.

VOUT

263

,uPC1253H2
TEST CI RCUIT
(1) ICC
20 Q
1------0

+ 12 V

33 kQ

Vino--1
0.1 pF

3.3 kQ
) - - - - - 0 Vout

0.01 pF

~--------------~n-12V

20 Q

(2) V o , Vc

.------------i~

+ 12

V

33 kQ
0.1 pF
3.3 kQ
0.01 pF

V

DC VOLT METER

MQ
~--------------~()-12V

Note for use
1. Since JlPC1253H2 is designed for dbx Noise Reduction System, recommend to use JJPC1253H2 with JlPC1252H2 (VCA) in
case of composing dbx N R system.
2. Documents issued by dbx incorporated have priority over NEC, such as application note or data about dbx NR system.

264

jlPC1253H2
APPLICATION CIRCUIT

JlPC1253H2

33 kQ
L---~-------------oOUT

0.01 JlF
+--N-~""""---'\I\/\I---.n

i~~;~;'-

Vee

--1

D--"NVv-O

I
:

Vee

VEE: VEE VEE

* 1L __ ~~ ~~A~~..J

*1.

Possible to omit RMS SYM.ADJ. in case of using this IC with J.,LPC1252H2 at T.H.D.

*2.

Make GND common about these terminals.

*3.

This resistor is for RMS time constant.

~

0.05 %.

Connect 7 PI N OUT to GCl of J.,LPC1252H2 (VCA).

TYPICAL CHARACTERISTICS (Ta = 25°C)
SUPPLY CURRENT, CONTROL CONSTANT vs.
AMBIENT TEMPERATURE

OUTPUT LEVEL vs. INPUT LEVEL

Vee=±12 V

f=l kHz

--

10
CD

~-

'0

.

§:
0.5
:::J

en

U

~c

I

u

}:}

I

5

---

~

I--~
~~

~ ~t-"

I--- ~

-

-100

-50

lA

~r1

!h ~

'Ve

V~

~

E
I
Q)-

>
Q)

V~
V

0

-25

o

25

Ta - Ambient Temperature -

50

75

-doD
-,

'5a.
'5

-3bo
-j

1-

-4PO

I
o

50

>- -1100

0

o

100

0

1/

...J

~v

u
>

Ta=25 'C

~ ~ "Ta=-25 'C

~

r,-

0

u

q

~~

'lee

'E

U

300 I
20(
Ta=75 "C

VCC=±12V
'=1 kHz

I

-500

Vin - Input Level- dBm

'e

265

1. ALPHA-NUMERICAL INDEX
2.

QUICK REFERENCE GUIDE

3. CROSS REFERENCE GUIDE
4. MAINTENANCE AND OBSOLETE TYPES
5.

GENERAL STATEMENT
-(:( NEC's INTEGRATED CIRCUITS FOR CONSUMER USE
o History

0

Types and Features

o Type Number Designation

0

Device Technologies

-(:( STANDARDS OF INTEGRATED CIRCUITS
-(:( HINTS ON CORRECT USE
-(:( TECHNICAL SYMBOLS AND TERMS
-(:( RELIABILITY AND QUALITY CONTROL SYSTEMS

6. AUDIO APPLICATIONS

7.

6-1.

CAR AUDIO

6-2.

HOME AUDIO

6-3.

PORTABLE AUDIO

TV APPLICATIONS

8. DIGITAL TUNING SYSTEMS
9. CLOCKS & WATCHES
10. VOLTAGE REGULATORS
11. ARRAYS

12. OTHERS
13. APPLICATION NOTES

PORTABLE AUDIO

INDEX
Page
~PC1018e

AM-RF, MIX, IF + FM-IF Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . 272

~PC1222e

AM Tuner + FM-I F Detector

~PC1222e(R)

AM Tuner + FM-I F Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

~PCl197e

FM-MPX Demodulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

286

~PCl158H2

Pre Amplifier with ALe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

296

~PC1204e

REC/PB Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 302

~PC1217G

REC/PB System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . .. 307

~PCl177H

3.5 W (4 n) BTL Power Amplifier .......... . . . . . . . . . . . . . . . .. 314

~PC1212e

1 W (4 n) Power Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

~pe1213e

2.4 W (4 n) Power Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 336

~PC1218H

250 mW (8 n) BTL Power Amplifier. . . . . . . . . . . . . . . . . . . . . . . . .. 347

278

~PC1221e

Pre + ALe + 1 W (4 n) Power Amplifier. . . . . . . . . . . . . . . . . . . . . .. 350

~PC1263e2

Dual 1.2 W (8 n) Power Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . .. 357

~PC1277H

Dual 4.2 W (4 n) Power Amplifier ... . . . . . . . . . . . . . . . . . . . . . . .. 363

~PC1350e

Pre + ALe + 450 mW (8 n) Power Amplifier . . . . . . . . . . . . . . . . . . . . 368

-

269

PORTABLE AUDIO
BLOCK DIAGRAM
Tuner Block
R CH.

OUT

L CH.

OUT

Ant.

Ant.

/JPCl197C

H - - - -.....

AM OUT

/JPC1018C

AF Block
(1) Monaural Radio Cassette
MIC

~
HEAD

-

I

I

Pre

Amp.

I

I-u-~p_o
_ A_mP-..l.1----1rr1
~

SP

I
/JPCl158H2

I
DISCRETE

I

/JPCll77H (BTL)
/JPC1212C
/JPC1213C

(2) Stereo Radio Cassette

------~__p_O_A_m_p_.~r-----Qjsp

/JPC1204C
1
I
L _ _ _ _ _ ..l

/JPCl158H2 + DISCRETE

~______~-u------~__p_O_A_m_p_.~r---~Qjsp

/JPC1204C
1
I
L _ _ _ _ _ ..l

,uPC1158H2 + DISCRETE

270

/JPC1263C2
/JPC1277H
IL

_ _ _ _ _ ...JI

/JPC1277H

PORTABLE AUDIO
(3) Cassette Tape Recorder

,---rr1

MIC

~~---~~~--~~-pr-e-A-m-p-'~--------------~--PO--A-m-p-.~------~ ~

SP

J.LPC1221C
J.LPC1350C

(4) Mini & Micro Cassette

SP

Rec/Play
SW

J.LPC1217G

J.LPC1218H

271

BIPOLAR ANALOG INTEGRATED CIRCUIT

IlPC1018C
AM TUNER, AM/FM-IF AMPLIFIER CIRCUIT
SILICON BIPOLAR MONOLITHIC INTEGRATED CIRCUIT

DESCRIPTION
The IlPC1018C is a silicon monolithic integrated circuit designed for AM/FM radios and cassette tape recorders with an
AM/FM radio.
The IlPC1 018C contains a AM tuner and FM-I F amplifiers.

FEATURES

PACKAGE DIMENSIONS

• Wide operating voltage.

V CC

in millimeters (inches)

= 2.5 '" 6.0V

• Excellent low voltage characteristics.

I

• High gain FM-IF amplifiers.
• The AM stage is composed of a mixer, a local oscillator, a

I F amplifier and an AGe circuit.
• The AM stage has an excellent AGC characteristic and
low distortion.

19.4MAX

~7@MAX)

I

i:~~-;:[1~

* Typical

04 ",0.15
(0016)

BLOCK DIAGRAM (Top View)

AM
CON.

AM
CON.

AM

AM
AGC

IN

OUT

IF IN

IN

FM IF
IN (1)

GND (1)

AM
LOCAL
OSC

272

FM IF
OUT (1)

+B2

AM

AM

IF OUT

BYPASS

GND (2)

FM IF
IN (2)

+B1

FM IF
OUT (2)

FM
BYPASS

value unless

otherwise noted.

0·- 15·

jlPC1018C
ABSOLUTE MAXIMUM RATINGS (Ta
Supply Voltage

= 25°C)
9.0

V

Package Dissipation

Vee
PD

350*

mW

Operating Temperature

T opt

-20 to +75

°e

Storage Temperature

T stg

-40 to +125

°e

*Ta

RECOMMENDED OPERATING CONDITION (Ta
CHARACTERISTIC
Supply Voltage

= 25°C)

SYMBOL

MIN.

TYP.

MAX.

UNIT

VCC

2.5

4.0

6.0

V

ELECTRICAL CHARACTERISTICS
CHARACTERISTIC

= 75°e

SYMBOL

(Ta

= 25°C,

MIN.

TYP.

VCC

= 4.0V)

MAX.

UNIT

TEST
CIRCUIT

TEST CONDITIONS

Circuit Current

ICC(AM)

4.5

8.0

11.5

mA

No Signal

(AM)

Voltage Gain (MIX)

Av (MIX)

7.5

11.5

15.5

dB

f=1 MHz, RG=50n
RL =lkn

(AM)

3

Voltage Gain (I F)

Av (I F)

44.0

50.0

56.0

dB

f=455kHz, RG=50n
RL=330n

(AM)

3

Circuit Current

ICC(FM)

5.0

9.0

13.0

rnA

No Signal

(FM)

4

(FM)

4

(FM)

Voltage Gain (I F 1 )

Av (1Ft!

38.0

42.0

46.0

dB

f=10.7MHz, RG=50n
RL =1kn

Voltage Gain (I F2 )

Av (lF 2 )

27.0

33.0

39.0

dB

f=10.7 MHz, RG=50n.
RL =330n

TEST CIRCUIT 1

1

2

TEST CIRCUIT 2

Vee

Vee

O.022,uI I

r

O.022,u

O.022,u
O.022,u O.022,u

273

,uPC1018C
TEST CIRCUIT 4

TEST CIRCUIT 3

vCC 0----..._--.
330Q

O.022,u 6

ffOQ

50Q

TYPICAL APPLICATION
1kQ

4.7kQ

FM

+ Bl---<-+-L...........-.+--' I

~EI--_80 (f = 1.4MHz)

GND~B'tt
@ AM IF COIL

CFZ·455C (TaKa)

.--,
Call

BAND WIDTH 6kHz MIN.
SELECTIVITY (± 10kHz DETUNING) 20dB MIN.

GND

Batt

®

Base

7P
BLACK

TYPE NO.
BODY COLOR
Call

Batt

®

7 LC·252222No. (TaKa)

AM DETECTION COIL (455kHz)

i~(S

4

1

6

S

1-3 146T
2-3 37T
4-6 33T
GND

Diode

CAPACITOR Co··· .. ··· '180pF
Qu •.•••••.•••.•..•.•••. '" ·70 ± 20%

FM DETECTION COIL (10.7MHz) (TaKa)

PLiMARY
SECONDARY
TYPE NO.

119AC-470085Ls
119FC-560061N6

CAPACITOR
(GRAY) 47pF(CI) 4-2
(BLUE) 56pF(C2) 1-2

5Y;T
6T

2-3
2-3

8T
6T

1-5
4-6

5J1T
IT

7P

Diode

Call
Diode

GND

®

FM CERAMIC FILTER (10.7MHz)

CFS·l07M (TaKa)

1~rTI~3

c::5 -L E=:J

20

32 1

TIT
l. INPUT
2. GND
3. OUTPUT

02

- 3dB BAND WIDTH ........ ·300±50kHz
-20dB BAND WIDTH ........ ·600kHz(MAX.)
INSERTION LOSS .... · ...... ·6dB(MAX.)

275

,uPC1018C
TYPICAL CHARACTERISTICS (Ta = 2SoC)
FM-IFI
OUTPUT VOLTAGE
VS. INPUT VOLTAGE

AM-MIX, AM-IF
OUTPUT VOLTAGE vS.INPUT VOLTAGE
3000

3000

,.hL

1000
700
vi
E 500

~

E

AM
I

300

I


'5

.s

IF

I

I

.rg

FM-IF2
OUTPUT VOLTAGE vs.
INPUT VOLTAGE

100
70
50

1/ AM-MIX.
I

I

~

300

(5

100
70

.e

50

0

30

>
'5

I

:::J

30

I
0
>

I

V
10
7
5

I
0
>

I

V

40

60

80

100

120

I

>
'5

.s
:::J

0

I

I
0
>

3

o

20

40

60

80

100

~

1~

40
60
00
100
Vi-Input Voltage-dB,uV

500
300

E

;;

vi

E
~

100
70
50

E 100

I



o

140

FM-IFI
OUTPUT VOLTAGE vs. FREQUENCY

500

>

I

Vi-Input Voltage-dB,uV

vi 300

5
"0

120

I

I

3
140

I
I

I

30

10
7
5

AM-MIX

I

100
70
50

10
7

OUTPUT VOLTAGE vs. FREQUENCY

E

~



:;

.e

30

\

:::J

10

0

5

I
0
>
50k70k100k

300k 500k

1M

3M 5M

10

30M

10M

f- Frequency - Hz
300k 500k

50k70k100k

1M

3M

5M

30M

10M

f-Frequency-Hz

AM-IF
OUTPUT VOLTAGE vs. FREQUENCY

FM-IF
OUTPUT VOLTAGE vs. FREQUENCY

500

vi

500

300

300

E

vi

~

E

I

'5

E
~

100
70
50

-

30

I 100

Q)

10

50k 70k lOOk

300k 500k 1M

3M 5M

70

'0

50

.s

30

>
'5

"

:::J

0

bO

.rg

"

.e

I
0
>

E

10M

..,....

....

"-

,;'

:::J

\

0

I
0
>

"-

"

10

30M

f-Frequency-Hz
50k 70k lOOk

300k 500k 700k 1M

f-Frequency-Hz

276

3M

5M 7M 10M

30M

140

P.W. BOARD PATTERN
AM<±>

o

o

0)

I

.. AM IN

AM OSC

FM IN

o

NEe

CIOl8C

o

1:::

."
('")
~

o

~

(X)

('")
N

.,J
.,J

BIPOLAR ANALOG INTEGRATED CIRCUIT

f.J,

PC 1 222 C , f.J, PC 1 222 C ( R)

AM TUNER, FM IF SYSTEM WITH QUADRATURE DETECTOR
SILICON BIPOLAR MONOLITHIC INTEGRATED CIRCUIT

DESCRIPTION

The MPC1222

is a low voltage silicon monolithic IC. It is designed for using in AM tuner and FM-IF.

MPC1222 contains an AM Mixer, AM/FM IF amplifier, AM detector, FM detector and also AGC circuit.
This IC is suitable for using in AM/FM radio, radio cassette etc ..

FEATURES

• Wide operating voltage.

V cc=2.0 V -6.0 V

e Excellent low voltage characteristics.
•

AM stage is composed a Mixer, local oscillator, I F amplifier, AM detector and AGC circuit.

•

FM stage is composed a high gain FM-I F amplifier and FM detector.

• The AM stage has an excellent AGC characteristic and low distortion.
• MPC1222C(R) is designed for upper heterodyne.
• MPC1222C is designed for lower heterodyne.

BLOCK DIAGRAM (Top View)

278

FUNCTION
AM Stage· . . . . . . . . . . . . . . . . . . MIXER CIRCUIT
LOCAL OSC
IF AMPLIFIER
DETECTOR CIRCUIT
AGC CIRCUIT

FM Stage . . . . . . . . . . . . . . . . . . . IF AMPLIFIER
DETECTOR CIRCUIT

PACKAGE DIMENSIONS in millimeters (inches)

* Typical value unless
otherwise noted.

CONNECTION DIAGRAM

Pin No.

CONNECTION

Pin No.

1

AM LOCAL OSC

9

AM OUTPUT

2

IF BYPASS

10

AGC INPUT

3

FM IF INPUT

11

AM IF INPUT

4

GND

12

AM MIX BIAS

5

DET. INPUT (1)

13

AM MIX OUT

6

DET. INPUT (2)

14

AM RF AGC BYPASS

7

FM OUTPUT

15

AM MIX INPUT

8

VCC

16

AM IF AGC BYPASS

CONNECTION

279

,uPC1222C,,uPC1222C(R)
ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Supply Voltage

VCC

Package Dissipation

Po

Operating Temperature

T opt

-20 to +75

°c

Storage Temperature

Tstg

-40 to +125

°c

9.0

V

350*

mW

*Ta= 75°C

RECOMMENDED OPERATING CONDITION (Ta=25°C)
CHARACTERISTIC

SYMBOL

MIN.

TYP.

MAX.

UNIT

VCC

2.0

4.0

6.0

V

Supply Voltage

ELECTRICAL CHARACTERISTICS (Ta = 25°C)
(VCC=4 V
FM: f= 10.7 MHz, ~f=±22.5 kHz DEV.
AM: f= 1 MHz, MOD.=30 %
MIN.

TYP.

MAX.

UNIT

ICC-FM

6.5

10

15

mA

VO-FM

35

50

70

mVr.m.s.

Input Limiting Voltage

Vi(lim)

33

39

45

dBJ..LV

I-

Signal to Noise Ratio

S/N-FM

50

60

~

Total Harmonic Distortion

T.H.D·-FM

AM Rejection Ratio

A.M.R.

Drop Voltage Gain Loss

~AV-FM

Circuit Current

ICC-AM

MAX. Sensitivity

CHARACTERISTIC

w

Circuit Current
Detector Output Voltage

(!)

«

m
u.

SYMBOL

0.2
25

0.8

35

-3 dB point from Vo
with 100 dBJ..LV input

%

Vi=80 dBJ..LV

dB

Vi=80 dBJ..LV
AM: 30% MOD.

1.5

5.0

dB

VO=5 mVr.m.s.
VCC=4 -> 2 V

6

12

18

mA

No Signal

Vi-AM

28

35

42

dBJ..LV

VO-AM

25

34

50

mVr.m.s.

«
I-

Signal to Noise Ratio

SIN-AM

45

:E

Oscillation Voltage
Total Harmonic Distortion
Drop Voltage Gain Loss

D.AV-AM

«

Vi=80 dBJ..LV

Vi=80 dBJ,N

Detector Output Voltage

m

TEST CONDITIONS
No Signal

dB

w

(!)

280

fMOD = 400 Hz)

VO=10 mVr.m.s.
Vi=100 dBJ..LV

51

dB

VOSC

150

mVr.m.s.

Vi=100 dBJ..LV

T.H.D.-AM

0.5

2.0

%

Vi=100 dBJ..LV

5

10

dB

VO=10 mVr.m.s.
VCC=4~2 V

fOSC= 1 455 kHz

j.lPC1222C,j.lPC1222C(R}
TEST CIRCUIT

100Q
0.022
JlF

FM
o

FM/AM

AM

+ 33JlF

1-

10 k Q

0.01
JlF
AM

Jl

F

~

Jl

100 k Q

FM

Vee

! '0~2~'~2~

ffi

0.022

F

V.V

T.H ..

0

w

It)

FM

3.9 k Q

" - -_ _ _ _ _- - J

L1:
T1:
T2:
T3:
T4:
L2:

25A-1195-08 (CORIN)
26-1791-13 (CORIN)
CFZ-455C (TOKO)
5251 (TOKO)
12747 (TOKO)
7BA 180JH (TOKO)

AM ANT. COIL
AM LOCAL OSCILLATION COIL (MM)
AM IF COIL
AM DETECTION COl L (455 kHz)
FM DETECTION COIL (10.7 MHz)
PHASE SHIFT INDUCTOR

AM STAGE REFERENCE CHARACTERISTICS
(Vcc=4V, f=1 MHz, MOD=30%, fMOO=400Hz, at APPLICATION CIRCUIT)
CHARACTER ISTIC

SYMBOL

TYP.

UNIT
dBJ..LV/m

TEST CONDITION

Usable Sensitivity

Vi-SIN

48

Maximum Sensitivity

Vi-AM

35

dBJ..LV/m

VO=10 mVr.m.s.

Detector Output

VO-AM

34

mVr.m.s.

Vi=100 dBJ..LV/m

SIN Ratio

SIN

51

dB

Vi=100 dBJ..LV/m

Total Harmonic Distortion

T.H.D.

0.5

%

MOD=30 %, Vi=100 dBJ..LV/m

Drop Voltage Gain Loss

b.AV-AM

5

dB

VO=10 mVr.m.s., VCC=4

S/N=20 dB

~

2V

281

,uPC1222C,,uPC1222C(R}
TYPICAL APPLICATION
FM

100 Q

+

r

0.022

JJF

I

/

I
I

/ e
(J

I

FM/AM SWITCH

AM

10 kQ

AM OUT

9.

2.2 kQ

11
II

0.068

1

II
II

Ll

/ I
/

o

JJF

L2

0
\.0

I

(

\

LOOP ANT.

\

\

\

\

\

\

\
\

\

\

\

\

\

\AM SG
\
\

\

\

\

\

\

FM OUT

\
\

\
\

\

/

V

AM
AM
AM
FM

LOCAL OSCILLATION COIL (MM)
IF COIL
DETECTION COIL (455 kHz)
DETECTION COIL (10.7 MHz)

AM BAR ANT
CORE: ¢ 10 x 80 mm
LO=600 JlH
Q=220
L1: L2=107:25

282

26-1791-13 (CORIN)
CFZ-455C (TOKO)
5251 (TOKO)
12747 (TOKO)

COIL SPECIFICATIONS

(1)

ANTENNA COIL (MW)

25A-1195-08 (CORIN)

Batt(:(:\: 12)

VC
AM SG

GND

(2)

RF INC ~ 15)

La=650 ""H
00=210±20% (at 796 kHz)
1-2 25T 2-3 82T
1-3 107T 4-6 10T

AM LOCAL OSCILLATION COIL (MW) (CORIN)
TYPE NO.
BODY COLOR

7P
BLACK

1-3 99T
4-6 11T

BLACK
VC

GND

(3)

~j(:

Coli

L=260 ""H (±6 %)
Qu>80 (f=1.4 MHz)

Batt

CFZ-455C (TOKO)

AM IF COIL
r--l

~3:B~~
\-~;

Coli

Batt

GND
Base

!..._..J

(4)

AM DETECTION COIL (455 kHz)
TYPE NO.
BODY COLOR

Batt
Coli

~~

1

(5)

S

7P
BLACK

Coli

Batt

:m
Co
1 S

5251 (TOKO)

1-2:2-3=1: 1

04

06

FM DETECTION COIL (10.7 MHz)
TYPE NO.
BODY COLOR

BANDWIDTH 6 kHz MIN.
SELECTIVITY (±10 kHz DETUNING) 20 dB MIN.

CAPACITOR Co ...... 180 pF
Qu ............................ 70±20 %

12747 (TOKO)

7P
BLACK

04

06

CAPACITOR Co ...... 82 pF
Qu ............................ 70±20 %

283

,uPC1222C,,uPC1222C{R)
P.C. BOARD PATTERN

R1· .. ···· .. ·.. •···
R2 ................
R3 ................
R4 ................
R5 ................
RS ................
R7 ................

100 n
51 n
12 kn
560 n
3.9kn
2.2 kn
10 kn

C1
C2
C3
C4
C5

................
................
................
................
................

Cs ................
C7 ................
C8 ................

Cg ................
C10..............
C11 ..............
C12 ..............

284

0.022 JlF
0.022 JlF
33 JlF
33 JlF
0.022 JlF
10JlF
4.7 JlF
0.01 JlF
0.068 JlF
0.022 JlF
33 JlF
0.022 JlF

T1:
T2:
T3:
T4:
L1:

AM LOCAL OSC COIL 2S-1791-13 (CaRIN)
AM IF COIL
CFZ-455C (TaKa)
AM DET. COIL
5251 (TaKa)
FM DET. COIL
12747 (TaKa)
PHASE SHIFT INDUCTOR: 7BA 180JH (TaKa)

,uPC1222C,,uPC1222C(R)
TYPICAL CHARACTERISTICS (Ta =25°C)
AM STAGE

FM STAGE
OUTPUT VOLTAGE, TOTAL HARMONIC DISTORTION, AM Rejection,
AND NOISE VOLTAGE VS. INPUT VOLTAGE

1-- VO-FM

o

-

\.

-10

I I

I I

~

1 I

c
0

Vcc-4.O V
'(FM)-400 Hz

1\

4

V

-40
~~

-50

/

,

\

r-i'
1J
I I
VN

1\
I'

1\

-60

lfl·~·R~

.......

IL

",..-

LloI-±22.5 kHz dey

.....

Lf-

3

-

1.1

o

I

iii

co

40

I

a

30

ro
U> e::
I
::E 
en"

\
\

"""'12 [

::C

.-:

a

'/...'r'

10

ex::

I

E 15
I



..:J

.e-

10 0:J

20

0

'0 -10

4
dey.

ICC-FM

II

3

I

J-.I

I.t:. VO-FM'-I-

-~

A

II

2

~ ~

Vee - Supply Voltage - V

E

H-t--+H-/+-I-t-+-+-t-tICC~AM'-I~-+J--t-_+f--:::I14
....

6
I-+-If-+++-++-t-+-If-+-+T.~.D.- AM -+-+-t-+-l4

'::!:

c:i

ex::

1 0t--t-t--H+-+c:::b__1-'f'-9-J--+~-t---+-1-+-+--+-1-+-I12
f-

:ii ~
G~

If-

::C
.-:

9

c:

'0
2

I

::!:

g'iii

10 fte s t = 1.0 MHz rt-t-+-rt-+-+-rt-t-~
f MOD =400 Hz rt-t-+-rt_If-+-+-+-rt-i
MOD = 3 0 %
I-+-+-+-t-Vq~ AM+-+-+-+-.-l

:::E 0

C\l

o

I-

!g
~ ~

ro

C\l

I
T.H.D·-FM 1 - -

5

a

:.::;

l-

5 u
I -30
::E
LL- 40

I
c

2a

c

..c

b

~

I
c

E
en

.J I I

10

2
I A I I

CHANGE OF OUTPUT VOLTAGE, CHANGE OF
MAXIMUM SENSITIVITY vs. SUPPLY VOLTAGE

~

ftest= 10.7 MHz
fMOD=400 Hz
L::.f=±22.S kHz

30

co

Vi - input Voltage - dBJl V

CI RCUIT CURRENT, CHANGE OF OUTPUT VOLTAGE
TOTAL HARMONIC DISTORTION VS. SUPPLY VOLTAGE
CD

3
T.H.D·-AM

~

~

:J:

\

'\

~~

4

010203040 SO 60708090100110120

Vi -Input Voltage- dBJlV

"0

1-1'

j

/IJ
//

1-1- 8
1-1-

:...-

'/

J

00:'::;

I

I

I
c:
ftest.= 1.0 MHz
t--I- 7 :e
fMOD=400 MHz 1-'~
1-- 6 i5
MOD=30 %
SIN-AM
I
--~ S .~
1\
t.o
VO-AM

70

"0

(5

-I-~

I

ro
:J:

l-

T.H.D·-FM -I-fA

6

'c

~

VCC=4.0 V

::E 60
ex::

u
0

2

LJ

-80

E
I

~

E

1/

-70

t

i5

',AM)_400 Hz MOO_30"

I

-30

vi

E
::i

I

'tl$t-10.7 MHz

I

-20

OUTPUT VOLTAGE, TOTAL HARMONIC DISTORTION,
SIGNAL TO NO~SE RATIO, vs. INPUT VOLTAGE

ex::

b
9

3 OH-t--Mt......-f""'''''t-+-I-t-+--+'''+-II-t'-I-t'-t-+-I-t-i 2
I
I'
I
I
0
o
2
3
4
5 6
7
8
9 10

Vee - Supply Voltage - V

DETECTOR OUTPUT VOLTAGE, TOTAL HARMONIC DISTORTION
vs. MODULATION FREQUENCY

II.

CD

I

"5 -40

.e:J

0

1\

3
J

-SO
T.H.D·-AM
j I IT!"

I -60
::!: -70
ex::
6 -80

>

VCC=4.0 V
ftest=1.0 MHz
MOD=30 %
4
Vj=74 dBJlV

V9-AM -

"0

"-l. I

20

T
SO 100 200 SOO lk

i'

I

2

I
c

0-ea
co .B
;§ Vl
I

Q

::!: .!:!
c
~ a

... v
2k

~

c:i

::C

5k 10k 20k

0

.-:

§

ro
:J:

fmod - Modulation Frequency - Hz

285

BIPOLAR ANALOG INTEGRATED CIRCUIT

,uPC1197C
FM MULTIPLEX STEREO DEMODULATOR
SILICON MONOLITHIC BIPOLAR INTEGRATED CIRCUIT

DESCRIPTION
The ~PC1197C is a silicon monolithic integrated circuit for FM multiplex demodulator designed for stereo cassette tape
recorder with radio receiver, car stereo and car radio operated at a low supply voltage.
The circuit consists of a voltage control oscillator (VCO) for a demodulator and a phase locked loop (PLL), phase comparators, low pass filters (LPF), frequency dividers and a DC amplifier. It also contains accessory circuits such as separation
adjustor stereo-monaural switcher, VCO stopper and stereo-monaural switcher in depressed supply voltage.

FEATURES
• No coil is needed due to PLL (Phase Locked Loop) system. The absence of coil, essential component in conventional
systems, enable to reduce the number of external components and save manpower for adjustments.
• The circuit provides stability in a wide range of power supply voltage. (Vee = 4 to 16 V)
• A stereo/monaural switch can be controlled by a DC voltage obtained from I F signal by smoothing. It is also designed
to provide very small shock noise generated when the stereo/monaural is switched.
• vca, an unnecessary function for AM reception, can be stopped simply by connecting the control terminal to the
power supply. (Vee - 3.0 V)
• When the power supply voltage is depressed the mode is forced to shift to monaural. (Forced monaural reception;
Vee - 3:5 V)
• Separation adjustment terminal enables to adjust optimum channel separation.

BLOCK DIAGRAM
19 kHz

YCO

L.P.F.

L.P.F.

ST.lMONO.
SW & YCO Stop

L.P.F.

9

Composite

Preamplifier

Signal Input Output

286

Left
Right Channel Lamp
Channel Output
Driver
Output

GND

Separation
Adjuster

j.lPC1197C

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
16

V

350*

mW

Power Supply Voltage

VCC

Allowable Power Dissipation

PD

Operational Temperature

T opt

-20 to

+ 75

°c

Storage Temperature

T stg

-40 to

+ 125

°c

*Ta = 75°C

RECOMMENDED OPERATION CONDITIONS (Ta = 25°C)
Supply Voltage Range

VCC

4 to 16 V

Operating Voltage

VCC

9V

ELECTRICAL CHARACTERISTICS (Ta
CHARACTERISTIC

= 25°C,

VCC

SYMBOL

Circuit Current

ICC

Separation

Sep.

= 9 V,
MIN.

vi

= 200 mV,
TYP.

L = 45 %, R = 45 %, Pilot = 10 %)
MAX.

UNIT

CONDITION

12

mA

Without signal

30

45

dB

f = 100 Hz

40

55

dB

f = 1 kHz

30

45

dB

f=10kHz

Monaural Total Harmonic Distortion

T.H.D.

0.3

0.5

%

monaural Vin = 200 mV

Stereo Total Harmonic Distortion

T.H.D.

0.2

0.5

%

stereo pilot = 20 mV

Output Voltage

Vo

Channel Balance

Ch. B.

Lamp-on Level

LAMP-ON

Lamp Hysteresis

Hys. (LAMP)

Capture Range

C.R.
Rej (19)
Rej (38)

Ultrasonic Frequency Rejection

SCA Rejection ratio

Rej (SCA)

mV

Vi = 200 mV

dB

monaural Vi

8

mV

pilot signal

4

dB

pilot signal

±4

%

pilot = 20 mV

35

dB

pilot = 20 mV

45

dB

pilot = 20 mV

170

-2

0

70

2

dB

pilot
composite

-

SCA
composite

=

200 mV

1

10'
1

10'

Signal to Noise Ratio

SIN

86

dB

Vi = 200 mV

Allowed Maximum Input Level

Vi (MAX)

500

mV

T.H.D.

Forced-monaural Level

V (MONO)

0.7

V

#9 terminal

VCO-stop level

V (STOP)

3.0

V

#9 terminal

Stereo-monaural
Switch-over Voltage

VCC (MONO)

3.5

V

Supply Voltage

~

2%

287

j.lPC1197C
TEST CI RCUIT
19kHz
Monitor

sw
FOrced.monaUral)
( and yeo·stop

O.047}lF

PACKAGE DIMENSIONS
in millimeters (inches)

Typical values are shown
unless specified otherwise.

X

N

==
LO

LO
LO



en

I

40

en

r...

r'\.

\

,/

ci


...---

i-'

30
20
10

o
10

30

50

100

300 500

1 k

3 k 5 k

10 k

30 k 50 k 100 k

f - Frequency - Hz

SEPARATION vs. PILOT INPUT LEVEL
(Stereo)

VCO FREE RUNNING FREQUENCY vs.
SUPPLY VOLTAGE

VCC=9V
1=1 kHz
L=45 %. R=45 %
Pilol=10 %

Vin=O
N

J:

.;,t:

I
>c:

+300

80

u



:J

rr
~
u..
DO

+200

70

+100

\

c:

'c
c:
~

(J

-200



u..
0

>

I

0

(J

60

I

\

0
(19 kHz)
-100

:J

0::

CD
-0

c

~g.

................

50

en

'", .....

40

I

g.

" i'-...

30

en

-300

...............

20

.?
10

o

4

6

8

10

12

14

16

18

o

20

10

20

Vee - Supply Voltage - V

30

V

10

0

~

C
u
'c0

/

5

/

3

/

<0

1.0

~
0

I-

/

0,5

/

0 0.3
I
t-=

,/

I

V

/

E

J:

0.1

60

70

80

90

100

/

I

c:

10

:e
~

C
u
'c
0

5
3

E
<0

J:

~
0

1.0

I

0.5

l-

0
I
t-=

\

\
0.3

/
o

1=1 kHz
V'in=200 mV

~
0

c:

t:

50

30
VCC=9 V
1=1 kHz

I

40

TOTAL HARMONIC DISTORTION vs.
SUPPLY VOLTAGE (Monaural)

TOTAL HARMONIC DISTORTION vs.
SIGNAL INPUT LEVEL (Monaural)

~

30

Vin(pilot)- Pilot Input Level- mV

0.1
100 200 300 400 500 600 700 800 900 1000

Vin - Input Signal Level- mV

o

2

4

6

8

10

12

14

16

18

20

Vee - Supply Voltage - V

293

,uPC1197C
TOTAL HARMONIC DISTORTION vs.
FREQUENCY
(Monaural)
~

I

VCC=9 V
Yin 200 mV

10

t:
0

:e
~

Q

3

u

'c
0

§

1.0

ra

:J:

'iii

(5 0.5

I

f-

V

I 0.3

0

I

....,:

0.1
10

30

50

100

300 500

1k

3 k 5 k

30 k 50 k 100 k

10 k

f - Frequency - Hz

TOTAL HARMONIC DISTORTION vs.
FREQUENCY
(Stereo)
VCC=9 V

~

10 Vin(L+R)=200 mV

I

,,

L=45 %. R=45 %
5 Pilot=10 %

t:

0

~

.B
V>

I

3

Q

I

.g
0

§

L

1.0

ra

I

:J:

'iii 0.5
(5
f-

I 0.3

0
I

~

r--

~

....,:

0.1
10

30

50

300 500

100

1k

3k

5k

30 k 50 k

10k

100 k

f - Frequency - Hz

TOTAL HARMONIC DISTORTION vs.
PILOT INPUT LEVEL
(Stereo)

MAXIMUM INPUT LEVEL vs.
SUPPLY VOLTAGE
(Monaural)

30

1.0

~ 10

VCC=9 V
f=l kHz
L=45 %. R=45 %
Pilot 10 %

>

L

E
I

I
0

1::
.2
V>

Q

L

3

u

'c

I

0

E

t:
ra

:J:

1.0

'iii

I

C1>
...J

~

'5

1I

0.5

L

0 0.3
I

....,:

-..!II

0.1

0.6

::E:

0.4

'x
ra

/

o

.-""

20

V

x

L

«

::E:

/

C

0.2

~-

40

60

80

V in(pilot) - Pilot Input Level- mV

294

c.
E
E
=>
E

I

(5

f-

>

L

5

0.8

Q)

L

t:

f=l kHz
T.H.D.=2 %

100

o

2

4

6

8

10

12

14

Vee - Supply Voltage - V

16

18

20

tLPC1197C

POWER DISSIPATION AND SATURATION
VOLTAGE OF LAMP DRIVER vs.
LAMP CURRENT

CAPTURE RANGE
80

;: 200
E
I

VCC=9 V

>

E
I

70

a;
>

60
50

0::

40

::J
0.

\

.::

30

E
3-

r\

20

\

10

-"," , ,

~

0

18.00

17.00

tvco -

U

...

~ 100
o
c..

a.

50

E

(II

I
c..
20.00

o

21.00

VCC=9 V
External parts
excluded

1.0

u

c

0-

~

o

I..&...

t-- r--

-r--

~

.~ (19 kHz )
c
c

:::>

-0.5

(II

2.5
2.0

I--

en
~

V
80

1.5

a.
E

OJ

[/7

40

~

i5

~ ~ ~~

60

§

:;:;

1.0

-t

0.5

~
U:J

o

u
>

100

VCO FREE RUNNING FREQUENCY vs.
AMBIENT TEMPERATURE
VCC=9 V
External
parts
included

N

I

I
>.

1.0

Cll

:::>

0-

Cll

t-- t--

0::

e

./

bY

/

~

~

IL - Lamp Circuit - mA

u
c

t--

;.--

20

VCO Free Running Frequency - Hz

>.

0.5

~

...V

"C

N

::J

---

...J

I

Cll

-

>

i5

VCO FREE RUNNING FREQUENCY vs.
AMBIENT TEMPERATURE

I

;/

Cll

/
V

19.00

3.0

~
c
o

V

.!:

>

E 150

I
I

\
\

Cll

.!2

:;:;
I

>
~
DO

3.5

c
o

,

...J

4.0

-1.0

U::

0.5

DO

c

.§

0

&

(19 kHz )
-0.5

I..&...

o

o

u
>
I
o
u

-1.0

u

>
I

2?

o

-25

25

75

50

o
u
2?

Ta - Ambient Temperature -'C
-25

o

25

50

75

Ta - Ambient Temperature -'C

CIRCUIT CURRENT vs.
AMBIENT TEMPERATURE

INPUT PILOT LEVEL (LAMP ON-OFF) vs.
AMBIENT TEMPERATURE
20

10

.",...
9

8

>

E
I
a;
>

7

Cll

6

.!2

5

,/
LAMP ON

-"V

0.

-=

E

:s
.!:

4

16
<:
E

V

----

V V

~

---

V

"E 12
~
:::>

V~
LAMP OFF- I - -

2

>

o

25

U

·5
~

50

Ta - Ambient Temperature -'C

10

(3

8

I
u

6

9

VCC=9V
External
parts
included

-25

14

I

3

o

~

V

...J

0::
"5

V

VCC=9 V
quiscent

18

4

2
75

o

-25

o

25

50

75

Ta - Ambient Temperature -'C

295

BIPOLAR ANALOG INTEGRATED CIRCUIT

,uPC1158H2
LOW NOISE PREAMPLIFIER WITH AUTOMATIC LEVEL CONTROL
SILICON BIPOLAR MONOLITHIC INTEGRATED CIRCUIT

DESCRIPTION
The ,uPC1158H2 is a silicon monolithic integrated circuit designed for high gain, low noise preamplifier
with Automatic Level Control (ALC).
As an advanced production process is used, the device has an excellent feature of very low pulsive
noise characteristics.
It is ideally suitable for use as a recording and playing amplifier in a cassette tape recorder.

FEATURES

PACKAGE DIMENSIONS

• Low noise, especially low pulsive noise.

in millimeters (inches)

• Wide supply voltage range
(Vee =2.2 -15V).

Cl
(CO.04)"

.High gain: A vo =70dB TYP.
• High output voltage :VOM = 1.0 Vr.m.s.
TYP.

I
I

.~

X"
I

• Low distortion.

23456

19.5MAX.
(O.767MAX)

e.~

....

~"
....
0
d

025
(0.01)

1.0±0.1~-+--

(0.04)

,uPC1158H2
EQUIVALENT CIRCUIT
.-----....---...-__._-...J\,/\,f\r-----,.----o 7

Vee

INPUT
10---+---......

6 ALC INPUT

L-----......--+----+--+--+-......------o 4 GROUND
2

3

N.F.B.

OUTPUT

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Package Dissipation (Ta=75°C)

Vee
PD

Operating Temperature

Topt

-20 to +75

Storage Temperature

Tstg

-40 to +125

Supply Voltage

15.0
270

RECOMMENDED CONDITIONS (Ta=25°C)
Operating Supply Voltage

V
V

5.0

Supply Voltage Range

2.2 to 15.0

ELECTRICAL CHARACTERISTICS (Ta=25°C, Vcc=5V, f= 1kHz, RL= IOkQ)
CHARACTERISTIC

SYMBOL

TEST CONDITIONS

MIN.

TYP.

MAX.

UNIT

2.2

rnA

Vin=O

Circuit Current

Icc

0.9

1.5

Open Loop Voltage Gain

Avo

64

70

dB

vin=-80dBm

Voltage Gain

Av

33.5

dB

vin=-50dBm

Maximum Output Voltage

VOM

1.0

V

T.H.D.=l%

Input Impedance

ri

100

kQ

f=lkHz

Equivalent Input Noise Voltage

Vnin

1.2

Collector Voltage of ALC Transistor

V5

0.7

0.7

2.0

,Nr.m.s.
V

Ra=2.2kQ, NAB Equalized
15-30kHz BPF+40dB Amp.
Pin 7 to Pin 6: lookQ
Pin 7 to Pin 5: 100Q

297

j1PC1158H2
TEST CIRCUITS
Test Circuit for General Characteristics Given in the Table Below.
1 - - . - - 0 Vee=5V

+

3

1 kQ

3.3,uF

t-'VV'Ir-....-~--....--O

+ -

6800pF

CHARACTERISTIC

I

OUTPUT

RL
10kQ

SYMBOL

Sl

S2

S3

S4

TEST POINT

Circuit Current

Icc

OFF

OFF

NAB

OFF

Pin 7

Open Loop Voltage Gain

Avo

OFF

ON

FLAT

ON

Pin 3

Voltage Gain

Av

OFF

OFF

NAB

ON

Pin 3

Maximum Output Voltage

VOM

OFF

OFF

NAB

ON

Pin 3

Collector Voltage of ALC Transistor

V5

ON

OFF

NAB

ON

Pin 5

Test Circuit for Noise Voltage.

,...-----....---- 60

f--"1 kHz

"-

I

/,

"- ,fL ..

r-l00Hz

'"

L..II

............ r--...

e

--


~

1.4

~

1.2

E

1.0
0.8
0,6

'S
o
::J

,~
co

~

~

->

I

c

.(tj

~

......

1,. ...

...

f"'!'"

80

'"
<1)

-

0

60

>
Q.

0
0

..J
Q.

0.2
0

0

20

0

e

3

5

7

20

10

30

50 70 100
0

RL -Load Resistance-kQ

--

1--

VOM

~

.5:2

I

:;;

->

'"

2

,1-- ~

E
::J
E
'x
co

6



I

<1)

f--,-

.c:l

0

~
~
0

-

Icc

<1)

co

E

'S

40

c

0.4

I



-0

2.0
1.8
co
.c:l 1.6

~

2

100
CD

o

o

-20

o

+20

+40

+60

+80

Ta - Ambient Temperature - ·C

CIRCUIT CURRENT, MAXIMUM
OUTPUT VOLTAGE, OPEN LOOP
VOLTAGE GAIN vs.
SUPPLY VOLTAGE
2.5

100

1-""

CD

>

-0

I

c

80

'(tj

co

60

>
Q.

0
0

..J

40

c

<1)

I

2.0

20

'"


'S
1.5
Q.
'S

~
0

~

0

.~

E
::J 1.0
E
'x
co

6

I 0.5
:;;

~~~

4

E

I
C

~

Q.

0
0

<1)

co

.c:l

'"
.c:l

I

0

<1)

0

5

/'

3

~,;

/. V

J0 /.Icc
V//

2

I
()
.5:2

lV

:f

->

o

,;"

V

VV

VOM

::J

e

L

Ava

"

0

~

o

2

4

6

8

10 12 14 16 18 20

Vee -Supply Voltage - V

299

,uPC1158H2
TYPICAL APPLICATIONS
Pre Amplifier for Cassette Tape Recorder.
Vee

51-5

+

15953
3.3kQ

EH

* Rec./Play Switch S1-1 - Sl-7 are shown in play mode.
* Actual D.C. resistance of feed back element between
pin 2 and pin 3 is advisable about 18 kQ or more.

Relay Driver for Radio Control Equipment.
~~~--.-------------------~-----oVcc

33f.lF

+
15953

O.047f.lF

~

300

5.1kQ
33kQ

MONITOR

J,lPC1158H2
TYPICAL PRINTED CIRCUIT BOARD PATTERN
(1)

Pre-Amplifier for Cassette Tape Recorder.

PRINTED CIRCUIT LAYOUT & COMPONENT LAYOUT (BOTTOM VIEW)

FLAT

NAB

o

o

0

a

o

IN

o

o

<.0

,uPCl158H2
lOkQ

o

o

o

o

a

Vee

ALC

OUT

45

ALC OUT

301

BIPOLAR ANALOG INTEGRATED CIRCUIT

j1PC1204C
RECORDING AND PLAY' BACK AMPLIFIER

DESCRIPTION

The J,LPC1204C is a silicon monolithic integrated circuit designed for cassette tape recorders. The pPC1204C contains a pre
amplifier, an ALC circuit, a recording amplifier and a meter amplifier. The pPC1204C is encapsulated in an 16 pins dual in-line
plastic package.

PACKAGE DIMENSIONS

FEATURES

in millimeters (inches)

• Wide operating range. Vcc = 8 - 12 - 20V
19.4MAX.
(0.763MAX.)

• Low noise, especially low pulsive noise.
• The pre amplifier and the recording amplifier have high
R1
(RO.039)

gain and low distortion characteristics.

---t-

L!"l

.

<.D

• Wide ALC range.
• Integrated functions necessary to cassette sound re-

~
L!"l

Typical value unless
otherwise noted.

N

6

producing.
(a pre amplifier, a recording amplifier, an ALC circuit and
a meter amplifier)

2.54
(0.1)

0-15'

0.5±0.1
(0.019)

EQUIVALENT CIRCUIT
11

16

12

08

09

14

302

15

235

6

7

8

4

9

10

,uPC1204C
ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Supply Voltage

V

20

Vcc

(Ta = 75°C)

mV

Operating Temperature

T opt

-20

to +75

°c

StNage Temperature

T stg

-40

to +125

°c

Pd

Package Dissipation

350

RECOMMENDED OPERATING CONDITION (Ta=25°C)
CHARACTERISTIC
Supply Voltage

SYMBOL

MIN.

TYP.

MAX.

UNIT

VCC

8

12

20

V

ELECTRICAL CHARACTERISTICS (Ta=25°C, VcC=12V)
CHARACTERISTIC
Circuit Current
(PRE AMPLIFIER) 52dB

SYMBOL

MIN.

TYP.

MAX.

UNIT

TEST CONDITIONS

ICC

2.4

4.0

6.0

mA

No Signal

dB

Vo= 0.3 Vr.m.s.

f=l kHz

Voltage Gain

Avol

78

Maximum Output Voltage

Voml

Total Harmonic Distortion

T.H.D.

0.3

0.6

%

Equivalent Input Noise Voltage

Vnin

1.3

2.0

J,LVr.m.s.

1.6

85
2.5

Vr.m.s.

T.H.D.=l%
Vo= 0.3 Vr.m.s.
30 kHz B.P.S., RG=2.2 kn.

(RECORDING AMPLIFIER) f=l kHz
Voltage Gain

Avo2

Maximum Output Voltage

Vom2

Total Harmonic Distortion

T.H.D.

47
1.9

dB

54
2.7
0.03

Vr.m.s.
0.1

Vo= 0.3 Vr.m.s.
T.H.D.=l%

%

Vo= 0.3 Vr.m.s.

dB

T.H.D.=3%

(ALC)
ALC Range

ALC

56

303

JLPC1204C
TEST CIRCUIT

471lF

220Q

+

~-------r----~A---~~--~-o---+-----oVCC=12V

SW7

+
120kQ

8.2kQ

2.21t.Q

SWI

3

'1

2.2kQ

3. 9k~2

820kQ

75kSl

2

/
B.P.F
50Hz- 30kHz

SWITCH POSITIONS
SYMBOL

304

SW1

SW2

SW3

SW4

SW5

SW6

SW7

ICC

2

3

3

1

2

2

1

Avo

1

1

2

3

2

2

2

Vem

1

2

2

3

2

2

2

T.H.D.

1

2

2

3

2

2

2

Vnin

3

2

1

3

2

2

2

Avo

2

3

3

2

1

2

2

Vom

2

3

3

2

2

2

2

T.H.D.

2

3

3

2

2

2

2

ALC

4

3

3

1

2

1

2

jlPC1204C
TYPICAL APPLICATION
B.2kll

22012

r-----------~--------~~~~~~~--~_oVCC=12V

+

47,11F

120k~2

2.2kll

RECIN

r------+--o--o SW1
60011
2f1J.IlA

I

1BOpF 2. 7k~2
15kO

0.015/IF

(P.B POSITION)
REC & P.B
HEAD
3.3k~1

Bias
OSC

CHARACTERISTICS (Ta=2SoC)
TOTAL HARMONIC DISTORTION
OUTPUT VOLTAGE
(PRE AMP. :P/B·POSITION)

TOTAL HARMONIC DISTORTION
vs. OUTPUT VOLTAGE
(PRE AMP. :REC.·POSITION)

VS.

5
~
I

3

Vcc= 12V
RL =22kQ
RG =600Q

I

~

r

I

c:

:e
1il
u

'c0

E
::r::
'"

,

I-~

l-

u

f= 10kHz

t.;~

V

"- ~~

I
0.1
0
::C 0.07
~

0.05
0.030.050.07 0.1

E

I

,,~

1

o

~

"\ ~

I

"-e

'c

/

0.3

ro
'0

o

is

100Hz

0.7
0.5

c:

o
1il

0

is

:::c
'"

L 1

/

I

o
is
I

Vo- Output Voltage- Vr.m.s.

0.5

""

"

0.3

5 7 10

~

f= 10kHz

~

."

l-

f= 1kHz

0.3 0.50.7 1

0.7

ro
'0

/
j

5 Vcc= 12V
3 RKL=22kQ
RG = 2.2kQ

//

'" V

f= 100Hz
f= 1kHz I -

0.1
0.07
0.05
0.030.050.070.1

0.3

0.50.7 1

5 7 10

Vo- Output Voltage- Vr.m.s.

305

ttPC1204C
VOLTAGE GAIN vs. FREQUENCY (PRE AMP.)

TOTAL HARMONIC DISTORTION
vs. OUTPUT VOLTAGE (REC. AMP.)
Vcc= 12V
vo= O. 3Vr.m.s.

VCC= 12V
RL = 15kQ
RG =600Q

i
10

CD

""0

100

7

I

c

'ro

80

C!1

r-

V

60

I
0

»
««

-I'

c
0

't

~r--.
-1= ~

--

--I-

- r-

-

0

30

10

0

u

'c

3k

300 500 700 Ik

50 70 100

I

Vi

I-....;;":::~

20

o

3

I

.... 1---

I- JP;B MODE)

52dB FLAT AMP.
(REC MODE)

40

~

1-- t--- .........

NAB AM

~-:::~-

Q)

bO

2
"0
>

5

AVO

5k 7k 10k

0

~
::r:

0.7

C"IJ

0.5

""iij

0.3

"0

30k 50k 70k lOOk

/

'I

/

"

l-

I
c::i
:i
t-=

f- F requency- Hz

,

0.07
VOLTAGE GAIN vs. FREQUENCY (REC.AMP.)

60

I

c

..... ~'"

V

""0

'"

....... r--..

30

"0

AV(NF)
io-"" V"

>
I

20

0

/"

10

'- ........ ~
'\.

\

1\

"
~

30

o
3k

5k 7k 10k

vi

0

...:

0

I

'c

E

30k 50k 70k lOOk

>

f - F requency- Hz

(])

bO

2
"0
>

CIRCUIT CURRENT, MAXIMUM OUTPUT
VOLTAGE vs. SUPPLY VOLTAGE

5

10

>
I 4
Q)

« 8

vi

E

0

I

bO

2
>

0

>
E

I

3

:J

.&
:J
o

~

~:J

---

6

U

~~

/~
, ~ ..... " ,.......
ICC
~

2
E

·s 4

E

U
I
{~ ~
u 2 if·
!::)

:J

.~

C"IJ

~

I
E
a

>

0

~

07

vom(REC)

8

9

",

-~

..... ~

",

-

~

i'.

u

..-1""'"

0

I
0.7
0.5

~
C"IJ
::r:

I
c::i
:i
t-=

" ,~

~

Vee 12V
RL 2.2kQ
RG= 1kHz

T.H.D.

10
7
5

Vi

"S ""iij
c. "0
"S I-

...:

"0

3

111111

I

0

300 500 700 lk

0.3 0.50.7 1

100
70
50

:p

50 70 100

I
I

ALC CHARACTERISTICS
(REC. POSITION)

c

30

0.070.1

...... f= 100Hz

Yo-Output Voltage- Vr.m.s.

"

»
««

10

" r-r-

-- .... ... ~

Q)

bO

.s

If

//

/~

~~

~~

C!1

1kHz

~

0.01

./

40

'iij

f

VCC= 12V
vo= O. 3Vr.m.s.

-

AVO

50

CD

0,05
0.03

70

/,

f= 10kHz /~

0.1

-Vout

0.3
O. I
0.07
0.05
0.03

0.01
lOp

~

/

30" 50p lOOp 300" 500p 1m

In:m

10m

30m 50m 100m

7m

70"

70m

Vi-Input Voltage- Vr.m.s.

vom(PRE)
VOLTAGE GAIN
vs. SUPPLY VOL TAG
90

10 11 12 13 14 15 16 17 18 19 20 21
VcC-Supply Voltage-V

co
""0

80

..

~

~

I I I I.. I,
AV (Pre Amplifle r) -

-r----

I
.~ 70
C!1
Q)

bO

~60
>
I
>

AV(REC)

« 50 1-- r40
7

8

9

10 11 12 13 14 If 16 17 18 19 20 21
Vee-Supply Voltage-V

306

-

BIPOLAR ANALOG INTEGRATED CIRCUIT

j.lPC1217G
RECORDING/PLAY'BACK PREAMPLIFIER SYSTEM

DESCRIPTION
J1PC1217G is a monolithic integrated circuit designed for a tape recorder works at low voltage and
encapsulated In a smaller package (20-pin MINI FLAT).
J1PC1217G has a microphone ampl ifier, a play'back ampl ifier, a recording amplifier, a ALC circuit, a LED
driver and recording/play'back changeover switch so that is suitable a small tape recorder.

FEATURES
•

A recording/play'back changeover switch is built in so that easily design switch circuit.

•

Wide operating voltage range. Vee = 1.8 to 3 to 6 V

•

Excellent low voltage characteristic.

•

New smaller package (20-pin MINI FLAT) so that a small tape recorder is easily designed.

•

Only two ICs (J1PC1217G, 1218H; Po AMP.) are necessary for a tape recorder.

BLOCK DIAGRAM

47 .u

IO.u

-47
t

i-

P +
-

¥fO
+

VCC=3 V
P

220 k
20

19

18

17

16

15

14

307

jlPC121"7G

INTERNAL FUNCTION
MIC. AMP.

a AMPLIFIER

PIS

AMP.

REC. AMP.
ALC

a ADDITIONAL FUNCTION - LED DRIVER
RIP SWITCH

PACKAGE DIMENSIONS (Unit: mm)

°

1
045 MAX

o04

±ooon

20 19 18 17 1~ 1~ 14 13 12 11

925 MAX

~

\~

1,-4

fr

t

10.1 MIN.
7.25 MAX.

\~
'-

1.5 MIN. 10.65 MAX.

CONNECTION DIAGRAM
PIN No.

308

CONNECTION

PIN No.

CONNECTION

1

Input (MIC.)

11

GND

2

NFS (MIC')

12

RIP Switch Input

3

Input (PIS)

13

LED Driver Output

4

NFS (PIS)

14

VCC

5

Output (MIC., PIS)

15

AlC Time Constant

6

ALC Output

16

Filter

7

Input (REC.)

17

Filter

8

NFS(REC')

18

Recording Clamp

9

Output (R EC.)

19

Filter & Bias

10

ALC Input

20

GND

,uPC1217G
ABSOLUTE MAXIMUM RATINGS (Ta=25 °C)
Supply Voltage

10

V

500

mW

Vcc

Package Dissipation

PD

Operating Temperature

T opt

-20 to+75

°c

Storage Temperature

T stg

-40tO+125

°c

RECOMMENDED OPERATING CONDITION (Ta=25°C)
CHARACTERISTIC

SYMBOL

Supply Voltage

VCC

ELECTRICAL CHARACTERISTICS (Vcc=3 V, f= 1 kHz, RL =
CHARACTERISTIC
Circuit Current

P
I
B

M
I
C

R
E
C

SYMBOL

MIN.

10

kn, Ta=25 °C)
TYP.

MAX.

.UNIT

(10.5)

mA

ICC(P/B)

6.5

Vo Itage Gai n

Avo(P/B)

72

Output Maximum Voltage

VOM(P/B)

Total Harmonic Distortion

T.H.D·(P/B)

Input Noise Level

(0.5)

(0.7)

%

(1.6)

!JVr.m.s.

1.0

Rin(P/B)

36

Circu it Current

ICC(REC)

8.5

Voltage Gain

Avo(MIC)

52
(0.4)

Vr.m.s.

0.8

Vnin(P/B)

(13.5)

VOM(MIC)

0.3

(0.7)

%

Input Noise Level

Vnin(MIC)

1.0

(1.6)

!JVr.m.s.

Input Impedance

Rin(MIC)

36

kn

Voltage Gain

Avo(REC)

70

dB

Output Maximum Voltage

VOM(REC)
T.H.D·(REC)

(45)

ALC Range
Ripple Rejection
LED Current

ILED

Vr.m.s.

0.7

Vr.m.s.

0.9

(6)

T.H.D.=1 %
VO=0.3 Vr.m.s.
RG=2.2 kn

*

T.H.D.=1 %

0.2

(0.7)

%

VO=0.3 Vr.m.s.

2.6

(9)

dB

Vin=-70 - -40 dBm

dB

T.H.D.~3%

dB

RG=2.2 kn, f=100 Hz

64
70

R.R.R.

*

dB

. T.H.D·(MIC)

ALC Effect

RG =2.2 kn

mA

Output Maximum Voltage

(0.5)

T.H.D.=1 %
VO=0.3 Vr.m.s.

kn

Total Harmonic Distortion

Total Harmonic Distortion

No Signal

dB

0.065

Input Impedance

CONDITION

9

(12)

mA

* f= 10Hz - 10kHz B.P. F. (6 dB/oct)

309

,uPC1217G
TEST CIRCUIT
TEST CIRCUIT 1

CD

Voltage Gain (PIS AMP.)

(2) Frequency Characteristics (PIS AMP.)

TEST CIRCUIT 2

CD

Voltage Gain (MIC. AMP.)

@ Frequency Characteristics (MIC. AMP.)

TEST CI RCUIT 3

CD

(6) Frequency Characteristics (REC. AMP.)

Voltage Gain (REC. AMP.)

47 k Q

47 kQ 18 kQ

TEST CI RCUIT 4

PIS AMP. Noise

RG
2.2 kQ
Amp

f= 10 Hz-IO kHz
B.P.F.
(12dB/oct)

310

1

3300 PF

18 k Q

j1PC1217G

TEST CI RCU IT 5

MIC. AMP. Noise

20 kQ
f=10 Hz-10kHz

B.P.F.
(12dB/oct)

TEST CIRCUIT 6

ALC Characteristics

47kQ

18kQ

10

311

,uPC1217G
TYPICAL CHARACTERISTICS (Ta=25 °C)
CIRCUIT CURRENT. OUTPUT MAXIMUM
VOLTAGE vs. SUPPLY VOLTAGE

TOTAL HARMONIC DISTORTION vs.
OUTPUT VOLTAGE (MIC. AMP.)

18~----'-----.-----r-----r-----r---~r----'

I

161------~--_4-----+-----r----~----T_--__i

t=lO kHz",
3

14

,,"
, ,,'

"
E

::;

12
ex::
E
I

I
Q)

00
ro

~ 0.3

o

:e

E
::s
E

'c
o

::E

::c

':5
~

8

'x
ro

I

u

!d 6

::s

.e::s

o

I
E

,

4

o

>

L

~

C 10 ~----+-----+-----t---~~~~~~~r.~__1 2 ~
~
~
::s
U
>-

U

V

0.5

~

Ci
<.J

E
ro

1
1/1/
J J

t.=l

k~l/

VII

V

/ V

V
~ i'"
L

(5

I

Vee=3 V

f=100 Hz

0.1

ro
~

L

If

L

L

V

l

I

L

0.7
.,;

/

L

0.07

c:l
I 0.05
~

0.03

2

0

4

3

2

5

6

Vee - Supply Voltage - V

0.0 1
0.1

TOTAL HARMONIC DISTORTION vs.
OUTPUT VOLTAGE (MIC. AMP.)

0.3
0.5 0.7
Vo - Output Voltage - Vr.m.s.

3

TOTAL HARMONIC DISTORTION vs.
OUTPUT VOLTAGE (REC. AMP.)

IL

I

Vee=3 V

Vee=3 V

0.7
0.7

0.5
~

0.5

I

c:

',e

0.3

:e
c:

~

i5

~

<.J

'c
o

Ci

E
ro

::c

roO

;§

O. 1

I 0.07

c:i

I

~

0.3

0.0 5

"

<.J

t=100 Hz,

".
~

'c
o·

f'...bl

E
ro

"

"

~~

~

::c

~

2

~
~.-. f-"'"

~~

~

I 0.0 7

t't=10 kHz

r"-

0.03

~

t- ~

~

"

~

1 kHz
) . I't-=
f=100 H z _

c:l
I

'" '" '"
........

i"'"

~

0.1

o

II
'J

f=lO kHz,

~

0.05

~t=l kHz

0.03

0.0 1
0.1

0.3

0.5

0.7

Vo - Output Voltage - Vr.m.s.

3

0.0 1

0.1

0.3

0.5

0.7

Vo - Output Voltage - Vr.m.S.

312

3

,uPC1217G
VOLTAGE GAIN vs. FREQUENCY (MIC. AMP.)

70

I

VCC=3 V
60
AVO
III

~

"0

I
c
Oro

50

-

........

(!)

~

OJ

DO

2
"0
>

..... ~

40

~""

I

«>
6

30

«>
20

.".

~

,,-

10
10

--

30

-

AVN

r-- ....... .........

50 70 100

300

3 k

500 700 1 k

5 k 7 k 10 k

30 k 50 k 70 k 100 k

f - Frequency - Hz

VOLTAGE GAIN vs. FREQUENCY (P/B AMP.)

80

V~~=3IV\

---

70 " ,

"....--

~

AVO

-

j"""oo.

~

..........

III
"0

I
Oro

~

60

"""

c

(!)

OJ

DO

2

50

"0

>

~

..... ~

I

«>

40

~

6

«>
,/

30

/'

~

i'

~Ioo

AVN
~t--....

r--""
~

t-..."" ~~

............

/'

20
10

30

50

70 100

300

~!'oo

500 700 1 k

--3 k

5 k 7 k 10 k

30 k 50 k 70 k 100 k

f - Frequency - Hz

VOLTAGE GAIN vs. FREQUENCY (REC. AMP.)

80

70

III

"0

t~J3IJ
~

----

AVO-

.......... .......

60

I
Oro
c

(!)

OJ

2
>

"0

«>

40

......., ,.,..~

c5

«>

30

..... ""

""""

'"-

~

50

DO

I

~

./

-

AVN

.....

" """"

....... ......

.........""

/

'/

20
10

30

50 70 100

300

500 700 1 k

3 k

5 k 7 k 10 k

30 k

50 k 70 k 100 k

f - Frequency - Hz

313

BIPOLAR ANALOG INTEGRATED CIRCUIT

,uPC1177H
2-CHANNEL AUDIO POWER AMPLIFIER
SILICON BIPOLAR MONOLITHIC INTEGRATED CIRCUIT

DESCRIPTION

The pPC1177H is a silicon monolithic integrated circuit in a 12-pin single in-line plastic package, designed for audio power
amplifier applications in cassette tape recorders or radio recievers which operate at a 6 volt power supply.
The pPC1177H has two audio power amplification circuits and each of the two provides 1 W output power at 6 V/4 n. In
addition, the pPC1177H provides 3.5 W output power at 6 V/4 n, when it is operated as a BTL amplifier.

FEATURES

•
•
•
•
•
•
•
•
•

High output power. BTL
3.5 W (TYP.) at 6 V/4 n, T.H.D.=10 %
DUAL
1 W (TYP.) at 6 V/4 n, T.H.D.=10 %
Wide operating voltage range. V cc=3.5 to 10 V
No shock noise at power supply switch-over.
Soft clipping wave form.
High ripple rejection ratio. R.R.R.=55 dB (TYP.)
DC-short (pin 1, pin 12 to pin 10) protection circuit.
Excellent low voltage characteristic. LlAvo=3 dB (TYP.)
LlAvo=Avo (6 V)-Avo (3.5 V)
Flat and pierced fin so that an external heat sink can easily be attached.
A 12-pin single plastic package so that can easily be mounted on PCB.

BLOCK DIAG RAM
(External compornents; DUAL amplifier)

r----.--o vee
+

470 J1F

100 Q

s.p

s.P
2.2 Q

20 k.Q

20 k.Q

314

j1PC1177H
PACKAGE DIMENSIONS (Unit: mm)
Typical value unless otherwise noted

30 MAX.

4.0

28

¢ 3.6-2

I

15

I

\

~

~

(

1

.-l

"I

/

~

yu

I

-

I

x

0

-

-

0

R 3.5-2

.1

«

~

0

~

o::i

I

2

3

4

5

6

7

8

9

10

11

L ~

L ~

L ~

LII~

l.J

I r-1

l r1

l ,J

L ~

t

12

L

1

it

LO

I

0

I

+1
LO




I

a

>

40

-

Av

,

l,....o- --~

i'.
"'
r--

30 f - - :VCC=6 V




~

V

Ix

0

0...

I-

r-:

~

CD

I

'c

~

....-

40

0

I

>

«

""--i""---

,"

-

30

6
>

«

T.H.D.(P o =0.25 W)

20

10
0.1

o

10

3

vee-Supply Voltage-V

0.05

10

vee-Supply Voltage-V

VOLTAGE GAIN vs. FREQENCY

70

Avo
60

V'

- r-....

CD
"0

I

50

Au

c
'iii
t!J
Cl)

40

bD

.!3
0
>
I

./

Vee =6 V
RL=4 Q
Po=0.25 W

'""'-

r---

~

..V

"-- ~~

30

«>
6

«> 20
10

50

100

200 300

1k
2k
500
f-Frequency -Hz

3k

5k

10k

20 k 30 k

50 k

100 k

323

,uPC1177H

TOTAL HARMONIC DISTORTION vs. OUTPUT POWER
20
VCC=6 V
RL=4 Q
10

~

I

c:
0

t0

II

tl
CS
u

f=10 kHz ..",

'2
0

E
:x:
'"

---

]

,..."

I

~

0

...,

l-

I 0.5
c:i

f=.l!!--

....: 0.3

f=l00 Hz ____ ~

::x::

./

I

",

./

0.2
0.01

0.02 0.03 0.05
0.1
0.2 0.3 0.5
Po-Output Power-W

TOTAL HARMONIC DISTORTION vs. FREQENCY
VCC=6 V
RL=4 Q
Po =0.25W

~-

'/'

V

L
/

....

0.5
0.3

./

.............

~

...............

./

0.2

]

o

l-

0.1

I
c:i

::x::
....:

0.05
0.03
20

30

50

1CX'

200 300

500

2k 3k
1k
f-Frequency -Hz

5k

10k

20 k 30k

50k

100 k

CROSS TALK vs. FREQENCY
70
VCC=6 V
RL=4Q
P o=0.25W
RG=O

60

.............
50

(ij

I-

~

Ch1-~~

I

.>t!

........

"'

CD
'0

40

!a

0

U
I
t-=

30

"

Ch2!...ch1

,~

""'"

....
i'-- r--.

e,j

20

10

o

20

324

30

50

100

200 300

500
1k
2 k 3k
f-Frequency-Hz

5k

10 k

20 k 30 k 50 k

,uPC1177H

POWER DISSIPATION vs. OUTPUT POWER

only AMP.l
RL == 4Q

~

1.5r--------t~~----+_------~--------~--------~----~~~------~------~

I

c:

o

.~

.~

o
Q)

~

o

a.
I

"0

a.

0.5r--------1·---------r----~~~--------+_--------r_------_+--------~------~

0.5

2.5

1.5

3.5

Po-Output Power-W

POWER DISSIPATION vs. AMBIENT TEMPERATURE
10r--------.--------.-------~--------~------~~------~
Rthj-c==lO'C/W
AI Panel
Rthj-a==18'C/W lOOXlOOXl Use Silicon grease
Rthj-a==53.5 'C/W Free Air
Unit:mm

.~

I

c:

o

:.;::;
------...-----11

FILTER

r--

::::1

,-:

--,

MUTING

L _____

1

~

..J:

<-I-----<0:\+5
I

SEPP

I
I
I
L__

:~.----u:;:l:6

I
1

_ __ .JI

~-~~------~--~--oTAB

R
:\+8

326

,uPC1212C
ABSOLUTE MAXIMUM RATINGS (Ta

= 25

DC)

Supply Voltage

(No Signal)

11

V

Supply Voltage

(Operating)

9

V

Allowable Power Dissipation

W

2.4

-l(.

Operating Temperature

-20 to

70

DC

Storage T em peratu re

-40 to 150

DC

*" 50 x 50 x 0.035 mm copper heat sink on P.C.B.

RECOMMENDED CONDITIONS (Ta

= 25

DC)

Supply Voltage

V CC = 3.5 to 6 to 9 V

Load Impedance

RL

ELECTRIC CHARACTERISTICS (Ta

= 25

=4 n

DC)

Refer to the test circuits Vcc=6 V, RL =4 n, 50 X 50 X 0.035 mm)
( copper heat sink on P.C.B. unless otherwise specified
CHARACTERISTIC
Quiscent Circuit Current

SYMBOL

MIN.

TYP.

MAX.

UNIT

25

mA

No Signal

dB

Po =0.25 W, f=l kHz

dB

Rf=100 n.
f= 1 kHz
Rf=360 n.
f= 1 kHz

ICC

8

15

Open Loop Voltage Gain

Avo

55

65

Voltage Gain (Closed Loop)

Av

41

45

48

34
Output Power

Po

0.7

Input Sensitibity

2.4
1.3
1.0
0.54
0.41
0.22

W

I nput Sensitivity

mV

mV

Po =50 mW
RL =4 n., f=l kHz
Rf= 100 n. (A v =45 dB)
Rf=360 n. (A v =34 dB)

Vi(rms)
2.5
8.9

T.H.D.=10 %
f=l kHz, Rf=100 n.
VCC=9 V, RL=4 n.
VCC=9 V, RL=8 n.
VCC=6 V, RL =4 n.
VCC=6 V, RL=8 n.
VCC=4 V, RL=4 n.
VCC=4 V, RL=8 n.
Po =l W
RL =4 n., f= 1 kHz
Rf= 100 n. (A v=45 dB)
Rf=360 n. (A v=34 dB)

Vi(rms)
16.4
47.4

CONDITION

Total Harmonic Distortion

T.H.D.

0.4

1.5

Output Noise Voltage

NL

0.2

0.8

Supply Voltage Rejection Ratio

S.V.R.

40

55

dB

I nput Impedance

Ri

10

20

kn.

%
mV r .m .s.

Po =0.25 W
RG=O
RG=O, f r ipple=100 Hz
V ripple=0.3 V r . m .s.

NOTE: In case that only a TYP. value is specified, this specification is for helping to design.

327

pPC1212C
TEST CIRCUIT
Fig. 1 TEST CIRCUIT

---VCC=6 V

* Mylar Capacitor
SWITCH POSITION

~

SW1

SW2

SW3

ITEM

Circuit Current

ICC

2

1

1

Open Loop Voltage Gain

Avo

1

2

2

Voltage Gain

Av

1

1

2

Output Power
Total Harmonic Distortion
Output Noise Voltage

Po

1

1

2

T.H.D.

1

1

2

NL

2

1

2

TYPICAL APPLICATION
Fig.2

SINGLE OPERATION

100 J1F

r---------------+----nVCC=6 V

IN 0----1'1---1

SP. 4

lS(

328

Mylar Capacitor

n

,uPC1212C
Fig.3

BTL OPERATION

VCC=6 V
100 JiF

+

INO---H--~

*
1°.068

pF

f20

Po=3.2 W TYP.
at VCC=6

v,

T.H.D = 10 %

16 kn

*Mylar Capacitor

Fig.4

SINGLE OPERATION WITHOUT BOOTSTRAP

r----------~--~VCC=6V

IN Q - - - B - - - {

SP. 4

n

Po=O.2 WTYP.
at VCC=6 V, T.H.D= 10 %

* Mylar Capacitor
NOTE FOR USE
(1) Capacitor Cg is for preventing the parastic oscillation. A mylar capacitor is recommended for this position.
(2) The ground side of C4 , Cg and the loud speaker should be attached at the place of the copper foil close to the tab of
pPC1212C.
(3) Interference noise rejection in a strong electric field can be achieved by adding a capacitor (about 1 000 pF) between
pin 1 and pin 2.

329

w
w
o

~

APPLICATION INFORMATION
Fig. 5

."

n

LOW COST FM-AM RADIO WITH 1.0 W OUTPUT POWER (VCC=6 V)

-l

N
-l

100

..

N

n

AM

nil
1t I

10k

-w.

2.2 k

.AfW-

.J+ ~I J 6 6 ¢:6 J.

~r

°:'1

VCC=6 V

180

::s.
co

100

Ji

AM

+470

Ji

FM
10k

1

33

3.9 k

Jilt

j?022

7fT

Ji

I

SP. 4 0

ANT

75Q~i~P

*Mylar Capacitor

0-

§:;J;

Q1 :2SC1674
Q2:2SC1674
Q3: 2SC1675
o : lS2207

UNIT

RFC
::t

470 k

L1

0.6 mm¢ UEW 2 & 3/4T 5 mmq, (inside) core bobin ANTENNA 3/4T

L2

0.6 mm¢ UEW 2 & 3/4T 5 mmq, (inside) core bobin VCC 1 & 3/4T

L3

IF TRAP 2.2 pH

l4

0.6 mmq, UEW 1 & 3/4T 5 mmq, (inside) core bobin

T1

10.7 MHz IFT.11T : 2 T C=75 pF

L5

ANTENNA COIL 25A-1195-08 (KOHRIN)

Capacitance

F

T2

AM OSC 26-1791-13 (KOHRIN)

Resistance

n

T3
T4

AM 1FT CFZ-455C (TaKa)
AM DET. 5251 (TaKa)

T5

FM DET. 12747 (TaKa)

ls

PHASE SHIFT COIL 7BA180JH (TaKa)

,uPC1212C
P.C. BOARD PATTERN (COPPER SIDE)

C1212
IN

Vce

r--------------,I

1
1

I

L1

:

'I

I
I
I

,

fI

I
I ______________ J I
L

+ C8

-tt-

OUT

---t Ie;

331

jlPC1212C
TYPICAL CHARACTERISTICS (Ta = 25°C)

Fig.6

Fig.7

OUTPUT POWER vs. SUPPLY VOLTAGE

TOTAL HARMONIC DISTORTION vs. OUTPUT POWER
16

f= 1 kHz
ToHoDo=10 %

Vee=6 V
Av=45 dB
Rf=100 n
f=1 kHz

300

~ 12

/
/
1/ /

I

c:
o

t

.B
III
Co)

°c
~

I /

200

nl;j)

RL=302

==I

Id

....
Q)
~
0

:J

.s-

o
I

n

ci

:i
,....:

I
1.0

II

4

I

o

/

h / ,.~
JV V V
-/
V
V
./
V
4

6

/

n

8

10

008

12

POWER DISSIPATION AND EFFICIENCY vs. OUTPUT POWER

100

2
RL=4 n
f=1 kHz

EF. Vee= 705 V

r.-' V

EF. Vee=6 V ~/
I
>Co)

c:
Q)

LiJ
I
La...
LLI

~

~/

/I ~/V
I # ~~

"2
1/1
-,

~/
'.;-

" ".""
.""

~
".-

~

V
./

/

~

:--

--

--

:::
I

-~~91

c:

.g

.",..

I

r--. ~

ro

Co

1

\j::-:t--.

Q)

~

o
c..

~

Pd. Ve(J= 705 V

I
"0
c..

""

Pd. Vee=6 V
I

o~

o

Pd. Vee=9 V

I

o

2

Po - Output Power - W

332

~

£.

~

.",..

...,..,....

/
/I

/

a I .-.-RL=302

n

./

/

Vee - Supply Voltage - V

50
°u
;;:::

/

/./ r

I

I

n.J

Po - Output Power - W

' RL=16

Fig.8

I

RL=4

~

2

n

I

0.4

/

000

/

L

I
/

I I

I
II

/

n

RL=8

'f

I

RL=8

0

c..

nA

I
I

t-

VI 'd
/ I / '!-

:::J

0

r

8

ro

RL=4

/r

c..

/"t:RL=16

ro
:J:

;/

I

I

i:5

3

o

I

1.2

jlPC1212C

Fig. 9

INPUT SENSITIVITY vs. Rf

Fig. 10 VOLTAGE GAIN (CLOSED LOOP) vs. Rf
60

60

50

VCC=6 V
RL=8 n
f=l kHz

V
/'

40

Po at T.H.D.= 10 % 'J.o

Q)

tlO

co

~
>

:;

30

0.

.E

I

c=

">

/

20

10

vV'

n

"0

>

E
I

VCC=6 V
RL=4
f=1 kHz

CD

V'

V

V

V

L

r---.... r--...

I

-a.

00;;;;;;;

0

.5:!

V

"0

40

-- -

r-.. :--

Q)
I/)

0

~J

r-.:.:.. r-- t-- ......

8
c=

.;0
(!)
Q)

tlO

!!

"0

..,V

>

20

I

>

c:(

Po =50 mW '1\
I

~

I

~

0

300

200

100

o

100

Rf-n

Fig.11 QUISCENT OUTPUT VOLTAGE AT PIN 6
vs. SUPPLY VOLTAGE

Fig. 12 QUIESCENT CIRCUIT CURRENT
vs. SUPPLY VOLTAGE

8

30

c:(

6

E
I

>

~:::I

//

I

Q)

tlO

/~

!!

>

:::I

:::I

4

o

[7

l7

V

20

U

"0

-.e

300

200

Rf-O

t----

·5

Y

~

----

C3
~
Q)
u
I/)

~----

Q)

·5
0'

I
u

~

~

~

----

10

9

V
1//

o

3

o

4

8

12

4

5

6

7

8

9

10

Vee - Supply Voltage - V

Vee - Supply Voltage - V

333

pPC1212C
Fig. 13 OPEN LOOP VOLTAGE GAIN, VOLTAGE GAIN vs. FREQUENCY
70

Vee=6 V

Avo
~

./

60

--........ .........

...

......

RL =4 n
Po =0.25 W

~

r-... ...... r-.,

50

.....

~~

III
"0

Av

I
ro

../

40

(!)
Q)

tID

----~

...

.!::

..............

..........

2

~

30

I

>

«

0

«>

20

10

o

30

50

300

100

3 k

1 k

500

5 k

10k

30k

50k

lOOk

f - Frequency - Hz

Fig. 14 TOTAL HARMONIC DISTORTION vs. FREQUENCY
10

l

l

~

I

I

Vee 6 V
RL =4 n
Po=0.25 W

c:
0

:e
~

is
u
·c

v---

2

0

E
ro

V

I

""iii

"0

ci
:i
t-=

i.--'i--'

7
/

~

I

V

I--"

0.5
r;;1""0 I-

___

-~

0.3

V

........

/'

0.2
30

50

300

100

3 k

1 k

500

10 k

5 k

30 k

50 k

100 k

f - Frequency - Hz
~

I

Fig. 15 THERMAL CHARACTERISTICS

c:
0

50

t

2.0

20

~

Vee=6 V
RL =4

is
u

III 45
"0

§ 1.5

I

c:

·ro

0

~ 40

~

I 1.0

2
"0
>

ci
:i

>

;;

I

«

15

(.)

.::;

10

~

(3

t-=

35

E

C
~=:J

"2

(!)

«

I

ro

I

n

f= 1 kHz

·c

I
(.)

I 0.5

!:?

5

t:;::

T. H. D. (Po = 0.25 W)

0

Cl.

30

~

.e=:J

0

I
0

Cl.

334

O

-.9 20

-10

0

10

20

30

40

Ta - Ambient Temperature _·C

50

60

70

,uPC1212C
Fig. 16 OPEN LOOP VOLTAGE GAIN, VOLTAGE
GAIN vs. SUPPLY VOLTAGE
80
RL =4

Fig. 17 TOTAL HARMONIC DISTORTION
vs. SUPPLY VOLTAGE
10

n

RL 4 n
f= 1 kHz
Po=0.25 W

f= 1 kHz
Vo= -10 dBm

70
en

u

I

c

'ro

'*

Avo

60

"......-

I

~

c

o

0-e
o

L?

ti
is

OJ

tlD

.3

(5

>

.~

o

OJ

E

Av

.... -

ro
L?

~
(5

ro
I
m

;§

40

-.J
c

"- .............

0.5

f""--

I

>

0.
0
0

\

u

'c

50

ci
I
30

0.3

r:

OJ

0.

0

I

>


 UEW 2 & 3/4T 5 mmcf> (inside) core bobin VCC • 1 & 3/4T

L3

IF TRAP 2.2 "H
0.6 mmcf> UEW1 & 3/4T 5 ml11.

u

c:

Cl.l

I

V
V~

~

]
W 50
I

I.J...
UJ

IV

~

~

~V
I

o

':10

~

r-:-:-:--

VCC=lO V

VCC=9 V

~

-~~.I./'

V V~~

- ~~K:

-- ":J;}

I

Q)

2

c

Oro

~

(!)
Q)

:::>

00

2

a

-5

20

o

>

I

4

Q)

«>

~
Q)
°5

V

0'

I

~ 2

300

200

100

/

0/

0'

o

/

I

c

V

V

V

/

v

~/

Rf-O

o

4

8

12

Vee - Supply Voltage - V

Fig. 12 QUIESCENT CIRCUIT CURRENTvs. SUPPLY VOLTAGE

Fig.11 INPUT SENSITIVITY vs. Rf
30
VCC=9 V
60

RL=4 n
1= 1 kHz

50

Po ,.

T.H.D.~lV

/

/
V

V

«

E

I

>

"E

I

Q)

00

40

2

a

>
'5
c..

30

E
I

c

">

20

/

/

V

/

20

~
:::>

V

Q

°5
~

C3

...

"E
Q)

~
Q)
°5
0-

--- ----

~

~

-~

~

~

---

--------

10

I
Q

9
10

0

Po =50 mW

-

I

i

100

200

Rf-O

0.-

.--.."

J
300

o
3

4

6

7

8

9

10

11

Vee -Supply Voltage - V

343

JlPC1213C
Fig. 13 OPEN LOOP VOLTAGE GAIN, VOLTAGE GAIN vs. FREQUENCY
70

60

/'
OJ

-'~

V

...

100-

I

c:

~ ....

~

~

~

40

Q)

tlD

2

g
>

, r-...

Av

'iij

I

~'- .....

50

"0

(!)

VCC=9 V
RL =40
Po =0.25 W

Avo
~

30

/~

/ ~"'"

~
~

~,

~

6

>

~

20

10

o

20

30

300

100

50

500

3 k

1 k

10 k

5 k

30 k 50 k

100 k

30 k

100 k

f - Frequency - Hz

Fig. 14 TOTAL HARMONIC DISTORTION vs. FREQUENCY
10

Vee 9 V
RL =40
Po =0.25 W

*
I

c:
0

t

.8
VI

3

i:5

.......

u

'c
0

E

'"

/

:J:

ii'i

.... ~~

1/

" i"o..

I

::c

~

./

~

ci

l,....'

./

~

0.5

!'~

.-;

""- ........

0.3
0.2

20

30

50

100

-

_...

300

/'
L.,.o~ ... ",

500

1 k

3 k

10 k

5 k

f - Frequency - Hz

Fig. 15 TOTAL HARMONIC DISTORTION vs.
OUTPUT POWER
20
Vec=9 V
RL=4 n
10

/

c:

I

t

5

I/,

*
.8
VI

i:5
u

3

E

2

'c0

I

•

I

0

... y
",

f=lO

kH,;., .....

'"

~

"'

,
T

T

J

.-... ....

:J:

ijl kH,

ii'i

~
I

ci

::c

.-;

~!;i'

~

0.5
0.3

JII'

---

0.2
0.01

_........... ...- -""

"...,.,

f= 100 ,Hz

0.03

0.05

0.1

0.3

Po - Output Power - W

344

V

I-"""'"

0.5

2

3

50 k

JlPC1213C
Fig. 16 THERMAL CHARACTERISTICS
55

2.5

25

V

50

2.0
c:(

:;:

co

'0

I
c: 45
'n;
(:J
CIl

E

I

...

CIl

;t

I

'E 15

1.5

~

«£

2

.e

t'4O

cr

.;f

rE

'0

r---

ICC (No Signal)

---------

u

(} 10
I

1.0

VCC=9 V
Rt.,=4 n
f= 1 kHz

Av (Po =0.25 W)

~---

'3

:l

35

1

:l
C,,)

~

bO

",

I

Po (T. H. D. = 10 %)

./

---

20

I

,,--

r--

C,,)

~

0.5

5

~

:.--

-~

~

---~

T. H(. (po=or W)
30

o

o

-20

-10

o

20

10

30

40

50

60

70

Ta - Ambient Temperature -'C

Fig. 17 OPEN LOOP VOLTAGE GAIN, VOLTAGE
GAIN vs. SUPPLY VOLTAGE
80
Avo

co

'0

I

60

~--

c:

'n;
(:J

2
'0
>

I
>
c:(

6

Av

1---

CIl

bO

40

RL =4 n
f= 1 kHz
Po =0.25 W

20

>

c:(

o

4

6

8

9

10

11

VCC - Supply Voltage - V

Fig. 18 AVAILABLE POWER DISSIPATION vs.
AMBIENT TEMPERATURE
3.0 r---r---"~---r----r----r--""""'T'1r--~-----....,
CD Infinit Heat Sink
(2) 50 x 50 x 0.035 Cu
Q) 35 x 35 x 0.035 Cu
2.5 t------1r----t----+---t---+---+-----:~@ Free Air
UNIT: mm
Q) RthO-a)=63 'C/W

:;:

2.0t--.....,---+~--+~-+--+---t_-~--~--~

...I

CIl

;t

«£
:l

.e
:l

o

1.5 t---I----If---f----=lIood-~-+---+--_+_\_-_+--~
@RthO-a)=I00 'C/W

I

rE

1.0 t---I---i~---t---.::,:-t---+----3io~~--_+-__\__+--~

0.5 t---j---+---t---+---+--~~-~~-__Il~-_I

~2~0--~0~-~20--~4O----~6O---80~--1~OO---1~20---14O~~~16O

Ta - Ambient Temperature -'C

345

,uPC1213C
DESIGN OF HEAT SINK
Keep much margin at the design of heat sink.
The heat sink shown the foiling sentence is nessesary when the pPC1213C is operated under next conditions.
10 V

Conditions : Maximum Operating Voltage
Maximum Ambient Temperature

70°C

4il

Load Impedance

There is the equation between junction temperature and thermal resistance.
Tj=Ta + Rth(j-a) x Pd

(1)

Tj

: Junction Temperature

Ta

: Ambient Temperature

Rth(j-a) : Thermal Resistance (Junction to Ambient)
Pd

: Power Dissipation

According to Fig. 8, Pd(MAX.) = 1.42 W at Vee = 10 V
And absolute maximum rating shows, Tj

< 150 °c

From the equation (1) and those values,
Rth (j-a) < 56.3 °C/W

(2)

According to Fig. 18, copper size on P.C.B. satisfying the inequality (2) is 50 x 50 x 0.035 mm.

346

BIPOLAR ANALOG INTEGRATED CIRCUIT

IlPC1218H
0.25 W AUDIO POWER AMPLIFIER

DESCRIPTION
,uPC1218H is an audio power amplifier in an 8-pin single in-line plastic package.
,uPC1218H is composed a BTL power amplifier and a muting circuit, suitable to a tape recorder works at 3 V power supply.

FEATURES
• High output power.

0.25 W (TYP.) VCC =3 V, RL =8 ohms

• Low voltage operation.

V CC = 1.8 to 3 to 5 V

• A muting circuit is built in. Connect pin 7 to GND.
• No shock noise at power supply switch on and off.

CONNECTION DIAGRAM

PACKAGE DIMENSIONS (Unit: mm)

No.

2.8±0.2

19.5 MAX.

C 1

x
-< x
~
-<
.......

8

c.O

~

Input

2

NFB

3

High Cut

x

4

Output 1

~
00

5

GND

6

Output 2

7

Filter & Muting

8

VCC

-<

LO


0.4

~V

,

~ 20

«
0.2

o

o

5

4

3

2

10

~V
/V
T.H.D.CPo=20 mW)-

Itt'

",V
"

o
o

0

6

/~

PoCT.H.D.= 10 %)

2

"0

f

0

1/

c:

c..
~ 0.6

I"

/

ICC

::2
0.1

co

0

.,V

<.,)

:3-

3:

E 0.8 ~ 40

40

:J

<.,)

I

Av

~

tID

I

50

1.0

E

~::J

~

RL=8 n
f= 1 kHz

50

E

<.,)

60

«

«

I
c:

1.2

RG=O

2

4

3

5

6

vee-Supply Voltage-V

Vee - Supply Voltage - V

VOLTAGE GAIN vs. FREQUENCY

8

80

Vee=3 v
RL=812
Po=50 mW

.....

Avo ~

70

~

60

co

v

"0

I
c:

·ro

./

50

~

tID

40

"

Av

"'"

CIl

2

~

6
,~

5
I-

~

4

I

t...-~

"0

>

7

II

I

0

30

«;;:;
«

20

;;>

V

~
I
c:

.-e0

E
III
0
U
·c
0

§
C\l

3

/

:r:
ro

(5

I-

2

I

c::i
I

T.H.D.
10

.....:

o

10

30 50

100

300500 1 k

0

3 k 5 k 10 k

30 k50 k 100 k

f - Frequecy - Hz

TOTAL HARMONIC DISTORTION vs.
OUTPUT POWE R
~

OUTPUT POWER vs. POWER DISSIPATION

1.2

100

Vee 3V
RL 812

50

RL =8

I

§

1.0

30
I

:;:;

S

3:
I
c:

is

10

:;:;

·Eo

5

·Vi

§

0

0.8

./

C\l

0.

3

f---

f= 10 kHz

C\l

III

7

./

:r:
ro

~=100

(5

I
HZ,l kHz

0 0.6
....CIl
~

0

c.. 0.4
I

I-

0.5

I

0.3

V

V

'/

V

/

"0

~

-

.,...,.
lJ

c..

""

~

".".,

,7

V

--

~2

Vee=5 V

Vee=4 V

Vee=3 V

0.2

.....:

0.1
10

3

5

100

3

5

1000

Po-Output Power-mW

o

0.2

0.4

0.6

0.8

1.0

1.2

Po - Output Power - W

349

BIPOLAR ANALOG INTEGRATED CIRCUIT

,uPC1221C
1 W AF POWER AMPLIFIER WITH PRE AMPLIFIER
AND ALC CIRCUIT
SILICON BIPOLAR MONOLITHIC INTEGRATED CIRCUIT

DESCRIPTION
The pPC1221C is a silicon monolithic integrated circuit designed for an audio power amplifier application at 6
volts power supply.
The device contains a high gain low noise preamplifier, an automatic level control (ALC) and a high gain low
distortion power amplifier.
The perfect audio circuit of a cassette tape recorder is obtained with the device.

FEATURES
•

All functions of a preamplifier, an ALC circuit and a power amplifier are encapsulated in a 14-pins dual in-line
package with heat sink TAB.

•

Low noise, especially low pulsive noise.

•

Power amplifier stage has high gain, high output power and low distortion characteristics.

•

Preamplifier stage has high gain and low distortion characteristics.

•

Wide ALC range: output voltage change 1.5 dB TYP., ALC range 60 dB TYP.

•

Wide supply operating voltage range: Vcc=3.5 to 9 V.

•

Low spurious radiation when driven to output clipping level.

BLOCK DIAGRAM
PRE
INPUT

ALC
INPUT

R.P.HEAD
BIAS &
FILTER

FILTER

Vee

POWER
OUTPUT

TAB

4
GND

350

PRE
FEEDBACK

PRE
OUTPUT

ALC
OUTPUT

POWER
INPUT

POWER
FEEDBACK

j.lPC1221C
PACKAGE DIMENSIONS AND CONNECTION DIAGRAM (Top View)
in millimeters (inches)
14

9

8

3
4
5
6
19.4 MAX.(0.763 MAX.)

7

13

12

10

11

R1
(R-0.039) "--'>..c-t+- _ _ _ _ __

2

762(0300)

I

24.6 MAX.(0.968 MAX.)

6.5(0.256)

i

I
I

0.5±0.1 MAX.
(0.02 MAX.)

~t-­
(0.047)

1

0.3~g:65 - I

( 0.012)

2.5412.54

~

\

\

J

--

\
\

1

I

8.4± 1.5
0.33

4.44(0.175)

I

(0.100) (0.100) 4.96
f---co.195)

Pin No.

GND

Pin No.

ELECTRICAL CONNECTIONS

8

Power; Output

9

Power Supply VCC

2

Pre.; Feedback

3

Pre.; Output

4

ALC Output

11

Filter
R.P. Head Bias & Filter

10

Boot Strap

6

*

12

Power; Input

13

ALC Input

7

Power; Feedback

14

Pre.; Input

5

*

ELECTRICAL CONNECTIONS

1

Pin 5 is terminal to reject radiations in strong electric field.

351

j.lPC1221C
ABSOLUTE MAXIMUM RATINGS (Ta=25 °C)
Supply Voltage (DC)

VCC1

13

V

Supply Voltage (AC)

VCC2

9

V

Circuit Current

ICC (peak)

Package Dissipation

Po

A
2.4*

W
°c
°c

Operating Temperature

T opt

-20 to +75

Storage Temperature

T stg

-40 to +125

* Mounted and soldered on a 50 mm x 50 mm
copper foil of a printed circu it board (X X X3 grade).

RECOMMENDED OPERATING CONDITIONS (Ta=25 °C)

6

Operating Supply Voltage

V

3.5 to 9 V

Supply Voltage Range

ELECTRICAL CHARACTERISTICS (Ta=25 °c, Vcc=6 V, f=1 kHz, NAB, RL(pre) =10 kil, RL(power)=4 il)
CHARACTER ISTIC

SYMBOL

MIN.

TYP.

MAX.

UNIT

25

40

mA

TEST CONDITIONS

[OVER ALL CHARACTERISTIC]
Circuit Current

ICC

10

Output Power

Po

0.8

No Signal

1

W

VR-MAX. T.H.D.=10 %

1.0

2.0

%

VR-MAX. PO=0.5 W

Total Harmonic Distortion

T.H.D.

Output Noise Level

NL1

9

20

mVr.m.s.

ALC Characteristic

ALC1

1.5

9

dB

Vi=-70--40 dBm, RL'=56 n

ALC Range

ALC2

60

dB

T.H.D.;:;:; 3 %, RL'=56 n

65

dB

RL(pre)=10 kn, VO=0.3 Vr.m.s.

-

Using P. head as an RG.
VR-MAX.

[PRE AMPLIFIER STAGE]
Open Loop Voltage Gain

Avo1

55

Voltage Gain

Av2

30.8

dB

Maximum Output Voltage

VOM

0.5

0.7

Vr.m.s.

Input Impedance

Ri1

18

27

kil

Open Loop Voltage Gain

Avo2

63

70

dB

Voltage Gain

Av2

44

NAB, VO=0.3 Vr.m.s.
RL(pre)= 10 kil, T.H.D.=1 %

[POWER AMPLIFIER STAGE]

dB

NL2

Ripple Rejection Ratio

R.R.A.

40

50

dB

Ri2

15

25

kn

Input Impedance

352

46

Output Noise Level

0.4

2.0

mVr.m.s.

PO=50 mW
PO=50 mW
VR-MIN. (RG=O)
RG=O

J,lPC1221C
TEST CI RCUIT

Vcc=6V

150Q

RL
56Q

JL

PC1221C

7.: Polyester Film

Capacitor

f

4.7:
J.lF

SG
f= 1kHz
RG=600Q

ITEM
ALL

ICC
Po
T.H.D.
NL
ALC

PRE

Avo
Av
Vorn

POWER

Avo
Av
NL
R.R.R.

SW1

SW2

SW3

SW4

SW5

SWS

SW7

SWa

OFF
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON

1

2

OFF
OFF
OFF
OFF
OFF
OFF
OFF

2

ON

1

OFF
OFF
OFF
OFF
OFF
ON
ON
ON
OFF
OFF
OFF
OFF

1

2

OFF
OFF
OFF
OFF
OFF
ON
OFF
OFF
OFF
OFF
OFF
OFF

2
2
1
2

2
2
1

1
1

2
2
2
1
4
4
4
3
3
4
4

OFF
ON
OFF
OFF
OFF

2
2
2

1
2
2
2
2
2
2
2

1
1
1

1
2
2
2
2
2
2
2

353

CA>

01

~

~

""tI

("")
";.,,l

N
N

MPC1221C TYPICAL APPLICATION

";.,,l

(')
S2

+
220

).IF

@
-----------

®

-----l

-:I

R.

~

6V

......l.-

I

I

MIC JACK

ur·

1000).lF 1+

.....-----b@
MONITOR
JACK.

Filter

P
Ss

(2)

(]
22kQ

1

56Q

SP4Q

100Q

1000
pF

I nsurt a capacitor (about 1000 pF) between pin 5 and pin 14 when the JlPC1221 C is affected by radiations in strong
electric field.

7.(

Polyester Film Capacitor

j.lPC1221C
CHARACTERISTICS
TOTAL HARMONIC DISTORTION vs.
OUTPUT POWER

TOTAL HARMONIC DISTORTION vs.
OUTPUT VOLTAGE

(POWER AMPLIFIER STAGE)

(PRE AMPLIFIER STAGE)

10

Vee 6.0 V
RL(pre)-10 kQ

5
~

~

3

I
0
'';:::;

RL(Po)

I

I
I

c

c
o

20

1/
r-----

~

10

i:5

0.5

.~

c

r - - t;;.,f

:"\

<.)

5

r-. \f-< 'f'~'ioo

0.3

0

§

r~

ro
I

0.1

ro

"0

I-

J-

r=f

1\

!I

/'p

~

10 kHz

1

ro
I

.....

2

......... "

.I

I

0.5

d

:i
~

0.01
0.01

0.03 0.05 0.1

0.3 0.5

0.2
0.1
0.01

3

Po - Output Power - W
OUTPUT NOISE LEVEL,
TOTAL HARMONIC DISTORTION
vs. SUPPLY VOLTAGE

OUTPUT POWER, OUTPUT VOLTAGE GAIN

vs. AMBIENT TEMPERATURE
(PRE AMP. + POWER AMP.)

(PRE AMP. + POWER AMP.)

20
Vee =6 V
2

f=l kHz
RL(P0=4 Q)
T.H.D.{Po =0.1 W)RL(Pre)=10 kQ
NAB

J I

0

a

~

>
E

1/t;.A u

I

I

.....

~
0

-2

I

I

Po{T.H.D.= 10

c..

%)

/

.... 1.0

-

:l

b.O

~
0
0
I
>
-4
0
I
c..
;,

:l

4:

CD

en

C

10

Z

:i

ro

I

z

20

40

60

80

Ta - Ambient Temperature - "C

I
ci
:i

.... /

/'

£--

.....

0.5

~

-6

o

~/

'0

5

...J

o

1.0

I-

:l

-20

§
ro
I

.e-



I

1.4

-

r--

j

1.0
0.8
0.6

/

I

/

60

II

E

....cI

~
:l

40

/

/

U

0.4

:;

0.2

C3

a

I

.r-

;:,

4:

/
II

Au(uo =-10 dBm) /

80

4:

1.2

Po(T.H.D.=lO %)

RL(Po)=4 Q
RL(Pre)=10 kQ
NAB

20

I

V

V

./

V

lee{No Signal)

.J. /

~

1-0
~

a

2

4

6

8

10

Vee - Supply Voltage - V

355

ttPC1221C

VOLTAGE GAIN vs. FREQUENCY

IIIII

VCC=6 v
Rt.(P o)=4 Q
Rt.(Pre)=lO kQ
Po=50 mW(Pre+Po )

90
80

~r!~~~
. /r-f.(.

~oA=BO.3 vr.m.s.(Pre)/

m

"0

70

I

c:
.iii

I--

~

i'r-.

60

(,!)
Q)

tlO

50

g

40

~

I

;:,

i/

30

«

Vi-"

V

Po

--""

'" II
Pre

-i""'-~

-r--- 1"- ....

-r-.

20
10
10

50

20

100 200

500

1 k

2 k

5 k 10 k 20 k

50 k 100 k

f - Frequency - Hz

TOTAL HARMONIC DISTORTION vs.
OUTPUT POWER
(PRE AMP. + POWER AMP.)

~

Vee 6 V
R L(Po)-4 Q
R L(Pre)=10 kQ

50

I

g
t:
.E
en

I

u

f=100

10

:e
.E
en

-

'c0

--~-

E
ro

~nt

o

f

0.5

...,:

ro

0.2

0.5

2

5

10

m

"0

I

:;:;

Q)

0

E
en

3 tlO
c:
ro

10

~

0

C,,)

u

Q)

'c0

E
ro

Vee=6 V
f=l kHz

E

I

tlO

ro

2

~
>

0

.....
::l

:::I:

ro

.s-

I-

0

o

::l

~ -10

I

d

~
-20

\
\ ,..\ I
\/
Ii\.

Vo

.....

IH.D
~

V

-90 -80 -70 -60 -50 -40 -30 -20 -10

Vi - Input Level - dBm

356

Q

ALe range

/ \....

I

0

RL(Po)=56

,

c:(

::C
...,:

2

-

~

50

100

200

0

/

V

~

I-oo~

"'500

1 k 2 k

f - Frequency - Hz

Output Power-W

20

/

\
\\

::C
...,:

T.H.D., ALC OUTPUT VOLTAGE CHANGE vs.
INPUT LEVEL

c:

I

V

\

\

4

I

Po -

~

6 t-po =0.1 W

l-

0.2

I

~

0

1 kHz

d

0.1
0.010.02 0.05 0.1

4

.",Po =0.5 W

:::I:

d

::C

8

u

I

1<,

./
-~- ;..or--:

2

ro

I

NAB

c:

H~,

I"

:::I:

l-

Q

RL(Pre)=10 kQ

10

C

5

o

E
ro

Vee=6 V
RL(P o)=4

0

C

'c

(PRE AMP. + POWER AMP.)

~

NAB

20

TOTAL HARMONIC DISTORTION vs. FREQUENCY

5 k 10 k 20 k

50 k 100 k

BIPOLAR ANALOG INTEGRATED CIRCUIT

,uPC1263C2
DUAL AUDIO POWER AMPLIFIER

DESCRIPTION

The pPC1263C2 is a dual audio power amplifier in a 14-lead dual in line plastic package, and designed for portable audio sets.
FEATURES

•

Wide operating voltage range. Vee = 3 to 16 V

•

High output power.

Po =2 Wat 12V/Sn/10%
Po = 1.6 W at 9 V / 4 n / 10 %
Po = 1.2 W at

9V/ S

n / 10 %

Po = 0.7 W at

6 V /4 n / 10 %

Po = 0.5 W at

6 V / S n / 10 %

Po = 50 mW at 4.5 V /32 n / 10%
(Vee / RL / T.H.D.)
•

High ripple rejection ratio.

R.R.R. = 50 dB

•

Low quiescent current.

Icc = 1 0 rnA

•

Easy assembly so that two power amplifiers are built in a package.

PACKAGE DIMENSIONS in millimeters (inches)
14

13

12

11

10

9

8

R1
(R 0.039) - > r i + - - - - - - - - - - - - --t+------+-

2

3
4
5
19.4 MAX.(0.763 MAX.)

6

7
762(0300)

24.6 MAX.(0.968 MAX.)

6.5(0.256)

0.3:g:~5-:

(0.012)

I

V

\

\

J

-

~

I

f
8.4± 1.5
0.333)

357

,uPC1263C2
ABSOLUTE MAXIMUM RATINGS (Ta

= 25°C)
RATING

UNIT

Supply Voltage (No Signal)

SYMBOL
VCC1

18

V

Supply Voltage (Operating)

16

V

2.4 *

W

Operating Temperature

VCC2
PD
T opt

-20 to 70

Storage Temperature

T stg

-40 to 150

ITEM

Allowable Power Dissipation

°c
°c

* 50 X 50 X 0.035 mm Copper heat sink on PCB.

RECOMMENDED OPERATING CONDITIONS (Ta
ITEM
Supply Voltage (AL=16

n)

= 25°C)
MAX.

UNIT

3

16

V

SYMBOL

MIN.

VCC (16)

TYP.

Supply Voltage (RL=8

n)

VCC (8)

3

13

V

Supply Voltage (RL=4

n)

VCC (4)

3

9

V

Load Impedance

RL

4

8

n

Voltage Gain

Gv

34

44

dB

MIN.

TYP.

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

(Vcc=9 V, RF33 [2, f=1 kHz, RL=8 [2)
ITEM
Circuit Current

SYMBOL

MAX.

UNIT

ICC

10

mA

No Signal

Gv 1

44

dB

Po =0.25 W, Rf=33

Gv2

34

dB

Po =0.25 W, Rf=120 n

Pol

2

W

VCC=12 V, RL=8

P02

1.6

W

VCC=9 V, RL=4 n, T.H.D.=10 %

1.2

W

VCC=9 V, RL=8 n, T.H.D.=10 %

P0 4

0.7

W

VCC=6 V, RL=4 n, T.H.D.=10 %

P0 5

0.5

W

VCC=6 V, RL=8 n, T.H.D.=10 %

P0 6

50

mW

T.H.D.1

0.8

%

Po =0.5 W, Rf=33

T.H.D.2

0.4

%

Po =0.5 W, Rf=120

Output Noise Voltage

NL

0.6

mV r .m •s.

Ripple Rejection Ratio

R.R.R.

50

dB

Cross Talk

C.T.

55

dB

RG=O, Po =0.25 W

dB

Po =0.25 W

Voltage Gain

Output Power

P0 3

0.9

TQtal Harmonic Distortion

358

CONDITIONS

Cbannel Balance

Ch.B.

Input Impedance

Zin

-2

0
5

2

Mn

n
n, T.H.D.=10 %

VCC=4.5 V, RL=32 n, T.H.D.= 10%

n
n

RG=10 kn
RG=O, f(ripple)=1 00 Hz,
V(ripple)=0.3 V r .m .s.

tlPC1263C2
BLOCK DIAGRAM

r------@-----

---.-@)---- - - - - - ,
I

I

I

I

...---------{ 9
13~----I
"">-----~8

12~-----1

TAB

14

5
2

I

3

I

I
I

I
I

I

I

L ___

_J

CONNECTION DIAGRAM
PIN NO.

CONNECTION

PIN NO.

CONNECTION

1

Filter

8

Output 1

2

Input 2

9

Bootstrap 1

3

NFB2

10

VCC

4

Compensation 2

11

Compensation 1

5

Bootstrap 2

12

NFB 1

6

Output 2

13

Input 1

7

NC

14

GND

TAB

GND

359

JLPC1263C2
TYPICAL APPLICATION
r-------------~----~--------OVCC
I

t2

+ Cs

I C7
....L..:

lO.IPF
C2 (Ce)

r--~
I 22

1----

C4

~

--------+-----~-----.

pF

I

I
I

SP 1

I
I

TAB

I

I

:
I

I
L __

100

pF

:
1

Cll (Ce)

C13

,---1 r----+--~+t:::I------,
22 pF

0.1 :F

~

220 J.lF

12

SP 2

4

*Mylar Capacitor

NOTE FOR USE
(1)
(2)
(3)
(4)

360

Mylar capacitor is recommended as C4, C12.
Add C2, C11, in the case of reducing voltage gain at high frequency.
Add C7 or increase capacitance of C4, C12, when a oscillation may occur due to the pattern on PCB.
Voltage gain can be changed by value of R1 , R3.

,uPC1263C2
TYPICAL CHARACTERISTICS (Ta =25°C)
CIRCUIT CURRENT

VS.

SUPPLY VOLTAGE

OUTPUT POWER vs. SUPPLY VOLTAGE

2

50

RL=4

~

Q

7 IJ

RL =8

30

II

:;
u
RG=O

'3

~

I)
IV V
)V
7/ v . .

.e
:::l

20

U

:::l

I

l/

u

9

10

i.-- ~

~

V

V

o

V

I

8

4

16

12

8

4

5

2

50

4

"

40

~

I
c
0

CD

t

"0

'n;

30

3

C!)

RL=8

Q)

bO

2

-0
>
I

0

u

V o=0.3 Vr.m.s.

~

~

'c
0

Q

f=1 kHz
Rf=33 Q

20

2

E
ro

::I:

Iii

0

C!)

I

30

C!)
Q)

bO

2

-0
>
I

20

;0

C!J

I

ci
:::C

10

8

10

~

\

16

12

I

............. Gv
...........

8

bO

2

6

0

.....c:
Q)

Q)

4

:::l

0'

I

U
0

~

2

0

u

'c0

E
ro

Iii

0

\

I

ci
:::C

"' .................

...,.:

IH.D.

100

200

MAXIMUM POWER DISSIPATION

5

Q)

'13

--

~

0

vs. SUPPLY VOLTAGE

10

~
'5
0.
'5

-

Rf-Q

aUECIENT OUTPUT VOLTAGE vs.
SUPPLY VOLTAGE

I

"""-- """--

t

l-

vee-Supply Voltage-V

>

c:

0

\

o

20

~

::I:

...,.:

IH.D.

4

'"

"0

c:
'n;

Vo = 1 Vr.m.s.

~

CD

l-

o

RL=8 Q
f=1 kHz

.~

-- --

Gv

20

TOTAL HARMONIC DISTORTION,
VOLTAGE GAIN vs. Rf

50

I

16

12

vee-Supply Voltage-V

VOLTAGE GAIN vs. SUPPLY VOLTAGE,
TOTAL HARMONIC DISTORTION

I
c

Q

V

...

o

20

vee-Supply Voltage-V

40

I

~L=32

/
/

v

/'

/
o

/

JIf /

o

a..

%

Q

V7

E
I
~

I

I

40

c:

f=1 kHz
T.H.D.=10

I

V
/
4

V

V

V
VRG=O

V

v

::
I

c:

:3ro

4

0.

'iii

II)

i5

t

~
0

3

a..
E
:::l
E

'x
ro

I

2
RL=4

~

I

~

'i5'
a..

vee-Supply Voltage-V

16

20

j

V

RL=8

~

12

II

VV
17:I7 v""

X

8

QJ

[,7
Q

./

V RL =32

Q

./

0

~ ~V
4

8

12

16

20

vee-Supply Voltage-V

361

jlPC1263C2·
VOLTAGE GAIN, TOTAL HARMONIC
DISTORTION vs. FREQUENCY

60

II

50
I

c:

'(!)
co
bO

30

I

20

::>

Vee=9 V
RL=8 Q
Rf=33 Q
Vo = 1 Vr.m.s.

)1

>

(!)

't---.
10

30

~

~~
'< /)f:'~

<:::-./00

:e

4

0

3

1'-.

2

),..-'J..

50

o
3 k

5 k

10 k

0

I

-j..

1k

:::c
ro
c::i

11 I
300 500

E

l-

V

100

~

0

.2
c:

./

T.H.O.

0

ro

/),.c-

i"--""

t---

o

dB~ol
~- t-t-.l

t'-t--,

vY

Q)

.e
<5

5

c:

Gv

U. 1--"....- r-~[J1
V Co =47 J.lF

40

~

I

III

e~='2do' ~~

>

6

:i
..-;

30 k 50 k

F-Frequency-Hz

PACKAGE DISSIPATION vs. AMBIENT
TEMPERATURE

TOTAL HARMONIC DISTORTION

vs. OUTPUT POWER

~

30

,

I
c:

o

~

~

10

u

5

o
'c
o

E
ro

:::c
ro

o

Infinite
Heat Sink

;:
I

~.

2

c.

.~

3
\",,\Q

1

I-

~ 0.5
:i 0.3
..-;

-I-""

0.01

'f-~"L.- 1--'":'--

0

"
~

\""

1.5

Q)

bO

ro
..:.::
u
ro

\",,\~"L

UNIT:mm

0-

I

\ 'f-'r\"L

Cl

0-

0.5
0.03 0.05 0.1

0.3 0.5

Po-Output Power-W

3

5

a

25

50

75

100

Ta-Ambient Temperature-'C

362

Fig.A

Vee 9 V
RL 8 Q
Rf=33 Q

125

150

BIPOLAR ANALOG INTEGRATED CIRCUIT

pPC1277H
4.2 W DUAL AUDIO POWER AMPLIFIER

DESCRIPTION
The pPC1277H is a dual audio power amplifier designed for a stereo radio cassette and in a 12-pin power single in line plastic
package.
The pPC1277H has two audio power amplifiers and each of the two provides 4.2 W output power at 12 V /4 ohms.

FEATURES
• High output power.

4.2 W /ch (TYP.)

Vee = 12 V, RL =4 ohms

5

W/ch (TYP.)

Vee = 12 V, RL =3 ohms

2.2 W/ch (TYP.)

Vee = 9 V, RL =4 ohms

3

Vee = 9 V, RL =3 ohms

W/ch (TYP.)

• Wide operating voltage range.

Vee = 5 to 16 V

• No shock noise at power supply switch on and off.
• Soft clipping wave form.
• High ripple rejection ratio.

R.R.R. = 50 dB (TYP.)

• Few external components.

12 parts

• Thermal shut'down circuit is built in.
• A 12·pin power SIP can easily be mounted on PCB and a external heat sink can easily be attached.

BLOCK DIAGRAM
r--------------~-------~

~11:4l

~

I
16

IN1

47 J-lF

+

Vee

10

Filter

3
2

1
15

1
1

RL

I1

0

12h

I
17

1
I

IN2

111

I
1

I

0.068 PF

Thermal
Shut Down

1L _______________________ 1
~

I
363

,uPC1277H
PACKAGE DIMENSIONS

in millimeters (inches)

CONNECTION DIAGRAM

(0.196 MAX.)

U

Pin No.

Connection

1

GND (Input)

2

Output 1

3

Boot Strap 1

4

Filter

N~--IJ"--~

5

NFB 1

~~
~~~---.sCTl-L_
..__

6

Input 1

7

Input 2

8

NFB 2
Boot Strap 2

9
10

4

(0.0118)

0.75±0.1
(0.0295)

VCC

11

Output 2

12

GND (Output)

ABSOLUTE MAXIMUM RATINGS {Ta~25 °C}
Supply Voltage (No Signal)

VCC1

Supply Voltage (Operating)

VCC2

16

Allowable Power Dissipation

Po

13*

Operating Temperature

T opt

Storage Temperature

T stg

20

-20 to +75
-40 to +150
3

* 100 x 100 x 2 mm AI heat sink
RECOMMENDED OPERATING CONDITIONS (Ta

=25°C)

Supply Voltage

5 to 12 to 16

Load Impedance

3 to 4 to 8

V
ohms

ELECTRICAL CHARACTERISTICS
(
CHARACTER ISTIC
Circuit Current
Voltage Gain

SYMBOL

MIN.

TYP.

MAX.

UNIT

ICC
Av

20

45

90

mA

42

45

48

dB

Po 1

1.8

2.2

W

Po2

2.5

3

W

Po3

3.2

4.2

W

Po4

4

5

W

Output Power

364

VCC = 12 V, RL =4 ohm, f= 1 kHz, Ta =25 °C,)
100 x 100 x 2 mm AI Panel Heat Sink

Total Harmonic Distortion

T.H.D.

0.2

1

%

Output Noise Voltage

NL

0.6

2

mVr.m.s.

Cross Talk

C.T.

45

55

Channel Balance

Ch. B.

-2

0

Ripple Rejection

R.R.

40

50

dB

Input Impedance

Zin

30

50

kohm

dB
+2

dB

TEST CONDITION
No Signal
Po =1 W
T.H.D.=10 %
VCC =9 V, RL =4 ohm
T.H.D.= 10 %
VCC =9 V, RL =3 ohm
T.H.D.= 10 %
VCC =12 V, RL =4 ohm
T.H.D.=10 %
VCC=12 V, RL =3 ohm
Po =1 W
RG = 10 kohm
Po =1 W
other ch. RG = 10 kohm
Po =1 W
RG=O, f=100 Hz
v=0.3 Vr.m.s.

,uPC1277H
TEST CIRCUIT

"""--0 Vee

SWITCH POSITION
(AMP 1 : TEST)

ITEM
Circuit Current
Voltage Gain

SYMBOL

SW 3

SW 1

SW 2

ICC

2

2

1

Av

1

1

1

Output Power

Po

1

1

1

Total Harmonic Distortion

T.H.D.

1

1

1

Output Noise Voltage

NL

2

1

1

TYPICAL
APPLICATION
47 ~F

+

+

vee

1 000

~F

OUT 1
INl
IN2

"1

eg *
0.068

OUT 2

*Polyeater Film Capacitor

TYPICAL PCB
(COPPE R SI DE)

0

0

365

,uPC1277H
TYPICAL CHARACTERISTICS (Ta = 25°C)

POWER DISSIPATION vs.
OUTPUT POWER

PACKAGE DISSIPATION vs.
AMBIENT TEMPERATURE
24
~

10
AI Panel t=2 mm
Silicon Grease

20

\

I

,g 16

~

C'J

\

cm 2
"'- ~OO
........ ~

0.

·iiI
Ul

Ci 12
100 cm2

Q)

be

~

, ,
'","'- '~, \
\
- r-- r-- -"'-r- "

~

&8

C'J

0.

"\

\

·iii

Ci
~
0

o
a.. 4

a..

........

~ee Air

o

20

~

4

I

........

0

a..

~

I

....

/
1/

6

a..

T.H.D.=lO

5

%/

~
0

Ul

I

/

366

8
10
12
14
Vee - Supply Voltage - V

16

"0

I 40
c:

.(ij

Q

f=1 kHz

468
Po - Output Power - W

10

12

lee(Vi=O)

I

V

(!)

·5

~

Q)

2

30
A v (PO=O.1 W)

(5

u
0.8

a:J

>

I 40

u
...Y

0.4

30

o

20

I 20

~
10

T.H.D.(PO=O.1 W)

t-=

/.. ~

6

Vee=12 V
RL =3 Q

f--

V
4

:: 50

ci

//

o

~:::l

~ 1.2

I

/ V

/

1.6

l-

I /

2

2

50

70
E
I
<:60

o
·2

~

/ //

VV

3

!,Vee=16V
RL =4 Q

Vee = 12 V

~

C'J

II

4

a..

"-

60

80

2.0

:r:

=4 Q
II I/RL
T.H.D.=l0 %-

0.

0

.8
Ci

V

RL =3 Q

a

I

c:

/ J

~

,

RL =4 Q
f = 1 kHz

.Q

/ /
V

Q)

~

*-I

)

~

I"

SUPPLY VOLTAGE CHARACTERISTICS

2.4

7

Vee=16 V
RL =3 Q

2 ch Action

OUTPUT POWER vs. SUPPLY VOLTAGE

8

.............

160

f = 1 kHz

9

l"-

....... ~

RL =4

0

10

..............

"'" "'"

2
140

---

I - --r-....
//
II ,/" - - ...........
'II - ..........
r/

~~

40
60
80
100
120
Vee - Supply Voltage - V

/'"

...........

Q;

.......

I

6

Ul

\

J

/'

./"

c:

a
...,.

Inflnlt
I
Heat Sink

.....

8

I

.r. I

V

18

6

8
10
12
14
Vee - Supply Voltage - V

16

18

j.lPC1277H

VOLTAGE GAIN, TOTAL HARMONIC
DISTORTION vs. FREQUENCY

70

1.4
Vcc= 12 V
RL =4 Q

60

CD

50

-0
1

\

\
\...............
~ 30 /1\

~

tlD

>

\

20

V

t\

50

I~,·~

--

I'-....

10

30

o

0.8

V

o

0.6 ~

(I]

(5

.....

'J

0.4

1

o
I

0.2 t-=

ml
11

1 k
f - Frequency - Hz

300 500

100

0

·c

E

J

\

1

.~
Vi
6

V

(I]

>

1.0

I

1

« u20
!::?

T.H.D.
........... r'
(PO=l W) _ ~

I

2:

~

AV

Po
(T.H.D.=lO %)

o

/11

f= 100 Hz

""""-.

F40

(I]

>

...........

«

c.!)

1

;§ 0.4

I

.-

o

::;
o

(I]

Cil

c



~1.4

~ '; 70

Ta -

Ambient Temperature -

~ + 40

4

Q)

.

>

Cl

I

Cl

30

° ~ 30

20

;:, a:

'-V

o

....

I
6

Supply Voltage -

8

10

V

- , ......

/V
Po

I

~ 50

~

0
> 40

;:,

YOM

/
II"

/

L

Po ~ 50 Imlyj ~ ~ro + P~)
V o =0.3 V( Pro), NABVCC=6 V

V- - -........

CJ

«

,

L,

Ii

0

I

80

60

lOW

'C

III

co

I

E

Pre+~o

90

c

5W

VOLTAGE GAIN vs. FREQUENCY

100

"0

I

80

60

40

I

o

CJCl

0
20

3W

1.8 f= 1 kHz

RL( PRE) = 10 kQ
I 1.6 RL( Po) =8 £2

80

10

0...>

o

IW

Vcc=6 V
90

_0.

u

.5:?

I

I

-20

300500

100

g,
I 0.8 RL(Pa) =8 Q

+-

/~

I

f-

100

L~li

I

0

~

11

V

'"

~~II~./~~l/m'l~r!Hm~

0.1

II II

Hz~

0.3

I

o

~

0

-10 kHz

I

120

0

----- r - r
f--l kHz

Vcc=6 V f-lRL(Po)-=8£2

IIIII

- - -t-

0
(j)

--c----

~-+-++++++---10+0-HZ- r/

r,Y ! f

c

--r

,
/[

III
1O,-k~Z

3

f - --. -.

30
20

/V ""~,...

"

~-~t

~

Pre

-I'-- ......

10

o

30

100

10k

lk

f - Frequency -

lOOk

Hz

371

,uPC1350C

TOTAL HARMONIC DISTORTION vs. FREQUENCY
(PRE AMP. + POWER AMP.)
P~~50

mV

50

f-Vc~ -'c Sv
30 f-pLAY

PLAY

c:

.g

,/
I!

10 \

c:
o
.~

o

en

10

o

B

.~
o

TOTAL HARMONIC DISTORTION vs.
OUTPUT POWER
(PRE AMP. + POWER AMP.)

en

3
~

E
~

\

:r:
(ij

;§

./

B

5

.§

3

~'I

10\kHz~/

o

/~

!:
ttl

:r:

"11:::::_

(ij

(5
l-

o

~

~

1k

300

100

3k

30k

10k

0.1

f - Frequency - Hz

1 kHz

10

3

30

TEST CIRCUIT STATUS
ITEM

SW1 SW2 SW3 SW4 SWs SW6 SW7 SWa SW9

ICC

OFF

1

OFF ON

2

OFF

2

OFF

1

Po
T.H.D.

ON

2

OFF OFF

2

OFF

2

OFF

1

ON

2

OFF OFF

2

OFF

2

OFF

1

NL 1

ON

1

OFF OFF

2

OFF

2

OFF

1

ALC

ON

2

OFF OFF

1

OFF

1

OFF

2

Av01

ON

2

ON

OFF

4

OFF

2

ON

2

Av02

ON

1

OFF OFF

3

ON

2

OFF

2

NL2

ON

1

OFF OFF

4

OFF

2

OFF

2

TEST CIRCUIT
} - - 4 - - - - o Vcc=6V

R.&. P.

HEAD

SG
f=lkHz
Ra=600Q

372

-

100

Po - Output Power -

15953

r-

1

0.3

~

30 50

i {
l)~
120 ~z
r""-o..

I 0.5

:i 0.3

I

300 500
mW

R6

r---i?-'

TYPICAL APPLICATION

II

REMOTE ON & OFF
SWITCH JACK

+

470llF =C7

v:r~ov

S3
CIS

3300pF

+

10001lF= Cs

.MIC.JACK

15kQ

1S953

1,

01
Cl

SI-2

~

9>

Cg
220llF

22kQ

+

Rl10Q

ClOr

O.0681l~

,uPC1350C (Top View)

TAB

S.P.

8Q

Rt.:

56Q
22kQ
R14

SI-3
ERASE HEAD

r

~

1:::
SW 1 :REC./P.B.

(P.B. POSITION)

SW2:AC/OC OPERATION

(DC OPERATION)

SW3 : Power Switch

(ON POSITION)

-a

C')
~

W

(J1

o

C')

(,)
~

W

,uPC1350C
TYPICAL CHARACTERISTICS (Ta = 25 OCt TYPICAL APPLICATION CIRCUIT)
RECORDING CHARACTERISTI CS

~~~~6 V I
Vin=-90dBm
CD

80

"0

IL

I 70
c

~ 60

~

b-...

/"

/~

(I)

~ 50

'"

~ ....

~

.... fo-' ....

o

> 40
I

;;:,
<{

30
20
10

o

1k

100
f -

Frequency -

ALC OUTPUT VOLTAGE CHANGE vs.
INPUT LEVEL

I

E
CD

1+4
(I)

OJ
C

~

o

+ 2
I

&-4
::J

o

() -

6

-.J
<{ -

8

I

-> -10
-12

T.H.D. AT ALC OUTPUT vs.
INPUT LEVEL
,0

~

-

k--"'"

--

;
a.
;
0

~

io-

Output Voltage
change

I
I
I
J

::J

lOOk

10

1

Vee=6V
f-RL'=56Q

"0

10k
Hz

()

I

-.J
<{

;C
c
0

I

\
3.0

Vee 6 'v
RL' 56 Q

\

AU

I

range

\

1.0

';:0

'\

0

'\.

U;

0
0

'c

0.3

0

\..

........ ~

I

./

E

ro

I

iii 0.1

I
1

0

f-

I

q

90 -80 -70 -60 -50 -40 -30 -20 -10 0
Vi -

Input Level -

dBm

:r;
f-

-90 -80 -70 -60 -50 -40 -30 -20 -10 0
Vi - Input Level - dBm

NOTES FOR USE
1. About capacitor C 10
To avoid parasitic oscillation at power amplifier stage, apply the suitable capacitor as C 10 as follows.
For a cassette tape recorder, a ceramic capacitor or a Mylar capacitor can be used equally.
For a cassette tape recorder with radio, use a Mylar capacitor. If a ceramic capacitor is used, a parasitic
osci Ilation may occur caused by feed back as rad iation from the capacitor to an R F stage.
2. About recovery time at recording
A recovery time depends on a time constant of a capacity value of C2 and a pallarel value of R4 and an input
impedance of IC at pin 13.
The recovery time can be adjusted by R4 value.

374

,uPC1350C
PRINTED CIRCUIT BOARD DESIGN CONSIDERATION

1. Use the widest possible printed foil for a power supply and a ground.
2. The earthing point of C8, C10 and an output terminal should be located as close as possible to the earthing
(ground) pins (pin 1 and TAB).
3. One-point earthing is ideal, but if this is impossible, keep the input loop out of the output loop.

Output loop
Output

Input loop
GND
(pin1 )

(good example)

In

Output

Input

Input loop

GND
(pin 1)

(bad example)

375

•

1. ALPHA-NUMERICAL INDEX
2. QUICK REFERENCE GUIDE
3. CROSS REFERENCE GUIDE
4. MAINTENANCE AND OBSOLETE TYPES
5. GENERAL STATEMENT
-(:( NEC's INTEGRATED CIRCUITS FOR CONSUMER USE
o History

0

Types and Features

o Type Number Designation

0

Device Technologies

-(:( STANDARDS OF INTEGRATED CIRCUITS
-(:( HINTS ON CORRECT USE
-(:( TECHNICAL SYMBOLS AND TERMS

*

RELIABILITY AND QUALITY CONTROL SYSTEMS

6. AUDIO APPLICATIONS
6 -1.

CAR AUDIO

6-2.

HOME AUDIO

6- 3.

PORTABLE AUDIO

7. TV APPLICATIONS
8. DIGlTAL TUNING SYSTEMS

9. CLOCKS & WATCHES
10. VOLTAGE REGULATORS
11. ARRAYS

12. OTHERS
13. APPLICATION NOTES

•

TV APPLICATIONS

INDEX
Page
pPC574J

33 V Tuning Voltage Stabilizer. . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

382

pPC1361C

12 Channel Selector

386

pPC1362C

12 Channel Selector

392

pPC1363C

16 Channel Selector

398

pPC1373H

Remote Control RX Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

pPD1913C

Remote Control Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

pPD1937C

Remote Control Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

pPD1943G

Remote Control Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

pPD1986C

Remote Control Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

pPD1987C

Remote Control Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

pPD6102G

Remote Control Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

pPC1356C2

PI F Processor & AFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

pPC1366C

B/W PI F Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

pPC1353C

SI F Processor & Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

pPC1382C

SI F Processor & DC Attenuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

pPC1391H

SI F Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

pPC1352C

NTSC Chroma & Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

pPC1364C2

SECAM Chroma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

pPC1365C

PAL Chroma & Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

505

pPC1384C

PAL Chroma & Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

525

pPC1397C

Picture MUltiplex Adaptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

545

pPC1031 H2

B/W Vertical Deflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

552

pPC1377C

Color Synchro Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

560

pPC1378H

Color Vertical Deflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

565

pPC1379C

B/W Synchro & Deflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

569

-

379

w
o
(X)

BLOCK DIAGRAM

-I

<

Color TV Block

»""C
""C

SOUND BLOCK

I[ t

r-

o-

VIF BLOCK

Ant.

. . . . - - - - - - - - I'PC1382C - - - - - - - - ,

~~:~::~

r

2SC2688 x 2 2SC2802 x 2

~n;:l
~
L.t.::J

UHF & VHF
Tuner

Booster
Amplifier

»
-I

Mono

o-

Stereo & Bilingual

L ~I

PIF

~u8ABC

II
II ~~;~, I

~

I'PC2002.I'PC1238 - -

POWER
SUPPLY BLOCK
AGC

I I'~~;'~

r--"I'PC1394CCHROMA & VIDEO BLOCK

t

I"'"

Switching
Regulator

I'PC1365C (PAL) - - - - - - ,
I'PC1384C (PAL)

~

TUNER CONTROL BLOCK

I'PC574J
I'PC78L( )( )
I'PC78M()( )H
I'PC78( )()H -

I'PC1361C
;- I'PC1362C

,

r- I'P8562C -

I 16 Channel

r- I'PD1913C

I'PD1943G
I'PD1986C
I'PD6102G

~

~

'"

~I

I

I II

r--~

I'

PreAmplifier

LI
I -L ALC

COT

2SC2688
2SC2802

I

PAL& SECAM
Auto Switch

DEFLECTION
BLOCK
r--I'PC1378H--

Dnver

y

r---"PC1377C------------6Bit D/A
Converter
Synchro.
Separator

"PC1373H

~

1

Indicator

PD 1705C·012
"PD1705C.014

~~IHI
J

Remo.-Con.
Transmitter -!J~

Color
Synchronize

I'PA64H.I'PA56C
"PA2001 C-2004C

H""--c-ontr-olle-r

(Y

2SC1507
2SC2687

'--"T'"""--

r-- I'PA54H.I'PA53C -

,pm703C·'1>

•

~L-_ _ _ _~:

LSelector

--

1 GHz
Prescaler

~

~L~ter

:- I'PC1363C -

Voltage
Stabilizer

~:~~~;~~~~~~~) ~
,PC<3"C2I5'CAMI

r--I'PC1397C-

r-I'PD1937C 1
I'PD1987C

~

Infrared ..
------------------~-

Vertical

j
Horizontal
AFC

Ht

Driver
L.....-_

Horizontal
OSC

X-Ray
Protector

Vertical
Output

Horizontal
Pre-Driver

Ll.....

I I.

Horiz'ontal
Driver

Horizontal]
Output

2SC2688
2SC3209

2SC1325A
2SC1358
2SC1875

z

rn

B/WTV Block

SOUND BLOCK

'\[7

/JPC1353C
Ant.
-MC-5156MC-5192

~

~

Booster
Amplifier

I-

Y

SAW
Filter

POWER
SUPPLY BLOCK

r-- /JPC1394C-

2SC2688 x 2 2SC2802 x 2

VIF BLOCK

I

UHF & VHF
Tuner

I

-

l

~

/JPC1382C

I

I

SIF Amp.
& Detector

Sound
Driver

DC Volume

t-4~

Sound
Output

,

Mono

1-1.
~.

J

/'

/JPC1366C

I

I
1

I

PIF
Amplifier

1t
AGC

I
I

1

L

1

1

I

I

Video
Detector

,
1

Video
Buffer

I
DY

I

(

l

I

Video
Amplifier

IE

J1

~

CRT

\~

2SC2688
Switching
Regulator

SP

DEFLECTION
BLOCK

J

,~PC1379C-

I

J
l

I

Synchro.
Separator

Horizontal
AFC

~

I

1

.,

Booster
I

•

/JPC1031H2

Vertical
OSC

I

'I

Vertical
Driver

Horizontal

I

OSC

1

I

I

Vertical
Output

Horizontal
Pre-Driver

r

I

J
KHorizontal
Driver
2SC2002

Horizontal"
Output

j

2SC2373

-I

<

»

""r-(")

»-I

o
2

en
(,.)
Q)

BIPOLAR ANALOG INTEGRATED CIRCUIT

j.lPC574J
MONOLITHIC BIPOLAR INTEGRATED CIRCUIT
VOLTAGE STABILIZER FOR ELECTRONIC TUNER

The JIPC574J is a monolithic integrated voltage stabilizer especially designed as
PACKAGE DIMENSIONS

voltage supplier for electronic tuners.

(Unit: rnrn)

1

FEATURES

• Low temperature coefficient
• Low dynamic resistance
• Typical reference voltage of 33 V

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

10

rnA

Zener Current

Iz

Power Dissipation

Po

Operating Ambient Temperature Range

T opt

-20 to +75

°c

T stg

-40 to +125

°c

Storage Temperature Range

200

(Ta =

75°C)

mW

Pin Connection
1. Anode
2. Cathode

ELECTRICAL CHARACTERISTICS (Ta =25 °C)
EQUIVALENT CIRCUIT
CHARACTERISTIC
r -____--,.-~--O

2

Stabilized Voltage
Stabilized Voltage

SYMBOL

MIN.

Vz

31

AVz/AT

-1.0

TYP.

0

MAX.

UNIT

35

V

1.0

mV;oC

01

02
03

04
05

382

I z =5 rnA
I z = 5 rnA
Ta = -20 to +75

Temperature Drift

Dynamic Resistance

TEST CONDITIONS

rz

10

25

n

I z =5 mA
f = 1 kHz
IAC=0.5 mA

°c

j.lPC574J
TYPICAL CHARACTERISTIC (Ta

= 25°C)

POWER DISSIPATION vs.
AMBIENT TEMPERATURE

DYNAMIC RESISTANCE vs.
ZENER CURRENT
80

~ 400

~

E

I
c
0

~ 300
c.

.iii

III

0
ID

200

::0

I
u
c

\

20

2III

~

Ta= +25 ·C

1\

Q.)

'" --

Q.)

u

"- .......

10

'Ero

8

c

>.
£:)

6

I
~

4

100

Iz

IAc=lO _
f= 1 kHz

.iii
'0::

I
Cl..

\

40
OJ

Cl..

£:)

\
\

60

Free Air

--

--

- -1 - - - -- c-----

-20

2

o

50

25

75

o

4

STABILIZED VOLTAGE TEMPERATURE
DRIFT vs. ZENER CURRENT

u
.!!......
>
E

....I

10

8

STABILIZED VOLTAGE VARIATION
vs. TIME

>
E

+4 ----------------r----+-------

I
c

~ + 3 1-------+------ ~----f----~

6

Iz-Zener Current-mA

Ta - Ambient Temperature-·C

0

I

+80
+60

:;:;

z

ro

+ 2 -----+-----1-----+------ - - - - -

~

.~

>

Cll

c.

E +1

.....Cll

~-=--

-------c------r- - - - -

Q.)

tID

2
>

-1--- ----+----l----+-

'0

] =:

-----c-----I-----

i

1
i5
ro

-4 - - - - 1-------

~

0

N

2

~

t~

~

Cll

~
i5
ro

=_-=-

en

------t

4

0

I'"
I

- 20
Free Air

z
-40 1---+----1 I =5 rnA XY-Recoder ~_lz=5 rnA __
r%~ ~
,V z=33.11V

I

-60

>

-80



Or----+-~~_r----~------+-~==~

Cll

+40

I

I

10

20

30

min.

t-Time

STABILIZED VOLTAGE VARIATION &
SUPPLY VOLTAGE VARIATION vs.
ZENER CURRENT

~~

+ 1.0 r - - - - - - - , - - - - . . , - - - - - - , - - - - , - - - - - ,

c

~ +0.8
.~

>

~

+0.6

+30

c
0
:;:;

~ +0.4

+20 .~

2
g

+ 10

+0.21-....L.--,---,---'-.H,c,----+------t

~
Q.)

tID

2

~

0 '0

]
i5

0

~

-0.2

-10 ~

6

-0.4

-20

~

-0.6

-30 ~

>

c.

o

J5
I

<:N - 0.81-----+

~

N

>
3

-1.0

0

Iz-Zener Current-mA

383

J.lPC574J
MEASURING CIRCUITS

Measuring Circuit for Stabilized Voltage V z

I z=5 rnA

A

v

Digital Volt Meter

Measuring Circuit for Dynamic Resistance rz
1

z

1AC=lO

Iz-

2
C

0.1 J.lF

,uPC574J

rv

f

= 1 kHz

-vz

~-+----+5

384

rnA

tlPC574J
TYPICAL APPLICATION

Ach

8ch

----T1
Ych

Zch

15 k.Q

~i

to tuning diodes (VARACTOR)

in case of Ych ON

385

BIPOLAR ANALOG INTEGRATED CIRCUIT

,uPC1361C
ELECTRONIC CHANNEL SELECTOR

DESCRIPTION
The pPC1361 C is an electronic channel selector integrated circuit with 4 bit output. It is capable of selecting up to 12
channels. The output terminals are design to permit the direct driving of LED or neon lamps.
This IC consists of Clock Oscillator circuit, Channel Up and Down circuit, Channel skip circuit, 4 bit Up and Down
Counter circuit, 1-12 Decoder circuit, 4 bit Output Buffer circuit and 12 channel Output Buffer circuit, all of which are
contained in a 24 pins dual in-line package.

PACKAGE DIMENSIONS in millimeters (inches)

FEATURES
•

4 bit output

•

LED, Neon lamps direct drive.

•

Low power consumption.

~

IK=5 mA, VkSAT 150 mV MAX.

Vcc=12 V, Icc=9 mA TYP.

33 MAX
(1.299
MAX)

~

~";50, ~t ~:: :-::::: j
1

•

-

2

3

4

5

6

7

8

15.24
(0.6)

13.2

(0.52)

9 10 11 12

Up to 12 channel selection.

•

Internal schmitt trigger circuit. (CHU, CHD INPUT)

•

Power ON initial channel set.

,

2.25:!:&:l,g
(0.01)

•

TV Radio etc. channel selection use.
I

0'-15'
27.94

(1.10)

BLOCK DIAGRAM
24 PINS DIP

+ 12 V-.-+----f

4 BIT BINARY
OSC

386

UP DOWN COUNTER

J,lPC1361C
ABSOLUTE MAXIMUM RATINGS

(Ta=2S °C)

Supply Voltage

1S.0

V

I K1 ...... 11, 24

-S to 30

rnA

I AO ""A3

-S to 10

rnA

Input Current to Control Circuit

IC18, 19

-5 to 10

rnA

Input Current to Control Circuit

IC13

-S to 30

rnA

VCC

Input Current to Channel Selection Circuit
Input Current to Control Circuit

*Output Voltage to Channel Selection Circuit

V K1 - 11 , 20

-0.5 to 45

*Output Voltage to Control Circuit

V 13, V AO""A3

-0.5 to 14.4

V

* Input Voltage to Control Circuit

V 15, 16, 17

-0.5 to V cc+0.5

V

V

Power Dissipation

Pd

300

mW

Operating Temperature Range

T opt

-20 to +75

°c

Storage Temperature Range

T stg

-40 to +125

°c

* At VCC=12 V

RECOMMENDED OPERATING CONDITIONS
CHARACTERISTIC

SYMBOL

MIN.

TYP.

MAX.

UNIT

Supply Voltage

VCC

9.6

12.0

14.4

V

Channel Selection Input Current

IK

5.0

fOSC

2.0

10.0

kHz

Clock Oscillation Frequency

ELECTRICAL CHARACTERISTICS
CHARACTER ISTIC

rnA

(Ta=2S±3°C)
SYMBOL

MIN.

TYP.

MAX.

UNIT

2.0

9.0

13.0

rnA

VCC=12 V

VOL(K)

150

rnV

VCC=9.6 V, IOL =5 rnA

Channel Selection Leakage Current

IOH(K)

10

}J.A

VCC=14.4 V, VOH=35 V

Address Output Saturation Voltage

Supply Current

IDD

Channel Selection Saturation Voltage

VOL(A)

0.5

V

Address Output Leakage Current

IOH(A)

10

}J.A

AFT Defeat Output Voltage

VOL(D)

6

V

AFT Defeat Leakage Current

IOH(D)

10

}J.A

TEST CONDITIONS

VCC=9.6 V, IOL =2 rnA
VCC=14.4 V, VOH=14.4 V
VCC=9.6 V, IOL =12 rnA
VCC=14.4 V, VOH=14.4 V

Channel Input High Threshold Voltage

VTH(CH)

7.2

9.0

V

VCC=12 V

Channel Input Low Threshold Voltage

VTL(CH)

5.0

8.0

V

VCC=12 V

Channel Input Leakage Current

ICH(CH)

-5

Channel Input Leakage Current

ICH(CH)

5

}J.A

VCC= 14.4 V, VIL =0 V

}J.A

VCC=14.4 V, VIH =14.4 V

Key Input Current

IIH(KJ)

200

}J.A

VCC=9.6 V

Key Input Leakage Cummt

IIL(KJ)

-10

}J.A

VCC=14.4 V, VIL =0 V

Skip Input Current

IIH(SK)

50

}J.A

VCC=9.6 V

Skip Input Leakage Current

IIL(SK)

-5

}J.A

VCC=14.4 V, VIL =0 V

Channel Hold Voltage

VHOLD

6.5

OSC Frequency

fOSC

1.0

V
2.0

3.0

kHz

VCC=12 V, R=33 kn , C=0.033 }J.F

387

w

(X)
(X)

EQUIVALENT CIRCUIT

'1;:

""D
()
...Ii

W

en
...Ii

, ()
12 V

47 k

i

1f

47 k

1f
O.OI

T

JlF ' "

12 V

33 k

0.033
JlF

r

I
I

I
I

I
I

I

L
DEF

---~--------------

NR·22 NR·23

GND

Logic Blocks consist of PMOS technology
Output and I nput consist of Bipolar technology.

NR·25 NR·26

NR·28 NR·29

I
I

--'

j.lPC1361C
CONNECTION DIAGRAM (Top View)
CHANNEL SELECTION 11 (K11)

(K12)

CHANNEL SELECTION 12

CHANNEL SELECTION 10 (K10)

(A3)

ADDRESS OUTPUT A3

CHANNEL SELECTION 9 (K 9)

(A2)

ADDRESS OUTPUT A2

8 (K 8)

(A1)

ADDRESS OUTPUT A1

CHANNEL SELECTION 7 (K 7)

(AO)

ADDRESS OUTPUT AO

CHANNEL SELECTION

(SKP)

SKIP INPUT

5 (K 5)

(KIN)

KEY SENSE INPUT

CHANNEL SELECTION 4 (K 4)

(OSC)

OSC FILTER

CHANNEL SELECTION

(CHU)

CHANNEL UP INPUT

CHANNEL SELECTION

CHANNEL SELECTION

CHANNEL SELECTION

2 (K 2)

(CHD)

CHANNEL DOWN INPUT

CHANNEL SELECTION

1 (K 1)

(VCC)

+12 V

(GND)

(DEF)

AFT DEFEAT OUTPUT

GROUND

PIN FUNCTION
K1 --12

GND
DEF

VCC

CHANNEL SELECTION OUTPUT
#11 ...... 1, #24
These are the output terminals constructed of collector-opened transistors, so they can drive potentiometers
and indicators, and key output. They have saturation voltage of 150 mV at Ik=5 mA, so they can drive
neon or LED lamps directly.
#12

GROUND

AFT DEFEAT OUTPUT
#13
This terminal is made of open collector transistor output through a resistor of 330 n. It is used for AFT
(Automatic Fine Tuning ...... TV use) defeat, sound muting and LED indicate erasing.
#14

+12 V (9.6 --14.4 V)

CHD

CHANNEL DOWN INPUT
#15
Usually pulled up to V CC through a resistor, Channel selector changes at positive going edge of input signal
of this terminal and the channel selector works orderly from K 12 to K 1.

CHU

CHANNEL UP INPUT
#16
Usually pull up to VCC through a resistor, Channel selector changes at positive going edge of input ~ignal
of this terminal and the channel selector works orderly from K1 to K12. If CHU and CHD terminals put
down to ground at same time, initial channel is selected. So, it is very useful to remote control operation use.
These terminals include schmitt trigger circuit. If these terminals are not used as remote control operation,
connect these terminals to V CC directry.

OSC

OSC FILTER
#17
When a Channel key is pushed or skip function is operated, oscillator contained in this IC oscillate with
C, R connected to this terminal. Typical oscillation frequency is 2 kHz. (R=33 kn, C=0.033 J,LF)

KIN

KEY INPUT
#18
When channel selection key is pushed, as pushed channel is not selected, "High" level of signal is applied to
this terminal through a potentiometer resistor. Then channel selector scans terminals of K1 -- K12. And
when sense up this terminal, it pull down the voltage of this terminal and stop the scanning.

389

,uPC1361C
SKP

SKIP INPUT

#19

Usually pull up to Vee through resistor. When only 10 channels are used, connect open channel outputs
(K11, K12) to this terminal with CR filter.
AO --A3

#20 --23
ADDRESS OUTPUT AO --A3
These are internal 4 bit counter output terminals constructed of collector·opened transistors. These output
can be used as 7 segment LED display or possition output for MPU reading.

Address output

Selectchannel
K 1

AO ... L

A1. .. L

A2 ... L

A3 ..• L

K2

H

L

L

L

K3

L

H

L

L

K4

H

H

L

L

K5

L

L

H

L

K6

H

L

H

L

K7

L

H

H

L

K'8

H

H

H

L

K9

L

L

L

H

K 10

H

L

L

H

K 11

L

H

L

H

K 12

H

H

L

H

*
APPLICATION CIRCUIT
12 Position Display/4 bit Encoder Output

33 k 0.01 /.LF
,...-I----I-..l..---'--L...,

K2

~

AO

K3
Al
A2
A3

Vee

DEF

''""

K'12
KIN
27 k

390

GND

4bit
Binary
Output

L. .. GND
H •.. OPEN

j1PC1361C

APPLICATION CIRCUIT
Example of TV channel selection circuit with 7 segment LED display
33 k
lSS54
x 12

lSS54r--r~~-r~-++-r4~+-~4-~~4-~~~-+~~~+-~~~

TUNING VOLTAGE OUTPUT

x12
~---VH

-""----l--VL

TUNER
BAND OUTPUT

j.lPC1361C

x3
r--I

ION

-,

I
I

I

I 0

I
I

I

I

I
I

IL.. _ _

I

_J

2

3
C

0

4
B

5
A

a

3*

.----

{AFT DEFEAT
OUT
SOUND MUTE

4-7 segment Decorder I Driver
ex. SN29764N/SAB2064
2SA733
h

15

14

g
13

12

e
11

d

c
10

9

+5V _-+----..J

7 segment LED

391

BIPOLAR ANALOG INTEGRATED CIRCUIT

pPC1362C
ELECTRONIC CHANNEL SELECTOR

DESCRIPTION
The JlPC1362C is an ·electronic channel selector integrated circuit. It is capable of selecting up to 12 channels. The
output terminals are design to permit the direct driving of LED or neon lamps.
This IC consists of Clock Oscillator circuit, Channel Up and Down circuit, Channel skip circuit, 4 bit Up and Down
Counter circuit, 1-12 Decoder circuit and 12 channel Output Buffer circuit, all of which are contained in a 20 pins dual
in-line package.
PACKAGE DIMENSIONS in millimeters (inches)

FEATURES
•

LED, Neon lamps direct drive.
Ik=5 mA, VkSAT 150 mV MAX.

•

Low power consumption.
Vcc=12 V, ICC=5 mA TYP.

•

Up to 12 channel selection.

•

Internal schmitt trigger circuit. (CHU, CHD INPUT)

•

Power ON initial channel set.

•

TV, Radio etc. channel selection use.

•

Using with JlPD1986C (TX), JlPD1937C (RX),

I

27.0 MAX.
(1.062 MAX.)

=--:l

(~t:::::;3

direct address remote control system is realized.
BLOCK DIAGRAM
20 PINS DIP

+ 12 v_+-----l

OSC

392

4 BIT BINARY
UP DOWN COUNTER

10.16(0.4)

,uPC1362C
ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Supply Voltage

V

I K1 "'9, 18"'20

rnA

IC16, 17

-5 to 10

rnA

-5 to 30

rnA

Input Current to Control Circuit
Input Current to Control Circuit

IC11

* Output
* Output
*

15.0
-5 to 30

VCC

Input Current to Channel Selection Circuit

Voltage to Channel Selection Circuit

VK1"'9,18"'20

Voltage to Control Circuit

Input Voltage to Control Circuit

-0.5to 45

V

V1 1

-0.5 to 14.4

V

V15

-0.5 to Vcc

V

Power Dissipation

Pd

300

mW

Operating Temperature Range

T opt

-20to +75

Storage Temperature Range

T stg

-40 to +125

°c
°c

* At VCC=12 V

RECOMMENDED OPERATING CONDITIONS
CHARACTERISTIC

SYMBOL

Supply Voltage

VCC

MIN.

TYP.

MAX.

9.6

12.0

14.4

Channel Selection Input Current

IK

5.0

Clock Oscillation Frequency

fOSC

2.0

I

UNIT
V
rnA

10.0

kHz

ELECTRICAL CHARACTERISTICS (Ta=25 ±3 °C)
MIN.

TYP.

MAX.

UNIT

2.0

5.0

10.0

rnA

VCC=12 V

VOL(K)

150

rnV

VCC=9.6 V, 10 L =5 rnA

Channel Selection Leakage Current

10H(K)

10

p.A

V CC = 1 4.4 V, V 0 H = 3 5 V

AFT Defeat Output Voltage

VOL(D)

6

V

AFT Defeat Leakage Current

IOH(D)

10

p.A

Channel Input High Threshold Voltage

VTH(CH)

7.2

9.0

V

Channel Input Low Threshold Voltage

VTL(CH)

5.0

7.0

V

VCC=12 V

Channel Input Leakage Current

ICH(CH)

-5

p.A

VCC=14.4 V, VIL=O V

Channel Input Leakage Current

ICH(CH)

p.A

VCC=14.4 V, VIH=14.4 V

Key Input Current

CHARACTERISTIC

SYMBOL

Supply Current

IDD

Channel Selection Saturation Voltage

5

TEST CONDITIONS

VCC=9.6 V, IOL=12 rnA
VCC=14.4 V, VOH=14.4 V
VCC=12 V

IIH(KI)

200

p.A

VCC=9.6 V

Key Input Leakage Current

IIL(KI)

-10

p.A

VCC=14.4 V, VIL =0 V

Skip Input Current

IIH(SK)

50

p.A

VCC=9.6 V

Skip Input Leakage Current

IIL(SK)

-5

p.A

VCC=14.4 V, VIL =0 V

OSC Input Current

mA

VCC=9.6 V, V IH=4 V

IIH(OSC)

1.5

Channel Hold Voltage

VHOLD

6.5

OSC Frequency

fOSC

1.0

3.0

V
2.0

3.0

kHz

VCC=12 V, R=33 kn, C=0.033 p.F

393

t.)



E

c::(

E

I

I

C
~:J

tlD

g2

10

o

>.

'.;J

C.
a.

e

,,'/

:J

(.)

200

//

c

(.)

en
I

250

Q)

5

,

150

~

+-'

,,/

100

I

50

..J

4

8

./1/

:J

g
12

16

~

20

0

/

//

:J

.so

o

/'

C\l
(/)

/""

!:?

/v

/"

L

5

10

15

20

25

IOL(K) - Channel Selection Output Current - mA

Vee - Supply Voltage - V

APPLICATION CIRCUIT 1

15 k

VH

115 V
j.J.PC574J

+12 V

4·12 LINE DECODER

27 k
10k

4 BIT BINARY

OSC

INITIAL

UP DOWN COUNTER

SET
~--------~10~----------------------~
GND

396

,uPC1362C
APPLICATION CI RCUIT 2
EXAMPLE OF TV CHANNEL SELECTION
10 POSITION SELECTION CIRCUIT (2 POSITION IS SKIPED)
DISPLAY SUPPLY VOLTAGE

1 k

r--4~_ _- -_ _--~--~--~--~--~--~------~----~~-------------o+12V

lSS54
XlO

SR603C
X10

15 k

32 V

lSS54

r

XIO

0.01 )IF

Jl.PC574J

lSS54
XlO

_ _ _..J..-_

~PC1362C
r----l
I

ION
: 0
I

I

I
I

VL

TUNER
BAND OUTPUT

(Bottom View)

X3

l
I

I

I

I

I

L ___ J

CHANNEL
LOCK SW

L-----~~~~~---_+--_+~_+~----~--~~--~---+12V

'*'{AFT DEFEAT
OUT
SOUND MUTE
LED MUTE
2SA733

397

BIPOLAR ANALOG INTEGRATED CIRCUIT

JLPC1363C
ELECTRONIC CHANNEL SELECTOR

DESCRIPTION
The IlPC1363C is an electronic channel selector integrated circuit. It is capable of selecting up to 16 channels. The
output terminals are design to permit the direct driving of LED lamps or neon tubes.
This IC consists of Clock Oscillator circuit, Channel Up and Down circuit, Channel skip circuit, 4 bit Up and
Down Counter circuit, 1-16 Decoder circuit and 16 channel Output Buffer circuit, all of which are contained in a
24 pins dual in-line package.

PACKAGE DIMENSIONS
FEATURES
•

33MAX
(I.mMAX)

LED direct drive.

-

in millimeters (inches)

g1

1k=,15mA, VkSAT 150mV MAX.
•

Low power consumption.
Vcc=12V, Ic c =15mATYP.

•

Up to 16 channel selection.

•

Internal schmitt trigger circuit. (CHU, CHD INPUT)

r-- (~3~)

Power ON initial channel set.

i, - - - - - - - . 1

•

1524
(0.6)

• IlPC1360C pin compatible. (V cc=6V)

I~

•

TV, Radio etc. channel selection use.

•

Using with IlPD1986C (TX), IlPD1937C (RX),
direct address remote control system is realized.

BLOCK DIAGRAM
24 PINS DIP

K13

+ 12V--+------I

K14
K15
4-16 LINE DECODER

OSC

398

----j

4 BIT BINARY
UP DOWN COUNTER

'g~

2 25
(001)

j.lPC1363C

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Supply Voltage

VCC

15.0

V
mA

Input Current to Channel Selection Circuit

I K1 - 11 ,20-24

-5 to 50

Input Current to Control Circuit

IC15-19

-5 to 10

mA

Input Current to Control Circuit

IC13

-5 to 20

mA

* Output Voltage to Channel Selection Circuit
* Output Voltage to Control Circuit
* Input Voltage to Control Circuit

-0.5 to 50

V

V13

-0.5 to 14.4

V

V 17

-0.5 to VCC

V

VK1-11,20-24

Power Dissipation

Pd

350

mW

Operating Temperature Range

T opt

-20 to +75

°c

Storage Temperature Range

T sta

-40 to +125

°c

* At VCC= 12V

RECOMMENDED OPERATING CONDITIONS
CHARACTERISTIC

SYMBOL

MIN.
9.6

TYP.

MAX.

12.0

14.4

Supply Voltage

VCC

Channel Selection Input Current

IK

15.0

Clock Oscillation Frequency

fOSC

2.0

UNIT
V
mA
kHz

10.0

ELECTRICAL CHARACTERISTICS (Ta=25 ±3°C)
CHARACTER ISTIC

SYMBOL

TEST CONDITIONS

MIN.

TYP.

MAX.

UNIT

7.0

15.0

22.0

mA

VCC=12V

mV

VCC=9.6V, IOL=15mA

10

p.A

VCC=14.4V, VOH=35V
VCC=9.6V,IOL=12mA

Supply Current

100

Channel Selection Saturation Voltage

VOL(K)

150

Channel Selection Leakage Current

IOH(K)

AFT Defeat Output Voltage

I

VOL(D)

6

V

AFT Defeat Leakage Current

IOH(D)

10

J.tA

Channel Input High Threshold Voltage

VCC:;::14.4V, VOH:;::14.4V

VTH(CH)

3.5

7.0

V

VCC=12V, Ri=15kn.

Channel Input Low Threshold Voltage

VTL(CH)

1.5

2.5

V

VCC=12V, Ri=15kn

Channel Input Leakage Current

ICH(CH)

-5

J.tA

VCC=14.4V, VIL =QV

Key I nput Current

IIH(KIl

200

J.tA

VCC:;::g·6V

Key Input Leakage Current

IIL(KIl

-10

J.tA

VCC:;::14.4V, VIL :;::QV

Skip Input Current

IIH(SK)

50

p.A

VCC:;::g·6V

Skip I nput Leakage Current

IIL(SK)

-5

p.A

VCC=14.4V, VIL =OV

OSC I nput Current

IIH(OSC)

1.5

3.0

mA

VCC=9.6V, VIH=4V

OSC Leakage Current

IIL(OSC)

10

p.A

VCC=14.4V, VIL =1.0V

1.5

2.5

kHz

"CC=12V, R=68kn., C=0.022J.t F

OSC Frequency

fOSC

399

~

o
o

~

""C

EaUIVALENT CIRCUIT

(')
...l

W

en
W

(')
K16

12V

~--

------,
I
I
I

D-16

I
I
I

I
I
I
I
I
I

I
I

I
I
I

I

I
I

I

I
I
I

I

I

Q1
...-+---.-_-J

FF1

Q It----+-~--'

FF3

FF2

R Q

R

Q

Q

Q

RQ

FF4

R Q

12V
OSC

QII----f---J
CR

I

I

I

o.0221' F

I

I

I

S TlI-------'

I

I

I
I
I

I ___________________ _
L

DEF

~ ________ ~._~._.~_ ~ _______ ::~3~_N~=~1_______ ~~:~~~~3~
---0------GND

Logic Blocks consist of PMOS technology
Output. Input and OSC consist of Bipolar technology.

I

I
I
I
I
I
_...J

JLPC1363C

CONNECTION DIAGRAM (Top View)

CHANNEL SELECTION 11 (Kll)

(K12)

CHANNEL SELECTION 12

CHANNEL SELECTION 10 (K 10)

(K13)

CHANNEL SELECTION 13

CHANNEL SELECTION

9 (K 9)

(K14)

CHANNEL SELECTION 14

CHANNEL SELECTION

8 (K 8)

(K15)

CHANNEL SELECTION 15

CHANNEL SELECTION

7 (K 7)

(K16)

CHANNEL SELECTION 16

CHANNEL SELECTION

6 (K 6)

(SKP)

SKIP INPUT

CHANNEL SELECTION

5 (K 5)

(KIN)

KEY SENSE INPUT

CHANNEL SELECTION

4 (K 4)

(OSC) OSC FILTER

CHANNEL SELECTION

3 (K 3)

(CHU) CHANNEL UP INPUT

CHANNEL SELECTION

2 (K 2)

(CHD) CHANNEL DOWN INPUT

CHANNEL SELECTION

1 (K 1)

(VCC)

+12V

(GND)

(DEF)

AFT DEFEAT OUTPUT

GROUND

PIN FUNCTION
K1 '" 16

(#11'" 1, #24'" 20)

CHANNEL SELECTION OUTPUT

These are the output terminals constructed of collector-opened transistors, so they can drive potentiometers
and indicators, and key output. They have saturation voltage of 150mV at I K = 15mA, so they can drive
LEDs directly.
GND

#12

GROUND

DEF

#13

AFT DEFEAT OUTPUT

This terminal is made of open collector transistor output through a resistor of 330n.

It is used for AFT

(Automatic Fine Tuning ..... TV use) defeat, sound muting and LED indicate erasing.
Vee

#14

+12V (9.6'" 12V)

CHD

#15

CHANNEL DOWN INPUT

Usually pulled up to Vee through a resistor, Channel selector changes at positive going edge of input signal
of this terminal and the channel selector works orderly from K16 to K1.
CHU

#16

CHANNEL UP INPUT

Usually pull up to Vee through a resistor, Channel selector changes at positive going edge of input signal
of this terminal and the channel selector works orderly from K 1 to K 16. If CHU and CH D terminals put
down to ground at same time, initial channel is selected. So, it is very useful to power on channel set or
remote control operation use.
These terminals include schmitt trigger circuit and this hysteresis level is controled by external resistors.

401

,uPC1363C

VCC
0

>
<1>

bD

:J
c.
:J

Vi

OFF

Ri =
7.5kQ

Ri =
lOkQ

Ri =
15kQ

0

t
o

2
-

4

3
Input Voltage

6

5

(V)

Vi

CHU, CHD Input Schmitt Characteristic

#17

OSC

OSC FILTER

When a Channel key is pushed or skip function is operated, oscillator contained in this IC oscillate with
C, R connected to this terminal. Typical oscillation frequency is 2kHz. (R = 68k, C =

#18

KIN

O.022~F)

KEY INPUT

When channel selection key is pushed, as pushed channel is not selected, "High" level of signal is applied
to this terminal through a potentiometer. Then channel selector scans terminals of K 1""" K 16. And when
sense up this terminal, it pull down the voltage of this terminal and stop the scanning.

#19

SKP

SKIP INPUT

Usually pull up to VCC through resistor. When only 12 channels are used, conect terminals (K13"" K16)
to th is term i nal.

CHARACTERISTICS

SUPPLY CURRENT vs.
SUPPLY VOLTAGE

CHANNEL SELECTION SATURATION
VOLTAGE CHARACTE RISTIC

>

E

25

I

250

<1>

bD

.

a.
c.

,V

;j

en
I

10

V

1/

>

1/

200

c:
0

·z
~

;j

ro
en

150
~

V~

:J

c.
;j

100

0

()

I
~

9
5

":i

50

0

>
0

4

8

12

16

VCC-Supply Voltage-V

402

20

V V
0

V
5

~

V
10

I'

V

15

i.'"

20

25

IOL(K) -Channel Selection Output Current - rnA

J,lPC1363C

INITIAL CHANNEL SET and REMOTE CONTROL CIRCUIT

VCC

VCC

VCC
15k
+--"'\/\,f'v---_-i CHU

CHU
CHD

15k
L...-1V\Jf\r-.--...--f CHD

7.5k
~-"V\,f\.~_~V\l'J----f

(a) Only Channel Selection Use

CHD

(b) Remote Control Use
(c) Remote Control Use (Short Pulse Width)

APPLICATION CIRCUIT 1

ISS54X 12

1k

tlPC574J

+12Vo-~~-------------4

15k

4-16 LINE DECODER

10k

OSC

INITIAL
SET

4 BIT BINARY
UP DOWN COUNTER

GND

403

,uPC1363C
APPLICATION CIRCUIT 2
EXAMPLE OF TV CHANNEL SELECTION
12 POSITION SELECTION CIRCUIT (4 POSITION IS SKIPED)

1k

DISPLAY SUPPLY VOLTAGE

~--~--~--~--4---~--~--~--~--~----~--~------~----~,~A~------------~+12V

1SS54
X 12
SR603C
X 12
+115V

ISS54
X 12

TUNING VOLTAGE OUTPUT

1SS54
X 12

- - - - - VH

_ _ _+-_ VL

TUNER
BAND OUTPUT

~-+--- U

.u PC 1363C
r---- ,

I

I

ION

:

I

I

I
I
I

0

I
I
I

I ____ ...JI
L

CHANNEL
LOCK SW
L---+-T-+---4---~--~-r~~----

__----~--~----

I
I

t

L CHANNEL

404

DOWN KEY

2SA733

+12V

AFT DEFEAT
OUT
SOUND MUTE
LED MUTE

BIPOLAR ANALOG INTEGRATED CIRCUIT

,uPC1373H
REMOTE CONTROL PREAMPLIFIER

DESCRIPTION
The pPC1373H is a silicon monolithic integrated circuit designed for a remote control preamplifier of infrared signals.
This device has features of low power, high sensitivity and wide supply voltage.

PACKAGE DIMENSIONS

FEATURES

in millimeters (inches)

• Wide operation Voltage

Vee =6 to 14.4 V

• Low Power Consumption

Icc =2.S mA TYP.

• High Input Sensitivity

SO pVp-p TYP.

2.8±0.2
(0.11)

19.5 MAX.
(0.76 MAX.>

• Peak Detector
• Small Size Package

8 pin-SIP

• Minimum number of External parts required
• Designed for Use with the pPD1913C, 1943G Remote
Control Transmitter IC.

2.54±0.2
(0.1)

1.2±0.1
(0.05)
17.78

0.6 MAX.
(0.02 MAX.)

0.25
(0.01)

1.0±0.1
(0.04)

(0.7)

BLOCK DIAGRAM
8 PIN SIP

~-----------------------------------------------~~------------------------------'--------------~~---------------------'~-Vec

BIAS

PIN·Photo
Diode

-HI-

~;:

.... .s::

~~

.-

Q)

.-

>
Q)

E

...J...J

~

0

.:t(.
('Q
Q)

Q..

IlQ

c:
.0.
('Q

.s::

(/)

OUT

U1f

405

jlPC1373H
ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Supply Voltage

VCC

15

V

Power Dissipation

Pd

270

mW

Operating Temperature

Topt

-20 to +75

°c

Storage Temperature

T stg

-40 to +125

°c

RECOMENDED OPERATING CONDITIONS
CHARACTER ISTIC
Power Supply
Input Frequency

UNIT

SYMBOL

MIN.

TYP.

MAX.

VCC

6.0

8.5

14.4

V

fin

30

50

kHz

ELECTRICAL CHARACTERISTICS (Ta=25 °c, Vcc =8.5 V, fin =40 kHz)
CHARACTERISTIC

SYMBOL

MIN.

TYP.

MAX.

UNIT

ICC

1.5

2.5

3.5

mA

Input Terminal Voltage

VIN 1

2.1

2.6

3.1

V

Input Terminal Voltage

VIN 2

3.4

4.1

4.9

V

1st Stage Voltage Gain

Supply Current

60

V;n

50

100

J.l.V

I nput Impedance

rin

60

80

kn

Output Voltage

VOL

0.5

V

IOH

2

J.l.A

Output Leak Current
Noise

lin =70 J.l.A

dB

AVL

Detection Input Voltage

40

TEST CONDITIONS

#7 - #3, Vout = 500 mVp-p

IOl = 0.1 mA, vin = 1 mVp-p
VOH=14.4 V
Input Open

Output Terminal is not fall.

TEST CIRCUITS
COl L

J.lPC1373H

C
R

CANS-4612Z TOKO INC.
5 mH 0.1 4>·2 UEW 303T
3300 pF
100 kn

OUT
51

Q

L--_ _ _ _ _ _ _~--..-~-.:...:.-_+~-----

406

VCC=+8.5 V

j.lPC1373H
1 kQ

STANDARD APPLICATION

r-~~~~--------~----------~-----'----~+--------VCC

47 JJF
VCC

PIN
Photo "Diode
PH302
OUT

COIL

126LNS-6285Z TaKa INC.
5mH O.08cP-2 UEW313T

CONNECTION DIAGRAM
TERMINAL

1

........

OUT

2

........

C3

I ntegral Capacitor

3

........

T

Tuning Coil

C2

Peak Hold Capacitor

GND

Ground
By-pass Capacitor

5

........
........

6

........

C1

7

........

IN

Input

Vce

Power Supply

4

OUT

C3

T

GND

Cl

IN

VCC

Output

8

........

PIN FUNCTION
o VCC

Power Supply

..... (#8)
Operation voltage is 6.0 to 14.4 V.

o IN

Input

. . . . . . . . . . (#7)
This input impedance is 60

kn

typical.

This input has ABLC (Automatic Bias Level Control) circuit for not saturated by violent
light, so this terminal voltage is always fixed.
. . . . . . (#3)

o T

Tuning coil

o C1

By-pass capacitor ... (#6)
This 1st amplifier has gain of 60 dB and this gain is determined of impedance of coil and
external resistor R #6
80
70

......

"

60
III

l'c

50

til)

40

I'...

...... r--.,.
~

";

"

~

2

~ 30

20

10

o

1

100
10
R:l*6-Resistor-Q

1000

Fig. 1 1st stage amplitude gain

407

,uPC1373H
o C2

Peak hold capacitor .. (#4)
The signal of tuning coil terminal is detected by peak detector circuit. In this case,
detecting level depend on input signal strength, so noise wave is suppressed.
Time constant of peak hold is changed by capacitor C#4' and sensitivity is adjusted
by resistor R#4. (see Fig. 2)
external resistor R #4
Vce= 12 V ..• 220 kG
=10 V •.• 160 kG
=8.5 V .•• 150 kG

5.0
Vee=10

Q..

~

'le=12 v

1.0

I

('t)

..

0.5

t\:

\.

\

!:!

,

"" "

\.

~

g
...
E-

v

\/

I

m

o

~

\

"

~~
/~
v

100 Vee 8.5

:l

y

........

50

-- ---

.......
.......
....... .......

'"'"'- -.........

m

-::----.....;

10m

o

50

100

150

200

250

R#4-Resistor-Q

Fig. 2 Sensitivity of peak detector characteristic

o C3

Integral Capacitor ... (#2)
Carrier wave through peak detector is integrated by this capacitor.
This time constant is determined of external resistor R#1 and this capacitor C#2.

o OUT Output

. . . . . . . . . . (#1)

Active Low output. This terminal is made of open collector transistor.

___

~ vee +6 V-l44r-V_ _ _ _ _ _ _~--------VDD
I

I

100 kQ

I

VDD

~----~---~ IN

Receiver. IC

GND

I
_______ -1I

408

,uPC1373H
CHARACTERISTIC

VCC-ICC Characteristic

AB LC I in - V in Characteristic
8

>

4

I

6

V

Q)

bO

2

<:
E

(5

I
C

3

~
::s

C,.)

------

>-

c..
c.
::s

2

 4
'5
c.

~

~

:..--

.5

c::

">

2

o

5

C,.)

~~

-

./"

10

20

5:?

100

50

'200

lin -Input Current - p.A

o

15

10

5

20

VCC - Supply Voltage - V

1st Stage V in - VOL Characteristic

1st Stage fln-AVL Characteristic

5
C.
I
C.

80

2

>

I

~

Q)

bO

2
>

//

(5

500m

"iij

c::

bO

en

~

200m

::s

o
~ 100m
o
~

50m

/

V

V

/

--

a:l

"'0

~

I

60

c::

.iij
C!)
Q)

bO

~

/

40

....
II>

...J

~

20

--

.7

/1\
V \

f'.r---,
r-r-.

<:

o

10

20

40

70

100

200

fin -Input Frequency - kHz

200J-l 500 Jl 1 m

2m

5m 10m

Vin-Input Signal Voltage-V p _ p

Output Saturation VoJtage
0.8

>

I

~

0.6

Q)

bO

2
>
0.4
'5
c.
'5

(5

0

I
...J

0

>

0.2

0

V

/

V

/'

0.1

0.2

0.3

0.4

0.5

IOL - Output Current - mA

409

,uPC1373H
APPLICATION

455 kHz Ceramic Resonator

OSCI

TX

OSCO

K1 0 -

-=- 3 V

r

VOO

Infrared LED
SE303A

LMP

~PD1913C/~PD1943G

CCS

+

1 k

100 pF

100 pF

REM

KOO-K07

K1 3

2.0

Q

RX

r---------------------,

I

1 k 38 kHz

100 0

47 tiF
tiPC1373H
PH302

GNO

C1
22 Q

+

L-,J;-_-

..

- 4.7 tiF

I
I
I
I

100

kQ

1----

~--+------------+----~IN

I
I
I

03

~--02

4 bit MPU
tiP0550C etc

~--01
~--OO

I

TO.047 I

~--B3

,J, tiF...JI
_______________

~--B2
1----

B1

BO
~-~VSS

410

MOS DIGITAL INTEGRATED CIRCUITS

p,PD1913C,p,PD1943G
REMOTE CONTROL TRANSMITTER
CMOS LSI

The J1PD1913C, J1PD1943G are CMOS ICs for control circuits of infrared remote control transmitter which are available for
TV, STEREO, VTR and TOY etc.
J1PD1943G is designed to transmit 8960 commands [(32 KEY + 3) x 256 custom code] and J1PD1913C is able to transmit 736
commands [(20 KEY + 3) x 32 custom code]. For the digital commands, these use a P.P.M system of 16 bit code, which transmit the code twice (invert in the second time) to prevent operation by false codes. These ICs are designed to be received with
4 bit CPU.

FEATURES
• Low Voltage Operation ..........
• Low Power Consumption (CMOS) ...

V 00 = 2.0 to 3.3 V
100 < 1 J1A at Standby Mode

• 32 Function KEY and 3 dual Action KEY (J1PD1913C is 20 Function KEY)
• 256 Custom Codes selected by External Diode (J1PD1913C is 32 Custom Codes)
• 16 bit Pulse Position Modulated code
• High Efficiency Transmission

IR LED ON Duty 3 %

• Indicator Output
• Package

J1PD1913C
J1PD1943G

16 PIN DIP
20 PIN MINI FLAT (small size flat package)

BLOCK DIAGRAM

+

l

Infrared LED

Key Matrix

* oO°J.lPD1913C is unable to use
Customer Code Select Diode

411

,uPD1913C,,uPD1943G

IlPD1913C
CONNECTION DIAGRAM (Top View)

PACKAGE DIMENSIONS (in millimeters)

1.2

REM

Voo

t=l.

0.5±0.1 2.54

+0.15

O• 25 -0.05

OSCO
OSCI

0-15

IlPD1943G
CONNECTION DIAGRAM (Top View)

PACKAGE DIMENSIONS (in millimeters)
12.5 MAX.

KIO
Kll

x

~[~
-+tN

1.25

412

0.6 MAX.

~

9.25 MAX.

I

7.25 MAx.N.15
10.65 MAX.

10
2

20

CCS

19

KoO

KI2

3

18

Kol

KI3

4

17

Ko2

REM

5

16

Ko3

Voo

6

15

Ko4

TEST

7

14

Ko5

OSCO

8

13

Ko6

OSCI

9

12

Ko7

Vss

10

11

LMP

,uPD1913C,,uPD1943G
ABSOLUTE MAXIMUM RATINGS (Ta=25 °C)
Supply Voltage

Voo -VSS

4.0

V

Input Voltage

VIN - VSS

-0.3 to Voo

V

Output Current

IOH(REM, lMP)

-15.0

mA

Power Dissipation

Pd

250

mW

Operating Temperature Range
Storage Temperature Range

Topt

-20 to +75

°c

Tstg

-40 to + 125

°c

RECOMMENDED OPERATING CONDITIONS
CHARACTERISTIC

SYMBOL

MIN.

TYP.

MAX ..

UNIT

Supply Voltage

VOO

2.0

3.0

3.3

V

Oscillation Frequency

fOSC

400

455

500

kHz

Lamp Output Current

IOl(lMP)

rnA

1

ELECTRICAL CHARACTERISTICS (Ta=25 °c, VD D =3.0 V)
CHARACTER ISTIC

SYMBOL

MIN.

TEST CONOITIONS

TYP.

MAX.

UNIT

0.1

1.0

rnA

fOSC = 455 kHz

1

p.A

fOSC=STOP

Supply Current

IOO(OP)

Supply Current

IOD(ST)

Input High Voltage

VIH(KI)

0.7 VOO

VOO

V

Input low Voltage

Vll(Kt)

0

0.3 VOO

V

Input Pull Oown R

R(Kt)

150

600

kn

Output Current

IOH(REM)

-5

Output low Voltage

VOI-(lMP)

300

rnA

0.3

V

VOH(REM) = 1.5 V
IOl = 1.0 rnA

413

PIN FUNCTION
PIN
(tl PD1943G)

PIN
(tl PD1913C)

FUNCTION
KIO

2

2

KI1

Key Input 0 }
Key Input 1

3

3

KI2

K ey I nput 2

4

4

KI3

Key Input 3

5

5

REM

Remote Output

6

6

7

Internaly Pulldown to Vss by Resistor

Voo

Positive Supply..... 2.0 to 3.3 V

TEST

TEST Terminal ..... normally Open
Oscillator Output } Ceramic Resonator
Oscillator Input
(400 to 500 kHz)

8

7

OSCO

9

8

OSCI

Rf

o~
T

10

9

LMP

Lamp Output

11

10

Vss

Ground

12

K07

Key Output 7

11

K06

Key Output 6

14

12

K05

Key Output 5

15

13

K04

Key Output 4

K03

Key Output 3

14

K02

Key Output 2

K01

Key Output 1

17
18

VDD

Indicator for Transmission

13

16

=r

19

15

KoO

Key Output 0

20

16

CCS

Custom Code Select Input
Custom Code is selected by diode Connection
to Key Output (KoO to K07)
This terminal is usualy pull up to Voo by internal Resistor.
en
u
u

I

o

o

~

......
o
~

N

o

~

~ II~~ I~
Custom Code Select

Example ... CO to C7

414

=10

0 1 10 10

I

OPERATION OF DUAL ACTION KEY
Keys (K21 to K24) are used for preventing failure caused by mistakes.

KEY

REC KEY
PLAY KEY

K21
K22

Exsample ; Casset Tape Recorder

DO

01

02

03

04

05

06

07

K21

+ K22

1

0

1

0

1

1

0

0

K21

+ K23

0

1

1

0

1

1

0

0

K21

+ K24

1

1

1

0

1

1

0

0

(a) Operation
K21 Transmission

D5+K22-24 Transmission

K21
t>108 ms

push

•

K22-24
push

(b) No operation

I

K21 Transmission

No transmission

K21
36 ms108 ms

,..------1

K22-24

K22-24 Transmission

1..--------------1_·1
No Transmission

415

,uPD1913C,,uPD1943G
Transmission Code

0

......

(\J

M

uu (.)u

oo::tlO \.Or--.
UU UU

I: I: I~ I: I: I: I: I:

......

(\J

M

oo::tlO \.0 r--.

ClO ClO OCI ClO

I~ I: I: I: I: I: I: I~

Data Code

Custom Code

Custom Code

Leader Code

0

Data Code

Key Data Code
KEY

~

K 1

0-

N

~

~

~

~

*

K 3

*
*

K 6

*

K 7

Ko1

*

K 8

*
*

K10

*

K11

Ko2

*

K12
K13

*
*

K14

*

K15

Ko3

*

K16
K17

*
*

K18

*

K19

*
*

K22

*

K23

Ko5

*

K24
K25

*
*

K26

*

K27

K30

Ko6

*

K28
K29

Ko4

*

K20
K21

KoO

*

K 4

K 9

Ko

*

K 2

K 5

OATA COOE

CONNECTION
~

*
*
*

K31

Ko7

*

K32

*

07

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

03

04

0

0

0

0

0

0

0

0

0

1

0

0

0

1

1

0

0

0

0

1

0

1

0

1

0

0

1

1

0

01

0
1

NOTES
06

02

00

05

1

1

1

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

0

1

0

1

0

0

0

0

1

1

0

1

0

0

0

0

0

0

1

1

0

0

0

0

1

0

1

1

0

0

0

0

0

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

1

1

0

0

1

0

0

0

0

0

1

0

1

0

0

0

1

0

1

0

1

0

0

~

0

1

1

0

1

0

0

0

1

1

1

0

1

0

0

0

0

0

0

1

1

0

0

0

1

0

0

1

1

0

0

0

0

1

0

1

1

0

0

0

1

1

0

1

1

0

0

0

0

0

1

1

1

0

0

0

1

0

1

1

1

0

0

0

0

1

1

1

1

0

0

0

1

1

1

1

1

0

0

0

/JP01913C is unable to use

/JP01913C is unable to use

/JP01913C is unable to use

Dual Action Key Code
KEY

416

00

01

02

03

04

05

06

07

K21 + K22

1

0

1

0

1

1

0

0

K21 + K23

0

1

1

0

1

1

0

0

K21 + K24

1

1

1

0

1

1

0

0

NOTES

Ex. fosc = 455 kHz

Remote Output Waveforms

o

1111111111111111111111111111111
67.5

01

I

ms.1

I.
•

01·

. I

..

108 ms

..

108 ms

.

.

.--J.--+------

I I ~~~ ~ ~~ ~ ~ H~~H~~~~~~ ~ ~~ ~~ ~ ~ ~~~ ~H
9 ms

4.5 ms
Custom Code
8 bits

13.5 ms
Leader Code

Custom Code
8 bits

Data Code
8 bits

27 ms

Data Code
8 bits

27 ms
67.5 ms

o

"----20d

111111111111111111111111111111111111111111111111111111111111111111

~

I

9 ms

1

11.25 ms

1

1

0

0

1

I
2 25
.
ms

II

~'.

••

0.56 ms

Carrier

8:~

9

ms

0'

0.56

ms

~

Carrier Frequency'" ···fc =fosc/12 =38 kHz

417

MOS DIGITAL INTEGRATED CIRCUIT

tLPD1937C
REMOTE CONTROL RECEIVER
P-MOS LSI

DESCRIPTION
The IlPD 1937C is P-MOS IC for decoding the signal from receiver of remote control system for TV etc.
By using with IlPD1986C which is the transmitter control IC, this IC will provide direct channel selection signal.
When IlPC1363C is used as channel selection IC, complete remote control system can be realized. The package
is 16 pins plastic dual in-line.

PACKAGE DIMENSIONS
in millimeters (inches)

FEATURES
•

•

Capable to receive 27 commands;
Channel 1 - 20

Channel up, down

OPtion

Volume up, down

Mute on/off

Power on/off

·
kl

Capable to control 5 commands directly;
Channel up, down

Volume up, down

Power on/off

•

Using with IlPC1363C, direct addressing is easily realized.

•

Capable to control the vo1.ume for 31 steps.

7.62

to~

0.25 ~:~5

BLOCK DIAGRAM
16 PIN DIP
r-~~---~~---------------------~-------------------------+12V

'-C~___- - - - - -

PH302....----.....

.:::-

OPTION OUTPUT

1--o-~---------

CHANNEL UP
(AND DIRECT SHIFT PULSE)

38 kHz AMP

1-0---"'"-------- CHANNE L DOWN

&

DETECTOR

VOL

t--D-_-'I/II\r--o......--

POWER RELAY

418

VOLUME CONTRO L
TO DCATT.

•

0-15

tlPD1937C

ABSOLUTE MAXIMUM RATINGS (Ta=25 °C)
Supply Voltage

VOD-VSS

-15.0 to +0.3

V

Input Voltage

VIN-VSS

-VOO to +0.3

V

Output Current

IOH (CHU, CHO, INI)

-5.0

mA

IOH (VOL, POW)

-10.0

mA

Power Dissipation

Pd

360

mW

Operating Temperature Range

Topt

-20 to +75

°c

Storage Temperature Range

Tstg

-40 to +125

°c

ELECTRICAL CHARACTERISTICS (Ta=-20 to 75°C, VOO=-9.6 to 14.4 V)
CHARACTERISTIC

SYMBOL

MIN.

TYP.

MAX.

UNIT

Supply Voltage

VOO

-9.6

-12.0

-14.4

V

Supply Current

IDO

-4.0

-10.0

-20.0

mA

Input High Voltage

VIH (1-5,13)

0

-1.5

V

Input Low Voltage

VIL (1-5,13)

-5.0

VOO

V

Input Pull Down Current IlL (1 -5,13)

5.0

50

J.lA

TEST CONDITIONS

Ta=25 °c, OSCI=VSS
VOO=-12 V

Ta=25 °c, VIN=VSS
VOO=-12 V

Output High Voltage

VOH (CHU)

-2.5

V

IOH=-1.0 mA

Output High Voltage

VOH (CHO)

-2.5

V

IOH=-1.0 mA

Output High Voltage

VOH (OPT)

-2.5

V

IOH=-1.0 mA

Output High Voltage

VOH (VOL)

-2.5

V

IOH=-5.0 mA

Output High Voltage

VOH (POW)

-2.5

V

IOH=-5.0 mA

Output Low Current

IOL (1""5,13)

100

J.lA

0

Ta=25 °c, VOL =-11.5 V
VOO=-12 V

419

j.lPD1937C
CONNECTION DIAGRAM
(Top View)

PIN

420

POWIN

1

CHUIN

2

CHDIN

3

VOLUIN

4

VOLDIN

5

POW OUT

6

VSS(+12 V)

FUNCTION

8

VDD

Negative supply GND norminal

12

VSS

Positive supply +12 V norminal (9.6--14.4 V)

10

OSCI

Oscillator Input

11

OSCO

Oscillator Output

13

REMIN

Remote Signal Input

POW IN

Power ON/OFF Key Input

2

CHUIN-

Channel Up Key Input

3

CHDIN

Channel Down Key Input

4

VOLUIN

Volume Up Key Input

5

VOLDIN

Volume Down Key Input

6

VOL OUT

Volume Output

7

POW OUT

Power ON/OFF Output

14

CHU OUT

Channel Up Pulse Output and Direct Channel Shift Pulse

15

CHD OUT

Channel Down Pulse Output

16

OPT OUT

Option Output for free use.

}

455 kHz Ceramic Resonator
CSB455A (MURATA MFG. Co;) is connected
to these pins.

This output is in the form of a pulse.
Connect to CR filter.

j.lPD1937C
1) CHANNEL SELECTION OUTPUT
• Direct Channel Operation
CHU OUT

(I nitial Channel Set and)
\Channel Shift Pulse

t--_ _1_8_m_s____-t---9-m_s-----'!f-t--1.1 ms
CHD OUT
!Initial Channel Set)

shift pulse = CH number - 1

MAX. 19

• UP, DOWN Channel Operation

II

---in

I---....I

r--

CHU or CHD
OUT

/18 ms

I.

0.72 s
(Continuous Operation)

./

2) VOLUME OUTPUT
+12 V
VOL
OUT

r--------------.r

DCOUT

7

0.47 IJ.F

I::l

o

+

U

o

1
22%
Repetition frequency •.........•.•.•. 3.6 kHz
VOL Steps .....•••.•.•.•.•.•..••.•.•.•....• 31
MIN. to MAX. time .•.•...•.•...•.•... 6.85

o
-

time 0.22s /step

EXAMPLE OF INPUT AMP CIRCUIT
PH301, PH302

3.3 kn

.---.-----~--------~~~~~~----~----~~~~~~--------~--------~--+12V

IJ.PD1937C
REMIN
(# 13)

0.221J.F
2SK68A

1SS53
2SC945

2SC945

421

,uPD1937C
OUTPUT WAVE FORM

"
-....
mIill'""
INPUT {

.----,

.....
nIH'"''
11111

I

I

I

I

,..---,

~---,

:

:

I

I

I

I

REM IN
KEVIN

~
==:t9

ms

MIN.72 ms

n 'IIlIlI.II.,IIIII'!1
111111 '1 111.111111
11111111111111.11'

1 ' - - - -..... 1

108 ms

1 MAX. 22.5 msJ
I

81 ms

I

18 ms

76.5 ms

140ms

MUTE OFF

VOL OUT
INTERNAL SOUND)
(
MUTE

M\ TE ON

~~-------r------------j~;r-------------~

--------------------------r- r-______
+ ____________
POWER ON

P_O_W_E_R_O
__
FF
____________---1__

POW OUT

99

ON

J'lt ______ ~F!' __________ _

ms

-- - -- - --- ---- --- -- -----.,

__ -..1 ""-________..... __

MUTE ON

VOL OUT

-{-r--1__

~

INTERNAL SOUND)
(
MUTE
OPT OUT

APPLICATION CIRCUIT
EXAMPLE OF TV REMOTE CONTROL
TUNNING SYSTEM USING PH302.

r---------------------------------------------~------~~---12v

r-;-----------------------------------------~4r~~~~V-~v~~~~~~

J..l PD1937C and JJPC1363C.

27k

PIN Photo Diode OPTION OUTPUTQ--_--,
PH301 ,.. ___________ ,

~lt>n

I

3BkH'AMP

I

&

I

DETECTOR

~:--~~~-f--~~b;====f===~~~~-c-e-ra-m-ic--~-----------r-----------------+12V
Resonator

l00IlF

~-t------+-~--~-.

I

l------,t-----J

-c=

AC 117/100V
ON/OFF

II
47k

VOLUME
CONTROL
TO DC ATT

POW
ON/
OFF

422

CH
UP

CH
OW

VOL VOL
UP
OW

2SD471

MOS DIGITAL INTEGRATED CIRCUIT

,uPD1986C
REMOTE CONTROL TRANSMITTER
CMOS LSI

DESCRIPTION
J,LPD1986C is CMOS IC for controlling the transmitter of remote control system for TV set etc. By using with
J,LPD1987C which is the receiver control IC, the direct channel control system can be obtained. When infrared
emitting diode is used as transmitter element, this system will be very stable against any interference. The package
is 16 pins plastic dual in-line package type.

PACKAGE DIMENSIONS

in millimeters (inches)

FEATURES
•

19.4 MAX.
(0.763 MAX.)

Capable to transmit 27 commands;
Channel 1 - 20

Channel up, down

Volume up, down

R 1
(R 0.041

Mute on/off

Option *

Power on/off

* J,LPD1987C is not able to decode this option code.
•

Minimum misoperation by infrared transmission

•

Wide operation voltage range (2.2 -7.2V)

•

Low power consumption (lDD = 1 J,LA at KEY OFF condition)

-W--

2.54
to.ll 0.5tO.l

~
k-l.
0.25 ~:~

0-15

(0.0191

BLOCK DIAGRAM
CERAMIC RESONATOR
100pF ~

~ 100 pF

OSCI

Voo

OSCO

OSCILLATOR

16 PIN DIP

455 kHz

MULTIPLIER

REM
OUT

423

,uPD1986C

ABSOLUTE MAXIMUM RATINGS (Ta =25 °C)
Supply Voltage

VOO-VSS

-0.3 to +8.0

V

Input Voltage

VIN-VSS

-0.3 to VOO

V

Output Current

IOH(REM)

-10.0

mA

Power Oissipation

Pd

360

mW

Operating Temperature Range

Topt

-20 to +75

°c

Storage Temperature Range

Tstg

-40 to +125

°c

ELECTRICAL CHARACTERISTICS (Ta = -20 to +75 °c, VOO = 6.0 V)
CHARACTER ISTIC

SYMBOL

MIN.

TYP.

MAX.

UNIT

6.0

7.2

V

0.3

1.0

mA

OSC=455 kHz

1.0

Il A

OSC STOP, T a=25 °c

Supply Voltage

VOO

Supply Current

IOO(OP)

Supply Current

IOO(ST)

Input High Voltage

VIH(KI)

0. 7V OO

VOO

V

Input Low Voltage

VIL(KI)

0

0. 3V OO

V

Output High Voltage

VOH (REM)

VOO-l

VOO

V

Input Pulldown Current

IlL (KI)

-10

-100

IlA

2.2

TEST CONOITIONS

IOL=-1.0mA
VIN=Voo,Ta=25°C

REMOUT CHARACTERISTIC (lOL -VOH)
VOH-Output Voltage-V

-2

-1

~----~------~----~------~------

o

~---+----+-----+----+-~'----I-1.0

«E
+-'

~---+----+-----+--+--f--+-----I-2.0

c:

~
::J

U

;

~---+----+----+--+-#----+-----I-3.0

9::J

cr...J
9

424

1-----+----7rC....-+----::I~_+---_t_--___;

-4.0

' - - -_ _ _ _~_ _ _ _.l.-...I......_ _ ____L._ _ _ _ _~_ _ _ _~

-5.0

,uPD1986C
CONNECTION DIAGRAM
(Top View)

PIN

FUNCTION

8

VSS

Ground

9

VOO

Positive supply
2.2 to 7.2 Volt.

Operating voltage is wideband

10

OSCI

Oscillator Input

11

OSCO

Oscillator Output

455 kH z Ceramic Resonator
CSB455A (MURATA MFG. Co.)

12

REM OUT

Remote Signal Output

13--16

K 10"'K 13

Key Input 0"'3

1--7

KO"'K7

Key Output 0-7

READER BITS

""""I"'"

See Fig 1 and Table 1

DATA BITS

-----,- ----T--- -T-- --T-----,
,
,
I
,
I
,
I

LSB

I
I

I

:

l

I

I
I

I
:

I
I

I

'MSB:

:

:

i

9ms
36ms

38 kHz Carrier

.1

CH1 ...... CH20, POW, MUTE, OPT """'-" Only Double Block Pulses

50% Duty

CHU, CHD, VOLU, VOLD -- •.. -- ...•.•... Continuous Block Pulses

Fig. 1

Remote Signal Output (1 Block)

425

,uPD1986C
Table 1

Data bit code

CONNECTION

426

DATA BIT CODE

FUNCTION

KIN

KOUT

KIO

KO

CH 1

DIRECT ADDRESS CHANNEL 1

0

0

0

0

0

Kll

KO

CH 2

DIRECT ADDRESS CHANNEL 2

0

0

0

0

1

KI2

KO

CH 3

DIRECT ADDRESS CHANNEL 3

0

0

0

1

0

KI3

KO

CH 4

DIRECT ADDRESS CHANNEL 4

0

0

0

1

1

KIO

K 1

CH 5

DIRECT ADDRESS CHANNEL 5

0

0

1

0

0

KI1

K 1

CH 6

DIRECT ADDRESS CHANNEL 6

0

0

1

0

1

KI2

K1

CH 7

DIRECT ADDRESS CHANNEL 7

0

0

1

1

0

KI3

K1

CH 8

DIRECT ADDRESS CHANNEL 8

0

0

1

1

1

KIO

K2

CH 9

01 RECT ADDRESS CHANNEL 9

0

1

0

0

0

K 11

K2

CH 10

01 RECT ADDRESS CHANNEL 10

0

1

0

0

1

KI2

K2

CH 11

DIRECT ADDRESS CHANNEL 11

0

1

0

1

0

KI3

K2

CH 12

DIRECT ADDRESS CHANNEL 12

0

1

0

1

1

KIO

K3

CH13

DIRECT ADDRESS CHANNEL 13

0

1

1

0

0

KI1

K3

CH 14

01 RECT ADDRESS CHANNEL 14

0

1

1

0

1

KI2

K3

CH 15

DIRECT ADDRESS CHANNEL 15

0

1

1

1

0

KI3

K3

CH 16

DIRECT ADDRESS CHANNEL 16

0

1

1

1

1

KIO

K4

CH 17

DIRECT ADDRESS CHANNEL 17

1

0

0

0

0

KI1

K4

CH18

DIRECT ADDRESS CHANNEL 18

1

0

0

0

1

KI2

K4

CH 19

DIRECT ADDRESS CHANNEL 19

1

0

0

1

0

KI3

K4

CH 20

01 RECT ADDRESS CHANNEL 20

1

0

0

1

1

KIO

K5

VOLD

VOLUME DOWN

1

1

0

0

0

KI1

K5

VOLU

VOLUME UP

1

1

0

0

1

KI2

K5

CHD

CHANNEL DOWN

1

1

0

1

0

KI3

K5

CHU

CHANNEL DOWN

1

1

0

1

1

Kll

K6

MUTE

MUTE ON/OFF

1

1

1

0

1

KI2

KG

OPT

OPTION

1

1

1

0

0

KI3

K6

POW

POWER ON/OFF

1

1

1

1

1

MSB

LSB

jlPD1986C
APPLICATION CIRCUIT

o

EXAMPLE OF 18 FUNCTION TRANSMITTER CIRCUIT
INFRARED LED
SE303A x 2

+6 V

+
:

4.7 kn

1

J.,LPD1986C

2SC945

o

1.5V
x4

2SC200 1

EXAMPLE OF CONSTANT CURRENT LED DRIVE CIRCUIT

2SC945

SE303Ax2

+
:
~I­

w:::>

a:o

o

..-

U

U

o

o

(/)

CJ)

1.5 V
x4

I

o
o

>

(/)
CJ)

>

1SS53 x 2

2SC200 1

427

MOS DIGITAL INTEGRATED CIRCUIT

I1PD1987C
REMOTE CONTROL RECEIVER
P-M OS LSI

DESCRIPTION
The IlPD1987C is P-MOS IC for decoding the signal from receiver of remote control system for TV etc.
By using with IlPD1986C which is the transmitter control IC, this IC will provide direct channel selection signal.
When IlPC1360C is used as channel selection IC, complete remote control system can be realized. The package
is 16 pins plastic dual in-line.

PACKAGE DIMENSIONS

in millimeters (inches)

FEATURES
•

•

Capable to receive 26 commands;
Channel 1 - 20

Channel up, down

Volume up, down

Mute on/off

Power on/off

R 1
(R 0.04/

Capable to control 5 commands directly;
Channel up, down

Volume up, down

fl

Power on/off

•

Using with IlPC1360C, direct addressing is easily realized.

•

Capable to control the volume for 31 steps.

7_62

(0.31

0_25 ~:~5

BLOCK DIAGRAM
16 PIN DIP
r-4r~--~~--------------~------------------+12V

Vss
t-o-IN_I~------_INITIAL SET
(FOR DIRECT ADDRESS)
PH302 , . . . - - - - - - ,

~

t-o-~-------

CHANNEL UP
(AND DIRECT SHIFT PULSE)

38 kHz AMP

&

t-o-~-------

CHANNEL DOWN

~O--:-~-J\N\r--1>---

VO LUME CONTRO L
TO DCATT.

DETECTOR

I

CI

56 pF

CO

OSCO

1470 pF'--_ _ _ _ _ _ _ _ _-o-_ _ _ _ _ _ __

CERAMIC RESONATOR
455 kHz

POW
ONI
OFF

~

POWER RELAY

428

0-15

0

J,lPD1987C
ABSOLUTE MAXIMUM RATINGS (Ta=25 °C)
Supply Voltage

VOO-VSS

-15.0 to +0.3

V

Input Voltage

VIN-VSS

-VOO to +0.3

V

Output Current

IOH (CHU, CHO, INI)

-5.0

rnA

IOH (VOL, POW)

-10.0

rnA

Power Oissipation

Pd

360

mW

Operating Temperature Range

Topt

-20 to +75

°c

Storage Temperature Range

Tstg

-40 to +125

°c

ELECTRICAL CHARACTERISTICS (Ta=-20 to 75°C, VOO=-9.6 to 14.4 V)
CHARACTER ISTIC

SYMBOL

MIN.

TYP.

MAX.

UNIT

Supply Voltage

VOO

-9.6

-12.0

-14.4

V

Supply Current

100

-4.0

-10.0

-20.0

rnA

Input High Voltage

VIH (1--5,13)

0

-1.5

V

Input low Voltage

VI l (1--5,13)

-5.0

VOO

V

Input Pull Oown Current III (1--5,13)

5.0

50

JlA

TEST CONOITIONS

Ta=25 °c, OSCI=VSS
VOO=-12 V

Ta=25 °c, VIN=VSS
VOO=-12 V

Output High Voltage

VOH (CHU)

-2.5

V

IOH=-1.0 rnA

Output High Voltage

VOH (CHO)

-2.5

V

IOH=-1.0 rnA

Output High Voltage

VOH (INI)

-2.5

V

IOH=-1.0 rnA

Output High Voltage

VOH (VOL)

-2.5

V

IOH=-5.0 rnA

Output High Voltage

VOH (POW)

-2.5

V

IOH=-5.0 rnA

Output low Current

IOl (1--5,13)

100

J.J.A

0

Ta=25 °c, VOL=-11.5 V
VOO=-12 V

429

,uPD1987C
CONNECTION DIAGRAM
(Top View)
POWIN

1

CHUIN

2

15

CHDIN 3
VOLUIN

CHD OUT
CHU OUT

4

VOLDIN 5

12

VSS(+12 V)

POW OUT 6

11

osco
ascI

PIN

430

FUNCTION

8

VDD

Negative supply GND norminal

12

VSS

Positive supply +12 V norminal (9.6""14.4 V)

10

OSCI

Oscillator Input

11

OSCO

Oscillator Output

13

REM IN

Remote Signal Input

POW IN

Power ON/OFF Key Input

2

CHUIN

Channel Up Key Input

3

CHDIN

Channel Down Key Input

4

VOLUIN

Volume Up Key Input

5

VOLDIN

Volume Down Key Input

6

VOL OUT

Volume Output

7

POW OUT

Power ON/OFF Output

14

CHU OUT

Channel Up Pulse Output and Direct Channel Shift Pulse

15

CHD OUT

Channel Down Pulse Output

16

INIOUT

Option Output for free use.

455 kHz Ceramic Resonator
CSB455A (MURATA MFG. Co.) is connected
to these pins.

This output is in the form of a pulse.
Connect to CR filter.

,uPD1987C
1) CHANNEL SELECTION OUTPUT
• Direct Channel Operation
INI OUT
Initial Channel Set )
( (CH1) to JJPC1360C - - - '
CHU OUT
(Channel Shift Pulse)
18 ms

J---------I----~----...~~

1.1 ms

shift pulse = CH number - 1 MAX. 19

• UP, DOWN Channel Operation

II------411

CHU or CHD
OUT

118 ms

I.

0.72 s
(Continuous Operation)

2) VOLUME OUTPUT
+12V .--------------------~

VOL
OUT

47 kn

DCOUT

7
I:::J

o

+

U

0.47 JJF

o

t
22%
Repetition frequency •...•.....•.•..• 3.6 kHz
VOL Steps ................................. 31
MIN. to MAX. time ...•.....•.•.•...•. 6.8 s

o
-

time 0.22 s/step

EXAMPLE OF INPUT AMP CIRCUIT
PH301, PH302

3.3 kn

.---.----~--------~~~~~~-~----~~-=~~~--------~~--------~--+12V

+

+

10 JJF

33 JJF

JJPD1937C
REM'IN
(# 13)

100 kn

0.22 JJF
2SK68A

1SS53

I

0.1 JJF

2SC945

2SC945

2SC945

431

jlPD1987C
OUTPUT WAVE FORM
hrrrnl1

1111 ~ !;..
INPUT {

nn'111',
"'

I

I

I

I

,..---,

r---,

~---,

'1111

:

:

I

I

I

I

REM IN
KEVIN

~
~9ms
MIN. 72 ms

INI OUT

~~~~c,;EL

(

18 ms

81 ms

..............
.,;1
'.1I'"III
•• 1t1l11l1
1 !! , ,
I MAX. 22.5 ms -I

{ CHU OUT

11

I

108 ms
UP. DOWN
OUT

I I • I I .. .. 1111

CHU or
CHD OUT

63 ms

76.5 ms
MUTE OFF

VOL OUT
INTERNAL SOUND)
(
MUTE
POW OUT

VOL OUT
(

~

MUTE ON

POWER ON

'"'I ---- --(-r --------ON

-+---------------------p...;~...;:...;:;;.;.9R-~..;;.~....F-.F..._-_-_-_-_-_-_-_-_-_--+--_-_-_-_-_-_-...IjL - - - - ~

--- -- - --- - --- --- -- -----~----------------~~~~~M~U=T~E=O~N~~~~~~~~---l---------

INTERNAL SOUND)
MUTE

APPLICATION CIRCUIT
EXAMPLE OF TV REMOTE CONTROL
TUNNING SYSTEM USING PH302,

r----------------------------------------------~------~~~-116V

r-+-----------------------------------______

4-~4_--~~~TUNNING
VOLTAGE

J.l PO 1987C and J.l PC1360C.

10k

;r!

PIN Photo Diode

PH301

r-----------,

~kH'AMP
&

I
I
I
I

DETECTOR

+6V
:

1---t-------+----4---+----,
I

l __ -

---;t-----.J

-e=

AC 1171100V
ON/OFF

II
47k

VOLUME
CONTROL
TO DC ATT

POW
CH
ON/ UP
OFF

432

CH VOL VOL
OW UP
OW

2SD471

MOS DIGITAL INTEGRATED CIRC.UIT

/LPD6102G
MULTI-PURPOSE REMOTE CONTROL TRANSMITTER IC
CMOS LSI'

DESCRIPTION
The J.LPD6102G is a versatile remote control infrared transmitter (TX) integrated circuit for TV, VCR, stereo,
air conditioner and many other applications. The maximum of 34304 commands are ·available with the custom
code selection by external diodes. This enables effective control of various apparatus without interference. The
transmitting code consisting of 16 bits can be directly decoded by a 4-bit MPU, thus giving a wide applicatior).
The package is a 24-Pin MINI FLAT that is the best suited for miniaturization of apparatus.

PACKAGE DIMENSIONS (in millimeters)

FEATURES

15.3 MAX.

= 2.0 to 3.3 V

ct

Low Voltage Operation .....VDD

•

Low Power Consumption ... 100 < 1 J.LA at Standby Mode

•

64 Function KEYs and 3 dual Action KEY

o 256 Custom Codes selected by External Diode
o 16 bit Pulse Position Modulated code
o High Transmission Efficiency .. I R LED ON Duty 3 %
X

o Indicator Output

 108 ms

~1".----------------1""';

I K22 -

24

1...----------......~

push

(b) No operation
K21

I
I ..

No transmission

1<21 Transmission

36 ms

< t < 108 ms

... 1

~-----------------1.~

1 K22 - 241

(e) No operation
K2 1

a.-__ _

_""'1 .36 ms < t < 36 ms
.•

-I

IK22-24I~----------------------------------------~...

(d) No operation
K21

I ..
K22-24

t> 108 ms

~I--------------~.
.. I

~--------------------------------~No Transmission
K22 - 24 Transmission

439

tlPD6102G
Remote Output Waveforms

------I
Ex. fosc = 455 kHz

KEY Input

.1r - - - ~i

I •

~!

~

I

~~s

111111111111111111111111111111111

I:

67.5 m,'08 m:

01

01

I

I

I

108 ms

I

I

,....

9 ms
4.5 ms
13.5 ms

Custom Code
8 bits

Leader Code

Custom Code
8 bits

Data Code
8 bits
27 ms

27 ms

~~ ~ ~~~ ~

~tl l l l l l l l l l l l l l l l l l l l l l l l lil 1 1
9 ms

I:

.1.

4.5 ms

13.5 ms

II j~~5
1.1~~O::
•

11M •

o

2nd

111111111111111111111111111111111111111111111111111111
9 ms

Data Code
8 bits

I

ms •
•

.1 ~25ms II
0.56 ms

Carrier

8.77

ps--J-l--. I

~
9 ms or 0.56 ms

Carrier Frequency ...... .f c = f osc/12

440

~
= 38 kHz

•••

•

1

~

1125 ms
:
t-t--.
It• - - - - . .- -

III

••

1

0

•

•

0

•

1

.1.

jlPD6102G
APPLICATION
455 kHz Ceramic Resonator

+

100 pF

100 pF

-=- 3V

l

TX

OSCI

I

OSCO

SEL VOO

LMP

,",P06102G

CCS

REM f-------<

Infrared LED
SE303A
2SC2001

KIO ....
2.0n

RX

r------------------,
1 kn

100 n

38 kHz

100 kn
1----

PH302

C2
J.lPC1373H
GNO

IN

Cl

VCC
OUT~r-~-----------+----~IN

C3

22n
+

4.7 J.lF

1----

I

1 - - - - 01

4 bit MPU

I
1

03
02

1-----

DO

J.LP0550C etc

10.0471
J.LF!

1 - - - - 83
1----

L_~--------------~

82

t---- 81
1 - - - - 80
"----I

VSS

SE303A ............ Infrared LE D
PH302 ......•...... PIN Photo Diode
pPC1373H ...•...... Preamplifier for Remote Control
RX IC .•........... TV use
PLL .... pPD1700 Series
VTR, VIDEODISC, STEREO, AIRCONTROL, OTHERS
4 bit CPU . .. pcom 43 series
J,Lcom 7500 series
8 bit CPU .... pPD8048, 8049
pPD7800 series

441

BIPOLAR ANALOG INTEGRATED CIRCUIT

,uPC1356C2
COMPLETE PICTURE IF Ie FOR COLOR TV
51 LICON BIPOLAR MONOLITHIC INTEGRATED CIRCUIT

The

~PC1356C2

is a silicon monolithic integrated circuit for PI F section in Color Television receivers. As it contains picture

detector and sound I F detector separatedly, it can offer excelent low buzz characteristics. This IC has all functions including
picture IF amplifier (4th), picture low-level detector, sound IF detector, AFC detector, IF AGC, RF AGC and picture
amplifier.
PACKAGE DIMENSIONS (Unit:mm)

FEATURES

• As it contains picture detector and sound IF detector
27 MAX.

separatedly, it can offer excellent low buzz characteristics
for Audio Multiptex TV.
•

High input sensitivity; TYP. 32 dB~

• The AGC control range is wide; TYP. 70 dB

~~8.6
~r-------~: 10.16
:::E

• As input is differential mode, it can be used with SAW
filter.

~
ci

UU~

~

.

U U~~N

O.S±O.I"; 0.2S~g:~~ 0-15·

BLOCK DIAGRAM

22 PINS

-y
RF AGC
REVERSE? 17

t--------tll,.J\.. PICTURE
'-V OUT

5

SOUND TRAP

442

¢

SIF
OUT

,uPC1356C2
TV BLOCK DIAGRAM
,uPC1356C2

ANTENNA

SOUND
DET.

SIF

AMP.

CHROMA
AMP.

SYNC
SEP.

SOUND
OUT

SPEAKER

COLOR
DEMO.

COLOR
SYNC.

CONNECTION DIAGRAM (Top View)

SIF DET COIL

STABLE VOLTAGE

SIF DET COIL

2

21

CAPACITOR

GND

3

20

CAPACITOR

MUCHING COIL

4

19

PIF INPUT

SIF OUT

5

18

PIF INPUT

PICTURE DET COIL

6

17

RF AGC OUT (REVERSE)

AFT COIL

7

16

RF AGC DELAY

AFT COIL

8

15

AGC TIME CONSTANT

PICTURE DET COl L

9

14

KEYING PULSE INPUT

AFT OUT

10

13

SUPPLY VOLTAGE

PICTURE OUT

11

12

IF AGC REF. LEVEL

443

,uPC1356C2
ABSOLUTE MAXIMUM RATINGS (Ta

±3 °C)

V13MAX.

15

V

Terminal 22 Current

122MAx.

100

rnA

Terminal 14 Current

114MAx.

±3

mA

900 (Ta ~ 65°C)

mW

Power Dissipation

Pd

Operating Temperature

T opt

-15 to +65

°c

Storage Temperature

T stg

-40 to +125

°c

ELECTRICAL CHARACTERISTICS (Ta
CHARACTERISTIC

444

= 25

Supply Voltage Pin-13

SYMBOL

= 25°C, Vcc = 12 V, RA = 120 fl, fp = 58.75 MHz)
TEST
CIRCUIT

MIN.

TYP.

MAX.

UNIT

TEST CONDITIONS

Total Supply Current

ICC

1

55

70

90

rnA

Zero Carrier

Termina~

13 Current

113

1

20

30

40

rnA

Zero Carrier

Terminal 22 Current

122

1

35

40

50

rnA

Zero Carrier

Terminal 22 Voltage

V22

1

6.6

7.2

7.6

V

Maximum RF AGC Voltage

9.0

9.2

10.0

V

V 16 = 7 V

0

0.5

V

V16 = 0 V

V17H

1

Minimum RF AGC Voltage

V17L

1

Terminal 11 Voltage

V11

1

3.7

4.1

4.7

V

Terminal 10 Voltage

V10

2

5.0

6.5

7.7

V

Maximum AFT Out Voltage

11.0

V

V7 = 4.8 V

Va=5.1 V

1.0

V

V7 = 5.1 V

Va = 4.8 V

41

V10H

2

Minimum AFT Out Voltage

V10L

2

Input Sensitivity

Vi (Jim)

3

25

32

dB.u

fm = 400 Hz m=40% Vo = 0.8 Vp.p

AGC Range

G.R

3

60

80

dB

fm = 10 kHz m=40% Vo = 0.8 Vp-p

Maximum I nput Voltage

Vi(MAX)

3

100

55

mVr.m.s.

fm = 10 kHz m=40% Vo = 0.8 Vp-p

Signal To Noise Ratio

SIN

3

50

SI F Output Voltage

Vo(SIF)

3

12

Carrier Leak

CL(OET)

3

dB
25

50

mVrms

5

50

mVr.m.s.

13

MHz

3

5

%

DP

3

5

deg

AFT Control Sensitivity

Sf

3

50

150

AFT Band Width

BW

3

0.2

1.1

PI F Input Resistance

Ri

4

1.5

kn

PIF Input Capacitance

Ci

4

3.5

pF

Picture Frequency Response

fC

3

Differential Gain

DG

Differential Phase

5

2.1

fm = 15.75 kHz m=80% Vo = 1.5 Vp-p
= 10 mVr.m.s.

Vi

fm = 400 Hz m=40% Vi(P) = 3 mVr.m.s.
fs = 54.25 MHz Vies) = 300 .uVr.m.s.
Vi

= 20 mVr.m.s.

m=40% Vi =20 mVr.m.s.
fp = 58.75 MHz Stair Step fm = 3.58 MHz
m=85%
14 % Modulated White To Sync Level
Vo(DET) = 1.4 Vp-p

mV/kHz

fm = 400 Hz m=40% Vo = 0.8 Vp-p

MHz

fm = 400 Hz m=40% Vo = 0.8 Vp-p

JlPC1356C2
TEST CIRCUIT 1

12 V

,uPC1356C2

*:

0.01 JJF

100 k

*

TEST CIRCUIT 2
120

* *

:jc

*
12 V

100 k

* : 0.01

JJF

445

~
~

m

1:::

TEST CIRCUIT 3

""CJ

"en
"
~

SWI
2

MANUAL GAIN CONT

W

2

en

10 kVR

N

120

A)

,

Q

,+
47 pF
10 k

J

51

I

I

~n!
i

""T"

..,....

..,....

I

12 V

*

J.

J

..,....,

I

*

5 kVR
IF. AGC REF. LEVEL

*

I

________ LI _________ _
SHIELDING

,uPC1356C2
I

I

11
1 k
2.2 k

100 k
1 k

*

1

[SG2

h

175

1

820

*

J

1 k

*

4.5 MHz
CERAMIC

FILTER

* : 0.01

#IF

,uPC1356C2
TEST CIRCUIT 4
120

RX
METER
50 ,uF

12
12 V

,uPC1356C2
11

*:

0.01 IlF

SWITCH TABLE
ICC

113

122

V22

11.12

.1.1

V17H

V17L

V11

V'O

V'OH

TEST CIRCUIT

1

1

1

1

1

1

1

1

1

2

2

2

SWl

1

1

1

1

1

1

2

1

1

-

-

-

SW2

-

-

-

-

-

-

-

-

-

SW2
OFF

2

2

SW3

-

-

-

-

-

-

-

-

-

OFF

AA'

BB'

METER

A,

A2

A3

A4

A4A5

A4A5

V,

V,

V2

V3

V3

V3

ITEM

V'OL

1

ITEM

Vj(Jm)

G.R.

VjMAX

SIN

Vo(SIF)

CL(DET)

fC

D.G.

D.P.

Sf

B

Rj

Cj

TEST
CIRCUIT

3

3

3

3

3

3

3

3

3

3

3

4

4

SWl

1

1

1

2

1

2

2

2

2

2

2

-

-

SW2

OFF

OFF

OFF

OFF

OFF

ON

ON

ON

ON

ON

ON

-

-

MGC
GAIN
MIN

MGC
GAIN
MIN

MGC
GAIN
MIN

MGC
GAIN
MIN

MGC
GAIN
MIN

MGC
GAIN
MIN

SG2

SG2

SG2

SG2

SG2

SG2

-

-

MGCVR
SG
METER

VARIABLE
SG,
OSCILLO

SG,
OSCILLO

SG,
OSCILLO

SG,
NOISE
METER

SG,
OSCILLO

VTVM

DIGIT DIGIT
RX
RX
DG/DP DG/DP
VOLT VOLT
OSCILLO
METER METER
METER METER
METER METER

447

jiPC1356C2
TYPICAL CHARACTERISTICS (Ta = 25 °C)
PICTURE DET. OUTPUT VOLTAGE, SIN, CARRIER LEAK
2.0
0
0

r

I
I
1
I

OJ

"0

I

Q)

be

vi

E
~

oS
(5
>

E
I
..>t! 1.0
til

Q)

...J

....

OJ

:::l

"0

J5 -5

~-5

.......

"-

,,

....

...

I
I

Q)

0

Q)

'E

~

.au

til

u
I
...J
u

INPUT VOLTAGE

1\
I J J
Vo;fp=58.75 MHz

L

fm= 400 Hz. m= 40 %
Vo= 0.5 Vp- P
ust
At

I f

L .I.

I

Cl;Ip= 58.75 MHz CW

/

~

0

en

VI.

S/W ;Ip = 58.75 MHz
fm=15.75kHz m=80 %
Vo= 1.5 Vp-p Adjust

i:i:
I

0

~-1O

0 -10

o

60

40

20

80

100

Vi-Input Voltage-dB,u

AFT OUTPUT TERMINAL VOLTAGE vs. CARRIER FREQUENCY -

=;-

1

\

10.0

11\

Q)

be

oS

\
\

g
roc:

l 10

.~

Q)

I-

:J
5.0
Cl.

I

o

1
\'2
\

1\

"5

I-

u...

ex:
I

o

->

~

o

58.6

58.7

58.8

58.9

fp- Carrier Frequency- MHz
AFT OUTPUT TERMINAL VOLTAGE vs. CARRIER FREQUENCY -

=;-

10.0

Q)

be

oS

13)/

~V

;§!

roc:

.~

fo

Q)

I-

....
:::l

.e:::l

5.0

o

I-

u...

ex:
I

o

/

->

/

~

o
56

57

58

59

60

fp- Carrier Frequency - MHz

448

61

2

STANDARD APPLICATION CIRCUIT
KEYING PULSE
6.8k

Vcc= 12 V

U
47 J.l

5 k

0.01 J.l

B

\r
RF AGC
DELAY AMP.

RF AGC
REVERSE

8.2 k

NOISE
FILTER

IF AGC AMP.

~VIDEO

PICTURE
AMP.

OUT

r
SIF
DET.

.--J\N\r-----.+ AFT

OUT
PIF
IN

3rd
IF AMP.

4th
IF AMP.

PICTURE DET. COIL

47 J.l

0.01 J.l

A-

T

m-

+
SIF DET.
MUCHING COIL

47

AFT COIL

B

In case of
Peak Type AGC

+

RA
120

~

""C

o

~

w
en
0)
o

~
~

CD

N

JLPC1356C2
COIL SPEC. (COIL MAKER; TaKa, INC.)
COIL DRAWING
(BOTTOM VIEW)

ITEM

SIF DET. MUCHING COIL

~
3

1

13 TO

13 TO
TV4BVC - 21135AFO

C
[gJ

4-6
6-2
2-4
l-A
A-B
C

5% T
2% T
3T
4% T
3T
100 pF

0.2t/> 2 UEW
A-81.0t/>TINNEDWIRE

TYPE No.

10 KN

10 KN

180PNA - 10212BS

TURN

96 ± 20 %
6T

95 ± 20 %
6%T

4-6

WIRE

0.16 t/> 2 UEW

0.16 t/> 2 UEW

TYPE No.

10KN

10KN

COIL No.

180PNAS - 10232ALR

180PNAS - 10235ALR

MUCHING C.

33 pF

33 pF

NO LOAD O.
TURN

12

V

PIF Input Voltage

Vi

10

mVr.m.s.

*5

V p _p

V

*Keying Pulse

---JJ;-----

5 Vp-p

V"------ - ------ ----- Comparative
----------

Level

5T
1% T
3%T

0.23 t/> 2 UEW

VCC

R F AGC Voltage

97±20 %

93±20 %

6-1
6-3
6-4

Supply Voltage
Keying Pulse

450

40pF

4-6

STANDARD USING CONDITION (Ta = 25°C)

a V ------------

180PNA -10223BS

33 pF

NO LOAD O.

WIRE

3

7% T
3% T
4T
5% T
5T
100 pF

O.2t/> 2 UEW
A-B 1.0 t/> TINNED WIRE

MUCHING C.

AFT COIL

7 V

4-6
6-2
2-4
l-A
A-B
C

WIRE

COIL No.

®
0
CD

=45 MHz SPEC.

TV4BVC - 21132AFO

6

PICTURE DET. COIL

fp

COIL No.

TURN

C

= 57 MHz SPEC.

TYPE No.

4

2

fp

6-1
6-3
6-4

7T
2%T
4T

0.23 t/> 2 UEW

JLPC1356C2
COMPONENTS LAYOUT

• P.C. BOAD PATTERN

o

o
COMPONENTS (For fp = 57 MHz)
SYMBOL
RI
R:z
R3
R4
Rs
R6
R7
Rs
R9
RIo
R11
Rll
RI3
RI4
R ls
RI6
RI7
R is
RI9

SPEC.
220 n
120 kn
1.8 kn
100 kn
100 n
470 kn
6.8 kn
10 kn
10 kn
8.2 kn
5kn
3.9 kn
2.7 kn
120 n
220n
1 kn
47 n
200 n
560n

SPEC.

SYMBOL
CI
C:z
C3
C4
Cs
C6
C7
Cs
C9
CIO
Cl1
Cll
CI3

0.47 p.F
0.01 p.F
0.01 p.F
0.01 p.F
47 p.F
0.01 p.F
20 pF
20 pF
20 pF
0.01 p.F
33 pF
0.01 p.F
47 p.F

VR I
VR:z

5 knoB
5 knoB

TI
T:z
T3
T4

TO-KO
TO-KO
TO-KO
TO.KO

10V

16V

10V

TV4BVC-21132AFQ
180PNA-l0212BS
180PNAS-l0232ALR
MTKAC-19951Z

451

BIPOLAR ANALOG INTEGRATED CIRCUIT

pPC1366C
VIDEO IF PROCESSOR FOR BjW TV

DESCRIPTION
The pPC1366C is a silicon monolithic integrated circuit designed for VIF section in B/W television receivers.
This IC has all functions including video IF amplifier, video low-level detector, RF .AGC, IF AGC and noise
canseller.
This IC is encapsulated in 14 pin dual in-line package with heat tab.

FEATURES
• High input sensitivity; TYP. 30dBp.
• It can be used both of keyed type AGC and peak type AGC.
• It can be operated with the power supply voltage above 7V.
• Since the video detector has wide bandwidth, it's suitable for the sound carrier frequency of 4.5, 5.5,
6.0, 6.5MHz.
• As input is differential mode, it can be used with SAW filter.
• All functions for VI F stage are provided by this single chip IC and this IC will realize reduction of
assembly cost as well as reduction of number of external components.

CONNECTION DIAGRAM (Top View)

TAB

7

SUPPL Y VOLT AGE(1)

6

TUNER AGC OUTPUT

PACKAGE DIMENSIONS in millimeters (inches)

~:

;;;. 08 D;~",;o", ",~.",

19.4MAX. (0.763)

24.6MAX.(O.968)

CAPACITOR

10

5

RF AGC ADJ. VR.

CAPACITOR

11

4

AGe TIME CONST.

SUPPLY VOLTAGE(2)

12

3

VIDEO OUTPUT

GND

13

2

KEYING PULSE INPU,

DETECTOR COIL

14

1

DETECTOR COIL

I O.5(o.oi)
--ti- I

2.54 2.54 4.44(0.175)

12
(0.047)

(O.1)(O.1~

(0.195)

452

"',,

unless otherwise specified.

,uPC1366C
BLOCK DIAGRAM
KEYING PULSE
TUNER AGC

1.u

VCC=12V

SIF

1

10k

+

4.5MHz
TRAP

NOISE
CANCEL

RF AGC

VIDEO
AMP

TAB

IF AMPLIFIER

LOW LEVEL
DETECTOR

(PEAK AGe)

*

(MANUAL GAIN CONTROL)
;;2 OPEN

;; 12

TUNER

DETECTOR COIL SPEC
TOKO 10KN TYPE 180PNA - 1021285
frequency : 57MHz (C = 33pF±3%)
No load Q : 96±20%
Turn
: 4-6 6T

Wire

: 0.16ct> 2UEW

®

®
CD

453

pPC1366C
ABSOLUTE MAXIMUM RATINGS (Ta=2S0C)
Supply Voltage Pin-7

V7

Input Signal Voltage

Vs Vg

15

V

3

Vp-p

Power Dissipation

Pd

875 (Ta = 75°C) Free Air

Operating Temperature

T opt

-20 to +75

°c

Storage Temperature

T stg

-40 to +125

°c

VCC = 12V,

Ta = 25±3°C

mW

)

ELECTRICAL CHARACTERISTICS ( f= 58.75MHz, fM = 15.75kHz
CHARACTER ISTIC
Total Supply Current

454

SYMBOL
ICC

Input Sensitivity

Vi (sens)

Maximum Input Voltage

Vi(max.)

MIN.

TYP.

MAX.

UNIT

40

SO

60

mA

17+112, RA=1S0n

dBJL

MOD =SO%, VO = 1.4Vp-p

dBJL

MOD=SO%, -1dB Point
MOD = SO%, vi = 3mVr.m.s.

30

3S

100

Video Output Voltage

Vo

1.0

1.4

1.7

Vp-p

Video Output DC Voltage

Vo.

3.3

3.S

4:3

V

Signal to Noise Ratio

SIN

40

SO

RF AGC Voltage (High)

V6H

S

9

RF AGC Voltage (Low)

Val

0

Differential Gain

TEST CONDITIONS

. No Signal

dB

MOD=SO% - 0%, vi=3mVr.m.s.

11

V

VS=OV

O.S

V

VS=7V

D.G.

10

%

Stair Step fM =3.SSMHz

Differential Phase

D.P.

10

deg

Stair Step fM = 3.SSMHz

Video Detector Band Width

BW

MHz

-3dB Point

Input Resistance

Rin

1.S

kn

Input Capacitance

Cin

3.3

pF

S.S

jlPC1366C
TYPICAL CHARACTERISTICS (Ta =2SoC)

INPUT SENSITIVITY vs.
SUPPLY VOLTAGE

VIDEO DETECTOR OUTPUT VOLTAGE

vs. SUPPLY VOLTAGE

a.
::t

CD

"C

I

f= 5S. 75MHz. f M=15.75 kHz
MOD=8O%. RA = 150Q

90

a.
>
I
~ 1.5
2

SO

I
Z' 70
.:;
:p

'iii
c:

..,

U)

"0

50

a

/

:l
Co

\

1\

30

1.0

/

'-

\.

.E

B
u
!!l

.-:..--- f-

c3

III

~ 20

~
~-

/

>

60

"5Co 40

.!....

v

JV

I

0.5

o

il

QJ

"C

10

V

:>

f= 5S.75MHz. fM= 15.75kHz
MOD=SO%. RA = 150Q

I

o

0

~

10

15
vee-Supply Voltage-V

5

0

10
15
5
vee-Supply Voltage-V

SIN vs. INPUT VOLTAGE

o
-10

f=5S.75MHz. f~= 15.75kHz
MOD=SO%-O%
Vi =3mVr.m.s .• RA = 150Q

,

\

\

-20

\

\
I\.

-40

\

;"

-50

20

"

........

40
60
80
Vi-Input Voltage-dBJ.l

100

VIDEO DETECTOR OUTPUT VOLTAGE ATTENUATION vs. FREQUENCY

-

o

:l

~r\

-5

.9:::J
o!g

0QJ c:1
0

c3~

g

~

"

o

...

:,

f=5S.75MHz
MOD =40%
Vi = 3mV r.m.s.

:l

~ -lQ I-

:2:::

><
I

l-

I-

<

-15

0.1

1.0

10.0

f-Frequency-MHz

455

81 POLAR ANALOG INTEGRATED CI RCUIT

I1PC1353C
2.4 WATTS AUDIO AMPLIFIER, SIF AMPLIFIER
AND DETECTOR FOR TV
SILICON MONOLITHIC BIPOLAR INTEGRATED CIRCUIT
DESCRIPTION:
The IJPC1353C is a silicon monolithic integrated circuit designed for SI F and Audio section in television receivers.
This IC has all functions including sound I F Amplifier, FM Detector, DC volume control circuit, Audio Output
amplifier with 2.4 Watts output power and voltage regulator.
This IC is encapsuiated in 14 pin dual in-line package with heat tab.

FEATURES:
1. All functions for SI F and audio stage are provided by this one-chip IC and this IC will realize reduction of
assembly cost as well as reduction of number of other components.
2. Audio output power is controlled by electronic attenuation circuit which operate at DC. Therefore, unnecessary radiation, oscillation etc. are eliminated. Due to DC control, shielded wire is not required and
variable resistor will be placed anywhere required.
3. Electronic attenuator has enough attenuation (Typ. 80dS) by the adoption of squelch circuit.
In addition, as attenuation characteristic is same with resistance change of variable resistor, suitable variable
resistor will be selected easily.
4. As Peak differencial detection method is adopted for FM detection, outside circuitry can be very simple and
circuit adjustment will be very easy.
5. As operation voltage (Vcc) range for output stage is very wide (9-18V), suitable Vcc can be freely determined
for required output level.

For example:
Po
Po

= 2.4W
= 1.2W

at Vcc = 18V, RL
at Vcc = 12V, RL

=8
=8

Ohms
Ohms

jlPC1353C
PACKAGE DIMENSIONS in millimeters (inches)

CONNECTION DIAGRAM (Top View)

IR~'04Jf; ; ;; ;:E-D;men';on,a,.tVPkal'~I",

unless otherWise specified.

SOUND POWER OUT

8

7

SOUND POWER INPUT

I-'=--=t9.4MAX.,O.763J

BOOTSTRAP CAPACITOR

9

6

DE COUPLING CAPACITOR

I

SUPPLY VOLTAGE FOR SOUND PO'MR
STAGE
FEED BACK CAPACITOR

10

5

SUPPLY VOLTAGE FOR SIF STAGE

"

4

SIF DETECTOR OUTPUT

3

DE EMPHASIS CAPACITOR

2

FM DETECTOR COIL

12

SIF INPUT (HOT END)
SIF INPUT (COLD END)

13

VOLUME CONTROL

14

I

I

(062~61

24.6MAX.(0.968)

:
I

0.5± 0.1
(0.02)

J.,

I
I 0.5(0.02)
-rr

i

Il

---ill=

+0 1

1 2 2.54 2.54 4.4~(0.175) 0.3-0:05
(0.012)
(0.047)(0.1 )(0.1) 4.961
1(0.195)1

FM DETECTOR COIL

,

l
~

"

7.62
(0.3)

-

-\-

BLOCK DIAGRAM
RB
Vee
~------------------------------------------------~~~~--~~~~~----~
+
4.71-1F
220l-lF

-------,

r----- ------------I

I

I

I
I
I
I
I
I

L-------T-------- ,

I
I

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Supply Voltage Pin 10

Vl0

20

V

Supply Current Pin 10

110

1

A

Supply Current Pin 5

15

100

mA

Input Signal Voltage

Vi

3

Vp_p

Power Dissipation

Pdl

Power Dissipation

Pd2

1.4*

Operating Temperature

Topt

-20 to +75

Storage Temperature

Tstg

-40 to +150

0.8 (Ta=75°C) FREE AIR

W
W

* PRINTED CIRCUIT COPPER AREA 50x50 mm 2
457

tl PC13 53C

ELECTRICAL CHARACTERISTICS (Ta=25±3°C)

1

IF STAGE

VCC=12V
( f o=4.5MHz

CHARACTERISTIC

RB=100n Rg=50n V14;;:::1.3V)
fM=400Hz
f=± 25kHz

SYMBOL

Pin 5 Voltage

MIN. TYP. MAX.

UNIT

TEST CONDITIONS

V5A

7.5

8.0

8.5

V

Pin 5 Voltage

V5B

7.5

8.0

8.5

V

VCC=18V RB=330 n

Pin 10 Current

Il0A

14

19

24

mA

NO INPUT SIGNAL

Pin 10 Current

, 110B

16

28

35

mA

VCC=18V RB=330n
NO INPUT SIGNAL

200 400

/JVr.m.s.

VOAF(Vi=10mVr.m.sJ
-3dB

360

mVr.m.s.

Vi=10mVr.m.s.

0.7

%

Vi=10mVr.m.s.

I F Limiting Voltage

Vi(Jim)

Detector Output Voltage

VoAF

Detector Distortion

T.H.D·l

AM Rejection

AMR

-40 -50

dB

AM MOD 30% fM=
400Hz Vi=10mVr.m.s.

Maximum Attenuation

ATT max

-60 -80

dB

V14=OV

300

VCC=12V
( f=400Hz

RB=100n
RG=600n

CHARACTER ISTIC

SYMBOL

MIN. TYP. MAX.

Sound Stage Voltage Gain

GVAF

33

2

SOUND POWER STAGE

PoA

Sound Output Power

UNIT

TEST CONDITIONS

dB

Vi=30mVr.m.s.

1.2

W

T.H.D.=10%

2.4

W

VCC=18V RB=330n
T.H.D.=10%

37

0.9

Sound Output Power

PoB

Sound Output Distortion

T.H.D.2A

0.6

2.0

%

Po=0.5W

Sound Output Distortion

T.H.D.2B

0.5

2.0

%

VCC=18V RB=330n
Po=0.5W

1.5

4.0

%

Po=O.5W

3

2.0

41

IF STAGE + SOUND POWER STAGE

Over All Sound Output Distortion

T.H.D·3

Vi=10mVr.m.s.

4

458

REFERENCE DATA
UNIT

TEST CONDITIONS

200 --210

mA

T.H.D·2A=10%

110

270 -- 280

mA

T.H.D.2B=10%

Sound Output Power

PoA'

1.1

W

T.H.D.=3%

Sound Output Power

PoB'

2.0

W

VCC=18V RB=330n
T.H.D.=3%

Sound Stage Band Width

BW

50 '" 50k

Hz

-3d8

CHARACTER ISTIC

SYMBOL

Pin 10 Current

110

Pin 10 Current

PIN INPEDANCE

fo=4.5 MHz
R
C

5.5 MHz
R
C

Pin 12 IF Input

2

9.5

2

9.4

1.9

9.4

1.9

9.4

kn/pF

Pin 1 Detector Connect

2.4

6.3

2.4

6.2

2.4

6.1

2.4

6.1

kn/pF

Pin 2 Detector Connect

11.5

9

9

8.5

8.5

8.3

7.8

8.1

kn/pF

6.0 MHz
R
C

6.5 MHz
R
C

UNIT

jlPC1353C
TEST CIRCUIT

j---..-o Vcc 12V or
O.OlI'F

18V

f

~

SI

IF SG .......
fo=4.5MHz

+

220l'F

QACVOLT

\:!::!J METER

I')(F\ DISTORTION
'-:::.) METER

CHARACTERISTICS
POWER DISSIPATION vs.
AMBIENT TEMPERATURE

SUPPLY CUR RENT vs.
SUPPLY VOLTAGE

3.0

25

::

~Ox60(mm2)

I

c:

.gco

2.0

5Ox50( mm 2

1"-

Co

.jJi

o

FRJE AIJ

~
o

'"

~ 1.0

~

E
I
c:

e
:;

a.>g.
Vl

~~

~

,

,

l\.
"

J

15

10

V

0

~

J

5

V

" ~

'~

0
-20 0
25
50
75
100 125
Ta -Ambient Temperature-OC

o
o

150

2

~

~
:J

'5

-r- -1---

~-40 0 200
I
~

Qi

-50

~

100

u.



0 ...:r::::

\-- i
V

~

~

V
j...-:"

vII

~

,;1-'

X

Co

~

20

~

YoU

i-3D ~ 300
Q)

18

1000

>

-20 E 400
~
I

~

6
8
10 12 14 16
Vce - Supply Voltage - V

.;

~

a:

4

DETECTED OUTPUT VOLTAGE vs.
FREQUENCY DEVIATION

-10 u; 500

I

Rs=300n

...V

DETECTED OUTPUT VOLTAGE, AM REJECTION,
TOTAL HARMONIC DISTORTION vs. INPUT VOLTAGE

.Q

L

j

I

~

V

l(

u

~~~.
..........

L

20

...

Printed Circuit Board
1.5~m~Copper thick;t = 301l

f\.. th!ck; t ':"

....... t--...

/'
V

Q)

.I.

S

Vec=12V
f=4.5MHz
MOD=30%AM
fM=400Hz I
Af=±25kHz

1\

1\l'

L

800

I

,/

1\
l'
~

r-- t----...
'I'vI-'

T.H· O.l
1

104

10
Vi-lTlput Voltage-mVr.m.s.

it
Ii

/

~ 600

...
:J

~

V

:J

o

400

/

a!

E
9 200
Q)

u.


105

j

V

o
o

L

V

V
Vce=12V
f=4.5MHz r MOD=30%AM
Vi=l mVr.m.s._

/
±20

±40

±60

±80

f-Frequency Deviation-kHz

459

DETECTED OUTPUT VOLTAGE vs.
ELECTRONIC ATTENUATER
TERMINAL VOLTAGE

DETECTED OUTPUT VOLTAGE, ELECTRONIC
ATTENUATER TERMINAL VOLTAGE vs.
ANGLE OF ROTATION (A CURVE VOLUME)

~

,,;500

E

500
en

~

Ql

~

E400
I

&

!9

;g3oo

...

:I

---,

Vcc=12V

f--- ....c..: =4.5MHz
f
f -MOD=30%AM

II

fM=4ooHz
M=±25kHz
f-Vi=l mVr.m.s.

-

9:I
°200

N

Vl'Y

It!

. ///

Q)

0100

-----

I

u.
<{

-

a

>

0

.-""

~

o

~
'0
>

/
~

1.5

f

'E
~

I

;g3oo

:I

c:
1.0 ~


OUTPUT POWER vs. INPUT VOLTAGE
(AUDIO AMPLIFIER STAGE)
5.0

-

/

W
270

/

/

/

o
0.5 ~

. /.....VOAF

180
Angle of Rotation - DEG

E400
I

~

~<0

J
'l

90

:>

Vcc=12V

f=l kHz

f=l kHz

I- T.H.D.-10%

1~

1~
1~
V1AF - Input Voltage - p.Vr.m.s.

105

o
o

POWER DISSIPATION vs.
OUTPUT POWE R

0.5

I.

I

~

1.0

0.5

460

/

1/

1.5

~

o

/

/ ..,,-

1/
/
o

0.5

-

MOD=30%AMfM=4ooHz
M=±25kHzYi=l rpVr·rr· s.

m -2

--

a: -5

~~VRs=loon

-....,

1.0
1.5
2.0
Po-Output Power -W

V

-1

J.f=4.15MH~

/"

l2.0

'iii
C
~

L J.

....,,-i-"'1

o

. . . . . .V

1.5
1.0
Po-Output Power - W

2.0

2.5

FREQUENCY RESPONSE
(AUDIO AMPLIFIER)

Vcc=18V Rs=3oon

2.5

/

,.,....V

3.0

~c:

:;

/

V

'I

10

Vcc=18V

J

II

o

I

I
I

2.5

l'

VCCl12~Uill

-

Vi=30mVr.mt

"-1"\
\

-3

5!c:
0-4

\

I

,

~

-6

-7
10

102

103
f - Frequency - Hz

1~

105

JlPC1353C
PRINTED CIRCUIT BOARD AND COMPONENTS TABLE
AT ONE SUPPLY POWER

~YSTEM

NEC
,uPC1353C

.<~
B
<

O.

VOLUME

GND

SYMBOL

CHARACTER ISTIC

Cl

CERAMIC
0.0221lF

C2

CERAMIC
10 pF

C3

CHEMICAL
100IJF 10V

C4

CHEMICAL
330IJF 25V

C5

CHEMICAL
100IJF 25V

C{)

CHEMICAL
2201lF 25V

C7

CHEMICAL
471lF 10V

Ca

CERAMIC
O.OlIJF

Cg

CHEMICAL
100IJF 10V

ClO

CHEMICAL
4.71lF 10V

Cll

CERAMIC
0.0151JF

C12

CERAMIC
0.1IJF

VR

5k-A Curve

Tl

INPUT COIL

T2

DET. COIL

AT TWO SUPPLY POWER SYSTEM

SYMBOL

CHARACTERISTIC

Rl

22k 1/4W

R2

2701/4W

RB

loon
or 330n 1/2W

461

pPC1353C
COIL SPEC.
INPUT COIL

DETECTOR COl L

FOR

FOR

4.5MHz

~

4.5MHz
3-4

20T

1-6

5T

C

82pF

fo

4.5MHz

au

110±20%

®

~

0.14> OUEW

5.5MHz

1-3

24T

C

82pF

fo

4.5MHz

au

108:t20%

Coil Material
0.14>

28T

1-6

4T

C

82pF

fo

5.5MHz

au

59±20%

1-3

29T

C

76pF

fo

5.5MHz

au

49:t20%

CD
0

Coil Material

Coil Material
0.14> OUEW

0.14> OUEW

MOUNTING HEATSINK
15

LO

N

The method of mounting the heatsink show below, in the case of
heatsink need, when sound output power will be larger and the
heatsink don't directly mount with IC's TAB.
Heat sink

Printed Circuit Board
462

OUEW

FOR
5.5MHz

3-4

®

~

0

Coil Material

FOR

~

CD

BIPOLAR ANALOG INTEGRATED CIRCUIT

,uPC1382C
TV SOUND IF PROCESSOR AND ATTENUATOR

DISCRIPTION

JIPC1382C is a TV sound IC. It can be operated with no adjustment, using ceramic filters externally; It contains a DC
controlled attenuator, which has wide effective area and gentle characteristic in the chainging, so it is convenient especially for
a remote controlled set.
FEATURES

•

PACKAGE DIMENSIONS

(Unit: mm)

Gentle chainging DC controlled attenuator is convenient
for remote controlled sets.

•

Operation with ceramic filters makes TV sound circuit
no adjustment completely.

o SRPP output circuit can be driven directly.
•

Muting works quickly.

•

Low distortion demodulation.

BLOCK DIAGRAM

U

Mutihg pulse

14 PINS

~~
,...----~100V

463

,uPC1382C
TV BLOCK DIAGRAM
v / / / / / / / / / '//~

V
~ ~

,uPC1382C ~
V// / / / / / / / //,

ANTENNA

~[7
AFT

SIF
DEl.

I-~

'----.......

UHF/VHF
TUNER

PIF
AMP.

~
1

t--<~

IFI RF
AGC

~

t----t~~

SIF
AMP.

~/

,/

/.
~

.~
/ / / / ./ 1/ /

~

SOUND
DET.

t--

f-

SOUND
OUT

~

PICTURE
AMP.

~

SYNC
SEP.

SPEAKER

'--

'--

V.OSC

I--

COLOR
DEMO.

CHROMA
AMP.

H.OSC
AFC

COLOR
SYNC.

t--

~

COLOR f-OUT
rf--

CRT

H.DRIVE

H

Y.ORIVE

I--

H.OUT

t--

f--

V. OUT

0-----

Power supply

Input for IF Amplifier (+)

AF output

Input for IF Amplifier (-)

Feed back

Lou Pass Capacitor

Input for attenuator

Regulated Voltage

Ou tput of detector

Discriminator

Muting

Discrim inator

Ground

Controlled voltage for DC attenuator

I

"-r-N

I--

CONNECTION DIAGRAM (Top View)

464

k:

rL/JLL/~//////////~~

PIF
DEl.

~

ATTENUATOR

jlPC'1382C
ABSOLUTE MAXIMUM RATINGS (Ta=25 °C)
Power supply voltage

VCC

0

15

V
V
mA

Pin 13, 14 voltage

V13, V14

0

5

Pin 2 output current

12

0

20

Power dissipation

Pd

Operating temperature
Storage temperature

350.(Ta=75°C)

mW

T opt

-20 to +75

°c

T stg

-40 to +125

°c

V,

ELECTRICAL CHARACTERISTICS (Vcc=12
SYMBOL

Ta=25±3 °C) *Mark f=4.5 MHz, odf=±25 kHz, fM=400 Hz, AMMOD=30 %

MIN.

TYP.

MAX.

UNIT

CKT

ICC

15

20

25

rnA

1

Vi(lim)

-

200

400

J,LVr.m.s.

1

*-3 dB point

Detector output voltage

VOAF

450

600

750

mVr.m.s.

1

* Vi=10 mVr.m.s.

Detector output distortion

T.H.D·DET

AM rejection

AMR

CHARACTERISTIC
Total supply current
IF limitting voltage

CONDITION
VCC=12 V Zero carrier

-

0.4

1.0

%

1

* Vi=10 mVr.m.s.

-44

-55

dB

1

* Vi ~3 mVr.m.s.

dB

2

fin=400 Hz, Vi=600 mVr.m.s.

DC VR maximum attenuation

ATTVR

70

80

-

DC VR distortion

T.H.D·VR

-

0.4

1.0

%

2

fin=400 Hz, Vi=600 mVr.m.s. V8~5 V

AF voltage gain

GVAF

11.5

15.0

-

dB

2

fin=400 Hz, Vi=100 mV.r.m.s. R3=1 kn

IF input resistance

Rin

1.5

kn

3

IF input capacitance

Cin

2.0

pF

3

Pin 4 input resistance

Rin4

20

kn

3

Pin 4 input capacitance

Cin4

2.8

pF

3

MUTING CHARACTERISTIC

r---- V6
r---------VrH=3 V

-----------0 V

465

J,lPC1382C
TEST CIRCUIT 1

f

SG1 SG

*
0---1
SW2
50

4.7 }IF

~ CERAMIC DISCRIMINATER

Q

14

* : 0.01}1F
SW1
12VO

o

47 }IF

TEST CIRCUIT 2

12V

* : O.OI}1F

TEST CIRCUIT 3

* : 0.01

466

}IF

,uPC1382C
SWITCH TABLE
CKT

SG

ICC

1

-

Ui(lim)

1

UOAF

1

T.H.D·DET

ITEM

CONDITION

SW1

SW2

SW3

SW4

VV1

VV2

T.H.D. T.H.D.

RX

M1

M2

M1

-

-

-

-

-

0

-

-

V CC:=12 V Zero carrier

A

OFF

-

-

0

SG1

*-3dB point

B

ON

-

SG1

* Uj=10 mVr.m.s.

B

ON

-

0
0

1

SG1

* Ui:=10 mVr.m.s.

B

ON

-

-

-

-

AMR

1

SG1

* Ui

B

ON

-

-

0

-

-

-

ATTVR

2

SG2

fM=400 Hz, Uj=600 mVr.m.s.

-

-

B

A-+B

-

0

-

-

T.H.D·VR

2

SG2

fM:=400 Hz, Ui=600 mVr.m.s.

-

B

A

-

-

-

0

-

GVAF

2

SG2

fin=400 Hz, Ui=100 mVr.m.s.

-

A

A

-

0

-

-

-

Rin

3

-

-

1

-

-

1

3

-

2

Cin4

-

-

3

-

-

Rin4

-

-

-

Cin

-

-

3

-

-

-

2

~

3mVr.m.s.

-

-

-

-

* f=4.5 MHz, Af=±25 kHz, fM:=400 Hz, AMMOD=30 %

CERAMIC DISCRIMINATOR

MURATA CDA4.5MC 20

SPECI FICATION OF DETECTION COl L

(:J

Frequency
No loading Q
Turn

Internal C
Wire

TOKO TKAC·27071BY
4.5 MHz
68 ± 20 %
1-3 31~ T
1-215~ T
2-316 T
82 pF
0.12 rP OUEW

TOKO TKAC·26984Y
5.5 MHz
60±20%
26T
13 T
13 T
82 pF
0.12 rP OUEW

467

~

m
())

J,LPC 1382C APPLICATION CIRCUIT

~

."

(")
~

Muting pulse

=t-F3
U- o

W

V

CO
N
47 kOS VR
•

•

(")

47 0
'1M

0 VCC1=12 V

0,01
oVCC2= 100 V
10 kO

Power
regulator

D(]

SIF IN

---..L
c:::=::::J

~1'Fl
100 kO
4700 pF 160 V

CDA4.5MC20
(MURATA)

Example using 1FT
OUTPUT POWER TRANSISTOR
5 pF.

r

i~~i.J
L _____

3.5 W

Tr: 2SD401

2.0 W
1.0 W

Tr : 2SC2371
Tr: 2SC1941

BIPOLAR ANALOG INTEGRATED CIRCUIT

pPC1391H
SOUND IF PROCESSOR FOR SOUND MULTIPLEX TV

DISCRIPTION

pPC1391 H is sound IF processor for sound mUltiplex TV. It can be operated with no adjustment, using ceramic filters
externally. The quadrature detector realizes excellent low distortion. It is included in a 8 pins SIL package.

FEATURES

PACKAGE DIMENSIONS (Unit: mm)

• Operation with ceramic filters makes TV sound circuit
no adjustment completely.
•

2.8±O.2

19.5 MAX.

Low distortion . . . . . . . . . . . . . . . . 1 0.2 % 1

• High sensitivity . . . . . . . . . . . . . . . 200 pVr.m.s.
•

Excellent AMR . . . . . . . . . . . . . . . 1-55 dB (TYP.) 1

17.78

BLOCK DIAGRAM
SPINS

i~-------i
I

I

L __ __

~--If~----'
I
I
L __ _

8 .
7

Detector

JVCC=12 V

Output

l---»--C;>

I

I

469

,uPC1391H
TV BLOCK DIAGRAM

ANTENNA
AFT

CH ROMA.
AMP.

SYNC
SEP.

COLOR
OUT

COLOR
SYN~

H.OUT

V.OUT

CONNECTION DIAGRAM (Top View)

Power supply
Detect filter

2

Detect filter
Detect output
Ground

5

Capacitor

6

SIFinput
SIFinput

470

,uPC1391 H
ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Power Supply Voltage

VCC

Pin 7,8 Input Voltage

V7 ,VS

15

V

3

Vp-p

270 (Ta=75°C)

mW

Power Dissipation

Pd

Operating Temperature

Topt

-20 to +75

°c

Storage Temperature

Tstg

-40 to +125

°c

ELECTRICAL CHARACTERISTICS (Vcc=12 V, Ta=25±3 °c, f=4.5 MHz, fM=400 Hz, AM MOD=30 %)
CHARACTER ISTIC

SYMBOL

CONDITIONS

MIN.

TYP.

MAX.

UNIT

S.O

16.0

24.0

mA

-

1S0

360

",Vr.m.s.

VOAF

VOAF1

150

200

Vi=3 mVr.m.s., .6.f=±25 kHz

320

410

mVr.m.s.

Vj=3

Detecter Output Distortion - 1

vOAF2
T.H.D.1

-

mVr.m.s.

-

0.2

0.5

%

Detecter Output Distortion - 2

T.H.D.2

-

0.6

1.5

%

Vi=3 mVr.m.s., .6.f=±50 kHz

AM Reject jon

AMR

-45

-55

-

dB

Vj=3

Total Supply Current

ICC

IF Limitting Voltage

VjOim)

Detecter Output Voltage - 1
Detecter Output Voltage - 2

Zero carrier
(Vj=3

mVr.m.sJ, -3 dB point

mVr.m.s., .6.f=±50 kHz

Vi=3 mVr.m.s., .6.f=±25 kHz
mVr.m.s., .6.f=±25 kHz

TEST CIRCUIT

J,lPC1391H

VCC=12 V

+

lOOpF

471

,uPC1391H
APPLICATION CIRCUIT
Using 1FT

JlPC1391H

Using ceramic filter

(MURATA CDA4.5MC19)

JlPCl391H

Vee

r----

-SIF IN

+

lOO,uF

VOAF

(Detect output)

DETECTION COIL SPECIFICATION

TOKO 10KN TYPE TKAC-27071BY

~
~

472

Frequency
No loading Q

Turn

Internal C
Wire

: 4.5 MHz
: 68±20 %
1-3 31%T
1 - 2 15% T
2- 3
16 T
: 82 pF
: O.12ct> OUEW

BIPOLAR ANALOG INTEGRATED CIRCUIT

J-lPC1352C
CHROMINANCE AND LUMINANCE PROCESSOR FOR NTSC COLOR TV

DESCRIPTION

IlPC1352C is an integrated circuit for NTSC system to process both color and luminance signals of the color televisions. It is an
MSI contained in a 28 pins dual in line package and provides two functions. One is the processing of color signal for the band
pass amplifier, color synchronizer, demodulator circuits, and the other is the processing of luminance signal for the luminance
amplifier and pedestal clamp circuits, the number of peripheral parts and controls can be minimized, and the manhours
required for the assembling can be considerbly reduced.

FEATURES

•

It needs very few external components, and minimize the adjustments.

o DC controlled circuits make aremote controlled system easy.
•

Protection diodes in every input terminals and output terminals.

•

"Color killer" does not need any adjustments.

o "Contrast" control does not prevent the natural color of the picture
any more, as the color saturation level changes simultaneously.
o ACC (Automatic color controller) circuit operates very smoothly
with peak level detector.
"

PACKAGE DIMENSIONS in millimeters

"Brightness control" terminal can be used for ABL (Automatic
beam limitter) also.

38.0"".

~

-E~:~~~~~~I

13.2

1 2 3 4 5 6 7 8 9 10 11 12 1314

~02S,g~
+0.5±0.1

2.54

~

::;:

S

N

BLOCK DIAGRAM

473

,uPC1352C
TV BLOCK DIAGRAM
Speaker

V.
Out

PIN CONNECTION (Top View)

474

Power Supply

B Output

Clamp Filter

G Output

Brightness Cont.

R Output

Resolution Cont.

Demo Input

Luminance Input

Blanking Input

Peaking Filter

Oscillator

Tint Cont.

Oscillator

Auto Setting
Voltage

Oscillator

Color Cont.

Gate Pulse Input

Contrast Cont.

APC, ACC Input

Chroma Output

Killer Filter

Condenser
(By pass)

APC Filter

Chroma Input

APC Filter

GND

ACC Filter

~PC1352C

THE STANDARD OPERATING CONDITIONS
Characteristic

Value

Unit

12

V

Chrominance Input Voltage
(Burst signal level)

150

mVp-p

Luminance Input Voltage
(Sync White Level)

1.0

Vp-p

Burst Gate Pulse Input Voltage

3.0

Vp

Blanking Pulse Input Voltage

2.5

Vp

Color saturation controlling Voltage Range

0-5.7 (at VCC=12 V)

V

Tint controlling Voltage Range

0 .... 5.7 (at VCC=12 V)

V

Contrast controlling Voltage Range

0 ..... 12 (at VCC=12 V)

V

Resolution controlling Voltage Range

0 .... 12 (at VCC=12 V)

V

Brightness controlling Voltage Range

8 .... 10 (at VCC=12 V)

V

Supply Voltage

Note: In case of operating in VCC=14.4 V, Set the surrounding temperature Ta to be 67°C.

ABSOLUTE MAXIMUM RATINGS (Ta = +25 °C)
VCC

14.4

V

Brightness Controlling Voltage

V3

14.4

V

Resolution Controlling Voltage

V4

14.4

V

Contrast Controlling Voltage

V10

14.4

V

Tint Controlling Voltage

V7

14.4

V

Color Controlling Voltage

V9

14.4

V

Auto Controlling Voltage

V8

14.4

V

Luminance Input Signal Voltage

V5

+5

V

Chrominance Signal I nput Voltage

V13

+2.5

V

Demodulator Input Signal Voltage

V25

+5

V

126,127,128

-40

mA

Gate Pulse Input Voltage

V20

+5

V

Gate Pulse Output Current

120

-10

mA

V24

±6

V

Power Dissipation

Pd1 (Ta=25°C)

1.2

W

Power Dissjpation

Pd2 (Ta=70 °C)

750

mW

ODerating Temperature

T opt

-20 .... +70

°c

Storage Temperature

T stg

-40 .... +125

°c

Supply Voltage

R.G.B Output Current

Blanking Pulse Input Voltage

Test Conditions (Vcc=12 V)
Characteristic

MIN.

TYP.

MAX.

Color saturation controlling
terminal 9

OV

V8/2 V

V8V

Tint controlling terminal 7

OV

V8/2V

V8V

Contrast controlling
terminal 10

OV

VCcx 0.78 V

VCCV

Resolution controlling
terminal 4

OV

VCCV
475

,uPC1352C
ELECTRICAL CHARACTERISTICS (Ta=25

°c unless otherwise noted Vcc=12 V)

Color control is manual state and tint is center for the items not specifically specified
No.

Characteristic

Symbol

Test
Ckt.

Test Condition

MIN.

TYP.

MAX.

Unit

32

43

54

mA·

1

Supply Current

ICC

1

2

Burst Output
Voltage

eb

3

Rainbow color bar signal input
150 mVp-p, Color auto center,
Contrast max.

0.5

0.7

0.9

Vp-p

3

ACC Range 1

ACC1

3

Rainbow color bar signal input
300 mVp-p,
Burst Output Voltage/eb

0.9

1.0

1.1

times

4

ACC Range 2

ACC2

3

Rainbow color bar signal input
15 mVp-p,
Burst Output Voltage/eb

0.6

0.8

1.0

times

5

Chroma Output
Voltage 1

ec 1

3

Rainbow color bar signal input
150 mVp-p, Color min, Contrast max.

0.5

0.7

0.9

Vp-p

6

Chroma Output
Voltage 2

ec2

3

Rainbow color bar signal input
150 mVp-p, Color min, Contrast max.

-

-

5

mVp-p

7

Chroma Output
Voltage 3

ec3

3

Rainbow color bar signal input
150 mVp-p, Color center,
Contrast max.

120

190

260

mVp-p

8

Chroma Output
Voltage 4

ec4

3

Rainbow color bar signal input
150 mVp-p, Color auto center,
Contrast max.

130

190

260

mVp-p

9

Variable Range
of Chroma Output
Voltage at auto

~eca

3

Rainbow color bar signal input
150 mVp-p, Color auto max min,
Contrast max.

+25
-25

+35
-35

+45
-45

%

-

-

±150

Hz

Hz/mV

10

Free running
Frequency

fo

2

No input signal to Terminal 19
Be trimed 3.579545 MHz by using
a trimer capasitor for standard
sample,
Deviation from f; 3.579545 MHz

11

Oscillator
controlling
sensitivity

(3

2

Burst signal input 0.7 Vp-p,
Converted from V16-17 in case of
100 Hz burst frequency variation

1.0

1.5

2.0

12

Phase detector
sensitivity

}J.

2

Burst signal input 0.7 Vp-p,
Converted from phase error and
V16-17 in case of 100 Hz burst
frequency variation

25

45

65

13

Phase error

~rP

2

Burst signal input 0.7 Vp-p,
Phase error to 100 Hz of burst
frequency variation

-

1.5

3.0

degree
1100 Hz

14

A.P.C. pull-in
frequency range

fp

2

Burst signal input 0.7 Vp-p,
Mesured by changing the burst
frequency

±350

±500

-

Hz

15

Variable Range
of Tint

2

Burst signal input 0.7 Vp-p,
Tint; max min, manual,
Tint center, Range from 0 as
a standard

+37
-37

+45
-45

+53
-53

degree

16

Variable Range
of Tint at auto

2

Burst signal input 0.7 Vp-p,
Tint; max min, auto
Tint center, Range from 0 as
a standard

12
-12

+17
-17

+22
-22

degree

~61

~62

mVI
degree

(continued on next page)

476

JLPC1352C

No.

Characteristic

Symbol

Test
Ckt.

Test Condition

MIN.

TYP.

MAX.

Unit

1.5

2.0

2.5

Vp-p

17

B-Y Output
Voltage

e01

3

Oem. input 0.2 Vp-p, f=3.59 MHz,
Bright VR was set to be V26=3.5 V(DC)
No blanking input

18

Ratio of R-Y
to B-Y

RIB

3

Oem. input 0.2 Vp-p, f=3.59 MHz,
R Output Voltage/e 0 1
Bright VR was set to be V26=3.5 (DC)
No blanking input

0.86

0.94

1.04

times

19

Ratio of G-Y
to B-Y

GIB

3

Oem. input 0.2 Vp-p, f=3.59 MHz,
G Output Voltage/e 0 1
Bright VR was set to be V26=3.5 V(DC)
No blanking input

0.25

0.30

0.35

times

20

Relative
Output phase
G-Y to R-Y

LR

3

Oem. input 0.2 Vp-p, f=3.59 MHz,
B= 0 degree, phase difference
Bright VR was set to be V26=3.5 V(DC)
No blanking input

94

97.5

102

degree

21

Relative
Output phase
G-Y to B-Y

LG

3

Oem. input 0.2 Vp-p, f=3.59 MHz,
B= 0 degree, phase difference
Bright VR was set to be V26=3.5 V(DC)
No blanking input

228

235

242

degree

22

Maximum Color
difference
Output Voltage

e02

3

Oem. input 1.2 Vp-p, f=3.59 MHz,
Bright VR was set to be V26=3.5 V(DC)
No blanking input

4.8

5.7

-

Vp-p

23

Residual
Carrier

3

No signal input,
Output; 3.58 MHz each,
Carrier leak component,
Bright VR was set to be V26=3.5 V(DC)
No blanking input

-

-

100

mVp-p

24

Demodulation
frequency
characteristic

3

Attenuation factor of demodulation
output at f=500 kHz,
Oem. input 0.2 Vp-p, f=3.08 MHz,
Assuming the output at f= 10 kHz
is 0 dB

-1.5

-0.9

-0.4

dB

25

Overall Color
difference
Output Voltage

3

Rainbow color bar signal input
150 mVp-p,
Color auto center,
Contrast max, in R output

1.0

1.7

2.4

Vp-p

26

Overall Color
difference
Output Variable
Range by Contrast

~eoc

3

Rainbow color bar signal input
150 mVp-p,
Color auto center,
Contrast maxImin, in R output

3.4

3.85

4.3

Vp-p

27

Color killer
talerance

ek

3

Burst input Voltage at terminal 13
150 mVp-p=O dB,
Attenuation value in operating
the killer

-27

-32

-40

dB

4.5

5.0

5.5

times

4.0

4.5

5.0

times

ecar

eof

e03

28

Luminance Gain

Av1

3

R,G,B Output each,
Studio color bar input 1 Vp-p in
white level, Contrast max,
Resolution min,
Pedestal of terminal 26 is 2 V,
Bright VR was set

29

Luminance Gain
Variable Range
by Contrast

~evc

3

Studio color bar input 1 Vp-p in
white level, Contrast maxImin.
Resolution min, in B output

(continued on next page)

477

,uPC1352C

No.

Characteristic

30

Luminance Amp.
frequency
characteristic

31

Resolution
Variation Range

32

DC Restored

33

Brightness
controlling
sensitivity

34

Maximum R,G,B
Output Voltage

35

Differential
Gain

36

Queiscent Output
Voltage

37

Eo
Supply Voltage
Coefficient

38

Eo
Temperature
Cofficient

39

Difference
Output Voltage

478

Symbol

Test
Ckt.

Test Condition

MIN.

TYP.

MAX.

Unit

5

6

-

MHz

9.0

dB

3

Sine wave signal input 0.1 Vr.m.s.
Input frequency at Av1 =-6 dB
Resolution min, in B output,
Bright VR was set to be V26=3.5 V(DC)
No blanking input, 0 dB= 16 kHz Output

..1fvp

3

Sine wave signal 0.1 Vr.m.s., f= 2 MHz
Contrast max,
Resolution min-max, in B Output
max/min

5.0

7.0

TDC

3

Stair Step signal input 1 Vp-p,
APL 10-90 %
in B Output

65

75

85

%

BR

3

..1E o /..1V3, Eo=2 V-5 V,
R,G,B Output each

4.0

4.5

5.0

-

EoM

1

R.G.B Output Voltage each at
V3= 12 V

7.0

-

-

V

3

Stair Step signal input 1 Vp-p,
f=3.58 MHz, APL=50 %,
Contrast max, Resolution min,
Pedestal of terminal 26 is 2 V,
Bright VR was set

-

-

5.0

%

Eo

3

R,G,B Output each,
Bright VR was set to be V3=9 V,
No Luminance signal input,
Contrast max, VCO is operating,
Blanking

2.5

3.5

4.5

V

Eo-v

3

VCC=12 V ±20 %,
V26=3.5 V (VCC=12 V),
R, G, B Output each
Blanking

0.2

0.25

0.3

V/V

..1 Eo -t

3

Ta=-20-+70 °c,
V26=3.5 V (Ta=25 °Cl
R,G,B Output each

-4.0

-2.0

0

mVfC

3

V26=3.5 V
VCO is operating,
R,G,B Output each,
No blanking input

-

0

300

mV

fv

D.G.

..1ER-G
..1EG-B
..1EB-R

:

,uPC1352C
Test Circuit 1
~vcc

+ 12

~

V

\SI
\

28

r

\

27

2

26

3

25

4

24

5

23

6

22

7

21

8

20

9

19

10

18

11

17

12

\
\

\

\

\
\
\
\

0.01

\

\
\

\
\

~+4V
\
\

\
\

\
\

\

\
\

56 k

\
\

0.01

16

13

15

14

\

A

\

~,.o

\
\

8
S2

,,~

R;n
C ; ""F

Supply Current

Icc

S1 ; ON

S2 ; Side A

Maximum R,G,B
Output Voltage

EoM

S1 ; ON

S2 ; Side B

S3 ; Each

479

~
(J)

o

Test Circuit 2

1:;:

."

o

~

W

ew Output

01

ew

N

o

Vee


CEN~=~--"'"

Burst Signal
-(B-V)Signal
Gate Pulse
Genarator

Gate Pulse
Burst 0.7 Vp-p
-(B-V)

' - - - - - - 0 '-0
o

Variable Burst
frequency

OFF
~

.---------t(0)

100 P



~390p

11

.I

veo Output

Oscilloscope

De
Volt
meter

r---{+
'-.J
APe difference
Voltage

Vee
TEST Ie

----

5.6 k

~\
SG-

3.9 k
14

113

112

11

rIO

5 k Blanking Pulse Input

pPD4001

pPD4049

~

.J

9T 101

111

121

13

141

15

16



2

OFF
~
ON

CEN

ON

IN

+f
CEN
f

-

Vector Scope

A.P.C. pullin Freq. range

fp

2

CEN

ON

IN

+f
CEN
f

-

Oscilloscope

Variable Range
of Tint

A81

OFF

IN

CEN

-

Vector Scope

Variable Ra~ge
of Tint at auto

A82

OFF

IN

CEN

-

Vector Scope

B·Y Output
Voltage

eo l

OFF

./.
ON
OFF

MAX

./.

./.

ON

MIN

OFF

MAX

2

./.

./.

ON

MIN

2

OFF
~
ON

3
-

OFF

-

-

-

OFF

FIX

OFF

OP

EXT
0.2 Vp-p
f=3.59

B

e0 3

-

V26=
3.5 V

MIN

-

Oscilloscope
Demo. Output
Voltage B

-

(continued on next page)

o
w
en
N
o
~

1
Characteristic

Symbol

Test
Ckt

Power
Supply

2
Tint

3

4

fB

5

6

Auto

Burst
-IB-YI
Input

Burst
frq.

Power
Supply

Luminance
Input

8

9

10

11

12

Auto

Color

Contrast

Chroma
Input

ACC

Pulse
Input

7

13

14

15

16

17

1

2

3

4

VCO

Demo
Input

R
G
B

Demo
Output

Attenuater

Brightness

Brightness

Rt1olution

ACC
Level

MIN

-

Oscilloscope
Demo. Output
Voltage R B

MIN

-

Oscilloscope
Demo. Output
Voltage G B

-

Measuring
Apparatus

Ratio of R·Y
toB-Y

RIB

3

OFF
~
ON

OFF

-

-

-

OFF

FIX

OFF

OP

EXT
0.2 Vp·p
f=3.59

B
R

eo3

-

V26~

Ratio of G-Y
to B-Y

G/B

3

OFF
~
ON

OFF

-

-

-

OFF

FIX

OFF

OP

EXT
0.2 Vp·p
f=3.59

G
I

eo 3

-

V2S3.5 V

Relative
Output phase
B-Y to R-Y

LR

3

OFF
~
ON

OFF

-

-

-

OFF

FIX

OFF

OP

EXT
0.2 Vp·p
f=3.59

B
R

eo3

-

V263.5V

MIN

-

Phase Meter
Relative
phase R B

Relative
Output phase
G-Y to B-Y

LG

3

OFF
~
ON

OFF

-

-

-

OFF

FIX

OFF

OP

EXT
0.2 Vp·p
f=3.59

B
G

eo 3

-

V263.5V

MIN

-

Phase. Meter
Relative
phase B G

Maximum
Detected
Output
Voltage

e02

3

OFF
~
ON

OFF

-

-

-

OFF

FIX

OFF

OP

EXT
1.2 Vp-p
f=3.59

B
R

eo3

-

V26=
3.5 V

MIN

-

Oscilloscope
·Demo. Output
Voltage B R

Residual
Carrier

ecar

3

OFF
~
ON

OFF

-

-

-

OFF

FIX

OFF

OP

R
G
B

eoc

-

V263.5 V

MIN

-

Oscilloscope
Output
3.58M Carrior

Demodulation
frequency
characteristic

eof

3

OFF
~
ON

OFF

-

-

-

OFF

FIX

OFF

OP

EXT
0.2 Vp·p
f=3.08

R
G
B

OFF

-

V26=
3.5V

MIN

-

A.C. Voltage
Meter

Overall
Detected
Output Vol.

e0 3

3

OFF
~
ON

OFF

ON

CEN

MAX

IN

FIX

IN

OP

INT

R

eo3

A
TP-2
150 mVp·p

V26=
3.5 V

MIN

-

Oscilloscope
Demo. Output
Voltage R

Overall
Detected
Output Variable
Range by Cont.
controlling

Ae oc

3

OFF
~
ON

OFF

ON

CEN

MAX
~
MIN

IN

FIX

IN

OP

INT

R

e03

A
TP-2
150 mVp-p

V263.5V

MIN

-

Oscilloscope
Demo. Output
Voltage R

ek

3

OFF
~
ON

OFF

-

-

-

IN

FIX

IN

OP

INT

R

e0 3

A
TP-2
150 mVp-p

V263.5V

MIN

-

Oscilloscope
Demo. Output
Voltage R

3

OFF
~
ON

IN
Studio
Color
Bar
White
1 Vp-p

MAX

OFF

VAR

IN

NOP

EXT
NO.

R
G
B

OFF

-

Terminal26
Pedestal
2V

MIN

V15=
8V

Oscilloscope
ev

IN
Studio
Color
Bar
White
1 Vp-p

EXT
NO.

B

OFF

-

Terminal26
Pedestal
2V

MIN

V158V

Oscilloscope
ev

EXT
NO.

B

OFF

-

V26=
3.5 V

MIN

V158V

A.C. Voltage
Meter
o dB= 16 kHz
ev

V158V

A.C. Voltage
Meter
ev

Coli or
killer
talerance

Luminance
Gain 1

AVl

EXT

Luminance Gain
Variable
Range
by Contrast
cont.

Ae ve

3

OFF
~
ON

Luminance Amp
Frequency
characteristic

fll

3

OFF
~
ON

IN
Sine
Wave
0.1 Vr.m.s.

3

OFF
~
ON

IN
Sine
Wave 2M
0.1 Vr.m.s.

ReSOlution
Variation
Range

Af llp

MAX

OFF

VAR

IN

NOP

MAX

OFF

VAR

OFF

NOP

MAX

OFF

VAR

OFF

NOP

No.

EXT
NO.

B

OFF

-

-

3.5V

V263.5 V

MIN
MAX

J

U1

(')
~

W

--

(continued on next page)
~
Q)

1:::
."

c.n
N

(')

~
Q)

en

~

."

1
Characteristic

Symbol

Test
Ckt

Power
Supply

2
Tint

3

4

fB

5

6

Auto

Burst
-(B-YI
Input

Burst
frq

Power
Supply

Luminanee
Input
IN
Stair
step
1 Vp-p
APL
90%

D.C.
Transfer

TDC

3

OFF
~
ON

Brightness
Controlling
Sensitivity

BA

3

OFF
~
ON

OFF

3

OFF
~
ON

IN
Stair
step
APL
50%

Differential
Gain

D.G.

7
Auto

-

8

9

10

Color

Contrast

-

11

12

13

14

15

16

Chroma
Input

ACC

Pulse
Input

VCD

Demo
Input

A
G
B

MAX

OFF

VAA

IN

NOP

EXT
NO.

MAX

OFF

VAA

IN

OP

MAX

OFF

VAA

IN

NOP

17

1

2

3

4

Demo
Output

Attenuater

Brightness

Brightness

Aesolution

ACC
Level

B

OFF

-

Terminal26
Pedestal
2V

MIN

V158V

EXT
NO.

A
G
B

eo3

-

eo3
D.C.
2-5V

MIN

V158V

EXT
NO.

B

OFF

-

Terminal26
Pedestal
2V

o

Measuring
Apparatus

N

MIN

V158V

Oscilloscope

ev

V3e o 3
D.C. Voltage
Meter
Vector
Scope

ev

Eo

3

OFF
~
ON

OFF

-

-

MAX

OFF

FIX

IN

OP

EXT
NO.

R
G
B

eo3

-

V39V

MIN

-

D.C. Voltage
Meter

Eo
Supply Vol.
Coeffisient

Eo-v

3

OFF
~
ON

OFF

-

-

-

OFF

FIX

IN

OP

EXT
NO.

A
G
B

eo3

-

V39V

MIN

-

D.C. Voltage
Meter

Eo
Temperature
Coefficient

Eo -t

3

OFF
~
ON

OFF

-

-

-

OFF

FIX

IN

OP

EXT
NO.

R
G
B

eo 3

-

V3=
9V

MIN

-

D.C. Voltage
Meter

EA-G
EG·B
EB-R

3

OFF
~
ON

OFF

-

-

-

OFF

FIX

OFF

OP

EXT
NO.

R
G
B

eo3

-

V26=
3.5 V
(VCC·
12Vl

MIN

-

D.C. Voltage
Meter

Queiseent
Output
Voltage

Difference
Output
Voltage

---

----~

----

~

w
c.n

o

tLPC1352C
ACC Characteristic

Contrast Control Characteristic

ACC Gain reduction
VCC = 12 V VCO is No operation
1.0

colorbar
S.G.

0.7

J\.
.I\.

11

13

ATT

~

/

12

BPF

A;

"'

0.5
0.3

V

/

,

0.2

V

......
......

~

roc
'§

a::

0.1

a

~

:cOJ

'C:I

>

Cll

2:-

.-=:

Contrast Control

~~

80

-(R-Y)OutPu~

40

OJ

20

". ~

~

60

Cll

f-

c.

---

V

/

.".. ~1
~
I-- ., Luminance Output

Cll

tlD

I

.8

"0

/

,

100

4

2

0

6
8
10
12
Control Voltage V10 (V)

0.05 ::
:::J

.e
:::J

0

tl
~

CD

-50

-40
-30
-20
-10
0
Chroma input Attenuation (dB)
o dB = 150 mVp-p in Burst signal

Brightness Control Characteristic

Color Control Characteristic

J5"'"

Demodulator input vs. Output

Color Saturation control

2

I

,

I

~

~~

I

Co

~

-I r

2:Cll

tlD

.r:l
>
"'5
Co
"'5

O. 1

f

~~

3.59 MHz

AUTO

6

~
I

Co

2:5

Cll

tlD

1

I

I

OJ

.r:l
"0
>
"'5
Co
"'5

4

0

3

~

e

.r:.
U

j

0.0 1

I

/

"0

u

2

,/

/

"
o

1
234
5
Control Voltage V9 (V)
at Manual control Voltage

6

o

~

Cll

So
Cll
3

10
0
;:::
~-1O
f"
~ -20
~'-30
a.
-40
-50

-

o

~

~~

/

.-

i"""V

.Y

~ ~ " . AUTO

. /~G-Y)OutPut

0.8

14

~

3
12
1

VCC=12.0V+-

26

5

1\.1 Vp-p

l[

.1 I.
~Ite ieVjl-

--9.6 V -

I

I

I

I

I I I I
I I I I

L/
3

4
5
6
Control Voltage V7 (V)
at Manual control Voltage

1.0

Luminance Input Voltage 1 Vp-p
---14.4~_
Contrast MAX.

V

2

0.6

0.4

0.2

Brightness control Characteristic.

J-..Manual

/'

Demodulator Input-Output

Tint ControlA
~

/

Chroma input Voltage (Vp-p) Terminal 25

Tint Control Characteristic
50
40
30
20

. /~

:~-Y) and (R-Y) Output

0

E

~

::l

25

S.G.

"0

0

I",",

26

/ ' Manual

I

J

BRIGHT

II-

o

White level

,.
' ,
.,.,.

Black level

,

1/

'
, /1:

'r.

/

"\CBlack Ilevel/ I !/
output signal I
, I I

~

J

I I I III
I I I I I /'1/

2 3 4 5 6 7 8 9 10 11 12 13
Brightness controlling Voltage V3 (V)

487

j.lPC1352C
R.G.B. Output Stage Dynamic Page
luminance OutPUt Voltage vs. Supply Voltage Characteristic.
Brightness controlling V.R. is fixed

5 luminance Input Voltage 1 Vp-p 'IL
14 Contrast MAX.
~
3
/
12

~

/'

1

10

Vee~

!:

~

R

~

8

V~ V

6

,

,,~

./

,

RGB output
upper limit -

'I 1 1

~

i'

-

~

White

--I"""'"

.,

I~ell-

"'-" ~ rl I I I
lumi~nce o~tPUt ra~ge
I

3
2

o

~

..... 1"

7

4

~PC1352C

/'

J J J

~ Bla~k I~Vel:_

11

j

9 10 11 12 13 14 15
Supply Voltage Vee (V)

BAND PASS COIL

CD-@88T

@-@43-1/4T
WIRE MA TERIAL
0.124> OUEW
INSIDE CAPACITOR
C1 =47 pF

Pin Connection

4SS

Qu 15±20 % at f=3.58 MHz
Qu 24±20 % at f=3.58 MHz

APPLICATION CIRCUIT
Contrast

,

Resolution

,

Brightness

0

VCC = 12 V

5 k6

AUTO

Color
Saturation

10k

~~f~13
~

Blanking
Pulse

COMPOSITE
INPUT SIGNAL

GND

A~

1::
."

o
...II

W
U'I
N

o
~
(J)

CD

,uPC1352C
~PC1352C

PRINTED CIRCUIT BOARD PATTERN (BOTTOM VIEW)

o

NEe
J.lPC1352C

AUTO SWITCH

VCC---t--i-r--+---COMPOSITE
SIGNAL

OUTPUTS
R--+-~--.....,....

---i-

B--foooO..............

BURST GATE PULSE

490

BIPOLAR ANALOG INTEGRATED CIRCUIT

J1,

PC1364C2

CHROMINANCE PROCESSOR FOR SECAM COLOR TV
SILICON BIPOLAR MONOLITHIC INTEGRATED CIRCUIT

J,LPC1364C2 is an integrated circuit for the chrominance signal processing of SECAM system receivers. This IC in 28 pins dual in
line package has the functions required for the chrominance signal processing such as Iimitters, (R-Y)/(B-Y) demodulators,
SECAM switch, identification circuit, killer, color control, clamp and R/G/B matrix circuit. The outputs are available in
original R, G, B color signals. In addition, by the combination with NEC's PAL chrominance IC - J,LPC1365C, PAL/SECAM
dual system can be realized.
PACKAGE DIMENSIONS in millimeters

FEATURES

•

R, G, B outputs in original color signals.

• PAL/SECAM dual

system capability by the combination

of J,LPC1364C2 and J,LPC1365C.
o Excellent white balance and crosstalk characteristics.
• Simple adjustment for contrast level and color control.

38.0 MAX.

-t:~:~:::1

12 34 , 67 89101112131.

L1

N

~j25'8~>M
2.54 ! ~
+0.5±0.1

~

0·-15·

BLOCK DIAGRAM
r-----------~~~~====~~~------------------I

Video
Input

Pulse

491

jlPC1364C2
TV BLOCK DIAGRAM
(PAL·SECAM DUAL SYSTEM)
SIF
Amp

SIF
Det.

A.F
Out

r--------------,
I

UIVHF
Tuner

PIF
Amp

Color
Sync

PIF
Det.

PAL

I

I
I
I
I
I

I
I

,

(PAL)

-.J

PIN CONNECTION (Top View)

Power Supply

Blanking Pulse Input

Video Input

Capacitor(Killer)

B Output

Burst Gate Pulse Input

G Output

Capacitor(ldent)

R Output

Coil(ldent)

Ca pacitor(CI amp)

Coil(ldent)

Capacitor(Clamp)

Color Control(Contrast)

Capacitor(Clamp)

8

B-Y de-emphasis

R-Y de-emphasis

9

Coil(B-Y Demo)

Coil (R-Y Demo)

Color Control

Bias Output

Line Pulse Input

Chroma Input 2

Chroma Output

(Delayed Signal)

492

Capacitor (by-pass)

CapacitorCby-pass)

G.N.D.

Chroma Input 1 (Direct Signal)

Speaker

jlPC1364C2
STANDARD USING CONDITIONS
Supply Voltage

12

V

200

mVp-p

1

Vp-p

Video Input Signal (Black Level)

10

V De

Burst Gate Pulse

3

Vp

Line Pulse

3

V-p

Blanking Pulse

3

Vp

Chroma Input Signal (Burst Signal)
Video I nput Signal

2

V

Color Controlling Voltage (Pin 19)

R.G.B. Output Black Level

5.2 to 6.7 to 8.2'

V

Color Controlling Voltage (Pin 22)

5.9 to 7.4 to 8.9

V

(Relative Contrast)

ABSOLUTE MAXIMUM RATINGS (Ta

= 25 °c Unless otherwise)

Supply Voltage

Vee

15

V

Signal Input Voltage

ej

5

V p.p

Pulse Input Voltage

ep
(Ta

=+70°C)

±6

V

750

mW

Power Dissipation

Pd

Operating Temperature

T opt

-20 to +70

°c

Storage Temperature

Tstg

-40 to +125

°c

493

j.lPC1364C2
ELECTRICAL CHARACTERISTICS (Ta
NO

= 25°C unless otherwise noted, Vcc = 12 V)

SYMBOL

CHARACTERISTIC

Contrast max, Color typo

TEST MIN. TYP. MAX. UNIT
CKT

TEST CONDITION
No Input Signal, Killer on V3 = 3.5 V

1

Supply Current

ICC

1

33

45

57

rnA

2

Pin 11 Voltage

V11

1

1.9

2.3

2.7

V

Same as No.1

3

Pin 17 Voltage (Killer off)

V17

1

8.0

8.6

9.2

V

Same as No.1, Killer off

4

Pin 17 Voltage (Killer on)

V17k

1

11.0

11.3

11.6

V

Same as No.1, Killer on

5

Demodulator Output

eOB,eOR

1

0.6

0.9

1.3

Vp-p

6

Limitting Sensitivity

eL

1

2.5

5

10

mV p _p

7

A.M. Reject Ratio

AMR

1

34

40

-

dB

f12 = 4.02 MHz, f15 = 4.48 MHz,
e12 = e15 = 200 mVp-p
f15 = 4.25 MHz ±230 kHz, eDB = -3 dB
f15 = 4.25 MHz, AM mod = 30 %, fm = 1 kHz,
e15 = 200 mVp-p' Line Pulse off, Compare with
eDB

494

f12 = 4.30 MHz, f15 = 4.25 MHz
beat frq. = 50 kHz, Compare with eDB, eOR

8

Cross talk Level

CT

1

37

43

-

9

Residual Carrier Level

e car

1

-

100

200

10

Maximum Color Differ.ential
Output

eOM

1

4.5

5.7

-

V _
pp

Set eDB = eOR = 1 Vp-p (±0.5 Vp-p)
by f12, f15, Color max.

11

(B-Y), (R-Y) Color
Differential Output

eOB,eOR

1

2.0

3.0

4.0

Vp-p

Same as No.1 0 Color typo

12

Demodulator (G-Y)/(B-Y)
Ratio

G/B

1

0.17

0.19

0.21

times

Same as No. 11, eDR = 0 Vp-p

13

Demodulator (G-Y)/(R-Y)
Ratio

G/R

1

0.46

0.51

0.56

times

Same as No. 11, eDB = 0 Vp-p

14

Maximum Color Gain

ACR,ACB

1

17

19

21

dB

Set eDB = eDR = 0.3 V p _p by f12, f15 Color max.

15

Color Gain Relative Ratio

ACR/ACB

1

-

0

±7

%

Same as No. 14

16

Contrast Cont. Range

eOC

1

15

17

19

dB

Contrast max. to min., Color typo
Set eOB = eOR = 1 Vp-p by f12, f15 at
Contrast max.

17

Residual Color Level
(Killer on)

eOK

1

-

-

30

mVp-p

18

DC Output Voltge

Eo

1

2.7

3.5

4.3

V

19

DC Output Difference Voltage

Ex-y

1

-200

0

200

mV

20

Eo
Temperature Coefficient

AEo/AT

1

-2

0

+2

21

Ex-y
Temperature Coefficient

AEx-y (T)

1

-

0

±60

mV

Same as No. 20

22

Ex-y
Supply Voltage Coefficient

AEx-y (V)

1

0

±60

mV

V3 = 3.5 V at VCC = 12 V, VCC = 12 V ± 20 %

23

Y Amp. Voltage Gain

Ay

1

4.3

4.8

5.3

times

e y = 0.5 Vp-p, f = 10 kHz, V3 = 3.5 V, Killer on

24

VAmp.
Frequency Characteristic

fy

1

5

6

-

MHz

e y = 0.5 Vp-p, OdB = Ay, -3 dB

25

Over all Color Differential
Output Voltage

eOT

2

2.5

3.6

5.0

V _
pp

ein = 200 mVp-p, Color bar Signal, Color tyP.,
Contrast max., B Output

26

Killer Sensitivity

ek

2

28

34

40

dB

o dB= ein 200 mvp _p ' Color bar Signal,

27

White Balance Changing Level
By Input

AEx-y (IN)

2

-

±60

mV

ein = 20 to 400 mVp-p, White Signal

28

White Balance Changing Level
By Color Cont.

AEx-y (Color)

2

0

±60

mV

ein = 200 mV p _p , White Signal, Contrast max.,
Color max. to min.

dB

mV p _p e12 = e15 = 200 mV _ , f12 = f15 = 4.25 MHz
pp

Set eOB = eOR = 1 Vp-p by f12, f15, at Killer off,
Killer on
No Input Signal, Killer on, V2 = 10.3 V
No Input Signal, Killer on, V3 = 3.5 V

mVtC V3 = 3.5 V at Ta = 25°C, Ta = -20 to +70°C

Attenuator Level at Killer on

.uPC1364C2

NO

CHARACTERISTIC

SYMBOL
~Ex-y

TEST
MIN. TYP. MAX.
CKT

UNIT

29

White Balance Changing Level
by Contrast Cont

30

Pin 15 Input Impedance

Ri15
Ci15

3

31

Pin 12 Input Impedance

Ri12
Ci12

3

32

Pin 10 Input Impedance

Ri10
Ci10

3

17
15

33

Pin 20 Input Impedance

Ri20
Ci20

3

17
15

34

Pin 23, 24 Input Impedance

Ri23,24
Ci23,24

3

25
13

35

Pin 17 Output Resistance

R017

-

120

180

270

36

Pin 9, 21 Output Resistance

R09,21

-

4.0

6.0

8.0

37

Minimum Gate Pulse Voltage

Vc (min)

1.5

V

38

Minimum Trigger Pulse Voltage

VFF

1.5

V

39

Minimum Blanking Pulse
Voltage

VBLK

2.0

V

(Contrast)

0

±60

mV

2.8
4.5

4
6.6

5.6
9.5

kn

2.8
3.7

4
5.5

5.6
8.0

kn

2

-

pF
pF

kn
pF

kn
pF

kn
pF

TEST CONDITION
ein = 200 mV p _p , White Signal, Color typ.,
Contrast max. to min.

v

f

= 4.4 MHz,

100 m p _p

f

= 4.4 MHz,

100 mVp-p

Same as No. 31
Same as No. 31
Same as No. 31

n
kn

495

jlPC1364C2
TEST CIRCUIT 1
~----------------~~eD8

VCC=12 V
5.1 kQ

1.5 kQ
••

3.9 kQ

4.7).1F

V"

i

m

:> 33

,,~

TYP

0.47 ).IF

ONi S25
68 kQ

.JLJL

Vyy-

-'1z =

kQ

~

OFF::>

1.5 kQ
A,/"

,''v''''

VCC=12 V

L-o b
MIN.

ZZ

0--

MAX

,I)

S22

150 pF:;:

'--

J

'YY

68 pF
MAX. ()\ 0 -

.... 1.8 kQ

S19

(>

MIN.

.

COLOR

CONTRAST .

7.7
N

::r:

S180_ON_ _ _
J LLINE
JL_
_./

~

GATE PULSE

VCC=12 V

:t

LO

N

-:i-

KILLER

ON

15

1~15

28

27 26 25 24 23

1

POWER

2

4

3

5

6

22 21 20

19

7

10 11 12

8

9

18

17 16

A ' - - - -....

~ON

0..,
___
0

VIDEO
INPUT

OFF

9

zz zz zz

I
To:Cn

47 ).IF.z,.,. .. ~
VCC=12 V
',I.
S2
-v

p:

("'"

""53
~::>

)

J'\~

1.5 kQ

L..--

~ ""S90-

v"

~--1;I;I---""" 150 pF

. 1 ,.

..,

-

AlA

,..

AA

68 "'1"pF

1.8 kQ

.11

"

G

f~

G)
()R

Q

4.7 ).IF N

3 kQ

8 C)

S_4-J§''- __________

(:> R

~

I __L-~0.5

.s u==:
DEMODULATOR OUTPUT

e12

-

-

7'rT

~

3.3 kQ x3 /;Ir

.

,..

8

496

f\.

}~

E~_ _ _ _
o

, 'v

. J:,

'"

3.9 kQ

330 Q x3

470 pF x3

eo

..

.."

VCC=12 V

fi710 kQ 1 kQ

Q);.

0.01 ).IF -+___________
L..--.-____

0---

..V":-l.'"

1,75

.~
;~ 75 '~

).IF

II

0.01 ).IF

,...
IT~

112

14

T 0.01
rfr

).IF..

m10).lF .z~ =~

13

O.~1 pF

15

1~

Sl
ON

PULSE

~-----+--------~~V17

'"'

OFFl S27
68 kQ

0---0

OFF

Vp-p

--0.5 Vp-p

---T-

1 Vp-p

VII

tlPC1364C2
TEST CIRCUIT 2
COLOR
VR22
5.1 kQ

3.3 kQ

.r

3.3 kQ

3.9 kQ

MAX.

MIN.

CONTRAST
VR19

VCC=12 V

0 01
. ,uF

3.3 kQ

5.6 kQ

68 pF
47 pF

1.8 kQ

0.47.,uF

JUL

--.JLlL
LINE PULSE

GATE PULSE

2.2 ,uF
47 Q

~CAM
75

QJ

S.G.

497

~

 1.4 V

I
I·

I

I
tl

I

I
.1
I

I

t2 I

__________________~I~I

I
I

1.4 v-~-

I

1-- - +- I
I

I
I
I

SECAM Burst Gate Pulse
Level> 0.7 V

I
I.

I
--r'-------

I

I
I

I

:

I

:4.9

I

. . -1

I
_I
I
II,

I
I I I
-1 I I.. I as. - I I~s-

I

I

I

I

I

O'7v-~i~--~~
I

_____________-J....I_.....J
500

luJ______

J.LPC1364C2
VCC= 12 V

33 kQ
VCC=12 V

470

~~g

Q

Level

0.01 JlF

, LS,

L7

Contrast

~ ~

,

0.01
, JlF

10 kQ
Vl
Vl
Q}

E
.s=

OIl

J5

Sub

390 Q

Brightness

· nal
Video Input SIg
Composite Video

I

Signal

I

47Q33pF

~I'

~

_1_

~-1

Vp-p

V--Ll~lack

I~

Level = 10 VDC

R

.--+--

G

...--+---+-- B

1:
-g
Blanking
0.01 JlF-'- 6.S kQ LlO

1

Burst Gate
Pulse

Pulse

3.3 kQ x3

o
....a
W

en
~
o
N

01

o

JLPC1364C2
PAL·SECAM DUAL SYSTEM
VCC=12 V

Burst Gate Pulse(PAL)
tl PC 1365C( PAL)

47 JlF

Composite
Video Signal

§]
r:;;l

VC_C_=-11~2_V..-_ _ _-+--.._-,
100

~ f~O.OlJlF

q

o

{

"'-

0

100

Q

ex

~~-----------~-+~~--~~~
Q

0

10

kQ

Color Level(PAL)
LL.
Co

L2

220

Q

2.2 JlF

r-~~----~~~r------+~

tl PC 1364C2(SECAM)

L8

L7

~~-~--"-~-r----~~

Brightness

R

G

'-+--+--B

6.8 kQ LID

Io.01

502

JlF

Burst Gate
Pulse(SECAM)

Pulse

-'"

jlPC1364C2
L 1 1 H D. L. Matching
Input Coil
(PAL, SECAM)

Type No. TKRNS - 24984NK (Pink Core)
Taka Corp.

(])

o

fa;
6-4;
C out;
au;
Wire Material;

CD

4.43 MHz
18T
330 pF (4 - 6)
59 ± 20 %
0.1/UEW

L2 1 H D. L. Matching
Output Coil
(PAL, SECAM)

~

~

Type No. TKRNS - 24985VN (Black Core)
Taka Corp.
fa;
4-2;
2-6;
C out;
au;
Wire Material;

4.43 MHz
18T
18T
75 pF (4 - 6)
44 ± 20 %
0.1 /U EW

L3 Chroma Input Coil
(PAL)
Type No. 163NEF - 1148 WWJ (No Core)
Taka Corp.
fa;
6 - 4;
3 - 1;
C in;
Wire Material;

4.43 MHz
35 % T
76 T
47 pF
0.1/UEW

L7 (B-Y) Demodulator
(SECAM)

:\JV4

r®... ..
CD

CD

Ji)""'

®

Type No. TKRES - 25656AYC (Yellow Core)
Taka Corp.
fa;
3 - 4;
C in;
au;
Wire Material;

4.25 MHz
33 % T
82 pF (3 - 4)
75 ± 20 %
0.1/0UEW

503

j.lPC1364C2
L8 (R-Y) Demodulator
(SECAM)
Type No. TKRES - 25658AYK (Green Core)
Toko Corp.

®

)

fo;
3 - 4;
C in;
au;
Wire Material;

4.406 MHz
32 Y2 T
82 pF
75 ± 20 %
0.1/OUEW

L9 Be" Filter
(SECAM)
Type No. TKRNS - 25657 A YC (Red Core)
Toko Corp.
3-4;
C out;
au;
Wire Material;

19YzT
220 pF
70 ± 20 %
0.12/0U EW

L 10 Ident Detector
Type No. TKR ES - 25659A YC (Orange Core)
TokoCorp.
fo; 4.406 MHz

3 -4; 39 Yz T

®J

504

C in
au
Wire Material

68 pF
63 ± 20 %
0.1/OUEW

BIPOLAR ANALOG INTEGRATED CIRCUIT

,uPC1365C
PAL CHROMINANCE AND LUMINANCE PROCESSOR
SILICON BIPOLAR MONOLITHIC INTEGRATED CIRCUIT

DESCRIPTION

pPC1365C is a luminance and chrominance stage LSI for PAL system TV sets. It contains luminance amplifier, chroma IF
amplifier, sub-carrier oscillator, PAL switching circuit, chroma demodulator, matrix circuit, and the other necessary additions.
It puts out R,G,B primary colors. This LSI restores 100 % of the DC level. And it is easy to adapt remote control system to
"BRIGHTNESS", "CONTRAST", and "COLOR SATURATION", as the control terminals are designed to high impedance.
FEATURES

•

•
•

•
•

•
•

PACKAGE DIMENSIONS in millimeters
This LSI has built-in function for PAL-SECAM dual system.
1) Two ICs construction by NEC's SECAM IC pPC1364C2.
3&0 MAX.
2) Only one 1-H delay line is required for dual system.
3) Automatically switchable function for PAL/SECAM signals.
This LSI can process both of the chrominance and the luminance
signals.
Due to DC control method for color, contrast, and brightness
control, the wiring is rather easy and the expansion to remote
control receiver are also rather easy.
The level of color killer circuit can be adjusted from the outside and
the color killer circuit has proper hysterisis characteristics.
The input circuit requires only a band pass filter and 4.43 MHz
trap. Furthermore, the demodulated outputs are R,G,B signals.
So that the chroma output stages are quite simplified.
The contrast control can automatically adjust the levels of chroma
and contrast- luminance signal under the relation that the normal picture is always kept.
The output terminals of demodulated chroma signals and all input circuits are protected by the surge protection diode.

IC BLOCK DIAGRAM

505

JlPC1365C
TV BLOCK DIAGRAM
Speaker

PIN CONNECTION (Top View)

Power Supply

28

G Output

Blanking Input

2

27

B Output

Capacitor
(Pedestal Clamp)

3

26

R Output

Brightness
Control

4

25

B-Y Demo Input

Luminance Input

5

24

R-Y Demo Input

6

23

Line Pulse Input

Contrast Control

7

22

Oscillator Input

Color Control

8

21

Oscillator Input

Chroma Output

9

20

Oscillator Output

Capacitor

10

19

Burst Gate Pulse Input

18

A.P.C. Filter

Capacitor
(Emitter Peaking)

(By-Pass)
Chroma Input

506

A.C.C. Filter

A.P.C. Filter

Killer Filter

Burst Input
(A.P.C., Ident Killer)

GND

Burst Output

,uPC1365C
J,lPC1365C Standard Using Conditions
Supply Voltage

12

V

100

mVp.p

Chrominance Input Signal
(Burst Signal Level)
Luminance Input Signal

1

Vp-p

Gate Pulse Input Level

3

Vp

H. Pulse Input Level

3

Vp

Blanking Pulse Input Level

3

Vp

Demodulator Chrominance Input Signal

0.2

Vp-p

R,G,B Output Voltage (Black Level)

2.0

V

Color Saturation Controlling Voltage

o to 12
o to 12
o to 12

V

Contrast Controlling Voltage
Brightness Controlling Voltage

ABSOLUTE MAXIMUM RATINGS (Ta
Supply Voltage
. Power Dissipation

Vee
Pd

V
V

= +25 °c Unless otherwise)
(Ta

= +70 DC)

15

V

750

mW
Vp-p
V

Signal Input Voltage

ej

5

Pulse Input Voltage

ep

±6

Operating Temperature

Topt
Tstg

Storage Temperature

-20 to + 70
-40 to + 125

°c
°c

507

J,lPC1365C
ELECTRICAL CHARACTERISTICS (Ta
NO

CHARACTERISTIC

= 25°C unless otherwise noted, Vee = 12 V)

SYMBOL

TEST
CKT

MIN.

TYP.

MAX

UNIT

TEST CONDITION

1

Burst Output Voltage

eb

1

0.9

1.2

1.6

V _
pp

Input 100 mV p _p
Rainbow color bar signal

2

ACC Range

ACC

1

0.6

0.8

1.0

times

Input 10 mV p _p
Burst Outputl eb

3

Chroma Output Voltage 1

e c1

1

0.5

0.7

1.0

Vp-p

Input 100 mV p _p
Rainbow color bar signal
Saturation control MAX

4

Chroma Output Voltage 2

e c2

1

V _
pp

Input 100 mV p _p
Rainbow color bar signal
Saturation control MID

5

Chroma Output Voltage 3

e c3

1

6

mVp-p

Input 100 mVp _p
Rainbow color bar signal
Saturation control MIN

6

Killer Sensitivity

ek

1

-34

-40

-46

dB

7

Killer Hysterisis

ekh

1

-

1

2

dB

0.2

o dB = Input 100 mVp _p

508

Rainbow color bar signal
Killer ON Input level
Killer ON-OFF Input level

8

Oscillator Controlling Sensitivity

{3

2

1.3

1.8

2.3

Hz/mV

Measure Vp Voltage at
Burst frequency fo ± 100 Hz

9

Phase Detector Sensitivity

J.l

2

20

40

60

mV/degree

Measure Vp Voltage at
Burst frequency fo ± 100 Hz

10

Phase error

AI/>

2

-

1.5

3.0

degree/100 Hz

Burst frequency fo ± 100 Hz

11

APC Pull-in frequency Range

fp

2

±300

±500

-

Hz

Changing frequency of
Burst signal

12

APC Detector Output balance
Voltage

Vp

2

-100

0

+100

mV

No Input signal at Pin 16

13

B-Y Output Voltage

e0 1

1

1.5

2.0

2.5

V _
pp

Input 0.2 Vp-p f = 4.44 MHz
10 kHz beat Output signal

14

Ratio of R-Y to B-Y

RIB

1

0.49

0.56

0.63

times

Input 0.2 V p _p f = 4.44 MHz
10kHz beat Output signals

15

Ratio of G-Y to B-Y

G/B

1

0.30

0.34

0.38

times

Input 0.2 Vp-p f = 4.44 MHz
10kHz beat Output signals

= 4.44 MHz
= 4.44 MHz
= 4.44 MHz

16

Relative Output Phase B-Y to R-Y

LR

1

85

90

95

degree

Input 0.2 V p _p f

17

Relative Output Phase B-Y to G-Y

LG

1

228

236

244

degree

Input 0.2 V Pop f

18

Maximum Color Difference
Output Voltage

e02

1

4.5

5.5

-

V _
pp

19

Output Residual Carrier level

e car

1

-

-

100

mVp_p

20

Overall color
Difference Output
Voltage at B-Y signal

e0 3

1

1.0

1.7

2.5

V _
pp

21

Overall color
Difference Output Variable
Range by. Contrast

e oc

1

15

17

19

dB

Input 100 mV p _p
Rainbow color bar signal
Contrast control MAX/MIN

22

Luminance Gain

Av1

1

4.1

4.6

5.1

times

Input 1 V p _p
Color bar 100 % White signal
Contrast control MAX

Input 1.2 Vp-p f
10 kHz beat Output signal
at B-Y Output Pin
No Input signal at Pin
24 and 25
Saturation control MID
Input 100 mV p _p
Rainbow color bar signal
Contrast control MAX

tlPC1365C

TEST
CKT

MIN.

TYP.

MAX

UNIT

TEST CONDITION

AAvl

1

-

1.0

1.1

times

Input 1 V p _p
Color bar 100 % White signal
Contrast control MAX

Luminance Gain Variable Range
by Contrast

e vc

1

15

17

19

dB

Input 1 V p _p
Color bar 100 % White signal
Contrast control MAX/MIN

Differential Gain

D.G.

1

-

-

6

%

Input 1 V p _p
Stair step signal
RGB Output, Black level

NO

CHARACTERISTIC

23

Relative Ratio of Luminance Gain

24

25

SYMBOL

=2 V

Input 1 Vp-p
Stair step signal
AP L = 10 to 90 %

26

DC Restoration

TDC

1

90

95

100

%

27

Luminance Amp Frequency
Characteristic

fv

1

4.0

5.5

-

MHz

28

Brightness Controlling Sensitivity

BR

1

3.8

4.3

4.8

-

Quiescent Output Voltage
2 to 5V, (V26, V27, V28)
Sensitivity 3 V/AV4

29

Maximum R,G,B Output Voltage

EOM

1

7

-

-

V

Brightness Controlling
Voltage = 12 V

Input 0.1 Vr.m.s.
Sine wave signal, -3 dB down
Pin 6 open

=

~O

Quiescent Output Voltage

Eo

1

2.5

3.3

4.1

V

No Luminance Input signal
Brightness V4 = 9 V
Contrast MAX
VCO operating

31

Quiecent Output Voltage
Temperature Coefficient

EO-T

1

-2

0

+2

mVfC

R,G,B Output
Ta = -20 to +70 °c
V26 = 3.5 V at Ta = 25°C

32

Difference Output Voltage

{ER-G
EG-B
EB-R
Ex -y

1

-300

0

+300

mV

V26 = 3.5 V
VCO operating

33

Difference Output Voltage
Temperature Coefficient

AEx.y/AT

1

-

0

60

mV

26
Ta

34

Supply Current

ICC

3

32

43

54

mA

35

Changing Black level by Contrast

AEoc

1

-100

0

+100

mV

36

Minimum Gate Pulse Input Voltage

VG (min)

-

-

2

V

Pin 19

37

Blanking Pulse Input Voltage
Range

VB

1.8

-

5

V

Pin 2

38

Minimum FF Trigger Input Voltage

VFF (min)

-

-

1.5

V

Pin 23

= 3.5 V at Ta = 25°C
= -20 to +70°C
VCC = 12 V

No Luminance Input signal
V26 = 2 V at Contrast MAX
Contrast control MAX/MIN

509

UI

o

1::
"'0

pPC1365C TEST CIRCUIT 1

1

VC~:~2 kVO

O} 0~7

ec

OFF

n

ON- OFF

...Ii

W

en
en

8

S-8
To Pin 9
To

.01JlFl kQ
l2
VCC=12 V

0.022

STOP

G

Pin23

E;~

S-7

--ro--Oev

R

To

Pin 13

n

ON

I

~I

Oe 8

I
I
I

I

3.3 kQ

1 kQ

0

I S-12
I
8 I

4.7 J.tF

°1

oR~e03
I'"'
---v

3.3 kQ

°
eb
0.01
0--11

~
~
~-H-I-0-0-PF-III~

JlF

S=:~OO

h

nON

-;W

I
I

I

JLPC1365C

1r

S-lO

cl

0.01 .F

I
S;goa'

1

Generator

~ S_4/
0

::t.

0....

ON

S-2
b

hv

. IilL.fl n

I,j,.

NOR~

Input A

8

I

INVERT

:3

I
I0

:
a

TP
©1

o--w.r-,
56 k
OFF

o~

d

~

1.5 k Q I ~
10 kQ

,/,/

./

./

,/

~ecar

R

J~

G

o

I

ON ), OFF
o

I

,/
,/

I
I PAL
I

14 13 12

7TT

8

° PAlISECAM

I

VCC=12 V

68 kQ

120 pF

Input

)
./
,/

I

5.6 kQ

I
I

rJr

I VCC=12 V

pF

I

330 Q
330 PF~

PAl~

~

Go II

~~--~

~PAl/SECAM

8.8 MHz Trap

S-11
MAX.

d

S-5
VCC=12 V

VR-l

::t.

o0
....

7fT

0
ON
---o----------------~
S-3
TP2 Cd
OFF

S-6L--..o--

1

JI0 JiF
0.01 JlF

r

ONq
-S-Power
OFF 0
47 JlF
VCC=12 V

MID

1.5 kQI1.5 kQ 15 kQ

6

GND

j.lPC1365C
/JPC1365C Signal Generator (TEST CI RCU IT 1)

VCC=12 V

Luminance

Composite
Input Signal

10 Jlf

V Output

~I

LJ

1 Vp-p

2.2 JlF

680 PF.Lm-

GND

o--m-

1

470 Q

2
560 kQ

3

22

4
5

20
(.)

......

6

(Y)

.....

7

a..

8

1.0
(.)

::t.

10

11

1000 pF

27 kQ

S-14

6.8 kQ
15

Burst Gate Output

0:

.:.:;

14

N

-1Lpulse
(.)

N

en

220 pF

"<:t-

12

C

11

b

0

"<:t-

o

a..

::t.

10

9

H. Output Pulse

I~
! I
LWJ

L.=f-c

Burst Signal

3.5

JlS

I
I

~H.pulse
51

j.lPC1365C
IlPC1365C TEST CIRCUIT 2

VCC=12 V
0.022 J.lF

VCC=12 V

+

o~------~~----~
eose

27

25 24

23

22

21

20 19

18 17

OFF 0

16

100 pF

,uPC1365C

234
S-Power

ON o-----+-......
47 J.lF

VCC=12 V

o

OFF

0.47 J.lF
7.5 kQ
VCC=12 V

~

GND

S-16

+f
fo 0 --0---.

-f
B'urst Signal

Signal

Generator

(See next page)

Qref

512

Pulse

)lPC1365C
pPC1365C Signal Generator (TEST CI RCUIT 2)
Pulse

2.2 kQ

6.8 kQ

JLPD4049C
2.2 kQ
2345678

VCC=12 V

10 kQ
\ 1 500 pF 1 000 pF
Gate frequency Burst Signal Width
S-16

ADJ

Gate Pulse
10 kQ Width ADJ

ADJ

Burst Signal
27

26 25

24

23 22 21

20 19 18 17

16

15

12 13

14

JLPC1365C
7

10 11

8

u..
::t

2.2 }.IF

~I

h
0

ci

u..
::t

a
.>C

56 kQ
VCC=12 V

513

)lPC1365C
~PC' 365C TEST Circuit 3

Open
13 kQ

c
c
13 kQ

c
19 18 17 16

15

,uPC1365C

7

8

r
1 JlF
VCC=12V----~~~----+_~~--r_----~----------------------~

c
75 kQ

c

----------J

VOC=4 V_____

514

,uPC1365C
~

eb

ACC

e cl

e c2

e c3

ek, ekh

e ol

RIB

G/B

LR

S-l
Input

ON

OFF

ON

ON

ON

OFF

ON

ON

ON

ON

S-2
Lum

INV

INV

INV

INV

INV

INV

INV

INV

INV

INV

S-3
Lum

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

S-4
Chro.

ON

ON

ON

ON

ON

ON

OFF'

OFF

OFF

OFF

S-5
Cont.

MAX

MAX

MAX

MAX

MAX

MAX

MAX

MAX

MAX

MAX

S-6
Satu.

MID

MID

MAX

MID

MIN

MID

MID:

MID

MID

MID

S-7
VCO

NORM

NORM

NORM

NORM

NORM

NORM

NORM

NORM

NORM

NORM

S-8
FF.

ON

ON

ON

ON

ON

ON

OFF

OFF

OFF

OFF

S-9
Dem.

INT

INT

INT

INT

INT

INT

EXT

EXT

EXT

EXT

S-10
Syst.

PAL

PAL

PAL

PAL

PAL

PAL

PAL

PAL

PAL

PAL

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

S-12
Output

B

B

B

B

B

B

B

R

G

R

S-13
Output

eo3

e o3

e o3

eo3

e o3

e o3

e o3

e o3

e o3

e o3

S-14

OFF

OFF

OFF

OFF

OFF

OFF

ON

ON

ON

ON

D =SG

D=SG

D=SG

S-ll
Blk

I

VR-l

Be trimmed V26 = 3.5 V by Brightness VR (VR-l)

VR-2

Input

A

A=SG

A

A

A

B-C=ATT
SG
Measure
Point

D =SG

A=SG
B - C = ATT

Rainbow

eb

ec

eb

f = 4.44 MHz

ec

ec

ec

e o B,e o 3

eoB

e o B,e o 3

Phase
Meter

Oscilloscope

I

ATT

I

e o B,e o 3

I

ATT

I

I

AC Volt meter

515

j.lPC1365C
~

LG

e o2

eear

e o3

e oe

S-1
Input

ON

ON

ON

ON

ON

S-2
Lum.

INV

INV

INV

INV

S-3
Lum.

OFF

OFF

OFF

S-4
Chro.

OFF

OFF

S-5
Cont.

MAX

S-6
Satu.
S-7
VCO

~Av1

eve

DG

TDC

fv

ON

ON

ON

ON

OFF

INV

INV

INV

INV

INV

NORM

OFF

OFF

ON

ON

ON

ON

ON

OFF

ON

ON

OFF

OFF

OFF

OFF

OFF

MAX

MAX

MAX

MAX,MIN

MAX

MAX,MIN

MAX

MAX

MAX

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

NORM

NORM

NORM

NORM

NORM

STOP

STOP

STOP

STOP

STOP

S-8
FF.

OFF

OFF

OFF

ON

ON

OFF

OFF

OFF

OFF

OFF

S-9
Dem.

EXT

EXT

EXT

INT

INT

EXT

EXT

EXT

EXT

EXT

S-10
Syst.

PAL

PAL

PAL

PAL

PAL

PAL

PAL

PAL

PAL

PAL

S-11
Blk

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

S-12
Output

G

B

BRG

B

B

BRG

B

BRG

B

BRG

S-13
Output

e o3

e o3

e o3

e o3

e o3

ev

ev

ev

ev

ev

S-14

ON

ON

ON

OFF

OFF

OFF

OFF

OFF

OFF

ON

VR-1

Be trimmed V26 = 3.5 V by Brightness VR (VR-1)

Avl,

Be trimmed V26 = 2 V by Brightness VR (VR-1)

V26 = 3.5 V

VR-2

Input
SG
Measure
Point

D=SG

f = 4.44 MHz

eoB, e o3
Phase
Meter

516

D=SG

eoB

-

A

A

eear

Rainbow

e o3

A

A

A
Stair Step

Video SG 100 % White

e o3

Oscilloscope

ev

ev

A

ev
Vector
scope

C=SG
SG=CW

ev
Oscilloscope

ev
RF
Volt meter

j.lPC1365C

~

BR

EoM

Eo. Eo-T

* Ex-y
AEx_y/AT

AEoc

5-1
Input

ON

ON

ON

ON

ON

5-2
Lum.

INV

INV

INV

INV

INV

5-3
Lum.

OFF

OFF

OFF

OFF

OFF

5-4
Chro.

OFF

OFF

OFF

OFF

OFF

5-S
Cont.

MAX

MAX

MAX

MAX

MAX,MIN

5-6
5atu.

MID

MID

MID

MID

MID

5-7
VCO

NORM

NORM

NORM

NORM

NORM

5-8
FF.

OFF

OFF

OFF

OFF

OFF

5-9
Oem.

EXT

EXT

EXT

EXT

EXT

5-10
5yst.

PAL

PAL

PAL

PAL

PAL

5-11
Blk

OFF

OFF

OFF

OFF

OFF

5-12
Output

BRG

BRG

BRG

RG

B

5-13
Output

e o3

eo3

eo 3

e o3

e o3

5-14

ON

ON

ON

ON

ON

VR-l

5ee TE5T
Condition

TP = VCC

TP=9 V

V26=
3.SV

Eo3

e o3

eo3

e o 3. e ov

V 26

VG (min)

VB

VFF

PAL

PAL

PAL

=2 V

VR-2

Input
5G
Measure
Point

eo 3

DC Voltmeter

517

jlPC1365C

----S-15
fo ±f

{3

J.I.

A¢

fp

Vp

ON

ON

ON

OFF ON
ON OFF

OFF

+f (300 Hz)
-f (300 Hz)

fo

eref, eosc

eref

Vp

Phase Meter
f.Counter

f.Counter

DC Voltmeter

+f (100 Hz)
-f (100 Hz)

S-16
Burst

Measure
Point

SIS

Vp

Vp

eref

eref, e osc

f.Counter
DC Voltmeter

Phase Meter
f.Counter
DC Voltmeter

JlPC1365C
J.LPC1365C Input and Output signals

Luminance Input Signal

/

White level

R19
R20
470 Q 1 'kQ

Luminance Delay Line

:-1

I
I

I

RIO

I

11T" l.8 k Q

f

4.43 MHz Trap

R18
47 Q

C25
100 pF
Band Pass Filter

14-_--f

'----------/-,--------10
om

pF

1

mI I I I I I I I I~I I I I I at

Output Signal

Terminal 11

100 mVp-p
(Burst Signal)

1

White

---------,
I
I
I

3.5 Vp-p at Luminance

J

I
I

I
I
I

7!!
________
.--1I

Terminal 26. 27. 28

R31
\
R33

U

Input =1 Vp-p
Contrast MAX.

Black

--OV

Black level

=2 V

(Controled by the brightness. control)

519

)lPC1365C
pPC1365C Input Pluse

Burst Gate Pulse

Burst signal = 100'" 200 mVp-p
at Terminal 11

~IIIII :~-EI

I

I

I

Inl
-------'.

2!3 vp

L - ._ _

--1 I--

.....It~ 0 v

4.5 - 3

Terminal 19

pS

Line Pulse

n

------~.

t

1 -2 Vp

L - ._ _ _ _

~t_ov

Terminal 23

Blanking Pulse
(Line Pulse and
Field Pulse)

t

2 - 5 Vp(Max. 5 Vp)

,---~~-o v
I
I
In case of commonly
using of Input Pulse

I

I

I

I

I

I

I

I

Terminal 19

___--'rll--__
4.7 kQ

Terminal 23

520

JlPC1365C
J.lPC1365C

*Color, Contrast and Brightness controlling circuit
VR 1

Brightness Control

VR102

Sub Brightness

V R2

Contrast Control

V R 103

Sub Contrast

VR3

Color Control

VR104

Sub Color

I

VCC=12 V

I
I

I
I

Terminal 7
8
VR1
VR2 ~........J\M-----"------{
VR3

I

I
IL __________ _

VR102
VR103
VR104

V7 (Contrast)

5.5 to 7.0 to 8.5 V

V8 (Color)

4.0 to 5.5 to 7.0 V

V2 (Brightness)

8.2 to 8.7 to 9.2 V
Terminal 4

*Color Killer Setting VR105
* APC Setting
Method;

1; Connect Resistor (100 kU) between the Terminal 13 and GND
as shown Fig. 1 (Killer OFF)
Terminal 13

2; Connect Capacitor

100 kQ

(0.01 J.lF) between the
Terminal 16 and GND as

Fig 1

shown Fig. 2 (Burst Input OFF)

r

~I---Il~O

3; Trim 4.433618 MHz by

0.01 pf

using VR107

Term;n,1 16

Fig 2

* 1H Delay Line Circuit
VCC=12

v

VR101
1 kQ
C1

0.01 JlF

Terminal 24
, - . - - - - - - - . . . - - - - (R-Y)

@

R4

®
®

2 kQ

L - -_ _ _ _ _~--_Terminal

L1

Chrominance 1H Delay Line

25

(B-Y)

L 1 ; Pre Chrominance Delay Line Terminating Coil
L2, VR 101 ; Delay Phase and Amplitude Adjustment
V R 106 ; Sub carrier Phase Adjustment

521

OJ

I\)
I\)

):::

The Block Diagram and External Components for Il PC1365C

"'tJ

o

...I

W

VCC=12 V

Burst Gate
Pulse

0)

en
o

.--+----+B
R31-33 3.3 kQ
R34-36 270 Q

Composite Signal
Input
RI9

R20

D.l.

C7

470 Q

RIO
1.8 kQ

L5 4.43 MHz
Trap

lUI

RI8

C25

47 Q

100~PF
C24
120 p

"

:

I _ _ _:

L--..-.tl

APC
VRI07
4.7 kQ
• CI8 0.02 JLF

Killer
VRI05
4.7 kQ
R4

2 kQ

Trl 2SA733

Phase

CII 0.01 JLF
CIO 0.01 JLF
C9 0.01 JLF

C6
10 JLF

RI3
68 kQ

R30

Line Pulse
Brightness
VRI 10 kQ

Color
VR3 10 kQ

Contrast
VR2 10 kQ

L6 8.2 JLH
R29 1.5 kQ
CI9 39 pF
C20 47 pF

tlPC1365C
Printed Circuit Board Pattern (Bottom View)

R.B.G Output

VR107 "

L2

Xtal

CIS

-~ R2~C2::8l T~
.~

--:-f

VRI06
Burst Gate
Pulse

~
L4 1

---A/I.f.rlC16

T

T

C26

ff

l&iL6

R33

I

C19

R27
¥+••

I
I
I

Line Pulse

R30

VR1£!.~ C~'R2
"'NY- t J.

. R36

\ ... ,

*

1-

R4$ [~J

R35

.1i::'9 ~4

d0 R26

R24

t

C:l

R32 R31

Rl
, "

t 'f +"1< I)

1

1
I

I

1"
C.11

r--c::J--,. I

S

RIO

R3

r

1,1

I
I L:.....J
I
I 1H D.L.
L_c_.J

fJ,t -tR~1 ~:
IC3T

loC8

1T

if
R17

''t~

t

-Wt-I C9

, VR3

-wr

Rl:

1t

P'.

1.

VR2

VRI02

1;--1

~25 !I

R9

-tiC24....1f!1rr

-w.-

..

R6"

~,J 1~R7t f: r---l1~
t

VRI03

VCC

I

i

Composite Signal

4.43 MHz

L5

I..: ___ ..J

Blanking Pulse
Ground

f ~~;

fR20

L-D.L.

VRI

,uPC1365C Table of the external components
Symbol
R1
R2
R3
R4
R5
R6
R7
R8
R9
RIO
Rll
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36

Value
100 Q
100 Q
390 Q
2 kQ
(56 kQ)
(3.9 kQ)
2.7 kQ
5.6 kQ
68 kQ
1.8 kQ
33 kQ
33 kQ
68 kQ
39 kQ
22 kQ
68 kQ
5.6 kQ
47 Q
470 Q
1 kQ
68 kQ
470 kQ
4.7 kQ
27 kQ
27 kQ
1 kQ
(1.2 k12)
1 kQ
1.5 kQ
0.2 kQ)
3.3 kQ
3.3 kQ
3.3 kQ
270 Q
270 Q
270 Q

Symbol
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25

C26

Value
0.01 pF
0.01 pF
47 pF
0.01 pF
4.7 pF
10 pF
10 pF
10 pF
0.01 pF
0.01 pF
0.01 pF
0.01 pF
1 pF
0.47 pF
47 pF
100 pF
0.022 pF
0.022 pF
39 pF(Xtal CL = 16 pF),
68 pF(Xtal CL = 20 pF)
47 pF
18 pF

Symbol
VR-1
VR-2
VR-3

Value
10 k Q Brightness
10 k Q Contrast
10 k Q Color Saturation

VR101
VR102
VR103
VRI04
VR105
VR106
VR107

1 kQ D ' .. Level
4.7 k Q Sub Brightness
47 k Q Sub Contrast
47 k Q Sub Color Saturation
4.7 k Q Killer Adj
1 kQ Phase Adj
4.7 kQ APC Adj

L1
L2
L3
L4
L5
L6

D.l. Matching Coil Type No TKRNS 24984NK (Toko Corp.)
D.l. Matching Coil Type No TKRNS 24985VN (Toko Corp.)
Band Pass Filter Type No 163NEF1148WWJ (Toko Corp.)
33 pH
4.43 MHz Trap Type No LCS2HIH·102 (TDK Corp.)
8.2 pH

Tr1
Xtal
L·D.L.
1 H D.L.

2SA733
4.43 MHz
Luminance
1 H Delay

(NEC)
CL =16 pF or 20 pF
Delay Line Type No CTS·1804C (Showa Densei Corp.)
Type No EFD EN (Matsushita Corp.)
Line

120 pF
100 pF
4.7 pF

523

tlPC1365C
1 H Delay Line Matching Coil Specification
L 1 Input Coil
(PAL)

CD

Type No.

TKRNS - 24984N K

Product

TaKa Corp.

fo

4.43 MHz

CD

6-4

18 T

Cout

330 pF (4 -6)

G)

au

59 ± 20 %

Wire Material; 0.1 1 UEW

L2 Output Coil
Type No.

TKRNS - 24985VN

Product

TaKa Corp.

fo
4-2

4.43 MHz
18 T

2-6

18 T

Cout

75 pF (4 -6)

au

44 ± 20 %

Wire Material; 0.1 12UEW

Chrominance Input Coil Specification
L3 I nput Coil
(PAL)
Type No.

163NEF - 1148WWJ

Product

TaKa Corp.

fo

4.43 MHz

6-4

35114 T

3 -1

76T

Cout

PH 47 pF

Wire Material; 0.1 1 UEW

524

BIPOLAR ANALOG INTEGRATED CIRCUIT

p.PC1384C
PAL CHROMINANCE AND LUMINANCE PROCESSOR
SILICON BIPOLAR MONOLITHIC INTEGRATED CIRCUIT

DESCRIPTION

IlPC1384C is a luminance and chrominance stage LSI for PAL system TV sets. It contains luminance amplifier, chroma IF
amplifier, sub-carrier oscillator, PAL switching circuit, chroma demodulator, matrix circuit, and the other necessary additions.
It puts out R,G,B primary colors. This LSI restores 75 % of the DC level. And it is easy to adapt remote control system to
"BRIGHTNESS", "CONTRAST", and "COLOR SATURATION", as the control terminals are designed to high impedance.
FEATURES

PACKAGE DIMENSIONS

in millimeters

• This LSI has built-in function for PAL-SECAM dual system.
1) Two IC's construction by NEe's SECAM IC IlPC1364C2.
2) Only one l-H delay line is required for dual system.
3) Automatically switchable function for PALISECAM signals.
• The black level moved by the contrast control circuit.
•

Luster is provided even in a vacant channel by the 75 % DC restoration.

• This LSI can process both of the chrominance and luminance signals.
•

Due to DC control method for color, contrast, and brightness
control, the wiring is rather easy and the expansion to remote

38.0 MAX.

-t:~~::::1

1 2345 67891011121314

C'!

U
32
.

~!t25.g:,M
-I!-0.5±O.1

control receiver are also rather easy.

2.54!
~

~
o· -15'

• The contrast control can automatically adjust the levels of chroma
and contrast-luminance signal under. the relation that the normal picture is always kept.
• The output terminals of demodulated chroma signals and' all input circuits are protected by the surge protection diode.
IC BLOCK DIAGRAM

525

,uPC1384C
TV BLOCK DIAGRAM
Speaker

v.
Out

PIN CONNECTION (Top View)

Power Supply

28

G Output

Blanking Input

2

27

B Output

Capacitor
(Pedestal Clamp)

3

26

R Output

Brightness
Control

4

25

B-Y Demo Input

Luminance Input

5

24

R-Y Demo Input

6

23

Line Pulse Input

Contrast Control

7

22

Oscillator Input

Color Contro I

8

21

Oscillator Input

Chroma Output

9

20

Oscillator Output

Capacitor

10

19

Burst Gate Pulse Input

Chroma Input

11

18

A.P.C. Filter

A.C.C. Filter

12

17

A.P.C. Filter

Killer Filter

13

16

Burst Input
(A.P.C., Ident ,Killer)

GND

14

15

Burst Output

Capacitor
(Emitter Peaking)

(By -Pass)

526

,uPC1384C
pPC1384C Standard Using Conditions
Supply Voltage

12

V

100

Chrominance Input Signal

Luminance Input Signal

1

mvp_p
Vp_p

Gate Pulse Input Level

3

Vp

H_ Pulse Input Level

3

Vp

Blanking Pulse Input Level

3

Vp

Demodulator Chrominance Input Signal

0.2

V p _p

R,G,B Output Voltage (Black Levei)

2.0

V

Color Saturation Controlling Voltage

o to 12
o to 12
o to 12

V

(Burst Signal Level)

Contrast Controlling Voltage
Brightness Controlling Voltage

ABSOLUTE MAXIMUM RATINGS (Ta

Supply Voltage

Vee

Power Dissipation

Pd

Signal Input Voltage

ej

Pulse Input Voltage

ep

Operating Temperature
Storage Temperature

V
V

= +25 °c Unless otherwise)
15

V

750

mW

5

V p _p

±6

V

T opt

-20 to +70

T stg

-40 to +125

°c
°c

(Ta=+70°C)

527

tlPC1384C
ELECTRICAL CHARACTERISTICS (Ta = 25°C unless otherwise noted, Vcc = 12 V)
NO

CHARACTERISTIC

SYMBOL

TEST
CKT

MIN.

TYP.

MAX

UNIT

TEST CONDITION

1

Burst Output Voltage

eb

1

0.9

1.2

1.6

V p _p

Input 100 m V p _p
Rainbow color bar signal

2

ACC Range

ACC

1

0.6

0.8

1.0

times

Input 10 mv p _p
Burst Output/eb

3

Chroma Output Voltage 1

e c1

1

0.5

0.7

1.0

Vp-p

Input 100 mvp _p
Rainbow color bar signal
Saturation control MAX

4

Chroma Output Voltage 2

e c2

1

V _
pp

Input 100 mvp _p
Rainbow color bar signal
Satu ration control MID

5

Chroma Output Voltage 3

e c3

1

6

mvp _p

Input 100 mV p _p
Rainbow color bar signal
Saturation control MIN

6

Killer Sensitivity

ek

1

-34

-40

-46

dB

7

Killer Hysterisis

ekh

1

-

1

2

dB

0.2

o dB = Input

528

100 mvp _p
Rainbow color bar signal
Killer ON Input level
Killer ON-OFF Input level

8

Oscillator Controlling Sensitivity

(3

2

1.3

1.8

2.3

Hz/mV

Measure V p. Voltage at
Burst frequency fo ± 100 Hz

9

Phase Detector Sensitivity

J.L

2

20

40

60

mV/degree

Measure Vp Voltage at
Burst frequency fo ± 100 Hz

10

Phase error

~¢

2

-

1.5

3.0

degree/100 Hz

Burst frequency fo ± 100 Hz

11

APC Pull-in frequency Range

fp

2

±300

±500

-

Hz

Changing frequency of
Burst signal

12

APC Detector Output balance
Voltage

Vp

2

-100

0

+100

mV

No I nput signal at Pin 16

13

B-Y Output Voltage

e o1

1

1.5

2.0

2.5

Vp-p

Input 0.2 V p _p f = 4.44 MHz
10 kHz beat Output signal

14

Ratio of R-Y to B-Y

R/B

1

0.71

0.78

0.85

times

Input 0.2 V p _p f = 4.44 MHz
10 kHz beat Output signals

15

Ratio of G-Y to B-Y

GIB

1

0.30

0.34

0.38

times

Input 0.2 V p _p f = 4.44 MHz
10 kHz beat Output signals

16

Relative Output Phase B-Y to R-Y

LR

1

85

90

95

degree

Input 0.2 V p_p f

17

Relative Output Phase B-Y to G-Y

LG

1

228

236

244

degree

Input 0.2 V p-p

18

Maximum Color Difference
Output Voltage

e o2

1

4.5

5.5

-

Vp-p

19

Output Residual Carrier level

e car

1

-

-

100

mVp-p

20

Overall color
Difference Output Voltage
at B-Y signal

e o3

1

1.0

1.7

2.5

V _
pp

21

Overall color
Difference Output Variable
Range by Contrast

e oc

1

15

17

19

dB

Input 100 mvp~p
Rainbow color bar signal
Contrast control MAXIM IN

22

Luminance Gain

Av1

1

4.1

4.6

5.1

times

Input 1 V p _p
Color bar 100 % White signal
Contrast control MAX

= 4.44 MHz

Input 1.2 V p _p f = 4.44 MHz
10 kHz beat Output signal
at B-Y Output Pin
No I nput signal at Pin
24 and 25
Saturation control MID
Input 100 mVp _p
Rainbow color bar signal
Contrast control MAX

,uPC1384C

TEST
CKT

MIN.

TYP.

MAX

UNIT

~Av1

1

-

1.0

1.1

times

Luminance Gain Variable Range
by Contrast

e vc

1

15

17

19

dB

Input 1 Vp-p
Color bar 100 % White signal
Contrast control MAX/M I N

Differential Gain

D.G.

1

-

-

6

%

Input 1 V p _p
Stair step signal
RGB Output, Black level

NO

CHARACTERISTIC

23

Relative Ratio of Luminance Gain

24

25

SYMBOL

TEST CONDITION
Input 1 V p _p
Color bar 100 % White signal
Contrast control MAX

=2 V

Input 1 V p _p
Stair step signal
AP L = 10 to 90 %

26

DC Restoration

TDC

1

68

75

82

27

Luminance Amp Frequency
Characteristic

fv

1

4.0

5.5

-

MHz

Input 0.1 Vr.m.s.
Sine wave signal, -3 dB down
Pin 6 open

28

Brightness Controlling Sensitivity

BR

1

3.8

4.3

4.8

-

Quiescent Output Voltage =
2 to 5 V, (V26, V27, V28)
Sensitivity 3 V/~V4

29

Maximum R,G,B Output Voltage

EOM

1

7

-

-

V

Brightness Controlling
Voltage = 12 V

%

30

Quiescent Output Voltage

Eo

1

2.7

3.5

4.3

V

No Luminance Input signal
Brightness V4 = 9 V
Contrast MAX
VCO operating

31

Quiecent Output Voltage
Temperature Coefficient

EO-T

1

-2

0

+2

mV/oC

R,G,B Output
Ta = -20 to +70°C
V26 = 3.5 V at Ta = 25°C

32

Difference Output Voltage

RG
EG-B
EB-R
Ex -y

1

-300

0

+300

mV

V26 = 3.5 V
VCO operating

33

Difference Output Voltage
Temperature Coefficient

AEx_y/AT

1

-

0

60

mV

V26 = 3.5 V at Ta = 25°C
Ta = -20 to +70°C

34

Supply Current

ICC

3

32

43

54

mA

VCC

No Luminance Input signal
V26 = 2 V at Contrast MAX
Contrast control MAX/MIN

t

35

Changing Black level by Contrast

~Eoc

36

Minimum Gate Pulse Input Voltage

37

Blanking Pulse Input Voltage
Range

38

Minimum FF Trigger Input Voltage

1

= 12 V

-100

0

+100

mV

VG (min)

-

-

2

V

Pin 19

VB

1.8

-

5

V

Pin 2

VFF (min)

-

-

1.5

V

Pin 23

529

OJ

o'-'>

1::
""C

J,LPC1384C TEST CIRCUIT 1

o

....Ii

VCC=12 V

IhN-OFF~
k:
1
56

0.01 pF

ec

W
00
~

o

0

II

OFF

To Pin 9 ~-H---J\M~

NORMAL

0.01 pFl kQ

ON

B

~;-8 ~

1H
D.l.

o

l2

To

Pin 13

Pin 23

e

30

S--7

--,0----()
ev
01

G

AM

o

VCC=12 V

0

R

To

I
I

STOP

330Q::
330 pi: I

EXT

7Ir

1 kQ

I S-12
I
B I
I

4.7 pF

R

3.3 kQ

--fo---Oe 3
0

G

eb
0.01
()---11

t1l:
~H

~

pF

l---OOFF 120 Q
S-4 ----o-ANv-,

120 PF!

100

II
PFI~

I
I

PAL~

~,},-

-rl-J
1:J

16

o

24 25 26 27 28

)

PALISECAM

VCC=12 V

pPC1384C

5.6 kQ

7

VCC=12 V
68 kQ

/'

o

~

1.5 kQ I 10 kQ

~PAL/SECAM

::t.

o

8.8 MHz Trap

S-l1

l~

OFF
0.01 pF

'"

/'

1

PAL

u..

/'

/ ' '"

R~ecar

S-1O

14 13 12

S-1

A

/'" '"

B

7TT

ON

MAX.
S-5

u..

Input B

8

S-2

h

v

INVERT

MIN. 13.6 kQ

o

ON

NO~

Input A

VCC=12 V

VR-l

8

::t.

Generator

b

::t.

o

u..

Signal

I

I
I

1 ..

~ pF

nON

eoB

~II

Ol-----~

3 kQ
0

ON

-----Or-----------------------------~

I

J

S-3

MID

TP2 (0)

MIN

OFF
10 pF
0.01 pF

r

lONg
OFF 0 S-Power
147 pF
VCC=12 V

4 k Q 11.5 k Q11.5 k Q 15k Q

6

GND

tlPC1384C
pPC1384C Signal Generator (TEST CI RCU IT 1)

VCC=12 V

Luminance

Composite
Input Signal

V Output

~nal

LJ

1 Vp-p

GND

1

2

560 kQ

,-----+-........-1 22

3
4

.--~

20

5

t-:--:--~-------+-.....,

O.ll~F ~3.9 kQ
1/ ~TO.01 JiF

rJr

1 JiF

33 k Q ~

7

f--H-.

AA

T

It.

II

0.01 JiF

=t..

6

3.9 kQ

~

II

"I.

AAf

3.3 k Q1
JiF

k6 ]~

. 7fT 0.01

81--_---~---4-~~

~2.7 kQ

~

10

1
-'-

0.01 JiF

i:r-~~--~

111-~ 000

.. ~27 kQ

pF

7lr
S-14

6.~ kQ
'-~a~~~'w~.-+-~15

~~~

'-- 14

N

~~

4r---~An~,v.--+-~~~

220 pF

rI:

Burst Gate Output
r-------~

3ilr

12

,11

LID

:0

6.8

kQ

2.2 'kQ

7fr

b

n Pulse
~L-

Burst Gate Pulse Width ADJ.

7~-~-~,.~.-~~r~~r.-~~

---~-------~_9__________8~~

10 k Q 10 k Q

H. Output Pulse

I~
! I
WlJ

Burst Signal

~3.5JiS
I
I

~H.pulse
531

)lPC1384C
JlPC1384C TEST Circuit 2

VCC=12 V
0.022 J.lF

30 kQ
1 kQ

VCC=12 V

30 kQ

+
0.022 J.lF

()~--------~~----~

0.01 J.lF

eose

1----0-OFFO
19

25 24 23 22

27

18 17

16
100 pF

j1PC1384C

2
S-Power

3

4

ON f " \ - - - - - - t - - - t

VCC=12 V

7.5 kQ
VCC=12 V

~

S-16

GND

+f

fo 0

----c~-.

-f
Burst Signal

Signal

Generator

(See next page)

532

Pulse

j.lPC1384C
pPC1384C Signal Generator (TEST Circuit 2)
Pulse

2.2 kQ

6.8 kQ

j.lPD4049
2.2 kQ
2

345

6

8

7

330 pF

VCC=12 V

Gate Pulse

10 kQ
\
1 500 pF 1000 pF
S-16

10 k Q Width ADJ

Gate frequency

Burst Signal Width

ADJ

ADJ

~--4-~-------------+----~~-'

1-4
0.01 JlF
Burst Signal
27

26

25

24

23 22 21

20 19 18

17

16

j.lPC1384C
7

10

8

I.L.

:1.

2.2 JlF

~I

12 13

11

14

h
0

0

I.L.

:1.

0
.:r<::

56 kQ
VCC=12 V

533

p,PC1384C
J,LPC1384C TEST Circuit 3
Open
13 kQ

C
C

13 kQ

21

20

19

18 17

10

11 12 13

J.lPC1384C
7

8

r

10 kQ

1 pF
VCC=12V----~~-+----~~~--~----~----------------------~

C

75 kQ
C

VDC=4V----~--------~

534

C;O.OI J.lF

ttPC1384C
~

eb

ACC

e c1

e c2

e c3

ek, ekh

e o1

RIB

G/B

LR

S-1
Input

ON

OFF

ON

ON

ON

OFF

ON

ON

ON

ON

S-2
Lum

INV

INV

INV

INV

INV

INV

INV

INV

INV

INV

S-3
Lum

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

S-4
Chro.

ON

ON

ON

ON

ON

ON

OFF

OFF

OFF

OFF

S-5
Cont.

MAX

MAX

MAX

MAX

MAX

MAX

MAX

MAX

MAX

MAX

S-6
Satu.

MID

MID

MAX

MID

MIN

MID

MID

MID

MID

MID

S-7
VCO

NORM

NORM

NORM

NORM

NORM

NORM

NORM

NORM

NORM

NORM

S-8
FF.

ON

ON

ON

ON

ON

ON

OFF

OFF

OFF

OFF

S-9
Dem.

INT

INT

INT

INT

INT

INT

EXT

EXT

EXT

EXT

S-10
Syst.

PAL

PAL

PAL

PAL

PAL

PAL

PAL

PAL

PAL

PAL

S-11
Blk

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

S-12
Output

B

B

B

B

B

B

B

R

G

R

S-13
Output

e o3

e o3

e o3

e o3

e o3

e o3

e o3

e o3

e o3

e o3

S-14

OFF

OFF

OFF

OFF

OFF

OFF

ON

ON

ON

ON

D=SG

D= SG

D =SG

VR-1

Be trimmed V26 = 3.5 V by Brightness VR (VR-1)

VR-2

Input

A=SG

A

A

A

D=SG

B-C=ATT

f = 4.44 MHz

Rainbow

SG
Measure
Point

A =SG

A

B - C = ATT

eb

ec

eb

ec

ec

ec

e o B,e o 3

eoB

e o B,e o 3

Phase
Meter

Oscilloscope

I

ATT

I

e o B,e o 3

I

ATT

I

I

AC Volt meter

535

,uPC1384C
~

LG

e o2

e car

e o3

e oc

Avl, ..1Avl

e vc

DG

TDC

fv

5-1
Input

ON

ON

ON

ON

ON

ON

ON

ON

ON

OFF

5-2
Lum.

INV

INV

INV

INV

INV

INV

INV

INV

INV

NORM

5-3
Lum.

OFF

OFF

OFF

OFF

OFF

ON

ON

ON

ON

ON

5-4
Chro.

OFF

OFF

OFF

ON

ON

OFF

OFF

OFF

OFF

OFF

5-5
Cont

MAX

MAX

MAX

MAX

MAX, MIN

MAX

MAX, MIN

MAX

MAX

MAX

5-6
Satu.

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

5-7
VCO

NORM

NORM

NORM

NORM

NORM

STOP

STOP

STOP

STOP

STOP

5-8
FF.

OFF

OFF

OFF

ON

ON

OFF

OFF

OFF

OFF

OFF

5-9
Oem.

EXT

EXT

EXT

INT

INT

EXT

EXT

EXT

EXT

EXT

5-10
Syst.

PAL

PAL

PAL

PAL

PAL

PAL

PAL

PAL

PAL

PAL

5-11
Blk

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

5-12
Output

G

B

BRG

B

B

BRG

B

BRG

B

BRG

5-13
Output

e o3

e o3

e o3

e o3

e o3

ev

ev

ev

ev

ev

5-14

ON

ON

ON

OFF

OFF

OFF

OFF

OFF

OFF

ON

VR-1

Be trimmed V26 = 3.5 V by Brightness VR (VR-l)

Be trimmed V26 = 2 V by Brightness VR (VR-1)

V26 = 3.5 V

VR-2

Input
SG
Measure
Point

D=SG

f = 4.44 MHz

e o B,e o 3
Phase
Meter

536

D=SG

eoB

-

A

A

e car

Rainbow

e o3

A

A

Stair Step

Video SG 100 % White

e o3

Oscilloscope

ev

ev

A

A

C=SG
SG=CW

ev

ev

ev

Vector
scope

Oscilloscope

RF
Volt meter

JlPC1384C

~

BR

EoM

Eo, Eo-T

*E x-y
dEx_y/dT

dE oc

S-1
Input

ON

ON

ON

ON

ON

S-2
Lum.

INV

INV

INV

INV

INV

S-3
Lum.

OFF

OFF

OFF

OFF

OFF

S-4
Chro.

OFF

OFF

OFF

OFF

OFF

S-5
Cont.

MAX

MAX

MAX

MAX

MAX, MIN

S-6
Satu.

MID

MID

MID

MID

MID

S-7
VCO

NORM

NORM

NORM

NORM

NORM

S-8
FF

OFF

OFF

OFF

OFF

OFF

S-9
Dem.

EXT

EXT

EXT

EXT

EXT

S-10
Syst.

PAL

PAL

PAL

PAL

PAL

S-11
Blk

OFF

OFF

OFF

OFF

OFF

S-12
Output

BRG

BRG

BRG

RG

B

S-13
Output

eo 3

eo 3

eo 3

eo3

eo3

S-14

ON

ON

ON

ON

ON

VR-1

See TEST
Condition

TP=9 V

V26=
3.5 V

V 26 = 2 V

eo3

e o 3, eov

TP = VCC

VG (min)

VB

VFF

PAL

PAL

PAL

VR-2

Input
SG
Measure
Point

eo3

eo 3

eo3

DC Voltmeter

537

pPC1384C

-----S-15
fo ±f

(3

}J.

~cp

fp

Vp

ON

ON

ON

OFF ON
ON OFF

OFF

+f (300 Hz)
-f (300 Hz)

fo

eref, eose

eref

Vp

Phase Meter
f.Counter

f.Counter

DC Voltmeter

+f (100 Hz)
-f (100 Hz)

S-16
Burst

Measure
Point

Vp
eref
f.Counter
DC Voltmeter

538

Vp
eref, eose
Phase Meter
f.Counter
DC Voltmeter

tlPC1384C
J,LPC1384C Input and Output Signals

Luminance Input Signal

;!

2 Vp_ p

~

/

White level

R20
R 19
470 Q 1 kQ

Luminance Delay Line
Terminal

:I
I
I
I
I

5

RIO
777" 1.8 k Q

f

4.43 MHz Trap

R18
47 Q

C25
100 pF
Band Pass Filter

l-+---~I----------!-:-------O

1

0.01 JlF

m

11111111111111111111111111111

Output Signa I

mt

Terminal 11

100 mVp-p
(Burst Signal)

1

Whi~

----------,
I
I
I
I

I

3.5 Vp_ p at Luminance
Terminal 26, 27, 28

J
U

~

~--~-------

.",.

I
I
I

I

: _______ --1

R31
\
R33

Input

=1 Vp-p

Contrast MAX.

Black

--OV

Black level

=2

V

(Controled by the brightness control)

539

jlPC1384C
pPC1384C Input Pulse

Burst Gate Pulse
Burst signal = 100'" 200 mVp-p
at Terminal 11

:~-E-

----I.!JJIIIII

I

I

I
I

n

,

'---.--

------~..

--l l--

2-3 Vp

\
4.5 - 3

OV

Terminal 19

jJs

Line Pulse

n

----'

t

1-2 Vp

'--_-'-i 0 V

Terminal 23

Blanking Pulse
(Line Pulse and
Field Pulse)

t

2 - 5 Vp(Max. 5 Vp)

'--_....L'-O V

Terminal 2

I
I

I
In case of commonly
using of Input Pulse

I
I
I

I
I

I
I

Terminal 19

-----Jnl----4.7 kQ

Terminal 23

540

JlPC1384C
JlPC1384C
*Color, Contrast and Brightness controlling circuit
VRl

Brightness Control

VR102

Sub Brightness

VR2

Sub Contrast

VR3

Color Control

VR104

Sub Color

I
I

Terminal 7

I
I

8

Contrast Control

VR103

I

Vcc= 12 V

VR1
VR2 <:._--'lMr-----...-------{
VR3

I

I
IL __________ _

VR102
VR103
VR104

V7 (Contrast)

5.5 to 7.0 to 8.5 V

V8 (Color)

4.0 to 5.5 to 7.0 V

V2 (Brightness)

8.2 to 8.7 to 9.2 V
Terminal 4

*Color Killer Setting VR 105
* APC Setting
Method;

1; Connect Resistor (100 kQ) between the Terminal 13 and GND
as shown Fig. 1 (Killer OFF)

----:--0

2; Connect Capacitor
(0.01 JlF) between the

100 kQ

Terminal 16 and GND as
shown Fig. 2 (Burst Input OFF)

i

Terminal 13

Fig 1

r1

3; Trim 4.433618 MHz by

---111--...,....----10
om ,F
Term''''

using VR 107

16

Fig 2

* 1H Delay Line Circuit
Vcc= 12 V

VR101
1kQ
C1

0.01 J.lF

Terminal 24
...----------...----

@

R4
2 kQ

®
®

(R-Y)

L2

1 - -_ _ _ _ _' - -_ _ _Terminal

L1

25

(B-Y)

Chrominance 1H Delay Line

L 1 ; Pre Chrominance Delay Line Terminating Coil
L2, VR10l ; Delay Phase and Amplitude Adjustment
V R 106 ; Sub carrier Phase Adjustment
541

01

~
I\)

"f;:

The Block Diagram and External Components for Il PC1384C

."
(")
~

W

VCC=12 V

Burst Gate
Pulse

CO

.--.----.- +B

~

(")

R31-33 3.3 kQ
R34-36 270 Q
Composite Signal
Input
RI9

R20

D.L.

C7

4~

j

Pedestal
Clemp

L54.43 MHz
Trap

JL

Jl

C25

RI8
47 Q

I.

100~PF -~--I
I

C24
120 P

"

I
I

I ___:

L--...II

APC
VRI07
4.7 kQ
• CI8 0.02 .u F

Killer
VRI05
4.7 kQ
R4

2 kQ

Trl 2SA733

Phase

Cll 0.01 .uF
C10 0.01 .u F
C9 O.Ol.u F

C6
l0.uF

R13
68 kQ

R30

Line Pulse

Brightness
VRI 10 kQ

Color
VR3 10 kQ

Contrast
VR2 10 kQ

L6 8.2 .uH
R29 1.5 kQ
CI9 39 pF
C20 47 pF

tlPC1384C
Printed Circuit Board Pattern (Bottom View)

Burst Gate
Pulse
Line Pulse

VCC
Blanking Pulse
Ground
Composite Signal

.uPC1384C Table of the external components
Symbol
R1
R2
R3
R4
R5
R6
R7
R8
R9
RIO
Rll
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36

Value
100 Q
100 Q
390 Q
2 kQ
(56 kQ)
(3.9 kQ)
2.7 kQ
5.6 kQ
68 kQ
1.8 kQ
33 kQ
33 kQ
68 kQ
39 kQ
22 kQ
100 kQ
5.6 kQ
47 Q
470 Q
1 kQ
68 k'Q
470 kQ
4.7 kQ
27 kQ
27 kQ
1 kQ
0.2 kQ)
1 kQ
1.5 kQ
0.2 kQ)
3.3 kQ
3.3 kQ
3.3 kQ
270 Q
270 Q
270 Q

Symbol
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
CI8
C19
C20
C21
C22
C23
C24
C25
C26

Value
0.01 J.lF
0.01 J.lF
47 J.lF
0.01 J.lF
4.7 J.lF
10 J.lF
10 J.lF
10 pF
0.01 J.lF
0.01 J.lF
0.01 J.lF
0.01 J.lF
1 J.lF
0.47 J.lF
47 pF
100 pF
0.022 J.lF
0.022 J.lF
39 pF(Xtal CL = 16 pF),
68 pF(Xtal CL =20 pF)
47 pF
18 pF

Symbol
VR-1
VR-2
VR-3

Value
10 k Q Brightness
10k Q Contrast
10k Q Color Saturation

VR101
VR102
VR103
VR104
VR105
VR106
VR107

1 kQ D.L. Level
4.7 k Q Sub Brightness
47 k Q Sub Contrast
47 k Q Sub Color Saturation
4.7 kQ Killer Adj
1 kQ Phase Adj
4.7 kQ APC Adj

L1
L2
L3
L4
L5
L6

D.L. Matching Coil Type No TKRNS 24984NK (Toko Corp.)
D.L. Matching Coil Type No TKRNS 24985VN (Toko Corp.)
Band Pass Filter Type No 163NEFl148WWJ (Toko Corp.)
33 J.lH
4.43 MHz Trap Type No LCS2HIH·102 (TDK Corp.)
8.2 J.lH

Trl
Xtal
L·D.L.
1 H D.L.

2SA733
4.43 MHz
Luminance
1 H Delay

(NEC)
CL = 16 pF or 20 pF
Delay Line Type No CTS·1804C (Showa Densei Corp.)
Type No EFD EN (Matsushita Corp.)
Line

120 pF
100 pF
4.7 J.lF

543

,uPC1384C
1 H Delay Line Matching Coil Specification.

L 1 Input Coil
(PAL)

0)

Type No.

TKRNS - 24984NK

Product

TOKO Corp.

to

4.43 MHz

o

6 -4

18 T

Cout

330 pF (4 -6)

G)

Qu

59 ± 20 %

Wire Material ; 0.1 1 U EW

L2 Output Coil
Type No.

TKRNS - 24985VN

Product

TOKOCorp.

to

4.43 MHz

4-2

18 T

2 -6

18 T

Cout

75 pF (4 -6)

Qu

44 ± 20 %

Wire Material; 0.1 12UEW

Chrominance Input Coil Specification.
L3 Input Coil
(PAL)
Type No.

163NEF - 1148WWJ

Product

TOKO Corp.

to

4.43 MHz

6-4

35 1/4 T

3 -1

76T

Cout

PH 47 pF

Wire Material; 0:1

544

1 UEW

BIPOLAR ANALOG INTEGRATED CIRCUIT

,uPC1397C
ANALOG INTERFACE CIRCUIT FOR TELETEXT SYSTEM

The JlPC1397C is a monolithic integrated circuit for the interface stage between the external analog signals and chroma
stage. This IC is packaged in 22 pins dual in package. This is most suitable interface IC for view data and CRT display application because of clamping circuit built in R, G and B circuit separately and excellent switching characteristics of video/data
switch-circuit. Contrast function can control both of video signal and data signal, and brightness function also can do it. White
peak level can set by external voltage applied to pin 15.

PACKAGE DIMENSIONS (Unit: mm)

FEATURES
•

External analog inputs are acceptable as well as digital.

•

High data switching speed.

•

R,G,B

Blanking

The rise time

35

35

ns

The fall time

35

35

ns

The delay time

20

20

ns

Contrast and Brightness can be controlled commonly on
TV and external signals.

•

Can be connected directly to R,G,B, output TV-signals

1:::~~3
1.2~

~W
~LI~I~~
~r
'
~~
10.16

of any IC's.

2.54

-ll-

0.5±0.1

~--tr

0.25+0.10
-0.06

0-15'

BLOCK DIAGRAM
VCC=12 V

22 PINS

1 k 5.1 k
EXTERNAL
INPUTS

~~"-VCC

75

Q

WHITE
PEAK
LEVEL

x3
PULSE

545

,uPC1397C
PIN CONNECTION DIAGRAM (22 Pin Dual In Line Package)

Capacitor
(Clamp)

GND

R.Data Input

R.Output

R.Video Input

Capacitor
(Clamp)

G.Data Input

G.Output

G.Video Input

Capacitor
(Clamp)

B.Data Input

B.Output

B.Video Input

Power Supply

Capacitor

White Peak level

FAST BlK Input

Brightness Cont.

Feed Back Output

SAND CASTLE PULSE

Contrast Cont.

Gate Pulse

1 TV SET Block Diagram
Sound

~

luminance
Chrominance
Processor

Remote Cont. TX
Channel
Select
Control

!

TElE TEXT
Decoder

·1

Adapt

2 CRT DISPlA V SET Block Diagram
Inputs Signals Connector
R.G.B. Inputs
{
(Analog ,Digital)
Sync Inputs. ___ {
(Line,Frame)

546

pPC1397C
ABSOLUTE MAXIMUM RATINGS (T a =+25 °c
Supply Voltage

Vcc

Power Dissipation

Pd

RGB (VIDEO) Input

ERGB

unless otherwise)

Ta=+70°C

15

V

850

mW

o to Vcc
o to VCC

Voc

Escp

-6 to VCC

Voc

EGP

-6 to VCC

Voc·

RGB (DATA) Input

EOATA

SAND CASTLE Pulse
Gate Pulse

o to VCC
o to Vcc

Voc

Fast BlK Pulse

EF.BLK

Control Voltage

E cont

Operating Temperature

T opt

-20 to +70

°c

Storage Temperature

T stg

-40 to +125

°c

Voc
Voc

RECOMMENDED OPERATING CONDITIONS
CHARACTERISTIC

UNIT

SYMBOL

V

Supply Voltage

VCC

12 ± 10 %

RGB (VIDEO) Input Voltage

ein B - W

3

Vp-p

Black level of RGB (VIDEO) Input Voltage

EinBK

2.7 (at feed back)

VOC

RGB (OAT A) Input Voltage

ein RGB

1 Vp-p ± 3dB
75 ohm terminated

Black level of RGB (DATA) Input Voltage

Ein BK

0-2

VOC

Return level of RGB (DATA) (Line, Frame)

Ein BK (R)

Less than ein RGB X Max. 1 %

VOC

Fast BLK Input, H. Level
L. Level

VF.BLK (H)
VF.BLK (L)

1- 3
0

VOC
VOC

Gate Input Pulse Voltage

VG

3

SAND CASTLE Pulse
BLK Level
Gate Level

VSCP

Brightness Control Voltage
White Peak Supression Setting Voltage

2-6

Vp

more than 8

VOC
VOC

Vc BR

1-2-4

VOC

VWPS

4-9

VOC

547

,uPC1397C
ELECTRICAL CHARACTERISTICS (Ta =25°C unless otherwise noted, Vcc =12 V)
NO

1

Supply Current

2

RGB (VIDEO) Gain

3

Relative Ratio Gv ( i )

4

RGB (DATA) Gain

SYMBOL

TEST
MIN. TYP. MAX. UNIT
CKT
43

ICC

Gv(i)

AGvx-y

GeG)

mA

TEST CONDITIONS
VCC = 12 V
No Input; RGB (VIDEO), RGB (DATA)
Clamp Gate Pulse

0.9

1.17

1.5

times

RGB (VIDEO) Input; B'" W=3 Vp-p
Bk. Level = 2 VDC
Set; Bk. Out Level = 2 VDC
Contrast = Max, WPS Level = V CC

0.85

1.0

1.15

times

Same as No.2

2.9

3.5

4.1

times

1.3

1.5

1.7

times

RGB (DATA) Input; Contrast = Max.
B - W = 1 Vp-p
Set; Bk. Out Level = Contrast = Typ.
2VDC

5

Relative Ratio Ge ( i )

AGex-y

0.85

1.0

1.15

times

Same as No.4

6

Relative Ratio GelGv

GelGv

2.7

3.0

3.3

times

Same as No.2, 4

7

RGB (VIDEO), RGB (DATA)
Frequency Characteristic

f~(i)

6.0

-

-

MHz

RGB (VIDEO), RGB (DATA) Input;
0.5 Vp-p. 0 dB frq. = 100 kHz
-3 dB, Contrast = Max.

8

RGB Quiescent Output Voltage

3.2

3.5

3.8

VDC

RGB (VIDEO) Input; B - W = 0 Vp-p
Bk. Level = 2.7 VDC
BRT Cont = 3.5 VDC

9

Eo G)suPPI Y Voltage
B Coefficient

AEO-v(i)

-

0.3

-

V/V

V cc = 12 V ± 20 %
EoB = 3.5 VDC (at VCC = 12 V)

(~)Temperature
B Coefficient

AEo-T ( i )

-2

0

+2

mV/oC

Ta=-20-+70°C
EoB = 3.5 VDC (at Ta = +25 °C)

Eo ( i )

10

Eo

11

Difference Output Voltage

AEox-y

-100

0

100

mVDC

RGB (VIDEO) Input; B - W = 0 Vp-p
Bk. Level = 2.7 VDC,
BRT Cant = 3.5 VDC

12

Eox-y Temperature Coefficient

Eox-y
(T)

-

0

60

mVDC

Ta=-20 - +70 °c
Maximum Changing Level

13

Maximum Output Voltage

14

Changing Bk. Level
RGB (VIDEO)/RGB (DATA)

EoM

DC Restored (VIDEO), (DATA)

TDC

16

Brightness Control Sensitivity

BR

Contrast Cont. Range

8.5

-

VBK

15

17

548

CHARACTERISTIC

(~)

Rcont.

-

-

-

60

V

RGB (VIDEO) Input; B - W = 3 Vp-p,
Bk. Level = 2.7 VDC,
White Clip Level, Cant. = Max.
BRT = 2 - 6 VDC, WPS Level = VCC

mVDC

RGB (VIDEO) Input; B - W = 3 Vp-p,
Bk. Level = 2.7 VDC, RGB (DATA)
Input; B - W = 1 Vp-p,
Set; Bk. Out Level = 2 VDC
RGB (VIDEO) Input; B .... W = 3 Vp-p
Bk. Level = 2.7 VDC, APL = 10 - 90 %
No Blanking,
Set; Bk. Out Level = 2 VDC

90

95

100

%

0.9

1.0

1.1

V/V

15

17

19

dB

BRT Cant. Voltage
Changing Bk. Level

= 1.5'" 2.5 VDC

RGB (VIDEO) Input; B - W = 3 Vp-p
Bk. Level = 2.7 VDC, RGB (DATA):
B ,., W = 1 Vp-p, Cant. = Max./Min.
Set; Bk. Out Level = 2 V DC

pPC1397C

TEST
MIN. TYP. MAX.
CKT

NO

CHARACTERISTIC

18

Maximum Changing Black
level by Contrast

19

White Suppression Output
Voltage

WS(i)

6.5

20

Gate Pulse Minimum Input
Voltage

VGPM

SAND CASTLE
BlK
Pulse Input
Threshold
level

21

22

GATE

SYMBOL

UNIT

+50 mVDC

RGB (VIDEO) Input; B"" W = 0 Vp-p
Bk. level = 2.7 VDC,
Set; Bk. ~vel = 2 VDC
Contrast = Max. ,.., Min.

7.0

7.5

VDC

RGB (VIDEO) Input; B"" W
Bk. level = 2.7 VDC,
Set; WS level = 7 VDC
BRT Cant. = 2,.., 6 VDC

-

-

1

Vp

Vsc th
(BlK)

1.0

1.5

2.0

V

Vsc th
(GATE)

6.5

7.0

7.5

V

Eoc

-50

0

Fast BlK Pulse Input
Threshold level

Vth
(F.BlK)

0.5

0.7

0.9

V

Fast BlK SW Time Rise, Fall

tr, f sw

-

35

60

ns

Relative Rise, Fall Time

~tr,

-

0

20

ns

23

24

25

TEST CONDITIONS

f sw

= 3 Vp-p

I nput level RGB Output
RGB (VIDEO)
less than Vth
(F.BlK)
More than Vth
RGB (DATA)
(F.BlK)
RGB (VIDEO) Input; W = 3 Vp-p,
Bk. level = 2.7 VDC, RGB (DATA)
No I nput, Cant. = Max.
Set Bk. Out level = 2 VDC

=

Fast BlK SW Time Delay

td sw

-

20

ns

Same as No. 23

Relative Delay Time

~td

-

-

20

ns

load Condition; 3.3 kn/10 pF at Fall Time Only

RGB (DATA) SW Time Rise,
Fall

f(~)
~tr, f ( i )

-

35

60

ns

RGB (VIDEO) Input; B ,.., W = 0 Vp-p
Bk. level = 2.7 VDC, RGB (DATA)

-

-

20

ns

Input; B ,.., W = 1 Vp-p, Cant.
Set Bk. Out level = 2 VDC

-

20

ns

Same as No. 25

-

-

ns

load Condition; 3.3 knl10 pF at Fall Time only

Relative Rise, Fall Time
RGB (DATA) SW Time
Delay

sw

tr,

td(i)

= Max.

26
Relative Delay Time

~td(i)

20

549

JlPC1397C
~PC1397C

INPUT SIGNAL LEVEL

• R, G, B VIDEO Input Voltage
R.Video
Input----t

White Level

1

G.Video
Input----t

-1
3

Pedestal

1

I
'tLevel
I I I
I I 'I

1

I

VJr-p

B.Video
Input

----I

2.7 VOC

I

~I~I-rlI~--------~~~I -t
II II
I I I,

,
1 1

I I II

•

I I

I I I I

I I

,

j

'I
R, G, B DATA Input Voltage
I

75 ohm terminated

I
I
I
I

0.01 jlFx3

I
1
,
I,

G.Oata Input

I
I
I
I

B.Oata Input
Input
1 VJr-p Level

t
I

±3dB

0-2 VOC

GNO-~--+-..;---~::---~-.........L..-+-+- -1
I,

I,

• FAST BlK Input
75 ohm terminated

I I'

UJ

I!
GNO

I

r-----.

I
I
I

: in!

• Gate Pulse

GNO

~: i! y~~~
Iii
I

1

}

voc

L.Level

I

Threshold 0.7 VOC

0 VOC

d---------- 1- ~~
!
I

I

I

~

1

I
,
• SAND CASTLE Pulse,

I I
I I

I

I

I'

,

,II ~

I

I I

I

I

Threshold 0.6 VOC

I

I'

I I

10 V
Clamp Level

1-- L------------i--1 ~--Threshold7 VOC
1
I

I 'I

!~:I
,I

:I

I

I

Burst Gate..f""""

~

I

II,
, > Blanking Level

II

3V

Line Blanking-- - - - - - - - - - - - - - - - - ~Threshold 1.5 VOC
GNO--==·-~__~==============~

550

__

~=---==

Frame Blanking

APPLICATION

NTSC System
Japan. CAPTAIN.
USA TE LETEXT

PAL - SECAM System
W.G. Video Text, Bildshirmzeitung
FRANCE, Antiope

PAL System
U.K. TELETEXT, Prestel

NTSC

PAL

JlPCPS2C

JlPC136SC

Interface IC
JLPC1397C

SECAM
JlPC1364C2

Red
From Red
Out

-------.-1

Green
Out

Blue
Out

RGB
Matrix

r----r:m---

~

Green
Out

Out
~BIU'

RGB

~Green

Matrix

Out

~I TBIU'
Out

From Green
Out

From Blue
Out

UV~
Y

To BRT

B-Y(PAL)
R-Y(PAL)

1:::
."

o
w
~

CD

......

U1
U1

o

BIPOLAR ANALOG INTEGRATED CIRCUIT

,uPC1031H2
VERTICAL DEFLECTION DEVICE FOR MONOCHROME TV
AND SMALL-SIZED COLOR TV

DESCRIPTION

The J,LPC1031 H2 is a semiconductor integrated circuit for use in vertical-deflection circuit of monochrome TV and
small sized color TV.
It oscillates Vertical signal synchronizing with Vertical synchronization signal, and puts out the Vertical Deflection
current with the single chip.
And as it has some compensating circuits against the effect of temperature in it, it shows excellent characteristics.
It uses a Single In-line Package easily mountable on heatsink.
PACKAGE DIMENSIONS

FEATURES

•

Less number of required, external components.

•

Wide range of operational voltage (9 to 18 volts).

•

Freely adjustable pull-in range (by the resistor be put

in millimeters (inches)
4

26MAX. (1. 024)
25(0.984)
12 (0.472)

2-¢3.5
(¢O.l38)

2-R3.5
(R0.138)

§

between terminal 5 and the ground, and presenting

('1')_

-t---tt--t8

time constant of integrating circuit).

('I')

~

~~~~~~~ ~~~4~

•

Adjustable blanking pUlse-width.

•

Large output current-capacity (2 Ap _p ).

d

Built-in adjusting circuit for fly back time.

•

Easy mounting on printed circuit boad.

It)

x

-cc
~ M
00

•

en

8

~

W

a;
-

!

1.4
(0.055)
0.45
(0.02)

BLOCK DIAGRAM
Pulse
Clamp

r--

10 PIN SIP

c
- - - , . - - - - - - - - - - - - -

I
I

I

I

Deflection
Yoke
2-7Q
SYNCH
and
OSC

I

I
I

Vertical
Synchronization
Pulse
1.3V p _ p
Vee

'--N--+--lt'-t-~

-e---l--

,,~
IV p_ p

552

IV p_ p

I

I
I

J

lOV p _ p

,uPC1031H2
ABSOLUTE MAXIMUM RATINGS (Ta=2SoC)
Power Supply Voltage

Vee

Output Current

Ip _p

Power Dissipation

Pd1

Power Dissipation

Pd2

20

V

2

A _
p p

1.5 (Ta=+75°C)

W

Without heatsink
2.15 (Ta=+75°C)
With aluminum heatsink

W

(31.6 x 31.6 x 1 mm t)
Operating Temperature Range

Topt

- 20 to +75

°c

Storage Temperature Range

Tstg

- 40 to +150

°c

ELECTRICAL CHARACTERISTICS (Vec=12V, Ta=+2S±3°C)
SYMBOL

MIN.

TYP.

MAX.

UNIT

TEST
CKT.

Circuit Current

Icc

15

30

46

mA

1

No input signal and no load condition

Output Terminal Voltage

VN

5.6

6.0

6.4

V

1

No input signal and no load condition

Vertical Oscillation Frequency

flv

Hz

1

Synchronization signal voltage applied
at terminal 5 is 1.3 Vp_p

HZ

1

Oscillation capacitor; 1 SlF (Tantalum)
resistor; 38.1 k ohms

HZ

1

CHARACTERISTIC

Free-running Frequency

Pull-in Range

50/60

fva

53

60

fp

-10

-12

67

TEST CONDITIONS

With specified integration circuit, applied
voltage of synchronization signal is 1.3 V Pop
at terminal 5

Drift of Free-running
Frequency vs. Power
Supply Voltage
Deviation of Pull-in Range vs.
Power Supply Voltage
Output Saturation Voltage
Output pulse width of terminal 4

Llfva

±1.0

Hz

1

Frequency drift from standard frequency
(tvo 60 Hz at VCC=12 V) vs. power
supply voltage (Vec= 12 ±2 V)

Llfp

+3.0

Hz

1

Deviation from the frequency range for pull in
(at V CC = 12 V) vs. power supply voltage
(VCC= 12 ±2 V)

1.3

1.6

V

1

Output current: 0.7 A

420

600

SlS

1

Oscillation capacitor; 1 SlF (Tantalum)
resistor; 38.1 k ohms

Vsat
To

300

FUNCTION

553

j.lPC1031H2
TEST CIRCUIT

D.C.Current Meter.

Vee

0--0-----

To Oscilloscope

D.Y.
R\' :2.712

L :S.3mH

To Oscilloscope
and Digital

2"B:V~' M., ,

Integrating circuit
20k

To Frequency Counter

----+----o,..~

Adjusting Variable Resistor
for Vertical
Synchronization Level.

To Frequency counter.

3."
Trl 2SA733
Tr2 2SC94S

\

L'/
~n ~~:rtical Synchronization

1.3?~nal

SWITCH POSITION
CHARACTE R ISTIC
Circuit current

SWITCH POSITION
SYMBOL
lee

SW1

SW2

SW3

SW4

'SWS

1

2

2

OFF

OFF

Output terminal voltage

VN

1

2

2

OFF

OFF

Vertical oscillation frequency

fv

3

1

1

ON

ON

fvo

3

1

2

OFF

ON

Free-running oscillation frequency

Pull-in range

Drift of free-running frequency
vs. power supply voltage
Deviation of frequency range for
pull in vs. power supply voltage
Output saturation voltage

MEASUREMENT METHOD

Measure the voltage at terminal 1, by using
a digital voltmeter.
Apply the synchronization signal of 1.3 Vp.p to
terminal 5.

-

3

1

1

",OFF
ON

ON

Adjust the pull in frequency, by using VR-1, after
SW4 has been turned to the OFF position, and
then confirm that the perfect synchronization is
obtained when SW4 has been turned to the ON
position.

Llfvo

3

1

2

OFF

ON

Vary the power supply voltage in the range of
Vee = 12 ±2 V.

Llfp

3

1

1

",OFF
ON

ON

Vary the power supply voltage in the range of
Vee = 12 ±2 V.

3

3

1

ON

ON

Adjust VR-2 so that the terminal voltage across the
resistor of 0.5 ohms may be 0.7 Vp-p, and then
measure the waveform at the output terminal.

fp

V sat

N

Ground

IVsat

Output pulse width of terminal 4

To

3

2

2

OFF

ON

Measure the output pulse width at terminal 4, by
using an oscilloscope.

~

554

,uPC1 031 H2
TYPICAL CHARACTERISTICS (Ta =2SoC)
POWER DISSIPATION VS.
AMBIENT TEMPERATURE
10
~

b

Aluminume heatsink
Using silicone gresse
Units;mm

8

.2

"'"

~

a.

'iii

6

III

0

'"

~co

4

~

2

a..

FREE-RUNNING OSCILLATION FREQUENCY
VI. AMBIENT TEMPERATURE

..........

"i"-

r-....,100X 100 X

""""

""

_31.6X31.6Xl

I---Frei'Air--

a..

50

25

r'\.
'X"finite heats ink

. . . r-....

1---"""""t-",

75

"'

............

100

""'-,
~"
----.

150

125

Ta-Ambient Temperature-'C
Ta - Ambient Temperature -

OUTPUT TERMINAL VOLTAGE
AMBI ENT TEMPERATURE

FREE-RUNNING OSCILLATION FREQUENCY

vs. POWER SUPPLY VOLTAGE

VS.

H~~~

Vee

I

I

~PCI03IH2

~

'T~

> 6.2
~
'E

I I

00l7J

'0

volll,I-+--+-t--+-i

Output termlnll

-

TMter~mi-n~~.-u-ni~~i-cI~t~~+-~-4--+-~-1
her. Ire open circuit.

6.11--r---.,--.-~----":r::-'=:";""'::::"::;':"":::~:::""'--+--+-+--+-t-~

~ 6'0I---F====1=*,,-+-+--+-I-4-~_..t---!=-~,.J--~--1

~

62

I

.:: 60

~~ 58

-' rV

6

2.7k

2

100"
I

.PCIOlIHZ

!r

0.047"

To froquency

4

caunlor

B

~ foo-

4.7k :....-,...;;;; ....

/

".I.

If

o

l TN ......... ____1M .....

'--

. . . . . . . CIfC...

z,s... ~ ...... , .....

,HtSt. HO\.D.

T_I'.. '.".....-.:'I •• OHI.

~ 5.91--+--1--+--+-+--+-t--+--1--+--+-+--+-t-~

:3I
-.:

'c

at Vee

-'--

In

5.81--+--1--+--+-+--+-t--+-1--+--+-+--+-t-~

10

-20

20

60

40

80

14

12

16

18

20

Vee-Power. Supply Voltall-V

la-Ambient lemperature-'C

OUTPUT TERMINAL VOLTAGE
POWER SUPPL Y VOLTAGE

VERTICAL PULL IN FREQUENCY
POWER SUPPLY VOLTAGE

VS.

VS.

f-

S;I~" ,. ~3lil -1••or!'nalJ
V.rlltld supply 'fIoItlll .t
termiNll2.

:£:'-10

;V
'3 -30
CL

~

-

I--1 - -

~

V

9

~~~ ./ t V:

I

~
u

'"

.c
>-

i>:

1·.2Ap.p

0.8

0.6

4k

10k
open
12k
6k
14k
8k
Resistance value between terminal 2 and terminal 9 - Q
0.6r--+------+-----~----~~----+_------

10

12
14
16
18
Clamping voltage at terminal 10-V

557

,uPC1031H2
EXAMPLE OF PERIPHERAL CIRCUIT FOR THE J,LPC1031H2

JL

Rl
---'I.Nv-...-J\I~-a-:--+--{

Composite
synchronization
signal

+

C1
22,.,/IOV
(Tantalum)

Typical Example of Components Layout with the J,LPC1031H2 on P.C. Board
P.C. Board Pattern and Components Layout.

COMPONENTS
SYMBOL
R1
R2
R3
R4
Rs
RS
R,
C1
C2
C3
C4

558

SPECI F ICATION

SYMBOL

SPECI F ICATION

Cs

C10
C11
C12

10pF
22pF
22pF
2200pF
47pF
47pF
0.047 pF
100pF

VR1
VR2
VR3

SOkO-B
20kO-B
2kO-B

Cs
20kO
1/4W
2.7kn
1/4W
S.6kn
1/4W
82n
1/4W
O.S to 30,1 to 2W

10pF
1 pF

10V
25 V (Tantalum)

C,
Ca

Cg

10V
10V (Tantalum)
10 V (Tantalum)
16V
10V
10V
2SV

tlPC1031H2
EXAMPLE OF PERIPHERAL CIRCUIT FOR THE J,LPC1031H2
VCC (9-18V)

..:I:
CI~

II

~
CI>
oX

~>---&oL--4 ,~

c:
o
u

CI>
CI>

o

Composite
synchronization
signal

Typical Example of Components Layout with the J,LPC1031H2 on P.C. Board
P.C. Board Pattern and Components Layout

tLPCI031H2

o

I

I

'.Icc ,,-:-*C6.'

f

"

C 12

GNO

',t.

LIN.

o
COMPONENTS
SYMBOL
R,
R2
R3
R4
R5
R6
R7
C,
C2
C3
C4

SPECIFICATION

20kn.
2.7 kn
5.6kn
39!2
0.5 to 3!2,

10J,.LF
1 J,.LF

1/4W
1/4W
1/4W
1/4W
1 to 2W

10V
25 V (Tantalum)

SYMBOL

SPECIFICATION

C5
C6
C7
Cs

C"
C'2

10J,.LF
lOJ,.LF
2200J,.LF
47 J,.LF
47 J,.LF
220J,.LF
0.047 J,.LF
100J,.LF

VR,
VR2
VR3

50k!2-B
20 kn-B
1 k!2-B

Cg
ClO

10V
10 V (Tantalum)
16V
10V
10V
10V
25V

559

BIPOLAR ANALOG INTEGRATED CIRCUIT

ttPC1377C
SYNCHRONIZATION SIGNAL PROCESSOR OF COLOR TV

DESCRIPTION
The pPC1377C is a silicon monolithic integrated circuit designed for horizontal deflection circuit and vertical deflection
circuit of color TV set.
It consists two synchronization signal separators, vertical oscillator, vertical saw tooth shaper, vertical pre-drive, vertical
retrace blanking pulse generator, horizontal AFC, horizontal oscillator, horizontal pre-driver and abnormal high voltage prevention circuit, in it.
The horizontal part can take the operation current from high +B line as it has a shunt type regulator in it.
The synchronization signal separators are provided for horizontal signal and vertical one independently, so it works
very stable even in the ghost phenomenon, weak electrical field and etc.

FEATURES
•

Provided two synchronous signal separators realizes very stable synchronization, as they are provided each of horizontal
signal and vertical one independently.

•

Remarkably improved interlace tracking brought by the completely separated wiring in horizontal part and vertical one.

•

Vertical retrace blanking time can be set freely and strictly by the adjust terminal.

•

Very low drift of oscillation frequency of vertical oscillator and horizontal one against ambient temperature.

BLOCK DIAGRAM

560

,uPC1377C
(Unit: mm)

PACKAGE DIMENSIONS

27 MAX.

{:;;;:::::i
1.2-++-

.------------.---r! ~

jJ~.
l:;~
tI
=r~

~

-U-

2.54

0.5±0.1

I.!'l

d

CONNECTION DIAGRAM

~ --JJ:.
('Y')

10.16

0-15"

0.25+ 01 0

-Q~

(Top View)

Input of Horizontal Synchronization Signal Separator

22

Input of Vertical Synchronization Signal Separator

Output of Synchronization Signal Separator

2

21

VCC of Vertical Part

Input of AFC Detector

3

20

Output of Vertical Synchronization Signal Separator

Output of AFC Detector

4

19

Input of Vertical Synchronization Signal

Input of Horizontal Oscillation

5

18

Vertical Oscillation (Charge)

Input of X·ray Protector

6

17

Vertical Oscillation (Discharge)

Reference of X·ray Protector

7

16

Ground of Vertical Part

Integration Circuit of X·ray Protector

8

15

Vertical Feedback

Ground of Horizontal Part

9

14

Output of Vertical Amplifier

Output of, Horizontal Pulse

10

13

Vertical Blanking Pulsewide Adjust

VCC of Horizontal Part

11

12

Output of Vertical Blanking Pulse

561

ILPC1377C
Mark (+) of current expresses that the current is flowing into the
terminal.
ABSOLUTE MAXIMUM RATINGS (Ta=25 ± 3°C)

Mark (-) of current expresses that the current is flowing

out from the terminal.

Power Supply Voltage for Vertical Part

V21

15

V

Power Supply Current Drain for Horizontal Part

V11

30

rnA

Vertical Output Current

rnA

114

-30 to +0

Horizontal Output Current

110

-10 to +10

Power Dissipation

Po

600

Operating Temperature

T opt

Storage Temperature

Tstg

rnA
(Ta=75°C)

mW

-20 to +75

°c

-40 to +125

°c

RECOMMENDED CONDITIONS (T a=25 °C)
Power Supply Voltage for Vertical Part

12

V

Power Supply Current Drain for Horizontal Part

15

rnA

ELECTRICAL CHARACTERISTICS (Ta=25 °C)
CHARACTERISTICS

562

(V21 = 12 V, 111 = 15 rnA, Standard Circuit)

SYMBOL

MIN.

TYP.

MAX.

UNIT

Power Supply Current for Vertical Part

121

10.5

14

17.5

mA

Power Supply Voltage for Horizontal Part

V11

12.0

13.0

14.5

V

111=15mA

Vertical Free-running Frequency

fvo

48

50

53

Hz

C18=1 J'F, R17=33 kn

Drift of Vertical Free-running Frequency

Ltfvo(VCC)

0

0.8

1.0

Hz

Ltfvo (VCC)=lfvo (9.6 V)-f vo (14.4 V)I

Drift of Vertical Free-running Frequency

Ltfvo(Ta)

0

0.6

1.0

Hz

Lt fvo(Ta)=lfvo(-20 °C)-f vo (+75 °C)/

Vertical Synchronizing Capture Frequency

fpv

46

48

50

Hz

Output Middle Voltage

VMID

12

13

14

V

Drift of Output Middle Voltage

LtVMID(Ta)

1.0

V

LtVMID(Ta)=IVMID(-20 °C)-VMID(+75 °C)I

Retrace Pulse Width (1)

RPW(1)

0.95

1.0

1.05

ms

C13=0.047 J'F, R13=30.75 kn

Retrace Pulse Width (2)

RPW(2)

1.9

2.0

2.1

ms

C13=0.1 J'F, R13=28.5 kn

Retrace Pulse Voltage

RPV

10

11

Drift of Horizontal Power Supply. Voltage

LtV11 (Ta)

Horizontal Synchronizing Capture Frequency

fPH

Efficiency of Horizontal Oscillation Control

0

CONDITIONS
V21=12 V

Output Power: J'PC1378H

Vp-p
130

mV

LtV11 (Ta)=ILtV11 (-20 °C)-..:1V11 (+75 °C)I
C5=5 600 pF

±500

±700

±900

Hz

(J

38

40

45

HzlJ'A

Gain of AFC Detector

J'

190

300

420

J'A/rad

Horizontal Free-run.ning Frequency

fHO

15.00

15.75

16.50

kHz

Drift of Horizontal Free-running Frequency

LtfHOU11 )

0

50

Hz

LtfHO(J11 )=lfHO(15 mA)-fHo(9 mA)1

Drift of Horizontal Free-running Frequency

LtfHO(Ta)

0

40

100

Hz

LtfHO(Ta)=lfHO(-20 °C)-fHO(+75 °C)/

Horizontal Output Pulse Width

PWH

24.5

26

27.5

Horizontal Output Pulse Voltage

PWV

10

11

Horizontal Output Current

110

-3.5

-4.5

Input Voltage of X-ray Protector

V6

-0.1

C5=5 600 pF, R5=14.5 kn

J's
V p _p

-6.0

mA

0.1

V

V7 = 6.2 V

,uPC1377C
TYPICAL CHARACTERISTICS (Ta

= 25°C)

1. Vertical part
DRIFT OF VERTICAL OSCILLATION
AGAINST AMBIENl; TEMPERATURE

DRIFT OF VERTICAL OSCILLATION
AGAINST POWER SUPPLY VOLTAGE
(Hz)

(Hz)

/

Ta=25 'C

I\.

g

"

~
c:
0

:;:::;

~

g
~ +1

~

+1

c:

""""

"

--

0

:;:::;

!'..

.......

0

·u

External Parts is
25 'C Constant
VCC=12 V

+2

+2

~

~ .............. I

·u

...............



'0 -1

~

~

-2
-20 -10

0

-2
7

6

8

10

9

11

12

14

13

10

20

30

40

50

60

70

('C)

Ambient Temperature Ta---~

(V)

Power Supply Voltage V 2 1 -

2. Horizontal part
DRIFT OF HORIZONTAL OSCILLATION
AGAINST POWER SUPPLY CURRENT

POWER SUPPLY CURRENT vs.
POWER SUPPLY VOLTAGE

(Hz)

(mA )

Ta=25 'C

Ta=25 'C

l

16

0

0

:x:

~

/

c:

0

:;:::;

~

-500

/

·u

0

V

/

VI'I

Shunt Regulator
Voltage

14

.....
......

~

8

..:N

0
:x: -1000
'0

.....
~

-- --

6

V

0

12
10

//

"2c:

Shunt Regulator -.....
Voltage

w

~

/

o
a..

4

V

~

.--

2

~

----

./

/

If

4

5

6

8

9

10

11

12

13

14

(V)

Power Supply Voltage V 1 1 -

6

7

8

9

10

11

12

13

14

(V)

Power Supply Voltage V 1 1 DRIFT OF HORIZONTAL OSCILLATION
AGAINST TEMPERATURE

DRIFT OF HORIZONTAL OSCILLATION
AGAINST POWER SUPPLY VOLTAGE
(Hz)

(Hz)

Ta=25 'C
0

I

t

II

0

:x:

~

I

c:
0

:;:::;

I
I



....I
::J

.e
::J

0

Ta=25 ·C
9

8

iii

:e

./

7

V~

Q)

>
'0

6

~

5

2
"0
>

./

V ...

4

/

Q)

~

"0

:i
I
0

3

/

V

""

2

~

>

-.::I

6

7

8

9

10

11

12

13

14

V4-Power Supply Voltage-V

2. Horizontal part
DRIFT OF HORIZONTAL OSCILLATION
AGAINST POWER SUPPLY VOLTAGE

1

·c

Ta=25

N

12

1000

c
o

.

0..
Co
::J
~

8
7

Q)

Shunt Reg.

~
0

a..

-500

6

./'

I

8

I

o
::I:

5
4

-; -1000
3

572

10

en

I

I

Shunt Reg.

11

....c::::
~::J

~
c::::

..:N

HORIZONTAL POWER SUPPLY CURRENT
VERSUS VOLTAGE

4

5

6

VlO-Power Supply Voltage-V

7

/'"

V
~~
3

4

5

/
6

VlO-Power Supply Voltage-V

7

tlPC1379C

DRIFT OF HORIZONTAL OSCILLATION
AGAINST POWER SUPPLY CURRENT

DRIFT OF HORIZONTAL OSCILLATION
AGAINST TE,MPERATURE

T a=25 'C

N

:r::

~

I

I

c:
0
:.;:.

c:
o
:.;:.

500

C\l

C\l

'u
III

'u
III
0

:§

I~

c:
0

N

"§
:r::

-500

'0

...
I

100

o

0

E

External Part is
Constant
(IC only)

200

..............

i'-....

2

c:
~

I
/
I

'':

0

o

:r::
...

...........

'"

.........
~

.............

..............

~

-100

I'-

E

-1000

I

o

0

:

2=
-.::J

8

6

4

10

-200
-20 -10

12

0

10

20

30

40

50

60

70

Ta -Ambient Temperature-·C

IIO-Power Supply Current-rnA

3. PD - Ta Characteristic
POWER DISSIPATION vs.
AMBIENT TEMPERATURE

2,0

;:
I
c:
0

Infinite heatsink
Rth(j-tab)
=40 ·C/W

:.;:.
C\l

I'..

a.
'in

"\~

III

is
....
Q)

1.0

'\

K\

[/" r\.

~
0

a..

Free

I

A{

Rth(j-a)
=70 ·C/W

CI

a..

1\

\

""t\

~~

o

25

50

100

125

Ta -Ambient Temperature-·C

"

150

573

01
..J
~

1:::
'"0

APPLICATION CIRCUIT

o
..a

W

---..

to

o

(~

a.

~ {Ly=20

mH}

.....

Q

Ry =10

VCC2=110 V
8.2 kQ

!

I

+

25

J.ls

-=FtJL

1 ,uF /16 V

or

L-JVVv--_~ VCC2=12 V

430 Q
100 ,uF

1.

ALPHA-NUMERICAL INDEX

2.

QUICK REFERENCE GUIDE

3.

CROSS REFERENCE GUIDE

4.

MAINTENANCE AND OBSOLETE TYPES

5.

GENERAL STATEMENT

*

NEC's INTEGRATED CIRCUITS FOR CONSUMER USE
o History

0

Types and Features

o Type Number Designation

*
*

0

Device Technologies

STANDARDS OF INTEGRATED CIRCUITS
HINTS ON CORRECT USE

* TECHNICAL SYMBOLS AND TERMS
* RELIABILITY AND QUALITY CONTROL SYSTEMS
6. AUDIO APPLICATIONS
6 - 1.

CAR AUDIO

6-2.

HOME AUDIO

6-3.

PORTABLE AUDIO

,7. TV APPLICATIONS

8. DIGITAL TUNING SYSTEMS
9. CLOCKS & WATCHES
10. VOLTAGE REGULATORS
11. ARRAYS

12.

OTHERS

13. APPLICATION NOTES

DIGITAL TUNING SYSTEM

INDEX
Page
pPB553AC

150 MHz Prescaler (Vee = 5 V) __ ....... '.' . . . . . . . . . . . . . . . . . ..

pPB556C

150 MHz Prescaler (Vee

~PB562C

1 GHz Prescaler (Vee

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

586

pPD1701C-011

EU R LW/MW/FM DTS (Clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

590

~PD1701C-013

JPN/US AM/FM DTS (Clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

598

~PD1701C-014

JPN/US/EUR AM/FM DTS (Clock) . . . . . . . . . . . . . . . . . . . . . . . . . .. 607

~PD1703C-017

US/CND VHF/UHF/CATV TV DTS (Remo. Con.). . . . . . . . . . . . . . . ..

617

pPD1703C-018

JPN/US/EUR LW/MW/FM DTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

626

~PD1703C-020

JPN/US/EUR LW/MW/FM DTS (Clock, Timer) . . . . . . . . . . . . . . . . . .. 649

pPD1704C-011

JPN/US/EUR AM/FM DTS (Clock, Timer, Remo. Con.) . . . . . . . . . . . ..

660

pPD 1705C-0 12

US/CND VHF/UHF/CATV TV DTS (Clock, Timer, Remo. Con.) . . . . . ..

689

pPD1706G-011

JPN/US/EUR LW/MW/FM/SW DTS (Clock, Timer) ................ 704

=3

V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

= 5 V).

578
582

..

577

BIPOLAR DIGITAL INTEGRATED CIRCUIT

fL PB 553AC
150MHz DIVIDE-BY-16/17 LOW POWER PRESCALER

DESCRIPTION
The pPB553AC is a VHF two-modulus prescaler intended for use in PLL Digital Tuning Systems in conjunction
with pPD1700 series. Advanced bipolar process technology is utilized to realize high frequency operation with
extremely low power consumptions. The device provides ';-16 and ';-17 division ratio for NEC's original pulse
swallowing method, and is guaranteed to operate up to 130 MHz over the -35°C to +75 °c temperature range
with a VCC variation from +4.5 V to +5.5 V. An included amplifier allows it to be operated with small amplitude
signal of 150 mVp-p.

FEATURES
•
•
•
•
•
•
•

High frequency operation: 150 MHz (';-16)
130 MHz (';-17)
NEC's original pulse swallowing operation: ';-16/';-17
Small input amplitude: Vin = 150 m Vp-p (MIN.)
Single supply voltage: VCC = 5.0 V ±10 %
Low supply current: ICC = 8.9 mA (TYP.)
Incorporated buffer amplifier: VO=1.2 Vp-p (TYP.)
Small package: 8 pin plastic dual in-line package (DIP)

PACKAGE DIMENSIONS (Unit: mm)
10.5 MAX.

ill
2.54

578

jk5

h

I

7.62

JLPB553AC

ABSOLUTE MAXIMUM RATINGS
Supply Voltage

VCC

-0.5 to 6.0

V

Input Voltage

Vi

-0.5 to VCC

V

Output Current
Junction Temperature

10
T·J

Storage Temperature

Tstg

rnA
°c

10
+125
-55 to +125

°c

RECOMMENDED OPERATING CONDITIONS
Supply Voltage Range

VCC
Ta

4.5 to 5.5

V

Ambient Temperature

-35 to +75

°c

Output Load Capacitance

CL

less than 10 pi cofarad

ELECTRICAL CHARACTERISTICS (VCC
CHARACTERISTIC

SYMBOL

=5 V

MIN.

±10 %, Ta

= -35 to +75 °C)
TEST CONDITIONS

TYP.

MAX.

UNIT

12.7

rnA

VCC

mW

Ta

= 5.0 V

Power Supply Current

ICC

8.9

Power Consumption

Pc

44.5

Frequency Response

fin

1.0

150

MHz

Vin ~0.15 Vp-p, ';'-16

Frequency Response

fin

1.0

130

MHz

Vin ~ 0.15 Vp-p, .;.-17

Output Voltage

Vo

0.9

Vp-p

OUT terminal

Input Voltage

Vin

0.15

Vp-p

IN terminal

High Level Input Voltage

VIH

0.8VCC

Low Level Input Voltage

VIL

1.2
2.0

0.2VCC

= 25°C

V

PSC terminal

V

PSC terminal

Note: CHK terminal should be connected to GND.

579

,uPB553AC

BLOCK DIAGRAM (Top View)

x

ENABLE PULSE
GENERATOR

PSC

G: CMOS to ECl

level Translator

VCC

Cir-

CHK

~

GND

0-----

TIMING PULSE GENERATOR

T

IN

+16 DIVIDER

OUT

Q

TIMING CHART
IN
CHK
PSC
X (ENABLE
PULSE)
OUT

. - - - - - - - 1 7 p u l s e s - - - - - - - - + - - - - - - - - 1 6 pulses - - - - - - - . . .

CONNECTION DIAGRAM
Pin Number

Symbol

Function

1

VCC

Power Supply (V CC)

2

IN

Signal Input

3

CHK

Check (Normally to GND)

4

GND

GND

5

OUT

Output

6

PSC

Division Ratio Control*

7

NC

No Connection

8

NC

No Connection

*: When PSC terminal fixed high or low level, the J,LPB553AC functions as a -:-/16 prescaler.

580

J.lPB553AC

APPLICATION·'

J,LPB553AC
FM OSC.

f---1:

2

OUT

IN

~}

.~

FM

PSC

t

6
AA

~v~

PSC

FM RADIO

J,.LPD' 700 series
FM TUNING

ACTIVE

VOLTAGE

FILTER

EO'

MUTE

MUTE

STATION DETECTOR

SO

APPLICATION·2
FM FRONT END (U.S.)

__ ,...

BUFFER

..

I•

PRESCALER

__ ,

r------------------------------------------------,
to Mixer

1

~-.------~~--~~---.--------.----------------------oVcc

470n

1(+12V)
RD5.1EB

I
I
10/JF/6V

I

TO.0 1/JF

o

U1

>
(/)

I

-Tn

r

I

r--.....---~~-,
1
1000pF
2 /JPB553AC 5

I

from PLL (PSC)}

I

/JPD 1700
series

1 - - - - 9 t o PLL (FM)

I

10PF
3

4

!

__________________________________________ J
Tuning Voltage

581

BIPOLAR DIGITAL INTEGRATED CIRCUIT

IlPB556C
150 MHz DIVIDE-BV-16/17 LOW POWER PRESCALER

DESCRIPTION
The J1PB556C is a VHF two-modulus prescaler intended for use in PLL Digital Tuning Systems in conjunction
with J1PD1700 series. Advanced bipolar process technology is utilized to realize high frequency operation with
extremely low power consumptions. The device provides ";'16 and ";'17 division ratio for N EC's original pulse
swallowing method, and is guaranteed to operate up to 130 MHz over the -35°C to +75 °c temperature range
with a VCC variation from +2.55 V""+4.5 V. An included amplifier allows it to be operated with small amplitude
signal of 150 mVp-p.

FEATURES
o High frequency operation:

150 MHz (";'16)
130 MHz (";'17)

•

NEC's original pulse swallowing operation: ";'16/";'17

•

Small input amplitude: Vin = 150 m Vp-p (MIN.)

•

Single supply voltage: VCC

= 2.55

V""4.5 V

•

Low supply current: ICC = 9.4 rnA (TYP.)

•

Incorporated buffer amplifier: Va

•

Small package: 8 pin plastic dual in-line package (DIP)

= 1.2 Vp-p

(TYP.)

PACKAGE DIMENSIONS (Unit: mm)
10.5 MAX.

i

0;
~.5

582

rr=rl
7.62

J,lPB556C

ABSOLUTE MAXIMUM RATINGS
Supply Voltage
VCC
Input Voltage
Vi
Output Current
10
Junction Temperature
Storage Temperature

-0.5 to 6.0

V

-0.5 to VCC

V

+125

mA
°c

-55 to +125

°c

10

Tj
Tstg

RECOMMENDED OPERATING CONDITIONS
Supply Voltage Range

VCC

Ambient Temperature

Ta

-35 to +75

CL

less than 10pF

Output Load Capacitance

ELECTRICAL CHARACTERISTICS (VCC
CHARACTER ISTIC
Power Supply Current

V
°c

2.55 to 4.5

SYMBOL

= 2.55--4.5 V, Ta = -35 to +75
MIN.

TYP.

MAX.

UNIT

°C)

TEST CONDITIONS

ICC

9.4

rnA

VCC == 5.0 V

Power Consumption

Pc

28

mW

Ta==25°C

Frequency Response

fin

1.0

150

MHz

Vin~0.15

Vp-p,716

Frequency Response

fin

1.0

130

MHz

Vin~0.15

Vp-p, 717

Output Voltage

Vo

0.9

Vp-p

OUT terminal

Input Voltage

Yin

0.15

Vp-p

IN terminal

High Level Input Voltage

VIH

0.8VCC

Low Level Input Voltage

VIL

1.2
2.0

0.2VCC

V

PSC terminal

V

PSC terminal

Note: CHK terminal should be connected to GND.

583

.uPB556C
BLOCK DIAGRAM (Top View)

x

ENAB lE PU lSE

PSC

GENERATOR

G: CMOS to ECl

level Translator

VCC

Gr

CHK

~

GND

~

TIMING PULSE GENERATOR

T

IN

+16 DIVIDER

OUT

Q

TIMING CHART
IN
CHK
PSC
X (ENABLE
PULSE)
OUT

-+I. .

~------17 p u l s e s - - - - - - - -..

- - - - - 1 6 pulses

------~.~I

CONNECTION DIAGRAM
Pin Number

Symbol

Function

VCC

Power Supply (V CC)

2

IN

Signal Input

3

CHK

Check (Connect to GND)

4

GND

GND

5

OUT

Output

6

PSC

Division Ratio Control *

7

NC

No Connection

8

NC

No Connection

•

*: When PSC terminal fixed high or low level, thepPB556C functions as a ';-/16 prescaler.

584

,uPB556C
APPLICATION

FM

PSC
FM RADIO
J.LPD1706G

FM TUNING
VOLTAGE

E01

I~~--~ SD
STATION DETECTOR

MUTE

585

BIPOLAR DIGITAL INTEGRATED CIRCUIT

ILPB562C
1 GHz DIVIDE-BY-128/136 LOW POWER PRESCALER

The pPB562C is a ECl two-modulus prescaler for operation at input frequency up to 1 GHz. It is intended for
use in TV Pll Digital Tuning Systems with the p PD 1700 series. This prescaler divides by either 128 or 136,
as determined by the signal form the pPD1700 series (EX. J.LPD1703C-017) applied to the Pulse Swallow Control
Input (PSC).

FEATURES
•

High frequency operation: 1 GHz

•

Dual mode operation with NEC's original pulse swallowing method
128/136 .... ·.. ·.. •.. ·up to. 1 GHz
b

64/68 .......... · ...... ·up to 500 MHz
• Single supply voltage: Vec = 5.0 V ± 10 %
•

low supply current: ICC = 23.0 mA (TYP.)

•

Incorporated buffer amplifier: Vo

= 1.2 Vp-p

(TYP.)

• Small package: 8 pin plastic dual in-line package (DIP)

BLOCK DIAGRAM
~---------------------------OPSC
+5V~~--~~----------~~-----O

I----~OPLL

r- - - -

I

-1-- - - - - --1
L _ _ --,

1/4,1/8

1/16,1/17

Divider

Divider

Buffer

GND

VCoo-----------~--~

1 000 pF
0.01 J.&F~

586

~PB562C

PACKAGE DIMENSIONS (Unit: mm)
10.5 MAX.

R1

CONNECTION DIAGRAM (Top View)

VCC

BIAS

PSC

IN

NC

GND

M

4

1 VCC
2 IN
3 NC

Power Supply (+5 V)
Signal Input

4

GND

Ground

5

OUT

Signal Output

6

M

Division Ratio Control (VCC: 64/68, GND: 128/136)

7

PSC

Pulse Swallow Control

8

BIAS

Bias

587

,uPB562C
ABSOLUTE MAXIMUM RATINGS
Supply Voltage

VCC

-0.5 to 6.0

V

Input Voltage

Vin

-0.5 to V CC +0.5

V

Output Current

10

-10.0

rnA

Storage Temperature

Tstg

-55 to +125

°c

RECOMMENDED OPERATING CONDITIONS
Supply Voltage Range

4.5 to 5.5

Ambient Temperature

Ta

Output Load Capacitance

CL

-35 to +75
Less than 30 pF

ELECTRICAL CHARACTERISTICS (VCC
CHARACTER ISTIC

sss

SYMBOL

=5 V

MIN.

Power Supply Current

ICC

Output Voltage

Vo

1.0

Input Voltage

Vin

0.4

High Level Input Voltage

VIH

Low Level Input Voltage

VIL

High Level Input Current 1

±10 %, Ta

=-35 to +75 ° C)

TYP.

MAX.

23.0

30.0

1.2
1.5

UNIT
rnA

TEST CONDITIONS
VCC=5.0 V, Ta=25

Vp-p

OUT terminal

Vp-p

IN terminal

°c

V

PSC term i na I

0.3 VCC

V

PSC terminal

IIH 1

10.0

pA

PSC terminal

High Level Input Current 2

IIH 2

40.0

pA

M terminal

Frequency Response 1

fin 1

100

1000

MHz

Vin~O.4Vp-p,

Frequency Response 2

fin 2

100

500

MHz

Vin~0.4Vp-p, M=VCC

0.7VCC

M=GN D

,uPB562C
APPLICATION 1
IlPB562C
VCO

II

II

IN

I I

OUT

II

IN

PSC

M

PSC

77

UN Tuner

TU

LPF

VB

f--- 01

E01

IlP01703C-017

IlP04042
UB

01

Sa

02 Latch

02

Sb

f - 03 Clock

03

Sc

r---

Band Out

SW

t

05

APPLICATION 2
IlPB562C
VCO

II
II

OUT

IN

1
TU

t

LPF

VB
UB
SW

L

IN

psc

M

UN Tuner

I

II

psc

EO

IlPO 1705C-011

B01
Band Out
B02

589

MOS DIGITAL INTEGRATED CIRCUIT

I1PD1 701 C-011
PHASE LOCKED LOOP FREQUENCY SYNTHESIZER
LW/MW/FM DIGITAL TUNING SYSTEM CONTROLLER
CMOS LSI
DESCRIPTION
The J.,LPD1701 C-Ol1 is a single chip CMOS LSI designed for using as a PLL Frequency Synthesizer Digital
Tuning System Controller.
TheJ.,LPD1701C-Oll is packaged in a 28 pin slim dual in-line package (DIP).

FEATURES
•
•
•
•
•
•
•

Clock, PLL and Controller is realized in a single chip.
LW, MW and FM bands for Europe
High reference frequency (FM: 25 kHz) It results in a high carrier to noise ratio.
External programmable IF offset for FM band (10.650 MHz, 10.675 MHz, 10.700 MHz, 10.725 MHz)
High speed and low power consumption due to CMOS.
Stand-by mode ...supply current I DD = 0.5 mA (TYP.)
Display brightness control (DIMMER)

FUNCTION OF RADIO
•
•
•
•
•
•

Automatic up search (SEEK ARI/STEREO)
Automatic down search (SEEK ARI/STEREO)
Manual up search
Manual down search
Preset station memory ..... FM: 6 stations, MW: 6 stations
Last station memory. . .. .. FM: 1 station, MW: 1 station, LW: 1 station

FUNCTION OF CLOCK
•
•
•
•

24 hour display format .... hours, minutes, colon
Leading-zero blanking
Hours and minutes set controls
Minutes and seconds reset control

PACKAGE DIMENSIONS

in millimeters (inches)

e~:o~):
:~:-}
I
35.15 MAX.
(1.38 MAX.)

2.54 (0.1)
33.02
(1.3)

590

I

8.5 (0.33)

,uPD1701 C-011
ABSOLUTE MAXIMUM RATINGS
Voo

-0.3 to +6.0

V

Input Voltage

VI

-0.3 to Voo

V

Output Voltage

Vo

-0.3 to Voo

V

Output Current

IOH

-10

mA

Storage Temperature

Tstg

-55 to +125

Operation Temperature

Topt

-35 to +75

°c
°c

Supply Voltage

ELECTRICAL CHARACTERISTICS (Ta=-35 to +75 °c, VDD=4.5 to 5.5 V)
CHARACTERISTIC

High Level Input Voltage

TEST CONDITIONS

MAX.

UNIT

0. 8V oo

Voo

V

SO terminal

VIH2

0. 7V oo

Voo

V

CE terminal

VIH3

0. 6V oo

Voo

V

KO to K3 terminals.

VIL1

0

0. 3V oo

V

CE terminal

VIL2

0

0.2 V oo

V

SO, KO to K3 terminals.

VOH1

4.0

V

EO, 0, MUTE: IOH=-0.5 rnA

VOH2

4.0

V

SEG: IOH=-1.0 mA

VOH3

4.0

V

PSC: IOH=-0.2 rnA

SYMBOL

MIN.

VIH1

TYP.

.

Low Level Input Voltage

High Level Output Voltage

VOL1

0.5

V

EO: IOL=0.5 mA

VOL2

0.5

V

o,SEG,MUTE,PSC: IOL=0.2 mA

100

~A

Low Level Output Voltage
High Level Input Current

25

K: VI=Voo=5.0 V

IIH

5.0

fin1

0.5

2.5

MHz

AM: vi=1.0 Vp-p, DC cut, sine wave

fin2

0.5

8.8

MHz

FM: vi=0.8 Vp-p, DC cut, square wave

0.5

s

2.0

mA

Frequency Response
Supply Voltage Rise Time
Supply Current

Tr
100

0.5

Voo: 0 -+ 4.5 V
CE: Low Level

591

,uPD1701 C-011
SYSTEM DESCRIPTION
NEC's Digital Tuning System provides full electronic control of a vari-cap tuned FM/AM radio receiver and
stereo. The block diagram of the system is shown in Fig. 1. This is a Phase Locked Loop Digital Tuning System
which consists of two integrated circuits; controller plus PLL in a single chip, and two-modulus prescaler.
The controller (~PD1701 C-Oll) provides Phase Locked Loop capability with on-chip frequency division, a
reference oscillator whose frequency is controlled by an external crystal of 4.5 MHz, and phase comparator
circuitry. It accepts directly an AM local oscillator signal and an FM signal from two-modulus prescaler
(~PB553AC), and outputs control signals for closed loop operation of these oscillators. The outputs drives filters
for supplying analog voltages to the vari-cap tuners. The controller also provides the signals to drive the display.
The frequency of the tuned station is displayed on a 3.5 digit multiplexed display. Six favorite stations on each
band can be stored as well as "last stations tuned" information.
The two-modulus prescaler (~PB553AC) is suitable for pulse swallowing in this system.

pPD1701 C-011
MUTE

MUTE

FM
TUNING

LW/MW/FM

I\..

'\

5
E01

ACTIVE
AM
TUNING

D1

y

D5

/

~

-------FILTER

E02

DISPLAY

pPB553AC
FM
OSC.

~

PRESCALER

FM

t

PSC

I

RADIO
SEG.A

I\..

7

AM
OSC.

~

AM

STATION DETECTOR

4.5 MHz

SEG.G

1

X1

SEGMENT

rI

DRIVERS

~/

KO

T

A

/ 4
\.
'I

X2

K3

Fig.1 BLOCK DIAGRAM

592

\

SD

c::::J

crystal

DIGIT
DRIVERS

KEY and SWITCH
MATRIX

,uPD1701 C-011
PIN CONNECTION (Top View)
LW/MW GNO

FM

KO

K1

K2

K3

a

b

c

d

e

01

02

03

04

9

IlP01701C-011

E01

E02

CE

PSC

X1

X2

SO

MUTE

D5

VOO

EXPLANATION OF INPUT AND OUTPUT TERMINALS
EOl
E02

These three-state outputs are used (via active filters) to supply analog voltages to the tuner
vari-cap for controlling the local osc.

CE

This input is used to designate the stand-by mode to the chip.
It is low to designate the stand-by mode. (Display: off, PLL: disabled)

PSC

This output is used to control the division ratio of the FM two-modulus prescaler
(pPB553AC).

Xl, X2

These inputs are for connection to a 4.5 MHz crystal.

SO

This input is used to control the station searching operation (AU/AD). It is high to indicate
the presence of a station and the operation is terminated.

MUTE

This output line is high to mute the radio in the case of station change, band change, and so
on.

01 to 05

These outputs are used as digit drivers for the display.

VDD

This is a 4.5 to 5.5 volt supply for the chip.

a to g

These outputs are used as segment drivers for the display. They are also used as vertical drive
for the control key and mode switch matrix.

KO to K3

These inputs are from seven by four matrix. Various functions are entered through the matrix.
See Fig. 2 for the matrix assignments.

FM

This is the FM band local oscillator input. The frequency is divided by 16/17 using a twomodulus prescaler (pPB553AC).

GND
LW/MW

System ground.
This input is the LW/MW band local oscillator input.

593

,uPD1701 C-011

CONTROL KEY AND MODE SWITCH MATRIX

KO

K1

K2

K3

o:

momentary switch

D :alternate switch
6 :diode switch
/

: sw ontsw off

-94

---------------or

Fig.2

* Manual up or down search
MU, MD

*

Automatic up or down search

AU, AD
(SEEK)

*

A momentary depression will tune to next channel, and continuous depression more than 0.5
second allows traversing up or down the entire band until the key is released.
A momentary depression causes automatic up or down search which is terminated by activation
of SD terminal (active high).

Preset of the station

ME

The tuning information is stored into internal RAM by depressing ME key and then the desired
memory key within 5 seconds from the time ME key was initially depressed. If any key is
depressed in this period, the ME function is cancelled.
Ml to M6 Six favorite stations can be recalled from internal RAM for each band. When it is switched from
one band to another band, it will tune to "Iast-tuned-to station" on that band. Each time a station
is changed, the controller provides a signal to mute the radio.

594

J,lPD1701 C-011
* Clock function
HA, MA
OADJ

These keys are used for hours and minutes setting. (See note)
A momentary depression resets minutes and seconds.
NOTE: MU and MD keys can be used to set minutes and hours, keeping depressing ME key when
time is displayed.

* Switching-over the display
RCAl
A
P

DIMMER

A momentary depression will change the display mode when radio is on.
eN:
Frequency is given priority for the display.
OFF: Clock is given priority for the display.
ON:
There is a priority on the display.
When RCAl key depressed, the display returns to the prior matter after 5.sec display of
another.
OFF: There is no priority on the display.
ON:
Display brightness is reduced (duty: 20 % of normal brightness).
OFF: Display brightness is normal.

* ARI/STEREO search
ARI

OFF:
ON:

Normal automatic search (AU, AD)
In the case of FM band, ARI/STEREO search is possible.
A momentary depression of AU/AD key causes up or down ARI/STEREO search which
is terminated by activation of SD terminal and AR I SD switch. (Timing diagram is shown
below.)

PLL "LOCK"

SO

45 ms
SO

ARI SO

125 ms or 500 ms

I

r

ARI SO

Fig. 3

500/125

ARI SD

This switch is for a selection of timing in the case of ARI/STEREO search.
ON:
The controller waits 500 ms from the activation of SD terminal.
OFF: The controller waits 125 ms from the activation of SD terminal.
This switch is normally a transistor switch. In the case of ARI/STEREO search, ARI (SK, BK or
DK) or STEREO SD signal is read from this switch.

595

.uPD1701 C-011
* Selection of the radio band
LW, MW/FM

These switches are for selection of the radio band (LW, MW, FM).
Channel
Spacing

Receiving Frequency

Intermediate
Frequency

LW

MW/FM

BAND

ON

x

LW

155 to 281 kHz

9 kHz

450 kHz

OFF

ON

MW

531 to 1602 kHz

9 kHz

450 kHz

OFF

OFF

FM

87.5 to 104/108 MHz*

50 kHz

**
x : Don't care.

Table 1
IFO, IF1** Two external diodes program the chip to accept 4 different frequencies from 10.650 MHz to
10.725 MHz in 25 kHz steps.
IFO

IFl

Intermediate Frequency

OFF

ON

10.650 MHz

ON

ON

10.675 MHz

OFF

OFF

10.700 MHz

ON

OFF

10.725 MHz
Table 2

108/104 *

This switch is used to preset the FM receiving band.
Receiving Frequency

108/104
ON

87.50 MHz to 108.00 MHz

OFF

87.50 MHz to 104.00 MHz
Table 3

* Display interface
The center frequency of tuned station is displayed on a 3.5 digit LED display. The segment outputs a, b, c, d,
e, f, and g are also used as inputs for 7 segment drivers. The segment output go to common collector NPN
transistor array (J,LPA56C) to drive the segments of the common cathode 7 segment LED display. The digit
outputs go to NPN darlington transistor array (J,LPA53C) to drive the LED display.

II

I~
05

04

02

03

Fig.4

596

FM.OP

a

MW
LW
ME

c
d

COLON (STOP)

e

b

COLON (FLASH)
50 kHz

01

9

Fig.5 APPLICATION CIRCUIT

! ! ! ! !~ r

i~-J-T-

KEY and SWITCH MATRIX

SEGMENT DRIVER
M

I I I I ::

h

1111::11 1_

-r-r

f5V

("A56;

v

h.
YV'W

i

'VIII,
A'A

I

rh~----o/;

3.3 k x 7

from
AM VCO

V

t..)

L-_L_j __ L_j __ I__ .!-_~ __ .1_J

'A

33n x 7

m
a

+5V~
O.OlJ.1J;
from 0
FM VCO

c

b

d

e

1
81
rDl rLil
lQJ
lQ
8

g

LEO (Cathode Common)

1

II--------l
1000p

2.2J.1

10k~.22,",

2._2J.1_t;~~~k--------~

o _________

0

~

to~
2pOX r~2

10k

0.01 J.I

DIGIT

4.5 MHz
HC-18/U
TOYO COM

1=1

1=1

05

04

D~[§ ___ L

0

0

03

I

I
I
I

TQC-231A~8C

I ____
L

02

01

___ L ___ L ___ L,
J.lPA53C

x5

,

,
_ _ _ _ _ _ _ _ ,..., _____ ._____

I
I
I

I
I
~-J

J.lPC78L05
5V

F14C
IIo...l

~I

100J.l

f+
-

1~22J.1

-;J;

5V

J.lPC78M05

fr
o0 m . Y
Acc
SW.
radioc
switch

I~ , )

to,",PB553AC

and .PA56:
Muting
1
00.
.
OutPut
L -_ _..._

to radio

_

~

I~

~

.......

0

~

C')
I

0

~
~

01
CD
~

MOS DIGITAL INTEGRATED CIRCUIT

IlPD1701 C-013
PHASE LOCKED LOOP FREQUENCY SYNTHESIZER
FM/AM DIGITAL TUNING SYSTEM CONTROLLER
CMOS LSI

The ~PD1701 C-013 is a single chip CMOS controller designed for using as a Phase Locked Loop Frequency
Synthesizer Digital Tuning System Controller.
The ~PD1701C-013 is packaged in a 28 pin slim dual in-line package (DIP).

FEATURES
•

PLL, swallow counter and system controller are realized in a single chip.

•

FM and AM bands - - - - Japan and U.S. bands.

•

High reference frequency. (FM: 25 kHz, AM: 9/10 kHz)

•

External programmable I F offset for FM band.

It results in a high carrier to noise ratio.
•

High speed and low power consumption due to CMOS.

•

Stand-by mode - - - - Supply current IDD

= 0.5 rnA

(TYP.)

•

Display brightness control (DIMMER) - - - - Duty ratio 1 : 4

•

Internal display decorder for 3.5 digit multiplexed display.

•

Automatic power-on clear without any external components.

FUNCTION OF RADIO
•

Automatic up search (SEEK)

•

Automatic audition

•

Manual up or down search

(SCAN)

•

Preset station memory call

•

Preset station memory - - - - FM: 6 stations, AM: 6 stations

•

Last tuned station memory - - - - FM: 1 station, AM: 1 station

FUNCTION OF CLOCK
•

12 hour display format - - - - hours, minutes, AM/PM, colon

•

Leading-zero blanking

•

Hours and minutes set controls

•

Minutes and seconds reset control

PACKAGE DIMENSIONS
in millimeters

i:~:~-:-::~t
I

I

35.15 MAX.·

x

--1L
33.02

0.5

±

0.1

~--------==~------~

598

~~

~
~

,uPD1701 C-013
ABSOLUTE MAXIMUM RATINGS
Supply Voltage

VOO

-0.3 to +6.0

V

Input Voltage

VI

-0.3 to VOO

V

Output Voltage

Vo

-0.3 to VOO

V

Output Current

IOH

-10

Storage Temperature

Tstg

-55 to +125

Operation Temperature

Topt

-35 to +75

mA

°c
°c

ELECTRICAL CHARACTERISTICS (Ta= -35 to +75 ° C, VDD= 4.5 to 5.5 V)
CHARACTERISTIC

High Level Input Voltage

SYMBOL

MIN.

TYP.

MAX.

UNIT

TEST CONOITIONS

VIHl

0. 8V OO

VOO

V

SO terminal

VIH2

0. 7V OO

VOO

V

CE terminal

VIH3

0. 6V OO

VOO

V

KO to K3 terminals

VILl

0

0. 3V OO

V

CE terminal

VIL2

0

0. 2V OO

V

SO, KO to K3 terminals

Low Level Input Voltage

High Level Output Voltage

VOHl

4.0

V

EO, 0, MUTE: IOH=-0.5 mA

VOH2

4.0

V

SEG: IOH=-1.0 mA

VOH3

4.0

V

PSC: IOH=-0.2 mA

VOLl

0.5

V

EO: IOL =0.5 mA

VOL2

0.5

V

O,SEG,MUTE,PSC: IOL = 0.2 mA

100

J1.A

K: VI=VOO=5.0 V

Low Level Output Voltage

High Level Input Current

25

IIH

5.0

fin 1

0.5

2.5

MHz

AM: vi=1.0 Vp-p, OC cutsinewave

fin2

0.5

8.8

MHz

FM: vi= 0.8 Vp-p, OC cut square
wave

0.5

s

2.0

mA

Frequency Response

Supply Voltage Rise Time

Tr

Supply Current

100

0.5

VOO: 0-- 4.5 V
CE: Low Level

599

j.LPD1701 C-013
SYSTEM DESCRIPTION
NEe's Digital Tuning System provides full electronic control of a vari-cap tuned FM/AM radio receiver and
stereo. The block diagram of the system is shown in Fig. 1. This is a Phase Locked Loop Digital Tuning System
which consists of two integrated circuits; controller plus PLL in a single thip, and two-modulus prescaler.
The controller chip (J,LPD1701 C-013) provides Phase Locked Loop capability with on-chip frequency
division, a reference oscillator whose frequency is controlled by an external crystal of 4.5 MHz, and phase comparator circuitry. It accepts directly an AM local oscillator signal and an FM signal from two-modulus prescaler
(,uPB553AC), and outputs control signals for closed loop operation of these oscillators. The outputs drives filters
for supplying analog voltages to the vari-cap tuners. The controller also provides the signals to drive the display.
The frequency of the tuned station is displayed on a 3.5 digit multiplexed display. Six favorite stations on each
band can be stored as well as "last stations tuned" information.
The two-modulus prescaler (pPB553AC) is suitable for pulse swallowing in this system.

pPD 1701C-013
MUTE

MUTE

FM
TUNING

"-

5
E01

ACTIVE
AM
TUNING

01

05

/"

~

------FILTER

E02

DISPLAY

pPB553AC
FM/AM

FM
OSC.

PRESCALER

I

FM

RADIO

t

PSC

AM
OSC.

SEG.A
SEG. G

....

~

AM

STATION DETECTOR

4.5MHz

SO

1

KO
'.f'\.
V
~

X2

K3

Fig. 1 Block Diagram

600

DRIVERS

KEY and SWITCH

A

T

~

SEGMENT

~7

X1

c:J

crystal

DIGIT
DRIVERS

4

MATRIX

tlPD1701 C-013
PIN CONNECTION (Top View)

KO

Kl

K2

K3

b

c

01

02

a

pP01701C-013

EOl

E02

CE

PSC

Xl

X2

SO

MUTE

03

04

05

VDO

EXPLANATION OF INPUT AND OUTPUT TERMINALS
EOl
E02

These three-state outputs are used (via active filters) to supply analog voltages to the tuner
varicap for controlling the local oscillators.

CE

This input is used to designate the stand-by mode to the chip. It is low to designate the standby mode. (display: off, PLL: disable)

PSC

This output is used to control the division ratio of the FM two-modulus prescaler (pPB553AC).

Xl,X2

These inputs are for connection to a 4.5MHz crystal.

SO

This input is used to control the automatic station searching operation. It is high to indicate the
presence of a station.

MUTE

This output line is high to mute the radio in the case of station change, band change, and so on.

01 to 05

These outputs are used as digit drivers for the display. (Active high)

VOO

This is a 4.5 to 5.5 volt supply for the chip.

a to g

These outputs are used as segment drivers for the display. They are also used as vertical drive
for the control key and mode switch matrix. (Active high)

KO to K3

These inputs are from seven by four matrix. Various functions are entered through the matrix.
See Fig. 2 for the matrix assignments.

FM

This is the FM band local oscillator input. The frequency is divided by 16/17 using a twomodulus prescaler (uPB553AC).

GNO
AM

System ground.
This is the AM band local oscillator input.

601

,uPD1 701 C-013
CONTROL KEY AND MODE SWITCH MATRIX
SEG.A

SEG.B

SEG.C

SEG.D

SEG.E

SEG.F

SEG.G

KO

K1

K2

K3

o:

D:

momentary key,

alternate switch,

6:

diode switch

Fig. 2 Control Key and Mode Switch Matrix

*

Manual up or down search
MU, MD

A momentary depression will tune to next channel, and continuous depression more than

0.5 second allows traversing up or down the entire band until the key is released.

*

Automatic up search (Saw-tooth search)
SEEK

A momentary depression causes automatic up search which is terminated by activation of SD
terminal (active high).

SCAN

*

A momentary depression causes automatic station-to-station search.

Preset of the station
ME

The tuning information is stored into the internal RAM by depressing ME key and then the
desired memory key (M1 to M6) within 5 seconds from the time ME key was initially depressed.
If any other key is depressed in this period, the ME function is cancelled.

M 1 to M6

Six favorite stations can be recalled from internal RAM for each band. When it is switched from
one band to the other, it will tune to "Iast-tuned-to station" on that band.
Each time a station is changed, the controller provides a signal to mute the radio.

*

Clock set controls
HA, MA

These keys are used for hours and minutes setting. (See note)

DAD

A momentary depression will reset minutes and seconds.

Note

MU and MD keys can be used to set minutes and hours, keeping depressing ME key when time
is displayed.

602

,uPD1 701 C-013
*

Switching-over the display between radio and clock
A, B, P

Display mode switches A, B initial switch P and control key RCAl control the display mode as

RCAl

follows_

1. A: ON, B:ON, P:ANY
No priority on the display. A momentary depression of RCAl key causes alternate display
change between time and frequency whenever it is performed. Whenever frequency is
handled, frequency is displayed.
2. A: ON, B: OFF, P:OFF
Clock display is prior to frequency.

A momentary depression of RCAl key causes

alternative display chnage_ When time is displayed, a depression of RCAl or one of the
frequency handling key recalls frequency information on the display for 5 seconds. After
that, the display turns back to clock automatically.
3. A:ON,B:OFF,P:ON
Frequency is prior to the clock.

A momentary depression of RCAl key causes the

alternative display change. When frequency is displayed, a momentary depression of RCAl
key recalls clock display and it remains there for 5 seconds. If any other key is handled
when time is displayed, handling of one of the time adjust keys (HA, MA, OAD) keeps the
time display, the display turns back to frequency automatically 5 seconds after the time
adjust is completed. Whenever frequency is handled, frequency is displayed.
4. A: OFF, B:OFF, P: ANY
Clock only.
5. A: OFF, B: ON, P: ANY
Disabled.

*

Switching-over the Manual UP/DOWN signal generator
ROT

ON: Pulse repetition rate more than 6 milisecond will be acceptable as MU or MD signal for an
application of the endless-rotary switch as the signal generator.
OFF: Pulse repetition rate more than 60 milisecond will be acceptable preventing from miscounting
by chattering of the momentary switches applied for UP/DOWN signal generator.

*

Protection from the miss key input
lOCK

This switch is for protection from miss key input.
ON ....................................... All of the key input is disabled.
OFF ..................................... All of the key input is enabled.

*

Protection from the key chattering
Key make time ..................... less than 15 ms
Key break time ..................... less than 15 ms

603

,uPD1701 C-013
* Selection of the radio band
J/U

This switch is for selection of the district.

AM/FM

This switch is for selection of the radio band.

Band Switch
Selected Band
J/U

AM/FM
off

FM U.S.

87.9 to 107.9 MHz, channel spacing 200 kHz

on

AM U.S.

530 to 1 620 kHz, channel spacing 10 kHz *3

off

FM Japan

76.1 to 89.9 MHz, channel spacing 100 kHz

on.

AM Japan

531 to 1 602 kHz, channel spacing 9 kHz

off

on

* 3: See AM band I F offset

Table 2

* FM band I F offset
IFO, IFl

These switches program the chip to accept 4 different intermediate frequencies.
Intermediate Frequency

IFO

IF1
Japan

U.S.

on

off

10.750 MHz

10.650 MHz

on

on

10.725 MHz

10.675 MHz

off

off

10.700 MHz

10.700 MHz

off

on

10.675 MHz

10.725 MHz

Table 3

* AM band I F offset
IF2

This switch programs the chip to accept 2 different intermediate frequencies.

Bl/B2

This switch is for selection of the receiving band and channel spacing of AM radio for U.S. band.

J/U

Bl/B2

on

X

IF2

Intermediate
Frequency

on

261 kHz

off

450 kHz

on

261 kHz

off

450 kHz

on

260 kHz

off

450 kHz

on

Receiving
Frequency

Channel
Spacing

531 to 1 602 kHz

9 kHz

531 to 1 602 kHz

9 kHz

530 to 1 620 kHz

10 kHz

off
off

Table 4
604

,uPD1701 C-013
*

Display interface
The center frequency of tuned station is displayed on a 3.5 digit LED display. The segment outputs
a, b, c, d, e, f, and g are also used as inputs for 7 segment drivers. The segment outputs go to common
collector NPN transistor array (J,LPA56C) to drive the segments of the common cathode 7 segment LED
display. The digit outputs go to NPN darlington transistor array (J,LPA53C) to drive the LED display.

ME

-J J J J J J
-J J I- I I- I
- -

J

(f)

J

-

04

05

03

a

AM
PM

b

FM.OP

c

COLON (STOP)

d

COLON (FLASH)

e
9

01

02

Fig.4

*

Display format
o Segment Pattern

,, ,=-, =,-,
*

'-'I ,=
-'

,- ,-,, ,=,
,=,
L'

,-,

=,I-,

'-'

a
f,-,b

-

e,-;jc
d

Display brightness control (DIMMER)
DIM

This switch is for selection of display brightness.
ON - - - - Display brightness is reduced. (Duty factor: 1/32)
OFF - - - - Display brightness is ordinary. (Duty factor: 1/8)
SEG. F orG

SEG. F orG

diode switch: "on"

diode switch: "off"

Fig. 3 Diode Switch
SEG.E

SEG. E

alternate switch: "on"

alternate switch: "off"

Fig. 4 Alternate Switch

605

m

o
m

1::

"C
~

--.I

Fig. 5 APPLICATION CIRCUIT

o

~

+5V

SI::GMI::N I UHIVI::H

~ V~

17

"

,~ :~

:~
f"""I

;,. ~,. ~,. ~ io
~f:; -'f:; ;f:; ;~

~

~

A~ -~
22 k x 4

0.01}.t
from
AM VCO

::

n

rl,

n

~

AM TUN.
VOLTAGE

o

J

I

f"""I

I

L~

K1

K2

K3

r

~~ ~ ~

abc

d

e

~

nlJr

~

20 ~ 1-2:2
7
p'
P

22/J~~
4.7k

100/J

±~

o

cy"c
radio switch

.... 1
1;O/J

A

t.....
......

~~

--- - -

~-c

_J

---- '----:.

d

e

f

g

5V

J/

;J;-

' - - - - - to radio

I

I

I I
I I

0

-

I I
I I
-

0

-

-

I I
I- I

:

-

0

FM,DP
COLON

04

03

02

01

O~I_~~__ __ --1----1----1----1-,
I

/JPA53C

I

TOYOCO~

:

x5

TQC-231A·8C

I

-----r----- ----------~-] 1

L____

~± 2~2/J
/JPC78M05

from
Ace SW.

ME

DIGIT

~I

~

33n

05

5V

F14C
~

_

v

0.01 }.t

I

3.3k

/ ; MHz
HC-18/U

,,2.2k

t-o.

g a b

I

llO'lL

4.7k
0.033}.t

0.022/J

. H

v

I

3.3k X7

T

ro

t.....

pPD1701C·013 (Top View)

/JPC78L05
from
battery
(12V)

f

rl

.L

10k
22
. /J

v

1-"'"
.A

~o /JPB553AC

+ z~ and /JPA56C
-7f7 lOOp
"'

Muting"'"
Output ./

......

)

I

o

~

I

LJ

~

.~~ -.:~-~

KO

h-

(")

w

N

1:5 ~ 1.1:5

1000p

:

AM GND FM

I

!

7

10k
FM TUN.
VOLTAGE

~

N

J

,....

~r---jo.~~ l lr~r~r~r~ [

c NCPSC OUT]
}.tPB553AC
Vee INCHKGND

from
FM VCO

L...
~
I ....

'v ·'17
I'~ I'~
L~

!I h-

..,

r -r------.------+-------+-_---.----.---,

KE Y and SWI TC H MAT R I X
rh,
L:P-"'17

C

I
:

MOS DIGITAL INTEGRATED CIRCUIT

J1 P01 701 C-014
PHASE LOCKED LOOP FREQUENCY SYNTHESIZER
FM/AM DIGITAL TUNING SYSTEM CONTROLLER
CMOS LSI

The J,lPD1701 C-014 is a single chip CMOS controller designed for using as a Phase Locked Loop Frequency
Synthesizer Digital Tuning System Controller.
The J,lPD1701 C-014 is packaged in a 28 pin slim dual in-line package (DIP).

FEATURES
•

PLL, swallow counter and system controller are realized in a single chip.

•

FM and AM bands - - - - Japan, U.S. and Europe bands.

•

High reference frequency. (FM: 25 kHz, AM: 9/10 kHz)
It results in a high carrier to noise ratio.

•

External programmable I F offset for FM band.

•

High speed and low power consumption due to CMOS.

•

Stand-by mode - - - - Supply current IDD = 0.5 mA (TYP.)

•

Display brightness control (DIMMER) - - - - Duty ratio 1 : 4

•

Internal display decorder for 3.5 digit multiplexed display.

•

Automatic power-on clear without any external components.

FUNCTION OF RADIO
•

Automatic up search (SEEK)

•

Automatic audition

•

Manual up or down search

•

Preset station memory call

(SCAN)

.• Preset station memory - - - - FM: 6 stations, AM: 6 stations
•

Last tuned station memory - - - - FM: 1 station, AM: 1 station

FUNCTION OF CLOCK
•

12 hour display format - - - - hours, minutes, AM/PM, colon

•

Leading-zero blanking

•

Hours and minutes set controls

.·.Minutes and seconds reset control

PACKAGE DIMENSIONS
in millimeters

i:~::-:-::~-t
I

35.15 MAX.

I

607

,uPD1 701 C-014
ABSOLUTE MAXIMUM RATINGS
Supply Voltage

VDD

-0.3 to +6.0

V

Input Voltage

VI

-0.3 to VDD

V

Output Voltage

Vo

-0.3 to VDD

V

Output Current

IOH

-10

Storage Temperature

Tstg

-55 to +125

Operation Temperature

Topt

-35 to +75

mA

°c
°c

ELECTRICAL CHARACTERISTICS (Ta= -35 to +75 ° C, VOO= 4.5 to 5.5 V)
CHARACTERISTIC

High Level Input Voltage

SYMBOL

MIN.

TYP.

MAX.

UNIT

TEST CONDITIONS

VIHl

0.8VDD

VDD

V

SD terminal

VIH2

0.7VDD

VDD

V

CE terminal

VIH3

0.6VDD

VDD

V

KO to K3 terminals

VILl

0

0.3VDD

V

CE terminal

VIL2

0

0.2VDD

V

SD, KO to K3 terminals

Low Level Input Voltage

High Level Output Voltage

VOHl

4.0

V

EO, D, MUTE: IOH=-0.5 mA

VOH2

4.0

V

SEG: IOH=-1.0 mA

VOH3

4.0

V

PSC: IOH=-0.2 rnA

VOLl

0.5

V

EO: IOL =0.5 mA

VOL2

0.5

V

D,SEG,MUTE,PSC: IOL= 0.2 mA

100

p.A

K: VI=VDD=5.0 V

Low Level Output Voltage

High Level Input Current

25

IIH

5.0

finl

0.5

2.5

MHz

AM: vi=1.0 Vp-p, DC cut
sine wave

fin2

0.5

8.8

MHz

FM: vi= 0.8 Vp-p, DC cut
square wave

0.5

s

2.0

mA

Frequency Response

60a

Supply Voltage Rise Time

Tr

Supply Current

IDD

0.5

VDD: 0-- 4.5 V
CE: Low Level

jLPD1701 C-014

SYSTEM DESCRIPTION
N EC's Digital Tuning System provides full electronic control of a vari-cap tuned FM/ AM radio receiver and
stereo. The block diagram of the system is shown in Fig. 1. This is a Phase Locked Loop Digital Tuning System
which consists of two integrated circuits; controller plus PLL in a single thip, and two-modulus prescaler.
The controller chip (pPD1701 C-014) provides Phase Locked Loop capability with on-chip frequency
division, a reference oscillator whose frequency is controlled by an external crystal of 4.5 MHz, and phase comparator circuitry. It accepts directly an AM local oscillator signal and an FM signal from two-modulus prescaler
(pPB553AC), and outputs control signals for closed loop operation of these oscillators. The outputs drives filters
for supplying analog voltages to the vari-cap tuners. The controller also provides the signals to drive the display.
The frequency of the tuned station is displayed on a 3.5 digit multiplexed display. Six favorite stations on each
band can be stored as well as "last stations tuned" information.
The two-modulus prescaler (pPB553AC) is suitable for pulse swallowing in this system.

~PD1701C-014

MUTE

MUTE

FM
TUNING

5
EOl

ACTIVE
AM
TUNING

Dl
D5

~

DIGIT

/

DRIVERS

~

1------FILTER

E02

DISPLAY

~PB553AC

FM/AM

FM
OSC.

PRESCALER

i

FM

RADIO

t

PSC

SEG.A

"-

7

AM
OSC.

SEG. G

r-

"-

r-V

SEGMENT
DRIVERS

AM

STATION OETECT-GR

4.5MHz

1
T

Xl
KO

KEY and SWITCH

A

'/

c::::J

crystal

~~

SO

~

X2

4

MATRIX

K3

Fig. 1 Block Diagram

609

tLPD1701C-014
PIN CONNECTION (Top View)

AM

GNO

KO

FM

K1

K2

b

c

d

e

01

02

03

04

a

K3

9

J,&P01701C-014

E01

E02

CE

PSC

X1

X2

SO

MUTE

05

VOO

EXPLANATION OF INPUT AND OUTPUT TERMINALS
E01
E02

These three-state outputs are used (via active filters) to supply analog voltages to the tuner
varicap for controlling the local oscillators.

CE

This input is used to designate the stand-by mode to the chip. It is low to designate the standby mode. (display: off, P LL: disable)

PSC

This output is used to control the division ratio of the FM two-modulus prescaler (J,.LPB553AC).

X1 , X2
SO

This input is used to control the automatic station searching operation. It is high to indicate the
presence of a station.

MUTE

This output line is high to mute the radio in the case of station change, band change, and. so on.

01 to 05

These outputs are used as digit drivers for the display. (Active high)

VOO

This is a 4.5 to 5.5 volt supply for the chip.

a to g

These outputs are used as segment drivers for the display. They are also used as vertical drive
for the control key and mode switch matrix. (Active high)

KOto K3

These inputs are from seven by four matrix. Various functions are entered through the matrix.
See Fig. 2 for the matrix assignments.

FM

This is the FM band local oscillator input. The frequency is divided by 16/17 using a twomodulus prescaler (~PB553AC).

GNO
AM

610

These inputs are for connection to a 4.5MHz crystal.

System ground.
This is the AM band local oscillator input.

flPD1701 C-014
CONTROL KEY AND MODE SWITCH MATRIX
SEG.A

SEG.B

SEG.C

SEG.D

SEG.E

SEG.F

SEG.G

KO

K1

K2

K3

o:

D:

momentary key,

alternate switch,

6:

diode switch

Fig. 2 Control Key and Mode Switch Matrix

*

Manual up or down search
MU, MD

A momentary depression will tune to next channel, and continuous depression more than

0.5 second allows traversing up or down the entire band untilthe key is released.

*

Automatic up search (Saw-tooth search)
SEEK

A momentary depression causes automatic up search which is terminated by activation of SD
terminal (active high).

SCAN

*

A momentary depression causes automatic station-to-station search.

Preset of the station
ME
The tuning information is stored into the internal RAM by depressing ME key and then the
desired memory key (M1 to M6) within 5 seconds from the time ME key was initially depressed.
If any other key is depressed in this period, the ME function is cancelled.
M 1 to M6

Six favorite stations can be recalled from internal RAM for each band. When it is switched from
one band to the other, it will tune to "Iast-tuned-to station" on that band.
Each time a station is changed, the controller provides a signal to mute the radio.

*

Clock set controls
HA, MA

These keys are used for hours and minutes setting. (See note)

DAD

A momentary depression will reset minutes and seconds.

Note

MU and MD keys can be used to set minutes and hours, keeping depressing ME key when time
is displayed.

611

,uPD1701 C-014
*

Switching-over the display between radio and clock
A, B, P
RCAl

Display mode switches A, B initial switch P and control key RCAl control the display mode as
follows.

1. A: ON, B: ON, P:ANY
No priority on the display. A momentary depression of RCAl key causes alternate display
change between time and frequency whenever it is performed. Whenever frequency is
handled, frequency is displayed.
2. A: ON, B: OFF, P: OFF
Clock display is prior to frequency. A momentary depression of RCAl key causes alternative
display change. When time is displayed, a depression of RCAl or one of the frequency
handling key recalls frequency information on the display for 5 seconds. After that, the
display turns back to clock automatically.
3. A: ON, B: OFF, P: ON
Frequency is prior to the clock. A momentary depression of RCAl key causes the alternative
display change. When frequency is displayed, a momentary depression of RCAl key recalls
clock display and it remains there for 5 seconds. If any other key is handled when time is
displayed, handling of one of the time adjust keys (HA, MA, OAD) keeps the time display,
the display turns back to frequency automatically 5 seconds after the time adjust is
completed. Whenever frequency is handled, frequency is displayed.
4. A: OFF, B: OFF, P: ANY
Clock only.
5. A: OFF, B: ON, P:ANY
Disabled.

*

Switching-over the Manual UP/DOWN signal generator
ROT

ON: Pulse repetition rate more than 6 milisecond will be acceptable as MU or MD signal for an
application of the endless-rotary switch as the signal generator.
OFF: Pulse repetition rate more than 60 milisecbnd will be acceptable preventing from miscounting
by chattering of the momentary switches applied for UP/DOWN signal generator.

*

Protection from the miss key input
lOCK

This switch is for protection from miss key input.
ON ............................... AII of the key input is disabled.
OFF ............................. AII of the key input is enabled.

*

Protection from the key chattering
Key make time ............ Iess than 15 ms
Key break time ............ Iess than 15 ms

612

,uPD1701 C-014
* Selection of the radio band
BO,B1

These switches are for selection of the district.

AM/FM

This switch is for selection of the radio band.

Band Switch
Selected Band
80

B1

on

X

off

Receiving Frequency

Channel Spacing Reference Frequency

AM/FM
on

AM Japan

531 to 1 602 kHz

9 kHz

9 kHz

off

FM Japan

76.1 to 89.9 MHz

100 kHz

25 kHz

on

AM Europe

531 to 1 602 kHz

9 kHz

9 kHz

off

FM Europe

87.9 to 107.9 MHz

100 kHz

25 kHz

on

AM U.S. *3

531 to 1 602 kHz

9 kHz

9 kHz

off

FM U.S.

87.9 to 107.9 MHz

100 kHz

25 kHz

on

AM U.S. *3

530 to 1 620 kHz

10 kHz

10 kHz

off

FM U.S.

87.9 to 107.9 MHz

100 kHz

25 kHz

on

on
off
off

* 3: See AM band I F offset

Table 2

* FM band I F offset
IFO, IFl

These switches program the chip to accept 4 different intermediate frequencies.
Intermediate Frequency

IFO

IF 1
Japan Band

Europe Band

U.S. Band

on

off

10.750 MHz

10.650 MHz

10.650 MHz

on

on

10.725 MHz

10.675 MHz

10.675 MHz

off

off

10.700 MHz

10.700 MHz

10.700 MHz

off

on

10.675 MHz

10.725 MHz

10.725 MHz

Table 3

613

,uPD1 701 C-014
* AM band IF offset
I F2

This switch programs the chip to accept 2 different intermediate frequencies.

81

This switch is for selection of the receiving band and channel spacing of AM radio for U.S. band.
80

81

Receiving
Frequency

Channel
Spacing

531 to 1 602 kHz

9 kHz

530 to 1 620 kHz

10 kHz

Intermediate
Frequency

IF2

on

261 kHz

off

450 kHz

on

260 kHz

off

450 kHz

on
off
off

Table 4

*

Display interface
The center frequency of tuned station is displayed on a 3.5 digit LED display. The segment outputs
a, b, c, d, e, f, and g are also used as inputs for 7 segment drivers. The segment outputs go to common
collector NPN transistor array (SlPA56C) to drive the segments of the common cathode 7 segment LED
display. The digit outputs go to NPN darlington transistor array (SlPA53C) to drive the LED display.

I I--I
I I--I

ME

(f)

I--I I- I
I- I I- I

04

05

b

PM
FM.OP

c

CO LON (STOP)

d

COLON (FLASH)

e
9

01

02

03

a

AM

Fig. 4

*

Display format
o Segment Pattern

, ,=.,

I

*

-,
-,
-

, =,

I_I 1-

,- ,-,, ,=,
,=,
'-'

,-, ,-,

=,

Display brightness control (DIMMER)
DIM

This switch is for selection of display brightness.
ON - - - - Display brightness is reduced. (Duty factor: 1/32)
OFF - - - - Display brightness is ordinary. (Duty factor: 1/8)

614

I_'

- Ib
e,7i c
a

fl

d

,uPD1701 C-014

SEG. F orG

SEG. F or G

diode switch: "off"

diode switch: "on"

Fig. 3 Diode Switch
SEG.E

SEG.E

alternate switch: "off"

alternate switch: "on"

Fig. 4 Alternate Switch

615

m
m
~

Fig.5 APPLICATION CIRCUIT

-C
+5V

SEGMENT DRIVER

I

,~

L~ "

, '"'

,,",

17 'v

,

,,",

It-

'"' ,f""'II.....

,,",

~

I

,.....
,.....
'"' "
.T"'f

~

r

0.011-'
from
"....,
AM VCO

o:~~ X , JIT
fl r

nnfth

~C NCPSC OUT.!
J.tPB553AC
V" INCHKGND
+5V
from
0
FM VCO

~l~rr ~

~

b

FM

crt)

"

:r~r~[[~~,I;~n

KO K1

K2

K3

,

b

,

d

~PD1701C -014 (Top Viewl
X2 SO MUTE 01 02 03

'r 1) l;I 1;J 1;I

4.7k
0.0331-'

HI
2.21-' Hr

LJ L,.J

,

04

f

~

• 3.3k

[] 8 88

2.21-'~~

....,. 2.2k 4.7k

F14C

.... ,
~,

"-

f

o----c
radio 'Witoh

...,

12~
~
5V

i+ +~

to J.tPB553AC

_

to radio

f

g

03

0

I_I

02

~

x5

AM
PM
FM.DP
COLON
01

L ___ L ___ L ___ L,
I
I

I

L____ --------- ---------- ~-] 1

I-'PC78M05
•
1001-'

I_I

I-'PA53C

: >
I

0

04

D~I~ ____
I

5V

100.-

I_I

05

DIGIT

HC-18/U
TOYO COM
TQC-231 A:8C

e

d

0

b

122

c

b

LED (Cathode Common)

0.01 I-'

I-'PC78L05

from
Ace SW. 0

a

g

05 Voo

p'7 I p
7f7
4.5 MHz

Oo022.r

10k

from
battery
(12V)

7,

l~ l,.J L)

~O~
20

t..

--- -- --- -- -- -- ---

L_
33n x 7

1

I

.....

I

3.3 k x 7

and .PA56C
_ ZIL 1001-'

7"

,

Muting
Output

~

}

~

A

.......

i

~-" ~L~

EOl E02 CE PSC Xl

l)

1000p

AM TUN. "....,
VOLTAGE

"-

i'l 0i'l
N

10k

FM TUN.
VOLTAGE

i~M GND

N

o.Oll-'i

22 k x 4

.

t-

I

I.~

I.

-

v

I

I'

L~-

o
-Ii

v
.....

I

-L ~

o
-Ii
I

h.

!

.... ' .. ~ ~
;~ h ; h h
.:p- L II
LIJ

..

v

-~

,,", ,,",

-Ii

-..J

(')

t-

I

,,",

'17 '17

~

J

I

,~

~

.,

C

r--------

KEY and SWITCH MATRIX
I'h

C

_J

MOS DIGITAL INTEGRATED CIRCUIT

pPD1 703C-01 7
PHASE LOCKED LOOP FREQUENCY SYNTHESIZER
TV DIGITAL TUNING SYSTEM CONTROLLER
CMOS LSI

The IlPD1703C-017 is a Single chip CMOS controller designed for using as a Phase Locked Loop Frequency
Synthesizer Digital Tuning System Controller for TV. It consists of a PLL and system controller.

FEATURES
• PLL and Controller is realized in a single chip
•

Pulse Swallowing Method using the IlPB562C

•

VHF/UHF/CATV in U.S. and CANADA

•

Direct tuning by 10 keys and automatic up or down search

•

Last station memory
TV: 1 station, CATV: 1 station (M/S ... off)

•

Manual fine tuning (1 step: 40 kHz ±2 MHz MAX.)

PACKAGE DIMENSIONS

in millimeters (inches)

t:~~=:?:rt
35.15 MAX.
(1.38 MAX.)

I

Fine tuned station memory in VHF and CATV
o Function of remote control
•

28 pin slim dual in-line package (DIP)

•

High speed and low power consumption due to CMOS

•

Single power supply: VDO = 5 ± 0.5 V

•

Low stand-by current ..... less than 10 IlA(CE ... low)

33.02 (1.3)

BLOCK DIAGRAM

vco

Low
Pass
Filter

617

jlPD1703C-017
ABSOLUTE MAXIMUM RATINGS
Supply Voltage

VDD

-0.3 to +6.0

V

Input Voltage

VI

-0.3 to VDD

V

Output Voltage

Vo

-0.3 to VDD

V

Output Breakdown Voltage *

VBDS

-35

V

Output Current

IOH

-10

mA

Storage Temperature

Tstg

-55 to +125

Operation Temperature

Topt

-35 to +75

°c
°c

*: Segment Output Terminals (P-ch open drain)

ELECTRICAL CHARACTERISTICS (Ta=-35 to +75°C, VDD=4.5 to 5.5 V)
CHARACTERISTICS

High Level Input Voltage

Low Level Input Voltage

High Level Output Voltage

Low Level Output Voltage

MIN.

VIH1

0.8VDD

VDD

V

SD terminal

VIH2

0.7VDD

VDD

V

CE terminal

VIH3

0.6VDD

VDD

V

KO to K3 terminals

VIL1

0

0.3VDD

V

CE terminal

VIL2

0

0.2VDD

V

SD, KO to K3 terminals

VOH1

4.0

V

EO,D,MUTE: IOH=-0.5 mA

VOH2

3.0

V

SEG: IOH=-0.5 mA

VOH3

4.0

V

PSC: IOH=-0.2 mA

TYP.

MAX.

UNIT

TEST CONDITIONS

VOL1

0.5

V

EO: IOL=0.5 mA

VOL2

0.5

V

D,MUTE,PSC: IOL=0.2 mA

100

pA

K: VI=VDD=5.0 V

8.8

MHz

vi=0.8 Vp-p, DC cut

s

High Level Input Current

IIH

5.0

Frequency Response

fin

0.5

Supply Voltage Rise Time

Tr

0.5

Supply Current

IDD

10

pA

CE: Low Level

IOFF

-5.0

pA

SEG: VDS=-30 V

Output Off Leak Current

618

SYMBOL

25

VDD:

0~4.5

V

tLPD1703C-017
OUTLINE OF FUNCTIONS
(1) BANDS
VHF/UHF/CATV in U.S. and CANADA
eM/S ... off
VHF

2ch-13ch

UHF

: 14 ch - 83 ch

CATV : A ch -

W ch

eM/S ... on
VHF

2ch-13ch

UHF

: 14 ch - 83 ch

CATV : A ch -

I ch

(2) FUNCTION OF TUNING
eDirect tuning by 10 keys
eAutomatic up or down search
(3) MANUAL FINE TUNING (MFT)

e1 step: 40 kHz ± 2 MHz MAX
eFine tuned station memory in VHF and CATV
M/S: on ... VHF (2 ch - 13 ch) and mid-band (A ch - I ch)
M/S: off ... mid-band and super-band (A ch - W ch)
(4) AUTO FINE TUNING (AFT)

e1 step: 40 kHz ± 2 MHz MAX
e1 cycle: 5 ms
(5) FUNCTION OF R EMOTE CONTROL
eUse of the pPD1986C (transmitter) and the pPD1937C (receiver)
(6) DISPLAY
eDynamic display of 3 digits (cycle: 150 Hz)
(7) REFERENCE FREQUENCY

e5 kHz

619

jlPD1703C-017

PIN CONNECTION (Top View)

GNO

IN

Kl

K2

Sb

Sc

Sd

Se

Sf

Sg

01

02

03

04

05

VOO

Sa

pPD1703C-017

E01

E02

CE

PSC

Xl

X2

MUTE

EXPLANATION OF INPUT AND OUTPUT TERMINALS
E01

These three-state outputs are used (via active filters) to supply analog voltages to the tuner vari-

E02

cap for controlling the local osc.

CE

This input is used to designate the stand-by mode to the chip.
It is low to designate the stand-bY mode (display: off, PLL: off, system clock: stop).

PSC
X1,X2
SD

This output is used to control the division ratio of the two-modulus prescaler (pPB562C).
These inputs are for connection to a 4.5 MHz crystal.
This input is used to control the station searching operation (CHU/CHD). It is high to indicate
the presence of a station and the operation is terminated.

MUTE
D1 to D5
VDD
Sa to Sg

This output line is high to mute the TV set in the case of station change, band change, and so on.
These outputs are used as digit drivers for the display.
This is a 4.5 to 5.5 volt supply for the chip.
These outputs are used as segment drivers for the display. They are also used as vertical drive for
the control key and mode switch matrix.

KO to K3

These inputs are from seven by four matrix. Various functions are entered through the matrix.
These inputs are provided with internal pull down resistors.

IN
GND

This is the local oscillator input.
System ground.
* Please keep 28 pin open because it is pulled up internally.

620

,uPD1703C-017
COMPOSITION OF KEYS

~""

K3 (22)

K2 (23)

K1 (24)

KO (25)

Sa (21)

1

2

3

CLR

Sb (20)

4

5

6

FTU

Sc (19)

7

8

9

FTD

Sd (18)

CHD

0

CHU

FTR

Se (17)

RCD

RCU

Sf (16)

AFTD

AFTU

AFT
CATV/TV

Sg (15)

M/S

CONNECTION TO THE MATRIX OF KEYS

-l--+-+~~--I-t-+---+-I-4-I41-+--+---+------....------------- to display

o
D

momentary key switch

alternate switch

K

L. diode

or

s-J

'V transistor
621

,uPD1703C-017

EXPLANATION OF CONTROL KEYS
These keys are used for direct tuning. Each station is tuned by using two keys within them (EX,

• 0-9
(10 keys)

8 ch: 0, 8, 12 ch: 1, 2). If a second key is not depressed within 4 seconds from when a first key
was depressed, a first key is cancelled. If wrong ch is selected, the pPD1703C-017 shows the error.

•
•

CLR
(Clear)

This key is used for cancelling a first key when a wrong key (within 10 keys) is depressed first

FTU, FTD

These keys are used for manual fine tuning. While these keys are depressed, tuning frequency

(Fine Tuning Up)

increases (or decreases) by 40 kHz at every 125 ms. The range is ±2 MHz.

(EX. 8 ch: 8, CLR, 0, 8).

(Fine Tuning Down) In VHF and CATV bands (M/S: off ... mid-band and super band, M/S: on ... VHF band and
mid band), fine tuning condition can be memorized at each channel (1 step: 320 kHz). In UHF
band, it returns to each initial condition when other channels are selected.
•

CHU,CHD

These keys are used for automatic up (or down) search.

(Channel Up)

While these keys are depressed, tuning frequency increases (or decreases) to the next station at

(Channel Down)

every 750 ms.
Interval time can be shortened by repeating the depressing of them.

•

FTR

This key is used for resetting fine tuning condition of a current channel.

(Fine Tuning Reset)

EXPLANATION OF MODE SWITCHES
•

AFT

This switch is used for selecting the mode of fine tuning.

(Auto Fine Tuning) While this is on, AFT is effective but MFT is ineffective. In this case, frequency changes automatically by 40 kHz according to the external AFT signal. While this is off, AFT is ineffective but MFT
is effective.
•

CATV/TV

This switch is used for selecting CATV or TV band.

(Band Switch)

While this is on, VHF and CATV bands are selected. While this is off, VHF and UHF bands are
selected.

APPLICATION OF AFT
10 knx 2

.-....------..-----{) + 12 V

Sf

---4--K3
A FT Signal

AFTD

O-__--+--1--T""~

33 knX2

----i---K2

AFTU
2SA733X2

* Please keep the time constant of AFT signal less than 5 ms.

622

,uPD1703C-017
EXPLANATION OF A DIODE
MIS

FUNCTION

off

VHF and UHF or mid-band and super-band can be tuned with CATV lTV switch.

on

VHF, UHF and mid-band can be tuned without CATV lTV switch.

* RELATION BETWEEN CATV CHANNEL AND INPUT CHANNEL NUMBER
-MIS

: off
B

A

C

F

E

D

H

G

·1

J

K

L

M

N

0

P

Q

R

S

T

U

V

W

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

-MIS
A

on

B

C

E

D

G

F

H

I

84 85 86 87 88 89 90 91 92

EXPLANATION OF BAND SIGNAL OUTPUTS
Band signals a're out from four segment outputs (Sa, Sb, Sc and Sd) when D5 is on.

'~

Sa

Sb

Sc

Sd

VL

H

L

L

L

VH,MB

L

H

L

L

SB

L

H

L

H

UB

L

L

H

L

band

H: high level, L :Iow level

623

,uPD1703C-017
EXPLANATION OF REMOTE CONTROL SYSTEM
The pPD1703C-017 can be remotely controlled by using the pPD1986C (transmitter) and the pPD1937C (receiver).

* OUTLINE OF FUNCTIONS
•

Direct tuning by 10 keys

•

Automatic up or down search

•

Function of clear (ClR)

•

Power on/off

•

Muting on/off

•

Volume up/down (32 step)

•

One option

* COMPOSITION OF KEYS AT THE pPD1986C

~

K13 (16)

K12(15)

K11 (14)

K10 (13)

KO (1)

3

2

1

0

K1 (2)

7

6

5

4

ClR

9

8

VOlD

K2 (3)
K3 (4)
K4 (5)
K5 (6)

CHU

CHD

VOlU

K6 (7)

POW

OPT

MUTE

APPLICATION OF REMOTE CONTROL SYSTEM
Se

SE303Ax2

-----+--K3
RCD

47 k
2SA733 x 2
ISS53 x 4
---+--K2

2.2 k
2.2 k

OPT. Out

0----,

RCU

PH302

-----,

38kHzAMP~~~~+-~--~----------~--~-o+12V

+

&
D ET ECTOR

22~

.-+---~+-+-+---.

I

--{)--

L0-

AC 117/100 V
ON/OFF

II
IS954
47 k

~----+-~~~-VOLUME

CONTROL
TO DC ATT
POW VOL VOL
ON/OFF UP DOWN

624

2SD471

APPLICATION CIRCUIT

us

i-a-T-TT-r-(71

1_

;;i ~ : IIIL III
! 'r:
L
~

SSO--f-.

r

VH

0----

11111

t

V L 0>------------'

+5 V

Segment Driver

! !! ! ~ I j II

+5 V

I

111111

!

T

:

I

11 K

I

I

1

1,

I

b

c

d

e

L. __ I ___ I ___ 1___ 1___ 1___ 1_

68

n

l

IJ5~ J

iI
I
I

~ __

I

J_J

x 7(
1

a

m
g

LED (Cathode Common)

-

m

20

0.01 p.

Tuning Voltage

0

0.47p

~

PIt fP

CA:~ 1f ~/7 ~I

-r= +5V
10.01 p.

J,

.----___--'t Se

1

D5

.
D1

D2

[~~~~~~~~~~-~~~~-~~~~~~] ~

4.5 MHz

HC- 18/U
TOYO COM

TQC-231A

-8C

4.7 k

2SC945 x 2

1::::
""C

C
....l

--.J

o

eN

('")

(Muting Output

I

}

SD Input

m

N
U1

active high

o
....l
-...J

MOS DIGITAL INTEGRATED CIRCUIT

fLPD1703C-018
PLL FREQUENCY SYNTHESIZER AND CONTROLLER
FOR LW,MW AND FM TUNERS

The J,LPD1703C-018 is CMOS LSI with built-in PLL and controller capable of receiving LW/MW/FM in
U.S.A.,. Europe and Japan.
The J,LPD1703C-018 is provided in a shape of 28-pin Slim DIP (Dual In-Line Package) with less substrate
occupying area.
In combination with a dedicated prescaler J,LPB553AC, J,LPD1703C-018 is capable of composing high-fidelity
LW/MW/FM digital synthesizer tuners for stereo systems such as home stereo systems.

FEATURES
•

F IP (Fluorescent Indicator Panel) direct drive capability (segment only).

•

Built-in PLL, swallow counter and controller.

•

Low data retention current (10 J,LA or less)

•

Capable of preset station display (dot display by LED).

•

FM reference frequency is as high as 25 kHz (the pulse swallowing method is employed).

•

LW/MW/FM in U.S.A., Europe and Japan are selectable by the initialization switch.

•

9N/9N + 2 switching of LW is possible (9N ... 153 - 351 kHz, 9N + 2 ... 155 - 353 kHz).

•

Seven (7) buttons-Fourteen (14) preset station memories (7 for FM and 7 for LW + MW).

•

Momentary or alternate switches can be used as a preset station key and band selector key (MW·FM).

•

Last channel memory is available for each LW/MW/FM band.

•

AUTO and MANUAL UP/DOWN selection is possible (saw tooth wave tuning).

•

FM IF offset capability (4 ways by 25 kHz step)

•

Built-in frequency preset function for adjustment at time of mass production of a set.

•

European FM band 4.1/2 digit display (other bands are displayed in 4 digits).

•

28-Pin Slim plastic DIP; saves board area.

•

A single power supply of 5 V ± 10 %.

PACKAGE DIMENSIONS

in millimeters (inches)

E:~=::~lI

.35.15 MAX.
O.3SMAX.)

.

I

-:BS.5(0.33)

~~
r------------------,~~~.~~~~

-ffr-A- f""t--f'9r-A-IR-fI'HfI--Fl-I1-Fr-A-R-f'...... q

N C\!

_ .n 9

-

0.25

~i

(0.01)

~~

2.54 (0.1)
33.02
(1.3)

626

~

M

~

10.16
(004)

0° - 15°

tLPD1703C-018
ABSOLUTE MAXIMUM RATINGS
Supply Voltage

VDD

-0.3 to +6.0

V

Input Voltage

VI

-0.3 to +VDD

V

Output Voltage

Vo

-0.3to+VDD

V

Output Absorption Current

10

10

Operating Temperature

TOPT

-35 to +75

Storage Temperature

Tstg

-55 to +125

°c
°c

Output Breakdown Voltage

VBDS

Sa-Sg terminals -35

V

rnA

(Drain source voltage)

RECOMMENDED OPERATION CONDITIONS
CHARACTE R ISTIC

SYMBOL

MIN.

TYP.

MAX.

UNIT

5.0

5.5

V

Supply Voltage

VDD

4.5

RAM Retention Voltage

VRAM

2.5

V

Output Breakdown

CE terminal = 0
Sa-Sg terminals (Drain

-30

VBDS

V

Voltage
Supply Voltage Rise Time

CONDITION

sou rce vo Itage) 10 F F=-5 JlA
Trise

500

ms

MAX.

UNIT

VDD=Oto4.5V

ELECTRICAL CHARACTERISTICS
CHARACTERISTIC

SYMBOL

MIN.

TYP.

CONDITION

High Level Input Voltage

VIH1

0.8VDD

VDO

V

SO terminal

"

VIH2

0. 7V OO

VOO

V

CE terminal

"

VIH3

0. 6V OD

VDO

V

KO-K3 terminals

Low Level Input Voltage

VIL1

0

0. 3V OO

V

CE terminal

"

VIL2

0

0. 2V OO

V

SO, KO-K3 terminal

High Level Output Voltage

VOH1

4.0

V

PSC, MUTE, 01 - 05 terminal IOH = -0.2 mA

"

VOH2

4.0

V

E01, E02 terminals
IOH = -0.5 mA

627

tLPD1703C-018

High Level Output Voltage

VOH3

Low Level Output Voltage

VOL1

"

VOL2

High Level I nput Current

+1'H1

"

+1'H2

Low Level Input Current

-11L1

Output Leakage Current

628

V

Sa - Sg terminals
IOH = -0.5 mA

0.5

V

E01, E02 terminals
IOL = 0.5 mA

0.5

V

MUTE, 01 - 05, PSC
terminals IOL = 0.2 mA

100

JlA

KO - K3 terminals
V,N = VOO = 5.0 V

300

JlA

X1 terminal
V,N = VOO = 5.0 V

300

JlA

AM, FM terminals
V,N = OV, VOO = 5.0 V

1

JlA

E01, E02 terminals
Vo = V 0 0 = 5.0 V

3.0

5.0

25

10-3

IL

AC Input Voltage

Vin

1.0

VOO

Vp_p

AM, FM terminals

Response Frequency

fAM

0.5

2.5

MHz

AM terminal, Vin=1.0 Vp_p
(MIN.), DC cut

"

fFM

0.5

8.8

MHz

FM terminal, Vin=0.8 Vp_p
(MIN.), square wave, DC cut

Operating current

1001

mA

Normal operation (excluding
display current)

"

1002

JlA

CE terminal = 0 Ta = 25°C,
VOO = 5 V

RAM Retention Voltage

VRAM

Output Breakdown Voltage

VBOS

3

10

2.5
-30

V

CE terminal = 0

V

Sa - Sg terminals (Drain
source voltage), IOFF=-5 JlA

JLPD1703C-018
OUTLINE OF FUNCTION
Receiving Frequency, Channel Spacing, Reference Frequency, Intermediate Frequency

~
U.S.A.

Europe

Japan

Frequency

Channel

Reference

Range

Spacing

Frequency

MW1

530 - 1 620 kHz

10 kHz

10 kHz

MW2

522 - 1 611 kHz

9 kHz

9 kHz

FM

87.9 - 107.9 MHz

200 kHz

25 kHz

MW

522 - 1 611 kHz

9 kHz

9 kHz

LW1

155 - 353 kHz

9 kHz

1 kHz

LW2

IF

450 kHz
10.650,10.675,10.700,10.725 MHz
450 kHz

153-351 kHz

9 kHz

1 kHz

FM

87.50 - 108.00 MHz

50 kHz

25 kHz

MW

522 - 1 611 kHz

9 kHz

9 kHz

450 kHz

FM

76.1 - 89.9 MHz

100 kHz

25 kHz

10.675,10.700,10.725,10.750 MHz

10.650,10.675,10.700,10.725 MHz

Tuning Functions
(1)

AUTO UP/DOWN TUNING (Saw Tooth Wave Mode).
When a high level is input at SO terminal, the auto tuning is stopped and signal from that station is
continuously received.

(2)

MANUAL UP/DOWN TUNING (Saw Tooth Wave Mode)
Step forwarding by the momentary switch. Further, when the switch is kept depressed for more than
0.5 sec., the receiving frequency is continuously forwarded till the switch is released.

(3)

Preset Memory Calling
FM .......... 7 channels (M1 - M7)
LW + MW ..... 7 channels (M1 - M7)
FM and LW+MW are of 7 channels independent preset type. LW and MW are of total 7 channels
random access preset type.

DESCRIPTION OF TERMINALS
Terminal Configuration Diagram (Top View)

EOl

AM

E02

2

GNO

CE

3

FM

PSC

4

KO

Xl

5

X2

6

SO

7

MUTE

8

01

9

Kl
1:

K2

-0

0
'-J

22

K3

w

()

21

Sa

6
......

20

Sb

19

Sc

0

CO

52

10

03

11

18

Sd

04

12

17

Se

55

13

16

Sf

VOO

14

15

S9

629

jlPD1703C-018

Terminal No.

Symbol

Terminal Name

Description
Charge pump output from the phase detector composing P LL.
When the divided oscillation frequency is higher than the reference frequency, these terminals go high, and when lower than
reference frequency, low level is output. When both are in accord

Error Out

with each other, the terminal become floating.
As the same signal is simultaneously output on E01 and E02,

2

these terminals may be connected to either LPF (Low Pass Filter)
of MW, LW or FM.
Activation of this device is controlled by this terminal.
When the device is to be normally operated, set this terminal
at the high level, and when the device is not used, set at the low
level.
High level ... Normal operation

3

CE

Chip Enable

Low level ... Memory retantion state

(stand-by current is

10 pA or less. Display is OFF, PLL is stopped
functioning, internal clock generator is stopped.)
Note that CE terminal only accepts the pulse that is longer
than 134 ps. Be sure to force this terminal high after the VDD
terminal is 4.5 V or above.
This terminal outputs a signal to switch the modulo of the
two-modulus prescaler when a pulse swallowing method is used

4

PSC

Prescaler
Control

for frequency division (in case of FM).
This terminal should be connected to PSC terminal of a dedicated two-modulus prescaler pPB533AC.

5

X1

The X'tal oscillator terminals. A 4.5 MHz X'tal should be conX'tal

6

X2

nected to these terminals. (Toyo Tsushinki: TQC-231A-8A is
recommended)
When this terminal is forced to high level in AUTO TUNING

7

SO

Station
Detector

(AUTO UP/DOWN) mode, the scanning is quitted.
A high level signal should be input within 75 ms after PLL is
locked.
This terminal outputs an active-high signal for muting shock
noise when PLL is out of lock.
When CE terminal is forced to low level (back-up state), this
terminal is forced to low level unconditionally.
The length of the muting signals are as follows.
At time of LW/MW/FM switching ... 700 ms (TYP.)
At time of MANUAL UP/DOWN

8

MUTE

MUTE

... 200 ms (TYP.)
( 1 step operation)

At time of AUTO UP/DOWN

... 200 ms (TYP.)

(after SO terminal is forced to high level.)
At time of Preset Memory calling

... 450 ms (TYP.)

Above show the muting signal which is output just after PLL
data are changed. Actually, premuting time of 50 ms (before PLL
data change) is added for. (For details, see MUTE Timing Chart
on Page 645.)

630

,uPD1703C-018

These terminals are the display digital signal outputs and are
Digit Outputs

active-low.
(For details, see the display connection diagram on Page 640.)
This is the power supply terminal of the device. When the
device is in operation, 5 V±1 0 % should be supplied. Under the
preset memory back-up condition, supply voltage can be reduced

14

VDD

VDD

to 2.5 V.
Note that the rise time of supply voltage VDD must be 500 ms
or less.

If the rise time is excessively long, the initialization

will not be operate properly.
These terminals are the display segment signal outputs and
key return signal source terminals, and are active-high.
Sa - Sg

Segment
Outputs

(For configuration of key matrix see Page 632.)
As these terminals withstand voltage up to-3D V, they can be
directly connected to the segment terminal of F IP (Fluorescent
Indicator panel).
(For details see the display connection diagram on Page 640.)

Key Return

22 - 25

Signal Inputs

These terminals are the input terminals of key return signals
from the external key matrix. (For details see the key matrix
configuration shown on Page 637.)

26

27

28

FM

GND

AM

FM Local

FM local oscillator divided in 1/16 or 1/17 by the prescaler

Oscillator

JlPB553AC is input into this terminal. As an AC amplifier is

Signal Inputs

built in, signals should be input after DC is cut by a capacitor.

GND

This terminal should be connected to a system ground.

AM Local

Signals from MW and LW local oscillator are input to this

Oscillator

terminal. As an AC amplifier is built in, signals should be input

Signal Inputs

after DC is cut.

631

j.lPD17.03C-018
1. CONFIGURATION OF KEY MATRIX
1-1 Arrangement of Key Matrix

KO (25)

Kl (24)

K3 (22)

K2 (23)
MEMORY

Sa (21)
Sb (20)
Sc (19)
Sd (18)
Se (17)
Sf (16)
S9 (15)

(

D

Momentary Switch

I~I

Momentary or Alternate Switch

Alternate Switch

Diode Matrix (Short or Open by Diode)

D

632

Open

) is Terminal No.

jlPD1703C-018
1-2. Connection of Key Matrix and Type of Switch

Sa

Sb

Sc

------r_~~~~~~~~~~~----r_--~~--------------------------------

Sd ----__i--~f-+_t_--f-t--l-__+_t_I_+___t_--__il_--_t----_....-------------------------- To 0 isplay
Circuit

Sf

Sg

----~~--7+~--~~_.~r_--+_----r_--__i----_+----~----4_----._--------__

KG

Kl

K2

K3

Sa

Sb

Sc

Sd

Se

Key Input

-+-$•

+

Sg

Sf

.

Momentary Switch

Momentary or Alternate Switch

Alternate Switch

Diode Matrix (Short or Openl

As the preset station Keys (M1 -

M7) and Band Selector Keys (FM, MW), either Momentary or Alternate

Switch can be used. However depending upon which switch is used, an inserting position of diodes (for preventing
turn-around of key return signal) may differ.
The following shows the examples;

633

,uPD1703C-018
Example 1: When Momentary switches are used as Preset station Keys and Band Selector Keys.

~----~4--+~--+44--4~~~~------------------------------------~

Sb----~~~~~~~--~~~~--~~--------------------------------~

Sc ----~-4+t--+_1_4_-~~...+_--_1~--.......- - - - - - - - - - - - - - - - - - - - - - - - - - - - To Display

Circuit
~----~--~~~~~~~r+__~--~----r_--~-----------------------'-

Sf ----~~~~--~~--~----~--~----r_--_+----~--~------------~

S9 ----~~--~~~~--~~--~----~--_+----4_----~--_+----._-----~-

KO

K1

K2

K3

Sa

Sb

Sc

Se

Sf

Sg

Example 2: When Alternate Switches are used as Band Selector Switches.

~ ----~~~~+-_r~--~~~~-------------------------------------~

Sb ----~~~~+-~~--r+;-~~--~~-----------------------------~

H-----+----+------------------------------

Sc ------lI-----iH--+--++4---f-+-l-......

~ ----~-----r--~~--~~--~----+----+----~------------------------

Sf ---~~-~r-_r~--~----~----+----+----~----r_--_+--------------

S9 ----~~--~~~~--~~--~----+---_+----~----~--_+----4_--------

KO

634

K1

K2

K3

Sa

Sb

Sc

Se

Sf

Sg

To Display
Circuit

,uPD1703C-018
Example 3: When Alternate Switches are used as Preset station Keys and Band Selector Keys.

Sa --~~+--rT+--r+~-r~-M~----------------------------------------

Sb --~~+-~~--r+~-r~--~----~----------------------------------

Sc ------+----+-+-+--t-+-+--+-+-+--+-----+----.------------------------ To Display
Circuit

Sd

Sf

S9

----~~~~--~~~~--+-----+----4----4_-~~-~-~~-----

KO

Kl

K2

K3

Sa

Sb

Sc

Sd

Se

Sf

__

Sg

(Note) LW Key cannot be used as Alternate Switch.

635

jlPD1703C-018
2. DESCRIPTION OF KEY MATRIX
2-1. Initialization Diode Matrix
Initialization Diode Matrix is available in 4 types as shown below. These matrixes are read in when power is
initially supplied to VDD (initialize) and when CE terminal is changed from low fevel to high level. However, the
9 kHz/l0 kHz and 9N/9N+2 Switches are constantly read in. Even in this case, PLL data and display are changed
only when a momentary switch (UP, DOWN, Ml - M7 Switches) is depressed.
(1) Switches for specifying I F offset of FM
IF1,IFO
(2) Switches for specifying FM band area (U.S.A., Europe, Japan)
BAND 1, BAND 0
(3) Switches for specifying MW band channel spacing and reference frequency
9 kHz/10kHz
(4) Switche for selecting LW band frequency range
9N/9N+2
These initializations will be performed by shorting or opening the intersecting points on the matrix by Diode.
(In the following table, "1" means shorting by Diode and "0" means opening.)

Symbol

Description of Function
Switches for specifying I F offset frequency of FM.
IF offset can be varied in 4 levels, as shown below, by 25 kHz step without changing indicated
frequency:

IFl
IFO

IFl

IFO

U.S.A. Band

European Band

Japanese Band

0

0

0

1

10.700 MHz

10.700 MHz

10.700 MHz

10.725

10.725

10.675

1

0

1

1

10.650

10.650

10.750

10.675

10.675

10.725

Switches for specifying FM band areas.
One of FM bands of U.S.A., Europe and Japan can be selected.

BANDl
BANDO

BANDl

BANDO

Band Area

Frequency Range

Channel Spacing
200 kHz

0

0

U.S.A. Band

87.9 - 107.9 MHz

0

1

European Band

87.50 - 108.00 MHz

50 kHz

1

0

Japanese Band

76.1 - 89.9 MHz

100 kHz

1

1

Prohibited *

* Both BAND1 and BANDO must not be ON (1). If both are ON, the band area will not be
properly set.
Switch for specifying MW band channel spacing, reference frequency and frequency range.
The setting can be independently made regardless of FM band areas (BAND1, BANDO).

9 kHz/l0 kHz

636

9 kHz/10 kHz

Frequency Range

Channel Spacing

Reference Frequency

0

530 - 1 620 kHz

10 kHz

10 kHz

1

522 - 1 611 kHz

9 kHz

9 kHz

,uPD1703C-018

This switch is always read in. However, PLL data and indication will change only when a
momentary switch (UP, DOWN, M 1 - M7, etc.) is depressed.
Switch for selecting LW band frequency range.

9N/9N + 2

9N/9N+2

Frequency Range

Channel Spacing

Reference Frequency

0

155 - 353 kHz

9 kHz

1 kHz

1

153 - 351 kHz

9 kHz

1 kHz

This switch is always read in. However, PLL data and indication will change only when a
momentary switch (UP, DOWN, M1 - M7, etc.) is depressed.

2-2 Alternate Switch
Symbol

Description of Function
This is an AUTO/MANUAL tuning selector switch.
ON (1) ... AUTO Tuning
OFF (0) .. MANUAL Tuning
AUTO/MANUAL tuning starts when UP or DOWN momentary switch is depressed after this
switch is set at ON or OFF position.
(For details see Momentary and Alternate Switches on Page 632.)
(Note 1)
AUTO tuning operation does not stop even when this switch is changed to MANUAL Tuning

AUTO/

during AUTO Tuning operation. If it is desirable to stop AUTO tuning simultaneously with the
switching to MANUAL tuning, a system should be so configured that high level signal is constant-

MANUAL

Iy supplied to SO terminal during MANUAL tuning.
(Note 2)
In Auto tuning mode, the J.LPD1703-018 increases or decreases frequency step by step corfirming that the PLL system is completely locked, in order to scan the band as fast as possible. Therefore if the PLL system is malfunctioning and is not locked, the J.LPD1703-018 halts the AUTO
tuning operation and waites for the PLL to be locked. In this condition, all the keys are not accepted. To escape this condition, force CE terminal to low level then high level, and the frequency
can be varied by manual tuning.
In the recomended application, the CE terminal is to be connected to the main-power-supply of
the set. So the end user can vary the frequency after operating the power-supply-switch, even if
the above malfunction occurs.

637

,uPD1703C-018
2.3 Momentary and Alternate Switches
Either momentary Switch or Alternate Switches can be used as Preset Keys (M 1 - M7) or Band Selector
Keys (MW, FM).
When Alternate Switches are used for Preset station Key, the interlocking including UP and DOWN Keys is
required.
Symbol

Description of Function
This switch is used to write frequencies for tracking adjustment at factory into the preset
memories. When this switch is depressed, following frequencies are written into the preset memories (M1 - M7):
FM
(1 ) When U.S.A. Band (BAND1=0, BANDO=O) is set:
M1

M2

M3

M4

M5

M6

M7

89.7 MHz

101.7 MHz

87.9 MHz

87.9 MHz

92.9 MHz

-

-

M5

M6

M7

90.0 MHz

-

-

(2) When European Band (BAND1=0, BANDO=l) is set:
M1

M2

M3

M4

88.40 MHz 94.40 MHz 100.40 MHz 106.0 MHz
TRACKING
(3) When Japanese Band (BAND1=1, BANDO=O) is set:
POINT
PRESET

M1

M2

M3

M4

M5

M6

M7

77.0 MHz

83.0 MHz

89.0 MHz

76.1 MHz

78.6 MHz

-

-

M6

M7

MW
(1) When Channel Spacing 9 kHz (9 kHz/l0 kHz=l) is set:

I

61:~HZ I

M2
1503 kHz

M3

I

-

M5

M4

I

-

I

-

I

-

I

-

I

(2) When Channel Spacing 10kHz (9 kHz/1 0 kHz=O) is set:
Ml

I

630 kHz

M2

I

1620 kHz

M3

I

-

M5

M4

I

-

I

-

M7

M6

I

-

I

-

I

- indicates "Don't Care" (previously stored content is called).
This switch is used to write the currently received frequency into Preset Memory.When either
one of M1 - M7 Keys is pushed within 5 sec. after this key is pressed, the frequency displayed
MEMORY

is written into a memory corresponding to the key pressed.
To release the memory·write-enable state before the 5 sec. push UP/DOWN key or switch
LW, MW, FM Bands.

638

jLPD1703C-018

These are the preset memory writing and calling keys.
It is possible to store FM and MW or LW stations per one button. As MW and LW are of random
preset type, storage in optional location in total 7 channels M1 - M7 is possible.
(1) Write
When either one of M 1 - M7 keys is pushed within 5 sec. after MEMORY key is pressed,
the frequency currently received is written into a memory corresponding to the key pressed.
M1 - M7

(2) Calling
When either one of M 1 - M7 keys is pressed, content (frequency) of a memory corresponding to the key pressed is called out. When a preset key is pressed, a mute signal of approximately 450 ms is output.
And when frequency bands are switched (LW ---+ MW or MW - + LW), a mute signal of
approximately 750 ms is output.
(For details see MUTE Timing Chart on Page 645.)
These are AUTO and MANUAL tuning keys. When these keys are pressed, the following
operations are executed:
(1) When AUTO/MANUAL Switch is set at AUTO:
oWhen UP key is pressed, frequency is continuously kept going up in saw tooth wave form.
If a high level is input in SD terminal at this time, AUTO UP operation is stopped.

UP

When DOWN key is pressed during AUTO UP mode, the mode changes to AUTO DOWN
operations.
oThe operation of DOWN key is almost the same as UP key. The only difference is that this

DOWN

key decreases the frequency.
*1. In AUTO UP or DOWN operation, frequency is going up or down at the speed of 80 ms/step.
*2. When UP key is pressed in AUTO UP operation or DOWN key in AUTO DOWN operation, AUTO UP/DOWN operation is kept continued. In addition, when UP or DOWN key is
kept pressed, AUTO UP or DOWN operation does not stop even when the SD terminal is
forced to highllevel.

MW
FM
LW

These are FM, MW and LW band selector switches. Alternate Switches may be used for FM
and MW. (Alternate Switch cannot be used for LW.)
When the bands are switched, a MUTE signal of approx. 750 ms is output through MUTE
terminal.

639

,uPD1703C-018
3. DESCRIPTION OF DISPLAY
3-1 Desplay Connection Diagram
The display connection diagram is shown below. D1 - D5 and Sa - Sg correspond to the digit terminals (01 - 05) and the segment terminals (Sa - Sg) of pPD1703C-018.
The segment terminals of pPD1703C-018 are capable of withstanding voltage up to -30 V (P-ch open drain
output) and it is therefore possible to connect these terminals direct to FIP (Fluorescent Indicator Panel).
The digit lines should be connected to F IP via one-stage buffers (PNP transistor), because those outputs are
CMOS-complementary-type and active-low.

I

n n
I

FM

I

1 1
I 1

I

I

I

I
I
I

1
1
I

n ,.' o

(Sg):

MW(Sa)1
LW (Sd):

I(Sg~

~

l

I

1

I

I

:

1

I

(Sg)

I~I IMEMO

I(sg)

I ___ :MHz
l(st)1
I
~
I

04

03

02

005

01

(Sg)

(Se) I(Sg):

(Sg)

1KHz
:

(Note 2)

005

(Sb)

(St)1

005

(S~ + Sd)
(Note 1

05

Fig. 1 Display Connection Diagram
(Note 1)

Display of "kHz" is made by OR signal of Sa and Sd. If no LW is available, "kHz" can be displayed by
Sa only.

(Note 2) This is the digit for "50 kHz" in Europe an FM. Note that this digit is controlled by only 3 segment
lines; Se, Sf and Sg, and organized the number "5" and "0".
In MW and LW, nothing ts displayed here. For FM in U.S.A. and Japan, don't connect the 05 or Sg
line in this digit.

640

jlPD1703C-018
3-2 Examples of Display
Shown below are examples of display when F IP shown in Fig. 1 is used.
(1) FM in U.S.A.

MHz

FM

(2) FM in Europe

FM

MHz

(3) FM in Japan

MHz

FM

(4) MW (Channel Spacing 10 kHz)
MEMO*

MW
kHz

(5) MW (Channel Spacing 9 kHz)

MW
kHz

(6) LW in Europe

)-,
LW

'_I

kHz

* MEMO Display lights up for 5 sec. after the momentary key MEMORY is pressed.

When Preset Station key M1 - M7 is pressed following the MEMORY key, the currently received frequency
is written and then the MEMO display disappears.

641

,uPD1703C-018
4. PRESET STATION INDICATORS*
An example of the preset station indicator circuit is shown in Fig. 2. The timing chart at this time is shown in
Fig. 3.

To Segment terminals of FIP

1SS53

P1
P2

+5 V

P3
P4

SlPD1703C-018

5V

300 n.

P5
P6
P7

ip-------

To digit terminal of FIP

100 kn.

-25 V

Fig. 2 Example of Preset Station Display Connection

02

1.

Tl

.1
04

HI·

i

t

Tl

·1

t-FreqUenCy Display (Display of Highest Significant

~Position"1")

Preset Station Display (BCD code is transmitted
from Se - Sg)

Fig. 3 Timing Chart
In this system, the most significant digit of display is to be connected to two segment lines Sb and Sc, and it dis*
plays "1" or blank
By using the remaining segment lines at the most significant digit timing, data for the preset station indicator are
output. The preset data are output on the Se-Sg lines at the rising edge of 04 (most significant digit signal) in
BCD form.

The J,tPD4035BC in Fig. 2 latches the BCD preset station data at the rising edge of 04, and the

J,tPB74LS42 decodes the BCD data and then drives the LEOs. Consequently preset station indicators are displayed
in static.

642

,uPD1703C-018

* Preset station indicator shows which preset memory is selected.

Output Status Through Segment Terminals Sa - Sg
at Timing T1 and T2 of Digit Signal D4

~t
Imlng

Sa

Sb

Sc

Sd

Se

Sf

S9

Blank

Blank

Blank

T1

Blank

Highest Significant
Position "1" Display
or Blank

Blank

T2

Blank

Blank

Blank

Blank

BCD Code Output

Preset Station BCD Code Output
Sg

Sf

Se

Preset Station

0

0

1

P1 (M1 Key)

0

1

0

P2 (M2 Key)

0

1

1

P3 (M3 Key)

1

0

0

P4 (M4 Key)

1

0

1

P5 (M5 Key)

1

1

0

P6 (M6 Key)

1

1

1

P7 (M7 Key)

643

,uPD1703C-018
5. TIMING CHART
5·1 Display and Keying

Segments Sa ,." Sg

Segment Output
Digit 51

I
J

I

1

1
1

I
Digi t Output 100 iJS I

100 iJS ~

,33.3 iJS
I

200 "'s (TYP.l

1

I

1

I

I

I
I

I
I

1

I

1

Sa

i
I

33.3 iJS

I

I
I
I
I

KEY return
signal source segment output

200 iJS
(TYP.l

t

Keying

ISe "" Sgl
I •
• 1•
I
,

Sb.Sc

I

.1

Sa"" Sg

I
I
I

Segment output
Preset station
display output

66.6 iJsl

I

Digit 0 utput

33.3 iJS ~
1

I
I
I

,

J

,I

I

33.3",s

100 ",sl

I

J

600 iJS (TYP.)

,I
I

Sd

33.3 iJS
KEY return signal
segment output

I

200 iJS

:

(TYP.l

I

t

Keying

644

j.lPD1703C-018
5-2 MUTE Timing Chart
(1) KEY ON chattering preventing time
(2) MUTE first-out time
(3) Division ratio setting and display content updating time
(4) MUTE last-out time
(5) Scan time
(6) PLL lock time

(1) MANUAL UP/DOWN

(D

I- 15 ms

_.
~
.1

4_5_m_s~__~.+i_~----10--m1!~II!_.----~12~5~-~2~5~0~m~S~__~.~1

____

I

I

_

'------

Band Edge (Max. Frequency ~ Min. Frequency. Min. Frequency ~Max. Frequency)
(f)

____

~----U)--~~I.-----4~5-m~s----.~i-:----10--m~~*i_.------------6-2-5----7-5-0-m-s------------~.~I_____________
I.. 15 ms ·1

(2) AUTO UP/DOWN
When SO signal is input
@

15-

45 ms

10 ms I

125 - 250 ms

75 ms

CD

I
SO detection (input available)

When no SO signal is input.

45 ms

15-

10 ms

I

75 ms

15 ms

15-

10 ms I

75 ms

SO detection (no input)

SO detection (no input)

Band Edge (Max. Frequency ~ Min. Frequency. Min. Frequency ~ Max. Frequency)
@

45 ms

I

5 - 10 ms:

375 - 500 ms

:

I
I

75 ms

I
I

125 - 250 ms

CD

I
I

I
15 ms

l

SO detection (input availabel)

645

jlPD1703C-018
(3) PRESET MEMORY CALL

I

i 5 .... 10 ms ..i

45 ms

375 .... 500 ms

I

~.----------~.~.-.------.~
: : ~----~~~~~------~.

ffi

~

___________________

\·15 ms .. \

When the band is changed (MW -+ LW. LW -+MW)

ffi

I

i 5"" 10 m~ :

45 ms

---""1-,1-5-m-s-.I'"

I

I

(4) When FM/MW/LW are switched and Power is ON (CE

___

__

~__ffi__~I~.
I- 15 ms ·1

646

625"" 750 ms

~4_ _--~~--~1~----_1~----------~~----------------~
.....- - - - - - - -

= Low -+ High)
®

.~i._5_""_1_0_m~s~.i~.___________6_2_5_-_7_5_0_m_s____________~.~I

--4_5_m_s--__

________

,uPD1703C-018
6. EXAMPLES OF FM/MW/LW POWER SUPPLY SWITCHING CIRCUIT
When Momentary Switch is used as a FM, MW, LW band selector switch, the tuner side power supply switching should be performed externally by the circuits shown below.
Input signal in the following diagram utilizes symbol of display ("FM", "MW", "LW") signals.
Example 1
J,LPD4011BC

r- - - - - - - - ...,

Segment Output
FM(Sg) ~------__~4_--~

D-....-"'---------

FM

~~r_--------~_

MW+LW

J,LPD4011 Be

MW(Sa)

r---------,
~""-r_-------~- MW

O-~t---------4-

LW

Digit Output
C LOC K (D5)*(}------__~4_..J

5V
Example 2
Segment Output
FM(Sg)

,....--~FM

' - - - - - ME+ LW

,....---- MW

' - - - - - LW

Digit Output
CLOCK (05)* ~-----af-""""..J

*Note: CLOCK (05) is the inverted signal of 05 terminal from J,LPD1703-018. Output of digit buffer can be used as this signal.

647

m
~
(J)

~

."

C

APPLICATION EXAMPLE OF CIRCUIT DIAGRAM

+ 40mentary
c:::>

SWI

,
,17\;
.I,
,
.I\,
~,

',/

I"'~I'" ~I'"

\,~ \,

I"'~ ~

I"'~

1SS53 ~
leode Matrix)

-

t

,,~

IN CHK GNO

v

0.011l F
Fro m FM VCO

±

"- ~"- ~

KO

K1

Ho

Il..... 20 pF ~

->-

I...J )

-,o"T

~~I'"

K3

Sa

Sb

Iii"!

1B

Sc

Sd

Se

nI

'

'I

V"-

""
100 k11

O""C
Set Main Switch

-25 V

~t 1SS53

~~

High capacitance capacitor 1
(for back-up)
i>7

i i I

1m21m

18117116115114113J
GNOP/S CK R J K TIC OA

,t

~

f--

. .+-f-

~

100 k11

IlPD4035BC
A B C 000 Oc OB VOO
9111011 11 111211131114111511161

0.01 IlF

~

,'177 7~

'-~""l:..-

,,,,

., . . . F

2SC945

)

100kl11

1

I

,-l

5V

1

~

r-

161]15j 11411 13111211lill101 91
VCC A 8 C 0 9 8 7

74 LS42

v,......,~

77

I

5V

J2SA733

.,"-

1SS5:

-25 V

+5 V

47
k11

~~

L.....--

r

47
k11

~~

~~ ~ ~

100 k11

Sg

.----

To =M VCO
......
...,

9

n-~

2SC945

+5 .7 V

Sf

*
')2
T~ F
P

I

H:

.....

K2

~w~~ CU~LUlt~ML~JEL~ ;~~~~;
47 k11

,...

'" ~~

IlPD1703C-018

I

1SS53

To ... W,MWVCO

f

r;4) r,5J r;il

/7

0.01 IlF

e

r~
~ L.U

33

AM GNO FM

H

0

I-" "

~ ~ ~ t ~~

L

CO
gment
of FIP

d

PF

LpLU~4J

+5V

C

''"

~
,. t'\,. t'\t..

"I-' , 1-"

I

o
...a

b

r--

;
VCC

I'

i

mmrt,r51
NC NC PSC OUT

IlPB553AC

~\"

(')

a

GGG1
-r.
~ ~~ r;~
r;~;~ r~r.m
"-~

0.0,1, IlF

0·4

w

....

,
,
'I'"
~ "
"I'"
\,,1-/ , 1-" " ,...

Iternate SW)

.....
....

o

1SS53

I"~I'" ~I" 'I'"

Fro n LW,MWVCO

...a
.......

0

To
Grid
of
FIP

2

3 4 5 6 GNO
1121 31 411 5 1161PII81
1

I
PI

J~ ~ ~~
P

G

G

P~

~ ~

30011
( MUTE Output
+5 V
SD Input

*4.5 MHz X'tal (Toyo Tsuhinki: TOC-231 A-8C)

The applied circuits and circuit constants listed in this material are not intended for mass production design with deviations and temperature characteristics of component
parts considered. Further, this company will not assume any responsibility as regards the patents on the circuits listed in this material.

MOS DIGITAL INTEGRATED CIRCUIT

flPD1703C-020
PLL TUNING RADIO CONTROLLER AND
24 HOUR DISPLAY FORMAT TIMEPIECE WITH TIMER CIRCUIT
The I1PD1703C-020 is a CMOS LSI with 24 Hour display format timepiece built-in with timer circuit and
PLL controller capable of receiving LW/MW/FM in U.S.A., Europe and Japan.
In combination with a prescaler I1PB553AC, I1PD1703C-020 can provide LW/MW/FM digital synthesizer
tuner with timer clock.
Since the package of I1PD1703C-020 is slim DIP (Dual In·Line Package), it greatly simplify Clock-Radio in
design and assembly.

FEATURES
Clock part
• 24 hour display format clock. ([Hour], [Minute])
• Control timer with snooze timer.
• Duration of control timer and sleep timer is 64 minutes.
• Duration of snooze timer is 4 minutes.
• Program tuning (ie. To receive the programed station at the control time set in advance) is possible.
Radio part
•
•
•
•
•

Auto up/down tuning.
Manual up/down tuning.
Last channel memories are available for each LW/MW/FM band.
Six (6) preset station memories for MW/FM band.
Built-in PLL swallow counter and controller.

Common features
• FIP (Fluorescent Indicator Panel) direct drive capability. (Segment only)
• 28 Pin slim plastic DIP.
• A single power supply of 5 V±lO %.

PACKAGE DIMENSIONS

in millimeters (inches)

e~::-~:~3
I

35.15 MAX.
(1.38 MAX.)

.1

254(0.1)
33.02(1.3)

649

jlPD1703C-020
ABSOLUTE MAXIMUM RATINGS
Supply Voltage

VOO

-0.3 to +6.0

Input Voltage

V,

-0.3 to VOO

Output Voltage

Vo

-0.3 to VOO

Output Breakdown Voltage *

VBOS

-35

Output Current

IOH

-10

Storage Temperature

Tstg

-55 to +125

Operating Temperature

Topt

-35 to +75

* : Segment Output Terminals (P-ch open drain)

ELECTRICAL CHARACTERISTICS (Ta=-35 to +75 °C, V00=4.5 to 5.5 V)
CHARACTERISTIC

High. Level Input Voltage

Low Level Input Voltage

High Level Output Voltage

Low Level Output Voltage
High Level Input Current
Frequency Response

650

SYMBOL

MIN.

TYP.

MAX.

UNIT

TEST CONOITIONS

V,Hl

0.8 VOO

VOO

V

SO terminal

V,H2

0.7 VOO

VOO

V

CE terminal

V,H3

0.6 VOO

VOO

V

KO to K3 terminals

V,L1

0

0. 3V OO

V

CE terminal

V,L2

0

0. 2V OO

V

SO, KO to K3 terminals

VOHl

4.0

V

EO, 0, MUTE: IOH=-0.5 mA

VOH2

3.0

V

SEG: IOH=-0.5 mA

VOH3

4.0

V

PSC: IOH=-0.2 mA

VOLl

0.5

V

EO: IOL =0.5 mA

VOL2

0.5

V

0, MUTE, PSC: IOL =0.2 mA

100

J.lA

K: VI=VOO=5.0 V

25

IIH

5.0

finl

0.5

2.5

MHz

AM: vi=1.0Vp-p, OC cut sine wave

fin2

0.5

8.8

MHz

FM: vi=0.8 Vp-p, OC cut square wave

0.5

s

VOO: 0-4.5 V

J.lA

CE: Low Level

J.lA

SEG: VOS=-30 V

Supply Voltage Rise Time

Tr

Supply Current

100

Output Off Leak Current

IOFF

500
-5.0

,uPD1703C-020
PIN CONNECTION (Top View)

GNO

FM

KO

Kl

K3

b

c

51

02

a

d

e

/JPO 1703C-020

EOl

E02

CE

PSC

Xl

X2

SO

MUTE

05

VOO

EXPLANATION OF INPUT AND OUTPUT TERMINALS
E01
E02

These three-state outputs are used (via active filters) to supply analog voltages to the tuner
varicap for controlling the local oscillators.

CE

This input is used to designate the stand-by mode to the chip. It is low to designate the stand-by
mode. (display: off, PLL: disabled)

PSC

This output is used to control the divison ratio of the FM two-modulus prescaler (MPB553AC).

X1, X2
SO

MUTE
0" to 05

These inputs are for connection to a 4.5 MHz crystal.
This input is used to control the automatic station searching operation. It is high to indicate the
presence of a station.
This output line is high to mute the radio in the case of station change, bnad change, and so on.
These outputs are used as digit drivers for the display. (Active low)

VOO

This is a 4.5 to 5.5 volt supply for the chip.

a to g

These outputs are used as segment drivers for the display. They are also uses as vertical drive
for the control key and mode switch matrix. (P-ch open drain, Active high)

KO to K3
FM

These inputs are from seven by four matrix. Various functions are entered through the matrix.
This is the FM band local oscillator input. The frequency is divided by 16/17 using a twomodulus prescaler (IlPB553AC).

GND

System ground.

AM

This is the AM band local oscillator input.

651

,uPD1703C-020
DISPLAY

DISPLAY FORMAT
FREQUENCY DISPLAY
MW, LW

, J,- -'- L',-,

MW(LW)

(ME)

I
FM

_I

KHz

FM

(ME)

1/

--

-'-'

'- _I.L
LI

MHz

CLOCK DISPLAY
STANDARD TIME

TIMER

TIMER

Ie ·/111

/
Note:

652

- /-"11
--

ME flag is indicated the conditions enable to preset for the memory.
( ) marks are indicated the conditions provided to display functions, but be not lit for the lamps.

,uPD1703C-020
CONTROL KEY AND MODE SWITCH MATRIX

~
OUTPUT

K3

a

MUP
HAD

b

M1

c

ASKUP

d

TIM

e

CLOCK

f

DIMMER

9

IFO

K2
0
0
0
0
0
0

D.

MOW
MAD
M2
ASKDW
FRO
AM/FM
CNDI
IF1

KO

K1
0

0

M5

0

0

M3

0

ME
SET

0

LOCK

D.

SNZ

0

LW/MW

0

CSS

0

CNT

0

M4

0

SLI

0

M6

USA/JAP

D.

PRO

o
o

0
0

momentary k.ey
alternate switch

D. diode switch
(initial set)

0
0
0

d

EUR/JAP D.

KEY MATRIX CONNECTIONS AND SWITCH TYPES
Key input
Segment output

KO- K3

'~r

momentary key

J
-L-L-a-g
X<

segment output

KO- K3

only for ME k e y : - L i

SET

a- 9

-$-

KO-K3

alternate switch

--4a-g
4a-g
KO- K3

--,~--+~-~~-~~----------g

T1

diode switch
(initial set)

KO- K3
K3

K2

K1

Key input

KO

r

~
open

a-g

653

,uPD1703C-020
DESCRIPTION OF KEY MATRIX
Initialization Diode Matrix
Initialization Diode Matrix is available in 2 types as shown below. These matrixes are read in when power is
initially supplied to VDD (initialize) and when CE terminal is changed from low level to high level.
These initializations will be performed by shorting or opening the intersecting points on the matrix by
Diode. (In the following table, "1" means shorting by Diode and "0" means opening.)
(1) Switches for specifying IF offset of FM
IF1, IFO
IF offset can be varied in 4 levels, as shown below, by 25 kHz step without changing indicated frequency:
IFl

IFO

U.S.A. Band

European Band

Japanese Band

0

0

10.700 MHz

10.700 MHz

10.700 MHz

0

1

10.725

10.725

10.675

1

0

10.650

10.650

10.750

1

1

10.675

10.675

10.725

Note: I F offset frequency of LW/MW is 450 kHz only.
(2) Switches for specifying band regions (U.S.A., Europe, Japan)
USA/JAP, EU R/JAP
USA/JAP

EUR/JAP

OFF

OFF

OFF

ON

ON

OFF

ON

Band

Area
JAPAN

EUROPE

FM

76.1-89.9 MHz

100 kHz

MW

531 -1602 kHz

9 kHz

FM

87.5-108.0 MHz

50 kHz

MW

531-1602 kHz

9 kHz

LW

155-290 kHz

9 kHz

FM

87.9-107.9 MHz

MW

530-1620 kHz

U.S.A.

ON

Channel Space

100 kHz
10 kHz

Prohibited *

* Both USA/JAP and EUR/JAP must not be ON (1). If both are ON, the band area will not be
properly set.

o Mode change over switch (Alternate Switch)
These switches are always changeable .
•

Clock
The radio control function is stopped and radio control key input is rejected.
At the frequency display, clock is returned to the standard clock display.
ON ............... Only operated for clock function. PLL function is stopped and current consumption
becomes low.
Muting signal (active high) is switched ON.
OF F ............. Radio control is enabled.

654

jlPD1703C-020

When the clock switch is changed over from ON to OFF, (at the radio control function restarted) the
condition becomes to the frequency display at automatically and muting signal is switched OFF after
approximately 500 ms.
•

AM/FM, LW /MW
Switches for sellecting the band (LW, MW, FM)
AM/FM

LW/MW

Band

OFF

OFF

FM

ON

OFF

MW

ON

ON

LW

At transferred, the muting signal for approximately 500 ms. is outputed and at the same time frequency
display is indicated.
•

DIMER (Dimmer)
By switching ON with dimmer switch, the brightness transfers to approximately 1/10.
ON .............. Dark
OFF ............

•

Bright

CNDI (Control Disable)
If control timer is not requried and the switch is turned ON, in spite of maching with the control timer
setting value to standard clock value, no control output is delivered.
ON ............... Control timer function is not operated.
OFF ............. Normal operation.

•

LOCK
Without regard to that at the recording time and like the receiving channel have varied or the control
output have cut by accident, in the event of this switch is being turned on, inputs of the channel
exchange switch and the control switch for control output may be prohibited.
ON .............. Each key MUP, MOW, M1-M6, ASKUP, ASKDW, SLI, CSS, and SNZ is rejected.
OF F ............ Normal condition.

•

PRO (Program)
This is the interrupting receiving switch. When the switch is maintained "ON", maching with the
control timer setting value to the standard clock time, the radio receiving channel can be changed to
the channel preset to memory 1 (correspond to M 1) of the receiving band. (AM or FM)
Also, at the radio is turned on by the control function, the channel corresponded to M 1 can be received
automatically. (no relation to last channel)
However, if LOCK switch is being turned on, these functions can not be operated even if PRO switch
is turned on.

a Momentary Switch
•

MUP/HAD (Channel Manual Up/Hour Advance)
MUP/HAD switch is used for manual up of the receiving channel and setting of "o'clock" on the
standard clock and control timer.
Ma.nual up of the receiving channel is performed with MUP/HAD switch after changing to frequency
display by means of FRQ switch is turned once on.
At the same time, if MUP/HAD switch is one time switched on, the channel is advanced only one step.
If MUP/HAD switch is kept "ON", the channel is automatically stepped up at intervals of approximately
45 ms. When the LOCK switch is being switched on, adjustment of channel is impossible.

(during

a station seek up, muting signal is outputed.)
Adjustment of the "o'clock" on the standard clock is performed by MUP/HAD key, keeping ME/SET

655

pPD1703C-020
key switch "ON" condition at the standard clock display. In this condition, when MUP/HAD switch
is one time switched "ON", the time will be advanced at one hour. Also, when MUP/HAD switch is kept
"ON", the time will be advanced at an interval of one hour per approximately 250 ms.
Before the setting of the control timer, one time the ALM Key is switched on as a result the control
timer display is indicated, then the setting is performed with the same manner on "o'c1ock" adjustment
of the standard clock, However, ME/SET Key is not required as "ON".
•

MDW/HAD (Channel Manual Down/Minute Advance)
The switch is used for the manual down of receiving channel and settings of "Minute" on the standard
clock and control timer.
Adjustment menas is the same manner as the switch MUP/HAD, however, in case the standard clock,
every adjusted by MDW/MAD key, "second" is reset. (00 second)

o M1""" M6 (Memory 1 - Memory 6)
These keys switches is used for call and write of the preset memory on each AM and FM six stations
corresponded to M1"""M6 Key.
When any key of M 1""" M6 is switched on, the call of the preset memory can be performed to call the
station preset in the memory corresponded to the specified key.
Before the write of preset memory, at the frequency display condition, ME/SET switch is tunred on,
and becomes the state of the write prepared. (M E lamp is lit.)
Then, by menas of some one of these keys M 1'" M6 is switched on, the write can be perfomred the
channel indicated in the memory corresponded to the specified key.
At the same time, ME lamp is not lit and it indicates to write in the memory.
•

ASKUP (Auto Seak Up)
ASKUP switch is used for automatic seek up for a station. (up direction)
When the key switch is turned on, it becomes the frequency display is automatically and ups the
channel at intervals of approximately 10 ms.
In case a radiocasting catched, the channel up is stopped, as a result the radiocasting is received.

o ASi

I"t'\r t"\r 1-\1"t"\

I~

a

t'\~

~

b

rr..~ t'\~ r..r t'\ ~
\,1-/\ 1-1, V' 1/ ....
rr..r r..~ r..r t'\ ~

d

V
"rt'\r, V' V"
t"\r t'\

+

>

'V'

....

V' V' 1/ ....

c

+

~

..

~~

...

r-f

~

-.

?

1:1

~

~

TIMER
CONTROL
COLON

MW
FM

ME
9

50 kHz

L~

... ~ ... ~

~

0-

{J27 J

II

....,
"

...

<;t
X

0.01 J.lF

fro nAM VCO

~

I-I

f

r i-I ri-l
1.1-1
1"':'11'" M r h rh
I- U L 1-1

LJ I- ~ L f"

-

I-I
I-I

e

~~

..::~ I'" i-I
~~

I I

I-I
I-I

LW

\,1-/\ V' V\, 1/ ....

x4 ~ ..

I

05

04

03

02

01

~-

?~ ,in I~
22 21 20 19 18 17 16 15
25 24
AM GNO FM KO K1 K2 K3 Sa Sb Sc Sd Se Sf Sg

16 5
PSC out

~~ 1SS53

j,lP01703C-020

J.lPB553AC
VCC IN CHK GNO

39,

q2

+5V
n

1
0.01 J.lF I

E01E02 CE PSCX1 X2 SOMUTE 01020304 05 V OO
4 5 U1 6 7 8 9 10 11 12 13 14
1 2 3
~ 47

c:

from FM VCO
)

~

I
0.01 J.lF

2.2 J.l

-

2.2 J.lF

>
> 0.033 J.lF

~
H

m
U1

to

~~

.:¥.

.:¥.

.:¥.

r--

r--

r--

<;t

<;t

+5 V

<;t

V'
.:¥.

.,

r--

<;t

••.1

lZ~

"

"

f'..

.......

~

-C

.......

.,1'..

r,

C

...a

3.3 kSl

t-----J

J "

47 kn

c:

1SS53x2
"'1

4.7 kSl
2SC945x2
or 2SC1280

"-J

>
100 knx5

A

4.7 kn
2SC945x2
or 2SC1280

+5 .7 V
....,
"

3.3 kn
AI<

lOkSl

"

vv

.:¥.

r--

<;t

I.?-

77

>----

-'"

to F MVCO

~~~

HI

HU~

JJF

1122
pF

<;t

10 k

to A vi VCO

kn

0.01

~~

c: c: c: c:

-25 V

4
L--{

MUTE output )

<

{CONTROL output

c:

~. >
0

~

7f7

SO input

~Z +
77

o

W

("')
I

o
N
o

MOS DIGITAL INTEGRATED CIRCUIT

f1PD1704C-011
PLL FREQUENCY SYNTHESIZER AND CONTROLLER
FOR AMjFM TUNER

The pPD 1704C-011 is a single chip AM and FM band PLL frequency synthesizer plus controller for the U.S.A.,
Europe and Japan with a 24-Hour clock and three source-programmable timers. By using pPD1987C (remote
control transmitter) and pPD1937C (remote control receiver) as peripherals, the pPD1704C-011 can be remotecontrolled through infrared ray.
Since the pPD1704C-011 employing pulse-swallowing method in FM band tuning by using pPB553AC
prescaler, the reference frequency of FM is as high as 25 kHz. Therefore, the pPD1704C-011 can constitute
a multifunctional high performance AM/FM digital tuning system for home stereos and receivers.
The pPD1704C-011 is fablicated with advanced CMOS process and is packaged in 42-pin DIP.

FEATURES
•

Single chip PLL + Controller

•

Single power supply; +5 V±1 0 %

•

Compatible with AM and FM band receivers for the U.S.A., Europe and Japan

•

FM reference frequency is as high as 25 kHz (the pulse swallowing method is employed)

•

Built-in 24 hour clock

•

Built-in three sets of source programmable timers. (ONCE, EVERYDAY 1 and 2)

•

Sixteen preset channel memories (8 for AM and 8 for FM)

•

Two last channel memories; AM(1) + FM(1)

•

Auto up/down seek tuning (Saw-tooth mode)

•

Manual up/down tuning (Saw-tooth mode)

•

Auto preset channel scanning (Holding 5 sec for each preset)

•

Compatible with remote control system of pPD1986C and pPD1937C

.. Source selector function (PHONO, TAPE, AUX)

660

•

FM intermediate frequency compensating capability (4 ways by 25 kHz step)

•

Wide variety of function selectability by diode matrix; FM ONLY, NO CLOCK etc.

•

F IP (Fluorescent Indicator Panel) direct drive capability. (Segment lines only)

•

5-digit frequency display

•

10-key clock adjusting

•

Low-power battery back up capability (~10pA : only in No CLOCK mode).

•

42-pin DIP package

,uPD1704C-011
PACKAGE DIMENSIONS

in millimeters

50.0 MAX.

~---------------

1 234

567

89101112131415161718192021

~~
I.

--tt50.8

o.k~ I

N

Note: Typical values are shown unless other use specified.

ABSOLUTE MAXIMUM RATINGS
Power Supply Voltage

VOD

-0.3 to +6.0

V

Input Voltage

VI

-0.3 to +VOD

V

Output Voltage

Vo

-0.3 to +VOO

V

Output Absorbing Current

10

10

Operation Temperature

Topt

-35 to +75

Storage Temperature

Tstg

-55 to +125

Output Breakdown Voltage

VBOS

mA

°c
°c

-35 across Sa - Sg terminals
(drain-source voltage)

V

RECOMMENDED OPERATION CONDITIONS
CONOITIONS

SYMBOL

MIN.

TYP.

MAX.

Power Supply Voltage

VOO

4.5

5.0

5.5

V

Oata (RAM) Retention Voltage

VRAM

2.5

5.5

V

Oscillation Stop Voltage

VOSS

3.8

V

Output Breakdown Voltage

VBOS

-30

V

IOH=-5 pA Across Sa-Sg
Terminals (Drain-Source
Voltage)

Rise Time of Power Supply Voltage

Trise

500

ms

VOO=0-4.5 V

CHARACTERISTIC

3.2

UNIT

CE=O, CKSTP Instruction
Executed

661

,uPD1704C-011
ELECTRICAL CHARACTERISTICS (V00=4.5 to 5.5 V, Ta=-35 to +75 °C)
CHARACTER ISTIC

SYMBOL

MIN.

TYP.

MAX.

UNIT

CONDITIONS

High-Level Input Voltage

VIHl

0.8 VDD

VDD

V

SD, RMC Terminals

"

VIH2

0.7 VDD

VDD

V

I/O Ports, CE Terminal
(Note)

"

VIH3

0.6 VDD

VDD

V

KO to K3 Terminal

Low-Level Input Voltage

VILl

0

0.3VDD

V

I/O Ports, CE Terminal

"

VIL2

0

0.2 VDD

V

KO to K3, SD, RMC
Terminals

High-Level Output Voltage

VOHl

4.0

V

E01, E02 Terminals
IOH=-0.3 rnA

"

VOH2

4.0

V

51 to 56, MUTE, I/O
Ports IOH=-0.2 rnA

"

VOH3

4.0

V

PSC Terminal
10H=-0.1 rnA

"

VOH4

3.0

V

Sa to Sg Terminals.
IOH=-0.5 rnA

Low-Level Output Voltage

VOLl

0.5

V

EO" E02 Terminals,
I/O Ports. 10L=0.5 mA

"

VOL2

0.5

V

01 to 06, MUTE, PSC
Terminals 10L=0.2 mA

High-Level Input Current

+IIH2

100

p.A

KO to K3 Terminals
VIN=VOD=5.5 V

"

+IIH2

p.A

X 1 Terminal (during pull
down) VIN=VDD=5.0 V

p.A

AM, FM Terminals (during pull up) VIN=O,VDD
=5.0 V

1

p.A

EO" E02 Terminals, Ta
=25 o C

2.5

MHz

AM Terminal, Vin=1.0
Vp-p (Mim.), Dc Cut

10

40
300

Low-Level Input Current

-IILl

300

Output Leakage Current

IL

10-3

Response Frequency

fAM

0.5

fFM

3

mA

FM Terminal, Vin=0.8
V p_p (Mim.), Rectangular
wave, Dc Cut

Operation Current

IDDl

3

mA

Input/Output Currents
from Input/Output Terminals Excluded

Data (RAM) Retention Current

IDD2

10

Clock Operation Current

IDD3

600

"

10

p.A

CE=O, CKSTP instruction
executed, Ta=25 °c, VDD
=5.0 V

p.A

CE=O V D D=5.0 V

Note: I/O ports include AC OUT, FM/AM, selection terminals (AUX, TAPE, PHONO, TUNER) A to D, DP,
and COLON.

662

,uPD1704C-011
FUNCTIONAL OUTLINE
Receiving frequency range, channel spacing, reference frequency, and intermediate frequency.

Frequency Range
U.S.A.

Europe

Japan

AM

530-1620 kHz

FM

87.9-107.9 MHz

AM

522-1611 kHz

FM

87.50-108.00 MHz

AM
FM

Channel
Spacing

Reference
Frequency

Intermediate Frequency

10 kHz

10 kHz

450 kHz

200 kHz

25 kHz

10.650, 10.675, 10.700, 10.725 MHz

9 kHz

9 kHz

50 kHz

25 kHz

522-1611 kHz

9 kHz

9 kHz

76.1-89.9 MHz

100 kHz

25 kHz

450 kHz
10.650, 10.675, 10.700, 10.725 MHz
450 kHz
10.675, 10.700, 10.725, 10.750 MHz

Channel Selection
(1) Auto tuning (saw-tooth wave mode)
Auto up-channel tuning
. . . . . . . Channel once received is held.
Auto down-channel tuning
(2) Manual tuning (saw-tooth wave mode)
Manual up-channel tuning
. . . . . . Stepwise action through momentary switch. When held depressed
Manual down-channel tuning
for 0.5 second or more, fast action continued until the switch is released.
(3) Preset scan . . . . . . . . . . . . . . . . . . . . Preset channels from 1 CH. to 8CH. are repeatedly scanned with
holding for 5 seconds at each channel. To stop scanning at the
currently received station, press the preset station key currently
selected.
(4) Recall preset memory . . . . . . . . . . . . . 8 channels each for AM and FM through 8 button switches.

Timer
(1) EVERYDAY (for two systems) . . . . . . . By setting both ON and OFF time with a source, the specified
source is switched ON at the ON-time and the whole system is
switched OFF at the OFF-time. These action will be repeatedly
performed everyday.
(2) ONCE (for one system) . . . . . . . . . . . . By setting both ON and OFF-time with a source, the specified
source is switched ON at the ON-time, and the whole system is
switched OFF at the OFF-time.
In this case, the timer action is performed only once. And
after the action, the ONCE-Timer data are cleared.

663

,uPD1704C-011
Remote Control
By attaching IlPD1986C (transmitter) and IlPD1937C (receiver), functions including power ON/OFF, AM/FM
switching, preset channel call, and source selection can be remote controlled by infrared ray.

TERMINAL CONFIGURATION (Top View)

TUNER
PHONO
TAPE
AUX
FM/AM
AM

RMC
PSC
FM

SD
CE

E02
Vss(GND)

EO,

DESCRIPTION OF TERMINALS

664

Terminal
Number

Symbol

Terminal
Name

1-7

Sa-Sg

Segment
Outputs

Terminals for display segment signals and for key return signal source;
active high. (Fordetails,see 1. KEY MATRIX CONFIGURATION.) These
terminals are open-drain outputs and it is provided with dielectric strength
of -30 V max. So it can be directly connected to segment terminals of FIP
(fluorescent indicator panel) with pull-down resistances. (For the connections, see 3-1. Display Connection Diagram)

8-11

KO-K3

Key Return
Signal
Inputs

Input terminals for key return signals from externally connected key
matrix. As the key return signal sources, segment terminals Sa-Sg and
AND signal. of TUNER and PHONO terminals are used. (See 1. KEY
MATRIX CONFIGURATION.)

12-17

51-06

Digit
Outputs

Display digit signal outputs; active low. To interface to a F IP (fluorescent
indicator panel), single stage buffers using PNP transistors (2SA733 or
equivalent) should be inserted between them. (For details, see 3-1.
Display Connection Diagram.)

Description

jlPD1704C-011

18

MUTE

mute

Muting signal output to cancel shock noises when PLL is momentarily
unlocked; active high.
This line goes high before 55 ms to PLL data (content of programmable
counter) changes, anQ it goes low after 55 ms from the completion of the
data change.
Mute signal is issued while in either" of the following cases.
o AM/FM and selector switchings
o MANUAL UP/DOWN
o AUTO UP/DOWN
o Preset memory call (including preset scan)
o Switching from CLOCK set to RADIO.

KE::" YIN

~

-

::

55 ms

i' I ii

55 ms

I
_ _ _ _ _ __

LpLL data processing time (10 ms max.)

The signal is continuously issued in either of the following cases.
o OFF key is depressed. (OFF mode)
o When the following mode is set through MODE SW; TIMER READ,
TIMER WRITE, TIMER CANCEL
o CE terminal is forced low.
19
20

Xl
X2

X'tal

Terminal to which crystal oscillator is connected. The oscillation frequency of the crystal should be 4.5 MHz. (Type TQC-231A-8S manufactured by Toyo Tsushinki is recommended.)

21

VOD

Power
Supply

Terminal for power supply to the device. (5 V±10 %.) The voltage can
be lowered to 2.5 V in data retention mode. (When device CLOCK is
stopped, i,e, when NONCLOCK is specified through the diode matrix and
CE=O). The rise time of VDD should be 500 ms or less (for 0 ~ 4.5 V).
If the rise time is excessively long, the initialization will not operate
ploperly.

Error Out

Output terminals of charge pump in the phase detector of PLL section
(3-state).Comparing the reference frequency with the oscillation frequency
divided by the programmable divider, these terminals go high if the
divided oscillation frequency is higher than the reference frequency.
And go low if it is lower than the reference frequency. If they are the
same, these outputs becomes high-impedance. Since EOl and E02 output
the same signal at the same time, either of them can be connected to the
LPF (low pass filter) of either AM or FM.

22
24

23

GND

Ground

Terminal to be connected to system ground.

25

CE

Chip Enable

Terminal for input selection signal to device. The terminal voltage has to
be high level to operate the device normally and low level to leave the
device id Ie.
(1) When NONCLOCK is set through the initial setting diode matrix.
CE = High ..... normal operation.
CE = Low ..... display OFF, PLL operation stopped, internal
clock generator stopped; current consumption 10
IlA or less, VDD = 5 V.
(2) When NONCLOCK is not set through the initial setting diode matrix.
CE = High ......normal operation
CE = Low ..... display OFF, PLL operation stopped; current
consumption 500 IlA typical, VDD = 5 V.

665

jLPD1704C-011

High level or low level for 134 J,lS or shorter cannot be accepted. When
NONCLOCK is selected through the initial setting switch, CE terminal
should be forced to high level after the rise up of VDD, and forced to low
level 200 ms before VDD falls. (See Note 1.)

666

26

SO

Station
Detector

Input terminal of station detection for auto tuning (AUTO UP/DOWN).
The auto tuning is stopped on receiving high level. To avoid missing
the station, this input should be forced to high level within 50 ms after
PLL is locked.

27

FM

FM Local
Oscillator
Signal
Inputs

Input terminal of FM programmable counter.
This terminal is normally connected to the output of the two-modulus
prescaler J,lPB553AC.
Since an ac amplifier is employed inside, the input signal should be fed
through a dc-cut capacitor.

28

PSC

Pulse
Swallow
Control

Terminal for output signal to switch frequency dividing ratio of prescaler
when pulse swallowing method is used in frequency dividing (i.e. for FM
signal reception). Connect to PSC terminal of special prescaler J,lPB553AC.
The frequency dividing ratios of J,lPB553AC are 1/16 and 1/17.

29

RCM

Remote
Control
Inputs

Input terminal of remote control signal.
Connect to CHU OUT terminal of receiving remote control ICJ,lPD1937C.
The remote control action is discriminated by the number or input
pulses to this terminal. (For details, see 2-4. Transistor Switch)

30

AM

AM Local
Oscillator
Signal
Inputs

Input terminal of AM programmable counter.
It accepts the output signal (VCO) from AM local oscillator. Since an ac
amplifier is employed inside, the input signal should be fed through a dccut capaCitor.

31

ACOUT

AC Outlet
Control

Terminal for AC service outlet control.
This terminal is used to control the cut-out relay for the main power
supply of the receiver set. This goes high level whenever either one of the
source selector terminals (TUNER, PHONO, TAPE, and AUX) is to be
turned on.
When the OFF key is pressed, it becomes low level. Since this terminal
becomes high impedance when the CE terminal is shifted to low level
under the NONCLOCK conditions, a pull-down resistor should be used if
NONCLOCK specification is required. (See Note 3.)

32

FM/AM

FM/AM
Power
Supply
Control

Terminal for switching power supply to tuner's FM or AM section. High
level output is issued to operate FM and low level output to operate AM.
This is also used in conjunction with the TUNER terminal to issue an
ACKNOWLEDGE signal of AM and FM source selection in TIMER READ
and TIMER WRITE modes.
The schematic of the ACKNOWLEDGE signal generator is as follows.

J,lPD1704C-011

When FM or AM key is depressed in TIMER WRITE mode with the circuit
shown above, the LED corresponding to the specified band will be turned
on for 50 ms.
In TIMER READ mode, the LED, corresponding to the band set in
WRITE mode, will be turned on for 5 seconds.
33
34
35
36

AUX
TAPE
PHONO
TUNER

Source
Selector
Outputs

Source selector outputs for TUNER, PHONO, TAPE, and AUX. TUNER
terminal goes to high level when FM, AM, or preset key is depressed, and
PHONO, TAPE, and AUX terminals goes to high level when PHONO, TAPE,
and AUX keys are depressed, respectively.
When OFF key is depressed, all terminals are forced to low level. (See
Note 3.)

'.I/-40

A
B
C
D

Preset
Station
Indicator
Outputs

Output terminals of BCD signals to indicate the preset channel memorys.
The output combinations for preset stations are shown in the table below.
PRESET STATION
NON PRESET
P1
P2
P3
P4
P5
P6
P7
P8

D C B A

0
0
0
0
0
0
0
0

0
0
0
0

0 0
0 1
1 0

1
1
1
1

0 0
0 1
1 0

1: High level Output

0: Low Level Output

1 1

1 1
1 0 0 0

By connecting llPB74LS42 (BCD-to-decimal decoder) to these terminals,
the dot pattern display of preset station can be made with LEDs. (See
Note 3.)

41

42

COLON

Decimal
Point

Terminal to output a decimal point indication signal to the display for
FM frequency; active low.
DP as well as COLON terminals cannot be directly connected to fluorescent
indicator panel. Insert a buffer for the purpose. (See Note 3.)

COLON

Terminal to output a colon indication signal in CLOCK display mode;
active low. (See the discription of DP terminal above.)

667

,uPD1704C-011
(Note 1)

When no clock function is necessary, turn the NONCLOCK switch ON. And if, in this mode of
operation, low-power-data-retention is required while radio is off, do not use OFF key, which will be
described later, to turn system power supply off, but use CE terminal. The example circuit is shown
below.

IIII~
vDD

+

~
ON

CE

(+5 V±10 %)+VF

fFF

The value of CR connected to CE terminal should be set so that the following condition is satisfied.

------------------------------

---~5V

VDD---~

-+---+---500 ms MAX.

0.3 VDD

CE-----+--+----1--0 J.,tS MIN.

(Note 2)

----<~---+__-130

ms MI N.

If NONCLOCK is not specified, CE terminal should be connected to VDD as shown below.

VDD 1 - - -.......- . - - - - - +5 V±10 %

CE

1----...----'

+

22:

77

(Note

668

3f

AC OUT, A, 8, C, 0, AUX, TAPE, PHONO, TUNER, and DP terminals are shifted to low level or high
impedance status dependent on the internal conditions when CE terminal is changed to low level
under the NONCLOCK (refer to 2. Description of Key Matrix) conditions.

tlPD1704C-011
1. KEY MATRIX CONFIGURATION
1-1. Key Matrix Configuration
K3(11 )

K2(10)

Sa(l )

O(AM)

Sb(2)

4 (EVERYDAY2)
5
OFF

Sc(3)

(1

8

EVERYDAY1)
(2
ON

(O~~E

)

9 (FM)

EVERYDAY1) 3
OFF

(EVERb~AY2)

6 ( ONCE)
OFF

7

REMCON*

CLK CALL

CH SCAN

DOWN

UP

Se(S)

MEMORY

PHONO

TAPE

AUX

AUTO/MANUAL

S9(7)

IFO

TUNER
& PHONO

MODSW2
(note)
IFl

MODSWl
(note)
BANDl

Momentary
(Normally OFF)

OFF

Sci(4)

Sf(6)

Type of Key

KO(8)

Kl (9)

MODSWQ
(note)

* Transistor Switch

MODSW .•• Rotary Switch AUTO
/MANUAL .. ; Alternate Switch

BANDa
Initially Set Diode Matrix

NONCLOCK

FM ONLY

(Note) Rotary switch to be used as mode switch should be of shorting type.

1-2. Connection of Keys and Switch Types on Key Matrix

PHONO TUNER

VDD--------~~--~--~~------~--------------------------~

669

tlPD1704C-011
Key Input

---+-+-1---- Momentary Switch

- - -.......---+---- Segment Output

Segment Output

----&~:t---

Transistor Switch

Remote
Control n..._-""\J\_'"
Signal
Input

Key Input

Key Input

----1r+-f--- Alternate Switch
--4~---f--""'-

Segment Output

K2

t /__
QJ o{ ~

/Shortin g Type

-"""~~M'7W'~~'t'-7,*-

L_.1

Rotary Switch

~

-

-~

.,,:...~.....,

Segment Output Sf

Ko

KJ

Key Input

---"""~r----Diode

Matrix

Open
--4~---f-_

Segment Output
or

670

,uPD1704C-011
2. DESCRIPTION OF KEY MATRIX
2-1. Initial Setting Diode Matrix
There are four types of initial setting matrices as described below. They are read in when VDD is first fed with
power (initializing) or when CE terminal is forced to high level from low level.
(1) Switches for setting IF offset value of FM.
IF1,IFO
(2) Switches to specify the BAND range for the target area. (American, European, or Japanese)
BAND1, BANDO
(3) Switch to kill the clock function.
NONCLOCK
(4) Switch to meet the FM single receiver.
FM ONLY
These settings are done by shorting with a diode or by opening the crosspoint on key matrix. (In the following
table, ON means short~circuiting with a diode and OFF means opening.)
Symbol
IFl
IFO

BAND1
BANDO

Functional Description
Switches to set IF offset value of FM.
Intermediate frequency can be set in for ways, 25 kHz apart from each other, without changing
the frequency displayed.
IFl

IFO

American band

European band

Japanese band

OFF

OFF

10.700 MHz

10.700 MHz

10.700 MHz

OFF

ON

10.725

10.725

10.675

ON

OFF

10.650

10.650

10.750

ON

ON

10.675

10.675

10.725

Switches to specify the BAND range for the target area.
Either American, European, or Japanese band can be selected.
BAND1

BANDO

OFF

OFF

American band

OFF

ON

Japanese band

ON

OFF

European band

ON

ON

Prohibited *

Found Area

* Do not turn both BAND1 and BANDO ON. If both are turned ON, receiving band cannot be set
duly.
NONCLOCK Switch to kill the clock function.
When no clock function is required, make this switch ON.
Then, data retantion is capable with a low current consumption (10 pA or less).
(Refer to Notes 1 and 2 of Terminal Descriptions.)
ON .......... With Clock Function
OFF "......... With Clock Function
FM ONLY

Switch to set receiving band to FM only.
When this switch is ON, AM band is not received even if 'O(AM)' key is pressed. Then band
switching keys 'FM' and' AM' can be accepted only as '9' and '0' for time adjustment.
ON .......... FM only
OFF ......... FM and AM

671

,uPD1704C-011
2-2. Alternate Switches
There are two kinds of alternate switches. They can be switched any time.
(1) Switch to select auto tuning or manual tuning.
AUTO/MANUAL
(2) Programmable mode switches to specify operation modes; CLOCK SET, TIMER WRITE, TIMER CANCEL,etc.
MODSW2, MODSW1, MODSWO
Symbol

AUTO/
MANUAL

Description of Function
Switch to select auto tuning or manual tuning.
ON .......... Auto Tuning
OFF ......... Manual Tuning
Auto or manual tuning starts when the momentary switch of UP or Down is pressed after the
setting of this switch.
In the auto tuning operation, the frequency is scanned step by step after confirming that the PLL
system is locked. Therefore, in the long lock-up time P LL system, the scanning speed will be
slower than the short one. And if the PLL feedback loop is malfunctioned and the PLL is never
locked, the scanning will not be started or be stopped.
Programmable mode switches to specify modes such as CLOCK SET, TIMER WRITE, TIMER
CANCEL.
Use shorting-type rotary switch with two circuits and six positions for these switches. (For connections, see 1-2 "Connection of Keys and Switch Types for Key MatriX".)
MODSW2

MODSW1

MODSWO

Programmable Mode

1

0

1

CLOCK SET

1

0

0

RADIO

1

1

0

TIMER OPERATION

0

1

0

TIMER READ

0

0

0

TIMER WRITE

0

0

1

TIMER CANCEL

(Note)

MODSW2
MODSW1
MODSWO

1 and 0 in the table means ON (short) and OFF (open) respectively. Since the mode
switch code is modified gray code, the sequence of the codes cannot be changed to others
than the above.
1. CLOCK SET mode
Mode to set present time.
tLPD1704C-011 is provided with a 24-hour clock system (0:00-23:59), The time can be set
by the following procedure.
Q) Set time in 4-digit input using ten-key 0-9.
(Ex. Setting to 8:15 A.M,)

"0,,1 Ll

I -- "8,,1''-' '-' .
I '-' •

I. -- "'''1. '-'i , L''_I ••

I

I

I-- "5"1"'-' '-'0 .· '-''-I
.

I

(Note) If some wrong key was pressed, finish the 4-digit keying and then start keying
again from the first digit.

@ Turn the programmable mode switch to RADIO coincidentally to time signal. The clock
function starts to operate at the moment of switching over to RAD 10,
(Note 1) If clock setting is performed while listening to the radio, radio broadcast
frequency is indicated when the mode switch is returned to RADIO .
. If the similar process is followed in PHONO, TAPE, or AUX mode, the time is
indicated, but zero (0) i"n the most significant digit will be suppressed to blank
as shown below.

672

j.lPD1704C-011

, ,. '-'.
''-I
,:,.

2) At the time when VDD (5 V ±1 0 %) is supplied to the device, "E" is indicated.

1:=

3)

MODSW2
MODSW1
MODSWO

I

When the mode switch is in the position of CLOCK SET mode, the internal
clock stops functioning. The clock starts functioning when the mode switch is
turned to another, and the value of second is set to "0" internally.

2. RAD I0 mode
In this mode, the tuner functions such as write and call of AM/FM preset memory, UP/DOWN
tuning in AUTO/MANUAL, and preset memory scan etc.) and source selection (PHONO, TAPE,
or AUX) can be performed.
3. TIMER OPERATION mode
Mode for executing instructions of time and source (AM, FM, PHONO, TAPE, or AUX)
specified in TIMER WRITE mode.
Each of three timer systems, EVERYDAY1, EVERYDAY2, and ONCE, is respectively
executed (ON or OFF) at the programmed time. Once programmed in ON/OFF-time and
source, EVERYDAY1 and EVERYDAY2, repeat the ON and OFF operation to the
programmed source everyday at the programmed time, while ONCE is automatically erased
after the execution of ON and OFF operation and it will not be executed next day.
Among these three systems, the priority sequence ONCE, EVERYDAY2, EVERYDAY1 is
established. (For details, see 4 Description of Programmable Timer Performance)
When timer is executed, one of the following terminals is to be activated corresponding to the
programmed source.
Programmed Source

Terminals to be activated

FM

FM/AM=High, TUNER=High, AC OUT=High

AM

FM/AM=Low, TUNER=High, AC OUT=High

PHONO

PHONO=High, AC OUT=High

TAPE

TAPE=High, AC OUT=High

AUX

AUX=High, AC OUT=High

If the timer of either one of the systems is ON, all key and remote controlled inputs in this
mode cannot be accepted because of protection against wrong operations. Such a manual input
operation should be done after switching to RADIO mode if desired.
4. TIMER READ mode
Mode to confirm ON/OFF time and source programmed in TIMER WRITE mode. The
procedure is as follows;
Set the programmable mode switch to TIMER READ mode. Then source selector
terminals (TUNER, PHONO, TAPE, and AUX) and AC OUT terminal are forced to low
level, and the present time is indicated.
@ Press ON key of either of EVERYDAY1, EVERYDAY2, or ONCE, Programmed
ON-time, source selector terminal and the preset station are indicated for about 5 seconds.
After that, the present time indication is recovered.
@ Press OFF key of EVERYDAY1, EVERYDAY2, or ONCE. Programmed OFF time is
indicated for about 5 seconds. After that, the present time indication is recovered.
(Note) If ON or OFF time is not programmed, only colon (:) is indicated for about 5
seconds.

CD

5. TIMER WRITE mode
Mode for programming ON and OFF times and source to be operated. Note that OF F-time
must be set whenever the ON-time is to be set. If OFF-time is not set, timer-ON action will
never be performed and the ON-time which was set alone will be erased. This function is
provided to avoid accidents caused by the timer which will never be turned off. Since such a

673

ILPD1704C-011

OF F-time checking is performed when the ON-time is encountered, OFF-time should be set at
least before the ON-time.
In otherwise, if only OFF-time is set, the timer-OFF action will function properly. That is,
OFF-time has a higher priority than the ON-time.
Five sources, AM, FM, PHONO, TAPE, and AUX, are programmable. The programming
procedure is as follows.
Set programmable mode switch to TIMER WRITE mode. Then the present time is
indicated.
@ Press the desired ON-key of EVERYDAY1, EVERYDAY2, or ONCE. Then the colon
is displayed, and a preset station indicater LED corresponding to the depressed ON-key
turns on for about 60 ms.
@ Set time in 4-digit input by using ten-keys 0-9 of momentary switches just similar to the
clock set.
(Ex.) Setting 6:00 p.m.

CD

I

r"o"

. --

J

II '-ILI .• '-, II

I I

r"o"
J

'I

IIII '-'
I_I • I I'
• ,_, '-I

@ Press key corresponding to the desired source (FM, AM, PHONO, TAPE, or AUX).

MODSW2
MODSW1
MODSWO

®

(Even if FM ONLY is specified, you must input FM.)
In cases that PHONO, TAPE, or AUX key is pressed, the corresponding source
selector terminal goes High for about 500 ms.
In cases that FM or AM key is pressed, TUNER terminal goes High and FM/AM
terminal is activated until a preset station key (1-8) is pressed. By using the statuses
of the TUNER and FM/AM terminals, source selection ACKNOWLEGE signal can be
generated (refer to description of AM/FM terminal).
When PHONO, TAPE, or AUX key is pressed, present time will be indicated after
about 500 ms (the source selector terminal goes High level for that 500 ms), whereas the
programmed ON time is indicated until preset station key is pressed when FM or AM key
is pressed.
When FM or AM is selected as a source in (1), the next step to press the desired preset
station key (1-8) is required. Then, preset station indicator LED corresponding to the
pressed key turns on for about 60 ms. After that, the display will be changed from the
programmed ON time to the present time.
(Note) If any wrong time is set or wrong source is selected, switch the programmable mode
switch to another mode, and, restart programming from
or restart programming
from @ after finishing @ or ®.
Press OFF key that corresponds to the ON key pressed in @.
Then, only colon is indicated. The preset station indicator LED corresponding to the
pressed OFF key turns on for about 60 ms.
Set time in 4-digit number by using ten-keys 0-9 of momentary switch.
(Ex.) Setting 8:30 p.m.

CD

@

(j)

1_

r"3" J

1-"L L'.,· _,-'

r"o..1 _II , • _II

1
--

J

'I

I '- LI • _, '-'

When the input of the fourth digit is over, the above display is changed to the present
time indication.
(Note) When any key is wrongly pressed, finish the process up to the fourth digit and
then restart the process from @.
® Set programmable mode switch to TIMER-OPERATION. Then the present time is
indicated.
(Note) If timer operation is desired, be sure to set programmable mode switch to TIMER
OPERATION. Otherwise timer does not function.
6. TIMER CANCEL mode
Mode for canceling programmed times ON/OFF times and source. Follow the process described
below.

674

jLPD1704C-011

CD

o
MODSW2
MODSW1
MODSWO

@

Set programmable mode switch to TIMER CANCEL. Then the present time is indicated.
Press the ON key of timer to be canceled. (EVERYDAY1, EVERYDAY2, or ONCE).
Then colon is indicated momentarily, the programmed ON time and source are canceled,
and, immediately, the present time indication is recovered.
Press OFF key that corresponds to the ON key pressed in procedure
As in
colon is indicated momentarily, the programmed OFF time is canceled, and,
immediately, the present time indication is recovered.

0.

0,

2-3. Momentary Switches
Symbol

Description of Function
These keys are multiple function keys. Their functions varies dependent on the positions of
programmable mode switches (MODSWO,1,2).
(1) In the CLOCK SET mode.
1(EVE~~DAY 1) 2(EVE~:fAY1) 3(EVE~~DAY2) 4(E\lE~~~AY2)

O(AM)

I

0

II

I

7

1

II

8

7

II

8

2

I

9(FM)

I

I

9

I

3

II

4

5(O~~E)

II

5

6(~~E)

II

6

I

I

When CLOCK SET mode is selected, the keys are used as ten-keys for setting time.
(2) In the RADIO mode
O(AM)

I

AM

I

7

I

7

l(EVERYDAYll 2(EVERYDAY1) 3(EVE~~DAY2) 4 (EVE~~~AY2)
ON
I
OFF
4
1
2
3

I

II

8
8

II
II

9(FM)
FM

II

II

II

6(OtF~E)

5(O~~E)

5

II

6

I

I

When RADIO mode is selected, the keys are used for AM/FM band switching and as preset
stati on keys.
(3) In the TIMER OPERATION mode.
1(EVERci~AY 1) 2(EVE~WAY 1) 3 (EVEROYJAY2) 4(EVE~~fAY2)

O(AM)

0-9

I

AM

7

I

7

II
II

1

8
8

II
II

2
9 (FM)
FM

II

3

II

4

6(OONF~E)

5(O~~E)

II

5

II

6

I

I

The functions of the keys are almost the same as those in the RADIO mode. Only difference
is that the keys are not accepted during timer operation.
(4) In the TIMER READ mode.
O(AM)

I

-7

1(EVERO~AY1) 2(EVE~:fAY1)

I IEVE~~DAYI I IEVE~WAYI I
I

--

4(EVE~WA Y2)

!EVERJ~AY21 IEVE~~~AY2

9(FM)

8

I -- I

3(EVER YDAY2)
ON

II

--

I

-

I

5(O~~E)
ONCE
ON

6('b~~E)

II

ONCE
OFF

I

denotes that the corresponding key input is rejected.

When TIMER READ mode is selected, only ON/OFF keys of EVERYDAY1, EVERYDAY2,
and ONCE are in effect to confirm programmed timer times and source.
(5) In the TIMER WRITE mode

I

O(AM)

1(EVEf1ci~AY1) 2(EVE~~~AY1) 3(EVE~~AY2) 4(EVE~~fAY2)

O(AM)

/1(EVE~~OAY1) I /2(EVE~:?AYll I /3(EVERO
YJ AY2 ll f4(EVE~WAY2~

I

8

7

I

7

/

I

8

9(FM)

I

I

9(FM)

6('b~~E)

5(O~~E )

I

5(O~~E)

II

6(~t'lVl

I

I

When TIMER WRITE mode is selected, the functions of the keys are differently dependent on
the sequence of key operation. (For details, see 2-2. Alternate Switches)
(6) In the TIMER CANCEL mode.

675

,uPD1704C-011

O(AM)

1(EVEfgNDAY') 2 (EVE~~~AY') 3(EVERJ~AY2) 4(EVE~WAY2)

I EVE~~DAY'I
8

7

0-9

1- I

1

IEVE~:fAY' I IEVE~~DAY21 IEVE~~fAY21

5(O~~E)

6 (OO~~E)

I,-_O_~_~_E---Jl ,-1_O_O~_1=_E---,I

9(FM)

-- II'-_-::"-::"-::"--11 -- denotes that the corresponding key input

is rejected.

When TIMER CANCEL mode is selected, depressing ON/OFF keys of EVERYDAY1,
EVERYDAY2, or ONCE cancels the programmed timer times and sources.

OFF

This is the key to cut off power supply relay. By depressing this key, AC OUT terminal and
select or terminals (AUX, TAPE, PHONO, and TUNER) are forced to low level and get indication
of time on the display.
To turn on the power Supply relay, depress one of the AM, FM, preset station keys (1-8) or
source selector keys (TAPE, PHONO or AUX) in the RADIO mode.

CLKCAL

Key to call present clock time during frequency display. When this key is pressed, the present
clock time is indicated for five seconds and then the frequency display is recovered.

CHSCAN

Key to scan preset channels.
When this keys is pressed, the memorized preset stations (1-8) are in turn scanned from "1",
holding for 5 sec at each preset station. To stop scanning at the currently received station, press the
preset station key currently selected.

UP
DOWN

676

Kyes for auto and manual tunings. When either key is pressed, the following functions are
performed.
(1) When AUTO/MANUAL switch is set to AUTO.
Keying of UP increases frequency in saw-tooth wave mode. If the SD terminal is forced to
high level during this process, the automatic upward searching is stopped. Keying of DOWN
brings about automatic downward searching.
Function of the DOWN key is almost the same as that of the UP key. Only difference is that
the DOWN key decreases the frequency.
*1 Automatic upward ordownward searching is performed at the rate of 60 ms/step (MIN).
This rate will varies depending on the lock-up time of the PLL system.
*2 If UP or DOWN key is pressed during automatic searching is carried on, the automatic
upward/downward searching is kept going on.
(2) When AUTO/MANUAL switch is set to MANUAL.
When UP or DOWN key is momentarily pressed, frequency is shifted by one step (channel
space) upward or downward.
When UP or DOWN key is kept pressed for 0.5 second or more, the frequency shift is
continued upward or downward at the rate of 60 ms/step (TYP.) until the key is released.
(Note) Even if the AUTO/MANUAL switch is turned to MANUAL during auto process, the
auto tuning is not intercepted. If the auto-tuning is required to be stopped immediately by switching to MANUAL, formulate the system in such a way that SD
terminal is forced to high level whenever the AUTO/MANUAL Switch is turned to
MANUAL.

MEMORY

Key used to write currently received frequency into a preset memory. When either of keys 1-8
is depressed within 5 seconds after this key is pressed, the currently received frequency is
written into the memory corresponding to the keyed-in switch (1-8).
The memory write-enable state lasts 5 sec. from the time when the MEMORY key is pressed. To
cancel this state within the 5 sec., press a key other than preset channel keys (1-8) or change
the mode switches (MODSWO, 1,2).

PHONO
TAPE
AUX

Keys to select a source. When programmable mode switches (MODSWO, 1, 2) are set to RADIO,
keying one of these switch wi /I force AC OUT terminal and the source selector terminal corresponding to the pressed key to high level. When programmable mode switches are set to TIMER
WR ITE, the deying-in of either switch will shift the corresponding select terminal to high level
for about 500 ms.

jlPD1704C-011
2-4. Transistor Switch
Remote control signal is input to this switch. (For configuration, see 1-2, Connection of Keys and Switch
Types on Key Matrix.) The remote control signal should also be input to the RMC terminal at the same time.
Fig. 1 shows the wave form of remote control signal. The first 10 ms low level stands for initializing signal.
The number of the following pulses determines the type of operation.

Active Low

I·

10 ms

6 ms

.II.~
t

1.5 ms

0.5 ms

Fig. 1 Timing Waveform of Remote Control Signal
The signal discriminated by key input (K1 terminal) via the transistor switch is the initializing signal only.
The following pulse train is discriminated by RMC terminal.
Table 1 shows the correspondence between pulse counts and operations.
Table 1 Number of Pulses and Related Operation
Number of Pulses
0-7

Operation
Preset CH (1-8)

8-10

Oon't care

11

AUX

12

PHONO

13

FM

14

TAPE

15

AM

3. DESCRIPTION OF DISPLAY
3-1. Display Connection Diagram
Fig. 2 shows the connection of the display. 01-06, Sa-Sg, COLON, and OP (decimal point) correspond to
digit terminals (01-06), segment terminals (Sa-Sg), COLON terminal, and OP terminal of JlP01704C-011,
respectively.
Since the segment terminals of JlP01704C-011 have breakdown voltage of 30 V (corresponding to Pch open
drain output voltage), they can be directly connected to FIP (fluorescent indicator panel). Oigits (01-06),
CO LON, and OP are complementary outputs and they are output in active low. Hence one stage of buffer
(with PNP transistor 2SA733 or equivalent) is required.

677

,uPD1704C-011

:
FM
AM

(Sa)

:

:

I

I

I
I
I

I

I

l

I

06

(COLON)

:

:: I·'-·1I. :i

I

I
(Sb)

I

I

I
I

:

005

004

(OP):

,-)

I•I
(OP)

:

I (Sf)

I

Fig. 2 Example of Indicator Display

3-2. Examples of Displays
The typical displays are as follows.

(1) FM in the U.S.A.

FM

I-'

I_I

•

1-'
I

MHz

(2) FM in Europe

-,

I ,

FM

MHz

(3) FM in Japan

FM

(4) AM in the U.S.A.

AM

678

•

,'-'= ,-=,

1-'

,_,

MHz

MEMO*
kHz

I-

I(Sb) I

I I

I

I (Se) (S9) (Sc) I
I
I
I
(Sd)
I
I
I

02

003

I

I MEMO

(Sa)

001

(Sc)

MHz

(Sa)

kH Z

(Sb)

06

,uPD1704C-011
(5) AM in Europe or in Japan

AM

kHz

(6) Clock display

•
•

* Display of MEMO is turned on for 5 seconds when the momentary key MEMORY is pressed, i.e. when
the key is pressed in order to write the current frequency into the memory. If preset key either of 1-8 is
pressed within that 5 seconds, the new frequency is memorized and the indication MEMO goes off.

4. DESCRIPTION OF PROGRAMMABLE TIMER OPERATIONS
There are three sets of programmable timers; EVERYDAY1, EVERYDAY2, and ONCE.
Once programmed with ON/OFF times and source, EVERYDAY1 and EVERYDAY2, execute everyday ON
and OFF of the programmed source at the programmed ON/OFF times.
While, in ONCE, programmed source and ON/OFF times are canceled after the source ON/OFF execution is
performed.
The priority of these timers is in the sequence of ONCE, EVERYDAY2, and EVERYDAY1. In each timer
system, OFF has higher priority than ON. Hence the following performance patterns are realized according to
the timing relationship.

CD

ON and OFF times are not crossed over.

~

ON time

OFF time

ONCE

9:00

11 :00

EVERYDAY2

EVERYDAY2

21 :00

23:00

EVERYDAY1

EVERYDAY1

6:00

7:30

time

OFF

ON

.
- - -I
I

ONCE

:

:

ON_OFF:
5

,

'

6

7

I,

8

:

9

:
!

:

:

!

..

,!

,

10 11 121121 22 23 24o'clock

(Note) - Denotes timer in operation.

@ ONCE goes ON during EVERYDAY2 is in operation.

-------

ON time

OFF time

ON

ONCE

ONCE

20:00

23:00

EVERYDAY2

EVERYDAY2

19:00

21 :00

EVERYDAY1

EVERYDAY1

6:00

7:30

time

OFF

!

ON r----:---; OFF

5

6

7

8

9

18 19 20 21 22 23 24 o'clock

@ EVERYDAY2 goes ON during EVERYDAY1 is in operation.

-----=-

ON time

OFF time

EVERYDAY2
EVERYDAY1

EVERYDAY2

11 :00

14:00

EVERYDAY1

10:00

12:00

ON

ON~OFF
,

time

OFF

9

1

,

10 1112 13 14 15 16 1718 19 20o'clock

679

.uPD1704C-011
@

EVERYDAY2 goes ON during ONCE is in operation.

-----

OFF time

ON time

ONCE

10:00

14:00

EVERYDAY2

EVERYDAY2

12:00

17:00

time

®

I

ONCE

ON time

OFF time

12:00

17:00

I

ON

I

I

OFF
. ON
i
!.. N 0 gOing

iZ

EVERYDAY2

EVERYDAY2

16:00

19:00

EVERYDAY1

10:00

13:00

time

OFF

ON
I

9

I

I

I

10 11 12 13 14 15 16 17 18 19 20 o'clock

Continuously programmed in the sequence of ONCE, EVERYDAY2, and EVERYDAY1.

---=----

OFF time

ON time

O~FF

ONCE

ONCE

12:00

14:00

EVERYDAY2

EVERYDAY2

14:00

16:00

EVERYDAY1

EVERYDAY1

16:00

18:00

time

----

Reversed sequence of

I

,

ON

ONCE

OFF time

ONCE

16:00

18:00

EVERYDAY2

EVERYDAY2

14:00

16:00

EVERYDAY1

,

14:00

time

OFF

:----i

ON
ON
I

12:00

,

10 11 12 13 14 15 16 17 18 19 20o'clock

@

ON time

EVERYDAY1

9

No going ON

~GOingOFF

!
I

S80

I

11 12 13 14 15 16 17 18 19 20 o'clock

9

ONCE

EVERYDAY1

(j)

!

I

/No going ON
./

ONCE goes ON during EVERYDAYl is in operation, and, EVERYDAY2 goes ON during ONCE is in
operation.

----

®

OFF

0

ONCE

9

,

:

!

:----1
:

r------:

,

10 11 12 13 14 15 16 17 18 19 20o'clock

,uPD1704C-011
5. TYPICAL APPLICATIONS
A wide variety of set models can be developed by combining initial setting diode matrix, NONCLOCK
and FM ONLY and remote control function. The following table shows some examples of the variations and
effective keys on each variation.
LEGEND on symbols
(key)
0
Function effective
Function ineffective
x
•
All the key functions diffective
AM
Only AM effective
FM
Only FM effective
Ineffective (prohibited)

~
KEY

_ g..c

NONCLOCK

:~'='i
":~(J)

1

4

3

2

OFF ON OFF

ON

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

8

7

ON OFF

ON OFF

ON OFF

OFF ON OFF

ON OFF ON

FM ONLY

OFF

ON

BAND

Both AM and FM

FM Only

x

Remote Control

c
oQ

6

5

x

0

0

....
t.)

C
::J

u.

x

Source Selector
Clock

x

Timer

x x

o (AM)

x

0

AM

1 (EVERYDA Yl )
ON
2 (EVERYDAYl )
OFF
3 (EVERYDAY2)
ON
4 (EVERYDA Y2 )
OFF
5 (ONCE)
ON
6(ONCE)
OFF

x

0

x x

0

1

0

2

0

2

4
5
6

3
4

x

0

x

x

AM

1

0

2

•

2

3

•
•

3

4

x

0

x x

0

•

AM

•
•
•
•

1

•
•
•
•

3

0

•

AM

0

x

0

x

0

•

4

5

0

5

0

5

6

•

6

•

6

REMCON

CJ)

OFF

0

CLKCAL

>-

•

H~

~

o~

4
5
6

3

•

6

X

•
•

1
2

5

•
•
•
•
•
•

2
3
4
5

•

6

X

X

-

0
1

•
•
•

4

0

X

0
0

0

•
•

1
2
3

0

4

0

•
•

5
6

8

8
QJ

3

•
•
•
•
•

x

0

-

0

0

7

9 (FM)

en

2

0

X

-

0

x

0

X

0

1

0

7

..c

X

-

•
•
•
•
•

1

x

0

x

0

x

0

•

FM

•

FM

•

-

•

-

•

9

•

-

•

FM

-

•

9

-

•

9

•

•

-

-

•

9

•

-

•

-

-

•

•

-

•

QJ

~

CHSCAN

OJ

:>

°B

UP

~
w

•

DOWN
MEMORY
PHONO

•

-

TAPE

•

-

•

-

•

-

AUX
CLOCK SET
M

a

RADIO

D
E

TIMER OPE

S
W

TIMER READ
TIMER WRITE

•

-

-

•

•

-

-

-

•

•

-

•

•

-

•

-

•
-

•

-

•

-

•

-

•

-

•

-

•

-

•

-

•

TIMER CANCEL

S81

j.lPD1704C-011
5-1. Example of types without remote control nor clock
(Corresponding type numbers: 1, 4, 13, and 16)

Voo

...-__+---t TU N E R

KOt------,

OPEN

.--__+---tPHONO

ScJ------'

VOO ~--
0

I

0

:::>
:::>

\~/

I
U

:::>

o

-'

U

t_

I-

>
I-

>

U

(Y)

~
I----t--J~ ~
a:

r--

0)

oa.
I-

::I.

a.

o

I-

w

-'
:::>

I-

o
w
U

>
a:

w
en

I~

,--_+-t_-l
- -

5-eS

.-..----tdO 'NOlO:::>
1 - - - - - ; 0 - V'

w

(J\.1..)

a.

x nV' .---..;-.~

1 - - - - . . , lI\IV'/lI\I:I

o

a.

o NOH d t-.......,r-t---1

::I.

a:

«
I-

w

I-

3dV'1.1-1H-t-t---t

r-- 9-00

83 N nl. .......H-I-t---t
~

u.

U

w
-'
w
en
w
u

a:
:::>
o

en

v

l.no:lV'~

S87

m
(X)
(X)

l::
"'C

APPLICATION EXAMPLE OF CIRCUIT DIAGRAM

C

.------------------------------------------------------------------------------------.-. D.P.

Digit

To FIP

Ii

I1I1
~ ~ ~ ~ ~,~

+5 V

01

16 15 14 11

11 10 9

r

I II

r

~

III

....l

a

'-I

o

b

~

c
d

o
I

e
To FIP Segment

o
....l
~

g

1SS53
...--COLON

100 kn
MUTE output

•

+5.7V~

•

• -25 V

••

+5V

System Power Supply
1SS53

47 kn

2SA733

JlPD1704C-011
100 kn

-25 V

+5V

4~~.kn t
0.01 JlF
From FM VCO

o---f

+5V

I

47 k

Q01JlF
From AM VCO

~~l~~mME

22k

~r---~~~----~

0.01 JlF

+30 V____- - - .
2.2 kn~1000p~6.8 kn

4--I I I \I
To

,
I

To FM, AM VCO

+ N-13.9

,..,
....

-In

KEY
Input

kn

1 kn

:)

2SC945

6

Remote
Control
Signal
Input

SO Input

66666

Power Supply
Control for Sets

o

AM FM AUX TAPE
I

FM,AM
Power Supply Control

PHONO

300 n
P1 P2 P3 P4 P5 P6 P7

P8

MOS DIGITAL INTEGRATED CIRCUIT

I1 PD17 05C-012
PHASE LOCKED LOOP FREQUENCY SYNTHESIZER
TV DIGITAL TUNING SYSTEM CONTROLLER
CMOS LSI

~PD1705C-012

is a CMOS LSI developed for television receivers of PLL frequency synthesizer system designed
to U.S.A. and Canada. PLL and controller are contained on a single chip. This LSI, with the pre-scaler J,.LPB562C,
constitutes a high performance PLL television receiver system. Since PLL section uses pulse-swallowing
system, fine tuning can be easily done with a high precision. Furthermore, it is provided with functions of
remote control, clock, and timer.

FEATURES
• PLL and controller are packed in one chip.
• Multifarious station selection modes are provided.
la-key direct selection .....................

with automatic/manual switching

channel up/down selection ............... with automatic/manual switching
• High precision fine tuning capable by the use of pulse-swallowing system (1 step 40 kHz ± 2.2 MHz, max.)
• CATV stations can be selected.
• 12-hour system clock and ON/OFF timer contained within.
• Remote control receiver contained. (J,.LPD1913C and J,.LPC1373H are used.)
• Provided with the function to output BCD channel number to CRT display interface.
• CMOS structure with low power consumption.
• Single power supply of +5 V.
• 42-pin dual in-line package (DIP)

PACKAGE DIMENSIONS

in millimeters

e!
~

025+ 0 • 10
•

-0.05

15.24

0-15

0

689

tt PD17 05C-012

ABSOLUTE MAXIMUM RATINGS
Supply Voltage

VOO

-0.3"'+6.0

Input Voltage

VI

-0.3-+VOO

Output Voltage

Va

-0.3"'+Voo

Output Current

10

10

Operation Temperature

Topt

-35""+75

Strage Temperature

Tstg

-55"'+125

Output Breakdown Voltage

VBOS1

Sa-Sg terminal: -35

V

Output Breakdown Voltage

VBOS2

CHO-CH3, MS terminal: -15

V

Output Breakdown Voltage

VBOS3

B01, B02 terminal: +15

V

RECOMMENDED OPERATING CONDITIONS
CHARACTERISTIC
Supply Voltage

SYMBOL
VOO

MIN.

TYP.

MAX.

UNIT

4.S

S.O

5.S

V

Output Breakdown Voltage

VBOS1

-30

V

Sa-Sg terminal: IOFF=-5 JJ.A

Output Breakdown Voltage

VBOS2

-11

V

CHO-CH3,MS terminal:IOFF=-10 JJ.A

Output Breakdown Voltage

VBOS3

13

V

B01,B02 terminal: 10FF=-S JJ.A

Trise

500

ms

VOO=0-4.S V

Supply Voltage Rise Time

ELECTRICAL CHARACTERISTICS (Ta=-35 to +75
CHARACTERISTIC

SYMBOL

MIN.

TYP.

°c, VDD=4.5 to 5.5

MAX.

UNIT

V)
TEST CONOITION

High Level Input Voltage

VIH1

0. 8V OO

VOO

V

REM terminal

High Level Input Voltage

VIH2

0. 7V OO

VOO

V

AFTU,AFTO,SO,CE terminal

High Level Input Voltage

VIH3

0. 6V OO

VOO

V

KO-K3 terminal

Low Level Input Voltage

VIL1

0

0. 3V OO

V

AFTU,AFTO,SO,CE terminal

Low Level Input Voltage

VIL2

0

0. 2V OO

V

KO-K3,REM terminal

High Level Output Voltage

VOH1

4.0

V

EO,VOL terminal: 10H=-0.S mA

High Level Output Voltage

VOH2

4.0

V

01-0S,MUTE,PSC,LMP terminal:IOH=-0.2 mA

High Level Output Voltage

VOH3

3.0

V

Sa-Sg terminal: 10H=-0.S mA

High Level Output Voltage

VOH4

2.S

V

CHO-CH3,MS,POW terminal: IOH=.-2.0 mA

Low Level Output Voltage

VOL1

O,S

V

EO,VOL,LMP terminal:IOL =O.S rnA

Low Level Output Voltage

VOL2

O.S

V

01-0S,MUTE,PSC terminal: 10L=0.2 mA

Low Level Output Voltage

VOL3

2.0

V

B01,B02 terminal:IOL =2.0 mA

High Level Input Current

+IIH1

100

JJ.A

KO-K3 terminal:VIN=VOO=S.O V

High Level Input Current

+IIH2

300

JJ.A

Xl terminal (Pull Oown):VIN=VOO=5.0 V

Low Level Input Current

-IlL

300

JJ.A

IN terminal (Pull Up):VIN=O V, VOO=S.O V

High Level Input Leak Current

+IUH

10

JJ.A

CE,REM,AFTU,AFTO,SO terminal:VIN=VOO=S.O V

Low Level Jnput Leak Current

-IUL

10

JJ.A

CE,REM,AFTU,AFTO,SO,KO-K3 terminal:VIN=O V

JJ.A

EO terminal:Vo=VOO,VO=O V

MHz

IN terminal:VIN=0.7 Vp_p(MIN.),OC

Output Off Leak Current

690

TEST CONOITION

10

40

10- 3

IL

Frequency Response

fiN

Supply Current

1001

3

mA

Normal Operation

Supply Current

1002

0.6

mA

CE terminal=O V,VOO=S V

Oscillation Stop Voltage

VOOS

3.2

0.5

8.8

3.8

V

,uPD1705C-012
OUTLINE OF FUNCTIONS
(1)

BANDS
VHF/UHF/CATV in U.S. and CANADA
VHF

2 ch - 13 ch

o UHF

14 ch- 83 ch

•

A ch - W ch

•

(2)

(3)

(4)

(5)

CATV

FUNCTION OF TUNING
Q

10-key direct selection with automatic/manual switching.

•

channel up/down selection with automatic/manual switching.

MANUAL FINE TUNING (MFT)
~

1 step

40 kHz ± 2.2 MHz MAX.

•

1 cycle

125 ms

AUTO FINE TUNING (AFT)

o 1 step

40 kHz ± 2.2 MHz MAX.

"

8 ms

1 cycle

FUNCTION OF CLOCK AND TIMER
•

12-hour clock (AM or PM is displayed)

o On-off timer in every 24 hours

(6)

(7)

FUNCTION OF REMOTE CONTROL
•

Contains remote control receiver

•

Using thellPD1913C (transmitter) and thellPC1373H (pre-amplifier)

DISPLAY
•

Dynamic display in 5 digits (at 130 Hz)
Channel .. ············2 digits and a display of CATV, panel locked, or remote controlled reception.
Clock ................. · 4 digits and a display of AM, PM, panel locked reception, or remote controlled·
reception.

•

(8)

BCD output terminal for CRT display interface is provided to be connected via IlPD4508C to MM58146.

REFERENCE FREQUENCY
fr = 5 kHz

691

,uPD1705C-012
PIN CONNECTION (Top View)

VOL MS LMP

CHI CHo BO l POW

IN

REM CE

GND EO

JlPD 1705C-012

EXPLANATION OF INPUT AND OUTPUT TERMINALS

692

Pin
Number

Symbol

Name of
Terminal

3-9

Sa-Sg

Segment

7-segment display output, also used as output for key-matrix.
dielectric strength (-30 V). Active high.

10-13

KO-K3

Key

Input of key-matrix return signal.

14-18

05-01

Digit

19,20

Xl, X2

Reference
Frequency
Oscillator

Output of digit signal for display, also used for latch pulses for BCD output
to CRT display (03, 04). Active high.
Crystal oscillator of 4.5 MHz is connected here. Feedback resistance is
contained.

21

VOO

Power
Supply

Voltage of +5 V ±10 % is supplied here. VDD rise time of 500 ms or less is
Irequired. For too long rise time, initializing may not be normally
performed.

22

EO

Phase
Detection
Output

Charge pumping output from phase detector. This output supplys tuning
voltage to varactor of tuner via a low-pass filter.

23

GNO

Grounding

Connected to the ground of system.

24

CE

Chip
Enable

High: Normal operation
Low: Memory retention (display off, PLL function disabled).
Low level signal less than 134 J,lS is neglected.

25

REM

Remote
Control
Signal Input

Input terminal for remote control signal. The output of preamplifier
J,lPC1373H is connected here. Active low.

26

IN

Local
Oscillator
Input

Tuner local Qscillation signal is input here via prescaler J,lPB562C. An a.c.
anplifier is contained. So input should be connected through a capacitor.

27

PSC

Pulse
Swallow
Control

Output terminal of pulse swallow control signal.
terminal of prescaler p.PB562C.

28

MUTE

Muting

Output terminal of signal to cut noises when PLL is unlocked. Active high.

Descriptions
High

Connected to PSC

jlPD1705C-012

Pin
Number

Symbol

29
32

B01
B02

Name of
Terminal
Band

Descriptions
Output terminal of tuner band switching signal. The form of the signal is
shown below.

1--:1

MB, V~
H
H

VL
L
H

1

1

SB
H
L

1

UB
L
L

I

31

POW

Power

Output terminal for controlling power supply.

33-36

CHOCH3

Channel
Number
Output

Output terminals for BCD data to CRT display interface. The number of
receiving channel is output in 2-digit dynamic BCD signal.

37,38

AFTU
AFTD

AFT Input

Input terminal for AFT signal. AFT signal converted in binary form by
comparator J,LPC393C is supplied here.

SD

Station
Detector

Input terminal for stop signal during auto tuning. Active low. However,
it is necessary that it turns to low level within 100 ms after PLL locking.

40

LMP

Lamp

Output terminal for displaying remote control signal reception. A pulse of
20 ms duration is output when remote control signal is received.

41

MS

Mode
Switch

Output terminal of return signal for sensing CATV/TV and AUT/MAN
switching.

42

VOL

Volume

Output terminal of varialbe-duty pulses to control volume. The signal
is input to d.c. attenuator via an external lowpass filter.

-

39

CONNECTION TO THE MATRIX OF KEYS

~

K3 (13)

K2 (12)

K1 (11)

KO (10)

Sa (3)

0

1

2

3

Sb (4)

4

5

6

7

Sc (5)

8

9

CLEAR

RECALL

Sd (6)

FTU

CHU

VOLU

MUTE

Se (7)

FTD

CHD

VOLD

Sf (8)

HADJ

MADJ

PL

Sg (9)

CLOCK

ONTIM

OFTIM

MS (41)

CATV/TV

AUT/MAN

SDCONT

POWER
TIMER

-

693

j1PD1705C-012
COMPOSITION OF KEYS

--+-+-+-~I-+-If--++-+-~I-+-"""-------___- - + - - - + - - - - + - - - - -___

KO

K2

Sg

Sf

Se

Sc

Sa

MS

694

o

momentary key switch

D

alternate switch

"'V

transistor

VOL

to display

j1PD1705C-012

EXPLANATION OF CONTROL KEYS
Symbol

0-9
(Number Key)

Function
Used for direct channel selection. For direct channel selection, input the number of
desired channel in two digits. (Channel 8 or 12 is selected by keying (0), (8) or (1), (2),
respectively.) When, after keying the first digit in either of 2-9, the second keying is
delayed more than 2-3 seconds, the channel corresponding to the first keyed number is
selected. (keying of only (3) selects Channel 3.) If some non-existing channel number
is keyed-in, no channel selection is done, and the display recovers the preceding channel
number.
In auto-mode (when AUT/MAN switch is on), when no station is detected in the channel
specified by keying, the channel automatically shifts up as far as the channel where
station can be detected.

CLEAR

If the first keying has been done wrong for direct channel selection, depress this key to
recover the original state immediately. Then, follow the selection process from the
beginning.

RECALL

This key switches display modes. Every time when this key is depressed, clock or channel
is alternatingly displayed.

CHU
(up-channel
selection)

In auto-mode (when AUT/MAN switch is on), when this key is depressed, the channel
shifts up until the channel transmitting wave is found. When this key is further kept
pressed down, the reception of the selected channel will be kept for 600 ms and then the
channel will shift up again until another station is received. This procedure is repeated
until the key is released.
In manual mode (when AUT/MAN switch is off), when this key is kept depressed, the
channel again shifts up by 1 after a waiting time of 600 ms. This procedure is repeated
until the key is released.

CHD
(down-channel
selection)

This key is only different from CHU in the shifting down-channel, instead of up-channel.
Others are the same as CHU.

FTU
(fine tuning
upward)

This key serves for fine tuning. It is enabled only in manual mode. Depressing this key
and then releasing within 500 ms makes the tuning frequency shift upward by 40 kHz.
After the depression is kept for 500 ms, the tuning frequency is raised by 40 kHz, once
after every 125 ms. When the upper limit (+2.2 MHz) is reached by this procedure, the
frequency goes down to the lower limit (-2.2 MHz) and again the upward shifting
starts.
When other channel is selected, the fine tuning condition is resetted.

FTD
(fine tuning downward)

This key is only different from FTU in the frequency shift downward instead of
upward. Other features are the same as FTU.

VOLU
(increase volume)

This is the key to control sound level. When this key is depressed the sound level is
raised by 1 step in every 100 ms until the key is released. The total number of steps is
64, (duty ratios are 0, 3/67-65/67) so as to adjust the sound level smoothly,

VOLD
(decrease volume)

This key is only different from VOLU in the volume level attenuating instead of raising.
Other features are the same as va LU.

MUTE
(muting)

This key is used to mute sound. Every time when this key is depressed, mute output is
reversed. The muting is released when power is turned on, when a volume control key
(VOLU or VOLD) is operated, or when any channel is selected.

POW
(power)

This key controls the power source. Every time when this key is depressed, power output
is reversed. When power is in off-state, only POW key, P L key, time adjuster key and
switch is in enabled condition. When power is turned on, channel is on display, while it
is turned off, clock is displayed.

PL
(panel lock)

This key prevents misoperation. When panel lock is on, keys other than POW key and
PL key are ineffective. When power is on, panel lock is released.

695

,uPD1705C-012

Symbol
HADJ
(hour adjust)

This key is used to adjust hour. This is effective only when a time adjuster switch
(CLOCK, ONTIM, or OFTIM) is on position. When this key is depressed and then
released within 500 ms, the hour is advanced by 1 hour. If the depression is held longer
than 500 ms, the hour is further advanced byl hour once every 250 ms after the 500 ms
until the key is released.

MADJ
(minute adjust)

This key is used to adjust minute. The performance is basically the same as HADJ.
When the advancement reaches 60 minutes, it returns to zero without counting up in
hour.

CLOCK
(clock adjustment)

This is the clock adjustment mode switch. When this is turned on, clock is displayed and
HADJ and MADJ keys are available. While this is on, the clock is stopped, and, when the
switch is turned off, the clock start from a second. When panel lock is on, the clock
cannot be adjusted by turning this switch on, but, it should be noted that second is reset
to a by this switch.

ONTIM
(on-timer
adjustment)

This is the on-timer adjustment mode switch. When this switch is turned on, the ontimer mode is displayed and the on-timer can be adjusted to the desired setting by using
HADJ and MADJ keys.

OFTIM
(off-timer
adjustment)

This is the off-timer adjustment mode switch. When this switch is turned on, the offtimer mode is displayed and the off-timer can be adjusted to the desired setting by using
HADJ and MADJ keys.

TIMER
(timer)

696

Function

This is the timer selection switch. When this switch is turned on, the timer acts at the
preset time. When it is off, the timer does not act at the preset time.

CATV/TV
(band switching)

This is the band selection switch. When the switch is on, CATV is selected, and when off,
TV is selected. When CATV is selected, Channels 2-36 (Channels 2-13: VHF, and,
Channels 14-36: CATV) can be received, while TV is selected, Channels 2-83 (Channels
2-13: VHF, and, Channels 14-83: UHF) can be received. The switching initialize the
channel to Channel 2.

AUT/MAN
(auto/manual)

This is the mode selection switch for channel selection and fine tuning. When this is on,
auto mode is taken, and when off, manual mode is taken. In auto mode, the channel
selection is accompanied by the detection of broadcast signal and AFT acts always. In
manual mode, no signal detection is performed. At the same time, MFT mode is taken
and FTU and FTD keys are effective.

SDCONT
(station detect
control)

This is the broadcast signal detection time adjustment switch. Usually it is off where the
station signal detection is started about 100 ms after PLL lock. When it is on, the time
for detection is prolonged by the unit of 100 ms until the switch is turned off. Therefore
it is possible to control station signal detection time by external signal using transistor
switch.

,uPD1705C-012
RELATION BETWEEN CATV CHANNEL AND INPUT CHANNEL NUMBER
The correspondence of CATV channels to actually keyed-in channel numbers as well as displayed channel
numbers is shown in the following table.

A

B

C

0

E

F

14 15 16 17 18

G

H

I

J

K

L

M

N

0

P

22 23 24 25 26 27 28 29

19 20 21

0

R

S

T

U

V

W

30 31 32 33 34 35 36

EXPLANATION OF REMOTE CONTROL SYSTEM
The J-LPD1705C-012 contains remote-control receiver. Combined with J-LPD1913C (transmitter) and J-LPC1373H
(receiver preamplifier), it can be remote controlled.
Functions enabled by the remote control are:
•

direct channel selection with 10-key (auto/manual)

•

channel up/down selection (auto/manual)

•

channel selection clearing (see the description above of CLEAR key)

•

Power on/off

•

muting on/off

•
•

panel lock on/off
volume up/down (in 64 steps) .... initial level 25 %

o remote-controlled reception identification signal (on lMP terminal)
Note

When the J-LPD1705C-012 receives remote control signal the reception identification pulse of about

Note

The custom code of CO - C7 = 00100000 is used for transmission. The function does not start with

20 ms is issued from lMP terminal. Use this pulse externally with some external time constnat.
codes other than this. For details of custom code. see the catalogue for J-LPD1913C.

*COMPOSITION OF KEYS AT THE J-LPD1913C

~

KIO (1)

KI1 (2)

KI2 (3)

KI3 (4)

KOO (15)

CHU

CHD

VOlU

VOlD

K02 (14)

POWER

MUTE

MUTE

Pl

K04 (13)

0

1

2

3

K05 (12)

4

5

6

7

K06 (11)

8

9

CLEAR

RECAll

697

,uPD1705C-012
APPLICATION OF REMOTE CONTROL SYSTEM

+
J.J.

PC1373H

' - - - -__- 0

~~+-------~--+----+------

DISPLAY FORMAT
Display format is 7-segment 5-digit dynamic display. (repetition frequency: 130 Hz and duty ratio: 15 %)
Display is connected in the following fashion.

-...J

I
I

II
II II
I- I n
LI
c)
02

c~

01

(

03

COLON
AM
PM
CATV
PL

0

0

05

CLOCK DISPLAY
Clock is displayed in 4 digits of numerics and 1 digit of dot (AM or PM, COLON, and PL).

AM

698

II

0

I

0

1-' I-

1_'

_I

PM

~

-

...., Sd
~

-

""" Se
Sf

...

~

04

I -I
I 1-

0
0

Sa

...., Sb
....., Sc

Sg

REM

+12V

j,lPD1705C-012
CHANNEL DISPLAY
Channel is displayed in 2 digits of numerics and 1 digit of dot (CATV and PL). The digit of ten is displayed at

D3 timing and the digit of one at 04 timing.

-III- 1

I I -,
1_11Note

CATV

Channel and clock are alternatingly displayed by operating RECALL key. When power line is connected
or when power switch is turned off, clock is displayed. Whereas, when power switch is turned on or
when selection key (0-9, CHU, CHO) or CATV lTV switch is operated, channel is displayed. Furthermore, when clock adjustment switch (CLOCK, ONTIM, and OFTIM) is on, clock is displayed.

OPERATION OF CLOCK AND TIMER
CLOCK
Clock should be adjusted following the schedule below.
1) Turn CLOCK switch on. Only clock is displayed. When no adjustment is done before, only AM and COLON

are displayed.

o

o

AM

2) Press HAOJ key to adjust hour. The display of AM 1 :00 appears at the moment of key depression. The display
continues to advance until the key is released.

I 0
AM

I

0

'-I '-I
,_, '_'

3) Press MAOJ key to adjust minute. The displayed minute continues to advance until the key is released.

No counting up occurs in hour if the minute reaches 60.

AM

4) Turn CLOCK switch off coincidentally with other clock or time signal. The clock starts from 0 second at the
moment of switch off.

699

,uPD1705C-012
TIMER
Adjust timer according to the following procedure.
1) Turn ONTIM (OFTIM) switch on. Timer is displayed.

o

o

AM

2) Adjust timer to the desired time in the same procedure as clock adjustment.

PM

3) Turn ONTIM (OFTIM) switch off. The display is changed to clock.

AM

-1

0

I

0

-11_I

=1

4) Turn TIMER switch on.
Note:

During panel lock, clock cannot be adjusted. But when CLOCK switch is turned on/off, clock is reset to

o second.
Note:

700

When both on-timer and off:timer are set to the same time, off-timer is dominating.
do~s

Note:

While CLOCK switch is on, clock

Note

While one of time adjustment switches is on, remote control is ineffective.

not advance.

Note:

Do not turn on two or more time adjustment switches at a time.

,uPD1705C-012

AUTO-SEARCH FUNCTION
J,lPD1705C-012 is provided for channel selection with a function to tune in automatically to a transmitting
station by detecting the presence of the wave (when in auto mode). The searching of channels are performed in
an specified derection (up-channel for up-channel selection, or down-channel for down-channel selection), or, in
up-channel direction when direct selection is performed.
If there were a deviation in the frequency of wave transmitted by a station, the reception of signal at the right
frequency might be impossible. In such cas'es, the receiving frequency is shifted by 320 kHz as far as ±1.6 MHz
to be tuned in the transmitted signal. When a signal is detected half ways, the searching is finished. When the
detection is not completed in ±1.6 MHz range, the next channel will be sought. The searching procedure within a
channel is shown in the following figure.

1.6 MHz

I
I

I

I

: - 100 m s .: -/- :
PL L lock period

~----------~v-----------~

detection of broadcast signal

FINE TUNING
J,lPD1705C-012 has a high precision fine tuning function to correspond to frequency shift of station. In virtue
of this feature, the shift in receiving frequency can be easily compensated to keep the optimum receiving condition. Two types of fine tuning functions are available; manual (MFT) and auto (AFT).
1) MFT (manual fine tuning)
This tuning is operated with FTU or FTD key. Selection of another channel resets the fine tuning status.
FTU and FTD keys are effective only when AUT/MAN switch is off (in manual mode). The fine tuning is done
in 40 kHz step at every 125 ms and the limit of frequency shift is ±2.2 MHz.
2) AFT (auto fine tuning)
It is effective only when AUT/MAN switch is on (in auto mode). This is operated by external AFT signal
and it always follows the change in AFT signal. However, it is ineffective during channel selection. The fine
tuning. is done in 40 kHz step at every 8 ms and the limit of frequency change is ±2.2 MHz. AFT is operated
by the signal applied to AFTU or AFTD terminal. When AFTU terminal is at high level, the tuning frequency
is raised, while AFTD terminal is at high level, the frequency is lowered. When both AFTU and AFTD
terminals are assigned with low level, the operation is stopped,
Note:

In either AFT or MFT, when the frequency is shifted as far as the upper or lower limit respectively,
the frequency is shifted back to the lower or upper limit.

Thus the fine tuning is continued

cyclically.

701

,uPD1705C-012
CRT DISPLAY
pP01705C-012 is provided with terminals (CHO-CH3) for output of BCD channel number for CRT display.
This output is presented in dynamic format which is the same as the display format (that is, digit of 10 is output
at the timing of 03 and digit of 1 is output at the timing of 04). Therefore, by providing a latch (,uPD4508BC)
externally, the output can be taken outside.

MSO

+5 V

--H-t-+------.

04

CHO

CH 1

CH2

OUTPUT PATTERN
numeric

702

BCD output

0

0

0

0

0

1

0

0

0

1

2

0

0

1 0

3

0

0

1

1

4

0

1 0

0

5

0

1

0

1

6

0

1

1 0

7

0

1

1

1

8

1

0

0

0

9

1 0

0

1

1

1

1

1

CH3

03

APPLICATION CIRCUIT

C

SD Input

)

(SCD Output)
i

,

,

Muting Output

i

1S954
AFT Signal

Remote Control
Signal Input

+12 V

-c=
I

AC117/100 V
ION/OFF

r----.----- +15 V
VOLUME
....-----<"'>VSW

CONTROLo------+--~~~~~--_4--~

TO DC ATT
220~

47 k

2SC945x2
2SA733x3

..---_-n US
;J; 0.01 ~

1

OVB

lO.01~

~

20p
4.5 MHz
HC-1B/U
TOYO COM
TOC-231A
-BC

'"----1--1

I

0 from VCO

1000p

L---

Latch Pulse
220

b

c

d

e

9

REM AM
D5

C

1SS53x10

[]~
[W[WCATV
o~
/ I:J ~
~ LED (Cathode Common)
PM

1:::
"'tJ

+33 V

47X7

LI Ll

.,10 k
10 k

~

f'>Tuning Voltage
D5

4.7 k

2SC945x2

'"U'1

o

0.47~

PL

(")
I

o

~

..J

o

w

N

MOS DIGITAL INTEGRATED CIRCUIT

fLPD1 706G-011
PLL SYNTHESIZER CONTROLLER FOR LW/MW/FM/SW
with built-in LCD driver

The pPD1706G-011 is a 6-band (LW/MW/FM/SW1/SW2/SW3) PLL synthesizer controller with a timer, developed specifically for use in radiQ cassettes intended for Japan/U.S./Europe. Since it has a built-in LCD driver
for display, LCD (Liquid Crystal Display) can be directly driven. By combining it with a low voltage drive
prescaler pPB556C designed for the purpose, therefore, you can build a low-voltage, low-power-consumption
LCD drive digital tuning system.

FEATURES
•

PLL and controller in a chip

•

LCD direct drive (1/3 duty, 1/3 bias)

•

Single 3 V ±10 % supply

•

Low power consumption: due to CMOS

•

Capable of receiving six bands (LW/MW/FM/SW1/SW2/SW3)

•

Pulse swallowing method (FM/SW2/SW3)

•

Capable of controlling radio cassette (with radio/tape switching terminal)

•

Main power control terminal provided

•

Power on reset circuit self-contained (no external parts required)

•

Clock function self-contained (12 hour/24 hour display switching possible)

•

Alarm timer self-contained (buzzer modulation signal output possible: 3 kHz + 4 Hz + 0.5 Hz modulation)

•

Sleep timer self-contained (60 minutes maximum ... Time can be set in the unit of five minutes.)

•

A variety of tuning modes

*

Manual up/down search (saw-tooth mode): 125 ms/1ch.,

* Automatic up/down search (saw-tooth mode):
* Preset channel tuning: Random preset system
* Direct frequency tuning: With error display
•
•

125 ms/10ch.
60 ms/1ch.

10 preset channels can be stored in memory. (Random system)
Last one memory (when power is OFF) and last preset channel memory (when bands are switched over)
functions self-contained

•

Uses 150 kHz crystal

•

Uses 64-pin flat package which allows thinner assembly

•

Allows I F offset of FM (four different I Fs spaced 25 kHz apart).

•

Employs quasi static key scan system (no key scan noise generated).

•

All output terminals N-ch open drain (breakdown voltage 8.5 V MIN.)
(ex-cept KSO through KS9, E01, E02, PSC, COMO through 2, 1a through 9a)

704

jlPD1706G-011
PACKAGE DIMENSIONS (Unit: mm)

14

12.0 ± 0.3

~

~

P'""

-

-

~

r-

I

I

I

I

II

,. 64
1

52

"
51·

:-=-

.
-

I

0

I
I

0
0
0

I
I

0
0
0
0

I

I

I

I
I

I

0

I

0

I
('t)

I

I

0

I

q
co

+l

I

0
N

0

I

0

I

0

I

I

0

I

I

I

I

0
0

19

33

\. 20

32

I

I! i!

I
I

I
I

.....

-

I-

l!5
N

-

...

--

-

~(DDDOOOOO

0

.J

- - 0.4 +0.2
- 0.1

1.0 ±0.15

'--_ _

+l

UJ

0

I

I

'¢

ci

0

I

I

0

I'"

x

«
~

rq

00000)\----....,

19.6 ± 0.4

705

,uPD1706G-011
ABSOLUTE MAXIMUM RATINGS
Supply Voltage

VOO

-0.3 to +6.0

V

Input Voltage

VI

-0.3 to VOO

V

Output Voltage

Vo

Output Current

10

+10,5( SWl S,SW2S,SW3S, FMS,

)
MWS,LWS,MUTE,PWROUT
P LS terminal

V

mA

10

Operation Temperature

Topt

-35 to +75

Storage Temperature

Tstg

-55 to +125

°c
°c

ELECTRICALCHARACTERISTICS (Test Condition unless otherwise speCified:)
T opt=-35 '" +75 °C, VDD=2.55"'3.3 V
SYMBOL

MIN.

TYP.

MAX.

UNIT

Supply Voltage

V001

2.7

3.0

3.3

V

CPU and PLL operation

Supply Voltage .

V002

2.55

3.0

3.3

V

CPU operation, PLL stop

CHARACTE R ISTIC

Supply Current

1001

2.0

Supply Current

1002

8.5

Supply Voltage Rise Time
Oscilation Start Voltage
Output Breakdown
Voltage
Low Level Output Current

VOOS
Vo

100
2.7

VOH1

Low Level Output Voltage

VOL1

High Level Input Voltage

VIH1

Low Level Input Voltage

VIL1
IOH2

Low Level Output Current

IOL2

High Level Output Voltage

VOH4

Low Level Output Voltage

VOL4

High Level Input Voltage

VIH4

Low Level Input Voltage

VIL4

High Level I nput Current

IIL4

High Level Input Voltage

VIH5

Low Level Input Voltage

VIL5

High Level Output Voltage

VOH6

Low Level Output Voltage

VOL6

8.5
0.6
0.4
0. 7V OO
0.3 Voo
1.0

0.5

6

IlL I

Output Voltage for LCD

Vo

(IOL=400 J.l.A)

V

"

V

" CE terminal

V
mA
V

"
"

(VOL =0.4 VOO)

KSO'" KS7 (lOH=-200 J.l.A)

"

V

"

V

"

E01, ED2,terminal(VOH=0.6VOO)

J.l.A
V

10- 3
0

KS8, KS9 terminal (lOH=-400 J.LA)

40

"

(lOL=8 J.LA)

(VOO=VIH=3.3 V)

SO terminal

"

V

PSC terminal (lOH=-0.1 mAl

02VOO

V

6.2

MHz

"
(lOL =0.2 mAl
VIN= 1 Vp_p sine wave (DC cut)

8.5

MHz

1

J.l.A
V

0.8 VOD

Output Off Leak Current

V

02 VOO

02VOO

0.5

mA

KO"'K3

0.8 VOD

fFM

CL =20 pFx2
SW1 S, SW2S, SW3S, FMS, MWS,
LWS, MUTE, PWROUT, BUZ terminal
" (VOL=0.5 V)

V

0.6 VOO

fAM

CPU operation, PLL stop

V

VOO-O.4

FM Response Frequency

J.l.A
ms

mA
-1.0

0.5

FM terminal 8.5 MHz input

V

VOO-O.4

AM Response Frequency

mA

V

IOL2

High Level Output Voltage

High Level Output Current

706

tr

TEST CONDITION

0.2

VIN=0.8 V p _p sine wave (DC cut)
E01, E02, terminal
1a-9a,COMD-2 terminal(Voo=3 V)

j,lPD1706G-011

CHARACTER ISTIC

SYMBOL

MIN.

Output Voltage for LCD

TYP.

MAX.

Vl

0.8

1.0

1.2

V

"

V2

1.8

2.0

2.2

V

"

V3

2.8

Pull·down Current

"

3.0

TEST CONDITION

UNIT

1a-9a, COMO-2 terminal (VOO=3 V)

"
"

V

IPDl

400

p.A

AM,FM terminal(VDD=VIH=3.0 V)

IPD2

300

p.A

XI terminal (

High Level I nput Current

IIHl

2

p.A

AM, FM terminal (

Low Level Input Current

IlL 1

-2

p.A

)

"
"

)

"

1. GENERAL DESCRIPTION OF FUNCTIONS
1-1. Receiving frequencies

Band

Receiving Frequency
Range

LW

153...... 281 kHz

1 kHz

1 kHz

522 ...... 1611 kHz

9 kHz

3 kHz

530""1610 kHz

10 kHz

5 kHz

MW

FM

87.5...... 108.0 MHz
76.1 ...... 108.0 MHz

Channel Spacing

Reference
Frequency

450 kHz
450 kHz
(Note)

200 kHz
50 kHz

Intermediate Frequency

25 kHz

10.650,10.655,10.700,10.725 MHz
(Note)
-10.675, -10.700, -10.725, -10.750 MHz

5 kHz

450 kHz

50 kHz

2.300...... 2.935 MHz
SWl

2.940...... 3.575 MHz
3.580...... 4.215 MHz
4.540...... 5.175 MHz
5.820...... 6.455 MHz

SW2

7.100...... 7.735 MHz
'9.500 ...... 10.135 MHz

5 kHz

11.580...... 12.215 MHz
15.100...... 15.735 MHz
SW3

17.500...... 18.135 MHz
21.340 ......21.975 MHz
25.500...... 26.135 MHz
Note) Selectable by diode matrix
(For details, see P. 11)

707

,uPD1706G-011
1-2. Tuning functions
(1) Automatic tuning (saw-tooth mode)
OAutom.atic up
} .... Once a station is received, the station is retained.
.
o Automatic down
(2) Manual tuning (saw-tooth mode)
oManual up
}
.... ·Step feed by momentary switch.
oM anua I d own
If key continues to be depressed for more than 0.5 sec., fast feed is made until
key is released. If FAST key is doubly depressed, ultra fast feed is made.
(3) Direct frequency key in ........... Frequency is directly input by 10 keys.
(4) Preset memory call ................. Common to all bands, 10 stations in total
1-3. Timer functions
(1) Alarm ............ When preset time arrives, buzzer pulse is output. At the same time, power is turned on.
The ON state lasts for 120 minutes, and then both are forced to the OFF state. (Daily
timer)
(2) Sleep .............

708

Can be set to 60 minutes maximum five minutes apart.

,uPD1706G-011
2. PIN DESCRIPTION
2-1. Pin Configuration (Top View)

51 50 49
,... 47
,...
.....
..... ,... 48

46 45 44 43
,...
r-

r-

....

42
,... 41
r-

40 39 38 37 36
r-

r-

r-

r-

.....

35 34

..... .....

33

,...

52 I

I 32

53 I

I 31

54 I

I 30

55 I

I 29

NEe

56 I
57 I

I 28
I 27

J..LPD1706G-011

58 I

I 26

59 I

I 25

60 I

1 24

61 I

I 23

62 I

1 22

0

63 I

1 21
I 20

64 I

- -2 -3

Pin. No.
1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Symbol
NC
8a
7c
7a
6a
5c
5b
5a
3b
4c
4b
4a
3a
2c
2b
2a

'-

4

'-

5

Pin. No.
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

.... .... .... .... - - ....
6
7 8 9 10 11 12

Symbol
1c
1b
la
7b
9a
VL
VH
COM2
COMl
VOO
COMO
KS9
KS8
T/R
PWRSW
SW1S

Pin. No.
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

-

-

'-

-

~

l.-

I.-

13 14 15 16 17 18 19

Symbol
SW2S
SW3S
FMS
MWS
LWS
MUTE
PWROUT
BUZ
KSO
KSl
KS2
KS3
KS4
KS5
KS6
KS7

Pin. No.
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

Symbol
XI
XO
K3
K2
Kl
KO
PSC
AM
FM
VOO
SD
PWRIN
TEST
EOl
E02
GNO

(NC : No Connection)

709

,uPD1706G-011
2-2. Pin Description
Pin No.

Symbol

Pin Name

Description

LCD SEGMENT SIGNAL

LCD segment signal output terminals
(LCD of 1/3 duty and 1/3 bias to be used. See note.)
Of power voltages for LCD, intermediate ones are output to
these pins. If these intermediate potentials do not stabilize
when a large-size LCD is to be driven, connect large capa·

Intermediate

22
23

24,25,27 COMO"'2

voltage output

city capacitors between VH, VL and GND.

terminals for LCD

Normally opened.

LCD COMMON SIGNAL

LCD common signal output terminals
Device power terminals
3 V±1 0 % voltage supplied when device is operated.
Power can be supplied to either pin 26 or 58 only.

26

VDD

VDD rise time must be less than 100 ms (0 to 2.7 V).

POWER SUPPLY

Extremely long rise time might result in failure of proper ini-

58

tialization. When VDD does not fall completely to 0 V and
rises again to 2.7 V, reset is not assured. In such a case,
reset must be made from outside using PWR IN terminal.
Key return signal source output terminals for initialization
28

KS9

KEY RETURN SIGNAL

29

KS8

SOURCE FOR

these outputs to terminals KO through K3, make sure that

41

KSO

ALTERNATE SWITCH

diodes for prevention of counter flow are inserted.

KS1
l
KS7

KEY RETURN SIGNAL

Key return signal source output terminals for momentary

SOURCE FOR

switches on key matrix.

diode matrix on key mtarix and alternate switch. To input

(Refer to Key Matrix Configuration of P. 713)

51"'54

K3
l
KO

MOMENTARY SWITCH
KEY RETURN SIGNAL

Key return signal input pins for key matrix. (For details,

INPUT

refer to Key Matrix Configuration on P. 713)
TAPE and RADIO switching signal input terminal.
To be combined with TAPE/RADIO switch of set. Input as
follows:
When TAPE is selected: High level (PLL stopped, time dis-

30

T/R

TAPE/RADIO
SWITCHING INPUT

played)
When RADIO is selected: Low level (PLL operated, time
or frequency displayed)
PWROUT terminal should be directly connected when
RADIO is selected.
P.737)

Note)

710

Recommended LCDs:
EPSON

KT -104

ALPS ELECTRIC CO., LTD.

PAD32901

HITACHI LTD.

LP031-C

(For details, refer to Application on

,uPD1706G-011

Pin No.

Symbol

Pin Name

Description
Input pin for ON/OFF detection of main switch of set.
When main power is to be turned on by PWROUT output,
input high level.

31

PWRSW

MAIN SWITCH ON/OFF
REQUEST INPUT

When it is to be turned off, input low level. When high level
is input, low level is output to PWROUT terminal and PLL
operates. When low level is input, high level is output to
PWROUT terminal, and PLL stops

(For details, refer to

Application on P. 737.)
SW1S

VCO select signal output terminal, and active low output.

SW2S

Since it is N-channel open drain output, external pull-up

32

SW3S

37

FMS

VCO SELECT SIGNAL

resistor is required. Output breakdown voltage is 8.5 V

OUTPUT

maximum.

MWS
LWS
Muting signal output terminal for killing shock noise which
may otherwise be produced when P LL is out of lock.
Active high.
38

MUTE

MUTE OUTPUT

Since it is N-channel open drain output, external pull-up resistor is required.
Output breakdown voltage is 8.5 V max.
For details of timing, refer to Mute Timing Chart on P. 732.
Output terminal for ON/OFF switching signal of main power
of set.
Normally this terminal is used so that main power will be
turned on when this terminal is low and turned off when this
terminal is high. Since it is N-channel open drain output, ex-

39

PWROUT

MAIN POWER
SWITCHING OUTPUT

ternal pull-up resistor is required.
Output breakdown voltage is 8.5 V max.
(For details, refer to Application on P. 737.)
PWROUT terminal varies with the state of PWRIN terminal
and condition of ALARM and SLEEP.
When it varies, however, MUTE signal is always output at
least 250 ms beforehand to minimize power ON/OFF shock
noise.
Buzzer modulation signal output terminal.
Outputs 3 kHz signal modulated by 4 Hz and 0.5 Hz when
ALARM is ON.

40

BUZ

BUZZE R OUTPUT

(For details, refer to illustration shown below.)
Since it is N-channel open drain output, pull-up resistor is required. 125 1245 ms

IS

B U zlllllll mnn mnn
terminal
I
i
3 kHz signal

nmn
I

1s

IIl1lIInmnnmnnmn
I
·1
1s

Crystal connection terminals.
Connect 150 kHz crystal.

49

XI

50

XO

CRYSTAL

Recommended crystals:
• KYOTO CERAMICS
• TOYO TSUSHINKI

KF-38Z

• KINSEKI

P3-150

TQC-122A-7C
711

,uPD1706G-011
Pin No.

Symbol

Pin Name

55

PSC

PRESCALER CONTROL

56

AM

VCO INPUT FOR LW,
MWand SWl

57

FM

VCO INPUT FOR SW2,
SW3 and FM

Description
Outputs signal for switching the frequency dividing ratio of
prescaler (J.LPB556C) in modes (FM, SW2 or SW3) where
pulse swallowing system is employed for frequency division.
Connect this terminal to PSC terminal of the prescaler
J.LPB556C.
The dividing ratio of J.LPB556C is 1/16 and 1/17.
Terminal for inputting LW, MW or SWl local oscillation
outputs.
An AC amplifier is incorporated, and DC should be cut with
a capacitor.
Terminal for inputting FM, SW2 or SW3 local oscillation
outputs frequency-divided into 1/16 and 1/17 by the
prescaler J.LPB556C.
An AC amplifier is incorporated, and DC should be cut with
a capacitor.
Terminal for inputting signal for detecting whether broadcast station has been received during automatic tuning
(automatic up/down).

59

SD

STATION DETECTOR

60

PWRIN

MAIN POWER ON/OFF
REQUEST INPUT

61

TEST

62
63

64

712

DEVICE TEST
TERMINAL

ERROR OUT

GND

GROUND

High level should be input when a station is received.
It must be input in less than 30 ms after frequency dividing
ratio has changed.
(Refer to P. 734)
Input terminal for detecting main power ON/OFF of the set.
Connect this terminal to main power. If this terminal is
LOW, no alarm operation is performed.
Avoid creating contradictory state where PWRSW terminal
is HIGH and PWRPIN terminal is LOW.
When reset is to be made using PWRIN terminal, input high
level after it has been set LOW. This terminal however,
does not accept pulses shorter than 140 J.LS. When reset
is made using this terminal, state of diode switch at initialization is loaded.
Device test terminal.
Normally connected to GN D.
Charge pump output of phase detector constituting PLL. If
divided oscillation frequency is higher than reference frequency, these pins output high level. When it is lower, on
the other hand, terminals output low level.
If they coincide, the terminals enter floating state.
Since EOl and E02 output same signal simultaneously, they
may be connected to LPF (Low Pass Filter) of any of LW,
MW, FM, SW1, SW2 or SW3.
Connect to GN 0 of the set.

,uPD1706G-011
3. KEY MATRIX CONFIGURATION

-

ClK/FRQ

-

SW

-

DIRECT

ME

FM

MW

lW

FAST

UP

DOWN

-

0

1

2

3

KSs

-

4

S

6

7

KS6

-

S

9

• (AM/PM)

ENTER

-

CANCEL

CORRECT

SLEEP

ALARM

~,

- -KSO

-

KSs

-

~,

- I-

,

~ '--

AUTO
/MANUAl
SW1

SW3

BANDO

~

Momentary switch

,
~

Alternate switch

lOCK
24 H/12 H

} Diode matrix
KS9

-

IFO

IF1

BAND1

10 kHz/9 kHz

KO

Switch Connections
Momentary switch

KSm - 4 _ - - - + - - -

Kn

Alternate switch

KSm - - t - - - - t - - - -

Diode matrix

KSm

--_.._---t--

Kn

Kn
or
KSm

-------1-open

Kn

713

,uPD1706G-011
4. DESCRIPTION OF KEY MATRIX
4-1.

Initialization Diode Matrix
Initialization diode matrices are of the following five kinds. All of them are loaded when power is applied

to VDD for the first time (at initialization) or when PWRIN changes from LOW to HIGH.
(1) Switch for setting I F offset values of FM
IFO

IFl

(2) Switch for setting FM band areas (the US., Europe, Japan)
BANDl

BANDO

(3) Switch for setting MW band channel spacing and reference frequency
10 kHz/9 kHz
(4) Switch for selecting SW bands
SW1, SW3
(5) Switch for selecting 12/24 hour systems of clock
24H/12H
These should be set by shorting or opening intersecting points on the matrix with diodes. (on the following
table, "1" means shorting by Diode and "0" means opening.)
SWITCH

FUNCTION DESCRIPTION
Switches for setting IF offset values of FM.
Four different I Fs spaced 25 kHz apart can be set without changing displayed frequencies.

IFl
IFO

IFl

IFO

U.S. band

European band

Japanese band

0

0

10.700 MHz

10.700 MHz

-10.700 MHz

0

1

10.725 MHz

10.725 MHz

-10.675 MHz

1

0

10.650 MHz

10.650 MHz

-10.750 MHz

1

1

10.675 MHz

10.675 MHz

-10.725 MHz

Switches for setting FM band areas.
U.S., European or Japanese FM band can be selected.
Receiving frequency Channel
range
spacing

BANDl

BANDO

BANDl

0

0

Japanese band

BANDO

0

1

European band 87.50-108.00 MHz 50 kHz

1

0

Inhibited*

1

1

U.S. band

Band area

76.1CY'-'108.00 MHz

87.5""107.9 MHz

50 kHz

200 kHz

* Do not set switches as shown, as correct band (area) cannot be set.
Switch for setting MW band channel spacing, reference frequency and frequency range.
Can be set independently regardless of FM band areas (BAND1, BAN DO).
10 kHz/
9 kHz

714

10 kHz/9 kHz

Receiving frequency
range

0

522""1611 kHz

9 kHz

3 kHz

1

530"'1610 kHz

10 kHz

5 kHz

Channel
spacing

Reference
frequency

,uPD1706G-011

Switch

Function Description
Switches for inhibiting receiving bands of SW bands.
Receiving band

SW3

SW3

SW1

SW1

0

0

0

1

1

0

SW1, SW2

1

1

SW2

SW1, SW2, SW3
SW2, SW3

Switch for selecting 24/12 hour system.
24H/12H

4-2.

Display

24H/12H

0

12-hour display (combined AM/PM display)

1

24-hour display

Alternate Switches
The alternate switches are of the following two kinds. These are always switchable.

(1) Switch for switchover between automatic tuning and manual tuning
AUTO/MANUAL
(2) Switch for locking all switches on key matrix
LOCK
Switch

Function Description
Switch for switchover between automatic tuning and manual tuning.
ON .. , Automatic tuning (automatic seek operation)
OFF .. , Manual tuning
Automatic and manual tuning operations are initiated by depressing the UP or DOWN

AUTO/

momentary switch after setting AUTO/MANUAL switch.

MANUAL

(For details, refer to Description of UP and DOWN keys on P. 716)
Even if this switch is changed over to MANUAL during automatic tuning, tuning operation
does not stop. To stop operation on switchover to MANUAL, compose the circuit so that high
level will be input to SO terminal whenever switchover is made to MANUAL.
To prevent accidentally changing receiving frequency or cutting off PWROUT output as
during a recording, set this switch to ON, and all switch inputs on the key matrix will be in-

LOCK

hibited.
ON

.. , Switch locked

OFF ... Normal operation

715

,uPD1706G-011
4-3. Momentary Switches
Symbol

Function Description
Present time and frequency display switching key. This key is enabled only during the radio

ClK/FRO

operating mode. When this key is pushed while present time display is ON, switchover is made
to frequency display. When this key is pushed while frequency display is ON, switchover
is made to current time. display.
Key for setting direct frequency input mode. When this key is pushed during the radio opera-

DIRECT

ting mode, the direct frequency input mode is created, allowing a frequency to be directly
keyed in by 10 keys and the set to be tuned in on the frequency. (For details, refer to Operating
Procedures on P. 720)
Use this key to write a new frequency to preset channel memory. This key is enabled only
during the radio operating mode. Push anyone of the 10 keys in less than five seconds after

ME

push ing th is key, and the frequency being received at the moment can be preset to the preset channel memory corresponding to the key pushed. (For details, refer to the Operating
Procedures on P. 725)
Switches for selecting lW, MW, FM and SW bands. During the radio operating mode, push

lW

anyone of these keys, and switchover will be made to the selected band. If there is a chan-

MW

nel previously written to preset channel memory of the selected band,the set is tuned to the

FM

last received preset channel. If the preset channel memory has no written channel for the

SW

band, the set is tuned to the lowest channel of the band.
(Refer to P. 725)
Ultra fast key for manual UP/DOWN.

FAST

After the UP or DOWN key has been depressed during the radio reception, depress this key
simultaneously, and ultra-fast operation of 125 ms/10ch will take place.
Automatic and manual tuning keys. When these keys are pushed, the following operations
will be performed.
(1) AUTO/MANUAL switch in AUTO position
Pushing the UP key will sustain up-tuning operation in sawtooth mode, whereas pushing
the DOWN key will sustain down-tuning operation.
If high level is input to SO terminal during the period, automatic tuning operation will
stop.

UP
DOWN

(2) AUTO/MANUAL switch in MANUAL position
Each time the UP or DOWN key is pushed, up or down tuning to another channel a
step (channel space) apart will be made.
If the UP or DOWN key continues to be pushed for more than 0.5 second, up or down
tuning will continue at a speed of 125 ms/1 ch until the key is released.
(Note)
Even if the AUTO/MANUAL switch is changed over to MANUAL during automatic tuning, the automatic tuning operation does not stop. To stop the operation on switchover
to MANUAL, compose the circuit so that high level will be input to SO terminal whenever
switchover is made to MANUAL.

716

,uPD1706G-011

Function Description

Symbol

Numeric keys or preset channel memory write/call keys.
(1) As numeric keys (10 keys)
When the present time or alarm time is to be corrected, push the COR RECT key and
then directly key in a desired time.

o

In the direct frequency input mode, a desired frequency can be keyed in directly by these

1

keys.

2
3

(2) As preset channel memory keys
During the radio operating mode these keys correspond to the preset channel memory on

4

1: 1 basis.

5

0

To write

6

In less than five seconds after ME key has been pushed, push anyone of keys from 0

7

through 9, and a new channel will be written to memory corresponding to the key

8

pushed.

9

0

To call
When anyone of the keys 0 through 9 is pushed during the radio operating mode,the
channel corresponding to the key pushed will be called.

Operates as decimal point key or AM/PM switching key.
-(AM/PM)

In, the direct frequency input mode, this key operates as the decimal point key. When time is
corrected during 12-hour display, the key operates as the AM/PM switching key.
(1) Direct tuning
After a channel has been directly keyed in by 10 keys, push this key, and the set will be
tuned to this channel.

ENTER

(2) To correct present time and alarm time
After a desired time has been directly keyed in by 10 keys, push this key, and the time
will be set. In correcting the present time, correction will begin with 0 second when this
key is pushed.
When this key is pushed during the direct tuning, present time correction or alarm time cor-

CANCEL

rection mode, the mode is cancelled. When this key is pushed during an alarm or sleep operation, the operation is cancelled.
Present time correction key.

CORRECT

When this key is pushed while present time display is ON, the present time correction mode
is created. In this case, the LCD presents "CORRECT" display, whereas flashing display of
second stops.
Accepted only when PWRSW terminal is LOW and when ALARM is not ON. When this key
is pushed while there is no "SLEEP" display on the LCD, the set enters the sleep state, and
"SLEEP" display is presented. At this point, the sleep time is set to 60 minutes, and the

SLEEP

PWROUT output will be forced to the OFF state 60 minutes later.
This key can also be used to check the remaining sleep time. When the key is pushed, the
remaining time (in minutes) will be displayed on the LCD.
When the SLEEP key is pushed while the sleep time is being displayed on the LCD, the
sleep time is reduced by five minutes.
When this key is pushed, the alarm time is displayed. Alarm time correction can be made by
depressing 10 keys or AM/PM key while the alarm time is on display.

ALARM

The time on display is set when the ENTER key is pushed. When the alarm time arrives
while "ALARM" display is ON, the PWROUT and BUZ terminals are caused to be ON.
To put out the "ALARM" display, push the ALARM key and then push the CANCEL key.

717

j.lPD1706G-011
5. CONTROL TERMINALS
By terminals PWRIN, PWRSW, PWROUT and T/R, modes are set as shown below.
(In the following table, 0 denotes low level, 1 denotes high level, and X denotes low or high level.)
PWRIN

PWRSW

PWROUT

T/R

X

0

0

0

X

0

0

1

X

0

1

0

X

0

1

1

1

1

0

0

1

1

0

1

1

1

1

0

1

1

1

1

0

1

X

X

Mode
Power ON through alarm or sleep
operation

RADIO

TAPE
Inhibited (When PWRSW is lOW, T/R must
always be HIGH.)
Power OFF for both RADIO and TAPE
Normal operation

RADIO

TAPE
Impossible modes (when high level is input to
PWRSW pin, PWROUT pin always outputs
low level. When PWRIN pin is lOW, do not
input high level to PWRSW.)

Display (Note 1)
FREo.(Note 2)/TIME
TIME

TIME
FREo.(Note 3)/TIME
TIME

(Note 1) FREO. and TIME displays mean the following displays.
TIME: Display of time (present time, alarm time, sleep time)
Display of above-mentioned time or receiving frequency
F REO./TIME:
(Note 2) In alarm or sleep mode, time display is given priority. For example, when the radio is turned on in the
alarm or sleep mode, the channel will be displayed for the first five seconds only and the time displayed thereafter. When the ClK/FRO key is pushed while the time display is ON after the radio has
been turned on, the channel will be displayed for five seconds only and the time displayed thereafter.
(Note 3) In the normal operating mode where the timer is not used, the channel will be displayed while the
radio is ON, and the time displayed during other modes. If the ClK/FREO key is pushed
while the radio is ON, the display will change to time display. The time display will be retained until
other keyes or switches are operated.

718

,uPD1706G-011
6. LCD PATTERN
COMMON LINES

nn

n

00

0

?:?:
1'1.)....

~

a

LCD PATTERN
SEGMENT LINES

8a

7c

7a

6a

5c 5b 5a

3b

4c

4b

4a

3a

2c

2b 2a

1c

1b

1a

7b

9a

719

/lPD1706G-011
7. OPERATING PROCEDURES
7 -1. Station selection
1.

Manual Up/Down
Set the AUTO/MANUAL switch to MANUAL and depress the UP key or the DOWN key.
Continue the depression for more than 0.5 second, and the UP or DOWN operation occurs at a speed
of 125 ms/1 ch or so (Fast feed).
. At this time~ the MUTE of about 60 ms is output by each 1 ch of up or down operation, while
no output is given for the remaining 60 ms. (Intermittent MUTE)(See the description on P. 30.)

D~press the UP or DOWN key and the FAST key at the same time, and the up or the down operation
is executed at a speed of 125 ms/10ch. (Ultra fast feed)
While the ultra rapid feed is under way, the MUTE is being continually output. Release the FAST
key, and the operation of fast feed is restored. If you release the UP or the DOWN key while depressing
the FAST key, the UP/DOWN operation stops.
2.

Auto Up/Down
Depress the UP or the DOWN key while the AUTO/MANUAL switch is set to AUTO, and the frequency shifts to the UP or the DOWN direction by 1 channel stepwise and whether input (high level)
is fed to the SO terminal or not is checked. If there is input, the shift stops at that frequency. If no input
is fed, the frequency continues to shift stepwise.
While automatic scanning is under way, the MUTE output continues to be fed. (As to detailed timing,
refer to the description on P. 31 )
To stop the automatic scanning half-way, depress the UP key, the DOWN key, or the FAST
key.

3.

Direct station selection
The frequency to be tuned may be directly input by 10 key. Depress the 01 RECT key while the
.radio is on, then "01 RECT" is displayed showing that direct station selection can be accepted. Next, input
the desired frequency within the existing band range by the 10 key and the decimal point key. Fianlly,
depress the E NTE R key, and the set will be tuned to that frequency.
In case the input frequency is outside the existing frequency band, "ERROR" is displayed for 5
seconds. Thereafter the frequency to which the circuit was tuned before the DIRECT key was
depressed will be restored. In case, further, the input frequency does not coincide with the channel
frequencies within the existing frequency band, then tuning is made to the freq~ency of a channel
just below the desired frequency.
During the time from depression of the direct key till depression of the ENTER key is depressed, and
while "ERROR" is being displayed, the radio will continue to be tuned to the frequency received just
before the direct key is depressed.
To cancel the direct station selection after depressing the 01 RECT key and before depressing
the ENTER key, simply depress the CANCEL key.
In case, further, you realized an error in the input frequency before depressing the ENTER key,
then depress the DIRECT key for a second time. By doing so, exactly the same state as when you first
depressed the direct key is restored. Thereafter, you may repeat the input of the 'correct frequency.

720

,uPD1706G-011
EXAMPLE 1)

Correct station selection of MW band (Japan)

Key

Frequency
being
received

Display

,MW

-,
~

-;

-,

Cc

522 kHz

Description

The preset 0 ch is being received.

kHz

The direct station selection is started. The

DIRECT

522 kHz

MW

frequency display goes out and "01 RECT"
is displayed instead.

kHz

DIRECT

[J

I

MW

522 kHz

I

Optional frequency is input by 10 key. The
frequency is displayed at the right-hand end.

kHz

,,-,

DIRECT

G

MW

"-'
,,-,,-,

522 kHz

Id

522 kHz

Id.

522 kHz

Id.

kHz

DIRECT

G

MW

"_, '-'

kHz

DIRECT

G
\ENTERI

MW

,,-,,-, C'
IUULI

kHz

11-"-' ,-,

MW

IL/UO kHz

"01 RECT" display goes out and the circuit
1008 kHz

is tuned to 1 008 kHz. The display is shifted
to the right by one unit.

721

j.lPD1706G-011
EXAMPLE 2) A frequency outside the MW (Japan) band is input
Frequency
being
received

Display

Key

1'-' ,-,,-,

, L'

MW

1008 kHz

1008 kHz is being received.

1008 kHz

cuit tuned to 2000 kHz by direct

LI I I

kHz

DIRECT

You would like to have the cir-

, ,-, II ,-,

L'L'

MWC

LI

-, ,-, ri ,-,
MwL '_I L' LI
ERROR

(5 seconds after)

MW

Descri ption

station selection.

kHz

1008 kHz

2000 kHz is outside the MW band.
So, liE R ROR" is displayed.

kHz

, 'I 'I , ,
I L/LI L' kHz

1008 kHz

The original frequency of 1008
kHz is displayed after 5 seconds.

EXAMPLE 3) A frequency other than the channel frequencies in the MW (Japan) band is input

Key

Frequency
being
received

Display

MW

"1 ,-, , I
IL'L/LI kHz

1008 kHz

DIRECT

B080G

MW

IL/2S

Description

1008 kHz is being received.

You would like to have the circuit
1008 kHz
kHz

tuned to 1425 kHz by direct station selection.

1425 kHz does not coincide with
1008 kHz

MW

the channel frequencies. So, the
circuit is tuned to 1422 kHz which
is obtained by disregarding the
lowest unit.

722

j,lPD1706G-011
EXAMPLE 4) Correct station selection within the FM (Japan) band (Fraction of unit are input)

Key

Frequency
being
received

Display

,",-"
-; ,- ,-

MW

FM

'-- -

"

1422 kHz

Band is changed over, cH 5 has

(J L'.L' L'MHz

80 MHz

,-,-, ,--

DIRECT

-' -'

been

preset

on

the

last preset

memory of FM band.

[&ffi

FM

1422 kHz in MW frequency band
is being received.

kHz

,-, ,-, ,-,

Description

You would like to have the circuit
80 MHz
MHz

,-,,-

tuned to 85.15 MHz by direct station selection.

DIRECT

FM

Input the decimal point, and the
80 MHz

L'_'.

MHz

display is shifted to the left.

The fractional units are input one
DIRECT

FM

,-,e

IL

, I _'. I:J MHz

after another beginning from the
80 MHz

tenth unit.

After two fractional

units are fed, the 10 Key is rejected.

FM
IENTERI

,-,,- ,,-

L'_'.

, - ' MHz

"Direct" display goes out, and the

85.15 MHz

circuit is tuned to 85.15 MHz.

723

j.lPD1706G-011
EXAMPLE 5) Correct station selection within FM (Japan) band (in case fractional units are not fed)

Key

Frequency
being
received

Display

FM

Lilli-I
L/.J. 1LI MHz

85.1 MHz

FM

85.1 MHz within the FM band is
being received.

DIRECT
FM

Description

You would like to have the circuit

0"
LII_I

85.1 MHz
MHz

e", 1-' ,-,
LI L/.I_'I_'

tuned to 80 MHz by direct station
selection.

"01 RECT" display goes out, and
MHz

80 MHz

the decimal point and "00" are
indicated at the fractional units
and the tuning is made to 80 MHz.

(Caution)

With regard to the FM and SW bands, the fractional units of the frequencies are displayed together
with the decimal point in terms of MHz.
In respect of the LW and MW bands, the frequencies are displayed in terms of kHz without the
indication of fractional units.
quency.

724

So, the decimal point key is rejected when you are selecting a fre-

j.lPD1706G-011
4.

Preset channel
The preset channel is based upon random preset system, and a total of 10 stations can be preset.
Each of the 10 keys 0"'9 corresponds to each of the memories.
o How to preset
Depress the ME key while the frequency is being displayed, and "ME" is shown.
5 seconds, the "ME" indication goes out and the original state is restored.

After about

Depress one of the

keys 0"'9 as required while the "ME" indication is on and the frequency under reception is preset
on the channel corresponding to the depressed key. Then the "ME" display goes out and the preset
channel number is displayed instead.
o Preset channel calling
Depress the required key while the radio is on, and the corresponding preset channel is selected
and the circuit tunes to the frequency of that channel.
In case the frequency band of the required preset channel is different from that of the channel
under reception just before the selection is made, then the band is also changed over automatically.
5.

Last one memory
This memory is used when the radio power supply is disconnected. When the power supply comes on
again, the circuit is tuned to the same frequency as when the power supply was cut off.

6.

Last preset channel memory
This memory is used when the bands are changed over. If there exists a frequency already written into
the preset memory within the frequency band when the band is selected, the circuit will be tuned to the
preset channel within the band being received just before the band is changed over. In case the frequency
within the band is not written in the preset memory, the tuning is made to the lowest frequency within
the band.

725

j.lPD1706G-011
EXAMPLE)

Band selection
Display

Key

Description

III II I I

MW

~

kHz

11-'

IU

MW

FM

1008 kHz of MW band is being received by the preset

IULlel

1/
I I

channel (2 ch).

The frequency is shifted upward by one step and 1017
kHz is received.
kHz

DC In

The FM band is selected. The preset channel within the

U -'. I L/MHz

[M]

FM band received at the last reception (1 ch) is called
out.

The MW band is selected. The preset channel received

E1

III ,-, 0

MW

LW

726

at the last reception (2 ch) is called out. (Note: 1017

IUL/LI
~

kHz which was received at the last reception within the
kHz

'5- -'::J
,-

MW band is not called out as it was not preset.)

The LW band is selected. No frequency is preset in LW
kHz

band. So, the lowest frequency is called out.

jlPD1706G-011

7-2. How to adjust the current time
The current time may be changed only when it is being displayed. To change it when the frequency is
shown, first depress the CLK/F RQ kt;y so that the time is displayed.
Next, depress the COR RECT key, then the time display goes out and "COR RECT" and ":" (colon) are
then displayed, and the flashing of the seconds is interrupted. (In the case of a time display of a 12-hour
system, AM or PM is also displayed.)
Input the required time by 10 key. In the case of a 12-hour system time display, AM and PM may be included by the AM/PM key.
Depress the ENTER key after the input of the new time has finished and the newly set time is displayed.
The flashing of seconds is also restored, starting from zero.
In case the input time is not correct, or in case a wrong key (i .e., any key other than 10 key, AM/PM key
and CANCEL key) is depressed, "ERROR" is displayed for 5 seconds and the frequency shows while the
radio is on. In other cases, however, the time is displayed. If a mistake is made, there is no need to adjust the
time since the mechanism continues as normal.
To cancel the change of the time display after depressing the CORRECT key, you should again depress
the ·CANCE L key. No time adjustment is necessary.
EXAMPLE 1) How to adjust the current time (in the case of a 12-hour display system)
Key

Display

MW

rcLYJ
~

Description

/11/10
IL'L'LI kHz

,.,- ,,, I':J
'-'

AM

:fgfl':

Radio is under operation (1008 kHz within the MW
band is being received)

Current time is indicated. (by 12-hour system)
Second is flashing.

I, \' "

I I

CORRECT

AM

(OHR[CT

The correction of current time starts. The time display goes out and "COR RECT" is indicated.

CORRECT

,

,

-'-'

AM

The time is fed by 10 key. The display is at the right
hand end.

CORRECT

,-; c

AM
The numerals are shifted by one unit to the left.

'::' J

(Note)
When the input contains 4 or more digits only 1 or 2 is

CORRECT

1./- I

-,.~

,-

AM

displayed at the uppermost unit.

727

j1PD1706G-011

Key

Display

Description

-,--. -'-,.
.J'_' C

PM

Change AM/PM .

-,J:~C

PM

The 0 second starts at the time when the ENTE R key is

CORRECT

depressed and the second start flashing.

(Note) In the sequence described above, an optional order may be selected between the work of time input
and that of the selection between AM/PM.

EXAMPLE 2) In case erroneous time is fed. (in a 12·hour display system)
Description

Display

Key

, ,,=

FM

L' _'.

,

Radio reception is under way. (85.1 MHz

I

MHz

~

, ,. ,,,I I

ffi

I'

~

is received by the preset 5 ch within FM
band)

PM

~~:

The current time is being displayed. (12hour system) . The second is flashing.

CORRECT

I -,.,-, II
I -",_, LI

PM

The time is supplied by 10 key.

CORRECT

I _,.,-, ,-,
I _"LI LI

PM

13:00 in a 12-hour system is an erroneous
time. So, "ERROR" is indicated.

ERROR

FM

(After 5 seconds)

"C I ,-,
L/_'. ,,_, MHz
[M§J

As the radio reception is under way, the
frequency

display

is

restored

after

seconds.

(Note) In doing this, the time before depressing the CORRECT key is maintained in a correct manner.

728

5

/1PD1706G-011
7-3.
1.

Alarm operation
How to enter the alarm time
The alarm time may be corrected only when it is being displayed. Depress the ALARM key. The
alarm time and "ALARM" are then displayed after 5 seconds or so. (The second does not flash.)
Depress the 10 key or the AM/PM key while the alarm time is displayed, and the alarm time correction
mode is obtained and "COR RECT" is displayed.
Depress the ENTER key after finishing the time input. When the radio is on,. the frequency is
displayed. In other cases, however, the current time is displayed. At the same time "ALARM" is
displayed.

EXAMPLE 1) Change of alarm time (12-hour display system)
Key

Display

Description

,,-, ,-, CJ

'L"_" ,

MW

~

kHz

ALARM

Alarm time display.

I _",-, ,-,

IALARMI

AM

IL 'L' L'
ALARM

1008 kHz within MW band is being received by preset
channel 2 ch.

CORRECT
,-

"ALARM" is lit.
Second does not flash.

Depress the 10 key (or AM/PM key) within 5 seconds
AM

,:I

after depressing the ALARM key, and the alarm time
can be changed. At the same time, "CORRECT" is
displayed.

ALARM

COR RECT
,- , - -

_'_ I I

AM

'-" _, L'
ALARM

MW

left stepwise every time you feed one unit.

, ,-, ,-, n

Depress the ENTER key, and the alarm time is set to
6:50AM. The frequency is displayed when the radio

"_, L" ,

[M1]

The time is displayed on the right side and shifts to the

kHz

is on. And the "ALARM" display is left to be lit.

729

,uPD1706G-011

2.

Alarm operation
When the alarm time coincides with the existing time during "ALARM" is displayed, the alarm becomes
ON.

In other words, the PWROUT terminal comes to low level and the BUZ terminal is set on.

The pulse of 3 kHz modulated by 4 Hz and 0.5 Hz
the BUZ terminal output chart on P. 8.)

is output from the BUZ terminal.

(Refer to

However the alarm operation is not made if the PWR IN

terminal is at the low level.
In case the T/R terminal is at the low level when the alarm becomes on the radio is actuated at the
same time and the last channel is called out.
In case any key is not operated after actuation of the alarm, the alarm goes off after 120 minutes. In
other words, at this time, the PWROUT terminal comes to high level and the BUZ terminal comes to
low level. If the radio has been selected, it also stops.
In case you would like to stop the alarm before 120 minutes elapse, invert the input of the PWRSW
terminal, and the alarm goes OFF. Also you may stop the alarm by depressing the CANCEL key.
While the alarm is on, the time display has priority. If, therefore, the radio is on in the 120 minutes
while the alarm is set (T/Ff terminal is at low level) and the keys related to the radio (including ClK/FRQ
key) are depressed and the frequency is displayed, the time display is restored after 5 seconds or so.
If the ME key is depressed while frequency is displayed, "ME" and frequency are displayed for the
f1rst 5 seconds, and the frequency is further displayed for 5 seconds after "ME" goes out.
3.

Alarm timer set off
While "ALARM" is displayed, the alarm is always set when the alarm time corresponds to the
current time. (Provided, however, the PWR I N terminal is at the high level.)
To eliminate the "ALARM" display, depress the CANCEL key within 5 seconds after depressing
the ALARM key. In other words, by depressing the CANCE l key while the alarm time is displayed,
the "ALARM" display goes out and the alarm operation is not actuated even when the alarm time
coincides with the current time.

4.

Alarm timer settiAg
To see the alarm time, depress the ALARM key. In case, you would like to actuate the alarm at
that time, depress the ENTE R key within 5 seconds after depressing the ALARM key. In other words"
by depressing the ENTER key while the alarm time is displayed, "ALARM" is displayed and the alarm
is actuated when the alarm time coincides with the current time.
PWRIN terminal has been at the high level.

730

It is necessary, however, that the

,uPD1706G-011
7 -4.

1.

Sleep operation
Sleep time setting
The sleep timer is of such a structure that the power is supplied only during the set time, while the
power supply is turned off at other times. The sleep time is divided by 5 minutes intervals and the maximum set time is 60 minutes.
Depress the SLEEP key, and the sleep timer is set and "SLEEP" is displayed. However, this only occurs
when the PWR I N terminal accepting the sleep key is at the high level and the P.WRSW is at the low level.
Further, the alarm timer has priority over the sleep timer. So, the SLEEP key is rejected while the alarm
timer is on (PWROUT terminal is at the low level).
"SLEEP" is displayed while the sleep timer is in operation and the radio is operated when the T /R
terminal is at the low level.
If the sleep key is depressed while "SLEEP" is displayed, the remaining time of the sleep timer is
displayed. If the sleep key is again depressed while the indication of remaining time of the sleep timer is
displayed, the sleep time is reduced by 5 minutes.

EXAMPLE)

How to set the sleep time

Key

Indication

-',U

MW

[0]

PWRIN terminal = High level

8'

I' 'L
SLEEP

Description

PM
~
::~;

,,-,,-, n

""1"
-

PWRSW terminal = Low level
T/R terminal = Low level
Current time is displayed.
Sleep timer is set on and "SLEEP" is displayed. By doing so, the sleep time is set to 60 minutes and the last

kHz

channel is called out.
The remaining time of the sleep time is displayed (in

SLEEP

e"
au

terms of minutes). After 5 seconds, the frequency is
displayed if the radio is in operation. In other cases,
the time display is restored.

SLEEP

Depress the SLEEP key within 5 seconds after the operation described al:iove and the sleep time is reduced by
5 minutes.

SLEEP
(After 5 seconds)

MW

[M]

2.

5 seconds after depressing the sleep key, the frequency

, " 1-' 1-:1
I tJ I_II ,

is displayed when the radio is in operation. In other
kHz

cases, the time display is restored.

Suspending sleep operation
To suspend the sleep operation while the sleep timer is set, either depress the CANCE L key or set
either depress the CANCE L key or set the PWRSW terminal to high level.
Note: The alarm timer has priority over the sleep timer. So, when the alarm timer is actuated while the
sleep operation is under way, the sleep operation is suspended at that time.

731

,uPD1706G-011
8. MUTE TIMING
8-1.
1)

Preset channel calling
In case VCO is not changed over
30 ms

30 ms
375 ms MIN.

~----~I
f

·1

MUTE ______

Key

2)

t

Change of frequency division ratio

In case VCO is changed over
30 ms

30 ms

30 ms

I.MIN·.I. MIN .•

MUTE ______

~----~I

t

Key

1. MIN .• 1.

t

375 ms MIN.

..I

t

VCO change over

Change of frequency division ratio

8-2. Direct selection

I'"

30 ms
150 ms MAX. _I_ MIN.

"I"

MUTE ______~----------~

375 ms MIN.

t

Change of frequency division ratio

ENTER key

8-3. Manual UP/DOWN
1)

1 channel UP/DOWN (In case VCO is not changed over)

I"
MUTE

MIN ...

I.

_.,....--~I

t

Key

732

30 ms

30 ms

30 ms

MIN ... I.MIN· ..

t

I_

450 ms TYP.

-I

I.....-.------Inl--------

Change of frequency division ratio

j.lPD1706G-011
2)

1 channel UP/DOWN (In case VCO is changed over)

30 ms
MIN.

I•

-I-

-I-

I

MUTE

t

30 ms
MIN.

t

-I-

400 ms MIN.

-I-

I'
((

450 ms TYP

I

-I

n

t

VCO
Change of frequency division ratio

Key

3)

30 ms
MIN.

Rapid feed UP/DOWN
30 ms

60 ms
450 ms TYP.

MIN.

MUTE _.,-_ _...,,1

t

Key

_I~l ~___-----,I

1 I

I I---_____

I n case VCO is not changed over.
As to details. refer to the following charts.

Change of frequency
division ratio

a) In case VCO is not changed over
30 ms

I_ MIN .•

-----.II

30 ms
1 ..

MIN .•

j

I

,
__ _

Change of frequency division ratio

b) In case VCO is changed over
30 ms

30 ms

I.. MIN··I .. MIN .• / ..

t

VCO change over

375 ms MIN.

-I

t

Change of frequency division ratio

733

jlPD1706G-011
4)

Ultra rapid feed UP/DOWN

60 ms

450 ms
MAX .

30 ms
MIN. 120 ms TYP.

• ,- .,..

30 ms 60 ms 60 ms
120 ms TYP. MIN. TYP.
TYP.

., ... ,....I -I

·1"

1

Ck:dJl""""--

J-------.jl ~

MUTE _ _.....I

Change of frequency division
ratio for 10 channels

Change of frequency division
ratio for 1 channel

_-+-+-1- 65 ms
MAX.
_____

FAST key

8-4.

~/

\ ..

FAST MODE

.~_ _ _ _ _ _ __

Auto UP/DOWN

30 ms
I_MIN .•

30 ms

30 ms

I... MIN ... I_ MIN ... I_ MIN .• I.

~I

MUT_E

30 ms

t

30 ms
MIN ....

30 ms

30 ms

30 ms

•

t

+

•

SO

SO

SO

SO

Note) StD indicates the timing of SO terminal check.

Frequency band change-over

30 ms

,. MIN.

...I

30 ms
MIN.

..I. . I..
30 ms
MIN.

MUTE

t

Band key

734

t

VCO change over

30 ms

375 MIN.

1,,-----

t

Check that either SO = High
or UP key. DOWN key.
or FAST key is depressed
for the secondt time.

Change of frequency division ratio

1

30 ms

1... MIN ... I.. MIN ... I.. MIN. "I_ MIN .• 1" MIN. "'1" MIN .• 1

Key

8-5.

30 ms

·1

,uPD1706G-011
8-6.

Change-over from Tape to Radio

\

..

375 ms MIN.

I•

375 ms MIN.

..\

MUTE

t

J-____________________________________________________________________________________
PLL operation starts

T/R

8-7.

~~:~~x:

~

Change-over from Radio to Tape
375 ms MIN.

IMUTE

1 ms TYP.
5 ms MAX.

-, L,.

pLL operation stops

I

TIR

8-8. Power Supply Switch Operation
(The Power supply ON/OFF operation by Alarm/Sleep operation is also in the same timing.)
1)

PWRSW OFF -+ ON (Low -+ High) (Tape)
1mSTYP.=:tt==
PWRSW

5msMAX·_
1

MUTE

---~I~·======·~T·======~·I~-_

375 ms MIN.

375 ms MIN.

_

PWROUT

T/R

"High"

125 ms

BUZ
_____
(whenalarmisactuatedl

125 ms

-'1111111111111111111111111...0------1 11111111111 IIIIIIIIIL
~

3 kHz

~

3 kHz

735

,uPD1706G-011
2)

PWRSW ON

~

~

OFF (High

~·I~I--·-

PWRSW

Low) (Tape)

ms TYP.
5 msMAX.
1

___________~IP~----------3-75---m-s-M-I-N-.---------.-I-.--------3-75---m-S-M-I-N-·---------~~I____________
MUTE

I

PWROUT

Tiff
"High"

3)

PWRSW OFF

PWRSW

MUTE

_

~

ON (Low

~

r"-

_ _ _-=-'...
·..;-1

.

High) (For radio)

TYP. '
51 ms
msMAX.

P---------------------------------------------------~
375 ms MIN.
375 ms MIN.
30 ms i
MIN.

T

PL L operation starts
PWROUT

Tiff

Note) When the TAPE/RADIO select switch is thrown to the RADIO side, it is interlocked with PWROUT.

4)

PWRSW ON ~ OFF (High ~ Low) (For radio)

PWRSW

MUTE

-

~·'~I--"

1

ms TYP.

5 ms MAX.

~1..
----------37-5-m---s-M-IN-.----------.-I-.---------37-5-m---s-M-IN-·----------.~I_________
P L L operation stops

~r----------------------------

PWROUT ________________________________~I

T/R

736

jlPD1706G-011
9. EXAMPLE OF APPLIED CIRCUIT

LCD

III

COMO 1
K3

2

la
I

I
I
I
I
I
9a

K2
Kl

I

l..------f KO
f--

KSO

f--

KSl

SO

r - KS4

MATRIX

r - KS5
f--

KS7

f--

KSS

I

Station

t - - - - - - - - - - - - - - - - - detection signal
'"'0--.--------------- Buzzer

AM ~----+--~::r-------~
0.001 ~F

PSC

t-t-~---------,PSC

~PB556C

VCCIN

r-- KSg

Lower tha n S.5 V

EOl

FMS

RELAY

r -I
I

I
I
•~

()
(

/vcc

I
~

-MWS

(R

I
__ .J

U?>TO-R-+----II---.->--~:~~~~~---~lJ--+-3-V-+~-1O-o/c-O...,->--i
.....

LWS

t---t--~~-

VCO LOW
output

VCC~

LPF IN

I

/
/

-=-

/

~P01706G

Back -u p battery

I

-011
20 pF X 2

/
/

XIt-t-+----+--~~'~vA~

/

::!::/'

~-1---~""r '"'o-~/~,-~_.~PWRSW

r

VCO LOW

E02

VOO

VCOHI
output

VCCI-

--

T/R

IT "\

t -.....--+-+--

SW2S
SW1S

J,

:f

VCO HI

SW3S

OUT

-,
I

I
I

--

PWR

I
LPF IN

RELAY DRIVER

output

FM t-t-+-----~II~---~
0.001 ~F
OUT

KS6

f--

I

BUZ t-t---<'"'T

KS3

KEY

I

I

I
I

MUTE r . - - - - - - - - - - - - - - - - - M U T E
output
BUZZER SW

r - KS2
f--

l-

I

POWER SW/
/

/
/

7,'r7

/

17

<

I

PWRIN

\

,

T

150 kHZ:

I---77

L--1

Lower than 3 V

,

XO

TEST GNO

7fT

"R

)...
~

0

T

737

1. ALPHA-NUMERICAL INDEX
2.

QUICK REFERENCE GUIDE

3. CROSS REFERENCE GUIDE
4. MAINTENANCE AND OBSOLETE TYPES
5.

GENERAL STATEMENT

*

NEC's INTEGRATED CIRCUITS FOR CONSUMER USE
o History

0

Types and Features

o Type Number Designation

*
*
*
*

Device Technoiogies

STANDARDS OF If'JTEGRATED CIRCUITS
HINTS ON CORRECT USE
TECHNICAL SYMBOLS AND TERMS
RELIABILITY AND QUALITY CONTROL SYSTEMS

6. AUDIO APPLICATIONS

'7
I.

0

6 -1.

CAR AUDIO

6-2.

HOME AUDIO

6-3.

PORTABLE AUDIO

TV APPLICATIONS

8. DIGITAL TUNING SYSTEMS

9. CLOCKS & WATCHES
10. VOLTAGE REGULATORS
11. ARRAYS

12. OTHERS
13. APPLICATION NOTES

CLOCKS & WATCHES

INDEX
Page
J.lPD832G

3.5 Digit LCD Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

742

J.lPD833G

3.5 Digit LCD Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • .•

742

J.lPD2006G

3.5 Digit FIP/LED Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . ..

771

J.lPD6529C

Automotive Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

787

J.lPD1990AC

Serial I/O Time Keeping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

792

J.lPD6517P3

3.5 Digit Multiplex LCD Quartz Watch . . . . . . . . . . . . . . . . . . . . . . . . . 805

•
741

MOS DIGITAL INTEGRATED CIRCUIT

J-lPD832G,J-lPD833G
a-CHANNEL DIGITAL LIQUID CRYSTAL DISPLAY,
TIMEPIECES AND TIMER CIRCUIT WITH 4MHz OR
32kHz CRYSTAL OSCILLATOR OPERATION.

GENERAL DESCRIPTION
The pPD832G and pPD833G are CMOS LSI operating at the reference frequency of either 4.2 MHz or 32 kHz
crystal oscillation, for use as mUlti-purpose electronic timepieces (clock & watch) and timers of 4-digit liquid
crystal display type.
Composition of 8-Channel Digital Timepieces (clock & watch) and Timer

1.

Standard time

2.

Alarm timer

3.

Snooze timer

4.

Sleep timer

5.

Control timer

6.

Dual time

7.

Stopwatch

8.

Counter

FEATURES

742

1.

Hours, minutes, seconds, AM and PM can be displayed.

2.

Selection of either 12-hour or 24-hour display format is possible.

3.

I nstantaneous second correction is possible within an error of ±30 seconds.

4.

Minutes and hours can be set independently. (at 1 pps or one push per one word step.)

5.

That the tens digit of minutes, AM and PM can be set independently for alarm time (or control time)
or dual time is very convenient.

6.

Provided with a fine alarm tone.

7.

Alarm timer offers the 4-minute duration alarm. By using the SNZ (snooze) terminal, the timer
can offer the alarm every four minutes through the CANCEL-REFRESH method.

8.

The trial sounding of alarm can be made.

9.

The duration of control timer and sleep timer can be set in four ways at 15 minutes, 30 minutes,
60 minutes and 120 minutes.

10.

The application as an multi-timer is possible with its two-phase control timer signal.

11.

Since the dual time is available, it can be used as displaying second time zone or elapsed time.

12.

The stopwatch can count up to 24 min.

13.

The counter can count up to 1440 counts.

,uP 0832G,,uP 0833G
14.

All memory sections excluding the LCD driver section with VSH series (3.0 to 6.0 V) are composed of
VSS series. Thus, the system design is very simple with this device.

15.

The source voltage for the alarm out, control out and sleep out terminals is variable from 1.5 to 6.0 V
through the employment of open drain P-channel transistor.

16.

(i) Standard time, dual time, and sleep timer or (ii) Standard time, stopwatch and sleep timer can be
used in parallel independently.

APPLICATIONS
o 0 ig ita I alarm clock
o Sleep timer
o Snooze timer
o Traveller's watch
o Appliance timers
o Measuring timer for the distance covered
o Clock and watch displaying different time zone (World time)
o Sequential controller
o Desk timer
o Portable timer for miscellaneous controls

TYPES
Type No.

Frequency of the crystal

pPD832G

4.194304 MHz

pPD833G

32.768 kHz

BLOCK DIAGRAM
.--------0

12/24 0 - - - - - - - - - - - - - - - - - - - - - - - - ,

COM

1,-1.
0----------,

STANDARD
TIME

~----o

AM(S)

~----o

PM(ADEG)

1 - - - - - - 0 h(C)
TST,
~----o

SEC

8

Fs

a,-g,

I-----~ COLON (COM)

.-l
~-----<>

a2-g2

~----.

co
Q.
(f)

:.0

I

I

.~

(f)

(f)

':::J

':::J

0

I

I
(f)

(f)

(l)

c

c

Automatic setting signal at 1Hz rate
or
{ One push one word signal

Set the terminal F H "ON"
[

Repeat the

J

o~N ~ OFF operation

0

'0

'0
AM/PM

[IJ

,-----

Keep the terminal Fs
set to ON

=>

f--

Fig.6

* An example of the setting of hours is given below for 12-hour indication.
Presuppose the display of hours is AM 11 and you want to correct it to AM 10. Fist, make the setting
so that the display of hours becomes 10 in accordance with method 1 above. In this case, the display AM
is shifted to FM with the overflown hours. This can be neglected. Then, set the display to AM in accordance with method 2 above. Through this operation with automatic setting signal at 1 pps, hours can be
set within 13 seconds, in case where there is no erroneous setting. With the one push one word signal,
hours can be set to the desired figure with in 3 seconds.
As explained above, the setting' of alarm time or control time for an electronic instrument requires only
7 seconds to complete even in the case of the longest set span.
3.

Relationship between Ordinary Expression of Time and Expression of Time for J.lPD832G Series
The time can be displayed with pPD832G series either by 22-hour indication or by 24-hour
indication. Table 1 shows the relationship between ordinary expression of time and expressions of times
in 1-hour indication and 24-hour indication of J.lPD832G series.

Relationship between ordinary expression of time and
Expressions of times in 12-hour and 24 -hour Indication
Ordinary expression
of time

Forenoon

Afternoon

12 hours format

12 : 00AM-11 : 59AM

12 : 00PM-11 : 59PM

24 hours format

0: 00

-11 : 59

12: 00

-23 : 59

755

f.-l? D832G, JlP D833G

Ordinary
expression of
time

12 hours format
24 hours format

Twelve O'clock One 0' clock
midnight

o : 00

One O'clock

Two O'clock
in the

afternoon

afternoon

1: OOPM
13 : 00

in the morning in the morning

12 : OOAM

in the

Two O'clock

2 : OOPM
14: 00

Eleven
O'clock

Twelve noon

in the morning

1 : OOAM

2: OOAM

11 : OOAM

12:00PM

1: 00

2: 00

11 : 09

12: 00

Three
O'clock
in the
afternoon

Eight
O'clock
in the
afternoon

Eleven
O'clock
in the
afternoon

3 : OOPM
15 : 00

8: OOPM
:20 : 00

11 : OOPM
23 : 00

Twelve
O'clock
midnight

12 : OOAM
0: 00

Table. I

4

Trial Sounding of Alarm Tone
Since the alarm time is set in accordance with methods 1 through 3 above, the alarm tone begins
to be generated immediately from the terminal ALM OUT when the display corresponds to the present
time of standard time in the course of setting of the hours with the terminals FM, FH and FS. At this
time, control signal (VDD level) is also present at the CONT OUT terminal. But, in the course of further
setting, if the display is deviated from the present time, the alarm tone stops sounding, and, at the same
the control signal is also off.
On the contrary, with alarm time (or control time) fixed, if the standard time is set through the
operat,ion of the terminals FM, FH and FS, the alarm tone begins to sound when the display corresponds
to the alarm time fixed, and stops sounding when the display deviates from the alarm time fixed. This
operation can be applied also to the control signal.
Such sounding of alarm tone as explained above may be called a very convinient trial sound of
alarm.

* I n other words, when the alarm is generated (at the same time, the control signal is also generated,)
the alarm output (or control signal output) can be cancelled before the duration ends through the ON
operation of the terminal FM or FH.
The cancellation of alarm tone is effective with the terminals FM and FH of either standard time
or alarm timer.
The terminals FS can generate alarm tone (or control signal) when the two hours correspond, but
can not cancell the alarm tone (or control signal). There are the cases where the alarm tone (or control
signal is off at the end of the duration brought by the carried minutes display when the time is between
30 and 50 minutes.
5.

Setting of Alarm Time (or Control Time)
The alarm time (or control time) can be set to the any hours at an interval of one minute (resolusion: 1 minute). Once the alarm time is set, the alarm tone (or control signal) can be obtained every 24
hours at the preset time.

6.

Durations of Alarm Tone or Control Signal
When the time of the alarm tone (or control signal) corresponds to the hours of standard time,
the alarm tone of 2048 Hz frequency modulated by 8 Hz frequency is emitted every other second. The
duration of alarm tone is 4 minutes. The alarm tone stops automatically at the end of duration and
starts again at the same hours after 24 hours. The output waveform of the alarm tone is shown in Fig. 7.

756

JLPD832G,JLPD833G

I

Actual time

The desired alarm time

• IL--___________

ALM OUT --~rlt-'- - - - -.. . .

o

2

3

4MIN.

2048 HZ

---HActual
Alar m Tcne - - { f - - . . 1 UUI L..-J,UU~--' ~'u L......IU LJ '--J UUIL...-IIUU I........IUU L-...IUUI ' - -_ _ _ _ _ _ _ _ _ _ _ _ _- - ' LJU 1......1 UUL-...1 U UIL...-I uu , _
from the terminal
ALM OUT.

f-------1

I

sEc _ _ _ _ _-oa--rI__
· - - - - - - 1 SEC _ _ _ _ _----l
o

Fig.7

On the other hand, the control signal is present at the terminal CNT OUT. As shown in Table 2,
there are four types of control duration, 16-minute, 32-minute, 64-minute and 128-minutes-durations.
One of the four control durations can be selected in combination with the input terminals 60/30 and
60/120. Therefore, with those control signals, the recording is possible for 15-minute audio cassette
tape to 2-hour video tape.
Terminal 60/30

L

H

L

H

Terminal 120/30

L

L

H

H

Duration (MIN)

64

32

128

16
L = VSS level
H

= VDD

level

Table 2
The relationship between the output waveforms at the ALM OUT and CaNT OUT is shown in
Fig. 8. In this case, the terminal SNZ is not operated. When the duration of control signal ends, the
control signal stops and does not start again until the pre-set time reaches after 24 hours.

Actual time

!

I

The desired control time

L__

CNT OUT

Actual time

I

L__

t
16MIN. 32MIN.

64MIN.

128MIN.

~________ J~__________________________________________________
Set

to ON 'im"itan,o",'y

~rl~

ALM OUT

t
4MIN.

L

~

10MIN.

The desired alarm time

Keep the terminal SNZ to OFF

Fig.S

757

,uP D832G,,uP D833G
7.

Relationship between SNZ Terminal and Alarm Tone (Control Signal)
When the hours of standard time corresponds to the pre-set hours for the alarm time, the alarm
tone (or control signal) is generated. The alarm is automatically off in four minutes. The control signal
is off at the end of pre-set duration (15 minutes, 30 minutes, 60 minutes and 120 minutes). If you want
to take a snooze while the alarm tone is on, set the terminal SNZ to on, then, the alarm is simultaneously
off. The alarm tone is on again after 4~~ minutes from the OFF operation of the terminal SNZ. The
operation of the terminal SNZ to stop the alarm tone and start it again three or four minutes later as
explained above is referred to as the cancel-refresh method.
The duration of cancel-refresh operation of alarm tone is extended every terminal SNZ operation.
Even though the cancel-refresh method is employed, the alarm tone is not on again if it is lasts fully for
four minutes.
The cancel-refresh method is to be applied to the protable alarm timer (or traveller's watch) with
its built-in IlPD832G series which is expected to be commercialized in feature for the purpose of preventing the battery from dischargir:'g uselessly while the user keeps the timer away, levaing it on.
The relationship in operation between the terminals ALM OUT and SNZ is shown in Fig. 9.

The desired alarm time

tr--4MIN.~
ALMOUT
[

SNZ

--11i------'

L - -_ _ _ _ _ _~fl~

t=3-.4 MIN ----i

t==3-4 MIN - - t -t-'>-----::-4 MIN.---j

nL-___~r-_-o_0__0----1,

SNZ

_ _. . .1
. 1 ~ 0
----t--~n

ALM OUT

____~rl______~~________________rr===---o-3---;-MIN-·-o~I~'----4-M-IN-~--~~

SNZ

------t--------~------------------~I~-----------------------------

ALM OUT
(

________________________

(

ALM OUT
SNZ

L-

n~__~rr~__________________

_--JnL-___-t-r_o_3_-~_M,_N~___'1l 1==3-~"'"-+---4MINL
In

(

°

nJ

n
1MIN.
f---l

CNT. OUT

I

Jf
Fig 9. Relationship in operation between
the terminals ALM OUT and SNZ.

Even though the control signal from the terminal CNT OUT is not off through the ON operation
of the terminal SNZ, the duration of control-signal is extended. I ri other words, the ON operation of the
terminal SNZ resets the duration circuit for the control signal. From the instance the terminal SNZ is off,
the counting of control signal duration starts. The counting is effective up to 16~~ minutes for the 15minute duration, 32~~ minutes for the 30-minute duration, 64:..9 minutes for the 60-minute duration
and 128~~ minutes for the 120-minute duration.
Fig. 10 shows the relationship in operation between the terminals CNT OUT and SNZ on the
basis of 32-minute duration. As can be understood from the figure, the duration of control signal can
be extended through the ON operation of the terminal SNZ.

758

,uP D832G,,uP D833G

The desired control time

t
f---32
CNT OUT
[

SNZ

---1l

CNT OUT
[

SNZ

I

MIN

-1
.1

Tilis diagram is drawn by the basis of 32-MIN duration.

nL-.--p-3'-_3-2M-IN-.
-j----

1

• • • 1_ _ _ _ _ __

----+-j

.--------.I~_

---J

F

31-32""·---j

.

CNT OUT

.

.IL--___

[
SNZ

ALM OUT

____

~nL__

_____________________________________

t4MIN
Fig. 10. Relationship in between the terminals
CNT OUT and SNZ.

8.

Stopping the Alarm Tone (or Control Signal)
When you need to stop and clear the alarm tone (or control signal) completely, set the terminal
ACS to ON.
If the terminal ACS is off after clearing the alarm tone (or control signal), it is on again at the
pre-set hours after 24 hours.
* If the alarm tone (or control signal) is not required every 24 hours, proceed with the following
steps.
1.

Disconnect the terminal ALM OUT from the alarm tone source.

2.

Set the volume of alarm tone to the minimum.

3.

Disconnect the terminal CNT OUT from the controlled electronic instrument.

4.

Keep the terminal OUT set to VDD level.
.......... I n this case, the memory operates as dual time.

5.

Keep the terminal STW set to VDD level.
.......... In this case, the memory operates as stopwatch.

* While the sleep timer is in use, the alarm timer can not be used. (In this time, the control signal
is also on from the terminal CNT OUT.) I n other words, while the sleep timer is in operation, the alarm
timer does not emit the alarm tone even though the pre-set time corresponds to present hours.

6-4.

Snooze Timer
When you want to take a snooze a little longer after the alarm tone starts, set the terminal SNZ
to ON. Then, you can take a snooze for three to four minutes.
In addition to the application and operation previously explained in the preceeding paragraph for
the alarm timer, the snooze timer is applicable to the follwings.
By making the oscillator frequency programable with J,lPD833G a notifying tone (or calling
bell) can be produced at a regular interval. When the notifying tone is heard, set the terminal

759

J.lp 0832G, J.lp 0833G
SNZ ON and OFF.
The main oscillator signal frequencies and duration of notifying tone are as shown in Table below.

Oscillator
Frequency

I nterval of Notifying Tone

Pulse at ALM OUT Terminal

65.536 kHz

Every 2 minutes

8-burst pulse every 0.5 Sec

32.768 kHz

Every 4 minutes

8-burst pulse every other Sec

16.384 kHz

Every 8 minutes

8-burst pulse every2.0 Sec

8.192 kHz

Every 16 minutes

8-burst pulse every 4.0 Sec

4.906 kHz

Every 32 minutes

8-burst pulse every 8.0 Sec

2.048 kHz

Every 53 minutes (Approx. 1 hrs.)

8-burst pulse every 16 Sec

1.024 kHz

Every 128 minutes (Approx. 2 hrs.)

8-burst pulse every 32 Sec

512 kHz

Every 256 minutes (Approx. 4 hrs.)

8-burst pulse every 64 Sec

256 Hz

Every 512 minutes (Approx. 8.5 hrs.)

8-burst pulse every 128 Sec

Be sure to set the terminal SNZ ON and OFF. Then, the notifying tone stops immediately. In this
case, the notifying tone can be heard again after the specified interval. (I h case of 1.024 signal frequency,
the notifying tone is heard again after two hours.)
The snooze timer is effective for use as a timer to notify such regular interval of hours as required
for the application of drops to a patient, the sackling of an infant, the medication to a patient, etc.
6-5.

Sleep Timer
The sleep timer offers such conveniecnes that the user can sleep listening in mood music or classic
music, or appreciating a theatri'cal performance through the radio or television.

1.

How to set Sleep Timer
To set the sleep timer, connect the terminal SLP OUT to sllch electronic instrument as television,
radio, etc. Then, switch the electronic instrument on. Next, set the terminal SCI to ON. The sleep timer
automatically controls the electronic instrument at the end of pre-set duration (15 minutes, 30 minutes,
60 minutes or 120 minutes).
Even though the terminal SCI is kept to ON, the SCI signal inside the LSI is driven by the single
pulse of approximately 8-ms width. Thus, the button switch (single pole single through switch) should
be used. The duration is similar to that of control signal. When determining the duration, use the 60/30
and 60/120 terminals as shown in Table 3.

Terminal 60/30

L

H

L

H

Terminal 60/120

L

L

H

H

Duration with the
use of the terminal
SCI (MIN)

6~-64

31-32 127-128 15 -16

L
Table 3.

760

= VSS

level

H = VDD level

,uPD832G,,uPD833G
The available durations ranging from 15 to 120 minutes offers the conveniences so much to
the users.
The sleep timer has the priority in setting the hours over the alarm timer. Thus, the alarm tone
stops immediately after the ON operation of the terminal SCI, and the sleep signal is emitted instead
from the terminal SLP OUT. At the same time, the control signal (one phase control signal) is emitted
from the terminal CNT OUT. Refer to Fig. 11 for the time chart of the signals to be emitted.

32~~MIN.

_-1j,'---_--;1

~----------~.-)

SLP OUT

I~----------

ALM OUT

SCI

__________

~r---l~

-1 r- 8

__________________

-j

ms

1/

~1

r- 8

ms

-..InL-____________. . .nL-____________

One-phase control _ _ _ _ _ _
signal

CNT OUT

If

r--f.'
I
)
~---------'

SCI signal inSide LSI
This diagram is drawn by the basis of 32MIN duaration

Fig. II

If you want to stop and clear the sleep timer completely, during the application, set the terminal
ACS to ON.

* The sleep timer has no display for the lapse of hours. If the memory is set so that the time is used
as dual time or stopwatch and let it start counting instanteneously after the terminal SCI is on, the lapse
of hours can be displayed for the sleep timer.
* When the alarm timer is used, it should be set to the time one minute or more later than the
end of duration for the sleep timer. Then, the sleep timer and alarm timer can be set together.
* When the alarm timer is set to a certain hours in the duration of sleep timer, if the standard
time corresponds to the alarm time, the alarm is not on until it reaches again at same hours after 24
hours. The sleep timer does not operate, unless the terminal SCI is set to ON, whenever using the
sleep timer.
* The sleep timer is effective, when the memory is not used as alarm timer (or control timer for
electronic instrument), as dual timer (with the terminal OUT set to VOO level) or stopwatch (with the
terminal STW set to VOO level). I n other words, the sleep timer can be used as independent 3-channel
timer in parallel with the combinations of 1 standard time, dual timer and sleep timer, and 2 standard
time, stopwatch and sleep timer.
2.

Applications of Sleep Timer
In addition to its proper applications as sleep timer, it can be used for slot machines to determine
the duration of service with the coin or the equivalent in shape. Among those slot machines are massaging machine, cooler, gas range, game machine, telescope, etc. of coin timer type.

761

,uP D832G,,uP D833G

3.

Relationship between Terminal SNZ and Sleep Signal
The ON operation of the terminal SNZ does not disconnect the sleep signal, but it extends its
duration. In other words, the ON operation of the terminal SNZ resets the duration circuit for the sleep
signal.
From the instance the sleep signal is off, the duration for the control signal is counted. The
counting is effective for 16~~ minutes for 15-minute duration, 32~~ minutes for 30-minute, 60~~
minutes for 60-minute and 128~9 minutes for 120-minute. This operation of terminal SNZ is quite
similar to that of terminal CNT OUT explained in the preceeding paragraph. Fig. 12 shows the relationship in operation between the terminals SLP OUT and SNZ on the basis of 32-minute duration.

r

M

31-32

".-1

r

31-32""·-j

•

CNT OUT

.

.I~__-

.....
1 _ _-

one-phase control signal
This diagram is drawn by the basis of 32M IN duration

Fig. 12

4.

2-Phase Control Signal
The ON operation of the terminal SC I produces the sleep signal from the terminal CNT OUT. In
addition to the sleep signal, the control signal (one-phase control signal) is also obtained from the
terminal CNT OUT. Therefore, if the control time is set to the hours out of the duration of theone-phase
rontrol signal, the two-phase control signal can be obtained as shown in Fig. 13. Thus, a multitimer can
be established. In this case, sleep signal, one-phase control signal and two-phase control signal are same
in duration. In other words, the duration is determined in combination with terminals 60/30 and 60/120.
Refer to Table 2 and 3.
The multi-timer which can be obtained by triggering the terminal SCI with the trigger pulse signal
produced by the separate IC is shown in Fig. 13.

762

,uP 0832G,,uP 0833G

IThe

----InL--_ _

SCI

1--32~~ MIN'--1

CNT OUT

__---'I

I

-----i-!- desired control time

,....----....,

.I~_________~I

-Two-phase
control signal

.1....___

32

M1N

'----l

SLP OUT

Trigger pulse for SCI
prodoced in another I C

L

r-

CNT OUT

f-- 32.:::~MIN__l
---' •
1'-_______1

SLP OUT

---' .

32':::~MIN'---1
i--------,

.....
1 _ _-'

- - Control signal

• ,-I_ _ _

for multi-timer,

.,'-------------This diagram is drawn by the basis of 32MIN duration

Fig. 13

* The durations of one-phase control signal and 2-phase control signal are extended when the
terminal SNZ is set to ON. This is same in operation as explained in the preceeding paragraph.
6-6.
1.

Dual Time
Display
With the terminal OUT set to VDD level, the merrory is used as dual time. If you want to see the
ALS terminal to ON. Then, the dual time (Fig. 2, (2), ii) is displayed regardless of the displays for
Normal and seconds (Fig. 2, (1), i and ii).
In case of alarm timer (or control timer), a statical display of hours are presented with the dot
illuminating. But the dot flashing every other second for the dual time. The dual timer has no display
for seconds. The resolution as the dural time is one minute.

2.

How to set the Dual Time
The method of time setting is similar to that of alarm timer (or control timer as explained in Item
2 of Paragraph 6-3).

3.

Applications of Dual Time

(1.)

Dual time is an optimum traveller's watch when it is used as a time for displaying the time differential
(or as a part of world timer).
It can be used to constitute an independent 3-channel timer in combination with standard timer and
sleep timer.

(2.)

Dual time can be used as a time to measure the lapse of hours. In case of 12-hour indication, AM 12
hours are interpreted as 0 (zero) hour. If the display on the dual time is AM 3 hours 25 minutes, the
amount of lapse of time is 3 hours and 25 minutes, and if the dual time displays PM 12 hours 40 minutes,
it indicates that 12 hours and 40 minutes have passed.
The display succeeding PM 1 should be added 12 hours for the counting of the amount of laspe of time.
For examle, it the display on the dual time is PM 3 hours 58 minutes, the amount of laspe of time is 15
hours 58 minutes (3 hours 58 minutes +12 hours).
In case of 24~hour indication, the counting is made from 0 hour as the cardinal point. Thus, no addition
is required to obtain amount of lapse of time. Table 4 shows the relationship between 12-hour indication
and 24-hour indication for the display of amount of laspe of time.
763

pPD832G,pPD833G

12-hour format
(HRS)

AM

24- hour format
(HRS)

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

12

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

4

5

6

7

8

9

10

11

PM

PM

PM

PM

PM

PM

PM

PM

PM

PM

PM

PM

12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Table.4

6-7.
1.

Stopwatch
Display
When the terminal STW is set to VDD level, the memory is provided with the function of stopwatch.
To see the display of stopwatch, set the terminal ALS to ON. Then, the stopwatch (Fig. 2, (2), iii) is
displayed regardless of displays on the standard time (Fig. 2, (1), i and ii). The stopwatch is provided
with displays of seconds and minutes. The minutes is displayed on the space for hours and the seconds,
on the space for minutes.
The dot flashing every other second for the display of seconds on the standard time. But the
colon is illuminated for the stopwatch.

2.

Application of Stopwatch
When using the stopwatch, keep the terminal STW set to VDD level and set the terminal ALM to
ON. Then, the stopwatch is ready for operation. At this time, if the FM terminal is set to ON, the display
is reset to 00 minute 00 seconds and hold as it is. The start-stop operation is made through the use of the
terminal FH. The stopwatch can count up to 23 minutes 59 seconds.
In case of 12-hour indication, the display succeeding to 9 minutes 59 seconds is A M 10 minutes
00 second, and AM indicates that the count reaches 10 minutes. The display ~~ 0 minute 00 second
comes next to AM 19 minutes 59 seconds. I n this case, ~~ represents 20 minutes. Fig. 14 will help you
understand the method of display explained above.
In case of 24-hour indication, the display is made in digit from 0 minute 00 second to 23 minutes
59 seconds.

Shows 20 Minutes
Start
MIN. SEC

n_nn

u-uu.

MIN. SEC
10 - C 0
1-1-_1-1.

MIN. SEC

0:59_

AM MIN. SEC

AM MIN. SEC

PM

PM

I-n n

I- U U •

1 -C 0
1 - _I -I •

AM MiN .• ~IE~
PM
LI u.

2-

~------------------------------------------------------------------------------------~

Starting of second counting

Shows 23 minutes
Full count
AM MIN. SEC

AM MIN. SEC

PM

PM

2: ~Ig-

MIN. SEC

n-n:!

U-UL.

MIN. SEC

O-Co
_I_::IU.

:::

58_

MIN. SEC

g:S9.

Fig. 14

764

AM MIN. SEC
:I·C 0
_I - _I J_

MIN. SEC

n -n

AM MIN. SEC

In - nn

IU-UU.

I

U.U I-

PM

AM MIN. SEC
1

n -n

IU - U

1

I.

jlP D832G, jlPD833G
* Since the terminal FH offers the start-stop (hold) operation of stopwatch, the measurement can
be made without counting the time wasted.
6-8.

Counter
Counter is an article used in reckoning and can kaep counting the number of people entered in a
certain place, quantity of items unloaded, amount of traffic at the specific place, calling a roll of pupils,
etc.
The function of counter is not designed independently, but is incidentally produced from the
stopwatch explained in Paragraph 6-7. Therefore, its capacity is 720 counts (12 x 60) for 12-hour
indication and 1440 counts (24 x 60) for 24-hour indication.
The counter for 24-hour indication which is provided with re-cycle count mechanism may be
more convinient to use than that for 12-hour indication.

1.

Application
First keep the terminal ALS set to VOO level. I n this case, the alarm (or control) time is displayed
for any hours.
Then, set the terminal STW to ON to obtain the display of stopwatch, and perform ON-OFF
operation of the terminal FM to obtain indication shown in Fig. 2, (2), iv. Finally, set the terminal STW
to 0 F F. The counter is ready for use.
The terminal STW is set to ON for every counting. The stopwatch starts operating when the
terminal STW is switched over from OFF to ON. Thus, the terminal STW should be set to the OFF
when the stopwatch is not in use.
Be sure to insert the circuit for preventing the terminal STW from chattering into its input circuit
as shown in Fig. 15. The use of common terminal for the signal to drive the liquid crystal is required for
the synchronization on the LSI circuit to shift the display from 19: 59 to 20:00 count for 24-hour il'Jdication.

~---- To the terminal

STW
100k
2SC945
Switch for counting

::£

o
o
I
::£
o

-'<:

o
o
~~

_ _- 4_ _ _ _ _ _ _ _ _ _ _ _-+__

From COM Signal

~ Circuit

for the
Prevention of chatterig.

-+~~

________________

+-~_

vss

lOOk

•

I.

-II-..

Circuit for - - - - -..
the Synchronization

~

O----Circuit for
the inversion of phase

Fig. IS

As the summary to the explanation for every channel, Fig, 16 shows the relationships between
the terminal OUT and dual time, that terminal STW and stopwatch, the terminal ALS and alarm (or
control) timer, and the terminal SEC and standard time.

765

,uP D832G,,uP D833G

Memory
Alarm timer or
Control timer

Stopwatch

Dual time

OUT

L

L

H

H

H

H

L

L

STW

L

L

L

H

L

H

H

H

ALS
"5
a..

L

H

L

L

H

H

L

H

LIH

LIH

coc

"E
'-

~

E

SEC

L

H

LIH

MIN MIN

~
c
~

(f)

Q)

E

0

"0
(!)

E

i=

H

L

H

E
~

--~vDD

15V

8

Vss
I
V SH C 2N C,NC'P N

P

0.151 1

f

INDICATOR FOR

-SECOND"

~I

~A:V jlltl~--,,~I
1500I.ft:

~~

POWER'
TRANSFORMER
AC power supply sw.

1,6L

:

!-i~

3:0V 0.15/1

~

- ~

~~~~ ~3

2SCI;8~~ -~ ~ECEPT ACLE
CNT OUT

U

T

l,nllXTAL32.768kHz

~~fi20P

::f'.L11 ~, ~~ i~

~c §i

2SC1280

~ ~~

6V

lIi Capacitors for protecting from the surge voltage of power

transformer OFF. (O.Ol-0.68pF)

AC100V

CD Make pPD832G and pPD833G pack by aluminum foil certainly when be carred or be kept.

770

The input terminals be unused connect to VSS always.

RECEPT ACLE

~ ~l5

MATTERS DEMAND SPECIAL ATTENTION!

@

••

I

-

,,::,:;:~~:~

0
S

-GVcc
DC
power
Supply

~

500k L1

.----~~4__+--~ACS

I

~
I
I

2SCI2BO.$.

INDICATOR

fOA'HAS"AND
"MIN"

:~ SP

___ ..,RELAY

::w

BATTERY

~R51:D ~

S

'111

I

I .-------*r--"'-1**
-+--+------ISCI

"""-1>----¢---------------.l

270270

2SC1280

~

lS953

r--------*-:+-----lSNZ

SLEEP CONTROL INPUT

J

,uPD833G

r

. _. -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_

~6~~~ot

L.;

.-----<

'------------------~-+~F~

~...L.o.::.;SN..:..:O:..:O:..=Z_=.E______- - l

V[!;

25C,,,(x51

'----------------------~--~DUT

~

.

*

-'"
RS1

_~r-.~7--~-~-±~-r. ~-r-------------------~---~·~~~

270270

e

J

'------+-1-00-k----I60/120

0<7"

SR51:D •

SECOND

l

'-'-_-_-_-_--'+-f--_-_-_-_-_-_-_-f-l~~/23~

IT~ t~t y~ f Fm§i ;/'
~
I-r=r 1{ 1"
ti: -tr.: ','.'" Q
iii~l\m))

S~::::~~

~~;;;OL

-;---'1

I}-:-Y:

SR"'0t:

7~

COM

'----+------l TEST

~++==::t~-II

S0~~CH ~;-

?

?

L=---o==F='=X;---11

",'

SR51:D

OU~~ME

?

60/120

,.1

~-

'2~70----27-0 ~---- -'~

60/30

MOS DIGITAL INT'EGRATED CIRCUIT

flPD2006G
QUARTZ-OPERATED ELECTRONIC CLOCK
CMOS LSI

The captioned Model2006G CMOS LSI has been developed for FIP (Fluorescent Indicator Panel)/LED-operated
quartz clock, which is operated at the reference frequency of 32.768 kHz.
The model s,.tPD2006G allows the direct operation of both FIP and LED.
The package type is 54 pin flat package.

FEATURES
•
•
•
•
•

Direct FIP/LED operation.
Clock counter is operated with 1.5 V, and can be backed up by battery.
Alarm timer, sleep timer, control timer, stop watch and dual time functions are provided.
Control time limit can be set to 16,32, 64 or 128 minutes.
Time signal tone can be output.

FUNCTIONS
1. Standard Time
2.
3.
4.
5.
6.
7.

Alarm Time
Snooze Timer
Sleep Timer
Control Timer
Dual Time
Stop Watch

771

JlPD2006G
ABSOLUTE MAXIMUM RATINGS (Ta=25 °c, Voo=Common)
Supply Voltage
Supply Voltage
Operating Temperature
Storage Temperature

VSS
VSH
Topt
Tstg

-3.0
-30.0
-20 to +75
-40 to +125

ELECTRICAL CHARACTERISTICS (Ta = 25°C)
(f=32.768 kHz, Voo=Common, VOO-VSS=1.5 V, Co = 5 ....... 40 pF, CG = 5 ....... 30 pF)
CHARACTERISTIC
Operating Voltage
Total Current Consumption

772

SYMBOL

MIN.

VOO-VSS

1.2

ISST

Osc. Start Voltage

VSTA

Operating Voltage

VOO-VSH

9

TYP.

MAX.

CONOITION

UNIT

Ta=-20 to +75 ° C

1.5

2.0

V

2.0

5.0

J.lA

1.35

V

TSTA = 10 s, CG = Co = 20 pF

26

V

Ta=-20 to +75

No load

°c

Segment Out Current

Ip

5

rnA

VOO-VSH=20 V, VOS=2 V

h & 1 Hz Seg. Out Current

Ip

8

rnA

VOO-VSH=20 V, VOS=2 V

PM Seg. Out Current

Ip

16

rnA

VOO-VSH=20 V, VOS=2 V

Alarm & Control & Sleep Output Current

Ip

500

J.lA

VOO-VSH=20 V, VOS=2 V

MUT & Time Tone Output Current

Ip

500

J.lA

VOO-VSH=20 V, VOS=2 V

DIM

BLOCK DIAGRAM

Oimmer

(VSH)

12/24
t1""t4
OSC
IN 0
OSC
OUT
TST1 0
SEC 0 - - - - .

FS~

FM~ ~
F

H

U

OSC

Eill
I

dliSt

I

760

?-6

L

TIME

\IVIIIIUlt:/

Q)

Comparator

LA

I l b Control

H

760

Ir1

ALARM
CONTROL
TIMER

\IIUUI/

t3

OUT '"'

Control

: ~
H
~I

AC

0-----

STOP WATCH

724

II

II

SNZ

ACS 0

Vss

0-----

VDD~

(1 Hz)

I

I

W

0

h (C)

1---0

a1 ,.. gl

t:

~

I

Sleep

a2-g2
a3 ""93

---

~

1-0

dot (1 Hz)

§

1-0 MUT OUT
Alarm

I

~

1-0 ALM OUT

I

r

CNTDUT

SLPOUT

~TSGOUT

Time Tone

1

VSH

..J
..J

t-o
Q)

I I

Time Limit

•

SLI 0
(2048 Hz)

a()

~

-ALARM/CONTROL TIMER
-DUAL TIME
- STOP WATCH

II

"0

DUAL TIME

STW
AOS 0

ro PM (ADEG)
.....

In

:~~

1A1~AM{B)

"II

• STANDARD TIME

1PPS

~

TID~III
ASD 0

?-9

STANDARD

1

ASN

I~
C

N
0
0

0')

G')

j.lPD2006G
PACKAGE DIMENSIONS

Terminal No. & Name

(Unit: mm)

09.5

1.5 MAX.

3.0

~~

(/>3

+0

0.5_ 0.0 3
3;9 ±0.03
7.8 ±0.05

0.15±0.01

No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Name
a1
b1
d1
c1
e1"
f2
92
a2
b2
d2
e2
c2
f3
93
a3
b3
e3
c3
d3
VDD
ALM OUT
TSG OUT
SLP OUT
CNTOUT
MUTOUT
TST 1
N.C.

No.
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

N.C. = No Connection

Sketch of Pin
No. & Name
93

91
f1

a3

h&C

b3
e3
c3
d3
VDD
ALM OUT
TSG OUT
SLP OUT
CNT OUT
MUTOUT
TST 1
N.C.

AM & B
PM & ADEG

1 Hz

pPD2006G

VDD
OSCIN
VSS
DIM
ASN

12/24

DSTSAFFFASSAA
UT I ESSMHCNLCO
TWDCD
SZI
S

774

VSH
OSC OUT

Name
DUT
STW
TID
SEC
ASD
FS
FM
FH
AOS
SNZ
SLI
AC
AOS
12/24
ASN
DIM
VSS
OSCIN
VOO
OSC OUT
VSH
1 Hz
PM &ADEG
AM &8
h&C
f1
91

,uPD2006G
(1) Standard Ti me
Display

12-Hour Display

m

h

11-1-1- -I
PM 11_1- -I :1 ()
,.

(1) Ordinary Display

4

to

I ' 'I

I \

t-~\I"I

m

s

m

h

-I :1 - 1- -I
I -I ()
1_1m

-1--11-I-I:II()

(2) Second Display

Active
Term.

24-Hour Display

-I
I

--I

s

1I I I ()

SEC

(2) Memory
Display

h
(i)

Alarm/Control Time

-I- 11-1

PM

1_-_11_1-

4

-1--11-1
1- - -11_1 e>

..

4

h
II

I

..

1',,'1I
'I

:.~

(ii) Dual Time

PM

m
(iii) Stop Watch

m

1",'1I
,:.~\ 1

II

,

t~, I~V~I

r-'" ..

~-) I ' ' I
I

I" I

m

h

1 I I - -11-1

ASD

I -I - -11_1-

m

m

h

11_1 - -III
I I - _II_Ie>
m

s

1-1-1-11-1
I_I - I_I I_I _

-

t>

indicates an intermittent display of the dot every second.

•

indicates the dot kept on.

DUT
ASD

s

1-' 1-1'-1
1_' -1_11_1-

I- I I
I 1 -I

(iv) Time Limit

Active
Term.

24-Hour Display

12-Hour Display

I- I I
I-I -I

STW
ASD

TID

: } indicates the colon kept on.

Active Terminal means to set any specified input terminal to the VDD level.

775

,uPD2006G
Fluorescent Indicator Panel (FIP@)
(1) 12 hour display format

(2) 24 hour display format

Note: The suffixes of segments differ from those of Fluorescent Indicator Panel catalog as following.
s,LPD2006G
h

FIP5D15S
a4/ b4

a3
a2
al

776

,uPD2006G
TIMER FUNCTION
Sleep Timer:
It can be operated by an SLI input, SLP OUT - ON, and can be turned off at the preset time limit.
SLP OUT, CNT OUT, ALM OUT and MUT OUT will be turned off by an ACS input.
Alarm Timer (Control Timer):
It will be operated by matching the current time and the alarm time.
ALM OUT ... 2048 + 8 + 0.5 Hz output To be turned off after 4 minutes.
MUT OUT ... ON
To be turned off after 4 minutes.
To be turned off at the preset time limit.
CNT OUT ... ON
ALM OUT by an SNZ input
To be held for 4~~ min. and kept outputting for another 4
minutes.
ALM OUT & MUT OUT - OFF by an AOS input,
ALM OUT, MUT OUT, CNT OUT & SLP OUT - OFF by an ACS input.

TIME SIGNAL TONE FUNCTION
2048 Hz is output from TSG OUT for one second at every 00 min. 00 sec.

777

j.lPD2006G
Timer Output
Sleep Timer

(Time limit: 64min.)

SLI

----~fl~--------------~~S~--~n~------------------------I_
64min.
-I
j

SLP

OUT~

L, ft-___ -----:_-_-_'..L.:__________
r""1

1

A C S - - - - - - - - - - - - -____

~(~(-----------~n~------------

Alarm Timer
(Time limit: 64min.)

I
ALM

4min.

_

I

I

4±O min. -,

o U T - - - - ' l 111111 11111 II 111111111 III.....---(( ~_----lI"I'I"ml\lllllm"lTrl"lIIlll""'"lllllll--l~lfP-

.........".--oCt

VDD~4~6_-+--,

OSCINI-4~5~~--44
VSS~~--

DIM 1-4;..;;:3-+-_ _ _--,
to RADIO 26
42
& TUNER
TST10 S T S A F F F ASS A A ASN
27 N CUT I E SSM HeN Leo
41
. 'T woe D
S Z I
S 12/241

47kn
~

IlPD2006G

fl 53
h & C 52
51
AM & B
PM &,ADEG 50
1Hz~4~9__~
48
VSH
-20V
OSC OUT 1-4;....7_......._ _-,

MUT OUT

a:

RECEPTACLE

3

~----~~ALM OUT
La
~~ TSG OUT
~----~SLPOUT
24

2SC945

M
In

~

~

~

.-

VSS

12V

~75mA

282930313233343536 37 3~9 40 1Mn

l-~
O.68I'F

L

FH
---L...-

-----0

0-

FM=

I ~IX

~T'T1
~

~

----0

~---t----,
I
1

I

~o

DIM

....

O~-+--

'0-------..
SEC

,...

~

4r

~I

a:

TID

1

0

loon
lW -20V

RECEPTACLE

0--------.

ACS

--L-

13 c2 e2d2b2a292 12 e, cl dl bl al 9,54

e3
, -__
18~C3
~____
19,d
20 3
TSG OFF 21 VDD

PIEZO BUZZER

~

r-----------~O

""0-

VARIABLE DIMMER
1.5V

100V

~'~~V

F

:7=i ·F:
-

~ 2B2DM

~:--!.J
-.J

(,)

0

~

VSH
-20V

OUT
0

*+1000SJF

1

1.5V

l

Lvss

en

STW

VOD

~ Capacitors for protecting from the surge voltage of power

transformer OFF. (0.01 ...... 0.68IlF)

~VSS
I

:
I
1

0

~

."

C

N

o

o

0)

Ci)

...J

(X)
~

1::

APPLICATION CIRCUIT FOR FULL FUNCTION (24 Hour Format)
to ALARM OUTPUT
INDICATOR LED

F,IP

0

.-tl~

FIP4B15S/FIP4A 15S
to AOS Switch
-tl

I
I
I

(REAR)

,.t..

~r'""llH'~" """U""~Ll'LF2

S

ALARM OUTPUT
INDICATOR
~

-a

AOS

G)

--L..-

~

Ln

a:

.Jt.

0

C/)

ALARM
TIME SIGNAL

--L..-

13~~~ 17~6 ~~~~,

2SC945 47kn

(0((
D~~
~ ( ~ g'

r-----------~O

o~----~

ACS
--1..-

14 93 f3 c2 e2 d2 b2 a2 92 f2 e1 C1 d, b1 a, 91 54

PIEZO BUZZER

15 a3

f1 53

16 b
17 3
e3

h & C 52

l...-.._~18::..JC3

-20V

L-_~19~d3

48'

~---~ALM OUT

J,.LPD2006G

VSH 7
-20V
OSC OUT J-4~_ _ _-----.

",,-_2.2_. TSG 0 UT
23

V

l...-..---~~SLPOUT
24

~4,-,,6__-+~

--L-

,I
I

0 I M J-4;..::34-_ _ _ _-,
42
S A A ASN
LeO
41
I
S 12/24

0 S T
F F F
27 N CUT I S M H
. . TWO
TST!

C>-<

L;:---+----,

VSS~~~

M UT OUT

1 ~IX

--:;-T'n
---0

44

~---~2~5~CNTOUT

5

DO

OSCIN~4,-,,5~~_ _~

0-

FM::

1Hz~4~9~__~

20
TSG OFF 21 VOO

to RADIO 26
& TU N E R

FH
--L..~-----o

AM & B 51
PM & AOEG 50

I

A

RECEPTACLE

DIM
0---

"~

~
,

~

SEC
0---

I

TID0---

"'''0-.

RECEPTACLE
VARIABLE DIMMER
1.5V

100V

~l~~V ~
15V

I~

STW

:::

0---

"~

-n=:VSH
-20V
+1000pF

OUT

2B20M

~-

+I

1

1.5V

J7 ·

Lvss

0

Voo

*

~VSS
I

Capacitors for protecting from the surge voltage of power
transformer 0 F F. (0.01 '" O.68J,.LF)

:
I
I

o
o

en

SLI
SNZ

~~

C

N

0

LED

2W
-20 V 75 n

* Switch
to AOS

to LED
display
of alarm output

2S8549

TLR4047 iTLR4042
(THE REVERSE SIDE)

AOS

~

APPLICATIONS
(12 HRS. FORMAT)

0

~
I

I
J,

LED brightness
SLI
----Lo------~

r-------------O

SNZ
-----L-

o

.-----0

(Y)

0---------4

ACS

~,

-----L-

a:

.---------~o

en

((ft(

Alarm tone
Time signal \\\1

D

0---------4

FH
----L...-

D

~----o

0-

FM

Piezoelectric
buzzer
-20 V

J..LP02006G

FIX
When it is unused
OUT function.
connect X to VOO.
X

-20 V

o-------;---~~~--i
I

m

I

I

;JJJ

Radio

12 V Relay
75mA

Tuner

1 W-20 V
2SC945

~

~
c::

~
~

M

~

Q

2820M

~

-

I

r-J

I

I
I

l

I

_.J

TID function
connect TID
to VSS.
Then can set
the timer
duration 64
minutes by

~ -----r-~I~~e~r~----J
---~
-------------,

L
__
r---------

-1.5 V

.. Vss

tt=
~

:l-~f-n~t~~~ - - - ,

r--------

:

1+

"0SEC

*

nl

"v

U
~

VSS~IIIIII

100
1 W -20 V

100 V

DIM

*11

~

12 V Relay
75mA

Radio or
TV drive

oV

~~~-1-+-+-+--~~4-~

7kn

~

A F N F F A S
S SCM H
D

100lil

Radio or
TV drive

illS

I
I

STW

-r-voo

~
OUT

1500J..LF
-20 V
VSH

Available to
select STW
or OUT function.

.

0

~VSS
I

* Capacitors for protecting from surge
voltage of power supply VSH & AC line.

0
~

...J

(X)

01

Connect near
possible .

LSI with capacitors as

OJ

_______________________ J

1:::
"tI

C
N

o
o

0)

C)

~
Q)

m
2W
-20 V 75 n

~ to AOS
SWitch

to LED
display
of alarm output

LED
TLR4040/TLR4042
(THE REVERSE SIDE)

o

"*

~
,

,

C
N

o
o
en

J.

SLI

G)

--L-

SNZ

M

--L-

------------0

cr>

LOT

o~----_.

ACS
--Lo~----~

a:

Alarm ton:

APPLICATION
(24 HRS. FORMAT)

...

ALARM OUTPUT C;
DISPLAY
~

o

1:::
"'0

AOS

-----------0

((f(D

0

FH

;

~

Time signal \ \\\

FIX

Piezoelectric
buzzer
-20 V

l
2SC945

J..LPD 2006G

kn
47

When it is unused
OUT function,
connect X to VDD'
X

-20 V

o-------+---~-v--l

TSG OFF

m
I

,,
I

I

~

Relay

Radio
Tuner

Radio or
TV drive

",

'"
emf

V

12 V
75 rnA

_

~

~

*-,
1 *;f

2B2DM

oV

,..-----

I
I

r
I
I

I
_.J

TID

i ' _.J

~----------------------------------------------~I----~
IL

____________

-----------..

I

If not using
TID function
I
connect TID
I
to VSS·
Then can set
I
the timer
I
duration 64
I
minutes by
I
Clear.
-All
- ________
JI

l

r---------------------,
STW
Available to

-or-

.+

SEC

o'----+--__.

I_-VSS

"v

~

*

-1.5V

100 V

~

ss--=.I I I I I I

100nl
1 W -20 V

Radio or
TV drive

J;
0.010.68 jJF

•

v

DIM

2g3031~333435rr6373839«r18i

*:
*,

~

~

~

':'l

2SC945 47 kn

;; m
~

.------<>...

A F N F F A S

+

select STW
or OUT function.

~

VDD

+

OUT

_ 1500 J..LF
-20 V

~__~r-~------VSH

• VSS

* Capacitors for protecting from the surge
voltage of power supply VSH & AC line.
Connect near LSI with capacitors as
possible.

o

-

- - - - __ - ________________ J

MOS DIGITAL INTEGRATED CIRCUIT

fLPD6529C
AUTOMOTIVE CLOCK
CMOS LSI

GENERAL DESCRIPTION
The pPD6529C is a monolithic CMOS LSI for crystal controlled automative clocks. The circuits interface
directly with fluorescent indicator panel. The display format is 12 hours. It is also provided with a 4-ways
display brightness control function and can be driven by an external clock signal.

FEATURES
•

Crystal controlled oscillator (4.194 304 MHz)

•

Direct interface to fluorescent indicator panel (F IP4E8S)

•

12 hours display format

•

4-ways display brightness control (duty controlled dimmer

•

External clock drive possible (1 024 Hz)

•

Separated hours and minutes set controls (2 Hz)

•

On the hour adjustment control (±30minutes)

•

1 024 Hz output

•

42 Pin DIP mold

1, 1/4, 1/8, 1/16)

BLOCK DIAGRAM

VOOo--

PACKAGE DIMENSIONS

VSS~

in millimeters (inches)

56.0 MAX.
(2.20)

H·S

~~::::::~:~:~::t-

M·S

RES

1 2 3 4 5 6 7 8 9 10 11 1213141516 1718192021

'§~iD ~
~ci ~~ I~I

~=- ~90
~:::

f--_ _ _ _ _ _ _ _ _ _O_.5_±_0--i.1 (0.02)

~'9

,o.,os

02~-~'o

Z

.

~O.O\

OS 1

<>--1~----i

OS2

<>--1~----i

,

15.24

OSCIN

(0.6)

OSC'OUT
CLOUT
CL1NO-----------J

787

~PD6529C

CONNECTION DIAGRAM
(Top View)
0
0

>

I--

N
(Y')

I--

N

I--

$'

(Y')

eo

(Y')

..c

~ ~

I

U
Z

~ ~

V

N
N

eo

en

z :J
a
en U U
ill
en en U
a: a a z

U

Z

Z

....J

I-:J

en

.tJ

"0

'+-

ro

..c

I--

~

~

~ ~ ~

ru

"0

..U

N

..c

..c

PIN
NO.

SYMBOL
INPUT OUTPUT

INTERNAL

PIN

STATE

NO.

2

DS1

Dimmer input 1

3

DS2

Dimmer input 2
b4 c4

5

g3

Pull down

SYMBOL
INPUT

23

t

Segment output P-ch Open Drain

OUTPUT

RES input

H·S

Hour adj. input

M·S

T1

Minute adj. input

8

c3

29

b1

g2

30

a1

10

e2

31

f1

11

c2

32

b2

12

g1

33

d2· a2

13

e1

34

f2

14

d1

35

1 Hz

15

c1

36

CLOUT
AC

Clock output
Clear input

20

VSS

21

VSS

-Power supply

'37

b3

38

a3

Segment output

t
P-ch Open Drain

1 Hz signal
Segment output

f3

40

T2

41

T3

42

Pull down

NC

39
Pull down

STATE

Test pin 1

9

19

INTERNAL

OSCOUT OSC output
OSC input

RES

27

18

PIN
NAME

26
28

Ex. Clock input

u

25

e3

NC

en

OSCIN

d3

CllN

en

24

7

17

J

U



.[J,

XX o'clock 00 minute 00 second

RES

} c:::) (XX+1) o'clock 00 minute 00 second
XX o'clock 59 minutes 59 seconds
[4] B LK input (pin 1)
Put this pin (25) to Low Level (open) and the display outputs are turned off (Blanking).
Ouring Blanking, H·S,.M·S and RES inputs are ineffective.
Return this pin to High Level and the display outputs are recovered.
[5] OS1 input (pin 2) and OS 2 input (pin 3)
Combine OS1 and DS2 as shwn below and the display brightness is dimmed accordingly.
DS2 DS1 Output ON Duty Ratio
L

L

1

L

H

1/4

H

L

1/8

H

H

1/16

Clock Mode
Internal, External

•

~

Internal Clock Mode
4.194 304 MHz crystal oscillator is used.

•

External Clock Mode
1 024 Hz signal is input to CLIN pin.

Dimmer Freqency ; 512 Hz
[6] AC input (pin 19)
Put this pin to High Level (VDD) and this IC is reset to display 1 o'clock 00 minute (00 second).
[7] CLIN input (pin 17)
When this IC is to be driven by a crystal oscillator, put this pin to Low Level (VSS).
When this IC is to be driven by an external clock, input a 1 024Hzsignal voltage within the specified input
voltage range.
[8] CLOUT output (pin 18)
A 1 024 Hz signal with 50 % duty is output on this pin (as a CMOS output). When this IC is operated on
an external clock, this output is suppressed.
[9] T1 (pin 28),T2 (pin 40) and T3 (pin 41)
These pins are provided for the LSI testing and should be kept on Low Level (VSS) during operation.

790

j.lPD6529C
APPLICATION 1
F14C

100 n

BATTERY
(12 V)

+

10
IJF

RD15F

RD
5.6E

~

IGN.SW

150 n/2 W
VDD

DISPLAY SW

OSCIN OSCOUTi

1SS53
BLK

AC
GRID

+

---'-10 IJF

H·S

M·S

N
ID

:i
B::J

0
0...
:t

0
.....
c:
Q)

0...

E

LL

<0

RES
100 n
LIGHT
(12 V)

+

VI

u
(J)

en
ex)

w
q

Cl

Q)

en

DS1

F14C
RD15F

DS2

CLOUT
CLIN

(1 024 Hz)

VSS

680 n

APPLICATION 2 (Operate by external clock)
F14C

100 n

BATTERY
(12 V)
RD15F
OFF

+

RD
5.6E

0.1 IJF

~

IGN.SW

150 n/2 W
VDD

DISPLAY SW

OSCIN

AC

1SS53
BLK
GRID

+

-!-

10 IJF

H·S
M·S
RES
DS1

F14C

+

~

::J

B::J

<0

100 n
LIGHT
(12 V)

u
(J)
N
ID

0
:t

0
.....
c:

0...

Q)

RD15E

E
Cl

en
co

w
q
0...

u:

Q)

100 kn

en

CLIN
EX. CLOCK
(12 V)

56 kn
1SS53

Vss

680 n

791

MOS DIGITAL INTEGRATED CIRCUIT

pPD1990AC
SERIAL I/O CALENDAR & CLOCK
CMOS LSI

The pPD 1990AC is a CMOS integrated circuit having a clock function, which has been designed with the intent
of connecting to microcomputer.
This IC counts independently the month, date, day of the week, hour, minute and second, and is able to have
the output and input of these time data freely upon command from the microcomputer. By employing this IC,
the microcomputer is freed from performing clock functions, and will be able to be use exclusively to other complicated operations.
The pPD1990AC employs the oscillation of a32.768 kHz crystal as a reference. And all functions are enclosed
in a 14 pin dual in-line package.

FEATURES
• Timekeeping (hours, minutes and seconds) and calendar (months, date and day of the week).
o Serial input and output of date.
(Input & output code: All digits Binary Coded Decimal, except "Month" which is Hexa-Decimal Code)
o Reference frequency is 32.768 kHz, which is generated by a crystal oscillator circuit.
o Provided with timing pulse outputs. (Selection of 64 Hz, 256 Hz or 2 048 Hz is possible.)
•

By using CS (chip selection) terminal, multi-chip applications are possible.

PACKAGE DIMENSIONS
in millimeters (inches)

CONNECTION DIAGRAM

(Top View)

VOO (+)
C1

OUT ENBl

.-=

CS

~~~]~:mrmt
~~

LO
LO

0-

•

~~ M.~
.- z z

-

~ ~
('\j

(Y) -

M "":
o
-

'

'

254
I'

I

(0 100)

.

Jk

1.2:
(0.047)
7.62
0.5 ± 0.1
(0 300)
0
0
1
~
025+ •
0-15
•
(0.02) • -0.05
(0.010)

OATAIN

OATA OUT

GNO

ClK

(Vss)

NO.

Terminology

NO.

Terminology

1

C2

8

ClK

2

C1

9

DATA OUT

3

Co
STB

10
11

TP
OUT ENBl

4

792

TP

"!

5

CS

12

XTAl

6

OATAIN

13

XTAl

7

GND(VSS)

14

VOD (+)

jlPD1990AC
SERIAL I/O CALENDAR BLOCK DIAGRAM

,...

OUT ENBl .....
,...

ClK '"
40 Bit Shift Register

Multiplexer

N-ch
Open Dr

.---

DATA ,...
'V
IN

SO
PS

PS

~

~

~

Man
~ -th PS

1...-.--

GND

I

I

I

I

I

Date

Hour

Min

Sec.

I

I

I

I

.

~-

Time Counter

OSC
15 Stage Binary Divider

r---

0

b

,...

.....

1Hz

I--

i..----

..---

------l
~

32Hz Mu~er

I-t---

-i

64 Hz
256 Hz
2048 Hz

TEST

'--'-

-

0

t

I

1

~

0
-.
'"

N-ch
Open Ora

--

G NO

y

CS

,...
'V

SO
COMMAND
Latch/Decoder
()

STB

1 1

GND(VSS)

VDD(+)

: Serial Data

PS

: Preset

DNJ

: Day of the Week

CS

: Chip Select

TP

: Timing Pulse

fosc = 32.768 kHz
VDD = 2.0 to' 5.5 V

793

,uPD1990AC
ABSOLUTE MAXIMUM RATINGS
Supply Voltage
Input Voltage
Operating Temperature Range
Storage Temperature Range
Output Terminal Voltage

6.0
VSS-O.3 to VOO +0.3
-40 to +85
-55 to +125
VSS-0.3 to 6.0

VOO-VSS
VIN
T opt
Tstg
VOUT

ELECTRICAL CHARACTERISTICS (f=32.768 kHz,CG=CO=20 pF,Xtal RS=20 kn, Ta=25 °C)
CHARACTER ISTIC
Operating Voltage

SYMBOL

MIN.

VOO-VSS

2.00

Current Consumption

ISS

Low Level Output Current

IOL

TYP.

20

UNIT

5.50

V

50

/J.A

VOO-VSS=3.60 V

/J. A

VOO-VSS=2.0 V
VOL =0.4 V

kHz

VOO-VSS=2.0 V,Outy 50 o/c

/J.A

VOO-VSS=3.60 V

*500

CLK Input Frequency

fCLK

Input Leakage Current

liN

High Level Input Voltage

VIH

0. 8V OO

VOO

V

Low Level Input Voltage

VIL

VSS

0. 2V OO

V

VSTA

2.0

Oscillation Starting Voltage

OC

TEST CONOITIONS

MAX.

100
1

V

TSTA=10 s

* TP and OATA OUT are N-channel open drain output.

A.C. ELECTRICAL CHARACTERISTICS (FOR REFERENCE --- NOT SPECIFIEO)
(f=32.768 kHz, VOO-VSS=2.0 V, Ta=25 °C)
CHARACTER ISTIC
CO-2, CS-STB Set-up Time

SYMBOL

MIN.

TYP.

MAX.

UNIT

tsu

2

/J.s

STB Pulse Width

TSTB

2

/J.s

CO-2, CS-STB Hold Time

THLO

2

/J.s

STB LATCH Oelay Time

td1

CLK-OATAOUT Oelay Time

tcJc-o

OATA I N Set-up Time

tosu

2

/J.s

OATA IN Hold Time

tOHLO

2

/J.s

TEST CONOITIONS

*4

/J.s

except Time Read mode

2

/J.s

RL=33 kil, CL=15pF

* Note: When group 0 is Time Read mode, STB LATCH delay time is 40/J.s MAX. (td2).

794

,uPD1990AC
FUNCTION SPECIFICATIONS
o Reference frequency (X tal osc.).
o 32.768 kHz
o Data.
o Hours, Minutes, Seconds, Months, Date and Days of the Week ("Hours" 24 hour form) (Automatic
adjustment of long and short months). The data is output in order to "Second", "Minute", "Hour",
"Day", "Day of Week", "Month". Refer to Fig. 1.
o Data format
o Binary Coded Decimal (except "Month" which is Hexa-Decimal Code)
o Data input-output and Clock.
o Serial input, serial output.
o Data input and output in synchronization with the clock input from the ClK.
o Timing pulse output.
o One of 64 Hz, 256 Hz or 2048 Hz can be selected by command.
o Mode selection.
o Selected according to input to Co, Cl, C2.
Group "0" C2=0
Register control (control of data input-output).
Group "1" C2=1
Tp selection (Selection of timing pulses) and TEST MODE setting.
o Commands of group "0" and those of group "1" are independently latched by the STB input.
o Chip select.
o ClK and STB inputs prohibited by connecting CS input to GND(VSS) level.
o Prohibition of output of data.
o Making OUT ENBl input GND level DATA OUT terminal become high impedance.
o leap year
o The correction for length of the month is automatically performed and leap year is not automatically
performed. But it is possible to set calendar FEB. 29, and the day after, it will be Mar. 1.

Month
pay of Week
(Hexa
-Decimal)

(0 31 0 21 0.;00)

(9- ~)

I I I

I I

I I I

I [ I

I [ [

Unit of

Ten's of

Unit of

Ten's of

days

days

hours

hours

minutes

minutes

seconds

Uni~ of
seconds
(BCD)

(BCD)

I(B9°)1

(BCD)

(BCD)

(BCD)

(BCD)

(BCD)

0 310 2-,0./0 0

Ten's of

I

I

I

Unit of

I I

I

Ten's of

I

40 Bit Shift Register

* DATA of 40 Bit Shift Register appears on DATA OUT terminal from LSB of Second.

Fig. 1

795

tlPD1990AC
TERMINALS
•

Input terminals.
o DATA IN
o ClK
o Co- C2
o STB
o CS
o OUT ENBl

Data input of 40 bit shift register.
Shift clock input of 40 bit shift register.
Command input (3 bit).
Strobe input.
Chip select input (Prohibits ClK & STB).
Output control input (Makes the DATA OUT high impedance by inputting low level).

• Output terminals. (N-channel Open Drain)
o DATA OUT Data output of 40 bit shift register.
o TP
Time pulse output.
•

Oscillation terminals.
o XTAl
Oscillation inverter input (OSC IN).
o XTAl
Oscillation inverter output (OSC OUT).

• Power supply terminals.
o VDD
Plus power supply.
o GND (VSS)
Common line.

COMMAND SPECIFICATIONS
Group

0

1

C2

C1

Co

0

0

0

0

0

0

FUNCTION
DATA OUT

= 1 Hz

1

Register Hold
(TEST MODE is released)
Register Shift

DATA OUT

= [lSB]

1

0

Time Set & Counter Hold

DATA OUT

= [LSB]

0

1

1

Time Read

DATA OUT

= 0.5 Hz

1

0

0

1

0

1

1

1

0

1

1

1

TP = 64 Hz Set
(TEST MODE is released)
TP = 256 Hz Set
(TEST MODE is released)
TP = 2 048 Hz Set
(TEST MODE is released)
TEST MODE Set

* Groups "0" and "1" hold their functions independently, in other word, the command of the group "0" ("1")
can change the group "0" ("1") function mode only. Then you must release the JlPD 1990AC from TEST
MODE by setting commands of TP selection (group "1") or Register Hold Mode.
o Command input.
o 3 bit, binary code input. Co,C1,C2
•

796

Number of commands.
o Register control
o TP control
o TEST MODE set

tlPD1990AC
o Commands.
o Register control [Group "0"]
Register Hold MODE [000]
Holds the 40 Bit Shift Register.
The data is held, and shifting of the data becomes impossible.
1 Hz is output from the DATA OUT terminal. The TEST MODE is released by this command.
Shift MODE [00 1]
Shifting of data of the 40 Bit Shift Register becomes possible.
Data is shifted in synchronization with the clock input on ClK terminal.
DATA OUT terminal outputs data from [lSB] of the 40 Bit Shift Register.
Time set MODE [0 1 0]
Presets the data of the 40 Bit Shift Register in the Time Counter.
Resets the Flip- Flop (F IF) of 11 to 15 bits of the 15 Stage Binary Divider and hold the Time Counter.
By setting other command of group "0", the Time Counter is released from the reset and the hold.
[lSB] is output from the DATA OUT terminal.
Shifting of data becomes impossible.
Time read MODE [0 1 1]
Reads into the 40 Bit Shift Register the data of the Time Counter.
DATA OUTterminal outputs the data of [lSB] ([lSB]=0.5 Hz). Shifting of data becomes impossible.

"*

*

*

*

o TP control [Group"1"]
TP = 64 Hz set MOD E [1 0 0]
64 Hz (duty 50 %) is output from the TP terminal.
TP = 256 Hz set MODE [1 0 1]
256 Hz (duty 50 %) is output from the TP terminal.
TP = 2 048 Hz set MOD E [1 1 0]
2048 Hz (duty 50 %) is output from the TP terminal.
TEST MODE set MODE [1 1 1]
Sets up the TEST MODE (Not used for ordinary operation). When TEST MODE is released by Register
Hold MODE [000], TP terminal is 64 Hz output.

*
*

*

*

G

TEST MODE (Set by command of TEST mode (111))
In this mode DATA OUT terminal is enabled in spite of OUT ENBl input.
There are 2 type TEST MODE selected by OUT ENBl terminal.
TEST MODE 1 ; OUT ENBl = 0
In this mode every Counter ("Month", "Day of Week", "Date", "Hour", "Minute", "Second") is advanced at
a 1 024 Hz in parallel. In this case overflow carry of each counter is not affect to the next counter.

Month

f-

D/W

f--

Date

I--

Hour

I--

Minute

~

I

Second

--

1 024 Hz

TEST MODE 2 ; OUT ENBl = 1
In this mode TIM E COUNTE R is advanced at 1 024 Hz in stead of 1 Hz from "Second" counter input.

I

Month

I
I

I
I

D/W

Date

Hour

I

I

Minute

Socond

~

1 024 Hz

797

pPD1990AC
Following table shows the signals appeared on DATA OUT and TP terminals during the J,LPD1990AC is in the
TEST MODE.
CODE
C2 C1 Co

MODE

DATA OUT
1 Hz

TP

REGISTER HOLD

0

0

0

REGISTER SHIFT

0

0

1

LSB of 40 Bit SIR "0" or "1"

32 Hz

TIME SET

0

1

0

LSB of 40 Bit SIR "0" or "1 "

32 Hz

TIME READ

0

1

1

512 Hz

OTHERS

64 Hz *By this command, TEST
MODE is released.

TIC is advanced

TEST
MODE
is remained.

at 1 024 Hz in
parallel or serial.

~
TIC is advanced

32 Hz

at 1 024 Hz in
parallel or serial.
SIR = Shift Register
T /C = Time Counter
*Note:

While J,LPD1990AC is TEST Mode, by setting the Register Hold mode (Group "0" mode), Test Mode
changes TP=64 Hz mode in group "1" and as a result Register Hold mode is set. 1 Hz appears on DATA
OUT terminal and 64 Hz appears on TP terminal.

DATA INPUT/OUTPUT TIMING DIAGRAM

Command (C2. C1. CO) is set to [0011 (Shift Mode).
CS= "H"

ClK

DATA
IN __ _

L-+----- July
16 (Sun.)
2 Hours 24 Minutes

INPUT
TI M I NG

35 Seconds.

OUT
ENBl

OUTPUT
TIMING
DATA
OUT

November 25 (Sat.)
2 Hours 23 Minutes
49 Seconds.

o

1 2 3 4

5 6 7 8 9 1011

33 34 35 36 37 38 39

Written-in data lSB (HH H)
appears at output.
(Note)

798

Reading-in timing of CPU (Trailing edge of ClK).

JlPD1990AC
TIMING DIAGRAM FOR SETTING COMMANDS
CAN CHANGE

STABLE

CAN CHANGE

VIH-~~

-+--+--VIH

C2,C1,CO
Vil -~.-_ _ _ _ _ _ _ _ _ _- J

-I-~-Vll
I~-----------------------I
~-----------------------

tsu

cs
tsu

VIH--~~--------~~

STB

Vll~~-----~r-

ts-C*

ts-C*
/

ClK

r--------------

I
Vll--~------~----------------~--+""-------+---------------~'-+--

- - - - - - - - - - - - - - -

IN CASE OF BEING IN ORDINAlY MODE
OLD MODE
INTERNAL
MODE OF
IlPD1990AC

I"

'd,"--I

I

NEW MODE

IN CASE OF BEING IN THE TIME READ MODE

I•

i

td2**----.-l·

NEW MODE

OLD MODE

tsu
tHlD
tSTB
tdl
td2
ts-c

2 J.Ls MIN.
2 J.Ls MIN.
2 J.Ls MIN.
4 J.Ls MAX. (In case of being in.ordinaly mode.)
40 J.Ls MAX. (In case of being in the Time Read mode.)
2 J.Ls MIN.

Note: * Setting Register Shift command (001 ), input level of the ClK must be low level.
** The delay time until new mode becomes valid is 4 J.LS. MAX. (tdl). But in the case of J.LPD1990AC being
in the Time Read mode, it takes 40 J.LS MAX. (td2).

799

,uPD1990AC
TIMING DIAGRAM OF DATA INPUT AND OUTPUT

ClK

V,H

/

"

\.

\

V,l 7

\.

tdC-O
~

DATA a UT
I

X

tDSU
V,H

"\.

V,l

/

DATA IN

tdC-O
tDSU
tDHLD

VOH
Val

"

tDHlD
/

X

;{
~

2 JlS MAX. (RL=33 kn, CL=15 pF)
2Jls MIN.
2Jls MIN.

INPUT AND OUTPUT CIRCUITS FOR JlPD1990AC
Input circuits
(for C2, Cl, CO, STB, DATA IN, ClK, OUT ENBl, CS)
------------lSI-----------------

~--------------------_.----~VDD

p
R
input

....

O}------~----4I.....__--J\A./\,..-__4.....__-

GND
R =: 1 kn

Output circuits
(for DATA OUT, TP terminals)
------lSI--------

r--~--+-----{O

..
N-channel Open Drain

BOO

I

output

jlPD1990AC
APPLICATION CIRCUIT

CPU
C2
C1

I

I

I

I

I

STB

ClK
OUT ENBl

I

L

T

lP

30 pF

CD
'XI
Ih..

5 -30 pF

STB

ClK
OUT ENBl

I

CS I - - -

DATA OUT

I

I

-L

DATA IN

r---.
i OUTPUT

TP

XTAl

Co

INTER-

I

DATA OUT

GND

Cl

I
I

FACE

DATA IN

32768 kHz

XTAl

C2

:
i
:
:
I
i
:L ___ J!
INPUT

Co

VCC

p. PD1990AC

r---,

INTER- ~
FACE I
___ -l

TP

VDD

GND

r----,

.

POWER
I
I
SUPPLY
I
I
I' - CIRCUIT
_ _ _ ..J

!

+5 V
CO M

7/1
r~-----,

J

POWER DOWN

I

I

PROTECTION

I

I

CIRCUIT

I

I

L ______ J

801

j.lPD1990AC

POWER SUPPLY CIRCUIT

2SA733
Trl

+5 V (Vcc)

to VDD of",PD1990AC

15 kn
4.7 ¢=

Ni·Cd x 3

4.7 kn

GND

POWER DOWN PROTECTION CIRCUIT

to VDD of ",PD1990AC

+5 V (VCC)

~--------~~----------~

A1

to CS of ",PD 1990AC

A2

/

GND

The Power Down of Vee line makes es terminal inactive, with R1 and R2 resistors.
The trigger level of this circuit is calculated as following.
(R1+R2)·VBETr3

Vtrigger

802

=- - - - - - - R2

JLPD1990AC
INPUT INTERFACE
For STB input
to VDD of J,LPD1990AC

STB(CPU)

to STB of ",PD1990AC

22 kn

22 kn

For other input (C2, C1, CO, DATA IN, ClK, OUT ENBL)

to VCC (+5 V)

3.3 kn
to input terminal of ",PD1990AC

from CPU

OUTPUT INTERFACE (DATA OUT, TP)
to VCC (+5 V)

33 kn
to CPU

from DATA OUT or TP
terminal of J,LPD1990AC

803

,uPD1990AC
APPLICATION
2SA733
VCC(+5 V) '"'

""

Powe r Supply
Voltage

510 n :

15 kn· ~ 1 kn

..;

K

ZZ 4.7 JlF
2SC945

4.7 kO:

-=-Ni-Cd
-=3.6 V

I

7i7"

7;f'r

7.7-

14

~ Vee

VCC

3.3 kn

i

C2

1
C2

XTAl

2

C1

XTAl

12

Vee

i
i

ClK
~

....L.Uen

3

77

3.3 kn

8
ClK

Vee
3.3 kn

6

u

en

cb

T

a--

CD=5-30 pF

3.3 kn

Co

CG=30 pF

13

Vee
3.3 kn

!

C1

32.768 kn

VDD

11

OUT ENBl

~ Vee

33 kn

Cl.

::s.

OUT ENBl

CS

5

9
DATA OUT

DATA OUT

33 kn

!vec
33 kn

10

TP

TP

VDD
~

10 kn

51 kn
]-.... 2SA 733

22 kn
STB
GND

1

804

4

,

STB

k~ 2se945

10 kn

22 kn

7'r7

Vss
7J,

77

~

MOS DIGITAL INTEGRATED CIRCUIT

,uPD6517P3
3.5 DIGIT MULTIPLEXED LCD QUARTZ WATCH
CMOS LSI
* This LSI is supplied in dice form only.
The J1 PD6517P3 is a CMOS LSI for an electronic wrist watch operated on the oscillation source of 32.768 kHz.
A multiplexed (1/2 duty and 1/2 bias) 3.5-digit liquid crystal display element in 12-hour or 24-hour system is
used with the LSI.
The functions of basic time ('hour', 'minute', and 'second' and calendar ('month' and 'date') are provided.

FEATURES
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)

All output terminals for driving liquid crystal elements are arranged on one side of the chip.
The display is standard 3.5 digit multiplexed LCD.
Basic time displays 'hour and minute'. By operating switches, 'month and date' or 'second' can be displayed.
Two operation switches are provided.
The display automatically returns to 'hour and minute' display about 2 seconds after performing 'month
and date' display.
Correction of 'second', 'minute', 'hour', 'date', and 'month' can be done separately.
The place to be corrected is indicated by blinking.
One touch correction of ±30 seconds.
12-hour or 24-hour system can be optionally selected by bonding.
Voltage doubler circuit is integrated within.

Outline of Functions
(1) Normal display
(2) Calendar display
(3) Second display

'hour and minute'
'month and date'
'second'

B05

Q)

o

m

CJ

o

~

~ ~

'/

S1

0--

SET

MONTH

~ GATE
INPUT

S2

~

+12

j

----

().

SET

~

.....

------

GATE

~

V//#//A

~

.......---D-A-T-E----,J
----

t

I" . " ,

\.

t t < , i ......

....----------..t
PLA

-e-e-

...

HOUR

t

.::

G)

:c

0

»

"

I

.•..

'-----0

I-

•.:.,

~.

~

r

~
~

\",~~

fW

8

8>i . .,. .',

0

~

~

/

~

~

~

\

~------------------~
J-f-+----t

~

'-----,-,-......
AC ().
.....
T1

SET

I

GATE

L
J--~

j

l;60·
::'. :.' .""',.".

TEST

SET
~

INPUT

~

0--

IN

0--

OSC

+60

OSC OUT

0--

STAGES

VDO

0------

+

1

'

-

.........--O-IV-I....
O-ER-"""'--+32768

L
t

-

.'

. . . . ,. .:. . :..': . .,. . "'"g } : , " j
t

0

m

n

":.:,.

~

L2:)

g

I
......
~

B4/C3

......- -

I
t

VOLTAGE

COMMON

~

COM-X

DOUBLER

DRIVER

~

COM-Y

OC
~

I i--V
W
":
I

I

VSS

"".'.':'.> "f,>
........:.........
; ' ; :,

SECOND

GATE

1HZ

T3

lifr'

l :'"

L..
o--~'

T2 0---

OSC

JJ

:'.':'

U.•

MINUTES

I

3:

AOEG1/C,

~

~

:.',

~

GATE

-

"»c

I

.1

~~

> ...,.:' ••..........':".' . :",:",• :,~

'--_ _ _ _ _ _ _ _ _ _ _ _ _ _---. .",

SET

JJ

~\I~

+28,29,30,31

~-+---+-I---------'

CONTROL

C')

-""-.-

~/~~~~ ~ J ~,~

0--

12/24 H

/.
~
~

r
0

--:"'"""I

crN

VSH

jlPD6517P3
ABSOLUTE MAXIMUM RATING (Ta=25°C)
Supply Voltage (1 )

VOO-VSS

-0.3 to +5.0

V

Supply Voltage (2)

VOO-VSH

-0.3 to +5.0

V

Operating Temperature

Topt

-10 to +60

°c

Storage Temperature

Tstg

-40 to +125

°c

RECOMMENDED OPERATING CONDITIONS
UNIT

CHARACTERISTIC

SYMBOL

MIN.

TYP.

MAX.

Operating Voltage 1

VOO-VSS

1.3

1.55

1.7

V

Operating Voltage 2

VOO-VSH

2.2

3.0

3.4

V

ELECTRICAL CHARACTERISTICS
voo=common, Voo-VSS=1.55 V, VOO-VSH=3.1 V, f o =32.768 kHz, CI=30 kil, CG=33 pF, CO: integrated)
( within T a=25 °c
SYMBOL

CHARACTER ISTIC

MIN.

TYP.

MAX.

UNIT

CONOIITON

Operating Voltage Range 1

VOO-VSS

1.2

1.55

1.8

V

Functional Operation

Operating Voltage Range 2

VOO-VSH

2.0

3.0

3.6

V

Functional Operation

0.8

1.5

J1.A

C1 =C2=0.1 J1.F
no load

1.4

V

Current Consumption

100

Oscillation Start Voltage

VSTA

Frequency Stability

ILl f /f 0 I: (V 0 0 -V SS)

Frequency Adjustment
Range

ILlf/fol: CG

3

50

tSTA~10 s

ppm

CG=20 pF, VOO-VSS=
1.45 to 1.55 V

ppm

CG=5to 33 pF

Sl, S2 Input Current

liN

3

10

60

J1.A

VOO-VI=QV

Tl

liN

50

150

400

J1.A

VOO-VI=O V

Common Output Current

Ip, IN

3

16

J1.A

VOO-VO=0.2 V

Segment Output Current

Ip, IN

0.5

5

J1.A

VOO-VO=0.2 V

Doubler Voltage

VSHD

2.8

Integrated Capacitor

CD

T3, AC Input Current

20

V

RL=3 Mil,
Cl =C2= 0.1 J1.F

pF

f=10 kHz, Vp-p=O.l V

807

,uPD6517P3
TERMINOLOGY AND COORDINATES OF PAD

29

0

o

D

o

D

D
D
D

y

D
D

D

E
E

o

(0,0)

N

D

N

D

o
22

o

Chip Size: 2.245 x 2.20 mm

0

D

DDDDDDDDD o

D D

10

11
2.245 mm

·1

The origin of coordinates is the center of chip.

COORDINATES

COORDINATES
PAD NO.

808

TERM INOLOGY

1

T3

X

Y

1003

982

PAD NO.

TERMINOLOGY

16

E3/F3

Y

X
-92

-982

2

T2

799

17

G3/AD3

-275

3

T1

617

18

C3/B3

-457

4

VSS

435

19

E4/F4

-639

5

12/24

253

20

G4/A4

-821

6

VDD

71

21

C4/B4

-1003

7

OSCIN

-111

22

COM X

-669

8

OSC OUT

-487

23

S1

-453

9

COMY

-669

24

S2

-270

10

C1/ADEG1

-982

25

AC

-73

11

D2/B1

818

26

C1N

108

12

E2/F2

635

27

DC

617

13

G2/A2

453

28

C2N(VSH)

799

14

C2/B2

271

29

VDD

982

15

D4/COL

89

(Unit: j..Lm)

,uPD6517P3
OPERATION DIAGRAM

hour

Sl

()
minute
()

•

Sl
month

•

date

second

auto return
after 2 seconds

S2

e . . ., \ '
• -::.."

I I 1/

S 1; ±30 second correction

second
I,

I

S2

hour

() ....
() -:.

" \

\

I

I / ,,-

Sl ;+1 *

minute

-''''

\

,

'

S2
24-hour

system
12-hour system
Sl ;+1

*

, I I

..

_'0 :::
-' I I ....
I I '

S2

Sl;+l
month

*

date
,/ I

I

t

()

colon blinking at 1 Hz with 50 % duty

•

colon turned on

()

S2
•

Sl;+l *
date

\ 1/

::
S2

~ digit

to be corrected blinking at 2 Hz with 50 % duty_

/ 1\

@

keeping S2 pressed down for 2 seconds or more will return
to the normal mode.
1 advance for 1 push of S 1.
keeping Sl pressed down for 2 seconds or more will make 4
advances in one second.

Time after all clear has been performed (AC on)
12-hour system: January 1st 1 o'clock 00 minute 00 second (set to AM 1 o'clock)
24-hour system: January 1st 0 o'clock 00 minute 00 second.
'tl Date can be set to anyone of 1 to 31 regardless of the month.
When "hour-minute" display is recovered after the calendar correction, non existing date (e.g. February 31)
is corrected to the first day of the next month.
'tl In this watch, February ends at 28th.
But, the date February 29 which has been set in 'date' correction mode, is preserved when 'month-date'
display mode is recovered.
'tl When 'hour' digit is being corrected in 12-hour system, 'A' or 'P' will be displayed corresponding to AM ro PM.
'tl

809

,uPD6517P3
FUNCTIONS OF PADS
(1) AC Pad
By connecting this AC pad to VDD, all counters are all-cleared to January 1, 1 o'clock 00 minute 00 second
(i.e_ set to AM 1 'clock) in 12-hour system, or January 1,0 o'clock 00 minute 00 second in 24-hour system.
The AM or PM mark for 12-hour system is only displayed in correction mode.
If a capacitor of 0.01-0.1 J.1F is connected between this pad and VDD, all counters are cleared every
time when power is turned on.
Some disorder in the display may happen after the power is turned on, but the functional display is recovered
by correcting time and calendar.
(2) DC, Cl N, VSH Pad
A voltage doubler is contained inside.
The double voltage is avaialble on Pad VSH if capacitor of 0.047-0.33 J.l.F is connected from outside
between Pad DC and Pad Cl N, and between Pad VSH and VDD.
The doubled voltage is supplied to liquid crystal driving power source.
(3) Sl Pad

When this Pad is connected to VDD, either of the following actions is performed.
(i)

In the case of ordinary display function, change-over between the display functions of the ordianry
display is performed.

(ii) In correction modes, every time when Sl is connected to VDD, the content of the blinking digit
advances by 1 (1 push 1 advance), except for 'second'. When 1 push reset to 00 second if the second is
displayed between 01 and 29 seocnd, and advance to 1 minute if the secodn is displayed between 30
and 59 second. When this pad is kept connected to VDD for 2 seconds, the content of the blinking
digit advances by 4 in a second (4 pulses per second).
(iii) When normal display mdoe is changed from 'hour and minute' to 'month and date', the display
automatically returns to 'hour and minute' display after about 2 seconds.
(4) S2 Pad
When this pad is connected to VDD, either of the following actions is performed.
(i)

In normal display mode, 'second' starts to blink to indicate that 'second' correction mode is taken.

(ij) In correction mode, the digit to be corrected is changed from one to another.

(iii) In correction mode, holding this pad connected to VDD for 2 seconds or more makes 'hour and minute'
of normal display mode be recovered.
(5) 12/24 Pad
Connection of this pad to VDD makes 12-hour system operate and to VSS makes 24-hour system operate.
(6) Tl, T2, and T3 Pad
(i) These pad are provided for testing.
In normal operations they should be kept open.
(ii) These pads are used to test with an IC tester, tests cannot be done with liquid crystal elements
loaded because the liquid crystal elements should be driven by DC voltaege (i.e. High or Low level).
(iii) The process and test patterns for testing with an IC tester should be consulted with the respective
separate specifications.

BIO

,uPD6517P3
LCD FORMAT
12-Hour System Display

COM

02/

E2/

y

/81

/

G2/

F2 /

A2

C2/ 04/
/

E3/ G3/ C3/

82 /cOL /

F3 /A03 /

E4/

83 /

G'V

F4 /

A4

C4/

COM

/84

x

24-Hour System Display
COM C1/02/
y

~~~

/81

E2/ G2/ C2/ 04/ E3/ G3/ C3/ E4/ G4/ C4/
/

F2 /A2 /82 /cOL /F3

~03

/83 /

(

F4 /A4 /84

COM
X

)---- COM X

@@----COMY

811

,uPD6517P3
APPLICATION CIRCUIT
to LCD of 3-volt
operation _ _
_______

r-------~A

32.768 kHz r--...&...-L...----------1.--..

o

S1

OSCOUT

....-----~OSC

S2

IN

0.01 J.LF
ACJ-----l~
r--~

_ ___l

VDD

/-LPD6517P3

C1 N t - - - - - - - - ,

C1
0.068 /-LF

12/24
....-~--IVSS

812

DC t - - - - - - - '

r

VSH t - - - - - - - ,

C2
0.068 ~F

1. ALPHA-NUMERI,CAL INDEX
2.

QUICK REFERENCE GUIDE

3.

CROSS REFERENCE GUIDE

4.

MAINTENANCE AND OBSOLETE TYPES

5.

GENERAL STATEMENT
-{:( NEC's INTEGRATED CIRCUITS FOR CONSUMER USE
o History

0

Types and Features

o Type Number Designation

0

Device Technologies

-{:( STANDARDS OF INTEGRATED CIRCUITS

*
*
*
6~

HINTS ON CORRECT USE
TECHNICAL SYMBOLS AND TERMS
RELIABILITY AND QUALITY CONTROL SYSTEMS

AUDIO APPLICATIONS

6 - 1.

CAR AUDIO

6 -2.

HOME AUDIO

6- 3.

PORTABLE AUDIO

7. TV APPLICATIONS

8. DIGITAL TUNING SYSTEMS
9. CLOCKS & WATCHES
10. VOLTAGE REGULATORS
11.

ARRAYS

12. OTHERS
13. APPLICATION NOTES

-

VOLTAGE REGULATORS

INDEX
Page
tLPC494C

Switching Regulator Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

816

tLPC494G

Switching Regulator Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

827

tLPC1394C

Switching Regulator Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

832

tLPC78LOO

3-Terminal Possitive Voltage Regulator (0.1 A) •. . . . . . . . . . . . . . . . . ..

840

tLPC78MOOH

3-Terminal Possitive Voltage Regulator (0.5 A) .. . . . . . . . . . . . . . . . ..

846

tLPC7800H

3-Terminal Possitive Voltage Regulator (1 A) . . . . . . . . . . . . . . . . . . . .

852

tLPC7900H

3-Terminal Negative Voltage Regulator (1 A) . . . . . . . . . . . . . . . . . . . .

858

815

BIPOLAR ANALOG INTEGRATED CIRCUIT

pPC494C
SWITCHING REGULATOR CONTROL CIRCUIT
SILICON MONOLITHIC BIPOLAR INTEGRATED CIRCUIT

DESCRIPTION
The pPC494C is an inverter control unit which provides all the control circuitry for PWM type switching regulators.
Included in this device is the voltage reference, dual error amplifiers, oscillator, pulse width modulator, pulse steering
flip flop, dual alternating output switches and dead time control.

FEATURES
o Complete PWM Power Control Circuit.
• Adjustable Dead-time (0 to 100 %).
•

No Double pulsing of same output during load transient condition.

•

Dual error amplifiers have wide common mode input voltage capability (-0.3 V to V CC-2 V).

• Circuit architecture provides easy synchronization.
•

Uncommitted outputs for 250 mA sink or source.

• With Miss-operation Prevention Circuit for low level supply voltage.
•

Full Pin-Compatible TL494C.

PACKAGE DIMENSIONS (Unit: mm)

NON·

19.4 MAX.

15 14 13
3

816

4

CONNECTION DIAGRAM (Top View)

I

INV
INPUT

INV
INPUT

REf.
OUT

OUTPUT
CONTROL VCC

NON·
INV
INPUT

INV.
INPUT

FEED· DEAD·
BACK TIME
CONTROL

C2

E2

RT

GND

_1~_9 ~
5

6

7

8

CT

Cl

,uPC494C
BLOCK DIAGRAM

VCC
Ref Out

GND
RT
CT
Dead-Time ~
Control ~-.

Non-Inv. Input
Inv. Input
Non-Inv. Input
Inv. Input
Feed-Sack

3 ~------'

ABSOLUTE MAXIMUM RATINGS (Ta =25°C)
Supply Voltage

VCC

41

V

Error Amplifier Input Voltage

VICM

VCC+0.3

V

Output Voltage

VCER

41

V

Output Current

IC

250

rnA

Total Power Dissipation

P T (Ta=25°C)

1000

mW

Operating Temperature Range

T opt

-20 to +85

°c

T stg

-65 to +150

°c

Storage Temperature Range

RECOMMENDED OPERATING CONDITIONS
CHARACTER ISTIC
Supply Voltage

SYMBOL
VCC

Output Voltage

VCER

Output Current

MIN.

TYP.

MAX.

UNIT

7

40

V

-0.3

40

V

IC

200

mA

Error Amplifier Sink Current

IOAMP

-0.3

mA

Timing capacitor

CT

0.47

10000

nF

Timing Resistance

RT

1.8

500

kn.

Oscillation Frequency

fosc
T opt

1

300

kHz

-20

+70

°c

Operating Temperature

817

JLPC494C
ELECTRICAL CHARACTERISTICS (VCC=15 V, f=10 kHz, -20 ~ Ta ~ +70 DC, unless otherwise noted)
BLOCK

Output Voltage

Reference
Section

Oscillator
Section

SYMBOL

MIN.

TYP.

MAX.

UNIT

Vref

4.75

5

5.25

V

I re f=1 mA, T a=25 °c

CHARACTERISTIC

Line Regulation

REGIN

8

25

mV

7 V~VCC~40 V
I re f=1 mA, Ta=25 ° C

Load Regulation

REGL

1

15

mV

1 mA~ Iref~10 mA, T a =25 °c

Temperature Coefficient

Vref

0.01

0.03

°
%/C

(Note 2)
Short Circuit Output Current

Ishort

50

mA

Frequency

fosc

10

kHz

(Note 1)
Standard Deviation of Frequency
Frequency Change with
Temperature

1

Input Bias Current

-2

Maximum Duty Cycle
(Each Output)

45

Input Threshold Voltage

Vth

%

-10

/JA
%

49

o °c ~ Ta ~ 70°C, CT=0.01

7V ~VCC ~40 V, CT=0.01 /JF
T a=25°C, RT=12 kn
O~VI ~5.25

V

VI=O
Zero duty cycle

3.3

10

mV

VOAMP=2.5 V

V

Maximum duty cycle

VIO

110

25

250

nA

VOAMP=2.5 V

0.2

1

/JA

VOAMP=2.5 V

Common Mode
Input Voltage

I

Low

I

High

Open-loop Voltage Amplification

-0.3
V

VICM

7 V~VCC~40 V

VCC-2
Av

CMR

60

80

dB

VOAMP=0.5 V to 3.5 V, T a=25 °c

500

830

kHz

Ta=25°C

65

80

dB

VCC=40 V, T a=25 °c

Output Sink Current

0.3

0.7

mA

VOAMP=0.7 V

Output Source Current

-2

-10

mA

VOAMP=3.5 V

Standard deviation is a measure of the statistical distribution about the mean as derived from the formula;

f

1
osc'7 0.817 RTeCT + 1.42.10-6
.

/JF

RT=12 kn

3
0

Calculation expression of frequency fosc is as follows

BIB

1

CT=0.01 J.LF, RT= 12 kn, T a=25 °c
7 V~VCC~40 V, CT, RT,·const.
Ta=25°C

Input Offset Current

Common Mode Rejection Radio

Note 2:

%

Vref=O, T a=25 °c

2

Unity Gain Bandwidth

Note 1 :

2

-20 °c ~Ta ~ +85 °c
I re f=1 mA

Input Offset Voltage

Input Bias Current

Error
Amplifier
Section

%

10

Frequency Change with Voltage

Dead-time
Control
Section

TEST CONDITIONS

(Hz)

Maximum duration of short circuit condo is one second. (non repetitive)

G=

JLPC494C

BLOCK
PWM
Section

CHARACTERISTIC

SYMBOL

MIN.

Input Threshold Voltage
Input Sink Current

0.3

Collector Cutoff Current

ICER

TYP.

MAX.

UNIT

4

4.5

V
rnA

V(pin 3)=0.7 V

100

}J.A

V CE=40 V, V CC=40 V

-100

}J.A

VCC=VC=40 V

0.7
2

Emitter Cutoff Current

TEST CONDITIONS
Zero Duty Cycle

VCE(sat)

0.95

1.3

V

IC=200 rnA, VE=O,
Common Emitter

VCE(ON)

1.6

2.5

V

I E=200 rnA, V C=15 V
Emitter follower

100

200

ns

100

200

ns

Collector Saturation Voltage

Output
Section

Output Voltage
Rise Time

common
Emitter
Emitter
follower

tr

Total
Device

Emitter
Emitter
follower

n

10=100 rnA

common
Output Voltage
Fall Time

VCC=15 V, RL~150

70

200

ns

70

200

ns

12.5

rnA

VCC=15 V
all other inputs and outputs open

rnA

V(pin 4)=2 V, see Fig. 1

Ta=25 DC

tf

Standby Current

ICC(S.B)

8

Bias Current

ICC(B!.)

10

819

JLPC494C
Fig. 1 Test Circuit

VCC=15 V
RL

(4)
VCC
u------IDead time
Test Input {

RL

150 Q
150 Q
2 W
2 W
C1
E1

Output 1

(3) Fead Back
(6) RT
(5) CT

C2
E2

Output 2

0.01 F

(+)}

(_) EA.

r--11--~(+)

C.L
(-) Sense
(3) Output
Control

Ref
Out

(

14

)

* Recommend film capacitor

GND
(7)

Voltage Waveform

r------VCC
Voltage at
C1

-----0

mn

Voltage at
C2

.-----VCC

---0

Voltage at

C3
Dead-time Control

Threshold

I

I

Input

I
I

I MAX.

10%1~
I

I-!
feed Back Input

0.7 V _ _ _ _ _ _ _ _ _ _ _

(E.A. Output)

FUNCTION TABLE
OUTPUT CONTROL
INPUT (13 pin)
At Ref-Out
Grounded

820

OUTPUT FUNCTION
Normal push-pull operation
Single-ended or parallel output

Threshold

I
I

--l~

,uPC494C
TYPICAL PERFORMANCE CHARACTERISTICS (Ta =25

± 2°C, V 1N =15 V)
MISS·OPERATION PREVENTION
CIRCUIT CHARACTERISTICS

MAXIMUM POWER DISSIPATION

1.2

6

3:
I
c
.2

1.0
I

0.8

V>
V>

Q)

2
-0

0

~

:;:

>

0.6

0

4

0...

0.4

I

0.2

0

I

i

>

f-

I
25

75

100

0

125

1

i

0...

0

-,L

.-

I

I

w

~

i

I

i

()

I

!

i

I

6

VCC-Supply Voltage - V

REFERENCE VOLTAGE vs.
SUPPLY VOLTAGE

REFERENCE VOLTAGE vs.
TEMPERATURE
40r-----~----,-----,_--------~

>
E
I

>
I

Q)

Q)

~

tl.O
()

3

2
-0

0

I

VCC=15 V

!

IREF=l rnA

,--1-----+-------,,

I

I

!

:

'

Q)

Q)

~

20

..c.

4

>

g

I

-+--

Ta-Ambient T9mperature --'C

6

~

VCE

i

I

~

L~

!

\

:J

E
:J
E
·x

I

5 V

~30Q

1

i

>

ro

e-

Circuit

i

I

>

Q)

a;

Q)

u

a::

~

I

l.L.

a;

W

a::
>

a::
I

-40 ~----t--

l.L.

W

a::
>
""1

10

0

15

20

25

30

35

40

-60~

-25

VCC-Supply Voltage - V

____ ____ ____ ____ __
0
25
50
75
100
~

~

~

~

~

Ta-Ambient Temperature -'C

FREQUENCY vs. RT AND CT

FREQUENCY vs. TEMPERATURE
4

500~~~-+--+--+---+-~

N

:z:
.x
>.
u

cQ)

200~~--~~~-+---+--+-~--~~

Lt
I

()
If)

Rr=12kQ
Cr=O.Ol /IF

Q)

tl.O
100~-+---+~~-~~-+--+--+---+~

1ii

..c.

()

50~~---~--+-~---~

:J
CT
Q)

VCC= 15 V

"2R.
I

o

i

.Vj

1

-........ '--

---

-2
20~-~~~~+--+---~

10 ~-+--~---Po.:-+ ---+--'....

-4

.2
I

-6

2

5

10

20

50 100 200

RT-Timing Resistance - k Q

500

I

-25

o

25

50

75

100

Ta-Ambient Temperature -'C

821

j.lPC494C

DUTY CYCLE vs. DEAD TIME
CONTROL INPUT VOLTAGE

OPEN-LOOP VOLTAGE GAIN vs.
FREQUENCY

120
CJ)

0

"0

I

100

t:

'iij

~

10

(!)

I

Q)

Q)

~
(5

U

>-

u

20

>

........

60

a.

.;:-

0
0
..J

:::l

Cl

80

bO

30

C:

40

~

0

VCC=15 V
RT=12 kQ
CT=O.Ol JlF

40
50

2

0

~
«

20

3

10

100

Dead Time Control Input Voltage - V

2.0

1k

'"'"

LO k

100 kiM 10 M

STANDBY AND BIAS CURRENT
vs. SUPPLY VOLTAGE

12

-

I
ICC(BI)

1.8

I

-

VCE(ON)

1.6

-

~ r---

1.4
1.2

- - -

1.0

VCE(sat)
~I--

-

0.8

....-~-

0.6

o

40

80

120

~

160

IC. IE-Output Current - mA

822

~

f-Frequency - Hz

COLLECTOR SATURATION VOLTAGE
vs. OUTPUT CURRENT

0.4

'"

200

10
8

If

6

V

I
ICC(S.B)

-

~

ICC(S.B)
VCC Terminal Biased
Other Terminal Open

4

2

o

-

ICC(BI)
VOT=2 V(4 pin)

10

20

30

VCC-Supply Voltage - V

40

,uPC494C
BASIC APPLICATION CIRCUIT

Fig.2 Circuit
Vout
Output Terminal
}

JP 2

n

of S.M.P.S

rsense

Vcc

VR 3
R13

-Iosense

100
R14

7.5 k Q 5 kQ

r

c1
JP1

C6

+

110 Q
R12

110 Q
R11

47 J.lF

C2

12 V

r

E2
E1
C1
Rg
110 Q

RIO
110 Q

C5: recommend film capacitor
fosc~40 kHz

+5 V (VREF.)

CONNECTION DIAGRAM
OUTPUT
FUNCTION

OUTPUT CONTROL
INPUT (13 pin)

Push-Pull

At Ref-Out

Operation

(JP1 Wired)

Single-Ended or

Grounded

Parallel Output

(JP2 Wired)

OUTPUT VOLTAGE WAVEFORM

OUTPUT MODE
Open Collector (Rg, R10 0 n)

C1

~_o

C2

~o

E1

~_o

E2

~-o

Open Collector (Rg, R10 0 n)

C1,C2

~_o

Emitter Follower (R11, R12 0 n)

E1, E2

rLrLrLnJLfL_o

Emitter Follower (R11, R12 0 n)

823

J,lPC494C
Printed Pattern

(Pattern Side, Actual Size)

Vee

C2
E2

-Iosense

El

+ losense

Cl

Vosense

GND

GND

TYPICAL EXAMPLE OF APPLICATION CIRCUITS

1) Forward Type

+Vcc
+12 V

+

----.~-+_+___JVW-+-{)-

(12)
VCC

(8)

Cl
(3) OUTPUT

CONTROL
El
14) Ref OUT

GN

824

(9)

To EA.I1
To EA.l
(Over Current (Vo sense)
Protection)

}

Vout

j.lPC494C
2) Push-Pull Type
(Isolated)
+Vcc

GND

+12 V

To EA.II

(12)

To EA.I

~........:.(l:..;:l~) C2 VCC
(0) E
(9)

2

E1

(8) C1
GND

(7)

(13)

14)

Ref Out

(Non Isolated)
+Vcc (40 V max.)
(2)

Vcc C2 (1)

+

E2 (0)
(13)

_ } Vout

(9)

~----~------~~~~--r-~

E1~4-......,

(4) Ref Out C1 (8)

GND
To EA.II

GND

To EA.I

3) Stepdown Chopper
+Vcc (40 V max.)

I
(9)

E1
(13)

I

I

I

OUTPUT C1 (~ _.J
CONTROL
GND

To EA.II

To EA.I

1 . - . - . - - -.... (7)

(Over Current Protection)

825

j1PC494C
SYNCRONIZED OPERATION

If syncronized operation is needed, muster-slave circuit can be used. This circuit is shown bellow.
Initially, RT terminal of slave IC is connected to Pin 14 (Ref Out) and internal oscillator is stopped.

+Vee

(12)

Vee Ref
OUT

(14)

RT

(6)

(M) RT

(7)

(12)

GND eT

(M): Muster

~

(5)

(S) : Slave

Ref (14)
Vee OUT
(6)

(S) RT
(7)

GND CT

(5)

I

I

I

t next

eT terminal

MISS-OPERATION PREVENTION METHOD

If supply voltage (Vee) level drops bellow 2 V to 2.5 V, Miss-Operation Prevention Circuit is stops. But,
internal toggle flip-flop is still active condition, and each outputs section are on condition.
So, if prevention circuit from such operation is required, next circuit will be available.

+vee

2SA 1_15-2---_____

RD2.7 EB

826

BIPOLAR ANALOG INTEGRATED CIRCUIT

J1,PC494G
SWITCHING REGULATOR CONTROL CIRCUIT
SILICON MONOLITHIC BIPOLAR INTEGRATED CIRCUIT

DESCRIPTION
The IlPC494G is an inverter control unit which provides all the control circuitry for PWM type switching regulators.
Included in this device is the voltage reference, dual error amplifiers, oscillator, pulse width modulator, pulse steering
flip flop, dual alternating output switches and dead time control.

FEATURES
• Complete PWM Power Control Circuit.
• Adjustable Dead-time (0 to 100 %).
•

No Double pulsing of same output during load transient condition.

• Dual error amplifiers have wide common mode input voltage capability (-0.3 V to V CC-2 V).
• Circuit architecture provides easy synchronization.
•

Uncommitted outputs for 250 mA sink or source.

• With Miss-operation Prevention Circuit for low level supply voltage.
•

Equivalent to TL494C.

•

Very Small Package. (SQ-16L)

CONNECTION DIAGRAM (Top View)

PACKAGE DIMENSIONS (Unit: mm)

NON

0.45 MAX.

16 IS

14

13

12

11

10

INV
INPUT

INV
INPUT

REf.
OUT

OUTPUT
CONTROL VCC

NON·
INV.
INPUT

INV.
INPUT

FEED· DEAD·
BACK TIME
CONTROL

C2

E2

EI

RT

GND

CI

9

7.35 MAX.
10.2 MAX.

r~ '~i': .05=O.l
[!1l]

0.4 ± 0.1

.

1$1 0.25 I@I

CT

MIN.

I-=~---------i
10.65 MAX.

827

,uPC494G
BLOCK DIAGRAM

Vee
Ref Out

GND

Non-Iny. Input
Iny. Input
Non-Iny. Input
Iny. Input
Feed-Back

3 ~-----'

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Supply Voltage

Vcc

41

V

Error Amplifier Input Voltage

VICM

Vcc+0.3

V

Output Voltage

VCER

41

V

Output Current

Ic

250

mA

Total Power Dissipation

P T (Ta=25°C)

780*

mW

Operating Temperature Range

T opt

-20 to +85

°c

Storage Temperature Range

T stg

-65 to +150

°c

* 5 em x 5 em Glass-Epoxy PC board is used. (thickness t= 1.6 mm)

RECOMMENDED OPERATING CONDITIONS
CHARACTER ISTIC

VCC

Output Voltage

VCER

Output Current

IC

Error Amplifier Sink Current

IOAMP

MIN.

MAX.

UNIT

7

TYP.

40

V

-0.3

40

V

200

mA

-0.3

mA

10000

nF

- -- - - - - - f - - - - I - -

Timing capacitor

CT

0.47

Timing Resistance

RT

1.8

500

kn

1

300

kHz

-20

+70

°c

Oscillation Frequency
Operating Temperature

828

SYMBOL

Supply Voltage

fosc
T opt

--

j.lPC494G
ELECTRICAL CHARACTERISTICS (VCC=15 V, f=10 kHz, -20 ~ Ta ~ +70 DC, unless otherwise noted)
SYMBOL

MIN.

TYP.

MAX.

UNIT

Output Voltage

Vref

4.75

5

5.25

V

I re f=1 rnA, T a=25 °c

Line Regulation

REGIN

8

25

mV

7 V~VCC~40 V
I re f=1 rnA, Ta=25 ° C

Load Regulation

REGL

1

15

mV

BLOCK

Reference
Section

CHARACTERISTIC

1 mA~ Iref~10 mA, T a =25 °c
-20 °c ~Ta ~ +85 °c
I re f=1 mA

Temperature Coefficient

Vref

(Note 2)
Short Circuit Output Current

Ishort

50

mA

Vref=O, T a=25 °c

Frequency

fosc

10

kHz

CT=0.01 .uF, RT= 12 kn, T a=25 °c

10

%

0.01

(Note 1)
Oscillator
Section

TEST CONDITIONS

Standard Deviation of Frequency
Frequency Change with
Temperature

1

Frequency Change with Voltage

0.03

%/C

2

%

1

%

-10

.uA

7 V~VCC~40 V, CT, RT,·const.
T a=25 °c

o °c ~

Ta ~ 70°C, CT=0.01 .uF
RT=12 kn

7V ~VCC ~40 V, CT=0.01 .uF
T a=25°C, RT=12 kn

- - - - - - - ----_.-----------

-2

Input Bias Current
Dead-time
Control
Section

Maximum Duty Cycle
(Each Output)

45

49

Input Threshold Voltage

Common Mode
Input Voltage

I

I

High

Maximum duty cycle

0
2

10

mV

VOAMP=2.5 V

110

25

250

nA

VOAMP=2.5 V

0.2

1

.uA

VOAMP=2.5 V

Input Bias Current
Low

Zero duty cycle

3.3

VIO

Input Offset Current

-0.3

I
I

r--0pen-Ioop Voltage Amplification I Av
Unity Gain Bandwidth

i

Common Mode Rejection Radio

i

I

CMR

7 V ~VCC~40 V

V

VICM
VCC-2
60

80

dB

500

830

kHz

65

80

dB

I
I
I
I

VOAMP=0.5 V to 3.5 V, T a=25 °c
Ta=25°C
VCC=40 V, Ta=25 °c

Output Sink Current

0.3

0.7

mA

VOAMP=0.7 V

Output Source Current

-2

-10

mA

VOAMP=3.5 V

i

Standard deviation is a measure of the statistical distribution about the mean as derived from the formula;
Calculation expression of frequency fosc is as follows
f

Note 2:

VI=O

V

Vth

Input Offset Volfage

Note 1 :

%

._-

V

--

3

Error
Amplifier
Section

O~VI ~5.25

-

1
osc =c 0.817 RT-GT + 1.42.10-6

(Hz)

0=

N -1

Maximum duration of short circuit condo is one second. (non repetitive)

829

JLPC494G

BLOCK
PVVM
Section

CHARACTERISTIC

SYMBOL

MIN.

Input Threshold Voltage
Input Sink Current

0.3

Collector Cutoff Current

ICER

TYP.

MAX.

UNIT

4

4.5

V
rnA

0.7
2

Emitter Cutoff Current

TEST CONDITIONS
Zero Duty Cycle
V(pin 3)=0.7 V

100

,.,.A

VCE=40 V, VCC=40 V

-100

fJ.A

VCC=VC=40 V

VCE(sat)

0.95

1.3

V

IC=200 rnA, VE=O,
Common Emitter

VCE(ON)

1.6

2.5

V

IE=200 rnA, VC=15 V
Emitter follower

100

200

ns

100

200

ns

Collector Saturation Voltage

Output
Section

Output Voltage
Rise Time

Output Voltage
Fall Time

Total
Device

830

common
Emitter
Emitter
follower

tr

n

10=100 rnA

common
Emitter
Emitter
follower

VCC=15 V, RL=c150

70

200

ns

70

200

ns

12.5

rnA

VCC=15 V
all other inputs and outputs open

rnA

V(pin 4)=2 V, see Fig. 1

Ta=25°C

tf

Standby Current

ICC(S.B)

8

Bias Current

ICC(B!.)

10

,uPC494G
Fig. 1 Test Circuit

VCC=15 V
RL

RL

150 Q
2W
(4)

. VCC
o---~Dead time
Test Input {
12 kit

(3) Fead Back
(6) RT
(5) CT

0.01 F

(+)l

EA.
C.L
(-) Sense
(13) Output
Control

150 It
2 W

C1
E1

Output 1

C2
E2

Output 2

(_)

r--+---~(+)

Ref
Out

()
14

* Recommend film capacitor

GND
(7)

Voltage Waveform

.------VCC
Voltage at
C1

----- 0

.....----VCC
Voltage at
C2

---0

Voltage at

C3

Dead-time Control

Threshold

Input

I
1

I

I

~I--------------

I MAX.
I'O%I~

1-1
Feed Back Input
(E.A. Output)

Threshold

I
I
I

0.7 V --------------~

FUNCTION TABLE
OUTPUT CONTROL
INPUT (13 pin)
At Ref-Out
Grounded

OUTPUT FUNCTION
Normal push-pull operation
Single-ended or parallel output

831

BIPOLAR ANALOG INTEGRATED CIRCUIT

I1PC1394C
SWITCHING REGULATOR Ie FOR TV SET

The pPC1394C is a switching regurator IC especially designed for TV sets. It can be used for both type of TV sets, insulated
type and no insulated type.
It operates in synchronizing with the horizontal retrace pulse, so does not generates any visual noise in the picture on CRT.
The output transistor in a powersupply circuit is protected doubly by the internal protection circuit for over load.
ON/OFF operation of the powersupply is able to operated easily without any. mechanical relay using provided terminal. So
timer operation, remote control and etc. are very easy.
PACKAGE DIMENSIONS in millimeters
FEATURES
• Wide range of regulating input line voltage.
: AC 80 to 280 V
• The output power transistor is doubly protec~ed by the
current limitter and the shut down circuit.
7.36 MAX.
o No visual noise due to horizontal synchronous operation.
20.32 MAX.
x
1------------=---~.
I
• A terminal for remote control, timer operation and etc.
~ ~.r---------------of the powersupply is provided.
~ ~ ~~~~~~~~~~
~ ..j.
• Shut down circuit is easily resetable using ON/OFF termi10
Z
Z
nal.
~ ~
e Low stand-by and starting current. (2 rnA)

__

I

0-15"

BLOCK DIAGRAM
14 PINS

r

ON (5 V)

OFF (0 V)

832

,uPC1394C
ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Supply Current

IS

Sink of Output Terminal

30

mA

17

10

mA

Input Voltage of Current Limitter

V5

3.0

V

Input Voltage of ON/OFF Circuit

V4

Vs

V

13

1.5

mA

V2

Vs

V

VlO

-5 to Vg

V

Sink of ON/OF F Circuit
Input Voltage of Duty Limit Circuit
Input Voltage of Synchronous Circuit
External Oscillation Resistor

Ro

5 to

00

kSl

External Oscillation Capacitor

Co

o to

1

flF

V1

Vs

V

V14

Vs

V

I nput Voltage of Error Amplifier
Reference Voltage
Drain of Error Amplifier

-2

113

Input Voltage of Shut Down Circuit

V 12

to 0

mA
V

Vs

Integration Voltage of Shut Down Circuit

V6

Vs

V

Power Dissipation

Po

150 (Ta =75°C)

mW

Operating Temperature

T opt

-20

to +75

°c

Storage Temperature

T stg

-40

to +125

°c

ELECTRICAL CHARACTERISTICS (Ta = 25°C)
CHARACTERISTICS

SYMBOL

Supply Terminal Voltage

Vs

Thermal Drift of Vs

dVS(T a)

Starting Supply Current

(1)

Starting Supply Current

(2)

CONDITION
Is=12mA

MIN.

TYP.

MAX.

UNIT

6.1

6.6

7.1

V

200

mV

1.0

1.5

mA

3.0

4.2

mA

Difference of MIN. and MAX. of Vs in
Ta from -20°C to +75 °c

IS(1 )

VS=3 V, Pin 7: Open

IS(2)

Vs = 3 V, Pin 7 : Ground

-

Starting Pulse Height

P7(S)

Vs = 3 V, Pin 7 : Open, Pin 6 : Ground

1.5

2.3

3.0

V p _p

Starting Supply Terminal Voltage

VS(S)

Pin 7 : Open, Pulse of Pin 7 = 1.5 V p _p

2.0

2.6

3.0

V

Starting Oscillation Frequency

fo(S)

Vs = 3 V, Pin 10 : Open

10

13

20

kHz

Output Pulse Height

P7

Pin 7 : Open, Pin 6 : Ground

5.0

6.0

7.1

V p _p

Drain of Output Terminal

17

Pin 7 : Ground, V2 = Vs

-6.3

-5.0

-3.7

mA

0.3

V

Saturation Voltage of Output Terminal

V7(sat)

17 = 5 mA

I ntegration Terminal Current

(1 )

16(1 )

15 = 100 MA

-700

-500

-300

MA

Integration Terminal Current

(2)

16(2)

V5=0.SV

-700

-500

-300

MA

Leak of Integration Terminal

16L

V5=0.3V

-10

Trigger Voltage of Shut Down Circuit

V6T

P7

< 100 mV p _p

Drain of Duty Limit Terminal

12

V2=3 V

Pulse Width set by Pin 2 Voltage

PL

V = 2.33 V, frequency: 15.75 kHz,
Low level period

Thermal Drift of PL

dPUT a )

V2 = 2.33 V, Difference of MIN. and MAX. of
PL in Ta from -20°C to +75 °c

0

MA

2.5

3.5

V

-20

0

MA

35

MS

2

MS

25

i

30

I

--

I

V4(ON)

13=3 mA, V3=0.3 V

3.5

V

ON Current of Pin 4

14(ON)

13=3 mA, V3=0.3 V

200

MA

Output Saturation of ON/OFF Circuit

V3(sat)

13=3mA,V4=3.5V

300

mV

1

MA

S

20

mV

53

SO

dB

-10

MA

ON Voltage of Pin 4

Leak of ON/OFF Output
Offset Voltage of Error Amplifier
Opened Gain of Error Amplifier
Cu rrent of Pi n 1

13L
V(OS)
AVO
11

1.5

2.5

V 4 = 1.5 V, V3 = Vs
Absolute Value
f : 1 kHz, Signal of Pin 13 : 1 V p _p
Pin 1 : Ground

45

833

tLPC1394C

CHARACTERISTICS

CONDITION

SYMBOL

Current of Pin 14

114

Maximum Voltage of Error Amplifier
Output

V13(MAX.)

V1 =3.5 V, V14= 3.0 V

Minimum Voltage of Error Amplifier
Output

V13(MIN.l

V1 = 2.5 V, V14= 3.0 V

Sink of Error Amplifier Output
Free Running Oscillation Amplitude
Starting Oscillation Amplitude

Thermal Drift of fo

dVso(Ta )

High level of Oscillation

VOH(S)

V

50

300

mV
/JA

4.0

V _
pp

V8= 3.0 V

0.5

1.5

Pin10:0pen

12.3

13.3

Pin 10 : Open, Difference of MIN. and MAX.
of fo in Ta from -20°C to +75 °c
2.7

3.0

Difference of MIN. and MAX. of Vso in
Ta from -20°C to +75 °c
3.8
1.0

V8 = 3.0 V
Difference of MIN. and MAX. of VOH in
Ta from -20°C to +75 °c

Synchronous Signal Voltage

Vs

Oscillation is synchronizing. (15.75 kHz)

-1.0

Synchronous Signal Current

Is

Oscillation is synchronizing. (15.75 kHz)

-200

CONNECTION DIAGRAM (Top View)

Error Voltage Input

834

5.7

250

dVOH(Ta)

Thermal Drift of VOH

/JA

3.3

VOH

Starting VOH

UNIT

-10

100

Synchronous Frequency: 15.75 kHz

Vso

MAX.

50

Vfo

dfo(Ta )

Thermal Drift of V so

TYP.

Vso

V 1 = 2.5 V, V 14 = 3.0 V, V 1 3 = 3.0 V
Pin 10 : Open

fo

Synchronous Oscillation Amplitude

5.0

113

Vfo(S)

Free Running Oscillation Frequency

MIN.

Pin 14 : Ground

Reference Voltage Input

Duty Limit

2

Error Amplifier Output

ON/OFF Output

3

Comparator Input

ON/OFF Input

4

11

Oscillation

Current Limit

5

10

Synchronization

Shut Down

6

9

Ground

Pulse Output

7

8

Power Supply

V p _p
14.3

kHz

500

Hz

3.3

V _
pp

150

mV

4.5

V
V

1.8

-40

100

mV

+0.3

V
/JA

,uPC1394C
0#1 (Error Voltage Input)
This terminal is an inversion input of error amplifier. A feedback voltage of output is applied to this.
0#2 (Duty Limit)
This terminal is for setting maximum value of output transistor's on time. This value is decided by setting the ratio of the
resistance value between terminal 2 and Vee to one between terminal 2 and 3.
This terminal can also be used for soft-start function on applying the primary voltage.
0#3 (ON/OF F Output)
0#4 (ON/OFF Input)
These terminals are used for ON/OFF control of output, so that it is convinieri"tly used for remote control of the power
source of the set.
When terminal 3 is low level, the output is on and when it is high, the output is off. It can be directly driven for low active
control signal, but for high active signal, it is convinient to use built-in ON/OFF circuit.
0#5 (Current Limit)
This terminal is used for protecting the control transistor from instantaneous overload. As input to this terminal, a waveform
similar to emitter current of the output transistor, when operating the over current limiting function, terminal 7 is kept on a
high level but a pulse is out again in the next period.
0#6 (Shut Down)
This terminal is used for shutting down the output when the overcurrent limiting function is operated. The voltage of this
terminal is rising up gradually when operating the overcurrent limiting function and it rises up certain voltage (about 3 V),
shut down function is operated.
If output shut down operation is unnecessary, terminal 6 is grounded.
0#7 (Pulse Output)
This is a Pulse output terminal for controling the output transistor. The low level is on timing of the controller. Therefore,
when overcurrent limit and shut down circuit operate, output is pulled up to high level.
0#8 (Power Supply)
This is a power supply terminal, as a shunt regulator is built in, this terminal can be connected to the primary voltage through a
resistance, the recommended range of input current is 10 to 15 mAo
0#9 (Ground)
0#10 (Synchronization)
This terminal is used for synchronizing the operation to external signal. Horizontal fly-back pulse can usually be used for this.
When synchronization is not needed, terminal 10 is left open.
0#11 (Oscillation)
0#12 (Comparator Input)

Output of error amplifier is input to this terminal. The change of input voltage is converted to the change of pulse width and it
controls the output pulse width of terminal 7.
0#13 (Error Amplifier Output)

0# 14 (Reference Voltage Input)
This terminal is a non-inversion input of error amplifier. For reference voltage, it is suitable to divide a zener diode of about
6 V into two. It can be used to the voltage of terminal 8.

835

,uPC1394C
EXAMPLE OF APPLICATIONS

1. Isolated type

AC
INPUT

+ DC
_ OUTPUT

2. No isolated type
2-1 Inverting mode

AC
INPUT

Error

JL

+

DC
OUTPUT

Current
limitter

2-2 No inverting mode

AC
INPUT
0>------1

+

DC
OUTPUT

J:

836

)LPC1394C
PATTERN OF PRINTED WIRING BOARD (Bottom View)
This printed wiring board is designed for the circuit of application 1

:"'0

r~
.'~-uL'-

D'IO
"'\ \

*J~tf'\~
-4+A~:
,

-4~

o

837

00

w

00

l:

APPLICATION 1 (Isolated type)

""C

o
w
~

::1

• •
TDK
SRW19ES-08

U)

JLFLYBACKPULSE

~

o

TDK
220 J./F +
400 V

SRW42ES-07

220 kQ
1W

22 kQ 3 Wx4
•• ,

10 kQ

-

,.. DC105 V

100 kQ

AC80 V to 280 V
2 200 pF 330 J./F
160 V

3_3 k£2

Fl4FX4
4700 pFX4

2SC3232
1 000 pFI (Under development)

TDK
SRW221S-30

2W

2SC2688
10 kQ

1.5

kQ

500

Q

18 kQ

Reray

rOFF

---1

ON(5 V)

14700 pF

APPLICATION 2 (No Isolated type)

27 k\l 3 W X 2

"""\ r
V

43 k\l

INPUT
AC 80 to 280 V

FLYBACK PULSE
5 Vp _p
250 pF
400 V

27 k\2 3 W

W
N

x2

1.0

o

c::

2SC3232
(under development)
TDK SRW2215·30
OUTPUT
5.6 mH

0.3 \1 3 W

DC 105 V

>
LL.

:::.

('t)
('t)

>
0

:: 1+
:::.

25C2688

N
N

47 k\l

JON m

~

I

(5V)

1.5kU

,

56kU

OFF

~

500 \lB

~

""C

(")
-'

W

to
~

(")
Q)

W
(0

BIPOLAR ANALOG INTEGRATED CIRCUITS

f1PC78LOO SERIES
THREE TERMINAL POSITIVE VOLTAGE REGULATORS

PACKAGE DIMENSIONS (Unit: mm)

The pPC78LOO series are monolithic three terminal positive regulators which employ internally current limiting, thermal shut down, make them
essentially indestructible. They are intended as fixedvoltage regulators in a wide range of application
includingllocal on card regulation for elimination of
distribution problems associated with single point

I

7.0 MAX.

regulation.
0.60±0.10

FEATURES

0.80±0.10

• Output current in excess of 100 mA
• No external component required
o Internal thermal overload protection
•

'1. ,1.,

ttffi¥

Internal short circuit current limiting

..

2

EQUIVALENT CIRCUIT
~........-

- - - - - - -........- - . . . . . - -__-.....--{) 1

r-:---+--+-I--~>-~~-o 2

IN PUT

3

X

L!l

::;!

~

~

1

1. INPUT
2. OUTPUT
3. GND (COMMON)


I

Q)

OJ

0

'';:;

0.6

co

~

5

>.....

4

0

Q.
.~

0

Ii

::J

.... 0.4

S::J

0

0
I

3

>

2

Q)

~

a..
I
"0
a.. 0.2

Tj=125 C

0

r--.

20

40

60

80

o

100

V out =5.0 V

~

4

VI

::J

U

.....
c

3

~

a

I---""

----

~

l-----

2

I

.Lc
~

::J

U

.....
c

Q)
(J

~

3.5

I

(J)

VIN=10 V
VOUT=5 V
IOUT=40 mA

~

co

3.0

V

~L.

30

20

10

T
o

VIN-Input Voltage-V

J..

.....

':

~

T

T

T

T

T

25

50

75

100

125

T a-Ambient Temperature- ° C

DROPOUT VOLTAGE vs.
JUNCTION TEMPERATURE

DROPOUT CHARACTERISTICS

7
J,lPC78L05

>I

VOUT=5 V
Tj=25°C

J,lPC78L05

6

ro
'';:;

>I

2

:J

-

mA-

:J

2

(5

c

LL

0
I

0

>

DROPOUT CONDITIONS
tJ, V OUT=5 % OF VOUT

o

>

o

...L

I

T

...L

T

I

M

r

W

10=40 mAA

::J
S::J 3

I

1

4

>.....

r----

:J

Q.

T

10=0
T

OJ

r--- r---.
S
r--- r--- I~ r---2
'0=10 rnA--10=100

~

5

Q)

f----

o.....

844

~

:J

co

£

r--..

,~

~

c
~

J,lPC78L05

a

CJ)

0

---

r--

E

/

Q)

,~
:J

4.0
 20

/JPC78L05

~17.5
OJ

.f!o

15

>12.5

;

a.
c

>
QJ

~.

7. 5

;:;

-:.

;:= :=

;

;

o

0

>.~
+-'.~

;0

o

4

VIN=10 V

6
8
Time-/Js

12

10

Vo=5 V



100

I

;:

]V

I
o

IOUT=100 mA
(RESISTIVE LOAD)

2

;:

JI\

0

>

OUTPUT VOLTAGE

o

;;..

QJ>

::J
o.QJ

-20 0

c
.2

:

;..

f6'1

1/

o

u

0

.:: c

l\..

0

>

\

;:.

~

-10 0

 to
; .~

LOAD TRANSIENT RESPONSE

« 200
E
.!.c

40

E

"\

30

20

0.7

[7

+-'

::J

S::J

0.5
0.4

0

0.3

1/

0.2

V

10
10

50 100

V

0.1
500 1 k

5 k 10k

Frequency-Hz

50 k 100 k

10

50100

500 1 k

5 k 10k

50 k 100 k

Frequency-Hz

845

BIPOLAR ANALOG INTEGRATED CIRCUITS

I1PC78MOOH SERIES
THREE TERMINAL POSITIVE VOLTAGE REGULATORS

The IlPC78MOOH series are monolithic three terminal positive regulators which employ internally current limiting, thermal shut down, and safe-area
compensation, make them essentially indestructible.
They are intended as fixed-voltage regulators in a
wide range of application including local on card
regulation for elimination of distribution problems
associated with single point regulation.

PACKAGE DIMENSIONS (Unit: mm)
10.66 MAX.
C")

r--- - 70 °C/W ~t--.

!9
"0
>.....

~

2.0

- --

1.0
0.5

~

NO

~, S/II.;

25

75

50

\

5

:J

S:J

"~ \

~

0.2
0.1

I

ClJ
OJ

0
I
a

'\

/

>

./V

\

~

"

100

J

~

V

o
o

~

1.0

0.5

10 - Output Current - A

125

Ta - Ambient Temperature _ °c
PEAK OUTPUT CURRENT AS
A FUNCTION OF INPUT/OUTPUT
DIFFERENTIAL VOLTAGE

DROPOUT VOLTAGE AS A FUNCTION
OF JUNCTION TEMPERATURE

>

~
·E
~
~

o

!. . . . . . . . . . .

-~

2.0

I

-r---r--

--__ r--r-...................

r--..

I
c:

IOUT=
~
500mA_

.....

I

~

---

:;

U

2

200 m A - I--r=:::::::-~ 100 rnA
--20m A

1 .0 ~----+-r-...~"""""'=+---+----1r---+---t---t---t----l
I
-OmA

~
co

1--_

:J

Q.

c:

-r--__

1.0

:;
S:J

o

1

..........

/

~

1.5

;

,

«

r--.-

",.-r--.. ~
0.5

o

a

-25

0

25

50

~

ClJ
Q.

o
o

75 100 125 150

5

LOAD TRANSIENT RESPONSE
(/JPC78M05H)

I
c:

I

.>co

VIN=10V
Vo=5V

a
.';=
~

ClJ

0

I
c:
ClJ
0.5 t:

IN/PUT

.....

:J

U

o
~

~

a

..J

;::

E
I
c:
a
.';=

>.....

0.5

S-

0

ClJ
OJ

j~

:J

0

:J

0

OUTPUT VOLTAGE
I

I

I

I

.....

>

.....

I
ClJ
OJ

.....

ClJ

!9

>

10 ~
"0
5 >

co

0

o

25

15

~

.>

\!~

VdLTAG~

>

1.0

:J

20

15

LINE TRANSIENT RESPONSE
(/JPC78M05H)

«

\,

I

>

10

VOl F - Input-Output Differential - V

Tj - Junction Temperature - °c

LO~O CU~RENT

..............

co

tN o/V 0=2 % 1----+--+---+--t---r---t--1

o

:J

i'-.....r---......

I

>

"0

Tj=25°C

........:..

::"Tj=125°C i'-.....~

ClJ

.:x.

ClJ
OJ

.... ~

r---.. ~

a..

u. 0.5 I--~-~-+--t--r---t--t----t---+----i

!9

~

Tj=25°C
-10 f-lo=500 mA
Vo=5 V

o

2

4

6

8

10

12

Time - /JS

851

BIPOLAR ANALOG INTEGRATED CIRCUITS

fL P C7800H

SERIES

THREE TERMINAL POSITIVE VOLTAGE REGULATORS

PACKAGE DIMENSIONS (Unit: mm)

The J.lPC7800H series are monolithic three terminal positive regulators which employ internally current limiting, thermal shut down, and safe-area
compensation, make them essentially indestructible.
They are intended as fixed-voltage regulators in a
wide range of application including local on card
regulation for elimination of distribution problems
associated with single point regulation.

Typical values unless specified
10.66 MAX.

~2MAX.

I

it

1.3'0.2

FEATURES
o Output current in excess of 1 A
o No external component required
o Internal thermal overload protection
o Internal short circuit current limiting
o Low output resistance 17 mn

I

1.3

O.5!O.2

2B:8llJl

2.542.54

JEDEC : TO-220AB
IEC

EQUIVALENT CIRCUIT
1 IN

CONNECTION DIAGRAM
GNO

NEC
JAPAN

78XX

01

1 3

2

I t \

IN
3 GNO

852

GNO

OUTPUT

JLPC7800H SERIES
TYPICAL APPLICATION
INPUT
J..LPC78XXH
0.33 J..LF

Notes:

Cl

2

OUTPUT

3

*

Although no output capacitor is needed for
stability. it does improve transient response.
* * Required if regulator is located an appreciable
distance from power supply filter.

ABSOLUTE MAXIMUM RATINGS
Input Voltage
{
Internal Power Dissipation
Operating Temperature Range
Storage Temperature Range
Lead Temperature
Operating Junction Temperature Range
Operating Junction Temperature Range

V
V

(5 V through 18 V) 35
(24 V) 40
Internally Limited
-20 to +80
-55 to +150
Soldering 10 s 230
o to 125
o to 200

°c
°c
°c
°c
°c

(Continuous)
(short t~rm, 30 min. MAX.)

ELECTRICAL CHARACTERISTICS pPC7805H (VIN=10 V, 10=500 rnA, 0 ° C ~ Tj~ 125 ° C)
CHARACTERISTIC
Output Voltage

SYMBOL

MIN.

TYP.

MAX.

4.8

5.0

5.2

Vo

Load Regu lation

REGIN

IBIAS

Quiescent Current Change

1::.IBIAS

7 V':sYIN~20 V, 5 mA~lo~ 1.0 A, PT~15 W

100

Tj=25 °c, 7 V~VIN~25 V

1

50

15

100

5

50

4.2

8.0
1.3

mV

Tj=25
mV
mA
mA

NL

Ripple Rejection

62

0

Tj=25

0

C, 250 mA~lo~750 mA

Tj=25

0

C

7 V,:S,vIN~25 V

C, 10 Hz~f~100 kHz

40

J..LV

T a=25

78

dB

f=120 Hz, 8 V~VIN;;:;'18 V

0

Dropout Voltage

2.0

V

Output Resistance

17

mn.

f=1 kHz

Ro

C, 8 V~VIN~ 12 V

Tj=25 °c, 5 mA~lo<1.5 A

5 mA~lo~1.0 A

0.5
Output Noise Voltage

Tj=25°C

5.25

REGL

Quiescent Current

V

TEST CONDITONS

3

4.75
Line Regula!ion

UNIT

10 =1.0 A, Tj=25

Short Circuit Current

loshort

750

mA

Tj=25

0

C

Peak Output Current

lopeak

2.2

A

Tj=25

0

C

Temperature Coefficient
of Output Voltage

1::. Vol1::.T

-1.1

mVtC

0

C

10=5 mA, 0 °C~Tj~125

0

C

853

tlPC7800H SERIES
°c ~

ELECTRICAL CHARACTERISTICS f.LPC7808H (VIN=14 V, 10=500 rnA, 0
CHARACTERISTIC
Output Voltage

SYMBOL

Load Regulation

TYP.

MAX.

7.7

8.0

8.3
8.4

10.5 V;SYIN~23 V, 5 mA~lo~1.0 A, PT~15 W

6.0

160

Tj=25 °c, 10.5 V~VIN~25 V

2.0

80

12

160

4.0

80

4.3

8.0

Vo

REGIN

REGL

Quiescent Current

IBIAS

Quiescent Current Change

A IBIAS

Output Noise Voltage

1.0

V

mV

mV
mA
mA

56

Tj=25°C

Tt25°C, 11 V;:;;YIN~17 V
Tj=25 °c, 5 mA~lo~1.5 A
Tj=25 ° C, 250 mA~lo~750 mA
Tj=25 0 C
10.5 V~VIN~25 V
5 mA~lo~ 1.0 A

0.5

NL

Ripple Rejection

TEST CONDITIONS

UNIT

MIN.

7.. 6
Line Regulation

52

J.LV

T a=25 °c, 10 Hz~f ~1 00 kHz

72

dB

f=120 Hz, 11.5 V~VIN~21.5 V
10 =1.0 A, Tj=25 ° C

Dropout Voltage

2.0

V

Output Resistance

Ro

18

mn

f=1 kHz

lopeak

350

A

Tj=25 ° C

Peak Output Current

lopeak

2.2

A

Tj=25 ° C

Temperature Coefficient
of Output Voltage

AVo/AT

Short Circuit Current

-0.8

mV/oC

10=5 mA, 0 °C~Tj~125 ° C

ELECTRICAL CHARACTERISTICS f.LPC7812H (VIN=19 V, 10=500 rnA, 0
CHARACTERISTIC
Output Voltage

SYMBOL

MIN.

TYP.

MAX.

11.5

12.0

12.5

Vo
.11.4

Line Regulation

Load Regulation

REGL
IBIAS

Quiescent Current Change

tJ.IBIAS

Output Noise Voltage

V

55

Tj ~ 125°C)

Tj=25 ° C
14.5 V~VIN~27 V, 5 mA~lo~1.0 A, PT~15 W

mV

Tj=25

0

C, 14.5 V~VIN~30 V

3.0

120

Tj=25 °c, 16 V~VIN~22 V

12

240

Tt25 ° C, 5 mA~lo~1.5 A

4.0

120

4.3

8.0

mV
mA
mA

Tj=25 ° C, 250 mA~lo~750 mA
T(25 ° C
14.5 V~VIN~30 V
5 mA~lo~1.0 A

0.5

NL

°c ~

TEST CONDITIONS

75

J.LV

T a=25° C, 10 Hz~f~100 kHz

71

dB

f=120 Hz, 15

2.0

V

Ro

18

mn

loshort

350

rnA

Tj=25 ° C

Peak Output Current

lopeak

2.2

A

Tj=25 ° C

Temperature Coefficient
of Output Voltage

tl Vol tl T

-1.0

mV/oC

V~VIN~25

V

10 =1.0 A, Tj=25 ° C

Dropout Voltage
Output Resistance
Short Circuit Current

aS4

240

1.0

Ripple Rejection

UNIT

12.6
10

REGIN

Quiescent Current

Tj ~ 125°C)·

f=1 kHz

10=5 rnA, 0 °C~Tj~125 ° C

j.lPC7800H SERIES
ELECTRICAL CHARACTERISTICS }1PC7815H (VIN=23 V, 10=500 rnA, 0 °c ~ Tj ~ 125°C)
CHARACTERISTIC
Output Voltage

SYMBOL
Vo

MIN.

TYP.

14.4

15.0

14.25
Line Regulation

Load Regulation
Quiescent Current
Quiescent Current Change

REGIN

REGL
IBIAS

MAX.
15.6

UNIT
V

11

300
150

12

300

4.0

150

4.4

8.0
1.0

t:.IBIAS

mV

NL

Ripple Rejection

54

Dropout Voltage
Output Resistance

Tj=25 DC, 17.5 V':s'VIN,:S,30 V
Tj=25 DC, 20 V':s'VIN,:S,26 V

mV

Tj=25 DC, 5 mA,:S,l o,:S,1.5 A
Tj=25 DC, 250 mA,:S,lo,:S,750 mA

mA
mA

0.5
Output Noise Voltage

Tj=25°C
17.5 V~VIN,:S,30 V, 5 mA~.lo~1.0 A, PT,:S,15 W

15.75

3.0

TEST CONDITIONS

Tj=25°C
17.5 V~VIN,:S,30 V
5 mA~lo':s'1.0 A

90

pV

T a=25 DC, 10 Hz~f,:S,100 kHz

70

dB

f=120 Hz, 18.5

2.0

V

Ro

19

mrl

f=1 kHz

V~VIN~28.5

V

10 =1.0 A, Tj=25 ° C

Short Circuit Current

loshort

230

mA

Tj=25°C

Peak Output Current

lopeak

2.1

A

Tj=25°C

Temperature Coefficient
of Output Voltage

t:. Vo/t:.T

-1.0

mV/oC

10=5 mA, 0 °C,:S,Tj~ 125 ° C

ELECTRICAL CHARACTERISTICS }1PC7818H (VIN=27 V, 10=500 rnA, 0 °c ~ Tj ~ 125°C)
CHARACTERISTIC
Output Voltage

SYMBOL
Vo

MIN.

TYP.

MAX.

17.3

18.0

18.7

17.1
Line Regulation

Load Regulation

IBIAS

Quiescent Current Change

t:.IBIAS

Output Noise Voltage

360

REGIN

Quiescent Current

5.0

180

12

360

4.0

180

4.5

8.0
1.0

Ripple Rejection

53

TEST CONDITIONS
Tj=25 ° C
21 V':s'VIN,:S,33 V, 5 mA,:S,lo,:S,1.0 A, PT,$15 W

mV

mV

Tj=25 ° C, 21 V~YIN~33 V
Tj=25 ° C, 24 V,$VIN~30 V
Tj=25 ° C, 5 mA~lo,$1.5 A
Tj=25 ° C, 250 mA,$lo,$750 mA

rnA
rnA

Tj=25 ° C
21 V,:S,VI N,$33V
5 mA~lo,$1.0 A

0.5

NL

Dropout Voltage

V

18.9
15

REGL

UNIT

110

IJ-V

T a=25 DC, 10 HZ,:S,f,$100 kHz

69

dB

f=120 Hz, 22

2.0

V

10 =1.0 A, Tj=25 °c

Ro

22

rnrl

f=1 kHz

Short Circuit Current

loshort

200

rnA

Tj=25°C

Peak Output Current

lopeak

2.1

A

Tj=25°C

Temperature Coefficient
of Output Voltage

t:. Vo/t:.T

-1.0

mV/oC

Output Resistance

V,$VIN~32

V

10=5 rnA, 0 °C,$Tj,:S, 125 ° C

855

JLPC7800H SERIES
ELECTRICAL CHARACTERISTICS J.LPC7824H (VIN=33 V, 10=500 rnA, 0 °c ~ Tj ~ 125°C)
CHARACTERISTIC

SYMBOL

Output Voltage

MIN.

TYP.

MAX.

23.0

24.0

25.0

Vo

22.8
Line Regulation

REGIN

Load Regulation

REGL

Quiescent Current

IBIAS

Quiescent Current Change

l!.IBIAS

480

mV

Ripple Rejection

50

Dropout Voltage

Tj=25 °c, 27 V~VIN~38 V

6

240

Tj=25 ° C, 30 V~VIN~36 V

480

Tj=25 ° C, 5 mA;Slo;S 1.5 A

4.0

240

4.6

8.0

mV

Tj=25
mA
mA

0.5

NL

Output Resistance

27 V~VIN~38 V, 5 mA~lo~1.0 A

12

1.0

Output Noise Voltage

Tj=25 ° C

V

25.2
18

TEST CONDITIONS

UNIT

0

C, 250 mA~lo~750 mA

Tj=25°C
27 V~VIN~38 V
5 mA,$lo;S1.0 A

170

p.V

Ta=25° C, 10 Hz~f.:s100 kHz

66

dB

f=120 Hz, 28 V~VIN~38 V

2.0

V

10=1.0 A, Tj=25 ° C

Ro

28

mn

f=1 kHz

Short Circuit Current

loshort

150

mA

Tj=25 ° C

Peak Output Current

lopeak

2.1

A

Tj=25 ° C

Temperature Coefficient
of Output Voltage

l!. Vo/l!.T

-1.5

o

mV/ C 10=5 rnA, 0 ° C~Tj~ 125 ° C

TYPICAL CHARACTER ISTICS (Ta=25 °C)
WORST CASE POWER DISSIPATION vs.
AMBIENT TEMPERATURE
100

CURRENT LIMITING CHARACTERISTICS
6

50
~

I
c

.g

10
5.0

(5
~

Q)

3:
0
a..
I
'C
a..

()HS===O
~

20

(tl

.~

2.0
1.0
0.5

--

--

0.1
25

>

...........

I
Q)

()HS"",o

° ""

'\

~1!8/",

\

,

'~

50

75

4

Cl

~

0.2

100

!9

0

>
.....

3

::::l

B
2
::::l
0

\

VIN=10 V
Vo=5 V
-Tj=25°C

'\.

o

o

125

T a - Ambient Temperature -

856

J.LPC7J05H

5

0

C

I

0.4

V

0.8

I

---

1.2

,."

1.6

J

/
2.0

10 - Output Current - A

JLPC7800H SERIES

>

PEAK OUTPUT CURRENT AS
A FUNCTION OF INPUT/OUTPUT
DIFFERENTIAL VOLTAGE

DROPOUT VOLTAGE AS A FUNCTION
OF JUNCTION TEMPERATURE
2.5...---..--..,.--,--.....,---r----r-...,-----,

«

I

co

'';::::;

c

I

2.0 I--+---+-~I-=-+---+-

....c

1. 51---+--+-==~....::::=......o;;::-+-

U

Q)

~o

;
0.
;

2

t

::J

....
::J

E::J
0

1 .0 I---+~'""'_,,-l__-+---+---'-----+-__j

~

::J

co

0.

Cl...

Q)

C

I

0.51--+---I--~-I---+--+--+--l

~

Cl...

co
Q)

o

0.

>

2.5

o

-25

0

25

50

75

0

100 125

Tj - Junction Temperature -

0

0

C

LOAD TRANSIENT RESPONSE

>

I

.;;
Q)

o

Q)

OJ

VIN=10 V
:

~

~

1.0

;

0.5

;

0

0.

o

Vo~5 V

~

::

I

....c
U

co
.;;

"0

Q)

co

a

...J

20

~

Time -lots

40

Q)

~

OJ

~
0

10

E::J

O

I

g -10

50

60

15

~

1o

.'S

OJ

"0

5 ::

::;:

:;:

o

~

;~

o

::J

0.
C

Output Voltage

-

1.....

I

0

30

>

IotPC7805H

0

>
10

I

.~

~::J

/",

I

Input Voltage

I
c
0

o
;r:-

I

E

t

::J

~

>

0.5

Output Voltage

::J

~ -1.0

o

:~

V~

~ -0.5
 3.6±O.2

~2MAX.

I

cri

-fl-

1.3.0.2

FEATURES
•
•
•
•
•

Output current in excess of 1 A
No external component required
Internal thermal overload protection
Internal short circuit current limiting
Low output resistance 70 mn

2.542.54

JEDEC : TO-220AB
IEC

EQUIVALENT CIRCUIT
r-~------~----~~------~~------~--~~~~lGND

CONNECTION DIAGRAM
D,
INPUT

NEC

JA~AN
79xx

r--t--+--o

2 OUTPUT

0,
,

3 2

It\

GND INPUT OUTPUT

'-------------.-.... . . . . .--------<~.-...-------~-.......
NOTE:

858

®
®

__o

-5 V to -8 V OPTIONS
-12 V to -24 V OPTIONS

3 Fin
INPUT

tlPC7900H SERIES
TYPICAL APPLICATION

THERMAL RESISTANCE
RTH(j-c)

INPUT

3

0.33 J..LF

Notes:

J..LPC79XXH

OUTPUT

2

4 °C/W TYP.
83 °C/W TYP.

RTH(j-a)

C1

*

Although no output capacitor is needed for
stability, it does improve transient response.
** Required if regulator is located an appreciable
distance from power supply filter.

ABSOLUTE MAXIMUM RATINGS

v

Input Voltage

,uPC7905H, 08H, 12H, 15H, 18H, 24H -35
,uPC7924H
-40
Internal Power Dissipation
Internally Limited
Operating Temperature Range
-20 to +80
Storage Temperature Range
-55 to +150
Lead Temperature
Soldering 10 s 230
Operating Junction Temperature Range
o to 125
o to 200
Operating Junction Temperature Range

V

°c
°c
°c
°c
°c

(Continuous)
(short term, 30 min. MAX.)

ELECTRICAL CHARACTERISTICS JlPC7905H (VIN=-10 V, 10=500 rnA, 0 °c ~ Tj ~ 125°C)
CHARACTER ISTIC
Output Voltage

SYMBOL

MIN.

TYP.

-4.S

-5.0

Load Regulation
Quiescent Current
Quiescent Current Change
Output Noise Voltage

100

1

50

70

150

20

SO

1.0

2.0

REGL
IBIAS

mV

mV
mA

1.3
mA

AIBIAS

0.5

NL

-7 V~VIN~-20 V, 5 mA~lo~1.0 A, PT~15 W
Tj=25 °c, -7 V~VIN~-25 V
Tj=25 °c, -S V~VIN~-12 V
Tj=25 °c, 5 mA~lo~1.5 A
Tj=25 °c, 250 mA~lo~750 mA
Tj=25 °c
-7 V~VIN~-25 V
5 mA~lo~1.0 A

100

J..LV

Ta=25 °c, 10 Hz~f~100 kHz

62

dB

f=120 Hz, -S V~VIN~-1S V, 10=500 mA

1 .1

V

10 =1.0 A, Tj=25 °c

lopeak

2.1

A

Tj=25 °c

AVO/AT

-0.4

mVrC

54

Dropout Voltage
Peak Output Current

-5.25
3

TEST CONDITIONS
Tj=25 °c

V

REGIN

Ripple Rejection

Temperature Coefficient
of Output Voltage

UNIT

-5.2

Vo
-4.75

Line Regulation

MAX.

10=5 mA, 0 °C~Tj~125 °c

859

j.lPC7900H SERIES
ELECTRICAL CHARACTERISTICS MPC7908H (VIN=-14 V, 10=500 rnA, 0 °c ~ Tj ~ 125°C)
CHARACTER ISTIC
Output Voltage

SYMBOL

MIN.

TYP.

MAX.

-7.7

-8.0

-8.3

Vo

Load Regulation
Quiescent Current

Tj=25°C
V

-8.4

-10.5 V~VIN~-23 V, 5 mA~lo~l.O A, PT~15 W

6.0

160

Tj=25 °c, -10.5 V~VIN~-25 V

2.0

80

80

200

30

100

1.0

2.0

-7.6
Line Regulation

rnV

REGIN

REGL
IBIAS

rnV
rnA

1.0
Quiescent Current Change
Output Noise Voltage

rnA

AIBIAS

0.5

Tj=25 °c, 5 mA~lo~1.5 A
Tj=25 °c, 250 rnA~lo~750 mA
Tj=25°C
-10.5 V~VIN~-25 V
5 mA~lo~1.0 A

J.l.V

Ta=25 °c, 10 Hz~f~100 kHz

62

dB

f=120 Hz, -11.5 V ~ VIN ~ -21.5 V, 10=500 mA

1.1

V

10 =1.0 A, Tj=25 °c

lopeak

2.1

A

Tj=25°C

AVo/AT

-0.6

mVrC

NL

54

Dropout Voltage
Peak Output Current

Tj=25 °c, -11 V~VIN~-17 V

200

Ripple Rejection

Temperature Coefficient
of Output Voltage

TEST CONDITIONS

UNIT

10=5 mA, 0 °C~Tj~125 °c

ELECTRICAL CHARACTERISTICS MPC7912H (VIN=-19 V, 10=500 rnA, 0 °c ~ Tj ~ 125°C)
CHARACTER ISTIC
Output Voltage

SYMBOL

MIN.

TYP.

MAX.

-11.5

-12.0

-12.5

Vo

Line Regulation

Load Regulation
Quiescent Current
Quiescent Current Change
Output Noise Voltage

REGIN

IBIAS

8S0

10

240

3.0

120

85

240

30

120

1.5

3.0

rnV

rnA

1.0
rnA

AIBIAS

0.5

-14.5 V~VIN~-27 V, 5 rnA~lo~1.0 A, PT~15 W
Tj=25 ° C, -14.5 V~V I N~-30 V
Tj=25 °c, -16 V~VIN~-22 V
Tj=25 °c, 5 rnA~lo~1.5 A
Tj=25 °c, 250 rnA~lo~750 rnA
Tj=25°C
-14.5 V~VIN~-30 V
5 mA~lo~1.0 A

300

J.l.V

Ta=25 °c, 10 Hz~f~100 kHz

62

dB

f=12C Hz, -15 V~VIN~-25 V, 10=500 rnA

1.1

V

10 =1.0 A, Tj=25 ° C

lopeak

2.1

A

Tj=25°C

AVo/AT

-0.8

rnVrC

NL
54

Dropout Voltage
Peak Output Current

-12.6

rnV

REGL

Ripple Rejection

Temperature Coefficient
of Output Voltage

Tj=25°C
V

-11.4

TEST CONDITIONS

UNIT

10=5 mA, 0 °C~Tj~125 °c

jlPC7900H SERIES
ELECTRICAL CHARACTERISTICS IlPC7915H (VIN=-23 V, 10=500 rnA, 0 °c ~ Tj ~ 125°C)
CHARACTERISTIC
Output Voltage

SYMBOL

MIN.

TYP.

-14.4

-15.0

Vo
-14.25

Line Regulation

Load Regulation
Quiescent Current
Quiescent Current Change
Output Noise Voltage

REGIN

11

300

3.0

150

90

300

30

150

IBIAS

1.5

3.0
1.0

~IBIAS

mV

mA
mA

0.5

NL

TEST CONDITIONS
Tj=25°C

V

mV

-17.5 V~VIN~-30 V, 5 mA~lo~1.0 A, PT~15 W
Tj=25 ° C, -17.5 V~V I N~-30 V
Tj=25 ° C, -20 V~V I N~-26 V
Tj=25 °c, 5 mA~lo~1.5 A
Tj=25 °c, 250 mA~lo~750 mA
Tj=25°C
-17.5 V~VIN~-30 V
5 mA~lo~1.0 A

375

JJ.V

Ta=25 °c, 10 Hz~f~100 kHz

60

dB

f=120 Hz, -18.5 V~VIN~-28.5 V, 10=500 mA

1.1

V

10 =1.0 A, Tj=25 °c

lopeak

2.1

A

Tj=25°C

~Vo/AT

-1.0

mV/oC

54

Dropout Voltage
Peak Output Current

UNIT

-15.6
-15.75

REGL

Ripple Rejection

Temperature Coefficient
of Output Voltage

MAX.

10=5 mA, 0 °C~Tj~125 °c

ELECTRICAL CHARACTERISTICS IlPC7918H (VIN=-27 V, 10=500 rnA, 0 °c ~ Tj ~ 125°C)
CHARACTER ISTIC
Output Voltage

SYMBOL

MIN.

TYP.

MAX.

-17.3

-18.0

-18.7

Vo
-17.1

Line Regulation

Load Regulation
Quiescent Current

360

mV

IBIAS

Output Noise Voltage

180

Tj=25 °c, -24 V~VIN~-30 V

360

Tj=25 °c, 5 mA~lo~1.5 A

30

180

1.5

3.0

mA

Temperature Coefficient
of Output Voltage

0.5

NL
54

Dropout Voltage
Peak Output Current

mA

~IBIAS

Ripple Rejection

Tj=25 °c, -21 V~VIN~-33 V

90

1.0
Quiescent Current Change

-21 V~VIN~-33 V, 5 mA~lo~1.0 A, PT~15 W

5.0

mV

REGL

TEST CONDITIONS
Tj=25°C

V

-18.9
15

REGIN

UNIT

Tj=25 °c, 250 mA~lo~750 mA
Tj=25°C
-21 V~VIN~-33 V
5 mA~lo~1.0 A

450

JJ.V

Ta=25 °c, 10 Hz~f~100 kHz

60

dB

f=120 Hz, -22 V~VIN~-32 V, 10=500 mA

1.1

V

10 =1.0 A, Tj=25 °c

lopeak

2.1

A

Tj=25°C

AVo/AT

-1.0

mVrC

10=5 mA, 0°C~Tj~125 °c

861

j.lPC7900H SERIES
ELECTRICAL CHARACTERISTICS IlPC7924H (VIN=-33 V, 10=500 rnA, 0 °c ~ Tj ~ 125°C)
CHARACTER ISTIC

SYMBOL

Output Voltage

Vo

MIN.

TYP.

MAX.

-23.0

-24.0

-25.0

Line Regulation

-25.2
18

480

6

240

90

480

mV

REGIN

Load Regulation

mV

REGL

Quiescent Current

IBIAS

30

240

1.5

3.0
1.0

Quiescent Current Change

Tj=25°C
V

-22.8

AIBIAS

TEST CONDITIONS

UNIT

mA
mA

0.5

-27 V~VIN~-38 V, 5 mA~lo~1.0 A
Tj=25 DC, -27 V~VIN~-38 V
Tj=25 DC, -30 V~VIN~-36 V
Tj=25 ° C, 5 mA~ lo~ 1.5 A
Tj=25 DC, 250 mA~lo~750 mA
Tj=25°C
-27 V~V I N~....;38 V
5 mA~lo~1.0 A

600

J.LV

Ta=25 DC, 10 Hz~f~100 kHz

59

dB

f=120 Hz, -28 V ~ VIN ~ -38 V. 10=500 mA

Dropout Voltage

1.1

V

10=1.0 A, Tj=25 ° C

Peak Output Current

lopeak

2.1

A

Tj=25°C

AVo/AT

-1.0

mVrC

Output Noise Voltage

NL

Ripple Rejection

51

Temperature Coefficient
of Output Voltage

10=5 mA, 0 °C~Tj~125 °c

TYPICAL CHARACTERISTICS (Ta=25 °C)
WORST CASE POWER DISSIPATION vs.
AMBIENT TEMPERATURE
100

CURRENT LIMITING CHARACTERISTICS

-6

50
~

I
c

.g

20
10

C1J
Q.

:~

5.0

'-

2.0

0

Q)

~

0

.e..
I
."0

1.0

-~

0.5

,e..

fJHS""70 ° "

~

-~

~il".\'/""

\

,

'~

0.2
0.1
25

-5

~ r--......

50

75

100

....::J

\

"

125

T a - Ambient Temperature - °c

862

J

0..

:; -2

o

VIN=-10 V
J.LPC7905H
-1 t - Tj=25 °c

o

o

I
0.4

V

0.8

/

/

~ V1.2

1.6

2.0

10 - Output Current - A

tlPC7900H SERIES
PEAK OUTPUT CURRENT AS
A FUNCTION OF INPUT/OUTPUT
DIFFERENTIAL VOLTAGE



~So

0.5

:

0.5

,0

/'..

1.0

VIN=-10 V
j.LPC7905H

Cl

~

--"

25

"0

..::

>

CIN. COUT=O

o

30

20

VDIF - Input-Output Differential - V

10

I -20

co

~ -15

I

I

::J

C.

.=:

~

\

I
Q)

\

-10

u

c

co

==

--==
-

Q)

Cl

>....

40

60

Time -

j.LS

80

100

OUTPUT IMPEDANCE AS A
FUNCTION OF FREQUENCY

LINE TRANSIENT RESPONSE

>

\

;.I

0

" ,,-2$
~.

~

Q)

0.5

co

+-'

B::J

1.0

u

~

u

LOAD TRANSIENT RESPONSE

 -5
E
I

c.

~

E

"-

V

0

\

:J

B::J

Q)

Cl

~

10=200 mAo Tj=25 °c

>....
C.

:;
0

0.1

0

+5

"0

::J

V

....

j.LPC7905H

o

20

40
Time

60
-j.LS

0.01

80

100

10

100

1k

10 k

100 k

Frequency - Hz

863

1. ALPHA-NUMERICAL INDEX
2. QUICK REFERENCE GUIDE

3. CROSS REFERENCE GUIDE
4. MAINTENANCE AND OBSOLETE TYPES
5.

GENERALSTATEMENT

*

NEC's INTEGRATED CiRCUITS FOR CONSUMER USE

o History

Types and Features

0

o Type Number Designation

0

Device Technologies

* STANDARDS OF INTEGRATED CIRCUITS
* HINTS ON CORRECT USE
*

TECHNICAL SYMBOLS AND TERMS

*

RELIABILITY AND QUALITY CONTROL SYSTEMS

6. AUDIO APPLICATIONS

6- 1.

' CAR AUDIO' '"

6~2."

HOME AUDtO '

6- 3.

PORT~BLE AUDIO:
,

,

'

7. TVAP'PtfCATlONS,' "
'.,

,.

.'

",

".).

,".>

~

9.
,

"

CLO:CK~~wAt¢fU:~
'-l,~ <

'"lo~VOCiAGEiflEGlJtA=tOA:S"

ARRAYS

INDEX
Page
tlPA53C

5-Unit NPN Darlington Transistor Array . . . . . . . . . . . . . . . . . . . . . . . . . 870

tlPA54H

6-Unit Diode Array (Common Cathode) . . . . . . . . . . . . . . . . . . . . . . . . . 872

tl PA5 6C

7-Unit NPP Single Transistor Array . . . . . . . . . . . . . . -. . . . . . . . . . . . . . 874

tlPA64H

6-Unit Diode Array (Common Anode) . . . . . . . . . . . . . . . . . . . . . . . . . . 878

tlPA67C

6-Unit NPN Darlington Transistor Array . . . . . . . . . . . . . . . . . . . . . . . . . 880

J,tPA79C

7-Unit NPN Transistor Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882

tlPA80C

7-Unit PNP-NPN Transistor Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884

tlPA81C

7-Unit NPN Darlington Transistor Array . . . . . . . . . . . . . . . . . . . . . . . . . 886

tlPA2001C

7-Unit NPN Darlington Transistor Array . . . . . . . . . . . . . . . . . . . . . . . . . 888

J,tPA2002C

7-Unit NPN Darlington Transistor Array . . . . . . . . . . . . . . . . . . . . . . . . . 888

tl PA2 0 03C

7-Unit NPN Darlington Transistor Array . . . . . . . . . . . . . . . . . . . . . . . . . 888

tlPA2004C

7-Unit NPN Darlington Transistor Array . . . . . . . . . . . . . . . . . . . . . . . . . 888

867

ARRAYS
• TRANSISTOR ARRAYS

J.(PA53C:

J.(PA56C:

LED, LAMP, PRINTER HUMMER DRIVER

LED, LAMP DRIVER

ABSOLUTE
MAXIMUM RATINGS

ABSOLUTE
MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS

SYMBOL

RATINGS

UNIT

SYMBOL

TYP.

UNIT

VCEO

30

V

hFE

3200

-

IC

0.4

A/unit

VCE(sat)1

0.9

V

PO-

1.2

W/pkg

VCE(sat)2

1.3

V

ELECTRICAL CHARACTERISTICS

SYMBOL

RATINGS

UNIT

SYMBOL

TYP.

UNIT

TEST
CONDITIONS

V
IC-200mA

VCEO

40

V

hFE2

200

-

VCEK1.0 V
IC-50mA

Ic-lOOmA
VIN~5.0 V

IC

0.1

A/unit

VCE(sat)2

0.2

V

IC-50mA
IB~5 mA

Po

0.55

W/pkg

VBE(sat)

0.B6

V

TEST
CONDITIONS
VCE~5.0

IC~4oo

mA

mA
mA

IC~50

IB~5

VIN-20 V

• PW=IO ms, duty cycle;:;;; 10 %

OUT

J.(PA67C:

J.(PA79C:

PRINTER HUMMER DRIVER
ABSOLUTE
MAXIMUM RATINGS

PRINTER HUMMER DRIVER
ABSOLUTE
MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS
UNIT

TEST
CONDITIONS

mA

VIH~5.0 V
VCC-2.0 V

SYMBOL

RATINGS

UNIT

Vo

30

V

10·

0.15

A/unit

10FF

-/10

p.A

VIL;:;;;1.0V
VCC=20V

Po

0.55

W/pkg

VOL

-/1.3

V

VI-13V
10·100mA

SYMBOL
ION

MIN./MAX.
100/-

ELECTRICAL CHARACTERISTICS

SYMBOL

RATINGS

UNIT

SYMBOL

Vo

20

V

hFE

10·

0.15

A/unit

VCE(sat)

Po

0.55

W/pkg

• PW-20 ms, duty cycle;:;;; 10 % (All units turned on)

VI

UNIT

TEST
CONDITIONS

-

VCC-5 V
VCE-l V
10-120mA

-/0.6

V

VCC-5 V
IOE120mA
11~0.2 mA

-/4.0

V

VCC"'5V
VCE-l V
10-120 mA

TYP./MAX.

2500/-

• PW;:;;; 30 ms, duty cycle;:;;; 10 % (The same current for all units)

OUT

J.(PA80C:

J.(PA81C:

FIP, LED DRIVER

LED, LAMP, PRINTER HUMMER DRIVER

ABSOLUTE
MAXIMUM RATINGS

ABSOLUTE
MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS

SYMBOL

RATINGS

UNIT

SYMBOL

TYP.

UNIT

TEST
CONDITIONS

VSS

-60

V

hFEl

280

-

VCE-2.0 V
10~20 mA

10

50

mA/unit

hFE2

450

-

VCE=2.0 V

Po

0.55

W/pkg

VCE(sat)

0.95

V

10~40mA

10·20mA
11~0.3mA

ELECTRICAL CHARACTERISTICS

SYMBOL

RATINGS

UNIT

SYMBOL

TYP.

UNIT

TEST
CONDITIONS

VCC

45

V

hFE

2500

-

VCE=2.5 V
10=200 mA

10·

0.4

A/unit

VCE(sat)1

0.82

V

110=100mA
VI=13V

Po

0.8

W/pkg

VCE(sat)3

1.2

V

10=400 mA
VI-13V

• PW=10 ms, duty cycle;:;;; 10 % (All units turned on)
GNO'
20 kn

OUT
20 kn
IN

20 kn
OUT
100 kn

Vss
8S8

20 kn

ARRAYS

pPA2001C,2002C,2003C,2004C:
LED, LAMP, RELAY, PRINTER HUMMER DRIVER
ABSOLUTE
MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS

SYMBOL

RATINGS

UNIT

SYMBOL

TYP.

UNIT

TEST
CONDITIONS

VCC

60

V

hFE

2800

-

VCE-2.0 V
10-350mA

10

0.5

A/unit

VCEIsatl1

0.9

V

10-100mA
11-250j.lA

PO"

2.5

W/pkg

VCEIsatl3

1.2

V

10-350 mA
II-SOOj.lA

"PA2001C

" PW ~ 20 ml, duty cycle::;; 10 % IThe same current for all unitsl

j.lPA2003C

SK

SK

~____~~~~~OUT

~~~~r-~--~OUT

• DIODE ARRAYS
ILPA54H:

pPA64H:

HIGH SPEED SWITCHING

HIGH SPEED SWITCHING

ABSOLUTE
MAXIMUM RATINGS

ABSOLUTE
MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS

SYMBOL

RATINGS

UNIT

SYMBOL

VRM

75

V

VR

50

V

10

0.1

PD

0.3

TEST
CONDITIONS

ELECTRICAL CHARACTERISTICS

RATINGS

UNIT

SYMBOL

IF-30 mA

VRM

75

V

VF

0.8

V

IF-30 mA

"A

VR-30 V

VR

50

V

IR

0.005

j.lA

VR-30 V

2.0

pF

VR-O
f-1.0 MHz

10

0.1

A/unit

Ct"

5.0

pF

VR-O
f-1.0 MHz

1.3

ns

Refer to the
individual
catalogue.

Po

0.3

W/pkg

trr

4.0

ns

Refer to the
individual
catalogue.

UNIT

VF

O.B

V

IR

0.01

A/unit

Ct "

W/pkg

trr
" 1 unit

2

3

4

5

6

TYP.

UNIT

TEST
CONDITIONS

SYMBOL

TYP.

" 1 unit

ICommon Cathode I

2

3

4

5

6

7

ICommon Anodel

8S9

TRANSISTOR ARRAY

pPA53C
LED, LAMP DRIVER
NPN SILICON EPITAXIAL DARLINGTON TRANSISTOR ARRAY

DESCRIPTION

The pPA53C is a monolithic array of five darlington transistors.
Applications are printer hummer driver and .LED display driver with MOS output signal.
FEATURES
PACKAGE DIMENSIONS

• High DC Current Gain

in millimeters (inches)

• High Output Drive Current
• Package is 14pin PLASTIC DIP.
ABSOLUTE MAXIMUM RATINGS
Maximum Voltages and Currents (Ta = 25°C)
Collector to Base Voltage (RBE=oo)
Collector to Emitter Voltage (Open Base)
I r'lput Voltage
.
Continuous Collector Current
Peak Collector Current
Maximum Power Dissipation
Total Power Dissipation
Maximum Temperature
Storage Temperature
Operating Temperature
*PW = 10ms, duty cycle

~

VCBO
VCEO
VIN
IC(DC)
IC*

30
30
30
0.4
2.0

V
V
V
A/unit
A/package

1.2

W/package

-40 to + 125
-25to+ 75

Tstg
Topt

°c
°c

10%

ELECTRICAL CHARACTERISTICS (Ta = 2SoC)
CHARACTERISTICS
Circuit Current
DC Current Gain

SYMBOL

MIN.

TYP.

MAX.

UNIT

0.5

100

p.A

2000

3200

IL
hFE

VCE=20V,

VIN=O

VCE=5.0V, IC=200mA

Collector Saturation Voltage

VCE(sat) 1

0.9

1.3

V

Ic=100mA, VIN=5.0V

Collector Saturation Voltage

VCE(sat)2

1.3

2.2

V

Ic=400mA, VIN=20V

CONNECTION DIAGRAM (Top View)

EQUIVALENT CIRCUIT

NC

01

I

Rl

20kn
RBI 20kn
RBl 2kn

870

TEST CONDITIONS

02

03

0,

05

: I nput( Base)

o : Output(Collector)
GND(Common Emitter)

NC

JlPA53C
TYPICAL CHARACTERISTICS (Ta = 25°C)

COLLECTOR CURRENT vs.
COLLECTOR TO EMITTER VOLTAGE

COLLECTOR CURRENT vs.
COLLECTOR TO EMITTER VOLTAGE

500

500

Pulsed
PW= 3OO.us
duty cycle 1.5%

\

\

Ej

~p- ~..o
~(.~

400

I

~ 300
::J

/I'

U

.c:u

r

~

'-'

."

~ ....-

200

~

"0
u
I

"'3a~
,

I"

c

I

100

t

--

----

I

"~4-

-

l a

C

.... ....

~ ~-

~

....
~

t

1--<::)

.

I~~
/
, V. /' /1 a.,.....

300 V'

::J

U

.8u

200

~

"0
u
I 100

60

I
o



5.0V

10
Ie

I

C1l

5000

.....:~

<.!l

2000

~

t

::J

"0

~~

1000

0

/

500

I

u.:

200

O°C

Ta

//
/

25°t

/ / '/

;..
.I::

~

'-

0.5

"0
u
I

50'?

~

V

100
10

.c:u
C1l

\

V/

c?5 1.0

/

B

~

/i.//

/

c

o 2.0

V

U
U

>

~

'iii

100·11l

F 5.0

/.~

c

50

Ta=O'C
I I

V

5°c
~

'" "

0.2

--

50°C

LL

W
~ 0.1

20

50
100 200
I e-Collector Current-rnA

500 1000

10

20

50

100

200

500

1000

I e-Coll ector Current-rnA

OUTPUT VOLTAGE vs.
INPUT VOLTAGE

30
Vee= 20V
RL= 180Q

>

I

C1l
tlO

2

VourVIN TEST CIRCUIT

/ Ta=O°C

20

~ /25°C

"0

>

.uPA53C

r----------l

V 5doc

~

I

.e

I

::J

0

I

I-

10

:J

0

\\

>

Vee

\A

\,

o

2

3

\..

4

5

6

L_________ -1

VIN-Input Voltage-V

871

DIODE ARRAY

tL PA 54H
HIGH SPEED SWITCHING
SILICON EPITAXIAL DIODE ARRAY

DESCRIPTION
The IlPA54H is a common cathode monolithic array of six high speed switching diodes.

FEATURES
• High Speed Switching Time -trr 1.3 ns TYP.
• Small Terminal Capacitance - Ct 2.0 pF TYP.
• Small Size enables High Density Mounting
• Good Electrical Thermal Balance of Six Diodes due to
1 Ch i p Structu re
• Package is 7 pin PLASTIC SIP.

. PACKAGE DIMENSIONS
in millimeters
19.5 MAX.

MARKING
234567

ABSOLUTE MAXIMUM RATINGS
Maximum Voltages and Currents (Ta

= 25°C)

Peak Reverse Voltage

1±0.1

VRM

75

V

Reverse Voltage

VR

50

V

Peak Forward Surge Current (1 ps)

'F (surge)

Peak Forward Current

'FM
Average Rectified Current
10
Maximum Power Dissipation (Ta=25 °C)
P

Power Dissipation

1.0·

A

200·

mA

100·

mA

300··

mW

Maximum Temperatures
Junction Temperature

Tj
T stg

Storage Temperature
·1 Unit ··Package

PIN CONNECTION

125°C
-55 to +125
°c

tfflfrt
2

3

4
5 6
7
Common Cathode

ELECTRICAL CHARACTERISTICS (Ta = 25°C)
CHARACTERISTIC

MIN.

TYP

MAX.

UNIT

TEST CONDITIONS

Forward Voltage

VF

0.8

1.0

V

IF=30mA

Reverse Current

IR

0.01

0.1

IJA

VR=30 V

Terminal Capacitance *

Ct

2.0

4.0

pF

VR=O, f=1.0 MHz

Reverse Recovery Time

trr

1.3

3.0

ns

See trr Reverse Recovery Time Test
Circuit

* 1 Unit

872

SYMBOL

,uPA54H

TYPICAL CHARACTERISTICS (Ta=25 °C)

FORWARD CURRENT vs.
FORWARD VOLTAGE
100

I

.....

10
5

?;

0.5

u..
I

LL.

0.2

-~I

I I

0.1

0.01

o

0.2

0.2

>
~

0.1
I 0.05

a:

-

0.02

-

50°C

-

25 °c

-

0.01
0.005

I

/

0.5

~

I

J

J

0.02

u~

Q)

I

I

1/

0.05

2

~

e

/ / /

(5

.....c

-

Ta=100 °c

5

I

!~1 'f

J....j

10

1

O~ '{-oUIJ

2

U

"Ero

20

// /
/ / ~

c

~::J

50

/ //

20

E

100

/ / :/

50

«

REVERSE CURRENT vs.
REVERSE VOLTAGE

I0.6

0.4

0.002
0.8

1.0

1.2

1.4

0.001

1.6

o

20

VF - Forward Voltage - V

40
60
80
VR - Reverse Voltage - V

REVERSE RECOVERY TIME vs.
FORWARD CURRENT

TERMINAL CAPACITANCE vs.
REVERSE VOLTAGE
10

10

VR=6.0 V
irr=O.l I r
See Test Circuit

f 1.0 MHz

~
I
fj
c

!S

'(3
ro

en

5

C

I

2

r-- r--

ro

U

-

i=
- I - r-I-

r---

ro

Q)

8

Q)

E

a.

.=E

100

~
>

---...

Q)

~

6

/'f'

0

u

/~

Q)

a:

Q)

~

0.5

4

Q)

>

l-

Q)

a:

I

I

......

.U 0.2

2

.....

5

2

10

20

50

100

0

/

V
20

V
40

60

80

100

IF - Forward Current - rnA

VR - Reverse Voltage - V

trr REVERSE RECOVERY TIME TEST CIRCUIT
trigger

I

0.02 ILF
PULSE
~,
GENERATOR
(Zout=50 n)
DC VOLTAGI=I+
REGURATOR

OUT

..... ,

- ....,

I
SAMPLING
SCOPE
(Zin=50 51)

IF

0~--I-----+~-t-""'!!'0.1.

Ir

3 kn

J

Test Conditions: IF=10 rnA, VR=6 V, RL=100

n

irr=O.l Ir

trr

873

TRANSISTOR ARRAY

Il PA 56C
SEGMENT DRIVER
NPN SILICON EPITAXIAL TRANSISTOR ARRAY

DESCRIPTION

The pPA56C is a monolithic array of seven transistors.
This device is especially suited for driving common cathode seven segment LED, relays, and lamps.

FEATURES
PACKAGE DIMENSIONS

•

in millimeters

High Voltage Ratings VCBO=60 V

• Package is 16 Pin PLASTIC DIP.

19.4 MAX.

ABSOLUTE MAXIMUM RATINGS

161514131211109

Maximum Voltages and Currents (Ta = 25°C)
Collector to Base Voltage

VCBO

60

V

Collector to Emitter Voltage

VCEO

40

V

Emitter to Base Voltage

VEBO

5.0

V

Continuous Collector Current

IC(DC)

100

mA/unit

Continuous Collector Current

IC(DC)

550

mA/package

Pd

550

mW/package

Maximum Power Dissipation
Total Power Diss·ipation
Maximum Temperature

Tr2

Tr3

Tr4

Tr5

Tr6

T opt

-25 to +75

°c

Tstg

-40 to +125

°c

CONNECTION DIAGRAM (Top View)

EQUIVALENT CIRCUIT

Tr1

Operating Temperature
Storage Temperature

Tr7

9

~~~~~~~r
1 163

24

57

61011131214 158

Sub.

Note: Sub. -terminal is to be connected to the lowest voltage level in the application.

874

j.lPA56C
ELECTRICAL CHARACTERISTICS (Ta
CHARACTERISTIC
Collector Cutoff Current
Emitter Cutoff Current
DC Current Gain
DC Current Gain

= 25°C)
TYP.

MAX.

UNIT

ICBO

0.001

0.1

JlA

VCB=40 V, IE=O

lEBO

0.001

0.1

JlA

VEB=3.0 V, IC=O

SYMBOL

MIN.

TEST CONDITIONS

hFEl

50

250

VCE=1.0 V, IC=10 rnA

hFE2

40

200

VCE=1.0 V, IC=50 rnA

Collector Saturation Voltage

VCE(sat)l

0.07

0.3

V

IC=10 rnA, IB=1.0 rnA

Collector Saturation Voltage

VCE(sat)2

0.2

0.6

V

IC=50 rnA, IB=5.0 rnA

Base Saturation Voltage

VBE(sat)

0.86

1.0

V

IC=50 rnA, IB=5.0 rnA

Gain Bandwidth Product

fT

320

MHz

Output Capacitance

Cob

4.0

pF

Turn On Time

ton

40

ns

Storage Time

tstg

200

ns

Turn Off Time

toff

230

ns

VCE=10 V, IE=-10 rnA
VCB=10 V, IE=O, f=1.0 MHz
See Switching Time Test
Circuit

875

J.lPA56C
TYPICAL CHARACTERISTICS (Ta = 25°C)
COLLECTOR CURRENT vs'
BASE TO EMITTER VOLTAGE

TOTAL POWER DISSIPATION vs.
AMBIENT TEMPERATURE

100

600
~

'\.

E 500

\

I
c:

.2

~

400

+-'

It!

\

.~
.!!?

0

300

~0

a..

l\.

\

10
I

3.0

£u

\.

u

\.

80

T a - Ambient Temperature -

I

~

160

0.1

«

E

/Ih~ / ];,.WV V
0.3

80

I
c:

~V V

+-'

~

:;

60

°c

0

1:)
~

'I

40

(5

'I

U

/

0

«

~.
~
V~60_ - ~,

40

V~

140

I
+-'
c:
~ 30

V

120'

::l

£u

~

r-

20

lL
I
4

o

5

VCE - Collector to Emitter Voltage - V

DC CURRENT GAIN vs.
COLLECTOR CURRENT

"

•

100

.....

'"

80

1

40'
..!
IS=20JlA

10
20
30
40
VCE - Collector to Emitter Voltage - V

50

BASE AND COLLECTOR SATURATION VOLTAGE vs.
COLLECTOR CURRENT

>

VCE 1.0 V

1.0

I

>

~

VSE(~atl

1.l9

c:

~

~o

~,~It-

60

I

1000

~O'~

U

~ 10

3

I

.iO

•

o

IS=O.l mA

-

E

U

/'

2

0.4

'\SO

~

t-"

I
~ 20

50

0.2

/~

0.2

COLLECTOR CURRENT vs.
COLLECTOR TO EMITTER VOLTAGE

~

VL V

u

I

o

0.6
0.8
1.0
VSE - Sase to Emitter Voltage - V

COLLECTOR CURRENT vs.
COLLECTOR TO EMITTER VOLTAGE

~~ ~~

!I

0.3

120

I

I

1.0

I

\~

100

I

~

(5

100

40

I

:;
u

\

0

I
c:

I

I

~

0

~

30

E

l-

I

«
+-'

200

a;

VCE 1.0 V

Free Air

al(5

300

c:

.=:

g>C:

0.3

~::l ~"-

0.1

>o .~0
c: e
.-o ....::l

.... t"-.

+-'

~

:;

u
u 100
o

II

iii B
en
u

I

VCE(sa!l~

al~

w

u..
.c

VI

It!

~

-

0

cnu

30

I

I

........
It! It!

/

0.03

~~

WW

10
0.1

876

cnu

0.3
3
10
30
IC - Collector Current - mA

100

>>

IC=10'IS

0,01
0.1

30
10
3
0.3
IC - Collector Current - mA

100

pPA56C

GAIN BANDWIDTH PRODUCT vs.
EMITTER CURRENT
1000

INPUT AND OUTPUT CAPACITANCE vs.
REVERSE VOLTAGE
100

VCE 10 V

N

IE O(Cob)
IC=O(Cib)
f=1.0 MHz

u..
u.. a.

I

~

0.1

J,300
u

:J
"0

"".

o

I ~ 30

~~

III

u
c:
ro
.t::

/'

ct

.r:.

:2 100

c:

ro

.t:!

u

ro

a.
~a1O
u

~

~
c:

a.... ;a.

co

c: 0

"0

:J

ro

a.

I

c:

~ 30

:9

--~

.g

I"'-Cib

I""'r- ""

Cob- ...... 1'-0.

I

uu

I

~

....
:J

3

.t"

1~0.3

-10
-30 -100 -300
-1
-3
IE - Emitter Current - mA

1

0.1

0.3
3
10
30
VCB - Collector to Base Voltage - V
VEB - Emitter to Base Voltage - V

100

SWITCHING TIME TEST CIRCUIT
10 V

1.2 kn

PW=1.0 1-'s
duty cycle~5 %

50

n

-3 V

877

DIODE ARRAY

j1PA64H
HIGH SPEED SWITCHING
SILICON EPITAXIAL DIODE ARRAY

DESCRIPTION
The J,LPA64H is a common anode monolithic array of six high speed switching diodes.

FEATURES
• High Speed Switching Time -trr 4.0 ns TYP.
o Small Terminal Capacitance -Ct 5.0 pF TYP.
e Small Size enables High Density Mounting
• Good Electrical Thermal Balance of Six Diode due to
1 Chip Structure
• Package is 7 pin PLASTIC SIP.

PACKAGE DIMENSIONS
in millimeters

19.5 MAX.

"I .2.8±0.2

r-------------~·-x

t1

«X .
~«x

,.....~«

ABSOLUTE MAXIMUM RATINGS
Maximum Voltages and Currents (Ta = 25°C)
Peak Reverse Voltage
VRM
Reverse Voltage

0.25

VR

Peak Forward Surge Current (1 jls) IF (surge)
1t0.1

75

V

50

V

1.0*

A

Peak Forward Current

I FM

200*

rnA

Average Rectified Current

10

100*

rnA

300**

mW

Maximum Power Dissipation (Ta=25 DC)
Power Dissipation

P

Maximum Temperatures
Junction Temperature

Tj

Storage Temperature

Tstg

* 1 Unit

125
-55 to +125

°c
°c

** Package

PIN CONNECTION

tf f Iff t
1234567
Common Anode

ELECTRICAL CHARACTERISTICS (Ta = 25°C)
CHARACTERISTIC

MIN.

TYP.

MAX.

UNIT

TEST CONDITIONS

Forward Voltage

VF

0.8

1.0

V

IF=30 rnA

Reverse Current

IR

0.005

0.1

p,A

VR=30 V

Terminal Capacitance *

Ct

5.0

8.0

pF

VR=O, f=1.0 MHz

Reverse Recovery Time

trr

4.0

8.0

ns

See trr Reverse Recovery Time Test Circuit

* 1 Unit

878

SYMBOL

,uPA64H

TYPICAL CHARACTERISTICS (Ta = 25°C)
FOWARD CURRENT vs.
FORWARD VOLTAGE
100

/

50

~ 2.0
1.0

/

"EC1J

3: 0.5

~

0
I

rv

II

~

::l

LL

I
c:

+-'

~

0.2

J

0.01 0

I I
I

~

.....

-

2.0
1.0
0.5

25 DC
!---~ ~

V .....

~~

0.2
0.1

o

40

20

60

80

100

VR - Reverse Voltage - V

I

I I I

0.2

a:
I
a:

I

II

I I

0.02

>





I

V



VCE 5.0 V

VI 13 V

I
Cll
OJ

~

c

"co
tJ 3000
C

~

u

1000

0

~

I
w
LL

..c

:J

e
:J

o

w
>

"

V

.-'"

1.0

Cll

-I

/
300

3.0

+-'

t....~

:J

U

~

1/

+-'

~

o

/

-I

0.3

I
-I

o

100
10

>
30

100
300
10 - Output Current - mA

0.1

10

30

100

300

10 - Output Current - mA

OUTPUT VOLTAGE vs.
INPUT VOLTAGE

VO-VI TEST CIRCUIT

>
I

JJ. PA67C (1 unit)
r------------,

20

Cll
OJ

~

"0

>

VOUT

+-'

:J

e
:J

0
I
0

10
___________ ..JI

>

VCC=20 V
RL=200 on

o

\

2

\
"
3

4

5

VI - Input Voltage - V

SSI

TRANSISTOR ARRAY

f1 PA79C
MINI PRINTER DRIVER
NPN SILICON EPITAXIAL TRANSISTOR ARRAY
DESCRIPTION
The J.LPA79C is a monolithic array of seven transistors.
This device is especially suited for driving low supply voltage printer with up to 0.1 A output current per unit.
FEATURES
• Low Saturation Voltage -VCE(sat)~0.6 V
• High DC Current Gain -hFE~1000
• Reverse Bias Protected Inputs
• Transient Protected Outputs
• Package is 16 pin PLASTIC DIP

PACKAGE DIMENSIONS
in millimeters

161514131211109

ABSOLUTE MAXIMUM RATINGS
Maximum Voltages and Currents (Ta = 25

12345678
19.4 MAX.

Supply Voltage

~~r~

Jljffim~O-150
0.25:g:A~

0.5±0.1 2.54

0

C)
20

V

-40 to + 30

V

V CC

I nput Voltage

VI

Output Voltage

V

20

Va
Continuous Output Current IC(DC)**
Peak Output Current
IC*

200

mA/unit

150

rnA/unit

550

mW/package

Maximum Power Dissipation
Total Power Dissipation

Pd

Maximum Temperature
Operating Temperature

T opt

-25 to + 75

Storage Temperature

T stg

-40 to +125

**DC (1 unit)
* PW,£30 ms, duty cycle,£10 % (The same current for all units)

ELECTRICAL CHARACTERISTICS (Ta = 25°C)
CHARACTERISTIC

SYMBOL

Output Leakage Current

ILl

DC Current Gain

hFE

Collector Saturation Voltage

MIN.

1000

TYP.

MAX.

UNIT

10

J.LA

TEST CONDITIONS
VCC=20 V, VI=O
VCC=5 V, VCE=l V, 10=120 rnA

2500

VCE(sat)

0.6

V

Output Leakage Current

IL2

10

J.LA

Input Voltage

VI

4.0

V

VCC=5 V, VCE=1 V, 10=120 rnA

Forward Voltage (Clamp Diode)

VF

2.0

V

IF=120 rnA

EQUIVALENT CIRCUIT
162

153

144

VCC=5 V, 10=120 rnA, II =0.2 rnA
VCC=VCE=5 V, VI=1.5 V

CONNECTION DIAGRAM (Top View)
135

126

11 7

10

.-~-r~~~+-~~~~~~~--~~~~~~~~--~-o9Rl

=20kll

R2 =1 kll
R3 =20 kll
R4 =2 kll
~----~------~------~------+-----~~----~~~8

882

J1,PA79C
TYPICAL CHARACTERISTICS (Ta = 25°C)
COLLECTOR SATURATION VOLTAGE vs.
OUTPUT CURRENT

OUTPUT CURRENT vs.
COLLECTOR TO EMITTER VOLTAGE
200

«

II /V -

~

120

B::J

80

0
I

.9

>

40

e
....

o

r

u

l1J

1.0

2.0

3.0

4.0

5.0

0.01
10

50

20

100

200

500

10 - Output Current - mA

DC CURRENT GAIN vs.
OUTPUT CURRENT

OUTPUT VOLTAGE vs.
INPUT VOLTAGE

---

VCC 5V
VCE=1 V

----

V

2000

)~

::J

U
f---u 1000 f-------

0

-~

VCC=5 V
RL=50

>

./

5.0

en

\

.c:l
"0
>.....

I~

n

1

I


VCE - Collector to Emitter Voltage - V

Ctl

./

./

.!:

L

./

u

E

LL

L

~0.02

C)

I

/~

I

l

5000

l1J

y

./

~ 0.05

--

~

~V

-

2u

11=45~A -

o

c

0.2

Z
c?5 0.1

~

.....

~

-.

c

.g

VCC 5V
10=100·11

V

"0

g
I

::J

./

./

~ 0.5

50~A

IV

::J

u
.....

-



/60~A

2.5

\

>

I'

\

200

20

50

100

200

500

o

1.0

10 - Output Current - mA

2.0

3.0

4.0

5.0

VI - Input Voltage - V

Va-VI TEST CIRCUIT

r------

VCC=5 V

I
I

Va

SS3

TRANSISTOR ARRAY

I1 PA 80C
FLUORESCENT INDICATOR PANEL DRIVER
PNP-NPN SILICON EPITAXIAL TRANSISTOR ARRAY

DESCRIPTION
The J.lPA80C is a monolithic 'array of seven PNP-NPN structured transistors. This device is especially suited
for driving FIP (Fluorescent Indicator Panel).
PACKAGE DIMENSIONS

FEATURES

in millimeters

~l~~~~~~J~
11

2 3 4 5 6 7
19.4 MAX.

81

N

1.2

•

Pull down resistors incorporated

•

Base current limiting resistors incorporated

•

Package is 16 pin plastic DIP (Dual In-Line Package).

Maximum Voltages and Currents (Ta=25 0 C)

U§1~~
m7.62_

Supply Voltage
Input Voltage

i~

"l~0-15

0

VSS

-60

V
V

-20
50

Output Current

"'0.25~g:~~

0.5±0.1 2.54

High voltage rating VSS: -60 V

ABSOLUTE MAXIMUM RATINGS
X

mmm1:

-U-

•

mA/unit

Maximum Power Dissipation

mW

550

Total Power Dissipation
Maximum Temperature
Storage Temperature

T stg

-40 to +125

0

C

Operating Temperature

T opt

-25 to + 75

0

C

ELECTRICAL CHARACTERISTICS (Ta=25 °C)
CHARACTERISTIC

SYMBOL

Output Leakage Current
DC Current Gain

MIN.

TYP.

IL

MAX.

UNIT

1.0

J.lA

100

280

VCE=2.0 V, 10=20 rnA

hFE2

250

450

VCE=2.0 V, 10=40 rnA

Input Current

0.95

II

1.5

V

1.0

rnA

10=20 rnA, 11=0.3 rnA
VI=-5.0 V

CONNECTION DIAGRAM (Top View)

EaUIVALENT CIRCUIT
15

VCE=50 V

hFE1

Collector Saturation Voltage VCE(sat)

16

TEST CONDITIONS

14

13

12

11

10

11

2
RSl : 20 kn
Rl : 20 kn
RS2: 2 kn
R2: 100 kn

884

3

4

5

6

7

12

13

14

15

1=1 nput (Sase)
O=Output

16

17

Vss

j.lPA80C
TYPICAL CHARACTERISTICS (Ta=25 °C)

DC CURRENT GAIN
OUTPUT CURRENT

1000

COLLECTOR SATURATION VOLTAGE vs.
OUTPUT CURRENT

VS.

>

VCE 2.0 V

~

./

'ro 300

!

l?
+-'

C

~
:J
u 100
u

~~

u.

V

-0

>c

/'

~

/

~

1.0

B
()

0.6

~

/

30

3.0

.g
e

~

60

w

.!:

10- 50 .11

6.0

!9

/

c

0
I

10

I

600

o

V

u
I

/
V

0.3

+-'

~
w

10

U

3

1

6

10

60

30

100

10 - Output Current - mA

OUTPUT VOLTAGE vs.
INPUT VOLTAGE

-60

>

0.1

1

30
3
6
10
10 - Output Current - mA

60

100

Va-VI TEST CIRCUIT

VSS=-40 V
RL=10kn

}JPA80C (1 Unit)

r------,

>
I

ClJ
OJ

-40

---

~
o

>
+-'

:J

0.

;

o

-20

I

o

>

o

-1

-2

-3

-4

-5

-6

VI - Input Voltage - V

aas

TRANSISTOR ARRAY

J-lPA81C
LED,LAMP DRIVER
NPN SILICON EPITAXIAL DARLINGTON TRANSISTOR ARRAY

DESCRIPTION
The J.LPA81 C is a monolithic array of seven darlington transistors. This device is especially suited for driving
LED, lamps and printer hummers with MOS output signal.

FEATURES

PACKAGE DIMENSIONS
in millimeters

•

High DC current gain.

•

High output drive current.

•

Package is 16 pin plastic DIP (Dual In-Line Package).

ABSOLUTE MAXIMUM RATINGS
Maximum Voltages and Currents (Ta=25 °C)
Output Voltage

Vo

Input Voltage
Peak Output Current

45

V

45
400

V
rnA/unit

800

mW/package

Maximum Power Dissipation
Total Power Dissipation

Pd

Maximum Temperature
Operating Temperature
Storage Temperature
* PW=10 ms, duty cycle

T opt
-25 to + 75
Tstg
-55 to +125
~1 0 % (All units turned on)

°C
°C

ELECTRICAL CHARACTERISTICS (Ta=25 DC)
CHARACTERISTICS

SYMBOL

MIN.

TYP.

MAX.

UNIT

10

J.LA

Output Leakage Current

IL

DC Current Gain

hFE

Collector Saturation Voltage

VCE(sat)l

0.82

1.2

V

VI=13 V, 10=100 mA

Collector Saturation Voltage

VCE(sat)2

0.95

1.4

V

VI=13 V, 10=200 mA

Collector Saturation Voltage

VCE(sat)3

1.2

2.2

V

VI=13 V, 10=400 mA

Input Current

II

1.5

mA

1000

VCE=2.5 V, 10=200 mA

R~:b3 tE tB b3 b3 tE tE
AS2

A1
20 kn
AS1 20 kn
AS2 2 kn

VCE=40 V

2500

EQUIVALENT CIRCUIT

sss

TEST CONDITIONS

VI=17 V, 10=0

CONNECTION DIAGRAM (Top View)

08
11

12

16
I

:

17 GND

Input (Sase)
Output (Collector)
GND (Common Emitter)

o :

j.lPA81C
TYPICAL CHARACTERISTICS (Ta=25 °C)

DC CURRENT GAIN vs.
OUTPUT CURRENT

COLLECTOR SATURATION VOLTAGE vs.
OUTPUT CURRENT

>

VCE 2.5 V

~

6000

/'"

3000

<.?
....
c

~
:J

~

1000

U

u

V

/

>c

V

~

~

~

u.

..t:

1,....000

1.0

B 0.6

~

600

I
w

3.0

o
.;;

~

0

VI 13 V
6.0

~
o

~

c

·co

10

I

./

300

V
100
10

V

"0

u

I

/

0.3

....

~
w

U

30

60

100

300
10 - Output Current - mA

600 1000

>

0.1
10

30

60

100

300

600 1000

10 - Output Current - mA

OUTPUT VOLTAGE vs.
INPUT VOLTAGE

Va-VI TEST CIRCUIT

30
VCC=20 V
RL =180

n

}JPA81 C (1 unit)

r-------,
__

>

I

I

Q)

01

~

20

~

4 __ _

--~

'\

0

>....
:J

0.

S

0

I

10

L- _ _ _ _ _ _ _ J

0

>
\.

o

2

3

4

5

6

VI - Input Voltage - V

SS?

TRANSISTOR ARRAYS

/1PA2001 C,/1PA2002C,/1PA2003C,/1PA2004C
LED, LAMP, RELAY DRIVER
NPN SILICON EPITAXIAL DARLINGTON TRANSISTOR ARRAY

DESCRIPTION
The pPA2001 C, 2002C, 2003C and 2004C are monolithic arrays of seven darlington transistors.
These devices are e.specially suited for driving relays, solenoids, LED, lamps, and other devices with up to
0.3 A output current per unit.

FEATURES
PACKAGE DIMENSIONS

o Transient Protected Outputs

in millimeters

•

High DC Current Gain

o High Output Drive Current
161514131211109

o High Output Voltage

~::::::JE[
I~
81
2 3 4 5 6 7
19
.4MAX.

~~2 ~::: ~

mwm

.Jr;2

O.5±O.1 2.54

o Package is 16 pin PLASTIC DIP.

M

~

~~
~

7.62

0-15'

O.25:.g:M

CONNECTION DIAGRAM (Top View)

EQUIVALENT CIRCUIT (1 Unit)
pPA2001C

pPA2002C
SK

IN 0-....-1

~--1---~OUT

SK

I N o--t~-'Vv"v--1~

----~~~OUT

I

I

I
IL ____

pPA2003C

* ___ _

pPA2004C

I

: I nput (Base)

o

:

GND
SK
I

:f
IL _ _

888

* ____ _

Output (Collector)
(Common Emitter)

: Surge Killer

ABSOLUTE MAXIMUM RATINGS
Maximum Voltages and Currents (Ta = 25 °C)
Output Voltage

Vo

60

V

Input Voltage (except MPA2001C)

VI

-0.5 to +30

V

Input Current (only MPA2001 C)

II

25

mA/unit

Output Current

10

500

mA/unit

Output Current

10*

2.3

A/package

Reverse Voltage (Clamp Diode)

VR

60

V

IF

500

rnA/unit

Total Power Dissipation

Pd

900

mW/package

Total Power Dissipation

Pd*

2.5

W/package

Operating Temperature

Topt

-30 to + 75

°c

Storage Temperature

Tstg

-55 to +150

0

Forward Current (Clamp Diode)
Maximum Power Dissipation

Maximum Temperature

C

* PW~20 ms, duty cycle~10 % (The same current for all units)
ELECTRICAL CHARACTERISTICS (Ta = 25 °C)
CHARACTERISTIC
Output Leakage Current
DC Current Gain

SYMBOL

TYP.

IL
hFE

Collector Saturation Voltage

MIN.

VCE(sat)

1000

VCE=50 V

MA

VCE=50 V, Ta=70 °c
V CE=2.0 V, 10=350 mA

1.1

V

10=100 mA, 11=250 MA

1.0

1.3

V

10=200 mA, II =350 J1.A

1.6

V

10=350 mA, II =500 J1.A

11

V

VCE=2.0 V,10=100 mA

12

V

VCE=2.0 V, 10=200 mA

13.5

V

VCE=2.0 V, 10=350 mA

2.0

V

VCE=2.0 V, 10=100 mA

2.4

V

VCE=2.0 V, 10=200 rnA

3.4

V

VCE=2.0 V, 10=350 rnA

5.0

V

VCE=2.0 V, 10=100 mA

6.0

V

VCE=2.0 V, 10=200 mA

8.0

V

V CE=2.0 V, 10=350 mA

1.3

mA

VI=17 V

1.35

rnA

VI=3.85 V

1.0

rnA

VI=5.0 V
VR=50 V

VI

J1.PA2002C
MPA2003C

MA

TEST CONDITIONS

0.9

J1.PA2004C

Input Current

10
100

J1.PA2002C

J1.PA2003C

UNIT

2800

1.2

Input Voltage

MAX.

II

J1.PA2004C
Reverse Current (Clamp Diode)

IR

50

J1.A

Forward Voltage (Clamp Diode)

VF

2.0

V

Terminal Capacitance

Ct

15

pF

IF=350 rnA
VI=O, f=1.0 MHz

Note: Input Voltage and Current of the J1.PA2001 C depend on external resistor.

sss

,uPA2001C,,uPA2002C,,uPA2003C,,uPA2004C
TYPICAL CHARACTERISTICS (Ta

= 25°C)
COLLECTOR SATURATION VOLTAGE vs.
OUTPUT CURRENT

OUTPUT CURRENT vs.
COLLECTOR TO EMITTER VOLTAGE
500


~401J.l.A

V

I.--- ~

~

--

~

r:::

o

.~

~

~

---

1.0

L..

B

......... ~

t)

2

o

0.5

u

'1'=100J.l.A

I

]

I

)

.'S

(5

~

I

100

5.0

>

I

I
0

'0 100·1,

I

~

120 J.l.A

w
U

0

2

4

3

5

>

0.1
10

50

VCE - Col/ector to Emitter Voltage - V

100

500

1000

10 - Output Current - mA

INPUT CURRENT vs.
INPUT VOLTAGE (J.l.PA2002C)

DC CURRENT GAIN vs.
OUTPUT CURRENT
20

VCE 2.0 V
5000
io"

/7

r:::

~

:J

~ 1000
o
I
w

1.6

I
r:::

1.2

/

E

/V

+-'



VCC=20 V
RL =180 n

n
20

20

>

I

I

Q)

Q)

OJ

OJ

~

~

>....

>....

"0

"0

:J

B:J

:J

B-:J

10

0
I
0

10

0
I
0

>

>

\

o

2

\

""

4

6

8

10

12

14

o

0.5

1.0

......

1.5

2.5

2.0

3.0

VI - Input Voltage - V

VI - Input Voltage - V

OUTPUT VOLTAGE vs.
INPUT VOLTAGE (J.lPA2004C)

Va-VI TEST CIRCUIT
VCC=20 V
RL=180

20

n
J..LPA2002C-2004C (1 Unit)

>

VCC=20 V

I

r-----'

Q)

OJ

~

I

0

>....
:J
B:J

o---~I_4
I
I

10

0
I
0

L

I
r-_I~~~--~
I
I

GND.

----I~

Vo

>

o

2

3

4

5

6

VI - Input Voltage - V

891

1. ALPHA-NUMERICAL INDEX
2.

QUICK REFERENCE GUIDE

3.

CROSS REFERENCE GUIDE

4.

MAINTENANCE AND OBSOLETE TYPES

5.

GENERAL STATEMENT

*

NEC's INTEGRATED CIRCUITS FOR CONSUMER USE
o History

0

Types and Features

o Type Number Designation

0

Device Technologies

*

STANDARDS OF INTEGRATED CIRCUITS

*

HINTS ON CORRECT USE

*
*

TECHNICAL SYMBOLS AND TERMS
RELIABILITY AND QUALITY CONTROL SYSTEMS

6. AUDIO APPLICATIONS

7.

6 - 1.

CAR AUDIO

6 - 2.

HOME AUDIO

6- 3.

PORTABLE AUDIO

TV APPLICATIONS

8. DIGITAL TUNING SYSTEMS
9. CLOCKS & WATCHES
10. VOLTAGE REGULATORS

11. ARRAYS
12. OTHERS
13. APPLICATION NOTES

..

OTHERS

INDEX
Page
J,lPC1043C

FG Motor Servo . . . . . . . . . . . . . . . . '. . . . . . . . . . . . . . . . . . . . . . ..

896

J,lPC1052V

Receiver for Radio-Control Systems. . . . . . . . . . . . . . . . . . . . . . . . . ..

902

J,lPC1053V

Servo-Amplifier for Radio-Control Systems. . . . . . . . . . . . . . . . . . . . ..

906

J,lPC1246C

Pre Driver for 3-Phases DC Brushless Motor . . . . . . . . . . . . . . . . . . . . .

911

J,lPC1470H

Motor Govener . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

921

895

BIPOLAR ANALOG INTEGRATED CIRCUIT

,uPC1043C
MOTOR CONTROL CIRCUIT
SILICON MONOLITHIC BIPOLAR INTEGRATED CIRCUIT

The J,lPC1043C is a silicon monolithic integrated circuit developed by NEC for Frequency Generator DC Motor speed control of Hi-Fi player and VTR etc.
The package is 16-pin plastic Dual In-Line Package.

FEATURES
• Operating at wide range supply voltage.
(Vee =9 to 28 V)

• Available for wide range FG. Servomotor.
)
f = 20 to 3 000 Hz
( Vin = 1 to 2 000 m V pop
• Applicable for any kind of motors by choising the external power transistor.

PACKAGE DIMENSJONS

CONNECTION DIAGRAM (Top View)

in millimeters (inches)
19.4 MAX.
(0.763 MAX.)

896

PRE·AMP(lN)

16

RESEYSET

TIMING

PRE·AMP(lI)

2

15

DIFFERENTIAL INPUT

PRE·AMP OUTPUT

3

14

DC AMP OUTPUT CONTROL

SCHMITT(lI)

4

13

ROTATION ADJUSTMENT

SCHMITT'ON)

5

12

HOLD

SCHMITT OUTPUT

6

11

DC AMP~ II

POWER SOURCE

7

10

DC AMP OUTPUT

GND

8

REGULATION VOLTAGE

,uPC1043C
BLOCK DIAGRAM (Top View)

DIFFER EN
TIATION

SAMPLING
&
HOLD

TIMING
CIRCUIT

SCHMITT
TRIGGER

+

POWER
CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Supply Voltage

VCC

Circuit Current

15*

V

Icc

100

mA

Power Dissipation (Ta = 75°C)

Po

350

mW

Operating Temperature Range

T opt

-20 to +75

°c

Storage Temperature Range

T stg

-40 to +125

°c

* Power source directly applied to No.7 pin.

RECOMMENDED OPERATING CONDITIONS
CH ARACTE R ISTI C
Supply Voltage (RCC=O)

SYMBOL

MIN.

TYP.

MAX.

UNIT

VCC1

9

12

15

V

Supply Voltage (RCC = 560 n)

VCC2

19

24

28

V

FG Frequency

fref

20

3000

Hz

PRE-AMP Voltage Gain

Av

20

60

dB

Threshold Voltage

VTH

±20

±200

mV

Operating Temperature Range

Topt

-20

+60

°c

897

,uPC1043C
ELECTRICAL CHARACTERISTICS (Vee = 12 V, Ta=25 °C)
CHARACTERISTIC

MIN.

TYP.

MAX.

UNIT

TEST CONDITIONS
Non-signal input,
Output current = 0

Circuit Current

ICC

4

7

10

mA

Regulation Voltage

V9

5.1

5.7

6.3

V

Voltage at No.9 pin

Maximum Output Voltage

Vo max.

3.5

4.25

V

Output Current = 0

Maximum Output Current

lOmax.

8

12

17

mA

Output Voltage =0

Shunt Regulation Voltage

V70N

15

16.3

18

V

VCC=28 V, RCC=560

dB

f= 100 Hz
Test Circuit - 2
S.G. output terminated
700 mVr.m.s.

PRE-AMP Voltage Gain

898

SYMBOL

Avo

75

84

n

Rotation Temperature
Coefficient

D.NA

0

0.02

%/oC

VCC=28 V, RCC=560 n
Ta = -20 to +60 °c
Rotation
N max . - Nmin.lN (25 °CI/80 °c

Rotation Coefficient
Input Voltage

D.NV

0

0.02

%/V

Variation of Rotation at
V CC = 19 to 28 V, RCC = 560
Variation of Rotation 10 s
to 30 MIN after VCC on at
Vec= 24 V, RCC= 560 n

Rotation Drift

D.NT

0

0.1

%

Output Ripple Voltage

Vo

20

35

mV p _p

Test Circuit-4

Schmitt Noise Voltage

VTN

0

0.7

V _
pp

Test Circuit - 5

ON Resistance

RQ48 ON

100

300

n

Test Circu it - 6

n

tlPC1043C

TEST CI RCUIT -1

TEST CIRCUIT -2 (Avo)

(Icc, Vg, Vo max, 10 max, V7 ON)
b

SW2
lOOk Q

~
~ 1 2v
a
I I

+

100tl F

L---t---,.~--o VCC

lkQ
0. 047 lOkQ

SG

"

m 75Q

~28V
a
l2V ~ l~SG

ICC
Vg
VO max .
lOmax.
V70N

SWI
a
a
a
a
b

SWITCH
SW2
a
a
b
b
a

SW3
a
a
a
b
a

MEASUREMENT
POINT
A7
Vg
VlO
AlO
V7

tlF 10 F +

"

b RCC=560Q

;~

= l2V

tl

I 0.047
I

tl F

Output Impedance=75 Q

~ATT

Input/Output Impedance=75 Q

TEST CIRCUIT -4 (v o )
l30kQ·

r-r'~~..---+------Q SPECI FI ED

MOTOR

FG

22

t-------\Mr----Q

Hi-'Wv-------'

+VCC = 28V

tlF

L--~--------~~---~----------__oCOUNTER

~ Adjust

~ Adjust

SG frequency to obtain 1.4 to 1.5 V
DC Voltage on NO. 10 pin, and then measure
with oscilloscope.

VR 1 so that the measured volue

by counter becomes 20 ms.

TEST CIRCUIT -5 (VTN)

TEST CIRCUIT -6 (R048 ON)

VDC
OSCILLOSCOPE

560Q

t---~_---o

VCC= 28V

'------------0

~ Adjust

+ VCC= 12V

VDC to obtain voltage of 1.5 V between

NO. 13 and NO.9 pin, measure· current,
and calculate by V(1.5 V)/A.

899

,uPC1043C
pPC1043C TIMING CHART

@FG Output

@Schmitt Trigger Output
(SPIN)

@Oifferential Input
(15PIN)
@Timing Trigger Pulse

@Timing Pulse
(lSPIN)

CDSampling Pulse

®Reset Pulse

@Saw-Tooth
Waveform Pulse
(l3PIN)

/2

!

V9

V

Jd
~

Ii

Vg

1

o~_~O______~HI~--------~n~_

v:nfE=~~~~~:;i~~~~~~~:~
V9Q!!
1I~---------4~-+-

V:41 r----.
I .
III
III '

Vg

(Pulse Width=O.2STT)
ON

OFF (Pulse Width=O.S5 TT)
ON

H-________

II
II

II
II

!-------l'f-----------+i+-I-~-

voOg.J..1-gi
CDHolding Capacitor
(l2PIN)

-

900

r

v;eference standard voltage

If

J,lPC1043C
APPLICATION CIRCUIT

Speed Control

r--------------i

I 220kQ

I

I

I
I

I

:

r----~o.!:]J

r-------I
I
I
I

VCC

I
I

I

I

L_______ _

560Q

VCC=24 V

RCC

Note

1:

Note 2:

Set preamplifier gain so that about 2 V p-p voltage is obtained here.
Setting timing time constant T16 on No. 16 pin.

1
x 0.05 ..... (5 % of FG period)
T16 = fref
Note 3:

Setting time constant T13 on No. 13 pin for waveform generator.

1
T13=

fref' (-Qn 0.5)

=C13· R 13

C13 can be obtained by the formula.
C
13::0;:
Note 4:

0.65· T16
3000

DC amplifier gain is determined as shown below.

RNF

AU=--6.8 x 10 3

901

BIPOLAR ANALOG INTEGRATED CIRCUIT

pPC1052V
RECEIVER FOR RADIO-CONTROL SYSTEMS
SILICON MONOLITHIC BIPOLAR INTEGRATED CIRCUIT

DESCRIPTIONS
The JiPC1052V is a silicon monolithic integrated circuit developed for receiver for digital-proportional radio-control
systems.
Included in this device is mixer, oscillator, detector, and

~omparator.

FEATURES
•

Operating at wide range supply voltage (Vee=4.2 to 10.5 V)

•

Wide AGC range.

•

Internal regulation voltage circuit.

•

Reduction of the occupation of mounting area in P.W. Board and hand-insertion time, due to the external shape of the
V-DIP.

PACKAGE DIMENSIONS

CONNECTION DIAGRAM

(in millimeters)
2.8±0.2

19.5 MAX.

~

~

V

x x x x
ex:: ex:: ex:: ex::

MARKING

:::E :::E :::E :::E
lD

123456 7 8 9 101112131415

;
I

('I)

u::icri

0\

:::

r-..

~

2.54

-

I
I

2.54

0.6 MAX.
17.78

X tal

2.

3.

OSC

4.

BY-PASS

5.

MIX. OUT

6.

AGe

7.

IF IN

8.

GND

9.

GND

10.

IF OUT

12.

BY-PASS

13.

VR

14.

OUTPUT

15.

Vee

11.
'-f-.

I

I---

902

I

I

I-' .......

0.35

1
2.54

t--

MIX.IN

1.

BY-PASS

,uPC1052V
BLOCK DIAGRAM (Top View)

ABSOLUTE MAXIMUM RATINGS (Ta=25 °C)
Supply Voltage

VCC

12

V

400

mW

-10 to +50

°C

Power Dissipation

Po

Operating Temperature Range

T opt

Storage Temperature Range

Tstg

-40 to +125

°C

RECOMMENDED OPERATING CONDITION (Ta=25 °C)
CHARACTERISTIC
Supply Voltage

SYMBOL

MIN.

TYP.-

MAX.

UNIT

VCC

4.2

9.0

10.5

V

MIN.

TYP.

MAX.

UNIT

ELECTRICAL CHARACTERISTICS (VcC=9.0 V, T a=25 °C)
CHARACTERISTIC

SYMBOL

TEST CONDITIONS

Circuit Current

ICC

10

14.5

19

rnA

Maximum Sensitivity

M.S.

22

32

42

dBj.,tV

Maximum Sensitivity
Coefficient

LlM.S.

-1

-3

dB

VCC=9 V ~ 4 V

Output Pulse Width Coefficient
(at Large Input Voltage)

LlPW

3

6

J..LS

VIN=110 dBJ..LV

High-Level Output Voltage

VOH

0.7 VR

VR

V

RL=7.5 kn.

Low-Level Output Voltage

VOL

0

0.4

V

RL=7.5 kn.

Regulation Voltage

VR

V

At no signal

3.3

At no signal
Output pulse width
coefficient = 10 J..LS

903

,uPC1052V
TYPICAL CHARACTERISTICS (Ta =25 DC)

CIRCUIT CURRENT vs.
SUPPLY VOLTAGE

REGULATION VOLTAGE vs.
SUPPLY VOLTAGE

25


20

I

1.c:

~
=>
u

(I)

0

15

>
c:

:8co

·5
~

i:3
I
u
!:?

,

3.5

bD

2

10

3.0

I

:l

bD

(I)

a:::
I 2.5
a:::

5

>

2.0
0

2

4

10

8

6

12

o

2

Vee-Supply Voltage-V

4

OUTPUT PULSE WIDTH COEFFICIENT
~ 100
I

~

·u

:::

80

Cl)

o

U

~

60

~
~
:l

40

0.

=>

-5

o
I
;:
0.
"1

20

a

6

8

Vee- Supply Voltage- V

vs. INPUT VOLTAGE

20

'-

AGe range 100 d B - ~
40

I

I

I

60

80

100

120

140

VIN-Input Voltage-dBtN

TEST CI RCU IT (.1PW VS. V IN)

Vee=9 V

50 ~o.o:: :F /
Pulse
Modulation ...--.

904

-

Oscilloscope

10

12

,uPC1052V
APPLICATION CI RCUIT
(1) RADIO-CONTROL SYSTEM

B

(S-006P

attery

SUM2

X

4

CD

96VV)

ON/OFF Switch(Appllcatlon)

r:17 ---------,

II
I
I
I
I

f = 27 MHz Band

I
I
I
I

ol

'9

o
N

Tl :
T2 :
T3:
T4 :

5 k(B)

4

ON/OFF Switch
(Application)

TKXN-27185X(TOKO)
TKXN-27184Z(TOKO)
RMC-162453N9(TOKO)
RMC-222633NO(TOKO)

5 k(B)

3M3

Rl

RF : Feedback Resistance

2SC2001

(2) RADIO-CONTROL SYSTEM ~

Battery

SUM3 x 4
( SUM2 x 4

66VV)

1=27 MHz Band

1,
<>n·

~T'

~

Tl :
T2 :
T3:
T4:

TKXN-27185X(TOKO)
TKXN-27184Z(TOKO)
RMC·162453N9(TOKO)
RMC-222633NO(TOKO)

ON/OFF Switch
(Application)

5 k(B)

3

~
M3

RF : Feedback Resistance

Rl

2SC2001

905

BIPOLAR ANALOG INTEGRATED CIRCUIT

pPC1053V
SERVO-AMPLIFIER FOR RADIO-CONTROL SYSTEMS
SILICON MONOLITHIC BIPOLAR INTEGRATED CIRCUIT

DESCRIPTIONS
The pPC1053V is a silicon monolithic integrated circuit developed for servo-amplifier for digital-proportional radio-control
systems.
Included in this device is the decoder, gate/latch circuit, and servo-amplifier. It operates stably for a wide range of power
supply voltage fluctuation. It can be widely applied to steering control and speed control.
FEATURES
• Internal 2CH servo-circuits and 2CH ON/OFF switch-circuits.
• Operating at wide range supply voltage. (Vcc=3.6 to 9.6 V)
• Internal regulation voltage circuit.
• Reduction of the occupation of mounting area in P.W. Board and hand-insertion time, due to the external shape of the
V-DIP.
CONNECTION DIAGRAM

PACKAGE DIMENSIONS
(in millimeters)

PIN No.
2.8±0.2

19.5 MAX.

~

:---

V

x« x« x« «x

MARKING
1 2 3 4 5 6 7 8 9 10 1112131415

I

:

~

~

~

\0

M

0"1

r-..

t-

I.Ci ex) ::: N

I

~!-

-

CONNECTION

IN

Input

2

CH3

ON/OFF Switch ·3

3

RS

Reset

4

CH4

ON/OFF Switch ·4

5

M2

Mono stable multivibrator ·2

6

VCC

Power supply

7

ST2

Schmitt trigger input ·2

8

003

Drive output ·3

9

VR

Regulation voltage output

I

I

2.54

906

I

I

~

r----

SYMBOL

1

10
2.54

0.6 MAX.

r--17.78

0.35

1

~

11

002

Drive output ·2

ST1

Schmitt trigger input ·1

12

OS

Sink output

13

M1

Mono stable multivibrator'1

14

001

Drive output ·1

15

GND

Ground

jlPC1053V
BLOCK DIAGRAM (Top View)

ABSOLUTE MAXIMUM RATINGS (Ta=25 °C)
Supply Voltage

Vcc

9.8

V

20

rnA

Output Current

CD

los, 1001

Output Current

@, @

1002,1003

12

rnA

ON/OFF Output Current (CH3, CH 4 )

13,14

12

rnA

Power Dissipation

Po

400

mW

Operating Temperature Range

T opt

-10 to +60

°c

Storage Temperature Range

T stg

-40 to +125

°c

RECOMMENDED OPERATING CONDITION (Ta =25 °C)
CHARACTERISTIC
Supply Voltage

SYMBOL

MIN.

TYP.

MAX.

UNIT

VCC

3.6

6.0

9.6

V

ELECTRICAL CHARACTERISTICS (VCC=6.0 V, T a=25 °C)
CHARACTER ISTIC

SYMBOL

MIN.

TYP.

MAX.

UNIT

13

24

rnA

Circuit Current

ICC

High-Level Input Voltage

VIH

1.5

VCC

V

Low-Level Input Voltage

VIL

0

0.4

V

Input Resistance

RIN

G)
Drive Output Current Q)

Sink Output Current

TEST CONDITIONS
At no signal

11

kn.

VIN=3.3 V

lOS

5

10

rnA

RL=470 n.

1001

5

10

rnA

RL=390 n.

0
Drive Output Current ®

1002

3

6

rnA

RL=560 n.

1003

3

6

rnA

RL=560 n.

Saturation Voltage (CH3)

V3 (sat)

0.9

2

V

10=6 rnA

Saturation Voltage (CH4)

V4 (sat)

0.9

2

V

10=6 rnA

Regulation Voltage

VR

2.1

2.4

V

10=0

Drive Output Current

1.8

907

j.lPC1053V
TYPICAL CHARACTERISTICS (Ta=25 °C)

CIRCUIT CURRENT vs.
SUPPLY VOLTAGE

REGULATION VOLTAGE vs.
SUPPLY VOLTAGE

20

<:
E

3.0

15

1.c
~
~

u

~

G
I

u

5

o

I

Q)

tlO

2.0

/

2
'0
>
c

V

:8ro

V

'::;

.!:?

~

~

10

~

>

V

::;

tlO

1.0

f

Q)

a::
I

I

a::
>

/

o
2

4

6

8

6

4

2

10

8

10

vee-Supply Voltage-V

vee-Supply Voltage-V

13, 14 OUTPUT CURRENT

1002, 1003 OUTPUT CURRENT

vs. OUTPUT VOLTAGE

vs. OUTPUT VOLTAGE

12.5
<:
E
I

12.5

\

10

t:::

~

0

I
.:!
}j

7.5

<:
E
I

\
\

~

0

I

5.0

("t)

5.0

\

Cl

9

N

2.5

Cl

2.5

\

9
0

2

6

4

8

10

2

0

4

YO-Output Voltage-V

1001 OUTPUT CURRENT

lOS OUTPUT CURRENT

vs. OUTPUT VOLTAGE

15

~

0

I

5

o

VCC=6 V
<:
E

i\
\

~

9

~
~
u
10
'5
.9~
0

\

2

4

I

U)

9

6

8

10

5

o

VCC=6 V

/

15

1.c

YO-Output Voltage-V

908

10

20

~
u
'5 10
.9-

;:;

8

vs. OUTPUT VOLTAGE

\
1.c

6

YO-Output Voltage-V

20

<:
E

VCC=6 V

\

10

C
~
~
u
'5 7.5
.9-

\

C
Q)

u
'5
c.
'5

VCC=6 V

/

/
0.1

/

V

0.2

0.3

YO-Output Voltage-V

0.4

0.5

tlPC1053V
BLOCK DIAGRAM AND INTERNAL WAVEFORMS (TIMING CHARTS)

OS

001

M1

GNO

T",,20 ms
1.5 ms 1.5 ms 0.8 ms
0.2-0.3 ms __++-I-----+__--1I-t-~
1

®INPUT

2

34567

n n n n

JUJU

II
II

II
II

II
II

II
II

~ L-..J L.....J

- - - - - - - - - - ; J;~-~ ""'"--

L..'

~

"'----

SERVO·

®AMPLIFIER·l

SERVO·

© AMPLIFIER·2

__~r-l~________________~{~__~

OUTPUT VOLTAGE OF ON/OFF SWITCH (CH 3t CH4)
Pulse Count

Output Voltage of CH3

Output Voltage of CH4

1

Hi

Lo

2

Lo

Hi

3

Hi

Hi

4

Lo

Lo

5

Hi

Lo

6

Lo

Hi

7

Hi

Hi

909

,uPC1053V
APPLICATION CIRCUIT
(1)

CD

RADIO-CONTROL SYSTEM

S-006P
Battery ( SU M2 X 4

9V)

6V

1=27 MHz Band

c.~l.

10

•

U")

•

C>
N

Tl :
T2 :
T3:
T4:

(2)

TKXN·27185X(TOKO)
TKXN·27184Z(TOKO)
RMC·162453N9(TOKO)
RMC·222633NO(TOKO)

RADIO-CONTROL SYSTEM
SUM3 X 4
X 4

Battery ( SUM2

5 k(B)

5 k(B)

4

ON/OFF Switch
(Appli( ation)

3M3

Rl

RF : Feedback Resistance

2SC2001

@

66VV)

1=27 MHz Band

.l
~9'
~

Tl : TKXN·27185X(TOKO)
T2 : TKXN·27184Z(TOKO)
T3: RMC·162453N9(TOKO)
T4: RMC·222633NO(TOKO)

910

ON/OFF Switch
(Application)

5 k(B)

4
3

M3

Rl

2SC2001

RF : Feedback Resistance

BIPOLAR ANALOG INTEGRATED CIRCUIT

pPC1246C
PREDRIVER FOR 3-PHASES DC BRUSHLESS MOTOR

DESCR IPTION

PACKAGE DIMENSIONS

The J.LPC1246C is silicon monolithic integrated cir-

in millimeters (inches)

cuit developed for predriver for 3 phases DC brush less
motor.

R1
CR 0.039)

It includes comparators, current switch, rotatory direction switch and drivers in 1 chip.

It inputs from

hall elements.

FEATURES
•

Current switch.

•

Forward/Reverse function.

•

Small input/output phase error.

•

Low current consumption.

1.2

Icc

~
-J.JJ:-=":":"'
:""'' '

(0.047) 0.25:g:~5 0-15·
(0.01)

-5"'" 5 deg.
= 4.5 rnA TYP.

BLOCK DIAGRAM
16 PINS
Rotatory Direction Selector

Vs

OUTPUT

HALL
ELEMENT

OUTPUT

Current
Switch

OUTPUT

I

I
I

OUTPUT

HALL
ELEMENT

OUTPUT}

OUTPUT

GND

911

,uPC1246C
CONNECTION DIAGRAM (Top View)

OUT2

OUT4

OUT6

OUTS

OUT3

OUll

GND

:

l-

I-

.:-

t-=-

t-=-

t-=-

0..
l-

0..
I-

0..
l-

0..
I-

0..
l-

0..
I-

Uo.
UJ

0

0

0

0

>

(!)

UJ

UJ
(!)

~

~

0

~

~

0

~

~

~
~

~

~

~

~

is
z

a:::

pPC1246C

l-

I-

l-

I-

l-

I-

en

0..

0..

0..

0..

0..

0..

UJ

~

~

~

~

~

~

~

~

~

~

~

~

a:::

~

>
UJ

0

>

a:::

~

0..
0..
~

en

IN!

IN2

ABSOLUTE MAXIMUM RATINGS (Ta

912

IN4

IN3

INS

Vee

IN6

= 25°C)

Supply Voltage

Vee

18

V

5

V

Input Voltage to Differential Amp.

V10

Common Mode Input Voltage

VleM

0.3 to Vee

V

Terminal Voltage to V R EF
ReverseTerminal Voltage

VREF

o to Vee
o to Vee

V
V

390

mW

VREV

Power Dissipation

Po Ta = 70°C

Operating Temperature

T opt

-10 to 70

°c

Storage Temperature

Tstg

-55 to 125

°c

jlPC1246C
RECOMMENDED OPERATING CONDITIONS
CHARACTERISTIC

SYMBOL

MIN.

TYP.

VCC

9

12

VICM

1.5

Supply Voltage
Common Mode Input Voltage
VS-Output Current

VS-IO

CHARACTER ISTIC

15

V

VCC-1.5

V

= 25 °C, Vcc = 12 V)

SYMBOL
ICC

I nputlOutput Characteristics
Input Offset Voltage

UNIT

Ref. Fig. 1 - 3 Within Area of
Obligue Lines

ELECTRICAL CHARACTERISTICS (Ta

Circuit Current

MAX.

VOFF

MIN.

TYP.

MAX.

UNIT

2

4.5

7.5

mA

CONDITIONS
VREF

=

0

-5

0

5

deg

-4.2

0

4.2

mV

VICM = 1.5 to 10.5 V

Input Bias Current

IB

-

50

600

nA

VICM = 6 V

Propagation Delay Time

Tpd

-

3

-

p.s

VI = 5 mY, VREF = 10 V, Vo = 9 V
VREF = 10 V, RL = 470
VREF = 8 V, RL = 470

Output Voltage H (11,12,13 PIN)

VOH

8.9

9.3

9.6

V

Output Voltage L (14, 15,16 PIN)

VOL

8.2

8.6

9.0

V

Output Leak Current

IS

-

-

5

p.A

n

n

Ref. PAGE 916,918

Fig. 1 OUTPUT CURRENT vs. SERVO VOLTAGE
50r-~V~CC-=~9~V~-'--~---r~~~~~~~~~

40

I~~
o VCC-VS
(0

~

5

/

/

V

/

~

/

I
VI

>

/~

o

I

L

,

/~

0.2

0.4

0.6

0.8

1.0

IL- Load Current - A

917

,uPC1246C
INPUT CONDITION FOR MEASUREMENT

•

INPUT/OUTPUT CHARACTERISTIC
TABLE 1

IN CASE OF 7 PIN OPEN

IN CASE OF 7 PIN SHORT

TERM~ION

VI

V2

V3

VI

11

VL

VH

~

~

12

VL

VH
VL

VL

VH

VH

VH

VL

~

~

VL

OF MEASUREMENT

13

VH

14

VL

15

~

16

VH

INPUT LEVEL
5mV=s;;:VH=s;;:50mV OR

~
~

V2

V3

VH

VL

~

~

VH

VL

~
~

VH

VL

VH

VH

~

VL

VL

-50mV=s;;:VL=s;;:5mV

• PROPAGATION DELAY TIME
TABLE 2

IN CASE OF 7 PIN OPEN

TERM~ON

VI

V2

11

VIN

VL

~

~

12

VIN

13

VL

14

VIN

15

~

16

VL

OF MEASUREMENT

VI

V2

V3

VL

VIN

~

~

VL

VL

VIN

VIN

VIN

~

VL

V3

~
~

IN CASE OF 7 PIN SHORT

VL

VL

VL

VIN

VIN

~

~
VIN

INPUT LEVEL
VIN = 5 mV, f =s;;: 10 kHz, Duty 50 % PULSE WAVE -50 mV =s;;: VL

~I
. I

Yo·

I
I

~

VIN

VIN

VL

VL

< -5 mV

/,----

/I 90 %
i,

,

--jTPDt--• OUTPUT LEAKAGE CURRENT IS
INPUT CONDITION FOR MEASUREMENT
TABLE 3

IN CASE OF 7 PIN OPEN

TER1~ION
OF MEASUREMENT

VI

V2

V3

VI

V2

V3

VL

VH

~

VL

VH

11

VH

VL

~

~

12

VH

VL

~

13

VL

VH

VH

14

VH

15

~

16

VL

~
~

VL

VL

VL

VH

VH

~

~

INPUT LEVEL
-50 mV =s;;: VL=S;;: -5 mV, 5 mV=s;;: VH =s;;: 50 mV

918

IN CASE OF 7 PIN SHORT

VH

~
~

VL
VH

VH

VL

VL

~

JLPC1246C
CIRCUIT CURRENT vs. SUPPLY VOLTAGE

INPUT/OUTPUT CHARACTERISTIC

10

5

/

/

/

E
I

c:

~
:::l

U

4

/V

~

'3

V

5

~

C3
I
u

!:?

/

/

V

3

/

o
UJ

8
2

''~
......

/

~

UPPER VOLTAGE

5

LOWER VOLTAGE
20
15

/V

o

5

10

15

20

o

25

~10

OUTPUT VOLTAGE
10

VS.

OUTPUT VOLTAGE
10

OUTPUT CURRENT

!\..

VREF=10 V

~

VREF= 10 V

I

CI)

10 V 1.6 mV/'C-

I

VCC=12 V
RL =470 Q

>
6

VREF=5 V

"

~

"0

>
"5

0

AMBIENT TEMPERATURE

8

01)

.e

VS.

VREF

8

>

25

SUPPLY VOLTAGE VCC(V)

Vcc - Supply Voltage - V

I

CI)

01)

6

~

"0

VREF=5 V

>
"5

.e

4

:::l

VREF=5 V

1.7 mV/'C

VRE~=1 V

2.0 mV/,C

25

50

4

0

I

I

0

0

>

>

"

VREF=1 V

I\.

VREF= 1 V

o

20

40

60

10 - Output Current - rnA

2

o

-25

o

75

Ta - Ambient Temperature - 'C

919

pPC1246C
APPLICATION

IS945
Servo Out
Vs

ROTATORY DIRECTION SELECTOR

OIPJ;
REV.

*

VREF

2S0992

IN2

OUT!

IN!

OUT2

IN4

OUT3

*

J.1

PC1246C

IN3

OUT4
OUT5

IN6

*

OUT6

INS

Vee

GNO
• HALL ELEMENT

Vee

920

BIPOLAR ANALOG INTEGRATED CIRCUIT

J-lPC1470H
MOTOR SPEED REGULATORS
SILICON MONOLITHIC BIPOLAR INTEGRATED CIRCUIT

DESCRIPTION
The J,LPC1470H is a monolithic integrated circuit intended as speed regulators for DC motors of record players, tape and
cassette recorders etc. The devices is packaged in a new developed 4-lead quase-TO-126 plastic case.
FEATURES
• Excellent versatility in use.
• High Output current.
• Low Quiescent current.
• Low Reference voltage.
• Excellent parameters stability versus temperature.
• Excellent characteristic at low supply voltage.

BLOCK DIAGRAM
PACKAGE DIMENSIONS
in millimeters
2.8 MAX.

II

1 234

1.2

I

I

I

GND

I

0.6S±0.1

-WE

2.02.02.0
Connection Diagram
1. VCC
2. RT
3. GND
4. MOTOR

921

,uPC1470H

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
V

Vcc

18

Circuit Current

14

2*

A

Package Dissipation

Po
Topt

1.2

W

-20 to +75

Tstg

-40 to + 150

°c
°c

Supply Voltage

Operating Temperature
Storage Temperature

*t

~

5s

RECOMMENDED OPERATING CONDITION
Supply Voltage Range

3.5to 16

VCC

V

ELECTRICAL CHARACTERISTICS (Ta = 25 °C, VCC= 12 V)
MIN.

TYP.

MAX.

UNIT

1.10

1.27

1.40

V

Id

0.5

0.8

1.2

mA

Reflection Coefficient

k

18

Saturation Voltage

V4 (sat)

CHARACTERISTIC

SYMBOL

Reference Voltage

Vref

Quiescent Current

~k

Line Regulation

V

Fig. 4

14 = 100 mA, VCC = 6.3 - 16 V

Fig. 2

~Vref/ ~V
v;:;t
CC

0.06

%/V

14 = 100 mA, VCC= 6.3 - 16 V

Fig. 1

-0.02

%/mA

14 = 30 - 200 mA

Fig. 2

-0.02

%/mA

14 = 30 - 200 mA

Fig. 1

0.01

%/oC

14 = 100 mA, Ta = -20 - +75 °c

Fig. 2

0.01

%/oC

14 = 100 mA, Ta = -20 - +75 °c

Fig. 1

~Vref/ ~Ta
Vref

* Pulse Test: PW

~

TEST CI RCUIT
Fig. 2

Fig. 1

(

AVref_ /,
V ref
AV cc

AVref
Vref

II.

I

I

"kl

k, Ak / AVcc,

AVref IAI4)
Vref

I '

lATa

r-----~------~----_Qvcc

(

Ak_
;')
T/
AI4

Akk~Ta

r-----~--------~------Ovcc

4

922

Fig. 3

%IV

k

V ref,

Fig. 2

0.4

~Vref/~IM
~
~k/ ~Ta

Temperature Coefficient

22
2.0

Fig. 1

n
RM1 = 44 n, RM2 = 33 n
VCC = 4.2 V, RM = 4.4 n

RM = 180

k'~Vcc

~kk/~IM
Load Regulation

20
1.5

TEST CONDITIONS*
14 = 10 mA

10 ms, Duty Cycle

~

2%

,uPC1470H
fig. 4

Fig.3

.-----~------~--------oVee

r-------------~----~Vee

APPLICATION INFORMATION
L

R : Torque Control Resistance
T
RS: Speed Control Resistance

Vee
+

c

,---I

1

--I
I

-------------

I
I

I

I
I

I
I
I

I
I

I
I
I
I

L ______________ _

I
_ _ _ _ _ _ _ _ _ _ _ _ -.JI

[BASIC EQUATION FOR THE MOTOR]
E t = Vref

1.

+ RT

.
Vref
(1 2 +~)

Vee

.

i2 =1(14 + Id
. RT

.

_.

14 - l m

RS

+ Vref

~

1.
.
V ref )
E t = V ref + R T ( j(14 + Id +Rs
1.
V ref
.
V ref }
Et=Vref+RT { "j((l m + RS)+ld+~
RT
1
Et = V ref { 1 + RS (1 +

l

K) f +

They also give:

RT id +

RT
K

.
1m

Em = Eo + Rmim
Eo=Vref {1+::
{ R

m

(1+~)}

+RTid

Eo: Back Electromotive Force
Rm: Internal Resistance (of th~ Motor)
(
K : Reflection Coefficient (= 14 !i2)

= RT

K

923

jlPC1470H
APPLICATION CfRCUIT

+

Note 1. The motor speed can be adjusted by the variable resistor RS.

Note 2. If RT max.

924

> K· Rm min, instability of the motor may occur.

Vee= 12 V
Rm = 19.5 n
RT = 330 n
RS = 1 kn
Eo = 2.3 V
K
= 20

1. ALPHA-NUMERICAL INDEX
2. QUICK REFERENCE GUIDE
3. CROSS REFERENCE GUIDE
4. MAINTENANCE AND OBSOLETE TYPES
5. GENERAL STATEMENT

*

NEC's INTEGRATED CIRCUITS FOR CONSUMER USE

o History

0

Types and Features

o Type Number Designation

*
*
*
*

0

Device Technologies

STANDARDS OF INTEGRATED CIRCUITS
HINTS ON CORRECT USE
TECHNICAL SYMBOLS AND TERMS
RELIABILITY AND QUALITY CONTROL SYSTEMS

6. AUDIO APPLICATIONS
6 -1.

CAR AUDIO

6-2.

HOME AUDIO

6- 3.

PORTABLE AUDIO

7. TV APPLICATIONS
8. DIGITAL TUNING SYSTEMS
9. CLOCKS & WATCHES
10. VOLTAGE REGULATORS

11. ARRAYS

12. OTHERS
13. APPLICATION NOTES

-

APPLICATION NOTES

INDEX
Page

CAR AUDIO:
- APPLICATION OF ELECTRONICALLY TUNED AM TUNER
FOR MOBILE RADIO pPC1215V

928

-

939

I

-

I .....................................
APPLICATION OF MOBILE AM TUNER I J..lPC1216V21 . . . . . . . . . . . . . . . . . . . . . . .
DIFFERENTIAL PEAK FM DETECTOR I J..lPC1028H I . . . . . . . . . . . . . . . . . . . . . . ..

960

- APPLICATION OF I J..lPC1200vl FM-IF IC FOR CAR RADIO . . . . . . . . . . . . . . . . . . . 966
- APPLICATION OF THE I J..lPC587C21 ANDI J..lPC1026CIINTEGRATED CIRCUIT
PLL STEREO MULTIPLEX DECORDERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

973

- EXPLANATION OF CIRCUIT OPERATION OF FM NOISE CANCELLER IC
IJ..lPC1176C 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1001

HOME AUDIO:
- EXPLANATION AND TYPICAL APPLICATIONS OF THE 1 J..lPC1235CI,
AN FM MPX IC FOR HIGH CLASS STEREO TUNER . . . . . . . . . . . . . . . . . . . . . . . . 1024

PORTABLE AUDIO:
-I J..lPC1222C 1 AND I J..lPC1222C(R)1 : THEIR OPTIMUM USAGE . . . . . . . . . . . . . . . . . . 1043
-I J..lPC1222C(R)I, I J..lPC1222CI ; APPLICATION TO SHORT WAVE BAND . . . . . . . . . . . 1045
• APPLICATION OF THE 1 J..lPC1197C 1 INTEGRATED CIRCUIT
PLL MULTIPLEX STEREO DEMODULATOR: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1049

I

I

- APPLICATION NOTE FOR J..lPC1277H EXTERNAL PARTS
AND CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . " . . . . . . . . . . . . . . 1065
-I J..lPC1350C I EXAMPLE OF APPLICATION CIRCUIT
WITH 4 n LOAD AND 0.7 W OUTPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069

DIGITAL TUNING SYSTEMS:

I

- APPLICATION CI RCUIT OF J..lPD1701C-0131 . . . . . . . . . . . . . " . . . . . . . . . . . . . . . . 1076

CLOCKS & WATCHES:
- PROGRAMMABLE PORTABLE CLOCK LSI: IJ..lPD832G SERIES

I " " . " ...... " ... " 1091

I

- HOW TO USE 1 J..lPD1990AC TIME KEEPING LSI FOR
MICROCOMPUTER SYSTEM . . . . . . . . . . . . . . . . . . " ....... " . . . . . . . "."

.0"

••

1106

VOLTAGE REGULATORS:

I

- APPLICATION CIRCUIT OF J..lPC7800H SERIES 13-TERMINAL REGULATORS ..... 1128

..
927

APPLICATION OF ELECTRONICALLY TUNED
AM TUNER FOR MOBILE RADIO tLPC 1 21 5V

1. INTRODUCTION
pPC1215V is a bipolar integrated circuit developed for AM tuners of electronically tuned car radio or car
stereo. The circuit contains a mixer, an oscillator, an oscillator buffer, I F amplifiers, a detector and AGC circuits
as well as a station detector (SO) that issues seek stop signal during station search. With a varactor tuned F ET
amplifier provided externally, an electronically tuned car-radio can be formed.
Because it is packed in a newly developed 19-Pin V-DIP, the area needed for loading is small and thus an improved manoeuverability and the prevention of misfitting trouble can be expected.

2. FEATURES
o
o
o
o
o
o

Suitable for an electronic tuning with a varactor diode.
Low level of oscillation that can minimize the tracking error due to the varactor diode non-linearity.
Provided with a large amplitude oscillation output terminal for PLL synthesizer.
Containing a station detector for the output of auto-scan-seek stop signal.
Containing a detector circuit and a small number of external components needed.
Packaged small.

3. BLOCK DIAGRAM
ANT

RF AMP

Detector Output
Local Output

+

---~---12

---@---,
I

I
I

I
I
I
I
I
I
-'

J"L
SO

Output

Fig. 1 Block Diagram

928

,uPC1215V
4. CIRCUIT DISCRIPTION
4-1 R F Amplifier stage
The antenna of car-radio is capacitive in the AM band, and the capacitive characteristics depend on antenna
length and diameter as well as cable length. Therefore it is difficult to form a tuning circuit with a varactor diode
in the R F amplifier input stage bacause the varactor is inserted parallel to the antenna equivalent capacitance. In
view of this difficulty, an untuned input circuit configuration with some loss in SIN ratio is common. For an
untuned RF input circuit, a J-FET is used since it is well matched to the high equivalent impedance of antenna
and it has a good linearity. Because of untuned input, the interference is larger. On the other hand, it has an
advantage that it does not need any antenna trimmer capacitance adjustment which is indispensable to p-tuned
radios. To use pPC1215V, J-FET2SK195 is needed for the RF amplifier. Pin 2 is provided to pPC1215V for the
output of AGC to the R F amp lifier.

r-----------------Q

V cc=1

aV

C6
C7

r----o

to Mix. Input

from AGC1

I
I

Vtune

'----s;-------I

t----

+

3

from AGC2

Cs

Fig.2 RF Amplifier

The R F amplifier circu it has the untuned input, a single stage series resonance circuit on the source side, and a
single stage parallel resonance circu it on the drain side. The DC gain of the J-FET is maxim ized by feeding I DSS.
The AC gain is maximized to desired signals by means of the source series resonance circuit but it is suppressed to
interference signals. Thus th is circu it configuration has a very small amount of loss and it is much insensitive to
interferences.
The AGC circuit are provided to both the input and the output sides of the FET amplifier. The AGC's have a
similar circu it configuration as that of .ALC for low frequency signals. It operates on a principle that the signal
of the saturated resistance of the AGC transistor) to
path is short-circu ited with a low impedance (about 50
suppress the signal transfer to the next stage. The increase in input signal first sets the AGC on the side of pin 4
into action to prevent MIX to be saturated. The AGC on pin 4 reduces the gain by about 25 dB through the
series resistance of the saturated resistance of 010 and R97. The AGC on pin 2 reduces the gain by as much as
40 dB. Since these AGC circuits can thus maintain the constancy of the output voltage for input voltage variation of as much as 65 dB altogether, good receiving characteristics can be obtained for a wide range of signal
intensity. Furthermore, an AGC circuit of ALC type suppresses the signal input to R FA-F ET. Therefore the
saturation of F ET can be suppressed, and, because of the overall signal level reduction, the R F signal applied to
the varactor diode is kept low enough to reduce distortions in modulating signals caused by the non-linearity of
the varactor diode.

n

929

,uPC1215V
4-2 Frequency Mixer Stage and Local Oscillator
The R F signal from the R F amplifier is delivered to the mixer stage conposed of 013, 014, 011, and 012.
After mixing an I F component is issued from pin 9. The input impedance of the mixer is determ ined by R 10
and it is about 2 kn II 8 pF.
The local oscillator is composed of 017 and 018, feedback resistances R 16 and R 17, L3 of external parallel
resonance circuit, and the varactor capacitance. Due to the non-linearity of the varactor diodes, the varactor
capacitance varies when an oscillator signal with a large amplitude is superposed. In such a case a tracking error
results because of a difference between the varactor capacitance in the mixer and that in the RF stage. Therefore
the oscillation level should be maintained low. It is maintained at about 150 mV r.m.S. over the whole frequency
range by R 16 and R 17.
The amplifier composed of 019, 020, and 021 are a buffer amplifier to deliver the local oscillation into the
P LL frequency synthesizer. The output amplitude from this fuffer is 4.0 V p-o and readily delivered to the CMOS
LSI.
.----__- - - - - - - - - _ - - Q v c c
1FT,

CF,

+ r r - t o 1st IF
I
I

c::I

I

C8
A5

;J;

C9

VtU~C3
Fig.3

-- -

L

3

Mixer and Local Oscillator

4-3 Intermediate-Frequency Amplifier Stage
The 1st I F amplifier stage is composed of an I F amplifier stage and AGC circu it. I nher~ntly it has a gain of
about 34 dB by the emitt&r-grounded amplifier of 034 and the output is drawn out from the emitter follower of
04,. Its gain is controlled by 028, 029, and AGC, circuit in such a manner that the gain reduction of up to about
27 dB is resulted from the increase of detected AGC, voltage. For further input level increase, the before
mentioned R F AGC is set into action. The input impedance of the' st I F amp lifier is determ ined by R32 and it is
about 2.5 kn II 40 pF.
to 2nd IF
r--t--.--.-----.-+--Q

Fig.4 I F Amplifier

930

Vee

,uPC1215V
4-4 Detector stage
The detector stage composed of 053 and a smoothing capacitance is located next to the second IF ampl ifier
composed of 047 and 048. The input impedance to pin 15 is determ ined by R 54, and it is about 4 kn II 20 p F.

4-5 AGC Circuit
pPC1215V has two independent AGC detectors and three AGC circuits. The AGCl detector supplies an AGC
control voltage to the first I F amp lifier, and, a somewhat delayed AGC control voltage to the RFAGC, both
determined by the DC voltage on pin 12 which is the smoothed detector output.
Since the AGC input voltage on pin 12 is directly coupled with the detected output on pin 14, the detected
output and the AGC range can be adjusted by the resistance Rg which is externally connected to pin 14. If Rg is
smaller, the AGC input voltage on pin 12 is less and thus the input voltage at which the AGC starts to operate
becomes larger to increase the detected output. If Rg is larger, AGC starts to operate at a smaller input voltage
and thus the detected output is maintained at a low constant level. The maximum distortionless detected output
(with a voltage depression effeet also taken into account) is 150 mVr.m.s. Accondingly, adjust Rg so that an
output of about 100 mVr.m.s. is obtained at an input of 74 dBpV for a modulation of 30 %.pPC1215V's are
classified into the following ranks according to the needed Rg resistance value in order that the lC's are used at
an optimum detected output with a minimum variation.
}
rank 0 ........ Rg: 12 kn
rank E ........ Rg -18 kn
These settings give a detected output of about 100 mVr.m.s.,
respectively.
rank F ........ Rg = 39 kn
ran k H ........ Rg = 00
On the other hand, the AGC2 detector shown in Fig. 3 is provided for preventing the saturation of RF amplifier or mixer due to the cutoff of AGC from AGCl detector by detuning or due to the interference signal from
the adjacent channel. Therefore it is inactive in normal operations.
from 1st IF

SD Output

to AGC

--4------t--J

to RF AGC

Fig. 5

AM Detector

Fig. 6 Station Detector

4-6 Station Detector Stage
The station detector (SO) is provided to stop automatic scan-seeking when a station is found. A high-level. DC
output is obtained by this detector when a station is found. It has almost the same circuit configuration as the
detector shown in Fig. 5. An I F signal of 450 kHz obtained by the I F amplifier is discrim inated from that of the
adjacent channel by a narrow-band ceramic filter CFM2-450ZL and delivered to this stage through pin 17. After
amplified by one stage by 054 and 060, the signal is demodulated by 036 and a smoothing capacitance, DCamplified by 065 and 069 to drive Darlington open collector transistors 072 and 073.
The input impedance on pin 17 is about 1.8 kn II 25 pF .
.Since the output is obtained from the open-collector transistor 073, the power supp Iy voltage can be set
arbitrarily, for example, to 5 V which is the same as logic system voltage.

931



?ft.

u

:::J

I

~

--

SIN (l:i=20 dB/.N)
........
-'" ~
T.H.D. (Vi=120 dB }.LV)

" ...

8

I

I

I

I
10

i

12

14

16

Vee - Supply Voltage - V

Fig. 8 Dependencies on Power Supply Voltage

933

,uPC1215V
+10

30~----------~----------~----------~----------

150

__

en

""0

+5

I

.g
ttl

a:

z

VI

E

N

C/)

i

I
~

dQ)

O

U:
c.5
C/)

E
I

20

....:J
B:J
0

0

>::s..

'-

B
....

~0

CD
""0

(.)
Q)

I

Q)

..J

I -5
~

0

VI

c

I

Q)

en

0

.E

Vcc=10 V
f = 1 MHz
fmod. =400 Hz
m = 30%
15

X

~



>

\

J

0.1

:::l

~

9o

n. t\ r...

0

IrJ ~V'-

>

V

-0.1

>
:::l

o
o

en
1

>

o

+-'

8

~

0

./V...-

1

o

>

V

0.1

. . . i --

....

....
....

f - I---

>

~~

I.

+-'

4

:::l

o
o

(J)

2

1

o

o

en

\

-._-

6

1
+-'

--

0.1

1'\

-

CIl

-

0.2
0.4
t- Time-s

>
0.6

Fig. 11 Rise-up Waveform
AGC Constants
R7 = 10 k!1, C14 = 10IlF
R6=10k!1, C13=lOIlF

0.8

o

0

0.6
0.2
0.4
t- Time-s

0.8

Fig. 12 Rise·up Waveform
AGC Constants
R7 = 10 k!1, C14 = 0.47 IlF
R6=10k!1, C13=221lF

935

jLPC1215V

from Mute

+

Det. Output

Fig. 13 AGC Smoothing Circuit

6-4 Tweet
Because provided with a detector circuit with little higher harmonics, J.LPC1215V is superior in low tweet.
However, the contained station detector works adversely with respect to the tweet. For suppressing tweet which
is especially a source of trouble during weak input reception, insert a capacitance of 0.01 J.LF between pins 14
and 16,and 0.047 J1F between pin 19 and the GND to suppress an AC component on pin 19 for stop-seek output.
Also, GND should be located as close to the GND pin 10 of the IC as possible. The station detection, which is only
necessary for auto-sean-seek and unnecessary otherwise, may be put inactive during mute off by using mute pulse
to forcefu Ily sh itt the level of DC bias of station detector input on pin 17 with a transistor switch.

7. OTHER TYPICAL APPLICATION CIRCUITS
7-1 Two Stage RF Amplifier
The one-stage series resonance circu it connected to the source of the R F stage FET which is shown in Fig. 7,
Typical Application 1 of J.LPC1215V cannot have high Q because the load Q is determined by the source impedance of the F ET. I n cases where I F and image interference ratio characteristics are of principal concern, the
RF stage can be composed of a double-tuning circuit.
Fig. 16 is an example of M-coupled double-tuning circuit. Table 3 shows the principal electrical characteristics.
C-couple double-tuning circuit can also be conceived. In this case it is necessary to design the circuit with the
change of coupling coefficient taken into account for varying the varactor capacitance. A two-stage RF amplifier
can be used also, with the adjustment of gain balance needed, To reduce IF stage gain, the increase of loss between pins 13 and 15 is also effective.

Table 3 Overall Characteristics (Application Circuit 2)
(T a = 25°C, Vee

= 10 V, f = 1 MHz, fmod = 400

CHARACTERISTIC

= 30

Vo

Usable Sensitivity

S/~~ =

Detector Output Voltage

Vi

mVr.m.s.

20 dB

Signal to Noise Ratio

= 74 dBJ.LV
Vi = 126 dBJ.LV
Vi = 74 dBJ.LV

I F Rejection Ratio

Vo =

I mage Rejection Ratio

= 30 %)

TEST CONDITION

Maximum Sensitivity

Total Harmonic Distortion

936

Hz, m

Vo

30 mV r .m .s., IF

= 450 kHz

= 30 mV r .m.s., f+2

IF

VALUE

UNIT

22

dBJ.LV

29

dBJ.LV

100

mVr.m.s.

0.5

%

50

dB

72

dB

64

dB

tLPC1215V
7-2 Application in LW-band
A LW/MW car radio using pPC1215V can be composed by providing respective separate tuning circuits for LW
and MW (with two sets of varactor diodes, altogether six in number) which can be selected by a switch. However,
to reduce the cost, it is usually to use only three varactor diodes which can be commonly used for LW and MW.
The coil selection is done by using switching diodes. This switching system encounters some difficulties in local
oscillator which are not suffered by conventional mechanical tuners. However, for the LW receiving frequencies
155-281 kHz, common padding capacitances and oscillation coil can be used in both LW and MW without any
increase in tracking error, thus the diode switching is unnecessary. This can be realized by rendering the LW-band
tuning voltage coverage a little broader than that for MW-band. For example, if
MW : 530-1 620 kHz be covered by 430-28 pF capacitance
and
LW : 155-281 kHz be covered by 470-25 pF capacitance,.
the tracking errors in the both bands are minimized with the constants:
Losc = 103.2 pH, Cpad = 470 pF,
stray capacitance for MW CSM = 30.8 pF, and
stray capacitance for LW CSM + Cs + CSL = 435.6 pF.
Thus, the addition of a 408.8 pF capacitance is only necessary to switch over to LW from MW.
Since the F ET of R F amp lifier is externally connected, the band can be selected by switching diodes as has
been done in conventional discrete circu its. When calculated using the above mentioned frequency bands and
varactor capacitances for The Application Circuit 2 of Fig. 16, the following data are obtained.
LR F-MW
CSM
LR F-LW
CSL

206 pH
18 pF
1 666 pH
167.4 pF

SW.Di

0.047 p.F

220 kD.

_~Vtune

220 kD. 470 pF

Vtune~
VD

I

I

l fD
u

0.047 .F

CSM

LW MW
Vee Vee

Fig. 14 MW/LW Switching of Local Oscillator

Fig. 15 MW/LW Switching of RF Amplifier

937

<0
W

OJ

~

Det. Output
ANT.

~

g

""C

Ir----------------------------------------------~----~--~,~-.------~--OVcc:10V

o

~

N

2SK195

~

U'I

<

MPC1215V

.-u.

q::t

"'f
~11 I

; 18 22
-t
kn
C

.l..

17

1 000

Vt

Ll:00~
L2:00~

1-3: 68T. Qu=80min.
4-6: 27T L=170 pH

T

~pF

L3: 7BR-6048Z. T1 : 7MC-4718N. T2: 7MC-10100CO
CF1 : CFM2-450BL
CF2: CFM2-450ZL

1-2: 63Y2T Qu=80 min.
2-3 : 6T
4-6: 2T

L=170 pH

VD1 - VD3 : Varactor Diode
C=500-30 pF

Fig. 16 Application Circuit 2

~

C
22
u.'

t=I :

R

l' "'"~

12
3.9 kn

,
0

so

Output

APPLICATION OF MOBILE AM TUNER !LPC 1216V2

1. INTRODUCTION
The ,uPC1216V2 is a bipolar monolithic IC developed as an AM tuner for a car radio and car stereo, and contains a series of circuits from radio frequency amplifier to AM detector. Since this IC is designed to accomodate
ceramic filters for its I F selective elements, an adjustment-free I F stage is achieved. Furthermore, having little
dependency of the maximum sensitivity on receiving frequency, it is free from sensitivity decrease toward 1 400
kHz and large increase of inter station noise around 600 kHz.
Because it is packaged in newly developed 19-pin vertical dual in-line package (V-DI P), the I C requires small
mounting area. In addition, it can be handled with much more ease and can be free of mismounting due to its
lead formation.
Th is document first describes the performance of each stage, the role of the external components and the characteristics with the changes of those components constants. Finally, an example of circuit application with
perfectly adjustment-free I F stage is described with the characteristics of this circuit.

2. FEATURES
•
o
•
•
•
•
•
•

Adjustment-free I F stage
Little difference in maximum sensitivity on receiving frequency
Large electrostatic breakdown strength at the antenna input
Extremely low pop noise
Low distortion
Superior two-signal selectivity
High sensitivity
Small package

3. ELECTRICAL CHARACTERISTICS
Table 1 is the list of ,uPC1216V2 pincipal electrical characteristics measured by the Fig. 27 test circuit.

Table 1. TUNER PERFORMANCE CHARACTERISTICS
(Ta = 25°C, VCC = 13 V, f = 1 MHz, fmod = 400 Hz, MOD
CHARACTER ISTIC

= 30 %, RL = 10 kQ)

TEST CONDITIONS

VALUE

UNIT

13

dBJ.,N

Max. Sensitivity

Input Voltage at which Det. Output Voltage is 40 mVr.m.s.

Usable Sensitivity

Input Voltage at which SIN is 20 dB

23

dBJ.,N

Detector Output

vi = 74 dBJ.,N

110

mVr.m.s.

Detector Distortion

vi = 74 dBJ..LV

0.4

%

Signal-to-Noise Ratio

vi = 74 dBJ..LV

54

dB

Overload Distortion

vi=126dBJ..LV

0.4

%

I F Rejection

f = 1 MHz, Vo = 40 mVr.m.s., IF = 450 kHz

72

dB

Image Rejection

f = 1 MHz, Vo = 40 mVr.m.s., f + 2 IF

74

dB

Selectivity

f = 1 MHz, Dof = ±1O kHz

45

dB

Tweet

vi = 74 dBJ..LV,

2 IF = 900 kHz

45

dB

3 I F = 1 350 kHz

50

dB

939

j.lPC1216V2
BLOCK DIAGRAM (Top View)

4. CIRCUIT DESCRIPTION
4-1

RF STAGE

The radio-frequency (R F) stage consists of an R F amplifier and an automatic gain control (AGe) circuit.
(see Fig. 1)
. At the antenna resonance circuit, the desired station signal is selected from the signals received by the antenna.
This signal is introduced into the Ie via pin-l, then amplified by transistors 01 .02 and 05 . 06,and outputted
through pin-4. When AGe is not in action, the gain of RF amplifier is about 34 dB (Fig. 2), and its -3 dB cutoff
frequency is about 14 MHz (Fig. 3). When a large signal arrives, AGe is set in action to attenuate the gain of the
RF amplifier. FigA shows the relationship between AGe voltage and gain attenuation. The voltage gain is approximately 34 dB for AGe voltage less than about 1.4 V, whereas, the gain attenuation in05 . 06 takes place
for an AGe voltage from 1.4 to 1.55 V because the bias voltage of 05 begins to decrease. A further large input
that brings more than 1.65 V or so will decrease the bias voltage of 03 to decrease the gain of 01 . 02. In this
way, the output voltage is kept the level constant for input voltage change within about 70 dB. Therefore, a
good receiving characteristics are obtained over the wide range from a faint to large input.

10

120

0.047 Jolt'

c:
;); "'"

0.047 JolF

~'
l~~I
C:LL2
o~

SG

en

~

~

RF

4

l'g

loon

+LL

VCC

~

0

-:i.-

17

3

n

S
I

..... ~f-'

TEST CIRCUIT

:>

/

I
Q)

OJ

"

~
o

I",,~

>
':)

/V

0.

8 0.1

I

,

I
~

I

vee

~~
0.0 1
0.1

/V

I

v

f

= 13
= 1 MHz

RL

=

1 krt

10

IIi - Input Voltage - mVr.m.s.

Fig .. '

940

Equivalent Circuit of R F Stage.

Fig. 2 Voltage Transfer Characteristic of
RF Stage.

100

,uPC1216V2

vcc = 13 V

O~--~----~~--~--~f

va
RL
I-----t.---+-----\-I--.~

= 1MHz
= 15 mVr.m.s.
=

1 kn

0 dB is ref erred to
Av=34 dB.

-201-----t-----+---~--+_----~-~

100

_....

t~

~

-I--

/"

>

r--"

E
I

-401------t-----+-----I-'l---+_----~--~

"-

Cll
OJ

~ 10
o

""~

>

-60

:J

a.

VCC = 13 V
= 1 mVr.rn.s.
vi
= 1kn
RL
The same test circuit as
in Fig. 2

:;

o

1
0.1
f -

10
Frequency - MHz

Fig. 3 Frequency Response of R F Stage.

4-2

100

TEST CIRCUIT
-80~--~----~----~--~----~--~

1.2

1.4

1.6

1.8

V17 - AGC Voltage - V

Fig.4 AGC Characteristic of RF Stage.

FREOUENCY CONVERTER STAGE

The frequency converter stage contains a local oscillator and a mixer (Fig. 5). The local oscillator is composed
of 013.014 and its oscillation frequency is determined by an LC circuit connected through pin-S. The mixer
consists of 0S·09·011. The RF signal fed through pin-6 is amplified by 011 (Av=10 dB, see Fig. 6). Then it is
mixed with the local oscillation signal within 0s·09and converted to an intermediate frequency (IF) signal by the
selectors (T 1 and CF 1) connected to pin-7.
A bypass capacitor C6 is connected to the emitter of 011 (pin-5) for the following purpose. Generally, factor of R F resonance circuit, which is the R F load, is inverse proportional to the receiving frequency, that is,
is lower at higher frequencies than at lower frequencies. In addition, the loss between pin-4 and pin-6 is proportional to the receiving frequency, that is, the loss is larger at higher frequencies. Therefore, the gain of the R F
stage in the high frequency region is lower by approximately 15 dB than in the low frequency region. In conventional I C's, sensitivity decrease in the high region and abnormal increase of inter station noise in the low
region have been experienced as shown by dotted curves in Fig. S. Countermeasures such as insertion of a damping resistor parallel to L T2 have been taken, but they could not solve the problems satisfactorily. Whereas, in
pPC1216V2, the capacitor C6 compensates that frequency characteristic and minimized frequency dependence
of maximum sensitivity as far as possible. The gain increase in high frequency region brings about some deterioration in image rejection, but it brings about the improvement in I F rejection (Fig. S).
If necessary, the mixer gain, concerned with maximum sensitivity, can be changed by varing the constant
of C6. (Fig. 9) Furthermore, the insertion of a several-hundred-ohm resistor in series to C6 makes the frequency
characteristics flat as shown by dotted curve in Fig. 7. In this case, the frequency characteristics become similar
to those of conventional I C's as shown by a dotted curve in Fig. S.

°

°

941

,uPC1216V2

10
lOOn VCC

0.047 I'F 120 n

~~".
J;

0.047 }JF

l00}JF

~ 'M"
;n

G

c6

,

':::L

5

I

;J;
TEST CI RCU IT
7'

V
.....
:l
a.
; 0.1

~~

o

Vee

I
o

/

::.

RL

I'

0.01

1.....

C6

III

11

100
Vi - Input Voltage - mVr.m.s.

Fig. 6 Voltage Transfer Characteristic
of Converter Stage

100

Vee

"

""- 'ti,

>::t
CD
"0

~

Y

Q)

OJ

2

~.....
:l

~
t7Z@
().

~:P

Q"«

Q~
~1.t

0'

lx><::l,;'"

S 10 t=.(IO-'/~.L
o
C-.-

I

o

.......

./

::.

1
0.1

,....,

/'

.........

,

-- -""
-- r-- --... -...
V
,X
"'"
,/'

"-,

v...

....

1---

/

"
1

~

1 300 PF
270 n

.......

11

:

. . r.

1/

V
Vi

en 20

E

ee

= 13V
= 10 mVr.m.s.
RL = lkU
The same test circui
as in Fig. 6

1
10
f - Frequency - MHz

,,",

><:.:

..........

100

gi
.;; E 10

:::=

E~

a ........

w.~

270

,

~I

: ®---ll--i'

1 500 pF
---: @}-H-'vv,-f.:

1'
"

560 pF

-

1/
1/

L.-;..

/, ..... 1F REJECTION-

1//

Fig.7 Frequency Response of Converter
Stage.

942

.~~ ...

RL

TEST CI RCU IT:
Fig.27

r--.....

~~

S)<::l.A'"

r"'-,

I--

= 13V
= 400 Hz
= 30%
= 10 kU

........
"
..,,- P< ~ ....,

I

:>E 100
I

~~

80

I

fmod
m

.I

IMAGE

90 i - - - ~REJECTION

en

1000

10

1

Fig. 5 Equivalent Circuit of Frequency
Converter Stage.

1000

13V
1 MHz
= 1 kU
= 560 pF

f

n

1
1
MAXIMUM SENSITIVITY I - (vo=40 mVr.m.s.)1
.L-1

J.__ +--r

" -'I,
~

.-::-

~

INTER STATION
NOISE (Vi a dB.uVL

r-,...c:: ~,

........

0.5

I

--r-t----T"-"::
1.0

f -

---

1.5

Receiving Frequency - MHz

Fig.8 Effect of C6 on Receiving Frequency
Dependency

jlPC1216V2
m 40
I

1J

VOLTAGE GAIN
VCC = 13V
f
= 1 MHz
= 1 mVr.m.s.
vi
RL = 1 kn

c
'iii
<.9
Q)

OJ

30

~

"0

>;:..

 '" "
It-"~

l>~
./

'Vi

E

The same test circuit
~
~
as in Fig. 6
~

<100

10

3

C.- Capacitance- pF

Fig. 9 Maximum Sensitivity and Voltage
Gain in Converter vs. Capacitance C6

4-3

IF STAGE

The IF stage is composed of an IF amplifier and AGe circuit (Fig. 10). The IF signal taken out the converter
stage is fed through pin-ll to a differential amplifier 018 . 019. The amplified signal is output to pin-12 via
emitter follower transistor 021. The voltage transfer and frequency characteristics of the I F stage are shown
in Figs. 11 and 12, respectively.
When an input signal is increased, AGe circuit operates to lower the 020 base voltage, then the 020 collector
current which is the constant current source of 018·019 decreases, thus leading to the gain attenuation of IF
amplifier. Fig. 13 shows the relationship of the input voltage necessary for a constant output voltage to the AGe
voltage (V17). For V17 less than approximately 1.3 V the AGe circuit is inactive. For V17 at about 1.4 V the
circuit starts to work, and the voltage gain is attenuated accordingly to the increase of AGe voltage until V17
reaches about 1.5 V, the gain is no longer attenuated for V17 more than 1.5 V. In this case, the AGe circuit
for the R F stage is set into action instead.

943

,uPC1216V2
10
0.047 JJF

fl

en

~
;>

11

IF

12

':{

11

/

TEST CI RCU IT

I

'"""""

Q)

OJ

~
a

>....

Wi""

/

:J

e

/

:J

00.1
I
~

,,-

Vee
f

/

= 13V
= 450 kHz

/

1111
10

100

Vi - Input Voltage - mVr.m.s.

Fig. 11

Fig. 10 Equivalent Circuit of I F Stage.

1000

vcc -

13V
- 1 mVr.m.s.
Vi
The same test circuit as
in Fig.ll

'"
~
;> 100

.;:;

I

TEST CIRCUIT

It!

:J

Q)

~ -10r--~---+~-~--~--r--~

OJ

~
a

~

>....

e

1 I--......,-_~---l, l~ "
0.047 JJF

a

E

:J

Voltage Transfer Characteristic of
I F Stage.

.~

i'..

10

~ -20r--~----+-4-~--+---~-~

:J

I

I

i=

a

" ,

~ -30 Vce = 13 V

1'1..

a

~

:;-

f



u

...

0 10
·2
a

E
1

G

~

DE

15

~

}JF

-Va
oJ

~ra:

1

':i

/ ' .......

/

0

TEST CI RCU IT

,

.I

100

:l

Cl.

:;

§

I

+'

0.047 }JF

"*'

/

/

0

ro

/

~OJ

ro
0

>
a

I-

u

I

a:

q

Vce - 13V
f
= 450 kHz
fmad = 400 Hz
= 30%
m
= 10 kn
RL

I

a
~

~

0.1

1

/

"-

10

OJ

I

I

1

J

"

I'

10

I
T.H.D.

100

1000

Vi - Input Voltage - mVr.m.s.

Fig. 14 Equivalent Circuit of Detector
Stage

Fig. 15 Voltage Transfer Characteristic of
Detector Stage

945

,uPC1216V2
!g +1

~

a

:J

~

;- -1

a

I--

-

"0
f

= 450 kHz
fmod = 400 Hz
m
= 30%
Vi
= 94 dBJ.lV
RL = 10 kn
The same test circuit
as in Fig. 15

-2

"0
Q)

o~ -3

u

~ -4

*-

6

I

f

;"

.--

"0

..........

m
vi

RL

'\

~-5

= 13V
= 450 kHz
= 30%
= 94 dB,.N
= 10kn

Vee

::l.

.§ °1

EC
.... 0

The same test circuit as
in Fig. 15

1'1'

I·E
_ 0

~

"'-

-

~ 1-1-

I
I

rot;

V

,:

I

q

"~

\

I

a

r-=

"~

10 k

1k

100

I
I

2

~o

~

T.H.D.

:

3

u>R.

--_. -- -- T.H.D. -- T'=~<2.~
I--~--

30
10

5

100 k

I

10

15

Fig. 17 Characteristics of Detector Stage as
a Function of Supply Voltage

200
en

~

:>

E
I

OJ

:J
Co

/
~~
~

--'

~

~~

.,V

Q)

>

8

./

I

o

::l.

0

-~ -I-

.....

vee

=

f

= 450 kHz

""

...

13 V

100

10

1
RL -

Load Resistance -

kn

Fig. 18 Recovered Output vs. Load Resistance

946

~

fmod = 400 Hz
= 30%
m
= 94 dBJ.lV
Vi
The same test circuit
asinFig.15

V

Q)

a:

15

I

'ICC - Supply Voltage - V

Fig. 16 Electrical Fidelity Characteristic of
Detector Stage

¥

-

V19 - Voltage at pin-19- V

fmod - Modulation Frequency - Hz

a::; 100

f--

%

jlPC1216V2
(1) Waveform at pin-15. C14=1 0 pF

J:
Cl)

en

~

0

A

0.5

:r

I

~

(2) Waveform at loaded end. C14=10 pF
1.0

/ '\:""

o

o

>

o

0.2

0.4

0.8

0.6

0.2

(3) Waveform at pin-15. pin-16 is open.

I
/

4

/

!--i

'V ~

0.5

f

"\

o

\

I

o

;.:~,~<' ..

,' .::::,":,:.'.

'.',' .•. ::'

,.

0.8

0.6

1,0

6

o

..,'

(4) Waveform at loaded end. pin-16 is open.

8

2

0.4

'.:,"'.

~

/C .........

~;<

'<.

, .......,.
:<.: .... I··',:::··:·",::· ''':' ..,',
I'.. ':","',,": L:.'::':':::·"":·' I:,':':':':""::':":':: !::'.::"':.,.'

-0.5
-0.1

0.2

0.4

-1.5

0.8

0.6

o

0.4

0.2

0.6

0.8

...

Time- s

Fig. 19 Switch-on Responce
(VCC = 13 V, f = 1 MHz, fmod= 400 Hz, m = 30 %, Vi = 74 dBJ.LV, RL = 10 kn TEST CIRCUIT: Fig. 27)

1.2

1.0

2
a.
6.

Cl)

E 0.8

I

,~

i=

z

9

0

c

~

~0.6

a.
a. 1
a
a.

,

"
\

.~

~

z

9

./

~/

~N

,,/
0.2

o

\

"r

0.4

I

z
a.
>

tON

\

:.c

(J)

I

/'

,

I

>

o

,,""
o

10

/

/'

---

L

/

'/

VCC = 13V
=
1 MHz
f
fmod = 400 Hz
= 30%
m
= 74 dB~V
Vi
= 10 kn
RL

TEST CIRCUIT: Fig. 27

20

30

C14 - Capacitance - IlF

Fig. 20

Relationship of Switch-on Popping
Noise and Time to C14

947

jlPC1216V2
4-5 AGC CIRCUIT
pPC12l6V2 has two independent AGC detectors, one working effectively for one-signal reception, another
for two-signal (desired and undesired signals) reception. The AGCl controls three AGC circuits, two in the R F
stage and one in the IF stage, and AGC2 controls two RF stage AGC circuits.
AGCl works on the same principle as that for an AGC adopted in conventional receivers. The difference lies
in the detection of AGC, voltage. Contrasted with the conventional utilization of detector output as AGCl voltage, this IC provides a separate detecting circuit to obtain AGCl voltage by rectifying the output of the I F stage
before its entrance to the ceramic filter CF2. This configuration is devised to avoid the widening of tunable region
due to large input as well as the possible abnormal operation of AGCl circuit due to the use of ceramic filters.
Fig. 21 shows the voltage transfer characteristic of the AGCl detecting circuit. In this figure, the solid and dashed
lines are relationship of AGCl voltage V17 to input voltage at pin-18 and at the antenna, respectively.
AGC2 circuit is provided for the protection of the desired signal from the interferences by adjacent signals.
For example, assume that the antenna is receiving a distant station at frequency 1 000 kHz with the antenna
input of 40 dBpV and there is a interfering station at 1 040 kHz, aparted from the desired frequency by 40 kHz.
Fig. 23 shows the interference on the desired signal as a function of the undesired signal strength. I n the figure,
the solid curve shows how far the desired signal is suppressed with increasing the undesired signal when the desired signal is modulated with 400 Hz 30 %, and the undesired signal is unmodulated. With 22 pF capacitor on pin-5,
the output decreases about 5 dB even at the undesired signal of 120 dBpV. However, when AGC2 circuit is inaction with pin-5 grounded, the output depression is as much as about 20 dB. The dashed curve shows how much
interfering signal is output with the increase of undesired signal when the desired signal is unmodulated and the
undesired signal is modulated with 400 Hz 30 %. With 22 J.lF capacitor on pin-5, the desired to interference signal
ratio is as much as almost 20 dB even at the undesired signal of 120 dBJ.lV. Whereas, when AGC2 is not in action,
the interference noise output increases with the increase of the undesired signal. The noise output is larger than
the desired signal by 10 dB at about 105 dBJ.lV of the undesired signal. Further increase of the undesired signal
will saturate the R F amplifier and makes it work as a kind of limiter amplifier, resulting in the decrease of both
desired and undesired signal outputs. In other words, if receivers without AGC2 circuit set close to a transmission antenna of broadcasting station, they will receive this station instead of the desired signal, or produce no
sound at all.
The AGC2 voltage is produced by detecting the output of the frequency converter stage and smoothing it by
pin-5. As shown in Fig. 24, when the input signal more than about 94 dBJ.lV comes to pin-6, the voltage V5 more
than 0.6 V is obtained to actuate the AGC2 circuit.

948

j.lPC1216V2

>
I
,.....

a.
.....
co

OJ
01

I

,
... -...

~

- ~-

1--

V

I
,.....

VCC
f
m

>

o

20

'= 13V
= 450 kHz
=

40

0%

,,
i

/

..... ~

r--- r--.~

I

;

0 100

r---

OJ

W

>

004~
,

~'"
SG
c:
g

LL+

V

:: 100

80

/

0

u

Cll

a:
I

a

:::.

10
10 k

120

100 k

IIi - Input Voltage - dBJ.N

Fig. 21

1-1-

"0

TEST CIRCUIT

60

f

E

I
.....
:J
a.

II

~
a

>

~

:>

I--

I

-- 100-- --- -'"

13V
Vce
f
- 1 MHz
fmod = 400 Hz
m
= 30 %
= 74dBJ.LV
Vi
TEST CIRCUIT Fig. 27

en

1. --

\

C

1000

V

VCC = 13 V
f
= 1 MHz
m
= 0%
TEST CIRCUIT Fig. 27

2

R4 - Resistance -

Voltage Transfer Characteristics of
AGC1 Detector

Fig. 22

1M

n

Recovered Output vs. R4

1.0
+2or---------------------------------------~----~
DUMMY ANTENNA
VCC=13 V

DESIRED SIGNAL

Ides=1 000 kHz SG1~5 pF

vi = 40 dB~V SG
a::l
"0

I
::J

UNDESIRED SIGNAL lund=1 040 kHz
TEST CIRCU IT: Fig. 27

2

I-t--o
J.u.

160-R g{n)T ~

m

I~-

...........

_V~

~ 0.8~--r__1--_+--~--~~~--~--r__1--~
.~
a.
co
~0.6r---r_--r__4--~--1+--_+--_+--~--~~

!:l

9-

o

::J

o

>

"§

I

§;
o

~0.4r-~---+--~--+-~r--1--~--4---+-~

~-20r_--~----_r----~----~--_4----.~+_--~--~
I

Vee = 13 V

o

:::.

0.2 I---I--l---f---+--!-+----f-----l f
m
-404~O~--~----~----~----~----~----~----~--~

=

1 MHz

a

%

°7~0~~~80~~~9~0--~-1~0~0--~-1~1-0--L--J120

Vi(undl - Undesired Signal Input Voltage - dBJ.LV

Fig. 23 Two-signal Receiving Characteristics

=

"i - Input Voltage -dBJ..lV

Fig. 24

Voltage Transfer Characteristic of
AGC2 Detector

949

jlPC1216V2
4-6

OTHERS

Table 2 shows input/output impedance of each stage, and Table 3 DC Voltage of each terminal. Table 4 is
a list of external components. The table summarly describes recommended constants and purpose of the external components along with the influences of the change in these constants on the overall characteristics. Fig. 27
shows a typical application of pPC1216V2 which are used to measure overall characteristics.

Table 2 Input and Output Impedance at Terminals
PIN No.
INPUT IMPEDANCE

OUTPUT IMPEDANCE

FUNCTION

TEST FREQ.

1

RF AMP.

1 MHz

6

MIX AMP.

1 MHz

11

IF AMP.

500 kHz

14

DET.

500 kHz

18

AGCl DET

500 kHz

12

IF AMP.

450 kHz

15

DET.

400 Hz

TYP.
5.8
34
2.5
7
3.2
4
2.8
12
7.0
6
160
20
4.3

UNIT
kn
pF
kn
pF
kn
pF
kn
pF
kn
pF
n
pF
kn

120 n

100n
Note; RX= RX Meter

VCC(13 V)

Fig.25 Input Impedance Test Circuit

950

jlPC1216V2

o.o47rFI~ ~

Note 1 ;

Note 2;

RX = RX Meter
SG = Signal Generator f=450 kHz, m==30 %, vi=94 dBJ..I.V
V = AC Voltmeter
Output impedance at pin-15 is defined equivalently asthe R L which gives an output 6 dB lower than
the output voltage that will be obtained for R L =00.

Fig.26 Output Impedance Test Circuit

Table 3 DC Voltage on Terminals (Test circuit: Fig. 27)
PIN No.

VOLTAGE (V)
PIN No.

VOLTAGE (V)

1

2.8
2
2.0

3
0
4
11

5
1.3
6
2.0

7
11
8
11

9
0
10
0

11
3.5
12
3

13
1.1
14
9

15
1.8
16
3

17
1.1
18
9

19
11.5

951



I

I

/
V

2

-60

0

o

20

Fig.29

0

0

§

6

200

u

I 100
0

q

2

L

./

0

o
o

Fig.30

/

V

J:
~

~

NOISE

Recovered Output and Total Harmonic
Distortion vs. Input Voltage

Vy V

II

Ql

120

//

ro

J: 4
co

'0

0

/V

1/

0

a:

80
100
60
40
Vi - Input Voltage - dBJ.LV

v

e

>

"'..."-

.~
0

.52

OJ

T.H.O'\

= 13 V
=
f
1 MHz
fmod = 400 Hz
vi
= 74 dBJ.,tV
RL = 10 kn

e

S

'2
\

\

vee

0
.;:;

I 300

1\

\
-50

*8

B:::J

1-40

~

en 400

E

\

o

10

:>

\\
\

~

500

~

13 V
f
1 MHz
fmod : 400 Hz
:
m
30%
RL : 10 kn
:

- '~

a:
4

_I--

vee :

,

~

'0

l-

ci
I

./

"0

ro

/

....

I

en -10

~
I
0
....
u
5. -20
'c 8 S
0
o
§

~~

./

~i"'""

v

./

i-20

-

T.H.O.
I
40
60
m - Modulation - %

--

.......

,/

80

100

Recovered Output and Total Harmonic
Distortion vs. Modulation

100
+10

en
"0

...I

0

::J
Co

S-10

*10
I
e
0
.;:;

0

8

t>

(5
u

§

'-30

~

6

ro

0

l-

/

r--.......

If

'c0
o
"2
E
~ -20 J:ro 4
a:

80

Vo

I 2

,

Vee
f

\

m

m=80%

m=30 %1\

Vi

i\

I\~

",

RL

'.

~

T.H.IO~

-

en

= 13V
=
1 MHz
= 30%
= 74 dBIlV
= 10kn

III -

I IllTn

1k
100
fmod - Modulation Frequency - Hz

Fig. 31

956

Electrical Fidelity

"0

"\

160

\\

\

:~

,

~

\

40

Ql
C/)

l

10 k

o

-30

/

"

\

20

Ij
~-'

J

\

~

r\

--

I
I
I

/

\

I

1\ J
-20

/

/ vee

: 13V
=
f
1 MHz
fmod = 400 Hz
= 30%
m
= 20 mVr.m.s.
Vo
RL = 10 kn

-10
0
+10
+20
f - Oetu ne Frequ ncy - kHz

Fig.32 One-signal Selectivity

+30

jlPC1216V2
90

en 80

"C

o

IMAGE REJECTION

~

..............

I
Vee
fmod
m

-10

en

" ""'-

~\

RL

u

c

~ 70

~

A maximum output value
of an output beat

\~

-20

Q)

= 13V
= 400 Hz
= 30%
= 10kO

E
c

I

\,

~ -30

\

I\.
'\

I
\

r?-40

\

i'..

"\

V

"- --

3 IF
--j--

o

--"'....

40
80
60
100
vi-Input Voltage-dBIlV

Fig. 33 Tweet Characteristics

1"F REJECTION
Vee

--

~

= 13V

RL

= 10kn

USABLE SENSITIVITY (sJN=21 dB) I - -

/

I

C20

':;

120

-

I

:..-:-:-:+:-::T

.!.

1

I

1

,I

~ MAX. SENSITIVITY (vo=40 mVr.m.s.l

';;;

'r:;;
c

(/)10
20

"'- j"--..

/

"C

Q)

-60

..---><........

~~

fmod = 400 Hz
= 30%
m

~

'\
}

'....

-50

2 IF

---

~

> 30

k..

f'.... r-.

/'

........

V

50 I

\

~

/

60

\\

"C

/'

,

0.5

1.0

1.5

f - Receiving Frequency - MHz

Fig. 34 Receiving Frequency Characteristics

957

jlPC1216V2
6. CAUTION
6-1. Don't earth the pin-4, pin-8 or power line connected with these pins by mistake. If this is done, the IC may
be damaged.
6-2. When the resistance (100 12) is not used between pin-19 and battery, the capacitance (22 J.LF) of RF
stage power line should"be change for less than 0.5 J.LF.
120
22 JJ.F
~

n

~_--o

+
100 IlF

0.5 IlF

Battery

+

Il PC1216V2

(Safety precaution)
The following application is recommended to keep away the above problems.

~----~~--~VCC

+

IlPC1216V2

* Add a capacitor (0.01 J.LF) between pin-8 and the tuning coil.
** Replace the resistor R2 (12012) with a coil (22 J.LH).
6-3. The C6 should be changed the constant more than 3300 pF in a long wave application. If the constant is
560 pF the conversion gain and maximum sensitivity may be insufficient.
I

6-4. The oscillation amplitude at pin-8should be more than 3 VP-p. if not, the deviation of maximum sensitivity
will be increase.
6-5.

Connect the C10 and CT3 with the power line instead of GND. If not, some IC's will not oscillate.

6-6. The ceramic filter CF1 should be selected so that an oscillation signal leakage may be small. A large
leakage ceramic filter causes maximum sensitivity drop in appearance, because the AGC circuit operates
with the leakage.
6-7. The center tap of 1FT T2 should be used so that the good performance can be obtained at lower supply
Voltage.

958

ttPC1216V2
7. DIFFERENCES BETWEEN /JPC1216V and /JPC1216V2
7-1. The /JPC1216V2 is improved in the supply voltage dependencies of detector output voltage, maximum
sensitivity and local frequency. (See Fig. 35)
7-2. The /JPC1216V2 is improved in the temperature dependencies of detector output voltage and maximum
sensitivity. (See Fig. 36)

The resistance R4 is not necessary in /JPC1216V2 appl ication.

7-3.

vi

E

'- ...........

~

E
I

180

,I

Vj=74 dB,N

~

~ ...

,,-

g-

I-IPC1216V2

100

:>

--..... ......
......

I

a

::::...

~

c. 120

\

V 0=40 mVr.m,S.
\

I
:l ':;

E ' ::;

.~ .~

0

o

TC1216r

(.fJ

-10
+2

~

"PC12\6V2

co

u

a

..J

---~p

I"

-2

;

-4

/

6

.........

>:t

~ -----

1/
8

80

60
20

I
E ~ 10

E ' ::;
~ c

2c5i

0

I

16

Fig. 35 Supply Voltage Dependencies
(f=1 MHz, fmod=400 Hz, m=30 %)

~216V

-..,--~
I-IPC1216V2

~

'" '""
~

,

""

Vj=74 dBI-IV

Vo=40 mVr.m.s.

I

"~
"PC121r2

(.fJ

fo=l 450 kHz
10
12
14
VCC - Supply Voltage - V

"

CI)

._ 0(j)

I-IPC1216V

-'-

"0

:l ':;

,

u

o

=:w---

,/

I


80
+20

CI)

2c5i

160

E

-..;;:::::

VCC=13 V
f=l MHz
f mo d=400 Hz
m=30%

vi

............. I-IPC1216V

120

;

oI

J

140

2 -10
18

-40

o
20
40
-20
Ta - Ambjent Temperature -

60

80

°c

Fig. 36 Ambient Temperature Dependencies

959

DIFFERENTIAL PEAK FM DETECTOR I1PC I 028H

1. INTRODUCTION
The /lPC1028H is a silicon monolithic integrated circuit intended for an FM I F amplifier with a differential
peak detector. This detection system is required minimum external components, is easy to adjust and is of cheap
overall cost, compared with the other FM detection systems such as the ratio detector, the Foster-Seeley detector,
the quadrature detector and so on.
The /lPC 1028H contains a three-stage direct coupled differential amplifier, a low-pass filter, a differential peak
detector and a regulator.
Outline is a 7-lead single in-line package, so that it is suitable for use in automotive radio receivers, where small
mounting space is required.

2. DESCRIPTION OF INTERNAL CIRCUIT
Fig. 1 Equivalent Circuit

7
OUTPUT

As

6
DET. INPUT(-)

BYPASS
2~----~~------+---~------~

2-1 FM-IF AMPLIFIER AND LIMITER SECTION
The intermediate frequency (IF) signal taken out from the front end section, passes through the selection
devices connected between the front end and I F section, and is applied to the input terminal of the /lPC1028H.
It is amplified by the differential amplifier 0 1 to Os and 0 12 ,0 13 through the emitter follower Os. In order to
obtain excellent limiting characteristics, the differential amplifier 0 12 and 0 13 is of transistor current sink
structure. The limiting sensitivity V j (lim) of the /lPC1028H is 48dB/lV TYP. When the level of the I F signal
exceeds 48dB/lV, the differential amplifier 0 12 and 0 13 is pushed into the limiting region and starts limiting
action. When the level of the I F signal increases further, not only the differential amplifier 0 12 and 0 13 , but
the differential amplifier 0 4 and Os, and at further higher levels the differential amplifier Oland O 2 is pushed
into the limiter region and the effect of the limiting action is improved.

960

2-2 LOW-PASS FILTER SECTION
The IF signal amplified by the FM-IF and limiter section contains high harmonic frequency components of
the IF signa/. These high frequency components are sufficiently attenuated by the low-pass filter composed of
R 14, R 1 S , R 16, C3 and C4 •

J1 PC1028H.
2-3 DIFFERENTIAL PEAK DETECTOR SECTION
After high frequency components are eliminated by the low-pass filter section the I F signal is injected into the
FM detector circuit 0 17 to 0 23 , through the emitter follower transistor 0 15 , On the other hand, the I F signal is
injected from 0 15 to the LC circuit; a single tuned coil connected between pin 5 and pin 6, and a capacitor connected between pin 6 and GNO. Then the I F signal is transformed into the AM component proportional to a
certain frequency deviation, due to the characteristics of the LC circuit. The AM signal is injected into 0 18 and
0 21 through the buffer amplifier 0 17 and 0 22 . The 0 18 and 0 21 work in class AB to half-wave rectify the AM
signal. That is, the AM signal is peak detected and smoothed by capacitors C 1 and C"2. The signal which has
been turned into a smoothed audio frequency component is amplified by differential amplifier 0 19 and 020' and
the output is taken out from pin 7 through 0 24 •
2-4 VOLTAGE REGULATOR
The constant voltage is composed by 06' 0 7 , 010,011,016 and 0 3 with the standard voltage of Zener diode
Os' and supplies stable bias to the I F amplifier and the detector sections.

3. CHARACTERISTICS
As shown in Fig. 2, the -3dB limiting sensitivity of the J.lPC1028H is48dBJ.lV TYP .. The gain distribution of
automotive radio receivers is devised so that a limiting sensitivity of about 10dB will be obtained, when a
front end of about 30dB gain, two ceramic filters and one transistor to recover the filter loss are used before the
J.lPC1028H.
The J.lPC1028H alone shows the excellent characteristics of 0.1% TYP. distortion factor with 30% modulation
and 80dB/lV input voltage, and 0.3% TYP. distortion factor with 100% modulation. SIN of 65dB TYP.can be
obtained.
An AM rejection ratio is 40dB TYP. and 50dB TYP. with AM component of 30%, and a FM component of
30% (±22.5kHz) and 100% (±75kHz) respectively.
~he

Fig. 2

o

'*I

>

E

c

3

...

~
;

a

2

J:

CD

-20

'\

10

V

~

1

20

V

.~ -30

3)

V V

Q)

~~-40
E~

40

I -50
ai a:

50

-60

60

~ ~

\\
I

o

-so

70
20

40

1.2

':~~7~Hl_

t22.5MHl
AM '''''0.= 400Hz _
MOD =30%
OdB = 165mV

~~ ~ p

't:
~
0
u

1.0

O.S

£

0.6



'c

§

E
600
I
Ql
Cl

0

'\
I
I

-70

~

>

c

~,=

\ \ r

ci

:i
...,:

F''!D

",.f--.. ~

V

*I

Jcc = IOV

r-..

DETECTOR OUTPUT VOLTAGE, TOTAL
HARMONIC DISTORTION vs. CARRIER
FREQUENCY DEVIATION

700

1.4

.. V

~-

"Oc.
1

~



i5
u
'c

§

-10

vL.

o

I

o

.~

Fig. 3

DETECTOR OUTPUT VOLTAGE, AM
REJECTION, TOTAL HARMONIC
DISTORTION, SN RATIO vs. INPUT
VOLTAGE

V
60

/'

V
80

100

ilJ.' - Carrier Frequency Deviation - kHz

The modulation (modulation frequency deviation) versus detector output characteristics are shown in Fig. 3,
the detector shows a high output of 165mV TYP. with 30% modulation, and 550mV TYP. with 100% modulation.
In Fig. 4, the detector output versus modulation frequency characteristic is shown. When applying deemphasis at the output of the J.lPC1028H, de-emphasis characteristic of 75 J.lS can be obtained by connecting
a 0.01J.lF capacitor between pin 7 and GNO in combination with the internal impedance. When FM stereo
demodulation IC (MPX) is to be used after the J.lPC1028H, a capacitor of 100 to 200pF should be connected
between pin 7 and GNO to eliminate the high frequency components of the carrier, and de-emphasis should be
applied at the output of the MPX IC.

961

,uPC1028H
DETECTOR OUTPUT VOLTAGE vs.
MODULATION FREQUENCY

Fig. 4

Vee
I
AI

C!l
"C

I

~

Vi
0

(5

.............

>
:>

~

0

-5

~

~

'\\

Co·O.Ol,.F

t

0
I

-10

..a

;:,

-15
10

lk

100
I MOO

-

Co

\

=10V
= 10.7MHz
-± 22.5kHz
= 8OdB,.V
Co =0

.l20;--'\-

\

lOOk

10k

Modulation Frequency - Hz

Fig.5 shows DC output voltage of pin 7 (V 7 ) versus frequency, and V 7 at 10.7MHz is 3.5VTYP .. This DC
output can be utilized as the AFC voltage.

Fig. 5
6

5

>I
l"-

e:

a:

-r-..

..........

~

Vee = lOV
Vi = 8OdB,.V

1'\

,
\

.,

&

:g

~

Fig. 6 TEST CIRCUIT

S-CURVE

3

I

\,

">-~:>----....-tr----o

AF Output

'"\

I"-

>

" ----

Det. Coil:
L = 9,.H,Cl - 22pF,OU - 50
TKACA·17473
TaKa INC., or Equivalent.

~

1
-600-500-400-300-200-100

0

+100+200+300+400 +500 +600

(10.7MHz)
I - Carrier Frequency - kHz

The peak frequencies of Fig. 6 can be determined from the following equations.

1
fOI = 211V'L (C I

fO=

211'

j

L (CI

+ C2)
C
+y)

fOI is the series resonant frequency and gives the lower peak frequency, f02 is the parallel resonant frequency
and gives the upper peak frequency, fa shows the center frequency.
Fig.7 shows the power supply voltage dependencies of the pPC1028H. The characteristics indicate that
operation at 6 or 7V is possible, but giving a safety margin, the recommended operating range has been made 8
to 15V.

962

jlPC1028H
Fig. 7

TOTAL HARMONIC DISTORTION,
DETECTOR OUTPUT VOLTAGE, CIRCUIT
CURRENT vs. SUPPLY VOLTAGE

1

2.0
1.B

20

f
f

·
·

10.7MHz
• 400Hz
8OdBj£V

""0

Vi

0

, ...

In

1.6

~

1

1.4

~

-2

:; -3

~

~

~ 10

g-5

U

1' ... -

~--

I

S

;,

T.H.D. (~f·

... -r---

-B

0.2

I--

~

~-7

0.4

... ...

~~-

':;

a1-6

0.6

~~

Icc

0-4

o

O.B

-- -

E

I
c:
Q)

>

1.0

VO~F

...

«

'0

1.2

,

T.H.1D.

5

t

75kHzl- f - -

(~If - t J2.5k~ZI- f - 15

10

v cc

- Supplv Voltage - V

As can be seen in Fig. 7, the characteristicS are smooth and without irregularities within the recommended
voltage range, giving stable operation.
Fig. 8 shows the temperature dependencies of the IlPC 1028H. The circu it of the IlPC 1028H is designed so
that the temperature dependencies have been kept to a minimum.
Fig. 8

LlMITTING SENSITIVITY, DETECTOR
OUTPUT VOLTAGE vs. AMBIENT
TEMPERATURE
BO

Vee
In
'0

>

70

:s.
>-

c:

2!

u

.~

I

I

Vi

I

:

22.5kHz
= 8OdBj£V

=

I

0

I
I

C>

~

"0

I

-1

:

>

"~ 40

~

"E

o

:J 30
I

~

10V

Q)

50

III

~

~f

C>

~ 60

:§

I
Q)

In

&

=

10.7MHz
f
f"OD • 400Hz

20

10

o

--

Vi(liml-

I

I
3

I

:

-4

I
I
I

~ -5

;,

... -4
:I

~:I

...

U

:I

l: 10

U

c. -5
-;
0 -6
0 -7
-S

~
Q)

0

I

-9

I -10

CJ
CJ

0

I

........... ~

§ 0.6

·E

f
.f

CJ

·8 0.4
E

10

J: 0.3

/--

co

(5
I- 0.2

X.

0

r:

......

I 0.1

----

---

.-" ~

T.H.D.1 (A f = ± 75kHz DEV.l

r---

I

-

r---

V?"dAf =±22.5kHz DEV.l
f
= 10.7MHz
f,t.AOO
= 400Hz
V·I".
= SOdB/JV
V OAF" OdB = 136mVr.m.s.

I

0

:~ 0.5

0

d

«

-

'* 0.7

LL

~

VOAF, Icc, T.H.D. vs. Vee

O.S

I

2

4

6

_

T.H.D.2(A f -± 22.5kHz DEV.1

""-

Recommended Operating
0

-

I

I

I

I

8

10

12

14

~anget--I

16

Vee - Supply Voltage - V

965

APPLICATION OF ,uPC1200V FM-IF IC FOR CAR RADIO

1. INTRODUCTION
pPC1200V is an FM-IF amplifier employing a quadrature detector.
The IC utilizes a new type of muting circuit to sufficiently reduce white noises from weak signals, detuning
noises and side detection outputs occurring in both tuning and detuning. Consequently, this device can combine
with an FM noise canceller without causing malfunction of the canceller due to white noises to lead to degradation
in characteristics of both devices, thus achieving full performance of the canceller. Unlike ones with conventional
mut,ing methods, the IC produces greater outputs as the tuning point is approached, making selection of a program easy,
The package is the newly developed 15-pin V-DIP, which greatly reduces mounting area and meets requirements of car radios which calls for high density mounting of parts.

2. FEATURES
•

Low undesirable noise level: -60 dB

•

Very low lateral uncomfortable sound either upper or lower from the tuning point.

•

Capability for effective use of FM noise canceller.

•

Occupatio'n of minimum area in P.C. Board.

•

Easy to handle because of its V-DIP construction.

•

Free of mismounting in P.C. Board due to its lead tuning point.

• Wide range of power supplies: 7 to 12 V

3. GENERAL SPECIFICATION
PACKAGE DIMENSION (in millimeters)

(Fig. 1)
2 8tO 2

:.....-:

195 MAX

~

XX XX

MARKING

cdcxi ":N

1 2 3 4 5 6 7 .8 910111213141

I

I

I

I I

11

I

~

966

~

;;;.-

 - - -__ to F M Detector

45dB

25dB

.1

Fig. 5 Block Diagram of I F Amplifier

Intermediate frequency (IF) signals delivered from
the front end section is supplied, through a sffiecting

80

co

device, to pin 2 of the J.LPC1200V to be amplified by

-0

IF1 AMP and IF2 AMP, which consist, respectively,

.g

of a three-stage differential amplifiers with 45 dB in

a:

voltage gain (R L=330 n) and a single stage differential

·0

amplifier with 25 dB in voltage gain (RL=1 kil).

6
"i'
coc:

The ceramic filter inserted between pins 4 and 6 is
effective in improving signal-to-noise ratios (SIN)
and usable sensitivity of a radio receiver. This is
because wide bandwidth noises are all amplified by

\

\

I

co

~V

OJ

en
I
z
......

20

en

filter. The narrower this bandwidth is, the higher

/

,//

'l

;;;;;.-

I~/ -with a capacitor

40

to within a bandwidth specified by the ceramic

ex

'"
I//

~

z

/

60

the front end and IF 1 AM P before they are lim ited

the SIN ratio becomes, (Vn

with a c~rami~-filt~r

/1

~I

20

V

Vcc =10 V
f
=10.7 MHz_
fMOD=400 Hz
=±22.5 kHz
ld

80
60
40
Vi - Input Voltage - dBIlV

100

Fig.6 Signal-to-Noise Ratiovs. Input Voltage

1I~).

Fig. 6 shows SIN ratios measured by the circuit shown in Fig. 4. Those for the same unit except for
the filter between pins 4 and 6 replaced by a 0.022 J.LF capacitor. This comparison clearly proves the effect
of the ceramic filter between pins 4 and 6.
(2) Quadrature FM Detector
J.LPC1200V employs a well-known quadrature detector which allows easy adjustment with only one tuning
coil. Further, the detector has no steep drop in detected output due to variation of ambient temperature
which occurs in a ratio detector at high temperature.
(3)

Level Detector and Controller
The two types of the level detector are built-in; LEVEL DET. 1 and LEVEL DET. 2. LEVEL DET. 1
detects decrease in input signal level while LEVEL DET. 2 detects deviation from the tuning point. Both
outputs are added and converted in the controller to the signals V11 required for controlling the noise
suppressing circuit. (See Figs. 7 and 8.) The capacitor to be connected to pin 11 takes a part of smoothing
AM modulated components. A smaller capacitor makes the response speed of a control circuit fast but gives
degraded AM suppression characteristics and larger side peaks.

969

j.lPC1200V

Vo

0

/

Cll

-0
CI)

Cl

a

-20

::J

S::J

4

-40

/

>

VCC=10 V
=10.7 MHz
f

V
/

(5

>....

,-'"~

I

CI)

Cl

a

3

(5

>
.....
.....

-~11

a

B
u -60

........

~
CI)
0

I

V\

Cll

/v

I

A

0

V

c:

2

~ """-....

0:
I

kn
fl(n

VR-1O

>

Cl

a

-20

I
I

(5

>....
::J

5"

-40

-

........

0
I

4

\

I

\,

--

j

V

Cl

3

kn

7~

5kn

!9

(5

>
c:

2 0:
I

->

......

~

>
CI)

VR=10

~

VCC=10 V
vj=80 dBIJV

30

40
Vj -

50

60

70

o

80

I

I

o

-0.5

I F I nput Voltage - dBIJV

o

0.5

10.7±f - Frequency - MHz

Fig. 8 Pin-" Voltage vs. Frequency

Fig. 7 Pin-11 Voltage vs. Input Voltage

(4)

"

~

Vl1

~
-60
CI)

A

/\ Vo

",~'\.. - V"V_
---" ~ - --'"~ ""

a

B
u

/

FJ

J

CI)

(:)

~kn

0

l'

.........

V

Noise Supressor
When noise level increases due to decrease in input voltage or due to deviation from a tuning point,
this circuit decreases in gain to reduce uncontortable noises to be demodulated by the FM detector.

10

FM
IF INPUT--.......-~

Q-DET.

Detector
Output

NOISE
SUPPESSOR

t-----t13 Output

Level
Detector ---..-fCONTRO LLE R I - - - - - - - - - - - - - . . . .
Output

+

Fig. 9 Block Diagram of Noise Suppressor

Degree of noise suppression depends on the voltage at pin " ,
noise suppression degree. As shown in Figs. 7 and 8. V"

V,,: the higher V"

increases gradually with decrease in input level or

further deviation from the tuning point, generating gradual variation in the output.

970

produces the greater

)lPC1200V

Signal
vcc -10V
f
,. 98 MHz
l~-.f--#--4----+--i--fMOD
400 Hz
At
- ±22.5 kHz
a

-8~2~0--~0----~+---~4~0--~60~--+---~100~~120

ui - Input Voltage - dS",V
Fig. 10 AUDIO OUTPUT vs.INPUT VOLTAGE

fc 9B±M - Carrier Frequency - MHz

Notes: Figs. 10 and 11 those obtained
from application circuit (Fig. 18)

Fig. 11 AUDIO OUTPUT vs. CARRIER FREQUENCY

Setting of noise suppression levels and side peak magnitudes are at customer's proposal by selecting
a desirable resistance value of VR to be connected to pin 11. VR=O gives the same characteristics as from
conventional ICs, in which limiting sensitivity is maximum while noise levels and side peaks are left not
suppressed. Increasing the resistance value of the VR, though lessening the limiting sensitivity to some degree,
achieves decreased noise levels and side peaks. This is shown in Figs. 10 and 11. The semi-fixed resistor to be
connected to pin 11

should be adjusted and set to an appropreate resistance value so that optimum

characteristics are obtained.
Unlike car radio units with a conventional muting method where outputs abruptly disappears when
input level is smaller than a specified level, p PC1200V does not have such unnatural abruptness but offers
an optimal FM tuner for field intensities peculier to a car radio.

5. TYPICAL CHARACTERISTICS
CD
"0

~ 0.8
c
.g

~ 0.6

(5

'c

I

a:

~ -20
~

0.4

~-40
"0

iii

ci
i

y~

'iii'

a:

~

o
l-

.~

Signal

0

I

u

~

2.0

I

g

I

)

;:)

0.2 ;-60
o

~

o
'0
;:)

...:

o

~-80
I

o

::.

0

/
11

\
\
\

"
\

\

~

...

I

c

.g 1.5

\
"-

Vee =10Vf
= 10.7 MHz
fMOD = 400 Hz
Dev. =±22.5kHz
AMR
"'-"

""

~
u

:;
9- 400

E

(5

'c0

~

I

1.0

100

Fig. 12 v o , AMR, T.H.D. vs. Vi

120

Vce = 10
= 10.7 MHz
f
fMOD = 400 Hz I
= 100 dS",V
Vi

;:)

0

I

0

:0
;:)

iii
I-



0

---- ---- ~--T.H.D.

40
60
80
Vi -IF Input Voltage -dS",V

800

cf!.

...:

0

I

~O

0

0

20
it:,.

40
60
f - Modulation - kHz

80

100

Fig. 13 v o , T.H.D. vs. IJ. f

971

,uPC1200V
7r---~----~----r---~----~--~----~----,

VCC"10V

O~--~----~--~--~~----+---~--~~--~

>
I

~ 6

co
~

-5·~---+-----+----+-----r---~~~-r----r----4

(5

>

:l

:l

9-

5

=c:l

u

6o -10~---+-----+----+-----r----+--~~----r----4

5~---4~~~~~~~~+---~r----r----1-----i

o
o

«

I

I

u

4

0

VCC·l0V
f
=10.7 MHz
ld z :1:22.5 kHz
vi =l00dBJ.'V

-15

..0

0

>
tOA

-201~0----~30-----100~--~3~00----~----~--~~--~----~·

-0.3

-0.2

fMOO - Modulation Frequency - Hz

>::t
I

20

';P.

60

c

.Q

t::

1.5

E

~

'r;;

c

Ql

en 50
Ol

0
0
'c

§1.0

I

'2

5

~

~

.~

I
iii

U

I
-

I-

u

~
;,-

0

v o (vi=l00 dBJ.'V)

,

:g

..........

~
en

---

.Vj(lim)1
f

0

= 10.7 MHz

At

:C

~

,
0

o

0

g

Of

T.H.O. (V i'" 100 dBJ.'V)

"

8

10

I

J

I

12

14

----

1.5

«

0.2

0.3

0:4

>

E

I

I

;

~

a.

:l

'E

J:

:.:i

~

U

I

l-

E

I

~ 1.0

5

~

0

::>

~15

15

E

~
0
0
'c0

~ 40

I

6

*'I
60

u 10
':;

Ol

c

fMOO'"400 Hz ":1:22.5 kHz

.. 50

ci

ot

I

'r;;

I

.y 5

'0

,... .........

~10

>::t

co

~
.:;
.;:;

«

I

10.5

40

10

---

,, ' -

,

,,

9-

°E
'E

:.:i

E

0.1

20

20

2.0

70

I
I

15 ;15

I

1;;

---

ll"-O)

,"-,,

E

«

0

:~

20 0



50

5

J:
~

16

T.H.O. (v i-100 dBJ.'V)

Vcc - Supply Voltage - V
0L-

0

0

~30

Fig. 16 vo, ICC, T.H.D., Ui(lim) vs. VCC

0

25

50

75

Ta - Ambient Temperature _ °c

Fig. 17 vo, ICC; T.H.D., vi(lim) vs. T a

6. TYPICAL APPLICATION

2SC1674
or 2SC1675

C.F.
T

FIE

SFE10.7MA (MURATA Co.)
154AC41109Z (TaKa INC.)
DMA-040 (SANKEN ELE. LTD,)
GAIN
33 ± 3 dB
NF
5 dB MAX.
f
88- 108 MHz

+--

~~ 0 ,

()

11

00
-...J

V.C.O. CONTROL

13'C) 0"12

)

o

14

.N

T

5t

R5
03

~
R7.
A

0 4 ~~

°v

~"

Kl'

~R 9
>
R,o
>

>-

~

"

R 1!)

R22

~11

Ql1

R13
YO,2

l~~

R20

R'6

0 19

't

R21 ~
>

!A2~
'vv

1:

R 26

.--- R28'

R29

t:=

025
"'023

~

29 0 30
R33

011

027

R23

R12

yyy

IVV

R14

0 20

017
'" 016

V

-.... 05

R17

R'~

I

R18

"o

R43

: R42

R37,>

o

R44
~

1

~

'Yv

N

31.

031

0)

R39

R38,

028

o

~
R45

035

036

032

R40

~~"

l/

R31

R30
34 R32

>R36

R27

018

.A

R6

R2!)

.yy

R8

'v'",

K:04)r-.
~~D2 R3
~

GN

3~()

2,l;(

:')1

R

U1

PHASE
COMPOSITE AUDIO AMP. DETECTOR
INPUT
OUTPUT
INPUT L.P.F. L.P.F.

R46

R41

R47

~

033

034

~

037

038

R57

':)7

>

~R48

R58

R49

R59
RIGHT OUTPUT
LEFT OUTPUT

--

R60

049

""

M' B
~53

R55

,...--

0" j1-

~

R50

~54

059

lJ

R69
AA
R70

RS2 >R63'

R~ D,~~ R"~
056 57

'v

H56

R7I

058

O"rrt

045 046

O"~

Jo"

050

'"

R51

055

:>

R61 ~

R52f

L

:

(

9 L.P.F

054(

R66 H67 Rs

( 6

STEREO INDICATOR
LAMP.

610
19kHz
MUNITOR OUTPUT

j.lPC587C2,j.lPC1026C
Voltages of each pin (Vcc

= 10 V,

Refer to Test Circuit)

1.

2.

3.

4.

5.

6.

7.

pPC587C 2

10V

2.8V

4.7V

7.4V

7.4V

10V

0

pPC1026C

10V

2.1V

4.7V

7.4V

7.4V

10V

0

8.

9.

10.

11.

12.

13.

14.

pPC587C 2

2.1V

2.1V

-

2.1V

2.1V

2.1V

-

pPC1026C

2.1V

2.1V

-

2.1V

2.1V

2.1V

-

5. DESCRIPTION OF CIRCUIT
(1) Input Buffer/Amplifier and Bias Supply.
Vee

INPUT
2

PRE
OUT
3

The equivalent circuit of the bias supply and input signal
amplifier is shown in Fig. 5.
In Fig. 5 the stabilized voltage Vs is expressed by 01 +
02 - VBE(OBE1) - VBE(OBE2) and is constant against
variations of the power supply. The various bias voltages
are established, based on this stabilized voltage.
Since 03 operates as an emitter follower circuit, the bias
voltage V2 of the input ampl ifier is expressed by the
following equation.
' - - 4 - - - - - - - - t - - - V4
GND

(HIGH)

7
TO DEMODULATER

On the other hand, the reference voltage V 1 to the DC
Bias Supply and Buffer/ Input Amplifier. amplifier and VCO, to be described later, is determined by
04 attached to the voltage stabil izing circuit.
The input signal amplifier is composed of transistors 05, 06, 07 and resistors R7, R8, and R9, and capacitor
Cl. Since 06 is a multi-collector transistor, it's collector current is nearly the same as the collector current of
05, and the current gain is close to unity.Cl is for frequency stability, and its value is 5 to 20pF. The voltage
gain of the input signal ampl ifier is determined by the feedback circuit R7, R8, and 05, but since the impedance
of 05 can be neglected, the voltage gain can be approximated by the following equation.
Fig.5

Av(AF) =

R7 + R8

---'--~

R7
Stereo signals entering pin (2) are amplified by an amount indicated by the above equation, and then
introduced to the phase detector of the PLL circuit through terminal (3). Besides the above, stereo signals pass
through emitter follower 09, from the emitter of 05, to be injected into the stereo demodulator circuit.

979

j.lPC587C2,j.lPC1026C
(2) Demodulator Circuit.

(Low)
Rout

(High)

5

38kHz

38kHz

--u-

Jl..

Lout 0---+----.---.,
4

R69

R70

Fig. 6

Demodulator Circuit.

Fig. 6 is a stereo demodulator circuit. The circuit consists of a common double-balanced type detector circuit,
and the stereo signal is injected into the lower transistors 039 and 040 while the 38kHz subcarrier is injected into
the upper transistors 041, 042, 043, and 044. Stereo demodulation is accomplished by the subcarrier switch ing
the above transistors. R50, R51, and R52 are feedback resistors inserted for the purpose of cancelling the cross
talk components produced during switching. The subcarrier is a 50% duty cycle 38kHz wave obtained from a
bistable multivibrator (flip-flop) circuit, into which a 76kHz signal produced by the VCO is injected. In both
the ~PC587C2 and ~PC1 026C the stereo lamp and stereo demodulation are synchronized and accomplished
by 059. The base of 059 is controlled by the stereo lamp circuit, and when the stereo lamp is turned ON, 059
will also be turned ON and a 38kHz subcarrier of reverse phase will be injected into the' demodulation circuit.
041, 044 and 042, 043. On the other hand, when the stereo lamp is turned OFF 059 is also turned OFF. and
an in-phase 38kHz subcarrier is injected into 041, 044, and 042. 043 so that a monaural wave is obtained
from output terminals (4) and (5).
(3) Lamp Driver.
DET-IN

Vs

Vee 38kHz

38kHz

Jl.

V4

R59

.IL..

19kHz

L...r

19kHz

R69
R70

8
L.P.F.

6

9
L.P.F.

STEREO INDICATOR

LAMP

Fig. 7

S80

Lamp Driver Circuit.

jlPC587C2,jlPC1026C
Fig. 7 shows a lamp driver circuit with it's auxil iary circuits. Transistors 045 and 046, resistors R53, R54,
R55, R56, R59, and R60, with the addition of external discrete capacitors (8) and (9) form the phase detector
circuit and low-pass filter. In the phase detector circuit the product is formed by the 19kHz (obtained by
counting down the 76kHz frequency produced by the VCO with;a bistable multivibrator (flip-flop)) injected
from the bases of 045 and 046 and the pilot signal contained in· the stereo signal. The high frequency
components of the product are eliminated by the L.P.F., and only terms concerning the phase difference remain.
0
This 19kHz signal differs 90 in phase with the 19kHz signal required· by the PLL loop circuit (That is, it is in
synchronization with the phase of the pilot signal), and when the pha?es are precisely in step the DC component
obtained through the phase detector circuit and L.P.F. will be at maximum level, and when the phases shift the
DC component will decrease. This change in the level of the DC component will move in a positive direction at
terminal (8), and a negative direction at terminal (9). Th is state, when expressed as an equation will take the
following form.
Pilot signal

ep(t) = Epcos wpt

19kHz signal e19(t) = E19cos(wp + t+cos(2wp+t ........ Eliminated byL.P.F.

The lamp drive circuit is composed of transistors 047 to 057 and accessory resistors. 047 and 048 compose
a circuit for amplifying the control voltage obtained from the L.P.F., and 049 is the active load of this
differential amplifier. Now, if the collector current 1047 of 047 and the collector current 1048 of 048 change by
Alc (Alc = 1048 - 1047) due to the control current passed through the phase detector, Alc will flow intact into
the base of 051. 051 is a multicollector transistor, and it's collector current will amplify the change Alc of the
base current and 06 will become biased by this current. And, when this diode is biased transistor 053 will
operate causing lamp driving transistor 056 to be turned ON, thus the lamp will light. On the other hand, when
053 turns ON it will draw the base current of 058, and as a result 058 and 059, will be turned on and stereo
operation will start. Since 051, 052, 06, R62, R63, and R64 form a positive feedback loop, when the lamp is
turned ON the rise of current will be abrupt. In addition, transistors 054, 055, 056, and resistor R68 form a
negative feedback circuit, which composes a current limiting circuit for performing current limiting action.
(4) Phase Detector and DC Amplifier.
DET-IN

11

L.P.F. L.P.F.

13 12

Vs-+------+--r~--~~----

'-----+-- V .C.O.

V1-+--+-~~----~r-~----

Fig. 8

Fig. 8 shows the phase detector and DC amplifier. The
19kHz signal obtained through the dividing circuit will
switch the pilot signal of the stereo signal coming into
terminal (11), and will supply a DC voltage proportional
to the phase difference of these to the DC amplifier composed of 012 to 016. When the phase difference of the
19kHz signal and pilot signal, entering the phase detector,
0
is 90 the control voltage of the PLL circuit will be O. When
the phase of the 19kHz signal advances from the above,
a positive control voltage will be produced, and when the
19kHz phase lags a negative control voltage will be
produced.
When this state is expressed as an equation, it becomes
as follows.

Phase Detector and DC Amplifier.

981

,uPC587C2,,uPC1026C
= Epcoswpt

Pilot signal

ep(t)

19kHz signal

e19(t) E19sin(Wp+¢)t

ep(t)

(Note) (To be precise, 19kHz is a square wave.)

Ep.E19 {
2
sin¢t + sin (2wp+ ¢)t

= e19(t) =

=

Ep~19 sin¢t

} ......... Eliminated by L.P.F.

The DC ampl ifier is composed of transistors 012 to 016, and converts the changes of the control voltage to
current to be sent to the VCO.
(5) VCO
V.C.O.
14

Fig. 9 shows the VCO (Voltage Controlled Oscillator).
This circuit is basically a comparator, which produces
oscillations through variations of the reference voltage.
Now, when transistor 019 is operating, both 021 and
022 will become conducting and the instantaneous
reference voltage of the comparator applied to the base
of 019 is expressed as follows.
R

21

Q

23
On one hand, current will flow from the emitter of 022,
and this current will charge the external discrete capacitor
through R20. The charging time tl of this capacitor is
expressed as follows:

Fig. 9

VCO

When the above charging is completed the comparator will be switched-over and 018 will be turned ON.
At this point, the reference voltage V L of the comparator will become as follows.

The charge accumulated in the external capacitor of terminal (14) will discharge at a rate determined by the
external resistor R and capacitor C.
(6) Divider Circuit.

Vs

----~----~-------.----~~------~~~----__.

R36

R37

.JLJL
76kHz

IL
38kHz

Lr .n...

1.S ..n.

19kHz

Fig. 10 Divider Circuit.

982

19kHz

,uPC587C2,,uPC1026C
Fig. 10 shows the divider circuit. This circuit is a bistable multivibrator (flip-flop). This multivibrator serves
to produce 38kHz and 19kHz, 50% duty cycle, voltages from the 76kHz voltage generated by the VCO. The
38kHz voltage is the subcarrier required for FM stereo demodulation, the 19kHz having a 90° phase difference
with the pilot signal is required as the control voltage of the PLL, and the 19kHz synchronized with the pilot
signal is required for driving the stereo lamp and controlling the stereo switch.

6. CIRCUIT APPLICATIONS OF THE PLL-MPX IC
The J-LPC587C2 and J-LPC1026C are most suitable for use as the FM multiplex demodulatior circuit of car
rad io and stereo sets.
Applications of the J-LPC587C2 shall be described following:
(1) Overriding Stereo-Monaural Switching Circuit.
Stereo multiplex operation on the J-LPC587C2 becomes possible when the 19kHz pilot signal of an ordinary
input synchronizes with the 19kHz generated within the IC, and through this the lamp driver transistor is excited
and the gate circuit is turned OFF to inject a 38kH~ subcarrier into the demodulation circuit. However, cases can
be imagined when stereo ON operation is required regardless of the input conditions of the MPX input circuit.
A general circuit for this case is shown in Fig. 11. As described before, to obtain stereo-ON operation it is
necessary to pass current through the base of transistor 051. but since 047, 048, 049, and 050 consist a
differential amplifier circuit, stereo-ON operation can be obtained if the voltage of terminal (8) is kept higher
than terminal (9). The overriding switching circuit will differ according whether a plus or ground potential is
employed as the control voltage. But, for example, when manual switching of overriding monaural operation is
required, this can be obtained by grounding terminal (9).

R70

®-----------L.P.F.
100n

Fig. 11 Overriding Monaural Circuit.

983

,uPC587C2,,uPC1026C
(2) Beat Interference of AM Reception.

1

5kn Vol.

470PF

r -I
I
I
I

AM-ON
Switch

--+--JVV\,--I16k n

veo
(fil_ _ _ _ _ _ _ _ _

01

cl
I

.,)"

Differing from conventional coil type stereo demodulation circuits, the J,.LPC587C2 has an internal oscillation
circuit, and there are cases when the internal oscillator
voltage of the PL L becomes a source of interference during
AM reception. To solve this problem it is necessary to stop
the VCO. If, as described before, attention is paid to the
fact that the VCO is an oscillator circuit utilizing a
differential comparator, it can be seen that the VCO can
be stopped by grounding the input terminal (14), and the
76kHz oscillation stopped.

Fig. 12 VCO Stop Circuit.
(3) Adjustment of the Lighting Level of the Stereo Lamp.
The method of adjusting the lighting level of the stereo lamp is made clear from the characteristics of the
circuit of Fig. 7. That is, the lighting level can be changed by varying the input ON level of the differential
amplifier composed of transistors 047, 048, 049, and 050. Ordinary, the base potential of transistor 048 will
rise when the 19kHz pilot signal increases, and this ON level will reach a value determined by selecting the
collector current of 047 at a value four times that of 048. Therefore, the lamp lighting level can be changed by
varying the offset voltage of the above differential amplifier. Methods of changing this are shown in Figs. 13 and
14.

®
Fig. 13

984

Fig. 14

-n
cO·
Coupling capacitor of the PLL input.
Divides the audio frequencies and 19kHz
frequency.

L.P.F. of the PLL loop.
Determines the locking range
and the PLL loop gain.

~

0'1

0

Monitor terminal for determining
the oscillation frequencies of the
19kHz VCO, monitor PLL, by
connecting a counter.

en

CI'l

~

~.

"0

.....

o·
:J
0

-t'I

I

Low·pass filter for operating lamp.
C = 0.22J.,LF. Determines the low
region cutoff frequency according
to the time constant made in combination
with the internal impedance.

m

x
.....
en
~

:J

~

0
Vi·
Q
en
.....
en

()

Semi-fixed resistor for determining
the oscillation frequency of the VCO.
Set the resistor so that the oscillation
frequency of terminal (10) is 19kHz.

0

3

"0
0

:J

en

:J

.....

CI'l

0

-t'I

.....

::::r
en
""tJ

r
r

:s:

INPUT

""tJ

o---::.t1-+II-----+---~

X

-~

"'C

Lamp series resistor. Lamp current is
determined by, Vcc - VCE(sat)

R
Input coupling capacitor. C = 2.2J.,LF.
Has an effect on the low frequency
and separation characteristics.
The low region frequency characteristics
by are determined the time constant
made in combination with the 50kn
input impedance.

-

U)

0

I~,
u.

:2.
r-<:t

0

Cll0

MPX input
C3

+

Stereo Indicator lamp

2.2~F

loon
R5
.
...--.._--, lamp protector resistor

u.

:2.

q
0

C!

~

Ol

M

C!

u.

Ol

o

~

M

:2.

a

R3 __~~~_C_7~____________________~_____ Vcc
C6
~________~~~~~~

~----'-------G Vcc

o-+-.....---f:t---Q Rch·OUT

......-~I----C!
R17

~
C"')

19kHz L.P.F.
Bl·13 Korin Giken

+
o-t--+---f:t----o
lch-O UT

987

.uPC587C2,.uPC1026C
Printed Circuit Board

Components Layout for P.W. Assembly (Copper side)

Rl =
R2 =
R3 =
R4 =
R5 =
R6 =

988

56kO
56kn
3.9kn
3.9kO
1000
100kO

R7 = lkn
Ra=16kn
R9 = 5kn Vol.
RlO = 13kO
Rll = 13kO
R12 = 3.3kO

R13
R14
R15
R16
R17

= 2kO Vol.
= 2kn Vol.
= 3.3kO
= 3.3kO
= 3.3kO

Cl = 470pF
C2 = 100l'F
C3 = 2.2s.&F
C4 = 4.71'F
C5 = 4.71'F
C6 = O.OlI'F

C7 = O.OlI'F
Ca = 0.22s.&F
C9 = 0.471'F
ClO = 0.22s.&F
Cll = 0.0471'F
C12 = 4.71'F

C13 = 4.71'F
C14 = 10l'F
C15 = 10l'F

jlPC587C2,jlPC1026C
7. EXAMPLE OF A FM TUNER EMPLOYING A PLL-MPX IC.
Circuit examples employing the J.,LPC587C2 and J.,LPC1026C as the MPX section are shown in Figs. 16and 17,
respectively. And, in Figs. 62 and 63 are shown examples of overall circuit applications of the J.,LPC587C2
employing the J.,LPC1028H as peak detector and FM-I F amplifier, and the J.,LPC1 026C employing the J.,LPC577H
as the FM-I F ampl ifier.
Overall characteristics of the overall circuit application of Fig. 63 are shown in Figs. 62,64,65, and 66.
The difference between the J.,LPC587C2 and J.,LPC1026C has been descri~ed before, but it should be noted that
when the J.,LPC577H is used in the final stage of the FM-I F amplifying circuit, since the detector output is not so
large, it is desirable to use the J.,LPC1026C, which has a high lamp lighting sensitivity, as the MPX. And, when
the J.,LPC1 028H is used as the FM-I F ampl ifier, since a large detector output can be obtained, it is desirable to used
the J.,LPC587C2 as the MPX.

8. TYPICAL CHARACTERISTICS of JJPC587C2 (Ta = 25° C)
Fig. 18 CIRCUIT CURRENT
VS. SUPPLY VOLTAGE

Fig.19

VOLTAGE GAIN
vs. SUPPLY VOLTAGE (Monaural)

(J.,LPC587C2)

(J..LPC587C2)

25

5
4

Quiescent

E 20



I

;:;)

«

5

o

6

Fig.20

10
14
8
12
Vee - Supply Voltage - V

-3
-4
-5

8
10
14
12
Vee - Supply Voltage - V

6

16

Fig. 21

CHANNEL BALANCE

3

I

2

60
f = 1 kHz
Vin(L+R)= 300mV

ClJ

u

c:

co

co

co

(L-R)

o

~ -1

~ 50
I
c:

.g
eco

40

g.

30

(f)

c:

.1

~ ....

-1--

Left
-- Right
I-

-~_--

""'~-

f

-- -- --

= 1 kHz

Vin(pilot)

= 30mV

Qi

~ -2
u
I -3

c:

~ 20

~

U

a:i
.s:: -4

I

ci 10

u

ClJ

-5

-6

CHANNEL SEPARATION

(J..LPC587C2)

(J..LPC587C2)
4

co

16

vs. SUPPLY VOLTAGE

vs. SUPPLY VOLTAGE (Monaural)

'0

= 1 kHz

·ro

-

u

~

3

'0

....c:
~

co

(f)

6

8

10

12

14
Vee - Supply Voltage - V

o
16

6

8

10

12

14

16

Vee - Supply Voltage - V

989

,uPC587C2,,uPC1026C
Fig.23 FREE RUN FREQUENCY CHANGE

Fig.22 CHANNEL SEPARATION
PILOT INPUT LEVEL (~PC587C2)

vs. SUPPLY VOLTAGE

VS.

60

Vcc = 10V
Left

--1--- -- ---- Right

40

I--

I

~

-- ---

+200

c
co
..c

U
>u

~

+100

C

co

Cl)

C.

g.
0
J:(19kHz )

~ 30
Q)

c
c

§

~ 20

a:

u
10

(I)

en

o

o

60
20
40
80
Vj(pilot) - Pilot Input Level - mV

-100

U:

-200

I
~

-300

6

100

(~PC587C2)

4

co

I I
R -+L-

"C

I 50

c

.g
~

~ 40
en
Cl)

V

-

--- --

V

f\

0.01 0.03

0.1

3
0.3
f - Frequency - kHz

10

-2

(.!)

-4

"

Vcc = 10V
Vin = 300mV
o dB=
-6 dB

Iff-

'0

Vcc = 10V
Vin(pilot)
=30mV

20

~

.......

> -8

u

en

0

Cl)

..c

I

~

~ -6

\

c
~ 30

2

'co

L -+R\

Q)

990

16

10
12
14
Vee - Supply Voltage - V

vs. FREQUENCY (Monaural)

~PC587C2)

60

10

8

Fig. 25 VOLTAGE GAIN

Fig.24 CHANNEL SEPARATION

ys. FREQUENCY

g.

' ....

(I)
(I)

I

ci.

~PC587C2)

+300

I

f = 1kHz

~ 50
I
c

.g

N

30

r\

I
;:) -10

\



Ol

."

§

§co

.... 800

1
0.7
0.5

§
x

~

T.H.D.= 1%

/...--

-- f - -

V

co

./

0.1
I 0.07
• 0.05

r:

600

.§

~

I

r

c:

0.3

I

f = 1 kHz Monaural

/

::l

C.

ro
o

/

..J

J:

I

---

E

Vjn '('L~R) = 300mV

B

.~

II

>

10V

3

o

(,uPC587C2)

1200

I

400

I

I

x
E200 I

0.03

-S

f-

0.01
10

3050100

3005001k

o

3k5k 10k 30k50k100k

8
10
12
14
VCC - Supply Voltage - V

6

f - Frequency - kHz

Fig. 32 CHANNEL SEPARATION vs. OSCI LLATOR
FREE RUNNING FREQUENCY
(,uPC587C2)
60

/,

~ 50
I
c:

.g

eco

/

c:
c:

::l

0Ol

U:

\,

Cl

.=c:c:

""r-..

)

Qi

>-

CJ

c:

/ f\

1/

30

V

~ 19.00
Ol
Ol

~

~

1--"-

L-- V

~

-

U:

co

6

Fig. 33 OSCILLATOR FREE RUNNING FREQUENCY
vs. AMBIENT TEMPERATURE
N
(,uPC587C2)
~ 19.50

Ol

7

40

c.

Ol
CJ)

I

Vee=10V
Vjn(pilot) = 30mV

16

B

20

1E

I

.~

ci
~1O

o
I

~
'+-

o
18.00

18.50

-25

19.00

20.00
fosc - Oscillator Free Running Frequency - kHz

Fig. 34 POWER DISSIPATION OF LAMP DRIVER,
SATURATION VOLTAGE OF LAMP DRIVER
vs. LAMP CURRENT
(,uPC587C2)

~

200

~

180

>
5

160

~140

co

..J

o

§

120
100

V

.~

co
.~ 80
."

o....

60

Ol

~ 40
a..
I

20

o

992

25

N

75

50

°c

Fig. 35 OSCILLATOR FREE RUNNING
FREQUENCY vs. ELAPSING TIME
(,uPC587C2)

~ 19.20

Ol

>

'+-

I

....

.::!

Ol

;§

o

Ta - Ambient Temperature _

/
o

--V
20

V
..J.?:-;7'

/

/

V

/ 4

c.

E
co

..J
'+-

3

Pd

o

Ol

en

!!l
'0

-

2

~

~ ~ VeE (sat)

40
80
60
IL - Lamp Current - mA

o

>

~

g
Cl

.~ 19.00

c:

::l

a:

a

1E

....

!w
u

>

19.10

U:

J:

I

100

c:

c:

.g
e
::l

1

>-

CJ

~~

", -

Ol

18.90

~

B

.~

. Vee = 7V. I L = OmA

1

I

Vee = 10V. IL = 40mA
Vee = 16V.IL = 100mA

18.80

o
I
CJ

-.-0

18.70

0

2
t - Elapsing Time - min.

3

j.lPC587C2,j.lPC1026C
Fig. 37 PILOT LEVEL (Lamp ON-OFF)
vs. AMBIENT TEMPERATURE

Fig. 36 CAPTURE RANGE vs.
AMBIENT TEMPERATURE
(J,LPC587C2)
5

-

4


E

I 14

2

a;

Q)

OJ

co

~

---

...J

c::
::J

V--

. - '~

0

~

10

I

8

a...

g -1
u
I -2

c::

c.5 -3

...--i---f--

-4
-5

-25

r--

---

.§ 6

f-- ~

"a.

:s

4

Vee = 10V

--

-----

LAMP OFF
~ I----

2

o

0
25
50
75
Ta - Ambient Temperature _ °e

Fig. 38 POWER DISSIPATION
vs. SUPPLY VOLTAGE
(J..tPC587C2)

-25

0
25
50
75
Ta - Ambient Temperature _ °e

Fig. 39 CAPTURE RANGE
(J..tPC587C2)
100

500

>

~

y
~

~ 12

C

~

~t\Mpl ON

16

.......-

E

LAMP-OFF

I

400

a;

I
c

Vee = 10V
80

>

Q)

...J

o
"~ 300
a.

coc 60
OJ

en

.~

is

.......

Cii 200
~

o

a...

----

I

~ 100

6

8

~

-~

V

---

14
12
10
Vee - Supply Voltage - V

~

....::J

a.

.::

40

.§

E:

20

:s-

J

1

\
\,
"- ,
\

16

O

,

/

I

I

"

';'

17.00
18.00
19.00
20.00
21.00
f - Oscillator Free Running Frequency - kHz

993

jlPC587C2,jlPC1026C
9. TYPICAL CHARACTERISTICS OF IlPC1026C (Ta = 25°C)
VOLTAGE GAIN vs. SUPPLY VOLTAGE
(Monaural) (,uPC1026C)

Fig. 41

Fig.40 CIRCUIT CURRENT vs.
SUPPLY VOLTAGE (,uPC1026C)

5

25

-.

4
Quiescent

 -2

U

I

I

e

~ -3

5

-4

o

-5
8

12
10
14
Vee - Supply Voltage - V

6

6

16

3

C\l

co
CD
~

.c.

co 50
'0

f = 1 kHz
Vin(L+R)= 150mV

2

c

w
c

I
c

,g

(L-R)

~

0

C\l
Q.

-1

U)

ClJ

c
C\l
.c.

I

-3

u

40

f = 1 kHz

8

6

10

12

60

14

I

co

30

-

20

o

16

6

I 50
c

o

l. _

-- -- .... -- -- -- -Left

Right

40

12

14

16

Fig.45 FREE RUN FREQUENCY CHANGE vs.
SUPPLY VOLTAGE (pPC1026C)
N

I.

~-

10

8

Vee - Supply Voltage - V

Vee = 10V ~
f = 1 kHz f -

'0

--

+300

I

I
~

+200

c
C\l
.c.

c.;.

C\l

+100

(J

c

0.
ClJ

ClJ

\.
g
0
U: 19kHz )

U)

:J

30

c

&

U 20
I

-100

ClJ

~

ci.

~ 10

o
o

994

-

ci. 10
en

Fig.44 CHANNEL SEPARATION vs.
PILOT INPUT LEVEL (pPC1026C)

c
c
C\l
.c.

.... -

-

Vin(pilot) =15mV

Vee - Supply Voltage - V

w

Le!J
Right

ClJ

-5

'§

....

I

u -4

-6

\

~~,

w
c

u -2
CD
~

16

60

4

ClJ

12
14
10
Vee - Supply Voltage - V

Fig.43 CHANNEL SEPARATION vs.
SUPPLY VOLTAGE (pPC1026C)

Fig.42 CHANNEL BALANCE vs. SUPPLY
VOLTAGE (Monaural) (MPC1026C)

(J

8

u..
I
~

10

20

30

40
Vi(pilot) - Pilot Input Level - mV

50

-200
-300

6

14
12
10
Vee - Supply Voltage - V

8

16

,uPC587C2,,uPC1026C
Fig.47

Fig.46 CHANNEL SEPARATION vs.
FREQUENCY (JlPC1026C)

VOLTAGE GAIN vs.
FREQUENCY (Monaural) (JlPC1026C)

4

60

1

2
CO
"0

50

co

I
c

.g

co

roQ.

~

/

40

c
c

30

I

20

co
.r:::
U

c

-4

(!J

-6

'co

.........

Uin =

a dB1~0_;
=

i'.

'\

-1.5 dB
~

Cll
OJ

.s

-8

>

-10

o

Vee -10V
Uin (Pilot)
=15mV

ci.

o
-2

I

\
\

Cll
(f)

Cii

"0

vee~~

\

I

~ -12

-14

Cll
(f)

10
0.01

0.03

10

3

0.3

0.1

30

-16
0.01

0.03

0.1

f - Frequency - kHz

3
0.3
f- Frequency - kHz

(JlPC1026C)

(JlPC1026C)
10

10

7

I

3

/

~

V

c

.2

/

+"'

.S:
c

0.7

/

0.5

lI"

/

0

E
co

. . .V

0.3

I

/'

co

'0

l-

I

.....

//

q
0.07
r-: 0.05

0.01

3

-

~

I
c
0

'2

.~

0

.S:
c
0

I

E
co

0.7
0.5
0.3

co

'0

I-

I

q
I
r-:

I

Uin(L+R)=150mV
f = 1 kHz

5

'/

0.1

0.03

7

I

Vee = 10V
f = 1 kHz

5

0

30

Fig. 49 TOTAL HARMONIC DISTORTION
vs. SUPPLY VOLTAGE

Fig. 48 TOTAL HARMONIC DISTORTION
vs. INPUT SIGNAL LEVEL

.~

10

0.1

.....

V

I---

0.07
0.05
0.03

-

a

0.01
100 200 300 400 500 600 700 800 900 1000

Vi - Input Signal Level - mV

6

8

10

12

14

16

Vee - Supply Voltage - V

995

j.lPC587C2,j.lPC1026C
Fig. 50 TOTAL HARMONIC DISTORTION
VS. INPUT SIGNAL LEVEL (Stereo)
(,uPC 1026C)

Fig.51 TOTAL HARMONIC DISTORTION
vs. FREQUENCY (Stereo)
(,uPC1026C)

10

10

7
Vin (pilot) = 15mVf = 1kHz

5

1

II'>

III

:r:

/

0.3

I

1

.S!
c

0.7
0.5

E

0.3

o

,/

f-

V

0.1
I- 0.07
I 0.05

V
./

l-

~

3

~

. . .V

(5

ci
:i

10V

Vin (pilot) = 15mV

:r:

/
-/

ro
I

Vee

III

0.5

E

---

/

0.7

CJ

'c0

is

V

c
0
.;:;

(5

.g
B

y

'*
B

c

/

3

7

5

"""- r-~~

q 0.03

V

:r:

~

-/
0.1

I

0.01
10

30 50 100 300500 1k

0.07

3k 5k 10k 3Qk50kl00k

f - Frequency - Hz

0.05
0.03

0.01

o

10

20

30

40

50

60

70

80

90 100

Vi(pilot) - Input Signal Level - mV

Fig. 53 MAXIMUM INPUT LEVEL
vs. SUPPLY VOLTAGE
(,uPC1026C)

Fig. 52 TOTAL HARMONIC DISTORTION
VS. FREQUENCY (Monaural)
(,uPC1026C)

'*
c

10

1200

7

5

Vee - lOV
vin'iL+R)'=

~~~~

'f

3

(5

1

Qi

0.7
0.5

..J

~

'2
o
E
III

I

..... 800
::l

0.

0.3
J

ro

/

"""-

~

.::

E 600
::l

.~

0.1
I 0.07
.0.05

o

T.H.D.= 1%

>E 1000
>
CD

:r:

:i

I
! I
f = 1kHz (Monaural)

X

III

~

I

0.03

400

x

~

J

III

.s

0.01
10

3050 100

300500 1 k

3k 5k 10k 30k50kl00k

5

'/

/

V

/

200
I

f - Frequency - Hz

o
6

8

10

12

14

Vee - Supply Voltage - V

996

16

,uPC587C2,,uPC1026C
Fig. 54 SEPARATION vs. OSCILLATOR
FREE RUNNING FREQUENCY
(/1PC1026C)
60

Vee
Vin

50

en

"C

I

I
c: 40

o

"-

/

ero

~ 30

19.50

I
>
CJ
c:
Q)
:::J

rr
~

u.

\

.....

Cl

c:

'c

\..

/
1/

CJ)

~

= 10vI
(pilot) = 15mV

.If\

/

'';:;

Fig. 55 OSCILLATOR FREE RUNNING FREQUENCY
vs. AMBIENT TEMPERATURE
N
(J1PC1026C)
I

§
a:

"-

19.00

f.....-

OJ

~

U.

Qi

...

c:
c:
~ 20

--

...--

~~

~

B

~

U

'u

o

I

ci

~

I 18.50

10

~

o

25

75

50

°c

Ta - Ambient Temperature -

20.00

19.00

18.00

o

-25

.....0

fosc - Oscillator Free Running Frequency - kHz

Fig. 56 POWER DISSIPATION AND SATURATION
VOLTAGE OF LAMP DRIVER vs. LAMP
CURRENT. (J1PC1026C)

~

200

/

160

~

--

140

0-

E
ro

/

,I

120

-1

'0c:

100

'g

80

o

V

0-

.~

60

(5

-:;

40

Qj
~

~
I

20

~?

V
o

"C

a...

7'"

--

/

/

Pd

3

I

>
CJ

'': U

rr

~~
0>
0E
ro
-1

~-

a5 19.10
~

~

19.00

'cc:

-

~

u.

~

>

1

g
ro

a

100

80

CJ)

4

*-

3

~
ro

2

c:

= 10V

'g
o

I 18.70
CJ

18

E 16
I

Qi

...

a...

---

1-- ~

a:
-3

-4

-5

Vee = 10V

>

14

12

.2 10

I -2

U

20

-1

a.
B -1

~ f.--

-25

~

o

r--

I

8

.2

6

-;s

4

...

E:

~

~

2
25

50

Ta - Ambient Temperature _

75

°c

3

Fig. 59 LAMP TERN ON AND TURN OFF
SENSITIVITY vs. TEMPERATURE
(J1PC 1026C)

>

0

2

0

t - Elapsing Time - min.

Q)

Q)

--

1

I

Vee = 1OV • I L = 40mA
Vee = 16V. IL = loomA

B 18.80

I

-

I

I

"~

~

:§

a:
~

~~

18.90

I
Vin (pilot) = 15mV-

-

Vee = 7V.IL = OmA

~

Fig. 58 CAPTURE RANGE vs. AMBIENT
TEMPERATURE (J1PC1026C)
Vee

l

u.

"0

I L - Lamp Current - mA

5

I

:::J

2 ~

~
VCE(sat)

'';:;

60

40

I

:::J

ro

20

N

~ 19.20

...~

I 180

Qj
>

Fig. 57 OSCILLATOR FREE RUNNING
FREQUENCY vs. ELAPSING TIME
(J1PC 1026C)

0

-25

---

LAMP ON
J

~

~

-+-- ~

~

LAMP OFF

r--

o

25

50

Ta - Ambient Temperature _

75

°c

997

,uPC587C2,,uPC1026C

Fig.61 CAPTURE RANGE
(IlPC1026C)

Fig. 60 POWER DISSIPATION vs.
SUPPLY VOLTAGE (pPC1026C)
500

!f:

E

100

V~e = 10V

UXMP.OFF
400

80

I
c:

>

E

0
.;:;
co 300
c.
.v;

I
a;

CI)

0

.... 200
Cll

~
0
0-

I

"

0-

....-

100

o

---

.......-

8

6

------

10

..--

.-'

V

~

60

>
Cll

-I

.....

.2 40

a:
I

\

c.
S 20

12

14

0

16

Vee - Supply Voltage - V

17.00

\,

18.00

J

V
"

' . ""

19.00

20.00

21.00

fosc - Oscillator Free Running Frequency - kHz

Fig.62 Typical Application of the IlPC587C2
Vee = 10V

Vee

FM-FRONT ~~~~~__~__~____~~____+-~50~!~1____~r-________~
ENO
50n

12kn

FM-FRONT END
(1) CMU-AT01
(Mitsumi Ltd.)

121

R-eh OUT

~;~;d~t:~::gNTf150n!~~
PG = 30dB

C")

"1

C")

SFE10.7MA

SFE10.7MA

IF1: 2SC1675

IF2: ~PC1028H

Fig.63 Typical Application of the IlPC1026C
FM-FRONT
END

MPX:

~PC587C2

Vee = 10V

F: B3EN0102

Vee

50n
~~N-~~--------~~r---------------~~~--~~--~-'~------~~

12kn

FM·FRONT END
(1) CMU.AT001
(Mitsumi Ltd.l
PG = 33dB SFE10.7MA

l~:t::~~t~')f50nl~~
g

L-ch OUT

~

PG = 30dB

C")

IF1: 2SC1675

998

MPX:

~PC1026C

F: B3EN0102

jlPC587C2,jlPC1026C
Fig. 64 MPX OUTPUT VOLTAGE vs. ANTENNA INPUT LEVEL

Vout (Signal)

0

I

Vee = 10V
f = 98MHz
fmod = 400Hz
M = 75kHz DEV.
m=30%

I

-10

I
I

co

"0

I

,-r\

Ol

en

!:l

I

"0

I

I

>....

I

:J

9:J

I

I

\

\

I
I

0
X

a..

(FM)
(AM)

FM-FRONT-END
FM-IF1
IF2
[
MPX

\
\

\
\

FX-A53
2SC1675
pPC577H
pPC1026C

\

~

I

\.

-40

....

\

:J

\

0

>

\

\

,-..
\

I

\

-50

\

.,/ ...... x. . ..;I

~_..lC-~-x,

I''Ie,

'v,

I

\

'x....

~,AM
R .~
"'1c_ _ _ .-'I

""r-.
-~
I

-2

I

-10
-12
-14
50

\
100 200 300 500

1k

2k 3 k 5k

10k 20 k 30 k 50 k 100 k

300 k

f-F requency-Hz

Fig. 11 Frequency Characteristic of LPF
3.3 HPF
As with the LPF, the HPF consists of an active filter. The HPF detects the differentiated noise in the input
signal and sends it to the waveform shaping circuit. Fig. 13 shows the frequency characteristic of the HPF at the
constants shown in Fig. 12 and the cut-off frequency fL of 100 kHz.

Vcc

>---{14

I

I
L5 pF C6

:
-IJPC1176C- _...J

390 k RS

Fig. 12 HPF Circuit

1006

,uPC1176C
VCC=10 V
Vin=500 mV
540 mV=O dB
lpil, .... 14pin

-

+2 f++ttt_----1r--t~H+Ht_---1r-_t_HI_++Ht_-t-__+-T""TTl
CD

,--r-r-

j~

-2 f+t-++t--II-+-t--1H+t+t--If-f-t--1H+t-Hl--l-+-+-+-t--H+t----

~

-4 H+ttt_~r--t-+-H+Ht_---1r--t_HH+H+--j-+-+-+-+-H+I--___+- I -

o

~H+ttt_---1f---t-HH+m----1-+-~,H+~-j~--+-+~+I--___+_+~

1>


';

';:

500~s

./

80

/~

'en

c:

Pin 10 for monitor; Input
pulse peak value at wh ich

Q)

U)

~

60

Cl
Cl

~
I

f-

40

>

~

V

E
I

~

BLJL

/

/

V

./

t he gate ci rcu i t sta rts to
operate,

20

0

2

3

4

5

6

7

8

R 13-External Resistance of Pin 13-kn

Fig. 15 Trigger Sensitivity vs. Resistance R 13

3.5 Continuous Noise Control Circuit
On entrance of noise, the monostable multivibrator operates and issues a control signal to open the gate, and
a current proportional to this control signal flows to pin 10. If the noise is repeated at very short intervals (30 ,us),
the original signals are not allowed to come out. In order to avoid such inconvenience, this circuit is provided,
which decreases the trigger sensitivity and closes the gate compulsorily so that the signals are passed as they are.
The detecting element of this circuit is illustrated in Fig. 16.

The higher becomes the frequency of

repetition of noise, the more is charged capacitor C12 at pin 12. Thus, the potential of pin 12 decreases,
making Tr04 conductive and permitting a control signal to decrease the trigger sensitivity to be generated.

,..---+--..------...---0 V CC

I Current proportional
t to control signal

Fig. 16 Peripheral Circuit of Continuous Noise Control Circuit

3.6 Monostable, Multivibrator
The monostable multivibrator is actuated by noise which has been detected by HPF and subjected to waveform shaping. On actuation, the monostable multiviurator sends a control pulse to the gate circuit to open
the gate and Gut off the original signals.
The time in which the gate is open is called blanking time, ~nd its length is determined by the time
constant circuit, i.e., C13 and R16 connected to pin 11.
Fig. 17 shows the blanking time vs. the capacitance C13,

1008

J,lPC1176C

60

50

~
I


Output
(to MPX)

resistance

/t ~ I

Coupling capacitor

tL

c.

C15

L.P.F.

Storage capacitor

g

Stereo signal holding circuit

Fig. 19 Peripheral Circuits
3.9 Effect of Noise Canceller

The effect of J-LPC1176C on noise suppression was evaluated using a spectrum analyzer connected to the
network as shown in Fig. 20.

Signal generator
f=1 kHz
Vin=250 mV
Sine wave

J..IPC1176C

J..IPC2002

Noise canceller

Po Amp

Po
O.5W

Artificial noise
Spectrum
Vin2.5 Vp-p
Tw=1 J..IS
Repetition 15 J..IS

analyzer

Fig. 20 Block Diagram of Network for Evaluating Noise Suppression by J-LPC1176C

The result of the evaluation is shown in Fig.21. This is merely one example, and different results will be
obtained depending on the timing of noise.

1010

,uPC1176C

Photo 1
without artificial pulse;
waveform of power
amplifier alone.

Photo 2
with artificial pulse;
without noise canceller

Photo 3
with artificial pulse;
with noise canceller on
SCAN-WIDTH
10 kHz/DIV
BAND-WIDTH

1 kHz

SCAN TIME 0.2 s/DIV

Fig. 21

Effect of Jl PC1176C on Noise Suppression

1011

JlPC1176C
4. ABSOLUTE MAXIMUM RATING OF J.LPC1176C (Ta=25°C)
Supply Voltage

VCC

Package Dissipation

PD

Operating Temperature
Storage Temperature

15

V

350*

mW

Topt

-20 to +75

°c

Tstg

-40 to +125

°C

*Ta=75°C

5. ELECTRICAL CHARACTERISTICS OF J.LPC1176C (Ta=25
CHARACTERISTIC

TEST CONDITIONS

SYMBOL

MIN.

TYP.

MAX.

UNIT

Circuit Current

ICC

13

16.5

23

mA

Vi=O

Voltage Gain

Av

-0.3

0.7

1.7

dB

Vi=500 mVr.m.s., f=1 kHz

Blanking Time

TB

30

J.Ls

Vi=500 mVp,f=1 kHz, tw=1 J.Ls

Triggering Voltage

VT

40

mVp

f=1 kHz, tw=10 J.Ls

6. PACKAGE DIMENSIONS (in millimeters)
19.4 MAX.

R1

-----+]

O.5±O.1

Unless otherwise specified, typical values are given.

1012

°c, VCC=10 V)

,uPC1176C
7. PRINTED-CIRCUIT BOARD
Example of component mounting (bottom view)
f-

~

a..
Z

~
U~ zoz,
..,

j

u
u

>

f-

~

a..

f-

~

o

1013

,uPC1176C
8. PRECAUTIONS FOR USE OF IlPC1176C
8.1 FM IF Stage and Detector Stage
As mentioned in Section 3.3, noise is detected by HPF, whose cut-off frequency is set at 100 kHz. Thus,
it follows that noise components of higher frequencies than this are detected. Therefore, the FM I F stage should
have a bandwidth (200 k to 300 kHz) broad enough to pass not only signal components (50 Hz to 53 kHz)
but also noise components.
Noise (white noise) in the I F stage may cause malfunction in the noise canceller and deteriorate the SIN
ratio. Due consideration should be made with respect to the noise characteristics of the I F stage including the
front end. The noise canceller will be more effective when used in combination with NEC's IF IC Il PC1200V
or IlPC1245V which exhibits a good SIN in weak electric fields.
Noise in the I F stage ma·y be suppressed to some extent by connecting a high-cut filter (500 kHz) to
pin 1.
When establishing the trigger sensitivity with resistance R 13 connected to pin 13, as mentioned in Section
3.4, it is necessary that the front eqd, I F stage, and detector stage be connected.

Vee
High-cut filter

IN

O---r-~~-'-+--~--~--~.

Fig. 22 High-cut Filter to Suppress IF Stage Noise
8.2 Blanking Time
The blanking time TS is established by capacitor C13 connected to pin 11, as mentioned in Section 3.5.
Too short a blanking time decreases the cancelling effect due to a partial leakage of noise; and too long a blanking
time distorts the original signals and deteriorates the distortion. See Fig. 23. An adequate blanking time is 20
to 40 lIs.

Input
I
I

I
I
I
I
I

I
I
I
I

I I
I I

I

I

II

II
I I

I I
I I
I I

:
ill
V~

I

Output

I
I
I
I

I

!J1\
V::V

I

I

II

• I, ,

• I
I

II

I

I

I.
I

TS

TS
Leak of noise due to too short 1"S

Adequate TS

Fig. 23 Noise Pulse vs. Blanking Time

1014

II
I I

I I

v4b
I

-I

I

I"

'TSI
Distortion due to too long TS

,uPC1176C
8.3 Stereo Signal Holding Circuit

(1) Holding of 19 kHz pilot signal
The pilot signal contained in stereophonic broadcasting will vary suddenly in its level, as shown in Fig. 7,
when the gate is opened due to the presence of noise. This is the cause of parasitic noise. The 19 kHz holding
circuit prevents the occurrence of this discontinuity and parasitic noise. The effect of this circuit will be more
pronounced when the pilot signal alone is received or in the case where Land R signals are modulated to a
lesser extent.
(2) Holding of 38 kHz subcarrier
In stereophonic broadcasting, not only the 19 kHz pilot signal but also the (L-R) subcarrier modulated by
38 kHz DSB (Double Side Band) are superposed on the original signal. Unless this signal is held when the gate is
opened, the waveform is distorted after stereophonic demodulation. This effect is apparent when a signal of
(L-R) sub, L only, or R only is received.
(L+R)

(L-R) sin wt

75 90 %

!r--,r---,

--"I

60

N

I

90 %

I 'v; I

II

I

1 ..... 1

II

I

,~20

I~ I
II
I
I c.. I
II
I
I 10 r----'"1 r--t
I %I
II
I

c3

:I

40

.:,t.

c
,Q

I

50 H l!: 1 5 19 23

I:

:

38

53

Modulation frequency (kHz)

Fig. 24 Frequency Spectrum of Stereophonic Broadcasting
For the best operation of the noise canceller in the reception of stereophonic broadcasting. both 19 kHz
pilot signal and 38 kHz subcarrier should be held simultaneously. In actual, however, either of them should be
selected for the construction of llPC1176C circuit.
The holding circuit for 38 kHz subcarrier is recommended.

Fig. 25 shows three circuit examples with

19 kHz or 38 kHz holding circuit and without holding circuit.

(1) With 19 kHz holding circuit

OUT
R18

(3) Without holding circuit

(2) With 38 kHz holding circuit

OUT

R

1.5 k

R18
1.5 k

C14

C14 6800 pF
3900 pF

C16 2200 pF

1

C14
p

3900 pF

6800

R20
2k

Fig. 25 Use of Holding Circuit

1015

j.lPC1176C
8.4 Adjustment of Stereo Signal Holding Circuit
The holding circuit for either 19 kHz or 38 kHz should be adjusted by VR1 connected to pin 7 until the
waveform becomes flat while watching the waveform on the oscilloscope arranged in the circuit as shown in Fig.

26.

38 kHz (or 19 kHz)
signal generator

Oscilloscope

pPC1176C

Sy nch ron iz i ng
trigger
Pulse generator

1.5 kn
1 kn

Tw=1 ps
Vi=200 mV

_____"n

pulse

T\T\fil\l\T\
./\!filllTi/\
J\/\/'\iVVi

(1) In optimum adjustment;

loop gain = 1

(2) Out of adjustment;
loop gain >1

(3) Out of adjustment;
loop gain <1

Fig. 26 Adjustment of Stereo Signal Holding Circuit

1016

jlPC1176C
8.5 Connection with MPX
On processing by the noise canceller, the signal passes through the LPF (delay circuit) and the phase in the
high frequency band rotates. In such case, separation becomes poor after stereo demodulation by the next MPX
stage. This may be remedied by compensating the high frequency output of the noise canceller. See Fig. 27.

noise canceller

~-~r:i~-"'O"'--:__

M_P_X_ _..I

J,LPC1176C

Fig. 27 High Frequency Compensation for Separation Adjustment

If NEC's MPX IC JlPC1320C, JlPCl187V or JlPC1227V is used, good separation is obtained without
compensation as shown in Fig. 27, because they are provided with a separation adjusting terminal for compensation.

9. BASIC CHARACTERISTICS OF JlPC1176C

Vcc-10 V

*-I

5

1pinlnput~

3

f=1 kHz

I

2

~

c:

0
.;:;

.~

0

,
I

I

0.5

f

u

'2
0

§
I

ro
ro

0

V

0.3
0.2

~f

I

0.1

,

l-

I

0
:C
~

J

'"

0.05

"

0.03

..

-

,

/

0.02
0.01
0.01

0.02 0.030.05

0.1

0.2 0.3 0.5

2

3

5

Vin-Input Voltage-Vr.m.s.

Fig. 28 Total Harmonic Distortion vs. Input Voltage

1017

JLPC1176C

Vee

10

V

5

1pinlnput~

3

f=100 Hz

I

I

2

*
I
c:

J

0

'';::;

.~

0

.~

7

7

0.5

c:

0.3

§

0.2

7

I

V

0

~~

co

I

";§

/

0.1

0

~

0:I
r=

'0.05

.....

./

"

0.03

1--_

~

~

0.02
0.01
0.01

0.020.03 0.05

0.1

0.2 0.3

2

0.5

3

5

Vin-I nput Voltage-Vr.m.s.

Fig. 29 Total Harmonic Distortion vs. Input Voltage

Vee

10

V

5

1Pinlnput~

3

f=10 kHz

I

2

I

*c:I
0

'';::;

.

~
0

0.5

.~

0.3

c:

I

I

••

1

0

§

0.2

co

0.1

I

co

~

0
I

0.05

r:

0.03

c:i
:i

-'

"' '-.

l-

~~

~

roo.

~

0.02
0.01
0.01

0.02 0.03 0.05

0.1

0.2 0.3 0.5

2

3

Vin-Input Voltage-Vr.m.s.

Fig. 30 Total Harmonic Distortion vs. Input Voltage

1018

5

.uPC1176C

VCC=10 V

5

1pinlnput ~

3
~

2

I
a
.;:;
c

.~

0
u

0.5

'ca

0.3

Ctl

0.2

E

I

Vin=500 mV

Ctl

(3
l-

~

-I-...

0.1

I

0
I

r-=

I"
0.05

-,

0.03

~

"'"

0.02

,
100mV

r"t-i'

0.01
20 30

50

100

200 300 500

1k

2k 3 k

5k

10k

20 k 30 k 50 k

f-Frequency-Hz

Fig. 31 Total Harmonic Distortion vs. Frequency

I

VCC=10 V

1.4

1pin Input

~
2.5

T.H.D.

1.2

6pin Output

I

f=l kHz

II

~/

~

I

c

en

.~

:>I

a
.;:;
0

.~
C

0.8

1.5

>

/

+-'

Ctl

0.6

::J
0.

a

0

I

l-

I

0.4

I

r:

/

7

.JV

I::l

a
>

V

V

0.5
0.2

0

/

/V

S

Ctl

7/

VOUT /

OJ

OJ

~
a

E

q

)

E

a

I

2

V
V
V

o

V

V

'/

/

I

I

/

~

o

0.5

1.5

2

2.5

Vin-Input Voltage-Vr.m.s.

Fig. 32 Total Harmonic Distortion, Output Voltage vs. Input Voltage

1019

j.lPC1176C

~

20

18

«
E
.!.c
~

16

./

14

~

U
I
u

~

No Signal

)~

12
#I'

10

... V

/'"

:::l

u
....
:::l

/"

/'

...V

./

#I'

'"

8

6

6

8

10

12

14

16

vee-Supply Voltage-V

Fig. 33 Circuit Current vs. Supply Voltage

1pin Input
+4

f=1 kHz

A

/\

'\.T'

500 mVr.mos.
+2

co

l'c

0

~,

,

---

°co

(!)

OJ
Cl

-2

~
0

>I
>

-4

«

-6

-8

-10

6

8

10

12

vee-Supply Voltage-V

Fig. 34 Voltage Gain vs. Supply Voltage

1020

14

16

~PC1176C

1.6
lpin Input
1.4

~

A. A.
~cr'

1=1 kHz

1.2

I

c
0

.'::;

.~

1\

1.0

\

0

.S!
c
0

I

E
co
co

0.8

0.6

0

l-

I

ci

.
\

""

"

.....:

"
0.2

\

", 1\

0.4

I

"\

.\

Vin=500 mV

"-

100'~
"mV
mV
......

"

',I

6

---

I

8

~ .....
-- .......
10

12

14

16

vee-Supply Voltage-V

Fig. 35 Total Harmonic Distortion vs. Supply Voltage

lpinlnput
70

10pin Monitor

~
Vp-p

-t:'", J

60
~
I

'--ItITs I.

500l-ls

50

Cll

E

i=

en

c

40

.:,£

c

~

en
I
en

/..30

I-

20

I

"

/

10

6

8.

10

12

14

16

vee-Supply Voltage-V

Fig. 36 Blanking Time vs. Supply Voltage

1021

,uPC1176C

1pin Input

70

~
~,",~
,

en

60

E

~

E

\

40

en

~

'Cl
Cl

start to operate

o

\

c(lJ
(lJ

Input pu Ise height at
which the gate circuit

50

C

°Vi

mVp-p

500~s

I

0>
0';:::;

1Opin Monitor

30

~

----

I

f-

>

20

10

6

10

8

14

12

16

vee-Supply Voltage-V

Fig. 37 Trigger Sensitivity vs. Supply Voltage

VCC=10 V
1pin Input

60

50

~

/
--'

co

l'c

,.-

~

40

--

--\ "-

::J
C

30

I

....

20

Jlill

t'''J
500",s

~

co

~

.

e pulse

~

02
....

2
~

~

With 38 kHz
holding circuit

EB pulse

~~

10

2

3

4

5

6

7

Vp-Input Pulse Level-Vp-p

Fig. 38 Attenuation vs. Input Pulse Level

1022

8

J.lPC1176C
Vcc-10 V
1pin Input

L

~

50

500/-ls

40

~
I

~

(l)

.s
I-

30

c

~

/

c

~

_........

-hsl-

OJ

CO

V ....

10pin Monitor

/

/

V'

20

I

II

CO

I-

V

10

/
2 3

5

10

20 30

50

100

200 300 500 1000 2000 3000 5000

Vp-Input Pulse Level-mVp-p

Fig. 39 Blanking Time vs. Input Pulse Level

10. EPI LOGUE
Although there is no established method for evaluating the noise canceller, an example is shown in Fig. 40.
Actual test on an automobile is also considered to be important.

Two-signal dummy t - - - - - i
antenna

Set under test

Noise generator

Fig. 40 Block Diagram for Evaluating System

1023

EXPLANATION AND TYPICAL APPLICATIONS OF
THE j.lPC1235C, AN FM MPX IC
FOR HIGH CLASS STEREO TUNER
1. EXPLANATION OF THE IlPC1235C
1-1. Outline
The ~PC1235C is a semiconductor integrated circuit for FM multiplex demodulator developed for high class
stereo FM tuners. As the Ie adopts a PLL (phase locked loop) system, complexity of control usually experienced
when using conventional external coil is eliminated and the demodulator can easily be constructed by simply
controlling the external semi-fixed potentiometer.
Internal circuits are composed of a stereo demodulator, a lamp driver, an input stage pre-amplifier that is capable
of establishing variable input signal levels, a VCO (voltage controlled oscillator) constituting PLL, a phase comparator, an LPF (low pass filter), a frequency divider, and a DC amplifier.
A stereo-monaural automatic switching circuit, a circuit for manual switching, VCO forced stop circuit etc.
are built-in.

1-2. Features and Use
Features
(1) PLL system can reduce the number of external components and controlling procedures.
(2) Stereo-monaural switching can be made either automatically or manually from outside. The shock noise at
switching is reduced considerably.
(3-) Stereo-monaural switching operation is perfectly synchronized with a stereo indicator lamp.
(4) Total harmonic distortion is largely improved by the adoption of new circuits. Low distortion can give a
wide input level.
(5) Fine adjustment of channel separation can be made with an external semi-fixed potentiometer. Channel
separation characteristic from low to high pass is improved notably.
(6) Hight signal-to-noise ratio.

Use
FM multiplex demodulator of high class stereo.

2. CHARACTERISTICS OF THE

~PC1235C

2-1. Maximum Ratings of the ~PC1235C
Table 1 Absolute Maximum Ratings (Ta = 25°C)
ITEM

SYMBOL

RATING

UNIT

Supply Voltage

VCC

15

V

Lamp Current

IL

75

mA

400*

mW

Package Dissipation

Po

Operating Temperature

Topt

-20 to +70

Storage Temperature

Tstg

-40 to +125

°c
°c

2-2. Recommended Operating Condition of the ~PC1235C
Table 2 Recommended Operating Condition
CHARACTERISTIC
Supply Voltage
1024

SYMBOL

MIN.

TYP.

MAX.

UNIT

VCC

9

12

15

V

,uPC1235C
2-3. Electrical Characteristics of the J,.LPC1235C
Table 3 Electrical Characteristics (Ta
[VCC

= 12

V, f

= 1 kHz,

R1

CHARACTER ISTIC
Supply Current

Channel Separation

= 47

= 25°C)

kil, R + L

SYMBOL
ICC
Sep.

Voltage Gain

AV

Channel Balance

C.B.

= 270

mY, Pilot
TYP.

MAX.

UNIT

12

20

30

mA

40

50

dB

45

55

dB

35

45

dB

8

12

16

dB

Monaural, *Vin

-1.5

0

1.5

dB

Monaural, Yin

-1.5

0

1.5

dB

Stereo, Pilot

0.01

0.08

%

Yin

T.H.D.

0.02

T.H.D.

.Harmonic Distortion

0.1

0.12

Pilot Level for Lamp On

L-ON

Stereo Lamp Hysteresis

Hy.

Capture Range

C.R.

Ultrasonic Frequency

6

12

TEST CONDITION
No.Signal

= 100 Hz
f = 1 kHz
f = 10 kHz

f
Pilot

= 30 mV

= 300 mV

= 300 mV

= 30 mV

= 300 mV

%
%

20

= 100 Hz
f = 1 kHz
f = 10 kHz
f

%

0.02
Stereo Total

mY]

MIN.

Monaural Total
Harmonic Distortion

= 30

= 270 mV
Pilot = 30 mV
R+ L

mVr.m.s. Pilot Level, R 1 = 47 kil
dB

Pilot Level

±3

%

19 kHz. Rej.

35

dB

38 kHz. Rej.

45

dB

SCA Rejection

SCA Rej.

70

dB

Maximum I nput Level

Yin

0.9

Signal to Noise Ratio

SIN

= 30 mV
Pilot = 30 mV
Pilot = 30 mV
Pilot = 30 mY, SCA = 30 mV
Monaural, T.H.D. = 1 %
Yin = 300 mY, After LPF

Rejection

6
±1.5

81

Stereo-Monaural Switching
SW-ON Voltage
VCO Stop Voltage

Vo

89
1.4

Vs

7

Vr.m.s.
dB
1.6

VCC

Pilot

No. 16 Terminal Voltage
V

V

Where Stereo Lamp-OFF
No. 16 Terminal Voltage
Where VCO Stops

* AV is from the output level measured at IC output terminal. AV can be set by R 1, and the input impedance.

1025

j.lPC1235C
2-4. Test Circuit of the J,lPC1235C
19kHz Monitor

Lamp Protecting
Resistor

MPX Input C2

47kn.

C3

C5

R5

r500PF

22kn.
10kn.

1000pF

R3

ICC

100~F

+

C,- -

Rch-OUT

lO~F

LPF

Sep. Adj.
500kn. VR
lO~F

C6

Rg

+ -

1000pF

3.3kn.

C14

22kn.

10kn.

3.3kn.

C13

+ -

R4

lO~F

For Measuring

R7

Lch-OUT

R2

lO~F

LPF

veo Adj.
Sep Adj.
S1
S2

S3

BL-13 (K.K KORIN)
tuning semi-fixed potentiometer
Separation adjusting semi-fixed potentiometer

veo
Vee

ON-OFF SW
SW for 19 kHz monitor
VCO stop SW

Fig. 1 Test Circuit for Electrical Characteristics (Top View)

NOTES:
1. Use polystyrene capacitors for that connected to No. 15 terminal to compensate' the temperature coef. of

veo.

veo

2. For adjusting the
oscillation frequency, make S2 open, connect the frequency counter to No.9
terminal 19 kHz monitor and then set by varying the semi-fixed potentiometer
Adj. connected to
No. 15 terminal.
3. For separation adjustment, vary the semi-fixed potentiometer Sep. Adj. connected between terminals
No.4 and No.5 to set at the best point.

1026

veo

,uPC1235C
2-S.Package Dimensions of the J.LPC123SC
NOTE: Numerical values show TYP. values unless otherwise designated.

..
N

X1P

"
::;
'"

on

.. ..,"!
i

,

•

~

M

O.~O.l

Fig.2 Package Dimensions of the J.LPC123SC (Unit: mm)
3. FUNCTIONAL BLOCK DIAGRAM OF THE J.LPC1235C
3-1. Functional Block Diagram of the J.LPC1235C

...........-+-~STEREO
SWITCH
t----+-~LAMP DRIVER

ST-MONOSW
veo STOP

sw

Fig.3 Functional Block Diagram of the J.LPC1235C
3-2. Terminal Connection
Table 4 Terminal Connection
No.

Connection

No.

Connection
ST. LAMP & 19kHz MONITOR

1

VCC

2

PRE AMP INPUT

10

SWITCH FI L TER

3

PRE AMP OUTPUT

11

SWITCH FI LTER

4

POST AMP BIAS

12

DETECTOR INPUT

5

POST AM P BIAS

13

LOOP FILTER

6

R-CH OUTPUT

14

LOOP FI LTER

7

L-CH OUTPUT

15

OSC RC. NETWORK

8

GND

16

ST.-MONO SW & VCO STOP

9

1027

,uPC1235C
3-3. Typical Voltage of Each Terminal
Table 5 Typical Voltage of Each Terminal (VCC = 12 V, Test circuit)

J,lPC1235C

1

2

3

4

5

6

7

8

12 V

2.3 V

5.5 V

9.9 V

9.9 V

5.2 V

5.2 V

0

9

10

11

12

13

14

15

16

2.3 V

2.3 V

2.3 V

2.3 V

2.3 V

3.3 V

0

-

J,lPC1235C

3-4. Equivalent Circuit of the J,lPC1235C
2

3

1213

14

15

~"~ ~
Jr- "" "~"'~.
~[J
I:, ~

". "..

t'IMooirr-t-t--'T'L"" Om

0,.

".

0 66
R96

0 67

Reo

5

6

4

7

Re2

10

9

11

16

8

Fig. 4 Equivalent Circuit of the J,lPC1235C
INPUT

3-5. Explanation of the Equivalent Circuit
(1) Input amplifier and bias supply circuit.
Bias supply circuit and equivalent circuit of the input
amplifier are shown in Fig. 5. Regulated voltage Vs is
expressed by

and constitutes a constant voltage circuit with a diode 01,
transistors 01, 02 and a resistor R 1. ,Therefore, Vs is
constant to variation of the power supply voltage. The input
amplifier is made up of a preamplifier' consisting of
transistors 03 to 09, resistors R2 to Ra and a capacitor C1
Demodulator Demodulator
and an NF amplifier consisting of transistors 011 to 016
High
Low
and resistors R 11 to R 15.
Fig. 5 Bias Supply Circuit and Input Amplifier

1028

J,lPC1235C
04 and 05 are differential amplifiers and perform low current operation making the multicollector transistor
03, a current mirror circuit, active load and obtain a high circuit gain.
The output of the pre-amplifier is supplied to the base of 015, i.e. the input of NF amplifier, through
Darlington-connected 08, 09 and feedback from the emitter of 013 by R3.
Improvement of distortion is effected by the NF amplifier and betterment of channel separation is devised
by eliminating crosstalk component through the feedback resistor inserted in the emitters of 015, 016.
Gain of the input amplifier is determined by a feedback resistor R3 and an input resistor Ri out fitted to
No.3 terminal and expressed by following equation:
-'- R3
A 1 ~Ri
C1 is a capacitor inserted to stop oscillation and R 11, R 12 are ,resistor inserted for offset voltage
compensation. Of the composite signal input from No.2 terminal only the pilot signal is passed through LPF
out fitted to No.3 terminal and lead to the phase detector of PL L circuit. Further, the main signal and
subsignal of the composite signal are lead to the demodulator through the emitter-follower of transistor 10.
(2) Demodulator
Fig. 6 shows configuration of the double balance type demodulator. Transistors 060 to 063 are Jhose which
perform switching by 38 kHz which is a subcarrier injected from the frequency divider. The composite signal
is input from the bases of 064, 065 and divided into L, R-Ch signals. The resistors R76, R77, R78 inserted
in the emitters of 064, 065 are, similar to NF amplifier, inserted as feedback resistor to eliminate crosstalk
component. The switching signal, i.e. a subcarrier of 38 kHz, is 38 kHz that is 50 % of duty cycle obtained

°

by injecting the oscillation frequency, 76 kHz, of VCO into one stage bistable multivibrator (flip flop).

High
Low
R Signal - + - - .

38 kHz 38 kHz

n

L

U

Signal-~-+-+-~

5

6R

Post Amp OUTPUT
Bias

4 P~;t 7-L------Amp
Bias

OUTPUT

Vee O--'V\I'v-~"I"Ir'
Rf

Rb

Fig.6 Demodulator

Fig.7 Output Stage Post Amplifier

(3) Output stage post amplifier
The structure of the output stage post ampl ifier is shown in Fig. 7.
The L, R signals separated by the demodulator are injected respectively into the bases of 055, 090 of the
differential amplifier composed of transistors 054, 055 and 089, 090.
Further, bias is given to the base voltage of 054, 089 to the same voltage (when no signal) as the base
voltage of 055, 090 by external components through No.5, NO.4 terminals. The transistor 053 is a

1029

,uPC1235C
transistor of multicollector and constant current circuit of the differential amplifier, and the transistors
058, 059 and 093, 094 are active load.
The L, R signals amplified by the differential amplifier are output from No.6 (R signal), NO.7 (L signal)
terminal respectively through the emitter-follower of transistors 056, 091 and feedback to No.5, NO.4
terminals by external resistors R6, R8.
Accordingly, gain of the output stage post amplifier can be expressed equivalently from external resistor
ratio by following equation:
A2

. Ra//Rb + Rf
Ra//Rb

~.

(4) Phase detector and DC amplifier
DET-IN
12

LPF LPF
1314

P

E

Vs~------~~--~~-----

-7\ I

a\]
:q~
D

f\f\

V~

(f) Input Signal (Pilot Signal)

(a) Input Signal (Pilot Signal)

D

:q-n--n [

(b) 020 Base Signal (19 .kHz Signal)

(g) 020 Base Signal (19 kHz Signal)

(c) 021 Base Signal (19 kHz Signal)

(h) 021 Base Signal (19 kHz Signal)

011
7

11

[)

n

c

I
(j) 024 Base Signal (Output Signal)

(d) 024 Base Signal (Output Signal)

o_[\~~l'

\j

(e) 025 Base Signal (Output Signal)

Fig.8 Phase Detector
and DC Amplifier

Fig. 9 Phase Detector
Input Output Waveform

\J '\

(j) 025 Base Signal (Output Signal)

Fig. 10 Phase Detector
Input Output Waveform

Fig. 8 shows structure of the phase detector and DC amplifier. The phase detector is composed of transistors
020, 021. The 19 kHz pilot signal amplified by the input amplifier is input from No.3 terminal to No. 12
terminal through LPF being an input signal of the phase detector. The input signal (19 kHz pilot signal) is
compared with the phase of 19 kHz that is the oscillation frequency of VCO, 76 kHz, divided into 1/4, and
an output voltage corresponding to the phase difference is generated. When the phase difference between
the two signals is 90°, the output voltage becomes zero in DC (Fig. 9).
Fig. 10 shows the waveform when 19 kHz signal advances. That is, (j) becomes high level in DC and (j)
becomes low level and becomes input of the differential amplifier that constitutes the DC amplifier.
However, the output waveform is a waveform when LPF out fitted to No. 13, No. 14 terminals are removed.
When LPF is passed through, the above can be expressed by following equations:

Here, if the output voltage of the phase detector is assumed to be eo(t), all but fundamental wave are
attenuated by LPF, hence the following equation:

1030

,uPC1235C

Accordingly, an output voltage proportional to cosine of the phase difference of the two signals is generated
and when the phase difference is 90°, above equation becomes zero and the oscillation frequency of the veo
is taken to have locked to the input signal.
(5)

veo
veo

(Voltage Controlled Oscillator) is shown in Fig. 11.
VCO determines high level and low level dividing the reference voltage Vs by resistor, actuates the
comparator (astable multivibrator) making the level the reference voltage and produces blocking oscillation
by charging and discharging the capacitor out fitted to No. 15 terminal.
Now, if transistor 030 is in ON-state, transistors 032, 033 will come to ON state, and the reference-voltage
of the comparator which is the base voltage of 030 becomes a high level.
This relation is expressed by following equation:

Then, current flows from another emitter of 033 and the current charges the external capacitor e to high
level through the resistor R32When charging is completed, transistor 029 becomes ON state and discharged by external resistor R_
Then, since 030 is in OFF state, 032, 033 become OFF state and the reference voltage of the comparator
becomes low level voltage given by the following equation:

The state is manifested in waveform in Fig. 12.
In the figure, t1' t2 represent time required for charging and discharging respectively and given by following
equations:
t1

= R32 . e·

In

VS-VL
VS-VH

---"«---'=-

t2 = R . C' In VH

VL

c

NO'15ter~:a'~i~i
waveform
V

I

I

I

n

I

OL;

VHnt

I

Q30

base

wdveform

VL

Fig. 12

Fig. 11

(:

t2

I

:

~----

veo Waveform

veo

1031

,uPC1235C
(6) Divider

LnJL

040 Collector

VS----H---~----;---~------~--~----~
R38

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I I~r I~I

041 Collector

~I

I

I

I

I

'III:

JUl

04'7 Co Ilector

~
I
I

I
I

:

I

I

I

I

J

.n..

LI .n..
19 kHz

1...[.rt

Lf

I

I

I
I

I

I

I

I
I

I
I
I
I

I: I

1 :::
I! L
I

38 kHz

:

I

I

I

052 Co lIector

:

I

048 Co Ilector :

051 Collector

I

' ':
T1-0T
:

76 kHz

I

i

I

19 kHz

Fig. 14 Divider Output Waveform

Fig. 13 Divider

Fig, 13 shows the frequency divider.
These are bistable multivibrator (flip flop), and composed of a frequency divider that produces from 76
kHz, oscillation frequency of vea, switching signal 38 kHz of duty cycle 50 % required for stereo demodulation, and a frequency divider that produces 19 kHz injected into the phase detector from 38 kHz to control the veo, and a frequency divider that produces 19 kHz required for driving the stereo indicator lamp
synchronized with the pilot signal as well as for controlling the stereo switch.
Fig. 14 gives phase relation of the above.
The collector waveform of transistor 048 and that of transistor 052 appear at a 90° phase shift. Therefore,
the collector waveforms of °51,° 52 are synchronized with the pilot signal.
(7) Lamp driver and stereo switch

DET-IN (Pilot Signal)

38 kHz

38kHz

l..I

JL

Vee

r -__~R6~3______-44-__________4-4-__~______~___ ~

19kHz

L-.f

19 kHz

R64

to demod ulator

10
LPF

11
LPF

9
ST LAMP & 19 kHz MONITOR

Fig. 15 Lamp Driver and Stereo Switch Circuit

1032

,uPC1235C
The lamp driver is shown in Fig. 15.
The phase detector composed of transistors 066, 067 and resistors R63, R64, R79, R80, R81, R82 performs
phase detection by the input signal (pilot signal) and 19 kHz divider output signal synchronized with the
above. The state is expressed in equations as below:
wS
ep(t) = Ep cos- t
Pilot signal
2
19 kHz divider output signal

edt)

=~Er (cos ws t -~cos 3 WS t +~cos 5 ws t ... )
IT

2

3

2

5

2

Here, if the output voltage of the phase detector is assumed as eo(t), since all but the standard wave are
removed by LPF out fitted to No.1 0, No. 11 terminals, equation becomes as below:

2
eo(t) =-Ep Er
IT

Accordingly, output proportional to the pilot signal is obtained for eo(t) after LPF.
When the pilot signal is input to the phase detector, difference in voltage level is brought about at No.1 0,
No. 11 terminals, and the collector current Id069) of 069, flows more than the collector current Id068)
of 068'
.
Consequently, the current difference AIC = IC (069) -IC (068) becomes unable to be let flow by the 'multicollector transistor i.e. active load, thus reducing the base current of 071 by Al c.
When 071 is turned ON, the collector current flows to the diode 05, and 074 is biased, and, consequently,
076 is turned ON. Since 076 is a multicollector, flow is effected on the one hand to the divider to turn
042, 043 of the qivider ON, and the switching signal of 38 kHz is supplied to the demodulator. Thus,
stereo demodulation is effectuated.
On the other hand, the current flows to the lamp driver made up of transistors 078 to 080 and light the
lamp. When the pilot signal is not input, the input level of No.1 0, No. 11 terminals become zero and the
collector current of 064' 065 constituting the differential is supplied only from 070' Thus, 071 becomes
OFF, and as no current flows to 05, 076 also becomes OFF. Consequently, 042, 043 become OFF and the
switching signal of 38 kHz is not supplied to the demodulator and monaural function is effected. At the
same time, the lamp driver becomes OFF so that the lamp is not lit.
(8) VCO stop, ST.-MONO switching circuit
Fig. 16 shows VCO stop and ST.-MONO switching circuit.
When voltage is supplied to No. 16 terminal, the constant-voltage circuit constituting with transistors 086'
087, diodes 09, 010 and resistors R94, R96 operates to give bias voltage to the transistor 084 and turns
031 of VCO ON and 032,033 OFF. Consequently, charge and discharge by the external capacitor at No.15
terminal are not effected and VCO stops.
At the same time, as bias is provided to 083 and 075 of the lamp driver is turned ON, 076 becomes OFF
and the switching signal of 38 kHz is not supplied to the demodulator. Thus charge is made to monaural
function and lighting is not effected.
To lamp driver

Vs
Vee

. . . - - - f - - - - - t - - veo

16

8
GND

Fig. 16 VCO Stop, ST.-MONO Switching Circuit

1033

,uPC1235C
4. APPLICATION EXAMPLES OF THE

~PC1235C

4-1. Stereo-Monaural Manual Switching Circuit

R95

----;0 022;F
LPF

11-------------------- 9
LPF

16

ST. RAMP

8

GND

& 19 kH.z MONITOR
V S ~ 1 .6 V C>----<>
ON -+ Stereo-monaural manual
switching

Fig. 17 Stereo-Monaural Manual Switching Circuit

The ~pe1235e, by virtue of synchronization with 19 kHz pilot signal normally input with 19 kHz generated
within Ie, injects the subcarrier of 38 kHz into the demodulator by driving the lamp driver as well as turning ON
of the gate circuit. In consequence, stereo multiplex demodulator function is made possible. However, the
necessity of monaural function at a set point irrelevant to condition of input circuit is considered. Fig. 17 shows
the operation circuit for such case.
As mentioned in previous section, when. the constant- voltage circuit is operated by applying voltage to No. 16
terminal, transistor 075 is turned ON and the gate circuit is turned OFF. Therefore, the subcarrier of 38 kHz
is not injected to the demodulator and monaural function can be effected forcibly.
The voltage level then applied to No. 16 terminal is V16 ~ 1.6 V.
Therefore, stereo-monaural switching becomes possible by virtue of muting voltage from I F stage etc.

4-2. On Beat Interference When Receiving AM.
As the ~pe1235e adopts PLL (Phase Locked Loop) system, it has an internal oscillator. While AM receiving,
the internal oscillation voltage can give interference so that veo becomes necessary to be stopped.
As stated in foregoing section, when transistor 031 is turned ON and, in consequence, transistors 032, 033 are
turned OF F, charge and discharge at external capacitor are not effected and the oscillation of veo stops.
Accordingly, if voltage is applied to No. 16 terminal, transistor 084 becomes ON and 031 becomes OFF. Thus,
by simply applying voltage to No. 16 terminal, oscillation of veo can be stopped and at the same time, forced
monaural function becomes possible. Further, as the voltage level at the time of stereo-monaural manual
switching is 5 ~ V16 ~ 1.6 V, and that when veo stop is Vcc ~ V16 ~ 7 V, individual function is possible according to the level of voltage applied.

1034

j.lPC1235C

470pF

--------9
----------~

; / RL

~VL

OFF--+~;~i~or P.L

BGNO-

~VCC
AM-ON Switch

' - - - - - - - 0 1 9 kHz Monitor

Fig. 19 VCO Monitor Circuit

Fig. 18 VCO Stop Circuit

4-3. On

-----

veo Monitor

VCO monitor circuit is shown in Fig. 19.
This is to monitor from No.9 terminal dividing the oscillation frequency 76 kHz of VCO into 1/4 (19 kHz)
by the divider.
At this time, monitoring can be performed by making input signal to monaural signal and directly connecting
the frequency counter to No.9 terminal by cutting off the stereo indicator lamp. VCO oscillation frequency
is adjusted by means of a semi-fixed potentiometer connected to No. 15 terminal.

4-4. On Stereo Lamp Lighting Level
The stereo lamp lighting level can be adjusted, as is clear from the circuit shown in Fig_ 15, by changing the input
ON level of the differential amplifier circuit made up of transistors 068' 069' 070, 072.
Generally, when 19 kHz pilot signal increases, the base potential rises, and if it becomes above a certain potential,
more collector current i2 of 069 flows than the current i 1 of 068' Further, in case the 19 kHz pilot signal is not
input, as active load 070 is set so that collector current of 068 and 069 becomes i 1 i2' if it becomes i2 ~ i 1,
the collector current of 069 cannot be supplied by 070 only.
Accordingly, deficiency i2-i 1 of the collector current of 069 is reduced from 071 and light the lamp.
From the above, it will be understood that to charge the lamp lighting level can be performed by charging the
offset voltage of above mentioned differential amplifier circuit.
Examples of change are shown in Fig. 20 and Fig. 21.

>

-

@

@
:~

R1

• R

Q])
Fig. 20

R3

GY

R2

Fig. 21

1035

,uPC1235C
4-5. Explanation of External Componentes

~~N-~----~-+----4-~~~----+-----------~Rch-OUT

VCC~----------~~--~~~~~--~--~~--~I~----~----------~Lch-OUT

Fig. 22 Explanation of External Components
a. Semi-fixed potentiometer for determ.ination of VCO oscillation frequency.
b. PLL loop LPF. Determines lock range together with PLL loop gain.
c. Lamp operation LPF. Determines low pass cutoff frequency by internal
impedance and time constant. When the value of C is large, cutoff frequency
becomes low.
d_ 19 kHz veo monitor terminal and stereo indicator lamp. To monitor 19
kHz switch is turned OFF and to light the lamp switch is turned ON.
e. Manual monaural switching switch and VCO stop. Then, monaural level
5 V ~ V16 ~ 1.6 V, veo stop level Vee ~ V16 ~ 7 V.
f. PLL input coupling capacitor. Divides audio frequency from pilot frequency.
g. Input coupling capacitor. Effects low pass Fre-characteristics and low pass
Sep-characteristics.
h. Input resistor. Determines gain of the input amplifier.
i.

Input registor of output stage post amplifier. Effects gain of amplifier.

j.

Semi-fixed potentiometer for adjusting Sep.

k. Resistor to determine gain of the output post amplifier.
I.

Output capacitor and resistor. Determines output de-emphasis characteristics.
Effects gain being feedback resistor of the output post amplifier.

m. Lamp protecting resistor.
n. Lamp by-pass resistor

1036

,uPC1235C
4-6. Typical Application (Top View)
19kHz monitor
470pF*

3.3/-lF

P.L.

VS~1.6V

Lamp protecting registor

0 - - -.....
ON
Stereo - mono
manual switching

ON

-+veo

STOP

MPX Input 4.7J..1F R1
47kn

~---+----~

+
l00DpF

22kn
10kn

3.3kfl

Rch-OUT

-

lO/-lF
3.3kn

+

Sep. Adj.

LPF

500kn VR
lOJ..IF

3.3kn

+ 3.3kfl

Lch-OUT

Vee
+12V

LPF
VCO Adj.
Sep. Adj.

*470 pF

BL-13 (Karin giken)
VCO tuning semi-fixed potentiometer
Separation adjusting
semi-fixed potentiometer
Polystyrene capacitor

Fig. 23 Typical Application

NOTES:
When the unit is used with power supply voltage of less than 12 V, the mid-point electric potential of the
output terminals 6,7 in the above typical application may change and Total Harmonic Distortion at output
terminal will increase.
In this case change the bias resistor 47 kn. between terminals 5, 6 and terminals 4, 7 and keep at mid-point
electric potential.

1037

jlPC1235C
Example of printed-circuit board (unit: mm)
100

t"

~.:~

"'., 'Z-::, '.-<"

9'

';.""~,

'"T- ,:' ~ >

o

I
I

o

<0

L

o
(Bottom view)

Fig. 24 Example of Printed-Circuit Board
Outboard components mounted on a printed-circuit board

+Vcc
Stereo-Monaural Switching
VCO STOP

MPX Input

o

o

o

o·

o

Rch-OUT

VCO Adj.

Lch-OUT

Stereo Indicator Lamp

19 kHz monitor

Sep. Adj.

(Bottom View)

Rl=47 kn

R6 =47 kn

Rll=15 kn

Cl =1 00 IJF

C6=1 000 pF

C11 =10 IJF

Sep. Adj.=500 kn VR

R2=10 kn
R3=22 kn

R7 =3.3 kn
R8 =47 kn

C2=4.7 IJF
C3=500 pF

R9 =3.3 kn

VCO Adjt=5 kn VR
BL-13=19 kHz
LPF (Korin giken)

R5=22 kn

RlO=1.0 kn

C7 =0.22IJ F
C8 =1.5IJF
C9 =3.3IJ F
ClO=470 pF
Polystyrene

C12=10 IJF
C 13=10 IJF

R4=10 kn

R12=3.3 kn
R13=3.3 kn
R14=1.0 kn
R L =Lamp
protet:ting
resistor

C4=0.047 IJF
C5=1 000 pF

C14=10 IJF

capacitor

Fig. 25 Outboard Components Mounted on a Printed-Circuit Board

1038

,uPC1235C
4-7. Typical Performance Characteristics
f = 1 kHz

No signal

-

~

~'18

0

~

-2

>

Ul

I -3

I 17

>

U

u
c

ro

~

f--

.....

L~R

50

Cll

Q.

~

Cll

g

Ul

U:

ClJ
C

19.0

en

~ 40
.s::

.~

U

c
c

I

a:

Q.

Cll

~

18.9

~

~ 30

u..

I 18.8
20

o

0.1

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Vin - I nput Signal Level - V

0.9

Fig. 30 CHANNEL SEPARATION vs.
I NPUT SIGNAL LEVE L

1.0

6

10
12
14
8
Vee - Power Supply Voltage - V

16

Fig.31 FREE RUNNING FREQUENCY DRIFT vs.
POWER SUPPLY VOLTAGE

1039

pPC1235C

Vee = 12 V
Vin(pilot) = 30 mV
o dB = 18 dB

70

co

60

-... ~~

o

"0

I
c 50

o

.~
~

~40

----

,,'"

R~ r--::.: ..... ....L~R

~ ->-

'

......

~

co

-2

~

"0

,

"",

Q)

(j)

a:;

~ 30

I

-4

c
~

-6

~

-8

~

-10

~

~

u

I 20

ci.

~-12

JS


I

a>

>
CI)
..J

...

1.0

·8

g

o. 1

\

,
,,
,
'
,

E
~ 0.0 5

\~

'iii

~

j

I

">

0.2

ci

8

,'-- --- --,,- --

0.0 2

:i

r..:

~-

~"

~V

0.0 1

IJ'
I

,
~

I

1/

/

c:

Il't

0.0 3

/

.~ 0.4

I

a

V

E
::l
E

I

u

'c

~

/

a:I

0.2

i:5

V

c:
~ 0.6

0.3
c:

0.8

~
::l

0.5

I

/

::l

~

V

r-t-'""

L

V

10

12

14

16

Vee -Power Supply Voltage-V

RONLY

~_l:~

Fig.37 MAXIMUM MONAURAL INPUT LEVEL
vS.POWER SUPPLY VOLTAGE

~
~O~O ?-

0.00 5

8

10

12
14
16
Vee - Supply Vo Itage - V

18

Fig.36 TOTAL HARMONIC DISTORTION
VS. SUPPLY VOLTAGE

Vec

= 12 V
= 30 mV

Yin (pilot)

60

OJ

V

50

/

"0

I
c

I'

0

.;::;
~

(exclude external parts)

Q)

"\

:J

19.10

u::

19.00

cr
Q)

t\.

~ r--.....

............

1'--."

OJ

\

c
c
c

18.90

a:

18.80

-~

t'......

..............

:J

40

~

Q)
Q)

(1)

a.
Q)

u::

(/)

""

18.70

0

Qi

c
c

19.30

>- 19.20
u
c

L ~ . /~

Put into temperature
test chamber only IC

N

I
~

U

30

>

(1)

18.60

I

.!:

U

~ 18.50

I

......0

ci.
20
Q)

18.40_ 20 -10

(/)

0

10

20

30

40

50

60

70

Ta - Ambient Temperature _ DC

Fig. 39 VCO FREE RUNNING FREQUENCY
vs. AMBIENT TEMPERATURE

10

o

18.20

19.00
19.80
fosc - VCO Free Running Frequency - kHz

Fig.38 CHANNEL SEPARATION vs.
VCO FREE RUNNING FREQUENCY

1041

,uPC1235C

+5

Vee = 12 V
Vin(pilot) = 30 mV

Vee = 12 V

N

I

'L

~

=0

+4

mA

I
> 19.20

+3

u

c

eft.

Q)

:J

I

rr

+2

Q)

Q)

Ol

U:

19.10

Ol

.~

c

~

C
:J

a:

c

+1

C1l

a:

Q)

~ ""-

~

0

C1l

-1

Q.

19.00

U

Q)

~

I

-2

a:

0

U

>

U

18.90

-3

I
u

-4

. . .0

o

2

-5

3

-20 -10

0

10

20

30

40

50

60

70

Ta - Ambient Temperature _ DC

T -Time After VCCON - minutes

Fig.41 CAPTU RE RANGE vs.
AMBIENT TEMPERATURE

Fig. 40 TIME DRIFT OF VCO FREE
RUNN ING FREQUENCY
14
13

>

12

I

11

>

E

ON

E

Q3

>

Q)

....J

roc
Ol
en

.2
0....

I
c

->

I

80

0

70

lO

Cii

9

_20 e
60

>

Vee = 12 V

Q)

....J

roc

50

.2' 40

8

C/)
~

:J
a. 30

7

c

OFF

6

I

II

I\~ /75
~~

20

4

I °

-20 -10

0

10

20

30

40

50

60

70

Ta - Ambient Temperature _ DC

Fig. 42 PILOT LAMP INPUT LEVEL FOR
LAMP ON-OFF vs. AMBIENT
TEMPERATURE

-5 -4

-3

e

''-.
'"~ L/
-2

f'\

I
75 De

f\

10

o

25°e

/25°e

c

>

o

_20 e

o

~

5

1042

90

-1

0

J

Jh

VII

~~
~

+1

+2

+3

+4

+5

C.R. - Capture Range - %

Fig.43 PILOT LEVEL AND AMBIENT
TEMPERATURE vs. CAPTURE RANGE

,uPC1222C AND ,uPC1222C(R) . THEIR OPTIMUM USAGE

1 OUTLINE OF J.LPC1222
The ,uPC1222 is a silicon monolithic integrated circuit operating on a low supply voltage. It includes an FMIF .amplifier, FM detecter, AM-M IX, OSC, AM/I F-Amp., AM-detecter, and AGC circuit.
Its optimum usage is for radio sets and radio cassette sets with 4.5 V power supply, however, its characteristics
allow it to be used for medium class stereo radio cassette sets.

2 DIFFERENCE BETWEEN ,uPC1222C AND ,uPC1222C(R)
,uPC1222C(R) (hereinafter called (R) type) has suffix (R) which stands for "reverse" to indicate that the
detection characteristic curve of the FM detecter, or so-called S curve, is in reverse to that of J1PC1222C (called
C type).
Since their electrical characteristics are, except S curves, utterly same, they can be used without any difference for sets using no AFC.

10.7 MHz

10.7 MHz

Fig. 1-a S curve of C type

Fig.1-b S curve of (R) type

3 THE PROPER USE OF C TYPE AND (R) TYPE
On designing an FM radio set, its AFC circuit is configured as shown in Fig. 2-a when the set is for domestic
(Japanese) use, and as shown in Fig. 2-b when for overseas use.
The circuit shown in Fig.2-b has one more external resistor than that shown in Fig. 2-a and setting of the
bias is more complicated in the former circuit (Fig. 2-b).

J.LPC1222C

J.LPC1222C

7

~J\A,"v--_.U--4~

r-- to OSC

...
AFC Circuit

OSC Circuit

Fig.2-a AFC circuit in the Japanese system

AFC Circuit

Fig.2·b AFC circuit in the American and European systems

1043

)lPC1222C,)lPC1222C(R)
In these cases, if an (R) type is used for an American or European system, its AFC circuit can be as that shown
in Fig. 2-a.
Therefore, same printed circuit boards can be used for domestic and overseas sets whose reception wave bands
are designed as so-called wide band (76 to 180 MHz).
Thus, the proper use of pPC1222 is configuring the AFC circuit as shown in Fig. 2-a, and;
using pPC1222C for domestic sets, and
using pPC1222C(R) for overseas sets.

4 DIFFERENCE IN INTERNAL STRUCTURE
The internal structure of the (R) type is completely same as that of the C type except connections of R48
and R49. In the (R) type they are connected in reverse to those in the C type.

FM-OUT

FM-OUT

Fig.3-a pPC1222C

1044

Fig.3-b pPC1222C (R)

/LPC1222C(R), /LPC1222C;
APPLICATION TO SHORT WAVE BAND

1 OUTLINE OF IlPC1222C{R), IlPC1222C
MPC1222C(R) and MPC1222C are FM-I FlAM Tuner System ICs operating at low voltages (V cc=2 V min.)
and it includes detection circuits. MPC1222C(R) is same as MPC1222C in their characteristics except that their
FM detection S curves are in reverse to each other. Hereinafter, they are represented by MPC1222.

2 APPLICATION OF IlPC1222 TO SHORT WAVES
1) Notices on Designing Oscillation Coils
1 Making coupling between primary and secondary of oscillation coils as tight as possible:
When the secondary coil is tightly coupled to the primary, the oscillation frequency is determined by L
and C of the primary side. On the contrary, if this coupling is loose, oscillation whose frequency is determined by secondary coil and capacity of inside IC occurs to affect the waveform of oscillation to be introduced into #1 pin and sometimes to stop oscillation.
2 Making the turn ration of primary and secondary coils large:
The larger number of turns of the secondary coil enables what is described above ( 1 ).

Be careful,

however, that, by so doing, capacity within the IC affects the primary side to make it sometimes impossible
to acquire the cover range desinged using the value of L in the primary side.
I n order to satisfy what are mentioned in 1 and 2 simultaneously, it is a good method to wind the secondary
coil over the primary as shown in Fig. 1. Split winding, shown in Fig. 2, generally used for short waves is not
suitable for MPC1222, an oscillation circuit.

Core

Core
Primary coil

ItZ:z:lZZZ!---,. Primary coil

Secondary coil
Secondary coil

~---l--.

Lead

Lead

Fig. 1

Fig.2

1045

jlPC1222C,jlPC1222C(R)
2) Example of Oscillation Coil for Short Wave
An oscillation coil for short waves made as an example is explained below:

GND/~~
vc

~~

o Bobbin: ¢ 7.5 mm
o Core: 10 MHz

Batt

o Wire material: polyurethane covered copper
wire

Coil

diameter:O.15 mm
Fig. 3 Coil terminal connection
Table 1 Coil data and Oscillation Frequencies

No.1

CD-@
29I-LH

No.2

CD-@
4.851-LH

No.3

CD-®
1.241-LH

No.4

No load Q

Inductance

Coil No.

CD-@
71
(2.52 MHz)

CD-®

@-@: 8~T
@-@: 3~T

:CD-@: 7~T

CD-®

CD-@:3~T

@-@: 3~T

@-@:

Way of winding

Oscillation frequency (VC : 80 pF)

Overlap

2.6 - 6.4 MHz

Overlap

7.6 - 23 MHz

Parallel

19.6 - 42 MHz

Parallel

25 - 70 MHz

T

CD-@
68
(7.96 MHz)

66
(25.2 MHz)

0.441-L H

CD -@: 44~T
1:1)- ®: 14~

74
(7.96 MHz)

CD-@

Number of turns

3;l T
4

Note 1: Coils are designed so that they match the trackingless variable capacitor (COSC Max.=80 pF) useo for
MW.
2: "Overlap" and "Parallel" in the item of "Way of winding" represent those shown in Figs. 4 and 5 respec-

tively. Winding Coils No.3 and 4 in parallel offers no problem. It is because coupling between primary
and secondary coils is tight enough due to high frequency.

_

Bobbin

#
..

Primary coil
Secondary coil

I

Lead

Fig.4 Overlap winding

1046

__
Bobbin

~

primary

coil

Secondary coil

I

Lead

Fig.5 Parallel winding

JLPC1222C, JL PC1222C(R)
1FT: CFZ-455C(TOKO}
AMDET Coil: 7MC-5251Y(TOKO}
100

FMDET Coil: 119AC-12747Z(TOKO}

n

+

10 kn

TI

0.022 J.lF
2.2kn

0.068 "F

I

100 kn

v. V. A F

0.01 J.lF

L..---4----+-----.-----Q Vee
0.022"F

I

+

3.9 kn
FM DET Coil

Fig. 6 Short wave measuring circuit

* Turn the switch (SW) to CD when M I X gain measuring, and to ~ when total gain measuring.

1047

o
~
Q)

1:::
"'C

Fig. 7 VOLTAGE GAIN AND OSCILLATION VOLTAGE vs. FREQUENCY

(")

I

~

V cc=4 V
1

1

1

1

1 1

N
N
N

mod.=30 %
f mo d=400 Hz

60

1

J:

I I I

..(")

1

1:::
"'C

L-L---+--+-+---+----+--+---t---t--t----1-111,-"\G v (Total)

(")
~

50L-1-l-LJ-t----~--4-----~~L-~_+_+-t~t---_i--~----_r---t--~r_
Vo(AF) = 10 mVr.m.s.

(/)

~

---lr--t:r- MW band (the coil recommended in the catalog)

->E

- 0 - - - 0 - - Coil No.1

en

"0

I
c

40~1--+-~~+-~~

-x-x-

I
Q)

Coil No.2

OJ

I I
Vosc (at #1 pin)

Coil No.3

co

I 400

>

c

.g

OJ
Q)

>

u

- - - 0 - - 0 - Coil No.4

OJ

~
o

S

0

Q)

30

300

I

.,. .......x

>

C)

x1
1

1

I

I

I

I

1

1

I

I

I

I

...

200

l

:~
c

0
.;:;
~

'u

I

1100

0

I

10

>

I
~
0

201

J\~

A

----~--

L~x+-)(

.~.

to(~t=d

~-6.

I~

II11

10

Measuring Circuit-CD
Vj=60 dB.uV

o

700k

1M

2M

3M

5M

7M

10M

f- Frequency - Hz

20M

30M

50 M

70 M

N
N
N

--:c
(")

APPLICATION OF THE J.lPC1197C INTEGRATED CIRCUIT
PLL MULTIPLEX STEREO DEMODULATOR

1. DESCRIPTION
The J,LPC1197C is a silicon monolithic integrated circuit designed for PLL (Phase Locked Loop) FM multiplex
stereo demodulator applications in FM stereo radio receivers. The device contains VCO (Voltage Controlled
Oscillator), phase detectors, LPF (Low Pass Filter), frequency dividers and DC amplifiers for a stereo composit
signal. It also contains an automatic stereo-monaural switching circuit, a VCO mute circuit for FM/AM radio
application, a forced monaural switch-over circuit, and an automatic change-over circuit from stereo to monaural
at low supply voltage.

2. FEATURES
(1) Wide operating voltage range. V cc = 4 to 16 V
(2) Low noise stereo-monaural switch-over.
(3) Built in switch-over circuit for forced monaural and VCO mute circuits for FM/AM radio application.
V(#9)~3

V for VCO mute

0.7 V ::; V (#9)

< 3 V for forced monaural

(4) Automatic switch-over from stereo to monaural at low supply voltage. (V cc ::; 3.5 V)
(5) No coil is necessary, all tuning is performed with only two potentiometers.
(6) The terminal (8) is for separation adjust.

3. PACKAGE DEMENSIONS

R 1

UNIT: mm
Typical values unless

otherwise noted.

O.5±O.1

1049

pPC1197C
4. BLOCK DIAGRAM
VCO

LPF

19 kHz
MONITOR

P.D
INPUT

LPF

LPF

LPF

STE./MO. SWITCH-OVER
VCO STOP

P.D:
F.D:
STABILISED
VOLTAGE
CIRCUIT

COMPOS IT
SIGNAL
INPUT

PRE
AMP.
OUTPUT

R-CH
OUTPUT

L-CH
OUTPUT

Fig.1

ITEM

SYMBOL

Package Dissipation

Vce
Po

Operating Temperature

Topt

Storage Temperature

Tstg

6. RECOMMENDED CONDITION (Ta

1050

GND

SEPARATION
ADJUST

Block Diagram

5. ABSOLUTE MAXIMUM RATINGS (Ta

Supply Voltage

LAMP
DRIVER

= 25°C)
RATING

UNIT

16

V

350*
-20-+75
-40--+125

mW

°c
°c

=25°C)

ITEM

SYMBOL

MIN.

TYP.

MAX.

UNIT

Supply Voltage

Vee

4

9

16

V

PHASE
DETECTOR
FREQUENCY
DIVIDER

J,lPC1197C
7.

ELECTRICAL CHARACTERISTICS
(Ta=25

°c, Vcc=9

V,vi=200 mVr.m.s., L=45%, R=45%, PILOT=10%)

CHARACTER ISTIC
Circuit Current
Separation

SYMBOL
Icc
Sep.

CONDITIONS

MIN.

TYP.

MAX.
16

UNIT

No Signal

7

12

f=100 Hz

30

45

mA
dB

f=1 kHz

40

55

dB

f=10 kHz

30

45

dB

Total Harmonic
Distortion

T.H.D.

vi=200 mVr.m.s. Monaural

0.3

0.5

%

Total Harmonic
Distortion

T.H.D.

vi=200 mVr.m.s. Stereo

0.2

0.5

%

Output Voltage

vo

vi=200 mVr.m.s. Monaural

Channel Balance

ch.B

vi=200 mVr.m.s. Monaural

Input Pilot Level for
Lamp ON

mVr.m.s.

170
-2

0

2

dB

4

8

12

mVr.m.s.

4

dB

±1.5

±4

%

LAMP-ON

vi=Pilot

Lamp Hysteresis

Hys. (LAMP)

vi=Pilot

Caputure Range

C.R.

vi(pilot)=20 mVr.m.s.

Rej. (19)

vi(pilot)=20 mVr.m.s.

35

dB

Rej. (38)

vi(pilot)=20 mVr.m.s.

45

dB

_ 1
vi(pilot)
vi(compsit) - fO,
_ 1
vi(SCA)
vi (composit) -fO

70

dB

500

mVr.m.s.

86

dB

Ultrasonic Frequency
Rejection

SCA Rejection

Maximum Input Level
Signal To Noise Ratio
Forced Monaural
VCO Stop
Stereo-Monaural
Switch-over Voltage

Rej. (SCA)

vi(MAX.)
SIN

T.H.D.~2 %

vi=200 mVr.m.s.

V (Monaural)

Terminal No.9

V(Stop)

Terminal NO.9

Vcc(Monaural)

Supply Voltage

V

0.7
2.7

3.0
3.5

3.7

V
V

10SI

,uPC1197C
8. TEST CIRCUIT
19 kHz
MONITOR
FORCED MONAURAL
VCO STOP

lVB
SW

O.047Il F

Fig.2 Test Circuit
POL YSTYLENE CAPACITOR
LOW PASS FILTER: BL - 13 (KaRIN LAB.!
Transistors Q1 and Q2 should be set so that, the voltage gain
between the output terminal of the IC and the output terminal
of the LPF is 0 dB.

1052

,uPC1197C
9.

EQUIVALENT CIRCUIT
Fig.3 shows the equivalent circuit of the J..LPC 1197C

#3

#13

#11

#10

#15 #14

#16

#7

#8

#6

#9

#12

Fig.3 Equivalent Circuit

1053

o
-'

1::
."

0
m

-'

01

~

P

Low pass filter of the PLL loop. Determines
the locking range and the PLL loop gain.

Monitor terminal for the oscillation
frequency of the 19 kHz veo

en
n
Low pass filter for operating lamp. Determines
the low region cut off frequency according
to the time constant made in combination
with the internal impedance.

jJ

"
0

-f

2
0

."

m
Semifixed resistor for determining the
oscillation frequency of the VCO.
Set the resistor so that the oscillation
frequency of the terminal (10) is 19 kHz

X

100kn
~tolF

-I

m
jJ

2

»
r0

en

n

C5

jJ

O.047Il F

Lamp series resistor.
Lamp current is determined by
Vee- VeE(sat)

R

=i
m
("')

0

s:

"2

0

m

-' -+

1-'- ~

'\f\A

-,

2

0 VB

-f

11l F

Input coupling capacitor. This has
an effect on the low frequency and
separation characteristics. The low
region frequency characteristics by
are determined the time constant
made in combination with the
50 kn input impedance.

en

o VCC

+
Output capacitor
Determines with the output load
resistor R. the output de-emphasis
characteristic

Output load resistor.
-1.4 dB when 3.3 kn

Fig.4 Description of External Discrete Components

100llF

n

~

(,0

'-J

n

,uPC1197C
11. TYPICAL APPLICATION
1 J..lF

·20k.l1
100k.l1

..-----+-..JVI/\r----o to IF
RS

+

Cll

-

1 J..lF

0.047 J..lF

~----~--------------_+----------------1---~VCC

L.P.F.

L.P. F.

Rg
RlO
Lout o--+-~'\I'Ir-.__~Vv_-+---o Rout
3.3 k.l1
3.3 kD.

Fig. 5 Typical Application

11-1. Notes for Use
(1) The J1PC1197C is designed to have a equivalent thermal constant to a polystylene capacitor.
(2) In the application which the terminal (9) is connected to the terminal (1) to force monaural or to stop
VCO, when the supply voltage is over 10 voltages, insurt a resistor which have a value shown by the
next equation.
1.1 { Vcc (MAX.) - 10 }

~

R ~ 2 { Vee (MAX.) - 4 }

Vcc (MAX.): Maximum voltage ofa power supply
Vcc (MIN.) : Minimum voltage of a power Supply

1055

,uPC1197C
11-2. Printed wiring board (Copper side)
105mm

L

N"EC

E
E
L!1
to

C1197

R

Fig.6 Printed Wiring Board

11-3. Components layout for P.W. assembly (Copper side)
105mm

E

E

L!1
to

Rl=18kn
vRl=5kn
R3 = 1 kn
R4 = 100 kn
R5 = 3.3 kn
R6 = 3.3 kn

R7 = 330 n
R8 = 100 kn
Rg = 3.3 kn
RlO = 3.3 kn

Cl = 470 pF * POL YSTYLENE
C2 = 0.331l F
CAPACITOR
C3 =
C4 =
C5 =
C6 =

1 IlF
2.21l F
0.047 IlF
1 IlF

Fig.7 Components Layout for P.W. Assembly

1056

C7 = 0.015~F
C8 = 0.0151l F
Cg = 3.3 ~F
ClO = 3.31l F
Cll = 1 IlF
C12 = 100 IlF

,uPC1197C
12. DESCRIPTION OF CIRCUIT

Vee
#,~~~----~~----~~---+-

Vs

12-1. Stabilized Voltage Circuit
The equivalent circuit of the stabilized voltage Circuit is shown in Fig. 8. In Fig. 8 the stabilized voltage
Vs is expressed by the equation (1) the reference voltage Vr is expressed by the equation (2). Both are
constant against variations of the power supply.
I

Vs = R 11 +

~ 12 + R 13

X

Vr . . . . . . . . . . . . "

(1)

#7~~~~~~~~--~~~~­

13

vr=~:

V,

GND

Fig.8 Stabilized Voltage Circuit

{VBE(03)-VBE(02)}+VBE(Os) .... (2)

The biases of other circuits are designed with the stabilized voltage Vs. The circuit composed of a diode
03, transistors O2 , 05 and resistors R4 , Rs, R6 is the thermal compensation circuit of the reference voltage
Vr.
Vr

= V BE

(05) + Ic (02) . Rs + IB (05) . Rs

= V BE

(05) +

~:

l'.V BE + IB (05) . Rs (l'.VBE

= V BE

(03) - VBE (02) )

- V
+ Rs (KT I J03) + I
R
- BE (05) R6
n J02
B (05)' 5

q

== V
.

BE (05)

+ RR s (KT InR
RS
6
q
4

) ............

(I B (05)' Rs«

(3)
1)

aVr = aVBE (05) +.IS. &.
(Rs)
(4)
aT
aT
q . R6 In R4 ......... .
The equation (4) expresses the reference voltage compensated against thermal vaviations is given by to
choose the values of resistors R4 , Rs and R6 fitly.

12-2. Input Signal Amplifier
The equivalent circuit of the input buffer amplifier
is shown in Fig. 9. The input signal amplifier is composed of transistors 0 12 , 0 13 , 0 14 , resistors R 19
R20 , R21 and a capacitor C3 . Since transistor 0 13 is a
multi-collector transistor, its collector current is nearly
the same as the collecter current of transistor 0 12 .
-And its current gain is close to unity. Capacitor C3 is
for frequency stability, and its value is 5 to 20 pF.
The voltage gain of the input signal amplifier is
determined by the feedback circuit R 19, R20 , and
expressed by the following equation (5).
I

Pre Out

Vee------------+_--~~4-----­
Vs--~----~--+_--+__+4-~---

v,

A v (AF) -- R 19 R+ R20 . . . . . . . . . . . . . . . . . . (5)
20
Stereo signals entering terminal (2) are amplified
by an amount indicated the above equation, and then

Fig.9

Input Signal Amplifier

introduced to the phase detector of the PLL circuit
through terminal (3). Besides the above, stereo signals
pass through emitter follower 0 16 and are injected into the stereo demodulator circuit.

1057

,uPC1197C
12·3. Demodulator Circuit
The equivalent circuit of the stereo demodulator is
38 kHz
38 kHz
shown in Fig. , O. The circuit consists of a common
V4
U
.fl.
double-balanced type detector circuit, the stereo
signals are injected into the lower transistors 0 42 and
-+----+- Vs
0 43 while the 38 kHz subcarrier is injected into the
upper transistors 0 38 , 0 39 , 0 40 and 0 41 . Stereo demodulation is accomplished by the subcarrier switching the above transistors.
The resistors R S4 ' R ss , Rso and external resistor
Rs (Fig. 2) are feedback resistors inserted for the
parpose of cancelling the cross tal k components produced during the switching. To adjust the external
resistor Rs give the best separation.
The subcarrier is a 50 % duty cycle 38 kHz wave
obtained from bistable multivibrator (flip-flop) cirFig. 10 Demodulator Circuit
cuit, into which a 76 kHz signal produced by the VCO
is injected. I n the pPC" 97C the stereo lamp and
stereo demodulation are synchronized and accomplished by transistor 0 46 . The base of 0 46 is controlled by the stereo lamp circuit, and when the stereo
lamp is turned on 0 46 will also be turned on and a 38 kHz subcarrier of reverse phase will be injected into
the demodulation circuit, 03S, 0 39 ,0 40 and 0 41 . On other hand, when the stereo lamp is turned off 0 46
is also turned off, and an in-phase 38 kHz subcarrier is injected into 03S, 0 39 , 0 40 and 0 4 I so that a
monaural wave is obtained from the output terminal (4) and (5).

12· 4. Lamp Driver
Fig. , 1 shows a lamp
driver circuit with its auxiliary circuits.
The phase detector circuit and low pass filter are
composed of transistors
OS2, OS3, resistors R 64 ,
R 6S , R 66 , R67 and the
external capacitor C4 (Fig.

P.D INPUT

v2
v~S

19kHz
19kHz
______+-+-__
~~__~__-4____~______~________

L..-+-____

2)
GND

+---+-~

__

Vg

The lamp driver circuit
is composed of transistors
# 11
# 10
OS4 to 0 66 with ist auxiliLPF
ary resistors. Transistor
Fig: 11 Lamp Driver
OS4 and Oss amplify the
DC voltage obtained through LPF. Transistor OS7 is a active load of the differential amplifier .. Now, if the
collector current Ic (054) of OS4 and Ic (055) of Oss change by ~Ic (~Ic = 1c(055) - Ic (054))' due to the
control current passed through the phase detector, ~Ic will flow intact into the base of Oss.
Oss is a multicollector transistor, and its collector current will amplify the change ~Ic of the base current and 0 10 will become biased by this current. And, when this diode is biased transistor 0 62 will operate
causing lamp driving transistor 0 64 to be turned on, thus the lamp will light. On the other hand, when 0 62
turns Gn it will draw the base current of 0 63 , and as a result 0 63 and 0 46 will be turned on and stereo operation will start.
Since transistors OSS, OS9 diode 010 and resistor R69 form a positive feedback loop, when the lamp is
turned on, this rise of current will be abrupt. In addition transistors 0 61 , 0 64 , 06S and resistor R73 form a
negative feedback loop, which composes a current limiting circuit for performing current limiting action.

1058

,uPC1197C
12-5. Phase Detector and DC Amplifier
Fig. 12 shows the phase detector and the DC amplifier.
The 19 kHz signal obtained through the divider will
switch the pilot signal of the stereo signals coming into terminal 13, and will supply a DC voltage proportional to the
phase difference of these to the DC amplifier composed of
0 19 to 0 23 . When the phase difference of the 19 kHz signal
and pilot signal, entering the phase detector, is 90° the control voltage of the PLL circuit will be O. When the phase of
the 19 k Hz signal advances from the above, a positive control voltage will be produced, and when the 19 kHz phase
lags a negative control voltage will be produced.
When this state is expressed as an equation, it becomes
as follows.

P.D INPUT

LPF

#13

Vs

V,,-5_ _ _-+_-+-<

J l . L.S
19 kHz

Pilot Signal ep (t) = Ep cos wpt
19 kHz Signal e19 (t) = E19 sin (wp + ¢) t
(Note) (To be precise, 19 kHz is a square wave.)
ep(t) x e19(t)

19 kHz

Fig. 12 Phase Detector
and DC Ampl ifier

= Ep ~ E19 {sin¢t + sin (2wp + ¢) t }
= Ep ; E19 sin¢t ........ (6) Eliminated by LPF

The DC amplifier converts the change of the control voltage to current to be sent to the VCO.

12-6.

veo (Voltage Controlled Oscillator)
Fig. 13 shows the VCO.
This circuit is basically a comparator, which produces oscillations through variations of the reference
voltage.
Now, when transistor 0 25 is operating, both 0 29
and 0 30 will become conducting and the instantaneous reference voltage of the comparator applied to
the bace of 0 25 is expressed as follows.

#16 veo
Ve~e-+__4-+-~_ _ _ _ _~

Vs

GN~D

VH

= (VS

- VCE(sat.l (0 30 ))

X

R

R35 R
"
32
35

+

...

(7)

_ _ _~__~____~_-4_-*___

Va

#9

Fig.13 VCO
On one hand, current will flow from the emitter of 0 30 , and this current will charge the external capacitor C 1 (Fig. 2) through R 30 . The charging time tl of this capacitor is expressed as foilows:

VS -VL
tl = R 3o C 1 In Vs _ VH .................... (8)

When the above charging is completed the comparator will be switched-over and 0 24 will be turned on.
At this point, the reference voltage VL of the comparator will become as follows.
VL

= Vs

x

R34

R:~35

......................

(9)

1059

,uPC1197C
The charge accumulated in the external capacitor of terminal 16 will discharge at a rate determined by
the external resistor R 1 , R2 and capacitor C1 (Fig. 2).
The forced monaural circuit and VCO stopper are composed of transistors 0 67 , 0 68 , 0 28 ,0 60 and resistors R76 , R77 . 0 60 is turned on by the external voltage on terminal 9, and as a result 0 64 turns off and the
lamp turns off. (0.7 ~ V9 -:; 3 V)
When higher voltage is added on terminal 9 0 69 will turn on, as a result 0 29 will turn off and VCO will
be stopped.

12·7. Divider Circuit
Fig. 14 shows the divider circuit.
19 kHz
19 kHz
19 kHz
19 kHz
38 kHz
38 kHz
This circuit is a bistable multivs ____~+------+~--~------~--~~----_+.
vibrator (flip-flop). This multivibrator serves to produce 38
kHz and 19 kHz, 50 % duty
cycle, signals from the 76 kHz
signal generated by the VCO.
The 38 kHz signal is the subcarrier required for FM stereo
demodulation, the 19 kHz having
a 90° phase difference with tha
Fig. 14 Divider Circuit
pilot signal is required as the
control voltage of the PLL, and
the 19 kHz synchronized with the pilot signal is required for driving the stereo lamp and controlling
the stereo switch.

u

1060

,uPC1197C
13. CHARACTERISTIC CURVES
Fig.15 CIRCUIT CURRENT vs. SUPPLY VOLTAGE

Fig.16 VOLTAGE GAIN vs. SUPPLY VOLTAGE
(Monaural)

20
No Signal
18

bdB=-l.4dB
f = 1 kHz
vi = 200 mVr.m.s.

+2

16

~

14

I

C
~

12

~

~
u 10

r-I- ......

--

ell

f- f-f-'

+1

"0

I
c

'co

I

c.:J

0

OJ

/

Cl

:::l

~

~

8

U

"0

>

I

I -1
>

6

u
u


u

+300

~

+200

e

80
70
co

cr
Q)

-0

U::

+100

en
e
e
e

o

I 60
e

\

.g

........ r-..,

ro

~

-100

Q)
Q)

r--. . . . .

50

~

&(19 kHz )

l"'-

40

I'-

I

U::

o
u
>I

'r--...

0.
30
Q)

-200

....... ~

C/)

20

-300

o

.J

10

o

2

4

6
8
10 12 14 16
Vee - Supply Voltage - V

18

o

o

20

30
Vee = 9V
f = 1 kHz

10

f = 1 kHz
vi = 200 mVr.m.s.

V

0
.;:;

e 10
o

1/

'co

11

ro

:: 1.0
E
o
l-

E
co

:: 1.0
co

o

7

I

'/

3

./
0.1

l-

1/

5

o

3

u

V

§

5

(5

/

3

'co

~

'/

(5

I

/

/

?fiI

20
10

'g

5
3

E
e
co 0

I

I

II III

a
0.;

5

I

3

o

:i

r=

1-0
I

o
:i

0.1
10

1062

e

co 0
I';:;

'iii

1-0

3 5 100

3 5 1k
3 5 10 k
f - Frequency - Hz

3 5 lOOk

o

?fi- 20
I 10

'co
§

]o .-gl.0

\

2

4

6

8

10

12

14

16

18

20

Fig.26 TOTAL HARMONIC DISTORTION
(Stereo)
vs. FREQUENCY
u

.;:;

1

3

Vee - Supply Voltage - V

I II

vee -9V
===
~ Vin= 200 mVr.m.s.

5

0.1

100 200 300 400 500 600 700 800 900 1000
Vin - Signal Input Level - mVr.m.s.

Fig.25 TOTAL HARMONIC DISTORTION
(Monaural)
vs. FREQUENCY
u

\

·E

/

5

u

100

30

?fi-

g

20 30
40 50 60 70 80 90
vi(pilot) - Pilot Input Level - mVr.m.s.

Fig.24 TOTAL HARMONIC DISTORTION
vs. SUPPLY VOLTAGE
(Monaural)

Fig.23 TOTAL HARMON IC DISTORTION
vs. SIGNAL INPUT LEVEL (Monaural)

e

10

r=

j

IIIIIII

=

=

"11111

I

Vee = 9V
~ vj(L+R) = 200 mVr.m.s.
5 I---3 I---- L = 45%,R = 45%
I - - Pilot = 10%

I

1
5
3

~

0.1
10

I

3 5

100

3 5

1k

3 5

f - Frequency - Hz

10 k

3 5 lOOk

,uPC1197C
Fig.27 TOTAL HARMONIC DISTORTION
vs. PILOT INPUT LEVEL (Stereo)

Fig.28 MAXIMUM INPUT LEVEL
vs. SUPPLY VOLTAGE (Monaural)

30
Vee ~ 9V
f ~ 1 kHz
Vi(L+R) ~ 200 mVr.m.s.
L ~ 45%.R ~ 45%
~ 10
o
.;::
f--- pilot ~ 10 %

-

f ~ 1 kHz
T.H.D. = 2 %

;=:

g

5

~

3

'co

,/
/

Vl

E 1.0

/

V

V

E

~

/

E

Cii 0.8

/

ro
I

ro

o

>

OJ

...J

;
0.

I

~

5

q

3

/

v
L/

I

r:

~

C

E 0.6

/

:J

./

-

.Sx
ro

I

~

I

I 0.4
0.1

o

x

ro

20
40
60
80
100
vi(pilot) - Pilot Input Level - mVr.m.s.

E
;S 0.2

o

o

Fig.30

Fig.29 CAPTURE RANGE

2

4

6
8
10
12
14 16
Vee - Supply Voltage - V

18

20

POWER DISSIPATION AND SATURATION
VOLTAGE OF LAMP DRIVER
vs. LAMP CURRENT

80
Vee ~ 9V

v! 70
~

,

:>E

60

I

~OJ

50

\

...J

40

\

>
OJ

\

~

a::
I

I
I

30

V

\

~ 20

§
.;::; 10

\

I

V
, , ,,

~~

o

17.00

18.00

19.00

20.00
21.00
tv eo - veo Free Running Frequency - kHz

....OJ

3.5

>I

o 150

3.0

....0

2.5

-5

~

.2

c;

.~

0.

E
co

...J

'0
§

.;::
co

100

0.

.~

(5

tv

50

~

o

--

_

a..
I

~

0

.,'" V

o

/V

I---- ~

....
V

20

V

V

~ f-- ~

V
40

60

80

/

OJ

c:n

co

2.0

-

1.5

> '':

ro.... Eco
~...J

C/l

1.0

I

...

0.5

~

o

~

100

w

I L - Lamp Current - mA

1063

pPC1197C

Fig.31

VCO FREE RUNNING FREQUENCY
vs. AMBIENT TEMPERATURE
Vee = 9 V
Exclude external parts

N

I

Fig.32 VCO FREE RUNNING FREQUENCY
vs. AMBIENT TEMPERATURE
Vee= 9 V
N

I
~

~

I

>
u

>
u
cQ)

cQ)

1.0

:J
CJ"

1.0

:J
CJ"
Q)

Q)

Lt

0.5

Cl

r-r-

C

.§

Lt
C

r-r-

-0.5

8

a

"§

r- r-t-

~ (19 kHz )

al
Lt

0.5

Cl

r- r- ~

0

~(19 kHz )
al
-0.5

U:

8

-1.0

-1.0

>

>

I

I
o

u

.2

a

-25

50

25

°e

~
I

20
1,.;' ......

9
I,...;

8
7

LAMP ON
...... 1,.;'

"" ....

......

>
Q)

.2
a:...

....... ~

16

E

50

25

Ta - Ambient Temperature _

Fig.33 INPUT PILOT LEVEL (LAMP ON - OFF)
vs. AMBIENT TEMPERATURE

en

a

-25

75

Ta - Ambient Temperature _

.-1- j..--

~ 12

-~-

-

:J

LAMP OFF

u 10
:J

~

U
I

3

.2

u

~

Vee = 9 V

~ 2

8

6
4

.;s

2

o

-25

a

25

1064

75

50

Ta - Ambient Temperature -

°c

o

-25

a

25

50

Ta - Ambient Temperature _

75

°e

APPLICATION NOTE FOR fLPC1277H
EXTERNAL PARTS AND CHARACTERISTICS

1 INTRODUCTION
IlPC 1277H is a dual channel audio power amplifier circuit designed for radio cassette tape recorders.

It

operates in the power supply voltage range of 5 to 16 V and can be used for a vartety of stereo radio cassette
sets.
Th is docu ment explains how IlPC 1277H's external parts change its characteristics.

2 BLOCK DIAGRAM
Figure 1 briefly shows external parts and their effect upon characteristics using a block diagram.

Ripple rejection

Stability

ratio, Rise time,
Shock noise
Low frequency
output

I Nl
Low frequency

0---{)-----I

Low frequency
voltage gain, Low
frequency output

~____

voltage gain
Rise time

Cg T O.068
~-----~~

Shock noise

m

~F

47 J.LF:

I
I
IL

Effect upon
characteristics

Thermal
_ _ _ _ _ _ _ _ _ _ _ -.lI

Stability

Fig. 1 Block diagram

3 VOLTAGE GAIN
IlPC 1277H has a built-in resistor for setting the closed
loop voltage gain as shown in the figure right. Add
a resistor between the feed back terminal and ground

INo------t

OUT

Rf

N F D--"'\IV\,..---
I

v
v--: -::;/ vi-"

40

100 / ~v
30 r-pF
47 pF/
/
20

>

/

~

---

a:J

I--

"0

I
.~

OJ

OJ

e

~/

1000/ /
30 _pF

.-/
./

V

V-

I-f-

1--'-

f--~I -

V

v

v

/

:F=("/

0

470

I

20 220 pF

>

v

>

c..:J

c..:J

10

10

o

10

30

50
f -

100
Frequency -

300 500

1000

Output power is effected by bootstrap capacitor C4
(C5) and output coupling capacitor C7(C8).
By the bootstrap circuit, whose configuration is
shown in the figure right, the output voltage is feed
back to the driver stage resulting that:
Vo (MAX.)=VCC - VCE(02)
Removing C4 (C5) results in:

Vb(MAX.)=VCC- VBE(02)+VBE01+ V C+ V (R*)
to limit the output amplitude and high output cannot
be obtained.
impedance

10

30

50

100

300 500

of

output capacitor C7

(C8)

becomes not negligible, the load current becomes smaller by an amount corresponding to that impedance and
small output is resulted.
Figure 4 shows output power vs. frequency characteristics when C4 and C7 are changed.

1000

Fig. 3 VOLTAGE GAIN vs. FREQUENCY

.----------.------{] VCC

4 OUTPUT POWER

When

o

f - Frequency - Hz

Hz

Fig. 2 VOLTAGE GAIN vs. FREQUENCY

1066

//

40

C\l

c..:J

/

/
10pF

VCC=12 V
RL =47r2
C4=47 pF

R*

,uPC1277H
5

I
~

./

I-C4=1 000 J.LF /
i/
f- C4=10 J.LF /1

~
"OJ

3

-

f-f--

+-'

-

I---

:J
Q.

:;

2

V

IIII

C4=470
C4=100

/

J.L E

'/

II

a..

I

20 30

II
/

/

/

50

/

/

C4=1O J.LF
C7=470 J.LF

I

II
I

/

V

__ T

/"

/
//

VCC=12 V RL =4 n.

/'

/

/

J.L Fj'

I

o

/

/

-.

/"

/

I 1 I

a
a..

0
I
a

1--:::::::

/"

4

I

I

I I I

C4; NULL
C7=470 J.LF

100

300 500

1k

3k

5k

10 k

20 k

f - Frequency - Hz

Fig.4 OUTPUT POWER vs. FREQUENCY

5 SHOCK NOISE AND RISE UP TIME

~__~~--------------------------'-----~~-D#10
VCC
r-----_------47 JJ;/1

C3<'00 JJF /'"

,.",

",

/

"'"

/

/

/

,/

'"

/

1C3=1 00 JJF

/

o

I

o

>

/

>

/

----

/

/

,/

/
I

/
/

I

'"

'"

/

I

/

I
I

/

//

I

,

/ C3>100 JJF,
.v ......

_./

tON - 0.5 s
(C, =47 JJF)
• t

----, t

Fig.5

C,

AND RISE UP TIME

Fig.6 C3 AND RISE UP TIME

6 OTHERS
o Power decoupling capacitor C6, oscillation preventing capacitor and resistor are provided so that pPC 1277H
has stable operations in wide ranges of voltage, 5 to 16 V temperature, -20 to +75 PC, and load, 3 to 8

n.

o Filter capacitor C3 is provided to reduce the ripple voltage occuring in AC power supply. Also, gentle rise
up of this capacitor is, as set forth earlier, utilized to minimize the shock noise.

lOSS

,uPC1350C EXAMPLE OF APPLICATION CIRCUIT WITH

4 Q LOAD AND 0.7 W OUTPUT

DESCRIPTION
pPC1350C is a silicon monolithic integrated circuit developed for uses in cassette tape recorders. The standard operating condition is 6 V power supply and 8

n

load. This IC includes functions of a preamplifier, auto-

matic level control (ALC) circuit, and ITL and OTL power amplifiers. One piece of this IC enables to construct
the amplifier unit of a tape recorder.
This document shows one example of an application circuit with 4 n load.

1. EXAMPLE OF APPLICATION CIRCUIT
Figure 1 shows an application circuit example when used for 4

n load.

REMOTE ON & OFF
~..-..o--- SWITCH JACK

C18
3300 pF

Cg
470/lF

ClOTo.068

"fti'

"F

SP

4n

SW1: REC.lP.B.

(P.B. POSITION)

SW2: AC/DC OPERATION (DC OPERATION)
SW3: Power Switch

(ON POSITION)

Fig. 1 EXAMPLE OF APPLICATION CIRCUIT

1069

jlPC1350C
2. ELECTRICAL CHARACTERISTICS
2-1. ABSOLUTE MAXIMUM RATINGS AND RECOMMENDED OPERATING CONDITIONS

Absolute Maximum Ratings (Ta=25 °C)
Item

Symbol

Rating

Unit

Supply Voltage (D.C.)

VCC1

12

V

Supply Voltage (A.C.)

VCC2

10

V

Circuit Current

ICC(peak)

500

mW

Power Dissipation

Po

2.4 *

W

Operating Temperature

T opt

-20"'+75

°c

Storage Temperatu re

Tstg

-40'" +150

°c

".0':."

*Copper heat sink of 50 mm x 50 mm x 1.5 mm

Recommended Operating Condition (Ta=25°C)
Item
Supply Voltage

MIN.

TYP.

MAX.

Unit

3.5

6

7.5

V

2-2. OUTPUT POWER

2-3. POWER DISSIPATION

pPC 1350C is designed for a tape recorder and it gives
standard output of 0.7 W when its load is 4
T.H.D.=10 %).

n

(Vcc=6 V,

Fig. 2 shows output power vs. supply

Fig. 3 shows power dissipation vs. output power
characteristics.

Refer to this characteristic for thermal

designing.

vo Itage characteristic.

1.0

RL=4n

0.8 ~ f=1 kHz
T.H.D.=1O %
~

I

....
Q)
3:

0.6

0
0-

....:l

B:l

0

OA

I

I
0
0-

7

V

V

V

/

1.0

V

0.8

o

3

,,

V

co

D..

,J

.~

....Q)
3:

004

0
0-

I

,IJ

6

7

8

Vee - Supply Voltage - V

Fig. 2 OUTPUT POWER vs. SUPPLY VOLTAGE

1070

0.6

0

.~

(5

5

I

I---'1-0---

./

I
c

J

4

/~ -----

~

1/

0.2

I

Vcc=7.5 V

V

/

V

V
.
/
,
~
,. l.....-'

r---~6V

~

--

-I'--- I- Vcc=5 V

0.2

o

0.2

004

0.6

0.8

1.0

Po - Output Power - W

Fig.3 POWER DISSIPATION vs. OUTPUT POWER

,uPC1350C
2-4. VOLTAGE GAIN

III11I1

In J,lPC1350C, its pre-amp. stage gain and power amp.
stage gain approximate following equations:
(A) Pre-amp. stage

Gv l

:::~~

RL =4
NAB

"0

I
c

80

c.:J
~

60

·ro

(Used as a FLAT Amp.)

Vcc=6 V

100

--

/-

~

n

1\

o

1
G 1::: R15
V

en

(R9+ R l0)2
Rl0+ WC12R9 w=27Tf

>

40

I

2

::::0

<:J

(Used as an NAB EO. Amp.)

20

o

10

(B) Power amp. stage

3 5 100

3 5· 1 k

3 5 10 k

3 5100 k

f - Frequency - Hz

Fig. 4 VOLTAGE GAIN vs. FREQUENCY
Using the constants of the application circuit example
shown in Fig. 1, the voltage gains are 30.8 dB (F LAT),

IIIII1

30.2 dB (NAB EO. at , kHz), and 46.8 dB (power amp.
stage) respectively.

en

The low frequency characteristics

100

"0

I

are determined by time constants of R7, Cl', R'3, and

c

C 17 in the feed back circu it and C9 and R L in the out-

c.:J

FLAT
80

Namely, low cut-off frequencies fL', fL2,

...... 1"60

Ol

I

~
0

and fL3 are represented by following equations:

>

I-..

~

ctl
(lJ

put circuit.

Vcc=6 V
RL =4 n

40

I
::::0

f

f

c.:J

- --'--L1 - 27TC" . R7

o

10

2---'---

3510031k

L - 27TC 17 . R 13

100 k

10k

f - Frequency - Hz

and

Fig.5 VOLTAGE GAIN vs. FREQUENCY

20

I n the example of the application circuit shown in Fig.
"

20

fL ,:::::50 Hz, fL2::::48 Hz, and fL3:::: 85 Hz. Overall

voltage again versus frequency characteristics are shown

C12.

I

.Q
+-'

in Fig. 4 when used as an NAB. EO. Amp., and in Fig.
5 when as a FLAT Amp.

10

c

II

8en

0

.~

c

I

...........

Fig. 6 shows the total harmonic distortion vs. output

§
I

~
t--..

0

2-5. TOTAL HARMONIC DISTORTION

I

120 Hz

ctl

1.0

-;
'~ '\

1
---l\

t'-

..... 1--...

/

II
'--.

I

II

/'

10 kHz

ctl

power characteristic and Fig. 7, the total harmonic

~

distortion vs. frequency characteristic. This IC is design-

I

ed to have a low total harmonic distortion factor and
it is most appropriate for use in tape recorders.

........
i"'-...

I

0

.............

1
II
1/

1 kHz

I

r-:

Vcc=6 V
RL =4 n
NAB
0.1

2-6. ALC CHARACTERISTICS

0.01

Fig. 8 shows ALC output change vs. input level
characteristics and Fig. 9, ALC output distortion factor
vs. input level characteristics.

It gives ALC range

0.1

1.0

2.0

Po - Output Power - W

Fig. 6 TOTAL HARMONIC DISTORTION vs.
OUTPUT POWER

(wherein distortion factor is 3 % or below) of 60 dB

1071

,uPC1350C
(TYP.) and output change (difference of outputs bet-

vee 6 V
RL 4n
Po=O.l W
NABEQ

c:

ween input levels of -70 and -40 dBm) of 1.8 dB

.Q

(TYP.) when V cc=6 V and R L=56 n.

B

+-'



-8

/
/

-10
-12

-90 -80 -70 -60 -50 -40 -30 -20 -10

Vin - Input Level - dBm

If a lower junction temperature is

Fig.8 ALC OUTPUT CHANGE vs.
INPUT LEVEL

desired, make the area of the printed circuit board with
copper heat sink on TAB part wider, or make the area
of the print board itself larger to reduce Rth (j--a).

",

Output Change
Regien

/

a

Rth(j-a)=55 °C/W, in Fig. 12. Substituting these values
in the equation to obtain the junction temperature,

rrt

U

-.J

'*

10.0

Thus the junction temperature can be lowered.
+-'

,

::J

Note

B::J
o

Rth (j-a) = 90°C/W

Free Air

U

Rth (j-a) = 65 0 C/W

30x30x 1.5 mm with

~

copper heat sink

.g

50x50x1.5 mm

Rth O-a) = 50°C/W
Unit

c:

1.0

~

with copper heat sink

(5

infinitely large heat sink

'c

mm

§

vee =6 V
Rl/= 56 n
f=l kHz

I

~~
ALC Regie •.

\

-.J

\
\

\

,

\

u

o

I

"-

co

J

V

0.1

-90 -SO -70-60 -50 -40 -30 -20 -10

0

V in - Input Level - dBm

Fig.9 TOTAL HARMONIC DISTORTION
(ALC OUTPUT) vs. INPUT LEVEL

1072

100 k

Vec=6 V
RL'=56 n
f=l kHz

Q)

co
..c:
U

and ambience

Tj:::::72 °c is given.

100

5

Fig. 7 TOTAL HARMONIC DISTORTION vs.
FREQUENCY

In heat sink design, refer to Fig. 3, power dissipa-

Tj:

3

f - Frequency - Hz

3. HEAT SINK DESIGN

T a:

-

\

0

jlPC1350C
2.0

4. NOTICES ON DESIGNING PRINTED CIRCUIT BOARD

100

1.6

(1) Since JlPC1350 is a high gain amplifier, design

80

«

m

~

power supply and grounding wires thick to highten

50

,

E

"0

I

I

Vee =6 V
RL =4 n
f=l kHz
NABEQ

40
~

f
L

Gu (P 0=0.3 W)

circuit stability.

'c~ (No Signal)

(2) Although one point grounding is ideal, when it is

t

impossible to realize, take care that the input loop
does not come into the output loop.

I-- -r

Mingled in-

V

put and output loops may cause deterioration of

-

Ipo (T.H.D.=10 %)

---.

the distortion factor and oscillation.

o

(Good example)
Input loop

o-20

0

o

40

20

60

Output loop

80

°c

Ta - Ambient Temperature -

Fig. 10 OUTPUT POWER, VOLTAGE GAIN AND CIRCUIT
CURRENT vs. AMBIENT TEMPERATURE
10.0

Vee
GND

IN

OUT

6V

RL =451
f=l kHz

c

...

.2

a

Po=0.3 W

.~

==
-

o

.~

(Bad example)

c

o

§

Output loop

1.0

III

I
~

r-o

3

---

.....

I

q
I

GND

IN

OUT

r:

0·~20

o

40

20

60

80

100

°c

Ta - Ambient Temperature -

Fig. 11 TOTAL HARMONIC DISTORTION vs. AMBIENT TEMPERATURE
(3) Mount C8: 1 000 JlF (for bypass), C 10: 0.06 JlF
(output oscillation preventing capacitor), and

the

speaker terminal close to TABpin (GND).

2.5

(4) Fig. 13 shows the example of a printed circuit

board.

r-- ""'\. \.

~

I

'r" _ infinitely large

\.,

2.0

5. CAUTIONS ON HANDLING

"

...

.2

III

0.

.~

(1) Output oscillation preventing capacitor C10:0.068

1.5

0

power amp. stage. Select the type of this capacitor

0

1.0

a..
I
"t:1

a..

"

'\.

_ 50x50x 1.5 mm--with copper heat sink

"
,. "

.~

Use a ceramic capacitor or Mylar capacitor
for C, O.

,

I

I

I

I

'"

heat sink

"""
",
'"
'\.'\.

"0.5

=

mm
:\..\. with copper-

-"
-FreeAir'

according to the set in which JlPC 1350C is used.
(A) When used for a cassette tape recorder:

1

'\. ~ 30x30x 1.5

L~

f---

,,

\.
\.\.

'\.

."-

Q)

3:

~

~

'-

JlF
This capacitor is for preventing oscillation on the

i

\.

r-- ~

I

heat sink'

\.

c

I'-\.
I'o...~

....

"\:"

o
o

25

50

75

100

125

150

T a - Ambient Temperature -

°c .

Fig. 12 POWER DISSIPATION vs.
AMBIENT TEMPERATURE

1073

,uPC1350C
2 pin

77.5

2 pin
--t~++-.:;

(NAB)

. GND
GND

'NEe

PoOUT

Vee

Fig. 13 PRINTED CIRCUIT BOARD

(B) When used for radio cassette tape recorders:

The 5th terminal of J,LPC1350C is the DC bias

capacitor is used, unnecessary radiation emit-

terminal for the erasing head and the 12th terminal

ted from the capacitor may return to the R F
stage of the radio.
(2) Recovery time during recording

is the DC bias terminal for the recording head.
(5) When the power amp. stage only is used.
In that case, connect the input terminal (13th termi-

Recovery time is determined by the time constant

nal) of the pre-amp. stage to GN D through a capacit-

of the circuit in which capacitor C2, input resistor

or. If the input terminal of the pre-amp. stage is left

to IC's 13th terminal, and R4 are connected in

open, oscillation may occur to worsen the power

parallel and is changed by varying R4: 1 Mn.

amp. stage characteristics.

(3) TAB
Since TAB of J,LPC1350C is GND within the IC, be
sure to solder it to GND of the printed circuit
board.

1074

(4) Bias terminals

Use a Mylar capacitor for C10. If a ceramic

,uPC1350C
The 4

n

load application circuit of J1PC1350C is explained in the preceding sections. Besides what are set

forth there, this IC is designeci so that it has low output shock noise at power on/off and it is durable against
electrostatic breakdown. Therefore, this IC can fully be used as an amplifier for a cassette tape recorder.

1075

APPLICATION CIRCUIT OF ,uPD 1 701 C-O 13

DESCRIPTION
The J,lPD1701 C-013 is a CMOS LSI designed for use in Phase Locked Loop Frequency Synthesizer Digital Tuning
System, which consists of PLL, swallow counter and system controller.
The J,lPD 1701 C-013 provides full electronic control of var2ctor tuned FM/AM radio receiver with clock function.
NEC's original pulse swallowing method is applied to FM band in conjunction with J,lPB553AC, so that high
reference frequency results in good signal-to-noise ratio. The J,lPB553AC is a VHF two-modulus prescaler which
provides 1/16 and 1/17. division ratio. Advanced bipolar process technology is utilized to realize high frequency
operation with extremely low power consumptions.

FEATURES
•
•
•
•
•
•
•

•

•

•

•

•
•
•
•
•
•

1076

PLL, swallow counter and system controller are realized in a single chip.
Occupation of minimum mounting area in P.C. Board due to 28 pin slim DIP.
High speed and low power consumptions due to CMOS.
Very low stand-by current ........ 100=0.5 mA (TYP.)
Single power supply voltage ....... VDD=5.0 V ± 10 %
FM and AM bands . . . . . . . . . . . . . Japan and U.S. bands
External programmable I F offset for FM band.
Japan band . . . . . . . . . . . . . . 10.675,10.700,10.725,10.750 MHz
U.S. band . . . . . . . . . . . . . . . 10.650, 10.675, 10.700, 10.725 MHz
External programmable I F offset for AM band.
Japan band . . . . . . . . . . . . . . 450/261 kHz
U. S. band . . . . . . . . . . . . . . . 450/260 kHz or 450/261 kHz
High reference frequency. It results in good signal-to-noise ratio.
FM band . . . . . . . . . . . . . . . . 25 kHz
AM band . . . . . . . . . . . . . . . . 10 kHz or 9 kHz
Four station selection modes are available.
(1) SCAN (Automatic audition) of available program.
(2) SEE K (Automatic search and stop) for FM and AM.
(3) UP or DOWN manual tuning to any station by single stepping or sequencing With momentary
switches or endless-rotary switch.
(4) Favorite station programming of 6 FM and 6 AM stations for pushbuttons selection.
Ample time correction modes are available.
(1) Hour fast shift (HA key only or ME key and MD key)
(2) Minute fast shift (MA key only or ME key and MU key)
(3) One touch setting to correct tim·e (OAD key: ±30 minutes zero reset)
Two stage switching of display brightness (duty cycle: 25 %)
Two independent frequency input terminals are provided for both FM and AM bands.
Two independent error-out terminals are provided for both FM and AM bands.
Direct interface to the FM two-modulus prescaler J,lPB553AC.
Automatic power-on clear without any external components.
Internal display decoder for 3.5 digit multiplexed display.

j1PD1701C-013

1. SYSTEM DESCR IPTION
NEC's Digital Tuning System provides full electronic control of a varactor tuned FM/AM radio receiver and
stereo. The block diagram of the system is shown in Fig. 1. This is a Phase Locked Loop Digital Tuning System
which consists of two integrated circuits; controller plus PLL in a single chip, and two-modulus prescaler.
The controller chip (J.,LPD1701 C-013) provides Phase Locked Loop capability witjl on-chip frequency division, a reference oscillator whose frequency is controlled by an external trystal of 4.5 MHz, and phase comparator circuitry. It accepts directly an AM local oscillator signal and an FM signal from two-modulus prescaler
(J.,LPB553AC), and outputs control signals for closed loop operation of these oscillators. The outputs drives filters
for supplying analog voltages to the vari-cap tuners. The controller also provides the signals to drive the display.
The frequency of the tuned station is displayed on a 3.5 digit multiplexed display. Six favorite stations on each
band can be stored as well as "last stations tuned" information.
J,lPD 1701 C-013

-

MUTE

MUTE

FM
TUNING
AM
TUNING

01

FIL TER

-

V'

05

E01

ACTIVE
t-------

DIGIT

~

5

DRIVERS

~~

E02

DISPLAY

J,lPB553AC
FM/AM

FM
OSC.

PRESCALER

FM

t

PSC

11

RADIO

AM
OSC.

SEG.A
SEG. G

7
r--

~

SEGMENT

r--V

DRIVERS

AM

--

STATION DETECTOR

4.5 MHz

1
1

SO

{1

X1
KO

KEY and SWITCH

A

:: K...

c:::J

crystal

4

MATRIX

K3

X2

Fig. 1 Block Diagram

2. PIN CONNECTION (Top View)
The pin connection of the J.,LPD1701 C-013 is shown in Fig. 2.
AM

K3

GND

a

b

c

01

02

d

e

9

J,lPD 1701C-013

E01

E02

CE

PSC

X1

X2

SO

Fig.2

1077

,uPD1701C-013
3. CONTROL KEY AND MODE SWITCH MATRIX
The operation of the system is controlled by a 4 x 7 key and switch matrix (15 momentary switches, 5 alternate switches and 7 initial switches). Various functions are entered through the matrix. The configuration of
the matrix is shown in Fig. 3.

SEG.A

SEG.B

SEG.C

SEG.D

SEG.F

SEG.E

SEG.G

KO

Kl

K2

K3

o:

o:

momentary key.

alternate switch

6.:

diode switch

Fig. 3 Control Key and Mode Switch Matrix

4. SWITCHING-OVER THE DISPLAY BETWEEN RADIO AND CLOCK
Display mode control switches A, S, initial switch P and control key ReAL control the display mode as
follows.

* 1:
*2:

1078

MODE

A

S

Display

Priority

Enable keys and switches

0

ON

ON

Frequency
or time

None * 1

All keys and switches

1

ON

OFF

Frequency
or time

Frequency *2
or time

All keys and switches

2

OFF

OFF

Time only

-

HA, MA. and OAD keys
A, S, and DIM switches

3

OFF

ON

Disabled

-

A and S switches

A momentary depression of ReAL key causes alternate display change between frequency and time whenever it is performed. Whenever frequency is handled. frequency is displayed.
P=ON
Frequency is prior to time. A momentary depression of ReAL key causes alternative display change. When
frequency is displayed, a momentary depression of ReAL key recalls time on the display and it remains
there for 5 seconds. If any other key is handled when time is displayed, handling of one of the time setting
keys (HA. MA and OAD) keeps the time display. the display turns back to frequency automatically 5
seconds after the time setting is completed. Whenever frequency is handled, frequency is displayed.
P=OFF
Time is prior to frequency. A momentary depression of ReAL key causes alternative display change. When
time is displayed, a depression of ReAL key or one of the frequency handling keys recalls frequency on
the display for 5 seconds. After that, the display turns back to time automatically.

,uPD1701C-013
5. APPLICATION EXAMPLE OF A SWITCH AND B SWITCH
This section describes connection diagram of power supply source of radio unit, display drivers and control
unit, and application example of A switch and B switch, and state diagram of each application example.
There are two kinds of applications. One kind of applications use DPDT (Dual Pole Dual Transfer) switches.
The other one use DPTT (Dual Pole Triple Transfer) switches. One of two poles is used to control power supply
source, and the other one is used to control A switch and B switch.
Each state of the state diagram is shown as follows.

OFF
: Disabled
F R EQ : Frequency is displayed.
TIME : Time is displayed.

l

MUTE terminal
Low level
1 : High level

o : High or

1
A, B SW }
1 : on
O:off

Enable keys and switches
1 : All keys and switches *
2 : All keys and switches except HA,
MA, and OAD keys *
3 : HA, MA, and 0 AD keys, A and
B switches
4 : A and B switches
X: Disabled
Fig.4

* Except initial switches

1079

j.lPD1701C-013
Time display priority method-1 (Using DPDT SW)
Condition : B SW=off (OPEN)
P SW=off (OPEN)

Radio ON

Radio OFF

Ace

Ace key

kr

OFF

Pow. SW

~n~~~~__~----~------CE~V)
(+12 V)

(/

F14C
VDD
(-15

VI

I
I
I
I

A SW

~L....-_~/o_ _ _ _ _ _~_I_______:__ ::
__

Fig. 5

1080

1SS53

,uPD1701C-013
Time display priority method-2 (Using DPDT SW)
Condition : B SW=off (OPEN)
P SW=off (OPEN)

Acc key ON

Acc key OFF

Acc key
Battery
(+12 V)

1
r

ere

("

F14C

I

1SS53

I ~------r~.------~:~::

Voo
(+5 V)

ASW

~""'II

CE (+5 V)

Fig.6

1081

,uPD1701C-013
Time display priority method-3 (Using DPTT SW)
Condition : P SW=off (OPEN)

Acc key ON

Radio OFF

SW 1

A~1

Ace key

Battery~
(+12 V)

F14C

(
R05.1EB

VOO
(+5 V)

CE (+5 V)

03
1SS53

I

~o_12-::::""'::::-:-:~__--1:a!-:----4:_~:
Fig.7

1082

,uPD1701C-013
Frequency display priority method-1 (Using OPOT SW)
Condition : B SW=off (OPEN)
P SW=on (CLOSE)

Acc off

Radio ON

Acc key ON

Radio OFF

Acc key OFF

1
Pow. SW

Acc key

~~~~O~~~~~-~~~~~~~~~~~~~~~~~~~-CE(~V)
('

F14C

I
I

I

VOO

(+5 V)

A SW

~

lSS53

o--------------~.~t-I------------~:-

~_~_~______________________________________.~

sKe3

Fig.8

1083

,uPD1701C-013
Frequency display priority method-2 (Using DPDT SW)
Condition : B SW=off (OPEN)
P SW=on (CLOSE)

Ace off

Radio ON

Acc key ON

Radio OFF

Acc key OFF

I
Acc key

Battery~
(+12 V)

('

F14C

o--------------~

: A SW
VOO
(+5 V)

CE (+5 V)

1SS53

~----~.~1----------~:-:3
Fig.9

1084

Radio
Unit

Pow.SW

,uPD1701C-013
Frequency display priority method-3 (Using DPTT SW)
Condition : P SW=on (CLOSE)

Ace off

r

Ace key ON

Ace key OFF

SW2

-r.

A+-O

Ace key

Battery
(+12 V)

F14C

VOO
(+5 V)

R05. 1 EB

CE (+5 V)

03
I

Il
~,
~,

1 SS53

----II:w.--_>s:3

ASW

o°..:.:.--l

B SW

:'

1
1
......

K

:

Fig. 10

1085

,uPD1701C-013

Display priority switching-over method (Using DPDT SW)
Condition : B SW=on (C LOSE)
P SW= Don't Care.

I

Acc off

~------------~--~----4

Radio ON

Ace key ON

Radio OFF

»

»

(')
(')

(')
(')

o

o

::3

::3

Aee key OFF

Battery
(+12 V)

Acc SW

11

F14C

VOO
(+5 V)

Pow. SW

r'
I

I

~------~----------~----------~ CE~5V)

A SW

,-E_~~
__o_ _ _ _ _ _ _~_,_ _ _ _ _ _ _ _:_. ::
Fig. 11

1086

1SS53

,uPD1701C-013
6. DISPLAY INTERFACE
The J,lPD1701 C-013 provides 5 digit outputs (01 to 05) and 7 segment outputs (Seg a to Seg g) for display
of frequency or time. Mode informations are provided from segment outputs at the timing of 01, and frequency
or time (numerical) informations at the timing of 02 to 05. I ncorporated display decoder allows the display
to be driven by simple current buffers.
The outputs for display are active high for both segment outputs and digit outputs.
~uts
Digit Outputs

a

b

c

d

e

f

g

-

-

Mode Digit

Note

01

AM

PM

FM
DP

02

A

B

C

0

E

F

G

LSD

03

A

B

C

0

E

F

G

2nd Digit

04

A

B

C

0

E

F

G

3rd Digit

05

-

B

C

-

-

ME

-

MSD.

COLON 1 COLON 2

1--.

6-1. DISPLAY FOUNT
When the segment outputs and digit outputs are connected as Fig. 13, a display fount as shown in Fig: 12
will be obtained.

I-I
I_I
Fig. 12

6-2. MODE IN FORMATIONS
The mode informations are used to indicate AM, PM, FM/DP, COLON 1, COLON 2 and ME.
Mode

Description

AM

The morning (When time is displayed) or AM band (When frequency is displayed)

PM

The afternoon

FM/DP

FM band and Decimal Point

COLON 1

Not blinking colon

COLON 2

Blinking colon

ME

Memory enable (It is able to preset station to memory when frequency is displayed)

1087

pPD1701C-013
6-3. AN APPLICATION CIRCUIT OF DISPLAY
Fig. 13 shows an application circuit of display using 7 segment LED (cathode common type).
~
r---

01

1:
I-- I--

02 I-- I--

-0

»
(]1

VJ

()

03 I-- f - -

0
;,:

cO'

=i ~
<'

04 I-- I--

0
"0

05 I-- f - -

<
roO

r---

~

~

77

B

C")

9

u

0
I'-

~

0

0-

::t

+5 V

--

0

0

a ~
b

j

u

(1)

1:

d~

»

e --vw-

()

9

-I

0

to

C --"NY-

f --/\Mr-

0

Cf)

f--'vvv-0

(]1
0)

3(1)
~

~

<'
~

VI

--'IIItv-

b
Fig. 13 An Application Circuit of Display

1088

0

N

z

1

I-,

, ,-, , I
, ,-I I-I

0-

0

I-I

FM

ME

,uPD1701C-013
7. CRYSTAL RESONATOR
The oscillation circuit of the J,lPD1701 C-013 is of the single stage CMOS inverter type, and a crystal resonator
of 4.500 000 MHz nominal frequency is connected between the input (X 1 ® pin) and output (X2 ® pin) of the
oscillator stage. As properties required of a crystal clock oscillator circuit, low current consumption, low oscillation starting voltage, small frequency variation, etc. can be mentioned. In general, the current consumption will
become less, the smaller the equ ivalent series resistance (R 1) of the crystal resonator, and the smaller and equal
are the gate and drain capacitors, CG and CD. However, in practice it is necessary to make either CG or CD a
variable capacitor, since the oscillation frequency will deviate from the desired value due to deviations in the
capacitor of CG and CD, the frequency of the crystal resonator, and the stray capacity of the oscillator stage of
the J,lPD1701 C-013. As a condition to reduce the oscillation starting voltage, CG and CD should both be less than
30 pF, the oscillation starting voltage becoming minimum when CG and CD are within a range of 10 to 25 pF.
The oscillation frequency will be stable against variations of voltage and temperature, when stable components
are used for the series resistor (R 1) and CG and CD. An optimum crystal should be selected by giving consideration to the above matters. An example is given following.
Nominal frequency
4.500000 MHz
Type
HC-18/U
± 20 ppm
Frequency deviation
less than 70 n
Equivalent series resistance
12 pF
load capacitor (Cl)

X2

X1

22pF

CD

J----o

Test Point

{ 1 000 pF ~

Fig. 14

8. POWER SUPPLY VOLTAGE
The operating voltage range of the J,lPD1701 C-013 is 4.5 to 5.5 V, and is lower than the 12 volt battery
systems of most automobiles. Therefore, it is necessary to connect a voltage regulator (J,lPC78M05, etc.) between the VDD terminal ( @ pin) and GND terminal ( @ pin), in order to prevent a voltage of over (-0.3 to
+6.0 V) being applied.

108S

o

~

•• -

to radio or TV

1101

,uPD832G SERIES
10·9 Display on alarm sign (How to be unused COM terminal)
The "cock" mark in the LCD stands for the sign of "DAI L Y ALARM." When this mark to be flashed at a
1 Hz rate is visible, alarm is available everyday at the pre-set time.

(i)

Turn off alarm output solely when the "cock"
mark is invisible.
In this case, the sleep output and control
output can be utilized even if HO LI DA Y.

",PD832G Series

(ii)

Turn off not only alarm but also sleep and
control output.

",PD832G Series

dot (1 Hz) (O}----...-l-4-l

VEE

piezo electric buzzer

1.5 V:s,vDD-VEE$.6.5 V

: This is the sign of "DAI L Y ALARM" armed
with alarm and is flashing at a 1 Hz rate.
()
()

: The COLON is flashing at a 1 Hz rate.

[NOTICE] 1. When is displayed the ALARM mode, the sign of "DAI L Y ALARM" is frozen. That condition is ( ~).
2. This circuit is suitable for the "M" product of J.lPD833G that has not COM signal terminal.
(But is provided the integrated Voltage Tripier.)

1102

j.lPD832G SERIES
10-10 How to be extended the duration of sleep timer output.
When the B button is pushed momentarily, the sleep output is activated. But in case of extending the duration
of Sleep timer output while the sleep output, has to be pushed the B button in the following circuit.

IlPD832G Series

Switch on the B button

relay

64 min.

SLP OUT

B

____

'\

I

~rl~:--------~---------I
I

I

}

NORMAL

64min.

I

SLP OUT
----~

L}

100 V AC

B

Vss

......_------

In Cilse of
extending
the duration
of sleep timer.

[The duration of sleep timer is 64 minutes.]

[NOTICE] 1. In case of this, it is not used the Snooze function.
2. When the CNT OUTPUT is activated, it is avai lable to be extended the duration of the control
timer by pushing the B button.
3. Whenever is pushed the B button, it can be renewed the duration of the sleep timer. It will be
started the Sleep timer when is switched off the B button.

1103

,uPD832G'SERIES
10-11 How to apply Lithium battery to pPD832G Series

A
M

&

b3 a2 1393 b2a2 1292 b, a, I, 9, B

CNT OUT
SLP OUT

CIN

FS
FM

CIP&DC

C,=O.'IJ

+

FH
DUT
VDD

STW
ALS
SEC
SNZ
ACS
SCI

Switch B

ALM OUT

c3 d3 e3 c2 d2 e2 d CJ d 1 el h P C
& M 0
a
t

1

Hz

C &M

560 k

A

D
E

G

* N.C. (in case of IJPD833G)
50 k

c::r

a

~
Piezo electric buzzer

~

[NOTICE] After lithium battery (+3 V) is connected to VAA - VSH, it should be pushed momentarily on by
switch B.

1104

,uPD832G SERIES

Lamp to light LCD
to

r----------------- "' ,
,,
I,
,
o------'l/V\r---II>t----,

3 Volt type LCD

SN Z _ _---'-"1"--'-----_

IlP D832G Series

;'
/

o

300
DUAL TIME

r----------.-......
I

/

,

STOP WATCH//

I
I

ALARM & CONTROL

/

r--------- - - - - - 300
I;

-,

, .----f----t----+--<

I

B MEMORY

I

;'
I

r--------,
SEC

/

=d~

,

//',

I

'

,,

~_----<~_ _- - l

piezo electric buzzer

,,

300
light emitting diodes
SR 503Dx6

1,50011

2B2DM

+

rv

AC6 V

1------"

0.001 - 0.0068 IlF

*

Capacitor for absorption of surge cased by power transformer when AC-line is turned on or off necessary 0.01
to 0.68 pF.

1105

HOW TO USE /LPD 1 990AC
TIME KEEPING LSI FOR MICROCOMPUTER SYSTEM

INTRODUCTION
The conventional time keeper for ECR or microcomputer system is a one-board clock built with various counters,
logic gates and flip-flops for TTLs, and MaS MSls. Because this one-board clock is required a wide space for mounting and a large amount of power in the system, it has difficulty in functioning as a battery-operated clock stably for
a long time when the system power supply is turned off.
Recently, a one-board time keeper using the LSI, named ,uPD1990AC, has attracted notice.
This time keeper ,uPD1990AC is a one chip LSI and consumes a very small amount of power. It is suitable for a
long battery operation when the system power supply is turned off. The ,uPD1990AC is an easy to use I C controlled
with 3 bit commands.
Since the ,uPD1990AC has N-channel open-drain outputs, the interface between the ,uPD 1990AC and the system
can easily be formed.
This manual describes the',u PD1990AC CMOS LS I best suited for the establishment of clock functions in
microcomputer systems.

1106

,uPD1990AC
TABLE
1.

2.

3.

4.

OF CONTENTS

OUTLINE OF jlPD1990AC
1-1.

Features

1-2.

Package dimensions and connection diagram

1-3.

Block diagram

1-4.

Absolute maximum ratings

1-5.

Electrical and AC characteristics

1-6.

Command

1-7.

The correspondence of the data between the 40 Bit Shift Register and the Time Counter

1-8.

The form of loading and reading the data

1-9.

Input circuit and output circuit of jlPD1990AC

COMMAND DESCRIPTION
2-1.

Register control modes. [Group "0"]

2-2.

TP (Timing Pulse) Control mode and TEST mode [Group "1"]

SOFTWARE FOR jlPD1990AC
3-1.

How to read out the Time Data from jlPD1990AC

3-2.

How to set the Time Data to jlPD1990AC

INTERFACES FOR jlPD1990AC
4-1.

Crystal oscillator circuit

4-2.

Power supply circuit

4-3.

Interface for output terminal

4-4.

Interface for input terminal

4-5.

Interface for CS terminal

4-6.

Example of application circuit

1107

,uPD1990AC
1. OUTLINE OF J-lPD1990AC
The J-lPD1990AC is an IC that supplies time data serially to a system using microcomputers and the like.
Time data consists of 40 bits of month, date, day of the week, hour (24-hour system), minute, and second. Month
data is expressed in hexadecimal (1 through C) and other data, in BCD (Binary Coded Decimal).
Time data is serially input and output in synchronized with the external clock applied to the ClK terminal.
The operation of the J-lPD1990AC is controlled with commands of 3 bits (CO,. C1, and C2) each. These
commands are divided into two groups: O-group commands to control the input and output of time data and
1-group commands to select timing pulses and test mode.
The supply voltage is VDD-VSS=2.0'"'-'5.5 V. When using two commercially available batteries {UM-1 , UM-2,
UM-3, UM-4, UM-5, or silver oxide), a supply voltage of 3.0 V is obtainable. The use of two Ni-Cd batteries
(possible to charge) gives a supply voltage of 2.4 V and that of three Ni-Cd batteries gives 3.6 V. Using these Ni-Cd
batteries, the J-lPD1990AC will be worked semi permanently. This means system power-fai lure never affects the
time keeping· and in addition, there is no need for battery replacement. Thus, it can be said that the J-lPD1990AC
is the most suitable time keeper for system.
The J-lPD1990AC is in the form of 14-pin DIP (Dual In-line Package).

1-1.

1108

Features

o Time data:

Month, date, day of the week, hour, minute and second

o Data format:

BCD (only month is expressed in hexadecimal using 1 through Co)

o Data input and output system:

Serial transmission system synchronized with external clocks applied through
ClK input

o Timing pulse output:

Either 64 Hz, 256 Hz, or 2048 Hz can be selected according to programs.

o Multi-chip structure:

Multi-chip structure is possible by chip selection (CS)

o Crystal oscillator:

A crystal oscillator with a standard oscillation frequency of 32.768 kHz

J,lPD1990AC
1-2. Package dimensions and connection diagram

CONNECTION DIAGRAM (Top View)

PACKAGE DIMENSIONS

in millimeters (inches)

I

VDD (+)

19.4 MAX,

I

XTAl

IJ
xx
««

Co

XTAl

STB

4

CS

5

11 OUT ENBl
TP

DATA IN

DATA OUT

22

LDOO

GND 7
(VSS)

<::i .-. ..l.----.--_

.9
N

Fig. 2

(V)

M ...-,
o

ClK

2.54
(0.100)

Fig. 1

NO.

Terminology

NO.

Terminology

1

C2

2

C1

3

10

TP

4

Co
STB

11

OUT ENBl

5

CS

12

XTAl

6

DATA IN

13

XTAl

7

GND (VSS)

14

VDD (+)

8
9

ClK
DATA OUT

1109

j.lPD1990AC
1-3.

B lock diagram

OUT ENBl 0

ClK

'OJ

DATA
IN

40 Bit Shift Register

ClK

..

N-cha nnel
Open Drain

Multiplexer
r---'""I

SO
PS

~

~

:--

........ :-GNO
l.-

DM

PS

I I,

L-~
Month

I
I--

~

PSPS

Date

Hour

Min

I

I

I

t--

1 Hz

'---

,---r--rI--rr- -.,...

32
64
256
2040

TEST

r---

c2v
c 1'-'"

J

\

COMMAND
latch/Decoder

)

STB

=

-

Multiplexer

N-ch annel
Ope n Drain

J
I
GND

v

CS...,.

fosc

Hz
Hz
Hz
Hz

~

--

CO~

1

GNO(VSS)

32.768 kHz

VDD = 2.0 to 5.5 V

1110

~~

15 Stage Binary Divider

I~

lO

sr'

Time Counter

OSC

-

•I

I

-

l'"'

I

Fig. 3

1

VDD(+)

SO

Serial Data

PS

Preset

D/W

Day of week

CS

ChipS elect

TP

Timing Pulse

tLPD1990AC
1-4.

1-5.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage

VOO-VSS

Input Voltage

VIN

6.0

V
V

VSS-0.3 to VOO +0.3

Operating Temperature Range

Topt

-40 to +85

DC

Storage Temperature Range

Tstg

-55 to +125

DC

Output Termi nal Voltage

VOUT

6.0

V

Electrical and AC characteristics

ELECTRICAL CHARACTERISTICS 1.

= 32.768 kHz, CG = CD = 20 pF, Xtal RS = 20 kn, Ta = 25

(f

CHARACTERISTIC

SYMBOL

TYP.

MIN.

Operating Voltage

VOO-VSS

Current Consumption

ISS

Low Level Output Current

IOL

*500

CLK Input Frequency

fCLK

DC

Input Leakage Current

liN

High Level Input Voltage

VIH

Low Level Input Voltage

VIL

VSS

Oscillation Starting Voltage

VSTA

2.0

2.00
20

0.8 VOO

MAX.

UNIT

DC)

TEST CONOITONS

5.50

V

50

Il A

VOO-VSS=3.60 V

IlA

VOO-VSS=2.0 V
VOL =0.4 V

100

kHz

VOO-VSS=2.0 V, Duty 50 %

1

IlA

VOO-VSS=3.60 V

VOO

V

0.2 VOO V
V

TSTA= 10 s

* TP and DATA OUT are N-channel open drain output.
A.C. ELECTRICAL CHARACTERISTICS (FOR REFERENCE - - - NOT SPECIFIED)
(f

CHARACTER ISTIC

= 32.768

SYMBOL

MIN.

kHz, VDD-VSS

TYP.

= 2.0

MAX.

V, Ta

UNIT

CO"-'2, CS - STB Set-up Time

tsu

2

Il S

STB Pu Ise Width

TSTB

2

Il S

CO"-'2, CS-STB Hold Time

THLO

2

J1S

STB LATCH Delay Time

td1

CLK-OATA OUT Delay Time

tdc-o

DATA IN Set-up Time

tosu

2

J1S

DATA IN Hold Time

tOHLO

2

J1S

= 25

DC)

TEST CONDITIONS

*4

Il S

except Time Read mode

2

J1S

R L=33 kn, C L= 15 p F

* Note: When group 0 is Time Read mode, STB LATCH delay time is 40 IlS MAX. (td2).

I I I I

jlPD1990AC
1-6.

Command
REGISTER CONTROL MODE GROUP [Group 0]
C2

=0

MODE & COMMAND

REGISTER HOLD

REGISTER SHIFT

CODE
C2 Cl CO
a

a

a

a

FUNCTION

a

Data of 40 Bit SIR are not shifted, and data is held.
The TEST MODE is released by this command.

1 Hz

1

Data of the 40 Bit SIR can be shifted to Data OUT
term inal and the external data can be shifted to the
40 Bit SIR, each synchronizing with a clock input
at the ClK terminal.

lSB = a or 1

lSB

0.5 Hz

TIME SET

a

1

a

Data of the 40 Bit SIR are not shifted. The TIC is
kept to transfer data from the 40 Bit SIR and the
11 - 15 stage remains reset. Set a command (ie.
000, 001, all ) besides this command ,to start TIe.

TIME READ

a

1

1

Data of 40 Bit SIR are not shifted. Data of the
TIC keep to transfer to the 40 Bit SIR.

note

DATA OUT

= a or 1

SIR: Shift Register
TIC: Time Counter
Only to change TIME READ mode to another mode, the time to be changed another mode has to need

40 J.1s MAX. (=td2) from the rising edge of STB pulse for setting a new command.

TP CONTROL MODE AND TEST MODE GROUP [Group 1]
C2

=1

MODE & COMMAND

FUNCTION

TP = 64 Hz

1

a

a

TP terminal is the 64 Hz output.

TP = 256 Hz

1

a

1

TP terminal is the 256 Hz output.

TP = 2 048 Hz

1

1 a

TP terminal is the 2 048 Hz output.

1

In this mode, TP terminal is the 32 Hz output. The TEST
MODE is released by TP MODE (100,101,110) or REGISTER
HOLD MODE (000).
When is released by MODE (000), TP terminal is 64 Hz output.

TEST MODE

1112

CODE
C2 Cl CO

1

1

,uPD1990AC
1-7. The correspondence of the data between the 40 Bit Shift Register and the Time Counter.
DATA IN

8#4

8#3

8#2

8#1

DATA OUT
8#0 t-----.
t !.,.-------___-_
___ .J '--.-J
'__ _ _ _ _ _ _

--,/

-~

_ _ J ).'---'~'__ _ _ _ _ _ _ _ _ _

r-----------

__________ J

---..,---..
,...----------y
'(

----------,
- - - - -_____

--"\ l

_

-J

'__ _ _ _ _ _ _ _ _ _ _

~

---------~ ~

,-----,
,--------___ ..J'__.JI..'__
_ _ _ _ _ __

~'__

,-----,

,---------

~"'>___.J!..~ _ _ _ ../'\..._JI..~ _ _ _ _ _ _ _

STB

ClK
DATA IN
'-----I~-----

----------

Seconds/Units---+----Il-----+-----Month----oI----Il---tdl

INTERNAL
MODE OF
J,lPD1990AC

--+-"---td 1

REGISTER SHIFT MODE

Note: tdl = 4 J,lS (Delay time)

-.j...-4.-tdl

TIME SET

REGISTER HOLD

Starting point
for time count

1121

,uPD1990AC
4. INTERFACES FORpPD1990AC
The following is the Block diagram interface between pPD1990AC and CPU SYSTEM.

(1)

Crystal oscillator circuit

(2)

Power supply circuit

(3)

Output interface

(tl)

Input interface

(5)

CS interface

APPLICATION CIRCUIT
CPU SYSTEM
C2

,-----,

f--'

Cl'

I

INPUT

c:::::J

T

Co

'-1.1 CD

.'"

INTER- I - - - - -..... STB
FACE
1 - - - - - - 4 DATA IN

DATA IN

J

ClK

1------1

I

OUT ENBl

Cl K

-,-t - - - - - - I OUT ENBl
r - Ii
j

i

DATA OUT

GND

.l •. -

Cl

STB

VCC

t----.____-tl ~ 30 pF

t - - - - - - I C2

I

Co

32_768 kHz

J..LPD1990AC

I

TP

i

I---~

OUTPUT
INTERFACE

DATA OUT

I
1---,
TP

L _---1·

CS I - -

VDD

GND

r:----,I

+5 V

I

---+----+--_--~

POWER
SUPPLY " 1 - - - - - - - - - - - - '

~I~~

COM __---~-4_------------------~-_r---~

7i7

r-----l

L----J

I

L

!t-----------I
_ _ _ _ _ .J
CS
CIRCUIT

Fig. 4

1122

5-30pF

,uPD1990AC
4·1.

Crystal oscillator circuit

The oscillator circuit of the IlP01190AC is of one-stage CMOS inverter system, incorporating a feedback
resistor for bias. A crystal oscillator of nominal 32.768 kHz is connected between Xtal (13th pin) and Xtal (12th
pin).
A CG=about 30 pF capacitor is connected between Xtal (13th pin) and VSS (GNO) and a CO=5--30 pF trimmer
capacitor, between Xtal (12th pin) and VSS (GNO). Crystal oscillator frequency deviation and variation in
capacitor CG and floating capacity at the oscillating stage cause a discrepancy between the actual and nominal
osci Ilation frequencies. To adjust this, the Xtal (12th pin) capacitor uses a variable capacitor.
Crystal Oscillator Circuit

5--30 pF

Fig. 5

4·2.

Power supply circuit

Originally, the time keeper ought to continue to count the time accurately even though power fails or its AC cord
is misremoved from the socket outlet or the system power is turned off. From this point of view, the power supply
circuit of the jlP01990AC must be of battery-backed up type.
The jlP01990AC can use a battery of any type as a power source if its voltage is in a 2.0 through 5.5 V
operating voltage range.
For reference, the following shows a example of circuit using Ni-Cd batteries (easy to charge).

POWER SUPPLY CIRCUIT
+5

v

2SA733

(VCC)

to VDD of J,LPD1990AC

SYSTEM POWER
SUPPLY

15 kn

4.7 kn

Ni-Cd
X3
GND

Fig. 6

1123

tl PD1 990AC

SYSTEM POWER SUPPLY = "ON"
pPD1990AC is operated by System Power Supply (about 5 V).
SYSTEM POWER SUPPLY = "OFF"
pPD1990AC is operated by about Ni-Cd batteries (about 3.6 V).

4-3.

Interface for output circuit

The output circuit (DATA OUT and TP) of the pPD1990AC has N-channel open-drain outputs as shown.
To form an interface with the system, insert a pull-up resistor, Rpu, between the system power supply Vce
and the output terminal.
Notice that a low-level output current of IOL ==(VCC-VDS)/Rpul/RS (PA) flows in accordance with Ohm's
law.
Decide the pull-up resistor value Rpu so as to balance it against the low level output current and other conditions.

Vee

Vee (System Power Supply)

Vee

Voo
RS
OATA OUT
TP
SYSTEM

VSS

J.LP01990Ae

epu SYSTEM

Fig. 7

1124

J1,PD1990AC
4-4.

Interface for input circuit

(a)

Terminals of C2, C1, CO, ClK, DATA IN, and OUT ENBl
To form an interface with the system, insert a pull-up resistor Rpu between the system power supply
VCC and the input terminal.

Vee (+5 V)

Vee (+5 V)

Vee (+5 V)

Voo
Rpu

RS

VSS

epu

SYSTEM

J.lP01990Ae

Fig. 8

Notice that a leakage current (CPU SYSTEM) of IOL flows in accordance with Ohm's law.
Decide the pull-up resistor value Rpu as following.
Rpu ~ 5 - 3.5
IOl

5 V: Power-supply (VCC)
3.5 V: Minimum of high level input voltage in
J.LPD1990AC

1125

j.lPD1990AC
(b)

Terminal of STB
to VOO of IlP01990AC
For STB input

10 kn
STB
(from CPU SYSTEM)

22 kS1

to STB of IlP01990AC

- - - - - - ' V \ \ r - -.........- - - I

22 kn

10 kn

GNO
Fig. 9

The STB input is low when the CPU system output is floating and when the CPU system is off.

4-5.

Interface for CS terminal

VCC (+5 V)

VCC (+5 V)

!

VOO

IlP01990AC

CS 1-------...

VSS

Fig. 10

A pull-down resistor R is inserted so that the CS input is low when the power supply (VCe) is off.
And the ClK and STB input prohibited by connecting CS input to GND level.

1126

,uPD1990AC
4-6.

Example of application circuit
Vcc (+5 V)

2SA733

System Power
Supply

510

15 kn

n
4.7 J..LF

2SC945 --Ni-Cd
-=-3.6 V

1

4.7 kn

14
VCC

VCC

32.768 kHz

VDD
3.3 kn

C2

13

VCC
3.3 kn

C1

VCC

~

w

Co
8

Vcc

f-

3.3 kn
DATA IN

::J

6

ClK

u

U

0

(J)

3.3 kn

11

OUT ENBl
33 kn

9

DATA OUT
33 kn
TP

VCC

«

DATA IN

VCC

a.

c::J

CD=5-30 pF

VCC

en

>en

12

CG=30 pF

3

3.3 kn
ClK

C1

XTAl

2

3.3 kn
Co

C2

XTAl

10
VDD

~
0
a.

OUT ENBl

::1.

DATA OUT

5
CS

33 kn

TP

4

22 kn
ST B t----'\A/\r---4--C

~--~STB

10 kn
VSS

GND

7

Fig. 13

1127

APPLICATION CIRCUIT OF ,uPC7800H SERIES
3-TERMINAL REGULATORS

1. INTRODUCTION
The manufacturing and circuit design techniques of integrated circuits have made rapid and remarkable progress in recent years. NEC has released 3-terminal regulators (J.LPC7800H series) featuring an output current
capability of 1 A, low noise and excellent stability.

The regulators are available in fixed output voltages options

5 V, 8 V, 12 V, 15 V, 18 V and 24 Vwith standard TO-220 plastic package. As they have built-in current limiting
circuit, thermal shut-down circuit and safe area compensation circuit, these monolithic circuits are very easy to
use in various applications.

2. ABSOLUTE MAXIMUM RATINGS
Although J.LPC7800H series include various protective circuits, it is necessary to examine the design of the application circuits so that they can operate within the absolute maximum ratings shown in Table 1.

Table 1 Absolute Maximum Ratings
(Ta=25

°e, unless otherwise noted.)
ITEM

Input Voltage

VIN

RATINGS

UNIT

(J.LPC7805H through J.LPC7818H) 35

V

(J.LPC7824H)

40

Operating Temperature Range

Topt

-20 to +80

V
W
°c

Storage Temperature Range

Tstg

-55 to +150

°c

Lead Temperature (Soldering 10 sec.)

TL

Internal Power Dissipation

Operating Junction Temperature Range

* Internally Limited

1128

SYMBOL

PT(Tc=25 °C)

20 *

230

o to +125

°c
°c

,uPC7800H SERIES
3. EQUIVALENT CIRCUIT AND THE OPERATION OF THE CIRCUIT
3-1

Equivalent Circuit

~~--------~------~~----~~--~--~1

Fig. 1

3-2

IN

Equivalent circuit

Fundamental Block Diagram

O-----~----------------~--------------~--------~~

1 UNREGULATED INPUT

Constant Current Source

Rll
~------4--o

3

2 REGULATED OUTPUT

3GND

Fig. 2

Fundamental Block diagram of the 3-terminal regulator

1129

J,lPC7800H SERIES
3-3

Pin Connection

GND

NEe
7800

132

It\

IN GND OUT

Fig. 3

3-4

Pin connection

Reference Voltage Circuit

The reverse breakdown voltage between the base and the emitter of a transistor has continuously been utilized
as the reference voltage inside the monolithic IC. It is, however, difficult for this method to obtain a voltage of
less than 6 V, and thus, the temperature compensation is required by adding another circuit. Instead of that
conventional technique, the pPC7800H series adopt a circuit utilizing the forward voltage drop between base and
emitter of a transistor as shown in FigA "Basic circuit"to get a reference voltage of lower than 6 V which remains
relatively stable against temperature change.

~----------~----------~----~------oVREF

R'

~AVBE2
3

I

~--------------~

\

03

VBE3

'--

Fig. 4

1130

Basic voltage reference diagram utilizing the forward voltage drop between base and emitter
of a transistor

,uPC7800H SERIES
In the circuit shown in Fig.4:, the reference voltage VREF can be obtained as follows;
:\)

VREF

= VSE3

+~ ICO'2 ··Ri

+ "SO) • Ri

~

=

VS~3 +,fu
: .(AVBE 2 ) + IS0 3 . Ri
R3
•
>

:~Ri kT .J 1
= V SE + - , (-In-)+Iso' ·Ri
3
R3 q
J2
3
~V
(VSE 1

SE 3

+

Ri (kT I Ri)
R'3 q n R'1

= VSE 2 , ISQ)

• R;

«

(1 )

1

Differentiating equation (1) by temperature T, equation (2) is obtained;

(2)

It may be understood that the temperature compensated reference voltage can be obtained by selecting
suitable resistance ratios R2' /R3' and R2' /R 1'.

Fig. 5 shows the reference voltage circuit of IlPC 7800H series obtaining.

GND

Fig. 5

3-5

VREF circuit of IlPC7800H series

Error Amplifier

The error amplifier consists of Q3, Q4, Q9 and Ql1. Of these transistors, Q3 and Q4 compose the reference
voltage circuit. Suffer circuit Qll is added to eliminate an excessive current change of Q9 which may be caused
by considerable voltage change of unregulated input or load condition and to get better stability of the operating
current finally. The constant current source consisting of Q9 works as an active load of the error amplifier. A
negative feedback path is provided through feedback resistors R 19 and R20, and the output voltage is given by
the following equation;
VOUT = VREF • (1

+

R20
R

)

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

(3)

19

Various output Voltage are obtained by varying the ratio of R20/R19.

1131

,uPC7800H SERIES
3-6

Start-up Circuit and Thermal Overload Protection Circuit

Fig. 6 shows start-up circuit and thermal overload protection circuit.

+Vcc
(Input)

(3.1V)

-----=-ry
~14 i L.

-t:===-:=-=====::;-1

!-I--"R-~

··
W
Fig. 6

I (oAV)

1

I

Q 13

f' 13.5VII

!

I--- Thermal protection circuit

IL ___________.JI

Start-up Circuit and Thermal Overload Protection Circuit

When a voltage is applied to the input terminal, 012 and 013 are biased through R4 causing diode-connected
transistor Oa to be driven, and the constant current transistor Og biased by Oa starts to supply the current to
the reference voltage circuit enabling entire circuit to start operation. The 013 base potential is determined
according to the voltage of zener diode Dl and the voltage split ratio of R5, R6, R7 and is approximately 3.1 V.
On the other hand, the emitter potential of the transistor becomes about 3.5V due to the operation of the
reference voltage circuit resulting O.4V of reverse bias between the base and the emitter. 013 operates at startingup time only and then it stops operation.
And current iSilupplied to the reference voltage circuit through Oa, Og. Also the base potential of 014 is fixed
to about O.4V by the resistance split of R5, R6, R7. If the junction temperature exceeds 150°C, 014 is fully
turned on causing the base current of the output transistors 016,017 to decrease and also cutting the output
current.
3-7

Output Short-circuit Protection, Output Transistor Safe Area Compensation

The thermal overload protection circuit is effective for persistent overloads which would cause excessive chip
temperature. It is not effective against instantaneous overloads which could result in secondary breakdown of the
pass transistor or damage to metal interconnection due to high current density. Transistor 015 and resistor R 11
protect against instantaneous overloads by limiting output current. If the output current rises to a high level, the
current through R 11 will turn on 015 shunting base current away from the driver transistor and preventing
further increase in output current. In order to operate the power transistor in the output stage within its forward safe area, a power limiting circuit is built in as shown in Fig. 7.

1132

,uPC7800H SERIES

----------~----------~----------~----_O1

IN

Rll
- - - - - - - 4_ _- - - -____________--+______________-----{)

Fig.7

2 OUT

Circuit of Output Stage

When the voltage between collector and emitter of 017 exceeds SV, zener diode D2 conducts and biases the
output current limiting transistor 015, cutting the base current of 016, Q17 and also cutting the output current.
Accordingly, the output capacity decreases correspondingly as the input/output voltage differential becomes
larger, causing 017 to be operated within the safe operating area as shown in Fig. S.

3.0

~

2.5

~

co
Q)

l~ ~..... 1'00..

a.

9

2.0

c:

f1

u

,y

.....

~:::J

.....

1.5

r--.-

:::J

e
:::J
0

E

1.0

r':K

.........

.........

"'-I '

Tj

= ooc

~ i'...

i" ~

i'...
..... ~

Tj

x 0.5

........

= 125°C

co

~

o

5

10

15

20

= 25

C-

,~

"~ ~

:::J

.§

Tj

""
25

~

30

Input-output voltage differential VIN-VO (V)

Fig. 8

Maximum outpu$ current vs input-output voltage differential

1133

,uPC7800H SERIES
4. TYPICAL APPLICATIONS
The pPC7800H series has an output current capacity of lA within a range of Tj<100 °c, and stable output
voltage is obtained by connecting a capacitor of more than 0.22 pF to the input terminal for preventing
oscillation. The output terminal capacitor is necessary to improve the transient response. It is effective at 10 pF
or more. A suitable value ranges from 50 pF to 100 pF.
In order to operate these regulators under the best condition, it is desirable to operate them at a junction
temperature of lower than 125°C. Accordingly, it is necessary, to use them with a suitable heat sink. If no heat
sink is used, the load current should be under 200 mA. In this case, a resistor of more than 50 n should be
connected to the input terminal to reduce a power loss at the time of output short-circuit.
Although the application circuits in this section are based on only pPC 7805H, they can also be applied to·8 V,
12V, 15V regulators.

4-1

Typical Circuit
(With heat sink)

pPC7805H

2

...,::....--...---'OVO

VIN> (VO+ 3V)

el

l

3

o.33j1F

47pF

C 1 : Mount closely to the input terminal for preventing oscillation
C2 : Improves transient response (electrolythic capacitor)

Fig.g

(recommend mylarfilm type capacitors)

Typical circuit of 3-terminal regulator

Fig. 9 is an example of typical application circuits of 3-terminal regulators. This circuit operates as a regulated
power supply having an output voltage of 5 Vand an output current capacity of 1 A.

4-2

High output current circuit

Fig. 10 shows a circuit example of increasing the output current capacity to higher than 2 A by adding a PNP
power transistor. The maximum output current is limited by the power dissipation of the external transistor, and
it is about 3 A taking the maximum ratings of 2SB616 into consideration.
Determine the R 1 value from equation (6)
lOUT

= I REG + ICO I

I REG

=

VBEOI
RI

+

. . . . . . . . . . , . . . . . . . . . , .... , . . . . . . . . . . . . . . . . .

ICOI
hFE

(4)
(5)

Rearraging equations (4) and (5) with reference to R 1;

(1

hFE • VBEOI
'IREG - lOUT

+ hFE)

Assuming lout(max)

:::0

3 A, Ireg(max)

A suitable value of R 1 is about 1...... 3

1134

n.

...................................

= O.4A,hFE = 20 and

Rl is about 2.6

n.

(6)

ttPC7800H SERIES

(with heat sink)
Fuse (3A)

2S8703

VIN> (VO + 4V)

-ICOl

(with heat sink)

RI
30n

~1

I

--lOUT

2

J,tPC7805H

5V
Vo

3

O.33~F

NOTE: 01 may be broken by output short circuit. If there is possibility of shortening the load, refer to examples of
application circuits in Figs. 12 and 13, and also please note to use a heat sink with enough margin.

Fig. 10 Circuit example of increasing the output current

When the output current is less than 0.2 A, 01 is OFF, and the output current is supplied through R 1 and the
IC. When it exceeds 0.2A,it is supplied through not only the IC but also 01. Fig.11 shows a current buffer circuit
obtained by adding a current limiting protective circuit to the one shown in Fig.10.

VIN> (Vo + 5V)
(with heat sink)
J,tPC7805H

2

30n

5V,3A
Vo

3

Fig. 11

Current Buffer (with short-circuit protection)

Fig. 12 shows an application circuit when the output current is limited by utilizing the built-in output current
protective functions in IlPC 7800H series.
Diode 01 cancels the voltage between base and emitter of 01, and the current ratio of the regulator and
external transistor is determined by R1. The maximum output current is three times the maximum output
current of IlPC7805H.

Considering a voltage loss by R 1 and 01, the mini mum input voltage to the regulator

should be more than (VO + 5 V).

1135

,uPC7800H SERIES

(with heat sink)
2S8703

u-----~--~~--._--~

VIN> (Va + 5V)

r---------------~

R t 0.50

(with heat sink)

la
",PC7805H

1------+----0 Va

2

1N5624

3

Fig. 12 Example of an application circuit with built-in current limitting circuit

4-3

Method of getting an optional output voltage (Simplified method)

(with heat sink) •
",PC7815H

3

Va

2

(

t18

(24V)

VR2

10,

\
(
VR1

\

• To be electrically insulated.

Fig. 13 Method of getting an optional output voltage

Two resistors are externally connected to the 3-terminal regulator having a fixed output so as to get an
optional output voltage as shown in Fig.13. Assuming regulator current be IQ and idling current of the external
resistor R2 be IB, the following equation is obtained.
Va

= VRI + VR2
= Rt

•

(IQ + IB) + R2 ·IB
(7)

=(R t +R 2 ) 'IB+R t 'IQ
Since VR2 is equal to the fixed output voltage of the 3-terminal regulator;

. . . . . . . . . . . . . . . . '"

..............................

(8)

Substituting equation (8) into equation (7);

(9)

1136

jlPC7800H SERIES
From equation (9), it may be understood that the output voltage is determined by the fixed output voltage
VR2, circuit current IQ and the external resistors R 1, R2 of the 3-terminal regulator.
IQ changes by about 0.05 rnA against the input voltage variation of about 1V. Fig.14 shows the characteristic
curve of the circuit current variation (b.IQ) vs input ripple voltage (b. VIN). By re-writing the equation (9) with
this variation, equation (10) is obtained.

Va

Rl
) . VR2 + RI
= (1 + -R
1

• (10 + AIO)

...............................

(10)

1.2
~ 1.0

E
a

Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:56:37
Create Date                     : 2013:07:28 08:55:15-08:00
Modify Date                     : 2013:07:28 11:34:07-07:00
Metadata Date                   : 2013:07:28 11:34:07-07:00
Producer                        : Adobe Acrobat 9.55 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:520e1e8d-2f53-4147-9468-d861d0b7097d
Instance ID                     : uuid:dfa5d333-c98a-624b-8d6e-7f4830bab1d5
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 1150
EXIF Metadata provided by EXIF.tools

Navigation menu